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Mathematics is a discipline which includes the study of various topics such as quantity, space, 
change and structure. It is classified into two primary areas- pure mathematics and applied 
mathematics. Pure mathematics studies only the concepts of mathematics. It does not 
delve into any applications of such concepts in diverse fields such as computer science, 
engineering and business. Some of the important areas of mathematics are algebra, number 
theory, geometry, mathematical analysis, arithmetic, etc. It plays an important role in many 
fields such as natural science, engineering, social sciences, medicine and finance. 
Advancements in applied mathematics resulted in the development of new mathematical 
disciplines such as statistics and game theory. This textbook elucidates the fundamental 
concepts of mathematics. It presents this complex subject in the most comprehensible and 
easy to understand language. This book will serve as a valuable source of reference for 
those interested in mathematics.

A short introduction to every chapter is written below to provide an overview of the content 
of the book:

Chapter 1 - Mathematics is a domain that deals with the study of topics such as quantity, 
change, space and structure. Pure mathematics and applied mathematics are the two primary 
areas that fall under this discipline. This is an introductory chapter which will introduce 
briefly all the significant aspects of mathematics; Chapter 2 - Algebra is a significant subset of 
mathematics that deals with the study of mathematical symbols and the rules for manipulating 
these symbols. It includes elementary equation solving as well as the study of abstractions 
such as fields, groups and rings. Elementary algebra and abstract algebra are the two main 
types of algebra. This chapter has been carefully written to provide an easy understanding 
of the varied facets of algebra; Chapter 3 - The branch of mathematics that is concerned 
with the questions of size, relative position of figures, shape and the properties of space is 
known as geometry. Euclidean geometry, Differential geometry, Algebraic geometry and 
Solid geometry are the various types of geometry. The topics elaborated in this chapter will 
help in gaining a better perspective about the various types of geometry; 
Chapter 4 - Trigonometry is a mathematical branch that focuses on the study of 
relationships between the angles and side lengths of a triangle. It is used in various fields 
such as mechanical engineering, electrical engineering, cartography, computer graphics, etc.  
This chapter discusses in detail the theories and methodologies related to trigonometry; 
Chapter 5 - The mathematical study of continuous change is known as calculus. Differential 
calculus and integral calculus are the two main branches that fall under this domain. The 
convergence of infinite sequences and series with respect to a well-define limit are the 
common foundations of both branches. All the diverse principles of calculus have been 
carefully analysed in this chapter;  Chapter 6 - A mathematical equation that relates some 
function with its derivatives is known as a differential equation. Ordinary differential 
equations, partial differential equation and non-linear differential equation are the common 
types of differential equations. The diverse applications of differential equation in the current 
scenario have been thoroughly discussed 

Preface



VIII   Preface

in this chapter; Chapter 7 - Probability is a measure that quantifies the likelihood of events 
that might occur. Statistics is a subset of mathematics which deals with data collection, 
analysis, organization, interpretation and presentation. The chapter closely examines the key 
concepts of probability and statistics to provide an extensive understanding of mathematics. 

I extend my sincere thanks to the publisher for considering me worthy of this task. Finally, 
I thank my family for being a source of support and help.

Kacey Conley
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Introduction to Mathematics
Mathematics is a domain that deals with the study of topics such as quantity, structure, 
space and change. Pure mathematics and applied mathematics are the two primary ar-
eas that fall under this discipline. This is an introductory chapter which will introduce 
briefly all the significant aspects of mathematics. 

Mathematics is the science that deals with the logic of shape, quantity and arrange-
ment. It constitutes a body of established facts, achieved by a reliable method, 
verified by practice, and agreed on by a consensus of qualified experts. But its sub-
ject matter is not visible or ponderable, not empirical; its subject matter is ideas, 
concepts, which exist only in the shared consciousness of human beings. Thus it is 
both a science and “humanity.” It is about mental objects with reproducible prop-
erties.

For example, “the triangle” in Euclidean geometry, or the counting numbers 1, 2, 3, 4, 
in arithmetic are concepts which we can communicate, and which, as we can verify, 
keep their properties as they are communicated. These concepts are reproducible, they 
possess certain rigidity, a reliability and consistency, and so they permit conclusive, 
irresistible reasoning—which is “proof.” 

“Proof,” not in the formal or formalized sense, but in the sense in which mathemati-
cians mean proof—conclusive demonstrations that compel agreement by all who un-
derstand the concepts involved. Abstract concepts subject to such conclusive reasoning 
or proof are called mathematical concepts.

Mathematics is the subject where answers can definitely be marked right or wrong, 
either in the classroom or at the research level. Mathematics is the subject where state-
ments are capable in principle of being proved or disproved, and where proof or dis 
proof bring unanimous agreement by all qualified experts. 

Reasoning about mental objects (concepts, ideas) that compels assent (on the part of 
everyone who understands the concepts involved) is “mathematical”. This is what is 
meant by “mathematical certainty”. 

Certainly mathematics itself isn’t the only place where conclusive reasoning occurs! 
Rigorous reasoning can occur anywhere-in law, in textual analysis of literature, and in 
ordinary daily life apart from academics. Historians can use unimpeachable reasoning 
to establish a sequence of events, or to refute anachronistic claims. But although histor-
ical dates are subject to rigorous reasoning, they are not mathematical objects, because 
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they are tied to specific places and persons. Information about them comes, ultimately, 
from someone’s visual or auditory perceptions.

Mathematical conclusions are decisive. Just as physical or chemical knowledge can be 
independently verified by any competent experimenter, an algebraic or geometric proof 
can be checked and recognized as a proof by any competent algebraist or geometer. 
There has been one famous disagreement about valid mathematical proofs, Luitjens 
Brouwer and Errett Bishop rejected “proof by contradiction.” That disagreement re-
sulted in the development of a variant, “intuitionistic” or “constructivist” mathematics. 
Intuitionistic or constructivist mathematics makes a stricter demand on what is a “rig-
orous proof.” Knowing how to recognize and accept a “rigorous proof” is the condition 
for membership in the community of mathematicians, whether the usual “classical” or 
the minority “constructivist” version.

Other, hitherto unthought-of kinds of mathematical behavior will yet arise. A definition 
of mathematics should accept the yet-to-be-created new mathematical subjects that are 
sure to arise in coming decades, not to say centuries. How will we identify such hitherto 
unseen behavior as mathematical? How has it been decided in the past, that some new 
branch of study is not just “mathematical” (containing some mathematical features), 
but really mathematics—requiring to be included within mathematics itself.

One famous example was probability gambling or betting. Fermat and Pascal demon-
strated “rigorous” (irrefutable, compelling) conclusions about some games of chance. 
Therefore their work was mathematical, even though it was outside the bounds of 
mathematics as previously understood. Subsequent work of Bernoulli, De Moivre, 
Laplace and Chebychev was mathematics, for the same reason. Ultimately Kolmog-
orov axiomatized probability in the context of abstract measure theory. In doing so 
he was axiomatizing an already existing, ancient branch of mathematics. 

A more recent example is set theory. Infinite sets were not part of mathematics before 
Georg Cantor explicitly based them on the notion of one-to-one correspondence. On 
that basis, he was able to make compelling arguments, and then set theory (with some 
resistance) became a mathematical subject. 

Since Aristotle, formal logic has helped to clarify mathematical reasoning, and rigorous 
argument in general. It draws conclusions on the basis of the logical form of state-
ments—their “syntax.” But most mathematical argument is based more on the content 
of mathematical statements than on their logical form. It is done without referring to 
the rules of formal logic, even without awareness of them. In the process of actively 
discovering or creating mathematics, logicians and other mathematicians reason by 
analogy, by trial and error, or by any other kind of guessing or experimentation that 
might be helpful. In fact, formal logic itself is well-established as a part of mathematics. 

As such, it is subject to conclusive reasoning that is informal, like any other part of 
mathematics. Logicians reason informally in proving theorems about formal logic.
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Numbers

Numbers are strings of digits used to indicate magnitude. They measure size - how big 
or small a quantity is. In mathematics there are several types of numbers, but they fall 
into two main classes, the counting numbers, and scalars.

Counting Numbers and Natural Numbers

These are used to count the number of objects. They are positive whole numbers and 
have no fractional parts. For example 12 cars, 45 students, 3 houses. 

Scalars

These are numbers used to measure some quantity to any desired degree of accuracy. 
For example a building height is 12.388 meters, or speed of an aircraft is 810.31 kilo-
meters per hour. They can have decimal places or fractional parts. Within this category 
there are several types of number:

Real Numbers

Real numbers are those that can be positive, negative or zero, and can have decimal 
places or fractional parts. They are the most common numbers used in measuring 
quantities. Example 31.88 centimeters. They usually have units.

Integers

Integers whole numbers that can be positive, negative or zero, but have no decimal 
places or fractional parts. They are like the counting numbers but can be negative.

Positive and Negative Numbers

Positive numbers are those which are considered to be greater than zero. A large posi-
tive number is larger than a smaller one, for example +12 is larger than +2.

Negative numbers are those considered to be less than zero. They can be thought of as 
a debt or deficit. For example, if your wallet is empty and you owe someone $12, then 
you can think of your wallet as having negative $12. In a way you have less than zero 
dollars.

Rational and Irrational Numbers

Rational numbers are those that can be written as the ratio of two integers. 

The word ‘rational’ comes from ‘ratio’. For example the number 0.5 is rational because 
it can be written as the ratio ½.
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Irrational numbers are those that are not rational, that is those that cannot be written 
as the ratio of two integers.

Imaginary Numbers

Imaginary numbers are those needed to find the square root of negative numbers, 
which would not normally be possible. So for example the square root of -16 would 
be written 4i, where i is the symbol for the square root of negative one.  

Complex Numbers

Recall that real numbers are those that lie on a number line. Complex numbers extend 
this idea to numbers that lie on a two dimensional flat plane. Complex numbers have 
two components called the real and imaginary parts. 

Prime Numbers and Composite Numbers

A prime number is an integer that has no factors, other than one and itself. In other 
words it can be divided only by one and the number itself. 17 is a prime number. 16 is 
not because it can be divided by 2, 4 and 8.

A composite number is one that is not prime. It does have factors, and so is the opposite 
of a prime number. 

Number Notation

There are various ways that numbers can be written or diagrammed:

The Number Line

A number line is a graphical way to visualize numbers by placing them on a straight 
line, usually with zero in the middle, positive numbers to the right and negative num-
bers to the left. 

Decimal Notation

The most common way to represent real numbers. A string of digits and a decimal point 
(dot). Digits to the left of the point are increasing powers of ten, those to right are in-
creasing negative powers of ten. Example 836.33, -45.009. 
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Fractions

A fraction is two quantities written one above the other, that shows how much of a a 
whole thing we have. For example we may have three quarters of a pizza:
3
4

of a pizza.

Normal Form (Scientific Notation)

For very large and very small numbers, decimal notation is not the most convenient. a 
number in normal form consists of two parts: a coefficient and an exponent (power of 
ten). For example, the distance to the sun is 93000000 miles. This can be more conve-
niently written as 93×106 miles. 93 is the coefficient and 6 is the exponent.

Sets

The collection of well-defined distinct objects is known as a set. The word well-defined 
refers to a specific property which makes it easy to identify whether the given object 
belongs to the set or not. The word ‘distinct’ means that the objects of a set must be all 
different. 

For example

1. The collection of children in class VII whose weight exceeds 35 kg represents a
set.

2. The collection of all the intelligent children in class VII does not represent a set
because the word intelligent is vague. What may appear intelligent to one per-
son may not appear the same to another person.

Elements of Set

The different objects that form a set are called the elements of a set. The elements of 
the set are written in any order and are not repeated. Elements are denoted by small 
letters.
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Conventions for Sets

The following are the conventions that are used here:

•	 Sets are usually denoted by a capital letter.

•	 The elements of the group are usually represented by small letters (unless 
specified separately.)

•	 If ‘a’ is an element of ‘A’, or if a “belongs to” A, it is written in the conventional 
notion by the use of the Greek symbol ϵ (Epsilon) between them – a A∈ .

•	 If b is not an element of Set A, b “does not belong to” A is written in the conven-
tional notion by the use of the symbol ϵ (Epsilon with a line across it) between 
them – a A∈ .

•	 Objects, elements, entities, members are all synonymous terms.

Representations of a Set

Representation of Sets and its elements is done in the following two ways.

Roster Form

In this form, all the elements are enclosed within braces {}  and they are sep-
arated by commas (,). For example, a collection of all the numbers found on a dice
N   1,  2,  3,  4,  5,  6}{= . 

Properties of roster form:

The order in which the elements are listed in the Roster form for any Set is immaterial. 
For example, V = {a, e, i, o, u} is same as V = {u, o, e, a, i}.

The dots at the end of the last element of any Set represent its infinite form and indefi-
nite nature. For example, group of odd natural numbers = {1, 3, 5, …}.

In this form of representation, the elements are generally not repeated. For example, 
the group of letters forming the word POOL = {P, O, L}.

More examples for Roster form of representation are:

•	 A = {3, 6, 9, 12}

•	 F = {2, 4, 8, 16, 32}

•	 H = {1, 4, 9, 16, …, 100}

•	 L = {5, 25, 125, 625}

•	 Y = {1, 1, 2, 3, 5, 8, …}.
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Set Builder Form

In this form, all the elements possess a single common property which is NOT featured 
by any other element outside the Set. For example, a group of vowels in English alpha-
betical series.

The representation is done as follows. Let V be the collection of all English vowels, then 
– V = {x: x is a vowel in English alphabetical series.} 

Properties of Roster form: 

•	 Colon (:) is a mandatory symbol for this type of representation.

•	 After the colon sign, we write the common characteristic property possessed by 
ALL the elements belonging to that Set and enclose it within braces.

•	 If the Set doesn’t follow a pattern, its Set builder form cannot be written.

More examples for Set builder form of representation for a Set: 

{ }D   x : x is an integer and  –  3    19x= < <

{ }O   y : y is a natural number greater than  5=

{ }I   f : f  is a two – digit prime number less than  1000=

{ }R   s : s is a natural number such that sum of  its digits is 4=

{ }X   m : m is a positive integer   40= <

Thus, these were some important points on Sets, what they are, how they are represent-
ed mathematically and the related properties.

Types of Sets

The different types of sets are as follows:

Empty Set 

The set which is empty. This means that there are no elements in the set. This set is 
represented by φ  or {} . An empty set is hence defined as,

If a set doesn’t have any elements, it is known as an empty set or null set or void set. For 
e.g. consider the set,

{ }P   x : x is a leap year between 1904 and 1908=
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Between 1904 and 1908, there is no leap year. So, P = φ . Similarly, the set

{ }Q   y : y is a whole number which is not a natural number, y   0= ≠

0 is the only whole number that is not a natural number. If y ≠ 0, then there is no other 
value possible for y. Hence, Q = φ .

Singleton Set

 If a set contains only one element, then it is called a singleton set. 

{ }A   x : x is an even prime number=

{ }B  y : y is a whole number which is not a natural number= .

Finite Set 

In this set, the number of elements is finite. All the empty sets also fall into the category 
of finite sets.

If a set contains no element or a definite number of elements, it is called finite set.

If the set is non-empty, it is called a non-empty finite set. Some examples of finite sets 
are:

{ }A  x : x is a month in an year= ; A will have 12 elements

4 2 }B y : y is the zero of  a polynomial   6    { ( ) 2x x x= − + + ; B will have 4 zeroes.

Infinite Set

Just contrary to the finite set, it will have infinite elements. If a given set is not finite, 
then it will be an infinite set.

For e.g.

{ }A   x : x is a natural number=

There are infinite natural numbers. Hence, A is an infinite set.

{ }B   y : y is ordinate of  a point on a given line= ; There are infinite points on a line. 
So, B is an infinite set.

Power Set

An understanding of what subsets are is required before going ahead with Power-set.
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Definition: The power set of a set A is the set which consists of all the subsets of the set 
A. It is denoted by P(A).

For a set A which consists of n elements, the total number of subsets that can be formed 
is 2n. From this, we can say that P(A) will have 2n  elements. 

Sub Set

{ }A 9,13,6= −

Subsets of { } { } { } { } { } { } { }A , 9 , 13 , 6 , 9,13 , 13,6 , 6, 9 , 9,13,6= φ − − − −

Definition: If a set A contains elements which are all the elements of set B as well, then 
A is known as the subset of B.

( ) { } { } { } { } { } { } { }{ }P A 9 , 13 , 6 , 9,13 , 13,6 , 6, 9 , 9,13,6= − −φ, − −

Universal Set

This is the set which is the base for every other set formed. Depending upon the con-
text, the universal set is decided. It may be a finite or infinite set. All the other sets are 
the subsets of the Universal set. It is represented by U.

For e.g. The set of real numbers is a universal set of integers. Similarly, the set of com-
plex number is the universal set for real numbers.

Function

A Function from set A to set B is a Relation or a rule which associates or maps or images 
each and every element of set A with a element in set B.

A function is a special case or Relation in which each and every element of first set (A) 
is related with only one element of second set (B).

Denotation of Function

A function from set A to set B is denoted by,

f : A B→

And read as “f is a function from set A to set B”. We use f,g,h and F,G,H mainly to de-
note a function.
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If we take any element of Set A and process it through the function (or use the rule of 
given function in it) then the element of set A is changed or imaged to another element 
which is an element of set B.

We denote the above statement by,

( )f x = y

Where “x” is a element of set “A” and “y” is the corresponding element of set “B”.

This means “x” becomes “y” when it is processed through the function “f”.

Likewise if we define a function “f” as “y is square of x”:

Then,

( ) 2f x = x

or, “x” becomes 2x  when it is processed through the function or rule “f”.

So in the above example if set { }A 1, 2,3=  then when set “A” is processed through func-
tion “f” Set “A” is converted into another set(say B) where { }B 2,4,9= .

A function can also be denoted by different graphical methods as given below.

If set { }A 1,2,3=  is processed through a function “f” which is defined by “y is square 
of x” or,

( ) 2f : A B or y = f x = x→

Then we can denote this function using following method:

a. Table Method

b. Arrow Diagram method
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c. Graph method

Domain and Range of a Function

Domain of a Function is the set of elements which are processed or to be processed by 
a function. And range is the set of elements which are produced after processing the 
domain of a Function.

For example:

If set { }A 1,2,3=  and set A is to be processed by function “f” to produce another set 

{ }B 1,8,27=

or f : A B→

Then set “A” is the domain of function “f” and set “B” is the range of function “f”.

Types of Functions

One to One Function

A function f : A B→  is One to One if for each element of A there is a distinct ele-
ment of B. It is also known as Injective. Consider if 1 Aa ∈  and 2 Ba ∈ , f is defined as 
f : A B→  such that ( ) ( )1 2f a f a=

Many to One Function

It is a function which maps two or more elements of A to the same element of set B. Two 
or more elements of A have the same image in B.
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Onto Function

If there exists a function for which every element of set B there is (are) pre-image(s) in set 
A, it is Onto Function. Onto is also referred as Surjective Function.

One – One and Onto Function

A function, f is One – One and Onto or Bijective if the function f is both One to One and 
Onto function. In other words, the function f associates each element of A with a distinct 
element of B and every element of B has a pre-image in A.

Other Types of Functions

A function is uniquely represented by its graph which is nothing but a set of all pairs of x 
and f(x) as coordinates. Let us get ready to know more about the types of functions and 
their graphs.
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Identity Function

Let R be the set of real numbers. If the function f : R R→  is defined as f(x) = y = x, for 
x R∈ , then the function is known as Identity function. The domain and the range being 
R. The graph is always a straight line and passes through the origin.

Constant Function

If the function f : R R→  is defined as f(x) = y = c, for x R∈  and c is a constant in R , 
then such function is known as Constant function. The domain of the function f is R  and 
its range is a constant, c. Plotting a graph, we find a straight line parallel to the x-axis.

Polynomial Function

A polynomial function is defined by 2 n
0 1 2 ny a  a x + a x  + … + a x= + , where n is a 

non-negative integer and 0 1 2 n a , a , a ,…, R∈ . The highest power in the expression is the 
degree of the polynomial function. Polynomial functions are further classified based on 
their degrees:

•	 Constant Function: If the degree is zero, the polynomial function is a constant 
function.

•	 Linear Function: The polynomial function with degree one. Such as y = x + 1 or 
y = x or y = 2x – 5 etc. Taking into consideration, y = x – 6. The domain and the 
range are R. The graph is always a straight line.
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Quadratic Function 

If the degree of the polynomial function is two, then it is a quadratic function. It is ex-
pressed as ( ) 2f x  = ax  + bx + c , where a  0≠ and a, b, c are constant & x is a variable. The 
domain and the range are R. The graphical representation of a quadratic function say, 
( ) 2f x  = x  – 4.

Cubic Function 

A cubic polynomial function is a polynomial of degree three and can be denoted by 
( ) 3 2f x  = ax  + bx  + cx + d , where a ≠ 0 and a, b, c, and d are constant & x is a variable. 

Graph for ( ) 3f x  = y = x  – 5 . The domain and the range are R.

Rational Function

A rational function is any function which can be represented by a rational fraction say, 
f(x)/g(x) in which numerator, f(x) and denominator, g(x) are polynomial functions of x, 
where g(x) ≠ 0. Let a function f : R  R →  is defined say, f(x) = 1/(x + 2.5). The domain and 
the range are R. The Graphical representation shows asymptotes, the curves which seem 
to touch the axes-lines.
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Modulus Function

The absolute value of any number, c is represented in the form of |c|. If any function 
f : R  R →  is defined by f(x) = |x|, it is known as Modulus Function. For each non-negative 
value of ( )x, f x  = x  and for each negative value of x, f(x) = -x, i.e.,

( )f x   x, if  x ³ 0; – x, if  x < 0{= .

Its graph is given as, where the domain and the range are R.

Signum Function

A function f : R  R → defined by,

( )f x  =   1, if  x > 0; 0, if  x = 0; -1, if  x < 0{

Signum or the sign function extracts the sign of the real number and is also known as step 
function.
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Greatest Integer Function

If a function f : R  R →  is defined by ( ) [ ]f x  = x , x X∈ . It round-off to the real number to 
the integer less than the number. Suppose, the given interval is in the form of (k, k+1), the 
value of greatest integer function is k which is an integer. 

For example: [-21] = 21,  = 5. The graphical representation is given below.
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Algebra
Algebra is a significant subset of mathematics that deals with the study of mathematical 
symbols and the rules for manipulating these symbols. It includes elementary equation 
solving as well as the study of abstractions such as fields, groups and rings. Elementary 
algebra and abstract algebra are the two main types of algebra. This chapter has been 
carefully written to provide an easy understanding of the varied facets of algebra. 

Algebra is a branch of mathematics that substitutes letters for numbers. Algebra is 
about finding the unknown or putting real-life variables into equations and then solv-
ing them. Algebra can include real and complex numbers, matrices, and vectors. An 
algebraic equation represents a scale where what is done on one side of the scale is also 
done to the other and numbers act as constants.

Uses of Algebra

Algebra is widely used in many fields including medicine and accounting, but it can also 
be useful for everyday problem-solving. Along with developing critical thinking—such 
as logic, patterns, and deductive and inductive reasoning—understanding the core con-
cepts of algebra can help people better handle complex problems involving numbers.

This can help them in the workplace where real-life scenarios of unknown variables re-
lated to expenses and profits require employees to use algebraic equations to determine 
the missing factors. For example, suppose an employee needed to determine how many 
boxes of detergent he started the day with if he sold 37 but still had 13 remaining. The 
algebraic equation for this problem would be:

x – 37 = 13

Where, the number of boxes of detergent he started with is represented by x, the un-
known he is trying to solve. Algebra seeks to find the unknown and to find it here, the 
employee would manipulate the scale of the equation to isolate x on one side by adding 
37 to both sides:

x – 37 + 37 = 13 + 37

x = 50

So, the employee started the day with 50 boxes of detergent if he had 13 remaining after 
selling 37 of them.
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Types of Algebra

There are numerous branches of algebra, but these are generally considered the most 
important-

• Elementary: a branch of algebra that deals with the general properties of num-
bers and the relations between them.

• Abstract: deals with abstract algebraic structures rather than the usual number
systems.

• Linear: focuses on linear equations such as linear functions and their
representations through matrices and vector spaces.

• Boolean: used to analyze and simplify digital (logic) circuits. It uses only binary
numbers, such as 0 and 1.

• Commutative: studies commutative rings—rings in which multiplication oper-
ations are commutative.

• Computer: studies and develops algorithms and software for manipulating
mathematical expressions and objects.

• Homological: used to prove non-constructive existence theorems in algebra.

• Universal: studies common properties of all algebraic structures, including
groups, rings, fields, and lattices.

• Relational: a procedural query language, which takes a relation as input and
generates a relation as output.

• Algebraic number theory: a branch of number theory that uses the techniques
of abstract algebra to study the integers, rational numbers, and their general-
izations.

• Algebraic geometry: studies zeros of multivariate polynomials, algebraic ex-
pressions that include real numbers and variables.

• Algebraic combinatorics: studies finite or discrete structures, such as networks,
polyhedra, codes, or algorithms.

Polynomial

In simple terms, polynomials are expressions comprising a sum of terms, where each 
term holding a variable or variables is elevated to a power and further multiplied by a 
coefficient. Amusingly, the simplest polynomials hold one variable.
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A single-variable polynomial having degree n has the following polynomial equation:

n n -1 2 1 0
n n -1 2 1 0a x  + a x  + … + a x  + a x  + a x

In this, a’s denote the coefficients whereas x denotes the variable. Since x1 = x and x0= 1 
considering all complex numbers x. Therefore, the above expression can be shortened to:

n n -1 2
n n -1 2 1a x  + a x  + … + a x  + a x + a

When an nth-degree of single-variable polynomial equals to 0, then the resultant poly-
nomial equation of degree ‘n’ acquires the following form:

n n -1 2
n n -1 2 1a x  + a x  + … + a x  + a x + a = 0.

Degree of a Polynomial

It is simply the greatest of the exponents or powers over the various terms present in 
the polynomial equation.

Example: Find the degree of a polynomial 7x – 5

In this, we observe that there are two terms in the mentioned polynomial. The first 
term is 7x, whereas the second term is -5. Hence, we define the exponent for each term. 
The exponent for the first term 7x = 1 and for the second term -5 = 0. Since the highest 
exponent is 1, therefore the degree of the polynomial 7x – 5 is also 1.

Types of Polynomials

1.	 Monomials – Monomials are the algebraic expression with one term, hence the 
name says “Mono”mial.

2.	 Binomials – Binomials are the algebraic expression with two unlike terms, 
hence the name “Bi”nomial.

3.	 Trinomials – Trinomials are the algebraic expression with three unlike terms, 
hence the name “Tri”nomial.
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Types of Polynomial Equation

Let us try to get familiar with the different types of a polynomial equation which form 
the base to further learning.

•	 Zero Polynomial: Whenever in a given polynomial every coefficient value stays 
zero, then it is called as a zero polynomial. For example: 0 + 04 – 0.

•	 Monomial: It is an algebraic expression that contains only one term and is called 
as Monomial. In a simplistic form, it can be called as an expression that contains 
any count of like terms. For example: 2x, 4t, 21x2y, 9pq etc. Each of these expres-
sions is monomial since they contain only one term.

•	 Binomial: It is an algebraic expression which comprises of two, unlike terms. For 
example, 3x + 4x2 is binomial since it contains two unlike terms, that is, 3x and 
4x2. Also, 10pq + 13p2q is also a Binomial. This is because it comprises two unlike 
terms, namely, 10pq and 13p2q.

•	 Trinomial: It is an algebraic expression that comprises three, unlike terms. For 
example- 2 33x + 5x  – 6x  is an active Trinomial. It is due to the presence of three, 
unlike terms, namely, 23x + 5x and 3 6x . Also, 212pq + 4x  – 10  is a trinomial, 
since it has three unlike terms- 12pq, 4x2 and 10.

Examples

Which of the following is a binomial?

a.	 8*a+ a  		  b. 27a  + 8b + 9c

c.	 3a* 4b + 2c  		  d. 2 2 11a  + 11b

solution: 2 2 11a  + 11b

a.	 Will give 8a+a=9a which is monomial.

b.	 Is a trinomial.

c.	 Will give 24abc, which is a monomial.

d.	 Will give 2 211a +11b , which is a binomial.
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Zeroes of Polynomial

A polynomial having value zero (0) is known as zero polynomial. Actually, the term 0 
is itself zero polynomial. It is a constant polynomial whose all the coefficients are equal 
to 0. For a polynomial, there may be few (one or more) values of the variable for which 
the polynomial may result in zero. These values are known as zeros of a polynomial. We 
can say that the whole.

If the coefficients of following the form of the polynomial: 

1 2 2
1 2 2 1 0

n n n
n n na x a x a x a x a x a− −

− −+ + + + + +
 are zero, then it will become zero poly-

nomial. i.e 1 2 0 0n n na a a a− −= = = = = . Thus, the polynomial will become 0 and may 
be written as P(x)=0.

Zero Polynomial Function

The zero polynomial function is defined as the polynomial function with the value of 
zero. i.e. the function whose value is 0, is termed as a zero polynomial function. Zero 
polynomial does not have any nonzero term. It is represented as: P(x) = 0. Thus, we can 
say that a polynomial function which is equal to zero is called zero polynomial function. 
It also is known as zero map. The graph of the zero polynomial is X axis.

Zero Quadratic Polynomial

The quadratic polynomial having all the coefficients equal to zero is known as zero qua-
dratic polynomial. The general term of a quadratic polynomial is: 2( )P x ax bx c= + + . 
If in above quadratic polynomial, the coefficients are zero; i.e. a = b = c = 0, then the 
polynomial is termed as a zero quadratic polynomial.

Example: 20. 0. 0x x+ +  is a zero quadractic polynomial whose values are zero.

Example: Find the additive identities of the following polynomials: 1) x-3 and 2) 
2 3 5x x− + .

Solution: 1) Additive identity = 0.x+0 and 2) Additive identity = 20. 0. 0x x+ +

Finding Zeroes of a Polynomial

1.	 The zero of a polynomial is the value of the which polynomial gives zero. Thus, 
in order to find zeros of the polynomial, we simply equate polynomial to zero 
and find the possible values of variables.

2.	 Let P(x) be a given polynomial. To find zeros, set this polynomial equal to zero. 
i.e. P(x) = 0. Now, this becomes a polynomial equation. Solve this equation and 
find all the possible values of variables by factorizing the polynomial equation.
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3.	 These are the values of x which make polynomial equal to zero; hence are called 
zeros of polynomial P(x). A number z is said to be a zero of a polynomial P(x) if 
and only if P(z) = 0.

Real and Complex Zeroes of Polynomials

When the roots of a polynomial are in the form of the real number, they are known as 
real zeros whereas complex numbers are written as a  ib, where a is called real part 
and b is known as the imaginary part. The complex zeros are found in pairs, such as a 
+ ib and a – ib.

Example: Find the zeroes of polynomial 26 7 2x x+ −

Solution: To find zeros, set the polynomial equal to zero P(x)=0 i.e. 26 7 2 0x x+ − =

26 4 3 2 0x x x+ − − =  then, ( ) ( )2 x 3x 2 1 3x 2 0+ − + =  

(3x+2)(2x-1)=0, 
2 1x ,
3 2

= − .

Example: Find the zeroes of polynomial 2( 3) 4x − +

Solution: To find zeros, set the polynomial equal to zero P(x)=0 i.e. 2( 3) 4 0x − + =

2( 3) 4x − = −  then, x 3 2i− = ± and 

Thus, two zeros are 3 2i+  and 3 2i− .

Algebraic Equation

In algebra, an equation can be defined as a mathematical statement consisting of an 
equal symbol between two algebraic expression that have the same value.

An equation of the type 0nf = , where nf  is a polynomial of degree n  in one or more 
variables ( 0)n ≥ . An algebraic equation in one variable is an equation of the form

1
0 1 0n n

na x a x a−+ + + =

.

Here n  is a non-negative integer, 0 , , na a  are given, the so-called coefficients of 
the equation, while x is an unknown which has to be found. It is assumed that the 
coefficients of the algebraic equation are not all equal to zero. If 0 0a ≠ , then n  is called 
the degree of the equation.
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The values of the unknown x  which satisfy equation, i.e. the values which, if substi-
tuted for x , will convert this equation into an identity, are known as the roots of the 
equation ( 1

0 1 0n n
na x a x a−+ + + = ), or as the roots of the polynomial,

1
0 1( ) n n

n nf x a x a x a−= + + + .

The roots of a polynomial are related to its coefficients by Viète’s formulas. To solve an 
equation means to find all its roots contained in the range of values of the unknown(s) 
under consideration.

As far as applications are concerned, the most important case is that of coefficients and 
roots of an equation that are numbers of a certain kind (e.g. rational, real or complex). 
The case of the coefficients and roots being elements of an arbitrary field may also be 
considered.

If a given number (or element of a field) c is a root of the polynomial ( )nf x  then, in 
accordance with the Bezout theorem, ( )nf x  is divisible by x c−  without remainder. 
The division may be performed according to the Horner scheme.

A number (or element of a field) c is called a root of multiplicity k  of a polynomial 
( )f x  (where k  is a non-negative integer) if ( )f x  is divisible by ( )kx c− , but is not 

divisible by 1( )kx c +− . Roots of multiplicity one are called simple roots of the polyno-
mial, other roots are called multiple roots.

Each polynomial ( )f x  of degree 0n >  with coefficients in a field P  has at most n  
roots in this field P , each root being counted the number of times equal to its multi-
plicity (consequently, there are not more than n  different roots).

In an algebraically closed field any polynomial of degree n  has exactly n  roots (counted 
according to their multiplicity). In particular, this statement also applies to the field of 
complex numbers.

Equation 0 1
n na x a x a+ + + =  of degree n  with coefficients from a field P  is 

called irreducible over P  if the polynomial is irreducible over this field, i.e. cannot 
be represented as the product of other polynomials of degrees lower than n  over P . 
Otherwise, both the polynomial and the corresponding equation are called reducible. 
Polynomials of degree zero and zero itself are not considered to be reducible or irre-
ducible. Whether a given polynomial is reducible or irreducible over a field P  depends 
on the field in question. Thus, the polynomial 2 2x −  is irreducible over the field of 
rational numbers, since it has no rational roots, but is reducible over the field of real 
numbers: 2 2 ( 2) ( 2)x x x− = + − . Similarly, the polynomial 2 1x +  is irreducible 
over the field of real numbers, but is reducible over the field of complex numbers. Only 
polynomials of the first degree are irreducible over the field of complex numbers, and 
any polynomial can be decomposed into linear factors. Only polynomials of the first 
degree and polynomials of the second degree without real roots are irreducible over the 
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field of real numbers (and all polynomials can be decomposed into products of linear 
and irreducible quadratic polynomials). Irreducible polynomials of all degrees exist 
over the field of rational numbers; examples are the polynomials of the form 2nx + . 
The irreducibility of a polynomial over the field of rational numbers can often be es-
tablished by Eisenstein’s criterion: If, for a polynomial of degree 0n >  with integral 
coefficients, there exists a prime number P  such that the leading coefficient 0a  is not 
divisible by P , all the remaining coefficients are divisible by P , and the constant term 

na  is not divisible by 2P , then this polynomial is irreducible over the field of rational 
numbers.

Let P  be an arbitrary field. For each polynomial ( )f x  of degree 1n >  that is irreducible 
over P , there exists an extension of P  containing at least one root of ( )f x ; more-
over, there exists a splitting field of ( )f x , i.e. a minimal extension of P  in which this 
polynomial can be decomposed into linear factors. Every field has an algebraically 
closed extension.

Solvability by Radicals

Any algebraic equation of degree not exceeding four is solvable by radicals. 

Abel’s theorem in modern formulation: Let ( 1
0 1 0n n

na x a x a−+ + + = ) be an equa-
tion of degree 4n >  with coefficients 0 , , na a ; let K  be an arbitrary field and let P  
be the field of rational functions in 0 , , na a  with coefficients from K ; then the roots 
of equation (lying in some extension of P ) cannot be expressed in terms of the coeffi-
cients of this equation by a finite number of operations of addition, subtraction, mul-
tiplication and division (operations which are meaningful in P ) and root extraction 
(which is meaningful in the extension of P ). In other words, the general equation of 
degree 4n >  is unsolvable by radicals.

However, Abel’s theorem does not contradict the fact that some algebraic equations 
with numerical coefficients (or with coefficients from a given field) are solvable by 
radicals. Some special equations of degree n  are solvable by radicals (e.g. a two-term 
equation). A complete solution of the problem when an algebraic equation is solvable 
by radicals was given by E. Galois about the year 1830.

The fundamental theorem on the solvability of algebraic equations by radicals in Galois 
theory can be stated as follows. Let ( )f x  be a polynomial with coefficients from a field 
K  that is irreducible over K . Then, 1) if at least one root of the equation ( ) 0f x =  
can be expressed by radicals in terms of the coefficients of this equation and if the 
exponents of the radicals are not divisible by the characteristic of K , then the Galois 
group of this equation is solvable over K ; 2) conversely, if the Galois group of the equa-
tion ( ) 0f x =  is solvable over the field and the characteristic of K  is zero or is higher 
than all orders of the constituent factors of this group, then all the roots of the equation 
can be represented by radicals in terms of its coefficients, all exponents of the roots 
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1/na  involved can be taken to be prime numbers, and the binomial equations 0nx a− =  
which correspond to these roots can be taken to be irreducible over the fields to which 
these radicals are adjoined.

This theorem was proved by Galois for the case in which K  is the field of rational 
numbers; in this case all conditions involving the characteristic of the field K  in the 
above formulation become superfluous.

Abel’s theorem is a consequence of Galois’ theorem, since the Galois group of equa-
tions of order n  with coefficients (that are letters) over the field P  of rational 
functions in the coefficients of the equation with coefficients from an arbitrary 
field K , is the symmetric group nS , which is unsolvable for 4n > . For any 4n >
there exist equations of degree n  with rational (and integral) coefficients that are 
unsolvable by radicals. An example of such an equation for 5n =  is the equation

5 2 0x p x p− − = , where P  is a prime number. In Galois theory an algebraic equa-
tion is solved by reducing it to a chain of simpler equations, which are called resol-
vents of the original equation.

The solvability of equations by radicals is closely connected with problems involving 
geometrical constructions with ruler and compasses; in particular, with the problem of 
the division of the circle into n  equal parts.

Algebraic Equations in One Unknown with Numerical Coefficients

Methods of approximate calculations (e.g. the parabola method) are generally used to 
find the roots of algebraic equations of degree higher than two with coefficients from 
the field of real or complex numbers. It is convenient to begin by getting rid of the mul-
tiple roots. A number  is a root of multiplicity k  of a polynomial ( )f x  if and only if 
the polynomial and its derivatives up to the order 1k − , inclusive, vanish if x c= , and if 

( ) ( ) 0kf c ≠ . If ( )f x  is divided by the greatest common divisor ( )d x  of this polynomial 
and its derivative, then the resulting polynomial has the same roots as ( )f x , but only of 
multiplicity one. It is further possible to construct the polynomials whose simple roots 
are all the roots of the polynomial ( )f x  of equal (given) multiplicity. A polynomial has 
multiple roots if and only if its discriminant vanishes.

The determination of the number of roots and bounds on their size are frequently oc-
curring problems. 

0

0

max | |
1

| |
ii

a

a
>+

The number, can be taken as an upper bound for the modulus of each root (both 
real and complex) of the algebraic equation with arbitrary complex coefficients. The 
Newton method usually yields a more exact bound if the coefficients are real. The 
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determination of a lower bound for the positive roots, and of upper and lower bounds 
for the negative roots, are reduced to the determination of an upper bound for the 
positive roots.

The simplest method to determine the number of real roots is to use the Descartes 
theorem. If it is known that all the roots of a given polynomial are real (for example, 
for the characteristic polynomial of a real symmetric matrix), then Descartes’ theorem 
yields the exact number of roots. By considering the polynomial ( )f x− , the number 
of negative roots of ( )f x  can be found using the same theorem. The exact number of 
real roots located in a given interval (in particular, the number of all real roots) of a 
polynomial with real coefficients without multiple roots can be found by the Sturm 
theorem. Descartes’ theorem is a special case of the Budan–Fourier theorem, which 
yields an estimate from above for the number of real roots of a polynomial with real 
coefficients lying in a certain fixed interval.

It is sometimes desirable to find roots of a special type. For instance, Hurwitz’ criterion 
is a necessary and sufficient condition for all the roots of an equation (with complex 
coefficients) to have negative real parts.

There exists a method for calculating all rational roots of a polynomial with rational 
coefficients. A polynomial ( )f x  with rational coefficients has the same roots as the 
polynomial ( )g x  with integral coefficients obtained from ( )f x  by multiplication by 
a common multiple of all denominators of the coefficients of ( )f x . The only rational 
roots of a polynomial 1

0 1( ) n n
ng x b x b x b−= + + + , 0nb ≠ , with integral coefficients 

are found among the irreducible fractions /p q  in which P  is a divisor of the number 
nb  and q  is a divisor of the number 0b  (and only those fractions among them such that, 
for any integer m , the number ( )g m  is divisible by p mq− ). If 0 1b = , then all rational 
roots of ( )g x  (if any) are integers, divisors of the constant term, and can be found by 
trial and error.

Systems of Algebraic Equations

Concerning systems of algebraic equations of the first degree.

A system of any two algebraic equations of any degree in two unknowns x and y may 
be written as:

1
0 1

1
0 1

( , ) ( ) ( ) ( ) 0,

( , ) ( ) ( ) ( ) 0,

n n
n

s s
s

f x y a x y a x y a x
g x y b x y b x y b x

−

−

= + + + = 


= + + + = 





Where ( ), ( )i ja x b x  are polynomials in one unknown x . If a certain numerical value is 
assigned to x , a system of two equations in one unknown y  with constant coefficients 

,i ja b  is obtained. The resultant of this system is the following determinant:
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0 1

0

0

0 1

0

0

0 0 0
0

0 0
0 0 0

( , )
0 0 0

0
0 0

0 0 0

n

n

n

s

s

s

a a a
a a

a a
R f g

b b b
b b

b b

=

 

    

     

  

 

    

     

  

(There are s rows of a ’s and n  rows of b ’s in this determinant.) The following state-
ment is true: A number 0x  is a root of the resultant ( , )R f g  if and only if the polyno-
mials 0( , )f x y  and 0( , )g x y  have a common root 0y  or if the two leading coefficients 

0 0( )a x  and 0 0( )b x  are equal to zero.

Thus, in order to solve the system one must find all roots of the resultant ( , )R f g , sub-
stitute each one of these roots into the system and find the common roots of these two 
equations in one unknown y . One must also find the common roots of the two poly-
nomials 0 ( )a x  and 0 ( )b x , substitute them into, and verify if the resulting equations in 
one unknown y  have common roots. In other words, the solution of a system of two 
algebraic equations in two unknowns is reduced to the solution of one equation in one 
unknown and the calculation of the common roots of two equations in one unknown 
(the common roots of two or more polynomials in one unknown are the roots of their 
largest common divisor).

Types of Algebraic Equations

Linear Equation

3x + 2 y = 6
2 x + 3y 5

2 x + y = 3
x + 2 y = 1


 =

 −

Linear equations are those where each term is either a constant or the product of a sin-
gle variable and a constant. If there are two variables, the graph of the linear equation 
is always going to be a straight line. As a general rule, a linear equation looks like this:

y = mx + c, m  0≠≠

In this example, m is known as slope and c represents that point on which it cut the y 
axis.
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In linear equations with different variables,

The equation with only one variable: an equation which has only one variable. Exam-
ples include the following,

•	 8a – 8  0=

•	 9a =  72

The equation which has two variables: an equation that has only two types of variables. 
Examples include the following,

•	 9   6  –  82  0a b+ =

•	 7 x + 7 y = 12

•	  8a – 8d = 74

The equation that has three variables: this is an equation with only three types of vari-
ables in the equation. Examples include the following,

•	 13a – 8b + 31c = 74

•	 5x + 7 y – 6z = 12

•	 6p + 14q – 74 + 82  0= .

Quadratic Equation

A quadratic equation is a second-degree equation whereby one variable contains the 
variable that has an exponent of two. An example and the general form is shown below,

2ax  + bx + c = 0, a  0≠≠

Other examples include,

•	 25a  – 5a = 35

•	 28x + 7 x – 75 = 0

•	
24 y  + 14 y – 8 = 0.
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Cubic Equation

A cubic equation is a polynomial equation whereby the highest sum of exponents of 
the variables in any term is equal to three. In other words, it is an equation involving a 
cubic polynomial; i.e., one of the form. It has the following form:

3 2ax  + bx  + cx + d 0 where  0= ≠ .

Exponential Equation

Exponential equations have variables in the place of exponents, and can be solved us-
ing this property: axax = ayay => x = y. 

Examples include the following:

•	 4x = 0

•	 8x = 32

•	 ab = 0 (where “a” is base and “b” is the exponent).

Quartic Equation

Quartic equations are equations of the fourth degree and an equation that equates a 
quartic polynomial to zero, using this form:

( ) 4 3 2 f x  = ax + bx + cx + dx + e = 0 where a   0≠

The derivative of a quartic function is a cubic function.

Quintic Equation

A quintic equation is a polynomial equation in which five is the highest power of the 
variable. The formula used is,

5 4 3 2ax + bx + cx + dx + ex+ f = 0

Examples include the following:
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5 3x + x + x

5 4 3 2y + y + y + y + y+1.

Radical Equation

Radical equations are those that have a maximum exponent on the variable that is 12 
and which have more than one term. It can also be said that a radical equation is one 
whereby the variable is lying inside a radical symbol, usually in the form of a square 
root. 

Examples include the following,

•	 + 10 = 26

•	 + x – 1.

Fundamental Theorem of Algebra

The Fundamental theorem of algebra states that any non-constant polynomial with 
complex coefficients has at least one complex root. The theorem implies that any 
polynomial with complex coefficients of degree n  has n  complex roots, counted with 
multiplicity. A field F  with the property that every non-constant polynomial with coef-
ficients in F  has a root in F  is called algebraically closed, so the fundamental theorem 
of algebra states that,

The field C of complex numbers is algebraically closed. 

Example

The polynomial 2 1x +  has no real roots, but it has two complex roots i  and i− .

The polynomial 2 1x + has two complex roots, namely 
1

2
i−

± .

One might expect that polynomials with complex coefficients have issues with nonexis-
tence of roots similar to those of real polynomials; that is, 

3 2 (1 )x ix i x eπ+ − + −

it is not unreasonable to guess that some polynomial like will not have a complex root, 
and finding such a root will require looking in some larger field containing the complex 
numbers. The fundamental theorem of algebra says that this is not the case: all the 
roots of a polynomial with complex coefficients can be found living inside the complex 
numbers already.
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Factoring

This topic gives a more precise statement of the different equivalent forms of the fun-
damental theorem of algebra. This requires a definition of the multiplicity of a root of 
a polynomial.

The multiplicity of a root r  of a polynomial ( )f x is the largest positive integer k such 
that ( )kx r−  divides ( )f x . Equivalently, it is the smallest positive integer k  such that

( ) ( ) 0kf r ≠ , where ( )kf denotes the thk derivative of f .

Theorem

Let F  be a field. The following are equivalent: 

1.	 Every non-constant polynomial with coefficients in F has a root in F. 

2.	 Every non-constant polynomial of degree n with coefficients in F has nn roots in 
F, counted with multiplicity. 

3.	 Every non-constant polynomial with coefficients in F splits completely as a 
product of linear factors with coefficients in F.

Proof

Clearly F (3 ) (2) (1)⇒ ⇒ , so the only nontrivial part is (1) (3 )⇒ . To see this, induct 
on the degree n  of ( )f x . The base case 1n = is clear. Now suppose the result holds for 
polynomials of degree 1n − . Then let ( )f x  be a polynomial of degree n . By (1), ( )f x  
has a root a.a. A standard division algorithm argument shows that x a−  is a factor of

( )f x :

Divide ( )f x  by x a−  to get ( ) ( ) ( )f x x a q x r= − + , where rr is a constant polynomial. 
Plugging in aa to both sides gives 0 ( ) ( )a a q a r= − + , so 0r = . So ( ) ( ) ( )f x x a q x= − . 
But ( )q x  is a polynomial of degree 1n − , so it splits into a product of linear factors by 
the inductive hypothesis. Therefore ( )f x  does as well. So the result is proved by in-
duction. 

The fundamental theorem of algebra says that the field C of complex numbers has 
property (1), so by the theorem above it must have properties (1), (2), and (3). 

Example:

If 4 3 1( )f x x x x= − − + , then complex roots can be factored out one by one until the 
polynomial is factored completely: f 4 3 3(1) 0,so 1 ( 1)( 1)f x x x x x= − − + = − − . 

Then 1 is a root of 3 1x − , so

4 3 2( )( )( )1 1 1 1x x x x x x x− − + = − − + + .
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And now 2 1x x+ +  has two complex roots, namely the primitive third roots of unity ω  
and 2ω , where 2 /3ie πω = . 

4 3 2 2 .( ) ( )(1 1 )x x x x x xω ω− − + = − − −

So here are three distinct roots, but four roots with multiplicity, since the root 1 has 
multiplicity 2.

Applications of the Theorem

The ability to factor any polynomial over the complex numbers reduces many difficult 
nonlinear problems over other fields (e.g. the real numbers) to linear ones over the 
complex numbers. For example, every square matrix over the complex numbers has 
a complex eigenvalue, because the characteristic polynomial always has a root. This is 
not true over the real numbers, e.g. the matrix:

0 1
1 0

 
 − 

Which rotates the real coordinate plane by 90 , has no real eigenvalues.

Another general application is to the field of algebraic geometry, or the study of solu-
tions to polynomial equations. The assumption that the coefficients of the polynomial 
equations lie in an algebraically closed field is essential for simplifying and strength-
ening the theory, as it guarantees that the field is “big enough” to contain roots of 
polynomials. For example, the set of complex solutions to a polynomial equation with 
real coefficients often has more natural and useful properties than the set of real 
solutions.

Another application worth mentioning briefly is to integration with partial fractions. 
Over the real numbers, there are awkward cases involving irreducible quadratic factors 
of the denominator. The algebra is simplified by using partial fractions over the com-
plex numbers (with the caveat that some complex analysis is required to interpret the 
resulting integrals).

Polynomials over the Real Numbers

Let ( )p x  be a polynomial with real coefficients. It is true that ( )p x  can be factored into 
linear factors over the complex numbers, but the factorization is slightly more compli-
cated if the factors are required to have real coefficients.

For instance, the polynomial 2 1x + can be factored as ( )( )x i x i− +  over the complex 
numbers, but over the real numbers it is irreducible: it cannot be written as a product 
of two nonconstant polynomials with real coefficients.
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Theorem

Every polynomial ( )p x  with real coefficients can be factored into a product of linear 
and irreducible quadratic factors with real coefficients.

Proof

Induct on n . The base cases are 1n = and 2n = , which are trivial. Now suppose the 
theorem is true for polynomials of degree 2n −  and 1n − . Let f(x) be a polynomial of 
degree n, and let f(x) be a complex root of ( )f x  (which exists by the fundamental the-
orem of algebra). There are two cases:

•	 If a is real, then ( ) ( ) ( )f x x a q x= −  for a polynomial ( )q x  with real coefficients 
of degree 1n − . 

By the inductive hypothesis, ( )q x  can be factored into a product of linear and irreduc-
ible quadratic factors, so ( )f x  can as well.

•	 If f(x) a is not real, then let a be the complex conjugate of a. Note that a a≠ . 
Write 1 0( ) n

nf x c x c x c= + + + , then,

1 0

1 0

1 0

1 0

( )

( )

n
n

n
n

n

n
n

n

f x c x c x c

c x c x c

c x c x c

c x c x c
f x

= + + +

= + + +

= + + +

= + + +
=









By properties of the complex conjugate (and because the ic are real numbers). So if
( ) 0f a = , then ( ) ( ) 0 0f a f a= = = . The conclusion is that non-real roots of polyno-

mials with real coefficients come in complex conjugate pairs.

Write ( ) ( ) ( )f x x a q x= − , where ( )q x has complex coefficients, and plug in a  
to both sides. Then ( ) 0q a = . (This is where the argument uses that a a≠ So, 

( ) ( ) ( )q x x a h x= − , ( ) ( )( ) ( )f x x a x a h x= − − so. Write the product of the first two fac-
tors as ( )q x , then ( )q x  is a quadratic irreducible polynomial with real coefficients. 
Since ( )q x  divides ( )f x  over the complex numbers, and both polynomials are real, 

( )q x  must divide ( )f x  over the real numbers. (Proof: use the division algorithm over 
the real numbers, f gj k= + , with 0k =  or ( ) ( )deg k deg g< , and then over the com-
plex numbers g divides ff and gj , so must divide k ; so 0k = .)

So ( )h x  is a polynomial of degree 2n −  with real coefficients, which factors as expected 
by the inductive hypothesis, so f(x) ( )f x  does as well. This completes the proof. 
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Proof of the Theorem

There are no “elementary” proofs of the theorem. The easiest proofs use basic facts 
from complex analysis. Here is a proof using Liouville’s theorem that a bounded ho-
lomorphic function on the entire plane must be constant, along with a basic fact from 
topology about compact sets.

Let 0( ) n
np z a z a= + +  be a polynomial with complex coefficients, and suppose that 

( ) 0p z ≠ everywhere. (So of course 0 0a ≠ .) Then 
1
( )p z

is holomorphic everywhere.

Now lim ( )
z

p z
→∞

= ∞ , for instance, because

( )1
1 0( ) n n

n np z a z a z a−
−≥ +− +

By the triangle inequality. So for large enough 0say , ( )z z R p z a> > .

But in the disc z R≤ , the function ( )p z  attains its minimum value (because the disc 
is compact). Call this value m. 

0m > .

Then ( ) 0min ( , )mp az >  for all Z, so.

0

1 1
( ) min( , )p z m a

<

For all z , so it is a bounded holomorphic function on the entire plane, so it must be 
constant by Liouville’s theorem. But then ( )p z  is constant.
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Geometry
The branch of mathematics that is concerned with the questions of size, relative po-
sition of figures, shape and the properties of space is known as geometry. Euclidean 
geometry, Differential geometry, Algebraic geometry and Solid geometry are the 
various types of geometry. The topics elaborated in this chapter will help in gaining a 
better perspective about the various types of geometry.

Geometry is a branch of mathematics that studies the size, shape, and position of 2-di-
mensional shapes and 3-dimensional figures.

The main concepts in geometry are lines and segments, shapes and solids (including 
polygons), triangles and angles, and the circumference of a circle. In Euclidean geome-
try, angles are used to study polygons and triangles.

As a simple description, the fundamental structure in geometry—a line—was intro-
duced by ancient mathematicians to represent straight objects with negligible width 
and depth. Plane geometry studies flat shapes like lines, circles, and triangles, pretty 
much any shape that can be drawn on a piece of paper. Meanwhile, solid geometry 
studies three-dimensional objects like cubes, prisms, cylinders, and spheres.

Fundamental Geometric Figures

When studying geometry, we will deal with several fundamental figures, including 
points, lines, and planes. A point can be thought of as an infinitesimally small sphere; 
that is, if you consider a “round” object such as a tennis ball, imagine that ball getting 
smaller and smaller until it is so small that it cannot be measured or even seen--this is 
akin to a point. A point has no width, length, or depth. A point can also be thought of 
as simply a location; a location does not have any physical dimension such as length or 
width, and yet we know intuitively how to speak of locations: “no trespassing beyond 
this point,” for instance. Even though a point has no measurable size, we still need a 
way to represent it when studying geometry. Thus, we typically represent points as 
small dots, such as those shown below.

A line has slightly more character than a point: it is a figure that extends infinitely in one 
dimension. (A dimension can simply be thought of as a pair of opposite directions: forward 
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and backward, left and right, or up and down, for example.) A line has infinite length, but 
it has no thickness. Imagine a piece of string that is pulled tight from two points that are 
immeasurably far away, and imagine that the thickness of the string decreases until the 
string is invisible: this string would then be a line. Because we can’t show infinite distances 
on a piece of paper (or anywhere else, for that matter), we use arrows when drawing lines 
to indicate that the figure extends indefinitely. Below is an example of a line.

Naturally, we can conceive of a line that extends to infinity (that is, extends indefinitely) 
in only one direction but has an end point in the other direction; this figure is called a 
ray. Imagine the sun shining in the sky--a beam of light that originates from the sun can 
extend indefinitely away from it. The word “ray” in this case is closely linked with the 
geometric figure called a “ray.” A ray is illustrated below.

If the line instead has two endpoints, we call it a line segment, which is illustrated be-
low.

In some cases, it is helpful to show the endpoints of the ray or line segment more clearly 
using dots. The figures are the same, however.

A plane is a geometric figure that extends to infinity in two dimensions. As such, we 
must show it in three dimensions, but you can imagine a plane as an even surface 
whose edges are so far away that they could never be reached. Planes are often drawn 
as parallelograms (four-sided figures similar to rectangles), since their infinite extent 
cannot be represented. We will draw the plane with a dashed border to differentiate it 
from a parallelogram.
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Because we will mostly deal with (two-dimensional) planar geometry, we will not deal 
much with planes. However, that we are in a sense dealing with a plane in planar geom-
etry: we do all our drawing, moving, and analyzing of figures located entirely on that one 
plane. Consider, for instance, the collection of basic figures shown on the plane below.

Plane Geometry

Plane geometry is the branch of geometry that deals with geometric figures, that is, col-
lections of points that all lie in the same plane (coplanar). Although the words “point” 
and “plane” are undefined concepts, for elementary applications the intuitive meanings 
will serve: a point is a location, and a plane is a flat surface.

Angle

In geometry, an angle can be defined as the figure formed by two rays meeting at a com-
mon end point.

An angle is represented by the symbol ∠. Here, the angle below is ∠AOB.

Angles are measured in degrees, using a protractor.

Parts of an Angle

•	 Arms: The two rays joining to form an angle are called arms of an angle. Here, 
OA and OB are the arms of the ∠AOB.

•	 Vertex: The common end point at which the two rays meet to form an angle is 
called the vertex. Here, the point O is the vertex of ∠AOB.
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Classification of Angles

Classification of angles on the basis of their degree measures are given below:

Acute Angle 

An angle whose measure is more than 0° but less than 90° is called an acute angle. Angles 
having magnitudes 30°, 40°, 60° are all acute angles. In the adjoining figure, ∠X0Y rep-
resents an acute angle. 

∠X0Y < 90°

Right Angle 

An angle whose measure is equal to 90° is called a right angle. In the adjoining figure 
∠ABC represents a right angle. 

∠ABC = 90°

Obtuse Angle

An angle whose measure is more than 90° but less than 180° is called an obtuse angle. 
In the adjoining figure, ∠XYZ represents an obtuse angle.

∠XYZ > 90°

∠XYZ < 180°

Straight Angle

An angle whose measure is equal to 180° is called a straight angle. In the adjoining fig-
ure, ∠XOY represents a straight angle.
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∠XOY = 180°

Reflex Angle 

An angle whose measure is more than 180° but less than 360° is called a reflex angle. 
In the adjoining figure, ∠POQ is a reflex angle. Angles having magnitudes 220°, 250°, 
310° are all reflex angles.

∠POQ > 180°

∠POQ < 360°

Complete Angle

An angle whose measure is equal to 360° is called a complete angle. In the adjoining 
figure, ∠BOA represents a complete angle. 

60 minutes = 1 revolution = 1 complete angle.

These are the adjoining figures of the classification of angles on the basis of their degree 
measures.

Angle Measurement – Degree Measure

A complete revolution, i.e. when the initial and terminal sides are in the same position 
after rotating clockwise or anticlockwise, is divided into 360 units called degrees. So, if 

the rotation from the initial side to the terminal side is 
1

360
 
 
 

th of a revolution, then 

the angle is said to have a measure of one degree. It is denoted as 1°.

We measure time in hours, minutes, and seconds, where 1 hour = 60 minutes and 1 
minute = 60 seconds. Similarly, while measuring angles,

•	 1 degree = 60 minutes denoted as 1° = 60′

•	 1 minute = 60 seconds denoted as 1′ = 60″
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Here are some additional examples of angles with their measurements:

Angle Measurement – Radian Measure

Radian measure is slightly more complex than the degree measure. Imagine a circle with a 
radius of 1 unit. Next, imagine an arc of the circle having a length of 1 unit. The angle sub-
tended by this arc at the centre of the circle has a measure of 1 radian. Here is how it looks:

Here are some more examples of angles that measure -1 radian, 
11
2

 radian, and -
11
2

 
radian.

The circumference of a circle = 2 rπ , where r is the radius of the circle. Hence, for a 
circle with a radius of 1 unit, the circumference is 2π. Hence, one complete revolution of 
the initial side subtends an angle of 2π  radian at the centre. Generalizing this, we have

In a circle of radius r, an arc of length r subtends an angle of 1 radian at the centre. 

Hence, in a circle of radius r, an arc of length l will subtend an angle 
l 
r

=  radian. Gen-

eralizing this, we have, in a circle of radius r, if an arc of length l subtends an angle θ 
radian at the centre, then

.

l
r

l r

θ

θ

=

⇒ =
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Relation between Radian and Real Numbers

Radian measures and real numbers are one and the same. Consider a unit circle with 
centre O. Let A be any point on the circle and OA be the initial side of the angle as 
shown below:

Now, consider a line PAQ drawn tangential to the circle at point A. Also, let A be the 
real number zero. Hence, line AP represents the positive real numbers and line AQ 
represents the negative real numbers. Further, let’s drag the line AP along the circum-
ference of the circle in the anticlockwise direction.

Also, let’s drag the line AQ along the circumference of the circle in the clockwise direc-
tion. After doing so, we can see that every real number corresponds to a radian measure 
and conversely.

Relation between Degree and Radian Measures

By the definitions of degree and radian measures, we know that the angle subtended by 
a circle at the centre is:

• 360° – according to degree measure

• 2π  radian – according to radian measure

Hence, 2  π radian  360  π= °⇒  radian 1 80= ° . Now, we substitute the approximate 

value of π as 
22
7

 in the equation above and get, 1 radian 
180 57 16 '
π
°

= = °  approximate-

ly. Also, 1
180
π

° =
°

 radian = 0.01746 radian approximately. Further, here is a table de-

picting the relationship between degree and radian measures of some common angles:

Degree 30° 45° 60° 90° 180° 270° 360°

Radian

6
π

4
π

3
π

2
π π 3

2
π 2π
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Notational Convention

Since degree and radian measures are the two most commonly used units in angle mea-
surement, there is a convention in place for writing them.

• If you write angle θ°, then it means an angle whose degree measure is θ.

• If you write angle β, then it means an angle whose radian measure is β.

Also, note that the term ‘radian’ is usually omitted while writing the radian measure. 
Hence, π  radian 180  = ° is simply written as  180π = ° . Further, summing up the rela-
tionship between degree and radian measures, we have

• Radian measure x
180
π

=
°

 Degree measure

• Degree measure 
180 x
π
°

=  Radian measure

Triangle

A triangle is any set of three points on a plane and the lines connecting those points to 
each other, as long as the three points aren’t all on the same line (that would just be a 
line). Or, you could think of a triangle as the part of the plane that lies inside those line 
segments. A triangle is flat shape it has no thickness. But every triangle has a perimeter 
and an area, and three angles.

A yellow triangle lying in a blue plane

This is an equilateral triangle

The three angles of a triangle will always add up to 180 degrees, no matter how big or how 
small the triangle is. Think of it this way: a rectangle has four 90 degree angles, or right 
angles. Adding those four 90 degree angles together shows us that a rectangle has 360 de-
grees. But a triangle is half of a rectangle, split from corner to corner. So it has to have half 
the degrees of a rectangle, or 180 degrees. Because of this, if you know the measurements of 
two angles of a triangle, you can always figure out how big the third angle is by adding the 
two known angles together and subtracting that from 180 degrees.
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Types of Triangles based on Sides

•	 Equilateral triangle: A triangle having all the three sides of equal length is an 
equilateral triangle.

Since all sides are equal, all angles are equal too.

•	 Isosceles triangle: A triangle having two sides of equal length is an Isosceles 
triangle.

The two angles opposite to the equal sides are equal.

•	 Scalene triangle: A triangle having three sides of different lengths is called a 
scalene triangle.

Types of Triangles based on Angles

•	 Acute-angled triangle: A triangle whose all angles are acute is called an acute-an-
gled triangle or Acute triangle.

•	 Obtuse-angled triangle: A triangle whose one angle is obtuse is an obtuse-an-
gled triangle or Obtuse triangle.

•	 Right-angled triangle: A triangle whose one angle is a right-angle is a Right-an-
gled triangle or Right triangle.



44

Introductory Mathematics

In the figure above, the side opposite to the right angle, BC is called the hypotenuse.

For a Right triangle ABC,

2 2 2BC   AB   AC= +

This is called the Pythagorean Theorem.

In the triangle above, 2 2 25  4  3= + . Only a triangle that satisfies this condition is a right 
triangle.

Hence, the Pythagorean Theorem helps to find whether a triangle is Right-angled.

There are different types of right triangles. As of now, our focus is only on a special pair 
of right triangles.

1.	 45-45-90 triangle

2.	 30-60-90 triangle

45-45-90 triangle:

1.	 A 45-45-90 triangle, as the name indicates, is a right triangle in which the other 
two angles are 45° each.

This is an isosceles right triangle.
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In ∆ DEF, DE = DF and ∠D = 90°.

The sides in a 45-45-90 triangle are in the ratio 1 :1 :  2 .

30-60-90 triangle:

1.	 A 30-60-90 triangle, as the name indicates, is a right triangle in which the other 
two angles are 30° and 60°.

This is a scalene right triangle as none of the sides or angles are equal.

The sides in a 30-60-90 triangle are in the ratio 1 : 3 :  2

Like any other right triangle, these two triangles satisfy the Pythagorean Theorem.

Basic Properties of Triangles

•	 The sum of the angles in a triangle is 180°. This is called the angle-sum property.

•	 The sum of the lengths of any two sides of a triangle is greater than the length of 
the third side. Similarly, the difference between the lengths of any two sides of 
a triangle is less than the length of the third side.

•	 The side opposite to the largest angle is the longest side of the triangle and the 
side opposite to the smallest angle is the shortest side of the triangle.

In the figure above, ∠B is the largest angle and the side opposite to it (hypotenuse), is 
the largest side of the triangle.
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In the figure above, ∠A is the largest angle and the side opposite to it, BC is the largest 
side of the triangle.

•	 An exterior angle of a triangle is equal to the sum of its interior opposite angles. 
This is called the exterior angle property of a triangle.

Here, ∠ACD is the exterior angle to the ∆ABC.

According to the exterior angle property, ∠ACD = ∠CAB + ∠ABC.

Similarity and Congruency in Triangles

Figures with same size and shape are congruent figures. If two shapes are congruent, 
they remain congruent even if they are moved or rotated. The shapes would also remain 
congruent if we reflect the shapes by producing mirror images. Two geometrical shapes 
are congruent if they cover each other exactly.

Figures with same shape but with proportional sizes are similar figures. They remain 
similar even if they are moved or rotated.

Similarity of Triangles

Two triangles are said to be similar if the corresponding angles of two triangles are 
congruent and lengths of corresponding sides are proportional.

It is written as ∆ ABC ∼ ∆ XYZ and said as ∆ ABC ‘is similar to’ ∆ XYZ.

Here, ∠A = ∠X, ∠B = ∠Y and ∠C = ∠Z AND

AB / XY = BC / YZ = CA / ZX
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The necessary and sufficient conditions for two triangles to be similar are as follows:

(1) Side-Side-Side (SSS) criterion for similarity:

If three sides of a triangle are proportional to the corresponding three sides of another 
triangle then the triangles are said to be similar.

Here, ∆ PQR ∼ ∆ DEF as:

	 PQ / DE = QR / EF = RP / FD

(2) Side-Angle-Side (SAS) criterion for similarity:

If the corresponding two sides of the two triangles are proportional and one included 
angle is equal to the corresponding included angle of another triangle then the triangles 
are similar.

Here, ∆ LMN ∼ ∆ QRS in which,

	 ∠L = ∠Q

	 QS / LN = QR / LM

(3) Angle-Angle-Angle (AAA) criterion for similarity:

If the three corresponding angles of the two triangles are equal then the two triangles 
are similar.
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Here ∆ TUV ∼ ∆ PQR as

	 ∠T = ∠P, ∠U = ∠Q and ∠V = ∠R

Congruency of Triangles

Two triangles are said to be congruent if all the sides of one triangle are equal to the 
corresponding sides of another triangle and the corresponding angles are equal.

It is written as ∆ ABC ≅ ∆ XYZ and said as ∆ ABC ‘is congruent to’ ∆ XYZ.

The necessary and sufficient conditions for two triangles to be congruent are as follows:

(1) Side-Side-Side (SSS) criterion for congruence:

If three sides of a triangle are equal to the corresponding three sides of another triangle 
then the triangles are said to be congruent.

Here, ∆ ABC ≅ ∆ XYZ as AB = XY, BC = YZ and AC = XZ.

(2) Side-Angle-Side (SAS) criterion for congruence:

If two sides and the angle included between the two sides of a triangle are equal to the 
corresponding two sides and the included angle of another triangle, then the triangles 
are congruent.

Here, ∆ ABC ≅ ∆ XYZ as AB = XY, ∠A = ∠X and AC = XZ.
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(3) Angle-Side-Angle (ASA) criterion for congruence: 

If two angles and the included side of a triangle are equal to the corresponding two an-
gles and the included side of another triangle then the triangles are congruent.

In the figure above, ∆ ABD ≅ ∆ CBD in which,

	 ∠ABD = ∠CBD, AB = CB and ∠ADB = ∠CDB.

(4) Right-Angle Hypotenuse criterion of congruence: 

If the hypotenuse and one side of a right-angled triangle are equal to the corresponding 
hypotenuse and side of another right-angled triangle, then the triangles are congruent.

Here, ∠B = ∠Y = 90° and AB = XY, AC = XZ.

Area of a Triangle

The Area of a triangle is given by the formula:

	 Area of a triangle = (1/2) *Base * Height

To find the area of a triangle, we draw a perpendicular line from the base to the oppo-
site vertex which gives the height of the triangle.

So the area of the ∆ PQR = (1/2) * (PR * QS) = (1/2) * 6 *4 =12 sq. units.
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For a right triangle, it’s easy to find the area as there is a side perpendicular to the base, 
so we can consider it as height.

The height of the ∆ XYZ is XY and its area is (1/2) * XZ * XY sq. units.

Now, how do we find the area of an obtuse triangle LMN ?

For an obtuse triangle, we extend the base and draw a line perpendicular from the ver-
tex to the extended base which becomes the height of the triangle.

Hence, the area of the ∆ LMN = (1/2) * LM * NK sq. units.

Circle

A circle is a round shaped figure that has no corners or edges. 

In geometry, a circle can be defined as a closed, two-dimensional curved shapes.

Center of a Circle

The center of a circle is the center point in a circle from which all the distances to the 
points on the circle are equal. This distance is called the radius of the circle.

Here, point P is the center of the circle.
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Semicircle

A semi-circle is half of a circle, formed by cutting a whole circle along a line segment 
passing through the center of the circle. This line segment is called the diameter of the 
circle.

Quarter Circle

A quarter circle is a quarter of a circle, formed by splitting a circle into 4 equal parts or 
a semicircle into 2 equal parts. 

A quarter circle is also called a quadrant.

Important Terms Related to Circle

Diameter

The diameter can be termed as a line which is drawn across a circle passing through 
the center.

Radius

The distance from the middle or center of a circle towards any point on it is a radi-
us. Interestingly, when you place two radii back-to-back, the resultant would hold the 
same length as one diameter. Therefore, we can call one diameter twice as long as the 
concerned radius.
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Area of Circle

In a circle, the area can be stated as π times the square of the radius. It is written as: 
2A  rπ= . Taking into consideration the Diameter: ( ) 2A / 4   Dπ= ×

Chord

A line segment that joins two points present on a curve is called as the chord. In geom-
etry, the usefulness of a chord is focused on describing a line segment connecting two 
endpoints which rest on a circle.

Tangent and Arc

A line which slightly touches the circle on its travel to a different direction is Tangent. 
On the other hand, a part of the circumference is an Arc.

Sector and Segment

A sector is a part of a circle surrounded by two radii of it together with their inter-
cepted arc. The segment is that region which is enclosed by a chord together with the 
arc subtended by the chord.

Common Sectors

In geometry, Quadrant and Semicircle are known as two special versions of a sector.

•	 A circle’s quarter is termed as Quadrant.

•	 Half a circle is known as a Semicircle.

Properties and Key Aspects

Focusing on geometry, there are numerous facts associated with circles. Further, the 
relation of it to straight lines, polygons, and angles can also be proved. All of these facts 
together are properties of the circle. Let us try to learn the primary properties in order 
to enhance our knowledge.

•	 Circles holding equal radii are known to be congruent.

•	 To your surprise, circles with different radii are seen as similar.

•	 In a circle, the central angle that intercepts an arc is known to be double to any 
inscribed angle which intercepts the same arc.

•	 The chords that are equidistant from the center are known to be of the same 
length.
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•	 A radius perpendicular to a particular chord does bisect the chord.

•	 The tangent is always at right angles to the radius considering the point of contact.

•	 Two tangents which are drawn on a circle from an exterior point are equal in length.

•	 The circumference of two diverse circles is proportional to the corresponding 
radii.

•	 The angle subtended at the circle’s center by its circumference is known to be 
equivalent to four right angles.

•	 Arcs associated to the same circle are termed proportional to their corre-
sponding angles.

•	 Equal chords hold equal circumferences.

•	 Equal circles hold equal circumferences.

•	 Radii linked to the same or equal circles are known to be equal.

•	 The longest chord is the diameter.

Square

In plane (Euclidean) geometry, a square is a regular polygon with four sides. It may 
also be thought of as a special case of a rectangle, as it has four right angles and parallel 
sides. Likewise, it is also a special case of a rhombus, kite, parallelogram, and trapezoid.

Mensuration Formulae

A Square

The area of a square is the product of the length of its sides.

4 .P t=

And the area is

2.A t=
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In classical times, the second power was described in terms of the area of a square, as in 
the above formula. This led to the use of the term square to mean raising to the second 
power.

Standard Coordinates

The coordinates for the vertices of a square centered at the origin and with side length 2 
are ( ) 1,  1 ,± ±  while the interior of the same consists of all points 0 1( , )x x  with 1   1 .ix− < <

Properties

Each angle in a square is equal to 90 degrees, or a right angle.

The diagonals of a square are equal. Conversely, if the diagonals of a rhombus are equal, 
then that rhombus must be a square. The diagonals of a square are 2  (about 1.41) times 
the length of a side of the square. This value, known as Pythagoras’ constant, was the first 
number proven to be irrational.

If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths) then it 
is a square.

Other Facts

•	 If a circle is circumscribed around a square, the area of the circle is / 2π  (about 
1.57) times the area of the square.

•	 If a circle is inscribed in the square, the area of the circle is / 4π  (about 0.79) 
times the area of the square.

•	 A square has a larger area than any other quadrilateral with the same perimeter.

•	 A square tiling is one of three regular tilings of the plane (the others are the 
equilateral triangle and the regular hexagon).

•	 The square is in two families of polytopes in two dimensions: hypercube and the 
cross polytope. The Schläfli symbol for the square is {4}.

•	 The square is a highly symmetric object. There are four lines of reflectional sym-
metry and it has rotational symmetry through 90°, 180° and 270°. Its symmetry 
group is the dihedral group 4D .

•	 If the area of a given square with side length S is multiplied by the area of a “unit 

triangle” (an equilateral triangle with side length of 1 unit), which is units 

squared, the new area is that of the equilateral triangle with side length S.
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Non-Euclidean Geometry

In non-euclidean geometry, squares are more generally polygons with four equal sides 
and equal angles.

In spherical geometry, a square is a polygon whose edges are great circle arcs of equal 
distance, which meet at equal angles. Unlike the square of plane geometry, the angles 
of such a square are larger than a right angle.

In hyperbolic geometry, squares with right angles do not exist. Rather, squares in hy-
perbolic geometry have angles of less than right angles. Larger squares have smaller 
angles.

Examples:

Six squares can tile the sphere with three squares around each vertex and 120 degree 
internal angles. This is called a spherical cube. The Schläfli symbol is {4,3}.

Squares can tile the Euclidean plane with four around each vertex, with each square 
having an internal angle of 90 degrees. The Schläfli symbol is {4,4}.

Squares can tile the hyperbolic plane with five around each vertex, with each square 
having 72 degree internal angles. The Schläfli symbol is {4,5}.

Rectangle

For a shape to be a rectangle, it must be a four-sided polygon with two pairs of parallel, 
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congruent sides and four interior angles of 90° each. If you have a shape that matches 
that description, it also is all this:

•	 A plane figure

•	 A closed shape

•	 A quadrilateral

•	 A parallelogram

The four sides of your polygon, to create two pairs of parallel sides, must also be two 
congruent pairs. The base and top will be equal in length, and the left and right sides 
will be equal in length.

Relation between Square and Rectangle

While a rectangle is a type of quadrilateral, parallelogram, closed shape and plane fig-
ure, only a square is always a type of rectangle.

You can see them in bricks, cement blocks, picture frames, posters, sheets of paper, the 
faces of play bricks that snap together, the sides of shoe boxes and cereal boxes, and a 
lot of other everyday objects.

Rectangles are great because they stack neatly, since they have two pairs of parallel 
sides. Their right angles make sure built things (houses, office buildings, schools) stand 
straight and tall.

You can use four linear (straight) objects to make a rectangle. Make certain two of the 
objects are the same length, and the other two objects are the same length. Arrange 
them so the longer pieces are parallel and exactly a distance apart so the other two, 
shorter pieces can touch their ends.

Rectangle
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When all four ends are touching, you may need to adjust to make sure all four inside 
angles look like right angles, or 90°. Adjacent sides of a rectangle are perpendicular.

Properties of Rectangles

The main identifying property of a rectangle is its four interior right angles. You cannot 
construct a rectangle without those four angles adding to 360° and each measuring 90°. 
When you do that, the four sides will automatically create the other identifying property.

Identifies of a properties rectangles, its four interior right angles

The other property that identifies rectangles is that opposite sides are congruent and 
parallel. Congruent means they have the same length; parallel means they are the same 
distance apart throughout their length.

Construction of a Rectangle

A protractor measures angles. A straightedge (or ruler) makes straight lines. Use the 
ruler or straightedge to make a straight line segment on a piece of paper, roughly in the 
lower third of the sheet. That line segment is your base. Align your protractor with that 
line segment, working at one endpoint at a time.

At each end of the line segment, exactly at the endpoint, mark a 90° angle. Use the straight-
edge to connect that 90° mark and the endpoint of the line segment. You now have the two 
sides of the rectangle.

Mark a new endpoint on one of those new sides, at some distance away from your base. 
Turn the protractor 90° and align it with either side, at the endpoint of that newly 
drawn side. Mark 90° using the protractor and again use the straightedge to connect 
the side’s endpoint with that new 90° mark. When that line segment intersects the oth-
er side, you have constructed a rectangle.

If you use a ruler with markings in inches or centimeters, you can measure the length 
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of your base, measure the length of the two sides left and right, and ensure the long, top 
side is equal to the length of the base.

Parallelogram

A parallelogram is a quadrilateral with opposite sides parallel. But there are various 
tests that can be applied to see if something is a parallelogram.

It is the “parent” of some other quadrilaterals, which are obtained by adding restric-
tions of various kinds:

•	 A rectangle is a parallelogram but with all four interior angles fixed at 90°.

•	 A rhombus is a parallelogram but with all four sides equal in length.

•	 A square is a parallelogram but with all sides equal in length and all interior 
angles 90°.

A quadrilateral is a parallelogram if:

1.	 Both pairs of opposite sides are parallel. (By definition).

2.	 Both pairs of opposite sides are congruent. If they are congruent, they must also 
be parallel.

3.	 One pair of opposite sides are congruent and parallel. Then, the other pair must 
also be parallel.

Properties of a Parallelogram

These facts and properties are true for parallelograms and the descendant shapes: 
square, rectangle and rhombus.

Base

Any side can be considered a base. Choose any one you like. If used to calculate the area 
the corresponding altitude must be used. In the figure above, one of the four possible 
bases and its corresponding altitude has been chosen.

Altitude (Height)

The altitude (or height) of a parallelogram is the perpendicular distance from the base 
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to the opposite side (which may have to be extended). In the figure above, the altitude 
corresponding to the base CD is shown.

Area

The area of a parallelogram can be found by multiplying a base by the corresponding 
altitude. 

Perimeter

The distance around the parallelogram. The sum of its sides.

Opposite Sides

Opposite sides are congruent (equal in length) and parallel. 

Diagonals

Each diagonal cuts the other diagonal into two equal parts, as in the diagram below. 

Interior Angles

1.	 Opposite angles are equal as can be seen below.

2.	 Consecutive angles are always supplementary (add to 180°).
A

D

B

C

870

870

1130

1130

Parallelogram Inscribed in any Quadrilateral

If you find the midpoints of each side of any quadrilateral, then link them sequentially 
with lines, the result is always a parallelogram.

A

D

B

C
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Trapezoid

A trapezium is a quadrilateral wherein one pair of the opposite sides are parallel while 
the other isn’t.

Suppose if ABCD is a trapezium, so we say that AB||CD but yes AD and BC are not par-
allel. The trapezium is basically a triangle with the top sliced off. A trapezium that has 
equal non-parallel sides and equal base angles is an isosceles trapezium.

The parallel sides of this quadrilateral are the base and to calculate the height you need 
to draw a perpendicular from one parallel side to other.

(a b)Area of a Trapezium   h 
2
+

=

Types of Trapezoids

Since trapezoids can begin life as triangles, they share names derived from the kinds of 
triangles:

1.	 Scalene trapezoid - Started out as a scalene triangle

2.	 Isosceles trapezoid - Began as an isosceles triangle

3.	 Right trapezoid - Once was a right triangle

4.	 Obtuse trapezoid - Like an obtuse triangle

5.	 Acute trapezoid - Like an acute triangle
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Scalene Trapezoid

A scalene trapezoid has four sides of unequal length. The bases are parallel but of dif-
ferent lengths. The two legs are of different lengths.

Isosceles Trapezoid

An isosceles trapezoid has legs of equal length. The bases are parallel but of different 
lengths.

Right Trapezoid

A right trapezoid has one right angle (90°) between either base and a leg.

Obtuse Trapezoid

An obtuse trapezoid has one interior angle (created by either base and a leg) greater 
than 90°.
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Acute Trapezoid

An acute trapezoid has both interior angles (created by the longer base and legs) mea-
suring less than 90°.

Solid Geometry

Solid geometry is concerned with three-dimensional shapes. Some examples of three-di-
mensional shapes are cubes, rectangular solids, prisms, cylinders, spheres, cones and 
pyramids. 

The following figures show some examples of shapes in solid geometry. 

The following table gives the volume formulas and surface area formulas for the 
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following solid shapes: Cube, Rectangular Prism, Prism, Cylinder, Sphere, Cone, and 
Pyramid.

Shape Volume Surface Area

Cube

With side length, s
3s 26s

Rectangular Prim

With length, l, width, w and height, h
lwh ( )2 lw lh wh+ +

Prism 

With area of base, B, perimeter of base, P, 
and height, h

Bh 2B Ph+

Cylinder

With radius, r and height, h
2r hπ 2 2r rhπ π+

Sphere

With radius, r

34
3

rπ 24 rπ

Cone

With radius, r, vertical height, h, and slant 
height, s

21
3

r hπ 2r rsπ π+

Pyramid

With area of base, B, perimeter of base, P, 
vertical height, h and slant height, s

1
3

Bh

Regular Pyramid

1
2

B Ps+

Cubes

A cube is a three-dimensional figure with six matching square sides.

The figure above shows a cube. The dotted lines indicate edges hidden from your view.

If s is the length of one of its sides, then the volume of the cube is     s s s× ×

Volume of the cube = s3
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The area of each side of a cube is s2. Since a cube has six square-shape sides, its total 
surface area is 6 times s2.

Surface area of a cube = 6s2.

Rectangular Prisms or Cuboids

A rectangular prism is also called a rectangular solid or a cuboid.

In a rectangular prism, the length, width and height may be of different lengths.

The volume of the above rectangular prism would be the product of the length, width 
and height that is:

Volume of rectangular prism = lwh

Total area of top and bottom surfaces is lw + lw = 2lw

Total area of front and back surfaces is lh + lh = 2lh

Total area of the two side surfaces is wh + wh = 2wh 

Surface area of rectangular prism = 2lw + 2lh + 2wh = 2(lw + lh + wh).

Prisms

A prism is a solid that has two congruent parallel bases that are polygons. The polygons 
form the bases of the prism and the length of the edge joining the two bases is called the 
height.	

Triangle-shaped base
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Pentagon-shaped base

The above diagrams show two prisms: one with a triangle-shaped base called a triangu-
lar prism and another with a pentagon-shaped base called a pentagonal prism.

A rectangular solid is a prism with a rectangle-shaped base and can be called a rectan-
gular prism.

The volume of a prism is given by the product of the area of its base and its height.

	 Volume of prism = area of base × height

The surface area of a prism is equal to 2 times area of base plus perimeter of base times 
height.

	 Surface area of prism = 2 × area of base + perimeter of base × height

Cylinders

A cylinder is a solid with two congruent circles joined by a curved surface.

In the above figure, the radius of the circular base is r and the height is h. The volume 
of the cylinder is the area of the base × height.

	 Volume of cylinder 2r hπ

The net of a solid cylinder consists of 2 circles and one rectangle. The curved surface 
opens up to form a rectangle.
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Surface area = 2 × area of circle + area of rectangle

Surface area of cylinder ( )       r rh r r hπ π π= + = +22 2 2

Spheres

A sphere is a solid with all its points the same distance from the center.

	 Volume of sphere = 34
3

rπ

	 Surface area of sphere = 24 rπ

Cones

A circular cone has a circular base, which is connected by a curved surface to its vertex. 
A cone is called a right circular cone, if the line from the vertex of the cone to the center 
of its base is perpendicular to the base.

	 Volume of cone 21
3

r hπ
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The net of a solid cone consists of a small circle and a sector of a larger circle. The arc of 
the sector has the same length as the circumference of the smaller circle.

	 Surface area of cone = Area of sector + area of circle

	 ( )2 rs  r   r r  s  π π π= + = +

Pyramids

A pyramid is a solid with a polygon base and connected by triangular faces to its vertex. 
A pyramid is a regular pyramid if its base is a regular polygon and the triangular faces 
are all congruent isosceles triangles.

	 Volume of pyramid  
1 area of base  height
3

= × ×

Nets of a Solid

An area of study closely related to solid geometry is nets of a solid. Imagine making cuts 
along some edges of a solid and opening it up to form a plane figure. The plane figure is 
called the net of the solid.

The following figures show the two possible nets for the cube.
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Trigonometry
Trigonometry is a mathematical branch that focuses on the study of relationships 
between the angles and side lengths of a triangle. It is used in various fields such 
as mechanical engineering, electrical engineering, cartography, computer graph-
ics, etc. This chapter discusses in detail the theories and methodologies related to  
trigonometry.

Trigonometry is the branch of mathematics concerned with specific functions of angles 
and their application to calculations. There are six functions of an angle commonly 
used in trigonometry. Their names and abbreviations are sine (sin), cosine (cos), tan-
gent (tan), cotangent (cot), secant (sec), and cosecant (csc). These six trigonometric 
functions in relation to a right triangle are displayed in the figure. For example, the 
triangle contains an angle A, and the ratio of the side opposite to A and the side oppo-
site to the right angle (the hypotenuse) is called the sine of A, or sin A; the other trigo-
nometry functions are defined similarly. These functions are properties of the angle A 
independent of the size of the triangle, and calculated values were tabulated for many 
angles before computers made trigonometry tables obsolete. Trigonometric functions 
are used in obtaining unknown angles and distances from known or measured angles 
in geometric figures.

Trigonometry developed from a need to compute angles and distances in such fields 
as astronomy, mapmaking, surveying, and artillery range finding. Problems involving 
angles and distances in one plane are covered in plane trigonometry. Applications to 
similar problems in more than one plane of three-dimensional space are considered in 
spherical trigonometry.

Plane Trigonometry

In many applications of trigonometry the essential problem is the solution of triangles. 
If enough sides and angles are known, the remaining sides and angles as well as the 
area can be calculated, and the triangle is then said to be solved. Triangles can be solved 
by the law of sines and the law of cosines. To secure symmetry in the writing of these 
laws, the angles of the triangle are lettered A, B, and C and the lengths of the sides op-
posite the angles are lettered a, b, and c, respectively.

In addition to the angles (A, B, C) and sides (a, b, c), one of the three heights of the tri-
angle (h) is included by drawing the line segment from one of the triangle’s vertices (in 
this case C) that is perpendicular to the opposite side of the triangle.
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Standard lettering of a triangle

The law of sines is expressed as an equality involving three sine functions while the 
law of cosines is an identification of the cosine with an algebraic expression formed 
from the lengths of sides opposite the corresponding angles. To solve a triangle, all the 
known values are substituted into equations expressing the laws of sines and cosines, 
and the equations are solved for the unknown quantities. For example, the law of sines 
is employed when two angles and a side are known or when two sides and an angle op-
posite one are known. Similarly, the law of cosines is appropriate when two sides and 
an included angle are known or three sides are known.

Texts on trigonometry derive other formulas for solving triangles and for checking the 
solution. Older textbooks frequently included formulas especially suited to logarithmic 
calculation. Newer textbooks, however, frequently include simple computer instruc-
tions for use with a symbolic mathematical program.

Spherical Trigonometry

Spherical trigonometry involves the study of spherical triangles, which are formed by 
the intersection of three great circle arcs on the surface of a sphere. Spherical triangles 
were subject to intense study from antiquity because of their usefulness in navigation, 
cartography, and astronomy. 

The angles of a spherical triangle are defined by the angle of intersection of the corre-
sponding tangent lines to each vertex. The sum of the angles of a spherical triangle is 
always greater than the sum of the angles in a planar triangle (π radians, equivalent 
to two right angles). The amount by which each spherical triangle exceeds two right 
angles (in radians) is known as its spherical excess. The area of a spherical triangle is 
given by the product of its spherical excess E and the square of the radius r of the sphere 
it resides on—in symbols, Er2.

Common spherical trigonometry formulas
sin sin sinlaw of sines :
sin sin sin

cos cos cos sin sin cos
law of cosines : cos cos cos sin sin cos

cos cos cos sin sin cos

a b c
A B C

a b c b c A
b a c a c B
c a b a b C

= =

= +
= +
= +
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

sin sin
tan

2 sin sin

sin sin
half- angle formulas : tan

2 sin sin

sin sin
tan ,

2 sin sin 2

s b s cA
s s a

s c s aB
s s b

s a s bC a b cwhere s
s s c

− −  =  − 

− −  =  − 

− − + +  = =  − 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

cos cos
tan

2 cos cos

cos cos
half- side formulas : tan

2 cos cos

cos cos
tan ,

2 cos cos 2

S S Aa
S B S C

S S Bb
S A S C

S S Cc A B Cwhere S
S A S B

− −  =  − − 

− −  =  − − 

− − + +  = =  − − 

By connecting the vertices of a spherical triangle with the centre O of the sphere that 
it resides on, a special “angle” known as a trihedral angle is formed. The central angles 
(also known as dihedral angles) between each pair of line segments OA, OB, and OC are 
labeled α, β, and γ to correspond to the sides (arcs) of the spherical triangle labeled a, 
b, and c, respectively. Because a trigonometric function of a central angle and its corre-
sponding arc have the same value, spherical trigonometry formulas are given in terms 
of the spherical angles A, B, and C and, interchangeably, in terms of the arcs a, b, and c 
and the dihedral angles α, β, and γ. Furthermore, most formulas from plane trigonom-
etry have an analogous representation in spherical trigonometry. For example, there is 
a spherical law of sines and a spherical law of cosines.

For a plane triangle, the known values involving a spherical triangle are substituted in 
the analogous spherical trigonometry formulas, such as the laws of sines and cosines, 
and the resulting equations are then solved for the unknown quantities.

Many other relations exist between the sides and angles of a spherical triangle. 
Worth mentioning are Napier’s analogies (derivable from the spherical trigonometry 
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half-angle or half-side formulas), which are particularly well suited for use with loga-
rithmic tables.

Analytic Trigonometry

Analytic trigonometry combines the use of a coordinate system, such as the Cartesian 
coordinate system used in analytic geometry, with algebraic manipulation of the var-
ious trigonometry functions to obtain formulas useful for scientific and engineering 
applications.

Trigonometric functions of a real variable x are defined by means of the trigonometric 
functions of an angle. For example, sin x in which x is a real number is defined to have 
the value of the sine of the angle containing x radians. Similar definitions are made for 
the other five trigonometric functions of the real variable x. These functions satisfy the 
trigonometric relations with A, B, 90°, and 360° replaced by x, y, π/2 radians, and 2π 
radians, respectively. The minimum period of tan x and cot x is π, and of the other four 
functions it is 2π.

In calculus it is shown that sin x and cos x are sums of power series. These series may 
be used to compute the sine and cosine of any angle. For example, to compute the sine 
of 10°, it is necessary to find the value of sin π/18 because 10° is the angle containing 
π/18 radians. When π/18is substituted in the series for sin x, it is found that the first two 
terms give 0.17365, which is correct to five decimal places for the sine of 10°. By taking 
enough terms of the series, any number of decimal places can be correctly obtained. 
Tables of the functions may be used to sketch the graphs of the functions.

Each trigonometric function has an inverse function, that is, a function that “undoes” 
the original function. For example, the inverse function for the sine function is written 
arcsin or sin−1, thus sin−1(sin x) = sin (sin−1 x) = x. The other trigonometric inverse func-
tions are defined similarly.

Graphs of some trigonometric functions. Note that each of these functions is  
periodic. Thus, the sine and cosine functions repeat every 2π, and the tangent 

 and cotangent functions repeat every π.
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Coordinates and Transformation of Coordinates

Polar Coordinates

For problems involving directions from a fixed origin (or pole) O, it is often convenient 
to specify a point P by its polar coordinates (r, θ), in which r is the distance OP and θ is 
the angle that the direction of r makes with a given initial line. The initial line may be 
identified with the x-axis of rectangular Cartesian coordinates, as shown in the figure. 
The point (r, θ) is the same as (r, θ + 2nπ) for any integer n. It is sometimes desirable 
to allow r to be negative, so that (r, θ) is the same as (−r, θ + π).

Cartesian and polar coordinates

The point labeled P in the figure resides in the plane. Therefore, it requires two 
dimensions to fix its location, either in Cartesian coordinates (x, y) or in polar coordi-
nates (r, θ).

Given the Cartesian equation for a curve, the polar equation for the same curve can be 
obtained in terms of the radius r and the angle θ by substituting r cos θ and r sin θ for x 
and y, respectively. For example, the circle x2 + y2 = a2 has the polar equation (r cos θ)2 
+ (r sin θ)2 = a2, which reduces to r = a. (The positive value of r is sufficient, if θ takes all 
values from −π to π or from 0 to 2π). Thus the polar equation of a circle simply expresses 
the fact that the curve is independent of θ and has constant radius. In a similar manner, 
the line y = x tan ϕ has the polar equation sin θ = cos θ tan ϕ, which reduces to θ = ϕ. 
(The other solution, θ = ϕ + π, can be discarded if r is allowed to take negative values.)

Transformation of Coordinates

A transformation of coordinates in a plane is a change from one coordinate system to 
another. Thus, a point in the plane will have two sets of coordinates giving its position 
with respect to the two coordinate systems used, and a transformation will express 
the relationship between the coordinate systems. For example, the transformation 
between polar and Cartesian coordinates is given by x = r cos θ and y = r sin θ. Sim-
ilarly, it is possible to accomplish transformations between rectangular and oblique 
coordinates.

In a translation of Cartesian coordinate axes, a transformation is made between two 
sets of axes that are parallel to each other but have their origins at different positions. 
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If a point P has coordinates (x, y) in one system, its coordinates in the second system 
are given by (x − h, y − k) where (h, k) is the origin of the second system in terms of the 
first coordinate system. Thus, the transformation of P between the first system (x, y) 
and the second system (x′, y′) is given by the equations x = x′ + h and y = y′ + k. The 
common use of translations of axes is to simplify the equations of curves. For example, 
the equation 2x2 + y2 − 12x −2y + 17 = 0 can be simplified with the translations x′ = x 
− 3 and y′ = y − 1 to an equation involving only squares of the variables and a constant 
term: (x′)2 + (y′)2/2 = 1. In other words, the curve represents an ellipse with its centre 
at the point (3, 1) in the original coordinate system.

A rotation of coordinate axes is one in which a pair of axes giving the coordinates of a 
point (x, y) rotate through an angle ϕ to give a new pair of axes in which the point has 
coordinates (x′, y′), as shown in the figure. The transformation equations for such a 
rotation are given by x = x′ cos ϕ − y′ sin ϕ and y = x′ sin ϕ + y′ cos ϕ. The application 
of these formulas with ϕ = 45° to the difference of squares, x2 − y2 = a2, leads to the 
equation x′y′ = c (where c is a constant that depends on the value of a). This equation 
gives the form of the rectangular hyperbola when its asymptotes (the lines that a curve 
approaches without ever quite meeting) are used as the coordinate axes.

Rotation of axes. Rotating the coordinate axes through an angle ϕ  
changes the coordinates of a point from (x, y) to (x’, y’).

Trigonometric Functions

Trigonometric functions are also known as a Circular Functions can be simply defined 
as the functions of an angle of a triangle i.e. the relationship between the angles and 
sides of a triangle are given by these trig functions. The formulas, table and definition 
of basic functions such as sin, cos and tan are given here. Also, the other three ratios 
like sec, cosec and cot, which can be represented in graphs as well, have been explained 
here. There are a number of trigonometric formula and identities which denotes the 
relation between the functions and help to find the angles of the triangle. 
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Also, you will come across the table for where the value of these ratios is mentioned for 
some particular degrees. And based on this table you will be able to solve many trigo-
nometric examples and problems.

Sin, Cos, and Tan Functions

The angles of sine, cosine, and tangent are the primary classification of functions of 
trigonometry. And the three functions which are cotangent, secant and cosecant can be 
derived from the primary functions. Basically, the other three functions are often used 
as compare to the primary trigonometric functions. Consider the following diagram as 
a reference for an explanation of these three primary functions. This diagram can be 
referred to as the sin-cos-tan triangle. We usually define the trigonometry with the help 
of the right-angled triangle.

Trigonometry Functions Formula

The formulas for functions of trigonometric ratios(sine, cosine and tangent) for a 
right-angled triangle:

Sine function:

Sine function of an angle is the ratio between the opposite side length to that of the 
hypotenuse. From the above diagram, the value of sin will be:

Sin a =Opposite/Hypotenuse = CB/CA

Cos function:

Cos of an angle is the ratio of the length of the adjacent side to the length of the hypot-
enuse. From the above diagram, the cos function will be derived as follows.

Cos a = Adjacent/Hypotenuse = AB/CA

Tan function:

The tangent function is the ratio of the length of the opposite side to that of the adjacent 
side. It should be noted that the tan can also be represented in terms of sine and cos as 
their ratio. From the diagram taken above, the tan function will be the following.

Tan a = Opposite/Adjacent = CB/BA
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Also, in terms of sine and cos, tan can be represented as:

Tan a = sin a/cos a

Secant, cosecant and cotangent functions:

Secant, cosecant (csc) and cotangent are the three additional functions which are de-
rived from the primary functions of sine, cos, and tan. The reciprocal of sine, cos, and 
tan are cosecant (csc), secant (sec), and cotangent (cot) respectively. The formula of 
each of these functions are given as:

Sec a = 1/(cos a) = Hypotenuse/Adjacent = CA/AB

Cosec a = 1/(sin a) = Hypotenuse/Opposite = CA/CB

cot a = 1/(tan a) = Adjacent/Opposite = BA/CB

Trigonometric Functions Table

The trigonometric ratio table for six functions like Sin, Cos, Tan, Cosec, Sec, Cot, are:

Trigonometric Ratios/angle= θ in degrees 0 ° 30 ° 45 ° 60 ° 90 °

Sin θ 0 1/2 1/√2 √3/2 1

Cos θ 1 √3/2 1/√2 1/2 0

Tan θ 0 1/√3 1 √3 ∞

Cosec θ ∞ 2 √2 2/√3 1

Sec θ 1 2/√3 √2 2 ∞

Cot θ ∞ √3 1 1/√3 0

Inverse functions are used to obtain an angle from any of the angle’s trigonometric 
ratios. Basically, inverses of the sine, cosine, tangent, cotangent, secant, and cosecant 
functions are represented as arcsine, arccosine, arctangent, arccotangent, arcsecant, 
and arc cosecant.

Trigonometric Function Examples

Example: Find the values of Sin 45°, Cos 30° and Tan 60°.[all angles are in degrees)

Solution: Using the trigonometric table, we have

Sin 45° = 1/√2

Cos 30° = 1/2

Tan 60° = √3

Example: Evaluate Sin 105° degrees.

Solution: Sin 105° can be written as sin (60° + 45°) which is similar to sin (A + B).
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We know that, the formula for sin (A + B) = sin A × cos B + cos A × sin B

Therefore, sin 105° = sin (60° + 45°) = sin 60° × cos 45° + cos 60° × sin 45°

= √3/2 × 1/√2 + 1/2 × 1/√2

= √3/2√2 + 1/2√2

= (√2 + √6)/4

Example: A boy sees a bird sitting on a tree at an angle of elevation of 20°. If a boy is 
standing 10 miles away from the tree, at what height bird is sitting?

Solution: Consider ABC a right triangle, A is a bird’s location, B = tree is touching the 
ground and C = boy’s location.

So BC 10 miles, angle C = 20° and let AB = x miles

We know, tan C = opposite side/adjacent side

tan(20°) = x/10

or x = 10 × tan(20°)

or x = 10 × 0.36 = 3.6

Bird is sitting at the height of 3.6 miles from the ground.

Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric 
functions, written 1 1 1 1 1cos ,cot ,csc ,sec z,sin ,z z z z− − − − − and 1tan .z−

Alternate notations are sometimes used, as summarized in the following table.

( )f z Alternate Notations

1cos z− arccos z

1cot z−
arccot z  

1csc z− arccs z  

1sec z− arcsec z  
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1sin z−
arcsin z

1tan z−
arctan z

The inverse trigonometric functions are multivalued. For example, there are multiple 
values of w  such that z = sin w , so sin−1 z  is not uniquely defined unless a principal 
value is defined. Such principal values are sometimes denoted with a capital letter so, 
for example, the principal value of the inverse sine sin−1 z  may be variously denoted 
sin−1 z or Arcsin z . On the other hand, the notation sin−1 z (etc.) is also commonly used 
denote either the principal value or any quantity whose sine is z an. Worse still, the 
principal value and multiply valued notations are some-times reversed, with for 
example arcsin z denoting the principal value and Arcsin z denoting the multivalued 
functions.

Different conventions are possible for the range of these functions for real arguments. 
Following the convention used, the inverse trigonometric functions defined in this work 
have the following ranges for domains on the real line , illustrated above.

Function Name Function Domain Range

inverse cosecant 1csc x− ( ),−∞ ∞
1 1)or (0,
2 2
π π − ,0  

inverse cosine 1cos x− [ ]1,1− [ ]0,π

inverse cotangent 1cot x− ( ),−∞ ∞
1 1)or (0,
2 2
π π − ,0  

inverse secant 1sec x− ( ),−∞ ∞
1 1)or ( ,
2 2
π π π − ,    
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inverse sine 1sin x− [ ]1,1−
1 1,
2 2
π π −  

inverse tangent 1tan x− ( ),−∞ ∞
1 1,
2 2
π π −  

Inverse-forward identities are

( ) [ ]

( ) [ ]

( )

1

1

1

1tan cot for 0,
2
1sin cot for 0,
2
1 1sec csc for 0, .
2 2

x x x

x x x

x x x

π π

π π

π π

−

−

−

= − ∈

= − ∈

 = − ∈  

Forward-inverse identities are

( )
( )

( )
( )

( )

( )

1 2

1

2

1 2

1

2

2
1

1

2

cos sin 1

1cos tan
1

sin cos 1

sin tan
1

1tan cos

tan sin .
1

x x

x
x

x x

xx
x

xx
x
xx

x

−

−

−

−

−

−

= −

=
+

= −

=
+

−
=

=
−

Inverse sum identities include

1 1

1 1

1 1

1sin cos
2
1tan cot
2
1sec csc ,
2

x x

x x

x x

π

π

π

− −

− −

− −

+ =

+ =

+ =

where equation 1 1 1tan cot
2

x x π− −+ =  is valid only for 0.x ≥
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Complex inverse identities in terms of natural logarithms include

( )
( )

( ) ( )

1 2

1 2

1

sin In 1

1cos In 1
2
1tan In 1 In 1 .
2

z i i z z

z i i z z

z i iz i z

π

−

−

−

= − + −

= + + −

= − − +  

Properties of Trigonometric Inverse Functions

Property 1

i.	 sin-1 (1/x) = cosec-1x, x ≥ 1 or x ≤ -1

ii.	 cos-1 (1/x) = sec-1x, x ≥ 1 or x ≤ -1

iii.	 tan-1 (1/x) = cot-1x, x > 0

Proof : sin-1 (1/x) = cosec-1x, x ≥ 1 or x ≤ -1, 

Let sin−1x=y

i.e. x = cosec y 
1 sin y
x
=

1

1 1

1 1

1 1

1sin

1sin cosec

1sin cosec

1Hence,sin cosec where, x 1or x 1.

y
x

x
x

x
x

x
x

−

− −

− −

− −

 =  
 =  
 =  

= ≥ ≤ −
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Property 2

i.	 sin-1(-x) = – sin-1(x), x ∈ [-1,1]

ii.	 tan-1(-x) = -tan-1(x), x ∈ R

iii.	 cosec-1(-x) = -cosec-1(x), |x| ≥ 1

Proof: sin-1(-x) = -sin-1(x), x ∈ [-1,1] 

Let, sin−1(−x)=y 

Then −x=siny 

x=−siny 

x=sin(−y) 

sin−1=sin−1(sin(−y)) 

sin−1 x=y 

sin−1 x=−sin−1(−x) 

Hence, sin−1(−x)=−sin−1 x ∈ [-1,1]

Property 3

i.	 cos-1(-x) = π – cos-1 x, x ∈ [-1,1]

ii.	 sec-1(-x) = π – sec-1x, |x| ≥ 1

iii.	 cot-1(-x) = π – cot-1x, x ∈ R

Proof : cos-1(-x) = π – cos-1 x, x ∈ [-1,1] 

Let cos−1(−x)=y 

cosy=−x

x=−cosy 

x=cos (π−y) 

Since, cosπ−q=−cosq 

cos−1 x=π−y 

cos−1 x=π–cos−1–x 

Hence, cos−1−x=π–cos−1x

Property 4

i.	 sin-1x + cos-1x = π/2, x ∈ [-1,1]

ii.	 tan-1x + cot-1x = π/2, x ∈ R
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iii.	 cosec-1x + sec-1x = π/2, |x| ≥ 1

Proof : sin-1 x + cos-1x = π/2, x ∈ [-1,1]

[ ]

1

1 1

1 1

1

1 1

1 sin

sin co

Let sin or sin cos
2

cos cos

s
2

Hence,sin x c

cos
2

cos
2

os x x 1,1

x y x y y

x y

xx

x

π

π

π

π

π

−

−

−

− −

− −

−

−

 = = = − 
 

  = −    

−

+ =

+ = / 2, ∈ −

=

[ ]

1

1 1

1 1

1

1 1

1 sin

sin co

Let sin or sin cos
2

cos cos

s
2

Hence,sin x c

cos
2

cos
2

os x x 1,1

x y x y y

x y

xx

x

π

π

π

π

π

−

−

−

− −

− −

−

−

 = = = − 
 

  = −    

−

+ =

+ = / 2, ∈ −

=

Property 5

i.	 tan-1x + tan-1y = tan-1((x+y)/(1-xy)), xy < 1.

ii.	 tan-1x – tan-1y = tan-1((x-y)/(1+xy)), xy > -1.

Proof : tan-1x + tan-1y = tan-1((x+y)/(1-xy)), xy < 1. 

Let tan−1x=A 

And tan−1y=B 

Then, tanA=x 

tan B=y 

Now, tan(A+B)=(tanA+tanB)/(1−tanA tanB)

( )

1

1 1 1

tan
1

tan
1

Hence, tan tan tan
1

x yA B
xy

x y A B
xy

x y x y
xy

−

− − −

+
+ =

−

 +
= + − 

 +
= + − 

Property 6

i.	 2tan-1x = sin-1 (2x/(1+x2)), |x| ≤ 1
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ii.	 2tan-1x = cos-1((1-x2)/(1+x2)), x ≥ 0

iii.	 2tan-1x = tan-1(2x/(1 – x2)), -1 < x <1

Proof : 2tan-1x = sin-1 (2x/(1+x2)), |x| ≤ 1 

Let tan−1x=y and x=tan y

( )
( )

( )( )

1
2

1
2

1

2

1

1 1 2

2Consider RHS.sin
1

2 tan ysin
1 tan

sin sin 2

Since,sin 2 2 tan /1 1 tan ,

2
2 tan which is our LHS

2 tan x sin 2 x/ 1 x , x 1

x
x

y

y

y
x

Hence

θ θ θ

−

−

−

−

− −

 
 + 

 
=  + 
=

= +

=

=

= + ≤

( )
( )

( )( )

1
2

1
2

1

2

1

1 1 2

2Consider RHS.sin
1

2 tan ysin
1 tan

sin sin 2

Since,sin 2 2 tan /1 1 tan ,

2
2 tan which is our LHS

2 tan x sin 2 x/ 1 x , x 1

x
x

y

y

y
x

Hence

θ θ θ

−

−

−

−

− −

 
 + 

 
=  + 
=

= +

=

=

= + ≤

Example: Prove that “sin-1(-x) = – sin-1(x), x ∈ [-1,1]”

Solution: Let, sin−1 (−x)=y 

Then −x=siny 

x=−siny 

x=sin(−y)

sin−1 x=arcsin(sin(−y)) 

sin−1x=y 

sin−1x=−sin−1(−x) 

Hence, sin−1(−x)=−sin−1x, x ∈ [-1,1]

Derivatives of Trigonometric Functions 

Our starting point is the following limit: 

( )
0

sin
lim 1.
x

x
x→

=
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Using the derivative language, this limit means that ( )sin' 0 1= . This limit may also be 
used to give a related one which is of equal importance: 

( )
0

cos 1
lim 0.
x

x
x→

−
=

To see why, it is enough to rewrite the expression involving the cosine as 

( ) ( )( ) ( )( )
( )( )

( )( )
( )( )

2cos 1cos 1 cos 1cos 1
cos 1 cos 1

xx xx
x x x x x

−− +−
= =

+ +

But ( ) ( )2 2cos 1 sinx x− = − , so we have 

( ) ( )
( )( )

( )
( )( )

2 2

20 0 0

cos 1 sin sin
lim lim lim 0.

cos 1 cos 1x x x

x x x
x

x x x x x→ → →

− − −
= = =

+ +

This limit equals ( )cos' 0  and thus ( )cos' 0 0= .

In fact, we may use these limits to find the derivative of ( )sin x  and ( )cos x  at any point 
x=a. Indeed, using the addition formula for the sine function, we have 

( ) ( ) ( ) ( ) ( )sin sin cos sin cos .a h a h h a+ = +

So 

( ) ( ) ( ) ( ) ( ) ( )sin sin cos 1 sin
sin cos

a h a h h
a a

h h h
+ − −

= +
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which implies 

( ) ( ) ( )
0

sin sin
lim cos .
x

a h a
a

h→

+ −
=

So we have proved that ( )sin' a  exists and ( ) ( )sin' cosa a= .

Similarly, we obtain that ( )cos' a  exists and that ( ) ( )cos' sina a= − .

Since ( )tan x , ( )cot x , ( )sec x , and ( )csc x  are all quotients of the functions ( )sin x  

and ( )cos x , we can compute their derivatives with the help of the quotient rule:

( )( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

2 2

2 2

tan sec 1 tan sec sec tan

cot csc 1 cot csc csc cot

d dx x x x x x
dx dx
d dx x x x x x
dx dx

= = + =

= − = − − = −

It is quite interesting to see the close relationship between ( )tan x  and ( )sec x  (and 
also between ( )cot x  and ( )csc x ).

From the above results we get

( ) ( ) ( ) ( )sin'' sin and cos'' cos .x x x x− = −

These two results are very useful in solving some differential equations.

Example: Let ( ) ( )sin 2f x x= . Using the double angle formula for the sine function, 
we can rewrite 

( ) ( ) ( )sin 2 2sin cos .x x x=

So using the product rule, we get 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2 2sin 2 2 cos cos sin sin 2 cos sind x x x x x x x
dx

= − = −

which implies, using trigonometric identities, 

( )( ) ( )sin 2 2cos 2 .d x x
dx

=

Laws of Sines

The Law of Sines is the relationship between the sides and angles of non-right 
(oblique) triangles. Simply, it states that the ratio of the length of a side of a triangle 
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to the sine of the angle opposite that side is the same for all sides and angles in a given 
triangle.

In ABC∆  is an oblique triangle with sides a,b and c, then 
sin sin sin

a b c
A B C
= = .

To use the Law of Sines you need to know either two angles and one side of the triangle 
(AAS or ASA) or two sides and an angle opposite one of them (SSA). Notice that for the first 
two cases we use the same parts that we used to prove congruence of triangles in geometry 
but in the last case we could not prove congruent triangles given these parts. This is because 
the remaining pieces could have been different sizes. This is called the ambiguous case.

Example: Given two angles and a non-included side (AAS).

Given ABC∆  with 30 ,  20  45 mm A m B and a∠ = ° ∠ = ° = . Find the remaining angle 
and sides.

The third angle of the triangle is

180 180 30 20 130m C m A m B∠ = °− ∠ − ∠ = °− °− ° = °

By the law of sines,

45
sin 30 sin 20 sin130

b c
= =

° ° °

By the properties of proportions

45sin 20 30.78 m
sin 30

b °
= ≈

°
 and 

45sin130 68.94 m
sin 30

c °
= ≈

°
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Example: Given two angles and an included side (ASA).

Given 42 75m A m B∠ = ° ∠ = °  and 22 cmc = . Find the remaining angle and sides.

The third angle of the triangle is:

180 180 42 75 63m C m A m B∠ = °− ∠ − ∠ = °− °− ° = °

By the law of sines,

22
sin 42 sin 75 sin 63

a b
= =

° ° °

By the properties of proportions

22sin 42 16.52 cm
sin 63

a °
= ≈

°
 and 

22sin 75 23.85 
sin 63

b cm°
= ≈

°

The Ambiguous Case

If two sides and an angle opposite one of them are given, three possibilities can occur.

(1)	 No such triangle exists.

(2)	Two different triangles exist.

(3)	Exactly one triangle exists.

Consider a triangle in which you are given ,a b  and A . (The altitude h  from vertex B  
to side AC , by the definition of sines is equal to bsinA .)

(1) No such triangle exists if A  is acute and a h<  or A  is obtuse and a b≤ .
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 (2) Two different triangles exist if A is acute and h a b< < .

(3) In every other case, exactly one triangle exists.

Example: No Solution Exists

Given 15, 25a b= =  and 80m A∠ = ° . Find the other angles and side.

sin 25sin80 24.6h b A= = ° ≈

Notice that a h< . So it appears that there is no solution. Verify this using the Law of 
Sines.

sin sin
15 25=

sin80° sinB
25sin80sin 1.641 1

15

a b
A B

B

=

°
= ≈ >

This contrasts the fact that the 1 sin 1B− ≤ ≤ . Therefore, no triangle exists.
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Example: Two Solutions Exist

Given 6, 7a b= =  and 30m A∠ = ° . Find the other angles and side.

sin 7sin 30 3.5h b A= = ° =

h a b< <  therefore, there are two triangles possible.

 

By the Law of Sines, 
a b

sinA sinB
=

sin 7sin 30sin 0.5833
6

b AB
a

°
= = ≈

There are two angles between 0°  and 180°  whose sine is approximately 0.5833 , are 
35.69°  and 144.31° .

If  35.69 If  144.31
180 30 35.69 114.31 180 30 144.31 5.69

sin 6sin114.31 6sin 5.6910.94 1.19
sin sin 30 sin 30

B B
C C

a Cc c

≈ ° ≈ °
≈ °− °− ° = ° ≈ °− °− ° = °

° °
= ≈ ≈ ≈ ≈

° °

Example: One Solution Exists

Given 22, 12a b= =  and 40m A∠ = ° . Find the other angles and side.

a b>
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By the Law of Sines, 
a b

sinA sinB
=

sin 12sin 40sin 0.3506
22

20.52

b AB
a

B

°
= = ≈

≈ °

B  is acute.

180 180 40 20.52 29.79m C m A m B∠ = °− ∠ − ∠ = °− °− ° = °

 By the Law of Sines,

22
sin119.48 sin 40

22sin119.48 29.79
sin 40

c

c

=
° °

°
= ≈

°

Law of Cosines

The Law of Cosines is used to find the remaining parts of an oblique (non-right) trian-
gle when either the lengths of two sides and the measure of the included angle is known 
(SAS) or the lengths of the three sides (SSS) are known. In either of these cases, it is 
impossible to use the Law of Sines because we cannot set up a solvable proportion.

The Law of Cosines states:

2 2 2 2 cosc a b ab C= + − .

This resembles the Pythagorean Theorem except for the third term and if C  is a right 
angle the third term equals 0 because the cosine of 90°  is 0 and we get the Pythagorean 
Theorem. So, the Pythagorean Theorem is a special case of the Law of Cosines.

The Law of Cosines can also be stated as

2 2 2 2 cosb a c ac B= + −  or

2 2 2 2 cosa b c bc A= + −

Example: Two Sides and the Included Angle-SAS

Given 11, 5a b= =  and 20m C∠ = ° . Find the remaining side and angles.
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2 2 2 2 cosc a b ab C= + −

2 2 2 cosc a b ab C= + −

2 2 ( ) ( ) ( )11 5 2 11 5 20cos= + − °

6.53≈

To find the remaining angles, it is easiest to now use the Law of Sines.

11sin 20sin
6.53

A °
≈

144.82A ≈ °

5sin 20sin
6.53

B °
≈ ’

15.2B ≈ °

Note that angle A is opposite to the longest side and the triangle is not a right trian-
gle. So, when you take the inverse you need to consider the obtuse angle whose sine is 

11 20 0.5761
6

( )
.53

sin °
≈ .

Example : Three Sides-SSS

Given 8, 19a b= =  and 14c = . Find the measures of the angles.

 It is best to find the angle opposite the longest side first. In this case, that is side b .

( )( )
2 2 2 2 2 219 8 14cos 0.45089

2 2 8 14
b a cB

ac
− − − −

= = ≈ −
− −
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Since cos B  is negative, we know that B  is an obtuse angle.

116.80B ≈ °

Since B  is an obtuse angle and a triangle has at most one obtuse angle, we know that 
angle A  and angle C  are both acute.

 To find the other two angles, it is simplest to use the Law of Sines.

sin sin sin
a b c

A B C
= =

8 19 14
sin sin116.80

sinC
A
≈ ≈

°

8sin116.80sin
19

A °
≈

22.08A ≈ °

14sin116.80sin
19

C °
≈

41.12C ≈ °

Real Life Applications of Trigonometry

Trigonometry to Measure Height of a Building or a Mountain

Trigonometry is used to in measuring the height of a building or a mountain. The dis-
tance of a building from the viewpoint and the elevation angle can easily determine the 
height of a building using the trigonometric functions.

Example: The distance from where the building is observed is 90ft from its base and the 
angle of elevation to the top of the building is 35° . Now find the height of the building.
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Solution:

Given:

1.	 Distance from the building is 90feet from the building.

2.	 The angle of elevation from to the top of the building is 35° .

To solve and find the height of the tower by recalling the trigonometric formulas. Here, 
the angle and the adjacent side length are provided. So, using the formula of tan.

tan 35 OppositeSide
AdjacentSide

° =

tan 35
90
h

° =

90 tan 35h = × °

90 0.4738h = ×

42.64h feet=

Thus, the height of the building is 42.64feet.

Trigonometry in Aviation

The aviation technology has been evolved in many up-gradations in the last few 
years. It has taken in account that the speed, direction, and distance as well as have 
to consider the speed and direction of the wind. The wind plays a vital role in when 
and how a flight will travel. This equation cab is solved by using trigonometry.

For example, if an airplane is traveling at 250 miles per hour, 55∘ of a north of east and the 
wind blowing due to south at 19 miles per hour. This calculation will be solved using the trig-
onometry and find the third side of the triangle that will lead the aircraft in the right direction.

Trigonometry in Criminology

Trigonometry is even used in the investigation of a crime scene. The functions of trigo-
nometry are helpful to calculate a trajectory of a projectile and to estimate the causes of 
a collision in a car accident. Further, it is used to identify how an object falls or in what 
angle the gun is shot.

Trigonometry in Marine Biology

Trigonometry is often used by marine biologists for measurements to figure out the 
depth of sunlight that affects algae to photosynthesis. Using the trigonometric function 
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and mathematical models, marine biologists estimate the size of larger animals like 
whales and also understand their behaviors.

Trigonometry in Navigation

Trigonometry is used in navigating directions; it estimates in what direction to place 
the compass to get a straight direction. With the help of a compass and trigonometric 
functions in navigation, it will help to pinpoint a location and also to find distance as 
well to see the horizon.

Other uses of Trigonometry

•	 The calculus is based on trigonometry and algebra.

•	 The fundamental trigonometric functions like sine and cosine are used to de-
scribe the sound and light waves.

•	 Trigonometry is used in oceanography to calculate heights of waves and tides 
in oceans.

•	 It used in the creation of maps

•	 It is used in satellite systems.

Trigonometry in Construction

In construction we need trigonometry to calculate the following:

•	 Measuring fields, lots and areas;

•	 Making walls parallel and perpendicular;

•	 Installing ceramic tiles;

•	 Roof inclination;

The height of the building, the width length etc. and the many other such things where 
it becomes necessary to use trigonometry.

Architects use trigonometry to calculate structural load, roof slopes, ground surfaces 
and many other aspects, including sun shading and light angles.

Trigonometry in Physics

In physics, trigonometry is used to find the components of vectors, model the mechan-
ics of waves (both physical and electromagnetic) and oscillations, sum the strength of 
fields, and use dot and cross products. Even in projectile motion you have a lot of ap-
plication of trigonometry.
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Trigonometry in Marine Engineering

In marine engineering trigonometry is used to build and navigate marine vessels. To 
be more specific trigonometry is used to design the Marine ramp, which is a sloping 
surface to connect lower and higher level areas, it can be a slope or even a staircase 
depending on its application.

References

•	 Trigonometry, science: britannica.com, Retrieved 8 February, 2019

•	 Trigonometric-functions, maths: byjus.com, Retrieved 18 March, 2019

•	 InverseTrigonometricFunctions: wolfram.com, Retrieved 9 April, 2019

•	 Properties-inverse-functions, inverse-trigonometric-functions, maths: toppr.
com, Retrieved 23 January, 2019

•	 Calculus: sosmath.com, Retrieved 15 June, 2019

•	 Law-of-sines: varsitytutors.com, Retrieved 8 August, 2019

•	 Law-of-cosines: varsitytutors.com, Retrieved 17 May, 2019

•	 Applications-of-trigonometry, maths: byjus.com, Retrieved 12 March, 2019

•	 Real-life-applications-of-trigonometry: embibe.com, Retrieved 24 July, 2019



5
Calculus
The mathematical study of continuous change is known as calculus. Differential cal-
culus and integral calculus are the two main branches that fall under this domain. The 
convergence of infinite sequences and series to a well-defined limit are the common 
foundations of both branches. All the diverse principles of calculus have been carefully 
analysed in this chapter.

Calculus is a branch of mathematics that involves the study of rates of change. Be-
fore calculus was invented, all math was static: It could only help calculate objects 
that were perfectly still. But the universe is constantly moving and changing. No ob-
jects—from the stars in space to subatomic particles or cells in the body—are always 
at rest. Indeed, just about everything in the universe is constantly moving. Calculus 
helped to determine how particles, stars, and matter actually move and change in 
real time.

Calculus is used in a multitude of fields that you wouldn’t ordinarily think would 
make use of its concepts. Among them are physics, engineering, economics, statistics, 
and medicine. Calculus is also used in such disparate areas as space travel, as well 
as determining how medications interact with the body, and even how to build safer 
structures

Differential Calculus

A branch of mathematics dealing with the concepts of derivative and differential and 
the manner of using them in the study of functions. Differential calculus is usually un-
derstood to mean classical differential calculus, which deals with real-valued functions 
of one or more real variables, but its modern definition may also include differential 
calculus in abstract spaces. Differential calculus is based on the concepts of real num-
ber; function; limit and continuity — highly important mathematical concepts, which 
were formulated and assigned their modern content during the development of math-
ematical analysis and during studies of its foundations. The central concepts of differ-
ential calculus — the derivative and the differential — and the apparatus developed in 
this connection furnish tools for the study of functions which locally look like linear 
functions or polynomials, and it is in fact such functions which are of interest, more 
than other functions, in applications.
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Derivative

Let a function ( )y f x=  be defined in some neighbourhood of a point 0.x  Let 0x∆ ≠  
denote the increment of the argument and let 0 0(x ) ( )y f x f x∆ = + ∆ −  denote the cor-
responding increment of the value of the function. If there exists a (finite or infinite) 
limit

0
lim ,

x

y
x∆ →

∆
∆

then this limit is said to be the derivative of the function f  at 0x  it is denoted by

0 0'( ),df( ) / , ',f x x dx y y'x,dy / dx  Thus, by definition,

lim lim 0 0
0 0 0

( ) ( )'( ) x x
f x x f xyf x

x x∆ → ∆ →

+ ∆ −∆
= =

∆ ∆

The operation of calculating the derivative is called differentiation. If 0'( )f x  is finite, 
the function f  is called differentiable at the point 0x A function which is differentiable 
at each point of some interval is called differentiable in the interval.

Geometric Interpretation of the Derivative

Let C be the plane curve defined in an orthogonal coordinate system by the equation 
y = f(x)  where f is defined and is continuous in some interval ;J let 0 0(x , y )M  be a 

fixed point on C , let ( , )( )P x y x J∈  be an arbitrary point of the curve C and let MP
be the secant (Fig. a). An oriented straight line (MT T a variable point with abscissa 

0 )x x+ ∆  is called the tangent to the curve C  at the point M  if the angle φ  between 
the secant MP and the oriented straight line tends to zero as 0x x→ (in other words, as 
the point P C∈ arbitrarily tends to the point M ). If such a tangent exists, it is unique. 
Putting 0 0 0, ( ) ( )x x x y f x x f x= + ∆ ∆ = + ∆ −  one obtains the equation tan /y xβ = ∆ ∆  
for the angle β between MP  and the positive direction of the x − axis (Fig. a).
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The curve C has a tangent at the point M if and only if 0lim /x y x∆ → ∆ ∆ exists, i.e. if 
0' (x )f exists. The equation 0tan '(x )fα = is valid for the angle α  between the tangent 

and the positive direction of the x -axis. If 0'(x )f  is finite, the tangent forms an acute 
angle with the positive x -axis, i.e. π α π− / 2 < < / 2 ; if 0'(x )f = ∞ , the tangent forms 
a right angle with that axis.

Thus, the derivative of a continuous function f  at a point 0x  is identical to the slope 
tanα  of the tangent to the curve defined by the equation (x)y f=  at its point with 
abscissa 0x .

Mechanical interpretation of the derivative

Let a point M move in a straight line in accordance with the law ( ).s f t= During 
time t∆  the point M  becomes displaced by ( ) ( )s f t t f t∆ = + ∆ − . The ratio s t∆ ∆  
represents the average velocity avv  during the time t∆ . If the motion is non-uni-
form,  Vav is not constant. The instantaneous velocity at the moment t is the limit of 
the average velocity as 0,t∆ →  i.e. ( )v f t′=  (on the assumption that this derivative 
in fact exists).

Thus, the concept of derivative constitutes the general solution of the problem of con-
structing tangents to plane curves, and of the problem of calculating the velocity of a 
rectilinear motion. These two problems served as the main motivation for formulating 
the concept of derivative.

A function which has a finite derivative at a point 0x is continuous at this point. A con-
tinuous function need not have a finite nor an infinite derivative. There exist continu-
ous functions having no derivative at any point of their domain of definition.

The formulas given below are valid for the derivatives of the fundamental elementary 
functions at any point of their domain of definition (exceptions are stated):

1.	 If (x) C constf = = , then '(x) ' 0f C= = ;

2.	 If (x) xf = , then '(x) 1f = ;

3.	 (x ) xα αα −1′ = , constα =  ( x 0≠ , if α ≤1);
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4.	 ( )x xα α′ = ,In , const 0a a = > , a 1≠ ; in particular, ( ) ex xe ′ = ;

5.	 (log x) (log e) / x 1/ (xIn ), a const 0, a 1. (In x) 1/ x;α α′ ′= = = > ≠ =

6.	 (sin x) cos x;′ =

7.	 (cos x) sin x;′ = −

8.	 2(tan x) 1/ cos ;x′ =

9.	 2(cotan x) 1/ sin ;x′ = −

10.	 2(arcsin x) 1 / 1 , 1;x x′ = − ≠ ±

11.	 2(arccos x) 1/ 1 , 1;x x′ = − − ≠ ±

12.	 2( rxtan x) 1/ (1 x );a ′ =− +

13.	 2(arccotan x) 1/ (1 x );′ = − +

14.	 (sinh x) ' cosh ;x=

15.	 (cosh x) sinh x;′ =

16.	 2(tanh x) 1 / cosh ;x′ =

17.	 2(cotanh x) 1/ sinh .x′ = −

The following laws of differentiation are valid:

If two functions u  and v  are differentiable at a point 0x , then the functions

(where c const), u v, uv, (v 0)ucu
v

= ± ≠

are also differentiable at that point, and

( )

( )

( )

2

,

,

.

cu cu

u v u v

uv u v uv

u u v uv
v v

′ ′=

′ ′ ′± = ±

′ ′ ′= +

′ ′ ′−  = 
 

Theorem on the derivative of a composite function: If the function ( )y f u=  is 
differentiable at a point 0u , while the function ( )xφ  is differentiable at a point 0x , and 
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if ( )0 0u xφ= , then the composite function ( )( )y f xφ=  is differentiable at 0x , and 
( ) ( )0 0y x f u xφ′ ′ ′=  or, using another notation, ( )( ).dy dx dy du du dx=

Theorem on the derivative of the inverse function: If ( )y f x=  and ( )x g y=  are two 
mutually inverse increasing (or decreasing) functions, defined on certain intervals, and 
if ( )0 0f x′ ≠  exists (i.e. is not infinite), then at the point ( )0 0y f x=  the derivative 

( ) ( )0 01/g y f x′ ′=  exists, or, in a different notation, ( )1/ /dx dy dy dx= . This theorem 
may be extended: If the other conditions hold and if also ( )0 0f x′ =  or ( )0f x′ = ∞ , 
then, respectively, ( )0g y′ = ∞  or ( )0 0g y′ = .

One-sided Derivatives

If at a point 0x the limit,

0
lim

x

y
x∆ ↓

∆
∆

exists, it is called the right-hand derivative of the function ( )y f x=  at 0x  (in such a 
case the function need not be defined everywhere in a certain neighbourhood of the 
point 0x ; this requirement may then be restricted to 0x x≥ ). The left-hand derivative 
is defined in the same way, as:

0
lim .

x

y
x∆ ↑

∆
∆

.

A function f  has a derivative at a point 0x  if and only if equal right-hand and left-hand 
derivatives exist at that point. If the function is continuous, the existence of a right-
hand (left-hand) derivative at a point is equivalent to the existence, at the correspond-
ing point of its graph, of a right (left) one-sided semi-tangent with slope equal to the 
value of this one-sided derivative. Points at which the semi-tangents do not form a 
straight line are called angular points or cusps.

Derivatives of Higher Orders

Let a function ( )y f x=  have a finite derivative ( )y f x′ ′=  at all points of some interval; 
this derivative is also known as the first derivative, or the derivative of the first order, 
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which, being a function of x , may in its turn have a derivative ( ) ,y f x′′ ′′=  known as 
the second derivative, or the derivative of the second order, of the function f , etc. In 
general, the n -th derivative, or the derivative of order n, is defined by induction by the 
equation ( )1n ny y − ′= , on the assumption that 1ny −  is defined on some interval. The 
notations employed along with ny  are nf , ( ) /n nd f x dx , and, if 2,3.n = , also y′′, 

( )f x′′ , y′′′ , ( )f x′′′ .

The second derivative has a mechanical interpretation: It is the acceleration 
( )2 2/w d s dt f t′′= =  of a point in rectilinear motion according to the law ( )s f t= .

Differential

Let a function ( )y f x=  be defined in some neighbourhood of a point x  and let there 
exist a number A  such that the increment y∆  may be represented as y A x ω∆ = ∆ +  
with / 0xω ∆ →  as 0x∆ → . The term A x∆  in this sum is denoted by the symbol dy  or 
df  and is named the differential of the function ( )f x  (with respect to the variable x) 
at x . The differential is the principal linear part of increment of the function (its geo-
metrical expression is the segment LT  in Fig. , where MT  is the tangent to ( )y f x=  
at the point ( )0 0, yx  under consideration).

The function ( )y f x=  has a differential at  if and only if it has a finite derivative,

( )
0

lim
x

yf x A
x∆ →

∆′ = =
∆

at this point. A function for which a differential exists is called differentiable at the 
point in question. Thus, the differentiability of a function implies the existence of both 
the differential and the finite derivative, and ( ) ( ) .dy df x f x x′= = ∆ For the indepen-
dent variable x  one puts dx x= ∆ , and one may accordingly write ( )dy f x dx′= , i.e. 
the derivative is equal to the ratio of the differentials:

0 0 0 0( , ) ( , )x z f x x y f x y∆ = +∆ −

The formulas and the rules for computing derivatives lead to corresponding formulas 
and rules for calculating differentials. In particular, the theorem on the differential 
of a composite function is valid: If a function ( )y f u=  is differentiable at a point 0u , 
while a function ( )xφ  is differentiable at a point 0x  and ( )0 0u xφ= , then the com-
posite function ( )( )y f xφ=  is differentiable at the point 0x  and ( )0dy f u du′= , 
where ( )0du x dxφ′= . The differential of a composite function has exactly the form 
it would have if the variable u were an independent variable. This property is known 
the invariance of the form of the differential. However, if u  is an independent variable, 
du u= ∆  is an arbitrary increment, but if u  is a function, du  is the differential of this 
function which, in general, is not identical with its increment.
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Differentials of Higher Orders

The differential d y  is also known as the first differential, or differential of the first or-
der. Let y = f (x) have a differential ( )d y f x dx′= at each point of some interval. Here 
dx = is some number independent of and one may say, therefore that dx = const. 
The differential d y is a function of x alone, and may in turn have a differential, known 
as the second differential, or the differential of the second order, of f, etc. In general, 
the n -th differential, or the differential of order n, is defined by induction by the equal-
ity 1( )n nd y d d y−= , on the assumption that the differential 1nd y−  is defined on some 
interval and that the value of dx is identical at all steps. The invariance condition for 

2 3,d y d y  is generally not satisfied (with the exception y=f(u) where u is a linear func-
tion).The repeated differential of d y  has the form,

( ) ( )d y f x dx xδ δ′′  

and the value of ( ) ford y dx xδ δ=  is the second differential.

Principal Theorems and Applications of Differential Calculus

The fundamental theorems of differential calculus for functions of a single variable are 
usually considered to include the Rolle theorem, the Legendre theorem (on finite vari-
ation), the Cauchy theorem, and the Taylor formula. These theorems underlie the most 
important applications of differential calculus to the study of properties of functions 
— such as increasing and decreasing functions, convex and concave graphs, finding 
the extrema, points of inflection, and the asymptotes of a graph. Differential calculus 
makes it possible to compute the limits of a function in many cases when this is not 
feasible by the simplest limit theorems. Differential calculus is extensively applied in 
many fields of mathematics, in particular in geometry.

Differential Calculus of Functions in Several Variables

For the sake of simplicity the case of functions in two variables (with certain ex-
ceptions) is considered below, but all relevant concepts are readily extended to 
functions in three or more variables. Let a function ( , )z f x y=  be given in a cer-
tain neighbourhood of a point (xo, yo) and let the value 0y y=  be fixed. 0(x, y )f
will then be a function of alone. If it has a derivative with respect to atx xo , this 
derivative is called the partial derivative of f with respect to at ; it is denoted by 

0 0 0 0 0 0(x ,y ) (x ,y ) / / . / or (x ,y )xf f x f x z z x fx x′ ′∂ ∂ ∂ ∂ ∂ ∂ Thus, by definition,

lim lim 0 0 0 0
y 0 y 00 0

(x ,+ , x ) (x ,y )(x ,y ) ,x z f x ff x x x
∆ → ∆ →

−∆ ∆′ =
∆ ∆

where 0 0 0 0( , ) ( , )x z f x x y f x y∆ = +∆ −  is the partial increment of the function with re-
spect to x  (in the general case, /z x∂ ∂  must not be regarded as a fraction; / x∂ ∂  is the 
symbol of an operation).
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The partial derivative with respect to y  is defined in a similar manner:

lim lim 0 0 0 0
y 0 y 00 0

(x ,y + ) (x ,y )(x ,y ) = f y fy zf y y y
∆ → ∆ →

−∆∆′ =
∆ ∆

where y z∆  is the partial increment of the function with respect to y . Other notations 
include 0 0 0 0( , ) / / . . / ( , )f x y y f y z z y and f y x yy′∂ ∂ ∂ ∂ ∂ ∂ Partial derivatives are cal-
culated according to the rules of differentiation of functions of a single variable (in 
computing xz ′  one assumes y= const while if ′  is calculated, one assumes).

x= const

The partial differentials of 0 0( , ) at ( , )f x y x y are, respectively,

0 0 0 0( , ) ; ( , )d z f x y dx d z f x y d y′ ′= =

where, as in the case of a single variable, ,dx x d y y=∆ =∆ , denote the increments of 
the independent variables.

The first partial derivatives 0 0/ ( , ) / ( , )z x f x y and z y f x yx y′ ′∂ ∂ = ∂ ∂ = , or the partial de-
rivatives of the first order, are functions of x and y , and may in their turn have partial 
derivatives with respect to x  and y . These are named, with respect to the function 

( , )z f x y= , the partial derivatives of the second order, or second partial derivatives. 
It is assumed that,

2 2

2

2 2

2

,

, .

z z z z
x x x y x x y

z z z z
x y y x y y y

∂ ∂ ∂ ∂ ∂ ∂   = = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂
= = =   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

The following notations are also used instead of 2 2/z x∂ ∂ .

2 2

2 2

( , )" "" "2, , , ( , ) 2( , ), ( , );x x
f x y fzxx z fxx x y f x y fxx x y

x x
∂ ∂

∂ ∂

and instead of 2 /z x y∂ ∂ ∂ : 

2 2( , )" ", , , ( , ) ( , ),f x y fzxy fxy x y fxy x y
x y x y

∂ ∂
∂ ∂ ∂ ∂

etc. One can introduce in the same manner partial derivatives of the third and higher 
orders, together with the respective notations: /n nz x∂ ∂ means that the function z  is to 
be differentiated n  times with respect to x . /n p qz x y∂ ∂ ∂ where n p q= +  means that 
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the function is differentiated p times with respect to x and q times with respect to y. The 
partial derivatives of second and higher orders obtained by differentiation with respect 
to different variables are known as mixed partial derivatives.

To each partial derivative corresponds some partial differential, obtained by its multi-
plication by the differentials of the independent variables taken to the powers equal to 
the number of differentiations with respect to the respective variable? In this way one 
obtains the -th partial differentials, or the partial differentials of order: n

, .
n n

n p q
n p q

z zdx dx d y
x x y
∂ ∂
∂ ∂ ∂

The following important theorem on derivatives is valid: If, in a certain neigh-
bourhood of a point 0 0( , )x y , a function ( , )z f x y=  has mixed partial derivatives 

'' ( , ) and ( , )yf x x y f y x x y′′ , and if these derivatives are continuous at the point 0 0( , )x y , 
then they coincide at this point.

A function ( , )z f x y=  is called differentiable at a point 0 0( , )x y with respect to both vari-
ables x  and y  if it is defined in some neighbourhood of this point, and if it’s total increment

0 0 0 0( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −

may be represented in the form,

z A x B y ω∆ = ∆ + ∆ + +

Where A and B are certain numbers and 2 2/ 0 for ( ) ( ) 0x yρω ρ→ = ∆ + ∆ →  (pro-
vided that the point 0 0( , )x x y y+ ∆ + ∆ lies in this neighbourhood). In this context, the 
expression,

0 0(x , )dz d f y A x B y= = ∆ + ∆

is called the total differential (of the first order) of f ′  at 0 0(x , )y  this is the principal 
linear part of increment. A function which is differentiable at a point is continuous at 
that point (the converse proposition is not always true!). Moreover, differentiability 
entails the existence of finite partial derivatives,

lim lim
0 0 0 0 0 0(x , y ) , (x , y ) ,x y

x z y zf A f Byx x y∆ → ∆ →

∆ ∆′ ′= = = =
∆ ∆

Thus, for a function which is differentiable at, 0 0(x , )y

0 0 0 0 0 0

0 0 0 0 0 0

(x , ) (x , ) (x , ) ,
or

(x , ) (x , ) (x , ) ,

dz d f y f y x f y yyx

dz d f y f y d x f y d yyx

′ ′= = ∆ + ∆

′ ′= = +
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if, as in the case of a single variable, one puts, for the independent variables,
, .dx x d y y=∆ =∆

The existence of finite partial derivatives does not, in the general case, entail differen-
tiability (unlike in the case of functions in a single variable). The following is a sufficient 
criterion of the differentiability of a function in two variables: If, in a certain neighbour-
hood of a point 0 0(x , )y , a function f has finite partial derivatives andf f yx′ ′ which 
are continuous at, then is differentiable at this point. Geometrically, the total differ-
ential 0 0(x , )d f y  is the increment of the applicate of the tangent plane to the surface 

( , )z f x y= at the point 0 0 0(x , , )y z , where 0 00 (x , )z f y= .

Total differentials of higher orders are, as in the case of functions of one variable, intro-
duced by induction, by the equation,

1( ),n nd z d d z−=

on the assumption that the differential 1nd z− is defined in some neighbourhood of the 
point under consideration, and that equal increments of the ,dx d y  arguments, are 
taken at all steps. Repeated differentials are defined in a similar manner.

Derivatives and Differentials of Composite Functions

Let 1( ,..., )mw f u u=  be a function m  in variables which is differentiable at each point 
of an open D domain of the m − dimensional Euclidean space mR , and let m functions 

1 1 1 m 1( ,..., ) ,..., u ( ,..., ) inn nu x x m x x nφ φ= = variables be defined in an open domain G of 
the n  -dimensional Euclidean space nR  . Finally, let the point 1( ,..., )mu u , correspond-
ing to a point 1( ,..., )nx x G∈ , be contained in . D The following theorems then hold:

A) If the functions 1 ,..., mφ φ  have finite partial derivatives with respect to 1 ,..., nx x , the 
composite function 1 1( ,..., ) in ,...,m nw f u u x x=  also has finite partial derivatives with 
respect to 1 ,..., nx x , and

1

1 1 1 1

1

1

... ,

... ,

n

n

n

n n n n

f uf uw
x u x u x

f uf uw
x u x u x

∂ ∂∂ ∂∂
= + +

∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂∂
= + +

∂ ∂ ∂ ∂ ∂
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1

1 1 1 1

1

1

... ,

... ,

n

n

n

n n n n

f uf uw
x u x u x

f uf uw
x u x u x

∂ ∂∂ ∂∂
= + +

∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂∂
= + +

∂ ∂ ∂ ∂ ∂

B) If the functions 1 ,..., mφ φ  are differentiable with respect to all variables at a point 
1( ,..., )nx x G∈ , then the composite function 1( ,..., )mw f u u=  is also differentiable at 

that point, and

1
1

... ,n
n

f fdw du du
u u
∂ ∂

= + +
∂ ∂

Where 1 ,..., mdu du are the differentials of the functions . 1 ,..., mu u Thus, the property of 
invariance of the first differential also applies to functions in several variables. It does 
not usually apply to differentials of the second or higher orders.

Differential calculus is also employed in the study of the properties of functions in sev-
eral variables: finding extrema, the study of functions defined by one or more implicit 
equations, the theory of surfaces, etc. One of the principal tools for such purposes is the 
Taylor formula.

The concepts of derivative and differential and their simplest properties, connected 
with arithmetical operations over functions and superposition of functions, including 
the property of invariance of the first differential, are extended, practically unchanged, 
to complex-valued functions in one or more variables, to real-valued and complex-val-
ued vector functions in one or several real variables, and to complex-valued functions 
and vector functions in one or several complex variables. In functional analysis the 
ideas of the derivative and the differential are extended to functions of the points in an 
abstract space.

Limits

Suppose we have a function f(x). The value, a function attains, as the variable x approaches 
a particular value say a, i.e., x → a is called its limit. Here, ‘a’ is some pre-assigned value. It 
is denoted as

( )x alim f x 1→ =

•	 The expected value of the function shown by the points to the left of a point ‘a’ 
is the left-hand limit of the function at that point. It is denoted as limx→a− f(x).

•	 The points to the right of a point ‘a’ which shows the value of the function is the 
right-hand limit of the function at that point. It is denoted as limx→a+ f(x).

Limits of functions at a point are the common and coincidence value of the left and 
right-hand limits.
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The value of a limit of a function f(x) at a point a i.e., f(a) may vary from the value of 
f(x) at ‘a’.

Algebra of Limits

Let p and q be two functions such that their limits ( )x alim p x→ and ( )x alim q x→  exist.

•	 Limit of the sum of two functions is the sum of the limits of the functions.

( ) ( ) ( ) ( )x a x a x alim p x q x lim p x lim q x .→ → →+ = +  

•	 Limit of the difference of two functions is the difference of the limits of the 
functions.

( ) ( ) ( ) ( )x a x a x alim p x - q x lim p x lim q x .→ → →= −  

•	 Limit of product of two functions is the product of the limits of the functions.

( ) ( ) ( ) ( )x a x a x alim p x q x lim p x lim q x .→ → →× = ×          

•	 Limit of quotient of two functions is the quotient of the limits of the functions.

( ) ( ) ( ) ( )x a x a x alim p x q x lim p x lim q x .→ → →÷ =        ÷ 

•	 Limit of product of a function p(x) with a constant, q(x) = α is α times the limit 
of p(x).

)( ) ( )x a x alim .p .lim p x .xα α→ →  = 

Limit of Polynomial Function

Consider a polynomial function, ( ) 2 n
0 1 2 n 0 1 nf x a a a ... .Here,a ,a ,..., ax x a x= + + + + are 

all constants. At any point x a,= the limit of this polynomial function is
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( )

( )

2 n
x a x a 0 1 2 n

2 n
x a 0 1 x a 2 x a n x a

2 n
x a 0 1 2 n

lim f x lim a a a ... a x

lim a a lim x a lim x ... a lim x

or, lim = a a a+a a ... a a f a .

x x→ →

→ → → →

→

 = + + + + 
= + + + +

+ + + =

Limit of Rational Function

The limit of any rational function of the type p(x) / q(x), where q(x) ≠ 0 and p(x) and 
q(x) are polynomial functions is,

( ) ( ) ( ) ( ) ( ) ( )x a x a x alim p x / q x lim p x / lim q x p a / q a .→ → →= =          

The very first step to find the limit of a rational function is to check if it is reduced to the 
form 0/0 at some point. If it is so, then we need to do some adjustment so that one can 
calculate the value of the limit. This can be done by,

•	 Canceling the factor which causes the limit to be of the form 0/0.

Assume a function, ( ) ( ) ( )2 2f x x 4x 4 / x 4 .= + + − Taking limit over it for x 2,= − the 
function is of the form 0/0,

( ) ( )
( ) ( )( ) ( ) ( ) ( )

2 2
x 2 x 2

2
x 2 x 2

lim f(x) =lim x 4 x 4 / x 4

lim x 2 / x 2 x 2 lim x 2 / x 2 0 / 4 0 / 0 0.

→− →−

→− →−

 + + − 
 = + − + = + − = − ≠ = 

•	 Applying the L – Hospital’s Rule.

Differentiating both the numerator and the denominator of the rational function until 
the value of limit is not of the form 0/0. Assume a function, f(x) = sin x/x. Taking limit 
over it for x = 0, the function is of the form 0/0.

Taking the differentiation of both sin x and x with respect to x in the limit x 0lim sinx/x →

reduces to ( )x 0lim cos x/1=1. cos 0 1→ = .

One-Sided Limits

In order to calculate a limit at a point, we need to have an interval around that point; 
that is, we consider values of the function for x values on both sides of the point. Since 
we are considering values on both sides of the point, this type of limit is sometimes 
referred to as a two-sided limit. At some points, such as end points, it is not possible to 
find an interval on both sides of the point; for endpoints we can only find an interval 
on one side of the point. Instead, we can use the information that we are provided on 
that interval, in order to calculate a one-sided limit. In this way, we can define left-hand 
and right-hand limits, looking at the function from the left or right side of the point, 
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respectively. We write the left-hand limit of ( ) ,f x or the limit as x approaches 0x  from 
the left-hand side as,

( )
0

lim
x x

f x
−→

and we write the right-hand limit as,

 ( )
0

lim
x x

f x
+→

where the − and + denote whether it is approaching from the left or right hand side, 
respectively.

More formally, we have the following definitions.

Right-hand Limit	

We say that L is the right-hand limit of ( )f x  at 0x , written,

( )
0

lim
x x

f x L
+→

=

if for every number   0ε > , there exists a corresponding number   0δ >  such that for 
all x,

( )0 0x x x f x L< < + δ⇒ − < ε

Left-hand Limit

We say that L is the left-hand limit of ( )f x at 0x , written,

( )
0

lim
x x

f x L
−→

=

if for every number   0ε > , there exists a corresponding number   0δ > such that for 
all x,

( )0 0x x x f x L− < < ⇒ − <∈δ

It is noteworthy that all of the rules for combining two-sided limits also apply for com-
bining one-sided limits.

Example: Find ( )0
lim

x
f x+→

 and ( )0
lim

x
f x−→

 for ( ) .
x

f x
x

=

Solution The solution to this problem becomes much more evident if we rewrite ( )f x
as-
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( )
1 0

1 0
x

f x
x

− <
=  >

Now we can see that looking from just the left or right side of the point  0x = , we have 
two constant functions. Since the limit of a constant is just that constant, it follows that,

( ) ( )
0 0

lim 1 and lim 1
x x

f x f x
+ −→ →

= = −

The following theorem is a useful tool for relating one-sided and two-sided limits.

Theorem: One-sided and Two-sided Limits 

A function ( )f x  has a limit L at 0x  if and only if it has right-hand and left-hand limits 
at 0x , and both of those limits are L.

If both of the one-sided limits have the same value L, then we can certainly construct 
a δ-interval on both sides of 0x  by combining both of the one-sided intervals, which 
implies the two-sided limit exists. If the one-sided limits exist but disagree, then it is 
impossible for the function to approach a single value as 0  ,x x→ , which implies that 

the two-sided limit does not exist. From this we can conclude that 0limx

x
x→  does not 

exist. This is a much more efficient way to prove a limit does not exist than proving that 
it does not exist for all possible values L.

Example: Prove that

0
lim 0
x

x
+→

=

Solution: Consider   0,ε > , arbitrary. We need to find    0δ >  so that for all x with 
2   < 2x− δ <  we have 0 or .x xε ε− < < . Manipulating this inequality,

20
x

x
ε

ε

<

≤ <

Thus, if we set 2  ,δ ε= for any x with 20 x< < δ = ε  we have:

2x ε ε< =

and the conclusion follows.

Example: Let ( )f x be given by,

( ) 24f x x= −
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Find the one-sided limits at the endpoints of the domain of this function. Using the 
definition of left and right-hand limits, prove that these limits exist, for some values L. 

Solution First we must recall that x  is not definied on   for 0.x <  In this way, we can 
determine that if 2x >  then ( ) 24f x x= − is not defined. Thus, we can see that the do-
main of this function is [−2, 2]. On this domain our function is a semicircle. At the left 
endpoint we must consider the right-hand limit, and at the right endpoint we consider 
the left-hand limit. Using the rules for combining limits,

2 2

2 2
lim 4 0 lim 4 0

x x
x and x

+ −→− →−
− = − =

Now our task is to prove that these limits exist as written above, using the definition of 
one-sided limits. We will prove that the limit as 2x −→  is 0, and leave the analagous 
proof at the left endpoint to the reader.

Consider   0ε > , arbitrary. We need to find a  0δ >  so that for all x with 2   < 2xδ− <  
we have,

24 0x ε− − <

In this problem it will be difficult to directly manipulate the second inequality in order 
to find a sufficiently small value for δ . We will need to take a slightly more creative 
approach. Notice that,

24 x−

will be at its largest when x  is the smallest, or when x  is at the farthest left point of the 
interval 2 2.x−δ < <  Thus, if we can find a value for δ  such that,

( )24 2− −δ < ε

we will have a δ  such that for all x in the interval 2 2x−δ < <  the function values are 
within the error tolerance ε  of 0. Thus, for all x in the interval,

( ) ( ) ( )22 2 2 24 4 2 4 4 4 4 4 4 4 4x− < − −δ = − − δ + δ = − + δ −δ = δ − δ = δ − δ

The first thing to note is that because we cannot have a negative input to ( )4δ − δ  we 
need to have ( )4−δ ≥  0 which means that,

4δ ≤

Now, to have
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( )4δ − δ < ε

we need,

( ) 24 4  < δ − δ < δ ε

From this inequality, we obtain the restriction,

2

4
δ <

ε

Thus, we set-

2

min ,1
16
 ∈

δ =  
 

in order to encapsulate both of the previous restrictions on δ  we found (there is noth-
ing unique about the values we chose, just that they satisfy 4δ ≤  and )2 < / 4δ ∈ . Now 
consider arbitrary x with 2 2.x−δ < <  It follows:

( ) ( )
2

224 4 2 4 .4
16 2

x ∈ ∈
− < − −δ = δ − δ < = <∈

After this long and arduous analysis, we have managed to prove the one-sided limit 
exists, and is equal to 0.

Properties of Limits

Sum Rule

This rule states that the limit of the sum of two functions is equal to the sum of their 
limits:

( ) ( ) ( ) ( )lim lim lim .
x a x a x a

f x g x f x g x
→ → →

+ = +  

Extended Sum Rule

( ) ( ) ( ) ( )1 1lim ... lim ... lim .n nx a x a x a
f x f x f x f x

→ → →
+ + = + +  

Constant Function Rule

The limit of a constant function is the constant:
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lim .
x a

C C
→

=

Constant Multiple Rule

The limit of a constant times a function is equal to the product of the constant and the 
limit of the function:

( ) ( )lim lim .
x a x a

k f x k f x
→ →

=

Product Rule

This rule says that the limit of the product of two functions is the product of their limits 
(if they exist):

( ) ( ) ( ) ( )lim lim .lim .
x a x a x a

f x g x f x g x
→ → →

=  

Extended Product Rule

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2lim ... lim .lim ...lim .n nx a x a x a x a
f x f x f x f x f x f x

→ → → →
=  

Quotient Rule

The limit of quotient of two functions is the quotient of their limits, provided that the 
limit in the denominator function is not zero:

( )
( )

( )
( ) ( )

lim
lim , if lim 0.

lim
x a

x a x a
x a

f xf x
g x

f x g x
→

→ →
→

= ≠

Power Rule

( ) ( )lim lim ,
PP

x a x a
f x f x

→ →
 =    

where the power p can be any real number. In particular,

( ) ( )lim lim .p p
x a x a

f x f x
→ →

=

If f ( ) nx x= , then

lim , 0 1, 2,.... 0, if 0.n n

x a
x a n and a n

→
= = ± ± ≠ ≤

This is a special case of the previous property.
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Limit of an Exponential Function

( ) ( )lim
lim ,x a

f xf x

x a
b b →

→
=

where the base b > 0.

Limit of a Logarithm of a Function

( ) ( )lim log log lim ,b bx a x a
f x f x

→ →
 =    

where the base b > 0.

Integral Calculus

Integral calculus is the branch of mathematics in which the notion of an integral, its 
properties and methods of calculation are studied. Integral calculus is intimately re-
lated to differential calculus, and together with it constitutes the foundation of mathe-
matical analysis. 

By means of integral calculus it became possible to solve by a unified method many 
theoretical and applied problems, both new ones which earlier had not been amenable 
to solution, and old ones that had previously required special artificial techniques. The 
basic notions of integral calculus are two closely related notions of the integral, namely 
the indefinite and the definite integral.

The indefinite integral of a given real-valued function on an interval on the real axis is 
defined as the collection of all its primitives on that interval, that is, functions whose 
derivatives are the given function. The indefinite integral of a function f  is denoted by 

( ) .f x dx∫ If F is some primitive of f , then any other primitive of it has the form F C+ , 
where C is an arbitrary constant; one therefore writes,

( ) ( ) .f x dx F x C= +∫
The operation of finding an indefinite integral is called integration. Integration is the 
operation inverse to that of differentiation:

( ) ( ) ( ) ( )' , .F x dx F x C d f x dx f x dx= + =∫ ∫
The operation of integration is linear: If on some interval the indefinite integrals,

( ) ( )1 2f x dx and f x dx∫ ∫
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exist, then for any real numbers and, the following integral exists on this interval:

( ) ( )1 1 2 2f x f x dxλ λ+  ∫
and equals-

( ) ( )1 1 2 2 .f x dx f x dxλ λ+∫ ∫
For indefinite integrals, the formula of integration by parts holds: If two functions and 
are differentiable on some interval and if the integral exists, then so does the integral, 
and the following formula holds:

.udv uv vdu= −∫ ∫
The formula for change of variables holds: If for two functions f  and φ  defined on 
certain intervals, the composite function f oφ  makes sense and the function φ  is dif-
ferentiable, then the integral,

( ) ( )'f t t dtφ φ  ∫
exists and equals- 

( ) .f x dx∫
A function that is continuous on some bounded interval has a primitive on it and hence 
an indefinite integral exists for it. The problem of actually finding the indefinite integral 
of a specified function is complicated by the fact that the indefinite integral of an ele-
mentary function is not an elementary function, in general. Many classes of functions 
are known for which it proves possible to express their indefinite integrals in terms of 
elementary functions. The simplest examples of these are integrals that are obtained 
from a table of derivatives of the basic elementary functions:

1.	
1

, 1;
1

xx dx C
α

α α
α

+

= + ≠ −
+∫

2.	 In ;dx x C
x
= +∫

3.	 . 0, 1;  in particular ;
x

x x xaa dx C a a e dx e C
In a

= + > ≠ = +∫ ∫
4.	 sin cos ;xdx x C= − +∫
5.	 cos sin ;xdx x C= − +∫
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6.	 2 tan ;
cos

dx x C
x
= +∫

7.	 2 cotan ;
sin

dx x C
x
= − +∫

8.	 sinh cosh ;x dx x C= +∫
9.	 cosh sinh ;x dx x C= +∫

10.	 2 tanh ;
cosh

dx x C
x
= +∫

11.	 2 cotah ;
sinh

dx x C
x
= − +∫

12.	 2 2

1 1arctan arccotan ';dx x xC C
x a a a a a

= + = − +
+∫

13.	 2 2

1 ;
2

dx x aIn C
x a a x a

−
= +

− +∫

14.	 2 2
arcsin arccos ', x a

dx x xC C
a aa x

= + = − +∫

15.	 2 2

2 2
In dx x x a C

x a
= + ± +

±
∫ (when 2 2x a−  is under the square root, it is 

assumed that ( ).x a> ).

If the denominator of the integrand vanishes at some point, then these formulas are 
valid only for those intervals inside which the denominator does not vanish.

The indefinite integral of a rational function over any interval on which the denomina-
tor does not vanish is a composition of rational functions, arctangents and natural loga-
rithms. Finding the algebraic part of the indefinite integral of a rational function can be 
achieved by the Ostrogradski method. Integrals of the following types can be reduced 
by means of substitution and integration by parts to integration of rational functions:

1

, ,.... ,
mr rax b ax bR x dx

cx b cx b
 + +   
    + +     

∫
where 1,....r rm  are rational numbers; integrals of the form,

( )2R x ax bx c dx+ +∫
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Certain cases of integrals of differential binomials; integrals of the form

( ) ( )sin ,cos , sinh, coshR x x dx R x x dx∫ ∫

(where ( )1,.....R y yn  are rational functions); the integrals,

cos , sin ,

cos , sin ,

arcsin , arccos ,

arctan , arccotan , 0,1,...,

x x

n n

n n

n n

e xdx e xdx

x xdx x xdx

x xdx x xdx

x xdx x xdx n

α αβ β

α α

=

∫ ∫
∫ ∫
∫ ∫
∫ ∫

and many others. In contrast, for example, the integrals

sin cos, , , 1, 2,....,
x

n n n

e x xdx dx dx n
x x x

=∫ ∫ ∫
cannot be expressed in terms of elementary functions.

The definite integral

( )
b

a

f x dx∫
of a function f  defined on an interval [ ],a b  is the limit of integral sums of a specific 
type. If this limit exists, f  is said to be Cauchy, Riemann, Lebesgue, etc. integrable.

The geometrical meaning of the integral is tied up with the notion of area: If the func-
tion 0f ≥  is continuous on the interval [ ],a b , then the value of the integral

( )
b

a

f x dx∫
is equal to the area of the curvilinear trapezium formed by the graph of the function, 
that is, the set whose boundary consists of the graph of f , the segment [ ],a b  and the 
two segments on the lines x a=  and x b=  making the figure closed, which may degen-
erate to points.
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The calculation of many quantities encountered in practice reduces to the problem of 
calculating the limit of integral sums; in other words, finding a definite integral; for ex-
ample, areas of figures and surfaces, volumes of bodies, work done by force, the coordi-
nates of the centre of gravity, the values of the moments of inertia of various bodies, etc.

The definite integral is linear: If two functions 1f  and 2f  are integrable on an interval 
[ ],a b , then for any real numbers 1λ  and 2λ  the function,

1 1 2 2f fλ λ+

is also integrable on this interval and,

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 .
b b b

a a a

f x f x dx f x dx f x dxλ λ λ λ+ = +  ∫ ∫ ∫

Integration of a function over an interval has the property of monotonicity: If the func-
tion f  is integrable on the interval [ ]a b  and if [ ] [ ], ,c d a b⊂ , then f  is integrable on 
[ ],c b  as well. The integral is also additive with respect to the intervals over which the 
integration is carried out: If a c b< <  and the function f  is integrable on the intervals 
[ ],a b  and [ ],c b , then it is integrable on [ ],a b , and

( ) ( ) ( ) .
b c b

a a c

f x dx f x dx f x dx= +∫ ∫ ∫

If f  and g  are Riemann integrable, then their product is also Riemann integrable. If 
f g≥  on [ ],a b , then

( ) ( ) .
b b

a a

f x dx g x dx≥∫ ∫

If f  is integrable on [ ],a b , then the absolute value f  is also integrable on [ ],a b  if 
,a b−∞ < < < ∞ , and

( ) ( ) .
b b

a a

f x dx f x dx≤∫ ∫

By definition one sets

( ) ( ) ( )0 , 0.
b a b

a b a

f x dx and f x dx f x dx a= = − <∫ ∫ ∫

A mean-value theorem holds for integrals. For example, if f  and g  are Riemann inte-
grable on an interval [ ],a b , if ( ) [ ], ,m f x M x a b≤ ≤ ∈ , and if g  does not change sign 
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on [a, b], that is, it is either non-negative or non-positive throughout this interval, then 
there exists a number m Mµ≤ ≤  for which

( ) ( ) ( ) .
b b

a a

f x g x dx g x dxµ=∫ ∫
Under the additional hypothesis that f  is continuous on [ ],a b , there exists in ( ),a b  a 
point ξ  for which

( ) ( ) ( ) ( ) .
b b

a a

f x g x dx f g x dxξ=∫ ∫
In particular, if ( ) 1g x ≡ , then

( ) ( )( ).
b

a

f x dx f b aξ= −∫

Integrals with a Variable Upper Limit

If a function f  is Riemann integrable on an interval [ ],a b , then the function F defined 
by

( ) ( ) , ,
x

a

F x f t dt a x b= ≤ ≤∫
is continuous on this interval. If, in addition, f  is continuous at a point 0x , then F is 
differentiable at this point and ( ) ( )0 0' .F x f x=  In other words, at the points of conti-
nuity of a function the following formula holds:

( ) ( ).
x

a

d f t dt f x
dx

=∫

Consequently, this formula holds for every Riemann-integrable function on an inter-
val [ ],a b , except perhaps at a set of points having Lebesgue measure zero, since if a 
function is Riemann integrable on some interval, then its set of points of discontinuity 
has measure zero. Thus, if the function f  is continuous on [ ],a b , then the function F 
defined by

( ) ( )
x

a

F x f t dt= ∫
is a primitive of f  on this interval. This theorem shows that the operation of dif-
ferentiation is inverse to that of taking the definite integral with a variable upper 
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limit, and in this way a relationship is established between definite and indefinite 
integrals:

( ) ( ) .
x

a

f x dx f t dt C= +∫ ∫

The geometric meaning of this relationship is that the problem of finding the tangent 
to a curve and the calculation of the area of plane figures are inverse operations in the 
above sense.

The following Newton–Leibniz formula holds for any primitive F of an integrable func-
tion  on an interval [ ],a b :

( ) ( ) ( ).
b

a

f x dx F b F a= −∫

It shows that the definite integral of a continuous function over some interval is equal 
to the difference of the values at the end points of this interval of any primitive of it. 
This formula is sometimes taken as the definition of the definite integral. Then it is 
proved that the integral ( )

b

a
f x dx∫  introduced in this way is equal to the limit of the 

corresponding integral sums.

For definite integrals, the formulas for change of variables and integration by parts 
hold. Suppose, for example, that the function f  is continuous on the interval ( ),a b  
and that φ  is continuous together with its derivative 'φ  on the interval ( ),α β , where 
( ),α β  is mapped by φ  into ( ),a b : ( )a t bφ< <  for ,tα β< < , so that the composite 
f oφ  is meaningful in ( ),α β . Then, for ( )0 0, , ,a β α β∈ , the following formulas for 

change of variables holds:

( ) ( ) ( )
( )

( )0 0

0 0

' .
a a

f x dx f t t dt
φ β β

φ

φ φ=   ∫ ∫

The formula for integration by parts is:

( ) ( ) ( ) ( ) ( ) ( ) ,
b b

a a

x b
u x dv x u x v x v x du x

x a
=

= −
=∫ ∫

where the functions u and v have Riemann-integrable derivatives on [ ],a b .

The Newton–Leibniz formula reduces the calculation of an indefinite integral to find-
ing the values of its primitive. Since the problem of finding a primitive is intrinsically a 
difficult one, other methods of finding definite integrals are of great importance, among 
which one should mention the method of residues and the method of differentiation or 
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integration with respect to the parameter of a parameter-dependent integral. Numer-
ical methods for the approximate computation of integrals have also been developed.

Generalizing the notion of an integral to the case of unbounded functions and to the 
case of an unbounded interval leads to the notion of the improper integral, which is 
defined by yet one more limit transition.

The notions of the indefinite and the definite integral carry over to complex-valued 
functions. The representation of any holomorphic function of a complex variable in the 
form of a Cauchy integral over a contour played an important role in the development 
of the theory of analytic functions.

The generalization of the notion of the definite integral of a function of a single variable 
to the case of a function of several variables leads to the notion of a multiple integral.

For unbounded sets and unbounded functions of several variables, one is led to the 
notion of the improper integral, as in the one-dimensional case.

The extension of the practical applications of integral calculus necessitated the intro-
duction of the notions of the curvilinear integral, i.e. the integral along a curve, the 
surface integral, i.e. the integral over a surface, and more generally, the integral over 
a manifold, which are reducible in some sense to a definite integral (the curvilinear 
integral reduces to an integral over an interval, the surface integral to an integral over 
a (plane) region, the integral over an n-dimensional manifold to an integral over an 
n-dimensional region). Integrals over manifolds, in particular curvilinear and surface 
integrals, play an important role in the integral calculus of functions of several vari-
ables; by this means a relationship is established between integration over a region and 
integration over its boundary or, in the general case, over a manifold and its boundary. 
This relationship is established by the Stokes formula, which is a generalization of the 
Newton–Leibniz formula to the multi-dimensional case.

Multiple, curvilinear and surface integrals find direct application in mathematical 
physics, particularly in field theory. Multiple integrals and concepts related to them are 
widely used in the solution of specific applied problems. The theory of cubature formu-
las has been developed for the numerical calculation of multiple integrals.

The theory and methods of integral calculus of real- or complex-valued functions of a 
finite number of real or complex variables carry over to more general objects. For ex-
ample, the theory of integration of functions whose values lie in a normed linear space, 
functions defined on topological groups, generalized functions, and functions of an in-
finite number of variables (integrals over trajectories). Finally, a new direction in inte-
gral calculus is related to the emergence and development of constructive mathematics.

Integral calculus is applied in many branches of mathematics (in the theory of differ-
ential and integral equations, in probability theory and mathematical statistics, in the 
theory of optimal processes, etc.), and in applications of it.
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Riemann Integral

The Riemann integral is the definite integral normally encountered in calculus texts 
and used by physicists and engineers. Other types of integrals exist (e.g., the Lebesgue 
integral), but are unlikely to be encountered outside the confines of advanced mathe-
matics texts. In fact, according to Jeffreys and Jeffreys, “it appears that cases where 
these methods [i.e., generalizations of the Riemann integral] are applica-ble and 
Riemann’s [definition of the integral] is not are too rare in physics to repay the extra 
difficulty.”

The Riemann integral is based on the Jordan measure, and defined by taking a limit of 
a Riemann sum,

*

max 0 1

* *

max 0 1

* * *

max 0 1

( ) lim ( )

( , ) lim ( , )

( , , ) lim ( , , ) ,

k

k

k
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k ka x k

n

k k kA k

n

k k k kV k

f x dx f x x

f x y dA f x y A

f x y z d V f x y z V

∆ →
=

∆ →
=

∆ →
=

≡ ∆

≡ ∆

≡ ∆

∑∫

∑∫∫

∑∫∫∫

where a x b≤ ≤ and *
kx , *

ky , and *
kz  are arbitrary points in the intervals kx∆ , ky∆ , and 

kz∆ , respectively. The value max kx∆  is called the mesh size of a partition of the interval 
[ , ]a b  into subintervals kx∆ .

As an example of the application of the Riemann integral definition, find the area 
under the curve ry x=  from 0 to a . Divide (0, )a  into n  segments, so /kx a n h∆ = ≡ , 
then,

1

2

3

( ) (0) 0

( ) ( )

( ) (2 ) (2 )

r
k

r
k

f x f
f x f x h
f x f x h

= =

= ∆ =

= ∆ = .

By induction,

( ) ([ 1] ) [( 1) ] ( 1)r r r
k kf x f k x k h h k= − ∆ = − = − ,

So,

1

1

1 1

( ) ( 1)
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k k
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+

= =

∆ = −
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For example, take 2r = .

3 2

1 1

3 2

1 1 1

3

( ) ( 1)

2 1

( 1)(2 1) ( 1)2 ,
6 2

n n

k k
k k

n n n

k k k

f x x h k

h k k

n n n n nh n

= =

= = =

∆ = −

 = − + 
 

+ + + = − +  

∑ ∑

∑ ∑ ∑

So,
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≡ ∆ = ∆

+ + + = − +  
+ + + = − +  

=

∑ ∑

Lebesgue Integral

Lebesgue integral refers to the way of extending the concept of area inside a curve to 
include functions that do not have graphs representable pictorially. The graph of a func-
tion is defined as the set of all pairs of x- and y-values of the function. A graph can be 
represented pictorially if the function is piecewise continuous, which means that the in-
terval over which it is defined can be divided into subintervals on which the function has 
no sudden jumps. Because the Riemann integral is based on the Riemann sums, which 
involve subintervals, a function not definable in this way will not be Riemann integrable.

For example, the function that equals 1 when x is rational and equals 0 when x is ir-
rational has no interval in which it does not jump back and forth. Consequently, the 
Riemann sum,

1 1 2 2)f  ( ) ( ( ) x   f x  f xn nc c c∆ + ∆ + + ∆

has no limit but can have different values depending upon where the points c are cho-
sen from the subintervals x∆ .

Lebesgue sums are used to define the Lebesgue integral of a bounded function by par-
titioning the y-values instead of the x-values as is done with Riemann sums. Associated 
with the partition,
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0 1 2{ } ( )  , , , , i ny y y y y= …

are the sets iE  composed of all x-values for which the corresponding y-values of the 
function lie between the two successive y-values 1iy − and iy . A number is associated 
with these sets iE , written as )( im E  and called the measure of the set, which is simply 
its length when the set is composed of intervals. The following sums are then formed:

0 1 1 2   1( ) ( )      ( )n nS m E y m E y m E y−= + + +

and

0 0 1 1   1   1( ) ( ) (      )n ns m E y m E y m E y− −= + + + .

As the subintervals in the y-partition approach 0, these two sums approach a common 
value that is defined as the Lebesgue integral of the function.

The Lebesgue integral is the concept of the measure of the sets iE  in the cases in which 
these sets are not composed of intervals, as in the rational/irrational function above, 
which allows the Lebesgue integral to be more general than the Riemann integral.

Contour Integrals

Contour integration is the process of calculating the values of a contour integral around 
a given contour in the complex plane. As a result of a truly amazing property of holo-
morphic functions, such integrals can be computed easily simply by summing the val-
ues of the complex residues inside the contour.

Let ( )P x  and ( )Q x  be polynomials of polynomial degree n  and m  with coefficients 
0, ,nb b  and 0, ,mc c . Take the contour in the upper half-plane, replace x  by z , and 

write iz R e θ= . Then,

, , .f g and h

Define a path Rγ  which is straight along the real axis from R−  to R  and make a circular 
half-arc to connect the two ends in the upper half of the complex plane. The residue 
theorem then gives,
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0

I[ ] 0
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∫
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where [ ]Res z denotes the complex residues. Solving,

0
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∫

∫

∫





and set,

( 1 )n m∈ ≡ − + − ,

then equation becomes,

( )

0
lim i n mn

R R
m

biI e d
R c

π
θ−

∈→∞
= ∫

Now,

lim 0
R

R−∈

→∞
=

for 0∈>  That means that for 1 1n m− − + ≥ , or 2, Rm n I≥ + , so

I[ ] 0

( ) ( )2 Res
( ) ( )z

P z dz P zi
Q z Q z

π
∞

−∞
>

 
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 
∑∫
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For 2m n≥ + . Apply Jordan’s lemma with ( ) ( ) / ( )f x P x Q x≡ . We must have

lim ( ) 0
x

f x
→∞

= ,

so we require 1m n≥ + .

Then,

I[ ] 0

( ) ( )2 Res
( ) ( )

iaz iaz

z

P z dz P ze i e
Q z Q z

π
∞

−∞
>

 
=  

 
∑∫

for 1m n≥ +  and 0a > . Since this must hold separately for real and imaginary parts, 
this result can be extended to,

I[ ] 0

I[ ] 0

( ) ( )cos ( ) 2 R Res
( ) ( )

( ) ( )sin ( ) 2 Res .
( ) ( )
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z
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z

P z P zax dx e
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P z P zax dx e
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∞
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>

  
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  
  

= Ι   
  

∑∫

∑∫

Vector Calculus

Vector calculus is concerned with differentiation and integration of vector fields, pri-
marily in 3-dimensional Euclidean space The term “vector calculus” is sometimes used 
as a synonym for the broader subject of multivariable calculus.

Scalars are quantities that only have a magnitude like mass, speed, and electric field 
strength. Many times it is often useful to have a quantity that has not only a magnitude 
but also a direction; such a quantity is called a vector. Examples of quantities repre-
sented by vectors include velocity, acceleration, and virtually any type of force (friction-
al, gravitational, electric, magnetic, etc.). Note that all of these quantities not only have 
a magnitude (such as speed - the madnitude of the velocity vector) but also occur or act 
in a given direction.

As an example of when vectors are necessary, suppose a plane traveling at 300 mph to 
the north with no wind present encounters a westerly crosswind of 50 mph. The resul-
tant velocity of the plane is the sum of the velocities of the wind and the plane. To find 
this resultant velocity, we must use vectors.

We represent vectors with ordered pairs in pointed brackets to distinguish them from 
ordered pairs in normal parentheses which represent points. The vector <1,4> is a 
two-dimensional vector, or directed line segment, from any point (x,y) to the point 
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(x+1,y+4). Likewise, the vector <a,b,c> is a three-dimensional vector from any point 
(x,y,z) to the point (x+a,y+b,z+c). It is important to remember that a vector is indepen-
dent of its position in the coordinate system.

The magnitude (or length) of a vector v with initial point (x_1,y_1,z_1) and terminal 
point (x_2,y_2,z_2) is,

( ) ( ) ( )2 2 2
2 1 2 1 2 1v x x y y z z= − + − + −



Vectors obey the natural intuitive laws of addition and scalar multiplication:

1 1 2 2 1 2, 1 2, , ,d ,dyx y d x y x x yε ε ε< > + < >=< >

The figures below illustrate the operations of addition and scalar multiplication in the 
two-dimensional case.

Addition of vectors Scalar Multiplication

The vectors i=<1,0,0>, j=<0,1,0>, and k=<0,0,1> are special since the have unit length 
and point in the directions of the x-, y-, and z-axes. Any vector in three dimensions can 
be represented as a linear combination of these three vectors:

, , 1,0,0 0,1,0 0,0,1x y z x y z< >= < > + < > + < >

The x-, y-, and z-components of a vector are the vectors x<1,0,0>, y<0,1,0>, and 
z<0,0,1>, respectively.

Example

The vector from the origin to a point P=(x,y,z) has a special name. It is called the posi-
tion vector of the point since it describes the position of the point relative to the origin.

Example

To solve the example given above involving the plane, we define the direction <1,0> to 
be east and the direction <0,1> to be north and thus represent the velocity of the plane 
by p=<300,0> and the velocity of the wind by w=<0,-50>. The resultant velocity of 
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the plane is the sum of these two vectors: r=<300,0>+<0,-50>=<300,-50>. Thus, the 
plane actually travels in a direction to the west of north.

The vertical component of this resultant vector is 300<0,1> and the horizontal compo-
nent is -50<1,0>. Using the figure above we see that tan(θ)=-50/300=-1/6 which im-
plies theta=-9.5 degrees. Thus, using the diagram as a guide, we see that the resulting 
motion of the plane is 9.5 degrees west of north.

Vectors can be represented in other coordinate systems. For the spherical coordinate 
system, instead of the components of a vector being in the x-, y-, and z-directions, the 
components would be in the rho-, theta-, and phi-directions. <1,0,0> would be the unit 
vector in the rho-direction. Although the formula for the magnitude of a vector is much 
simpler since it is just the magnitude of the rho-component.

Vector Functions

A vector function covers a set of multidimensional vectors at the intersection of the 
domains of , , .f g and h  

Vector valued functions, also called vector functions, allow you to express the position 
of a point in multiple dimensions within a single function. These can be expressed in an 
infinite number of dimensions, but are most often expressed in two or three. The input 
into a vector valued function can be a vector or a scalar. In this atom we are going to 
introduce the properties and uses of the vector valued functions.

Properties of Vector Valued Functions

A vector valued function allows you to represent the position of a particle in one or more 
dimensions. A three-dimensional vector valued function requires three functions, one 
for each dimension. In Cartesian form with standard unit vectors (i,j,k), a vector valued 
function can be represented in either of the following ways:

( ) ( ) ( ) ( )r i j kt f t g t h t= + +

( ) ( ) ( ) ( )r , ,t f t g t h t= 〈 〉
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where t is being used as the variable. This is a three dimensional vector valued function. 
The graph shows a visual representation of-

( ) ( ) ( )r 2cos ,4sin ,t t t t= 〈 〉

Vector-Valued Function: This a graph of a parametric curve (a simple vector-valued  
function with a single parameter of dimension 1.) The graph is of the curve:  

2cos(t), 4sin(t), t〈 〉 where t  goes from 0 to 8π .

This can be broken down into three separate functions called component functions:

( ) ( ) ( ) ( ) ( )2cos 4sin .x t t y t t z t t= = =

If you were to take a cross section, with the cut perpendicular to any of the three axes, 
you would see the graph of that function. For example, if you were to slice the three-di-
mensional shape perpendicular to the z -axis,the graph you would see would be of the 
function ( )z t t= . The domain of a vector valued function is a domain that satisfies all 
of the component functions. It can be found by taking the intersection of the individual 
component function domains. The vector valued functions can be manipulated in the 
same way as a vector; they can be added, subtracted, and the dot product and the cross 
product can be found.

Example

For this example, we will use time as our parameter. The following vector valued func-
tion represents time, t :

( ) ( ) ( ) ( )r i j kt f t g t h t= + +

This function is representing a position. Therefore, if we take the derivative of this 
function, we will get the velocity:

( ) ( ) ( ) ( )

( )

r
i ' j' k '

d t
f t g t h t

dt
v t

= + +

=
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If we differentiate a second time, we will be left with acceleration:

( ) ( )v
a

d t
t

dt
=

Arc Length and Speed

Arc length and speed are, respectively, a function of position and its derivative with 
respect to time.

Since length is a magnitude that involves position, it is easy to deduce that the deriva-
tive of a length, or position, will give you the velocity —also known as speed—of a func-
tion. This is because a derivative gives you a rate of change with respect to a parameter. 
Velocity is the rate of change of a position with respect to time. Let’s start this atom by 
looking at arc length with calculus.

Arc Length

The arc length is the length you would get if you took a curve, straightened it out, and 
then measured the length of that line. The arc length can be found using geometry, but 
for the sake of this atom, we are going to use integration. The arc length is approxi-
mated by connecting a finite number of points along and curve, connecting those lines 
to create a a string of very small straight lines, and adding them together. To find this 
using integration, we should start out by using the Pythagorean Theorem for length of 
the different sides of a triangle:

( )

2

2
2 2 2

2

2

2

2

2

21

1

1

1
b

a

dsds dx dy
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dy ds
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= +

= + ⋅

= + ⋅∫
where is the arc length. If ( )x X t  and ( ) ,y Y t=

( )

( ) ( )

2
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∫
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( )

( ) ( )

2

21 1

2 2

2 2

1 '
b

a

b

a

b

a

b

a

s f x dx

X t Y t dt
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dx dy dt
dt dt

= + ⋅⋅⋅
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∫

∫

∫

∫

Since this is a function of position and is defined by x, we need to have a derivative that 
is in respect to x:

2

1
b

a

dy dx
dx

+ ∗∫

( )r f θ=

Curves and the Pythagorean Theorem: For a small piece of curve, 
∆s can be approximated with the Pythagorean theorem.

Arc Length: The arc length is the equivalent of taking a curve,  
straightening it out, and then measuring it.

Arc Speed

Now that the hard part is over, we can easily find the speed along this curve. Since 
speed is in relation to time and not position, we need to revert back to the arc length 
with respect to time:

2 2b

a

dx dy dt
dt dt

+ ⋅∫
Then, differentiate with respect to time:

( ) ( ) ( ) 221 1'v t s X t Y t   = +   
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Calculus of Vector-Valued Functions

A vector function is a function that can behave as a group of individual vectors and can 
perform differential and integral operations.

A vector-valued function, also referred to as a vector function, is a mathematical func-
tion of one or more variables whose range is a set of multidimensional vectors or in-
finite-dimensional vectors. The input of a vector-valued function could be a scalar or a 
vector. The dimension of the domain is not defined by the dimension of the range.

A common example of a vector valued function is one that depends on a single real 
number parameter t , often representing time, producing a vector ( )v t as the result. 
In terms of the standard unit vectors , ,i j k of Cartesian 3-space, these specific type of 
vector-valued functions are given by expressions such as:

( ) ( ) ( ) ( )r i,g j kt f t t h t= +

where ( ) ( ),f t g t , and ( )h t are the coordinate functions of the parameter t . The vector 

has its tail at the origin and its head at the coordinates evaluated by the function.

Vector functions can also be referred to in a different notation:

( ) ( ) ( ) ( )r ,g ,t f t t h t= 〈 〉

Vector valued function: This graph is a visual representation of the three-dimensional  
vector-valued function ( ) ( ) ( )2cos ,4sin ,r t t t t= 〈 〉 . This can be broken down into three  
separate functions called component functions: ( ) ( ) ( ) ( ) ( )2cos 4sinx t t y t t z t t= = = .

Vector calculus is a branch of mathematics that covers differentiation and integration 
of vector fields in any number of dimensions. Because vector functions behave like in-
dividual vectors, you can manipulate them the same way you can a vector. Vector cal-
culus is used extensively throughout physics and engineering, mostly with regard to 
electromagnetic fields, gravitational fields, and fluid flow. When taking the derivative 
of a vector function, the function should be treated as a group of individual functions.

Vector functions are used in a number of differential operations, such as gradient (mea-
sures the rate and direction of change in a scalar field), curl (measures the tendency of 
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the vector function to rotate about a point in a vector field), and divergence (measures 
the magnitude of a source at a given point in a vector field).

Arc Length and Curvature

The curvature of an object is the degree to which it deviates from being flat and can be 
found using arc length.

Arc Curvature

The curvature of an arc is a value that represents the direction and sharpness of a curve. 
On any curve, there is a center of curvature, C. This is the intersection point of two in-
finitely close normals to this curve. The radius, R, is the distance from this intersection 
point to the center of curvature.

Curvature: Curvature is the amount an object deviates from being flat. Given any curve  
C and a point P on it, there is a unique circle or line which most closely approximates the  

curve near P\. The curvature of C at P is then defined to be the curvature of that circle  
or line. The radius of curvature is defined as the reciprocal of the curvature.

In order to find the value of the curvature, we need to take the parameter time, s, and 
the unit tangent vector, which in this case is the same as the unit velocity vector, T, 
which is also a function of time.The curvature is a magnitude of the rate of change of 
the tangent vector, T:

dTk
ds

= 

Where κ is the curvature and 
dT
ds

is the acceleration vector (the rate of change of the 
velocity vector over time).

relation between Curvature and Arc Length

The curvature can also be approximated using limits. Given the points P and Q on 
the curve, lets call the arc length s(P,Q), and the linear distance from P to Q will be 
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denoted as d(P,Q). The curvature of the arc at point P can be found by obtaining the 
limit:

( ) ( ) ( )( )
( )3

24 ,Q ,Qlim
Q P ,Q

s P d P
P

s P
κ

∗ −
=

→

In order to use this formula, you must first obtain the arc length of the curve from 
points P to Q and length of the linear segment that connect points P and Q.In Cartesian 
coordinates:

2

1
b

a

dy dx
dx

+ ∗∫

Tangent Vectors and Normal Vectors

A vector is normal to another vector if the intersection of the two form a 90-degree 
angle at the tangent point.

In order for a vector to be normal to an object or vector, it must be perpendicular with 
the directional vector of the tangent point. The intersection formed by the two objects 
must be a right angle.

Normal Vectors

An object is normal to another object if it is perpendicular to the point of reference. 
That means that the intersection of the two objects forms a right angle. Usually, these 
vectors are denoted as n.

Figure: Normal Vector: These vectors are normal to the plane because the 
intersection between them and the plane makes a right angle.

Not only can vectors be ‘normal’ to objects, but planes can also be normal.
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Figure: Normal Plane: A plane can be determined as normal to the object if the directional vector of the 
plane makes a right angle with the object at its tangent point. This plane is normal to the point on the 

sphere to which it is tangent. Each point on the sphere will have a unique normal plane.

Dot Product

As we covered in another atom, one of the manipulations of vectors is called the Dot 
Product. When you take the dot product of two vectors, your answer is in the form of a 
single value, not a vector. In order for two vectors to be normal to each other, the dot 
product has to be zero.

1 1 2 2 3 3

a b=0
=a b +a b +a b

a b cosθ

•

=

Tangent Vectors

Tangent vectors are almost exactly like normal vectors, except they are tangent instead 
of normal to the other vector or object. These vectors can be found by obtaining the 
derivative of the reference vector, ( )r t

( ) ( ) ( ) ( )r i g j kt f t t h t= + +

Gradient and Directional Derivative

The gradient of a function w=f(x,y,z) is the vector function:

( , , ), ( , , ), ( , , )f f ff grad f x y z x y z x y z
x y z
∂ ∂ ∂

∇ = =< >
∂ ∂ ∂

For a function of two variables z=f(x,y), the gradient is the two-dimensional vector 
<f_x(x,y),f_y(x,y)>. This definition generalizes in a natural way to functions of more 
than three variables.
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Examples

For the function z=f(x,y)=4x^2+y^2. The gradient is,

8 ,2 .grad f x y=< >

For the function w=g(x,y,z)=exp(xyz)+sin(xy), the gradient is

( ) ( )cos , cos ,xyz xyz xyzgrad g yze y xy xze x xy xye=< + + >.

Geometric Description of the Gradient Vector

There is a nice way to describe the gradient geometrically. Consider 2 2( , ) 4z f x y x y= = + . 
The surface defined by this function is an elliptical paraboloid. This is a bowl-shaped 
surface. The bottom of the bowl lies at the origin. The figure below shows the level 
curves, defined by f(x,y)=c, of the surface. The level curves are the ellipses 2 24x y c+ = .

The gradient vector <8x,2y> is plotted at the 3 points (sqrt(1.25),0), (1,1), (0,sqrt(5)). 
As the plot shows, the gradient vector at (x,y) is normal to the level curve through 
(x,y). As we will see below, the gradient vector points in the direction of greatest rate of 
increase of f(x,y)

In three dimensions the level curves are level surfaces. Again, the gradient vector at 
(x,y,z) is normal to level surface through (x,y,z).

Directional Derivatives

For a function z=f(x,y), the partial derivative with respect to x gives the rate of change 
of f in the x direction and the partial derivative with respect to y gives the rate of change 
of f in the y direction. How do we compute the rate of change of f in an arbitrary direc-
tion?

The rate of change of a function of several variables in the direction u is called the di-
rectional derivative in the direction u. Here u is assumed to be a unit vector. Assuming 
w=f(x,y,z) and u=<u_1,u_2,u_3>, we have
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1 2 3grad . .u
f f fD f f u u u u
x y y
∂ ∂ ∂

= = + +
∂ ∂ ∂

Hence, the directional derivative is the dot product of the gradient and the vector u. 
Note that if u is a unit vector in the x direction, u=<1,0,0>, then the directional deriva-
tive is simply the partial derivative with respect to x. For a general direction, the direc-
tional derivative is a combination of the all three partial derivatives.

Example

What is the directional derivative in the direction <1,2> of the function z=f(x,y)=4x-
^2+y^2 at the point x=1 and y=1. The gradient is <8x,2y>, which is <8,2> at the point 
x=1 and y=1. The direction u is <2,1>. Converting this to a unit vector, we have <2,1>/
sqrt(5). Hence,

2 1 18grad 8,2 . , .
5 5 5uD f f u= ⋅ =< > < >=

Directions of Greatest Increase and Decrease

The directional derivative can also be written:

grad grad cosuD f f u f u θ= ⋅ =

where theta is the angle between the gradient vector and u. The directional derivative 
takes on its greatest positive value if theta=0. Hence, the direction of greatest increase 
of f is the same direction as the gradient vector. The directional derivative takes on its 
greatest negative value if theta=pi (or 180 degrees). Hence, the direction of greatest 
decrease of f is the direction opposite to the gradient vector.

Curl

The curl of a vector field, denoted ( )curl F  or F∇×  (the notation used in this work), 
is defined as the vector field having magnitude equal to the maximum “circulation” at 
each point and to be oriented perpendicularly to this plane of circulation for each point. 
More precisely, the magnitude of F∇×  is the limiting value of circulation per unit area. 
Written explicitly,

( )
0

F d s
ˆF .n lim .C

A A→

⋅
∇× ≡ ∫ .

where the right side is a line integral around an infinitesimal region of area A  that is 
allowed to shrink to zero via a limiting process and n̂  is the unit normal vector to this 
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region. If F 0∇× = , then the field is said to be an irrotational field. The symbol ∇  is 
variously known as “nabla” or “del.”

The physical significance of the curl of a vector field is the amount of “rotation” or an-
gular momentum of the contents of given region of space. It arises in fluid mechanics 
and elasticity theory. It is also fundamental in the theory of electromagnetism, where it 
arises in two of the four Maxwell equations,

0 0 0

E

EB J ,

t

t

B

µ µ

∂
∇× = −

∂
∂

∇× = +∈
∂

where MKS units have been used here, E  denotes the electric field, B  is the magnetic 
field, 0µ  is a constant of proportionality known as the permeability of free space, J  is 
the current density, and 0∈ is another constant of proportionality known as the per-
mittivity of free space. Together with the two other of the Maxwell equations, these 
formulas describe virtually all classical and relativistic properties of electromagnetism.

In Cartesian coordinates, the curl is defined by,

ˆ ˆ ˆF x y .y yx xZ z
F FF FF F z

y z z x x y
∂ ∂   ∂ ∂∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

This provides the motivation behind the adoption of the symbol ∇×  for the curl, since 
interpreting ∇  as the gradient operator ( ), ,x y z∇ = ∂ ∂ ∂ ∂ ∂ ∂ , the “cross product” of 
the gradient operator with F  is given by,

ˆ ˆ ˆx y

F ,

x y z

z

x y z
F F F

∂ ∂ ∂
∇× =

∂ ∂ ∂

which is precisely equation (4). A somewhat more elegant formulation of the curl is 
given by the matrix operator equation,

0

F 0 F

0

z y

z x

y x

∂ ∂
−
∂ ∂

∂ ∂
∇× = −

∂ ∂
∂ ∂

−
∂ ∂



139

Calculus

The curl can be similarly defined in arbitrary orthogonal curvilinear coordinates using

1 1 2 2 3 3ˆ ˆ ˆF u u uF F F≡ + +

and defining,

r ,i
i

h
u
∂

≡
∂

As,

}
1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3

3 3 2 2 1
2 3 2 3 1 3

1 1 3 3 2 2 2 1 1 3
3 1 1 2 1 2

ˆ ˆ ˆu u u
1F

1 1ˆ( ) ( )

1ˆ ˆ( ) ( ) ( ) ( ) .

h h h

h h h u u u
h F h F h F

h F h F u
h h u u h h

h F h F u h F h F u
u u h h u u

∂ ∂ ∂
∇× =

∂ ∂ ∂

 ∂ ∂
= − + ∂ ∂ 

   ∂ ∂ ∂ ∂
− + −   ∂ ∂ ∂ ∂  

The curl can be generalized from a vector field to a tensor field as,

( ) : ,a a
yA Aµν
µ∇× =∈

where ijk∈  is the permutation tensor and “;” denotes a covariant derivative.

Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus justifies the procedure of evaluating an antide-
rivative at the upper and lower limits of integration and taking the difference.

The First Fundamental Theorem of Calculus

We have learned about indefinite integrals, which was the process of finding the an-
tiderivative of a function. In contrast to the indefinite integral, the result of a definite 
integral will be a number, instead of a function. The definite integral of a function 
is the signed area under the graph of the function, and is expressed in the form of 

( ) :
b

a
f x dx∫



140

Introductory Mathematics

Now, suppose that we formed an area function S(x) in such a way that it is dependent 
on the function f(x) as,

( ) ( ) ,
x

a
S x f x dt= ∫

where f is continuous on the interval [a,b]. Now, suppose we wanted to find the the rate 
of change of the area with respect to x,

We can see from the figure above that the area of the shaded region is equal to the area 
under the curve f(t) from a x+Δx minus the area under f(t) from a to x. Thus,

( ) ( )
( ) ( ) .

S A x x A x

A x x A xS
x x

∆ = + ∆ −

+ ∆ −∆
=

∆ ∆
So, the rate of change of area becomes,

( ) ( ) ( )
0

' lim .
x

S x x S xdsS x
dx x∆ →

+ ∆ −
= =

∆
We know that there is an x  found between x and x+Δx such that the area of the shaded 
region is equal ( )f x x∆ :

( ) ( ) ( )

( )

( )
( )

0

0

0

' lim

lim

lim

.

x

x

x

S x x S x
S x

x
f x x

x
f x

f x

∆ →

∆ →

∆ →

+ ∆ −
=

∆
∆

=
∆

=

=
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The last step is true because, as 0,x∆ →  anything found between x and x x+ ∆ ap-
proaches x. So, now we are ready to state the first fundamental theorem of calculus.

If f is continuous on [a,b], then the function defined by,

( ) ( )
x

a
S x f t dt= ∫

is continuous on[a,b] and differentiable on a,b), and S′(x)=f(x). 

So basically integration is the opposite of differentiation. More clearly, the first funda-
mental theorem of calculus can be rewritten in Leibniz notation as,

( ) ( ).
x

a

d f t dt f x
dx

=∫

Find the derivative of ( ) ( )
2

4 .
x tk x t dt= +∫

The function f  is continuous, so from the first fundamental theorem of calculus we have,

( )' 4 .xk x x= +

What is the derivative of ( )
2

22

1 ?
1

x
h x dt

t
=

+∫
We use the first fundamental theorem of calculus in accordance with the chain-rule to 
solve this.

2Let , thenu x=

2

2 22 1

2

4

1 1 ,
1 1

1 .2
1

2 .
1

x ud d dudt dt
dx t du t dx

x
u
x
x

 =  + + 

=
+

=
+

∫ ∫

Find the derivative of 
2

2
cos .

x
t dt∫

Again, we use the chain rule along with the fundamental theorem of calculus to solve 
this.

2Let , thenu x=
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( )

2

1 1

2

2

cos cos .

cos .

cos .2
2 cos .

x ud dut dt t dt
du dx

du x
dx

u x
x x

 =   

=

=

=

∫ ∫

Find the derivative of ( )
3

sin
x

x
h x dθ θ= ∫

We use the following property of integrals:

( ) ( ) ( )
0

0
.

a a

b b
f x dx f x dx f x dx= +∫ ∫ ∫

So,

( )
3

0 3

0

3

0 0

0

' sin

sin sin

sin sin

sin sin .

sin 3sin 3 .

x

x

x

x

x x

u

dh x d
dx
d dd d
dx dx
d dd d
dx dx

d dux d
du dx

x x

θ θ

θ θ θ θ

θ θ θ θ

θ θ

=

= +

= − +

= − +

= − +

∫

∫ ∫

∫ ∫

∫

Second Fundamental Theorem of Calculus

If f is a continuous function on[a,b], then

( ) ( ) ( ) ,
b

a
f x dx F b F a= −∫

where F is an anti-derivative of f, i.e. F′=f. 

We know from the first fundamental theorem of calculus that if ( ) ( )
x

a
s x f x dt= ∫ then S is 

an anti- derivative of f or S′(x)=f(x). And since,F′(x)=f(x),

( ) ( ).S x F x′ ′=

Integrating both sides with respect to x, we have
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( ) ( )( ) ,
x

a
S x f t dt F x C= = +∫

where C is some constant.

Now, plugging in x=a in this equation, we have

( ) ( )( ) .
a

a
S a f t dt F a C= = +∫

By definition, ( ) ( ) 0,
a

a
S a f t dt= =∫ and hence

( )
( )

0

.

F a C

C F a

+ =

⇒ = −

Plugging in C=−F(a) back in the equation( ( ) ( )( ) ,
x

a
S x f t dt F x C= = +∫ ), we have

( ) ( )( ) ( ) .
x

a
S x f t dt F x F a= = −∫

Finally, setting x=b, we have

( ) ( ) ( )

( ) ( )

( )

( ) .

b

a
b

a

S b f t dt F b F a

f x dx F b F a

= = −

⇒ = −

∫
∫

We could also prove the above theorem using the concept of Riemann sums.

We know from the first fundamental theorem of calculus that if ( ) ( ) ,
x

a
S x f t dt= ∫  then 

S is an anti-derivative of f or ( ) ( )'S x f x=  So we know that ( ) .( )  f x F x= ′  Consider 
a partition 0 1 2{ }P a x x x xn b= = < < < < =  With this partition as reference, we can 
write,

( ) ( )
1

1
0

( ) ( ) .
n

i i
i

F b F a F x F x
−

+
=

− = −  ∑

This is now the neater part of the proof. 10,1, 2, , 1  ( , )i i ii n t x x +∀ = … − ∃ ∈  such that 
1 1 1( ) ( ) ( )( ) ( )( ).i i i i i i i iF x F x F t x x f t x x+ + +− = ′ − = −  This is direct implication of the mean 

value theorem. So now what we have is,

1

1 1
0

( ) ( ) ( )( ) .( );  ,
n

i i i i i i
i

F b F a f t x x t x x
−

+ +
=

− = − ∈∑

The right-hand side of the expression is nothing but the Riemann sum which will even-
tually converge to definite integral as the partition P gets finer and finer:
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( . ( ) ( ) )
b

a
F b F a f t dt− = ∫

This theorem transforms the difficult problem of evaluating definite integrals by cal-
culating limits of sums, into an easier problem of finding an anti-derivative. So for 

example if we are asked to compute the integral ( ) ,
b

a
f x dx∫ we find an anti-derivative 

of f(x) and compute their value at each end-point of the integral, and finally subtract 
them from each other.
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6
Differential Equations
A mathematical equation that relates some function with its derivatives is known as a 
differential equation. Ordinary differential equations, partial differential equation 
and non-linear differential equation are the common types of differential equations. 
The diverse applications of differential equation in the current scenario have been 
thoroughly discussed in this chapter.

Differential equation is mathematical statement containing one or more derivatives—
that is, terms representing the rates of change of continuously varying quantities. Dif-
ferential equations are very common in science and engineering, as well as in many 
other fields of quantitative study, because what can be directly observed and measured 
for systems undergoing changes are their rates of change. The solution of a differential 
equation is, in general, an equation expressing the functional dependence of one vari-
able upon one or more others; it ordinarily contains constant terms that are not present 
in the original differential equation. Another way of saying this is that the solution of a 
differential equation produces a function that can be used to predict the behaviour of 
the original system, at least within certain constraints.

Differential equations are classified into several broad categories, and these are in 
turn further divided into many subcategories. The most important categories are or-
dinary differential equations and partial differential equations. When the function 
involved in the equation depends on only a single variable, its derivatives are ordi-
nary derivatives and the differential equation is classed as an ordinary differential 
equation. On the other hand, if the function depends on several independent vari-
ables, so that its derivatives are partial derivatives, the differential equation is classed 
as a partial differential equation. The following are examples of ordinary differential 
equations:

2
2

2

2 3 2

3 2

,

1 3 0.

dy ky
dt

d ym k y
dt

dy d y dy d y
dx dx dx dx

= −

= −

    + − =    
     

In these, y stands for the function, and either t or x is the independent variable. The 
symbols k and m are used here to stand for specific constants.
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Whichever the type may be, a differential equation is said to be of the nth order if it 
involves a derivative of the nth order but no derivative of an order higher than this. The 
equation,

2 2 2
2

2 2 2

u u u uk
t x y z

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

is an example of a partial differential equation of the second order. The theories of or-
dinary and partial differential equations are markedly different, and for this reason the 
two categories are treated separately.

Instead of a single differential equation, the object of study may be a simultaneous 
system of such equations. The formulation of the laws of dynamics frequently leads to 
such systems. In many cases, a single differential equation of the nth order is advan-
tageously replaceable by a system of n simultaneous equations, each of which is of the 
first order, so that techniques from linear algebra can be applied.

An ordinary differential equation in which, for example, the function and the indepen-
dent variable are denoted by y and x is in effect an implicit summary of the essential 
characteristics of y as a function of x. These characteristics would presumably be more 
accessible to analysis if an explicit formula for y could be produced. Such a formula, 
or at least an equation in x and y (involving no derivatives) that is deducible from the 
differential equation, is called a solution of the differential equation.

Ordinary Differential Equation

An ordinary differential equation (frequently called an “ODE,” “diff eq,” or “diffy Q”) is 
an equality involving a function and its derivatives. An ODE of order n is an equation 
of the form,

( )( ), , ,... 0,nF x y y y′ =

where y is a function of , /x y d y d x′ = is the first derivative with respect to x , and 
( ) /n n ny d y d x= is the n th derivative with respect to x .

Let y be an unknown function,

:y → 

in x with ( )iy  the i-th derivative of y , then a function

(1) ( 1) ( )( , , , , )n nF x y y y y−… =
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is called an ordinary differential equation (ODE) of order (or degree) n . For vector 
valued functions,

 : my → 

we call F  a system of ordinary differential equations of dimension  m .

A function y  is called a solution of F . A general solution of an nth-order equation is a 
solution containing n  arbitrary variables, corresponding to n constants of integration. 
A particular solution is derived from the general solution by setting the constants to 
particular values. A singular solution is a solution that can’t be derived from the general 
solution.

When a differential equation of order n has the form,

( )( ), , , , , 0nF x y y y y′ ′′ … =

it is called an implicit differential equation whereas the form,

( )( 1) ( ), , , , , n nF x y y y y y−′ ′′ … =

is called an explicit differential equation.

A differential equation not depending on x is called autonomous.

A differential equation is said to be linear if F can be written as a linear combination 
of the derivatives of y ,

1
( ) ( )

1
( ) ( )

n
n i

i
i

y a x y r x
−

=

= +∑

with a ( )i x and ( ) r x continuous functions in x. ( 0)If r x = the we call the linear differen-
tial equation homogeneous otherwise we call it inhomogeneous.

Examples

Reduction of dimension

Given an explicit ordinary differential equation of order n and dimension 1,

( )( 1) ( ), , , , , n nF x y y y y y−′ ′′ … =

we define a new family of unknown functions

(  1) :   .n
ny y −=
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We can then rewrite the original differential equation as a system of differential equa-
tions with order 1 and dimension n.

( )

1 2

1, , y , .n n

y y

y F y x

′ =

′ = 



which can be written concisely in vector notation as

( , )x′ =y F y

with

: ( , , ).ny y= …y

Types of Ordinary Differential Equations

Ordinary differential equations which can be categorised by three factors:

•	 Linear vs. Non-linear.

•	 Homogeneous vs. Inhomogenous.

•	 Constant coefficents versus variable coefficients.

Information below provides methods for the solution of these differing ODEs:

Homogeneous Linear ODEs with Constant Coefficients

The first method of solving linear ordinary differential equations with constant coeffi-
cients is due to Euler, who realized that solutions have the form  zxe , for possibly-com-
plex values of z . Thus to solve,

1

1 1 0
n n

nn n

d y d yA A y
dx dx

−

−+ + + =

we set   zxy e= , leading to
1

1 0n zx n zx zx
nz e A z e A e−+ + + =

so dividing by zxe gives the nth-order polynomial
1

1( ) 0n n
nF z z A z A−= + + + =

In short the terms,

( 1,2, , ).
k

k

d y k n
dx

= 
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of the original differential equation are replaced by .kz  Solving the polynomial gives 
n values of 1, , , nz z z… . Plugging those values into iz xe gives a basis for the solution; any 
linear combination of these basis functions will satisfy the differential equation.

This equation 0(  ) F z = , is the “characteristic” equation considered later by Monge and 
Cauchy.

Example

2 2 2 0y y y y y′′′′ ′′′ ′′ ′− + − + =

has the characteristic equation

4 3 22 2 2 1 0.z z z z− + − + =

This has zeroes,  ,  , i i−  and 1 (multiplicity 2). The solution basis is then,

, , ., −ix ix x xe e e xe

This corresponds to the real-valued solution basis,

cos , sin , , .x xx x e xe

If z is a (possibly not real) zero of ( )F z  of multiplicity m  and {0,1, , 1}k m∈ … − then
k z xy x e= , is a solution of the ODE. These functions make up a basis of the ODE’s solu-

tions.

If the  iA are real then real-valued solutions are preferable. Since the non-real z values 
will come in conjugate pairs, so will their corresponding ys; replace each pair with their 
linear combinations Re(y) and Im(y).

A case that involves complex roots can be solved with the aid of Euler’s formula.

Example: Given  4 5 0y y y′′ ′− + = .The characteristic equation is 2 4 5 0z z− + = , which has 
zeroes 2 i+  and 2 i− . Thus the solution basis { }1 2,y y  is{ }(2 ) (2 ),i x i xe e+ − . 

Now y is a solution if 1 1 2 2y c y c y= + for 1 2, .c c ∈

Because the coefficients are real,

•	 We are likely not interested in the complex solutions

•	 Our basis elements are mutual conjugates

The linear combinations

21 2
1 1Re( ) cos( )

2
xy yu y e x+

= = =
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and

21 2
2 1Im( ) sin( )

2
xy yu y e x

i
−

= = =

will give us a real basis in 1 2 { , }u u .

Inhomogeneous Linear ODEs with Constant Coefficients

Suppose instead we face,

1

1 1 ( ).
n n

nn n

d y d yA A y f x
dx dx

−

−+ + + =

For later convenience, define the characteristic polynomial,

1
1( ) .n n

nP v v A v A−= + + +

We find the solution basis { }1 2, , , ny y y… as in the homogeneous (f=0) case. We now seek 
a particular solution py  by the variation of parameters method. Let the coefficients of 
the linear combination be functions of x :

1 1 2 2 .p n ny u y u y u y= + + +

Using the “operator” notation    /  D d dx= and a broad-minded use of notation, the ODE 
in question is ( )   ;P D y f=

so,

1 1 2 2( ) ( )( ) ( )( ) ( )( ).p n nf P D y P D u y P D u y P D u y= = + + +

With the constraints

1 1 2 2

1 1 2 2

0
0

n n

n n

u y u y u y
u y u y u y
′ ′ ′= + + +
′ ′ ′ ′ ′ ′= + + +





( 2) ( 2) ( 2)
1 1 2 20 n n n

n nu y u y u y− − −′ ′ ′= + + +

The parameters commute out, with a little “dirt”:

( 1) ( 1) ( 1)
1 1 2 2 1 1 2 2( ) ( ) ( ) .n n n

n n n nf u P D y u P D y u P D y u y u y u y− − −′ ′ ′= + + + + + + + 

But  ( 0)  jP D y = , therefore

( 1) ( 1) ( 1)
1 1 2 2 .n n n

n nf u y u y u y− − −′ ′ ′= + + +
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This, with the constraints, gives a linear system in the 'ju . This much can always be 
solved; in fact, combining Cramer’s rule with the Wronskian,

( )1 1 1 0

1 2

( , , , , )
( 1) .

( , , , )

j j n
fn j

j
n

W y y y y
u

W y y y

− +
+

… …
′ = −

…

The rest is a matter of integrating 'ju .

The particular solution is not unique; 1 1p n ny c y c y+ + +  also satisfies the ODE for any 
set of constants jc .

Example: Suppose ( )''   4 '   5   y y y sin kx− + = . We take the solution basis found above 

{ }2  2 ( ) ( ) , .i x i xe e+ −

(2 ) (2 )

(2 ) (2 )

4

4

 
(2 ) (2 )

1 1
2 2

2

i x i x

i x i x

x

x

e e
W

i e i e

e
i i

ie

+ −

+ −
=

+ −

=
+ −

= −

(2 )

1 (2 )

( 2 )

01
sin( ) (2 )

sin( )
2

i x

i x

i x

e
u

W kx i e
i kx e

−

−

− −

′=
−

= −

(2 )

2 (2 )

( 2 )

01
(2 ) sin( )

sin( ) .
2

i x

i x

i x

e
u

W i e kx
i kx e

+

+

− +

′ =
+

=

Using the list of integrals of exponential functions,

( 2 )
1 sin( )

2
i xiu kx e dx− −= − ∫

( )
( 2 )

2 (2 )sin( ) cos( )
2(3 4 )

i xie i kx k kx
i k

− −

= + +
+ +

( )

( 2 )
2

( 2)

2

sin( )
2

( 2)sin( ) cos( ) .
2(3 4 )

i x

i x

iu kx e dx

ie i kx k kx
i k

− +

−

=

= − −
− +

∫
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And so,

( ) ( )2 2

2

2 2

(2 )sin( ) cos( ) ( 2)sin( ) cos( )
2(3 4 ) 2(3 4 )

(5 )sin( ) 4 cos( ) .
(3 ) 16

p
i iy i kx k kx i kx k kx
i k i k

k kx k kx
k

= + + + − −
+ + − +

− +
=

+ +

( 1  u and 2u had factors that canceled 1y and 2y ; that is typical.)

For interest’s sake, this ODE has a physical interpretation as a driven damped harmon-
ic oscillator;  py represents the steady state, and c1y1 + c2y2is the transient.

First-order Linear ODEs

Example

3 2y y′ + =

with the initial condition

( )0 2.f =

Using the general solution method:

( )3 32x xf e e dx κ−= +∫ .

The integration is done from 0 to x, giving:

( )( )3 3 02 / 3x xf e e e κ−= − + .

Then we can reduce to:

( )3 32 / 3 1 .x xf e e κ− −= − +

For a first-order linear ODE, with coefficients that may or may not vary with x:

( ) ( ) ( ) ( )'     ′ + =y x p x y x r x

Then,

( )( ) ( )( )a x a xy e r x e dx κ−= +∫

Where κ is the constant of integration, and

( ) ( ) .a x p x dx= ∫
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This proof comes from Jean Bernoulli. 

Let,

′ + =y py r

Suppose for some unknown functions  ( ) u x and  ( )v x  that   .y uv=

Then,

y u v uv′ ′ ′= +

Substituting into the differential equation,

u v uv puv r′ ′+ + =

Now, the most important step: Since the differential equation is linear we can split this 
into two independent equations and write,

0u v puv
uv r
′ + =
′ =

Since v is not zero, the top equation becomes

0u pu′ + =

The solution of this is

pdxu e−∫=

Substituting into the second equation

pdxv re C∫= +∫

Since   ,y uv=  for arbitrary constant C

pdx pdxy e re C−  ∫ ∫= + 
 ∫

As an illustrative example, consider a first order differential equation with constant 
coefficients:

1.dy by
dx

+ =

This equation is particularly relevant to first order systems such as RC circuits and 
mass-damper systems.
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In this case, p(x) = b, r(x) = 1.

Hence its solution is

( )( ) 1 .bx bx bxy x e e b C b Ce− −= + = + .

Method of Undetermined Coefficients

The method of undetermined coefficients (MoUC), is useful in finding solution for py . 
Given the ODE ( ) ( )  ,P D y f x= find another differential operator A(D) such that A(D)
f(x) = 0. This operator is called the annihilator, and thus the method of undetermined 
coefficients is also known as the annihilator method. Applying ( )A D  to both sides of 
the ODE gives a homogeneous ODE ( ) ( ) 0( )A D P D y = for which we find a solution 
basis 1 { , , }ny y…  as before. Then the original nonhomogeneous ODE is used to construct 
a system of equations restricting the coefficients of the linear combinations to satisfy 
the ODE.

Undetermined coefficients is not as general as variation of parameters in the sense that 
an annihilator does not always exist.

Example: Given ( ) ( ) 2''   4 '   5   ,     4   5. y y y sin kx P D D D− + = = − + The simplest annihi-
lator of sin( )kx is ( ) 2 2    . A D D k= + The zeros of ( ) ( )A z P z are 2  ,2  , } { ,  i i ik ik+ − − , so the 

solution basis of ( ) ( )A D P D  is 2  2   
1 2 3

(
4

) ( ){ .,} { }, , ,   , ,  + − −= i x i x ikx ikxy y y y e e e e

Setting 1 1 2 2 3 3 4 4        y c y c y c y c y= + + +  we find

( ) ( )
( )( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1 2 3 3 4 4

1 1 2 2 3 3 4 4

2 2
3 3 4 4

2 2
3 4

sin  
       
       

 0  0      4   5       4   5

     4   5 cos   sin      4   5 cos   sin

kx P D y
P D c y c y c y c y
c P D y c P D y c P D y c P D y

c k ik y c k ik y

c k ik kx i kx c k ik kx i kx

=
= + + +
= + + +

= + + − − + + − + +

= − − + + + − + + −

giving the system

( ) ( )
( ) ( )

2 2
3 4

2 2
3 4

     4   5       4   5

0    4   5     4   5

i k ik c k ik c

k ik c k ik c

= + − + − + +

= + − + − −

which has solutions

3 42 2,
2( 4 5) 2( 4 5)

= =
+ − − + +

i ic c
k ik k ik
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Giving the solution set

1 1 2 2 3 42 2

2

1 1 2 2 2 2

2

1 1 2 2 4 2

2( 4 5) 2( 4 5)
4 cos( ) ( 5)sin( )
( 4 5)( 4 5)
4 cos( ) (5 )sin( ) .

6 25

i iy c y c y y y
k ik k ik

k kx k kxc y c y
k ik k ik
k kx k kxc y c y

k k

= + + +
+ − − + +

− −
= + +

+ − − −

+ −
= + +

+ +

Method of Variation of Parameters

The general solution to a non-homogeneous, linear differential equation ''   '  ( ) ( ) ( ) ( ) ( )  ( ) y x p x y x q x y x g x+ + = 
''   '  ( ) ( ) ( ) ( ) ( )  ( ) y x p x y x q x y x g x+ + = can be expressed as the sum of the general solution ( )hy x  

to the corresponding homogenous, linear differential equation ''   '  ( ) ( ) ( ) ( ) ( )  ( ) y x p x y x q x y x g x+ + =  
( ) ( )''   '( ) ( ) ( )   0y x p x y x q x y x+ + = and any one solution yp(x) to ( ) ( ) ( ) ( ) ( ) ( ) ( )  ''   '     .py x to y x p x y x q x y x g x+ + =

Like the method of undetermined coefficients, described above, the method of variation of 
parameters is a method for finding one solution to ( ) ( ) ( ) ( ) ( ) ( )''   '     ,y x p x y x q x y x g x+ + = ( ) ( ) ( ) ( ) ( ) ( )''   '     ,y x p x y x q x y x g x+ + =  
having already found the general solution to ( ) ( ) ( )''   '     0( ) ( .)y x p x y x q x y x+ + =  Unlike 
the method of undetermined coefficients, which fails except with certain specific forms 
of  ( ),g x the method of variation of parameters will always work; however, it is signifi-
cantly more difficult to use.

For a second-order equation, the method of variation of parameters makes use of the 
following fact:

Fact

Let , ( ) ( ),p x q x  and ( )g x  be functions, and let 1( )y x  and 2 ( )y x  be solutions to the ho-
mogeneous, linear differential equation ( ) ( ) ( ) ( ) ( )''   '     0.y x p x y x q x y x+ + =  Fur-

ther, let ( )u x and ( )v x be functions such that ( ) ( ) ( ) ( )1 2'   '   0 u x y x v x y x+ = and 
( ) ( ) ( ) ( ) ( )1 2' '   ' '   u x y x v x y x g x+ = for all  x , and define ( ) ( ) ( ) ( ) ( )1 2    .py x u x y x v x y x= +  

Then  ( )py x  is a solution to the non-homogeneous, linear differential equation 
( ) ( ) ( ) ( ) ( ) ( )''   '     .y x p x y x q x y x g x+ + =

Proof

1 2( ) ( ) (    ) ( ) ( )py x u x y x v x y x= +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 1 2 2

1 2

       
 0    

py x u x y x u x y x v x y x v x y x
u x y x v x y x

′ ′ ′

′ ′

′ ′= + + +
= + +
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 2

1 2

 '     '   
     

′′ ′ ′′ ′ ′′

′′ ′′

= + + +
= + +

py x u x y x u x y x v x y x v x y x
g x u x y x v x y x

1 2 1 2 1 2          )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     ) ( ) ( ( ) (′′ ′′ ′′ ′ ′′+ + = + + + + + +p p py x p x y x q x y x g x u x y x v x y x p x u x y x p x v x y x q x u x y x q x v x y x

1 2 1 2 1 2          )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     ) ( ) ( ( ) (′′ ′′ ′′ ′ ′′+ + = + + + + + +p p py x p x y x q x y x g x u x y x v x y x p x u x y x p x v x y x q x u x y x q x v x y x

Usage

To solve the second-order, non-homogeneous, linear differential equation 
''   '  ( ) ( ) ( ) ( ) ( )  ( ) y x p x y x q x y x g x+ + = using the method of variation of parameters, use 

the following steps:

1.	 Find the general solution to the corresponding homogeneous equation 
( ) ( ) ( ) ( ) ( )''   '     0.y x p x y x q x y x+ + = Specifically, find two linearly independent 

solutions ( )1 y x and ( )2 y x .

2.	 Since 1( )y x  and ( )2  y x are linearly independent solutions, their 

Wronskian 1 2 1 2( ) ('  ) )' ) ( (y x y x y x y x−  is nonzero, so we can compute 
2 1 2 1 2( ( ) ( )) ( ( )  /  '  ( ) ( ) (' ) )g x y x y x y x y x y x− −  and ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 1 2  /  '   ' .g x y x y x y x y x y x−

( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 1 2  /  '   ' .g x y x y x y x y x y x− If the former is equal to )'(  u x and the latter to )'( ,v x then  u and 

 v satisfy the two constraints given above: that 1 2'   '   0( ) ( ) ( ) ( )u x y x v x y x+ =  and 
that  ( ) ( ) ( ) ( ) ( )1 2' '   ' '   .u x y x v x y x g x+ = We can tell this after multiplying by the 

denominator and comparing coefficients.

3.	 Integrate 2 1 2 1 2( ( ) ( )) ( ( )  /  '  ( ) ( ) (' ) )g x y x y x y x y x y x− −  and 1 1 2 1 2( ( ) ( )) ( ( ) ( ) ( ) ( )) /  '   'g x y x y x y x y x y x− 

1 1 2 1 2( ( ) ( )) ( ( ) ( ) ( ) ( )) /  '   'g x y x y x y x y x y x− to obtain ( )u x and ( ),v x respectively. (Note that we only need one 
choice of u and v , so there is no need for constants of integration.)

4.	 Compute ( ) ( ) ( ) ( ) ( )1 2    .py x u x y x v x y x= + The function py is one solution of  
y’’(x) + p(x)y’(x) + q(x)y(x) = g(x).

5.	 The general solution is ( ) ( ) ( )1 1 2 2    ,pc y x c y x y x+ + where 1 c  and 2c are arbitrary 
constants.

Higher-order Equations

The method of variation of parameters can also be used with higher-order equa-
tions. For example, if ( ) ( )1 2, ,y x y x and ( )3  y x are linearly independent solutions 
( ) ( ) ( ) ( ) ( ) ( ) ( )"   "   '     0,+ + + =x p x y x q x y x r x y x  then there exist functions , ( ) ( ),u x v x

and ( )w x such that, 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3'   '   '   0, ' '   ' '   ' '   0,u x y x v x y x w x y x u x y x v x y x w x y x+ + = + + =     

and ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3' ''   ' ''   ' ''   .u x y x v x y x w x y x g x+ + =  Having found such func-

tions (by solving algebraically for ' , ' ,( ) ( ) ( )  ' ,u x v x and w x then integrating each), we 

have ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3      , py x u x y x v x y x w x y x= + +  one solution to the equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )        .′′′ + ′′ + ′ + =y x p x y x q x y x r x y x g x

Example

Solve the previous example, ''    sec  y y x+ = Recall 
1sec

cos
x f

x
= = . LHS has root of r i= ±  

that yield 1 2 1 2    ,     ,  ( )  cy C cosx C sinx so y cosx y sinx= + = = and its derivatives

2

1

sin tan
cos
cos 1
cos

y f xu x
W x

y f xv
W x

− − = = =

 = = =






where the Wronskian

( )1 2

cos sin
, : 1

sin cos
x x

W y y x
x x

= =
−

were computed in order to seek solution to its derivatives.

Upon integration,

tan ln sec
 

1

u xdx x C

v dx x C

 = − = − +


= = +

∫
∫

Computing py and Gy ,

( )
1 2

1 2

cos ln cos sin
cos sin sin cos ln cos

p

G c p

y f uy vy x x x x
y y y C x C x x x x x

= = + = +
= + = + + +

Linear ODEs with Variable Coefficients

A linear ODE of order n  with variable coefficients has the general form

( ) ( 1)
1 0( ) ( ) ( ) ( ) ( ) ( ) ( ).n n

n np x y x p x y x p x y x r x−
−+ +…+ =
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Examples

A particular simple example is the Cauchy-Euler equation often used in engineering

( ) 1 ( 1)
1 0( ) ( ) ( ) 0.n n n n

nx y x a x y x a y x− −
−+ +…+ =

Partial Differential Equation

A partial differential equation (or briefly a PDE) is a mathematical equation that in-
volves two or more independent variables, an unknown function (dependent on those 
variables), and partial derivatives of the unknown function with respect to the indepen-
dent variables. The order of a partial differential equation is the order of the highest de-
rivative involved. A solution (or a particular solution) to a partial differential equation 
is a function that solves the equation or, in other words, turns it into an identity when 
substituted into the equation. A solution is called general if it contains all particular 
solutions of the equation concerned.

The term exact solution is often used for second- and higher-order nonlinear PDEs to 
denote a particular solution.

Partial differential equations are used to mathematically formulate, and thus aid the solu-
tion of, physical and other problems involving functions of several variables, such as the 
propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, etc.

First-Order Partial Differential Equations

General Form of First-Order Partial Differential Equation

A first-order partial differential equation with nindependent variables has the general form

1 2
1 2

, , , , , , , , 0,n
w w wF x x x w
x x xn

 ∂ ∂ ∂
… … = ∂ ∂ ∂ 

where 1 2,( , , )nw w x x x= …   is the unknown function and ( )F …  is a given function.

Quasilinear Equations, Characteristic System and General Solution

General form of first-order quasilinear PDE

A first-order quasilinear partial differential equation with two independent variables 
has the general form,

( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
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Such equations are encountered in various applications (continuum mechanics, gas 
dynamics, hydrodynamics, heat and mass transfer, wave theory, acoustics, multiphase 
flows, chemical engineering, etc.).

If the functions f, g, and h are independent of the unknown w, then equation

( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
 is called linear characteristic system. 

General solution:

The system of ordinary differential equations,

, , ,( ) ( ) ( ), , ,
dx dy dw

f x y w g x y w h x y w
= =

is known as the characteristic system of equation ( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
Suppose that two independent particular solutions of this system have been found in 
the form,

1 1 2 2, , , , , ,( ) ( )u x y w C u x y w C= =

where 1C and 2C are arbitrary constants; such particular solutions are known as inte-

grals of system. Then the general solution to equation ( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
 

can be written as

1 2 0( ), ,u uΦ =

where Φ is an arbitrary function of two variables. With equation 1 2 0( ), ,u uΦ =  solved 
for 2u , one often specifies the general solution in the form 2 1( ,)u u= Ψ where ( )uΨ  is an 
arbitrary function of one variable.

If , , 0( ,)h x y w ≡  then 2 w C= can be used as the second integral in above equation.

Example. Consider the linear equation,

.w wa b
x y

∂ ∂
+ =

∂ ∂

The associated characteristic system of ordinary differential equations

1
dx dy dw

a b
= =

has two integrals

1 2, .y ax C w bx C− = − =
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Therefore, the general solution to this PDE can be written as , ( )w bx y ax− = Ψ −  or

( ),w bx y ax= + Ψ −

where ( )zΨ  is an arbitrary function. 

Cauchy Problem: Two Formulations and Solving the Cauchy Problem

Generalized Cauchy Problem

Generalized Cauchy problem: find a solution ( ),w w x y=  to equation 

( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
satisfying the initial conditions

1 2 3( ) (, ,) ,( )x y wϕ ξ ϕ ξ ϕ ξ= = =    

where ξ is a parameter ( )α ξ β≤ ≤ and the ( )kϕ ξ are given functions.

Geometric interpretation: find an integral surface of equation 

( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂  
passing through the line defined parametrically 

by equation 1 2 3( ) (, ,) ,( )x y wϕ ξ ϕ ξ ϕ ξ= = = .

Classical Cauchy Problem

Classical Cauchy problem: find a solution ( ),w w x y=  of equation 

( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
satisfying the initial condition

( )w yϕ=   0,at x =

where ( )yϕ  is a given function.
It is often convenient to represent the classical Cauchy problem as a generalized Cau-
chy problem by rewriting condition ( )w yϕ=   0,at x =  in the parametric form

0, , .( )x y wξ ϕ ξ= = =

Existence and Uniqueness Theorem

If the coefficients  , ,f g  and h  of equation ( ) ( ) ( ), , , , , , .w wf x y w g x y w h x y w
x y

∂ ∂
+ =

∂ ∂
and 

the functions kϕ  in equation above are continuously differentiable with respect to 
each of their arguments and if the inequalities 2 1 0f gϕ ϕ′ − ′ ≠ and 2 2

1 2( ) ( 0)ϕ ϕ′ + ′ ≠ hold 
along the curve, then there is a unique solution to the Cauchy problem (in a neighbor-
hood of the curve).

Procedure of Solving the Cauchy Problem

The procedure for solving the Cauchy problem involves several steps. First, two 
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independent integrals of the characteristic system are determined. Then, to find the 
constants of integration C1 and C2, the initial data must be substituted into the integrals 

1 1 2 2, , , , , ,( ) ( )u x y w C u x y w C= =  to obtain

1 1 2 3 1( ( ) ( ) ( ), ), ,u Cϕ ξ ϕ ξ ϕ ξ = 	 2 1 2 3 2( ( ) ( ) ( ), ), .u Cϕ ξ ϕ ξ ϕ ξ =

Eliminating C1 and C2 from 1 1 2 2, , , , , ,( ) ( )u x y w C u x y w C= = 1 1 2 2, , , , , ,( ) ( )u x y w C u x y w C= = and above equation yields

1 1 1 2 3

2 2 1 2 3

( ) ( ( ) ( ) (, , , , ,))
( ) ( ( ) (, , , ) ( ), .)

u x y w u
u x y w u

ϕ ξ ϕ ξ ϕ ξ
ϕ ξ ϕ ξ ϕ ξ

=
=

Formulas are a parametric form of the solution to the Cauchy problem. In some cases, 
one may succeed in eliminating the parameter ξ from relations, thus obtaining the solu-
tion in an explicit form.

Second-Order Partial Differential Equations

Linear, Semilinear and Nonlinear Second-Order PDEs

Linear second-order PDEs and their properties. Principle of linear superposition.

A second-order linear partial differential equation with two independent variables has 
the form

2 2 2

2 2, 2 , ,( ) ( ) ( ) ( ) ( ), , .),( (, )w w w w wa x y b x y c x y x y x y x y w x y
x x y y x y

α β γ δ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂ ∂ ∂

If 0,δ ≡ equation above is a homogeneous linear equation, and if 0/δ ≡ , it is a non-
homogeneous linear equation. The functions , , , ,  ...( ) ( ) (, , , ,  ) ( )a x y b x y x y x yγ δ are called 
coefficients of equation above.

Some properties of a homogeneous linear equation (with 0,δ ≡ ):

1.	 A homogeneous linear equation has a particular solution 0 w = .

2.	 The principle of linear superposition holds; namely, if 1 2( ) ( ), , , ,  ..., ( ) ,nw x y w x y w x y  
are particular solutions to homogeneous linear equation, then the function 

1 1 2 2, ,( ) ( ) , , ( )n nA w x y A w x y A w x y+ + + where 1 2, ,  ..., nA A A  are arbitrary numbers 
is also an exact solution to that equation.

3.	 Suppose equation 
2 2 2

2 2, 2 , ,( ) ( ) ( ) ( ) ( ), , .),( (, )w w w w wa x y b x y c x y x y x y x y w x y
x x y y x y

α β γ δ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂ ∂ ∂

has a particular solution   , ;( )w w x y µ=  that depends on a parameter µ , and the 
coefficients of the linear differential equation are independent of µ (but can 
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depend on x and y). Then, by differentiating w  with respect to µ , one obtains 

other solutions to the equation, 
  

2

2, , , ,
k

k

w w w
µ µ µ
∂ ∂ ∂

… …
∂ ∂ ∂

  

2

2, , , ,
k

k

w w w
µ µ µ
∂ ∂ ∂

… …
∂ ∂ ∂

4.	 Let ,( ; )w w x y µ=   be a particular solution as described in property 3. Multi-
plying w  by an arbitrary function ( )ϕ µ and integrating the resulting expres-
sion with respect to µ over some interval 1 2[ ], ,µ µ  one obtains a new function 



2

1

, ; ,( ) ( )w x y d
µ

µ
µ ϕ µ µ∫  which is also a solution to the original homogeneous linear 

equation.

5.	 Suppose the coefficients of the homogeneous linear equation 
2 2 2

2 2, 2 , ,( ) ( ) ( ) ( ) ( ), , .),( (, )w w w w wa x y b x y c x y x y x y x y w x y
x x y y x y

α β γ δ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂ ∂ ∂
 

are independent of x . Then: (i) there is a particular solution of the form 
( ,)xw e u yλ= , where λ is an arbitrary number and ( )u y is determined by a linear 

second-order ordinary differential equation, and (ii) differentiating any partic-
ular solution with respect to x also results in a particular solution to equation

2 2 2

2 2, 2 , ,( ) ( ) ( ) ( ) ( ), , .),( (, )w w w w wa x y b x y c x y x y x y x y w x y
x x y y x y

α β γ δ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂ ∂ ∂ ∂ ∂ ∂

Properties 2–5 are widely used for constructing solutions to problems governed by lin-
ear PDEs.

Examples of particular solutions to linear PDEs can be found in the subsections Heat 
equation and Laplace equation below.

Semilinear and Nonlinear Second-order PDEs

A second-order semilinear partial differential equation with two independent variables 
has the form,

2 2 2

2 2, 2 , ,( ) ( ) , ,( , ,)w w w w wa x y b x y c x y F x y w
x x y y x x

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ ∂ 

In the general case, a second-order nonlinear partial differential equation with two 
independent variables has the form,

2 2 2

2 2, , , , , , , 0.w w w w wF x y w
x y x x y y

 ∂ ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ ∂ 

The classification and the procedure for reducing linear and semilinear equations of the 
form above equations to a canonical form are only determined by the left-hand side of 
the equations.
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Some Linear Equations Encountered in Applications

Three basic types of linear partial differential equations are distinguished—parabolic, 
hyperbolic, and elliptic. The solutions of the equations pertaining to each of the types 
have their own characteristic qualitative differences.

Heat Equation (A Parabolic Equation)

1. The simplest example of a parabolic equation is the heat equation

2

2

 0,w w
t x

∂ ∂
− =

∂ ∂

where the variables t and x play the role of time and a spatial coordinate, respectively. 

Note that equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
 contains only one highest derivative term.

Equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
 is often encountered in the theory of heat and mass transfer. 

It describes one-dimensional unsteady thermal processes in quiescent media or solids 
with constant thermal diffusivity. A similar equation is used in studying corresponding 
one-dimensional unsteady mass-exchange processes with constant diffusivity.

2. The heat equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
has infinitely many particular solutions (this fact is 

common to many PDEs); in particular, it admits solutions
2

2

2

2

2

, 2 ,
, ,

1, ,
4

, ,

( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) (, ( 2) ,)

w x t A x t B
w x t Aexp t x B

xw x t A exp B
tt

w x t Aexp t cos x B C
w x t Aexp x cos x t B C

µ µ

µ µ

µ µ µ

= + +

= ± +

 
= − + 

 
= − + +

= − − + +

where A, B, C, and μ are arbitrary constants.

Wave Equation (A Hyperbolic Equation)

1. The simplest example of a hyperbolic equation is the wave equation

2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂

Where the variables t and x play the role of time and the spatial coordinate, respective-

ly. The highest derivative terms in equation 
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
differ in sign.
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This equation is also known as the equation of vibration of a string. It is often encoun-
tered in elasticity, aerodynamics, acoustics, and electrodynamics.

2. The general solution of the wave equation 
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
( ) ( )w x t x tϕ ψ= + + − .

Where  ( )xϕ and ( )xψ are arbitrary twice continuously differentiable functions. This 
solution has the physical interpretation of two traveling waves of arbitrary shape that 
propagate to the right and to the left along the x  -axis with a constant speed equal to 1.

Laplace Equation (An Elliptic Equation)

1. The simplest example of an elliptic equation is the Laplace equation

2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂  

where x and  y play the role of the spatial coordinates. Note that the highest derivative 

terms in equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

have like signs. The Laplace equation is often written 

briefly as 0,w∆ =  where  ∆  is the Laplace operator.

The Laplace equation is often encountered in heat and mass transfer theory, fluid me-
chanics, elasticity, electrostatics, and other areas of mechanics and physics. For exam-
ple, in heat and mass transfer theory, this equation describes steady-state temperature 
distribution in the absence of heat sources and sinks in the domain under study.

A solution to the Laplace equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

is called a harmonic function.

2. The particular solutions of the Laplace equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

:

2 2

2 2

( )
( ) ( )

( )

( ) ( )( )

, ,
, ,

, ,

, sin cosh cos sin ,
, cos sin sinh c( ) ( osh ,)( )

w x y Ax By C
w x y A x y Bxy

Ax Byw x y C
x y

w x y A h x B x C y D y
w x y A x B x C y D y

µ µ µ µ
µ µ µ µ

= + +

= − +
+

= +
+

= + +
= + +

Where , , , ,A B C D and µ  are arbitrary constants.

A fairly general method for constructing solutions to the Laplace equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

involves the following. Let ( ) ( ,) ( ),f z u x y iv x y= +  be any analytic function of the complex 
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variable z x iy= + ( u  and v are real functions of the real variables x and y 2 ; 1y i = − . Then 
the real and imaginary parts of f both satisfy the Laplace equation,

0, 0.u v∆ = ∆ =

Thus, by specifying analytic functions ( )f z  and taking their real and imaginary parts, 

one obtains various solutions of the Laplace equation
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

Classification of Second-Order Partial Differential Equations

Types of Equations

Any semilinear partial differential equation of the second-order with two independent 
variables can be reduced, by appropriate manipulations, to a simpler equation that has 
one of the three highest derivative combinations specified above in examples.

Given a point ( ),x y equation 
2 2 2

2 2, 2 , ,( ) ( ) , ,( , ,)w w w w wa x y b x y c x y F x y w
x x y y x x

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ ∂ is said to be,
2

2

2

  0,
  0
  0

parabolic if b ac
hyperbolic if b ac
elliptic if b ac

− =

− >

− <

at this point.

Characteristic Equations

In order to reduce equation 
2 2 2

2 2, 2 , ,( ) ( ) , ,( , ,)w w w w wa x y b x y c x y F x y w
x x y y x x

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ ∂ 
to a canonical form, one should first write out the characteristic equation

2 22( ) ( 0,)a dy b dx dy c dx− + =

which with 0/a ≡ splits into two equations

2( ) 0a dy b b ac dx− + − = .

and
2( ) 0a dy b b ac dx− − − = .

and then find their general integrals.

If 0,a ≡ , the simpler equations

0,
2 0
dx
b dy c dx

=
− =
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should be used instead of 2( ) 0a dy b b ac dx− + − =  and 2( ) 0a dy b b ac dx− − − = . The 

first equation has the obvious general solution  .x C= .

Canonical form of Parabolic Equations 

	
2(  )0caseb ac− =

In this case, equations 2( ) 0a dy b b ac dx− + − = and 2( ) 0a dy b b ac dx− − − = coincide 
and have a common general integral,

.( ),u x y C=

By passing from ,  x y  to new independent variables ,  ξ η in accordance with the relations

( ), , ),( ,u x y x yξ η η= =

where ,( )x yη η=  is any twice differentiable function that satisfies the condition of 

nondegeneracy of the Jacobian (
( )

,
,

)D
D x y
ξ η  in the given domain, one reduces equation 

2 2 2

2 2, 2 , ,( ) ( ) , ,( , ,)w w w w wa x y b x y c x y F x y w
x x y y x x

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ ∂ 
to the canonical form

2

12 , , , , .w w wF wξ η
η ξ η

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

As ,η  one can take    .xor yη η= =

It is apparent that the transformed equation 
2

12 , , , , .w w wF wξ η
η ξ η

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

has only one
 

highest-derivative term, just as the heat equation
 

2

2

 0,w w
t x

∂ ∂
− =

∂ ∂

Two Canonical forms of Hyperbolic Equations 

	 2(  )0caseb ac− >

1. The general integrals 

1 1 2 2, ,( ) ( , )u x y C u x y C= =

of equations 2( ) 0a dy b b ac dx− + − = and 2( ) 0a dy b b ac dx− − − = are real and dif-

ferent. These integrals determine two different families of real characteristics.

By passing from ,  x y  to new independent variables , ξ η in accordance with the relations

1 2( ) ,(, ,),u x y u x yξ η= =
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one reduces equation 
2 2 2

2 2, 2 , ,( ) ( ) , ,( , ,)w w w w wa x y b x y c x y F x y w
x x y y x x

∂ ∂ ∂ ∂ ∂ + + =  ∂ ∂ ∂ ∂ ∂ ∂ 
to

2

2 , , , , .w w wF wξ η
ξ η ξ η

 ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

This is the so-called first canonical form of a hyperbolic equation.

2. The transformation
,t z t zξ η= + = −

brings the above equation to another canonical form,
2 2

32 2 , , , , ,w w w wF t z w
t z t z

∂ ∂ ∂ ∂ − =  ∂ ∂ ∂ ∂ 

where 3 24F F= . This is the so-called second canonical form of a hyperbolic equation. 
Apart from notation, the left-hand side of the last equation coincides with that of the 

wave equation
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
.

Canonical form of Elliptic Equations 

	 2(case 0)b ac− <

In this case the general integrals of equations 2( ) 0a dy b b ac dx− + − = and 
2( ) 0a dy b b ac dx− − − = are complex conjugates; these determine two families of 

complex characteristics.

Let the general integral of equation 2( ) 0a dy b b ac dx− + − = have the form

2
1 2, , , 1,( ) ( )u x y iu x y C i+ = = −

where 1 ,( )u x y  and 2 ,( )u x y  are real-valued functions.

By passing from ,  x y to new independent variables , ξ η  in accordance with the relations

1 2( ) ,(, ,),u x y u x yξ η= =

one reduces equation above to the canonical form
2 2

42 2 , , , ).( ,w w w wF wξ η
ξ η ξ η
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂

Apart from notation, the left-hand side of the last equation coincides with that of the 

Laplace equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

.
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Basic Problems for PDEs of Mathematical Physics

Most PDEs of mathematical physics govern infinitely many qualitatively similar phe-
nomena or processes. This follows from the fact that differential equations have, as a 
rule, infinitely many particular solutions. The specific solution that describes the phys-
ical phenomenon under study is separated from the set of particular solutions of the 
given differential equation by means of the initial and boundary conditions.

For simplicity and clarity, the basic problems of mathematical physics 

will be presented for the simplest linear equations 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂

2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
 and 

2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

only.

Cauchy Problem and Boundary Value Problems for Parabolic 
Equations

Cauchy problem  0,( ) .t x≥ −∞ < < ∞  Find a function w that satisfies heat equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
for 0 t > and the initial condition ( )w xϕ=  at  0.t =

The solution of the Cauchy problem is

( ) ( ) ( , , ),w x t E x t dϕ ξ ξ ξ
∞

−∞
= ∫

where ( ), ,E x tξ  is the fundamental solution of the Cauchy problem,

2( )( ) 1, , .
42

xE x t exp
atat
ξξ

π
 −

= − 
 

In all boundary value problems (or initial-boundary value problems) below, it will be 
required to find a function w, in a domain 1 2 1 20 ,  ( )t x x x x x≥ ≤ ≤ −∞ < < < ∞ , that satis-

fies the heat equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
for 0t > and the initial condition. In addition, all 

problems will be supplemented with some boundary conditions as given below.

First boundary value problem. The function ,( )w x t  takes prescribed values on the 
boundary:

1 1

2 2

( ) ,
.( )

w t at x x
w t at x x

ψ
ψ

= =
= =

In particular, the solution to the first boundary value problem  with 1 2 1( ) ( ) 0, 0,t t xψ ψ= ≡ =  
and 2x l=  is expressed as

0( ), ,( ,( ),)lw x t G x t dϕ ξ ξ ξ= ∫
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where the Green’s function ( ), ,G x tξ  is defined by the formulas

2 2

2
1

2 2

2 , ,

1 2 2
4 42

( )

( ) ( )

n

n

n x n an tG x t sin sin exp
l l l l

x nl x nlexp exp
at atat

π πξ πξ

ξ ξ
π

∞

=

∞

=−∞

 −   =     
     

    − + + + = − − −    
     

∑

∑

The first series converges rapidly at large t  and the second series at small t .

Second boundary value problem. The derivatives of the function ( )w x t are prescribed 
on the boundary:

1 1

2 2

,

( .

( )

)

w t at x x
x
w t at x x
x

ψ

ψ

∂
= =

∂
∂

= =
∂

Third boundary value problem. A linear relationship between the unknown function 
and its derivatives are prescribed on the boundary:

1 1 1

2 2 2

) ,

( ) .

(w k w t at x x
x
w k w t at x x
x

ψ

ψ

∂
− = =

∂
∂

+ = =
∂

Mixed boundary value problems. Conditions of different type, listed above, are set on 
the boundary of the domain in question, for example,

1 1

2 2

( ) ,

.( )

x t at x x
w t at x x
x

ψ

ψ

≠ =
∂

= =
∂

The boundary conditions are called homogeneous if 1 2( ) ( ) 0 .t tψ ψ= ≡

Solutions to the above initial-boundary value problems for the heat equation can be 
obtained by separation of variables (Fourier method) in the form of infinite series or by 
the method of integral transforms using the Laplace transform.

Cauchy problem and boundary value problems for hyperbolic equations

Cauchy problem 0, ( ).t x≥ − ∞ < < ∞ Find a function w that satisfies the wave equation 
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
for 0t > and two initial conditions

0

1

( ) 0,

0.( )

w x at t
w x at t
t

ϕ

ϕ

= =

∂
= =

∂
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The solution of the Cauchy problem  is given by D’Alembert’s formula:

0 0 1( ) [ ( ) ( )] (1 1 
2

), .
2

x at

x at
w x t x at x at d

a
ϕ ϕ ϕ ξ ξ

+

−
= + + − + ∫

Boundary value problems. In all boundary value problems, it is required to find a func-
tion w, in a domain 1 2 1 2(, )0  ,t x x x x x≥ ≤ ≤ −∞ < < < ∞  that satisfies the wave equation 

2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
for 0t > and the initial conditions. In addition, appropriate boundary 

conditions are imposed.

Solutions to these boundary value problems for the wave equation can be obtained by 
separation of variables (Fourier method) in the form of infinite series. In particular, the 
solution to the first boundary value problem with homogeneous boundary conditions, 

1 2 1 2( ) ( 0  0  ,)t t at x and x lψ ψ= ≡ = = is expressed as,

0 10 0
, ,( ) ( ) ( ) (, , , ,) ( )

l l
w x t G x t d G x t d

t
ϕ ξ ξ ξ ϕ ξ ξ ξ∂

= +
∂ ∫ ∫

Where

1

2( ) 1, , .
n

n x n n atG x t sin sin sin
a n l l l

π πξ πξ
π

∞

=

     =      
     

∑

Goursat problem: 

On the characteristics of the wave equation 
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
 values of the unknown func-

tion w are prescribed:

0 0 ,
0 0

( ) ( )
( ) ( ,)

w x for x t x a
w x for x t x b

ϕ
ψ

= − = ≤ ≤
= + = ≤ ≤ .

with the consistency condition ( )0) 0  (ϕ ψ=  implied to hold.

Substituting the values set on the characteristics into the general solution of the wave 
equation ( ) ( )w x t x tϕ ψ= + + − , one arrives at a system of linear algebraic equations for

( )xϕ  and ( )xψ . As a result, the solution to the Goursat problem is obtained in the form

, 0 .( ) ( )
2 2

x t x tw x t ϕ ψ ϕ+ −   = + −   
   

The solution propagation domain is the parallelogram bounded by the four lines

0, 0, 2 , 2 .x t x t x t b x t a− = + = − = + =
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Boundary Value Problems for Elliptic Equations

Setting boundary conditions for the first, second, and third boundary value problems 

for the Laplace equation 
2 2

2 2

 0,w w
x y
∂ ∂

+ =
∂ ∂

 means prescribing values of the unknown 

function, its first derivative, and a linear combination of the unknown function and its 
derivative, respectively.

For example, the first boundary value problem in a rectangular domain 0 , 0x a y b≤ ≤ ≤ ≤
is characterized by the boundary conditions

1 2

3 4

0, ,
0, .

( ) ( )
( ) ( )

w y at x w y at x a
w x at y w x at y b

ϕ ϕ
ϕ ϕ

= = = =
= = = =

The solution to problem,with the 3 4 0( ) ( )x xϕ ϕ= ≡ is given by

1 1
( ) ,( ), n n

n n

n n n nw x y A sinh a x sin y B sinh x sin y
b b b b
π π π π∞ ∞

= =

     = − +     


 
      

∑ ∑

Where the coefficients nA and  nB are expressed as

1 20 0

2 2,( ) ( ,)
b b

n n n
n

n n n aA sin d B sin d b sinh
b n b b
πξ πξ πϕ ξ ξ ϕ ξ ξ λ

λ λ
     = = =     
     ∫ ∫ .

For elliptic equations, the first boundary value problem is often called the Dirichlet 
problem, and the second boundary value problem is called the Neumann problem.

Some Nonlinear Equations Encountered in Applications

Nonlinear heat equation:

( )w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
.

This equation describes one-dimensional unsteady thermal processes in quiescent 
media or solids in the case where the thermal diffusivity is temperature dependent,

( ) 0f w > . In the special case ( ) 1f w ≡ , the nonlinear equation ( )w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
be-

comes the linear heat equation 
2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
.

In general, the nonlinear heat equation ( )w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
admits exact solutions of the 

form,

( )w W kx tλ= −  (traveling-wave solution)
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( )/w U x t= , (self-similar solution),

where ( )W W z=  and ( )U U r=  are determined by ordinary differential equations, and 
k andλ  are arbitrary constants.

Kolmogorov–Petrovskii–Piskunov equation:
2

2 , 0( )w wa f w a
t x

∂ ∂
= + >

∂ ∂
.

Equations of this form are often encountered in various problems of mass and heat 
transfer (with f being the rate of a volume chemical reaction), combustion theory, biol-
ogy, and ecology.

In the special case of ( ) 0f w ≡ and 1a = , the nonlinear equation 
2

2 , 0( )w wa f w a
t x

∂ ∂
= + >

∂ ∂
 

2

2 , 0( )w wa f w a
t x

∂ ∂
= + >

∂ ∂
becomes the linear heat equation 

2

2

 0,w w
t x

∂ ∂
− =

∂ ∂
.

Remark. Equation 
2

2 , 0( )w wa f w a
t x

∂ ∂
= + >

∂ ∂
is also called a heat equation with a 

nonlinear source.

Burgers equation:
2

2 .w w ww
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂

This equation is used for describing wave processes in gas dynamics, hydrodynamics, 
and acoustics.

1. Exact solutions to the Burgers equation can be obtained using the following formula 
(Hopf–Cole transformation):

( ) 2, ,uw x t
u x
∂

= −
∂

where u=u(x,t) is a solution to the linear heat equation t xxu u= .

2. The solution to the Cauchy problem for the Burgers equation with the initial condition

at( ) ( )w f x t x= = −∞ < < ∞

has the form

( ) ), , ,(2 lnw x t F x t
x
∂

= −
∂

where,

( )
2

0

1 1, exp
4 24

( )( ) xF x t f d d
tt

ξξ ξ ξ ξ
π

∞

−∞

 − ′ ′= − + 
 

∫ ∫
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Nonlinear wave equation:

( )
2

2 .w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 

This equation is encountered in wave and gas dynamics, f(w)>0. In the special case 

f(w) ≡ 1, the nonlinear equation ( )
2

2 .w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 becomes the linear wave equation 

2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
.

Equation ( )
2

2 .w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 admits exact solutions in implicit form:

( ) ( )

( ) ( ),

,x t f w w

x t f w w

ϕ

ψ

+ =

− =

where φ(w) and ( ) wψ   are arbitrary functions.

Equation ( )
2

2 .w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 can be reduced to a linear equation.

Nonlinear Klein–Gordon Equation
2

2
2 2 , 0.( )w wa f w a

t x
∂ ∂

= + >
∂ ∂

Equations of this form arise in differential geometry and various areas of physics (super-
conductivity, dislocations in crystals, waves in ferromagnetic materials, laser pulses in 

two-phase media, and others). For f(w)≡0 and a=1, equation 
2

2
2 2 , 0.( )w wa f w a

t x
∂ ∂

= + >
∂ ∂

 

coincides with the linear wave equation 
2 2

2 2 0,w w
t x

∂ ∂
− =

∂ ∂
.

1. In general, the nonlinear Klein–Gordon equation 
2

2
2 2 , 0.( )w wa f w a

t x
∂ ∂

= + >
∂ ∂

 ad-
mits exact solutions of the form

2
1 2

,

,

( )

( ) , ,( ) ( )

w W z z kx t

w U at C x C

λ

ξ ξ

= = −

= = + − +

where W=W(z) and U=U(ξ) are determined by ordinary differential equations, while k, 
λ, C1, and C2 are arbitrary constants.

2. In the special case

( ) ,wf w beβ=
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the general solution of equation 
2

2
2 2 , 0.( )w wa f w a

t x
∂ ∂

= + >
∂ ∂

 is expressed as

1 2, ln exp exp( ) [ ( ) ( )] [ ( )] [ (
8

)] ,bw x t z y k z dz y dy
ak
βϕ ψ ϕ ψ

β β
= + − −∫ ∫

, ,z x at y x at= − = +

where φ=φ(z) and ψ=ψ(y) are arbitrary functions and k is an arbitrary constant.

In the special cases f(w)=bsin(βw) and f(w)=bsinh(βw), equation 
2

2
2 2 , 0.( )w wa f w a

t x
∂ ∂

= + >
∂ ∂

 is called the sine-Gordon equation and the sinh-Gordon 

equation, respectively.

Nonlinear Laplace Equation
2 2

2 2 ( ).w w f w
x y

∂ ∂
+ =

∂ ∂

This equation is also called a stationary heat equation with a nonlinear source.

1. In general, the nonlinear heat equation 
2 2

2 2 ( ).w w f w
x y

∂ ∂
+ =

∂ ∂
 admits exact solutions of 

the form

1 2

2 2
1 2

( )

( ) ( ) (

, ,

, ,)

w W z z k x k y

w U r r x C y C

= = +

= = + + +

where W=W(z) and U=U(r) are determined by ordinary differential equations, while k1, 
k2, C1, and C2 are arbitrary constants.

2. In the special case

( ) ,wf w aeβ=

the general solution of equation (32) is expressed as

(2 1 2, ln ,| ( ) ) |(
4

)
| ( )
β

β
− Φ Φ

= −
Φ′

a z zw x y
z z

where  ( )zΦ =Φ is an arbitrary analytic function of the complex variable  z x iy= + with 
nonzero derivative, and the bar over a symbol denotes the complex conjugate.

Monge–Ampere Equation
22 2 2

2 2 ,( ).w w w f x y
x y x y

 
 


∂ ∂ ∂
− =

∂ ∂ ∂∂
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The equation is encountered in differential geometry, gas dynamics, and meteorology.

Below are solutions to the homogeneous Monge–Ampere equation for the special case 
( ), 0 .f x y ≡

1. Exact solutions involving one arbitrary function:

1 2 3 4 5 ,) ( ),( x y x yw x y C C C C Cϕ= + + + +

1 2 3 4 5( ) (, ,)x y x y
yw x y C C C C C
x

ϕ  = + + + + 
 

4 5 6
1 2 3 7 8 9

1 2 3

( ) ( ), ,x y
x y x

x y

C C C
w x y C C C C C y C

C C C
ϕ
 + +

= + + + + +  + + 

where C1, ..., C9 are arbitrary constants and ( )zϕ ϕ=  is an arbitrary function.

2. General solution in parametric form:

( ) ( )
( ) (

,
0,)

w tx t y t
x t y t

ϕ ψ
ϕ ψ
= + +
+ ′ + ′ =

where t is the parameter, and ( )tϕ ϕ= and ( )tψ ψ= are arbitrary functions.

Simplest Types of Exact Solutions of Nonlinear PDEs

Preliminary remarks

The following classes of solutions are usually regarded as exact solutions to nonlinear 
partial differential equations of mathematical physics:

1.	 Solutions expressible in terms of elementary functions.

2.	 Solutions expressed by quadrature.

3.	 Solutions described by ordinary differential equations (or systems of ordinary 
differential equations).

4.	 Solutions expressible in terms of solutions to linear partial differential equa-
tions (and solutions to linear integral equations).

The simplest types of exact solutions to nonlinear PDEs are traveling-wave solutions 
and self-similar solutions. They often occur in various applications.

In what follows, it is assumed that the unknown w depends on two variables, x  and ,t
where t plays the role of time and x is a spatial coordinate.
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Traveling-wave Solutions

Traveling-wave solutions, by definition, are of the form

	 ( ) ( ), , ,w x t W z z kx tλ= = −

Where / kλ plays the role of the wave propagation velocity (the value 0λ = corresponds 
to a stationary solution, and the value 0k = corresponds to a space-homogeneous solu-
tion). Traveling-wave solutions are characterized by the fact that the profiles of these 
solutions at different time instants are obtained from one another by appropriate shifts 
(translations) along the x-axis. Consequently, a Cartesian coordinate system moving 
with a constant speed can be introduced in which the profile of the desired quantity 
is stationary. For 0k > and 0,λ > the wave travels along the x -axis to the right (in the 
direction of increasing x ).

Traveling-wave solutions occur for equations that do not explicitly involve independent 
variables,

2 2 2

2 2, , , , , , 0.w w w w wF w
x t x x t t

 ∂ ∂ ∂ ∂ ∂
… = ∂ ∂ ∂ ∂ ∂ ∂ 

Substituting into one obtains an autonomous ordinary differential equation for the 
function ( )W z :

2 2, , , , ,( ,), 0F W kW W k W k W Wλ λ λ′ − ′ ′′ − ′′ ′′ … =

where k and λ are arbitrary constants, and the prime denotes a derivative with respect 
to z .

The term traveling-wave solution is also used in the cases where the variable t  plays the 
role of a spatial coordinate, t y= .

All nonlinear equations considered above, and with ( ), 0f x y = , admit traveling-wave 
solutions.

Self-similar solutions

By definition, a self-similar solution is a solution of the form

.( ) ( ), , w x t t U xtα βζ ζ= =

The profiles of these solutions at different time instants are obtained from one another 
by a similarity transformation (like scaling).

Self-similar solutions exist if the scaling of the independent and dependent variables,

, , w, where 0 is an arbitrary constant,k mt Ct x C x w C C= = = ≠
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for some k  and m such that | | | | 0k m+ ≠ , is equivalent to the identical transforma-
tion.

It can be shown that the parameters in solution and transformation are linked by the 
simple relations

, .m kα β= = −

In practice, the above existence criterion is checked and if a pair of k  and m  in has 
been found, then a self-similar solution is defined by formulas with parameters.

Example: Consider the heat equation with a nonlinear power-law source term

2

2
nw wa bw

t x
∂ ∂

= +
∂ ∂

The scaling transformation converts equation 
2

2
nw wa bw

t x
∂ ∂

= +
∂ ∂

 into

1 2 2 .
2

m m k mn nw wC aC bC w
t x

− −∂ ∂
= +

∂ ∂

In order that equation 1 2 2 .
2

m m k mn nw wC aC bC w
t x

− −∂ ∂
= +

∂ ∂
 coincides with one must re-

quire that the powers of C  are the same, which yields the following system of linear 
algebraic equations for the constants k  and m:

1 2 .m m k mn− = − =

This system admits a unique solution

1 ,
2

k =

1  
1

m
n

=
−

.Using this solution together with relations and, one obtains self-similar 

variables in the form

( )1/ 1 1/2( ),  .nw t U xtζ ζ− −= =

Inserting these into, one arrives at the following ordinary differential equation for 
( )U ζ :

1 1 0.
2 1

naU U U bU
nζζ ζ ζ′′ + ′ + + =
−
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Cauchy Problem and Boundary Value Problems for Nonlinear 
Equations

The Cauchy problem and boundary value problems for nonlinear equations are 
stated in exactly the same way as for linear equations.

Examples: The Cauchy problem for a nonlinear heat equation is stated as follows: find 

a solution to equation ( )w wf w
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 subject to the initial condition.

The first boundary value problem for a nonlinear wave equation as follows: find a solu-

tion to equation 
2 2

2 2 ( ).w w f w
x y

∂ ∂
+ =

∂ ∂
 subject to the initial conditions  and the boundary 

conditions.

Problems for nonlinear PDEs are normally solved using numerical methods.

Higher-Order Partial Differential Equations

Apart from second-order PDEs, higher-order equations also quite often arise in appli-
cations. Below are only a few important examples of such equations with some of their 
solutions.

Higher-Order Linear Partial Differential Equations

Equation of transverse vibration of elastic rod:

2 4
2

2 4 0.w wa
t x

∂ ∂
+ =

∂ ∂

The equation has the following particular solutions:

2

2
1 1 1 1

( ) [ ( ) ( ) ( ) ( )] ( )
(

, sin cos sin cos sin ,
, sin cos) [ ( ) ( ) ( ) ( )] (sin co )s cos

w x t A x B x C h x D x at
w x t A x B x C h x D x at

λ λ λ λ λ

λ λ λ λ λ

= + + +

= + + +

where 1 1 1 1A, B, C, D , A , B , C , D , and λ  are arbitrary constants.

Biharmonic Equation

0w∆∆ =

where ∆∆  is the biharmonic operator,

4 4 4
2

4 2 2 42 .
x x y y
∂ ∂ ∂

∆∆ ≡ ∆ = + +
∂ ∂ ∂ ∂
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The biharmonic equation 0w∆∆ =  is encountered in plane problems of elasticity (wis 
the Airy stress function). It is also used to describe slow flows of viscous incompressible 
fluids (w is the stream function).

Various representations of the general solution to equation 0w∆∆ =  in terms of har-
monic functions include,

1 2

1 2
2 2

1 2

, , ,( ) ( ) ( )
( ) ( ) ( )

( ) ,,( ) ( ) (

,
, , , ,

, ),

w x y xu x y u x y
w x y yu x y u x y
w x y x y u x y u x y

= +
= +

= + +

where 1u  and 2u  are arbitrary functions satisfying the Laplace equation 0( 1,2)ku k∆ = = .

Complex form of representation of the general solution:

[ ]( , ) Re ( ) ( ) ,w x y z f z g z= +

where ( )f z and ( )g z are arbitrary analytic functions of the complex variable 

2 ; , 1z x iy z x iy i= + = − = − . The symbol Re[ ]A  stands for the real part of a complex 
quantity A.

Higher-Order Nonlinear Partial Differential Equations

Korteweg–de Vries equation:
3

3 6 0.w w ww
t x x

∂ ∂ ∂
− =

∂ ∂ ∂

Equation of a steady laminar boundary layer on a flat plate:
2 2 3

2 3

w w w w wa
y x y x y y

∂ ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂ ∂ ∂
,

where w  is the stream function.

Boussinesq equation:

2 4

2 4 0.  w w ww
t x x x

∂ ∂ ∂ ∂ + + = ∂ ∂ ∂ ∂ 

This equation arises in several physical applications: propagation of long waves in shal-
low water, one-dimensional nonlinear lattice-waves, vibrations in a nonlinear string, and 
ion sound waves in a plasma. 
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Equation of motion of a viscous fluid:

2 2

2 2( ) ( ) ,w w w ww w a w w
y x x y x y

∂ ∂ ∂ ∂ ∂ ∂
∆ − ∆ = ∆∆ ∆ = +

∂ ∂ ∂ ∂ ∂ ∂

This is a two-dimensional stationary equation of motion of a viscous incompress-
ible fluid—it is obtained from the Navier–Stokes equations by the introduction of the 
stream function.

Approximate and Numerical Methods

The preceding discussion pertains to the exact or analytical solution of PDEs. For ex-
ample, in the case of a heat equation or a wave equation, an exact solution would be a 
function ( ),w f x t=  which, when substituted into the respective equation would satis-
fy it identically along with all of the associated initial and boundary conditions.

Although analytical solutions are exact, they also may not be available, simply because 
we do not know how to derive such solutions. This could be because the PDE system 
has too many PDEs, or they are too complicated, e.g., nonlinear, or both, to be amena-
ble to analytical solution. In this case, we may have to resort to an approximate solu-
tion. That is, we seek an analytical or numerical approximation to the exact solution.

Perturbation methods are an important subset of approximate analytical methods. 
They may be applied if the problem involves small (or large) parameters, which are 
used for constructing solutions in the form of asymptotic expansions. 

Unlike exact and approximate analytical methods, methods to compute numerical PDE 
solutions are in principle not limited by the number or complexity of the PDEs. This 
generality combined with the availability of high performance computers makes the 
calculation of numerical solutions feasible for a broad spectrum of PDEs (such as the 
Navier–Stokes equations) that are beyond analysis by analytical methods. The devel-
opment and implementation (as computer codes) of numerical methods or algorithms 
for PDE systems is a very active area of research. Here we indicate in the external links 
just two readily available links to Scholarpedia.

Parabolic PDE

Analytical solutions to a parabolic PDE (heat equation) are given here. But we will pro-
ceed with a numerical solution and use one of these analytical solutions to evaluate the 
numerical solution.

We can consider the numerical solution to the heat equation,

2

2 0w w
t x

∂ ∂
− =

∂ ∂
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As a two-step process:

1.	 Numerical approximation of the derivative 
2

2

w
x

∂
∂

. At this point, we will have a 

semi-discretization of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
.

2.	 Numerical approximation of the derivative  w
t

∂
∂

. At this point, we will have a full 

discretization of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
.

In order to implement these two steps, we require a grid in x and a grid in t. For the 
grid in x, we denote a position along the grid with the index i . Then we can consider the 
Taylor series expansion of the numerical solution at grid point i ,

2 2 2 3
1 1

1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

+ +
+ +

− −
= + − + + +

and

2 2 2 3
1 1

1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

− −
− −

− −
= + − + + +

If we consider a uniform grid (a grid with uniform spacing 1 1i i i ix x x x x+ −∆ = − = − ), 

addition of Eqs. 
2 2 2 3

1 1
1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

+ +
+ +

− −
= + − + + +  

and 
2 2 2 3

1 1
1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

− −
− −

− −
= + − + + +  gives (note the 

cancellation of the first and third derivative terms since 1  i ix x x− − = −∆ ),
2

2 4
1 1 22 ( )i

i i i
d ww w w x O x
dx+ −+ = + ∆ + ∆

where ( )4   O x∆ denotes a term proportional to 4x∆  or of order 4x∆ ; this term 

can be considered a truncation error resulting from truncating the Taylor series 

of Eqs. 
2 2 2 3

1 1
1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

+ +
+ +

− −
= + − + + +  and 

2 2 2 3
1 1

1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

− −
− −

− −
= + − + + +  beyond the 2x∆  

term. Then Eq. 
2

2 4
1 1 22 ( )i

i i i
d ww w w x O x
dx+ −+ = + ∆ + ∆  gives for the second derivative

2
21 1

2 2

2 ( )i i i id w w w w O x
dx x

+ −− +
≈ + ∆

∆
.



182

Introductory Mathematics

Equation 
2

21 1
2 2

2 ( )i i i id w w w w O x
dx x

+ −− +
≈ + ∆

∆
 is a second order (because of the principal 

error or truncation error ( )2O x∆ ) finite difference approximation of 2 2/d wi dx .

If Eq. 
2

21 1
2 2

2 ( )i i i id w w w w O x
dx x

+ −− +
≈ + ∆

∆
 is substituted in Eq. 

2

2 0w w
t x

∂ ∂
− =

∂ ∂
 (to replace 

the derivative 
2

2  w
x

∂
∂

), a system of ODEs results,

21 1
2

2 ( ), 1, 2, ,i i i idw w w wD O x i N
dt x

+ −− +
= + ∆ =

∆


(we have added a multiplying constant D to the right-hand side of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 

generally termed a thermal diffusivity if w in Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 is temperature and a 

mass diffusivity if w is concentration; D has the MKS units m2/s as expected from a 

consideration of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 with x in metres and t in seconds).

Note that the independent variable x does not appear explicitly in Eqs. 
21 1

2

2 ( ), 1, 2, ,i i i idw w w wD O x i N
dt x

+ −− +
= + ∆ =

∆


 and that the only independent vari-

able is t (so that they are ODEs). N is the number of points in the x grid (x is termed a 
boundary value variable since the terminal grid points at 1i =  and i N=  typically refer 

to the boundaries of a physical system). Thus Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 is partly discretized (in 

x) and therefore Eqs. 21 1
2

2 ( ), 1, 2, ,i i i idw w w wD O x i N
dt x

+ −− +
= + ∆ =

∆


 are referred to 

as a semi-discretization.

To compute a solution to Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
, we could apply an established initial-value 

integrator in t. This is the essence of the method of lines (MOL). Alternatively, we could 

now discretize Eqs. 21 1
2

2 ( ), 1, 2, ,i i i idw w w wD O x i N
dt x

+ −− +
= + ∆ =

∆


. For example, if 

we apply Eq. 
2 2 2 3

1 1
1 1 2 3

( ) ( )( )
2! 3!

i i i i i i i
i i i i

dw d w x x d w x xw w x x
dx dx dx

+ +
+ +

− −
= + − + + +  on a 

grid in t with an index k ,

2 1 2
1 1

2

( )( ) , 1, 2, , , 1, 2,
2!

k k k k
k k k ki i
i i

dw d w t tw w t t i N k
dt dt

+
+ + −
= + − + + = =  
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If the grid in t has a uniform spacing 1k kh t t+= −  and if truncation after the first deriv-
ative term is applied,

1 2( )
k

k k i
i i

dww w h O h
dt

+ = + +

Equation 1 2( )
k

k k i
i i

dww w h O h
dt

+ = + + , the classical Euler’s method, can be used to step 

along the solution of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 from point k to 1k +   (at a grid point i in x).

Application of Eq. 1 2( )
k

k k i
i i

dww w h O h
dt

+ = + +  to Eq. 

21 1
2

2 ( ), 1, 2, ,i i i idw w w wD O x i N
dt x

+ −− +
= + ∆ =

∆


 gives the fully discretized approxi-

mation of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
,

1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆

In Eq. 
2 1 2

1 1
2

( )( ) , 1, 2, , , 1, 2,
2!

k k k k
k k k ki i
i i

dw d w t tw w t t i N k
dt dt

+
+ + −
= + − + + = =    

we do not specify the total number of grid points in t (as we did with the grid in x); t is 
an initial value variable since it is typically time, and is defined over the semiinfinite 
interval 0 t≤ ≤ ∞ .

Note that Eq. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
 explicitly gives the solution at the ad-

vanced point in )  1(t at k + and therefore it is an explicit finite difference approximation 

of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
. We can now consider using Eq. 1 1 1

2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
 

to step forward from an initial condition (IC) required by Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
. Here we 

take as the initial condition,

( / )( , 0) D xw x t Ae Bµ−= = +

where , ,A B µ are constants to be specified. The finite difference form of Eq. 
( / )( , 0) D xw x t Ae Bµ−= = +  is,

( / )0 iD x
iw Ae Bµ−= + .
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(note that 0 0k at t= = )

We must also specify two boundary conditions (BCs) for Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 (since it is 

second order in x ). We will use the Dirichlet BC at  0x =
( / )( )( 0, ) D tw x t Ae Bµ µ− −= = + .

for which the finite difference form is (note that 1 0i at x= = )

( / )( )
1

kk D tw Ae Bµ µ− −= + .

We use the Neumann BC at 1x =

( / )(1 )( 1, ) ( / ) D tw x t A D e
x

µ µµ − −∂ =
= −

∂
.

for which the finite difference form is (note that 1i N at x= = )

( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ + .

where  1Nw + is a fictitious value that is outside the interval  0 1 ;x≤ ≤ it can be used to 

eliminate  w N in Eq. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
for  i N= .

Equations 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
, ( / )0 iD x

iw Ae Bµ−= + , ( / )( )
1

kk D tw Ae Bµ µ− −= +  

and ( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ +  constitute the full system of equations for the 

calculation of the numerical solution to Eq.
 

2

2 0w w
t x

∂ ∂
− =

∂ ∂
. Note that we have replaced 

the original PDE, Eq.
 

2

2 0w w
t x

∂ ∂
− =

∂ ∂
, with a set of approximating algebraic equations 

(Eqs. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
, ( / )0 iD x

iw Ae Bµ−= + , ( / )( )
1

kk D tw Ae Bµ µ− −= +  and 

( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ +  which can easily be programmed for a computer.

Also, an analytical solution to Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 (see particular solutions to the heat 

equation) can be used to evaluate the numerical solution

2(1/ )( )( , ) D t xw x t Ae Bµ µ− ±= + .

Equation above can be stated in the alternative form

( / )( )( , ) D x tw x t Ae Bµ µ− −= + .
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which corresponds to a traveling wave solution since  x and  t appear in the combina-
tion  x tµ− .

A short MATLAB program is based on Eqs. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
, 

( / )0 iD x
iw Ae Bµ−= + , ( / )( )

1

kk D tw Ae Bµ µ− −= +  and ( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ + . Rep-

resentative output from this program that compares the numerical solution from 

Eqs. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
, ( / )0 iD x

iw Ae Bµ−= + , ( / )( )
1

kk D tw Ae Bµ µ− −= +  

and ( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ +  with the analytical solution, Eq. 

( / )( )( , ) D x tw x t Ae Bµ µ− −= + , indicates that the two solutions are in agreement to five 

figures, as reflected in table.

Table: Comparison of the numerical and analytical solutions 2/ 0.5lx x= =  produced 

by the program; w, numerical solution from Eqs. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
, 

( / )( )
1

kk D tw Ae Bµ µ− −= + , ( / )( )
1

kk D tw Ae Bµ µ− −= +  and ( / )( )
1 1 2

kk k D t
N Nw w xAe Bµ µ− −
+ −= + ∆ + ; 

wa, analytical solution of Eq. ( / )( )( , ) D x tw x t Ae Bµ µ− −= +

 t = 0.05   w(x=xl/2,t) = 1.6376   wa(x=xl/2,t) = 1.6376  
 t = 0.10   w(x=xl/2,t) = 1.6703   wa(x=xl/2,t) = 1.6703  
 t = 0.15   w(x=xl/2,t) = 1.7047   wa(x=xl/2,t) = 1.7047  
 t = 0.20   w(x=xl/2,t) = 1.7408   wa(x=xl/2,t) = 1.7408  
 t = 0.25   w(x=xl/2,t) = 1.7788   wa(x=xl/2,t) = 1.7788  
 t = 0.30   w(x=xl/2,t) = 1.8187   wa(x=xl/2,t) = 1.8187  
 t = 0.35   w(x=xl/2,t) = 1.8607   wa(x=xl/2,t) = 1.8607  
 t = 0.40   w(x=xl/2,t) = 1.9048   wa(x=xl/2,t) = 1.9048  
 t = 0.45   w(x=xl/2,t) = 1.9512   wa(x=xl/2,t) = 1.9512  
 t = 0.50   w(x=xl/2,t) = 2.0000   wa(x=xl/2,t) = 2.0000 

The parameters that produced the numerical output in above table are listed in below 
table.

Table: Numerical values of parameters

Parameter Description Value 

D 
diffusivity in Eq. 

2

2 0w w
t x

∂ ∂
− =

∂ ∂
1 

μ, A, B 
constants in Eqs. ( / )( , 0) D xw x t Ae Bµ−= = + -

( / )( )( , ) D x tw x t Ae Bµ µ− −= +  

1, 1, 1 
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N, xl number of grid points and length in x 21, 1 

h, tf grid spacing in t, final value of t 0.001, 0.5 

Additional parameters follow from the values in table. Thus, the grid spacing in 
x  is  1/ 21 1 0.05( )x∆ = − = . The number of steps in  t taken along the solution is  
0.5 / 0.001 500 .= .

Some of the parameters, particularly  N and  h , were determined by trial and error to 
achieve a numerical solution of acceptable accuracy (e.g., five significant figures). We 
can note two additional points about these values:

•	 Acceptable values of  N and h could be determined by observing the errors 
in the numerical solution through comparison with the exact solution (Eq. 

( / )( )( , ) D x tw x t Ae Bµ µ− −= + ) as illustrated in table. However, in most PDE ap-
plications, an analytical solution is not available for assessing the accuracy 
of the numerical solution, and in fact, the motivation for using a numerical 
method is generally to produce a solution when an analytical solution is not 
available. In this case (no analytical solution), a useful procedure for estimat-
ing the numerical accuracy is to compute solutions for two different values of  
N  and compare the numerical values. If the two solutions do not agree to an 
acceptable level, a third solution is computed with a still larger N (smaller 
grid spacing in x ) and again the solutions are compared. Eventually, if spa-
tial convergence is achieved, successive solutions will agree to the required 
accuracy. In this case, the accuracy of the numerical solution is inferred, but 
the exact error is not computed (or even known) when an analytical solution 
is not available. The same reasoning can be applied for temporal convergence 
with respect to t , i.e., h is reduced until the successive solutions agree to a 
specified level. 

•	 The preceding discussion was directed to achieving acceptable accuracy. Ad-
ditionally, the values of N  and h were selected to achieve a stable solution. 

The criterion for stability in the case of Eq. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
 

(for parabolic PDE (41)) is 2/ 1/ 2 .D t xα = ∆ ∆ < . For the solution of table,  
21 0.001/ 0.05 0.4 0.5 .α = × = < . If the critical value of the dimensionless pa-

rameter  α=0.5 had been exceeded, the numerical solution would have become 
unstable (as manifest in numerical values of ever increasing magnitude). The 
stability constraint 0.5α < is a distinctive feature of the explicit finite difference 

approximation of Eq. 1 1 1
2

2k k k
k k i i i
i i

w w ww w hD
x

+ + −− +
+ +

∆
. Thus, as  Δx is reduced 

(N increased) to achieve better accuracy in the numerical solution,  h must also 

be reduced to maintain stability 2/ )0.5 .( Dh xα = ∆ <
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Hyperbolic PDE

We now consider a numerical solution to the one-dimensional hyperbolic wave equa-
tion

2 2

2 2 0w w
t x

∂ ∂
− =

∂ ∂
.

We again have an analytical solution to evaluate the numerical solution. First, we in-
clude a velocity, 

C , in the equation:

2 2
2

2 2

w wc
t x

∂ ∂
=

∂ ∂
.

Note that  c  has the MKS units of m/s as expected and as inferred from Eq. 
2 2

2
2 2

w wc
t x

∂ ∂
=

∂ ∂
 

(note the units of the derivatives  in  x and t ).

Since Eq. 
2 2

2 2

w w
t x

∂ ∂
∂ ∂

 is second order in x and , it requires two ICs and two BCs. We 

will take these as:

2

( , 0) xw x t e λ−= = .

( , 0) 0w x t
t

∂ =
=

∂
.

( , ) 0w x t→∞ = .

( ), 0w x t→−∞ =

Equation 
2

( , 0) xw x t e λ−= =  indicates the IC is a Gaussian pulse with the positive con-

stant λ to be specified. Equation 
( , 0) 0w x t

t
∂ =

=
∂

 indicates  ,( )w x t starts with zero 

“velocity”. Equations ( , ) 0w x t→∞ = – ( ), 0w x t→−∞ =  indicate that the solution

 ,( )w x t does not depart from the initial value of zero specified by IC. In other words, λ
is chosen large enough that the IC is effectively zero at x = ±∞ and remains at this value 
for subsequent t .

An important difference between the parabolic problem of Eq. 
2

2 0w w
t x

∂ ∂
− =

∂ ∂
 and the 

hyperbolic problem of Eq. 
2 2

2
2 2

w wc
t x

∂ ∂
=

∂ ∂
 is that the former is first order in t while the 

latter is second order in t . Therefore, in order to develop a numerical method for Eq. 
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2 2

2 2 0w w
t x

∂ ∂
− =

∂ ∂
 (or Eq. 

2 2
2

2 2

w wc
t x

∂ ∂
=

∂ ∂
), we need an algorithm that can accommodate 

second derivatives in t . While such algorithms do exist, they generally are not required. 
Rather, we can express a PDE second order in t as two PDEs first order in t . For exam-

ple, Eq. 
2 2

2
2 2

w wc
t x

∂ ∂
=

∂ ∂
 can be written as

w u
t

∂
=

∂
.

2
2

2

u wc
t x

∂ ∂
=

∂ ∂
.

Equations w u
t

∂
=

∂
–

2
2

2

u wc
t x

∂ ∂
=

∂ ∂
 are first order in t ,and therefore an integration algo-

rithm for first order equations, such as the Euler method of Eq. 1 2( )
k

k k i
i i

dww w h O h
dt

+ = + + ,  

can be used to move  ,( )w x t  and ,( )u x t forward in t . Thus, the fully discretized form of 

Eqs. 
w u
t

∂
=

∂
–

2
2

2

u wc
t x

∂ ∂
=

∂ ∂
 can be written as

1k k k
i i iw w hu+ = + .

1 2 1 1
2

2k k k
k k i i i
i i

w w wu u hc
x

+ + −− +
= +

∆
.

ICs  become (with 0 k = corresponding to 0t = )

20 ix
iw e λ−= .

0 0iu = .

For BCs, the infinite interval  x−∞ ≤ ≤ ∞ must be replaced by a finite one l lx x x− ≤ ≤  
(since computers can accommodate only finite numbers) where xl is selected so 
that it is effectively infinite; that is, the solution  ,( )w x t does not depart from IC  at

,  for 0 .l lx x x t= − > . The value lx  and the corresponding number of grid points in x N , 

are specified subsequently.

The finite difference approximations of BCs are

1 0kw = .

0k
Nw = .

Equations 1k k k
i i iw w hu+ = + , 1 2 1 1

2

2k k k
k k i i i
i i

w w wu u hc
x

+ + −− +
= +

∆
, 

20 ix
iw e λ−= , 0 0iu = , 
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1 0kw = , 0k
Nw =  constitute the complete finite difference approximation of Eqs. 

w u
t

∂
=

∂
, 

2
2

2

u wc
t x

∂ ∂
=

∂ ∂
, 

2

( , 0) xw x t e λ−= = , 
( , 0) 0w x t

t
∂ =

=
∂

, ( , ) 0w x t→∞ = , ( ), 0w x t→−∞ = .

The general analytical solution to Eq. 
2 2

2
2 2

w wc
t x

∂ ∂
=

∂ ∂
 can be written as 

1( , ) [ ( ) ( )]
2

w x t x ct x ctϕ ψ= + + − .

Let us take φ=ψ in the form of the Gaussian pulse of Eq. 
2

( , 0) xw x t e λ−= = , i.e.,

2 2( ) ( )1( , ) [ ]
2

x ct x ctw x t e eλ λ− + − −= + .

The plotted output from the program is given in figure  and includes both the numerical 

solution of Eqs. 1k k k
i i iw w hu+ = + , 1 2 1 1

2

2k k k
k k i i i
i i

w w wu u hc
x

+ + −− +
= +

∆
, 

20 ix
iw e λ−= , 0 0iu = , 

1 0kw = , 0k
Nw =  and the analytical solution of Eq.

 

2 2( ) ( )1( , ) [ ]
2

x ct x ctw x t e eλ λ− + − −= + .

We can note the following points about figure below:

Figure: Comparison of the numerical and analytical solutions for t=0,10,20,30 produced by the program 

in Appendix 2; w, numerical solution from Eqs. 1k k k
i i iw w hu+ = + , 1 2 1 1

2

2k k k
k k i i i
i i

w w wu u hc
x

+ + −− +
= +

∆
, 0 0iu =  

1 0kw = , 0k
Nw = ; wa, analytical solution of Eq.

 

2 2( ) ( )1( , ) [ ]
2

x ct x ctw x t e eλ λ− + − −= +

•	 The initial Gaussian pulse 0t =  (centered 0x =  with unit maximum value) 
splits into two pulses traveling left and right with velocity c=1 and maximum 

value of 0.5 according to Eq. 
2 2( ) ( )1( , ) [ ]

2
x ct x ctw x t e eλ λ− + − −= + .

•	 The pulses traveling left are centered at 10, 20, 30.x = − − − corresponding to 

10,20,30t = since 1c = . The pulses traveling right are centered at  10,20,30x =
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corresponding  10,20,30 .t =  These properties are characteristic of the traveling 

wave functions of Eq. 
2 2( ) ( )1( , ) [ ]

2
x ct x ctw x t e eλ λ− + − −= +  with arguments x ct+ and 

x ct− , respectively. In fact, the use of the word characteristic is particularly ap-
propriate since the relations  x ct κ+ = and ,x ct κ− =  where κ is a constant, are 

termed the characteristics of Eq. 
2 2

2
2 2

w wc
t x

∂ ∂
=

∂ ∂
. Note that at the points along 

the solution given by these characteristics, the solution has a constant value. 
For example, for the peak values in figure 0κ = and the solution is constant at 
the peak value 0.5 for 0 .x ct x ct+ = − =

•	 The solution remains at zero for 50 lx x= =  so that the interval 50 50 x− ≤ ≤ is 
equivalent to the infinite interval   .x−∞ ≤ ≤ ∞

The parameters that produced the numerical output in figure above are listed in table.

Table: Numerical values of parameters that produced the output of figure 

Parameter Description Value

c
velocity in Eq. 

2 2
2

2 2

w wc
t x

∂ ∂
=

∂ ∂
1

λ
constant in Eqs. 

2

( , 0) xw x t e λ−= = ,  
20 ix

iw e λ−= ,

2 2( ) ( )1( , ) [ ]
2

x ct x ctw x t e eλ λ− + − −= +

0.05

N, xl number of grid points and half length in x 201, 50

h, tf grid spacing in t, final value of t 0 . 0 0 2 5 , 
30

Additional parameters follow from the values in table. Thus, the grid spacing in 
x  isΔx=2×50/(201−1)=0.5. The number of steps in t taken along the solution is 
30/0.0025=12000, which is large, but was selected to achieve good accuracy in the 
numerical solution.

To explore the accuracy of the numerical solution, we can consider the peak values of 
,( )w x t  in figure. This is a stringent test of the numerical solution since the curvature of 

the solution is greatest at these peaks. The results are summarized in table.
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Table: Numerical values of w(x,t) at the peak values displayed in figure.

t −x, x Peak values

0 0 1

10 -10, 10 0.5006, 0.5006

20 -20, 20 0.5011, 0.5011

30 -30, 30 0.5015, 0.5015

Of course, the peak analytical values given by Eq. 
2 2( ) ( )1( , ) [ ]

2
x ct x ctw x t e eλ λ− + − −= +  are

( ) (0, 0 1 , , 0 0.5 .)w x t w x t t= = = = ± > =  Table  indicates these peak values were at-
tained within 0.5015 even for the largest value of   0( )3t =  so that errors did not accu-
mulate excessively as the solution progressed through t . These errors could be reduced 
by increasing the number of grid points in x above 201 N = . These errors could also 
presumably be reduced by using a more accurate (higher order) finite difference equa-

tion than the second order approximation of Eq. 
2

21 1
2 2

2 ( )i i i id w w w w O x
dx x

+ −− +
≈ + ∆

∆
.

This explicit finite difference numerical solution also has a stability limit (like the pre-
ceding parabolic problem). In this case 

1c t x∆ ∆ < .

Stability constraint in the above equation is the Courant–Friedrichs–Lewy (or CFL) 
condition. For the present numerical solution, 1 0.0025 / 0.5 0.005× = so the CFL condi-
tion is easily satisfied. In other words, the parameters of Table were chosen primarily 
for accuracy and not stability.

Elliptic PDE

The elliptic PDE (Laplace’s equation) 

2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂

has two boundary value independent variables, x and y, and no initial value vari-
able. Thus, since the preceding numerical methods required an integration with 
respect to an initial value variable (t), and was accomplished by Euler’s method, 

Eq. 1 2( )
k

k k i
i i

dww w h O h
dt

+ = + + , we cannot develop a numerical solution for Eq. 

2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
 directly using these methods. Rather, we will convert Eq. 

2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
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from an elliptic problem to an associated parabolic problem by adding a derivative in 
an initial value variable. Thus, the PDE we will now consider is 

2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂

The idea then is to integrate Eq. 
2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
forward in t until the numerical solution 

approaches the condition 0 w
t

∂
→

∂
so that Eq. 

2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
then reverts back to Eq. 

2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
, i.e., the solution under this condition is for Eq. 

2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
 as re-

quired.

Equation
2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
 is first order in t, and second order in x and y. It therefore 

requires one IC and two BCs (for x and y). For the IC, since t has been added to the 

problem only to provide a solution to Eq. 
2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
 through Eq. 

2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
 

the choice of an IC is completely arbitrary (it is not part of the original problem). For 
the present analysis, we will use 

0( , , )w x y t κ= =

where κ is a constant to be selected (logically, it should be in the neighborhood of the 

expected solution to Eq. 
2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
, but it’s precise value is not critical to the suc-

cess of the numerical method).

For the two BCs in x, we will use homogeneous (zero) Dirichlet BCs 

( )0, , 0w x y t= =

,( ), 0lw x x y t= =

where xl is the upper boundary value of x .

For the first BC in y, we will use a homogeneous Neumann BC 

( ), 0,
0

w x y t
y

∂ =
=

∂

For the second BC in y, we will use a nonhomogeneous Neumann BC 

( ) ( ) ( ), ,
sin sinhl

l

w x y y t
x y

y
π π π

∂ =
=

∂
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where yl is the upper boundary value of y . Note that 
( ), lw x y y

y
∂ =

∂
in BC is a function 

of x .

The analytical solution to Eqs. 
2 2

2 2 0w w
x y

∂ ∂
+ =

∂ ∂
 (note, not Eq. 

2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
), 

( ) ( ) ( ), ,
sin sinhl

l

w x y y t
x y

y
π π π

∂ =
=

∂
 is a special case of one of the solutions stated 

previously 

, sin cos h( ) ( ) ( )w x y x yπ π=

The analytical solution of Eq. , sin cos h( ) ( ) ( )w x y x yπ π=  will be used to evaluate the 
numerical solution.

To develop a numerical solution to Eq. 
2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
, we first replace all of the de-

rivatives with finite differences in analogy with the preceding numerical solutions. The 
positions in x, y and t will be denoted with indicesi, j and k, respectively. The correspond-

ing increments are Δx , Δy and h . Application of these ideas to Eq. 
2 2

2 2

w w w
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
 

gives the finite difference approximation
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∂
 in difference notation is  
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( ) ( ), 1 , 1 2 sin sinh
y y y

k k
i N i N i Nw w y x yπ π π+ −= + ∆

where , 1y

k
i Nw +  is a fictitious value that can be used in Eq.

1,2, , ; 1, 2, , ; 1, 2,i Nx j Ny k= … = … = … for j=Ny .
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7
Probability and Statistics
Probability is a measure that quantifies the likelihood of events that might occur. Sta-
tistics is a subset of mathematics which deals with data collection, analysis, organiza-
tion, interpretation and presentation. The chapter closely examines the key concepts 
of probability and statistics to provide an extensive understanding of mathematics.

Probability

Probability is the likelihood of something happening. When someone tells you the 
probability of something happening, they are telling you how likely that something is. 
When people buy lottery tickets, the probability of winning is usually stated, and some-
times, it can be something like 1/10,000,000 (or even worse). This tells you that it is 
not very likely that you will win.

The formula for probability tells you how many choices you have over the number of 
possible combinations.

Calculating Probability

To calculate probability, you need to know how many possible options or outcomes 
there are and how many right combinations you have. Let’s calculate the probability of 
throwing dice, and how it works.

First, we know that a die has a total of 6 possible outcomes. You can roll a 1, 2, 3, 4, 
5, or 6. Next, we need to know how many choices we have. Whenever you roll, you 
will get one of the numbers. You can’t roll and get two different numbers with one 
die. So, our number of choices is 1. Using our formula for probability, we get a prob-
ability of 1/6.

possiblechoicesprobability
total number of options

=

Our probability of rolling any of the numbers is 1/6. The probability of rolling a 2 is 1/6, 
of rolling a 3 is also 1/6, and so on.

Let’s try another problem. Let’s say we have a grab bag of apples and oranges. We want 
to find out the probability of picking an apple from the bag. One thing we need to know 
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is the number of apples in the bag because that gives us the number of ‘correct’ choices, 
which is the number of our possible choices in the top part of the calculation.

1
6

probability =

We also need to know the total number of fruits in the bag, for this gives us the total 
number of choices we have, or the total number of options in the bottom part of the 
calculation. The person with the grab bag tells us there are 10 apples and 20 oranges 
in the bag. So, what is our probability of picking an apple? We have 10 apples, one of 
which we want, and a total of 30 fruits to pick from.

10
30
1
3

probability =

=

Our probability is 1/3 for picking an apple. If you compare this with our probability 
of rolling a number on a die, the probability of picking an apple from the grab bag is 
higher. It is more likely that we will pick an apple than that we will roll a particular 
number.

In both cases, we can leave the probability in fraction form or we can convert it to dec-
imal form: 1/6 becomes 0.17, and 1/3 becomes 0.33.

Conditional Probability

Conditional probability is the probability of one event occurring with some relationship 
to one or more other events. For example:

•	 Event A is that it is raining outside, and it has a 0.3 (30%) chance of raining 
today.

•	 Event B is that you will need to go outside, and that has a probability of 0.5 
(50%).

A conditional probability would look at these two events in relationship with one an-
other, such as the probability that it is both raining and you will need to go outside.

The formula for conditional probability is,

P(B|A) = P(A and B) / P(A)

which you can also rewrite as,

P(B|A) = P(A∩B) / P(A).
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Conditional Probability Formula Examples

Example

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket 
seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at 
random bought an alarm system, what is the probability they also bought bucket seats.

Step 1: Figure out P(A). It’s given in the question as 40%, or 0.4.

Step 2: Figure out P(A∩B). This is the intersection of A and B: both happening together. 
It’s given in the question 20 out of 100 buyers, or 0.2.

Step 3: Insert your answers into the formula:

( ) ( ) ( )P B A =P A B /P A =0.2/0.| 4=0.5.∩

The probability that a buyer bought bucket seats, given that they purchased an alarm 
system, is 50%.

Venn diagram showing that 20 out of 40 alarm buyers purchased bucket seats.

Example

This question uses the following contingency table:

Have pets Dot not have pets Total

Male 0.41 0.08 0.49

Female 0.45 0.06 0.51

Total 0.86 0.14 1

What is the probability a randomly selected person is male, given that they own a pet?

Step 1: Repopulate the formula with new variables so that it makes sense for the ques-
tion (optional, but it helps to clarify what you’re looking for). I’m going to say M is for 
male and PO stands for pet owner, so the formula becomes,

( ) ( ) ( )P M PO =P M| PO /P PO∩
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Step 2: Figure out P(M∩PO) from the table. The intersection of male/pets (the intersec-
tion on the table of these two factors) is 0.41.

Have pets Dot not have pets Total

Male 0.41 0.08 0.49

Female 0.45 0.06 0.51

Total 0.86 0.14 1

Step 3: Figure out P(PO) from the table. From the total column, 86% (0.86) of respon-
dents had a pet.

Have pets Dot not have pets Total

Male 0.41 0.08 0.49

Female 0.45 0.06 0.51

Total 0.86 0.14 1

Step 4: Insert your values into the formula:

( ) ( ) ( )P M PO =P M PO /P M =0.41/0.86=0.477, or 4 .| 7.7%∩

Single Events

Example

There are 6 beads in a bag, 3 are red, 2 are yellow and 1 is blue. What is the probability 
of picking a yellow?

The probability is the number of yellows in the bag divided by the total number of balls, 
i.e. 2/6 = 1/3.

Example

There is a bag full of coloured balls, red, blue, green and orange. Balls are picked out 
and replaced. John did this 1000 times and obtained the following results-

•	 Number of blue balls picked out: 300

•	 Number of red balls: 200

•	 Number of green balls: 450

•	 Number of orange balls: 50

a)	 What is the probability of picking a green ball?
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b)	 For every 1000 balls picked out, 450 are green. Therefore P(green) = 450/1000 
= 0.45.

If there are 100 balls in the bag, how many of them are likely to be green?

The experiment suggests that 450 out of 1000 balls are green. Therefore, out of 100 
balls, 45 are green (using ratios).

Multiple Events

Independent and Dependent Events

Suppose now we consider the probability of 2 events happening. For example, we might 
throw 2 dice and consider the probability that both are 6’s.

We call two events independent if the outcome of one of the events doesn’t affect the 
outcome of another. For example, if we throw two dice, the probability of getting a 6 on 
the second die is the same, no matter what we get with the first one- it’s still 1/6.

On the other hand, suppose we have a bag containing 2 red and 2 blue balls. If we pick 
2 balls out of the bag, the probability that the second is blue depends upon what the 
colour of the first ball picked was. If the first ball was blue, there will be 1 blue and 2 
red balls in the bag when we pick the second ball. So the probability of getting a blue 
is 1/3. However, if the first ball was red, there will be 1 red and 2 blue balls left so the 
probability the second ball is blue is 2/3. When the probability of one event depends on 
another, the events are dependent.

Possibility Spaces

When working out what the probability of two things happening is, a probability/ pos-
sibility space can be drawn. For example, if you throw two dice, what is the probability 
that you will get: a) 8, b) 9, c) either 8 or 9?

a)	 The black blobs indicate the ways of getting 8 (a 2 and a 6, a 3 and a 5, ...). There 
are 5 different ways. The probability space shows us that when throwing 2 dice, 
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there are 36 different possibilities (36 squares). With 5 of these possibilities, 
you will get 8. Therefore P(8) = 5/36 .

b)	 The red blobs indicate the ways of getting 9. There are four ways, therefore P(9) 
= 4/36 = 1/9.

c)	 You will get an 8 or 9 in any of the ‘blobbed’ squares. There are 9 altogether, so 
P(8 or 9) = 9/36 = 1/4 .

Probability Trees

Another way of representing 2 or more events is on a probability tree.

Example

There are 3 balls in a bag: red, yellow and blue. One ball is picked out, and not replaced, 
and then another ball is picked out.

The first ball can be red, yellow or blue. The probability is 1/3 for each of these. If a red 
ball is picked out, there will be two balls left, a yellow and blue. The probability the sec-
ond ball will be yellow is 1/2 and the probability the second ball will be blue is 1/2. The 
same logic can be applied to the cases of when a yellow or blue ball is picked out first.

In this example, the question states that the ball is not replaced. If it was, the proba-
bility of picking a red ball (etc.) the second time will be the same as the first (i.e. 1/3).

The AND and OR rules (Higher Tier)

In the above example, the probability of spicking a red first is 1/3 and a yellow second is 
1/2. The probability that a red AND then a yellow will be picked is 1/3 × 1/2 = 1/6 (this 
is shown at the end of the branch). The rule is:

•	 If two events A and B are independent (this means that one event does not 
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depend on the other), then the probability of both A and B occurring is found 
by multiplying the probability of A occurring by the probability of B occurring.

The probability of picking a red OR yellow first is 1/3 + 1/3 = 2/3. The rule is:

•	 If we have two events A and B and it isn’t possible for both events to occur, then 
the probability of A or B occuring is the probability of A occurring + the proba-
bility of B occurring.

On a probability tree, when moving from left to right we multiply and when moving 
down we add.

Example

What is the probability of getting a yellow and a red in any order?

This is the same as: what is the probability of getting a yellow AND a red OR a red AND 
a yellow.

	 P(yellow and red) = 1/3 × 1/2 = 1/6

	 P(red and yellow) = 1/3 × 1/2 = 1/6

	 P(yellow and red or red and yellow) = 1/6 + 1/6 = 1/3

Probability Theory

Probability theory is a branch of mathematics concerned with the analysis of random 
phenomena. The outcome of a random event cannot be determined before it occurs, 
but it may be any one of several possible outcomes. The actual outcome is considered 
to be determined by chance.

The word probability has several meanings in ordinary conversation. Two of these are 
particularly important for the development and applications of the mathematical the-
ory of probability. One is the interpretation of probabilities as relative frequencies, for 
which simple games involving coins, cards, dice, and roulette wheels provide examples. 
The distinctive feature of games of chance is that the outcome of a given trial cannot 
be predicted with certainty, although the collective results of a large number of trials 
display some regularity. For example, the statement that the probability of “heads” in 
tossing a coin equals one-half, according to the relative frequency interpretation, im-
plies that in a large number of tosses the relative frequency with which “heads” actually 
occurs will be approximately one-half, although it contains no implication concerning 
the outcome of any given toss. There are many similar examples involving groups of 
people, molecules of a gas, genes, and so on. Actuarial statements about the life expec-
tancy for persons of a certain age describe the collective experience of a large number 
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of individuals but do not purport to say what will happen to any particular person. Sim-
ilarly, predictions about the chance of a genetic disease occurring in a child of parents 
having a known genetic makeup are statements about relative frequencies of occur-
rence in a large number of cases but are not predictions about a given individual.

Random Variables, Distributions, Expectation and Variance

Random Variables

Usually it is more convenient to associate numerical values with the outcomes of an exper-
iment than to work directly with a nonnumerical description such as “red ball on the first 
draw.” For example, an outcome of the experiment of drawing n balls with replacement 
from an urn containing black and red balls is an n-tuple that tells us whether a red or a 
black ball was drawn on each of the draws. This n-tuple is conveniently represented by 
an n-tuple of ones and zeros, where the appearance of a one in the kth position indicates 
that a red ball was drawn on the kth draw. A quantity of particular interest is the number 
of red balls drawn, which is just the sum of the entries in this numerical description of the 
experimental outcome. Mathematically a rule that associates with every element of a given 
set a unique real number is called a “(real-valued) function.” In the history of statistics and 
probability, real-valued functions defined on a sample space have traditionally been called 
“random variables.” Thus, if a sample space S has the generic element e, the outcome of an 
experiment, then a random variable is a real-valued function X = X(e). Customarily one 
omits the argument e in the notation for a random variable. For the experiment of draw-
ing balls from an urn containing black and red balls, R, the number of red balls drawn, is 
a random variable. A particularly useful random variable is 1[A], the indicator variable of 
the event A, which equals 1 if A occurs and 0 otherwise. A “constant” is a trivial random 
variable that always takes the same value regardless of the outcome of the experiment.

Probability Distribution

Suppose X is a random variable that can assume one of the values x1, x2,…, xm, accord-
ing to the outcome of a random experiment, and consider the event {X = xi}, which is a 
shorthand notation for the set of all experimental outcomes e such that X(e) = xi. The 
probability of this event, P{X = xi}, is itself a function of xi, called the probability dis-
tribution function of X. Thus, the distribution of the random variable R defined is the 
function of i = 0, 1,…, n given in the binomial equation. Introducing the notation f(xi) = 
P{X = xi}, one sees from the basic properties of probabilities that,

( ) 0for all ( ) 1,i i
i

f x i f x≥ =∑

and

{ } ( )
i

i
a x b

P a X b f x
< ≤

< ≤ = ∑
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for any real numbers a and b. If Y is a second random variable defined on the same 
sample space as X and taking the values y1, y2,…, yn, the function of two variables h(xi, 
yj) = P{X = xi, Y = yj} is called the joint distribution of X and Y. Since {X = xi} = ∪j{X = 
xi, Y = yj}, and this union consists of disjoint events in the sample space,

( ) ( , ), for all .i i j
j

f x h x y i=∑

Often f is called the marginal distribution of X to emphasize its relation to the joint 
distribution of X and Y. Similarly, ( ) ( )  ,  j i i jg y h x y= Σ is the (marginal) distribution 
of Y. The random variables X and Y are defined to be independent if the events {X = xi} 
and {Y = yj} are independent for all i and j—i.e., if h(xi, yj) = f(xi)g(yj) for all i and j. The 
joint distribution of an arbitrary number of random variables is defined similarly.

Suppose two dice are thrown. Let X denote the sum of the numbers appearing on the two 
dice, and let Y denote the number of even numbers appearing. The possible values of X are 
2, 3,…, 12, while the possible values of  Y are 0, 1, 2. Since there are 36 possible outcomes for 
the two dice, the accompanying table giving the joint distribution h(i, j) (i = 2, 3,…, 12; j = 0, 
1, 2) and the marginal distributions f(i) and g(j) is easily computed by direct enumeration.

For more complex experiments, determination of a complete probability distribution 
usually requires a combination of theoretical analysis and empirical experimentation 
and is often very difficult. Consequently, it is desirable to describe a distribution insofar 
as possible by a small number of parameters that are comparatively easy to evaluate 
and interpret. The most important are the mean and the variance. These are both de-
fined in terms of the “expected value” of a random variable.

Expected Value

Given a random variable X with distribution f, the expected value of X, denoted E(X), 
is defined by E(X) = Σixif(xi). In words, the expected value of X is the sum of each of the 
possible values of X multiplied by the probability of obtaining that value. The expected 
value of X is also called the mean of the distribution f. The basic property of E is that of 
linearity: if X and Y are random variables and if a and b are constants, then E(aX+bY) 
= aE(X)+bE(Y). To see why this is true, note that aX + bY is itself a random variable, 
which assumes the values axi+byj with the probabilities h(xi, yj). Hence,

,

, ,

( ) ( ) ( , )

( , ) ( , )

i j i j
i j

i i j j i j
i j i j

E aX bY ax by h x y

a x h x y b y h x y

+ = +

= +

∑

∑ ∑

If the first sum on the right-hand side is summed over j while holding i fixed, by equa-
tion the result is,

( ) ( , ), for all .i i j
j

f x h x y i=∑
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( ),i i
i

x f x∑

which by definition is E(X). Similarly, the second sum equals E(Y).

If 1[A] denotes the “indicator variable” of A—i.e., a random variable equal to 1 if A oc-
curs and equal to 0 otherwise—then E{1[A]}=1×P(A)+0×P(Ac)=P(A). This shows that 
the concept of expectation includes that of probability as a special case.

Consider the number R of red balls in n draws with replacement from an urn 
containing a proportion p of red balls. From the definition and the binomial 
distribution of R,

( )( ) ,n i n i
i

i
E R i p q −=∑

Which can be evaluated by algebraic manipulation and found to equal np. It is easier 
to use the representation R = 1[A1] +⋯+ 1[An], where Ak denotes the event “the kth 
draw results in a red ball.” Since E{1[Ak]} = p for all k, by linearity E(R) = E{1[A1]} 
+⋯+ E{1[An]} = np. This argument illustrates the principle that one can often compute 
the expected value of a random variable without first computing its distribution. For 
another example, suppose n balls are dropped at random into n boxes. The number of 
empty boxes, Y, has the representation Y = 1[B1] +⋯+ 1[Bn], where Bk is the event that 
“the kth box is empty.” Since the kth box is empty if and only if each of the n balls went 
into one of the other n − 1 boxes, P(Bk) = [(n − 1)/n]n for all k, and consequently E(Y) = 
n(1 − 1/n)n. The exact distribution of Y is very complicated, especially if n is large.

Many probability distributions have small values of f(xi) associated with extreme (large 
or small) values of xi and larger values of f(xi) for intermediate xi. For example, both 
marginal distributions in the table are symmetrical about a midpoint that has relatively 
high probability, and the probability of other values decreases as one moves away from 
the midpoint. Insofar as a distribution f(xi) follows this kind of pattern, one can inter-
pret the mean of f as a rough measure of location of the bulk of the probability distribu-
tion, because in the defining sum the values xi associated with large values of f(xi) more 
or less define the centre of the distribution. In the extreme case, the expected value of a 
constant random variable is just that constant.

Variance

It is also of interest to know how closely packed about its mean value a distribution is. The 
most important measure of concentration is the variance, denoted by Var(X) and defined 
by Var(X) = E{[X − E(X)]2}. By linearity of expectations, one has equivalently Var(X) 
= E(X2) − {E(X)}2. The standard deviation of X is the square root of its variance. It has 
a more direct interpretation than the variance because it is in the same units as X. The 
variance of a constant random variable is 0. Also, if c is a constant, Var(cX) = c2 Var(X).
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There is no general formula for the expectation of a product of random variables. If the 
random variables X and Y are independent, E(XY) = E(X)E(Y). This can be used to show 
that, if X1,…,Xn are independent random variables, the variance of the sum X1+⋯+Xn is 
just the sum of the individual variances, Var(X1)+⋯+Var(Xn). If the Xs have the same 
distribution and are independent, the variance of the average (X1+⋯+Xn)/n is Var(X1)/n. 
Equivalently, the standard deviation of (X1+⋯+Xn)/n is the standard deviation of X1 divid-
ed by Square root of n.  This quantifies the intuitive notion that the average of repeated 
observations is less variable than the individual observations. More precisely, it says that 
the variability of the average is inversely proportional to the square root of the number of 
observations. This result is tremendously important in problems of statistical inference. 

Consider again the binomial distribution equation. As in the calculation of the mean 
value, one can use the definition combined with some algebraic manipulation to show 
that, if R has the binomial distribution, then Var(R) = npq. From the representation 
R = 1[A1]+⋯+1[An] defined above, and the observation that the events Ak are indepen-
dent and have the same probability, it follows that,

1 1Var( ) Var{1[ ]} ... Var{1[ ]} Var{1[ ]}.n nR A A A= + + =

Moreover,

2 2 2
1 1Var{1[ ]} {1[ ] } [ {1[ ]}] .nA E A E A p p pq= − = − =

so Var(R) = npq.

The conditional distribution of Y given X = xi is defined by:

( , )
{ }

( )
i j

j i
i

h x y
P Y y X x

f x
= = =

(compare Bayes’s theorem), and the conditional expectation of Y given X = xi is

( , )
( )

( )
j i j

i
j i

y h x y
E Y X x

f x
= =∑

One can regard E(Y|X) as a function of X; since X is a random variable, this function of 
X must itself be a random variable. The conditional expectation E(Y|X) considered as a 
random variable has its own (unconditional) expectation E{E(Y|X)}, which is calculated 

by multiplying equation 
( , )

( )
( )

j i j
i

j i

y h x y
E Y X x

f x
= =∑  by f(xi) and summing over i to 

obtain the important formula

{ ( )} ( ).E E Y X E Y=
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Properly interpreted, equation { ( )} ( ).E E Y X E Y=  is a generalization of the law of to-
tal probability.

For a simple example of the use of equation { ( )} ( ).E E Y X E Y= , recall the prob-
lem of the gambler’s ruin and let e(x) denote the expected duration of the game 
if Peter’s fortune is initially equal to x. The reasoning leading to equation in con-
junction with equation { ( )} ( ).E E Y X E Y=  shows that e(x) satisfies the equations 
( ) ( ) ( )e x =1+pe x+1 +qe x-1 for x=1,2,…,m-1 with the boundary conditions e(0) = e(m) 

= 0. The solution for p ≠ 1/2 is rather complicated; for p = 1/2, e(x) = x(m − x).

An Alternative Interpretation of Probability

In ordinary conversation the word probability is applied not only to variable phenom-
ena but also to propositions of uncertain veracity. The truth of any proposition con-
cerning the outcome of an experiment is uncertain before the experiment is performed. 
Many other uncertain propositions cannot be defined in terms of repeatable experi-
ments. An individual can be uncertain about the truth of a scientific theory, a religious 
doctrine, or even about the occurrence of a specific historical event when inadequate or 
conflicting eyewitness accounts are involved. Using probability as a measure of uncer-
tainty enlarges its domain of application to phenomena that do not meet the require-
ment of repeatability. The concomitant disadvantage is that probability as a measure of 
uncertainty is subjective and varies from one person to another.

According to one interpretation, to say that someone has subjective probability p that a 
proposition is true means that for any integers r and b with r/(r + b) < p, if that individ-
ual is offered an opportunity to bet the same amount on the truth of the proposition or 
on “red in a single draw” from an urn containing r red and b black balls, he prefers the 
first bet, while, if r/(r + b) > p, he prefers the second bet.

An important stimulus to modern thought about subjective probability has been an 
attempt to understand decision making in the face of incomplete knowledge. It is as-
sumed that an individual, when faced with the necessity of making a decision that may 
have different consequences depending on situations about which he has incomplete 
knowledge, can express his personal preferences and uncertainties in a way consistent 
with certain axioms of rational behaviour. It can then be deduced that the individual 
has a utility function, which measures the value to him of each course of action when 
each of the uncertain possibilities is the true one, and a “subjective probability dis-
tribution,” which expresses quantitatively his beliefs about the uncertain situations. 
The individual’s optimal decision is the one that maximizes his expected utility with 
respect to his subjective probability. The concept of utility goes back at least to Dan-
iel Bernoulli (Jakob Bernoulli’s nephew) and was developed in the 20th century by 
John von Neumann and Oskar Morgenstern, Frank P. Ramsey, and Leonard J. Savage, 
among others. Ramsey and Savage stressed the importance of subjective probability as 
a concomitant ingredient of decision making in the face of uncertainty. An alternative 
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approach to subjective probability without the use of utility theory was developed by 
Bruno de Finetti.

The mathematical theory of probability is the same regardless of one’s interpretation 
of the concept, although the importance attached to various results can depend very 
much on the interpretation. In particular, in the theory and applications of subjective 
probability, Bayes’s theorem plays an important role.

For example, suppose that an urn contains N balls, r of which are red and b = N − r of 
which are black, but r (hence b) is unknown. One is permitted to learn about the value 
of r by performing the experiment of drawing with replacement n balls from the urn. 
Suppose also that one has a subjective probability distribution giving the probability 
f(r) that the number of red balls is in fact r where f(0) +⋯+ f(N) = 1. This distribution is 
called an a priori distribution because it is specified prior to the experiment of drawing 
balls from the urn. The binomial distribution is now a conditional probability, given 
the value of r. Finally, one can use Bayes’s theorem to find the conditional probability 
that the unknown number of red balls in the urn is r, given that the number of red balls 
drawn from the urn is i. The result is,

0

1

0 01
0 0 0 0

( ) , where b .
( ) r

i n

n i n
r

f r r b N r
f r b

−

−
=

= −
∑

This distribution, derived by using Bayes’s theorem to combine the a priori distribu-
tion with the conditional distribution for the outcome of the experiment, is called the a 
posteriori distribution.

The virtue of this calculation is that it makes possible a probability statement about the 
composition of the urn, which is not directly observable, in terms of observable data, from 
the composition of the sample taken from the urn. The weakness, as indicated above, is 
that different people may choose different subjective probabilities for the composition of 
the urn a priori and hence reach different conclusions about its composition a posteriori.

To see how this idea might apply in practice, consider a simple urn model of opinion 
polling to predict which of two candidates will win an election. The red balls in the 
urn are identified with voters who will vote for candidate A and the black balls with 
those voting for candidate B. Choosing a sample from the electorate and asking their 
preferences is a well-defined random experiment, which in theory and in practice is re-
peatable. The composition of the urn is uncertain and is not the result of a well-defined 
random experiment. Nevertheless, to the extent that a vote for a candidate is a vote 
for a political party, other elections provide information about the content of the urn, 
which, if used judiciously, should be helpful in supplementing the results of the actual 
sample to make a prediction. Exactly how to use this information is a difficult problem 
in which individual judgment plays an important part. One possibility is to incorporate 
the prior information into an a priori distribution about the electorate, which is then 
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combined via Bayes’s theorem with the outcome of the sample and summarized by an 
a posteriori distribution.

Bayes’ Theorem

Bayes’ theorem is a mathematical equation used in probability and statistics to calcu-
late conditional probability. In other words, it is used to calculate the probability of an 
event based on its association with another event. The theorem is also known as Bayes’ 
law or Bayes’ rule.

Formula for Bayes’ Theorem

There are several different ways to write the formula for Bayes’ theorem. The most 
common form is:

( ) ( )P A B  = P B A P A  / P B( ) ( )

where A and B are two events and P(B) ≠ 0

•	 P(A ∣ B) is the conditional probability of event A occurring given that B is true.

•	 P(B ∣ A) is the conditional probability of event B occurring given that A is true.

P(A) and P(B) are the probabilities of A and B occurring independently of one another 
(the marginal probability).

Proof of Bayes’ Theorem

The probability of two events A and B happening, P(A∩B), is the probability of A, P(A), 
times the probability of B given that A has occurred, P(B|A).

( ) ( ) ( ) |   P A B P A P B A∩ =

The probability of two events A and B happening, P(A∩B), is the probability of A, P(A), 
times the probability of B given that A has occurred, P(B|A).

( ) ( ) ( ) |   P A B P B P A B∩ =

Equating the two yields,

( ) ( ) ( ) ( )| |  P B P A B P A P B A=

and thus,

( ) ( ) ( )
( )

  
|

|  
P B A

P A B P A
P B

=
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This equation, known as Bayes Theorem is the basis of statistical inference.

Proof of Bayes Theorem

The probability of two events A and B happening, P(A∩B), is the probability of A, P(A), 
times the probability of B given that A has occurred, P(B|A).

( ) ( ) ( )P A B P A P B A∩ =

On the other hand, the probability of A and B is also equal to the probability of B times 
the probability of A given B.

( ) ( ) ( )P A B P B P A B∩ =

Equating the two yields:

( ) ( ) ( ) ( )P B P A B P A P B A=

and thus

( )
( ) ( )

( )
P B A

P A B P A
P B

=

This equation, known as Bayes Theorem is the basis of statistical inference.

Statistics

Statistics is the study of the collection, analysis, interpretation, presentation, and orga-
nization of data. In other words, it is a mathematical discipline to collect, summarize 
data.

Mathematical Statistics

Mathematical statistics is the application of mathematics to statistics, which was origi-
nally conceived as the science of the state — the collection and analysis of facts about a 
country: its economy, and, military, population, and so forth.

Mathematical techniques used for this include mathematical analysis, linear algebra, 
stochastic analysis,differential equation and measure-theoretic probability theory.

Scope

Statistics is used in many sectors such as psychology, geology, sociology, weather 
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forecasting, probability and much more. The goal of statistics is to gain understanding 
from data it focuses on applications and hence, it is distinctively considered as a Math-
ematical science.

Methods

The methods of collecting, summarizing, analyzing, and interpreting variable numeri-
cal data. Here are some of the methods provided below.

•	 Data collection

•	 Data summarization

•	 Statistical analysis

Data

Data is a collection of facts, such as numbers, words, measurements, observations etc.

Types of Data

•	 Qualitative data- it is descriptive data.

	 Example- She can run fast, He is thin.

•	 Quantitative data- it is numerical information.

	 Example- An Octopus is an Eight legged creature.

Types of Quantitative Data

•	 Discrete data- has a particular fixed value.It can be counted.

•	 Continuous data- is not fixed but has a range of data.It can be measured.

Representation of Data

Bar Graph
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A Bar Graph represent grouped data with rectangular bars with lengths proportional to 
the values that they represent. The bars can be plotted vertically or horizontally.

Pie Chart

A type of graph in which a circle is divided into Sectors that each represent a proportion 
of the whole.

Line graph

The line chart is represented by a series of data-points connected with a straight line.

The series of data points are called ‘markers.’

A pictorial symbol for a word or phrase, i.e. showing data with the help of pictures.Such 
as Apple, Banana & Cherry can have different number, it is just a representation of data.

Histogram



212

Introductory Mathematics

A diagram consisting of rectangles whose area is proportional to the frequency of a 
variable and whose width is equal to the class interval.

Marks Obtained Frequency

5 4

6 3

7 6

8 5

9 3

10 1

Frequency Distribution

The frequency of a data value is often represented by “f.” A frequency table is con-
structed by arranging collected data values in ascending order of magnitude with their 
corresponding frequencies.

Sample Mean ( x̄  )
x

n
∑

Population Mean (μ)
x

N
∑

Sample Standard Deviation (s)
2

1
( )x x
n

∑ −
−

Population Standard Deviation (σ)
2( )x

N
µσ −

=

Sample Variance (s2) 2

1
( )ix xs
n

∑ −
=

−

Population Variance (σ2) 2 – ¯( )ix x
N

σ ∑
= <

Range (R) Largest data value – smallest data value

Application

Some of the application of statistic are given below:

•	 Applied statistics, theoretical statistics and mathematical statistics
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•	 Machine learning and data mining

•	 Statistics in society

•	 Statistical computing

•	 Statistics applied to mathematics or the arts.

Descriptive Statistics

Descriptive statistics are used to describe the basic features of the data in a study. 
They provide simple summaries about the sample and the measures. Together with 
simple graphics analysis, they form the basis of virtually every quantitative analysis 
of data.

Descriptive statistics are typically distinguished from inferential statistics. With de-
scriptive statistics you are simply describing what is or what the data shows. With infer-
ential statistics, you are trying to reach conclusions that extend beyond the immediate 
data alone. For instance, we use inferential statistics to try to infer from the sample data 
what the population might think. Or, we use inferential statistics to make judgments of 
the probability that an observed difference between groups is a dependable one or one 
that might have happened by chance in this study. Thus, we use inferential statistics to 
make inferences from our data to more general conditions; we use descriptive statistics 
simply to describe what’s going on in our data.

Descriptive Statistics are used to present quantitative descriptions in a manageable 
form. In a research study we may have lots of measures. Or we may measure a large 
number of people on any measure. Descriptive statistics help us to simplify large 
amounts of data in a sensible way. Each descriptive statistic reduces lots of data into a 
simpler summary.

Measures of Central Tendency

A measure of central tendency is a single value that attempts to describe a set of data 
by identifying the central position within that set of data. As such, measures of central 
tendency are sometimes called measures of central location. They are also classed as 
summary statistics. The mean (often called the average) is most likely the measure of 
central tendency that you are most familiar with, but there are others, such as the me-
dian and the mode.

The mean, median and mode are all valid measures of central tendency, but under dif-
ferent conditions, some measures of central tendency become more appropriate to use 
than others. 
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Mean (Arithmetic)

The mean (or average) is the most popular and well known measure of central tenden-
cy. It can be used with both discrete and continuous data, although its use is most often 
with continuous data. The mean is equal to the sum of all the values in the data set 
divided by the number of values in the data set. So, if we have n values in a data set and 
they have values x1, x2, ..., xn, the sample mean, usually denoted by x, is:

1 2( ... )nx x xx
n

+ + +
=

This formula is usually written in a slightly different manner using the Greek capitol 
letter, ,∑ , pronounced “sigma”, which means “sum of”:

x
x

n
= ∑

You may have noticed that the above formula refers to the sample mean. It is called Sim-
ple Mean beacause because, in statistics, samples and populations have very different 
meanings and these differences are very important, even if, in the case of the mean, they 
are calculated in the same way. To acknowledge that we are calculating the population 
mean and not the sample mean, we use the Greek lower case letter “mu”, denoted as µ:

x
n

µ = ∑

The mean is essentially a model of your data set. It is the value that is most common. 
You will notice, however, that the mean is not often one of the actual values that you 
have observed in your data set. However, one of its important properties is that it mi-
nimises error in the prediction of any one value in your data set. That is, it is the value 
that produces the lowest amount of error from all other values in the data set.

An important property of the mean is that it includes every value in your data set as 
part of the calculation. In addition, the mean is the only measure of central tendency 
where the sum of the deviations of each value from the mean is always zero.

Restrictions to using the Mean

The mean has one main disadvantage: it is particularly susceptible to the influence of 
outliers. These are values that are unusual compared to the rest of the data set by being 
especially small or large in numerical value. For example, consider the wages of staff at 
a factory below:

1 2 3 4 5 6 7 8 9 10
15 18 16 14 15 15 12 17 90 95

Staff
Salary k k k k k k k k k k
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The mean salary for these ten staff is $30.7k. However, inspecting the raw data sug-
gests that this mean value might not be the best way to accurately reflect the typical 
salary of a worker, as most workers have salaries in the $12k to 18k range. The mean 
is being skewed by the two large salaries. Therefore, in this situation, we would like to 
have a better measure of central tendency in this situation. 

Another time when we usually prefer the median over the mean (or mode) is when our 
data is skewed (i.e., the frequency distribution for our data is skewed). If we consider 
the normal distribution - as this is the most frequently assessed in statistics - when the 
data is perfectly normal, the mean, median and mode are identical. Moreover, they all 
represent the most typical value in the data set. However, as the data becomes skewed 
the mean loses its ability to provide the best central location for the data because the 
skewed data is dragging it away from the typical value. However, the median best re-
tains this position and is not as strongly influenced by the skewed values. 

Median

The median is the middle score for a set of data that has been arranged in order of 
magnitude. The median is less affected by outliers and skewed data. In order to calcu-
late the median, suppose we have the data below:

65 55 89 56 35 14 56 55 87 45 92

We first need to rearrange that data into order of magnitude (smallest first):

14 35 45 55 55 56 56 65 87 89 92

Our median mark is the middle mark - in this case, 56 (highlighted in bold). It is the 
middle mark because there are 5 scores before it and 5 scores after it. This works fine 
when you have an odd number of scores, but what happens when you have an even 
number of scores? What if you had only 10 scores? Well, you simply have to take the 
middle two scores and average the result. So, if we look at the example below:

65 55 89 56 35 14 56 55 87 45

We again rearrange that data into order of magnitude (smallest first):

14 35 45 55 55 56 56 65 87 89

Only now we have to take the 5th and 6th score in our data set and average them to get 
a median of 55.5.

Mode

The mode is the most frequent score in our data set. On a histogram it represents the 
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highest bar in a bar chart or histogram. You can, therefore, sometimes consider the 
mode as being the most popular option. An example of a mode is presented below:

Normally, the mode is used for categorical data where we wish to know which is the 
most common category, as illustrated below:

We can see above that the most common form of transport, in this particular data set, is 
the bus. However, one of the problems with the mode is that it is not unique, so it leaves 
us with problems when we have two or more values that share the highest frequency, 
such as below:
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We are now stuck as to which mode best describes the central tendency of the data. 
This is particularly problematic when we have continuous data because we are more 
likely not to have any one value that is more frequent than the other. For example, 
consider measuring 30 peoples’ weight (to the nearest 0.1 kg). How likely is it that we 
will find two or more people with exactly the same weight (e.g., 67.4 kg)? The answer, 
is probably very unlikely - many people might be close, but with such a small sample 
(30 people) and a large range of possible weights, you are unlikely to find two people 
with exactly the same weight; that is, to the nearest 0.1 kg. This is why the mode is very 
rarely used with continuous data.

Another problem with the mode is that it will not provide us with a very good measure 
of central tendency when the most common mark is far away from the rest of the data 
in the data set, as depicted in the diagram below:

In the above diagram the mode has a value of 2. We can clearly see, however, that the 
mode is not representative of the data, which is mostly concentrated around the 20 to 
30 value range. To use the mode to describe the central tendency of this data set would 
be misleading.

Skewed Distributions and the Mean and Median



218

Introductory Mathematics

We often test whether our data is normally distributed because this is a common as-
sumption underlying many statistical tests. An example of a normally distributed set of 
data is presented below:

When you have a normally distributed sample you can legitimately use both the mean 
or the median as your measure of central tendency. In fact, in any symmetrical distri-
bution the mean, median and mode are equal. However, in this situation, the mean is 
widely preferred as the best measure of central tendency because it is the measure that 
includes all the values in the data set for its calculation, and any change in any of the 
scores will affect the value of the mean. This is not the case with the median or mode.

However, when our data is skewed, for example, as with the right-skewed data set be-
low:

We find that the mean is being dragged in the direct of the skew. In these situations, the 
median is generally considered to be the best representative of the central location of 
the data. The more skewed the distribution, the greater the difference between the me-
dian and mean, and the greater emphasis should be placed on using the median as op-
posed to the mean. A classic example of the above right-skewed distribution is income 
(salary), where higher-earners provide a false representation of the typical income if 
expressed as a mean and not a median.

Measures of Dispersion

The measure of dispersion shows the scatterings of the data. It tells the variation of 
the data from one another and gives a clear idea about the distribution of the data. The 
measure of dispersion shows the homogeneity or the heterogeneity of the distribution 
of the observations.

Suppose you have four datasets of the same size and the mean is also same, say, m. In all 
the cases the sum of the observations will be the same. Here, the measure of central ten-
dency is not giving a clear and complete idea about the distribution for the four given sets.
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Can we get an idea about the distribution if we get to know about the dispersion of the 
observations from one another within and between the datasets? The main idea about 
the measure of dispersion is to get to know how the data are spread. It shows how much 
the data vary from their average value.

Characteristics of Measures of Dispersion

•	 A measure of dispersion should be rigidly defined

•	 It must be easy to calculate and understand

•	 Not affected much by the fluctuations of observations

•	 Based on all observations

Classification of Measures of Dispersion

The measure of dispersion is categorized as:

(i) An absolute measure of dispersion-

•	 The measures which express the scattering of observation in terms of distances 
i.e., range, quartile deviation.

•	 The measure which expresses the variations in terms of the average of devia-
tions of observations like mean deviation and standard deviation.

(ii) A relative measure of dispersion-

We use a relative measure of dispersion for comparing distributions of two or more 
data set and for unit free comparison. They are the coefficient of range, the coefficient 
of mean deviation, the coefficient of quartile deviation, the coefficient of variation, and 
the coefficient of standard deviation.

Range

A range is the most common and easily understandable measure of dispersion. It is the 
difference between two extreme observations of the data set. If Xmax  and  Xmin are the 
two extreme observations then

max minRange=X –X

Merits of Range

•	 It is the simplest of the measure of dispersion

•	 Easy to calculate
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•	 Easy to understand

•	 Independent of change of origin.

Demerits of Range

•	 It is based on two extreme observations. Hence, get affected by fluctuations

•	 A range is not a reliable measure of dispersion

•	 Dependent on change of scale.

Quartile Deviation

The quartiles divide a data set into quarters. The first quartile, (Q1) is the middle num-
ber between the smallest number and the median of the data. The second quartile, (Q2) 
is the median of the data set. The third quartile, (Q3) is the middle number between the 
median and the largest number.

Quartile deviation or semi-inter-quartile deviation is,

3 1( )Q = ½ × Q  – Q

Merits of Quartile Deviation

•	 All the drawbacks of Range are overcome by quartile deviation

•	 It uses half of the data

•	 Independent of change of origin

•	 The best measure of dispersion for open-end classification

Demerits of Quartile Deviation

•	 It ignores 50% of the data

•	 Dependent on change of scale

•	 Not a reliable measure of dispersion

Mean Deviation

Mean deviation is the arithmetic mean of the absolute deviations of the observations 
from a measure of central tendency. If x1, x2,…, xn are the set of observation, then the 
mean deviation of x about the average A (mean, median, or mode) is

1
i i ]Mean deviation from average A n x[ | | A-= ⁄ ∑
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For a grouped frequency, it is calculated as:

Mean deviation from average 1
i i i iA N  f x –  f[ | |A N],  = ⁄ ∑ = ∑

Here, xi and fi are respectively the mid value and the frequency of the ith class interval.

Merits of Mean Deviation

•	 Based on all observations

•	 It provides a minimum value when the deviations are taken from the median

•	 Independent of change of origin

Demerits of Mean Deviation

•	 Not easily understandable

•	 Its calculation is not easy and time-consuming

•	 Dependent on the change of scale

•	 Ignorance of negative sign creates artificiality and becomes useless for further 
mathematical treatment.

Standard Deviation

A standard deviation is the positive square root of the arithmetic mean of the squares of 
the deviations of the given values from their arithmetic mean. It is denoted by a Greek 
letter sigma, σ. It is also referred to as root mean square deviation. The standard devi-
ation is given as,

½ 2  2 ½
i i i i  = y –y  yn  =  [( ( ) ] [( ] y / n –y)  σ Σ Σ

For a grouped frequency distribution, it is,

½ 2  2 ½
i  i i i i  i [( ( )/ ] [ ]= f y –y N  = f y /n) – y  (σ Σ Σ

The square of the standard deviation is the variance. It is also a measure of dispersion.

2 ½ 2 2
i i i i [( ( ) ] [( ) ] y – y / n   y n  – yσ = Σ = Σ ⁄

For a grouped frequency distribution, it is,

2 ½ 2 2
i  i i i i  i  f y  –y   f x n – y .[( ( ) ] [( ) ]Nσ = Σ ⁄ = Σ ⁄

If instead of a mean, we choose any other arbitrary number, say A, the standard devia-
tion becomes the root mean deviation.
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Variance of the Combined Series

If σ1, σ2 are two standard deviations of two series of sizes n1 and n2 with means ȳ1 and ȳ2. 
The variance of the two series of sizes n1+n2 is:

2 2 2 2 2
1 2 1 1 1 2 2 2( ) [ ( ) 1/ n n  n d n d( )]σ σ σ= + ÷ + + +

where,   
1 1 2 2 1 1 2 2 1 2   ,   , and  n  n  n n .y y y y y ( y y ) ( )d d= − = − = + ÷ +

Merits of Standard Deviation

•	 Squaring the deviations overcomes the drawback of ignoring signs in mean de-
viations

•	 Suitable for further mathematical treatment

•	 Least affected by the fluctuation of the observations

•	 The standard deviation is zero if all the observations are constant

•	 Independent of change of origin.

Demerits of Standard Deviation

•	 Not easy to calculate

•	 Difficult to understand for a layman

•	 Dependent on the change of scale.

Coefficient of Dispersion

Whenever we want to compare the variability of the two series which differ widely in 
their averages. Also, when the unit of measurement is different. We need to calculate 
the coefficients of dispersion along with the measure of dispersion. The coefficients of 
dispersion (C.D.) based on different measures of dispersion are,

•	 Based on Range = (Xmax – Xmin) ⁄ (Xmax + Xmin).

•	 C.D. based on quartile deviation = (Q3 – Q1) ⁄ (Q3 + Q1).

•	 Based on mean deviation = Mean deviation/average from which it is calculated.

•	 For Standard deviation = S.D. ⁄ Mean

Coefficient of Variation

100 times the coefficient of dispersion based on standard deviation is the coefficient of 
variation (C.V.).
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( )C.V. 100 S.D. / Mean / y 100.( )σ= × = ×

Solved example on measures of dispersion

Problem: Below is the table showing the values of the results for two companies A, and 
B.

Company A Company B

Number of employees 900 1000

Average daily wage Rs. 250 Rs. 220

Variance in the distribution of Wages 100 144

1.	 Which of the company has a larger wage bill?

2.	 Calculate the coefficients of variations for both of the companies.

3.	 Calculate the average daily wage and the variance of the distribution of wages of 
all the employees in the firms A and B taken together.

Solution:

For Company A

No. of employees = n1 = 900, and average daily wages = ȳ1  = Rs. 250

We know, average daily wage = Total wages ⁄ Total number of employees

or, Total wages = Total employees × average daily wage = 900 × 250 = Rs. 225000 … (i)

For Company B

No. of employees = n2 = 1000, and average daily wages = ȳ2 = Rs. 220

So, Total wages = Total employees × average daily wage = 1000 × 220 = Rs. 220000 
… (ii)

Comparing (i), and (ii), we see that Company A has a larger wage bill.

For Company A

Variance of distribution of wages 2
1 100σ= =

C.V. of distribution of wages  = 100 x standard deviation of distribution of wages/ av-
erage daily wages

( )AOr, C.V.  100 100 250 100 10 250 4 i= ×√ ⁄ = × ⁄ = …
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For Company B

Variance of distribution of wages 2
2  144σ= =

( )BC.V. 100 144 220 100 12 220 5.45 ii= ×√ ⁄ = × ⁄ = …

Comparing (i), and (ii), we see that Company B has greater variability.

For Company A and B Taken Together

The average daily wages for both the companies taken together,

( ) ( ) 
1 1 2 2 1 2

445000n  n  n n 900 250 1000 220 900 1000 .234.21y 19( y y 00) ( ) Rs= + ⁄ + = × + × ÷ + = =

( ) ( ) 
1 1 2 2 1 2

445000n  n  n n 900 250 1000 220 900 1000 .234.21y 19( y y 00) ( ) Rs= + ⁄ + = × + × ÷ + = =

2 2 2 2 2
1 2 1 1 1 2 2 2The combined variance, 1/ n( ) [ ( )n n d n d( )]σ σ σ= + ÷ + + +

1 1 2 2 Here,  d y   y 250 – 234.21 15.79,d y  y 220 – 234.21 –14.21.= − = = = − = =

( )2 2 2Hence, 900 100 15.79 1000 144 –14[ ( .21  900( 10) 0)] 0σ = × + + × + ⁄ +

( )2or, 314391.69 345924.10 1900 347.53.σ = + ⁄ =

Inferential Statistics

Inferential statistics is one of the two main branches of statistics.

Inferential statistics use a random sample of data taken from a population to describe and 
make inferences about the population. Inferential statistics are valuable when examina-
tion of each member of an entire population is not convenient or possible. For example, 
to measure the diameter of each nail that is manufactured in a mill is impractical. You can 
measure the diameters of a representative random sample of nails. You can use the infor-
mation from the sample to make generalizations about the diameters of all of the nails.

Types of Inferential Statistics Tests

There are many tests in this field, of which some of the most important are mentioned 
below.

1. Linear Regression Analysis

In this test, a linear algorithm is used to understand the relationship between two variables 
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from the data set. One of those variables is the dependent variable, while there can be one 
or more independent variables used. In simpler terms, we try to predict the value of the de-
pendent variable based on the available values of the independent variables. This is usually 
represented by using a scatter plot, although we can also use other types of graphs too.

2. Analysis of Variance

This is another statistical method which is extremely popular in data science. It is used 
to test and analyse the differences between two or more means from the data set. The 
significant differences between the means are obtained, using this test.

3. Analysis of Co-variance

This is only a development on the Analysis of Variance method and involves the in-
clusion of a continuous co-variance in the calculations. A co-variate is an independent 
variable which is continuous, and are used as regression variables. This method is used 
extensively in statistical modelling, in order to study the differences present between 
the average values of dependent variables.

4. Statistical Significance (T-Test)

A relatively simple test in inferential statistics, this is used to compare the means of two 
groups and understand if they are different from each other. The order of difference, or 
how significant the differences are can be obtained from this.

5. Correlation Analysis

Another extremely useful test, this is used to understand the extent to which two vari-
ables are dependent on each other. The strength of any relationship, if they exist, between 
the two variables can be obtained from this. You will be able to understand whether the 
variables have a strong correlation or a weak one. The correlation can also be negative 
or positive, depending upon the variables. A negative correlation means that the value 
of one variable decreases while the value of the other increases and positive correlation 
means that the value both variables decrease or increase simultaneously.

Applications of Statistics

Mathematics

The formulas used in math are reliable, but to get more precision and exactness, sta-
tistics methods are important. In fact, it is called the branch of applied math. There 
are common techniques that both the fields have adopted from each other such as sta-
tistical methods, namely probability, dispersion, etc., used in math and mathematical 
concepts like integration and algebra are used in former.
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Business

Business students must be aware of the importance of statistics in the field. There 
are times when a businessman has to make quick decisions, and this can be done by 
using its concepts which make the decision-making easy. He strategizes the market-
ing, finance, production, resource through it. What are the tastes and preferences of 
consumers? What should be the quality? What should be the target market? All these 
questions are answered using statistical tools.

Economics

There are so many concepts of economics that are completely dependent on statistics. 
All the data collected to find out the national income, employment, inflation, etc., are 
interpreted through it. In fact, theory of demand and supply, relationship between ex-
ports and imports are studied through this subject. The perfect example of this is cen-
sus; the bureau uses its formulas for calculating a country’s population.

Country’s Administration

Many national policies are decided using statistical methods, and administrative de-
cisions are taken based on its data. Statistics provides most accurate data which helps 
government to make budgets and estimate expenditures and revenues. It is also used 
to revise the pay scale of employees in case cost of living is rising.

Astronomy

When scientists measured the distance between sun and earth, or moon and earth, they 
did not use any measurement scale or ruler for that. It was these statistical methods 
that helped them to find out the best answers and estimates that are possible. It is dif-
ficult to measure the mass, size, distance, density of objects in the universe without any 
error, but statistics formulas do this with the best probability.

Banking

When someone deposits his money in banks, the idea is that he will not withdraw the 
amount in the near future. So, banks lend this money to other customers to earn profit 
in the form of interest. They use statistical approach for this service. They compare the 
number of people making deposits against the number of people requesting loans and 
at the same time ascertaining the estimated day for the claim.

Accounting and Auditing

Although accounting needs exactness in calculating the profit and loss of the business, 
certain decisions can be taken according to approximation which is done through sta-
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tistics. For example, sampling may be used to find out the current trends in the market 
as it does not require any precision.

Sociology

Sociology is one of the social sciences aiming to discover the basic structure of human 
society, to identify the main forces that hold groups together or weaken them and to 
learn the conditions that transform social life. It highlights and illuminates aspects 
of social life that otherwise might be only obscurely recognized and understood. The 
sociologist may be called upon for help with a special problem such as social conflict, 
urban plight or the war on poverty or crimes. His practical contribution lies in the 
ability to clarify the underlaying nature of social problems to estimate more exactly 
their dimensions and to identify aspects that seem most amenable to remedy with the 
knowledge and skills at hand. 

He naturally lands in sociological research which is the purposeful effort to learn more 
about society than one can in the ordinary course of living. Keeping in view of the prob-
lem he sets forth his objectives collects materials or data and uses statistical techniques 
and the knowledge and theory already established on similar topics to achieve his ob-
jectives. So statistical data and statistical methods are quite indispensable for sociolog-
ical research studies. There is a growing emphasis recently on social survey methods or 
research methodology in all faculties of arts.

Sociologists seek the help of statistical tools to study cultural change in the society, 
family pattern,prostitution,crime,marriage system etc.They also study statistically the 
relation between prostitution and poverty, crime and poverty,drunkness and crime, 
illiteracy and crime etc.Thus statistics is of immense use in various sociological studies.

Government

The functions of a government are more varied and complex. Various depts in the state 
are required to collect and record statistical data in a systematic manner for an effective 
administration. Data pertaining to various fields namely population, natural resources, 
production both agricultural and industrial,finance,trade,exports and imports, pric-
es, labor, transport and communication, health, education,defence ,crimes etc are the 
most fundamental requirements of the state for its administration. It is only on this ba-
sis of such data; the government decides on the priority areas, gives more attention to 
them through target oriented programmes and studies the impact of the programmes 
for its future guidelines.

Planning

Modern age is an age of planning and statistics are indispensable for planning. Accord-
ing to Tippett planning greater or lesser degree according to the government in power 
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is the order of the day and without statistics, planning is inconceivable. Based only on a 
correct assessment of various resources both human and material of the country prop-
er planning can be made. A study of data relating to population, agriculture, industry, 
prices, employment, health, education enables the planners to fix up time-bound targets 
on the social and economic fronts evaluation of such economic and social programmes 
at different stages by means of related data gathered continuously and systematically is 
also done to decide whether the programmes are on towards the goal or targets set.
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