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PREFACE
This book is intended to be a textbook covering selected advanced topics that are not 
covered in depth in any of the standard medical physics texts. The prerequisite is a 
bachelor’s degree in physics and a graduate-level course in radiological physics at 
the level found in the textbooks by Attix (1986), Khan and Gibbons (2014), Podgorsak 
(2010), and Metcalfe et al. (2007). A course in radiobiology would be helpful for 
Chapter 5 but is not essential. This book is not meant to be a comprehensive review 
of the topics presented. Review articles already exist for some (but not all) of these 
topics, and they are summaries of current research. Fundamental, systematic, math-
ematical development is missing in such articles. This book is the place where one 
should begin when learning these topics. Reading review articles should then follow.

Many of these important topics are not well known or understood even by board-
certified medical physicists with years of experience. Reading the scant existing liter-
ature is an exercise in frustration. While there are a few notable exceptions, problems 
are all too common: poor, nonexistent, or incomplete derivations and explanations; 
numerous errors; poor equation typography; failure to clearly and carefully define all 
mathematical symbols (if they are defined at all); internal contradictions or inconsis-
tencies; nonsequiturs; and so forth. Physics is difficult enough to learn without these 
obstacles. I certainly do not claim perfection, but I have been very careful to try to 
minimize these problems. My approach is to start from first principles rather than 
writing down “immaculately conceived” equations whose provenance is mysterious. 
The material in this book cannot be found in any one place. It is a synthesis from a 
large variety of sources using consistent mathematical notation.

This book can be used for self-study, or it could be used by students in gradu-
ate medical physics programs or physics residency programs. It may also be of use 
in vendor training for linacs or treatment planning systems. The chapters can be 
read independently, although there are some links between them. It is my conten-
tion that a single course in radiation therapy physics (à la Khan) is not adequate for 
radiation therapy physicist preparation. Indeed, many graduate programs do have 
an advanced course. There are efforts underway by the American Association of 
Physicists in Medicine to improve teaching of graduate medical physics students. 
One of the biggest problems, however, is a lack of well-written texts covering topics 
that medical physicists need to know. This was frustrating for me as a student, and it 
continues to be a problem today.

Problems and questions appear at the end of each chapter. The solutions to the 
problems are given in the back of the book. I urge you to give the problems consider-
able thought before looking at the solutions. The struggle to solve problems is, after 
all, one of the ways that we learn. I believe that if you can solve the problems, you will 
have a good quantitative understanding of the material.
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Chapter 1, “The Physics of Electron Acceleration in Medical Linacs,” is for those 
physicists who are tired of comic book explanations about electrons surfing on waves 
and desire a real understanding of the mechanism of microwave acceleration of elec-
trons. Commonly cited books in the medical physics literature do not provide a satis-
factory explanation of this topic. The monograph by Karzmark, Nunan, and Tanabe 
(Medical Electron Accelerators) does provide some explanation; however, it is from an 
engineering perspective, and this book is now out of print. Basic physics textbooks on 
electromagnetic theory (e.g., Jackson) do not extend the discussion of waveguides to 
a consideration of their use in accelerating charged particles. The accelerator physics 
literature helps some, but the discussion there is concentrated on high-energy phys-
ics applications, not medical linacs. Medical linacs are different than those used for 
other applications. They have to be able to produce both x-ray beams and electron 
beams. They usually offer multiple beam energies, and they are mounted on a gantry 
that can rotate around a patient.

The study of proton therapy (Chapter  2) is perhaps the one exception to the 
critique of the existing literature described thus far. There are a number of mono-
graphs on this subject, and some of these are well written. There is no shortage 
of good references for this topic. Chapter 2 is a concise introduction for physicists 
that I believe is more thorough than presented in any of the introductory radiation 
therapy textbooks. The coverage here is intermediate between elementary text-
books and that found in extensive monographs.

Convolution and superposition dose calculation algorithms are now the pre-
dominant method of clinical photon dose computation. This topic is the subject of 
Chapter 3. There are a few older review articles on this subject, and it is briefly dis-
cussed in some of the elementary textbooks. These discussions are brief and sketchy. 
To gain a good understanding would require reading various reviews and original 
papers and synthesizing these sources. That is what I have done for you, the reader.

The common view of dose calculation algorithms held by many physicists is that 
there is Monte Carlo, the gold standard, and then there is everything else. If Monte 
Carlo is the gold standard, then perhaps the Boltzmann transport equation is the 
silver standard. Chapter  3 discusses this method of dose calculation. It is a little 
known but important topic because it is (1) a technique that rivals the accuracy of 
Monte Carlo but is much faster, (2) an option in a widely used commercial treatment 
planning system, (3) much faster than collapsed cone convolution for VMAT dose 
calculations, and (4) the basis for Fermi–Eyges theory, which is used in many com-
mercial electron dose calculation algorithms. Electron pencil beam calculations are 
generally based on the solution of the Fermi–Eyges equation, which we will derive 
from the Boltzmann transport equation.

The title of Chapter  5 is “Tumor Control and Normal Tissue Complication 
Probability Models in Radiation Therapy.” Although this topic is not classified as 
physics, I have included it because physicists have been heavily involved in the 
development of this subject and because it usually falls to the clinical physicist to 
understand and use these models. There are some excellent review articles on this 
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topic, but one is hard pressed to find literature that systematically develops this 
topic mathematically in a step-by-step fashion.

The American Association of Physicists in Medicine (AAPM) Report No. 249, 
“Essentials and Guidelines for Clinical Medical Physics Residency Training 
Programs,” specifies that the physics resident “demonstrates an understanding of 
the theory of operation of megavoltage electron and proton accelerators currently 
used in radiation oncology treatment… e.g., linear accelerators (linacs), synchrotrons 
and cyclotrons.” This could be fulfilled by reading and solving the end of chapter 
problems in Chapters 1 and 2. In addition, this report recommends that the physics 
resident “describes how the computer algorithm calculates dose for at least one major 
treatment planning system with regard to: i. Photon beams, ii. Electron beams.” This 
is covered in Chapter 3 for photon beams and in Section 4.10 of Chapter 4 for elec-
tron beams. Report No. 249 calls for coverage of “biological evaluators (e.g., general-
ized equivalent uniform dose [gEUD], equivalent uniform dose [EUD], normal tissue 
complication probability [NTCP], and tumor control probability [TCP]).” These topics 
are covered in Chapter 5.

What gives me the “nerve” to write a book on these topics when I have never pub-
lished a single paper on any of them? I wrote this material so that I could learn about 
these topics myself. I turned it into a book because no one else is doing it. Often, the 
expert is not the best person to explain a subject. I am convinced that none of these 
topics are difficult to learn or understand, but they have not been explained well. You 
are the judge of whether I have been successful.

The superficial explanations given in elementary textbooks of the topics of this 
book are unsatisfying. One reason that individuals choose to study physics is because 
they enjoy understanding nature on a very fundamental level. This book is for people 
who like physics. In short, this is the book I wish I had when I was a student.

I welcome feedback and comments, and I will try to answer all e-mail communica-
tions, time permitting.

Patrick McDermott, PhD
patrick.mcdermott@beaumont.edu
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1

1
THE PHYSICS OF ELECTRON 

ACCELERATION IN 
MEDICAL LINACS

1.1 INTRODUCTION
Let us estimate the sort of energy and beam current necessary to achieve a desir-
able penetration depth and dose rate. We first consider the beam energy. The deep-
est target in the human body is in the pelvis. Let us suppose that we need to reach 
a depth of 30 cm with no more than 50% beam attenuation. In this case, we need 
photons with energy such that the half-value layer thickness equals 30 cm in water. 
This corresponds to photons with an energy of approximately 5 MeV. The average 
energy in a bremsstrahlung spectrum is about one-third of the maximum energy. 
Therefore, the electron beam energy needs to be about 15 MeV. We would not want 
to use beam energies much larger than this because this would waste photons that 
would pass right through the patient and because we want the beam to be attenu-
ated beyond the target to reduce the dose to normal tissues.

As the reader may already know, linac beams are pulsed (see Section  1.9). The 
beam currents quoted in this section are time averages over a timescale long com-
pared to the individual pulses. Calculation of the necessary average beam current is 
most easily done for electron treatments. For photon treatments, we have the question 
of the efficiency of bremsstrahlung photon production in the target and the transmis-
sion of the flattening filter. Modern medical linear accelerators have a dose rate on the 
order of 600 cGy/min. The dose rate due to electrons is

 

� �D
dT
dx c

Gy s cm s MeV/cm g1− − − − − −  = ×  






 1 10 2 2 11 6 10. Φ

ρ   ,
 

(1.1)
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where �Φ  is the fluence rate in cm−2 s−1 and the mass collision stopping power is given 
in units of MeV cm2 g−1 (Attix, 1986). For 10 MeV electrons, the mass collision stopping 
power is 2.0 MeV cm2 g−1 in water. To obtain the desired dose rate, the fluence rate must 
be 3.2 × 108 cm−2 s−1. Let us suppose that the beam is 10 cm × 10 cm in cross-sectional 
area. In this case, we can calculate the necessary average beam current to be approxi-
mately 5 nA. In reality, the average beam current is actually considerably higher than 
this for the following reasons. To reduce the variation in the energy of the accelerated 
electrons, the beam passes through an energy slit in the bending magnet. According 
to Karzmark et al. (1993, p. 190), this energy slit may pass as little as 5% of the beam. 
This raises the necessary raw beam current for electron mode to approximately 0.1 μA. 
In addition, the electron gun current needs to be even higher than the beam current 
because only some fraction of the electrons are captured and accelerated.

For a photon treatment, the beam current needs to be between 100 and 1000 
times greater than for an electron treatment. The required average beam current is 
up to 100 μA. Photon beam current requirements are complicated by the efficiency 
of x-ray production in the target and attenuation of x-rays in the flattening filter. 
The dose rate for a flattened x-ray beam (50 cm diameter field) is proportional to 
IavgVe

1.8, where Iavg is the time-averaged beam current (in x-ray mode) and Ve is the 
electron beam energy (Karzmark et al., 1993, p. 18). This implies that the average 
current required to produce a 6 MV beam having the same dose rate as an 18 MV 
beam is approximately a factor of 7 larger.1

If we think about how to accelerate electrons to high energy, we might naively first 
consider two charged plates with a potential difference of V between them. For radia-
tion therapy, we need electron energies on the order of 10 MeV. It is very difficult to 
produce a potential difference of 10 million volts between two electrodes. An attempt 
to generate such a potential difference is likely to lead to leakage current, corona 
discharge, and ultimately arcing. To avoid this problem, we might modify our initial 
thought and be a little more clever by accelerating the electrons repeatedly through 
a moderate potential difference, thereby accumulating a large energy. We could con-
sider a series of plates with holes in them to allow the electrons to go through them 
as in Figure 1.1. Suppose that we place an oscillating potential difference across these 
plates. We ignore for now the problem of initial acceleration up to relativistic ener-
gies and assume that the electrons are traveling at the speed of light. Let us suppose 
that the distance between adjacent accelerating plates is L. The wavelength of the 
oscillating potential difference should be λ = 2L, and the corresponding frequency 
is ν = c/2L. If the distance between the plates is 5 cm, then the required frequency is 
3000 MHz.

This frequency is very high, in the microwave s-band of the electromagnetic 
spectrum. If we attempt to supply the accelerating voltage using wires (as shown in 
Figure 1.1), the wires will act like an antenna and radiate. Wires are therefore a very 
inefficient way to supply the necessary potential difference. Instead, a power trans-
mission waveguide should be used.
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You will begin to see where we are going with this. It does not require a great leap 
in imagination to turn the arrangement of electrodes in Figure 1.1 into a waveguide 
by adding a tube to surround the metal plates. Such a tube will also enable us to pro-
vide the necessary vacuum.

It is important to distinguish between an accelerating waveguide and a power 
transmission waveguide. A power transmission waveguide carries radiofrequency 
(RF) power to the accelerating waveguide in which electrons are accelerated. 
Transmission waveguides are filled with a dielectric gas (SF6) to avoid electrical arc-
ing due to the intense electric fields. The accelerating waveguide is under high vac-
uum to prevent scattering of accelerated electrons. The vacuum pressure should be 
low enough that the mean free path of an electron is longer than the length of the 
waveguide. We will concentrate our attention on accelerating waveguides.

The abbreviation TW will be used for traveling wave linacs and SW for standing 
wave linacs. Elekta linacs are TW, and Varian and Siemens are SW. There is more 
to a linear accelerator than just a waveguide or resonant cavity—a linac is not just a 
waveguide. RF power needs to be fed into the waveguide, and for TW linacs, the RF 
must exit the waveguide. For an SW linac, RF power has to be fed into the guide and 
then reflected at the ends. In addition, the beam needs to be injected into the accelera-
tor and then extracted. Furthermore, the beam will affect the fields in the waveguide. 
We first discuss waveguides and cavity oscillators; then in subsequent sections, we 
discuss how to turn these into accelerators.

Modern medical linacs have two or three x-ray energies and five or six different 
electron energies. The high-energy x-ray beam is sometimes called high X and the 
low-energy beam low X.

The various timescales associated with the operation of medical linacs can be 
confusing. The shortest timescale is associated with the period of the 3000 MHz 
s-band microwaves at 0.3  ns. Electrons are accelerated in bunches with a time 
interval between bunches that is on the order of the microwave period. This accel-
eration occurs only when the RF power is delivered to the waveguide—this occurs 

FIGURE 1.1 Initial naive idea for acceleration of electrons to high energies using a series of 
plates with a high potential difference between plates. The potential difference has to be 
oscillatory to maintain the correct phase between adjacent plates as the electrons move from 
left to right.
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in pulses of approximately 5 μs in duration that repeat at roughly 5 ms intervals. 
This will be discussed further in Section 1.9. Throughout the text, time averages 
will be taken over the various timescales.

In Section 1.2, we begin with a review of Maxwell’s equations and the necessary 
boundary conditions. We then apply this to cylindrical waveguides in Section 1.3. 
Application of this material to traveling wave accelerators is covered in Section 1.4. 
Cavity oscillations are discussed in Section 1.5. The electromagnetic energy budget 
is considered in Section 1.6, including energy loss mechanisms. In Section 1.7, travel-
ing wave accelerators are revisited, including a discussion of load lines and RF feed-
back. Section 1.8 is on standing wave accelerators. The pulsed operation of linacs 
and waveforms is covered in Section 1.9. The frequency stability and fabrication of 
waveguides are discussed in Section 1.10. The method used to change beam energy 
is considered in Section 1.11. Section 1.12 is a discussion of the differences between 
SW and TW linacs. In the final section, x-band linacs are discussed. Problems and 
questions appear at the end of the chapter, along with a list of symbols. In this 
chapter boldface symbols represent vectors. Useful references for this topic are 
Karzmark et al. (1993), Podgorsak et al. (1999), Podgorsak (2010), Ford (1986), Scharf 
(1994), Greene and Williams (1997), and Feynman et al. (1963, chapters 23 and 24; 
pure reading pleasure).

1.2 MAXWELL’S EQUATIONS
We begin by writing down Maxwell’s equations in SI units:

 ∇⋅ =D ρ  
(1.2a)

 ∇⋅ =B 0  (1.2b)

 
∇ × = − ∂

∂
E

B
t  

(1.2c)

 
∇ × = + ∂

∂
H J

D
t

.
 

(1.2d)

We can also write these in integral form as follows:

 
D A⋅ =∫ d q�  

(1.3a)

 
B A⋅ =∫ d 0�  

(1.3b)
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E l B A⋅ = − ⋅∫∫ d
d
dt

d
A

�
 

(1.3c)

 

H l J A D A⋅ = ⋅ + ⋅∫ ∫∫ d d
d
dt

d
A A

� .

 

(1.3d)

We will assume constitutive relations for the field vectors as follows:

 

D E

B H

J E

=

=

=

ε

µ

σ .  (1.4)

1.2.1 BOUNDARY CONDITIONS ON FIELD VECTORS

In order to solve for the fields inside the waveguide, we need to know the boundary 
conditions that must be obeyed by the fields at the inner surface of the waveguide. We 
will use the integral form of Maxwell’s equations (1.3) to derive these. We start with 
the equation for the displacement vector D. Figure 1.2 shows the boundary surface 
between the waveguide and the vacuum. We construct a “Gaussian pillbox,” which 
spans this surface.

The end caps of the pillbox have a tiny area a. The D vector is presumed to be con-
stant over the area of the tiny end cap. Applying the first of Maxwell’s equations (in 
integral form [1.3a]) to this pillbox, we obtain

 

D n D n D A⋅ − ⋅ + ⋅ =∫a a d ac Σ
sides

,

 

(1.5)

Vacuum

Conductor

D

Dc

n

FIGURE 1.2 A Gaussian pillbox spanning the interface between a conductor and vacuum. n 
is a unit vector perpendicular to the surface.
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where:
 D is the value of the displacement vector in the vacuum
 Dc is the value in the conductor
 n is a unit vector perpendicular and pointing outward (into the vacuum) from 

the surface

The surface charge density is Σ. We use this symbol so as to avoid confusion with 
the conductivity σ. The first two contributions on the left-hand side of Equation 1.5 
are due to the end caps of the pillbox, and the third is due to the sides of the 
cylinder. If we take the limit in which the length of the cylinder shrinks to zero, 
the contribution to the surface integral from the sides will vanish and we will be 
left with

 n D D⋅( ) =– .c Σ  (1.6)

In a completely analogous fashion, we can derive a boundary condition for B by 
using the second of the integral form of Maxwell’s equations. The result is

 n B B⋅( ) =– ,c 0  (1.7)

where:
 B is the magnetic field in the vacuum 
 Bc is the magnetic field inside the conductor

We can derive a boundary condition for the electric field by using the third of the 
integral form of Maxwell’s equations (1.3c). We construct a rectangular loop span-
ning the boundary as shown in Figure 1.3. The vector l is tangent to the surface and 
has length l, E is the electric field vector in vacuum, Ec is the electric field vector in 
the conductor, and h1 + h2 is the side length of the loop. The loop is very tiny, and 

l

n

Vacuum

Conductor

h1
h2

E

Ec

FIGURE 1.3 The loop over which the integral in Equation 1.8 is carried out. l is a unit vector 
tangent to the surface.
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therefore E is presumed constant over the length of the loop. Applying the third 
Maxwell equation to the loop gives

 E l E E E E E B dAl E l n n⋅ ⋅ − ⋅ ⋅ +( ) ⋅ +( ) ⋅= + − = −∫ ∫d h h d
c c c

A
h h

dt� 1 2 1 2 .  (1.8)

If we take the limit as h1 and the h2 values go to zero, the integral on the right-hand 
side of Equation 1.8 will go to zero as the area of the loop goes to zero. The result is 
E · l = Ec · l, or in other words, the tangential component of E is continuous across the 
interface. This condition can be written as

 n E E× =( )– ,c 0  (1.9)

because n × E is perpendicular to n and therefore tangential to the surface.
The final boundary condition is obtained from the fourth Maxwell equation (1.3d) 

by again integrating around a loop as just demonstrated: H · l – Hc · l = K, where K is 
the surface current; K d= ⋅∫ J A . This condition on H can be expressed in vector form 
as follows:

 n H H K× =( )– c .  
(1.10)

For a perfect conductor, σ→∞ and Ec = 0. This implies that ∂Bc/∂t = 0 from Faraday’s 
law (Equation 1.2c). Therefore, only a static magnetic field can exist inside a perfect 
conductor. If we assume that Bc = 0 at time t = 0, then Bc will remain zero. Even if 
there is a nonzero static magnetic field, it will not participate in wave motion. We 
may therefore conclude from Equation 1.7 that the normal component of B is zero 
just outside the surface of a perfect conductor. The boundary conditions for a perfect 
conductor are therefore

 

n E

n B

× =

=⋅

0

0.  (1.11)

These boundary conditions are a good approximation for real conductors with 
high conductivity, but they are inadequate if one wishes to evaluate power losses in a 
waveguide. We will return to this topic in Section 1.6.

1.3 CYLINDRICAL WAVEGUIDES
Maxwell’s equations do not allow the existence of electromagnetic waves in free space 
with a longitudinal component of E (i.e., a nonzero component of E in the direction of 
propagation). Therefore, such waves cannot be used to accelerate charged particles in 
the direction of propagation. As we will see, the situation is different in a waveguide. 
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Certain wave modes can propagate down the waveguide with a longitudinal compo-
nent of E. Such modes have the potential to accelerate charged particles. It remains to 
be shown how this can occur.

We assume a cylindrical waveguide in the form of a hollow right circular cylinder 
(see Figure 1.4). This pipe may be open at both ends or have end caps. We assume that 
the cylinder is long enough that we may ignore end effects. Initially, we will assume 
that the walls of the waveguide are perfectly conducting. We will later relax this 
assumption. The interior of the waveguide is evacuated.

We use cylindrical coordinates as shown in Figure 1.4 with the z axis extending 
along the length of the cylinder. The inner surface of the cylinder is at r = R. We 
assume a sinusoidal time dependence e–iωt for all field vectors. Under these circum-
stances, Maxwell’s equations (1.2) become (in vacuum)

 ∇⋅ =E 0  (1.12a)

 ∇⋅ =B 0  (1.12b)

 ∇ × =E Biω  (1.12c)

 
∇ × = −B E

i
c
ω
2 .

 
(1.12d)

A wave equation can be derived for E and B by taking the curl of Equations 1.12c 
and 1.12d and using the mathematical relation

 ∇ × ∇ × = ∇ ∇ − ∇( ) ⋅( )F F F2 ,  (1.13)

resulting in the wave equations

 

∇ +

















=2

2

2 0
ω
c

E

B
.

 

(1.14)

r
θ

z

R

FIGURE 1.4 The geometry of a hollow cylindrical waveguide showing the coordinate system. 
The waveguide has an inner radius of R.
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We first consider the case of traveling waves in a hollow, evacuated right circular 
cylinder with open ends. We can write E and B in the following form:

 

E E

B B

r z t r e

r z t r e

i kz t

i kz t

, , , ,

, , , , ,

( )

( )

θ θ

θ θ

ω

ω

( ) ( )
( ) = ( )

= ± −

± −
 

(1.15)

where the plus sign is for wave propagation toward +z and the minus sign is for prop-
agation toward –z. Linear combinations of these expressions may be formed to give 
standing waves in the z direction. We will consider this aspect later in the context of 
a discussion of microwave cavities.

It is useful to write

 
∇ = ∇ + ∂

∂
2 2

2

2t
z

,

where ∇t
2 is the piece of the Laplacian involving derivatives of transverse coordinates 

r and θ. In this case, we may write the wave Equations 1.14 as

 

∇ + 











=t

2 2 0γ
E

B
,

 

(1.16)

where

 
γ ω2

2

2
2=

c
k– ;

 
(1.17)

k is unknown and may be real or complex.
We now wish to show that once the longitudinal components of the fields (Ez and 

Bz ) are known, all other components can be easily calculated directly from them.
In cylindrical coordinates, for an arbitrary vector field A,

 
∇ × = ∂

∂
− ∂

∂




 + ∂

∂
− ∂

∂




 + ∂

∂
( ) − ∂

A e e er
z r z

z
r

A A
z

A
z

A
r r

rA
1

θ
θ

θ θ
AAr

∂




θ

,
 

(1.18)

where er , eθ , and ez are unit vectors in the r, θ, and z directions and Ar , Aθ , and Az 
are the components of vector A. The components of Faraday’s law (Equation 1.12c) 
can be written

 

1
r

E
ikE i Bz

r
∂
∂

=
θ

ωθ∓
 

(1.19a)
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± − ∂

∂
=ikE

E
r

i Br
z ω θ

 
(1.19b)

 

∂
∂

( ) − ∂
∂

=
r

rE
E

i Br
zθ θ

ω .
 

(1.19c)

Likewise, the components of Ampère’s law (Equation 1.12d) can be written as

 

1
2r

B
ikB

i
c

Ez
r

∂
∂

= −
θ

ω
θ∓

 
(1.20a)

 
± − ∂

∂
= −ikB

B
r

i
c

Er
z ω

θ2
 

(1.20b)

 

∂
∂

( ) − ∂
∂

= −
r

rB
B i

c
Er

zθ θ
ω
2 .

 
(1.20c)

If we substitute Er from Equation 1.19b into Equation 1.20a, we can solve for Bθ :

 
B

ik
r

B
c k

E
r

z z
θ γ θ

ω= ± ∂
∂

+ ∂
∂





2 2

1
.
 

(1.21)

If we substitute Eθ from Equation 1.20b into Equation 1.19a, we can solve for Br :

 
B

i
c

kc B
r r

E
r

z z= ± ∂
∂

− ∂
∂







ω
γ ω θ2 2

2 1
.
 

(1.22)

We can find expressions for Eθ and Er in a similar fashion:

 
E

ik
r

E
k

B
r

z z
θ γ θ

ω= ± ∂
∂

∂
∂





2

1
∓

 
(1.23)

 
E

ik E
r k r

B
r

z z= ± ∂
∂

± ∂
∂





γ

ω
θ2

1
.
 

(1.24)

We need only solve Equation 1.16 for Ez and Bz , and Equations 1.21 through 1.24 
will then provide all other components of E and B.

For a perfect conductor the boundary conditions at the surface are given by 
Equations 1.11. The first of these equations implies that Ez = 0 and Eθ = 0 at r = R, 
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and the second implies that Br = 0 at the inner surface of the waveguide. Substituting 
these values into Equation 1.20b shows that ∂Bz/∂r = 0. Thus, the boundary conditions 
for the z components of the field vectors for perfect conductivity are

 

E R

B
r

z

z

r R

,

.

θ( ) =

∂
∂

=
=

0

0
 

(1.25)

The differential equation (1.16) for E is the same as the differential equation for B, 
but the two boundary conditions above are different. There are two broad categories 
of solutions, one associated with each of the conditions in Equation 1.25. These are 
listed below as follows:

 1. Transverse electric (TE)

 

E

B
r

z

z

r R

=

∂
∂

=
=

0

0

everywhere

 
(1.26)

 2. Transverse magnetic (TM)

 

E r R

B

z

z

= =

=

0

0

 at 

 everywhere. (1.27)

The transverse electric (TE) solution has Ez = 0 everywhere and is therefore not 
relevant to particle acceleration, although it is relevant to power transmission. We 
will not consider this class of solutions any further.

For the TM modes, Bz = 0, and therefore the magnetic field is transverse (hence the 
name). This class of solutions permits a longitudinal electric field that can be used to 
accelerate charged particles along the direction of wave propagation.

The equation that we wish to solve (Equation 1.16) for the TM modes is

 ∇ +( ) =t zE2 2 0γ ,  (1.28)

with the boundary condition Ez = 0 at r = R. Inserting the form of the Laplacian, ∇t
2, 

into Equation 1.28 gives

 

∂
∂

+ ∂
∂

+ ∂
∂

+ =
2

2 2

2

2
21 1

0
E
r r

E
r r

E
Ez z z

zθ
γ .

 
(1.29)
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Equation 1.29 is a partial differential equation for Ez, and we will attempt to solve 
it using the method of separation of variables. We seek a solution of the form:
Ez(r, θ, z, t) = R(r) Θ (θ)ei(±kz–ωt). Substitution of this into Equation 1.29 yields

 

r d
dr

r d
dr

d
d

r
2 2

2

2

2
2 21

0
R

R
R
R+ + + =

Θ
Θ

θ
γ .

 
(1.30)

Following the technique of separation of variables, we reason that if this equa-
tion is valid for all values of r and θ, the term on the left-hand side, which depends 
only on θ (the second derivative of the Θ term), must actually be equal to a constant 
if Equation 1.30 is to be valid for all values of θ. Let us call this constant –m2. We may 
therefore write

 

d
d

m
2

2
2 0

Θ Θ
θ

+ = ,
 

(1.31)

and then Equation 1.30 becomes

 

d
dr r

d
dr

m
r

2

2
2

2

2

1
0

R R R+ + −






=γ .
 

(1.32)

Equation 1.31 is simply a harmonic oscillator equation with the solution

 Θ θ θ θ( ) = +A m B mcos sin ,  (1.33)

where A and B are constants to be determined from the boundary conditions and m 
describes the azimuthal variation in Ez.

Equation 1.32 is Bessel’s equation of order m. This is a well known differential equa-
tion in mathematical physics, and it arises quite frequently in problems involving cylin-
drical symmetry. The solutions of this equation are a linear combination of Bessel and 
Neumann functions:

 
R r CJ r DN rm m( ) ( ) ( )= +γ γ ,

 (1.34)

where: 
 Jm is the Bessel function of order m
 Nm is the Neumann function of order m
 C and D are constants

Bessel functions have well-known properties, and numerical values can be found 
in many standard mathematical tables (Arfken, 1985). The Neumann function Nm is 
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singular at r = 0, and therefore the constant D = 0 in Equation 1.34. The complete solu-
tion for Ez is thus

 
E r e CJ r A m B m ez

i kz t
m

i kz t= = +( ) ( ) ( ) 
± − ± −R Θ θ γ θ θω ω( ) ( ).cos sin

 (1.35)

The boundary condition in Equation 1.27 implies that Jm (γR) = 0, and therefore γ can 
only take on certain discrete values γn. Let xmn = γnR = the nth zero (or root) of the mth-
order Bessel function. We may therefore write γn = xmn/R. In Equation 1.35, the m values 
describe the azimuthal variation in Ez and n represents the number of times that Ez = 0 
between r = 0 and r = R. These transverse magnetic modes are designated as TMmn 
modes. The lowest-frequency TMmn mode is for m = 0, n = 1 (TM01). This is the mode 
that is used in TW linacs, and therefore we will concentrate our attention on this mode. 
The zeros of Bessel functions are tabulated in standard mathematical compilations 
(Beyer, 1978). The first zero of the Bessel function with m = 0 has the value x01 = 2.405. 
Equation 1.35 for the TM01 mode can be written

 
E E J

x r
R

ez
i kz t= 





±
0 0

01 ( ) ,−ω

 
(1.36)

where E0 is the amplitude of the electric field in the z direction. Notice that there is no 
θ dependence because m = 0. A graph of J0 is shown in Figure 1.5.

We can calculate the other components of the fields from Equations 1.21 through 1.24:

 
E

ik
E J

x r
R

er
i kz t= 





± −∓
γ

ω

1
0 1

01 ( )

 
(1.37)
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FIGURE 1.5 Graphs of Bessel functions of orders 0 and 1.
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E

Br

θ =

=

0

0  (1.38)

 

B
i
c

E J
x r
R

e

B

i kz t

z

θ
ωω

γ
= − 





=

± −

1
2 0 1

01

0

( )

.  (1.39)

Note that dJ0(u)/du = – J1(u), where J1 is the Bessel function of order 1. These solu-
tions (Equations 1.36 through 1.39) of Maxwell’s equations assume no energy losses 
in the walls of the waveguide, that is, the walls are perfect conductors. At r = 0, J0 
has its maximum value and J1 = 0; therefore, along the z axis the electric field has its 
maximum value and it is purely longitudinal.

The condition for wave propagation is k2 > 0; otherwise, the waves will not prop-
agate but will be evanescent. The wave propagation condition can be written as (see 
Equation 1.17)

 
k

c
x
R
mn2

2

2

2

0= − 



 >ω

.
 

(1.40)

Equation 1.40 is the dispersion relation for TMmn modes in a hollow cylindrical 
waveguide.

For frequencies less than the cutoff frequency ωc = (xmn/R)c, k is imaginary and 
there is no wave propagation. For wave propagation, ω  >  ωc. At any given fre-
quency, only a finite number of modes can propagate. For a TW accelerator, the 
dimensions of the guide are chosen so that only the lowest frequency mode can 
occur. For a cutoff frequency of ωc = 2π × 3000 MHz, the inner diameter of the 
waveguide must be about 8 cm.

Let us compare the wavelength of the lowest-order mode to the diameter of the 
waveguide. For the TM01 mode, ωc  =  (2.405/R)c. The free space wavelength of an 
electromagnetic wave having this frequency is λ ~ 2.6 R, which is approximately the 
diameter of the waveguide. It is perhaps not surprising that something interesting 
happens when the wavelength is on the order of the diameter of the pipe. For very 
short wavelength, the electromagnetic waves are not affected by the presence of the 
waveguide. There is no upper limit to the frequency of propagation; after all, we can 
see light through the length of a pipe!

The phase velocity of the wave is given by the condition that kz – ωt = constant. 
The phase velocity is defined as dz/dt, and therefore the phase velocity of propa-
gating waves is

 
v

k
c

ph

c

= =
−

ω
ω ω1 2 2/

.
 

(1.41)
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Above the cutoff frequency, not only is the phase velocity greater than c, but it 
becomes infinite at cutoff. For TW particle acceleration, it is desirable for the particles 
to maintain a constant-phase relation with the waves so that they “see” a constant 
electric field. This is called synchronous particle acceleration. The condition for syn-
chronism is kz – ωt = φ, where φ is a constant and z is the position of the particle. On 
the waveguide axis (see Equation 1.36), Ez = E0 cos(kz – ωt) = E0 cos φ, where for syn-
chronous electrons φ is constant. A phase velocity greater than c presents an obvious 
problem for synchronous particle acceleration. When vph > c, the phase “rolls over” 
the particle and the net acceleration is zero. We will return to this difficulty shortly.

The group velocity is the speed at which an arbitrary waveform propagates or, 
equivalently, the speed at which energy is transferred. The group velocity is given by

 
v

d
dk

cg c= = −ω ω ω1 2 2/ .
 

(1.42)

For ω > ωc, vg < c as expected. For ω ≫ ωc, vg = vph = c and k = ω/c, the dispersion 
relation for a plane wave in free space.

Figure 1.6 shows a graphical representation of the electric field for a TM01 mode 
with vg/c = 0.44. The radial component of the electric field is zero on the axis (r = 0) 
of the waveguide.

1.4 TRAVELING WAVE ACCELERATORS I
A uniform open cylindrical waveguide cannot be used to accelerate charged par-
ticles because vph > c. It is necessary to decrease vph below c for certain modes and 
frequencies. This is accomplished by “loading” the waveguide by adding disks or 
iris plates, as shown in Figures 1.7 and 1.10. We will refer to a waveguide without 
disks as an open waveguide. Adding disks with central holes produces a sequence of 
cavities with coupling through the holes. The disks have a spacing d and an opening 

TM01

kz

vph
r/

R 0.0
0.5
1.0

–3π/2 3π/2–π/2 π/2 π0–π

FIGURE 1.6 The electric field configuration in a plane containing the z axis for a TM01 travel-
ing wave at some arbitrary instant in time and for a group velocity of 0.44 c. The horizontal 
scale is kz and the vertical scale is r/R. Note the longitudinal nature of the field and that it has 
its maximum value on the axis of the waveguide.
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diameter of 2b. The values of d and b are chosen such that vph < c. The opening diam-
eter ranges from 2.6 cm down to 1.9 cm for the constant-gradient (see Section 1.7.3) 
accelerator at the Stanford Linear Accelerator Center (SLAC) (see Karzmark et al., 
1993, p. 71).2 Figure 1.8 shows the effect on the fields of adding disks.

Julian Schwinger, one of the codevelopers of the theory of quantum electrodynam-
ics, developed variational techniques for dealing with diaphragms and apertures in 
waveguides during World War II (Jackson, 1999).

Some fraction of the wave energy will be reflected at each disk. The distinction 
between a traveling wave and standing wave linac thus becomes somewhat blurred. 
In general, the reflections from successive disks will not be in phase and will there-
fore not combine to form a strong reflected wave. If, however, the extra distance trav-
eled by the reflected waves from successive disks (namely 2d, forward and then back) 
is equal to an integer multiple of the wavelength 2d = nλ (or in terms of k, k = ±π/d, 
±2π/d, ±3π/d, etc.), there will be a strong reflected wave and standing waves can form. 
A TW linac must therefore run in a mode for which k < π/d.

In practice, ω is chosen so that vph is approximately equal to c and the group veloc-
ity is quite low: vph/vg equals approximately 100. The reason for this may be that 
under these circumstances, only one resonant mode is available and the radial com-
ponent of the electric field (which may be destabilizing) is small.

Equation 1.40 can be rewritten as

 ω ω2 2 2 2= +c c k ,  (1.43)

2R
d

2b

FIGURE 1.7 A cross section of a portion of a disk-loaded waveguide showing the disks and 
their dimensions.

d

λ = 2π/k = 3d

FIGURE 1.8 Shows how the presence of disks modifies the electric field lines in the wave-
guide. This shows the 2π/3 mode.
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where ωc is the cutoff frequency. Equation 1.43 is the dispersion relation for a uniform 
waveguide (no disks). Dispersion relations are common in physics. The name comes 
from the fact that a pulse consisting of a spread in frequencies will disperse because 
the phase velocities of the various components depend on the frequency (e.g., see 
Equation 1.41). The simplest dispersion relation is for the case of a plane electromag-
netic wave traveling in free space: ω = ck or ν = c/λ. The phase velocity of the wave is 
vph = ω/k. In the case of a plane wave in free space, the phase velocity is independent 
of the frequency. Equation 1.43 is the equation of a hyperbola in a ω versus k graph 
(see the solid black curve in Figure 1.9). In Equation 1.43, when k ≫ ωc/c (i.e., when the 
wavelength becomes very small compared to R), the curve approaches the asymp-
tote ω = ck, which is the free space dispersion relation. We expect that this should 
be the case. We can see from Figure 1.9 that the group velocity is zero at the cutoff 
frequency; that is, power does not propagate. For large values of k, the group velocity 
is equal to the phase velocity.

When disks are introduced into the waveguide, the dispersion relation changes 
(see the gray curve in Figure 1.9). For small values of k, it remains unchanged. The cut-
off frequency therefore remains the same. The dispersion relation for the disk-loaded 
guide begins to depart significantly from the open-waveguide dispersion relation for 
k ≳ 1/d. As k becomes larger, the wavelength becomes shorter until λ = 2d (k = π/d). 
When this occurs, successive reflection at the disks interferes constructively, and we 
arrive at a standing wave situation. No power flows and vg = dω/dk = 0. This implies 
an upper limit to the frequency, ωc2, of wave propagation in a disk-loaded guide. 

k

BandpassP

Vg = 0

ω = ck

2π/3d π/d–π/d

ωc1

ωc2

ω

FIGURE 1.9 The dispersion relation for an open-bore waveguide without disks (solid black 
curve) and for a disk-loaded guide (gray). The two dashed diagonal lines show the dispersion 
relation for a plane electromagnetic wave in free space. At k = ±π/d, where d is the spacing 
between disks, the group velocity becomes zero. A disk-loaded waveguide operates at point 
P, where the phase velocity is about equal to c. It is common to run a TW accelerator in the 
2π/3 mode.
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Waves may propagate only within the bandpass frequency range shown in Figure 1.9. 
In an accelerator, the waveguide is operated at the point P on the dispersion relation 
where the phase velocity vp ≲ c and vg ≪ c. Typically, vg/c = 0.01. The optimum choice 
for the mode of operation is the 2π/3 mode (Loew and Talman, 1983; Humphries, 
2012).3 This means that the disk spacing is given by kd = 2π/3, the wavelength is 3d 
(see Figure 1.8), and there are four disks per wavelength. Figure 1.10 shows a photo 
of a TW waveguide.

1.5 CAVITY OSCILLATIONS
We now consider a closed cylindrical cavity of radius R and length l. The boundary 
conditions that were applied for the open cylinder at r = R apply here as well. In addi-
tion, we have new boundary conditions that apply at the end caps (z = 0 and z = l). 
To provide an accelerating field, we only consider transverse magnetic solutions to 
Maxwell’s equations in which Ez is nonzero.

The boundary conditions at the end caps are that the transverse components of 
the electric field are zero and that the normal component of the magnetic field equals 
zero (see Equation 1.11):

Relativistic
section

Buncher

S-band
traveling wave section

FIGURE 1.10 A cutaway view of a TW waveguide. The electrons enter the waveguide at 
the bottom. The structure protruding to the right at the bottom is the RF inlet. Notice that 
the spacing between disks is smaller at the bottom in the buncher section. This waveguide 
appears to be a constant-gradient structure (see Section  1.7.3) because the disk apertures 
become smaller toward the top. (Adapted from Thorson, T., Advanced acceleration and 
image guidance technologies, online PowerPoint presentation, 2007, http://195.135.200.83/
allegatiifo/Congresso2007/19aprile/Thorson.pdf.)

http://195.135.200.83/allegatiifo/Congresso2007/19aprile/Thorson.pdf
http://195.135.200.83/allegatiifo/Congresso2007/19aprile/Thorson.pdf
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The boundary condition Bz  =  0 is already obeyed once we restrict solutions to 
transverse magnetic modes.

The solutions that we derived previously for traveling waves in an open cylin-
der (Equations 1.36 through 1.39) remain valid, but they must be constrained by the 
additional boundary conditions at the end caps (Equation 1.44). We need to include 
traveling waves in the +z direction and in the –z direction. We expect these traveling 
waves to combine to form standing waves in the cavity.

For standing waves in the cylindrical cavity, we write Ez as a linear combination of 
waves traveling to the right and to the left (+z and – z). We drop the time dependence 
(e–iωt) temporarily for brevity:

 E E J Ae Bez
ikz ikz= +[ ]0 0

– ,  
(1.45)

where A and B are constants to be determined. We will use Equations 1.21 through 
1.24 to solve for the other field components. From Equation 1.23, Eθ = 0 (m = 0, no θ 
dependence). The expression for Er is

 
E

ik E
r

r
z= ± ∂

∂γ 2 ,
 

(1.46)

where the plus sign is for waves traveling to the right and the minus sign is for waves 
traveling to the left. Substituting Equation 1.45 into Equation 1.46,
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For the magnetic field, Br = 0 (from Equation 1.22) and Bθ is
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These expressions for E and B already obey the boundary conditions at r = R. The 
boundary conditions at the end caps (Equations 1.44) must now be applied. The con-
dition Er = 0 at z = 0 implies that B = A, and therefore
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The condition that Er = 0 at z = l implies that
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(1.50)

We can absorb the constant A into E0 in Equation 1.49 without any loss of general-
ity. The complete set of solutions for E and B can now be written (restoring the time 
dependence):
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and
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(1.52)

In addition to the parameters m and n, we now have the extra parameter p that 
describes the number of nodes between the two end caps of the cylinder. As these 
modes are transverse magnetic, we can describe them as TMmnp modes. The solutions 
listed in Equations 1.51 and 1.52 are TM01p modes.

Now let us concentrate on the simplest mode, the p = 0 mode. It is this mode that 
is relevant for SW accelerators. When p = 0, this implies k = 0. This is a bit puzzling 
because it is not clear what the wavelength is in this case. As we will see, the wave-
length is actually infinite, as implied by k = 0! The resonant frequency is

 
ω010

01= c
x
R

.
 

(1.53)

The resonant frequency is independent of l! This is really quite surprising. For 
standing waves on a vibrating string, the frequencies very definitely depend on the 
length of the string—likewise for standing sound waves in a pipe. This shows that 
analogies between electromagnetic oscillations in a resonant cavity and standing 
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waves on a string can be misleading. Equation 1.53 immediately fixes the inner radius 
for cavity oscillations at 3000 MHz. This radius is 3.83 cm.

When p = 0 (TM010 mode), the only nonzero components of the fields are Ez and Bθ:
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(1.54)

Note that at any given instant in time, Ez and Bθ are spatially constant with z! 
Therefore, the wavelength is effectively infinite, consistent with k =  0. There is no 
radial component of E; the electric field is parallel to the axis of the waveguide and 
has its maximum value on the axis. Figure 1.11 shows a resonant cavity along with 
the electric field distribution.

1.6 ENERGY
Poynting’s theorem is a statement of conservation of energy for electromagnetic fields 
and particles. Consider a region of volume V bounded by a surface of area A. The rate 

at which energy is dissipated by electrical currents is J E⋅∫ dV. This will apply to the 
walls of the waveguide. The rate at which work is done on the electrons to be acceler-
ated is qv · E, where v is the velocity of these electrons. We assume that the acceler-
ated electrons occur in small enough bunches that they themselves do not contribute 

l

R

E

FIGURE  1.11 A cross section through a resonant cavity and the electric field distribution 
within for a TM010 mode. The electric field is constant in the longitudinal direction. The aspect 
ratio of this cavity is l/R = 1.3.
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significantly to the electric field. A statement of Poynting’s theorem (Jackson, 1999), 
including the rate of work done on the accelerated electrons, is
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∂
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(1.55)

where
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is the energy density stored in the electric and magnetic fields and

 S E H= × ,  (1.57)

is the Poynting vector. The Poynting vector represents the energy per unit time per 
unit area flowing across the surface bounding the volume. The direction of this vec-
tor is the direction of energy flow. Equation 1.55 states in words that the rate at which 
work is done on charged particles (the accelerated electrons and conducting electrons 
in the walls of the waveguide) is balanced by a decrease in the energy stored in the 
fields and the rate at which electromagnetic energy flows out of the volume.

It is important to understand that the vectors in Equations 1.55 through 1.57 must 
be real quantities. Given any two arbitrary complex vector functions A and C: 
Re (A × C) ≠ Re A × Re C, where Re indicates the real part. Let us consider the prod-
uct of the real parts of any two complex vector quantities that vary with time depen-
dence e–iωt. The product can be either a cross product or a dot product. We can write
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The product of the real parts of these quantities is
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We would now like to find the time average of the product of the harmonic func-
tions in Equation 1.59 over the period of oscillation: 2π/ω. The numerical value of the 
period for s-band microwaves is 0.35 ns. The time average of a function f(t) is

 
f t f t dt( ) = ( )∫ω
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π ω

2 0

2
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(1.60)

Applying this definition to the last expression in Equation 1.59, we find that

 
Re Re Re * .A C A C× = ×( )1

2  
(1.61)

We can apply Equation 1.61 to the Poynting vector (Equation 1.57) to obtain the 
time-averaged power loss per unit area traversing a surface:
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where n is the unit vector normal to the surface.
The time-averaged energy density is
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We would like to be able to evaluate the power loss in the walls of an accelerating 
waveguide or cavity. Our solutions to Maxwell’s equations for the traveling waves 
(Equations 1.36 through 1.39) and for the cavity (Equations 1.54) assume perfectly con-
ducting walls. In this circumstance, there is no power dissipation in the walls. To 
evaluate the power loss in the walls of a real conductor, we need to find expressions for 
the fields in the thin boundary layer at the surface. To accomplish this, we follow the 
successive approximation scheme outlined by Jackson (1999). We start with the solu-
tions for Ht and En for a perfect conductor just outside the conductor surface, where 
t represents the tangential component and n represents the normal component. We 
then find the fields in the surface boundary layer of the conductor and small correc-
tions to the fields outside.

In a real conductor, the conductivity is finite. In such a conductor, there cannot 
truly be a surface current, for J would have to be infinite as the surface area of the 
loop in Figure 1.3 shrinks to zero. Instead, there is a thin boundary layer over which 
there is a finite current density; beyond this layer one expects E and B to take on val-
ues characteristic of a perfect conductor, that is, to go to zero. Equation 1.10 should be 
modified for a real conductor:

 n H H× =( )– .c 0  (1.64)
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The boundary layer is expected to be thin, and therefore we assume that spatial 
variations normal to the conductor are much larger than parallel to the surface. 
We will also neglect the displacement current (∂D/∂t term in Equation 1.2). We can 
check this after the fact as an exercise. We will assume a harmonic time depen-
dence of the form e–iωt and that B = μH. The curl equation for E in the conductor 
becomes

 

∇ × = ∂
∂

=E
B

Hc
c

c– ,
t

i cωµ

and therefore
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(1.65)

where μc is the permeability in the conductor. From the other Maxwell curl equation, 
we have ∇ × Hc = σEc, so that

 
E Hc c= ∇ ×1

σ
.
 

(1.66)

Let ξ be the coordinate normal to and increasing inward into the wall of the con-
ductor (see Figure 1.12). Then we can write ∇ ≅ –n(∂/∂ξ). In this case, Equation 1.66 
becomes
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and Equation 1.65 for Hc is
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Equations  1.67 and 1.68 are two equations in the two unknowns, Ec and Hc. By 
substituting Equation 1.67 for Ec into Equation 1.68, we can obtain (after a little bit of 
effort) the two equations
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where
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is called the skin depth. Equations 1.69 are two equations for the two components of 
Hc, the normal component and the tangential component. Let us interpret the second 
of these equations first. The normal component of Hc just inside the metal surface is 0, 
as is the case for a perfect conductor. The first Equation 1.69 is a differential equation 
for the tangential component of Hc with the initial conditions (1.64). The solution of this 
differential equation is

 H Hc
/ / ,= − −

t
ie eξ δ ξ δ

 (1.71)

where Ht is the tangential magnetic field just outside the conductor. The electric field 
in the conductor may be obtained by substituting Equation 1.71 into Equation 1.67:
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×( ) −1 i
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(1.72)

e–ξ/δ

Ht

En

Et

Hn

ξ = 0 ξ

FIGURE 1.12 The fields inside a good but not perfect conductor. There are tangential compo-
nents of E and H that rapidly decline toward zero with increasing depth ξ. The length scale 
over which the fields decline is the skin depth δ.
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There is thus, in the boundary layer, a tangential component of the magnetic field 
and a tangential component of the electric field. These fields are spatially oscillatory 
and decay over a distance on the order of δ (see Figure 1.12). As the tangential com-
ponents of E and H are continuous, the fields just outside the conductor are given by 
Equations 1.71 and 1.72 with ξ = 0. Note that in the limit of infinite conductivity, the 
fields are all zero inside the conductor.

The skin depth δ depends on the frequency and conductivity (see Equation 1.70). For 
a perfect conductor, δ = 0, as expected. Let us estimate δ. For copper, σ = 5.8 × 107 Ω−1 m−1 
and μc = 1.25 × 10–6 H/m. For ω = 2π × 3000 MHz (s-band microwaves used in medical 
linear accelerators), δ = 1.2 × 10–6 m. The boundary layer is thin indeed!

We are now in a position to calculate the power lost by electromagnetic energy 
flow into the conducting walls of the waveguide or cavity. Substitute the expressions 
for the fields (Equations 1.71 and 1.72) into Equation 1.62):
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The energy flowing into the surface should show up in the form of ohmic or resis-
tive losses (sometimes called Joule heating) in the conductor (see the left side of 
Equation 1.55). The current density near the surface is J = σEc:
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The time-averaged rate of energy dissipation per unit volume in ohmic losses is
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The total rate of energy dissipation in the conductor for the volume lying beneath 
an area ΔA is
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the same as found previously (see Equation 1.73).
As Equation 1.74 shows, the current density is confined to a very thin layer just 

below the surface of the conductor. It is equivalent to an effective surface current Keff:
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Comparison with the boundary condition (Equation 1.10) for a perfect conductor 
shows that a real conductor behaves like a perfect conductor with a surface current 
Keff. The power loss can be written in terms of the effective surface current:
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= 1
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(1.77)

Equation 1.73 will allow us to estimate the energy losses in a real waveguide or 
resonant cavity provided that we have solved for the fields in the infinite conductiv-
ity case.

1.6.1 TRAVELING WAVE WAVEGUIDE

We can calculate the time-averaged energy per unit length stored in the fields for an 
open waveguide by using Equation 1.63 and integrating over the cross-sectional area 
of the waveguide:

 
U u dAl = ∫ ,

 
(1.78)

where 〈u〉 is the time average of the energy density and dA = 2πr dr. The following 
integrals of Bessel functions are needed to evaluate Equation 1.78 (and a number of 
integrals appearing later):
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It is curious but true that both of these integrals have the same value. The value of 
J1

2(x01) is 0.2695.4 For the time-averaged energy per unit length we obtain
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The time-averaged power flowing along the guide is computed from the Poynting 
vector:

 
P S dAz= ∫ ,

 
(1.81)
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where 〈Sz 〉 is the z component of the time average of the Poynting vector and is equal 
to: ½Re (Er*Bθ/μ0). The result of carrying out this integral is
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If we divide 〈P 〉 by 〈Ul 〉 we find that
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This result is generally true and provides a physical interpretation of the group 
velocity as the speed at which energy flows.

The time-averaged energy loss per unit length in the walls of the waveguide as a 
result of eddy current flow and Joule heating is given by Equation 1.73 (da = 2π R dz):
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1.6.2 CAVITY OSCILLATOR

In this section, we assume that the frequency always takes on the value of the reso-
nant frequency (ω = ω010). The total energy, U, stored in the fields in a resonant cavity 
is found by integrating Equation 1.56 over the volume of the cavity (fields given by 
Equation 1.54). The result is
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(1.85)

where l is the length of a single resonant cavity. The energy is constant in time, as 
expected, since it was calculated based on the assumption of infinite conductivity. 
The stored energy is proportional to E0

2  and the volume of the cavity. The total rate 
of power loss in the cavity walls, Pw, is given by Equation 1.73. This expression for 
the power loss per unit area must be integrated over the end caps and over the cylin-
drical side walls at r = R. The latter integration is actually a simple multiplication by 
the area, as the expression for the fields is independent of θ and z for the TM010 mode 
(see Equation 1.54). The result is
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The power dissipation in the walls is proportional to E0
2  and the surface area of 

the walls. The rate of power dissipation in a resonant cavity can be described by a 
parameter Q. This quantity is frequently used to describe the damping of an oscilla-
tor such as a damped mechanical harmonic oscillator or an inductor, capacitor, and 
resistor (LCR) circuit. The definition of this quantity varies slightly from reference to 
reference. Here, we use the following definition:5
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U
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= ω .
 

(1.87)

The power dissipated in the walls of a real cavity will lead to a decrease in U with 
respect to time. If power dissipation in the cavity walls is the only energy loss mecha-
nism, then the rate at which the field energy decays must equal Pw, and therefore

 

dU
dt Q

U= − ω
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(1.88)

with the solution

 U U e t Q= 0
– / ,ω

 (1.89)

where U0 is the initial stored energy. The timescale for the decay of the stored energy 
is td = Q/ω = period × Q/2π. This provides a physical interpretation of Q: it is 2π times 
the decay timescale divided by the period.

We can calculate an explicit expression for Q for a cylindrical resonant cavity by 
substituting the expressions in Equations 1.85 and 1.86 into Equation 1.87:

 
Q

l
l R

=
+( )δ 1 /

,
 

(1.90)

assuming that μ ≈ μ0. Thus, we see that Q depends only on the geometry of the cavity, 
the conductivity of its walls, and the frequency. For a pillbox cavity of length 5.0 cm, 
frequency 3000 MHz (R = 3.8 cm), Q = 18,000. Q values for SW accelerator resonant 
cavities are typically 15,000–20,000. The energy decay timescale td ≈ 1 μs for a cavity 
with the parameters given above.

1.7 TRAVELING WAVE ACCELERATORS II
Electrons are injected into the waveguide with an energy of about 50 keV, correspond-
ing to a speed of about 0.4c. In the first 30 cm of the guide, the electrons are acceler-
ated from 0.4c to 1.0c. The first section of the waveguide is called the buncher section. 
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This consists of six to eight cells. The remaining portion is called the relativistic sec-
tion, and we will concentrate our attention on this section here (Figure 1.10).

The accelerating waveguide is embedded in a water jacket to carry away the heat 
dissipated in the copper walls. Focusing coils surround portions of this and are used 
to prevent the electron bunches from dispersing. These coils are designed to mini-
mize the beam diameter. Steering coils are used to maintain the beam in the correct 
position. The steering coils are servoed to maintain proper beam position via feed-
back from the monitor ion chambers. Beam steering is affected by the earth’s mag-
netic field, which must be compensated for as a function of gantry angle.

In a traveling wave linac, it is necessary to avoid the formation of standing waves. 
The RF exiting at the far end of the guide must not be reflected back into the wave-
guide. Reflections can be avoided by either (1) dissipating the residual RF in a resis-
tive load or (2) RF feedback to the input end with a suitable phase adjustment to 
reinforce incoming power. RF feedback will be discussed in Section 1.7.4.

1.7.1 INPUT POWER, BEAM ENERGY, AND CURRENT

Our goal in this section is to learn the relationship between microwave input power, 
beam energy, and beam current. We begin with a qualitative discussion of the energy 
flow and losses in the accelerating waveguide. RF power is fed into the guide at the 
electron gun end. There are two sinks of RF power: the losses in the walls of the 
guide due to induced currents and the energy given to the electron beam. The RF 
power that is not either dissipated in the walls or absorbed by the beam exits at the 
other end of the waveguide. Wave reflections at the far end of the guide must be 
avoided; otherwise, a standing wave will be established.

It is important to emphasize that the solutions for E and B derived previously 
(Equations 1.36 through 1.39) are based on the assumption of perfectly conducting 
walls, and therefore these solutions do not include any energy losses.

Let us apply energy conservation to a disk-shaped volume of thickness Δz in the 
waveguide, as shown in Figure 1.13.

∆z

R + ∆R

FIGURE 1.13 Conservation of energy applied to a thin disk inside the waveguide. The radius 
of the disk is slightly larger than the inner radius of the waveguide.
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The radius of the disk is somewhat larger than R, so that it extends into the walls 
of the guide where the fields are zero over the circumference of the disk. We assume 
there is no electromagnetic power flow radially outward over the surface of the disk at: 
R + ΔR (ΔR ≫ δ). The electromagnetic power flowing into the disk is P z S z dz( ) ( )= ∫ A . 
The power flowing out of the disk is P(z + Δz). Power losses occur in the walls of the 
waveguide due to induced current flow in the walls and the finite conductivity of 
copper. If the power dissipated per unit length in the walls is dPw/dz, then the power 
lost in length Δz is: (dPw/dz) Δz. Energy is stored in the fields inside the disk. If the 
energy per unit length stored in the fields is Ul, then the time rate of change of the 
energy in the disk is (∂Ul/∂t) Δz.

The work done on the beam electrons inside the disk is ΔW = qE · ez Δz. The rate 
at which work is done on the electrons in the beam is ΔW/Δt = (q/Δt)E · ez Δz = IEzΔz, 
where I is the beam current and Ez is the z component of the electric field.6 We can write 
an equation for energy conservation in the disk by putting all the pieces together:
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Dividing Equation 1.91 by Δz and taking the limit in which Δz → 0, we obtain
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where dP/dz is the rate of change of the RF power down the guide (and it is less than 
zero). Equation 1.92 can also be derived more rigorously from Poynting’s theorem, 
although with more effort.

Equation 1.92 is a time-dependent instantaneous expression for the rate at which 
power is either lost or absorbed by different parts of the system. When microwave power 
is first fed into the waveguide, there are initial transients. After some period of time, the 
system reaches a steady state in which ∂Ul/∂t = 0. It is presumed that energy is fed into 
the guide at a rate that matches the rate of Joule heating in the wall and the rate of power 
absorbed by the beam.

The solutions for E and B in Equations 1.36 through 1.39 assume perfectly con-
ducting walls and ignore the energy absorbed by the electron beam. In this case, the 
left-hand side of Equation 1.92 is zero. In the steady-state case, therefore, dP/dz is also 
zero. For perfectly conducting walls, the wavenumber k is either real, in which case 
we have wave propagation, or purely imaginary, in which case wave propagation 
does not occur. If the walls have a large but finite conductivity, k will be perturbed 
and can be written k′ = k + β + i α, where k is the wavenumber for perfectly conduct-
ing walls and the terms β and α represent perturbations. In particular, iα represents 
a small dissipation term due to power losses in the walls. When there are energy 
losses, 〈P〉 will decline with increasing z down the waveguide. This implies that the 
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amplitude of the electric field will also decline with increasing z. We assume that E0 
in Equation 1.36 is no longer a constant but now a function of z, that is, E0 → E(z). We 
will shortly use Equation 1.92 to find this function.

We wish to take the time average of Equation 1.92 over an interval on the order of 
1 μs (the duration of an RF pulse; see Section 1.9). This timescale is very long com-
pared to the period of the microwaves (about 0.3 ns). Let us consider the first term 
on the left-hand side of Equation 1.92, which is proportional to cos(kz – ωt) = cos φ.7 
We assume that the electrons travel at virtually the speed of light and that therefore 
φ is constant in time. This is the condition of synchronous acceleration. We further 
assume that φ = 0; that is, the electrons see the maximum value of the electric field. 
The time average of Pw is written as 〈Pw〉, and the time average of P is 〈P〉. The time 
average of Equation 1.92 can now be written
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w( ) − = − .
 

(1.93)

The time averages in Equation 1.93 have been calculated previously (for a wave-
guide without disks); see Equations  1.82 and 1.84. We now define the following 
parameters:
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where:
 rs is called the shunt impedance per unit length 
 α is a parameter related to power loss in the walls of the guide

α and rs may depend on z. We also define

 
τ α= ( )∫ z dz

L

0
,
 

(1.95)

where L is the length of the waveguide. As we will see, the shunt impedance is a mea-
sure of the efficiency of the accelerator. The higher the shunt impedance, the lower 
the wall losses and the higher the electron energy for a given input power. A typical 
value of the shunt impedance is 50–60 MΩ/m. If we substitute Equations 1.94 into 
Equation 1.93, we get
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where the primes denote z derivatives. Equation 1.96 will allow us to determine E(z) 
in various circumstances.
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1.7.2 CONSTANT-IMPEDANCE LOAD LINE

In the constant-impedance case, rs and α are both constant with z. We may integrate 
Equation 1.96 to find E(z), assuming E(0) = E0 as an initial condition:

 
E z E e Ir ez

s
z( ) ( )= 0 1– –– – .α α

 
(1.97)

From Equation 1.95, τ = αL.
We can calculate the power carried by the RF as a function of position by inserting 

Equation 1.97 into Equations 1.94. In the absence of beam loading (I = 0),

 P P e z= −
0

2α ,  (1.98)

where

 P E rs0 0
2 2= ( )/ α

At the end of the waveguide, the RF power left over will be P P e= 0
2– .τ

We may now derive an expression for the effective accelerating potential of the 
waveguide:

 
V E z dze

L

= ( )∫ cos ,ϕ
0  

(1.99)

where:
 L is the length of the waveguide 
	 φ is the phase

Remember that the electrons are assumed to maintain a constant-phase relation-
ship with the traveling wave. We will assume the optimum circumstance in which 
φ = 0. It is only the amplitude of the electric field that decreases as the electrons travel 
down the guide. If there were no losses in the walls and no energy absorbed by the 
beam (called beam loading), Ve would simply be E0 L.

The maximum field strength E0 in Equation 1.97 is not easily measured. We may 
write E0 in terms of 〈P0〉, the time-averaged input microwave power:

 
E P r Ls0 02= 〈 〉τ / .

 (1.100)

We may now substitute Equation 1.97 into Equation 1.99 and carry out the integra-
tion to obtain
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(1.101)
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Equation 1.101 is the “load line” for a constant-impedance TW accelerator. It tells 
us the accelerating potential in terms of the input microwave power and the beam 
current. This equation is of the form

 V V FIe = −0 ,  (1.102)

where:
 V0 is the maximum accelerating potential in the absence of beam loading 
 F is a constant

If rs is in units of MΩ/m, 〈P0 〉 in units of MW, L in m, and I in A, then Ve is in units of 
MV. The second term in Equation 1.102 represents beam loading. It is possible to under-
stand beam loading quite simply: when the current is increased (at constant input power), 
the energy available has to be shared by more electrons, and therefore each individual 
electron gets less energy.

The shunt impedance for a TW guide can be estimated from Equations 1.84 and 
1.94. Assuming E(z) = E0 and vg/c = 0.01, we find that rs = 110 MΩ/m for a smooth open 
waveguide without disks. A typical value for a disk-loaded guide is rs = 60 MΩ/m. 
We can also calculate the value of α from Equation 1.94. For an open waveguide, this 
results in a value of approximately 0.1 m–1. For a disk-loaded guide, a typical value is 
α = 0.2 m–1. Let us suppose that L = 2 m, and therefore τ = 0.4; Equation 1.101 becomes

 V P Ie = 〈 〉 −8 1 210. ,  (1.103)

where:
	〈P0 〉 is in MW
 I is in A
 Ve is in MV

In the zero-beam loading case, this linac will produce an 18  MV beam for a 
power input of 〈P0〉 = 5 MW. The electric field associated with this power level (see 
Equation 1.100) is on the order of 107 V/m! This corresponds to a potential difference 
of about 0.5 MV between disks if the disks are spaced about 5 cm apart.

The high microwave beam power of 5 MW is only available from the magnetron 
in pulses of a few microseconds in duration. Recall that the time average of P is over 
one oscillation period of the fields (i.e., time = 1/ν = 0.3 ns). The time necessary to fill 
this waveguide with RF power is tf = L/vg = 0.7 μs.

From Equation 1.101 or 1.102, it can be seen that there is a beam current for which 
Ve = 0. If the current is increased beyond this point, power will flow out of the beam 
and back into the fields “in a fashion similar to a klystron!” (Ford, 1987). The beam 
power output is I Ve. This is a maximum for a beam current that corresponds to 
Ve = V0/2. This can be shown by maximizing I Ve. This condition does not result in 
the maximum x-ray dose rate, however. The maximum x-ray dose rate depends on 
the details of bremsstrahlung x-ray production. The electron beam strikes a target 
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producing bremsstrahlung x-rays, which then pass through a flattening filter. The 
thick target bremsstrahlung yield is proportional to Ve

3 for relativistic electrons and 
directly proportional to the beam current I (Ford, 1987). Thus, the total x-ray yield rate 
is X = BI(Ve)Ve

3, where B is a constant determined by the accelerator target and flat-
tening filter.8 Using Equation 1.102, it is not difficult to show that the maximum x-ray 
output occurs when Ve = (3/4)V0. For maximum dose rate, the linac should be oper-
ated at this point on the load line. Table 1.1 lists nominal parameters for a TW linac.

Figure 1.14 shows the load lines for an Elekta linac with three different values 
of the input power. The load lines in Figure  1.14 are not in good agreement with 
Equation 1.103, but these load lines are presumably for linacs with RF recirculation 
(see Section 1.7.4). Recirculation alters the load line. Notice that the maximum beam 
power (point P in Figure 1.14) occurs at output energy of about V0/2. The maximum 
output occurs at approximately ¾ V0.

1.7.3 CONSTANT-GRADIENT LOAD LINE

In the first half of this section, we will assume that there is no beam current. We 
assume a constant gradient, 〈dP/dz〉 = constant, and that the electric field amplitude 
is also constant, (E(z) = E0), in the absence of a beam current. The power dissipation 
per unit length in the walls of the waveguide will be constant with z under these 
circumstances. Assume that at the end of the guide: 〈P〉 = 〈P0 〉 e–2τ, where 〈P0 〉 is the 
input power at z =  0. We want the power exiting the guide to be the same as for 
the constant-impedance case so that we may compare them (presuming that τ is the 
same). The constant-gradient requirement implies
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TABLE 1.1  Nominal Parameters for a 
TW Linac

Parameter Value
Max energy V0 18 MV
Length L 2.0 m
Mode kd = 2π/3
Shunt impedance length (rs) 60 MΩ/m
Group velocity (vg /c) 0.01
Maximum input power (〈P0〉) 5 MW
Attenuation τ 0.4
I (at max x-ray output) 200 mA
Max electric field E0 107 V/m
Accelerating gradient 10 MeV/m
RF filling time 0.7 μs
Vacuum 10–10 bar
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and in turn this implies that
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(1.105)

Equation 1.94 implies that rs is constant. For the constant-impedance case, rs is also 
constant; however, E(z) and dP dz/  are not. Equation 1.94 may be used to find the z 
dependence of α:
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α depends on the properties of the waveguide. Equation 1.106 and rs = constant are 
statements about the design of a constant-gradient waveguide, and therefore these 
conditions hold whether or not a beam current is present. A constant-gradient struc-
ture can be realized by decreasing the disk hole diameter with increasing z to reduce 
the coupling between cells and make the energy stored per cell constant, thus result-
ing in a constant axial electric field strength (Ford, 1987). It appears as if the wave-
guide shown in Figure 1.10 is a constant-gradient design.

Let us now turn to the case in which there is a beam current. Equation 1.96 becomes
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(1.107)
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FIGURE 1.14 Load lines for an Elekta TW linac show the beam energy as a function of beam 
current (during a pulse) in x-ray mode. There are three load lines shown for input powers of 
5, 2.5, and 1.5 MW for high X, medium X, and low X. The point at which the dose rate is maxi-
mum is indicated by a D. The point of maximum beam power is indicated by a P. (From Elekta 
Corrective Maintenance Manual, HT and RF System, 2011, Elekta Limited, Crawley, UK, section 
4.45 p. 4−11. Courtesy of Elekta.)
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where α is given by Equation 1.106. Equation 1.107 may be integrated to yield
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We may now calculate the energy of the accelerated particles by using Equations 1.99 
and 1.108:
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This is the load line equation for a constant-gradient TW guide.
Inspection of an Elekta waveguide makes it appear as if it is a constant-impedance 

structure. The advantages given by Karzmark et al. (1993) for a constant-gradient 
structure are uniform power dissipation per unit length, higher beam power conver-
sion efficiency, less sensitivity to frequency deviations, and less susceptibility to beam 
breakup. There is no explanation provided in this reference for the latter three advan-
tages. A disadvantage is the extra difficulty in fabricating a structure that is not periodic.

1.7.4 RF RECIRCULATION

A TW accelerator does not use up all of the input RF power. The amount of RF power 
left at the end of the guide is on the order of 〈P(L)〉/〈P0 〉 ≈ 30% (no beam loading). This 
residual RF must not be allowed to be reflected; otherwise, standing waves will be 
set up in the guide. One solution is to simply dump the residual power in an “RF 
load.” This may be a tapered section of waveguide where the RF is dissipated in the 
walls and in which a reflected wave is not formed. A water cooling line carries the 
heat away. The efficiency of a TW accelerator can be improved by recirculating some 
of the power that leaves the guide. Rather than dump all of the leftover power in a 
load, it can be recirculated. This makes it possible to produce a higher-energy beam. 
The power that leaves the waveguide is simply directed back to the input. The filling 
time for a TW linac is on the order of L/vg ~ 0.7 μs. This is moderately short compared 
to the pulse length, and therefore it is feasible to recirculate the power. A schematic 
diagram showing the power flow path is displayed in Figure 1.15. The power flowing 
out of the end of the waveguide flows into a phase shifter. The phase shifter applies a 
phase shift to ensure that the recirculated power is in phase with the RF issuing from 
the magnetron so that they will add constructively. The phase shifter uses a mechani-
cal plunger that must be in a different position for each beam energy. That portion of 
the returning power that is not in phase is dumped into a load.

High-energy Elekta linacs take advantage of power recirculation. This is shown 
in Figure 1.16, which is a diagram of the actual waveguide plumbing. An RF “iso-
later” prevents reflected RF from traveling back toward the magnetron. The RF 
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FIGURE 1.15 A schematic diagram of a TW accelerator in which the residual RF power is 
recirculated. The phase shifter ensures that power added to the source power from the mag-
netron is in phase with this power. The portion of the return power not in phase is dumped 
to an RF load.
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FIGURE 1.16 An Elekta high-energy linac with feedback. The path followed by the RF is in 
gray. The path followed by the electron beam is shown by the dashed line. The input/out-
put mode transformers couple the waveguides with a circular cross section to the rectangu-
lar cross section transmission waveguides. The isolator prevents power from traveling back 
into the magnetron. (From Elekta Oncology Engineer 1, TTI Pre-Course Work, Digital Linear 
Accelerator - Beam Generation, EOE_1_PW5 Rev.A, 2009, Elekta Limited, Crawley, UK, p. 3. 
Courtesy of Elekta.)
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load is where excess power (not in phase) is dumped. This is a tapered section of 
waveguide where the RF is converted to heat. The RF load is water cooled. The 
cooling line is shown wrapped around the waveguide. The input and output mode 
transformers couple the rectangular cross section power transmission waveguide 
to the circular cross section accelerating waveguide.

1.8 STANDING WAVE ACCELERATORS
The input end of the waveguide provides initial acceleration and bunching of the 
electrons. Recall from Section 1.5 that the resonant frequency of the cavities is inde-
pendent of their length, and therefore bunching can be achieved by adjusting the 
axial length of the acceleration cavities at the input end. The buncher consists of just 
one or two cavities for the highest-energy x-ray beams or just one for lower-energy 
x-rays. In this section, we will concentrate our attention on the portion of the wave-
guide in which the electrons are highly relativistic. This portion is sometimes called 
the constant-velocity section.

A standing wave accelerator consists of a series of coupled cavity oscillators. The 
cavity oscillators are arranged end to end with a hole connecting them for both beam 
passage and field coupling. Before considering the accelerator as a whole, let us first 
examine acceleration of electrons in a single cavity. For a standing wave cavity, the 
electric field is changing temporally as the particle traverses the cavity. The effective 
accelerating potential is given by (see Equation 1.54 with r = 0)
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where l is the length of a single cavity, and we assume that the particle is in the 
middle of the cavity at time t = 0. In the absence of any energy losses, E0 is a constant.9 
We can write t = z/v, where v is the particle speed (presumed constant). We can now 
evaluate the integral in Equation 1.110:
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where T is called the transit time factor and
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The quantity E0T is like the average electric field experienced by electrons travers-
ing the cavity. The accelerating potential is a maximum when lT in Equation 1.111 is 
a maximum. The maximum possible value of (sin w)/w is 1.00. This will occur when 
the value of w is small. For large values of l, T becomes negative and the particle will 
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be decelerated. The largest value of lT occurs for w = π/2.10 In this case, T = 2/π, and 
therefore l = 5.0 cm. For these parameters, a 1.5 m accelerating waveguide requires 
approximately 30 cavities.

Figure 1.17 shows the electric field strength as a function of time as the particle 
traverses the cavity.

We define the shunt impedance per unit length of an SW resonant cavity as
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Some references define the shunt impedance per unit length as re = rsT 2. This is 
sometimes called the effective shunt impedance per unit length. For a cylindrical 
pillbox cavity of length l and radius R (see Equation 1.86),
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For a copper cylindrical cavity with values of l = 5.0 cm, R = 3.83 cm, ν = 3000 MHz, 
the effective shunt impedance per unit length calculated from Equation 1.114) is about 
110 MΩ/m. Typical values of the actual effective shunt impedance are 100–150 MΩ/m 
for a copper cavity at 3000 MHz and with l = 5.0 cm.

Equation 1.111 gives the energy of an electron that is accelerated across an isolated 
resonant pillbox cavity in the absence of beam loading. The energy of the accelerated 
electrons (no beam loading) can be expressed as

 V V T r l P r l Pe s w e w= = =0  (1.115)

for a single cavity of length l.
The standing wave cavity has to be coupled to a transmission waveguide that sup-

plies it with RF. A critically coupled cavity is one for which the rate of energy inflow 
is matched by the rate at which energy is absorbed by the walls.
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FIGURE 1.17 The acceleration of an electron traversing a resonant cavity of length l. The electric 
field strength in the cavity is spatially constant in the axial direction, but its amplitude oscillates 
in time. The particle crosses the cavity during a time interval in which the field strength is high.
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In an SW linac, we have standing waves in each of the resonant cavities and the 
resonant cavities are coupled together. We have considered the resonant properties of 
individual cavities; we must now turn to a discussion of the coupling of these cavities.

1.8.1 COUPLED OSCILLATORS

So far we have considered only a single cavity. In an SW linac, the cavities are strung 
together in a line. Thus, the waveguide is a collection of coupled oscillators. The 
linac structure as a whole can sustain a large number of normal modes of oscillation. 
SW linacs can be analyzed by finding a suitable equivalent circuit model for each of 
the resonant cavities. Each of these circuit analog oscillators is then coupled to one 
another in a serial fashion (Ford, 1987).

There is a close analogy between coupled microwave cavities and coupled elec-
trical circuits. One of the simplest circuits that illustrates the relevant behavior of a 
microwave cavity oscillator is an LC circuit. The resonant frequency of an isolated 
LC oscillator is ω = 1/√LC, where L is the inductance and C is the capacitance.11 To 
illustrate the effect of coupling, we consider the simplified case in which three cavi-
ties (circuits) are serially coupled to one another, as shown in Figure 1.18.

The circuits are magnetically coupled to one another through a mutual inductance 
M. As we will see later, a side-cavity SW waveguide does use magnetic coupling. We 
wish to analyze this coupled oscillator system and find the frequencies of oscillation of 
the system as a whole and the amplitude of the oscillation in each portion of the circuit.

We begin by applying Kirchhoff’s loop law to each one of the oscillators:
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FIGURE 1.18 Three LC circuits coupled in a linear fashion are an analog to three coupled res-
onant cavities in an SW waveguide. Each of the LC circuits is identical. Coupling is through 
mutual inductance M. This system has three modes of oscillation, as described in the text.
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where the q’s are the charges on the capacitors, I’s represent current in each loop, and 
the dots over the I’s represent time derivatives. Let us differentiate Equations 1.116 
with respect to time to eliminate the q’s:
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We assume a solution of the form
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Substituting Equations 1.118 into 1.117, we obtain
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Equations 1.119 form a homogeneous system of linear algebraic equations in the 
three unknowns, A1, A2, and A3. A necessary condition for a nontrivial solution is that 
the determinant of the matrix of the coefficients vanishes. Evaluation of the determi-
nant of the coefficients in Equation 1.119 yields
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The roots of this equation are
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The first of these, ω0, is the frequency of an isolated oscillator. The two frequen-
cies ω± are slightly above and slightly below the resonant frequency ω0 of an isolated 
oscillator. The system can oscillate with any one of these three frequencies. Notice 
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that as the coupling constant M goes to zero, ω± → ω0 as expected. Let us calculate the 
amplitudes of the currents (A values) for the root ω0. Substitution of the expression 
for ω0 into Equation 1.119 shows that A2 = 0 and A3 = –A1. There is no current in the 
middle oscillator, and the two oscillators on the ends are 180° or π out of phase.

The mechanical analog of the coupled oscillators in Figure 1.18 are three coupled 
pendulums, as shown in Figure 1.19. For the mode shown in this figure, the central 
pendulum always remains at rest.

A similar phenomenon can occur when resonant cavities are coupled. The elec-
tric field in every other cavity is always (not just momentarily) zero. This feature of 
a standing wave linac seems surprising because we are accustomed to thinking of 
standing waves on a string. We have already seen in Section 1.5 that cavity oscil-
lations do not act like standing waves on a string. In the case of a string, the node 
occurs at a single point, whereas for the coupled cavities, the node extends over the 
length of every other cavity. Standing wave modes are named for the phase differ-
ence between adjacent cavities: 0, π/2, 2π/3, and so forth (see Figure 1.20). The length 
of the cavity can be matched to the particle velocity.

The node cavities do not contribute to acceleration; they serve only to couple 
microwave power from cavity to cavity, and therefore they may be moved off to the 
side and out of the beam line (see Figure 1.21). Such an arrangement is called a side-
coupled standing wave linac. The cavities are coupled with a small hole that does 
not appreciably perturb the resonant properties. The two different types of cavities, 
coupling and accelerating, can then be optimized separately (see Figure 1.22). As the 
electric field in the coupling cavities is zero, the coupling is magnetic.

FIGURE 1.19 Three pendulums coupled by springs. This diagram shows the configuration of 
the pendulums at various instants for one of the normal modes of oscillation. For this normal 
mode, the central pendulum never moves.

FIGURE 1.20 An SW waveguide operating in the π/2 mode. The phase shift between cavities 
is π/2. Every other cavity has a zero electric field at all times. This is the mode employed in 
standing wave medical linacs.
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FIGURE 1.21 Perspective diagram showing a partial cutaway of a standing wave, side-cavity-
coupled accelerator waveguide. Every other cavity has been moved off to the side. The purpose 
of the side cavities is to couple electromagnetic energy from one accelerating cavity to the next. 
(From Karzmark, C.J. and R.J. Morton, A Primer on Theory and Operation of Linear Accelerators in 
Radiation Therapy, 2nd ed, Madison, WI: Medical Physics Publishing, 1998, Fig. 33. Reprinted 
with permission from Medical Physics Publishing.)

FIGURE  1.22 Optimization of cavity shape. The pillbox cavity is in black. The optimized 
cavity is in red. The surface area of the inside of the cavity is reduced to decrease power 
losses in the wall and increase Q. At the same time, the length of the cavity is (approximately) 
retained to maintain the energy gain of electrons that cross the cavity.
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The accelerating cavity shape is optimized to minimize power losses in the 
walls. The idea is to reduce the surface area of the cavity without compromising 
the acceleration of the electrons. We want to keep the length of the cavity more or 
less the same. See Figure 1.22. Figure 1.23 shows a cutaway view of a side-cavity-
coupled SW waveguide.

Figure 1.24 illustrates the operation of a side-cavity-coupled SW accelerator.
If the coupled cavities in an SW waveguide are relatively independent of one 

another, then the total energy gain (no beam loading) is given by N times the expres-
sion in Equation 1.115, where N is the number of accelerating cavities. If we further 
assume that the total length of the waveguide is L = Nl and the total power dissipated 
in the walls is 〈P0 〉 = N〈Pw 〉, then the no-beam-load energy is

 V r L Pe0 0= ,  
(1.122)

where we have assumed side-cavity coupling and neglect any extra contribution to 
the length due to the side cavities.

1.8.2 STANDING WAVE LOAD LINE

The circuit diagram shown in Figure 1.25 is an analog for an SW accelerating wave-
guide. The RF power supply is in parallel with the shunt resistance and the beam 
load. This circuit does not apply to a TW waveguide because it does not account 
for RF power exiting the guide. We assume perfect coupling between the power 
source and the accelerating waveguide, meaning that all of the power 〈P0 〉 supplied 
by the magnetron enters the waveguide. The beam energy is numerically equal to the 

FIGURE  1.23 Photograph of a side-coupled standing wave waveguide that has been opened. 
There are 5(½) accelerating cavities. The RF coupling between accelerating cavities is through the 
side cavities (seen at the top and bottom). The electron gun is attached to the left side of the guide. 
RF is fed in through the aperture in the center cavity. (Courtesy of Dave Bullock, eecue.com.)

http://eecue.com
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Electron enters first cavity

Electric field reaches maximum value

Electron enters second cavity
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FIGURE 1.24 A side-cavity-coupled standing wave accelerator. The electric field configuration 
is shown at various instants in time. A negative electric field indicates that the electric field 
points toward the left. The trajectory of an electron bunch is illustrated by the oblique line. 
When an electron bunch enters cavity 1, the electric field is zero in that cavity. As the electrons 
traverse this cavity, the field strength rises and reaches a maximum when the electrons are 
near the middle of the cavity. As the electrons exit the cavity, the field strength has returned to 
zero. The electrons enter the second cavity just as the field in this cavity begins to go negative.

RF
power

Shunt
im

pedance

Load
(beam current)

FIGURE 1.25 An equivalent circuit for an SW accelerator. The beam energy is numerically 
equal to the potential difference across the load. The shunt impedance drains power even 
in the absence of a beam current. When the beam is on, the input power must be shared 
between the shunt impedance and the beam.
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potential difference across the load in the absence of beam loading. There is no cur-
rent traveling down the beam load branch of the circuit when the electron beam cur-
rent in the linac is zero. This is the reason for the name shunt resistance, because this 
“resistor” drains power even in the absence of beam current. It now becomes clearer 
why it is desirable to have a high shunt impedance—the higher the shunt impedance, 
the more power that is available to the beam.

In the no-load case, all of the power supplied by the power source (magnetron or 
klystron) is dissipated in the shunt resistance (walls of the waveguide) and 〈P0 〉 = V 0

2/
(reL); therefore,

 V r L Pe0 0= ,  (1.123)

in agreement with Equation 1.122.
Beam loading is represented by a beam current I traveling down the load branch 

of the circuit. Now the power must be shared; as a result, the potential difference will 
decease to a value Ve. We can write the equation for power sharing as
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We can solve this equation for Ve to obtain
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(1.125)

To the extent that the equivalent circuit is a good analog of the accelerator, 
Equation 1.125 is the nonlinear load line for an SW accelerator. If IreL/(2V0) ≪ 1, then 
to first order in this small quantity,

 
V P r L Ir Le e e≈ −0

1
2

.
 

(1.126)

For typical linac parameters, re = 100 MΩ/m:

 V P L ILe = −10 500 ,  (1.127)

where Ve is in units of MeV, 〈P0 〉 is in units of MW, I is in units of A, and L is in units 
of m.

Karzmark et al. (1993) give data for a Varian Cl 1800 (no longer sold). The length of 
the waveguide is 1.5 m. There are 28½ accelerating cavities, the frequency of operation 
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is 2,856 MHz, the effective shunt impedance is 102 MΩ/m, the cavity Q is 15,200, and 
the coupling factor between cavities is 0.04. The load line is illustrated in Figure 1.26. 
The load line for the 18 MV beam agrees well with Equation 1.127, with L = 1.5 m 
and 〈P0 〉 = 3.8 MW For the 6 MV load line, the effective length of the waveguide is 
shorter than 1.5 m (see Section 1.11). Table 1.2 gives nominal values of SW waveguide 
parameters.
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FIGURE 1.26 Load line for a Varian Cl 1800. The top load line is for an 18 MV beam with input 
power of 3.8 MW. The bottom load line is for a 6 MV beam with input power of 1.2 MW. (Data 
from Karzmark, C.J., et al., Medical Electron Accelerators [out of print], New York: McGraw Hill, 
1993.)

TABLE 1.2  Nominal Parameters 
for an SW Linac

Parameter Value
Energy 6/18 MV
Length 1.5 m
Mode π/2
Maximum input power 5 MW
re (shunt impedance) 100 MΩ/m
T (transit time factor) 0.91
Accelerating gradient 20 MeV/m
Number of cavities 30
Cavity length 5.0 cm
Cavity diameter 7.7 cm
Cavity Q 15,000
Vacuum 10–10 bar
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1.9 PULSED OPERATION AND WAVEFORMS
Linear accelerators operate in a pulsed mode. There are pulses on two timescales. 
Electrons are accelerated in bunches. The temporal spacing of these individual 
bunches is about equal to the microwave period ~0.3 ns. These subpulses are only 
delivered while the RF power is on. The RF itself is pulsed on a much longer tim-
escale. The RF is pulsed because the power that is necessary to produce the strong 
electric fields required is quite large, on the order of 5 MW. Such very high instan-
taneous power levels are difficult to sustain for more than short intervals. A typical 
pulse duration is 5 μs, and the pulse repetition frequency (prf) is about 200 pulses/s 
(see Figure 1.27). The time averages discussed above (Section 1.7) are valid within 
an RF pulse because they are taken over the period of the microwaves, which is 
essentially instantaneous by comparison. The duty cycle for a linac is defined as 
ζ = RF pulse duration/RF pulse period (pulse duration × prf), and a typical value 
is 10–3. The peak current (averaged over the subpulses in an RF pulse) is typically 
about 100 mA in x-ray mode; therefore, the average current is Iavg = I ζ = 100 μA. For 
electrons, the current is about 1 mA during a pulse. The gun current needs to be 
up to three times larger than the beam current because of inefficiency in capturing 
injected electrons. The dose rate depends on the beam current during an RF pulse 
and the duty cycle. At fixed energy, the dose rate is proportional to I ζ (the average 
beam current).

Karzmark et al. (1993) give a table (9-1) of average beam currents. For low X, the aver-
age beam current is about 100 μA with a prf of 300 s–1 for a dose rate of 400 cGy/min. 
For high X, the average beam current is 30 μA with a prf of 150 s–1 for a dose rate of 
500 cGy/min. For electron beams, the average beam current is on the order of 100 nA 
for a dose rate of 500 cGy/min. Linac dose rates are changed by changing the prf. 
Changes in the beam pulse current would change the beam energy.

During RF injection in an SW linac, it takes about 1 μs for the fields to build up 
(filling time), during which there are transients. Therefore, the injection of electrons 

100 mA

5 µs 5 µs 5 µs
5 × 103 µs

FIGURE 1.27 Pulsed operation of a medical linac in x-ray mode. The RF pulses are nominally 
5 μs in duration. There are typically about 200 pulses/s. The peak beam current is approxi-
mately 100 mA in x-ray mode. The RF pulses consist of subpulses (not shown) that corre-
spond to individual bunches of electrons. These subpulses are spaced about 0.3 ns apart.
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is delayed. The RF pulse width is approximately 6 μs in duration. The gun current is 
on for about 5–5.5 μs (see Figure 1.28).

At the end of each pulse of RF power, the standing wave decays due to losses in 
the cavity. The timescale for this needs to be short compared to the time between RF 
pulses; otherwise, the incoming microwave pulse may not be in phase with the previ-
ous one. As we have seen in Section 1.6.2, the decay time for the fields in a cavity is on 
the order of 1 μs; this is much shorter than the time between RF pulses.

The average microwave power is on the order of ζ × 5 MW = 5 kW. It is for this 
reason that power consumption of a medical linac is not much higher than that of a 
household electric range (Podgorsak et al., 1999). The Elekta planning guide (2005) 
quotes a total machine power requirement of 30 kVA with beam on. The power factor 
is 0.6, which means that the true power consumption is 18 kW.12 The Varian installa-
tion data package (for a Clinac iX, Trilogy, 2100C(D), 21EX and 23EX) (Varian, 2004) 
quotes a beam on load of 45 kVA (power factor 0.9). A household electric range can 
require up to about 12 kW.

1.10  FREQUENCY STABILITY AND FABRICATION 
OF WAVEGUIDE STRUCTURES

A common specification of electron beam energy is d80, the depth at which the per-
cent depth dose is 80%. The tolerance for the value of d80 is typically ±2 mm. For 
therapeutic electron energies, the value of d80 (in cm) is Ve/3 to a good approxima-
tion, where Ve is in units of MeV. For a 20 MeV electron beam, it follows that the 
relative uncertainty in the beam energy ΔVe/Ve = 3%. The necessary energy stability 
for electron beams is often quoted as ±1% (Ford, 1987; Scharf, 1994; Karzmark et al., 
1993).

An energy slit is usually used in the bending magnet system to reduce the spread 
in the electron energy. According to Karzmark et al. (1993), the beam exiting the 
waveguide may have an energy spread of as much as 20%. The energy slit reduces 
the spread to about 1%. Beam current can be wasted in electron mode because the 
current requirements are already small compared to those of x-ray mode.

5.0–5.5 µs Gun I

RF 6 µs 

FIGURE 1.28 RF and gun current pulse applied to an SW waveguide. The RF turns on first 
and fills the guide before the gun current is applied.
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1.10.1 TRAVELING WAVE FREQUENCY STABILITY

A change in the phase will change the beam energy (see Equation 1.99). A change in 
phase can result from a change in frequency. Let us work out the sensitivity of the 
beam energy to the frequency of the microwaves. We assume a small change in phase 
dφ. Let us expand the cosine in Equation 1.99 around φ = kz – ωt = 0: cos φ ≈ 1 – ½ (dφ)2. 
We also have dφ = z dk – t dω, and therefore
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We can now relate the relative change in beam energy to relative changes in frequency 
using Equation 1.99, assuming that beam loading and wall losses are neglected (i.e., α = 0 
and I = 0):
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The value of kd = 2π/3, and therefore kL = 2π/3 (L/d), for d = 3 cm and an accelera-
tor length of 2.2 m: kL = 150. If we demand an energy stability of 20%, this implies that 
Δν/ν = 7 × 10–5. The dimensional tolerances that are often quoted (Ford, 1987; Scharf, 
1994) associated with this are 0.01 mm. The coefficient of thermal expansion of copper 
is 17 × 10–6 °C–1. This corresponds to a temperature stability of approximately 2°C. This 
is difficult to accomplish given the power that is absorbed by the walls of the wave-
guide. In practice, stability is maintained by a combination of temperature control and 
input frequency tuning.

Waveguides are surrounded by a water jacket with flowing water. The purpose 
of the water jacket is not only to carry away excess heat, but also to maintain nearly 
constant temperature conditions. The internal cooling water for Elekta linacs is main-
tained at 30°C ± 1°C by a temperature servo probe.

1.10.2 STANDING WAVE FREQUENCY STABILITY

Our analysis of standing waves in a cavity in the absence of dissipation showed that 
there are discrete resonant frequencies at which the cavity will sustain electromag-
netic oscillations. In the absence of dissipation, the cavity must be excited at precisely 
the resonant frequency in order to oscillate. With the presence of dissipation, there 
will instead be a narrow band of frequencies that will lead to excitation. Equation 1.89 
shows how the energy decays with time. The energy is proportional to the square 
of the amplitude of the electric field. The time dependence of the electric field can 
therefore be written

 E t E e et Q i t( ) = − − +
0

20 0ω ω ω/ ( ) ,∆  (1.130)
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where ω0 is the resonant frequency, and we have allowed for the inclusion of a small shift 
Δω in the resonant frequency due to damping (Jackson, 1999). This expression for the 
electric field incorporates a superposition of frequencies around ω = ω0 + Δω as follows:

 
E t E e di t( ) = ( ) −
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(1.131)

The frequency components of the electric field in Equation 1.130 are given by
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This is an elementary integral. Evaluation of this integral (1.132) shows that the 
energy distribution in the cavity is given by
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Equation 1.133 represents a resonance line shape for the frequency distribution of 
the power in the cavity. A sketch of this is shown in Figure 1.29.

The full width at half maximum is Γ = ω0/Q. For a cavity with a Q value of 104, this 
is about 1.5 × 106 s–1. For beam energy stability on the order of 20%, the energy in a cav-
ity (Equation 1.133) cannot vary by more than 40% (see Equation 1.124). The 60% power 
level corresponds to approximately ω = (ω0 + Δω) ± 0.41 Γ. This in turn corresponds to 
a change in frequency of Δν ≈ ±4 MHz. The dimensions of the waveguide must be 
extremely accurate. From Equation 1.53, we see that ΔR = (Δω/ω0)R ≈ 5 × 10–3 cm. The 
value widely quoted in the literature is 10–3 cm (Karzmark, 1984). A single sheet of 20 wt 
paper has a thickness of 10–2 cm. The precision requirement is a tenth of this! Machining 
to this precision is not feasible using standard techniques (see Section 1.10.3).

100%

50%

ω0 + ∆ω

|E(ω)|2

ω0/Q = Γ

ω

FIGURE 1.29 The line shape for a cavity resonator showing the distribution of energy with 
frequency. The full width at half maximum is given by ω0/Q. In the absence of dissipation, the 
line shape would be a δ function centered on the resonant frequency ω0.
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The automatic frequency control (AFC) system is used to match the RF source 
frequency with the resonant frequency of the waveguide. Waveguide resonant fre-
quency can change due to temperature changes, variations in input power, beam 
loading, and so forth. The AFC system utilizes feedback to adjust the RF source fre-
quency. For a magnetron, a motorized plunger is used to adjust the frequency.

1.10.3 FABRICATION

Fabrication of accelerator waveguides is a difficult and exacting process. Waveguides 
are tested at low power and are fine-tuned by introducing mechanical deformations 
in order to adjust the resonant frequency of each cavity. Waveguides are constructed 
from 99.99% pure oxygen-free electronic (OFE) grade copper (Whittum, 1998). They are 
assembled in segments and then brazed together (Ford, 1987). Arcing in the guide due 
to metal burrs or imperfections could be very destructive. For this reason, guides must 
be carefully cleaned and polished. The cavities in a TW waveguide are fine-tuned after 
construction by mechanically squeezing them to produce slight (10–3 cm) changes in the 
dimensions (Karzmark and Morton, 1998). In light of these considerations, it becomes 
easier to understand why the cost of an accelerating waveguide is in excess of $100,000.

1.11 CHANGING BEAM ENERGY
Modern medical linacs have two or three x-ray energies and five or six different elec-
tron energies. This discussion focuses on the mechanism by which the beam energy 
is changed. This may be different than the method used to adjust or fine-tune a par-
ticular beam energy The high-energy x-ray beam is sometimes called high X and the 
low-energy beam low X.

1.11.1 TRAVELING WAVE

The output energy depends on input power level, RF frequency, and beam current. 
The wave velocity is critically dependent on frequency (see point P in Figure 1.9). For 
stable operation, the frequency has to be accurately controlled, as we have seen. A 
small change in frequency can be used to produce large variation in electron energy. 
In a traveling wave waveguide with RF feedback, variable coupling is used to main-
tain the electric field in the buncher for both high and low X.

To change the energy of the x-ray beam, the accelerator is run at different RF power 
levels. See the Elekta load lines in Figure 1.14 showing the different powers used to 
produce beams of different energies.

There are several possibilities for changing electron beam energy. One method is 
to alter the position of the electrons with respect to the phase of the accelerating wave 
by changing the frequency slightly. This is known as detuning. In this way, the elec-
trons will slip in phase, receiving less than the maximum acceleration. This makes it 
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possible to vary the energy of the electrons from a maximum value down to a few MeV. 
This appears to be the method used by Elekta service technicians to adjust electron 
beam energy (Elekta, 2009). Another possibility is beam loading. The beam current is 
increased, keeping the RF power constant, thereby reducing the beam energy.

1.11.2 STANDING WAVE13

There are numerous possible methods for varying the beam energy discussed in 
Karzmark et al. (1993). It is possible to change beam energy by varying the RF power 
into the guide or by increasing the beam current exploiting beam loading. The prob-
lem with these methods is that they lead to an energy spread in the accelerated beam. 
Any method used to change energy should avoid broadening the spectrum.

We describe the method used in Varian linacs to change the x-ray energy. The 
guide is divided into two sections. The first section bunches the electrons and posi-
tions them in phase. The second portion of the guide accelerates the electrons with-
out causing undue spread in the energy. Whatever is done to the second portion of 
the guide to change the energy must not interfere with the job of the first portion.

Beam energy is changed by changing the ratio of power fed to the first and sec-
ond portions of the waveguide. This can be accomplished with the use of an “energy 
switch.” This is a moving mechanical plunger in a side cavity between the first and 
second portions of the guide (see Figure 1.30). The plunger does not fully block the RF, 
but rather reduces the coupling between the first and second portions of the guide, 
allowing some RF through to the second portion of the guide as follows:

 1. High X: There is high coupling between the first and second portions of the 
guide, and the electric field is high in both portions of the guide (see Figure 1.31).

 2. Low X: There is low coupling between the first and second portions of the 
guide so that the electric field is reduced in the second portion of the guide (see 
Figure 1.31).

FIGURE 1.30 Energy switch for an SW accelerator. The dashed lines show the plunger inserted 
into one of the side coupling cavities part way down the waveguide. When the plunger is 
inserted, coupling between the first and second section of the guide is reduced. This in turn 
reduces the electric field strength in the second portion of the guide, lowering the final beam 
energy. See Figure 1.31. (From Karzmark, C.J., et al., Medical Electron Accelerators [out of print], 
New York: McGraw Hill, 1993, p. 194. Copyright and courtesy of McGraw-Hill Education.)
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The electric field in the first portion of the guide is the same in both cases to 
maintain optimum capture and bunching.

1.12 COMPARISON BETWEEN TW AND SW LINACS
In the book by Karzmark et al. (1993), a comparison is made between the virtues of SW 
and TW waveguides. These authors clearly prefer SW waveguides. Some of the reasons 
cited follow. We have already seen that SW structures are shorter than the equivalent 
energy traveling wave structure. The shape of the accelerating cavity can be optimized 
to maximize the electric field on the axis and minimize power losses in the walls. The 
coupling cavities can be optimized separately. Using half-wave or quarter-wave accel-
erating cavities results in a guide that is inherently mode stable, it is easier to avoid 
excitation of nearby resonant modes.

TW waveguides are longer than SW. The Elekta waveguide is 2.2 m in length and 
is oriented obliquely. TW waveguides do not require a klystron. High-energy SW 
linacs do require a klystron. Klystrons are more expensive and cannot be mounted 
on the gantry, although they do have a longer life. The Elekta linacs are capable of 
delivering three photon energies (e.g., 6, 10, and 18 MV).

There is little clinical distinction between TW and SW linacs in terms of perfor-
mance characteristics, such as beam energies, dose rates, and ability to deliver intensity-
modulated radiation therapy (IMRT) treatment.

According to Greene and Williams (1997), the mean power required by an SW 
machine is slightly higher because of the filling time. Given two 6 MV accelerators, 
the TW requires 2 MW and the SW requires 2.5 MW.

18 MV

6 MV

Energy
switch

Beam

FIGURE 1.31 Shows the electric field along the length of the waveguide at some instant in 
time for an SW linac operating in the high-energy mode (18 MV, top portion of the figure) 
and low-energy mode (6 MV at bottom). In the bottom portion of the figure, the energy switch 
(see Figure 1.30) has been inserted. This causes a reduction in the electric field strength in 
the second portion of the guide and a consequent reduction in the final beam energy. (Based 
on figure 11-1 of Karzmark, C.J., et al., Medical Electron Accelerators [out of print], New York: 
McGraw Hill, 1993.)
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1.13 X-BAND LINACS
Most medical linacs operate in the s-band of the microwave spectrum at approxi-
mately 3 GHz. The x-band ranges from 8.0 to 12.0 GHz (Wikipedia). Increasing the 
microwave frequency allows construction of smaller and lighter linacs. Linear accel-
erators have been built that operate in the x-band of the microwave spectrum. The 
disadvantage is that it makes the already exacting dimensional tolerances even more 
difficult to achieve. The stability and fabrication difficulties discussed in Section 1.10 
become worse.

The Mobetron interoperative radiation therapy unit uses a mobile x-band linac 
designed by Intraop Medical (Figure 1.32). The Mobetron can produce electron beams 

FIGURE 1.32 The Mobetron employs a mobile x-band linac for intraoperative radiotherapy. 
This compact linac produces electron beams ranging in energy from 6 to 12 MeV. (Courtesy 
of Intraop Medical Corporation, Sunnyvale, CA.)
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with energies of 6, 9, and 12 MeV. The CyberKnife is a stereotactic radiosurgery sys-
tem that consists of a 6  MV x-band linac on a robotic arm. The CyberKnife linac 
operates at 9.3 GHz and weighs 285 lb. Both the Mobetron and the CyberKnife use a 
2.0 MW magnetron.

Thorson (2007) has suggested a number of reasons that x-band linacs have not 
become more widespread: (1) familiarity with s-band components, (2) reliability 
of s-band RF sources, (3) availability of components, (4) manufacturing tolerances, 
and (5) cost. Table 1.3 shows a comparison between some s-band and x-band linac 
characteristics.

QUESTIONS
 1. Why does a low-energy beam require higher current than a high-energy beam 

for the same dose rate?
 2. What is a typical electron gun voltage?
 3. How is a standing wave in a waveguide different than a standing wave on a 

string?
 4. Why do s-band cavities in an SW waveguide have a radius of 3.83 cm?
 5. Describe the energy budget of a traveling wave linac.
 6. Write a generic expression for a linac load line and explain the physical meaning 

of each term.
 7. Why is a TW waveguide much longer than an SW waveguide?
 8. Why is it desirable to have a high shunt impedance?
 9. What is the relationship between shunt impedance and conductivity?
 10. What are typical average beam currents for x-ray mode and electron mode?
 11. What are typical instantaneous and average power requirements for an SW and 

a TW linac?
 12. How is x-ray beam energy changed in an SW and a TW linac?
 13. What are the practical differences between SW and TW waveguides?
 14. Why is waveguide temperature stability so crucial?
 15. Why are waveguides so expensive?

TABLE 1.3 Comparison between s-Band and x-Band Linacsa

Band Frequency Wavelength
Shunt 

Impedance
Acceleration 

Gradient

6 MeV 
Accelerator 

Length
s 3 GHz 10 cm 85–130 MΩ/m 20 MeV/m 30 cm
x 11.4 GHz 3 cm 110–160 MΩ/m 100 MeV/m 6–8 cm

Source: Data from Thorson, T., Advanced acceleration and image guidance technologies, online 
PowerPoint presentation, 2007, http://195.135.200.83/allegatiifo/Congresso2007/19aprile/
Thorson.pdf.

http://195.135.200.83/allegatiifo/Congresso2007/19aprile/Thorson.pdf
http://195.135.200.83/allegatiifo/Congresso2007/19aprile/Thorson.pdf
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PROBLEMS
 1. Derive Equations 1.23 and 1.24.

 2. Estimate the disk spacing in a TW waveguide operating in the “2π/3” (i.e., 
k = 2π/3d) mode.

 3. Derive Equation 1.69 and show that the solution is given by Equation 1.71. The 
BAC-CAB rule for the vector cross product may be useful: A × (B × C) = B(A · C) – 
C(A · B).

 4. Derive Equation 1.101 from Equations 1.97, 1.99, and 1.100.

 5. Show that in the absence of beam loading and wall losses, Equation 1.101 reduces 
to Ve = E0L.

 6. For a load line of the form Ve = V0 – F I, where F is a constant, (a) show that the 
beam power is maximum when Ve = V0/2 and (b) show that the maximum x-ray 
dose rate during an RF pulse occurs for Ve = (3/4) V0. Assume that the x-ray out-
put is proportional to IVe

3.

 7. a.  Calculate the value of α for a smooth-bore (no disks) TW waveguide. Use the 
condition vg = 0.01c and R = 3.8 cm (note that this implies vph = 100c!).

 b. Calculate the value of τ for L = 2.0 m.

 c. Calculate the residual power exiting the waveguide for no beam loading.

 8. a.  A constant-gradient TW guide has an electric field amplitude E0 that remains 
constant down the guide (increasing z). In this case, one would expect that V0 
(beam energy in the absence of beam loading) should be E0L. Show this.

 b. For a constant-impedance TW guide, write V0 in terms of E0L. Use typical val-
ues of waveguide parameters to compare the result to that found in part (a).

 9. In going from Equation 1.125 to 1.127, it is assumed that IreL/(2V0) ≪ 1. Check 
the validity of this for parameters I = 100 mA, re = 100 MΩ/m, L = 1.5 m, and 
V0 = 18 MV.

 10. Estimate the shunt impedance/length for an x-band SW guide operating at a 
frequency of 11.4 GHz with w = π/2. Compare your answer to the table entry 
in Section 1.13.
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SYMBOLS

a Area
A Area
dA Surface area vector, normal to surface
Ḋ Dose rate

b Radius of disk iris

B Magnetic field vector
Bc Magnetic field vector in conductor
Br , Bθ , Bz Vector components of B
c Speed of light in vacuum
C Capacitance
d Distance between disks in TW guide
d80 Depth at which percent depth dose (PDD) is 80% for electrons
D Electric displacement vector
Dc Electric displacement vector in medium
E Electric field vector
Ec Electric field vector in conductor
En Normal component of electric field
er , eθ , ez Unit vectors in r, θ, and z directions
Er , Eθ , E z Vector components of E
F Slope of generic load line
H Magnetic field strength
Hn Normal component of H
Hc Value of H in conductor
Ht Component of H tangent to surface
i √ – 1
I Average beam current during an RF pulse (or current in oscillator cir-

cuit, Section 1.9)
İ Time derivative of current in oscillator circuit
Ї Second time derivative of current in oscillator circuit
Iavg Average beam current (over many RF pulses)
J Current density
Jm Bessel function of index m
k Wavenumber
K Surface current
Keff Effective value of K
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l Unit tangent vector to a surface
l Length of cavity oscillator in SW
L Waveguide length (or inductance; Section 1.9)
m Index of Bessel function Jm

M Mutual inductance
n Unit normal vector to a surface
Nm Neumann function of index m
P Microwave power
P0 Initial microwave input power
Pw Power loss in walls
prf Pulse repetition frequency
q Charge
Q Quality factor for cavity oscillator
r Radial coordinate in cylindrical coordinates
rs Shunt impedance
re Effective shunt impedance
R Inner radius of waveguide or cavity
Re Take the real part of
S Poynting vector
t Time
td Decay time for energy in cavity
T Transit time factor
u Energy density stored in fields
U Energy stored in fields
Ul Energy/length
v Electron velocity vector
vg Group velocity
vph Phase velocity of wave
Ve Electron beam energy
V0 Beam energy without beam loading
xmn nth root of Bessel function of order m
z Cylindrical coordinate
α Microwave electric field attenuation
β Perturbed value of real part of k
Γ Full width at half maximum for power in cavity
γ2 ω2/c2 – k2

ΔA Area element
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Δz Small increment in z
δ Skin depth

∇t
2 Transverse portion of Laplacian

ɛ Permittivity
ɛ0 Permittivity of free space
ζ Duty cycle factor
* Complex conjugate
ʹ Spatial derivative with respect to z
Θ Angular function in separation of variables
θ Angular coordinate in cylindrical coordinates
λ Wavelength
μ0 Permeability constant (1.26 × 10−6 H/m)
μc Value of μ in conductor
ν Frequency
ξ Coordinate perpendicular to surface
σ Conductivity
τ Attenuation factor
φ kz – ωt
ω 2πν angular frequency
ωc Cutoff angular frequency
ω0 Resonant frequency of LC circuit
ω± Resonant frequencies of coupled circuits
ℜ Radial function in separation of variables
Σ Surface charge density
Φ̇ Fluence rate
〈〉 Time average over one period
Ω Ohms
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ENDNOTES
 1. “That is, it takes 7.2 times as much beam current and 2.4 times as much beam power to 

produce the same dose rate at 6 MV as at 18 MV flattened over a 50-cm diameter at 100-
cm SAD.” (Karzmark et al. 1993, p. 18). This result is somewhat at odds with the linac 
operating parameters given in table 9-1 of Karzmark et al. (1993), which shows a factor of 
5 difference in average beam current between 6 and 18 MV beams.

 2. This accelerator operates at a frequency of 2856 MHz, and the waveguide inner diameter 
is approximately 8.2 cm.

 3. Under these circumstances, power flow is maximized and losses are minimized 
(Humphries, 2012).

 4. This value was found by using the spreadsheet function for Bessel functions in Microsoft 
Excel.

 5. In some references, Q is 1/(2π) times the definition given above.
 6. I is the average beam current during an RF pulse (see Section 1.9). This is an average over 

many individual bunches of electrons.
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 7. We may assume that the peak beam current is constant on the timescale of an RF pulse 
(see Section 1.9).

 8. The reader may notice a discrepancy here between this result quoted by Ford and the 
statement in Section 1.1 that the flattened x-ray intensity is proportional to the 1.8 power 
of Ve. The latter dependence comes from the book by Karzmark et al. (1993, p. 18), in 
which it is stated, “Thus, the flattened x-ray intensity is proportional to about the 1.8 
power of x-ray energy.” Ford (1987, p. 25) states, “Hence the x-ray yield is given by X = B 
I(V) V3 where B is a constant determined by the accelerator target and flattening filter.” 
The flattening filter transmission actually depends on the –0.8 power of the energy 
according to Karzmark et al. (1993); thus, the quantity B in the previous sentence is not a 
constant.

 9. Ignoring the hole in the center of the cavity through which the beam must pass.
 10. This is for fixed electric field strength. A more realistic constraint would be fixed power.
 11. In this section, L represents inductance and not waveguide length.
 12. The real power (in kW) is the apparent power in kVA multiplied by the power factor.
 13. This follows the discussion in Karzmark et al. (1993), chapter 11.
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2
PROTON THERAPY PHYSICS

Protons for Pedestrians

2.1 INTRODUCTION
According to Smith (2009a), 35% of cancer patients die as a result of a lack of local 
disease control. This suggests that there may be room for significant improvement if 
radiation therapy treatments can become more conformal. The goal of proton therapy 
is to increase the rate of local control and reduce morbidity.

In a 2008 point/counterpoint article in the journal Medical Physics (Maughan and 
Van den Heuvel, 2008), the subject of contention was that “within the next 10–15 years 
protons will likely replace photons as the most common type of radiation for curative 
radiotherapy.” In 2016, 8 years later, proton therapy has grown rapidly; however, it 
does not appear that it will replace conventional photon therapy any time soon. While 
the effectiveness of proton therapy is still hotly debated, there is no debate about the 
cost. The cost of a proton therapy facility is at least an order of magnitude greater than 
a linac-based facility. According to Nafziger (2011), the United States will not witness 
the construction of 100 or 200 proton therapy centers as some have speculated, but 
more likely only 20–30. If innovative accelerators can be built that are small and cheap, 
the cost of proton therapy may come down to the point that it rivals photon therapy 
and the outlook may change. At the time of this writing, there are about 15 operating 
proton centers in the United States, and 12 new centers under development (National 
Association for Proton Therapy, 2015) (Figure 2.1). There are now approximately 40 
proton therapy facilities outside the United States, and more than 105,000 patients have 
been treated worldwide as of the end of 2013 (PTCOG, 2014).

In contrast to some of the other material in this text, there is an abundance of 
literature on proton therapy, much of which is very good quality. The company IBA 
maintains a list of proton therapy references on its website: http://www.iba-proton-
therapy.com/more-resources-pt. There are books by Ma and Lomax (2012), Paganetti 

http://www.iba-proton-therapy.com/more-resources-pt
http://www.iba-proton-therapy.com/more-resources-pt
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(2012b), Yajnik (2012), Metz and Thomas (2010), DeLaney and Kooy (2007), and Linz 
(2012). There are review chapters in Modern Technology of Radiation Oncology, Volumes 
I (Moyers, 1999) and III (Vatnitsky and Moyers, 2013), and a review article by Smith 
(2006). Chapters on proton therapy in the book by Goitein (2008) are especially a 
delight to read and are highly recommended. Two books on particle accelerators that 
are relevant to proton therapy are Humphries (2012) and Scharf (1994).

In Section 2.2, we provide a brief history of proton therapy. Section 2.3 contains a 
discussion of the interaction of protons with matter. Absorbed dose and the Bragg 
peak are covered in Section 2.4. A very brief overview of the radiobiological proper-
ties of protons is given in Section 2.5. The accelerators used for proton therapy are 
all circular machines, and it is therefore important to consider circular orbits of a 
charged particle in a magnetic field, including the stability of these orbits. This is 
the subject of Section 2.6. In Section 2.7, we discuss proton therapy accelerators and 
their characteristics. Once a proton beam is generated, it must be transported to the 
patient. This is described in Section 2.8. Section 2.9 involves a discussion of meth-
ods used to spread the raw narrow pencil beam. Dosimetric beam calibration is cov-
ered in Section 2.10. Dose calculation algorithms are discussed briefly in Section 2.11. 
Inhomogeneities play a crucial role in proton therapy, as discussed in Section 2.12. 
A sampling of dose distributions possible is explored in Section 2.13. The radiation 
shielding requirements for proton therapy are reviewed in Section 2.14. Finally, some 
new developments on the horizon are described in Section 2.15.

2.2 BRIEF HISTORY
The idea of using protons for radiation therapy is hardly new. This is, in fact, not 
only your father’s radiation, but also your grandfather’s. Physicists have been 

= In operation

= Under construction

FIGURE  2.1 Existing proton therapy centers in the United States and centers under 
construction.
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producing beams of accelerated protons since at least the early 1930s, when Ernest 
Lawrence developed the cyclotron at the University of California–Berkeley for 
research in nuclear physics.1 The physicist Robert Wilson made the first known 
suggestion that protons might have properties that are useful for radiation therapy 
in 1946 (Figure 2.2). He was one of the founders and the first director of Fermilab. 
When Wilson was called to appear before the Congressional Joint Committee on 
Atomic Energy, a senator asked him how a multi-million-dollar particle accelerator 
improved the security of the country. He answered, “It has nothing to do directly 
with defending our country, except to make it worth defending.”

Patients were first treated with protons by C.A. Tobias and J.H. Lawrence (Ernest’s 
physician brother) on the 184 in. cyclotron at Lawrence Berkeley Laboratory beginning 
in 1954 (Figure 2.3). They treated pituitary tumors in approximately 30 patients. In the 
1950s, Larson and Leksell in Uppsala, Sweden, developed radiosurgical techniques for 
the treatment of brain tumors. They used a 180 MeV synchrocyclotron. They were the 
first to use range modulation and beam scanning to produce large treatment fields (in 
the lateral direction). They treated 73 patients. Lars Leksell later went on to develop the 
Gamma Knife. In 1961, Ray Kjellberg, a neurosurgeon at Massachusetts General Hospital 
(MGH), began treating intracranial targets at the Harvard Cyclotron Laboratory. 
Throughout the following decades, proton therapy proliferated internationally.

All of the early facilities used accelerators that were designed and built for phys-
ics research and were housed in laboratories. Many of these centers used the nar-
row native proton beam without any lateral beam spreading. They also used fixed 
beam (nonisocentric gantry) machines. These early facilities can be thought of as first-
generation proton therapy centers. The first of the second-generation hospital-based 

FIGURE 2.2 Robert R. Wilson (1914–2000) first suggested the use of protons for radiation ther-
apy. (From Fermilab Neg. N. 89-0305-06. With permission.)
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treatment centers is Loma Linda University Medical Center, which opened in 1990. 
The accelerator, a synchrotron, was built by Fermilab specifically for proton therapy. 
It has a large field size and there are isocentric gantries.

Clinical applications of proton therapy have included tumors at the base of the 
skull, head and neck tumors, localized prostate cancer, and inoperable early-stage 
lung cancer (Schultz-Ertner and Tsujii, 2007). Pediatric patients are favored for proton 
therapy because of the high dose conformity and low integral dose (see Section 2.8). 
Low-energy protons are used for treating eye tumors (uveal melanoma). Additional 
applications of proton therapy are for paraspinal tumors and other tumors in regions 
that are difficult to treat due to their proximity to critical normal organs. It has been 
estimated that 15% of all radiation therapy patients are candidates for proton ther-
apy (McDonald and Fitzek, 2010).

Although the use of protons in radiation therapy has a long history, the technol-
ogy for beam delivery and shaping is still evolving rapidly. One of the difficulties in 
describing proton therapy facilities is the large variety of approaches to beam accel-
eration and delivery. Each facility has been custom designed. This is changing now 
with the entry of commercial firms such as Mevion, IBA, Varian, ProTom, and Hitachi.

2.3 INTERACTION OF PROTONS WITH MATTER
In order to understand how protons can be used to treat patients and why proton 
therapy may be superior to other forms of radiation, it is first necessary to understand 
how they interact with matter. Charged particles interact very differently with mat-
ter than photons. High-energy photons used to treat patients interact perhaps a few 

FIGURE 2.3 Ernest Lawrence at the controls of the 60 in. cyclotron. His brother John looks on. 
(Courtesy of Lawrence Berkeley National Laboratory.)
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dozen times before completely expending their energy or exiting the patient. Photons 
lose their energy in large steps. They have no definite or specific range, and they are 
exponentially attenuated. Charged particles, on the other hand, lose energy in a very 
large number of small steps, to the point where the energy loss can almost be thought 
of as continuous. This is due to the long range of the Coulomb force; charged par-
ticles interact with large numbers of atoms simultaneously. Charged particles have a 
very definite range. Physicists classify charged particles for radiation therapy in two 
categories: electrons (and positrons) and everything else that we call heavy charged 
particles.2 Protons fall into the latter category. The distinction between electrons and 
heavy particles is due to the much larger mass of heavy particles. The proton is the 
least massive of the heavy charged particles, and its mass is 2000 times larger than 
the electron mass. If we exclude nuclear reactions, which are relatively unimport-
ant in the radiotherapy context, both electrons and protons interact with matter via 
Coulomb forces. They also have the same magnitude of charge. The difference, then, 
in the interactions of these particles is due almost solely to the much larger mass of the pro-
ton. Given the huge mass difference, it is not surprising that there are some significant 
differences in the nature of their behavior in matter.

On a microscopic scale, bombarding particles can interact with

 1. Atomic electrons, either with the atom as a whole or with individual electrons
 2. Atomic nucleus as a whole
 3. Individual nucleons

The type of interaction depends on the classical impact parameter b (Figure 2.4) in 
comparison to the radius of the atom a:

 1. b ≫ a: This is referred to as a soft collision. It is a collision with the atom as a 
whole, resulting in excitation or ionization and a small energy transfer of a few 
electron-volts. This is the most probable type of interaction, and because of the 
nature of the Coulomb interaction, these occur over a long range, and a passing 
charged particle can interact with many atoms simultaneously, leading to the 
continuous slowing-down approximation (CSDA) (see Chapter 4).

Trajectory of undisturbed particle

b

a
Atom

FIGURE 2.4 The size of the classical impact parameter b, in comparison to the radius of the 
atom, a, determines the nature of the interaction.
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 2. b ≈ a: These are referred to as hard or “knock-on” collisions. In these collisions, 
the proton is more likely to interact with a single atomic electron transferring 
a considerable amount of energy, leading to ionization and the production of 
secondary electrons (delta rays). The range of secondary electrons is small, less 
than 1 mm.

 3. b ≪  a: This involves interactions with the atomic nucleus, possibly even with 
individual nucleons. Most of these interactions are just elastic scattering events. 
There is no bremsstrahlung emission for protons because they are too massive; 
it only happens for electrons. Also, protons do not scatter as easily as electrons. 
Multiple Coulomb scattering is less important than for electrons, but not neg-
ligible. Above about 100  MeV protons can interact with individual nucleons; 
charged particles may be ejected from the nucleus along with the emission of 
gamma rays. We now turn to a discussion of nuclear reactions.

Nuclear reactions must be considered for the following reasons. The attenuation of 
the beam by nuclear reactions, although small, is not insignificant. Nuclear reactions 
produce prompt neutron emission, which is of principal concern for radiation shield-
ing. Nuclear reactions lead to activation of beam line components, beam modifiers, 
and the patient.

Nuclear reactions gradually reduce the fluence of protons in a proton beam. For 
100  MeV protons in carbon, about 2.5% of the collisions are inelastic, resulting in 
energy loss. According to Smith (2009a), nuclear reactions in tissue, mainly on 16O, 
reduce the proton fluence by about 1% per centimeter. Therefore, at a depth of 20 cm, 
there is a loss of about 20% in the fluence. Nuclear reactions contribute to neutron 
production. The effects and outcome of proton-induced nuclear reactions depend on 
the energy of the bombarding protons, as described in the following paragraphs.

2.3.1 LOW ENERGY (≲50 MeV)

In general, light elements emit gammas after proton bombardment via (p, γ) reac-
tions. There are many sharp resonance peaks, as, for example, for 27Al(p, γ)28Si. Also, 
(p, n) reactions are quite common. These may be thought of as substituting a proton 
for a neutron in the nucleus. One pair of neighboring isobars must be radioactive; 
therefore, a reaction involving a stable isotope must result in a radioactive target.3 
These reactions have a definite threshold and a high yield. The products of (p, n) reac-
tions are generally positron emitters, as might be expected since positive charge has 
been added to the nucleus (see Section 2.15).

2.3.2 INTERMEDIATE ENERGY (50 < T < 100 MeV)

At intermediate energies, the proton may cause the emission of more than one par-
ticle, as 50 MeV exceeds the binding energy of a single nucleon (recall that the average 
binding energy is approximately 8 MeV per nucleon, except for very light elements). 
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The incoming particle may not be captured by the nucleus. The bombarding pro-
ton energy may be shared by many nucleons, causing them to “evaporate” from the 
nucleus.

2.3.3 HIGH ENERGY (>100 MeV)

High-energy protons have a de Broglie wavelength comparable to the range of the 
nuclear force. This energy is approaching the total binding energy of carbon, nitro-
gen, and oxygen nuclei that are common in tissue. At high energies, the products will 
all have mass numbers lower than that of the target. There are four types of reactions:

 1. Spallation: A single nucleon or small group of nucleons are emitted. If the target 
mass is A, the residual nuclei have mass number 0.75–0.99 A.

 2. Fission: A few individual nucleons are emitted and the original nucleus splits 
into roughly equal parts. Residual mass numbers are 0.30–0.65 A.

 3. Fragmentation: Nucleon groups of 10  < A <  40 are “blasted” from the target 
nucleus.

 4. Secondary reactions: These are initiated by particles produced in the primary 
interaction, usually of type 1. Secondary reactions include all those possible 
with low-energy particles.

The rate of loss of kinetic energy by charged particles traversing matter is described 
by the stopping power, (dT/dx)Y,T,Z, where Y is the particle type and Z is the atomic 
number of the medium. The collisional stopping power is the sum of the contribu-
tions from soft plus hard collisions. The radiative stopping power is negligible for 
protons.

The mass collision stopping power is defined as SC = dT/ρdx, and the units are 
MeV cm2/g. The mass collision stopping power is the amount of energy lost in tra-
versing a column of material 1 cm on a side with a mass of 1 g.

The total mass collision stopping power in units of MeV cm2/g is given by (Attix, 
1986):
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where: 
	β = v/c, v is the speed of the particle
 z is the charge of the bombarding particle
 Z is the atomic number of the medium
 A is the mass number of the medium
 I  is the mean excitation potential of the medium (in eV, usually deter-

mined experimentally)



 72      Tutorials in Radiotherapy Physics: Advanced Topics with Problems and Solutions

Note that SC is proportional to the electron density (electrons/g) of the medium. 
Shell corrections have not been included in Equation 2.1. Below some energy, K shell, 
and so on, electrons are no longer able to absorb energy, and therefore no longer par-
ticipate in energy loss.

Figure 2.5 shows a plot of the proton mass stopping power as a function of kinetic 
energy for various media of radiological interest. High-energy protons have a rel-
atively low stopping power. As these particles slow down, however, the stopping 
power rises dramatically. This is consistent with the velocity dependence given in 
Equation 2.1. In the range between 200 and 300 MeV, the stopping power for protons 
in water is about 4 MeV/cm. In comparison, the stopping power of therapeutic elec-
trons is about 2 MeV/cm.

Important dependencies of the mass stopping power are

 1. Medium: Sc is directly proportional to the electron density (electrons/g), 
ne = NAZ/A, where NA is Avogadro’s number.

 2. Proportional to the square of the charge of the bombarding particle: heavy ions 
will have much higher stopping power; alpha particles have four times greater 
stopping power than protons for the same velocity.

 3. Goes down slightly as Z rises, because Z/A declines slightly as Z increases for 
stable nuclei. Also, I goes up as Z rises. The mass stopping power declines by 
about 20% in going from carbon to lead (Figure 2.5).

1
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FIGURE 2.5 Mass stopping power for protons in water, cortical bone, adipose, air, and lead. 
Note that this is a log-log plot and that the stopping power is several orders of magnitude 
higher at low energy than at high energy. (Data from National Institute of Standards and 
Technology (NIST), Stopping-power and range tables for protons, Gaithersburg, MD: NIST, 
2014, http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.)

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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 4. Independent of the mass of the bombarding particle: all heavy charged particles 
of the same charge and velocity have the same stopping power.

 5. Rises dramatically as β goes to 0. This is due to the 1/v2 dependence.4

The restricted stopping power includes the effects of all soft collisions plus those 
hard collisions resulting in delta rays with energies less than a cutoff value Δ. The 
restricted stopping power is denoted as (dT/ρdx)Δ. When the value of Δ approaches 
its maximum value, the restricted stopping power goes over to the mass collision 
stopping power because then all delta rays are included in the energy loss. The cutoff 
energy is usually chosen as 100 eV; beyond this energy, the delta rays can travel far 
enough to cause ionizations elsewhere.

The linear energy transfer (LET) is defined as
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The CSDA range is given by
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where T0 is the starting energy, and the units are g/cm2. The CSDA range underesti-
mates the actual range by 0.21% or less for protons.

The projected range is the mean of the maximum distance traveled in a direction 
perpendicular to the incident surface. The CSDA range is always greater than the 
projected range because of scattering.

Figure 2.6 shows the projected range of protons in a variety of materials. The deep-
est target in the human body is on the order of 30 cm. To treat a target at this depth 
(in water), the incident protons must have energies between about 200 and 250 MeV. 
Beams of less than 100 MeV have small penetration, but they have found application 
in treating ocular conditions such as uveal melanoma. A power law fit to the data 
in Figure 2.6 gives the projected proton range in water for energies between 10 and 
300 MeV,

 
Rp Tcm MeV( ) ( ) ≈ × −2 1 10 3 1 8

. ,
.

 
(2.4)

to an accuracy of better than 20%.
Figure 2.7 shows the fluence as a function of depth for various types of radiation.
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FIGURE 2.6 The projected proton range in a variety of materials. Protons with energy 
between 200 and 250 MeV have a projected range of approximately 30 cm in water. (Data from 
National Institute of Standards and Technology (NIST), Stopping-power and range tables 
for protons, Gaithersburg, MD: NIST, 2014, http://physics.nist.gov/PhysRefData/Star/Text/
PSTAR.html.)
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FIGURE 2.7 The fluence (or number) of particles as a function of depth for various types of 
radiation. The practical and CSDA ranges are also indicated. (a) Heavy charged particles with 
no nuclear reactions. (b) Heavy charged particles with nuclear reactions. The nuclear reac-
tions remove some of the particles before they can reach the end of their normal range. (c) 
Electrons: these are easily scattered, and therefore they do not show the well-defined range 
seen for heavy charged particles. (d) Photons: these have no definite range and are exponen-
tially attenuated.

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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2.4 ABSORBED DOSE AND THE BRAGG PEAK
For monoenergetic charged particles (with delta ray equilibrium), the dose is given 
by (Attix, 1986)

 
D x x

dT
dx

( ) = ( )





Φ
ρ

,
 

(2.5)

where Φ(x) is the particle fluence at the depth x and the mass collision stopping power 
is to be evaluated for the energy of the particles at depth. If the fluence remained con-
stant out to the end of the track, then D ∝ (dT/ρdx), and one would expect the dose 
to rise dramatically near the end of the particle track. If the mass collision stopping 
power is expressed in units of MeV cm2/g and the fluence is in units of cm−2, then 
(Attix, 1986)
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For a spectrum of particles (as one would realistically expect at depth from any 
real source), we introduce the differential fluence spectrum, defined as follows: 
dΦ = ΦTdT is the fluence of particles having kinetic energy between T and T + dT. At 
any depth x, the dose is then given by
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(2.7)

where ΦT is the fluence spectrum at depth. The stopping power is to be evaluated at 
depth and Tmax is the maximum energy at depth x.

Unfortunately, it is not an easy matter to calculate ΦT. To a first approximation, the 
fluence Φ is a constant with depth until it abruptly drops to zero at the end of the 
range of the particles (Figure 2.7).

Figure 2.8 shows a depth–dose curve for a monoenergetic 200 MeV proton beam 
in water. The dose is fairly constant with increasing depth until near the depth 
corresponding to the practical range. Here the dose rises sharply as a result of the 
increase in the stopping power. The dose reaches a peak and then turns over and 
declines sharply because of the rapidly decreasing fluence beyond the projected 
range (see Figure  2.7). The peak of the curve is called the Bragg peak. Beyond 
the Bragg peak, the dose drops to a negligible value. There is no exit dose for proton 
beams. This is almost like a free lunch—relatively little dose proximal to the Bragg 
peak and almost no dose beyond (called distal blocking). This presents obvious 
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advantages for radiation therapy. It also presents perils; a slight mispositioning of 
the patient or uncertainty in the range can result in a large error in the dose distal 
to the Bragg peak.

Figure  2.9 shows some properties of the Bragg peak for protons with energies 
between 200 and 250 MeV in water. The depth–dose curve is normalized to 100% 
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FIGURE 2.8 Depth–dose curve for 200 MeV protons in water (SSD = 300 cm). Also shown for 
comparison is a depth–dose curve for 18 MV photons (SSD = 100 cm). In the entrance region, the 
proton dose is relatively low and more or less constant with depth. Near the end of the proton 
range, the stopping power rises rapidly, and the dose reflects this dramatic rise. At the same time, 
the fluence is beginning to decline. The result is a peak in the dose and then a precipitous decline. 
This is called the Bragg peak. The dose is essentially zero for depths greater than about 26 cm.
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FIGURE 2.9 Properties of the Bragg peak for clinical proton beams ranging in energy between 
200 and 250 MeV. (Data from Central axis depth dose data for use in radiotherapy, 1996, Br. J. 
Radiol., Suppl. 25, 1996.)
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at the location of maximum dose (dm). The surface dose ranges from 30% to 40% of 
the peak value. The width of the Bragg peak is defined in terms of the full width at 
half maximum (FWHM). This ranges between 10% and 15% of the value of dm (a few 
centimeters). The falloff beyond the Bragg peak is measured in terms of the distance 
from 90% to 10%, and this is typically 10 mm.

The Bragg peak is too localized or narrow to treat most targets. Figure 2.9 shows 
that the width of the peak is on the order of a few centimeters. Most target volumes 
are larger than this. It is usually necessary to spread out the Bragg peak. This can 
be accomplished by adding a number of beams with varying energy, as shown in 
Figure 2.10. One way of doing this is to introduce an oscillating wedge into the beam 
or a range modulation wheel like a propeller (Figure 2.11). This produces a so-called 
spread-out Bragg peak (SOBP). There is a price to pay for this in that the proximal 
dose plateau rises.

The lateral distribution of dose is also affected by the large mass of the proton. 
The penumbra is fairly sharp because protons do not scatter easily. This contributes 
to the ability to treat targets in proximity to critical structures. The penumbra width 
depends on many factors. The lateral penumbra is dominated by multiple Coulomb 
scattering. This leads to a broadening of the penumbra with increasing depth. The 
total penumbra is about 6–7 mm (distance from 80% to 20%) at 15 cm depth (Smith, 
2009a). The proton penumbra is less than the penumbra for a high-energy (15 MV) 
photon beam up to a depth of about 17 cm, and then it becomes larger (Smith, 2009a).

Small fields degrade the Bragg peak because of a lack of lateral charged parti-
cle equilibrium (Smith, 2009a). Large air gaps will also degrade the penumbra. For 
this reason, it is important that the beam-shaping aperture is positioned close to the 
patient.
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FIGURE 2.10 The Bragg peak is spread out by adding a number of beams with slightly dif-
ferent energies. The dose profiles of the contributing beams are shown at the bottom of the 
figure. The sum of all these gives the SOBP. The proximal dose plateau rises. (Courtesy of 
Dr. D. Jones, iThemba LABS, Faure, South Africa.)
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2.5 A FEW WORDS ABOUT RADIOBIOLOGY
The attraction of protons for radiotherapy is due to their dose distribution, not radio-
biology (as for, say, neutrons). The radiobiological properties of protons are “unre-
markable” (Hall and Giaccia, 2012). The relative biological effectiveness (RBE) of 
protons is the same as that for 250 kV x-rays, 10%–15% more effective than Co-60 
radiation. The oxygen enhancement ratio (OER) is the same as that for x-rays: 2.5–3.0. 
The biological properties of protons are consistent with their physical properties. 
Protons are sparsely ionizing, except at the end of their range. For 250 MeV protons, 
in the entrance plateau the LET is about 8 keV/μm for depths between 2.5 and 27 cm, 
although the LET does rise sharply at the end of the range. The LET in the SOBP is 
a mixture of the LET in many low LET plateau regions plus one (or a few) high LET 
Bragg peaks. There is a small increase in RBE in comparison to photons. Table 2.1 
from Ternier (undated) shows RBE values for a variety of biological endpoints. It is 
remarkable how these RBE values cluster around a value of 1.1 regardless of biologi-
cal endpoint or fractionation scheme. The International Commission on Radiation 
Units and Measurements (ICRU) Report No. 78 (2007) recommends a generic RBE of 
1.1 when comparing photon and proton therapy doses. It is common to see reference 
to cobalt gray equivalent (CGE). This is the dose in gray multiplied by 1.1.

FIGURE 2.11 A propeller that can be inserted into the beam line to spread out the Bragg peak. 
The thickness of the propeller that is intercepted by the beam varies as the propeller rotates. 
Some portions of the propeller have zero thickness. This is for the Loma Linda eye beam 
line. It produces a uniform dose of more than 22 mm in depth. (Reprinted from Moyers, M.F., 
in The Modern Technology of Radiation Oncology, vol. I, ed. J. VanDyk, 823–69, Madison, WI: 
Medical Physics Publishing, 1999.)
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2.6 CIRCULAR CHARGED PARTICLE ORBITS AND STABILITY
We have already seen that the proton energy needed for therapeutic applications 
is on the order of 250  MeV. This kinetic energy is about 25% of the rest mass 
energy of 940 MeV. Although such protons are not highly relativistic, accurate cal-
culations cannot neglect relativity either. Let us consider the motion of a charged 
ion of mass m in a uniform magnetic field of magnitude B0. Assume that the par-
ticle undergoes circular motion in a plane perpendicular to the direction of the 
magnetic field.

The relativistic equation for charged particle motion in a magnetic field is

 

dp
dt

qv B
�

� �
= × ,

 
(2.8)

where q is the charge, 
� �
p mv= , and m m m= − =0

2
01/ β γ. We assume no change in the 

energy of the particle; therefore, β is a constant and

 
m

dv
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qv B0γ
�

� ��
= × .

 
(2.9)

TABLE 2.1 RBE Values of Modulated Proton Beams at the Bragg Peak Compared 
to 60C

Tissue Endpoint
Proton Energy 

(MeV) No. Fractions RBE
Crypt cella Survival 160 1 1.19
Crypt cella Survival 160 20 1.23
Skina Acute reaction 160 20 1.13
Fibrosarcomab Survival 160 1–10 1.16
Mammary cancer c TCD50/120 160 1 1.11
Lensc Cataract 160 1 1.09
Lungsc LD50/100 160 1 1.02
Testisc Weight loss 160 1 1.23
Tail vertebraec Growth 160 1 1.32
Moused LD50/30 250 1 1.09
Skind Contraction 250 10 1.03

a Tepper, J., et al., Int. J. Radiat. Oncol. Biol. Phys. 2(11), 1115–1122, 1977.
b Urano, M., et al., Int. J. Radiat. Oncol. Biol. Phys. 6(9), s1187–1193, 1980.
c Urano, M., et al., Int. J. Radiat. Oncol. Biol. Phys. 10(4), 509–514, 1984.
d Tatsuzaki, H., et al., An RBE study of a proton beam at University of Tsukuba (vs. Co-60). Proceedings of the 

XXI PTCOG Meeting, Chiba, Japan 14–16 Nov. 1994, pp. 146–148, 1995.
TCD, tumor control dose; LD, lethal dose.
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This equation is the same as the nonrelativistic equation of motion, except for the 
γ term, which multiplies m0. The angular frequency of revolution is

 
ω

γ0
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0
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0= =qB
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E
,
 

(2.10)

where E = T + m0c2 is the total relativistic energy.
This angular frequency is known as the cyclotron or gyro frequency. For a non-

relativistic particle (γ ≈ 1), the frequency ν0 corresponding to this is

 
ν0 015MHz[ ] = 



 [ ]Z
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(2.11)

where: 
	 ν0 is in units of MHz
 Z is the charge on the ion
 A is approximately the atomic mass number (A = m/mp, where mp is the mass of 

the proton)

and the magnetic field is in tesla.
For B0 = 1 T, ν0 = 15 MHz. This frequency is in the radiofrequency (RF) range of the 

electromagnetic spectrum.
The kinetic energy of nonrelativistic ions is given by
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where the kinetic energy T is given in units of MeV, the radius R is in units of meters, 
and the magnetic field strength is in units of tesla. As an example, to produce 30 MeV 
deuterons, B0 = 1 T is needed over a 1.25 m radius (Humphries, 2012).

The radius of circular motion of a nonrelativistic particle of energy T is

 
R

m T
qB

= 2 0

0
.
 

(2.13)

For a kinetic energy of 250 MeV and a magnetic field strength of 1 T, the radius is 
about 5 m. The mass of a proton is three orders of magnitude greater than the mass 
of an electron. Furthermore, the therapeutic energy of protons is about an order 
of magnitude greater than for electrons. Therefore, the radius of curvature of the 
trajectory, in a fixed magnetic field, is about two orders of magnitude larger for ther-
apeutic protons than for electrons. This is one of the reasons that proton facilities are 
so expensive. Gantries need to be huge (see Section 2.8).



Chapter 2 – Proton Therapy Physics       81

A topic that is not normally addressed in elementary discussions of particle accel-
erators is the issue of orbital stability. Particle stability is crucial for the successful 
acceleration of charged particles. Some particles may have a small component of 
velocity in either the radial or vertical direction, or both. Any nondamped motion in 
the vertical direction may remove particles from the useful beam. This is described 
by the emittance of the beam. The emittance is a measure of the spread of the particles 
in both position and momentum (Wikipedia, 2014b). A beam with low emittance is 
bunched tightly, and all particles have nearly the same momentum. In addition to the 
emittance, there are inevitably small perturbations in the applied magnetic field. The 
“unrolled” trajectory of a proton in a cyclotron is about 4 km in length (Jongen, 2008). 
It is necessary for the protons (from a cyclotron) to reach a target of about 1 mm in 
size at the energy degrader.

For successful acceleration, particle orbits have to be stable in both the vertical and 
radial directions (see Figure 2.13). We will first state the conditions necessary for sta-
bilty and then derive them. The derivation is not difficult. The conditions for stability 
are related to the radial gradient of the z component of the magnetic field. The stabil-
ity index n is defined as
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where: 
 r0  is the equilibrium radius of the particles 
 z = 0 is the median orbital plane of the motion

For vertical stability, n > 0. For radial stability, the condition is n < 1. The condition 
for both vertical and radial stability is therefore 0 < n < 1. For stability, the vertical 
component of the magnetic field must decrease with increasing radial distance from 
the center of the circular orbit.

In cylindrical polar coordinates r, θ, and z, the velocity is 
� � � �v re r e zer z= + +ˆ ˆ ˆ ,θ θ  and 

the acceleration is 
� �� � �� �� ��a r r r r ze e er z= − + + +( ) ( )θ θ θ θ

2 2ˆ ˆ ˆ  (see Thornton and Marion, 2003, 
or any mechanics textbook), where êr, êθ, and êz are unit vectors in the r, θ, and z direc-
tions, respectively. The components of the equation of motion are (see Equation 2.8)
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In the special case in which � �r z B Br= = = =0 0, ,θ  and Bz = B0, �θ =
qB
m

0
, as in Equation 

2.10.
The magnetic field must obey Maxwell’s equations:

 
� �
∇⋅ =B 0  (2.18)

and
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We assume the field is azimuthally symmetric and therefore
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Under these circumstances,
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Expand Bz (r, z) and Br (r, z) around the equilibrium circular orbit r = r0 and z = 0,
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to leading order:
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and

 B b zr = 1 ,  (2.26)
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where
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Now perturb the equations of motion by introducing the terms

 r r r r r= + = ′′ 0 : � �  (2.28)

 θ θ θ θ θ ω= + = ′ −′ 0 0: � �  (2.29)

 z z z z= + =′ ′0 ,  (2.30)

where |r′/r0| ≪ 1 and |θ′/ω0| ≪ 1. Substituting Equations  2.28 through 2.30 into 
Equations  2.15 through 2.17 and retaining only leading order terms yields (see 
Problem 6)

 �� �′ + ′ + =′r r n rω θ ω0 0 0
2 0  (2.31)

 r r0 0 0�� �′ − ′ =θ ω  (2.32)

 ��′ + =′z n zω0
2 0.  (2.33)

For the z′ in Equation 2.33, if n < 0, the solution grows exponentially and the parti-
cles will be unstable to small perturbations. If, on the other hand, n > 0, Equation 2.33 
describes harmonic motion in the z direction (the vertical stability condition). The 
oscillation angular frequency about the midplane is Ωz = ω0√n. These vertical oscil-
lations are called betatron oscillations.

Now, let us look at radial stability. Differentiate Equation 2.31 and use Equation 2.32 
to eliminate ��′θ :

 
��� �r n r´ + −( ) ′ =ω0

2 1 0.  
(2.34)

Let �′ =r u:

 
��u n u+ −( ) =ω0

2 1 0.  (2.35)

The solution of this equation will be oscillatory provided that n < 1. The frequency 
of radial oscillations is Ωr n= −ω0 1 .
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For stability in both the vertical and radial directions,

 0 1< <n .  (2.36)

2.7 PROTON THERAPY ACCELERATORS
Two of the major requirements for an ion therapy accelerator are sufficient energy to 
provide the necessary range in tissue and adequate beam current to provide a dose 
rate that will allow a therapeutic dose to be delivered in a reasonable amount of time.5 
We have already seen that we need protons with energies up to 250 MeV to reach 
depths of 30 cm in water. Regarding beam current, we need a sufficient number of 
particles per minute to have a reasonable dose rate. An electron linear accelerator can 
easily reach dose rates of 300 cGy/min. Let us estimate the beam current necessary 
to match this. In the proton Bragg peak, the energy is on the order of 25 MeV. The 
corresponding stopping power is on the order of 20 MeV cm2/g (see Figure 2.5). If we 
assume a field size of 20 cm × 20 cm, this requires an average beam current delivered 
to the patient of about 10 nA, based on Equation 2.5. This current is easily achieved, 
as we will see.

An additional design goal is to make the accelerator as small as reasonably pos-
sible so that it may be installed in a hospital setting. It should be easy to operate—
avoiding the need for an engineer operator to provide constant beam tuning.

Medical linear accelerators can produce accelerating fields of 20  MeV/m (see 
Chapter  1) for electron acceleration. Assuming that the same gradients could be 
achieved for proton acceleration, production of 250 MeV protons would require a 
waveguide of 12–13 m in length. In an electron linac, the electrons are highly rel-
ativistic after acceleration through the first few cavities (see Chapter  1). Therapy 
protons are neither nonrelativistic nor highly relativistic, which would lead to a 
complicated variable cavity design for a linac. It is because of these difficulties that 
all proton therapy accelerators are circular machines.

There are two main types of accelerators that are used to accelerate protons for 
radiation therapy:

 1. Cyclotrons
 a. Isochronous
 b. Synchrocyclotron
 2. Synchrotrons

Features common to all accelerators include:

 1. Ion source: Produce protons for acceleration (use hydrogen gas)
 2. Injection: Get protons into the accelerator
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 3. Acceleration using electric fields
 4. Extraction: Get protons out of accelerator
 5. Beam transport or switchyard: Direct beam to various treatment rooms

Characteristics in common for all circular accelerators are that they have a vertical 
magnetic field to deflect the particles. The beam orbits are often not truly circular, in 
contrast to the assumption made in Section 2.6. Some synchrotrons have straight and 
circular sections. Another common feature is a gap between cavities where the particles 
are accelerated. Particle recirculation is the key to the operation of circular machines. The 
particles pass multiple times (102 to >108) through the accelerating gap (Humphries, 2012).

Accelerators can have superconducting or nonsuperconducting magnets. 
Superconducting magnets allow much higher magnet currents and therefore much 
higher magnetic fields, leading to more compact designs. This permits smaller and 
lighter magnets, allowing a cyclotron to be gantry mounted. The magnetic field 
strengths used in superconducting cyclotrons exceed the saturation field of the iron 
poles. As all magnetic dipoles are aligned under such circumstances, the field can be 
predicted more accurately (Humphrey, 2012). Another advantage of superconducting 
magnets is low power consumption. A disadvantage is the need for a cryostat and 
cooling with liquid helium.

Cyclotrons accelerate particles to a constant fixed native beam energy. These 
machines are therefore designed to produce the maximum necessary therapeutic 
energy potentially needed for the deepest anatomical site. A reduction in energy to 
treat more superficial targets requires an energy selection system. A block of material 
inserted into the beam serves this purpose. A synchrotron, in contrast, can produce 
an inherently variable energy beam.

2.7.1 CYCLOTRONS

2.7.1.1 UNIFORM FIELD (CLASSICAL) CYCLOTRON

The cyclotron was invented by Ernest Lawrence in the early 1930s for research in 
nuclear physics. Lawrence was awarded the Nobel Prize in Physics in 1939 for the 
development of the cyclotron and for the research carried out with it. The cyclotron 
exploits a clever idea: instead of accelerating charged particles once through a large 
potential difference, accelerate them many times through a small potential differ-
ence. Lawrence’s original cyclotron used two hollow electrodes called dees because 
they resemble the shape of the letter D (Figure 2.12).

The particles are injected into the gap between the dees near the center. An oscil-
latory potential difference across the gap accelerates the particles. The acceleration 
results in a gain in energy. After crossing the gap, the ions pass into the interior of 
the dees, where they are shielded from the electric field. If the polarity of the dees 
oscillates at the cyclotron frequency (see Equation 2.10), and if the particles remain 
nonrelativistic, the particles will always be accelerated when they find themselves 
between the dees.
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The magnetic field forces the particles into circular orbits that increase in radius 
as the particles are accelerated. The magnetic field between the magnet pole pieces is 
temporally constant and (almost) spatially uniform. The field is uniform in azimuth 
and almost constant in the radial direction. The protons are extracted from the cyclo-
tron by using an electrostatic field applied by a deflector (Figure 2.12). A side view of 
the magnet is shown in Figure 2.13.

The crucial feature of the cyclotron is that the period (for nonrelativistic particles) 
is independent of the kinetic energy of the protons. In this circumstance, it is pos-
sible to have a constant frequency (RF) accelerating potential tuned to the cyclotron 
frequency of the protons for a given magnetic field strength. In this way, the protons 
can be repeatedly accelerated across the gap as they circulate. A typical potential dif-
ference between the dees is 105 V. Each time a proton crosses the gap, it will acquire 
an additional 105 eV. A proton crosses the gap twice each time it makes a round-trip. 
If the proton goes around 100 times, it will gain an amount of kinetic energy equal to 
2 × 100 × 105 eV = 20 MeV.

The ion source supplies ions continuously. Ions are captured from the source dur-
ing roughly half the phase of the applied RF voltage. This results in the production 
of a continuous train of beam micropulses. An aperture located at the entrance to the 
accelerating gap (not shown in Figure 2.12) restricts the ions to a small range of phase 
space, and this limits the energy spread of the beam.

RF power

Dees

Deflector

FIGURE  2.12 An overhead view of a classical cyclotron. The cyclotron has two electrodes 
called dees (because of their resemblance to the letter D). These electrodes are hollow. An 
oscillatory potential difference is applied between the dees. The particles are accelerated 
every time they pass through the gap between the dees. The applied magnetic field is per-
pendicular to the plane of the dees. The particles spiral outward in the magnetic field as 
they gain energy. The path followed by the particles has been superimposed on the diagram. 
The frequency of revolution of the particles remains constant with radius in the nonrelativ-
istic limit. An electric field between the deflector plates deflects the beam so that it may be 
extracted from the cyclotron.



Chapter 2 – Proton Therapy Physics       87

The maximum energy of the beam is limited by two factors: (1) relativity and 
(2)  radial variations of the 

�
B  field. The protons used for radiation therapy have 

kinetic energies up to 250 MeV. The rest mass energy of a proton is 940 MeV. The 
kinetic energy of therapy protons is a significant fraction of the rest mass. Under 
these circumstances, Newtonian mechanics begins to break down, and we must con-
sider the effects of special relativity. In special relativity, an object’s mass increases as 
its speed becomes a significant fraction of the speed of light. When this occurs, the 
cyclotron frequency is no longer constant with particle energy. This ruins the very 
basis for the classical cyclotron. This is one reason that cyclotrons are not useful for 
accelerating electrons. The requirement for constancy of the gyrofrequency limits the 
beam energy to about 15–20 MeV (Humphries, 2012).

The potential difference between the dees is given by

 V V trf= 0 sin ,ω  (2.37)

where:
	ωrf is the angular frequency of the applied voltage 
 V0 is its amplitude

The phase of a particle at azimuthal position θ relative to the applied RF voltage 
is given by

 ϕ ω θ= − ( )rf t t .  
(2.38)
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FIGURE 2.13 Side-view schematic diagram of a classical cyclotron showing the magnet yoke, 
the pole pieces, and the coils. The dees are not shown in this view. Shims may be used for 
fine adjustments of the magnetic field. The magnetic field lines bow out toward the edges. 
The vertical component of the magnetic field decreases slightly in the radial direction. This 
provides a stabilizing restoring force for particles that drift above or below the midplane, as 
shown. The particles move into the page on the right.
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The phase is defined in terms of the crossing time between the dees relative to the 
RF waveform. When φ = 90°, crossing occurs at maximum voltage and the particle 
gains the maximum possible kinetic energy. When φ = 0° or 180°, the accelerating 
potential is zero.

Suppose that the RF is set to the nonrelativistic gyrofrequency. Under these 
circumstances,
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If the initial value of φ = 90, the value of φ will increase until φ = 180. When this 
occurs, the ions arrive at the gap between the dees when the accelerating voltage is 
zero. The ions will then be trapped at a particular energy and circulate at constant 
radius. A phase analysis of azimuthal particle motion (Humphries, 2012) shows that 
the maximum kinetic energy will be
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where V0 is the accelerating potential between the dees. The value of V0 is typically 
100 kV. For a proton, Tmax ≈ 20 MeV.

There are two methods that are used to circumvent the problem presented by rela-
tivistic behavior. The first of these is to vary the frequency of the RF accelerating volt-
age in such a way as to compensate for the increase in proton mass. Cyclotrons that 
employ this strategy are called synchrocyclotrons. A disadvantage of this design is 
that the accelerator cannot generate a continuous beam of micropulses, but instead 
produces a cycled beam because the particles must be accelerated in groups.

A second method of overcoming relativistic behavior is to make the magnetic field 
increase at larger distances from the center of the cyclotron. If the gradient in the mag-
netic field is just right, the protons will continue to circulate with the same period as 
they gain energy and move out toward the perimeter of the cyclotron. Such a cyclotron 
design is referred to as isochronous (meaning equal time) or azimuthally varying field 
(AVF). An advantage of the isochronous cyclotron is that the RF can remain constant.

2.7.1.2 AVF OR ISOCHRONOUS CYCLOTRON

Most proton therapy accelerators are isochronous cyclotrons. In an isochronous or AVF 
cyclotron, the orbital period is the same for all particles regardless of radius or energy, 
and the RF power operates at a single frequency. The magnetic field increases radially 
outward to maintain a constant period of orbital motion. As we have seen in Section 2.6, 
however, a positive field gradient leads to instability (associated with a negative index 
n; see Equations 2.14 and 2.36). The solution to the instabilty problem is to make the 
magnetic field nonaxisymmetric. This is accomplished by adding wedge-shaped 
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inserts on the magnetic pole pieces (Figure 2.14) with “hills” and “valleys” in the field 
strength. The extra horizontal component of 

�
B  enhances vertical focusing. Under these 

circumstances, the particles can have stable orbits even in the presence of a negative 
field index. Modifying the wedge-shaped inserts to make them spiral increases the 
focusing. The orbits will no longer be circular (Figures 2.15 and 2.16).

Commercially available isochronous cyclotrons are provided by IBA (Ion Beam 
Applications) and Varian. More than half of proton therapy centers worldwide are 
IBA systems (http://www.iba-worldwide.com/?page=about).

We now describe some parameters of IBA cyclotrons (Figure 2.17). This discrip-
tion is taken from Moyers (1999) and Jongen (2010). The Proteus 235 is a nonsuper-
conducting isochronous cyclotron with a maximum extraction energy of 235 MeV. 
The magnet is 4.3 m in diameter and weighs 220 tons. There are four magnetic field 
sectors (see Figure 2.16). The magnetic field in a hill is 2.9 T, and it is 0.9 T in a valley. 
There are two dees positioned in opposite magnetic field valleys. The RF is 106 MHz 
(Figure 2.18), which is the fourth harmonic of the proton rotation frequency. The volt-
age across the dees is variable: 60 kV in the center region and 130 kV near extraction. 
The maximum extracted beam current is 300 nA. The variable energy degrader is 

Hill Valley

Magnet pole

FIGURE 2.14 A magnet pole for an AVF cyclotron. Wedges have been added to the pole face 
to create hills and valleys. The magnetic field strength is higher in the hills than in the val-
leys. The azimuthal variations in the magnetic field strength have a focusing effect on the 
beam. This compensates for the instability introduced by the presence of a positive field 
gradient (negative index of stability).
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Valley

Valley
Valley

Hill

Hill

FIGURE  2.15 A cyclotron with segmented spiral-shaped pole pieces with hills and val-
leys. The magnetic field strength is larger in the hills than in the valleys. This provides the 
enhanced focusing necessary for a negative index isochronous cyclotron. The particle orbit 
is shown in red.

http://www.iba-worldwide.com/?page=about
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FIGURE 2.16 Magnet yoke for an isochronous cyclotron showing spiral pole pieces. The spi-
ral pole pieces provide enhanced focusing. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 
2014, www.iba-worldwide.com. With permission.)

FIGURE 2.17 Photograph of an IBA isochronous cyclotron used for radiation therapy. The 
beam line may be seen on the right. The yoke lifting system, seen on the far left, can be 
used to open the cyclotron for service. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 2014, 
www.iba-worldwide.com. With permission.)

FIGURE 2.18 Don’t try to listen to kiss-fm near the cyclotron.

http://www.iba-worldwide.com
http://www.iba-worldwide.com
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made of graphite, followed by a magnetic analyzer that selects the required energy 
width. The power consumption at full beam extraction is 450 kW.

Varian manufactures a 250 MeV superconducting isochronous cyclotron. The fol-
lowing description is based on the articles by Jongen (2010) and Röcken et al. (2010). 
Unlike IBA, the Varian unit is equipped with four RF cavities (dees) (Figure 2.19) to 
maximize energy gain per turn. A graphite variable energy degrader is used to adjust 
proton energy over the range from 70 to 250 MeV. The cyclotron is 3 m in diameter 
and weighs 90 tons. The magnetic field strength ranges from 2.4 to 4.0 T. The system 
is capable of beam scanning. The maximum extracted beam current is 800 nA. The 
RF is 73 MHz (this is the second harmonic). The potential difference between the dees 
varies between 80 and 130 kV (at the extraction radius).

2.7.1.3 SYNCHROCYCLOTRONS

A synchrocyclotron has the same geometry as a cyclotron: a large magnet with cir-
cular pole pieces and an azimuthally symmetric magnetic field. The magnetic field is 
vertical with a positive field index. The RF is varied to maintain particle synchronism 
with the applied voltage. This requires a cycled rather than a continuous beam, and 
therefore the average current and dose rate are much lower. The ions make about 
10,000–50,000 revolutions during acceleration (Humphries, 2012). The frequency of 
revolution of the protons decreases as the energy increases. The cycled beam is a dis-
advantage for pencil beam scanning because it makes scanning difficult.

Mevion Medical Systems manufactures a superconducting synchrocyclotron for 
radiation therapy. The MEVION S250 produces 250 MeV protons (Figure 2.20) and is 
gantry mounted. Gantry rotation is limited to 190° (Klein et al., 2012). The dose rate is 
2–8 Gy/min. This compact accelerator is only 1.8 m in diameter, weighs 20 tons, and 
the entire system can be contained in a single room. The magnetic field at the center 

FIGURE  2.19 The Varian isochronous cyclotron with four spiral-shaped dees. The four 
dees provide four acceleration “kicks” per revolution. The “chimney” ion source is at the 
center. The path of the protons is shown in red. (Courtesy of Varian Medical, Palo Alto, 
CA, 2014.)
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is 9 T (Jongen, 2010). The magnet current is on the order of 2000 A (Bloch et al., 2012). 
The magnet cryocooler does not use liquid helium (Jongen, 2010), certainly significant 
for a gantry-mounted structure.

The IBA ProteusONE® unit is a compact single-room system that employs a pencil 
beam scanning system and is capable of intensity-modulated proton therapy (IMPT). 
The maximum beam energy is 230 MeV. The accelerator is a superconducting syn-
chrocyclotron referred to as S2C2 and has been described in detail by Kleeven et al. 
(2013). The S2C2 synchrocyclotron is expected to receive (FDA) 510(k) clearance in late 
2016. The diameter of the yoke is 2.5 m, and the weight is 50 tons. The magnetic field 
is 5.7 T at the center and 5.0 T at extraction. The RF voltage is 10 kV, and the frequency 
ranges from 93 to 63 MHz.

2.7.2 SYNCHROTRONS

The other type of accelerator that is used for proton therapy is the synchrotron. 
Synchrotrons are the only accelerators in use for heavy ion therapy (Schippers, 2012). 
Synchrotron radiation from electrons limits the use of synchrotrons as electron 

FIGURE 2.20 The MEVION S250 is a superconducting synchrocyclotron. This compact accel-
erator is 1.8 m in diameter and is gantry mounted. (From Mevion Medical Systems, Littleton, 
MA, 2014.)
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accelerators to an energy of about 12 GeV (Humphries, 2012). The Loma Linda accel-
erator is a synchrotron built by Fermilab specifically for therapeutic use.

A cyclotron is limited in the energy to which it can accelerate protons. The gyrofre-
quency of revolution is only constant in the nonrelativistic limit. Recall that the con-
stancy of the gyrofrequency is the crucial feature of a classical cyclotron. When this 
no longer prevails, the protons will not reach the gap between the dees at the correct 
moment and thus will not be properly accelerated. We have seen that this limitation 
may be overcome to a degree by modifying the design of the cyclotron to make it a 
synchrocyclotron or an isochronous cyclotron.

Synchrotrons are not limited by relativistic behavior. Synchrotrons are shown in 
Figures 2.21 and 2.22. A synchrotron consists of a ring (not a perfect circle) in which 

Beam
extraction

Injector

Magnets

RF power

FIGURE 2.21 A simplified overhead schematic depiction of a proton synchrotron. The pro-
tons are accelerated in the RF cavity section of the ring. As the protons gain energy, both the 
RF and the magnetic field strength must increase in synchrony. Synchrotrons are the only 
method currently in widespread use to accelerate protons to the highest energies (>1 TeV).

FIGURE  2.22 Radiance 330® proton therapy system synchrotron. (Courtesy of ProTom 
International, Inc., Flower Mound, TX.)
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the particle orbit has a constant “radius.” The magnitude of the magnetic field and the 
RF are varied to maintain the particles at constant orbital radius as they are acceler-
ated. Synchrotrons are not limited in the energy of the particles that they can pro-
duce. The only limitations are practical: real estate and money. They can produce 
energies far higher than other circular accelerators. Humphries (2012) gives two rea-
sons for this:

 1. The betatron wavelength of the particles can be maintained constant as the par-
ticles are accelerated. It is therefore possible to avoid orbital resonances that limit 
the energy attainable with an isochronous cyclotron.

 2. The B field need only extend over a small annulus (Figure 2.23) rather than the 
full circular volume. Small modular magnets can be used for this purpose rather 
than the huge monolithic behemoths necessary for cyclotrons.

The proton has the highest charge-to-mass ratio of any nucleon, and therefore pro-
tons can reach the highest energy/nucleon for a given magnetic field strength. The 
limit of the kinetic energy of the ions is set by the magnetic field strength and the 
radius of the ring. Synchrotrons are the only method currently in widespread use to 
accelerate protons to very high energies (>1 TeV). The Large Hadron Collider (LHC) 
at CERN is a synchrotron. The energy of the protons in the LHC is about 13 TeV, five 
orders of magnitude higher than the protons used for therapy.

The steps in beam production are

 1. Inject protons from the ion source and the injector into the accelerator, fill the 
ring with ~1011 protons (Schippers, 2012) at an energy of a few MeV.

 2. Accelerate the particles in the ring to the desired energy.
 3. Extract the beam into the beam line.
 4. Ramp down, decelerate, and dump remaining protons; return to Step 1 and 

repeat.

The injector may consist of a small drift tube linac or an RF quadrupole (RFQ). 
The injection energy is 3–7 MeV. The protons travel around in an orbit of constant 
radius. As they travel around the ring, they gain energy. To maintain a constant 

Magnet coils

Vacuum tube

FIGURE 2.23 A simplified schematic cross section through a synchrotron showing the vac-
uum tube and bending magnets. The particles travel perpendicular to the page.
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orbital radius, the magnetic field strength must increase. The diameter is on the order 
of 5–8 m. The acceleration occurs in RF acceleration cavities spaced around the syn-
chrotron. These are in straight sections. The acceleration mechanism is basically the 
same as in the RF waveguide of a linac. The RF must increase in synchrony with the 
magnetic field to stay in phase with the circulating protons.

The acceleration cycle (for a slow extraction) synchrotron is shown in Figure 2.24. 
The extracted beam is not continuous. The protons are supplied in “spills” during 
extraction. The slow extraction shown in Figure 2.24 takes too long for energy modu-
lation (Schippers, 2012).

The particles execute about 109 revolutions, and therefore the magnets need to be 
very precisely aligned. Strong focusing with n ≫  1 produces a small beam diam-
eter. Quadrupole magnets are used for focusing (see Section 2.8). Focusing can be 
accomplished separately from beam bending. Bending is accomplished with dipole 
magnets. Focusing is accomplished with quadrupole magnets grouped into a set. 
The arrangement of all the magnets around the circumference of the synchrotron is 
referred to as the focusing lattice.

Synchrotrons hold a number of advantages over cyclotrons. The energy can be 
easily varied with a synchrotron. In a cyclotron, the particles are accelerated until 
they reach the extraction radius, and thus they have a fixed energy for the applied 
magnetic field. No energy degrader is necessary for a synchrotron. The energy of the 
beam can be varied without the need for an energy selection system as used with 
cyclotrons. As a consequence, low-energy protons have the same intensity as high-
energy protons. The absence of a degrader implies less neutron contamination and 
less radioactivity. A separate beam energy can be chosen for each gantry angle. A syn-
chrotron has many small components that can be built in series rather than the mas-
sive monolithic magnet used for a cyclotron. Synchrotrons are therefore less massive. 
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FIGURE  2.24 The acceleration cycle for a synchrotron. After injection at an energy of a 
few MeV, the particles are accelerated in 0.5 s or less. Over a period of 0.5–5 s, the particles 
are extracted and delivered to the patient. Any remaining particles are decelerated and 
dumped.
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The main drawbacks of synchrotrons are the complex operation cycle and low aver-
age beam current and hence dose rate. Synchrotrons require more space (diameter 
5–8 m). In addition, the injection system requires preacceleration. Synchrotrons for 
radiation therapy are manufactured by Hitachi, Mitsubishi, ProTom International, 
and Optivus Proton Therapy.

The ProTom Radiance 330® synchrotron (Figure 2.22) accelerates protons to ener-
gies ranging from 70 to 250 MeV, with the possibility of extending this to 330 MeV. 
This system  is based on technology developed at the Lebedev Physics Institute in 
Russia. The external ring diameter is about 5.0 m, and the weight of the accelerator 
is about 15  tons. This machine is capable of beam scanning with a variable pencil 
beam size. This accelerator received FDA 510(k) clearance in May 2014. According to 
Klein (2014), the time required for acceleration up to 330 MeV is 1 s, and the time for 
beam extraction is 0.1–10 s (Figure 2.24). Klein (2014) states that the maximum power 
consumption is about 100 kW, and that the average is about 50 kW. The dose rate is 
expected to be 2 Gy/min for large fields (40 cm × 30 cm) according to Wang et al. 
(2011).

The Hitachi synchrotron is called PROBEAT (Hitachi, 2014). This machine began 
clinical use at MD Anderson Cancer Center in 2008. It uses a 7 MeV linac as an 
injector. It has a patented RF extraction system that allows high-speed beam on 
and off for spot scanning. The accelerator progressively steps through a series of 
preset energies for spot scanning. The beam delivery can be synchronized with a 
patient’s respiratory signal.

Optivus (San Bernardino, California) manufactures the Conforma 3000. This 
company grew out of the Loma Linda proton therapy center. This 250  MeV 
Fermilab-designed synchrotron has been upgraded with many enhancements 
over the years.

2.8 BEAM TRANSPORT AND GANTRIES
Once the beam is generated in the accelerator, it must be transported to the patient. 
There are a number of accelerator and gantry arrangements in use. An accelerator can 
feed one room or multiple rooms. The treatment time per fraction is on the order of 
20 min. Most of the time a patient spends in the treatment room is devoted to setup. 
To avoid wasting expensive beam time, it is useful to deliver the beam to a number of 
treatment rooms sequentially so one patient can be treated while others are being set 
up. Some rooms may have a fixed nonrotating treatment beam and others a gantry 
that rotates through an arc that may be less than 360°. In some cases, the accelerator is 
gantry mounted. An eye beam uses a fixed gantry with a single scatterer. The treat-
ment depth is less than about 35 mm, and therefore a short SSD is acceptable because 
inverse square attenuation is not important. If an accelerator feeds multiple rooms, 
a beam line with a switchyard is required. The beam must be deflected and focused 
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periodically en route to the patient. The focusing compensates for any transverse 
particle motion and for the mutual repulsion of the positive ions. Beam bending or 
deflection is accomplished with a simple dipole magnetic field such as that produced 
by a “C” dipole, like the one depicted in Figure 2.23. Focusing requires the use of a 
more complex magnet arrangement consisting of successive combinations of quad-
rupole and sextapole fields.

The magnetic field arrangement for F and D type quadrupole magnets is shown 
in Figure 2.25. Focusing can be accomplished using successive combinations of F and 
D type fields (see Humphries, 2012). This is analogous to pairing convex and concave 
lenses.

One of the most difficult and complex aspects of proton therapy in a multiple 
room facility is beam delivery. The beam delivery system consists of the beam line 
and switchyard where the beam is diverted to various treatment rooms, as shown 
in Figures 2.26 and 2.27. A system is needed for selecting the appropriate room for 
beam delivery. It is necessary to develop rules for priority of beam switching. It must 
be verified that only one room can receive the beam. As the beam travels from the 
accelerator to the patient, it passes through many bending, focusing, and steering 
magnets; all must be monitored (interlocks) to ensure correct beam delivery to the 
patient. Beam control systems are needed to deal with the safety issues associated 
with beam transport from room to room. It is necessary to monitor bending magnet 
power supplies, beam stops, area emergency buttons, door interlocks, and so forth.

Rotating gantries are large. High-energy protons have a large radius of curvature 
in a magnetic field generated by room temperature magnets (see Equation 2.13). Large 
gantries are one of the reasons for the high cost of proton therapy. Some facilities have 
up to four gantries supplied by a single accelerator (PTCOG, 2014). An IBA gantry is 
shown in Figures 2.28 and 2.29.
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FIGURE 2.25 Cross section of quadrupole magnets used for beam focusing. The two types 
of arrangements used are F type and D type. In each case, the magnetic field at the center is 
zero, and thus particles there are unaffected. In an F type arrangement, particles that stray 
from the center in a horizontal direction experience a focusing force, whereas those that stray 
in the vertical direction are defocused. A D type quadrupole acts in just the opposite fashion. 
Sequential D and F type quadrupoles result in a net focusing effect.
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Cyclotron

Gantry

Beam line

FIGURE 2.26 Beam line feeding three isocentric gantries. The magnets in the beam line are 
for steering and focusing. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 2014, www.iba-
worldwide.com.)

FIGURE  2.27 Photograph of a beam line. Quadrupole magnets in the beam line provide 
focusing. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 2014, www.iba-worldwide.com.)

http://www.iba-worldwide.com
http://www.iba-worldwide.com
http://www.iba-worldwide.com
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FIGURE 2.28 Diagram showing a drawing of the gantry in the photo in Figure 2.29. The proton 
beam follows the pale green path shown. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 2014, 
www.iba-worldwide.com.)

FIGURE  2.29 The gantry for an IBA cyclotron. The entire structure rotates on the two rings 
shown. The beam enters from the left at the center of the gantry structure. To appreciate the scale, 
notice the man standing in the lower left. (Courtesy of IBA, Louvain-la-Neuve, Belgium, 2014, 
www.iba-worldwide.com.)

http://www.iba-worldwide.com
http://www.iba-worldwide.com
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2.9 LATERAL AND AXIAL BEAM SPREADING
The proton beam produced by the accelerator is very small in cross section. When 
the beam emerges from the accelerator, it may only be a few millimeters in diameter. 
There are a variety of methods that have been employed to spread the beam out 
in the lateral direction to produce a broad beam. This is conceptually no different 
than for electron beams produced by linacs. There are two main approaches to this 
problem: passive scattering and active scanning. The beam can be spread laterally 
by the use of a scattering element positioned upstream of the collimation system (see 
Figure 2.30). Electromagnetic scanning has also been used (active scanning, shown 
in Figure 2.33). These are the two basic techniques. Up until fairly recently, only the 
first technique had been used. It is technologically simpler but requires compromises 
in the dose distribution.

The traditional passive scattering method of beam spreading involves place-
ment of a scattering element in the beam just as in conventional radiotherapy to 
spread electron beams laterally. A single lead foil placed in the beam will result in 
a Gaussian intensity profile with a field diameter of only about 30 mm, as shown in 
Figure 2.31. This is too small, except possibly for treatment of the eye. To provide 
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FIGURE 2.30 A passive scattering system. The first scatterer is a set of movable lead wedges. 
This creates a Gaussian beam profile. The second scatterer is thicker in the center than at the 
periphery and functions like a flattening filter. Lead provides the scattering, and the polycar-
bonate is shaped to ensure that the beam energy does not vary laterally. Passage through the 
second scatterer results in a flattened beam profile and a uniform energy across the beam. 
The beam then traverses a patient-specific collimator and compensator. The compensator is 
designed so that the range of the protons corresponds to the location of the distal edge of the 
target. (From McDermott, P. and C. Orton, The Physics and Technology of Radiation Therapy, 
Madison, WI: Medical Physics Publishing, 2010, fig. 20.41. With permission.)
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additional spreading, a second lead scatterer can be introduced. The thick portion 
in the center reduces the Gaussian peak by scattering protons to the periphery of 
the beam. The second scatterer also includes a shaped piece of polycarbonate plas-
tic to maintain uniform beam energy across the field. This maintains a uniform 
range laterally.

Range compensation is used to conform dose to the distal edge of the tumor. 
Compensators can be made of materials similar to tissue (acrylic or wax can be 
milled). This can also be accomplished with a scanning beam by raster scanning 
a narrow proton beam across the target while modulating energy and intensity. A 
custom compensator is placed in the passively scattered beam to conform the distal 
edge of the SOBP to the target. This is illustrated in Figure 2.31. Because of the fixed 
depth of modulation, conformity with the proximal edge of the tumor is poor. This 
is mitigated by the use of multiple beams. A photograph of a custom patient aperture 
and compensator is shown in Figure 2.32.

The second technique used for lateral beam spreading is active scanning. A 
pair of orthogonal magnets are used to deflect a proton pencil beam, as shown in 
Figure 2.33. The magnetic field is used to deflect the beam and “paint” the field. 
The dose can be delivered layer by layer by changing the energy between layers. 
The dose is delivered spot by spot or line by line and then layer by layer. This has 
the advantage that no physical patient-specific beam modifiers are necessary. In 
addition, none of the protons are “wasted” by filters, nor are any neutrons pro-
duced in those filters. The dose rate for active scanning is usually specified by the 
time necessary to deliver a uniform dose to a 10 cm cube (1 L). The treatment time 
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FIGURE 2.31 Customized patient treatment with a passive scattering system. (a) The SOBP 
prior to insertion of a compensator. (b) The SOBP after insertion of a customized compensa-
tor. The conformity with the distal edge of the tumor is excellent, but the shift in the SOBP 
produces an unwanted dose proximal to the target. (From McDermott, P. and C. Orton, The 
Physics and Technology of Radiation Therapy, Madison, WI: Medical Physics Publishing, 2010, 
fig. 20.41. With permission.)
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depends not only on the beam current, but also on the time interval between layers 
when the beam energy is changing (Lu and Flanz, 2012).

Active scanning clearly requires a very sophisticated planning and delivery 
system. There are serious safety and quality assurance issues associated with this 
approach. These safety issues are related to the intensity of the pencil beam. Because 
the whole energy of the beam is concentrated in a small spot, a redundandant fast 
beam abort system is necessary. Tumor motion is also problematic with this tech-
nique. Remedies are to rescan the target (sometimes called repainting) or use gating. 
Rescanning should be performed on a timescale larger than the period of motion. 
A future possibility is to follow the tumor motion in real time and make scanning 
adjustments on the fly.

FIGURE 2.32 A patient-specific aperture and range compensator. The aperture shapes the 
beam laterally, and the range compensator shapes the distal edge of the Bragg peak. The aper-
ture is made of brass. These must be stored for a time after use because they are activated. 
They are then recycled. The compensators are made out of acrylic. (From the decimal point, 
courtesy of www.dotdecimal.com. With permission.)

Patient

Target

Sweeping magnets

Variable
proton energy

In-planeCross-plane

Variable SOBP

FIGURE 2.33 In active scanning, the target is painted with a pencil beam. The pencil beam 
is steered by a set of magnets. If the energy of the beam can also be changed dynamically, 
then the distal edge of the SOBP can be made to correspond to the distal boundary of the 
target. When the energy is varied simultaneously, the proximal edge of the SOBP can be 
made to conform to the proximal position of the target. (From McDermott, P. and C. Orton, 
The Physics and Technology of Radiation Therapy, Madison, WI: Medical Physics Publishing, 
2010, fig. 20.44. With permission.)

http://www.dotdecimal.com
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2.10 BEAM CALIBRATION
ICRU Report No. 78 (2007) recommends the International Atomic Energy Agency 
(IAEA, 2006) proton dosimetry calibration protocol referred to as Technical Report 
Series (TRS) 398: “Absorbed Dose Determination in External Beam Radiotherapy: An 
International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to 
Water.” The code of practice for proton beams is found in chapter 10 of this document. 
This protocol gives worksheets and provides the tables and graphs necessary for cali-
bration of proton beams with energies between 50 and 250 MeV. The protocol utilizes 
an ionization chamber calibration for absorbed dose to water in a Co-60 beam. The 
ionization chamber may be either a cylindrical or a plane parallel model. For cylindri-
cal chambers, the reference point is taken as the center of the cavity volume. For plane 
parallel chambers, the reference point is at the inner surface of the entrance window.

The reference depth is the depth at which the ion chamber reference point is 
placed. This is at the center of the SOBP, as shown in Figure 2.34. The width of the 
SOBP is normally defined by the distance between the 95% dose levels (Figure 2.34).

Proton dose calibration requires a beam quality specifier, as do photon beams. The 
quantity used in TRS 398 is called the residual range Rres. One of the advantages of 
this quantity is that it is easily measured. The residual range, measured at depth zref 
(in units of g/cm2), is defined as

 R R zpres ref= − ,  (2.41)
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FIGURE 2.34 Shows zref, the reference depth of measurement for proton beam calibration. 
This point is at the center of the SOBP. The beam quality is defined by Rres, and Rp is the prac-
tical range. (Reproduced from International Atomic Energy Agency (IAEA), Absorbed dose 
determination in external beam radiotherapy: An international code of practice for dosim-
etry based on standards of absorbed dose to water, Technical Report Series 398, in Code of 
Practice for Proton Beams, chap. 10, Vienna: IAEA, 2006. With permission.)
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where Rp is the practical range (in units of g cm−2), which is defined as the depth at 
which the absorbed dose beyond the Bragg peak or SOBP falls to 10% of its maximum 
value (Figure 2.34).

The absorbed dose in water Dw,Q at the reference depth zref in the absence of the ion 
chamber from a proton beam of quality Q is

 D M N kw Q Q D w
Q

Q Q, , , ,= 0
0  (2.42)

where: 
 MQ is the measured charge collected from the ion chamber at depth zref corrected 

for pressure and temperature, electrometer calibration factor, polarity effect, 
and ion recombination

 ND w
Q

,
0  is the Co-60 calibration factor supplied for the user’s ion chamber by a calibra-

tion lab
 kQ,Q0 is the chamber-specific calibration factor for the chamber response for the 

user’s beam quality Q (as specified by Equation 2.41)

These numbers can be found in table 10.III of the protocol as a function of Rres for a 
large number of commercially available ion chambers.

2.11 DOSE CALCULATION ALGORITHMS
Proton beam dose calculation algorithms are relatively simple. Unlike the case for pho-
tons, the range of secondary particles is relatively small. Commercial treatment plan-
ning systems that will handle proton dose calculations are Eclipse (Varian Medical 
Systems), Pinnacle (Philips Healthcare), XiO (Elekta), and RayStation (RaySearch 
Laboratories). Vendors vary in their capability for mixed modality planning and 
IMPT. Philips Pinnacle and Elekta XiO use a pencil beam model based on the work of 
Hong et al. (1996). RayStation uses a Fermi-Eyges-based pencil beam algorithm (see 
Chapter 4). A detailed discussion of pencil beam algorithms for photon beams can 
be found in Chapter 3. The water equivalent depth is used to account for inhomoge-
neities. Pencil beam algorithms can, in principle, take account of the lateral effects of 
inhomogeneities to some degree.

2.12 INHOMOGENEITIES
The effects of inhomogeneities on dose distributions are different from those for pho-
tons. For photons, the intensity is changed by the presence of an inhomogeneity. For 
protons, the intensity stays roughly the same (see Figure 2.7); rather, it is the range 
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that changes. Due to the sharp distal falloff of the beam, it is essential to include the 
effects of inhomogeneities; otherwise, large errors can result.

There are three phenomena caused by inhomogeneities:

 1. Range modification
 2. Edge scatter if the inhomogeneity does not fill the beam
 3. Dose modification from thin slivers

The last effect is illustrated in Figure 2.35.
The presence of contrast agents and artifacts due to the presence of metals can be 

significant, as these will have an effect on range. The relative position of inhomoge-
neities can change due to tumor motion or shrinkage. One must look very carefully 
at this, and tumor shrinkage may require replanning.

Both the proton stopping power and, to a lesser extent, the fluence are affected 
by the tissue electron density. Computed tomography (CT) images provide electron 
density values just as they do for conventional photon therapy. This permits true dose 
compensation (as opposed to missing tissue compensation). It is necessary to have a 
relationship between the CT number and the stopping power.
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FIGURE 2.35 The effect of a thin sliver inhomogeneity. (a) There has been no modification 
of the compensator to account for the inhomogeneity. As a result, there is a cold spot in the 
target volume. (b) The compensator has been modified to adjust for the presence of the bone 
sliver. (c) What can happen if there is even a slight misalignment of the compensator. (d) 
“Opened” compensation. The target is fully covered in the event of a small misalignment, but 
the critical structure receives some dose. (Reproduced with permission from Physics Today, 
M. Goitein, et al., September 2002, p. 45, fig. 1. Copyright 2002, American Institute of Physics.)
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For proton therapy, proton stopping powers are determined from CT scans, much 
like electron densities are determined for photon and electron therapy. This is not as 
straightforward as the determination of electron densities, however, since radiation used 
for CT scanning is x-rays, and x-ray attenuation is a simple function of electron density. 
Measured CT numbers in Hounsfield units (HUs) can be readily converted to electron 
densities. Ideally, one would want to use a CT unit that employs protons instead of x-rays, 
but no such machine is currently in use for proton treatment planning. Consequently, it 
is necessary to convert CT numbers to proton stopping powers, which depend on both 
the electron density and the chemical composition of tissues. This can be done using 
a calibration curve like the one published by Schaffner and Pedroni (1998) shown in 
Figure 2.36. The authors of this paper state that use of this calibration curve should lead 
to errors in prediction of the range of protons no greater than about 1.8% for bone and 
1.1% for soft tissue. Calibration curves, however, may be a unique property of the scanner 
and the peak kilovoltage used, as is the case for the electron density–CT number calibra-
tion curves for photon and electron beam treatment planning.
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FIGURE  2.36 Relative stopping powers as a function of scaled HU for biological tissues 
grouped into soft tissue and bone (behind) and in the enlarged section of the graph (front) 
for specific soft tissues. The three broken lines show the three linear fits for soft tissue, adi-
pose, and bone, and the solid line is the chosen calibration curve. (From B. Shaffner and 
E. Pedroni, The precision of proton range calculations in proton radiotherapy treatment plan-
ning: Experimental verification of the relation between CT-HU and proton stopping power, 
in Physics in Medicine and Biology, fig. 1, p. 1582, vol. 43, issue 6, pp. 1579–1592, 1998. © Institute 
of Physics and engineering in Medicine. Reproduced by permission of IOP Publishing. All 
rights reserved.)
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2.13 DOSE DISTRIBUTIONS
Passive scattering provides poor conformity with the proximal edge of the target. To 
improve this situation, multiple beams are used. Proton plans generally use a smaller 
number of beams than photon plans. Distal blocking presents new options, such as 
the use of patch fields (Figure 2.37). Very careful patient alignment is called for, and 
care is obviously necessary in matching the range of the patch field with the lateral 
penumbra of the first field. An x-ray tube is often put in the beam line, and online 
corrections are made to adjust patient position. If the patch field passes through sig-
nificant inhomogeneities, this is likely to increase the uncertainty in the range. The 
possibility of range errors and the resultant overlap make some clinics reluctant to 
use this technique.

One of the frequently cited advantages of proton therapy, particularly for pediatric 
patients, is low integral dose. The whole-body integral dose is the integral of the dose 
over all mass elements in the patient’s body (including the target volume). The inte-
gral dose is therefore the total energy absorbed by the patient from the radiation. This 
is thought to be correlated with secondary radiation-induced cancers. The latency 
period for radiation-induced cancers is on the order of 5–7 years (Hall and Giaccia, 
2012). The lower integral dose is due to the fact that there is almost no exit dose for 
protons and the lateral penumbra is generally smaller than that for photon beams. It 
is claimed that proton therapy reduces the integral dose by a factor of 2 or 3 in com-
parison to photon therapy (Paganetti, 2012a). The dose distribution is also clearly a 
factor in addition to the integral dose. This issue is not quite as straightforward as 
it might first appear. For passively scattered proton beams, the neutron contamina-
tion could conceivably make a significant contribution to secondary cancer induc-
tion because of the high RBE of the neutrons (Lomax, 2012, and references therein). 

Brain stem

Target 90% line

Patch field

FIGURE 2.37 A patch field is used to fill in coverage of a tumor that wraps around the brain 
stem. The distal edge of the patch field is adjusted to coincide with the edge of the lateral 
beam. (From McDermott, P. and C. Orton, The Physics and Technology of Radiation Therapy, 
Madison, WI: Medical Physics Publishing, 2010, fig. 20.52. With permission.)
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Neutron contamination is much lower for scanned beams because there is much less 
material in the beam line for this modality.

Some dose distributions are shown in Figures 2.38 and 2.39 that illustrate some of 
the principles associated with proton treatment planning.

Due to the uncertainties described in Section 2.12, the dose distributions calcu-
lated by a treatment planning system must be considered “ideal” dose distributions. 
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FIGURE  2.38 Treatment of Ewing’s sarcoma with protons. The dose distribution is shown 
by the color wash (see legend on the right of each frame). The target is the yellow contour. 
Critical structures are outlined in red. The arrows show beam directions. (a) A single pas-
sively scattered beam is used. Note the good conformality laterally and at the distal edge 
of the target, but not at the proximal target border. (b) A three-field dose distribution from 
passively scattered beams. (c) A single field delivered by an actively scanned beam. (d) Three 
fields delivered by actively scanned beams. Each of these fields delivers a near-uniform dose. 
(e) One of the intensity-modulated fields shown in panel (f). (f) A three-field optimized inten-
sity-modulated plan. The dose distribution is extraordinarily conformal. (Reproduced with 
permission from Physics Today, M. Goitein et al., September 2002, p. 50, fig 4. Copyright 2002, 
American Institute of Physics.)
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Even proponents (Palta et al., 2009) admit that “what you see is not what you get.” 
Proton therapy is more sensitive to CT number and stopping power accuracy, organ 
motion, and anatomical changes. For this reason, replanning may be needed more 
frequently for proton therapy than photon therapy, and image guidance appears to 
be almost mandatory.

2.14 RADIATION SHIELDING
This discussion of shielding is based on the excellent review article by Mukherjee 
(2012). See also NCRP No. 144 (2003). The example facility is the West German Proton 
Therapy Center in Essen.

The main concern is for neutrons and gamma rays produced when the proton 
beam strikes any material in the beam or along the beam line. Items placed in the 
beam include energy degraders, beam-shaping components made of brass or poly-
styrene, and of course patients. There is also the possibility of accidental beam loss, 
in which the proton beam strikes components of the accelerator or beam transport 
system. Proton irradiation results in prompt neutron and gamma emission (see 
Section 2.2). In turn, the neutrons lead to activation of beam line components and of 
the air in the treatment room.

FIGURE  2.39 Color wash dose distribution for protons on the left and photon intensity-
modulated radiation therapy (IMRT) on the right. The proton dose distribution is dramati-
cally more conformal. The planning target volume (PTV) is shown as the light blue anterior 
midline contour. This is a Hodgkin’s lymphoma patient. (From Hoppe, B.S., et al., Involved-
node proton therapy in combined modality therapy for Hodgkin lymphoma: Results of a 
phase 2 study, Int. J. Radiat. Oncol. Biol. Phys. 89(5), 1053–59, 2014.)
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The West German Proton Therapy Center is located about 8  m underground. 
Ordinary density concrete is used (2.35 g cm−3 = 147 lb ft−3) as shielding material, and 
walls and ceilings are 2.0–2.5 m thick (Figure 2.40).

Neutron production from proton irradiation has been estimated from Monte 
Carlo calculations. It is directly proportional to the proton beam current. The Monte 
Carlo calculation is based on irradiation of a 30 cm ×  30  cm ×  30  cm polystyrene 
phantom with a 3 mm diameter beam.6 In the worst-case scenario, the neutron pro-
duction rate at a distance of 1 m (from the point of beam incidence) in the forward 
direction is 13 mSv h−1 nA−1 for the 235 MeV proton beam energy. The mean energy 
of the neutrons is 68 MeV. Neutrons with this energy have a tenth value layer (TVL) 
thickness of 65 cm in concrete. It is assumed that the shielding thickness calculated 
for the neutrons is also adequate for the gamma rays produced in the treatment room 
and in the shielding material. The beam on time is assumed to be 500 h/year. This 
presumes that the beam is on one-fourth of the time for a 2000 h work year. The dose 
equivalent at the point of interest is given by

 
H B

WUT
d

= 2 ,
 

(2.43)

where: 
 B is the barrier transmission factor
 W is the workload
 U is the use factor
 T is the occupancy factor
 d is the distance (in m) from the source of the neutrons to the point of interest

The source of the neutrons is assumed to be at the isocenter.
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FIGURE 2.40 A plan view of a proton therapy treatment room, the control room, and the adja-
cent room housing the cyclotron. The barriers consist of ordinary density concrete.
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A plan view of a treatment room is shown in Figure 2.40. The radiation level at the 
entrance door is the sum of the direct component that penetrates the maze barrier 
and the component that diffuses from the maze entrance (labeled B in the diagram). 
Shielding details are discussed in the paper by Mukherjee (2012) including consider-
ation of “skyshine.”

Mukherjee (2012) raises the issue of activation of the room air, in particular by 
thermalized neutron interactions with 40Ar (abundance of 0.46% by volume) via the 
reaction 40Ar(n, γ)41Ar. Radioactive 41Ar is a gamma emitter (1.3 MeV) with a half-life 
of 1.8 h. This poses an internal hazard as it is inhaled. This has been evaluated indi-
rectly by measuring the neutron levels in the room and by assuming an air exchange 
rate of eight times per hour. The calculated concentration is 26 Bq m−3 (7 × 10−4 pCi/L), 
well below the permissible limit of 200 Bq m−3.

Activated cyclotron parts potentially pose a risk to therapists who need to handle 
these items many times throughout a treatment day. The main concern is the brass 
patient beam apertures (see Figure 2.32). A dose reduction of 50% is possible by waiting 
15 min before handling these items. After 1 week, the activity of these apertures drops 
to an insignificant level.

2.15 NEW DEVELOPMENTS
There are some accelerator advances on the horizon that may revolutionize proton 
therapy. These advances may significantly reduce the space requirements and cost of 
proton therapy.

2.15.1 DIELECTRIC WALL ACCELERATORS

Dielectric wall acceleration of protons is an outgrowth of nuclear weapons research 
at the Lawrence Livermore National Laboratory. This technology has been licensed to 
the Compact Particle Acceleration Corporation for development of a medical proton 
accelerator that will fit into an ordinary linac vault. The individual pulses from this 
accelerator can be varied in intensity, energy, and spot width, making IMPT possible. 
The accelerator consists of a hollow tube with alternating rings of electrical insula-
tors and conductors. A transmission line sends brief pulses to the conductors as the 
proton bunch travels down the tube. The insulator can withstand very high electric 
fields for short periods of time without undergoing dielectric breakdown. It may be 
possible to accelerate protons to 200 MeV in a distance as short as 2 m, which would 
make proton tomotherapy a reality.

2.15.2 PROTON LASER ACCELERATORS

Very high-intensity short laser pulses can accelerate protons to energies sufficient for 
radiotherapy. Protons accelerated in this manner have a wide energy spectrum, how-
ever, so magnetic field energy separation is necessary in order to obtain the desired 
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SOBP for therapy. This means that most of the protons have to be removed from the 
beam before use, which reduces the intensity of the useful beam considerably. Because 
of this lack of efficiency, laser beams of extremely high intensity are required. Such 
high intensities have not yet been achieved, but several groups in several countries 
are working to make such beams a reality.

2.15.3 PET VALIDATED TREATMENT

Small amounts of positron emitters are produced in tissue irradiated with protons 
such as 11C, 15O, and 10C (see Section 2.3). There is apparently enough of this to per-
form imaging studies. The measured positron activity is compared to the expected 
activity calculated by Monte Carlo techniques.

2.16 SUMMARY
Protons with energies of 200–250 MeV are needed (see Figure 2.41) to reach the deepest 
anatomical structures (about 30 cm). The stopping power of protons is proportional to 
1/v2. This leads to a sharp rise in energy deposition at the end of the track where the 
fluence begins to drop. The net effect is that the dose rises sharply near the end of the 
track, reaches a peak (the Bragg peak), and then drops precipitously. The raw Bragg peak 
extends only over a few centimeters in depth (FWHM ~ (10% – 15%) dm). For most tar-
gets, the dose distribution must be spread out in the depth direction. This can be accom-
plished by adding beams with different energies and amplitudes to obtain an SOBP.

The radiobiological properties of protons are unremarkable, and the RBE is 1.1 for 
a wide range of biological endpoints. The CGE is the dose in gray multiplied by 1.1.

Charged particles orbiting in a plane perpendicular to a constant magnetic field do 
so with the cyclotron or gyrofrequency ω0 = qB0/γm0. This frequency is independent of 
the energy (or orbital radius) of the particles provided; they remain nonrelativistic. This 
is the basis for the classical cyclotron. The orbits are stable if the vertical magnetic field 
has a negative radial gradient. More specifically, the stability index n must obey the 
condition 0 < n < 1. Particles obeying this condition will be stable to perturbations in 
the vertical and radial directions. Perturbations in the vertical direction lead to oscilla-
tions called betatron oscillations.

The classical cyclotron consists of two D-shaped electrodes called dees placed in 
a uniform magnetic field. An RF voltage is imposed on the dees with a frequency 
equal to the cyclotron frequency. Classical cyclotrons are only able to accelerate 
protons to an energy of about 20 MeV before relativistic behavior interferes with 
further acceleration. This limitation can be overcome by either (1) introducing a 
positive radial gradient in the magnetic field or (2) varying the frequency of the 
applied voltage on the dees. The first solution leads to the AVF or isochronous 
cyclotron. The second solution is represented by the synchrocyclotron. The iso-
chronous cyclotron retains the constant RF of the classical cyclotron. An azimuthal 
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variation of the magnetic field must be imposed to overcome the instability associ-
ated with the positive field gradient. A sectored magnet yoke provides hills and 
valleys in the field.

A synchrotron is only limited in beam energy by space and money. This accel-
erator requires preacceleration by the injector. After the protons are injected into the 
ring, they are accelerated in an RF cavity that occupies a portion of the ring. Small 
modular C-shaped dipole magnets provide the bending force. As the particles circu-
late, they gain energy and the magnetic field must increase to maintain the fixed ring 
radius. When the particles have been fully accelerated, they are extracted. Then the 
process must start over, and thus beam production is cyclic.

There are trade-offs in the choice of a synchrotron versus a cyclotron for proton 
therapy. Cyclotrons require a single large magnet and are therefore quite massive 

FIGURE 2.41 Cartoon “Particles, particles, particles.” (Copyright www.ScienceCartoonsPlus.
com.)

http://www.ScienceCartoonsPlus.com
http://www.ScienceCartoonsPlus.com
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(order of 100 tons), although superconducting cyclotrons are much less massive. 
Synchrotrons are larger in diameter (5–7 m) than cyclotrons, thus precluding gan-
try mounting. Cyclotrons accelerate protons to a fixed energy that is not inherently 
variable, unlike a synchrotron. Cyclotrons therefore require an energy degrader in 
the beam line for reduced energies. Energy degraders have the disadvantage that 
they contribute to unwanted neutron production, requiring greater shielding, and 
the neutrons lead to activation, raising the level of radioactivity and contributing 
to whole-body dose. Cyclotron beams are not cycled, unlike synchrocyclotrons and 
synchrotrons, and therefore the average beam currents (and thus dose rates) are 
higher.

Treatment rooms may have a fixed beam or a rotating gantry. The accelerator 
can feed multiple rooms or, when superconducting, be gantry mounted and self-
contained. Due to the large orbital radius of protons in a magnetic field, accelerators 
feeding multiple rooms must have large gantries, contributing to the high cost of 
proton therapy. Multiple room arrangements with a single accelerator require a beam 
line and switching mechanism. Beam control and safety systems become more com-
plex in this configuration.

Lateral beam spreading is accomplished either by a passive scattering system or 
by active beam scanning. In passive scattering systems, two scattering elements are 
frequently used to produce a flat beam. A custom aperture block defines the lateral 
dimensions of the beam. A range compensator is used to make the distal edge of 
the SOBP along various ray lines correspond to the distal depth of the target. This 
system leads to unwanted proximal dose, which is diluted by using multiple beams. 
In active scanning, a set of deflecting magnets is used to raster scan the target. The 
target can be painted one layer (in depth) at a time, changing the energy between 
layers. This is a complex scheme that requires various safety systems. It also raises 
issues of patient motion management. It can eliminate the need for patient beam 
apertures and compensators, reduce neutron contamination, and reduce dose proxi-
mal to the target.

The standard dose calibration protocol is the IAEA TRS 398. This protocol uses an 
ion chamber calibrated in water with a Co-60 beam. The ion chamber is positioned 
at a depth in the center of the SOBP. The beam quality is specified in terms of the 
residual range. This is the distance from the center of the Bragg peak to the point 
where the SOBP falls to 10% of its maximum value.

Dose calculation algorithms in commercial treatment planning systems are usu-
ally pencil beam algorithms.

Inhomogeneities play a crucial role in proton therapy. The effect of inhomogene-
ities for proton therapy is different than that for photons. For photon therapy, inho-
mogeneities modify the photon fluence. For protons, inhomogeneities modify the 
range rather than the fluence. Range uncertainties can result in errors in the intended 
position of the distal falloff of the Bragg peak. This can potentially lead to the over-
dose of an underlying critical structure.
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PROBLEMS
 1. Calculate γ and v/c for 250 MeV protons.

 2. Calculate the de Broglie wavelength for 250  MeV protons (use nonrelativis-
tic mechanics) and compare it to the range of the strong nuclear force (about 
2  ×  10−15 m). The mass of a proton is 1.67  ×  10−27 kg, and Planck’s constant is 
6.62 × 10−34 J·s.

 3. A delivered or incident beam current of 20 nA forms a 10 cm × 10 cm proton 
beam. Estimate the dose rate in the Bragg peak in units of cGy/min, assuming 
that the fluence does not decline significantly with depth.

 4. a.  Estimate the ratio of the vertical velocity to the azimuthal velocity (vz/v) that 
would result in an approximate vertical deflection of 1 mm for a 250 MeV 
proton in a cyclotron. Assume a perfectly uniform vertical magnetic field; 
the potential difference between the two dees of 105 V and a cyclotron radius 
is 5 m.

 b. What prevents the particles in an isochronous cyclotron from crashing into 
the top or bottom of the dees?

 5. a.  Derive a relativistic formula for the kinetic energy of a charged particle of 
rest mass m0 in uniform circular motion with radius R in a magnetic field B0.

 b. Calculate the kinetic energy of a proton in a circular accelerator of radius 
2.5 m with an average magnetic field strength of 1 T.

 6. Derive the perturbation equations, Equations  2.31 – 2.33, starting with 
Equations 2.15 through 2.17 and 2.25 through 2.27.

 7. What is the ratio of the betatron oscillation frequency to the cyclotron frequency 
for an index value of n = 0.2?

 8. For a synchrocyclotron, B0 = 5.7 T at the center and 5.0 T at the extraction radius 
of 1.25 m. The energy of the proton bunch at extraction is 230 MeV.

 a. What is the approximate value of the stability index n?

 b. What is the frequency of the applied voltage at extraction?

 9. Calculate the dose equivalent on an annual basis for point A in Figure 2.40. 
The thickness of the concrete is 2.2 m, and the distance from the source (pas-
sive scatterer) is 6.5  m. Assume that the proton beam energy is 235  MeV 
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and the average beam current is 10 nA. Assume an occupancy factor of 1.0 
and a use factor of 1/4. How does the result compare with the U.S. Nuclear 
Regulatory Commission dose limit requirement for members of the public 
(1.0 mSv/year)?

SYMBOLS
�
a Acceleration
a Radius of atom
A Atomic mass number
b Impact parameter
b1 Expansion parameter for B field
�
B Magnetic field strength
B0 Vertical magnetic field strength
Bz z component of magnetic field
Bθ θ component of magnetic field
c Speed of light
D Dose
d Distance from source
Dw,Q Absorbed dose in water for beam quality Q
E Total energy
H Dose equivalent
I Mean excitation potential of the medium
kQ,Q′0 Absorbed dose calibration conversion factor
LΔ Linear energy transfer (LET)
m Mass
m0 Rest mass
MQ Corrected collected charge for beam calibration
n Stability index
NA Avogadro’s number
ND W

Q
,
0 Absorbed dose calibration factor in water for beam quality Q

ne Electron density (electrons/g)�
p Momentum
q Charge
R Radius of orbit
r Radial coordinate
r′ Perturbation in r
r0 Equilibrium value of r
Rp Practical range
Rres Residual range
Sc Mass collision stopping power
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t Time
T0 Initial energy of charged particle
Tmax Maximum kinetic energy
U Use factor
v Speed
V Potential difference
V0 Maximum potential difference
W Workload
Y Particle type
Z Atomic number of the medium
z Atomic number of bombarding particle
z Vertical coordinate
z′ Perturbation in z
z0 Equilibrium value of z
zref Reference depth
(dT/dx)Y,T,Z Stopping power
(dT/dx)Δ Restricted stopping power
ℜCSDA CSDA range
β ν/c
γ Relativistic gamma
Δ Cutoff energy
θ Angular position
θ′ Angular position perturbation
ν0 Cyclotron frequency
ρ Mass density
Φ Particle fluence
φ Phase difference
ΦT Differential energy particle fluence spectrum
ω0 Cyclotron angular frequency = 2πν0

Ωr Radial oscillation frequency
ωrf Angular frequency of applied voltage
Ωz Betatron oscillation frequency
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ENDNOTES
 1. It is likely that protons were being accelerated at the Cavendish laboratory in England 

prior to the development of the cyclotron.
 2. Terminology can be a little confusing: although all ions are heavy charged particles in 

comparison to electrons, the ICRU defines “light ions” as nuclei with an atomic number 
less than or equal to 10 (neon).

 3. The Mattauch isobar rule states that if two adjacent elements in the periodic table have 
isotopes that are isobars, at least one of the isobars must be radioactive (Wikipedia, 
2014a).

 4. This dependence clearly cannot continue down to v → 0 (see Figure 2.5).
 5. The time necessary to deliver a particular treatment depends on additional factors 

besides the beam current. See Section 2.9.
 6. The neutron production rate listed in Mukherjee (2012, p. 128) is 13 μSv/h, but the value 

in figure 7 is listed as 13 mSv/h/nA. We assume that 13 mSv/h/nA is the correct value. 
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3
CONVOLUTION/

SUPERPOSITION DOSE 
COMPUTATION ALGORITHMS

3.1 INTRODUCTION
There are three basic approaches to photon dose calculation: primary, correction 
based, and model based. Primary calculation methods rely on a direct computa-
tion of the dose from first principles. Examples are Monte Carlo and the Boltzmann 
transport equation (see Chapter 4). The correction approach is heavily based on mea-
surements made in a water phantom, which are then “corrected” for patient-specific 
factors. Traditional dose calculation methods, involving percent depth dose, tissue air 
ratio, and tissue maximum ratio, are of this type. These methods are poorly suited for 
intensity-modulated radiation therapy (IMRT). IMRT dose calculations require the 
summation of a large number of small fields. The penumbral dose in these fields must 
be calculated very accurately in order that the sums be accurate. Correction-based 
algorithms are not capable of such accurate dose computation. We will not discuss 
these methods further here, as they have fallen out of use (at least in commercial-
based treatment planning systems). The model-based approach involves a secondary 
computation of dose based on precomputed “kernels.” This method explicitly takes 
into account beam characteristics such as energy, geometry, and presence of beam 
modifiers. Figure 3.1 shows the various contributions to the dose that must be con-
sidered in order to calculate an accurate dose distribution. This illustrates the com-
plexity of the numerous physical processes that must be evaluated. Review articles 
pertaining to photon beam dose calculation methods can be found in Ahnesjö and 
Aspradakis (1999), Mackie et al. (1996, 2000, 2007), and Bloch and Altschuler (1995). 
The most comprehensive of these is the paper by Ahnesjö and Aspradakis (1999).
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Convolution/superposition (C/S) methods are model-based algorithms. Advantages 
of these techniques are that they lend themselves well to three-dimensional (3D) 
calculations, they can handle electronic disequilibrium (to some degree), and they 
are easily adaptable for intensity modulation techniques. Commercial treatment 
planning systems commonly offer more than one dose calculation algorithm, and a 
C/S algorithm is frequently one of the choices. As of this writing, commercial treat-
ment planning systems offering superposition algorithms include Pinnacle3 (Philips 
Healthcare), XiO (Elekta), Lexsell GammaPlan® 10 (Elekta), RayStation (RaySearch 
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photons

Primary
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Direct beam
scatter dose
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FIGURE 3.1 The contributions to the absorbed dose that must be calculated to obtain an 
accurate dose distribution. This shows the complexity of the various physical processes that 
must be considered. There are two sources of primary photons incident upon the patient: 
photons that come directly from the target without scattering and photons that are scattered 
in the linac head. Photon scattering in the head contributes to electron contamination of the 
beam. The “brems/annih” component refers to bremsstrahlung and annihilation photons. 
(Adapted from Ahnesjö, A. and M.M. Aspradakis, Phys. Med. Biol. 44, R99–155, 1999.)
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Laboratories), DAO MRT (Prowess, Inc.), Eclipse (Varian Medical Systems), iPlan RT 
Dose 4.5 (Brainlab AG), and Mobius3D (Mobius Medical Systems).1

C/S dose calculations consist of four main steps:

 1. Model the energy fluence originating in the head of the linac.
 2. Represent the energy imparted to the medium by primary photons (terma; see 

Section 3.2).
 3. Use the precomputed energy deposited about primary photon interaction sites 

to calculate the dose deposited by the incident photons (kernel; see Section 3.2).
 4. The addition of electron contamination to more accurately model the dose in the 

buildup region.

We will consider each of these steps in some detail, including complications associ-
ated with realistic linac-generated radiation beams and with real finite heterogeneous 
patients. Among the complexities that must be dealt with are those in a long list given 
by Mackie et al. (1996): finite source size, angular distribution of photons, primary trans-
mission, “extrafocal” radiation originating from the flattening filter and primary col-
limator, differential beam hardening with lateral distance in the flattening filter, curved 
multi-leaf collimator (MLC) leaf ends, leaf configuration, tongue-and-groove effect, leaf 
transmission, electron contamination, and tissue heterogeneities. This is a daunting list.

We will primarily use continuous variables throughout the description here. The 
reader understands that in practice, numerical calculations require discrete variables 
and integrals need to be turned into sums.

All photons that are incident on the surface of the phantom or patient are called 
primary, whether they have been scattered in the head or not.

In Section 3.2, we handle the simple case of monoenergetic beams and a homo-
geneous medium. In Section 3.3, we deal with a strategy for homogeneous media 
that allows a significant reduction in the CPU time to perform a dose calculation by 
taking advantage of the convolution theorem. In Section 3.4, we add the complication 
of a polyenergetic beam. In Section 3.5, we discuss beam modeling and primary pho-
ton transport in the medium. A description of the characteristics and calculation of 
point dose kernels is dealt with in Section 3.6. An analytical expression for the point 
dose kernel due to singly Compton scattered photons is derived in Section 3.7. The 
complication of a heterogeneous medium is considered in Section 3.8. In Section 3.9, 
we examine another strategy to speed computation, the use of pencil beam kernels 
instead of point dose kernels. In Section  3.10, we look at effects related to patient 
geometry. Section 3.11 is a discussion of the widely used collapsed cone convolution 
(CCC) approximation, which is another method for decreasing dose calculation time 
for point dose kernel calculations. A method is needed for the calculation of monitor 
units (MUs), and this is covered in Section 3.12. Dose calculation speed is considered 
in Section  3.13. There has been no attempt here to provide a detailed comparison 
between C/S algorithms and other algorithms or to assess their accuracy. There is 
ample literature on this topic, and it speaks for itself.
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3.2 MONOENERGETIC BEAMS, HOMOGENEOUS MEDIUM
For simplicity, we begin by considering a monoenergetic beam of photons in a homo-
geneous medium. In charged particle equilibrium, the dose at a point in the medium 
can be written

 
D r K r r

CPE

c
en

T
� � �( ) = ( ) = ( )µ

ρ
Ψ ,

 
(3.1)

where:
 Kc is the collision kerma
	μen/ρ is the mass energy absorption coefficient
	ψT is the total energy fluence for all photons in the medium (Attix, 1986)

The energy fluence in Equation 3.1 includes both primary and scattered photons. 
Primary photons are those that have not scattered in the medium, although they 
may have been scattered in the linac head. Equation 3.1 assumes charged particle 
equilibrium; it therefore does not take account of the finite forward range of charged 
particles. As a first attempt to remedy this, assume the mean distance that charged 
particles travel downstream is a; then
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(3.2)

where: 
	 μ′ is the slope of Kc in the downstream direction at 

�
r  

 
�
a  is a vector pointing downstream into the medium with a magnitude a

Equation 3.2 represents the condition known as transient charged particle equilib-
rium (TCPE) (see Attix, 1986). The quantity β is slightly larger than 1.00. TCPE assumes 
that the dose at a point arises from photon interactions at some other discrete location. 
A simple extension of this idea is to allow multiple sites for interaction of photons that 
generate charged particles. This suggests an integral over the neighborhood of 

�
r :

 
D r K r A r r d rc c

V
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(3.3)

where Ac is a function that gives the contribution of charged particle energy that 
gets absorbed per unit volume at 

�
r  from all photon interactions at 

�
′r  (Figure 3.2). 

This function is called the kernel. Other commonly used names for the kernel are 
dose spread array, point spread function, or energy deposition function. Note that if 
A r rc = − ′( )δ � �  (an “on-the-spot” approximation), where δ is the Dirac delta function, 
then D r K rc

� �( ) = ( ) . The difficulty with the use of Equation 3.3 is that K rc
�
′( )  is due 
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to interactions of both primary and scattered photons at 
�
′r (see Equation 3.1), and 

it is therefore troublesome to compute (even if Ac could be easily determined). The 
reason is that we have no easy way of knowing the total fluence ψT in Equation 3.1. 
The primary fluence, consisting of those photons that have not been scattered in the 
medium, is, however, more easily determined, as we will see below. A useful strategy 
is therefore to replace Kc in Equation 3.3 with a quantity directly related to the pri-
mary fluence and to include the effect of scattered photons in the kernel. The kernel 
will no longer be finite in extent because it now includes scattered photons.

A “superposition” equation that separates the primary photon transport and 
includes a kernel that accounts for scattered photons and electrons set in motion 
throughout the volume is

 

D r r A r r d r

T r A r r d r
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FIGURE 3.2 The geometry of the C/S point kernel method of dose calculation for point P 
located at 

�
r . Some of the energy liberated by photons interacting at 

�
′r  is absorbed at point P. �

rs is a vector from the source of the radiation to the surface of the medium. To find the total 
dose at point P, one must integrate over all values of 

�
′r . To find the dose at another point, the 

integration over all values of 
�
′r  must be repeated.
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where: 
 ψ( )
�
′r  is the primary photon energy fluence only 

 A r r( , )
� �

′  is a kernel that now includes the contribution from scattered photons

Figure 3.2 illustrates the vector geometry used in the dose computation. Equation 3.4 
represents a superposition of weighted responses to point irradiations.

The quantity

 T r r
� �
′( ) =







′( )µ
ρ

Ψ ,  (3.5)

is called the terma: total energy released in matter. It is the total energy released by 
primary photon interactions per unit mass; it includes the energy imparted to both 
charged particles (this part is the kerma) and scattered photons. In Equation 3.5, ψ 
is the energy fluence of primary photons only and does not include photons scattered in 
the medium. Note that the kerma is equal to (μen/ρ)ΨT. The terma is the energy lost or 
removed from the primary beam per unit mass.

It is important to emphasize that the kernel for a particular beam need only be 
computed once. Once the functional form or a table of numbers is in hand for the 
kernel, the dose distribution can be found in any phantom (or patient) provided that 
the primary energy fluence can be determined at all points within that phantom. The 
kernel as defined implicitly in Equation 3.4 is a point dose kernel. In Section 3.9, we 
consider a pencil beam kernel. The point dose kernel is the fraction of the energy of 
the primary photons interacting at 

�
′r , which is absorbed at 

�
r, per unit volume at 

�
r. 

The units are therefore those of inverse volume. There are variations in the definition 
of the kernel in the literature (Table 3.1).

TABLE 3.1 Selected Point Kernel References
Reference Name of Kernel Units Comments
Mackie et al. (1988) “Energy deposition 

kernel”
cGy MeV–1 photon–1 May be the kernel used in 

Equation 3.4 divided by ρ
Mackie et al. (1985) “Primary dose spread 

arrays”
None Dose deposited in the voxel 

normalized to the collision 
kerma in the interaction voxel

Ahnesjö et al. (1987) Point spread function cm–3 Appears to be the same kernel 
as used in Equation 3.4

Ahnesjö (1989) Point spread function cm–3 Appears to be the same kernel 
as used in Equation 3.4

Huang et al. (2013) “Energy deposition 
kernels”

MeV cm2 g–1 photon–1 “Dose × r2”

Boyer and Mok (1985) “Interaction kernel” “eV/g per photon 
interaction at the origin”
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The kernel for a (infinite) homogeneous medium is a function only of the distance 
between the points at 

�
r  and 

�
′r  and may therefore be written as A r r A r r

� � � �
, ′( ) = − ′( ). 

Thus, in this case, Equation 3.4 may be written
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V

� � � �( ) = ′( ) − ′( ) ′∫ 3 .

 

(3.6)

Figure 3.3 illustrates the application of Equation 3.6 to the calculation of absorbed 
dose.

For the simple case in which the incident energy fluence originates from a point 
source, the primary energy fluence in the medium is given by
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where Ψ �r0( )  is the primary energy fluence in air on a plane at some standard vertical 
distance (e.g., z0, the plane through the isocenter; Figure 3.2). The quantity �rs  is a vec-
tor from the origin to the surface of the medium (Figure 3.2). The magnitude of this 
vector may vary from point to point on the surface depending on the off-axis distance 
and the contour of the surface of the medium. The dose may now be written as
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(3.8)

The quantity Ψ �r0( ) must remain inside the integral because the energy fluence 
will vary with off-axis distance. We postpone a detailed discussion of the kernel until 
Section 3.6.

Let us consider the computation required to numerically evaluate the dose in a 
medium for a single beam using Equation 3.8. The integral must be turned into a 
sum. In order to compute this sum, we divide the medium into N3 voxels. To calculate 
the dose in any one voxel, we must sum over the contributions from all N3 voxels. 

=

Terma Kernel Dose

FIGURE 3.3 Illustration of the idea of the point kernel C/S method of dose calculation. The 
terma is first calculated throughout the phantom (or patient). This is then convolved or super-
posed with the kernel (see Equation 3.6) to calculate the dose distribution.
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Therefore, to calculate the dose throughout the entire medium, we must perform a 
sum of N6 terms. The number of voxels can be as large as 107. In this case, the dose 
computation for a single beam requires a sum of 1014 numbers. Dose computation 
speed will be considered further in Section 3.8. To reduce the computational intensity 
of the problem, it is advisable to search for strategies to reduce the number of floating-
point operations necessary. Some of these strategies involve approximations such as 
CCC or pencil beam convolution. These will be considered later. Another method 
involves application of the convolution theorem, to which we now turn.

3.3 CONVOLUTION INTEGRALS
The form of Equation 3.6 lends itself to an evaluation method that exploits Fourier 
transforms of convolution integrals. The general form of a convolution integral is

 
f g g r f r r d r⊗ = ′( ) − ′( ) ′∫1

2
3

π
� � �

.
 

(3.9)

This integral is a function of 
�
r. The reader is likely to have encountered convolu-

tion integrals before, without perhaps realizing it. Consider Poisson’s equation for the 
electrostatic potential, ∇2ψ = –ρ/ɛ0, well known to all physicists. The solution to this is
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(3.10)

Equation 3.10 is simply a convolution of the charge distribution and a weighting 
function 4 0

1
πε � �r r− ′( )−

, which is analogous to the kernel in the dose computation 
problem.

A true convolution integral must have the form of Equation 3.9. The function f is 
spatially invariant. Convolution requires spatial invariance of the kernel. In an infi-
nite homogeneous medium, the pattern of energy absorption around a point of inter-
action is spatially invariant. If A r r

� �
, ′( ) is of the form A r r

� �− ′( ) then the dose integral 
will have the form of a true convolution integral. Realistic dose integrals are not true 
convolution integrals, as we will see. The kernel is spatially invariant if it depends 
only on the relative geometric relationship between the interaction and dose deposi-
tion site.

The advantage of writing a dose integral in terms of a convolution is that com-
putation time for the integral in Equation 3.6 can be significantly reduced by using 
Fourier transforms. If the kernels are spatially invariant, then the convolution theo-
rem applies (Arfken et al., 2013). This theorem states that given two functions f r

�( )  
and g r

�( )  with Fourier transforms F(k) and G(k),

 f g F G⊗ = ×{ }−ℑ 1 ,  (3.11)
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where ℑ–1 is the inverse Fourier transform. The Fourier transforms F and G will be a 
set of complex numbers. These numbers are to be multiplied together, and then the 
inverse Fourier transform is taken. One can exploit the speed offered by fast Fourier 
transform (FFT) numerical techniques.

With the use of Fourier transforms, the order of the number of operations required 
is considerably reduced from N6 to N3log2N (Ahnesjö and Aspradakis, 1999).

All of this is conditional on the dose integral having the form of a true convolution 
integral. Kernels are not invariant in real patients because inhomogeneities are pres-
ent (see Section 3.8). If a homogeneous dose calculation is acceptable, then a consider-
able speed advantage becomes available.

3.4 POLYENERGETIC BEAMS, HOMOGENEOUS MEDIUM
In this section, we add the complication of a polyenergetic beam, but the medium 
will remain homogeneous for now. Clinical radiation beams are polyenergetic 
with the exception of Co-60 radiation. The effects of a beam spectrum must be 
accounted for in the calculation of both the terma and the kernel. In addition, we 
must consider the complications of the change in energy with depth (depth hard-
ening) of the primary radiation and off-axis energy softening due to the flattening 
filter.

We begin with a discussion of the terma by generalizing the treatment in Section 3.2. 
We introduce the differential energy fluence for the primary radiation. The energy 
fluence for photons having energies between E and E + dE is

 d r E dEEΨ Ψ= ′( )�
, ,  

(3.12)

where ΨE is the differential energy fluence. This quantity describes the energy spec-
trum of the beam. The total energy fluence is
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(3.13)

The differential energy fluence is related to the differential particle fluence ΦE:

 Ψ ΦE EE= .  (3.14)

The average beam energy is given by
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where Φ is the total particle fluence:

 
Φ Φ=

∞

∫ EdE.
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(3.16)

We may define an energy differential terma as follows:
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For a polyenergetic beam, each component of the differential energy fluence at the 
surface of the medium must be exponentially attenuated in the medium. We need to 
propagate or transport the differential terma throughout the irradiated medium as 
follows (assuming an ideal point source):
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where μ depends on E.
There are a number of methods to account for the spectrum of energies in a clinical 

photon beam. Three of these are

 1. Calculate a separate kernel for each energy bin (sometimes called the compo-
nents method).

 2. Calculate an energy-dependent kernel for a generic published spectrum (as 
in Equation  3.29). In this case, the kernel will only be valid for that specific 
spectrum.

 3. Calculate an energy-averaged kernel over the user’s beam entrance spectrum by 
using the results of number 1 and the user’s beam spectrum.

In the first case (number 1), the expression for the dose may be written as
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(3.19)

where A is the kernel for energy interval E to E + dE.
Evaluation of Equation 3.19 for the dose requires repeat spatial integration for 

each energy bin and is thus very computationally intensive. To determine the 
dose at a single point, not only do we have to integrate over every other point in the 
medium, but we also must repeat these integrations over the energy spectrum of 
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the incident radiation (which may change with depth). Using the average energy 
doesn’t work well (Ahnesjö and Aspradakis, 1999). Fortunately, the number of 
energy bins for accurate numerical calculations may not be large. For example, 
Boyer et al. (1989) used five energy bins to model an 18 MV beam. These authors 
derived a kernel for each of five energies. The amplitude of the bin contribution 
is weighted by the spectrum of the beam.

The difficulty with approach 2 is that the spectrum depends on depth and lateral 
position. Furthermore, the beam spectrum varies from linac to linac.

The third approach has been followed by Papanikolaou et al. (1993). In this method, 
the dose is written as
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and
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and
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Equation  3.20 may be verified by substituting Equations  3.21 through 3.23 into 
Equation 3.20, thereby recovering Equation 3.19. As it stands, Equation 3.20 does not 
change the computational complexity of the problem because it still requires evalu-
ation of the energy integral in Equation 3.23 over every point in the medium. If we 
integrate the energy-dependent kernel in Equation 3.23 only over the beam spectrum 
at �r0, however, extra integrations are avoided. This requires the approximation that
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The kernel in Equation 3.24 can be computed in advance, stored, and then used 
for every beam calculation. This is the method used in the Pinnacle treatment plan-
ning system, wherein 15–20 discrete energies (Starkschall et al., 2000) are used for the 
integration.

3.5  INCIDENT ENERGY FLUENCE, BEAM MODELING, 
AND PRIMARY PHOTON TRANSPORT

The problem of characterizing the spectrum of radiation incident upon the patient 
can be separated from a calculation of the terma and the kernel. In fact, it is nec-
essary to address this issue regardless of the method of dose computation. The 
energy fluence incident on the patient surface is used to calculate the energy fluence 
throughout the patient as in Equation 3.7. Most of the complexity of the convolution 
method involves computing this energy fluence. Mackie et al. (1996) have listed the 
features that need to be modeled:

 1. Finite source size
 2. Extrafocal radiation
 3. Beam spectrum, including the change in the spectrum with off-axis position
 4. Beam intensity variation across the field (e.g., horns)
 5. Electron contamination
 6. Transmission through collimator jaws
 7. Scatter outside the field
 8. MLC rounded leaf ends, tongue-and-groove effect, and MLC transmission
 9. Wedges and compensators, including beam hardening

Points 1 and 2 are related. Extrafocal radiation is that radiation scattered from the 
primary collimator and flattening filter and not originating directly from the target 
(see Figures 3.1 and 3.5). The magnitude of the extrafocal radiation accounts for the 
variation in output with field size. This radiation originates downstream or distal to 
the radiation produced directly by the bremsstrahlung mechanism in the target. The 
energy fluence due to extrafocal radiation can amount to as much as 15% of the total, 
and therefore it must be modeled. Of this, 8%–12% (for large field sizes) originates as 
scattered photons in the flattening filter, and 3%–5% results from scattering off the pri-
mary collimator (Mackie et al., 2007). The presence of this radiation manifests itself as 
an extended source size. The native target source size of the region over which brems-
strahlung emission occurs in the target is only a few millimeters. It is a function of the 
size of the cross section of the electron beam striking the target and the scattering of 
these electrons in the target as they lose energy.

The collimator plus block field outline is modeled with a mask function. For the pri-
mary collimator, the mask function inside the field is 1.0, and outside, it is equal to the 
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primary collimator transmission. The mask function alone cannot model penumbral 
blurring of the field boundary. The finite source size and extrafocal radiation are mod-
eled by convolving the mask function with a Gaussian aperture function that describes 
the width of the blurring (Mackie et al., 2007). Wedges cannot be accurately modeled 
with primary attenuation only because of scatter in the wedge (which leads to a field 
size dependence) and beam hardening. The incident energy fluence is altered by beam 
modifiers, wedges, blocks, MLC, and so forth. The MLC raises what Ahnesjö (2006) has 
aptly described as a multitude of “fine-print issues” that we will not address here.

In the Philips Pinnacle software, the beam energy spectrum is determined from 
measured depth dose data (McNutt, 2002). The software starts with a published spec-
trum and uses this to calculate depth–dose curves that are then compared to mea-
surements. The initial spectrum is then adjusted until the calculated and measured 
depth–dose curves agree as closely as possible. Figure 3.4 shows spectra calculated 
by this method for an Elekta Agility linac with beam energies of 6, 10, and 18 MV.

Due to beam hardening on the central axis relative to points off axis, the beam 
energy spectrum varies across the beam because of the presence of the flattening 
filter (ignoring the anisotropy of bremsstrahlung emission).2 Due to the conical shape 
of the flattening filter, the photon spectrum emerging along the central axis is hard-
ened more than the spectrum emerging at an angle to the central axis. This results in 
a reduction in beam energy as the distance from the central axis increases.

The incident energy fluence can be calculated from measurements made in air with 
a dense buildup cap (see Equations 3.74 and 3.75) or by iterative deconvolution of the 
dose profile obtained in a phantom (Mackie et al., 1996). The incident energy fluence in 
air is characterized at some convenient source distance (perhaps isocenter) on a plane 
perpendicular to the central axis at z = z0 (see Figure 3.2). For simplicity, we consider the 
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FIGURE 3.4 The beam spectra for 6, 10, and 18 MV beams from an Elekta Agility linac, as 
determined by the Pinnacle treatment planning system based on a fit to percent depth–dose 
curves. The vertical axis represents the relative number of photons per energy interval. The 
total area under each curve (proportional to the total fluence) is approximately the same.
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monoenergetic case. The energy fluence at 
�
r0  may be described as Ψ Ψ�

r C x y z0 0( ) = ( ); , , , 
where C represents all beam collimation and modulation variables (jaw setting, wedges, 
etc.). The energy fluence can be divided into two contributions: unscattered photons that 
come directly from the target and photons that are scattered in the head, Ψ = Ψusc + Ψhsc 
(see Figures 3.1 and 3.5). The lateral distribution of unscattered energy fluence can be 
written in terms of a relative distribution function as follows: Ψusc(C; x, y, z0) = Ψ0  f (C; x, y, 
z0), where Ψ0 is the total energy fluence on the central axis, in air, at a distance of z0 from 
the target. The total incident energy fluence may be written as
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The dose is then proportional to Ψ0. We will make use of this fact when we discuss 
monitor unit (MU) calculations later.

The primary photons must be transported through the medium by ray tracing. 
The primary energy fluence in the medium may be written as

Target

Primary
collimator

Monitor
chamber

Flattening
filter

z = z0

Jaws

Wedge

FIGURE 3.5 Energy fluence incident on the medium consists primarily of “direct” radiation 
(in blue) originating from bremsstrahlung emission in the target plus head scatter radiation 
(in red). Head scatter radiation is scattered predominantly from the primary collimator and 
the flattening filter (if present). It is necessary to determine the energy fluence in air on each 
grid element at a standard distance (z = z0, isocenter) from the target. The energy distribution 
of these photons is needed, as well as (in principle) the direction of the photons.
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and therefore the terma for a monoenergetic beam in a homogeneous medium is
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Surface dose is produced almost entirely by electron contamination. Electron con-
tamination is not included in the kernel, and therefore the dose from this must be 
added separately to that computed by C/S. According to Mackie et al. (2007), the elec-
tron contamination component resembles an electron beam with a practical range 
approximately equal to the dmax of the photon beam. The electron contamination dose 
component is modeled in the Pinnacle (McNutt, 2002) treatment planning system as a 
function that declines linearly inward from the surface at first and then, beginning at 
some depth, declines exponentially.

3.6 POINT DOSE KERNELS
The absorbed dose in a medium can be divided into two general categories: primary 
dose and scatter dose. The primary component of the dose originates from the interac-
tion of primary photons, which set charged particles in motion. The scatter component 
of the dose originates from photons that have been scattered at least once in the medium.

The kernel is sometimes divided up into a primary and a scatter component:

 A r r A r r A r rp s
� � � � � �
, , , .′( ) = ′( ) + ′( )  

(3.28)

The reason for this is the very different physics involved in the two contributions 
to the total kernel and practical considerations related to numerical calculation. For 
the primary kernel, we are dealing with electron transport, and for the scatter ker-
nel, we are dealing with photon scattering (and then electron transport). Point dose 
kernals are almost universally calculated by the Monte Carlo technique. The Monte 
Carlo calculation forces interactions to occur at some fixed point (at 

�
r ) for each par-

ticle history and then records the energy absorbed in each voxel. The energy lost by 
primary photons at the interaction site is also recorded. If separate primary and scat-
ter kernels are required, these are stored in separate arrays. Energy transport by all 
possible secondary particles must be described:

 1. Single and multiply scattered photons
 2. Photoelectrons
 3. Compton recoil electrons
 4. Auger electrons
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 5. e+/e– pairs (and annihilation photons)
 6. Bremsstrahlung photons
 7. Photonuclear particles

Selected references for point kernel calculations and data are given in Table 3.1. 
The point kernel, as defined here, appears to correspond to the usage of Ahnesjö and 
coworkers (1987, 1989), who call this the “point spread function.” Both the names and 
the units used in other references are different, and the precise definition of the ker-
nel is not always clear.

Figure  3.6 shows the primary kernel calculated for 1.25  MeV primary photons 
(Mackie et al., 1988). This kernel was calculated by forcing monoenergetic photons to 
interact at the center of a sphere of water with a radius of 60 cm. The energy deposi-
tion is largely due to Compton recoil electrons, and since these electrons have a fairly 
short range, the kernel drops off rapidly around the interaction site.

Ahnesjö (1989) has fit Monte Carlo calculated data to an analytic expression for 
polyenergetic kernels of the form
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FIGURE 3.6 Primary energy deposition kernel for 1.25 MeV photons in water. The units are 
cGy MeV−1 photon−1. The beam is coming from above, and the photons interact at 0.0 on the 
vertical axis. Note the drop in value by more than three orders of magnitude within a dis-
tance of 0.5 cm. This corresponds roughly to the maximum range of electrons set in motion 
by 1.25 MeV photons. Compton scattering cannot set electrons in motion at angles larger than 
90°. It is presumed that energy deposition at these angles is due primarily to backscattered 
electrons. (Adapted from Mackie, T.R., et al., Phys. Med. Biol. 33(1), 1–20, 1988.)
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where Aθ, aθ, Bθ, and bθ are functions of energy and scattering angle θ (see Figure 3.9) 
and where the first term is mainly primary dose and the second term is mainly scat-
ter. This paper gives tables of these parameters for 4, 6, 10, 15, and 24 MV beams, 
along with the spectrum used for each beam. The form of Equation 3.29 is perhaps 
not surprising (at least for singly scattered photons), consisting of exponential attenu-
ation over the distance from the interaction site, combined with inverse square atten-
uation along ray lines from the interaction site—the two main physical effects that 
are responsible for photon attenuation. The difficulty with a full-spectrum kernel like 
that given by Equation 3.29 is that it is only valid for the spectrum that it was com-
puted for and may not be valid for a specific linac.

Figure  3.7 shows a contour plot of the total kernel from Ahnesjö et al. (1987) 
for a 10 MeV monoenergetic beam with respect to lateral and axial distance from 
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FIGURE 3.7 The total (includes both primary and scatter) point kernel for 10  MeV photons 
interacting in water (units cm–3) The speckled data are from Monte Carlo calculations and the 
dash-dotted lines are the “first scatter terma,” assuming only Compton interactions. Photons 
are incident from the top of the page traveling along the vertical axis and interacting at point (0, 
0). Calculations were done in a cylindrical geometry with 5 × 105 photons. (From Ahnesjö et al., 
Acta Oncol. 26, 49–56, 1987, fig. 1c.)
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the interaction site. Each successive contour curve value drops by an order of 
magnitude.

Figure 3.8 shows a subset of the data from Figure 3.7. This is a log plot of the total 
scatter kernel for a 10 MeV beam as a function of distance from the scattering site along 
an axis at a 45° angle to the initial path of the photons. The dashed curve is the primary 
kernel due to charge particle transport. The solid curve is the total kernel, including both 
primary and scatter radiation. The primary contribution is dominant within a distance 
of 5 cm from the interaction site.

The maximum range of charged particles set in motion by primary photons is 
expected to be approximately Tmax/2, where Tmax is the maximum energy of the 
electrons set in motion by Compton interactions. This is because the energy loss 
rate for MeV energy electrons in water is about 2 MeV/cm. This maximum range is 
approximately
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where E0 is the energy of the primary photon in MeV. For 10 MeV photons, the maxi-
mum range is about 5 cm. We expect the kernel to be dominated by multiply scattered 
photons beyond a distance of approximately the mean free path, 1/μ. For 10 MeV pho-
tons in water, the value of 1/μ is about 45 cm. This is off the scale in Figure 3.8.
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FIGURE 3.8 The point dose kernel for 10 MeV photons (see also Figure 3.7) for water in units 
of cm–3 showing the radial dependence along a ray line at an angle of 45° from the path of 
the incident photon. The total kernel is shown by the solid line, and the primary component 
is shown by the dashed line. The primary component dominates within about 5 cm of the 
interaction site. This corresponds approximately to the maximum range of the secondary 
charged particles that deposit the primary dose component. The scatter component is domi-
nant beyond a distance of 5 cm. (From Ahnesjö, A., et al., Acta Oncol. 26, 49–56, 1987, fig. 3.)
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3.7  ANALYTICAL DERIVATION OF A POINT KERNEL 
FOR SINGLY SCATTERED PHOTONS

It is possible to analytically derive an approximate expression for the scatter com-
ponent of the dose deposition kernel. Although Equation 3.4 represents an implicit 
definition of the kernel, we need an explicit definition, consistent with this equation, 
that we can use to calculate the kernel. From Equation 3.4, we write
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We can now express in words how A is to be computed: calculate the energy per 
unit mass absorbed at 

�
r  due to interactions at 

�
′r  and divide by the energy lost by 

photons per unit mass in interactions at 
�
′r . The units of the kernel are inverse length 

cubed (e.g., cm–3).
We assume single photon scattering or, equivalently, that multiply scattered 

photons may be ignored. We assume that all interactions are Compton scattering. 
We further assume that the incident radiation is monodirectional and monoener-
getic and that scattered (but not primary) photons produce charged particles that 
obey CPE.

Compton scattering is axisymmetric, and therefore we only need worry about 
the scattering angle θ shown in Figure  3.9. The differential cross section dσ/dΩ is 
the number of particles scattered through angle θ per unit solid angle, divided by the 
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d3r    ′
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θ

FIGURE 3.9 Illustration of the differential cross section. The photon is scattered through the 
angle θ. The quantity b is the classical impact parameter.
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incident fluence (number of particles incident per unit area). The number of photons 
scattered through angle θ by a single electron can therefore be written
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where Φi is the incident photon fluence. The units of dσ are cm2. The differential scat-
tering cross section is a function of θ and the incident photon energy and is given by 
the Klein–Nishina formula (Johns and Cunningham, 1983):
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(3.34)

re is the classical electron radius (2.818 × 10–13 cm) and α = E0/(m0c2).
In Figure  3.9, photons are incident from above with uniform fluence Φi over a 

microscopic range of impact parameters b. According to classical physics, photons 
with different impact parameters will be scattered through different angles. At the 
scattering location, there is actually an infinitesimal volume containing ρe d3rʹ elec-
trons, where ρe is the number of electrons per unit volume. The total number of pho-
tons scattered by the electrons in the scattering element is therefore
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Now let us calculate the fluence at some macroscopic distance h r r= − ′
� �

 over 
which the scattered photons may be attenuated. The element of solid angle dΩ = dA/
h2, where dA is the area that the photons are scattered into at a distance h. The fluence 
of particles scattered at angle θ reaching distance h is
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(3.36)

where μs is the linear attenuation coefficient for the scattered photons.
If we assume that the scattered photons interact at the dose deposition point to 

produce a charged particle spectrum that exhibits CPE, then the scatter dose due to 
these photons will be given by
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where: 
 Es  is the energy of the scattered photon 
 (μen–s/ρ) is the mass energy absorption coefficient for the scattered photons

The dose at the observation point due to the scattering element is therefore
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For a monoenergetic primary beam of energy E0, the terma is given by
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(3.39)

Using Equations 3.31, 3.38, and 3.39, we can now write an expression for the scatter 
kernel (for singly scattered photons) in the homogeneous case:
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(3.40)

where subscript sh refers to scattered photons in a homogeneous medium. The quan-
tities Es, μen–s, and μs are functions of θ.

The scattering kernel in Equation  3.40 is of the form B e hb h
θ

θ− / 2 suggested by 
Ahnesjö (1989) (see Equation 3.29), where Bθ and bθ are functions of θ. Contour lines 
of the scattering kernel given by Equation 3.40 are plotted in Figure 3.10 for 1.25 MeV 
monoenergetic photons. It is assumed that

 µ µen s tr– .≈  (3.41)

We note that this scattering kernel has a close qualitative resemblance (similar 
teardrop shape) to the Monte Carlo calculated kernel shown in Figure 3.7.

3.8 HETEROGENEITIES
An inhomogeneous medium presents a difficult problem, and it is in general a chal-
lenging complication. The effect of tissue heterogeneities is very important for small 
field sizes. This is because of a lack of lateral equilibrium. The apertures employed 
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in IMRT delivery are as small as several square centimeters. IMRT requires dose 
calculation methods that can handle nonequilibrium effects. The effects of inho-
mogeneities must be accounted for in primary photon transport, scattered photon 
transport, and charged particle transport. The effects of heterogeneities must be 
taken into account for both the terma and the kernel. The terma represents the 
primary photon transport, and this is the easiest part of the problem to handle. For 
the kernel, we must account for effects on the charged particle component and the 
scattered photon component.

Knöös and McClean (2008) have described two types of algorithms with respect 
to heterogeneity corrections. Type A models are based on effective path length in a 
longitudinal direction only. This is characteristic of simple pencil beam models. Type 
B models account for both longitudinal and lateral scaling.

Let us deal first with primary photon transport. This is the terma part. Equation 3.7 
describes the primary photon transport for a monoenergetic point source of radia-
tion. The attenuation by the matter is represented by the exponential factor where 
the r′ – rs term is the distance traveled through the medium. We may write this term 
as e–μd, where d is the distance traveled through the medium. In a heterogeneous 

1.25 MeV dose deposition kernel
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FIGURE 3.10 The scatter component of the point dose kernel in water for 1.25 MeV photons 
interacting at position (0, 0) and based on Equations 3.40 and 3.41. This assumes single Compton 
scattering only.
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medium, µ µ= ′( )�r  and the expression for the attenuation must be modified. Suppose 
the photons travel along the x axis from x = 0 to x = d; the expression for the attenu-
ation becomes

 
exp .− ( )



∫ µ x dx

d

0

For Compton scattering μ/ρ  =  NAZσe/AW, where NA is Avogadro’s number, Z is 
the atomic number, AW is the atomic weight (g/mol), and σe is the total Compton 
cross section per electron (the integral with respect to solid angle of dσ/dΩ in 
Equation 3.33).3 The quantity NAZ/AW is the number of electrons per gram. We can 
now write the linear attenuation coefficient as
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where ρe is the number of electrons per unit volume. The radiological distance is 
defined as
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(3.42)

where: 
 d is the physical distance along the path
 ρe

0  is the electron density of water
 ne e e= ρ ρ/ 0  is the electron density relative to water (per unit volume)
 ne  is the average electron density along the path

The attenuation factor may now be written as e n de−µ0
, where μ0 is the linear attenu-

ation coefficient for the given beam energy in water. Equation 3.7 for the primary 
fluence now becomes
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(3.43)

We now turn to the more difficult task of evaluating the effect of inhomoge-
neities on the kernel. In principle, the presence of inhomogeneities requires a 
separate kernel for each point in the medium. This is clearly not practical, and it 
is customary instead to modify the homogeneous kernel for water. The simplest 
possible expedient is to spatially scale the kernel in accordance with radiological 
distances. In this case, all distances are replaced with radiological distances and 
Equation 3.6 becomes (Mackie et al., 2007)
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where: 
 n rer
� ′   is the radiological distance from the source to the interaction site (rela-

tive electron density weighted along the path of the vector) 
 n r re r r,
� �
� �

− ′ − ′   is the radiological distance from the interaction site to the dose deposi-
tion site

There is a question mark over the equal sign because this equation has not been 
derived but rather postulated. In Equation 3.44, the influence of tissue heterogeneities 
on the dose calculations at point 

�
r  is approximated by density weighted rays from 

�
r  

to all sites at which primary photons interact. The kernel in Equation 3.44 is no longer 
spatially invariant, as ne r r,

� �− ′ depends on the specific location of the path between 
�
r  

and 
�
′r . The convolution theorem, as discussed in Section 3.3, no longer applies due 

to the lack of spatial invariance. Inhomogeneities can be included in the terma alone 
without violation of position invariance.

Equation 3.44 seems intuitively reasonable for first scatter photons, but the validity 
is not clear for the primary component of the kernel or for multiply scattered photons. 
Although this equation seems plausible for first scattered photons, let us see if we can 
derive it using the approach of Section 3.7. We will later return to a discussion of the 
primary component of the kernel.

To evaluate the effect of inhomogeneities on the scatter component of the kernel, 
we repeat the analysis of Section 3.7 for the single scatter case, but this time we do 
not assume a homogeneous medium. Equation 3.35 for the total number of photons 
scattered by the electrons in the scattering element becomes
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Equation 3.36 becomes
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where: 
 µs

0  is the linear attenuation coefficient for the scattered photons in water 
 n he  is the radiological distance for the scattered photons along the path between 

the scattering event at 
�
′r  and the dose deposition location at 

�
r  (see Figure 3.2)

The latter quantity depends on the relative electron density ne (per unit volume, 
relative to water) distribution along this line.
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Equation 3.37 becomes
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where: 
  Es is the energy of the scattered photon 
 (μen–s/ρ) is the mass energy absorption coefficient for the scattered photons

The dose at the observation point due to the scattering element is therefore (see 
Equation 3.38)
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For a monoenergetic primary beam of energy E0, the terma is given by
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Using Equations 3.31, 3.48, and 3.49 we can now write an expression for the scatter 
kernel in the inhomogeneous case:
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(3.50)

In the homogeneous case, the scatter kernel reduces to Equation 3.40:
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(3.51)

where superscript zero denotes water composition and a density of 1 g/cm3.
In Equation 3.50, there are, in general, an infinite variety of possibilities depend-

ing on the distribution of mass and electron density in the patient. This implies the 
need for a different kernel for every situation. This is clearly not practical, and it 
is therefore desirable to be able to write the inhomogeneous kernel in terms of the 
homogenous kernel. The linear attenuation coefficients in Equation 3.50 are assumed 
proportional to the electron density ρe, and therefore
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With a little effort and consideration of Equations 3.50 through 3.52, it can be shown 
that
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Equation 3.53 is only strictly correct for singly scattered photons.
A further simplification to Equation 3.53 is possible if we make an assumption 

about the composition
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The quantity Z/AW is typically about ½ for all elements except hydrogen, for which 
it is 1. Treatment planning systems usually compute dose to a material with the com-
position of water even within an inhomogeneity (Monte Carlo codes can compute the 
dose based on the specific composition). It is assumed that within an inhomogeneity, the 
number of electrons per gram is the same as for water even though the mass density may 
differ from 1.0 g/cm3. Another way to state this is that it is almost always the case that 
treatment planning systems (that do not use Monte Carlo) calculate the dose within an 
inhomogeneity to a water cavity obeying Bragg–Grey conditions (Knöös et al., 2006). 
This is seldom stated and not widely understood. Table 3.2 shows electron density 
information for common materials and tissues. If we assume that the material at 

�
r  has 

the composition of water, then
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(3.54)

Equation 3.54 appears to be the same as Equation 3.13 of Ahnesjö et al. (1987); how-
ever, it appears to disagree with Ahnesjö and Aspradakis (1997, equation 37) because 

TABLE 3.2 Electron Densities

Material
ρ Density 

(g/cm3)

Electron 
Density 

(1023 g–1)

Relative 
Electron 

Density (by 
Mass)

ρe, Electron 
Density 

(1023 cm–3)

ne, Relative 
Electron 

Density (by 
Volume)

Water 1.00 3.343 1.000 3.343 1.000
Adipose 0.92 3.363 1.006 3.094 0.926
Cortical bone 1.85 3.139 0.939 5.807 1.737
Muscle 1.04 3.308 0.990 3.440 1.029
Air 1.21 × 10–3 3.006 0.899 0.004 1.09 × 10–3

Source: Data from Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry, New York: Wiley, 
1986.
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we have ρ
�
′( )r  where they have ρ

�
r( ). We see that the kernel in Equation 3.54 is not 

simply scaled as in Equation 3.44.
There is no reason to expect Equation 3.54 to be valid for multiply scattered pho-

tons. The kernel contribution for multiply scattered photons is not expected to scale 
with the mean radiological path length between the interaction and deposition point 
because the photons do not traverse this path.

We see that the scatter kernel for singly scattered photons in an inhomogeneous 
medium can be calculated from a modified version of the scatter kernel for a homoge-
neous medium. The distance from the interaction point to the absorption point is scaled 
by the mean electron density along this line. The scatter kernel is stretched in regions of 
low density and compressed in regions of high density. This is illustrated in Figure 3.11.

We now consider the effects of inhomogeneities on the primary kernel. In this 
case, we are concerned with the transport of charged particles, chiefly electrons. 
According to Metcalfe et al. (2007), it is generally assumed that energy loss by second-
ary electrons in traveling from 

�
′r  to 
�
r  is dependent on the radiological path length. 

The dose from a differential energy fluence of charged particles is

 
D r S r E dE
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∞

∫ ρ Φ , ,
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(3.55)

where: 
 (Sρ)c is the mass collision stopping power (see Chapter 4) 
	ΦE is the differential energy fluence of charged particles (excluding delta rays) 

resulting from the interaction of primary photons with the medium (Attix, 
1986)

Metcalfe et al. (2007) state that it is assumed that the elemental composition is 
the same throughout the medium (as noted earlier), even though the density may 
vary. The mass collision stopping power is independent of the mass density but does 

ρ = 1 g/cm3

ρ < 1 g/cm3ρ = 1 g/cm3

FIGURE 3.11 The qualitative effects of inhomogeneities on the kernel. The left side of the 
figure shows a kernel in a homogeneous medium. On the right-hand side, a low-density 
inhomogeneous region causes the same kernel to be stretched.
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depend on Z/AW (and thus the electron density per gram). If we assume that this 
electron density (per gram) does not vary (see Table 3.2), then the stopping power 
will be unaffected. It is not obvious that the differential charged particle energy flu-
ence will depend solely on the radiological distance from 

�
′r  to 
�
r. This would be more 

plausible if electrons traveled in straight lines.
If we ignore the fact that multiply scattered photons and charged particles cannot 

truly be treated by scaling the homogeneous kernel as in Equation 3.54, then the most 
general case of the superposition integral for the dose becomes
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(3.56)

3.9 PENCIL BEAMS
A considerable savings in computation time could be realized if the depth portion of 
the integral in Equation 3.6 could be carried out in advance. This is the idea of the pen-
cil beam kernel. The pencil beam kernel gives the dose at a point from an infinitesimal 
pencil of radiation that enters the phantom at a point �rs  (see Figure 3.12). A pencil beam 
kernel is the energy deposition in a semi-infinite medium from a point monodirectional 
beam. Calculation of the kernel essentially involves integrating the dose (Equation 3.6) 
first in depth and storing the results as a way of saving computation time.

We assume parallel monoenergetic pencil beams. We also assume that the medium 
is infinitely deep. The geometry is shown in Figure 3.12. The fluence at depth z′ is 
given by (see Equation 3.7)

z

Source

zs

P (x, y, z)
Energy 
absorption
site

(x′, y′, zs)

FIGURE 3.12 A pencil of radiation with small cross section is incident on a medium at point (x′, 
y′, zs) contributing to dose at point P. A pencil beam algorithm calculates the dose by summing 
the contributions over the beam aperture from all of the pencil beams weighted by the incident 
energy fluence distribution.



Chapter 3 – Convolution/Superposition Dose Computation Algorithms       149

 
Ψ Ψ�

′( ) = ′ ′( )
′







− ′−( )r x y z
z
z

e z zs, , .0
0

2
µ

 
(3.57)

Equation 3.8 for the dose may now be written as
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The dose is computed by integrating the pencil kernel multiplied by the incident 
fluence over the area of the beam aperture. This is illustrated in Figure  3.13. The 
pencil kernel is a function of the depth (see Figure 3.12). Note that Equation 3.58 is in 
the form of a convolution integral. Equation 3.59 assumes that the patient source to 
surface distance (SSD) is zs = z0 (at the central axis; see Figure 3.2) and that there are no 
variations in this quantity; that is, the patient skin surface is flat and perpendicular 
to the central axis. Equation 3.59 also assumes that the patient is infinite in depth and 
lateral extent. This will be discussed further in Section 3.10.

Pencil beam kernels can be derived from measurements (Chui and Mohan, 1988; 
Ceberg et al., 1996) or from Monte Carlo calculations (Mohan and Chui, 1987; Ahnesjö 
et al., 1992). Ahnesjö et al. (1992) have calculated pencil beam kernels from Monte 
Carlo simulations that they have fit to a function of the form
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(3.60)

where: 
 u2 = (x – x′)2 + (y – y′)2

 u is the perpendicular distance from the axis of the pencil beam

Energy fluence Pencil kernel Dose

=

FIGURE 3.13 The pencil beam approach to dose calculation. The incident energy fluence is con-
volved with the energy deposition from a precalculated narrow pencil beam of radiation to get 
the total dose.
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The quantities Az, az, Bz, and bz are functions of z (presumed SSD  =  100 cm).4 
A density plot for a 5 MV kernel of this form is shown in Figure 3.14.

Heterogeneities can be handled by using the radiological depth when looking up 
the value of Pz. This, by itself, ignores the three-dimensional nature and effects of the 
inhomogeneities.

A finite-size pencil beam (FSPB) model divides the beam aperture into a series 
of small but finite (in cross section) pencil beams of identical cross-sectional area. 
The integral in Equation 3.58 is carried out over this small area assuming that the 
incident fluence is constant over that area. The FSPB are precomputed and then 
summed over the beam aperture weighted by the incident fluence at the location 
of each FSPB.

For an FSPB, the dose per unit fluence due to a single pencil of radiation centered 
at (xi, yj) is given by

 

∆
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It is assumed that the incident energy fluence is constant over the cross section of 
the FSPB. The total dose is then given by
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FIGURE 3.14 Density plot of the pencil beam kernel of Equation  3.60 from Ahnesjö et al. 
(1992) for a 5 MV beam. The vertical axis represents depth, and the horizontal axis is the per-
pendicular distance from the pencil (u in Equation 3.60). The kernel is singular at u = 0, and 
this is the reason for the gap in that region. The scale is in cm.
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where the sum is carried out over the beam aperture and zs:ij is the distance to the 
surface of the patient at location (xi, yj), μw is the effective linear attenuation coefficient 
for a beam modifier (wedge), tij is the thickness of the beam modifier along the ray 
line, and
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(3.63)

where dm is the depth of maximum dose (see Bourland and Chaney, 1992). The quan-
tity Fij is the Mayneord correction factor for the pencil beam at (xi, yj).

The analytic anisotropic algorithm (AAA) used in the Varian Eclipse treatment 
planning software uses an FSPB algorithm. The software consists of two major com-
ponents: a configuration module and the dose calculation engine. The purpose of the 
configuration module is to determine the user’s beam energy spectrum and electron 
contamination. The dose calculation includes contributions from the primary fluence 
(that part not scattered in the head), scattered extrafocal photons, and electron con-
tamination. The pencil kernel is represented by an analytic fit to a weighted sum of 
four Gaussians and thus results in great time savings. The equation for the kernel is 
(Sievenen et al.)
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where: 
 ck(z) are the weighting factors 
	σk(z) are the standard deviations

These parameters are determined from Monte Carlo–calculated monoenergetic 
scatter kernels and the beam spectrum. The kernel is based on the energy spectrum 
and the radial dependence of the beam energy due to beam hardening in the flat-
tening filter as derived in the configuration module. The FSPB are tilted to follow 
beam divergence. The beam profile is modeled in terms of the energy fluence as a 
function of radial distance from the central axis. The scatter kernels were computed 
using Monte Carlo calculations for monoenergetic pencil beams in various media. 
The polyenergetic kernel is computed as a weighted sum of the monoenergetic ker-
nels. Heterogeneity corrections are based on effective longitudinal path length (along 
the pencil beam), with the addition of a lateral scaling based on density in the four 
main lateral directions. This allows for anisotropic corrections for inhomogeneities 
that are lateral to the pencil beam.
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3.10 PATIENT GEOMETRY
For both point dose and pencil beam kernels, there is going to be a problem near any 
boundary of the medium if the kernel calculation is based on the assumption of an 
infinite medium. The boundary could be either a beam entrance surface, an exit sur-
face, or an edge where there is “flash,” such as in tangential breast irradiation.

Point dose kernels are generally calculated based on the assumption of a geometri-
cally large or effectively infinite medium. The dose calculation integral (Equation 3.4) 
is carried out over the finite extent of the patient geometry.

There will be problems in the buildup region because the point kernel assumes 
that there is no upper boundary. Near the beam entry surface, the terma will be 
handled properly based on a ray trace to locate the position of the surface along 
all rays (see Figure 3.2). The kernel, however, will be inaccurate if it is calculated 
based on the assumption that there is no upper boundary. The difficulty is pri-
marily due to the assumed presence of multiply scattered photons from the region 
above the surface of the medium. For primary and single scatter dose deposition, 
the entrance boundary should present no difficulty (except perhaps for the contri-
bution of backscattered electrons).

Next, we consider exit surfaces. For multiply scattered photons, the kernel near an 
exit surface or a density interface will be incorrect. This will result in an overestimate 
of the dose near these surfaces (and near the surface for tangential irradiation). The 
kernel implicitly assumes that there is backscattering material where in reality there 
is none. For point dose kernels, this effect is on the order of several percent within 
3 cm of the phantom boundary for 4 MV beams (Aspradakis, 1996). The effect is less 
pronounced for higher beam energy because, in this case, photons are more likely to 
be forward scattered (see Ahnesjö and Aspradakis, 1999, p. R129).

Pencil beam algorithms suffer from the same problems as described above for 
point dose kernels. For implementations assuming a flat patient entrance surface, the 
scatter can be incorrectly calculated as shown in Figure 3.15. Pencil beams are gener-
ally computed assuming a semi-infinite medium. The dose calculation using a pencil 

No error Error approximately
cancels

Scatter is
overestimated

FIGURE 3.15 Pencil beam dose calculations that do not account for surface contour. (Adapted 
from Ahnesjö, A., Current concepts in dose calculations, slide presentation, 2006, http://
www.sasro.ch/PastEvents/Lung_Seminar_2006/lung-ahn.pdf.)

http://www.sasro.ch/PastEvents/Lung_Seminar_2006/lung-ahn.pdf
http://www.sasro.ch/PastEvents/Lung_Seminar_2006/lung-ahn.pdf
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beam usually assumes that there are contributions from the dose from all sides of a 
dose pencil. Due to the irregular shape of a patient, there may not be. Pencil beams 
ignore skin surface contour. In addition, this does not account for build-down at the 
exit surface. Figure 3.16 illustrates the problem with respect to patient flash.

3.11 COLLAPSED CONE CONVOLUTION
The CCC method is a superposition approximation method for point kernel dose 
calculation that has found widespread use. Treatment planning systems using CCC 
include Pinnacle, GammaPlan 10, RayStation, Prowess DAO MRT, and Mobius3D.

Numerical computation of dose requires that continuous variable integrals be 
replaced by discrete sums. The collapsed cone approach assumes that all the energy 
scattered from a differential volume element into a small cone is absorbed along the 
line forming the axis of the cone. Thus, the cone is “collapsed” onto its axis. This is 
illustrated in Figure 3.17. The cone axis directions are specified by values of θm and 
φn, and the solid angle subtended by the cone is Ωmn. The sum of all the Ωmn must be 
4π steradians. Figure 3.17 shows a single direction.

The CCC approximation speeds up the computation time in comparison to brute-
force integration. The goal is to calculate the dose at the N3 lattice points. For a 
homogeneous medium and monoenergetic radiation source, this would require N6 
operations. In CCC, when one calculates the dose at a point, one replaces the sum 
over all the other points with a sum over the radiation contribution from all the cone 
directions numbering M. A value of M of about 100 is reasonable (Mackie et al., 1996). 
The computational problem now becomes one of order N3M. This is a considerable 

FIGURE 3.16 Pencil beam calculation of the dose for a tangential breast treatment. For the 
pencil beam shown, there is a deficit of tissue above and to the right of the pencil, contrary to 
the assumption on which the pencil kernel was calculated. When there is a lack of tissue to 
the side, a simple pencil beam algorithm will predict too much dose.
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improvement in speed and is comparable to that gained from convolution (see 
Section 3.3).

The consequences of the CCC approximation are illustrated in Figures 3.17 through 
3.19. In Figure 3.18, voxels A and A′ are irradiated. A single-cone axis direction is 
shown in this figure for each of these voxels. For these discrete cones, some of the 

x

y

θm

z

hν

hνΩmn

Ωmn

Ωmn

ϕn

FIGURE 3.17 CCC approximation. Photons are incident from above on a few selected voxels 
(depicted as squares). A particular direction is shown, given by θm and φn. Photons actually 
scattered into the (small) solid angles Ωmn are assumed to all travel along the direction of the 
common axis of the cones. Thus, the cones are collapsed. (Adapted from Ahnesjö, A., Med. 
Phys. 16(4), 577–92, 1989.)

A

A′

B′

B

FIGURE 3.18 Consequences of the CCC approximation. Voxels A and A′ are irradiated and 
scatter photons into the discrete cones shown. The CCC approximation assumes that all the 
energy fluence is collapsed onto the two cone axes. As a result, scattered energy fluence from 
A that should be deposited into B′ is instead deposited into B. Likewise for A′ and B. This geo-
metric effect becomes more pronounced at larger distances; however, the energy deposited 
in a voxel decreases very rapidly with increasing distance from the scatterer. (Adapted from 
Ahnesjö, A., Med. Phys. 16(4), 577–92, 1989.)
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photon energy fluence scattered from A should be absorbed in voxel B′ but is instead 
absorbed in voxel B because the cone is collapsed onto the axis emanating from A. 
Likewise, some of the photon energy fluence scattered from A′ should be absorbed in 
voxel B but it is instead absorbed in voxel B′. The geometric accuracy of this method 
therefore decreases with increasing distance from the scattering voxel. On the other 
hand, the amount of energy deposition decreases rapidly with distance from the scat-
tering voxel (as shown by Equation 3.29). In addition, this approximation is expected 
to be better for smaller, discrete solid angles. The solid angle in Figure 3.18 is quite 
large for the purpose of illustration. Figure 3.19 shows another representation of this 
effect in 2D. Figure 3.20 shows the collapsed cone axes used in the Elekta Leksell 
GammaPlan 10 dose calculation algorithm that is used to calculate Gamma Knife 
dose distributions.

The CCC can be considered from the point of view of a voxel that receives absorbed 
dose—each receiving voxel is at the intersection of collapsed cone lines, and these 
cone lines cover all 4π solid angles. Only energy emitted from volume elements on 
the cone axes is used to calculate the dose to the receiving voxel. Energy is received 
and transported from all elements located along the line by performing a sum of 
the contributions. The dose calculation volume has to be covered with a lattice of 
lines corresponding to the collapsed cones. This is illustrated in Figure  3.21 for a 
3 × 3 × 3 array of volume elements and 26 cone angles. In this way, rather than hav-
ing to compute the contribution at a point from each of the other N3 voxels, one only 

FIGURE 3.19 A two-dimensional illustration of the CCC approximation. Consider the contri-
bution of scattered radiation from the central (dark gray) square to its surroundings. There 
are a total of eight “cone” angles represented by the arrows. Only the shaded boxes receive 
any energy deposition. In the CCC approximation with these eight cones, the unshaded 
boxes receive no energy deposition. If the number of cone angles is increased, then the boxes 
receiving no energy deposition will be farther away from the scattering element, where 
the missing contribution is much less. (Adapted from Mackie, T.R., et al., in Teletherapy: 
Present and Future, ed. T.R. Mackie and J.R. Palta, 103–35, Madison, WI: Advanced Medical 
Publishing, 1996.)
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need compute the contribution from each of the M cone directions by carrying out a 
sum along these directions.

According to Mackie et al. (1996), about 100 collapsed cones are sufficient. 
Mobius3D uses 144. The Pinnacle treatment planning system uses a zenith bin count 
of 10 and an azimuthal bin count of 8. This is presumably the number of angular 
values θm and φn, respectively. These parameters cannot be modified by the user. 
The values of these parameters suggest that there are up to 80 collapsed cone beam 
directions.

FIGURE 3.20 The collapsed cone axes (protruding from the sphere) used in the Elekta Leksell 
GammaPlan 10 dose calculation algorithm that is used for Gamma Knife dose calculations. 
The solid angle associated with each axis is bound by the longitudinal and latitudinal lines. 
There are a total of 42 directions. (From The Convolution Algorithm in Leksell GammaPlan® 
10. Courtesy of Elekta, Stockholm.)

FIGURE 3.21 A CCC for an array of 3 × 3 × 3 voxels. In this illustration, there are 26 different 
cone directions used for each voxel. (From Ahnesjö, A. and M.M. Aspradakis, Phys. Med. Biol. 
44, R99–155, 1999, figure 12.)
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3.12 CALCULATION OF MONITOR UNITS
In correction-based algorithms, monitor units (MUs) are calculated using per-
cent depth dose, tissue maximum ratio (TMR), or tissue air ratio (TAR) values. An 
alternative method is necessary for model-based algorithms. In Section 3.5, it was 
shown that the dose is proportional to the incident energy fluence Ψ0 = Ψ(0, 0, z0) 
for a monoenergetic beam. Although it is perhaps less obvious, we will presume 
that the same result holds for a polyenergetic beam. It is not possible to calculate 
the absolute dose without knowing the incident energy fluence. We can find the 
incident energy fluence by appealing to the absolute linac dose calibration. The 
calibration establishes the dose per MU in phantom under carefully specified stan-
dard conditions. If we ask the algorithm to calculate the dose per incident energy 
fluence under these same conditions, we can determine the incident energy fluence 
per MU. The details follow.

This discussion follows the description given by Ahnesjö and Aspradakis (1999). 
These authors include corrections for backscatter into the monitor ionization cham-
bers. We ignore this complication here.

The number of MUs required to deliver a specified (prescribed) dose to a particu-
lar location is given by
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(3.65)

where: 
 D is the prescribed dose
 �D  is the dose per MU at the prescription point

MU calculations always come down to a determination of the dose per MU.
The dose calculation algorithm is presumed to be capable of supplying the dose 

per energy fluence at any specified point. Note that the nature of the algorithm 
is irrelevant as long as the algorithm can calculate this quantity. Therefore, the 
method described here could be used for dose calculation algorithms other than 
superposition (e.g., Monte Carlo or Boltzmann transport equation). We define w as 
follows:
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where Ψ0 = Ψ(0, 0, z0) is the (reference) incident energy fluence (see Equation 3.25) 
free in air and C refers to the effects of all beam modifiers, including jaw setting and 
wedges.
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The reference energy fluence Ψ0 is tied to the dose calibration. Under dose calibra-
tion conditions,
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The value of (D/M)cal is known from dose calibration measurements. Equation 3.67 
may therefore be used to determine Ψ0/M:
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The dose rate is then given by
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Equation 3.69 is used along with Equation 3.65 to compute MUs.
The Pinnacle TPS defines the dose per MU as

 
�D ND OF TTF D Mc= ⋅ ⋅ ⋅ ( )/

cal  
(3.70)

(Philips, 1993, p. 30), where ND is the normalized dose, OFc is the computed cor-
rection factor determined during commissioning, and TTF is the total transmission 
factor. The normalized dose ND is defined as “the ratio of the dose per unit energy 
fluence at the prescription point to dose per unit energy fluence at the reference point 
for the calibration field (the point at which (D/M)cal was measured) as determined by 
the convolution superposition calculation for the treatment geometry.” Based on this 
quotation, we interpret ND to be given by
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where C0 indicates calibration conditions.
We can rewrite this in the following fashion:
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assuming that Sc(C) = Ψ(C)/Ψ(C0), where Sc,p is the output factor (Khan, 2010), Sc is the 
collimator scatter factor, and TMR is the tissue maximum ratio. The phantom scat-
ter factor is Sp = Sc,p/Sc. Using this result along with Equations 3.70 and 3.72 and the 
assumption that OFc = Sc,

 
�D D M S C S C TMR d C TTFc p= ( ) ⋅ ( ) ⋅ ( ) ⋅ ( ) ⋅/

cal
, .
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This is the standard equation for the dose rate (per MU) using TMR (Khan, 
2010). Unfortunately, it appears that it is not quite as simple as this. The Pinnacle3 
planning reference guide (Philips, 2013) states, “OFc is an internal normalization 
factor that will not match measured Sc values.”5 The definition of this quantity is 
therefore unclear.

The problem may lie with the assumption that Sc is the ratio of the fluences in 
Equation  3.72). The measured value of Sc is based on ion chamber readings (with 
buildup cap) made in free space. For a monoenergetic beam, ignoring attenuation in 
the cap,
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where: 
 Q is the ionization produced in the gas of mass mg inside the ionization chamber
 W  is the mean energy necessary to produce an ion pair in air

Therefore, for the case of a monoenergetic beam, the reading of the ion chamber 
electrometer is directly proportional to the fluence. In the case of a polyenergetic 
beam,
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In this case, Sc will only be the ratio of the total energy fluence provided that the 
spectrum of the beam remains unchanged with changing field size. This may be 
approximately true, but it is unlikely to be strictly true.

3.13 DOSE CALCULATION SPEED
Suppose that we wish to calculate the dose for a matrix consisting of N3 voxels. 
Straightforward brute-force application of the superposition algorithm for a homo-
geneous medium requires the calculation of N3 dose contributions (one integral) for 
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each voxel. Calculating the dose at all the voxels in the matrix requires N6 multiplica-
tions and additions for a monoenergetic beam. A 30 × 30 × 30 cm3 grid with a grid 
spacing of 3 mm has N = 100 and N3 = 106 voxels.

Let us now allow for the presence of inhomogeneities. Assume that we do not 
calculate and store the radiological distance between all pairs of voxels. This would 
be prohibitive because it would require on the order of N6 stored numbers (roughly 
1 TB). For each of the N3 terms in the sum needed to calculate the dose to a single 
point, it is also necessary to perform a sum to calculate the radiological distance (in 
Equation 3.54). On average, this will require a sum over about N terms. Therefore, N4 
sums are required to calculate the dose to a single point when the medium is inho-
mogeneous. As there are N3 points in the dose matrix, approximately N7 operations 
are required to compute the dose to the entire matrix. Brute-force dose calculation 
of the dose throughout the entire matrix would therefore require approximately 
1007 = 1014 multiplication and addition operations.

For the CCC algorithm, the number of operations is proportional to MN3, where 
M is the number of collapsed cones (Ahnesjö, 1989). I have made an informal test 
of this using the Pinnacle treatment planning system. The test starts with a patient 
beam calculation for a 3 mm grid size and 154 × 121 × 137 voxels = 2.55 × 106. The 
spatial resolution was then increased to a 2 mm grid size. As expected, the number 
of voxels rises to 8.70 × 106. The time for CCC beam calculations for five beams was 
measured with a stopwatch. The expected ratio of the time for the two grid sizes is 
(8.70/2.55)3 = 3.4. The average ratio measured with a stopwatch was 4.1. Some of this 
time may have been necessary for “overhead” to set up the dose calculation.

The primary kernel accounts for charged particle transport. The range of electrons 
set in motion by Compton interactions is relatively short compared to the mean free 
path of a scattered photon. To save computation time, the primary kernel can be com-
puted over a fine grid extending only over a short distance compared to that of the 
scatter kernel. The scatter kernel may be calculated with a lower resolution extending 
over a large distance.

As for any algorithm, the speed of pencil beam calculations depends on the spe-
cific implemetation. It is reported by Hasenbalg et al. (2007) that the AAA algorithm 
is 7–11 times faster than CCC.

Full C/S calculations as used in IMRT and volumetric modulation arc therapy 
(VMAT) still require a significant amount of CPU time even on modern computing 
platforms. There is recent interest in the use of graphics processing units (GPUs) to 
increase the speed of dose computations. Extensive efforts in this direction have been 
reported by Jacques et al. (2010). The very brief description here is taken from that 
paper. Computer clock speeds are no longer doubling every 18 months, but the number 
of processing cores is increasing. GPUs are gaining the flexibility to run generalized 
algorithms. To exploit this, serial algorithms must be converted to parallel algorithms. 
Jacques et al. have adapted an improved C/S calculation that has been timed on a 
3 GHz Pentium 4 with an NVIDIA GeForce GTX 280 GPU. Increases in dose calculation 
speeds of up to a factor of 100 have been measured. The Mobius3D CCC commercial 
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treatment planning software runs on a GPU. This company claims speed gains of up 
to a factor of 200 (Childress et al., 2014), along with a number of other improvements.

3.14 PINNACLE TREATMENT PLANNING SYSTEM6

The Philips Pinnacle treatment planning system is a widely used C/S-based software 
package. The user has a choice of three photon dose computation algorithms: fast con-
volve, adaptive convolve, or cc convolution (collapsed cone convolution). CCC is the 
most accurate of these. The adaptive convolution superposition algorithm is designed 
to speed up dose calculations by adaptively varying the spatial resolution of the dose 
grid. In regions where the terma gradient is high, the resolution is increased. In regions 
where it is low, a coarse grid is used. This strategy reduces the computation time by 
a factor of 2–3 (McNutt, 2002). For the most accurate MU calculations, full CCC is still 
recommended. The fast convolve option uses “fewer ray directions” for the scatter 
calculation than are used for adaptive convolve. It is presumed that this means fewer 
collapsed cones. This algorithm should not be used for MU calculations.

The CCC algorithm uses a zenith bin count of 10 and an azimuthal bin count of 8. 
These are presumably the numbers of angular values θm and φn, respectively. These 
parameters cannot be modified by the user. The values of these parameters suggest 
that there are up to 80 collapsed cone beam directions.

According to Huang et al. (2013), the kernels used by Pinnacle were computed by 
Mackie et al. (1988). Monoenergetic photons were forced to interact at the center of a 
sphere of water with a radius of 60 cm.

Pinnacle uses the method of Papanikolaou et al. (1993) to compute the energy-
dependent kernel (see Section 3.4), wherein 15–20 discrete energies (Starkschall et al., 
2000) are used for the integration. The beam energy spectrum is determined from 
measured depth dose data (McNutt, 2002). The software starts with a published spec-
trum and uses this to calculate depth–dose curves that are then compared to mea-
surements. The initial spectrum is then adjusted until the calculated and measured 
depth–dose curves agree as closely as possible (Figure 3.4).

The electron contamination dose component is modeled in the Pinnacle (McNutt, 
2002) treatment planning system as a function that declines linearly inward from the 
surface at first and then, beginning at some depth, declines exponentially.

Beam commissioning with the Pinnacle TPS is discussed by Starkschall et al. 
(2000). These authors describe the parameters that define a beam model in Pinnacle.

3.15 CONCLUSION
It is sometimes claimed that model-based dose calculations are primary calcu-
lations of dose. They are not. They are based on computations using kernels that 
must be precomputed. In addition, implementation is generally based on numerous 
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approximations and assumptions, beyond those normally associated with numerical 
calculations (i.e., discretization of continuous variables). The term convolution is mis-
leading. No realistic patient dose calculations are based on mathematical convolu-
tion. They are rather based on superposition computations. In this author’s opinion, 
direct calculations of dose are either Monte Carlo or Boltzmann transport algorithms 
(see Chapter 4). These are truly first principles calculations of absorbed dose. It is of 
course true that even these algorithms are based on some approximations.

It is difficult to make sweeping generalizations because of the many different com-
mercial implementations of C/S algorithms; nevertheless, we can list some common 
assumptions and approximations that have been or are used (Huang et al., 2013) in 
some implementations. As Huang et al. (2013) point out, the implications of these 
assumptions and approximations are not always totally clear.

 1. Kernel calculations assume an infinite medium and therefore do not take account 
of boundaries in the medium. This is discussed in Section 3.10.

 2. Even when the medium is considered heterogeneous, it is still taken as water 
equivalent—meaning that the number of electrons per gram for all materials is 
assumed to be the same as for water. Table 3.2 shows that the electron density for 
cortical bone is 6% different than that for water.

 3. Photons are monodirectional, meaning that they all diverge radially from the 
source in the target. This is implicitly assumed in Equation 3.7, which is based 
on a point source. This assumption is untrue for photons scattered in the head.

 4. CCC approximation. This is discussed in Section 3.11.
 5. The use of a spatially invariant kernel calculated for water. This kernel is scaled 

in the presence of inhomogeneities, as discussed in Section 3.8. It is not clear 
that the primary dose contribution or the contribution from multiply scattered 
photons can be computed in this manner. For the primary kernel, the use of 
radiological path length or, equivalently, the mean electron density between 
the interaction site and deposition site assumes that secondary electrons travel 
in straight lines and have a range that is given by the radiological distance. 
Electrons are easily scattered, and therefore this is not a good assumption. This 
can lead to discrepancies near interfaces.

 6. The use of an energy-averaged kernel derived from energy averaging at a 
single location. An effective mean kernel is calculated using monoenergetic 
kernels along with the beam spectrum at some convenient location in air. 
This ignores the effect of spectrum changes throughout the patient, such as 
beam hardening. Some implementations add a correction factor for beam 
hardening.

The Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance 
Center (formerly known as the Radiological Physics Center [RPC]) has presented a list 
(IROC, 2014) of treatment planning system algorithms tested by irradiation of their 
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lung phantom. This list is divided into “acceptable” and “unacceptable” categories for 
use in calculating dose within a heterogeneous medium. The list has been approved 
by the Radiation Therapy Oncology Group (RTOG) quality assurance group. Many of 
the algorithms in the unacceptable category are pencil beam algorithms. One excep-
tion is the Eclipse AAA algorithm, which is considered acceptable.

Comparisons of a number of treatment planning algorithms, including many C/S 
to Monte Carlo calculations, have been studied by Knöös et al. (2006).

PROBLEMS AND QUESTIONS
 1. What is the difference between collision kerma and terma?

 2. What is the difference between a convolution and a superposition?

 3. Consider a one-dimensional convolution calculation in which
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∞

∫0
,
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0µ µ, , and μ > μ0.

 a. Calculate D(x).

 b. What is the value of x for which D(x) is a maximum?

 c. Plot D(x) versus x, normalized to a maximum value of 100%, for μ0 = 0.1 cm–1 
and μ = 0.4 cm–1 for x ranging from 0 to 30 cm.

 4. Verify the validity of Equation 3.20 by substituting Equations 3.21 through 3.23 
into it and thereby recovering Equation 3.19.

 5. Derive Equation 3.53 for A r rs
� �− ′( ) for an inhomogeneous medium from 

Equations 3.50 through 3.52.

 6. What is the difference between a pencil beam algorithm and a full point kernel 
C/S dose calculation? Why are pencil beam calculations faster than point C/S 
calculations? Why are they generally less accurate?

 7. Why are simple pencil beam model implementations poor at accounting for 
heterogeneities?
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 8. The pencil beam kernel calculated by Ahnesjö et al. (1992) is of the form given in 
Equation 3.60.

 a. Derive an expression for the dose per unit energy fluence at depth z for a circular 
field of radius R irradiated by a uniform fluence (i.e., the beam profile is com-
pletely flat).

 b. For an 18 MV beam at a depth of 10 cm, the pencil beam fitting parameters 
for Equation 3.60 are Az = 5.48 × 10–3 cm/g, az = 2.49 cm–1, Bz = 9.19 × 10–5 
cm/g, and bz = 0.219 cm–1. Calculate and plot the phantom scatter factor Sp at 
a depth of z = 10 cm for circular fields with radii ranging from 1.0 to 22.0 cm. 
Include the radius 5.64 cm and normalize Sp to 1.00 at this radius. A square 
field of 10 × 10 cm2 is equivalent to a circular field of radius 5.64 cm.

 c. Table 3.3 contains measured values of Sp at a depth of 10 cm for an 18 MV 
beam. Plot these points on the graph in (b).

 9. The fluence spectrum of three linac photon beams is given in Figure  3.4 for 
nominal accelerating potentials (NAPs) of 6, 10, and 18 MV. The data used to 
make these graphs are given in Table  3.4. The data represent the differential 
energy fluence in some arbitrary units.

 a. Refer to this table and calculate the average energy of these beams. This may be 
done using a spreadsheet and performing the integration using the trapezoidal 
rule.

 b. How accurate is the rule of thumb that the average photon energy is the NAP 
divided by 3?

 10. Do C/S calculations correctly account for build-down? Consider both point ker-
nel and pencil kernel. Explain.

 11. Consider a patient dose calculation in an N × N × N grid. Roughly how much 
faster (by what factor) is an FSPB dose calculation (pencil beam cross section is 
N2) than a CCC calculation?

 12. In the CCC approximation, the grid size is halved (in all directions). Assuming 
that the number of collapsed cones remains the same, by what factor will the 
beam computation time rise?

TABLE 3.3 Phantom Scatter Factors (18 MV)
R (cm) 1.7 2.8 4.5 5.6 7.9 11.3 14.1 16.9 22.6
Sp 0.907 0.961 0.988 1.00 1.019 1.036 1.047 1.055 1.064
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 13. The dose grid in a CCC dose homogeneous calculation is reduced from 3 to 
2 mm. By what factor will the dose calculation time rise?

 14. How are MU calculated in C/S algorithms?

SYMBOLS
A General dose calculation kernel
a Shift in downstream direction
A Energy-averaged kernel
Ac Kernel for collision kerma
Ap Primary component of point dose kernel
As Scatter component of point dose kernel
Ash Scatter kernel, homogeneous
AW Atomic weight
az Pencil beam fitting parameter
Az Pencil beam fitting parameter
aθ Fitting constant for kernel
Aθ Fitting constant for kernel

TABLE 3.4  Linac Energy Spectra, Relative 
Differential Fluence ΦE

Energy 6 MV 10 MV 18 MV
0.1 0.056 0.032 0.016
0.2 0.102 0.06 0.03
0.3 0.145 0.086 0.044
0.4 0.183 0.109 0.056
0.5 0.218 0.131 0.068
0.6 0.25 0.151 0.079
0.8 0.304 0.185 0.098
1 0.345 0.212 0.115
1.25 0.381 0.238 0.132
1.5 0.402 0.257 0.146
2 0.406 0.274 0.165
3 0.321 0.256 0.177
4 0.191 0.205 0.167
5 0.077 0.147 0.147
6 0.002 0.096 0.123
8 0.029 0.077
10 0.002 0.043
15 0.007
20 0.001



 166      Tutorials in Radiotherapy Physics: Advanced Topics with Problems and Solutions

bz Pencil beam fitting parameter
Bz Pencil beam fitting parameter
bθ Fitting constant for kernel
Bθ Fitting constant for kernel
C Represents collimation variables such as field size
D Absorbed dose
d Physical distance in the medium
�D Dose per monitor unit

dA Differential area element
dmax Depth of maximum dose
drad Radiological distance in the medium
dσ/dΩ Differential cross section
E Energy
E0 Energy of primary photon
Es Energy of scattered photon
Et Total energy
F Fourier transform of f
f Relative off-axis fluence distribution function
Fij Mayneord factor at (xi, yj)
FKN Klein–Nishina factor
G Fourier transform of g
h = − ′

� �
r r

Kc Collision kerma
M Monitor units
mg Mass of gas in an ion chamber
N Number of grid points along a particular axis
NA Avogadro’s number
ne Relative electron density (volume) relative to water
ne Average relative electron density along defined path
PBz Finite pencil beam dose per unit fluence
Pz Pencil kernel
Q Charge
R Radius of circular radiation field
re Classical electron radius
�
r Position vector
�
rs Position vector from radiation source to surface of medium
�
′r Position vector of interaction site

Max range of secondary electrons�
r0 Vector from source of radiation to a plane at z = z0

(Sρ)c Mass collision stopping power
tij Thickness of beam modifier along a ray-line
T Terma (total energy released in matter)
TE Energy differential terma
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Tmax Maximum kinetic energy of charged particles
u Distance from pencil beam
w Dose per energy fluence
W Mean energy to produce an ion pair
x Lateral position coordinate
y Lateral position coordinate
Z Atomic number
z Vertical coordinate
z0 z coordinate of a plane at some standard distance (100  cm) from the 

source of radiation
zs Distance to the surface of the medium (from source)
α E0/(m0c2)
β TCPE coefficient
δ Dirac delta function
ΔDpb Dose contribution from FSPB
θ Scattering angle
μ Linear attenuation coefficient
μ0 Linear attenuation coefficient for water
μen Energy absorption coefficient
μen–s Energy absorption coefficient for singly scattered photons
μs Linear attenuation coefficient for singly scattered photons
μtr Energy transfer coefficient
μ′ Slope of Kc

µs
0 Linear attenuation coefficient for scattered photons in water

µ Value of μ averaged over beam spectrum
ν Frequency
ρ Charge density
ρ Mass density
ρ0 Mass density of water
ρe Volume electron density
ρe

0 Volume electron density for water
σe Total Compton cross section
Φ Particle fluence
ΦE Differential particle fluence
Φi Incident fluence
Φs Scattered fluence
ψ Electrostatic potential
Ψ Energy fluence of primary photons
Ψ0 Primary energy fluence on the central axis at distance z0 from source
ΨE Differential energy fluence
Ψhsc Primary energy fluence scattered in the head
ΨT Total energy fluence of all photons in the medium: primary plus scatter
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Ψusc Primary energy fluence unscattered in the head
Ω Solid angle
ℑ–1 Inverse Fourier transform
⊗ Mathematical operator representing convolution
ℑ–1 Inverse Fourier transform
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 2. We will not consider flattening filter-free beams here.
 3. σe is independent of Z.
 4. Note that exponents appear to be missing from some of the 18 MV data in table II of 

Ahnesjö et al. (1992).
 5. Italics are mine.
 6. Some of the material in this section is repeated from earlier sections.



171

4
DETERMINISTIC 

RADIATION TRANSPORT
A Rival to Monte Carlo Methods

4.1 INTRODUCTION
The radiation transport equation provides a deterministic solution for the differential 
fluence of particles in a radiation field. This is in contrast to the stochastic solution 
provided by the Monte Carlo method. The differential fluence can be used to com-
pute the absorbed dose in the medium. The transport equation, sometimes called the 
Boltzmann transport equation (BTE), is an integro-differential equation. As we will 
see, the deterministic radiation transport approach involves “book keeping” in phase 
space.

The common view of dose calculations held by many physicists is that there is 
Monte Carlo, the gold standard, and then there is everything else. If Monte Carlo 
is the gold standard, then perhaps the BTE is the silver standard. If it were possible 
to solve the transport equation in its full generality, the solution would provide all 
possible macroscopic information about the radiation field without concern about 
statistics and microscopic fluctuations. The catch is that the transport equation is vir-
tually impossible to solve in its full generality. It therefore becomes a question of the 
assumptions and approximations that are necessary to solve this equation.

The purpose of the development given here is to help the reader understand the 
deterministic transport approach to dose calculations. This includes both photons 
and electrons. In the last few years, the medical physics community has become 
interested in this approach to dose calculations. A widely used commercial treatment 
planning system now offers this method of photon dose calculations as an option.1 
The BTE can be used for both external beam and brachytherapy dose calculations. 
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Electron pencil beam calculations are generally based on the solutions of the Fermi–
Eyges equation, which we will derive from the BTE. In addition to these practical 
applications, the discussion here also provides a deeper insight into the meaning of a 
number of radiation quantities.

We begin in Section 4.2 with a large number of definitions (for which we ask the 
reader’s patience). The most difficult aspect of this subject is keeping track of the many 
different variables and their integrals. To aid in this, we have provided a table with 
symbol definitions at the end of the chapter. In Section 4.3, we introduce the differential 
fluence and demonstrate that it is a constant along a ray line in the absence of sources 
or scattering of radiation, regardless of the distance from the source. In Section 4.4, we 
show how the dose can be calculated from the differential fluence and other radiometric 
quantities. The linearized BTE is derived in Section 4.5. Some simple applications of the 
BTE are given to show that it leads to familiar results. In Section 4.6, the case in which 
the primary radiation consists of charged particles is considered, and the simplifica-
tion provided by the continuous slowing-down approximation (CSDA) approximation 
is discussed in Section 4.7. In Section 4.8, the more difficult case of indirectly ionizing 
radiation is analyzed. Section 4.9 consists of a discussion of the efficacy of BTE-based 
dose calculations for radiation therapy treatment planning. The Fermi–Eyges theory of 
electron transport is derived from the BTE in Section 4.10. There are commercial treat-
ment planning systems that use the Fermi–Eyges theory to calculate electron dose dis-
tributions. The Fermi–Eyges theory is also used by the RayStation treatment planning 
system to calculate dose distributions from proton beams.

The single best reference for this topic is NCRP Report No. 108: “Conceptual Basis 
for Calculations of Absorbed-Dose Distributions” (1991). Other useful references are 
“Review of Electron Beam Therapy Physics” (Hogstrom and Almond, 2006), Notes 8 
(online notes), and “A Review on the Use of Grid-Based Boltzmann Equation Solvers 
for Dose Calculation in External Beam Treatment Planning” (Kan et al., 2013).

4.2 ABSORBED DOSE, KERMA, AND FLUENCE
In this section, some useful radiation measurement quantities are defined that the 
reader is likely familiar with (see Attix, 1986). These definitions are intended to be a 
review and to establish notation.

The absorbed dose is defined by

 
D

d
dm

= ε
,
 

(4.1)

where dε  is the mean energy absorbed in a mass element dm. The quantity ε  is 
defined as

 
ε = − + ∑E E Qin out ,

 
(4.2)
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where Ein (and Eout) equals the sum of the energies of all charged and uncharged ion-
izing particles that enter (leave) the volume, excluding rest mass energies. For photons 
E = hν and for all other particles, E is the kinetic energy. The term ΣQ is defined as 
the algebraic sum of all changes in the rest energy of nuclei and particles that occur 
in the volume. Q is taken as positive (Q > 0) when there is a decrease in rest energy 
(mass converted to energy) and negative when there is an increase in the rest energy 
(energy converted to mass). As an example of this, in the pair production process, 
ΣQ =  –2m0c2. For positron annihilation, a positron and an electron combine, leav-
ing two annihilation photons, ΣQ = +2m0c2. The units of absorbed dose are J/kg and 
1 J/kg = 1 Gy.

The term kerma is an acronym for kinetic energy released in matter. Kerma is 
defined for neutral particles (photons or neutrons) as follows:

 
K

d
dm

tr= ε
,
 

(4.3)

where dɛtr is the energy transferred to charged particles from uncharged particles in 
mass element dm. More specifically ɛtr is defined as

 
εtr in u out u

nonrE E Q= ( ) − ( ) + ∑ ,
 

(4.4)

where: 
 (Ein)u is the sum of all the energies of the uncharged particles entering the volume
 (Eout)u  is the sum of all the energies of the uncharged particles leaving the volume 

except those that originated as a result of radiative losses of kinetic energy 
by charged particles in the volume

Radiative losses involve conversion of charged particle kinetic energy to photon 
energy. There are two processes by which this can occur: (1) bremsstrahlung and 
(2) in-flight annihilation of positrons. In the latter case, only the kinetic energy of 
the positron at the instant of annihilation is considered a radiative energy loss. The 
kerma is simply the kinetic energy transferred from uncharged particles to charged 
particles per unit mass. The units of kerma are the same as the units of absorbed dose.

The kerma can be split into two parts, depending on whether the energy imparted 
is expended in collisional interactions or radiative interactions (bremsstrahlung):

 K K Kc r= + ,  (4.5)

where: 
 Kc is the collision kerma 
 Kr is the radiative kerma
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We define the net energy transferred as

 ε εtr
n

tr u
trE= − ,  (4.6)

where Eu
tr  is the energy lost by radiative processes by the charged particles that origi-

nated in a specified volume, regardless of where the radiative losses occur. The colli-
sion kerma is then defined as

 
K

d
dm

c
tr
n

= ε
.
 

(4.7)

The collision kerma is the net energy transferred to charged particles per unit 
mass by uncharged particles that originated in a specified volume, excluding both 
radiative losses and energy transferred from one charged particle to another. The 
radiative kerma can now be defined as

 K K Kr c= + .  (4.8)

We now define the total fluence, which we will need in the subsequent develop-
ment. Let dN be the number of rays striking an infinitesimally small sphere of great 
circle area dA (Figure 4.1) centered on a point P in some arbitrary but specified time 
interval. The total fluence at point P is defined as

 
ΦT r

dN
dA

�( ) = .
 

(4.9)

The units of fluence are m–2.
The energy fluence, Ψ, is defined as

 
Ψ �r dR

dA
( ) = ,

 
(4.10)

P
dA = great circle area

FIGURE 4.1 Definition of total particle fluence at point P. The diagram shows two crossing 
rays and the great circle area.
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where dR is the radiant energy incident on a sphere of great circle area dA. The units 
of energy fluence are J/m2.

The energy distribution of the fluence, ΦE, and the energy fluence, ΨE, are given by

 
Φ Φ

E
Tr E

d
dE

�
,( ) =

 
(4.11)

and

 
Ψ Ψ

E r E
d
dE

�
, ,( ) =

 
(4.12)

where:
 dΦT is the fluence of particles having energy between E and E + dE
 dΨ is the energy fluence of these particles

For monoenergetic radiation, the relationship between these two distributions is

 Ψ ΦE EE= .  (4.13)

The kerma can be written in terms of ΦE as follows:

 
K E dEE

tr= ∫Φ µ
ρ

,
 

(4.14)

where: 
	μtr/ρ is the mass energy transfer coefficient 
 E is the kinetic energy of the uncharged particles

The concept of charged particle equilibrium (CPE) will be useful later in the text. 
A given specified volume is said to be in CPE if for every type and energy of charged 
particle leaving the volume, an identical charged particle with the same energy enters 
the volume.

The stopping power for charged particles of a particular specified type (e.g., elec-
trons) and energy is the energy lost per unit path length (on average) in a specified 
medium. The stopping power is often written as

 
S

dE
dx

= − .
 

(4.15)

The mass stopping power, Sρ, is the stopping power divided by the mass density. 
Loss of energy by electrons traversing a medium occurs as a result of collisions and 
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radiative interactions (bremsstrahlung), and therefore the mass stopping power may 
be divided into these two contributions:

 
S

dE
dx

S S
col radρ ρ ρρ

= − = ( ) + ( )1
,
 

(4.16)

where subscripts col and rad indicate collisional and radiative, respectively.

4.3 DIFFERENTIAL FLUENCE
We begin by defining a quantity called the differential fluence. Consider the infini-
tesimal surface element centered on point P, as shown in Figure 4.2. The vector dS

�
 

describes this area element. The direction of dS
�
 is perpendicular to the surface, and the 

magnitude of the area is dS. Radiation may traverse the area element in Figure 4.2 in all 
different directions. Let us consider radiation passing through the area element that 
is only traveling into the solid angle dΩ centered on the unit vector Ω̂ . Furthermore, 
let us restrict consideration to radiation having energy in the range from E to E + dE.

The net number of particles transported by radiation in an energy interval from 
E to E + dE across an element of area dS

�
 into the solid angle dΩ about the direction 

specified by unit vector Ω̂ (in some arbitrary specified time interval, but not per unit 
time) at point P is

 
dN dS d dEE EΩ Ω= Ω ⋅ Ω, , ,Φ ˆ �

 
(4.17)

where Ω̂ ·dS
�

 = cosθ′dS. Equation 4.17 is an implicit definition for the differential fluence 
ΦΩ,E. This quantity is not given a name in the International Commission on Radiation 
Units (ICRU) description of radiometric quantities (ICRU, 2011). The subscripts Ω and 
E are to remind the reader that this quantity depends on direction Ω̂  and kinetic 
energy E. In Equation 4.17, dNΩ,E is the net number of particles: Ω̂ · dS

�
 can be negative. 

dS
→

Ω
∧

P

dSdd
→

P

dΩ

θ'

FIGURE 4.2 Diagram used to define the differential fluence ΦΩ,E. The vector dS
�
 is perpen-

dicular to the infinitesimal area element and dS is the area. We consider radiation passing 
through this area element traveling into the solid angle dΩ centered on the unit vector Ω̂.
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The units of differential fluence are m–2 J–1 sr–1. Do not confuse the differential fluence 
(Equation 4.17) with the total fluence (Equation 4.9). The differential fluence is not the 
total fluence. It is only remotely related to the total fluence, and it has very different 
properties. The vector Ω̂  is the direction we are examining, not necessarily the direc-
tion of radiation flow; indeed, radiation may be moving in all directions.

The differential fluence can vary from point to point in space, and therefore, in 
general, ΦΩ,E depends on the location of point P in Figure 4.2. Let us suppose that the 
location of this point is specified by the position vector 

�
r . The location of point P in 

spherical coordinates is given by (r, θ, φ) (Figure 4.3). The direction of the vector Ω̂  
can be specified by two angles, θ′ and ϕ′, as shown in Figure 4.3. Notice that there are 
two coordinate systems involved. There are three coordinates associated with the 
location of the point of interest 

�
r  and there are two coordinates (θ′ and φ′) associated 

with the direction of particle movement Ω̂  at the location of point P (Figure 4.2). The 
vector Ω̂  is simply a direction at the location of point P in which some, all, or none 
of the radiation may flow. In general, radiation may be moving in all directions. The 
geometry is shown in spherical coordinates in Figure 4.3. It is important to under-
stand the relationship between the two coordinate systems. This topic can be very 
confusing without a clear understanding of this.

In general, the differential fluence is a function of six variables, that is: 
ΦΩ,E = ΦΩ,E(

�
r, Ω̂, E) = ΦΩ,E(r, θ, φ, θ′, φ′, E). In the case of an isotropic radiation field, 

however, the differential fluence does not depend on direction and ΦΩ,E = ΦΩ,E(�r , E). In 
a homogeneous radiation field, the differential fluence does not depend on position, and 
in this case: ΦΩ,E = ΦΩ,E (Ω̂, E).

We now wish to show that the differential fluence is constant along every ray path 
(although it may be a different constant along different ray paths) in the absence of 
scattering, sources, or sinks of radiation along the ray path. Another way to state 

z

x

yφ

ϕ′

θ′ Ω
∧

θ

r→

e∧r

e∧θ–e∧ϕ

P

FIGURE 4.3 Two coordinate systems (spherical coordinates) used in the definition of the dif-
ferential fluence. The first coordinate system (r, θ, and φ) specifies the location of the point of 
observation P. The second coordinate system (θ′ and φ′) defines the direction of interest. Ω̂ is a 
unit vector in this direction. Some, all, or none of the radiation may be traveling in this direc-
tion. This direction is defined in terms of θ′, and φ′, êr, and êθ are unit vectors in the r and θ 
directions, respectively.
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this is that the differential fluence is independent of the distance between the source 
and observer in the absence of sources or sinks of radiation. Note how very different 
this is from the total fluence itself—we expect the total fluence to vary as the inverse 
square of the distance from a point source.

Refer to Figure 4.4. Let us write an expression for all of the particles of energy 
E that flow out of the emitter from the area dS1 centered on point P1 and into the 
receiver (both assumed infinitesmal in size) centered on point P2. The solid angle 
subtended by the receiver from the perspective of point P1 is dΩ1. We assume that 
there is no scattering and no sources or sinks of radiation. We also assume that the 
radiation travels in straight lines. Under these circumstances, all of the particles 
that flow out of the emitter at point P1 and into solid angle dΩ1 must flow through 
the receiver. This number is given by

 dN dS d dEE1 1 1 1= ( ) ⋅Φ Ω ΩΩ, 1 ,ˆ �
 

(4.18)

where:
 dΩ1 = cosθ2dS2/R2 
	ΦΩ,E(1) is the differential fluence at point P1

Now let us write an expression for the number of particles flowing out of the 
receiver that have originated from dS1. The number of particles flowing out of the 
receiver that originate from dS1 is

 dN dS d dEE2 2 2 2= ( ) ⋅Φ Ω ΩΩ, 2 ˆ .
�

 
(4.19)

These particles flow out into the solid angle shown to the right of the receiver in 
Figure 4.4. To ascertain the size of this solid angle, we trace rays backward to surface 
dS1. Only rays inside the cone opening up to the left of the receiver can have origi-
nated from dS1 and flowed out to the right through dS2. Any larger cone will include 
radiation that did not originate from dS1 Therefore, dΩ2 = cosθ1dS1/R2. As dNl = dN2, 
it follows that ΦΩ,E(1) = ΦΩ,E(2). Therefore, in the absence of scattering, sources, or 

Emitter Receiver

dS
→

1

dS
→

2

θ2θ1 dΩ2
dΩ1

R
P1 2P

dΩ2

FIGURE 4.4 Diagram used to prove that the differential fluence is a constant along a ray line 
in the absence of scattering, sources, or sinks of radiation. The distance between point P1 and 
P2 is R. See text for an explanation.



Chapter 4 – Deterministic Radiation Transport       179

sinks of radiation, the differential fluence is constant along a ray line independent 
of the distance from the source. Once again, this underscores the great distinction 
between differential fluence and total fluence itself. The total fluence clearly depends 
on the distance from the source.

The total fluence ΦT can be calculated from the differential fluence ΦΩ,E. In 
Equation 4.17, which defines ΦΩ,E, dNΩ,E is the net number of particles crossing the 
area dS ( Ω̂ ⋅ dS

�
 can be negative, depending on the direction of Ω̂ ). Imagine that the 

area dS is a circle surrounding point P and that this circle is the great circle area of 
an infinitesmal sphere surrounding point P. The number of particles traversing this 
sphere is ΦΩ,E dS dΩ dE, and therefore the total fluence is

 

Φ Φ ΩΩT Er d dE
�( ) = ∫∫

∞

,

4
0

π  

(4.20)

(see Equation 4.9), where dΩ = sinθ′dθ′dφ′.
We define two other useful quantities:
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(4.21)

The equation for ΦE is equivalent to the definition given in Equation 4.11. For an 
isotropic radiation field (i.e., ΦΩ = ΦΩ (r, θ, φ)), the total fluence is given by ΦT = 4π ΦΩ.

Consider radiation that is traveling in a single direction ˆ ,Ω ′ ′( )θ ϕ0 0 . In order to 
describe this mathematically, we define the delta function in spherical coordinates. 
Consider f (θ′, φ′); the delta function is defined so that

 
f f d d′ ′( ) = ′ − ′( ) ′ − ′( ) ′ ′( ) ′ ′∫∫θ ϕ δ θ θ δ ϕ ϕ θ ϕ θ ϕ0 0 0 0, , .

 
(4.22)

We wish to find the delta function in spherical coordinates such that

 
f f d d′ ′( ) = −( ) ′ ′( ) ′ ′ ′∫∫θ ϕ δ θ ϕ θ θ ϕ0 0 0, ˆ ˆ , sin .Ω Ω

 
(4.23)

Comparing Equations 4.22 and 4.23, we see that

 
δ

θ
δ θ θ δ ϕ ϕˆ ˆ

sin
.Ω Ω−( ) =

′
′ − ′( ) ′ − ′( )0 0 0

1

 
(4.24)

We now give an example in which we recover the inverse square law from the 
definition of the differential fluence. Figure  4.5 shows a small spherical source of 
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monoenergetic radiation of radius R located at the origin of coordinates. The sphere 
radiates particles isotropically. There are no sources or sinks of radiation outside the 
sphere. An observation point lies at location P at a distance of r from the origin, where 
r ≫ R. Let us compute dN/dS, the number of particles per unit area crossing point P. 
From the perspective of point P, the sphere subtends an angle 2θ0 = 2R/r. The differ-
ential fluence must be zero for θ′ > θ0 and θ′ < –θ0 (see Figure 4.5), for there is no radia-
tion approaching P from along these directions. Let us assume that ΦΩ (

�
r, θ′) = ΦΩ,0, 

a constant, for –θ0 < θ′ < θ0.
The total fluence at point P is given by

 
Φ Φ Φ Φ
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Ω

T d d
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,sin cos ;0
00
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(4.25)

thus, we arrive at an inverse square law for the total fluence, as we expect.

4.4  CALCULATION OF DOSE FROM FUNDAMENTAL 
RADIOMETRIC QUANTITIES

We wish to derive an equation for the absorbed dose in terms of fundamental radio-
metric quantities. We will do this by considering conservation of energy in an arbi-
trary volume V. The net kinetic energy of particles flowing into the volume must 
equal the energy absorbed in the volume minus the kinetic energy of particles cre-
ated in the volume and minus any decrease in rest mass energy of the matter in the 
volume (see Equation 4.2). It is possible that particles may be created inside V, for 
example, through radioactive decay. The quantity S r E d r dEd0

3�
, ,Ω̂( ) Ω is the expected 

total number of particles produced in volume d3r at location 
�
r , with energy in the 

range from E to E + dE traveling in the direction Ω̂ .

r

2R
P

2θ0
Ω
∧

FIGURE 4.5 The inverse square law emerges by considering the total fluence of isotropic 
radiation originating from a small sphere of radius R. The distance between the center of the 
sphere and point P is r and r ≫ R.
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An expression for conservation of energy follows:

 
− ⋅ = − ( ) −∫ ∫ ∫∫ ∫dS dE E d
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dV

d r ES r E dEd d r
dQ
dV

d rE

� �ˆ , , ˆ ,,Ω Φ Ω Ω ΩΩ
ε 3

0
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(4.26)

where the term on the left represents the net kinetic energy flowing into the vol-
ume, d dVε/  is the energy absorbed per unit volume, and dQ/dV is the decrease 
in rest mass energy per unit volume. The surface integral on the left-hand side of 
Equation 4.26 can be transformed into a volume integral by using the divergence 
theorem; thus,
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along with the result that 
� �
∇⋅ Ω  = Ω ⋅ ∇Ω Ω

ˆ ˆ
, ,Φ ΦE E, provided that Ω̂  is a constant vector.

The volume V is arbitrary, and therefore the integrand in Equation 4.27 must van-
ish. Let us also convert the volume element into a mass element by noting that the 
mass dm = ρ d3r, where ρ is the mass density. We can now write an expression for the 
dose:

 
D r dE d E S r E r E

dQ
dm

E
� � � �( ) = ( ) − ⋅∇ ( )



 +∫∫1

0ρ
Ω Ω Ω Φ ΩΩ, , , ,ˆ ˆ ˆ .,

 
(4.28)

Equation 4.28 provides a formal relationship between the absorbed dose D(
�
r) and 

the field quantities S0 and ΦΩ,E. The latter quantity must include all types of particles in 
the radiation field, both charged and uncharged. The fluence distribution, ΦΩ,E, can 
be calculated from the transport equation. We therefore now turn our attention to a 
derivation of this equation.

4.5 TRANSPORT EQUATION
In radiation therapy, we are generally not concerned with time dependence. For this 
reason, we will skip the time-dependent form of the transport equation and proceed 
directly to the time-independent version. The transport equation is derived by con-
sidering the balance of the particle number in a phase space element dE dΩ. Thus, 
we concentrate on particles in a volume V, having an energy in the range between 
E and E + dE and that are traveling into solid angle dΩ centered about direction Ω̂ . 
Consider an arbitrary volume V; the net change over an arbitrary but specified time 
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interval in the number of particles of a particular type2 in the phase space element dE 
dΩ is given by
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collV V
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δ
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0
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(4.29)

where the integrand in the first term on the right side of this equation represents a 
change per unit volume in the particles of the given type that occur as a result of 
collisions. The quantity S0 in Equation 4.29, in this context, refers not only to “true” 
sources of particles, but also to the creation of particles governed by Equation 4.29 
from other types of radiation that undergo a transformation to the first type. An 
example is provided by bremmstrahlung production. If the particles in Equation 4.29 
are photons, those photons set electrons in motion. The electrons can in turn undergo 
bremsstrahlung photon production. Those bremsstrahlung photons should, at least 
in principle, be included in S0 in Equation 4.29.

We can turn the surface integral in Equation 4.29 into a volume integral by invok-
ing the divergence theorem. The result is that Equation 4.29 becomes
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(4.30)

The volume V is arbitrary, and therefore the integrand itself must be equal to zero:
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Ω⋅ ∇ − 



 − =

�
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N
V
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δ
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(4.31)

where we have assumed that the vector Ω̂  is independent of the position coordinates 
(i.e., can be considered a constant).

Let us consider the collision term in Equation 4.31 in more detail. Particles can be 
removed from the phase space element (dE dΩ) by collisions through either absorp-
tion or out-scattering. Particles can be added to the phase space by in-scattering; that 
is, a particle is scattered in such a fashion that it ends up having energy in the range 
E to E + dE and is traveling in the direction Ω̂ . We need to include all three of these 
contributions to the collision term in Equation 4.31.

The macroscopic cross section, μ(
�
r , E, Ω̂ ), is defined as the probability per unit 

path length traveled that a particle at 
�
r  (with energy in the range E to E + dE, travel-

ing in solid angle dΩ centered on Ω̂ ) will have any type of interaction. We assume an 
isotropic medium, and therefore μ(

�
r , E, Ω̂ ) = μ(

�
r , E) (linear attenuation coefficient). 

The number of interactions per unit volume experienced at 
�
r by a particle of energy 

E is μ ΦΩ,E. We now define μs(
�
r , E → E′, Ω̂  →  Ω̂ ′)dE dΩ as the probability per unit 

length traveled that a particle with energy in the range E to E + dE and traveling in 
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direction Ω̂  will produce, as a result of an interaction at 
�
r , a particle (including the 

primary itself, i.e., scattering) with energy E′ traveling in direction ˆ ′Ω . The total mac-
roscopic cross section can be written as a sum of an absorption term and a scattering 
term:

 

µ µ µ
π

� � �
r E r E dE d r E Ea s, , , ,( ) = ( ) + ′ ′ → ′ → ′( )∫ ∫ Ω Ω Ωˆ ˆ .

4  

(4.32)

The μa term represents absorption. We will omit the explicit appearance of this 
term by considering absorption to be a special case of scattering with E → E′ = 0. 
Equation  4.32 represents removal of particles from phase space due to collisions. 
We can also have particles scatter in from other phase space elements, that is, μs(

�
r , 

E′ → E, ˆ ′Ω  →  Ω̂ ). The collision term in Equation 4.31 can now be written as
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where the first term on the right-hand side in Equation 4.33 represents particles scat-
tered out of the phase space element and the second term represents particles scat-
tered in. We can substitute this collision term back into Equation 4.31:

ˆ , , , ˆ ˆ
, , ,Ω Φ Φ Ω Ω Ω ΦΩ Ω Ω⋅ ∇ + ( ) = ′ ′ ′ → ′ →( ) +∫ ∫ ′ ′
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00
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(4.34)

The boundary condition at a “nonreentrant” surface is

 Φ ΩΩ, forE n= ⋅ <0 0ˆ ˆ ,  
(4.35)

where n̂  is the outward directed normal vector to the surface. Equation 4.35 simply 
states that no particles are entering from outside the surface.

Equation 4.34 is the classical form of the transport equation. It is an integro-differ-
ential equation. This equation is linear in ΦΩ,E. It is sometimes referred to as the linear 
BTE. This equation is for a single type of particle. If there are multiple species of par-
ticles, a BTE must be written for each type, including coupling terms (see Section 4.8).

The BTE has widespread application in a variety of fields. This equation is essen-
tially the same as the radiative transfer equation commonly used in astrophysics to 
calculate the spectrum of radiation that emerges from astronomical objects, such as 
stars and accretions disks. The principal application is the study of the spectrum 
of radiation that emerges from stellar atmospheres (see Mihalas, 1978) (Figure 4.6). 
Astronomical observations, combined with the theory of radiative transport, have 
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provided very detailed information about both the physical conditions and the com-
position of stellar atmospheres. The astrophysical literature pertaining to this topic is 
rich, detailed, and lengthy, extending back at least 100 years (Figure 4.7).

Equation 4.34 is the form of the BTE that we will use throughout. The divergence 
term on the left-hand side of Equation 4.30 has been written as ˆ

,Ω ⋅ ∇ Ω

�
Φ E. This is 

valid provided that Ω̂  is a constant vector.3 This is called the streaming term. It 
describes the behavior of the radiation when there is no scattering and no sources 
(streaming). The second term on the left-hand side of Equation 4.34 represents out-
scattered particles (see also Equation 4.32). The first term on the right-hand side of 
Equation 4.34 represents in-scattered particles. The second term on the right-hand 
side of Equation 4.34 represents either true creation of the particles in question or 
creation from other particles.

Equation 4.34 is very difficult to solve because of the scattering and absorption 
terms. It is generally solved numerically using a discrete coordinate grid, discrete 
directions (discrete ordinates), and discrete energies (multigroups).

One of the simplest possible solutions of Equation 4.34 is for the case in which 
there is no scattering, absorption, or sources of radiation. In this instance, the stream-
ing term in the BTE becomes

 
ˆ .,Ω ΦΩ⋅ ∇ =
�

E 0  (4.36)

Equation 4.36 implies that the differential fluence is constant along a fixed direction 
Ω̂ , as we have already deduced based on a physical argument. That is why the term 
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FIGURE 4.6 The spectrum of the bright star Vega. The dots are measurements and the solid 
curve is a “line-blanketed” model. (From Mihalas, D., Stellar Atmospheres, W.H. Freeman, 
New York, 1978.)
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on the left-hand side of Equation 4.36 is called the streaming term, because there is 
no change in ΦΩ,E in the direction of Ω̂ .

We next examine another very simple solution of Equation 4.34. Let us suppose that 
a collimated, uniform, monoenergetic photon beam is perpendicularly incident on a 
flat semi-infinite homogeneous medium with attenuation coefficient μ (Figure 4.8).

We ignore in-scattering, and therefore the integral term on the right-hand side of 
Equation 4.34 is zero. This is the case of “narrow beam geometry.” Let us also assume 
that there are no sources in the medium, and therefore S0 is zero. The energy depen-
dence is δ(E – E0), and we can integrate over the energy in Equation 4.34 to get

 
ˆ .Ω ⋅ ∇ + =Ω Ω

�
Φ Φµ 0  (4.37)

Assume that the radiation is traveling in the +z direction at z = 0. This is an axi-
symmetric problem, and therefore Φ Ω ΦΩ Ω= ′( , )

�
r zˆ ( , )θ , where θ′ is the angle between 

the z-axis and Ω̂.
Equation 4.37 becomes

 
cos ,′ + =θ µd

dz
Φ ΦΩ

Ω 0
 

(4.38)

where μ is spatially constant. The boundary condition is

FIGURE 4.7 Monograph on radiation transport written by astrophysicist and Nobel laureate 
S. Chandrasekhar (2011) and first published in 1949.
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where A is a constant. The solution of Equations 4.38 and 4.39 is
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The total fluence is

	 ΦT(z) = Φ0e–μz, (4.41)

where Φ0 = 2πA. Equation 4.41 is, of course, the well-known elementary result for 
simple exponential attenuation of a monoenergetic beam in narrow beam geometry 
(no in-scatter).

We now turn to the form of the streaming term when there is spherical symmetry—
an example of this is a spherically symmetric source of radiation. In general, ΦΩ,E 
depends on r, θ, φ, θ′, and φ′. In the case of spherical symmetry, ΦΩ,E depends only on 
r and θ′. One must use care when evaluating ˆ

,Ω ⋅ ∇ ΩΦ E in curvilinear coordinates (e.g., 
spherical). The difficulty arises because θ′ depends on θ (Figure 4.9). In the evaluation 
of the streaming term, Ω̂  is to be considered a constant vector (note the transition 
between Equations 4.30 and 4.31).

Figure 4.9 shows the geometry for the evaluation of the streaming term. The unit 
vector Ω̂  can be expressed in terms of the unit vectors shown in Figure 4.9:

 
ˆ cos ˆ sin ˆ ,Ω = ′ + ′θ θ θe er  (4.42)

where θ′ = α – θ. The orientation of Ω̂  is fixed, and therefore α is constant. The gradi-
ent operator in spherical coordinates is
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FIGURE 4.8 A monoenergetic, uniform photon beam is incident on a flat semi-infinite homo-
geneous medium. The surface of the medium lies at z = 0.
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and ∂/∂θ′ = –∂/∂θ; therefore,4
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This result will be used later.
Let us consider a limiting case in which there is a source of radiation but no particle 

interactions (no absorption or scattering). In this case, the transfer equation becomes

 
ˆ , , ˆ .,Ω Φ ΩΩ⋅ ∇ = ( )E S r E0

�
 (4.45)

We would like to find a solution of Equation 4.45 for ΦΩ,E. Examine the geometry 
shown in Figure 4.10. The left-hand side of Equation 4.45 is the derivative of ΦΩ,E in 
the direction of Ω̂ , that is, dΦΩ,E/du, where u is the coordinate distance along the 
direction of Ω̂ . To solve Equation 4.45, we need to write S0 in terms of the coordinate 
u. Examining Figure 4.10, we see that 

� �
r r u= + Ω’ ˆ , and therefore Equation 4.45 becomes

 

d
du

S r u EEΦ ΩΩ, ,= ′ +( )0
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FIGURE 4.9 The geometry for evaluation of the streaming term in spherical coordinates in 
the spherically symmetric case. The angle θ′ will change as θ changes because Ω̂  is a con-
stant vector (angle α is fixed).
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FIGURE 4.10 A source region (shaded) emits radiation. The ΦΩ,E is observed at location 
�
r.
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If there are no sources and no scattering or absorption, the derivative on the left-
hand side of Equation 4.46 is zero and ΦΩ,E is a constant along the direction of u, as we 
have seen previously. In Equation 4.46, the primed coordinate is a source coordinate 
and the unprimed coordinate is the observation coordinate. The formal solution of 
this equation is

 
Φ ΩΩ, ,E

u

S r w E dw= ′ +( )
−∞∫ 0

� ˆ ,
 

(4.47)

where w is a dummy integration variable. The physical interpretation of Equation 4.47 
is that radiation emitted from a point in the source region traveling along a line in 
the direction of Ω̂  continues to travel in that direction in the absence of scattering. If 
the line intersects the point of observation at 

�
r , then it contributes to the differential 

fluence there. The differential fluence is calculated by “looking back” from the point 
of observation along the line in the opposite direction of Ω̂  and summing up all the 
contributions along that line.

As an example of an application of Equation 4.47, let us consider a source of radia-
tion in the form of a sphere. The geometry is shown in Figure 4.11. The origin has 
been placed at the center of the sphere for convenience. Let us assume that our point 
of observation is on the z axis (which can be in any direction because of symmetry). 
Assume that S0 is spatially constant throughout the spherical volume and that par-
ticles are emitted isotropically. If N(E) dE = the number of particles emitted by the 
sphere with energy between E and E + dE, then S0(

�′r , E) is
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Referring to Equation 4.47, we have ΦΩ,E = S0u, where u is the length of the cord in 
Figure 4.11. The cord length is

R

u

z
Ω
∧

θ′

r→

FIGURE 4.11 Isotropic radiation is uniformly emitted from a spherical source region of radius 
R. ΦΩ,E is observed at 

�
r . The quantity u represents the length of a chord.
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The value of ΦΩ,E is a maximum in the direction θ′ = 0, as expected, and decreases 
to zero as θ′ → sin–1(R/r). The expression in Equation 4.49 can be integrated over all 
solid angle to give the energy fluence ΦE:
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where x = (r/R). Far away from the sphere, where x is large,

 
ΦE

N E
r

= ( )
4 2π

,
 

(4.51)

and thus the energy fluence is simply the number of particles per unit energy emitted 
divided by the surface area of the sphere, which of course is an inverse square law 
dependence (see problem 2).

4.6  PRIMARY RADIATION CONSISTING 
OF CHARGED PARTICLES

Let us look at the form of the transfer equation in the case in which the primary radia-
tion consists of charged particles.

First, we define

 

µ µ
π

s sr E E d r E E
� �
, , ,→ ′( ) = ′ → ′ → ′( )∫ Ω Ω Ωˆ ˆ .

4  
(4.52)

This quantity is the probability per unit distance traveled and per unit energy 
interval that a particle of energy E scatters and ends up with an energy E′. Note 
that this is not the same as µs r E

�
,( ). Let us look at the case where there is only one 
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kind of charged particle (e.g., electrons or protons). This implies that there is no 
secondary charged particle transport (no delta rays), and therefore we set S0 = 0 in 
Equation 4.34. Substitute the transport equation (4.34) into Equation 4.28 for the dose 
and set Q = 0:

D r EdE r E E dE dE d d r E EE s s
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Consider the second term in Equation  4.53. The integration variables E, E′, Ω, 
and Ω′ in this term are dummy variables; we may therefore switch primed and 
unprimed variables:
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Substituting this back into Equation 4.53 and adding limits of integration gives

 
D r dE E E r E E dEE s
� �( ) = − ′( ) → ′( ) ′









∞ ∞

∫ ∫1
0 0ρ

µΦ , .
 

(4.55)

The integrand of the term in square brackets in Equation  4.55 is the expected 
energy loss if the particle is scattered with final energy E′. The integral itself is the 
charged particle energy loss per unit length or the collisional stopping power of the 
medium.5 The stopping power divided by the density is the mass stopping power. 
Therefore,

 
D r S r E dEE
� �( ) = ( ) ( )

∞

∫ ρ col
Φ , ,

0  
(4.56)

where ΦE does not include the fluence of secondary charged particles (i.e., delta rays).

4.7 CSDA APPROXIMATION
One of the features of the transport equation that makes it so difficult to solve is the 
in-scattering integral expression on the right-hand side of Equation 4.34. The form of 
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μs makes evaluation of this term troublesome. It is sometimes possible to write μs in 
a form that allows simplification of the problem. It is often the case that we deal with 
problems in which collisions are very frequent and that result in small energy trans-
fers but no appreciable angular deflection. Another possibility is infrequent collisions 
that result in angular scatter but negligible energy transfer. This is the situation for 
high-energy electrons traversing matter. We can consider both of these possibilities 
by writing μs as

 
µ µ δ µ δS S SE E E E E E′ → ′ →( ) = ′ →( ) ′ −( ) + ′ →( ) ′ −( ), ˆ ˆ ˆ ˆ ˆ ˆ .Ω Ω Ω Ω Ω Ω

 
(4.57)

We have suppressed the r dependence of μs for brevity. In the case of frequent col-
lisions with small energy transfer, we can express μs in terms of a continuous slowing 
down approximation (CSDA):

 
µ δS E E

x
E E

dE
dx

x′ →( ) ≈ ′ − −





1
∆

∆ ,
 

(4.58)

where dE/dx < 0. The 1/Δx term in Equation 4.58 gives us units of probability per unit 
length. We now substitute Equations 4.57 and 4.58 into the integral on the right-hand 
side of the BTE (Equation 4.34). After a little manipulation (see problem 5), the result is

dE d r E E
x

dE
dx E

ds E E
E′ ′ ′ → ′ →( ) = + ∂

∂
+ ′∫ ∫ ′ ′Ω Ω Ω Φ

∆
Φ Φ ΩΩ Ω

Ωµ
π

�
, , ,

,ˆ ˆ
,

1

4

µµs E

�
′ →( )∫ ′Ω Ω ΦΩ

ˆ .,

 (4.59)

The second term on the left-hand side of Equation 4.34) becomes

 
µ µ�

r E
x

dE S E, , ,( ) = + ′ ′ →( )



∫Φ

∆
Ω Ω Ω ΦΩ Ω

1 ˆ ˆ .
 

(4.60)

We have assumed that µ µs s
ˆ ˆ ˆ ˆ′Ω → Ω( ) = ′Ω → Ω( ) because μs depends only on the 

scattering angle ˆ ˆ′Ω ⋅ Ω. Combining all the terms results in the BTE in the CSDA 
approximation:

 
ˆ ˆ , , ˆ
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,

, ,Ω Φ Φ Ω Ω Ω Φ Φ ΩΩ
Ω

Ω Ω⋅ ∇ = ∂
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+ ′ ′ →( ) −[ ]+ (∫ ′

� �
E

E
s E E

dE
dx E

d S r Eµ 0 )).
 

(4.61)

This eliminates the integral over energy on the right-hand side of the BTE 
(Equation 4.34).
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4.8 INDIRECTLY IONIZING RADIATION
Now let us examine a more complex case in which we have an indirectly ionizing 
radiation field consisting of neutral particles (e.g., photons or neutrons) and charged 
particles set in motion by the neutral particles (electrons, protons, etc.). Pair produc-
tion is excluded.6 We will write two coupled equations, one for the neutral particles 
and the other for the charged particles. Quantities associated with uncharged par-
ticles (photons) will have a subscript u, and quantities associated with the charged 
particles (electrons or positrons) will have subscript c. In this section, we will drop the 
subscript Ω,E in ΦΩ,E for ease of writing. The transport equations are

 
ˆ ,’Ω ⋅ ∇ + = + +Φ Φu u u u u cu ouq q Sµ  (4.62a)

 
ˆ ,’Ω ⋅ ∇ + = + +Φ Φc c c c c uc cq q Sµ 0  (4.62b)

It must be remembered that Φ is not the total fluence, but rather the differential 
fluence ΦΩ,E. We now define each one of the terms in Equations 4.62. First, we give the 
out-scattering terms for uncharged and charged particles, respectively:

 

µ µ

µ µ

u u s u u

c c s c c

dE d E E

dE d E E

= ′ ′ → ′ → ′( )
= ′ ′ → ′ → ′( )
∫ ∫
∫ ∫

Ω Ω Ω

Ω Ω Ω

,

,

ˆ ˆ

ˆ ˆ ..
 

(4.63)

Next, we give the in-scattering terms:

 

q E dE d E E

q E dE d

u u u u s u u u

c c c c

′ ′
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Ω( ) = ′ ′Ω ′ → ′Ω → Ω( )
Ω( ) = ′

∫ ∫, ,

,

ˆ ˆ ˆ

ˆ

µ Φ

′′Ω ′ → ′Ω → Ω( )∫∫ ′µs c c cE E , ˆ ˆ Φ
 

(4.64)

Finally, the terms that couple charged and uncharged particles are

 

q E dE d E E

q E dE d

cu u u c c s c u c u c

uc c c u u s

, ,

,

Ω Ω Ω Ω Φ

Ω Ω

( ) = → →( )
( ) =

∫∫
∫

µ

µ

ˆ ˆ

EE Eu c u c u→ →( )∫ , .ˆ ˆΩ Ω Φ
 

(4.65)

The first of the two equations above (4.65) describes the production of uncharged 
particles from charged particles (i.e., bremsstrahlung radiation). The second 
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equation describes production of energetic charged particles from photons, namely, 
recoil electrons resulting from Compton scattering. In Equations 4.63 through 4.65, 
μs may depend on �r .

We now wish to compute the dose. We assume that there are no sources within the 
medium (that Soc and Sou are zero; there are no radionuclides in the medium under-
going radioactive decay) and that the source of radiation is external to the medium. 
We will also ignore the Qu and Qc terms in Equation 4.28 for the dose. Under these 
circumstances, the dose is given by

 
D r E dE d E dE du u u u u c c c c c
� � �

( ) = ⋅ ∇  + ⋅ ∇ ∫∫ ∫∫1 1
ρ ρ

Ω Ω Φ Ω Ω Φ– ˆ – ˆ .
 

(4.66)

Substitution of Equations 4.62 into the dose equation (4.66) yields
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(4.67)

We have numbered the six integral terms in Equation 4.67 so that we may refer 
back to them. Let us consider terms 1 and 2 to begin with. We proceed as follows: 
Substitute Equation 4.63a into integral 1 and integrate over Ω and Ω′. Substitute 
qu′u (Equation 4.64a) into integral 2. This results in a quadruple integral over both 
primed and unprimed variables. The integration variables are dummy variables, 
and therefore they can be switched by making unprimed variables primed and 
vice versa. Then integrate over Ω and Ω′. Subtraction of integral 2 from integral 
1 yields

 
dE E dE E E E Eu u u u u u s u uΦ ( ) ′ − ′( ) → ′( )∫∫ µ ,

 
(4.68)

where: 
	Φu(Eu) is the differential energy fluence (Equation 4.21) 
 µs u uE E→ ′( )  is the probability per unit length and per unit energy interval of a 

scattering event in which the energy goes from Eu to Eu′

Following NCRP 108 (1991), we define q E Eu u u→ ′( ) as the change in rest mass 
energy after a transition in which the energy goes from Eu to ′Eu  and in which a 
secondary charged particle of kinetic energy E E qu u u– –′  is produced. The energy 
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transfer coefficient μtr(Eu) is defined as the fraction of Eu transferred to charged par-
ticles per unit distance traveled. This can be expressed as

 
µ µtr u

u
u s u u u u u u uE

E
dE E E E E q E E( ) = ′ → ′( ) − ′ → ′( ) ∫1

– .
 

(4.69)

We will neglect the qu term and use Equation 4.69 to replace the second integral 
in Equation 4.68. We also carry along the 1/ρ term from Equation 4.67. The integral 
in Equation 4.68, with correction for the rest mass energies qu, represents the sum of 
the initial kinetic energies of all the charged particles set in motion by the uncharged 
particles per unit mass. This is the kerma, which can be written as

 

K r E r E dEu u u
tr

u
� �

� ����� �����
( ) = ( )∫

−

Φ , .
µ
ρ

1 2  

(4.70)

We now turn our attention to integral 3 in Equation 4.67. If we substitute the expres-
sion for qcu (Equation 4.65) into this integral, integrate over dΩu and dΩc, and multiply 
by 1/ρ, the result is

 

1
ρ

µΦc c u s c u u c rE E E E dE dE K( ) →( ) =∫∫ ,
 

(4.71)

where μs(Ec → Eu) is the probability per unit length per unit energy that a charged 
particle will produce a photon (i.e., bremsstrahlung production) of energy Eu and 
Φc(Ec) is the differential energy fluence of charged particles. This integral repre-
sents the energy per unit mass radiated by charged particles. If we ignore second-
ary charged particles (i.e., delta rays), this is simply the radiative portion of the 
kerma.

Let us pause for a moment to consider the expression for the dose in the case 
in which CPE prevails. In CPE, the gradient of the differential fluence for the 
charged particles must be zero, that is 

�
∇ =Φ c 0 and therefore integrals 4–6 must 

algebraically sum to zero as they originate from the second term in Equation 4.66. 
We are then left with two contributions to the dose: the kerma (Equation  4.70) 
minus the radiative kerma (Equation 4.71), which is simply equal to the collision 
kerma:

 D Kc

CPE
≈ ,  (4.72)

where Kc is the collision kerma. Equation 4.72 is a result that the reader is likely to 
find familiar.
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CPE is not strictly obeyed, particularly for high-energy photon beams. Therefore, 
let us continue our evaluation of the expression for the dose without invoking this 
assumption.

Let us consider integrals 4 and 5 in Equation  4.67. We proceed as we did with 
integrals 1 and 2. Substitute Equation 4.63 into integral 4 and integrate over Ω and Ω′. 
Substitute qc′c into integral 5. Switch unprimed and primed variables, and then inte-
grate over Ω and Ω′. Subtraction of integral 5 from integral 4 yields

 

1
ρ

µΦc c c c s c c c cE E E E E dE dE( ) ′( ) → ′( ) ′∫∫ – ,
 

(4.73)

where µc c cE E→ ′( ) is the probability per unit length per unit energy of a charged par-
ticle with energy Ec undergoing a transition to a charged particle of energy Ec′. The 
second integral in Equation 4.73 is the total energy loss per unit length for charged 
particles of energy Ec—in other words, it is the stopping power (as in Equation 4.55). 
Equation 4.73 can therefore be written

 
Φc c tot cE S dE( )( )∫ ρ .

 
(4.74)

This term represents the total energy per unit mass lost by charged particles.
The last term that we need to evaluate in Equation 4.67 is integral 6. Proceed as 

before by inserting the expression for quc (Equation 4.65) into integral 6 and then inte-
grating over dΩc and dΩu, which results in

 

1
ρ

µΦu u c s u c c uE E E E dE dE( ) →( )∫∫ .
 

(4.75)

This is the total initial energy per unit mass of charged particles set in motion 
by uncharged particles (e.g., by Compton scattering) or the total kerma again. 
Adding all six integrals (algebraically) in Equation 4.67 for the dose leaves a net 
contribution of

 
D r S E dEc c c
�( ) = ( ) ( )∫ ρ col

Φ ,
 

(4.76)

which is the same as Equation 4.56. This shows that the charged particles deposit the 
dose. Uncharged particles set charged particles in motion, and it is ultimately these 
charged particles that deposit energy.
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4.9 EFFICACY OF BTE-BASED DOSE CALCULATIONS
In this section, we will describe ACUROS®, a commercial treatment planning system 
dose computation algorithm based on the BTE. There are two versions of the ACUROS 
algorithm: ACUROS XB, for external beam, and ACUROS BV, for brachytherapy dose 
calculations. These BTE algorithms are offered as an option for the Varian Eclipse 
treatment planning system. The ACUROS XB algorithm received Food and Drug 
Administration (FDA) 510(k) clearance in late 2010. Commercial dose calculation algo-
rithms have achieved a high level of accuracy over the last 10 years. In order to suc-
ceed, new algorithms need to be (1) more accurate, (2) faster, and/or (3) cheaper.

For Monte Carlo calculations, each individual particle is followed as it traverses 
the material, until the energy of the particle falls below some negligible value. To 
obtain reasonable average values, it may be necessary to follow hundreds of millions 
of particle histories. The BTE approach is free from statistical noise, and “small per-
turbations can be rapidly assessed.” In addition, it requires much less CPU time. Even 
under ideal circumstances, Monte Carlo stochastic errors result from the simulation 
of a finite number of particles. In grid-based BTE algorithms, errors are due to (1) 
approximations made to the BTE and (2) errors introduced by the numerical solution.

Calculation times for BTE algorithms are only weakly dependent on the number of 
beams, whereas convolution/superposition algorithm computation times scale linearly 
with the number of beams. In BTE algorithms, the time for building the source model 
for all beams is proportional to the number of fields, but the rest of the calculation is 
not. BTE-based algorithms may therefore hold a significant speed advantage for arc 
therapy (e.g., volumetric modulated arc therapy [VMAT], see below) (Bush et al., 2011).

This description of the ACUROS (hereafter AXB) algorithm is from the paper by 
Vassiliev et al. (2010). We have converted their notation so that it is consistent with the 
notation used here. We have again dropped the Ω,E subscripts for economy. Note: Φ 
is not the total fluence here, but ΦΩ,E.

We start with the transport equations in the form

 Ω̂ ⋅∇ + = +′Φ Φu u u c c uq Sµ 0  (4.77)

 
ˆ – ,Ω Φ Φ Φ⋅ ∇ + ∂

∂
( ) = + +′c c c r c c c uc oc

E
S q q Sµ

 
(4.78)

where Sr is the restricted collisional plus radiative stopping power. Equation 4.78 is 
the CSDA version of the charged particle Equation 4.62b.

Some of the assumptions built into these equations are

 1. For pair production, the secondary particles are both assumed to be electrons 
instead of an electron and a positron. This avoids the need for a separate trans-
port equation for the positrons.
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 2. Partial coupling is assumed between photons and electrons. Photons pro-
duce electrons, but electrons do not produce photons (qcu in Equation 4.62 is 
neglected). That is, there is no bremsstrahlung. The energy from photons pro-
duced by electrons is assumed to be deposited locally (not carried away by a 
bremsstrahlung photon).

The dose is given by

 

D dE d
r E

r EED
e

c= ( ) ( )
∞

∫ ∫
0 4

ˆ ,
, , ˆ ,Ω Φ Ω

π

σ
ρ

�
�

 

(4.79)

where σED
e  is the macroscopic energy deposition cross section in units of MeV/cm. 

This would appear to be related to the collisional stopping power (see Equation 4.55).
The photon sources incident on the patient are represented as point sources located 

at the treatment head target and possible other places to represent photon scatter, 
such as the flattening filter. In this case, the source term in Equation 4.77 can be writ-
ten as S q E r rou u p= Ω( ) ( ), ˆ –δ � � , where 

�
rp  is the location of the source. Further details of 

the implementation of Equations 4.77 and 4.78 can be found in Vassiliev et al. (2010).
A comprehensive review of the published assessments of the accuracy of BTE dose 

calculations is provided by Kan et al. (2013). We will describe three of these: Vassiliev 
et al. (2010), Bush et al. (2011), and Han et al. (2013).

Vassiliev et al. have tested the AXB algorithm against a Monte Carlo algorithm 
(based on EGSnrc) for both 6 and 18 MV beams. Two phantoms were used for this 
purpose: a slab phantom containing layers of “tissue,” bone, and lung material and 
an anthropomorphic breast phantom. Details of the Monte Carlo statistical error are 
given in the paper. For the slab phantom, in locations where the dose is >10% of the 
maximum dose, the agreement between AXB and Monte Carlo (hereafter MC) is 
within 2% or 1  mm distance to agreement. For the breast phantom, the AXB dose 
agreed with MC to within 2% or 2 mm distance to agreement for 99.9% of voxels with 
a dose > 10% of the prescribed dose. All AXB beam calculations took less than 5 min 
on a workstation with two dual-core AMD Opteron processors.

Figure 4.12 shows the dose along the central axis from Vassiliev et al. (2010) for an 
18 MV beam in the slab phantom. AXB appears to accurately handle interfaces between 
media.

Figure 4.13 shows a dose profile comparison for the breast phantom.
Bush et al. (2011) have studied the accuracy of AXB for single 6 and 18 MV beams 

in homogeneous and heterogeneous media. Calculated doses have been compared to 
measurements, the analytic anisotropic algorithm (AAA) (a pencil beam algorithm; 
see Chapter 3), and MC calculations using BEAMnrc/DOSXYZnrc. Open field mea-
surements in a homogeneous phantom show agreement with AXB calculations “to 
within ±1.9% in the inner field region for all field sizes and energies” (Bush et al., 
2011, p.  2208). AXB dose calculations in a heterogeneous interface phantom agree 
with MC within ±2% in lung (ρ = 0.24 g/cm3) and within 3% in low-density lung 



 198      Tutorials in Radiotherapy Physics: Advanced Topics with Problems and Solutions

0

D
os

e,
 G

y⋅
 c

m
2 /M

eV

5 10 15
Depth, cm

Lung WaterWater
0

0.5

1

1.5

2

2.5

3

Shifted

Shifted

Acuros
Monte Carlo

×10–12

Bo
ne

20 25 30

FIGURE 4.12 Validation of the ACUROS BTE algorithm against a Monte Carlo calculation as 
reported by Vassiliev et al. (2010). This is the dose per unit energy fluence along the central 
axis for an 18 MV beam incident on a slab phantom with inhomogeneous slabs as labeled. 
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ease of visualization. (From Vassiliev, O.N., et al., Phys. Med. Biol. 55, 581–98, 2010, figure 2.)
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FIGURE 4.13 Validation of the ACUROS BTE algorithm for a breast phantom. The isocenter is 
at the intersection of the two green lines. The dose profile on the right shows the agreement 
between AXB and MC along the green line in the anterior and posterior direction. We presume 
this is for a 6 MV beam arrangement. (From Vassiliev, O.N., et al., Phys. Med. Biol. 55, 581–98, 2010, 
figures 4.8 and 4.10.)
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(ρ = 0.10 g/cm3). In contrast to this, the AAA algorithm exhibited differences of up to 
10% and 18%, respectively, in lung and low-density lung.

Figure 4.14 shows the Bush et al. (2011) comparison between an 18 MV (4 cm × 4 cm) 
beam dose calculation using MC, AXB, and AAA. The phantom used for these calcu-
lations is illustrated in Figure 4.15.

It is reported that AAA is a fast pencil beam algorithm. Hasenbalg et al. (2007) 
report AAA to be 7–11 times faster than collapsed cone convolution. The time 
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FIGURE 4.14 A 4 cm × 4 cm, 18 MV beam dose comparison between ACUROS XB, Monte 
Carlo (BEAMnrc), and a superposition/convolution algorithm (AAA) in a heterogeneous 
phantom (see Figure 4.15). The three columns show comparisons for three different hetero-
geneities: lung (ρ = 0.24 g/cm3), low-density lung (ρ = 0.10 g/cm3), and air. The top row shows 
depth–dose curves along with curves showing differences between the algorithms. The bot-
tom row shows profiles above, in, and below the heterogeneous layer. Although perhaps not 
clinically relevant, the air cavity AAA dose shows deviations of up to 50% with respect to 
the MC calculations. The accuracy of ACUROS XB is much better. (From Bush, K., et al., Med. 
Phys. 38(4), 2208, 2011, figure 6.)
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required for the AXB dose calculation of a static 10 cm × 10 cm 6 MV field with a 
2 mm × 2 mm × 2 mm dose grid was 110 s on a Dell T5500 with dual Xeon quad-core 
CPUs. The equivalent calculation for the AAA algorithm took 8 s (Bush et al., 2011).

Convolution superposition algorithms are least accurate for high-energy narrow 
beams and for regions near water density and low-density interfaces. Bush et al. 
(2011, p. 2208) conclude that “the Acuros® XB algorithm is capable of modeling radio-
therapy dose deposition with accuracy only previously achievable with Monte Carlo 
techniques.”

Han et al. (2013) have compared IMRT and VMAT dose measurement in the 
Radiological Physics Center (RPC, known as IROC) thorax phantom with calculations 
using the AXB and AAA algorithms. Dose was measured using thermoluminescent 
dosimeters (TLDs) and Gafchromic film. The results are summarized in Table 4.1. 
Differences of up to 8% were found at lung–soft tissue interfaces.

Figures 4.16 and 4.17 are from Han et al. (2013) and show a gamma analysis com-
parison between AXB and AAA for 6 MV, RPC lung phantom plans for IMRT and 
VMAT, respectively.
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7 
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FIGURE 4.15 Phantom in which depth–dose curves and profiles have been computed for the 
purpose of comparing the ACUROS XB, AAA, and Monte Carlo dose calculation algorithms. 
The depth–dose curves and profiles are shown in Figure 4.14. Calculations were performed 
for low-density inserts of lung (ρ = 0.24 and 0.10 g/cm3) and air. (Based on Bush, K., et al., Med. 
Phys. 38(4), 2208, 2011, figure 2.)

TABLE 4.1 Calculated (AXB and AAA) vs. Measured 
Doses
Comparison Method AXB AAA
TLD 0.4%–4.4% 2.5%–6.4%
γ index (±3%/3 mm) 97%–98% 94%

Source: Han, T., et al., Med. Phys. 40(5), 2013, 051710-1–051710-11.
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FIGURE 4.16 Gamma analysis comparison between dose measurements and ACUROS XB 
(AXB) and the AAA algorithm for a 6 MV IMRT plan in the RPC lung phantom. Dw,m and 
Dm,m represent dose to water in the medium and dose to the medium in the medium. (From 
Han, T., et al., Med. Phys. 40(5), 2013, fig. 6.)
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FIGURE 4.17 Gamma analysis comparison between dose measurements and ACUROS XB 
and the AAA algorithm for a 6 MV VMAT plan in the RPC lung phantom. The Dw,m and 
Dm,m represent dose to water in the medium and dose to the medium in the medium. (From 
Han, T., et al., Med. Phys. 40(5), 2013, fig. 6.)
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A comparison was made between the calculation times for AAA and AXB running 
on a Dell T5500 with dual 2.27 GHz quad-core Intel processors (64 bit, Windows 7). 
Table IV of Han et al. (2013) shows that the AAA algorithm required about 0.8 min 
for an IMRT plan. This is to be compared to 2.5 min for the AXB calculation. This is 
dose calculation time and does not include optimization. For VMAT plans, the time 
ratio is more than reversed, with AAA requiring 16 min and AXB taking about 4 min.

In summary, AXB rivals the accuracy of MC calculations and may be significantly 
more accurate than pencil beam algorithms near interfaces between unit density and 
low-density tissue, particularly for high energies and small field sizes. AXB calculations 
are significantly faster than pencil beam computations for VMAT and may therefore hold 
a decided advantage in both speed and accuracy for VMAT lung treatment planning.

4.10  FERMI–EYGES THEORY AND ELECTRON 
PENCIL BEAM DOSE CALCULATIONS

In this section, we derive the Fermi–Eyges equation that is the basis for the electron dose 
calculations used by some commercial treatment planning systems.7 We assume an elec-
tron pencil beam traveling in the +z direction and that scattering is through small angles. 
This is reasonable, as the vast majority of interactions are soft collisions. The derivation 
here relies heavily on “Notes 8” found on the web (any errors are my responsibility).

Fermi lectured on this topic in 1940 in the context of the investigation of cos-
mic rays. His intent was to study charged particle transport in the atmosphere. He 
assumed that the particles did not undergo any energy loss. Apparently, Fermi did 
not feel that this research was significant enough to even bother publishing. Perhaps 
what others would have considered a major accomplishment, Fermi felt was obvious 
and trivial. The theory was extended by Eyges in 1948 to include energy losses.

We begin with the BTE in the form (Equation 4.34) with no absorption and no sources. 
We also neglect energy losses, in which case, µ µ δs sr E E r E E( , , ) ( , ) ( )

� �
′ → → ′ = → ′ ′ˆ ˆ ˆ ˆ –Ω Ω Ω Ω  

and so on:8
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(4.80)

In this section, we will hereafter drop the Ω subscript on Φ.
We define projection angles θx and θy as the scattering angles projected onto the x-z 

plane and the y-z plane, respectively (Figure 4.18):
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We assume that the scattering angle θ′ is small, and therefore the streaming term 
becomes

 

ˆ .Ω Φ Ω Φ Φ Φ⋅ ∇ ≈ ′ ∂
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(4.82)

Now let us look at the right-hand side of Equation 4.80. The quantity: 
dΩ′ = sin θ′ dθ′ dφ′ ≈ θ′ dθ′ dφ′ ≈ dθx dθy – φ′ dθx dθx + … ≈ dθx dθy (φ′ « 1).

Let us write ˆ ˆ′Ω = Ω +
�
ξ, and it can be shown that θx ≈ ξx and θy ≈ ξy, and therefore 

dθ xdθy ≈ dξx dξy. The quantity μs depends only on the angle of scattering and conse-
quently µ µ µ ξs s sr r r( , ) , ( , )

� � � �ˆ ˆ ( ˆ ˆ )Ω → ′Ω = ′Ω → Ω = . We can now write the transport equa-
tion as
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We can expand Φ
� �
r ,Ω̂ +( )ξ  to second order in powers of the small quantities ξx and 

ξy as follows:
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We note that ∂ ∂Ω ≈ ∂ ∂Φ Φ/ /x xθ , ∂ ∂Ω ≈ ∂ ∂Φ Φ/ /y yθ  and so forth. We now substi-
tute Equation 4.84 into Equation 4.83. The terms in the integral in Equation 4.83 that 
are linear in ξx or ξy are odd functions (this also includes the ξx ξy term), and therefore 
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FIGURE 4.18 The geometry for the derivation of the Fermi–Eyges equation from the BTE. A 
pencil beam of electrons travels upward along the –z axis and scatter through an angle θ′ and 
φ′. The scattering angle θ′ is small despite the fact that it is not shown that way in the diagram. 
The projected angles θx and θy are defined in Equation 4.81.
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the integrals of these terms are zero. The integrals involving ξx
2  and ξy

2  have the same 
value because of symmetry. Equation 4.83 can now be written as
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′Ω ≈( )z 1 . We now define the scattering power:

 
T z ds( ) = ′ ′( ) ′Ω∫θ µ θ2 ;

 
(4.86)

it is related to the mean of the square of the scattering angle per unit length, and 
it is a measure of the ability of the medium to scatter electrons. The units of T are 
radian2/cm. From Equations 4.81, we can see that θ θ θx y

2 2 2+ ≈ ′ . The mean values of θx
2  

and θy
2  are equal, and therefore Equation 4.85 becomes
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The scattering power T depends on the electron energy and therefore depth z in 
the medium. Equation 4.87 is the Fermi–Eyges equation.9

The Fermi–Eyges equation is symmetric with respect to x and y, θx and θy; there-
fore, let us concentrate on the solution in the x-z plane:
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The differential fluence is now a function of z, x, and θx. The quantity Φ(z, x, θx) 
dx dθx is the number of particles at depth z with lateral displacement between x and 
x + dx traveling at an angle between θx and θx + dθx.

Before we discuss the solution of Equation 4.88, we pause to consider the angular 
scattering power (Equation 4.86) in more detail. The mass angular scattering power 
is the scattering power divided by the density, that is, T/ρ. This quantity is often 
written as dθ2/ρds, and the units are radian2 cm2/g. The mass angular scattering 
power is proportional to atomic number, and it varies approximately as the inverse 
square of the kinetic energy for kinetic energy that is large compared to 0.5 MeV 
(Podgorsak, 2010). Li and Rogers (1995) have compiled values of T/ρ as a function of 
energy for a variety of materials.

These values of T are plotted in Figure 4.19 for water for energies ranging from 
0.5 to 20 MeV. For 5 MeV electrons in water, T = 0.28 cm–1. It is clear from the log-log 
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plot of Figure 4.19 that T follows a power law in E. The best fit to these data (the line 
in Figure 4.19) is T = 3.72 E–1.65, where E is in units of MeV and T is in units of cm–1.

Eyges (1948) has solved Equation 4.88 using the method of Fourier transforms:
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where
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This solution can be verified by substitution into Equation 4.88 (see problem 6). In 
the case for which T(z) = T0 (a constant),
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Equation 4.89 for Φ can be written as the product of two Gaussians:
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(4.92)

0.01

0.1

1

10

100

0.5 5.0 Energy (MeV)

Scattering power
water

T
(cm–1)

FIGURE 4.19 A plot of log T vs. log E for water for energies from 0.5 to 20 MeV. Values of T 
(data points) are from Li and Rogers (1995). The line shows a power law fit to the data over 
this range in energy: T = 3.72 E–1.65. Units of T are cm–1.
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where
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This is not quite a clean separation of variables into a product of a function of x 
and a function of θx because θp depends on x. The first Gaussian in the product of 
Gaussians in Equation 4.92 is independent of θx, and it describes the distribution of 
the fluence in the x direction with a width related to the standard deviation 2 2A z( ) . 
For any particular point in the medium (x, z), the angular dependence is described by 
the second Gaussian, with standard deviation of σθx

 centered around a most probable 
angle θp. Figure 4.20 illustrates these dependencies.

The total fluence may be calculated as follows:

 
Φ ΦΩT x y x yx y z z x y d d, , , , , , .( ) = ( )

−

+

−

+

∫∫ θ θ θ θ
π

π

π

π

 
(4.94)

Because of symmetry in the x-y plane, the integral over θx and the integral over θy 
are identical. The integral over θx is
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FIGURE 4.20 The differential fluence resulting from a pencil beam of electrons incident on 
a water phantom at (x, y, z) = (0, 0, 0) traveling in the +z direction. The differential fluence 
distribution is a (quasi) Gaussian (see Equation 4.92) in the lateral direction with standard 
deviation increasing with depth. The angular distribution is also Gaussian around a central 
value θp, the most probable direction. The value of θp is proportional to the value of x.
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where erf represents the error function. For a discussion of the properties of the error 
function, see Section 5.2. In the literature, it is assumed that the arguments of the 
error functions in Equation 4.95 are large (compared to 1) and positive (Jette, 1995). In 
this case, the term in the square brackets in Equation 4.95 will reduce to 2, and thus
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It is not hard to see that in three dimensions (complete symmetry between x and 
y), the total fluence may be expressed as
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The integral of ΦT in Equation 4.97 over the entire x-y plane represents the total 
number of particles at any depth:
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This presents a problem for the Fermi–Eyges theory in that the number of particles 
is independent of the depth regardless of the functional form of A2(z). There is no 
absorption built into the Fermi–Eyges theory. If this is to be applied to electron beam 
dose calculations, it will be necessary to force the electrons to have a finite range.

For T(z) = constant in Equation 4.97, the limit in which z → 0 is
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The pencil beam is a delta function in x and y at the surface, as we expect.
Figure  4.21 shows the spatial distribution of the fluence for a pencil beam 

(Equation 4.97). It is assumed that T0 = 0.7 cm–1 (a constant). The fluence has a charac-
teristic teardrop shape.

Let us assume that a broad electron beam consists of a sum of pencil beams of 
the type shown in Figure 4.21 incident upon a medium. At any particular depth, the 
energy of the electrons falls within a fairly narrow range (except perhaps at the end 
of the range), and the stopping power is relatively insensitive to the energy; therefore, 
the dose (per electron) from a single pencil beam is given by
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(4.100)
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where: 
 Sρ is the (restricted) mass collision stopping power (see Equations 4.55 and 4.56) 
 E(z) is the mean electron energy at depth z (see Equation 4.101)

The mean energy at depth z is given by

 
E z E

z
Rp

( ) 







= 0 1 – ,

 
(4.101)

where: 
 E0 is the incident energy 
 Rp is the practical range (Khan and Gibbons, 2014)

The dose calculated using Equation 4.100 does not take account of secondary elec-
trons (delta rays) or any x-ray contamination of the beam.

We can calculate the dose distribution for a broad beam normally incident on a 
phantom (with no angular divergence in the incident beam) by summing parallel pen-
cil beams over the beam cross section:
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where ΦT(x′, y′, 0) is the incident fluence. For numerical implementation in a treatment 
planning system, the double integral in Equation 4.102 would be replaced by a double 
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FIGURE 4.21 The spatial distribution of the pencil beam fluence (Equation 4.97) as a density 
plot (like radiographic film). We have assumed that T(z) is constant and has a value of 0.7 radi-
ans2/cm. The fluence has a characteristic teardrop shape. The width of the teardrop increases 
with increasing scattering power. Units are in cm.
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summation over x′ and y′. For a perfectly flat beam (incident fluence independent of 
off-axis position) with field size L × W (at the surface),
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where ΦT(0) is the incident fluence. The integral in Equation 4.103 can be carried out 
analytically, and the result is
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We note that the introduction of beam divergence here (Equation  4.105) is not 
totally consistent with the previous assumption of parallel, perpendicularly incident 
pencil beams.

The function A2(z) plays an important role in Equation 4.104. The value of A2(0) = 0. 
This is not surprising, as the pencil beam is a delta function at the surface. We can 
calculate values of A2(z) by using Equation 4.90 along with the approximate expres-
sion for T(z) = 3.72 E–1.65 obtained from the fit in Figure 4.19. A plot of 2√A2 versus z/Rp 
appears in Figure 4.22. This plot is not expected to be valid near z/Rp = 1, as the fit to 
T(z) is only valid down to an energy of 0.5 MeV.

Let us examine the properties of Equation 4.104. For values of |x| > 2, erf(x) has 
a constant value of 1.000 (or –1.000 if x < 0) to within 0.5% or less (see Figure 5.2). 
In Equation 4.104, the error function terms involving x have a value of 1.000 ± 0.005 
except in the regions L/2–2√A2 < x < L/2 + 2√A2 and –L/2 – 2√A2 < x < –L/2 + 2√A2. 
These are the penumbral regions. A similar statement holds for the y-dependent 
terms in Equation 4.104. As we have seen in Figure 4.22, the value of 2√A2 is less 
than a few centimeters, and therefore 2√A2 is generally small compared to L/2 
or W/2.
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For this reason, Equation 4.104 can be written approximately in terms of the central 
axis depth dose D0(0, 0, z):
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The region over which erf ≈ 1 in Equation 4.106 is the umbral region of the dose 
distribution. Equation 4.106 is expected to be a fairly good approximation except for 
small field sizes in which the dose distribution is completely penumbra.

In implementations of the Fermi–Eyges pencil beam in treatment planning sys-
tems, the values of D0(0, 0, z) are taken from measured central axis depth dose data. 
Equation 4.106 assumes that the incident fluence is uniform across the cross section 
of the beam (i.e., Φ(x′, y′, 0) = Φ0) in Equation 4.102. This assumption can clearly be 
relaxed in a numerical implementation of this scheme.

An isodose plot of the dose given by Equation 4.106 is shown in Figure 4.23 for 
a 10 × 10 electron beam in which T0 is assumed constant with a value of 0.7 (as in 
Figure 4.21), and D0(0, 0, z) is replaced by a measured depth–dose curve for a 10 MeV 
electron beam. The value T0 = 0.7 gives a penumbra of about 10 mm, close to mea-
sured values. Figure  4.24 (to be compared to Figure  4.23) shows the isodose lines 
calculated using the Philips Pinnacle treatment planning software. The simple dose 
calculation model of Figure 4.23 is surprisingly realistic. It shows the characteristic 
behavior of low-energy electron beams in which the high isodose lines (e.g., 90%) are 
pinched inward and low isodose lines bulge out. For more accurate examples, see the 
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FIGURE 4.22 A plot of 2√A2 (in units of cm) as a function of z/Rp for electrons in water with 
incident energies 4, 10, and 20 MeV. The value of 2√A2 is generally less than a few centimeters 
over the energy range of interest in radiation therapy.
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paper by Hogstrom et al. (1981). For a discussion of how tissue inhomogeneities affect 
this, see Hogstrom et al. (1981).

We can inquire about the length of the side of the equivalent square, X, for a 
rectangular field of dimensions L  ×  W. The condition for the equivalent square is 
Drect(0, 0, z) = Dsquare(0, 0, z). Let us assume that the equivalent square has a side length of 
X; from Equation 4.106, this condition requires that
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FIGURE 4.23 A calculated dose distribution based on Equation 4.106 showing isodose lines 
ranging from 90% down to 10% for a 10 cm × 10 cm, SSD = 100 cm, 10 MeV electron beam 
based on the assumptions described in the text. It is assumed that T(z) has a constant value 
of 0.7 and that the incident fluence is uniform. The appearance is surprisingly realistic given 
these artificial assumptions. High-value isodose lines (such as 90%) are pinched inward and 
low-value isodose lines (10%) bulge out.
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FIGURE 4.24 A Philips Pinnacle treatment planning system calculation of a 10 cm × 10 cm, 
SSD = 100 cm, 10 MeV electron beam dose distribution in a water phantom. This is to be 
compared to Figure 4.23, which shows a dose distribution calculated using Equation 4.106.
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As A2 depends on z, there is, strictly speaking, no equivalent square; however, 
notice that

 
D z D z D zL W L L W W× × ×( ) = ( ) × ( ) 0 0 0 0 0 0

1 2
, , , , , , .

/

 
(4.108)

This is the well-known square root rule (see Khan and Gibbons, 2014). Equation 4.108 
is quite useful for evaluating electron cutouts. For an irregularly shaped field, one 
makes a rough estimate of the dimensions of the equivalent rectangular field (L × W). 
From this and a table of cutout factors for square fields (L × L and W × W), the cutout 
factor for the irregularly shaped field can be estimated.

The Fermi–Eyges theory has been applied to the calculation of electron dose dis-
tributions by Brahme et al. (1981), Hogstrom et al. (1981), Jette et al. (1983), and others. 
This has been extended to layered homogeneous media and arbitrary field shapes. It 
is not surprising that there are limitations to the accuracy of the electron dose calcu-
lations described here. Near the end of the electron range, the scattering angles are 
expected to become large and electron transport is expected to become a diffusive 
process. This theory also has difficulty dealing with localized inhomogeneities. The 
Philips Pinnacle treatment planning system uses the Hogstrom pencil beam model, 
although the details of the implementation are not public (Philips Medical System, 
2013).

4.11 CONCLUSION
The BTE is a deterministic integro-differential equation for the differential fluence of 
a radiation field. The differential fluence can be used to derive the dose distribution. 
The BTE is no less fundamental than Monte Carlo calculations, and it is not subject 
to stochastic variations. The BTE rivals Monte Carlo algorithms for accuracy, and it 
is faster. The BTE dose calculation option in the Varian Eclipse treatment planning 
system is more accurate than simple implementations of superposition algorithms. 
The BTE is faster than superposition algorithms for VMAT. The BTE can be used to 
derive the Fermi–Eyges electron transport equation. This electron transport model is 
used for electron dose calculations in some commercial treatment planning systems.

PROBLEMS
 1. Derive Equation 4.28 for the dose from Equation 4.26.

 2. Derive the energy fluence equation for a point source from the integral in 
Equation 4.50. Far away from the source or when the source is small use the 
approximation that sin θ′ ≈ θ′ in the integral in Equation 4.50.
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 3. Calculate ΦΩ,E on the axis of symmetry at a distance d from a thin disk source of 
radius R and thickness h that radiates isotropically with N(E) dE = total number 
of particles having energy between E and E + dE emitted. Find the total fluence  
ΦT and show that when the distance from the disk is large, it acts like a point 
source.

 4. a.  Verify that Equation 4.49 for ΦΩ,E for a spherically symmetric source obeys 
the equation ˆ

.Ω ⋅ ∇ =Ω

�
Φ E 0.

 b. Make a plot of ΦE (4πR2/N) versus (r/R) for the spherical source of Figure 4.11. 
On the same graph, also plot this quantity for a point source. Use a domain 
of 1 < (r/R) < 2.

 5. Derive Equation 4.59 using Equations 4.57 and 4.58.

 6. Show that the solution to the Fermi–Eyges equation (4.88) is given by Equations 4.89 
and 4.90. Hint: You will need to use the Liebnitz rule for differentiation:
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 7. Find an expression for σθx
2  and θp for the case in which T = T0 (a constant).

 8. Show that when T = T0, a constant (no energy loss), the solution to the Fermi–
Eyges equation (4.88) is given by

 Φ z x
Tz Tz

x
z

x
z

x x x, , expθ
π

θ θ( ) = − 



 − 



 +









2 3 4

3 32

3
2









 9. Set up an Excel spreadsheet to plot an electron beam profile (Equation 4.106) 
using T0 = 0.5 at a depth of z = 3 cm for a 10 cm × 10 cm field with SSD = 100 cm. 
Estimate the penumbra width (80%–20%).

 10. a.  Calculate the dose distribution on the central axis for a circular electron 
beam of radius R that is perpendicularly incident on a large water phantom. 
Use Equation 4.102 and assume that the incident beam profile is completely 
“flat” (incident fluence is independent of lateral position). Assume that Sρ(z) 
is constant with depth (a fairly reasonable approximation).

 b. Discuss the form of the resulting expression for the depth dose. Is it 
realistic?
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SYMBOLS

An(z) Parameter that appears in solution to Fermi–Eyges equation
B(z) Parameter that appears in solution to Fermi–Eyges equation
D Absorbed dose
d(x, y, z) Dose from a single electron pencil beam per electron
ˆ , ˆ , ˆe e er θ ϕ Unit vectors in spherical coordinates
E Kinetic energy
E0 Initial incident electron energy
K Kerma
Kc Collision kerma
L Length of an electron field at the surface
L(z) Length of rectangular cross section electron beam
m Mass
N(E) Number of particles per unit energy interval

n̂ Unit normal vector to a surface
N0 Total number of particles
Q Change in rest energy
qu Change in rest mass energy after scattering event in which a charged 

particle is produced with kinetic energy E E qu u u– –′

quu′ Scattering of uncharged particle
qc′c Scattering of charged particle
qcu Production of uncharged particle from charged particle
quc Production of charged particle from uncharged particle�
r Position vector
r Radial coordinate
R Radius of sphere
Rp Electron practical range
S Stopping power (total)
Sρ Mass stopping power
So Source of particles
SSD Source-to-surface distance
t Time
T(z) Scattering power
u Coordinate distance along direction Ω̂
�
v Velocity
V Volume
W Width of an electron field at the surface
X Length of the side of the equivalent square of an electron field
z Depth in the medium
εtr

n Net energy transferred to charged particles from uncharged 
particles
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ˆ ( , )Ω ′ ′θ φ Unit direction vector

Φ ΩΩ, ( , , )E r E
� ˆ Differential fluence

ΦT r( )
�

Total fluence
ΦE r E( , )
�

Differential energy fluence
ΦΩ Ω( , )
�
r ˆ Differential angular fluence

Ψ( )
�
r Energy fluence

ΨE r E( , )
�

Differential energy fluence
dS
�

Area element
µ( , )
�
r E Attenuation coefficient�

ξ Difference vector between initial and scattered directions of particles
σθx Standard deviation of angular dependence of differential fluence in 

solution of Fermi–Eyges equation
(Sρ)col Collisional mass stopping power
(Sρ)rad Radiative mass stopping power
ɛ Mean absorbed energy
ɛtr Energy transferred to charged particles
θp Most probable angle in differential fluence solution to Fermi–Eyges 

equation
θx, θy Projection of scattering angle onto x-z and y-z planes, respectively
θ′ Direction coordinate
μa Absorption portion of attenuation coefficient
μs Scattering portion of attenuation coefficient
μtr/ρ Mass energy transfer coefficient
φ′ Direction coordinate
dΩ Differential element of solid angle
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ENDNOTES
 1. Varian Eclipse ACUROS XB Advanced Dose Calculation.
 2. All the quantities in this section refer to a particular type of particle rather than all types of 

particles, as in the previous section.
 3. Note that the vector ˆ ˆ ˆ ˆΩ Ω Ω Ω= + +r re e eθ θ ϕ ϕ, where Ωr and so on are constants (inde-

pendent of θ and φ), is not a constant vector.
 4. Note that there appears to be a sign error for this expression in Equation 6.28 of NCRP 

(1991).
 5. The probability of scattering becomes zero when E′ > E.
 6. We invite the ambitious reader to generalize the discussion here to include this.
 7. There does not appear to be a consensus on the pronunciation of Eyges. One possibility 

is that Eyges rhymes with egregious.
 8. The reader may notice a rather conspicuous contradiction. We stated that Eyges extended 

Fermi’s analysis by including energy losses. Energy losses will be put back in later in 
(what appears to this author) a non-self-consistent fashion.

 9. The energy dependence has now crept back in, in a somewhat arbitrary fashion.
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5
TUMOR CONTROL 

AND NORMAL TISSUE 
COMPLICATION 

PROBABILITY MODELS IN 
RADIATION THERAPY

A model is a lie that helps you see the truth.

—Howard Skipper

5.1 INTRODUCTION
Absorbed dose is a physical quantity that is at best a surrogate for treatment outcome. 
What really matters to patients is the likelihood that their tumor will be eradicated 
and the chance of complications. There are a variety of biological indices that address 
the issue of outcome, such as tumor control probability (TCP), normal tissue com-
plication probability (NTCP), probability of uncomplicated control, and equivalent 
uniform dose (EUD). It is to be noted that local tumor control is a necessary but 
insufficient condition for successful treatment, and therefore TCP is perhaps overem-
phasized. Local tumor control is only of palliative benefit if the patient succumbs to 
distant metastasis.

Biological treatment indices are based on two types of models: mechanis-
tic models and empirical models. Empirical models are based on mathematical 
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functions that are simply fit to observed data. One of the difficulties associated 
with this is that observed data at high complication probability are rare, as, of 
course, complications are assiduously avoided. Empirical models offer no guar-
antee that the probabilities are accurate outside the range of measured values. 
The mechanistic models are based on cell survival (the linear quadratic model), 
tissue architecture, and probability theory. These models have a number of free, 
unknown parameters.

Physicists like to play with mathematics, and therefore there is sometimes a ten-
dency to take mechanistic models too seriously. The reason for this is that mathemat-
ics is an extremely effective tool for physicists. In fact, it is the language of physics. 
Eugene Wigner (1960), one of the great theoretical physicists of the twentieth cen-
tury, has written on the “unreasonable effectiveness of mathematics.” Biological sys-
tems are extremely complex. Mathematical descriptions of physical systems are often 
based on derivations from first principles. Physical systems are generally simpler, 
and therefore mathematical descriptions of them can be extraordinarily accurate. The 
medical physicist Goitein (2008) has commented on this. He feels that medical physi-
cists take mechanistic models too seriously and radiation oncologists do not take 
them seriously enough.

Biological indices are based on numerous assumptions and simplifications. 
Therefore, they should all be taken with a giant grain of salt. They are gener-
ally not very accurate in making absolute outcome predictions. One may therefore 
wonder why we bother with them. It is because they may be of use in comparing 
rival treatment plans when there is no clear dosimetric preference. Biological models 
are not yet widely used clinically, although a task group report from the American 
Association of Physicists in Medicine (AAPM) on clinical application has appeared 
within the past few years (Li et al., 2012). The models force us to think carefully 
about some of the factors governing tumor control and complications. In addition, 
they may provide guidance for gathering future data on complications and tumor 
control.

All of the models for both NTCP and TCP are based on dose–response curves in 
which the probability is plotted as a function of dose. Response curves are sigmoidal 
in shape (Figure 5.1), and there are two quantities that are widely quoted to character-
ize these curves: D50 and γ50. D50 is the dose for which there is a 50% response (either 
NTCP = 50% or TCP = 50%). The quantity γ50 is a dimensionless parameter that describes 
the slope of the dose–response curve at a dose of D50:

 
γ 50

50

=
∂( )

∂
D

D
D

N TCP

 
(5.1)

There are many mathematical functions that correspond to a sigmoid shape. For 
specific values of D50 and γ50, there is no unique mathematical function describing a sigmoid 
shape.
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There are numerous questions that we would like biological models to address, 
among them are:

 1. If two dose volume histograms (DVHs) for organs at risk from rival treatment 
plans cross, which one is preferred?

 2. Is it better to give a small amount of dose to a large part of an organ at risk (OAR) 
or a large dose to a small amount of volume?

 3. How do mechanistic models relate to empirical models? Do mechanistic models 
“predict” empirical models?

 4. Do mechanistic models predict a threshold volume for normal tissue complica-
tion, and if so, what are the values?

 5. How does TCP depend on tumor volume?
 6. For a target, when, if ever, does the TCP depend only on the minimum dose?
 7. What are the effects of a small cold spot on TCP?
 8. How harmful is it to delay a patient’s treatment by one cell doubling time?

There are some definitions to be introduced here at the outset that are enumerated 
in the following bulleted list:

• Partially uniform irradiation: (For an OAR) a portion of the volume receives 
a constant dose and the remainder receives no dose (zero). In this situation, 
there are only two dose values, D and 0. This nomenclature is somewhat of 
an oxymoron. This is an idealization because it implies an infinite gradient in 
the dose. In an inhomogeneous irradiation, there are more than two values of 
the dose in the OAR.

• Clonogenic cell: A cell that is capable of sustained proliferation or reproduction.
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FIGURE 5.1 A dose–response curve is a plot of TCP or NTCP vs. dose. These curves are sig-
moidal in shape and are often characterized by D50 and γ50. The quantity D50 is the dose at 
which the probability is 50% (42 Gy in this example). The quantity γ50 is related to the slope of 
the curve evaluated at D50 (see Equation 5.1; γ50 = 4.0 for this curve).
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The descriptions in the literature of various biological indices are usually expressed 
in terms of discrete volumes. This is understandable because computerized treatment 
planning systems calculate doses in a volumetrically discrete dose matrix. The actual 
dose distribution in a patient is a continuous variable, however (at least down to the 
microdosimetry level). There are two reasons why it may make sense to describe 
biological indices in terms of a continuous dose distribution: (1) real dose distribu-
tions are continuous, and (2) the mathematics of continuous functions is often easier 
to work with than the mathematics of discrete functions. It is usually easier to derive 
analytic results using continuous variables. We will switch back and forth between 
continuous and discrete descriptions as convenient.

One of the most up-to-date, comprehensive reviews of normal tissue complication 
data is the quantitative analysis of normal tissue effects in the clinic (QUANTEC) 
report (see Marks et al., 2010b). This represents a multidisciplinary effort sponsored 
jointly by the AAPM and the American Society for Radiation Oncology (ASTRO). The 
report is available on the AAPM website (http:/www.aapm.org). Other references 
are the AAPM TG 166 report: “The Use and QA of Biologically Related Models for 
Treatment Planning” (Li et al., 2012), The Physics of Radiotherapy X-Rays and Electrons 
(Metcalfe et al., 2007, chapter 14), “Biological Indices for Evaluation and Optimization of 
IMRT” (Yorke, 2003), “Radiobiological Modeling for Treatment Planning” (Moiseenko 
et al., 2005), Radiation Oncology: A Physicist’s-Eye View (Goitein, 2008, chapter 5), “Dose-
Volume Considerations: An Update for Use in Treatment Planning” (Yorke et al., 2013), 
and The Physics of Conformal Radiotherapy (Webb, 1997, chapter 5).

Before we discuss models, we very briefly review some elements of probability the-
ory (Section 5.2). Section 5.3 contains a discussion of analytic forms of DVHs. Normal 
tissue complication probabilities are discussed in Section 3.4, including both empiri-
cal and mechanistic models. In Section 5.5, we discuss TCP models, both empirical 
and mechanistic. In the case of mechanistic models, we include an analysis of both 
intra- and intertumor variations in radiosensitivity. The probability of uncomplicated 
control is considered in Section  5.6. A list of symbols used in this chapter can be 
found at the end.

5.2 SOME ELEMENTS OF PROBABILITY THEORY
Mechanistic descriptions of NTCP and TCP employ probability calculations. We 
therefore review very briefly some of the necessary probability theory.

For two successive independent events, the probability that both A and B will hap-
pen is p(A) p(B), where p(A) is the probability of A and p(B) is the probability of B. The 
probability that either A or B occurs is p(A) + p(B), provided that A and B are mutually 
exclusive.

The binomial probability distribution applies to the situation in which there are 
independent repeated trials with constant probabilities (Bernoulli trials) and there 
are only two outcomes: success or failure. An example is a coin toss. The probability 

http://www.aapm.org
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of success is p, and the probability of failure is q = 1 – p. The probability f(x) of exactly 
x successes in m trials is

 
f x C p qm x

x m x( ) = − ,
 

(5.2)
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The average of the binomial distribution is
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and the standard deviation is σ = mpq.
The cumulative binomial distribution is given by
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where ⌊y⌋ is the greatest integer less than or equal to y. This is the probability of get-
ting y successes or fewer in m trials.

For a very large number of trials in which the probability p is quite small, the 
binomial distribution can be approximated by the Poisson distribution (p → 0, m very 
large, but mp remains finite):
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The binomial distribution can be approximated by the Gaussian or normal distri-
bution when |mp – x| ≪ mp, that is when x is not very far from the average. In this 
case x is treated as a continuous variable:
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where f(x) dx is the probability that x lies between x and x + dx, and μ and σ are as 
given previously for the binomial distribution.
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The error function is related to the cumulative normal probability distribution. 
The error function is defined as

 

erf t e dyy

t
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(5.8)

Numerical values of the error function (Figure 5.2) can be found in standard sta-
tistical tables or in spreadsheet software such as Excel. Some properties of the error 
function that are useful include erf(–t) = –erf(t), an odd function; erf(+∞) = 1; and 
erf(–∞) = –1. From the definition of the error function,
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5.3 DVHs
We assume that the reader has some familiarity with DVHs and their clinical inter-
pretation. DVHs play an important role in treatment plan evaluation and are related 
to some of the biological indices discussed here. DVHs provide information about 
how the dose is statistically distributed over the volume.

Let h(D)dD be the amount of volume with a dose between D and D + dD. The total 
volume, V, is therefore
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FIGURE 5.2 The error function erf(t) has the characteristic sigmoid shape that is typical of 
NTCP and TCP curves. See Equation 5.8.
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where Dmax is the maximum dose received by a point in the volume. If the dose is spa-
tially constant throughout the volume, then h(D) is proportional to a delta function. A 
graph of h(D) versus D is an ordinary histogram or a differential DVH.

The average dose is
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The cumulative DVH (cDVH), V(D), is the volume receiving a dose of at least D. 
This can be calculated from a differential DVH as follows:
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It is the area under the differential DVH from D to Dmax.
Expressed in dimensionless form (relative volume), the cDVH will be written as 

H(D) = V(D)/V, where
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The differential DVH h(D) is proportional to the (negative) of the slope of the 
cDVH H(D):
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The average value of the dose is simply the area under the cDVH curve:
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This can be proven by substituting Equation 5.14 into Equation 5.11.
In the clinic, we do not have an analytic expression for H(D), but rather a dose 

matrix calculated by treatment planning software. In this case, the integrals in 
Equations  5.10 through 5.15 must be converted to sums over the voxels in the 
structure of interest. Nevertheless, we will find the integrals in this section useful 
for deriving general results.
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For a constant dose D = Dt, such as in a target volume, h(D) is a Dirac delta func-
tion and H(D) is a step function with H(D) = 1 for D < Dt and H(D) = 0 for D > Dt. 
Figure 5.3 shows a more general dose distribution in which h(D) = V/(Dmax – Dmin) 
for Dmin < D < Dmax and zero everywhere else. In this case, H(D) = 1 for D < Dmin, 
H(D) = 0 for D > Dmax, and between Dmin and Dmax we have
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1
∆ min ,

 
(5.16)

where ΔD = Dmax – Dmin. For Dmin ≈ Dmax, this will be like a target cDVH. On the other 
hand, if Dmin ≪ Dmax (or Dmin = 0), this is like a cDVH for an OAR. Actual patient 
target cDVHs may have curvature and “wiggles,” but they are often qualitatively 
similar to Figure 5.3. Therefore, Figure 5.3 may be considered an archetypal cDVH for 
either a target or a normal structure.

5.4 NORMAL TISSUE COMPLICATION PROBABILITY
The probability of complication in normal tissues due to exposure to radiation 
depends on a large number of factors, such as the amount and distribution of the 
dose. The dose received by an OAR is not likely to be the full prescribed dose per 
fraction. The dose distribution in an OAR is frequently very nonuniform by design as 
part of the effort to decrease complications. The effect on the complication probability 
of the volume of the OAR irradiated and the dose it receives is called a volume effect. 
One of the major facets of NTCP models is an attempt to deal with the volume effect.

Other confounding and contributing factors include

• Dose per fraction, which may vary with fraction due to boosts.
• Chemotherapy: Concurrent chemo exacerbates the severity of normal tissue 

complications.

D

h(D)

V
Dmax– Dmin

D

H(D)

cDVH1.0

Dmin Dmax Dmin Dmax

FIGURE 5.3 Archetypal differential DVH (left) and corresponding cDVH (right) for either a 
target or an OAR. For a target, Dmin should not be much less than Dmax. For an OAR, Dmin may 
be as small as zero. Although real patient cDVHs may show more structure (bumps, wiggles, 
etc.), they are frequently of this general form.
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• Host factors, for example, chronic liver disease, lifestyle, and genetic factors.
• Follow-up duration.
• The endpoint: There can be various types of complications for a given OAR. The 

endpoint must be carefully specified.

Some useful dose descriptors for evaluation of complication probability are the 
mean dose D, the maximum dose Dmax, the equivalent uniform dose (EUD), and the 
cutoff volume. An example of the cutoff volume is V20, the volume (or percent volume) 
receiving at least 20 Gy.

As discussed in the introduction, there are two types of models for normal tissue 
complication:

 1. Empirical models
 2. Mechanistic models

Empirical models are based on phenomenological mathematical fits to clinical 
data. Mechanistic models are based on cell survival curves and statistical and prob-
ability analysis.

One criticism of the models discussed here (both empirical and mechanistic) is 
that they are binary—a complication either occurs or it does not. The models do not 
take into account the severity of the OAR response to irradiation.

5.4.1 EMPIRICAL MODELS

Empirical models are based on the use of a fitting function that reproduces the NTCP 
data. These models should therefore be reasonably accurate over the range of data 
to which they are fit; there is no guarantee, however, that they will be in the least bit 
accurate outside the range of the data used to obtain the fits.

5.4.1.1 DOSE VOLUME EFFECTS

Both mechanistic and empirical models require a method for dealing with nonuni-
form dose distributions. In mechanistic models, the volume dependence is built into 
the construction of the model. For empirical models, however, a separate analysis of 
dose volume effects must be developed. We now consider this problem. There are two 
types of spatially variable dose distributions that we will consider: partially uniform 
irradiation (see introduction) and inhomogeneous irradiation, in which the dose var-
ies arbitrarily throughout the entire volume. Let us consider the simpler case first.

An early formulation of the dose volume effect applies to an OAR that receives a 
uniform irradiation to only a part of the OAR. Let ν equal the volume fraction of the 
OAR that receives any dose, D(ν = 1) = D(1) the uniform tolerance dose received by 
the full organ (this could be D50), and D(ν) = the tolerance dose for the partial irradia-
tion of fractional volume ν. It is assumed, but not often stated, that the dose per frac-
tion is the same in both cases. D(1) can be used to read off or look up the NTCP from 
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a graph of whole-organ NTCP as a function of dose, such as shown in Figure 5.1. It 
has been found empirically that roughly

 D D nν ν( ) ( )= 1 – ,  
(5.17)

where n is a tissue-specific parameter describing the magnitude of the volume effect 
(n > 0 always; otherwise, the tolerance dose for partial irradiation would be less than 
that for whole-organ irradiation). Burman et al. (1991) compiled data for 28 normal 
tissues with defined endpoints. The values of n were found to range from 0.01 (ear) 
to 0.87 (lung). When n is small, the relative tolerance dose depends weakly on the 
irradiated volume. As n becomes large, the tolerance dose depends sensitively on the 
fraction of the volume irradiated.

5.4.1.2 EQUIVALENT UNIFORM DOSE

Tissues and organs invariably receive nonuniform doses. It would be very useful if 
one could calculate a value for a uniform dose that would lead to the same NTCP or 
TCP as the nonuniform dose distribution. Such a dose is called the EUD. There are 
many formulas that have been developed to calculate the EUD. The specific formula 
depends on the NTCP or TCP model. One of the most widely used expressions for 
the EUD is sometimes called the generalized equivalent uniform dose. It is a gener-
alization of the formulation expressed by Equation 5.17, where the EUD corresponds 
to D(1). It is the EUD that is believed to yield the same complication probability as the 
nonuniform dose (corresponding to D(ν) in Equation 5.17). It is computed by carrying 
out a sum over all of the voxels in the OAR. The definition is

 

EUD =










=

=

∑1 1

1
N

Di
n

i

i N n

/ ,

 

(5.18)

where:
 Di is the dose received by voxel i and there are a total of N voxels
 n is the volume effect parameter, as in Equation 5.17.1 

It is assumed that the voxels are sufficiently small that the dose is constant within 
a voxel and that all voxels have the same volume. In some references, the parameter 
n is replaced by a parameter 1/a.

If the OAR consists of two portions, one of which receives a uniform dose D(ν) and 
the other a zero dose (partially uniform irradiation), then EUD = D(ν)νn = D(1) as in 
Equation 5.17. Therefore, EUD is a generalization of Equation 5.17. The EUD is a type 
of average dose. If n = 1, the EUD is simply the arithmetic mean dose for the OAR. 
When n = ½, the EUD is the root mean square value of the dose. In the limit in which 
n is small and positive (i.e., n → 0+), EUD → Dmax, the maximum dose in the OAR. 
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In the case of a target, and in the limit in which n is small and negative (i.e., n → 0–), 
EUD → Dmin, the minimum dose.

The EUD can be calculated from either the differential or cDVH, as follows (see 
problem 5):

 

EUD1 1

0

1
1

0

1 1/ /
max max

.n n

D

n

D

V
h D D dD

n
H D D dD= ( ) = ( )∫ ∫ −

 

(5.19)

Note that if the dose is constant throughout (D = Dmax), H(D) = 1.0 between D = 0 
and D = Dmax, and therefore EUD = Dmax, as expected.

In the situation where we have a DVH of the sort shown in Figure 5.3, H(D) = 1 for 
D < Dmin and H(D) = 0 for D > Dmax; between Dmin and Dmax, H(D) is given by Equation 5.16. 
Under these circumstances, the integral in Equation 5.19 can be easily evaluated:

 
EUD = −

+( )












+ +D D
n D

n n
n

max min .
1 1 1 1

1 1 ∆  
(5.20)

In the case where n = 1, this is simply the average dose or the area under the cDVH 
curve. When n is positive and becomes small, EUD approaches Dmax, as expected (see 
Problem 6). In the case where n is negative and becomes small, EUD approaches Dmin. 
The latter limit only applies to a target.

Figure 5.4 shows a graph of EUD/Dmax versus Dmin/Dmax based on Equation 5.20 
and with values of n taken from Table 5.1 for liver (n = 0.86), kidney (n = 0.7), rectum 
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FIGURE 5.4 EUD/Dmax vs. Dmin/Dmax for various values of n (see text) corresponding to cervi-
cal cord, rectum, liver, and kidneys. The triangles show the average dose. These graphs are 
based on Equation 5.20 for the cDVH shown in the inset. The EUDs for liver and kidney are 
close to the average dose, but the cord and rectum have EUDs much closer to Dmax. The n 
values are from Table 5.1.



 228      Tutorials in Radiotherapy Physics: Advanced Topics with Problems and Solutions

TA
BL

E 
5.

1 
Se

le
ct

ed
 O

A
R 

M
od

el
 P

ar
am

et
er

s
O

rg
an

/T
is

su
e

D
50

 (G
y)

 (9
5%

 C
I)

m
a

γ 5
0

M
od

el
n 

(9
5%

 C
I)

α/
β 

(G
y)

 (9
5%

 C
I)

En
dp

oi
nt

Re
fe

re
nc

e
Lu

ng
s

31
.4

 (2
9.

0–
34

.7
)

0.
45

 (0
.3

9–
0.

51
)

0.
89

LK
B

1.
03

 (±
0.

36
)

4.
0 

(±
0.

9)
b

Ra
di

at
io

n 
pn

eu
m

on
iti

s
M

ar
ks

 e
t a

l. 
(2

01
0a

)
Li

ve
r

43
.0

 (3
9.

8–
46

.1
)

0.
12

–0
.3

1
1.

9
LK

B
0.

86
–1

.1
2.

0–
3.

0
Ra

di
at

io
n-

in
du

ce
d 

liv
er

 
di

se
as

e
Pa

n 
et

 a
l. 

(2
01

0)

Ki
dn

ey
 (b

ila
te

ra
l)

28
C

0.
10

C
4.

0
LK

B
0.

7c
?

Ra
di

at
io

n-
in

du
ce

d 
ki

dn
ey

 in
ju

ry
D

aw
so

n 
et

 a
l. 

(2
01

0)

Re
ct

um
76

.9
 (±

3.
2)

0.
13

3.
1

LK
B

0.
09

 (±
0.

05
)

3.
0

≥
G

ra
de

 2
 to

xi
ci

ty
, 

re
ct

al
 b

le
ed

in
g

M
ic

ha
lsk

i e
t a

l. 
(2

01
0)

Ce
rv

ic
al

 sp
in

al
 c

or
d

69
.4

 (±
3.

1)
0.

08
5

4.
7

Lo
gi

st
ic

0.
05

0.
87

 (±
0.

33
)

M
ye

lo
pa

th
y 

gr
ad

e 
≥

 2
Ki

rk
pa

tr
ic

k 
et

 a
l. 

(2
01

0)
, 

Sc
hu

lth
ei

ss
 (2

00
8)

a 
Se

e 
Eq

ua
tio

n 
5.

24
.

b 
U

nc
er

ta
in

ty
 is

 ±
1 

st
an

da
rd

 e
rro

r.
c 

Ba
se

d 
on

 d
at

a 
fro

m
 E

m
am

i e
t a

l. 
(1

99
1)

.



Chapter 5 – Tumor Control and Normal Tissue Complication Probability Models       229

(n = 0.09), cervical cord (n = 0.05), and the average dose (n = 1, triangles). The liver 
and kidney have an EUD almost equal to the average dose, whereas the rectum and 
spinal cord have an EUD much higher than average, even for Dmin = 0.

Figure 5.5 shows EUD/Dmax based on Equation 5.20 as a function of n for vari-
ous values of Dmin/Dmax ranging from 0.3 to 0.9. For values of n ≳ 0.5, the value of 
EUD/ /max maxD D D≈  unless Dmin/Dmax ≲ 0.3.

We can now answer question (1) posed in the introduction: If two DVHs from 
rival treatment plans cross, which one is preferred? The one with the smallest EUD 
is favored. To the extent that n ≈ 1 (and average dose determines complications), the 
cDVH with the least area is preferred. For small values of n, the cDVH having the 
smallest Dmax is best.

5.4.1.3 EMPIRICAL EXPRESSIONS FOR NTCP

Historically, empirical models were generally derived from data for complication 
probability under uniform irradiation. There are two parameters that are frequently 
cited to summarize the dose–response relationship:

 1. D50 = tolerance dose resulting in 50% complication rate
 2. Slope of the response curve at D50

One must specify the type of tissue and the particular endpoint. D50 is not always 
well known since physicians generally avoid giving doses anywhere near that 
required to cause a 50% chance of a complication. 

The Lyman model (sometimes called the integrated normal or probit model) 
describes the NTCP for an OAR irradiated to a uniform dose over a partial volume ν 
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FIGURE 5.5 A graph of EUD/Dmax vs. n for various values of Dmin/Dmax based on Equation 5.20. 
When n ≳ 0.5, the value of EUD ≈ D  unless Dmin/Dmax ≤ 0.3. When Dmin/Dmax is greater than 
about 0.8, the EUD is equal to the average dose unless n is very small.
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(Lyman, 1985; Webb, 1993). The partial volume is the fraction of the volume receiving 
a dose D, the remainder receiving zero dose. In the Lyman model, NTCP is given by

 

NTCP = −

−∞
∫1

2

2 2

π
e dxx

t

/ ,

 

(5.21)

where x is a dummy integration variable and

 
t

D D
mD

=
− ( )

( )
50

50

ν
ν

,
 

(5.22)

where:
 D50(ν) is the dose for which NTCP = 50% for partial volume ν
 m  is a quantity related to the slope of the NTCP curve at D50 and thus char-

acterizes the shape of the NTCP curve

The slope of the NTCP curve at D50 can be described by the dimensionless quantity

 
γ 50
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NTCP
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D D  
(5.23)

The relation between γ50 and m is
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(5.24)

Although Equation  5.21 may seem rather nonintuitive, it is related to the error 
function (see Figure 5.2 and Equation 5.8), and it does produce a sigmoidal NTCP 
versus dose curve. In terms of the error function,

 
NTCP erf= + 
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t
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(5.25)

When ν = 1.0 and D = D50, NTCP = 0.5, as expected. Note that when D = 0, NTCP 
is not zero, as t = – 1/m; therefore, this model may not be accurate for small values of 
NTCP.

Three parameters are necessary for a calculation of NTCP for partially uniform 
irradiation (see definition in Section 5.1): D50(1), n, and m. Burman et al. (1991) have 
tabulated these values for 28 tissues based on D5 and D50 data of Emami et al. (1991). 
These factors have been updated for many OAR in the QUANTEC report. Table 5.1 
provides data for a few OAR. We had hoped to include the bladder in this table, but 
according to Viswanathan et al. (2010, p. S120), “no quantifiable models are available 
that satisfactorily describe the observed serious late bladder toxicity after EBRT.”
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Figure 5.6 shows a three-dimensional plot of NTCP as a function of dose and par-
tial volume for radiation-induced kidney injury (bilateral irradiation). The parameters 
are D50 (1) = 28 Gy, γ50 = 4.0, and n = 0.7. Figure 5.7 shows a contour plot corresponding 
to Figure 5.6 for constant values of NTCP in a partial volume–dose plane. Figure 5.8 
shows Lyman-based NTCP dose–response curves for the data in Table 5.1.

Another empirical expression for NTCP is the logistic function:

 
NTCP

/
=

+ ( )
1

1 50
4 50D D γ .

 
(5.26)

Although the graph of this formula for NTCP has the same general shape as the 
Lyman formula, the two curves are not the same. For the logistic formula, NTCP = 0 
when D = 0.

It is important to understand that values of D50 and γ50 are model dependent. Values 
derived by fitting a particular model (e.g., Lyman–Kutcher–Burman [LKB] or logistic) 
should be used with caution, if at all, in another model because predictions made 
with another model may differ significantly, particularly for low doses (i.e., ≪D50).

To handle inhomogeneous irradiation within the context of the Lyman model, 
some method is needed to find a value of D to substitute into Equation 5.22. The 
cDVH describes the distribution of dose, and therefore some procedure is needed 
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to condense the entire cDVH into a value of D, an equivalent dose for whole-organ 
irradiation. This is called DVH reduction, and there are numerous algorithms 
that have been proposed in the literature to accomplish this. One possibility is 
to set D  =  EUD and substitute D50(1) for D50(ν). Therefore, for inhomogeneous 
irradiation,
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FIGURE 5.8 NTCP data based on the Lyman model with parameters from Table 5.1. Individual 
recommended dose volume constraint points have been included from the QUANTEC tables. 
The individual points tend to be above (higher NTCP) the model curves, presumably to err 
on the side of caution. Data points for lung, liver, and kidney are mean doses. The dose points 
for the spinal cord are maximum doses.
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FIGURE 5.7 A contour plot corresponding to Figure 5.6 showing lines of constant NTCP as a 
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Equation 5.18 or 5.19 can be used along with the cDVH to compute the EUD. The 
Lyman model, along with Equation 5.27, is frequently referred to as the LKB model.

5.4.2 MECHANISTIC MODELS

5.4.2.1 LINEAR QUADRATIC CELL SURVIVAL

This is very a brief review of cell survival probability. For more detail, the reader is 
referred to the excellent texts by Hall and Giaccia (2012) and Joiner and van der Kogel 
(2009).

The most commonly used expression for the probability (or fraction) of cells of a 
particular type that survive a single absorbed dose of radiation d is given by

 S e d d= − −α β 2
,  

(5.28)

where α and β are parameters that depend on the type of cell irradiated. It is remark-
able that there is so much discussion of Equation 5.28 in the literature, yet so few 
references actually quote any values for α or β. Common values for tumor cells are 
α = 0.30 Gy–1 and β = 0.03 Gy–2. For an OAR, nominal values are α = 0.15 Gy–1 and 
β = 0.05 Gy–2. Another parameter that is frequently cited to describe cell survival is 
the fraction of cells that survive a dose of 2 Gy: SF2. It is known that values of α and 
β vary from one individual patient to another. Values of α and β from in vitro cell cul-
ture studies may not be relevant for in vivo cell survival (Yorke, 2003).

Determination of α in vivo is difficult because tumor or normal tissue is a mix-
ture of cells with varying sensitivity. From in vitro measurements and for low linear 
energy transfer (LET) radiation, α ranges from 0.1 to 2  Gy–1 for a large variety of 
cell types (Yorke, 2003). In vivo determination of α/β is easier because it is based on 
dose fractionation studies. Deschavanne and Fertil (1996) list in vitro values of SF2 
for almost 700 tumors and normal cells. α/β is often assumed to be 10 for human 
tumors; prostate is an exception, with α/β approximately equal to 1.5–3.0 Gy. Late-
responding normal tissues have α/β approximately equal to 1–4 Gy, such as the spinal 
cord, kidney, and liver.

Therapeutic radiation is almost always given in installments or “fractions.” The 
proportion of cells that will survive f installments of radiation, each of dose d, is

 
S ef

D d= +– ( ) ,α β

 
(5.29)

where the total dose is D and d = D/f is the dose per fraction, which is usually 2 Gy. 
Equation 5.29 is presumed to give the average fraction of surviving cells in a colony of 
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a large number of cells. Equation 5.29 assumes that each fraction is independent and 
that cell sensitivity remains constant throughout the treatment.

Normal tissue complication data are usually based on (or corrected to) d = 2 Gy 
per fraction. Physicians generally make an attempt to spare OAR, and therefore these 
structures rarely receive a full dose of 2 Gy per fraction. The dose absorbed by OAR 
is also frequently nonuniform; most of the volume receives far less than the standard 
1.8–2.0 Gy. Fractionation effects should therefore be important for highly inhomo-
geneous dose distributions. The original LKB model does not appear to take proper 
account of fractionation effects for inhomogeneous dose distributions. Mechanistic 
models can account for this effect provided that the proper value of α/β is built in 
(e.g., see Equation 5.50).

5.4.2.2 TISSUE ARCHITECTURE

Tissues and organs can be thought of as consisting of functional subunits (FSUs). 
These are elementary components of the organ. Examples of FSUs that have been 
suggested are nephrons for the kidney, alveoli for the lungs, and groups of oligoden-
drocytes for the spinal cord. Oligodendrocytes are neuroglial cells that send out pro-
cesses that spiral around axons, thus forming a myelin covering (Spence and Mason, 
1992). Some organs and tissues do not have such a structure. An example is skin. In 
this case, an FSU is a single cell. We will assume that an OAR is composed of FSUs 
that carry out the function of the organ.

Let us assume that each FSU consists of k cells. We would like to calculate the 
probability of inactivating all the cells (or perhaps all the clonogenic cells) in an FSU.2 
When this occurs, the FSU is assumed to be destroyed. If one clonogenic cell survives, 
then the FSU can repopulate. The average number of cells in an FSU surviving a dose 
D is kSf, where Sf is given by Equation 5.29. The probability of no cells surviving is

 
P Sf

k
= ( )1 – .

 
(5.30)

In the limit in which k → ∞ and Sf → 0 (but kSf remains finite), the probability is 
given approximately by the Poisson distribution (see Equation 5.6):

 P f e ei
kS f≈ ( ) = =− −0 µ .  

(5.31)

For an OAR, this may not always be valid, particularly when complication rates 
are low.

The response of an OAR to irradiation depends on the organization of the FSUs. In 
a serial structure, a complication occurs if one or more FSUs is inactivated. In such a 
structure, each FSU is critical to the function of the organ, and therefore such struc-
tures are sometimes called critical element structures. A serial structure is like a chain: 
if any link fails, then the entire chain will break. Another analogy is to a string of 
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light bulbs wired in series. If any one of the light bulbs fails, the entire string will fail. 
Tissues with a small volume index n are thought to be serial in nature. The prime 
example of a serial structure is the spinal cord. One difficulty with this conception is 
that the nature of an FSU is not always clear. For example, it is often assumed that the 
spinal cord is a serial tissue, but what is the nature of an FSU for spinal cord?

Another type of tissue architecture is a parallel structure. In this case, each FSU 
operates independently. An example for the kidneys is a nephron. Inactivation of 
some FSUs may make the organ less efficient, but it will still be capable of perform-
ing its function. A critical number of FSUs need to be destroyed before the organ 
fails. A parallel tissue is more like a rope (Goitein, 2008). A number of strands can 
be destroyed without the rope failing. If enough strands are destroyed, however, 
the rope will fail. Another analogy is to a string of light bulbs wired in parallel. If 
one light bulb goes out, the rest remain on. Parallel tissue architecture is sometimes 
referred to as a critical volume structure. Tissues with large values of n (~1) are thought 
to be parallel in nature.

Some organs and tissues probably do not fall into either a parallel or serial cate-
gory. The Kallman et al. (1992) relative seriality model describes an OAR as a mixture 
of serial and parallel FSUs.

5.4.2.3 SERIAL ORGANS: MECHANISTIC MODELS FOR UNIFORM IRRADIATION

The NTCP for a serial organ is the probability that one or more FSUs are inactivated. 
Let us suppose that N0 is the total number of FSU in the OAR. We assume that the FSUs 
are small enough that the dose is constant throughout an FSU (i.e., either k is relatively 
small or the dose is uniform throughout the OAR). Let Pi = the probability of destroy-
ing an FSUi (see Equation 5.30), which is a function of the dose received by that FSU.

The probability that an FSU is not destroyed is 1 – Pi. The probability that none of 
the FSUs is destroyed is

 
1

1

0

−( )
=

=

∏ Pi

i

i N

,

assuming independent probabilities. The NTCP is the probability that one or more 
are destroyed:

 
NTCP = − −( )

=
∏1 1
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0
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(5.32)

Now suppose that a subvolume N of these receive a spatially constant dose and the 
remainder receives zero dose. The partial volume ν = N/N0. If the portion of the OAR that 
is irradiated receives the same dose throughout (assuming all cells are equally sensitive), 
then Pi = P and
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(5.33)

In this case, the NTCP is given by

 
NTCP = − − −( )





− +1 1 1
0

e D d k N
( ) .α β

ν
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Issues of fractionation reduce to the simple biologically equivalent dose (BED) 
calculations of the linear quadratic model. If NTCP is the same for different fraction-
ations (k and N remain fixed), then the cell survival term Sf in Equation 5.33 must be 
equal in the two different fractionation schemes.

The two extreme limiting situations are k = 1 and N0 = 1. In the case where k = 1, 
each cell is an FSU, and therefore only one cell must be destroyed for a complication 
to occur. When N0 = 1, the whole organ is the FSU, and all the cells have to be killed 
for a complication to occur.

One of the problems with the model represented by Equation 5.34 is that we have 
no idea of the values of N0 and k. The nature of an FSU for a serial organ is uncertain 
(if indeed it has any meaning). The product kN0, however, represents the total number 
of (clonogenic?) cells in the organ. An upper limit to this number is the total number 
of cells in the organ. A constraint can therefore be placed on the model:

 N Nk c0 = ,  (5.35)

where Nc is the total number of cells of the relevant type in the structure. If this model 
is to be taken seriously, then the number of cells as given by Equation 5.35 should be 
of a realistic order of magnitude.

The dose that leads to a given complication probability is found by solving 
Equation 5.34 for the dose. The result is
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and in particular for NTCP = 50%,
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assuming the dose per fraction is fixed. In the limit as N0 → ∞,
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 NTCP ( )= − −1 2 50D D k/ .  (5.38)

The value of γ50 is (see Equation 5.1)
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The dose per fraction d has been held constant in evaluating the derivative for the 
calculation of γ50.3 Note that γ50 is independent of α and β under these circumstances. 
When N ≫ 1, γ50 ≈ ½ k ln 2, and thus γ50 is independent of N for large values of N. 
Equations 5.34, 5.35, 5.37, and 5.39 are fairly general, and it appears as if N0, k, α, and β 
are uniquely determined once γ50, D50, Nc, and α/β are specified.

There are two ways to approach the problem of modeling serial OARs. The first is 
to make reasonable estimates (guesses) of the values of the parameters and substitute 
these into the equations for the model and see what comes out. The second, and more 
difficult, approach is to use observed complication rates to find model parameters 
that reproduce these values. We begin with the first approach, and then later in this 
section, we will follow the second approach. We will assume that ν = 1.0 or, equiva-
lently, N = N0, throughout the remainder of this section.

Figure 5.9 shows graphs of NTCP for a serial organ in which N0k = 108 cells for 
N0 = 1, 10, 100, and 1000. We have assumed d = 2 Gy, α = 0.15 Gy–1, and β = 0.05 Gy–2. 
These curves have the characteristic sigmoid shape. The more FSUs in the OAR, the 
lower the tolerance dose. When N0 = 1, there is only one FSU, and all 108 cells must be 
inactivated for a complication to occur. As the number of FSU grows, the NTCP curve 
becomes steeper. For large N0, and for these values of α and β, the NTCP is almost 
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FIGURE 5.9 NTCP for kN0 = 108 cells, d = 2 Gy, α = 0.15 Gy–1, and β = 0.05 Gy–2, where N0 is 
the number of FSU in the OAR and k is the number of cells per FSU. From the left, we have 
N0 = 1000, 100, 10, and 1. For large N0 and for these values of α and β, the NTCP curve is almost 
a step function.
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a step function. NTCP becomes almost binary—it is either 0% or above a threshold 
100%. As we will discuss shortly, this is not what is actually observed.

Figure 5.10 shows NTCP for various values of α (α/β held fixed at 3.0). As expected, 
D50 declines as α goes up, but γ50 appears to be insensitive to variations in α as expected 
from Equation 5.39.

Figure 5.11 provides information about allowable values of N0 and k. This figure is 
a contour plot of γ50 in a log N0–log k plane. Known values of γ50 are 2 < γ50 < 5. Values 
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FIGURE 5.10 NTCP for k = 108, N0 = 1, and various values of α (keeping α/β = 3). From the left, 
the values of α are 0.30, 0.20, 0.15, and 0.12. This shows that NTCP and D50 are quite sensitive 
to the value of α, but γ50 is not.
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FIGURE 5.11 A contour plot of γ50 as a function of log k and log N0. Observed values of γ50 are 
less than 10. Values of N0 and k are therefore restricted to either small values of k and large 
values of N0 or vice versa. The diagonal lines are of constants N0k = 108, 105, and 103.
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of N0 and k are therefore restricted to either small values of k and large values of N0 
or vice versa.

5.4.2.3.1 Cervical Spinal Cord Models The quintessential serial organ is the spi-
nal cord. According to Hall and Giaccia (2012), a 5% complication rate occurs for 
D5 = 50 Gy for 10 cm length irradiated. At 70 Gy, the complication incidence is about 
50%, depending critically on the dose per fraction. It also depends sensitively on 
the length irradiated for small lengths, but if the length exceeds a few centimeters, 
the irradiated volume has little effect. NTCP data from Kirkpatrick et al. (2010) and 
Schultheiss (2008) for cervical cord myelopathy are contained in Table 5.2. These data 
are corrected for overall survival as a function of time. These authors suggest that 
α/β = 0.87, considerably less than the standard value of 3.0 generally used for normal 
tissues. Schultheiss (2008) fit the data in Table 5.2 to a logistic model (see Equation 5.26), 
obtaining values of D50 =  69.4 Gy and γ50 =  4.7. We note that the “pathogenesis of 
injury is thought to be primarily from vascular or glial cell injury” (Kirkpatrick et al., 
2010, p. S43). It has been suggested that the rectum may also have serial architecture 
based on the small value of the dose volume index n = 0.09.

The mechanistic model of Equations 5.34 and 5.35 requires a value for the number 
of relevant cells in the OAR. We can make a crude order of magnitude estimate of 
the number of cells in the cervical spinal cord. A typical mammalian cell is about 10 
microns in diameter. Let us assume overhead for packing fraction and other nonrel-
evant cell types of a factor of 10; that is, the relevant clonogenic cells occupy 1/10 of 
the spinal cord volume. If we also assume that the cord is 2 cm in diameter and 10 cm 
long, then the number of cells expected is on the order of kN0 ~ 108.

We have made approximate fits to the data in Table  5.2 for the mechanis-
tic model of Equations  5.34 and 5.35. We have fit log (1  –  NTCP) using the func-
tion NonlinearModelFit available with the software Mathematica. We have used 
α/β = 0.87 as suggested by Schultheiss (2008). In our fits to Equation 5.34, we used the 
constraint that the total number of cells is Nc, where Nc takes on values of 107, 108, and 
109. We caution that there are essentially only three or four meaningful data points 
in Table 5.2, as the NTCP at 45, 49.8, and 56.6 Gy are listed as zero. It is presumed that 
the true values are small but not actually zero (unless one postulates a threshold). The 
NTCP values for 56.6 and 49.8 Gy were based on only 19 and 22 patients, respectively. 
For this reason, any model derived strictly from the data in Table 5.2 may not be accurate at 
low complication probabilities, which is just where we would like to know these values. 

TABLE 5.2 Cervical Cord Myelopathy NTCP Data
Dose (Gy)a 45.0 49.8 56.6 60.0 68.6 72.8
NTCP 0.00 0.00 0.00 0.10 0.44 0.62

Source: Data from Kirkpatrick, J., et al. Int. J. Radiat. Oncol. Biol. Phys. 76(3, Suppl.), 
S42–49, 2010.

a Equivalent dose assuming 2.0 Gy per fraction and α/β = 0.87.
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We have not used the points at 45 and 49.8 Gy in our fits, as this may artificially sup-
press NTCP values at low doses. For the data point at dose 56.6 Gy, we assume that 
the actual NTCP ≲ 5% (not zero, as listed in the table) as this point is based on only 
19 patients.

The fitting data are listed in Table 5.3. The models of Table 5.3 along with the logis-
tic fit from Schultheiss (2008) and the data from Table 5.2 are plotted in Figure 5.12.

We note that the value of k in Table 5.3 remains roughly constant at about 15 (see 
also Figure 5.11), even though the value of N0 spans two orders of magnitude. This is 
because k largely determines γ50, independent of N0 for large N0 (see comments fol-
lowing Equation 5.39). As we will see, k is closely related to the volume index n. The 
biological meaning (if any) of these k values of approximately 15 is not clear to this 
author.

The values of β in Table 5.3 are smaller than the nominal in vitro value of 0.05 Gy–2 
by more than one order of magnitude. We argue that these values are not well known 
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FIGURE 5.12 NTCP curves for the cervical spinal cord, based on fits to observed complication 
rates (dots) from Kirkpatrick et al. (2010). Fits have been made to a logistic model and to vari-
ous mechanistic models having a total number of cells of 107, 108, and 109. The model param-
eters for the mechanistic models appear in Table 5.3. The Schultheiss (2008) logistic model fit 
has parameters D50 = 69.4 Gy and γ50 = 4.7. The mechanistic models predict a higher NTCP 
at low doses than the logistic model because the mechanistic fits have not assumed that the 
probability is zero at a dose of 56.6 Gy.

TABLE 5.3 Mechanistic Cervical Cord Modelsa

Nc = N0k β (Gy–2) N0 k D50 (Gy) γ50

107 2.96 × 10–3 5.83 × 105 17.1 70.4 4.3
108 1.68 × 10–3 7.67 × 106 13.0 70.2 3.8
109 1.32 × 10–3 7.82 × 107 12.8 70.6 3.9

a All models assume α/β = 0.87.
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and that in vitro values may not be applicable here. It seems plausible that Nc may 
vary between patients, although not by two orders of magnitude, as in Table 5.3.

In clinical application, we are primarily concerned with small values of NTCP 
as clinicians make a determined effort to minimize complications, particularly for 
the spinal cord. Clinical applications therefore require NTCP values at small val-
ues of NTCP. Radiation oncologists are careful to keep OAR doses well below D50. 
Notice, however, that there is a substantial difference between the predictions of the 
Schultheiss (2008) logistic and our mechanistic models at small NTCP. The mecha-
nistic models have higher NTCP values at small doses. This is simply a reflection of 
the fact that we have not assumed that the complication probability is zero at low 
doses. At 45 Gy, the Schultheiss logistic model predicts NTCP = 0.03%, whereas the 
mechanistic models of Table 5.3 predict between 0.2% and 0.5%, about an order of 
magnitude larger. At 50 Gy, the traditional cervical cord dose limit, the logistic model 
predicts 0.2% and the mechanistic models predict 0.9%–1.5%.

5.4.2.4 SERIAL ORGANS: PARTIAL VOLUME EFFECTS

If D50(ν) = D50(1) ν–n, then

 
n

D= − ∂
∂
ln
ln

.50

ν  
(5.40)

Evaluation of the derivative of D50(ν), given by Equation 5.37, shows that n is not 
completely independent of ν, and therefore D50(ν) cannot be an exact power law. As 
we will show below, however, under some circumstances, D50(ν) follows a power law 
very closely.

The ratio D50(ν)/D50(1) is independent of α, β, and d, as can be seen from Equation 5.37, 
and depends only on N0 and k. For N0 ≫ 1, 1 – 2–1/N0 ≈ (ln 2)/N0, and if (ln 2/N0)1/k ≪ 1, 
then from Equation 5.37, D50(ν)/D50(1) ≈ ν–1/k, which in turn implies that n ≈ 1/k. The 
last approximation is of marginal validity; for N0 = 5.8 × 105 and k = 17.1, (ln 2/N0)1/k ≈ 
0.45. In Section 5.4.2.3, we saw that when N0 ≫ 1, γ50 ≈ ½ k ln 2. The serial model there-
fore predicts a simple relationship between n and γ50, namely, that n ≈  ln 2/(2 γ50), 
when N0 ≫ 1.

Figure 5.13 shows a log-log plot of D50(ν) versus ν for the models of Table 5.3. For 
comparison, the relation D50(ν) = 69.4 ν–0.05 is also plotted, which uses the accepted 
value of n for the cervical cord. A power law relationship has a linear graph in a log-
log plot. The mechanistic models of Table 5.3 are seen to exhibit power law behavior 
for D50(ν) to a good approximation. The slope of the mechanistic graphs is approxi-
mately n = 0.09, whereas the “accepted” value for spinal cord is n = 0.05. We note that 
the value of 1/k = 0.08 (k = 13) is close to the value for the slope of the mechanistic 
graphs.

If the probability of complication is known to be NTCP1 for the whole organ irradi-
ated to a dose D, then the NTCP when a fractional volume ν is irradiated to the same 
dose (and the remainder receives zero dose) is (see Equation 5.34)
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NTCP NTCPν

ν= ( )1 1 1– –
 

(5.41)

When NTCP1 is small, NTCPν becomes (to first order in ν) = νNTCP1; that is, NTCPν 
is proportional to the volume irradiated.

Figure 5.14 shows the dose that elicits various values of NTCP as a function of the 
partial volume irradiated for the first cervical spinal cord model listed in Table 5.3. 
The graphs in this figure show that values of NTCP do not vary much with volume 
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FIGURE 5.14 The dose required for a given value of NTCP as a function of partial volume ν 
irradiated. The model parameters are N0 = 5.83 × 105, k = 17.1, α = 2.31 × 10–3, and β = 2.96 × 10–3. 
The NTCP values of the three curves are 0.1%, 1%, and 10%. This clearly shows that there is 
little volume dependence for this model except for very small partial volumes of perhaps 10% 
or less. When ν < 10%, volume effects become significant. This is consistent with clinical data.
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FIGURE 5.13 A log-log plot of D50(ν) vs. the partial volume ν for the mechanistic models of 
Table 5.3. The relation D50(ν) = ν–0 05 is also plotted, where the volume index n = 0.05 is the 
accepted value for cervical spinal cord. A power law relation will appear as a straight line on 
a log-log graph. The mechanistic model graphs are seen to be nearly straight lines, showing 
that D50 does follow a power law for these models. The power law index for these models is 
approximately n = 0.09.
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except when the partial volume is less than about 10%. This is consistent with the 
statement by Hall and Giaccia (2012) for spinal cord that NTCP is very sensitive to 
the length for lengths less than a few centimeters, but that NTCP is independent of 
length above this.

The mechanistic models of this section fit clinical data for cervical spinal cord rea-
sonably accurately and predict power law behavior for D50(ν) with a roughly correct 
value of n.4 These models are consistent with an order of magnitude limiting value 
of the number of cells in the cervical cord. In addition, the partial volume graphs of 
Figure 5.14 show that there is little volume effect for cervical spinal cord until ν  ~ 0.10, 
in agreement with experimental data. One criticism is that the values of α and β are 
much smaller than expected. In Section 5.4.2.5, we will generalize this model to inho-
mogeneous irradiation.

5.4.2.5 SERIAL ORGANS: INHOMOGENEOUS IRRADIATION

We will assume that the dose received by all of the k cells in an arbitrary FSU is the 
same. This should be reasonable provided that k/N0  ≪  1. Let the number of FSU 
receiving dose Di be νi N0, then the generalization of Equation 5.32 is
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(5.42)

where M is the number of different discrete dose levels. The probability Pi = (1 – S)k 
and S is now given by

 S e D D fi i= − +( ) ,α β /
 

(5.43)

where f is the number of fractions. For an inhomogeneous irradiation, the dose per 
fraction will vary throughout the OAR, and therefore we express S in terms of the 
number of fractions. Equation 5.42 can be written as
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We can turn the discrete description in Equation 5.44 into a continuous description by 
noting that the fractional volume having dose between D and D + dD is {h(D)/V}dD; 
this corresponds to νi in Equation 5.44. We may therefore rewrite this equation as
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In terms of the cDVH, this can be written (using integration by parts)
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The uniform dose that is equivalent is independent of N0. The uniform dose equiv-
alent for inhomogeneous irradiation can be found by setting the NTCP for uniform 
irradiation (Equation  5.34) equal to the NTCP for inhomohogeneous irradiation. 
Alternatively, we may set ln(1 – NTCP) equal in the two cases. First, we will make 
some approximations. For an OAR, Di(α + βDi/f) ≪ 1 provided that
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For the model parameters of Table 5.3 (Nc = 107), this will be true for doses much 
less than 82 Gy, and therefore the condition of Equation 5.47 seems reasonable, at 
least in this case. In addition to this approximation, let us examine the limit in which 
N0 ≫ 1 and (ln 2/N0)1/k ≪ 1. In this case, we have seen that k ≈ 1/n. Under these cir-
cumstances for uniform irradiation (from Equation 5.34),
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For inhomogeneous irradiation (from Equation 5.44),
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The sum in Equation 5.49 may be replaced by 1/N times the sum over the total 
number of voxels N, assuming the dose is constant in each voxel. If we now set the 
expressions for ln(1 – NTCP) in Equations 5.48 and 5.49 equal, we find
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(5.50)

where De is the uniform equivalent dose. Examination of Equation 5.18 for the EUD 
shows that Equation 5.50 is a generalization of the generalized EUD. Equation 5.50 
takes account of variable fractionation experienced by different voxels in the OAR, 
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which the EUD of Equation 5.18 does not. For small doses in which D ≪ f (α/β), the 
uniform equivalent dose of Equation 5.50 reduces to the EUD.

An expression can be easily derived for the NTCP of an OAR irradiated to a uni-
form dose D0 over a fraction 1 – νh, with a uniform hot spot of fractional volume νh, 
which receives a dose Dh (refer to Equation 5.44):
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(5.51)

where NTCP0 is the probability for uniform irradiation of the entire volume with 
dose D0 and

 S eh
D D fh h= − +( ) .α β /

We have examined the effect of a small hot spot for a cervical spinal cord 
model (Nc  =  107) (see Table  5.3) using Equation  5.51. The model parameters are 
N0 = 5.83 × 105, k = 17.1, β = 2.96 × 10–3, α/β = 0.87, and f = 25 fractions. For this model, 
NTCP0 = 1% corresponds to a dose of 50.6 Gy. Assume the cord receives a uniform 
dose of 50.6 Gy except for a small hot spot (1%, 2%, and 5% in fractional volume) 
that receives a variable dose. The results of this analysis appear in Figure 5.15. The 
graph shows that a 1% (in volume) hot spot must receive 62 Gy to double the NTCP 
to 2%.
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FIGURE 5.15 The effect of a hot spot for a serial organ. This shows the NTCP vs. the maxi-
mum dose for a cervical spinal cord model in which N0 = 5.83 × 105, k = 17.1, β = 2.96 × 10–3, 
and α/β = 0.87. It is assumed that the dose is delivered in 25 fractions. The cord receives a uni-
form dose of 50.6 Gy, except for a small percentage that receives a maximum uniform dose as 
plotted along the horizontal axis. The three curves show 1%, 2%, and 5% (volume) hot spots, 
respectively. A 1% (in volume) hot spot would require a dose of more than 62 Gy to double 
the NTCP from 1% to 2%.
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5.4.2.6 PARALLEL ARCHITECTURE: UNIFORM IRRADIATION

Among those organs that are considered to have parallel architecture are kidneys, 
lungs, and liver. For kidneys, an FSU is thought to be a nephron, and for lungs, it 
could be an alveolus (although Hall and Giaccia [2012] state that it is an entire pul-
monary lobule). For liver, the nature of the FSU is not clear. According to Hall and 
Giaccia (2012), for the kidneys there are about 1000 stem cells in an FSU. An average 
human kidney contains between 9 × 105 and 1.0 × 106 nephrons (Bertram et al., 2011), 
although specific individuals can have as low as 2 × 105 nephrons per kidney. In six 
adult human lungs, the mean number of alveoli is 4.8 × 108. The mean volume of a 
single alveolus has been found to be rather constant at 4.2 × 106 μm3 (Ochs et al., 2004). 
An alveolus is approximately a hollow sphere with a thin wall to permit gaseous dif-
fusion. From these data, we can estimate the minimum number of cells in a alveolus. 
If a typical human cell has a diameter of 10 μm and we assume that cells tile the wall 
of the alveolus, then each alveolus should contain at least 1600 cells. This assumes 
that the wall thickness is one cell thick.

Let us suppose that a parallel organ contains N0 FSU. Let P be the probability of 
eradicating an FSU by delivery of dose D (see Equation 5.30). Let us suppose that 
there is a threshold number of FSU, L, that must be eradicated before a complication 
occurs. This is like a rope that fails when L strands out of N0 break. Note that this 
implies a volume threshold; that is, a complication cannot occur unless a partial volume 
ν > L/N0 is irradiated regardless of the dose delivered. Some organs that are thought 
to have parallel architecture come in pairs (e.g., kidneys and lungs). It is commonly 
known that an individual can survive the loss of one kidney. Therefore, it seems pos-
sible that L/N0 might be greater than ½ for such an organ pair.5

The probability of destroying exactly j FSU out of N0 irradiated is given by the 
binomial distribution (Equation 5.2): 

 N j
j N jC P P0

01 −( ) − .

A complication occurs only if more than L FSU are eradicated, and thus
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(5.52)

When L = 1, Equation 5.52 reduces to Equation 5.33 for the serial model. Thus, the 
serial model is a special case of the parallel model.

As N0 and L are presumed to be large numbers, let us assume that the binomial 
distribution can be replaced with the normal distribution (Equation 5.7). We will con-
sider the validity of this assumption later. We replace the sum in Equation 5.52 with 
an integral:
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where z (like j in Equation 5.52) is a dummy variable, μ = N0P, and σ = −( )N P P0 1 .  
Equation 5.53 may be written as
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where L < N0. This assumes that P ≫ 2/N0, and therefore erf (μ/(σ√2)) ≈ 1. When 
μ = L, NTCP = 50% as expected. At D50, L = μ = N0P, and therefore P = L/N0 at D50.

We can relate the mechanistic model here to empirical models by deriving 
equations for D50 and γ50. We can derive an expression for D50 by setting μ = L in 
Equation 5.54. The result is
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(5.55)

assuming that the dose per fraction d is constant. Notice that D50 depends only on 
the ratio of L/N0 and not on N0 and L separately. γ50 can be derived by differentiating 
Equation 5.54:
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(5.56)

where x = L/N0 and we have assumed that d is a constant. Notice that γ50 does not 
depend on α and β.

Let us look at some of the implications of the model represented by Equations 5.54 
through 5.56. For kidney, D50  =  28  Gy (from LKB fit). If we assume α  =  0.15 Gy–1, 
β = 0.05 Gy–2, d = 2 Gy, and k = 1000, then L/N0 = 0.40 from Equation 5.55. If we sub-
stitute N0 = 106, x = 0.40, and k = 1000 into Equation 5.56, we get γ50 = 2090. The actual 
observed value of γ50 for the kidneys is approximately 4. We can repeat this exercise 
for lung using D50 = 31.4 Gy, α/β = 4.0 Gy, β = 0.05 Gy–2, and k = 5 × 1600. Solving for 
L/N0, we get L/N0 = 0.52 from Equation 5.55.6 Smaller values of k give unrealistically 
high values of L/N0. If we also assume that N0 = 5 × 108, Equation 5.56 predicts that 
γ50 = 57,150, whereas the observed value is 0.89. This is a stunningly inaccurate pre-
diction. Adjusting the values of α and β does not help because γ50 does not depend on 
them (providing that the dose per fraction is constant).
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Figure 5.16 shows γ50 as a function of L/N0 for two sets of (N0, k) values. This graph 
shows that there is no reasonable combination of parameters that can reproduce mea-
sured values of γ50.

Could the problem of large values of γ50 be due to faulty approximations used in 
deriving the model? There are two approximations. The first is that |N0P – j | ≪ N0P 
is the number of FSUs killed by the radiation. This approximation is used to replace 
the binomial distribution with the normal distribution in Equation 5.52. This is cer-
tainly not true when j is small; however, when j is small, the terms in the sum are 
small, and it is plausible that they do not contribute very much. When j is on the 
order of L, P is roughly L/N0, and in this case, the approximation is valid. The second 
approximation is implicit in going from Equation 5.53 to Equation 5.54, and that is 
the assumption that erf(μ/(σ√2)) ≈ 1. This will be correct when the argument of erf is 
somewhat greater than 1.0 (see Figure 5.2). This occurs when P > 2/N0, which should 
be valid for most doses of interest.

The very large values of γ50 predicted by Equation 5.56 require a modification (or 
abandonment) of the simple model of Equations 5.54 through 5.56. Intrapatient vari-
ability in α and β would seem logical in that the cells making up an FSU are likely 
to be heterogeneous in nature; however, γ50 does not depend on α or β. Variations in 
N, L, or k within any reasonable bounds do not seem to help either (see Figure 5.16). 
An alternative scheme that reduces the predicted value of γ50 is to invoke interpatient 
variability. The value of L/N0 may vary from patient to patient, depending on health 
status, age, adjuvant chemotherapy, and so forth. In addition, values of α and β may 
vary between individuals. If Equation 5.56 is correct for individuals, it implies that 
there is a sharp dose threshold for complications for parallel structures. In this case, 
any effort to reduce the dose to the OAR for a specific patient may make the differ-
ence between having a complication and not having one.

0.001 0.01 0.1 1

10

100
γ 5

0

1000

104

L/N0

10–6 10–5 10–4

FIGURE 5.16 γ50 as a function of x = L/N0 for N0 = 106, k = 200 (bottom curve), and N0 = 5 × 108, 
k = 8000 (top curve). The calculated values of γ50 are orders of magnitude larger than mea-
sured values except for very tiny values of x, values for which L approaches 1 or less.
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NTCP data are for populations, not individuals. An individual either has a com-
plication or does not, although we acknowledge that the severity of the complication 
may vary. Equations 5.54 through 5.56 apply to individuals.

It seems very plausible that D50 may vary between individual patients, depending 
on individual health status or morbidity. Examination of Equation 5.55 shows that any 
variation in radiosensitivity or L/N0 will lead to variability of D50. For the kidneys, 
it is known that the number of nephrons N0 varies dramatically among individuals 
(Bertram et al., 2011). If one assumes that a certain number of nephrons L0 are neces-
sary for proper function, then L/N0 may vary significantly from patient to patient. 
Let us suppose that D50 varies between individuals following a normal distribution 
with mean value 〈D50〉 and standard deviation σ50. The very large values of γ50 show 
that Equation 5.54 for NTCP is essentially a step function. Therefore, Equation 5.54, 
can be replaced by NTCP = u(D – D50), where u is the unit step function: u = 0 for 
D < D50 and u = 1.0 for D > D50. If we average these step functions over the normal 
distribution,
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(5.57)

where γ50 for the population can be found by differentiating Equation 5.57:
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The value of 〈 〉D50 502/( )σ  in Equation 5.58 is expected to be greater than 1.0. Under 
these circumstances, the second term (on the second line) in Equation 5.57 is expected 
to have a value of approximately 1.0, and therefore
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(5.59)

Examination of Equations  5.58 and 5.24 shows that σ50  =  m〈D50〉. Comparing 
Equation  5.59 with Equations  5.22 and 5.25 shows that our model for population 
averaged parallel architecture is the same as the Lyman empirical model; that is, the 
Lyman model for a population is equivalent to a dose–response curve that is a step function 
for individuals with values of D50 averaged over a normal distribution. This is illustrated in 
Figure 5.17.
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If we perform an interpatient average on the parallel model, then Equation 5.55 for 
D50(1), although valid for an individual, is not valid for the mean value of D50. For any 
function F(z), 〈F(z)〉 ≠ F(μ), where μ is the mean value of z. If the random variable z is 
distributed according to the normal distribution, then to the second order,

 
〈 ( )〉 ≈ ( ) + ′′( )F z F Fµ σ µ1

2
2 ,

 
(5.60)

where σ is the standard deviation of x and F″ is the second derivative of F with respect 
to z. The ratio of the second term to the first term in Equation 5.60 is on the order of 
(σ/μ)2. To the extent that this is much less than 1, the second term in Equation 5.60 can 
be neglected. The quantity α + βd and (L/N0) cannot strictly obey a normal distribu-
tion because α + βd > 0 and 0 < L/N0 < 1. For a lognormal distribution, if F(z) = 1/z 
(see Equation 5.55), where z = α+βd, then 〈F(z)〉 = 1/μ. Based on this discussion, we will 
assume for expedience that
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We are now in a position to calculate model parameters for some selected OAR (see 
Table 5.4). The input are the following data: D50(1), γ50, and various values of:
α + 2β (= –1/2 ln SF2). The dose per fraction d is assumed to be 2 Gy throughout. 
Values of α + 2β are chosen from a plausible range of possibilities or from in vitro 
data. We also know that L/N0 must be significantly less than 1.0. For example, L/N0 
cannot be 0.98; otherwise, this would be clinically apparent. The quantity L/N0 only 

N
TC

P

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 108
t

FIGURE 5.17 The construction of a continuous sigmoidal dose–response curve from a series 
of step functions. The amplitude of each step is modulated by a normal distribution. In this 
case, seven steps have been summed (stepped graph). The average is at t = 5 and the standard 
deviation is 1.0. For comparison, the smooth curve is for the addition of an infinite number of 
steps given by Equation 5.59.
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has reasonable values over a fairly narrow range in values of α + 2β. The quantity σ50 
is computed from Equation 5.58, and (L/N0)1/k is computed from Equation 5.61. The 
value of L/N0 is then computed for various values of k.

Table 5.4 shows a variety of models for the kidney, lung, and liver with a range 
of parameters. Some examples follow. For the lungs, 〈D50(1)〉  =  31.4  Gy (based on 
LKB), and according to Marks et al. (2010a), α/β = 4.0. If we assume that k = 8000 and 
β = 0.05, then L/N0 = 0.52 and σ50 = 14 Gy. For the kidneys, if 〈D50(1)〉 = 28 Gy, k = 1000, 
α/β = 3.0 Gy, and β = 0.05 Gy–2, then L/N0 = 0.40 and σ50 = 2.8 Gy.

5.4.2.7 PARALLEL ARCHITECTURE: PARTIALLY UNIFORM IRRADIATION

This is the case where a fraction of the organ ν receives a uniform dose D (at 2 Gy per 
fraction) and the remainder receives no dose. To examine this case, we replace N0 in 
Equation 5.61 by νN0. Due to the threshold, if ν < L/N0, there will be no complication 
regardless of how large the dose. As we have commented above, for some paired 
organs, such as the kidneys, it is likely that ν > ½. Figure 5.18 illustrates the “forbid-
den” region for kidneys in a ν-D plane. The shaded area has an NTCP above 5%.

We can evaluate the putative power law dependence of D50 by plotting D50(1)/D50(ν), 
assuming that the dose per fraction, d, is the same in both cases. This quantity is only 
defined above the threshold: ν  >  L/N0. A log-log plot is shown in Figure  5.19 for 
various combinations of parameters (L/N0) and k. The graphs are clearly not straight 
lines, as would be expected of a power law. A charitable view is that these plots are 

20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

Dose (Gy)

Forbidden

50%

5%

LKB 5%

D50 = 28 Gy

k = 1000

L/N0 = 0.40

1.0

ν

γ50 = 4.0

α + 2β = 0.25

FIGURE 5.18 Shows NTCP contours for a kidney model with NTCP = 5% and 50% in a partial 
volume–dose plane. The shaded area is to be avoided if one wishes to hold complication prob-
ability to less than 5%. For this model, L/N0 = 0.40, and therefore when the partial volume is 
below this value, no amount of dose will cause a complication. For comparison, the correspond-
ing LKB model with NTCP = 5% is also shown.
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very roughly linear for values of ν well above the threshold where complications are 
most likely to be seen.

Equation 5.40 may be used to calculate the value of the power law exponent:
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(5.62)

which of course would be a constant if D50(ν) were a true power law. This exponent 
actually becomes singular when ν = x = L/N0. We can define an average of sorts by 
evaluating n at a value of ν, which is halfway between x and 1.0 (Figure 5.19):

 �n n
x= +





1
2

.  (5.63)

Some of the values of k in Table 5.4 have been chosen to give the observed values 
of �n  by using Equations 5.62 and 5.63 as constraints.

There appears to be no solution to Equations 5.58 and 5.61 for the in vitro value of 
α + 2β = 0.46 for liver (Deschavanne and Fertil, 1996). If the value of α + 2β is much 
less than the values in Table 5.4, then k → 1, and if α + 2β is somewhat larger than the 
values in Table 5.4, then L/N0 → 1. These are limiting values.

5.4.2.8 PARALLEL ARCHITECTURE: INHOMOGENEOUS IRRADIATION

This is a difficult problem to analyze because of the challenge of calculating the prob-
ability of killing > L FSU. In principle, each FSU could receive a unique dose Di. For 
each FSU, there will be a different probability of inactivation pi = (1 – Si)k. We then face 
the mathematical problem of determining the probability that L or more FSU will be 
eradicated. This is analogous to the following problem. There are N coins, each of 
which has a probability pi of landing heads up. What is the probability that L or more 
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1.

1.1

1.2

1.3

1.4

D
50

(ν
)/

D
50

(1
)

L/N0 = 0.52

0.40

0.34

ν

FIGURE 5.19 A log-log plot of D50(ν)/D50(1) vs. ν for (L/N0, k) of (0.34, 50,000), (0.40, 1000), and 
(0.52, 8000). The graphs are clearly not straight lines, as would be expected for a power law. 
They are roughly linear for ν ≈ 1.0.
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of these coins will land heads up? This difficult mathematical problem has been dis-
cussed by Jackson et al. (1993).

5.5 TUMOR CONTROL PROBABILITY
Yorke (2003) describes some of the difficulties with TCP models. These include a fre-
quent lack of detailed knowledge of the dose and the distribution of dose actually 
delivered to the patient. Confusion between local failure and nearby recurrence can be 
a confounding issue. Soft tissue tumors have a cell number density of about 109 cm–3, 
but not all of these cells are clonogenic. The fraction of the cells associated with tumor 
growth is not known. Reasonable models can be constructed that agree with observed 
data for uniform dose distributions but differ greatly for nonuniform irradiation.

5.5.1 TCP EMPIRICAL MODELS

The EUD (see Equation 5.18) is used by several commercial treatment planning sys-
tems for optimization or plan evaluation (Li et al., 2012). It is a simple, single-parameter 
quantity that is easily computed from the DVH (see Equation 5.19). For a tumor, the 
value of the volume index n must be negative, and it is small. The value is typically 
about n ≈ –0.10 (Yorke et al., 2013).7 The smaller the value of |n|, the closer the value of 
the EUD is to the minimum dose.

Although the parameters D50 and γ50 are most frequently mentioned in the litera-
ture, the parameter D95 may be more relevant. Various models can have the same D50 
and γ50 but very different values of D95. Clinical data indicate that the values of D50 lie 
between 40 and 70 Gy and that the values of γ50 range between 1 and 3 (for the model 
of Equation 5.64) (Okunieff et al., 1995).

Table 5.5 contains selected D50 and γ50 data from the paper by Okunieff et al. (1995), 
along with some modeling data that will be discussed in the next section. This refer-
ence reports a mean value of D50 of 50 Gy ± 18.4 (1 SD) and a mean γ50 value of 3.2 ± 7.6 
(1 SD). For the mechanistic model considered here, D50 and γ50 depend on the volume 
of the tumor, but volumes are either not reported or only vaguely given. Variations in 
volume may reduce individual values of γ50. The γ50 value quoted in Table 5.5 for naso-
pharynx seems unusually high; however, there is an additional entry in the Okunieff 
tables for nasopharynx (T1 + T2, single institution) with D50 = 59 and γ50 = 47.3, an 
even larger value. Neither mechanistic model described below can accommodate the 
high γ50 value for nasopharynx.

Okunieff et al. obtained D50 and γ50 values based on data fits to the following TCP 
formula:

 
TCP =

+

−

−
e

e

D D k

D D k

( )/

( )/ ,
50

501  
(5.64)

where γ50 = D50/(4k).8 Note that TCP is not zero when D = 0.
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Figure 5.20 shows a plot of Equation 5.64 for the tumors in Table 5.5. The anal tumors 
have D50 = 32.9 Gy, but a small value of γ50 (0.58), and therefore D95 is relatively high 
(~75 Gy). The nasopharynx tumors have a very steep dose response, and therefore the 
dose must exceed a threshold of about 48 Gy for any likelihood of tumor control.

5.5.2 TCP MECHANISTIC MODELS

5.5.2.1 HOMOGENEOUS CASE

For tumors, the generic value of α/β is approximately 10. The ratio of the first term 
to the second term in the exponent of the cell survival, Equation 5.29 is α/(βd) ~ 5 for 
typical fractionation when d = 2 Gy. It is therefore common to neglect the β term in 
Equation 5.29. This is perhaps invalid for prostate cancer, as there is evidence that α/β 
may be as low as 1.4 for prostate (Miralbell et al., 2012). For breast cancer, α/β = 2.8 
has recently been quoted (Qi et al., 2011). Based on these data, we will not neglect the 
β term until a later section, when it becomes difficult to proceed without doing do. 
The neglect of the β term will not be valid for large doses per fraction (stereotactic 
radiosurgery or hypofractionation).

For tumor control, an FSU is assumed to consist of a single clonogenic cell. The 
TCP is assumed to be the probability that no cell survives. If a tumor consists of 
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FIGURE  5.20 TCP data from Okunieff et al. (1995) for selected tumors. These curves are 
based on fits to Equation 5.64 for D50 and γ50. All fits except for lung (and possibly breast) are 
based on data from multiple institutions. This averaging may have the effect of reducing γ50.
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N clonogenic cells, the average number surviving an absorbed dose D is μ = N Sf, 
where Sf is given by Equation 5.29. It is probably reasonable to use the Poisson prob-
ability here because we are interested in values of TCP such that the probability of 
individual cell survival is small and the number of cells is large. The probability that 
no cells survive (x = 0) in Equation 5.6 is f(0) = e–μ. Under these circumstances, the 
TCP is given by

 
TCP exp= 





+( )– .–Ne D dα β

 
(5.65)

Note that the effect of the neglect of the β term in Equation 5.65 would imply that 
TCP does not depend on the number of fractions f.

Equation 5.65 ignores proliferation. According to Hall and Giaccia (2012), the dou-
bling time of human tumors spans a large range, and the median value is about 
60 days, although values as short as 3 days (Trott et al., 1985) have been reported for 
Hodgkin’s disease. If tumor growth is exponential, then the number of cells at time t 
is proportional to eηt, where η = (ln 2)/T2 and T2 is the doubling time. The number of 
cells Nc(t) surviving after time t during which f fractions are delivered is

 N t N e ec c
t D d( ) ( )= +( )0 η α β– ,  (5.66)

where Nc(0) is the number at the beginning of treatment. Proliferation is unimportant 
when ηt ≪ D(α + βd) or when t ≪ D(α + βd)T2/ln 2. If we assume that α = 0.35 Gy–1, 
α/β = 10 Gy, d = 2 Gy, D = 70 Gy, and T2 = 60 days, we find that when t ≪ 2500 days, 
proliferation is unimportant. For these parameters, tumor proliferation during treat-
ment is unimportant, although this may not be true under all circumstances.9 We will 
neglect proliferation from this point forward.

Let us suppose that N = ρV, where ρ is the number density of clonogenic cells and 
V is the volume of the tumor.10 We can now write

 
TCP exp= 





+( )– .–ρ α βVe D d

 
(5.67)

A typical mammalian cell is 10 μm in diameter. If there was perfect cell packing 
with no interstices between cells, this would lead to a cell density of about 2 × 109 
cm–3. Not all cells are clonogenic, and there is not perfect packing; therefore, this is 
an upper limit to the clonogenic cell density.

Cell lines established from biopsies can be used to measure α and β in vitro, but 
clearly, the in vitro environment does not reproduce the in vivo environment. It is not 
difficult to infer values of α/β from fractionation studies; however, separate values of 
α and β are difficult to come by. For low LET radiation, in vitro measurements yield 
values of α between 0.1 Gy–1 (highly radioresistant) and 2 Gy–1 (very radiosensitive). 
Commonly used values in the literature are α = 0.35 Gy–1 and ρ = 107 cm–3 (Nahum 
and Tait, 1992).
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We can solve Equation 5.67 for the dose necessary to achieve a given TCP as follows:
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(5.68)

where the dose per fraction is assumed constant. The dose for a given TCP depends 
sensitively on α, but rather insensitively on the tumor volume. Figure 5.21 shows the 
TCP as a function of dose for ρ = 107 and α = 0.35 Gy–1 for tumor volumes of 1, 8, 64, 
and 512 cm3.

An expression for D50 is easily derived from Equation 5.68:
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(5.69)

assuming that d is constant. For the model described by Equation 5.67, γ50 is given by
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Notice that γ50 is solely determined by N = ρV.
Although D50 and γ50 both depend on the volume of the tumor, the ratio does not. 

The ratio of these two quantities predicts the value of α + βd.
For N = 109, Equation 5.70 predicts γ50 ≈ 7. Observed values of γ50 ≈ 2 (or even less) 

appear to present a problem, although we note that there are some large observed 
values (see Table 5.5, nasopharynx). Equation 5.70 implies that N is on the order of 
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FIGURE  5.21 Tumor control probability–response curves for α  =  0.35  Gy–1, α/β  =  10, and 
ρ = 107 cm–3 and tumor volumes of 1, 8, 64, and 512 cm3.
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200 if typical values of γ50 ≈ 2. This is eight orders of magnitude less than the number 
of cells in a small 10 cm3 tumor. In addition, Equation 5.69 then predicts an unusu-
ally small value of α. If D50 ≈ 40 – 70 Gy, then α ≤ 0.1 Gy–1. For D50 = 50 Gy and γ50 ≈ 2, 
Equations 5.69 and 5.70 predict N = 222 and α = 0.115 Gy–1. In turn, Equation 5.68 pre-
dicts that D95 (dose required for TCP = 95%) is 73 Gy. For some tumors, the situation 
is even more extreme. For anal tumors (Table 5.5), N = 3.7 and α = 0.051 Gy–1. Large 
observed values of γ50 present the opposite problem. For nasopharynx, γ50 = 17.5 (see 
Table 5.5) implies a value of N on the order of 1022, which is highly unrealistic. These 
models are summarized in Table 5.5 (right-hand two columns labeled homogeneous 
model). Figure 5.22 shows γ50 as a function of tumor volume for a variety of clonogen 
densities ranging from 102 to 109 cm–3. The value of γ50 is relatively independent of 
volume, and observed values are only consistent with small values of ρ. Only values 
of ρ on the order of 102 cm–3 can reproduce (average) observed values of γ50, which are 
approximately 2.

Two possible solutions to this puzzle of small N (or ρ) values have been discussed 
in the literature. The first of these is to accept the results. In fact, there is evidence 
that tumors may consist of a small number of radioresistant clonogens. A number of 
authors are cited by Yorke (2003) as believing that tumors are dominated by a small 
number of radioresistant clonogens, while the vast majority of cells are either not 
clonogens or are killed by low doses. The second solution recognizes that tumor con-
trol data are based on populations, not individuals. Individuals are either controlled 
locally or not. TCP data represent an average over many individuals who may have 
tumors of differing radiosensitivity. It seems as if other possibilities exist also, for 
example, averaging over tumor volume V between patients, dose variations through-
out the tumor, or variation of clonogen density within a tumor.
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FIGURE 5.22 γ50 as a function of the tumor volume (in cm3) for various values of the clonogen 
density ρ ranging from 108 down to 102 cm–3. It is seen that the value of γ50 is relatively con-
stant with volume except for very small volumes (less than a few cc). Only very small values 
of ρ (on the order of 102 cm–3) can reproduce (average) observed values of γ50, which fall in the 
shaded range between about 1.0 and 3.0.
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If the number of radioresistant clonogens in a tumor is really on the order of sev-
eral hundred, this is quite astonishing. We are using large doses to kill just several 
hundred cells. That makes radiation therapy a very blunt instrument indeed.

5.5.2.2 TCP MECHANISTIC MODELS: TUMOR HETEROGENEITY

5.5.2.2.1 Intratumor Variation It is known that individual tumors are highly 
heterogeneous, and it would not be surprising if there is a significant variation in 
radiosensitivity throughout a single tumor. As an example, hypoxic cells are more 
radioresistant than nonhypoxic cells. In this section, we concentrate on intratumor 
variation in radiosensitivity. According to Webb (1997), intratumor variability pri-
marily affects D50. In this section, we assume that the value of α varies throughout the 
tumor. We also neglect β; that is, we assume βd/α ≪ 1.

Let us assume that the number of cells having a value of α between α and α + dα is 
given by a Gaussian distribution, and therefore
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(5.71)

where:
 N is the total number of cells in the tumor
 α  is the average value of α
 σa is the standard deviation of α. 

Equation 5.71 is only valid when σa/α ≪ 1; otherwise, zero or negative values of α 
would have a significant probability of occurrence. The probability, δP, that a dose D 
will eradicate all of these dN cells is e–μ, where μ = Sf dN:
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The TCP is the product of all such terms, and therefore the log is given by
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where TCP is the tumor control probability for intratumor averaging over α.
The integral in Equation 5.73 is the Laplace transform of the Gaussian with respect 

to α (see Equation 5.87). The result of taking the Laplace transform is
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In the limit in which σa → 0, this result reduces to lnTCP = − −Ne Dα , as expected. 
The quantity γ50 is given by
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When σa → 0, this reduces to Equation 5.70.
Figure 5.23 shows the effect of intratumor variability. Even a relatively small stan-

dard deviation in α can lead to a significant increase in D50 when N is relatively large. 
The reason for this is that the spread in α introduces a radioresistant component of 
cells. Given the heterogeneity of tumors, it seems likely that this shift in D50 will occur 
in real tumors. To put it another way, given a value of D50, intratumor variability will 
make it appear as if the effective value of α is lower than α. Because of the sensitivity of 
D50 to σa, realistic models of tumor control should include this effect when N is large.

We can also look at the case where we have two different components, a compo-
nent consisting of N1 cells with normal radiosensitivity α1 and a radioresistant com-
ponent with N2 cells and sensitivity α2. The TCP for component i is ln TCP = –Nie–αiD, 
and therefore for this two-component model,
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FIGURE 5.23 TCP vs. dose for intratumor variability. For all curves, N = 108, α = 0.30 Gy–1. 
The curve on the left has σa = 0. The value of D50 is 62.6 Gy. The middle curve has σa/α = 10%. 
The value of D50 shifts to 70.1 Gy. The curve on the right has σa/α = 13%. This causes a shift in 
D50 to 80.1 Gy. The value of γ50 is relatively insensitive to the value of σa.
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Figure  5.24 shows an illustrative example of this for two different values of 
N (102 and 108). There is a dramatic difference in the way that a tumor responds to 
intratumor variability, depending on the number of clonogens. Tumors having a large 
number of clonogens are very sensitive to intratumor variations. A small number of 
radioresistant cells could effectively determine the value of D50.

5.5.2.2.2 Intertumor Variations Intertumor variations pertain to variations in 
parameters between patients. The value of γ50 depends on the log of the tumor volume. 
This certainly varies between patients, but because γ50 depends on the slowly varying 
log of the volume, a population average will not reduce γ50 significantly. Intertumor 
variations of radiosensitivity involve variations in the value of α , whereas intratu-
mor variations involve variations in α.

According to Moiseenko et al. (2005, p. 194) and references therein, “in-vitro 
measurements of radiosensitivity (for cell lines established from biopsy speci-
mens) vary significantly between patients (the coefficient of variation is typically 
30%–50%). It is not clear how one rules out intratumor variation (depending on the 
location from which the biopsy specimen is taken) as a confounding factor that 
could mimic intertumor variation. In addition, the biopsy specimens are presum-
ably evaluated in vitro.

As explained by Wein et al. (2000), interpatient variability solves two problems:

 1. The resulting radiosensitivity and clonogen number are more consistent with 
expectations from in vitro data.

 2. The dose–response curves are more shallow and can match the observed clinical 
data.
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FIGURE 5.24 The effect of a two-component sensitivity model. We compare a homogeneous 
tumor (α = 0.30 Gy–1) with N = 102 cells (left-most curve) and N = 108 cells (left most curve 
labeled N = 108) to a two-component model containing just 1% of radioresistant cells having 
α = 0.10 Gy–1. The effect on the tumor having a small number of clonogens is slight. In con-
trast, the tumor having a large number of cells shows a dramatic increase in D50 from 62 to 
140 Gy.
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One of the difficulties with this argument is that it is not clear that there is a prob-
lem to begin with. It is not obvious that in vitro values of α are closely correlated to 
in vivo values. In addition, as previously discussed, there is some evidence that the 
number of radioresistant clonogens is in fact quite small.

We can calculate the intertumor variation by averaging the TCP values over a 
Gaussian distribution of α  values with standard deviation σe:
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where the quantity α  is the interpatient average of α . The value of σe cannot be too 
large; otherwise, there will be a significant probability of values of α ≤ 0.

The parameter γ50 is obtained from the definition (see Equation 5.1)
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We have examined the case in which N = 107, α = 0.35 Gy–1 for various values of 
σe. We have integrated Equation 5.77 numerically using the NIntegrate function in 
Mathematica. We find that the value of D50 hardly changes compared to the case in 
which σe = 0. For σe = 0, the value of D50 = 47.2 Gy. For σe = 0.1 Gy–1, D50 = 47.9 Gy. 
The value of γ50, however, drops substantially, from 5.7 to approximately 1.5. This is 
illustrated in Figure 5.25. The effect of intertumor variability is to primarily change 
the value of γ50 without significantly affecting D50. In contrast, D50 is very sensitive to 
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FIGURE 5.25 The effect of intertumor variation in radiosensitivity. The green curve shows 
the TCP for N = 107, α = 0 35.  σe = 0. The other curves are identical except that σe = 0.03, 
0.05, and 0.1 (blue, violet, and olive green curves). The value of D50 hardly changes, but the 
slope decreases dramatically as σe increases. The graph inset shows the Gaussians that the 
TCP curves are averaged over.
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intratumor variability (when N is large), but γ50 is insensitive. It may be that neither of 
these effects can be ignored.

Some intertumor variation models appear in Table 5.5. All of these models assume 
N  =  108, and they are based on simultaneous solution of Equations  5.77 and 5.78, 
with TCP =  0.5 at D = D50. These solutions were obtained using the Mathematica 
commands “NIntegrate” and “FindRoot.” The D50 and γ50 input values are based on 
the fit to Equation 5.64, and therefore these models do not predict the same D95 that 
Equation 5.64 does. For this reason, these models are for illustrative purposes only. 
The values of α  are closer to in vitro values than those of the models in Section 5.5.2.1.

The steepest possible patient-specific (as opposed to population) dose–response 
curve is a unit step function (or Heaviside function). The unit step will go from a 
value of zero to a value of 1.00 at a dose equal to
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Values of α will vary over the population, and therefore the location of the step will 
vary. Let us assume that the distribution in the patient-specific values of D0 obeys a 
normal distribution with a standard deviation of σD. If we average over these values of 
D0 and then take the derivative to calculate the population γ50, it can be shown that11
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This is an upper limit to the slope (Moiseenko et al., 2005).

5.5.2.2.3 Nonuniform Dose Distribution The dose throughout a tumor is in real-
ity never uniform. Let us assume that each voxel containing Ni = ρiVi cells receives 
a uniform dose, where ρi is the clonogen density and Vi is the voxel volume. The 
probability of eradicating a particular voxel i is (see Equation 5.31)
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 (5.80)

where Di is the total dose received by voxel i. The discussion in this section applies 
to individuals, not the patient population as a whole. Let us assume that the tumor 
is homogeneous (α and β constant throughout the tumor). Let there be a total of M 
voxels. Assume that the clonogenic density is constant throughout the tumor. In 
this case, the TCP is

 
TCP = −( )− −

=
∏exp .ρ α βV ei

D D f

i

M
i i

2

1  
(5.81)



Chapter 5 – Tumor Control and Normal Tissue Complication Probability Models       265

If the dose is constant throughout the entire volume, this reduces to Equation 5.65, 
as expected. Let us look at the case in which the target is considered a continuum. 
The product in Equation 5.81 indicates that the exponentials are to be multiplied; this 
means that the exponents themselves can be added. The sum of the exponents in 
Equation 5.81 can then be written as
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The expression for the TCP is now given by
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In terms of the cDVH, this can be expressed as

 ln( ) .
max

TCP = ( ) +( ) −







− −∫ρ α β α βV H D D f e dDD D f
D

2 1
2

0
 (5.84)

If we assume that β is zero, then Equation 5.84 becomes
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Evaluation of Equation 5.85 simply requires a sum over the cDVH. The upper limit 
in the integral in Equation 5.85 can be made infinite; the function H(D) will provide 
the cutoff so that the integral does not diverge. The log of the TCP is related to the 
Laplace transform of H(D):
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The uniform dose that is equivalent to the nonuniform dose distribution can 
be found by setting ln(TCP) given by Equation 5.83 equal to the ln(TCP) given by 
Equation 5.65. The result is
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No similarity is apparent between this and Equation 5.19 for the EUD.
When the dose is relatively uniform, as it usually is by design, De can be writ-

ten in terms of the average dose and the standard deviation of the dose. We write 
D D D D= −( ) + , where D  is the average dose. The quantity D D−( )  is assumed to 
be small. The exponential term in Equation 5.88 is expanded in a power series in 
D D−( )  up to the second order. No assumptions are necessary regarding the form of 

h(D). The result is

 
D De D≈ − +





1
1

1
2

2 2

α
α σln ,

 
(5.89)

where
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Equation 5.89 shows that the equivalent dose is always less than the average dose. 
This equation allows a trivially easy computation of an approximate value of De, 
knowing only the average and standard deviation of the dose distribution. It is pos-
sible to carry out a similar expansion for the EUD (Equation 5.19), yielding

 
EUD ≈ − − 

















D
n

n D
D

n

1
1

2 2

2σ
.
 

(5.90)

Comparison of Equations 5.89 and 5.90 shows that (assuming the standard devia-
tion is small)
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We see that the value of the volume index n depends on the average dose. For 
α ≈ 0.25 Gy–1 and D = 70Gy,  n = –0.06. Accepted values of n are on the order of –0.10.
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The enhancement in the TCP due to a hot spot can be readily seen to be
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where TCP0 is the TCP for a uniform dose of Dmin.
Consider the target cDVH in Figure 5.26, in which (1 – Δν) represents the fraction 

of the volume receiving a dose of Dmax. This is an archetypal cDVH for a target. Real 
patient cDVHs are similar in form even though Δν may be 1.0 and the portion of the 
graph between Dmin and Dmax may have curvature and wiggles. If the prescribed dose 
is Dmax, then Dmin represents a cold spot and 1 – Δν represents the volume receiving 
the prescription dose. On the other hand, if Dmin represents the prescription dose and 
Δν = 1.0, then Dmax represents the hot spot dose. The TCP for the DVH in Figure 5.26 
is given by
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where ΔD = Dmax – Dmin. Note that in the limit in which ΔD → 0 or Δν → 0, the TCP 
reduces to the TCP for a constant dose Dmax.

Let us consider Dmin to represent a cold spot. Let TCP Exp0 = − 
−Ne Dα max  represent 

the TCP in the absence of the cold spot (i.e., for uniform irradiation). We can then 
express TCP with the cold spot in terms of this:
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FIGURE 5.26 cDVH for a target volume. If Dmax is the prescribed dose, then 1 – Δν is the frac-
tional volume receiving this dose and Dmin is the cold spot dose. If Dmin is the prescribed dose 
and Δν = 1, then Dmax represents the hot spot dose. These two scenarios are discussed in the text.
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The TCP in Equation 5.94 is independent of N given a value of TCP0. A graph of the 
TCP as given by Equation 5.94 is shown in Figure 5.27 for TCP0 = 95% as a function of 
αΔD for various values of Δν. As an example, if Δν = 10%, the cold spot is 80% of the 
prescription dose (Dmin = 0.8 Dmax), Dmax = 70 Gy, and α = 0.35 Gy–1; then α ΔD = 4.9 
and TCP drops from 95% to about 82%.

If we now consider Dmin to represent the prescription dose and Δν = 1.0, then Dmax 
represents the hot spot dose. Under these circumstances, Equation 5.93 can be written
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In the case in which α ΔD ≪ 1,

 TCP = −{ }−exp minNe Dα ,

as expected. The uniform dose De that is equivalent to this nonuniform dose is found 
by setting the TCP given by Equation 5.95 equal to the TCP given by Equation 5.65:
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Note that De is independent of N. When α ΔD is small, this expression is (to the 
second order in ΔD)
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FIGURE 5.27 The effect of a cold spot on TCP. TCP is plotted as a function of αΔD for various 
values of Δν based on Equation 5.94. The quantity 1 – Δν is the fraction of the volume receiv-
ing the prescription dose. All TCP values are 95% for ΔD = 0.
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This shows again that De is always somewhat less than the average dose.
For the purpose of comparing rival treatment plans, it may be useful for the TCP of 

both plans to be the same, allowing a direct comparison of NTCP values. Otherwise, 
the comparison is an “apples to oranges” comparison. The question is, how do we 
accomplish this given two different dose distributions, D r1

�( )  and D r2
�( ) , where 

�
r  

is the position vector? The dose is proportional to the total monitor units (MU) deliv-
ered. This may be adjusted up or down by adjusting the total MU without changing 
the distribution of dose. The problem then becomes one of adjusting the MU of plan 
1 so that TCP1 = TCP2. If ′ =D aD1 1  then EUD EUD1′ = a 1  and ′ =D aDe e1 1 ; therefore, 
MU MU′ =1 1a . Plan 1 can be forced to have the same TCP as plan 2 by multiplying the 
MU for plan 1 by a = EUD2/EUD1 or a = De2/De1, depending on whether one favors 
the EUD model or the mechanistic model of this section.

5.6 PROBABILITY OF UNCOMPLICATED CONTROL
The overall goal of radiation therapy is to control the tumor without causing 
complications. The probability of uncomplicated control, P+, is defined as the prob-
ability that no complication occurs and that the tumor is controlled:

 
P i

i

M

+

=

= × −( )∏TCP NTCP1
1

,  (5.98)

where M is the number of OARs. If we assume that the target and the OAR receive 
the same uniform dose, we can plot TCP and NTCP versus dose on the same graph, 
as shown in Figure  5.28. For a reasonable chance of uncomplicated control, the 
NTCP curve needs to be to the right of the TCP curve, and it needs to be far enough 
to the right so that the product, P+, in Equation 5.98 takes on a large value over some 
“therapeutic window” of dose. If the OAR receives less dose than the target, then 
the therapeutic window becomes larger. In some cases, there may only be a narrow 
window over which the probability of uncomplicated control exceeds a reasonably 
large value.

5.7 CONCLUSIONS/SUMMARY
The prospect of constructing mechanistic models for NTCP and TCP is seductive but 
daunting. With apologies to Winston Churchill, mechanistic models are based on 
uncertainties, piled on top of enigmas, wrapped up in ignorance. Ignorance and con-
fusion persist; however, they now persist on a higher plane. It is difficult to reach any 
clinically useful conclusions based on mechanistic models. One of the reasons for this 
is that the parameters are so poorly known. In vivo values of α and β are unavailable 
and must be found from fits to clinical data. It is unlikely that mechanistic models 
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will improve until better clinical data are available. The conclusion in the QUANTEC 
report is that more data are needed, not more models.

Models that fit observed data and have biology and probability built into them 
may be preferred over simple empirical data fitting models. At least there is some 
science built into these models, crude though it may be.

5.7.1 SERIAL OAR

It is expected that the maximum number of cells in an OAR is Nc = N0k ~ 108. We have 
performed calculations for simple serial models with no intra- or interpatient vari-
ability. The value of γ50 is independent of α and β and depends only on N0 and k. When 
N0 ≫ 1, NTCP = − −( )1 2 50D D k/  and γ50 ≈ ½ k ln 2 (independent of N0). If, in addition,
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The value of D50 is sensitive to α + βd, as one would expect. To reproduce observed 
values of γ50, either N0 or k (or both) must be small.
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FIGURE 5.28 Probability of uncomplicated control for prostate cancer (T0 and T1) and rectal 
complications assuming that the rectum receives a uniform dose that is the same as for the 
prostate. This is based on data from Okunieff (prostate) and QUANTEC (rectal complica-
tions). The probability of uncomplicated control, P+ is 95% over a range in dose between 50 
and 65 Gy (shaded region). This is the therapeutic window. The maximum value of P+ is 98% 
for a dose of 59 Gy.
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We have solved for values of N0, k, α, and β using as input observed values for 
the complication rates for cervical cord with α/β  =  0.87. For one model, we find 
N0 = 7.7 × 106, k = 13, β = 1.7 × 10–3 Gy–2, D50 = 70 Gy, and γ50 = 3.8. The values of β 
are considerably smaller than in vitro values. The predicted value of n ≈ 0.08 and the 
observed value is 0.05.

Values of NTCP are relatively independent of volume except for ν ≲ 0.1.
For inhomogeneous irradiation, an analytic expression is derived for NTCP in 

terms of an integral over the cDVH. We have examined the effects of a hot spot for 
nonuniform irradiation.

The cervical cord serial model based on Equations 5.34 and 5.35 (1) fits observed 
complication data reasonably accurately; (2) predicts power law behavior for the 
volume effect with

 
n ≈ ln

;
2

2 50γ

and (3) the predicted equivalent dose (Equation 5.50) is a generalization of the 
EUD that takes account of fractionation effects associated with nonuniform 
irradiation.

5.7.2 PARALLEL MODELS

A model has been constructed by assuming that L or more FSUs out of N0 must 
be destroyed to cause a complication. This implies a fractional volume threshold of 
ν = L/N0. The value of D50 depends only on the ratio L/N0 and not on L and N0 sepa-
rately. The value of γ50 does not depend on α or β. Predicted values of γ50 are orders 
of magnitude larger than observed values unless L/N0 ≲ 10–6. Complication data are 
based on populations, not individuals. The value of D50 may vary from patient to 
patient. If the model is correct for individuals, the NTCP curve for specific patients is 
essentially a step function of dose for which the NTCP goes from 0 to 1.0 at D = D50. 
Averaging a step function over a Gaussian population distribution of D50 with stan-
dard deviation σ50 leads to a population average of

 
〈 〉 =γ

σ π
50

50

50 2
D .

It has been shown that the Lyman model is predicted by this averaging. An exam-
ple model for kidneys assumes D50 = 28 Gy, 〈α + 2β〉 = 0.25 Gy–1, 2 Gy per fraction, 
and k  =  1000 cells per FSU. This results in a model for which σ50/D50  =  0.10 and 
L/N0 = 0.40. The models do not predict power law behavior for individuals for partial 
volume irradiation, except perhaps very crudely for ν ≈ 1.
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5.7.3 TUMOR CONTROL PROBABILITY

Neglect of the β term in the linear quadratic cell survival probability is not justified 
for all tumors, particularly tumors of the prostate and breast.

The following results apply to a simple Poisson-based model without intra- or 
intertumor averaging. The dose for a particular value of the TCP depends on the 
logarithm of the volume. Values of D50 and γ50 depend on the tumor volume, but 
the ratio γ50/D50 depends only on α + βd. The value of γ50 depends only on the 
tumor volume and not on α or β. Observed values of γ50 ≈ 2 imply that the number 
of clonogenic cells is ~102, eight orders of magnitude less than the number of cells 
in a small 10 cm3 tumor. In addition, the model predicts unusually small values 
of α  ≲  0.1  Gy–1. Two possible solutions are presented to address this dilemma. 
The first is to accept the values, arguing that the actual number of radioresistant 
clonogens to be destroyed by radiation is in fact as small as several hundred cells. 
The other possible solution involves variations in radiosensitivity, either intratu-
mor or intertumor. Published dose–response curves apply to populations and not 
individuals.

Intratumor variations in α primarily affect D50 and not γ50. We have averaged the 
TCP over a Gaussian distribution with mean value α  and standard deviation σa. Even 
a small value of σa leads to a significant decrease in the value of D50 when N is large. 
If N is very large (~108), this effect cannot be ignored. For small values of N (~102), 
however, the D50 value is relatively insensitive to the value of σa.

Intertumor variations involve variation in the value of α . We have averaged TCP 
over a Gaussian distribution of α  values with an average value of α  and a stan-
dard deviation of σe. Values of D50 are insensitive to σe, but values of γ50 are reduced 
when σe > 0. Assuming that D50 = 50 Gy, γ50 = 2, β = 0, and N = 108, we find that 
α = −0 379 1. Gy  and σe = 0.071 Gy–1.

For inhomogeneous irradiation, ln(TCP) is related to the Laplace trans-
form of  the cDVH. Models with N ~  102 are relatively insensitive to cold spots, 
whereas models with N ~ 106 – 108 have an TCP that is very sensitive to cold spots. 
An approximate value of the uniform equivalent dose for the mechanistic model 
may be calculated trivially from the value of α and the average and standard 
deviation of the dose for the target volume. The mechanistic model predicts an 
approximate value of the volume index n. The value of n corresponds reason-
ably closely to values quoted in the literature. The index n depends on the aver-
age dose, and the EUD may therefore not be a reliable quantity for predicting 
outcome.

PROBLEMS
 1. There are five links in a chain. The probability of a link breaking under a certain 

load is 0.01. Assume that this is the same for all the links.
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 a. What is the binomial probability that the chain will break?

 b. Repeat the problem if the chain now has 100 links.

 c. Repeat part (b) using the Poisson distribution

 2. A thin rope consists of five strands. If two or more strands break, the rope itself 
will fail. If the probability of a strand failing is 0.20, calculate the probability that 
the rope will fail.

 3. Show that the area under the DVH curve H(D) is equal to the average dose D  
(see Equation 5.15).

 4. Consider a sphere with dose that depends only radially on the distance from the 
center of the sphere, r; h(D) = V/(Dmax – Dmin) for Dmin < D < Dmax and h(D) = 0 for 
D < Dmin and D > Dmax, where V is the volume of the sphere, Dmax is the dose at 
the center, Dmin is the dose at the surface, and R is the radius of the sphere. Find 
the spatial distribution of dose D = D(r).

 5. Derive Equation 5.19 for the EUD in terms of the cDVH.

 6. Show that the expression in Equation 5.20 approaches Dmax as n approaches 0.

 7. a.  A uniform dose of about 30 Gy to the liver will result in approximately a 5% 
chance of radiation-induced liver disease. For a particular treatment plan, 
half of the liver receives a dose D and the remainder receives no dose. What 
is the maximum value of D if the probability of a complication is to remain at 
or below 5%? The value of n for the liver is 0.86.

 b. Repeat part (a) for the kidneys if the uniform dose for a 5% complication 
probability is 15 Gy (for both kidneys irradiated) and the value of n is 0.70. 
Note that this problem ignores the possibility of a threshold dose.

 8. Set up a spreadsheet in Excel to calculate the NTCP using the LKB model 
for lungs. The complication is radiation pneumonitis and the parameters are 
D50(1) = 31 Gy, γ50 = 0.89, and n = 1.0. Make an Excel “scatterplot” (with “smooth 
lines and markers”) of NTCP versus the dose over a range from 0 to 70 Gy (use 
increments of 2 Gy). To calculate the error function, use the Excel function ERF. 
Make two plots on the same graph (labeling the axes and the plots), one for 
ν = 1.0 and the other for ν = 0.5.

 a. For uniform irradiation verify that NTCP = 0.5 at D = D50.

 b. For uniform irradiation, what dose leads to a 10% complication rate? For par-
tially uniform irradiation?
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 9. Derive Equation 5.38.

 10. Show that Equation 5.54 for NTCP for a parallel OAR can be derived from the 
integral expression in Equation 5.53.

 11. Use Equation 5.92 to calculate the enhancement in the TCP due to a 20% hot spot. 
Assume that H(D) = 1 for D < Dmin and that it is linear between Dmin and Dmax. 
Calculate a numerical value for Dmin = 60 Gy, α = 0.1 Gy–1, and N = 102.

 12. The number of cells in an FSU for a serial organ is 20, and the number of FSUs 
in the organ is 1.0 × 107, α = 0.015 Gy–1, and α/β = 3. If the dose distribution is 
uniform and the dose per fraction is d = 2 Gy,

 a. Calculate the fraction of the cells that survive a total dose of 22 Gy.

 b. Calculate the probability of killing all of the cells in an FSU.

 c. Calculate the probability of a complication.

 13. A patient has a tumor with N0 clonogenic cells. The patient delays the start of 
treatment for one doubling time (on the order of 60 days), during which the 
number of clonogenic cells increases to 2N0. If the treatment of the original 
tumor would have resulted in a TCP of TCP0, what is the new TCP (expressed in 
terms of TCP0) using the same total dose or fractionation scheme? If TCP0 = 95%, 
what is the new TCP?

SYMBOLS

D Average dose in an OAR or target volume

d Dose per fraction
D Dose
D(1) Uniform tolerance dose for an entire volume
D(ν) Tolerance dose for partial irradiation of volume ν
D50 Uniform dose leading to 50% complication probability
〈D50〉 Interpatient average of D50

De Effective uniform dose that leads to the same NTCP or TCP
Di Dose delivered to voxel i
Dmax Maximum dose in a structure
Dmin Minimum dose in a structure
Dt Target dose
erf(t) Error function
EUD Equivalent uniform dose
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f Number of fractions
f(x) The probability of event x
h(D) Differential dose volume histogram
H(D) Cumulative dose volume histogram (cDVH)
k Number of cells in an FSU or Okunieff parameter
L Critical number of FSU that must be damaged before a complication 

occurs
m Number of trials or a parameter related to γ50

M Number of different dose levels
n Dose volume index or parameter for partial volume irradiation
�n Average value of n for the parallel model

N Number of voxels in EUD equation or number of cells in a tumor
N Number of FSU irradiated
N0 Number of FSU in entire organ
Nc Total number of cells of the relevant type in an OAR
NTCP Normal tissue complication probability
〈NTCP〉 Population averaged NTCP
NTCP0 NTCP for uniform irradiation
NTCPν Normal tissue complication probability for fractional volume ν
p Probability
P Probability of eradicating an FSU
p(A) or p(B) Probability of event A or probability of event B
P(≤y) Probability of less than or equal to y successes
P+ Probability of uncomplicated control
q 1 – p
r Radial coordinate
�
r Position vector
R Radius of sphere
S Fraction of cells surviving a dose D
Sf Fraction of cells surviving a fractionated dose regimen with f fractions
t Time or variable appearing in Lyman model
T2 Doubling time for tumor cell proliferation
TCP Tumor control probability
TCP Tumor control probability for an intratumor average over α
〈TCP〉 Tumor control probability based on an intertumor average over α
TCP0 TCP for uniform irradiation
V Total volume of an OAR or target
x L/N0 for the parallel model or number of successes in m trials
α Intratumor average of α values

α Intertumor average of α  values

α Cell survival parameter in linear quadratic model, units Gy–1
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β Cell survival parameter in linear quadratic model, units Gy–2

γ50 Logarithmic derivative of NTCP with respect to dose evaluated at D50

〈γ50〉 Interpatient population average of γ50

μ Average or mean value
ρ Number density of clonogenic cells in units of cm–3

σ Standard deviation
σa Intratumor standard deviation in the value of α
σe Intertumor standard deviation in the value of α
σ50 Standard deviation of D50

σD Standard deviation of the dose
ρ Number density of clonogenic cells in a tumor volume
η Exponent for cell proliferation
ν Fraction of the total volume of an OAR or target
L Laplace transform
⌊y⌋ Greatest integer less than or equal to y
mCx Binomial coefficient
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ENDNOTES
 1. There is an older definition of EUD (Niemierko, 1997) as the dose that “when distributed 

uniformly across the target volume causes the survival of the same number of clono-
gens” as the actual dose distribution.

 2. This whole discussion presumes that complications are related to cell death only and not 
some type of cell injury or other predisposing factor.

 3. This appears to be consistent with the data quoted in the paper by Kilpatrick et al. (2010). 
These authors used α/β = 0.87 to calculate the 2 Gy equivalent total dose.

 4. Parameters describing the goodness of fit are not quoted here because (a) the author is 
too lazy and (b) he doesn’t want you to take this too seriously.

 5. Dawson et al. (2010), however, indicate that unilateral kidney irradiation may not be 
without risk.

 6. It is reported by Marks et al. (2010) that there is no observed threshold for radiation 
pneumonitis.

 7. Many references refer to the quantity a = 1/n.
 8. The symbol k appearing in this formula should not be confused with the number of cells 

per FSU as used throughout the rest of this chapter.
 9. The doubling time may decrease significantly after initial radiation treatment. This is 

known as accelerated repopulation (Zips, in Joiner and van der Kogel, 2009).
 10. The user must make a decision whether to regard the volume as a GTV, CTV, or PTV.
 11. The derivative of the step function is the delta function and σ σ ααD D0 0= / ; N is 

assumed not to vary.
 12. A more general result including the β term may be found in Djajaputra and Wu (2006).
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APPENDIX: PROBLEM SOLUTIONS

CHAPTER 1
 1. Substitute the expression for Br from Equation 1.20b into Equation 1.19a:
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 Recall that γ2 = ω2/c2 – k2; therefore,

 
E

ik
r

E
k

B
r

z z
θ γ θ

ω= ± ∂
∂

∂
∂





2

1
∓ .

 2. k = 2π/3d and c = ω/k; therefore, d = c/3ν = 3.3 cm.
 3. Substitution of Equation 1.67 into Equation 1.68 yields
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 Using the BAC-CAB rule for the vector cross product leads to
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 Now take the dot product of n with Equation A.1:
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 Thus, we arrive at Equation 1.69b: n · Hc = 0. To derive Equation 1.69a, take the 
cross product of n with Equation A.1:

 
i c c
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n H n n n
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 The first term on the right-hand side of this equation is zero. Using the definition 
of the skin depth δ (Equation 1.70), we arrive at Equation 1.69a: 

 

∂
∂

×( ) + ×( ) ≅
2

2 2

2
0

ξ δ
n H n Hc c

i
.

 We can show that Equation 1.71 is a solution of the differential equation by sub-
stituting it in Equation 1.69a. First, evaluate 
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 If this is added to the second term on the left-hand side of Equation 1.69b, the 
sum is zero, and therefore the equation is satisfied.

 4. First rearrange Equation 1.97 as follows: E(z) = (E0 + Irs)e−αz
 − Irs. Now integrate 

this expression to get

 
V E z dz

L
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 Now substitute
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.

 and rearrange to obtain Equation 1.101.
 5. The absence of beam loading means that I = 0. In this case,

 
V

e
E Le = −





−1
0

τ

τ
.

 If there are no wall losses, then τ → 0.
 Taking the limit of the expression for Ve (using L’Hospital’s rule) gives Ve = E0L.
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 6. a.  The beam power is IVe  =  IV0  −  FI2. This is a maximum when d(IVe)/dI  = 
0 = V0 − 2FI or I = V0/2F, and thus Ve = V0/2.

 b. The dose rate is given by X BIV BI V FIe= = −( )3
0

3
. This will be a maximum 

when dX/dI = 0. Taking the derivative, setting it equal to zero, and solving 
for I yields I = V0/4F. Substituting this back into the equation for Ve gives Ve = 
3/4 V0.

 7. a. The definition is

 
α = −1

2 P
dP
dz

w .

  Using Equations 1.82 and 1.84, we get α−1 = σδμ0Rvg = 0.1 m–1.
 b. τ = αL = 0.2
 c. 〈P〉 = 〈 P0 〉e−2αL = 0.67〈 P0 〉.
 8. a. There are many ways to see this. In the absence of beam current,

 
V e P r Ls0

2
01= −( )− τ .

 The definition of rs is rs = −E2/(dPw/dz). In the absence of beam loading, 
 dPw/dz = dP/dz = −〈 P0 〉 (1 − e−2τ)/L. Substituting this into the expression for 

V0 gives E0L.
 b. For the constant-impedance guide in the absence of beam loading,
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e
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1= − −

τ
τ
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.

 We also have the relation P E rs0 0
2 2= ( )/ α , where α = τ/L. Solve this for 〈 P0 〉

rs and substitute into the expression for V0 to obtain
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e
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τ
.

 The value of τ ≈ 0.4, and therefore V0 = 0.82 E0L. The unloaded beam energy 
is about 80% of that for a constant-gradient guide.

 9. IreL/(2V0) = 0.42. The assumption that IreL/(2V0) ≪ 1 is therefore dubious.
 10. The shunt impedance is given by
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 The skin depth is given by

 
δ

µωσ
=







2
1
2

.

 For a frequency of 11.4 GHz, the skin depth is 6.21 × 10−7 m. R = cx01/ω = 1.01 cm 
and l/R = π/x01 = 1.31 (for w = π/2); therefore, rs = 340 MΩ/m.

CHAPTER 2
 1. The kinetic energy of a relativistic particle is T = mc2 − m0 c2 = (γ − 1)m0 c2, where 

γ = (1 − v2/c2)−1/2,
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γ
= + = + = 



 = − =T

m c
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2

2

21
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940

1 1 26 1
1

0 373. . . , 

 and therefore v/c = 0.6.
 2. The de Broglie wavelength is λ = h/p, where h is Planck’s constant and p is the 

momentum of the particle. The momentum is p mT= 2 , where T is the kinetic 
energy. The de Broglie wavelength is therefore λ = 2 × 10−15 m, about the same 
as the range of the strong force. It is expected that the strong force will begin to 
play an important role at this energy.

 3. Refer to Equation 2.6. This equation can be turned into an equation for the dose 
rate by putting dots over D and Φ:
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- -1 6 10 2 1. .10 MeV cm gF
r

 The fluence rate is given by the number of protons/s/area  =  i/(e  ×  area)  = 
1.3 × 109 cm−2 s−1, where i is the beam current and e is the charge on the proton. 
Substitution into the expression for �D yields 4.2 Gy/s = 2500 cGy/min.

 4. a.  The total distance traveled is roughly 2πRN, where N is the number of round-
trips. If we assume that the particles are accelerated twice on each round-trip,

 
N = × × = ×2 5
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5 3. . .      

  The time required is = 2πRN/v. The deflection is therefore Δz = 2πRN(vz/v) 
and

 

v
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z
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2
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 b. Focusing provided by the sectors prevents large excursions in the vertical 
direction.

 5. a.  The kinetic energy is T = mc2 − m0c2 = (γ − 1)m0 c2. From the equation of motion 
(2.15),

 
v R

qB R
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= =�θ
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0

0
.
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− ( )

1

1 2v c/
.

 Solving the equation of motion for v and substituting this into the expression 
for γ yields
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 b. Substitution of the parameters given into the equation above yields T = 264 
MeV.

 6. Derivation of the perturbation equations. Substitute the perturbation variables 
(Equations 2.28 through 2.30) into the equations of motion (2.15 through 2.17). 
Start with Equation 2.15 for the radial acceleration:
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 We only retain quantities that are linear in the perturbation variables r′, θ′, z′, and 
b1. This leaves
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 The “zeroth-order” terms on both sides of this equation cancel because they 
are equal. Likewise for the r′ terms. Combining remaining terms leads to 
�� �′ + ′ + ′ =r r n rω θ ω0 0 0

2 0.
 We now perturb Equation 2.16:
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 Discarding all quantities that are not linear in the perturbation variables yields 
r r0 0 0�� �′ − ′ =θ ω .

 Finally, we derive Equation 2.33 by perturbing Equation 2.17:
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  Neglecting all terms that are not linear in the perturbation variables yields 
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2 0.
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 E = 940 MeV + 230 MeV, and therefore ν = 61 MHz.

 9. W =
⋅

× × = ×13 10 6 5 104mSv
h nA

 nA 500
h
yr

 mSv
yr

. ,

 #TVL = 2.2/0.65 = 3.39, B = 10−#TVL
 = 4.13 × 10−4, d = 6.5 m, and H = 0.16 mSv. This 

is below the NRC annual limit for members of the public by about a factor of 6.

CHAPTER 3
 3. a. For x′ < x, |x – x′| = x – x′, and for x′ > x, |x – x′| = x′ – x; therefore, the dose is

 

D x T x A x x dx A T e e dx e ex x x x x x( ) = ′( ) − ′( ) ′ = ′ +− ′ − − ′( ) − ′ − ′−(
0 0

0 0µ µ µ µ ))
∞∞

− −

′







=
− +

−







∫∫∫ dx

A T
e e

x

x

x x

00

0

0 0

2
1

0

µ µ µ µ
µ µ

/
.



Appendix       285

 b. Take the derivative and set it equal to 0 and solve for x:
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 8. a.  The dose for a circular field of radius R for the pencil beam of the form of 
Equation 3.60 is given by Equation 3.58:
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 9. The average energy is given by Equation 3.15. The integrals can be evaluated on 
a spreadsheet using the trapezoidal rule:

 
f x dx x x f x f xi i i i

i
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a

b

( ) ≈ −[ ] ( ) + ( ) + +
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∑∫ 1

2
1 1

1

,

 where x1 = a and xN+1 = b.

Nominal Accelerating Potential and 
Average Energy

NAP (MV) E  (MeV) NAP/3 E /(NAP/3)
6 2.4 2.0 1.2
10 3.3 3.3 1.0
18 5.2 6.0 0.9

 The rule of thumb that the average energy is equal to NAP/3 appears to be cor-
rect to within about 20%.

 12. Computation time ∝ MN3 and N → (2N); therefore, computation time goes up by 
a factor of 8.

 13. Computation time ∝ MN3 and N → (3N/2); therefore, computation time goes up 
by a factor of (3/2)3 ≈ 3.5.

CHAPTER 4
 1. Use the divergence theorem to convert the surface integral in Equation 4.26 to
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 All the terms in Equation 4.26 may be collected on one side of the equation as
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 As this equation must be satisfied for all volumes, the integrand itself must equal 
zero. The term
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 and therefore we may write
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 2. Integration over angle φ inserts a factor of 2π into Equation 4.50. If sin θ′ ≈ θ′, 
then sin−1 (R/r) ≈ R/r and the integral for θ′ may be written as
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 This integral is of the form un du, where u is the term inside the square root. The 
integral is equal to
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 and thus
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,

 as in Equation 4.51.
 3. The source term is the total number of particles emitted per unit volume per 

solid angle. For the disk,
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0 2 24
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π
.

 Equation  4.47 may be used to calculate the differential fluence. In this case, 
ΦΩ,E = S0u, where u is the distance shown in the figure below: u = h/cosθ. We 
ignore edge effects near the edge of the disk. The differential fluence is therefore 
ΦΩ,E = S0h sec θ. The differential energy fluence is
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 where tan θmax = R/d. Carrying out the integral, we find ΦE = πS0h ln[1 + (R/d)2]. 
When (R/d) ≪ 1, ln[1 + (R/d)2] ≈ (R/d)2, and therefore
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 Substitution into Equation A.2 shows that this equation is satisfied.
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 5. Substitute Equations 4.59 and 4.58 into the right-hand side of the BTE (Equation 4.34):
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 6. First, compute the derivatives of some of the terms that will be needed later:
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 The right-hand side of Equation 4.88 is 
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 Adding the two terms on the left-hand side of Equation 4.88 yields the expres-
sion for
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 given above.
 7. Equations 4.93 define σθx

2  and θp. When T = T0 is a constant,
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 Under these circumstances,
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 The penumbra width is approximately 1.3 cm.

 10. a. Use Equation 4.102 in polar coordinates to calculate the dose:
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.

 b. For small values of z, A2(z)  ≪  1, and the dose will therefore be constant 
independent of the field size. For large values of z, the dose will depend 
on the field size, and it will decline toward zero as z →  infinity. There is 
no absorption built into the Fermi–Eyges theory, and therefore the dose 
declines with increasing depth at large depths because of out-scatter. The 
beam becomes more dilute. For real electron beams, the dose rises to a 
maximum and then declines to approximately zero at a depth of z = Rp. 
Above a field size of about R = 5 cm, the depth dose does not depend on 
field size.
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CHAPTER 5
 1. The probability of x successes in m trials is f(x) = mCx pxqm–x.
 a. In this case, we need one success (actually a failure) in five trials (links); 

therefore, f(1) = 5C1 p1 q 4 = 5(0.01)1(0.99)4 = 0.048. Thus, there is a 5% chance the 
chain will break.

 b. For 100 links, f(1) = 100C1 p1q99 = 0.370. For 100 links, there is a 37% chance the 
chain will break.

 c. Using the Poisson distribution,

 
f x

e
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x n

( ) =
−µ
!

.

 and µ = mp = 1.0; therefore, f(1) = e−1 = 0.368, close to the answer for part (b), as 
expected.

 2. In this case, we need the probability that two or more strands break. The word 
or is a tip-off that we need to add probabilities. We need to add the probabilities 
that two break, that three break, that four break, and that five break, that is,
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 or 26%, or more easily, calculate the probability that one or no strands break 
(0.738) and subtract from 1.00.

 3. D
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 4. The volume having a dose between D and D + dD is dV = h(D)dD. The volume of 
a spherical shell is dV = 4πr2dr. Equating the expressions for dV, we get
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= − 4 2π
,

 where the minus sign indicates that dose is decreasing as r increases. Integration 
of this expression for D yields
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 Now take the log of both sides:
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 7. We are asked to find the dose delivered to half the liver, which will lead to the 
same NTCP as a uniform dose of 30 Gy. We use the expression for the EUD:
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 and therefore D = (EUD) × 2n.
 a. For liver, D = 54 Gy.
 b. For kidneys, D = 24 Gy.
 8. 
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 9. Solve Equation 5.37 for α + βd and substitute this into the equation for NTCP 
(Equation 5.34). At the same time, use the approximation that
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 which leads to
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 This integral can be written as
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 is an even function, the limits of the first integral can be 

changed to 0 to +µ σ( ).2
 Recall that the error function is defined as
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 We presume that N0P ≫ 1, and therefore the argument of the first erf term in the 
previous integral is much larger than 1. Hence, the value of the error function is 
approximately 1. Substitution into Equation 5.53 leads to
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 11. For D < Dmin, H(D) = 1.0; for Dmin < D < Dmax, H(D) = 1 − (D − Dmin)/ΔD; and for 
D > Dmax, H(D) = 0. The integral
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 For Dmin =  60 Gy, ΔD =  12 Gy, α =  0.1 Gy–1, and N =  100, TCP/TCP0 =  1.11, a 
modest enhancement. This is in part because TCP is already high (78%).
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 12. a.  The fraction of the cells surviving is S  =  exp(−D(α  +  βd)). For D  =  22  Gy, 
d = 2 Gy, α = 0.015 Gy–1, and α/β = 3.0, S = 0.577.

 b. The probability of killing all cells in an FSU is P = (1 − S)k
 = 3.37 × 10–8 for 

k = 20.
 c. The probability of a complication is NTCP  =  1  −  (1  −  P)N. For N  =  107, 

NTCP = 29%.
 13. The original TCP0  =  Exp[−N0e−D(α+βd)]; the new TCP is given by TCP′  = 

Exp[−2N0e−D(α+βd)] and TCP′/TCP0 = Exp[−N0e−D(α+βd)] = TCP0; therefore, TCP =TCP′ 0
2. 

If TCP0 = 0.95, then TCP′ = (0.95)2 = 0.90.
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