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To the Player

In TriMathlon: A Workout Beyond the School Curriculum you will find

games, problems and investigations designed to flex your math muscles and

give you a new perspective on mathematics. The guided activities are fun,

interesting and challenging–you will be introduced to some truly heavy-

weight mathematical ideas. The strenuous mental activity often required

has as its reward the satisfaction and confidence that accompany meaning-

ful investigations of mathematical ideas.

TriMathlon has three parts: Swim, Bike, and Run. Swim contains warm-

up games in arithmetic; Bike consists of more ambitious projects in numbers

and symmetry; and Run includes challenging workouts in geometry. All

three parts start at an easy pace in familiar territory. Many of the chapters

contain a section called Heavy Lifting for those who want to press to

the max!

All information needed to solve the problems (as well as hints and sug-

gestions) is provided, but you are to work out the solutions on your own or

with a group of your classmates. Throughout, there are questions followed

by a stopwatch or a triathlete , 445 0

29 , . These icons mean “Pause; take

time to think and to work on your own.” A pencil in the margin means that

you should fill in the accompanying table.

Solutions to all of the numbered questions, challenges, etc. in the text

are found in separate solutions sections.

Now it’s time to see how far TriMathlon can take you. Go for it.
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To the Coach

TriMathlon: A Workout Beyond the School Curriculum invites young stu-

dents to participate in challenging excursions into areas of number theory

and geometry that extend beyond the borders of the basic mathematics in

the school curriculum. The activities in this book present students with a

dynamic and fresh perspective on mathematics, and encourage active and

energetic response. Some of the projects in this book are aimed at inquis-

itive fourth and fifth graders, others are more appropriate for students in

the sixth through eighth grades. Suggestions for further projects accompany

each activity. References also include web resources.

TriMathlon contains three parts consisting of ten guided activities that

are appropriate for students working on their own or in small groups. Part I

consists of three warm-up games suitable for any age level. These games

require some thinking, some ingenuity, and even some non-trivial mathe-

matical vocabulary.

Part II has three more challenging activities. They lead to ideas that

can be projected into quite sophisticated mathematics. Nonetheless, these

problems in numbers and symmetry can be understood and attacked by

students in the lower and middle grades.

Finally, in Part III, students are engaged in interesting and provocative

notions about geometric objects. The four problems in Part III represent a

level of thinking that carries over into college and university mathematics.

The initial concepts in each of the ten activities are presented in such

a way that enthusiastic students can work successfully at the start of each

one. In Parts II and III, the investigations proceed from familiar areas to

new locales and finally in the special Heavy Lifting section, the students are

really put through their paces. The idea being conveyed to the students

is that mathematics does not occur in discrete or isolated blocks, but is a

subject that grows from and expands on concepts and results that have been

obtained previously. Mathematics is not simply a matter of memorizing and
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xii To the Coach

applying formulas. Students will find that many problems cannot be solved

at first glance, but require careful thought and attention over a period of

time before complete understanding is reached. Sometimes students have

the incorrect idea that if they cannot solve a problem, it is because they have

forgotten a formula they are supposed to know. You can encourage them

to rely on their own creativity and ingenuity to find a solution. With your

help, the projects in this book will increase the mathematical understanding

and confidence of the students.

TriMathlon introduces the mathematical ideas involved in each activ-

ity, describes the mathematical goals, and acts as a guide and coach along

the way. Throughout, there are questions followed by a stopwatch or a

triathlete , 445 0

29 , . These icons mean “Pause; take time to think and to

work on your own.” We ask that you remind the students to use the these

icons as intended. A pencil in the margin means that the student should fill

in the accompanying table. Your guidance, suggestions and support will be

of great value. In no case, however, should the solution be provided.

Students are to work out solutions for themselves. Solutions to all of the

numbered questions, challenges, etc. in the text are found in separate solu-

tions sections.
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Chapter One

Race to 100

In this simple game of addition, use your ingenuity to find a strategy

to be the first to reach 100.

“O my friends, what are those wonderful numbers about which

you are reasoning?...”

Plato

3
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Here is an interesting mathematical game that can be played with a

friend anytime, anyplace. All you need to know is how to add. The challenge

is trying to discover the strategy for winning every game.

The rules of the game are very easy. In the first round, Player 1 picks

a number between 1 and 10. Then Player 2 also picks a number between

1 and 10, and adds it to the number chosen by Player 1. For example, if

I start first and pick 4, you might pick 7 and add it to 4 to make 11. In

the following rounds, the players continue in turn, picking a number, always

between 1 and 10, and adding it to the previous sum. The game ends when

one player, the winner, hits 100. That’s all there is to it!

Here is a sample game. Say I start first and pick 6, and then you pick

8, so the sum at the end of the first round is 14. In the second round, if I

pick 10, the sum would be 24, and if you also pick 10, the sum would be 34.

Here are the remaining rounds of this game between you and me. You fill

in the sums.

Round Number I Pick Sum Number You Pick Sum

1 6 6 8 14

2 10 24 10 34

3 2 7

4 9 4

5 1 10

6 8 6

7 2 6

There is no winner yet, but I can see that, if you are alert, I am going to lose

the game. No matter what number I pick in the next round, you can win.

Round Number I Pick Sum Number You Pick Sum

8 8 100

Now, find another partner and play the game a few times before reading on.

Some games are determined purely by chance, but this game has a winning

strategy. If you go first, there is a way for you to win no matter which

numbers your opponent chooses. Let’s figure out what that strategy is.
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To do this we work backward from 100. (Sometimes it pays to go back-

ward!) You want to be the one to hit 100, so you need your opponent to

give you a sum of at least 90. This means that if you can get to exactly 89

on the turn before, you can win (no larger than 89, of course, or you might

lose). How do you get to 89? You need your opponent to give you a sum of

at least 79. So if you can reach exactly 78, you can win. To get to 78, you

need your opponent to give you a sum of at least 68. So if you can reach 67,

you can win. Thus, the target numbers, that is, the numbers to shoot for,

are 100 to win, before that 89, before that 78, and before that 67.

Now you probably see what the pattern is, so let’s make a chart from

the last round going backward to the first round. Since we don’t know what

numbers your opponent will pick, the chart shows the sums you need to aim

for and the range of where the sum will be after your opponent’s turn.

Round Sum after Your Turn Sum after

Your Opponent’s Turn

last 100 (winner!!!)

second to last 89 90 ≤ sum ≤ 99
78 79 ≤ sum ≤ 88
67 68 ≤ sum ≤ 77
56 57 ≤ sum ≤ 66
45 46 ≤ sum ≤ 55

fourth 34 35 ≤ sum ≤ 44
third 23 24 ≤ sum ≤ 33
second 12 13 ≤ sum ≤ 22
first 1 2 ≤ sum ≤ 11

Did you figure out the winning strategy?

The strategy is to be the first player

and to pick the number 1.

So if you take the first turn and pick the number 1, then no matter which

numbers your opponent chooses, you win if you follow the plan.

Now try the sample game below. You start first. See if you can make

the choices needed to follow the strategy based on your opponent’s choices

given below. Remember that you want to pick the number 1 to start, and

then hit each of the target numbers until you hit 100 to win.
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Sample Game 1

Round You Pick Sum Your Opponent Picks Sum

first 1 9 10

second 12 7 19

third 23 10 33

fourth 34 1 35

fifth 45 5 50

sixth 56 2 58

seventh 67 9 76

eighth 78 10 88

ninth 89 3 92

tenth 100

22 3 36

What can you do if your opponent takes the first turn? If your opponent

has figured out the strategy and carries it out, you lose. If not, then on

some turn your opponent might not make the correct choice to get one of

the target numbers 1, 12, 23, 34, 45, 56, 67, 78, or 89, needed to win. On your

turn, you can add the difference to hit one of the targets exactly and, once

again, you can win.

Here are the first few turns of a sample game where your opponent starts

first. We will assume that your opponent does not know the strategy. See

if you can win.

Sample Game 2

Round Your Opponent Picks Sum You Pick Sum

first 1 1 5 6

second 6 12 5 17

third 5 22

22 3 36
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It does not matter what number you pick for your first two turns because

your opponent has, by chance, picked numbers to get the sums 1 and 12,

which you know are the ones needed to assure a win. But in the third turn,

the sum after your opponent’s pick is only 22, so what number should you

pick? Can you pick a number that will guarantee a win for you if you follow

the plan?

Strategy is an important part of many games and many mathematical

problems. Now play the Race to 100 Game with some friends. See if they

realize that there is a winning strategy.

Solutions
Sample Game 1. If you chose the numbers 1, 2, 4, 1, 10, 6, 9, 2, 1, 8 you followed
the plan perfectly and are ready to win a real game (against someone who has

not yet figured out the winning strategy, of course!).

Sample Game 2. If you picked the number 1, you are right.

Suggestions for the Endurance Athlete

10K Challenge. Let’s keep the basic idea of the game the same but
increase the numbers. Can you figure out a winning strategy for the

Race to 1000 Game, where each player is allowed to pick a number

between 1 and 25?

20K Challenge. Here’s a variation of the Race to 100 Game where the
range of allowable numbers to pick increases with each round. In the

first round, each player must choose a number between 1 and 10. In

the second round, each player is allowed to choose a number between

1 and 11. In the third round, number choices are allowed between 1

and 12, etc. Can you figure out a winning strategy? What happens

if you decrease the range of choices with each round? Is there a

winning strategy?
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Chapter Two

Roll Back

This is a game of chance. Try your luck, but don’t roll into negative

number territory.

“... somewhere between chance and mystery lies imagination...”

L.Buñuel

9
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Since the Race to 100 Game was based on addition of numbers, how about

a game that uses subtraction? This game is a game of chance. It can be

played on your own or with friends.

You will need a die, that is, one of a pair of dice, or, if you don’t have

a die, make yourself a spinner with the numbers from 1 to 6 on it. The

game of Roll Back works like this. Starting with the number 100, subtract

numbers determined by rolls of the die. The objective is to roll back as close

as you can to 0 with no negative numbers allowed.

Roll Back Rules (for one player): You must roll the die a total of five times.
To start, write down the number 100, and take your first roll of the die.

You now have two choices: Either subtract the number rolled (that is, the

number on top of the die) from 100 and write down the result, or multiply

the number rolled by 10 and then subtract it from 100 and write that result

down. So if you roll a 4, you can roll back to 100−4 = 96 or to 100−40 = 60.
You now have four more rolls of the die and the same two choices on

each roll. The goal is to roll back to 0, or as close to 0 as you can, without

ever going below 0 into negative number territory. You must use all five

rolls of the die and, if you go below 0, you lose.

Here is a sample game.

Roll Number Rolled Choice Result

first 4 4× 10 100− 40 = 60
2 2× 10 60− 20 = 40
4 4 ∗ 40− 4 = 36
1 1× 10 36− 10 = 26

fifth 6 6 ∗ 26− 6 = 20

∗ There is no other possible choice here. Why?

20 is not very close to 0. Do you think that if we had made different choices,

we would have gotten closer to 0?

In the next example, the rolls of the die are the same, but different

choices allow us to roll back closer to 0.
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Roll Number Rolled Choice Result

first 4 4× 10 100− 40 = 60
2 2 60− 2 = 58
4 4× 10 58− 40 = 18
1 1× 10 18− 10 = 8

fifth 6 6 8− 6 = 2

You can check all the other possible choices to see that 2 is the best possible

result with the given rolls of the die.

Now it’s time for you to roll the die and play the game.

Here are variations of the game for more than one player.

Roll Back for Several Players. Each participant uses a separate die and plays
the game following the rules above, with 5 rolls for each player. The winner

is the player who rolls back closest to 0, with no negative numbers allowed.

Roll Back for Two Players. The players share the die, share the 100 and play
off one another’s result. Turns alternate and the players roll, choose, and

subtract as before but this time there is no limit on the number of rolls and

there are two ways to win. You win if you roll back exactly to 0, or if your

opponent is forced to go below 0.

Roll Back Invented by You. There are many variations of Roll Back. Why
don’t you create one?

After you have played a few rounds of Roll Back, think about the following

questions.

Question 1. Is it true that multiplying the first roll by 10 is always the best
choice? Try to make up a game where choosing “first roll × 10” is not the

best strategy.

22 3 36

Question 2. Suppose, as in the following game, the sum of all the numbers

rolled is exactly 10.
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Roll Number Rolled Choice Result

first 3 3× 10 100− 30 = 70
1 1× 10 70− 10 = 60
4 4× 10 60− 40 = 20
1 1× 10 20− 10 = 10

fifth 1 1× 10 10− 10 = 0

If you make the choice of multiplying each number rolled by 10, as I did

above, will you always roll back to 0? Why?

22 3 36

Of course, you won’t know when you are playing what the sum of all the

rolls will be. You have to make your choices in the game before you know

what all the rolls are. So you have to develop a strategy for the game that

only depends on the previous rolls of the die.

Remember, this is a game of chance and the roll of the die is unpre-

dictable.

Solutions
Question 1. Here is a game that shows multiplying by 10 on the first roll might
not roll you back closest to 0.

Roll Number Rolled Choice Result

first 6 6× 10 100− 60 = 40
6 6 ∗ 40− 6 = 34
4 4 ∗ 34− 4 = 30
4 4 ∗ 30− 4 = 26

fifth 3 3 ∗ 26− 3 = 23
∗ No other allowable option here.

Suppose, instead, different choices are made, for example

Roll Number Rolled Choice Result

first 6 6 100− 6 = 94
6 6 94− 6 = 88
4 4× 10 88− 40 = 48
4 4× 10 48− 40 = 8

fifth 3 3 8− 3 = 5

The end result, 5, is closer to 0 than 23.
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Question 2. The solution uses the distributive law of arithmetic. Suppose the

numbers rolled are r1, r2, r3, r4, r5 and that

r1 + r2 + r3 + r4 + r5 = 10.

Then, by the distributive law,

100− (r1 × 10)− (r2 × 10)− (r3 × 10)− (r4 × 10)− (r5 × 10) =
100− ((r1 + r2 + r3 + r4 + r5)× 10).

But r1 + r2 + r3 + r4 + r5 = 10, so

100− ((r1 + r2 + r3 + r4 + r5)× 10) = 100− (10× 10)
= 100− 100
= 0.

Consequently, if, by chance, r1 + r2 + r3 + r4 + r5 = 10, and if you multiply by

10 at each turn, you can always roll back to 0.

Suggestions for the Endurance Athlete

10K Challenge. In answering Question 1, you saw that it is not always
the best strategy to multiply the first roll of the die by 10. You also

saw in Question 2 that, if very special circumstances arise by chance,

then multiplying each roll by 10 is the best strategy. Can you figure

out a good strategy for the first roll of the game? For example, on

the first roll, is there a cutoff number C so that if your first roll

r1 ≤ C, then the best strategy is to multiply r1 by 10 and otherwise,
not?



http://taylorandfrancis.com


Chapter Three

Wordsworth

The title of this game is a play on words. You may recognize the name

Wordsworth as the surname of the late nineteenth century English poet,

William Wordsworth. The game Wordsworth gives a number value, or

worth, to words by applying the mathematical operations of addition

and multiplication. Mathematics and a dictionary are the tools needed

for this game.

“At evening when with pencil and with slate....

With crosses and with cyphers scribbled o’er,

We schemed and puzzled head opposed to head.”

W. Wordsworth

15



16 Swim – Chapter 3

Who said you can’t add apples and oranges? Here’s a fun and easy way

to do it. Give each letter of the alphabet, starting with A, a number value

from 1 to 26. So A has value 1, B has value 2, etc., as in the following table.

A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

Now, give a word, such as “apples,” a number value equal to the sum of the

values of its letters. This means “apples” is worth 1+16+16+12+5+19 = 69.

“Oranges” is worth 15 + 18 + 1 + 14 + 7 + 5 + 19 = 79. So just for fun, we

can “add” apples and oranges to get 69 + 79 = 148.

You can think of the letter values as money values if you want. As you

are undoubtedly aware, the business world is very conscious of the monetary

value of certain words and names. On our scale, in terms of dollars (you

could use francs, pesos, or whatever), Michael Jordan’s name is worth $13+

$9 + $3 + $8 + $1 + $5 + $12 + $10 + $15 + $18 + $4 + $1 + $14 = $113 and

Serena Williams’ name is worth $19+$5+$18+$5+ $14+$1+$23+$9+

$12 + $12 + $9 + $1 + $13 + $19 = $160. How much is your name worth?

Let’s make this game more interesting by reversing the order of what we

have been doing. This means we are going to first pick a number, and then

look for common English words whose value is equal to that number. No

proper names are allowed this time, but you can use a dictionary anytime

you want.

Question 1. Suppose the number picked is 23. Here are some words with
value 23: BAT, ELF, DEN. What are some other words with value 23?

What is the longest word you can find with value 23?

22 3 36

When we look for words with a certain value, say 23, our thinking process

might very well go through three stages.

Stage 1. We hunt for numbers that add up to 23. Here are some, written in,
so-called, “tuple” form.
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(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(20, 2, 1)

(13, 10)

(8, 7, 5, 3)

Stage 2. For each of these tuples, we match the numbers to the corresponding
letters.

For the examples above, the tuples of corresponding letters are

(A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)

(B,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A)

(T,B,A)

(M,J)

(H,G,E,C)

Stage 3. Finally, for each tuple, we rearrange the letters and search for words.
In the examples above, we quickly discard all the tuples except (T,B,A)

and (H,G,E,C) because it is very clear that the letters in the other tuples

do not form words. With a little more thought and, perhaps, a dictionary,

we can reject (H,G,E,C) and rearrange (T,B,A) to make BAT and TAB.

Let’s make this into a game. You are encouraged to use a dictionary.

Part I: The Game of Wordsworth (Sum Version)
The One Player Game. Here are three ways to play.
1. Pick a number and challenge yourself to find a word with that value.

2. Pick a number and give yourself the challenge of finding as many words

as you can with that value in, say, 5 or 10 minutes.

3. Pick a number and challenge yourself to find the longest possible word

with that value. If you find a three letter word, look for a four letter word;

if you find a four letter word, look for a five letter word and so on. It is

very difficult to verify that you have found the longest word with that value.

Someone with a larger dictionary might be able to find a longer one!

Now pick three numbers and try each version of the game. When you

play, you will develop shortcuts and strategies.
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The Group-Play Game. Here are two ways to play.
1. The number of rounds is equal to the number of players. The players take

turns choosing a number to start a round. The first player to find a word

whose value is equal to the number picked earns one point. The winner is

the player with the most points after all rounds are complete.

2. The players agree on a number to start the game and set a time limit,

such as 10 minutes. The winners are the players who find the most words

with value equal to that number, or the longest word whose value is equal

to that number.

This time, try playing the game with some friends. The more players

there are, the more interesting the game because frequently everyone learns

at least one new word.

Part II: The Game of Wordsworth (Product Version)
Now let’s play the same game, but let’s make it quite a bit more challenging.

We are going to switch operations from addition to multiplication. This

means that each letter of the alphabet has the same value as before, but

each word has value equal to the product of the values of its letters. The

game moves into the realm of much larger numbers very quickly.

For example, now “apples” has value 1×16×16×12×5×19 = 291, 840
and Michael Jordan’s name is now worth $25,474,176,000 (which seems more

appropriate than $113).

As before, for the game, we first pick a number and then look for words

whose value is that number. So, for example, if the number picked is 100,

some words worth 100 are BABY which has value 2× 1× 2× 25 = 100 and
TEA which has value 20× 5× 1 = 100.
Question 2. Can you find some other words worth 100?

22 3 36

Did you notice that in your hunt for words with a certain value you can

put in as many of the letter A as you want?

Question 3. What is the special role played by the letter A?

22 3 36
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The rules for this game are exactly the same as before, except that now

the value of a word refers to the product of its letter values–not the sum.

The One Player Game. Here are three ways to play.

1. Pick a number and find a word with that value.

2. Pick a number and find as many words as you can with that value in,

say, 5 or 10 minutes.

3. Pick a number and find the longest possible word with that value. Then

find the shortest possible word with that value.

The Group-Play Game. Here are two ways to play.

1. The number of rounds is equal to the number of players. The players take

turns choosing a number to start a round. The first player to find a word

whose value is equal to the number picked earns one point. The winner is

the player with the most points after all rounds are complete.

2. The players agree on a number to start the game and set a time limit

such as 10 minutes. The winners are the players who find the most words

with value equal to that number or the longest word whose value is equal

to that number.

Play a few rounds of the game.

Are you ready for a challenge?

Wordsworth Challenge. Try to find one word for each of the numbers 10, 20,
30, 40, 50, 60, 70, 80, 90.

22 3 36

Now that you have become an adept Wordsworth player, here are some good

questions to think about.

Question 4. Suppose you start with the number 17. Can you find any words
whose value, using the product version of the game, is 17? What goes

wrong?

22 3 36
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Question 5. Suppose the number picked is 21 or 231. What goes wrong?

22 3 36

This game is more challenging than the sum version, don’t you think?

Often it is quite hard to find even one word, and, as you have seen, sometimes

it is impossible to find any words at all. So let’s take a good look at what

is going on here.

When you look for words with a certain value, say 100, your thinking

process may go through three stages.

Stage 1. The first task is to look for numbers no bigger than 26 whose

product is 100. This means looking for divisors, or factors, of 100 which are

no bigger than 26. When we write a number such as 100 as a product of

some factors, we call the display a factorization of the number.

So, for example, here are all the factorizations of 100 with factors greater

than 1 but no greater than 26:

100 = 5× 5× 4
100 = 5× 5× 2× 2
100 = 10× 5× 2
100 = 10× 10
100 = 20× 5
100 = 25× 4
100 = 25× 2× 2
What about 1? 1 is special. Since 1 is a factor of every number and since

multiplying a number by 1 does not change the number, you can insert 1

anywhere you want and as often as you want in these factorizations.

Stage 2. Just as in the sum version of the game, you make the correspondence
with letters:

(E,E,D,A,A,A,A,A,A,A, . . .)

(E,E,B,B,A,A,A,A,A,A, . . .)

(J,E,B,A,A,A,A,A,A,A, . . .)

(J,J,A,A,A,A,A,A,A,A, . . .)

(T,E,A,A,A,A,A,A,A,A, . . .)

(Y,D,A,A,A,A,A,A,A,A, . . .)

(Y,B,B,A,A,A,A,A,A,A, . . .)

Stage 3. For each tuple, you search for words using the letters in the tuple.
Here are some questions that will help you set up some strategies for the

product version of the game.
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Question 6. You probably know that a prime number is an integer, greater
than 1, that has only 1 and itself as positive factors. Some examples of

prime numbers are 3, 7, 17, 23, 47, and 997. Which letters have prime number

values?

22 3 36

Question 7. What are some numbers for which there are no words?

22 3 36

Question 8. Can you find any words whose value is a prime number?

22 3 36

Solutions
Question 1. Here are two more words with value 23: KEG and MADE.

Question 2. Two more 100 value words are DAY and EAT.

Question 3. A is special because it has value 1. The number 1 plays an excep-

tional role in multiplication because multiplying a number by 1 does not change

the number. This means that A is a “free” letter in the game. You can use

as many of the letter A as you want or need without changing the value of the

product.

Wordsworth Challenge. One solution to the Wordsworth challenge is: BE with
value 10; EBB with value 20; BOA with value 30; BAT with value 40; BAY with

value 50; DO with value 60; BEG with value 70; DEAD with value 80; and CAFÉ

with value 90.

Question 4. Suppose you start with the number 17. What goes wrong? 17 is
a prime number. There is no way to write 17 as a product of numbers other

than 17 itself and the number 1. A word with value 17 would have to consist of

the letter Q and as many of the letter A as wanted. But there are no common

English words of this form.

Question 5. Suppose the number picked is 21 or 231. What goes wrong? The
words with value 21 would have to be made up from the letter U and as many

of the letter A as wanted, or the letters G, C, and as many of the letter A as

wanted. But, there are no common English words of this form. Words with value

231 = 3 × 7 × 11 would have to be made up from the letters C, G, K and as

many of the letter A as wanted, or U, K, and as many of the letter A as wanted.

However, there are no common English words of this form.
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Question 6. The letters B, C, E, G, K, M, Q, S, and W have prime number

value.

Question 7. There are lots of numbers that are not the value of any common
English word, for example, all of the (infinitely many!) prime numbers greater

than 26.

Question 8. Here are four examples of words whose value is a prime number:
BAA, MA, AM, and AS.

Suggestions for the Endurance Athlete

Use the product version of Wordsworth in the following challenges.

10K Challenge. Make it a class project to find words worth

30, 302, 303, 304, . . . . How high up can you go?

20K Challenge. Suppose n is a positive integer. Then n factorial,
written n!, is the positive integer defined as follows:

n! = 1× 2× 3× (n− 1)× n.

For example, 1! = 1, 2! = 1×2 = 2, and 5! = 1×2×3×4×5 = 120.
Can you find a word with value n! for each n up to n = 5? How

about a word with value n! for each n up to n = 10?
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29 Chapter Four

The Triangle
and Square

Games

These games are more elementary than magic squares. Similar skills

are used, and, as for magic squares, players are led to consider whether

a mathematical problem may have more than one solution, when two

solutions are the “same,” and whether all “different” solutions may be

found.

“There is nothing more productive of problems than a really

good solution.”

N. S. Kline

25
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These games are fun and easy. All you need to begin playing is ordinary

addition. However, you will learn how useful geometry can be to speed you

along to the finish line.

Part I: The Triangle Game
To start, draw a triangle with all three sides equal (an equilateral triangle)

and place a dot at each vertex and at the midpoint of each of the three sides.

Now take the numbers 1, 2, 3, 4, 5, and 6 and place one number at each of

the dots. If you do this haphazardly, you might get something like

631

54

2

Observe that the sum along the right-hand side is 13, the sum along the

left-hand side is 7, and along the bottom is 10. The object of The Triangle

Game is to place the numbers 1, 2, 3, 4, 5, and 6 at the dots in such a way

that the sums on all three sides are the same.

For example, the triangle

243

65

1
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has the sum along each side, or side sum, equal to 9. A solution to the game

is any triangle with side sums all equal. The triangle pictured is a solution

with side sum equal to 9.

Question 1. Do you think there is a solution to the game with side sum equal
to 1, 2, or 3? Why?

445 0

29

Directions for The Triangle Game

The Triangle Game has three stages.

Stage 1. Find a solution to the game (other than the one given here earlier).
To find a solution to the game means that you should place the numbers

from 1 to 6 at the dots on the sides and at the vertices of your triangle so

that the sum along each side is the same. Remember that you can use each

number only once. Take some time now to try it.

Question 2. What side sum does your triangle have?

445 0

29

Stage 2. Find all numbers that can be side sums of solutions to the game.
One way of attacking this part is to argue, as you did earlier for 1, 2,

and 3, that certain numbers are not possible as side sums. First look for

the range of numbers that are potential side sums, and then verify whether

they are actual side sums by finding solutions. If you would like some hints

about potential side sums, keep on reading. If not, see if you can find the

numbers on your own.

The hints come in the form of questions that will help you find the range of

potential side sums.

Question 3. You know 9 is a possible side sum. Is 8 possible? Remember
that the number 6 has to go somewhere. What about numbers smaller

than 8?

445 0

29
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Question 4. What about 13? Is it possible for 13 to be a side sum of a

solution? Remember that 1 has to go somewhere. How about numbers

larger than 13?

445 0

29

Whether you worked out the correct answers to Questions 3 and 4 on your

own or consulted the Solutions, you now know that the possible side sums

are the numbers 9, 10, 11, and 12. The next step is to try to find solutions

with these numbers as side sums. You know there is a solution with side

sum 9.

Question 5. Now try to find a solution for each of the side sums 10, 11, and
12. Give yourself plenty of time to work on this problem.

445 0

29

Did you find solutions for all four numbers 9, 10, 11, and 12? Excellent.

There are many solutions for each side sum. This motivates Stage 3 of The

Triangle Game. In Stage 3, geometry will give you the power and facility

to find all solutions for each side sum in a very interesting way. You will

also discover the relationship between solutions with the same side sum. In

the meantime, one solution for each side sum can be found in the Solutions.

Compare your solutions with the ones found there.

99

45 0

2

9
9

Solutions
Question 1. Is there a solution to the game with side sum equal to 1, 2, or 3?

The answer is “No.” Repeats aren’t allowed, so it’s impossible for the sum of

three of the numbers 1, 2, 3, 4, 5, 6 to be 1, 2, or 3. You probably see that other

numbers are not possible side sums. You will be able to use that information in

The Triangle Game.

Question 2. It is one of the numbers 9, 10, 11, or 12.

Question 3. You know that 6 has to go on some side of the triangle with two

other numbers between 1 and 5. The smallest numbers that can go with 6 are 1

and 2, so the smallest sum possible on that side is 9. This means that no number

smaller than 9 can be a side sum for a solution.

Question 4. You know that 1 has to go on some side of the triangle with two

other numbers between 2 and 6. The largest numbers that can go with 1 are 5

and 6, so the largest sum possible on that side is 12. Consequently, no number

larger than 12 can be a side sum for a solution.
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Question 5. Here is a set of solutions, one for each side sum. There are many
other solutions.

5

1

6

2

4 3452

13

6

325

1

64

243

5

1

6

side sum 9 side sum 10 side sum 11 side sum 12

Stage 3. Find all solutions to the game.
You could search for all of the solutions by trial and error, but that

wouldn’t be very exciting. Also, how will you know when you have obtained

all of them? Instead, let’s introduce some geometry. Geometry will provide

a very efficient technique for morphing one solution into another with the

same side sum.

Using geometry for Stage 3. Take the triangle T below with side sum 9 and

rotate the triangle 120o clockwise so that the vertex where the 1 is goes to

the vertex where the 2 is, like this:

162

4

3

5

243

5

1

6

Triangle T

The side sum of this new triangle is still 9 but the numbers are in different

places. So we have a new solution. Notice that this solution is similar to

the old one because when you read the numbers, starting with 1, and move

clockwise around the triangle, the order is the same, namely 1, 6, 2, 4, 3, 5.

Question 6. There is a different way to rotate the triangle to get an additional
solution with side sum 9. Can you find it?

445 0

29
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Next comes another geometric idea to find still other solutions. Take triangle

T with side sum 9 and draw a line from the top vertex to the midpoint of

the bottom side, that is from 1 to 4.

243

65

1

Triangle T

Flip the triangle around this line to get:

342

56

1

This is a new solution with side sum 9 but notice that to get the numbers

in the same order as before (1, 6, 2, 4, 3, 5), you must move around the

triangle in the counterclockwise direction.

Question 7. There are two more flips, or reflections, that result in two more
solutions with side sum 9. Can you find them?

445 0

29

These six solutions (triangle T , the two rotated triangles, and the three

flipped triangles) are all the solutions with side sum 9 . It is not difficult to

verify this. If you are interested, you can work out the ideas in the Heavy

Lifting section later.

Observe the power geometry has added to the game. One solution im-

mediately gives five others, and these six are all the solutions with side

sum 9.

445 0

29 You can apply this power and efficiency to find all solutions for other

side sums. You are on your own now to finish the game.
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Did you discover that there are exactly twenty-four solutions to The

Triangle Game? If so, you have completely solved the game. That is quite

an accomplishment.

99

45 0

2

9
9

Solutions
Question 6. Find another rotation of triangle T : Rotate the triangle 240o clock-
wise so that the vertex where the 1 is, goes to the vertex where the 3 is, like

this:

351

6

2

4

243

5

1

6

Question 7. Find two more flips: First draw a line from the right hand vertex to

the midpoint of the opposite side, that is, from 2 to 5, and flip triangle T around

this line to get

261

45

3

then, going back to triangle T , draw a line from 3 to 6, and flip the triangle

around it to get

153

64

2
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For each possible side sum 9, 10, 11, and 12, once you have one solution, there

will be two more solutions given by rotations (one through 120◦ and one through
240◦) and there will be three more solutions given by flips (one around each of
the medians of the triangle, or the lines that connect a vertex with the midpoint

of the opposite side). Thus, for each of the four possible side sums, there are six

solutions. So, all in all, there are 4 × 6 = 24 solutions to The Triangle Game.

Here they are:

5

1

6

2

4 3452

13

6

325

1

64

243

5

1

6

side sum 9 side sum 10 side sum 11 side sum 12

Rotate the triangles in the first row 120o:

6

2

4

3

5 1614

35

2

163

5

42

162

4

3

5

side sum 9 side sum 10 side sum 11 side sum 12

Rotate the triangles in the first row 240o:

4

3

5

1

6 2236

51

4

541

3

26

351

6

2

4

side sum 9 side sum 10 side sum 11 side sum 12

Flip the triangles in the first row around the line from the top vertex to the

midpoint of the opposite side:
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4

2

6

1

5 3254

31

6

523

1

46

342

6

1

5

side sum 9 side sum 10 side sum 11 side sum 12

Flip the triangles in the first row around the line from the right vertex to the

midpoint of the opposite side:

5

3

4

2

6 1416

53

2

361

5

24

261

5

3

4

side sum 9 side sum 10 side sum 11 side sum 12

Flip the triangles in the first row around the line from the left vertex to the

midpoint of the opposite side:

6

1

5

3

4 2632

15

4

145

3

62

153

4

2

6

side sum 9 side sum 10 side sum 11 side sum 12

Part II: The Square Game

What’s next? Squares, of course. By now, you can probably set up the

whole game and analyze it yourself. Be on the lookout for some surprises.
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For a square, there are eight dots and the numbers from 1 to 8 are used.

(Some of you may recognize the similarity to Magic Squares except that in

The Square Game there is no dot in the middle of the square.)

246

75

1 8 3

Just as for The Triangle Game, a solution to The Square Game is any square

with side sums all equal. The square pictured is a solution with side sum

equal to 12.

Directions for The Square Game

Stage 1. Find a solution for The Square Game (other than the one given).

Stage 2. Find all possible side sums. (Watch for some surprises.)
If you would like some hints for this part, keep reading. Otherwise, set out

on your own but be alert for hazards on the road ahead.

Backed by your experience and training in The Triangle Game, it ought to

be easy to decide which side sums are not possible for squares. First of all,

8 must go somewhere and the smallest numbers that can share a side with

8 are 1 and 2 so, for a square, you can’t have a side sum of 10 or less. But

(surprise!):

A solution with side sum 11 is not possible.

Can you figure out why? It takes a few steps to explain this so let’s work it

out together. The 8 has to go somewhere. It can go either at a vertex or at



The Triangle and Square Games 35

a midpoint. Try a vertex first. You have to use 1 and 2 along with 8 to get

a side sum of 11.

8

Say 1 and 2 go on the top with 8. Then what numbers go along the left

side?

There are no numbers remaining to go along the left side. This means

that 8 cannot be at a vertex. Now suppose 8 is at the midpoint of the top.

Again, 1 and 2 have to go with 8. So 1 and 2 are at the top vertices, with,

say, 1 on the left and 2 on the right.

Question 8. What can go with 1 along the left side?

1 8 2

445 0

29

Question 9. What can go with 2 along the right side?

445 0

29

Question 10. If you put 7 and 3 on the left, what has to go on the right?

445 0

29



36 Bike – Chapter 4

Question 11. Now for the clincher. What is the only number remaining to
go along the bottom? What goes wrong?

445 0

29

So, as you can see from the Solutions, 7 and 3 cannot go on the left.

Question 12. Suppose instead that you put 6 and 4 on the left. What can
go on the right?

445 0

29
Nothing is available to go on the right. Consequently, there can be no solu-

tion with side sum 11, and the smallest potential side sum is 12. However,

12 is an actual side sum, as our first Square Game example shows.

How about the biggest possible side sum? Since 1 has to go somewhere

and the largest numbers that can share a side with 1 are 7 and 8, it follows

that 16 is the largest potential sum. But, just as above:

A solution with side sum 16 is not possible.

Question 13. Can you figure out why? You are on your own for this one.
Try the same type of argument we worked out together above.

445 0

29

This leaves possible side sums 12, 13, 14, and 15.

Question 14. Can you find solution squares with side sums of 12, 13, 14, and
15?

445 0

29

Stage 3. Take one of your solutions to The Square Game and find the number
of solutions you get by applying rotations and flips to it.
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For example, look at the solution

246

75

1 8 3

with side sum 12. Rotating the square clockwise through 90o, 180o and 270o

gives three additional solutions.

Question 15. There are also four flips that give four more solutions. What
are they?

445 0

29

Did you notice that you weren’t asked, as you were in The Triangle Game,

to find all solutions to The Square Game? For The Triangle Game, it is

true that all solutions are obtained by taking one solution for each side sum

and applying rotations and flips. This is no longer true for The Square

Game. (Mathematics is full of surprises!) If you are interested in finding all

solutions for The Square Game, see the Heavy Lifting section.

99

45 0

2

9
9

Solutions
Question 8. What can go with 1 along the left side?

1 8 2

If you said 7 and 3, or 6 and 4, that is correct.
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Question 9. What can go with 2 along the right side? Did you say 6 and 3, or
5 and 4? Good.

Question 10. Now if you put 7 and 3 on the left, what has to go on the right?
The answer is 5 and 4.

Question 11. What is the only number remaining to go along the bottom? What
goes wrong? The number 6 remains. To get a sum of 11 you would need 4 and

1, or 3 and 2, but neither of those pairs is available.

Question 12. Suppose instead that you put 6 and 4 on the left. What can go
on the right? Nothing! Neither of the pairs 6 and 3, or 5 and 4 is available. This

completes the proof that the smallest potential side sum is 12.

Question 13. Show that there is no solution with side sum 16: There is no way

to complete the square if 1 and 7 and 8, in any order, are on one side, say the

top side. 1 can’t go at a vertex because you can only use the 7, 8 pair once. If 1

goes at the midpoint, then 7 is at one vertex, say the left, and 8 is at the other,

the right.
7 1 8

The possible pairs with 7 are 6 and 3, or 5 and 4. The possible pairs with 8 are

6 and 2, or 5 and 3. But you can’t put the pair 6, 3 on the left because then no

pair is available for the right. If the pair 5, 4 goes on the left, then the pair 6, 2

must go on the right. That leaves 3 for the bottom. Now for the bottom side

sum to be 16, either the pair 8, 5 or the pair 7, 6 must go with 3, but neither pair

is available.

Question 14 Here are some solutions to The Square Game.

625

37

1 8 4

26 4

75

381

side sum 12 side sum 13
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753

24

8 1 6

34 7

62

518

side sum 14 side sum 15

Rotating the solution above for side sum 12 clockwise through 90◦ gives the
solution

372

84

6 5 1

Similarly, rotating through 180◦ and then through 270o gives

651

8

3 7 2

4

13

7

2 4 6

5

8

and then

Question 15. The square can be flipped in turn around the four lines indicated
in the square below,

246

75

1 8 3
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giving four additional solutions from flips (the line used for the flip is indicated

on the square):

642

57

3 8 1

31 8

75

246

156

84

2 7 3

23 7

48

651

In the same way, if you take any one of your solutions with side sum 13 or 14 or

15, you will get seven additional solutions by applying rotations and flips.

Part III: Heavy Lifting

There are two projects in this section. In the first, you will work out the

proof that the 24 solutions you found for The Triangle Game are the only

ones. In addition, you will be introduced to a neat new idea: duality. In

the second project, you will prove that there are exactly 48 solutions to The

Square Game.

The Triangle Game Project

In The Triangle Game, you discovered that the only possible side sums are

9, 10, 11, and 12, and you found 24 different solutions. The claim was made

that there are no other solutions. The purpose of this project is the proof of

that claim. To accomplish this, you will use a combination of careful case-

by-case checking and that new idea called duality. (Solving mathematical

problems often involves this blend of good ideas and careful computation.)
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Why are there exactly 24 solutions to

The Triangle Game?

The idea is to show that every solution, for a fixed side sum, is obtained

from any one solution by a rotation or a flip (reflection). This means that

you may employ rotations and reflections (flips) in your arguments anytime

it is helpful.

First, the case work.

Side Sum 9. Tackle the case where the side sum is 9. The number 1 can go

either at a vertex or a midpoint, so assume to start that 1 is at a vertex.

What numbers can share a side with 1? Either 2 and 6, or 3 and 5. So,

since rotations and reflections are allowed, you can assume that 1 is at the

top vertex, and the pair 2 and 6 go along the right side, and the pair 3 and

5 go along the left side. 1

2,63,5

Notice that 4 is the only number remaining to go at the midpoint of the

bottom.

Question 16(a). Can 6 be at the vertex on the right?

Question 16(b). Can 5 be at the vertex on the left?

445 0

29

Question 17. Once you establish that the answer to both of the questions
above is “no,” you must show that there is no side sum 9 solution with 1 at

a midpoint.

445 0

29
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The argument that 1 cannot be at a midpoint for a side sum 9 solution

completes the proof that the only side sum 9 solutions are the same six

known solutions obtained by rotation and reflection.

Side Sum 10. Here is a solution with side sum 10.

325

64

1

Question 18(a). For the case of side sum 10, you are on your own to show,

just as you did above, that the only solutions with 1 at a vertex and side sum

10 are this one and the five others obtained from it by rotations and flips.

Question 18(b). To complete the side sum 10 case, show that 1 cannot be at

a midpoint.

445 0

29

Here is a neat payoff for all your hard work. You can use a method called

duality to handle the cases for side sums of 11 and 12. You are going to

show that the following statements are true.

Every side sum 9 solution triangle corresponds to

a side sum 12 solution triangle and vice versa.

Every side sum 10 solution triangle corresponds

to a side sum 11 solution triangle and vice versa.

To begin, notice that the sum of all the numbers around the triangle is 21,

i.e., 1 + 2+ 3+ 4+ 5+ 6 = 21. Now suppose you have a solution triangle T

with a certain side sum s, and the numbers along one side are a, b, and c,
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so s = a+ b+ c. Take another triangle, and, on the same side, replace a by

7− a, b by 7− b and c by 7− c.

7 - c

7 - a

7 - b

c

a

b

T TI

What is the sum along this side of the new triangle T I?

Did you see that the side sum is (7−a)+(7−b)+(7−c) = 21−(a+b+c) =
21− s? Good.

How does this work out for the triangle below?

243

65

1

If you apply this process you will get a new triangle, called the dual triangle.

It looks like this:

7 – 2 = 5??

7 – 6 = 1?

7 – 1 = 6
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Question 19. Try to continue the process of substraction from 7 for the

remaining dots on the triangle. Is the dual triangle a solution to the game?

What side sum does it have?

445 0

29

Return to the triangle T , where all the dots now have letters attached.

cde

bf

a

Get ready for some interesting challenges. Since this is heavier lifting, we’ll

introduce some mathematical terms related to the word “dual.” The chal-

lenges will establish a correspondence, called duality , between solution trian-

gles of side sum 9 and solution triangles of side sum 12, and between solution

triangles of side sum 10 and solution triangles of side sum 11. Notice that

12 = 21− 9 and 11 = 21− 10.
The process of going from the triangle T with numbers a, b, c, d, e, f to

the dual triangle T I with the numbers 7 − a, 7 − b, 7 − c, 7 − d, 7 − e, 7 − f
is called the dualizing process .

Challenge 1. Assume the triangle T is a solution to the game with side sum s.
Show that the dual triangle T I is a solution with side sum 21 − s.

445 0

29

Can you guess what will happen if you repeat the dualizing process? In

other words, take each number, say 7− a, for example, on the dual triangle
T I, subtract it from 7 and form a new double-dual triangle.
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7 - (7 - a)7 - a

Challenge 2. Repeat the dualizing process on the dual triangle T I. What
triangle do you get?

445 0

29
Challenge 3. Can you conclude that all solutions with side sum 11 and 12

are obtained from solution triangles with side sum 9 and 10? Explain why.

445 0

29

If you answered the three challenges, you have succeeded at some very heavy

lifting. That is quite an accomplishment!

99

45 0

2

9
9

Solutions
Question 16. The answer to both questions is “no” because you cannot get a
side sum of 9 with either 6 or 5 at a vertex and 4 at the midpoint. So if 1 is at

a vertex, the only solutions you can get are

243

65

1

and the five others obtained by rotations and reflections.

Question 17. Why there is no side sum 9 solution with 1 at a midpoint? If 1 is

at a midpoint, then 5 or 6 has to be at a vertex, but neither 5 nor 6 can be at a

vertex of a side sum 9 solution triangle.
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Question 18. Here is a solution with side sum 10.

325

64

1

(a). Why are this solution and the five others obtained from it by rotations and

reflections the only solutions with side sum 10? The reasoning follows the same

pattern as for the case of side sum 9. Assume first that you have a solution with

1 at vertex. Then the only pairs of numbers that can go along a side with 1 are

5, 4 and 6, 3. Since rotations and reflections are allowed, you may assume that 1

is at the top vertex, 5 and 4 are on the left side, and 6 and 3 are on the right.

The only number remaining to go at the midpont of the bottom is 2. But with 2

at the midpoint of the bottom, the only pair of numbers that can go with 2 are

5 and 3. This means that neither 4 nor 6 can be at a vertex. So 4 has to go at

the midpoint of the left side, and 6 has to go at the midpoint of the right side.

(b). Why can’t 1 go at a midpoint? If it does, then 1 would have to be paired

with either 5 and 4 or with 6 and 3. But then either 4 or 6 would be at a vertex.

That cannot happen, because in the first case, 5 and 1 are not available, and, in

the second case, 3 and 1 are not available.

Question 19. Is the dual triangle a solution to the game? What side sum does

it have?

The dual triangle looks like this:

534

12

6

The dual triangle is a solution with side sum 12.

Challenge 1. Assume the triangle T is a solution to the game with side sum s.

Show that the dual triangle T I is a solution with side sum 21− s.
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7 - c7 - d7 - e

7 - f

7 - a

7 - b

ce

a

b

d

f

Since T is a solution with side sum s, a+ b+ c = c+ d+ e = e+ f +a = s. Thus,

(7−a)+ (7− b)+ (7− c) = 21− (a+ b+ c) = 21− s; (7− c)+ (7− d)+ (7− e) =
21− (c+d+e) = 21−s; and (7−e)+(7−f)+(7−a) = 21− (e+f+a) = 21−s.
This proves that the dual triangle T I is a solution with side sum 21− s.

Challenge 2. Repeat the dualizing process on the dual triangle T I. What triangle
do you get?

cde

f

a

b

7 - (7 - c)7 - (7 - e)7 - c7 - e

7 - (7 - a)7 - a

7 - b7 - f

7 - d 7 - (7 - d)

7 - (7 - f) 7 - (7 - b)

Challenge 3. Can you conclude that all solutions to the game with side sum 11

and 12 are obtained from solution triangles with side sum 9 and 10? Yes, s can

be any of the numbers 9, 10, 11, or 12. So every side sum 9 solution triangle

gives a side sum 12 solution triangle and vice versa. The same is true for side

sums 10 and 11. What’s more, Challenge 2 shows that you can get back where

you started when you do the dualizing process twice. This means that every side

sum 9 solution triangle corresponds to a unique side sum 12 solution triangle and

vice versa, and every side sum 10 triangle corresponds to a unique side sum 11

solution triangle and vice versa.

The Square Game Project

The fact that every solution to The Triangle Game is obtained by rotation

or reflection from a basic set of four triangles, one for each side sum, is no

longer true for The Square Game. Not all solution squares are obtained by

rotation and flips from a set of four solutions, one for each side sum of 12,
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13, 14, and 15. This investigation will lead to new solutions and to the total

number of solution squares.

Here is a solution square S with side sum 13:

625

37

1 8 4

You know there are seven more solutions obtained from this one by rotations

and reflections for a total of eight solution squares.

Stage 1. Find a solution to The Square Game for side sum 13 that is not

obtained by rotations and reflections of S.

Hint: Think about the following questions before you look for

an example.

Question 20. How can you tell whether or not one solution square is ob-

tained from another by rotations or reflections? The answer to the following

question will give you a clue. Can a number be at a vertex to start and

then, after rotations and/or reflections, end up at the midpoint of a side?

445 0

29

Question 21. Next, search for an example of a side sum 13 square that is

not obtained by rotations and reflections of S.

445 0

29

Question 22. If you apply rotations and reflections to the new square you

found, how many new side sum 13 solution squares do you obtain?

445 0

29

At this point, you should have a total of sixteen squares with side sum 13.
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Now you have some work to do to account for all of the solutions with

side sum 12 and 13.

Challenge for Side Sum 12. Show that the side sum 12 solution square,

246

75

1 8 3

and the seven other solution squares obtained by rotations and reflections

are the only solution squares of side sum 12.

Hint: Use the technique of analyzing possible pairs on a side that you

used earlier to show there are no solution squares of side sum 11 or 16.

445 0

29

Challenge for Side Sum 13. Show that the 16 solution squares you found are
the only solution squares with side sum 13.

Hint: The same hint applies.

445 0

29

Can you predict what will happen for solution squares of side sum 14 and

15? To find out if you are correct, let’s see what duality for squares looks

like.

Stage 2. Duality for Squares.

For squares, the sum of all the integers around the square is 36, so since

the square has four sides, we will use 36
4 = 9 instead of the 7 =

21
3 that we

used for triangles.
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Start with the square:

efg

dh

a b c

Assume it is a solution square with side sum s.

Form the dual square:

???

?9 - h

9 - a 9 - b ?

Here are the crucial duality questions.

Duality Question 1. Is the dual square a solution? If so, what is its side sum?

445 0

29

Duality Question 2. Repeat the dualizing process on the square. What

square do you get?

445 0

29

Duality Question 3. Can you conclude that all solutions to the game with
side sum 14 and 15 are obtained from solution squares with side sum 13 and

12? Explain why.

445 0

29
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Final Challenge. Put Parts 1 and 2 of the project together and use duality
to show that there are exactly 48 solutions to The Square Game.

99

45 0

2

9
9

Solutions
Question 20. A number can not be at a vertex to start, and then, after rotations
and/or reflections, end up at the midpoint of a side? To justify this answer, check

all three rotations and all four reflections to see that a number at a vertex ends

up at a vertex and a number at a midpoint ends up at a midpoint.

Question 21. Here is one solution for an example of a side sum 13 that is not

obtained by rotations and reflections of S.

265

37

1 4 8

It has 8 at a vertex so it cannot be obtained by rotations and flips from the

original side sum 13 square which has 8 at a midpoint.

Question 22. If you apply rotations and reflections to the square, you found, as
above, you will obtain seven new ones.

Challenge for Side Sum 12. The arguments are similar to the ones used earlier
to show that solutions with side sum 11 and 16 are impossible. Suppose 1 is at

a vertex. The only number pairs that can go with 1 are 8, 3; 7, 4; and 6, 5. Since

rotations and flips are allowed, you can assume 1 is at the top left vertex. Note

that the pair 3, 1 is the only one that can go with 8 to get side sum 12. This

means that 8 cannot be at a vertex and 1 must be paired with 8 and 3. Since

reflections are allowed, you can assume that 1, 8, 3 are on the top in that order.

1 8 3
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Suppose the pair 7, 4 is on the left. Then no pairs are available to go with 3

to give side sum 12 on the right. So the pair 6, 5 must be on the left, and the

only pair remaining to go with 3 on the right is 7, 2. This puts the number 4 at

the midpoint of the bottom. Then to get side sum 12 along the bottom, you see

that 6 must be at the bottom left vertex and 2 at the bottom right. This means

that the only side sum 12 solutions with 1 at a vertex are the ones named in the

problem.

Now check that the number 1 cannot be at a midpoint. The number 8 has to go

somewhere. Remember that 3, 1 is the only pair that can go with 8. This means

that 8 cannot be at a vertex. But if 1 is at a midpoint, then 8 has to be at a

vertex.

Challenge for Side Sum 13. The arguments are the same.

Square Duality Questions and the Final Challenge. These solutions are anal-
ogous to those for triangle duality.

Suggestions for the Endurance Athlete

Each one of the following projects will produce surprises.

10K Challenge. Investigate the pentagon game.

20K Challenge. Investigate the hexagon game.

30K Challenge. Investigate the n-gon game. Start this one by finding
one solution for each n.
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29 Chapter Five

Palindromes

This investigation prevents aibohphobia–the fear of palindromes.

“I prefer pi.”

Anonymous

53
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What is a palindrome? The usual meaning of palindrome is a word or

phrase that reads the same foward or backward. Familiar examples are:

dad, toot, radar, and ‘Madam I’m Adam.’ The word “palindrome” comes

from the Greek word “palindromos” and means “running back again.” Since

numbers can also “run back again,” we will use the word palindrome to mean

a number whose digits read the same forward or backward. All numbers will

be written in base 10.

Examples of numbers that are palindromes are easy to find. All one-

digit numbers are palindromes. That gives us ten examples (including the

number 0) of palindromes. Here are some other examples: 33, 141, 5775, and

135797531.

Let’s think about dates that are palindromes. Write each date as a

sequence of eight numbers abcdefgh, where a and b are the digits of the

month, c and d are the digits of the day, and e, f, g, and h are the digits of the

year. For example, write January 5, 1956 as 01051956, and November 3, 2001

as 11032001. Notice that October 2, 2001 corresponds to the palindrome

10022001. Can you find some other dates that are palindromes? What are

some examples of years for which none of the dates is a palindrome?

Part I: Palindromes of Five or Fewer Digits

Number palindromes are very interesting. It is always a good idea to begin

an inquiry with lots of examples. Your palindrome investigation will begin

with the hunt for all palindromes with five or fewer digits. I’ll help you get

started by asking some questions and giving some hints. Try to answer each

question in turn because each answer depends on the ones that come before.

If you have thought long and hard about a question and are still stuck, you

can look at the solutions for help.

Two-Digit Palindromes

Question 1. Can you find all the two-digit palindromes? How many are

there?

445 0

29
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Three-Digit Palindromes

A three-digit palindrome has to have the same number as its first and last

digit but can have any number between 0 and 9 as its middle digit. So,

starting with the two-digit palindrome 55, for example, you can form the

three-digit palindrome 505. See if you can use this idea to answer the fol-

lowing question.

Question 2. Start with any one of the two-digit palindromes you found. How
many three-digit palindromes can you make from it? Here is a partially

completed table to help you get started.

Two-Digit Palindromes Three-Digit Palindromes

11 101, 111, 121, . . .

22 202, 212, . . .

33

Using two-digit palindromes to make three-digit palindromes.

445 0

29

You will need to use your answer to Question 1 to answer the next question.

Question 3. How many three-digit palindromes do you get from all of the

two-digit palindromes?

445 0

29

Question 4. Are there any other three-digit palindromes?

445 0

29



56 Bike – Chapter 5

Four-Digit Palindromes

Question 5. How many four-digit palindromes can you construct from the 9

two-digit palindromes? Here is a table to help you get started.

Two-Digit Palindromes Four-Digit Palindromes

11 1001, 1111, 1221, 1331, . . .

22 2002, 2112, . . .

33

Using two-digit palindromes to make four-digit palindromes.

445 0

29

Question 6. Are there any other four-digit palindromes?

445 0

29

Now you are into the swing of this. Can you see how to use these ideas

to construct all the five-digit palindromes?

Five-Digit Palindromes

Question 7. How many five-digit palindromes are there?

Hint: What can you say about the outer two digits of a five-digit palin-

drome? What about the middle three digits of a five-digit palindrome?

Be careful here. Are the middle three digits of a five-digit palindrome

always a three-digit palindrome?
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Two-Digit

Palindromes Five-Digit Palindromes

11 10001, 10101, 10201, . . . , 11011, 11111, . . . , . . . , 12021, . . .

22 20002, 20102, . . .

33

Using two-digit palindromes to make five-digit palindromes.

445 0

29

Congratulations! You now know all numbers with five or fewer digits

that have the property of being palindromes.

99

45 0

2

9
9

Solutions
Question 1. Did you find the nine two-digit palindromes: 11, 22, 33, 44, 55, 66,
77, 88, 99?

Question 2. For each two-digit palindrome, such as 33, there are 10 three-digit
palindromes, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, constructed by

inserting the numbers 0, 1, 2, . . ., 9 in turn between the original two digits.

Question 3. Remember that you counted nine two-digit palindromes. For each
of them you can build 10 three-digit palindromes. So there are 9 × 10 = 90

three-digit palindromes constructed in this way.

Question 4. No. Since the numbers “running forward” and “running back again”
have to be the same, the first digit and the last digit of every three-digit palin-

drome must be the same.

Question 5. For each two-digit palindrome, such as 88, there are 10 four-

digit palindromes, 8008, 8118, 8228, 8338, 8448, 8558, 8668, 8778, 8888, 8998, con-

structed by inserting all the two-digit palindromes as well as the digits 00 in turn

between the original two digits. This gives 9 × 10 = 90 new examples, all with

four digits. So the answer to Question 5 is 90.
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Question 6. No. A four-digit palindrome must have the same first and last digits
and the same middle two digits.

Question 7. There are 900 five-digit palindromes. They can be constructed and
counted this way. You know that a five-digit palindrome must have first and last

digits the same, and second and fourth digits the same with any number between

0 and 9 as the middle digit. So the outer two digits of a five-digit palindrome form

a two-digit palindrome. You have to be a little careful about the middle three

digits. As long as the second and fourth digits are not equal to 0, the middle three

digits form a three-digit palindrome. So you can construct most of the five-digit

palindromes by taking each of the nine two-digit palindromes and inserting, in

turn, all of the 90 three-digit palindromes in between. This gives 9×90 = 810 five-
digit palindromes such as 11011, 24542, 53835, etc. To get the remaining five-digit

palindromes, insert 000, 010, 020, 030, 040, 050, 060, 070, 080, 090, in turn, between

each of the nine two-digit palindromes. This gives 9 × 10 = 90 more five-digit

palindromes. The sum total is then 900.

Suggestions for the Endurance Athlete

10K Challenge. Work with some of your classmates to find a formula
for the number of d-digit palindromes for d > 5.

20K Challenge. You have figured out the number of d-digit numbers
for d ≤ 5. Do you see a pattern that might help you guess the

number of d-digit palindromes for d > 5? You might want to try

d = 6 and 7 before undertaking general d.

Part II: The Reverse and Add Rule

You saw that only nine two-digit numbers are palindromes. What about

all of the other two-digit numbers that are not palidromes? In Part III,

you will show that all two-digit numbers are just a few steps away from

being palindromes. This involves a neat mathematical procedure called the

reverse and add rule.

The number 25 is not a palindrome, but here is a mathematical procedure

that turns it into one. Take the two digit number 25, reverse the digits to

get the number 52 and add the two numbers together. What do you get?
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You get the palindrome 77 = 25 + 52. Is this just because 25 is a special

number? Try the reverse and add rule on some other two-digit numbers and

see. Try 13, 45, and 56.

It works! You get 13+31 = 44, 45+54 = 99, 56+65 = 121, all palindromes.

Now try 67.

Unfortunately, 67 + 76 = 143, and 143 is not a palindrome.

The saying “If at first you don’t succeed, try, try again,” may not be a

palindrome, but it’s a good motto for many endeavors, particularly, mathe-

matics. Try the reverse and add rule again:

67 + 76 = 143;

143 + 341 = 484;

and 484 is a palindrome. Do you think you are on to something here?

Try the number 10.

The number 10, as well as each of the other two-digit numbers with units

digit equal to 0, is special because the number obtained by reversing digits

is not a two-digit number. That’s O.K. As you can see, the reverse and add

rule still works, and it works on the first try: 10 + 01 = 10 + 1 = 11, a

palindrome.

Question 8. Does it also work for all of the other two-digit numbers that
have units digit equal to 0?

445 0

29

Question 9. Next try the number 78, and don’t forget the motto “If at first
you don’t succeed, try, try again.”

445 0

29
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Do you think the reverse and add rule might eventually turn every two-digit

number into a palindrome? The answer to this question will be found in

Part III.

First, there is some preparation to do. Let’s begin by giving a name to

numbers that become palindromes using the reverse and add rule. Let k be

a non-negative integer. A number N will be called a k-step palindrome if the

reverse and add rule applied toN results in a palindrome after k applications

or steps and no fewer. The original palindromes, numbers such as 66, are

zero-step palindromes. You have shown that 25 is a one-step palindrome:

first step: 25 + 52 = 77.

You have also shown that 67 is a two-step palindrome:

first step: 67 + 76 = 143;

second step: 143 + 341 = 484.

What step palindrome is 78?

445 0

29

Here are two questions that will aid in the investigation of two-digit

k-step palindromes.

Question 10. You know the number 78 is a four-step palindrome. What step
palindrome is 87?

Think! Don’t compute to answer this question.

445 0

29

Now be careful with the next question. Remember that the first digit of

a non-zero number is not equal to zero.

Question 11. If a two-digit number is a k-step palindrome, is the number
obtained by reversing its digits also a k-step palindrome?

445 0

29

As you can see from the Solutions, the answer to Question 11 depends on

whether the units digit is zero or not zero.
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Let’s generalize Question 11. Suppose you have a d-digit number N

and suppose that N is a k-step palindrome. Is the number N I obtained by
reversing the digits of N also a k-step palindrome?

Just as for Question 11, the answer depends on whether the units digit of

N is zero or not. If the units digit of N is 0, then the number N I obtained by
reversing digits will have fewer digits and no conclusion about the number

of steps can be drawn. For example, if N = 270, then N is a two-step

palindrome. However, N I = 027 = 27 is a one-step palindrome. If the units
digit of N is not 0, then the number N I has the same number of digits. In
this case, if N is a palindrome (a zero-step palindrome), then, of course, so

is N I. If N is not a palindrome, then N I is also not a palindrome. Both
numbers have the same first step, and as each step depends only on the one

immediately before it, each succeeding step will also be the same. So the

answer to the question is “yes,” in this case. This handy fact is a big time

saver. You get “2 for 1.”

If a number N is a k-step palindrome and

if the units digit of N is not equal to 0,

then the number N I

obtained by reversing the digits of N

is also a k-step palindrome.

Ideas, like this one, which lead to methods for dealing with more than one

number at a time, illustrate the power of mathematical thinking.

99

45 0

2

9
9

Solutions
Question 8. Yes, it does work for all of the other two-digit numbers with units
digit equal to 0. In fact, you get all the two-digit palindromes this way: 20+02 =

22, 30+03 = 33, 40+04 = 44, 50+05 = 55, 60+06 = 66, 70+07 = 77, 80+08 = 88

and 90 + 09 = 99.
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Question 9. Did you see that persistence pays off? After four applications of

the reverse and add rule, the palindrome 4884 is achieved:

Step 1: 78 + 87 = 165;

Step 2: 165 + 561 = 726;

Step 3: 726 + 627 = 1353;

Step 4: 1353 + 3531 = 4884.

This makes 78 a four-step palindrome.

Question 10. You are right if you said four. The numbers 87 and 78 have the
same first-step number, namely 165. Each succeeding step uses only the step

before, so since 78 is a four-step palindrome, 87 is also.

Question 11. If the number obtained by reversing digits is a two-digit number,
then the answer is “yes.” For if the number is a palindrome, then, of course, so is

the number obtained by reversing digits. If the number is not a palindrome, then

neither is the number obtained by reversing digits. Both numbers will have the

same first step, and each succeeding step will also be the same. Note that it is

important to require that the number obtained by reversing digits has two digits.

For example, 10 is a one-step palindrome but 01 = 1 is a zero-step palindrome.

Requiring that the number obtained by reversing digits has two digits means that

the units digit of the original number is not 0.

Part III: The Two-Digit Palindrome Game
Are you ready for the two-digit palindrome game? The object of the game

is to take each of the two-digit numbers and to figure out what step (if any)

palindrome it is.

There’s an advantage to thinking about what it means to write a two-

digit number in base 10. Here is a little review of that.

Every two-digit number N has a tens digit t and a units digit u, where

t is an integer between 1 and 9 and u is an integer between 0 and 9, and

N = 10t + u. For example, 45 = 10(4) + 5 has tens digit 4 and units digit

5, and 20 = 10(2) + 0 has tens digit 2 and units digit 0. (Be careful. 45

can also be written: 45 = 10(3) + 15, but you know 15 is not the units digit

because it is greater than 9, so 3 is not the tens digit either.) Here’s a good

question to test your “digit dexterity.”

Digit Dexterity Question. If N = 10t+u, what does the number N I obtained
by reversing digits look like?

445 0

29
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Directions for The Two-Digit Palindrome Game

Object of the Game. Take the collection of all 90 two-digit numbers. For
each one, find out what step, if any, palindrome it is. Make a table of all

zero-step palindromes, one-step palindromes, two-step palindromes, etc., as

far out as you need to go so that all two-digit numbers appear.

Scoring. 0 points for each zero-step palindrome, 1 point for each one-step
palindrome, and k points for each k-step palindrome.

Time Limit. 15 minutes for your first attempt.

Directions. On your first attempt, fill in as much of the table as you can
in 15 minutes. Then work through the Post-Game Analysis below. The

mathematical perspective gained there will give you a big boost towards

completing the table the second time around. Your final score will be tallied

after you have had two opportunities to work on the table.

An important suggestion before you begin. You can work on one number

at a time. However, you are encouraged to apply your powers of analysis

and deduction to tackle the question more broadly. Try to work with the

base 10 representation of the numbers. For example, if you start with the

two digit number N = 10t+ u, can you figure out the number that you get

at the first step in base 10? Ask yourself when that number is a palindrome.

Here is a table you may use for the game. Start the clock now.

Number of Steps Palindromes

0 steps ?

1 step

2 steps

? ?

How many two-digit numbers are on your table? If your table has all 90

two-digit numbers on it, then you have demonstrated the following fact.

Every two-digit number is a k-step palindrome

for some k.
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In fact, every two-digit number is a k-step palindrome for some k ≤ 24.

To tally your score, for each k from 0 to 24, multiply the number of k-

step palindromes on your table by k. Your total score is the sum of these

numbers.

Here is a list of the number of k-step two-digit palindromes for k =

0, 1, ..., 24.

Step Number Number of Two-Digit Palindromes

0 9

1 49

2 20

3 4

4 4

6 2

24 2

This means that the best possible score is 49 + (2)(20) + (3)(4) + (4)(4) +

(6)(2) + (24)(2) = 177.

If you scored 150 points or better, you attained the palindrome zone.

As you work through the Post-Game Analysis below, you will be able to

complete more of your palindrome table. A score of 150 points or better

will be the goal in your second attempt.

Post-Game: Play-by-Play Analysis

This is a workout in base 10 arithmetic. The payoff will be a better under-

standing of digits, carrying and regrouping, and some new ideas for other

palindrome projects. The analysis comes in the form of questions.

Each such question is marked with the symbol to remind you to stop

reading and take time to think about the question. (In this section, many

of the questions will have answers immediately following in the text.)

Let’s look at the advantages to be gained by applying some digit dex-

terity. We write the two-digit number N in the form N = 10t+ u, where t

is the tens digit and u is the units digit. This means t is an integer that is

between 1 and 9 and u is an integer that is between 0 and 9. For short, we

use inequalities and write 1 ≤ t ≤ 9 and 0 ≤ u ≤ 9.



Palindromes 65

First, consider the benefits of studying the sum t + u of the tens digit

and the units digit. Try to answer these two questions:

How small can t+ u be? How big can t+ u be?

If your answer to the first question is 1 and to the second is 18, that’s correct.

Did you think about it this way? Since t is at least 1, t + u is at least 1.

Since both t and u are no bigger than 9, t+u cannot be any bigger than 18.

Here is a follow-up question: If t+ u = 18, what is N?

Did you see that if t + u = 18, then both t and u are equal to 9 and

10t+ u = 99, a palindrome? Good work.

Filling in the zero-step palindromes (that is, the palindromes) in the

table is easy. So let’s assume from now on that N is not a palindrome. This

means that N = 10t+ u and that the tens digit t and the units digit u are

not equal, t W= u.
Here’s another question. If t W= u, how large can t+ u be?

Did you see that t+ u cannot be larger than 17?

Let’s summarize what you have found. The sum t + u satisfies 1 ≤
t+ u ≤ 18. If t+ u = 18, then N = 99. If t W= u, 1 ≤ t+ u ≤ 17.

Since we are looking for schemes that inform us generally about two-digit

numbers, analysis of the number that is obtained at the first step is crucial.

Let’s denote that number by N1, and call it the first-step number. This
means that if we start with the number N , and if N I is the number obtained
by reversing digits, then N1 = N +N I.

Good Idea 1. Find the digits of the first-step number.
Start with the number N = 10t+ u, with t W= u. Then N I = 10u+ t and

the first-step number is

N1 = N +N I = 10(t+ u) + (t+ u).

Be careful. This may not be the final form in base 10. There are two cases:

either t+ u ≤ 9 or t+ u ≥ 10.
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Case 1. If t+ u ≤ 9, then this is an easy case. Since t+ u ≤ 9, t+ u is the
units digit of N1, and since t+ u ≥ 1, t+ u is the tens digit of N1. So N1,
the first-step number, is a two-digit palindrome!

Case 2. If t + u ≥ 10, then the arithmetic is harder because carrying or

regrouping is necessary. In this case, the units digit of N1 is t+ u− 10 and
we carry 1 over to the tens place. Then, since t+ u+ 1 ≥ 10, the new tens
digit is t+ u+ 1− 10 = t+ u− 9. Now we carry the 1 over to the hundreds
place. This gives us a three-digit number of the form

N1 = 100(1) + 10(t+ u− 9) + (t+ u− 10).
So in Case 2, the first-step number is a three-digit number with hundreds

digit equal to 1, tens digit equal to t+u−9 and units digit equal to t+u−10.
Let’s look at some examples. Consider the Case 2 numbers 39 and 68.

Question 12. What are the digits of the first-step number for 39? How about
for 68?
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We will return to Case 2 numbers momentarily. First, we note that Case

1, above, answers the “what step palindrome” question for lots of two-digit

numbers.

Payoff from Good Idea 1. If t W= u and t+ u is no bigger than 9, then N is a

one-step palindrome.

Good Idea 2. All two-digit numbers with t W= u that have the same sum of

digits t+ u are the same step palindrome.

You know that N1 = N + N I = 10(t + u) + (t + u). Even though this

might not be the final base 10 form for N1, you can see from this expression

that all two-digit numbers having the same sum of digits t+u have the same

first-step number.

For example, numbers with t W= u having the same sum of digits t+u = 15
are 69, 96, 78, and 87.

So all two-digit numbers with t W= u that have the same sum of digits

t+ u have the same first step. But each succeeding step uses only the step

before. So all two-digit numbers, with t W= u and with the same sum of

digits t+ u, will have all steps the same, and consequently will be the same

step palindrome. Thus, for example, 69, 96, 78, and 87 are all the same step

palindrome.
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Payoff from Good Idea 2. Assume that t W= u. Fix a value of t+ u (between
1 and 17). Let S be the set of all two-digit numbers with that value for the

sum of its digits. To determine what step palindrome all numbers in S are,

it is sufficient to test any one number in S.

Since N and N I have the same sum of digits, Good Idea 2 generalizes

the fact you observed earlier, namely, that, if u W= 0, then N and N I are the
same step palindrome.

Challenge 1. Use these ideas to make up a table of all the one-step palin-
dromes which satisfy Case 1, namely all the two-digit numbers 10t+ u with

t W= u and t+ u ≤ 9. Here’s a way to organize that list: Give t values from
1 to 9 and find all the u with t W= u and t+ u ≤ 9.

See if you can complete the following table. There are some hints to get

started.

Value Values of u, t W= u Number of Values of N

of t N with

so that t+ u ≤ 9 N = 10t+ u

t = 1 u = 0, 2, 3, 4, 5, 6, 7, 8 8 10, 12, 13, 14, 15, 16, 17, 18

t = 2 u = 0, 1, 3, 4, 5, 6, 7

t = 3 u = 0, 1, 2, 4, 5, 6

t = 4 u = 0, 1, 2, 3, 5

t = 5 u =

t = 6 u =

t = 7 u =

t = 8 u =

t = 9 u =

Two-digit one-step palindromes in Case 1.
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It is curious, isn’t it, that what appears to be a pattern of decreasing numbers

8, 7, 6, 5 in the third column of the table has a blip at t = 5? Mathematical

appearances can be deceiving!

The table shows that there are 41 two-digit one-step palindromes 10t+u

with t W= u and t+u ≤ 9. That’s almost half of all of the two-digit numbers!
Are these all of the one-step palindromes?
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No. Earlier, you showed that 56 is a one-step palindrome, but the sum of the

digits of 56 is 11 so there are more one-step palindromes to be accounted for.

Before we look for them, let’s plan a strategy.

Strategy Session

There are 9 two-digit zero-step palindromes. You have found 41 two-digit

one-step palindromes. Consequently, 50 of the 90 two-digit numbers, includ-

ing the special numbers with units digit equal to 0, have been shown to be

either zero-step or one-step palindromes. There are 40 numbers to go.

Question 13. You know that means there really are only at most twenty

numbers left to test, don’t you? Why?
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While it is possible to finish the game by checking the remaining 20 paired

numbers one pair at a time, the tactic we are going to use here is additional

analysis of N1. The bonus will be a very swift classification of 16 more

numbers.

Let’s go back to the one-step number in Case 2 where t + u ≥ 10.

Remember that in this case, N1 is the three-digit number:

N1 = 100(1) + 10(t+ u− 9) + (t+ u− 10).

N1 has hundreds digit 1, tens digit (t+ u− 9), and units digit (t+ u− 10.)
What does it take for N1 to be a palindrome?

Did you see that there is only one condition for N1 to be a palindrome,

namely that the units digit of N1 must be 1? This means that t + u − 10
must be 1, that is, t+ u must be 11.

Question 14. What are the two-digit numbers with t+ u = 11?
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Your analysis gives you eight new numbers to add to the table. But

your work, combined with Good Idea 1 and Good Idea 2, actually gives

much more than that. It furnishes a necessary and sufficient condition for a

two-digit number N to be a one-step palindrome:
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N is a one-step palindrome if and only if

t+ u ≤ 9 and t W= u, or t+ u = 11.

At this point, you know all about two-digit numbers with sum of digits no

greater than 9, and those with sum of digits equal to 11. What happens

when the sum of digits t + u is equal to 10? Well, 55 is one, and it is a

palindrome. That’s easy. What about the numbers that have sum of digits

equal to 10 and t W= u? Don’t check them one at a time. Use some digit

dexterity and substitute 10 for t+ u in the first step number N1:

N1 = 100(1) + 10(t+ u− 9) + (t+ u− 10)
= 100(1) + 10(1) + (0) = 110.

Now calculate the second step number and see what you find.

Did you do it this way? Reverse the digits to get N I1 = 011 so when you

add N1 and N
I
1 to get the second-step number N2, you get a palindrome!

N1 +N
I
1 = N2 = 110 + 011 = 121

This shows that all two-digit numbers N with t W= u and t + u = 10 are

two-step palindromes.

Question 15. Write down the numbers with t W= u and t+ u = 10.
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You have eight more numbers to add to the table. Let’s take a moment to

see how close you are to the goal.

You have all the zero-step and one-step two-digit palindromes. There are

58 of them. In addition, you have a start on the two-step palindromes; you

have 8 of them. This means there are just 90 − 66 = 24 two-digit numbers
left to test. In fact, as you know, only half that many need to be tested,

so only 12 are left. But, by Good Idea 2, there are even fewer to check. In

fact, if you group all the numbers with the same sum of digits together and

use Good Idea 2, there are only 6 more numbers to check.
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The strategy now will be to finish up the game quickly (hooray!) and

classify these numbers individually. Here are the untested numbers, grouped

according to the sum of their digits:

39, 48, 57 49, 58, 67 59, 68 69, 78 79 89

93, 84, 75 94, 85, 76 95, 86 96, 87 97 98

Test the six numbers needed to finish the game.

When you finish the game, compare your table with the table of all two-

digit numbers in the Solutions and tally your final score. Did you reach the

palindrome zone (150 points or higher)? Think how rapidly you would have

completed the table of two-digit palindromes on your first attempt had you

understood then what you do now! You can put these strategies to good

use in the challenging activities in the Heavy Lifting section.

Are you curious about three-digit numbers? Here’s a surprise.

It is not known whether every three-digit number

is a k-step palindrome for some k or not.

Over 2,000,000 steps have been computed for the number 196 without pro-

ducing a palindrome. If this intrigues you, turn to the Heavy Lifting section.

99

45 0

2

9
9

Solutions
Digit Dexterity Question. If N = 10t + u, with 1 ≤ t ≤ 9 and 1 ≤ u ≤ 9, then
N I = 10u+ t. What happens if u = 0?

Question 12. For 39, t+ u = 12. The hundreds digit of N1 is 1, the tens digit is

3 = t+u−9, and the units digit is 2 = t+u−10. So N1 = 132 = 1×102+3×10+2.
For 68, t+ u = 14. The hundreds digit of N1 is 1, the tens digit is 5 = t+ u− 9,
and the units digit is 4 = t+ u− 10. So N1 = 154 = 1× 102 + 5× 10 + 4.
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Challenge 1. Two-digit one-step palindromes in Case 1.

Number of N

Value of t Values of u,u W= t with Values of N

so that t+ u ≤ 9 N = 10t+ u

t = 1 u = 0, 2, 3, 4, 5, 6, 7, 8 8 10, 12, 13, 14, 15, 16, 17, 18

t = 2 u = 0, 1, 3, 4, 5, 6, 7 7 20, 21, 23, 24, 25, 26, 27

t = 3 u = 0, 1, 2, 3, 5 6 30, 31, 32, 34, 35, 36

t = 4 u = 0, 1, 2, 3, 5 5 40, 41, 42, 43, 45

t = 5 u = 0, 1, 2, 3, 4 5 50, 51, 52, 53, 54

t = 6 u = 0, 1, 3 4 60, 61, 62, 63

t = 7 u = 0, 1, 2 3 70, 71, 72

t = 8 u = 0, 1 2 80, 81

t = 9 u = 0 1 90

Question 13. Since none of the remaining 40 numbers have units digit equal to
0, N and N I are the same step palindrome. If you test half of the remaining 40
numbers, you will also know what step palindrome the numbers in the other half,

with digits reversed, are. You can use Good Idea 2 to reduce the number of cases

further.

Question 14. There are 8 such numbers: 29, 38, 47, 56, 65, 74, 83, and 92.

Question 15. There are 8 such numbers: 19, 28, 37, 46, 64, 73, 82, and 91.

Here is a complete table of all two-digit k-step palindromes.

zero-step palindromes 11, 22, 33, 44, 55, 66, 77, 88, 99

10, 12, 13, 14, 15, 16, 17, 18, 20

one-step palindromes t+ u ≤ 9 21, 23, 24, 25, 26, 27, 30, 31, 32

34, 35, 36, 40, 41, 42, 43, 45, 50

51, 52, 53, 54, 60, 61, 62, 63, 70

71, 72, 80, 81, 90

one-step palindromes t+ u = 11 29, 38, 47, 56, 65, 74, 83, 92

two-step palindromes t+ u = 10 19, 28, 37, 46, 64, 73, 82, 91

two-step palindromes t+ u = 12 39, 48, 57, 75, 84, 93

two-step palindromes t+ u = 13 49, 58, 67, 76, 85, 94

three-step palindromes t+ u = 14 59, 68, 86, 95

four-step palindromes t+ u = 15 69, 78, 87, 96

six-step palindromes t+ u = 16 79, 97

24-step palindromes t+ u = 17 89, 98
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Part IV: Heavy Lifting
There are three activities in this section. Each of them leads to further inves-

tigations. Let your interest be your guide. The first two projects encourage

you to push to the limit with base 10 analysis of the second-step number

N2 in the two-digit case, and of the first-step number N1 in the three-digit

case. If you have had enough of all this base 10 analysis for a while, skip to

the last activity, and experiment with three-digit palindromes.

You found the twelve two-step palindromes with sum of digits equal to

12 and 13 by computation. The first project is a guide for those interested

in using base 10 arithmetic to find these numbers.

Project 1: Two-Digit Two-Step Palindromes

The goal is to discover when N2 is a palindrome. You will do most of this

analysis on your own, but here are some suggestions to get off to a good

start. Begin, as usual, with the number N = 10t + u with 1 ≤ t ≤ 9 and
0 ≤ u ≤ 9, and assume N and N1 are not palindromes. You know this

means that t W= u, t+ u ≥ 10 (so you are in Case 2) and t+ u W= 11. Here’s
what the first-step number looks like under these conditions:

N1 = 100(1) + 10(t+ u− 9) + (t+ u− 10).
To make the computation easier to follow, set t + u − 10 = u1, so that

t + u − 9, the tens digit of N1, satisfies t+ u− 9 = u1 + 1. If u1 = 0, then
t + u = 10, and N1 = 110. So N

I
1 = 11 has fewer digits than N1, but just

as in the previous encounter with numbers with units digit equal to 0, the

reverse and add rule still can be applied. In this case, you obtain N2 = 121,

a palindrome.

With the case t+u = 10 settled, and with the assumption that t+u W= 11,
you may assume that t+ u ≥ 12, so that 2 ≤ u1 ≤ 7. As a result, the base
10 representation of N1 is

N1 = 100(1) + 10(u1 + 1) + u1.

Now reverse digits to get

N I1 = 100u1 + 10(u1 + 1) + 1.

Consequently, the second step number N2 is:

N2 = N1 +N
I
1 = 100(u1 + 1) + 10(2)(u1 + 1) + (u1 + 1).

Be careful. This may not be the final form in base 10.
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Challenge 1. Assume 2 ≤ u1 ≤ 7. Find the conditions for N2 to be a palin-
drome.

Hint: Is u1 + 1 the units digit of N2? Is it the hundreds digit of N2? If

not, when will it be the hundreds digit of N2?

445 0

29

Challenge 2. Make a table showing all the two-digit numbers with
t+ u = 10, all with t+ u = 12, and all with t+ u = 13.
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99

45 0

2

9
9

Solutions
Challenge 1. Did you think about it this way? u1 + 1 is the units digit of N2,

since u1 is no more than 7. For N2 to be a palindrome, u1 + 1 must also be

the hundreds digit of N2. But this will only happen if the tens digit of N1,

2(u1 + 1) ≤ 9. This will only happen if u1 ≤ 3. For if 2(u1 + 1) > 9, that is if

u1 > 3, then the hundreds digit of N2 will be u1 +2 and will not be equal to the

units digit u1+1. This yields all the two-step palindromes. They are exactly the

numbers with u1 = 0, 2, and 3, that is, the numbers with t W= u and t+u = 10, 12,
and 13. (Recall that t+ u = 11 gives one-step palindromes.)

Challenge 2. Did you obtain these 20 numbers?

Value of t + u Two-Step Palindromes

10 19, 28, 37, 46, 64, 73, 82, 91

12 39, 48, 57, 75, 84, 93

13 49, 58, 67, 76, 85, 94

Suggestions for the Endurance Athlete

10K Challenge. Collaborate with some classmates on the project of
applying base 10 analysis to find all two-digit three-step palindromes.

Consider the challenge of classifying all two-digit k-step palindromes

in this way for k > 3.
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Project 2: One-Step Three-Digit Palindromes.

You found all the zero-step three-digit palindromes earlier. There are 90 of

them. Are you ready to take on the one-steppers? We will assume that N

is not a palindrome.

This time, the number N written in base 10 has the form:

N = 100h+ 10t+ u with 1 ≤ h ≤ 9, 0 ≤ t ≤ 9, 0 ≤ u ≤ 9 and h W= u
N I = 100u+ 10t+ h

N1 = N +N I = 100(h+ u) + 10(2t) + (h+ u).

Again, be careful. This may not be the final form in base 10.

There are several cases to consider. Here they are.

Case 1. h+ u ≤ 9 and 2t ≤ 9.
Case 2. h+ u ≤ 9 and 2t > 9.

Case 3. 2t < 9 and 10 ≤ h+ u ≤ 17.
Case 4. 2t ≥ 10 and 10 ≤ h+ u ≤ 17.

Challenge 3. Your challenge is to take each case in turn, and figure out when
N1 is a palindrome. Then write down the three-digit one-step palindromes

for each case.
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Solutions
Challenge 3. Did you discover that in Case 1, N1 is always a palindrome? Good

work. When you studied how many three-digit numbers satisfy these two condi-

tions, most of the computation should have seemed familiar. There are 41 such

pairs. For each of these, the tens digit t of N1 can take on the values 0, 1, 2, 3, 4.

So there are 5 × 41 = 205 three-digit one-step palindromes satisfying the con-

ditions h + u ≤ 9 and 2t ≤ 9. To write them down, look back at the numbers

in the second column and second row of the table you made earlier of all k-step

two-digit palindromes, and insert, in turn, 0, 1, 2, 3, and 4 as middle digit.

Did you see that, in Case 2, N1 is never a palindrome? Good.

To analyze Case 3 and Case 4, you can take the digit sums h + u =

10, 11, . . . , 17 individually and check each one, or you can write h + u =

10 + (h + u − 10), substitute, regroup, and see what happens. You will find
exactly eight more one-steppers: 209, 308, 407, 506, 605,704, 803, and 902.
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In Case 3, for N1 to be a palindrome, h+u must be equal to 11 and t must be

equal to 0. It follows that N1 = 1111, so all N = 100h+10(0)+u with h+u = 11

are one-step palindromes.

In Case 4, for N1 to be a palindrome, h+ u must again be 11. Then, for the

middle digits of N1 to be equal, you must have 2t = 11 which is impossible. So

Case 4 produces no one-step palindromes.

Suggestions for the Endurance Athlete

10K Challenge. Collaborate with some classmates to analyze N2 for
three-digit numbers as we did for two-digit numbers. Then, if you

enjoy this challenge, try N3 for three-digit numbers!

Project 3: Three-Digit k-Step Palindromes

It is not known whether every three-digit number is a k -step palindrome

for some k or not. The number 196 is the smallest number which is not

known to be a k-step palindrome for some k. Over 2,000,000 steps have

been computed for 196 without producing a palindrome.

Begin by experimenting with three-digit k-step palindromes. Take some

three-digit numbers that are less than the troublesome 196, and see what

step palindrome they are. Do you see any patterns? Now go beyond 196.

Are there some types of three-digit numbers that are quick and easy to

characterize as one-step or two-step palindromes?

Suggestions for the Endurance Athlete

10K Challenge. Write a computer program to find the k-step palin-

dromes among three-digit numbers.

20K Challenge. Find the smallest integer, of whatever number of
digits, that is a k-step palindrome for k = 0, 1, 2, 3, 4, ... .

30K Challenge. Investigate the prime numbers that are palindromes.
Show that, with the exception of the number 11, every prime number

that is a palindrome has an odd number of digits.
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40K Challenge. Do a Web search on number palindromes. Find a
fact, not discussed here, that you think is interesting, and investi-

gate it.

References
Eric Weisstein’s World of Mathematics (http://mathworld.wolfram.com) is an

excellent source. There you will find several directly related articles as well as many

references with very timely information.

The Math Forum (www.mathforum.org) is also an excellent reference.

Cut The Knot (www.cut-the-knot.com) posts a list of many mathematical sites

of interest (www.cut-the-knot.com/collection.html).
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The Four
Numbers

Game

This “mathematical curiosity” involves much more interesting math-

ematics than appears at first sight. You will discover that The Four

Numbers Game played with positive integers comes to an end. The

challenge is: Can you prove it?

“Mathematics is a game played according to certain simple rules...”

D. Hilbert

77
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The Four Numbers Game promises some fun, some surprises, and some

very interesting mathematics. The only skills required to play the game are

knowledge of subtraction and ordering of numbers. The game uses this basic

arithmetic to form a sequence of smaller and smaller numbered squares, one

inside the other. The big question is “Does the game terminate?”

Part I: How to Play the Game
To set up the game draw a square, the start square, and put four non-

negative numbers at the corners (or vertices) of the square as pictured below.

9

1

5

7
In Round 1 of the game, a second numbered square is created inside the

start square. To do this, first mark the midpoints of the sides of the start

square. Assign numbers to these points this way: For each side, subtract

the smaller corner number from the larger. So, for example, the number

4 = 9− 5 is placed at the midpoint of the top of the start square, 9− 1 = 8
on the left side, 7− 5 = 2 on the right side, and 7− 1 = 6 on the bottom.

1

5

7

9 4

6

8 2t

t

t

t
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Next, connect the four new numbers to form a square inside the start square.

1

5

7

9 4

6

8 2

For Round 2, mark the midpoints of the sides of the second square, and

apply the same procedure as in Round 1 to form a third numbered square

inside the second square. Whenever two numbers at the vertices are the

same, put the number 0 at the midpoint.

1

5

7

9 4

6

8 2

4 2

42

For Round 3, repeat the subtraction routine to form a fourth numbered square.

1

5

7

9 4

6

8 2

4 2

42

22

2

2
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What is going to happen in Round 4 when you repeat the subtraction routine

once more?

If you said a square with “all 0s,” you are right. The numbers you get next

are all 0s and the game ends in four rounds.

1

5

7

9 4

6

8 2

4 2

42

22

2

2

0 0

0 0

In any game, if and when you get 0s at all the midpoints, the game ends

because if play were to continue, every round thereafter would still result in

all 0s. We will say that a game has length 0 if it starts with a square having

0 at every corner. Otherwise, a game has length k if the first time you get

all 0s is in Round k. The game we just played has length 4.

Game 1. Now it is your turn to try the game. Start with the following

square.

9 7

1 5
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The same four numbers are used, but their starting positions have changed.

See if the game ends, and if it does, how many rounds it takes.
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Did you get a surprise when you played the game? The same numbers were

used. But the fact that the numbers were in a different order caused this

game to last seven rounds. We conclude from this that the length of the

game depends not only on the numbers chosen but also on the arrangement

of the numbers at the corners of the start square.

Do you think that if really big numbers are put at the corners that the

game will last a long, long time?

Game 2. Try the next game and see.

22,236 6,000,172

11,659,528 2,953,895

Don’t groan, just do it!
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Did the solution to this game provide another surprise? There is something

interesting going on here! That means it is time to use some mathematical

ideas to begin an investigation of the game.

99

45 0

2

9
9

Solutions
Game 1. The same numbers were used, and the game did end but it took seven
rounds instead of four. This game has length 7.
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9 72

8 2

1 54

6 06

22

44

0 0

0

44

4

4

4

4 0

00

0

2 24

0

Solution to Game 1.

Game 2. The game has length 4.

Part II: Investigation of the Game

Let’s look for clues to help us predict the length of a game. For the moment,

we will just work with the numbers from 0 to 9.

It will be useful to have examples of very short games. There is exactly

one game of length 0. That’s the game that starts with a square with 0

at every corner. We will call it the zero game. All other games are non-

zero games .
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Here are some warm-up exercises that ask you to find some very short,

non-zero games.

Warm-Up 1. Construct a game of length 1, that is, a non-zero game that
ends in one round.
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Warm-Up 2. Construct a game of length 2, that is, a non-zero game that
ends in two rounds.
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Here’s your first challenge.

Challenge 1. You have examples of games of length one, two, four, and seven.
Can you create a game of length three? How about a game of length six?

Hint: Don’t start from scratch here. Work with what you already have.
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Drawing the squares for each round is fun, but as the games get longer,

it becomes more difficult to squeeze in all the squares. Perhaps you have

noticed that all that is really needed is a method for keeping a record of the

four numbers at the corners of the square in each round.

Here is an example of how to do that using the very first game played.

1

5

7

9 4

6

8 2

4 2

42

22

2

2

0 0

0 0

To keep a record of the numbers at the corners of the squares in each round,

it is necessary to specify the order in which the numbers will be written

down. We will list the numbers at the corners of the start square with the

top left-hand corner first followed by the remaining three numbers moving
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clockwise around the square. Then, in each round, the subtraction rule is

applied in the order illustrated below.

Start: 9 5 7 1

Round 1: 4 2 6 8

Round 2: 2 4 2 4

Round 3: 2 2 2 2

Round 4: 0 0 0 0

Challenge 2. Here is a table for the second game played. Try to play the
game without the squares.

Start: 9 7 5 1

Round 1: 2 2 4 8

Round 2: 0

Round 3:

Round 4:

Round 5:

Round 6:

Round 7:

From now on, it’s your choice whether you want to use the squares or

not.

The next challenge invites you to find a game of length greater than

seven. You can try the challenge on your own or make it a contest with

some friends.

Challenge 3. Using numbers from 0 to 9, can you find four numbers that will
produce a game lasting longer than seven rounds?

445 0
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If you found a game lasting eight rounds, you answered the challenge.

In fact, starting with four numbers from 0 to 9, every Four Numbers Game

ends in eight or fewer rounds. However, if the numbers at the start are

allowed to be larger than 9, then much longer games are possible.

Challenge 4. What is the longest game you can find if you start with four
numbers from 0 to 44?

Hint: Be prepared to go more than 10 rounds.

445 0

29
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Challenge 5. Try the following game.

7

7 7

2

Three of the numbers are the same. It might be a fast game. Try it and

see.

445 0
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Do you think the number of rounds will change if you have three 8s and one

3 in place of the three 7s and one 2? How about if you have three 1,000,001s

and one 563?

Challenge 6. Why don’t you try the game on the following square where A
and B stand for any non-negative integers, and, say, A is greater than B.

To save room in the square, you might set C = A−B.
A

B A

A

Question 1. Will the game change if B is greater than A, and you set C =

B −A?

445 0
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Algebra proves to be a very useful tool for analyzing the game. In the

next challenge, you will use it to obtain information about the length of

all games of a certain form. Suppose that A,B,C and D are non-negative

integers with A ≥ C ≥ B ≥ D.
A B

CD

Here is how the numbers appear on a number line:

0 D B C A

For example, if A = 9, B = 5, C = 7, and D = 1, then this is the setup of

the very first game.

Challenge 7. Show that for any non-negative integers A,B,C,D with A ≥
C ≥ B ≥ D, The Four Numbers Game

A B

CD

ends in four or fewer rounds.

445 0
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You may get right to work on this challenge on your own, or work through

it round by round with me as we read the following.

Keep in mind that A ≥ C ≥ B ≥ D.
Start: A B C D

Picturing the numbers on the number line will help you use the subtraction

rule to fill in Round 1.
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Round 1: ? ? ? ?

Did you get this? Round 1: A−B C −B C −D A−D.
The position of A,B,C, and D on the number line shows how to do

the subtraction for Round 1 because it shows, for every pair, exactly which

number is larger. If all four numbers A,B,C, and D happen to be equal

then the game ends in one round.

In the example with A = 9, B = 5, C = 7, and D = 1, Round 1 is

A−B = 4 C −B = 2 C −D = 6 A−D = 8.

Now for Round 2, you have to work a little harder to size up the numbers.

You have A−B and C −B. Which number is larger?

0 D B C A

You are subtracting the same number B from both A and C, so A−B
is still larger than C−B, isn’t it? (If A = C, then A−B = C −B.) For the
example numbers, A−B = 4 and C −B = 2.

Next you have C −B and C −D. Which number is larger?

0 D B C A

This time you are subtracting two numbers from the same number C with

one number, D, smaller than the other, B. So C − D will be larger than

C−B, won’t it? (If D = B, then C−D = C−B.) For the example numbers,
C −B = 2 and C −D = 6.

Now it is your turn to size up C −D and A −D, and also A − D and

A−B.
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Question 2. Is C − D larger or smaller than A − D? Is A − D larger or

smaller than A−B?
0 D B C A

445 0
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The next step is to use some algebra to do the subtractions.

Question 3. What is (A−B)− (C −B)?

445 0
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Now you should be ready to finish the subtractions and complete Round 2.

445 0
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Here are the first two rounds:

Start: A B C D

Round 1: A−B C −B C −D A−D
Round 2: A− C B −D A− C B −D

Notice that the subtractions for Round 2 give two numbers, A − C and

B − D, followed by a repeat of those two numbers. In the example with
start numbers 9 5 7 1, Round 2 is: 2 4 2 4.

You have a special situation here. You have seen it before and it will

likely occur in future games. Consequently, it is worthwhile to focus on it

and record the result.

You have a round that looks like this:

Round: X Y X Y,

where X and Y are non-negative numbers.

Question 4. What will the next round look like? There are several cases to
tackle.

Case 1. If X = 0 and Y = 0, then there is no next round.

Case 2. If X and Y are not zero and X = Y, what happens at the next

round?

445 0

29



The Four Numbers Game 89

Now suppose X W= Y. Then there are two more cases, one for when X is

larger than Y and one for when Y is larger than X.

Case 3. Assume X > Y. If you let Z = X−Y, what does the next round
look like?

445 0
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Case 4. Assume Y > X. If you let Z = Y −X, what does the next round
look like?

445 0
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For future reference, let’s record what you have shown.

If a game has a round of the following form

Round: X Y X Y,

and if X is not equal to Y ,

then exactly two more rounds finish the game.

Let’s apply this to the A,B,C,D game, where A ≥ C ≥ B ≥ D and at least

one of A,B,C, and D is not equal to zero. You can think of A − C as X

and B −D as Y .

Challenge 8. Write down all of the rounds from the start and see what you

have.

Start: A B C D

Round 1: A−B C −B C −D A−D
Round 2:

Round 3:

Round 4:

445 0

29



90 Bike – Chapter 6

If you solved the A,B,C,D game correctly, then you have answered Chal-

lenge 7, and in doing so, you have proved a mathematical theorem.

Theorem 1. For any non-negative integers A,B,C,D with A ≥ C ≥ B ≥ D,
The Four Numbers Game ends in four or fewer rounds.

The next question asks you to figure out what you can say about the

exact number of rounds.

Question 5. If you start with non-negative integers A,B,C,D with A ≥
C ≥ B ≥ D, what conditions do A,B,C, and D have to satisfy for the

game to end in zero rounds, in one round, in two rounds, in three rounds,

in four rounds? Give examples of games, starting with A,B,C,D satisfying

A ≥ C ≥ B ≥ D, of each length from 0 to 4.
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Now one final question.

Question 6. What is the length of the following game?

6,748,925 3,000,417

5,476,69923

There is no need to do any computing here. Apply what you have learned.

445 0
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It is true that every Four Numbers Game played with non-negative in-

tegers ends after a finite number of rounds.

You can investigate this surprising and interesting result in the Heavy

Lifting section.
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99

45 0

2

9
9

Solutions
Warm-Up 1. Every game that has the same non-zero number at all four corners
of the start square ends in one round, doesn’t it? Here’s one with the number 4

at all four corners:
4

4

4

4

Warm-Up 2. Example of a game of length 2.

4

4 0

0

Does your game look something like this one?

Challenge 1. For a game of length 3, start the game with the square in Round 1
of the very first game in this chapter.

4 2

42

22

2

2

0 0

0 0

4

28

6
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Similarly, to create a game of length 6, start with the square found in Round 1 of

the second game played, the one of length 7. You can create a game of length 5

by starting with the square in Round 2 of this game, etc. You will have another

example of a game of length 3 by starting with the square in Round 4.

Challenge 2. Here is the table for the second game played.

Start: 9 7 5 1

Round 1: 2 2 4 8

Round 2: 0 2 4 6

Round 3: 2 2 2 6

Round 4: 0 0 4 4

Round 5: 0 4 0 4

Round 6: 4 4 4 4

Round 7: 0 0 0 0

Challenge 3. Here is a game of length 8. Games that start with numbers between
0 and 9 all have length less than or equal to 8.

Start: 9 4 1 0

Round 1: 5 3 1 9

Round 2: 2 2 8 4

Round 3: 0 6 4 2

Round 4: 6 2 2 2

Round 5: 4 0 0 4

Round 6: 4 0 4 0

Round 7: 4 4 4 4

Round 8: 0 0 0 0

Challenge 4. What is the longest game you can find if you start with four num-
bers from 0 to 44? If you start with the numbers 44, 24, 13, 7, the game lasts

twelve rounds.

Challenge 5. The game lasts four rounds, a little longer than you might guess.

Challenge 6. For the game starting with A A A B, where A ≥ B, the solution is:

0 0

0 0

A

B

C 0

0

C

0 C

0C C

C

C

A

A

C

where C = A−B.
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Question 1. No, the game and the picture are exactly the same.

Question 2. Did you see that A − D is larger than C −D except if A = C, in

which case A−D = C −D? Did you see that A−D is larger than A−B except

if D = B, in which case A − D = A − B? If so, that is excellent work with

inequalities.

Question 3. Did you see it this way?

(A−B)− (C −B) = (A−B)− C − (−B) = (A−B)− C +B
= A−B − C +B = A− C.

Question 4. Round: X Y X Y.

1. In Case 2, where X and Y are not zero and X = Y, the numbers in the

next round are all zero, so the game ends.

2. In Case 3, where X > Y, if you let Z = X − Y, the next round is: Z Z Z
Z.

3. In Case 4, where Y > X, if you let Z = Y −X, the next round is: Z Z Z
Z.

Challenge 8. Here is the A,B,C,D game:

Start: A B C D

Round 1: A−B C −B C −D A−D
Round 2: X = A−C Y = B −D X Y

Round 3: Z Z Z Z

Round 4: 0 0 0 0

where Z = 0 if X = Y and, if not, Z = X − Y or Y −X depending on which is

bigger.

Question 5. (Remember that A ≥ C ≥ B ≥ D.) The game ends right at the

start if A,B,C, and D are all equal to 0 (Not a very interesting game.). The

game ends in one round if A,B,C, and D are all equal to the same positive

integer. The game ends in two rounds if the numbers at opposite vertices are

equal: that is, if A = C, B = D, and A W= B. The game ends in three rounds if
A−C = B−D and neither is equal to 0. To get an example of a 3-round game,

you can start, say, with A = 7, B = 3, C = 5, and D = 1. The game ends in four

rounds if A − C W= B −D. The game with A = 4, B = 1, C = 2, and D = 0 has

length 4.

Question 6. The game ends in exactly four rounds. Did you check to see that
this is an example where A > C > B > D? I hope so. Since A − C W= B − D,
you know that the game has length 4.
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Part III: Heavy Lifting
The all important fact about the Four Numbers Game played with non-

negative integers is that every game ends in a finite number of rounds.

You proved this for the special case where the numbers A,B,C,D satisfy

A ≥ C ≥ B ≥ D, and you showed that such games have length at most 4.
In this “heavier” section, you will prove that every game has finite length.

However, as you will see, the length of a game can be very large. So it will

be of interest to find special cases, such as the case A ≥ C ≥ B ≥ D, that
force the game to end in a small number of rounds.

Rotations, Reflections, Multiplication
and The Four Numbers Game

Don’t you think that it might be a good idea to see if rotations and reflections

(flips) are useful in the Four Numbers Game as they were in The Triangle

and Square Games? It might make you a speedier and more efficient player.

Here’s why. Suppose you can show that rotations and reflections of the

square do not change the number of rounds in the game. Then, as far as

counting rounds goes, games can be considered the same if one is obtained

from the other by rotations and reflections. This means that the number of

cases of strictly different games will be greatly reduced.

In this part of the investigation, the squares themselves will be very

helpful to our understanding of the role geometry plays in the game.

Question 7. If you rotate the square clockwise 90◦, will the length of the
game change? Why?

A B

CD

A

B

D

C

445 0

29

Now, how about reflections? Suppose the square is reflected across a diag-

onal, as pictured.
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A B

CD

reflection

A D

CB

Question 8. Will the length of the game change? Why?
445 0

29
What’s the payoff of this analysis? It is this:

To answer questions about the length of a game,

such as whether the game ends and how many

rounds the game has, you may rotate or reflect

the square as many times as you want without

changing the answer.

There are other ways you can manipulate the start square without changing

the length of the game. Here is one that involves multiplication. Try the

following example.

Example 1. You know that the game with start round 9 5 7 1, in that

order, has length 4. What is the length of the game that starts with 18 10

14 2? Note that the new start numbers are 2 times the old start numbers.

445 0
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There is nothing special about 2. The following is true.
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Multiplication of the four start numbers

by a positive integer does not change

the length of the game.

The proof of this depends on the distributive law of arithmetic and on the

fact that the product of two integers is zero if and only if at least one of the

integers is zero. If you are curious, use these hints and try to write down a

proof.

99

45 0

2

9
9

Solutions
Question 7. If you rotate the square 90◦, the number of rounds does not change.
Did you think about it this way? The solution of the first game is represented by

a sequence of squares inside the start square. If the start square is rotated 90◦,
the solution square will rotate 90◦ at the same time, so the number of rounds
will stay the same. This will hold true if the square is rotated 90◦, 180◦, or 270◦.

Question 8. If you reflect the square across the diagonal, the length of a game
will remain the same. Here’s one way to think about it. If you look through the

back of the paper at the square, it looks like this:

B A

C D

Now rotate the square 90◦ counterclockwise to get the reflected square.
A D

CB
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The same holds for the sequence of squares inside the start square. Thus, the

reflected game has the same number of rounds as the original game. This holds

true if the square is reflected across any one of the four lines pictured:

A

C

B

D

Example 1. The length of the game does not change if the start numbers are
mutliplied by 2.

Start: 9 5 7 1

Round 1: 4 2 6 8

Round 2: 2 4 2 4

Round 3: 2 2 2 2

Round 4: 0 0 0 0

Here is the game with the start numbers multiplied by 2:

Start: 18 10 14 2

Round 1: 8 4 12 16

Round 2: 4 8 4 8

Round 3: 4 4 4 4

Round 4: 0 0 0 0

Predicting the Length of the Game

You showed that the length of a game does not change if the start square is

rotated or reflected. This fact gives us the latitude to make some very useful

assumptions about the position of the numbers at the start. For example, if

you start with any four non-negative integers at the vertices of the square,

and if the largest number is not at the upper left corner, you can rotate the

square 90◦, 180◦, or 270◦ to put it there. Then, reflecting about the NW
to SE diagonal, if necessary, you can assume that the four start numbers

A,B,C,D satisfy A ≥ B ≥ D and A ≥ C.
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A

D C

B

This means that the size of C relative to B and D is what distinguishes

the number of rounds in the game.

From now on we will always assume that the four numbers A,B,C,D

satisfy A ≥ B ≥ D and A ≥ C and call this the standard form. To make the
relation of C relative to B and D precise, we name the three possibilities

that can occur:

Case 1. A ≥ C ≥ B ≥ D;
Case 2. A ≥ B ≥ D ≥ C;
Case 3. A ≥ B ≥ C ≥ D.

Your earlier work showed that Case 1 games end in four or fewer rounds.

Before beginning an investigation of the remaining cases, it is useful to

discuss methods for handling the subtraction rule when you are working

with letters instead of concrete numbers. In particular, there is the crucial

question:

What do you do if, as you are playing the game,

you do not have enough information to tell which

of two numbers X and Y is larger?

There are two approaches.

1. You can split into two cases: The case X greater than or equal to Y

and the case X less than Y . This may get tedious if you have to do it

too often.

2. Another approach is to use the absolute value. Remember that if X

and Y are two numbers, then the absolute value of X − Y , written
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|X − Y |, is equal to zero if X equals Y , is equal to X − Y if X is

greater than Y and to Y −X if Y is greater than X .

Each of the Cases 1, 2, and 3 involve possible equalities. Let us deal

with all such games at once by proving the following statement.

If any two of the numbers at the vertices of the

start square are equal, then the game ends in six

or fewer rounds.

If you want to try to prove this on your own, go right ahead. If you would

like to work step-by-step with me, keep on reading.

Remember that the numbers A,B,C,D are in standard form: A ≥ B ≥
D and A ≥ C. So if the equal vertices happen to be A and C or B and

C, you have special instances of Case 1 that you studied earlier. You know

that, in Case 1, the game ends in four or fewer rounds.

Let’s get started. The first two cases will assume equality of two numbers

at (diagonally) opposite vertices, the remaining cases will assume equality

of two numbers at adjacent vertices.

Case (i). A = C. Done! As remarked above, this is a special instance of

Case 1.

Case (ii). B = D.

Challenge 9. In Case (ii) where B = D, write down the rounds of the game.
When you don’t know which of two numbers is the larger one, try using

absolute value when you do the subtraction.

445 0
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Your work has an interesting payoff that will be revealed by considering the

following question.

Question 9. Suppose when you play the game you get to a round where you
have equality of two numbers at opposite vertices. What can you say about

the end of the game?

445 0
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We record what you just discovered for future reference.
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If, in any round of The Four Numbers Game, two

numbers at opposite vertices are equal then the

game ends in four or fewer additional rounds.

Now, we return to the possible cases of equality of numbers at the vertices

of the start square.

Next come the cases where the numbers at two adjacent vertices are

equal.

Case (iii). A = B. The proof will depend on whether C is greater than or

equal to D or less than D. You will see that it is worthwhile to separate the

two cases C ≥ D and C < D.

Challenge 10. Suppose first that C ≥ D.Write down as many rounds as you
need to figure out the length of the game.

Hint: You may not need to play the game to the end to do this.

445 0
29

Challenge 11. Now assume C < D. Write down as many rounds as you need
to determine the length of the game.

445 0
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Case (iv). B = C. Done! (This is a special instance of Case 1.)

Only two more cases to go.

Challenge 12. Try to show that the game ends in six or fewer rounds for the
final two cases:

Case (v). C = D.

Case (vi). A = D.

445 0
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You have earned a bonus for your hard work on Cases (i)—(vi).

Bonus: From now on, you may assume strict inequality for the start numbers
when you work on Cases 2 and 3.
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For Case 2, the goal is to find the smallest number n so that all games

with A > B > D > C end in n or fewer rounds. To help you find n, try the

following example. Let A = 8, B = 6, C = 1, and D = 5.

5 1

8 6

Challenge 13. What is the length of this game?

445 0
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Challenge 14. The example confirms that n must be at least 6. If you can
show that every game with A > B > D > C has length at most 6, then

n = 6 is the smallest such number. Try to do this now.

445 0
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Your investigation has yielded many interesting facts. Here is a summary of

what you have proved so far.

1. The start numbers can be put in standard form: A ≥ B ≥ D and A ≥ C.
2. If m is a positive integer, then the game starting with mA,mB,mC,mD

has the same length as the game starting with A,B,C,D.

3. The game ends in four or fewer rounds in Case 1: A ≥ C ≥ B ≥ D.
4. The game ends in six or fewer rounds if numbers at any two vertices are

equal.

5. The game ends in six or fewer rounds in Case 2 with strict inequality:

A > B > D > C.

To prove that every Four Numbers Game played with non-negative inte-

gers has finite length, the only case remaining is Case 3 with strict inequality:

A > B > C > D. In this very interesting case, the game does end in a finite

number of rounds, but here’s a surprise.
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There is no number n with the property that

every game with A > B > C > D ends in n or

fewer rounds.

Consequently, the proof for this case will have to be different and more

abstract. In fact, the proof that you will find in Part III shows that the

length of the game is finite without distinguishing cases. It will use facts 1

and 2 above, but not facts 3, 4, and 5. However, you will see that your work

on Cases 1 and 2 produces much more precise information about the length

of the game than the proof in the next section.

99

45 0

2

9
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Solutions
Challenge 9. If the start square has B = D, here is the game:

Start: A B C B

Round 1: A−B X = |B − C| X A−B
Round 2: Y = |A−B −X| 0 Y 0

Round 3: Y Y Y Y

Round 4: 0 0 0 0

So if B = D, the game ends in four or fewer rounds.

Question 9. If in a Four Numbers Game, any round has equality of two numbers
at opposite vertices, then the game ends in four or fewer additional rounds. Let’s

review why. There is a subtle point to consider. Notice that adjacent vertices

stay adjacent during rotations and flips, so opposite vertices stay opposite. This

means that if you have equality of two numbers at opposite vertices then you

may use rotations and flips (if necessary) to put the numbers in standard form.

Now you have the standard form and two equal numbers at opposite vertices so

you have either Case (i) or Case (ii).

Challenge 10 If A = B and C ≥ D, the game ends in six or fewer rounds. Let’s
see how it goes.

Start: A A C D

Round 1: 0 A−C C −D A−D
Round 2: A− C |A+D − 2C| A− C A−D

Round 2 has two equal numbers at opposite vertices so, because of your earlier

work, you can conclude immediately that the game will end in four or fewer

additional rounds. Consequently, the game ends in six or fewer rounds if C ≥ D.
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Challenge 11. If A = B and C < D, the game ends in six or fewer rounds. Here
is what this game looks like:

Start: A A C D

Round 1: 0 A− C D − C A−D
Round 2: A−C A−D |A+C − 2D| A−D

Since two numbers at opposite vertices are equal, you know that the game ends

in a total of six or fewer rounds.

Challenge 12. In Case (v), when C = D, the first two rounds are

Start: A B C C

Round 1: A−B B − C 0 A− C
Round 2: |A+ C − 2B| B − C A− C B −C

Once again, there are two equal numbers at opposite vertices so you know that

the game ends in a total of six or fewer rounds.

In case (vi), A = D. You already know the answer in this case, for A = D

and standard form imply that A = B. You are back in Case (iii). Or, this case

can be handled by observing that you have three equal start numbers. It does

not matter which three of the start numbers are equal, because by employing

rotations, you can see that all such games have the same length. Much earlier,

you showed that a game with three of the start numbers equal has length at

most 4.

Challenge 13. The game has length 6.

Challenge 14. Here are the first two rounds of the game with A > B > D > C.

Start: A B C D

Round 1: A−B B − C D −C A−D
Round 2: |A+ C − 2B| B −D |A+ C − 2D| B −D

Since Round 2 has two numbers at opposite vertices equal you know that the

game ends in four or fewer additional rounds.

Proof that the Game Always Ends

The proof that The Four Numbers Game always ends when played with

non-negative integers will follow from the discussion earlier in the Heavy

Lifting section, and the rules of arithmetic for even and odd integers.

Here is a very interesting observation about the game.

Proposition 1. If a Four Numbers Game has length at least 4, then all the
numbers appearing from Round 4 onward are even.
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To confirm this proposition, we can play the game with the words “even”

and “odd” and the rules:

even−even = even odd−odd = even

even−odd = odd odd−even = odd

The actual numbers are not needed. It is sufficient to do a case-by-case

check, recording just the parity, that is, the evenness or oddness, of the four

numbers at the start.

Question 10. To establish the truth of the proposition, it is enough to prove
that all the numbers in Round 4 are even. Why is this so?

445 0
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We need the answer to the following counting question to know how many

games there are with the words “even” or “odd” at the vertices.

How many possible ways are there of arranging the words “even” or

“odd” at the vertices of the start square?

There are two choices for each of the four vertices. Thus, there are 24 = 16

different arrangements of “even” or “odd” at the vertices of the square.

Here is one example.

Start: even even even odd

Round 1: even even odd odd

Round 2: even odd even odd

Round 3: odd odd odd odd

Round 4: even even even even

The proposition checks out in this case. Do you have to check 24 − 1 more
cases?

The answer is “No.” You can bring rotations and reflections into the game.

Rotations and reflections of the square change the position of the numbers at

the vertices, but do not change the parity of these numbers. So, for example,

if the proposition holds for the game that starts with “even” “even” “even”

“odd,” then it also holds for the game that starts with “odd” “even” “even”
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“even” because the latter game is obtained by a 90◦ rotation. Consequently,
you can verify that only six of the 24 start arrays need to be checked:

(i) even even even even

(ii) even even even odd

(iii) even even odd odd

(iv) even odd even odd

(v) even odd odd odd

(vi) odd odd odd odd

Notice that Cases (iii), (iv), and (vi) above occur as steps in the game

that starts with Case (ii) that was just checked, so all that remains for

justification of the proposition is a straightfoward inspection of Case (v).

Theorem 2. Every Four Numbers Game with non-negative integers has finite
length.

An informal proof, with questions and examples, follows. We will need

the fact that if A is any positive integer then there is a positive integer k

such that A is less than 2k.

Question 11. For example, suppose A = 1000. What is an example of such
a positive integer k?

445 0

29

You may have noticed that for any positive integer A, the number A is

always less than 2A. We will also use the fact that among all such powers of

2 that are greater than A, it is true that there is a least positive power of 2

greater than A. This is an example of the use of the Well Ordering Principle

for positive integers. It states that every non-empty set of positive integers

has a least element.

Now we are ready to start the proof of the theorem.

Suppose that we have a Four Numbers Game with non-negative integers,

at least one of which is non-zero, at the start. Suppose that A is the largest

of the integers at the vertices of the start square. Let k be the least positive

integer such that A < 2k. We will show that the length of the game is at

most 4k.

For example, if A is a number less than or equal to 1000, then the

proof will show that the game has at most 4 × 10 = 40 rounds because

A ≤ 1000 < 210 = 1024.
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If the length of the game is less than or equal to 4, there is nothing

to prove. So suppose that the length of the game is greater than 4. By

Propositon 1, the four numbers in Round 4 are not all zero and are even. We

can create a new game with start numbers that are integers by multiplying

each of the numbers in Round 4 by 1
2 . This new game has at least one of

its start numbers not equal to zero, and has largest number at the start at

most equal to A
2 .

Game 3. For example, take the game that starts with 149 81 44 24. Fill

in the first four rounds.

Start: 149 81 44 24

Round 1:

Round 2:

Round 3:

Round 4:

445 0

29

Question 12. For the above example, find the start numbers of the new game
created by multiplying Round 4 by 1

2 . Compare the largest number of the

example with the largest number of the new game.

445 0

29

Question 13. Here is a crucial question: For Game 3, how is the length of
the original game related to the length of the new game?

445 0

29

Now we return to the proof where we are working with any Four Numbers

Game of length greater than 4. We have created a new game with largest

integer at most equal to A
2 . By the multiplication property, the length of the

original game is equal to the length of the new game plus 4. If the length

of the new game is greater than 4, we may apply this procedure again. The

four numbers in Round 4 of the new game are not all zero and are divisible

by 2, so a second new game can be created with start numbers obtained

by multiplying each of the numbers in Round 4 of the first new game by
1
2 . This second new game has at least one non-zero start number and has
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largest start number at most equal to A
22 =

A
4 . The length of the original

game is equal to the length of the second new game plus 8.

Before we complete the proof, return to the game created from Round 4

of Game 3, that is, the first new game that starts with 37 20 11 6.

Challenge 15. Compute the first four rounds. Find the start numbers of the
second new game created by multiplying Round 4 by 1

2 . (This is the same

as multiplying Round 8 of Game 3 by 1
22 =

1
4 .) What is the largest number

of the second new game?

445 0

29

We return, once more, to the proof. The procedure of creating new games

may be repeated each time we obtain a non-zero game after four additional

rounds. Keeping in mind that A < 2k, let us suppose that the length of the

game is greater than 4k. Then a new non-zero game with largest integer at

most A
2k
can be created from Round 4k. But the non-negative number A

2k

is less than 1. Therefore, the largest integer in Round 4k must be zero. So,

in Round 4k, we have all numbers equal to 0. This contradiction completes

the proof of the theorem.

For Game 3 with start round 149 81 44 24, we have 149 < 28 = 256.

The proof shows that the length of this game is at most 4× 8 = 32. In fact,
the length is 15. So the bound obtained in the proof for the length of the

game is much larger than the actual length.

The proof of the theorem is very interesting because, after the original

estimate A < 2k, it relies only on the parity of the integers. It does, however,

have the drawback of providing only a very rough upper bound for the length

of the game. This is why it is so useful to investigate, as you have, the special

cases where the length of the game is known to be at most 4 or 6.

99

45 0

2

9
9

Solutions
Question 10. It is enough to prove that all the numbers in Round 4 are even
because, thereafter in the game, every number will be obtained by subtracting

two even numbers. The difference of two even numbers is even.

Question 11. If A = 1000, then k can be any number greater than or equal to

10, since A = 1000 < 210 = 1024.
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Game 3. Here are the first four rounds of the game that starts with 149 81 44

24.

Start: 149 81 44 24

Round 1: 68 37 20 125

Round 2: 31 17 105 57

Round 3: 14 88 48 26

Round 4: 74 40 22 12

Question 12. For Game 3, the start numbers of the new game created by mul-
tiplying Round 4 by 1

2 are: 37 20 11 6. The largest number of Game 3 is 149.

The largest number of the new game is 37.

Question 13. For the example, how is the length of Game 3 related to the length
of the new game? The length of Game 3 is 4 plus the length of the new game.

The length of the new game is 11, so the length of Game 3 is 15.

Challenge 15. Here are the first four rounds of the game created from Round 4

of Game 3.

Start: 37 20 11 6

Round 1: 17 9 5 31

Round 2: 8 4 26 14

Round 3: 4 22 12 6

Round 4: 18 10 6 2

The start numbers of the game created by multiplying Round 4 by 1
2 are 9 5 3

1. The largest number at the start of this game is 9.

Suggestions for the Endurance Athlete

10K Challenge. Can you improve the estimate of 4k steps in the
proof of the theorem that every Four Numbers Game played with

non-negative integers has finite length?

20K Challenge Find another proof that the Four Numbers Game
played with non-negative integers has finite length by first proving

that, if A < B < C < D, then the largest number in Round 2 is

at least one unit less than the largest integer at the start. Is the

statement true if the words “Round 2” are replaced by “Round 1”?
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30K Challenge. Investigate the Tribonacci numbers. The Tribonacci
numbers are integers in a sequence that is defined recursively as

follows. Start with t0 = 0, t1 = 1, t2 = 1, and then for n ≥ 3, define
tn = tn−1+ tn−2+ tn−3. Explore the relation between the Tribonacci
numbers and the length of The Four Numbers Game played with

non-negative integers.
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Chapter Seven

Tessellation

This investigation examines some of the geometry behind designs that
are created by repetition of geometric figures. How many shapes can
you find that can be fit together with no gaps or overlaps to fill up the
plane?

“A mathematician, like a painter or a poet, is a maker of

pattern.”

G. H. Hardy

113



114 Run – Chapter 7

Many artistic patterns and designs have their source in geometry and ex-

emplify a close relationship between mathematics and art. Designs that

repeat one or more basic geometric figures will be the focus here. Simple

examples include the patterns of a square tile floor, a brick wall, or a honey-

comb. These patterns are examples of what is called a tessellation or tiling.

The beauty and complexity of more elaborate tilings are illustrated by the

Alhambra mosaics and the drawings of M. C. Escher.

Part I: An Introduction to Tessellation
A tessellation, or tiling, of the plane is a pattern made up of various shapes

or tiles which completely covers the plane with no gaps or overlaps. Real-life

examples such as the tile floor, brick wall, and honeycomb do not actually

extend indefinitely, but can be imagined to do so.

The familiar pattern of a checkerboard is made by fitting together copies

of a square and looks like this:

This tessellation is said to be “vertex-to-vertex and edge-to-edge.” Can

you see why?

A tessellation is vertex-to-vertex and edge-to-edge if every vertex,(an end-

point of a side), is matched only to another vertex and every edge is matched

only with an edge of the same length.

Question 1. Can you find a different tessellation using copies of just one
square that is not vertex-to-vertex and edge-to-edge?
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The pattern of a honeycomb looks like this.

Question 2. Is it vertex-to-vertex and edge-to-edge?

Here is another familiar vertex-to-vertex and edge-to-edge tiling using two

figures, an octagon, and a square.

What are some other real-life examples of tessellations or tilings? Look

around for some examples in which one shape is repeated and some examples

in which two or more shapes are repeated.

When the tessellation is a pattern made up of copies of a single shape then

we say that the shape tessellates or tiles the plane, and the shape is called

a tessellating shape.

Tell Me if It Tessellates Game

The Tell Me if It Tessellates Game is a hunt for shapes that tessellate the

plane. I will give you a shape and you must tell me whether the shape

tessellates the plane or not. If your answer is “yes,” you must provide a
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tessellation. So, for example, if I give you a square, you say “yes” and show

me a tessellation such as:

or

Answering all questions that relate to a particular class of shapes earns you a

special tessellator title, beginning with Rookie Tessellator all the way to All-

Star Tessellator. This game demands mathematical energy and creativity.

You are going to have to work for your tessellator title.

Tessellation Game. Let’s get started.
1. Does a rectangle tessellate the plane?

2. Does a circle tessellate the plane? Remember no overlaps or gaps are

allowed.

3. Does a parallelogram tessellate the plane?
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This is pretty easy so far. Did you observe that tessellating the plane with

the rectangle or the parallelogram is not much different from tessellating

with the square? Each of these is a shape that can be pushed to the right

and left and up and down, without turning or flipping, until the plane is

filled up with no gaps and no overlaps.

If a shape can be pushed to the right and left and up and down with

no turns (rotations) or flips (reflections) and leaving no gaps, the shape is

said to tessellate the plane by pure translation. This is the simplest way for

a shape to tessellate. For example, a square tessellates by pure translation.

For some shapes, as we shall see, rotations (turns) or reflections (flips) must

be used in order to create a tessellation. Part of the strategy for these shapes

will be to take two copies of the shape and rotate or flip one copy so that the

two copies joined together form a shape that tessellates by pure translation.

Warning: To check whether a shape tessellates, free-hand drawings do

not have the required precision. All figures must be drawn, copied, and cut

out exactly. You’ve seen optical illusions, so you know eyes can deceive.

Does a triangle tessellate the plane?

This question is a little harder because a triangle can’t just be pushed

along like the rectangle and the parallelogram. Try a right triangle first.

4. Does a right triangle tessellate the plane?

Trace and cut out a few of these right triangles. Try to fit two copies of

the right triangle together along an edge in different ways until you find one

that tessellates.
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Here’s one way of fitting two copies together along an edge.

But the new figure constructed is another triangle, not something that we

know yet to be a tessellating shape. See if you can find a way to fit two

copies together to produce a shape that you already know is a tessellating

shape.

You probably figured out by now that if copies of a new shape can be fit

together to make a tessellating shape, then the new shape also tessellates

the plane and is also a tessellating shape.

Did you make a rectangle out of two copies of your right triangle? If so,

then, since a rectangle is a tessellating shape, you know that a right triangle

tessellates the plane. Note that this tessellation by a right triangle is not by

pure translation because rotations are needed.

Now try to tile the plane with equilateral triangles.

5. Does an equilateral triangle tile the plane?

Here’s one you may copy.
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Did you fit two of these together along an edge to make a shape that you

already know tessellates? What shape did you make this time?

It is a rhombus, isn’t it? Recall that a rhombus is a parallelogram with all

four sides equal.

Now that you have studied two special types of triangles, you should

be ready to tackle the case of any triangle. Take what is called a scalene

triangle.

It is a triangle with no special properties at all. Use your experience with the

special cases to see if you can tessellate the plane with the scalene triangle.

6. Does a scalene triangle tessellate the plane?

Trace and make some copies of the one above.

Did you see that the same idea that worked for the special cases works for

any triangle? If one of the triangles is first rotated through 180◦ and equal
sides are matched, then a parallelogram is created. Since a parallelogram is

a tessellating shape, this proves that a scalene triangle is also a tessellating

shape. But, since rotation was used, this tessellation does not arise by pure

translation.

Congratulations! You are awarded the title of Rookie Tessellator, a title

given only to those who know the following fact:

All triangles tessellate the plane.
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Solutions
Question 1. Here is an example of a tessellation that uses copies of just one
square, and is not vertex-to-vertex and edge-to-edge:

Question 2. The honeycomb tessellation is vertex-to-vertex and edge-to-edge.

Tessellation Game. For The Tell Me If It Tessellates Game, here are examples
of tessellations with a rectangle, a parallelogram, and an equilateral triangle.

1. Rectangle:

2. The circle does not tessellate the plane.

3. Parallelogram:

4. To show that a right triangle tessellates the plane, try to fit two copies of

the right triangle together along an edge in different ways until you find one that

tessellates. If one copy of the right triangle is turned or rotated and then matched

with another copy this way,

a rectangle is formed. Since a rectangle tessellates by pure translation, a right

triangle also tessellates the plane.
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5. Equilateral triangle:

6. There are several ways to fit two copies of the scalene triangle together along

an edge. Here is one way:

This way makes a kite, but that is not much help to you right now because you

don’t know yet whether a kite is a tessellating shape.

Did you make a parallelogram like this?

To get a parallelogram, you match the two triangles along one of the sides (it

doesn’t matter which side), but you have to exchange the vertices on that side.

This amounts to first rotating one of the triangles through 180◦, and then match-
ing up the sides. Since a parallelogram is a tessellating shape, you have proved

that a scalene triangle is also a tessellating shape.

Part II: All Quadrilaterals Tessellate the Plane

We will continue The Tell Me If It Tessellates Game. The game will culmi-

nate in the important mathematical result that all quadrilaterals tessellate

the plane.
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Tessellation Game (continued). You know squares, rectangles, and parallelo-
grams tessellate. Let’s continue the game with some other familiar four-sided

shapes.

7. Does a trapezoid tile the plane?

Here is one to copy:

Did you find that easy? Now let’s try a kite. Recall that a kite is a quadri-

lateral with exactly two pairs of congruent adjacent sides.

8. Does a kite tile the plane? Here is one to copy. Make about 12 copies

this time. The solution for the kite will require more experimentation and

ingenuity.

The kite question is not so easy. You may have tried to make a parallelogram

with two copies of the kite, but it doesn’t work, does it? When you match

edges of two copies of the kite, you get a hexagon. Were you able to show

that you can continue the pattern using your 12 copies with no gaps or

overlaps? If not, try again.
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If you fit two copies of the kite together to make a hexagon by first rotating

one copy through 180◦ and then matching along a side like this:

the hexagon produced has some special properties. Take a moment to see if

you can detect some special features of this hexagon.

Challenge 1. Show that the hexagon constructed using two copies of the kite,
by first rotating one copy through 180◦ and then matching along a side, has
opposite sides equal and parallel.

Hint: To show that the opposite sides are parallel, try to find equal pairs

of alternate interior angles. For one of the pairs of opposite sides, you will

need to add a line to the picture.

Challenge 2. The next step is to show that these special hexagons tessellate
the plane by pure translation. Make six special hexagons with your 12 kite

copies. Arrange them carefully without gaps or overlaps to show that this

special hexagon with opposite sides equal and parallel tessellates the plane

by pure translation, that is, by pushing the figure in different directions

without rotating or flipping.

Did you notice that to answer the “does it tessellate”? question for the

four-sided kite, you showed first that the six-sided hexagon with opposite

sides equal and parallel tessellates by pure translation? When you pause to

think about it, you did a similar thing to show that a triangle tessellates.
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You made a four-sided figure, namely a parallelogram, out of two copies of a

three-sided figure, the triangle. Then you used the fact that a parallelogram

tiles the plane by pure translation to show that a triangle is a tessellating

shape.

The goal of this game is the proof that all quadrilaterals tessellate the

plane. You have made good progress and have developed new skills. There

is more work to do, but your experience with the kite will help you.

Here are two more quadrilaterals. These shapes represent general quadri-

laterals. (The first is called a convex scalene quadrilateral; the second is

called a non-convex quadrilateral. See the Heavy Lifting section for more

about that.)

To attain our goal, we need to find out if the following quadrilaterals

tessellate the plane.

Make 12 copies of each of the quadrilaterals. For each of the shapes, see if

you can make a hexagon as you did for the kite.

Some of the hexagons constructed when you fit two copies of the quadrilat-

erals together have better characteristics than others. For example, if you

match two copies of either one of the quadrilaterals along one of the sides

(it doesn’t matter which side) and exchange the vertices on that side (that

is, rotate one of the copies through 180◦), the hexagon that you construct
will have some special properties.

Question 1. Can you detect what these special characteristics are?
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Did you observe that the opposite sides of each of the hexagons are equal

and parallel? (This is the same kind of special hexagon you constructed when

working with the kite.)

Challenge 3. Do the hexagons with opposite sides equal and parallel made
from the general quadrilaterals tessellate the plane?

When you try to answer this hexagon question, keep in mind how the

hexagons in the familiar honeycomb pattern fit together. In the honeycomb

pattern, the hexagons tessellate by pure translation. You just push the

hexagon around, no rotation or flipping needed, as you match up opposite

sides and fill up the plane.

Use your copies of the quadrilaterals to make six hexagons for each of the

two different quadrilaterals. For each one, construct a tessellation by fitting

the six hexagon copies together, matching up opposite sides by pushing in

various directions, that is, by pure translation.
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Here is a summary of what you have proved about quadrilaterals so far.

If a quadrilateral fits together with another copy

of itself to form a hexagon with opposite sides

equal and parallel, then that quadrilateral

tessellates the plane.

In the process of proving this, you may have observed that all hexagons with

opposite sides equal and parallel tessellate the plane.

Since we aim to prove that all quadrilaterals tessellate the plane, an answer

to the following question is crucial.

Question 2. When two copies of any quadrilateral are matched up along a
side by first exchanging vertices along that side, that is, by first rotating one

through 180◦, is the shape constructed always a hexagon?

The fact that Question 2 has a negative answer means that there is more

work to do. Perhaps all quadrilaterals that do not fit together to form

special hexagons have a characteristic in common that will show that they

also tessellate the plane. More examples are in order. Look for at least four

examples of quadrilaterals that do not fit together to form special hexagons.

Then examine them to see if they have a shared property.

Here is a description of the property all such examples must have. The

quadrilaterals have two supplementary adjacent angles, that is, two adja-

cent angles that have measures adding up to 180◦. To determine what this
implies, try the following exercise. The exercise is an application of some

facts you know about parallel lines.

Challenge 4. Let P be a polygon with three successive sides AB, BC, and

CD.

D

C B

A
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Prove the following statement and its converse. If the adjacent angles ∠ABC
and ∠BCD are supplementary, then the sides AB and CD are parallel.

Conversely, if sides AB and CD are parallel, then the angles ∠ABC and

∠BCD are supplementary.

The exercise implies exactly what is needed to reach the goal of proving that

all quadrilaterals tessellate the plane.

Suppose a quadrilateral has two supplementary adjacent angles. Then,

if two copies are fit together, first rotating one through 180◦, and then
matching along the side that has supplementary angles at its vertices, a

parallelogram is constructed.

Suppose the quadrilateral does not have a pair of supplementary adjacent

angles. Then, if two copies are fit together, first rotating one through 180◦,
and then matching along a side, a hexagon with opposite sides equal and

parallel is constructed.

Since you have demonstrated that parallelograms tessellate the plane and

that hexagons with opposite sides equal and parallel tessellate the plane, the

proof that all quadrilaterals tessellate the plane is complete.

Congratulations! You have earned the title Major League Tessellator, a

title given only to those who can show the following facts:

All triangles tessellate the plane.

All quadrilaterals tessellate the plane.
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Solutions
Tessellation Game (continued). Here is a tessellation of the plane by trapezoids:

Challenge 1. Here is a hexagon constructed using two copies of the kite.

A

B

DI

bI

AI
cI

C

a
aI

D
cb

This hexagon is made by rotating one of two copies of the kite through 180◦

and then “gluing” along an edge. The hexagon has opposite sides equal because

opposite sides of the hexagon correspond to the same side of the kite. So a =

aI, b = bI, and c = cI. The “glued” edge is a transversal with two pairs of equal
alternate interior angles: ∠DCB = ∠DIBC and ∠ABC = ∠AICB. It follows
that a is parallel to aI and c to cI. Now add a transversal for b and bI this way:

A

B

DI

bI

AI
cI

C

a
aI

D
cb
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Since ∠ADC = ∠AIDIB and ∠DDIB = ∠DIDC (because a is parallel to aI) it
follows that ∠ADDI = ∠DDIAI, so b is parallel to bI.
Challenge 2. Does your tessellation with the special hexagons look like this?

Since these special hexagons tessellate the plane, so does the kite.

Question 1. Just as in the case of the kite, the opposite sides of each of the
hexagons constructed using two copies of one of the quadrilaterals are equal and

parallel.

Challenge 3. Do your tessellations for the special hexagons made from the gen-

eral quadrilaterals look something like these?

Question 2. It is not true that when you fit two copies of any quadrilateral
together, first rotating one through 180◦ and then matching up the sides, you
always get a hexagon. For example, a rectangle is formed when you match two

copies of a square along a side, first rotating one through 180◦.
All quadrilaterals that do not fit together after rotating one copy through

180◦ to form special hexagons have at least one pair of supplementary adjacent

angles.

Challenge 4. Let P be a polygon with three successive sides AB,BC, and CD.

D

C B

A
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1. Suppose the adjacent angles ∠ABC and ∠BCD are supplementary. Since BC

is a transversal for the sides AB and CD, it follows that AB and CD are two line

segments having supplementary interior angles on the same side of a transversal.

Consequently, AB and CD are parallel.

2. If the sides AB and CD are parallel, then the angles ∠ABC and ∠BCD are

interior angles on the same side of the transversal CB, and must, therefore, be

supplementary.

Part III: Heavy Lifting
Are you ready to become an All-Star Tessellator? To do that, you will need

to recall some general facts about polygons. Here is a little review in the

form of eight questions to jog your memory.

Polygon Review

Do you remember what a polygon is?

All the shapes we have been working with (except the circle) are examples

of polygons, but “What is a polygon”? To draw a polygon, you make some

dots (which will be the vertices), then you connect the dots to make the

sides. However, there are some rules for the sides. To remind yourself what

those rules are, try to answer the following question.

Question 3. Which of the following shapes are polygons and which are not?

Did you remember that the sides must not cross, and the first and last sides

must meet?

Here is a definition:
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Start with n distinct points P1, P2, ..., Pn in a

plane, where n is at least three, so that no three

consecutive points lie on a line. If the segments

P1P2, P2P3, ..., Pn−1Pn, PnP1 intersect only at
their endpoints, they form a polygon.

Question 4. Polygons are named according to the number of their sides. How
many can you name?

A polygon having n sides is called an n-gon. You could call a triangle a 3-gon

if you wanted to, but the “-gon” name is most useful when the number of

sides is large, or you want to make a general statement about all polygons.

Do you remember that there are two kinds of polygons, convex and non-

convex?

A polygon is convex if the line segment joining any pair of vertices lies

within the polygon. If not, the polygon is called non-convex. Another way

to think about this idea is that a convex polygon has the measure of each

of its interior angles less than 180◦.

Question 5. Which of the following polygons are convex and which are non-
convex?

Have some fun and make a few monster-gons or nasty-gons of your own.

Question 6. Do you remember what a regular polygon is?
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Question 7. What are some examples of regular polygons?

Question 8. Can you complete the table below? Recall that for any n-gon
the number of degrees in the sum of all of its interior angles is (n− 2)180◦.

Number Total number of Number of

of Sides Degrees in All of Degrees in Each

of an n-gon the Interior Interior Angle of

Angles of an n-gon a regular n-gon

3 180◦ 60◦

4 90◦

5

6

7

8

1000

n

Do you think you can sharpen your pencil to a fine enough point to draw an

interior angle of a regular 1000-gon? Can you distinguish it from a straight

angle?

Solutions
Question 3. From left to right, the first and the third figures are polygons; the

second and fourth are not.

Question 4.

Number of Sides Name of Polygon

3 triangle

4 quadrilateral

5 pentagon

6 hexagon

7 heptagon

8 octagon

n n-gon
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Question 5. From left to right, the first, second, and fourth polygons are non-

convex; the third is convex.

Question 6. A regular polygon is a convex polygon with equal sides and equal

interior angles.

Question 7. A regular triangle is an equilateral triangle. A regular quadrilateral
is a square.

Question 8. Did you fill in the table below like this?

Number Total Number of Number of

of Sides Degrees in All of Degrees in Each

of an n-gon the Interior Interior Angle of

Angles of an n-gon a Regular n-gon
3 180◦ 60◦

4 360◦ 90◦

5 540◦ 108◦

6 720◦ 120◦

7 900◦ 128 47
◦

8 1080◦ 135◦

1000 179640◦ 179 16
25

◦

n (n− 2)180◦ (n−2n )180◦

Do Pentagons Tessellate?

Let’s continue The Tell Me If It Tessellates Game with some types of pen-

tagons. A regular pentagon has five equal sides and each interior angle

measures 108◦.

Trace and cut out some copies of this regular pentagon.

Question 9. Does a regular pentagon tessellate the plane?
First, try to answer the question for a tiling that is vertex-to-vertex and

edge-to-edge. Think about how to fit the pentagons around a point in the

plane.
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Did you see that it is impossible to fit copies of the regular pentagon around

a point? Either you get a gap or an overlap, but neither is allowed. Now,

use the fact that there are 360◦ around every point in the plane to prove
that there is no vertex-to-vertex and edge-to-edge tessellation of the plane

by regular pentagons.

You have shown that there is no vertex-to-vertex and edge-to-edge tiling,

but what about any tiling at all? Is a tiling like this possible?

The same reasoning shows that there is no point around which an arrange-

ment of regular pentagons will provide a sum of measures of angles equal to

360◦.
Are there any pentagons that tessellate? Here are two “house” pen-

tagons.

A

E

B

C

D

D

A

B

C

E

The first house has sides that meet the floor at right angles. (Consequently,

it also has two opposite sides parallel.) The second “haunted” house has

two opposite sides parallel.
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Question 10. Do the “house” pentagons tessellate?
Cut out 12 copies of each “house” pentagon and determine whether the

houses tessellate. Try the same technique of using two copies of each “house”

to form a tessellating shape.

Why do the shapes you have constructed tessellate the plane?

In each pattern, angles ∠A, ∠B, and ∠C fit around a point. Let us use

some geometry to prove that this is so.
B

C

D

A

E

First, observe that it is sufficient to prove that the angles in each of these

house pentagons satisfy ∠D+∠E = 180o.Why does ∠D+∠E = 180o imply
that ∠A+ ∠B + ∠C = 360o?

Next, why is it true that ∠D + ∠E = 180o?

Your work shows that there is a type or class of convex pentagons that

tessellates the plane. The type comprises all those convex pentagons that

have two opposite sides that are parallel, or, what is the same thing, two

adjacent angles that are supplementary.

Let’s summarize what you have discovered about pentagons:

There is a type of pentagon that does not

tessellate the plane and a type of pentagon that

does tessellate the plane. Regular pentagons do

not tile, and convex pentagons with two parallel

sides do tile the plane.
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Are there other types of pentagons that tile the plane? The answer to this

question is “yes.” However, this brings us right to the edge of the unknown.

The answer to the question “How many other types of pentagons tile the

plane”? is not known.

At this time there are 14 known classes of convex pentagons that tes-

sellate the plane. Some of the known tessellations are not edge-to-edge and

vertex-to-vertex. The story of their discovery is full of surprises. If you are

curious to learn more about this, look at the articles listed at the end of this

section.

Now back to our game.

Pentagon Challenge. Construct two convex pentagons, not previously pic-
tured, having the property that one tessellates the plane and the other does

not tessellate the plane.

Solutions
Question 9. Here is a proof that there is no vertex-to-vertex tessellation of the
plane by regular pentagons. Each interior angle of a regular pentagon measures

108◦. Since 3× 108◦ = 324◦, three regular pentagons around a point leave a gap
of 36◦. However, 4× 108◦ = 432◦, so four regular pentagons overlap.
Question 10. If you match two copies of either one of the houses along the floors
by rotating one copy through 180◦, you will get hexagons like this:

A
A

B

C

E D
D E

A

B

B

C

B

C

C

D

A

D
E

E
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The shapes constructed with the “house” pentagons are hexagons with opposite

sides that are equal and parallel. These hexagons have already been shown to

tessellate the plane by pure translation. The tessellations look like this:

δ

γ

6

β

α
6 δ

αγ
β

If δ + 6 = 180o, then α + β + γ = 360o because the sum of the measures of the

five interior angles of a convex pentagon is 3× 180◦ = 540◦.
The house pentagons have a pair of parallel sides joined by a third side, so

the third side forms a transversal, and δ and 6 are interior angles on the same
side of a transversal. (See Challenge 4 in the section on quadrilaterals.)

What about Hexagons and Other n-gons?

Let’s play the game with hexagons. You have a head start since you already

know that hexagons with opposite sides equal and parallel tessellate the

plane.

Hexagons are not as puzzling as pentagons. The question of which types

of convex hexagons do or do not tile the plane is completely settled. The

problem is much simpler than for pentagons because it is known that a tes-

sellation with a convex hexagon must be edge-to-edge and vertex-to-vertex.

The answer is that there are exactly three types or classes of convex hexagons

that tessellate the plane. Hexagons with opposite sides equal and parallel

are examples of one of the types. To find out about the other classes, look at

the articles listed at the end of this section. In the meantime, play the game!
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Hexagon Challenge. Construct two convex hexagons, not previously pic-
tured, having the proprety that one tessellates the plane and the other does

not tessellate the plane.

Are 7-gons up for discussion next? It may surprise you to discover that

the action moves very quickly from hexagons to general n-gons. An aston-

ishing fact will bring the tessellating shapes game to a speedy conclusion,

perhaps different from what you expected. First, let’s play the game with

regular n-gons.

Question 11. Tell which regular n-gons tessellate the plane in a vertex-to-
vertex and edge-to-edge tiling. Tell which regular n-gons do not tessellate

the plane in a vertex-to-vertex and edge-to-edge tiling.

The table you made in the Polygon Review is exactly what is needed here.

Now here is a truly amazing fact.

No convex polygons with greater than 6 sides

tessellate the plane.

This means your observation that, for n > 6, regular n-gons do not tessellate

the plane in a vertex-to-vertex and edge-to-edge tiling, is true for any convex

n-gon with any kind of tiling.

What about non-convex n-gons?

Do there exist non-convex n-gons for n greater than 6 that tessellate

the plane?

Use your ingenuity to construct a non-convex n-gon that tessellates the

plane.
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Here is an example of a non-convex 7-gon that tessellates the plane.

Thus the amazing fact is not true for non-convex n-gons. To construct

the 7-gon above, a “bite” was taken out of one side of a tessellating house

pentagon and put back on the other side.

Challenge 5. Construct a non-convex 10-gon and a non-convex 27-gon that
tessellate the plane.

You might try the technique of altering a figure that you already know

tessellates.

Congratulations! You have earned the title of All-Star Tessellator. This is

a title given only to those who know the following facts:

All triangles tessellate the plane.

All quadrilaterals tessellate the plane.

Regular pentagons do not tile, but there are at

least 14 types of convex pentagons that do tile

the plane.

There are exactly 3 types of convex hexagons that

tile the plane.

No convex polygon with more than six sides can

tessellate the plane.
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Solutions
Question 11. Exactly three regular n-gons provide an edge-to-edge and vertex-
to-vertex tessellation of the plane. The regular 3-gon (equilateral triangle), 4-gon

(square), and 6-gon (regular hexagon) tile the plane vertex-to-vertex and edge-

to-edge.

6× 30o = 360o
Equilateral Triangles

4× 90◦ = 360◦
Squares

3× 120o = 360o
Regular Hexagons

You know that an interior angle of a regular n-gon has measure
(n−2)180

n

o
=

(1− 2
n )180

o. The question of the existence of a vertex-to-vertex tiling by regular

n-gons amounts to the following question. For which n does there exist an integer

r such that r angles of measure (1− 2
n )180

◦ fit around a point? In other words,
for which positive integers n and r is the following equation satisfied:

r(1− 2

n
)180

o
= 360

o
?
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This equation is the same as the equation

2(n+ r) = nr.

The only pairs (n, r) of positive integers for which this equation holds are (n, r) =

(3, 6), (4, 4), and (6, 3). If you are very clever and note that the equation can be

rewritten in the form

(n− 2)(r − 2) = 4,
the result is more obvious.

Challenge 4. Examples of non-convex polygons that tessellate.

Here is an example of a tessellating non-convex 10-gon. A “bite” was taken

out of one side of a rectangle and put back on the opposite side.

Here is an example of a tessellating 27-gon. It was made by taking “bites”

out of one of the sides of a tessellating house pentagon and putting the bites back

on the other side.
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Suggestions for the Endurance Athlete

10K Challenge. Try to prove this amazing fact: No convex polygon
with more than 6 sides tessellates the plane. If you and your class-

mates can find a proof without consulting the references, you will be

inducted into the Tessellators Hall of Fame. Go for it!

20K Challenge. The dual of a tessellation by regular n-gons is formed
by taking the center of each polygon and joining it to the centers of

adjacent polygons. Investigate the dual of each of the three tessella-

tions by regular n-gons.
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Chapter Eight

Circle
Packing in
the Plane

Since tiling the plane with circles or disks is impossible, one option is

to look for arrangements of circles that cover as much of the plane as

possible with no overlaps. This is the mathematical art and science

of packing. To start the expedition, you will experiment with packing

pennies onto squares. This will lead to some surpising discoveries about

circle packing of the whole plane.

“A circle is a happy thing to be...”

C. Morley

143
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A new set of fascinating questions arises when we focus on circles and other

non-tessellating shapes in the plane. Since circles do not tile the plane,

we look for arrangements of circles with the smallest possible gaps. How

small can we make the gaps and still have no overlaps? We will explore

this question as well as many others on the topic of packing areas of the

plane. In mathematics, packing means filling a given space with a given

set of objects allowing no overlaps. We will focus on packing areas of the

plane with copies of one geometrical shape. There are two main questions

to study. How many copies of the shape can be arranged with no overlaps

onto a given space? How much of the space can be covered by copies of the

shape?

For a real life example, suppose the supervisor for your summer job

at SportsSmart asks you to arrange as many cans of new tennis balls as

possible on the display shelf. Since the can bottoms are disks and disks don’t

tessellate, this becomes a disk or circle packing problem. When you put the

cylindrical cans on the shelf, upright so the brand names show, there will

be gaps between cans. You need answers to the following questions. What

is the largest number of cans that can be displayed on the shelf? How much

of the shelf can be covered?

Can you think of some other examples of everyday packing problems?

We will undertake four packing projects in which pennies will be sub-

stituted for the cylindrical cans. Much of what you discover about packing

pennies will have practical applications. The equipment required for the

projects consists of 150 pennies and three 6
II × 6

II
squares of cardboard.

The pennies are stand-ins for the cans of tennis balls and the cardboard

squares represent parts of the display shelf.

Before you put your ruler away, measure the diameter of one of your

pennies.

Did you get approximately 3
4 inch? In the work that follows, we will

assume that the diameter of one penny measures 34 inch. (All measurements

in this section are in inches; sometimes we will use the notation II for inches,
and occasionally the unit of measurement will be omitted in calculations.)
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Part I: Packing Projects
We begin with a warm-up exercise.

Penny Packing Warm-Up

Put as many pennies as you can on one of the 6
II × 6II squares with no

overlaps and no out of bounds (that is, the pennies may not extend beyond

the square).

Will there be gaps? Of course, because pennies don’t tessellate.

How many pennies did you pack on your square? Check out other arrange-

ments.

For each penny packing exercise to follow, first try to estimate the largest

number of pennies that can be packed on the square board. Then do the

packing.

Packing Project 1

Estimate the largest number of pennies that can be packed on the square.

Pack as many pennies as you can on your square with no overlaps and no

out of bounds.

How many pennies did you pack? I packed 68 pennies on my square. How

does the number you packed compare with 68?
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Here are two very familiar examples of packing.

Square packing:

Triangle packing:

The triangle packing is sometimes called the hexagonal packing. Why do

you suppose this is so?

Challenge 1. Experiment with each of these packings. See how many pennies
you can pack on the square using the triangle packing, and then try the

square packing.

Here is an important observation that will play a role in future exercises.
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Look at a triangle packing on the square.

There is space between the tops of the pennies in the top row and the top

of the square. Not so for the square packing.

The next part of the project is to calculate how much of the board your

penny packing covers. In other words, the task is to find the following

fraction:
area of board covered by pennies

total area of board
.

This number, written as a percent, is called the density of the packing.

Challenge 2. Compute the density of the square packing, the triangle pack-
ing, and the packing you originally used if it was different from these two.

For some hints on how to do this, keep on reading. Otherwise, begin the

computation on your own.

Hints:

1. First of all, find the area of the 6
II × 6II board.

2. Next, find the total area of all the pennies. That isn’t too hard to do.

Remember that the formula for the area of a circle is πr2, where r is the
radius of the circle. You know the diameter of one penny is 3

4 inch, so

what is the radius r of the penny? Now you are set to calculate the area of

one penny and then multiply by the number of pennies in your packing to

compute the area covered by the pennies. An estimate of 3.14 for π is good
enough.

3. Now find the ratio of the packing area to the board area. Finally, change

that fraction to a percent to get the density of the packing.
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Did you notice that, in the competition between the square and triangle

packings, the triangle packing wins hands down? The density for the triangle

packing is about 5% higher.

Solutions
Challenge 1. On the 6 × 6 board with the triangle packing, there are five

rows of 8 pennies and four rows of 7 pennies for a total of 68.

With the square packing, there are eight rows of 8 pennies for a total of 64.

Challenge 2. Here is the computation of the density of the triangle packing on
the 6 × 6 board.

1. The area of the board is 6× 6 = 36 square inches.
2. The diameter of one penny is 3

4
inch so the radius is 3

8
inch. This means the

area of one penny is π(38 )
2 = ( 9

64
)π square inches. Since the triangle packing uses

68 pennies, the total area of the penny packing is 68 × ( 9
64 )π or approximately

30.03 square inches.
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3. The triangle penny packing is approximately 30.03
36.00 of the board. Changing to

a percent gives a density of a little more than 83.4%. We will approximate the

density by 83.4%.

To compute the density for the square packing, just change 68 to 64 in Step

2 above. For the square packing, the density is about 78.5%.

If you used a different packing in the experiment, the computation of the

density of your packing should follow the steps above but the number of pennies

may be different.

Packing Project 2

In Project 2, a larger rectangular board will be used. The size of a rectangle

is written in the form: base × height. Build a 12II × 6II rectangular board
made by placing the two 6II × 6II squares side by side with edges touching.
You may use any method of packing in this project.

6
II

12
II

Challenge 3. Pack as many pennies as you can on the 12II × 6II board with
no overlaps and no out of bounds.

Estimate the largest number of pennies that can be packed on the board.

Will it double the old number? Could it possibly be smaller or larger than

double the old number?

How many pennies did you pack? Were you able to do better than double

your old number?

It will be interesting to see what changes, if any, there are in the densities

of the various packings.

Challenge 4. Compute the density of the square and triangle packings, and
of the packing you used, if it was different, on the 12II × 6II board.
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Hint: To compute the density of the square packing, no computation is

needed. For the triangle packing, calculation of the density follows exactly

the same steps as before.

Solutions
Challenge 3. How many pennies did you pack? Is it more than double the

number you got in Project 1?

With the triangle packing, the 12II × 6II board holds 140 pennies.

With this packing, at the middle of the 12II × 6II board where the squares meet,
the edge gaps join up to make space for four extra pennies. So the number of

pennies packed is 2× 68+4 = 140. With the square packing, the 12II× 6II board
holds 128 pennies, just double the number packed on the 6II × 6II board.
Challenge 4. The density of the square packing on the larger 12II × 6II board is
exactly the same as before, namely, about 78.5%. The area of the board doubled

and the area covered by the pennies also doubled, so the density is the same. For

the triangle packing, the board holds double the number of pennies in Project

1 plus four more. The density of the triangle packing on the 12II × 6II board is
about 85.9%. To compute it, multiply the number of pennies, 140, by the area of

one penny, ( 964 )π square inches, and divide by the area of the board, 72 square
inches.

Packing Project 3

For Project 3, we will use the 6II × 12II board made by putting one square
on top of the other with edges touching.
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12II

6II

You know, by now, what will happen if you use the square packing on

the 6II × 12II board, don’t you?

If you said that the number will double, you are right.

In this project, you will use the triangle packing. Think before you make

your estimate.

Challenge 5. Using the triangle packing (packing from bottom to top and

starting with 8 pennies on the bottom row), pack as many pennies as you

can on the 6II × 12II board.
Estimate the largest number of pennies that can be packed on the board.

Use the triangle packing to pack as many pennies as you can on the

6II × 12II board.

Were you surprised by the number of pennies packed in Project 3? Notice

something very interesting. Remember the space you observed at the top

of the board when you used the triangle packing on just one square? That

space gets larger when two squares are stacked vertically. How many squares

stacked vertically do you think it takes to squeeze in a whole extra row of

pennies?

(In the Heavy Lifting section, you will determine exactly what this number

of squares is.)
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When we used the triangle packing on the 6II×12II board, could we have
done something different when we made the transition from the bottom

square of the board to the top square? Is there a way to pack the new

pennies so that the total number of pennies will be double the original

number, 136 = 2× 68, instead of one less than double, 135?

Sure there is. Since gaps are allowed in this game, a space between row 9

and row 10 is permissible. Instead of filling in the gaps at the place where

the two square boards meet, start a new triangle packing with a row of eight

pennies at the bottom edge of the top square:

Repetition of the triangle packing on the 6II × 12II board gives 10 rows of
eight pennies and 8 rows of seven pennies, double the original number. Let’s

call this variation of the usual triangle packing the repeat triangle packing.

What do we conclude about these different packings? Which one packs

the most pennies? Both the triangle packing and the repeat triangle packing

beat the square packing. When the size of the board is increased horizontally

to 12II× 6II, with both the triangle packing and the repeat triangle packing,



Circle Packing in the Plane 153

the board is filled with 140 pennies, compared to 128 pennies with the square

packing.

When the size of the board is increased vertically to 6II × 12II, a contin-
uation of the triangle packing from the bottom square admits 135 pennies

and the repeat triangle packing admits 136 pennies compared to 128 pen-

nies with the square packing. Notice that if we take the horizontal 12II× 6II
board with the triangle packing and rotate it 90◦, a packing of the 6II× 12II
board with 140 pennies is obtained.

Question 1. What happens when a third 6II × 6II square is added vertically?

Challenge 6. Compute the density of the triangle packing and of the repeat
triangle packing on the 6II × 12II board.

Hint: Do you see that no computation is necessary for the repeat triangle

packing? Why?

Solutions
Challenge 5. When you use the triangle packing on the 6II × 12II board, if you
start at the bottom with a row of 8 pennies, you will have five rows of 8 pennies

and four rows of 7 pennies on the bottom 6II × 6II part of the board. Now when
you add the new pennies and let the first new row of 7 pennies overlap the bottom

board, there is space for five rows of 7 pennies and four rows of 8 pennies.
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So 67, the number of new pennies added, is one less than the number of pennies

you placed on the bottom square. The total number of pennies is (5)(8)+(4)(7)+

(5)(7)+(4)(8) = 68+67 = 135. This is one less than double the original number

but still better than what you get with the square packing on the 6II×12II board.
Question 1. When a third 6II × 6II board is added vertically in the competition
between the triangle packing and the repeat triangle packing, the number of

new pennies added is exactly the same for both packings, namely 68. So the

total for the 6II × 18II board is 68 + 67 + 68 = 203 for the triangle packing and

68+68+68 = 204 for the repeat triangle packing. Notice that the space between

the top of the board and the top row of pennies in the triangle packing is getting

larger. For more about this, see the Heavy Lifting section.

Challenge 6. The density of the repeat triangle packing on the 6II×12II board is
exactly the same as the density of the triangle packing on the 6II × 6II board, or
approximately 83.4%. The area of the board doubled and so did the area covered

by pennies because the number of pennies doubled.

Here is the computation of the density for the triangle packing. The area of

the board is 6 × 12 = 72 square inches. The area of one penny is ( 9
64 )π square

inches so the total area of pennies packed is 135× ( 9
64
)π = ( 1215

64
)π square inches

which we estimate to be about 59.61 square inches. Consequently the penny-

covered area is approximately 59.61
72.00 of the board area. Changing to a percent

gives a density of about 82.8%. So the repeat triangle packing has the edge here,

as we know.

Packing Project 4

We return to that display shelf at SportsSmart. That shelf is 60II long and
18II deep but instead of packing it with cans of tennis balls, pennies will be
used.

Challenge 7. Using either the triangle packing or the repeat triangle packing,
and packing from the back of the shelf to the front, how many pennies can

you pack on the display shelf at SportsSmart?

Think of the shelf as composed of thirty 6II×6II squares arranged so that
there are 10 columns of 3 squares each with each column running from the

back of the shelf to the front.
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Too many pennies are required here to actually do the packing, so use

your experience from the first three projects and some mathematical analysis

to figure it out.

Solutions
Challenge 7. Think of the shelf as composed of thirty 6II × 6II squares arranged
so that there are 10 columns of 3 squares each with each column running from

the back of the shelf to the front.

Triangle packing. In each column of three 6II × 6II squares, you can pack 68 +
67 + 68 = 203 pennies. For there are 5 + 4 + 5 = 14 rows of 8 pennies and

4 + 5 + 4 = 13 rows of 7 pennies in each column. Now you will be able to fit

in extra pennies at each column juncture: one extra penny for each row of 7

pennies. So at each column juncture, you can fit in 13 extra pennies. Thus the

total number of pennies packed is (10× 203) + (9× 13) = 2147. (The density of
this packing is about 87.8%.)

Repeat triangle packing. In each column of three 6II × 6II squares, you can pack
68 + 68 + 68 = 204 pennies. There are 5 + 5 + 5 = 15 rows of 8 pennies and

4+ 4+ 4 = 12 rows of 7 pennies. You will be able to fit in extra pennies at each

column juncture: one extra penny for each row of 7 pennies. So at each column

juncture, you can fit in 12 extra pennies. Thus the total number of pennies

packed is (10× 204)+(9× 12) = 2148, one more than the triangle packing! (The
density of this packing is also about 87.8%.)

Suggestions for the Endurance Athlete

10K Challenge. Find a way to show that no more than 68 pennies

can be packed on a 6II × 6II square.
20K Challenge. If you enjoy packing puzzles, take other non-

tessellating shapes and experiment with ways to pack them. Try

packing regular pentagons, regular octagons, ovals, or any other

shapes you like. For a particular shape, compare the densities of

various packings.



156 Run – Chapter 8

Part II: Heavy Lifting
In the first four projects, you studied what happens to the density of various

packings as the size of the rectangular area increases. Here, this idea is

carried to the max! The very interesting and challenging mathematics in

Projects 5 and 6 will take you into more difficult territory. In Project 5,

you will compute the density of packings of the whole plane. In Project 6,

you will investigate the rivalry between the triangle packing and the repeat

triangle packing.

Packing Project 5

Here is a warm-up exercise.

Imagine packing the whole plane with pennies. If the square packing

is used, is there a way to compute the density of this packing? The plane

is infinite. Is it possible to compute how much of the plane is covered by

pennies?

Yes. The density is exactly the same as for the 6II× 6II square, or about
78.5%. Remember that in the square packing of the 6II × 6II square, every
row and every column of pennies touches the edges of the square. So, as we

saw earlier, when we fit two 6II × 6II squares together, side-by-side or one
on top of the other, the number of pennies just doubles as the board area

doubles. There is no room for extra pennies. This means that the density on

the larger board is exactly the same as on the square. But squares tessellate

the plane by pure translation, so we can fill up the plane with 6II×6II squares
just by pushing up and down and left and right.
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As we do this, the number of pennies increases exactly as the number of

squares increases. So the density remains the same for the whole plane.

Next we investigate the density of the triangle packing on the whole

plane. Imagine packing the whole plane with pennies using the triangle

packing. Can the density of this packing be computed? Remember that the

density of the triangle packing can increase or decrease as the area increases.

Can you determine a way to use a tessellating shape to help find the density

of the triangle packing on the whole plane as we did for the square packing?

Think about this for awhile and then try the computation on your own,

or read on for some ideas.

To help us think about the problem and to prepare for a surprise later,

we are going to draw circles larger than pennies and call the radius of the

circle r. Since tessellating squares worked for the square packing, perhaps we

should try to investigate the triangle packing by using tessellating triangles.

Look what happens when we try to draw triangles around the circumferences

of triangularly packed pennies:

The triangles overlap. These triangles will not form part of a tessellation of

the plane.

Don’t give up on triangles however. The clever idea here is to use another

triangle closely associated with the triangle packing of circles:
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Can you find another triangle that could be used? Look for a pattern of

triangles in the triangle packing that has no overlaps.

Hint: Use the centers of the circles.

Did you discover the pattern of triangles formed by connecting the cen-

ters of the circles? (Note that the fact that the line joining the centers of

two tangent circles passes through the point of tangency is used to justify

the formation of triangles here.)

What type of triangle is formed by connecting the centers?
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Can you prove it?

Did you see that the triangle formed by connecting the centers of the circles

in the triangle packing is an equilateral triangle? We will call it the basic

equilateral triangle. Each side has length equal to 2r, where r is the radius

of the circle.

2r

Look again at the triangle pattern embedded in the packing and imagine it

filling up the plane.

The area of the packing inside each triangle is exactly the same and con-

sists of three congruent sectors of a circle of radius r. So, since the triangles

tessellate the plane, the area of packing increases exactly as the number of

triangles increases. We arrive at the following important conclusion.

The density of the triangle packing of circles in

the plane is the same as the density of the

packing in one triangle.
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The mathematical analysis employed here greatly simplified our problem.

The original density question has been reduced to computing density in the

basic equilateral triangle. That is a much more manageable question. You

have all the tools required to compute the density of the packing in the

triangle on your own. If you wish, you may follow the step-by-step outline

given below.

Challenge 7. Compute the area of the basic equilateral triangle with side of
length 2r.

2r

Challenge 8. The next step is to calculate the area of the packing inside the
basic equilateral triangle. The packing area is made up of three congruent

sectors of circles.

Each sector

60◦

r
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has central angle equal to 60◦ and radius r. You need to find the area of
three sectors.

Challenge 9. To finish the density computation, divide the total area of the
three sectors by the area of the triangle and change to a percent.

Some magic happens! In the density computation

( 12)πr
2

√
3r2

=
πr2

2
√
3r2

=
π

2
√
3
,

the factor r2 appears in both the numerator and the denominator of the

first two fractions, and since r2 W= 0, it may be cancelled for the final sim-
plification.

What does the “disappearance” of r in the density fraction mean?

It signifies something very interesting. Namely that the circle used for pack-

ing can have a huge radius or a tiny radius, it doesn’t matter because the

density remains the same, about 90.7%. We have the following very surpris-

ing fact.

The density of the triangle packing of circles in

the plane does not depend on the size of the

circles but only on the method of packing.

Notice that starting from the 6II × 6II board, as you pack larger and larger
areas, the density gets closer and closer to 90.7%. There’s a good question

to ask here. See the Suggestions for the Endurance Athlete at the end of

this chapter.
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Solutions
Challenge 7. The area of an equilateral triangle with side of length 2r is

√
3r2.

For the height is
√
3r, so the area is 1

2
(2r)(

√
3r) =

√
3r2.

Challenge 8. Each sector is equal to 1
6
th of a circle of radius r. Consequently,

the three sectors together comprise half a circle, so the area of the three sectors

inside the basic equilateral triangle is 1
2πr

2.

Challenge 9. The density is about 90.7%. The computation is

( 1
2
)πr2√
3r2

=
πr2

2
√
3r2

=
π

2
√
3
.

π

2
√
3
is approximately .907 = 90.7%.

Packing Project 6

In the earlier projects, you observed that the triangle packing and the repeat

triangle packing were engaged in a fierce rivalry to pack the most pennies.

Some very interesting mathematical analysis will reveal more about this.

The triangle packing appeared to lose ground to the repeat triangle pack-

ing when the board was enlarged vertically. However, recall the growing

space at the top of the board in the triangle packing at each step. It is im-

portant to figure out when there will be enough room to squeeze in an extra

row of pennies. This is the first challenge of the next project. It requires

the most effort. The remaining parts are mostly fun.

Challenge 10. Find out how many 6II × 6II squares must be placed vertically
in a column for the triangle packing to squeeze in an extra row of pennies.

In other words, how many boards are needed vertically to get the number

of rows of pennies equal to a multiple of 9 plus 1?

Think about Challenge 10 for a while. Then start out on your own, or

read on if you would like some ideas to help plan your solution.

To begin, consider the first 6II × 6II square. The height of the first row
of pennies is 3

4
II
. What is the height of the first two rows of pennies, the

first three rows, etc.? Aha! We don’t know! We need to compute how much

height is added when a new row of pennies is added in the triangle packing.
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Step-by-Step Outline for a Solution to Challenge 10

Step 1. Computation of the height of each new row in the triangle packing.
Look at the figure of the basic equilateral triangle formed using the centers

of three pennies. To help with the solution, we have enlarged the size of

pennies in the diagram and added some line segments. Here is what we

have added to the figure:

(i) the line segment AB, which is the altitude of the triangle extended

to meet the top of the top circle;

(ii) EF a line segment tangent to the bottom two circles; and

(iii) EZ and FY , radii of the bottom circles to the points of contact at

E and F with the tangent line.

Z Y

FE

X

C

A

B

Notice that the added height you are trying to compute is exactly the

length of the line segment AC. Can you find the length of AC? If you would

like a few hints, read on.

Hints: (a) AC is the sum of the radius AX and the line segment XC.

Since you know the radius has length 3
8

II
, you need to find the length of XC.

(b) Remember that the basic triangle XY Z is equilateral. What

is the length of its altitude XB?

(c) Now, if you can show that CB has length equal to 3
8
II
, the

length of the radius, you can compute the length of XC by subtraction. You

may find it useful to use the fact that a tangent to a circle meets a radius

at right angles.
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Step 2. Computation of the height of the first row plus k additional rows of
pennies.

Try this computation on your own.

Step 3. Put Steps 1 and 2 together to answer: How many 6II × 6II squares
stacked vertically in a column are needed to squeeze in one extra row of

pennies?

Try it on your own, or continue reading for more detailed suggestions.

The idea is to measure (and then estimate) the size of the space at the

top as you increase the number of 6II×6II boards. The answer to the question
in Step 3 is the number of boards necessary for the space at the top to be

at least equal to the height of one new row of pennies, which you computed

in Step 1, and which we will estimate to be .65II.
Here is a start on the calculation. Remember that there are nine rows of

pennies in the triangle packing of the 6II × 6II square. Let s1 be the size of
the space at the top of one triangle-packed board, s2 the size of the space at

the top of the triangle-packed 6II × 12II board made by stacking two square
boards vertically, etc.

You know the height of the first row is 34
II
and the height of one additional

row is
√
3(38), or approximately .65. The height of the space at the top of

the first 6II × 6II board is
s1 = 6− 3

4
− 8
√
3(
3

8
).

Consequently, s1 is at least 0.05
II.

Now continue the computation as you increase the number of triangle-

packed boards stacked vertically and stop when the size of the space is at

least .65II.

Excellent work, so far. The remaining two challenges of Project 6 are

fun and reward all your hard work in the first part.

Challenge 11. Place 5 boards as in Challenge 10. Find out which packing,
the triangle packing or the repeat triangle packing, wins the competition to

pack the most pennies.
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Challenge 12. Return to the SportsSmart 60II × 18II display shelf. Think of
the shelf as composed of thirty 6II × 6II squares arranged so that there are 3
columns of 10 squares each with each column running from one end of the

60II shelf to the other end.

Using either the triangle packing or the repeat triangle packing, compute

the number of pennies packed on the shelf if you start at one end as indicated.

Solutions
Step 1. Computation of the height of each new row in the triangle packing.

The length of AC is
√
3( 38 )

II, or approximately .65II. Here is one method of

calculating this: From the fact that tangents are perpendicular to radii at the

point of contact, it follows that EFY Z is a rectangle. Since the altitude XB

meets Y Z at right angles, the length of CB is equal to that of the radii EZ

and FY , namely 3
8
. Now the altitude XB has length

√
3( 3

8
), so XC has length√

3( 38 )− ( 38 ), and finally, the length of AC is
√
3( 38 )− ( 38 ) + ( 38 ) =

√
3( 38 )

II.

Step 2. Computation of the height of the first row plus k additional rows of

pennies. The height of the first row of pennies is 3
4

II
so using the previous com-

putation, the height of the first row plus one additional row is 3
4

II
+
√
3( 38 )

II. The
height of the first row plus two additional rows is 3

4

II
+
√
3( 38 )

II+
√
3( 38 )

II and the
height of the first row plus k additional rows is 3

4

II
+ k
√
3( 38 )

II, or approximately
.75II+ (.65)kII.

Step 3. Continuation of the computation of the size of the space at the top of
the vertically stacked, triangle packed boards.

Place a second square on top of the first one and add nine new rows of pennies

in the triangle packing. The space at the top of this new board is

s2 = 12− 3
4
− 8√3(3

8
)− 9√3(3

8
) = 12− 3

4
− 17√3(3

8
),
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so s2 is at least .20
II, but still much smaller than .65II. There is not enough room

for another row of pennies.

Add a third square, pack it with nine more rows, and calculate the space at

the top. It is

s3 = 18− 3
4
− 26
√
3(
3

8
),

so s3 is at least .35
II but still not big enough.

Add a fourth square, pack it with nine more rows. This time the space at the

top is

s4 = 24− 3
4
− 35√3(3

8
),

so s4 is at least .50
II. One more board ought to do it. Let’s see.

The addition of nine new rows of pennies on the fifth square leaves a space

at the top of

s5 = 30− 3
4
− 44√3(3

8
),

so s5 is at least .65
II, the number needed for an extra row.

Challenge 11. The triangle packing wins! On a 6II×30II board composed of five
vertically stacked 6II×6II squares using the repeat triangle packing, 5× 68 = 340
pennies are packed.

On the 6II×30II board, using the triangle packing, 68+67+68+67+68+7 =
345 pennies are packed.

Challenge 12. Think of the 60II long and 18II wide shelf as composed of thirty
6II × 6II squares arranged so that there are 3 columns of 10 squares each.
Triangle packing: Each set of five squares stacked vertically allows an extra row

of pennies, so there are at least (9 × 5) + 1 + (9 × 5) + 1 = 92 rows of pennies.

Is there possibly room for one more row? To check, compute the height of the

92 rows of pennies and subtract that number from 60II, the height of the shelf.
The height of 92 rows of pennies is: 3

4

II
+ 91

√
3( 38 )

II, or approximately 59.86II.
But 60II − 59.86II = .14II is less than the height required for an additional row of
pennies. This means that there are exactly 92 rows of pennies.

In each of the three columns (of 10 squares) 46 of the rows are rows of 8

pennies and 46 are rows of 7 pennies. Now you will be able to fit in extra pennies

at each column juncture: one extra penny for each row of 7 pennies. So at each

column juncture, you can fit in 46 extra pennies. Thus the total number of

pennies packed is: (3 × 690) + (2 × 46) = 2162. (The density of this packing is

about 88.4%.) Compare with the packing you did in Project 4 where you packed

the shelf from the back to the front.

Repeat triangle packing: In each column of squares you can pack 10× 68 = 680
pennies. There are 10×5 = 50 rows of 8 pennies and 10×4 = 40 rows of 7 pennies.
You will be able to fit in extra pennies at each column juncture: one extra penny

for each row of 7 pennies. So at each column juncture, you can fit in 40 extra

pennies. Thus the total number of pennies packed is (3× 680)+ (2× 40) = 2120.
(The density of this packing is about 86.7%.) The triangle packing is a big winner

here!
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Suggestions for the Endurance Athlete

10K Challenge. Investigate the following variation of the triangle
packing.

In the definition of the repeat triangle packing on a vertical stack

of 6II×6II boards, the triangle packing repetitions start at the bottom
of each added square. This means that there is a space after every

nine rows of this packing. A tighter packing, called the tight repeat

triangle packing can be defined by eliminating these spaces. For this

packing, after every nine rows, the next row is laid directly on top

of the previous row as follows:

You see that in the tight repeat triangle packing after a certain num-

ber of boards are added vertically in a column, there will be enough

room for an extra row of pennies. How many boards are needed to

squeeze in an extra row of pennies? This is one of many questions

you can ask about this packing. Investigate the tight repeat triangle

packing and make comparisons with the triangle and repeat triangle

packings.
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20K Challenge. Recall that the density of the triangle packing on the
whole plane is approximately 90.7%. You observed that the density

tends to get closer and closer to 90.7% as larger and larger areas of

the plane are packed. Here is an excellent question to investigate.

What is the smallest rectangular area which, when covered with

pennies in the triangle packing, gives a density of 90% or better?

Then try for a density of 90.5% or better.

30K Challenge. Let n be any positive integer and let S be a 1 unit
× 1 unit square. Find a packing of identical non-intersecting disks

onto the square so that the sum of their radii is greater than n units.

40K Challenge. For n = 1, 2, . . . , 16, find the side length s, not neces-
sarily an integer, of the smallest square S such that n disks of radius

1 unit can be packed onto S.

50K Challenge. Think again about those tennis balls at SportSmart.
Suppose you remove the balls from their cylindrical cans and pack the

balls in a square box. What arrangements of balls gives the greatest

density of balls in the box? (The problem of finding a sphere packing

of the greatest density is an old and very difficult problem that has

just recently been solved.)

References
More information about the 40K Challenge can be found on the web at Erich’s

Packing Center: www.stetson.edu/∼efriedma/packing.html.
For more information on the 50K Challenge, see Gardner, M., The Colossal

Book of Mathematics, Chapter 10: Packing Spheres. Two web sites with more

information on this topic are mathworld.wolfram.com/KeplerConjecture.html as

well as www.stetson.edu/ edfriedma/packing.html.

The focus in this section has been packing circles into squares. For a

discussion of packing circles in circles, circles in triangles, squares in triangles,

etc., see www.maa.org/mathland/mathland 11 25.html, for example, as well as

www.stetson.edu/∼edfriedma/packing.html.

http://www.stetson.edu/~edfriedma/packing.html
http://www.maa.org/mathland/mathland_11_25.html
http://www.stetson.edu/edfriedma/packing.html
http://www.stetson.edu/~efriedma/packing.html


Chapter Nine

Lattice
Polygons

The arrangement of pegs on a geoboard is an example of a lattice. The

starting point of this activity is the construction of geometric figures on

a geoboard or a lattice, and an investigation of their properties, such as

perimeter and area. This leads to the discovery that there are certain

familiar geometric figures that cannot be constructed on a lattice.

“Poincaré, on being asked how he made discoveries, answered

‘by thinking about them often.’ ”

J. Dieudonné

169
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Have you ever played the game of dots, or made figures by stretching elastic

bands around the pegs on a geoboard? In The Game of Dots, players start

with dots evenly spaced on a piece of paper, and connect two dots at a time,

horizontally or vertically, to form the sides of squares.

The arrangement of dots in the game and pegs on a geoboard are examples

of lattices. You will discover that many, but not all, geometric figures can be

constructed on dotted paper or on a geoboard, making it easy to investigate

properties such as perimeter and area.

In mathematical terms, a rectangular array of dots or points spaced so

that the horizontal and vertical distance between dots is the same is called a

lattice. The dots or points are called lattice points. Polygons whose vertices

are lattice points are called lattice polygons. Some lattice polygons have

lattice points other than vertices on their sides, others do not.

In this investigation of lattice polygons, you will investigate which poly-

gons can be lattice polygons. You will also discover a neat way to compute

the area of a lattice polygon.
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Part I: Lattice Polygon Warm-Up
Some supplies are needed. Put a square array of, say, 10 rows of 10 equally

spaced dots on each of six sheets of paper.

We will begin with some experimentation.

Challenge 1. Can you construct a lattice square? In other words, can you
construct a square with each vertex at a dot on your lattice?

How about a lattice rectangle that is not a square?

Can you construct a lattice triangle?

How about a lattice right triangle?

How about a lattice isosceles triangle?

Can you construct a lattice equilateral triangle?

Was it smooth going until you hit the equilateral triangle? Later, you will

see why the equilateral triangle causes difficulty. So far, you have a good

start; you know that some squares, rectangles, triangles, right triangles, and

isosceles triangles are lattice polygons.

Challenge 2. Try to construct a lattice kite, a lattice house pentagon, and a
lattice hexagon.

Note that there are no rules that require that any of the sides of your poly-

gons have to be horizontal or vertical, even if the sides meet at right angles.

Let’s call a lattice square skew if no side is either horizontal or vertical.

Challenge 3. Try to construct a skew square.

Why does the construction of a lattice equilateral triangle by connecting

dots cause such a problem? The reason has to do with its area. Digging

into this further involves computing areas of some polygons. Here is a short

Area Warm-Up.
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Area Warm-Up

For this review, there is just one basic area formula to remember; all the

others will follow from it.

The area A of a rectangle is the product of the lengths of its base b and

its altitude h: A = bh.

h

b

Since a square is a special rectangle with base and altitude of equal length,

the formula for the area of a square with side of length s is often written

A = s2.

h

b

Challenge 4. What comes next? Triangles. First, do you know how to use
the formula for the area of a rectangle to compute the area of the right

triangle pictured above with base of length b and altitude of length h?

The area of a right triangle is one half the product of the lengths of its

base and its altitude: A = 1
2 bh.

You may know that the area of every triangle with base of length b and

altitude of length h is A = 1
2bh. How do you show this is true?

base

altitudealtitude
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Did you remember that the altitude of a triangle to a given base is the

perpendicular line segment to the line of the base from the vertex not on

the base?

If the altitude is one of the sides of the triangle, then the triangle is a

right triangle and you know what its area is.

Challenge 5. If the foot of the altitude falls inside the triangle, then what is
the triangle’s area? If the foot of the altitude falls outside the triangle, then

what is the triangle’s area?

If you were able to figure this out, then you have completed the proof

that the area of a triangle is one-half the product of the lengths of its base b

and altitude h: A = 1
2 bh.

Now you can find the area of lots of polygons. Take a minute to recall

the definition of a polygon: Start with n distinct points P1, P2, . . . , Pn in a

plane, where n is at least three, so that no three consecutive points lie on

a line. If the segments P1P2, P2P3, . . . , Pn−1Pn, PnP1 intersect only at their
endpoints, they form a polygon.

Remember that a polygon is convex if the line segment joining any pair

of vertices lies within the polygon. If the polygon is convex, we can break

up the polygon into non-overlapping triangles. Start at any vertex, say P1,

and join P1 to P3, P4, . . . , Pn−2, Pn−1, that is, to all the other vertices except
the two on either side of P1. Since the polygon is convex, all of these line

segments lie within the polygon.For example, a pentagon may be broken up

this way:

P1

P2

P3

P4P5

In mathematical terms, the polygon has been triangulated. A triangulation

of a polygon is a cutting up (or dissection) of the polygon into triangles with

vertices that are those of the original polygon. Here is another triangulation

of the pentagon:
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P1

P4

P3

P2

P5

The area of the polygon is the sum of the areas of the triangles in a tri-

angulation. So, if possible, you want to triangulate the polygon in a way

that produces “good” triangles, that is, triangles whose lengths of bases and

altitudes you know or can compute. Try your hand at triangulating and

computing area.

Challenge 6. Show that the area A of a parallelogram with base of length b

and altitude of length h is A = bh by triangulating the parallelogram.

h

b

Challenge 7. Do you remember that the formula for the area of a trapezoid
is one half the sum of the lengths, b1 and b2, of its bases times the length h

of its altitude? Show that you can derive this formula by triangulating the

trapezoid.

h

b2

b1
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It is true that every polygon can be triangulated, but of course, it is

trickier to triangulate a non-convex polygon. Draw your favorite nasty-gon,

such as this one,

Can you triangulate it? Can you compute the area of your nasty-gon?

Did you see that its area is the sum of all the areas of the triangles in your

triangulation? You can compute the area if , and sometimes this is a big if ,

you can compute the areas of all the triangles.

The nasty-gon can be triangulated like this, for example:

Its area is the sum of nine triangles and can be computed if the lengths of

all nine bases and altitudes can be calculated.

This completes the Area Warm-Up.

Solutions
Challenge 1. Here are some examples of lattice polygons:

square rectangle

triangle

right triangle

isosceles triangle
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Challenge 2. Here are examples of a lattice kite, a lattice house pentagon, and
a lattice hexagon:

Challenge 3. Here is an example of a skew lattice square.

Challenge 4. The area of a right triangle can be computed this way. First draw
a rectangle with base of length b and altitude of length h, and then insert one of

the diagonals.

b

h

b b

hh
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This decomposes the rectangle into two right triangles, each having base of length

b and altitude of length h. These right triangles are congruent because corre-

sponding sides are equal. This means that the areas of the right triangles are

equal, and the area of the rectangle is two times the area of the right triangle.

In other words, the area of the right triangle with base of length b and altitude

of length h is one half the area of the rectangle. The area of a right triangle is

then one half the product of the lengths of its base and its altitude: A = 1
2 bh.

Challenge 5. If the foot of the altitude falls inside the triangle, then the area of
the triangle is the sum of the areas of two right triangles whose bases have no

overlap and taken together form the base of the original triangle. The length of

the base b of the triangle is the sum of the lengths of the bases b1, b2 of the right

triangles.

h

b1 b2

b

So, using the formula of the area of a right triangle, the area A of the original

triangle is

A =
1

2
b1h+

1

2
b2h =

1

2
(b1 + b2)h =

1

2
bh.

If the foot of the altitude falls outside the triangle, the original triangle becomes

part of a big right triangle. The area of the original triangle added to the area

of the small right triangle is the area of the big right triangle.

h

b2

b1 b

So the area of the original triangle is found by subtracting the area of the small

right triangle from that of the big right triangle. The area is

A =
1

2
b2h− 1

2
b1h =

1

2
(b2 − b1)h = 1

2
bh,

since the length of the base b of the original triangle is the difference b2 − b1 of
the lengths of the bases of the right triangles.
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Challenge 6. To check the formula for the area of a parallelogram with base of

length b and altitude of length h, cut up the parallelogram in the following way:

h

b

b

The parallelogram is cut up (or dissected) into two triangles having base b and

height h. Therefore

A =
1

2
bh+

1

2
bh = bh.

Challenge 7. The trapezoid with bases b1 and b2 and height h can be dissected
into two triangles. One has base b1 and height h and the other has base b2 and

height h.

h

b1

b2

Therefore

A =
1

2
b1h+

1

2
b2h =

1

2
(b1 + b2)h.

Part II: Pick’s Theorem
As we have observed, the area of any polygon can be calculated if the lengths

of the bases and altitudes of the triangles in a triangulation of the polygon

are known. However, this data may be very difficult to obtain. Lattice

polygons are special. There is a formula for computing the area of any

lattice polygon that simply requires counting lattice points. It is called

Pick’s theorem.

We now embark on the discovery of Pick’s theorem. The formula ex-

presses the area of a lattice polygon in terms of the number of lattice points

inside the polygon and the number of lattice points on its sides. We use the

word boundary for the collection of all of the sides (or edges) of the poly-
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gon. This will allow us to distinguish between those lattice points on the

boundary and those lattice points inside (or in the interior of) the polygon.

Let’s experiment first with squares. The horizontal or vertical distance

between the evenly spaced dots on your lattices will be the unit of measure-

ment. We will call it 1 unit.

1 unit

1 unit

Challenge 8. On one of your lattices, make a 3 unit × 3 unit square with

horizontal and vertical sides. What is its area?

Look at the number of lattice points (or dots) on the boundary of your

square and the number inside your square. Find an equation relating the

area A = 9 to the number of lattice points on the boundary and the number

of lattice points inside.

Let B be the number of lattice points on the boundary of the square and I

the number inside your square. Can you write 9 in terms of B and I? Can

you guess what the area of any lattice square is in terms of B and I?
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Now put your guess to the test. Make a 2 unit × 2 unit square (with

horizontal and vertical sides) on your lattice. You know the area is 4 square

units. Does your formula prove correct here?

More testing is necessary. Draw a 5 unit × 5 unit square (with horizontal

and vertical sides). Study all three squares. Find B and I for each square,

and see if you can find some new ideas for connecting the area A to B and I.

Does your formula check out for a 1 unit × 1 unit square (with horizontal

and vertical sides)?

Test your formula on this skew square. Each side of this square is the

diagonal of a 1 unit × 1 unit lattice square with horizontal and vertical

sides. What is the length of such a diagonal?

Hint: You may want to use the Pythagorean theorem. Remember that

it states: In a right triangle, the square of the length of the hypotenuse is

equal to the sum of the squares of the lengths of the legs.

b

c
a
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So if the right triangle has hypotenuse of length c and legs of lengths a and

b, then c2 = a2 + b2.

Did You Find Pick’s Formula?

Remember that B is the number of lattice points on the boundary of the

square and I is the number of lattice points inside. Your formula for the

area A may be in a different form but it should correspond to the following:

A = B
2 + I − 1.

Let’s verify that the above formula is the correct one for all the lattice

squares in the experiment.

For the 3 unit × 3 unit square, the area is A = 9 square units. For the

3 unit × 3 unit square, B = 12 and I = 4, so B
2 + I − 1 = 6 + 4 − 1 = 9 is

the correct area A.

For the 2 unit × 2 unit square, B = 8 and I = 1, so B
2 + I − 1 = 4 is the

correct area A.

For the 5 unit × 5 unit square, the area A = 25 square units. Since

B = 20, and I = 16, and B
2 + I − 1 = 10 + 16 − 1 = 25, the formula is

correct.
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For the 1 unit × 1 unit square, the area A = 1 square unit. Since B = 4

and I = 0, and B
2 + I − 1 = 2 + 0− 1 = 1, the formula is correct.

The skew square has each side equal to the diagonal of a 1 unit × 1 unit

square. By the Pythagorean theorem, the length s of each side is
√
2 units.

The skew square is a
√
2 × √2 square and has area A = (√2)2 = 2 square

units. For the skew square, B = 4, I = 1 and B
2 + I − 1 = 2 + 1 − 1 = 2,

which is the area. The formula checks.

What about the area of lattice polygons other than the squares?

Do you think the formula A = B
2 +I−1 will hold for the following trapezoid?

As before, B is the number of lattice points on the boundary and I the

number of lattice points inside.
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Challenge 9. Check to see if the formula works for this lattice trapezoid.
Notice that the slanted sides of the trapezoid don’t have many lattice points

on them.

It can be proved that Pick’s formula is true for every lattice polygon.

Pick’s Theorem. The area A of a lattice polygon is one less than the sum

of half the number B of lattice points on the boundary and the number I of

lattice points inside:

A =
B

2
+ I − 1.

Here is a good game based on Pick’s theorem.

Pick’s Polygon Game

Pick’s Polygon Game is a game for any number of players.

Directions. The players take turns being Pick. Whoever is Pick draws a
lattice polygon and challenges the other players to construct a different

lattice polygon having the same area. The first player to find a polygon that

answers the challenge correctly within five minutes earns a number of points

equal to the area of the polygon. If no player is able to find such a polygon

within the time limit and if Pick can do it, then Pick wins the points.

A harder version of the game allows the player being Pick to have the

option of making the challenge more difficult by requiring the polygons to

have certain other properties, such as a specified shape or a specified number

of boundary points, in addition to having the same area.
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I’ll be Pick to start. Here is a lattice polygon:

Challenge 10. Find another lattice polygon with the same area.

Did you find another lattice polygon of area 10? If so, you earn 10 points.

Some polygons with area 10 square units are found in the Solutions. Here

are two more:
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Challenge 11. The skew figure in the previous illustration looks like a square.
Is it? Using Pick’s formula, you can see it has area 10 square units. Is each

side of length
√
10 units?

Did you notice that each side of the skew square is the hypotenuse of a right

triangle with one leg of length and the other leg of length ?

Challenge 12. Now, let’s try the harder version of the game. I’ll be Pick,
and I am going to add a specified shape to my challenge. Find a lattice

triangle that has the same area as the lattice polygon below:

Challenge 13. I’ll take one more turn being Pick. Find a lattice polygon
with exactly 6 lattice points on its boundary that has the same area as the

lattice “X” below.
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Did you find a lattice polygon with the same area that has exactly six lattice

points on its boundary? If so, since the “X” has area 14 square units, you

earn 14 points.

Now it’s your turn to play Pick. If no one else is around, you can play

solo. Draw a lattice polygon and challenge yourself to find others having

the same area, and, perhaps, some other properties too. Alphabet lattice

polygons, like the “X” above, are fun examples.

We conclude Part II by returning to the problem of constructing a lattice

equilateral triangle. Why did we have such difficulty? Here is the reason.

It is impossible to construct a lattice equilateral triangle.

Why? One explanation is that the area of an equilateral triangle is the

wrong type of number. It is a type of number that can never satisfy Pick’s

theorem. For more about this, see the Heavy Lifting section at the end of

the chapter.

If you are really, really, curious about the equilateral triangle right now,

pause for a while and ask yourself these questions. What kinds of numbers

can be areas of lattice polygons? Pick’s theorem says they are of the form
B
2 + I − 1, so what do such numbers look like? Suppose that an equilateral
triangle can be constructed in a lattice. Can its area be of this form?

Solutions
Challenge 8. The area of a square is s2, where s is the length of its side. Since
this square has s = 3 units, its area is 9 square units.

Challenge 9. The area of the lattice trapezoid is 27
2
square units. Using the

sum of the lengths of its bases times the length of its height, you obtain A =
1
2 (3 + 6)(3) =

27
2 . So A =

27
2 square units. Since the trapezoid has B = 11 and

I = 9, it follows that

B

2
+ I − 1 = 1

2
(11) + 9− 1 = 11

2
+ 8 =

11

2
+
16

2
=
27

2
.

The formula gives the correct number for the area.
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Challenge 10. The polygon

has area 10 square units. Here are two different lattice polygons also with area

10 square units:

Challenge 11. Each side of the skew figure is the hypotenuse of a right triangle
with legs of length 1 unit and 3 units. So each side has length

√
10 units.

Challenge 12. This time Pick’s polygon has area 7 square units. Did you find
a lattice triangle with area 7? If so, you earn 7 points. Here is an example of a

lattice triangle that works:

Since B = 4, I = 6 and B
2
+ I − 1 = 7, the area of this lattice triangle is 7.



188 Run – Chapter 9

Challenge 13. Here’s a lattice kite that has area 14 square units and exactly 6
lattice boundary points.

Since B = 6, I = 12 and B
2
+ I − 1 = 3 + 12− 1 = 14, the area of the kite is 14.

Part III: What Numbers Are Areas of Lattice Squares?
In the next part of this investigation, we will explore an intriguing question.

What numbers can occur as areas of lattice squares?

We begin with an experiment.

Investigate which of the integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

are areas of lattice squares.

Hint: Seven of the integers are areas of lattice squares and three cannot

be areas of lattice squares.

Did you see that 1, 4, and 9 are areas of lattice squares? Good. These

numbers are examples of what are called perfect squares: 1 = 12, 4 = 22 and

9 = 32. A perfect square is a positive integer that is the square of another

integer. By definition, then, every perfect square N has the form N = s2

for some positive integer s. So N is the area of an s unit × s unit lattice

square with horizontal and vertical sides.
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s

s

It follows that

• 1 is the area of a 1 unit × 1 unit lattice square (with horizontal and

vertical sides);

• 4 is the area of a 2 unit × 2 unit lattice square (with horizontal and

vertical sides); and

• 9 is the area of a 3 unit × 3 unit lattice square (with horizontal and

vertical sides).

How about 2? Did you remember that 2 is the area of the skew square

encountered earlier?

Each side has length
√
2 units, the length of a diagonal of a 1 unit × 1 unit

square, and its area is (
√
2)2 = 2 square units.

The numbers 1, 2, 4, 5, 8, 9, and 10 are areas of lattice squares, but the

numbers 3, 6, and 7 are not. Lattice squares with areas 5 square units, 8

square units, and 10 square units are more complicated to construct than
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lattice squares with area equal to a perfect square. We will learn how to

construct these lattice squares.

As the investigation proceeds, you will discover which positive integers

can be areas of lattice squares. Even better, you will find that each of these

numbers contains the blueprint for the construction.

Since constructing lattice squares with area equal to a perfect square

is easy, the investigation will focus on the numbers that are not perfect

squares, but are areas of lattice squares. What do these numbers look like?

What properties do they have?

To find out, let n be a positive integer and assume that

1. n is not a perfect square;

2. there is a lattice square of area n square units.

Constructing a lattice square of area n square units is the same as construct-

ing a lattice square with side of length
√
n units. If n is not a perfect square,√

n is not an integer. A lattice square of area n square units will usually

look different from one with area that is a perfect square. Let’s see why.

Question 1. Suppose a line segment connects two lattice points, and it has
length that is not an integer. For example, it could have length

√
2 or

√
5.

How must such a line segment be positioned in the lattice? Horizontal, ver-

tical, or skew? (We will call a line segment with lattice points as endpoints

skew if it is neither horizontal or vertical.)

Hint: Think about what kinds of numbers give the horizontal and verti-

cal distances between dots.

Question 2. What does this mean for lattice squares? If a lattice square has
area n square units and n is not a perfect square, how will the square be

positioned in the lattice?

The final question reveals the essential characteristic of n. Suppose that n

is not a perfect square so
√
n is not an integer, and suppose

√
n units is the

length of a skew side of a lattice square.
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√
n

Keep the Pythagorean theorem in mind and try to answer the following

question.

Question 3. What property does n have that is related to squares of integers?

The answer to the above question merits repeating. If n is not a perfect

square,
√
n units can be the length of a side of a lattice square only if n can

be written as a sum of squares of two positive integers: n = a2+ b2. In fact,

as you observed,
√
n is the length of the hypotenuse of a right triangle where

a is the length of the horizontal leg and b is the length of the vertical leg.

√
n b

a

√
n

Note that a perfect square s2 can be written s2 + 02. This means that the

restriction “if n is not a perfect square” may be eliminated if we allow one of
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the squares to be 0. The following statement summarizes the investigation

so far:

If n is a positive integer, n (square units) can be

the area of a lattice square only if n can be

written as a sum of squares of two non-negative

integers.

Question 4. Earlier, by experimentation, you observed that lattice squares
of areas 1, 2, 4, 5, 8, 9, and 10 (square units) can be constructed. Check that

each of these numbers is a sum of squares of two non-negative integers.

Question 5. Which of the integers between 11 and 20 are sums of squares of
two non-negative integers?

Question 6. Can you find a positive integer that is both a perfect square and
a sum of squares of two positive integers?

Next, we investigate the construction of these lattice squares. Suppose the

positive integer n = a2 + b2, where a and b are non-negative integers; can

you construct a square of side
√
n units? Try some special cases such as

10 = 32 + 12 and 13 = 32 + 22 first.

Here is a neat method for constructing the squares that is easy to remember.

First, let’s do an example.

Example 1. Construction of a lattice square of area 13 = 32 + 22.
The plan is to make each side of the square the hypotenuse of a right

triangle having one leg of length 3 units and one leg of length 2 units. Each

side would then have length equal to
√
32 + 22 =

√
13 units, and the square

would have area equal to (
√
13)2 = 13 square units.
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Construction.

1. Add 3 and 2 to get 3 + 2 = 5.

2. Draw a 5 unit × 5 unit lattice square with horizontal and vertical

sides.

3. Start at the upper left hand corner, move clockwise around the square

and mark the fourth dot, or three units, along each side as in the

picture below.

4. Connect the marked dots on the sides.

You have constructed a lattice square of area 13 sq. units, since each side

has length equal to
√
32 + 22 =

√
13 units.

Isn’t that neat? The clue to construction is coded in the display: 13 =

32 + 22.

The general case is just as easy.
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General Case. Construction of a lattice square of area n = a2 + b2.
Suppose n = a2 + b2 with a and b non-negative integers. If a = 0 or

b = 0, then n is a perfect square, and we have already discussed how to

construct a lattice square of area n. So we will assume that both a and b are

positive integers. To construct a lattice square of area n square units, the

plan is to construct a lattice square with each side equal to the hypotenuse

of a right triangle with one leg of length a units and the other leg of length

b units. Then each side will have length
√
n =
√
a2 + b2.

Construction.

1. Add a and b.

2. Draw an (a+ b) unit × (a+ b) unit lattice square with horizontal and
vertical sides.

3. Start at the upper left hand corner, move clockwise around the square

and mark the (a+1)st dot, or a units, along each side as in the picture

below.

4. Connect the marked dots on the sides.

A lattice square with sides of length
√
n units is constructed. Each side is

the hypotenuse of a right triangle with legs of length a and b.

(a + b) units

(a + b) units
(a + 1)st dot
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Your work constitutes a proof of the following theorem:

Theorem. Let n be a positive integer. If n (square units) is the area of a
lattice square, then n is the sum of squares of two non-negative integers.

Conversely, if n is the sum of squares of two non-negative integers, then n

(square units) is the area of a lattice square.

Solutions
Question 1. Since all horizontal and vertical distances between dots in the lattice
are integers, a line segment of non-integer length will be skew.

Question 2. If a lattice square has area n square units and n is not a perfect
square, each side of the square will be skew, that is, neither horizontal nor vertical.

It will be a skew square.

Question 3. If n is not a perfect square and n is the area of a lattice square,
then n has the following property related to squares of integers. Each skew side

of the square is the hypotenuse of a right triangle with one horizontal leg and

one vertical leg. This means that n is the sum of two squares of positive integers

n = a2 + b2 , where a is the length of the horizontal leg and b is the length of the

vertical leg.

Question 4. Here are the integers 1, 2, 4, 5, 8, 9, 10 written as sums of two squares
of non-negative integers: 1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 =

22 + 22, 9 = 32 + 02 and 10 = 32 + 12.

Question 5. There are exactly five integers between 11 and 20 that are sums of
two squares of non-negative integers: 13 = 32+22, 16 = 42+02, 17 = 42+12, 18 =

33 + 33 and 20 = 42 + 22.

Question 6. Here are some positive integers that are both perfect squares and
sums of two squares of positive integers: 25 = 9 + 16 and 100 = 36 + 64 and

169 = 25+144. This means that for each such number n, there is a lattice square

with horizontal and vertical sides of area n and a skew lattice square of area n.

Part IV: Heavy Lifting
In this section you will examine examples of regular polygons that cannot

be lattice polygons.

The Equilateral Triangle

The time has come to find out why it is impossible to construct a lattice

equilateral triangle. We will consider two methods of proof. Both methods

use proof by contradiction. In fact, both proofs assume that a lattice equi-
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lateral triangle can be constructed, and then arrive at the false statement

that
√
3 is a fraction. You know that

√
3 is not a fraction. The techniques

used in the proofs are, as you will see, quite dissimilar.

Theorem. There does not exist a lattice equilateral triangle.

Proof 1. This proof uses Pick’s theorem. Recall that Pick’s theorem states

that the area A of a lattice polygon is given by the following formula

A =
B

2
+ I − 1,

where B and I are the number of lattice points on the boundary and in the

interior, respectively.

Step 1. Begin the proof by identifying exactly what types of numbers B, I

and A are. Try to specify whether they are positive, negative, non-negative,

etc., and whether they are integers, non-integers, fractions, non-fractions,

real numbers, etc.

Step 2. Can you figure out something special about the length s of a side of

any lattice polygon? You know that the length s might not be an integer,

but what can you say about s2? Why?

s

Step 3. Assume that an equilateral triangle with side of length s is a lattice

triangle. By Step 1 and Step 2, you know that the area A has certain

properties. Compute the area A using the standard formula. Try to derive

a contradiction.
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Solutions
Step 1. B is always a positive integer. I might be 0 but is always a non-negative
integer. A is always a positive number but it might not be an integer. At best,

A is an integer; at worst, A is a fraction with denominator 2, that is, one-half of

an integer.

Step 2. The square of s, s2, will always be a positive integer. For if a side of a
lattice polygon is horizontal or vertical, its length s will be a positive integer and

s2 will also be a positive integer. If the side is skew, it will be the hypotenuse of

a right triangle with legs that have integer lengths, say a and b. So s2 = a2 + b2,

and s2 is an integer.

a

b

s

Step 3. Computing the area A in the standard way gives A =
√
3
4
s2, since the

base of the triangle is s and the height is
√
3
2 s. But, by Pick’s Theorem, A is

a fraction. So
√
3
4
s2 = m

n
, where m and n are integers. Thus,

√
3 = 4m

ns2
, and,

since 4, m, n and s2 are all integers, you arrive at the false statement that
√
3 is

a fraction. This contradiction shows that it is impossible to construct a lattice

equilateral triangle.

Proof 2. This proof is for those who have had some experience using co-
ordinates to locate points in the plane, and who know that the length

of the line segment between two points (p, q) and (r, s) in the plane is

(r − p)2 + (s− q)2.
Imagine having a lattice that covers the entire plane. The points on

the lattice are exactly the ones on the plane that have integers for both

coordinates. As in the first proof, assume that a lattice equilateral triangle

can be constructed. You will use coordinates to argue to the same false

statement that
√
3 is a fraction.

Choose one of the vertices of the triangle as the origin (0, 0). Call that

vertex O. Name the other two vertices A and B and draw the altitude from

A to OB, as shown below: (The pictured triangle doesn’t look equilateral,

does it? Of course, that’s exactly the point. You are going to show that the

pictured triangle can’t be equilateral.)
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B

A

C

O

Question 7. Let C be the point of intersection of the altitude from A to the

side OB. The segment AC is perpendicular to OB. What can you say about

C as a point on the segment OB? Is C a lattice point?

The diagram holds all the information you need to devise a proof, but the

algebra can be difficult to manage. Think about how you want to assign

coordinates to the points A and C. (You won’t need coordinates for B.)

Try to argue to the contradiction that
√
3 is a fraction. For some help in

choosing coordinates to make the computation more manageable, read the

hints below.

Hints: Give A integer coordinates (a, b). C may not be a lattice point,

but its coordinates are, at worst, one-half of an integer(half-integers, for

short), call them (c, d). Now a and b can be written a = c+ r and b = d+ s,

for some integers or half-integers r and s.

B

A

(c, d)

O
(0, 0)

C

(c + r, d + s)
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The suggestion is to work with c+ r and d+ s instead of a and b. This

choice will make the computation simpler.

Step 1. Use the chosen coordinates, apply the Pythagorean theorem to the

triangle OAC and simplify. The result will be an equation in c, r, d, and s.

Step 2. Try to get 3 into the argument. A suggestion for doing that is to

compute the square of the length of the altitude AC in two different ways.

One way to do it is to use the coordinates for A and C. Another way is to

use the fact that AC is the altitude of an equilateral triangle.

Step 3. Use the equation from Step 1 to substitute for s in the equation in

Step 2.

Which proof of the fact that no equilateral triangle can be constructed in a

lattice do you prefer? Why?

Solutions
Question 7. Let C be the point where the altitude from A intersects the side

OB. C is the midpoint of OB since the triangle is equilateral. C may not be a

lattice point, but at worst, C has coordinates that are each one-half of an integer

(half-integers, for short).

Step 1. If you apply the Pythagorean theorem to the triangle OAC and simplify,

you obtain the equation cr + ds = 0.

Step 2. You will get 3 = r2+s2

c2+d2
. Since both c and d cannot be 0, you may assume

d W= 0.
Step 3. Substitute s = −cr

d
into the equation 3 = r2+s2

c2+d2
. You will find that

3 = r2

d2
= ( rd )

2. This is a false statement. Since r and d are either integers

or half-integers, the equation says 3 is the square of a fraction, that is,
√
3 is a

fraction.
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Suggestions for the Endurance Athlete

The Regular Hexagon and Other Regular 3k-gons

10K Challenge. Use the fact that no equilateral triangle is a lattice
polygon to verify the following statement.

No regular hexagon can be a lattice hexagon.

20K Challenge. Show that no regular 3k-gon can be a lattice 3k-gon.

Regular n-gons

30K Challenge. Investigate the question of which regular polygons
can be lattice polygons. Is the square the only regular polygon that

can be constructed in a lattice?

References
Coxeter, H. S. M., Introduction to Geometry, Wiley, New York, 1961, pp. 208—

209.

Jacobs, H. R., Geometry, Second Edition, W.H. Freeman & Company, New

York, 1987.

Niven, I. and Zuckerman, H. S., “Lattice Points and Polygonal Area,” American

Math Monthly 74 (1967), pp. 1195—2000.

Cut-the-Knot (www.cut-the-knot.com/ctk/Pick.html) is an excellent source for

information about Pick’s theorem. In particular, you will find a link to a very

interesting proof of the theorem. You will also find an interactive geoboard.

http://www.cut-the-knot.com/ctk/Pick.html


Chapter Ten

Dissection

Cutting up, or dissecting, a geometric figure and rearranging the pieces

to form another figure is fun. Trying to do it with as few pieces as pos-

sible adds to the excitement. This investigation begins with dissection

experiments and challenges, and leads to the remarkable discovery that

given two polygons having the same area, one can be cut up and its

pieces rearranged to form the other.

“...[it is] active experience in mathematics itself that alone can

answer the question: What is mathematics?”

R. Courant and H. Robbins

201
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Does the prospect of transforming one polygon into another intrigue you? It

is not done by wizardry, but by a mathematical procedure called dissection.

Dissection is the process of taking a plane geometrical object of a particu-

lar shape, cutting it up into pieces, and then reassembling all the pieces to

make another shape. We will study how polygons such as triangles and par-

allelograms can be transformed by dissection, or, as we shall say, dissected

into other polygons having the same area. We will prove the surprising fact

that every polygon can be dissected into any other polygon having the same

area.

The investigation is designed as a series of challenges. In preparation, here

are two warm-up questions.

Question 1. If you take a polygon, cut it into pieces, and reassemble all the
pieces to form another polygon, do both polygons have to have the same

perimeter? To check this, experiment by cutting a square into pieces.

Question 2. If you take a polygon, cut it into pieces, and reassemble all the
pieces to form another polygon, do both polygons have to have the same

area?

Part I: Dissecting Rectangles and Right Triangles
Supplies. You will need scissors, a ruler, a protactor or a compass, and some
paper.

Preparation. Measure and cut out two 6II × 3II rectangles, two 9II × 2II rec-
tangles, and two right triangles each with base 6II and height 6II where the
base and altitude are the sides adjacent to the right angle.

Area Exercise 1. Carefully measure and cut up one of your 9II×2II rectangles
into as many 1II × 1II squares as you can. Do you know how many of these
1II × 1II squares you will get?
Area Exercise 2. Try to reassemble all of the 1II×1II squares to form a 6II×3II
rectangle.
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In the area exercise, you showed that a 9II×2II rectangle can be dissected
into a 6II × 3II rectangle. Do you think you can do it using fewer pieces?
That is your first challenge.

Challenge 1. Find the smallest number of pieces into which you can cut the
9II × 2II rectangle so that the pieces can be reassembled to form a 6II × 3II
rectangle.

The right triangle with base and height both equal to 6II also has area equal
to 18 square inches. This suggests the next challenge.

Challenge 2. Find the smallest number of pieces into which you can cut
the right triangle so that the pieces can be reassembled to form a 9II × 2II
rectangle.

Solutions

Question 1. The answer is “No.” For example, take a 2II×2II square and make a
vertical cut to form two congruent 1II × 2II rectangles. Then reassemble them by

lying one of the rectangles on its side as in the picture. The square has perimeter

2II+2II+2II+2II = 8II. The other polygon has perimeter 2II+1II+1II+2II+1II+3II =
10II.

Question 2. The answer is “Yes.” This is one of the basic facts about area. If a
polygon P is made up of two or more non-overlapping polygons P1, P2, . . . , Pk,

then the area of P is equal to the sum: area P1 + area P2 + . . .+ area Pk.

Area Exercise 1. Since the area of the 9II× 2II rectangle is 18 square inches, you
should have obtained eighteen 1II × 1II squares when you cut up the rectangle.
Area Exercise 2. Since the 6II × 3II rectangle also has area 18 square inches, it
is possible to form a 6II × 3II rectangle with the eighteen 1II × 1II squares.
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Challenge 1. Here is a dissection of the 9II×2II rectangle into two pieces to form
the 6II × 3II rectangle.

Challenge 2. Here is a dissection of the right triangle into four pieces to form
the 9II × 2II rectangle.

Part II: Dissecting Parallelograms and Triangles
Supplies. You will need scissors, a ruler, a compass or a protractor, tracing
paper (or a copier), and paper to make figures.

Preparation. Make, and then cut out, a few copies of the following polygons.

The transformation of a parallelogram, like the one above, into a rectangle

is a very simple example of dissection. Can you make this parallelogram

into a rectangle with just one cut of the scissors?
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Challenge 3. Take one of your copies of the parallelogram. Let b denote the
length of its base. Think about how to cut off a piece of the parallelogram

so that you can put the two pieces back together to form a rectangle with

the same base length b. Then try it.

hh

b b

Observe that when you dissect the parallelogram into a rectangle with the

same base length, the rectangle will also have height equal to the height of

the parallelogram. Why?

Can you undo the procedure? Can you dissect the rectangle with base of

length b and height h into a parallelogram with base of length b and height

h?

h

bb

h

The fact that the dissection of the parallelogram into a rectangle can be

reversed to give a dissection of the rectangle into a parallelogram illustrates

a very useful idea. Dissection is a symmetric procedure. This means that if

polygon P can be dissected into polygon Q, then polygon Q can be dissected

into polygon P . Just as in the example above, the process can always be

reversed.
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Challenge 4. Transform the triangle

BC

A

into a rectangle of the same area using dissection.

Start with one of your copies of the triangle. Think about how to cut it

into pieces that you can reassemble to form a rectangle. Then try it. Use

all the pieces so that the rectangle will have the same area as the triangle.

Hint: Consider how you might use the midpoints of AC and AB.

The next challenge concerns The Game of Tangrams, the ancient game based

on dissection. Have you ever played tangram games? A set of tangrams

consists of seven shapes cut out from one large square. As illustrated below,

the shapes are: a small square, two small congruent triangles, two large

congruent triangles, a medium sized triangle, and a parallelogram.

There are different ways to play games with tangrams. The idea is to use all

the tangram pieces to form various shapes, such as thisM (for Mathematics,

of course).
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As you will discover, tangram games are dissections of the square into in-

teresting, and, sometimes, unexpected or amusing shapes.

Challenge 5. Cut out your own set of tangrams from a single square sheet

of paper.

You can do it by folding and cutting; no ruler is needed. Start out on

your own, or follow along if you would like some suggestions.

(If your paper is rectangular make it a square with side length equal to

the short side of the rectangle. Do this with one cut. You can measure

where to cut by making a diagonal fold of the paper. The leftover rectangle

is not needed.)

Step 1. Fold and then cut your square along one diagonal to make two right

triangles.

Step 2. Take one of these triangles, and with one fold and cut, make two

right triangles. These will be the two “large” triangle tangram pieces.

Step 3. The remaining five tangram pieces will come from the other triangle

formed in Step 1. Make the “medium” tangram triangle by folding the right

angle corner to meet the hypotenuse at the midpoint. Then cut along this

fold. Now you have one “medium” triangle and one large trapezoid.
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Step 4. Fold the trapezoid in half so that the slanted edges meet. Cut along

this fold.

Step 5. Take one “half-trapezoid” (it’s really a whole smaller trapezoid, isn’t

it?) and, with one fold and cut, make one square and one triangle.

Step 6. Take the other “half-trapezoid,” and with one fold and cut, make

one parallelogram and a triangle that is congruent to the triangle in Step 5.

This gives you a complete set of tangrams. You know you can form one

large square with all the pieces, don’t you? Show that the square can be

dissected into some interesting shapes of your own invention.

Solutions
Challenge 3. Did you do it this way?

The reason that the rectangle has height equal to the height of the parallelogram

is that both polygons have the same area A and the same base length. Since the

area A of both polygons is the product of the length of the base and the height,

the height of both figures must be the same.
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For the dissection of the rectangle into a parallelogram, you have the right idea

if you just reversed the process.

Challenge 4. Let E be the midpoint of AC, and D the midpoint of AB. Drop

perpendiculars from E and D to the base BC. Cut the triangle along these line

segments. Swing the resulting triangles up to meet at A as in the picture below.

A

D

B

E

C

Why does this work? In “Heavy Lifting,” you will justify this dissection. You

are encouraged to try it now on your own.

Challenge 5. Step 1. Fold and then cut your square along one diagonal to make
two right triangles.
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Step 2. Take one of these triangles, and with one fold and cut, make two right

triangles. These will be the two “large” triangle tangram pieces.

Step 3. The remaining five tangram pieces will come from the other triangle

formed in Step 1. Make the “medium” tangram triangle by folding the right

angle corner to meet the hypotenuse at the midpoint. Then cut along this fold.

Now you have one “medium” triangle and one large trapezoid.

Step 4. Fold the trapezoid in half so that the slanted edges meet.

Step 5. Take one “half-trapezoid,” and with one fold and cut, make one square

and a triangle.
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Step 6. Take the other “half-trapezoid,” and with one fold and cut, make one

parallelogram and a triangle which is congruent to the triangle in Step 5.

Part III: High Altitude Work-Out

The word “parallelogram” seems automatically to bring the following picture

to mind:

However, there are many types of parallelograms. In this part of our inves-

tigation, you will explore the diversity of parallelograms.

Remember that an altitude of a parallelogram is a line segment that joins

a vertex on one of the sides to the line of the opposite parallel side (called

the base), and is perpendicular to that side. Since each vertex lies on two

sides, and each of those sides has an opposite side, there are two altitudes

that come from each vertex.

If the foot of the altitude lies on the base inside the parallelogram, we

will say the altitude falls inside the parallelogram. If the foot of the altitude

lies on the line of the base outside the parallelogram, we will say the altitude

falls outside the parallelogram.

The picture of the parallelogram below shows two altitudes from the

same vertex, one falls inside and one falls outside.
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Challenge 6. Draw all the altitudes of the following parallelogram:

How many altitudes does this parallelogram have? How many fall outside

the parallelogram?

It is true that most, but not all, parallelograms that are not rectangles have

eight altitudes.

Challenge 7. Draw and count the altitudes of the following parallelogram.

Question 3. How many altitudes does a rectangle have?
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Challenge 8. Next comes a question that challenges our usual notion of a
parallelogram. Can a parallelogram have six altitudes that fall outside the

figure?

If you are having trouble with this one, try making a skinny and very tilted

parallelogram.

Solutions
Challenge 6. Here are the altitudes of the pictured parallelogram:

Challenge 7. The parallelogram below has seven altitudes because two of the

altitudes are the same line segment.

Question 3. A rectangle has four altitudes: the four sides.
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Challenge 8. Here is an example of a parallelogram with six altitudes that fall

outside the parallelogram:

Part IV: Unusual Parallelograms
Supplies. You will need scissors, a ruler, a protractor, and paper to make a
parallelogram.

Preparation. Draw a parallelogram with base b of length 2II and two parallel
sides of length 4II that make a 45◦ angle with the line of the base, as in the
picture.

45◦

base 2
II

4
II

Question 4. If you know some trigonometry, use it to compute the length of
an altitude to the line of the base.

The challenge will be to dissect this parallelogram into a rectangle with

the lengths of the base and altitude, respectively, the same as those of the

parallelogram. First, pause and observe that if one of the 4II sides were the
designated base, the dissection would be easy.
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45◦

2
II

base 4
II

If the base were one of the 4II sides, as above, this dissection would be a
special case of the first dissection in Challenge 3.

The point of the challenge you are going to tackle now is that the base is

the side of length 2II; you are not allowed to change to the 4II base. A new
strategy will be needed since both altitudes to the 2II base fall outside the
parallelogram.

4
II

base 2
II

Look at the rectangle that is formed by the top of the parallelogram and

the two altitudes to the line of the base.

Question 5. What base length and height does this rectangle have?

4
II

base 2
II
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Challenge 9. Cut the parallelogram into pieces and reassemble them to form
a rectangle with base length 2II and height 2

√
2
II
.

Suggestion 1. Do the dissection in steps. Try to visualize the parallelogram
as composed of smaller parallelograms with altitudes falling inside.

Suggestion 2. Put the parallelogram on a piece of paper and draw the alti-

tudes to the line of the base. Make use of the rectangle formed using these

altitudes.

4
II

base 2
II

This dissection is an important part of the proof that any polygon can be

dissected into any other polygon of the same area. You will do this in the

the Heavy Lifting section.

Solutions
Question 4. The parallelogram below has height h equal to 2

√
2
II
, or, approxi-

mately, 2.8II:
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4
II

45◦

h

2
II

Since sin 45o = h
4 and sin 45

o =
√
2
2 , it follows that h = 2

√
2
II
.

Question 5. The rectangle formed by the top of the parallelogram and the two

altitudes to the line of the base has base of length 2II and height 2
√
2
II
, the same

as the original parallelogram.

4
II

base 2
II

Challenge 9. Here is one way to dissect the parallelogram into a rectangle with

base of length 2II:

A B

FE

D C Y X

First draw both altitudes to the line of the base. (Place the parallelogram on a

piece of paper so that you can draw the altitudes as well as the line of the base.)

Both altitudes AY and BX fall outside the parallelogram, but they form with

AB and Y X the required 2II × 2√2II rectangle.
Next, make one cut, parallel to the base, along EF . Now you have two

parallelograms.

Cut ABFE, the larger parallelogram, along the left-hand altitude, AF , to

form two triangles. Slide the left-hand triangle AFE so that it meets the right-

hand triangle ABF along its hypotenuse to form triangle BGF . Look what you

have–most of the required rectangle.
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E F

CD Y

F

A B

G

X

The remaining small parallelogram EFCD has an altitude to the base that falls

inside the parallelogram. You already know how to dissect EFCD into a small

rectangle. The final step is to slide that small rectangle over to fill out the rest

of the needed rectangle.

Part V: The Pythagorean Theorem by Dissection

In this part of the investigation, you will use dissection to prove the most

famous (and most proved) mathematical theorem of all, the Pythagorean

theorem. The picture below illustrates the theorem.

b

c

a
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Pythagorean Theorem. If squares are constructed on the three sides of a right
triangle, the area of the square on the hypotenuse is equal to the sum of the

areas of the squares on the legs. If the legs of the right triangle have lengths

a and b, and if c is the length of the hypotenuse, then

c2 = a2 + b2.

Preparation. The dissection proofs that you are going to investigate show
that the Pythagorean theorem is true for any right triangle. But it will be

fun also to do hands-on demonstrations of the proofs for a particular right

triangle. So, to prepare, carefully construct some figures. (For assistance

in constructing right angles and reproducing angles and lengths using a

compass, see the Solutions.)

First, construct a right triangle: Draw a horizontal line segment with

left-hand endpoint C. Then, using whatever tools you choose, such as a

compass or protractor, draw a line segment making a right angle at C.

C

Join the endpoints of the two segments to form a right triangle. Call the

lengths of the legs of your triangle a and b, and the length of the hy-

potenuse c.

C

cb

a
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Cut out four copies of the triangle.

Next, using your tools (you can use, for instance, a compass to reproduce

lengths), construct and cut out four squares, one each having side length

equal to a, b, c and, finally, a+ b.

Just for fun, reproduce the balancing act in the Pythagorean picture

above with some of your cut-out figures.

Each of the two challenges below provides a proof by dissection of the

Pythagorean theorem.

Caution. Drawing pictures of dissections, or actually cutting up figures and
reassembling the pieces does not constitute a complete proof. The pictures

must be backed up with facts. Often, it is expected that the readers will fur-

nish the necessary facts. Try to do this. (For some very convincing examples

of fake dissections, see the web references at the end of this section.)

Challenge 10. Part 1. Dissect your big square, the one with side length equal
to a+ b, into 4 copies of your triangle and one square with side length equal

to c, the length of the hypotenuse of your right triangle.

Part 2. Explain why the dissection in Part 1 proves the Pythagorean theo-

rem.

To carry out Part 1 of this challenge, start with the big square. Then

figure out how to arrange four copies of your right triangle and your square

with side length c on top of the big square so they fit exactly with no

overlaps.

For Part 2 of the challenge, remember that the area of the big square must

be equal to the sum of the areas of all the polygons in any dissection of it,

and use a little algebra.

Note. The picture of the dissection in Challenge 10, which is found in the So-
lutions, should be familiar to you. Recall the construction of lattice squares

where the side length s is a sum of two squares of positive integers. Sums of



Dissection 221

squares play an important role in mathematics. The Pythagorean theorem

is one of the earliest theorems about sums of two squares.

The next challenge will give a different dissection of the big square. Then,

using both dissections, you will obtain another proof of the Pythagorean

theorem without using any equations at all.

Challenge 11. Find a second dissection of your big square, the one with side
length equal to a+ b. This time use four copies of your triangle, your square

of side length equal to a, and your square with side length equal to b. Then

compare this dissection with the one from Challenge 10 to produce a proof

of the Pythagorean theorem.

To carry out this challenge, start with the big square. Then figure out

how to arrange four copies of your right triangle, your square with side

length a, and your square with side length b on top of the big square so they

fit exactly with no overlaps.

Another, quite different, proof of the Pythagorean theorem by dissection

can be found in the Heavy Lifting section.

Application of the Pythagorean Theorem

Question 6. Think about the following question. Do you know how to con-
struct a square with side length that is not an integer and not a fraction,

say a square with side length exactly equal to
√
2? (No approximations,

please.)

If you are not sure how to do this, consider whether the Pythagorean theorem

will provide some help. All you need to start building a square of side length

equal to
√
2 is one line segment of length equal to

√
2. Can you find a method

for constructing a line segment of length
√
2?

Question 7. Why stop with
√
2? Now that you know how to construct a

segment of length
√
2, can you construct one of length

√
3? How about
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segments of length
√
5,
√
6,
√
7, and

√
8? Can you construct them? If you

can, then you can then use a compass to reproduce lengths and construct

squares having these irrational numbers as side lengths.

Excellent work. If you are eager to tackle some dissection problems with a

higher degree of difficulty, continue on to “Heavy Lifting.”

Solutions
Preparation. For some assistance in constructing right angles and reproducing
angles and lengths using a compass read this.

To duplicate a given line segment AB :

Step 1. Draw a line l and mark a point AI on it.
Step 2. Set the radius of the compass equal to the length of AB by putting the

metal point at A and the pencil point at B.

Step 3. With the radius set as above and with the metal point of the compass at

AI, draw an arc that intersects l. Call the point of intersection BI.
Then segments AB and AIBI have the same length.

A B BI lAI

To duplicate a given ∠A:
Step 1. Draw a ray r emanating from a point AI as one side of the angle to be
constructed.

Step 2. Using the compass, draw an arc that intersects the sides of ∠A at points
B and C.

Step 3. Keeping the radius of the compass fixed and with the metal point at AI,
draw an arc that intersects the ray r at a point CI.
Step 4. Set the radius of the compass equal to the distance between B and C.

With the metal point at CI, draw an arc that intersects the previous arc and
let BI be the point of intersection of the two arcs. Draw segment AIBI.

Then the measure of angle ∠CAB is equal to the measure of angle ∠CIAIBI.

A C

B BI

AI CI r
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To construct the perpendicular bisector of a segment AB :

Step 1. With A and then B as centers, draw two arcs that have the same radius

and intersect each other at points C and D. Draw CD.

Step 2. CD is the perpendicular bisector of the segment AB.

C

D

BA

Challenge 10. Part 1. Here is a dissection that answers the challenge.

b

a
c

It is necessary to give some justification of the fact that the figure formed above

by the hypotenuses of the four copies of the right triangle (with legs of length

a and b and hypotenuse of length c) is a square. It is clear that the figure is a

quadrilateral with four sides of equal length. It follows from the congruence of

the right triangles and from the fact that the sum of the measures of the angles

in a triangle is equal to 180◦ that the sides of the quadrilateral triangle meet at
right angles.

Part 2. The area of the big square is (a+ b)2 = a2+2ab+ b2. It must be equal to

the sum of the areas of all the pieces in the dissection. So, using the fact that the

area of each right triangle is 1
2
ab and that there are four of them, the following

equation is obtained:
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c
2
+ 4(

1

2
ab) = a

2
+ 2ab+ b

2
,

c
2
+ 2ab = a

2
+ 2ab+ b

2
.

Now, if you subtract 2ab from both sides of this equation, the Pythagorean

equation

c
2
= a

2
+ b

2
,

results.

Challenge 11. Here is a dissection that answers the challenge.

a c

b

For this dissection, it is straightforward to justify that the right triangles and

squares fit together as claimed by the picture.

We use both dissections to prove the Pythagorean theorem. Since you found

two dissections of the same square, the sum of the areas of all the pieces in the

first dissection must be equal to the sum of the areas of all the pieces in the

second dissection. So, since the same four triangles are part of each dissection,

they cancel each other. Therefore, the area of the square of side c must be equal

to the sum of the areas of the squares of sides a and b.

a

b

c
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Question 6. If you start by constructing a right angle having both legs of

length 1, then the line segment that completes the triangle has, by the

Pythagorean theorem, length
√
2. Finally, you can use a compass to reproduce

this length and construct a square of side length
√
2.

Question 7. In the application of the Pythagorean theorem, you are asked how
you construct segments of lengths

√
3,
√
5,
√
6,
√
7, and

√
8. There are many

ways to do this. Here is one. It uses the fact that you know how to construct

a segment of length
√
2. Write 3 = 1 + (

√
2)2. You know how to construct a

segment of length
√
2, so construct a right triangle with legs of lengths 1 and√

2. By the Pythagorean theorem, its hypotenuse will have length
√
3. Note

that 3 = 1 + (
√
2)2 expresses 3 as the sum of squares of two numbers that are

not necessarily integers. This differs from the sum of two squares discussion in

Chapter 9.

Now you know how to construct line segments of length
√
2 and

√
3. You

can construct the remaining segments as follows. First write the numbers 5, 6, 7,

and 8 as a sum of two squares: 5 = 1 + 22, 6 = 22 + (
√
2)2, 7 = 22 + (

√
3)2,

and 8 = 22 + 22. Next, use the method above to construct segments of length√
5,
√
6,
√
7, and

√
8.

References
Jacobs, H. R., Geometry, Second Edition, W. H. Freeman & Company, New

York, 1987.

If you use a search engine such as Google, the word “tangram” will call up

many references such as http://mathforum.org.trscavo/tangrams.html.

For animated tangrams, see www.tygh.demon.co.ek/tan.

Take a look at www.cut-the-knot.com/pythagoras/tricky.html for an interesting

fake dissection.

The site www1.ics.uci.edu/∼ eppstein/junkyard/dissect.html has references to
more fake dissections.

Part VI: Heavy Lifting
Are you ready to put your dissection talents to work to transform any poly-

gon into any other polygon of the same area? The proof of this amazing fact

(known in the literature as the Bolyai-Gerwien theorem) will require some

hard work and ingenuity on your part. We will end with some enjoyable

applications of dissection, including a third, very clever, dissection proof of

the Pythagorean theorem.

http://www1.ics.uci.edu/~eppstein/junkyard/dissect.html
http://www.cut-the-knot.com/pythagoras/tricky.html
http://www.tygh.demon.co.ek/tan
http://mathforum.org.trscavo/tangrams.html
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At this point in the investigation, the earlier dissection of a 9II × 2II
rectangle into a 6II× 3II rectangle seems very easy. The same cannot be said
about the dissection of a 9II×2II rectangle into a 3√2II×3√2II square. That
dissection is quite a bit more challenging. It will be your first project in this

section. First, be sure you know how to construct a 3
√
2
II × 3√2II square.

Do that now.

Did you first construct a right triangle with both legs of length 3II and use
the Pythagorean theorem?

The proof that any polygon can be dissected into any other having the

same area will be the result of the two projects in this section. The first

project is the proof that every rectangle can be dissected into every other

rectangle having the same area. You are encouraged to make demonstration

models as you go along, for the proof is very interesting and intricate.

Project 1

Every rectangle can be dissected into any other

rectangle having the same area.

To get from one rectangle to the other one we have to go by way of a

parallelogram. The first step is to apply the technique for any parallelogram

that you used earlier in Part IV for a special parallelogram.

Step 1. Every parallelogram can be dissected into a rectangle having the

same base length b and altitude length h.

You might think “I did this already!” It is true that you have already

executed the dissection in some special cases, but now you have to show that

the statement is true for an arbitrary parallelogram. In Part II, you dissected

a parallelogram to transform it into a rectangle, but it was a parallelogram

in the “standard form”: one of the altitudes to the base fell inside the

parallelogram. In Part IV, you did the dissection for a specific parallelogram

having both altitudes to the base falling outside the parallelogram. The

proofs in these special cases will be helpful in the development of the proof

of the general case.



Dissection 227

It is always useful to have a demonstration model. Draw a parallelogram

with base of length
√
3
II
and sides of length 4II making an angle of 30o with

the line of the base.

Question 8. What is the length of an altitude to the base?

Demonstration model:

30◦√
3
II

4
II

As you figure out a proof for Step 1, try it out on your demonstration model.

This model will illustrate more of the complexities of the proof than the one

used earlier in Part IV.

If you want to prove Step 1 on your own, think about the strategy used

in Part IV and try to make it work for any parallelogram.

Otherwise, use the following outline for the proof. (Even with the outline,

there will still be plenty of work for you to do!)

Let the parallelogram have vertices A,B,C, and D. Draw both altitudes

to the line of the base CD. There are two cases. You can call them the

in-case and the out-case, depending on whether one of the altitudes to the

base falls inside the parallelogram or not.

(a). The diagram below shows an example of the in-case, since the foot of

the altitude from A to the base CD lies inside the parallelogram.

A B

D b C
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(b). An example of the out-case is pictured below. The foot of each altitude

to the base CD lies outside the parallelogram.

A B

D b C

The demonstration model is an example of an out-case.

Challenge 12(a). For the proof of Step 1, do the easy in-case first.

In-case: If one of the altitudes to the base CD falls inside the parallelogram

A B

D F C E

you know how to transform it by dissection into a rectangle with the same

base length b. Do it now.

Did you decide to slide triangle AFD on top of triangle BEC? To justify

this step, you must show that the two triangles are congruent. Did you do

that? If not, try to do it now.
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Observe that an extreme case occurs when the foot of an altitude to the

base lies at a vertex of the base as in the following picture:

We will call this case the extreme in-case.

Challenge 12(b). Tackle the out-case where both altitudes fall outside the
parallelogram. The idea here is to reduce the out-case to the in-case.

BA

C

F G

D XY b

E

b

Out-case: The two altitudes AY and BX together with AB and a segment

XY of equal length on the line of the base CD form the rectangle ABXY .

Rectangle ABXY has the same base length b and height h as parallelogram

ABCD. Consider trying the method you used in the dissection in Part

IV. There you visualized the parallelogram as composed of several in-case

parallelograms with the same base length b.

If you apply the method suggested in the solutions and dissect the ex-

treme in-case parallelogram ABFE into rectangle ABGF , you are left with

EFCD, a parallelogram that is part of the original parallelogram and has

the same base.
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BA

C

F G

D XY b

E

b Z b

What do you do now?

You repeat the procedure on parallelogram EFCD. One altitude may fall

inside parallelogram EFCD, so you have the easy in-case, and one more step

finishes the proof. (This is what happened with the parallelogram in Part

IV.) Otherwise, you have the out-case with both altitudes falling outside

the parallelogram. You must repeat the procedure that slices at the point of

intersection of the left hand altitude and the right hand side to produce an

extreme in-case parallelogram. This is what happens in the demonstration

model, isn’t it? The idea is the skinnier and more tilted the parallelogram,

the more repetitions needed. The picture looks like this:

BA

C

F G

D XY b

E

b Z b

H
I J K

Now slide triangle EIH on top of triangle FJI, as before, then slide all of

rectangle EFJI on top of rectangle FGKJ . You have covered a larger part
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of the big rectangle, and you are left with an even smaller parallelogram

HICD on the same base CD. What do you do now?

You are right if you said “Repeat the procedure!” In the demonstration

model, at this stage one altitude falls inside the parallelogram so it is the easy

in-case, and one more step finishes the proof. For the general parallelogram,

you might need to repeat more times.

Question 9. Can you see why eventually you will get a parallelogram with

the left-hand altitude falling inside the parallelogram?

This completes the proof that every parallelogram can be dissected into

a rectangle having the same base length b and height h. Now check the

Solutions for Step 1, and then try Step 2.

Solutions
Question 8. The parallelogram with base of length

√
3
II
and sides of length 4II

making an angle of 30◦ with the line of the base has height 2II. This follows from
the fact that sin 30◦ = 1

2
.

Challenge 12(a). In-case. To dissect parallelogram ABCD into rectangle

ABEF ,

A B

D F C E

slide triangle AFD on top of triangle BEC. To justify this step, the two triangles

must be proved congruent. There are many ways to do this. For example, you

know the parallelogram’s opposite sides AD and BC have the same length and

its altitudes AF and BE have the same length, and so, since the triangles are

right triangles, the Pythagorean theorem applies and the triangles are congruent

by side-side-side.
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Challenge 12(b). Out-case:

BA

C

F G

D XY b

E

b

Just as you did in Part IV, make an extreme in-case parallelogram by drawing

the line EF parallel to the base, where F is the point of intersection of the left

altitude AY with the right side BC of the parallelogram. Since parallelogram

ABFE with altitude AF is the extreme in-case, and you just proved that triangle

AFE is congruent to triangle BGF , you can slide triangle AFE on top of triangle

BGF to get part of the big rectangle.

Question 9. Each time you have to repeat the process, the points Y,Z, . . . at the
foot of the left hand altitude are all the same distance b apart, and they move

closer and closer to D. This means that eventually one will lie between C and

D, perhaps at C itself.

Step 2. Every rectangle can be dissected into any other rectangle having the

same area.

Demonstration models:
2
II

9
II

3
√

2
II

3
√

2
II
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To help follow the steps of the proof, cut out two demonstration models,

a 9II×2II rectangle, and a 3√2II×3√2II square. Then, using the proof below
as a guide, cut up the 9II × 2II rectangle, and reassemble the pieces into the
3
√
2
II × 3√2II square.
Step 2 starts with two rectangles both having the same area R. We have

some freedom of choice in notation. Let one rectangle have base of length

x and altitude of length y with x ≥ y, and the other have base of length w
and altitude of length z with z ≥ w.

y

x

z

w
(z ≥ w)(x ≥ y)

Since both rectangles have the same area, we have R = xy = wz. If both

rectangles have the same dimensions, no dissection is required. This happens

when x = z or x = w, in which case y = w or y = z, respectively. So

the assumption that x W= z, and therefore, that y W= w can be made. In

particular, y < w or y > w.

Question 10. Can you put x, y, z, and w in order in the case where y < w?

If y > w, the roles of x and y can be interchanged. We may assume,

therefore, that the relation between x, y, z and w for Step 2 is:

x > z ≥ w > y.

The idea of the proof is to go from one rectangle to the other via a

parallelogram. First, the rectangle with base of length x and height y is

transformed by dissection into a parallelogram with base of length x and

height y. Then Step 1 is used to transform this parallelogram into a rectangle

with base of length w and height z.
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y

x

x

z

y

w

You are going to work out the proof for any x, y, z, and w, but it will be

helpful to use the demonstration models as guides. For the demonstration

models, let the 9II × 2II rectangle be the rectangle with base of length x
and height y. So x = 9II and y = 2II. Let the 3

√
2
II × 3√2II square be the

rectangle with base of length w and height z. So w = z = 3
√
2
II
.

First you will transform the 9II × 2II rectangle by dissection into a para-
llelogram with base of length 9II and altitude of length 2II. Then you will
transform this parallelogram into the 3

√
2
II × 3√2II square.

This picture will help with the proof. The rectangle ABCD has base

CD of length x and altitude AD of length y.

A E B F

C

y

xD

wy

Since x > w > y, there is a point E between A and B so that DE has length

w. Now construct CF parallel to DE, so that EFCD is a parallelogram.

Since EFCD has base CD and altitude BC, it follows that EFCD has area

R = xy = wz.
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Challenge 13. Begin by dissecting rectangle ABCD into parallelogramEFCD.

The next step contains a very clever idea: Look at parallelogram EFCD in

another way. Think of DE as the base. Draw altitudes DH and EK from

D and from E, respectively, to the line of CF .

Here are pictures of two possible arrangements that might arise.

A E B F

w

K

CxD

y

H

A E

w

xD

H

K

C

y

FB

In the top figure, the altitude from E to the line of CF falls inside the

parallelogram EFCD; in the bottom figure,the altitudes from E and D to

the line of CF fall outside the parallelogram.
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Question 11. You know parallelogram EFCD has area R = xy = wz.When

you compute the area of parallelogram EFCD, thinking of it as having base

DE of length w, what can you conclude about the length of the altitudes

DH and EK?

Now, here is the payoff for your hard work in Step 1. By Step 1, parallelo-

gram EFCD can be dissected into rectangle DEKH, and rectangle DEKH

has the same base length and height as parallelogram EFCD.

The final step is to check that rectangle DEKH has base of length w

and height z. By construction, DEKH has base DE of length w. You

argued above that DH has length z. This concludes the proof of Step 2.

If you haven’t already done this, carry out the proof on the demonstra-

tion models to dissect the 9II × 2II rectangle into the 3√2II × 3√2II square.
Project 1 contains most of the hard work needed to prove the amazing

result in Project 2. Proceed to Project 2 and reap the rewards of your

efforts.

Solutions
Question 10. Inequalities can be tricky. The assumptions are: xy = zw, x ≥ y
and z ≥ w. If in addition, y < w, then, since xy = zw, it follows that x > z. So
the order is x > z ≥ w > y.
Challenge 13. Begin by dissecting rectangle ABCD into parallelogram EFCD.

A E B F

C

y

xD

wy

Since x > w > y, the altitude BC lies within the parallelogram EFCD, so the

dissection is easy. It is just the reverse of the in-case dissection from parallelogram

to rectangle you did in Step 1. That it can be done follows by symmetry. More

explicitly, you can slide triangle AED over on top of triangle BFC, since (as you

checked in Step 1) both triangles are congruent.

Question 11. Since parallelogram EFCD has area R = xy = wz, and has base

DE of length w, it follows that the length of the altitudes DH and EK is z.
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Project 2

If P and Q are polygons having the same area,

then P can be dissected into Q.

Just follow the steps. The proof will use facts from Project 1.

Step 1. Triangulation. Every polygon can be dissected into triangles all of

whose vertices are vertices of the original polygon.

Challenge 14. Can you prove this statement if the polygon is convex? Re-
member that a polygon is convex if every line segment joining any pair of

vertices lies within the polygon.

Suppose that the convex polygon has n sides. If n = 3, the polygon is a

triangle, so there is nothing to prove. Now assume that n > 3. How can you

cut the polygon up into triangles, whose vertices are those of the original

polygon?

Challenge 15. It is also true that non-convex polygons can be triangulated.
Can you triangulate this polygon?

It is true for any polygon, convex or non-convex, that there always is a pair

of vertices that can be connected by a line segment that lies wholly inside

the polygon (except for its endpoints). This is easy to prove for convex

polygons, but more difficult for non-convex polygons. You might make the

non-convex case a future project.
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Step 2. Every triangle can be dissected into a rectangle.

You did this in Part II. But now, in the more rugged part of the exercise,

you must use geometry to justify the dissection you executed there.

Rotate the triangle, if necessary, so that the largest angle is up at the

top, at A. Then the altitude to the base BC will lie inside the triangle.

A

DE

X Y

C G H I B

Draw AH, the altitude from A to the base BC. Let D be the midpoint of

AB, and E the midpoint of AC. Construct lines through D and E that

are parallel to AH. Let X and Y be the points of intersection of these lines

with the line through A parallel to BC. If you show that triangles EGC and

EXA are congruent, and that triangles DBI and DAY are congruent, then

you can construct rectangle XY IG by rotating triangles EGC and DBI as

indicated.

Challenge 16. Show that triangles EGC and EXA are congruent, and that
triangles DBI and DAY are congruent.

Step 3. Every rectangle can be dissected into any other rectangle of the

same area.

You proved this in Project 1.

Step 4. If polygons P and Q of area R can be dissected into a square of area

R, then P can be dissected into Q.

Can you figure out why this is true?

Here is one way to see it. Cut up polygon Q into pieces and reassemble them

to make the square S of area R. Now imagine that polygon P is drawn on
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tracing paper. Cut up polygon P , and reassemble the pieces to fit exactly

on top of the square S made from the pieces of Q. Next, look through

the tracing paper to the pieces of Q underneath. Use them as a guide to

cut some of the pieces of P into smaller pieces, if necessary, and then put

all of these pieces together to form Q. This process allows us to dissect a

polygon P into a square S, refine the dissection of S, and reassemble it into

a polygon Q, illustrating the transitive property of dissection.

For example, carry out the above procedure on the following polygons

P and Q.

w

w

w

P

3w

w

ww

Q

2w

w

w
w
2

First, dissect Q into a square of area R.

Next, dissect P and reassemble the pieces on top of the square formed

from Q.

Finally, look through the top square to observe how you have to cut up some

pieces of P , and put them together to form Q.

All that remains is to put all steps together to

show that any polygon P of area R can be

transformed by dissection into a square of area R.
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Putting All the Steps Together for the Proof

Suppose you prove that any polygon P of area R can be dissected into a

square of area R. Then the same will be true for any other polygon Q of

area R. So by Step 4, polygon P can be dissected into polygon Q.

We will prove that any polygon P of area R can be dissected into a square

of area R. This is what you are going to do. To begin, you will dissect P

into a finite number of triangles. Next, you will dissect each triangle into a

rectangle of the same area. Then, you will dissect that rectangle into one

having the same area and having one side of length s =
√
R. Finally, you

will reassemble the rectangles into a square of area R = s2.

1. First, triangulate P using Step 1.

2. For each triangle in the triangulation do the following: Say the triangle

has area A. Since the triangle is part of polygon P , the area A is less than

or equal to R. Using Step 2, dissect the triangle into a rectangle of area A.

3. Here comes a very clever idea. The area A of this rectangle is not

bigger than R = s2. So A can be written as s times “something,” where

“something” is at most equal to s. This means that there is a rectangle of

area A that has a side of length s. The stage is set for you to use Project 1 to

dissect the rectangle into another rectangle, one of whose sides has length s.

one side has length s

4. After you have transformed all of the triangles in the triangulation into

rectangles with one side having length s, assemble all of them together

placing sides of length s next to one another.
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s
s

s

s s

s

s

The resulting big rectangle is composed of all the pieces involved in all the

dissections in the earlier steps, so it has area R = s2. Since one of the sides

of this rectangle has length s =
√
R, the other side must also have length s.

Thus, the big rectangle is a square. Your construction of a square of area R

is complete.

Don’t you agree that this is a very interesting proof of a very interesting

theorem?

Solutions
Challenge 14. There are many ways to triangulate a convex polygon. Did you
do something like this? If the vertices are labeled P1, P2, . . . , Pn, cut along the

line segments P1P3, P1P4, . . . , P1Pn−1, which all lie inside the polygon.
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P2

P3

Pn - 1

Pn

P1

Challenge 15. The given non-convex polygon can be triangulated as follows.

Challenge 16. Triangles EGC and EXA are right triangles. The lengths of AE
and EC are the same. AC is transversal for parallel lines XY and BC, so the

measures of ∠XAE and ∠GCE are the same. Thus the measures of ∠AEX
and ∠CEG are the same. This proves that the triangles EGC and EXA are

congruent by angle-side-angle.

X A Y

D

BIHGC

E

The congruence of triangles DBI and DAY follows by an analogous argument.
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Step 4. There are many ways to carry out this illustration of Step 4. Here is
one. Polygon Q can be dissected into a square as follows:

Polygon P can then be dissected and reassembled on top of the square formed

from Q as pictured below:

Finally, put all the pieces together to form Q.

Interesting Applications of Dissection

Here are some enjoyable applications of dissection that you can regard

as cool-down exercises after the strenuous work on the polygon dissection

theorem.

Application 1. (Yet another) proof of the Pythagorean theorem. To begin,
draw the Pythagorean picture.
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b

c

a

B A

C

The idea behind this proof is to show that the square on the hypotenuse

dissects into two rectangles, one having area a2 and the other having area

b2. Be sure to justify each step. First, let the extensions of FG and HI

meet at W . Quadrilateral GWHC is a rectangle and its diagonal CW has

length c.

b

c

a

B
A

F

G

W

H

I

C

D E

Construct parallelograms WCBT and WYAC. Note that BT extends

BD and AY extends AE.



Dissection 245

Slide parallelograms WCBT and WYAC vertically downward so that

WT meets BC and WY meets AC. Let C I be the image of C.
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Let R be the point of intersection of WC I with AB and let S be the point

of intersection of the extension of WC I with DE.

Area BCCID = area BRSD = a2 and area CAECI = area RAES = b2.

Thus a2 + b2 = c2.

Application 2. Roll-up dissection. Here is a really fun way to do the dis-
section in Project 1. You will need a ruler, protractor, paper, scissors, and

tape. Draw a parallelogram with base of length 4II and sides of length 8II,
making an angle of 45◦ with the line of the base. Next, draw a rectangle
with the same length of base and same height. It’s a 4II × 4√2II rectangle,
right? Cut out the rectangle, and roll it up from left to right to form a

cylinder with base having circumference 4II. Put tape along the seam.

4
√

2
II

4
II
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Now, cut out the parallelogram, and place the bottom left vertex of the

parallelogram on top of the cylinder, as in the picture below:

Next, wind the parallelogram onto the tube by matching the base of the

parallelogram with the circumference of the base of the cylinder.

Since both polygons have the same height, the parallelogram will climb up

the cylinder with no overlaps, and the side opposite its base will correspond

exactly with the top edge of the cylinder.

Very carefully, tape the sides of the parallelogram together. You now

have two cylinders, one made by the parallelogram on top of the one made

made by the rectangle. Slip off the top cylinder, and cut vertically downward

from the top right vertex to the base of the cylinder. Flatten it, and look

at the outside surface of the resulting rectangle. What do you see?
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4
√

2
II

4
II

On the surface of the rectangle, you see the steps in the dissection done

earlier in Part IV. (To facilitate the construction, the model used here is

larger but similar to the one used in Part IV.) You can see that two steps

were needed. The first step is an out-case to extreme in-case reduction. The

second step is an easy in-case. Neat, don’t you think?

Try this proof on the demonstration model parallelogram with base of

length
√
3
II
and height 2II from Step 1 of Project 1. That dissection required

two reductions of out-case to extreme in-case, and one in-case. Since the

in-case step produces a very small triangle, you will have to be very precise

or else you will miss it!

Suggestions for the Endurance Athlete

10K Challenge. Prove that every polygon, convex or not, can be tri-
angulated. You might begin by proving that, for any polygon, convex

or non-convex, there always is a pair of vertices that can be connected

by a line segment lying wholly (except for its endpoints) inside the

polygon.
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symmetry property of dissection, 205
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tessellating shape, 115
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114
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triangle packing, see packing

triangulated polygon, see polygon
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transitive property of dissection, 239
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