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Preface

Stata is an exciting statistical package that offers all standard and
many non-standard methods of data analysis. In addition to general
methods such as linear, logistic and Poisson regression, and generalized
linear models, Stata provides many more specialized analyses, such as
generalized estimating equations from biostatistics and the Heckman
selection model from econometrics. Stata has extensive capabilities for
the analysis of survival data, time series, panel (or longitudinal) data,
and complex survey data. For all estimation problems, inferences can
be made more robust to model misspecification using bootstrapping or
robust standard errors based on the sandwich estimator. In each new
release of Stata, its capabilities are significantly enhanced by a team of
excellent statisticians and developers at StataCorp.

Although extremely powerful, Stata is easy to use, either by point-
and-click or through its intuitive command syntax. Applied researchers,
students, and methodologists therefore all find Stata a rewarding envi-
ronment for manipulating data, carrying out statistical analyses, and
producing publication quality graphics.

Stata also provides a powerful programming language making it
easy to implement a ‘tailor-made’ analysis for a particular application
or to write more general commands for use by the wider Stata commu-
nity. In fact we consider Stata an ideal environment for developing and
disseminating new methodology. First, the elegance and consistency
of the programming language is appealing for methodologists. Second,
it is simple to make new commands behave in every way like Stata’s
own commands, making them accessible to applied researchers and stu-
dents. Third, Stata’s email listserver Statalist, The Stata Journal, the
Stata Users’ Group Meetings, and the Statistical Software Components
(SSC) archive on the internet all make exchange and discussion of new
commands extremely easy. For these reasons Stata is constantly kept

v



vi � Preface

up-to-date with recent developments, not just by its own developers,
but also by a very active Stata community.

This handbook follows the format of its two predecessors, A Hand-
book of Statistical Analysis Using S-PLUS and A Handbook of Statis-
tical Analysis Using SAS. Each chapter deals with the analysis appro-
priate for a particular application. A brief account of the statistical
background is included in each chapter including references to the lit-
erature, but the primary focus is on how to use Stata, and how to
interpret results. Our hope is that this approach will provide a useful
complement to the excellent but very extensive Stata manuals. The
majority of the examples are drawn from areas in which the authors
have most experience, but we hope that current and potential Stata
users from outside these areas will have little trouble in identifying the
relevance of the analyses described for their own data.

In the fourth edition, we have added many new exercises based on
new datasets. For exercises marked with the symbol • , answers are
provided in the appendix. For the remaining exercises, a solutions
manual is available from Chapman & Hall/CRC for course instructors.

Particular thanks are due to Nick Cox who provided us with ex-
tensive general comments for the second, third, and fourth editions
of our book, and also gave us clear guidance as to how best to use a
number of Stata commands. We are also grateful to Anders Skrondal
for commenting on several drafts of the third edition. Various people
at StataCorp have been very helpful in preparing the second, third,
and fourth editions of this book. We would also like to acknowledge
the usefulness of the Stata NetCourses in the preparation of the first
edition of this book.

All the datasets can be downloaded from:

� http://www.stata.com/texts/stas4

Individual datasets can also be read directly into Stata from the above
site by specifying the full path. For example, to read the data wagepan.dta
for Exercise 1.2, use the following command:

use http://www.stata.com/texts/stas4/wagepan

S. Rabe-Hesketh
B. S. Everitt
Berkeley and London
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Chapter 1

A Brief Introduction to

Stata

1.1 Getting help and information

Stata is a general purpose statistics package developed and maintained
by StataCorp. There are several forms or “flavors” of Stata, the stan-
dard Intercooled Stata, the more limited Small Stata, Stata/SE (Spe-
cial Edition) which can handle extremely large datasets, and
Stata/MP (Multiple Processors) which runs in parallel on up to 32
processors. Each flavor exists for Windows (2000, XP, and later ver-
sions), Unix platforms, and the Macintosh. Almost all Stata features
discussed in this book are common across platforms.

The base documentation set for Stata consists of eight manuals
(StataCorp 2005a–h): Getting Started with Stata, Stata User’s Guide,
Base Reference Manuals (three volumes), Data Management Refer-
ence Manual, Graphics Reference Manual, and Quick Reference and
Index. In addition there are more specialized reference manuals such
as the Stata Programming Reference Manual and the Stata Longitudi-
nal/Panel Data Reference Manual. The reference manuals provide ex-
tremely detailed information on each command while the User’s Guide
describes Stata more generally. Features that are specific to the oper-
ating system are described in the appropriate Getting Started manual,
e.g., Getting Started with Stata for Windows.

Each Stata command has associated with it a help file that may be
viewed within a Stata session using the help facility. Both the help-files
and the manuals refer to the Base Reference Manuals by [R] name of
entry, to the User’s Guide by [U] chapter or section number and
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name, the Graphics Manual by [G] name of entry, etc. (see Stata
Getting Started manual, immediately after the table of contents, for a
complete list).

There are an increasing number of general introductory books on
Stata, including the book you are reading now, Kohler and Kreuter
(2005), and Acock (2006). In addition, there are books on Stata for
particular types of analysis such as categorical data analysis (Long and
Freese, 2006), survival analysis (Cleves, Gould and Gutierrez, 2004),
generalized linear models (Hardin and Hilbe, 2006), and multilevel and
longitudinal models (Rabe-Hesketh and Skrondal, 2005). The web site
http://www.stata.com/bookstore/statabooks.html provides up-to-
date information on these and other books.

The Stata web page at http://www.stata.com offers much useful
information for learning Stata including an extensive series of “fre-
quently asked questions” (FAQs). Stata also offers Internet courses,
called NetCourses. These courses take place via a temporary mailing
list for course organizers and “attenders”. Each week, the course or-
ganizers send out lecture notes and exercises which the attenders can
discuss with each other until the organizers send out the answers to the
exercises and to the questions raised by attenders.

The UCLA Academic Technology Services offer useful textbook and
paper examples at http://www.ats.ucla.edu/stat/stata/, showing
how analyses can be carried out using Stata. Also very helpful for
learning Stata are the regular columns Speaking Stata and Stata Tips in
The Stata Journal; see http://www.stata-journal.com. It is possible
to purchase individual issues, or a compilation of Stata tips by Newton
and Cox (2006).

One of the exciting aspects of being a Stata user is being part of
a very active Stata community as reflected in the busy Statalist mail-
ing list, Stata Users’ Group meetings taking place every year in the
UK, USA and various other countries, and the large number of user-
contributed Stata programs; see also Section 1.12. Statalist also func-
tions as a technical support service with Stata staff and expert users
such as Nick Cox offering very helpful responses to questions.

1.2 Running Stata

This section gives an overview of what happens in a typical Stata ses-
sion, referring to subsequent sections for more details. We are using
the Windows version here and some features may be different in Stata
for other platforms. We therefore recommend consulting the Getting
Started With Stata manual for your platform.
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1.2.1 Stata windows

When Stata is started, a screen opens as shown in Figure 1.1 containing
four windows labeled:

� Command: here commands are issued interactively
� Results: here results are displayed
� Review: here all commands issued within the current Stata ses-

sion are shown
� Variables: here the variables of the current dataset are listed

Figure 1.1: Stata windows.

Each of the Stata windows can be resized and moved around in the
usual way; the Command, Review, and Variables windows can also be
moved outside the main window (undocked) in which case they will
not move along with the main Stata window. To bring an undocked
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window forward that may be obscured by other windows, make the
appropriate selection in the Window menu. To dock a window, drag
it back into the main window. A transparent blue box appears in place
of the window being dragged and docking guides appear at the center
and edges of the main window. Release the mouse button when the
transparent blue box is on the appropriate docking guide, for instance
on the arrow pointing down, to dock the window at the bottom of the
main Stata window.

The fonts in a window can be changed by clicking the right mouse
button over the window. All these settings are automatically saved
when Stata is closed. Use the Manage Preferences selection from
the Prefs menu to save and load specific settings, for instance a large
font setting for teaching, or to reload the factory (or default) settings.

Three other types of windows can be created within a Stata session:
Viewer windows to view help or log files, Graph windows to display
graphs, and Do-file Editors to build and run scripts (called do-files).

1.2.2 Datasets

Stata datasets have the .dta extension and can be loaded into Stata in
the usual way through the File menu (for reading other data formats;
see Section 1.4.1). As in other statistical packages, a dataset is a matrix
where the columns represent variables (with names and labels) and
the rows represent observations. When a dataset is open, the variable
names and variable labels appear in the Variables window. The dataset
may be viewed as a spreadsheet by opening the Data Browser with the

button and edited by clicking to open the Data Editor. Both
the Data Browser and the Data Editor can also be opened through the
Window menu. Note, however, that nothing else can be done in Stata
while the Data Browser or Data Editor is open (e.g., the Command
window disappears). See Section 1.4 for more information on datasets.

1.2.3 Commands and output

Until release 8.0, Stata was entirely command-driven and many users
still prefer using commands as follows: a command is typed in the
Command window and executed by pressing the Return (or Enter)
key. The command then appears next to a full stop (period) in the
Stata Results window, followed by the output.

If the output produced is longer than the Results window, --more--
appears at the bottom of the screen. Pressing any key scrolls the out-
put forward one screen. The scroll-bar may be used to move up and
down previously displayed output. However, only a certain amount of
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past output is retained in the Results window. For this reason and to
save output for later, it is useful to open a log file; see Section 1.2.6.
It is possible to copy and print selected output from the Results win-
dow. Edit → Copy Table can be used to copy and paste tables so
that columns are separated by tabs making it easy to produce a nicely
formatted table for instance in Word.

Stata is ready to accept a new command when the prompt (a period)
appears at the bottom of the screen. If Stata is not ready to receive
new commands because it is still running or has not yet displayed all
the current output, it may be interrupted by holding down Ctrl and

pressing the Pause/Break key or by pressing the red Break button .
A previous command can be accessed using the PgUp and PgDn

keys or by selecting it from the Review window where all commands
from the current Stata session are listed (see Figure 1.1). The command
may then be edited if required before pressing Return to execute the
command.

Most Stata commands refer to a list of variables, the basic syntax
being command varlist. For example, if the dataset contains variables
x, y, and z, then

list x y

lists the values of x and y. Other components may be added to the
command; for example, adding if exp after varlist causes the com-
mand to process only those observations satisfying the logical expres-
sion exp. Options are separated from the main command by a comma.
The complete command structure and its components are described in
Section 1.5.

1.2.4 GUI versus commands

Since release 8.0, Stata has a Graphical User Interface (GUI) that al-
lows all non-programming commands to be accessed via point-and-
click. Simply start by clicking into the Data, Graphics, or Statistics
menus, make the relevant selections, fill in a dialog box, and click OK.
Stata then behaves exactly as if the corresponding command had been
typed with the command appearing in the Results and Review windows
and being accessible via PgUp and PgDn.

A great advantage of the menu system is that it is intuitive so that
a complete novice to Stata could learn to run a linear regression in
a few minutes. A disadvantage is that pointing and clicking can be
time-consuming and cannot be automated. Commands, on the other
hand, can be saved in a file (called a do-file in Stata) and run again
at a later time. In our opinion, the menu system is a great device for
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finding out which command is needed and learning how it works, but
serious statistical analysis is best undertaken using commands. In this
book we therefore say very little about the menus and dialogs (they are
largely self-explanatory after all), but see Section 1.8 for an example of
creating a graph through the dialogs.

It is easy to move back and forth between a dialog box and help

for the corresponding command; to move to help, click into at the
bottom-left of the dialog box; to move to the dialog box, click on the
link at the top-right of the help viewer.

1.2.5 Do-files

It is useful to build up a file containing the commands necessary to
carry out a particular data analysis. This may be done using Stata’s
Do-file Editor or any other editor. The Do-file Editor may be opened
by clicking . Commands can then be typed in and run as a batch
either by clicking into in the Do-file Editor or by using the command

do dofile

Alternatively, a subset of commands can be highlighted and executed
by clicking into . The do-file can be saved for use in a future Stata
session. To open a do-file, select Do... from the File menu or open
the do-file editor and use its File menu. See Section 1.11 for more
information on do-files.

1.2.6 Log files

It is useful to open a log file at the beginning of a Stata session. Press
the button , type a filename into the dialog box, and choose Save.
By default, this produces a SMCL (Stata Markup and Control Lan-
guage, pronounced “smicle”) file with extension .smcl, but a plain text
(ASCII) file can be produced by selecting the .log extension. If the
file already exists, another dialog opens to allow you to decide whether
to overwrite the file with new output or to append new output to the
existing file.

The log file can be viewed in the Stata Viewer during the Stata
session (again through ). For long log files, it can be useful to click

into in the Stata Viewer to search for a piece of text. The log file
is automatically saved when it is closed. Log files can also be opened,
viewed, and closed by selecting Log from the File menu, followed by
Begin..., View..., or Close, respectively. The following commands
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can be used to open and close a log file mylog, replacing the old one if
it already exists:

log using mylog, replace
log close

To view a log file produced in a previous Stata session, select File →
Log → View... and specify the full path of the log file. The log may
then be printed by selecting Print → Viewer from the File menu.

It is also possible to translate SMCL files to plain text files and vice
versa using the File menu or the translate command. To save the
output in the Results window as a plain text log file, type

translate @Results mylog.txt

1.2.7 Getting help

Help may be obtained by clicking on Help which brings up the menu
shown in Figure 1.2. To get help on a Stata command, assuming the

Figure 1.2: Menu for help.

command name is known, select Stata Command.... To find the
appropriate Stata command first, select Search... which opens up the
dialog in Figure 1.3. For example, to find out how to fit a Cox regression
model, type “survival” or “cox” under Keywords: and press OK. This
opens a Stata Viewer containing a list of relevant command names
with a brief description. In this case stcox is the command we need.
Also listed are topics for which Frequently Asked Questions (FAQs)
or examples are available on the web, and user contributed commands
published in the Stata Journal (abbreviated SJ) or its predecessor, the
Stata Technical Bulletin (abbreviated STB). Each entry in this list
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Figure 1.3: Dialog for search.

includes a blue keyword (a hyperlink) that may be selected to view the
appropriate help file or web site. Each help file contains hyperlinks to
other relevant help files.

The search can also be performed via the commands

search survival

and help on the command stcox can be found using

help stcox

Help will then appear in the Stata Results window (instead of the
Stata Viewer) where words displayed in blue also represent hyperlinks
to other files.

If the computer running Stata is connected to the internet, you can
also search through “unofficial” materials on the Internet, to find, for
instance, user-contributed programs not published in the Stata Journal
or Stata Technical Bulletin (see 1.12 for more information). This is
accomplished by selecting “Search net resources” or “Search all” in the
search dialog box. The latter is equivalent to using the findit keyword
command. More refined searches can be carried out using the search
command (see help search).

The other selections in the help dialog, News, Official Updates,
SJ and User-written Programs, and Stata Web Site, all provide
access to the relevant web sites.

1.2.8 Closing Stata

Stata can be closed in three ways:

� click on the Close button at the top right-hand corner of
the Stata screen
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� select Exit from the File menu
� type exit, clear in the Stata Commands window, and press

Return.

1.3 Conventions used in this book

In this book we will use typewriter font like this for anything that
could be typed into the Stata Command window or a do-file, that is,
command names, options, variable names, etc. In contrast, italicized
words are not supposed to be typed; they should be substituted by
another word. For example, summarize varname means that varname
should be substituted by a specific variable name, such as age, giving
summarize age. We will usually display sequences of commands as
follows:

summarize age
drop age

If a command continues over two lines, we use /// at the end of the
first line to make Stata ignore the line break. An alternative is to use
/* at the end of the first line and */ at the beginning of the second line
to “comment out” the linebreak. Note that these methods are for use
in a do-file and do not work in the Command window where they would
result in an error. In the Command window, commands can wrap over
several lines.

Output taking little space is displayed immediately following the
commands but without indentation and in a smaller font:

display 1

1

Output taking up more space is shown in a numbered display floating
in the text. Some commands produce little notes, for example, the
generate command prints out how many missing values are generated.
We will usually not show such notes.

1.4 Datasets in Stata

1.4.1 Data input and output

Stata has its own data format with default extension .dta. Read-
ing and saving a Stata file are straightforward. If the filename is
wagepan.dta, the commands are
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use wagepan
save wagepan

If the data are not stored in the current directory, then the complete
path must be specified, as in the command

use c:\user\data\wagepan

(If the path contains spaces, it must be enclosed in quotes, e.g., "c:\my
own data\wagepan".) However, the least error-prone way of keeping
all the files for a particular project in one directory is to change to that
directory and refer to all files without specifying the path:

cd c:\user\data
use wagepan
save wagepan

Note that the datasets of this book can also be read from a web site
by specifying the path http://www.stata.com/texts/stas4, e.g.,

use http://www.stata.com/texts/stas4/wagepan

Data supplied with Stata can be read in using the sysuse command.
For instance, the famous auto.dta data, which are often used in the
Stata manuals, can be read using

sysuse auto

Before reading a file into Stata, all data already in memory need
to be cleared, either by running clear before the use command or by
using the option clear as follows:

use wagepan, clear

If we wish to save data under an existing filename, this results in an
error message unless we use the option replace as follows:

save wagepan, replace

For large datasets it is sometimes necessary to increase the amount
of memory Stata allocates to its data areas. For example, when no
dataset is loaded (e.g., after issuing the command clear), set the mem-
ory to 2 megabytes using

set memory 2m
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The memory command without arguments gives information on how
much memory is being used and how much is available.

If the data are not available in Stata format, they may be converted
to Stata format using another package (e.g., Stat/Transfer) or saved as
an ASCII file (although the latter option means losing all the labels).
When saving data as ASCII, missing values should be replaced by some
numerical code.

There are three commands available for reading different types of
ASCII data: insheet is for files containing one observation (on all vari-
ables) per line with variables separated by tabs or commas, where the
first line may contain the variable names; infile with varlist (free for-
mat) allows line breaks to occur anywhere and variables to be separated
by spaces, commas, or tabs; infix is for files with fixed column format
but a single observation can go over several lines; infile with a dictio-
nary (fixed format) is the most flexible command since the dictionary
can specify exactly what lines and columns contain what information.

Data can be saved as ASCII using outfile or outsheet. Finally,
the odbc command can be used to load, write, or view data from Open
Data Base Connectivity (ODBC) sources. See help infiling or [U]
21 Inputting data for an overview of commands for reading data.

Only one dataset may be loaded at any given time but a dataset
may be combined with the currently loaded dataset using the command
merge or append to add observations or variables, respectively; see also
Section 1.6.2.

1.4.2 Variables

There are essentially two kinds of variables in Stata: string and nu-
meric. Each variable can be one of a number of storage types that
require different numbers of bytes. The storage types are byte, int,
long, float, and double for numeric variables and str1 to str244 for
string variables of different lengths. Besides the storage type, variables
have associated with them a name, a label, and a format. The name
of a variable y can be changed to x using

rename y x

The variable label can be defined using

label variable x "cost in pounds"

and the format of a numeric variable can be set to “general numeric”
with two decimal places using

format x %7.2g
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Numeric variables

A missing value in a numeric variable is represented by a period “.”
(system missing values), or by a period followed by a letter, such as
.a, .b, etc., codes that can be used for distinguishing between different
kinds of missing values. Missing values are interpreted as very large
positive numbers with . < .a < .b, etc. Note that this can lead to mis-
takes in logical expressions; see also Section 1.5.2. Numerical missing
value codes (such as “−99”) may be converted to missing values (and
vice versa) using the command mvdecode. For example,

mvdecode x, mv(-99)

replaces all values of variable x equal to −99 by periods and

mvencode x, mv(-99)

changes the missing values back to −99.
Numeric variables can be used to represent categorical or continuous

variables including dates. For categorical variables it is not always easy
to remember which numerical code represents which category. Value
labels can therefore be defined as follows:

label define s 1 married 2 divorced 3 widowed 4 single
label values marital s

The categories can also be recoded. For example, the command

recode marital 2/3=2 4=3

merges categories 2 and 3 into category 2 and changes category 4 to 3.
Dates are defined as the number of days since 1/1/1960 and can

be displayed using a date format such as %d. For example, listing the
variable time in %7.0g format gives

list time

time

1. 14976
2. 200

which is not as easy to interpret as

format time %d
list time
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time

1. 01jan2001
2. 19jul1960

See help dfmt for other date formats.

String variables

String variables are typically used for categorical variables or identifiers
and in some cases for dates (e.g., if the file was saved as an ASCII file
from SPSS or Excel). In Stata, it is generally advisable to represent
these variables by numeric variables, and conversion from string to
numeric is straightforward. A categorical string variable (or identifier)
can be converted to a numeric variable using the command encode
which replaces each unique string by a different integer and uses that
string as the label for the corresponding integer value. The command
decode converts the labeled numeric variable back to a string variable.
The command destring can be used to convert several (or all) variables
from string to numeric by interpreting the strings as numbers. This is
useful if numeric variables saved from another program are interpreted
by Stata as string variables, for instance due to missing values being
represented by blanks.

A string variable string1 representing dates can be converted to
numeric using the function date(string1, string2) where string2 is a
permutation of "dmy" to specify the order of the day, month, and year
in string1. For example, the commands

display date("30/1/1930","dmy")

and

display date("january 30, 1930", "mdy")

both return the negative value −10928 because the date is 10928 days
before 1/1/1960.

1.5 Stata commands

Typing help language gives the following generic command structure
for most Stata commands:

[ prefix:] command [varlist] [= exp] [if] [in]
[weight] [using filename] [, options]
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The help file contains links to information on each of the components,
and we will briefly describe them here:

[prefix:] could be a number of different things; see help prefix. One
example is by varlist : which instructs Stata to repeat the command
for each combination of values in the list of variables varlist.

command is the name of the command and can often be abbreviated;
for example, the command display can be abbreviated as dis.

[varlist] is the list of variables to which the command applies.
[=exp] is an expression.
[if] if exp restricts the command to that subset of the observations

that satisfies the logical expression exp.
[in] in range restricts the command to those observations whose in-

dices lie in a particular range range.
[weight] allows weights to be associated with observations (see Sec-

tion 1.7).
[using filename] specifies the filename to be used.
[,options] a comma is only needed if options are used; options are

specific to the command and can often be abbreviated.

For any given command, some of these components may not be avail-
able; for example, list does not allow [using filename]. The help file
for a specific command specifies which components are available, using
the same notation as above, with square brackets enclosing components
that are optional. For example, help list gives

list [ varlist] [if] [in] [, options]

implying that [prefix:] and various other components are not allowed
and that all permissible components are optional.

The syntax for varlist, exp, and range is described in the next three
subsections, followed by information on how to loop through sets of
variables or observations.

1.5.1 Varlist

The simplest form of varlist is a list of variable names separated by
spaces. Variable names may also be abbreviated as long as this is
unambiguous, e.g., x1 may be referred to by x only if there is no other
variable name starting with x such as x itself or x2. A set of adjacent
variables such as m1, m2, and x may be referred to as m1-x. All variables
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starting with the same set of letters can be represented by that set of
letters followed by a wild card *, so that m* may stand for m1 m6
mother. The wild card can appear anywhere within the variable name;
for instance my*var could refer to mylongvar and myshortvar. The
set of all variables is referred to by all or *. Examples of a varlist are

x y
x1-x16
a1-a3 my* sex age

Note that Stata is case sensitive.
Long variable names are abbreviated in Stata’s output by replacing

a middle section of the name by a ~. This method of abbreviating
variables can also be used in a varlist as long as the abbreviation is un-
ambiguous. For instance, my~var would not work if there are variables
mylongvar and myshortvar in the dataset, whereas myl~var would
work.

A useful command for finding variables in a large dataset is lookfor
which searches for a keyword among the variable names and labels.

1.5.2 Expressions

There are logical, algebraic, and string expressions in Stata. Logical
expressions evaluate to 1 (true) or 0 (false) and use the operators < and
<= for “less than” and “less than or equal to”, respectively. Similarly,
> and >= are used for “greater than” and “greater than or equal to”.
The symbols == and != (or ~=) stand for “equal to” and “not equal
to”, and the characters ! (or ~), &, and | represent “not”, “and”, and
“or”, respectively, so that

if (y!=2 & z>x)|x==1

means “if y is not equal to 2 and z is greater than x or if x equals 1”. In
fact, expressions involving variables are evaluated for each observation
so that the expression really means

(yi �= 2 & zi > xi) | xi == 1

where i is the observation index.
Great care must be taken in using the > or >= operators when there

are missing data. For example, if we wish to delete all subjects older
than 16, the command

drop if age>16
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will also delete all subjects for whom age is missing since a missing
value (represented by “.”, “.a”, “.b”, etc.) is interpreted as a very
large number. It is always safer to allow for missing values explicitly
using for instance

drop if age>16 & age<.

Note that this is safer than specifying age!=. which would not exclude
missing values coded as “.a”, “.b”, etc.

Algebraic expressions use the usual operators +, -, *, /, and ^ for
addition, subtraction, multiplication, division, and powering, respec-
tively. Stata also has many mathematical functions such as sqrt(),
exp(), log(), etc. and statistical functions such as chi2tail() and
normal() for cumulative distribution functions and invnormal(), etc.,
for inverse cumulative distribution functions. Pseudo-random numbers
with a uniform distribution on the [0,1) interval may be generated using
uniform(). Examples of algebraic expressions are

y + x
(y + x)^3 + a/b
invnormal(uniform())+2

where invnormal(uniform()) returns a (different) draw from the stan-
dard normal distribution for each observation.

Finally, string expressions mainly use special string functions such
as substr(str,n1,n2) to extract a substring from str starting at n1
for a length of n2. The logical operators == and ~= are also allowed
with string variables and the operator + concatenates two strings. For
example, the combined logical and string expression

("moon") + (substr("sunlight",4,5))) == "moonlight"

returns the value 1 for “true”.
For a list and explanation of all functions, use help functions.

1.5.3 Observation indices and ranges

Each observation has an index associated with it. For example, the
value of the third observation on a particular variable x may be referred
to as x[3]. The macro n takes on the value of the running index and
N is equal to the number of observations. We can therefore refer to the
previous observation of a variable as x[ n-1].

An indexed variable is only allowed on the right-hand side of an
assignment. If we wish to replace x[3] by 2, we can do this using the
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syntax

replace x = 2 if _n==3

We can refer to a range of observations either using if with a logi-
cal expression involving n or, more easily, by using in range. The
command above can then be replaced by

replace x = 2 in 3

More generally, range can be a range of indices specified using the
syntax f/l (for “first to last”) where f and/or l may be replaced by
numerical values if required, so that 5/12 means “fifth to twelfth” and
f/10 means “first to tenth”, etc. Negative numbers are used to count
from the end, for example

list x in -10/l

lists the last 10 observations.

1.5.4 Looping through variables or observations

Explicitly looping through observations is often not necessary because
expressions involving variables are automatically evaluated for each
observation. It may however be required to repeat a command for
subsets of observations and this is what the prefix by varlist: is for.
Before using by varlist:, however, the data must be sorted using

sort varlist

where varlist includes the variables to be used inr by varlist:. Note
that if varlist contains more than one variable, ties in the earlier vari-
ables are sorted according to the next variable(s). For example,

sort school class
by school class: summarize test

give the summary statistics of test for each class. If class is labeled
from 1 to ni for the ith school, then not using school in the above
commands would result in the observations for all classes with the same
label being grouped together. To avoid having to sort the data first,
the sort option can be used as follows:

by school class, sort: summarize test

A very useful feature of by varlist: is that it causes the observation
index n to count from 1 within each of the groups defined by the
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distinct combinations of the values of varlist. The macro N represents
the number of observations in each group. For example,

sort group age
by group: list age if _n==_N

lists age for the last observation in each group where the last obser-
vation in this case is the observation with the highest age within its
group. The same can be achieved in a single command using the sort
option:

by group (age), sort: list age if _n==_N

where the variable in parentheses is used to sort the data but does not
contribute to the definition of the subgroups of observations to which
the list command applies.

We can loop through a list of variables or other objects using foreach.
The simplest syntax is

foreach variable in v1 v2 v3 {
list `variable´

}

This syntax uses a local macro (see also Section 1.9) variable which
takes on the (string) values v1, then v2, and finally v3 inside the loop.
(Local macros can also be defined explicitly using local variable
v1.) Enclosing the local macro name in ` ´ is equivalent to typing its
contents, i.e., `variable´ evaluates to v1, then v2, and finally v3 so
that each of these variables is listed in turn.

In the first line above we listed each variable explicitly. We can
instead use the more general varlist syntax by specifying that the list
is of type varlist as follows:

foreach variable of varlist v* {
list `variable´

}

Numeric lists can also be specified using foreach. For instance, the
command

foreach number of numlist 1 2 3 {
display `number´

}

produces the output
1
2
3
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Numeric lists may be abbreviated by “first/last”, here 1/3 or
“first(increment)last”, for instance 1(2)7 for the list 1 3 5 7. See
help foreach for other list types.

For numeric lists, a simpler syntax is forvalues. To produce the
output above, use

forvalues i=1/3 {
display `i´

}

The same output can also be produced using while as follows:

local i = 1
while i<=3 {

disp `i´
local i = `i´ + 1

}

Here the local macro i was defined using local i = 1 and then in-
cremented by 1 using local i = `i´ + 1. See also Section 1.11 on
programming. Cox (2002b) gives a useful tutorial on by varlist: and
Cox (2002a; 2003) discusses foreach and forvalues in detail.

1.6 Data management

1.6.1 Generating and changing variables

New variables may be generated using the commands generate or
egen. The command generate creates a new variable, evaluates an
expression for each observation, and places the result into the new
variable. For example,

generate x = 1

creates a new variable called x and sets it equal to one. When generate
is used together with if exp or in range, the remaining observations
are set to missing. For example,

generate percent = 100*(old - new)/old if old>0

generates the variable percent and sets it equal to the percentage
decrease from old to new where old is positive and equal to missing
otherwise. The command replace works in the same way as generate
except that it allows an existing variable to be changed. For example,

replace percent = 0 if old<=0
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changes the missing values in the variable percent to zeros. The two
commands above could be replaced by the single command

generate percent = cond(old>0, 100*(old-new)/old, 0)

where cond() evaluates to the second argument if the first argument
is true and to the third argument otherwise.

The command egen provides extensions to generate. One advan-
tage of egen is that some of its functions accept a variable list as an
argument, whereas the functions for generate can only take simple
expressions as arguments. For example, we can form the average of
100 variables m1 to m100 using

egen average = rowmean(m1-m100)

where missing values are ignored. Other functions for egen operate on
groups of observations. For example, if we have the income (variable
income) for members within families (variable family), we may want
to compute the total income of each member’s family using

egen faminc = total(income), by(family)

An existing variable can be replaced using egen functions only by first
deleting it using

drop x

Another way of dropping variables is using keep varlist where varlist
is the list of all variables not to be dropped.

A very useful command for changing categorical numeric variables
is recode. For instance, to merge the first three categories and recode
the fourth to “2”, type

recode categ 1/3 = 1 4 = 2

If there are any other values, such as missing values, these will remain
unchanged. See help recode for more information.

1.6.2 Changing the shape of the data

It is frequently necessary to change the shape of data, the most common
application being grouped data, in particular repeated measures or
panel data. If we have measurement occasions j for subjects i, this
may be viewed as a multivariate dataset in which each occasion j is
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represented by a variable xj, and the subject identifier is in the variable
subj. However, for some statistical analyses we may need one single,
long, response vector containing the responses for all occasions for all
subjects, as well as two variables subj and occ to represent the indices
i and j, respectively. The two “data shapes” are called wide and long,
respectively. We can convert from the wide shape with variables xj
and subj given by

list

x1 x2 subj

1. 2 3 1
2. 4 5 2

to the long shape with variables x, occ, and subj using the syntax

reshape long x, i(subj) j(occ)

(note: j = 1 2)

Data wide -> long

Number of obs. 2 -> 4
Number of variables 3 -> 3
j variable (2 values) -> occ
xij variables:

x1 x2 -> x

The data now look like this:

list

subj occ x

1. 1 1 2
2. 1 2 3
3. 2 1 4
4. 2 2 5

We can change the data back again using

reshape wide x, i(subj) j(occ)

For data in the long shape, it may be required to collapse the data
so that each group is represented by a single summary measure. For
example, for the data above, we may want to create new variables
meanx, sdx, and num containing the mean, standard deviation, and the
number of nonmissing responses, respectively. This can be achieved
using
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collapse (mean) meanx=x (sd) sdx=x (count) num=x, by(subj)
list

subj meanx sdx num

1. 1 2.5 .707107 2
2. 2 4.5 .707107 2

Since it is not possible to convert back to the original format in this
case, the data may be preserved before running collapse and restored
again later using the commands preserve and restore.

Other ways of changing the shape of data include dropping obser-
vations using

drop in 1/10

to drop the first 10 observations or

by group (weight), sort: keep if _n==1

to drop all but the lightest member of each group. Sometimes it may
be necessary to transpose the data, converting variables to observations
and vice versa. This may be done and undone using xpose.

If each observation represents a number of units (as after collapse),
it may sometimes be required to replicate each observation by the num-
ber of units, num, that it represents. This may be done using

expand num

If there are two datasets, subj.dta, containing subject-specific vari-
ables, and occ.dta, containing occasion-specific variables for the same
subjects, then if both files contain the same sorted subject identifier
subj id and subj.dta is currently loaded, the files may be merged as
follows:

merge subj_id using occ

resulting in the variables from subj.dta being expanded as in the
expand command above and the variables from occ.dta being added.

1.7 Estimation

All estimation commands in Stata, for example regress, logistic,
poisson, and glm, follow the same syntax and share many of the same
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options.
The estimation commands also produce the same kind of output

and save the same kind of information. The stored information may
be processed using the same set of post-estimation commands.

The basic command structure is

[ prefix:] command depvar [indepvars] [if] [in] [weights], options

The response variable is specified by depvar and the explanatory vari-
ables by indepvars. If dummy variables and interactions are required
for categorical explanatory variables, using the xi: (“interaction ex-
pansion”) prefix enables special notation to be used by indepvars. For
example,

xi: regress resp i.x

creates dummy variables for each value of x except the lowest value
and includes these dummy variables as predictors in the model.

xi: regress resp i.x*y z

fits a regression model with the main effects of x, y, and z and their
interaction x×y where x is treated as categorical and y and z as con-
tinuous (see help xi for further details).

The syntax for the [weights] option is

weighttype = varname

where weighttype depends on the reason for weighting the data. If
the data are in the form of a table where each observation represents a
group containing a total of freq observations, using [fweight=freq] is
equivalent to running the same estimation command on the expanded
dataset where each observation has been replicated freq times. If
the observations have different standard deviations, for example, be-
cause they represent averages of different numbers of observations, then
aweights is used with weights proportional to the reciprocals of the
standard deviations. Finally, pweights is used for probability weight-
ing where the weights are equal to the inverse probability that each
observation was sampled. (Another type of weights, iweights, is avail-
able for some estimation commands, mainly for use by programmers.)

All the results of an estimation command are stored and can be pro-
cessed using post-estimation commands. For example, predict may be
used to compute predicted values or different types of residuals for the
observations in the present dataset and the commands test, testparm,
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lrtest, and lincom for inferences based on previously estimated mod-
els. It is easy to find out what post-estimation commands are available
for a given estimation command: simply click into “post-estimation”
at the top-right of the help file.

The saved results can also be accessed directly using the appropriate
names. For example, the regression coefficients are stored in global
macros called b[varname]. To display the regression coefficient of x,
simply type

display _b[x]

To access the entire parameter vector, use e(b). Many other results
may be accessed using the e(name) syntax. See the “Saved Results”
section of the entry for the estimation command in the Stata Reference
Manuals to find out under what names particular results are stored.
After estimation, the command

ereturn list

lists the names and contents of all estimation results accessible via
e(name).

Note that “r-class” results produced by commands that are not esti-
mation commands can be accessed using r(name). For example, after
summarize, the mean can be accessed using r(mean). The command

return list

list the names and contents of all “r-class” results currently available.

1.8 Graphics

The graphical user interface (GUI) makes it extremely easy to pro-
duce a very attractive graph with different line-styles, legends, etc. To
demonstrate this, we first simulate some data as follows:

clear
set obs 100
set seed 13211
gen x = invnormal(uniform())
gen y = 2 + 3*x + invnormal(uniform())

To produce a scatterplot of y versus x via the GUI, select Twoway
graph (scatterplot, line, etc.) from the Graphics menu and click
into Scatter under Plot type to obtain the dialog box shown in Fig-
ure 1.4. Specify x and y in the boxes labeled X variable: and Y
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Figure 1.4: Dialog box for twoway graph.

variable:. This can be done either by typing or by pressing the little
down arrow to select among the variables in the dataset. To add a
label to the x-axis, click into the tab labeled X-Axis and type “Simu-
lated x” in the Title box. Similarly, type “Simulated y” in the Title
box in the Y-Axis tab. Finally, click OK to produce the graph shown
in Figure 1.5. To change for instance the symbol we would have to
plot the graph again, this time selecting a different option in the box
labeled Symbol under the heading Markers in the dialog box (it is
not possible to edit a graph). The following command appears in the
output:

twoway (scatter y x), ytitle(Simulated y) xtitle(Simulated x)

The command twoway, short for graph twoway, can be used to plot
scatterplots, lines or curves, and many other plots requiring an x and
y-axis. Here the plottype is scatter which requires a y and x variable
to be specified. Details such as axis labels are given after the comma.
Help on scatterplots can be found (either in the manual or using help)
under “graph twoway scatter”. Help on options for graph twoway can
be found under “twoway options”.

To produce several graphs, each displayed in a separate window,
the graphs must be given different names. In the GUI this can be
achieved by clicking into the Overall tab of the graph dialog box and
typing a name into the box labeled Name of graph:. If a graph of the
same name already exists, use a different name to open a new window
or click into the Replace box to replace the current graph. In the
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Figure 1.5: Scatterplot of simulated data.

graph command, names can be assigned using the option name(name
of graph) together with the replace option if required. To view a
particular graph that may be hidden behind other windows, use either

the Window menu or click into the arrow in .
We can use a single graph twoway command to produce a scatter-

plot with a regression line superimposed:

twoway (scatter y x) (lfit y x), ///
ytitle(Simulated y) xtitle(Simulated x) ///
legend(order(1 "Observed" 2 "Fitted"))

giving the graph in Figure 1.6. Inside each pair of parentheses is a
command specifying a plot to be added to the same graph. The options
applying to the graph as a whole appear after these individual plots
preceded by a comma as usual. Here the legend() option was used to
specify labels for the legend; see the manual or help for “legend option”.

Each plot can have its own if exp or in range restrictions as well
as various options. To demonstrate this, we first create a new variable,
group, taking the values 1 and 2 and add 2 to the y-values of group 2:

gen group = cond(_n < 50,1,2)
replace y = y + 2 if group==2
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Figure 1.6: Scatterplot and fitted regression line.

Now produce a scatterplot with different symbols for the two groups
and separate regression lines using

twoway (scatter y x if group==1, msymbol(O)) ///
(lfit y x if group==1, lpatt(solid)) ///
(scatter y x if group==2, msymbol(Oh)) ///
(lfit y x if group==2, lpatt(dash)), ///
ytitle(Simulated y) xtitle(Simulated x) ///
legend(order(1 2 "Group 1" 3 4 "Group 2"))

giving the graph shown in Figure 1.7. Here, the options msymbol(O)
and msymbol(Oh) produce solid and hollow circles, respectively, whereas
lpatt(solid) and lpatt(dash) produce solid and dashed lines, re-
spectively. These options are inside the parentheses for the correspond-
ing plots. The options referring to the graph as a whole, xtitle(),
ytitle(), and legend(), appear after the individual plots have been
specified. Just before the final comma, we could also specify if exp or
in range restrictions for the graph as a whole.

Some people find it more convenient to separate plots using || instead
of enclosing them in parentheses, for instance replacing the first two
lines of the command above by

twoway scatter y x if group==1, ms(O) || ///
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Figure 1.7: Scatterplot and fitted regression line.

lfit y x if group==1, clpatt(solid)

The by() option can be used to produce separate plots (each with their
own sets of axes) in the same graph. For instance

label define gr 1 "Group 1" 2 "Group 2"
label values group gr
twoway scatter y x, by(group)

produces the graph in Figure 1.8. Here the value labels of group are
used to label the individual panels.

Other useful graphics commands include graph twoway function
for plotting a function without having to define any new variables,
graph matrix for scatterplot matrices, graph box for boxplots, graph
bar for bar charts, histogram for histograms, kdensity for kernel den-
sity plots, and qnorm for Q-Q plots.

For graph box and graph bar, we may wish to plot different vari-
ables, referred to as yvars in Stata, for different subgroups or categories
of individuals, specified using the over() option. For example,

replace x = x + 1
graph bar y x, over(group)
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Figure 1.8: Separate scatterplot produced using by().

results in the bar chart in Figure 1.9. For more information on chang-
ing the labeling and presentation of the bars, see yvar options and
group options in [G] graph bar.

The general appearance of graphs is defined in schemes. In this
book we use scheme sj (Stata Journal) by issuing the command

set scheme sj

at the beginning of each Stata session. See [G] schemes intro or help
schemes for a complete list and description of schemes available.

Graphs can be saved in Stata’s .gph format and read back in using

graph save mygraph
graph using mygraph

Graphs can also be exported as encapsulated postscript or PNG files
using, respectively,

graph export mygraph.eps
graph export mygraph.png

See help graph export for a list of all available storage types.
We find the GUI interface particularly useful for learning about

these and other graphics commands and their options. Mitchell (2004)
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Figure 1.9: Bar chart.

is a useful reference book which contains a large collection of graphs
and the commands used to create them.

1.9 Stata as a calculator

Stata can be used as a simple calculator using the command display
followed by an expression, e.g.,

display sqrt(5*(11-3^2))

3.1622777

There are also a number of statistical commands that can be used
without reference to any variables. These commands end in i, where
i stands for immediate command. For example, we can calculate the
sample size required for an independent samples t-test to achieve 80%
power to detect a difference at the 1% level (2-sided) if the population
means are 1 and 2 and the within population standard deviation is 1
using sampsi as follows:

sampsi 1 2, sd(1) power(.8) alpha(0.01)
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(see Display 1.1). Similarly, ttesti can be used to carry out a t-test

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0100 (two-sided)
power = 0.8000

m1 = 1
m2 = 2
sd1 = 1
sd2 = 1

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 24
n2 = 24

Display 1.1

if the means, standard deviations, and sample sizes are given.
As briefly shown in Section 1.5.4, results can be saved in local macros

using the syntax

local a = exp

The result may then be used again by enclosing the local macro name
in single quotes `´ (using two different keys on the keyboard). For
example,

local a = 5
display sqrt(`a´)

2.236068

Matrices can also be defined and matrix algebra carried out inter-
actively. The following matrix commands define a matrix a, display
it, and give its trace and its eigenvalues:

matrix a = (1,2\ 2,4)
matrix list a

symmetric a[2,2]
c1 c2

r1 1
r2 2 4

display trace(a)
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5

matrix symeigen x v = a
matrix list v

v[1,2]
e1 e2

r1 5 0

For more powerful matrix calculations, use the Mata programming lan-
guage as described in the next section.

1.10 Matrix calculations using Mata

Mata is a fast matrix language resembling C. Here we show how Mata
can be used for performing calculations interactively; Mata can also
be used to write programs that are automatically compiled by Stata
and hence run faster than programs written in Stata’s usual program-
ming language. See [M] Mata Reference Manual and help mata for
full details.

To enter the Mata environment, type mata in the Command window
and press Return. To exit Mata, type end followed by Return. You can
tell if you are within Mata because the prompt changes from a period
“.” to a colon “:”. An example of a Mata session, as it would appear
in the output, is given in Display 1.2. We see that typing an expression
displays the result. Variables can be defined using the = operator and
subsequently used in expressions. Here we define a 2 × 2 matrix A
using commas to separate columns and \ to separate rows as in Stata’s
matrix commands.

The variables defined in this session will not be cleared when we exit
Mata; they will still be there and can be listed using mata describe
if we re-enter Mata:

mata
mata describe

# bytes type name and extent

32 real matrix A[2,2]
8 real scalar x

We see that associated with each object is a type defined by two as-
pects which Stata calls eltype, here real and orgtype, here matrix and
scalar. To clear Mata without disturbing Stata, use the command
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. mata
mata (type end to exit)

: 2 + 3
5

: x = 2 + 3

: x
5

: A = (1, 2 \ 3, 4)

: A
1 2

1 1 2
2 3 4

: A , A
1 2 3 4

1 1 2 1 2
2 3 4 3 4

: A \ A
1 2

1 1 2
2 3 4
3 1 2
4 3 4

: end

Display 1.2
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mata clear

In Mata, we can evaluate complex matrix expressions using very intu-
itive notation. For instance, the least squares estimator (X′X)−1X′y
is evaluated using

b = invsym(X’X)*X’y

where invsym() stands for “inverse of a symmetric matrix”. Here *
performs matrix multiplication. To perform element-by-element mul-
tiplication, use the colon operator:
. mata

mata (type end to exit)
: A

1 2

1 1 2
2 3 4

: A*A
1 2

1 7 10
2 15 22

: A:*A
1 2

1 1 4
2 9 16

: end

1.11 Brief introduction to programming

So far we have described commands as if they would be run interac-
tively. However, in practice, it is always useful to be able to repeat the
entire analysis using a single command. This is important, for example,
when a data entry error is detected after most of the analysis has al-
ready been carried out. It is also important to keep a record of all data
manipulation so that it can be checked and corrected later. In Stata, a
set of commands stored as a do-file, called for example, analysis.do,
can be executed using the command

do analysis
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We strongly recommend that readers create do-files for any work in
Stata, e.g., for the exercises of this book.

One way of generating a do-file is to carry out the analysis inter-
actively and save the commands, for example, by right-mouse clicking
into the Review window and clicking into Save Review Contents....
Stata’s Do-file Editor, which is opened by clicking into , can also be
used to create or edit a do-file. One way of trying out commands inter-
actively and building up a do-file is to run commands in the Commands
window and copy them into the Do-file Editor after checking that
they work. Another possibility is to type commands into the Do-file
Editor and try them out individually by highlighting the commands
and clicking into or selecting Tools → Do Selection. Alterna-
tively, any text editor may be used to create a do-file. The following is
a useful template for a do-file:

/* comment describing what the file does */
version 9.2
capture log close
log using filename, replace
set more off

command 1
command 2
etc.

log close
exit

We will explain each line in turn.

1. The “brackets” /* and */ cause Stata to ignore everything between
them. Another way of commenting out lines of text is to start the
lines either with an asterisk * or with a double forward slash //.

2. The command version 9.2 causes Stata to interpret all commands
as if we were running Stata version 9.2 even if, in the future, we have
actually installed a later version in which some of these commands
do not work any more.

3. The capture prefix causes the do-file to continue running even if the
command results in an error. The capture log close command
therefore closes the current log file if one is open or returns an error
message. (Another useful prefix is quietly which suppresses all
output, except error messages.)

4. The command log using filename, replace opens a log file, re-
placing any file of the same name if it already exists.
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5. The command set more off causes all the output to scroll past
automatically instead of waiting for the user to scroll through it
manually. This is useful if the user intends to look at the log file
for the output.

6. After the analysis is complete, the log file is closed using log close.
7. The last statement, exit, is not necessary at the end of a do-file

but may be used to make Stata stop running the do-file wherever
it is placed.

Variables, global macros, local macros, and matrices can be used
for storing and referring to data and these are used extensively in pro-
grams. For example, we may wish to subtract the mean of x from x.
Interactively, we would use

summarize x

to find out what the mean is and then subtract that value from x.
However, we should not type the value of the mean into a do-file because
the result would no longer be valid if the data change. Instead, we can
access the mean computed by summarize using r(mean):

quietly summarize x, meanonly
gen xnew = x-r(mean)

(If all that is required from summarize is the mean or the sum, it is
more efficient to use the meanonly option.) Most Stata commands are
r-class, meaning that they store results that may be accessed using r()
with the appropriate name inside the brackets. Estimation commands
store the results in e(). To find out under what names results are
stored, see the “Stored Results” section for the command of interest in
the Stata Reference Manuals. Alternatively, execute the command and
then issue the command return list for a list of all results stored in
r() or ereturn list for a list of all results stored in e().

If a local macro is defined without using the = sign, anything can
appear on the right-hand side and typing the local macro name in single
quotes has the same effect as typing whatever appeared on the right-
hand side in the definition of the macro. For example, if we have a
variable y, we can use the commands

local a y
display "`a´[1] = " `a´[1]

y[1] = 4.6169958

Local macros are only “visible” within the do-file or program in
which they are defined. Global macros may be defined using
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global a = 1

and accessed by prefixing them with a dollar sign, for example,

gen b = $a

Sometimes it is useful to have a general set of commands (or a
program) that may be applied in different situations. It is then essential
that variable names and parameters specific to the application can be
passed to the program. If the commands are stored in a do-file, the
“arguments” with which the do-file will be used are referred to as `1´,
`2´ etc. inside the do-file. For example, a do-file filename.do containing
the command

list `1´ `2´

may be run using

do filename x1 x2

to cause x1 and x2 to be listed. Alternatively, we can define a program
which can be called without using the do command in much the same
way as Stata’s own commands. This is done by enclosing the set of
commands by

program progname
end

After running the program definition, we can run the program by typing
the program name and arguments.

Most programs require things to be done repeatedly by looping
through some list of objects. This can be achieved using foreach and
forvalues. For example, we define a program called mylist that lists
the first three observations of each variable in a variable list:

program mylist
version 9.2
syntax varlist
foreach var in `varlist´ { /* outer loop: variables */

display "`var´"
forvalues i=1/3 { /* inner loop: observations */

display `var´[`i´]
}
display " "

}
end
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We can run the program using the command

mylist x y z

Here the syntax command defines the syntax to be

mylist varlist

(no options allowed), issues an error message if varlist is not valid,
for example if any of the variables do not exist, and places the variable
names into the local macro varlist (see help syntax and [P] syntax).
The outer foreach loop repeats everything within the outer braces for
each variable in varlist. Within this loop, the “current” variable is
placed in the local macro var. For each variable, the inner forvalues
loop repeats the display command for i equal to 1, 2, and 3.

A program may be defined by typing it into the Commands win-
dow. However, this is almost never done in practice. A more useful
method is to define the program within a do-file where it can easily
be edited. Note that once the program has been loaded into memory
(by running the program command), it has to be cleared from memory
using program drop before it can be redefined. It is therefore useful
to have the command

capture program drop mylist

in the do-file before the program command, where capture ensures
that the do-file continues running even if mylist does not yet exist.

A program may also be saved in a separate file (containing only the
program definition) of the same name as the program itself and having
the extension .ado. If the ado-file (automatic do-file) is in a directory
in which Stata looks for ado-files, for example the current directory,
it can be executed simply by typing the name of the file. There is no
need to load the program first (by running the program definition). To
find out where Stata looks for ado-files, type

adopath

This lists various directories including \ado\personal/, the directory
where personal ado-files may be stored. Many of Stata’s own commands
are actually ado-files stored in the ado subdirectory of the directory
where the Stata executable (e.g., wstata.exe) is located.

The [P] Programming Reference Manual gives detailed information
on the programming commands mentioned here and many more. Type
help dialog programming for information on programming your own
dialogs. The Stata Plugin Interface (SPI) which allows compiled C-
programs to be called from a Stata program is described in detail at
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http//www.stata.com/plugins. While this is useful if the C-program
already exists, it will often be easier to write functions in Mata than
in C.

Chapter 13 of this book gives some examples of maximizing your
own likelihood using the ml command, and this is discussed in detail
in Gould et al. (2006).

1.12 Keeping Stata up to date

StataCorp continually updates the current version of Stata. If the
computer is connected to the Internet, Stata can be updated by issuing
the command

update all

Ado-files are then downloaded and stored in the correct directory. If the
executable has changed since the last update, a new executable (e.g.,
wstata.bin) is also downloaded. This file should be used to overwrite
the old executable (e.g., wstata.exe) after saving the latter under a
new name (e.g., wstata.old). A quick and easy way of achieving this is
to issue the command update swap within Stata. The command help
whatsnew lists all the changes since the release of the present version
of Stata.

In addition to Stata’s official updates to the package, users are con-
tinuously creating and updating their own commands and making them
available to the Stata community. Articles on user-written programs
are published in a peer-reviewed journal called The Stata Journal (SJ)
which replaced the Stata Technical Bulletin (STB) at the end of 2001
and is indexed in the Science Citation Index. These and other user-
written programs can be downloaded by clicking into Help → SJ &
User-written Programs, and selecting one of a number of sites in-
cluding sites for the SJ and STB. A large repository for user-written
Stata programs is the Statistical Software Components (SSC) archive
at http://ideas.rePEc.org/s/boc/bocode.html maintained by Kit
Baum (the archive is part of IDEAS which uses the RePEc database).
These programs can be downloaded using the ssc command. To find
out about commands for a particular problem (user-written or part of
Stata), use the findit command. For example, running

findit meta

brings up the Stata Viewer with a long list of entries including one on
STB-42:
STB-42 sbe16.1 . . . . . New syntax and output for the meta-analysis command
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(help meta if installed) . . . . . . . . . . . S. Sharp and J. Sterne
3/98 pp.6--8; STB Reprints Vol 7, pp.106--108

which reveals that STB-42 has a directory in it called sbe16.1 containing
files for “New syntax and output for the meta-analysis command” and
that help on the new command may be found using help meta, but
only after the program has been installed. The authors are S. Sharp
and J. Sterne. The command can be installed by clicking into the
corresponding hyperlink in the Stata Viewer (or going through Help
→ SJ & User-written Programs, clicking on STB, then stb42,
then sbe16 1) and selecting (click here to install). The program
can also be installed using the commands

net stb 42 sbe16_1

(see help net). Note that findit first lists programs that have been
published in the SJ and STB, followed by programs from other sites
such as the SSC. This order often does not reflect the (reverse) chrono-
logical order of versions of a given program since the SSC usually has
the most up-to-date version (look for rePEc in the URL). The most re-
liable way of installing a program from the SSC is using the command
(here illustrated for the program gllamm)

ssc install gllamm

See help ssc.

1.13 Exercises

1.1 • Some data manipulation

1. Use a text editor (e.g., Notepad, PFE, or the Stata Do-file
Editor) to generate the dataset test.dat given below, where
the columns are separated by tabs (make sure to save it as a
text only or ASCII file).

v1 v2 v3
1 3 5
2 16 3
5 12 2

2. Read the data into Stata using insheet (see help insheet).
3. Click into the Data Editor and type in the variable sex with

values 1, 2, and 1.
4. Define value labels for sex (1=male, 2=female).
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5. Use generate to generate id, a subject index (from 1 to 3).
6. Use rename to rename the variables v1 to v3 to time1 to

time3. Also try doing this in a loop using forvalues.
7. Use reshape to convert the dataset to long shape.
8. Generate a variable d that is equal to the squared difference

between the variable time at each occasion and the average
of time for each subject.

9. Drop the observation corresponding to the third occasion for
id=2.

1.2 Wage increases

Here we use panel data for 545 American young males taken
from the National Longitudinal Survey (Youth Sample) for the
period 1980-1987. The data have been analyzed by Vella and
Verbeek (1998) and Wooldridge (2002). The subset of variables
in wagepan.dta considered here are:

� year: calendar year 1980 to 1987
� lwage: natural log of hourly wage in US $
� black: dummy variable for being black
� hisp: dummy variable for being Hispanic

1. Create a new variable equal to the exponential of lwage.
2. Collapse the data to obtain the mean hourly wages by year

and ethnic/racial group (black, Hispanic, other).
3. Produce a line graph (using twoway line) showing the mean

wages over time, separately for the ethnic/racial groups.
4. Improve the graph by defining labels, line patterns, legends,

etc., using the GUI if preferred.

1.3 Finding information

Without consulting the manuals, use Stata’s help facilities and/or
GUI to find out the following:

1. The name and syntax of the Stata function that calculates
the inverse cumulative F distribution

2. The name of the Stata command to produce a LOWESS curve
3. The option for the regress command that will cause the

intercept to be omitted
4. How to get adjusted means for a given regression model (Hint:

this is a post-estimation problem)
5. How to plot a histogram with a dashed normal density curve

superimposed





Chapter 2

Data Description and

Simple Inference: Female

Psychiatric Patients

2.1 Description of data

The data to be used in this chapter consist of observations on 8 variables
for 118 female psychiatric patients and are available in Hand et al. (1994).
The variables are as follows:

� age: age in years
� iq: intelligence score
� anxiety: anxiety (1=none, 2=mild, 3=moderate, 4=severe)
� depress: depression (1=none, 2=mild, 3=moderate, 4=severe)
� sleep: can you sleep normally? (1=yes, 2=no)
� sex: have you lost interest in sex? (1=no, 2=yes)
� life: have you thought recently about ending your life?

(1=no, 2=yes)
� weight: increase in weight over last six months (in lbs)

The data are given in Table 2.1; missing values are coded as −99. There
are a variety of questions that might be addressed by these data; for
example, do women who have recently contemplated suicide differ in
any respects from those who have not? Also of interest are the correla-
tions between anxiety and depression and between weight change, age,

43
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and IQ. It should be noted, however, that any associations found from
cross-sectional observational data like these are at best suggestive of
causal relationships.

Table 2.1 Data in fem.dat
id age IQ anx depress sleep sex life weight

1 39 94 2 2 2 2 2 4.9
2 41 89 2 2 2 2 2 2.2
3 42 83 3 3 3 2 2 4.0
4 30 99 2 2 2 2 2 -2.6
5 35 94 2 1 1 2 1 -0.3
6 44 90 −99 1 2 1 1 0.9
7 31 94 2 2 −99 2 2 -1.5
8 39 87 3 2 2 2 1 3.5
9 35 −99 3 2 2 2 2 -1.2

10 33 92 2 2 2 2 2 0.8
11 38 92 2 1 1 1 1 -1.9
12 31 94 2 2 2 −99 1 5.5
13 40 91 3 2 2 2 1 2.7
14 44 86 2 2 2 2 2 4.4
15 43 90 3 2 2 2 2 3.2
16 32 −99 1 1 1 2 1 -1.5
17 32 91 1 2 2 −99 1 -1.9
18 43 82 4 3 2 2 2 8.3
19 46 86 3 2 2 2 2 3.6
20 30 88 2 2 2 2 1 1.4
21 34 97 3 3 −99 2 2 −99.0
22 37 96 3 2 2 2 1 −99.0
23 35 95 2 1 2 2 1 -1.0
24 45 87 2 2 2 2 2 6.5
25 35 103 2 2 2 2 1 -2.1
26 31 −99 2 2 2 2 1 -0.4
27 32 91 2 2 2 2 1 -1.9
28 44 87 2 2 2 2 2 3.7
29 40 91 3 3 2 2 2 4.5
30 42 89 3 3 2 2 2 4.2
31 36 92 3 −99 2 2 2 −99.0
32 42 84 3 3 2 2 2 1.7
33 46 94 2 −99 2 2 2 4.8
34 41 92 2 1 2 2 1 1.7
35 30 96 −99 2 2 2 2 -3.0
36 39 96 2 2 2 1 1 0.8
37 40 86 2 3 2 2 2 1.5
38 42 92 3 2 2 2 1 1.3
39 35 102 2 2 2 2 2 3.0
40 31 82 2 2 2 2 1 1.0
41 33 92 3 3 2 2 2 1.5
42 43 90 −99 −99 2 2 2 3.4
43 37 92 2 1 1 1 1 −99.0
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Table 2.1 Data in fem.dat (continued)
44 32 88 4 2 2 2 1 −99.0
45 34 98 2 2 2 2 −99 0.6
46 34 93 3 2 2 2 2 0.6
47 42 90 2 1 1 2 1 3.3
48 41 91 2 1 1 1 1 4.8
49 31 −99 3 1 2 2 1 -2.2
50 32 92 3 2 2 2 2 1.0
51 29 92 2 2 2 1 2 -1.2
52 41 91 2 2 2 2 2 4.0
53 39 91 2 2 2 2 2 5.9
54 41 86 2 1 1 2 1 0.2
55 34 95 2 1 1 2 1 3.5
56 39 91 1 1 2 1 1 2.9
57 35 96 3 2 2 1 1 -0.6
58 31 100 2 2 2 2 2 -0.6
59 32 99 4 3 2 2 2 -2.5
60 41 89 2 1 2 1 1 3.2
61 41 89 3 2 2 2 2 2.1
62 44 98 3 2 2 2 2 3.8
63 35 98 2 2 2 2 1 -2.4
64 41 103 2 2 2 2 2 -0.8
65 41 91 3 1 2 2 1 5.8
66 42 91 4 3 −99 −99 2 2.5
67 33 94 2 2 2 2 1 -1.8
68 41 91 2 1 2 2 1 4.3
69 43 85 2 2 2 1 1 −99.0
70 37 92 1 1 2 2 1 1.0
71 36 96 3 3 2 2 2 3.5
72 44 90 2 −99 2 2 2 3.3
73 42 87 2 2 2 1 2 -0.7
74 31 95 2 3 2 2 2 -1.6
75 29 95 3 3 2 2 2 -0.2
76 32 87 1 1 2 2 1 -3.7
77 35 95 2 2 2 2 2 3.8
78 42 88 1 1 1 2 1 -1.0
79 32 94 2 2 2 2 1 4.7
80 39 −99 3 2 2 2 2 -4.9
81 34 −99 3 −99 2 2 1 −99.0
82 34 87 3 3 2 2 1 2.2
83 42 92 1 1 2 1 1 5.0
84 43 86 2 3 2 2 2 0.4
85 31 93 −99 2 2 2 2 -4.2
86 31 92 2 2 2 2 1 -1.1
87 36 106 2 2 2 1 2 -1.0
88 37 93 2 2 2 2 2 4.2
89 43 95 2 2 2 2 1 2.4
90 32 95 3 2 2 2 2 4.9
91 32 92 −99 −99 −99 2 2 3.0
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Table 2.1 Data in fem.dat (continued)
92 32 98 2 2 2 2 2 -0.3
93 43 92 2 2 2 2 2 1.2
94 41 88 2 2 2 2 1 2.6
95 43 85 1 1 2 2 1 1.9
96 39 92 2 2 2 2 1 3.5
97 41 84 2 2 2 2 2 -0.6
98 41 92 2 1 2 2 1 1.4
99 32 91 2 2 2 2 2 5.7

100 44 86 3 2 2 2 2 4.6
101 42 92 3 2 2 2 1 −99.0
102 39 89 2 2 2 2 1 2.0
103 45 −99 2 2 2 2 2 0.6
104 39 96 3 −99 2 2 2 −99.0
105 31 97 2 −99 −99 −99 2 2.8
106 34 92 3 2 2 2 2 -2.1
107 41 92 2 2 2 2 2 -2.5
108 33 98 3 2 2 2 2 2.5
109 34 91 2 1 1 2 1 5.7
110 42 91 3 3 2 2 2 2.4
111 40 89 3 1 1 1 1 1.5
112 35 94 3 3 2 2 2 1.7
113 41 90 3 2 2 2 2 2.5
114 32 96 2 1 1 2 1 −99.0
115 39 87 2 2 2 1 2 −99.0
116 41 86 3 2 1 1 2 -1.0
117 33 89 1 1 1 1 1 6.5
118 42 −99 3 2 2 2 2 4.9

2.2 Group comparison and correlations

The data in Table 2.1 contain a number of interval scale or continuous
variables (weight change, age, and IQ), ordinal variables (anxiety and
depression), and dichotomous variables (sex and sleep) that we wish to
compare between two groups of women: those who have thought about
ending their lives and those who have not.

For interval scale variables, the most common statistical test is the
t-test which assumes that the observations in the two groups are inde-
pendent and are sampled from two populations each having a normal
distribution and equal variances. A nonparametric alternative (which
does not rely on the latter two assumptions) is the Mann-Whitney U -
test.

For ordinal variables, either the Mann-Whitney U -test or a chi-
squared test may be appropriate depending on the number of levels
of the ordinal variable. The latter test can also be used to compare
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dichotomous variables between the groups.
Continuous variables can be correlated using the Pearson correla-

tion. If we are interested in the question whether the correlations differ
significantly from zero, then a hypothesis test is available that assumes
bivariate normality. A significance test not making this distributional
assumption is also available; it is based on the correlation of the ranked
variables, the Spearman rank correlation. Finally, if variables have only
few categories, Kendall’s tau-b provides a useful measure of correla-
tion (see, e.g., Sprent and Smeeton, 2001). More details of these tests
and correlation coefficients can be found in Altman (1990) and Agresti
(2002).

2.3 Analysis using Stata

Assuming the data have been saved from a spreadsheet or statisti-
cal package (for example SAS or SPSS) as a tab-delimited ASCII file,
fem.dat, they can be read using the instruction

insheet using fem.dat, clear

There are missing values which have been coded as −99. We replace
these with Stata’s missing value code “.” using

mvdecode _all, mv(-99)

The variable sleep has been entered incorrectly as “3” for subject
3. Such data entry errors can be detected using the command

codebook

which displays information on all variables; the output for sleep is
shown below:
sleep SLEEP

type: numeric (byte)

range: [1,3] units: 1
unique values: 3 missing .: 5/118

tabulation: Freq. Value
14 1
98 2
1 3
5 .

Alternatively, we can detect errors using the assert command. For
sleep, we would type

assert sleep==1|sleep==2|sleep==.
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1 contradiction in 118 observations
assertion is false

Since we do not know what the correct code for sleep should have
been, we can replace the incorrect value of 3 by “missing”

replace sleep=. if sleep==3

In order to have consistent coding for “yes” and “no”, we recode
the variable sleep

recode sleep 1=2 2=1

and to avoid confusion in the future, we label the values as follows:

label define yn 1 no 2 yes
label values sex yn
label values life yn
label values sleep yn

The last three commands could also have been carried out in a foreach
loop:

foreach x in sex life sleep {
label values `x´ yn

}

First, we could compare the suicidal women with the non-suicidal
by simply tabulating suitable summary statistics in each group. To
obtain means and standard deviations for the continuous variables, we
can use the tabstat command:

tabstat weight age iq, by(life) statistics(mean sd)
Summary statistics: mean, sd

by categories of: life (LIFE)

life weight age iq

no 1.408889 36.94231 91.27083
2.609234 4.295065 3.757203

yes 1.731148 37.92308 92.09836
2.825629 5.078471 5.0223

Total 1.59434 37.48718 91.73394
2.727805 4.751797 4.508515

A more formal approach to comparing the two groups on say weight
gain over the last six months might involve an independent samples t-
test. First, however, we need to check whether the assumptions needed
for the t-test appear to be satisfied for weight gain. One way this can
be done is by plotting the variable weight as a boxplot for each group:
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graph box weight, by(life) box(1, bfcolor(none)) ///
box(2, bfcolor(none)) yline(0) medtype(line) ///
ytitle(weight change in last six months)
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Figure 2.1: Boxplot of weight by group.

giving the graph shown in Figure 2.1. The yline(0) option has placed
a horizontal line at 0. (Note that in the instructions above, the forward
slashes /// were used to make Stata ignore the line breaks in the middle
of the graph box command in a do-file, but this should not be used in
the Stata Command window, where commands can wrap over multiple
lines.) The groups do not seem to differ much in their median weight
change and the assumptions for the t-test seem reasonable because the
distributions are symmetric with similar spread (box heights represent
interquartile ranges).

We can also check the assumption of normality more formally by
plotting a normal quantile plot of suitably defined residuals. Here the
difference between the observed weight changes and the group-specific
mean weight changes can be used. If the normality assumption is sat-
isfied, the quantiles of the residuals should be linearly related to the
quantiles of the normal distribution with the same mean and standard



50 � A Handbook of Statistical Analyses Using Stata

deviation. The residuals can be computed and plotted using

egen res=mean(weight), by(life)
replace res=weight-res
qnorm res, title("Normal Q-Q plot") saving(qnorm,replace) ///

ytitle(residuals for weight change)

The points in the Q-Q plot in Figure 2.2 appear to be sufficiently close
to the straight line to justify the normality assumption.
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Figure 2.2: Normal Q-Q plot of residuals of weight change.

We could also test whether the variances differ significantly using

robvar weight, by(life)

giving the output shown in Display 2.1. Here the first test is Levene’s
test, and this test indicates that there is no evidence that the variances
differ (F (2, 104) = 1.37, p = 0.26). The W50 test statistic replaces the
means in Levene’s test by medians and the W10 statistics replaces the
means by 10% trimmed means. All these tests are more robust to non-
normality than the conventional homogeneity of variance test produced
by the sdtest command.

Having found no strong evidence that the assumptions of the t-test
are not valid for weight gain, we can proceed to apply a t-test:
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Variance ratio test

Summary of WEIGHT
LIFE Mean Std. Dev. Freq.

no 1.4088889 2.6092338 45
yes 1.7311475 2.8256292 61

Total 1.5943396 2.727805 106

W0 = 1.371606 df(2, 104) Pr > F = .25824967

W50 = 1.2167221 df(2, 104) Pr > F = .30038041

W10 = 1.308366 df(2, 104) Pr > F = .27467211

Display 2.1

ttest weight, by(life)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

no 45 1.408889 .3889616 2.609234 .6249883 2.19279
yes 61 1.731148 .3617847 2.825629 1.00747 2.454825

combined 106 1.59434 .2649478 2.727805 1.068997 2.119682

diff -.3222587 .5376805 -1.388499 .743982

diff = mean(no) - mean(yes) t = -0.5993
Ho: diff = 0 degrees of freedom = 104

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.2751 Pr(|T| > |t|) = 0.5502 Pr(T > t) = 0.7249

Display 2.2

Display 2.2 shows that the difference in means is estimated as −0.32
with a 95% confidence interval from −1.39 to 0.74. The two-tailed p-
value is 0.55, so there is no evidence that the populations differ in their
mean weight change. (The unequal option could be used to relax the
assumption of equal population variances.)

Now suppose we wish to compare the prevalence of depression be-
tween suicidal and non-suicidal women. The two categorical variables
can be cross-tabulated and the appropriate chi-squared statistic calcu-
lated using a single command:
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tabulate life depress, row chi2

The output is shown in Display 2.3. Here the row option was used

Key

frequency
row percentage

DEPRESS
LIFE 1 2 3 Total

no 26 24 1 51
50.98 47.06 1.96 100.00

yes 0 42 16 58
0.00 72.41 27.59 100.00

Total 26 66 17 109
23.85 60.55 15.60 100.00

Pearson chi2(2) = 43.8758 Pr = 0.000

Display 2.3

to display row-percentages, making it easier to compare the groups
of women. For example, 50.98% of non-suicidal women are not de-
pressed at all, compared with 0% of suicidal women. The value of the
chi-squared statistic implies that there is a highly significant associ-
ation between depression and suicidal thoughts (X2 = 43.9, d.f.=2,
p < 0.001). Note that this test does not take account of the ordinal
nature of depression and is therefore likely to be less sensitive than,
for example, ordinal regression (see Chapter 6). Since some cells in
the cross classification have only small counts, we might want to use
Fisher’s exact test (see Everitt, 1992) rather than the chi-squared test.
(We could first use the expected option in the tabulate command
to check if the expected counts are small.) The necessary command
(without reproducing the table) is as follows:

tabulate life depress, exact nofreq
Fisher’s exact = 0.000

Again we find strong evidence for a relationship between depression
and suicidal thoughts (Fisher’s exact test, p < 0.001).

A useful display for two-way tables is a bar chart which can be
produced as follows:
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graph bar (count) id, ///
over(depress, relabel(1 "none" 2 "mild" 3 "moderate")) ///
over(life, relabel(1 "non-suicidal" 2 "suicidal")) ///
ytitle(Percentages by group (suicidal versus not)) ///
asyvars percent showyvars legend(off)

Here we used (count) id to plot the number of non-missing values of
id and two over() options to specify the grouping variables depress
and life. Within these over() options, we defined the labels to be
printed for the categories of depress and life. To display the bars
for the first grouping variable in different colors, we used the asyvars
option. The asyvars option also allows us to use the percent option
to convert the counts for the different depression categories to per-
centages within the two groups (suicidal versus not). Finally, we used
showyvars and legend(off) to place the labels for the depression cat-
egories underneath the corresponding bars instead of within a legend.
The graph is shown in Figure 2.3.
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Figure 2.3: Bar chart of percentages of women in different depression
categories by group (suicidal versus non-suicidal).
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We now test the null hypothesis that the proportion of women who
have lost interest in sex does not differ between the populations of
suicidal and non-suicidal women. We can obtain the relevant table and
both the chi-squared test and Fisher’s exact tests using

tabulate life sex, row chi2 exact

with results shown in Display 2.4. Therefore, those who have thought

Key

frequency
row percentage

SEX
LIFE no yes Total

no 12 38 50
24.00 76.00 100.00

yes 5 58 63
7.94 92.06 100.00

Total 17 96 113
15.04 84.96 100.00

Pearson chi2(1) = 5.6279 Pr = 0.018
Fisher’s exact = 0.032

1-sided Fisher’s exact = 0.017

Display 2.4

about ending their lives are more likely to have lost interest in sex than
those who have not (92% compared with 76%) and the association is
significant (Fisher’s exact test, p = 0.032).

The correlations between the three variables weight, iq, and age
can be found using the correlate command

corr weight iq age

(see Display 2.5). This correlation matrix has been evaluated for those
100 women who had complete data on all three variables. An alterna-
tive approach is to use the pwcorr command to include, for each corre-
lation, all observations that have complete data for the corresponding
pair of variables, resulting in different sample sizes for different corre-
lations. These pairwise correlations can be obtained together with the
sample sizes and p-values using

pwcorr weight iq age, obs sig
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(obs=100)

weight iq age

weight 1.0000
iq -0.2920 1.0000
age 0.4131 -0.4363 1.0000

Display 2.5

(see Display 2.6).

weight iq age

weight 1.0000

107

iq -0.2920 1.0000
0.0032

100 110

age 0.4156 -0.4345 1.0000
0.0000 0.0000

107 110 118

Display 2.6

The corresponding scatterplot matrix is obtained using graph matrix
as follows:

graph matrix weight iq age, half jitter(1) msymbol(Oh) ///
msize(small) diagonal("Weight change" "IQ" "Age")

where jitter(1) randomly moves the points by a very small amount
to stop them overlapping completely due to the discrete nature of age
and IQ. The resulting graph is shown in Figure 2.4. We see that older
and less intelligent women tend to put on more weight than younger
and more intelligent ones. However, older women in this sample also
tended to be less intelligent so that age and intelligence are confounded.

It is of some interest to assess whether age and weight change have
the same relationship in suicidal as in non-suicidal women. We shall
do this informally by constructing a single scatterplot of weight change
against age in which the women in the two groups are represented by
different symbols. This is easily done by simply specifying two overlaid



56 � A Handbook of Statistical Analyses Using Stata

Weight
change

IQ

Age

−5 0 5 10

80

90

100

110

80 90 100 110

30

40

50

Figure 2.4: Scatterplot matrix for weight, IQ, and age.

scatterplots as follows:

twoway (scatter weight age if life==1, ///
msymbol(O) mcolor(black) jitter(2)) ///

(scatter weight age if life==2, ///
msymbol(Oh) mcolor(black) ///
jitter(2)), legend(order(1 "no" 2 "yes"))

The resulting graph in Figure 2.5 shows that within both groups, higher
age is associated with larger weight increases, and the groups do not
form distinct “clusters”.

Finally, an appropriate correlation between the ordinal variables
depression and anxiety is Kendall’s tau-b which can be obtained using

ktau depress anxiety
Number of obs = 107

Kendall’s tau-a = 0.2827
Kendall’s tau-b = 0.4951
Kendall’s score = 1603

SE of score = 288.279 (corrected for ties)

Test of Ho: depress and anxiety are independent
Prob > |z| = 0.0000 (continuity corrected)

giving a value of 0.50 with an approximate p-value of p < 0.001. Depres-
sion and anxiety are clearly related in these psychiatrically ill women.
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Figure 2.5: Scatterplot of weight against age.

2.4 Exercises

2.1 • Female psychiatric patients

1. Tabulate the mean weight change by level of depression.
2. By looping through the variables age, iq, and weight using

foreach, tabulate the means and standard deviations for each
of these variables by life.

3. Produce a bar chart analogous to the one in Figure 2.3 but
for sex and life.

4. Use search nonparametric or search mann or search whitney
to find help on how to run the Mann-Whitney U -test.

5. Compare the weight changes between the two groups using
the Mann-Whitney U -test.

6. Form a scatterplot for iq and age using different symbols for
the two groups (life=1 and life=2). Explore the use of
the option jitter(#) for different integers # to stop symbols
overlapping.

7. Find the command for the Spearman correlation coefficient
and use it to find the Spearman correlation between age and
iq.

8. Having tried out all these commands interactively, create a
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do-file containing these commands and run the do-file. In the
graph commands, use the option saving(filename,replace)
to save the graphs in the current directory and view the
graphs later using the command graph use filename.

See also Exercises in Chapter 6.

2.2 Australians going metric

Shortly after metric units of length were officially introduced in
Australia, each of a group of 44 students was asked to guess, to
the nearest meter, the width of the lecture hall in which they
were sitting. Another group of 69 students in the same room was
asked to guess the width in feet, to the nearest foot. The true
width of the hall was 13.1 meters (43.0 feet). The data come
from Hand et al.(1994).

The variables in meter.dta are:

� id: student identifier
� meters: dummy variable for guess being in meters
� guess: guesses

1. Investigate, by the use of suitable graphics, significance tests
and estimation procedures whether there is any evidence of a
systematic difference in the guesses made in meters and those
made in feet.

2.3 Mortality from skin cancer

Here we consider a dataset from van Belle et al. (2004) which
consist of mortality rates due to malignant melanoma of the skin
for white males during the period 1950-1969, for each state on
the U.S. mainland.

The variables in mortality.dta are:

� state: name of the state
� mortality: mortality rate (in deaths per 10 million per year)
� latitude: latitude of the center of each state
� longitude: longitude of the center of the state
� population: population (in millions)
� ocean: dummy variable for state being contiguous with an

ocean

1. Construct some suitable graphics for investigating how mor-
tality is related to latitude and longitude and how any rela-
tionship between these variables is affected by being an ocean
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state.

2.4 Invasion of acacia trees by ants

The data in the 2 × 2 contingency table below (from Sokal and
Rohlf, 1981) record the results on an experiment with acacia ants.
All but 28 trees of two species of acacia (A and B) were cleared
from an area in Central America, and these 28 trees were cleared
of ants using insecticide. Sixteen colonies of a particular species
of ant were obtained from other trees of species A. The colonies
were placed roughly equidistant from the 28 trees and allowed to
invade them.

Accacia Species Not invaded Invaded Total
A 2 13 15
B 10 3 13
Total 12 16 28

1. Produce a table containing the percentage of trees invaded
by tree type and the expected frequencies under the null hy-
pothesis that there is no association between type of tree and
invasion by ants. (Hint: use the tabi command to specify the
frequencies within the Stata command instead of entering the
data.)

2. Investigate whether there is any evidence that the invasion
probability differs between the two species of acacia tree.

3. Obtain an approximate 95% confidence interval for the rele-
vant difference in proportions (Hint: Use the csi command).

2.5 Sexual satisfaction

Hout, Duncan and Sobel (1987) investigated the relative sexual
satisfaction of married couples, by asking each member of 91
married couples to rate the degree to which they agreed with the
statement “Sex is fun for me and my partner” on a four-point
scale ranging from “never or occasionally”, to “almost always”.
The data for 30 couples are given in satisfaction.dta. The
variables are:

� couple: couple identifier
� husband: satisfaction score of husband
� wife: satisfaction score of wife

1. Carry out an appropriate significance test to investigate whether
there is any evidence that men and women differ in their mean
sexual satisfaction.
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2. Construct a crosstabulation of husband’s and wife’s sexual
satisfaction and calculate a suitable measure of correlation
between the two ratings.

3. Construct a 95% confidence interval for the true mean differ-
ence between the sexual satisfaction scores of husbands and
wives.

2.6 Crowd reactions to threatened suicide

Mann (1981) conducted a study to investigate the causes of jeer-
ing or baiting behavior by a crowd when a person is threatening
to commit suicide by jumping from a high building. The data
given below result from the classification of threatened suicides
by two factors, the time of year and whether or not baiting oc-
curred.

Baiting non-baiting
June-September 8 4
October-May 2 7

1. A hypothesis is that baiting is more likely to occur in warm
weather. (The data come from the northern hemisphere, so
June-September are the warm months). Produce a table of
counts and percentages for assessing this hypothesis. (You
can use the tabi command which allows you to list the cell
frequency in the command, rather than entering them as a
dataset.)

2. Produce a table of expected frequencies under the null hy-
pothesis that there is no association between season and bait-
ing behavior.

3. Test the null hypothesis that there is no association between
season and baiting behavior.



Chapter 3

Multiple Regression:

Determinants of Pollution

in U.S. Cities

3.1 Description of data

Data on air pollution in 41 U.S. cities were collected by Sokal and
Rohlf (1981) from several U.S. government publications and are repro-
duced here in Table 3.1. (The data are also given in Hand et al., 1994.)
There is a single dependent variable, so2, the annual mean concentra-
tion of sulphur dioxide, in micrograms per cubic meter. These data are
means for the three years 1969 to 1971 for each city. The values of six
explanatory variables, two of which concern human ecology and four
climate, are also recorded; details are as follows:

� temp: average annual temperature in ◦F
� manuf: number of manufacturing enterprises employing 20 or

more workers
� pop: population size (1970 census) in thousands
� wind: average annual wind speed in miles per hour
� precip: average annual precipitation in inches
� days: average number of days with precipitation per year
The main question of interest about these data is how the pollution

level as measured by sulphur dioxide concentration is determined by
the six explanatory variables. The central method of analysis will be
multiple regression.

61
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Table 3.1 Data in usair.dat

Town SO2 temp manuf pop wind precip days
Phoenix 10 70.3 213 582 6.0 7.05 36
Little Rock 13 61.0 91 132 8.2 48.52 100
San Francisco 12 56.7 453 716 8.7 20.66 67
Denver 17 51.9 454 515 9.0 12.95 86
Hartford 56 49.1 412 158 9.0 43.37 127
Wilmington 36 54.0 80 80 9.0 40.25 114
Washington 29 57.3 434 757 9.3 38.89 111
Jackson 14 68.4 136 529 8.8 54.47 116
Miami 10 75.5 207 335 9.0 59.80 128
Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Indianapolis 28 52.3 361 746 9.7 38.74 121
Des Moines 17 49.0 104 201 11.2 30.85 103
Wichita 8 56.6 125 277 12.7 30.58 82
Louisville 30 55.6 291 593 8.3 43.11 123
New Orleans 9 68.3 204 361 8.4 56.77 113
Baltimore 47 55.0 625 905 9.6 41.31 111
Detroit 35 49.9 1064 1513 10.1 30.96 129
Minneapolis 29 43.5 699 744 10.6 25.94 137
Kansas 14 54.5 381 507 10.0 37.00 99
St. Louis 56 55.9 775 622 9.5 35.89 105
Omaha 14 51.5 181 347 10.9 30.18 98
Albuquerque 11 56.8 46 244 8.9 7.77 58
Albany 46 47.6 44 116 8.8 33.36 135
Buffalo 11 47.1 391 463 12.4 36.11 166
Cincinnati 23 54.0 462 453 7.1 39.04 132
Cleveland 65 49.7 1007 751 10.9 34.99 155
Columbia 26 51.5 266 540 8.6 37.01 134
Philadelphia 69 54.6 1692 1950 9.6 39.93 115
Pittsburgh 61 50.4 347 520 9.4 36.22 147
Providence 94 50.0 343 179 10.6 42.75 125
Memphis 10 61.6 337 624 9.2 49.10 105
Nashville 18 59.4 275 448 7.9 46.00 119
Dallas 9 66.2 641 844 10.9 35.94 78
Houston 10 68.9 721 1233 10.8 48.19 103
Salt Lake City 28 51.0 137 176 8.7 15.17 89
Norfolk 31 59.3 96 308 10.6 44.68 116
Richmond 26 57.8 197 299 7.6 42.59 115
Seattle 29 51.1 379 531 9.4 38.79 164
Charleston 31 55.2 35 71 6.5 40.75 148
Milwaukee 16 45.7 569 717 11.8 29.07 123
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3.2 The multiple regression model

The multiple regression model has the general form

yi = β0 + β1x1i + β2x2i + · · · + βpxpi + εi (3.1)

where yi is a continuous response (or dependent) variable for the ith
member of the sample, x1i, x2i, · · · , xpi are a set of explanatory (or in-
dependent) variables or covariates, β0, β1, β2, . . . , βp are regression co-
efficients, and εi is a residual or error term with zero mean that is un-
correlated with the explanatory variables. It follows that the expected
value of the response for given values of the covariates is

E(yi|xi) = β0 + β1x1i + β2x2i + . . . + βpxpi,

where x′
i = (x1i, . . . , xpi). This is also the value we would predict for

a new individual with covariate values xi if we knew the regression
coefficients.

Each regression coefficient represents the mean change in the re-
sponse variable when the corresponding explanatory variable increases
by one unit and all other explanatory variables remain constant. The
coefficients therefore represent the effects of each explanatory variable,
controlling for all other explanatory variables in the model, giving rise
to the term “partial” regression coefficients. The residual is the dif-
ference between the observed value of the response and the expected
value based on the explanatory variables.

The regression coefficients β0, . . . , βp are generally estimated by least
squares; in other words the estimates β̂0, . . . , β̂p minimize the sum of
the squared differences between observed and predicted responses, or
the sum of squared estimated residuals,

n∑
i=1

[yi − (β̂0 + β̂1x1i + β̂2x2i + · · · + β̂pxpi)]2. (3.2)

Significance tests for the regression coefficients can be derived by as-
suming that the error terms are independently normally distributed
with zero mean and constant variance σ2.

For n observations of the response and explanatory variables, the
regression model may be written concisely as

y = Xβ + ε (3.3)

where y is the n × 1 vector of responses, X is an n × (p + 1) matrix
of known constants, the first column containing a series of ones corre-
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sponding to the term β0 in (3.1), and the remaining columns values of
the explanatory variables. The elements of the vector β are the regres-
sion coefficients β0, . . . , βp, and those of the vector ε, the error terms
ε1, . . . , εn. The least squares estimates of the regression coefficients can
then be written as

β̂ = (X′X)−1X′y

and the variances and covariances of these estimates can be found from

S
β̂

= s2(X′X)−1,

where s2 is an estimate of the residual variance σ2 given by the sum of
squared estimated residuals in equation (3.2) divided by n−p−1.

The coefficient of determination, R2, represents the portion of the
total variance of the response variable that is explained by the explana-
tory variables. Alternatively, it can be interpreted as the proportional
reduction in prediction error variance of the model compared with the
constant-only model (without covariates). R, also known as the multi-
ple correlation coefficient, is just the correlation between the observed
responses yi and the predicted responses ŷi. For full details of multiple
regression see, for example, Rawlings et al. (1998).

3.3 Analysis using Stata

Assuming the data are available as an ASCII file usair.dat in the
current directory and that the file contains city names (abbreviated
versions of those in Table 3.1), they may be read in for analysis using
the following instruction:

infile str10 town so2 temp manuf pop ///
wind precip days using usair.dat, clear

Here we had to declare the “type” for the string variable town as str10
which stands for “string variable with 10 characters”.

Before undertaking a formal regression analysis of these data, it will
be helpful to examine them graphically using a scatterplot matrix. Such
a display is useful for assessing the general relationships between the
variables, for identifying possible outliers, and for highlighting potential
collinearity problems amongst the explanatory variables. The basic
plot can be obtained using

graph matrix so2 temp manuf pop wind precip days
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Figure 3.1: Scatterplot matrix.

The resulting diagram is shown in Figure 3.1. Several of the scatter-
plots show evidence of outliers, and the relationship between manuf
and pop is very strong suggesting that using both as explanatory vari-
ables in a regression analysis may lead to problems (see later). The
relationships of particular interest, namely those between so2 and the
explanatory variables (the relevant scatterplots are those in the first
row of Figure 3.1), indicate some possible nonlinearity. A more infor-
mative, although slightly more “messy” diagram can be obtained if the
plotted points are labeled with the associated town names. We first
create a variable containing the first three characters of the strings in
town using the function substr()

generate twn = substr(town,1,3)

We then create a scatterplot matrix with these three-character town
labels using

graph matrix so2-days, msymbol(none) mlabel(twn) ///
mlabposition(0)

The mlabel() option labels the points with the names in the twn vari-
able. By default, a “marker symbol” would also be plotted and this
can be suppressed using msymbol(none); mlabposition(0) centers the
labels where the symbol would normally go. The resulting diagram
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appears in Figure 3.3. Clearly, Chicago and to a lesser extent Philadel-
phia might be considered outliers. Chicago has such a high degree of
pollution compared with the other cities that it should perhaps be con-
sidered as a special case and excluded from further analysis. We can
remove Chicago using

drop if town=="Chicago"

The command regress may be used to fit a basic multiple regression
model. The necessary Stata command for regressing sulphur dioxide
concentration on the six explanatory variables is

regress so2 temp manuf pop wind precip days

or, alternatively,

regress so2 temp-days

(see Display 3.1).

Source SS df MS Number of obs = 40
F( 6, 33) = 6.20

Model 8203.60523 6 1367.26754 Prob > F = 0.0002
Residual 7282.29477 33 220.675599 R-squared = 0.5297

Adj R-squared = 0.4442
Total 15485.9 39 397.074359 Root MSE = 14.855

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.268452 .6305259 -2.01 0.052 -2.551266 .0143631
manuf .0654927 .0181777 3.60 0.001 .0285098 .1024756

pop -.039431 .0155342 -2.54 0.016 -.0710357 -.0078264
wind -3.198267 1.859713 -1.72 0.095 -6.981881 .5853469

precip .5136846 .3687273 1.39 0.173 -.2364966 1.263866
days -.0532051 .1653576 -0.32 0.750 -.3896277 .2832175
_cons 111.8709 48.07439 2.33 0.026 14.06278 209.679

Display 3.1

The main features of interest in the output in Display 3.1 are the
analysis of variance table and the parameter estimates. In the for-
mer, the ratio of the model mean square to the residual mean square
gives an F -test for the hypothesis that all the regression coefficients
in the fitted model are zero (except the constant β0). The resulting
F -statistic with 6 and 33 degrees of freedom takes the value 6.20 and
is shown on the right-hand side; the associated p-value is very small.
Consequently, the hypothesis is rejected. The square of the multiple
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correlation coefficient (R2) is 0.53 showing that 53% of the variance of
sulphur dioxide concentration is accounted for by the six explanatory
variables of interest.

The adjusted R2 statistic is an estimate of the population R2 taking
account of the fact that the parameters were estimated from the same
data for which R2 is evaluated. The statistic is calculated as

adj R2 = 1 − (n − 1)(1 − R2)
n − p

(3.4)

where n is the number of observations used in fitting the model. The
root MSE is simply the square root of the residual mean square in the
analysis of variance table, which itself is an estimate of the parameter
σ2. The estimated regression coefficients give the estimated change
in the mean of the response variable produced by a unit change in
the corresponding explanatory variable with the remaining explanatory
variables held constant.

One concern generated by the initial graphical material on this
data was the strong relationship between the two explanatory variables
manuf and pop. The correlation of these two variables is obtained by
using

correlate manuf pop
(obs=40)

manuf pop

manuf 1.0000
pop 0.8906 1.0000

The strong linear dependence might be a source of collinearity prob-
lems and can be investigated further by calculating what are known as
variance inflation factors for each of the explanatory variables. These
are given by

VIF(xk) =
1

1 − R2
k

(3.5)

where VIF(xk) is the variance inflation factor for explanatory variable
xk, and R2

k is the square of the multiple correlation coefficient obtained
from regressing xk on the remaining explanatory variables. The vari-
ance inflation factor represents the squared standard error (or sampling
variance) of β̂k in the estimated model divided by the squared standard
error that would be obtained if xk were uncorrelated with the remaining
variables.
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The variance inflation factors can be obtained using the estat vif
command after regress:

estat vif

(see Display 3.2).

Variable VIF 1/VIF

manuf 6.28 0.159275
pop 6.13 0.163165

temp 3.72 0.269156
days 3.47 0.287862

precip 3.41 0.293125
wind 1.26 0.790619

Mean VIF 4.05

Display 3.2

Chatterjee et al. (2006) give the following “rules-of-thumb” for eval-
uating these factors:

� Values larger than 10 give evidence of collinearity.
� A mean of the VIF factors considerably larger than one suggests

collinearity.
Here there are no values greater than 10 (as an exercise we suggest

readers also calculate the VIFs when the observations for Chicago are
included), but the mean value of 4.05 gives some cause for concern. A
simple (although not necessarily the best) way to proceed is to drop
one of manuf or pop. Another possibility is to replace manuf by a
new variable equal to manuf divided by pop, representing the number
of large manufacturing enterprises per thousand inhabitants (see Ex-
ercise 3.1). However, we shall simply exclude manuf and repeat the
regression analysis using the five remaining explanatory variables:

regress so2 temp pop wind precip days

The output is shown in Display 3.3.
Now recompute the variance inflation factors:

estat vif

The variance inflation factors in Display 3.4 are now satisfactory.
The very general hypothesis concerning all regression coefficients

mentioned previously is not usually of great interest in most appli-
cations of multiple regression because it is most unlikely that all the
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Source SS df MS Number of obs = 40
F( 5, 34) = 3.58

Model 5339.03465 5 1067.80693 Prob > F = 0.0105
Residual 10146.8654 34 298.437216 R-squared = 0.3448

Adj R-squared = 0.2484
Total 15485.9 39 397.074359 Root MSE = 17.275

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.867665 .7072827 -2.64 0.012 -3.305037 -.430294
pop .0113969 .0075627 1.51 0.141 -.0039723 .0267661

wind -3.126429 2.16257 -1.45 0.157 -7.5213 1.268443
precip .6021108 .4278489 1.41 0.168 -.2673827 1.471604

days -.020149 .1920012 -0.10 0.917 -.4103424 .3700445
_cons 135.8565 55.36797 2.45 0.019 23.33529 248.3778

Display 3.3

Variable VIF 1/VIF

days 3.46 0.288750
temp 3.46 0.289282

precip 3.40 0.294429
wind 1.26 0.790710
pop 1.07 0.931015

Mean VIF 2.53

Display 3.4
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chosen explanatory variables will be unrelated to the response variable.
The more interesting question is whether a subset of the regression co-
efficients is zero, implying that not all the explanatory variables are of
use in predicting the response variable. A preliminary assessment of
the likely importance of each explanatory variable can be made using
the table of estimated regression coefficients and associated statistics.
Using a conventional 5% criterion, the only “significant” coefficient is
that for the variable temp. Unfortunately, this very simple approach is
not in general suitable, since in most cases the explanatory variables
are correlated, and the t-tests will not be independent of each other.
Consequently, removing a particular variable from the regression will
alter both the estimated regression coefficients of the remaining vari-
ables and their standard errors. A more involved approach to identify-
ing important subsets of explanatory variables is therefore required. A
number of procedures are available.
1. Confirmatory approach: A small set of explanatory variables are

included as suggested by substantive theory, or to allow testing
of particular a priori hypotheses. The model is typically modified
somewhat by removing some variables, considering interactions, etc.
to achieve a better fit to the data.

2. Exploratory approach: Automatic selection methods, which are of
the following types:
a. Forward selection: This method starts with a model containing

none of the explanatory variables and then considers variables
one by one for inclusion. At each step, the variable added is the
one that results in the biggest increase in the model or regres-
sion sum of squares. An F -type statistic is used to judge when
further additions would not represent a significant improvement
in the model.

b. Backward elimination: Here variables are considered for removal
from an initial model containing all the explanatory variables.
At each stage, the variable chosen for exclusion is the one lead-
ing to the smallest reduction in the regression sum of squares.
Again, an F -type statistic is used to judge when further exclu-
sions would represent a significant deterioration in the model.

c. Stepwise regression: This method is essentially a combination
of the previous two. The forward selection procedure is used to
add variables to an existing model and, after each addition, a
backward elimination step is introduced to assess whether vari-
ables entered earlier might now be removed because they no
longer contribute significantly to the model.

It is clear that the automatic selection methods are based on a large
number of significance tests, one for each variable considered for inclu-
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sion or exclusion in each step. It is well known that the probability
of a false positive result or Type I error increases with the number of
tests. The chosen model should therefore be interpreted with extreme
caution, particularly if there were a large number of candidate vari-
ables. Another problem with the three automatic procedures is that
they often do not lead to the same model; see also Harrell (2001) for
a discussion of model selection strategies. Although we would gener-
ally not recommend automatic procedures, we will use them here for
illustration.

First we will take a confirmatory approach to investigate if climate
(temp, wind, precip, days) or human ecology (pop) or both are im-
portant predictors of air pollution. We treat these groups of variables
as single terms, allowing either all variables in a group to be included
or none. This can be done by enclosing the variables in parentheses in
the following command:

stepwise, pe(0.05): regress so2 (temp wind precip days) (pop)

(see Display 3.5). Here the prefix command stepwise is used with the

begin with empty model
p = 0.0119 < 0.0500 adding temp wind precip days

Source SS df MS Number of obs = 40
F( 4, 35) = 3.77

Model 4661.27545 4 1165.31886 Prob > F = 0.0119
Residual 10824.6246 35 309.274987 R-squared = 0.3010

Adj R-squared = 0.2211
Total 15485.9 39 397.074359 Root MSE = 17.586

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.689848 .7099204 -2.38 0.023 -3.131063 -.2486329
wind -2.309449 2.13119 -1.08 0.286 -6.635996 2.017097

precip .5241595 .4323535 1.21 0.234 -.3535647 1.401884
days .0119373 .1942509 0.06 0.951 -.382413 .4062876
_cons 123.5942 55.75236 2.22 0.033 10.41091 236.7775

Display 3.5

pe() (“probability to enter”) option to indicate that forward selection
should be used with a significance level of 0.05; terms with a p-value
less than 0.05 will be included. Here, only the climate variables are
shown since they are jointly significant (p = 0.0119) using an F -test.

As a further illustration of automatic selection procedures, the fol-
lowing Stata instruction applies the backward elimination method, with
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explanatory variables whose F -values for removal have associated p-
values greater than 0.2 being removed:

stepwise, pr(0.2): regress so2 temp pop wind precip days

(see Display 3.6). Here, the pr() option indicates that backward selec-

begin with full model
p = 0.9170 >= 0.2000 removing days

Source SS df MS Number of obs = 40
F( 4, 35) = 4.60

Model 5335.74801 4 1333.937 Prob > F = 0.0043
Residual 10150.152 35 290.004343 R-squared = 0.3446

Adj R-squared = 0.2696
Total 15485.9 39 397.074359 Root MSE = 17.03

so2 Coef. Std. Err. t P>|t| [95% Conf. Interval]

temp -1.810123 .4404001 -4.11 0.000 -2.704183 -.9160635
pop .0113089 .0074091 1.53 0.136 -.0037323 .0263501

wind -3.085284 2.096471 -1.47 0.150 -7.341347 1.170778
precip .5660172 .2508601 2.26 0.030 .0567441 1.07529
_cons 131.3386 34.32034 3.83 0.001 61.66458 201.0126

Display 3.6

tion should be used with a “probability to remove” of 0.2. With this
significance level, only the variable days is excluded.

The next stage in the analysis should be an examination of the
residuals from the chosen model; that is, the differences between the
observed and fitted values of sulphur dioxide concentration. Such a
procedure is vital for assessing model assumptions, identifying any un-
usual features in the data indicating outliers, and suggesting possibly
simplifying transformations. The most useful ways of examining the
residuals are graphical, and the most commonly used plots are as fol-
lows:

� A plot of the residuals against each explanatory variable in the
model. The presence of a curvilinear relationship, for example,
would suggest that a higher-order term, perhaps a quadratic in
the explanatory variable, should be added to the model.

� A plot of the residuals against predicted values of the response
variable. If the variance of the residuals appears to increase
or decrease with the predicted value, a transformation of the
response may be in order.
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Figure 3.3: Residuals against predicted response.

� A normal probability plot of the residuals—after all systematic
variation has been removed from the data, the residuals should
look like a sample from the normal distribution. A plot of the
ordered residuals against the expected order statistics from a
normal distribution (with mean and variance equal to the sample
estimates) provides a graphical check on this assumption.

The first two plots can be obtained after estimation with the regress
command using the rvpplot (“residual versus predictor”) and rvfplot
(“residual versus fitted”) instructions. For example, for the model cho-
sen by the backward selection procedure, a plot of residuals against
predicted values with the first three letters of the town name used to
label the points is obtained using the command

rvfplot, mlabel(twn)

The resulting plot is shown in Figure 3.3, and indicates a possible prob-
lem, namely the apparently increasing variance of the residuals as the
fitted values increase (see also Chapter 7). Perhaps some thought needs
to be given to the possible transformations of the response variable (see
exercise 3.1).

Next, graphs of the residuals plotted against each of the four ex-
planatory variables can be obtained using the following foreach loop:

foreach x in pop temp wind precip {
rvpplot `x´, mlabel(twn)
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Figure 3.4: Residuals against population size.

more
}

Here more causes Stata to pause after each graph has been plotted until
the user presses any key. The resulting graphs are shown in Figures 3.4
to 3.7. In each graph the point corresponding to the town Providence is
somewhat distant from the bulk of the points, and the graph for wind
has perhaps a “hint” of a curvilinear structure. Note that the appear-
ance of these graphs could be improved using the mlabvpos(varname)
option to specify the “clock positions” (e.g., 12 is straight above) of the
labels relative to the points.

The simple residuals plotted by rvfplot and rvpplot have a distri-
bution that is scale dependent because the variance of each is a function
of both σ2 and the diagonal values of the so-called “hat” matrix, H,
given by

H = X(X′X)−1X′ (3.6)

(see Cook and Weisberg (1982) for a full explanation of the hat ma-
trix). Consequently, it is often more useful to work with a standardized
version

ri =
yi − ŷi

s
√

1 − hii

, (3.7)
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Figure 3.5: Residuals against temperature.
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Figure 3.6: Residuals against wind speed.
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Figure 3.7: Residuals against precipitation.

where s2 is the estimate of σ2, ŷi is the predicted value of the response,
and hii is the ith diagonal element of H.

These standardized residuals can be obtained using the predict
command. For example, to obtain a normal probability plot of the
standardized residuals and to plot them against the fitted values re-
quires the following instructions:

predict fit
predict sdres, rstandard
pnorm sdres
twoway scatter sdres fit, mlabel(twn)

The first instruction stores the fitted values in the variable fit, the sec-
ond stores the standardized residuals in the variable sdres, the third
produces a normal probability plot (Figure 3.8), and the last instruc-
tion produces the graph of standardized residuals against fitted values,
which is shown in Figure 3.9.

The normal probability plot indicates that the distribution of the
residuals departs somewhat from normality. The pattern in the plot
shown in Figure 3.9 is very similar to that in Figure 3.3 but here values
outside (−2,2) indicate possible outliers, in this case the point corre-
sponding to the town Providence. Analogous plots to those in Fig-
ures 3.4 to 3.7 could be obtained in the same way.

A rich variety of other diagnostics for investigating fitted regression
models has been developed and many of these are available after estima-
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Figure 3.8: Normal probability plot of standardized residuals.
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Figure 3.9: Standardized residuals against predicted values.
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tion with the regress procedure (see help regress postestimation).
Illustrated here is the use of two of these, namely the partial residual
plot (Mallows, 1973) and Cook’s distance (Cook, 1977, 1979). The for-
mer are useful in identifying whether, for example, quadratic or higher
order terms are needed for any of the explanatory variables; the latter
measures the change to the estimates of the regression coefficients that
results from deleting each observation and can be used to indicate those
observations that may be having an undue influence on the estimates.

The partial residual plots are obtained using the cprplot (“com-
ponent plus residual”) command. For the four explanatory variables
in the selected model for the pollution data, the required plots are
obtained as follows:

foreach x in pop temp wind precip {
cprplot `x´, lowess
more

}

The lowess option produces a locally weighted regression curve or
lowess. The resulting graphs are shown in Figures 3.10 to 3.13. The
graphs have to be examined for nonlinearities and for assessing whether
the regression line, which has slope equal to the estimated effect of the
corresponding explanatory variable in the chosen model, fits the data
adequately. The added lowess curve is generally helpful for both. None
of the four graphs gives any obvious indication of nonlinearity.

The Cook’s distances are found using the predict command with
the cooksd option; the following calculates these statistics for the cho-
sen model for the pollution data and lists the observations where the
statistic is greater than 4/40 (4/n), which is usually the value regarded
as indicating possible problems.

predict cook, cooksd
list town so2 cook if cook>4/40

town so2 cook

1. Phoenix 10 .2543286
28. Philad 69 .3686437
30. Provid 94 .2839324

The first instruction stores the Cook’s distance statistics in the vari-
able cook, and the second lists details of those observations for which
the statistic is above the suggested cut-off point.

There are three influential observations. Several of the diagnostic
procedures used previously also suggest these observations as possibly
giving rise to problems, and some consideration should be given to re-
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Figure 3.10: Partial residual plot for population size.
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Figure 3.11: Partial residual plot for temperature.
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Figure 3.12: Partial residual plot for wind speed.

0
20

40
60

80
C

om
po

ne
nt

 p
lu

s 
re

si
du

al

10 20 30 40 50 60
precip

Figure 3.13: Partial residual plot for precipitation.
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peating the analyses with these three observations removed in addition
to the initial removal of Chicago.

3.4 Exercises

3.1 Determinants of pollution in U.S. cities

1. Repeat the analyses described in this chapter after removing
the three possible outlying observations identified by Cook’s
distances.

2. The solution to the high correlation between the variables
manuf and pop adopted in the chapter was simply to remove
the former. Investigate other possibilities such as defining a
new variable manuf/pop in addition to pop to be used in the
regression analysis.

3. Consider the possibility of taking a transformation of sulphur
dioxide pollution before undertaking any regression analyses.
For example, try a log transformation.

4. Explore the use of the many other diagnostic procedures avail-
able with the regress procedure.

See also Exercises in Chapter 14.

3.2 Extroversion and car care

Miles and Shevlin (2001) describe a dataset collected in an inves-
tigation of how people project their self-image through objects
they own, in this case their cars. The main question is how a
person’s extroversion affects the amount of time spent looking
after his or her car. But since it is known that extroversion is
related to both gender and age, the latter two variables need to
be controlled for.

The variables in extroversion.dta are:

� sex: sex of respondent (0=female, 1=male)
� age: age (in years)
� ex: extroversion score
� car: time respondent spends looking after car (in minutes

per week)

1. Fit a suitable regression model to address the main research
question stated above.

2. Interpret the estimated regression coefficients.
3. Perform some residual diagnostics.
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3.3 Mortality from skin cancer

1. For the malignant melanoma data given in Exercise 2.3 of the
previous chapter, fit the multiple regression model of mortal-
ity on latitude, longitude, population size, and ocean state.

2. Try to find a more parsimonious model (one with fewer ex-
planatory variables) that fits the data adequately.

3. Investigate the assumptions of the model by constructing suit-
able residual plots or other diagnostic plots.

3.4 Water hardness

Data were collected on 61 large towns in England and Wales to
investigate the environmental causes of disease (see Hand et al.,
1994). Here we consider the annual mortality per 100,000 for
males, averaged over the years 1958-1964, and the calcium con-
centration in parts per million in the drinking water supply. (The
higher the calcium concentration, the harder the water.) Towns
at least as far north as Derby are considered northern towns.

The variables in water.dta are:

� town: string variable (N=northern town, S=southern town)
� mortality: mortality per 100,000 for males per year
� calcium: calcium concentration in parts per million

1. How are mortality and water hardness related, and is there a
geographical factor in the relationship?

2. For your chosen regression model, plot predicted mortality
versus calcium concentration with separate regression lines
for northern and southern towns.

3. Superimpose LOWESS curves onto the predicted regression
lines. Which assumptions does this graph allow you to assess?





Chapter 4

Analysis of Variance I:

Treating Hypertension

4.1 Description of data

Maxwell and Delaney (1990) describe a study in which the effects of
three possible treatments for hypertension were investigated. The de-
tails of the treatments are as follows:

Treatment Description Levels

drug medication drug X, drug Y, drug Z
biofeed biofeedback present, absent
diet special diet present, absent

All 12 combinations of the three treatments were included in a
3 × 2 × 2 design. Seventy-two subjects suffering from hypertension
were recruited, and six were allocated randomly to each combination of
treatments. Blood pressure measurements were made on each subject
leading to the data shown in Table 4.1. Questions of interest concern
differences in mean blood pressure for the different levels of the three
treatments and the effects of interactions between the treatments on
blood pressure.

4.2 Analysis of variance model

A suitable model for these data is
85
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Table 4.1 Data in bp.raw

Biofeedback No Biofeedback
drug X drug Y drug Z drug X drug Y drug Z

Diet absent
170 186 180 173 189 202
175 194 187 194 194 228
165 201 199 197 217 190
180 215 170 190 206 206
160 219 204 176 199 224
158 209 194 198 195 204

Diet present
161 164 162 164 171 205
173 166 184 190 173 199
157 159 183 169 196 170
152 182 156 164 199 160
181 187 180 176 180 179
190 174 173 175 203 179

yijkl = µ+αi+βj +γk +(αβ)ij +(αγ)ik +(βγ)jk +(αβγ)ijk +εijkl (4.1)

where yijkl represents the blood pressure of the lth subject for the ith
drug, the jth level of biofeedback, and the kth level of diet, µ is the over-
all mean, αi, βj, and γk are the main effects for drugs, biofeedback, and
diets, (αβ)ij , (αγ)ik, and (βγ)jk are the first-order interaction terms,
(αβγ)ijk is a second-order interaction term, and εijkl are the residual
or error terms assumed to be normally distributed with zero mean and
variance σ2.

To identify the model, some constraints have to be imposed on the
parameters. The standard constraints are:∑

i

αi =
∑

j

βj =
∑

k

γk = 0,

∑
i

(αβ)ij =
∑

j

(αβ)ij =
∑

i

(αγ)ik =
∑

k

(αγ)ik

=
∑

j

(βγ)jk =
∑

k

(βγ)jk = 0,

and ∑
i

(αβγ)ijk =
∑

j

(αβγ)ijk =
∑

k

(αβγ)ijk = 0.
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We can test the following null hypotheses:

H
(1)
0 : No drug effect : α1 = α2 = α3 = 0

H
(2)
0 : No biofeedback effect : β1 = β2 = 0

H
(3)
0 : No diet effect : γ1 = γ2 = 0

H
(4)
0 : No drug by biofeedback interaction :

(αβ)ij = 0, i = 1, 2, 3; j = 1, 2

H
(5)
0 : No drug by diet interaction : (αγ)ik = 0, i = 1, 2, 3; k = 1, 2

H
(6)
0 : No biofeedback by diet interaction :

(βγ)jk = 0, j = 1, 2; k = 1, 2

H
(7)
0 : No drug by biofeedback by diet interaction :

(αβγ)ijk = 0, i = 1, 2, 3; j = 1, 2; k = 1, 2

Since there are an equal number of observations in each cell of Table
4.1, the total variation in the responses can be partitioned into non-
overlapping parts (an orthogonal partition) representing main effects
and interactions and residual variation as shown in Figure 4.1. F -tests
can then be constructed for each hypothesis described above. More
details can be found in Everitt (2001).

4.3 Analysis using Stata

Assuming the data are in an ASCII file bp.raw, exactly as shown in
Table 4.1, i.e., 12 rows, the first containing the observations 170 186
180 173 189 202, they can be read into Stata by producing a dictionary
file bp.dct containing the following statements:

dictionary using bp.raw {
_column(6) int bp11
_column(14) int bp12
_column(22) int bp13
_column(30) int bp01
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Source SS df MS=SS
df

Model MSS abc−1 MMS (between cells)
A SSA a−1 MSA

B SSB b−1 MSB

C SSC c−1 MSC

AB SSAB (a−1)(b−1) MSAB

AC SSAC (a−1)(c−1) MSAC

BC SSBC (b−1)(c−1) MSBC

ABC SSABC (a−1)(b−1)(c−1) MSABC

Error SSE abc(n−1) MSE (within cells)
(Residual) (RSS) (RMS)
Total TSS abcn−1

Figure 4.1: ANOVA table for three-way factorial design with factors A,
B, and C having a, b, and c levels, respectively and with n observations
per cell

_column(38) int bp02
_column(46) int bp03

}

and using the following command

infile using bp, clear

Note that it was not necessary to define a dictionary here since the
same result could have been achieved using a simple infile varlist
command (see exercises). Here the variable names end on two digits,
the first standing for the levels of biofeedback (1: present, 0: absent),
and the second for the levels of drug (1,2,3 for X,Y,Z). The final dataset
should have a single variable, bp, that contains all the blood pressures,
and three additional variables, drug, biofeed, and diet, representing
the corresponding levels of drug, biofeedback, and diet.

First, create diet which should take on one value for the first six
rows and another for the following rows. This is achieved using the
commands

generate diet = 0 if _n <= 6
replace diet = 1 if _n > 6

or, more concisely, using

generate diet = (_n > 6)

Now use the reshape long command to stack the columns on top of
each other. If we specify bp0 and bp1 as the variable names in the
reshape command, then bp01, bp02, and bp03 are stacked into one
column with variable name bp0 (and similarly for bp1) and another
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variable is created that contains the suffixes 1, 2, and 3. We ask for this
latter variable to be called drug using the option j(drug) as follows:

generate id = _n
reshape long bp0 bp1, i(id) j(drug)
list in 1/9

(see Display 4.1). Here, id was generated because we needed to specify
the row indicator in the i() option.

id drug bp1 bp0 diet

1. 1 1 170 173 0
2. 1 2 186 189 0
3. 1 3 180 202 0
4. 2 1 175 194 0
5. 2 2 194 194 0

6. 2 3 187 228 0
7. 3 1 165 197 0
8. 3 2 201 217 0
9. 3 3 199 190 0

Display 4.1

We now run the reshape long command again to stack up the
columns bp0 and bp1 and generate the variable biofeed. The instruc-
tions to achieve this and to label all the variables are given below.

replace id = _n
reshape long bp, i(id) j(biofeed)
replace id = _n

label define d 0 "absent" 1 "present"
label values diet d
label values biofeed d
label define dr 1 "Drug X" 2 "Drug Y" 3 "Drug Z"
label values drug dr

To begin, it will be helpful to look at some summary statistics for
each of the cells of the design. A simple way of obtaining the required
summary measures is to use the table command.

table drug, contents(freq mean bp median bp sd bp) ///
by(diet biofeed)
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diet,
biofeed
and drug Freq. mean(bp) med(bp) sd(bp)

absent
absent

Drug X 6 188 192 10.86278
Drug Y 6 200 197 10.07968
Drug Z 6 209 205 14.3527

absent
present

Drug X 6 168 167.5 8.602325
Drug Y 6 204 205 12.68069
Drug Z 6 189 190.5 12.61745

present
absent

Drug X 6 173 172 9.797959
Drug Y 6 187 188 14.01428
Drug Z 6 182 179 17.1114

present
present

Drug X 6 169 167 14.81891
Drug Y 6 172 170 10.93618
Drug Z 6 173 176.5 11.6619

Display 4.2
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The standard deviations in Display 4.2 indicate that there are con-
siderable differences in the within cell variability. This may have impli-
cations for the analysis of variance of these data: one of the assumptions
made is that the observations within each cell have the same population
variance. To begin, however, we will fit the model specified in Section
3.2 to the raw data using the anova command.

anova bp drug diet biofeed diet*drug diet*biofeed ///
drug*biofeed drug*diet*biofeed

The resulting ANOVA table is shown in Display 4.3.

Number of obs = 72 R-squared = 0.5840
Root MSE = 12.5167 Adj R-squared = 0.5077

Source Partial SS df MS F Prob > F

Model 13194 11 1199.45455 7.66 0.0000

drug 3675 2 1837.5 11.73 0.0001
diet 5202 1 5202 33.20 0.0000

biofeed 2048 1 2048 13.07 0.0006
diet*drug 903 2 451.5 2.88 0.0638

diet*biofeed 32 1 32 0.20 0.6529
drug*biofeed 259 2 129.5 0.83 0.4425

drug*diet*biofeed 1075 2 537.5 3.43 0.0388

Residual 9400 60 156.666667

Total 22594 71 318.225352

Display 4.3

The Root MSE is simply the square root of the residual mean square,
with R-squared and Adj R-squared being as described in Chapter 3.
The F -statistic of each effect represents the mean sum of squares for
that effect, divided by the residual mean square, given under the head-
ing MS. There are highly significant main effects of drug (F2,60 = 11.73,
p < 0.001), diet (F1,60 = 33.20, p < 0.001), and biofeed (F1,60 =
13.07, p < 0.001). The two-way interactions are not significant at the
5% level but the three-way interaction drug by diet by biofeed is
(F2,60 = 3.43, p = 0.04). The existence of a three-way interaction com-
plicates the interpretation of the other terms in the model; it implies
that the interaction between any two of the factors is different at the
different levels of the third factor. Perhaps the best way of trying to
understand the meaning of the three-way interaction is to plot a num-
ber of interaction diagrams; that is, plots of mean values for a factor
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Figure 4.2: Interaction diagrams showing the interaction between diet
and biofeedback for each level of drug.

at the different levels of the other factors.
This can be done by first creating a variable predbp containing

the predicted means (which in this case coincide with the observed
cell means because the model fitted is saturated, i.e., the number of
parameters is equal to the number of cell means) using the command

predict predbp

Plots of predbp against biofeed for each level of drug with separate
lines for diet can be obtained using the command

twoway (line predbp biofeed if diet==0, sort) ///
(line predbp biofeed if diet==1, lpat(dash) sort), ///
by(drug) xlabel(0 "no biofeed." 1 "biofeed.") ///
ylabel(170 190 210) xtitle(" ") ///
legend(order(1 "no diet" 2 "diet"))

The resulting interaction diagrams are shown in Figure 4.2. For drug
Y, the presence of biofeedback increases the effect of diet (the vertical
distance between the solid and dashed lines), whereas for drug Z the
effect of diet is hardly altered by the presence of biofeedback and for
drug X the effect is decreased.
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Tables of the cell means plotted in the interaction diagrams, as well
as the corresponding standard deviations, are produced for each drug
using the following command:

table diet biofeed, contents(mean bp sd bp) by(drug)

giving the output shown in Display 4.4.

drug and biofeed
diet absent present

Drug X
absent 188 168

10.86278 8.602325

present 173 169
9.797959 14.81891

Drug Y
absent 200 204

10.07968 12.68069

present 187 172
14.01428 10.93618

Drug Z
absent 209 189

14.3527 12.61745

present 182 173
17.1114 11.6619

Display 4.4

As mentioned previously, the observations in the 12 cells of the
3× 2× 2 design have variances that differ considerably. Consequently,
an analysis of variance of the data transformed in some way might
be worth considering. For example, to analyze the log transformed
observations, we can use the following commands:

generate lbp = log(bp)
anova lbp drug diet biofeed diet*drug diet*biofeed ///

drug*biofeed drug*diet*biofeed

The resulting analysis of variance table is shown in Display 4.5.
The results are similar to those for the untransformed blood pres-

sures. The three-way interaction is only marginally significant. If no
substantive explanation of this interaction is available, it might be bet-
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Number of obs = 72 R-squared = 0.5776
Root MSE = .068013 Adj R-squared = 0.5002

Source Partial SS df MS F Prob > F

Model .379534762 11 .03450316 7.46 0.0000

diet .149561559 1 .149561559 32.33 0.0000
drug .107061236 2 .053530618 11.57 0.0001

biofeed .061475507 1 .061475507 13.29 0.0006
diet*drug .024011594 2 .012005797 2.60 0.0830

diet*biofeed .000657678 1 .000657678 0.14 0.7075
drug*biofeed .006467873 2 .003233936 0.70 0.5010

diet*drug*biofeed .030299315 2 .015149657 3.28 0.0447

Residual .277545987 60 .004625766

Total .657080749 71 .009254658

Display 4.5

ter to interpret the results in terms of the very significant main effects.
The relevant summary statistics for the log transformed blood pressures
can be obtained using the following instructions:

table drug, contents(mean lbp sd lbp)

table diet, contents(mean lbp sd lbp)

table biofeed, contents(mean lbp sd lbp)

giving the tables in Displays 4.6 to 4.8.

drug mean(lbp) sd(lbp)

Drug X 5.159152 .075955
Drug Y 5.247087 .0903675
Drug Z 5.232984 .0998921

Display 4.6
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diet mean(lbp) sd(lbp)

absent 5.258651 .0915982
present 5.167498 .0781686

Display 4.7

biofeed mean(lbp) sd(lbp)

absent 5.242295 .0890136
present 5.183854 .0953618

Display 4.8

Drug X appears to produce lower blood pressures as does the special
diet and the presence of biofeedback. Readers are encouraged to try
other transformations.

Note that it is easy to estimate the model with main effects only
using regression with dummy variables. Since drug has three levels and
therefore requires two dummy variables, we save some time by using
the xi prefix as follows:

xi: regress lbp i.drug i.diet i.biofeed

leading to the results shown in Display 4.9. The coefficients represent
the mean differences between each level compared with the reference
level (the omitted categories: drug X, diet absent, and biofeedback
absent) when the other variables are held constant. The p-values are
equal to those of ANOVA with main effects only, except that no overall
p-value for drug is given. This can be obtained using

testparm _Idrug*

( 1) _Idrug_2 = 0
( 2) _Idrug_3 = 0

F( 2, 67) = 10.58
Prob > F = 0.0001

The F -statistic is different from that in the last anova command be-
cause no interactions were included in the model; hence the residual
degrees of freedom and the residual sum of squares have both increased.
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i.drug _Idrug_1-3 (naturally coded; _Idrug_1 omitted)
i.diet _Idiet_0-1 (naturally coded; _Idiet_0 omitted)
i.biofeed _Ibiofeed_0-1 (naturally coded; _Ibiofeed_0 omitted)

Source SS df MS Number of obs = 72
F( 4, 67) = 15.72

Model .318098302 4 .079524576 Prob > F = 0.0000
Residual .338982447 67 .00505944 R-squared = 0.4841

Adj R-squared = 0.4533
Total .657080749 71 .009254658 Root MSE = .07113

lbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Idrug_2 .0879354 .0205334 4.28 0.000 .0469506 .1289203
_Idrug_3 .0738315 .0205334 3.60 0.001 .0328467 .1148163
_Idiet_1 -.0911536 .0167654 -5.44 0.000 -.1246175 -.0576896

_Ibiofeed_1 -.0584406 .0167654 -3.49 0.001 -.0919046 -.0249767
_cons 5.233949 .0187443 279.23 0.000 5.196535 5.271363

Display 4.9

4.4 Exercises

4.1 • Treating hypertension

1. Reproduce the result of the command infile using bp with-
out using the dictionary, and follow the reshape instructions
to generate the required dataset.

2. Produce three diagrams with boxplots of blood pressure: (1)
for each level of drug, (2) for each level of diet, and (3) for
each level of biofeedback.

3. Investigate other possible transformations of the response vari-
able and compare the resulting analyses of variance with those
given in the text.

4. Suppose that in addition to the blood pressure of each of the
individuals in the study, the investigator had also recorded
their ages in the file age.dat as shown in Table 4.2 (but with
data on one person per row). Reanalyze the data using age
as a covariate (see help merge and help anova).

4.2 Auto pollution filter noise

The data used here are from Lewin and Shakun (1976) and the
Data and Story Library (lib.stat.cmu.edu/DASL). They were
originally used as part of a statement by Texaco to the Air and
Water Pollution Subcommittee of the Senate Public Works Com-
mittee on June 26, 1973. Mr. John McKinley, President of Tex-
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Table 4.2 Data in
age.dat

id age id age
1 39 37 45
2 39 38 58
3 61 39 61
4 50 40 47
5 51 41 67
6 43 42 49
7 59 43 54
8 50 44 48
9 47 45 46
10 60 46 67
11 77 47 56
12 57 48 54
13 62 49 66
14 44 50 43
15 63 51 47
16 77 52 35
17 56 53 50
18 62 54 60
19 44 55 73
20 61 56 46
21 66 57 59
22 52 58 65
23 53 59 49
24 54 60 52
25 40 61 40
26 62 62 80
27 68 63 46
28 63 64 63
29 47 65 56
30 70 66 58
31 57 67 53
32 51 68 56
33 70 69 64
34 57 70 57
35 64 71 60
36 66 72 48
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aco, cited an automobile filter developed by Associated Octel
Company as effective in reducing pollution. However, questions
had been raised about the effects of filters on vehicle performance,
fuel consumption, exhaust gas back pressure, and silencing. On
the last question, he referred to the data included here as ev-
idence that the silencing properties of the Octel filter were at
least equal to those of standard silencers.

The variables in filters.dta are:

� noise: noise level (in decibels)
� size: vehicle size (1=small, 2=medium, 3=large)
� type: type of filter (1=standard silencer, 2:=Octel filter)
� side: side of car (1=right side, 2=left side)

1. Produce tables of means and standard deviations of noise by
type and size.

2. Fit a two-way ANOVA model with noise as response variable
and type and size as factors.

3. Produce appropriate interaction diagrams and use them to
interpret the results of the two-way ANOVA model.

4. Now fit a three-way ANOVA model with size, type, and
side as factors.

5. Produce appropriate interaction diagrams and use them to
interpret the results of the three-way ANOVA model.

4.3 Efficiency of cycling

Kapor (1981) investigated the effect of knee-joint angle on the
efficiency of cycling. Efficiency was measured in terms of distance
pedalled on an ergocycle until exhaustion. The experimenter
selected three knee-joint angles of particular interest: 50, 70, and
90 degrees. Thirty subjects were available for the experiment
and 10 subjects were randomly allocated to each angle. The
drag of the ergocycle was kept constant at 14.7N, and subjects
were instructed to pedal at a constant speed of 20km/h.

The variables in cycling.dta are:

� id: subject identifier
� group: knee angle group (1=50 degrees, 2=70 degrees, 3=90

degrees)
� km: distance pedalled (in km)

1. Carry out an initial graphical inspection of the data to assess
whether there are any aspects of the observations that might
be a cause for concern in later analyses.
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2. Derive the appropriate analysis of variance table for the data.
3. Investigate differences in means between the three angle pop-

ulations in more detail using a suitable multiple comparison
test (Hint: see help oneway).

4.4 Maternal behavior in rats

Here we consider data collected to study the maternal behavior
of laboratory rats (Everitt, 2001). The response variable was the
time (in seconds) required for the mother to retrieve the pup to
the nest, after being moved a fixed distance away. In the study,
three independent groups of pups of different ages (5 days, 20
days, and 35 days) were used.

The variables in maternal.dta are:

� mother: rat mother identifier
� age: age of pup (1=5 days, 2=20 days, 3=35 days)
� time: time to retrieve the pup (in seconds)

1. Produce a table of means and standard deviations of time by
age.

2. Carry out a one way analysis of variance of the data.
3. Use an orthogonal polynomial approach to investigate whether

there is any evidence of a linear or quadratic trend in the
group means. If the model is

yij = µ + αi + εij,

the linear contrast is α3 − α1 and the quadratic contrast is
α2−(α1 +α3)/2. Use the anova command, followed by test,
showorder to find out the order of the columns in the design
matrix. Then define a one-row matrix for each contrast with
elements equal to the required contrast coefficients. Use the
command test with the mat option to test the null hypothe-
ses that the contrasts are zero (i.e., no linear trend and no
quadratic trend, respectively).





Chapter 5

Analysis of Variance II:

Effectiveness of Slimming

Clinics

5.1 Description of data

Slimming clinics aim to help people lose weight by offering encourage-
ment and support about dieting through regular meetings. A study
was carried out to assess their effectiveness. Half of the clients par-
ticipating in the study were randomly selected to receive a technical
manual containing slimming advice based on psychological behaviorist
theory to investigate if this would help them to control their diet. Some
of the clients had previously tried to slim whereas others were novices.
The data collected are shown in Table 5.1. (They are also given in
Hand et al., 1994.) The response variable resp was defined as follows:

weight after three months of treatment − ideal weight
initial weight − ideal weight

(5.1)

The design can be thought of as a 2×2 factorial design where manual
(1: received a manual, 2: did not) is crossed with exper (1: previous
slimming experience, 2: novice). The number of observations in each
cell of the design is not the same, so this is an example of an unbalanced
2×2 design.

101
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Table 5.1 Data in slim.dat

exper manual resp exper manual resp

1 1 −14.67 1 1 −1.85
1 1 −8.55 1 1 −23.03
1 1 11.61 1 2 0.81
1 2 2.38 1 2 2.74
1 2 3.36 1 2 2.10
1 2 −0.83 1 2 −3.05
1 2 −5.98 1 2 −3.64
1 2 −7.38 1 2 −3.60
1 2 −0.94 2 1 −3.39
2 1 −4.00 2 1 −2.31
2 1 −3.60 2 1 −7.69
2 1 −13.92 2 1 −7.64
2 1 −7.59 2 1 −1.62
2 1 −12.21 2 1 −8.85
2 2 5.84 2 2 1.71
2 2 −4.10 2 2 −5.19
2 2 0.00 2 2 −2.80

5.2 Analysis of variance model

A suitable analysis of variance model for the data is

yijk = µ + αi + βj + γij + εijk (5.2)

where yijk represents the weight change of the kth individual having
experience status j and manual condition i, µ is the overall mean, αi

represents the effect of manual condition i, βj the effect of experience
status j, γij the experience × manual interaction, and εijk the errors.
The errors are assumed to have a normal distribution with mean zero
and variance σ2.

The unbalanced nature of the slimming data presents some difficul-
ties for analysis not encountered in factorial designs having the same
number of observations in each cell (see the previous chapter). If the
data were balanced, the among cells sum of squares would partition
orthogonally into three component sums of squares representing the
two main effects and their interaction. However, with unbalanced data
there is no unique way of finding a “sum of squares” corresponding
to each main effect and their interactions, because these effects are
no longer independent of one another. Several methods have been
proposed for dealing with this problem and each leads to a different
partition of the overall sum of squares. The different methods for ar-
riving at the sums of squares for unbalanced designs can be explained
in terms of the comparisons of different sets of specific models. For a
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design with two factors A and B, Stata can calculate sequential sums of
squares or unique sums of squares as described in the next subsections.

5.2.1 Sequential sums of squares

Sequential sums of squares (also known as hierarchical sums of squares)
represent the effect of adding a term to an existing model. So, for
example, a set of sequential sums of squares such as

Source SS
A SS(A)
B SS(B|A)
AB SS(AB|A,B)

represent a comparison of the following models:

� SS(AB|A,B)—model including an interaction and main effects
compared with one including only main effects.

� SS(B|A)—model including both main effects, but with no in-
teraction, compared with one including only the main effects of
factor A.

� SS(A)—model containing only the main effect of A compared
with one containing only the overall mean.

The use of these sums of squares in a series of tables in which the
effects are considered in different orders (see later) will often provide
the most satisfactory way of deciding which model is most appropriate
for the observations. (These are SAS Type I sums of squares—see Der
and Everitt, 2002.)

5.2.2 Unique sums of squares

By default, Stata produces unique sums of squares that represent the
contribution of each term to a model including all the other terms. So,
for a two-factor design, the sums of squares represent the following.

Source SS
A SS(A|B,AB)
B SS(B|A,AB)
AB SS(AB|A,B)

(These are SAS Type III sums of squares.) Note that these sums of
squares generally do not add up to the model sums of squares.
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5.2.3 Regression

As we have shown in Chapter 4, ANOVA models may also be estimated
using regression by defining suitable dummy variables. Assume that A
is represented by a single dummy variable. The regression coefficient
for A represents the partial contribution of that variable, adjusted for
all other variables in the model, say B. This is equivalent to the con-
tribution of A to a model already including B. A complication with
regression models is that, in the presence of an interaction, the p-values
of the terms depend on the exact coding of the dummy variables (see
Aitkin, 1978). The unique sums of squares correspond to regression
where dummy variables are coded in a particular way, for example a
two-level factor can be coded as −1, 1.

There have been numerous discussions over which sums of squares
are most appropriate for the analysis of unbalanced designs. The Stata
manual appears to recommend its default for general use. Nelder (1977)
and Aitkin (1978), however, are strongly critical of “correcting” main
effects for an interaction term involving the same factor; their criticisms
are based on both theoretical and pragmatic arguments and seem com-
pelling. A frequently used approach is therefore to test the highest
order interaction adjusting for all lower order interactions and not vice
versa. Both Nelder and Aitkin prefer the use of Type I sums of squares
in association with different orders of effects as the procedure most
likely to identify an appropriate model for a data set. For a detailed
explanation of the various types of sums of squares, see Boniface (1995).

5.3 Analysis using Stata

The data can be read in from an ASCII file slim.dat in the usual way
using

infile manual exper resp using slim.dat

A table showing the unbalanced nature of the 2×2 design can be
obtained from

tabulate manual exper
exper

manual 1 2 Total

1 5 12 17
2 11 6 17

Total 16 18 34

We now use the anova command with no options specified to obtain
the unique (Type III) sums of squares:
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anova resp manual exper manual*exper

(see Display 5.1).

Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Partial SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

manual 2.19850409 1 2.19850409 0.06 0.8064
exper 265.871053 1 265.871053 7.39 0.0108

manual*exper .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.1

Our recommendation is that the sums of squares shown in this table
are not used to draw inferences because the main effects have been
adjusted for the interaction.

Instead we prefer an analysis that consists of obtaining two sets
of sequential sums of squares, the first using the order manual exper
manual*exper and the second the order exper manual manual*exper.
The necessary instructions are

anova resp manual exper manual*exper, sequential

(see Display 5.2).

anova resp exper manual manual*exper, sequential

(see Display 5.3). The sums of squares corresponding to model and
residuals are, of course, the same in both tables, as is the sum of squares
for the interaction term. What differ are the sums of squares in the
manual and exper rows in the two tables. The terms of most interest
are the sum of squares of exper|manual which is obtained from the
table as 265.91, and the sum of squares of manual|exper which is 2.13.
These sums of squares are less than the sums of squares for exper
and manual alone (284.97 and 21.19, respectively), by an amount of
19.06, a portion of the model sums of squares which cannot be uniquely
attributed to either of the variables. The associated F -tests in the
two tables make it clear that there is no interaction effect and that
exper|manual is significant but manual|exper is not. The conclusion is
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Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Seq. SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

manual 21.1878098 1 21.1878098 0.59 0.4487
exper 265.913733 1 265.913733 7.39 0.0108

manual*exper .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.2

Number of obs = 34 R-squared = 0.2103
Root MSE = 5.9968 Adj R-squared = 0.1313

Source Seq. SS df MS F Prob > F

Model 287.231861 3 95.7439537 2.66 0.0659

exper 284.971071 1 284.971071 7.92 0.0085
manual 2.13047169 1 2.13047169 0.06 0.8094

manual*exper .130318264 1 .130318264 0.00 0.9524

Residual 1078.84812 30 35.961604

Total 1366.07998 33 41.3963631

Display 5.3

that only exper, i.e., whether the woman had been slimming for over
one year, is important in determining weight change. Provision of the
manual appears to have no discernible effect. Figure 5.1 illustrates the
two ways of partitioning the model sums of squares into components
due to exper (large circle) and manual (small circle), depending on the
order in which the main effects are entered.

Results equivalent to the unique (Type III) sums of squares can be
obtained using regression:

generate manual1 = manual
recode manual1 1=-1 2=1
generate exper1 = exper
recode exper1 1=-1 2=1
generate exp_man = manual1*exper1
regress res manual1 exper1 exp_man
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Figure 5.1: Venn diagrams showing sequential sums of squares for
weight loss data. The large circle represents exper and the small circle
manual. In the left panel manual enters the model first, and in the
right panel exper enters the model first.

(see Display 5.4). The p-values agree with those based on unique sums

Source SS df MS Number of obs = 34
F( 3, 30) = 2.66

Model 287.231861 3 95.7439537 Prob > F = 0.0659
Residual 1078.84812 30 35.961604 R-squared = 0.2103

Adj R-squared = 0.1313
Total 1366.07998 33 41.3963631 Root MSE = 5.9968

resp Coef. Std. Err. t P>|t| [95% Conf. Interval]

manual1 .2726251 1.102609 0.25 0.806 -1.979204 2.524454
exper1 2.998042 1.102609 2.72 0.011 .746213 5.24987
exp_man -.066375 1.102609 -0.06 0.952 -2.318204 2.185454

_cons -3.960958 1.102609 -3.59 0.001 -6.212787 -1.70913

Display 5.4

of squares. However, these results differ from the regression used by
Stata’s anova with the option regress:

anova resp manual exper manual*exper, regress
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Source SS df MS Number of obs = 34
F( 3, 30) = 2.66

Model 287.231861 3 95.7439537 Prob > F = 0.0659
Residual 1078.84812 30 35.961604 R-squared = 0.2103

Adj R-squared = 0.1313
Total 1366.07998 33 41.3963631 Root MSE = 5.9968

resp Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons -.7566666 2.448183 -0.31 0.759 -5.756524 4.24319
manual

1 -.4125001 2.9984 -0.14 0.891 -6.536049 5.711049
2 (dropped)

exper
1 -5.863333 3.043491 -1.93 0.064 -12.07897 .3523044
2 (dropped)

manual*exper
1 1 -.2655002 4.410437 -0.06 0.952 -9.272815 8.741815
1 2 (dropped)
2 1 (dropped)
2 2 (dropped)

Display 5.5

(see Display 5.5) because this uses different dummy variables, coded
as 1 for the levels shown on the left of the reported coefficient and 0
otherwise, i.e., the dummy variable for manual*exper is 1 when exper
and manual are both 1.

A table of mean values helpful in interpreting these results can be
found using

table manual exper, content(mean resp) row col f(%8.2f)

exper
manual 1 2 Total

1 -7.30 -1.17 -2.97
2 -6.62 -0.76 -4.55

Total -6.83 -1.03 -3.76

The means demonstrate that experienced slimmers achieve the great-
est weight reduction.

5.4 Exercises

5.1 • Effectiveness of slimming clinics
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1. Investigate what happens to the sequential sums of squares if
the manual*exper interaction term is given before the main
effects manual and exper in the anova command with the
sequential option.

2. Use regress to reproduce the analysis of variance by coding
both manual and exper as (0,1) dummy variables and creat-
ing an interaction variable as the product of these dummy
variables.

3. Use regress in conjunction with xi: to fit the same model
without the need to generate any dummy variables.

4. Reproduce the results of anova resp manual exper manual
*exper, regress using regress by making xi: omit the
last category instead of the first (see help xi, under “Sum-
mary of controlling the omitted dummy”).

See also the Exercises in Chapters 7 and 13.

5.2 Systolic blood pressure

Boniface (1995) provides data from Maxwell and Delaney (1990)
on systolic blood pressure of individuals, classified according to
their smoking status and family history of circulation and heart
problems.

The variables in the dataset systolic.dta are:

� history: family history (0=no, 1=yes)
� smoking: smoking status

(1=non-smoker, 2=ex-smoker, 3=current smoker)
� systolic: systolic blood pressure

1. Carry out an analysis of variance of the data, retaining the
interaction only if it is significant at the 5% level.

2. Produce an appropriate graph for interpreting the analysis of
variance results and state your conclusions.

3. Examine the residuals from fitting what you consider the most
suitable model for the data, and use various plots to assess
the assumptions of the analyses you have performed (see help
anova postestimation).

5.3 Role-taking in young children

Klemchuck et al. (1990) studied role-taking in children. In their
study, children between the ages of 2 and 5 years were adminis-
tered a battery of role-taking tasks. Participants were classified
into a group who had had no previous daycare experience and a
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group who had extensive daycare experience. Children were also
sorted into two age groups (2 to 3 years and 4 to 5 years). The in-
vestigators’ hypothesis was that children with daycare experience
would perform better on role-takings tasks than would children
without daycare experience because of the former group’s greater
opportunity for social development. There was also interest in
the effect of age and the possible interaction of age with day-
care group. The dependent variable was a role-taking score with
higher values representing better performance.

The variables in role.dta are:

� id: child identifier
� daycare: dummy variable for having had previous experience

of daycare
� age: age group (0=2 to 3 years, 1=4 to 5 years)
� role: score for performance on role-playing tasks

1. Generate a variable equal to the mean of role for each child’s
age and daycare group and produce line graphs of these means
versus age with separate lines for the daycare and no daycare
groups.

2. Fit a two-way ANOVA model to the data. Simplify the model
as much as possible using a 5% significance level.

3. For the chosen model, plot a line graph of the model-implied
means (analogous to question 1). Also add the corresponding
sample means represented by dots.



Chapter 6

Logistic Regression:

Treatment of Lung Cancer

and Diagnosis of Heart

Attacks

6.1 Description of data

Two datasets will be analyzed in this chapter. The first dataset shown
in Table 6.1 originates from a clinical trial in which lung cancer pa-
tients were randomized to receive two different kinds of chemotherapy
(sequential therapy and alternating therapy). The outcome was classi-
fied into one of four categories: progressive disease, no change, partial
remission, or complete remission. The data were published in Holt-
brugge and Schumacher (1991) and also appear in Hand et al. (1994).
The central question is whether there is any evidence of a difference in
the outcomes achieved by the two types of therapy.

Table 6.1 Lung cancer data in tumor.dat

Progressive No Partial Complete
Therapy Sex disease change remission remission
Sequential Male 28 45 29 26

Female 4 12 5 2
Alternating Male 41 44 20 20

Female 12 7 3 1

111
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Table 6.2 Data in sck.dat

Maximum Infarct Infarct
CK level present absent
0 – 39 2 88

40 – 79 13 26
80 – 119 30 8

120 – 159 30 5
160 – 199 21 0
200 – 239 19 1
240 – 279 18 1
280 – 319 13 1
320 – 359 19 0
360 – 399 15 0
400 – 439 7 0
440 – 479 8 0
480 – 35 0

The second dataset to be used in this chapter arises from a study
investigating the use of serum creatine kinase (CK) levels for the diag-
nosis of myocardial infarction (heart attack). Patients admitted to a
coronary care unit because they were suspected of having had a myocar-
dial infarction within the last 48 hours had their CK levels measured on
admission and the next two mornings. A clinician who was “blind” to
the CK results came to an independent “gold standard” diagnosis using
electrocardiograms, clinical records, and autopsy reports. The maxi-
mum CK levels for 360 patients are given in Table 6.2 together with the
clinician’s diagnosis. The table was taken from Sackett et al. (1991)
(with permission of the publisher, Little Brown & Company), where
only the ranges of CK levels were given, not their precise values.

The main questions of interest for this second dataset are how well
CK discriminates between those with and without myocardial infarc-
tion, and how diagnostic tests perform that are based on applying dif-
ferent thresholds to CK.

6.2 The logistic regression model

6.2.1 Binary responses

Dichotomous or binary responses arise when the outcome is presence or
absence of a characteristic or event, for example myocardial infarction
in the second dataset. What we would like to do is to investigate the
effects of a number of explanatory variables on this binary response
variable. This appears to be the same aim as for multiple regression
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discussed in Chapter 3, where the model for a response yi and explana-
tory variables x1i to xpi can be written as

µi ≡ E(yi|xi) = β0 + β1x1i + · · · + βpxpi (6.1)

yi ∼ N(µi, σ
2)

Binary responses are typically coded 1 for the event of interest, such as
infarct present, and 0 for the opposite event. In this case the expected
value is simply the probability πi that the event of interest occurs.
This raises the first problem for applying the model above to a binary
response variable, namely that
1. the predicted probability must satisfy 0 ≤ πi ≤ 1 whereas the linear

model above can yield any value from minus infinity to plus infinity.
A second problem with using linear regression is that
2. the observed values of yi do not follow a normal distribution with

mean πi, but rather a Bernoulli (or Binomial(1,πi)) distribution.
Consequently a new approach is needed, and this is provided by logistic
regression.

In logistic regression, the first problem is addressed by replacing the
probability πi = E(yi|xi) on the left-hand side of equation (6.1) by the
logit of the probability, giving

logit(πi) = log(πi/(1 − πi)) = β0 + β1x1i + β2x2i + · · · + βpxpi. (6.2)

The logit of the probability is simply the log of the odds of the event
of interest. Writing β and xi for the column vectors (β0, β1, . . . , βp)′
and (1, x1i, . . . , xpi)′, respectively, the probability as a function of the
covariates is

πi =
exp(x′

iβ)
1 + exp(x′

iβ)
=

1
1 + exp(−x′

iβ)
. (6.3)

When the logit takes on any real value, this probability always satisfies
0 ≤ πi ≤ 1. This is illustrated for a single covariate in Figure 6.1
where the logistic function is shown along with a linear function. For
π between 0.2 and 0.8, both functions are similar, but as π approaches
0 and 1, the logistic function curve flattens, producing an “S” shape.

The second problem relates to the estimation procedure. Whereas
maximum likelihood estimation in conventional linear regression leads
to least squares, this is not the case in logistic regression. In logistic
regression the log likelihood is maximized numerically using an itera-
tive algorithm. For full details of logistic regression, see for example
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Figure 6.1: Linear and logistic functions of x.

Collett (2002), Agresti (1996), and Long and Freese (2006). (The last
reference provides a comprehensive discussion of regression models for
categorical variables using Stata.)

6.2.2 Ordinal responses

Logistic regression can be generalized to the situation where the re-
sponse variable has more than two ordered response categories. In the
latent response formulation, we think of the ordered categories as rep-
resenting successive intervals of an underlying latent (unobserved) con-
tinuous response. If there are S response categories labeled a1, . . . , aS,
the relationship between the observed and latent response can be for-
mulated as a threshold model:

yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1 if y∗

i ≤ κ1

a2 if κ1 <y∗
i ≤ κ2

...
...

...
aS if κS−1 <y∗

i ,
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where κs, s = 1, . . . , S − 1 are threshold or cut-point parameters. The
latent response is modeled as a linear regression

y∗
i = x′

iβ + εi,

where εi has a logistic distribution,

Pr(εi ≤ t) =
exp(t)

1 + exp(t)
, Pr(εi > t) =

exp(−t)
1 + exp(−t)

.

The latent response and threshold model imply a logistic model for
the cumulative probabilities. The cumulative probability γis that the
response yi takes on a value greater than as becomes

γis ≡ Pr(yi > as) = Pr(y∗
i > κs) = Pr(y∗

i − x′
iβ︸ ︷︷ ︸

εi

> κs − x′
iβ)

=
exp(x′

iβ − κs)
1 + exp(x′

iβ − κs)
, s = 1, . . . , S − 1. (6.4)

It is clear from this expression that we could not simultaneously
estimate the constant β0 in the model for y∗

i and all threshold parame-
ters since we could increase the constant and all thresholds by the same
amount without changing the model. In Stata the constant is therefore
set to zero for identification.

The model is also called the proportional odds model because the
log odds that yi > as are

log
(

γis

1 − γis

)
= x′

iβ − κs (6.5)

so that the log odds ratio for two units i and j is (xi − xj)′β which
is independent of s. Therefore, exp(βk) represents the odds ratio that
y > as for any s when xk increases by one unit if all other covariates
remain the same.

In binary logistic regression for dichotomous responses, a1 = 0, a2 =
1, κ1 = 0, and exp(βk) is the odds ratio that y = 1 when xk increases
by one unit and all other covariates remain the same. Note that a
different identifying restriction is used than for ordinal responses: the
threshold κ1 is set to zero instead of the constant β0 in the model for
y∗

i .
The probit and ordinal probit models correspond to logistic and or-

dinal logistic regression models with the cumulative distribution func-
tion in (6.4) replaced by the standard normal cumulative distribution
function. More information on models for ordinal data can be found in
Agresti (1996) and Long and Freese (2006).
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6.3 Analysis using Stata

6.3.1 Chemotherapy treatment of lung cancer

The ASCII file tumor.dat contains the four by four matrix of frequen-
cies shown in Table 6.1. First we read the data and generate variables
for therapy and sex using the egen function seq():

infile fr1 fr2 fr3 fr4 using tumor.dat
egen therapy = seq(), from(0) to(1) block(2)
egen sex = seq(), from(1) to(2) by(therapy)
label define t 0 seq 1 alt
label values therapy t
label define s 1 male 2 female
label values sex s

block(2) causes the number in the sequence (from 0 to 1) to be re-
peated in blocks of two, whereas by(therapy) causes the sequence to
start from the lower limit every time the value of therapy changes.

We next reshape the data to long, placing the four levels of the
outcome, represented by f1 to f4 into a variable outc,

reshape long fr, i(therapy sex) j(outc)

and expand the dataset by replicating each observation freq times so
that we have one observation per subject

expand fr

We can check that the data conversion is correct by tabulating these
data as in Table 6.1:

table sex outc, contents(freq) by(therapy)

giving the table in Display 6.1.

therapy outc
and sex 1 2 3 4

seq
male 28 45 29 26

female 4 12 5 2

alt
male 41 44 20 20

female 12 7 3 1

Display 6.1
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To use ordinary (binary) logistic regression, we must dichotomize
the outcome, for example, by considering partial and complete remis-
sion to be an improvement and the other categories to be no improve-
ment. The new outcome variable can be generated as follows:

recode outc 1/2=0 3/4=1, generate(improve)

or using

generate improve = outc>2

The command logit for logistic regression behaves the same way as
regress and all other estimation commands. For example, automatic
selection procedures can be carried out using the stepwise prefix and
post-estimation commands such as testparm and predict are avail-
able. First, include therapy as the only explanatory variable:

logit improve therapy

(see Display 6.2). The algorithm takes two iterations to converge. The

Iteration 0: log likelihood = -194.40888
Iteration 1: log likelihood = -192.30753
Iteration 2: log likelihood = -192.30471

Logistic regression Number of obs = 299
LR chi2(1) = 4.21
Prob > chi2 = 0.0402

Log likelihood = -192.30471 Pseudo R2 = 0.0108

improve Coef. Std. Err. z P>|z| [95% Conf. Interval]

therapy -.4986993 .2443508 -2.04 0.041 -.977618 -.0197805
_cons -.361502 .1654236 -2.19 0.029 -.6857263 -.0372777

Display 6.2

coefficient of therapy represents the difference in the log odds (of an
improvement) between the alternating and sequential therapies. The
negative value indicates that sequential therapy is superior to alter-
nating therapy. The p-value of the coefficient is 0.041 in the table.
This was derived from the z statistic, which is given by the coeffi-
cient divided by its asymptotic standard error (Std. Err.). Under
the null hypothesis that the true coefficient is zero, the statistic has a
standard normal distribution, and its square, the Wald statistic, has
a χ2-distribution with one degree of freedom. This p-value from this
Wald test is less reliable than the p-value based on the likelihood ratio
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between the model including only the constant and the current model.
Under the null hypothesis that the constant-only model is correct, mi-
nus twice the likelihood ratio has an approximate χ2-distribution with
one degree of freedom (because there is one additional parameter in the
competing model). Here the likelihood ratio statistic is equal to 4.21
giving a p-value of 0.0402, very similar to that based on the Wald test.

The coefficient of therapy represents the difference in log odds be-
tween the therapies and is not easy to interpret apart from the sign.
Exponentiating the coefficient gives the odds ratio and exponentiating
the 95% confidence limits gives the confidence interval for the odds
ratio. Fortunately, the or option can be used to obtain the required
odds ratio and its confidence interval directly (alternatively, we could
use the logistic command):

logit improve therapy, or

(see Display 6.3). The standard error now represents the approximate

Logistic regression Number of obs = 299
LR chi2(1) = 4.21
Prob > chi2 = 0.0402

Log likelihood = -192.30471 Pseudo R2 = 0.0108

improve Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

therapy .6073201 .1483991 -2.04 0.041 .3762061 .9804138

Display 6.3

standard error of the odds ratio (calculated using the delta method, see,
e.g., Agresti, 2002). Since the sampling distribution of the odds ratio is
not well approximated by a normal distribution, the Wald statistic and
confidence interval are derived using the log odds and its standard error.
Alternating therapy is associated with a 100(1 − 0.6073201)% = 39%
reduction in the odds of an improvement compared with sequential
therapy (95% confidence interval from 2% to 62%).

To test whether the inclusion of sex in the model significantly in-
creases the likelihood, the current likelihood (and all the estimates) can
be saved using

estimates store model1

Including sex

logit improve therapy sex, or
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gives the output shown in Display 6.4. The p-value of sex based on

Logistic regression Number of obs = 299
LR chi2(2) = 7.55
Prob > chi2 = 0.0229

Log likelihood = -190.63171 Pseudo R2 = 0.0194

improve Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

therapy .6051969 .1486907 -2.04 0.041 .3739084 .9795537
sex .5197993 .1930918 -1.76 0.078 .2509785 1.076551

Display 6.4

the Wald-statistic is 0.078, and a p-value for the likelihood-ratio test is
obtained using lrtest

lrtest model1 .

likelihood-ratio test LR chi2(1) = 3.35
(Assumption: model1 nested in .) Prob > chi2 = 0.0674

which is not very different from the value of 0.078. In the lrtest
command “.” refers to the current model and model1 is the model ex-
cluding sex which was previously stored using estimates store. We
could have specified the models in the reverse order as Stata assumes
that the model with the lower log likelihood is nested within the other
model. Note that it is essential that both models compared in the
likelihood ratio test be based on the same sample. If sex had missing
values, fewer observations would contribute to the model including sex
than to the nested model excluding sex. In this case, we would have
to restrict estimation of the nested model to the “estimation sample”
of the full model. If the full model has been estimated first, this can
be achieved using logistic improve therapy if e(sample).

Retaining the variable sex in the model (although it is not signifi-
cant at the 5% level), the predicted probabilities can be obtained using
predict with the pr option

predict prob, pr

and the four different predicted probabilities may be compared with
the observed proportions as follows:

table sex, contents(mean prob mean improve freq) ///
by(therapy)
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therapy
and sex mean(prob) mean(improve) Freq.

seq
male .4332747 .4296875 128

female .2843846 .3043478 23

alt
male .3163268 .32 125

female .1938763 .173913 23

Display 6.5

(see Display 6.5). The agreement is good, so there appears to be no
strong interaction between sex and type of therapy. (We could test
for an interaction between sex and therapy by using xi: logistic
improve i.therapy*i.sex.) A more formal assessment of the good-
ness of fit can be obtained using the command

estat gof, table

which produces the output shown in Display 6.6. There are four unique
covariate patterns given by the combinations of therapy and sex. The
individuals sharing a given covariate pattern are referred to as groups;
the last two columns show the corresponding covariate values and the
second column gives the predicted probabilities. The observed num-
ber of cases in each group is given under Total and this is composed
of Obs 1 individuals with a response improve equal to 1 and Obs 2
individuals with a response equal to 0. The expected number of indi-
viduals with a 1 response, Exp 1, is obtained by multiplying the total
number of individuals in each group by the predicted probability for
the group. Finally, the expected number of individuals with a 0 re-
sponse is just Total - Exp 1. At the bottom of the output, observed
and expected frequencies are compared using Pearson chi-square test.
The null hypothesis that the model is correct cannot be rejected here
with a p-value of 0.73. Note that the test cannot detect if there are im-
portant omitted covariates because the table of observed and expected
frequencies is aggregated over any covariates not included in the model.

We now fit the proportional odds model using the full ordinal re-
sponse variable outc:

ologit outc therapy sex, or

The results are shown in Display 6.7. The odds ratios represent the
estimated effects of therapy and sex on the odds of being in “com-
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Logistic model for improve, goodness-of-fit test

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.1939 4 4.5 19 18.5 23
2 0.2844 7 6.5 16 16.5 23
3 0.3163 40 39.5 85 85.5 125
4 0.4333 55 55.5 73 72.5 128

Group Prob therapy sex

1 0.1939 alt female
2 0.2844 seq female
3 0.3163 alt male
4 0.4333 seq male

number of observations = 299
number of covariate patterns = 4

Pearson chi2(1) = 0.12
Prob > chi2 = 0.7310

Display 6.6

Ordered logistic regression Number of obs = 299
LR chi2(2) = 10.91
Prob > chi2 = 0.0043

Log likelihood = -394.52832 Pseudo R2 = 0.0136

outc Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

therapy .559515 .1186973 -2.74 0.006 .3691774 .8479853
sex .5819366 .1671185 -1.89 0.059 .3314596 1.021694

/cut1 -1.859437 .3828641 -2.609837 -1.109037
/cut2 -.2921603 .3672626 -1.011982 .4276611
/cut3 .758662 .3741486 .0253441 1.49198

Display 6.7
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plete remission” (category 4) versus being at best in “partial remis-
sion” (categories 1 to 3); or of being at least in “partial remission”
(categories 3 and 4) rather than having “progressive disease” or “no
change” (categories 1 and 2); or of “no change” or better (categories 2
to 4) versus “progressive disease” (category 1). The second interpreta-
tion corresponds to the dichotomization used to fit the binary logistic
regression model. Therefore the odds ratio estimates should be similar
to those using binary logistic regression shown in Display 6.4 and they
are. However, the p-values are lower in the ordinal logistic regression
as might be expected because information is lost in dichotomizing the
outcome.

We can use the estimates to calculate predicted probabilities. For
instance, the predicted probability that a male (sex=1) who is re-
ceiving sequential therapy (therapy=0) will be in complete remission
(outc=4) is γ̂3 (see equation (6.4)):

display .5819366*exp(-0.758662)/(1+.5819366*exp(-0.758662))
.21415563

However, a much quicker way of computing the predicted probabilities
for all four responses and all combinations of explanatory variables is
to use the predict command:

predict p1 p2 p3 p4

and to tabulate the results as follows:

table sex, contents(mean p1 mean p2 mean p3 mean p4) ///
by(therapy)

giving the table in Display 6.8.

therapy
and sex mean(p1) mean(p2) mean(p3) mean(p4)

seq
male .2111441 .3508438 .2238566 .2141556

female .3150425 .3729235 .175154 .1368799

alt
male .3235821 .3727556 .1713585 .1323038

female .4511651 .346427 .1209076 .0815003

Display 6.8
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6.3.2 Diagnosis of heart attacks

The data in sck.dat are read in using

infile ck pres abs using sck.dat, clear

Each observation represents all subjects with maximum creatine
kinase values in the same interval and the variable ck contains the
lower limits of the intervals. The total number of subjects is pres+abs,
calculated using

generate tot = pres + abs

and the number of subjects with the disease is pres. The probability of
pres “successes” in tot trials is binomial with “denominator” tot and
probability πi, Binomial(tot, πi). The programs logit and logistic
are for data where each observation represents a single Bernoulli trial,
with binomial “denominator” equal to 1, Binomial(1, πi). Another
command, blogit, can be used to analyze the “grouped” data with
“denominators” tot as considered here:

blogit pres tot ck

(see Display 6.9). There is a very significant association between CK

Logistic regression for grouped data Number of obs = 360
LR chi2(1) = 283.15
Prob > chi2 = 0.0000

Log likelihood = -93.886407 Pseudo R2 = 0.6013

_outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

ck .0351044 .0040812 8.60 0.000 .0271053 .0431035
_cons -2.326272 .2993611 -7.77 0.000 -2.913009 -1.739535

Display 6.9

and the probability of infarct. (Note that the same coefficient and p-
value would be obtained using the mid-point of each interval since all
intervals are 30 units wide.) We now investigate whether it is reasonable
to assume that the log odds depends linearly on CK. Therefore, we plot
the observed proportions and predicted probabilities as follows:

generate prop = pres/tot
predict pred, pr
label variable prop "observed"
label variable pred "predicted"
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twoway (line pred ck) (scatter prop ck), ///
ytitle("Probability") xtitle(CK)

The predict command gives predicted counts by default and there-
fore the pr option was used to obtain predicted probabilities instead.
In the resulting graph in Figure 6.2, the curve fits the data reasonably
well, the largest discrepancy being at CK=280. However, the curve for
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Figure 6.2: Probability of infarct as a function of creatine Kinase levels.

the predicted probabilities is not smooth. Using the plot-type mspline
instead of line produces a smooth curve, but a more faithful smooth
curve can be obtained using the graph twoway plot-type function
command as follows:

twoway (function y=1/(1+exp(-_b[_cons]-_b[ck]*x)), ///
range(0 480)) (scatter prop ck), ///

ytitle("Probability") xtitle(CK) ///
legend(order(1 "predicted" 2 "observed"))

Here we are using the regression coefficients b[ cons] and b[ck]
to calculate the predicted probability as a function of some hypo-
thetical variable x varying in the range from 0 to 480. This im-
proved graph is shown in Figure 6.3. Note that we could also use
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Figure 6.3: Smoother version of Figure 6.2.

the invlogit() function to calculate the inverse logit, i.e., function
y = invlogit( b[ cons]+ b[ck]*x).

We will now plot some residuals and then consider the performance
of CK as a diagnostic tool, defining the test as positive if CK exceeds a
certain threshold. In particular, we will consider the sensitivity (prob-
ability of a positive test result if the disease is present) and specificity
(probability of a negative test result if the disease is absent) for different
thresholds. There are some useful post-estimation commands available
for these purposes for use after the logit (or logistic) command that
are not available after blogit. We therefore transform the data into
the form required for logistic, i.e., one observation per Bernoulli trial
with outcome infct equal to 0 or 1 so that the number of ones per CK
level equals pres:

expand tot
by ck, sort: generate infct = (_n<=pres)

We can reproduce the results of blogit using logit:

logit infct ck

(see Display 6.10).
To judge if the discrepancy between the observed and expected pro-

portions is acceptable, we can use standardized Pearson residuals for
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Logistic regression Number of obs = 360
LR chi2(1) = 283.15
Prob > chi2 = 0.0000

Log likelihood = -93.886407 Pseudo R2 = 0.6013

infct Coef. Std. Err. z P>|z| [95% Conf. Interval]

ck .0351044 .0040812 8.60 0.000 .0271053 .0431035
_cons -2.326272 .2993611 -7.77 0.000 -2.913009 -1.739535

Display 6.10

each “covariate pattern”, i.e., for each combination of values in the co-
variates (here for each value of CK). These residuals may be obtained
and plotted as follows:

predict resi, rstandard
twoway scatter resi ck, mlabel(ck)

The graph is shown in Figure 6.4. There are several large outliers. The
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Figure 6.4: Standardized Pearson residuals vs. creatine kinase level.
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largest outlier at CK=280 is due to one subject out of 14 not having had
an infarct although the predicted probability of an infarct is almost 1.
(We could also test the goodness-of-fit of the model; see Exercise 6.3.)

We now determine the accuracy of the diagnostic test based on
the logistic regression model. A classification table of the predicted
diagnosis (using a cut-off of the predicted probability of 0.5) versus the
true diagnosis may be obtained using

estat classif

giving the table shown in Display 6.11. Both the sensitivity and the

Logistic model for infct

True
Classified D ~D Total

+ 215 16 231
- 15 114 129

Total 230 130 360

Classified + if predicted Pr(D) >= .5
True D defined as infct != 0

Sensitivity Pr( +| D) 93.48%
Specificity Pr( -|~D) 87.69%
Positive predictive value Pr( D| +) 93.07%
Negative predictive value Pr(~D| -) 88.37%

False + rate for true ~D Pr( +|~D) 12.31%
False - rate for true D Pr( -| D) 6.52%
False + rate for classified + Pr(~D| +) 6.93%
False - rate for classified - Pr( D| -) 11.63%

Correctly classified 91.39%

Display 6.11

specificity are relatively high. These characteristics are generally as-
sumed to generalize to other populations whereas the positive and nega-
tive predictive values (probabilities of the disease being present/absent
if the test is positive/negative) depend on the prevalence (or prior prob-
ability) of the condition (see for example Sackett et al., 1991).

The use of other probability cut-offs could be investigated using
the option cutoff(#) in the above command or using the commands
lroc to plot a ROC-curve (specificity vs. sensitivity for different cut-
offs) or lsens to plot sensitivity and specificity against cut-off (see
Exercise 6.3).
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The above classification table may be misleading because we are
testing the model on the same sample that was used to derive it.
An alternative approach is to compute predicted probabilities for each
observation from a model fitted to the remaining observations. This
method, called “leave one out” method or jackknifing (see Lachenbruch
and Mickey, 1986), can be carried out relatively easily for our data be-
cause we only have a small number of covariate and response patterns.
Instead of looping through all observations, excluding each observation
in the logistic regression command and computing that observation’s
predicted probability, we can loop through a subset of observations
representing all combinations of covariates and responses found in the
data.

First, label each unique covariate pattern consecutively in a variable
num using predict with the number option:

predict num, number

Now generate first, equal to one for the first observation in each
group of unique covariate and response patterns and zero otherwise:

by num infct, sort: generate first = (_n==1)

(We could also have used egen first = tag(num infct).) Now de-
fine grp, equal to the cumulative sum of first, obtained using the
function sum(). This variable numbers the groups of unique covariate
and response patterns consecutively:

generate grp = sum(first)

(An alternative way of generating grp without having to first create
first would be to use the command egen grp = group(num infct).)
Now determine the number of unique combinations of CK levels and
infarct status:

summarize grp

Variable Obs Mean Std. Dev. Min Max

grp 360 8.658333 6.625051 1 20

As there are 20 groups, we need to run logistic 20 times (for each
value of grp), excluding one observation from grp to derive the model
for predicting the probability for all observations in grp.

First generate a variable, nxt, that consecutively labels the 20 ob-
servations to be excluded in turn:

generate nxt = first*grp

Now build up a variable prp of predicted probabilities as follows:
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generate prp = 0
forvalues n= 1/20 {

quietly logistic infct ck if nxt!=`n´
quietly predict p, pr
quietly replace prp = p if grp==`n´
drop p

}

The purpose of these four commands inside the loop is to
1. derive the model excluding one observation from grp,
2. obtain the predicted probabilities p (predict produces results for

the whole sample, not just the estimation sample),
3. set prp to the predicted probability for all observations in grp, and
4. drop p so that it can be defined again in the next iteration.
Here the quietly prefix was used to produce no output.

The classification table for the jackknifed probabilities can be ob-
tained using

generate class = (prp>=0.5)
tabulate class infct

infct
class 0 1 Total

0 114 15 129
1 16 215 231

Total 130 230 360

giving the same result as before, although this will not generally be the
case.

6.4 Exercises

6.1 • Treatment of lung cancer

1. Read in the data without using the expand command, and
reproduce the result of ordinal logistic regressions by using
the appropriate weights.

6.2 • Female psychiatric patients

1. Carry out significance tests for an association between depress
and life for the data described in Chapter 2 using
a. ordinal logistic regression with depress as dependent vari-

able
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b. logistic regression with life as dependent variable.
2. Use stepwise together with logit to find a model for pre-

dicting life using the data from Chapter 2 with different sets
of candidate variables (see Chapter 3).

6.3 • Diagnosis of heart attacks

1. Test the goodness-of-fit of the logistic regression model with
ck as the only explanatory variable using a Pearson chi-squared
test.

2. To improve the model fit, successively include first a quadratic
term of ck in the model, then a cubic term, etc., deciding
when to stop using Wald tests for the highest order terms.

3. For the chosen model, repeat the goodness-of-fit test.
4. Produce a graph similar to that in Figure 6.2 for the chosen

model.
5. Explore the use of estat classif, cutoff(#), lroc, and

lsens for the chosen model.

6.4 Psychiatric screening data

Here we consider data from a study of a psychiatric screening
questionnaire called the GHQ (General Health Questionnaire).
The data are from Der and Everitt (2002). In addition to com-
pleting the questionnaire, subjects were diagnosed as clinically
depressed or not by a psychiatrist. Here the question of interest
is to determine how the probability of being judged depressed (a
“case”) is related to sex and the GHQ score.

The variables in screening.dta are:

� ghq: GHQ score
� sex: sex (F=female, M=male)
� cases: number of cases
� noncases: number of non-cases

1. Fit both a linear regression and a logistic regression for the
probability of being a case with GHQ score as the single ex-
planatory variable.

2. Plot the predicted probabilities from each model against GHQ
score on the same diagram and comment on the two curves.

3. Fit a logistic regression model to the probability of being a
case using both GHQ score and sex as explanatory variables.
Construct a suitable plot to illustrate the model fitted.

4. Investigate whether the previous model can be improved by
including a sex × GHQ score interaction.
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6.5 Prostate cancer

The data analyzed here arise from a study involving patients with
cancer of the prostate (Brown, 1980). The aim was to determine
whether a combination of five variables could be used to fore-
cast whether or not the cancer has spread to the lymph nodes,
since this forms the basis for the treatment regime that should be
adopted. The 53 patients in the study had undergone a laparo-
tomy to determine nodal involvement or not in their case. Here
the response variable is binary with zero signifying the absence
and unity the presence of nodal involvement.

The variables in prostate.dta are:

� id: patient identifier
� nodal: nodal involvement (0=no, 1=yes)
� age: age of patient at diagnosis (years)
� acid: level of serum acid phosphatase

(in King-Armstrong units)
� xray: result of an X-ray examination

(0=negative, 1=positive)
� size: size of the tumour as determined by a rectal examina-

tion (0=small, 1=large)
� grade: summary of the pathological grade of the tumour

determined from a biopsy (0=less serious, 1=more serious)

1. Carry out a logistic regression with nodal as the response and
age and acid as explanatory variables.

2. Interpret the odds ratios.
3. Carry out a logistic regression for nodal involvement using all

five explanatory variables and investigate which of these five
variables are most needed in the model. Use both forward
and backward selection procedures.

6.6 Satisfaction with housing conditions

Agresti (1984) discusses data on 1681 residents of twelve areas
in Copenhagen that allows investigation of the effect of various
factors on satisfaction with the housing conditions. (The data
are also described in Madsen, 1976.)

The data are in collapsed form with frequencies given in
the variable freq. The remaining variables in housing.dta are:

� satisfaction: level of satisfaction (1=low, 2=medium, 3=high)
� housing: type of housing (1=tower blocks, 2=apartments,

3=atrium houses, 4=terraced houses)
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� contact: degree of contact with residents (1=low, 2=high)
� influence: feeling of influence on apartment management

(1=low, 2=medium, 3=high)

1. Fit a proportional odds model for satisfaction treating
housing as a categorical predictor and influence as a con-
tinuous predictor. Make sure to use frequency weights.

2. Interpret the estimated odds ratios.
3. Discuss the implicit assumption made in treating influence

as continuous.
4. Use a likelihood ratio test to decide if influence should be

treated as categorical instead.
5. Test for an interaction between housing and contact using

both a multivariate Wald test (using testparm) and a likeli-
hood ratio test.



Chapter 7

Generalized Linear Models:

Australian School Children

7.1 Description of data

This chapter reanalyzes a number of datasets discussed in previous
chapters and, in addition, describes the analysis of a new dataset given
in Aitkin (1978). These data come from a sociological study of Aus-
tralian aboriginal and white children. The sample included children
from four age groups (final year in primary school and first three years
in secondary school) who were classified as slow or average learners.
The number of days absent from school during the school year was
recorded for each child. The data are given in Table 7.1. The variables
are as follows:

� eth: ethnic group (A=aboriginal, N=white)

� sex: sex (M=male, F=female)

� age: class in school (F0, F1, F2, F3)

� lrn: average or slow learner (SL=slow learner, AL=average
learner)

� days: number of days absent from school in one year

One aim of the analysis is to investigate ethnic differences in the mean
number of days absent from school while controlling for the other po-
tential predictors sex, age, and lrn.

133
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7.2 Generalized linear models

Previous chapters have described linear (Chapter 3) and logistic regres-
sion (Chapter 6). In this chapter, we will describe a more general class
of models, called generalized linear models, of which linear regression
and logistic regression are special cases.

Both linear and logistic regression involve a linear combination of
the explanatory variables, called the linear predictor, of the form

ηi = β0 + βx1i + βx2i + · · · + βxpi

= x′
iβ. (7.1)

In both types of regression, the linear predictor determines the ex-
pectation µi of the response variable. In linear regression, where the
response is continuous, µi is directly equated with the linear predictor.
This is not advisable when the response is dichotomous because in this
case the expectation is a probability which must satisfy 0 ≤ µi ≤ 1.
In logistic regression, the linear predictor is therefore equated with a
function of µi, the logit, ηi = log(µi/(1 − µi)). In generalized linear
models, the linear predictor may be equated with any of a number of
different functions g(µi) of µi, called link functions; that is,

ηi = g(µi). (7.2)

In linear regression, the probability distribution of the response vari-
able is assumed to be normal with mean µi. In logistic regression a
binomial distribution is assumed with probability parameter µi. Both
the normal and binomial distributions come from the same family of
distributions, called the exponential family,

f(yi; θi, φ) = exp{(yiθi − b(θi))/a(φ) + c(yi, φ)}. (7.3)

For example, for the normal distribution,

f(yi; θi, φ) =
1√

(2πσ2)
exp{−(yi − µi)2/2σ2}

= exp{(yiµi − µ2
i /2)/σ2 − 1

2
(y2

i /σ2 + log(2πσ2))} (7.4)

so that θi = µi, b(θi) = θ2
i /2, φ = σ2, and a(φ) = φ.

The parameter θi can be written as a function of µi and this function
is called the canonical link function. The canonical link is frequently
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chosen as the link function (and is the default link in the Stata com-
mand for fitting generalized linear models, glm), although the canonical
link is not necessarily more appropriate than any other link. Table 7.2
lists some of the most common distributions used in generalized linear
models and their canonical link functions.

Table 7.2 Probability distributions and their canonical
link functions

Variance Dispersion Link
Distribution function parameter function g(µ) = θ(µ)

Normal 1 σ2 identity µ
Binomial µ(1 − µ) 1 logit log(µ/(1 − µ))
Poisson µ 1 log log(µ)

Gamma µ2 ν−1 reciprocal 1/µ

The conditional mean and variance of Yi are given by

E(Yi|xi) = b′(θi) = µi (7.5)

and

var(Yi|xi) = b′′(θi)a(φ) = V (µi)a(φ) (7.6)

where b′(θi) and b′′(θi) denote the first and second derivatives of b(·)
evaluated at θi, and the variance function V (µi) is obtained by express-
ing b′′(θi) as a function of µi. It can be seen from (7.4) that the variance
for the normal distribution is simply σ2 regardless of the value of the
mean µi, i.e., the variance function is 1.

The data on Australian school children will be analyzed by assum-
ing a Poisson distribution for the number of days absent from school.
The Poisson distribution is the appropriate distribution of the number
of events observed over a period of time, if these events occur inde-
pendently in continuous time at a constant instantaneous probability
rate (or incidence rate); see for example Clayton and Hills (1993). The
Poisson distribution is given by

f(yi; µi) = µyi

i e−µi/yi!, yi = 0, 1, 2, · · · . (7.7)

Taking the logarithm and summing over observations, the log like-
lihood is given by

l(µ;y) =
∑

i

{(yi lnµi − µi) − ln(yi!)} (7.8)
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so that θi = lnµi, b(θi) = exp(θi), φ = 1, a(φ) = 1, and var(Yi|xi) =
exp(θi) = µi. Therefore, the variance of the Poisson distribution is
not constant, but equal to the mean. Unlike the normal distribution,
the Poisson distribution has no separate parameter for the variance
and the same is true of the binomial distribution. Table 7.2 shows the
variance functions and dispersion parameters for some commonly used
probability distributions.

7.2.1 Model selection and measure of fit

Lack of fit may be expressed by the deviance, which is minus twice the
difference between the maximized log likelihood of the model and the
maximum likelihood achievable, i.e., the maximized likelihood of the
full or saturated model. For the normal distribution, the deviance is
simply the residual sum of squares. Another measure of lack of fit is
the generalized Pearson X2,

X2 =
∑

i

(yi − µ̂i)2/V (µ̂i), (7.9)

which, for the Poisson distribution, is just the familiar Pearson chi-
squared statistic for two-way cross-tabulations (since V (µ̂i) = µ̂i).
Both the deviance and Pearson X2 have asymptotic χ2 distributions
under the null hypothesis. When the dispersion parameter φ is fixed
(not estimated), an analysis of deviance can be used for comparing
nested models. To test the null hypothesis that the restrictions leading
to the nested model are true, the difference in deviance between two
models is compared with the χ2 distribution with degrees of freedom
equal to the difference in model degrees of freedom.

The Pearson and deviance residuals are defined as the (signed)
square roots of the contributions of the individual observations to the
Pearson X2 and deviance respectively. These residuals may be used to
assess the appropriateness of the link and variance functions.

A relatively common phenomenon with count data is overdispersion,
i.e., the variance is greater than that of the assumed distribution (bino-
mial with denominator greater than 1 or Poisson). This overdispersion
may be due to extra variability in the parameter µi which has not been
completely explained by the covariates. One way of addressing the
problem is to allow µi to vary randomly according to some distribu-
tion and to assume that conditional on µi, the response variable follows
the binomial (or Poisson) distribution. Such models are called random
effects models; see also Chapter 9.

A more pragmatic way of accommodating overdispersion in the
model is to assume that the variance is proportional to the variance
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function, but to estimate the dispersion or scale parameter φ rather
than assuming the value 1 appropriate for the distributions. For the
Poisson distribution, the variance is modeled as

var(Y |xi) = φµi (7.10)

where φ is estimated from the deviance or Pearson X2. (This is analo-
gous to the estimation of the residual variance in linear regresion mod-
els from the residual sums of squares.) This parameter is then used to
scale the estimated standard errors of the regression coefficients. This
approach of assuming a variance function that does not correspond to
any probability distribution is an example of the quasi-likelihood ap-
proach. If the variance is not proportional to the variance function,
robust standard errors can be used as described in the next section.
See McCullagh and Nelder (1989) and Hardin and Hilbe (2006) for
more details on generalized linear models.

7.2.2 Robust standard errors of parameter estimates

A very useful feature of Stata is that robust standard errors of esti-
mated parameters can be obtained for most estimation commands. In
maximum likelihood estimation, the standard errors of the estimated
parameters are derived from the Hessian (matrix of second derivatives
with respect to the parameters) of the log likelihood. However, these
standard errors are correct only if the likelihood is the true likelihood
of the data. If this assumption is not correct, for instance due to omis-
sion of covariates, misspecification of the link function or probability
distribution function, we can still use robust estimates of the standard
errors known as the Huber, White, or sandwich variance estimates (for
details, see Binder, 1983).

In the description of the robust variance estimator in the Stata
User’s Guide (Section 20.14), it is pointed out that the use of robust
standard errors implies a less ambitious interpretation of the parameter
estimates and their standard errors than a model-based approach. In-
stead of assuming that the model is “true” and attempting to estimate
“true” parameters, we just consider the properties of the estimator
(whatever it may mean) under repeated sampling and define the stan-
dard error as its sampling standard deviation.

Another approach to estimating the standard errors without mak-
ing any distributional assumptions is bootstrapping (Efron and Tibshi-
rani, 1993). If we could obtain repeated samples from the population
(from which our data were sampled), we could obtain an empirical sam-
pling distribution of the parameter estimates. In Monte Carlo simula-
tion, the required samples are drawn from the assumed distribution. In
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bootstrapping, the sample is resampled “to approximate what would
happen if the population were sampled” (Manly, 1997). Bootstrap-
ping works as follows. Take a random sample of n observations (n is
the sample size), with replacement, and estimate the regression coeffi-
cients. Repeat this a number of times to obtain a sample of estimates.
From the resulting sample of parameter estimates, obtain the empiri-
cal variance-covariance matrix of the parameter estimates. Confidence
intervals may be constructed using the estimated variance or directly
from the appropriate centiles of the empirical distribution of parameter
estimates. See Manly (1997) and Efron and Tibshirani (1993) for more
information on the bootstrap.

7.3 Analysis using Stata

The glm command can be used to fit generalized linear models. The
syntax is analogous to logit and regress except that the options
family() and link() are used to specify the probability distribution
of the response and the link function, respectively. We first analyze
data from the previous chapter to show how linear regression, ANOVA,
and logistic regression are performed using glm and then move on to
the data on Australian school children.

7.3.1 Linear regression

First, we show how linear regression can be carried out using glm. In
Chapter 3, the U.S. air-pollution data were read in using the instruc-
tions

infile str10 town so2 temp manuf pop wind precip days ///
using usair.dat, clear

drop if town=="Chicago"

and now we regress so2 on a number of variables using

glm so2 temp pop wind precip, family(gaussian) link(identity)

(see Display 7.1). The results are identical to those of the regression
analysis. The scale parameter given on the right-hand side above the
regression table represents the residual variance given under Residual
MS in the analysis of variance table of the regression analysis in Chap-
ter 3. We can estimate robust standard errors using the vce(robust)
option

glm so2 temp pop wind precip, family(gauss) ///
link(identity) vce(robust)
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Generalized linear models No. of obs = 40
Optimization : ML Residual df = 35

Scale parameter = 290.0043
Deviance = 10150.15199 (1/df) Deviance = 290.0043
Pearson = 10150.15199 (1/df) Pearson = 290.0043

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 8.624242
Log likelihood = -167.4848314 BIC = 10021.04

OIM
so2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

temp -1.810123 .4404001 -4.11 0.000 -2.673292 -.9469549
pop .0113089 .0074091 1.53 0.127 -.0032126 .0258304

wind -3.085284 2.096471 -1.47 0.141 -7.194292 1.023723
precip .5660172 .2508601 2.26 0.024 .0743404 1.057694
_cons 131.3386 34.32034 3.83 0.000 64.07195 198.6052

Display 7.1

(see Display 7.2) giving slightly different standard errors, suggesting
that some assumptions may not be entirely satisfied.

7.3.2 ANOVA

We now show how an analysis of variance model can be fitted using
glm, using the slimming clinic example of Chapter 5. The data are read
using

infile cond status resp using slim.dat, clear

and the full, saturated model can be obtained using

xi: glm resp i.cond*i.status, family(gaussian) link(identity)

(see Display 7.3). This result is identical to that obtained using the
command

xi: regress resp i.cond*i.status

(see exercises in Chapter 5).
We can obtain the F -statistics for the interaction term by saving

the deviance of the above model (residual sum of squares) in a local
macro and refitting the model with the interaction removed:

local dev1 = e(deviance)

xi: glm resp i.cond i.status, family(gaussian) link(identity)
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Generalized linear models No. of obs = 40
Optimization : ML Residual df = 35

Scale parameter = 290.0043
Deviance = 10150.15199 (1/df) Deviance = 290.0043
Pearson = 10150.15199 (1/df) Pearson = 290.0043

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 8.624242
Log pseudolikelihood = -167.4848314 BIC = 10021.04

Robust
so2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

temp -1.810123 .3280436 -5.52 0.000 -2.453077 -1.16717
pop .0113089 .0079634 1.42 0.156 -.0042992 .0269169

wind -3.085284 1.698542 -1.82 0.069 -6.414366 .2437966
precip .5660172 .1818484 3.11 0.002 .2096009 .9224335
_cons 131.3386 18.21993 7.21 0.000 95.62816 167.049

Display 7.2

i.cond _Icond_1-2 (naturally coded; _Icond_1 omitted)
i.status _Istatus_1-2 (naturally coded; _Istatus_1 omitted)
i.cond*i.status _IconXsta_#_# (coded as above)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 30

Scale parameter = 35.9616
Deviance = 1078.848121 (1/df) Deviance = 35.9616
Pearson = 1078.848121 (1/df) Pearson = 35.9616

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 6.53046
Log likelihood = -107.0178176 BIC = 973.0573

OIM
resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Icond_2 .6780002 3.234433 0.21 0.834 -5.661372 7.017373
_Istatus_2 6.128834 3.19204 1.92 0.055 -.1274504 12.38512

_IconXsta_~2 -.2655002 4.410437 -0.06 0.952 -8.909799 8.378798
_cons -7.298 2.68185 -2.72 0.007 -12.55433 -2.04167

Display 7.3
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i.cond _Icond_1-2 (naturally coded; _Icond_1 omitted)
i.status _Istatus_1-2 (naturally coded; _Istatus_1 omitted)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 31

Scale parameter = 34.80576
Deviance = 1078.97844 (1/df) Deviance = 34.80576
Pearson = 1078.97844 (1/df) Pearson = 34.80576

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = 6.471757
Log likelihood = -107.0198709 BIC = 969.6613

OIM
resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Icond_2 .5352102 2.163277 0.25 0.805 -3.704734 4.775154
_Istatus_2 5.989762 2.167029 2.76 0.006 1.742463 10.23706

_cons -7.199832 2.094584 -3.44 0.001 -11.30514 -3.094524

Display 7.4

(see Display 7.4). The increase in deviance caused by the removal of
the interaction term represents the sum of squares of the interaction
term after eliminating the main effects:

local dev0 = e(deviance)
local ddev = `dev0´-`dev1´
display `ddev´

.13031826

and the F -statistic is simply the mean sum of squares of the interaction
term after eliminating the main effects divided by the residual mean
square of the full model. The numerator and denominator degrees of
freedom are 1 and 30 respectively, so that F and the associated p-value
may be obtained as follows:

local f = (`ddev´/1)/(`dev1´/30)
display `f´

.00362382

display Ftail(1,30,`f´)
.95239704

The general method for testing the difference in fit of two nested
generalized linear models, using the difference in deviance, is not ap-
propriate here because the scale parameter φ = σ2 was estimated.
Note that the z-test in the regression table in Display 7.3, as well as
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the chi-squared test performed by testparm IconX*, assume sampling
distributions that are appropriate if the dispersion parameter is known
or for large residual degrees of freedom. Here the p-value from the
F -test is identical to three decimal places to that from the z-test.

7.3.3 Logistic regression

We now repeat the logistic regression analysis of Chapter 6 using glm.
We first read the tumor data as before, without replicating records.

infile fr1 fr2 fr3 fr4 using tumor.dat, clear
gen therapy = int((_n-1)/2)
sort therapy
by therapy: gen sex = _n
reshape long fr, i(therapy sex) j(outc)
gen improve = outc
recode improve 1/2=0 3/4=1
list

therapy sex outc fr improve

1. 0 1 1 28 0
2. 0 1 2 45 0
3. 0 1 3 29 1
4. 0 1 4 26 1
5. 0 2 1 4 0

6. 0 2 2 12 0
7. 0 2 3 5 1
8. 0 2 4 2 1
9. 1 1 1 41 0

10. 1 1 2 44 0

11. 1 1 3 20 1
12. 1 1 4 20 1
13. 1 2 1 12 0
14. 1 2 2 7 0
15. 1 2 3 3 1

16. 1 2 4 1 1

The glm command can be used with the logit link and binomial
distribution and with fr as frequency weights using

glm improve therapy sex [fweight=fr], family(binomial) ///
link(logit)

(see Display 7.5).
The likelihood ratio test for sex can be obtained as follows:

local dev1 = e(deviance)
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Generalized linear models No. of obs = 299
Optimization : ML Residual df = 296

Scale parameter = 1
Deviance = 381.2634298 (1/df) Deviance = 1.288052
Pearson = 298.7046083 (1/df) Pearson = 1.009137

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.295195
Log likelihood = -190.6317149 BIC = -1306.068

OIM
improve Coef. Std. Err. z P>|z| [95% Conf. Interval]

therapy -.5022014 .2456898 -2.04 0.041 -.9837445 -.0206582
sex -.6543125 .3714739 -1.76 0.078 -1.382388 .0737629

_cons .3858095 .4514172 0.85 0.393 -.4989519 1.270571

Display 7.5

quietly glm improve therapy [fweight=fr], ///
family(binomial) link(logit)

local dev0 = e(deviance)
display `dev0´-`dev1´

3.3459816

display chi2tail(1,`dev0´-`dev1´)
.0673693

which gives the same result as in Section 6.3.1 where we used estimates
store and lrtest.

7.3.4 Australian school children

We now move on to analyze the data in Table 7.1 to investigate dif-
ferences between aboriginal and white children in the mean number
of days absent from school after controlling for other covariates. The
data are available as a Stata file quine.dta and may therefore be read
simply by using the command

use quine, clear

The variables are of type string and can be converted to numeric using
the encode command as follows:

encode eth, gen(ethnic)
drop eth
encode sex, gen(gender)
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drop sex
encode age, gen(class)
drop age
encode lrn, gen(slow)
drop lrn

The number of children in each of the combinations of categories of
gender, class, and slow can be found using

table slow class ethnic, contents(freq) by(gender)

(see Display 7.6). This reveals that there were no “slow learners” in

ethnic and class
gender A N
and slow F0 F1 F2 F3 F0 F1 F2 F3

F
AL 4 5 1 9 4 6 1 10
SL 1 10 8 1 11 9

M
AL 5 2 7 7 6 2 7 7
SL 3 3 4 3 7 3

Display 7.6

class F3. A table of the means and standard deviations is obtained
using

table slow class ethnic, contents(mean days sd days) ///
by(gender) format(%4.1f)

(see Display 7.7), where the format() option causes only a single deci-
mal place to be given. This table suggests that the variance associated
with the Poisson distribution is not appropriate here as squaring the
standard deviations (to get the variances) results in values that are
greater than the means, i.e., there is overdispersion. In this case, the
overdispersion probably arises from substantial variability in children’s
underlying tendency to miss days of school that cannot be fully ex-
plained by the variables we have included in the model.

Ignoring the problem of overdispersion for the moment, a gener-
alized linear model with a Poisson family and log link can be fitted
using

glm days slow class ethnic gender, family(poisson) link(log)
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ethnic and class
gender A N
and slow F0 F1 F2 F3 F0 F1 F2 F3

F
AL 21.3 11.4 2.0 14.6 18.5 11.0 1.0 13.5

17.7 6.5 14.9 10.7 8.9 11.5

SL 3.0 22.6 36.4 25.0 6.0 6.2
18.7 26.5 4.2 5.0

M
AL 13.0 10.5 27.4 27.1 5.3 3.5 9.1 27.3

8.0 4.9 14.7 10.4 5.4 0.7 9.5 22.9

SL 9.0 9.0 37.0 30.0 6.1 29.3
6.2 5.2 23.4 32.5 6.1 7.0

Display 7.7

Iteration 0: log likelihood = -1192.3347
Iteration 1: log likelihood = -1178.6003
Iteration 2: log likelihood = -1178.5612
Iteration 3: log likelihood = -1178.5612

Generalized linear models No. of obs = 146
Optimization : ML Residual df = 141

Scale parameter = 1
Deviance = 1768.64529 (1/df) Deviance = 12.54358
Pearson = 1990.142857 (1/df) Pearson = 14.11449

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.21317
Log likelihood = -1178.561184 BIC = 1065.957

OIM
days Coef. Std. Err. z P>|z| [95% Conf. Interval]

slow .2661578 .0445715 5.97 0.000 .1787992 .3535164
class .2094662 .0218245 9.60 0.000 .166691 .2522414

ethnic -.5511688 .0418391 -13.17 0.000 -.633172 -.4691656
gender .2256243 .0415927 5.42 0.000 .1441041 .3071445
_cons 2.336676 .1427925 16.36 0.000 2.056808 2.616545

Display 7.8
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(see Display 7.8). The algorithm takes three iterations to converge
to the maximum likelihood (or minimum deviance) solution. In the
absence of overdispersion, the scale parameters based on the Pearson
X2 or the deviance should be close to 1. The values of 14.1 and 12.5
(given at the top-right), respectively, therefore indicate that there is
overdispersion. Consequently, the confidence intervals are likely to be
too narrow. McCullagh and Nelder (1989) use the Pearson X2 divided
by the degrees of freedom to estimate the scale parameter for the quasi-
likelihood method for Poisson models. This may be achieved using the
option scale(x2):

glm days slow class ethnic gender, family(poisson) ///
link(log) scale(x2)

(see Display 7.9). Allowing for overdispersion has no effect on the re-

Generalized linear models No. of obs = 146
Optimization : ML Residual df = 141

Scale parameter = 1
Deviance = 1768.64529 (1/df) Deviance = 12.54358
Pearson = 1990.142857 (1/df) Pearson = 14.11449

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.21317
Log likelihood = -1178.561184 BIC = 1065.957

OIM
days Coef. Std. Err. z P>|z| [95% Conf. Interval]

slow .2661578 .1674519 1.59 0.112 -.0620419 .5943575
class .2094662 .0819929 2.55 0.011 .0487631 .3701693

ethnic -.5511688 .1571865 -3.51 0.000 -.8592486 -.243089
gender .2256243 .1562606 1.44 0.149 -.0806409 .5318896
_cons 2.336676 .5364608 4.36 0.000 1.285233 3.38812

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.9

gression coefficients, but a large effect on the p-values and confidence
intervals so that gender and slow are now no longer significant at the
5% level. These terms will be removed from the model. The coefficients
can be interpreted as the differences in the logs of the predicted mean
counts between groups after controlling for the other variables. For ex-
ample, the log of the predicted mean number of days absent from school
for white children is −0.55 lower than that for aboriginals after con-
trolling for slow, class, and gender. Exponentiating the coefficients
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yields ratios of expected counts (or rate ratios). The glm command
exponentiates all coefficients and confidence intervals when the eform
option is used:

glm days class ethnic, family(poisson) link(log) ///
scale(x2) eform

(see Display 7.10). Therefore, white children are absent from school

Generalized linear models No. of obs = 146
Optimization : ML Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.56136
Log likelihood = -1205.979185 BIC = 1110.826

OIM
days IRR Std. Err. z P>|z| [95% Conf. Interval]

class 1.177895 .0895256 2.15 0.031 1.014872 1.367105
ethnic .5782531 .0924981 -3.42 0.001 .4226284 .7911836

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.10

about 58% as often as aboriginal children (95% confidence interval
from 42% to 79%) after controlling for class.

We have treated class as a continuous covariate. This implies that
the rate ratio for two categories is a constant multiple of the difference
in scores assigned to these categories; for example the rate ratio com-
paring classes F1 and F0 is the same as that comparing F2 and F1. To
see whether this appears to be appropriate, we can form the square of
class and include this in the model:

gen class2 = class^2
glm days class class2 ethnic, family(poisson) link(log) ///

scale(x2) eform

(see Display 7.11). This term is not significant at the 5% level so we
can return to the simpler model. (Note that the interaction between
class and ethnic is also not significant, see exercises.)

We now look at the residuals for this model. The post-estimation
command predict that was used for regress and logistic can be
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Generalized linear models No. of obs = 146
Optimization : ML Residual df = 142

Scale parameter = 1
Deviance = 1822.560172 (1/df) Deviance = 12.83493
Pearson = 2081.259434 (1/df) Pearson = 14.65676

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.56875
Log likelihood = -1205.518625 BIC = 1114.888

OIM
days IRR Std. Err. z P>|z| [95% Conf. Interval]

class 1.059399 .4543011 0.13 0.893 .4571295 2.455158
class2 1.020512 .0825501 0.25 0.802 .8708906 1.195839
ethnic .5784944 .092643 -3.42 0.001 .4226525 .7917989

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.11

used here as well. To obtain standardized Pearson residuals, use the
pearson option with predict and divide the residuals by the square
root of the estimated dispersion parameter stored in e(dispersp ps):

quietly glm days class ethnic, family(poisson) link(log) ///
scale(x2)

predict resp, pearson
gen stres = resp/sqrt(e(dispersp ps))

The residuals are plotted against the linear predictor using

predict xb, xb
twoway scatter stres xb, ytitle("Standardized Residuals")

with the result shown in Figure 7.1.
There is one large outlier with a standardized Pearson residual

greater than 4. In order to find out which observation this is, we
list a number of variables for cases with large standardized Pearson
residuals:

predict mu, mu
list stres days mu ethnic class if stres>2|stres<-2

(see Display 7.12). Case 72, a white primary school child, has a very
large residual.

We now also check the assumptions of the model by using robust
standard errors:

glm days class ethnic, family(poisson) link(log) vce(robust)
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Figure 7.1: Standardized residuals against linear predictor.

stres days mu ethnic class

45. 2.030936 53 19.07713 A F1
46. 2.090805 54 19.07713 A F1
58. 2.070232 60 22.47085 A F2
59. 3.228662 81 22.47085 A F2
72. 4.924719 67 9.365361 N F0

104. 3.588962 69 15.30538 N F3
109. 2.019514 33 9.365361 N F0

Display 7.12
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(see Display 7.13) giving almost exactly the same p-values as the quasi-

Generalized linear models No. of obs = 146
Optimization : ML Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.56136
Log pseudolikelihood = -1205.979185 BIC = 1110.826

Robust
days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1637288 .0766153 2.14 0.033 .0135655 .313892
ethnic -.5477436 .1585381 -3.45 0.001 -.8584725 -.2370147
_cons 3.168776 .3065466 10.34 0.000 2.567956 3.769597

Display 7.13

likelihood solution,

glm days class ethnic, family(poisson) link(log) scale(x2)

(see Display 7.14). We can also use bootstrapping via the bootstrap
prefix to obtain alternative robust standard errors. Since bootstrapping
involves random sampling, we first set the seed of the pseudo random
number generator using the set seed command so that we can run the
sequence of commands again in the future and obtain the same results.

set seed 12345678

In the bootstrap prefix, the statistics are specified for which stan-
dard errors are required, here b[class] and b[ethnic], followed by
a comma and any bootstrap options, here reps(500) to use 500 repli-
cates. Finally the estimation command is specified after a colon.

bootstrap _b[class] _b[ethnic], reps(500): ///
glm days class ethnic, family(poisson) link(log)

(see Display 7.15). The standard errors compare quite well with those
using the vce(robust) option or using the quasi-likelihood approach.

We could also model overdispersion by assuming a random effects
model where each child has an unobserved, random proneness to be
absent from school. This proneness (called frailty in a medical context)
multiplies the rate predicted by the covariates so that some children



152 � A Handbook of Statistical Analyses Using Stata

Generalized linear models No. of obs = 146
Optimization : ML Residual df = 143

Scale parameter = 1
Deviance = 1823.481292 (1/df) Deviance = 12.75162
Pearson = 2091.29704 (1/df) Pearson = 14.62445

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 16.56136
Log likelihood = -1205.979185 BIC = 1110.826

OIM
days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1637288 .0760048 2.15 0.031 .0147622 .3126954
ethnic -.5477436 .1599613 -3.42 0.001 -.861262 -.2342252
_cons 3.168776 .3170159 10.00 0.000 2.547437 3.790116

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 7.14

Bootstrap replications (500)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

.................................................. 350

.................................................. 400

.................................................. 450

.................................................. 500

Bootstrap results Number of obs = 146
Replications = 500

command: glm days class ethnic, family(poisson) link(log)
_bs_1: _b[class]
_bs_2: _b[ethnic]

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

_bs_1 .1637288 .0708082 2.31 0.021 .0249473 .3025103
_bs_2 -.5477436 .1462108 -3.75 0.000 -.8343115 -.2611757

Display 7.15
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have higher or lower rates of absence from school than other children
with the same covariates. The observed counts are assumed to have a
Poisson distribution conditional on the random effects. If the frailties
are assumed to have a gamma distribution, then the (marginal) distri-
bution of the counts has a negative binomial distribution. The negative
binomial model can be fitted using nbreg as follows:

nbreg days class ethnic

(see Display 7.16). Alternatively, the same model can be estimated
using glm with family(nbinomial).

Negative binomial regression Number of obs = 146
LR chi2(2) = 15.77

Dispersion = mean Prob > chi2 = 0.0004
Log likelihood = -551.24625 Pseudo R2 = 0.0141

days Coef. Std. Err. z P>|z| [95% Conf. Interval]

class .1505165 .0732832 2.05 0.040 .0068841 .2941489
ethnic -.5414185 .1578378 -3.43 0.001 -.8507748 -.2320622
_cons 3.19392 .3217681 9.93 0.000 2.563266 3.824574

/lnalpha -.1759664 .1243878 -.4197619 .0678292

alpha .8386462 .1043173 .6572032 1.070182

Likelihood-ratio test of alpha=0: chibar2(01) = 1309.47 Prob>=chibar2 = 0.000

Display 7.16

All four methods of analyzing the data lead to the same conclu-
sions. The Poisson model is a special case of the negative binomial
model with α = 0. The likelihood ratio test for α is therefore a test of
the negative binomial against the Poisson distribution. The very small
p-value “against Poisson” indicates that there is significant overdisper-
sion. (Note that, as indicated by the expression chibar2(01), the test
is based on the correct sampling distribution taking into account that
the null hypothesis is on the boundary of the parameter space, see, e.g.,
Snijders and Bosker, 1999.)

7.4 Exercises

7.1 • Effectiveness of slimming clinics
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1. Calculate the F -statistic and difference in deviance for adding
status to a model already containing cond for the data in
slim.dat.

2. Fit the model using status as the only explanatory variable,
using robust standard errors. How does this compare with a
t-test with unequal variances?

7.2 • Australian school children

1. Carry out a significance test for the interaction between class
and ethnic for the data in quine.dta.

2. Excluding the potential outlier (case 72), fit the model with
explanatory variables ethnic and class.

3. Dichotomize days absent from school by classifying 14 days or
more as frequently absent. Analyze this new response using
the glm command with both logit and probit links and the
binomial family.

4. Repeat the analyses with the vce(robust) option, and com-
pare the robust standard errors with the standard errors ob-
tained using bootstrapping.

See also the Exercises in Chapter 11.

7.3 Wave damage to cargo ships

McCullagh and Nelder (1989) describe data provided by J. Crilley
and L. N. Hemingway of Lloyd’s Register of shipping concerning
the damage caused by waves to the forward section of certain
cargo ships. The data are in the form of a table giving the total
number of damage incidents by three factors (1) ship type, (2)
year of construction and (3) period of operation. (For further
discussion of this kind of aggregated data, see the next chapter.)
The total number of months in service for each ship type is also
given. The purpose of the analysis is to investigate the risk of
damage associated with the three factors.

The variables in the dataset ships.dta are:

� damage: total number of damage incidents
� type: ship type (A, B, C, D, or E)
� construction: year of construction (1960-64, 1965-69, 1970-

74, 1975-79)
� operation: period of operation (1960-74 or 1976-79)
� months: aggregate number of months in service

Note that type, construction, and operation are string vari-
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ables.

1. McCullagh and Nelder (1989) consider a log-linear Poisson
model with main effects for type, construction and service
and with the logarithm of months as an offset (a covariate
with regression coefficient set to 1). Fit the model using the
glm command (see option offset()).

2. Repeat the analysis above by relaxing the assumption that
φ = 1.

3. Obtain exponentiated regression coefficients and interpret them.
4. Derive scaled Pearson residuals and discuss if there are any

potential outliers.
5. Consider including an interaction between ship type and year

of construction. Note that an F -test should be used as demon-
strated for a linear model in Section 7.3.2.

7.4 Clotting times of blood

Here we consider data originally published by Hurn et al. (1945)
and provided by McCullagh and Nelder (1989). Normal plasma
was diluted to nine different concentrations with prothrombin-
free plasma and clotting was induced with two different lots of
thromoboplastin.

The variables in clotting.dta are:

� lot: lot number (1 or 2)
� conc: concentration of prothrombin-free plasma (in percent)
� time: clotting time

1. Following McCullagh and Nelder, use a log transformation
of conc and specify a gamma distribution and a reciprocal
link function 1/µi = ηi (use the link(reciprocal) option).
Fit the following sequence of models for the clotting times (1)
without covariates, (2) with a main effect of log concentration,
(3) with main effects of log concentration and lot and (4) with
main effects of log concentration and lot and their interaction.
Use F -tests as shown in Section 7.3.2 to decide which is the
best-fitting model.

2. Calculate predicted mean reaction times and plot them versus
concentration, using different line styles for the two lots. Also
show the observed clotting times as points on the same graph.





Chapter 8

Summary Measure

Analysis of Longitudinal

Data: Treatment of

Post-Natal Depression

8.1 Description of data

The dataset to be analyzed in this chapter originates from a clinical
trial of the use of estrogen patches in the treatment of postnatal de-
pression; full details are given in Gregoire et al. (1996). In total, 61
women with major depression, which began within 3 months of child-
birth and persisted for up to 18 months postnatally, were allocated
randomly to the active treatment or a placebo (a dummy patch); 34
received the former and the remaining 27 received the latter. The
women were assessed pretreatment and monthly for six months after
treatment on the Edinburgh postnatal depression scale (EPDS), higher
values of which indicate increasingly severe depression. The data are
shown in Table 8.1; a value of −9 in this table indicates that the obser-
vation is missing. The non-integer depression scores result from missing
questionnaire items (in this case the average of all available items was
multiplied by the total number of items). The variables are

� subj: patient identifier
� group: treatment group (1=estrogen patch, 0=placebo patch)
� pre: pretreatment or baseline EPDS depression score

157
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� dep1 to dep6: EPDS depression scores for visits 1 to 6
The main question of interest here is whether the estrogen patch is
effective at reducing post-natal depression compared with the placebo.

Table 8.1 Data in depress.dat
subj group pre dep1 dep2 dep3 dep4 dep5 dep6

1 0 18 17 18 15 17 14 15
2 0 27 26 23 18 17 12 10
3 0 16 17 14 −9 −9 −9 −9
4 0 17 14 23 17 13 12 12
5 0 15 12 10 8 4 5 5
6 0 20 19 11.54 9 8 6.82 5.05
7 0 16 13 13 9 7 8 7
8 0 28 26 27 −9 −9 −9 −9
9 0 28 26 24 19 13.94 11 9

10 0 25 9 12 15 12 13 20
11 0 24 14 −9 −9 −9 −9 −9
12 0 16 19 13 14 23 15 11
13 0 26 13 22 −9 −9 −9 −9
14 0 21 7 13 −9 −9 −9 −9
15 0 21 18 −9 −9 −9 −9 −9
16 0 22 18 −9 −9 −9 −9 −9
17 0 26 19 13 22 12 18 13
18 0 19 19 7 8 2 5 6
19 0 22 20 15 20 17 15 13.73
20 0 16 7 8 12 10 10 12
21 0 21 19 18 16 13 16 15
22 0 20 16 21 17 21 16 18
23 0 17 15 −9 −9 −9 −9 −9
24 0 22 20 21 17 14 14 10
25 0 19 16 19 −9 −9 −9 −9
26 0 21 7 4 4.19 4.73 3.03 3.45
27 0 18 19 −9 −9 −9 −9 −9
28 1 21 13 12 9 9 13 6
29 1 27 8 17 15 7 5 7
30 1 15 8 12.27 10 10 6 5.96
31 1 24 14 14 13 12 18 15
32 1 15 15 16 11 14 12 8
33 1 17 9 5 3 6 0 2
34 1 20 7 7 7 12 9 6
35 1 18 8 1 1 2 0 1
36 1 28 11 7 3 2 2 2
37 1 21 7 8 6 6.5 4.64 4.97
38 1 18 8 6 4 11 7 6
39 1 27.46 22 27 24 22 24 23
40 1 19 14 12 15 12 9 6
41 1 20 13 10 7 9 11 11
42 1 16 17 26 −9 −9 −9 −9
43 1 21 19 9 9 12 5 7
44 1 23 11 7 5 8 2 3
45 1 23 16 13 −9 −9 −9 −9
46 1 24 16 15 11 11 11 11
47 1 25 20 18 16 9 10 6
48 1 22 15 17.57 12 9 8 6.5
49 1 20 7 2 1 0 0 2
50 1 20 12.13 8 6 3 2 3
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Data in depress.dat (continued)
51 1 25 15 24 18 15.19 13 12.32
52 1 18 17 6 2 2 0 1
53 1 26 1 18 10 13 12 10
54 1 20 27 13 9 8 4 5
55 1 17 20 10 8.89 8.49 7.02 6.79
56 1 22 12 −9 −9 −9 −9 −9
57 1 22 15.38 2 4 6 3 3
58 1 23 11 9 10 8 7 4
59 1 17 15 −9 −9 −9 −9 −9
60 1 22 7 12 15 −9 −9 −9
61 1 26 24 −9 −9 −9 −9 −9

8.2 The analysis of longitudinal data

The data in Table 8.1 consist of repeated observations over time on
each of the 61 patients; such data are generally referred to as longitudi-
nal data, panel data or repeated measurements, and as cross-sectional
time-series in Stata. There is a large body of methods that can be
used to analyze longitudinal data, ranging from the simple to the com-
plex. Some useful references are Diggle et al. (2002), Everitt (1995),
and Hand and Crowder (1996). In this chapter we concentrate on the
following approaches:

� Graphical displays
� Summary measure or response feature analysis

In the next two chapters, more formal modeling techniques will be
applied to the data.

8.3 Analysis using Stata

Assuming the data are in an ASCII file, depress.dat, as listed in
Table 8.1, they may be read into Stata for analysis using the following
instructions:

infile subj group pre dep1 dep2 dep3 dep4 dep5 dep6 ///
using depress.dat, clear

mvdecode _all, mv(-9)

The second of these instructions converts values of −9 in the data
to missing values.

It is useful to begin examination of these data using the summarize
command to calculate means, variances, etc., within each of the two
treatment groups:

summarize pre-dep6 if group==0
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(see Display 8.1).

Variable Obs Mean Std. Dev. Min Max

pre 27 20.77778 3.954874 15 28
dep1 27 16.48148 5.279644 7 26
dep2 22 15.88818 6.124177 4 27
dep3 17 14.12882 4.974648 4.19 22
dep4 17 12.27471 5.848791 2 23

dep5 17 11.40294 4.438702 3.03 18
dep6 17 10.89588 4.68157 3.45 20

Display 8.1

summarize pre-dep6 if group==1

(see Display 8.2). There is a general decline in the depression score

Variable Obs Mean Std. Dev. Min Max

pre 34 21.24882 3.574432 15 28
dep1 34 13.36794 5.556373 1 27
dep2 31 11.73677 6.575079 1 27
dep3 29 9.134138 5.475564 1 24
dep4 28 8.827857 4.666653 0 22

dep5 28 7.309286 5.740988 0 24
dep6 28 6.590714 4.730158 1 23

Display 8.2

over time in both groups, with the values in the active treatment group
appearing to be consistently lower.

8.3.1 Graphical displays

A useful preliminary step in the analysis of longitudinal data is to
graph the observations in some way. The aim is to highlight two par-
ticular aspects of the data, namely, how they evolve over time and how
the measurements made at different times are related. A number of
graphical displays can be used, including:

� separate plots of each subject’s responses against time, differen-
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tiating in some way between subjects in different groups

� boxplots of the observations at each time point by treatment
group

� a plot of means and standard errors by treatment group for every
time point

� a scatterplot matrix of the repeated measurements
To begin, plot the required scatterplot matrix, identifying treatment

groups with the labels 0 and 1, using

graph matrix pre-dep6, mlabel(group) msymbol(none) ///
mlabposition(0)

The resulting plot is shown in Figure 8.1. The most obvious feature of
this diagram is the increasingly strong relationship between the mea-
surements of depression as the time interval between them decreases.
This has important implications for the models appropriate for longi-
tudinal data, as we will see in Chapter 10.
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Figure 8.1: Scatter-plot matrix for depression scores at six visits.

To obtain the other graphs mentioned above, the dataset needs to
be restructured from its present wide form (one column for each visit)
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to the long form (one row for each visit) using the reshape command.
Before running reshape, we will preserve the data using the preserve
command so that they can later be restored using restore:

preserve
reshape long dep, i(subj) j(visit)
list in 1/13, clean

The first 13 observations of the data in long form are shown in Dis-
play 8.3.

subj visit group pre dep
1. 1 1 0 18 17
2. 1 2 0 18 18
3. 1 3 0 18 15
4. 1 4 0 18 17
5. 1 5 0 18 14
6. 1 6 0 18 15
7. 2 1 0 27 26
8. 2 2 0 27 23
9. 2 3 0 27 18

10. 2 4 0 27 17
11. 2 5 0 27 12
12. 2 6 0 27 10
13. 3 1 0 16 17

Display 8.3

To inspect the patterns of missing values in this daset, we first delete
observations where dep is missing and then use the xtdes command:

drop if dep==.
xtdes, i(subj) t(visit)

giving the output shown in Display 8.4. We see that 45 subjects have
complete data, 8 subjects dropped out after the first visit, 7 after the
second, and 1 after the third. This kind of missingness pattern is called
“monotonic” because people never return once they have missed a visit.

We will now plot the subjects’ individual response profiles over the
visits separately for each group using the by() option. To obtain the
correct group labels with the by() option we must first label the values
of group:

label define treat 0 "Placebo" 1 "Estrogen"
label values group treat

In each graph we want to connect the points belonging to a given
subject, but avoid connecting points of different subjects. A simple
way of achieving this is to use the connect(ascending) option. Before
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. xtdes, i(subj) t(visit)

subj: 1, 2, ..., 61 n = 61
visit: 1, 2, ..., 6 T = 6

Delta(visit) = 1; (6-1)+1 = 6
(subj*visit uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 3 6 6 6 6

Freq. Percent Cum. Pattern

45 73.77 73.77 111111
8 13.11 86.89 1.....
7 11.48 98.36 11....
1 1.64 100.00 111...

61 100.00 XXXXXX

Display 8.4

plotting, the data need to be sorted by the grouping variable and by
the x variable (here visit):

sort group subj visit
twoway connected dep visit, connect(ascending) by(group) ///

ytitle(Depression) xlabel(1/6)

The connect(ascending) option connects points only so long as visit
is ascending. For the first subject (subj=1) this is true; but for the
second subject, visit begins at 1 again, so the last point for sub-
ject one is not connected with the first point for subject two. The
remaining points for this subject are, however, connected and so on.
The xlabel() option was used here to make the axis range start at
1 instead of 0. The diagram is shown in Figure 8.2. (Some points
for different subjects are connected at visit one; this happens when
successive subjects have missing data for all subsequent visits so that
visit does not decrease when subj increases.) The individual plots re-
flect the general decline in the depression scores over time indicated by
the means obtained using the summarize command; there is, however,
considerable variability. The phenomenon of “tracking” is apparent
whereby some individuals have consistently higher values than other
individuals, leading to within-subject correlations. Notice that some
profiles are not complete because of missing values.

To obtain the boxplots of the depression scores at each visit for each
treatment group, the following instruction can be used:

graph box dep, over(visit) over(group, ///
relabel(1 "Placebo group" 2 "Estrogen group"))
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Figure 8.2: Individual response profiles by treatment group.

Here the over() options specify two grouping variables, visit and
group, to plot the distributions by visit within groups. The relabel()
option is used to define labels for the groups. Here “1” refers to the
first level of group (0 in this case) and “2” to the second. The resulting
graph is shown in Figure 8.3. Again, the general decline in depression
scores in both treatment groups can be seen and, in the active treat-
ment group, there is some evidence of outliers which may need to be
examined. (Figure 8.2 shows that four of the outliers are due to one
subject whose response profile lies above the others.)

A plot of the mean profiles of each treatment group, which includes
information about the standard errors of each mean, can be obtained
using the collapse instruction that produces a dataset consisting of
selected summary statistics. Here, we need the mean depression score
on each visit for each group, the corresponding standard deviations, and
a count of the number of observations on which these two statistics are
based.

collapse (mean) dep (sd) sddep=dep (count) n=dep, ///
by(visit group)

list in 1/10, clean

(see Display 8.5). The mean value is now stored in dep; but since more
than one summary statistic for the depression scores were required, the
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Figure 8.3: Boxplots for six visits by treatment group.

visit group dep sddep n
1. 1 Placebo 16.48148 5.279644 27
2. 1 Estrogen 13.36794 5.556373 34
3. 2 Placebo 15.88818 6.124177 22
4. 2 Estrogen 11.73677 6.575079 31
5. 3 Placebo 14.12882 4.974648 17
6. 3 Estrogen 9.134138 5.475564 29
7. 4 Placebo 12.27471 5.848791 17
8. 4 Estrogen 8.827857 4.666653 28
9. 5 Placebo 11.40294 4.438702 17

10. 5 Estrogen 7.309286 5.740988 28

Display 8.5
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remaining statistics were given new names in the collapse instruction.
The required mean and standard error plots can now be produced

as follows:

generate high = dep + 2*sddep/sqrt(n)
generate low = dep - 2*sddep/sqrt(n)
twoway (rarea low high visit, bfcolor(gs12) sort) ///

(connected dep visit, mcolor(black) ///
clcolor(black) sort), by(group) ///
legend(order(1 "95% CI" 2 "mean depression"))

Here twoway rarea produces a shaded area between the lines low ver-
sus visit and high versus visit, the 95% confidence limits for the
mean. It is important that the line for the mean is plotted after the
shaded area because it would otherwise be hidden underneath it. The
sort option is used both in the rarea and connected plots to ensure
that the areas and lines are drawn for visit in ascending order. The
resulting diagram is shown in Figure 8.4.

5
10

15
20

0 2 4 6 0 2 4 6

Placebo Estrogen

95% CI mean depression

visit

Graphs by group

Figure 8.4: Mean and standard error plots; the shaded areas represent
± 2 standard errors.



Summary Measure Analysis of Longitudinal Data � 167

Table 8.2 Response features suggested in Matthews et al. (1990)

Type of Property to be compared
data between groups Summary measure
Peaked overall value of response mean or area under curve

Peaked value of most extreme response maximum (minimum)

Peaked delay in response time to maximum or minimum

Growth rate of change of response linear regression coefficient

Growth final level of response final value or (relative) difference
between first and last

Growth delay in response time to reach a particular value

8.3.2 Response feature analysis

A relatively straightforward approach to the analysis of longitudinal
data is that involving the use of summary measures, sometimes known
as response feature analysis. The responses of each subject are used to
construct a single number that characterizes some relevant aspect of
the subject’s response profile. (In some situations more than a single
summary measure may be required.) The summary measure needs to
be chosen before the analysis of the data. The most commonly used
measure is the mean of the responses over time because many inves-
tigations, e.g., clinical trials, are most concerned with differences in
overall levels rather than more subtle effects. Other possible summary
measures are listed in Matthews et al. (1990) and are shown here in
Table 8.2.

Having identified a suitable summary measure, the analysis of the
data generally involves the application of a simple univariate test (usu-
ally a t-test or its nonparametric equivalent) for group differences on
the single measure now available for each subject. For the estrogen
patch trial data, the mean over time seems an obvious summary mea-
sure. The mean of all non-missing values is obtained (after restoring
the data) using

restore
egen avg = rowmean(dep1 dep2 dep3 dep4 dep5 dep6)

The differences between these means may be tested using a t-test as-
suming equal variances in the populations:

ttest avg, by(group)

(see Display 8.6). The assumption of equal variances can be relaxed
using the unequal option:
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Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 27 14.75605 .8782852 4.563704 12.95071 16.56139
1 34 10.55206 .9187872 5.357404 8.682772 12.42135

combined 61 12.41284 .6923949 5.407777 11.02785 13.79784

diff 4.20399 1.294842 1.613017 6.794964

diff = mean(0) - mean(1) t = 3.2467
Ho: diff = 0 degrees of freedom = 59

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9990 Pr(|T| > |t|) = 0.0019 Pr(T > t) = 0.0010

Display 8.6

ttest avg, by(group) unequal

(see Display 8.7). In each case the conclusion is that the mean depres-

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 27 14.75605 .8782852 4.563704 12.95071 16.56139
1 34 10.55206 .9187872 5.357404 8.682772 12.42135

combined 61 12.41284 .6923949 5.407777 11.02785 13.79784

diff 4.20399 1.271045 1.660343 6.747637

diff = mean(0) - mean(1) t = 3.3075
Ho: diff = 0 Satterthwaite’s degrees of freedom = 58.6777

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9992 Pr(|T| > |t|) = 0.0016 Pr(T > t) = 0.0008

Display 8.7

sion score is substantially lower in the estrogen group than the placebo
group. The difference in mean depression scores is estimated as 4.2
with a 95% confidence interval (assuming equal variances) from 1.6 to
6.8.

We might also be interested in the rate of change (here decline)
of the response. An appropriate summary measure is the regression
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coefficient of depression on visit. This can be obtained as a weighted
sum of the depression scores at the six visits. However, for subjects
who dropped out, the least squares estimator will not be the same as
for subjects with complete data. It is therefore considerably easier to
ask Stata to estimate a linear regression model for each subject using
the statsby prefix. First we must reshape the data to long form as
before.

reshape long dep, i(subj) j(visit)

Now we can use the statsby command to replace the current dataset
by a dataset of summary statistics for each subject:

statsby slope=_b[visit] inter=_b[_cons] df=e(df_r), ///
by(group subj) clear: regress dep visit

list in 1/10

The second line specifies that dep should be regressed on visit for each
unique combination of group and subject. The reason for specifying
group here is so that this variable appears in the summary measure
dataset. The first line specifies which results from the regression com-
mand should be stored under which variable name. Here slope will
contain the regression coefficient of visit, inter the constant, and
df the residual degrees of freedom. The first ten observations of the
new dataset are shown in Display 8.8. To compare the mean slopes for

group subj slope inter df

1. 0 1 -.5714286 18 4
2. 0 2 -3.257143 29.06667 4
3. 0 3 -3 20 0
4. 0 4 -1.342857 19.86667 4
5. 0 5 -1.542857 12.73333 4

6. 0 6 -2.426 18.39267 4
7. 0 7 -1.342857 14.2 4
8. 0 8 1 25 0
9. 0 9 -3.687428 30.06267 4

10. 0 10 1.571429 8 4

Display 8.8

subjects who had at least 1 residual degree of freedom, we again use
the ttest command

ttest slope if df>0, by(group)
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giving the output shown in Display 8.9 There is no evidence for a

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 17 -1.172168 .3237815 1.334985 -1.858554 -.485782
1 29 -1.066108 .2632224 1.417496 -1.605295 -.5269217

combined 46 -1.105304 .2025153 1.373526 -1.513191 -.6974175

diff -.1060597 .4239978 -.9605711 .7484518

diff = mean(0) - mean(1) t = -0.2501
Ho: diff = 0 degrees of freedom = 44

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.4018 Pr(|T| > |t|) = 0.8036 Pr(T > t) = 0.5982

Display 8.9

difference in the mean rate of decline between the two groups.
The summary measure approach to longitudinal data has a number

of advantages:
� Appropriate choice of summary measure ensures that the anal-

ysis is focused on relevant and interpretable aspects of the data,
� The method is easy to explain and intuitive, and
� To some extent missing and irregularly spaced observations can

be accommodated.
However, the method is somewhat ad hoc, particularly in its treatment
of missing data. For instance, if the summary measure is a mean, but
there is actually a decline in the response over time, then the mean of
all available data will overestimate the mean for those who dropped out
early (a better summary measure in this case is the intercept from a
linear regression model). Furthermore, response feature analysis treats
all summaries as equally precise even if some are based on fewer obser-
vations due to missing data. In the next two chapters we will therefore
discuss more formal approaches to longitudinal data, random effects
modeling, and generalized estimating equations.

8.4 Exercises

8.1 • Treatment of post-natal depression
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1. Produce boxplots corresponding to those shown in Figure 8.3
using the data in wide form.

2. Compare the results of the t-tests given in the text with the
corresponding t-tests calculated only for those subjects having
observations on all six post-randomization visits.

3. Repeat the summary measures analysis described in the text
using the maximum over time instead of the mean (see help
egen).

4. Test for differences in the mean over time controlling for the
baseline measurement using
a. a change score defined as the difference between the mean

over time and the baseline measurement, and
b. analysis of covariance of the mean over time using the

baseline measurement as a covariate.
See also Exercises in Chapter 9.

8.2 Wage increases

1. For the data described in Exercise 1.2, produce boxplots for
the log hourly wage over time by ethnic/racial group.

2. Plot the mean log wage over time by ethnic group, showing
the 95% confidence bands as in Figure 8.4.

3. Compare the mean log wages between the three groups using
multiple regression with dummy variables.

4. Repeat the analysis above but this time controlling for educ,
the number of years of schooling.

5. Interpret the findings.

See also Exercise 9.4.

8.3 Jaw growth

In this jaw growth dataset from Pothoff and Roy (1964), eleven
boys and sixteen girls had the distance between the center of the
pituitary gland and the pteryomaxillary fissure recorded at ages
8, 10, 12, and 14.

The variables in the dataset growth.dta are:

� idnr: subject identifier
� measure: distance between pituitary and maxillary fissure in

millimeters
� age: age in years
� sex: sex (1=boys, 2=girls)

1. Plot the observed growth trajectories, i.e., plot measure against
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age, connecting successive observations on the same subject
using the connect(ascending) option. Use the by() option
to obtain separate graphs by sex.

2. Use the statsby prefix to obtain estimated intercepts and
slopes for each subject and compare the means of these sum-
mary measures between boys and girls using independent
samples t-tests. To make the intercepts meaningful, subtract
8 from age before running the statsby prefix command.

8.4 Treatment of Alzheimer’s

The data used here arise from an investigation of the use of
lecithin, a precursor of choline, in the treatment of Alzheimer’s
disease. Traditionally it has been assumed that this condition
involves an inevitable and progressive deterioration in all as-
pects of intellect, self-care, and personality. Recent work sug-
gests that the disease involves pathological changes in the cen-
tral cholinergic system, which it might be possible to remedy by
long-term dietary enrichment with lecithin. In particular, the
treatment might slow down or even halt the memory impairment
usually associated with the condition. Patients suffering from
Alzheimer’s disease were randomly allocated to receive either le-
chitin or placebo for a six-month period. A cognitive test score
giving the number of words recalled from a previously studied
list was recorded at the start, at one month, at two months, at
four months and at six months. (The data are given in Everitt
and Pickles, 2004.)

The variables in alzheimer.dta are:

� group: treatment group (1=placebo, 2=lecithin)
� v1 to v5: number of words recalled at the start and each

subsequent month

1. In these data the clinicians were specifically interested in the
maximum value of the response variable over the five measure-
ment occasions. Generate a variable equal to the maximum
measurement for each person.

2. We wish to compare the distribution of the maximum num-
ber of words recalled across the five visits between treatment
groups. Do the assumptions of an independent samples t test
appear to be satisfied?

3. Use an appropriate test for comparing the treatment groups.



Chapter 9

Random Effects Models:

Thought Disorder and

Schizophrenia

9.1 Description of data

In this chapter we will analyze data from the Madras Longitudinal
Schizophrenia Study in which patients were followed up monthly after
their first hospitalization for schizophrenia. The study is described in
detail in Thara et al. (1994). Here we use a subset of the data analyzed
by Diggle et al. (2002), namely data on thought disorder (1: present,
0: absent) at 0, 2, 6, 8, and 10 months after hospitalization on women
only. The thought disorder responses are given as y0 to y10 in Table 9.1
where a “.” indicates a missing value. The variable early is a dummy
variable for early onset of disease (1: age-of-onset less than 20 years, 0:
age-of-onset 20 years or above). An important question here is whether
the course of illness differs between patients with early and late onset.
We will also reanalyze the post-natal depression data described in the
previous chapter.

9.2 Random effects models

The data listed in Table 9.1 consist of repeated observations on the
same subject taken over time and are a further example of a set of lon-
gitudinal data. During the last decades, statisticians have considerably

173
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Table 9.1 Data in madras.dta

id early y0 y2 y6 y8 y10
1 0 1 1 0 0 0
6 1 0 0 0 0 0

10 0 1 1 0 0 0
13 0 0 0 0 0 0
14 0 1 1 1 1 1
15 0 1 1 0 0 0
16 0 1 0 1 0 0
22 0 1 1 0 0 0
23 0 0 0 1 0 0
25 1 0 0 0 0 0
27 1 1 1 1 0 1
28 0 0 0 . . .
31 1 1 1 0 0 0
34 0 1 1 0 0 0
36 1 1 1 0 0 0
43 0 1 1 1 0 0
44 0 0 1 0 0 0
45 0 1 1 0 1 0
46 0 1 1 1 0 0
48 0 0 0 0 0 0
50 0 0 0 1 1 1
51 1 0 1 1 0 0
52 0 1 1 0 1 0
53 0 1 0 0 0 0
56 1 1 0 0 0 0
57 0 0 0 0 0 0
59 0 1 1 0 0 0
61 0 0 0 0 0 0
62 1 1 1 0 0 0
65 1 0 0 0 0 0
66 0 0 0 0 0 0
67 0 0 1 0 0 0
68 0 1 1 1 1 1
71 0 1 1 1 0 0
72 0 1 0 0 0 0
75 1 1 0 0 . .
76 0 0 1 . . .
77 1 0 0 0 0 0
79 0 1 . . . .
80 0 1 1 0 0 0
85 1 1 1 1 0 0
86 0 0 1 . . .
87 0 1 0 0 0 .
90 0 1 1 0 0 0
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enriched the methodology available for the analysis of such data (see
Lindsey, 1999, or Diggle et al. 2002) and many of these developments
are implemented in Stata.

9.2.1 Normally distributed responses

Longitudinal data require special methods of analysis because the re-
sponses at different time points on the same individual may not be
independent even after conditioning on the covariates. For a linear re-
gression model this means that the residuals for the same individual
are correlated. We can model these residual correlations by partitioning
the total residual for subject i at time point j into a subject-specific
random intercept or permanent component ui which is constant over
time plus a residual εij which varies randomly over time. The resulting
random intercept model can be written as

yij = x′
ijβ + ui + εij. (9.1)

The random intercept and residual are each assumed to be indepen-
dently normally distributed with zero means and constant variances τ 2

and σ2, respectively. Furthermore, these random terms are assumed to
be independent of each other and the covariates xij. (It should be noted
that moment-based approaches do not require normality assumptions,
see, e.g., Wooldridge (2002), Section 10.4.)

The random intercept model implies that the total residual variance
is

Var(ui + εij) = τ 2 + σ2.

Due to this decomposition of the total residual variance into a between-
subject component τ 2 and a within-subject component σ2, the model is
sometimes referred to as a variance components model. The covariance
between the total residuals at any two time points j and j′ on the same
subject i is

Cov(ui + εij, ui + εij′) = τ 2.

Note that these covariances are induced by the shared random inter-
cept: for subjects with ui > 0, the total residuals will tend to be larger
than the mean (0) and for subjects with ui < 0 they will tend to be
smaller than the mean.

It follows from the two relations above that the residual correlations
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are given by

Cor(ui + εij, ui + εij′) =
τ 2

τ 2 + σ2
.

This intraclass correlation can be interpreted as the proportion of the
total residual variance (denominator) that is due to residual variability
between subjects (numerator).

The random intercept can be interpreted as the combined effect of all
unobserved subject-specific covariates, often referred to as unobserved
heterogeneity. The random intercepts represent individual differences
in the overall mean level of the response after controlling for covariates.
Random coefficients of covariates can be used to allow for between-
subject heterogeneity in the effects of the covariates. For instance, in
longitudinal data, the shape of the response profile may vary between
subjects in addition to variability in its vertical position. If the overall
shape is linear in time tij, subjects may differ randomly in their slopes
giving a model of the form

yij = x′
ijβ + u0i + u1itij + εij. (9.2)

Here u0i is a random intercept and u1i a random coefficient or slope
of tij. These random effects are assumed to have a bivariate normal
distribution with zero means, variances τ 2

0 and τ 2
1 , and covariance τ01.

They are furthermore assumed to be uncorrelated across subjects and
uncorrelated with εij or any of the covariates. If the covariate vector
xij includes tij, the corresponding fixed coefficient βt represents the
mean coefficient of time whereas the random slope u1i represents the
deviation from the mean coefficient for subject i. (Not including tij in
the fixed part of the model would imply that the mean slope is zero.)
The model can also include nonlinear functions of tij, typically powers
of tij, whose coefficients may be fixed or random.

The total residual in (9.2) is u0i + u1itij + εij with variance

Var(u0i + u1itij + εij) = τ 2
0 + 2τ01tij + τ 2

1 t2ij + σ2

which is no longer constant over time but heteroscedastic. Similarly,
the covariance between two total residuals of the same subject,

Cov(u0i + u1itij + εij, u0i + u1itij′ + εij′) = τ 2
0 + τ01(tij + tij′) + τ 2

1 tijtij′ ,

is not constant over time. It should also be noted that both the random
intercept variance and the correlation between the random coefficient
and random intercept depend on the location of tij, i.e., re-estimating
the model after adding a constant to tij will lead to different estimates.
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General terms for random intercept or random coefficient models are
random effects models, mixed effects or mixed models, where “mixed”
refers to the presence of both fixed effects β and random effects u0i and
u1i. The models are also hierarchical or multilevel since the elementary
observations at the individual time points (level 1) are nested in sub-
jects (level 2). The models discussed in this chapter are appropriate
for any kind of clustered or two-level data, not just longitudinal. Other
examples of two-level data are people in families, households, neighbor-
hoods, cities, schools, hospitals, firms, etc. In all these types of data,
we can generally not assume that responses for subjects in the same
cluster are independent after controlling for covariates because there is
likely to be unobserved heterogeneity between clusters.

9.2.2 Non-normal responses

For non-normal responses (for example, binary responses) we can ex-
tend the generalized linear model discussed in Chapter 7 by introducing
a random intercept ui into the linear predictor,

ηij = x′
ijβ + ui, (9.3)

where the ui are independently normally distributed with mean zero
and variance τ 2. (We have encountered a similar model in Chapter 7,
namely the negative binomial model with a log link and Poisson dis-
tribution where ui has a log-gamma distribution, and there is only one
observation per subject.) We can further extend the random intercept
model to include random coefficients as we did in the previous section.

Unfortunately, such generalized linear mixed models are difficult to
estimate. This is because the likelihood involves integrals over the
random effects distribution and these integrals generally do not have
closed forms. Stata uses numerical integration by adaptive Gauss-
Hermite quadrature for random intercept models. A user-written pro-
gram gllamm can be used to estimate random coefficient models by
adaptive quadrature. The program can also be used to estimate multi-
level models with more than two levels of nesting (Rabe-Hesketh et al.,
2005). Note that approximate methods such as penalized quasilikeli-
hood (e.g., Breslow and Clayton, 1993) and its refinements do not tend
to work well for data with dichotomous responses and small cluster sizes
such as the thought disorder data (see also Rabe-Hesketh et al., 2002).

An important problem with many longitudinal data sets is the oc-
currence of dropouts, e.g., subjects failing to complete all scheduled
visits in the post-natal depression data. A taxonomy of dropouts is
given in Diggle et al. (2002). Fortunately, maximum likelihood estima-
tion is consistent as long as the data are missing at random (MAR),
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that is, the probability of missingness does not depend on the values
that are missing. For example, if the model is correctly specified, we ob-
tain consistent parameter estimates even if the probability of dropping
out depends on the responses at earlier time points.

Useful books on random effects modeling include Snijders and Bosker
(1999), Verbeke and Molenberghs (2000), Goldstein (2003), and Skro-
ndal and Rabe-Hesketh (2004), as well general books on longitudinal
data such as Lindsey (1999). Rabe-Hesketh and Skrondal (2005) is a
book on “Multilevel and Longitudinal Modeling Using Stata”.

9.3 Analysis using Stata

9.3.1 Post-natal depression data

As an example of continuous responses, we first consider the post-natal
depression data analyzed in the previous chapter. The data are read
using

infile subj group pre dep1 dep2 dep3 dep4 dep5 dep6 ///
using depress.dat, clear

All responses must be stacked in a single variable, including the baseline
score pre. This is achieved by first renaming pre to dep0 and then
using the reshape command:

rename pre dep0
reshape long dep, i(subj) j(visit)

We also define value labels for group and change “−9” to missing values

label define treat 0 "Placebo" 1 "Estrogen"
label values group treat
mvdecode _all, mv(-9)

We now estimate a random intercept model using xtreg. (Note that
commands for longitudinal data have the prefix xt in Stata which
stands for cross-sectional time series). First assume that the mean
depression score declines linearly from baseline with different slopes in
the two groups:

generate gr_vis = group*visit
xtreg dep group visit gr_vis, i(subj) mle

The syntax is the same as for regress except that the i() option is
used to specify the cluster identifier, here subj, and the mle option to
obtain maximum likelihood estimates.

The estimates of the “fixed” regression coefficients that do not vary
over individuals are given in the first part of the table in Display 9.1,
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Random-effects ML regression Number of obs = 356
Group variable (i): subj Number of groups = 61

Random effects u_i ~ Gaussian Obs per group: min = 2
avg = 5.8
max = 7

LR chi2(3) = 225.74
Log likelihood = -1045.7117 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.644653 1.163462 -1.41 0.157 -3.924996 .6356901
visit -1.531905 .1736977 -8.82 0.000 -1.872346 -1.191464

gr_vis -.5564469 .2220225 -2.51 0.012 -.9916031 -.1212908
_cons 19.29632 .8717659 22.13 0.000 17.58769 21.00495

/sigma_u 3.560969 .3949951 2.865167 4.425745
/sigma_e 3.948191 .161907 3.643277 4.278624

rho .4485701 .0598845 .3350721 .5664725

Likelihood-ratio test of sigma_u=0: chibar2(01)= 114.03 Prob>=chibar2 = 0.000

Display 9.1

whereas the estimates of the standard deviations τ of the random in-
tercept and σ of the residuals are given under /sigma u and /sigma e
in the second part. The intraclass correlation rho is estimated as 0.45,
implying that 45% of the residual variance is between subjects and
55% within subjects. There is a significant interaction between group
and visit at the 5% level; the mean decrease in depression score is esti-
mated as 1.53 per visit in the placebo group and 1.53 + 0.56 per visit
in the estrogen group. We can obtain the estimated slope of time in the
estrogen group with its p-value and confidence interval using lincom:

lincom visit + gr_vis

(see Display 9.2).

( 1) [dep]visit + [dep]gr_vis = 0

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) -2.088352 .1384264 -15.09 0.000 -2.359663 -1.817041

Display 9.2
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The model assumes that the effect of visit is linear. However, it
may well be that the depression score gradually levels off, remaining
stable after some period of time. We can investigate this by adding a
quadratic term of visit:

generate vis2 = visit^2
xtreg dep group visit gr_vis vis2, i(subj) mle

The p-value for vis2 in Display 9.3 suggests that the average curve is
not linear. To picture the mean curve, we now plot it together with

Random-effects ML regression Number of obs = 356
Group variable (i): subj Number of groups = 61

Random effects u_i ~ Gaussian Obs per group: min = 2
avg = 5.8
max = 7

LR chi2(4) = 268.39
Log likelihood = -1024.3838 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.471391 1.139394 -1.29 0.197 -3.704563 .7617806
visit -3.787308 .3710888 -10.21 0.000 -4.514628 -3.059987

gr_vis -.5848499 .2073966 -2.82 0.005 -.9913396 -.1783601
vis2 .3851916 .0569336 6.77 0.000 .2736038 .4967793
_cons 20.91077 .8860177 23.60 0.000 19.17421 22.64734

/sigma_u 3.584665 .3869129 2.901173 4.429181
/sigma_e 3.678709 .1508811 3.394561 3.986641

rho .4870545 .0589037 .3737279 .6014435

Likelihood-ratio test of sigma_u=0: chibar2(01)= 133.51 Prob>=chibar2 = 0.000

Display 9.3

the observed individual response profiles:

predict pred0, xb
sort subj visit
twoway (line pred0 visit, conn(ascending) lwidth(thick)) ///

(line dep visit, conn(ascending) lpatt(dash)), ///
by(group) ytitle(Depression) ///
legend(order(1 "Fitted mean" 2 "Observed scores"))

giving the graph shown in Figure 9.1 which suggests that the response
curves tend to level off.

Extending the model to include a random coefficient of visit re-
quires the xtmixed command that was introduced in Stata release 9.
First we re-estimate the random intercept model using xtmixed:
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Figure 9.1: Response profiles and fitted mean curves by treatment
group.

xtmixed dep group visit gr_vis vis2 || subj:, mle

Here the fixed part of the model is specified as in all estimation com-
mands, and the random part is specified after the double-bar ||. First
the cluster-identifier is given, followed by a colon. Then all explanatory
variables that should have random coefficients varying between clus-
ters are listed. A random intercept is automatically included unless
the nocons option is used. Here we only require a random intercept,
so no variables are listed after subj:. After the comma we use the
mle option to specify maximum likelihood estimation (the default is
restricted maximum likelihood estimation).

The output shown in Display 9.4 agrees perfectly with that from
xtreg with sd( cons) corresponding to /sigma u and sd(Residual)
to /sigma e.

The most common method of predicting random effects is by their
posterior means, their expectations given the observed responses and
covariates with the parameter estimates plugged in. These predictions
are also known as empirical Bayes predictions, shrinkage estimates
or, in linear mixed models, best linear unbiased predictions (BLUP).
Adding predictions of the random intercept to the predicted mean re-
sponse profile gives individual predicted response profiles. These can be
obtained after estimation with xtmixed using the predict command
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Mixed-effects ML regression Number of obs = 356
Group variable: subj Number of groups = 61

Obs per group: min = 2
avg = 5.8
max = 7

Wald chi2(4) = 409.15
Log likelihood = -1024.3838 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.471391 1.139396 -1.29 0.197 -3.704567 .7617841
visit -3.787308 .3710723 -10.21 0.000 -4.514596 -3.060019

gr_vis -.5848499 .2073853 -2.82 0.005 -.9913176 -.1783821
vis2 .3851916 .0569327 6.77 0.000 .2736056 .4967776
_cons 20.91077 .8860139 23.60 0.000 19.17422 22.64733

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Identity
sd(_cons) 3.584665 .3869167 2.901167 4.429191

sd(Residual) 3.678709 .1508831 3.394557 3.986645

LR test vs. linear regression: chibar2(01) = 133.51 Prob >= chibar2 = 0.0000

Display 9.4
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with the fitted option:

predict pred1, fitted

A graph of the individual predicted profiles is obtained using

twoway (line pred1 visit, connect(ascending)), by(group) ///
ytitle(Depression) xlabel(0/6)

and given in Figure 9.2. It is clear that the mean profiles in Figure 9.1

0
10

20
30

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Placebo Estrogen

D
ep

re
ss

io
n

visit
Graphs by group

Figure 9.2: Predicted response curves for random intercept model.

have simply been shifted up and down to fit the observed individual
profiles more closely.

We can also obtain empirical Bayes predictions of the random in-
tercepts themselves using the reffects option

predict inter, reffects

Unfortunately, xtmixed does not produce standard errors of the
predictions at the time of writing this book. To obtain these, we will
use a user-contributed program gllamm (for generalized linear latent
and mixed models) described in Rabe-Hesketh et al. (2002), (2004b)
and Rabe-Hesketh and Skrondal (2005) (see also www.gllamm.org).
The program can be obtained from the SSC archive using

ssc install gllamm

We will first re-estimate the random intercept model using gllamm:
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gllamm dep group visit gr_vis vis2, i(subj) adapt

The syntax is as for xtreg except that the mle option is not required
since gllamm always uses maximum likelihood, and we have specified
adapt to use adaptive quadrature. The estimates are shown in Dis-
play 9.5.

number of level 1 units = 356
number of level 2 units = 61

Condition Number = 88.719062

gllamm model

log likelihood = -1024.3838

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.471391 1.1394 -1.29 0.197 -3.704574 .7617913
visit -3.787308 .3710907 -10.21 0.000 -4.514632 -3.059983

gr_vis -.5848499 .2073976 -2.82 0.005 -.9913417 -.178358
vis2 .3851916 .0569339 6.77 0.000 .2736033 .4967799
_cons 20.91077 .8860219 23.60 0.000 19.1742 22.64734

Variance at level 1
------------------------------------------------------------------------------

13.532897 (1.1101096)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): 12.849837 (2.7739368)
------------------------------------------------------------------------------

Display 9.5

The format of the output for the random part is somewhat differ-
ent from that of xtreg and xtmixed. “Variance at level 1” refers to
the residual variance σ2, whereas var(1) under “Variances and covari-
ances of random effects” refers to the random intercept variance τ 2

with standard errors given in parentheses. (These standard errors are
not very useful and neither are the standard errors for the standard
deviations reported by xtreg or xtmixed, since the sampling distribu-
tions of the estimates are unlikely to be well approximated by a normal



Random Effects Models: Thought Disorder and Schizophrenia � 185

distribution.)
All estimates from gllamm are nearly identical to those using xtreg

or xtmixed. This will not always be the case since gllamm uses numer-
ical integration for all models, whereas xtreg and xtmixed exploit the
availability of a closed form likelihood for linear mixed models. (Note
that we would not generally recommend using gllamm for linear mixed
models but do so here to obtain standard errors for the predicted ran-
dom effects.) In gllamm the accuracy of the estimates can be improved
by increasing the number of quadrature points for numerical integration
from its default of 8 using the nip() option.

We can obtain the empirical Bayes predictions of ui with standard
errors using gllamm’s prediction command gllapred with the u option

gllapred rand, u
(means and standard deviations stored in randm1 rands1)

which creates new variables randm1 for the predictions and rands1
for the standard errors. The standard errors are posterior standard
deviations which are equal to the prediction error standard deviations
for linear models. In the multilevel literature, these standard errors are
also known as “comparative standard errors”. First we make sure that
the empirical Bayes predictions are close to those previously produced
by xtmixed and stored in the variable inter:

assert abs(randm1-inter)<1e-3

The predictions are equal to at least three decimal places.
A graph of the predictions with their approximate 95% confidence

intervals for the placebo group is then obtained using

generate f = visit==0
sort randm1
generate rank = sum(f)
serrbar randm1 se rank if visit==0&group==0, scale(2) ///

xtitle(Rank) ytitle("Random intercept")

with the result shown in Figure 9.3. In linear mixed models the pre-
dicted random effects should be normally distributed, so we can use
graphs to assess the assumption that the “true” random effects are
normally distributed. One possibility is a kernel density plot with a
normal density superimposed:

kdensity randm1 if visit==0, epanechnikov normal ///
xtitle("Predicted random intercept")

In Figure 9.4, the normal density appears to approximate the empirical
density well. Note that this diagnostic cannot be used for generalized
linear mixed models where the predicted random effects are generally
non-normal even under correct specification.
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Figure 9.3: Predicted random intercepts and approximate 95% confi-
dence intervals for the placebo group (based on the prediction error
standard deviations).
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Figure 9.4: Kernel density estimate for empirical Bayes predictions and
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We will now allow the coefficient of visit to vary randomly be-
tween subjects by including a random slope in the model. This can
be done using the xtmixed command. (We recommend using xtmixed
instead of gllamm here because gllamm is slower and sometimes less
accurate than xtmixed for linear mixed models.) Now we list a single
variable, visit, in the random part after subj: to request a random
coefficient for this variable in addition to a random intercept. By de-
fault, xtmixed specifies all random effects as mutually independent.
We therefore specify the covariance(unstructured) option, abbrevi-
ated cov(unstr), to freely estimate the correlation between intercept
and slope.

xtmixed dep group visit gr_vis vis2 || subj: visit, ///
cov(unstr) mle

In Display 9.6 we see that the output under “Random effects parame-
ters” has become more complex. The random intercept standard devi-
ation has been estimated as 3.11, the random slope standard deviation
as 0.61, and the correlation between intercepts and slopes as 0.09. The
within-subject residual standard deviation (around the subject-specific
regression lines) has been estimated as 3.46.

The log likelihood of this model is −1017.27 compared with −1024.38
for the random intercept model. A conventional likelihood ratio test
would compare twice the difference in log likelihoods with a chi-squared
distribution with two degrees of freedom (for an extra variance and co-
variance parameter). However, the null hypothesis that the slope has
zero variance lies on the boundary of the parameter space (since a vari-
ance cannot be negative), and this test is therefore not valid. Snijders
and Bosker (1999) suggest dividing the p-value of the conventional like-
lihood ratio test by two, giving a highly significant result here.

The empirical Bayes predictions for the random coefficient model
can be obtained and plotted using

predict u*, reffects

twoway scatter u1 u2 if visit==0, xtitle("Intercept") ///
ytitle("Slope")

giving the graph in Figure 9.5. We could again assess the normality of
the random effects graphically.

The predicted profiles can be computed and plotted using

predict pred2, fitted
sort subj visit
twoway (line pred2 visit, connect(ascending)), by(group) ///

ytitle(Depression) xlabel(0/6)

resulting in Figure 9.6 where the curves are now no longer parallel due
to the random slopes.
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Mixed-effects ML regression Number of obs = 356
Group variable: subj Number of groups = 61

Obs per group: min = 2
avg = 5.8
max = 7

Wald chi2(4) = 267.33
Log likelihood = -1017.2722 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.471561 1.021315 -1.44 0.150 -3.473301 .5301793
visit -3.779156 .3749743 -10.08 0.000 -4.514093 -3.04422

gr_vis -.5870936 .2681352 -2.19 0.029 -1.112629 -.0615582
vis2 .3889244 .0536412 7.25 0.000 .2837896 .4940593
_cons 20.90318 .7971398 26.22 0.000 19.34081 22.46554

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

subj: Unstructured
sd(visit) .6063821 .1436765 .3811204 .9647851
sd(_cons) 3.119386 .4576316 2.339877 4.158581

corr(visit,_cons) .0929159 .2947014 -.4537794 .5887945

sd(Residual) 3.458239 .1559451 3.16571 3.777799

LR test vs. linear regression: chi2(3) = 147.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Display 9.6
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Figure 9.5: Scatterplot of predicted intercepts and slopes.
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Figure 9.6: Predicted response profiles for random coefficient model.
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Finally, we can assess the fit of the model by plotting both observed
and predicted profiles in a trellis graph containing a separate scatterplot
for each subject. For the placebo group the command is

twoway (line pred2 visit) (connect dep visit, lpat(dash)) ///
if group==0, by(subj, style(compact)) ///
ytitle(Depression) legend(order(1 "Fitted" 2 "Observed"))

and similarly for the treatment group. The resulting graphs are shown
in Figure 9.7. The model appears to represent the data reasonably
well.

9.4 Thought disorder data

The thought disorder data are read in using

use madras, clear

Next we stack the dichotomous responses y0 to y10 into a single vari-
able y, and create a new variable month taking on values 0 to 10 using

reshape long y, i(id) j(month)

We wish to investigate how the risk of having thought disorder evolves
over time and whether there are differences between early and late
onset patients. An obvious first model to estimate is a logistic random
intercept model with fixed effects of month, early and their interaction.
This can be done using Stata’s xtlogit command:

generate month_early = month*early
xtlogit y month early month_early, i(id) or

The output is shown in Display 9.7. The or option was used to obtain
odds ratios in the first part of the table. These suggest that there is
a decrease in the odds of having thought disorder over time. However,
patients with early onset schizophrenia do not differ significantly from
late onset patients in their odds of thought disorder at the time of
hospitalization (OR=1.05) nor do their odds change at a significantly
different rate over time (OR=0.94). The log of the random intercept
standard deviation is estimated as 1.02 and the standard deviation
itself as 1.63. Here rho is the estimated intraclass correlation for the
latent responses,

ρ̂ =
τ 2

τ 2 + π2/3
;

see the latent response formulation of the ordinal logit model in Chap-
ter 6.
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Figure 9.7: Observed and predicted response profiles for random coef-
ficient model.
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Random-effects logistic regression Number of obs = 244
Group variable (i): id Number of groups = 44

Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 5.5
max = 6

Wald chi2(3) = 37.72
Log likelihood = -124.77883 Prob > chi2 = 0.0000

y OR Std. Err. z P>|z| [95% Conf. Interval]

month .6695615 .0507932 -5.29 0.000 .577056 .7768962
early 1.047054 .9092773 0.05 0.958 .1908854 5.74335

month_early .9358536 .1302074 -0.48 0.634 .7124893 1.229242

/lnsig2u .9798043 .4214652 .1537477 1.805861

sigma_u 1.632157 .3439486 1.079906 2.466822
rho .4474342 .1042017 .26171 .6490836

Likelihood-ratio test of rho=0: chibar2(01) = 26.04 Prob >= chibar2 = 0.000

Display 9.7

The same model can be estimated in gllamm which allows posterior
means and other predictions to be computed using gllapred:

gllamm y month early month_early, i(id) link(logit) ///
family(binom) adapt eform

estimates store mod1

Here we used syntax very similar to that of glm with the link(),
family(), and eform options and stored the estimates for later using
estimates store. In Display 9.8 we can see that the estimates are
quite close to those using xtlogit. However, there are some small dis-
crepancies because the two programs use different algorithms and have
different defaults for the number of quadrature points (12 in xtlogit
and 8 in gllamm). Increasing the number of quadrature points for
gllamm to 12 using the nip(12) option gives virtually the same es-
timates as for 8 points, suggesting that 8 points are sufficient. In-
creasing the number of quadrature points for xtlogit to 20 using the
intpoints(20) option gives estimates that are closer to the gllamm
estimates above.

We now include random slopes of month in the model,

ηij = x′
ij + u0i + u1itij.

When there are several random effects (here intercept and slope), we
have to define an equation for each of them to specify the variable multi-
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number of level 1 units = 244
number of level 2 units = 44

Condition Number = 19.833627

gllamm model

log likelihood = -124.74702

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

month .6677456 .0516849 -5.22 0.000 .5737548 .7771337
early 1.047086 .919712 0.05 0.958 .1872089 5.856504

month_early .935051 .1309953 -0.48 0.632 .7105372 1.230506

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 2.755484 (1.242513)
------------------------------------------------------------------------------

Display 9.8

plying the random effect. The random intercept u0i in equation (9.2) is
not multiplied by anything, or equivalently it’s multiplied by 1, whereas
the random coefficient u1i is multiplied by tij, the variable month. We
therefore define the equations as follows:

generate cons = 1
eq inter: cons
eq slope: month

The syntax for the equations is simply eq label: varlist, where label
is an arbitrary equation name. We can now run gllamm with two
extra options, nrf(2) to specify that there are two random effects
and eqs(inter slope) to define the variables multiplying the random
effects:

gllamm y month early month_early, i(id) nrf(2) ///
eqs(inter slope) link(logit) family(binom) ///
adapt eform

estimates store mod2

giving the output in Display 9.9. The log likelihood has decreased by
about 3.5 suggesting that the random slope is needed. The fixed effects
estimates are very similar to those for the random intercept model. The
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estimated variances of the intercept and slope are denoted var(1) and
var(2) respectively, and their covariance cov(2,1). (The first random
effect is the random intercept since inter was the first equation in
the eqs() option.) We see that the estimated correlation between the
random intercepts and slopes at the time of hospitalization is −0.71.
Note that both the random intercept variance and the covariance and
correlation refer to the situation when month is zero and change if we
translate month by adding or subtracting a constant.

number of level 1 units = 244
number of level 2 units = 44

Condition Number = 26.503719

gllamm model

log likelihood = -121.19976

y exp(b) Std. Err. z P>|z| [95% Conf. Interval]

month .6031122 .0769516 -3.96 0.000 .4696698 .7744683
early 1.039168 1.252062 0.03 0.975 .0979712 11.02232

month_early .9377542 .1937734 -0.31 0.756 .6254614 1.405975

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 7.1611437 (4.0235342)
cov(2,1): -.70697222 (.53384332) cor(2,1): -.70296392

var(2): .14123952 (.0941977)
------------------------------------------------------------------------------

Display 9.9

We now produce some graphs of the model predictions, considering
first the random intercept model. For the post-natal depression data
the mean profile in Figure 9.1 was simply equal to the fixed part of the
random intercept model x′

ijβ̂ since the mean of the random intercept
is zero. In the logistic model, things are more complicated because the
probability of thought disorder given the random intercept (the subject-
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specific probability) is a nonlinear function of the random intercept:

Pr(yij = 1|ui) =
exp(x′

ijβ + ui)
1 + exp(x′

ijβ + ui)
. (9.4)

The population averaged probability is therefore not equal to the above
with ui = 0, ∫

Pr(yij = 1|ui) g(ui) dui �= exp(x′
ijβ)

1 + exp(x′
ijβ)

, (9.5)

where g(ui) is the normal probability density function of ui. For this
reason the coefficients β, representing the conditional or subject-specific
effects of covariates, for a given value of the random effect, cannot be
interpreted as population averaged or marginal effects. The marginal
effects tend to be closer to zero or “attenuated”. (Note that here the
term “marginal effects” means population averaged effects, a very dif-
ferent notion than “marginal effects” in econometrics as computed by
the Stata command mfx.)

In gllapred we can use the mu and marg options to obtain the
marginal probabilities on the left-hand side of (9.5) by numerical inte-
gration and the mu and us() options to obtain the conditional proba-
bilities in (9.4) for given values of ui. To obtain smooth curves, we first
create a new dataset where month increases gradually from 0 to 10 and
early equals 1:

replace month = 10*(_n-1)/(_N-1)
replace early = 1
replace month_early = month

Now we can obtain marginal probabilities for the random intercept
model by first restoring the estimates and then using gllapred:

estimates restore mod1
gllapred probm1, mu marg

To calculate conditional probabilities, we must first define variables
equal to the values at which we wish to evaluate ui (0 and ±1.7, ap-
proximately one standard deviation). The variable names must end on
“1” since the random intercept is the first (and here the only) random
effect:

generate m1 = 0
generate l1 = -1.7
generate u1 = 1.7
gllapred probc1_m, mu us(m)
gllapred probc1_l, mu us(l)
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gllapred probc1_u, mu us(u)
drop m1 l1 u1

Here the us(m) option specifies that, if there were more than one ran-
dom effect, the values would be in m1, m2, etc. Before producing the
graph, we will make predictions for the random coefficient model:

estimates restore mod2
gllapred probm2, mu marg
generate m1 = 0
generate m2 = 0
generate l1 = -2.7
generate l2 = -0.4
generate u1 = 2.7
generate u2 = 0.4
generate ul1 = 2.7
generate ul2 = -0.4
generate lu1 = -2.7
generate lu2 = 0.4
gllapred probc2_m, mu us(m)
gllapred probc2_l, mu us(l)
gllapred probc2_u, mu us(u)
gllapred probc2_ul, mu us(ul)
gllapred probc2_lu, mu us(lu)

We have produced five conditional predictions: one with both random
effects equal to 0 and four for all combinations of high and low values
of the random intercept and slope. The graphs are obtained using

label variable month ///
"Number of months since hospitalization"

twoway (line probm1 month) ///
(line probc1_m month, lpatt(shortdash)) ///
(line probc1_l month, lpatt(dash)) ///
(line probc1_u month, lpatt(dash)), ///
legend(order(1 "Marginal" 2 "Fixed part" ///
3 "Conditional")) ytitle("Predicted probability")

and similarly for the random coefficient model; see Figures 9.8 and 9.9.
In Figure 9.8 it is clear that the marginal or population averaged curve
is flatter than the conditional or subject-specific curves. The dotted
curve for ui = 0 represents the curve of an average individual since 0
is the mean of the random effects distribution. Note that this curve of
an average or typical individual differs from the population averaged
curve! In Figure 9.9, we can see how different the trajectories for dif-
ferent patients can be in a random coefficient model. Again, the curve
of the average individual differs from the averaged curve. Although
the conditional predictions for the two models are quite different, the
marginal predictions are nearly the same as can be seen by plotting the
two marginal curves on the same graph:
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Figure 9.8: Marginal and conditional predicted probabilities for random
intercept model. The dotted curve is the conditional probability when
ui = 0.
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Figure 9.9: Conditional and marginal predicted probabilities for ran-
dom coefficient model. The dotted curve is the conditional probability
when u0i = 0 and u1i = 0.
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twoway (line probm1 month) ///
(line probm2 month, lpatt(dash)), ///
legend(order(1 "Random intercept" ///
2 "Random int. & slope")) ylabel(0(.2)1) ///
ytitle("Marginal probability of thought disorder")

(see Figure 9.10). Here the ylabel() option was used to extend the y-
axis range to 1 and produce appropriate axis labels to make this graph
comparable with Figures 9.8 and 9.9.

0
.2

.4
.6

.8
1

M
ar

gi
na

l p
ro

ba
bi

lit
y 

of
 th

ou
gh

t d
is

or
de

r

0 2 4 6 8 10
Number of months since hospitalization

Random intercept Random int. & slope

Figure 9.10: Marginal predicted probabilities for random intercept and
random coefficient models.

Note that gllamm can be used for a wide range of models with
random effects and other latent variables such as factors, including
(multilevel) structural equation models and latent class models with
many different response types as well as mixed responses (see Skron-
dal and Rabe-Hesketh, 2003; 2004; Rabe-Hesketh et al., 2003; 2004a;
2004b). The webpage http://www.gllamm.org gives more references
and up-to-date information.
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9.5 Exercises
9.1 • Thought disorder and schizophrenia

1. For the thought disorder data, produce graphs of the pre-
dicted probabilities for the individual patients separately for
early and late onset (similar to Figures 9.2 and 9.6 for the
post-natal depression data). Hint: use gllapred with the mu
option (not marg or us()) to obtain posterior mean probabil-
ities.

9.2 • Australian school children

1. Analyze the Australian school children data described in Chap-
ter 7 using a Poisson model with a random intercept for each
child and compare the estimates with those of the negative
binomial model estimated in Section 7.3.4, where the expo-
nentiated random intercept (frailty) has a gamma distribution
instead of a log-normal distribution.

9.3 Jaw growth

1. For the jaw growth data described in Exercise 8.3, estimate
the following random intercept model

yij = β0 + β1xi + β2ti + ui + εi,

where xi is a dummy variable for being male and ti is age −
8.

2. Interpret all the parameter estimates.
3. Extend the model to allow boys and girls to differ in their

mean rate of growth and interpret the regression coefficients.
4. Extend the model further by including a random coefficient

of ti and use a likelihood ratio test to choose between this
model and the previous model.

5. For the chosen model, plot the predicted growth trajectories
of the children (based on parameter estimates and empirical
Bayes predictions of the random effects) by gender.

9.4 Wage increases

Here we consider the data used in Exercises 1.2 and 8.2, and will
make use of the following additional variables:

� nr: person identifier
� educ: years of schooling
� exper: labor market experience (Age − 6 − educ)
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� expersq: labor market experience squared
� married: dummy variable for being married
� union: dummy variable for being a member of a union (i.e.,

wage being set in collective bargaining agreement)

1. Estimate a model for lwage with black, hisp, educ exper,
expersq, married, and union as explanatory variables and
with a random intercept for subjects.

2. Interpret the estimates.
3. An alternative approach to panel data that is popular in

econometrics is to specify fixed intercepts for subjects instead
of random ones; this can be accomplished by using xtreg with
the fe option (which is equivalent to, but much more efficient
than using dummy variables for subjects). Fit the fixed effects
version of the model above.

4. Explain why some variables are dropped by Stata and com-
pare the regression coefficients of the remaining variables with
those estimated for the random intercept model.

9.5 Epileptic seizures and chemotherapy

1. Analyze the epileptic seizure data introduced in the next
chapter using a Poisson model with the same fixed part as
specified in Section 10.3.2 and with a random intercept for
subjects. Use gllamm with the adapt option. Make sure you
are using enough quadrature points by comparing estimates
with different numbers of quadrature points ( nip() option).

2. Add a random slope for post and use a likelihood ratio test
to decide whether or not to retain this model.

3. For the chosen model, plot the model-implied marginal rela-
tionship between the expected epilepsy rate and visit for 25-
year olds in the two treatment groups. (Hint: use gllapred
with the options mu, marg, and nooffset and plot the pre-
dictions for subjects 3 and 46.)



Chapter 10

Generalized Estimating

Equations: Epileptic

Seizures and

Chemotherapy

10.1 Description of data

In a clinical trial reported by Thall and Vail (1990), 59 patients with
epilepsy were randomized to groups receiving either the anti-epileptic
drug progabide or a placebo in addition to standard chemotherapy.
The number of seizures was counted over four two-week periods. In
addition, a baseline seizure rate was recorded for each patient, based
on the eight-week prerandomization seizure count. The age of each pa-
tient was also recorded. The main question of interest is whether the
treatment progabide reduces the frequency of epileptic seizures com-
pared with placebo. The data are shown in Table 10.1. (These data
also appear in Hand et al., 1994.)

Table 10.1 Data in epil.dta
subj id y1 y2 y3 y4 treat base age

1 104 5 3 3 3 0 11 31
2 106 3 5 3 3 0 11 30
3 107 2 4 0 5 0 6 25
4 114 4 4 1 4 0 8 36
5 116 7 18 9 21 0 66 22
6 118 5 2 8 7 0 27 29

201
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Table 10.1 Data in epil.dta (continued)
7 123 6 4 0 2 0 12 31
8 126 40 20 23 12 0 52 42
9 130 5 6 6 5 0 23 37

10 135 14 13 6 0 0 10 28
11 141 26 12 6 22 0 52 36
12 145 12 6 8 4 0 33 24
13 201 4 4 6 2 0 18 23
14 202 7 9 12 14 0 42 36
15 205 16 24 10 9 0 87 26
16 206 11 0 0 5 0 50 26
17 210 0 0 3 3 0 18 28
18 213 37 29 28 29 0 111 31
19 215 3 5 2 5 0 18 32
20 217 3 0 6 7 0 20 21
21 219 3 4 3 4 0 12 29
22 220 3 4 3 4 0 9 21
23 222 2 3 3 5 0 17 32
24 226 8 12 2 8 0 28 25
25 227 18 24 76 25 0 55 30
26 230 2 1 2 1 0 9 40
27 234 3 1 4 2 0 10 19
28 238 13 15 13 12 0 47 22
29 101 11 14 9 8 1 76 18
30 102 8 7 9 4 1 38 32
31 103 0 4 3 0 1 19 20
32 108 3 6 1 3 1 10 30
33 110 2 6 7 4 1 19 18
34 111 4 3 1 3 1 24 24
35 112 22 17 19 16 1 31 30
36 113 5 4 7 4 1 14 35
37 117 2 4 0 4 1 11 27
38 121 3 7 7 7 1 67 20
39 122 4 18 2 5 1 41 22
40 124 2 1 1 0 1 7 28
41 128 0 2 4 0 1 22 23
42 129 5 4 0 3 1 13 40
43 137 11 14 25 15 1 46 33
44 139 10 5 3 8 1 36 21
45 143 19 7 6 7 1 38 35
46 147 1 1 2 3 1 7 25
47 203 6 10 8 8 1 36 26
48 204 2 1 0 0 1 11 25
49 207 102 65 72 63 1 151 22
50 208 4 3 2 4 1 22 32
51 209 8 6 5 7 1 41 25
52 211 1 3 1 5 1 32 35
53 214 18 11 28 13 1 56 21
54 218 6 3 4 0 1 24 41
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Table 10.1 Data in epil.dta (continued)
55 221 3 5 4 3 1 16 32
56 225 1 23 19 8 1 22 26
57 228 2 3 0 1 1 25 21
58 232 0 0 0 0 1 13 36
59 236 1 4 3 2 1 12 37

10.2 Generalized estimating equations

In this chapter we consider an approach to the analysis of longitudinal
data that is very different from random effects modeling described in
the previous chapter. Instead of attempting to model the dependence
between responses on the same individuals as arising from between-
subject heterogeneity represented by random intercepts and possibly
random slopes, we will concentrate on estimating the marginal mean
structure, treating the dependence as a nuisance.

10.2.1 Normally distributed responses

If we suppose that a normally distributed response is observed on each
individual at T time points, then the basic regression model for longi-
tudinal data becomes (cf. equation (3.3))

yi = Xiβ + εi, (10.1)

where y′
i = (yi1, yi2, . . . , yiT ), ε′

i = (εi1, εi2, . . . , εiT ), Xi is a T × (p + 1)
design matrix, and β′ = (β0, . . . , βp) is a vector of regression param-
eters. The residual terms are assumed to have a multivariate normal
distribution with a covariance matrix of some particular form that is a
function of (hopefully) a small number of parameters. Maximum likeli-
hood estimation can be used to estimate both the parameters in (10.1)
and the parameters structuring the covariance matrix (details are given
in Jennrich and Schluchter, 1986). The latter are often not of primary
interest (they are often referred to as nuisance parameters), but using
a covariance matrix that fails to match that of the repeated measure-
ments can lead to inefficient estimates and invalid standard errors for
the parameters that are of concern, namely the β in (10.1).

If each non-replicated element of the covariance matrix is treated as
a separate parameter, giving an unstructured covariance matrix, and if
there are no missing data, then this approach is essentially equivalent
to multivariate analysis of variance for longitudinal data (see Everitt,
2001). However, it is often more efficient to impose some meaningful
structure on the covariance matrix. The simplest (and most unrealis-
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tic) structure is independence with all off-diagonal elements (the covari-
ances) equal to zero, and typically all diagonal elements (the variances)
equal to each other. Another commonly used simple structure, known
as compound symmetry (for example, see Winer, 1971), requires that all
covariances are equal and all variances are equal. This is just the cor-
relation structure of a linear random intercept model described in the
previous chapter except that the random intercept model also requires
that the correlation be positive.

Other correlation structures include autoregressive structures where
the correlations decrease with the distance between time points. What-
ever the assumed correlation structure, all models may be estimated
by maximum likelihood.

10.2.2 Non-normal responses

Unfortunately, it is generally not straightforward to specify a multi-
variate model for non-normal responses. One solution, discussed in the
previous chapter, is to induce residual dependence among the responses
using random effects. An alternative approach is to give up the idea of
a model altogether by using generalized estimating equations (GEE) as
introduced by Liang and Zeger (1986). Generalized estimating equa-
tions are essentially a multivariate extension of the quasi-likelihood
approach discussed in Chapter 7 (see also Wedderburn, 1974). In GEE
the parameters are estimated using “estimating equations” resembling
the score equations for maximum likelihood estimation of the linear
model described in the previous section. These estimating equations
only require specification of a link and variance function and a correla-
tion structure for the observed responses conditional on the covariates.
As in the quasi-likelihood approach, the parameters can be estimated
even if the specification does not correspond to any statistical model.

The regression coefficients represent marginal effects, i.e., they de-
termine the population averaged relationships. Liang and Zeger (1986)
show that the estimates of these coefficients are valid even when the
correlation structure is incorrectly specified. Correct inferences can be
obtained using robust estimates of the standard errors based on the
sandwich estimator for clustered data (e.g., Binder, 1983; Williams,
2000). The parameters of the correlation matrix, referred to as the
working correlation matrix, are treated as nuisance parameters. How-
ever, Lindsey and Lambert (1998) and Crouchley and Davies (1999)
point out that estimates are no longer consistent if “endogenous” co-
variates such as baseline responses are included in the model. For-
tunately, inclusion of the baseline response as a covariate does yield
consistent estimates of treatment effects in clinical trial data such as



Generalized Estimating Equations: Epileptic Seizures and Chemotherapy � 205

the epilepsy data considered here (see Crouchley and Davies, 1999) as
long as the model does not contain a baseline by treatment interaction.

There are some important differences between GEE and random
effects modeling. First, while random effects modeling is based on a
statistical model and typically maximum likelihood estimation, GEE is
an estimation method that is not based on a statistical model. Second,
there is an important difference in the interpretation of the regres-
sion coefficients. In random effects models, the regression coefficients
represent conditional or subject-specific effects for given values of the
random effects. For GEE, on the other hand, the regression coeffi-
cients represent marginal or population averaged effects. As we saw
in the thought disorder data in the previous chapter, conditional and
marginal relationships can be very different. Either may be of inter-
est; for instance patients are likely to want to know the subject-specific
effect of treatments, whereas health economists may be interested in
population averaged effects. Whereas random effects models allow the
marginal relationship to be derived, GEE does not allow derivation of
the conditional relationship. Note that conditional and marginal rela-
tionships are the same if an identity link is used and, in the case of
random intercept models (no random coefficients), if a log link is speci-
fied (see Diggle et al., 2002). Third, GEE is often preferred because, in
contrast to the random effects approach, the parameter estimates are
consistent even if the correlation structure is misspecified (although
this is true only if the mean structure is correctly specified). Fourth,
while maximum likelihood estimation of a correctly specified model is
consistent if data are missing at random (MAR), this is not the case for
GEE which requires that responses are missing completely at random
(MCAR), or that missingness depends only on the covariates included
in the model. See Hardin and Hilbe (2002) for a thorough introduction
to GEE.

10.3 Analysis using Stata

The generalized estimating equations approach, as described in Liang
and Zeger (1986), is implemented in Stata’s xtgee command. The
main components which have to be specified are:

� the assumed distribution of the response variable (given the co-
variates), specified in the family() option – this determines the
variance function,

� the link between the response variable and its linear predictor,
specified in the link() option, and



206 � A Handbook of Statistical Analyses Using Stata

� the structure of the working correlation matrix, specified in the
correlation() option.

In general, it is not necessary to specify the link() option since,
as for the glm command, the default link is the canonical link for the
specified family.

Since the xtgee command will often be used with the family(gauss)
option, together with the identity link function, we will illustrate this
option on the post-natal depression data used in the previous two chap-
ters before moving on to deal with the epilepsy data in Table 10.1.

10.3.1 Post-natal depression data

The data are obtained using

infile subj group dep0 dep1 dep2 dep3 dep4 dep5 dep6 ///
using depress.dat, clear

reshape long dep, i(subj) j(visit)
mvdecode _all, mv(-9)

To begin, we fit a model that regresses dep on group, visit, their
interaction and visit squared as in the previous chapter but under
the unrealistic assumption of independence. The necessary command
written out in its fullest form is

generate gr_vis = group*visit
generate vis2 = visit^2
xtgee dep group visit gr_vis vis2, i(subj) t(visit) ///

corr(indep) link(iden) family(gauss)

(see Display 10.1). Here, the fitted model is simply a multiple regres-
sion model for 365 observations which are assumed to be independent
of one another; the estimated scale parameter is just the residual mean
square, and the deviance is equal to the residual sum of squares. The
estimated regression coefficients and their associated standard errors
indicate that the group by visit interaction is significant at the 5%
level. However, treating the observations as independent is unrealistic
and will almost certainly lead to poor estimates of the standard errors.
Standard errors for between-subject factors (here group) are likely to
be underestimated because we are treating observations from the same
subject as independent, thus increasing the apparent sample size; stan-
dard errors for within-subject factors (here visit, gr vis, and vis2)
are likely to be overestimated since we are not controlling for residual
between-subject variability.

We therefore now abandon the assumption of independence and
estimate a correlation matrix having compound symmetry (i.e., con-
straining the correlations between the observations at any pair of time
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GEE population-averaged model Number of obs = 356
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: independent max = 7

Wald chi2(4) = 269.51
Scale parameter: 26.89935 Prob > chi2 = 0.0000

Pearson chi2(356): 9576.17 Deviance = 9576.17
Dispersion (Pearson): 26.89935 Dispersion = 26.89935

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.506834 .9383647 -1.61 0.108 -3.345995 .3323274
visit -3.849465 .5091836 -7.56 0.000 -4.847447 -2.851483

gr_vis -.6090744 .277417 -2.20 0.028 -1.152802 -.0653471
vis2 .3904383 .079783 4.89 0.000 .2340665 .5468102
_cons 20.96533 .7826299 26.79 0.000 19.4314 22.49925

Display 10.1

points to be equal). Such a correlation structure is specified using
corr(exchangeable), or the abbreviated form corr(exc). The model
can be fitted as follows:

xtgee dep group visit gr_vis vis2, i(subj) t(visit) ///
corr(exc) link(iden) fam(gauss)

Instead of specifying the subject and time identifiers using the op-
tions i() and t(), we can also declare the data as being of the form
xt (for cross-sectional time series) as follows:

iis subj
tis visit

and omit the i() and t() options from now on. Since both the link
and the family correspond to the default options, the same analysis
may be carried out using the shorter command

xtgee dep group visit gr_vis vis2, corr(exc)

(see Display 10.2). After estimation, estat wcorrelation reports the
estimated working “within” correlation matrix

estat wcorrelation, format(%6.4g)

which is shown in Display 10.3. Here the format() option was used to
reduce the number of decimal places and therefore avoid rows of the
matrix wrapping over two lines.

Note that the standard error for group has increased whereas those
for visit, gr vis, and vis2 have decreased as expected. The esti-
mated within-subject correlation matrix is compound symmetric. This
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GEE population-averaged model Number of obs = 356
Group variable: subj Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: exchangeable max = 7

Wald chi2(4) = 421.11
Scale parameter: 26.92726 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -1.470155 1.162063 -1.27 0.206 -3.747756 .8074468
visit -3.785601 .3648345 -10.38 0.000 -4.500664 -3.070539

gr_vis -.5837938 .2040368 -2.86 0.004 -.9836985 -.183889
vis2 .3850221 .0559386 6.88 0.000 .2753845 .4946598
_cons 20.90907 .901082 23.20 0.000 19.14298 22.67516

Display 10.2

Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5 c6 c7

r1 1
r2 .515 1
r3 .515 .515 1
r4 .515 .515 .515 1
r5 .515 .515 .515 .515 1
r6 .515 .515 .515 .515 .515 1
r7 .515 .515 .515 .515 .515 .515 1

.

Display 10.3
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structure is frequently not acceptable since correlations between pairs
of observations widely separated in time will often be lower than for
observations closer together. This pattern was apparent from the scat-
terplot matrix given in Chapter 8.

To allow for such a pattern of correlations among the repeated ob-
servations, we can move to an autoregressive structure. For example, in
a first-order autoregressive specification the correlation between time
points r and s is assumed to be ρ|r−s|. The necessary instruction for
fitting the previously considered model but with this first-order autore-
gressive structure for the correlations is

xtgee dep group visit gr_vis vis2, corr(ar1)

GEE population-averaged model Number of obs = 356
Group and time vars: subj visit Number of groups = 61
Link: identity Obs per group: min = 2
Family: Gaussian avg = 5.8
Correlation: AR(1) max = 7

Wald chi2(4) = 213.85
Scale parameter: 27.10248 Prob > chi2 = 0.0000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

group -.539061 1.277002 -0.42 0.673 -3.041938 1.963816
visit -4.061961 .4741241 -8.57 0.000 -4.991227 -3.132695

gr_vis -.7815801 .3332716 -2.35 0.019 -1.43478 -.1283796
vis2 .4207375 .0693395 6.07 0.000 .2848346 .5566404
_cons 21.10085 .9732406 21.68 0.000 19.19334 23.00837

Display 10.4

The estimates of the regression coefficients and their standard errors
in Display 10.4 have changed but not substantially. The estimated
within-subject correlation matrix may again be obtained using

estat wcorrelation, format(%6.4g)

(see Display 10.5) which has the expected pattern in which correla-
tions decrease substantially as the separation between the observations
increases.

Other correlation structures are available for xtgee, including the
option correlation(unstructured) in which no constraints are placed
on the correlations. (This is essentially equivalent to multivariate anal-
ysis of variance for longitudinal data, except that the variance is as-
sumed to be constant over time.) It might appear that using this option



210 � A Handbook of Statistical Analyses Using Stata

Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5 c6 c7

r1 1
r2 .6475 1
r3 .4192 .6475 1
r4 .2714 .4192 .6475 1
r5 .1757 .2714 .4192 .6475 1
r6 .1138 .1757 .2714 .4192 .6475 1
r7 .0737 .1138 .1757 .2714 .4192 .6475 1

Display 10.5

would be the most sensible one to choose for all data sets. This is not,
however, the case since it necessitates the estimation of many nuisance
parameters. This can, in some circumstances, cause problems in the
estimation of those parameters of most interest, particularly when the
sample size is small and the number of time points is large.

10.3.2 Epilepsy data

We now analyze the epilepsy data using a similar model as for the
depression data, but using the Poisson distribution and log link. The
data are available in a Stata file epil.dta and can be read using

use epil, clear

We will treat the baseline measure as one of the responses:

generate y0 = baseline

Some useful summary statistics can be obtained using

summarize y0 y1 y2 y3 y4 if treat==0

summarize y0 y1 y2 y3 y4 if treat==1

(see Displays 10.6 and 10.7).
We see that the number of observations is constant over time so

there appears to be no dropout. The means and standard deviations
of y0 are larger than for the other responses because seizures were
counted over an 8-week period at baseline and over 2-week periods at
the subsequent visits. The largest value of y1 in the progabide group
seems out of step with the other maximum values and may indicate an
outlier. Some graphics of the data may be useful for investigating this
possibility further, but first it is convenient to reshape the data from
its present “wide” form to the “long” form. We now reshape the data
as follows:
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Variable Obs Mean Std. Dev. Min Max

y0 28 30.78571 26.10429 6 111
y1 28 9.357143 10.13689 0 40
y2 28 8.285714 8.164318 0 29
y3 28 8.785714 14.67262 0 76
y4 28 7.964286 7.627835 0 29

Display 10.6

Variable Obs Mean Std. Dev. Min Max

y0 31 31.6129 27.98175 7 151
y1 31 8.580645 18.24057 0 102
y2 31 8.419355 11.85966 0 65
y3 31 8.129032 13.89422 0 72
y4 31 6.709677 11.26408 0 63

Display 10.7

reshape long y, i(subj) j(visit)
sort subj treat visit
list in 1/12, clean

(see Display 10.8).

subj visit id y treat baseline age
1. 1 0 104 11 0 11 31
2. 1 1 104 5 0 11 31
3. 1 2 104 3 0 11 31
4. 1 3 104 3 0 11 31
5. 1 4 104 3 0 11 31
6. 2 0 106 11 0 11 30
7. 2 1 106 3 0 11 30
8. 2 2 106 5 0 11 30
9. 2 3 106 3 0 11 30

10. 2 4 106 3 0 11 30
11. 3 0 107 6 0 6 25
12. 3 1 107 2 0 6 25

Display 10.8

Perhaps the most useful graphical display for investigating the data
is a set of graphs of individual response profiles. Since we are planning
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to fit a Poisson model with the log link to the data, we take the log
transformation before plotting the response profiles. (We need to add
a positive number, say 1, because some seizure counts are zero.)

generate ly = log(y+1)

However, the baseline measure represents seizure counts over an 8-week
period, compared with 2-week periods for each of the other time points.
We therefore divide the baseline count by 4:

replace ly = log(y/4+1) if visit==0

and then plot the log-counts:

twoway connect ly visit if treat==0, by(subj, ///
style(compact)) ytitle("Log count")

twoway connect ly visit if treat==1, by(subj, ///
style(compact)) ytitle("Log count")
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Figure 10.1: Response profiles in placebo group.

The resulting graphs are shown in Figures 10.1 and 10.2. There is no
obvious improvement in the progabide group. Subject 49 had more
epileptic fits overall than any other subject and might perhaps be con-
sidered an outlier (see Exercise 10.2).
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Figure 10.2: Response profiles in the treated group.

As discussed in Chapter 7, the most plausible distribution for count
data is often the Poisson distribution. The Poisson distribution is spec-
ified in xtgee models using the option family(poisson). The log link
is implied (since it is the canonical link). The baseline counts were
obtained over an 8-week period whereas all subsequent counts are over
2-week periods. To model the seizure rate in counts per week, we must
therefore use the log observation period log(pi) as an offset (a covariate
with regression coefficient set to 1). The model for the mean count µij

then becomes

log(µij) = x′
ijβ + log(pi),

so that the rate is modeled as

µij/pi = exp(x′
ijβ).

We can compute the required offset using

generate lnobs = cond(visit==0,ln(8),ln(2))

Following Diggle et al. (2002), we will allow the log rate to change by
a treatment group-specific constant after the baseline assessment. The
necessary covariates, an indicator for the post-baseline visits and an
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interaction between that indicator and treatment group, are created
using

generate post = visit>0
generate tr_post = treat*post

We will also control for the age of the patients. The summary tables for
the seizure data given on page 210 provide strong empirical evidence
that there is overdispersion (the variances are greater than the means),
and this can be incorporated using the scale(x2) option to allow the
dispersion parameter φ to be estimated (see also Chapter 7).

iis subj
xtgee y age treat post tr_post, corr(exc) family(pois) ///

offset(lnobs) scale(x2)

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 5.43
Scale parameter: 18.48008 Prob > chi2 = 0.2458

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0148644 -2.17 0.030 -.061385 -.0031176
treat -.0177873 .201945 -0.09 0.930 -.4135922 .3780176
post .1107981 .1500635 0.74 0.460 -.183321 .4049173

tr_post -.1036807 .213317 -0.49 0.627 -.5217742 .3144129
_cons 2.265255 .4400816 5.15 0.000 1.402711 3.1278
lnobs (offset)

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 10.9

The output assuming an exchangeable correlation structure is given
in Display 10.9, and the estimated correlation matrix is obtained using
xtcorr.

estat wcorrelation

(see Display 10.10).
In Display 10.9, the parameter φ is estimated as 18.5, indicating

severe overdispersion in these data. We briefly illustrate how important
it was to allow for overdispersion by omitting the scale(x2) option:
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Estimated within-subj correlation matrix R:

c1 c2 c3 c4 c5

r1 1
r2 .7685773 1
r3 .7685773 .7685773 1
r4 .7685773 .7685773 .7685773 1
r5 .7685773 .7685773 .7685773 .7685773 1

Display 10.10

xtgee y age treat post tr_post, corr(exc) family(pois) ///
offset(lnobs)

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 100.38
Scale parameter: 1 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0034578 -9.33 0.000 -.0390284 -.0254742
treat -.0177873 .0469765 -0.38 0.705 -.1098596 .074285
post .1107981 .0349079 3.17 0.002 .04238 .1792163

tr_post -.1036807 .0496219 -2.09 0.037 -.2009378 -.0064235
_cons 2.265255 .102372 22.13 0.000 2.06461 2.465901
lnobs (offset)

Display 10.11

The results given in Display 10.11 show that the standard errors are
now much smaller than before. Even if overdispersion had not been sus-
pected, this error could have been detected by using the vce(robust)
option (see Chapter 7):

xtgee y age treat post tr_post, corr(exc) family(pois) ///
offset(lnobs) vce(robust)

The results of the robust regression in Display 10.12 are remarkably
similar to those of the overdispersed Poisson model, suggesting that
the latter is a reasonable “model” for the data.
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GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 6.85
Scale parameter: 1 Prob > chi2 = 0.1442

(Std. Err. adjusted for clustering on subj)

Semi-robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0322513 .0148746 -2.17 0.030 -.0614049 -.0030976
treat -.0177873 .216051 -0.08 0.934 -.4412395 .4056649
post .1107981 .1170963 0.95 0.344 -.1187064 .3403027

tr_post -.1036807 .2154436 -0.48 0.630 -.5259424 .3185811
_cons 2.265255 .4371124 5.18 0.000 1.408531 3.12198
lnobs (offset)

Display 10.12

The estimated coefficient of tr post represents the estimated dif-
ference in the change in log seizure rate from baseline to post ran-
domization between the placebo and progabide groups. In the placebo
group there is an increase in the log seizure rate of 0.1108, and in the
progabide group there is an increase of only 0.007 (= 0.1108 − .1037).
However, the difference is not significant (p=0.63). The exponential of
the interaction coefficient gives an estimated incidence rate ratio, here
the ratio of the relative increase in seizure rate for the treated patients
compared with the control patients. The exponentiated coefficient and
the corresponding confidence interval can be obtained directly using
the eform option in xtgee:

xtgee y age treat post tr_post, corr(exc) ///
family(pois) offset(lnobs) scale(x2) eform

The results in Display 10.13 indicate that the relative increase in
seizure rate is 10% lower in the treated group compared with the control
group, with a 95% confidence interval from 41% lower to 37% greater.

However, before interpreting these estimates, we should perform
some diagnostics. Standardized Pearson residuals can be useful for
identifying potential outliers (see equation (7.9)). These can be found
by first using the predict command to obtain predicted counts, sub-
tracting the observed counts, and dividing by the estimated standard

deviation
√

φ̂µij, where φ̂ is the estimated dispersion parameter:

quietly xtgee y treat baseline age visit, corr(exc) ///



Generalized Estimating Equations: Epileptic Seizures and Chemotherapy � 217

GEE population-averaged model Number of obs = 295
Group variable: subj Number of groups = 59
Link: log Obs per group: min = 5
Family: Poisson avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(4) = 5.43
Scale parameter: 18.48008 Prob > chi2 = 0.2458

y IRR Std. Err. z P>|z| [95% Conf. Interval]

age .9682632 .0143927 -2.17 0.030 .9404611 .9968873
treat .98237 .1983847 -0.09 0.930 .6612706 1.459389
post 1.117169 .1676464 0.74 0.460 .8325009 1.499179

tr_post .9015131 .192308 -0.49 0.627 .5934667 1.369455
lnobs (offset)

(Standard errors scaled using square root of Pearson X2-based dispersion)

Display 10.13

family(pois) scale(x2)
predict pred, mu
generate pres = (y-pred)/sqrt(e(chi2_dis)*pred)

Boxplots of these residuals at each visit are obtained using

sort visit
graph box stpres, medtype(line) over(visit, ///

relabel(1 "visit 1" 2 "visit 2" 3 "visit 3" ///
4 "visit 4"))

The resulting graph is shown in Figure 10.3. Pearson residuals greater
than 4 are certainly a cause for concern, so we can check which subjects
they belong to using

list subj id if stpres>4

subj id

41. 49 207
96. 49 207
176. 49 207
178. 49 207
185. 25 227

292. 49 207

Subject 49 appears to be an outlier due to extremely large counts as
we saw in Figure 10.2. Subject 25 also has an unusually large count at
visit 3. It would be a good idea to repeat the analysis without subject
49 to see how much the results are affected by this unusual subject (see
Exercise 10.2). This can be viewed as a sensitivity analysis.
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Figure 10.3: Standardized Pearson residuals.

10.4 Exercises

10.1 • Treatment of post-natal depression

1. For the depression data, compare the results of GEE with
a compound symmetric structure with ordinary linear re-
gression where standard errors are corrected for the within-
subject correlation using:
a. the options, vce(robust) cluster(subj), to obtain the

sandwich estimator for clustered data (see help for regress),
and

b. bootstrapping, by sampling subjects with replacement. This
may be achieved using the bootstrap prefix, together
with the option cluster(subj).

10.2 Epileptic seizures and chemotherapy

1. Explore other possible correlation structures for the seizure
data in the context of a Poisson model. Examine the robust
standard errors in each case.

2. Repeat the above analyses, but excluding subject 49 (who
appears to be an outlier). Compare the results.
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10.3 Thought disorder and schizophrenia

1. For the thought disorder data discussed in the previous chap-
ter, estimate the effect of early, month and their interaction
on the logit of thought disorder using GEE with an exchange-
able correlation structure. Use robust standard errors.

2. Interpret the estimates.
3. Plot the predicted probability over time for early onset women

(using graph twoway function, see Section 6.3.2), and com-
pare the curve with the curves in Figure 9.10.

10.4 Driver education

In a randomized experiment to investigate if driver education re-
duces the number of collisions and traffic violations of teenagers
(Stock et al., 1983), eligible high school students were random-
ized to three groups: safe performance curriculum (SPC), pre-
driver license curriculum (PDL), and control. Whereas the SPC
was a 70-hour state of-the-art program, the PDL was a 30-hour
course containing only the minimum training required to pass
the driving test. The control group received no training through
the school system and was taught by the parents and/or private
training schools only. During three years of follow-up, the oc-
currence of collisions and moving violations were obtained using
records from the state Department of Motor Vehicles. (The data
are from Davis, 2002.)

The variables in drivers.dta are:

� program: group (string variable with values SPC, PDF, and
Control)

� gender: gender (string variable with values Male and Female)
� col1 to col3: indicator for at least one collision or moving

violation during years 1 to 3
� num: number of times the response-covariate pattern occurred

1. Prepare the data for analysis using GEE. (Hint: make sure
to expand the data first using expand num, then reshape to
long.)

2. Investigate the effect of time, program, gender, and the pro-
gram by gender interaction on the odds of at least one collision
or moving violation using generalized estimating equations
with a logit link and unstructured correlations. Use robust
standard errors throughout this exercise.

3. Perform a Wald test for the interaction terms and remove
them if the test is not significant at the 5% level.
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4. By inspecting the estimated correlation matrix, choose the
correlation structure that appears to be most appropriate and
estimate the model with that correlation structure.

5. Interpret the odds ratio estimates for the final model.



Chapter 11

Some Epidemiology

11.1 Description of data

This chapter illustrates analysis of different epidemiological designs,
namely cohort studies and matched as well as unmatched case-control
studies. Four datasets will be used which are presented in the form
of cross-tabulations in Tables 11.1 to 11.4. (Tables 11.1 and 11.4 are
taken from Clayton and Hills (1993) with permission of their publisher,
Oxford University Press.)

The data in Table 11.1 result from a cohort study which investigated
the relationship between diet and ischemic heart disease (IHD). Here we
consider low energy intake as a risk factor since it is highly associated
with lack of physical exercise. The table gives frequencies of IHD by
ten-year age-band and exposure to a high or low calorie diet. The total
person-years of observation are also given for each cell.

The dataset in Table 11.2 is the result of a case-control study in-
vestigating whether keeping a pet bird is a risk factor for lung cancer.
This dataset is given in Hand et al. (1994).

The datasets in Tables 11.3 and 11.4 are from matched case-control
studies, the first with a single matched control and the second with
three matched controls. Table 11.3 arises from a matched case-control
study of endometrial cancer where cases were matched on age, race,
date of admission, and hospital of admission to a suitable control not
suffering from cancer. Past exposure to conjugated estrogens was de-
termined. The dataset is described in Everitt (1994). Finally, the
data in Table 11.4, described in Clayton and Hills (1993), arise from a
case-control study of breast cancer screening. Women who had died of
breast cancer were matched with three control women. The screening

221
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history of each control was assessed over the period up to the time of
diagnosis of the matched case.

11.2 Introduction to epidemiology

Epidemiology can be described as the study of diseases in populations,
in particular the search for causes of disease. For ethical reasons, sub-
jects cannot be randomized to possible risk factors in order to establish
whether these are associated with an increase in the incidence of dis-
ease, and therefore epidemiology is based on observational studies. The
most important types of studies in epidemiology are cohort studies and
case-control studies. We will give a very brief description of the design
and analysis of these two types of studies, following closely the expla-
nations and notation given in the excellent book, Statistical Models in
Epidemiology, by Clayton and Hills (1993).

11.2.1 Cohort studies

In a cohort study, a group of subjects free of the disease is followed up,
and the presence of risk factors as well as the occurrence of the disease
of interest are recorded. This design is illustrated in Figure 11.1. An

Cohort
free of
disease
2000

100 with
disease

1900 without
disease

�������������������

�������������������

Now � Future

Figure 11.1: Cohort study.
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Table 11.1 Number of IHD cases and
person-years of observation by age and

exposure to low energy diet

Exposed Unexposed
< 2750 kcal ≥ 2750 kcal

Age Cases Pers-yrs Cases Pers-yrs
40-49 2 311.9 4 607.9
50-59 12 878.1 5 1272.1
60-69 14 667.5 8 888.9

Table 11.2 Number of lung
cancer cases and controls who

keep a pet bird

Kept pet birds Cases Controls
Yes 98 101
No 141 328
Total 239 429

Table 11.3 Frequency of
exposure to oral conjugated
estrogens among cases of

endometrial cancer and their
matched controls

Controls
+ - Total

Cases + 12 43 55
- 7 121 128

Total 19 164 183

Table 11.4 Screening history in
subjects who died of breast

cancer and 3 matched controls

Number of
controls screened

Status of the case 0 1 2 3
Screened 1 4 3 1
Unscreened 11 10 12 4
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example of a cohort study is the study described in the previous section
where subjects were followed up to monitor the occurrence of ischemic
heart disease in two risk groups, those with high and low energy intake,
giving the results in Table 11.1.

The incidence rate of the disease λ may be estimated by the num-
ber of new cases of the disease D during a time interval divided by
the person-time of observation Y , the sum of all subjects’ periods of
observation during the time interval:

λ̂ =
D

Y
.

This is the maximum likelihood estimator of λ assuming that D fol-
lows a Poisson distribution (independent events occurring at a constant
probability rate in continuous time) with mean λY , where Y is treated
as fixed.

The most important quantity of interest in a cohort study is the
incidence rate ratio (or relative risk), the ratio λ1/λ0 of incidence rates
for those exposed to a risk factor and those not exposed to the risk
factor (subscripts 1 and 0 denote exposed and unexposed, respectively).
The incidence rate ratio may be estimated by

θ̂ =
D1/Y1

D0/Y0

.

This estimator can be derived by maximizing the conditional (binomial)
likelihood that there were D1 cases in the exposed group conditional
on there being a total of D = D0 + D1 cases.

However, a potential problem in estimating this rate ratio is con-
founding arising from systematic differences in prognostic factors be-
tween the exposure groups. This problem can be dealt with by dividing
the cohort into groups or strata according to prognostic factors and as-
suming that the rate ratio for exposed and unexposed subjects is the
same across strata. If there are Ds cases and Y s person-years of ob-
servation in stratum s, then the common rate ratio may be estimated
using the method of Mantel and Haenszel by

θ̂MH =
∑

s Ds
1Y

s
0 /Y s∑

s Ds
0Y

s
1 /Y s

.

Note that the strata might not correspond to groups of subjects. For
example, if the confounder is age, subjects who cross from one age-
band into the next during the study contribute parts of their periods of
observation to different strata. This is how Table 11.1 was constructed.
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A more general way of controlling for confounding variables is to
use Poisson regression to model the number of occurrences of disease
or “failures”. Such an approach allows inclusion of several covariates.
The complexity of the model can be decided by model selection crite-
ria, often leading to smoothing through the omission of higher order
interactions. If a log link is used, the expected number of failures can
be made proportional to the person-years of observation by adding the
log of the person-years of observation to the linear predictor as an offset
(an explanatory variable with regression coefficient set to 1), giving

log[E(D)] = log(Y ) + x′β.

Exponentiating the equation and dividing by Y gives

E(D)
Y

= exp(x′β)

as required.

11.2.2 Case-control studies

If the incidence rate of a disease is small, a cohort study requires a
large number of person-years of observation making it very expensive.
A more feasible type of study in this situation is a case-control study
in which cases of the disease of interest are compared with non-cases,
often called controls, with respect to exposure to possible risk factors in
the past. The basic idea of case-control studies is shown in Figure 11.2.
The assumption here is that the probability of selection into the study
is independent of the exposures of interest. The data in Table 11.2
derive from a case-control study in which cases with lung cancer and
healthy controls were interviewed to ascertain whether they had been
“exposed” to a pet bird.

Let D and H be the number of cases and controls, respectively, and
let the subscripts 0 and 1 denote “unexposed” and “exposed”. Since the
proportion of cases was determined by the design, it is not possible to
estimate the relative risk of disease comparing exposed and nonexposed
subjects. However, the odds of exposure in the cases or controls can
be estimated, and the ratio of these odds is equal to the odds ratio of
being a case in the exposed group compared with the unexposed group

D1/D0

H1/H0

=
D1/H1

D0/H0

.

We model the (log) odds of being a case using logistic regression with
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Figure 11.2: Case-control study.

the exposure as an explanatory variable. Then the coefficient of the
exposure variable is an estimate of the desired log odds ratio even
though the estimate of the odds (which depends on the constant) is
determined by the proportion of cases in the study. Logistic regression
is the most popular method for estimating adjusted odds ratios for risk
factors of interest after controlling for confounding variables.

11.2.3 Matched case-control studies

A major difficulty with case-control studies is to find suitable controls
who are similar enough to the cases (so that differences in exposure
can reasonably be assumed to be due to their association with the
disease) without being overmatched, which can result in very similar
exposure patterns. The problem of finding controls who are sufficiently
similar is often addressed by matching controls individually to cases
according to important variables such as age and sex. Examples of
such matched case-control studies are given in Tables 11.3 and 11.4. In
the screening study, matching had the following additional advantage
noted in Clayton and Hills (1993). The screening history of controls
could be determined by considering only the period up to the diagnosis
of the case, ensuring that cases did not have a decreased opportunity
for screening because they would not have been screened after their
diagnosis.
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The statistical analysis has to take account of the matching. Two
methods of analysis are McNemar’s test in the simple case of 2 × 2
tables and conditional logistic regression in the case of several controls
per case and/or several explanatory variables. Since the case-control
sets have been matched on variables that are believed to be associated
with disease status, the sets can be thought of as strata with subjects in
one stratum having higher or lower odds of being a case than those in
another stratum after controlling for the exposures. A logistic regres-
sion model would have to accommodate these differences by including
a parameter αc for each case-control set c, so that the log odds of being
a case for subject i in case-control set c would be

log(Ωci) = log(αc) + x′
iβ. (11.1)

However, this would result in too many parameters to be estimated
(the incidental parameter problem). Furthermore, the parameters αc

are of no interest to us.
In conditional logistic regression, the nuisance parameters αc are

eliminated as follows. In a 1:1 matched case-control study, ignoring
the fact that each set has one case, the probability that subject 1 in
the set is a case and subject 2 is a noncase is

Pr(1) =
Ωc1

1 + Ωc1

× 1
1 + Ωc2

,

and the probability that subject 1 is a noncase and subject 2 is a case
is

Pr(2) =
1

1 + Ωc1

× Ωc2

1 + Ωc2

.

However, conditional on there being one case in a set, the probability
of subject 1 being the case is simply

Pr(1)
Pr(1) + Pr(2)

= Ωc1/(Ωc1 + Ωc2) =
exp(x′

1β)
exp(x′

1β) + exp(x′
2β)

, (11.2)

since αc cancels out; see equation (11.1). The expression on the right-
hand side of equation (11.2) is the contribution of a single case-control
set to the conditional likelihood of the sample. Similarly, it can be
shown that if there are k controls per case and the subjects within
each case-control set are labeled 1 for the case and 2 to k + 1 for the
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controls then the log likelihood becomes

∑
c

log

(
exp(x′

1β)∑k+1
i=1 exp(x′

iβ)

)
.

11.3 Analysis using Stata

11.3.1 Cohort study

There is a collection of instructions in Stata, the epitab commands,
that may be used to analyze small tables in epidemiology. These com-
mands either refer to variables in an existing dataset or can take cell
counts as arguments (i.e., they are immediate commands; see Chapter
1).

The first cohort dataset in Table 11.1 is given in a file as tabulated
and may be read using

infile str5 age num1 py1 num0 py0 using ihd.dat, clear

Here the number of cases and person years have been named num1 and
py1 in the exposed group and num0 and py0 in the unexposed group.
We can stack the responses for both groups into variables num and py
using the reshape command after producing an idenfifier agegr for the
rows in the data which correspond to age groups.

generate agegr = _n
reshape long num py, i(agegr) j(exposed)

Ignoring agegr, the incidence rate ratio may be estimated using

ir num exposed py

giving the table in Display 11.1. The incidence rate ratio of ischemic
heart disease, comparing low energy with high energy intake, is esti-
mated as 2.46 with a 95% confidence interval from 1.29 to 4.78. (Note
that we could report the reciprocals of these figures if we wished to
consider high energy intake as the risk factor.) The terms (exact)
imply that the confidence intervals are exact (no approximation was
used).

Controlling for age using the epitab command

ir num exposed py, by(age)

(see Display 11.2) gives very similar estimates as shown in the row
labeled M-H combined (the Mantel-Haenszel estimate).

Another way of controlling for age is to carry out Poisson regression
with the log of py as an offset. The exponentiated offset py may be
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exposed
Exposed Unexposed Total

num 28 17 45
py 1857.5 2768.9 4626.4

Incidence Rate .015074 .0061396 .0097268

Point estimate [95% Conf. Interval]

Inc. rate diff. .0089344 .0026342 .0152346
Inc. rate ratio 2.455204 1.297757 4.781095 (exact)
Attr. frac. ex. .5927019 .22944 .7908429 (exact)
Attr. frac. pop .3687923

(midp) Pr(k>=28) = 0.0016 (exact)
(midp) 2*Pr(k>=28) = 0.0031 (exact)

Display 11.1

age IRR [95% Conf. Interval] M-H Weight

40-49 .9745111 .0881524 6.799694 1.356382 (exact)
50-59 3.476871 1.14019 12.59783 2.041903 (exact)
60-69 2.33045 .9123878 6.411597 3.430995 (exact)

Crude 2.455204 1.297757 4.781095 (exact)
M-H combined 2.403914 1.306881 4.421829

Test of homogeneity (M-H) chi2(2) = 1.57 Pr>chi2 = 0.4555

Display 11.2
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specified using the exposure(py) option. To obtain exponentiated
coefficients, we use the irr (“incidence rate ratio”) option:

xi: poisson num exposed i.age, exposure(py) irr

(see Display 11.3) showing that there is an estimated age-adjusted in-

i.age _Iage_1-3 (_Iage_1 for age==40-49 omitted)

Poisson regression Number of obs = 6
LR chi2(3) = 12.91
Prob > chi2 = 0.0048

Log likelihood = -11.898228 Pseudo R2 = 0.3516

num IRR Std. Err. z P>|z| [95% Conf. Interval]

exposed 2.386096 .7350226 2.82 0.005 1.304609 4.364108
_Iage_2 1.137701 .5408325 0.27 0.786 .4481154 2.888461
_Iage_3 1.997803 .9218379 1.50 0.134 .8086976 4.935362

py (exposure)

Display 11.3

cidence rate ratio of 2.39 with a 95% confidence interval from 1.30
to 4.36. The coefficients of Iage 2 and Iage 3 show that the inci-
dence increases with age (although the rate ratios for age groups are
not significant at the 5% level) as would be expected. Another way
of achieving the same result is using glm with the Poisson distribution
and log link with the log of person-years of follow-up specified as an
offset using the offset() option

generate lpy = ln(py)
xi: glm num exposed i.age, family(poisson) link(log) ///

offset(lpy) eform

Here the eform option is used to obtain exponentiated coefficients (in-
cidence rate ratios intead of their logarithms). An advantage of this
modeling approach is that we can investigate the possibility of an in-
teraction between exposed and age. If there were more age categories,
we could attempt to model the effect of age as a smooth function.

11.3.2 Case-control study

We will analyze the case-control study using the “immediate” command
cci. The following notation is used for cci:
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Exposed Unexposed
Cases a b
Noncases c d

where the quantities a, b, etc. in the table are specified in alphabetical
order, i.e.,

cci a b c d

(See help epitab for the arguments required for other immediate
epitab commands.) The bird data may therefore be analyzed as follows:

cci 98 141 101 328

giving the output in Display 11.4. The odds ratio of lung cancer, com-

Exposed Unexposed Total Exposed

Cases 98 141 239 0.4100
Controls 101 328 429 0.2354

Total 199 469 668 0.2979

Point estimate [95% Conf. Interval]

Odds ratio 2.257145 1.580935 3.218756 (exact)
Attr. frac. ex. .5569624 .367463 .689321 (exact)
Attr. frac. pop .2283779

chi2(1) = 22.37 Pr>chi2 = 0.0000

Display 11.4

paring those with pet birds with those without pet birds, is estimated
as 2.26 with an exact 95% confidence interval from 1.58 to 3.22. The
p-value for the null hypothesis of no association between pet birds and
lung cancer is < 0.001. This p-value is based on a chi-squared test; an
exact p-value could be obtained using the exact option.

11.3.3 Matched case-control studies

The matched case-control study with one control per case may be ana-
lyzed using the immediate command mcci which requires four numbers
a to d defined as
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Controls
Exposed Unexposed

Cases Exposed a b
Unexposed c d

which corresponds to the layout of Table 11.3. The required command
therefore is

mcci 12 43 7 121

The results in Display 11.5 suggest that there is an increased odds of
endometrial cancer in subjects exposed to oral conjugated estrogens
(odds ratio = 2.89, 95% confidence interval from 1.89 to 4.44).

Controls
Cases Exposed Unexposed Total

Exposed 12 43 55
Unexposed 7 121 128

Total 19 164 183

McNemar’s chi2(1) = 25.92 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000

Proportion with factor
Cases .3005464
Controls .1038251 [95% Conf. Interval]

difference .1967213 .1210924 .2723502
ratio 2.894737 1.885462 4.444269
rel. diff. .2195122 .1448549 .2941695

odds ratio 6.142857 2.739772 16.18458 (exact)

Display 11.5

The matched case-control study with three controls per case cannot
be analyzed using epitab. Instead, we will use conditional logistic
regression. We need to convert the data in Table 11.4 into the form
required for conditional logistic regression; that is, one observation per
subject (including cases and controls); an indicator variable, cancer,
for cases; another indicator variable, screen, for screening and a third
variable, caseid, an identifier for each case-control set of four women.

First, read the data which are in the form shown in Table 11.4.

infile v1-v4 using screen.dat, clear

Then transpose the data so that the first column contains frequencies
for unscreened cases (variable ncases0) and the second for screened
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cases (variable ncases1). This can be achieved by first defining the
string variable varname to contain the required variable names and
then using the xpose command

generate _varname = cond(_n==1,"ncases1","ncases0")
xpose, clear
list

(see Display 11.6).

ncases1 ncases0

1. 1 11
2. 4 10
3. 3 12
4. 1 4

Display 11.6

The four rows in this transposed dataset correspond to 0, 1, 2,
and 3 matched controls who have been screened. We will define a
variable nconstr taking on these four values. We can then stack the two
columns into a single variable ncases and create an indicator casescr
for whether or not the case was screened using the reshape command:

generate nconscr = _n-1
reshape long ncases, i(nconscr) j(casescr)
list

(see Display 11.7). The next step is to replicate each of the records
ncases times so that we have one record per case-control set. Then
define the variable caseid, and expand the dataset four times in order
to have one record per subject. The four subjects within each case-
control set are arbitrarily labeled 0 to 3 in the variable control where
0 stands for “the case” and 1, 2, and 3 for the controls.

expand ncases
sort casescr nconscr
generate caseid = _n
expand 4
quietly by caseid, sort: generate control = _n-1
list in 1/8

(see Display 11.8). Now screen, the indicator whether a subject was
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nconscr casescr ncases

1. 0 0 11
2. 0 1 1
3. 1 0 10
4. 1 1 4
5. 2 0 12

6. 2 1 3
7. 3 0 4
8. 3 1 1

Display 11.7

nconscr casescr ncases caseid control

1. 0 0 11 1 0
2. 0 0 11 1 1
3. 0 0 11 1 2
4. 0 0 11 1 3
5. 0 0 11 2 0

6. 0 0 11 2 1
7. 0 0 11 2 2
8. 0 0 11 2 3

Display 11.8
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screened, is defined to be 0 except for the cases who were screened
and for as many controls as were screened according to nconscr. The
variable cancer is 1 for cases and 0 otherwise.

generate screen = 0
replace screen = 1 if control==0&casescr==1 /* the case */
replace screen = 1 if control==1&nconscr>0
replace screen = 1 if control==2&nconscr>1
replace screen = 1 if control==3&nconscr>2
generate cancer = control==0

We can reproduce Table 11.4 by temporarily collapsing the data
(using preserve and restore to revert to the original data) as follows:

preserve
collapse (sum) screen (mean) casescr, by(caseid)
generate nconscr = screen - casescr
tabulate casescr nconscr
restore

(see Display 11.9).

(mean) nconscr
casescr 0 1 2 3 Total

0 11 10 12 4 37
1 1 4 3 1 9

Total 12 14 15 5 46

Display 11.9

We are now ready to carry out conditional logistic regression:

clogit cancer screen, group(caseid) or

(see Display 11.10). Screening therefore seems to be protective of death
from breast cancer, reducing the odds to about a third (95% confidence
interval from 0.13 to 0.69).
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Conditional (fixed-effects) logistic regression Number of obs = 184
LR chi2(1) = 9.18
Prob > chi2 = 0.0025

Log likelihood = -59.181616 Pseudo R2 = 0.0719

cancer Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

screen .2995582 .1278368 -2.82 0.005 .1297867 .6914047

Display 11.10

11.4 Exercises

11.1 • Estrogens and endometrial cancer

1. Carry out conditional logistic regression to estimate the odds
ratio for the data in Table 11.3. The data are given in the
same form as in the table in a file called estrogen.dat.

11.2 • Low energy diet and heart disease

1. For the data ihd.dat, use the iri command to estimate the
incidence rate ratio of IHD comparing subjects with low and
high energy diets without controlling for age.

2. Use Poisson regression to test whether the effect of exposure
to a low energy diet on incidence of IHD differs between age
groups.

11.3 Oral contraceptive use and myocardial infarction

Mann et al. (1968) analyzed the data shown in Table 11.5 which
are also given in Rothman (1986). The data come from a case-
control study to investigate the effect of oral contraceptive use
on myocardial infarction. Cases and controls are also classified
by age group (< 40 and ≥ 40).

The variable in oral.dta are:

� case: dummy variable for case (myocardial infarction) versus
noncase

� oral: dummy variable for oral contraceptive use
� age: age group (0=Age<40, 1=Age≥40)
� num: number of women with given values of case, oral, and

age

1. Use the cc command to estimate the odds ratio for myocar-
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Table 11.5 Number of cases of
myocardian infarction and controls

who did and did not use oral
contraceptives by age group

Younger Older
Age<40 Age≥40

User Nonuser User Nonuser
Case 21 26 18 88
Control 17 59 7 95

dial infarction comparing those who have and have not used
oral contraceptives. Also estimate the age-adjusted odds ratio
using the same command.

2. Discuss why the adjusted and unadjusted odds ratios are not
the same here.

3. Now use logistic regression to estimate the age-adjusted odds
ratio.

11.4 Induced abortion and ectopic pregnancy

In a matched case-control study, 18 women with ectopic preg-
nancies were individually matched according to age, number of
pregnancies, and husband’s education with four controls. All
women had had at least one previous pregnancy, and the expo-
sure of interest is having had at least one induced abortion. The
data given in Table 11.6 come from Trichopoulous et al. (see Mi-
ettinen, 1969) and were previously analyzed by Rothman (1986).

Table 11.6 Pattern of exposure
(to induced abortion) of 4

controls individually matched to
exposed and unexposed cases of

ectopic pregnancy

Number of
exposed controls

Status of the case 0 1 2 3 4
Exposed 3 5 3 0 1
Unexposed 5 1 0 0 0
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The variables in ectopic.dta are:

� exposed: dummy variable for case being exposed
� numcon: number of matched controls who were exposed
� numgroups: number of matched case-control groups with a

given status of the case and a given number of matched con-
trols who were exposed

1. Use conditional logistic regression to investigate if there is an
association between induced abortion and ectopic pregnancy.

2. Interpret the estimated odds ratio and confidence interval.



Chapter 12

Survival Analysis:

Retention of Heroin

Addicts in Methadone

Maintenance Treatment

12.1 Description of data

The data to be analyzed in this chapter are on 131 heroin addicts in two
different clinics receiving methadone maintenance treatment to help
them overcome their addiction. Early dropout is an important problem
with this treatment. We will therefore analyze the time from admission
to termination of treatment (in days), given as time in Table 12.1.
For patients still in treatment when these data were collected, time is
the time from admission to the time of data collection. The variable
status is an indicator for whether time refers to dropout (1) or end
of study (0). Possible explanatory variables for retention in treatment
are maximum methadone dose and a prison record as well as which of
two clinics the addict was treated in. These variables are called dose,
prison, and clinic, respectively. The data were first analyzed by
Caplehorn and Bell (1991) and also appear in Hand et al. (1994).

Table 12.1 Data in heroin.dat
id clinic status time prison dose id clinic status time prison dose
1 1 1 428 0 50 132 2 0 633 0 70
2 1 1 275 1 55 133 2 1 661 0 40
3 1 1 262 0 55 134 2 1 232 1 70
4 1 1 183 0 30 135 2 1 13 1 60

239
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Table 12.1 Data in heroin.dat (continued)
id clinic status time prison dose id clinic status time prison dose
5 1 1 259 1 65 137 2 0 563 0 70
6 1 1 714 0 55 138 2 0 969 0 80
7 1 1 438 1 65 143 2 0 1052 0 80
8 1 0 796 1 60 144 2 0 944 1 80
9 1 1 892 0 50 145 2 0 881 0 80

10 1 1 393 1 65 146 2 1 190 1 50
11 1 0 161 1 80 148 2 1 79 0 40
12 1 1 836 1 60 149 2 0 884 1 50
13 1 1 523 0 55 150 2 1 170 0 40
14 1 1 612 0 70 153 2 1 286 0 45
15 1 1 212 1 60 156 2 0 358 0 60
16 1 1 399 1 60 158 2 0 326 1 60
17 1 1 771 1 75 159 2 0 769 1 40
18 1 1 514 1 80 160 2 1 161 0 40
19 1 1 512 0 80 161 2 0 564 1 80
21 1 1 624 1 80 162 2 1 268 1 70
22 1 1 209 1 60 163 2 0 611 1 40
23 1 1 341 1 60 164 2 1 322 0 55
24 1 1 299 0 55 165 2 0 1076 1 80
25 1 0 826 0 80 166 2 0 2 1 40
26 1 1 262 1 65 168 2 0 788 0 70
27 1 0 566 1 45 169 2 0 575 0 80
28 1 1 368 1 55 170 2 1 109 1 70
30 1 1 302 1 50 171 2 0 730 1 80
31 1 0 602 0 60 172 2 0 790 0 90
32 1 1 652 0 80 173 2 0 456 1 70
33 1 1 293 0 65 175 2 1 231 1 60
34 1 0 564 0 60 176 2 1 143 1 70
36 1 1 394 1 55 177 2 0 86 1 40
37 1 1 755 1 65 178 2 0 1021 0 80
38 1 1 591 0 55 179 2 0 684 1 80
39 1 0 787 0 80 180 2 1 878 1 60
40 1 1 739 0 60 181 2 1 216 0 100
41 1 1 550 1 60 182 2 0 808 0 60
42 1 1 837 0 60 183 2 1 268 1 40
43 1 1 612 0 65 184 2 0 222 0 40
44 1 0 581 0 70 186 2 0 683 0 100
45 1 1 523 0 60 187 2 0 496 0 40
46 1 1 504 1 60 188 2 1 389 0 55
48 1 1 785 1 80 189 1 1 126 1 75
49 1 1 774 1 65 190 1 1 17 1 40
50 1 1 560 0 65 192 1 1 350 0 60
51 1 1 160 0 35 193 2 0 531 1 65
52 1 1 482 0 30 194 1 0 317 1 50
53 1 1 518 0 65 195 1 0 461 1 75
54 1 1 683 0 50 196 1 1 37 0 60
55 1 1 147 0 65 197 1 1 167 1 55
57 1 1 563 1 70 198 1 1 358 0 45
58 1 1 646 1 60 199 1 1 49 0 60
59 1 1 899 0 60 200 1 1 457 1 40
60 1 1 857 0 60 201 1 1 127 0 20
61 1 1 180 1 70 202 1 1 7 1 40
62 1 1 452 0 60 203 1 1 29 1 60
63 1 1 760 0 60 204 1 1 62 0 40
64 1 1 496 0 65 205 1 0 150 1 60
65 1 1 258 1 40 206 1 1 223 1 40
66 1 1 181 1 60 207 1 0 129 1 40
67 1 1 386 0 60 208 1 0 204 1 65
68 1 0 439 0 80 209 1 1 129 1 50
69 1 0 563 0 75 210 1 1 581 0 65
70 1 1 337 0 65 211 1 1 176 0 55
71 1 0 613 1 60 212 1 1 30 0 60
72 1 1 192 1 80 213 1 1 41 0 60
73 1 0 405 0 80 214 1 0 543 0 40
74 1 1 667 0 50 215 1 0 210 1 50
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Table 12.1 Data in heroin.dat (continued)
id clinic status time prison dose id clinic status time prison dose
75 1 0 905 0 80 216 1 1 193 1 70
76 1 1 247 0 70 217 1 1 434 0 55
77 1 1 821 0 80 218 1 1 367 0 45
78 1 1 821 1 75 219 1 1 348 1 60
79 1 0 517 0 45 220 1 0 28 0 50
80 1 0 346 1 60 221 1 0 337 0 40
81 1 1 294 0 65 222 1 0 175 1 60
82 1 1 244 1 60 223 2 1 149 1 80
83 1 1 95 1 60 224 1 1 546 1 50
84 1 1 376 1 55 225 1 1 84 0 45
85 1 1 212 0 40 226 1 0 283 1 80
86 1 1 96 0 70 227 1 1 533 0 55
87 1 1 532 0 80 228 1 1 207 1 50
88 1 1 522 1 70 229 1 1 216 0 50
89 1 1 679 0 35 230 1 0 28 0 50
90 1 0 408 0 50 231 1 1 67 1 50
91 1 0 840 0 80 232 1 0 62 1 60
92 1 0 148 1 65 233 1 0 111 0 55
93 1 1 168 0 65 234 1 1 257 1 60
94 1 1 489 0 80 235 1 1 136 1 55
95 1 0 541 0 80 236 1 0 342 0 60
96 1 1 205 0 50 237 2 1 41 0 40
97 1 0 475 1 75 238 2 0 531 1 45
98 1 1 237 0 45 239 1 0 98 0 40
99 1 1 517 0 70 240 1 1 145 1 55

100 1 1 749 0 70 241 1 1 50 0 50
101 1 1 150 1 80 242 1 0 53 0 50
102 1 1 465 0 65 243 1 0 103 1 50
103 2 1 708 1 60 244 1 0 2 1 60
104 2 0 713 0 50 245 1 1 157 1 60
105 2 0 146 0 50 246 1 1 75 1 55
106 2 1 450 0 55 247 1 1 19 1 40
109 2 0 555 0 80 248 1 1 35 0 60
110 2 1 460 0 50 249 2 0 394 1 80
111 2 0 53 1 60 250 1 1 117 0 40
113 2 1 122 1 60 251 1 1 175 1 60
114 2 1 35 1 40 252 1 1 180 1 60
118 2 0 532 0 70 253 1 1 314 0 70
119 2 0 684 0 65 254 1 0 480 0 50
120 2 0 769 1 70 255 1 0 325 1 60
121 2 0 591 0 70 256 2 1 280 0 90
122 2 0 769 1 40 257 1 1 204 0 50
123 2 0 609 1 100 258 2 1 366 0 55
124 2 0 932 1 80 259 2 0 531 1 50
125 2 0 932 1 80 260 1 1 59 1 45
126 2 0 587 0 110 261 1 1 33 1 60
127 2 1 26 0 40 262 2 1 540 0 80
128 2 0 72 1 40 263 2 0 551 0 65
129 2 0 641 0 70 264 1 1 90 0 40
131 2 0 367 0 70 266 1 1 47 0 45

The data can be described as survival data, although the “endpoint”
is not death in this case, but dropout from treatment. From engi-
neering applications, another commonly used term for the endpoint
is “failure”. Duration or survival data can generally not be analyzed
by conventional methods such as linear regression. The main reason
for this is that some durations are usually right-censored; that is, the
endpoint of interest has not occurred during the period of observation
and all that is known about the duration is that it exceeds the obser-
vation period. In the present dataset, this applies to all observations
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where status is 0. Another reason why conventional linear regression
would not be appropriate is that survival times tend to have positively
skewed distributions. A third reason is that time-varying covariates,
such as the time of year, could not be handled. In the next section, we
therefore describe methods specifically developed for survival data.

12.2 Survival analysis

12.2.1 Introduction

The survival time T may be regarded as a random variable with a
probability distribution F (t) and probability density function f(t). An
obvious quantity of interest is the probability of surviving to time t or
beyond, the survivor function or survival curve S(t), which is given by

S(t) = P (T ≥ t) = 1 − F (t). (12.1)

A further function which is of interest for survival data is the hazard
function. This represents the instantaneous failure rate, that is, the
probability that an individual experiences the event of interest at a
time point given that the event has not yet occurred. It can be shown
that the hazard function is given by

h(t) =
f(t)
S(t)

, (12.2)

the instantaneous probability of failure at time t divided by the proba-
bility of surviving up to time t. Note that the hazard function is just the
incidence rate discussed in Chapter 11. It follows from equations (12.1)
and (12.2) that

−d log(S(t))
dt

= h(t),

so that

S(t) = exp(−H(t)), (12.3)

where H(t) is the integrated hazard function, also known as the cumu-
lative hazard function.
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12.2.2 Kaplan-Meier estimator

The Kaplan-Meier estimator is a nonparametric estimator of the sur-
vivor function S(t). If all the failure times, or times at which the
event occurs in the sample, are ordered and labeled t(j) such that
t(1) ≤ t(2) · · · ≤ t(n), the estimator is given by

Ŝ(t) =
∏

j|t(j)≤t

(
1 − dj

nj

)
,

where dj is the number of individuals who experience the event at time
t(j), and nj is the number of individuals who have not yet experienced
the event at that time and are therefore still “at risk” of experiencing it
(including those censored at t(j)). The product is over all failure times
less than or equal to t.

12.2.3 Cox regression

We can compare survival in different subgroups by plotting the Kaplan-
Meier estimators of the group-specific survivor functions and applying
simple significance tests (such as the log-rank test). However, when
there are several explanatory variables, and in particular when some of
these are continuous, it is much more useful to use a regression method
such as Cox regression. Here the hazard function for individual i is
modeled as

hi(t) = h0(t) exp(x′
iβ), (12.4)

where h0(t) is the baseline hazard function, β are regression coefficients,
and xi covariates. The baseline hazard is the hazard when all covari-
ates are zero, and this quantity is left unspecified. This nonparametric
treatment of the baseline hazard combined with a parametric represen-
tation of the effects of covariates gives rise to the term semiparametric
model. The main assumption of the model is that the hazard of any
individual i is a time-constant multiple of the hazard function of any
other individual j, the factor being exp((xi − xj)′β), the hazard ratio
or incidence rate ratio. This property is called the proportional hazards
assumption. The exponentiated regression coefficients can therefore
be interpreted as hazard ratios when the corresponding explanatory
variables increase by one unit if all other covariates remain constant.

The parameters β are estimated by maximizing the partial log like-
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lihood given by

∑
f

log

(
exp(x′

fβ)∑
i∈r(f) exp(x′

iβ)

)
(12.5)

where the first summation is over all failures f , and the second sum-
mation is over all subjects r(f) who are still at risk at the time of
failure, the “risk set”. It can be shown that this log likelihood is a
log profile likelihood (i.e., the log of the likelihood in which the base-
line hazard parameters have been replaced by functions of β which
maximize the likelihood for fixed β). Note also that the likelihood in
equation (12.5) is equivalent to the likelihood for matched case-control
studies described in Chapter 11 if the subjects at risk at the time of
a failure (the risk set) are regarded as controls matched to the case
failing at that point in time (see Clayton and Hills, 1993).

The baseline hazard function may be estimated by maximizing the
full log likelihood with the regression parameters evaluated at their
estimated values, giving nonzero values only when a failure occurs.
Integrating the hazard function gives the cumulative hazard function

Hi(t) = H0(t) exp(x′
iβ), (12.6)

where H0(t) is the integral of h0(t). The survival curve may be obtained
from H(t) using equation (12.3). This leads to the Kaplan-Meier esti-
mator when there are no covariates.

It follows from equation (12.3) that the survival curve for a Cox
model is given by

Si(t) = S0(t)exp(x′
iβ). (12.7)

The log of the cumulative hazard function predicted by the Cox model
is given by

log(Hi(t)) = log H0(t) + x′
iβ, (12.8)

so that the log cumulative hazard functions of any two subjects i and
j are parallel with constant difference given by (xi − xj)′β.

Stratified Cox regression can be used to relax the assumption of
proportional hazards for a categorical predictor. The partial likelihood
of a stratified Cox model has the same form as equation (12.5) except
that the risk set r(f) for each failure is now confined to subjects in the
same stratum as the subject contributing to the numerator.
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Survival analysis is described in Allison (1984), Clayton and Hills
(1993), Collett (2003), and Klein and Moeschberger (2003). Cleves et al.
(2004) discuss survival analysis using Stata.

12.3 Analysis using Stata

The data are available as an ASCII file called heroin.dat on the disk
accompanying Hand et al. (1994). Since the data are stored in a two-
column format with the set of variables repeated twice in each row, as
shown in Table 12.1, we have to use reshape to bring the data into the
usual form:

infile id1 clinic1 status1 time1 prison1 dose1 ///
id2 clinic2 status2 time2 prison2 dose2 ///
using heroin.dat, clear

generate row=_n
reshape long id clinic status time prison dose, ///

i(row) j(col)
drop row col

Before fitting any survival models, we declare the data as being of
the form st (for survival time) using the stset command

stset time, failure(status)

failure event: status != 0 & status < .
obs. time interval: (0, time]
exit on or before: failure

238 total obs.
0 exclusions

238 obs. remaining, representing
150 failures in single record/single failure data

95812 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 1076

and look at a summary of the data using

stsum, by(clinic)

failure _d: status
analysis time _t: time

incidence no. of Survival time
clinic time at risk rate subjects 25% 50% 75%

1 59558 .0020484 163 192 428 652
2 36254 .0007723 75 280 . .

total 95812 .0015656 238 212 504 821
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There are 238 subjects in total with a median survival time of 504 days.
If the incidence rate (i.e., the hazard function) could be assumed to be
constant, it would be estimated as 0.0016 per day (which corresponds
to 0.57 per year). Overall, 25% of subjects remain in the clinic at least
212 days, but this differs considerably by clinic (192 subjects in clinic
1 and 280 in clinic 2). In fact, in clinic 2, less than 50% of people had
dropped out by the end of follow up so that the median survival time
and the time until 75% of subjects have dropped out are not given.

The Kaplan-Meier estimator of the survivor functions for the two
clinics are obtained and plotted using

sts graph, by(clinic)

giving the graph in Figure 12.1. Dropout seems to occur at a faster rate
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analysis time
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Kaplan−Meier survival estimates, by clinic

Figure 12.1: Kaplan-Meier survival curves.

in clinic 1. According to Caplehorn and Bell (1991), the more rapid
decline in the proportion remaining in clinic 1 compared with clinic 2
may be due to the policy of clinic 1 to attempt to limit the duration of
maintenance treatment to two years.

To investigate the effects of dose and prison on survival, we will
use Cox regression. We will allow the hazard functions for the two
clinics to be non-proportional. A Cox regression model with clinics as
strata can be estimated using the stcox command with the strata()
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option:

stcox dose prison, strata(clinic)

giving the output shown in Display 12.1. Therefore, subjects with a

failure _d: status
analysis time _t: time

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

dose .9654655 .0062418 -5.44 0.000 .953309 .977777
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138

Stratified by clinic

Display 12.1

prison history are 47.5% more likely to drop out at any given time
(given that they remained in treatment until that time) than those
without a prison history. For every increase in methadone dose by one
unit (1 mg), the hazard is multiplied by 0.965. This coefficient is very
close to one, but this may be because one unit of methadone dose is not
a large quantity. Even if we know little about methadone maintenance
treatment, we can assess how much one unit of methadone dose is by
finding the sample standard deviation:

summarize dose
Variable Obs Mean Std. Dev. Min Max

dose 238 60.39916 14.45013 20 110

indicating that a unit is not much at all; subjects often differ from each
other by 10 to 15 units. To find the hazard ratio of two subjects differing
by one standard deviation, we need to raise the hazard ratio to the
power of one standard deviation, giving 0.965465514.45013 = 0.60179167.
We can obtain the same result (with greater precision) using the stored
macros b[dose] for the log hazard ratio and r(Var) for the variance,

display exp( b[dose]*sqrt(r(Var)))
.60178874
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In the above calculation, we simply rescaled the regression coefficient
before taking the exponential. To obtain this hazard ratio in the Cox re-
gression, we need to standardize dose to have unit standard deviation.
In the command below we also standardize to mean zero, although this
will make no difference to the estimated coefficients (only the baseline
hazards are affected):

egen zdose = std(dose)

We repeat the Cox regression with zdose instead of dose:

stcox zdose prison, strata(clinic)

(see Display 12.2). The coefficient of zdose is identical to that calcu-

failure _d: status
analysis time _t: time

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

zdose .6017887 .0562195 -5.44 0.000 .5010998 .7227097
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138

Stratified by clinic

Display 12.2

lated previously and may now be interpreted as indicating a decrease of
the hazard by 40% when the methadone dose increases by one standard
deviation.

Assuming the variables prison and zdose satisfy the proportional
hazards assumption (see Section 12.3.1), we now present the model
graphically. To do this, we will plot the predicted survival curves sepa-
rately for the two clinics and for those with and without a prison record
where zdose is evaluated at its clinic-specific mean. Such a graph may
be produced by using stcox with the bases() option to generate a
variable containing the predicted baseline survival function and then
applying equation (12.7) to obtain the predicted survival functions for
particular covariate values:

stcox zdose prison, strata(clinic) bases(s)
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egen mdose = mean(zdose), by(clinic)
generate surv = s^exp(_b[zdose]*mdose + _b[prison]*prison)

Note that these survival functions represent predicted values for sub-
jects having the clinic-specific mean dose. We now transform time to
time in years, and plot the survival curves separately for each clinic:

generate tt = time/365.25
label variable tt "time in years"
label define clin 1 "Clinic 1" 2 "Clinic 2"
label values clinic clin

sort clinic time
twoway (line surv tt if prison==0, connect(stairstep)) ///

(line surv tt if prison==1, connect(stairstep) ///
lpatt(dash)), by(clinic) ylabel(0(0.2)1) ///
legend(order(1 "Prison record" 2 "No prison record"))

Here the connect(stairstep) option was used to produce the step
shaped survival curves shown in Figure 12.2.
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Figure 12.2: Survival curves.

The partial likelihood is appropriate for continuous survival times,
which should theoretically never take on the same value for any two
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individuals or be tied. However, in practice survival times are measured
in discrete units, days in the present example, and ties will frequently
occur. For example, subjects 61 and 252 in clinic 1 both dropped out
after 180 days. By default stcox uses Breslow’s method for ties, where
the risk sets in (12.5) contain all subjects who failed at or after the
failure time of the subject contributing to the numerator. For a group
of subjects with tied survival times, the contributions to the partial
likelihood therefore each have the same denominator. However, risk
sets usually decrease by one after each failure. In Efron’s method, con-
tributions to the risk set from the subjects with tied failure times are
therefore downweighted in successive risk sets. In the exact method
(referred to as “exact marginal log likelihood” in [ST] stcox, the Stata
reference manual for survival analysis), the contribution to the par-
tial likelihood from a group of tied survival times is the sum, over all
possible orderings (or permutations) of the tied survival times, of the
contributions to the partial likelihood corresponding to these orderings.
Efron’s method can be obtained using the efron option and the exact
method using the exactm option (see Exercise 12.1).

12.3.1 Assessing the proportional hazards assumption

12.3.1.1 Graphical methods

We now discuss methods for assessing the proportional hazards as-
sumption. A graphical approach is available for categorical predictors
if there are sufficient observations for each value of the predictor. In
this case the model is first estimated by stratifying on the categorical
predictor of interest, thus not making any assumption regarding the
relationship between the baseline hazards for different values of the
predictor or strata. The log cumulative baseline hazards for the strata
are then derived from the estimated model and plotted against time.
According to equation (12.8), the resulting curves should be parallel if
the proportional hazards assumption holds. Here we demonstrate this
method for the variable clinic. The cumulative baseline hazard can
be obtained using stcox with the basechazard() option as follows:

quietly stcox zdose prison, strata(clinic) basech(ch)

We now compute and then plot the logarithm of the cumulative baseline
hazard function using

generate lh = log(ch)
sort time
twoway (line lh time if clinic==1, connect(stairstep)) ///

(line lh time if clinic==2, connect(stairstep) ///
lpatt(dash)), xtitle("Time in days") ///
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ytitle("Log cumulative hazard") ///
legend(order(1 "Clinic 1" 2 "Clinic 2"))

giving the graph shown in Figure 12.3. Clearly, the curves are not
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Figure 12.3: Log of minus the log of the survival functions for the two
clinics estimated by stratified Cox regression.

parallel, and we will therefore continue treating the clinics as strata.
Note that a quicker way of producing a similar graph would be to use
the stphplot command as follows:

stphplot, strata(clinic) adjust(zdose prison) zero ///
xlabel(1/7)

Here the adjust() option specifies the covariates to be used in the Cox
regression, and the zero option specifies that these covariates are to
be evaluated at zero. As a result, minus the logs of the cumulative
baseline hazard functions (stratified by clinic) are plotted against the
log of the survival time, see Figure 12.4.

To determine whether the hazard functions for those with and with-
out a prison history are proportional, we could split the data into four
strata by clinic and prison. However, as the strata get smaller, the
estimated survival functions become less precise (because the risk sets
in equation (12.5) become smaller). Also, a similar method could not
be used to check the proportional hazard assumption for the continuous
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Figure 12.4: Minus the log of minus the log of the survival functions
for the two clinics versus log survival time, estimated by stratified Cox
regression.

variable zdose without splitting it into arbitrary categories.

12.3.1.2 Time-varying covariates

Another way of testing the proportional hazards assumption of zdose,
say, is to introduce a time-varying covariate equal to the interaction
between time (since admission) and zdose, thus allowing the effect
of zdose to change over time. To estimate this model, the terms in
equation (12.5) need to be evaluated for values of the time-varying
covariates at the times of the failure in the numerator. These values
are not available for the denominator in the present dataset since each
subject is represented only once, at the time of their own failure (and
not at all previous failure times). One possibility is to create the re-
quired dataset (see below). A simpler option is to simply use the stcox
command with the tvc() and texp() options:

stcox zdose prison, strata(clinic) tvc(zdose) ///
texp((_t-504)/365.25)

The tvc() option specifies the variable that should interact with (a
function of) time and the texp() option specifies the function of time
to be used. Here we have simply subtracted the median survival time
so that the coefficient of zdose can be interpreted as the effect of
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zdose at the median survival time. We have divided by 365.25 to
see by how much the effect of zdose changes between intervals of one
year. The output is shown in Display 12.3 where the estimated increase

failure _d: status
analysis time _t: time

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 238
No. of failures = 150
Time at risk = 95812

LR chi2(3) = 34.78
Log likelihood = -597.29131 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

rh
zdose .6442974 .0767535 -3.69 0.000 .5101348 .8137442

prison 1.481193 .249978 2.33 0.020 1.064036 2.061899

t
zdose 1.147853 .1720104 0.92 0.357 .8557175 1.539722

Stratified by clinic

Note: Second equation contains variables that continuously vary with respect to
time; variables are interacted with current values of (_t-504)/365.25.

Display 12.3

in the hazard ratio for zdose is 15% per year. This small effect is
not significant at the 5% level which is confirmed by carrying out the
likelihood ratio test as follows:

estimates store model1
quietly stcox zdose prison, strata(clinic)
lrtest model1 .

likelihood-ratio test LR chi2(1) = 0.85
(Assumption: . nested in model1) Prob > chi2 = 0.3579

giving a very similar p-value as before and confirming that there is
no evidence that the effect of dose on the hazard varies with time. A
similar test can be carried out for prison (see Exercise 12.1).

Although Stata makes it very easy to include an interaction between
a variable and a function of time, inclusion of other time-varying co-
variates, or of more than a single time-varying covariate, requires an
expanded version of the current dataset. In the expanded dataset each
subject’s record should appear (at least) as many times as that subject
contributes to a risk set in equation (12.5), with the time variable equal
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to the corresponding failure times. This can be achieved very easily us-
ing the stsplit command, but only after defining an id variable using
stset:

stset time, failure(status) id(id)
stsplit, at(failures) strata(clinic)

The stsplit command generates new time and censoring variables t
and d, respectively. For subject 103, these are listed using

sort id _t
list _t _d if id==103, clean noobs

giving the values shown in Display 12.4. The last value of t (708)

_t _d
13 0
26 0
35 0
41 0
79 0

109 0
122 0
143 0
149 0
161 0
170 0
190 0
216 0
231 0
232 0
268 0
280 0
286 0
322 0
366 0
389 0
450 0
460 0
540 0
661 0
708 1

Display 12.4

is just the value of the original variable time, the subject’s survival
or censoring time, whereas the previous values are all unique survival
times (at which failures occurred) in the same stratum (clinic 2) which
are less than the subject’s own survival time. These “invented” survival
times are times beyond which the subject survives, so the censoring
variable d is set to zero for all invented times and equal to status for
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the original survival time. This new survival dataset is equivalent to
the original one, and we obtain the same results as before if we run

stcox zdose prison, strata(clinic)

(output not shown). However, we can now create time-varying co-
variates making use of the new time variable t. To assess the pro-
portional hazards assumption for zdose, we generate an interaction
between zdose and the linear transformation of t we used previously:

generate tdose = zdose*(t-504)/365.25

We now fit the Cox regression, allowing the effect of zdose to vary with
time:

stcox zdose tdose prison, strata(clinic)

giving the same result as before in Display 12.5.

failure _d: status
analysis time _t: time

id: id

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 238 Number of obs = 11228
No. of failures = 150
Time at risk = 95812

LR chi2(2) = 33.94
Log likelihood = -597.714 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

zdose .6017887 .0562195 -5.44 0.000 .5010998 .7227097
prison 1.475192 .2491827 2.30 0.021 1.059418 2.054138

Stratified by clinic

Display 12.5

We can restore the original data using the stjoin command after
deleting any time-varying covariates (apart from t and d):

drop tdose
stjoin

A test of proportional hazards based on rescaled Schoenfeld or effi-
cient score residuals (see below), suggested by Grambsch and Therneau
(1994), is also available using the estat phtest command (see for ex-
ample Cleves et al., 2004).
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12.3.2 Residuals

It is a good idea to produce some residual plots, for example a graph of
the deviance residuals against the linear predictor. In order for predict
to be able to compute the deviance residuals, we must first store the
martingale residuals (see for example Collett, 2003) using stcox with
the mgale() option:

stcox zdose prison, strata(clinic) mgale(mart)
predict devr, deviance

A scatterplot is produced using

predict xb, xb
twoway scatter devr xb, mlabel(id) mlabpos(0) ///

msymbol(none)

with the result shown in Figure 12.5. There appear to be no serious
outliers.
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Figure 12.5: Deviance residuals for survival analysis.

Another type of residual is the Schoenfeld or efficient score residual,
defined as the first derivative of the partial log likelihood function with
respect to an explanatory variable. The score residual is large in ab-
solute value if a case’s explanatory variable differs substantially from
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the explanatory variables of subjects whose estimated risk of failure is
large at the case’s time of failure or censoring. Since our model has two
explanatory variables, we can compute the efficient score residuals for
zdose and prison and store them in score1 and score2 using stcox
with the esr option:

stcox zdose prison, strata(clinic) esr(score*)

These residuals can be plotted against survival time using

twoway scatter score1 tt, mlabel(id) mlabpos(0) msymbol(none)

and similarly for score2. The resulting graphs are shown in Fig-
ures 12.6 and 12.7. Subject 89 has a low value of zdose (−1.75) com-
pared with other subjects at risk of failure at such a late time. Subjects
8, 27, 12, and 71 drop out relatively late considering that they have a
police record, whereas others remaining beyond their time of dropout
(or censoring) tend to have no police record.

123

4

5

6
7 8

9

10
11

12

13 14
15

16

17

18
19

2122
2324

25

26

27

2830 31

3233

3436

37

38

39

40
41

42
43

44

4546

4849

50

51

52

53
54

55

57 58
59

60

61

62

63

64
65

66
67

68
69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86
87

88

89

90

91

92

93

94

95

96

97
98

99

100

101

102
103

104
105

106
109110

111
113

114

118 119
120

121

122

123
124125

126

127

128

129131 132133

134
135

137
138 143

144
145146

148

149

150
153

156158

159

160

161

162

163

164

165

166
168169

170

171
172173

175

176

177

178179
180

181

182

183

184

186

187

188

189

190

192
193

194

195

196

197
198

199

200

201

202

203

204

205
206

207

208
209

210211

212213

214

215

216

217218
219220

221

222

223

224

225 226

227
228229

230
231
232 233 234

235 236

237

238

239
240

241
242 243244

245
246

247

248

249

250

251252

253
254

255

256

257 258

259

260

261

262

263

264
266

−
2

0
2

4
ef

fic
ie

nt
 s

co
re

 −
 z

do
se

0 1 2 3
time in years

Figure 12.6: Score residuals for zdose.
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Figure 12.7: Score residuals for prison.

12.4 Exercises

12.1 • Retention of heroin addicts in methadone maintenance
treatment

1. In the original analysis of this data, Caplehorn and Bell (1991)
judged that the hazards were approximately proportional for
the first 450 days (see Figure 12.3). They therefore analyzed
the data for this time period using clinic as a covariate
instead of stratifying by clinic. Repeat this analysis, using
prison and dose as further covariates.

2. Following Caplehorn and Bell (1991), repeat the above anal-
ysis treating dose as a categorical variable with three levels
(< 60, 60 − 79, ≥ 80), and plot the predicted survival curves
for the three dose categories when prison and clinic take
on one of their values.

3. Test for an interaction between clinic and methadone dose,
treating dose as both continuous and categorical.

4. For the model treating dose as categorical and containing no
interaction, compare the estimates using three different meth-
ods of handling ties: the Breslow, Efron, and exact methods.

5. Check the proportional hazards assumption for prison using
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a graphical method.

12.2 Survival of patients with primary biliary cirrhosis

The data to be analyzed here come from a Mayo Clinic trial
conducted between 1974 and 1984 and accompany the book by
Therneau and Grambsch (2000). They were previously analyzed
by Dickson et al. (1989) and Fleming and Harrington (1991). Pa-
tients with primary biliary cirrhosis were randomized to receive
either D-penicillamine or placebo. The treatment was found not
to be effective in prolonging survival, and the data, supplemented
with an additional 106 patients not participating in the trial, have
been used to develop a model for survival in a “natural history
setting”.

The variables in pbc.dta that will be used here are:

� id: subject identifier
� futime: number of days between registration and the earlier

of liver transplant, death, or end of follow-up
� status: status (0=alive, 1=liver transplant, 2=dead)
� age: age in days
� edema: presence of edema (0=no edema and no therapy for

edema, 0.5=edema, either not treated or resolved by treat-
ment, 1=edema despite treatment)

� bilir: serum bilirubin concentration (mg/dl)
� prothr: prothrombin time (seconds)
� album: albumin concentration (mg/dl)

1. Form the natural logarithms of bilir, prothr, and album
and convert age to age in years.

2. Fit a Cox regression model with the above transformed vari-
ables and the categorical variable edema as covariates. Treat
liver transplantation as censoring.

3. Interpret the estimated hazard ratios.
4. Relax the proportional hazards assumption for age using an

interaction with analysis time and use a likelihood ratio test
to assess the assumption.

5. Perform an analogous test for edema. Also use a graphical
method for assessing the proportional hazards assumption for
edema.

6. Produce and plot efficient score residuals for all covariates in
the model.
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12.3 Duration of UN peacekeeping missions

Box-Steffensmeier and Jones (2004) provide a dataset on the du-
ration of UN peacekeeping missions between 1948 and 2001. The
data were originally analyzed by Green et al. (1998).

The variables in un.dta used for this exercise are:

� duration: duration of peacekeeping mission until the earlier
of the completion date or 2001

� complete: dummy variable for peacekeeping mission being
completed

� contype: the type of conflict that led to the peacekeeping
mission (1=civil war, 2=interstate conflict, 3=international-
ized civil war)

1. Produce Kaplan-Meier survival curves by type of contest.
2. Fit a Cox proportional hazards model to investigate the ef-

fect of type of conflict on the duration on UN peacekeeping
missions. Use the exact method for handling ties. Interpret
the estimates.

3. Plot the model-implied survival curves for the three types of
conflict and compare them with the Kaplan-Meier curves.

4. Test the null hypothesis that type of contest does not affect
the duration of peacekeeping missions using a Wald test based
on the estimates from the Cox regression and using a log rank
test (see help sts test) and compare the results.

12.4 Treatment of prostate cancer

Here we consider data from a clinical trial for the treatment of
prostate cancer that were previously analyzed by Collett (2003)
and Everitt and Pickles (2004). (This is a subset of data analyzed
by Andrews and Herzberg, 1985.) Patients were randomized to
1mg per day of diethylstilbestrot (DFS) or placebo and their
survival was recorded in months.

The variables in survprost.dta are:

� time: time from the start of the trial to death or censoring
(in months)

� status: dummy variable for death (versus censoring)
� treatment: dummy variable for DFS treatment (versus placebo)
� age: age at the start of the trial (in years)
� haem: serum haemoglobin level in gm/100ml
� gleason: a combined index of tumor stage and grade (a larger

index indicates a more advanced tumor)
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1. Fit a Cox regression model to estimate the unadjusted haz-
ard ratio for DFS treatment versus placebo. Interpret the
estimated treatment effect.

2. Use a forward selection procedure to select additional covari-
ates, in addition to treatment, among the other variables
listed above. Note that you should force treatment to be
in the model (see help stepwise).

3. Interpret the estimates.
4. For the selected model, plot the model-implied survival curves

by treatment group, evaluating the covariates at their mean.





Chapter 13

Maximum Likelihood

Estimation: Age of Onset

of Schizophrenia

13.1 Description of data

Table 13.1 gives the ages of onset of schizophrenia (determined as age on
first admission) for 99 women. These data will be used to investigate
whether there is any evidence for the subtype model of schizophre-
nia (see Lewine, 1981), according to which there are two types of
schizophrenia characterized by early and late onset.

13.2 Finite mixture distributions

The most common type of finite mixture distribution for continuous
responses is a mixture of univariate normal distributions of the form

f(yi;p, µ, σ) = p1g(yi; µ1, σ1) + p2g(yi; µ2, σ2) + · · · + pkg(yi; µk, σk),

where g(y; µ, σ) is the normal or Gaussian density with mean µ and
standard deviation σ,

g(y; µ, σ) =
1

σ
√

2π
exp

{
−1

2

(
y − µ

σ

)2
}

, (13.1)

263
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Table 13.1 Age of onset of
schizophrenia data in onset.dat

Ages of onset
20 30 21 23 30 25 13 19
16 25 20 25 27 43 6 21
15 26 23 21 23 23 34 14
17 18 21 16 35 32 48 53
51 48 29 25 44 23 36 58
28 51 40 43 21 48 17 23
28 44 28 21 31 22 56 60
15 21 30 26 28 23 21 20
43 39 40 26 50 17 17 23
44 30 35 20 41 18 39 27
28 30 34 33 30 29 46 36
58 28 30 28 37 31 29 32
48 49 30

and p1, . . . , pk are mixing probabilities with
∑k

j=1 pj = 1.
The parameters p′ = (p1, . . . , pk), µ′ = (µ1, . . . , µk), and σ′ =

(σ1, . . . , σk) are usually estimated by maximum likelihood. Standard
errors can be obtained in the usual way from the observed informa-
tion matrix (i.e., from the inverse of the Hessian matrix, the matrix of
second derivatives of the log likelihood). Determining the number of
components k in the mixture is more problematic since the conventional
likelihood ratio test cannot be used to compare models with different
k, a point we will return to later.

For a short introduction to finite mixture modeling, see Everitt
(1996); a more comprehensive account is given in McLachlan and Peel
(2000). Maximum likelihood estimation using Stata is described in
detail by Gould et al. (2006).

13.3 Analysis using Stata

Stata has a command called ml, which can be used to maximize a
user-specified log likelihood using the Newton-Raphson algorithm. The
algorithm is iterative. Starting with initial parameter values, the pro-
gram evaluates the first and second derivatives of the log likelihood
at the parameter values to find a new set of parameter values where
the likelihood is likely to be greater. The derivatives are then evalu-
ated for the new parameters to update the parameters again, etc., until
the maximum has been found (where the first derivatives are zero and
the second derivatives negative). The EM algorithm, an alternative
to Newton-Raphson, is often believed to be superior for finite mixture
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models. However, in our experience the implementation of Newton-
Raphson in Stata works very well for these models.

To use ml, the user must write a program that evaluates the log
likelihood and possibly its derivatives. The ml command provides four
methods: d0, d1, d2, and lf. The d0 method does not require the user’s
program to evaluate any derivatives of the log likelihood, d1 requires
first derivatives only, and d2 requires both first and second derivatives.
When d0 is chosen, first and second derivatives are found numerically;
this makes this alternative slower and less accurate than d1 or d2.

The simplest approach to use is lf which also does not require any
derivatives to be programmed. Instead, the structure of most likelihood
problems is used to increase both the speed and the accuracy of the
numerical differentiation. Whereas d0 to d2 can be used for any maxi-
mum likelihood problem, method lf can only be used if the likelihood
satisfies the following two criteria:

1. The units of observations in the dataset are independent, i.e., the
log likelihood is the sum of the log likelihood contributions of the
units.

2. The log likelihood contributions have a linear form, i.e., they are
(not necessarily linear) functions of linear predictors of the form
ηi = x1iβ1 + · · · + xkiβk.

The first restriction is usually met, an exception being longitudinal or
multilevel data. The second restriction is not as severe as it appears
because there may be several linear predictors, as we shall see later.
These restrictions allow lf to evaluate derivatives efficiently and ac-
curately using chain rules. For example, first derivatives are obtained
as

∂�i

∂β1

=
∂�i

∂ηi

x1i,

where �i is the log likelihood contribution from the ith observation. All
that is required are the derivatives with respect to the linear predic-
tor(s) from which the derivatives with respect to the individual param-
eters follow automatically.

In this chapter, we will give only a brief introduction to maximum
likelihood estimation using Stata, restricting our examples to the lf
method. We recommend the book on Maximum Likelihood Estimation
with Stata by Gould et al. (2006) for a thorough treatment of the topic.

We will eventually fit a mixture of normals to the age of onset data,
but will introduce the ml procedure by a series of simpler models.
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13.3.1 Single normal density

To begin with, we will fit a normal distribution with standard deviation
fixed at 1 to a set of simulated data. A (pseudo)-random sample from
the normal distribution with mean 5 and standard deviation 1 can be
obtained using the instructions

clear
set obs 100
set seed 12345678
generate y = invnormal(uniform()) + 5

where the purpose of the set seed command is simply to ensure that
the same data will be generated each time we repeat this sequence of
commands. We use summarize to confirm that the sample has a mean
close to 5 and a standard deviation close to 1.

summarize y
Variable Obs Mean Std. Dev. Min Max

y 100 5.002311 1.053095 2.112869 7.351898

First, we will define a program, mixing0, to evaluate the log like-
lihood contributions when called from ml. The program must have
two arguments; the first is the variable name where ml will look for
the computed log likelihood contributions; the second is the variable
name containing the “current” value of the linear predictor during the
iterative maximization procedure:

capture program drop mixing0
program mixing0

version 9.2
args lj xb

tempname s

scalar `s´ = 1
quietly replace `lj´ = ln(normalden($ML_y1,`xb´,`s´))

end

After giving names lj and xb to the arguments passed to mixing0
by ml, mixing0 defines a temporary name stored in the local macro
s and subsequently defines a scalar having that name and taking the
value 1. This scalar represents the standard deviation used in the next
command. Using temporary names avoids any confusion with variables
that may exist in the dataset. The final command returns the log of
the normal density in `lj´ as required by the calling program. Here
we used the normalden(y, µ, σ) function to calculate the normal
density in equation (13.1) where y is the dependent variable whose
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name is stored in the global macro ML y1 by ml. The mean µ is just
the linear predictor `xb´, and the standard deviation σ is the scalar
`s´.

Note that all variables defined within a program to be used with
ml should be of storage type double to enable ml to estimate accurate
numerical derivatives. Scalars should be used instead of local macros
to hold constants as scalars have higher precision.

The commands above can be typed into a do-file. After running the
commands, define the model using the command

ml model lf mixing0 (xb: y=)

which specifies the method as lf and the program to evaluate the log
likelihood contributions as mixing0. The response and explanatory
variable are given by the “equation” in parentheses. Here the name
before the colon, xb, is the name of the equation, the variable after
the colon, y, is the response variable, and the variables after the “=”
are the explanatory variables contributing to the linear predictor. No
explanatory variables are given here, so a constant only model will be
fitted.

As a result of this model definition, the global ML y1 will be equal
to y and in mixing0 `xb´ will be equal to the intercept parameter (the
mean) that is going to be estimated by ml.

Now we maximize the log likelihood using the command

ml maximize, noheader

giving the results shown in Display 13.1. The program converged in

initial: log likelihood = -1397.9454
alternative: log likelihood = -1160.3298
rescale: log likelihood = -197.02113
Iteration 0: log likelihood = -197.02113
Iteration 1: log likelihood = -146.79042
Iteration 2: log likelihood = -146.78981
Iteration 3: log likelihood = -146.78981

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 5.002311 .1 50.02 0.000 4.806314 5.198307

Display 13.1

three iterations and the maximum likelihood estimate of the mean is
equal to the sample mean of 5.002311. If we were interested in observing
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the value of the mean parameter in each iteration, we could use the
trace option in the ml maximize command. We used the noheader
option to suppress output relating to the likelihood ratio test against
a “null” model since we have not specified such a model.

We will now extend the program step by step until it can be used
to estimate a mixture of two Gaussians. The first step is to allow the
standard deviation to be estimated. Since this parameter does not
contribute linearly to the linear predictor used to estimate the mean,
we must define another linear predictor by specifying another equa-
tion with no dependent variable in the ml model command. Assuming
that the program to evaluate the log likelihood contributions is called
mixing1, the ml model command becomes:

ml model lf mixing1 (xb: y=) (lsd:)

The new equation has the name lsd, has no dependent variable (since
y is the only dependent variable), and the linear predictor is simply a
constant. A short-form of the above command is

ml model lf mixing1 (xb: y=) /lsd

We intend to use lsd as the log standard deviation. Estimating the
log of the standard deviation will ensure that the standard deviation
itself is positive. We will now modify the function mixing0 so that it
has an additional argument for the log standard deviation:

capture program drop mixing1
program mixing1

version 9.2
args lj xb ls

tempvar s

quietly generate double `s´ = exp(`ls´)
quietly replace `lj´ = ln(normalden($ML_y1,`xb´,`s´))

end

We now define a temporary variable s instead of a scalar because the
linear predictor `ls´ is a variable. This is because the linear predictor
is defined in the ml model command and could in principle contain
covariates (see Exercise 13.2) and hence differ between units. The tem-
porary variable name will not clash with any existing variable names,
and the variable will automatically be deleted when the program has
finished running. Running

ml maximize, noheader

gives the output shown in Display 13.2.
The standard deviation estimate is obtained by exponentiating the

estimated coefficient of cons in equation lsd. Instead of typing display
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initial: log likelihood = -1397.9454
alternative: log likelihood = -534.94948
rescale: log likelihood = -301.15405
rescale eq: log likelihood = -180.56802
Iteration 0: log likelihood = -180.56802
Iteration 1: log likelihood = -147.59179
Iteration 2: log likelihood = -146.58986
Iteration 3: log likelihood = -146.5647
Iteration 4: log likelihood = -146.56469

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_cons 5.002311 .1047816 47.74 0.000 4.796943 5.207679

lsd
_cons .0467082 .0707107 0.66 0.509 -.0918821 .1852986

Display 13.2

exp(0.0467082), we can use the following syntax for accessing coeffi-
cients and their standard errors:

display [lsd]_b[_cons]
.04670833

display [lsd]_se[_cons]
.07071068

We can also omit “ b” from the first expression, and compute the re-
quired standard deviation using

display exp([lsd][_cons])
1.0478163

This is smaller than the sample standard deviation from summarize
because the maximum likelihood estimate of the standard deviation is
given by

σ̂ =

√√√√ 1
n

n∑
i=1

(yi − y)2, (13.2)

where n is the sample size, whereas the factor 1
n−1

is used in summarize.
Since n is 100 in this case, the maximum likelihood estimate must be
“blown up” by a factor of

√
100/99 to obtain the sample standard

deviation:

display exp([lsd][_cons])*sqrt(100/99)
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1.053095

13.3.2 Two-component mixture model

The program can now be extended to estimate a mixture of two Gaus-
sians. To allow us to test the program on data from a known distribu-
tion, we will simulate a sample from a mixture of two Gaussians with
standard deviations equal to 1 and means equal to 0 and 5 and with
mixing probabilities p1 = p2 = 0.5. This can be done in two stages; first
randomly allocate observations to groups (variable z) with probabili-
ties p1 and p2, and then sample from the different component densities
according to group membership.

clear
set obs 300
set seed 12345678
generate z = cond(uniform()<0.5,1,2)
generate y = invnormal(uniform())
replace y = y + 5 if z==2

We now need five linear predictors, one for each parameter to be
estimated: µ1, µ2, σ1, σ2, and p1 (since p2 = 1− p1). As before, we can
ensure that the estimated standard deviations are positive by taking
the exponential inside the program. The mixing proportion p1 must lie
in the range 0 ≤ p1 ≤ 1. One way of ensuring this is to interpret the
linear predictor as representing the log odds (see Chapter 6) so that
p1 is obtained from the linear predictor of the log odds, lo1 using the
transformation 1/(1+exp(-lo1)). The program now becomes

capture program drop mixing2
program mixing2

version 9.2
args lj xb1 xb2 lo1 ls1 ls2

tempvar f1 f2 p s1 s2

quietly {
generate double `s1´ = exp(`ls1´)
generate double `s2´ = exp(`ls2´)
generate double `p´ = 1/(1+exp(-`lo1´))

generate double `f1´ = normalden($ML_y1,`xb1´,`s1´)
generate double `f2´ = normalden($ML_y1,`xb2´,`s2´)
replace `lj´ = ln(`p´*`f1´ + (1-`p´)*`f2´)

}
end
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Here we have applied quietly to a whole block of commands by en-
closing them in braces.

Stata simply uses zeroes as starting or initial values for all param-
eters. However, it is not advisable here to start with the same initial
value for both component means. Therefore the starting values should
be set using the ml init commands as follows:

ml model lf mixing2 (xb1: y=) /xb2 /lo1 /lsd1 /lsd2
ml init 1 6 0 0.2 -0.2, copy
ml maximize, noheader

In the ml init command, the first two values are initial values for the
means, the third for the log odds, and the fourth and fifth for the logs
of the standard deviations.

The results are shown in Display 13.3 where the standard deviations

initial: log likelihood = -746.68918
rescale: log likelihood = -746.68918
rescale eq: log likelihood = -676.61764
Iteration 0: log likelihood = -676.61764 (not concave)
Iteration 1: log likelihood = -630.71006
Iteration 2: log likelihood = -625.89
Iteration 3: log likelihood = -622.23409
Iteration 4: log likelihood = -622.21162
Iteration 5: log likelihood = -622.21162

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb1
_cons -.0457452 .0806427 -0.57 0.571 -.203802 .1123117

xb2
_cons 4.983717 .0863492 57.72 0.000 4.814476 5.152958

lo1
_cons .1122415 .1172032 0.96 0.338 -.1174725 .3419555

lsd1
_cons -.027468 .0627809 -0.44 0.662 -.1505164 .0955804

lsd2
_cons -.0173444 .0663055 -0.26 0.794 -.1473008 .1126121

Display 13.3

are estimated as

display exp([lsd1][_cons])
.97290582
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and

display exp([lsd2][_cons])
.9828052

and the probability of membership in group 1 as

display 1/(1 + exp(-[lo1][_cons]))
.52803094

The maximum likelihood estimates agree quite closely with the true
parameter values.

Alternative estimates of the mixing probability and means and stan-
dard deviations, treating group membership as known (usually not pos-
sible!), are obtained using

table z, contents(freq mean y sd y)

z Freq. mean(y) sd(y)

1 160 -.0206726 1.003254
2 140 5.012208 .954237

and these are also similar to the maximum likelihood estimates. The
maximum likelihood estimate of the proportion (0.528) is closer to the
realized proportion 160/300 = 0.533 than the “true” proportion 0.5.

The standard errors of the estimated means are given in the re-
gression table in Display 13.3 (0.081 and 0.086). We can estimate
the standard errors of the standard deviations and of the probabil-
ity from the standard errors of the log standard deviations and log
odds using the delta method (see for example Agresti, 2002, pages 577-
581). According to the delta method, if y = f(x), then approximately,
se(y) = |f ′(x)|se(x) where f ′(x) is the first derivative of f(x) with re-
spect to x evaluated at the estimated value of x. For the standard
deviation, sd = exp(lsd), so that, by the delta method,

se(sd) = sd × se(lsd). (13.3)

For the probability, p = 1/(1 + exp(−lo)), so that

se(p) = p(1 − p) × se(lo). (13.4)

However, an even easier way of obtaining and displaying a function of
coefficients with the correct standard error in Stata is using the nlcom
command:

nlcom (sd1: exp([lsd1][_cons])) (sd2: exp([lsd2][_cons])) ///
(p: invlogit([lo1][_cons]))
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sd1: exp([lsd1][_cons])
sd2: exp([lsd2][_cons])

p: invlogit([lo1][_cons])

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

sd1 .9729058 .0610799 15.93 0.000 .8531913 1.09262
sd2 .9828052 .0651654 15.08 0.000 .8550833 1.110527

p .5280309 .0292087 18.08 0.000 .4707829 .585279

Display 13.4

In each set of parentheses, we specify a label, followed by a colon and
then an expression defining the function of stored estimates we are
interested in. Here we used the invlogit() function to obtain the
probability from the log odds. Stata then uses numerical derivatives to
work out the correct standard error using the delta-method giving the
results shown in Display 13.4. The z-statistic, p-value, and confidence
interval should be ignored unless it is reasonable to assume a normal
sampling distribution for the derived parameter.

We now apply the same program to the age of onset data. The data
can be read in using

infile y using onset.dat, clear
label variable y "age of onset of schizophrenia"

A useful graphical display of the data is a histogram produced using

histogram y, bin(12)

which is shown in Figure 13.1.
It seems reasonable to use initial values of 20 and 45 for the two

means. In addition, we will use a mixing proportion of 0.5 and log
standard deviations of 2 as initial values.

ml model lf mixing2 (y: y=) /xb2 /lo1 /lsd1 /lsd2
ml init 20 45 0 2 2, copy
ml maximize, noheader

The output is given in Display 13.5. The means are estimated as 24.8
and 46.4, the standard deviations as 6.5 and 7.1, and the mixing pro-
portions as 0.74 and 0.26, for groups 1 and 2, respectively. The approx-
imate standard errors may be obtained as before; see Exercise 13.1.

We will now plot the estimated mixture density together with a
kernel density estimate. Instead of using the command kdensity, we
will use twoway kdensity, allowing us to add the mixture density onto
the same graph:
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initial: log likelihood = -391.61146
rescale: log likelihood = -391.61146
rescale eq: log likelihood = -391.61146
Iteration 0: log likelihood = -391.61146 (not concave)
Iteration 1: log likelihood = -374.66715 (not concave)
Iteration 2: log likelihood = -374.36498
Iteration 3: log likelihood = -373.94157
Iteration 4: log likelihood = -373.67092
Iteration 5: log likelihood = -373.66896
Iteration 6: log likelihood = -373.66896

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb1
_cons 24.79772 1.133545 21.88 0.000 22.57601 27.01942

xb2
_cons 46.44685 2.740866 16.95 0.000 41.07485 51.81885

lo1
_cons 1.034415 .3697502 2.80 0.005 .3097179 1.759112

lsd1
_cons 1.877698 .1261092 14.89 0.000 1.630529 2.124868

lsd2
_cons 1.955009 .25692 7.61 0.000 1.451455 2.458563

Display 13.5
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Figure 13.1: Histogram of age of onset of schizophrenia in women.

graph twoway (kdensity y, width(3)) ///
(function invlogit([lo1]_cons) ///
* normalden(x,[xb1]_cons,exp([lsd1]_cons)) ///
+ (1-invlogit([lo1]_cons)) ///
* normalden(x,[xb2]_cons,exp([lsd2]_cons)), ///
range(y) lpatt(dash)), ///

xtitle("Age") ytitle("Density") ///
legend(order(1 "Kernel density" 2 "Mixture model"))

In Figure 13.2 the two estimates of the density are surprisingly similar.
(Admittedly, we did specify width(3) for the half-width of the kernel
because this gave a good fit!)

The histogram and kernel density estimate suggest that there are
two subpopulations. To test this more formally, we could also fit a
single normal distribution and compare the likelihoods. However, as
mentioned earlier, the conventional likelihood ratio test is not valid
here. Wolfe (1971) suggests, on the basis of a limited simulation study,
that the difference in minus twice the log likelihood for a model with
k components compared with a model with k + 1 components has ap-
proximately a χ2 distribution with 2ν − 2 degrees of freedom: here ν is
the number of extra parameters in the k + 1 component mixture. The
log likelihood of the current model may be accessed using e(ll). We
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Figure 13.2: Kernel and mixture model densities for the age of onset
data.

store this in a local macro

local ll = e(ll)

and fit the single normal model using the program mixing1 as follows:

ml model lf mixing1 (xb: y=) /lsd
ml init 30 1.9, copy
ml maximize, noheader

with the result shown in Display 13.6. Comparing the log likelihoods
using the method proposed by Wolfe,

local chi2 = 2*(`ll´-e(ll))
display chi2tail(4,`chi2´)

.00063994

confirms that there appear to be two subpopulations.
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initial: log likelihood = -429.14924
rescale: log likelihood = -429.14924
rescale eq: log likelihood = -429.14924
Iteration 0: log likelihood = -429.14924
Iteration 1: log likelihood = -383.94844
Iteration 2: log likelihood = -383.4
Iteration 3: log likelihood = -383.39585
Iteration 4: log likelihood = -383.39585

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
_cons 30.47475 1.169045 26.07 0.000 28.18346 32.76603

lsd
_cons 2.453747 .0710669 34.53 0.000 2.314458 2.593035

Display 13.6

13.4 Exercises

13.1 • Two-component mixture of normals

1. Create a do-file with the commands necessary to fit the two-
component mixture of normals discussed in this chapter.

2. Add commands to the end of the do-file to calculate the stan-
dard deviations and mixing probability and the standard er-
rors of these parameters. What are the standard errors of the
estimates for the age of onset data?

3. Simulate values from two normals trying out different values
for the various parameters. Do the estimated values tend
to lie within two estimated standard errors from the “true”
values?

13.2 • Heteroscedastic linear regression

1. Use the program mixing1 to fit a linear regression model to
the slimming data from Chapter 5 with status as the only
explanatory variable.

2. Compare the estimated residual standard deviation with the
root mean squared error obtained using the regress com-
mand.

3. Use the same program again to fit a linear regression model
where the variance is allowed to differ between the groups
defined by status. (Hint: Modify the (lsd:) equation in
the ml model command; see page 268). Is there any evidence
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for heteroscedasticity? How do the results compare with those
of sdtest?

13.3 • Three-component mixture of normals

1. Extend the program mixing2 to fit a mixture of three normals
and test this on simulated data (hint: use transformations
p1 = 1/d, p2 = exp(lo1)/d, and p3 = exp(lo2)/d where d =
1 + exp(lo1) + exp(lo2)).

13.4 Two-component mixture of Poisson distributions

Hasselblad (1969) fitted a two-component mixture of Poisson dis-
tributions to the number of death notices of women aged 80 and
over published in the New York Times between 1910 and 1912.
This classic dataset is tabulated below

Number of notices 0 1 2 3 4 5 6 7 8 9
Frequency 162 267 271 185 111 61 27 8 3 1

The model can be written as

Pr(Y =y) = p1 exp(y ln(µ1) − µ1)/y!

+ (1 − p1) exp(y ln(µ2) − µ2)/y!,

where µ1 and µ2 are the means for the two components and
p1 is the probability of belonging to the first component. Has-
selblad obtained the estimates p̂1 = 0.3599, µ̂1 = 1.2561, and
µ̂2 = 2.6634. This solution was interpreted as indicating a differ-
ent pattern of deaths in the winter (component 1) and summer
(component 2).

1. Write a program to evaluate the log-likelihood contribution
for the ml command with method lf. Note that the model is
defined only for µ1 > 0 and µ2 > 0. You can use the function
lnfactorial() to evaluate ln(y!).

2. Enter the data. (Hint: Use the expand command.)
3. Fit the model. Any discrepancies between your results and

those given above are likely due to programming errors. You
can rule out that it is due to poor starting values by using
values close to the required results. Revise your program if
necessary.
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4. Calculate the expected frequencies for each number of no-
tices and compare them graphically with the observed fre-
quencies. (Hint: You can use the program that evaluates the
log-likelihood contributions to calculate the log probabilities
for different values of y by defining the global ML y1 appro-
priately and passing the name of an existing variable and the
estimated parameters to the program as arguments.)

13.5 Latent class model

Van der Heijden et al. (1992) analyze data collected by the Nether-
lands Ministry of Justice to investigate differences in involvement
in crime among young people from four ethnic groups: Moroc-
cans, Turks, Surinamese, and Dutch. The Dutch sample con-
sisted of people who lived in the same streets as the people from
the other ethnic groups. Three crime measures were gathered
from police records: Property crime, aggression against persons,
and vandalism.

The variables in crime.dta are:

� vandalis: indicator for being arrested for vandalism
� aggress: indicator for aggression against a person
� property: indicator for being arrested for property crime
� ethnicity: ethnic group (1=Moroccan, 2=Turkish, 3=Suri-

namese, 4=Dutch)
� age: age group (1=12-13, 2=14-15, 3=16-17)

Assuming that there are subpopulations differing in their
pattern of responses on the three delinquency items, we will con-
sider a finite mixture model with two components for simplicity.
What is different between this model and the other finite mixture
models discussed in this chapter is that there are three responses
per subject. Assuming that responses are independent within
the latent classes (an assumption known as conditional or local
independence), the model can be written as

Pr(yi) = p1

3∏
i=1

exp(α1iyi)
1 + exp(α1i)

+ (1 − p1)
3∏

i=1

exp(α2iyi)
1 + exp(α2i)

where αci is the log odds that the ith response yi equals one for a
person in latent class c. Here yi multiplies αci in the numerator
to produce a numerator equal to exp(αci) if yi =1 and equal to 1
if yi =0 as required.

1. Write a program to evaluate the log-likelihood contributions
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for ml. Note that three response variables must be specified
in the ml model. You can simply use equations of the form
(name1: vandalis=), (name1: aggressi=), and (name1:
property=) to specify the three response variables and one
linear predictor for each, and then use equations without re-
sponse variables for all the remaining linear predictors. The
names of the response variables will be stored in the globals
ML y1, ML y2, and ML y3.
To test the program, create a variable junk equal to 1 and
specify junk as the variable name for the log-likelihood con-
tributions, passing values of zero for all linear predictors. The
result should be that junk equals ln(.53) = −2.0794415 for all
observations.

2. Estimate the model. If non-convergence occurs, change the
starting values and use the option search(norescale) in the
ml maximize command. Assuming that one population will
be more delinquent than the other, reasonable starting values
are negative values for α1i and positive values for α2i (or vice
versa).

3. Interpret the estimates.
4. Modify the ml model command to allow the latent class mem-

bership probability p1 to depend on the covariates ethnicity
and age via a logistic regression model.

5. Interpret the estimates.



Chapter 14

Principal Components

Analysis: Hearing

Measurement Using an

Audiometer

14.1 Description of data

The data in Table 14.1 are adapted from those given in Jackson (1991),
and relate to hearing measurements with an instrument called an au-
diometer. An individual is exposed to a signal of a given frequency
with an increasing intensity until the signal is perceived. The low-
est intensity at which the signal is perceived is a measure of hearing
loss, calibrated in units referred to as decibel loss in comparison with
a reference standard for that particular instrument. Observations are
obtained one ear at a time for a number of frequencies. In this ex-
ample, the frequencies used were 500 Hz, 1000 Hz, 2000 Hz, and 4000
Hz. The limits of the instrument are −10 to 99 decibels. (A negative
value does not imply better than average hearing; the audiometer had
a calibration “zero”, and these observations are in relation to that.)

Table 14.1 Data in hear.dat (taken from Jackson (1991)
with permission of his publisher, John Wiley & Sons)
id l500 l1000 l2000 l4000 r500 r1000 r2000 r4000
1 0 5 10 15 0 5 5 15
2 −5 0 −10 0 0 5 5 15
3 −5 0 15 15 0 0 5 15
4 −5 0 −10 −10 −10 −5 −10 10

281
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Table 14.1 Data in hear.dat (continued)
5 −5 −5 −10 10 0 −10 −10 50
6 5 5 5 −10 0 5 0 20
7 0 0 0 20 5 5 5 10
8 −10 −10 −10 −5 −10 −5 0 5
9 0 0 0 40 0 0 −10 10

10 −5 −5 −10 20 −10 −5 −10 15
11 −10 −5 −5 5 5 0 −10 5
12 5 5 10 25 −5 −5 5 15
13 0 0 −10 15 −10 −10 −10 10
14 5 15 5 60 5 5 0 50
15 5 0 5 15 5 −5 0 25
16 −5 −5 5 30 5 5 5 25
17 0 −10 0 20 0 −10 −10 25
18 5 0 0 50 10 10 5 65
19 −10 0 0 15 −10 −5 5 15
20 −10 −10 −5 0 −10 −5 −5 5
21 −5 −5 −5 35 −5 −5 −10 20
22 5 15 5 20 5 5 5 25
23 −10 −10 −10 25 −5 −10 −10 25
24 −10 0 5 15 −10 −5 5 20
25 0 0 0 20 −5 −5 10 30
26 −10 −5 0 15 0 0 0 10
27 0 0 5 50 5 0 5 40
28 −5 −5 −5 55 −5 5 10 70
29 0 15 0 20 10 −5 0 10
30 −10 −5 0 15 −5 0 10 20
31 −10 −10 5 10 0 0 20 10
32 −5 5 10 25 −5 0 5 10
33 0 5 0 10 −10 0 0 0
34 −10 −10 −10 45 −10 −10 5 45
35 −5 10 20 45 −5 10 35 60
36 −5 −5 −5 30 −5 0 10 40
37 −10 −5 −5 45 −10 −5 −5 50
38 5 5 5 25 −5 −5 5 40
39 −10 −10 −10 0 −10 −10 −10 5
40 10 20 15 10 25 20 10 20
41 −10 -10 −10 20 −10 -10 0 5
42 5 5 −5 40 5 10 0 45
43 −10 0 10 20 −10 0 15 10
44 −10 -10 10 10 −10 -10 5 0
45 −5 −5 −10 35 −5 0 −10 55
46 5 5 10 25 10 5 5 20
47 5 0 10 70 −5 5 15 40
48 5 10 0 15 5 10 0 30
49 −5 −5 5 −10 -10 −5 0 20
50 −5 0 10 55 −10 0 5 50
51 −10 -10 −10 5 −10 -10 −5 0
52 5 10 20 25 0 5 15 0
53 −10 -10 50 25 −10 -10 −10 40
54 5 10 0 −10 0 5 −5 15
55 15 20 10 60 20 20 0 25
56 −10 -10 −10 5 −10 -10 −5 -10
57 −5 −5 −10 30 0 −5 −10 15
58 −5 −5 0 5 −5 −5 0 10
59 −5 5 5 40 0 0 0 10
60 5 10 30 20 5 5 20 60
61 5 5 0 10 −5 5 0 10
62 0 5 10 35 0 0 5 20
63 −10 -10 −10 0 −5 0 −5 0
64 −10 −5 −5 20 −10 -10 −5 5
65 5 10 0 25 5 5 0 15
66 −10 0 5 60 −10 −5 0 65
67 5 10 40 55 0 5 30 40
68 −5 −10 -10 20 −5 −10 -10 15
69 −5 −5 −5 20 −5 0 0 0
70 −5 −5 −5 5 −5 0 0 5
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Table 14.1 Data in hear.dat (continued)
71 0 10 40 60 −5 0 25 50
72 −5 −5 −5 −5 −5 −5 −5 5
73 0 5 45 50 0 10 15 50
74 −5 −5 10 25 −10 −5 25 60
75 0 −10 0 60 15 0 5 50
76 −5 0 10 35 −10 0 0 15
77 5 0 0 15 0 5 5 25
78 15 15 5 35 10 15 −5 0
79 −10 -10 −10 5 −5 −5 −5 5
80 −10 -10 −5 15 −10 -10 −5 5
81 0 −5 5 35 −5 −5 5 15
82 −5 −5 −5 10 −5 −5 −5 5
83 −5 −5 −10 -10 0 −5 −10 0
84 5 10 10 20 −5 0 0 10
85 −10 -10 −10 5 −10 −5 −10 20
86 5 5 10 0 0 5 5 5
87 −10 0 −5 −10 -10 0 0 -10
88 −10 -10 10 15 0 0 5 15
89 −5 0 10 25 −5 0 5 10
90 5 0 −10 -10 10 0 0 0
91 0 0 5 15 5 0 0 5
92 −5 0 −5 0 −5 −5 −10 0
93 −5 5 −10 45 −5 0 −5 25
94 −10 −5 0 10 −10 5 −10 10
95 −10 −5 0 5 −10 −5 −5 5
96 5 0 5 0 5 0 5 15
97 −10 -10 5 40 −10 −5 −10 5
98 10 10 15 55 0 0 5 75
99 −5 5 5 20 −5 5 5 40

100 −5 −5 −10 −10 −5 0 15 10

14.2 Principal component analysis

Principal component analysis is one of the oldest but still most widely
used techniques of multivariate analysis. Originally introduced by Pear-
son (1901) and independently by Hotelling (1933), the basic idea of the
method is to try to describe the variation of the variables in a set of
multivariate data as parsimoniously as possible using a set of derived
uncorrelated variables, each of which is a particular linear combination
of those in the original data. In other words, principal component anal-
ysis is a transformation from the observed variables, y1i, . . . , ypi to new
variables z1i, . . . , zpi where

z1i = a11y1i + a12y2i + · · · + a1pypi

z2i = a21y1i + a22y2i + · · · + a2pypi

... =
... +

... +
... +

...
zpi = ap1y1i + ap2y2i + · · · + appypi.

(14.1)

The new variables are derived in decreasing order of importance.
The coefficients a11 to a1p for the first principal component are derived
so that the sample variance of y1i is as large as possible. Since this
variance could be increased indefinitely by simply increasing the co-
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efficients, a restriction must be placed on them, generally that their
sum of squares is one. The coefficients defining the second principal
component y2i are determined to maximize its sample variance subject
to the constraint that the sum of squared coefficients equals 1 and that
the sample correlation between y1i and y2i is 0. The other principal
components are defined similarly by requiring that they are uncorre-
lated with all previous principal components. It can be shown that
the required coefficients are given by the eigenvectors of the sample
covariance matrix of y1i, . . . , ypi, and their variances are given by the
corresponding eigenvalues. In practice components are often derived
from the correlation matrix instead of the covariance matrix, partic-
ularly if the variables have very different scales. The analysis is then
equivalent to calculation of the components from the original variables
after these have been standardized to unit variance.

The usual objective of this type of analysis is to assess whether
the first few components account for a substantial proportion of the
variation in the data. If they do, they can be used to summarize the
data with little loss of information. This may be useful for obtaining
graphical displays of the multivariate data or for simplifying subsequent
analysis. The principal components can be interpreted by inspecting
the eigenvectors defining them. Here it is often useful to multiply the
elements by the square root of the corresponding eigenvalue in which
case the coefficients represent correlations between an observed variable
and a component. A detailed account of principal component analysis
is given in Everitt and Dunn (2001).

14.3 Analysis using Stata

The data can be read in from an ASCII file hear.dat as follows:

infile id l500 l1000 l2000 l4000 r500 r1000 r2000 r4000 ///
using hear.dat, clear

summarize

(see Display 14.1).
Before undertaking a principal component analysis, some graphical

exploration of the data may be useful. A scatterplot matrix, for exam-
ple, with points labeled with a subject’s identification number can be
obtained using

graph matrix l500-r4000, mlabel(id) msymbol(none) ///
mlabposition(0) half
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Variable Obs Mean Std. Dev. Min Max

id 100 50.5 29.01149 1 100
l500 100 -2.8 6.408643 -10 15
l1000 100 -.5 7.571211 -10 20
l2000 100 2.45 11.94463 -10 50
l4000 100 21.35 19.61569 -10 70

r500 100 -2.6 7.123726 -10 25
r1000 100 -.7 6.396811 -10 20
r2000 100 1.55 9.257675 -10 35
r4000 100 20.95 19.43254 -10 75

Display 14.1

The resulting diagram is shown in Figure 14.1. The diagram looks a
little “odd” due to the largely “discrete” nature of the observations.
Some of the individual scatterplots suggest that some of the observa-
tions might perhaps be regarded as outliers; for example, individual
53 in the plot involving l2000, r2000. This subject has a score of 50
at this frequency in the left ear, but a score of −10 in the right ear.
It might be appropriate to remove this subject’s observations before
further analysis, but we shall not do this and will continue to use the
data from all 100 individuals.

As mentioned in the previous section, principal components may be
extracted from either the covariance matrix or the correlation matrix
of the original variables. A choice needs to be made since there is not
necessarily any simple relationship between the results in each case.
The summary table shows that the variances of the observations at
the highest frequencies are approximately nine times those at the lower
frequencies; consequently, a principal component analysis using the
covariance matrix would be dominated by the 4000 Hz frequency. But
this frequency is not more clinically important than the others, and so,
in this case, it seems more reasonable to use the correlation matrix as
the basis of the principal component analysis.

To find the correlation matrix of the data requires the following
instruction:

correlate l500-r4000

and the result is given in Display 14.2. Note that the highest correla-
tions occur between adjacent frequencies on the same ear and between
corresponding frequencies on different ears.

The pca command can be used to obtain the principal components
of this correlation matrix:
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l500 l1000 l2000 l4000 r500 r1000 r2000

l500 1.0000
l1000 0.7775 1.0000
l2000 0.3247 0.4437 1.0000
l4000 0.2554 0.2749 0.3964 1.0000
r500 0.6963 0.5515 0.1795 0.1790 1.0000
r1000 0.6416 0.7070 0.3532 0.2632 0.6634 1.0000
r2000 0.2399 0.3606 0.5910 0.3193 0.1575 0.4151 1.0000
r4000 0.2264 0.2109 0.3598 0.6783 0.1421 0.2248 0.4044

r4000

r4000 1.0000

Display 14.2

pca l500-r4000

which gives the results shown in Display 14.3. (The principal compo-
nents of the covariance matrix can be obtained using the covariance
option.)

An informal rule for choosing the number of components to repre-
sent a set of correlations is to use only those components with eigenval-
ues greater than one, i.e., those with variances greater than the average.
Here, this leads to retaining only the first two components. Another in-
formal indicator of the appropriate number of components is the scree
plot, a plot of the eigenvalues against their rank. A scree plot may be
obtained using

screeplot

with the result shown in Figure 14.2. The number of eigenvalues above
a distinct “elbow” in the scree plot is usually taken as the number of
principal components to select. From Figure 14.2, this would again
appear to be two. The first two components account for 68% of the
variance in the data.

Examining the eigenvectors defining the first two principal compo-
nents, we see that the first accounting for 48% of the variance has
coefficients that are all positive and all approximately the same size.
This principal component essentially represents the overall hearing loss
of a subject and implies that individuals suffering hearing loss at certain
frequencies will be more likely to suffer this loss at other frequencies
as well. The second component, accounting for 20% of the variance,
contrasts high frequencies (2000 Hz and 4000 Hz) and low frequencies
(500 Hz and 1000 Hz). It is well known in the case of normal hearing
that hearing loss as a function of age is first noticeable in the higher
frequencies.
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Principal components/correlation Number of obs = 100
Number of comp. = 8
Trace = 8

Rotation: (unrotated = principal) Rho = 1.0000

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.82375 2.18915 0.4780 0.4780
Comp2 1.63459 .725552 0.2043 0.6823
Comp3 .909042 .409528 0.1136 0.7959
Comp4 .499514 .122081 0.0624 0.8584
Comp5 .377433 .0383341 0.0472 0.9055
Comp6 .339098 .0780871 0.0424 0.9479
Comp7 .261011 .105451 0.0326 0.9806
Comp8 .155561 . 0.0194 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Comp5 Comp6

l500 0.4091 -0.3126 0.1359 -0.2722 -0.1665 0.4168
l1000 0.4242 -0.2301 -0.0933 -0.3528 -0.4998 -0.0847
l2000 0.3271 0.3007 -0.4777 -0.4872 0.5033 0.0404
l4000 0.2850 0.4488 0.4711 -0.1796 0.0990 -0.5129
r500 0.3511 -0.3874 0.2394 0.3045 0.6283 0.1776
r1000 0.4160 -0.2367 -0.0568 0.3645 -0.0861 -0.5446
r2000 0.3090 0.3228 -0.5384 0.5169 -0.1623 0.1255
r4000 0.2696 0.4972 0.4150 0.1976 -0.1757 0.4589

Variable Comp7 Comp8 Unexplained

l500 0.2828 -0.6008 0
l1000 -0.0292 0.6133 0
l2000 -0.2793 -0.0640 0
l4000 0.4354 -0.0298 0
r500 0.1275 0.3660 0
r1000 -0.4618 -0.3428 0
r2000 0.4476 0.0293 0
r4000 -0.4709 0.0747 0

Display 14.3
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Figure 14.2: Scree plot.

Scores for each individual on the first two principal components
might be used as a convenient way of summarizing the original eight-
dimensional data. Such scores are obtained by applying the elements
of the corresponding eigenvector to the standardized values of the orig-
inal observations for an individual. The necessary calculations can be
carried out using the predict command with the score option:

predict pc1 pc2, score

(see Display 14.4).
The new variables pc1 and pc2 contain the scores for the first two

principal components, and the output lists the coefficients used to form
these scores. For principal component analysis, these coefficients are
just the elements of the eigenvectors in Display 14.3. The principal
component scores can be used to produce a useful graphical display of
the data in a single scatterplot, which may then be used to search for
structure or patterns in the data, particularly the presence of clusters
of observations (see Everitt et al., 2001). Such a principal component
plot is obtained using

twoway scatter pc2 pc1, mlabel(id)

(Note the scoreplot command can be used to produce the same graph
without first storing scores as new variables in the dataset). The result-
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(6 components skipped)

Scoring coefficients
sum of squares(column-loading) = 1

Variable Comp1 Comp2 Comp3 Comp4 Comp5 Comp6

l500 0.4091 -0.3126 0.1359 -0.2722 -0.1665 0.4168
l1000 0.4242 -0.2301 -0.0933 -0.3528 -0.4998 -0.0847
l2000 0.3271 0.3007 -0.4777 -0.4872 0.5033 0.0404
l4000 0.2850 0.4488 0.4711 -0.1796 0.0990 -0.5129
r500 0.3511 -0.3874 0.2394 0.3045 0.6283 0.1776
r1000 0.4160 -0.2367 -0.0568 0.3645 -0.0861 -0.5446
r2000 0.3090 0.3228 -0.5384 0.5169 -0.1623 0.1255
r4000 0.2696 0.4972 0.4150 0.1976 -0.1757 0.4589

Variable Comp7 Comp8

l500 0.2828 -0.6008
l1000 -0.0292 0.6133
l2000 -0.2793 -0.0640
l4000 0.4354 -0.0298
r500 0.1275 0.3660
r1000 -0.4618 -0.3428
r2000 0.4476 0.0293
r4000 -0.4709 0.0747

Display 14.4
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ing diagram is shown in Figure 14.3. Here, the variability in differential
hearing loss for high versus low frequencies (pc2) is greater among sub-
jects with higher overall hearing loss, as would be expected.

Note that the distances between observations in this graph approxi-
mate the Euclidean distances between the (standardized) variables, i.e.,
the graph is a multidimensional scaling solution. In fact, the graph is
the classical scaling (or principal coordinate) scaling solution to the
Euclidean distances (see Everitt and Dunn, 2001, or Everitt and Rabe-
Hesketh, 1997). If other variables such as age were available, it would
be interesting to investigate their relationship with the principal com-
ponents (see Exercise 14.2).
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Figure 14.3: Principal component plot.

14.4 Exercises

14.1 • Hearing measurement using an audiometer

1. Rerun the principal component analysis described in this chap-
ter using the covariance matrix of the observations. Compare
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the results with those based on the correlation matrix.
2. Interpret components 3 through 8 in the principal components

analysis based on the correlation matrix.
3. Create a scatterplot matrix of the first five principal compo-

nent scores.

14.2 • Determinants of pollution in U.S. cities

1. Apply principal component analysis to the air pollution data
analyzed in Chapter 3, excluding the variable so2, and plot
the first two principal components (i.e., the two-dimensional
classical scaling solution for Euclidean distances between stan-
dardized variables).

2. Regress so2 on the first two principal components and add a
line corresponding to this regression (the direction of steep-
est increase in so2 predicted by the regression plane) into the
multidimensional scaling solution. If the principal compo-
nents are denoted p1 and p2 and the corresponding estimated
regression coefficients β̂1 and β̂2, add the line p1β̂2/β̂1 versus
p1 to the scatterplot of p2 versus p1.

14.3 Characteristics of criminals

The correlation matrix below was calculated from measurements
of seven physical characteristics in each of 3000 convicted crimi-
nals (MacDonnell, 1902).⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 0.402 0.396 0.301 0.305 0.339 0.340
0.402 1.000 0.618 0.150 0.135 0.206 0.183
0.396 0.618 1.000 0.321 0.289 0.363 0.345
0.301 0.150 0.321 1.000 0.846 0.759 0.661
0.305 0.135 0.289 0.846 1.000 0.797 0.800
0.339 0.206 0.363 0.759 0.797 1.000 0.736
0.340 0.183 0.345 0.661 0.800 0.736 1.000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The characteristics were (in the same order as for the correlation
matrix) (1) Head length; (2) Head breadth; (3) Face breadth; (4)
Left finger length; (5) Left forearm length; (6) Left foot length;
(7) Height. The correlation matrix is contained in the ASCII file
criminals.txt

1. Find the principal components (Hint: convert the data to a
matrix using mkmat and then use the pcamat command with
the names() option).

2. Plot a scree plot and discuss how many principal components
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appear to be required.
3. Interpret the principal components.

14.4 Nutritional contents of food

Hartigan (1975) provides data on the nutritional content of dif-
ferent foodstuffs (the quantity involved is always three ounces).

The variables in nutrition.dta are:

� food: type of food (string variable)
� energy: energy content (calories) in 3 ounces of the foodstuff
� protein: protein (grams) in 3 ounces of the foodstuff
� fat: fat (grams) in 3 ounces of the foodstuff
� calcium: calcium (milligrams) in 3 ounces of the foodstuff
� iron: iron (milligrams) in 3 ounces of the foodstuff

1. Create a scatterplot matrix of the data labeling the foodstuffs
appropriately in each panel. Use only the first two characters
of the strings in food as labels.

2. On the basis of this diagram undertake what you think is an
appropriate principal components analysis.

3. Produce a principal component plot with two-character labels
for the foodstuffs.

4. Try to interpret the first two principal components.





Chapter 15

Cluster Analysis: Tibetan

Skulls and Determinants of

Pollution in U.S. Cities

15.1 Description of data

The first set of data to be used in this chapter is shown in Table 15.1.
These data, collected by Colonel L.A. Waddell, were first reported in
Morant (1923) and are also given in Hand et al. (1994). The data
consist of five measurements on each of 32 skulls found in the south-
western and eastern districts of Tibet. The five measurements (all in
millimeters) are as follows:

� y1: greatest length of skull

� y2: greatest horizontal breadth of skull

� y3: height of skull

� y4: upper face length

� y5: face breadth, between outermost points of cheek bones

The main question of interest about these data is whether there is
any evidence of different types or classes of skull.

The second set of data that we shall analyze in this chapter is the air
pollution data introduced previously in Chapter 3 (see Table 3.1). Here
we shall investigate whether the clusters of cities found are predictive
of air pollution.

295
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Table 15.1 Tibetan skull data

y1 y2 y3 y4 y5

190.5 152.5 145.0 73.5 136.5
172.5 132.0 125.5 63.0 121.0
167.0 130.0 125.5 69.5 119.5
169.5 150.5 133.5 64.5 128.0
175.0 138.5 126.0 77.5 135.5
177.5 142.5 142.5 71.5 131.0
179.5 142.5 127.5 70.5 134.5
179.5 138.0 133.5 73.5 132.5
173.5 135.5 130.5 70.0 133.5
162.5 139.0 131.0 62.0 126.0
178.5 135.0 136.0 71.0 124.0
171.5 148.5 132.5 65.0 146.5
180.5 139.0 132.0 74.5 134.5
183.0 149.0 121.5 76.5 142.0
169.5 130.0 131.0 68.0 119.0
172.0 140.0 136.0 70.5 133.5
170.0 126.5 134.5 66.0 118.5
182.5 136.0 138.5 76.0 134.0
179.5 135.0 128.5 74.0 132.0
191.0 140.5 140.5 72.5 131.5
184.5 141.5 134.5 76.5 141.5
181.0 142.0 132.5 79.0 136.5
173.5 136.5 126.0 71.5 136.5
188.5 130.0 143.0 79.5 136.0
175.0 153.0 130.0 76.5 142.0
196.0 142.5 123.5 76.0 134.0
200.0 139.5 143.5 82.5 146.0
185.0 134.5 140.0 81.5 137.0
174.5 143.5 132.5 74.0 136.5
195.5 144.0 138.5 78.5 144.0
197.0 131.5 135.0 80.5 139.0
182.5 131.0 135.0 68.5 136.0
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15.2 Cluster analysis

Cluster analysis is a generic term for a set of (largely) exploratory data
analysis techniques that seek to uncover groups or clusters in data.
The term exploratory is important since it explains the largely ab-
sent “p-value”, ubiquitous in many other areas of statistics. Clustering
methods are primarily intended for generating rather than testing hy-
potheses. A detailed account of what is now a very large area is given
in Everitt et al. (2001).

The most commonly used class of clustering methods contains those
methods that lead to a series of nested or hierarchical classifications of
the observations, beginning at the stage where each observation is re-
garded as forming a single-member “cluster” and ending at the stage
where all the observations are in a single cluster. The complete hi-
erarchy of solutions can be displayed as a tree diagram known as a
dendrogram. In practice, most users will be interested not in the whole
dendrogram, but in selecting a particular number of clusters that is op-
timal in some sense for the data. This entails “cutting” the dendrogram
at some particular level.

Most hierarchical methods operate not on the raw data, but on an
inter-individual distance matrix calculated from the raw data. The
most commonly used distance measure is Euclidean and is defined as:

dij =
√

(y1i − y1j)2 + (y2i − y2j)2 + · · · + (ypi − ypj)2, (15.1)

where y1i to ypi are the variables for individual i.
A variety of hierarchical clustering techniques arise because of the

different ways in which the distance between a cluster containing several
observations and a single observation, or between two clusters, can be
defined. The inter-cluster distances used by three commonly applied
hierarchical clustering techniques are:

� Single linkage clustering: distance between the closest pair of
observations, where one member of the pair is in the first cluster
and the other in the second cluster, and

� Complete linkage clustering: distance between the most remote
pair of observations where one member of the pair is in the first
cluster and the other in the second cluster.

� Average linkage: average of distances between all pairs of obser-
vations where one member of the pair is in the first cluster and
the other in the second cluster.

An alternative approach to clustering to that provided by the hi-
erarchical methods described above is k-means clustering. Here the
data are partitioned into a specified number of groups set by the user



298 � A Handbook of Statistical Analyses Using Stata

by an iterative process in which, starting from an initial set of cluster
means, each observation is placed into the group to whose mean vector
it is closest (generally in the Euclidean sense). After each iteration,
new group means are calculated and the procedure repeated until no
observations change groups. The initial group means can be chosen in
a variety of ways. In general, the method is applied to the data for
different numbers of groups and then an attempt is made to select the
number of groups that provides the best fit for the data.

Important issues that need to be considered when using clustering
in practice include how to scale the variables before calculating the
chosen distance matrix, which particular method of cluster analysis to
use, and how to decide on the appropriate number of groups in the data.
These and many other practical problems of clustering are discussed in
Everitt et al. (2001).

15.3 Analysis using Stata

15.3.1 Tibetan skulls

Assuming the data in Table 15.1 are contained in a file tibetan.dat,
they can be read into Stata using the instruction

infile y1 y2 y3 y4 y5 using tibetan.dat, clear
generate id = _n

Here we have also generated an identifier variable id for the skulls.
To begin it is good practice to examine some graphical displays of the
data. With multivariate data such as the measurements on skulls in
Table 15.1 a scatterplot matrix is often helpful and can be generated
as follows:

graph matrix y1-y5

The resulting plot is shown in Figure 15.1. A few of the individual
scatterplots in Figure 15.1 are perhaps suggestive of a division of the
observations into distinct groups, for example that for y4 (upper face
height) versus y5 (face breadth).

We shall now apply each of single linkage, complete linkage, and
average linkage clustering to the data using Euclidean distance as the
basis of each analysis. Here the five measurements are all on the same
scale, so that standardization before calculating the distance matrix
is probably not needed (but see the analysis of the air pollution data
described later). The necessary Stata commands are

cluster singlelinkage y1-y5, name(sl)
cluster dendrogram
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Figure 15.1: Scatterplot matrix of Tibetan skull data

cluster completelinkage y1-y5, name(cl)
cluster dendrogram
cluster averagelinkage y1-y5, name(al)
cluster dendrogram

Here the name() option is used to attach a name to the results from
each cluster analysis. The resulting three dendrograms are shown in
Figures 15.2, 15.3, and 15.4.

The single linkage dendrogram illustrates one of the common prob-
lems with this technique, namely its tendency to incorporate obser-
vations into existing clusters rather than begin new ones, a property
generally referred to as chaining (see Everitt et al., 2001, for full de-
tails). The complete linkage and average linkage dendrograms show
more evidence of cluster structure in the data, although this structure
appears to be different for each method, a point we shall investigate
later.

In most applications of cluster analysis the researcher will try to
determine the solution with the optimal number of groups, i.e., the
number of groups that “best” fits the data. Estimating the number of
groups in a cluster analysis is a difficult problem without a completely
satisfactory solution – see Everitt et al. (2001). Two stopping rules
are provided in Stata, the Caliński and Harabasz pseudo F -statistic



300 � A Handbook of Statistical Analyses Using Stata

0
5

10
15

20
L2

 d
is

si
m

ila
rit

y 
m

ea
su

re

261012 1 4 2 3 151727301431252011 6 7 211819 8 13222428 5 9 23162932

Dendrogram for sl cluster analysis

Figure 15.2: Dendrogram using single linkage.
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Figure 15.3: Dendrogram using complete linkage.
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Figure 15.4: Dendrogram using average linkage.

(Caliński and Harabasz, 1974) and the Duda and Hart index (Duda
and Hart, 1973); see [MV] cluster stop for details. For both these
rules, larger values indicate more distinct clustering.

Here we shall illustrate the use of the Duda and Hart index in asso-
ciation with the three clustering techniques applied above. The Stata
commands are

cluster stop sl, rule(duda) groups(1/5)

(see Display 15.1),

cluster stop cl, rule(duda) groups(1/5)

(see Display 15.2), and

cluster stop al, rule(duda) groups(1/5)

(see Display 15.3).
Distinct clustering is generally considered to be indicated by large

values of the Duda and Hart index and small values of the Duda and
Hart pseudo T -squared. Adopting this approach, the results from single
linkage clustering do not suggest any distinct cluster structure largely
because of the chaining phenomenon. The results associated with com-
plete linkage clustering suggest a five-group solution and those from
the average linkage method suggest perhaps three or four groups.
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Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.9512 1.54
2 0.9357 1.99
3 0.9430 1.69
4 0.9327 1.95
5 0.9380 1.72

Display 15.1

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.6685 14.88
2 0.6073 7.11
3 0.5603 13.34
4 0.3356 7.92
5 0.7006 2.56

Display 15.2

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.6722 14.63
2 0.7192 9.37
3 0.5959 2.03
4 0.7200 7.39
5 0.3731 3.36

Display 15.3



Cluster Analysis � 303

To see which skulls are placed in which groups we can use the
cluster generate command. For example, to examine the five group
solution given by complete linkage we use

cluster generate g5cl = groups(5), name(cl)
sort g5cl id
forvalues i=1/5 {

display " "
display "cluster `i´"
list id if g5cl==`i´, noobs noheader separator(0)

}

Here we use a forvalues loop to list id for each cluster. The noobs op-
tion suppresses line-numbers; the noheader option suppresses variable
names; and the separator(0) option suppresses separator lines. The
resulting output is shown in Display 15.4. The numbers of observations
in each group can be tabulated using

tabulate g5cl

giving the table in Display 15.5.
It is often helpful to compare the mean vectors of each of the clusters.

The necessary code to find these is:

table g5cl, contents(mean y1 mean y2 mean y3 mean y4 ///
mean y5) format(%4.1f)

The skulls in cluster 1 are characterized by being relatively long and
narrow. Those in cluster 2 are, on average, shorter and broader. Clus-
ter 3 skulls appear to be particularly narrow, and those in cluster 4
have short upper face length. Skulls in cluster 5 might perhaps be
considered “average”.

The scatterplot matrix of the data used earlier to allow a “look” at
the raw data is also useful for examining the results of clustering the
data. For example, we can produce a scatterplot matrix with observa-
tions identified by their cluster number from the three group solution
from average linkage:

cluster generate g3al = groups(3), name(cl)
graph matrix y1-y5, mlabel(g3al) mlabpos(0) msymbol(i)

(see Figure 15.5). The separation between the three groups is most
distinct in the panel for greatest length of skull y1 versus face breadth
y5.

The data as originally collected by Colonel Waddell were thought
to consist of two types of skulls; the first type, skulls 1-17, came from
graves in Sikkim and the neighboring areas of Tibet. The remaining
15 skulls were picked up on a battlefield in the Lhasa district and were
believed to be those of native soldiers from the eastern province of
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cluster 5

5
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16
18
19
23
29
32

Display 15.4
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g5cl Freq. Percent Cum.

1 8 25.00 25.00
2 5 15.63 40.63
3 4 12.50 53.13
4 2 6.25 59.38
5 13 40.63 100.00

Total 32 100.00

Display 15.5

g5cl mean(y1) mean(y2) mean(y3) mean(y4) mean(y5)

1 192.9 139.4 138.6 78.1 138.0
2 179.0 146.8 130.2 74.7 141.7
3 169.8 129.6 129.1 66.6 119.5
4 166.0 144.8 132.3 63.3 127.0
5 177.6 137.9 132.7 72.5 133.4

Display 15.6
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Figure 15.5: Scatterplot matrix with observations identified by their
cluster number.
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Khams. These skulls were of particular interest because it was thought
at the time that Tibetans from Khams might be survivors of a partic-
ular fundamental human type, unrelated to the Mongolian and Indian
types which surrounded them. We can compare this classification with
the two group solutions given by each of the three clustering methods
by cross-tabulating the corresponding categorical variables containing
group membership. The Stata code for this is:

generate cl2 = cond(id<=17,1,2)
cluster generate g2sl = groups(2), name(sl)
cluster generate g2cl = groups(2), name(cl)
cluster generate g2al = groups(2), name(al)
tabulate cl2 g2sl, row

(see Display 15.7),

Key

frequency
row percentage

g2sl
cl2 1 2 Total

1 0 17 17
0.00 100.00 100.00

2 1 14 15
6.67 93.33 100.00

Total 1 31 32
3.13 96.88 100.00

Display 15.7

tabulate cl2 g2cl, row

(see Display 15.8), and

tabulate cl2 g2al, row

(see Display 15.9). The two group solution from single linkage consists
of 31 observations in one group and only a single observation in the
second group, again illustrating the chaining problem associated with
this method. The complete linkage solution provides the closest match
to the division originally proposed for the skulls (with group labels
interchanged).
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Key

frequency
row percentage

g2cl
cl2 1 2 Total

1 3 14 17
17.65 82.35 100.00

2 10 5 15
66.67 33.33 100.00

Total 13 19 32
40.63 59.38 100.00

Display 15.8

Key

frequency
row percentage

g2al
cl2 1 2 Total

1 11 6 17
64.71 35.29 100.00

2 15 0 15
100.00 0.00 100.00

Total 26 6 32
81.25 18.75 100.00

Display 15.9
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15.3.2 Determinants of pollution in U.S. cities

In this section we shall apply k-means clustering to the air pollution
data from Chapter 3. We will use the variables temp, manuf, pop, wind,
precip, and days for the cluster analysis. Since these variables have
very different metrics we shall begin by standardizing them

infile str10 town so2 temp manuf pop wind precip days ///
using usair.dat, clear

foreach var of varlist temp manuf pop wind precip days {
egen s`var´ = std(`var´)

}

We will now use the k-means algorithm to divide the data into 2,
3, 4, and 5 groups using the default for choosing initial cluster centers,
namely the random selection of k unique observations from among those
to be clustered. To be able to reproduce the results here, we set the
random number seed using the option start(krandom(234)). The
commands are

cluster kmeans stemp smanuf spop swind sprecip sdays, ///
k(2) start(krandom(234)) name(cluster2)

cluster kmeans stemp smanuf spop swind sprecip sdays, ///
k(3) start(krandom(234)) name(cluster3)

cluster kmeans stemp smanuf spop swind sprecip sdays, ///
k(4) start(krandom(234)) name(cluster4)

cluster kmeans stemp smanuf spop swind sprecip sdays, ///
k(5) start(krandom(234)) name(cluster5)

We can now use the Caliński and Harabasz approach to selecting
the optimal number of groups:

cluster stop cluster2

Calinski/
Number of Harabasz
clusters pseudo-F

2 11.63

cluster stop cluster3

Calinski/
Number of Harabasz
clusters pseudo-F

3 11.68
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cluster stop cluster4

Calinski/
Number of Harabasz
clusters pseudo-F

4 14.64

cluster stop cluster5

Calinski/
Number of Harabasz
clusters pseudo-F

5 14.01

The largest value of the Caliński and Harabasz index corresponds
to the four group solution. Details of this solution can be found from

sort cluster4 town
forvalues i=1/4 {

display " "
display "cluster `i´"
list town if cluster4==`i´, noobs noheader separator(0)

}

The output is shown in Display 15.10. Note that Chicago is in a
cluster of its own indicating again (as in Chapter 3) that this appears
to be an outlier. It is worthwile repeating the cluster analysis with
Chicago removed to see how much the composition of the remaining
clusters changes (see Exercise 15.2), but here we will continue inter-
preting the current solution. We can use the tabstat command to
tabulate the cluster means (the table command can only tabulate up
to five statistics):

tabstat temp manuf pop wind precip days, by(cluster4) ///
nototal format(%4.1f)

(see Display 15.11).
We will now compare pollution levels (the annual mean concentra-

tion of sulphur dioxide so2) between these five clusters of towns. The
means and standard deviations can be tabulated using

table cluster4, contents(mean so2 sd so2) format(%4.1f)

(see Display 15.12). Clusters 2, Chicago, has extremely high pollution
levels and cluster 1 has much higher pollution levels than clusters 3
and 4. A more formal analysis of differences in pollution levels among
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Summary statistics: mean
by categories of: cluster4

cluster4 temp manuf pop wind precip days

1 51.5 475.7 585.4 9.7 36.7 127.0
2 50.6 3344.0 3369.0 10.4 34.4 122.0
3 58.5 295.6 479.1 9.3 18.6 70.9
4 64.2 263.2 476.6 9.0 49.8 113.0

Display 15.11

cluster4 mean(so2) sd(so2)

1 37.5 21.1
2 110.0
3 13.6 7.0
4 16.5 7.9

Display 15.12

the clusters can be undertaken using a one-way analysis of variance.
(Note that the variable so2 did not contribute to the cluster analysis.
If it had, it would be circular and invalid to carry out the analysis of
variance.) We will first log-transform so2 since the standard deviations
appear to increase with the mean.

generate lso2 = ln(so2)
anova so2 cluster4

(see Display 15.13). The analysis shows that the clusters differ sig-
nificantly in their average pollution levels, F3,37 = 13.21, p < 0.001.

15.4 Exercises

15.1 • Tibetan skulls

1. Repeat the analyses of the Tibetan skull data described in
this chapter using the Manhattan distance measure rather
than the Euclidean. Compare the two sets of results.
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Number of obs = 41 R-squared = 0.5172
Root MSE = 16.9578 Adj R-squared = 0.4781

Source Partial SS df MS F Prob > F

Model 11397.949 3 3799.31634 13.21 0.0000

cluster4 11397.949 3 3799.31634 13.21 0.0000

Residual 10639.9534 37 287.566309

Total 22037.9024 40 550.947561

Display 15.13

15.2 • Determinants of pollution in U.S. cities

1. Repeat the k-means cluster analysis of the air pollution data
with Chicago removed. Does this lead to a very different
solution?

2. Investigate the use of other options for determining an initial
partition when applying k-means to the air pollution data
(still with Chicago removed).

3. Compare the results from k-medians cluster analysis applied
to the air pollution data with those from k-means (still with
Chicago removed).

15.3 Romano-British pottery

Tubb et al. (1990) provide the chemical composition of 48 spec-
imens of Romano-British pottery, determined by atomic absorp-
tion spectrophotometry. In addition to the chemical composition
of the pots, the kiln site at which the pottery was found is also
noted.

The variables in pottery.dta are:

� no: identification number of pottery
� kiln: identification number of kiln (site) where pottery was

found
� al2o3, fe2o3, mgo, na2o, k2o, tio2, mno, bao amount of

Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, NnO, and BaO
respectively

1. Apply k-means clustering to the chemical data remembering
that the variables are on very different scales.

2. Use the Caliński and Harabasz approach for finding the best
number of clusters (try between two and six clusters).
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3. Once you have chosen a particular solution, assess whether
there is any association between the kiln site and the distinct
compositional groups found by cluster analysis.

15.4 Life expectancies

Keyfitz and Flieger (1971) provide data on life expectancy (in the
1960s) in years by country, age, and sex. Here life expectancy
refers to the mean number of extra years of life for people of a
given sex who have reached a given age.

The variables in life.dta are:

� country: country (string variable)
� short: abbreviation of country
� m0 to m75: men, ages 0, 25, 50, and 75
� w0 to w75: women, ages 0, 25, 50, and 75

1. Apply complete linkage, average linkage, and single linkage
cluster analysis and generate variables of group membership
for the four-cluster solutions.

2. Perform principal components analysis based on the covari-
ance matrix of the life expectancy variables. Interpret the
first three components.

3. Plot the four-group solution using complete linkage in the
space of the first two principal components using different
marker symbols for the four groups and the strings in the
variable short as labels. Produce analogous graphs for aver-
age linkage and single linkage.





Appendix: Answers to

Selected Exercises

Chapter 1

1.1 Some data manipulation
2. Assuming that the data are stored in the directory c:\user,

cd c:\user
insheet using test.dat, clear

4. label define s 1 male 2 female
label values sex s

5. generate id = _n

6. rename v1 time1
rename v2 time2
rename v3 time3
or
forvalues i = 1/3 {

rename var`i´ time`i´
}

7. reshape long time, i(id) j(occ)

8. egen d = mean(time), by(id)
replace d = (time-d)^2

9. drop if occ==3&id==2

Chapter 2

2.1 Female psychiatric patients
315
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1. insheet using fem.dat, clear
table depress, contents(mean weight)

2. foreach var in iq age weight {
table life, contents(mean `var´ sd `var´)

}

3. graph bar (count) id, ///
over(sex, relabel(1 "no" 2 "yes")) ///
over(life, relabel(1 "non-suicidal" 2 "suicidal")) ///
ytitle(Percentages by group (suicidal versus not)) ///
asyvars percent showyvars legend(off)

4. search mann
help ranksum

5. ranksum weight, by(life)

6. twoway (scatter iq age if life==1, msymbol(circle) ///
mcolor(black) jitter(2)) ///
(scatter iq age if life==2, msymbol(x) ///
mcolor(black) jitter(2)), ///
legend(order(1 "no" 2 "yes"))

7. spearman age iq

8. Save the commands in the Review window and edit the file using
the Do-file Editor or any text editor, e.g., Notepad. Add the com-
mands given in the do-file template in Section 1.11, and save the
file with the extension .do. Run the file by typing the command
do filename.

Chapter 4

4.1 Treating hypertension

1. infile bp11 bp12 bp13 bp01 bp02 bp03 using bp.raw, clear

Now follow the commands on pages 88 to 89. There is no need to
redefine labels, but if you wish to do so, first issue the command
label drop all.

2. graph box bp, over(drug)
graph box bp, over(diet)
graph box bp, over(biofeed)

4. sort id
save bp
infile id age using age.dat, clear
sort id
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merge id using bp
anova bp drug diet biofeed age, continuous(age)

Chapter 5

5.1 Effectiveness of slimming clinics

1. infile manual exper resp using slim.dat, clear
anova resp manual*exper exper manual, sequential

2. generate dmanual = manual - 1
generate dexper = exper - 1
generate dinter = dmanual*dexper
regress resp dmanual dexper dinter

3. xi: regress resp i.manual*i.exper

4. char manual[omit] 2
char exper[omit] 2
xi: regress resp i.manual*i.exper

Chapter 6

6.1 Treatment of lung cancer

1. infile fr1 fr2 fr3 fr4 using tumor.dat, clear
generate therapy = int((_n-1)/2)
sort therapy
by therapy: generate sex = _n
label define t 0 seq 1 alt, modify
label values therapy t
label define s 1 male 2 female, modify
label values sex s
reshape long fr, i(therapy sex) j(outc)
ologit outc therapy sex [fweight=fr], table

6.2 Female psychiatric patients

1. a. insheet using fem.dat, clear
replace sleep=. if sleep==3
recode sleep 1=2 2=1
ologit depress life

b. replace life = life - 1
logistic life depress

2. Even if we use very lenient inclusion and exclusion criteria,
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stepwise, pr(0.3) pe(0.2) forward: ///
logit life depress anxie iq sex sleep

only depress is selected. If we exclude depress from the list of
candidate variables, anxiety and sleep are selected.

6.3 Diagnosis of heart attacks
1. infile ck pres abs using sck.dat, clear

generate tot = pres + abs
expand tot
by ck, sort: generate infct = (_n<=pres)
logit infct ck
estat gof, table

2. generate ck2 = ck^2
logit infct ck ck2
generate ck3 = ck^3
logit infct ck ck2 ck3
generate ck4 = ck^4
logit infct ck ck2 ck3 ck4
logit infct ck ck2 ck3

3. estat gof, table

4. infile ck pres abs using sck.dat, clear
generate tot = pres + abs
generate prop = pre/tot

twoway (function y = invlogit(_b[_cons]+_b[ck]*x ///
+_b[ck2]*x^2+_b[ck3]*x^3), range(0 480)) ///

(scatter prop ck), xtitle(CK) ///
legend(order(1 "predicted" 2 "observed"))

Chapter 7

7.1 Effectiveness of slimming clinics
1. infile cond status resp using slim.dat, clear

xi: glm resp i.cond i.status, fam(gauss) link(id)
local dev1 = e(deviance)
xi: glm resp i.cond, fam(gauss) link(id)
local dev0 = e(deviance)
local ddev = `dev0´-`dev1´
/* F-test equivalent to anova cond status, sequential */
local f = (`ddev´/1)/(`dev1´/31)
display `f´
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display fprob(1,31,`f´)
/* difference in deviance */
display `ddev´
display chiprob(1, `ddev´)

2. regress resp status, vce(robust)
ttest resp, by(status) unequal

7.2 Australian school children
1. use quine, clear

encode eth, gen(ethnic)
drop eth
encode sex, gen(gender)
drop sex
encode age, gen(class)
drop age
encode lrn, gen(slow)
drop lrn
generate cleth = class*ethnic
glm days class ethnic cleth, family(poisson) link(log)

2. glm days class ethnic if stres<4, family(poisson) link(log)
or, assuming the sort order of the data has not changed,
glm days class ethnic if _n!=72, family(poisson) link(log)

3. generate abs = cond(days>=14,1,0)
glm abs class ethnic, family(binomial) link(logit)
glm abs class ethnic, family(binomial) link(probit)

4. glm abs class ethnic, family(binomial) link(logit) ///
vce(robust)

glm abs class ethnic, family(binomial) link(probit) ///
vce(robust)

bootstrap _b[class] _b[ethnic], reps(500): ///
glm abs class ethnic, family(binomial) link(logit)

bootstrap _b[class] _b[ethnic], reps(500): ///
glm abs class ethnic, family(binomial) link(probit)

Chapter 8

8.1 Treatment of post-natal depression
1. infile subj group pre dep1 dep2 dep3 dep4 dep5 dep6 ///

using depress.dat, clear
mvdecode _all, mv(-9)
graph box dep1-dep6, by(group)
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2. We can obtain the mean over visits for subjects with complete data
using the simple command (data in “wide” form)

generate av2 = (dep1+dep2+dep3+dep4+dep5+dep6)/6

For subjects with missing data, av2 will be missing whereas the
egen function rowmean() would return the mean of all available
data. The t-tests are obtained using

ttest av2, by(group)
ttest av2, by(group) unequal

3. egen max = rowmax(dep1-dep6)
ttest max, by(group)

4. a. generate diff = avg - pre
ttest diff, by(group)

b. anova avg group pre, continuous(pre)

Chapter 9

9.1 Thought disorder and schizophrenia

1. use madras, clear
reshape long y, i(id) j(month)
label variable month ///

"Number of months since hospitalization"
generate month_early = month*early
label define e 0 "Late onset" 1 "Early onset"
label values early e

gllamm y month early month_early, i(id) ///
link(logit) family(binom) eform adapt

gllapred prob1, mu
sort id month
twoway (line prob1 month, connect(ascending)), ///

by(early) ytitle(Predicted probability)

generate cons = 1
eq slope: month
eq inter: cons
gllamm y month early month_early, i(id) nrf(2) ///

eqs(inter slope) link(logit) family(binom) ///
eform adapt

gllapred prob2, mu
sort id month
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twoway (line prob2 month, connect(ascending)), ///
by(early) ytitle(Predicted probability)

9.2 Australian school children
1. use ..\data\quine, clear

encode eth, gen(ethnic)
drop eth
encode sex, gen(gender)
drop sex
encode age, gen(class)
drop age
encode lrn, gen(slow)
drop lrn

generate id=_n
gllamm days class ethnic, i(id) adapt ///

family(poisson) link(log)

Chapter 10

10.1 Treatment of post-natal depression
1. a. infile subj group dep0 dep1 dep2 dep3 ///

dep4 dep5 dep6 using depress.dat, clear
mvdecode _all, mv(-9)
reshape long dep, i(subj) j(visit)
generate gr_vis = group*visit
xtgee dep group visit gr_vis, i(subj) cor(exch)
regress dep group visit gr_vis, vce(robust) ///

cluster(subj)
b. bootstrap _b[group] _b[visit] _b[gr_vis], ///

cluster(subj) reps(500): ///
regress dep group visit gr_vis

Chapter 11

11.1 Estrogens and endometrial cancer
1. infile v1-v2 using estrogen.dat, clear

generate _varname = cond(_n==1,"ncases1","ncases0")
xpose, clear
generate conestr = 2-_n
reshape long ncases, i(conestr) j(casestr)
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expand ncases
sort casestr conestr
generate caseid = _n
expand 2
by caseid, sort: generate control = _n-1
* (dummy for control: 1=cont., 0=case)
generate estr = 0
replace estr = 1 if control==0&casestr==1
replace estr = 1 if control==1&conestr>0
generate cancer = cond(control==0,1,0)

preserve
collapse (sum) estr (mean) casestr , by(caseid)
generate conestr = estr - casestr
tabulate casestr conestr
restore

clogit cancer estr, group(caseid) or

11.2 Low energy diet and heart disease

1. infile str5 age num1 py1 num0 py0 using ihd.dat,clear
generate agegr = _n
reshape long num py, i(agegr) j(exposed)

table exposed, contents(sum num sum py)
iri 28 17 1857.5 2768.9

2. Keeping the data from the previous exercise:

xi: poisson num i.age*exposed, exposure(py) irr
testparm _IageX*

The interaction is not statistically significant at the 5% level.

Chapter 12

12.1 Retention of heroin addicts in methadone maintenance
treatment

1. We consider anyone still at risk after 450 days as being censored
at 450 days and therefore need to make the appropriate changes to
status and time before running Cox regression.

use heroin, clear
replace status = 0 if time>450
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replace time = 450 if time>450
egen zdose = std(dose)
stset time status
stcox zdose prison clinic

2. The model is fitted using

generate dosecat = 0 if dose<.
replace dosecat = 1 if dose>=60 & dose<.
replace dosecat = 2 if dose>=80 & dose<.
xi: stcox i.dosecat i.prison i.clinic, bases(s)

The survival curves for no prison record, clinic 1 are obtained and
plotted using

generate s0 = s if dosecat==0
generate s1 = s^(exp(_b[_Idosecat_1])) if dosecat==1
generate s2 = s^(exp(_b[_Idosecat_2])) if dosecat==2
sort time
graph twoway (line s0 time, connect(stairstep)) ///

(line s1 time, connect(stairstep) lpat(dash)) ///
(line s2 time, connect(stairstep) lpat(dot)), ///
legend(order(1 "<60" 2 "60-79" 3 ">=80"))

Note that the baseline survival curve is the survival curve for some-
one whose covariates are all zero. If we had used clinic instead of
i.clinic above, this would have been meaningless; we would have
had to exponentiate s0, s1, and s2 by b[clinic] to calculate the
survival curves for clinic 1.

3. Treating dose as continuous:

generate clindose = clinic*zdose
stcox zdose clinic clindose prison

Treating dose as categorical:

xi: stcox i.dosecat*i.clinic i.prison
testparm _IdosX*

4. xi: stcox i.dosecat i.prison i.clinic
xi: stcox i.dosecat i.prison i.clinic, efron
xi: stcox i.dosecat i.prison i.clinic, exactm

It makes almost no difference which method is used.
5. stcox zdose prison, strata(clinic) tvc(prison) ///

texp((_t-504)/365.25)
estimates store model1
quietly stcox zdose prison, strata(clinic)
lrtest model1 .
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Chapter 13

13.1 Two-component mixture of normals

2. nlcom (sd1: exp([lsd1][_cons])) ///
(sd2: exp([lsd2][_cons])) ///
(p: invlogit([lo1][_cons]))

giving estimates (standard errors) 6.54 (0.82) and 7.06 (1.81) for
the standard deviations and 0.74 (0.07) for the probability.

13.2 Heteroscedastic linear regression

1. The only thing that is different from fitting a normal distribution
with constant mean is that the mean is now a linear function of
status so that the ml model command changes as shown below:

infile cond status resp using slim.dat, clear
ml model lf mixing1 (xb: resp = status) /lsd
ml maximize, noheader

2. In linear regression, the mean squared error is equal to the sum of
squares divided by the degrees of freedom, n − 2. The maximum
likelihood estimate is equal to the sum of squares divided by n. We
can therefore get the root mean square error for linear regression
using

disp exp([lsd][_cons])*sqrt(e(N)/(e(N)-2))

Note that the standard errors of the regression coefficients need to
be corrected by the same factor, i.e.,

disp [xb]_se[status]*sqrt(e(N)/(e(N)-2))

Compare this with the result of

regress resp status

3. Repeat the procedure above but replace the ml model command by

ml model lf mixing1 (resp = status) (lsd: status)

The effect of status on the standard deviation is significant (p =
0.003) which is not too different from the result of

sdtest resp, by(status)

13.3 Three-component mixture of normals

1. capture program drop mixing3
program mixing3

version 9.2
args lj xb1 xb2 xb3 lo1 lo2 ls1 ls2 ls3
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tempvar f1 f2 f3 p1 p2 p3 s1 s2 s3 d

quietly {
generate double `s1´ = exp(`ls1´)
generate double `s2´ = exp(`ls2´)
generate double `s3´ = exp(`ls3´)
generate double `d´ = 1 + exp(`lo1´) + exp(`lo2´)
generate double `p1´ = 1/`d´
generate double `p2´ = exp(`lo1´)/`d´
generate double `p3´ = exp(`lo2´)/`d´

generate double `f1´ = normalden($ML_y1,`xb1´,`s1´)
generate double `f2´ = normalden($ML_y1,`xb2´,`s2´)
generate double `f2´ = normalden($ML_y1,`xb3´,`s3´)

replace `lj´ = ln(`p1´*`f1´ ///
+ `p2´*`f2´ + `p3´*`f3´)

}
end

clear
set obs 300
set seed 12345678
generate z = uniform()
generate y = invnormal(uniform())
replace y = y + 5 if z<1/3
replace y = y + 10 if z<2/3&z>=1/3
ml model lf mixing3 (xb1: y=) ///

/xb2 /xb3 /lo1 /lo2 /lsd1 /lsd2 /lsd3
ml init 0 5 10 0 0 0 0 0, copy
ml maximize, noheader trace

Chapter 14

14.1 Hearing measurement using an audiometer

1. infile id l500 l1000 l2000 l4000 r500 r1000 ///
r2000 r4000 using hear.dat, clear

pca l500-r4000, cov
predict npc1 npc2, score
twoway scatter npc2 npc1, mlabel(id)
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3. capture drop pc*
pca l500-r4000
predict pc1-pc5, score
graph matrix pc1-pc5

14.2 Determinants of pollution in U.S. cities
1. infile str10 town so2 temp manuf pop wind precip ///

days using usair.dat, clear
pca temp manuf pop wind precip days
predict pc1 pc2, score
scatter pc2 pc1, mlabel(town) mlabpos(0) msymbol(i)

2. regress so2 pc1 pc2
generate regline = pc1*_b[pc2]/_b[pc1]
twoway (line regline pc1) ///

(scatter pc2 pc1, mlabel(town) mlabpos(0) msymbol(i))

Chapter 15

15.1 Tibetan skulls
1. infile y1 y2 y3 y4 y5 using tibetan.dat, clear

cluster singlelinkage y1-y5, name(sl) manhattan
cluster completelinkage y1-y5, name(cl) manhattan
cluster averagelinkage y1-y5, name(al) manhattan
Then plot dendrograms, etc.

15.2 Determinants of pollution in U. S. cities
1. infile str10 town so2 temp manuf pop wind precip ///

days using usair.dat, clear
foreach v of varlist temp manuf pop wind precip days {

egen s`v´ = std(`v´)
}
drop if town=="Chicago"
Repeating the analysis from Page 308 to 309 (with the same random
number seed) leads to a 5-cluster solution with the former clusters
1 and 4 being split up and cluster 3 nearly remaining in tact.

2. cluster kmeans stemp smanuf spop swind sprecip ///
sdays, k(5) name(cluster5) start(segments)

The start(segments) option splits the sample into k (here 5) equal
groups and uses the means as starting values.

3. cluster kmedians stemp smanuf spop swind sprecip ///
sdays, k(5) name(cluster5)
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accessing results, 24, 36
b[varname], 24
e(), 36
e(b), 24
e(chi2 dis), 216
e(deviance), 140
e(dispersp ps), 149
e(ll), 275
[eqname] b[varname], 269
[eqname] se[varname], 269
r(), 36
r(mean), 36
r(Var), 247

adaptive quadrature, 177
adjusted R2, 67
ado-file, 38
algebraic expression, 16
analysis of variance, 85–99, 101
ANCOVA, see analysis of covariance
ANOVA, see analysis of variance
autoregressive structure, 209
average linkage, 297
aweights, 23

backward elimination, 71
bar chart, 52
baseline hazard function, 243
binomial distribution, 137
bootstrapping, 138
boxplot, 48, 163, 217

canonical link, 134
case-control, 222

chi-squared test, 46, 51
classification table, 127
closing Stata, 8
cluster analysis, 295–313
cohort studies, 222
collinearity, 69
command

adopath, 38
anova, 91, 104, 311

regress option, 107
sequential option, 105

assert, 47
blogit, 123
bootstrap, see prefix command, bootstrap
by, see prefix command, by
capture, see prefix command, capture
cc, 236
cci, 230
clear, 10
clogit, 235
cluster averagelinkage, 298
cluster completelinkage, 298
cluster generate, 303
cluster kmeans, 308

start() option, 308
cluster singlelinkage, 298
codebook, 47
collapse, 22, 164, 166, 235
correlate, 54, 67, 286
cprplot, 79
decode, 13
destring, 13
display, 13, 14, 30, 122
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do, 35, 37
drop, 20, 22, 66
egen, 19, 20, 50, 167, 248, 308
encode, 13, 144
epitab, 228
estat classif, 127

cutoff() option, 127
estat gof, 120
estat phtest, 255
estat vif, 69
estat wcorrelation, 207

format() option, 207
estimates store, 118, 253
exit, 36

clear option, 9
expand, 22, 125, 233, 278
foreach, 48, 74, 79, 308
format, 12
forvalues, 303
generate, 19
gllamm, 40, 183, 185, 192

adapt option, 184
eform option, 192
eqs() option, 193
nip() option, 192
nrf() option, 193

gllapred, 185, 192
marg option, 195
mu option, 195
u option, 185
us() option, 195

glm, 136, 139, 230
eform option, 148, 230
family() option, 139
link() option, 139
link(reciprocal) option, 155
offset() option, 155, 230
scale(x2) option, 147
vce(robust) option, 139

glm, 139–153
global, 36
graph, 24–30

legend() option, 26
graph bar

asyvars option, 53
legend(off) option, 53
over() option, 28, 53
showyvars option, 53

graph box, 49, 163, 217

over() option, 28, 163, 164
relabel() option, 164
yline(0) option, 49

graph matrix, 55, 64, 161, 284, 298,
303

jitter() option, 55
mlabel() option, 65
mlabposition() option, 65

graph twoway, 26, 56, 123, 180, 212,
249

by() option, 28
legend() option, 27
xtitle() option, 26, 27
ylabel() option, 198
ytitle() option, 26, 27

graph twoway connected

connect(ascending) option, 163
graph twoway function, 124
graph twoway kdensity, 273
graph twoway line

connect(ascending) option, 162
connect(stairstep) option, 249

graph twoway mspline, 124
graph twoway rarea, 166
graph twoway scatter, 149, 289

lpatt() option, 27
mlabel() option, 77
msymbol() option, 27

help, 8
help whatsnew, 39
histogram, 273
iis, 207
infile, 11, 64, 88, 104, 116, 139,

228, 284, 298
insheet, 11, 47, 56
ir, 228
iri, 236
kdensity, 185, 273
keep, 20, 22
ktau, 56
label define, 12
label values, 12, 89, 178
label variable, 11
lf, 267
lincom, 179
list, 12, 18, 162

clean option, 162
noheader option, 303
noobs option, 303
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separator(0) option, 303
local, 36, 140
log, 7
logistic, 118
logit, 117

or option, 118
lookfor, 15
lroc, 127
lrtest, 119, 144, 253
lsens, 127
matrix, 31
mcci, 231, 232
memory, 11
merge, 22
mkmat, 292
ml, 39, 264
ml init, 271
ml maximize, 267

noheader option, 268
trace option, 268

ml model, 267
more, 75
mvdecode, 12, 178, 206
mvencode, 12
nbreg, 153
net cd, 40
net from, 40
net install, 40
nlcom, 272
odbc, 11
ologit, 120
outfile, 11
outsheet, 11
pca, 286

covariance option, 287
pcamat, 292

names() option, 292
pnorm, 77
poisson, 230

exposure() option, 230
irr option, 230

predict, 23, 77, 119, 122, 128, 149,
180, 181, 216, 256, 289

cooksd option, 79
fitted option, 183
number option, 128
pearson option, 149
pr option, 119, 124
reffects option, 183

rstandard option, 77
score option, 289

preserve, 22, 162, 235
program, 38
program define, 37, 266
program drop, 38, 266
pwcorr, 54

obs option, 54
sig option, 54

qnorm, 50
quietly, see prefix command, quietly
recode, 12, 20, 48, 106

generate() option, 117
regress, 66, 95, 106
rename, 11
replace, 10, 19
reshape, 20–21, 88, 116, 162, 178,

190, 206, 210, 228, 233, 245
i() option, 89

restore, 22, 162, 235
robvar, 50
rvfplot, 74
rvpplot, 74
sampsi, 30
save, 9
scalar, 266
scoreplot, 289
screeplot, 287
search, 8
serrbar, 185
set memory, 10
set more off, 36
set obs, 266
set scheme, 29
set seed, 151, 266
sort, 17, 163, 233, 250
ssc install, 40, 183
statsby, see prefix command, statsby
stcox, 246

basechazard() option, 250
bases() option, 248
esr option, 257
mgale() option, 256
strata() option, 246
texp() option, 252
tvc() option, 252

stepwise, see prefix command, stepwise
stjoin, 255
stphplot, 251
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stset, 245, 254

stsplit, 254

stsum, 245

summarize, 36, 159, 210, 266, 284

syntax, 38

sysuse, 10

table, 89, 108, 116, 119, 145, 272,
303

contents() option, 89

format() option, 145

tabstat, 48, 309

statistics() option, 48

tabulate, 51, 104, 235

exact option, 52

expected option, 52

nofreq option, 52

row option, 52

tempname, 266

tempvar, 268

testparm, 95, 143

tis, 207

ttest, 51, 167

by() option, 167

unequal option, 51, 167

ttesti, 31

twoway, see command, graph twoway

update all, 39

use, 9, 10, 144, 210

clear option, 10

version 9.2, 35

xi, see prefix command, xi

xpose, 22, 233

xtdes, 162

xtgee, 205, 206, 209, 213, 216

corr(exchangeable) option, 207

correlation() option, 206

correlation(unstructured) op-
tion, 209

eform option, 216

family() option, 205

i() option, 207

link() option, 205

scale(x2) option, 214

t() option, 207

vce(robust) option, 215

xtlogit, 190

intpoints() option, 192

xtmixed, 180

covariance(unstructured) op-
tion, 187

mle option, 181
nocons option, 181

xtreg, 178
fe option, 200

commenting out lines, 35
complete linkage, 297
compound symmetry, 204
conditional likelihood, 224
conditional logistic regression, 227, 232,

235
contingency table, see two-way table
Cook’s distance, 79
correlation, 67
correlation matrix, 286
Cox regression, 243
cross-sectional time series, 178
cumulative hazard function, 242, 244

data
age of onset of schizophrenia, 263,

277
Australian school children, 133, 154,

199
auto pollution filter noise, 96
clotting times of blood, 155
crowd reactions to threatened sui-

cide, 60
determinants of pollution in U.S.

cities, 61, 82, 292, 308, 312
diagnosis of heart attacks, 111, 130
driver education, 219
duration of UN peacekeeping mis-

sions, 260
effectiveness of slimming clinics, 101,

108, 153, 277
efficiency of cycling, 98
epileptic seizures and chemother-

apy, 200, 201, 218
estrogens and endometrial cancer,

236
extroversion and car care, 82
female psychiatric patients, 43, 57,

129
hearing measurement using an au-

diometer, 281, 291
induced abortion and ectopic preg-

nancy, 237
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invasion of acacia trees by ants, 59
jaw growth, 171, 199
life expectancies, 313
low energy diet and heart disease,

236
maternal behavior in rats, 99
mortality from skin cancer, 58, 83
New York Times death notices, 278
oral contraceptive use and myocar-

dial infarction, 236
prostate cancer, 131
psychiatric screening data, 130
retention of heroin addicts in methadone

maintenance treatment, 239,
258

role-taking in young children, 109
Romano-British pottery, 312
satisfaction with housing conditions,

131
sexual satisfaction, 59
survival of patients with primary

biliary cirrhosis, 259
systolic blood pressure, 109
thought disorder and schizophre-

nia, 173, 199, 219
Tibetan skulls, 295, 311
treating hypertension, 85
treatment of Alzheimer’s, 172
treatment of lung cancer, 111, 129
treatment of post-natal depression,

157, 170, 218
treatment of prostate cancer, 260
wage increases, 41, 171, 199
water hardness, 83
wave damage to cargo ships, 154

data browser, 4
data editor, 4
data management, 19–22
date format, 12
delta method, 118, 272
dendrogram, 297
deviance, 137
deviance residuals, 256
dichotomous, 46
dictionary file, 87
do-file, 34, 35
do-file editor, 6, 35
double, see storage type, double
dummy variables, 108

egen function
group(), 128
rowmean(), 20, 167
seq(), 116
std(), 248, 308
tag(), 128
total(), 20

eigenvalues, 284
empirical Bayes, 181
epidemiology, 221
equation, 267, 268
estimation command, 22–23

anova, see command, anova
clogit, see command, clogit
gllamm, see command, gllamm
glm, see command, glm
logistic, see command, logistic
logit, see command, logit
ologit, see command, ologit
poisson, see command, poisson
regress, see command, regress
stcox, see command, stcox
xtmixed, see command, xtmixed
xtgee, see command, xtgee
xtlogit, see command, xtlogit
xtreg, see command, xtreg

Euclidean distance, 297

F -test, 105
FAQ, 2
finite mixture distribution, 263
Fisher’s exact test, 52
forward selection, 71
frailty, 151
function

chi2tail(), 16, 144, 276
cond(), 20, 270
date(), 13
exp(), 16, 269
Ftail(), 142
invlogit(), 125, 273
invnormal(), 16, 266
ln(), 273
lnfactorial(), 278
log(), 16, 212
normal(), 16
normalden(), 266
scalar(), 266
sqrt(), 16, 269
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substr(), 16, 65
sum(), 128
uniform(), 16, 266

fweights, 23, 143

GEE, see generalized estimating equa-
tions

generalized estimating equations, 205
generalized linear mixed model, 177
generalized linear model, 133–153
global macro, 267
graphics, see command, graph

hazard function, 242
hazard ratio, 243
help, 1
help file, 8
hierarchical sums of squares, see sequen-

tial sums of squares
histogram, 273

immediate command, 30
cci, see command, cci
iri, see command, iri
mcci, see command, mcci
sampsi, see command, sampsi
ttesti, see command, ttesti

incidence rate, 224
incidence rate ratio, 224
indexed variable, 16
information matrix, 264
initial values, 273
interaction, 86
interaction diagrams, 91
interval scale, 46
intraclass correlation, 176

jackknifing, 128

k-means clustering, 297
Kendall’s tau-b, 47

least squares, 63
leave one out method, 128
likelihood ratio, 117
linear predictor, 134, 225, 268
linear regression, see multiple regression
link functions, 134
local macro, 18, 31, 140, 266
log file, 5

log likelihood, 264
log odds, 270
log transformation, 93, 212
logical expression, 15
logistic regression, 111–129, 227
logit, 113
longitudinal data, 157–172, 201
looping, 17
lowess, 79

main effects, 86
Mann-Whitney U -test, 46
Mantel-Haenszel estimate, 228
matched case-control studies, 226, 231
matching, 226
matrix, 31
maximum likelihood estimation, 204, 224,

263–276
McNemar’s test, 227
mean profiles, 164
missing values, 159
multilevel, 177
multiple correlation coefficient, 64, 67
multiple regression, 61–82
multivariate data, 283

negative binomial, 153
NetCourses, 2
Newton-Raphson algorithm, 264
normal probability plot, 77

odds, 113
odds ratio, 118, 225
offset, 213, 225
ordinal, 46
ordinal logistic regression, 114
overdispersion, 137, 147, 153, 214, 215

pairwise correlation, 54
partial log likelihood, 244
partial residual plot, 79
PCA, see principal components analysis
Pearson X2, 137, 147
Pearson correlation, 47
Pearson residual, 125, 216
person-time of observation, 224
plot, see command, graph
plug-in, 39
Poisson distribution, 136, 137, 210, 213,

224
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Poisson regression, 225, 228
post-estimation command, 23–24

predict, see command, estat
estimates, see command, estimates
estat, see command, estat
gllapred, see command, gllapred
lincom, see command, lincom
lrtest, see command, lrtest
nlcom, see command, nlcom
predict, see command, predict
test, see command, test
testparm, see command, testparm

prefix command, 14
bootstrap, 151

reps() option, 151
by, 14, 17, 128, 233

sort option, 17, 128
capture, 35, 38, 266
quietly, 35, 266, 271
statsby, 169
stepwise, 72, 73

pe() option, 72
pr() option, 73

xi, 95
principal components analysis, 281–291
profile likelihood, 244
programming, 34–39, 263–280
proportional hazards, 243
proportional odds model, see ordinal lo-

gistic regression
pweights, 23

Q-Q plot, 50
quasi-likelihood, 138, 147, 204

random effects, 151
random effects model, 137, 173–199
random intercept model, 175
reading data, 9

infile, see command, infile
insheet, see command, insheet
use, see command, use

regression
conditional logistic, see conditional

logistic regression
linear, see multiple regression
logistic, see logistic regression
negative binomial, see negative bi-

nomial regression

ordinal logistic, see ordinal logistic
regression

Poisson, see Poisson regression
regression coefficient, 63, 67
regression diagnostics, 77–82
relative risk, 224
REML, see restricted maximum likeli-

hood
residuals, 73, 75, 125, 148, 256–257
response feature analysis, 167
response profiles, 164, 211
right-censored, 241
robust standard errors, 138, 149
ROC-curve, 127

saving data, 9
outfile, see command, outfile
outsheet, see command, outsheet
save, see command, save

scatterplot matrix, 55, 64, 161, 284
scree plot, 287
search, 7
sensitivity, 127
sequential sums of squares, 103, 105
single linkage, 297
SJ, see Stata Journal
Spearman rank correlation, 47
specificity, 127
SPI, see plug-in
SSC, see Statistical Software Compo-

nents
standard error, 207
standardized residual, 77, 126
Stata Journal, 39
Stata Technical Bulletin, 39
Stata web page, 2
Statistical Software Components, 39
STB, see Stata Technical Bulletin
stepwise regression, 71
stopping Stata, 8
storage type, 11

double, 267
stratified Cox model, 244
survival analysis, 239
survival data, 241
survivor function, 242

temporary name, 266
t-test, 46, 50, 167
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two-way table, 51
Type I sums of squares, see sequential

sums of squares
Type III sums of squares, see unique

sums of squares

unique sums of squares, 104
updating Stata, 39–40

variance inflation factors, 67

weights, 14, 23, 143
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