

COMPUTER GRAPHICS
DESIGN AND SYSTEM

COMPUTER GRAPHICS
DESIGN AND SYSTEM

Jay Baldwin

Computer Graphics Design and System

by Jay Baldwin

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664020

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Design and Analysis Technologies 1

Chapter 2 Applications of Computer Graphics 21

Chapter 3 Computer Graphics in Java 68

Chapter 4 Graphics System 117

1

Design and Analysis Technologies

The Design and Analysis Technologies critical

technology area includes technologies or processes that

are pervasive within the aerospace and defence sector. The

technology elements within the Design Technologies critical

technology area are depicted in the figure below and

described in subsequent paragraphs:

Multidisciplinary Design and Optimization
Multidisciplinary design and optimization is as the

name implies, the process of combining a full set of

computational design tools to create an optimum design.

The process is necessarily iterative in nature and all of

the disciplines normally utilized in an aircraft design are

computationally intensive.

An MDO approach for an aircraft could include

aerodynamics, structures, and systems Computer Aided

Computer Graphics Design and System

2

Engineering (CAE) tools. Initial design assumptions would

be input to each CAE toolset and the constraints and

parameters to be optimized defined. Each CAE suite would

then compute design parameters that would be utilized

by the other CAE tools as a subset of their required inputs.

The ultimate design would theoretically be structurally

sounder, lighter and more cost effective to fabricate. The

design timeframe would be also very much shortened. The

challenges to this process are in the exchange of data

between the CAE applications and the tuning of the entire

process to achieve convergence on the final solution set in

an efficient manner.

Structural Analysis
The optimization of analytical design tools is a process

that will lead to shortened design time frames, lighter and

more efficient designs, with reduced production and life

cycle costs of the final design.

The many analytical tools now available have been

typically developed for specific applications and are often

not readily applicable outside of their original design target

arena. An example lies in the structural analysis field

where tools developed for metallics will be much different

from those developed for composite materials where

material properties may vary according to axis.

The ability to rapidly define an optimized aircraft

structure having light weight, and improved fatigue and

damage tolerance capabilities, is a critical technology to

maintain competitive leadership in the development and

supply of future new aircraft. This will be achieved by the

Computer Graphics Design and System

3

extensive use of computerized methods for structural

analysis and design optimization, and the analysis of

failure and fracture mechanics. The methods must be

integrated with the in-house design and manufacturing

data bases, the 3-D CAD/CAMsystems, and also be easy

to use. Suppliers and partners will have access to the

resulting design information via Technical Data

Interchange (TDI). This will ensure consistency with an

up-to-date knowledge of the requirements for loads,

interfaces and the space envelopes available for their

products.

The immediate dissemination to suppliers of

information on design changes will help diminish

subsequent redesign activity and the time and cost

penalties incurred for rework.

The preliminary structural design will often use detailed

Finite Element Methods (FEM) for analysis, coupled with

constrained optimization, and the process must be highly

automated for rapid creation of FEM meshing for models.

In order to achieve shortened design cycle time, the loads

and dynamics stiffness requirements must become

available much sooner than at present. This will require

early development of MDO models for overall aerodynamic

and structural optimization that will define the static and

dynamic loads for flight and ground operations. Trade-off

studies must rapidly search for the best designs and arrive

at realistic structural sizes, providing space envelopes and

accurate weights to minimize subsequent redesign.

Computer Graphics Design and System

4

Structural Design, Analysis and Optimization
Shortened design cycle times are necessary for

achieving market advantage in the aerospace and defence

sector. Improvements in the structural analysis, design

and optimization of gas turbine engines is necessary to

achieve these goals while also meeting the overall objectives

of increased durability and efficiency at lower costs.

A Multi-disciplinary Design Optimization (MDO)

approach that combines finite element analysis and

aerodynamic design techniques is employed. MDO is

necessary to rapidly determine the structure of the engine

and identify critical areas requiring further or more detailed

analysis.

Many of the structural and aerodynamic codes

developed by companies are proprietary in nature and the

integration and refinement of these codes is an on-going

challenge.

COMPUTATIONAL FLUID DYNAMICS

COMPUTATIONAL DEVELOPMENT AND
VALIDATION

Computational Fluid Dynamics (CFD) has had the

greatest effect on both aircraft and engine design of any

single design tool over the past twenty-five years.

Computational power and cost have enabled widespread

application and development of CFD techniques.

Computational fluid dynamics is basically the use of

computers to numerically model flows of interest. Nodes

Computer Graphics Design and System

5

in the flowpath are identified and equations of motion

solved at these locations to identify flow parameters.

In essence a grid or mesh is defined over the surface

of the object that extends outwards into the flowfield

containing the object. Flow equations are then calculated

at each node in the grid, and iteratively re-calculated until

all results for each node are within an acceptable variance.

The equations used are either Euler based which do not

include viscous effects (boundary layers) directly, or Navier-

Stokes equations which include viscous effects and which

produce more accurate but computationally more

demanding solutions. Such methods can be used for

external flows about an aircraft or for internal flows in a

gas turbine including combustion. The Euler based

analyses are typically less computationally demanding but

are less precise for modeling separated flows on wings and

bodies, or for internal reversed flows. It should be noted

that Navier first developed his equations in 1823 and that

Stokes refined them in 1845. The development of solutions

to these equations was not feasible until the latter part of

this century. Today much R&D effort on NS methods is

expended on improving modeling of the turbulent flow

terms for specific problems.

Numerous forms of Euler and Navier-Stokes solutions

have been developed to address particular design

problems. Solutions to these equations are dependent on

experimentation for both coefficients and for validation.

Mesh selection and node placement is critical to the

solution of the flowfield. The automated generation of

Computer Graphics Design and System

6

meshes is now in wide spread use and can often be linked

to Computer Aided Engineering and Design tools. The form

of the equation used, the density of the mesh or grid and

convergence requirements determine computational

demands. Complete aircraft solutions require huge

computer resources and much R&D is aimed at improving

the speed of the solution.

Computational Fluid Dynamics - Gas Turbines
CFD is perhaps the single most critical technology for

gas turbine engines. Gas turbineCFD needs have typically

posed the greatest challenges to engine designers, and

computational power and code developers. While CFD is of

utmost importance to the engine designer it is a very specific

disciplinary design requirement and competence is held by

a very small number of engine design firms worldwide.

Computation techniques for gas turbine engines also

tend to be very module specific — compressor, transition

duct, combustor, turbine and exhaust duct/military

afterburner are examples. Computational techniques are

often also specific to engine size class and thus Canada,

focusing on small gas turbines, has a specific set of

technology requirements.

Advanced 3D CFD codes have been used to generate

the following design improvements:

• In the compressor to develop advanced swept

airfoils capable of high compression ratios that in

turn yield higher efficiency at less weight and with

a smaller parts count (significant life cycle cost

factor);

Computer Graphics Design and System

7

• In the combustor for higher intensity (smaller

volumes with much higher energy density)

combustors that approach stoichiometric conditions

to yield higher efficiency with lower weight; and

• In the turbine to produce higher stage loading with

reduced turbine cooling air requirements that again

reduces weight and cost while reducing fuel burn.

Combustion Systems Computation
The combustor of a gas turbine engine is that part of

the engine that receives the compressed air from the

compressor. Energy is added to the airflow in the

combustor in the form of chemical energy derived from

fuel. The combustor discharge air is expanded across a

turbine or turbines where energy is extracted to drive the

compressor and gearbox of a turboshaft/turboprop engine,

or to provide jet thrust via a turbofan and core nozzle in a

thrust engine.

Small gas turbines, of the size that have typically been

designed and built in Canada pose significant design

challenges because of their size. Pratt and Whitney Canada

combustors are the highest intensity combustors in the

world, where intensity can be thought of as the amount of

energy converted per unit volume within the combustor.

The design objectives for gas turbine engines, including

small ones, are to increase both overall pressure ratios

and cycle temperatures, which lead to increased efficiency

and smaller size and weight, while simultaneously

producing reduced noise and noxious emissions levels.

Computer Graphics Design and System

8

Combustor technology development challenges for

Canadian engine manufacturers include.

Computational fluid dynamics: CFD analyses are

complicated by the reverse flow designs typically selected

to maintain short combustors within small volumes.

Cooling flow and chemical additions to the CFD design

further complicate the process as the temperatures of gases

at the core of the flows are well above the melting

temperatures of the combustor materials. Pressure losses

and cooling flow requirements must be minimized to

improve performance.

Materials: Increasing compressor ratios result in

increased compressor discharge temperatures and

decreased cooling capability. These increased temperatures

also push for higher fuel to air ratios and higher

temperatures within the combustor. Stoichiometric ratio

is that ratio when all oxygen is consumed in the

combustion process leaving less air for cooling. Materials

challenges in this environment are the most demanding.

Fuel injection and mixing: CFD and injector specific

techniques are required.

Emissions: While not legislated and not contributing

significantly in absolute terms, there is a drive for lower

emissions that drives designs often in the opposite direction

to those factors identified above.

AERODYNAMICS AND FLIGHT MECHANICS

Aerodynamics is the study of forces on wing bodies and

controls due to air pressure and viscous (drag) effects.

Computer Graphics Design and System

9

Flight mechanics is the study of the resulting motion of

objects through the air and includes the stability and

control Behaviour. The laws of motion and aerodynamics

are combined to ensure that an aircraft flies in the intended

manner. Much of the aerodynamics and flight mechanics

work that is pursued for the purposes of aircraft designed

and built in Canada will pertain to such issues as the

design of improved wings, the integration of various

components onto an aircraft or issues such as flight in

adverse conditions where the handling qualities of an

aircraft will be adversely influenced by the build up of ice

on the surface of the wing. Advanced technology

development in this field will be directed towards

supersonic transports and eventually hypersonic flight.

There are considerable differences between fixed wing and

rotary wing aircraft aerodynamics and flight mechanics

and both areas are of considerable interest to the Canadian

aerospace and defence industry.

Technologies relevant to Aerodynamics and Flight

Mechanics are described below:

Advanced Aerodynamics and Handling
Included here are technologies that will enable the

Canadian Aerospace industry to contribute to the design

of advanced concept aircraft technologies or components

or be the lead design integrator.

These enabling technologies should be pursued

dependent on their links to, and pre-positioning for potential

application to specific aircraft platforms or types as follows:

Computer Graphics Design and System

10

• Future Transport Aircraft: Future transport aircraft

will have to demonstrate increased speed and load

carrying capabilities over greatly extended ranges.

Specific targets have been set by the U.S. for next

generation transport aircraft although no new

advanced concept transport aircraft are currently

well advanced. Wing loading factors will double

over that of existing aircraft with the development

of materials new to the transport aircraft envelope.

For shorter -range aircraft, a key enabling

technology will be that of high efficiency turboprop

engines with cruise speeds above the M.72 range.

Propulsion technology and propulsion integration

issues, aircraft design optimization, CFD, and

materials technology development and insertion

will be key to the success of the future transport

aircraft.

• Hypersonic Aircraft: Hypersonic aircraft are in

exploratory or advanced development model stage

at this time and will be used initially for low cost

space launch and delivery platforms and subse-

quently for commercial transport. Propulsion

technologies are significant to hypersonic vehicle

feasibility and are now the limiting factor. Variable

cycle engines, advanced materials, endothermic

fuels and fuel control technologies are key

aeropropulsion technology elements where

significantR&D remains unsatisfied. Numerous

controls and materials research topics require

Computer Graphics Design and System

11

further investment as well, although less

uncertainty remains in these areas due to advances

made through the shuttle Programmes.

• Advanced Rotorcraft: Future rotorcraft will demon-

strate increased cruise speeds of 200 kts or greater

with tiltrotor speeds approaching 450 kts. These

cruise speeds will be possible at significantly

reduced vibration levels and with greatly increased

range/fuel economy. Many of the design concepts

for attaining these performance improvements are

already in development, however much work

remains undone.

• Advanced Rotorcraft Flight Mechanics: For both

conventional helicopter and tiltrotor blades, the

wings and propulsion system operate in a very

complex aeromechanical environment. Aerodyn-

amics, structures, vibration and acoustics

parameters are inseparable and typically drive the

design of the entire air vehicle. In trimmed forward

flight the advancing blade tip will be moving at near

sonic velocities whilst the retreating blade is often

in near stall conditions.

Advanced Design and Development
General aviation aircraft pose specific design challenges

in all aspects of their design and fabrication. Increasing

availability of low cost and high performance avionics,

advanced composite designs and powerplant integration

all offer opportunities for general aviation aircraft designers

and builders.

Computer Graphics Design and System

12

Many of the technologies being furthered for use in

military unmanned aerial vehicles will be of pertinence to

general aviation aircraft.

Low cost gas turbine technologies and composite

structures development and certification issues will likely

be the technologies of greatest interest.

The development of technologies for military purposes

will underwrite some of the costs of introduction of those

design concepts into general aviation use.

Experimental Assessment and Performance
Analytical design and analysis techniques are a

prerequisite to reductions in design cycle time, design and

production costs, and improved safety and environmental

impact. The development of these analytical or numerical

design techniques will remain heavily dependent on

experimental validation of design codes and performance

targets for another 10-15 years. Whereas in the past,

experimental resources such as wind tunnels were used

primarily for design development and refinement, in the

future they may increasingly be used for the validation of

computational design tools.

Notwithstanding the foregoing, there will continue to

be a requirement for national facilities including wind

tunnels, engine test facilities, flight test resources, and

specialized resources including icing tunnels and rig test

facilities for some time to come.

Experimental design and performance validation

technology investment will be required in the following areas

to support the aerospace industry in Canada:

Computer Graphics Design and System

13

• Data Capture and Analysis Automation: Automated

methods for intelligent data capture and analysis

will be required to reduce large facility run times

and meet the challenges of design tool validation.

This will require investment both in sensors and

in computational tools;

• Experimental Code Development: Increased data

capture rates and fidelity will be required and will

necessitate the development of specific codes for

experimental design and performance validation.

Facilities and infrastructure will have to be

maintained or enhanced to achieve these goals; and

• Infrastructure Support: The maintenance of critical

national facilities will have to be supported in

concert with other government departments and

industry. The objective will not necessarily be to

create new facilities but rather to improve the

functionality of existing resources to meet the needs

of new technology developments.

Aeropropulsion Performance Assessment
Test cells utilized for Canadian aero-engine

Programmes, and also those developed for sale, have

typically been sea-level static facilities offering little or no

altitude, forward flight velocity or temperature pressure

simulation. Some limited flying test bed capability exists

in Canada for the testing of engines.

That being said, the National Research Council has

participated in numerous international projects in the

process ensuring that a world leading test cell capability

Computer Graphics Design and System

14

exists both for engine qualification testing, performance

testing and for the development of performance assessment

techniques.

Engine test cells take a number of forms. Sea level test

facilities are used for Engine Qualification Testing that

involves the monitoring of a relatively small number of

parameters over long periods where in-service usage is

evaluated in a time compressed manner. Qualification

testing also involves the ingestion of ice or water to ensure

that unacceptable engine degradation does not occur in

those instances. The NRC Institute for Aerospace Research

has developed world recognized icing testing competencies

and icing test facilities that are used by Canadian and

off-shore engine manufacturers for qualification testing.

Altitude test cells are used to qualify engines over a

full flight envelope as opposed to the endurance type testing

previously described.

The National Research Council in colLabouration with

Pratt and Whitney Canada have developed and operated

one small altitude test cell at NRC for some time. An

initiative that began in 2000 will see the development and

commissioning of a somewhat larger and more capable

altitude facility, again as a colLabourative effort between

NRC and P&WC.

Test cells can also be used for the analysis of problems

or validation of problem resolution. In these cases the test

cells often require enhanced instrumentation suites and

a much more careful design to ensure that performance

parameters are correctly measured. World interest in

Computer Graphics Design and System

15

advanced test cell technologies has been directed at those

required to support hypersonic vehicles for military uses

or for space launch vehicles.

This type of test cell is very resource intensive and

highly specialized and will likely be of little interest or utility

to any but a limited number of Canadian firms. The Short

Take Off and Vertical Landing (STOVL) version of the F35

Joint Strike Fighter has recently posed new challenges in

the world of aeropropulsion testing. For this testing, in-

flow preparation, exhaust treatment, fan drive systems,

and 6 axis thrust measurement in the vertical axis will all

pose significant new challenges to the performance

assessment community.

ADVANCED CONCEPTS OF DESIGN

Analysis and Design Integration
Advanced aerodynamics profile development in Canada

will be primarily directed at wing design for subsonic

aircraft carrying less than 120 passengers. The objective

of work done on advanced aerodynamic profiles will be to

increase efficiency and cruise speeds through reduced drag

while improving structural and control characteristics.

Wing profile, control surface effectiveness, airframe and

engine interface effects with the wing and wing tip designs

are areas of research and development interest. Also,

developments improving wing-flap high lift performance

are important areas for minimizing wing size required and

hence costs.

Computer Graphics Design and System

16

Laminar flow control is a term that deserves discussion.

Airflow over wings begins as a laminar or ordered flowfield

and will transition to a higher drag producing turbulent

flow based on flow characteristics such as speed and wing

influences including wing shape, surface roughness. It has

been estimated that if laminar flow could be maintained

on the wings of a large aircraft, fuel savings of up to 25%

could be achieved.

Wing and flight characteristics of small aircraft are such

that laminar flow can be relatively easily maintained over

much of the flight envelope. A variety of methods can be

used to increase laminar flow regions on aircraft of larger

size and having higher Reynolds numbers and sweep

angles.

Computational fluid dynamics will be the most

important technology relevant to the development of

advanced aerodynamic profiles. A number of areas require

R&D activity and support for aircraft design particular to

Canadian aerospace interests. Large-scaleCFD code

refinement and validation is one area requiring work to

improve accuracy and reduce computational times for

MDO by more rapid design convergence. These CFD codes

will also require validation in Labouratories and in wind

tunnels.

All-Electric Aircraft Concept Development
The all-electric aircraft will utilize electronic actuators

to replace equivalent hydraulic system components. The

intent is to save weight and increase reliability. For

example, electrical generators would provide power to

Computer Graphics Design and System

17

electric actuators for flight control surface movement

rather than equivalent hydraulic powered components.

Electric power cables are lighter and less prone to damage

or service induced degradation such as fitting vibration

that results in leakage in hydraulic systems. Alternate

power supply redundancy is an additional advantage of

this concept. Challenges associated with this type of

technology insertion would be related to electromagnetic

interference (EMI), and rapid load fluctuations imposed

on the power generation engines.

Fly-by-Light Concept Development
Fly-by-Light (FBL) technology involves the replacement

of electronic data transmission, mechanical control

linkages, and electronic sensors with optical components

and subsystems. Benefits include lower initial acquisition

and life cycle costs, reduced weight, and increased aircraft

performance and reliability.

Fibre-optic cables are essentially immune to

electromagnetic interference and therefore not affected by

fields generated by other lines or electrical devices in close

proximity, nor are they affected by lightning strikes. For

flight controls, hydraulic or electric actuators are still

employed but receive their command inputs via fibre-optic

cables. Weight reductions are significant as the fibre-optic

cables need only be protected from physical damage,

whereas electric cables must be insulated and shielded

increasing weight significantly. Also with a FBL connection

multiple routes can be readily provided that are well

separated to provide control redundancy.

Computer Graphics Design and System

18

There are a number of enabling technologies that must

be developed in order to enable photonics technology

insertion. Fibre-optic connectors for in-line and end

connections must be developed that are durable and

insensitive to in-service maintenance activities. Fibre-optic

sensors development will also be necessary to allow the

achievement of the full range of benefits that can be obtained

in fly-by-light aircraft. This technology is usually associated

with smart structures concepts such as smart skins where

fibre-optic cabling can be readily embedded in a composite

lay-up to achieve dispersed damage, stress, temperature or

vibration sensing capability.

Detection Management and Control Systems
Regional airliners and helicopters operating in lower

level airspace are increasingly exposed to hazardous icing

conditions. This has increased the need for technologies

for proactive and reactive ice detection and protection.

Reactive technologies are those related to the detection of

runback icing and attempt to monitor real-time or infer

likely aerodynamic performance degradation.

Proactive systems forecast the potential for icing

conditions and provide on-board avoidance advisory

information. Reactive systems provide reasonable

protection of the aircraft within the regulated flight

envelope but are essentially go/no-go decision aids. Aircraft

on Search and Rescue Missions and most civil transport

aircraft often do not have the option of avoiding hazardous

icing conditions and should have pro-active pilot advisors

and ice removal systems.

Computer Graphics Design and System

19

Reactive ice detection devices include: embedded

sensors that are mounted on the wing surface in a critical

location and monitor ice build-up; and aerodynamic

performance sensors that typically monitor pressure within

the boundary layer of the wing to determine lift

performance degradation. Proactive systems require the

remote measurement of Liquid Water Content (LWC),

Outside Air Temperature (OAT) and Mean Volume Diameter

(MVD) of the liquid water. Knowledge of these three

parameters is required to predict hazardous icing

conditions. Additional R&D work on MVD measurement

is required.

Ice control and removal systems may use heated air from

the engines or electrical heat elements to remove ice from

airfoil surfaces. Coatings that are termed"iceophobic" may

also be applied to minimize ice build-up. CFD tools are needed

to Analyse ice-buildup characteristics, assess aerodynamic

degradation, and improve ice removal air supply

performance. This technology area is of particular interest

because of the types of aircraft produced in Canada and

because of climatic conditions.

Design Techniques
A previously stated objective for noise reduction is in

the order of 6 EPNdB (Effective Perceived Noise in dB).

This objective can be achieved through the utilization of

larger by-pass ratio fans, innovative design concepts for

turbo fans and sound conscious designs in the combustor

and exhaust nozzles/liners. Generally speaking, noise

improvements and fuel efficiency must be improved to meet

Computer Graphics Design and System

20

future regulatory requirements without sacrifice of overall

engine efficiency. Of special interest will be advanced

ducted propulsors (ADF) that offer both noise attenuation

and increased efficiency potential. This technology area

will be heavily dependent on computational design

techniques and multidisciplinary design optimization.

The reduction in aircraft emissions is also a regulated

requirement. While small aircraft engines contribute an

insignificant amount of pollution they are still the targets

of increased environmental scrutiny. Regulatory

requirements are targeted at Nitrous Oxides (NOx), Carbon

Monoxide (CO) and visible particulate emissions. CFD

analysis techniques specific to combustion processes will

be the major tool used to lower aeropropulsion emissions.

Computer Graphics Design and System

21

2

Applications of Computer Graphics

Computers have become a powerful tool for the rapid

and economical production of pictures. Advances in

computer technology have made interactive computer

graphics a practical tool. Today, computer graphics is used

in the areas as science, engineering, medicine, business,

industry, government, art, entertainment, advertising,

education, and training.

COMPUTER AIDED DESIGN
A major use of computer graphics is in design processes,

particularly for engineering and architectural systems. For

some design applications; objects are first displayed in a

wireframe outline form that shows the overall sham and

internal features of objects.

Software packages for CAD applications typically provide

the designer with a multi-window environment. Each

Computer Graphics Design and System

22

window can show enlarged sections or different views of

objects. Standard shapes for electrical, electronic, and logic

circuits are often supplied by the design package. The

connections between the components have been mad

automatically.

• Animations are often used in CAD applications.

• Real-time animations using wire frame displays are

useful for testing performance of a vehicle.

• Wire frame models allow the designer to see the

interior parts of the vehicle during motion.

• When object designs are complete, realistic lighting

models and surface rendering are applied.

• Manufacturing process of object can also be

controlled through CAD.

• Interactive graphics methods are used to layout the

buildings.

• Three-dimensional interior layouts and lighting also

provided.

• With virtual-reality systems, the designers can go

for a simulated walk inside the building.

Presentation Graphics
• It is used to produce illustrations for reports or to

generate slide for with projections.

• Examples of presentation graphics are bar charts,

line graphs, surface graphs, pie charts and displays

showing relationships between parameters.

• 3-D graphics can provide more attraction to the

presentation.

Computer Graphics Design and System

23

Computer Art
• Computer graphics methods are widely used in

both fine are and commercial art applications.

• The artist uses a combination of 3D modelling

packages, texture mapping, drawing programmes

and CAD software.

• Pen plotter with specially designed software can

create “automatic art”.

• “Mathematical Art” can be produced using

mathematical functions, fractal procedures.

• These methods are also applied in commercial art.

• Photorealistic techniques are used to render images

of a product.

• Animations are also used frequently in advertising,

and television commercials are produced frame by

frame. Film animations require 24 frames for each

second in the animation sequence.

• A common graphics method employed in many

commercials is morphing, where one object is

transformed into another.

Entertainment
• CG methods are now commonly used in making

motion pictures, music videos and television shows.

• Many TV series regularly employ computer graphics

method.

• Graphics objects can be combined with a live

action.

Computer Graphics Design and System

24

Education and Training
• Computer-generated models of physical, financial

and economic systems are often used as

educational aids.

• For some training applications, special systems are

designed.

Eg. Training of ship captains, aircraft pilots etc.

• Some simulators have no video screens, but most

simulators provide graphics screen for visual operation.

Some of them provide only the control panel.

Visualization
• The numerical and scientific data are converted to

a visual form for analysis and to study the

behaviour called visualization.

• Producing graphical representation for scientific

data sets are calls scientific visualization.

• And business visualization is used to represent the

data sets related to commerce and industry.

• The visualization can be either 2D or 3D.

Image Processing
• Computer graphics is used to create a picture.

• Image processing applies techniques to modify or

interpret existing pictures.

• To apply image processing methods, the image

must be digitized first.

• Medical applications also make extensive use of

image processing techniques for picture

enhancements, simulations of operations, etc.

Computer Graphics Design and System

25

Graphical User Interface
• Nowadays software packages provide graphics user

interface (GUI) for the user to work easily.

• A major component in GUI is a window.

• Multiple windows can be opened at a time.

• To activate any one of the window, the user needs

just to check on that window.

• Menus and icons are used for fast selection of

processing operations.

• Icons are used as shortcut to perform functions.

The advantages of icons are which takes less screen

space.

• And some other interfaces like text box, buttons,

and list are also used.

NEW TECHNIQUE IMPROVES RENDERING

OF SMOKE, DUST AND

PARTICIPATING MEDIA

Computer graphic artists often struggle to render smoke

and dust in a way that makes a scene look realistic, but

researchers at Disney Research, Zürich, Karlsruhe

Technical Institute in Germany, and the University of

Montreal in Canada have developed a new and efficient

way to simulate how light is absorbed and scattered in

such scenes.

LED LIGHTING
“Our technique could be used to simulate anything from

vast cloudscapes, to everyday ‘solid’ objects such as a glass

Computer Graphics Design and System

26

of orange juice, a piece of fruit or virtually any organic

substance,” said Dr. Wojciech Jarosz of Disney Research

Zürich, who led the research team.

The team’s new virtual ray lights technique will be

presented Aug. 7 in the “Light Rays” session at this year’s

international SIGGRAPH conference, which focuses on the

latest and greatest advances in Computer Graphics and

Interactive Techniques, at the Los Angeles Convention

Center.

Beneath the surface, this new approach leverages

another Disney Research technology — photon beams, also

developed by a team lead by Jarosz — which challenged

the traditional views on how to simulate light in scenes

with smoke, dust or other “participating media.” Normally,

realistic rendering techniques simulate light using a set of

particles (virtual “photons”) that bounce off of walls and

objects, depositing tiny bits of light-energy along their trip.

It’s this light-energy that’s collected to form the final

simulated image. But Disney researchers have found that

it’s much more efficient to use long and thin beams of

light, instead of tiny photon particles, as a building block

for generating images.

This photon beams approach was presented at last year’s

SIGGRAPH conference in Vancouver and was also used to

create magical wispy effects for Disney’s Tangled. Since

then Disney researchers have been hard at work to make

the technique even better. This latest work in the photon

beams family looks at how photon beams contribute to

so-called secondary lighting events in participating media:

Computer Graphics Design and System

27

namely, when light enters a smoky or dusty room, the

light particles actually hit and bounce off of the smoke or

dust. This special game of ping-pong happens in reality at

the speed of light, and the newly proposed technique

investigates how entire beams of light are ping-ponged

around the dust and smoke clouds in a room, or the pulp

inside a glass of orange juice. With this new technique

computer graphics experts can simulate more realistic

participating media effects, which occur more commonly

than one would expect in the real-world: participating

media effects account for the way we observe clouds, the

appearance of fruit juices and milk, the haze in smoggy

cities, and even the subtle dimming of distant objects on

an otherwise clear day. The amount to which these effects

can contribute to a final rendered image varies from tiny

shifts to major rifts, but even the most subtle of changes

to the appearance of a virtual scene, when executed

correctly, can help convince otherwise oblivious audience

members that what they are seeing is “real.”

The virtual ray lights technique was also designed to

be flexible, and the researchers hope it will find its way

into many different areas of the computer animation and

special effects industry. Virtual ray lights were designed

to be progressive, meaning that they can very quickly

generate a preview-quality result while converging to a

final result as time goes by.

On the one hand, this allows skilled technical artists

at feature-film studios to quickly get feedback about their

lighting setups and designs, as opposed to making

Computer Graphics Design and System

28

changes and grabbing a coffee before being able to tell if

their design changes are helpful or not.

This rapid-feedback property reduces iteration time,

allowing artists to focus on the end-goal instead of

wrestling with the lighting tool. Another benefit of the

progressive nature of the new technique is that users can

choose between quality and performance, which is ideal

for game developers who don’t care so much about being

100 percent realistic but instead want their scenes to

“just look great.” Finally, the virtual ray lights project is a

shining example of Disney’s commitment to bringing

together the brightest experts from across industrial and

academic research settings in order to push the limits of

the state-of-the-art.

This project was undertaken by four researchers in three

countries across two continents: Jan Novák, an intern at

Disney Research in Zürich and full-time PhD student at

Karlsruhe Institute of Technology, worked alongside

Wojciech Jarosz, a research scientist and head of the

Rendering Group at Disney Research Zürich, Derek

Nowrouzezahrai, a Disney Research post-doc and now

assistant professor at the University of Montreal, and

Carsten Dachsbacher, the head of the Computer Graphics

Group at Karlsruhe Institute of Technology.

RAY TRACING

Ray Tracing is a global illumination based rendering

method. It traces rays of light from the eye back through

the image plane into the scene. Then the rays are tested

Computer Graphics Design and System

29

against all objects in the scene to determine if they intersect

any objects. If the ray misses all objects, then that pixel is

shaded the background colour. Ray tracing handles

shadows, multiple specular reflections, and texture

mapping in a very easy straight-forward manner. Note that

ray tracing, like scan-line graphics, is a point sampling

algorithm. We sample a continuous image in world

coordinates by shooting one or more rays through each

pixel. Like all point sampling algorithms, this leads to the

potential problem of aliasing, which is manifested in

computer graphics by jagged edges or other nasty visual

artifacts. In ray tracing, a ray of light is traced in a

backwards direction. That is, we start from the eye or

camera and trace the ray through a pixel in the image

plane into the scene and determine what it hits. The pixel

is then set to the colour values returned by the ray.

SIMPLE GLOBAL ILLUMINATION MODEL FOR
RAY TRACING

A primary ray is shot through each pixel and tested for

intersection against all objects in the scene. If there is an

intersection with an object then several other rays are

generated. Shadow rays are sent towards all light sources

to determine if any objects occlude the intersection spot.

The shadow rays are labelled Si and are sent towards the

two light sources LA and LB. If the surface is reflective

then a reflected ray, Ri, is generated. If the surface is not

opaque, then a transmitted ray, Ti, is generated. Each of

the secondary rays is tested against all the objects in the

scene.

Computer Graphics Design and System

30

The reflective and/or transmitted rays are continually

generated until the ray leaves the scene without hitting

any object or a preset recursion level has been reached.

This then generates a ray tree, as shown below.

The appropriate local illumination model is applied at

each level and the resultant intensity is passed up through

the tree, until the primary ray is reached. Thus we can

modify the local illumination model by (at each tree node).

I = Ilocal + Kr * R + Kt * T where R is the intensity of light

from the reflected ray and T is the intensity of light from

the transmitted ray. Kr and Kt are the reflection and

transmission coefficients.

For a very specular surface, such as plastic, we

sometimes do not compute a local intensity, Ilocal, but

only use the reflected/transmitted intensity values.

Computer Graphics Design and System

31

RAY OBJECT INTERSECTIONS
The general idea behind ray-object intersections is to

put the mathematical equation for the ray into the equation

for the object and determine if there is a real solution. If

there is a real solution then there is an intersection (hit)

and we must return the closest point of intersection and

the normal (N) at the intersection point. For a shadow ray

we must return whether any ray-object intersection is

closer than the ray-light intersection. For a ray tested

against a boundary volume, we just return a simple hit or

no hit. For texture mapping we need the intersection point

relative to some reference frame for the surface.

We define a ray as:

R0 = [x0, y0, z0] - origin of ray

Rd = [xd, yd, zd] - direction of ray

then define a set of points on the ray:

R(t) = R0 + Rd * t with t > 0.0

If Rd is normalized, then t equals the distance of the ray

from origin in World Coordinates, else it is just a multiple

of Rd, so we want to normalize Rd. Note that many of the

intersection computations require the solution of the

quadratic equation.

PRACTICAL CONSIDERATIONS IN WRITING A
RAY TRACER

Process: For each pixel a primary ray will be generated

and then tested against all objects in the scene.

Create Model
The first step is to create the model of the image.

Computer Graphics Design and System

32

One should not hardcode objects into the programme,

but instead use an input file. Here is a sample Input file:

Generate Primary Rays and Test for Object-Ray
Intersections

For each pixel we must generate a primary ray and test

for intersection with all of the objects in the scene. If there

is more than one ray-object intersection then we must

choose the closest intersection (the smallest positive value

of t). To ensure that there are no objects intersected in

front of the image plane (this is called near plane clipping),

we keep the distance of the primary ray to the screen and

test all intersections against this distance. If the t value is

less than this distance, then we ignore the object.

A sample calculation of forming a ray and testing it for

intersection with a sphere. If there is an intersection then

we must compute the shadow rays and the reflection rays.

Shadow Ray
The shadow ray is a ray from the point of intersection to

the light source. Its purpose is to determine if the

intersection point is in the shadow of a particular light.

There should be one shadow ray for each light source. The

origin of the shadow ray is the intersection point and the

direction vector is the normalized vector between the

intersection point and the position of the light source. Note

that this is the same as the light vector (L) that is used to

compute the local illumination.

Compute the Local Illumination at each point, carry it

back to the next level of the ray tree so that the intensity

Computer Graphics Design and System

33

I = Ilocal + Kr * R + Kt * T. Note that Kr can be taken as the

same as Ks. For each colour (R, G, B) I is in the range 0.0

<= I <= 1.0. This must be converted to an integer value of

0 <= I <= 255. The result is then written to the output file.

Output File
The output file will consist of three intensity values (Red,

Green, and Blue) for each pixel. For a system with a 24-bit

framebuffer this file could be directly displayed. However,

for a system with an 8-bit framebuffer, the 24-bit image

must be converted to an 8 bit image, which can then be

displayed. A suggested format for the output file is the

Microsoft Windows 24-bit BMP image file format.

ACCELERATING RAY TRACING
Ray Tracing is so time-consuming because of the

intersection calculations. Since each ray must be checked

against all objects, for a naive raytracer (with no speedup

techniques) the time is proportional to the number of rays

X the number of objects in the scene. Each intersection

requires from a few (5-7) to many (15-20) floating point

(fp) operations. Thus for a scene with 100 objects and

computed with a spatial resolution of 512 × 512, assuming

10 fp operations per object test there are about 250,000 ×

100 × 10 = 250,000,000 fps. This is just for the primary

rays (from the eye through the image plane) with no anti-

aliasing. Clearly there are computational problems with

this.

There are several approaches to speeding up

computations:

Computer Graphics Design and System

34

• Use faster machines

• Use specialized hardware, especially parallel

processors.

• Speed up computations by using more efficient

algorithms

• Reduce the number of ray - object computations.

REDUCING RAY-OBJECT INTERSECTIONS
Adaptive Depth Control

This means that we stop generating reflected/transmitted

rays when the computed intensity becomes less than a certain

threshold. You must always set a certain maximum depth or

else the programme would generate an infinite number of

rays. But it is not always necessary to go to the maximum

depth if the surfaces are not highly reflective. To test for this

the ray tracer must compute and keep the product of the

global and reflection coefficients as the rays are traced.

Example: let Kr = 0.5 for a set of surfaces. Then from

the first surface the maximum contribution is 0.5, for the

reflection from the second: 0.5 * 0.5 = 0.25, the third: 0.25

* 0.5 = 0.125, the fourth: 0.125 * 0.5 = 0.0625, the fifth:

0.0625 * 0.5 = 0.03125, etc. In addition we might

implement a distance attenuation factor such as 1/D2,

which would also decrease the intensity contribution.

For a transmitted ray we could do something similar

but in that case the distance traveled through the object

would cause even faster intensity decrease. As an example

of this, Hall & Greenbergfound that even for a very reflective

scene, using this with a maximum depth of 15 resulted in

an average ray tree depth of 1.7.

Computer Graphics Design and System

35

Bounding Volumes
We enclose groups of objects in sets of hierarchical

bounding volumes and first test for intersection with the

bounding volume, and then only if there is an intersection,

against the objects enclosed by the volume.

Bounding volumes should be easy to test for intersection,

for example a sphere or box (slab). The best bounding

volume will be determined by the shape of the underlying

object or objects.

For example, if the objects are long and thin then a

sphere will enclose mainly empty space and a box is much

better. Boxes are also easier for hierarchical bounding

volumes.

Note that using a herarchical system like this (assuming

it is done carefully) changes the intersection computational

time from a linear dependence on the number of objects to

something between linear and a logorithmic dependence.

This is because, for a perfect case, each interesction test

would divide the possibilities by two, and we would have a

binary tree type structure. Spatial subdivision methods,

discussed below, try to achieve this.

Kay & Kajiya give a list of properties for hierarchical

bounding volumes:

• Subtrees should contain objects that are near each

other and the further down the tree the closer

should be the objects.

• The volume of each node should be minimal.

• The sum of the volumes of all bounding volumes

should be minimal.

Computer Graphics Design and System

36

• Greater attention should be placed on the nodes

near the root since pruning a branch near the root

will remove more potential objects than one farther

down the tree.

• The time spent constructing the hierarchy should

be much less than the time saved by using it.

First-Hit Speedup
On adaptive depth control, by using that technique the

average depth of the ray tree may be less than two. This

means that a large percentage of the work is performed in

finding the first intersection. Weghorst has suggested using

a modified Z-buffer algorithm to determine the first hit.

The scene would be pre-processed, with the resultant z-

buffer storing pointers to the objects intersected. Then the

ray tracing would proceed from that point.

He showed that incorporating the above three techniques

(adaptive depth control, hierarchical bounding volumes,

and first-hit speedup) approximately halved the intersection

computational time for complex scenes. Note that he use

spheres as the bounding volumes. In general the

computational improvement was inversely dependent on

scene complexity.

Weghorst showed that incorporating the above three

techniques (adaptive depth control, hierarchical bounding

volumes, and first-hit speedup) approximately halved the

intersection computational time for complex scenes. Note

that he used spheres as the bounding volumes. In general

the computational improvement was inversely dependent

on scene complexity.

Computer Graphics Design and System

37

DETAILED DESCRIPTION OF RAY TRACING
COMPUTER ALGORITHM AND ITS GENESIS
What Happens in Nature

In nature, a light source emits a ray of light which travels,

eventually, to a surface that interrupts its progress. One

can think of this “ray” as a stream of photons traveling

along the same path. In a perfect vacuum this ray will be

a straight line (ignoring relativistic effects). In reality, any

combination of four things might happen with this light

ray: absorption, reflection, refraction and fluorescence. A

surface may absorb part of the light ray, resulting in a

loss of intensity of the reflected and/or refracted light. It

might also reflect all or part of the light ray, in one or more

directions.

If the surface has any transparent or translucent

properties, it refracts a portion of the light beam into itself

in a different direction while absorbing some (or all) of the

spectrum (and possibly altering the colour). Less commonly,

a surface may absorb some portion of the light and

fluorescently re-emit the light at a longer wavelength colour

in a random direction, though this is rare enough that it

can be discounted from most rendering applications.

Between absorption, reflection, refraction and fluorescence,

all of the incoming light must be accounted for, and no

more. A surface cannot, for instance, reflect 66% of an

incoming light ray, and refract 50%, since the two would

add up to be 116%. From here, the reflected and/or

refracted rays may strike other surfaces, where their

absorptive, refractive, reflective and fluorescent properties

again affect the progress of the incoming rays. Some of

Computer Graphics Design and System

38

these rays travel in such a way that they hit our eye, causing

us to see the scene and so contribute to the final rendered

image.

Ray Casting Algorithm
The first ray casting (versus ray tracing) algorithm used

for rendering was presented by Arthur Appel in 1968. The

idea behind ray casting is to shoot rays from the eye, one per

pixel, and find the closest object blocking the path of that ray

– think of an image as a screen-door, with each square in the

screen being a pixel. This is then the object the eye normally

sees through that pixel. Using the material properties and

the effect of the lights in the scene, this algorithm can

determine the shading of this object. The simplifying

assumption is made that if a surface faces a light, the light

will reach that surface and not be blocked or in shadow.

The shading of the surface is computed using traditional

3D computer graphics shading models. One important

advantage ray casting offered over older scanline algorithms

is its ability to easily deal with non-planar surfaces and

solids, such as cones and spheres. If a mathematical

surface can be intersected by a ray, it can be rendered

using ray casting. Elaborate objects can be created by using

solid modelling techniques and easily rendered.

Ray Tracing Algorithm
The next important research breakthrough came from

Turner Whitted in 1979. Previous algorithms cast rays from

the eye into the scene until they hit an object, but the rays

were traced no further.

Computer Graphics Design and System

39

Fig. Ray Tracing can Achieve a Very High Degree of Visual Realism.

Fig. In Addition to the High Degree of Realism, Ray Tracing can Simulate the
Effects of a Camera due to Depth of Field and Aperture Shape.

Fig. The Number of Reflections a “Ray” can Take and how it is Affected each
Time it Encounters a Surface is all Controlled via Software Settings during Ray

Tracing. Here, Each Ray was Allowed to Reflect up to 16 Times. Multiple
“Reflections of Reflections” can thus be Seen.

Computer Graphics Design and System

40

Fig. The Number of Refractions a “Ray” can take and how it is Affected each
Time it Encounters a Surface is all Controlled via

Software Settings during Ray Tracing.

Whitted continued the process. When a ray hits a surface,

it could generate up to three new types of rays: reflection,

refraction, and shadow. A reflected ray continues on in

the mirror-reflection direction from a shiny surface.

It is then intersected with objects in the scene; the closest

object it intersects is what will be seen in the reflection.

Refraction rays traveling through transparent material

work similarly, with the addition that a refractive ray could

be entering or exiting a material. To further avoid tracing

all rays in a scene, a shadow ray is used to test if a surface

is visible to a light.

A ray hits a surface at some point. If the surface at this

point faces a light, a ray (to the computer, a line segment)

is traced between this intersection point and the light. If

any opaque object is found in between the surface and the

light, the surface is in shadow and so the light does not

contribute to its shade. This new layer of ray calculation

added more realism to ray traced images.

Advantages over other Rendering Methods
Ray tracing’s popularity stems from its basis in a realistic

simulation of lighting over other rendering methods (such

Computer Graphics Design and System

41

as scanline rendering or ray casting). Effects such as

reflections and shadows, which are difficult to simulate

using other algorithms, are a natural result of the ray

tracing algorithm. Relatively simple to implement yet

yielding impressive visual results, ray tracing often

represents a first foray into graphics programming. The

computational independence of each ray makes ray tracing

amenable to parallelization.

Disadvantages
A serious disadvantage of ray tracing is performance.

Scanline algorithms and other algorithms use data

coherence to share computations between pixels, while ray

tracing normally starts the process anew, treating each

eye ray separately. However, this separation offers other

advantages, such as the ability to shoot more rays as

needed to perform spatial anti-aliasing and improve image

quality where needed. Although it does handle

interreflection and optical effects such as refraction

accurately, traditional ray tracing is also not necessarily

photorealistic. True photorealism occurs when the

rendering equation is closely approximated or fully

implemented. Implementing the rendering equation gives

true photorealism, as the equation describes every physical

effect of light flow. However, this is usually infeasible given

the computing resources required. The realism of all

rendering methods, then, must be evaluated as an

approximation to the equation, and in the case of ray

tracing, it is not necessarily the most realistic. Other

Computer Graphics Design and System

42

methods, including photon mapping, are based upon ray

tracing for certain parts of the algorithm, yet give far better

results.

Reversed Direction of Traversal of Scene
by the Rays

The process of shooting rays from the eye to the light

source to render an image is sometimes called backwards

ray tracing, since it is the opposite direction photons

actually travel. However, there is confusion with this

terminology. Early ray tracing was always done from the

eye, and early researchers such as James Arvo used the

term backwards ray tracing to mean shooting rays from

the lights and gathering the results. Therefore it is clearer

to distinguish eye-based versus light-based ray tracing.

While the direct illumination is generally best sampled

using eye-based ray tracing, certain indirect effects can

benefit from rays generated from the lights. Caustics are

bright patterns caused by the focusing of light off a wide

reflective region onto a narrow area of (near-)diffuse

surface. An algorithm that casts rays directly from lights

onto reflective objects, tracing their paths to the eye, will

better sample this phenomenon. This integration of eye-

based and light-based rays is often expressed as

bidirectional path tracing, in which paths are traced from

both the eye and lights, and the paths subsequently joined

by a connecting ray after some length.

Photon mapping is another method that uses both light-

based and eye-based ray tracing; in an initial pass,

Computer Graphics Design and System

43

energetic photons are traced along rays from the light

source so as to compute an estimate of radiant flux as a

function of 3-dimensional space (the eponymous photon

map itself). In a subsequent pass, rays are traced from the

eye into the scene to determine the visible surfaces, and

the photon map is used to estimate the illumination at the

visible surface points. The advantage of photon mapping

versus bidirectional path tracing is the ability to achieve

significant reuse of photons, reducing computation, at the

cost of statistical bias.

An additional problem occurs when light must pass

through a very narrow aperture to illuminate the scene

(consider a darkened room, with a door slightly ajar leading

to a brightly lit room), or a scene in which most points do

not have direct line-of-sight to any light source (such as

with ceiling-directed light fixtures or torchieres).

In such cases, only a very small subset of paths will

transport energy; Metropolis light transport is a method

which begins with a random search of the path space, and

when energetic paths are found, reuses this information

by exploring the nearby space of rays.

Fig. To the Right is an Image Showing a Simple Example of a Path of Rays
Recursively Generated from the Camera (or Eye) to the Light Source using the

above Algorithm. A Diffuse Surface Reflects Light in all Directions.

Computer Graphics Design and System

44

First, a ray is created at an eyepoint and traced through

a pixel and into the scene, where it hits a diffuse surface.

From that surface the algorithm recursively generates a

reflection ray, which is traced through the scene, where it

hits another diffuse surface.

Finally, another reflection ray is generated and traced

through the scene, where it hits the light source and is

absorbed.

The colour of the pixel now depends on the colours of

the first and second diffuse surface and the colour of the

light emitted from the light source. For example if the light

source emitted white light and the two diffuse surfaces

were blue, then the resulting colour of the pixel is blue.

GRAPHICAL I/O DEVICES

Computer graphics gives us added dimensions for

communication between the user and the machine.

Complex organizations and relationships can be conveyed

clearly to the user. But communication should be a two-

way process. It is desirable to allow the user to respond to

this information. The most common form of computer is a

string of characters printed on the page or on the surface

of a CRT terminal. The corresponding form of input is also

a stream of characters coming from a keyboard. So to

perform such I/O operations, there is a need of I/O devices.

The following are the I/O devices for graphic

implementation.

Computer Graphics Design and System

45

INPUT DEVICES
Various hardware devices have been developed to enable

the user to interact in the more natural manner. These

devices can be separated into two classes. They are Locators

and Selectors.

Locators: Locators are the devices which give position

information. The computer receives from a Locater the

coordinates for a point. Using a locator we can indicate a

position on the screen. The different locators are as follows:

Thumbwheels: A pair of Thumbwheels such as is found

on the Tektronix 4010 graphics terminal. These are two

potentiometers mounted on the keyboard, which the user

can adjust. One potentiometer is used for x direction and

the other for the y direction. Analog-to-digital converters

change the potentiometer setting into a digital value which

the computer can read. The potentiometer settings may

be read whenever desired. The two potentiometer readings

together form the coordinates of a point.

To be useful, this scheme must also present user with

information as to which point the thumbwheels are

specifying. Some feedback mechanism is needed. This may

be in the form of a special screen cursor, that is, a special

marker placed on the screen at the point which is being

indicated. It might also be done by a pair of cross hairs

which cross at the indicated point. As a thumbwheel is

turned, the marker or cross hair moves across the screen

to show the set which position is being read.

Joystick: A Joystick has two potentiometers, just as a

pair of thumbwheels. They have been attached to a single

Computer Graphics Design and System

46

lever. Moving the lever forward or back changes the setting

on one potentiometer. Moving it left or right changes the

setting on the other potentiometer. Thus with a joystick

both x and y coordinate positions can be simultaneously

altered by the motion of a single lever.

The potentiometer settings are processed in the same

manner as they are for thumbwheels. Some joysticks may

return to their zero position when released, whereas

thumbwheels remain at their last position until changed

joysticks are inexpensive and are quite common on displays

where only rough positioning is needed.

Mouse: A Mouse is palm-sized box with a ball on the

bottom connected to wheels for the x and y directions.

These locator devices use switches attached to wheels

instead of potentiometers. As the wheels are turned, the

switches produce pulses which may be counted. The count

indicates how much a wheel has rotated. As the mouse is

pushed across a surface, the wheels turned, proving

distance and direction information. This can then be used

to alter the position of a cursor on the screen a mouse

may also come with one or more buttons which may be

sensed. There are also mice which use photocells rather

than wheels and switches to sense position. Photocells in

the bottom of the mouse sense the movement across the

grid and produce pulses to report the motion.

Tablet: A Tablet composed of a flat surface and a pen

like stylus or window like tablet cursor. The tablet is able

to sense the position of the stylus or tablet cursor on the

surface. A number of different physical principles have

Computer Graphics Design and System

47

been employed for the sensing of the stylus. Most do not

require actual contact between the stylus and the tablet

surface, so that a drawing or blueprint might be placed

upon the surface and the stylus used to trace it. A feedback

mechanism on the screen is not as necessary for a graphics

tablet as it is for a joystick because the user can look at

the tablet to see what position he is indicating. If tablet

entries are to be coordinated with items already on the

screen, then some form of feedback, such as a screen

cursor, is useful.

Selector Device: Selector devices are used to select a

particular graphical object. A selector may pick a particular

item but provide no information about that item is located

on the screen. The different selector devices are as follows.

Light Pen: A light pen is composed of a photocell

mounted in a penlike case. This pen may be pointed at the

screen on a refresh display. The pen will send a pulse

whenever the phosphor below it is illuminated. While the

image on a refresh display may appear to be stable, it is in

fact blinking on and off faster than the eye can detect.

This blinking is not too fast for the light pen. The light pen

can easily determine the time at which phosphor is

illuminated. Since, there is only one electron beam on the

refresh display, only one line segment can be drawn at a

time and no two segments are drawn simultaneously.

When the light pen senses the phosphor beneath it being

illuminated, it can interrupt the display processor’s

interpreting of the display file. The processor’s instruction

register tells which display file instruction is currently being

Computer Graphics Design and System

48

drawn. Once this information is extracted, the processor

is allowed to continue its display. Thus the light pen tells

us which display file instruction was being executed in

order to illuminate the phosphor at which it was pointing.

By determining which part of the picture contained the

instruction that triggered the light pen, the machine can

discover which object the user is indicating. It is often

possible to turn the interrupt mechanism on or off during

the display process and thereby select or deselect objects

on the display for sensing by the light pen.

Keyboards: An alphanumeric keyboard on a graphics

system is used primarily as a device for entering text

strings. The keyboard is an efficient device for inputting

such non--graphic data. Cursor control keys and function

keys are common features on general purpose keyboards.

Function keys allows user to enter frequently used

operations in a single keystroke and cursor control keys

can be used to select displayed objects or co-ordinate

positions by positioning the screen cursor. Additional a

numeric keypad is often included on the keyboard for fast

entry of numeric data. The latest keyboards are coming

with a facility to perform all the operations related to

multimedia and internet browsing etc.

Trackball and Space Ball: A track ball is a ball that

can be rotated with the fingers or palm of the hand to

produce screen-cursor movement. Potentiometers,

attached to the ball, measure the amount and direction of

rotation. It is a two dimensional positioning device.

A space ball provides six degrees of freedom. Unlike the

track ball, a space ball does not actually move. Strain

Computer Graphics Design and System

49

gauges measure the amount of pressure applied to the

space ball to provide input for spatial positioning and

orientation as the ball is pushed or pulled in various

directions. Space balls are used for three dimensional

positioning and selection operations in virtual reality

systems, modelling, animation, CAD and other

applications.

Data Glove: A data glove that can be used to grasp a

virtual object. The glove is constructed with a series of

sensors that detect hand and finger motions.

Electromagnetic coupling between transmitting antennas

and receiving antennas is used to provide information about

the position and orientation of the hand. The transmitting

and receiving antennas can each be structured as a set of

three mutually perpendicular coils, forming a three

dimensional co-ordinate system. Input from the glove can

be used position or manipulate objects in a virtual scene.

A two-dimensional projection of the scene can be viewed

on a video monitor, or a three-dimensional projection can

be viewed with a headset.

Digitizers: A common device for drawing, painting or

interactively selecting co-ordinate positions on an object

is a digitizer. These devices can be used to input co-ordinate

values in either a 2D or 3D space. Digitizer is used to scan

over a drawing or object and to input a set of discrete co-

ordinate positions, which can be joined with straight line

segments to approximate the curve or surface shapes. 3D

digitizers use sonic or electromagnetic transmissions to

record positions. One electromagnetic transmission method

is similar to that used in the data glove: a coupling between

Computer Graphics Design and System

50

the transmitter and receiver is used to compute the location

of a stylus as it moves over the surface of an object.

Image Scanners: Drawings, graphs, colour and black

and white photos or text can be stored for computer

processing with an image scanner by passing an optical

scanning mechanism over the information to be stored.

The gradations of gray scale or colour are then recorded

and stored in an array. Once we have the internal

representation of a picture, we can apply transformations

to rotate, scale or crop the picture to a particular screen

area. We can also apply various image processing methods

to modify the array representation of the picture. For

scanned text input, various editing operations can be

performed on the stored documents. Some scanners are

able to scan either graphical representations or text and

they come in a variety of sizes and capabilities.

Touch Panels: Touch panels allow displayed objects or

screen positions to be selected with the touch of a finger. A

typical application of touch panels is for the selection of

processing options that are represented with graphical

icons. Some systems such as plasma panels are designed

with touch screens.

Other systems can be adapted for touch input by fitting

a transparent device with a touch sensing mechanism over

the video monitor screen. Touch input can be recorded

using three methods. They are

• Optical touch panels.

• Electrical touch panels.

• Acoustical touch panels.

Computer Graphics Design and System

51

Optical Touch Panels: They employ a line of infrared

light emitting diodes (LEDs) along one vertical edge and

along one horizontal edge of the frame. The opposite vertical

and horizontal edges contain light detectors. These

detectors are used to record which beams are interrupted

when the panel is touched.

The two crossing beam that are interrupted identify the

horizontal and vertical coordinates of the screen position

selected. Positions can be selected with an accuracy of

about ¼ inch.

Electrical Touch Panels: It is constructed with two

transparent plates separated by a small distance. One of

the plates is coated with a conducting material and the

other plate is coated with a resistive material. When the

outer plate is touched, it is forced into contact with the

inner plate. This contact creates a voltage drop across the

resistive plate that is converted to the coordinate values of

the selected screen position.

Acoustical Touch Panels: In these high frequency

sound waves are generated in the horizontal and vertical

directions across a glass plate. Touching the screen causes

part of each wave to be reflected from the finger to the

emitters. The screen position at the point of contact is

calculated from a measurement of the time interval between

the transmission of each wave and its reflection to the

emitter.

Voice Systems
Speech recognizers are used in some graphics

workstations as input devices to accept voice command.

Computer Graphics Design and System

52

The voice system input can be used to initiate graphics

operations or to enter data. These systems operate by

matching an input against a predefined dictionary of words

and phrases.

A dictionary is set up for a particular operator by having

the operator speak the command words to be used into

the system. Each word is spoken several times, and the

system analyses the word and establishes a frequency

pattern for that word in the dictionary alone with the

corresponding function to be performed.

When a voice command is given, the system searches

the dictionary for a frequency pattern match. Voice input

is typically spoken into a microphone mounted on a

headset. If a different operator is to use the system, the

dictionary must be reestablished with that operator’s

voice patterns.

OUTPUT DEVICES

Printers
Printers produce output by either impact or non--impact

methods. Impact printers press formed character faces

against an inked ribbon onto the paper. A line printer is

an example of an impact device, with the typefaces mounted

on bands, chains, drums or wheels. Non--impact printers

and plotters use laser techniques, ink-jet sprays,

xerographic processes, electrostatic methods and electro

thermal methods to get images onto the paper.

Character impact printers often have a dot-matrix print

head containing a rectangular array of protruding wire pins,

Computer Graphics Design and System

53

with the number of pins depending on the quality of the

printer. Individual characters or graphics patterns are

obtained by retracting certain pins so that the remaining

pins form the pattern to be printed.

In a laser device, a laser beam creates a change

distribution on a rotating drum coated with a photoelectric

material. Toner is applied to the drum and then transferred

to paper. Ink-jet methods produce output by squirting ink

in horizontal rows across a roll of a paper wrapped on a

drum. The electrically charged ink stream is deflected by

an electric field to produce dot-matrix patterns.

An electrostatic device places a negative charge on the

paper, one complete row at a time along the length of the

paper. Then the paper is exposed to a toner. The toner is

positively charged and so is attracted to the negatively

charged areas, where it adheres to produce the specified

output.

We can get limited coloured ribbons. Non- impact devices

use various techniques to combine three colour pigments

to produce a range of colour patterns. Laser and

xerographic devices deposit the three pigments on separate

passes; ink-jet methods shoot the three colours

simultaneously on a single pass along each print line on

the paper.

Plotters
Drafting layouts and other drawings are typically

generated with ink-jet or pen plotters. A pen plotter has

one or more pens mounted on a carriage, or crossbar that

spans a sheet of paper.

Computer Graphics Design and System

54

Pens with varying colours and widths are used to produce

a variety of shadings and line styles. Wet-ink, ball point

and felt tip pens are all possible choices for use with a pen

plotter. Plotter paper can lie flat or be rolled onto a drum

or belt. Crossbars can be either moveable or stationary,

while the pen moves back and forth along the bar. Either

clamps, a vacuum, or an electrostatic charge hold the paper

in position.

Display Devices
In most applications of computer graphics the quality of

the displayed image is very important. A great deal of effort

has been directed towards the development of high quality

computer display devices. The CRT was the only available

device capable of converting the computer’s electrical

signals into visible images at high speeds. CRT technology

has produced a range of extremely effective computer

display devices. At the same time the CRT’s peculiar

characteristics have had a significant influence on the

development of interactive computer graphics.

The CRT
The basic arrangement of CRT. At the narrow end of a

sealed conical glass tube is an electron gun that emits a

high velocity, finely focused beam of electrons. The other

end, the face of the CRT, is more or less flat and is coated

on the inside with phosphor, which glows when the electron

beam strikes it. The energy of the beam can be controlled

so as to vary the intensity of light output and when necessary

to cut off the light altogether. A yoke or system of

Computer Graphics Design and System

55

electromagnetic coils is mounted on the outside of the tube

at the base of the neck; it deflects the electron beam to

different parts of the tube face when currents pass through

the coils. The light output of the CRT’s phosphor falls off

rapidly after the electron beam has passed by and a steady

picture is maintained by tracing it out rapidly and repeatedly;

generally this refresh process is performed at least 30 times

a second.

Electron Gun
Electron gun makes use of electrostatic fields to focus

and accelerate the electron beam. A field is generated when

two surfaces are raised to different potentials; electrons

within the field tend to travel towards the surface with the

more positive potential. The force attracting the electron is

directly proportional to the field potential.

The purpose of the electron gun in the CRT is to produce

an electron beam with the following properties:

• It must be accurately focused so that it produces

a sharp spot of light where it strikes the phosphor.

• It must have high velocity, since, the brightness

of the image depends on the velocity of the electron

beam.

• Means must be provided to control the flow of

electrons so that the intensity of the trace of the

beam can be controlled.

Electrons are generated by a cathode heated by an

electric filament. Surrounding the cathode is a cylindrical

metal control grid, with a hole at one end that allows

electrons to escape. The control grid is kept at a lower

Computer Graphics Design and System

56

potential than the cathode, creating an electrostatic field

that directs the electrons through a point source; this

simplifies the subsequent focusing process. By altering the

control grid potential, we can modify the rate of flow of

electrons, or beam current and can thus control the

brightness of the image; we can even cut off the flow of

electrons altogether. Focusing is achieved by a focusing

structure, used to focus finely and highly concentrated at

the precise moment at which it strikes the phosphor. An

accelerating structure is generally combined with the

focusing structure. It consists of two metal plates mounted

perpendicular to the beam axis with holes at their centres

through which the beam can pass. The two plates are

maintained at a sufficiently high relative potential to

accelerate the beam to the necessary velocity; accelerating

potentials of several thousand volts are not uncommon.

The resulting electron gun structure has the advantage

that it can be built as a single physical unit and mounted

inside the CRT envelope. Other types of gun exist, whose

focusing is performed by a coil mounted outside the tube;

this is called electromagnetic focusing.

The Deflection System
A set of coils or yoke, mounted at the neck of the tube,

forms part of the deflection system responsible for

addressing in the CRT. Two pairs of coils are used, one to

control horizontal deflection and the other for vertical. A

primary requirement of the deflection system is that it

deflects rapidly, since, speed of deflection determines how

much information can be displayed without flicker. To

Computer Graphics Design and System

57

achieve fast deflection, we must use large amplitude

currents in the yoke. An important part of the deflection

system is therefore the set of amplifiers that convert the

small voltages received from the display controller into

currents of the appropriate magnitude.

The voltages used for deflection are generated by the

display controller from digital values provided by the

computer. These values normally represent coordinates

that are converted into voltages by digital to analog

conversion. To draw a vector a pair of gradually changing

voltages must be generated for the horizontal and vertical

deflection coils.

Phosphors
The phosphors used in a graphic display are normally

chosen for their colour characteristics and persistence.

Ideally the persistence, measured as the time for the

brightness to drop to one tenth of its initial value, should

last about 100 milliseconds or less allowing refresh at 30Hz

rates without noticeable smearing as the image moves.

Colour should preferably be white, particularly for

applications where dark information appears on a light

background.

The phosphor should also possess a number of other

attributes: small grain size for added resolution, high

efficiency in terms of electric energy converted to light and

resistance to burning under prolonged excitation.

In attempts to improve performance in one or another

of these respects, many different phosphors have been

produced, using various compounds of calcium, cadmium

Computer Graphics Design and System

58

and zinc together with traces of rare earth elements. These

phosphors are identified by a numbering system like P1,

P4, P7 etc.

Raster-scan Displays
The most common type of graphics monitor employing a

CRT is the raster scan display. In a raster-scan system,

the electron beam is swept across the screen, one row at a

time from top to bottom. As the electron beam moves across

each row, the beam intensity is turned on and off to create

a pattern of illuminated spots. Picture definition is stored

in a memory area called the refresh buffer or frame buffer.

This memory area holds the set of intensity values for all

the screen points. Stored intensity values are then retrieved

from the refresh buffer and painted on the screen one row

at a time.

Each screen point is referred to as a pixel or pel (picture

element). The capability of a raster-scan system to store

intensity information for each screen point makes it well

suited for the realistic display of scenes. Home televisions

and printers are examples of other systems using raster-

scan methods.

Intensity range for pixel positions depends on the

capability of the raster system. In a simple black and white

system, each screen point is either on or off, so only one

bit per pixel is needed to control the intensity of screen

positions. Here 1 indicates that the electron beam is to be

turned on at that position, and value 0 indicates that the

electron beam intensity is to be off. Additional bits are

needed when colour and intensity variations can be

Computer Graphics Design and System

59

displayed. Up to 24 bits per pixel are included in high

quality systems, which can require several megabytes of

storage for the frame buffer, depending on the resolution

of 1024 by 1024 requires 3 megabytes of storage for the

frame buffer. On a black and white system with one bit

per pixel, the frame buffer is commonly called a bitmap.

For systems with multiple bits per pixel, the frame buffer

is often referred to as a pixmap.

Refreshing on raster-scan displays is carried out at the

rate of 60 to 80 frames per second. At the end of each scan

line, the electron beam returns to the left side of the screen

to begin displaying the next scan line. The return to the

left of the screen, after refreshing each scan line, is called

the horizontal retrace of the electron beam and at the end

of each frame the electron beam returns to the left corner

of the screen to begin the next frame. On some raster-

scan systems, each frame is displayed in two passes using

an interlaced refresh procedure. In the first pass, the beam

sweeps across every other scan line from top to bottom.

Then after the vertical retrace, the beam sweeps out the

remaining scan lines.

Random-scan Displays
When operated as a random-scan display unit, a CRT

has the electron beam directed only to the parts of the

screen where a picture is to be drawn. Random-scan

monitors draw a picture one line at a time and for this

reason are also referred to as vector displays. A pen plotter

operates in a similar way and is an example of a random-

scan, hard copy device. Refresh rate on a random-scan

Computer Graphics Design and System

60

system depends on the number of lines to be displayed.

Picture definition is now stored as a set of line drawing

commands in an area of memory referred to as the refresh

display file. Sometime the refresh display file is called the

display list or display Programme or refresh buffer. To

display a specified picture, the system cycles through the

set of commands in the display file, drawing each

component line in turn. After all line drawing commands

have been processed, the system cycles back to the first

line command in the list.

Colour CRT Monitors
A CRT monitor displays colour pictures by using a

combination of phosphors that emit different-coloured light.

By combining the emitted light from the different

phosphors, a range of colours can be generated. The two

basic techniques for producing colour displays with a CRT

are the beam-penetration method and the shadow-mask

method.

The beam-penetration method for displaying colour

pictures has been used with random-scan monitors. Two

layers of phosphor, usually red and green are coated onto

the inside of the CRT screen, and the displayed colour

depends on how far the electron beam penetrates into the

phosphor layers. A beam of slow electrons excites only the

outer red layer. A beam of very fast electrons penetrates

through the red layer and excites the inner green layer. At

intermediate beam speeds, combinations of red and green

light are emitted to show two additional colours, orange

and yellow. The speed of the electrons and hence the screen

Computer Graphics Design and System

61

colour at any point is controlled by the beam-acceleration

voltage. Four colours are possible, and the quality of

pictures is not as good as with other methods.

Shadow-mask methods are commonly used in raster-

scan systems because they produce a much wider range

of colours than the beam-penetration method. A shadow-

mask CRT has three phosphor colour dots at each pixel

position. One phosphor dot emits a red light, another emits

a green light, and the third emits a blue light. This type of

CRT has three electron guns, one for each colour dot and

a shadow-mask grid just behind the phosphor-coated

screen. We obtain colour variations in a shadow-mask CRT

by varying the intensity levels of the three electron beams.

By turning off the red and green guns, we get only the

colour coming from the blue phosphor. A white area is the

result of activating all three dots with equal intensity.

Direct-View StorageTubes
An alternative method for maintaining a screen image is

to store the picture information inside the CRT instead of

refreshing the screen. A direct-view storage tube (DVST)

stores the picture information as a charge distribution just

behind the phosphor-coated screen. Two electron guns are

used in a DVST.

One, the primary gun, is used to store the picture pattern;

the second, the flood gun, maintains the picture display.

A DVST monitor has both disadvantages and advantages

compared to the refresh CRT. Because no refreshing is

needed, very complex pictures can be displayed at very

high resolutions without flicker.

Computer Graphics Design and System

62

The disadvantages of DVST systems are that they

ordinarily do not display colour and that selected parts of

a picture cannot be erased. The entire screen must be

erased and the modified picture redrawn. The erasing and

redrawing process can take several seconds for a complex

picture.

Flat-Panel Displays
The term flat-panel display refers to a class of video

devices that have reduced volume, weight and power

requirements compared to a CRT. Flat panel displays into

two categories: emissive displays and noon-emissive

displays. The emissive displays are devices that convert

electrical energy into light. Plasma panels, thin-film

electroluminescent displays, and light emitting diodes are

examples of emissive displays. Non--emissive displays use

optical effects to convert sunlight or light from some other

source into graphics patterns. The most important example

of a non--emissive flat-panel display is a liquid crystal

device.

Plasma panels also called gas-discharge displays are

constructed by filling the region between two glass plates

with a mixture of gases that usually includes neon. A series

of vertical conducting ribbons is placed on one glass panel,

and a set of horizontal ribbons is built into the other glass

panel. Firing voltages applied to a pair of horizontal and

vertical conductors cause the gas at the intersection of the

two conductors to break down into glowing plasma of

electrons and ions. Picture definition is stored in a refresh

buffer, and the firing voltages are applied to refresh the

Computer Graphics Design and System

63

pixel positions 60 times per second. One disadvantage of

plasma panels has been that they were strictly

monochromatic devices, but systems have been developed

that are now capable of displaying colour and grayscale.

LCD Technology
Borrowing technology from laptop manufacturers, some

companies provide LCD (Liquid Crystal Display) displays.

LCDs have low glare flat screens and low power

requirements. The colour quality of an active matrix LCD

panel actually exceeds that of most CRT displays. At this

point, however, LCD screens usually are more limited in

resolution than typical CRTs and are much more expensive.

There are three basic LCD choices.

They are…….

• Passive matrix monochrome.

• Passive matrix colour.

• Active matrix colour.

In a LCD, a polarizing filter creates two separate light

waves. In a colour LCD, there is an additional filter that

has three cells per each pixels – one each for displaying

red, green and blue.

The light wave passes through a liquid crystal cell, with

each colour segment having its own cell. The liquid crystals

are rod-shaped molecules that flow like a liquid. They

enable light to pass straight through them. Although

monochrome LCDs do not have colour filters, they can

have multiple cells per pixel for controlling shades of grey.

In passive matrix LCD, each cell is controlled by electrical

charges transmitted by transistors according to row and

Computer Graphics Design and System

64

column positions on the screen’s edge. As the cell reacts

to the pulsing charge, it twists the light wave, with stronger

charges twisting the light wave more. In an active matrix

LCD, each cell has its own transistor to charge it and twist

the light wave. This provides brighter image than passive

matrix displays because, the cell can maintain a constant,

rather than momentary charge. However, active matrix

technology uses more energy than passive matrix. With a

dedicated transistor for every cell, active matrix displays

are more difficult and expensive to produce. In both active

and passive matrix LCDs, the second polarizing filter

controls how much light passes through each cell. Cells

twist the wavelength of light that passes through the filter

at each cell, the brighter the pixel. The best colour displays

are active matrix or thin film transistor panels, in which

each pixel is controlled by three transistors for red, green

and blue.

Raster-scan Systems
Interactive raster graphics systems typically employ

several processing units. In addition to the central

processing unit, a special-purpose processor, called the

video controller or display controller is used to control the

operation of the display device.

The video controller accesses the frame buffer to refresh

the screen. In addition to the video controller, more

sophisticated raster systems employ other processors as

co-processors and accelerators to implement various

graphics operations.

Computer Graphics Design and System

65

Video Controller
Frame buffer locations, and the corresponding screen

positions, are referenced in Cartesian co-ordinates. For

many graphics monitors, the co-ordinate origin is defined

at the lower left screen corner. The screen surface is then

represented as the first quadrant of a two-dimensional

system, with positive x values increasing to the right and

positive y values increasing from bottom to top. Scan lines

are then labelled from ymax at the top of the screen to 0 at

the bottom. Along each scan line, screen pixel positions

are labelled from 0 to xmax. Two registers are used to store

the co-ordinates of the screen pixels. Initially, the x register

is set to 0 and the y register is set to ymax. The value

stored in the frame buffer for this pixel position is then

retrieved and used to set the intensity of the CRT beam.

Then the x register is incremented by 1, and the process

repeated for the next pixel on the top scan line. This

procedure is repeated for each pixel along the scan line.

After the last pixel on the top scan line has been processed,

the x register is reset to 0 and the y register is decremented

by 1. Pixels along this scan line are then processed in turn,

and the procedure is repeated for each successive scan

line. After cycling through all pixels along the bottom scan

line (y = 0), the video controller resets the registers to the

first pixel position on the top scan line and the refresh

process starts over.

Raster-scan Display Processor
The organization of raster system containing a separate

display processor, sometimes referred to as a graphics

Computer Graphics Design and System

66

controller or display co-processor. The purpose of the

display processor is to free the CPU from the graphics

chores. In addition to the system memory, a separate

display processor memory area can also be provided. A

major task of the display processor is digitizing a picture

definition given in an application Programme into a set of

pixel-intensity values for storage in the frame buffer. This

digitization process is called scan conversion.

Characters can be defined with rectangular grids. The

array size for character grids can vary from about 5 by 7

to 9 by 12 or more for higher quality displays. Display

processors are typically designed to interface with

interactive input devices such as mouse. In an effort to

reduce memory requirements in raster systems, methods

have been devised for organizing the frame buffer as a

linked list and encoding the intensity information. One

way to do this is to store each scan line as a set of integer

pairs. One number of each pair indicates an intensity value,

and the second number specifies the number of adjacent

pixels on the scan line that are to have that intensity. This

technique called run-length encoding. A similar approach

can be taken when pixel intensities change linearly. Another

approach is to encode the raster as a set of rectangular

areas (cell encoding).

Random-scan Systems
The organization of a simple random-scan system. An

application Programme is input and stored in the system

memory along with a graphics package. Graphics

commands in the application Programme are translated

Computer Graphics Design and System

67

by the graphics package into a display file stored in the

system memory. This display file is then accessed by the

display processor to refresh the screen. The display

processor cycles through each command in the display

file Programme once during every refresh cycle. Sometimes

the display processor in a random-scan system is referred

to as a display processing or a graphics controller.

Lines are defined by the values for their co-ordinate

endpoints, and these input co-ordinate values are converted

to x and y deflection voltages. A scene is then drawn one

line at a time by positioning the beam to fill in the line

between specified endpoints.

Computer Graphics Design and System

68

3

Computer Graphics in Java

Although computer graphics is a vast field that

encompasses almost any graphical aspect, we are mainly

interested in the generation of images of 3-dimensional

scenes.

Computer imagery has applications for film special

effects, simulation and training, games, medical imagery,

flying logos, etc. Computer graphics relies on an internal

model of the scene, that is, a mathematical representation

suitable for graphical computations. The model describes

the 3D shapes, layout and materials of the scene.

This 3D representation then has to be projected to

compute a 2D image from a given viewpoint, this is the

rendering step.

Rendering involves projecting the objects (perspective),

handling visibility (which parts of objects are hidden) and

computing their appearance and lighting interactions. Finally,

Computer Graphics Design and System

69

for animated sequence, the motion of objects has to be

specified. We will not discuss animation in this document.

BACKGROUND OF COMPUTER GRAPHICS

Today there are very few aspects of our lives not affected

by computers. Practically every cash or monetary

transaction that takes place daily involves a computer. In

many cases, the same is true of computer graphics.

Whether you see them on television, in newspapers, in

weather reports or while at the doctor’s surgery, computer

images are all around you.

“A picture is worth a thousand words” is a well-known

saying, and highlights the advantages and benefits of the

visual presentation of our data. We are able to obtain a

comprehensive overall view of our data and also study

features and areas of particular interest. A well-chosen

graph is able to transform a complex table of numbers

into meaningful results. Such graphs are used to illustrate

papers, reports, and theses, as well as providing the basis

for presentation material in the form of slides and overhead

transparencies. A range of tools and facilities are available

to enable users to visualise their data, and this document

provides a brief summary and overview. Computer

graphics are used in many disciplines and subjects but

for the purpose of this document, we will split the topic of

computer graphics into the following fields:

CHARTING
One of the prime uses for graphical software at the

University is to produce graphs and charts. Everyone has

Computer Graphics Design and System

70

data of one kind or another, whether on paper, in the

computer, or just in the mind. We often need to know the

significance and properties of the data, or to be able to

compare different parts of it against other data sets.

One of the simplest aspects of data display is the

production of charts. This is where you would want to put

your data into a graphical form to show relationships and

comparisons between sets of values.

There may be a number of reasons why you would want

to put your data into a chart:

• To illustrate differences between different sets of

data,

• To show trends between two variables,

• To show patterns of behaviour in one variable.

There are basically two broad areas of graphs:

• Presentation charts and graphs of the kind used

to illustrate a few principal points. We see these

on news and current affairs programmes on

television. A bar chart or a pie chart is used to

indicate results of data obtained so far and the

general trends. They are often liberally decorated

with bright colours to increase their visual appeal

and attractiveness to the viewers and to hold their

attention. They are used for visual impact and

getting a simple point over clearly and effectively.

• Scientific charts and graphs are more concerned

with ensuring that the detail in the data is

represented accurately and faithfully. We may have

some results obtained from experimental

Computer Graphics Design and System

71

measurements and wish to display them. We may

want to compare the results from the data

measurements with the results we would expect

according to a particular theoretical model. We may

want to draw a curve through the data points (i. e.

interpolate the data) and display this along with

the original points.

The aims of the two are different, and so the facilities

you will want from your charting package will also be

different. Presentation charting has more to do with

impressive presentation graphics where the aim is to put

a salient point across to an audience. As a result the

priority with this sort of charting is not always accuracy

of representation. You want charts with strong colours,

an impressive look and special effects. The effect of a

presentation can be enhanced by using 3D graphs, adding

pictures to the graph, or using pictograms. These sorts of

charts are rarely produced in isolation but as part of a

general presentation.

Therefore, some presentation packages also have their

own charting module for this purpose. Word and

PowerPoint use a module called Microsoft Graph and

Excel’s charting module has some very powerful

presentation graphics features. Origin and Gsharp, both

dedicated charting packages, also provide professional

presentation charting facilities on the PC systems. Gsharp

is also available on the UNIX systems.

In scientific charting you want to display data as

accurately as possible in order to analyse it graphically or

Computer Graphics Design and System

72

demonstrate clearly your comparisons and results. As this

sort of charting is done mainly for analysis, it is rarely an

isolated activity but is often done alongside detailed

numerical analysis of your data. Two of the most powerful

charting packages available are Origin on the PC network

and Gsharp on the PC and UNIX systems. Also, many

numerical analysis packages have their own charting

modules integrated with the rest of the package.

It is clear that your choice of charting programme will

depend very much on what purpose you want the chart to

fulfil, and also what other programmes you are already

using. On the whole, if you are already using a programme

that has its own charting module, use that. The table below

gives some rough guidelines on your choice of charting

PC package, with the packages increasing in facilities and

complexity going down the table.
Requirement Choice

Simple bar, column, line or Microsoft Graph in Word,

pie charts to integrate in a Charting Module in Excel

word processor

Charts for use in Microsoft Graph in Word or

a presentation PowerPoint, Charting Module in Excel, Origin

Raw data requiring good quality Origin, Gsharp

scientific charting

Data requiring simple Charting Module in Excel,

mathematical or statistical Origin, Gsharp

analysis

Complicated statistical analysis Graphics module in SPSS

and good quality scientific charts

PRESENTATIONS
Presentation software is used to create material used

in presentations, such as OHP transparencies and 35mm

Computer Graphics Design and System

73

slides. The term is also commonly used when a

presentation is given using the output from a computer

screen. The use of presentation software is becoming of

increasing importance as higher standards become

expected in courses and presentations. This will often

include making use of colour, graphics and the University

logo.

Course materials produced using presentation

packages can be delivered in a number of ways. The

simplest way is to print the material on a laser printer

and then use a photocopier to produce overhead projector

(OHP) acetates (first making sure that the photocopier can

accept acetates). You can also use the output services

produced by Information Systems Services and University

Media Services to produce colour output or output on

35mm slides.

Alternatively you can give a desktop presentation using

OHP projection tablets or projection systems to deliver a

presentation using the output from a computer system

directly. The simplest presentation software is a word

processor. Word processing packages such as Word, which

can produce text in a variety of sizes, can be used to create

OHP transparencies.

Specialist presentation packages, such as PowerPoint,

provide a wider range of facilities than word processors

and, in general, are easier to use for the production of

presentation materials. PowerPoint is a presentation

software programme that helps you quickly and easily

create professional quality presentations. Presentations

can be transferred onto paper, overheads or 35mm slides,

Computer Graphics Design and System

74

or they can be shown on a video screen or computer

monitor. PowerPoint’s printing options include formats

ranging from audience handouts to speaker’s notes.

DRAWING, PAINTING AND DESIGN
Drawing and painting software is available on most

platforms at the University. However, there are many

differences between software intended primarily for

drawing and that intended for painting. Drawing software

will provide the user with a set of ‘entities’ used to construct

the drawing (an entity is a drawing element such as a line,

circle, or text string).

Drawing entities can range from simple lines, points

and curves in 2D to their equivalents in 3D and may

include 3D surfaces.

Advanced versions of drawing packages used for

design are referred to as Computer Aided Design (CAD)

systems. Painting software tends to work on a

conceptually lower layer. Whilst it may provide some

entities for constructing geometric shapes (these tend to

be 2D geometric shapes), a painting package will also

provide control over individual pixels in the image, i. e. it

provides direct control over the bitmap. It is worth

remembering that opening any image in a painting

package causes it to become pixelated.

The following packages are available on the ISS NT

Cluster Desktop:

• Paint Very basic painting programme. Can create

simple pictures and edit bitmaps. Only possible to

read in and save files in a BMP format.

Computer Graphics Design and System

75

• Picture Publisher Painting package used to edit and

create pictures. Can read in and save files in a

number of different formats.

• Paint Shop Pro Recommended as the main painting

package on the desktop. Used to edit and create

pictures. Can read in and save files in a number

of different formats.

• CorelDraw Recommended as the main drawing

package on the desktop. Useful for editing vector

graphics. Can read in and save files in both vector

and bitmap formats.

• Micrografx Designer Drawing package used for

technical drawing.

The following drawing and painting software is available

on the Suns:

• Island Paint Painting programme that provides tools

for creating and editing images formed by

monochrome and colour bitmaps. Several painting

tools can be used to create geometric and freehand

shapes. Scanned images and clip art can also be

imported.

• Island Draw 2D drawing package.

• Island Paint General purpose CAD system in use

in engineering, and allows 3D solid modelling as

well as 2D/3D draughting. An extension, AEC, for

architectural and construction applications, is also

available.

Computer Graphics Design and System

76

COMPUTER AIDED DESIGN AND DRAWING
CAD systems provide drawing entities with powerful

construction, editing and database techniques. CAD data

can also be output and read in by other applications

software for analysing the CAD model. For example, a CAD

system could be used to generate a 3D model which could

then be read into a finite element analysis package.

A common requirement in engineering design is to

produce a drawing which is a schematic layout of

components, and which accurately reflects the relative

sizes and relationships of these parts. Engineering drawing

and draughting is a specialist area with its own set of

procedures and practices which have become de facto

standards in the engineering industry. Manual methods

are now being replaced by computer-assisted methods,

and the software that is used to enable these drawings to

be produced embodies the functions and capabilities that

are required.

CAD applications are very powerful tools that can be

used by a designer. The speed and ease with which a

drawing can be prepared and modified using a computer

have a tremendous advantage over hand-based drawing

techniques. CAD-based drawings can be created very

easily using the drawing primitives made available by the

software (2D/3D lines, arcs, curves, 3D surfaces, text

etc.). The drawing can be shared by a number of

designers over a computer network who could all be

specialists in particular design areas and located at

different sites. CAD also allows drawings to be rapidly

edited and modified, any number of times.

Computer Graphics Design and System

77

Drawings can also be linked into databases that could

hold material specifications, material costs etc. , thereby

providing a comprehensive surveillance from design

through to manufacturing. In engineering applications,

CAD system specifications can be passed through to

numerically controlled (NC) machines to manufacture parts

directly.

For creating three-dimensional objects, most CAD

systems will provide 3D primitives (such as boundary

representations of spheres, cubes, surfaces of revolution

and surface patches). They may also provide a solid

modelling facility through Constructive Solid Geometry

(CSG). Using CSG, basic 3D solids (usually cubes, spheres,

wedges, cones, cylinders and tori) more complex composite

solids can be created using three basic operations: joining

(union) solids, removing (subtraction) solids and finding

the common volume (intersection) of solids. With solid

modelling, mass properties of solids (e. g. moments of

inertia, principal moments etc.) can be quickly calculated.

There is virtually no limit to the kind of drawings and

models that can be prepared using a CAD system: if it

can be created by hand, a CAD system will allow it to be

drawn and modelled. Some of the applications where CAD

is used are: architectural and interior design, almost all

engineering disciplines (e. g. electronic, chemical, civil,

mechanical, automotive and aerospace), presentation

drawings, topographic maps, musical scores, technical

illustration, company logos and line drawing for fine art.

Most CAD models can be enhanced for further

understanding and presentation by the use of advanced

Computer Graphics Design and System

78

rendering animation techniques (by adding material

specifications, light sources and camera motion paths to

the model) to produce realistic images and interactive

motion through the model. AutoCad is the primary general

purpose CAD system in use in engineering, and allows

3D solid modelling as well as 2D/3D draughting. An

extension, AEC, for architectural and construction

applications, is also available.

SCIENTIFIC VISUALISATION
Scientific Visualisation is concerned with exploring data

and information graphically - as a means of gaining insight

into and understanding the data. By displaying multi-

dimensional data in an easily-understandable form on a

2D screen, it enables insights into 3D and higher

dimensional data and data sets that were not formerly

possible. The difference between scientific visualisation and

presentation graphics is that the latter is primarily

concerned with the communication of information and

results that are already understood. In scientific

visualisation we are seeking to understand the data.

The recent upsurge of interest in scientific visualisation

has been brought about principally by the provision of

powerful and high-level tools coupled with the availability

of powerful workstations, excellent colour graphics, and

access to supercomputers if required. This symbiosis

provides a powerful and flexible environment for visualising

all kinds and quantities of data.

This was once regarded as the exclusive domain of

expert system and application programmers who could

Computer Graphics Design and System

79

write the large programmes required, incorporate the

algorithms for the graphics, get rid of the bugs in the

resulting programme (a non-trivial and time-consuming

task), and then process the data.

Most of this now comes already available ‘off the shelf’

- all the users have to do is activate it and plug in their

data sets.

Visualisation tools range from lower-level presentation

packages, through turnkey graphics packages and

libraries, to higher-level application builders. The former

are used for simple and modest requirements on small to

medium sized data sets and are often used on PCs. The

second take larger and more complex data sets and have

a variety of facilities for analysis and presentation of the

data in two and three dimensions. The latter enable users

to specify their requirements in terms of their application

and ‘build’ a customised system out of pre-defined

components supplied by the software. This can usually

be done visually on the screen and then the data can be

read in, processed and viewed. You can interact with it by

changing parameters or altering values.

Presentation Packages
Many spreadsheet packages for the PC have the

facilities for doing elementary 2D graphics, i. e. to take a

table of X, Y data and show it in visual form on X, Y axes.

This enables us to see the overall form of the data much

more easily than looking at the table of numbers. It also

enables us to identify any kinks or unusual features and

Computer Graphics Design and System

80

even missing or incorrect data. These facilities are also

available in PC graphics packages such as Origin - this is

menu-driven and allows users to read in data and select

the options required without any programming knowledge.

Turnkey Graphics Packages and Libraries
Turnkey graphics packages include the Uniras

interactive modules Unigraph, Unimap and Gsharp.

Unigraph is used for scientific graphing and charting in

two and three dimensions. Unimap is used for mapping,

contouring and surface drawing. Gsharp is used for both.

All these programmes contain advanced facilities for

processing data and for the selection of curve and surface

requirements. No programming knowledge or experience

is required; the user interacts with the modules via menus

on the screen.

Application Builders
These are large systems which contain a wide variety

of pre-defined functions and facilities. Building an

application consists of visually selecting the iconised

functions on the screen, connecting them together by

‘pipes’ and then activating the network to read in the data

and feed it through the interconnected modules. Many

state-of-the-art functions for graphics, imaging, rendering,

interfacing and displaying are contained in the system.

Users can extend the functions available by writing their

own modules and adding them to the system.

Examples of visualisation application builders are

AVS/Express and IRIS Explorer. AVS/Express is an

Computer Graphics Design and System

81

advanced interactive visualisation environment for

scientists and engineers. AVS/Express supports

geometric, image and volume datasets.

Modules can be dynamically added, connected and

deleted. Modules have control panels for interactive

control of input parameters in the form of on-screen

sliders, file browsers, dials and buttons. AVS/Express

has a wide range of data input, filter, mapper and

renderer modules. Examples of mappers include

isosurfaces of a 3D field, 2D slices of a 3D data volume

and 3D meshes from 2D elevation datasets.

Multiple visualisation techniques can be selected to

suit the problem being studied. User-written programmes

or subroutines in FORTRAN or C can be easily converted

into AVS/Express modules which can then be integrated

into networks using the network editor.

IRIS Explorer provides similar visualisation and

analysis functionality. With IRIS Explorer, users view data

and create applications by visually connecting software

modules into flow chart configurations called module

maps. Modules, the building blocks of IRIS Explorer,

perform specific programme functions such as data

reading, data analysis, image processing, geometric and

volume rendering and many other tasks.

DESKTOP MAPPING AND GIS
Graphs which are maps, or have a cartographic

component, are a special case of a 2D graph which requires

some special techniques. Many people who are not

Computer Graphics Design and System

82

geographers require this form of graph. Mapping and GIS

are two areas that benefit greatly from computer processing

of images. It has been estimated that 85% of all the

information used by private and public sector

organisations contains some sort of geographic element

such as street addresses, cities, states, postcodes or even

telephone numbers with area codes. Any of these

geographic components can be used to help visualise and

summarise the data on a map display, enabling you to

see patterns and relationships in the data quickly and

easily.

MapInfo Professional is a comprehensive desktop

mapping tool, available on the PC network, that enables

you to create maps, create thematic maps, integrate

tabular data onto maps, as well as perform complex

geographic analysis such as redistricting and buffering,

linking to your remote data, dragging and dropping map

objects into your applications, and much more. A GIS

(Geographical Information System) is a system for sorting,

manipulating, analysing and displaying information with

a significant spatial (map-related) content. ArcView and

ArcInfo are the two packages available in this category.

ArcView is a leading software package for GIS and

mapping. It gives you the power to visualise, explore, query

and analyse data geographically. ArcView also has three

add-on packages - Spatial, Network and 3D Analyst - for

more complicated queries. ArcView is available on the NT

Cluster Desktop and on the Sun workstations.

ArcInfo is an advanced GIS that gives users of

geographic data one of the best geoprocessing systems

Computer Graphics Design and System

83

available at present. It integrates the modern principles

of software engineering, database management and

cartographic theory. Users are advised that this is a very

comprehensive GIS package and requires familiarity with

and understanding of GIS concepts. ArcInfo is available

on the Sun workstations.

SUBROUTINE LIBRARIES FOR GRAPHICS
Uniras and OpenGL are subroutine libraries which are

available at Leeds. The former is available on both the Sun

and the Silicon Graphics workstations whilst the latter is

only available on the Silicon Graphics workstations. Both

libraries have at least FORTRAN and C bindings. This

means that users have to embed their graphics

requirements into their own application programmes and

write their own programme code to do this.

In contrast, the interactive modules of Uniras (e. g.

Gsharp or Unigraph) work entirely off data sets - you do

not need to write a programme. If you have a pre-existing

applications programme for which you require graphical

output, it may be easier just to produce a data file from

the execution of this programme and then read this data

file into a software package.

It only becomes necessary to write your own programme

(or extend your existing programme to include calls to

graphics library routines) if you have to embed your

graphics requirements to make them an integral part of

your application environment, or (in the case of Uniras)

you need the more advanced library functions which are

not available in the interactive modules.

Computer Graphics Design and System

84

Multimedia
There is joint provision for networked colour printing,

graphics, slides and video by Information Systems Services

and the Print & Copy Bureau.

On-line Services: Printers, Slide Makers and
Scanners

A4 monochrome (black and white) and colour postscript

printers are available on the network. Users can send

electronic picture and text information for direct output

on to paper or OHP foil. Additional printing facilities are

provided by Media Services where users can also discuss

converting draft electronic information into pre-designed

images with design staff.

Computer-Based Video Production
Data can be displayed or animated in real-time on a

high-powered workstation. However, the audience is clearly

limited to those who can sit at the workstation. For

research seminars, conference presentations, and grant

proposals it is often more useful to be able to record the

real-time image sequences on video tape and present them

to the audience via a video player or video projector. To

ensure such presentations are effective, they have to be

at a professional standard of presentation. All of us have

become unconsciously accustomed to a high quality of

presentation from watching programmes on television.

Anything less than this immediately looks inferior and can

often reflect on the content of what is being presented.

Computer Graphics Design and System

85

BUSINESS ANALOGY-SERVICES PROVIDED

BY AN ORGANISATION

You could think of classes as corresponding to

departments in an organisation, and methods as being

the services they provide. Let’s take an example of calling

the telephone information service to get someone’s phone

number. When you make the call, you pass information,

the name of the person whose number you want, to the

method (information service). This called “method” then

does something, and returns a value to you (the desired

phone number). Just as you don’t have to know how the

information service performs its job, you typically don’t

need to know exactly how a method does its work, unless

of course, you are writing it.

Hierarchical Organisation: Computer programmes are

structured in many ways like an organisation—higher

levels rely on others to do much of the work. They “call”

on lower levels to do the work, passing them all necessary

“arguments”. In a similar way, the top level of a computer

programme, main, often consists largely of method calls,

and those methods may in turn call on yet other methods.

TERMS: CALL AND RETURN
Call. When a method call is encountered in a

programme, the programme remembers where it was and

execution goes to the method (calls the method). After a

small amount of initialisation, the statements in the

method are executed starting at the beginning.

Computer Graphics Design and System

86

Return. When the end of the method is reached or a

return statement is executed, the method returns to the

where it was called from, and execution continues in the

calling method from that point.

A method may return a value (eg, parseDouble) or not

(showMessageDialog). The call-return terminology is almost

universal.

STATIC (CLASS) METHODS
Static. This starts with static (also called class) methods

because all applications start with the static method main,

and many of the early library methods that you use are

static methods. Static methods are different than instance

methods because they don’t have an extra object passed

to them.

Instance methods are associated with an object (an

“instance” of a class).

Identifying Methods
Parentheses follow name. You can identify a method

name because it is always followed by left and right

parentheses, which may enclose arguments (parameters).

If you see a left parenthesis with a name preceding it, it

will be a method call or definition, or a constructor

(constructors are very similar to methods). In the following

example each method name is highlighted.

When calling methods outside of the current class, eg,

in the Java library, static methods are preceded by the

class name (followed by a dot), and instance methods are

Computer Graphics Design and System

87

preceded by an object. When a static method is defined,

the keyword “static” will preceded it. The example below

has only static methods.
// File : methods/KmToMiles. java
1 // Purpose: Convert kilometers to miles. Use JOptionPane
for input/ output.
2 // Author: Fred Swartz
// Date : 22 Apr 2006
3 import javax. swing. *;
4 public class KmToMiles {
5 //
==
constants
6 private static final double MILES_PER_KILOMETER = 0.
621;
7 //

===
8 main
9 public static void main(String[] args) { //Note 1
10 //. . . Local variables
11 String kmStr; // String km before conversion to double.
12 double km; // Number of kilometers.
13 double mi; // Number of miles.
14 //. . . Input
15 kmStr = JOptionPane. showInputDialog(null, “Enter
kilometers. ”);
16 km = Double. parseDouble(kmStr);
17 //. . . Computation
18 mi = km * MILES_PER_KILOMETER;
19 //. . . Output
20 JOptionPane. showMessageDialog(null, km + “ kilometers
is “
21 + mi + “ miles. ”);
22 }
23 }
24
25
26
27
28
29
30

Computer Graphics Design and System

88

Notes:

• This defines a method called “main”. Everything

between the “{“ on the end of this line to the

matching “}” second from the end is the “body” of

the method.

The above code defines the static main method, which

someone (eg, the operating system) will call with

KmToMiles. main(. . .). To do its work, main calls on other

methods: showInputDialog, which is defined in the

JOptionPane class, parseDouble, which is defined in the

Double class, and showMessageDialog, which is also in

the JOptionPane class. Whenever you call a static method

in a different class, precede it with the name of the class

containing its definition, followed by a dot. If you don’t

specify the class name, it assumes the method is defined

in the current class.

Identifying Instance Methods (SB)
Object precedes. Instance method calls are identified

in the following programme. Note that they are all preceded

by an object reference. This object is used by the methods

to do their work. In this case, the objects are strings.

In addition to supplying the object’s data to the method,

the class of the object, eg String, is where the method is

defined.
// File : dialog/capitalise/Capitalise2. java
1 // Purpose: Capitalise first letter of each name. Declare
with first use.
2 // Author: Fred Swartz-placed in public domain.
3 // Date : 30 Mar 2006
4 import javax. swing. *;

Computer Graphics Design and System

89

5 public class Capitalise2 {
6 public static void main(String[] args) {
7 //. . Input a word
8 String inputWord = JOptionPane. showInputDialog(null,
“Enter a word”);
9 //. . Process-Separate word into parts, change case,
put together.
10 String firstLetter = inputWord. substring(0, 1); //
Get first letter
11 String remainder = inputWord. substring(1); // Get
remainder of word.
12 String capitalised = firstLetter. toUpperCase() +
remainder. toLowerCase();
13 //. . Output the result.
14 JOptionPane. showMessageDialog(null, capitalised);
15 }
16 }
17
18
19
20
21

What’s Before the Dot Tells Whether it’s a Class
or Instance Method

What’s before the dot? If it’s a class name, then it’s a

static (class) method; if it’s an object, it’s an instance

method. Nothing at front when calling methods in same

class.

When calling your own methods, you don’t have to

write anything before the method name. The compiler

assumes the same class or object.

ACTUAL ARGUMENTS (PARAMETERS)
The values that are passed to a method are called actual

arguments in the Java specification. However, it is very

common for them to be called just arguments, actual

parameters, or just plain parameters. These terms are so

Computer Graphics Design and System

90

used interchangeably so often that even the Java

specification isn’t entirely consistent. For a value which is

passed in a call I’ll try to stick to actual argument or just

argument, which are generally regarded as the “best”

terms.

Identifying method arguments
When you call a method, you can pass information for

it to use.

These actual arguments are inside parentheses

following the method name. Use commas to separate

arguments if there is more than one.

The previous programme is shown below, but this time

the arguments in the calls are highlighted.
// File : methods/KmToMilesArgs. java
1 // Purpose: Convert kilometers to miles. Use JOptionPane
for input/ output.
2 // Author: Fred Swartz
// Date : 22 Apr 2006
3 import javax. swing. *;
4 public class KmToMilesArgs {
5 //
==
constants
6 private static final double MILES_PER_KILOMETER = 0.

621;
7 //

===
8 main public static void main(String[] args) {
9 //. . . Local variables
10 String kmStr; // String km before conversion to double.
11 double km; // Number of kilometers.
12 double mi; // Number of miles.
13 //. . . Input
14 kmStr = JOptionPane. showInputDialog(null, “Enter
kilometers. ”);
15 km = Double. parseDouble(kmStr);
16 //. . . Computation

Computer Graphics Design and System

91

17 mi = km * MILES_PER_KILOMETER;
//. . . Output
18 JOptionPane. showMessageDialog(null, km + “ kilometers
is “
+ mi + “ miles. ”);
19 }
20 }
21
22
23
24
25
26
27
28
29
30

Argument Evaluation
Before a method is called, the arguments are evaluated

left-to-right. In the example above most arguments are

simple values, except the second argument in the call to

showMessageDialog. Before the call can be made, this

argument expression must be evaluated by performing the

conversions to string and the concatenations.

VOID AND VALUE-RETURNING METHODS
A method may return a value. In the example above,

showInputDialog returns a String and parseDouble returns

a double value.

These method calls can be used anywhere in an

expression where a String or double value is required. Here

they simply provide the value for the right side of an

assignment void.

If a method has a “side effect”, but doesn’t produce a

value, it is called a void method. The showMessageDialog

Computer Graphics Design and System

92

method shows something to the user, but doesn’t return

a value, and is a void method. When a method is defined,

you need to specify the keyword void if it doesn’t return a

value. You can see this on line 13 where the main method

definition starts.

DEFINING A STATIC METHOD

Method Header Syntax
A method header is the part of the method definition

that occurs at the beginning. The following definition leaves

out a few obscure features, but gives the syntax of ordinary

method headers.

Syntax Notation
There are several ways to describe syntax that have

been very popular. It’s essential for compiler writers to have

a very accurate description of the syntax of a programming

language, and there are a number of tools for reading a

syntax description and turning it into executable parsers.

Following are three ways to show the syntax of a method

header.

EBNF
Here are the syntax rules for EBNF.

Non-terminals Written as italicised text.
Terminals Written in quotes, as in “private”.
| The left and right sides are alternatives.
() Parentheses are used for grouping.
[] Brackets enclose optional material.
{ } Braces enclose material to be repeated 0 or more
times.
= Defines symbol on left by notation on the right.

Computer Graphics Design and System

93

. Ends each definition.
spaces Used only for readability.

Definition of a Method Header
methodHeader
=
[visibility] [“static”] returnType methodName “(“
[parameterList] “)”.
visibility
=
“public” | “private” | “protected”.
ParameterList
=
parameterDeclaration {“, ” parameterList}.
parameterDeclaration
=
type ParameterName.
returnType
=
“void” | type

RAILROAD DIAGRAMS

An attractive, readable, syntax notation can be found

in railroad/railway diagrams. Just follow the lines. The

flow is left to right or top-to-bottom. Traditionally they go

primarily left-to-right because that’s how programming

statements are written, but this results in very wide

diagrams, requiring lines to snake to the beginning of the

next line or some connection notation.

Advantage: You’ll note in the crude ASCII railroad

diagrams below that there are not as many non-terminal

symbols as in EBNF.

Problems: There are two big problems with railroad

digrams:

• They are hard to produce. The only software I’ve

seen to produce general images (Bungisoft Diagram

Computer Graphics Design and System

94

Visualiser) seems to no longer be available. Perhaps

this isn’t surprising given the poor quality and high

price. I mentioned this market opportunity that

there might be 17 people who would be interested

in this sort of tool. Well, it would make a good

programming project for someone.

• An audience that you might think this would appeal

to are compiler writers, but that isn’t so. The

compiler writers want a text file that can be read by

parser generators, which means something closer

to EBNF.

Horizontal ASCII Railroad Diagram
+->- “public” ----—+ +->- “static” ---->-+
+—<— — — — “, ” — — —--- —<—+ |

| | |
| |

->—+->———————+—>—+->———————+—>- type ->- methodName ->-
“(“ ->—+-> type ---------->- parameterName —-----+->- “)”
| |

+->- “private” —+
| |
+->- protected —+

Vertical ASCII Railroad Diagram
|
|
+——>—+—————+—————+
| | | |
V “public” “private” “protected”

| | | |
+——<—+—————+—————+

|
+——>—+

| |
| “static”

| |

Computer Graphics Design and System

95

+——<—+
|

type
|

methodName
|
“(“
|
+—<—+
| |
type |
| “, ”
parameterName |
| |
+—>—+
|
“)

How to Define your Own Method
The previous programme is rewritten below to define a

method to convert from kilometers to miles. The method

call, and the first line (header) of the method definition

are highlighted.
// File : methods/KmToMilesMethod. java
1 // Purpose: Convert kilometers to miles using a method.
JOptionPane IO.
2 // Highlight call and method definition header.
// Author: Fred Swartz
3 // Date : 22 Apr 2006
4 import javax. swing. *;
5 public class KmToMilesMethod {
/ /
==
6 constants
7 private static final double MILES_PER_KILOMETER = 0.
621;
8 //
===
main
9 public static void main(String[] args) {
10 //. . . Local variables

Computer Graphics Design and System

96

11 String kmStr; // String km before conversion to double.
12 double km; // Number of kilometers.
13 double mi; // Number of miles.
14 //. . . Input
15 kmStr = JOptionPane. showInputDialog(null, “Enter
kilometers. ”);
16 km = Double. parseDouble(kmStr);
17 //. . . Computation
18 mi = convertKmToMi(km);
19 //Note 1
20 //. . . Output
21 JOptionPane. showMessageDialog(null, km + “ kilometers
is “
22 + mi + “ miles. ”);
23 //
===
24 convertKmToMi
25 private static double convertKmToMi(double kilometers)
{
26 //Note 2
27 double miles = kilometers * MILES_PER_KILOMETER;
28 return miles;
29 }
30 }
31
32
33
34
35
36

Notes:

• Call our own method below to do the conversion.

We could have qualified the name with our class

name, Km To Miles Method. convert Km To Mi (km),

but this is unnecessary when calling a static

method in the same class.

• Altho this method is trivial, just a multiplication,

it is good practice to separate the “model”, or

“logic”, from the user interface. As programmes

become larger, this separation becomes essential.

Computer Graphics Design and System

97

ANATOMY OF THE CONVERTKMTOMI METHOD
HEADER

We’ll take a look at each of the parts of the method

header in order.

Visibility-public, private, or package
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

For greatest reliability and flexibility in your

programmes, you should always give methods the lowest

visibility to others that you can. When you define a method,

you should think about who can use it.

Generally you want to choose the lowest level of visibility

that makes your programme usable, either private or the

default (package). Here are the four options, from least

visible to most visible.

• Private: If you don’t want any other class to use it,

declare it private. This is a good choice.

• None (package): If you don’t specify anything, the

default visibility allows only classes in the same

package (directory) to see it. This is a common

choice. It’s common to use public visibility when

package visibility is more appropriate—I do it

myself. The lack of a keyword for package visibility

makes it a little harder to read.

• Protected: Don’t use this protected, except in certain

cases to let a child class see it. Even then, its use

is controversial.

• Public: Let’s anyone see it. Choose this if you’ve

defined a method that will be used by others outside

Computer Graphics Design and System

98

of your project. Note that main must be declared

public so the run-time system can call it.

Class (static) or instance method
private static double convertKmToMi(double kilometers) {

double miles = kilometers * MILES_PER_KILOMETER;
return miles;

}

A method should be declared static if it doesn’t user

instance variables or methods. A static method must use

only parameters, local variables, and static constants, and

other static methods in the same class. If the static

keyword is omitted, the method will be an instance method.

This example uses static, but soon you will learn about

instance methods too.

Return Type:
private static double convertKmToMi(double kilometers) {

double miles = kilometers * MILES_PER_KILOMETER;
return miles;

}

Method Name:
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

Method names should begin with a lowercase letter.

Method names are typically verbs, whereas variable names

are usually nouns.

Parameter(s):
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;

return miles;
}

Parameters are enclosed in parentheses following the

method name. They are also called formal parameters).

There is only one parameter in this example-kilometers,

Computer Graphics Design and System

99

but if there are more, they must be separated by commas.

The type of each parameter is specified before the name

(eg, double). Parameters are local variables that only exist

inside the method. They are assigned initial values from

the arguments when the method is called.

Method body:
private static double convertKmToMi(double kilometers) {

double miles = kilometers * MILES_PER_KILOMETER;
return miles;

}

The body of a method is the statements which are

executed when the method is called are enclosed in braces

following the method header. Additional local variables may

be defined (eg, miles).

Return Statement:
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

A method returns to the caller after it has done what it

wants. If the method returns a value (not a void method), it

must contain a return statement that specifies a value to return.

When execution reaches the return statement, control transfers

back to the calling method, passing a return value to it.

Returning an Expression:

The above example returns the value in the local

variable miles. The return statement can be followed by

any expression of the appropriate type, not just a single

value. For example, this method body could have been

written as a single return statement.
private static double convertKmToMi(double kilometers) {
return kilometers * MILES_PER_KILOMETER;
}

Computer Graphics Design and System

100

Order of Method Definitions Doesn’t Matter

If you define multiple methods in a class, you don’t

have to worry about the order of the definitions, unlike

some other languages.

LOCAL VARIABLES
Now that we’ve written two methods, main and

convertKmToMi, you should know a little more about the

variables in them. Variables that are declared in a method

are called local variables. They are called local because

they can only be referenced and used locally in the method

in which they are declared. In the method below miles is

a local variable.
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

Visibility: Only in Defining Method
No code outside a method can see the local variables

inside another method. There is no need, or even

possibility, of declaring a local variable with a visibility

modifier—local variables are automatically known only in

the method itself.

Lifetime: From Method Call to Method Return
Local variables are created on the call stack when the

method is entered, and destroyed when the method is

exited. You can’t save values in local variables between

calls. For that you have to use instance variables, which

you’ll learn about a little later.

Computer Graphics Design and System

101

Initial Value: None

Local variables don’t have initial values by default—

you can’t try to use their value until you assign a value.

It’s therefore common to assignment a value to them when

they’re declared.

Compiler Error

If you try to use a local variable before it’s been assigned

a value, the compiler will notice it and give an error

message. But the compiler doesn’t really know the exact

order of execution in a programme, so it makes some

conservative assumptions.

These assumptions can sometimes be too conservative,

and there are cases where you must initialise a local

variable even though you know it will have a value before

it’s referenced.
// BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD
BAD
private static double convertKmToMi(double kilometers) {

double miles;
return miles; // Won’t compile because nothing was assigned
to miles.
}

PARAMETERS ARE PREINITIALISED LOCAL
VARIABLES

Method parameters are basically implemented as local

variables.

They have the same visibility (none outside the method)

and lifetime (created on method call, destroyed on method

return).

Preinitialised. The difference is that parameters are

initialised from the corresponding argument values.

Computer Graphics Design and System

102

// Both kilometers and miles are implemented as local
variables.
private static double convertKmToMi(double kilometers) {
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

Style: Don’t Assign to a Parameter
You can assign to a parameter variable, just as you

would to a local variable, but this is often considered bad

style because it can deceive the casual reader in two ways:

1. Unexpected Meaning Change: Programmers assume

parameter variables represent actual argument

values. Assigning to parameters breaks that

assumption.

2. Doesn’t Change Actual Argument: Because formal

parameter variables are really local variables,

assigning new values to them doesn’t have any

effect on the actual parameters.

However, in some programming languages assignment

to a parameter can assign to the corresponding actual

parameter (eg,

C++ reference parameters). Therefore if you write an

assignment to a formal parameter variable, it may mislead

the careless programmer with a C++ background. Or the

reader may pause and try to decide if you thought you

were assigning to the actual argument. In either case it

reduces the readability.

Example. The example below shows how a parameter

could be reused. The overhead of declaring an extra

variable is just about zero, so this really isn’t more efficient,

and even this small example is astoundingly misleading.

Computer Graphics Design and System

103

// BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD BAD
BAD
private static double convertKmToMi(double kilometers) {
kilometers = MILES_PER_KILOMETER * kilometers; // BAD-
Don’t do this, altho it works.
return kilometers;
}

Style: Final Keyword Prevents Assignment

Some programmers recommend using the final

keyword for each parameter. This prevents assignment to

the parameter. Few programmers do this because it adds

extra clutter, which in a different way reduces the

readability.

The use of self-restraint in assigning to parameters is

usually sufficient, but specifying final isn’t a bad idea.
private static double convertKmToMi(final double kilometers)
{
double miles = kilometers * MILES_PER_KILOMETER;
return miles;
}

DYNAMIC CHANGES IN THE CALL STACK
MEMORY ALLOCATION

The table below shows how the call stack changes as

calls and returns in the KmToMilesMethods programme

are made. This shows the first 8 changes to the call stack

after main is entered.

There is actually something before main on the call

stack, and the library methods that are called call many

methods of their own, which isn’t shown here because

we don’t need to know what they call. Stack frame. Each

box represents the information that’s stored on the call

stack for each method. This block of information is often

Computer Graphics Design and System

104

called a stack frame. There is internal information

associated with the method, for example, it saves the place

to resume execution in the calling method.
1 2 3 4 5 6 7 8

Main Main Main Main Main Main Main Main

args args args args args args args args

kms kms kms kms kms kms kms kms

miles miles miles miles miles miles miles miles

getDouble getDouble getDouble getDouble getDouble convert

prompt prompt prompt prompt prompt KmToMi

str str str str str kilometers

show parseDouble miles

InputDia- ???

log

???

Each stack frame is labelled with the method name

and a list of parameters and local variables that are

allocated on the stack. “???” is written when we don’t

know (or care) what the local variables are that are used

by a library method.

TYPICAL CALL SEQUENCE
• Evaluate Arguments left-to-right: If an argument is a

simple variable or a literal value, there is no need

to evaluate it. When an expression is used, the

expression must be evaluated before the call can be

made.

• Push a new Stack frame on the Call Stack: When a

method is called, memory is required to store the

following information.

– Parameter and local variable storage. The storage

that is needed for each of the parameters and

local variables is reserved in the stack frame.

Computer Graphics Design and System

105

– Where to continue execution when the called

method returns. You don’t have to worry about this;

it’s automatically saved for you.

– Other working storage needed by the method

may be required. You don’t have to do anything

about this because it’s handled automatically.

• Initialise the Parameters: When the arguments are

evaluated, they are assigned to the local parameters

in the called method.

• Execute the Method: After the stack frame for this

method has been initialised, execution starts with

the first statement and continues as normal.

Execution may call on other methods, which will

push and pop their own stack frames on the call

stack.

• Return from the Method: When a return statement

is encountered, or the end of a void method is

reached, the method returns. For non-void

methods, the return value is passed back to the

calling method. The stack frame storage for the

called method is popped off the call stack. Popping

something off the stack is really efficient-a pointer

is simply moved to previous stack frame. This

means that the current stack frame can be reused

by other methods. Execution is continued in the

called method immediately after where the call took

place.

Computer Graphics Design and System

106

Example with Three Methods
Here is another variation of the programme, this time

using three methods. Altho there is no real need for these

methods in such a small programme, large programmes

are in fact composed of many small methods. It is the

essential way that all code is structured.

Each of the user-defined method names, both in the call

and the definition, is hilited:

• One method is void, which means it doesn’t return

a value.

• Three methods call other methods.

• The main programme consists mostly of calls to

other methods.

Source Code
// File : methods/KmToMilesMethods. java
1 // Purpose: Converts kilometers to miles using two
methods.
// Author: Fred Swartz-placed in public domain
2 // Date : 22 Apr 2006
3 import javax. swing. *;
4 public class KmToMilesMethods {
//===
5 constants
private static final double MILES_PER_KILOMETER = 0. 621;
6 //
==
7 main
8 public static void main(String[] args) {
9 double kms = getDouble(“Enter number of kilometers. ”);
}
10 //===
double miles = convertKmToMi(kms);
11 convertKmToMi
// Conversion method-kilometers to miles.
displayString(kms + “ kilometers is “ + miles + “ miles.
”);

Computer Graphics Design and System

107

12 private static double convertKmToMi(double kilometers)
{
double miles = kilometers * MILES_PER_KILOMETER;
13 return miles;
}
1 4 / /
===
15 getDouble
16 // I/O convenience method to read a double value.
17 private static double getDouble(String prompt) {
18 String tempStr;
19 tempStr = JOptionPane. showInputDialog(null, prompt);
20 return Double. parseDouble(tempStr);
21 }
22//===
23 displayString
24 // I/O convenience method to display a string in dialog
box.
25 private static void displayString(String output) {
26 JOptionPane. showMessageDialog(null, output);
27 }
28 }
29
30
31
32
33
34
35
36
37
38

OVERLOADING
Here is a small programme which simply computes the

average of three numbers. It uses three overloaded

methods to read the numbers. For such a small

programme you would not use three different methods, of

course, but this shows how overloaded methods are defined

and used. It’s very common for one overloaded method to

call another. Another variation of the programme, this time

Computer Graphics Design and System

108

using three methods. Altho there is no real need for these

methods in such a small programme, large programmes

are in fact composed of many small methods. It is the

essential way that all code is structured.

Each of the user-defined method names, both in the call

and the definition, is hilited:

• One method is void, which means it doesn’t return

a value.

• Three methods call other methods.

• The main programme consists mostly of calls to

other methods.

Good Practices

• Coherence: It’s important that all the methods do the

“same” thing, so that the programme is human

comprehensible. All methods sharing the same name

should return the same value, have the same side

effects, and all be either static or instance methods.

The language doesn’t require this, but doing otherwise

is asking for trouble.

• Call Each Other: Because all overridden methods

should be doing the same thing, it is very common

for there to be calls from one to another, supplying

extra default parameter values as required.

• Default Parameter Values: Some programming languages

allow you to specify default values for parameters, and

if a parameter is not supplied, the default value is used.

Java doesn’t have default parameters, but you can easily

implement those using overloaded methods.

Computer Graphics Design and System

109

Example of Overloading-averaging Three Values
// File : methods/avg3/AvgThreeOverloaded. java
1// Description: Averages three numbers—meaningless, but
// Purpose: Show an overloaded method, getDouble, with
three
2 definitions,
// differing in the number of parameters.
3 // Issues: Input isn’t checked for legality (non-null
number) because
4 // the point is to show overloading.
// Author: Fred Swartz-2007-01-11-placed in public domain
5
import javax. swing. *;
6
public class AvgThreeOverloaded {
7
/ /
==
8 main
public static void main(String[] args) {
9//. . . Read three numbers using the three different
methods.
// Using three different methods is only to show
10 overloading.
double n1 = getDouble();
11 double n2 = getDouble(“Enter the second number. ”);
double n3 = getDouble(“Enter last number. ”, 0. 0, 100.
0);
double average = (n1 + n2 + n3)/ 3. 0;
12 displayString(“Average is “ + average)
13 }
14 //
===
getDouble
15 // I/O convenience method to read a double value.
// This version of the getDouble method simply calls on
16 another
// version passing it a generic input message.
17 private static double getDouble() {
return getDouble(“Enter a number”);
18 }
19 //
===
getDouble

Computer Graphics Design and System

110

20 // I/O convenience method to read a double value given
a prompt.
// This version of getDouble displays the user supplied
21 prompt.
private static double getDouble(String prompt) {
22 String tempStr;
tempStr = JOptionPane. showInputDialog(null, prompt);
23 return Double. parseDouble(tempStr);
}
24 //
===
25 getDouble
// I/O convenience method to read a double value in a
range.
26 // It builds a new prompt and calls another version to
get
// the value, looping until a value in the range is found.
27 private static double getDouble(String prompt, double
low, double high) {
28 double result;
String rangePrompt = prompt + “ Value must be in range “
29 + low + “ to “ + high;
30 //. . . Read and loop back if the number is not in the
right range.
31 do {
result = getDouble(rangePrompt);
32 } while (result < low || result > high);
33 return result;
}
34
// I/O convenience method to display a string in dialog
box.
35 String(String output)
36 private static void display
JOptionPane. showMessageDialog(null, output);
37 }
38 }
39
40
41
42
43
44
45
46

Computer Graphics Design and System

111

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Don’t Confuse Overloading and Overriding
This two terms are easily confused because they both

have to do with multiple definitions of methods. Better terms

would have been nice, but these are what we have.

Overloading is making multiple method definitions which

differ in the number or types of parameters, as described

here. Overriding is redefining a method in a super class,

using exactly the same number and types of parameters.

THE COMPUTER GRAPHICS PIPELINE

The process that goes into the production of a fully

realised 3D movie character or environment is known by

industry professionals as the “computer graphics pipeline.

” Even though the process is quite complex from a technical

standpoint, it’s actually very easy to understand when

illustrated sequentially. Think of your favourite 3D movie

character.

Computer Graphics Design and System

112

It could be Wall-E or Buzz Lightyear, or maybe you

were a fan of Po in Kung Fu Panda. Even though these

three characters look very different, their basic production

sequence is the same.

In order to take an animated movie character from an

idea or storyboard drawing to a fully polished 3D rendering,

the character passes through six major phases:

PRE-PRODUCTION
In pre-production, the overall look of a character or

environment is conceived. At the end of pre-production,

finalized design sheets will be sent to the modeling team to

be developed.

• Every Idea Counts: Dozens, or even hundreds of

drawings & paintings are created and reviewed on

a daily basis by the director, producers, and art

leads.

• Colour Palette: A character’s colour scheme, or

palette, is developed in this phase, but usually not

finalized until later in the process.

• Concept Artists may work with digital sculptors to

produce preliminary digital mock-ups for promising

designs.

• Character Details are finalized, and special

challenges (like fur and cloth) are sent off to

research and development.

3D MODELLING
With the look of the character finalized, the project is

now passed into the hands of 3D modellers. The job of a

Computer Graphics Design and System

113

modeller is to take a two dimensional piece of concept art

and translate it into a 3D model that can be given to

animators later on down the road.

In today’s production pipelines, there are two major

techniques in the modeller’s toolset: polygonal modelling &

digital sculpting.

• Each has its own unique strengths and weaknesses,

and despite being vastly dif ferent, the two

approaches are quite complementary.

• Sculpting lends itself more to organic (character)

models, while polygonal modelling is more suited

for mechanical/architectural models.

The subject of 3D modelling is far too extensive to cover in

three or four bullet points, but its something we’ll continue

covering in depth in both the blog, and in the Maya Training

series.

SHADING AND TEXTURING
The next step in the visual effects pipeline is known as

shading and texturing. In this phase, materials, textures,

and colours are added to the 3D model.

• Every component of the model receives a different

shader-material to give it an appropriate look.

• Realistic materials: If the object is made of plastic,

it will be given a reflective, glossy shader. If it is

made of glass, the material will be partially

transparent and refract light like real-world glass.

• Textures and colours are added by either projecting

a two dimensional image onto the model, or by

Computer Graphics Design and System

114

painting directly on the surface of the model as if

it were a canvas. This is accomplished with special

software (like ZBrush) and a graphics tablet.

LIGHTING
In order for 3D scenes to come to life, digital lights must be

placed in the scene to illuminate models, exactly as lighting

rigs on a movie set would illuminate actors and actresses. This

is probably the second most technical phase of the production

pipeline (after rendering), but there’s still a good deal of artistry

involved.

• Proper lighting must be realistic enough to be

believable, but dramatic enough to convey the

director’s intended mood.

• Mood Matters: Believe it or not, lighting specialists

have as much, or even more control than the

texture painters when it comes to a shot’s colour

scheme, mood, and overall atmosphere.

• Back-and-Forth: There is a great amount of

communication between lighting and texture artists.

The two departments work closely together to

ensure that materials and lights fit together

properly, and that shadows and reflections look as

convincing as possible.

ANIMATION
Animation, as most of you already know, is the

production phase where artists breathe life and motion

into their characters.

Computer Graphics Design and System

115

Animation technique for 3D films is quite different than

traditional hand drawn animation, sharing much more

common ground with stop-motion techniques:

• Rigged for Motion: 3D characters are controlled by

means of a virtual skeleton or “rig” that allows an

animator to control the model’s arms, legs, facial

expressions, and posture.

• Pose-to-Pose: Animation is typically completed pose-

to-pose. In other words, an animator will set a “key-

frame” for both the starting and finishing pose of

an action, and then tweak everything in between

so that the motion is fluid and properly timed.

Jump over to our computer animation companion site

for extensive coverage of the topic.

RENDERING AND POST-PRODUCTION
The final production phase for a 3D scene is known

as rendering, which essentially refers to the translation

of a 3D scene to a finalized two dimensional image.

Rendering is quite technical, so we won’t spend too much

time on it here. In the rendering phase, all the

computations that cannot be done by your computer in

real-time must be performed.

This includes, but is hardly limited to the following:

• Finalizing Lighting: Shadows and reflections must

be computed.

• Special Effects: This is typically when effects like

depth-of-field blurring, fog, smoke, and explosions

would be integrated into the scene.

Computer Graphics Design and System

116

• Post-processing: If brightness, colour, or contrast

needs to be tweaked, these changes would be

completed in an image manipulation software

following render time.

Computer Graphics Design and System

117

4

Graphics System

Let us consider the organization of a typical graphics

system we might use. As our initial emphasis will be on

how the applications programmer sees the system, we shall

omit details of the hardware. The model is general enough

to include workstations, personal computers, terminals

attached to a central time-shared computer, and

sophisticated image-generation systems. In most ways, this

block diagram is that of a standard computer. How each

element is specialized for computer graphics will

characterize this diagram as one of a graphics system,

rather than one of a general-purpose computer.

THE PROCESSOR
Within the processor box, two types of processing take

place. The first is picture formation processing. In this

stage, the user programme or commands are processed.

Computer Graphics Design and System

118

The picture is formed from the elements (lines, text)

available in the system using the desired attributes. Such

as line colour and text font. The user interface is a part of

this processing. The picture can be specified in a number

of ways, such as through an interactive menu-controlled

painting programme or via a C programme using a

graphics library. The physical processor used in this stage

is often the processor in the workstation or host computer.

Fig. The Graphic System

The second kind of processing is concerned with the

display of the picture. In a raster system, the specified

primitives must be scan converted. The screen must be

refreshed to avoid flicker. Input from the user might require

objects to be repositioned on the display. The kind of

processor best suited for these jobs is not the standard

type of processor found in most computers. Instead, special

boards and chips are often used. As we have already noted,

one of the elements that distinguishes real-time graphics

systems is their use of display processors. Since we have

agreed to stay at the block-diagram level for now, however,

we shall not explore these architectures in any detail until

later.

Computer Graphics Design and System

119

MEMORY
There are often two distinct types of memory employed

in graphics systems. For the processing of the user

programme, the memory is similar to that of a standard

computer, as the picture is formed by a standard type of

arithmetic processing. Display processing, however,

requires high-speed display memory that can be accessed

by the display processor, and, in raster systems, memory

for the frame buffer.

This display memory usually is different in both its

physical characteristics and its organization from what is

used by the picture processor. At this point, we need not

consider details of how memory can be organized. You

should be aware that the way the internals of our processor

and memory boxes are organized distinguishes a slow

system from a real-time picture-generating system, such

as a flight simulator. However, from our present

perspective, we shall emphasize that all implementations

have to do the same kinds of tasks to produce output.

OUTPUT DEVICES
Our basic system has one or more output devices. As

raster displays are the dominant type, we shall assume

there is a raster-scan CRT on our system. We shall

consider the frame buffer to be part of the display memory.

In a self-contained system such as a workstation, the

display is an integral part of the system, so the transfer of

information from the processor to the display will happen

rapidly. When the display is separate, such as with a

Computer Graphics Design and System

120

graphics terminal, the speed of the connection is much

slower. Terminals with raster displays usually must have

their own frame buffers, so the displays can be refreshed

locally. In our simple system, we might also have other

displays, such as a plotter, to allow us to produce

hardcopy.

INPUT DEVICES
A simple system may have only a keyboard to provide

whatever input is necessary. Keyboards provide digital

codes corresponding to sequences of keystrokes by a user.

These sequences are usually interpreted as codes for

characters. If individual keystrokes or groups of keystrokes

are interpreted as graphical input, the keyborad can be

used as a complex input device.

For example, the “arrow” keys available on most

keyboards can be used to direct the movement of a cursor

on the screen. Most graphics systems will provide at least

one other input device.

The most common are the mouse, the lightpen, the

joystick, and the data tablet. Each can provide positional

information to the system and each usually is equipped

with one or more buttons to provide signals to the

processor. From the programmer’s perspective, there are

numerous important issues with regard to the input and

output devices. We must consider how the programme can

communicate with these devices.

We must decide what kinds of input and output can

be produced. We will be interested in how to control

Computer Graphics Design and System

121

multiple devices, so that we can choose a particular device

for our input, and can direct our output to some group of

the available output devices.

DIRECT GRAPHICS COORDINATE

SYSTEMS

You can specify coordinates to IDL in one of the following

coordinate systems:

DATA COORDINATES
This coordinate system is established by the most recent

PLOT, CONTOUR, or SURFACE procedure. This system

usually spans the plot window, the area bounded by the

plot axes, with a range identical to the range of the plotted

data. The system can have two or three dimensions and

can be linear, logarithmic, or semi-logarithmic.

DEVICE COORDINATES
This coordinate system is the physical coordinate system

of the selected plotting device. Device coordinates are

integers, ranging from (0, 0) at the bottom-left corner to

(Vx -1, Vy -1) at the upper-right corner. Vx and Vy are the

number of columns and rows addressed by the device.

These numbers are stored in the system variable !D as

!D.X_SIZE and !D.Y_SIZE.

NORMAL COORDINATES
The normalized coordinate system ranges from zero (0)

to one (1) over each of the three axes.

Computer Graphics Design and System

122

Almost all of the IDL graphics procedures accept

parameters in any of these coordinate systems. Most

procedures use the data coordinate system by default.

Routines beginning with the letters TV are notable

exceptions. They use device coordinates by default. You

can explicitly specify the coordinate system to be used by

including one of the keyword parameters/DATA,/DEVICE,

or/NORMAL in the call.

TWO-DIMENSIONAL COORDINATE CONVERSION
The system variables !D, !P, !X, !Y, and !Z contain the

information necessary to convert from one coordinate

system to another. The relevant fields of these system

variables, and formulae are given for conversions to and

from each coordinate system.

In the following discussion, D is a data coordinate, N is

a normalized coordinate, and R is a raw device coordinate.

The fields !D.X_VSIZE and !D.Y_VSIZE always contain

the size of the visible area of the currently selected display

or drawing surface. Let Vx and Vy represent these two sizes.

The field !X.S is a two-element array that contains the

parameters of the linear equation, converting data

coordinates to normalized coordinates. !X.S is the

intercept, and !X.S is the slope. !X.TYPE is 0 for a linear

x-axis and 1 for a logarithmic x-axis. The y- and z-axes

are handled in the same manner, using the system

variables !Y and !Z.

Also, let Dx be the data coordinate, Nx the normalized

coordinate, Rx the device coordinate, Vx the device X size

Computer Graphics Design and System

123

(in device coordinates), and Xi = !X.S<sub< nobr=””> style

=”font-style: italic” class =”cSubScript” > i (the scaling

parameter). </sub<>

With the above variables defined, the linear two-

dimensional coordinate conversions for the x coordinate can

be written as follows:
Coordinate Conversion Linear Logarithmic
Data to normal Nx = Xo + X1Dx Nx = Xo +
X1logDx
Data to device Rx = Vx(Xo + X1Dx) Rx = Vx(Xo +
X1logDx)
Normal to device Rx = Nx Vx Rx = Nx Vx
Normal to data Dx = (Nx –Xo)/X1 Dx = 10(Nx –X0)/
X1
Device to data Dx = (Rx/Vx – Xo)/X1 Dx = 10(Rx/Vx –
Xo)/X1
Device to normal Nx = Rx/Vx Nx = Rx/Vx

The y- and z-axis coordinates are converted in exactly

the same manner, with the exception that there is no z

device coordinate and that logarithmic

z-axes are not permitted.

CONVERT_COORD Function
The CONVERT_COORD function provides a convenient

means of computing the above transformations. It can

convert coordinates to and from any of the above systems.

The keywords DATA, DEVICE, or NORMAL specify the input

system. The output coordinate system is specified by one

of the keywords TO_DATA, TO_DEVICE, or TO_NORMAL.

For example, to convert the endpoints of a line from data

coordinates (0, 1) to (5, 7) to device coordinates, use the

following statement:
D = CONVERT_COORD([0, 5], [1, 7],/DATA,/TO_DEVICE)

Computer Graphics Design and System

124

On completion, the variable D is a (3, 2) vector, containing

the x, y, and z coordinates of the two endpoints.

X Versus Y Plots-PLOT and OPLOT
This section illustrates the use of the basic x versus y

plotting routines, PLOT and OPLOT. PLOT produces linear-

linear plots by default, and can produce linear-log, log-

linear, or log-log plots with the addition of the XLOG and

YLOG keywords.

Data used in these examples are from a fictitious study

of Pacific Northwest Salmon fisheries. In the example, we

suppose that data were collected in the years 1967, 1970,

and from 1975 to 1983.

The following IDL statements create and initialize the

variables SOCKEYE, COHO, CHINOOK, and HUMPBACK,

which contain fictitious fish population counts, in thousands,

for the 11 observations:
SOCKEYE=[463, 459, 437, 433, 431, 433, 431, 428, 430,
431, 430]
COHO=[468, 461, 431, 430, 427, 425, 423, 420, 418, 421,
420]
CHINOOK=[514, 509, 495, 497, 497, 494, 493, 491, 492,
493, 493]
HUMPBACK=[467, 465, 449, 446, 445, 444, 443, 443, 443, 443, 445]
; Construct a vector in which each element contains
; the year of the sample:
YEAR = [1967, 1970, INDGEN(9) + 1975]

If you prefer not to enter the data by hand, run the batch

file plot01 with the following command at the IDL prompt:
@plot01

The following IDL commands create a plot of the population

of Sockeye salmon, by year:
PLOT, YEAR, SOCKEYE, $

Computer Graphics Design and System

125

 TITLE=’Sockeye Population’, XTITLE=’Year’, $
 YTITLE=’Fish (thousands)’

The PLOT procedure, which produces an x versus y plot

on a new set of axes, requires one or two parameters: a

vector of y values or a vector of x values followed by a

vector of y values.

The first attempt at making a plot produces. Note that

the three titles, defined by the keywords TITLE, XTITLE,

and YTITLE, are optional.

Axis Scaling
The fluctuations in the data are hard to see because the

scores range from 428 to 463, and the plot’s y-axis is scaled

from 0 to 500.

Two factors cause this effect. By default, IDL sets the

minimum y-axis value of linear plots to zero if the y data

are all positive.

The maximum axis value is automatically set by IDL

from the maximum y data value. In addition, IDL attempts

to produce from three to six tick-mark intervals that are

Computer Graphics Design and System

126

in increments of an integer power of 10 times 2, 2.5, 5, or

10. In this example, this rounding effect causes the

maximum axis value to be 500, rather than 463. The

YNOZERO keyword parameter inhibits setting the y-axis

minimum to zero when given positive, nonzero data. The

data plotted using this keyword.

The y-axis now ranges from 420 to 470, and IDL creates

tick-mark intervals of 10.
;Define variables:
@plot01
PLOT, YEAR, SOCKEYE,/YNOZERO, $
 TITLE=’Sockeye Population’, XTITLE=’Year’, $
 YTITLE=’Fish (thousands)’

Multiline Titles
The graph-text positioning command !C, starts a new

line of text output. Titles containing more than one line of

text are easily produced by separating each line with this

positioning command.

The main title could have been displayed on two centred

lines by changing the keyword parameter TITLE to the

following statement:

Computer Graphics Design and System

127

TITLE = ‘Sockeye!CPopulation’

Note: When using multiple line titles you may find that

the default margins are inadequate, causing the titles to

run off the page. In this case, set the [XY]MARGIN keywords

or increase the values of !X.MARGIN or !Y.MARGIN.

Range Keyword
The range of the x, y, or z axes can be explicitly specified

with the [XYZ] RANGE keyword parameter. The argument

of the keyword parameter is a two-element vector

containing the minimum and maximum axis values.

IDL attempts to produce even tick intervals, and the

axis range selected by IDL may be slightly larger than

that given with the RANGE keyword. To obtain the exact

specified interval, set the axis style parameter to one

(YSTYLE = 1).

The effect of the YNOZERO keyword is identical to that

obtained by including the keyword parameter YRANGE =

[MIN(Y), MAX(Y)] in the call to PLOT. You can make/

YNOZERO the default in subsequent plots by setting bit 4

of !Y.STYLE to one (!Y.STYLE = 16).

The STYLE field of the axis system variables !X, !Y, and

!Z. Briefly: Other bits in the STYLE field extend the axes

by providing a margin around the data, suppress the axis

and its notation, and suppress the box-style axes by

drawing only left and bottom axes.

For example, to constrain the x-axis to the years 1975

to 1983, the keyword parameter XRANGE = [1975, 1983]

is included in the call to PLOT.

Computer Graphics Design and System

128

Note that the x-axis actually extends from 1974 to 1984,

as IDL elected to make five tick-mark intervals, each

spanning two years. The x-axis style is set to one, the plot

will exactly span the given range.

The call combining all these options is as follows:
; Define variables:
@plot01
PLOT, YEAR, SOCKEYE,/YNOZERO, $
 TITLE=’Sockeye Population’, XTITLE = ‘Year’, $
 YTITLE = ‘Fish (thousands)’, XRANGE = [1975, 1983],/
XSTYLE

Note: The keyword parameter syntax/XSTYLE is

synonymous with the expression XSTYLE = 1. Setting a

keyword parameter to 1 is often referred to as simply setting

the keyword.

Overplotting
Additional data can be added to existing plots with the

OPLOT procedure. Each call to PLOT establishes the plot

window (the rectangular area enclosed by the axes), the

plot region (the box enclosing the plot window and its

annotation), the axis types (linear or log), and the scaling.

This information is saved in the system variables !P, !X,

and !Y and used by subsequent calls to OPLOT.

Computer Graphics Design and System

129

Frequently, the colour index, line style, or line thickness

parameters are changed in each call to OPLOT to

distinguish the data sets.

The IDL Reference Guide contains a table describing the

line style associated with each index.

A plot showing all four data sets. Each data set except

the first was plotted with a different line style and was

produced by a call to OPLOT.

In this example, an (11, 4) array called ALLPTS is defined

and contains all the scores for the four categories using

the array concatenation operator.

Once this array is defined, the IDL array operators and

functions can be applied to the entire data set, rather than

explicitly referencing the particular sample.

First, we define an n-by-4 array containing all four

sample vectors. (This array is also defined by the plot01

batch file.)
ALLPTS = [[COHO], [SOCKEYE], [HUMPBACK], [CHINOOK]]

The plot in the preceding figure was produced with the

following statements:
; Define variables:
@plot01

Computer Graphics Design and System

130

; Plot first graph. Set the y-axis min and max
; from the min and max of all data sets. Default linestyle
is 0.
PLOT, YEAR, COHO, YRANGE = [MIN(ALLPTS), MAX(ALLPTS)], $
 TITLE=’Salmon Populations’, XTITLE = ‘Year’, $
 YTITLE = ‘Fish (thousands)’, XRANGE = [1975, 1983], $
 /XSTYLE
; Loop for the three remaining scores, varying the
linestyle:
FOR I = 1, 3 DO OPLOT, YEAR, ALLPTS[*, I], LINE = I

Bar Charts
Bar (or box) charts are used in business-style graphics

and are useful in comparing a small number of

measurements within a few discrete data sets. Although

not designed as a tool for business graphics, IDL can

produce many business-style plots with little effort.

The following example produces a box-style chart

showing the four salmon populations as boxes of differing

colours or shading. You do not need to type these

commands in yourself; they are collected in the files

plot05.pro, which contains the two procedures, and plot06,

which contains the found in the examples/doc subdirectory

of the IDL distribution.

Computer Graphics Design and System

131

First, we define a procedure called BOX, which draws a

box given the coordinates of two diagonal corners:
; Define a procedure that draws a box, using POLYFILL,
; whose corners are (X0, Y0) and (X1, Y1):
PRO BOX, X0, Y0, X1, Y1, colour
; Call POLYFILL:
 POLYFILL, [X0, X0, X1, X1], [Y0, Y1, Y1, Y0], COL =
colour
END
Next, create a procedure to draw the bar graph:
PRO BARGRAPH, minval
; Define variables:
 @plot01
; Width of bars in data units:
 del = 1./5.
; The number of colours used in the bar graph is
; defined by the number of colours available on your
system:
 ncol=!D.N_COLORS/5
; Create a vector of colour indices to be used in this
procedure:
 colours = ncol*INDGEN(4)+ncol
; Loop for each sample:
 FOR iscore = 0, 3 DO BEGIN
; The y value of annotation. Vertical separation is 20
data
; units:
 yannot = minval + 20 *(iscore+1)
; Label for each bar:
 XYOUTS, 1984, yannot, names[iscore]
; Bar for annotation:
 BOX, 1984, yannot - 6, 1988, yannot - 2, colours[iscore]
; The x offset of vertical bar for each sample:
 xoff = iscore * del - 2 * del
; Draw vertical box for each year’s sample:
 FOR iyr=0, N_ELEMENTS(year)-1 DO $
 BOX, year[iyr] + xoff, minval, $
 year[iyr] + xoff + del, $
 allpts[iyr, iscore], $
 colours[iscore]
 ENDFOR
END

Computer Graphics Design and System

132

Enter the following at the IDL prompt to compile these

two procedures from the IDL distribution:
.run plot5.pro

To create the bar graph on your screen, enter the

following commands.
; Load a colour table:
LOADCT, 39

As in the previous example, the PLOT procedure is used

to draw the axes and to establish the scaling using the

NODATA keyword.
PLOT, year, CHINOOK, YRANGE = [MIN(allpts),MAX(allpts)],
$
 TITLE = ‘Salmon Populations’,/NODATA, $
 XRANGE = [year[0], 1990]
; Get the y value of the bottom x-axis:
minval = !Y.CRANGE[0]
; Create the bar chart:
BARGRAPH, minval

MECHANISMS AND METHODS
Scan conversion involves changing the picture

information data rate and wrapping the new picture in

appropriate synchronization signals.

There are two distinct methods for changing a picture’s

data rate:

• Analog Methods (Non- retentive, memory-less or

real time method)

This conversion is done using large numbers of delay

cells and is appropriate for analog video.

• Digital methods (Retentive or buffered method).

In this method, a picture is stored in a line or frame

buffer with n1 speed (data rate) and is read with n2 speed,

several picture processing techniques are applicable when

the picture is stored in buffer memory including kinds of

Computer Graphics Design and System

133

interpolation from simple to smart high order comparisons,

motion detection and … to improve the picture quality and

prevent the conversion artifacts.

How to Realize
The process in practice is applicable only using integrated

circuits in LSI and VLSI scales.

Timing, interference between digital and analog signals,

clocks, noise and exact synchronization have important

roles in the circuit. Digital conversion method needs the

analog video signal to be converted to digital data at the

first step.

A scan converter can be made in its basic structure using

some high speed integrated circuits as a circuit board

however there are some integrated circuits which perform

this function plus other picture processing functions like

scissoring, change of aspect ratio and … an easy to use

example was SDA9401

Some examples:

A VGA to TV scan converter box like this turns enhanced-

definition or high-definition signals into standard-definition

signals.

Computer Graphics Design and System

134

Up conversion (interpolation):

• In many LCD monitors there is a native picture

mode, however the monitor can display different

graphical modes using a scan converter.

• In a 100 Hz/120Hz analog TV, there is a scan

converter circuit which converts the vertical

frequency (refresh rate) from standard 50/60Hz

to 100/120Hz to achieve a low level of flicker which

is important in large screen (high inch) TVs.

• An external TV card receives the TV signals and

converts them to VGA or SVGA format to display

on monitor.

Down conversion (decimation):

• Many graphic cards have output for standard-

definition television. Here there is a conversion

from computer graphical modes to TV standard

formats.

• Other graphic cards lack an SDTV output, but

their VGA outputs can still be connected to an

SDTV through an external scan converter

(pictured).

Scan conversion serves as a bridge between TV and

computer graphics technology.

GRAPHIC CARD
A graphics card is the component in your computer that

handles generating the signals that are sent to the monitor

or “graphics”. It is responsible for generating all the text

and pictures that are displayed on your screen. It is called

a “card” because most PCs will have a physical card that

Computer Graphics Design and System

135

is inserted in a PCI slot on the motherboard. Some

motherboards have built-in graphics cards with is

something of a misnomer since, it is built in as part of the

motherboard and no longer a separate “card”. 2D, or two

dimensional graphics are the kind of graphics displayed

when you use a web browser, check e-mail or work on a

spreadsheet. For 2D graphics the major factors are

resolution and refresh rate. Resolution determines how

many little dots are used to draw the image on the screen.

For example, 640 × 480 means that the whole screen is

drawn using 307,200 little dots in 640 columns and 480

rows. The more dots that are used, the finer the detail.

Thus, higher resolutions provide for great detail and image

quality.

Another factor is colour depth. It expressed as a third

parameter such as 640 × 480 × 256. This means 640

columns x 480 rows x 256 colours. Colour depth is usually

a number that is 2 raised to the power of a multiple of 8

up to 32. i.e., 2^8, 2^16, 2^24 or 2^32... or 256, 65,536,

16M or 4G colours. Obviously, the more colours the great

the detail again. Finally refresh refers to how many times

a second the image on the screen is redrawn. 60Hz means

that the image on the screen is drawn 60 times every

second. This becomes important in fast moving video games

where the action needs to look really. Also, for CRT type

monitors refresh rates of 60Hz and less tend to have a

noticeable flicker even on stationary images. This flicker

can lead to headaches for many people. Higher refresh

rates are better. Of course, having a graphics card with

the higher possible resolution and refresh rate doesn’t do

Computer Graphics Design and System

136

much good if your monitor doesn’t also support this

capabilities. 3D or three dimensional graphics are what

all first-person-shooter type games use.

Of course, current monitor technology still only really

displays a 2D image, but the player is immersed in a

landscape where they can moved their characters head

and objects in all directions and move around within this

world. This type of display capabilities requires some pretty

intense mathematical calculation to be done very fast. The

value of a good 3D graphics card is that it offloads most of

this work from the computer’s main processor and a

specialized processor on the graphics card handles these

calculations. This allows for faster, slicker looking graphics.

Also, newer 3D cards handle all kinds of additional

functions that gives surfaces texture, make water

transparent, etc.

Scan Converting a Line
You know that a line in computer graphics typically refers

to a line segment, which is a portion of a straight line that

extends indefinitely in opposite directions. You can define

a line by its two end points and by the line equation y = mx

+ c, where m is called the slope and c the y intercept of the

line. Let the two end points of a line be P1(x1, y1) and

P2(x2, y2). The line equation describes the coordinates of

all the points that lie between the two endpoints.

A simple approach to scan convert a line is to first scan

convert P1 and P2 to pixel coordinates (x1’, y1’) and (x2’,

y2’) respectively. Then let us set m = (y2’- y1’)/(x2’- x1’)

Computer Graphics Design and System

137

and b = y1’-mx1’. Find |m| and if |m| ? 1, then for every

integer value of x between and excluding x1’ and x2’,

calculate the corresponding value of y using the equation

and scan convert (x, y). If |m| >1, then for every integer

value of y between and excluding y1’ and y2’, calculate the

corresponding value of x using the equation and scan

convert (x, y).

Design Criteria of Straight Lines
From geometry we know that a line, or line segment,

can be uniquely specified by two points. From algebra we

also know that a line can be specified by a slope, usually

given the name m and a y-axis intercept called b. Generally

in computer graphics, a line will be specified by two

endpoints. But the slope and y-intercept are often

calculated as intermediate results for use by most line-

drawing algorithms.

The goal of any line drawing algorithm is to construct

the best possible approximation of an ideal line given the

inherent limitations of a raster display. Before discussing

specific line drawing algorithms, it is useful to consider

general requirements for such algorithms. The desirable

characteristics needed for these lines.

The primary design criteria are as follows:

• Straight lines appear as straight lines

• Straight lines start and end accurately

• Displayed lines should have constant brightness

along their length, independent of the line length

and orientation.

• Lines should be drawn rapidly.

Computer Graphics Design and System

138

Scan Converting a Point

A mathematical point (x, y) where x and y are real

numbers within an image area, needs to be scan converted

to a pixel at location (x’, y’). This may be done by making x’

to be the integer part of x, and y’ to be the integer part of y.

In other words, x’ = floor(x) and y’ = floor(y), where function

floor returns the largest integer that is less than or equal

to the arguments. Doing so in essence places the origin of

a continuous coordinate system for (x, y) at the lower left

corner of the pixel grid in the image space.

All the points that satisfy x’≥ x ≥ x’ + 1 and y’≥ y ≥ y’ + 1

are mapped to pixel (x’, y’). Let us take for example a point

P1(1.7, 0.8). It will be represented by pixel (1, 0). Points P2

(2.2, 1.3) and P3(2.8, 1.9) are both represented by pixel

(2, 1). Let us take another approach to align the integer

values in the coordinate system for (x, y) with the pixel

coordinates. Here we can convert (x, y) by making x’ =

floor(x + 0.5) and y’ = floor(y + 0.5). This approach places

the origin of the coordinate system for (x, y) at the centre

of pixel(0, 0). All points that satisfy x’- 0.5 ≥ x ≥ x’ + 0.5

and y’- 0.5 ≥ y ≥ y’ + 0.5 are mapped to pixel (x’, y’). This

means that points P1 and P2 are now both represented by

pixel (2, 1), whereas point P3 is represented by pixel (3, 2).

SOFTWARE THAT CREATES

GRAPHIC ORGANIZERS

You probably have a lot of software on programmes on

the computer that you use that can create Graphic

Computer Graphics Design and System

139

Organizers. These include the Office Productivity Suite

applications (Word Processing, Spreadsheet, and

Presentation Programs). If you use Microsoft(TM) Windows,

you probably have a low end drawing programme called,

“Paint.” All these programmes can create Graphics

Organizers.

If you do not have this Office Suite, we have included

an Open Source (Free) Office Suite called “Open Office.”

This programme is free to use and to share with others.

Open Office applications also can save your Graphic

Organizer files in the PDF file format. If you save Graphic

Organizer files in the PDF format, you can share them

with everyone, and the file will print exactly as you created

it.

OPEN OFFICE (OPEN SOURCE)
The catch with sharing Graphic Organizers that are

saved in the PDF file format is that you cannot make

changes to them without expensive software. However, the

viewer programme that opens and prints the files is free

and most people who connect to the Internet have the

Acrobat Reader programme. We have included the latest

version to save you from having to download it from the

Internet.

SOFTWARE THAT IS A GRAPHIC ORGANIZER
There are a lot of software products on the market that

are Graphic Organizers.

The majority of these products call themselves, “Mind

Mapping” software.

Computer Graphics Design and System

140

The competition in this market is very strong, so all

vendors seem to offer free trials of their products. It is

possible that a teacher could use a different trial version

of these products each month, and never purchase a copy.

The only catch is that the formats of the various

products are proprietary. This means that you cannot open

the files you create with another company’s product.

Inspiration(TM) and Kidspiration(TM) are products that fall

into this category, and these products are often available

in school districts. Inspiration and Kidspiration are easy

to use, but low-end products.

GRAPHICS PIPELINE PERFORMANCE

Over the past few years, the hardware-accelerated

rendering pipeline has rapidly increased in complexity,

bringing with it increasingly intricate and potentially

confusing performance characteristics.

Improving performance used to mean simply reducing

the CPU cycles of the inner loops in your renderer; now it

has become a cycle of determining bottlenecks and

systematically attacking them.

Computer Graphics Design and System

141

This loop of identification and optimization is

fundamental to tuning a heterogeneous multiprocessor

system; the driving idea is that a pipeline, by definition,

is only as fast as its slowest stage. Thus, while premature

and unfocused optimization in a single-processor system

can lead to only minimal performance gains, in a

multiprocessor system such optimization very often leads

to zero gains.

Working hard on graphics optimization and seeing zero

performance improvement is no fun. The goal of this

chapter is to keep you from doing exactly that.

THE PIPELINE
The pipeline, at the very highest level, can be broken

into two parts: the CPU and the GPU. Although CPU

optimization is a critical part of optimizing your application,

it will not be the focus of this chapter, because much of

this optimization has little to do with the graphics pipeline.

The GPU, there are a number of functional units

operating in parallel, which essentially act as separate

special-purpose processors, and a number of spots where

a bottleneck can occur. These include vertex and index

fetching, vertex shading (transform and lighting, or T&L),

fragment shading, and raster operations (ROP).

Methodology
Optimization without proper bottleneck identification

is the cause of much wasted development effort, and so

we formalize the process into the following fundamental

identification and optimization loop:

Computer Graphics Design and System

142

1. Identify the bottleneck. For each stage in the

pipeline, vary either its workload or its

computational ability (that is, clock speed). If

performance varies, you’ve found a bottleneck.

2. Optimize. Given the bottlenecked stage, reduce its

workload until performance stops improving or until

you achieve your desired level of performance.

3. Repeat. Do steps 1 and 2 again until the desired

performance level is reached.

LOCATING THE BOTTLENECK
Locating the bottleneck is half the battle in

optimization, because it enables you to make intelligent

decisions about focusing your actual optimization efforts.

A flow chart depicting the series of steps required to locate

the precise bottleneck in your application. Note that we

start at the back end of the pipeline, with the frame-buffer

operations (also called raster operations) and end at the

CPU. Note also that while any single primitive (usually a

triangle), by definition, has a single bottleneck, over the

course of a frame the bottleneck most likely changes. Thus,

modifying the workload on more than one stage in the

pipeline often influences performance. For example, a low-

polygon skybox is often bound by fragment shading or

frame-buffer access; a skinned mesh that maps to only a

few pixels on screen is often bound by CPU or vertex

processing. For this reason, it frequently helps to vary

workloads on an object-by-object, or material-by-material,

basis.

Computer Graphics Design and System

143

For each pipeline stage, we also mention the GPU clock

to which it’s tied (that is, core or memory). This information

is useful in conjunction with tools such as PowerStrip

(EnTech Taiwan 2003), which allows you to reduce the

relevant clock speed and observe performance changes in

your application.

Fig. Bottleneck Flowchart

Raster Operations
The very back end of the pipeline, raster operations

(often called the ROP), is responsible for reading and

writing depth and stencil, doing the depth and stencil

comparisons, reading and writing colour, and doing alpha

blending and testing. As you can see, much of the ROP

workload taxes the available frame-buffer bandwidth. The

best way to test if your application is frame-buffer-

bandwidth bound is to vary the bit depths of the colour or

the depth buffers, or both. If reducing your bit depth from

32-bit to 16-bit significantly improves your performance,

then you are definitely frame-buffer-bandwidth bound.

Computer Graphics Design and System

144

Frame-buffer bandwidth is a function of GPU memory

clock, so modifying memory clocks is another technique

for helping to identify this bottleneck.

Texture Bandwidth
Texture bandwidth is consumed any time a texture

fetch request goes out to memory. Although modern GPUs

have texture caches designed to minimize extraneous

memory requests, they obviously still occur and consume

a fair amount of memory bandwidth. Modifying texture

formats can be trickier than modifying frame-buffer

formats as we did when inspecting the ROP; instead, we

recommend changing the effective texture size by using a

large amount of positive mipmap level-of-detail (LOD) bias.

This makes texture fetches access very coarse levels of

the mipmap pyramid, which effectively reduces the texture

size. If this modification causes performance to improve

significantly, you are bound by texture bandwidth.

Texture bandwidth is also a function of GPU memory

clock.

Fragment Shading
Fragment shading refers to the actual cost of generating

a fragment, with associated colour and depth values. This

is the cost of running the “pixel shader” or “fragment

shader.” Note that fragment shading and frame-buffer

bandwidth are often lumped together under the heading

fill rate, because both are a function of screen resolution.

However, they are two distinct stages in the pipeline, and

being able to tell the difference between the two is critical

Computer Graphics Design and System

145

to effective optimization. Before the advent of highly

programmable fragment-processing GPUs, it was rare to

be bound by fragment shading. It was often frame-buffer

bandwidth that caused the inevitable correlation between

screen resolution and performance. This pendulum is now

starting to swing towards fragment shading, however, as

the newfound flexibility enables developers to spend oodles

of cycles making fancy pixels.

The first step in determining if fragment shading is the

bottleneck is simply to change the resolution. Because

we’ve already ruled out frame-buffer bandwidth by trying

different frame-buffer bit depths, if adjusting resolution

causes performance to change, the culprit is most likely

fragment shading. A supplementary approach would be

to modify the length of your fragment programmes and

see if this influences performance. But be careful not to

add instructions that can easily be optimized away by a

clever device driver.

Fragment-shading speed is a function of the GPU core

clock.

Vertex Processing
The vertex transformation stage of the rendering

pipeline is responsible for taking an input set of vertex

attributes (such as model-space positions, vertex normals,

texture coordinates, and so on) and producing a set of

attributes suitable for clipping and rasterization (such as

homogeneous clip-space position, vertex lighting results,

texture coordinates, and more). Naturally, performance in

this stage is a function of the work done per vertex, along

Computer Graphics Design and System

146

with the number of vertices being processed. With

programmable transformations, determining if vertex

processing is your bottleneck is a simple matter of

changing the length of your vertex programme. If

performance changes, you are vertex-processing bound.

If you’re adding instructions, be careful to add ones

that actually do meaningful work; otherwise, the

instructions may be optimized away by the compiler or

the driver. For example, no-ops that refer to constant

registers (such as adding a constant register that has a

value of zero) often cannot be optimized away because the

driver usually doesn’t know the value of a constant at

programme-compile time.

If you’re using fixed-function transformations, it’s a

little trickier. Try modifying the load by changing vertex

work such as specular lighting or texture-coordinate

generation state. Vertex processing speed is a function of

the GPU core clock.

Vertex and Index Transfer
Vertices and indices are fetched by the GPU as the first

step in the GPU part of the pipeline. The performance of

vertex and index fetching can vary depending on where

the actual vertices and indices are placed. They are usually

either in system memory—which means they will be

transferred to the GPU over a bus such as AGP or PCI

Express—or in local frame-buffer memory. Often, on PC

platforms especially, this decision is left up to the device

driver instead of the application, although modern graphics

Computer Graphics Design and System

147

APIs allow applications to provide usage hints to help the

driver choose the correct memory type.

Determining if vertex or index fetching is a bottleneck

in your application entails modifying the vertex format size.

Vertex and index fetching performance is a function of

the AGP/PCI Express rate if the data is placed in system

memory; it’s a function of the memory clock if data is

placed in local frame-buffer memory.

If none of these tests influences your performance

significantly, you are primarily CPU bound. You may verify

this fact by underclocking your CPU: if performance varies

proportionally, you are CPU bound.

OPTIMIZATION
Now that we have identified the bottleneck, we must

optimize that particular stage to improve application

performance. The following tips are categorized by offending

stage.

Optimizing on the CPU
Many applications are CPU bound—sometimes for good

reason, such as complex physics or AI, and sometimes

because of poor batching or resource management. If

you’ve found that your application is CPU bound, try the

following suggestions to reduce CPU work in the rendering

pipeline.

Reduce Resource Locking
Anytime you perform a synchronous operation that

demands access to a GPU resource, there is the potential

Computer Graphics Design and System

148

to massively stall the GPU pipeline, which costs both CPU

and GPU cycles. CPU cycles are wasted because the CPU

must sit and spin in a loop, waiting for the (very deep)

GPU pipeline to idle and return the requested resource.

GPU cycles are then wasted as the pipeline sits idle and

has to refill.

This locking can occur anytime you

• Lock or read from a surface you were previously

rendering to

• Write to a surface the GPU is reading from, such

as a texture or a vertex buffer.

In general, you should avoid accessing a resource the

GPU is using during rendering.

Maximize Batch Size
We can also call this tip “Minimize the Number of

Batches.” A batch is a group of primitives rendered with a

single API rendering call (for example,

DrawIndexedPrimitive in DirectX 9). The size of a batch is

the number of primitives it contains.

As a wise man once said, “Batch, Batch, Batch!”. Every

API function call to draw geometry has an associated CPU

cost, so maximizing the number of triangles submitted with

every draw call will minimize the CPU work done for a

given number of triangles rendered.

Some tips to maximize the size of your batches:

• If using triangle strips, use degenerate triangles to

stitch together disjoint strips. This will enable you

to send multiple strips, provided that they share

material, in a single draw call.

Computer Graphics Design and System

149

• Use texture pages. Batches are frequently broken

when different objects use different textures. By

arranging many textures into a single 2D texture

and setting your texture coordinates appropriately,

you can send geometry that uses multiple textures

in a single draw call. Note that this technique can

have issues with mipmapping and antialiasing. One

technique that sidesteps many of these issues is

to pack individual 2D textures into each face of a

cube map.

• Use GPU shader branching to increase batch size.

Modern GPUs have flexible vertex- and fragment-

processing pipelines that allow for branching inside

the shader. For example, if two batches are

separate because one requires a four -bone

skinning vertex shader and the other requires a

two-bone skinning vertex shader, you could instead

write a vertex shader that loops over the number

of bones required, accumulating blending weights,

and then breaks out of the loop when the weights

sum to one. This way, the two batches could be

combined into one. On architectures that don’t

support shader branching, similar functionality

can be implemented, at the cost of shader cycles,

by using a four-bone vertex shader on everything

and simply zeroing out the bone weights on

vertices that have fewer than four bone influences.

• Use the vertex shader constant memory as a lookup

table of matrices. Often batches get broken when

Computer Graphics Design and System

150

many small objects share all material properties

but differ only in matrix state (for example, a forest

of similar trees, or a particle system). In these cases,

you can load n of the differing matrices into the

vertex shader constant memory and store indices

into the constant memory in the vertex format for

each object. Then you would use this index to look

up into the constant memory in the vertex shader

and use the correct transformation matrix, thus

rendering n objects at once.

• Defer decisions as far down in the pipeline as

possible. It’s faster to use the alpha channel of your

texture as a gloss factor, rather than break the

batch to set a pixel shader constant for glossiness.

Similarly, putting shading data in your textures and

vertices can allow for larger batch submissions.

Reducing the Cost of Vertex Transfer
Vertex transfer is rarely the bottleneck in an

application, but it’s certainly not impossible for it to

happen.

If the transfer of vertices or, less likely, indices is the

bottleneck in your application, try the following:

• Use the fewest possible bytes in your vertex format.

Don’t use floats for everything if bytes would suffice

(for colours, for example).

• Generate potentially derivable vertex attributes

inside the vertex programme instead of storing them

inside the input vertex format. For example, there’s

Computer Graphics Design and System

151

often no need to store a tangent, binormal, and

normal: given any two, the third can be derived

using a simple cross product in the vertex

programme. This technique trades vertex-processing

speed for vertex transfer rate.

• Use 16-bit indices instead of 32-bit indices. 16-bit

indices are cheaper to fetch, are cheaper to move

around, and take less memory.

• Access vertex data in a relatively sequential manner.

Modern GPUs cache memory accesses when

fetching vertices. As in any memory hierarchy,

spatial locality of reference helps maximize hits in

the cache, thus reducing bandwidth requirements.

Optimizing Vertex Processing
Vertex processing is rarely the bottleneck on modern

GPUs, but it may occur, depending on your usage patterns

and target hardware.

Try these suggestions if you’re finding that vertex

processing is the bottleneck in your application:

• Optimize for the post-T&L vertex cache. Modern

GPUs have a small first-in, first-out (FIFO) cache

that stores the result of the most recently

transformed vertices; a hit in this cache saves all

transform and lighting work, along with all work

done earlier in the pipeline. To take advantage of

this cache, you must use indexed primitives, and

you must order your vertices to maximize locality

of reference over the mesh. There are tools

Computer Graphics Design and System

152

available—including D3DX and NVTriStrip (NVIDIA

2003)—that can help you with this task.

• Reduce the number of vertices processed. This is

rarely the fundamental issue, but using a simple

level-of-detail scheme, such as a set of static LODs,

certainly helps reduce vertex-processing load.

• Use vertex-processing LOD. Along with using LODs

for the number of vertices processed, try LODing

the vertex computations themselves. For example,

it is likely unnecessary to do full four-bone skinning

on distant characters, and you can probably get

away with cheaper approximations for the lighting.

If your material is multipassed, reducing the

number of passes for lower LODs in the distance

will also reduce vertex-processing cost.

• Pull out per-object computations onto the CPU.

Often, a calculation that changes once per object

or per frame is done in the vertex shader for

convenience. For example, transforming a

directional light vector to eye space is sometimes

done in the vertex shader, although the result of

the computation changes only once per frame.

• Use the correct coordinate space. Frequently, choice

of coordinate space af fects the number of

instructions required to compute a value in the

vertex programme. For example, when doing vertex

lighting, if your vertex normals are stored in object

space and the light vector is stored in eye space,

then you will have to transform one of the two

Computer Graphics Design and System

153

vectors in the vertex shader. If the light vector was

instead transformed into object space once per

object on the CPU, no per-vertex transformation

would be necessary, saving GPU vertex instructions.

• Use vertex branching to “early-out” of computations.

If you are looping over a number of lights in the vertex

shader and doing normal, low-dynamic-range, [0..1]

lighting, you can check for saturation to 1—or if you’re

facing away from the light—and then break out of

further computations. A similar optimization can

occur with skinning, where you can break when your

weights sum to 1 (and therefore all subsequent

weights would be 0). Note that this depends on how

the GPU implements vertex branching, and it isn’t

guaranteed to improve performance on all

architectures.

Speeding Up Fragment Shading
If you’re using long and complex fragment shaders, it is

often likely that you’re fragment-shading bound. If so, try

these suggestions:

• Render depth first. Rendering a depth-only (no-

colour) pass before rendering your primary shading

passes can dramatically boost performance,

especially in scenes with high depth complexity, by

reducing the amount of fragment shading and

frame-buffer memory access that needs to be

performed. To get the full benefits of a depth-only

pass, it’s not sufficient to just disable colour writes

Computer Graphics Design and System

154

to the frame buffer; you should also disable all

shading on fragments, even shading that affects

depth as well as colour (such as alpha test).

• Help early-z optimizations throw away fragment

processing. Modern GPUs have silicon designed to

avoid shading occluded fragments, but these

optimizations rely on knowledge of the scene up to

the current point; they can be improved dramatically

by rendering in a roughly front-to-back order. Also,

laying down depth first in a separate pass can help

substantially speed up subsequent passes (where

all the expensive shading is done) by effectively

reducing their shaded-depth complexity to 1.

• Store complex functions in textures. Textures can

be enormously useful as lookup tables, and their

results are filtered for free. The canonical example

here is a normalization cube map, which allows

you to normalize an arbitrary vector at high

precision for the cost of a single texture lookup.

• Move per-fragment work to the vertex shader. Just

as per-object work in the vertex shader should be

moved to the CPU instead, per-vertex computations

(along with computations that can be correctly

linearly interpolated in screen space) should be

moved to the vertex shader. Common examples

include computing vectors and transforming vectors

between coordinate systems.

• Use the lowest precision necessary. APIs such as

DirectX 9 allow you to specify precision hints in

Computer Graphics Design and System

155

fragment shader code for quantities or calculations

that can work with reduced precision. Many GPUs

can take advantage of these hints to reduce internal

precision and improve performance.

• Avoid excessive normalization. A common mistake

is to get “normalization-happy”: normalizing every

single vector every step of the way when performing

a calculation. Recognize which transformations

preserve length (such as transformations by an

orthonourmal basis) and which computations do

not depend on vector length (such as cube-map

lookups).

• Consider using fragment shader level of detail.

Although it offers less bang for the buck than vertex

LOD (simply because objects in the distance

naturally LOD themselves with respect to pixel

processing, due to perspective), reducing the

complexity of the shaders in the distance, and

decreasing the number of passes over a surface,

can lessen the fragment-processing workload.

• Disable trilinear filtering where unnecessary.

Trilinear filtering, even when not consuming extra

texture bandwidth, costs extra cycles to compute

in the fragment shader on most modern GPU

architectures. On textures where mip-level

transitions are not readily discernible, turn trilinear

filtering off to save fill rate.

• Use the simplest shader type possible. In both

Direct3D and OpenGL, there are a number of

Computer Graphics Design and System

156

different ways to shade fragments. For example, in

Direct3D 9, you can specify fragment shading using,

in order of increasing complexity and power,

texture-stage states, pixel shaders version 1.x

(ps.1.1 – ps.1.4), pixel shaders version 2.x., or pixel

shaders version 3.0. In general, you should use

the simplest shader type that allows you to create

the intended effect. The simpler shader types offer

a number of implicit assumptions that often allow

them to be compiled to faster native pixel-processing

code by the GPU driver. A nice side effect is that

these shaders would then work on a broader range

of hardware.

Reducing Texture Bandwidth
If you’ve found that you’re memory-bandwidth bound,

but mostly when fetching from textures, consider these

optimizations:

• Reduce the size of your textures. Consider your

target resolution and texture coordinates. Do your

users ever get to see your highest mip level? If not,

consider scaling back the size of your textures. This

can be especially helpful if overloaded frame-buffer

memory has forced texturing to occur from nonlocal

memory (such as system memory, over the AGP or

PCI Express bus). The NVPerfHUD tool (NVIDIA

2003) can help diagnose this problem, as it shows

the amount of memory allocated by the driver in

various heaps.

Computer Graphics Design and System

157

• Compress all colour textures. All textures that are

used just as decals or detail textures should be

compressed, using DXT1, DXT3, orDXT5, depending

on the specific texture’s alpha needs. This step will

reduce memory usage, reduce texture bandwidth

requirements, and improve texture cache efficiency.

• Avoid expensive texture formats if not necessary.

Large texture formats, such as 64-bit or 128-bit

floating-point formats, obviously cost much more

bandwidth to fetch from. Use these only as

necessary.

• Always use mipmapping on any surface that may

be minified. In addition to improving quality by

reducing texture aliasing, mipmapping improves

texture cache utilization by localizing texture-

memory access patterns for minified textures. If

you find that mipmapping on certain surfaces

makes them look blurry, avoid the temptation to

disable mipmapping or add a large negative LOD

bias. Prefer anisotropic filtering instead and

adjust the level of anisotropy per batch as

appropriate.

Optimizing Frame-Buffer Bandwidth
The final stage in the pipeline, ROP, interfaces directly

with the frame-buffer memory and is the single largest

consumer of frame-buffer bandwidth. For this reason, if

bandwidth is an issue in your application, it can often be

traced to the ROP.

Computer Graphics Design and System

158

Here’s how to optimize for frame-buffer bandwidth:

• Render depth first. This step reduces not only

fragment-shading cost, but also frame-buffer

bandwidth cost.

• Reduce alpha blending. Note that alpha blending,

with a destination-blending factor set to anything

other than 0, requires both a read and a write to

the frame buffer, thus potentially consuming double

the bandwidth. Reserve alpha blending for only

those situations that require it, and be wary of high

levels of alpha-blended depth complexity.

• Turn off depth writes when possible. Writing depth

is an additional consumer of bandwidth, and it

should be disabled in multipass rendering (where

the final depth is already in the depth buffer); when

rendering alpha-blended effects, such as particles;

and when rendering objects into shadow maps (in

fact, for rendering into colour-based shadow maps,

you can turn off depth reads as well).

• Avoid extraneous colour-buffer clears. If every pixel

is guaranteed to be overwritten in the frame buffer

by your application, then avoid clearing colour,

because it costs precious bandwidth. Note, however,

that you should clear the depth and stencil buffers

whenever you can, because many early-z

optimizations rely on the deterministic contents of a

cleared depth buffer.

• Render roughly front to back. In addition to the

fragment-shading advantages mention, there are

Computer Graphics Design and System

159

similar benefits for frame-buffer bandwidth. Early-z

hardware optimizations can discard extraneous

frame-buffer reads and writes. In fact, even older

hardware, which lacks these optimizations, will

benefit from this step, because more fragments will

fail the depth test, resulting in fewer colour and

depth writes to the frame buffer.

• Optimize skybox rendering. Skyboxes are often

frame-buffer-bandwidth bound, but you must

decide how to optimize them: (1) render them last,

reading (but not writing) depth, and allow the early-

z optimizations along with regular depth buffering

to save bandwidth; or (2) render the skybox first,

and disable all depth reads and writes. Which

option will save you more bandwidth is a function

of the target hardware and how much of the skybox

is visible in the final frame. If a large portion of

the skybox is obscured, the first technique will likely

be better; otherwise, the second one may save more

bandwidth.

• Use floating-point frame buffers only when

necessary. These formats obviously consume much

more bandwidth than smaller, integer formats. The

same applies for multiple render targets.

• Use a 16-bit depth buffer when possible. Depth

transactions are a huge consumer of bandwidth,

so using 16-bit instead of 32-bit can be a giant

win, and 16-bit is often enough for small-scale,

indoor scenes that don’t require stencil. A 16-bit

Computer Graphics Design and System

160

depth buffer is also often enough for render-to-

texture effects that require depth, such as dynamic

cube maps.

• Use 16-bit colour when possible. This advice is

especially applicable to render-to-texture effects,

because many of these, such as dynamic cube

maps and projected-colour shadow maps, work just

fine in 16-bit colour.

As power and programmability increase in modern

GPUs, so does the complexity of extracting every bit of

performance out of the machine. Whether your goal is to

improve the performance of a slow application or to look

for areas where you can improve image quality “for free,”

a deep understanding of the inner workings of the graphics

pipeline is required. As the GPU pipeline continues to

evolve, the fundamental ideas of optimization will still

apply: first identify the bottleneck, by varying the load or

the computational power of each unit; then systematically

attack those bottlenecks, using your understanding of how

each pipeline unit behaves.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Design and Analysis Technologies
	Chapter 2 Applications of Computer Graphics
	Chapter 3 Computer Graphics in Java
	Chapter 4 Graphics System

