

COMPUTER DATA STORAGE
AND DATA STORAGE DEVICE

COMPUTER DATA STORAGE
AND DATA STORAGE DEVICE

Jimmie Frazier

Computer Data Storage and Data Storage Device

by Jimmie Frazier

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664310

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Computer Data Storage 1

Chapter 2 Data Structure 21

Chapter 3 Mass Storage 39

Chapter 4 Static Random-Access Memory 53

Chapter 5 Input Output Devices 62

Chapter 6 Database Storage Structures 120

Chapter 7 Data Storage Device 168

Chapter 8 USB Flash Drive 177

1

Computer Data Storage

Computer data storage, often called storage or memory,

refers to computer components and recording media that

retain digital data used for computing for some interval of

time. Computer data storage provides one of the core

functions of the modern computer, that of information

retention. It is one of the fundamental components of all

modern computers, and coupled with a central processing

unit (CPU, a processor), implements the basic computer

model used since the 1940s.

In contemporary usage, memory usually refers to a form

of semiconductor storage known as random-access memory,

typically DRAM (Dynamic-RAM) but memory can refer to

other forms of fast but temporary storage. Similarly, storage

today more commonly refers to storage devices and their

media not directly accessible by the CPU (secondary or

tertiary storage) — typically hard disk drives, optical disc

Computer Data Storage and Data Storage Device

2

drives, and other devices slower than RAM but more

permanent. Historically, memory has been called main

memory, real storage or internal memory while storage devices

have been referred to as secondary storage, external memory

or auxiliary/peripheral storage.

The contemporary distinctions are helpful, because they

are also fundamental to the architecture of computers in

general. The distinctions also reflect an important and

significant technical difference between memory and mass

storage devices, which has been blurred by the historical

usage of the term storage. Nevertheless, this article uses

the traditional nomenclature. Many different forms of storage,

based on various natural phenomena, have been invented.

So far, no practical universal storage medium exists, and

all forms of storage have some drawbacks. Therefore a

computer system usually contains several kinds of storage,

each with an individual purpose. A digital computer

represents data using the binary numeral system. Text,

numbers, pictures, audio, and nearly any other form of

information can be converted into a string of bits, or binary

digits, each of which has a value of 1 or 0. The most

common unit of storage is the byte, equal to 8 bits. A piece

of information can be handled by any computer whose

storage space is large enough to accommodate the binary

representation of the piece of information, or simply data. For

example, using eight million bits, or about one megabyte,

a typical computer could store a short novel. Traditionally

the most important part of every computer is the central

processing unit (CPU, or simply a processor), because it

actually operates on data, performs any calculations, and

Computer Data Storage and Data Storage Device

3

controls all the other components. Without a significant

amount of memory, a computer would merely be able to

perform fixed operations and immediately output the result.

It would have to be reconfigured to change its behaviour.

This is acceptable for devices such as desk calculators or

simple digital signal processors. Von Neumann machines

differ in that they have a memory in which they store their

operating instructions and data. Such computers are more

versatile in that they do not need to have their hardware

reconfigured for each new programme, but can simply be

reprogrammed with new in-memory instructions; they also

tend to be simpler to design, in that a relatively simple

processor may keep state between successive computations

to build up complex procedural results. Most modern

computers are von Neumann machines.

In practice, almost all computers use a variety of memory

types, organized in a storage hierarchy around the CPU, as

a trade-off between performance and cost. Generally, the

lower a storage is in the hierarchy, the lesser its bandwidth

and the greater its access latency is from the CPU. This

traditional division of storage to primary, secondary, tertiary

and off-line storage is also guided by cost per bit.

HIERARCHY OF STORAGE

PRIMARY STORAGE
Primary storage (or main memory or internal memory),

often referred to simply as memory, is the only one directly

accessible to the CPU. The CPU continuously reads

instructions stored there and executes them as required.

Computer Data Storage and Data Storage Device

4

Any data actively operated on is also stored there in uniform

manner. Historically, early computers used delay lines,

Williams tubes, or rotating magnetic drums as primary

storage.

By 1954, those unreliable methods were mostly replaced

by magnetic core memory. Core memory remained dominant

until the 1970s, when advances in integrated circuit

technology allowed semiconductor memory to become

economically competitive. This led to modern random-access

memory (RAM). It is small-sized, light, but quite expensive

at the same time. (The particular types of RAM used for

primary storage are also volatile, i.e. they lose the information

when not powered). There are two more sub-layers of the

primary storage, besides main large-capacity RAM:

• Processor registers are located inside the processor.

Each register typically holds a word of data (often 32

or 64 bits). CPU instructions instruct the arithmetic

and logic unit to perform various calculations or

other operations on this data (or with the help of it).

Registers are the fastest of all forms of computer data

storage.

• Processor cache is an intermediate stage between

ultra-fast registers and much slower main memory.

It’s introduced solely to increase performance of the

computer. Most actively used information in the main

memory is just duplicated in the cache memory,

which is faster, but of much lesser capacity. On the

other hand it is much slower, but much larger than

processor registers. Multi-level hierarchical cache

setup is also commonly used—primary cache being

Computer Data Storage and Data Storage Device

5

smallest, fastest and located inside the processor;

secondary cache being somewhat larger and slower.

Main memory is directly or indirectly connected to the

central processing unit via a memory bus. It is actually two

buses: an address bus and a data bus. The CPU firstly

sends a number through an address bus, a number called

memory address, that indicates the desired location of data.

Then it reads or writes the data itself using the data bus.

Additionally, a memory management unit (MMU) is a small

device between CPU and RAM recalculating the actual

memory address, for example to provide an abstraction of

virtual memory or other tasks. As the RAM types used for

primary storage are volatile (cleared at start up), a computer

containing only such storage would not have a source to

read instructions from, in order to start the computer.

Hence, non-volatile primary storage containing a small

startup programme (BIOS) is used to bootstrap the computer,

that is, to read a larger programme from non-volatile

secondary storage to RAM and start to execute it. A non-

volatile technology used for this purpose is called ROM, for

read-only memory (the terminology may be somewhat

confusing as most ROM types are also capable of random

access).

Many types of “ROM” are not literally read only, as

updates are possible; however it is slow and memory must

be erased in large portions before it can be re-written. Some

embedded systems run programmes directly from ROM (or

similar), because such programmes are rarely changed.

Standard computers do not store non-rudimentary

programmes in ROM, rather use large capacities of secondary

Computer Data Storage and Data Storage Device

6

storage, which is non-volatile as well, and not as costly.

Recently, primary storage and secondary storage in some

uses refer to what was historically called, respectively,

secondary storage and tertiary storage.

SECONDARY STORAGE
Secondary storage (also known as external memory or

auxiliary storage), differs from primary storage in that it is

not directly accessible by the CPU. The computer usually

uses its input/output channels to access secondary storage

and transfers the desired data using intermediate area in

primary storage. Secondary storage does not lose the data

when the device is powered down—it is non-volatile. Per

unit, it is typically also two orders of magnitude less expensive

than primary storage. Consequently, modern computer

systems typically have two orders of magnitude more

secondary storage than primary storage and data is kept

for a longer time there.

In modern computers, hard disk drives are usually used

as secondary storage. The time taken to access a given byte

of information stored on a hard disk is typically a few

thousandths of a second, or milliseconds. By contrast, the

time taken to access a given byte of information stored in

random access memory is measured in billionths of a second,

or nanoseconds. This illustrates the significant access-time

difference which distinguishes solid-state memory from

rotating magnetic storage devices: hard disks are typically

about a million times slower than memory. Rotating optical

storage devices, such as CD and DVD drives, have even

longer access times. With disk drives, once the disk read/

Computer Data Storage and Data Storage Device

7

write head reaches the proper placement and the data of

interest rotates under it, subsequent data on the track are

very fast to access. As a result, in order to hide the initial

seek time and rotational latency, data is transferred to and

from disks in large contiguous blocks.

When data reside on disk, block access to hide latency
offers a ray of hope in designing efficient external memory
algorithms. Sequential or block access on disks is orders
of magnitude faster than random access, and many
sophisticated paradigms have been developed to design
efficient algorithms based upon sequential and block access.
Another way to reduce the I/O bottleneck is to use multiple
disks in parallel in order to increase the bandwidth between
primary and secondary memory. Some other examples of
secondary storage technologies are: flash memory (e.g. USB
flash drives or keys), floppy disks, magnetic tape, paper
tape, punched cards, standalone RAM disks, and Iomega
Zip drives. The secondary storage is often formatted according
to a file system format, which provides the abstraction
necessary to organize data into files and directories, providing
also additional information (called metadata) describing the
owner of a certain file, the access time, the access
permissions, and other information. Most computer
operating systems use the concept of virtual memory,

allowing utilization of more primary storage capacity than

is physically available in the system. As the primary memory

fills up, the system moves the least-used chunks (pages)

to secondary storage devices (to a swap file or page file),

retrieving them later when they are needed. As more of

these retrievals from slower secondary storage are necessary,

the more the overall system performance is degraded.

Computer Data Storage and Data Storage Device

8

TERTIARY STORAGE
Tertiary storage or tertiary memory, provides a third level

of storage. Typically it involves a robotic mechanism which

will mount (insert) and dismount removable mass storage

media into a storage device according to the system’s

demands; this data is often copied to secondary storage

before use. It is primarily used for archival of rarely accessed

information since it is much slower than secondary storage

(e.g. 5–60 seconds vs. 1-10 milliseconds). This is primarily

useful for extraordinarily large data stores, accessed without

human operators. Typical examples include tape libraries

and optical jukeboxes. When a computer needs to read

information from the tertiary storage, it will first consult a

catalog database to determine which tape or disc contains

the information. Next, the computer will instruct a robotic

arm to fetch the medium and place it in a drive. When the

computer has finished reading the information, the robotic

arm will return the medium to its place in the library.

OFF-LINE STORAGE
Off-line storage is a computer data storage on a medium

or a device that is not under the control of a processing unit.

The medium is recorded, usually in a secondary or tertiary

storage device, and then physically removed or disconnected.

It must be inserted or connected by a human operator

before a computer can access it again. Unlike tertiary storage,

it cannot be accessed without human interaction. Off-line

storage is used to transfer information, since the detached

medium can be easily physically transported. Additionally,

in case a disaster, for example a fire, destroys the original

Computer Data Storage and Data Storage Device

9

data, a medium in a remote location will probably be

unaffected, enabling disaster recovery. Off-line storage

increases general information security, since it is physically

inaccessible from a computer, and data confidentiality or

integrity cannot be affected by computer-based attack

techniques. Also, if the information stored for archival

purposes is accessed seldom or never, off-line storage is less

expensive than tertiary storage. In modern personal

computers, most secondary and tertiary storage media are

also used for off-line storage. Optical discs and flash memory

devices are most popular, and to much lesser extent

removable hard disk drives. In enterprise uses, magnetic

tape is predominant. Older examples are floppy disks, Zip

disks, or punched cards.

CHARACTERISTICS OF STORAGE
Storage technologies at all levels of the storage hierarchy

can be differentiated by evaluating certain core characteristics

as well as measuring characteristics specific to a particular

implementation. These core characteristics are volatility,

mutability, accessibility, and addressibility. For any particular

implementation of any storage technology, the characteristics

worth measuring are capacity and performance.

VOLATILITY

NON-VOLATILE MEMORY
Will retain the stored information even if it is not

constantly supplied with electric power. It is suitable for

long-term storage of information.

Computer Data Storage and Data Storage Device

10

VOLATILE MEMORY
Requires constant power to maintain the stored

information. The fastest memory technologies of today are

volatile ones (not a universal rule). Since primary storage

is required to be very fast, it predominantly uses volatile

memory.

DIFFERENTIATION

DYNAMIC RANDOM ACCESS MEMORY

A form of volatile memory which also requires the stored

information to be periodically re-read and re-written, or

refreshed, otherwise it would vanish.

STATIC MEMORY

A form of volatile memory similar to DRAM with the

exception that it never needs to be refreshed as long as

power is applied. (It loses its content if power is removed).

MUTABILITY

READ/WRITE STORAGE OR MUTABLE

STORAGE

Allows information to be overwritten at any time. A

computer without some amount of read/write storage for

primary storage purposes would be useless for many tasks.

Modern computers typically use read/write storage also for

secondary storage.

Computer Data Storage and Data Storage Device

11

READ ONLY STORAGE
Retains the information stored at the time of manufacture,

and write once storage (Write Once Read Many) allows the

information to be written only once at some point after

manufacture. These are called immutable storage. Immutable

storage is used for tertiary and off-line storage. Examples

include CD-ROM and CD-R.

SLOW WRITE, FAST READ STORAGE

Read/write storage which allows information to be

overwritten multiple times, but with the write operation

being much slower than the read operation. Examples

include CD-RW and flash memory.

ACCESSIBILITY

RANDOM ACCESS

Any location in storage can be accessed at any moment

in approximately the same amount of time. Such

characteristic is well suited for primary and secondary

storage.

SEQUENTIAL ACCESS

The accessing of pieces of information will be in a serial

order, one after the other; therefore the time to access a

particular piece of information depends upon which piece

of information was last accessed. Such characteristic is

typical of off-line storage.

Computer Data Storage and Data Storage Device

12

ADDRESSABILITY

LOCATION-ADDRESSABLE
Each individually accessible unit of information in storage

is selected with its numerical memory address. In modern

computers, location-addressable storage usually limits to

primary storage, accessed internally by computer

programmes, since location-addressability is very efficient,

but burdensome for humans.

FILE ADDRESSABLE

Information is divided into files of variable length, and

a particular file is selected with human-readable directory

and file names. The underlying device is still location-

addressable, but the operating system of a computer provides

the file system abstraction to make the operation more

understandable. In modern computers, secondary, tertiary

and off-line storage use file systems.

CONTENT-ADDRESSABLE

Each individually accessible unit of information is selected

based on the basis of (part of) the contents stored there.

Content-addressable storage can be implemented using

software (computer programme) or hardware (computer

device), with hardware being faster but more expensive

option. Hardware content addressable memory is often used

in a computer’s CPU cache.

Computer Data Storage and Data Storage Device

13

CAPACITY

RAW CAPACITY
The total amount of stored information that a storage

device or medium can hold. It is expressed as a quantity

of bits or bytes (e.g. 10.4 megabytes).

MEMORY STORAGE DENSITY
The compactness of stored information. It is the storage

capacity of a medium divided with a unit of length, area or

volume (e.g. 1.2 megabytes per square inch).

PERFORMANCE

LATENCY
The time it takes to access a particular location in storage.

The relevant unit of measurement is typically nanosecond

for primary storage, millisecond for secondary storage, and

second for tertiary storage. It may make sense to separate

read latency and write latency, and in case of sequential

access storage, minimum, maximum and average latency.

THROUGHPUT
The rate at which information can be read from or written

to the storage. In computer data storage, throughput is

usually expressed in terms of megabytes per second or MB/

s, though bit rate may also be used.

As with latency, read rate and write rate may need to

be differentiated. Also accessing media sequentially, as

opposed to randomly, typically yields maximum throughput.

Computer Data Storage and Data Storage Device

14

ENERGY USE
• Storage devices that reduce fan usage, automatically

shut-down during inactivity, and low power hard

drives can reduce energy consumption 90 percent.

• 2.5 inch hard disk drives often consume less power

than larger ones. Low capacity solid-state drives have

no moving parts and consume less power than hard

disks. Also, memory may use more power than hard

disks.

FUNDAMENTAL STORAGE TECHNOLOGIES
As of 2008, the most commonly used data storage

technologies are semiconductor, magnetic, and optical, while

paper still sees some limited usage. Some other fundamental

storage technologies have also been used in the past or are

proposed for development.

SEMICONDUCTOR
Semiconductor memory uses semiconductor-based

integrated circuits to store information. A semiconductor

memory chip may contain millions of tiny transistors or

capacitors. Both volatile and non-volatile forms of semiconductor

memory exist. In modern computers, primary storage almost

exclusively consists of dynamic volatile semiconductor memory

or dynamic random access memory. Since the turn of the

century, a type of non-volatile semiconductor memory known

as flash memory has steadily gained share as off-line storage

for home computers. Non-volatile semiconductor memory is

also used for secondary storage in various advanced electronic

devices and specialized computers.

Computer Data Storage and Data Storage Device

15

MAGNETIC
Magnetic storage uses different patterns of magnetization

on a magnetically coated surface to store information.

Magnetic storage is non-volatile. The information is accessed

using one or more read/write heads which may contain one

or more recording transducers. A read/write head only
covers a part of the surface so that the head or medium
or both must be moved relative to another in order to access
data. In modern computers, magnetic storage will take
these forms:

• Magnetic disk

o Floppy disk, used for off-line storage

o Hard disk drive, used for secondary storage

• Magnetic tape data storage, used for tertiary and off-
line storage

In early computers, magnetic storage was also used for
primary storage in a form of magnetic drum, or core memory,
core rope memory, thin-film memory, twistor memory or

bubble memory. Also unlike today, magnetic tape was often

used for secondary storage.

OPTICAL
Optical storage, the typical optical disc, stores information

in deformities on the surface of a circular disc and reads

this information by illuminating the surface with a laser

diode and observing the reflection. Optical disc storage is

non-volatile. The deformities may be permanent (read only

media), formed once (write once media) or reversible

(recordable or read/write media). The following forms are

currently in common use:

Computer Data Storage and Data Storage Device

16

• CD, CD-ROM, DVD, BD-ROM: Read only storage,

used for mass distribution of digital information

(music, video, computer programmes)

• CD-R, DVD-R, DVD+R, BD-R: Write once storage,

used for tertiary and off-line storage

• CD-RW, DVD-RW, DVD+RW, DVD-RAM, BD-RE: Slow

write, fast read storage, used for tertiary and off-line

storage

• Ultra Density Optical or UDO is similar in capacity

to BD-R or BD-RE and is slow write, fast read storage

used for tertiary and off-line storage.

Magneto-optical disc storage is optical disc storage where

the magnetic state on a ferromagnetic surface stores

information. The information is read optically and written

by combining magnetic and optical methods. Magneto-optical

disc storage is non-volatile, sequential access, slow write,

fast read storage used for tertiary and off-line storage. 3D

optical data storage has also been proposed.

PAPER
Paper data storage, typically in the form of paper tape

or punched cards, has long been used to store information

for automatic processing, particularly before general-purpose

computers existed. Information was recorded by punching

holes into the paper or cardboard medium and was read

mechanically (or later optically) to determine whether a

particular location on the medium was solid or contained

a hole. A few technologies allow people to make marks on

paper that are easily read by machine—these are widely

used for tabulating votes and grading standardized tests.

Computer Data Storage and Data Storage Device

17

Barcodes made it possible for any object that was to be sold

or transported to have some computer readable information

securely attached to it.

UNCOMMON

VACUUM TUBE MEMORY
A Williams tube used a cathode ray tube, and a Selectron

tube used a large vacuum tube to store information. These
primary storage devices were short-lived in the market,
since Williams tube was unreliable and Selectron tube was
expensive.

ELECTRO-ACOUSTIC MEMORY
Delay line memory used sound waves in a substance

such as mercury to store information. Delay line memory
was dynamic volatile, cycle sequential read/write storage,
and was used for primary storage.

OPTICAL TAPE
is a medium for optical storage generally consisting of

a long and narrow strip of plastic onto which patterns can
be written and from which the patterns can be read back.
It shares some technologies with cinema film stock and
optical discs, but is compatible with neither. The motivation
behind developing this technology was the possibility of far
greater storage capacities than either magnetic tape or
optical discs.

PHASE-CHANGE MEMORY
uses different mechanical phases of Phase Change

Material to store information in an X-Y addressable matrix,

Computer Data Storage and Data Storage Device

18

and reads the information by observing the varying electrical

resistance of the material. Phase-change memory would be

non-volatile, random access read/write storage, and might

be used for primary, secondary and off-line storage. Most

rewritable and many write once optical disks already use

phase change material to store information.

HOLOGRAPHIC DATA STORAGE
Stores information optically inside crystals or

photopolymers. Holographic storage can utilize the whole

volume of the storage medium, unlike optical disc storage

which is limited to a small number of surface layers.

Holographic storage would be non-volatile, sequential access,

and either write once or read/write storage. It might be used

for secondary and off-line storage. See Holographic Versatile

Disc (HVD).

MOLECULAR MEMORY
stores information in polymer that can store electric

charge. Molecular memory might be especially suited for

primary storage. The theoretical storage capacity of molecular

memory is 10 terabits per square inch.

RELATED TECHNOLOGIES

NETWORK CONNECTIVITY
A secondary or tertiary storage may connect to a computer

utilizing computer networks. This concept does not pertain

to the primary storage, which is shared between multiple

processors in a much lesser degree.

Computer Data Storage and Data Storage Device

19

• Direct-attached storage (DAS) is a traditional mass

storage, that does not use any network. This is still

a most popular approach. This term was coined lately,

together with NAS and SAN.

• Network-attached storage (NAS) is mass storage

attached to a computer which another computer can

access at file level over a local area network, a private

wide area network, or in the case of online file storage,

over the Internet. NAS is commonly associated with

the NFS and CIFS/SMB protocols.

• Storage area network (SAN) is a specialized network,

that provides other computers with storage capacity.

The crucial difference between NAS and SAN is the

former presents and manages file systems to client

computers, whilst the latter provides access at block-

addressing (raw) level, leaving it to attaching systems

to manage data or file systems within the provided

capacity. SAN is commonly associated with Fibre

Channel networks.

ROBOTIC STORAGE
Large quantities of individual magnetic tapes, and optical

or magneto-optical discs may be stored in robotic tertiary

storage devices. In tape storage field they are known as tape

libraries, and in optical storage field optical jukeboxes, or

optical disk libraries per analogy. Smallest forms of either

technology containing just one drive device are referred to

as autoloaders or autochangers.

Robotic-access storage devices may have a number of

slots, each holding individual media, and usually one or

Computer Data Storage and Data Storage Device

20

more picking robots that traverse the slots and load media

to built-in drives. The arrangement of the slots and picking

devices affects performance. Important characteristics of

such storage are possible expansion options: adding slots,

modules, drives, robots. Tape libraries may have from 10

to more than 100,000 slots, and provide terabytes or

petabytes of near-line information. Optical jukeboxes are

somewhat smaller solutions, up to 1,000 slots.

Robotic storage is used for backups, and for high-capacity

archives in imaging, medical, and video industries.

Hierarchical storage management is a most known archiving

strategy of automatically migrating long-unused files from

fast hard disk storage to libraries or jukeboxes. If the files

are needed, they are retrieved back to disk.

Computer Data Storage and Data Storage Device

21

2

Data Structure

The art of Programmeming beyond this simple beginning

depends on inventing, or should reinventing, sophisticated

data structures. The problem is where to begin and the

general consensus is that the stack is where it’s at.

A stack is exactly what it sounds like. Make a stack of

cards, say, on a table and you have everything you need to

know about a stack. What are the basic stack operations –

you can put a new card on the top of the stack and you can

take a card off the top of the stack.

As long are you aren’t cheating and dealing from the bottom

(that would make it a data structure called a deque) putting

something on the top and taking something off the top are

the only two stack operations allowed. Usually these two

operations are called “push” and “pull” or “push” and “pop”

but what you call them doesn’t really matter as long as you

understand what is going on.

Computer Data Storage and Data Storage Device

22

Pushing C onto a stack stores it where the TOS pointer

indicates

Popping the stack retrieves the top data item and moves the

TOS down one

If we have a stack and we do Push A, Push B and Push C

what do you think you get if we next do a Pop? If your answer

is C you understand how a stack works. Stacks are

interesting because they can be used to alter the order of

things. You stack A, B and C and you get back C, B and then

A.

It reverses the order without you having to do anything

and this is very useful. This accounts for the other name for

a stack – a Last In First Out stack or LIFO stack. In fact this

order changing ability is such a powerful property that you

can build computers that have no other memory than a stack

and no other storage operations than push and pop.

You can even create Programmeming languages that have

nothing but a stack as their single data structure and all of

their commands refer to the stack. Even though you can

Computer Data Storage and Data Storage Device

23

have stack-oriented languages there are few popular or

common languages that have stacks as standard – you have

to create your own using whatever they provide. If you know

how fine, if not then you have to use something less

appropriate.

So, how is it done? All you need is an array and a variable

to act as a pointer to the top of stack or TOS as it is usually

known. The array simply has to be big enough to hold the

maximum number of items. The pointer is simply set initially

to the start of the array. You might set up the stack as:
Dim Stack(10)
Pointer=1

To push something on to the stack the operation is:
Stack(Pointer)=something
Pointer=Pointer+1

To pop something off the stack the operation is:
Pointer=Pointer-1
Something=Stack(Pointer)

If you want to get picky about stacks you can argue the

point of whether the pointer should point to the item on the

top of the stack or to the next free space on the stack. Experts

prefer to have the pointer to the item on the top of stack

rather than the next free space.

About the only thing that can go wrong with a stack is

that it runs out of space i.e. the stack pointer goes beyond

the end of the array or that it under runs, i.e. the user of the

stack attempts to pop something off the stack when there

isn’t anything to pop.

OBJECTS
Of course the modern view isn’t that the stack is a data

structure – it’s an object. That is, something with methods, i.e.

pop and push, and an existence that goes beyond mere data. If

Computer Data Storage and Data Storage Device

24

“CStack” is a class based implementation of a stack then in an

object-oriented language we can create as many stacks as we

like:
Dim MyStack1 As CStack
Dim MyStack2 As CStack

These would be used something like:
MyStack1.push “A”

or
Data=MyStack2.pop

where it is assumed that the methods are push and pop.

Notice that the object-based implementation has the

advantage that you don’t need to ask how the stack works,

what’s inside the object if you like. This means that the

Programmemer can implement the internal working any way

that they want and they can even change things without the

outside world being any the wiser. Objects are good…

QUEUE & THE DEQUE
Once you have seen a stack you can invent all of the stack-

like objects that have ever been thought of, and some. For

example, a queue or a First In First Out (FIFO) stack is simply

an array with two pointers – one to the start and one to end

of the queue. Anything added to the queue goes to the end

anything taken from the queue comes from the front.

In object-oriented terms the queue has two methods, Join

and Leave. A queue doesn’t change the order that things are

Computer Data Storage and Data Storage Device

25

stored in and it’s mostly useful to slow things down so that

they can be processed when the Programme is ready.

(Hardware people often call queues “buffers”.)

A queue has two pointers – one to the start of the queue and

one to the end A deque is a queue that you can join and leave

from the front or the back and it has four methods, JoinFront,

JoinEnd, LeaveFront and LeaveEnd.

You are probably getting the idea by now. This sort of data

structure simply has methods that adds new things and

methods that retrieve new things according to when they

were added.

TREES
The tree is probably the most important of the really

advanced data structures and in many ways it’s the most

complicated and sophisticated. To be abstract for the

moment, a tree consists of a set of nodes – the places where

the branches do their branching – and the branches that

connect the nodes.

The idea, or rather the picture, that you should have in

your head of a branching tree-like structure is simple enough,

actually implementing it in computer terms is not quite as

straightforward. To start with the nodes are the things that

we work with.

A node has space to store the data in the tree, a person’s

name for example, and it also stores “pointers” to the nodes

that are connected to its child nodes. The big problem is

how many pointers?

In general a tree can have nodes with as many child nodes as

you care to imagine and this is difficult to implement. As a result

Computer Data Storage and Data Storage Device

26

we like trees that have a fixed number of child nodes – 2 say

gives us the binary tree. In this case, i.e. a binary tree, we can

refer to the “right child node” and the “left child node” or just the

“right” and “left” nodes. A tree also has a first or “root node” that

everything else grows from.

In a binary tree each node has two child nodes – one left

and one right.

Now we can invent an object that behaves like a node in a

binary tree, i.e. an object with two properties - left and right

child nodes, and a single data property, which stores the

value at the node.

We can now build a tree by creating a root node:
Dim root As New Node

and then add extra nodes as required:
Root.LeftNode=New Node
Root.RightNode=New Node

How do we get at these nodes so that we can grow the tree

another level? Easy we just continue the same notation:
Root.LeftNode.LeftNode=New Node
Root.LeftNode.RightNode=New Node

and so on.

Of course we are also assuming that nodes have a data

property which can be used to store whatever you want at

each node. For example,
Root.LeftNode.data= “john”

would store the indicated name at the first left child node

from the root. You should be able to see how to build up a

Computer Data Storage and Data Storage Device

27

data structure that corresponds to a family tree in which

each “node” gives rise to just two offspring.

If you want more, or even a variable number of, offspring

at each node then it works in the same sort of way but you

need a collection of pointers to the child nodes and this is

awkward to write down. There is also the small problem of

working with trees. Clearly you can keep on writing out Left

Node.Right Node.Right Node. Left Node type names to specify

a node of your choice – it’s too clumsy. What actually happens

in practice is that a pointer to a node is used as the “current”

node and this moves its way down the tree by being set to

the current nodes left or right child:
CurrentNode=CurrentNode.LeftNode

And so on. You can generalise this to more than two child

nodes and even work out ways of writing Programmes that

do standard tasks such as visiting every node in a tree. This

is again another area where things can seem complicated

because you can ask that every node is visited in a particular

order.

For example going down each branch as far as possible

before starting again to go down the next branch is

called"depth first", while visiting all nodes at the same depth

before going deeper, is called"breadth first". The jargon also

gets more impressive - we talk of"traversing the tree" and

eventually you will encounter the fact that trees

and"recursion" go together. Recursion is a whole topic in its

own right and the source of the only good computer science

joke I know - dictionary definition of recursion"Recursion -

see recursion".

What are trees used for? Well, everything from keeping

track of where files are stored on a disk drive to analysing

Computer Data Storage and Data Storage Device

28

natural language and applications in artificial intelligence.

It's worth point out that XML is a data language that can

only describe tree structures so the idea must be powerful.

You can't Programme for long without meeting trees.

METHODOLOGY AUGMENT OF

DATA STRUCTURES

There are some Programmeming situations that can be

perfectly solved with standard data structures such as a

linked lists, hash tables, or binary search trees. Many others

require a dash of creativity. Only in rare situations will you

need to create an entirely new type of data structure,

though. More often, it will suffice to augment (to modify) an

existing data structure by storing additional information in

it. You can then Programme new operations for the data

structure to support the desired application. Augmenting a

data structure is not always straightforward, however, since

the added information must be updated and maintained by

the ordinary operations on the data structure. Data structure

that supports general order-statistic operations on a dynamic

set. It’s called dynamic order statistics. Any order statistic

could be retrieved in O(n) time from an unordered set. How

red-black trees can be modified so that any order statistic

can be determined in O(lg(n)) time. It presents two

algorithms OS-Select(i), which returns i-th smallest item in

a dynamic set, and OS-Rank(x), which returns rank (position)

of element x in sorted order.

General methodology of how to augment a data structure.

Augmenting a data structure can be broken into four steps:

Computer Data Storage and Data Storage Device

29

• Choosing an underlying data structure.

• Determining additional information to be maintained

in the underlying data structure.

• Verifying that the additional information can be

maintained for the basic modifying operations (insert,

delete, rotate, etc.) on the underlying data structure.

• Developing new operations.

The second part of the lecture applies this methodology to

construct a data structure called interval trees. This data

structure maintains a dynamic set of elements, with each

element x containing an interval. Interval is simply pair of

numbers (low, high). For example, a time interval from 3

o’clock to 7 o’clock is a pair (3, 7).

Lecture gives an algorithm called Interval-Search(x), which

given a query interval x, quickly finds an interval in the set

that overlaps it. Time complexity of this algorithm is O(lg(n)).

ABOUT LUCTURE
The lecture is motivated by two things:

• The implementation of ADTs that extend standard

ADTs by one or more additional operations;

• Application in which data “live in” various data

structures simultaneously.

Augmentation is a process by which one adds fields to the

nodes as necessary.

Augmenting a data structure can be broken into four steps:

• Choosing an underlying data structure

• Determining additional information to be maintained

in the underlying data structure

Computer Data Storage and Data Storage Device

30

• Verifying that the additional information can be

efficiently maintained for the basic modifying

operations on the underlying data structure

• Developing new operations

DYNAMIC ORDER-STATISTIC TREES
ADT: set S; Dictionary operations (Insert, Delete, Search) +

two additional operations:

• Rank(S,x): Returns rank of node x (smallest rank is

1)

• Select(S, i): Select ith smallest element from set S

IMPLEMENTATION
An order-statistic tree T is simply a red-black tree with

additional information stored at each node. Besides the usual

red-black tree fields key[x], left[x], right[x],p[x] and Colour[x]

in a node x, we have another field size[x]. This field contains

the number of internal nodes in the subtree rooted at x

(including x itself), that is, the size of the subtree.

size[x] = size[left[x]] + size[right[x]] + 1

The node of the order-statistic tree will now look as follows:

figure

There are couple of things though that we have to worry

about:

1. Can size be updated in O(log2n) time per operation?

2. Rank(x) and select(S, i) to be done in O(log2n) time.

Computer Data Storage and Data Storage Device

31

OPERATIONS ON

ORDER-STATISTIC TREES

INSERT
As we know, insertion into a red-black tree consists of two

phases. Phase 1 goes down the path from the root inserting

the new node as a child of the existing node. To maintain the

subtree sizes we simply increment size[x] for each node x on

the path traversed from the root down toward the leaves.

The new node added gets size 1. Figure illustrates Phase 1.

In the Phase 2, the only structural changes to the

underlying red-black tree are caused by rotations, of which

there are at most two. Rotation is a local operation and it

invalidates only the two size fields in the nodes incident on

the link around which the rotation is performed. Figure shows

Left and Rightrotations.

DELETE
Phase 1 splices out the node we wish to delete. To update

subtree sizes we simply traverse a path from node we wish

Computer Data Storage and Data Storage Device

32

to delete up to the root, decrementingsize field for each node

on the path. Figure illustrates this process.

The rotations in the Phase 2 are handled in the same

manner as for insertion.

Running time: To maintain tree sizes in the Phase 1 of

insertion or deletion we have to increment or decrement

size[x] for each node x on the path from the root down toward

the leaves. Since there are O(log2n) nodes on the traversed

path, the additional cost of maintaining the size fields is

O(log2n). Moreover, rotation is a local operation and hence

only O(1) additional time is spent updating size fields in the

Phase 2. Thus, both insertion and deletion take O(log2n) time.

SELECT
The procedure Select(x, i) returns a pointer to the node

containing the ith smallest key in the subtree rooted at x.
Select(x, i)
r (rank of root) = size[left[x]] + 1
case r = i: return x
case r > i: return Select(left[x], i)
case r < i: return Select(right[x], i)

Because each recursive call goes down one level in the

order-statistic tree, the total time for Select is at worst

proportional to the height of the tree. Since the tree is the

red-black tree, its height is O(log2n). Thus, the running time

of Select is O(log2n).

Computer Data Storage and Data Storage Device

33

RANK
The procedure Rank(T, x) returns the position of x in the

linear order determined by an inorder tree walk of T. Let x is

a pointer to the node in the tree.
Rank(T, x)

r = size[left[x]] + 1

y = x

while y <> root do

if right[parent[y]] = y

then r += size[left[parent[y]]] + 1

y = parent[y]

return r

Since each iteration of the while loop takes O(1) time and y

goes up one level in the tree with each iteration, the running

time of Rank is at worst proportional to the height of the tree:

O(log2n). Figure illustrates the Rank procedure.

����� ����� �	� 	
�� ���������

BINARY SEARCH TREES FOR BROWSING ADT
Dictionary + Browsing operations:

• MIN

• MAX

• Predecessor

• Successor

Computer Data Storage and Data Storage Device

34

IMPLEMENTATION
The underlying data structure is a red-black tree where

besides usual red-black tree fields each node is augmented

with Min[x], Max[x], Predecessor[x] andSuccessor[x]. Figure

shows the augmented Red-Black tree on the input {1 2 3 4 5

6 7 8 9 10 11}.

The data structure in Figure below can be looked at as a

binary search tree or a sorted linked list as shown in Figure.

In fact, according to Prof. Devroye, it is a smooth “marriage”

of both data structures.

When we insert or delete a node we always have to update

predecessor and successor pointers. We have deleted a new

node with a key value 8. Accordingly we have to update

successor and predecessor pointers.

The time it takes to update pointers is equal to O(log2n),

since we either follow a path up the tree or down the tree.

Rotation operations take as usual O(1) time, so the running

time for insertion or deletion is O(log2n). In figure the updated

pointer.

Computer Data Storage and Data Storage Device

35

INTERVAL TREES
Interval tree is a binary search tree for intervals which are

efficient for the dictionary operations and overlap. Overlap(x,

i) for interval i and a tree rooted at x, returns a pointer to an

interval in the collection that overlaps the given interval i or

returns NIL otherwise. The underlying data structure is a

red-black tree in which each node x contains an interval

int[x] and the key of x is a low endpoint of interval,

low[int[x]].high[x] is the high endpoint of interval.

In addition, each node x contains a value max[x] which is

the maximum value of any interval endpoint stored in the

subtree rooted at x.

OPERATIONS

• Determine overlap with some interval in the tree:

return Yes or No

Computer Data Storage and Data Storage Device

36

• Dictionary operations (Insert, Delete, Search)

Given interval i and pointer to the root x Overlap(x, i)

returns NIL if no overlap occured or pointer to the node if

there is an overlap.
Overlap(x, i)
if x = NIL then return NIL
while x <> NIL and i doesn’t overlap int[x] do
if left[x] <> NIL and low[i] Ü max[left[x]]
then x = left[x]
else x = right[x]

RUNNING TIME

The search for the inteval that overlaps i starts with x at

the root of the tree and proceeds downward. It terminates

when either overlapping interval is found or x becomes NIL.

Since each iteration of the basic loop takes O(1) time, and

since the height or the red-black tree is O(log2n) Overlaptakes

O(log2n) time.

Insertion of a node x into a tree consists of two phases.

During the first phase x is inserted as a child of an existing

node. The value of max[x] can be computed in O(1) time since

it depends only on information in the other fields of x itself

and x’s children, but x’s children are both NIL.

Once max[x] is computed, the change propagates up the

tree. Thus, total time for the first phase is O(log2n). During

Computer Data Storage and Data Storage Device

37

second phase the only structural changes are caused by

rotations. Since only two nodes change in rotation, the total

time for updating the max fields is O(log2n) per rotation. Since

the number of rotations during insertion is at most two, the
total time for insertion is O(log2n).

In the first phase of deletion, changes occur if the deleted
node is replaced by its successor, and then again when either
the deleted node or its successor is spliced out. Propagating
the updates to max caused by these changes costs at most
O(log2n) since the changes modify the tree locally. Fixing up
the red-black tree during the second phase requires at most
three rotations, and each rotation requires at most O(log2n)
time to propagate the updates to max. Thus, like insertion,

the total time for deletion is O(log2n).

Problem: Layout of VSLI chips

In this section we present a problem which is motivated

by automated chip design. The problem is how can we place

many printed circuits on one chip without overlapping? To

make the problem more amenable to analysis, we assume

that all n rectangles to be aligned with horizontal axis. We

also assume that we are given a configuration of the

rectangles, and our task is merely to check whether there is

any overlap between rectangles.

In the naive solution we try to remove overlapped rectangles

and place them randomly again. It takes time of Θ (n²). The

Computer Data Storage and Data Storage Device

38

more efficient algorithm, which takes O(nlog2n) time, uses a

technique known as sweeping.

In sweeping an imaginary vertical sweep line passes

through a given set of geometric objects (rectangles), usually

from left to right. Sweeping provides a method for ordering

geometric objects, usualy by placing them into dynamic data

structure. We sort the rectangles’ endpoints by increasing x-

coordinate and proceed from left to right. We insert y-direction

intervals into an interval tree when its left endpoint is

encountered and we delete it from interval tree when its right

endpoint is encountered. Whether two segments first become

consecutive in the total order, we check if they overlap.

Computer Data Storage and Data Storage Device

39

3

Mass Storage

In computing, mass storage refers to the storage of large

amounts of data in a persisting and machine-readable

fashion. Devices and/or systems that have been described

as mass storage include tape libraries, RAID systems, hard

disk drives, magnetic tape drives, optical disc drives,

magneto-optical disc drives, drum memory (historic), floppy

disk drives (historic), punched tape (historic) and holographic

memory (experimental). Mass storage includes devices with

removable and non-removable media. It does not include

random access memory (RAM), which is volatile in that it

loses its contents after power loss.

The notion of “large” amounts of data is of course highly

dependent on the time frame and the market segment, as

mass storage device capacity has increased by many orders

of magnitude since the beginnings of computer technology

in the late 1940s and continues to grow; however, in any

Computer Data Storage and Data Storage Device

40

time frame, common mass storage devices have tended to

be much larger and at the same time much slower than

common realizations of the contemporaneous primary

storage technology. The term mass storage was used in the

PC marketplace for devices far smaller than devices that

were not considered mass storage in the mainframe

marketplace.

Mass storage devices are characterized by:

• Sustainable transfer speed

• Seek time

• Cost

• Capacity

Today, magnetic disks are the predominant storage media

in personal computers. Optical discs, however, are almost

exclusively used in the large-scale distribution of retail

software, music and movies because of the cost and

manufacturing efficiency of the molding process used to

produce DVD and compact discs and the nearly-universal

presence of reader drives in personal computers and

consumer appliances. Flash memory (in particular, NAND

flash) has an established and growing niche as a replacement

for magnetic hard disks in high performance enterprise

computing installations because it has no moving parts

(making it more robust) and has a much lower latency; as

removable storage such as USB sticks, because in lower

capacity ranges it can be made smaller and cheaper than

hard disks; and on portable devices such as notebook

computers and cell phones because of its lower size and

weight, better tolerance of physical stress caused by e.g.

Computer Data Storage and Data Storage Device

41

shaking or dropping, and low power consumption. The

design of computer architectures and operating systems are

often dictated by the mass storage and bus technology of

their time. Desktop operating systems such as Windows are

now so closely tied to the performance characteristics of

magnetic disks that it is difficult to deploy them on other

media like flash memory without running into space

constraints, suffering serious performance problems or

breaking applications.

USAGE
Mass storage devices used in desktop and most server

computers typically have their data organized in a file system.

The choice of file system is often important in maximizing

the performance of the device: general purpose file systems

(such as NTFS and HFS, for example) tend to do poorly on

slow-seeking optical storage such as compact discs. Some

relational databases can also be deployed on mass storage

devices without an intermediate file system or storage

manager. Oracle and MySQL, for example, can store table

data directly on raw block devices. On removable media,

archive formats (such as tar archives on magnetic tape,

which pack file data end-to-end) are sometimes used instead

of file systems because they are more portable and simpler

to stream.

On embedded computers, it is common to memory map

the contents of a mass storage device (usually ROM or flash

memory) so that its contents can be traversed as in-memory

data structures or executed directly by programmes.

Computer Data Storage and Data Storage Device

42

STABLE STORAGE
Stable storage is a classification of computer data storage

technology that guarantees atomicity for any given write

operation and allows software to be written that is robust

against some hardware and power failures. To be considered
atomic, upon reading back a just written-to portion of the
disk, the storage subsystem must return either the write
data or the data that was on that portion of the disk before
the write operation. Most computer disk drives are not
considered stable storage because they do not guarantee
atomic write: an error could be returned upon subsequent
read of the disk where it was just written to in lieu of either
the new or prior data.

MULTIPLE TECHNIQUES
Multiple techniques have been developed to achieve the

atomic property from weakly-atomic devices such as disks.
Writing data to a disk in two places in a specific way is one
technique and can be done by application software. Most
often though, stable storage functionality is achieved by
mirroring data on separate disks via RAID technology (level
1 or greater). The RAID controller implements the disk
writing algorithms that enable separate disks to act as
stable storage. The RAID technique is robust against some
single disk failure in an array of disks whereas the software

technique of writing to separate areas of the same disk only

protects against some kinds of internal disk media failures

such as bad sectors in single disk arrangements.

DRAM PACKAGING

For economic reasons, the large (main) memories found

in personal computers, workstations, and non-handheld

Computer Data Storage and Data Storage Device

43

game-consoles (such as PlayStation and Xbox) normally

consists of dynamic RAM (DRAM). Other parts of the

computer, such as cache memories and data buffers in hard

disks, normally use static RAM (SRAM).

GENERAL DRAM PACKAGING FORMATS
Dynamic random access memory is produced as

integrated circuits (ICs) bonded and mounted into plastic
packages with metal pins for connection to control signals
and buses. Today, these DRAM packages are in turn often
assembled into plug-in modules for easier handling. Some
standard module types are:

• DRAM chip (Integrated Circuit or IC)

o Dual in-line Package (DIP)

• DRAM (memory) modules

o Single In-line Pin Package (SIPP)

o Single In-line Memory Module (SIMM)

o Dual In-line Memory Module (DIMM)

o Rambus In-line Memory Module (RIMM), technically
DIMMs but called RIMMs due to their proprietary
slot.

o Small outline DIMM (SO-DIMM), about half the
size of regular DIMMs, are mostly used in notebooks,
small footprint PCs (such as Mini-ITX
motherboards), upgradable office printers and
networking hardware like routers. Comes in
versions with:

- 72-pin (32-bit)

- 144-pin (64-bit) used for PC100/PC133 SDRAM

- 200-pin (72-bit) used for DDR and DDR2

- 240-pin (72-bit) used for DDR3

Computer Data Storage and Data Storage Device

44

o Small outline RIMM (SO-RIMM). Smaller version of

the RIMM, used in laptops. Technically SO-DIMMs

but called SO-RIMMs due to their proprietary slot.

• Stacked vs. non-stacked RAM modules

o Stacked RAM modules contain two or more RAM

chips stacked on top of each other. This allows

large modules (like 512 MB or 1 GB SO-DIMM) to

be manufactured using cheaper low density wafers.

Stacked chip modules draw more power, and with

the advent of commodity BGA memories are no

longer physically possible to construct.

COMMON DRAM MODULES
Common DRAM packages as illustrated to the right,

from top to bottom:

1. DIP 16-pin (DRAM chip, usually pre-FPRAM)

2. SIPP (usually FPRAM)

3. SIMM 30-pin (usually FPRAM)

4. SIMM 72-pin (often EDO RAM but FPM is not

uncommon)

5. DIMM 168-pin (SDRAM)

6. DIMM 184-pin (DDR SDRAM)

7. RIMM 184-pin (RDRAM)

8. DIMM 240-pin (DDR2 SDRAM/DDR3 SDRAM)

VARIATIONS
While the fundamental DRAM cell and array has

maintained the same basic structure (and performance) for

many years, there have been many different interfaces for

Computer Data Storage and Data Storage Device

45

speaking with DRAM chips. When one speaks about “DRAM

types”, one is generally referring to the interface that is

used.

ASYNCHRONOUS DRAM
This is the basic form, from which all others derive. An

asynchronous DRAM chip has power connections, some

number of address inputs (typically 12), and a few (typically

one or four) bidirectional data lines. There are four active

low control signals:

• /RAS, the Row Address Strobe. The address inputs

are captured on the falling edge of /RAS, and select

a row to open. The row is held open as long as /RAS

is low.

• /CAS, the Column Address Strobe. The address inputs

are captured on the falling edge of /CAS, and select

a column from the currently open row to read or

write.

• /WE, Write Enable. This signal determines whether

a given falling edge of /CAS is a read (if high) or write

(if low). If low, the data inputs are also captured on

the falling edge of /CAS.

• /OE, Output Enable. This is an additional signal that

controls output to the data I/O pins. The data pins

are driven by the DRAM chip if /RAS and /CAS are

low, /WE is high, and /OE is low. In many

applications, /OE can be permanently connected low

(output always enabled), but it can be useful when

connecting multiple memory chips in parallel.

Computer Data Storage and Data Storage Device

46

This interface provides direct control of internal timing.

When /RAS is driven low, a /CAS cycle must not be

attempted until the sense amplifiers have sensed the memory

state, and /RAS must not be returned high until the storage

cells have been refreshed. When /RAS is driven high, it

must be held high long enough for precharging to complete.

Although the RAM is asynchronous, the signals are typically

generated by a clocked memory controller, which limits

their timing to multiples of the controller’s clock cycle.

VIDEO DRAM (VRAM)
VRAM is a dual-ported variant of DRAM that was once

commonly used to store the frame-buffer in some graphics

adaptors.

WINDOW DRAM (WRAM)
WRAM is a variant VRAM that was once used in graphics

adaptors such as the Matrox Millenium and ATI 3D Rage

Pro. WRAM was designed to perform better and cost less

than VRAM. WRAM offered up to 25% greater bandwidth

than VRAM and accelerated commonly used graphical

operations such as text drawing and block fills.

FAST PAGE MODE (FPM) DRAM OR FPRAM
Fast page mode DRAM is also called FPM DRAM, Page

mode DRAM, Fast page mode memory, or Page mode memory.

In page mode, a row of the DRAM can be kept “open” by

holding /RAS low while performing multiple reads or writes

with separate pulses of /CAS so that successive reads or

writes within the row do not suffer the delay of precharge

Computer Data Storage and Data Storage Device

47

and accessing the row. This increases the performance of

the system when reading or writing bursts of data. Static

column is a variant of page mode in which the column

address does not need to be strobed in, but rather, the

address inputs may be changed with /CAS held low, and

the data output will be updated accordingly a few

nanoseconds later. Nibble mode is another variant in which

four sequential locations within the row can be accessed

with four consecutive pulses of /CAS. The difference from

normal page mode is that the address inputs are not used

for the second through fourth /CAS edges; they are generated

internally starting with the address supplied for the first

/CAS edge.

CAS BEFORE RAS REFRESH
Classic asynchronous DRAM is refreshed by opening

each row in turn. This can be done by supplying a row

address and pulsing /RAS low; it is not necessary to perform

any /CAS cycles. An external counter is needed to iterate

over the row addresses in turn. For convenience, the counter

was quickly incorporated into RAM chips themselves. If the

/CAS line is driven low before /RAS (normally an illegal

operation), then the DRAM ignores the address inputs and

uses an internal counter to select the row to open. This is

known as /CAS-before-/RAS (CBR) refresh. This became

the standard form of refresh for asynchronous DRAM, and

is the only form generally used with SDRAM.

HIDDEN REFRESH
Given support of CAS-before-RAS refresh, it is possible

to deassert /RAS while holding /CAS low to maintain data

Computer Data Storage and Data Storage Device

48

output. If /RAS is then asserted again, this performs a CBR

refresh cycle while the DRAM outputs remain valid. Because

data output is not interrupted, this is known as “hidden

refresh”.

EXTENDED DATA OUT (EDO) DRAM
EDO DRAM, sometimes referred to as Hyper Page Mode

enabled DRAM, is similar to Fast Page Mode DRAM with

the additional feature that a new access cycle can be started

while keeping the data output of the previous cycle active.

This allows a certain amount of overlap in operation

(pipelining), allowing somewhat improved performance. It

was 5% faster than Fast Page Mode DRAM, which it began

to replace in 1995, when Intel introduced the 430FX chipset

that supported EDO DRAM. To be precise, EDO DRAM

begins data output on the falling edge of /CAS, but does

not stop the output when /CAS rises again. It holds the

output valid (thus extending the data output time) until

either /RAS is deasserted, or a new /CAS falling edge

selects a different column address. Single-cycle EDO has

the ability to carry out a complete memory transaction in

one clock cycle. Otherwise, each sequential RAM access

within the same page takes two clock cycles instead of

three, once the page has been selected. EDO’s performance

and capabilities allowed it to somewhat replace the then-

slow L2 caches of PCs. It created an opportunity to reduce

the immense performance loss associated with a lack of L2

cache, while making systems cheaper to build. This was

also good for notebooks due to difficulties with their limited

form factor, and battery life limitations. An EDO system

Computer Data Storage and Data Storage Device

49

with L2 cache was tangibly faster than the older FPM/L2

combination. Single-cycle EDO DRAM became very popular

on video cards towards the end of the 1990s. It was very

low cost, yet nearly as efficient for performance as the far

more costly VRAM.

Much equipment taking 72-pin SIMMs could use either

FPM or EDO. Problems were possible, particularly when

mixing FPM and EDO. Early Hewlett-Packard printers had

FPM RAM built in; some, but not all, models worked if

additional EDO SIMMs were added.

BURST EDO (BEDO) DRAM
An evolution of EDO DRAM, Burst EDO DRAM, could

process four memory addresses in one burst, for a maximum

of 5 1 1 1, saving an additional three clocks over optimally

designed EDO memory. It was done by adding an address

counter on the chip to keep track of the next address. BEDO

also added a pipelined stage allowing page-access cycle to

be divided into two components. During a memory-read

operation, the first component accessed the data from the

memory array to the output stage (second latch). The second

component drove the data bus from this latch at the

appropriate logic level. Since the data is already in the

output buffer, quicker access time is achieved (up to 50%

for large blocks of data) than with traditional EDO.

Although BEDO DRAM showed additional optimization

over EDO, by the time it was available the market had made

a significant investment towards synchronous DRAM, or

SDRAM. Even though BEDO RAM was superior to SDRAM

in some ways, the latter technology quickly displaced BEDO.

Computer Data Storage and Data Storage Device

50

MULTIBANK DRAM (MDRAM)
Multibank RAM applies the interleaving technique for

main memory to second level cache memory to provide a

cheaper and faster alternative to SRAM. The chip splits its

memory capacity into small blocks of 256 kB and allows

operations to two different banks in a single clock cycle.

This memory was primarily used in graphic cards with

Tseng Labs ET6x00 chipsets, and was made by MoSys.

Boards based upon this chipset often used the unusual

RAM size configuration of 2.25 MB, owing to MDRAM’s

ability to be implemented in various sizes more easily. This

size of 2.25 MB allowed 24-bit color at a resolution of

1024×768, a very popular display setting in the card’s time.

SYNCHRONOUS GRAPHICS RAM (SGRAM)
SGRAM is a specialized form of SDRAM for graphics

adaptors. It adds functions such as bit masking (writing to

a specified bit plane without affecting the others) and block

write (filling a block of memory with a single colour). Unlike

VRAM and WRAM, SGRAM is single-ported. However, it can

open two memory pages at once, which simulates the dual-

port nature of other video RAM technologies.

SINGLE DATA RATE (SDR)
Single data rate SDRAM (sometimes known as SDR) is

a synchronous form of DRAM.

DOUBLE DATA RATE (DDR)
Double data rate SDRAM (DDR) was a later development

of SDRAM, used in PC memory beginning in 2000.

Computer Data Storage and Data Storage Device

51

Subsequent versions are numbered sequentially (DDR2,

DDR3, etc.).

PSEUDOSTATIC RAM (PSRAM)
PSRAM or PSDRAM is dynamic RAM with built-in refresh

and address-control circuitry to make it behave similarly

to static RAM (SRAM). It combines the high density of

DRAM with the ease of use of true SRAM. PSRAM (made

by Numonyx) is used in the Apple iPhone and other embedded

systems. Some DRAM components have a “self-refresh

mode”. While this involves much of the same logic that is

needed for pseudo-static operation, this mode is often

equivalent to a standby mode. It is provided primarily to

allow a system to suspend operation of its DRAM controller

to save power without losing data stored in DRAM, not to

allow operation without a separate DRAM controller as is

the case with PSRAM. An embedded variant of pseudostatic

RAM is sold by MoSys under the name 1T-SRAM. It is

technically DRAM, but behaves much like SRAM. It is used

in Nintendo Gamecube and Wii consoles.

1T DRAM
Unlike all of the other variants described here, 1T DRAM

is actually a different way of constructing the basic DRAM

bit cell. 1T DRAM is a “capacitorless” bit cell design that

stores data in the parasitic body capacitor that is an inherent

part of Silicon on Insulator transistors. Considered a

nuisance in logic design, this floating body effect can be

used for data storage. Although refresh is still required,

reads are non-destructive; the stored charge causes a

Computer Data Storage and Data Storage Device

52

detectable shift in the threshold voltage of the transistor.

There are several types of 1T DRAM memories: The

commercialized Z-RAM from Innovative Silicon, the TTRAM

from Renesas and the A-RAM from the UGR /CNRS

consortium. Note that classic one-transistor/one-capacitor

(1T/1C) DRAM cell is also sometimes referred to as “1T

DRAM”.

RLDRAM
Reduced Latency DRAM is a high performance double

data rate (DDR) SDRAM that combines fast, random access

with high bandwidth. RLDRAM is mainly designed for

networking and caching applications.

SECURITY
Although dynamic memory is only guaranteed to retain

its contents when supplied with power and refreshed every

64 ms, the memory cell capacitors will often retain their

values for significantly longer, particularly at low

temperatures. Under some conditions, most of the data in

DRAM can be recovered even if the DRAM has not been

refreshed for several minutes. This property can be used

to recover “secure” data kept in memory by quickly rebooting

the computer and dumping the contents of the RAM or by

cooling the chips and transferring them to a different

computer. Such an attack was demonstrated to circumvent

popular disk encryption systems, like the open source

TrueCrypt, Microsoft’s BitLocker Drive Encryption, as well

as Apple’s FileVault.

Computer Data Storage and Data Storage Device

53

4

Static Random-Access Memory

Static random-access memory (SRAM) is a type of

semiconductor memory where the word static indicates

that, unlike dynamic RAM (DRAM), it does not need to be

periodically refreshed, as SRAM uses bistable latching

circuitry to store each bit. SRAM exhibits data remanence,

but is still volatile in the conventional sense that data is

eventually lost when the memory is not powered.

DESIGN
Each bit in an SRAM is stored on four transistors that

form two cross-coupled inverters. This storage cell has two

stable states which are used to denote 0 and 1. Two additional

access transistors serve to control the access to a storage

cell during read and write operations. A typical SRAM uses

six MOSFETs to store each memory bit. In addition to such

6T SRAM, other kinds of SRAM chips use 8T, 10T, or more

Computer Data Storage and Data Storage Device

54

transistors per bit. This is sometimes used to implement

more than one (read and/or write) port, which may be

useful in certain types of video memory and register files

implemented with multi ported SRAM circuitry. Generally,

the fewer transistors needed per cell, the smaller each cell

can be. Since the cost of processing a silicon wafer is

relatively fixed, using smaller cells and so packing more bits

on one wafer reduces the cost per bit of memory.

Memory cells that use fewer than 6 transistors are possible

— but such 3T or 1T cells are DRAM, not SRAM (even the

so-called 1T-SRAM). Access to the cell is enabled by the

word line (WL in figure) which controls the two access

transistors M5 and M6 which, in turn, control whether the

cell should be connected to the bit lines: BL and BL. They

are used to transfer data for both read and write operations.

Although it is not strictly necessary to have two bit lines,

both the signal and its inverse are typically provided in

order to improve noise margins.

During read accesses, the bit lines are actively driven

high and low by the inverters in the SRAM cell. This improves

SRAM bandwidth compared to DRAMs—in a DRAM, the bit

line is connected to storage capacitors and charge sharing

causes the bitline to swing upwards or downwards. The

symmetric structure of SRAMs also allows for differential

signaling, which makes small voltage swings more easily

detectable. Another difference with DRAM that contributes

to making SRAM faster is that commercial chips accept all

address bits at a time. By comparison, commodity DRAMs

have the address multiplexed in two halves, i.e. higher bits

followed by lower bits, over the same package pins in order

Computer Data Storage and Data Storage Device

55

to keep their size and cost down. The size of an SRAM with

m address lines and n data lines is 2m words, or 2m × n bits.

At present appeared the advanced scheme with disconnected

by signal record by feedback, which does not require the

transistor of the load and is accordingly saved from high

consumption of the energy when writing.

SRAM OPERATION
An SRAM cell has three different states it can be in:

standby where the circuit is idle, reading when the data has

been requested and writing when updating the contents.

The SRAM to operate in read mode and write mode should

have “readeability” and “write stability” respectively. The

three different states work as follows:

STANDBY
If the word line is not asserted, the access transistors

M5 and M6 disconnect the cell from the bit lines. The two

cross coupled inverters formed by M1 – M4 will continue to

reinforce each other as long as they are connected to the

supply.

READING
Assume that the content of the memory is a 1, stored

at Q. The read cycle is started by precharging both the bit

lines to a logical 1, then asserting the word line WL, enabling

both the access transistors. The second step occurs when

the values stored in Q and Q are transferred to the bit lines

by leaving BL at its precharged value and discharging BL

through M
1
 and M

5
 to a logical 0. On the BL side, the

Computer Data Storage and Data Storage Device

56

transistors M4 and M6 pull the bit line toward VDD, a logical

1. If the content of the memory was a 0, the opposite would

happen and BL would be pulled toward 1 and BL toward

0. Then these BL and BL-bar will have a small difference

of delta between them and then these lines reach a sense

amplifier, which will sense which line has higher voltage

and thus will tell whether there was 1 stored or 0. The

higher the sensitivity of sense amplifier, the faster the speed

of read operation is.

WRITING
The start of a write cycle begins by applying the value

to be written to the bit lines. If we wish to write a 0, we

would apply a 0 to the bit lines, i.e. setting BL to 1 and

BL to 0. This is similar to applying a reset pulse to a SR-

latch, which causes the flip flop to change state. A 1 is

written by inverting the values of the bit lines. WL is then

asserted and the value that is to be stored is latched in.

Note that the reason this works is that the bit line input-

drivers are designed to be much stronger than the relatively

weak transistors in the cell itself, so that they can easily

override the previous state of the cross-coupled inverters.

Careful sizing of the transistors in an SRAM cell is needed

to ensure proper operation.

BUS BEHAVIOUR
A RAM memory with an access time of 70 ns will output

valid data within 70 ns from the time that the address lines

are valid. But the data will remain for a hold time as well

(5-10 ns). Rise and fall times also influence valid timeslots

Computer Data Storage and Data Storage Device

57

with approximately ~5 ns. By reading the lower part of an

address range bits in sequence (page cycle) one can read

with significantly shorter access time (30 ns).

APPLICATIONS AND USES

CHARACTERISTICS
SRAM is more expensive, but faster and significantly less

power hungry (especially idle) than DRAM. It is therefore

used where either bandwidth or low power, or both, are
principal considerations. SRAM is also easier to control
(interface to) and generally more truly random access than
modern types of DRAM. Due to a more complex internal
structure, SRAM is less dense than DRAM and is therefore
not used for high-capacity, low-cost applications such as
the main memory in personal computers.

CLOCK RATE AND POWER
The power consumption of SRAM varies widely depending

on how frequently it is accessed; it can be as power-hungry
as dynamic RAM, when used at high frequencies, and some
ICs can consume many watts at full bandwidth. On the other
hand, static RAM used at a somewhat slower pace, such as
in applications with moderately clocked microprocessors,
draw very little power and can have a nearly negligible power
consumption when sitting idle — in the region of a few micro-
watts. Static RAM exists primarily as:

• general purpose products

o with asynchronous interface, such as the 28 pin

32Kx8 chips (usually named XXC256), and similar

products up to 16 Mbit per chip

Computer Data Storage and Data Storage Device

58

o with synchronous interface, usually used for caches
and other applications requiring burst transfers,
up to 18 Mbit (256Kx72) per chip

• integrated on chip

o as RAM or cache memory in micro-controllers
(usually from around 32 bytes up to 128 kilobytes)

o as the primary caches in powerful microprocessors,
such as the x86 family, and many others (from 8
kB, up to several megabytes)

o to store the registers and parts of the state-
machines used in some microprocessors—see
register file

o on application specific ICs, or ASICs (usually in the
order of kilobytes)

o in FPGAs and CPLDs

EMBEDDED USE
Many categories of industrial and scientific subsystems,

automotive electronics, and similar, contain static RAM.
Some amount (kilobytes or less) is also embedded in
practically all modern appliances, toys, etc. that implement
an electronic user interface. Several megabytes may be
used in complex products such as digital cameras, cell

phones, synthesizers, etc.

SRAM in its dual-ported form is sometimes used for

realtime digital signal processing circuits.

IN COMPUTERS
SRAM is also used in personal computers, workstations,

routers and peripheral equipment: internal CPU caches and

external burst mode SRAM caches, hard disk buffers, router

Computer Data Storage and Data Storage Device

59

buffers, etc. LCD screens and printers also normally employ

static RAM to hold the image displayed (or to be printed).

Small SRAM buffers are also found in CDROM and CDRW

drives; usually 256 kB or more are used to buffer track

data, which is transferred in blocks instead of as single

values. The same applies to cable modems and similar

equipment connected to computers.

HOBBYISTS
Hobbyists often prefer SRAM due to the ease of interfacing.

It is much easier to work with than DRAM as there are no

refresh cycles and the address and data buses are directly

accessible rather than multiplexed. In addition to buses

and power connections, SRAM usually require only three

controls: Chip Enable (CE), Write Enable (WE) and Output

Enable (OE). In synchronous SRAM, Clock (CLK) is also

included.

TYPES OF SRAM

NON-VOLATILE SRAM
Non-volatile SRAMs have standard SRAM functionality,

but they save the data when the power supply is lost,

ensuring preservation of critical information. nvSRAMs are

used in a wide range of situations—networking, aerospace,

and medical, among many others—where the preservation

of data is critical and where batteries are impractical.

ASYNCHRONOUS SRAM
Asynchronous SRAM are available from 4 Kb to 32 Mb.

The fast access time of SRAM makes asynchronous SRAM

Computer Data Storage and Data Storage Device

60

appropriate as main memory for small cache-less embedded

processors used in everything from industrial electronics

and measurement systems to hard disks and networking

equipment, among many other applications. They are used

in various applications like switches and routers, IP-Phones,

IC-Testers, DSLAM Cards, to Automotive Electronics.

BY TRANSISTOR TYPE
• Bipolar junction transistor (used in TTL and ECL) —

very fast but consumes a lot of power

• MOSFET (used in CMOS) — low power and very

common today

BY FUNCTION
• Asynchronous — independent of clock frequency;

data in and data out are controlled by address

transition

• Synchronous — all timings are initiated by the clock

edge(s). Address, data in and other control signals

are associated with the clock signals

BY FEATURE
• ZBT (ZBT stands for zero bus turnaround) — the

turnaround is the number of clock cycles it takes to

change access to the SRAM from write to read and

vice versa. The turnaround for ZBT SRAMs or the

latency between read and write cycle is zero.

• syncBurst (syncBurst SRAM or synchronous-burst

SRAM) — features synchronous burst write access

to the SRAM to increase write operation to the SRAM.

Computer Data Storage and Data Storage Device

61

• DDR SRAM — Synchronous, single read/write port,

double data rate IO

• Quad Data Rate SRAM — Synchronous, separate

read & write ports, quadruple data rate IO

Computer Data Storage and Data Storage Device

62

5

Input Output Devices

A computer is only useful when it is able to communicate

with the external environment. When you work with the

computer you feed your data and instructions through some

devices to the computer. These devices are called Input

devices. Similarly computer after processing, gives output

through other devices called output devices. For a particular

application one form of device is more desirable compared to

others. We will discuss various types of I/O devices that are

used for different types of applications. They are also known

as peripheral devices because they surround the CPU and

make a communication between computer and the outer

world.

INPUT DEVICES
Input devices are necessary to convert our information or

data in to a form which can be understood by the computer.

A good input device should provide timely, accurate and

Computer Data Storage and Data Storage Device

63

useful data to the main memory of the computer for

processing followings are the most useful input devices.

Component or peripheral (such as a barcode reader,

graphic tablet, keyboard, magnetic-stripe reader, modem,

mouse, scanner, stylus) that feeds data or instruction into a

computer for display, processing, storage, or outputting or

transmission. Input devices convert the user’s actions and

analog data (sound, graphics, pictures) into digital electronic

signals that can be ‘handled’ or ‘read’ by a computer. Digital

data (such as from barcode readers, modems, scanners, etc.)

does not require any conversion and is input direct into a

computer. It is through input devices that a user exercises

control over a computer, its operations, and outputs.

An input device is any device that provides input to a

computer. There are dozens of possible input devices, but the

two most common ones are a keyboard and mouse. Every key

you press on the keyboard and every movement or click you

make with the mouse sends a specific input signal to the

computer. These commands allow you to open programs, type

messages, drag objects, and perform many other functions

on your computer. Since the job of a computer is primarily to

process input, computers are pretty useless without input

devices. Just imagine how much fun you would have using

your computer without a keyboard or mouse. Not very much.

Therefore, input devices are a vital part of every computer

system. While most computers come with a keyboard and

mouse, other input devices may also be used to send

information to the computer. Some examples include joysticks,

MIDI keyboards, microphones, scanners, digital cameras, web

cams, card readers, UPC scanners, and scientific measuring

Computer Data Storage and Data Storage Device

64

equipment. All these devices send information to the computer

and therefore are categorized as input devices.

To be of any use at all a computer has to be able to take

input, yet this basic premise can easily escape the modern

computer user. With the quality and range of input devices

now available, it seems hard to believe that computer input

had once to be literally hardwired. New circuits had to be

constructed to solve individual problems by arranging cables

and jack sockets on vast circuit boards. Clearly at that time

word processing was simply beyond imagining, but years of

developments have made this seem absurd, and word

processing has become a staple of the computer’s work. Word

processing, of course, relies on perhaps the most basic

computer input device: the keyboard. Plainly modelled on

the typewriter, in Western countries most modern computer

keyboards are based on the QWERTY layout, or closely-

related variants such as the French AZERTY layout. There

are additional keys not normally found on typewriters such

as function keys, a numeric keypad and so on, and even in

countries where different alphabets or writing systems are

in use, the physical layout of the keys is often quite similar.

The original 1981 IBM PC’s keyboard was severely criticized

by typists for its non-standard placement of the return and

left shift keys. In 1984, IBM corrected this on its AT keyboard,

but shortened the backspace key, making it harder to reach.

Then, in 1987, it introduced the enhanced keyboard, which

relocated all the function keys, the Ctrl keys, and the Esc

key to the positions we commonly see them today. In recent

years, so-called “Internet keyboards” have also become

popular, including extra buttons for specific applications or

Computer Data Storage and Data Storage Device

65

functions (typically a browser or email client). Laptops might

also have vendor specific keys included in the keyboard.

TYPES OF INPUT DEVICES

KEYBOARD
The keyboard is probably the easiest kind of input device

to understand. When the user presses a key, a code is sent

to the cpu, which translates the code into some sort of storage
format (usually ASCII.) There is generally no way for the cpu
to send information back to the keyboard, so it is an input
only device. Usually, you buy a keyboard as part of a computer
system, but there may be a reason you want a specialized
model. Certain keyboards are designed to be more

ergonomically safe to prevent Carpal-Tunnel Syndrome.

���������������������������	
����

This is the standard input device attached to all computers.
The layout of keyboard is just like the traditional typewriter
of the type QWERTY. It also contains some extra command
keys and function keys. It contains a total of 101 to 104
keys. A typical keyboard used in a computer is shown in Fig
below. You have to press correct combination of keys to input
data. The computer can recognize the electrical signals

corresponding to the correct key combination and processing

is done accordingly.

Computer Data Storage and Data Storage Device

66

MOUSE
Mouse is an input device shown in Fig below that is used

with your personal computer. It rolls on a small ball and has

two or three buttons on the top. When you roll the mouse

across a flat surface the screen censors the mouse in the

direction of mouse movement. The cursor moves very fast

with mouse giving you more freedom to work in any direction.

It is easier and faster to move through a mouse.

�������������������������������

Many modern computers rely heavily on the mouse. This

is a small object, usually with a roller ball on the bottom

that can be dragged along the desktop. Mice usually have

one or more buttons on them that can be activated with the

hand controlling the mouse. As the mouse is moved on the

desk, a pointer moves on the screen. This mouse pointer is

analogous to the user’s hand. Many find this a more natural

way of controlling the computer than typing on a keyboard.

There are a number of “mouse substitutes” available, but

they all basically work in the same way. Laptop computers

often have a small ball embedded in the keyboard that can

be rolled so the mouse can be activated even when the

computer is being held on the user’s lap.

SCANNER
Scanners are often though about in the office, but are rarely

thought about as an input device for a computer. When you

Computer Data Storage and Data Storage Device

67

have a scanner, you can scan newspaper clippings, articles,

and pictures. This gives you the ability to save everything

onto your computer. There are multiple types of scanners

available; some even come on the printer you already have.

The keyboard can input only text through keys provided

in it. If we want to input a picture the keyboard cannot do

that. Scanner is an optical device that can input any graphical

matter and display it back. The common optical scanner

devices are Magnetic Ink Character Recognition (MICR),

Optical Mark Reader (OMR) and Optical Character Reader

(OCR).

MAGNETIC INK CHARACTER RECOGNITION
(MICR)

This is widely used by banks to process large volumes of

cheques and drafts. Cheques are put inside the MICR. As

they enter the reading unit the cheques pass through the

magnetic field which causes the read head to recognise the

character of the cheques.

OPTICAL MARK READER (OMR)
This technique is used when students have appeared in

objective type tests and they had to mark their answer by

darkening a square or circular space by pencil. These answer

sheets are directly fed to a computer for grading where OMR

is used.

OPTICAL CHARACTER RECOGNITION (OCR)
This technique unites the direct reading of any printed

character. Suppose you have a set of hand written characters

on a piece of paper. You put it inside the scanner of the

Computer Data Storage and Data Storage Device

68

computer. This pattern is compared with a site of patterns

stored inside the computer. Whichever pattern is matched

is called a character read. Patterns that cannot be identified

are rejected. OCRs are expensive though better the MICR.

CD-ROM
The same kinds of technology that enable us to store music

digitally on compact disks allows us to store other kinds of

information on the same medium. Compact Disks essentially

store numbers. They are inexpensive to create, and can hold

large amounts of information. (600 Mb) CD-ROMs are

frequently used to sell software which has become too large

to fit on floppy disks. Unfortunately, a CD - ROM cannot be

written to with typical home technology. The ROM part of

CD-ROM refers to this characteristic. A CD - ROM is an input

device because it can send information to the CPU, but the

CPU cannot send information to it.

CD Drives are measured in comparison to the speed of

music CDs. An audio CD always runs at a constant speed. A

2X CD drive is twice the speed of an audio CD player. 6X and

8x drives are available at this writing. Even these drives are

not as fast as typical hard drives. Erasable CD drives are

becoming popular, because they hold as much information

as a regular CD, but the user can store things to them as

well as reading from them. Such devices will probably be

much more prevalent as their price comes down and reliability

improves.

AUDIO/VIDEO INPUT
Web cams and digital cameras can also be considered input

devices. They provide visual data to the computer in the form

Computer Data Storage and Data Storage Device

69

of images and video. Some web cams can even be used as

pointing devices by tracking the location of a person’s hands

or face. Microphones and digital musical instruments, such

as midi keyboards, are audio input devices that provide the

computer with audio data. Even an electric guitar, when

hooked up to a computer, can be an input device.

MICROPHONE
A microphone is a great input device to add to your

computer, simply because it gives you greater capabilities

when calling someone online, or trying to use a video

conference. By purchasing a microphone, anyone you wish

will be able to hear you. You may also record things to your

computer with the microphone, giving you multiple functions

with one input device.

WEBCAM
Webcams help to round out the video conferencing

experience. Webcams rarely actually come with desktop

computers (but may be built into some laptops). Purchasing

a webcam can be a great investment, however, for anyone

who is looking to have a video conference, or to simply see

someone as you talk with them. Webcams are available at

low prices, as well as high prices, depending on the quality

you expect.

OUTPUT DEVICES
Any device that outputs information from a computer is

called, not surprisingly, an output device. Since most

information from a computer is output in either a visual or

auditory format, the most common output devices are the

Computer Data Storage and Data Storage Device

70

monitor and speakers. These two devices provide instant

feedback to the user’s input, such as displaying characters

as they are typed or playing a song selected from a playlist.

While monitors and speakers are the most common output

devices, there are many others. Some examples include

headphones, printers, projectors, lighting control systems,

audio recording devices, and robotic machines. A computer

without an output device connected to it is pretty useless,

since the output is what we interact with. Anyone who has

ever had a monitor or printer stop working knows just how

true this is.

VISUAL DISPLAY UNIT
The most popular input/output device is the Visual Display

Unit (VDU). It is also called the monitor. A Keyboard is used

to input data and Monitor is used to display the input data

and to receive massages from the computer.

A monitor has its own box which is separated from the

main computer system and is connected to the computer by

cable. In some systems it is compact with the system unit. It

can be color or monochrome.

��

Computer Data Storage and Data Storage Device

71

���������������������������������	�����������	�

TERMINALS
It is a very popular interactive input-output unit. It can be

divided into two types: hard copy terminals and soft copy

terminals. A hard copy terminal provides a printout on paper

whereas soft copy terminals provide visual copy on monitor.

A terminal when connected to a CPU sends instructions

directly to the computer. Terminals are also classified as

dumb terminals or intelligent terminals depending upon the

work situation.

PRINTER

������������������������������������

It is an important output device which can be used to get

a printed copy of the processed text or result on paper. There

Computer Data Storage and Data Storage Device

72

are different types of printers that are designed for different

types of applications. Depending on their speed and approach

of printing, printers are classified as impact and non-impact

printers. Impact printers use the familiar typewriter approach

of hammering a typeface against the paper and inked ribbon.

Dot-matrix printers are of this type. Non-impact printers

do not hit or impact a ribbon to print. They use electro-static

chemicals and ink-jet technologies. Laser printers and Ink-

jet printers are of this type. This type of printers can produce

color printing and elaborate graphics.

INPUT AND OUTPUT DEVICES

INTRODUCTION
Is a system, consisting of many components. Some of those

components, like Windows XP, and all your other programs,
are software. The stuff you can actually see and touch, and
would likely break if you threw it out a fifth-story window, is
hardware. Not everybody has exactly the same hardware.
But those of you who have a desktop system, like the example
shown in Figure, probably have most of the components
shown in that same figure. Those of you with notebook
computers probably have most of the same components. Only
in your case the components are all integrated into a single
book-sized portable unit. The computer is really of less use
until it is able to communicate with the outside world. The
third most important element of a computer after memory
and the CPU is the input and output device. The various
input/output devices are required for users to communicate
with the computer for bringing in information and pushing

information out of a system.

Computer Data Storage and Data Storage Device

73

��

COMMON DEVICES

INPUT DEVICES
1. Keyboard

2. Mouse

3. Joystick

4. Scanner

5. Light Pen

6. Touch Screen.

OUTPUT DEVICES
1. Monitor

2 LCD

3. Printer

4. Plotter.

The input and output devices substantially differ in many

characteristics. One of the factor among input and output

devices is their data processing rates, also referred to as the

average number of characters that can be processed by a

device per second.

Computer Data Storage and Data Storage Device

74

• Keyboard: It is a text based input device that allows
the user to input alphabets, number and other
characters. It consists of a set of keys mounted on a
board.

• Mouse: The mouse is a small device used to point to
a specific pixel on the screen and select single or
multiple pixels in order to perform one or more
actions. It can be used to select menu command, size
windows, start programs etc.

• Joystick: It is a vertical stick which moves the graphic
cursor in a direction in which the stick is moved. It
has a button on the top used to select options pointed
by the cursor. It is mainly used for computer games
robotic applications etc.

• Scanner: It is an input device used for direct data
entry from the source document to the computer
system. It mainly converts a document image into
digital form to store it in the memory devices. It mainly
reduces error from direct data entry options.

Computer Data Storage and Data Storage Device

75

• Bar code Scanners: Bar code is a set of lines of

different thickness representing a number. A beam is

shined on the lines that make up the code and it

detects the amount of light reflected back.

• Light pen: It is a pen shaped device used to select

objects on a display screen. Very similar to a mouse

but uses a light pen to move the pointer and select

objects on screen.

• Touch Screen: It allows the user to select application

icons by touching the screen.

• Digital camera: It stores pictures in large quantities.

The pictures are stored in memory card which can

be later transferred to a computer.

• Speech input device: The microphone is a speech

input device which can be operated using a talking

software. We need to add a sound card for attaching

this device.

When we deal with an Input/Output module in a computer

system there are many things that we need to keep in mind.

We do not generally connect an external device into a bus

structure of a computer. A wide variety of devices require

different logical interfaces as it is not a logical thing to expect

that the CPU realizes every kind of a device with different

data rates and really different data representations.

DESCRIPTION ABOUT DEVICES

OTHER INPUT-ONLY DEVICES
There are other devices available for input, but they tend to

be specialty devices. Some examples are:

Computer Data Storage and Data Storage Device

76

• Touch - sensitive screens for mall kiosks.

• Adaptive keyboards for individuals with physical

disabilities

• Infrared mice for a mouse without cords

• Special presentation devices that allow a speaker to

send input to the computer while delivering a

presentation away from the keyboard.

OUTPUT DEVICES
Any device that outputs information from a computer is

called, not surprisingly, an output device. Since most

information from a computer is output in either a visual or

auditory format, the most common output devices are the

monitor and speakers. These two devices provide instant

feedback to the user’s input, such as displaying characters

as they are typed or playing a song selected from a playlist.

While monitors and speakers are the most common output

devices, there are many others. Some examples include

headphones, printers, projectors, lighting control systems,

audio recording devices, and robotic machines. A computer

without an output device connected to it is pretty useless,

since the output is what we interact with. Anyone who has

ever had a monitor or printer stop working knows just how

true this is.

PRINTER
Printers take information from the CPU and transfer it to

paper. There are a number of different printer technologies

available.

Dot Matrix:

Computer Data Storage and Data Storage Device

77

��������������������������������� �

Dot Matrix printers are inexpensive and reliable, but they

are loud and slow. They do not have nearly the print quality

of some of the other types of printers.

Ink Jet:

�����������������������������!��

Ink Jet printers squirt small streams of ink onto the paper.

They tend to be slightly more expensive than dot matrix

printers, but the quiet operation and improved print quality

make them very popular with buyers of home computers.

Some ink jet printers can make color prints. These can be

very entertaining, but the ink becomes expensive.

Laser Printers: Laser Printers use a combination of laser

and copying technology to make very clear copies. Laser

printers tend to make clearer copies than the other types of

Computer Data Storage and Data Storage Device

78

printers, and operate much more quickly, but they can be

quite expensive to purchase and maintain.

���������������������������������

Many people try to save money on a printer purchase and

are disappointed. If the main reason you will use your

computer is to type letters, remember that the people you

write to will not see your monitor. What they will see is only

what comes out of your printer. If printed documents are an

important part of what you will use a computer for, consider

a higher quality printer. Ink Jets are probably most

appropriate for home use, and laser printers are more popular

in an office setting. A dot matrix machine is fine for test

printing or use on a kid’s computer, but you will be

disappointed with the results if you try to use it for business

correspondence. Before buying an ink jet, find out how much

the ink cartridges cost, and how long they tend to last. With

a laser printer, be sure to check on the cost of toner cartridges.

MONITORS
The monitor is the part of the system that you look at

most of the time. Monitors resemble televisions. Most

computer monitors use the same technology as televisions,

Computer Data Storage and Data Storage Device

79

but with much higher resolution. Often the monitor will come

packaged with a computer system, but you may wish to

upgrade.

SIZE
The size of a monitor can make a big impact. You might

get a headache squinting at a screen that is too small. The

size of a monitor is measured in diagonal inches. A 15 inch

monitor is 15 inches diagonally from corner to corner of the

screen.

Dot Pitch and DPI: Monitors are also measured by their

precision. There are two main measures, Dot Pitch, and DPI.

Dot pitch is a measure of the size of each tiny dot the monitor

can display. The smaller each dot is, the nicer the picture

will look, but the more expensive the monitor will be. When

discussing Dot Pitch, SMALLER IS BETTER!! DPI stands for

Dots Per Inch. As you can guess, the smaller the dot pitch

rating for a monitor is, the more of those tiny dots you could

squeeze into a square inch. If you are considering DPI,

LARGER IS BETTER. Computer sales people are not above

taking advantage of this confusion.

Video Controller Card: Dealing with graphics takes a lot of

work. Modern computers usually have a separate computer

built in just to help with controlling the monitor. This little

computer has its own cpu and memory! The power and speed

of this little computer, as well as its memory capacity, have a

huge effect on how graphics are drawn to your screen. This

little computer is referred to as a graphics controller card.

The most common cards now are called SVGA. Of course it

gets way more complicated than this, but all you have to

Computer Data Storage and Data Storage Device

80

know is that there are fancier cards that do more and cost

more, but you may not need the fanciest one out there for

your first computer.

PROJECTORS
A hardware device that enables an image, such as a

computer screen, to be projected onto a flat surface. These

devices are commonly used in meetings and presentations

as they allow for a large image to be shown so everyone in a

room can see. A general diagram of projector as an example

image of what a projector may look like is shown below. As

can be seen in this image the projector is a small device

often a little bigger than a toaster and typically weighs a few

pounds.

���������������������������"������

SPEAKERS
A hardware device connected to a computer’s sound card

that outputs sounds generated by the card. Below is a graphic

image example of the general speakers with subwoofer;

speakers like the ones shown below are an example of what

most computer speakers resemble.

Computer Data Storage and Data Storage Device

81

�������������������������#�������

PLOTTERS
A plotter can be used to produce very large drawings on

paper sizes up to A0 (16 times as big as A4). A plotter draws

onto the paper using very fine pens. There are two types of

plotter. They differ in the way that the pen can be moved

about on the piece of paper to draw lines:

Flatbed Plotter: The paper is fixed and the pen moves left

and right and up and down across the paper to draw lines.

Drum Plotter: The pen moves up and down on the paper

and the paper is moved left and right by rotating a drum on

which the paper is placed.

�����������������������������
����������

Computer Data Storage and Data Storage Device

82

������������������������������������

Plotters can automatically change their pens and so can

produce colour output. The lines drawn by a plotter are

continuous and very accurate. Plotters are very slow but

produce high quality output. They are usually used for

Computer Aided Design (CAD) and Computer Aided

Manufacturing (CAM) applications such as printing out plans

for houses or car parts. The quality of the output produced

by ink jet printers is now very good and large format (big)

ink-jet printers are steadily replacing plotters for most tasks.

COMMON INPUT OUTPUT DEVICES

RAM
RAM is perhaps the most important of the input/output

devices. When we talk about computer memory, we are

mainly talking about RAM. In this class, when we think about

the banks of light switches that can be manipulated, we are

thinking of RAM memory. The term Random Access is pretty

unfortunate. There is nothing random about how memory is

accessed. The program running will determine what is in

Computer Data Storage and Data Storage Device

83

memory. (of course, the program itself is in memory too!)

RAM can be read from by the CPU. This means that the CPU

can ‘look’ at any address in RAM and get the contents of that

address. It can also be written to by the CPU, meaning that

the CPU can change the value of memory cells on the fly.

One VERY important aspect of RAM memory is that it

requires power. RAM can only hold values while power is

going through it. If the power is interrupted, the RAM will

lose ALL the values in it. This is why it is so important to

save your work frequently when working on a computer. RAM

memory is volatile. When the room you are working on is hit

by a tsunami and the power goes out of your computer, you

lose everything that was in RAM. This could be bad. The

answer is to make copies of RAM, and place these copies on

other kinds of media. That’s what disk drives are for.

The amount of RAM in your computer is obviously a pretty

important factor. The more memory you have, the more ‘room’

there is in your computer for information and programs.

Modern programs have gotten HUGE, and the kinds of

information you can work with have gotten much larger. Some

early home computers had 4 or 16 K of RAM. The original

IBM PC had 640 K of RAM. In its day, this was thought of as

an extravagant amount of memory that would never be fully

used. Modern computers with less than 16 Megabytes

(16,000 K) are considered a bit lame. (pun completely

intended.) Older computers can be quite happy with much

less RAM, but they will not be able to run the newer programs.

If you are buying or upgrading a computer, you should

seriously consider as much RAM as you can afford. There is

probably no more cost-effective upgrade than RAM. If you

Computer Data Storage and Data Storage Device

84

find that you need more memory, It is relatively cheap and

easy to do a memory upgrade. Note that not all types of RAM

are interchangeable.

DISK DRIVES
Disk drives are special devices that allow us to make copies

of parts of RAM and store them magnetically. If RAM memory

is electronic, think of disk drives as a special kind of magnetic

memory. When you save something to a disk, the electronic

impulses in RAM are copied and stored to the disk as a series

of magnetic impulses. All a disk drive does is translating

electronic impulses and magnetic impulses back and forth.

Disk drives are handy because magnetic impulses are more

permanent than electronic ones. The disk drive does not

require electricity to keep values in memory, so if you store

something to a disk, the information will be there when the

tidal wave knocks the power out to your computer. (Assuming,

of course, that the disk stayed dry and clean) Disks are

sometimes thought of as secondary storage for this reason.

There are a number of different kinds of disks. We will

discuss a couple of main types:

Floppy Drives: A floppy drive is a machine that is designed

to read floppy disks. Floppy disks are the removable devices

that you stick in slots in the front of the machine. I know,

they look square, not disk-shaped, and they don’t look floppy

at all, but they are indeed floppy disks. Floppy disks come in

hard plastic cases to make them a little more sturdy and

easier to handle, but inside the plastic case, there is an actual

disk. It is made of a plastic-like substance called mylar which

really is floppy. Floppy disks come in two main sizes; 5 1/4

inch, and 3 1/2 inch. The 5 1/4 disks are becoming obsolete,

Computer Data Storage and Data Storage Device

85

but you still see them from time to time. The 3 1/2 inch

disks, although physically smaller, can usually hold more

information!

There are different flavors of floppy disks. In a modern

computer, the only kind of floppy you need to purchase is

High Density 1.44 MB. As you can guess, they hold 1.44

MegaBytes of information, which is a pretty good amount.

(You could hold several hundred pages of text or about a

dozen full color pictures on a 1.44 MB disk) This type of disk

may carry some other markings as well, such as DSHD or

HD. The HD is the important part. That tells you it can handle

1.44 MB. If you have an older computer, you may find that it

needs a different type or size of disks. Check your

documentation to be sure.

Hard Drives: A hard drive is a special disk that is usually

mounted permanently inside your computer’s cabinet. You

rarely see the hard drive, and almost never take it out. Hard

drives are made of different material than floppies, and they

are physically hard (although if you touched the actual hard

surface, you would destroy it!) They spin much more quickly

than floppies, and require much more precision. They are

sealed inside a special case, and that is sealed inside the

computer case. A hard drive has a much larger capacity than

a floppy, and is much faster at saving and retrieving

information.

Modern computers frequently have hard drives with 500

MB or more of capacity. As this capacity grows, people are

beginning to measure it in terms of gigabytes. Software

programs are always becoming larger and taking more room

on hard drives. It never takes long to completely fill up the

Computer Data Storage and Data Storage Device

86

capacity of a drive. If you can afford a large drive when you

buy the computer, you won’t be sorry, but you can usually

add another drive or upgrade later.

Fancier kinds of Drives: There are a number of other types

of drives you may encounter when buying or upgrading a

computer. You may encounter such things as Bernoulli tape

drives, WORM (write once, read many) drives, optical floppies,

and removable hard drives. All these things are really cool,

but you may want to stick with the basics until you are a

little more comfortable with the technology. Any computer

system ought to have at least one 3.5 inch floppy drive, as

large a hard drive as possible, and a CD-ROM drive.

Drive Controller Cards: Most computers come with a small

card installed that helps control all your disk drives. It is

called the Drive Controller Card. There are two major kinds,

IDE and SCSI. The only time you will ever care about this is

when you buy a hard drive. Just know that the terms IDE

and SCSI are terms that describe the drive controller card.

NETWORK CARD
In a home computer, you will generally not have a network

card, but these devices are very common for computers in

office settings. A network card is a special card which allows

your computer to talk to other computers that are physically

attached via cables. Depending on how the network is set

up, you can send messages from computer to computer, run

programs that are stored on different computers, and share

devices like hard drives and printers. In many offices, the

network also gives you access to the Internet. Network

connections are generally faster than modem connections.

Computer Data Storage and Data Storage Device

87

MODEM
Modems were once thought of as somewhat extravagant,

but with the advent of the Internet, they are becoming a

necessity for home computers. They allow you to connect

your computer to the Internet or other computer systems

through a telephone connection. The term Modem stands

for Modulator/Demodulator. It is a device that converts back

and forth from the digital signals that computers understand

to analog signals (sounds) that can be transferred over

telephone lines. Modems can be internal or external. The

external ones have their own little case and power supply,

and are generally a little more expensive than the internal

ones, which are little cards that fit inside the computer.

Modems are rated by their transmission speed, which is

measured in BAUD (Bits of Audio Data/Second). If you want

to do any Internet connections, you need a baud rate of 1440

BAUD (also sometimes called 14400 BPS or 14.4 KBPS) You

can also purchase faster modems, but they are of course

more expensive. In the near future, something will happen

in this arena. It is likely that we will be switching to a

completely new kind of communication technology for home

computers, but nobody knows exactly what that will be just

yet. Some modems also include faxing and voice mail

capabilities. These features can be very convenient for people

with home offices.

SOUND CARD
Sound cards are another peripheral device that was once

thought to be extravagant, but is now pretty much standard

equipment on any new machine. A sound card is a device

Computer Data Storage and Data Storage Device

88

which enables the computer to handle sounds (duh!). It can

handle sounds in two major ways. It can create sound effects

entirely through programming, or it can record sounds

through a standard microphone. Sound cards are attached

to speakers which recreate the sound.

Obviously, sound cards are a big boost to computer game

players, but they are frequently being used for more serious

pursuits as well. People can attach voice annotations to

documents they have written, musicians can test and modify

a composition with a computer, and people with visual

disabilities can have screens of text read to them. The basic

sound card is referred to as an 8-bit sound card, because it

processes 8 bits of information at a time. You can now find

16-bit, and even 32-bit sound cards if you are willing to pay

for them. As always, it depends on what you want your

computer to do for you.

THE INPUT/OUTPUT INTERFACE

Input and output in IF/Prolog take place using device

drivers which are managed on the basis of a driver model. A

device driver is responsible for operations for a particular

stream type, e.g., files, character strings or pipes. Prolog can

manage different streams with the same set of generic built-

in predicates.

Prolog provides the following built-in devices:

• File is the device for operating system files

• Null is the “bit bucket” device

• Pipe is the device for operating system pipes

• Standard is the device for the standard streams of

the Prolog system

Computer Data Storage and Data Storage Device

89

• String is the device for input/output using character

strings

• Socket is the device for interprocess communication.

The I/O-related COM interfaces which are defined by

header files in the oskit/io directory. Most of these interfaces

are fairly generic and can be used in a wide variety of

situations. Some of these interfaces, such as the bufio

interface, are extensions to other more primitive interfaces,

and allow objects to export the same functionality in different

forms, permitting clients to select the service that most

directly meets their needs thereby reducing interface crossing

overhead and increasing overall performance.

OSKIT_ABSIO: ABSOLUTE I/O INTERFACE
The oskit_absio interface supports reading from and writing

to objects at specified absolute offsets, with no concept of a

seek pointer. The oskit_absio interface is identical to the

oskit_blkio COM interface, except that the block size is always

one, since absolute IO is byte-oriented. In fact, an object

that supports byte-granularity reads and writes can easily

export both oskit_blkio and oskit_absio using exactly the same

function pointer table, simply by implementing an oskit_blkio

interface that always returns one from getblocksize, and then

returning a pointer to that interface on queries for either

oskit_blkio or oskit_absio.

The oskit_absio COM interface inherits from I Unknown,

and has the following additional methods:
read:

Read from this object, starting at the specified offset.
write:

Write to this object, starting at the specified offset.

Computer Data Storage and Data Storage Device

90

getsize:

Get the current size of this object.
setsize:

Set the current size of this object.

READ FROM THIS OBJECT, STARTING AT
SPECIFIED OFFSET

SYNOPSIS
#include <oskit/io/absio.h>

OSKIT_COMDECL oskit_absio_read (oskit_absio_t *f, void
*buf, oskit_off_t offset, oskit_size_t amount, [out] oskit_size_t

*out_actual);

DESCRIPTION
This method reads no more than amount bytes into buf

from this object, starting at offset. out_actual is set to the

actual number of bytes read.

PARAMETERS
f:

The object from which to read.
buf:

The buffer into which the data is to be copied.
offset:

The offset in this object at which to start reading.
amount:

The maximum number of bytes to read.
out_actual:

The actual number of bytes read.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

Computer Data Storage and Data Storage Device

91

WRITE TO THIS OBJECT, STARTING AT

SPECIFIED OFFSET

SYNOPSIS

#include <oskit/io/absio.h>

OSKIT_COMDECL oskit_absio_write(oskit_absio_t *f, const

void *buf, oskit_off_t offset, oskit_size_t amount, [out]

oskit_size_t *out_actual);

DESCRIPTION

This method writes no more than amount bytes from buf

into this object, starting at offset. out_actual is set to the

actual number of bytes written.

PARAMETERS

f:

The object to which to write.

buf:

The buffer from which the data is to be copied.

offset:

The offset in this object at which to start writing.

amount:

The maximum number of bytes to write.

out_actual:

The actual number of bytes written.

Computer Data Storage and Data Storage Device

92

RETURNS

Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

GET THE SIZE OF THIS OBJECT

SYNOPSIS

#include <oskit/io/absio.h>

OSKIT_COMDECL oskit_absio_getsize(oskit_absio_t *f,

[out] oskit_off_t *out_size);

DESCRIPTION
This method returns the current size of this object in bytes.

PARAMETERS
f:

The object whose size is desired.

out_size:

The current size in bytes of this object.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

SET THE SIZE OF THIS OBJECT

SYNOPSIS
#include <oskit/io/absio.h>

OSKIT_COMDECL oskit_absio_setsize (oskit_absio_t *f,

oskit_off_t new_size);

Computer Data Storage and Data Storage Device

93

DESCRIPTION
This method sets the size of this object to new_size bytes.

If new_size is larger than the former size of this object, then

the contents of the object between its former end and its

new end are undefined.

Note that some absolute I/O objects may be fixed-size,

such as objects representing preallocated memory buffers;

in such cases, this method will always return OSKIT_E_NOTIMPL.

PARAMETERS
f:

The object whose size is to be changed.
new_size:

The new size in bytes for this object.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

OSKIT_ASYNCIO: ASYNCHRONOUS I/O
INTERFACE

The oskit_asyncio interface provides interfaces in support

of basic asynchronous I/O, based on registered callback

objects. This can be used, for example, to implement Unix

SIGIO or select or POSIX.1b aio.

This interface supports a notion of three kinds of interesting

events: readability, writeability, and “other” exceptional

conditions. These are defined via the flags:

O S K I T _ A S Y N C I O _ R E A D A B L E ,

OSKIT_ASYNCIO_WRITEABLE, and

OSKIT_ASYNCIO_EXCEPTION which are passed and

returned in a mask in the various methods.

Computer Data Storage and Data Storage Device

94

The oskit_asyncio COM interface inherits from IUnknown,

and has the following additional methods:
poll:

Poll for currently pending asynchronous I/O

conditions.
add_listener:

Add a callback object for async I/O events.
remove_listener:

Remove a previously registered callback object.
readable:

Returns the number of bytes that can be read.

POLL FOR PENDING ASYNCHRONOUS I/O

CONDITIONS ON THIS OBJECT

SYNOPSIS
#include <oskit/io/asyncio.h>

OSKIT_COMDECL oskit_asyncio_poll(oskit_asyncio_t *io);

DESCRIPTION
Poll for currently pending asynchronous I/O conditions,

returning a mask indicating which conditions are currently

present.

PARAMETERS
io:

The async I/O object.

RETURNS
If successful, returns a mask of the OSKIT_ASYNCIO flags

above. Otherwise, returns an error code specified in <oskit/

error.h>.

Computer Data Storage and Data Storage Device

95

ASSOCIATE A CALLBACK WITH

THIS OBJECT

SYNOPSIS
#include <oskit/io/asyncio.h>

OSKIT_COMDECL oskit_asyncio_add_listener

(oskit_asyncio_t *io, oskit_listener_t *l, oskit_s32_t mask);

DESCRIPTION
Add a callback listener object to handle asynchronous I/

O events. When an event of interest occurs on this I/O object

(i.e., when one of the one to three I/O conditions becomes

true), all registered listeners will be called.

The mask parameter is an OR’ed combination of the

OSKIT_ASYNCIO flags above. It specifies which events the listener

is interested in. Note that spurious notifications are possible,

the listener must use oskit_asyncio_poll to determine the actual

state of affairs. Also, if successful, this method returns a

mask describing which of the OSKIT_ASYNCIO conditions

are already true, which the caller must check in order to

avoid missing events that occur just before the listener is

registered.

PARAMETRS
io:

The async I/O object.
l:

The oskit_listener object to call.
mask:

A mask of flags indicating which events are of interest.

Computer Data Storage and Data Storage Device

96

RETURNS
If successful, returns a mask of the OSKIT_ASYNCIO

currently pending. Otherwise, returns an error code specified
in <oskit/error.h>.

DISASSOCIATE A CALLBACK FROM THIS
OBJECT

SYNOPSIS
#include <oskit/io/asyncio.h>

OSKIT_COMDECLoskit_asyncio_remove_listener(oskit_asyncio_t
*io, oskit_listener_t *l);

DESCRIPTION
Remove a previously registered listener callback object.

Returns an error if the specified callback has not been
registered.

PARAMETERS
io:

The async I/O object.
l:

The oskit_listener object to call.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

RETURN NUMBER OF BYTES AVAILABLE

FOR READING FROM OBJECT

SYNOPSIS
#include <oskit/io/asyncio.h>

Computer Data Storage and Data Storage Device

97

OSKIT_COMDECL oskit_asyncio_readable(oskit_asyncio_t

*io);

DESCRIPTION
Returns the number of bytes that can be read from the I/

O object.

PARAMETRS
io:

The async I/O object.

RETURNS
The number of bytes available for reading.

OSKIT_BLKIO: BLOCK I/O INTERFACE
The oskit_blkio interface supports reading and writing of

raw data in units of fixed-sized blocks which are some power

of two.

This interface is identical to the oskit_absio interface except

for the addition of a getblocksize method; in fact, an object

that supports byte-granularity reads and writes can easily

export both oskit_blkio and oskit_absio using exactly the

same function pointer table, simply by implementing an

oskit_blkio interface that always returns one from

getblocksize, and then returning a pointer to that interface

on queries for either oskit_blkio or oskit_absio.

The oskit_blkio interface inherits from IUnknown, and has

the following additional methods:
getblocksize:

Return the minimum block size of this block I/O

object.
read:

Computer Data Storage and Data Storage Device

98

Read from this object, starting at the specified offset.
write:

Write to this object, starting at the specified offset.
getsize:

Get the current size of this object.
setsize:

Set the current size of this object.

RETURN THE MINIMUM BLOCK SIZE OF THIS
BLOCK I/O OBJECT

SYNOPSIS
#include <oskit/io/blkio.h>

OSKIT_COMDECL_U oskit_blkio_getblocksize(oskit_blkio_t *f);

DESCRIPTION
This method simply returns the block size of the object,

which must be a power of two. Calls by the client to read

from or write to the object must only use offsets and sizes

that are evenly divisible by this block size.

PARAMETERS
f:

The block I/O object.

RETURNS
Returns the block size of the object.

OSKIT_BUFIO: BUFFER-BASED I/O INTERFACE
The oskit_bufio interface extends the oskit_absio interface,

providing additional alternative methods of accessing the

object’s data. In particular, for objects whose data is stored

in an in-memory buffer of some kind, this interface allows

Computer Data Storage and Data Storage Device

99

clients to obtain direct access to the buffer itself so that they

can read and write data using loads and stores, rather than

having to copy data into and out of the buffer using the read

and write methods. In addition, this interface provides similar

methods to allow clients to “wire” the buffer’s contents to

physical memory, enabling DMA-based hardware devices to

access the buffer directly. However, note that only the read/

write methods, inherited from oskit_absio, are mandatory;

the others may consistently fail with OSKIT_E_NOTIMPL if

they cannot be implemented efficiently in a particular

situation. In that case, the caller must use the basic read

and write methods instead to copy the data. In other words,

oskit_bufio object implementations are not required to

implement direct buffer access, either software- or DMA-

based; the purpose of this interface is merely to allow them

to provide this optional functionality easily and consistently.

In general, the map and wire methods should only be

implemented if they can be done more efficiently than simply

copying the data. Further, even if a buffer I/O implementation

does implement map and/or wire it may allow only one

mapping or wiring to be in effect at once, failing if the client

attempts to map or wire the buffer a second time before the

first mapping is undone. Similarly, on some buffer I/O

implementations, these operations may only work on certain

areas of the buffer or only when the request has certain size

or alignment properties: for example, a buffer object that

stores data in discontiguous segments, such as BSD’s mbuf

system, may only allow a buffer to be mapped if the requested

region happens to fall entirely within one segment. Thus,

the client of a bufio object should call the map or wire methods

Computer Data Storage and Data Storage Device

100

whenever it can take advantage of direct buffer access, but

must always be prepared to fall back to the basic copying

methods. A particular buffer object may be semantically read-
only or write-only; it is assumed that parties passing bufio
objects around will agree upon this as part of their protocols.
For a read-only buffer, the write method may or may not fail,
and a mapping established using the map method may or
may not actually be a read-only memory mapping; it is the
client’s responsibility not to attempt to write to the buffer.
Similarly, for a write-only buffer, the read method may or
may not fail; it is the client’s responsibility not to attempt to
read from the buffer.

The oskit_bufio interface extends the oskit_absio interface
with the following additional methods:

map:

Map some or all of this buffer into locally accessible
memory.

unmap:

Release a previously mapped region of this buffer.
wire:

Wire a region of this buffer into contiguous physical
memory.

unwire:

Unwire a previously wired region of this buffer.
copy:

Create a copy of the specified portion of this buffer.

MAP SOME OR ALL OF THIS BUFFER INTO
LOCALLY ACCESSIBLE MEMORY

SYNOPSIS
#include <oskit/io/bufio.h>

OSKIT_COMDECL map (oskit_bufio_t *io, [out] void **addr,

oskit_off_t offset, oskit_size_t amount);

Computer Data Storage and Data Storage Device

101

DESRIPTION
This method attempts to map some or all of this buffer

into memory directly accessible to the client, so that the client

can access it using loads and stores. The operation may or

may not succeed, depending on the parameters and the

implementation of the object; if it fails, the client must be

prepared to fall back to the basic read and write methods. If

the mapping operation succeeds, the pointer returned is not

guaranteed to have any particular alignment.

If a call to the map method requests only a subset of the

buffer to be mapped, the object may actually map more than

the requested amount; however, since no information is

passed back indicating how much of the buffer was actually

mapped, the client must only attempt to access the region it

requested.

Note that this method does not necessarily twiddle with

virtual memory, as its name may seem to imply; in fact in

most cases in which it is implemented at all, it just returns

a pointer to a buffer if the data is already in locally-accessible

memory.

PARAMETRS
io:

The object whose contents are to be mapped.
addr:

On success, the method returns in this parameter the

address at which the client can directly

access the requested buffer region.
offset:

The offset into the buffer of the region to be mapped.
size:

The size of the region to be mapped.

Computer Data Storage and Data Storage Device

102

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

RELEASE A PREVIOUSLY MAPPED REGION OF
THIS BUFFER

SYNOPSIS
#include <oskit/io/bufio.h>

OSKIT_COMDECL unmap(oskit_bufio_t *io, void *addr,

oskit_off_t offset, oskit_size_t amount);

DESCRIPTION
After a successful call to the map method, the client should

call this method after it is finished accessing the buffer

directly, so that the buffer object can clean up and free any

resources that might be associated with the mapping.

The addr parameter passed to this method must be exactly

the value returned by the map request, and the offset and

amount parameters must be exactly the same as the values

previously passed in the corresponding map call. In other

words, clients must only attempt to unmap whole regions;

they must not attempt to unmap only part of a region, or to

unmap two previously mapped regions in one call, even if

the two regions appear to be contiguous in memory.

PARAMETRS
io:

The object whose contents are to be mapped.
addr:

The address of the mapped region, as returned from

the corresponding map call.

Computer Data Storage and Data Storage Device

103

offset:

The offset into the buffer of the mapped region, as

passed to the corresponding map call.
size:

The size of the mapped region, as passed to the

corresponding map call.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

WIRE A REGION OF THIS BUFFER INTO
CONTIGUOUS PHYSICAL MEMORY

SYNOPSIS
#include <oskit/io/bufio.h>

OSKIT_COMDECL wire(oskit_bufio_t *io, [out] oskit_addr_t

*phys_addr, oskit_off_t offset, oskit_size_t amount);

DESCRIPTION
This method attempts to wire down some or all of this

buffer into memory directly accessible by DMA hardware.

The operation may or may not succeed, depending on the

parameters and the implementation of the object; if it fails,

the client must be prepared to fall back to the basic read

and write methods. If the wiring operation succeeds, the

physical address of the buffer is guaranteed not to change

or otherwise become invalid until the region is unwired or

the bufio object is released. The wired buffer is not guaranteed

to have any particular alignment or location properties: for

example, on a PC, if the device that is going to be accessing

the buffer requires memory below 16MB, then it must be

Computer Data Storage and Data Storage Device

104

prepared to use appropriate bounce buffers if the wired buffer

turns out to be above 16MB. If a call to the wire method

requests only a subset of the buffer to be mapped, the object

may actually wire more than the requested amount; however,

since no information is passed back indicating how much of

the buffer was actually wired, the client must only attempt
to use the region it requested.

PARAMETRS
io:

The object whose contents are to be wired.
addr:

On success, the method returns in this parameter the
physical address at which DMA hardware can directly access
the requested buffer region.

offset:

The offset into the buffer of the region to be wired.
size:

The size of the region to be wired.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

UNWIRE A PREVIOUSLY WIRED REGION OF
THIS BUFFER

SYNOPSIS
#include <oskit/io/bufio.h>

OSKIT_COMDECL unwire (oskit_bufio_t *io, void *addr,

oskit_off_t offset, oskit_size_t amount);

Computer Data Storage and Data Storage Device

105

DESCRIPTION
After a successful call to the wire method, the client should

call this method after the hardware is finished accessing the

buffer directly, so that the buffer object can clean up and

free any resources that might be associated with the wiring.

The addr parameter passed to this method must be exactly

the value returned by the wire request, and the offset and

amount parameters must be exactly the same as the values

previously passed in the corresponding wire call. In other

words, clients must only attempt to unwire whole regions;

they must not attempt to unwire only part of a region, or to

unwire two previously wired regions in one call, even if the

two regions appear to be contiguous in physical memory.

PARAMETRS
io:

The object whose contents are to be wired.

addr:

The address of the wired region, as returned from the

corresponding map call.

offset:

The offset into the buffer of the wired region, as passed

to the corresponding wire call.

size:

The size of the wired region, as passed to the

corresponding wire call.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

Computer Data Storage and Data Storage Device

106

CREATE A COPY OF THE SPECIFIED PORTION
OF THIS BUFFER

SYNOPSIS
#include <oskit/io/bufio.h>

OSKIT_COMDECL copy(oskit_bufio_t *io, oskit_off_t offset,

oskit_size_t amount, [out] oskit_bufio_t **out_io);

DESCRIPTION
This method attempts to create a logical copy of a portion

of this buffer object (possibly the whole buffer), returning a

new oskit_bufio object representing the copy. As with the

map and wire methods, this method should only be

implemented by an object if it can be done more efficiently

than a simple “brute-force” copy using read. For example,

in virtual memory environments, the object may be able to

use copy-on-write optimizations.

Similarly, if the buffer’s contents are stored in special

memory not efficiently accessible to the processor, such as

memory on a video or coprocessor board, this method could

use on-board hardware to perform a much faster copy.

PARAMETERS
io:

The object whose contents are to be copied.
offset:

The offset into the buffer of the region to be copied.
size:

The size of the region to be copied.
out_io:

On success, this parameter holds the bufio object

representing the newly created copy of the buffer’s contents.

Computer Data Storage and Data Storage Device

107

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

OSKIT_NETIO: NETWORK PACKET I/O
INTERFACE

This interface builds on the above interfaces to provide a

clean and simple but powerful interface for passing network

packets between device drivers and protocol stacks, and

possibly between layers of a protocol stack as well.

The oskit_netio interface uses a symmetric sender-driven

model for asynchronous communication. Each party involved

(e.g., the network device driver and the protocol stack) must

implement a netio object and pass a reference to its own

netio object to the other party. For example, in the oskit_netdev

interface, which represents a network device of some kind,

this exchange of netio objects occurs when the protocol stack

or other client opens the device.

The oskit_netio interface defines only a single additional

method beyond the basic methods inherited from

oskit_iunknown; this method, appropriately named push, is

used to “push” a network packet to the “other” party. For

example, when a network device driver receives a packet

from the hardware, the driver calls the push method on the

netio object provided by the protocol stack; conversely, when

the protocol stack needs to send a packet, it calls the netio

object returned by the device driver at the time the device

was opened. Thus, a netio object essentially represents a

“packet consumer.”

The following section describes the specifics of the push

method.

Computer Data Storage and Data Storage Device

108

PUSH A PACKET THROUGH TO THE PACKET
CONSUMER

SYNOPSIS
#include <oskit/io/netio.h>

OSKIT_COMDECL push(oskit_netio_t *io, oskit_bufio *buf,

oskit_size_t size);

DESCRIPTION
This method feeds a network packet to the packet consumer

represented by the netio object; what the consumer does with

the packet depends entirely on who the consumer is and how

it is configured. The packet is contained in a bufio object which

must be at least the size of the packet, but may be larger; the

size parameter on the push call indicates the actual size of

the packet. If the consumer needs to hold on to the provided

bufio object after returning from the call, it must call addref

on the bufio object to obtain its own reference; then it must

release this reference at some later time when it is done with

the buffer. Otherwise, if the consumer doesn’t obtain its own

reference, the caller may recycle the buffer as soon as the call

returns. The passed buffer object is logically read-only; the

consumer must not attempt to write to it. The size parameter

to this call is the actual size of the packet; the size of the

buffer, as returned by the getsize method, may be larger than

the size of the packet.

PARAMETERS
io:

The oskit_netio interface representing the packet

consumer.
buf:

Computer Data Storage and Data Storage Device

109

The oskit_bufio interface to the buffer object containing

the packet.
size:

The actual size of the packet; must be less than or equal

to the size of the buffer object.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

OSKIT_POSIXIO: POSIX I/O INTERFACE
The oskit_posixio interface defines the minimal POSIX I/

O interface that any POSIX I/O object (file, device, pipe,
socket, etc) can be expected to support. Only per-object
methods are provided by this interface. Additional I/O
operations are supported through separate interfaces, such
as the oskit_stream interface and oskit_absio COM interface.

The oskit_posixio COM interface inherits from
oskit_iunknown, and has the following additional methods:

stat:

Get this object’s attributes.
setstat:

Set this object’s attributes.
pathconf

Get this object’s value for a configuration option
variable.

GET ATTRIBUTES OF THIS OBJECT

SYNOPSIS
#include <oskit/io/posixio.h>

OSKIT_COMDECL oskit_posixio_stat(oskit_posixio_t *f,

[out] oskit_stat_t *out_stats);

Computer Data Storage and Data Storage Device

110

DESCRIPTION
This method returns the attributes of this object.

Depending on the type of object, only some of the attributes

may be meaningful. out_stats is a pointer to a oskit_stat_t

structure defined as follows:
struct oskit_stat {

oskit_dev_t dev; /* device on which inode resides

*/

oskit_ino_t ino; /* inode’s number

*/

oskit_mode_t mode; /* file mode

*/

oskit_nlink_t nlink; /* number of hard links to file

*/

oskit_uid_t uid; /* user id of owner

*/

oskit_gid_t gid; /* group id of owner

*/

oskit_dev_t rdev; /* device number, for device

files */

oskit_timespec_t atime; /* time of last access

*/

oskit_timespec_t mtime; /* time of last data

modification */

oskit_timespec_t ctime; /* time of last attribute change

*/

oskit_off_t size; /* size in bytes

*/

oskit_u64_t blocks; /* blocks allocated for file

*/

oskit_u32_t blksize; /* optimal block size in bytes

*/

};

PARAMETERS
f:

The object whose attributes are desired.

Computer Data Storage and Data Storage Device

111

out_stats:

The attributes of the specified object.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

SET THE ATTRIBUTES OF THIS OBJECT

SYNOPSIS
#include <oskit/io/posixio.h>

OSKIT_COMDECL oskit_posixio_setstat(oskit_posixio_t *f,
oskit_u32_t mask, const oskit_stat_t *stat);

DESCRIPTION
This method sets the attributes specified in mask to the

values specified in stat. mask may be any combination of
the following:

OSKIT_STAT_MODE:

Set the file mode, except for the file type bits, as in the
Unix chmod system call.

OSKIT_STAT_UID:

Set the file user id, as in the Unix chown system call.
OSKIT_STAT_GID:

Set the file group id, as in the Unix chown system call.
OSKIT_STAT_SIZE:

Set the file size, as in the Unix truncate system call.
OSKIT_STAT_ATIME:

Set the file’s last access timestamp to a particular value,
as in the Unix utimes system call with a non-NULL parameter.

OSKIT_STAT_MTIME:

Set the file’s last data modification timestamp to a
particular value, as in the Unix utimes system call with a

non-NULL parameter.

Computer Data Storage and Data Storage Device

112

OSKIT_STAT_UTIMES_NULL:

Set the file’s last access timestamp and data modification

timestamp to the current time, as in the Unix utimes system

call with a NULL parameter.

Typically, this method is not supported for symbolic links.

PARAMETERS
f:

The object whose attributes are to be changed.
mask:

The attributes to be changed.
stat:

The new attribute values.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

GET VALUE OF A CONFIGURATION OPTION
VARIABLE

SYNOPSIS
#include <oskit/io/posixio.h>

OSKIT_COMDECL oskit_posixio_pathconf(oskit_posixio_t

*f, oskit_s32_t option, [out] oskit_s32_t *out_val);

DESCRIPTION
This method returns the value of the specified configuration

option variable for this object. The value of option may be

one of the following:
OSKIT_PC_LINK_MAX:

Get the maximum file link count.
OSKIT_PC_MAX_CANON:

Computer Data Storage and Data Storage Device

113

Get the maximum size of the terminal input line.
OSKIT_PC_MAX_INPUT:

Get the maximum input queue size.
OSKIT_PC_NAME_MAX:

Get the maximum number of bytes in a filename.
OSKIT_PC_PATH_MAX:

Get the maximum number of bytes in a pathname.
OSKIT_PC_PIPE_BUF:

Get the maximum atomic write size to a pipe.
OSKIT_PC_CHOWN_RESTRICTED:

Determine whether use of chown is restricted.
OSKIT_PC_NO_TRUNC:

Determine whether too-long pathnames produce
errors.

OSKIT_PC_VDISABLE:

Get value to disable special terminal characters.
OSKIT_PC_ASYNC_IO:

Determine whether asynchronous IO is supported.
OSKIT_PC_PRIO_IO:

Determine whether prioritized IO is supported.
OSKIT_PC_SYNC_IO:

Determine whether synchronized IO is supported.

PARAMETERS
f:

The object from which to obtain a configuration option

value
option:

The configuration option variable
out_val:

The value of the configuration option value.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

Computer Data Storage and Data Storage Device

114

OSKIT_TTYSTREAM: INTERFACE TO UNIX TTY-
LIKE STREAMS

This interface extends the standard COM IStream interface

with POSIX/Unix TTY functionality, such as methods to
control serial port settings, enable, disable, and control line
editing, flush the input and output queues, etc. This interface
is currently exported by character-oriented device drivers
incorporated into the OSKit from legacy systems such as BSD
and Linux, in which full Unix TTY functionality can be provided
easily. In the future, these drivers are expected to export more
minimal, lower-level interfaces instead of or in addition to
this interface; however, in the short term, this interface allows
clients to obtain full Unix terminal functionality quickly and
easily. The oskit_ttystream interface inherits from oskit_stream,

and has the following additional methods:
getattr:

Get the stream’s current TTY attributes.
setattr:

Set the stream’s TTY attributes.
sendbreak:

Send a break signal over the line.
drain:

Wait until all buffered output has been transmitted.
flush:

Discared buffered input and/or output data.
flow:

Suspend or resume data transmission or reception.

In addition, this header file defines a structure called

oskit_termios, corresponding to the standard POSIX termios

structure, and a set of related definitions used to specify

terminal-related settings. See the POSIX and Unix standards

for details on the exact contents and meaning of this

structure.

Computer Data Storage and Data Storage Device

115

GET THE STREAM’S CURRENT TTY
ATTRIBUTES

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL getattr(oskit_ttystream_t *tty, [out]
struct oskit_termios *attr);

DESCRIPTION
This method retrieves the current line settings of this

stream and returns them in the specified oskit_termios
structure. This method corresponds to the POSIX tcgetattr
function; see the POSIX standard for details.

PARAMETRS
tty:

The TTY stream object to query.
attr:

The structure to be filled with the current line settings.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

SET THE STREAM’S TTY ATTRIBUTES

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL setattr(oskit_ttystream_t *tty, const
struct oskit_termios *attr);

DESCRIPTION
This method sets the line settings of this stream based on

the specified oskit_termios structure. This method corresponds

to the POSIX tcsetattr function; see the POSIX standard for

details.

Computer Data Storage and Data Storage Device

116

PARAMETERS
tty:

The TTY stream object to modify.
attr:

The structure containing the new line settings.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

SEND A BREAK SIGNAL

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL sendbreak(oskit_ttystream_t *tty,

oskit_u32_t duration);

DESCRIPTION
On streams controlling asynchronous serial

communication, this method sends a break signal (a

continuous stream of zero-valued bits) for a specific duration.

This method corresponds to the POSIX tcsendbreak function;

see the POSIX standard for details.

PARAMETERS
tty:

The TTY stream on which to send the break.

duration:

The duration of the break signal to send. If this

parameter is zero, then the duration will be between 0.25

and 0.5 seconds.

Computer Data Storage and Data Storage Device

117

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

WAIT UNTIL ALL BUFFERED OUTPUT HAS BEEN
TRANSMITTED

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL drain(oskit_ttystream_t *tty);

DESCRIPTION
This method waits until any buffered output data that has

been written to the stream is successfully transmitted. This
method corresponds to the POSIX tcdrain function; see the
POSIX standard for details.

PARAMETERS
tty:

The TTY stream object to drain.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

DISCARD BUFFERED INPUT AND/OR OUTPUT
DATA

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL flush(oskit_ttystream_t *tty, int

queue_selector);

Computer Data Storage and Data Storage Device

118

DESCRIPTION
This method discards any buffered output data that has

not yet been transmitted, and/or any buffered input data
that has not yet been read, depending on the queue_selector

parameter. This method corresponds to the POSIX tcflush
function; see the POSIX standard for details.

PARAMETERS
tty:

The TTY stream object to flush.
queue_selector:

Must be one of the following:
OSKIT_TCIFLUSH:

Flush the input buffer.
OSKIT_TCOFLUSH:

Flush the output buffer.
OSKIT_TCIOFLUSH:

Flush the input and output buffers.

RETURNS
Returns 0 on success, or an error code specified in <oskit/

error.h>, on error.

SUSPEND OR RESUME DATA TRANSMISSION OR
RECEPTION

SYNOPSIS
#include <oskit/io/ttystream.h>

OSKIT_COMDECL flow(oskit_ttystream_t *tty, int action);

DESCRIPTION
This method controls the transmission or reception of data

on this TTY stream. This method corresponds to the POSIX

tcflow function; see the POSIX standard for details.

Computer Data Storage and Data Storage Device

119

PARAMETERS
tty:

The TTY stream object to control.
action:

Must be one of the following:
OSKIT_TCOOFF:

Suspend output.
OSKIT_TCOON:

Restart output.
OSKIT_TCIOFF:

Transmit a STOP character.
OSKIT_TCION:

Transmit a START character.

Computer Data Storage and Data Storage Device

120

6

Database Storage Structures

Database tables/indexes are typically stored on hard
disk in one of many forms, ordered/unordered Flat files,
ISAM, Heaps, Hash buckets or B+ Trees. These have various
advantages and disadvantages discussed in this topic. The
most commonly used are B+trees and ISAM.

UNORDERED
Unordered storage typically stores the records in the

order they are inserted. While having good insertion efficiency
(), it may seem that it would have inefficient retrieval times
(), but this is usually never the case as most databases use
indexes on the primary keys, resulting in or for keys that
are the same as database row offsets within the database
file storage system, efficient retrieval times.

ORDERED
Ordered storage typically stores the records in order and

may have to rearrange or increase the file size in the case

Computer Data Storage and Data Storage Device

121

a record is inserted, this is very inefficient. However is

better for retrieval as the records are pre-sorted, leading to

a complexity of.

STRUCTURED FILES

HEAPS
• simplest and most basic method

o insert efficient, records added at end of file –

‘chronological’ order

o retrieval inefficient as searching has to be linear

o deletion – deleted records marked requires periodic

reorganization if file is very volatile

• advantages

o good for bulk loading data

o good for relatively small relations as indexing

overheads are avoided

o good when retrievals involve large proportion of

records

• disadvantages

o not efficient for selective retrieval using key values,

especially if large

o sorting may be time-consuming

• not suitable for ‘volatile’ tables

HASH BUCKETS
• Hash functions calculate the address of the page in

which the record is to be stored based on one or more

fields in the record

Computer Data Storage and Data Storage Device

122

o Hashing functions chosen to ensure that addresses

are spread evenly across the address space

o ‘occupancy’ is generally 40% – 60% of total file size

o unique address not guaranteed so collision

detection and collision resolution mechanisms are

required

• open addressing

• chained/unchained overflow

• pros and cons

o efficient for exact matches on key field

o not suitable for range retrieval, which requires
sequential storage

o calculates where the record is stored based on
fields in the record

o hash functions ensure even spread of data

o collisions are possible, so collision detection and
restoration is required

B+ TREES
These are the most used in practice.

• the time taken to access any tuple is the same because
same number of nodes searched

• index is a full index so data file does not have to be
ordered

• Pros and cons

o versatile data structure – sequential as well as
random access

o access is fast

o supports exact, range, part key and pattern matches

efficiently

Computer Data Storage and Data Storage Device

123

o ‘volatile’ files are handled efficiently because index

is dynamic – expands and contracts as table grows

and shrinks

o less well suited to relatively stable files – in this

case, ISAM is more efficient

INDEX (DATABASE)
Database index is a data structure that improves the

speed of data retrieval operations on a database table at the

cost of slower writes and increased storage space. Indexes

can be created using one or more columns of a database

table, providing the basis for both rapid random lookups

and efficient access of ordered records. The disk space

required to store the index is typically less than that required

by the table (since indices usually contain only the key-

fields according to which the table is to be arranged, and

exclude all the other details in the table), yielding the

possibility to store indices in memory for a table whose data

is too large to store in memory. In a relational database,

an index is a copy of one part of a table. Some databases

extend the power of indexing by allowing indices to be

created on functions or expressions. For example, an index

could be created on upper(last_name), which would only

store the upper case versions of the last_name field in the

index. Another option sometimes supported is the use of

“filtered” indices, where index entries are created only for

those records that satisfy some conditional expression. A

further aspect of flexibility is to permit indexing on user-

defined functions, as well as expressions formed from an

assortment of built-in functions. Indices may be defined as

Computer Data Storage and Data Storage Device

124

unique or non-unique. A unique index acts as a constraint

on the table by preventing duplicate entries in the index

and thus the backing table.

INDEX ARCHITECTURE
Index architectures can be classified as clustered or

nonclustered.

NON-CLUSTERED
The data is present in random order, but the logical

ordering is specified by the index. The data rows may be
randomly spread throughout the table. The non-clustered
index tree contains the index keys in sorted order, with the
leaf level of the index containing the pointer to the page and
the row number in the data page. In non-clustered index:

• The physical order of the rows is not the same as the
index order.

• Typically created on column used in JOIN, WHERE,
and ORDER BY clauses.

• Good for tables whose values may be modified
frequently.

Microsoft SQL Server creates non-clustered indices by
default when CREATE INDEX command is given. There can
be more than one non-clustered index on a database table.
There can be as many as 249 nonclustered indexes per
table. It also creates a clustered index on a primary key by
default.

CLUSTERED
Clustering alters the data block into a certain distinct

order to match the index, resulting in the row data being

stored in order. Therefore, only one clustered index can be

Computer Data Storage and Data Storage Device

125

created on a given database table. Clustered indices can

greatly increase overall speed of retrieval, but usually only

where the data is accessed sequentially in the same or

reverse order of the clustered index, or when a range of

items is selected. Since the physical records are in this sort

order on disk, the next row item in the sequence is

immediately before or after the last one, and so fewer data

block reads are required. The primary feature of a clustered

index is therefore the ordering of the physical data rows in

accordance with the index blocks that point to them. Some

databases separate the data and index blocks into separate

files, others put two completely different data blocks within

the same physical file(s). Create an object where the physical

order of rows is same as the index order of the rows and

the bottom(leaf) level of clustered index contains the actual

data rows. They are known as “index organized tables”

under Oracle database.

COLUMN ORDER
The order in which columns are listed in the index

definition is important. It is possible to retrieve a set of row

identifiers using only the first indexed column. However, it

is not possible or efficient (on most databases) to retrieve

the set of row identifiers using only the second or greater

indexed column. For example, imagine a phone book that

is organized by city first, then by last name, and then by

first name. If you are given the city, you can easily extract

the list of all phone numbers for that city. However, in this

phone book it would be very tedious to find all the phone

numbers for a given last name. You would have to look

Computer Data Storage and Data Storage Device

126

within each city’s section for the entries with that last

name. Some databases can do this, others just won’t use

the index.

APPLICATIONS AND LIMITATIONS
Indices are useful for many applications but come with

some limitations. Consider the following SQL statement:

SELECT first_name FROM people WHERE last_name =
‘Smith’;. To process this statement without an index the
database software must look at the last_name column on
every row in the table (this is known as a full table scan).
With an index the database simply follows the B-tree data
structure until the Smith entry has been found; this is
much less computationally expensive than a full table scan.
Consider this SQL statement: SELECT email_address FROM
customers WHERE email_address LIKE ‘%@yahoo.com’;.
This query would yield an email address for every customer
whose email address ends with “@yahoo.com”, but even if
the email_address column has been indexed the database
still must perform a full table scan. This is because the
index is built with the assumption that words go from left
to right. With a wildcard at the beginning of the search-
term, the database software is unable to use the underlying
b-tree data structure (in other words, the WHERE-clause
is not sargable). This problem can be solved through the
addition of another index created on reverse(email_address)
and a SQL query like this: SELECT email_address FROM

customers WHERE reverse(email_address) LIKE

reverse(‘%@yahoo.com’);. This puts the wild-card at the

right-most part of the query (now moc.oohay@%) which the

index on reverse(email_address) can satisfy.

Computer Data Storage and Data Storage Device

127

TYPES

BITMAP INDEX
A bitmap index is a special kind of index that stores the

bulk of its data as bit arrays (bitmaps) and answers most

queries by performing bitwise logical operations on these

bitmaps. The most commonly used index, such as B+trees,

are most efficient if the values it indexes do not repeat or

repeat a smaller number of times. In contrast, the bitmap

index is designed for cases where the values of a variable

repeat very frequently. For example, the gender field in a

customer database usually contains two distinct values:

male or female. For such variables, the bitmap index can

have a significant performance advantage over the commonly

used trees.

DENSE INDEX
A dense index in databases is a file with pairs of keys

and pointers for every record in the data file. Every key in

this file is associated with a particular pointer to a record

in the sorted data file. In clustered indices with duplicate

keys, the dense index points to the first record with that key.

SPARSE INDEX
A sparse index in databases is a file with pairs of keys

and pointers for every block in the data file. Every key in

this file is associated with a particular pointer to the block

in the sorted data file. In clustered indices with duplicate

keys, the sparse index points to the lowest search key in

each block. primary key is a sparse index.

Computer Data Storage and Data Storage Device

128

REVERSE INDEX
A reverse key index reverses the key value before entering

it in the index. E.g., the value 24538 becomes 83542 in the

index. Reversing the key value is particularly useful for

indexing data such as sequence numbers, where new key

values monotonically increase.

INDEX IMPLEMENTATIONS
Indices can be implemented using a variety of data

structures. Popular indices include balanced trees, B+ trees,

Fractal Tree™ indexes and hashes. In Microsoft SQL Server,

the leaf node of the clustered index corresponds to the

actual data, not simply a pointer to data that resides

elsewhere, as is the case with a non-clustered index. Each

relation can have a single clustered index and many

unclustered indices.

INDEX CONCURRENCY CONTROL
An index is typically being accessed concurrently by

several transactions and processes, and thus needs

concurrency control. While in principle indexes can utilize

the common database concurrency control methods,

specialized concurrency control methods for indexes exist,

which are applied in conjunction with the common methods

for a substantial performance gain.

COVERING INDEX
In most cases, an index is used to quickly locate the data

record(s) from which the required data is read. In other

words, the index is only used to locate data records in the

Computer Data Storage and Data Storage Device

129

table and not to return data. A covering index is a special

case where the index itself contains the required data field(s)

and can return the data. Consider the following table (other

fields omitted):

ID NameOther Fields

12 Plug ...

13 Lamp ...

14 Fuse ...

To find the Name for ID 13, an index on (ID) will be

useful, but the record must still be read to get the Name.

However, an index on (ID, Name) contains the required data

field and eliminates the need to look up the record. A

covering index can dramatically speed up data retrieval but

may itself be large due to the additional keys, which slow

down data insertion & update. To reduce such index size,

some systems allow non-key fields to be included in the

index. Non-key fields are not themselves part of the index

ordering but only included at the leaf level, allowing for a

covering index with less overall index size.

STANDARDIZATION

There is no standard about creating indexes because the

ISO SQL Standard does not cover physical aspects, and

indexes are one of the pysical part of databse conception

among others like storage (tablespace or filegroups). However

RDBMS vendors all give a CREATE INDEX syntax with

some specific options which depends on functionalities they

provide to customers.

Computer Data Storage and Data Storage Device

130

DATABASE SECURITY
Database security concerns the use of a broad range of

information security controls to protect databases (potentially

including the data, the database applications or stored

functions, the database systems, the database servers and

the associated network links) against compromises of their

confidentiality, integrity and availability. It involves various

types or categories of controls, such as technical, procedural/

administrative and physical. Database security is a specialist

topic within the broader realms of computer security,

information security and risk management. Security risks

to database systems include, for example:

• Unauthorized or unintended activity or misuse by

authorized database users, database administrators,

or network/systems managers, or by unauthorized

users or hackers (e.g. inappropriate access to sensitive

data, metadata or functions within databases, or

inappropriate changes to the database programmes,

structures or security configurations);

• Malware infections causing incidents such as

unauthorized access, leakage or disclosure of personal

or proprietary data, deletion of or damage to the data

or programmes, interruption or denial of authorized

access to the database, attacks on other systems and

the unanticipated failure of database services;

• Overloads, performance constraints and capacity

issues resulting in the inability of authorized users

to use databases as intended;

• Physical damage to database servers caused by

computer room fires or floods, overheating, lightning,

Computer Data Storage and Data Storage Device

131

accidental liquid spills, static discharge, electronic

breakdowns/equipment failures and obsolescence;

• Design flaws and programming bugs in databases

and the associated programmes and systems, creating

various security vulnerabilities (e.g. unauthorized

privilege escalation), data loss/corruption,

performance degradation etc.;

• Data corruption and/or loss caused by the entry of

invalid data or commands, mistakes in database or

system administration processes, sabotage/criminal

damage etc.

Many layers and types of information security control

are appropriate to databases, including:

• Access control

• Auditing

• Authentication

• Encryption

• Integrity controls

• Backups

• Application security

Traditionally databases have been largely secured against

hackers through network security measures such as

firewalls, and network-based intrusion detection systems.

While network security controls remain valuable in this

regard, securing the database systems themselves, and the

programmes/functions and data within them, has arguably

become more critical as networks are increasingly opened

to wider access, in particular access from the Internet.

Furthermore, system, programme, function and data access

Computer Data Storage and Data Storage Device

132

controls, along with the associated user identification,

authentication and rights management functions, have

always been important to limit and in some cases log the

activities of authorized users and administrators. In other

words, these are complementary approaches to database

security, working from both the outside-in and the inside-

out as it were. Many organizations develop their own

“baseline” security standards and designs detailing basic

security control measures for their database systems.

These may reflect general information security

requirements or obligations imposed by corporate

information security policies and applicable laws and

regulations (e.g. concerning privacy, financial management

and reporting systems), along with generally-accepted good

database security practices (such as appropriate hardening

of the underlying systems) and perhaps security

recommendations from the relevant database system and

software vendors.

The security designs for specific database systems

typically specify further security administration and

management functions (such as administration and reporting

of user access rights, log management and analysis, database

replication/synchronization and backups) along with various

business-driven information security controls within the

database programmes and functions (e.g. data entry

validation and audit trails). Furthermore, various security-

related activities (manual controls) are normally incorporated

into the procedures, guidelines etc. relating to the design,

development, configuration, use, management and

maintenance of databases.

Computer Data Storage and Data Storage Device

133

VULNERABILITY ASSESSMENTS AND
COMPLIANCE

One technique for evaluating database security involves

performing vulnerability assessments or penetration tests

against the database. Testers attempt to find security

vulnerabilities that could be used to defeat or bypass security

controls, break into the database, compromise the system

etc. Database administrators or information security

administrators may for example use automated vulnerability

scans to search out misconfiguration of controls within the

layers mentioned above along with known vulnerabilities

within the database software. The results of such scans are

used to harden the database (improve the security controls)

and close off the specific vulnerabilities identified, but

unfortunately other vulnerabilities typically remain

unrecognized and unaddressed. A programme of continual

monitoring for compliance with database security standards

is another important task for mission critical database

environments. Two crucial aspects of database security

compliance include patch management and the review and

management of permissions (especially public) granted to

objects within the database.

Database objects may include table or other objects

listed in the Table link. The permissions granted for SQL

language commands on objects are considered in this

process. One should note that compliance monitoring is

similar to vulnerability assessment with the key difference

that the results of vulnerability assessments generally drive

the security standards that lead to the continuous monitoring

programme. Essentially, vulnerability assessment is a

Computer Data Storage and Data Storage Device

134

preliminary procedure to determine risk where a compliance

programme is the process of on-going risk assessment. The

compliance programme should take into consideration any

dependencies at the application software level as changes

at the database level may have effects on the application

software or the application server. In direct relation to this

topic is that of application security.

ABSTRACTION
Application level authentication and authorization

mechanisms should be considered as an effective means of

providing abstraction from the database layer. The primary

benefit of abstraction is that of a single sign-on capability

across multiple databases and database platforms. A Single

sign-on system should store the database user’s credentials

(login id and password), and authenticate to the database

on behalf of the user.

DATABASE ACTIVITY MONITORING (DAM)
Another security layer of a more sophisticated nature

includes real-time database activity monitoring, either by

analyzing protocol traffic (SQL) over the network, or by

observing local database activity on each server using

software agents, or both. Use of agents or native logging is

required to capture activities executed on the database

server, which typically include the activities of the database

administrator. Agents allow this information to be captured

in a fashion that can not be disabled by the database

administrator, who has the ability to disable or modify

native audit logs.

Computer Data Storage and Data Storage Device

135

Analysis can be performed to identify known exploits or

policy breaches, or baselines can be captured over time to

build a normal pattern used for detection of anomalous

activity that could be indicative of intrusion. These systems

can provide a comprehensive Database audit trail in addition

to the intrusion detection mechanisms, and some systems

can also provide protection by terminating user sessions

and/or quarantining users demonstrating suspicious

behaviour.

Some systems are designed to support separation of

duties (SOD), which is a typical requirement of auditors.

SOD requires that the database administrators who are

typically monitored as part of the DAM, not be able to

disable or alter the DAM functionality. This requires the

DAM audit trail to be securely stored in a separate system

not administered by the database administration group.

NATIVE AUDIT
In addition to using external tools for monitoring or

auditing, native database audit capabilities are also available

for many database platforms. The native audit trails are

extracted on a regular basis and transferred to a designated

security system where the database administrators do not

have access.

This ensures a certain level of segregation of duties that

may provide evidence the native audit trails were not modified

by authenticated administrators. Turning on native impacts

the performance of the server. Generally, the native audit

trails of databases do not provide sufficient controls to

enforce separation of duties; therefore, the network and/

Computer Data Storage and Data Storage Device

136

or kernel module level host based monitoring capabilities

provides a higher degree of confidence for forsenics and

preservation of evidence.

PROCESS AND PROCEDURES
A database security programme should include the regular

review of permissions granted to individually owned accounts

and accounts used by automated processes. The accounts

used by automated processes should have appropriate

controls around password storage such as sufficient

encryption and access controls to reduce the risk of

compromise.

For individual accounts, a two-factor authentication

system should be considered in a database environment

where the risk is commensurate with the expenditure for

such an authentication system. In conjunction with a sound

database security programme, an appropriate disaster

recovery programme should exist to ensure that service is

not interrupted during a security incident or any other

incident that results in an outage of the primary database

environment. An example is that of replication for the primary

databases to sites located in different geographical regions.

After an incident occurs, the usage of database forensics

should be employed to determine the scope of the breach,

and to identify appropriate changes to systems and/or

processes to prevent similar incidents in the future.

DATABASE TRANSACTION
A database transaction comprises a unit of work

performed within a database management system (or similar

Computer Data Storage and Data Storage Device

137

system) against a database, and treated in a coherent and

reliable way independent of other transactions. Transactions

in a database environment have two main purposes:

1. To provide reliable units of work that allow correct

recovery from failures and keep a database consistent

even in cases of system failure, when execution stops

(completely or partially) and many operations upon

a database remain uncompleted, with unclear status.

2. To provide isolation between programmes accessing

a database concurrently. Without isolation the

program’s outcomes are possibly erroneous.

A database transaction, by definition, must be atomic,

consistent, isolated and durable. Database practitioners

often refer to these properties of database transactions

using the acronym ACID. Transactions provide an “all-or-

nothing” proposition, stating that each work-unit performed

in a database must either complete in its entirety or have

no effect whatsoever. Further, the system must isolate each

transaction from other transactions, results must conform

to existing constraints in the database, and transactions

that complete successfully must get written to durable

storage.

PURPOSE
Databases and other data stores which treat the integrity

of data as paramount often include the ability to handle

transactions to maintain the integrity of data. A single

transaction consists of one or more independent units of

work, each reading and/or writing information to a database

or other data store. When this happens it is often important

Computer Data Storage and Data Storage Device

138

to ensure that all such processing leaves the database or

data store in a consistent state. Examples from double-

entry accounting systems often illustrate the concept of

transactions. In double-entry accounting every debit requires

the recording of an associated credit. If one writes a check
for €100 to buy groceries, a transactional double-entry
accounting system must record the following two entries to
cover the single transaction:

1. Debit €100 to Groceries Expense Account

2. Credit €100 to Checking Account

A transactional system would make both entries — or
both entries would fail. By treating the recording of multiple
entries as an atomic transactional unit of work the system
maintains the integrity of the data recorded. In other words,
nobody ends up with a situation in which a debit is recorded
but no associated credit is recorded, or vice versa.

TRANSACTIONAL DATABASES
A ‘transactional database is a DBMS where write

transactions on the database are able to be rolled back if
they are not completed properly (e.g. due to power or
connectivity loss). Most modern relational database
management systems fall into the category of databases
that support transactions. In a database system a transaction
might consist of one or more data-manipulation statements

and queries, each reading and/or writing information in the

database. Users of database systems consider consistency

and integrity of data as highly important. A simple

transaction is usually issued to the database system in a

language like SQL wrapped in a transaction, using a pattern

similar to the following:

Computer Data Storage and Data Storage Device

139

1. Begin the transaction

2. Execute several data manipulations and queries

3. If no errors occur then commit the transaction and

end it

4. If errors occur then rollback the transaction and end

it

If no errors occurred during the execution of the

transaction then the system commits the transaction. A

transaction commit operation applies all data manipulations

within the scope of the transaction and persists the results

to the database. If an error occurs during the transaction,

or if the user specifies a rollback operation, the data

manipulations within the transaction are not persisted to

the database. In no case can a partial transaction be

committed to the database since that would leave the

database in an inconsistent state. Internally, multi-user

databases store and process transactions, often by using

a transaction ID or XID.

IN SQL
SQL is inherently transactional, and a transaction is

automatically started when another ends. Some databases

extend SQL and implement a START TRANSACTION

statement, but while seemingly signifying the start of the

transaction it merely deactivates autocommit. The result of

any work done after this point will remain invisible to other

database-users until the system processes a COMMIT

statement. A ROLLBACK statement can also occur, which

will undo any work performed since the last transaction.

Both COMMIT and ROLLBACK will end the transaction,

Computer Data Storage and Data Storage Device

140

and start a new. If autocommit was disabled using START

TRANSACTION, autocommit will often also be reenabled.

Some database systems allow the synonyms BEGIN, BEGIN

WORK and BEGIN TRANSACTION, and may have other

options available.

DISTRIBUTED TRANSACTIONS
Database systems implement distributed transactions

as transactions against multiple applications or hosts. A

distributed transaction enforces the ACID properties over

multiple systems or data stores, and might include systems

such as databases, file systems, messaging systems, and

other applications. In a distributed transaction a coordinating

service ensures that all parts of the transaction are applied

to all relevant systems. As with database and other

transactions, if any part of the transaction fails, the entire

transaction is rolled back across all affected systems.

TRANSACTIONAL FILESYSTEMS
The Namesys Reiser4 filesystem for Linux supports

transactions, and as of Microsoft Windows Vista, the

Microsoft NTFS filesystem supports distributed transactions

across networks.

CONCURRENCY CONTROL
In information technology and computer science,

especially in the fields of computer programming, operating

systems, multiprocessors, and databases, concurrency

control ensures that correct results for concurrent operations

are generated, while getting those results as quickly as

Computer Data Storage and Data Storage Device

141

possible. Computer systems, both software and hardware,

consist of modules, or components. Each component is

designed to operate correctly, i.e., to obey to or meet certain

consistency rules. When components that operate

concurrently interact by messaging or by sharing accessed

data (in memory or storage), a certain component’s

consistency may be violated by another component. The

general area of concurrency control provides rules, methods,

design methodologies, and theories to maintain the

consistency of components operating concurrently while

interacting, and thus the consistency and correctness of the

whole system. Introducing concurrency control into a system

means applying operation constraints which typically result

in some performance reduction. Operation consistency and

correctness should be achieved with as good as possible

efficiency, without reducing performance below reasonable.

CONCURRENCY CONTROL IN DATABASES

COMMENTS:
1. This section is applicable to all transactional systems,

i.e., to all systems that use database transactions (atomic

transactions; e.g., transactional objects in Systems

management and in networks of smartphones which typically

implement private, dedicated database systems), not only

general-purpose database management systems (DBMSs).

2. DBMSs need to deal also with concurrency control

issues not typical just to database transactions but rather

to operating systems in general. These issues (e.g., see

Concurrency control in operating systems below) are out of

Computer Data Storage and Data Storage Device

142

the scope of this section. Concurrency control in Database

management systems (DBMS; e.g., Bernstein et al. 1987,

Weikum and Vossen 2001), other transactional objects, and

related distributed applications (e.g., Grid computing and

Cloud computing) ensures that database transactions are

performed concurrently without violating the data integrity

of the respective databases. Thus concurrency control is an

essential element for correctness in any system where two

database transactions or more, executed with time overlap,

can access the same data, e.g., virtually in any general-

purpose database system. Consequently a vast body of

related research has been accumulated since database

systems have emerged in the early 1970s. A well established

concurrency control theory for database systems is outlined

in the references mentioned above: serializability theory,

which allows to effectively design and analyze concurrency

control methods and mechanisms. An alternative theory for

concurrency control of atomic transactions over abstract

data types is presented in (Lynch et al. 1993), and not

utilized below. This theory is more refined, with a wider

scope, but has been less utilized in the Database literature

than the classical theory above. Each theory has its pros

and cons, emphasis and insight. To some extent they are

complementary, and their merging may be useful.

To ensure correctness, a DBMS usually guarantees that

only serializable transaction schedules are generated, unless

serializability is intentionally relaxed to increase

performance, but only in cases where application correctness

is not harmed. For maintaining correctness in cases of

failed (aborted) transactions (which can always happen for

Computer Data Storage and Data Storage Device

143

many reasons) schedules also need to have the recoverability

(from abort) property. A DBMS also guarantees that no

effect of committed transactions is lost, and no effect of

aborted (rolled back) transactions remains in the related

database. Overall transaction characterization is usually

summarized by the ACID rules below. As databases have

become distributed, or needed to cooperate in distributed

environments (e.g., Federated databases in the early 1990,

and Cloud computing currently), the effective distribution

of concurrency control mechanisms has received special

attention.

DATABASE TRANSACTION AND THE ACID
RULES

The concept of a database transaction (or atomic

transaction) has evolved in order to enable both a well

understood database system behaviour in a faulty

environment where crashes can happen any time, and

recovery from a crash to a well understood database state.

A database transaction is a unit of work, typically

encapsulating a number of operations over a database (e.g.,

reading a database object, writing, acquiring lock, etc.), an

abstraction supported in database and also other systems.

Each transaction has well defined boundaries in terms of

which program/code executions are included in that

transaction (determined by the transaction’s programmer

via special transaction commands). Every database

transaction obeys the following rules (by support in the

database system; i.e., a database system is designed to

guarantee them for the transactions it runs):

Computer Data Storage and Data Storage Device

144

• Atomicity - Either the effects of all or none of its

operations remain (“all or nothing” semantics) when

a transaction is completed (committed or aborted

respectively). In other words, to the outside world a

committed transaction appears (by its effects) to be

indivisible, atomic, and an aborted transaction does

not leave effects at all, as if never existed.

• Consistency - Every transaction must leave the

database in a consistent (correct) state, i.e., maintain

the predetermined integrity rules of the database

(constraints upon and among the database’s objects).

A transaction must transform a database from one

consistent state to another consistent state (it is the

responsibility of the transaction’s programmer to make

sure that the transaction itself is correct, i.e., performs

correctly what it intends to perform while maintaining

the integrity rules). Thus since a database can be

normally changed only by transactions, all the

database’s states are consistent. An aborted

transaction does not change the state.

• Isolation - Transactions cannot interfere with each

other. Moreover, usually the effects of an incomplete

transaction are not visible to another transaction.

Providing isolation is the main goal of concurrency

control.

• Durability - Effects of successful (committed)

transactions must persist through crashes (typically

by recording the transaction’s effects and its commit

event in a non-volatile memory).

Computer Data Storage and Data Storage Device

145

WHY IS CONCURRENCY CONTROL NEEDED?
If transactions are executed serially, i.e., sequentially

with no overlap in time, no transaction concurrency exists.

However, if concurrent transactions with interleaving

operations are allowed in an uncontrolled manner, some

unexpected, undesirable result may occur. Here are some
typical examples:

1. The lost update problem: A second transaction writes
a second value of a data-item (datum) on top of a first
value written by a first concurrent transaction, and
the first value is lost to other transactions running
concurrently which need, by their precedence, to
read the first value. The transactions that have read
the wrong value end with incorrect results.

2. The dirty read problem: Transactions read a value
written by a transaction that has been later aborted.
This value disappears from the database upon abort,
and should not have been read by any transaction
(“dirty read”). The reading transactions end with
incorrect results.

3. The incorrect summary problem: While one
transaction takes a summary over the values of all
the instances of a repeated data-item, a second

transaction updates some instances of that data-

item. The resulting summary does not reflect a correct

result for any (usually needed for correctness)

precedence order between the two transactions (if

one is executed before the other), but rather some

random result, depending on the timing of the

updates, and whether certain update results have

been included in the summary or not.

Computer Data Storage and Data Storage Device

146

CONCURRENCY CONTROL MECHANISMS

CATEGORIES
The main categories of concurrency control mechanisms

are:

• Optimistic - Delay the checking of whether a

transaction meets the isolation and other integrity

rules (e.g., serializability and recoverability) until its

end, without blocking any of its (read, write) operations

(“...and be optimistic about the rules being met...”),

and then abort a transaction to prevent the violation,

if the desired rules are to be violated upon its commit.

An aborted transaction is immediately restarted and

re-executed, which incurs an obvious overhead (versus

executing it to the end only once). If not too many

transactions are aborted, then being optimistic is

usually a good strategy.

• Pessimistic - Block an operation of a transaction, if

it may cause violation of the rules, until the possibility

of violation disappears. Blocking operations is typically

involved with performance reduction.

• Semi-optimistic - Block operations in some situations,

if they may cause violation of some rules, and do not

block in other situations while delaying rules checking

(if needed) to transaction’s end, as done with

optimistic.

Different categories provide different performance, i.e.,

different average transaction completion rates (throughput),

depending on transaction types mix, computing level of

parallelism, and other factors. If selection and knowledge

Computer Data Storage and Data Storage Device

147

about trade-offs are available, then category and method

should be chosen to provide the highest performance. The

mutual blocking between two transactions (where each one

blocks the other) or more results in a deadlock, where the

transactions involved are stalled and cannot reach

completion. Most non-optimistic mechanisms (with blocking)

are prone to deadlocks which are resolved by an intentional

abort of a stalled transaction (which releases the other

transactions in that deadlock), and its immediate restart

and re-execution. The likelihood of a deadlock is typically

low.

METHODS
Many methods for concurrency control exist. Most of

them can be implemented within either main category above.

The major methods, which have each many variants, and

in some cases may overlap or be combined, are:

1. Locking (e.g., Two-phase locking - 2PL) - Controlling

access to data by locks assigned to the data. Access

of a transaction to a data item (database object)

locked by another transaction may be blocked

(depending on lock type and access operation type)

until lock release.

2. Serialization graph checking (also called Serializability,

or Conflict, or Precedence graph checking) - Checking

for cycles in the schedule’s graph and breaking them

by aborts.

3. Timestamp ordering (TO) - Assigning timestamps to

transactions, and controlling or checking access to

data by timestamp order.

Computer Data Storage and Data Storage Device

148

4. Commitment ordering (or Commit ordering; CO) -

Controlling or checking transactions’ chronological

order of commit events to be compatible with their

respective precedence order.

Other major concurrency control types that are utilized

in conjunction with the methods above include:

• Multiversion concurrency control (MVCC) - Increasing

concurrency and performance by generating a new

version of a database object each time the object is

written, and allowing transactions’ read operations

of several last relevant versions (of each object)

depending on scheduling method.

• Index concurrency control - Synchronizing access

operations to indexes, rather than to user data.

Specialized methods provide substantial performance

gains.

The most common mechanism type in database systems

since their early days in the 1970s has been Strong strict

Two-phase locking (SS2PL; also called Rigorous scheduling

or Rigorous 2PL) which is a special case (variant) of both

Two-phase locking (2PL) and Commitment ordering (CO). It

is pessimistic. In spite of its long name (for historical reasons)

the idea of the SS2PL mechanism is simple: “Release all

locks applied by a transaction only after the transaction has

ended.” SS2PL (or Rigorousness) is also the name of the set

of all schedules that can be generated by this mechanism,

i.e., these are SS2PL (or Rigorous) schedules, have the

SS2PL (or Rigorousness) property.

Computer Data Storage and Data Storage Device

149

MAJOR GOALS OF CONCURRENCY CONTROL
MECHANISMS

Concurrency control mechanisms firstly need to operate

correctly, i.e., to maintain each transaction’s integrity rules

while transactions are running concurrently, and thus the

integrity of the entire transactional system. Correctness

needs to be achieved with as good performance as possible.

In addition, increasingly a need exists to operate effectively

while transactions are distributed over processes, computers,

and computer networks. Other subjects that may affect

concurrency control are recovery and replication.

CORRECTNESS

SERIALIZABILITY
For correctness, a common major goal of most

concurrency control mechanisms is generating schedules

with the Serializability property. Without serializability

undesirable phenomena may occur, e.g., money may

disappear from accounts, or be generated from nowhere.

Serializability of a schedule means equivalence (in the

resulting database values) to some serial schedule with the

same transactions (i.e., in which transactions are sequential

with no overlap in time, and thus completely isolated from

each other: No concurrent access by any two transactions

to the same data is possible). Serializability is considered

the highest level of isolation among database transactions,

and the major correctness criterion for concurrent

transactions. In some cases compromised, relaxed forms of

serializability are allowed for better performance (e.g., the

Computer Data Storage and Data Storage Device

150

popular Snapshot isolation mechanism) or to meet availability

requirements in highly distributed systems, but only if

application’s correctness is not violated by the relaxation

(e.g., no relaxation is allowed for money transactions, since

by relaxation money can disappear, or appear from nowhere).

Almost all implemented concurrency control mechanisms

achieve serializability by providing Conflict serializablity, a

broad special case of serializability (i.e., it covers, enables

most serializable schedules, and does not impose significant

additional delay-causing constraints) which can be

implemented efficiently.

RECOVERABILITY
Comment: While in the general area of systems the term

“recoverability” may refer to the ability of a system to recover

from failure, within concurrency control of database systems

this term has received a specific meaning.

Concurrency control typically also ensures the

Recoverability property of schedules for maintaining

correctness in cases of aborted transactions (which can

always happen for many reasons). Recoverability (from abort)

means that no committed transaction in a schedule has

read data written by an aborted transaction. Such data

disappear from the database (upon the abort) and are parts

of an incorrect database state. Reading such data violates

the consistency rule of ACID. Unlike Serializability,

Recoverability cannot be compromised, relaxed at any case,

since any relaxation results in quick database integrity

violation upon aborts. The major methods listed above

provide serializability mechanisms. None of them in its

Computer Data Storage and Data Storage Device

151

general form automatically provides recoverability, and

special considerations and mechanism enhancements are

needed to support recoverability. A commonly utilized special

case of recoverability is Strictness, which allows efficient

database recovery from failure (but excludes optimistic

implementations; e.g, Strict CO (SCO) cannot have an

optimistic implementation, but has semi-optimistic ones).

Comment: Note that the Recoverability property is needed

even if no database failure occurs and no database recovery

from failure is needed. It is rather needed to correctly

automatically handle transaction aborts, which may be

unrelated to database failure and recovery from it.

DISTRIBUTION
With the fast technological development of computing

the difference between local and distributed computing over

low latency networks is blurring. Thus the quite effective

utilization of local techniques in such distributed

environments is common, e.g., in computer clusters. However

for a large-scale distribution local concurrency control

techniques typically do not scale well.

DISTRIBUTED SERIALIZABILITY AND
COMMITMENT ORDERING

As database systems have become distributed, or started

to cooperate in distributed environments (e.g., Federated

databases in the early 1990s, and nowadays Grid computing,

Cloud computing, and networks with smartphones), some

transactions have become distributed. A distributed

transaction means that the transaction spans processes,

Computer Data Storage and Data Storage Device

152

and may span computers and geographical sites. This

generates a need in effective distributed concurrency control

mechanisms. Achieving the Serializability property of a

distributed system’s schedule effectively poses special

challenges typically not met by most of the regular

serializability mechanisms, originally designed to operate

locally. This is especially due to a need in costly distribution

of concurrency control information amid communication

and computer latency. The only known general effective

technique for distribution is Commitment ordering, which

was disclosed publicly in 1991 (after being patented).

Commitment ordering (Commit ordering, CO; Raz 1992)

means that transactions’ chronological order of commit

events is kept compatible with their respective precedence

order.

CO does not require the distribution of concurrency

control information and provides a general effective solution

(reliable, high-performance, and scalable) for both distributed

and global serializability, also in a heterogeneous

environment with database systems (or other transactional

objects) with different (any) concurrency control mechanisms.

CO is indifferent to which mechanism is utilized, since it

does not interfere with any transaction operation scheduling

(which most mechanisms control), and only determines the

order of commit events. Thus, CO enables the efficient

distribution of all other mechanisms, and also the

distribution of a mix of different (any) local mechanisms,

for achieving distributed and global serializability. The

existence of such a solution has been considered “unlikely”

until 1991, and by many experts also later, due to

Computer Data Storage and Data Storage Device

153

misunderstanding of the CO solution. An important side-

benefit of CO is automatic distributed deadlock resolution.

Contrary to CO, virtually all other techniques (when not

combined with CO) are prone to distributed deadlocks (also

called global deadlocks) which need special handling. CO

is also the name of the resulting schedule property: A

schedule has the CO property if the chronological order of

its transactions’ commit events is compatible with the

respective transactions’ precedence (partial) order.

SS2PL mentioned above is a variant (special case) of CO

and thus also effective to achieve distributed and global

serializability. It also provides automatic distributed deadlock

resolution (a fact overlooked in the research literature even

after CO’s publication), as well as Strictness and thus

Recoverability. Possessing these desired properties together

with known efficient locking based implementations explains

SS2PL’s popularity. SS2PL has been utilized to efficiently

achieve Distributed and Global serializability since the 1980,

and has become the de-facto standard for it. However,

SS2PL is blocking and constraining (pessimistic), and with

the proliferation of distribution and utilization of systems

different from traditional database systems (e.g., as in Cloud

computing), less constraining types of CO (e.g., Optimistic

CO) may be needed for better performance.

COMMENTS
1. The Distributed conflict serializability property in its

general form is difficult to achieve efficiently, but it is

achieved efficiently via its special case Distributed CO: Each

local component (e.g., a local DBMS) needs both to provide

Computer Data Storage and Data Storage Device

154

some form of CO, and enforce a special voting strategy for

the Two-phase commit protocol (2PC: utilized to commit

distributed transactions). Differently from the general

Distributed CO, Distributed SS2PL exists automatically when

all local components are SS2PL based (in each component

CO exists, implied, and the voting strategy is now met

automatically). This fact has been known and utilized since

the 1980s (i.e., that SS2PL exists globally, without knowing

about CO) for efficient Distributed SS2PL, which implies

Distributed serializability and strictness (e.g., see Raz 1992,

page 293; it is also implied in Bernstein et al. 1987, page

78). Less constrained Distributed serializability and strictness

can be efficiently achieved by Distributed Strict CO (SCO),

or by a mix of SS2PL based and SCO based local components.

2. About the references and Commitment ordering:

(Bernstein et al. 1987) was published before the discovery

of CO in 1990. CO is called Dynamic atomicity in (Lynch

et al. 1993, page 201; see The History of Commitment

Ordering). CO is described in (Weikum and Vossen 2001,

pages 102, 700), but the description is partial and misses

CO’s essence. (Raz 1992) was the first refereed and accepted

for publication article about CO. Other CO articles followed.

DISTRIBUTED RECOVERABILITY
Unlike Serializability, Distributed recoverability and

Distributed strictness can be achieved efficiently in a

straightforward way, similarly to the way Distributed CO is

achieved: In each database system they have to be applied

locally, and employ a voting strategy for the Two-phase

commit protocol (2PC; Raz 1992, page 307).

Computer Data Storage and Data Storage Device

155

OTHER SUBJECTS OF ATTENTION
The design of concurrency control mechanisms is often

influenced by the following subjects:

RECOVERY
All systems are prone to failures, and handling recovery

from failure is a must. The properties of the generated

schedules, which are dictated by the concurrency control

mechanism, may have an impact on the effectiveness and

efficiency of recovery. For example, the Strictness property

is often desirable for an efficient recovery.

REPLICATION
For high availability database objects are often replicated.

Updates of replicas of a same database object need to be

kept synchronized. This may affect the way concurrency

control is done.

REPLICATION (COMPUTER SCIENCE)
Replication is the process of sharing information so as

to ensure consistency between redundant resources, such

as software or hardware components, to improve reliability,

fault-tolerance, or accessibility. It could be data replication

if the same data is stored on multiple storage devices, or

computation replication if the same computing task is

executed many times. A computational task is typically

replicated in space, i.e. executed on separate devices, or it

could be replicated in time, if it is executed repeatedly on

a single device. The access to a replicated entity is typically

uniform with access to a single, non-replicated entity. The

Computer Data Storage and Data Storage Device

156

replication itself should be transparent to an external user.

Also, in a failure scenario, a failover of replicas is hidden

as much as possible. It is common to talk about active and

passive replication in systems that replicate data or services.

Active replication is performed by processing the same request

at every replica.

In passive replication, each single request is processed

on a single replica and then its state is transferred to the

other replicas. If at any time one master replica is designated

to process all the requests, then we are talking about the

primary-backup scheme (master-slave scheme) predominant

in high-availability clusters. On the other side, if any replica

processes a request and then distributes a new state, then

this is a multi-primary scheme (called multi-master in the

database field). In the multi-primary scheme, some form of

distributed concurrency control must be used, such as

distributed lock manager. Load balancing is different from

task replication, since it distributes a load of different (not

the same) computations across machines, and allows a

single computation to be dropped in case of failure. Load

balancing, however, sometimes uses data replication (esp.

multi-master) internally, to distribute its data among

machines. Backup is different from replication, since it

saves a copy of data unchanged for a long period of time.

Replicas on the other hand are frequently updated and

quickly lose any historical state.

REPLICATION IN DISTRIBUTED SYSTEMS
Replication is one of the oldest and most important

topics in the overall area of distributed systems. Whether

Computer Data Storage and Data Storage Device

157

one replicates data or computation, the objective is to have

some group of processes that handle incoming events. If we

replicate data, these processes are passive and operate only

to maintain the stored data, reply to read requests, and

apply updates. When we replicate computation, the usual

goal is to provide fault-tolerance. For example, a replicated

service might be used to control a telephone switch, with

the objective of ensuring that even if the primary controller

fails, the backup can take over its functions. But the

underlying needs are the same in both cases: by ensuring

that the replicas see the same events in equivalent orders,

they stay in consistent states and hence any replica can

respond to queries.

REPLICATION MODELS IN DISTRIBUTED
SYSTEMS

A number of widely cited models exist for data replication,

each having its own properties and performance:

1. Transactional replication. This is the model for

replicating transactional data, for example a database

or some other form of transactional storage structure.

The one-copy serializability model is employed in this

case, which defines legal outcomes of a transaction

on replicated data in accordance with the overall

ACID properties that transactional systems seek to

guarantee.

2. State machine replication. This model assumes that

replicated process is a deterministic finite state

machine and that atomic broadcast of every event is

possible. It is based on a distributed computing

Computer Data Storage and Data Storage Device

158

problem called distributed consensus and has a great

deal in common with the transactional replication

model. This is sometimes mistakenly used as synonym

of active replication. State machine replication is

usually implemented by a replicated log consisting

of multiple subsequent rounds of the Paxos algorithm.

This was popularized by Google’s Chubby system,

and is the core behind the open-source Keyspace

data store.

3. Virtual synchrony. This computational model is used

when a group of processes cooperate to replicate in-

memory data or to coordinate actions. The model

defines a new distributed entity called a process

group. A process can join a group, which is much like

opening a file: the process is added to the group, but

is also provided with a checkpoint containing the

current state of the data replicated by group members.

Processes can then send events (multicasts) to the

group and will see incoming events in the identical

order, even if events are sent concurrently.

Membership changes are handled as a special kind

of platform-generated event that delivers a new

membership view to the processes in the group.

Levels of performance vary widely depending on the

model selected. Transactional replication is slowest, at least

when one-copy serializability guarantees are desired (better

performance can be obtained when a database uses log-

based replication, but at the cost of possible inconsistencies

if a failure causes part of the log to be lost). Virtual synchrony

is the fastest of the three models, but the handling of

Computer Data Storage and Data Storage Device

159

failures is less rigorous than in the transactional model.

State machine replication lies somewhere in between; the

model is faster than transactions, but much slower than

virtual synchrony. The virtual synchrony model is popular

in part because it allows the developer to use either active

or passive replication. In contrast, state machine replication

and transactional replication are highly constraining and

are often embedded into products at layers where end-users

would not be able to access them.

DATABASE REPLICATION
Database replication can be used on many database

management systems, usually with a master/slave

relationship between the original and the copies. The master

logs the updates, which then ripple through to the slaves.

The slave outputs a message stating that it has received

the update successfully, thus allowing the sending (and

potentially re-sending until successfully applied) of

subsequent updates. Multi-master replication, where

updates can be submitted to any database node, and then

ripple through to other servers, is often desired, but

introduces substantially increased costs and complexity

which may make it impractical in some situations. The

most common challenge that exists in multi-master

replication is transactional conflict prevention or resolution.

Most synchronous or eager replication solutions do conflict

prevention, while asynchronous solutions have to do conflict

resolution.

For instance, if a record is changed on two nodes

simultaneously, an eager replication system would detect

Computer Data Storage and Data Storage Device

160

the conflict before confirming the commit and abort one of

the transactions. A lazy replication system would allow both

transactions to commit and run a conflict resolution during

resynchronization. The resolution of such a conflict may be

based on a timestamp of the transaction, on the hierarchy

of the origin nodes or on much more complex logic, which

decides consistently on all nodes. Database replication

becomes difficult when it scales up. Usually, the scale up

goes with two dimensions, horizontal and vertical: horizontal

scale up has more data replicas, vertical scale up has data

replicas located further away in distance. Problems raised

by horizontal scale up can be alleviated by a multi-layer

multi-view access protocol. Vertical scale up is running into

less trouble since internet reliability and performance are

improving.

DISK STORAGE REPLICATION
Active (real-time) storage replication is usually

implemented by distributing updates of a block device to

several physical hard disks. This way, any file system

supported by the operating system can be replicated without

modification, as the file system code works on a level above

the block device driver layer. It is implemented either in

hardware (in a disk array controller) or in software (in a

device driver). The most basic method is disk mirroring,

typical for locally-connected disks. Notably, the storage

industry narrows the definitions, so mirroring is a local

(short-distance) operation. A replication is extendable across

a computer network, so the disks can be located in physically

distant locations. The purpose is to avoid damage done by,

Computer Data Storage and Data Storage Device

161

and improve availability in case of local failures or disasters.

Typically the above master-slave theoretical replication model

is applied. The main characteristic of such solutions is

handling write operations:

• Synchronous replication - guarantees “zero data loss”

by the means of atomic write operation, i.e. write

either completes on both sides or not at all. Write is

not considered complete until acknowledgement by

both local and remote storage. Most applications wait

for a write transaction to complete before proceeding

with further work, hence overall performance

decreases considerably. Inherently, performance

drops proportionally to distance, as latency is caused

by speed of light. For 10 km distance, the fastest

possible roundtrip takes 67 ìs, whereas nowadays a

whole local cached write completes in about 10-20

ìs.

o An often-overlooked aspect of synchronous

replication is the fact that failure of remote replica,

or even just the interconnection, stops by definition

any and all writes (freezing the local storage system).

This is the behaviour that guarantees zero data

loss. However, many commercial systems at such

potentially dangerous point do not freeze, but just

proceed with local writes, losing the desired zero

recovery point objective.

• Asynchronous replication - write is considered

complete as soon as local storage acknowledges it.

Remote storage is updated, but probably with a small

lag. Performance is greatly increased, but in case of

Computer Data Storage and Data Storage Device

162

losing a local storage, the remote storage is not

guaranteed to have the current copy of data and

most recent data may be lost.

• Semi-synchronous replication - this usually means

that a write is considered complete as soon as local

storage acknowledges it and a remote server

acknowledges that it has received the write either

into memory or to a dedicated log file. The actual

remote write is not performed immediately but is

performed asynchronously, resulting in better

performance than synchronous replication but with

increased risk of the remote write failing.

o Point-in-time replication - introduces periodic

snapshots that are replicated instead of primary

storage. If the replicated snapshots are pointer-

based, then during replication only the changed

data is moved not the entire volume. Using this

method, replication can occur over smaller, less

expensive bandwidth links such as iSCSI or T1

instead of fiber optic lines.

Most important implementations:

• DRBD module for Linux.

• NetApp SnapMirror

• EMC SRDF

• IBM PPRC and Global Mirror (known together as IBM

Copy Services)

• Hitachi TrueCopy

• Hewlett-Packard Continuous Access (HP CA)

• Symantec Veritas Volume Replicator (VVR)

Computer Data Storage and Data Storage Device

163

• DataCore SANsymphony & SANmelody

• FalconStor Replication & Mirroring (sub-block

heterogeneous point-in-time, async, sync)

• Compellent Remote Instant Replay

• EMC RecoverPoint

FILE BASED REPLICATION
File base replication is replicating files at a logical level

rather than replicating at the storage block level. There are

many different ways of performing this and unlike storage

level replication, they are almost exclusively software

solutions.

REAL TIME CAPTURE WITH A FILTER DRIVER
With the use of a Filter Driver (generally a kernel driver),

filesystem activity is captured real time by having a process

that intercepts calls to the filesystem. This utilises the same

type of technology that real time active virus checkers

employ. At this level, logical file operations are captured like

file open, write, delete etc. The Kernel Driver will then

transmit these command to another process, generally over

a network to a different machine, which will mimic the

operations of the source machine. Like Disk Storage

replication, it is possible to perform this both Synchronous

and Asynchronously. In Synchronous mode write operations

on the source machines arent acknowledged until the

destination machine has confirmed it has successfully

replicated. Synchronous mode is less common with file

replication products although a few solutions exists. File

level replication solution yield a few benefits. Firstly because

Computer Data Storage and Data Storage Device

164

data is captured at a logical level it can make an informed

decision on whether to replicate based on the location of

the file and the type of file. Hence unlike Disk Storage

Replication where a whole volume needs to be replicated,

file replication products have the ability to exclude cache,

temporary files or parts of a filesystem that hold no business

value. This can substencially reduce the amount of data

sent from the source machine as well as decrease the

storage burden on the destination machine. A further benefit

to decreasing bandwidth is the data transmitted can be

more granular than Disk Storage Replication. If an

application writes 100byte, only the 100bytes is transmitted

converse to a complete disk block which is generally 4k. On

the negative side, because this is a software only solution,

a hardware solution employing Disk Storage Replication

will provide less impact and provide greater throughput to

file level replication with a filter driver.

Notable implementations:

• Cofio Software AIMstor Replication

• Double-Take Software Availability

FILESYSTEM JOURNAL
In many ways working like a database journal, many

filesystems have the ability to journal their activity. This

can be used to playback events near real-time. That is

periodically send the latest file activity journal to the

destination. The main downside is that because it is not

trully real-time, there is greater exposure to data loss should

the primary source fail. Notable implementations:

Computer Data Storage and Data Storage Device

165

• Microsoft DPM

This type of replication is performed by capturing file

system activity or with interaction with the filesystem.

BATCH REPLICATION
This is the process of comparing the source and

destination filesystems and ensuring that the destination

matches the source. The key benefit is that such solutions

are generally free or inexpensive. The downside is that the

process of synchronizing them is quite system intensive and

consequently this process is generally run infrequently.

Notable implementations:

• rsync

DISTRIBUTED SHARED MEMORY REPLICATION
Another example of using replication appears in

distributed shared memory systems, where it may happen

that many nodes of the system share the same page of the

memory - which usually means, that each node has a

separate copy (replica) of this page.

PRIMARY-BACKUP AND MULTI-PRIMARY
REPLICATION

Many classical approaches to replication are based on

a primary/backup model where one device or process has

unilateral control over one or more other processes or devices.

For example, the primary might perform some computation,

streaming a log of updates to a backup (standby) process,

which can then take over if the primary fails. This approach

is the most common one for replicating databases, despite

Computer Data Storage and Data Storage Device

166

the risk that if a portion of the log is lost during a failure,

the backup might not be in a state identical to the one the

primary was in, and transactions could then be lost. A

weakness of primary/backup schemes is that in settings

where both processes could have been active, only one is

actually performing operations. We’re gaining fault-tolerance

but spending twice as much money to get this property. For

this reason, starting in the period around 1985, the

distributed systems research community began to explore

alternative methods of replicating data. An outgrowth of

this work was the emergence of schemes in which a group

of replicas could cooperate, with each process backup up

the others, and each handling some share of the workload.

Jim Gray, a towering figure within the database

community, analyzed multi-primary replication schemes

under the transactional model and ultimately published a

widely cited paper skeptical of the approach (“The Dangers

of Replication and a Solution”). In a nutshell, he argued that

unless data splits in some natural way so that the database

can be treated as n disjoint sub-databases, concurrency

control conflicts will result in seriously degraded performance

and the group of replicas will probably slow down as a

function of n. Indeed, he suggests that the most common

approaches are likely to result in degradation that scales

as O(n³). His solution, which is to partition the data, is only

viable in situations where data actually has a natural

partitioning key.

The situation is not always so bleak. For example, in the

1985-1987 period, the virtual synchrony model was proposed

and emerged as a widely adopted standard (it was used in

Computer Data Storage and Data Storage Device

167

the Isis Toolkit, Horus, Transis, Ensemble, Totem, Spread,

C-Ensemble, Phoenix and Quicksilver systems, and is the

basis for the CORBA fault-tolerant computing standard; the

model is also used in IBM Websphere to replicate business

logic and in Microsoft’s Windows Server 2008 enterprise

clustering technology). Virtual synchrony permits a multi-

primary approach in which a group of processes cooperate

to parallelize some aspects of request processing. The scheme

can only be used for some forms of in-memory data, but

when feasible, provides linear speedups in the size of the

group. A number of modern products support similar

schemes. For example, the Spread Toolkit supports this

same virtual synchrony model and can be used to implement

a multi-primary replication scheme; it would also be possible

to use C-Ensemble or Quicksilver in this manner. WANdisco

permits active replication where every node on a network

is an exact copy or replica and hence every node on the

network is active at one time; this scheme is optimized for

use in a wide area network.

Computer Data Storage and Data Storage Device

168

7

Data Storage Device

A data storage device is a device for recording (storing)

information (data). Recording can be done using virtually

any form of energy, spanning from manual muscle power

in handwriting, to acoustic vibrations in phonographic

recording, to electromagnetic energy modulating magnetic

tape and optical discs.

A storage device may hold information, process

information, or both. A device that only holds information

is a recording medium. Devices that process information

(data storage equipment) may either access a separate

portable (removable) recording medium or a permanent

component to store and retrieve information.

Electronic data storage is storage which requires electrical

power to store and retrieve that data. Most storage devices

that do not require vision and a brain to read data fall into

this category. Electromagnetic data may be stored in either

Computer Data Storage and Data Storage Device

169

an analog or digital format on a variety of media. This type

of data is considered to be electronically encoded data,

whether or not it is electronically stored in a semiconductor

device, for it is certain that a semiconductor device was

used to record it on its medium.

Most electronically processed data storage media

(including some forms of computer data storage) are

considered permanent (non-volatile) storage, that is, the

data will remain stored when power is removed from the

device. In contrast, most electronically stored information

within most types of semiconductor (computer chips)

microcircuits are volatile memory, for it vanishes if power

is removed.

With the exception of barcodes and OCR data, electronic

data storage is easier to revise and may be more cost

effective than alternative methods due to smaller physical

space requirements and the ease of replacing (rewriting)

data on the same medium. However, the durability of methods

such as printed data is still superior to that of most electronic

storage media. The durability limitations may be overcome

with the ease of duplicating (backing-up) electronic data.

TERMINOLOGY
Devices that are not used exclusively for recording (e.g.

hands, mouths, musical instruments) and devices that are

intermediate in the storing/retrieving process (e.g. eyes,

ears, cameras, scanners, microphones, speakers, monitors,

video projectors) are not usually considered storage devices.

Devices that are exclusively for recording (e.g. printers),

exclusively for reading (e.g. barcode readers), or devices that

Computer Data Storage and Data Storage Device

170

process only one form of information (e.g. phonographs)

may or may not be considered storage devices. In computing

these are known as input/output devices. All information

is data. However, not all data is information. Many data

storage devices are also media players. Any device that can

store and playback multimedia may also be considered a

media player such as in the case with the HDD media

player. Designated hard drives are used to play saved or

streaming media on home entertainment systems.

TRENDS
International Data Corporation estimated that the total

amount of digital data was 281 billion gigabytes in 2007,

and had for the first time exceeded the amount of storage.

DATA STORAGE EQUIPMENT
Any input/output equipment may be considered data

storage equipment if it writes to and reads from a data

storage medium. Data storage equipment uses either:

• portable methods (easily replaced),

• semi-portable methods requiring mechanical

disassembly tools and/or opening a chassis, or

• inseparable methods meaning loss of memory if

disconnected from the unit.

The following are examples of those methods:

PORTABLE METHODS
• Hand crafting

• Flat surface

Computer Data Storage and Data Storage Device

171

o Printmaking

o Photographic

• Fabrication

o Automated assembly

o Textile

o Molding

o Solid freeform fabrication

• Cylindrical accessing

• Memory card reader/drive

• Tape drive

o Mono reel or reel-to-reel

o Compact Cassette player/recorder

• Disk accessing

o Disk drive

o Disk enclosure

• Cartridge accessing/connecting (tape/disk/circuitry)

• Peripheral networking

• Flash memory devices

SEMI-PORTABLE METHODS
• Hard disk drive

• Circuitry with non-volatile RAM

INSEPARABLE METHODS
• Circuitry with volatile RAM

• Neurons

RECORDING MEDIUM
A recording medium is a physical material that holds

data expressed in any of the existing recording formats.

Computer Data Storage and Data Storage Device

172

With electronic media, the data and the recording medium

is sometimes referred to as “software” despite the more

common use of the word to describe computer software.

With (traditional art) static media, art materials such as

crayons may be considered both equipment and medium

as the wax, charcoal or chalk material from the equipment

becomes part of the surface of the medium.

Some recording media may be temporary either by design

or by nature. Volatile organic compounds may be used to

preserve the environment or to purposely make data expire

over time. Data such as smoke signals or skywriting are

temporary by nature. Depending on the volatility, a gas (e.g.

atmosphere, smoke) or a liquid surface such as a lake

would be considered a temporary recording medium if at

all.

ANCIENT AND TIMELESS EXAMPLES
• Optical

o Any object visible to the eye, used to mark a location

such as a, stone, flag or skull.

o Any crafting material used to form shapes such as

clay, wood, metal, glass, wax or quipu.

o Any hard surface that could hold carvings.

o Any branding surface that would scar under intense

heat (chiefly for livestock or humans).

o Any marking substance such as paint, ink or chalk.

o Any surface that would hold a marking substance

such as, papyrus, paper, skin.

• Chemical

o RNA

Computer Data Storage and Data Storage Device

173

o DNA

o Pheromone

MODERN EXAMPLES BY ENERGY USED
• Chemical

o Dipstick

• Thermodynamic

o Thermometer

• Photochemical

o Photographic film

• Mechanical

o Pins and holes

- Punched card

- Paper tape

- Music roll

- Musical box cylinder or disk

o Grooves

- Phonograph cylinder

- Gramophone record

- Dictabelt (groove on plastic belt)

- Capacitance Electronic Disc

• Magnetic storage

o Wire recording (stainless steel wire)

o Magnetic tape

o Drum memory (magnetic drum)

o Floppy disk

• Optical storage

o Optical jukebox

Computer Data Storage and Data Storage Device

174

o Photographic paper

o X-ray

o Microform

o Hologram

o Projected transparency

o Optical disc

o Magneto-optical drive

o Holographic data storage

o 3D optical data storage

• Electrical

o Semiconductor used in volatile RAM microchips

o Floating-gate transistor used in non-volatile

memory cards

MODERN EXAMPLES BY SHAPE
A typical way to classify data storage media is to consider

its shape and type of movement (or non-movement) relative

to the read/write device(s) of the storage apparatus as

listed:

• Paper card storage

o Punched card (mechanical)

• Cams and tracers (pipe organ combination-action

memory memorizing stop selections)

• Tape storage (long, thin, flexible, linearly moving

bands)

o Paper tape (mechanical)

o Magnetic tape (a tape passing one or more read/

write/erase heads)

• Disk storage (flat, round, rotating object)

Computer Data Storage and Data Storage Device

175

o Gramophone record (used for distributing some

1980s home computer programmes) (mechanical)

o Floppy disk, ZIP disk (removable) (magnetic)

o Holographic

o Optical disc such as CD, DVD, Blu-ray Disc

o Minidisc

o Hard disk drive (magnetic)

• Magnetic bubble memory

• Flash memory/memory card (solid state

semiconductor memory)

o xD-Picture Card

o MultiMediaCard

o USB flash drive (also known as a “thumb drive” or

“keydrive”)

o SmartMedia

o CompactFlash I and II

o Secure Digital

o Sony Memory Stick (Std/Duo/PRO/MagicGate

versions)

o Solid-state drive

Bekenstein (2003) foresees that miniaturization might

lead to the invention of devices that store bits on a single

atom.

WEIGHT AND VOLUME
Especially for carrying around data, the weight and volume

per MB are relevant. They are quite large for written and

printed paper compared with modern electronic media. On

the other hand, written and printer paper do not require

Computer Data Storage and Data Storage Device

176

(the weight and volume of) reading equipment, and

handwritten edits only require simple writing equipment,

such as a pen.

With mobile data connections the data need not be

carried around to have them available.

Computer Data Storage and Data Storage Device

177

8

USB Flash Drive

A USB flash drive consists of a flash memory data storage

device integrated with a USB (Universal Serial Bus) interface.

USB flash drives are typically removable and rewritable,

and physically much smaller than a floppy disk. Most weigh

less than 30 g (1 oz). Storage capacities in 2010 can be as

large as 256 GB with steady improvements in size and price

per capacity expected. Some allow 1 million write or erase

cycles and offer a 10-year shelf storage time.

USB flash drives are often used for the same purposes

for which floppy disks or CD-ROMs were used. They are

smaller, faster, have thousands of times more capacity, and

are more durable and reliable because of their lack of

moving parts. Until approximately 2005, most desktop and

laptop computers were supplied with floppy disk drives, but

floppy disk drives have been abandoned in favour of USB

ports. USB Flash drives use the USB mass storage standard,

Computer Data Storage and Data Storage Device

178

supported natively by modern operating systems such as

Linux, Mac OS X, Windows, and other Unix-like systems.

USB drives with USB 2.0 support can store more data

and transfer faster than a much larger optical disc drives

like CD-RW or DVD-RW drives and can be read by many

other systems such as the Xbox 360, PlayStation 3, DVD

players and in some upcoming mobile smartphones. Nothing

moves mechanically in a flash drive; the term drive persists

because computers read and write flash-drive data using

the same system commands as for a mechanical disk drive,

with the storage appearing to the computer operating system

and user interface as just another drive. Flash drives are

very robust mechanically. A flash drive consists of a small

printed circuit board carrying the circuit elements and a

USB connector, insulated electrically and protected inside

a plastic, metal, or rubberized case which can be carried

in a pocket or on a key chain, for example. The USB

connector may be protected by a removable cap or by

retracting into the body of the drive, although it is not likely

to be damaged if unprotected. Most flash drives use a

standard type-A USB connection allowing plugging into a

port on a personal computer, but drives for other interfaces

also exist. USB flash drives draw power from the computer

via external USB connection. Some devices combine the

functionality of a digital audio player with USB flash storage;

they require a battery only when used to play music.

TECHNOLOGY
Flash memory combines a number of older technologies,

with lower cost, lower power consumption and small size

Computer Data Storage and Data Storage Device

179

made possible by advances in microprocessor technology.

The memory storage was based on earlier EPROM and

EEPROM technologies. These had very limited capacity,

were very slow for both reading and writing, required complex

high-voltage drive circuitry, and could only be re-written

after erasing the entire contents of the chip. Hardware

designers later developed EEPROMs with the erasure region

broken up into smaller “fields” that could be erased

individually without affecting the others. Altering the

contents of a particular memory location involved copying

the entire field into an off-chip buffer memory, erasing the

field, modifying the data as required in the buffer, and re-

writing it into the same field. This required considerable

computer support, and PC-based EEPROM flash memory

systems often carried their own dedicated microprocessor

system. Flash drives are more or less a miniaturized version

of this.

The development of high-speed serial data interfaces

such as USB made semiconductor memory systems with

serially accessed storage viable, and the simultaneous

development of small, high-speed, low-power microprocessor

systems allowed this to be incorporated into extremely

compact systems. Serial access requires far fewer electrical

connections for the memory chips than does parallel access,

which has simplified the manufacture of multi-gigabyte

drives.

Computers access modern flash memory systems very

much like hard disk drives, where the controller system has

full control over where information is actually stored. The

actual EEPROM writing and erasure processes are, however,

Computer Data Storage and Data Storage Device

180

still very similar to the earlier systems described above.

Many low-cost MP3 players simply add extra software and

a battery to a standard flash memory control microprocessor

so it can also serve as a music playback decoder. Most of

these players can also be used as a conventional flash drive,

for storing files of any type.

HISTORY

FIRST COMMERCIAL PRODUCT
Trek Technology and IBM began selling the first USB

flash drives commercially in 2000. The Singaporean Trek

Technology sold a model under the brand name

“ThumbDrive”, and IBM marketed the first such drives in

North America with its product named the “DiskOnKey”

which was developed and manufactured by the Israeli

company M-Systems. IBM’s USB flash drive became available

on December 15, 2000, and had a storage capacity of 8 MB,

more than five times the capacity of the then-common

floppy disks.

In 2000 Lexar introduced a Compact Flash (CF) card

with a USB connection, and a companion card read/writer

and USB cable that eliminated the need for a USB hub.

Both Trek Technology and Netac Technology have tried to

protect their patent claims. Trek won a Singaporean suit,

but a court in the United Kingdom revoked one of Trek’s

UK patents. While Netac Technology has brought lawsuits

against PNY Technologies, Lenovo, aigo, Sony, and Taiwan’s

Acer and Tai Guen Enterprise Co, most companies that

Computer Data Storage and Data Storage Device

181

manufacture USB flash drives do so without regard for

Trek and Netac’s patents.

SECOND GENERATION
Modern flash drives have USB 2.0 connectivity. However,

they do not currently use the full 480 Mbit/s (60MB/s)

which the USB 2.0 Hi-Speed specification supports because

of technical limitations inherent in NAND flash. The fastest

drives currently available use a dual channel controller,

although they still fall considerably short of the transfer

rate possible from a current generation hard disk, or the

maximum high speed USB throughput. File transfer speeds

vary considerably and should be checked before purchase.

Speeds may be given in Mbyte per second, Mbit per second

or optical drive multipliers such as “180X” (180 times 150

KiB per second). Typical fast drives claim to read at up to

30 megabytes/s (MB/s) and write at about half that speed.

This is about 20 times faster than older “USB full speed”

devices which are limited to a maximum speed of 12 Mbit/

s (1.5 MB/s).

DESIGN AND IMPLEMENTATION
One end of the device is fitted with a single male type-

A USB connector. Inside the plastic casing is a small printed

circuit board. Mounted on this board is some power circuitry

and a small number of surface-mounted integrated circuits

(ICs). Typically, one of these ICs provides an interface to the

USB port, another drives the onboard memory, and the

other is the flash memory. Drives typically use the USB

mass storage device class to communicate with the host.

Computer Data Storage and Data Storage Device

182

ESSENTIAL COMPONENTS
There are typically four parts to a flash drive:

• Male type-A USB connector – provides a physical

interface to the host computer.

• USB mass storage controller – implements the USB

host controller. The controller contains a small

microcontroller with a small amount of on-chip ROM

and RAM.

• NAND flash memory chip – stores data. NAND flash

is typically also used in digital cameras.

• Crystal oscillator – produces the device’s main 12 MHz

clock signal and controls the device’s data output

through a phase-locked loop.

ADDITIONAL COMPONENTS
The typical device may also include:

• Jumpers and test pins – for testing during the flash

drive’s manufacturing or loading code into the

microprocessor.

• LEDs – indicate data transfers or data reads and

writes.

• Write-protect switches – Enable or disable writing of

data into memory.

• Unpopulated space – provides space to include a

second memory chip. Having this second space allows

the manufacturer to use a single printed circuit board

for more than one storage size device.

• USB connector cover or cap – reduces the risk of

damage, prevents the ingress of fluff or other

Computer Data Storage and Data Storage Device

183

contaminants, and improves overall device

appearance. Some flash drives use retractable USB

connectors instead. Others have a swivel arrangement

so that the connector can be protected without

removing anything.

• Transport aid – the cap or the body often contains

a hole suitable for connection to a key chain or

lanyard. Connecting the cap, rather than the body,

can allow the drive itself to be lost.

• Some drives offer expandable storage via an internal

memory card slot, much like a memory card reader.

SIZE AND STYLE OF PACKAGING
Some manufacturers differentiate their products by using

elaborate housings, which are often bulky and make the

drive difficult to connect to the USB port. Because the USB

port connectors on a computer housing are often closely

spaced, plugging a flash drive into a USB port may block

an adjacent port. Such devices may only carry the USB logo

if sold with a separate extension cable.

USB flash drives have been integrated into other

commonly carried items such as watches, pens, and even

the Swiss Army Knife; others have been fitted with novelty

cases such as toy cars or LEGO bricks. The small size,

robustness and cheapness of USB flash drives make them

an increasingly popular peripheral for case modding. Heavy

or bulky flash drive packaging can make for unreliable

operation when plugged directly into a USB port; this can

be relieved by a USB extension cable. Such cables are USB-

compatible but do not conform to the USB standard.

Computer Data Storage and Data Storage Device

184

FILE SYSTEM
Most flash drives ship preformatted with the FAT or FAT

32 file system. The ubiquity of this file system allows the

drive to be accessed on virtually any host device with USB

support.

Also, standard FAT maintenance utilities (e.g. ScanDisk)

can be used to repair or retrieve corrupted data. However,

because a flash drive appears as a USB-connected hard

drive to the host system, the drive can be reformatted to

any file system supported by the host operating system.

Defragmenting: Flash drives can be defragmented, but

this brings little advantage as there is no mechanical head

that moves from fragment to fragment. Flash drives often

have a large internal sector size, so defragmenting means

accessing fewer sectors. Defragmenting shortens the life of

the drive by making many unnecessary writes.

Even Distribution: Some file systems are designed to

distribute usage over an entire memory device without

concentrating usage on any part (e.g. for a directory); this

even distribution prolongs the life of simple flash memory

devices. Some USB flash drives have this functionality built

into the software controller to prolong device life, while

others do not, therefore the end user should check the

specifications of his device prior to changing the file system

for this reason.

Hard Drive: Sectors are 512 bytes long, for compatibility

with hard drives, and the first sector can contain a Master

Boot Record and a partition table. Therefore USB flash

units can be partitioned as hard drives.

Computer Data Storage and Data Storage Device

185

LONGEVITY
Barring physical destruction of the drive, the memory or

USB connector of a flash drive will eventually fail. SLC

based memory is good for around 100,000 writes; more

commonly used MLC for around 10,000. The USB connector

can withstand approximately 1,500 connect/disconnect

cycles.

FAKE PRODUCTS
Fake USB flash drives are sometimes sold, claiming to

have higher capacities than they actually have. These are

typically low capacity USB drives which are modified so that

they emulate larger capacity drives (e.g. a 2 GB drive being

marketed as an 8 GB drive). When plugged into a computer,

they report themselves as being the larger capacity they

were sold as, but when data is written to them, either the

write fails, the drive freezes up, or it overwrites existing

data. Software tools exist to check and detect fake USB

drives. In some cases it is possible to repair these devices

to remove the false capacity information and use them

normally.

USES

PERSONAL DATA TRANSPORT
The most common use of flash drives is to transport and

store personal files such as documents, pictures and videos.

Individuals also store medical alert information on MedicTag

flash drives for use in emergencies and for disaster

preparation.

Computer Data Storage and Data Storage Device

186

SECURE STORAGE OF DATA, APPLICATION AND
SOFTWARE FILES

With wide deployment(s) of flash drives being used in

various environments (secured or otherwise), the issue of

data and information security remains of the utmost

importance. The use of biometrics and encryption is becoming
the norm with the need for increased security for data;
OTFE systems are particularly useful in this regard, as they
can transparently encrypt large amounts of data. In some
cases a Secure USB Drive may use a hardware-based
encryption mechanism that uses a hardware module instead
of software for strongly encrypting data. IEEE 1667 is an
attempt to create a generic authentication platform for USB
drives and enjoys the support of Microsoft with support in
Windows 7 and in Windows Vista Service Pack 2 with a
hotfix.

SYSTEM ADMINISTRATION
Flash drives are particularly popular among system and

network administrators, who load them with configuration
information and software used for system maintenance,
troubleshooting, and recovery. They are also used as a
means to transfer recovery and antivirus software to infected
PCs, allowing a portion of the host machine’s data to be
archived. As the drives have increased in storage space,
they have also replaced the need to carry a number of CD
ROMs and installers which were needed when reinstalling

or updating a system.

APPLICATION CARRIERS
Flash drives are used to carry applications that run on

the host computer without requiring installation. While any

Computer Data Storage and Data Storage Device

187

standalone application can in principle be used this way,

many programmes store data, configuration information,

etc. on the hard drive and registry of the host computer The
U3 company works with drive makers (parent company
SanDisk as well as others) to deliver custom versions of
applications designed for Microsoft Windows from a special
flash drive; U3-compatible devices are designed to autoload
a menu when plugged into a computer running Windows.
Applications must be modified for the U3 platform not to
leave any data on the host machine. U3 also provides a
software framework for independent software vendors
interested in their platform. Ceedo is an alternative product
with the key difference that it does not require Windows
applications to be modified in order for them to be carried
and run on the drive. Similarly, other application
virtualization solutions and portable application creators,
such as VMware ThinApp (for Windows) or RUNZ (for Linux)
can be used to run software from a flash drive without

installation. In October 2010, Apple Inc. released their newest

iteration of the MacBook Air, which had the system’s restore

files contained on a USB card drive rather than the traditional

install CDs due to the Air not coming with an optical drive.

A wide range of portable applications which are all free of

charge, and able to run off a computer running Windows

without storing anything on the host computer’s drives or

registry, can be found in the list of portable software.

COMPUTER FORENSICS AND LAW
ENFORCEMENT

A recent development for the use of a USB Flash Drive

as an application carrier is to carry the Computer Online

Computer Data Storage and Data Storage Device

188

Forensic Evidence Extractor (COFEE) application developed

by Microsoft. COFEE is a set of applications designed to

search for and extract digital evidence on computers

confiscated from suspects. Forensic software should not

alter the information stored on the computer being examined

in any way; other forensic suites run from CD-ROM or DVD-

ROM, but cannot store data on the media they are run from

(although they can write to other attached devices such as

external drives or memory sticks).

BOOTING OPERATING SYSTEMS
Most current PC firmware permits booting from a USB

drive, allowing the launch of an operating system from a

bootable flash drive. Such a configuration is known as a

Live USB. Original flash memory designs had very limited

estimated lifetimes. The failure mechanism for flash memory

cells is analogous to a metal fatigue mode; the device fails

by refusing to write new data to specific cells that have been

subject to many read-write cycles over the device’s lifetime.

Originally, this potential failure mode limited the use of “live

USB” system to special purpose applications or temporary

tasks, such as:

• Loading a minimal, hardened kernel for embedded

applications (e.g. network router, firewall).

• Bootstrapping an operating system install or disk

cloning operation, often across a network.

• Maintenance tasks, such as virus scanning or low-

level data repair, without the primary host operating

system loaded.

Computer Data Storage and Data Storage Device

189

As of 2011, newer flash memory designs have much

higher estimated lifetimes. Several manufacturers are now

offering warranties of 5 years, or more. That should make

the device more attractive for more applications. By reducing

the probability of the device’s premature failure, flash memory

devices can now be considered for use where a magnetic

disk would normally have been required. Flash drives have

also experienced an exponential growth in their storage

capacity over time (following the Moore’s Law growth curve).

As of 2011, single packaged devices with capacities of 64GB

are readily available, and devices with 8GB capacity are

very economical. Storage capacities in this range have

traditionally been considered to offer adequate space, because

they allow enough space for both the operating system

software and some free space for the user’s data.

WINDOWS VISTA AND WINDOWS 7
READYBOOST

In Windows Vista and Windows 7, the ReadyBoost feature

allows use of flash drives (up to 4 GB in the case of Windows

Vista) to augment operating system memory

AUDIO PLAYERS
Many companies make small solid-state digital audio

players, essentially producing flash drives with sound

output and a simple user interface. Examples include the

Creative MuVo, Philips GoGear and the first generation

iPod shuffle. Some of these players are true USB flash

drives as well as music players; others do not support

general-purpose data storage. Many of the smallest players

Computer Data Storage and Data Storage Device

190

are powered by a permanently fitted rechargeable battery,

charged from the USB interface.

MUSIC STORAGE AND MARKETING
Digital audio files can be transported from one computer

to another like any other file, and played on a compatible

media player (with caveats for DRM-locked files). In addition,

many home Hi-Fi and car stereo head units are now equipped

with a USB port. This allows a USB flash drive containing

media files in a variety of formats to be played directly on

devices which support the format. Artists have sold or given

away USB flash drives, with the first instance believed to

be in 2004 when the German band WIZO released the “Stick

EP”, only as a USB drive. In addition to five high-bitrate

MP3s, it also included a video, pictures, lyrics, and guitar

tablature. Subsequently artists including Kanye West, Nine

Inch Nails, Kylie Minogue and Ayumi Hamasaki have

released music and promotional material on USB flash

drives. In 2009 a USB drive holding fourteen remastered

Beatles albums in both FLAC and MP3 was released.

IN ARCADES
In the arcade game In the Groove and more commonly

In The Groove 2, flash drives are used to transfer high

scores, screenshots, dance edits, and combos throughout

sessions. As of software revision 21 (R21), players can also

store custom songs and play them on any machine on

which this feature is enabled. While use of flash drives is

common, the drive must be Linux compatible. In the arcade

games Pump it Up NX2 and Pump it Up NXA, a special

Computer Data Storage and Data Storage Device

191

produced flash drive is used as a “save file” for unlocked

songs, as well as progressing in the WorldMax and Brain

Shower sections of the game. In the arcade game Dance

Dance Revolution X, an exclusive USB flash drive was made

by Konami for the purpose of the link feature from its Sony

PlayStation 2 counterpart. However, any USB flash drives

can be used in this arcade game.

BRAND AND PRODUCT PROMOTION
The availability of inexpensive flash drives has enabled

them to be used for promotional and marketing purposes,

particularly within technical and computer-industry circles

(e.g. technology trade shows). They may be given away for

free, sold at less than wholesale price, or included as a

bonus with another purchased product. Usually, such drives

will be custom-stamped with a company’s logo, as a form

of advertising to increase mind share and brand awareness.

The drive may be a blank drive, or preloaded with graphics,

documentation, web links, Flash animation or other

multimedia, and free or demonstration software. Some

preloaded drives are read-only while others are configured

with both read-only and user-writable segments, such dual-

partition drives are more expensive. Flash drives can be set

up to automatically launch stored presentations, websites,

articles, and any other software immediately on insertion

of the drive using the Microsoft Windows AutoRun feature.

Autorunning software this way does not work on all

computers, and is normally disabled by security-conscious

users.

Computer Data Storage and Data Storage Device

192

BACKUP
Some value-added resellers are now using a flash drive

as part of small-business turnkey solutions (e.g. point-of-

sale systems). The drive is used as a backup medium: at

the close of business each night, the drive is inserted, and

a database backup is saved to the drive. Alternatively, the

drive can be left inserted through the business day, and

data regularly updated. In either case, the drive is removed

at night and taken offsite.

• This is simple for the end-user, and more likely to

be done;

• The drive is small and convenient, and more likely

to be carried off-site for safety;

• The drives are less fragile mechanically and

magnetically than tapes;

• The capacity is often large enough for several backup

images of critical data;

• And flash drives are cheaper than many other backup

systems.

It is also easy to lose these small devices, and easy for

people without a right to data to take illicit backups.

MERITS AND AND DEMERITS

MERITS
Data stored on flash drives is impervious to scratches

and dust, and flash drives are mechanically very robust

making them suitable for transporting data from place to

place and keeping it readily at hand. Most personal

Computer Data Storage and Data Storage Device

193

computers support USB as of 2010. Flash drives also store

data densely compared to many removable media. In mid-

2009, 256 GB drives became available, with the ability to

hold many times more data than a DVD or even a Blu-ray

disc. Compared to hard drives, flash drives use little power,

have no fragile moving parts, and for most capacities are

small and light.

Flash drives implement the USB mass storage device

class so that most modern operating systems can read and

write to them without installing device drivers. The flash

drives present a simple block-structured logical unit to the

host operating system, hiding the individual complex

implementation details of the various underlying flash

memory devices. The operating system can use any file

system or block addressing scheme. Some computers can

boot up from flash drives. Specially manufactured flash

drives are available that have a tough rubber or metal

casing designed to be waterproof and virtually “unbreakable”.

These flash drives retain their memory even after being

submerged in water, even through a machine wash. Leaving

such a flash drive out to dry completely before allowing

current to run through it has been known to result in a

working drive with no future problems. Channel Five’s Gadget

Show cooked one of these flash drives with propane, froze

it with dry ice, submerged it in various acidic liquids, ran

over it with a jeep and fired it against a wall with a mortar.

A company specializing in recovering lost data from computer

drives managed to recover all the data on the drive. All data

on the other removable storage devices tested, using optical

or magnetic technologies, were destroyed.

Computer Data Storage and Data Storage Device

194

DEMERITS
Like all flash memory devices, flash drives can sustain

only a limited number of write and erase cycles before the

drive fails. This should be a consideration when using a

flash drive to run application software or an operating

system. To address this, as well as space limitations, some

developers have produced special versions of operating

systems (such as Linux in Live USB) or commonplace

applications (such as Mozilla Firefox) designed to run from

flash drives. These are typically optimized for size and

configured to place temporary or intermediate files in the

computer’s main RAM rather than store them temporarily

on the flash drive. Most USB flash drives do not include

a write-protect mechanism, although some have a switch

on the housing of the drive itself to keep the host computer

from writing or modifying data on the drive. Write-protection

makes a device suitable for repairing virus-contaminated

host computers without risk of infecting the USB flash drive

itself.

A drawback to the small size is that they are easily

misplaced, left behind, or otherwise lost. This is a particular

problem if the data they contain are sensitive. As a

consequence, some manufacturers have added encryption

hardware to their drives—although software encryption

systems which can be used in conjunction with any mass

storage medium achieve the same thing,. Most drives can

be attached to keychains, necklaces and lanyards. The USB

plug is usually fitted with a removable and easily lost

protective cap, or is retractable.

Computer Data Storage and Data Storage Device

195

USB flash drives are more expensive per unit of storage

than large hard drives, but are less expensive in capacities

of a few tens of gigabytes as of 2011. Maximum available

capacity is increasing with time, but is less than larger hard

drives. This balance is changing, but the rate of change is

slowing.

COMPARISON WITH OTHER

PORTABLE STORAGE

OPTICAL MEDIA
The various writable and rewritable forms of CD and

DVD are portable storage media supported by the vast

majority of computers as of 2008. CD-R, DVD-R, and DVD+R

can be written to only once, RW varieties up to about 1,000

erase/write cycles, while modern NAND-based flash drives

often last for 500,000 or more erase/write cycles. DVD-RAM

discs are the most suitable optical discs for data storage

involving much rewriting.

Optical storage devices are among the cheapest methods

of mass data storage after the hard drive. They are slower

than their flash-based counterparts. Standard 12 cm optical

discs are larger than flash drives and more subject to

damage. Smaller optical media do exist, such as business

card CD-Rs which have the same dimensions as a credit

card, and the slightly less convenient but higher capacity

8 cm recordable CD/DVDs. The small discs are more

expensive than the standard size, and do not work in all

drives. Universal Disk Format (UDF) version 1.50 and above

Computer Data Storage and Data Storage Device

196

has facilities to support rewritable discs like sparing tables

and virtual allocation tables, spreading usage over the entire

surface of a disc and maximising life, but many older

operating systems do not support this format. Packet-writing

utilities such as DirectCD and InCD are available but produce

discs that are not universally readable (although based on

the UDF standard). The Mount Rainier standard addresses

this shortcoming in CD-RW media by running the older file

systems on top of it and performing defect management for

those standards, but it requires support from both the CD/

DVD burner and the operating system. Many drives made

today do not support Mount Rainier, and many older

operating systems such as Windows XP and below, and

Linux kernels older than 2.6.2, do not support it (later

versions do). Essentially CDs/DVDs are a good way to

record a great deal of information cheaply and have the

advantage of being readable by most standalone players,

but they are poor at making ongoing small changes to a

large collection of information. Flash drives’ ability to do

this is their major advantage over optical media.

TAPE
The applications of current data tape cartridges hardly

overlap those of flash drives: on tape, cost per gigabyte is

very low for large volumes, but the individual drives and

media are expensive. Media has a very high capacity and

very fast transfer speeds, but store data sequentially and

is very slow for random seek of data. While disk-based

backup is now the primary medium of choice for most

companies, tape backup is still popular for taking data off-

Computer Data Storage and Data Storage Device

197

site for worst-case scenarios and for very large volumes

(more than a few hundreds of TB). See LTO tapes.

FLOPPY DISK
Floppy disk drives are rarely fitted to modern computers

and are obsolete for normal purposes, although internal

and external drives can be fitted if required. Floppy disks

may be the method of choice for transferring data to and

from very old computers without USB or booting from floppy

disks, and so they are sometimes used to change the firmware

on, for example, BIOS chips. Devices with removable storage

like older Yamaha music keyboards are also dependent on

floppy disks, which require computers to process them.

Newer devices are built with USB flash drive support.

FLASH MEMORY CARDS
Flash memory cards, e.g. Secure Digital cards, are

available in various formats and capacities, and are used

by many consumer devices. However, while virtually all PCs

have USB ports, allowing the use of USB flash drives,

memory card readers are not commonly supplied as standard

equipment (particularly with desktop computers). Although

inexpensive card readers are available that read many

common formats, this results in two pieces of portable

equipment (card plus reader) rather than one.

Some manufacturers, aiming at a “best of both worlds”

solution, have produced card readers that approach the

size and form of USB flash drives (e.g. Kingston MobileLite,

SanDisk MobileMate.) These readers are limited to a specific

subset of memory card formats (such as SD, microSD, or

Computer Data Storage and Data Storage Device

198

Memory Stick), and often completely enclose the card, offering

durability and portability approaching, if not quite equal to,

that of a flash drive. Although the combined cost of a mini-

reader and a memory card is usually slightly higher than

a USB flash drive of comparable capacity, the reader + card

solution offers additional flexibility of use, and virtually
“unlimited” capacity. An additional advantage of memory
cards is that many consumer devices (e.g. digital cameras,
portable music players) cannot make use of USB flash
drives (even if the device has a USB port) whereas the
memory cards used by the devices can be read by PCs with
a card reader.

EXTERNAL HARD DISK
Particularly with the advent of USB, external hard disks

have become widely available and inexpensive. External
hard disk drives currently cost less per gigabyte than flash
drives and are available in larger capacities. Some hard
drives support alternative and faster interfaces than USB
2.0 (e.g. IEEE 1394 and eSATA). For writes and consecutive
sector reads (for example, from an unfragmented file) most
hard drives can provide a much higher sustained data rate

than current NAND flash memory. Unlike solid-state memory,

hard drives are susceptible to damage by shock, e.g., a

short fall, vibration, have limitations on use at high altitude,

and although they are shielded by their casings, they are

vulnerable when exposed to strong magnetic fields.

In terms of overall mass, hard drives are usually larger

and heavier than flash drives; however, hard disks sometimes

weigh less per unit of storage. Hard disks also suffer from

file fragmentation which can reduce access speed.

Computer Data Storage and Data Storage Device

199

OBSOLETE DEVICES
Audio tape cassettes and high-capacity floppy disks (e.g.

Imation SuperDisk), and other forms of drives with removable

magnetic media such as the Iomega Zip and Jaz drives are

now largely obsolete and rarely used. There are products

in today’s market which will emulate these legacy drives for

both tape & disk (SCSI1/SCSI2, SASI, Magneto optic, Ricoh

ZIP, Jaz, IBM3590/ Fujitsu 3490E and Bernoulli for example)

in state of the art Compact Flash storage devices - CF2SCSI.

ENCRYPTION AND SECURITY
As highly portable media, USB flash drives are easily lost

or stolen. All USB flash drives can have their contents

encrypted using third party disk encryption software, which

can often be run directly from the USB drive without

installation (for example, FreeOTFE) although some, such

as TrueCrypt, require the user to have administrative rights

on every computer it’s run on. Archiving software can achieve

a similar result by creating encrypted ZIP or RAR files. Some

USB flash drive manufacturers have produced USB flash

drives which use hardware based encryption as part of the

design, removing the need for third-party encryption

software; though a number of these have been shown to

have security problems, and are typically more expensive

than software based systems which are available for free.

A minority of flash drives support biometric fingerprinting

to confirm the user’s identity. As of mid-2005, this was an

expensive alternative to standard password protection offered

on many new USB flash storage devices. Most fingerprint

scanning drives rely upon the host operating system to

Computer Data Storage and Data Storage Device

200

validate the fingerprint via a software driver, often restricting

the drive to Microsoft Windows computers. However, there

are USB drives with fingerprint scanners which use

controllers that allow access to protected data without any

authentication. Some manufacturers deploy physical

authentication tokens in the form of a flash drive. These

are used to control access to a sensitive system by containing

encryption keys or, more commonly, communicating with

security software on the target machine. The system is

designed so the target machine will not operate except when

the flash drive device is plugged into it. Some of these “PC

lock” devices also function as normal flash drives when

plugged into other machines.

SECURITY THREATS
Flash drives may present a significant security challenge

for some organizations. Their small size and ease of use

allows unsupervised visitors or employees to store and

smuggle out confidential data with little chance of detection.

Both corporate and public computers are vulnerable to

attackers connecting a flash drive to a free USB port and

using malicious software such as keyboard loggers or packet

sniffers. For computers set up to be bootable from a USB

drive it is possible to use a flash drive containing a bootable

portable operating system to access the files of a computer

even if the computer is password protected. The password

can then be changed; or it may be possible to crack the

password with a password cracking programme, and gain

full control over the computer. Encrypting files provides

considerable protection against this type of attack. USB

Computer Data Storage and Data Storage Device

201

flash drives may also be used deliberately or unwittingly to

transfer malware and autorun worms onto a network. Some

organizations forbid the use of flash drives, and some

computers are configured to disable the mounting of USB

mass storage devices by users other than administrators;

others use third-party software to control USB usage. The

use of software allows the administrator to not only provide

a USB lock but also control the use of CD-RW, SD cards

and other memory devices. This enables companies with

policies forbidding the use of USB flash drives in the

workplace to enforce these policies. In a lower-tech security

solution, some organizations disconnect USB ports inside

the computer or fill the USB sockets with epoxy.

NAMING
By August 2008, “USB flash drive” had emerged as a

common term for these devices, and most major

manufacturers use similar wording on their packaging,

although potentially confusing alternatives (such as Memory

Stick or USB memory key or ‘Pen drive’) still occur. The

myriad different brand names and terminology used, in the

past and currently, make USB flash drives more difficult

for manufacturers to market and for consumers to research.

Some commonly-used names actually represent trademarks

of particular companies, such as Cruzer, DataTraveler,

TravelDrive, ThumbDrive, and Disgo.

CURRENT AND FUTURE DEVELOPMENTS
Semiconductor corporations have worked to reduce the

cost of the components in a flash drive by integrating

Computer Data Storage and Data Storage Device

202

various flash drive functions in a single chip, thereby

reducing the part-count and overall package-cost. Flash

drive capacities on the market increase continually. As of

2010, few manufacturers continue to produce models of

1 GB and smaller; and many have started to phase out

2 GB capacity flash memory. High speed has become a

standard for modern flash drives and capacities of up to

256 GB have come on the market, as of 2009.

Lexar is attempting to introduce a USB FlashCard, which

would be a compact USB flash drive intended to replace

various kinds of flash memory cards. Pretec introduced a

similar card, which also plugs into every USB port, but is

just one quarter the thickness of the Lexar model. Until

2008, SanDisk manufactured a product called SD Plus,

which was a SecureDigital card with a USB connector.

SanDisk has also introduced a new technology to allow

controlled storage and usage of copyrighted materials on

flash drives, primarily for use by students. This technology

is termed FlashCP.

FLASH DDRIVES FOR NON-USB INTERFACES
The majority of flash drives use USB, but some flash

drives use other interfaces, such as IEEE1394 (FireWire),

one of their theoretical advantages when compared to USB

drives being the minimal latency and CPU utilisation that

the IEEE1394 protocol provides, but in practice because of

the prevalence of the USB interfaces all IEEE1394-based

flash drives that have appeared used old slow flash memory

chips and no manufacturer sells IEEE1394 flash drives

with modern fast flash memory as of 2009, and the currently

Computer Data Storage and Data Storage Device

203

available models go up only to 4 GB, 8 GB or 16 GB,

depending on the manufacturer. FireWire flash drives that

needs to be connected to FireWire 400 port cannot be

connected to a FireWire 800 port without an adaptor and

vice-versa.

In late 2008, flash drives that utilize the eSATA interface

became available. One advantage that an eSATA flash drive

claims over a USB flash drive is increased data throughput,

thereby resulting in faster data read and write speeds.

However, using eSATA for flash drives also has some

disadvantages. The eSATA connector was designed primarily

for use with external hard disk drives that often include

their own separate power supply. Therefore, unlike USB, an

eSATA connector does not provide any usable electrical

power other than what is required for signaling and data

transfer purposes. This means that an eSATA flash drive

still requires an available USB port or some other external

source of power to operate it.

Additionally, as of September 2009, eSATA is still a fairly

uncommon interface on most home computers, therefore

very few systems can currently make use of the increased

performance offered via the eSATA interface on such-

equipped flash drives. Finally, with the exception of eSATA-

equipped laptop computers, most home computers that

include one or more eSATA connectors usually locate the

ports on the back of the computer case, thus making

accessibility difficult in certain situations and complicating

insertion and removal of the flash drive.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Computer Data Storage
	Chapter 2 Data Structure
	Chapter 3 Mass Storage
	Chapter 4 Static Random-Access Memory
	Chapter 5 Input Output Devices
	Chapter 6 Database Storage Structures
	Chapter 7 Data Storage Device
	Chapter 8 USB Flash Drive

