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Preface

The title of this work has been carefully chosen to reflect its contents. ‘Topics’
connotes the fact that the work presents a collection of subjects that, while
they give valuable insights, do not represent a comprehensive account of
the theory of solid materials. ‘Theory’ means that mathematical modelling
prevails, and discussion of experimental methods and results is largely
absent. ‘Solid Materials’, rather than ‘Solid State Physics’, is meant to
signal that although the author is a physicist by profession, this work
presents aspects of solid state science that are often omitted from, or
unemphasized in, university courses in solid state physics.

All of the material in this work has been taught by me either in third or
fourth year undergraduate university courses, or in a beginning graduate
level course in solid state physics, with two exceptions: the polaron in
Chapter 6, and the one- two- and N-particle density functionals in section
12.7. In my opinion, neither of these topics is above the level of the other
chapters. In academia, a distinction is made between solid state physics,
taught by physics departments, and materials science, often taught in
engineering departments, with a third somewhat distinct viewpoint often
represented in chemistry departments. While I do not claim to have
bridged these distinctions, I have introduced material that has come to my
attention as a result of my research having overlapped areas outside of
traditional solid state physics. Part of my motivation has been to present
material that will tend to nudge the various sub-disciplines to increase
their overlap. In particular, and somewhat simplistically put, I want to
encourage solid state physicists to learn more about topics other than
quantum mechanical features of electronic structure, and other materials
scientists to learn more about such features. Another motivation has been
to focus attention on basic theoretical concepts in the science of solid
materials, to provide a clear understanding of fundamental properties. I
hope that, at least in places, the mathematical approach reflects the connec-
tion with computational simulation which, at its best, can quantitatively
complement experiment in the investigation of solid state properties. That
at least is the intention of Chapter 9 on classical atomistic modelling of
crystals, and of Chapter 11, with its appendix, on point defects in crystals.
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Computational simulation is a highly refined and fast developing technique
in the science of materials while, it seems to me, the study of the analytical
mathematical methods upon which much of the relevant software is based
is diminishing. I hope that this work will encourage the student to believe
that the mathematical theory is accessible and, by following through the
derivations, to develop more facility with it. To that end, many of the
derivations are more detailed than is usually found in advanced textbooks.
To keep all this manageable, the physical models upon which the mathema-
tical formulations are based are, to adapt a saying attributed to Einstein, as
simple as possible, but no simpler. A collection of questions, with answers
provided for most of them, is given at the end of the work. Working these
problems will greatly enhance the student’s grasp of the material.

I can claim that each chapter addresses properties and phenomena of
solids that are of basic scientific importance. Some, such as Chapters 1 to
3 on elastic media, and Chapter 8 on phonons, are more traditional than
others. Many other topics are equally basic, and the lecturer who uses this
book as a text may well replace some of its topics with others that he/she
favors. Nevertheless, I believe that the student will be well served by learning
any of the material herein. In order to maintain the clarity of the theoretical
approach, I have largely omitted discussion of ancillary examples and of
experimental methods and results. Chapter 11 is an exception, where the
detailed comparison between a wide range of computed and experimental
results is given to illustrate the value and promise of computational model-
ling, and the essential nature of experiment to that field in providing an
anchor for it. A balanced and comprehensive view of solids requires
further reading and study, and in many chapters I have given references to
works that can provide this. The student’s view needs to be broadened
beyond that of the present work both in terms of the range of basic phenom-
ena, and particularly in terms of experimental methods and phenomenology.

I can only claim that a few chapters are wholly or largely my original
work. These include Chapters 6, 11 and 14 on the polaron, point defects
and charge density waves respectively, and to a lesser degree Chapter 12
on molecular clusters. Otherwise, I have relied largely on ‘golden oldies’,
works of established pedagogical excellence by leaders, or in some cases
giants, in their fields. Chapters 1 to 4 largely follow Landau and Lifshitz’s
Theory of Elasticity for the continuum theory of solids, with important
input from Bhatia and Singh’s Mechanics of Deformable Media. The
introduction to dislocations, Chapter 5, follows closely the classic by the
Weertmans. Chapter 6 includes my own previously unpublished work on
the classical polaron, with an added section on Schafroth’s discussion of
quantization for effective potentials that are velocity-dependent. Chapter 7
on the general quantum theory of solids closely follows an article by
Maradudin in 1962. The simple one-dimensional illustration of phonon
properties in Chapter 8 is modelled on a presentation by Kittel. In
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Chapter 9 I reconstruct an example of classical atomistic modelling by my
former Harwell colleague, John Harding. Classical atomic diffusion in
Chapter 10 closely follows the book by Borg and Dienes. Chapter 11
summarizes most of my research with many collaborators during the past
fifteen years on the computation of point defect properties in insulating
crystals. Chapter 12, on the theoretical foundations of molecular cluster
computations, reflects what I have learned in the course of the computations
of Chapter 11, and incorporates particularly Pryce’s elegant derivation of the
Fock equation, and Thouless’ treatment of many-body perturbation theory,
for correlation. In Chapter 13, the discussion of electron paramagnetism
follows Huang’s Statistical Mechanics, and diamagnetism is discussed
according to Pippard’s brilliant exposition. Chapter 14 on charge density
waves follows a partly pedagogical work of my own from long ago (1964).

Of the fourteen chapters, nine of the first ten are based on classical
physics, the exception being Chapter 7, which lays out the atomistic basis
of materials science in quantum mechanical terms. The preceding six
chapters are based on continuum mechanics, although dislocations in
Chapter 5 require some acknowledgment of atomic structure, and the
polaron in Chapter 6 is a discrete particle, or rather, quasiparticle. These
nine classical chapters might be considered to fall within the field of tra-
ditional materials science, with some overlap into the realm of the traditional
physics of solids. I think that materials physics pedagogy needs to move more
into this area. Chapter 7, although it is quantum mechanical, uses only the
ideas of Schrödinger’s equation and the simple harmonic oscillator. It
should therefore be readily accessible to the materials science student, with
appropriate leadership from the lecturer.

Chapters 11 to 14 are unabashedly quantum mechanical. In my view
they are legitimate fare for students of materials science, but they will
remain closed to such students unless they have training in quantum
mechanics at the level of senior undergraduate physics courses. The possible
exception is parts of Chapter 12, which remain of specialist interest to
quantum chemists and solid state physicists. I believe that the current genera-
tion of materials scientists need to have training in quantum mechanics
because so much of modern materials science is based on quantum mechan-
ical features and properties, and increasingly so. These chapters represent
essentially standard fare for physics students.

The whole fourteen chapters are appropriate for study by physics
students, and probably also for students of materials chemistry. Chapters 1
to 4 were part of a third year half course on the continuum physics of materials
(about 35 hours of lecture in all) that included a sizable component of fluid
mechanics. The first half of Chapter 13, on paramagnetism of the electron
gas, was given as an example of the application of statistical thermodynamics
at the end of a third year full course on thermodynamics. Both these third year
courses (in the honors program in our department, slightly above the level of
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some physics major programs in the US) were also available for fourth year
credit, and for graduate credit. Chapter 8, on phonons, is fairly standard in
fourth year solid state physics courses, and was given as such. Chapters 5, 7,
9, 10, 11 and part of Chapter 12 were given in a fourth year half course on
the atomistic physics of materials, also available for graduate credit. Most of
this material was also given at one time or another in a beginning graduate
course in solid state physics. Diamagnetism of the electron gas (in Chapter
13) and charge density waves (Chapter 14) were also given in this graduate
course. Those who consult the original sources will realize that such material
can only be presented effectively to such students through a major pedagogical
effort, which I hope is reflected in the present work.

The present generation of students in the science of materials have a
huge new opportunity from the developments taking place in the interdisci-
plinary area that overlaps molecular biology and related topics on one side,
and traditional solid state science on the other. To take advantage, students
trained in physics will need to have a special kind of introduction to biology.
Students of biology will need to be given the mathematics and physics to
enable them to understand molecular structure and processes at the
quantum cluster level. Although I have not addressed this issue in the text,
I mention it here because I feel that it is of central importance that all
students of the physical and life sciences now upgrade their training to
include significant new holdings in this overlap area. The responsibility for
this will lie mainly with their teachers. I believe that much of the material
of Chapter 12 will come to be needed by a much wider range of science
students than has been the case in the past.

I am grateful toMiguel ABlanco of theUniversity of Oviedo for providing
the cover illustration, from a computational study of interstitial diffusion
channels in �-Ga2O3. It is with pleasure and humility that I acknowledge
influences, assistance and support without which this work could not have
been done. I thank my teachers, long ago now, at the University of Manitoba
and at Brandeis University; my research colleagues in the United Kingdom
and the United States, as well as my research students in Canada. All these
are a numerous band, too many to name here, and their much-appreciated
roles have been complex, worthy of an academic autobiography, but here is
not the place for it. I am grateful to the University of Manitoba for having
put before me a steady stream of students who inspired my pedagogical
efforts, and for having supported me as a Senior Scholar during the past two
years; my editor, Tom Spicer, at Institute of Physics Publishing for his patience;
Wanda Klassen of the University of Manitoba for having typed the entire
manuscript and its revisions with enthusiasm and uncanny accuracy; and my
beloved wife, Audrey, for her unflagging support, patience and encouragement.

John M Vail

Winnipeg
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Chapter 1

Strain and stress in continuous media

1.1 Introduction

When no external force is applied to a solid object, and it is in equilibrium, it
has some particular shape. When forces are applied, its shape changes. This
effect, referred to as strain, will be defined precisely in section 1.2. For a
segment of material of the object, forces acting upon it may originate
outside the object, or may come from adjacent segments of the material.
Those internal forces that act on the surface of the segment constitute the
so-called stress, which will be precisely defined in section 1.3. Stresses
produce strain; the relationship between the two will be discussed in
section 1.4. Equilibrium will be discussed in section 1.5.

Although we know that a solid is made up of atoms, which in turn
consist of nuclei and electrons, our human senses are incapable of detecting
this fine-scale structure. We can only detect variations in material properties
over a spatial scale that is referred to as macroscopic, let us say over a scale of
the order of a millimetre, or perhaps even as small as 0.01mm. There are
many circumstances where, from the viewpoint of our human senses, the
material is a continuum. Chapters 1 to 6 describe the properties of solids
in terms of this continuum model. Nevertheless, we shall find that it is
helpful to remember that there is a limiting smallness of scale for all materials
that exist under conditions like those at the earth’s surface (‘terrestrial’ con-
ditions), and this scale corresponds to atomic dimensions, represented by the
angstrom, namely 10�10 m.

For the purpose of describing the state of a solid throughout its volume
and at its surface, we shall conceptually divide the material up into a very
large number of small volume segments. For the continuummodel, these seg-
ments must still be large compared with atomic dimensions (10�10m), but
small compared with macroscopic dimensions (10�5 m, let us say). Between
the two regimes there are five orders of magnitude, corresponding to a
linear distance of �105 atomic diameters. Thus, for example, the small con-
tinuum volume segments might be a thousand atoms in diameter, but yet also
be one hundred thousandth of the diameter of a 1 cc sample of the material.
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In Chapter 9, we shall derive detailed relationships between an atomic-
scale model of a solid, and the continuum model properties.

The content of Chapters 1 to 4 are mainly based on the textbooks by
Landau and Lifshitz (1970) and by Bhatia and Singh (1986).

1.2 Deformation: strain and rotation

Suppose that a sample of solid material has been deformed. In general it
means that the material (the set of atoms) within a small volume at arbitrary
position ~rr has been displaced to a new position (~rrþ~uuð~rr Þ). We therefore
describe the deformation by the displacement field or deformation vector
field ~uuð~rr Þ. More generally, ~uu may also depend on time: see Chapter 2.

The nature of the deformation is not best described by ~uuð~rr Þ, but by the
effect of the deformation on small lengths, areas, and volumes within the
sample. We therefore consider a small vector segment d~rr at ~rr in the sample.
More precisely, we consider the material (the set of atoms) that coincides
with d~rr. Throughout this work, we want to limit the discussion to small
deformations. We shall specify more fully what ‘small deformations’
means quantitatively as we go along. One aspect of it is, however, that
under deformation, d~rr is deformed mainly into another vector d~rr 0: that is,
the atoms that originally coincided with the straight-line segment d~rr before
deformation, approximately coincide with the straight-line segment d~rr 0

after deformation. We comment that we use the notation d~rr , which properly
refers to an infinitesimal, but which here refers to an entity that is infinitesi-
mal only in the context of a macroscopic scale, but not down to an atomic
scale. The methods of calculus will nevertheless be applied to such entities.

In figure 1.1, the extremities of d~rr , at ~rr and ð~rrþ d~rr Þ respectively, are
shown displaced to ð~rrþ~uuð~rr ÞÞ and to ð~rrþ d~rrþ~uuð~rrþ d~rr ÞÞ respectively. Then

d~rr 0 ¼ ½~rrþ d~rrþ~uuð~rrþ d~rr Þ� � ½~rrþ~uuð~rr Þ�

¼ d~rrþ ½~uuð~rrþ d~rr Þ �~uuð~rr Þ�

¼ d~rrþ ðd~rr �~rrÞ~uuð~rr Þ: ð1:1Þ

Figure 1.1. The effect of the deformation field ~uu ð~rr Þ on a segment of material coinciding

with a small vector d~rr: see equation (1.1).
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The final expression in equation (1.1) comes from the Taylor expansion
of~uuð~rrþ d~rr Þ to first order small quantities, d~rr. This first-order approximation
corresponds to linear elasticity, which will govern our entire discussion of
continuous media.

In equation (1.1) we have used vector notation, the first of three nota-
tions that will be introduced. The second is index notation:

dx0i ¼ ðdxi þ dxj @juiÞ: ð1:2Þ

Equation (1.2) comes from identifying the components of a vector such as d~rr
by dxi where i ¼ 1, 2, or 3 corresponds to x1, x2, or x3 cartesian components.
Also in equation (1.2), @j � @=@xj, and dxj @j �

P3
j¼1 dxj @j; that is, the

Einstein summation convention is applied, in which the summation symbol
is omitted, but implied by a repeated index such as j, in a sum such as that
arising from the dot product (d~rr �~rr). Equation (1.2) can be put in a more
suggestive form,

dx0i ¼ ð�ij þ @juiÞ dxj; ð1:3Þ

where �ij is the Kronecker delta (unity if i ¼ j, zero otherwise); note the
Einstein summation in both terms. In equation (1.3), the quantity @jui is a
cartesian tensor of second rank which describes the deformation tensor. We
can then think of ð�ij þ @juiÞ along with the summation process as an
operator that transforms d~rr into d~rr 0.

We now introduce the third notation for this work. The elements of a
second-rank cartesian tensor may be displayed in an obvious way as a
three-by-three matrix. Thus we may represent the deformation tensor @jui
by u, a matrix whose element in row j and column i is @jui. Quite generally,
we may write

u ¼ ð"þ tÞ; ð1:4Þ

where " is the symmetric tensor,

"ij ¼ 1
2ð@iuj þ @juiÞ; ð1:5Þ

called the strain tensor, and t is the antisymmetric tensor,

tij ¼ 1
2 ð@iuj � @juiÞ; ð1:6Þ

called the rotation tensor, for reasons that will become clear shortly. In
the next two subsections we shall see that decomposing u into " and t
corresponds to separately identifying the two distinct characteristics of
deformation, namely compression (or dilatation) and shear on one hand,
and rotation on the other, both of which, in general, are position-dependent
in the material. Thus, although our notation will not always show it, " ¼ "ð~rr Þ
and t ¼ tð~rr Þ.

Deformation: strain and rotation 3



1.2.1 The strain tensor

In this section, consider a deformation such that t ¼ 0. In matrix notation
equation (1.2) becomes

dr0 ¼ ðI þ uÞ � dr ð1:7Þ

where I is the identity matrix (diagonal, with unit elements), and dr and dr0

are column matrices with elements dxi (i ¼ 1; 2; 3Þ, etc. With t ¼ 0, this
becomes

dr0 ¼ ðdrþ " � drÞ ð1:8Þ

Let the coordinate system be the principal axes of "ij at position ~rr, i.e. the
coordinate system in which " is diagonal, with diagonal elements "ð�Þ,
� ¼ 1, 2, 3. In this case, at~rr, we have from equation (1.8)

dx0� ¼ ð1þ "ð�ÞÞ dx�: ð1:9Þ

(There is no Einstein summation in equation (1.9).) Equation (1.9) has a
simple interpretation: "ð�Þ is the fractional elongation (positive or negative)
in the principal-axis direction �:

"ð�Þ ¼ ðdx0� � dx�Þ
dx�

: ð1:10Þ

Now throughout our presentation of continuum mechanics, we shall be
concerned with the deformation and dynamics of the material in a small
volume (�V) at arbitrary position ~rr in the material. Consider here (�V)
which is a small rectangular parallelopiped before deformation,

ð�VÞ ¼ dx1 dx2 dx3; ð1:11Þ

with edges oriented in the principal-axis directions. From equation (1.9), this
volume becomes ð�VÞ0, where

ð�VÞ0 ¼ ð1þ "ð1ÞÞð1þ "ð2ÞÞð1þ "ð3ÞÞð�VÞ: ð1:12Þ

To first-order in the small quantities "ij, i.e. in "
ð�Þ, we then have

ð�VÞ0 ¼ ½1þ "ð1Þ þ "ð2Þ þ "ð3Þ�ð�VÞ: ð1:13Þ

But ("ð1Þ þ "ð2Þ þ "ð3ÞÞ is the sum of diagonal elements of ", defined as the trace
of ", denoted Trð"Þ. From equation (1.13) we conclude that the fractional
volume change at~rr is given by Trð"Þ:

½ð�VÞ0 � ð�VÞ�
ð�VÞ ¼ Trð"Þ: ð1:14Þ

4 Strain and stress in continuous media



We note that this result is independent of coordinate system, and is valid at all
points~rr. This is because Trð"Þ is a scalar, as is obvious from equation (1.15),

Trð"Þ ¼ "ii ¼ @iui ¼ ~rr �~uu; ð1:15Þ

where we note Einstein summation in equation (1.15).
Equations (1.10) and (1.14) above summarize the information about

deformation which is contained in the diagonal elements of ". Now consider
the off-diagonal elements. For simplicity consider the case where " has the
form

" ¼
0 "12 0

"12 0 0

0 0 0

0
B@

1
CA: ð1:16Þ

Let us examine what such a strain does to two small vectors, perpendicular in
the x1–x2 plane (see figure 1.2a). Denote these vectors as

d~rr1 ¼ dx1 k̂k1; d~rr2 ¼ dx2 k̂k2; ð1:17Þ

where k̂k1 and k̂k2 are unit vectors in directions x1 and x2 respectively. Then
from equation (1.8)

dr 01 ¼
1 "12 0

"12 1 0

0 0 0

0
B@

1
CA

dx1

0

0

0
B@

1
CA ¼

dx1

"12 dx1

0

0
B@

1
CA

and similarly

dr 02 ¼
"12 dx2

dx2

0

0
B@

1
CA:

These last two equations are

d~rr 0
1 ¼ ðk̂k1 þ "12k̂k2Þ dx1; d~rr 0

2 ¼ ð"12k̂k1 þ k̂k2Þ dx2: ð1:18Þ

Figure 1.2. The shear effect of strain element "12 on two orthogonal small vectors d~rr1 and

d~rr2: see equations (1.16)–(1.19).
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The vectors d~rr 0
1 and d~rr 0

2 are shown along with d~rr1 and d~rr2 in figure 1.2b. It is
clear from equations (1.18) that the shear angle � is given, for small "12, in
radian measure:

� � "12: ð1:19Þ
From equation (1.16), with Trð"Þ ¼ 0, we see that there is no fractional
volume change from "12. The reader should show directly that the area sub-
tended by d~rr 0

1 and d~rr 0
2 in the x1–x2 plane is the same as that subtended by d~rr1

and d~rr, but only to first order. Explicitly,

ðd~rr 0
1 � d~rr 0

2Þ ¼ ð1� "212Þðk̂k1 � k̂k2Þ dx1 dx2;

ðd~rr1 � d~rr2Þ ¼ ðk̂k1 � k̂k2Þ dx1 dx2:

1.2.2 The rotation tensor

From the antisymmetry of the rotation tensor tij, equation (1.6), we see that it
has the matrix form

t ¼
0 �R3 R2

R3 0 �R1

�R2 R1 0

0
B@

1
CA ð1:20Þ

where

R1 ¼ �t23 ¼ � 1
2 ð@2u3 � @3u2Þ

is in fact the x1 component of the vector:

~RR ¼ � 1
2 ð~rr�~uu Þ: ð1:21Þ

Similarly t31 and t12 give the x2 and x3 components of the vector ~RR, equation
(1.21).

Consider now the special case where " ¼ 0. Then, from equations (1.7)
and (1.4),

dr 0 ¼ ðdrþ t � drÞ: ð1:22Þ

But from equation (1.20), t � dr is a column vector with elements equal to the
components of ð~RR� d~rr Þ, i.e.

d~rr 0 ¼ ½d~rrþ ð~RR� d~rr Þ�: ð1:23Þ
Then, since ðd~rr � ~RR� d~rr Þ ¼ 0, it follows, to first order in the small quantities
Ri, that

jd~rr 0j2 ¼ jd~rr j2; ð1:24Þ
from equation (1.23). This means that a deformation t, with " ¼ 0, causes no
compression or dilatation in any direction, and therefore no volume change.
We conclude that, for the most general deformation, to first order, all volume
change is contained in Trð"Þ, as in equation (1.14).
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We now show that equation (1.23) represents a rotation of d~rr through an
angle of j~RR j radians about the direction of ~RR. It is for this reason that ~RR is
called the rotation vector: through its magnitude and direction it gives the
rotation which deformation t, equation (1.20), produces for arbitrary small
vector d~rr, at any point in the material. In figure 1.3a, we show the vectors
d~rr , ~RR, ~RR� d~rr , and d~rr 0 in relation with each other. Now consider the
plane perpendicular to ~RR, looking in the direction of ð�~RRÞ, figure 1.3b,
which contains the line denoted ðdr sin �Þ, that projects d~rr onto the direction
of ~RR. The point denoted ð~RRÞ is the intersection of the line of ~RRwith this plane;
the points denoted ðd~rr Þ and ðd~rr 0Þ are the positions d~rr and d~rr 0 relative to the
origin 0 (figure 1.3a): they lie in the plane of figure 1.3b. The vector ~RR� d~rr
also lies in this plane. It is perpendicular to the plane of ~RR and d~rr , shown
shaded in figure 1.3a. Since this plane is seen edge-on in figure 1.3b, ~RR� d~rr
is perpendicular to the line denoted dr sin �, which is part of this plane
edge. Now since j~RR j is a first-order small quantity compared with
jd~rr j ¼ dr , the angle ’ will be small, in general. Then ð~RR� d~rrÞ nearly co-
incides with a segment of a circle of radius dr sin � centered on the point
ð~RRÞ in figure 1.3b. Thus in radian measure,

’ � j~RR� d~rr j
dr sin �

¼ j~RR j: ð1:25Þ

But this angle ’ is the angle by which d~rr must be rotated about the direction
of ~RR (perpendicular to the plane of figure 1.3b), to come into coincidence
with vector d~rr 0. It follows that the deformation t, equation (1.20), see also
equations (1.4) and (1.6), accounts only for rotation at a particular point
in the material.

1.3 Forces and stress

When no forces act on a sample of material, it will come to an equilibrium
configuration. Applied forces will then produce deformations, discussed in

dr
→′

dr
→

R
→

θ

R × dr→

dr sin θ
φ dr sin θ

R × dr
→ →

(dr )
→

R
→

(a) (b)

0

Figure 1.3. (a) The deformation effect of rotation vector ~RR on small vector d~rr; (b) the plane

orthogonal to ~RR containing ð~RR� d~rr Þ: see equations (1.23)–(1.25).
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section 1.2. These forces are of two types: forces applied to the surface of
the sample by contact with other matter or radiation, and so-called body
forces arising from external fields, principally electric, magnetic and gravi-
tational. Thus an object at rest and in equilibrium on the earth’s surface
will be deformed relative to its configuration in a gravity-free environment,
such as a space station. Dielectric and magnetic materials will be deformed
in electric and magnetic fields respectively, relative to their equilibrium
field-free configurations. Electrostriction and piezoelectricity, discussed in
section 9.5, are examples of such electrical effects. Very often, but not
always, these body-force effects are negligible. In any case, we shall see
how to incorporate both surface and body forces in our analysis of
deformation.

Consider now a small segment of material internal to the sample.
Suppose this material is deformed by surface and body forces, or as part
of a non-equilibrium process (for example as part of a free-body oscillation:
see Chapter 2). Then this internal segment is subject to forces arising from
contact with the adjacent material in the sample. These forces are basically
interatomic in origin: we therefore refer to them as short-range forces.
They are discussed in more detail in section 9.2. Some internal forces are
not so short-ranged, for example in dielectric media, where the atoms are
actually charged ions, and so-called Madelung forces are present, along
with induced electric dipole effects. In this chapter we consider only truly
short-range internal effects.

Let us consider the short-range internal force acting on a segment of
volume dV of the material. We express it by

d~FF ¼ ~ff ð~rr Þ dV

where ~ff ð~rr Þ is force per unit volume at ~rr. The total internal force on an
arbitrary volume V of the material arises from surface effects. The necessary
relationship between volume and surface integrals of this sort is given by
Gauss’s theorem, which for a vector field ~ff as here isð

V
dV fi ¼

ð
SðVÞ

ds nj�ji; ð1:26Þ

where

fi ¼ @j�ji: ð1:27Þ

The second-rank cartesian tensor �ji is called the stress tensor. In equation
(1.26), SðVÞ is the surface that bounds volume V , and nj is the unit
outward normal vector to SðVÞ, which we shall denote n̂n as part of the
vector notation that includes ~ff .

We now show that the stress tensor �ji is symmetrical, provided the
resultant torque ~�� on arbitrary volume V is due to internal forces only. In
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that case,

~�� ¼
ð
V
dVð~rr� ~ff Þ: ð1:28Þ

From equation (1.27), this becomes, in index notation,

�i ¼
ð
V
dV "ijkxj fk ¼

ð
V
dV "ijkxj@l�lk: ð1:29Þ

In equation (1.29), we have used the fact that

ð~rr� ~ff Þi ¼ "ijkxj fk

with Einstein summation convention throughout, where "ijk is the Levi-
Civitá symbol whose value is zero unless i, j and k are all different, and �1
when ði; j; kÞ is a cyclic or non-cyclic permutation of ð1; 2; 3Þ respectively.
Integration by parts of the right-hand side of equation (1.29) gives

�i ¼
ð
SðVÞ

ds "ijkxj�lknl �
ð
V
dV "ijkð@lxjÞ�lk: ð1:30Þ

Now since @lxj ¼ �lj , the volume term in equation (1.30) becomesð
V
dV "ijk�jk ð1:31Þ

whose component for i ¼ 1 isð
V
dVð�32 � �23Þ: ð1:32Þ

Similarly for components i ¼ 2; 3. But since �i, equation (1.30), is the torque
on volume V due to internal forces only, and these forces are purely of
surface origin, the volume integral in equations (1.30)–(1.32) must be zero.
It follows that, since V is arbitrary,

�ij ¼ �ji: ð1:33Þ

Since �ij expresses only internal short-range forces, it does not contribute to
any non-zero torque of external origin, and therefore the symmetry of the
stress tensor, equation (1.33), is not invalidated by such torques.

Just as in section 1.2 we obtained simple physical interpretations for the
elements "ij of the strain tensor and tij of the rotation tensor, here we can get a
simple picture of the elements �ij of the stress tensor. Consider a small
segment ds of surface area within the material. Without loss of generality
it may be assumed to be approximately planar and normal to the x1 axis,
defined by the unit vector n̂n1. This surface d~ss ¼ dx2 dx3 n̂n1 is illustrated in
figure 1.4. Now refer to equation (1.26). At some arbitrary interior point
in the material, let V be a very small volume segment, �V , of which d~ss is
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part of the boundary SðVÞ. Then approximately

ð�VÞ fi ¼
ð
Sð�VÞ

ds nj�ji:

But here n̂n ¼ n̂n1 ¼ ð1; 0; 0Þ is the unit outward normal. Thus the contribution
from d~ss ¼ dx2 dx3 n̂n1 to the net force ð�VÞ~ff is as follows:

to ð�VÞ f1 : ds nj�ji ¼ ds n1�11 ¼ ds�11 ð1:34aÞ

to ð�VÞ f2 : ds n1�12 ¼ ds�12 ð1:34bÞ

to ð�VÞ f3 : ds n1�13 ¼ ds�13 ð1:34cÞ
where ds ¼ dx2 dx3. From equations (1.34a)–(1.34c) we conclude that �11ð~rr Þ
is the force per unit area due to internal forces at~rr in the n̂n1 direction on an
area segment that lies perpendicular to n̂n1, and �12 and �13 are mutually
orthogonal tangential forces per unit area on such an area segment.
Similar definitions of all the other elements of �ij follow from this discussion.
Clearly the diagonal elements of � refer to compressive or dilatational
forces, and the off-diagonal elements refer to shear forces.

1.4 Linear elasticity

We observe that when forces are applied to a material object, it becomes
deformed. In previous sections we have described this deformation through-
out the material in terms of strain and rotation, and we have described
internal forces of interatomic short-range nature in terms of stress. We
have mentioned body forces, and we now introduce forces of external
origin acting on the physical surface of the material object. Specifically, we
denote the force per unit volume due to body forces of external origin by
~bb. For example, in the case of gravity,

~bbð~rr Þ ¼ �ð~rr Þ �~gg ð1:35Þ
where~gg is the acceleration due to gravity, and �ð~rr Þ is the mass density of the
material. Similarly, we define a position-dependent pressure, i.e. force per

Figure 1.4. A segment of surface d~ss ¼ dx2 dx3 n̂n1, part of the boundary of a small volume

�V : see equations (1.34).
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unit area, by ~PPð~rr Þ. Since by definition the force per unit area internally is
given by � according to equations (1.34a)–(1.34c), namely that �ji is the
force per unit area in direction i on a segment of material surface oriented
normal to direction j, we conclude that

Pi ¼ nj�ji; ð1:36Þ

where the unit vector nj is outward normal to the physical surface.
Let us now consider the work done on a material object by body and

surface forces ~bbð~rr Þ and ~PPð~rr Þ in a reversible, quasi-static process, as required
for classical equilibrium thermodynamics (see for example Pippard, 1964).
Denote it �W :

�W ¼
�ð

V
dV bið�uiÞ þ

ð
SðVÞ

ds Pið�uiÞ
�
: ð1:37Þ

From equation (1.36) and Gauss’s theorem,ð
SðVÞ

ds Pið�uiÞ ¼
ð
SðVÞ

ds nj�jið�uiÞ

¼
ð
V
dV @j �jið�uiÞ

� �

¼
ð
V
dV ½ð@j�jiÞð�uiÞ þ �ij@jð�uiÞ�: ð1:38Þ

But @j�ji ¼ fi, the internal force per unit volume (see equations (1.26)–(1.27)).
Thus, from equations (1.37) and (1.38),

�W ¼
ð
V
dVfðbi þ fiÞð�uiÞ þ �ji@jð�uiÞg: ð1:39Þ

In equation (1.39), the first term is the total work done on the material due to
the combination of external body forces ~bb and internal forces ~ff . But in a
quasi-static process, these forces are in equilibrium throughout, so their
sum must be zero for the particular deformation ð�uiÞ discussed here. We
therefore conclude that

�W ¼
ð
V
dV �ji@jð�uiÞ: ð1:40Þ

We can express equation (1.40) in terms of strain, as follows:

�ji@jð�uiÞ ¼ �ji�ð@juiÞ

¼ 1
2 f�ij�ð@juiÞ þ �ji�ð@juiÞg

¼ 1
2 f�ij½�ð@juiÞ þ�ð@iujÞ�g

¼ �ij�f12 ð@iuj þ @juiÞg ¼ �ij�ð"ijÞ: ð1:41Þ
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In equation (1.41) we have used the symmetry of �ji, equation (1.33), and the
definition of "ij , equation (1.5), and have interchanged summation indices
i and j in one term. Thus, for a homogeneous system, or for a small,
approximately homogeneous segment of a system, the combined first and
second laws of thermodynamics takes the form

�U ¼ fTð�SÞ þ�Wg

¼ fTð�SÞ þ �ijð�"ijÞg; ð1:42Þ
where in equation (1.42) the extensive quantities U, W and S are here taken
to be per unit volume: see equations (1.40) and (1.41). In equation (1.42),U is
the internal energy, T is Kelvin temperature, and S is entropy.

1.4.1 Hooke’s law

Now, for the moment, ignore thermodynamic conditions, and consider strain
" produced by stress �. For a stable system, a non-zero stress is required to
produce a non-zero strain. In general, � is a material-dependent function
of ", i.e. a function of six variables, namely the six independent elements of
". For small strain ", this relationship is approximately linear:

�ij ¼ cijkl"kl : ð1:43Þ

The material-dependent fourth rank cartesian tensor cijkl is the elastic con-
stant tensor. The approximate linear relationship, equation (1.43), is
known as Hooke’s law. For a homogeneous system, cijkl is independent of
position ~rr: we shall assume homogeneity in what follows. The tensor cijkl
has 34 ¼ 81 elements, but the symmetry of � and of " means that a much
smaller number are independent, as we shall see.

A mathematically convenient reformulation of stress, strain, and
Hooke’s law takes advantage of the symmetry of � and ". It is based on
the Voigt notation, as follows. Define �n and "n (n ¼ 1; . . . ; 6):

�1 ¼ �11 "1 ¼ "11

�2 ¼ �22 "2 ¼ "22

�3 ¼ �33 "3 ¼ "33

�4 ¼ �23 "4 ¼ 2"23

�5 ¼ �31 "5 ¼ 2"31

�6 ¼ �12 "6 ¼ 2"12 ð1:44Þ
In equations (1.44) note particularly the factors of 2 in "4, "5 and "6. From
equation (1.42), this enables us to write the energy density increment:

dW ¼ �ij d"ij ¼
X6
n¼1

�n d"n: ð1:45Þ
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From equation (1.45) in Voigt notation, we conclude that

@W

@"n
¼ �n ð1:46Þ

and

@2W

@"m @"n
¼ @�n
@"m

¼ @�m
@"n

¼ @2W

@"n @"m
: ð1:47Þ

But from Hooke’s law we can write

�n ¼
X
n

cnm"m; ð1:48Þ

where cnm are elastic constants in Voigt notation. The matrix cnm is 6� 6; it
has 36 elements. Furthermore, from equations (1.48) and (1.47),

cnm ¼ @�n
@"m

¼ @�m
@"n

¼ cmn: ð1:49Þ

Equation (1.49) shows that cnm is symmetrical. It therefore has at mostP6
n¼1 ¼ 21 independent elements, a large reduction from the 81 elements

of cijkl , equation (1.43).
In terms of Hooke’s law, equation (1.48), we now have the work per unit

volume associated with an infinitesimal strain, from equation (1.45):

dW ¼
X
nm

cnm"m d"n: ð1:50Þ

Clearly, in this approximation, the energy density is a homogeneous
expression of second-order in the elements of "n. From Euler’s theorem on
homogeneous functions,

X
n

"n
@W

@"n
¼ 2W : ð1:51Þ

From equations (1.46) and (1.48) this becomes

W ¼ 1
2

X
n

"n�n ¼ 1
2

X
nm

cnm"m"n: ð1:52Þ

Such a second-order approximation to the energy density is called the
harmonic approximation, equivalent to the approximation of linear elasticity
embodied in Hooke’s law.

1.4.2 Isotropic media

We now consider an isotropic material, and refer to the elastic constant
tensor cijkl defined in equation (1.43). For an isotropic solid, the measured
elastic constants must be independent of coordinate system: they must be
scalars. The same kind of derivation that led to equation (1.52) for the
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energy density in Voigt notation leads to

W ¼ 1
2 cijkl"ij"kl : ð1:53Þ

But if the elastic constants are scalar, then they must be multiplied by those
sets of second-order terms in elements of " that are scalars. Thus only the
first- and second-order scalar invariants of " must be involved, the first
squared and the second standing alone.

The first three orders of scalar invariants of a second-rank tensor can be
obtained as follows. Consider

� ¼ ð"þ �IÞ; ð1:54Þ

where I is the identity and � is a scalar. If we evaluate the determinant, we
obtain

detð�Þ ¼ fdetð"Þ þ ��þ �2�þ �3g ð1:55Þ

where

� ¼ fð"11"22 þ "22"33 þ "33"11Þ � ð"212 þ "223 þ "231Þg; ð1:56Þ

and� ¼ Trð"Þ, see equations (1.14) and (1.15). In equation (1.55), since �3 is
scalar, so must all other terms be, namely�, � and detð"). We conclude that,
with only scalar elastic constants in equation (1.53) for isotropic media,

W ¼ ða�2 þ b�Þ ð1:57Þ

where a and b are scalar elastic constants, i.e. there are only two of them
which are independently measurable.

It is conventional to write equation (1.57) in terms of a more appealing
form than �, equation (1.56): this leads us to the so-called Lamé elastic
constants 	 and 
, in place of a and b. It is based on the recognition that
�2 and � can be combined as follows:

ð�2 � 2�Þ ¼ "ij"ij : ð1:58Þ

The proof is straightforward:

�2 ¼ "ii"jj

¼ fð"211 þ "222 þ "233Þ þ 2ð"11"22 þ "22"33 þ "33"11Þg:

Combining this with equation (1.56) for �, using the symmetry "ij ¼ "ji then
leads to equation (1.58). Thus equation (1.57) becomes

W ¼ fa�2 þ 1
2 bð�

2 � "ij"ijÞg
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or

W ¼ f12	"ii"jj þ 
"ij"ijg

where

1
2	 ¼ ðaþ 1

2 bÞ and 
 ¼ � 1
2 b: ð1:59Þ

We next use the Voigt notation, equation (1.44), to obtain the elastic
constants as in equation (1.49) with equation (1.46):

�n ¼
@W

@"n
ð1:46Þ

cnm ¼ @�n
@"m

: ð1:49Þ

From equation (1.59)

�1 ¼ �11 ¼
@W

@"11
¼ 	�þ 2
"11

¼ 	ð"11 þ "22 þ "33Þ þ 2
"11

or �1 ¼ ð	þ 2
Þ"1 þ 	ð"2 þ "3Þ: ð1:60Þ

Similarly

�2 ¼ ð	þ 2
Þ"2 þ 	ð"3 þ "1Þ: ð1:61Þ
�3 ¼ ð	þ 2
Þ"3 þ 	ð"1 þ "2Þ: ð1:62Þ

Also

�4 ¼ �23 ¼
@W

@"23
¼ 2
"23 ¼ 
"4;

and similarly �5 ¼ 
"5 and �6 ¼ 
"6. Returning to equation (1.49) above,
with equation (1.60),

c11 ¼
@�1
@"1

¼ ð	þ 2
Þ

and similarly for c22 and c33, from equations (1.61) and (1.62). Also

c44 ¼
@�4
@"4

¼ 
;

and similarly for c55 and c66. Furthermore,

c12 ¼
@�1
@"2

¼ 	;

and similarly for c23 and c31. Also

c4n ¼ 0 except for n ¼ 4;
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and similarly for c5n and c6n. In matrix form we therefore have

c ¼

ð	þ 2
Þ 	 	 0 0 0

	 ð	þ 2
Þ 	 0 0 0

	 	 ð	þ 2
Þ 0 0 0

0 0 0 
 0 0

0 0 0 0 
 0

0 0 0 0 0 


0
BBBBBBBB@

1
CCCCCCCCA
: ð1:63Þ

In summary, for an isotropic material,

c11 ¼ c22 ¼ c33 ¼ ð	þ 2
Þ;

c12 ¼ c23 ¼ c31 ¼ 	;

c44 ¼ c55 ¼ c66 ¼ 
:

From these we note the so-called Cauchy relation:

c11 ¼ ðc12 þ 2c44Þ: ð1:64Þ
This general result can be used as a test for detailed calculations based on
approximate models and computational methods, as for an atomistic
model (see Chapter 9, for example), when applied to a cubic crystal.
Landau and Liftshitz (1970) discuss the criterion for equation (1.64) to be
applicable to a cubic crystalline material (p. 42).

1.4.3 Elastic moduli

In this section we discuss elastic moduli that are commonly used to describe
isotropic bulk solids. The first of these is Poisson’s ratio: the magnitude of the
ratio of lateral to longitudinal strain. Suppose that the material is simply
stretched in the x1 direction: �1 > 0, and �k ¼ 0 (k 6¼ 1). From isotropy,
"2 ¼ "3, and applying this to equation (1.48) with the isotropic Voigt
elastic constants from equation (1.63), we obtain

�1 ¼ ð	þ 2
Þ"1 þ 2	"2; ð1:65Þ
0 ¼ 	"1 þ 2ð	þ 
Þ"2: ð1:66Þ

If we denote Poisson’s ratio by �, then from equation (1.66) we get

� � � "2
"1

¼ 	

2ð	þ 
Þ : ð1:67Þ

From equations (1.65) and (1.66) together we get so-called Young’s modulus,
denoted E,

E � �1
"1

¼ 
ð2
þ 3	Þ
ð	þ 
Þ : ð1:68Þ
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We next discuss compressibility K or bulk modulus B ¼ K�1. By defini-
tion, the compressibility is the magnitude of fractional volume change per
unit pressure change. Since increasing pressure produces decreasing
volume (at least for hydrostatic, or isotropic pressure),

K ¼ � 1

V

�
@V

@p

�
: ð1:69Þ

Now in terms of strain, equation (1.14) gives,

�V

V
¼ Trð�"Þ: ð1:70Þ

where �V is a small change of volume V . For bulk properties, the volume
segment ð�VÞ in equation (1.14) becomes the total volume V here. Now,
for hydrostatic pressure, from the discussion following equations (1.34) we
conclude that

�ij ¼ �p�ij ; ð1:71Þ

or, in Voigt notation,

�k ¼ �p ðk ¼ 1; 2; 3Þ: ð1:72Þ
Where we consider an infinitesimal volume change �V as in equation (1.70)
above, let it be induced by an infinitesimal pressure change �p:

��k ¼ ��p ðk ¼ 1; 2; 3Þ ð1:73Þ

��k ¼ 0 ðk ¼ 4; 5; 6Þ ð1:74Þ

If we now apply the relationship

��n ¼
X
nm

cnm�"m ð1:75Þ

and use the isotropy results, equations (1.63), (1.73) and (1.75), we obtain
simply

��1 ¼ ��p ¼ ð3	þ 2
Þ�"1: ð1:76Þ
We conclude that the compressibility K , equation (1.69), is given by

K ¼ � 1

�p

�
�V

V

�
¼ 1

ð3	þ 2
Þ�"1
3�"1

or

K ¼ ð	þ 2
3
Þ

�1 ¼ B�1: ð1:77Þ

In arriving at equation (1.77) we have used equation (1.70) with equation
(1.76).

Finally we introduce the shear modulus G. It is defined by the shear stress
per unit angular deformation. The shear deformation is illustrated in figure
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1.2b; the angular deformation is ð2�Þ or, from equation (1.19), approximately
ð2"12Þ ¼ "4 in Voigt notation (see equations (1.44)). The shear stress is given
by �ij (i 6¼ j): see equations (1.34b), (1.34c). In Voigt notation, with isotropy,
�ij ¼ �k ðk ¼ 4; 5; 6Þ for i 6¼ j. Consider the case �k ¼ 0 ðk ¼ 1; 2; 3Þ with
�k0 ¼ �4 6¼ 0 (k0 ¼ 4; 5; 6Þ. Then equations (1.48) and (1.63), the strain–
stress relations with isotropy, give

�4 ¼ 
"4: ð1:78Þ
Thus for the shear modulus G we have

G ¼ �12
ð2�Þ ¼

�4
ð2�Þ ¼

ð
"4Þ
"4

: ð1:79Þ

From equation (1.79) we see that the Lamé constant 
 is simply the shear
modulus.

1.4.4 Stability conditions

Let us consider stability of equilibrium at constant temperature. The com-
bined first and second laws of thermodynamics can then be examined in
terms of the Helmholtz free energy F . Specifically,

dF ¼ ð�S dT þ dWÞ: ð1:80Þ
The stability condition is then that F increases with any possible change of
state. At constant temperature, this becomes that W must increase with
any deformation. Now for isotropic media we had

W ¼ ð12	"ii"jj þ 
"ij"ijÞ: ð1:59Þ

This is clearly positive definite for " 6¼ 0, if 	 > 0 and 
 > 0, for it is of the
form

W ¼ 1
2	ð"iiÞ

2 þ 

X
�;�

ð"��Þ2
� �

: ð1:81Þ

It is not clear that 	 and 
 are both positive, however, because ð"iiÞ2 andP
�;�ð"��Þ2 are not independent. Certainly, if the diagonal elements of "

are all zero, the deformation is a pure shear, and

W ¼ 

X
� 6¼�

"2��; ð1:82Þ

which for W > 0 requires 
 > 0. For a hydrostatic compression without
shear, we note that, in principal axes, the off-diagonal elements " will be
zero, and the diagonal elements "ð�Þ will be equal. In that case we have

W ¼ f12	ð3"
ð�ÞÞ2 þ 
½3ð"ð�ÞÞ2�g

¼ 3fð32	þ 
Þð"ð�ÞÞ2g; ð1:83Þ
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which requires

ð	þ 2
3
Þ ¼ B > 0: ð1:84Þ

In equation (1.84) we have used equation (1.77). We therefore have

B > 0; 
 > 0; ð1:85Þ

i.e. bulk and shear moduli are both positive.
It remains to determine the constraints on Poisson’s ratio �, equation

(1.67), and Young’s modulus E, equation (1.68). The reader can show,
though it may be tedious, that from equations (1.67), (1.68) and (1.77)

B ¼ E

3ð1� 2�Þ and 
 ¼ E

2ð1þ �Þ : ð1:86Þ

Now, in equation (1.68) for E, we note first that ð2
þ 3	Þ > 0, equation
(1.84), and then again from equation (1.84) with B > 0 and 
 > 0, equation
(1.85), that ð	þ 
Þ ¼ ðBþ 1

3
Þ > 0. Thus

E > 0: ð1:87Þ

From the definition of Young’s modulus, equation (1.68), this simply says
that for isotropic elastic media, tension always results in stretching, never
contraction. Then from B in equation (1.86) with B > 0, E > 0 [equations
(1.85) and (1.87)] we have

ð1� 2�Þ > 0 or � < 1
2; ð1:88Þ

and also from 
 in equation (1.86), with 
 > 0, E > 0,

ð1þ �Þ > 0 or � > �1: ð1:89Þ
From equation (1.86) we see that with �9 1

2, we have the compressibility
K ¼ B�1 � 0. That is, for a nearly incompressible medium, Poisson’s ratio
is nearly 1

2.
While negative values of �, indicating lateral swelling under longitudinal

tension, used to be thought not to exist in practice (see Landau and Lifshitz,
1970, p. 14, first footnote), this is no longer the case. Materials with � < 0 are
referred to as auxetic, and are now the subject of much experimental and
theoretical analysis. A representative reference is Baughman et al. (1998),
which analyses a wide range of cubic crystalline solids, while giving references
to works onmany types ofmore exotic materials. For anisotropic materials, it
is also possible for � to be greater than 0.5, the theoretical limit for cubic
crystals being 2.0, with values at least up to 1.68 having been deduced. Of
most interest for the case discussed in this section, namely isotropicmaterials,
is the fact that at least one such material has been found to have � < 0. Lakes
(1987) has produced open-celled polymer foams, which are isotropic, with
Poisson’s ratios ranging down to �0.7. Both of the papers cited in this
paragraph are highly recommended to the reader.
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1.5 Equilibrium

We now consider what the condition for equilibrium requires of the
deformation field ~uuð~rr Þ. The condition is simply that, in the absence of
body forces, the force per unit volume, ~ff ð~rr Þ, equation (1.27), should be zero

@j�ji ¼ 0: ð1:90Þ

For linear elasticity in an isotropic material, we begin with equation (1.59):

W ¼ 1
2	"ii"jj þ 
"ij"ij : ð1:91Þ

From equation (1.45) we deduce the analogue of equation (1.46)

�ij ¼
@W

@"ij
: ð1:92Þ

From equations (1.91) and (1.92):

�ij ¼ ð	"kk�ij þ 2
"ijÞ: ð1:93Þ

To apply this in equation (1.90) we note that

@jð"kk�ijÞ ¼ �ij@j"kk ¼ @i"kk:

We now introduce ~uuð~rr Þ through equation (1.5), and obtain:

@i"kk ¼ @i@kuk

and

@j"ij ¼ 1
2ð@j@iuj þ @j@juiÞ:

Thus the equilibrium condition, equation (1.90), is

	@i@kuk þ 
ð@j@iuj þ @j@juiÞ ¼ 0

or

ð	þ 
Þ@ið@kukÞ þ 
@j@jui ¼ 0: ð1:94Þ
In vector notation, this is simply

ð	þ 
Þ~rrð~rr �~uu Þ þ 
r2~uu ¼ 0: ð1:95Þ
This second-order, linear, homogeneous partial differential equation, with
the appropriate boundary condition, equation (1.36), gives us the deforma-
tion of a solid material in the absence of external body forces. For future
reference, we write equation (1.95) in an alternative form, using the vector
relationship

~rr� ð~rr�~uu Þ ¼ ~rrð~rr �~uu Þ � r2~uu: ð1:96Þ
We then obtain

ð	þ 2
Þ~rrð~rr �~uu Þ � 
~rr� ð~rr�~uu Þ ¼ 0: ð1:97Þ
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Solution of equation (1.97), to determine the deformation field~uuð~rr Þ, requires
specific boundary conditions, typified by equation (1.36). Body forces may
also be added to equations (1.90), (1.95) and (1.97). Such solutions can be
carried out analytically for many systems that have high symmetry, in
terms of the special functions of mathematical physics. Many older text-
books contain much material of this sort. Excellent representative references
are Green and Zerna (1968) and Sokolnikoff (1956). Currently, detailed
analyses by computational methods are carried out using programs that
incorporate the special functions for high-symmetry cases, and that use
quite different methods for more general cases. Such work can be found in
the periodical Computer Methods in Applied Mechanics and Engineering
(North-Holland, Amsterdam). In section 5.3 we apply and discuss the
equilibrium condition in relation to edge and screw dislocations.
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Chapter 2

Wave propagation in continuous media

2.1 Introduction

In Chapter 1 we introduced time-independent deformation of a continuous
solid. In this chapter we shall see the fundamental time-dependent deforma-
tions that can occur in an infinite continuous medium. In Chapter 4 we shall
see the characteristic effect of an infinite planar surface upon the deformation
dynamics. The fundamental dynamical entities are, of course, waves, whose
combinations and interactions are as rich and significant in the field of elastic
properties as they are in the field of electromagnetism, and in all other field
theories. Amongst the results that we shall obtain is the existence of two dis-
tinct speeds of wave propagation. Before any of this, we must discuss in
section 2.2 the fact that any vector field in an infinite medium, dropping
faster than (distance)�1 at large distance, consists of irrotational and shear
components. In section 2.3 we derive the equation of motion in the
absence of thermal effects. In section 2.4 we determine the propagation
speeds of irrotational and shear waves.

As we mentioned in Chapter 1, the contents of this chapter are largely
based on the textbooks by Landau and Lifshitz (1970) and Bhatia and
Singh (1986).

2.2 Vector fields

For an arbitrary vector field ~ff ð~rr Þ, recall the relationship of equation (1.96)
whence

r2~ff ¼ ~rrð~rr �~ff Þ � ~rr� ð~rr� ~ff Þ: ð2:1Þ

Recall also the representation of a Dirac delta function in the form

�ð~rr�~rr 0Þ ¼ �1

4�
r2 1

j~rr�~rr 0j : ð2:2Þ
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This result is most easily seen from electrostatics. Consider Maxwell’s
equation,

~rr � ~EE ¼ �ð~rr Þ
"0

; ð2:3Þ

where ~EE is the electric field due to a charge distribution �ð~rr Þ, and "0 is the
permittivity of free space. For a unit point charge, �ð~rr Þ ¼ �ð~rr Þ, the applica-
tion of Gauss’s theorem easily leads to Coulomb’s law,

~EE ð~rr Þ ¼ ~rr

4�"0r
3
: ð2:4Þ

The above generalizes to the case of the electric field at~rr 0 due to a unit point
charge at~rr,

~rr0 � ~EE ð~rr 0Þ ¼ 1

4�"0
~rr0 �

�
~rr 0 �~rr
j~rr 0 �~rr j3

�
¼ �ð~rr 0 �~rr Þ

"0
; ð2:5Þ

where ð~rr0 � Þ is divergence with respect to components of~rr 0, and for a func-
tion of ð~rr 0 �~rr Þ, ð~rr0 � Þ ¼ ð�~rr � Þ. It follows from equation (2.5) that

�ð~rr�~rr 0Þ ¼ 1

4�
~rr � ð~rr�~rr

0Þ
j~rr�~rr 0j3

; ð2:6Þ

and since

ð~rr�~rr 0Þ
j~rr�~rr 0j3

¼ �~rr 1

j~rr�~rr 0j ; ð2:7Þ

we obtain equation (2.2) from equations (2.6) and (2.7). Note that while this
derivation is motivated by electrostatics, it does not depend on electrostatics.

We now consider an arbitrary vector field ~FF ð~rr Þ, and write

~FF ð~rr Þ ¼
ð
d3r 0~FFð~rr 0Þ�ð~rr�~rr 0Þ

and use equations (2.2) and (2.1) to obtain

~FF ð~rr Þ ¼ �
ð
d3r 0~FF ð~rr 0Þ 1

4�
r2 1

j~rr 0 �~rr j

¼ � 1

4�
r2

ð
d3r 0

~FF ð~rr 0Þ
j~rr 0 �~rr j

¼ ð~rr� ~AA Þ þ ~rr’ ð2:8Þ

where

~AAð~rr Þ ¼ ~rr�
ð
d3r 0

4�

~FF ð~rr 0Þ
j~rr 0 �~rr j ; ’ð~rr Þ ¼ �~rr �

ð
d3r 0

4�

~FF ð~rr 0Þ
j~rr 0 �~rr j : ð2:9Þ
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Now in general ~rr� ð~rr’Þ ¼ 0 and ~rr � ð~rr� ~AA Þ ¼ 0. It then follows from
equation (2.8) that

~FF ð~rr Þ ¼ f~FFLð~rr Þ þ ~FFTð~rr Þg; ð2:10Þ
where

~FFL ¼ ~rr’! ~rr� ~FFL ¼ 0 ð2:11Þ
and

~FFT ¼ ~rr� ~AA ! ~rr � ~FFT ¼ 0: ð2:12Þ
Equations (2.10)–(2.12) are the important result, that a vector field ~FF ð~rr Þ is
the sum of a curl-less part and a div-less part, given respectively by ~rr’
and ~rr� ~AA. Furthermore, ’ and ~AA are determined explicitly, for given
~FF , by equations (2.9), and the integrals in equations (2.9) exist if ~FF ð~rr Þ
drops off faster than r�1 for large r. In the context of continuous media,
equations (2.10)–(2.12) given us the result that the time-dependent distortion
field ~uuð~rr; tÞ has the form

~uuð~rr; tÞ ¼ ½~uuLð~rr; tÞ þ~uuTð~rr; tÞ�; ð2:13Þ
where

~rr�~uuL ¼ 0; ~rr �~uuT ¼ 0: ð2:14Þ
The notations L (longitudinal) and T (transverse) will be understandable

after section 2.3. More details of the above derivation can be found in the
work by Morse and Feshbach (1953), section 1.5, pp. 52–54. In particular,
for ~FF ð~rr Þ as defined, it is not hard to show that equations (2.9) reduce to

~AAð~rr Þ ¼
ð
d3r 0

4�

½~rr0 � ~FF ð~rr 0Þ�
j~rr�~rr 0j ; ’ð~rr Þ ¼ �

ð
d3r 0

4�

½~rr0 � ~FF ð~rr 0Þ�
j~rr�~rr 0j ð2:15Þ

(see Appendix to this chapter). From equations (2.15) it follows that,
if ~rr� ~FF ¼ 0 and ~rr � ~FF ¼ 0 everywhere, then ~AA and ’ are also, as are
~FFL and ~FFT, equations (2.11) and (2.12), whence from equation (2.10) ~FF
itself is identically zero.

2.3 Equation of motion

We limit our discussion to isotropic elastic solids. Recall from Chapter 1 that
the force per unit volume ~ff is given, from equations (1.27) and (1.95), as

~ff ¼ ½ð�þ �Þ~rrð~rr �~uu Þ þ �r2~uu �; ð2:16Þ
and this will not be zero for a time-dependent system where ~uu ¼ ~uuð~rr; tÞ. For
future use, we rewrite equation (2.16), using equation (1.96), as

~ff ¼ ½ð�þ �Þ~rr� ð~rr�~uu Þ þ ð�þ 2�Þr2~uu �: ð2:17Þ
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In equations (2.16) and (2.17), � and � are the Lamé elastic constants: see the
discussion of equations (1.58) and (1.59).

The equation of motion for the medium is now obtained from Newton’s
second law of mechanics in the form

~ff ¼ �~aa; ð2:18Þ

where � is the mass density and ~aa is the acceleration. We must be careful
in applying equation (2.18) to the continuous medium, because we must
distinguish between the position of a segment of mass, whose motion is
governed by equation (2.18), and the general position vector ~rr in the
medium. We shall be dealing with the force per unit volume ~ff at a point ~rr
in the medium: from equation (2.17) or (2.18), since ~uu ¼ ~uuð~rr; tÞ, we have
~ff ¼ ~ff ð~rr; tÞ. Thus ~ff ð~rr; tÞ accelerates the material at~rr. Denote the position of
this material at time t by ~rrmðtÞ. What is the change of rmðtÞ in time
�t0 0? There are two contributions, in first order. One comes from the
explicit time dependence of ~uuð~rr; tÞ:

ð�~rrmÞ1 ¼ ½~uuð~rrmðtÞ; tþ�tÞ �~uuð~rrmðtÞ; tÞ�: ð2:19Þ

The other comes from the fact that at time t the material is in motion:

ð�~rrmÞ2 ¼ ½~uuð~rrmðtþ�tÞ; tÞ �~uuð~rrmðtÞ; t�: ð2:20Þ

We now evaluate the total displacement �~rrm from equations (2.19) and
(2.20):

�~rrm ¼ ½ð�~rrmÞ1 þ ð�~rrmÞ2�: ð2:21Þ

In this way we arrive at the velocity field ~vvð~rr; tÞ of the material:

~vvð~rrmðtÞ; tÞ ¼ lim
�t!0

�
�~rrm
�t

�

¼
�

lim
�t!0

½~uuð~rrmðtÞ; tþ�tÞ �~uuð~rrmðtÞ; tÞ�
�t

þ lim
�t!0

½~uuð~rrmðtþ�tÞ; tÞ �~uuð~rrmðtÞ; tÞ�
�t

�
: ð2:22Þ

Since

�~rrm ¼ ½~rrmðtþ�tÞ �~rrmðtÞ�;

we identify equation (2.22) as

~vvð~rrmðtÞ; tÞ ¼
@

@t
~uuð~rrmðtÞ; tÞ þ ð~vv �~rrmÞ~uuð~rrmðtÞ; tÞ; ð2:23Þ

where ~rrm is grad with respect to ~rrm. But ~rrm is the position of the material
being acted on by ~ff ð~rr; tÞ. Thus we must now identify~rr and~rrm. From equation
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(2.23) we conclude that

~vvð~rr; tÞ ¼
�
@

@t
þ~vv �~rr

�
~uuð~rr; tÞ: ð2:24Þ

The operator

�
@

@t
þ~vv �~rr

�
� D

Dt
ð2:25Þ

is called the material time derivative: it gives the time rate of change of a
property (in this case the displacement) of a segment of material at point ~rr
in the medium, at time t. We therefore conclude that the acceleration
~aað~rr; tÞ of the segment of material is

~aa ¼ D~vv

Dt
¼

�
@

@t
þ~vv �~rr

�2
~uu; ð2:26Þ

from equations (2.24) and (2.25). Accordingly, the equation of motion,
equation (2.18), becomes

~ff ¼ �

�
@

@t
þ~vv �~rr

�2
~uu; ð2:27Þ

with ~ff given by equations (2.16) or (2.17) for an elastic solid. In equation
(2.27), ~ff , �, ~vv and ~uu are all functions of ð~rr; tÞ.

For an elastic solid, we are assuming that deformation ~uu is a first-order
small quantity. We now further assume that the velocity field is first-order
small. This will be valid, given small displacements, if elastic constants are
not too strong, in the absence of external forces. In that case, the equation
of motion, equation (2.27), reduces to

~ff ¼ �
@2

@t2
~uu: ð2:28Þ

The linear approximation has the effect of neglecting any contribution to the
dynamics from the terms in ð~vv �~rrÞ in equation (2.27). These are the terms
that represent a contribution to time rates of change due to motion of the
material, as discussed following equation (2.20).

Finally, we note that deviations of the density �ð~rr; tÞ from the mean
density �0 are first-order small, and therefore are to be neglected in equation
(2.28). We see this as follows. Consider a small quantity of material which
when undeformed has volume V0. Its total mass is ð�0V0Þ. When it is
deformed, it has volume V and density �ð~rr; tÞ, if it is located at position ~rr
at time t. Thus,

�0V0 ¼ �V : ð2:29Þ
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Now from our discussion of strain, in Chapter 1, we saw, equations (1.14)
and (1.15),

ðV � V0Þ
V

¼ ~rr �~uu: ð2:30Þ

Thus, from equations (2.29) and (2.30),

�V ¼ �ðV0 þ V~rr �~uu Þ ¼ �0V0: ð2:31Þ

But to zeroth order, neglecting the term in ~rr �~uu, we have from equation
(2.31)

� � �0; ð2:32Þ

and this approximation is adequate to maintain the right-hand side of
equation (2.28) at first order. Thus, combining equations (2.16), (2.28) and
(2.32), we have the equation of motion,�

�r2~uu� �0
@2~uu

@t2
þ ð�þ �Þ~rrð~rr �~uu Þ

�
¼ 0 ð2:33Þ

and similarly, from equation (2.17),�
ð�þ 2�Þr2~uu� �0

@2~uu

@t2
þ ð�þ �Þ~rr� ð~rr�~uu Þ

�
¼ 0: ð2:34Þ

Equations (2.33) and (2.34) are clearly wave-like equations for the dynamical
behavior of the deformation~uuð~rr; tÞ of an isotropic elastic solid continuum in
the absence of external forces.

2.4 Wave propagation

2.4.1 Shear and rotational waves

Equation (2.33) for the deformation dynamics reduces to the simple wave
equation if ~rr �~uu ¼ 0. From equations (1.14) and (1.15), this is the condition
for a wave that involves no volume change anywhere in the medium. Such
deformations were shown in Chapter 1 to be characteristic of local shears
and rotations (end of section 1.2.1 and equation (1.24) and discussion
there). Such waves are therefore referred to as shear or rotational waves. In
that case we have, from equation (2.33) with ~rr �~uu ¼ 0,�

r2 � 1

v2T

@2

@t2

�
~uu ¼ 0 ð2:35Þ

where

vT ¼ ð�=�0Þ1=2 ð2:36Þ
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is the propagation speed of the wave. If we operate from the left on equation
(2.35) with ð12 curlÞ ¼ ð12~rr�Þ, we obtain:�

r2 � 1

v2T

@2

@t2

�
~RR ¼ 0 ð2:37Þ

where ~RR ¼ � 1
2
~rr�~uu is the rotation defined and discussed in section 1.2.2.

We therefore see that both shear~uu (with ~rr �~uu ¼ 0) and rotation ~RR propagate
with speed vT, equation (2.36).

The wave equation (2.35) has plane wave solutions. Linear combi-
nations of plane waves are also solutions, where the linear coefficients are
determined by initial and boundary conditions. Consider

~uuTð~rr; tÞ ¼ êeT exp½ið~kk �~rr� !tÞ�; ð2:38Þ

where êeT is a unit polarization vector, ~kk is the propagation vector giving both
direction of propagation and wavelength � ¼ 2�=k, and ! is the angular
frequency of the wave (2�� normal frequency). Substituting ~uu from
equation (2.38) into the wave equation (2.35) gives simply�

� k2 þ !2

v2T

�
¼ 0;

whence the so-called dispersion relation for shear and rotational waves:

!TðkÞ ¼ vTk; ð2:39Þ

giving the specific relationship between frequency and wavelength for such a
wave in such a medium. The condition ~rr �~uu ¼ 0 becomes, from equation
(2.38),

~kk � êeT ¼ 0; ð2:40Þ

which shows that the polarization êeT (i.e. direction of displacement) of such a
wave is perpendicular, or transverse, to the direction of propagation ~kk. This
is why the subscript T, for transverse, has been used here, and in equations
(2.10) and (2.12). The interpretation that the field with ~rr �~uu ¼ 0 is transverse
applies only to the present case, for a wave in an infinite medium.We shall see
in Chapter 4 that the div-less part of a surface wave is not purely transverse.

2.4.2 Dilatational or irrotational waves

Consider now a deformation field for which ~rr�~uu ¼ 0: it is irrotational, since
then ~RR ¼ 0; see equation (1.21). In this case the form of equation (2.34) for
the motion is convenient. It reduces to�

r2 � 1

v2L

@2

@t2

�
~uu ¼ 0 ð2:41Þ
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where

vL ¼ ½ð�þ 2�Þ=�0�1=2 ð2:42Þ

is the propagation speed. Note, from equations (2.36) and (2.42),

vL > vT: ð2:43Þ
Now, if we operate on equation (2.41) from the left with div ¼ ð~rr � Þ, we
obtain �

r2 � 1

v2L

@2

@t2

�
ð~rr �~uu Þ ¼ 0: ð2:44Þ

From equation (2.30), and in Chapter 1, we saw that ð~rr �~uu Þ is the fractional
volume change, which we refer to as the dilatation, allowing it to be positive
or negative where, in ordinary language, negative dilatation is simply com-
pression. Thus we see from equations (2.41) and (2.44) that dilatational
waves ~uu with ~rr�~uu ¼ 0, and dilatation ð~rr �~uu Þ itself, propagate with speed
vL > vT, equation (2.43).

Again consider plane-wave solutions of equation (2.41), where now

~uuð~rr; tÞ ¼ êeL exp½ið~kk �~rr� !tÞ�: ð2:45Þ
We obtain the dispersion relation,

!LðkÞ ¼ vLk: ð2:46Þ
Regarding equations (2.39) and (2.46), we see that there are two dispersion
relations, one for rotational and another for irrotational waves, both
linear, the latter having a greater slope, due to the condition vL > vT, equa-
tion (2.43). Because of the continuum approximation, the range of k-values is
continuous from zero to infinity, corresponding to wavelengths from infinity
to zero. These dispersion relations are illustrated in figure 2.1. For a real
solid, since the material has atomic structure, there is characteristically a
shortest wavelength, and thus a largest propagation vector ~kk. Furthermore,
the dispersion relation for a material consisting of discrete atoms is not
linear. These matters are discussed further in Chapter 8, and illustrated in
figure 8.1.

Applied to plane waves, equation (2.45), the irrotational condition
ð~rr�~uu Þ ¼ 0 gives

ð~kk� êeLÞ ¼ 0: ð2:47Þ
This shows that the deformation is polarized in a direction êeL which is
parallel to the propagation direction given by ~kk. Thus, for an infinite
medium, irrotational waves are longitudinal, whence the notation L in this
section, and in equations (2.10) and (2.11). The interpretation that the
curl-less component of a wave is longitudinal does not carry over to other
cases, however, as will be seen in Chapter 4 on surface waves.
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2.4.3 General discussion

So far, we have considered only waves for which either ð~rr �~uu Þ ¼ 0 or
ð~rr�~uu Þ ¼ 0. Now consider the general case, where neither of these
conditions is satisfied. From the discussion of section 2.2, it nevertheless
follows that

~uuð~rr; tÞ ¼ ½~uuLð~rr; tÞ þ~uuTð~rr; tÞ� ð2:48Þ
where

ð~rr �~uuTÞ ¼ 0; ð~rr�~uuLÞ ¼ 0: ð2:49Þ
We shall show that, even when neither ~uuL or ~uuT is zero, the two components
of ~uu still propagate independently with the characteristic speeds vL and vT
respectively.

The proof depends on the fact that if ð~rr� ~FF Þ ¼ 0 and ð~rr � ~FF Þ ¼ 0 then
~FF ¼ 0 everywhere. First, substitute equation (2.48) into equation (2.33).
Then we have

fð�r2 � �0@
2
t Þð~uuL þ~uuTÞ þ ð�þ �Þ~rrð~rr �~uuLÞg ¼ 0; ð2:50Þ

having used ð~rr �~uuTÞ ¼ 0, and having introduced the notation @t ¼ @=@t.
Operating on equation (2.50) from the left with ð~rr�Þ, we get

~rr� fð�r2 � �0@
2
t Þ~uuTg ¼ 0; ð2:51Þ

having used ð~rr�~uuLÞ ¼ 0 and ~rr� ~rr� ¼ 0 for arbitrary �, where here
� ¼ ð~rr �~uuLÞ. Furthermore,

~rr � fð�r2 � �0@
2
t Þ~uuTg ¼ ð�r2 � �0@

2
t Þð~rr �~uuTÞ ¼ 0; ð2:52Þ

since ð~rr �~uuTÞ ¼ 0. It follows that the quantity in f g brackets in equations
(2.51) and (2.52) is zero everywhere, since its curl and its div are both zero.

Figure 2.1. Dispersion relations !TðkÞ and !LðkÞ for angular frequencies of transverse (T)
and longitudinal (L) components of travelling waves in an infinite, continuous homo-

geneous, isotropic, elastic medium: see equations (2.36) and (2.39), and (2.42) and (2.46)

respectively, with equation (2.43).
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Thus �
r2 � 1

v2T
@2t

�
~uuT ¼ 0; ð2:53Þ

i.e. ~uuT in equation (2.48) propagates with speed vT, independent of ~uuL. Simi-
larly, substitute equation (2.48) into equation (2.34) and operate from the left
with div ¼ ð~rr � Þ. Then

~rr � f½ð�þ 2�Þr2 � �0@
2
t �~uuLg ¼ 0; ð2:54Þ

having used ð~rr�~uuLÞ ¼ 0 and ~rr � ð~rr�~aa Þ ¼ 0 for arbitrary ~aa, where here
~aa ¼ ð~rr�~uuTÞ. Furthermore,

~rr� f½ð�þ 2�Þr2 � �0@
2
t �~uuLg ¼ ½ð�þ 2�Þr2 � �0@

2
t �ð~rr�~uuLÞ ¼ 0: ð2:55Þ

It follows from equations (2.54) and (2.55) that the quantity in f g brackets is
zero everywhere, since its div and curl are both zero:�

r2 � 1

v2L
@2t

�
~uuL ¼ 0; ð2:56Þ

so that ~uuL in equation (2.48) propagates with speed vL, independent of ~uuT.
To summarize, an arbitrary wave motion ~uuð~rr; tÞ has components ~uuL and ~uuT
that propagate at different speeds vL and vT respectively, independent of
each other. In an infinite medium it is the longitudinal and transverse
components of the wave that are propagating with these particular speeds.
More generally, it is the curl-less and div-less parts of the wave that propa-
gate this way.

In this chapter, it is the wave motion of an infinite, isotropic, continuous
elastic medium that we have analysed. This is essential underpinning for all
kinds of properties and processes of systems that may be realistically related
to such a medium. Thus these waves will in practice be studied in connection
with equilibrium and non-equilibrium thermal properties (Chapter 3), with
surfaces (Chapter 4) and interfaces, with extended defects (Chapter 5), and
with electronic properties (Chapter 6). Their counterparts in atomically mod-
elled systems (Chapters 7 and 8) are equally important in all the above con-
texts, as well as for point defects (Chapter 11), for charge density waves
(Chapter 14) and superconductivity, and for interactions of condensed
matter with quantum-mechanical probes such as photons and neutrons.

Appendix to Chapter 2

Consider the first integral in equation (2.9):

~AAð~rr Þ ¼ ~rr�
ð
d3r 0

4�

~FF ð~rr 0Þ
j~rr�~rr 0j : ðA2:1Þ
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The curl operator ð~rr�Þ acts only on~rr in ðj~rr�~rr 0j�1Þ, so far as differentiation
is concerned. In fact, in general,

~rr� ðgð~rr Þ~FF ð~rr ÞÞ ¼ fð~rrg� ~FF Þ þ gð~rr� ~FF Þg; ðA2:2Þ

whence

~rr� ðgð~rr Þ~FF ð~rr 0ÞÞ ¼ ~rrgð~rr Þ � ~FF ð~rr 0Þ: ðA2:3Þ

Thus, equation (A2.1) is

~AAð~rr Þ ¼
ð
d3r 0

4�
~rr
�

1

j~rr�~rr 0j

�
� ~FF ð~rr 0Þ ðA2:4Þ

¼ �
ð
d3r 0

4�
~rr0

�
1

j~rr�~rr 0j

�
� ~FF ð~rr 0Þ: ðA2:5Þ

We can apply equation (A2.2) to equation (A2.5):

~AAð~rr Þ ¼ �
ð
d3r 0

4�
~rr0 �

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
þ
ð
d3r 0

4�

�~rr0 � ~FF ð~rr 0Þ
j~rr�~rr 0j

�
: ðA2:6Þ

The first integral in equation (A2.6) can be transformed into a surface inte-
gral, by Gauss’s theorem,

ð
V
d3r 0 ~rr0 �

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
¼

þ
S
ds0 n̂n0 �

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
; ðA2:7Þ

where n̂n 0 is the unit outward normal vector to S. For an infinite volumeV , the
surface S is at infinity. The integrand will be zero there, provided

lim
~rr 0 !1

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
¼ 0; ðA2:8Þ

i.e. provided that for large~rr

j~FF ð~rr Þj9 r�ð1þ�Þ; ðA2:9Þ

for � > 0. In that case, equation (A2.6) reduces to

~AAð~rr Þ ¼
ð
d3r 0

4�

½~rr0 � ~FF ð~rr 0Þ�
j~rr�~rr 0j : ðA2:10Þ

A similar derivation applies to the second integral in equation (2.9):

’ð~rr Þ ¼ �~rr �
ð
d3r 0

4�

~FF ð~rr 0Þ
j~rr�~rr 0j : ðA2:11Þ

We note that

~rr � ðgð~rr Þ~FF ð~rr ÞÞ ¼ f~rrg � ~FF þ g~rr � ~FFg; ðA2:12Þ
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whence

~rr � ðgð~rr Þ~FF ð~rr 0ÞÞ ¼ ~rrgð~rr Þ � ~FF ð~rr 0Þ: ðA2:13Þ
Thus equation (A2.11) is

’ð~rr Þ ¼ �
ð
d3r 0

4�
~rr
�

1

j~rr�~rr 0j

�
� ~FF ð~rr 0Þ ðA2:14Þ

¼
ð
d3r 0

4�
~rr0

�
1

j~rr�~rr 0j

�
� ~FF ð~rr 0Þ ðA2:15Þ

¼
�ð

d3r 0

4�
~rr0 �

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
�
ð
d3r 0

4�

½~rr0 � ~FF ð~rr 0Þ�
j~rr�~rr 0j

�
: ðA2:16Þ

The first integral in equation (A2.16) transforms as follows:ð
V
d3r 0 ~rr0 �

�
~FF ð~rr 0Þ
j~rr�~rr 0j

�
¼

þ
S
ds n̂n 0 �

�
~FF ð~rr Þ

j~rr�~rr 0j

�
; ðA2:17Þ

which is zero for infinite volume under the same conditions, equations (A2.8)
and (A2.9), as before. Thus

’ð~rr Þ ¼ �
ð
d3r 0

4�

½~rr0 � ~FF ð~rr 0Þ�
j~rr�~rr 0j : ðA2:18Þ

This completes the proof of equations (2.15), i.e. equations (A2.10) and
(A2.18).
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Chapter 3

Thermal properties of continuous media

3.1 Introduction

In previous chapters we have discussed the mechanical properties of con-
tinuous solid media at constant temperature. In this chapter we shall first
discuss the classical, reversible, equilibrium thermodynamics of such a
system, in section 3.2. Then in section 3.3 we shall introduce thermal con-
duction. This can be expected to affect wave motion, on the basis that
local compression of the material in the wave may produce heat, some of
which may be conducted away from the compressed region irreversibly.
The result is that the mechanical energy of the wave may be reduced as the
wave propagates through the medium. Thus in section 3.4 we analyse the
damping of waves by thermal conduction. While the phenomenon is of
basic importance in itself, it is also a good illustration of a wider class of
dissipative processes. Our presentation in this chapter largely follows the
textbook of Bhatia and Singh (1986). However, as always, further valuable
insight can be gained from Landau and Lifshitz (1970), especially section
35, for this topic.

3.2 Classical thermodynamics

3.2.1 The Maxwell relations

In Chapter 1, we briefly introduced the combined first and second laws of
classical thermodynamics, equation (1.42),

dU ¼ ðT dS þ �ij d"ijÞ; ð3:1Þ

in terms of stress �ij and strain "ij. In Voigt notation this takes the form

dU ¼
�
T dS þ

X6
n¼1

�n d"n

�
; ð3:2Þ
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see equation (1.45). We introduce Helmholtz and Gibbs free energies, F and
G respectively,

F ¼ ðU � TSÞ; ð3:3Þ

G ¼
�
F �

X
n

�n"n

�
; ð3:4Þ

whence from equations (3.2)–(3.4):

dF ¼ �S dT þ
X
n

�n d"n; ð3:5Þ

dG ¼ �S dT �
X
n

"n d�n: ð3:6Þ

The point here is that the combined first and second laws in terms of U, F ,
and G are appropriate for determining thermodynamic relations in terms
of different pairs of variables: entropy and strain, temperature and strain,
and temperature and stress, respectively. We note here, as in Chapter 1,
that extensive quantities such as U, F , G and S are taken to be per unit
volume.

From equations (3.5) and (3.6) we obtain two of the Maxwell relations,
as follows. From equation (3.5),�

@F

@T

�
"

¼ �S;

�
@F

@"n

�
T

¼ �n;

whence �
@2F

@T @"n

�
¼ �

�
@S

@"n

�
T

¼
�
@�n
@T

�
"

� �n; ð3:7Þ

defining �n. Equation (3.7) is the Maxwell relation expressing a calorimetric
coefficient (involving �S or T �S ¼ �Q: heat increment) in terms of a
thermometric measurement, involving ð@=@TÞ". Since thermometric meas-
urements are usually much easier to perform accurately than are calorimetric
measurements, one practical value of the Maxwell relations is to obviate the
latter type of measurement. Similarly from equation (3.6) we obtain�

@S

@�n

�
T

¼
�
@"n
@T

�
�

� �n ð3:8Þ

defining �n. In the above equations, " and � stand for the six elements of
Voigt strains or stresses respectively.

3.2.2 Elastic constants, bulk moduli and specific heats

We begin with isothermally measured elastic constants: see equations (1.48)
and (1.49). Thus, in terms of independent variables (T , "):
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d�n ¼
��

@�n
@T

�
"

dT þ
X
m

�
@�n
@"m

�
T

d"m

�

¼
�
�n dT þ

X
m

cTnm d"m

�
; ð3:9Þ

where we have used equations (3.7) and (1.49) for �n and for cnm respectively,
and cTnm is the isothermal Voigt elastic constant. Similarly,

dS ¼
�
@S

@T

�
"

dT þ
X
m

�
@S

@"m

�
T

d"m

¼
�
ðT�1c"Þ dT �

X
m

�m d"m

�
; ð3:10Þ

where we have again used equation (3.7) for �m, and the definition of the
specific heat capacity at constant strain, c":

c" ¼ T

�
@S

@T

�
"

: ð3:11Þ

We can now obtain a relationship between adiabatic and isothermal elastic
constants by combining equations (3.9) and (3.10), as follows. Solve equation
(3.10) for ðdTÞ:

dT ¼ T

c"

�
dS þ

X
m

�m d"m

�
: ð3:12Þ

Substitute for dT from equation (3.12) into equation (3.9):

d�n ¼
��

�nT

c"

�
dS þ

X
m

��
T�n�m

c"

�
þ cTnm

�
d"m

�
: ð3:13Þ

Thus, adiabatically, with S held constant, and ðdSÞ ¼ 0, equation (3.13)
becomes

�
@�n
@"m

�
S

� cSnm ¼
�
T�n�m

c"
þ cTnm

�

or

�
cSnm � cTnm

�
¼

�
T�n�m

c"

�
; ð3:14Þ

where cSnm are adiabatic Voigt elastic constants.
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Returning to equation (3.9), we can obtain an interesting and useful
result for the coefficients �n, equation (3.7). Keeping � constant, we obtain

�n ¼ �
X
m

cTnm

�
@"m
@T

�
�

¼ �
X
m

cTnm�m; ð3:15Þ

from equation (3.8). We now consider the case of isotropy. First note that in
equation (3.8), �n are the coefficients of thermal expansion at constant stress.
For an isotropic solid, the diagonal elements in the principal-axis coordinate
system of the tensor,

�ij ¼
�
@"ij
@T

�
�;

ð3:16Þ

are equal, and the off-diagonal elements are zero. The reason is simply that,
for such a medium, thermal expansion is the same in all directions, and
cannot induce shear: see also Bhatia and Singh (1986, section 3.7, pp. 40–
41). It follows that in equation (3.15), for an isotropic solid, �m ¼ �1 � �,
defining �, for m ¼ 1; 2; 3, and zero otherwise. Then using equation (3.15)
with the Voigt elastic constant matrix equation (1.63), we obtain

�n ¼ �1 � � ¼ ð3�T þ 2�TÞ� ð3:17Þ
for n ¼ 1; 2; 3, defining �, and zero otherwise, where superscripts T on � and
� indicate isothermal Lamé constants. When this result is applied to equation
(3.14), we see

ðcSnm � cTnmÞ ¼
T�2

cv
ð3:18Þ

for n and m both <4, zero otherwise, where cv ¼ c" is the specific heat
capacity at constant volume, for an isotropic solid. One result of equation
(3.18) is

cS44 � cT44 ¼ 0 ! �S ¼ �T; ð3:19Þ
see equation (1.63). Thus the isothermal and adiabatic shear moduli
(equation (1.79)) are equal. We therefore omit superscripts on it henceforth.
The other result from equation (3.18) is that

ðcS11 � cT11Þ ¼ ðcS12 � cT12Þ ¼
T�2

cv
: ð3:20Þ

From equation (1.64) and (1.63), c11 and c12 can be taken to be the two
independent elastic constants for an isotropic solid.

We now recall the expression for the bulk modulus of such a solid,
equation (1.77), which becomes

BS ¼ ð�S þ 2
3�Þ; ð3:21Þ

BT ¼ ð�T þ 2
3�Þ: ð3:22Þ
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But, again from equation (1.63),

c11 ¼ ð�þ 2�Þ; c12 ¼ �; ð3:23Þ
whence

BS ¼ 1
3 ðc

S
11 þ 2cS12Þ; ð3:24Þ

BT ¼ 1
3 ðc

T
11 þ 2cT12Þ: ð3:25Þ

From equations (3.24) and (3.25), along with equation (3.20),

ðBS � BTÞ ¼ ðcS11 � sT11Þ ¼ ðcS12 � cT12Þ ¼
T�2

cv
: ð3:26Þ

If we think of relationships such as those in equation (3.26) in terms of
measurement, as we should, we encounter once again the wonder to be
found in the science of thermodynamics. The results are also useful, as we
shall now see.

3.3 Thermal conduction and wave motion

We now re-examine the dynamics of an isotropic elastic solid, as discussed in
Chapter 2. There we said that, in linear approximation,

�0@
2
t uj ¼ @i�ji; ð3:27Þ

see equations (2.28), (2.32) and (1.27). In Chapter 2, thermodynamic con-
ditions were not considered, as we indicated they must be, in section 3.1.
In analysing the spatial variation of � , equation (3.27), we must consider
increments associated with temperature, assuming non-uniform temperature
distribution, as well as with strain as in Chapter 2. Thus

@i�ji ¼
�
@�ji
@T

�
"

ð@iTÞ þ
�
@�ji
@"kl

�
T

ð@i"klÞ: ð3:28Þ

The second term in equation (3.28) has been evaluated in Chapter 1, section
1.5, equations (1.90)–(1.97). In vector notation it is

fð�T þ �Þ~rrð~rr �~uu Þ þ �r2~uug ¼ fð�T þ 2�Þ~rrð~rr �~uu Þ � �~rr� ð~rr�~uu Þg;
ð3:29Þ

in terms of the deformation field ~uu, where we have given two alternative
forms, and we have used equation (3.19) to write �T ¼ �. Now from
equations (3.7), which is in Voigt notation, and equation (3.17), we see that�

@�ij
@T

�
"

¼ ��ij : ð3:30Þ
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It follows that in equation (3.28)�
@�ij
@T

�
"

@iT ¼ �@jT : ð3:31Þ

Thus combining equations (3.28), (3.29) and (3.31), equation (3.27) becomes

f�r2~uu� �0@
2
t~uuþ ð�T þ �Þ~rrð~rr �~uu Þg ¼ �~rrT : ð3:32Þ

We see, by comparing equation (3.32) with equation (2.33) that a thermal
gradient (~rrT) introduces a source term to the wave equation. A thermal
gradient is in turn associated with thermal conduction, as we shall now see.

Thermal conduction is described in terms of heat flux density ~JJ ð~rr; tÞ,

~JJ ð~rr; tÞ ¼ ��~rrTð~rr; tÞ; ð3:33Þ

where � is the coefficient of thermal conductivity, a material constant. Equa-
tion (3.33) is taken to be empirical: that heat flows as a result of a thermal
gradient, from hot to cold. In the absence of sources or sinks of heat in the
material sample, we have energy conservation within an arbitrary fixed
volume V of the material,ð

SðVÞ
ds n̂n � ~JJð~rr; tÞ ¼ � d

dt

ð
V
dV Qð~rr; tÞ; ð3:34Þ

where n̂n is the unit outward normal vector to surface SðVÞ, expressing the fact
that the net normal inward heat flux through the surface SðVÞ bounding the
volume V accounts entirely for the rate of change of the total amount of heat
(thermal energy) within volume V . In equation (3.34) Qð~rr; tÞ is the thermal
energy density within volume V . Since the volume V is fixed,

d

dt

ð
V
dV Q ¼

ð
V
dV

D

Dt
Q; ð3:35Þ

where D=Dt is the material derivative discussed throughout section 2.3 and
defined in equation (2.25). The term (~vv �~rrÞQ that comes from equation (2.25)
expresses the phenomenon of convection, that is heat transfer due to material
flow ~vv. In a solid, this effect is absent. Equation (3.34), with equation (3.35),
then reduces to

�
ð
V
dV

@Q

@t
¼

ð
SðVÞ

ds n̂n � ~JJ ¼
ð
V
dV ~rr � ~JJ: ð3:36Þ

In equation (3.36) we have used Gauss’s theorem. Because the volume V is
arbitrary, we conclude from equation (3.36) that

� @Q

@t
¼ ~rr � ~JJ: ð3:37Þ
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Now an increment of heat density �Q is given in terms of entropy density
(entropy per unit volume) by

�Q ¼ Tð�SÞ: ð3:38Þ

Thus equation (3.37) becomes

�T

�
@S

@t

�
~rr

¼ ~rr �~JJ: ð3:39Þ

Our notation in equation (3.39) emphasizes that the partial derivative is not
a thermodynamic coefficient, but a derivative at a fixed position ~rr, which
henceforth we denote @t. Introducing thermal conductivity, assumed to be
independent of position ~rr, from equation (3.33) into equation (3.39), we
obtain the heat flow equation in the form

�r2T ¼ T@tS ð3:40Þ

We now express the increment of entropy density in terms of temperature T
and strain ",

�S ¼
��

@S

@T

�
"

�T þ
X
m

�
@S

@"m

�
T

�"m

�
; ð3:41Þ

with " in Voigt notation. We next use equations (3.11) and (3.7) in equation
(3.41) and isotropy (c" ¼ cv, and �n ¼ �, equation (3.17)) to obtain

�S ¼
�
cv
T

�T þ �
X3
m¼1

�"m

�
: ð3:42Þ

Now,

X3
m¼1

�"m ¼ �"ii ¼ �ð~rr �~uu Þ; ð3:43Þ

see equations (1.44) and (1.5). Thus combining equations (3.40), (3.41), (3.42)
and (3.43) we obtain the heat flow equation in final form:

�r2T ¼ fcv@tT þ T�@tð~rr �~uu Þg: ð3:44Þ

We see that at zero temperature, or if ~rr �~uu or its time derivative are negli-
gible, equation (3.44) reduces to the simpler form of the heat flow equation,
determining Tð~rr; tÞ. It is the same mathematical form as the diffusion equa-
tion, Chapter 10. In general, however, we must analyse heat flow and
material dynamics, equations (3.44) and (3.32) respectively, as a set of
coupled partial differential equations. This we do for a simple, but very
instructive, special case in the next section.
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3.4 Wave attenuation by thermal conduction

We consider the question whether the wave equation, equation (3.32),
coupled to heat flow, equation (3.44), can sustain dilatational plane waves,
as discussed in section 2.4.1; see equation (2.45).

Consider a wave polarized in the x-direction, propagating in the x-
direction:

ujð~rr; tÞ ¼ �j1u0 exp½iðkx� !tÞ�: ð3:45Þ

Suppose, plausibly, that the temperature deviates from its space-and-time
averaged value Tav by a similar wave form,

½Tð~rr; tÞ � Tav� ¼ T0 exp½iðkx� !tÞ�: ð3:46Þ

Then the operator @t applied to ~uu gives a factor (�i!), and applied to Tð~rr; tÞ
gives ð�i!ÞðT � TavÞ. Similarly ~rr reduces to @=@x which applied to~uu gives a
factor (ik), and applied to Tð~rr; tÞ gives ðikÞðT � Tav). Thus equation (3.44)
gives

ð��k2ÞðT � TavÞ ¼ ð�i!cvÞðT � TavÞ þ ðT�!kÞu1;

whence

ðT � TavÞ ¼
ðT�k!Þu1

ð�k2�þ i!cvÞ
: ð3:47Þ

Thus (~rrT), the right-hand side of equation (3.32), is

~rrT ¼ "̂"1ðikÞðT � TavÞ ¼
"̂"1ðik2!T�Þu1
ð�k2�þ i!cvÞ

; ð3:48Þ

where "̂"1 is the unit vector in the x direction. We note, parenthetically, that
from equation (3.47), (T � Tav) is proportional to u1, but since the pro-
portionality constant is complex, there is a phase difference between the
waves u1 and (T � Tav), as we might have anticipated.

When we substitute from equation (3.48) into the wave equation (3.32),
we obtain

½��k2 þ �0!
2 � ð�T þ �Þk2� ¼ T�2ðik2!Þ

ð�k2�þ i!cvÞ
: ð3:49Þ

If we try to cast this in the form of a dispersion relation, ! ¼ v0k, as in
equation (2.46), we have

!2 ¼ 1

�0

�
i!T�2

ð�k2�þ i!cvÞ
þ ð�T þ 2�Þ

�
k2: ð3:50Þ

With T ¼ 0, we retrieve equation (2.46) with equation (2.42) for the dilata-
tional-wave dispersion. The additional term with T 6¼ 0 in equation (3.50)
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cannot be put in that form, both because of its !- and k-dependence, and
because it is a complex number-valued function. We conclude from equation
(3.50) that k, or !, or both must be complex. Consider a wave being gener-
ated by periodically applied forces at the surface of a sample of the material.
If ! were complex, its imaginary part would need to be negative, so that the
wave would go to zero amplitude with time, rather than growing without
limit and producing spontaneous breakdown of the material, as would
happen if the real part were positive. But the ‘dispersion relation’, equation
(3.50) is independent of position in the medium, and in particular it applies at
and near the surface, where the periodic applied forces would prevent
attenuation of the wave with time. We therefore conclude that ! must be
real, at least for the situation considered above.

It follows that k must be complex,

k ¼ ðk1 þ ik2Þ; ð3:51Þ
with both k1 and k2 real and positive: then k1 gives propagation in the
positive x-direction, and k2 gives attenuation rather than buildup to break-
down as the wave propagates through the medium. It will turn out that
from equation (3.50), both k1 and k2 will be functions of !. Thus the speed
of propagation v is

v ¼ !

k1ð!Þ
¼ vð!Þ; ð3:52Þ

that is, the propagation speed will be frequency dependent, in contrast to the
T ¼ 0 case, equation (2.42). Correspondingly, the damping coefficient k2 will
be frequency-dependent. Alternatively, we can talk about an attenuation
length �,

� ¼ 1

k2ð!Þ
¼ �ð!Þ: ð3:53Þ

Note that this is not the same � that comes up in going from equation (3.16)
to equation (3.17). Similarly, the wavelength of the wave, �, is

� ¼ 2	

k1ð!Þ
¼ �ð!Þ: ð3:54Þ

For the dispersion relation, we have

! ¼ vk1: ð3:55Þ
Since we would conventionally plot ! versus k1 from equation (3.55), we need
to express v, equation (3.52), in terms of k1, rather than in terms of !. Then
we have

! ¼ vðk1Þk1 ¼ !ðk1Þ: ð3:56Þ
We shall be interested in the frequency dependence of v, equation (3.52),
particularly its deviation from vL, equation (2.42), and the form of �ð!Þ,
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equation (3.53), as well as the dispersion !ðk1Þ, and particularly its deviation
from linearity.

We now return to equation (3.50). First, we can simplify the notation by
using some results from classical thermodynamics, section 3.2. In doing so,
we must assume that in the irreversible processes represented by thermal
conduction in a travelling wave, deviations from equilibrium are small.
Consider the factor in f g brackets, equation (3.50). From equation (3.26),

T�2 ¼ cvðBS � BTÞ; ð3:57Þ
and, from equation (3.22),

ð�T þ 2�Þ ¼ ðBT þ 4
3�Þ: ð3:58Þ

Substituting the results of equations (3.57) and (3.58) into equation (3.50) we
obtain

!2 ¼ 1

�0

½i!cvðBS þ 4
3�Þ � k2�ðBT þ 4

3�Þ�
ði!cv � k2�Þ

k2: ð3:59Þ

With simplifying notation,

ðBS þ 4
3�Þ ¼ MS; ðBT þ 4

3�Þ ¼ MT; ð3:60Þ
we obtain

!2 ¼ 1

�0

ði!cvMS � k2�MTÞ
ði!cv � k2�Þ k2: ð3:61Þ

From equation (3.51) we now write

k2 � ðk21 þ 2ik1k2Þ; ð3:62Þ
where in equation (3.62) we have introduced the linear approximation for
weak attenuation: k2 � k1. Using this in equation (3.61), and separating
real and imaginary parts we obtain

�0!
2ð!cv � 2�k1k2Þ � k21ð!cvMS � 4k1k2�MTÞ; ð3:63Þ
�0!

2ð�k21Þ � ðk41�MT þ 2k1k2!cvMSÞ: ð3:64Þ
In equations (3.63) and (3.64), we have only maintained first-order terms in
k2. We replace k1 in terms of the speed of propagation v,

k1 ¼
!

v
: ð3:65Þ

Then equations (3.63) and (3.64) become

�0v
2

�
cv
�
� 2k2

v

�
¼

�
cv
�
MS � 4MT

k2
v

�
; ð3:66Þ

�0v
2 ¼

�
MT þ 2cv

�
MS

1

!2
v3k2

�
: ð3:67Þ
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We should like to solve equations (3.66) and (3.67) for v ¼ vð!Þ and
k2 ¼ k2ð!Þ. Upon eliminating k2 from equation (3.66) and substituting
into equation (3.67) we obtain a cubic polynomial in v2, equal to zero. We
write it as follows:

!2 ¼
�
cv
�

�2
MSv

4 ð�0v2 �MSÞ
ð�0v2 �MTÞð�0v2 � 2MTÞ

: ð3:68Þ

The expression for k2 in terms of v is

k2 ¼
�

cv
2�

�
v
ðMS � �0v

2Þ
ð2MT � �0v

2Þ
: ð3:69Þ

We now discuss equations (3.68) and (3.69) in relation to the experi-
mental fact that for most solids,

MS � ð1:01ÞMT: ð3:70Þ

We introduce the notation ðcv=�Þ ¼ K , and

v2s ¼
MS

�0
; v2T ¼ MT

�0
: ð3:71Þ

Then equations (3.68) and (3.69) take the forms

!2 ¼ K2v2Sv
4ðv2 � v2SÞ

ðv2 � v2TÞðv2 � 2v2TÞ
; ð3:72Þ

k2 ¼
K

2
v

ðv2S � v2Þ
ð2v2T � v2Þ : ð3:73Þ

We note that from equation (3.70)

MT 9MS < 2MT: ð3:74Þ

Furthermore, since ! must be real, !2 must be positive, and thus from
equation (3.72) with equation (3.74), we conclude that there are forbidden
and allowed regions for v, the allowed region being for !2 > 0, namely

vT < v � vS;
ffiffiffi
2

p
vT < v: ð3:75Þ

The asymptotes for the plot of v versus ! are easily obtained from equation
(3.72): v ! vþT , v !

ffiffiffi
2

p
vþT and v ! ½�0=ðK2MSÞ�1=2!, all three as !! 1.

Also, v ! v�S as !! 0þ. It follows that, from equation (3.73), k2 ! 0 as
!! 0þ (i.e. as v ! v�S ). Furthermore, as v ! vþT , since !! 1, we see
that k2 ! Kðv2S � v2TÞ=ð2vTÞ as !! 1. The second branch of k2,
corresponding to v >

ffiffiffi
2

p
vT, is less easy to analyse qualitatively. All of the

above results are illustrated in plots of v versus ! and k2 versus !, presented
in figures 3.1 and 3.2 respectively, for copper. The asymptotes for v, and the
line v ¼ vS, are shown as dashed lines on figure 3.1.
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We now discuss figures 3.1 and 3.2. The data used for copper are

cv ¼ 3:44� 106 J=ðm3 8CÞ
� ¼ 390 J=ðsm 8CÞ

BT ¼ 1:3� 1011 Nm�2

�0 ¼ 8:89� 103 kgm�3

� ¼ 4:2� 1010 Nm�2:

When these data are used along with the defining equations for MS, MT, vS,
vT, equations (3.60) and (3.71), along with equation (3.70), and the definition
K ¼ ðcv=�Þ, we obtain the following:

ðK2MS=�0Þ ¼ 1:64� 1015 m�2

ðK=2Þ ¼ 4:41� 103 sm�2

v2S ¼ 2:107m2 s�2

v2T ¼ 2:092m2 s�2:

Figure 3.1. Speed of propagation v (m/s) versus angular frequency (rad/s) of a plane

dilatational wave in Cu, based on isotropic continuum theory with thermal conduction.

See equation (3.72) and discussion following it. Only the lower branch of the solid curve

has physical meaning. For 0 < ! <1, the speed ranges from vS down to vT: see equations

(3.70) and (3.74). Dashed lines are asymptotes. (Thanks to W A Coish.)
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First, we discuss the approximation k2 � k1, equation (3.62), upon which the
curves are based. The plot of k1 ¼ ð!=vÞ is shown by dashed lines on figure
3.2. The straight upper dashed line applies to the lower branch of the solid-
line curve for k2 versus !: It shows that k2 < k1 by more than two orders of
magnitude for all !, for this branch. On the other hand, the dashed curve k1
versus ! lies below the solid curve k2 versus ! along the whole of the upper
branch. This shows that the upper branch is spurious, not conforming to the
limitation within which equations (3.72) and (3.73) were derived. Since the
upper branch of v versus !, figure 3.1, corresponds to the upper branch of
k2 versus !, it is also spurious.

Now to comment briefly on the lower branches of figures 3.1 and 3.2,
which constitute the physical results. The speed of propagation varies slightly
with frequency, being determined by the adiabatic bulk modulus at low fre-
quency, and by the isothermal bulk modulus at high frequency, for
!0 1012 rad/s in the case of copper. Most of the variation, from 4590m/s
to 4574m/s, occurs for 1010 < ! < 1012 rad/s. Since v is almost constant,
the dispersion relation ! ¼ vðk1Þk1 is almost linear in k1: see equation
(3.56). The damping factor k2, figure 3.2, goes to zero as !! 0, and

Figure 3.2. Attenuation factor k2 (m�1) versus angular frequency (rad/s) of a plane

dilatational wave in Cu, based on isotropic continuum theory with thermal conduction.

See equation (3.73) and discussion following it. Only the lower branch of the solid curve

has physical meaning. Dashed lines show k1 versus ! [see equations (3.41), (3.51) and

(3.55)]. (Thanks to W A Coish.)
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approaches an asymptotic high-frequency value of 1:45� 105 m�1. The
attenuation length which we defined as k�1

2 in equation (3.53), is then infinite
as !! 0, and approaches 6:9� 10�6 m as !! 1. This value, being four
orders of magnitude larger than atomic dimensions in the crystal, still lies
within the range of the continuum approximation.

In summary, we have considered propagation of a plane dilatational
wave in a continuous isotropic medium, subject to thermal conduction. We
find that the wave is spatially attenuated, with an attenuation length
� ¼ k�1

2 . We also find that the propagation speed, while frequency depen-
dent, is nearly constant, varying according to equation (3.72) and figure
3.1, for weak attenuation. The attenuation factor k2 varies from zero at
zero frequency to an asymptotic maximum, as determined implicitly from
equation (3.73) with equation (3.72), and as illustrated in figure 3.2.
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Chapter 4

Surface waves

4.1 Introduction

Surface properties have always been important in materials science. Simply
because the topology of a semi-infinite medium, representing a solid with a
surface, is different from that of a completely infinite medium, representing
the bulk of a solid, there are characteristic features of most phenomena
that are specifically related to the surface. In this chapter we show that
there is a solution of the wave equation, quite distinct from the travelling
waves of Chapter 2, associated with the existence of a surface. This is of
significance not only for the real solid, which has surfaces, but for structures
on the surface. Such structures include impurities, adsorbed molecules, and
artificially produced micron, nanometer, and atomic scale entities, all of
which are of technological interest. Detailed study of all such systems,
experimental and computational, requires consideration of interaction with
the substrate. One aspect of this interaction is the substrate dynamics: its
characteristic wave properties. This chapter exemplifies the basis for
theoretical understanding of surface elastic wave effects in solids.

Let us consider the surface of an isotropic, homogeneous elastic solid.
Choose the surface to be z ¼ 0, with the material a semi-infinite continuum
z < 0. When we apply the free-surface boundary condition with linear
elasticity to the equation of motion of the material, we shall find a surface
wave, i.e. a wave whose amplitude decreases exponentially with distance
from the surface. It will be found to be a specific combination of longitudinal
and transverse parts. These Rayleigh waves, so-called after their discoverer
(Rayleigh, 1885), are relevant in all surface dynamic processes. Our treat-
ment in this chapter follows that of Landau and Lifshitz (1970), section 24.

In Chapter 2 we showed that the distortion field ~uuð~rr; tÞ in a homo-
geneous, isotropic elastic solid (or any other vector field) could be written as

~uuð~rr; tÞ ¼ ½~uuTð~rr; tÞ þ~uuLð~rr; tÞ�;
where

~rr �~uuT ¼ 0; ~rr�~uuL ¼ 0;
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see equations (2.13) and (2.14). The fields ~uuT and ~uuL were referred to as
transverse and longitudinal respectively, which could be taken literally for
the case of an infinite medium: see equations (2.40) and (2.47). Furthermore,
they have characteristic speeds of propagation vT and vL, equations (2.36)
and (2.42), with vL < vT. In this chapter we shall denote these speeds by cT
and cL.

4.2 Rayleigh waves

We begin with the wave equation,

ð@2t � c2Jr2Þ~uuJ ¼ 0; J ¼ T;L; ð4:1Þ

where transverse (T) and longitudinal (L) waves satisfy

~rr �~uuT ¼ 0; ~rr�~uuL ¼ 0 ð4:2a; bÞ

respectively. We consider plane waves, without loss of generality, of the
form

~uuJð~rr; tÞ ¼ ~uu
ð0Þ
J eiðk1xþk3z�!tÞ; J ¼ T;L: ð4:3Þ

For this to satisfy the wave equation (4.1), we require

½�!2 þ c2Jðk21 þ k23Þ� ¼ 0; J ¼ T;L:

The components k3 and k1 of the wave vector ~kk are therefore related to the
angular frequency as follows:

k2J;3 ¼
�
!2

c2J
� k21

�
; J ¼ T;L: ð4:4Þ

Thus, if cJk1 < !, kJ;3 is real, and equation (4.3) represents travelling waves
in the directions ðk1; 0; kJ;3Þ; the same longitudinal and transverse waves as
are obtained for the bulk material in Chapter 2. However, if cJk1 > !, kJ;3
is pure imaginary. In that case, denote kJ;3 ¼ �iKJ , and also let k1 ¼ k,
with both KJ and k real and positive. The form of equation (4.3) then
becomes

~uuJð~rr; tÞ ¼ ~uu
ð0Þ
J eiðkx�!tÞ eKJz; J ¼ T;L: ð4:5Þ

Since z < 0 inside the material, the case KJ > 0 corresponds to exponential
decay of the wave amplitude with increasing depth, for a wave travelling
parallel to the surface with speed (!=k). The case KJ < 0 would be
unphysical, with wave amplitude rising exponentially with depth, violating
the harmonic approximation for an elastic medium.
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4.3 Boundary conditions

We now apply the boundary condition for a free surface, z ¼ 0, to the
Rayleigh wave solution, equation (4.5); namely from Chapter 1, equation
(1.36) with equation (1.33),

�ijnj ¼ 0; ð4:6Þ

where n̂n ¼ ð0; 0; 1Þ, the unit outward normal vector at the surface, and where
the Einstein summation convention is assumed in equation (4.6). Thus,

�13 ¼ �23 ¼ �33 ¼ 0: ð4:7Þ

From Hooke’s law we have the stress–strain relation in terms of the Lamé
elastic constants, equation (1.93):

�ij ¼ 2�"ij þ ��ij"kk: ð4:8Þ

Thus, the boundary condition, equations (4.7), gives us the following
constraints on the strain tensor "ij at the surface z ¼ 0:

"13 ¼ "23 ¼ 0 ð4:9a; bÞ
�ð"11 þ "22Þ þ ð�þ 2�Þ"33 ¼ 0: ð4:9cÞ

Let us first consider the transverse component ~uuT of the Rayleigh wave,
alone. From the definition of the strain "ij in terms of the distortion field uj,

"ij ¼ 1
2 ð@iuj þ @juiÞ;

equation (1.5), the boundary conditions, equations (4.9) along with equation
(4.5) become

ðikuð0ÞT;3 þ KTu
ð0Þ
T;1Þ ¼ 0 ð4:10aÞ

KTu
ð0Þ
T;2 ¼ 0 ð4:10bÞ

½ik�uð0ÞT;1 þ ð�þ 2�ÞKTu
ð0Þ
T;3� ¼ 0: ð4:10cÞ

The div condition, equation (4.2a), gives

ðikuð0ÞT;1 þ KTu
ð0Þ
T;3Þ ¼ 0: ð4:11Þ

Equations (4.10a) and (4.11) have a non-trivial solution if and only if

ðK2
T þ k2Þ ¼ 0:

This is impossible if both KT and k are real. Thus the only solution is
u
ð0Þ
T;3 ¼ u

ð0Þ
T;1 ¼ 0, i.e. ~uuT ¼ 0. Similar treatment of ~uuL alone with the curl con-

dition, equation (4.2b), gives ~uuL ¼ 0. Thus we conclude that Rayleigh
waves cannot be purely longitudinal (curl-less) or transverse (div-less).

We saw in Chapter 2 that the general form of the distortion field ~uuð~rr; tÞ
was a linear combination of ~uuT and ~uuL as defined by equations (4.2). With ~uu
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given from equation (4.5) as

~uu ¼ ð~uuL þ~uuTÞ; ð4:12Þ

the boundary condition, equations (4.9), become

ikðuð0ÞT;3 þ u
ð0Þ
L;3Þ þ ðKTu

ð0Þ
T;1 þ KLu

ð0Þ
L;1Þ ¼ 0 ð4:13aÞ

ðKTu
ð0Þ
T;2 þ KLu

ð0Þ
L;2Þ ¼ 0 ð4:13bÞ

ik�ðuð0ÞT;1 þ u
ð0Þ
L;1Þ þ ð�þ 2�ÞðKTu

ð0Þ
T;3 þ KLu

ð0Þ
L;3Þ ¼ 0: ð4:13cÞ

The second of these equations, (4.13b), for the y-component of the wave, is
not coupled to the x- and z-components. We may therefore solve for the
latter, independent of the former. The simplest case is u

ð0Þ
T;2 ¼ u

ð0Þ
L;2 ¼ 0: no

y-component of displacement. The other two equations, (4.13a) and
(4.13c), will combine with the div and curl conditions, equations (4.2a) and
(4.2b), to give four equations in the four amplitudes u

ð0Þ
J; j , J ¼ T;L, j ¼ 1; 3.

4.4 Dispersion relation

Let us now apply equations (4.2a) and (4.2b) to the Rayleigh wave, equation
(4.5) in the x–z plane. We then have

ðikuð0ÞT;1 þ KTu
ð0Þ
T;3Þ ¼ 0; ð4:14aÞ

ðKLu
ð0Þ
L;1 � iku

ð0Þ
L;3Þ ¼ 0: ð4:14bÞ

We eliminate u
ð0Þ
T;3 and u

ð0Þ
L;3 from equations (4.13a) and (4.13c) by using

equations (4.14a) and (4.14b). Thus,

ðk2 þ K2
TÞu

ð0Þ
T;1 þ 2KTKLu

ð0Þ
L;1 ¼ 0; ð4:15aÞ

2�k2u
ð0Þ
T;1 þ ½ð�þ 2�ÞK2

L � �k2�uð0ÞL;1 ¼ 0: ð4:15bÞ

We now recall the relationship between elastic constants (�, �) and wave
speeds (cL, cT), equations (2.36) and (2.42),

ð�þ 2�Þ ¼ c2L�0; ð4:16aÞ
� ¼ c2T�0; ð4:16bÞ

where �0 is the mean mass density of the material. Also recall equations (4.4):

K2
T ¼

�
k2 � !2

c2T

�
; ð4:17aÞ

K2
L ¼

�
k2 � !2

c2L

�
: ð4:17bÞ

Dispersion relation 51



When these expressions are substituted into equations (4.15a) and (4.15b), we
obtain�

2k2 � !2

c2T

�
u
ð0Þ
T;1 þ 2

��
k2 � !2

c2T

��
k2 � !2

c2L

��1=2
u
ð0Þ
L;1 ¼ 0; ð4:18aÞ

2k2u
ð0Þ
T;1 þ

�
2k2 � !2

c2T

�
u
ð0Þ
L;1 ¼ 0: ð4:18bÞ

The necessary and sufficient condition that equations (4.18a) and (4.18b)
have a solution is�

2k2 � !2

c2T

�4
¼ ð4k2Þ2

�
k2 � !2

c2T

��
k2 � !2

c2L

�
: ð4:19Þ

This is the dispersion relation, angular frequency ! as a function of wave
number k, for Rayleigh waves.

We now solve equation (4.19). Since (!=k) has the dimensionality of
speed, we can write

! ¼ �cTk; ð4:20Þ
where � is a dimensionless parameter. In this notation, equation (4.19)
becomes

�6 � 8�4 þ 8

�
3� 2c2T

c2L

�
�2 � 16

�
1� c2T

c2L

�
¼ 0: ð4:21Þ

Thus we see that � is independent of k, and depends only on the material
constant ðcT=cLÞ. Now consider ðcT=cLÞ2,�

cT
cL

�2
¼ �

ð�þ 2�Þ ¼
1�

�

�
þ 2

� ;

from equations (4.16a) and (4.16b). From equation (1.67) for Poisson’s ratio
� we have

� ¼ �

2ð�þ �Þ ¼
1

2

�
1þ �

�

�

whence �
�

�

�
¼

�
1

2�
� 1

�
:

It follows that �
cT
cL

�2
¼ 1�

2þ
�

1

2�
� 1

��1� ¼ ð1� 2�Þ
2ð1� �Þ :
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We therefore define a parameter � as

� ¼
�
cT
cL

�2
¼ ð1� 2�Þ

2ð1� �Þ ; ð4:22Þ

where � is Poisson’s ratio. Since from equations (1.88) and (1.89) we have
seen that �1 � v � 1

2, we see that the corresponding range of �, equation
(4.22), is 3

4 � � � 0. Furthermore, for Rayleigh waves, following equations
(4.17a) and (4.17b), we conclude that ! � cTk, so from the definition of �,
equation (4.20), we conclude that � � 1. We are therefore only interested
in roots of equation (4.21) with � � 1, where ðcT=cLÞ2 � 3

4. We rewrite
equation (4.21) in terms of the following notation:

x ¼ �2; 0 � x � 1 ð4:23aÞ

a1 ¼ 8ð3� 2�Þ; � ¼ ðcT=cLÞ2 � 3
4 ð4:23bÞ

a0 ¼ 16ð1� �Þ: ð4:23cÞ
Thus, consider

f ðxÞ ¼ ðx3 � 8x2 þ a1x� a0Þ ¼ 0; ð4:24Þ

for 0 � x � 1. At x ¼ 0, f ðxÞ ¼ �a0, and at x ¼ 1, f ðxÞ ¼ ð�7þ a1 � a0Þ.
The possible ranges of these values are determined by the condition
0 � � � 3

4, from equations (4.23). Thus ð�16Þ � f ð0Þ � ð�4Þ, and f ð1Þ ¼ 1.
Now the cubic, equation (4.24), has at most three real roots, and since
f ð0Þ < 0 and f ð1Þ > 0, there is at least one root in 0 � x � 1. If there is
more than one root, it must be that df =dx ¼ 0 in 0 � x � 1, so that the
curve, having crossed the x-axis, can turn back and touch or cross it twice
again. For this to happen, df =dx ¼ 0 must occur twice in the region
0 � x � 1. Thus, consider

df

dx
¼ ð3x2 � 16xþ a1Þ: ð4:25Þ

At the physical extremities, df =dx ¼ 0 has roots x ¼ ð4:431; 0:903Þ for � ¼ 3
4,

and has imaginary roots for � ¼ 0. Thus there is only one extremum of f ðxÞ
in 0 � x � 1, and therefore there is only one real root of f ðxÞwithin the range
of physical possibility, �1 � � � 1

2. This root lies in the range

0:475 � � � 0:913 for � 1 � � � 1
2 : ð4:26Þ

In summary to this point, we have found that Rayleigh surface waves
are of the form

~uuð~rr; tÞ ¼ ½~uuTð~rr; tÞ þ~uuLð~rr; tÞ�; ð4:12Þ
where

~uuJð~rr; tÞ ¼ ~uu
ð0Þ
J eiðkx�!tÞ eKJz; J ¼ T;L; z � 0; ð4:5Þ
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with

! ¼ �cTk; ð4:20Þ

and

KJ ¼
�
k2 � !2

c2J

�1=2
¼ k

�
1� �2

c2T
c2J

�1=2
: ð4:17Þ

In equation (4.20), � is material-dependent: specifically, it is a function of
Poisson’s ratio: see equation (4.22). Thus, in equation (4.5), the damping
factors KJ for transverse and longitudinal parts of the wave depend
exclusively on �, while the frequency for a given wave number is a function
of � and cT: see equation (4.20).

4.5 Character of the wave motion

Now let us examine the amplitudes ~uu
ð0Þ
J in equation (4.12), with equation

(4.5). From equations (4.14a), (4.14b) and (4.15a),

u
ð0Þ
L;1 ¼

�ðk2 þ K2
TÞ

2KTKL

u
ð0Þ
T;1; ð4:27aÞ

u
ð0Þ
L;3 ¼

iðk2 þ K2
TÞ

2KTk
u
ð0Þ
T;1; ð4:27bÞ

u
ð0Þ
T;3 ¼

�ik

KT

u
ð0Þ
T;1: ð4:27cÞ

Thus, for arbitrary u
ð0Þ
T;1, the other amplitudes are determined by equations

(4.27). Denote

u
ð0Þ
T;1 ¼ A: ð4:28Þ

Then from equations (4.27a) and (4.27b),

~uuL
A

¼ �ðk2 þ K2
TÞ

2KTKL

�
îi � iKL k̂k

k

�
eiðkx�!tÞ eKLz; ð4:29aÞ

and, from equation (4.27c),

~uuT
A

¼
�
îi � ik

KT

k̂k

�
eiðkx�!tÞ eKTz: ð4:29bÞ

In equations (4.29), îi and k̂k are unit vectors in the x and z directions
respectively.

Since the distortion field ~uuð~rr; tÞ is real, we must take real or imaginary
parts of ~uuJ in equation (4.12), J ¼ T;L. We consider the real parts. Noting
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in equations (4.29) that

�i ¼ expð�i	=2Þ; ð4:30Þ
and

cos

�

� 	

2

�
¼ � sin 
; ð4:31Þ

we obtain

~uuL
A

¼ �ðk2 þ K2
TÞ

2KTKL

eKLz

�
îi cosðkx� !tÞ þ k̂kKL

k
sinðkx� !tÞ

�
; ð4:32aÞ

~uuT
A

¼ eKTz

�
îi cosðkx� !tÞ þ k̂k � k

KT

sinðkx� !tÞ
�
; ð4:32bÞ

or

~uuð~rr; tÞ
A

¼ îi

�
�ðk2 þ K2

TÞ
2KTKL

eKLz þ eKTz

�
cosðkx� !tÞ

þ k̂k

�
�ðk2 þ K2

TÞ
2KTk

eKLz þ k

KT

eKTz

�
sinðkx� !tÞ: ð4:33Þ

We note from equations (4.32a) and (4.32b) that the longitudinal component
contains a contribution from the z-direction, while the transverse component
contains one from the x-direction. This illustrates that the terms ‘longitudi-
nal’ and ‘transverse’ are not to be taken literally. From equation (4.33) we see
that x and z components of the wave are out of phase by 	=2 radians.

Finally, consider the relative amplitudes of x and z components. From
equation (4.33), their ratio R is

R ¼ k

KL

� ½�ðk2 þ K2
TÞ eKLz þ 2KTKL e

KTz�
½�ðk2 þ K2

TÞ eKLz þ 2k2 eKTz�: ð4:34Þ

If we rewrite equation (4.34) in terms of the notation of equations (4.17),
(4.20) and (4.22), we have

R ¼ ð1� �2Þ1=2

�
1� ð1� �2=2Þ eðKL�KTÞz

ð1� �2Þ1=2ð1� �2�Þ1=2

�

f1� ð1� �2=2Þ eðKL�KTÞzg
: ð4:35Þ

Recall that � is a function only of �. At the surface, z ¼ 0, we can evaluate R
at the limits of the range 0 � � � 3

4, corresponding to 0:913 � � � 0:475. The
results are

Rð� ¼ 0; z ¼ 0Þ ¼ �0:42;

Rð� ¼ 3
4 ; z ¼ 0Þ ¼ �0:83:
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In fact, the ratio is negative, and jRj < 1, for all values of �, i.e. for all values
of Poisson’s ratio �. Referring to equation (4.33), we can without loss of
generality write ~uuð~rr; tÞ for an arbitrary value of x, say x ¼ 0. Then near
z ¼ 0 (z < 0), with a particular choice of A we have

~uuð0; tÞ ¼ îiuð0Þx cosð�!tÞ þ k̂kuð0Þz sinð�!tÞ

¼ îiuð0Þx cosð!tÞ � k̂kuð0Þz sinð!tÞ

¼ îiuð0Þx cosð!tÞ þ k̂kjuð0Þz j sinð!tÞ; ð4:36Þ

where uð0Þx is positive due to the choice of A. From equation (4.36) we see
that the motion of material in the surface due to a Rayleigh wave is on a
counterclockwise closed path. This path is described by

x ¼ uð0Þx cosð!tÞ; z ¼ juð0Þz j sinð!tÞ
which can be written as �

x2

u
ð0Þ2
x

þ z2

u
ð0Þ2
z

�
¼ 1:

This is the formula of an ellipse, with its major axis in the z direction, since
the amplitudes perpendicular to the surface, uð0Þz , are greater than those
parallel to it, uð0Þx , from jRj < 1. This conforms to the fact that the material
is less constrained in the z than in the x direction. However, referring to
equation (4.35), we see that there is a depth z < 0, at which uð0Þx ¼ 0,
beyond which R > 0. When uð0Þx ¼ 0, the material oscillates vertically, in
the z direction only, and when R > 0, it rotates clockwise along an elliptic
path.
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Chapter 5

Dislocations

5.1 Introduction

We now enter the realm of plastic deformation of a solid material. Plastic
deformation is not elastic: when the stresses that cause the deformation are
removed, the deformation does not disappear. For crystalline materials,
plastic deformation is associated with the motion of a particular kind of
crystal lattice defect called a dislocation. Although this type of defect can
be described up to a point by the continuum theory of solids, and will be
so described in this chapter, more detailed understanding requires atomistic
considerations.

A dislocation is essentially a linear or filamentary defect in a crystal. The
variety of crystal structures that can exist, coupled with the topological
variety associated with filamentary systems, leads to a huge variety of config-
urations, motions, and physical effects. Beyond that, when one considers
dynamical aggregates of dislocations as they occur in materials, and the
interactions of dislocations with other crystal lattice defects such as point
defects, interfaces and surfaces, the variety of concepts and phenomena
burgeons much further. In this chapter we limit the discussion to introducing
the basic terms and concepts by which dislocations are described (section
5.2), and to the application of continuum elasticity theory (Chapter 1) to
determine the equilibrium deformation field at some distance from a disloca-
tion (section 5.3). In section 5.4 we analyse an aspect of dislocation motion,
and in section 5.5 we give some view of the range of topics not to be discussed
here, as well as some comments on the textbook/monograph literature.

5.2 Description of dislocations

The textbook by the Weertmans (1964) gives an extraordinarily lucid intro-
duction to the nature of dislocations, and we follow their approach closely.

We can think of creating a dislocation in a crystal through a process
of plastic deformation that is illustrated in an extremely schematic
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(oversimplified) way in figure 5.1. Figure 5.1a represents a perfect crystal,
with the lines representing planes of atoms seen edge-on, the intersections
representing rows of atoms perpendicular to the page. Forces represented
by straight arrows are applied in figure 5.1b to produce a shearing effect

b
→

(a)

(b)

(c)

(d)

Figure 5.1. (a) Schematic drawing of segment of perfect crystal, showing atomic planes. (b)

Segment of crystal subjected to a combination of shear, compressional and torque stresses:

elastic deformation. (c) Edge dislocation that is left after forces in part (b) have produced

plastic deformation. (d) Continuum picture of part (c), indicating edge dislocation symbol

(inverted T) and Burgers vector ~bb.
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(along with some compression). A torque represented by the curved arrow
prevents rotation of the sample. If the forces are built up to a sufficient
strength, plastic deformation shown in figure 5.1c results, and remains
after removal of forces and torques. At the atomic scale, what has happened
is that a vertical plane of atoms has broken, one edge remaining discon-
nected, while the other edge has connected up with the partial plane above
it that was originally to its left. In fact, part of a horizontal plane of atoms
has slipped to the right, its atoms coming into register with those that were
originally below them to the right. The disconnected edge of the vertical
plane is called an edge dislocation, and the plane where the slipping has
occurred is called the slip plane. If we wipe out the lattice planes from
figure 5.1c, we can identify the edge dislocation by the conventional T-
shaped symbol (inverted here), and the slip plane by a dashed line, in
figure 5.1d. Note that in this illustration the slip plane and the dislocation
symbol for the edge are interstitial. The displacement along the slip plane
equal to an interplanar distance in the crystal, denoted ~bb in figure 5.1d, is
the Burgers vector of this edge dislocation. We note that, from figure 5.1c,
an edge dislocation looks like the edge of a partial plane of atoms that is
inserted into an otherwise perfect segment of crystal. Such an atomistic
configuration can occur with or without the stepped configuration of the
left-hand face of crystal shown in figure 5.1c.

For a continuum picture of an edge dislocation, we can think of figure
5.1a as having been created by cutting horizontally into a block of material
from the left, displacing the edge of the left face above the cut by ~bb relative to
the edge of the face below the cut, and then rejoining the material inside the
sample. The edge dislocation then coincides with the edge of the cut inside the
sample, the cut defining the slip plane. The only atomistic information in this
picture is that j~bb j is an interatomic distance. In a similar way we can create a
screw dislocation, by displacing the two parts of the left-hand face by a
Burgers vector ~bb 0 parallel to the edge of the cut. These two cases are
illustrated in figures 5.2a and 5.2b respectively. The screw dislocation is
defined to be the edge of the cut inside the sample, just as for the edge
dislocation. Using the word screw to describe this case can best be illustrated
with a cylindrical sample of material, as in figure 5.2c. The shaded end of the
cylinder that was originally an atomic plane, is deformed into a helical ramp,
or screw-type configuration. All atomic planes that were originally parallel to
this one inside the sample join up to make the helical ramp continuous. A
mixed dislocation can also be created by making the edge of the cut within
the sample curved, as shown in figure 5.2d. The dashed dislocation line,
where it emerges from the right-side face of the sample is screw-like, the
relative displacement of material above and below the cut being parallel to
the dislocation. Where it emerges from the front face (partly shaded),
however, the displacement is perpendicular to the dislocation line, rendering
the latter edge-like.
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We note that a dislocation line, edge or screw, cannot end inside the
material because it is the edge of a cut coming from the outside surfaces.
We can image a cut, or separation, between two atomic planes, such that
the cut is completely inside the material. We then create a closed dislocation
loop entirely inside the material by moving material above the cut by an

Figure 5.2. (a) Creation of an edge dislocation by cutting into the sample and displacing

an outer edge of the cut perpendicular to the inner edge of the cut. (b) Creation of a

screw dislocation by cutting into the sample and displacing an outer edge of the cut parallel

to the inner edge. (c) Illustrating the process of creating a screw dislocation as in part (b),

but in a cylindrical sample of material. (d) Creation of a mixed dislocation by cutting into

the sample and displacing one edge of the cut perpendicular to one part of the inner edge

and parallel to another part.
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interatomic displacement relative to the material below the cut. Dislocation
loops are extremely common and important in materials science. They
are very well illustrated and discussed by the Weertmans (1964) in their
figure 1.6.

If we return to figure 5.1, we can perhaps see that reapplication of
shear could cause the edge dislocation to move to the right in steps of ~bb
(see figure 5.1a) until it disappears at the right-hand face, which at that
point would have an overhanging step above the slip plane. Thus if a material
contains a reasonable density of dislocations (edge and/or screw) then plastic
shear deformation takes place by the migration of the dislocations across
their slip planes, rather than by displacement of one whole atomic plane
relative to an adjacent one all in one movement. The energy required for
the latter process is much larger than that for the former. The relative ease
of plastic deformation compared with what would be expected for a
perfect crystal was evidently a key fact that led to the discovery of the
dislocation.

In figure 5.1a we introduced the Burgers vector ~bb for that edge dis-
location. Although the idea of the Burgers vector is fairly simple, its
precise definition is tricky as the reader will find on consulting some of the
standard references cited later in this chapter. In terms of an atomistic
model, one compares a closed circuit in a perfect, dislocation-free crystal
with the corresponding circuit around a dislocation line, stepping from one
atomic site to the next one. By ‘the corresponding circuit’ we mean the
same sequence of site-to-site steps, each in the same crystal direction as
before. If the circuit is not too close to the dislocation line, the crystal direc-
tions of the perfect crystal are only slightly perturbed, locally, in the presence
of the dislocation. Consider first a closed circuit in the perfect crystal. Let the
atomic sites involved be denoted by position vectors ~RRJ0, J ¼ 1; 2; . . . ; n.
Then the total displacement around the circuit is, trivially,

ð~RR20 � ~RR10Þ þ ð~RR30 � ~RR20Þ þ � � � þ ð~RRn0 � Rn�1;0Þ þ ð~RR10 � ~RRn0Þ ¼ 0: ð5:1Þ

In the presence of the dislocation, atomic positions that are not close to the
dislocation line will be slightly displaced from perfect crystal sites ~RRJ0 to
ð~RRJ0 þ~uuJÞ. The sequence of site-to-site steps defined by the perfect-crystal
circuit will not now close, because one of the atoms along the original
circuit will have been replaced by another atom in the ‘cutting and displace-
ment’ process upon which, in principle, the dislocation is based. Neglecting
small site displacements ~uuJ , the last step of the sequence will end up at
~RRnþ1;0 where ðnþ 1Þ 6¼ 1, and where in fact

ð~RRnþ1;0 � ~RR10Þ � ð�~bb Þ: ð5:2Þ

For the closed circuit in the presence of the dislocation, the closure being
provided by the Burgers vector ~bb, if we include the small displacements ~uuJ ,
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we have

ð~uu2 �~uu1Þ þ ð~uu3 �~uu2Þ þ � � � þ ð~uunþ1 �~uunÞ � �~bb: ð5:3Þ
or

Xn
J¼1

ð�~uuJÞ � ð�~bb Þ: ð5:4Þ

The discussion above, for a crystal of discrete atoms, requires that the
circuit in the presence of the dislocation should not pass too close to the dis-
location line. In fact the discussion is valid, in the sense of the approximate
equalities of equations (5.2)–(5.4), to fair accuracy, provided the circuit does
not intersect the dislocation line. If the circuit stays well away from the
dislocation line, then all of the displacements ~uuJ in equation (5.4) are small
in the sense of linear elasticity theory (Chapters 1 and 2), and the number
of atomic sites on the circuit is large, i.e. the size of the circuit is large
compared with atomic dimensions. In that case, equation (5.4) reduces toð

c
d~uu ¼ ð�~bb Þ; ð5:5Þ

the equality being highly accurate.
For a given circuit c in equation (5.5), and correspondingly in the

discrete-atom picture of equations (5.3) and (5.4) with equation (5.1), the
direction around the circuit is arbitrary, and so therefore is the direction of
~bb. The ambiguity can be resolved as follows. Arbitrarily define a positive
direction, represented by the unit vector �̂� , along a dislocation line. Define
the direction around the circuit to establish, by the right-hand thumb rule,
the orientation of the circuit in the perfect crystal to be perpendicular to �̂� .
Then, as above, the Burgers vector ~bb is the closure of the circuit in the
presence of the dislocation. In this case, the vector ð~bb� �̂�Þ lies in the extra
plane of atoms that defines an edge dislocation, and ~bb is parallel to the
positive direction of a screw dislocation for which the screw is left-handed,
as is the screw dislocation illustrated in figure 5.2c.

5.3 Deformation fields of dislocations

We now consider dislocations at equilibrium in a solid on the basis of con-
tinuum mechanics. From the last section we realize that such a treatment
will need to be limited to the region not too close to the dislocation line.
The analysis will be based on the equilibrium condition for an isotropic
continuous solid, equation (1.94), Chapter 1,

ð�þ �Þ@i@kuk þ �@k@kui ¼ 0; ð5:6Þ
along with the requirement for a dislocation, equation (5.5).
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5.3.1 Screw dislocation

For a screw dislocation, we introduce the Burgers vector explicitly by consid-
ering a configuration of material similar to that in figure 5.2c. We cannot
apply continuum theory right down to the dislocation line, as illustrated in
figure 5.2c. Instead, we consider a uniform displacement over that part of
the slip plane that lies at a sufficient distance from the dislocation line; that
is, outside the dislocation core. The proposed configuration is illustrated in
figure 5.3, where the intersection of the core with the end of the cylindrical
sample of material is shown shaded. In figure 5.3 we have not shown the
shear deformation within the core, since it cannot be accurately represented
by continuum theory. The system shown in figure 5.3, having been subjected
to a shear, will not change volume in first order: see the end of section 1.2.1.
Thus if we identify the direction of the dislocation line as the z direction
(indices i or k equal to 3 in equation (5.6)), then there is no deformation in
the x–y plane: u1 ¼ u2 ¼ 0. From figure 5.3, outside the core u3 will be
independent of the radial distance r, because the displacement in this
region is uniform with respect to r in the slip plane. From the isotropy of
the material, we conclude that

u3 ¼ � b

2�
� �; u1 ¼ u2 ¼ 0; ð5:7Þ

where � is the angular position relative to the slip plane in the right-handed
sense relative to the z axis. The negative sign in equation (5.7) comes from
this choice. Equation (5.7) represents a multi-valued distortion field ~uuð~rr Þ,
in the sense that � and ð�þ 2�Þ represent the same point in the material,
for given ðr; zÞ. This conforms with the earlier representation of the
Burgers vector, equation (5.5), with ~uu increasing by ð�~bb Þ with each
passage around the closed path c. Because the slip plane defines a transverse
reference direction the system does not have cylindrical symmetry, so a
cartesian coordinate system is as convenient as a cylindrical coordinate
system, for purposes of visualization. If � ¼ 0 defines the x–z plane, then
from equation (5.7),

u3 ¼ � b

2�
tan�1

�
y

x

�
: ð5:8Þ

Figure 5.3. Creating a screw dislocation by rigidly displacing that part of the cut in the

elastically deformed non-core region, the core region being indicated by shading.
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Let us test equations (5.7) and (5.8) as a solution for the equilibrium
condition, equation (5.6). Since u3 is independent of z, equation (5.8), and
u1 ¼ u2 ¼ 0, equation (5.7), we have ð~rr �~uu Þ ¼ 0, so the first term in equation
(5.6) is zero (@kuk ¼ ~rr �~uu ). We are left, in equation (5.6), with

�ð@21 þ @22Þu3 ¼ 0: ð5:9Þ

From equation (5.7), we must therefore evaluate

ð@21 þ @22Þu3 ¼ � b

2�
ð@21 þ @22Þ�: ð5:10Þ

From tan � ¼ ðy=xÞ we easily conclude that

@21� ¼
2xy

ðx2 þ y2Þ ¼ �@22�; ð5:11Þ

so that the equilibrium condition, equation (5.9), is satisfied.
We can now evaluate the strain tensor "ij, equation (1.5). From

equations (5.7) and (5.8) we easily see that

"11 ¼ "22 ¼ "33 ¼ 0 ¼ "12: ð5:12Þ
Furthermore:

"31 ¼ 1
2 ð@3u1 þ @1u3Þ ¼ 1

2 @1u3 ð5:13Þ
"23 ¼ 1

2 ð@2u3 þ @3u2Þ ¼ 1
2 @2u3 ð5:14Þ

@1u3 ¼ � b

2�
@1� ¼ � b

2�
ðcos2 �Þ

�
� y

x2

�

¼ b

2�

y

ðx2 þ y2Þ
¼ b

2�

sin �

r
; ð5:15Þ

@2u3 ¼ � b

2�
ðcos2 �Þ 1

x
¼ � b

2�

x

ðx2 þ y2Þ
¼ � b

2�

cos �

r
: ð5:16Þ

We now combine equations (5.13)–(5.16), writing the result in cylindrical
ðr; �; zÞ coordinates, based on x ¼ r cos �, y ¼ r sin �:

"31 ¼
b

4�

sin �

r
; ð5:17Þ

"23 ¼ � b

4�

cos �

r
: ð5:18Þ

The characteristic r�1 behavior of the strain at large distance from a dis-
location is evident here, along with asymmetry associated with the slip
plane. Equations (5.17) and (5.18) also illustrate the problem with the
continuum approximation in relation to the core region, where extrapolation
r ! 0 would lead to infinite strain, contrary to the assumptions of linear
elasticity theory. Although we have obtained a multi-valued distortion
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field ~uuð~rr Þ, equation (5.7), we see that the strain field "ij , equations (5.12),
(5.17) and (5.18), is single valued. Finally, we note that for an isotropic
material, from Chapter 1 following equation (1.62) and translating from
Voigt to cartesian tensor notation, the stress tensor field is

�31 ¼
�b

2�

sin �

r
; ð5:19Þ

�23 ¼ ��b

2�

cos �

r
: ð5:20Þ

Let us now consider the resultant force and torque on a cylinder of
radius R containing the screw dislocation whose stress tensor is given by
equations (5.19) and (5.20). We can do this from the relationship between
external surface forces per unit area Pi and stress �ij at the surface of the
material, from Chapter 1,

Pi ¼ nj�ij ð1:36Þ

where nj is the unit outward normal at the surface. On the cylinder,

n1 ¼ cos �; n2 ¼ sin �; n3 ¼ 0: ð5:21Þ

From equations (5.19)–(5.21) we see that Pi ¼ 0, i ¼ 1; 2; 3. Since the external
force per unit area vanishes everywhere on the cylinder’s surface, there can be
no net force or net torque on it.

5.3.2 Edge dislocation

To study an edge dislocation in the continuum approximation we use the
same concepts as in the previous section: that is, we produce uniform
displacement over that part of the slip plane that lies outside the core: see
figure 5.4. The non-uniform displacement occurs entirely in the core
region. For a long dislocation line, the properties of the system are indepen-
dent of z. We now conjecture that, outside the core, u1, varying from zero to
ð�bÞ, does so linearly with angular position �, independent of r. Presumably,
if this conjecture is valid, it will be so as a result of very special boundary

Figure 5.4. Creating an edge dislocation by rigidly displacing that part of the cut in the

elastically deformed non-core region, the core region being indicated by shading.
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conditions. We then have

u1 ¼ � b

2�
� ¼ � b

2�
tan�1

�
y

x

�
: ð5:22Þ

The thought that u2, as well as u3, might be zero, is quickly dispelled:
the equilibrium equation (5.6) would not be satisfied. Specifically, its y
component, i ¼ 2, becomes

ð�þ �Þ@2@1u1 ¼ 0:

But from equation (5.22),

@2@1u1 ¼
�
�b

2�

�
ðy2 � x2Þ
ðx2 þ y2Þ2

;

which is not zero in general. Nonetheless, let us persist with u3 ¼ 0, u1 given
by equation (5.22), and u2 to be determined. Then the equilibrium equation
(5.6) gives

fð�þ 2�Þ@21 þ �@22gu1 þ ð�þ �Þ@1@2u2 ¼ 0; i ¼ 1 ð5:23Þ

fð�þ 2�Þ@22 þ �@21gu2 þ ð�þ �Þ@2@1u1 ¼ 0; i ¼ 2: ð5:24Þ

Again from equation (5.22), these reduce to

@1@2u2 ¼
xy

ðx2 þ y2Þ2
�
b

�

�
ð5:25Þ

and

fð�þ 2�Þ@22 þ �@21gu2 ¼ ð�þ �Þ ðx2 � y2Þ
ðx2 þ y2Þ2

�
� b

2�

�
: ð5:26Þ

Now we have chosen u1 ¼ u1ð�Þ. Let us investigate whether a solution exists
with u2 ¼ u2ðrÞ, where

r ¼ ðx2 þ y2Þ1=2: ð5:27Þ

We then have

@1u2 ¼
du2
dr

@1r ¼
x

ðx2 þ y2Þ1=2
du2
dr

ð5:28Þ

@2@1u2 ¼
�
� xy

ðx2 þ y2Þ3=2
du2
dr

þ x

ðx2 þ y2Þ1=2
d2u2
dr2

@2r

�

¼
�
� xy

r3
du2
dr

þ xy

r2
d2u2
dr2

�
: ð5:29Þ
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Substituting equation (5.29) into equation (5.25), we have

xy

r2

�
d2u2
dr2

� 1

r

du2
dr

�
¼

�
b

�

�
xy

r4
ð5:30Þ

or �
d

dr
� 1

r

��
du2
dr

�
¼

�
b

�

�
1

r2
: ð5:31Þ

If we denote du2=dr ¼ f , then this is�
d

dr
� 1

r

�
f ¼

�
b

�

�
1

r2
: ð5:32Þ

Seeking a solution f ¼ crn, we find

f � du2
dr

¼
�
� b

2�

�
1

r
ð5:33Þ

whose solution is

u2 ¼
�
� b

2�

�
ln

�
r

R

�
¼

�
� b

4�

�
ln

�
x2 þ y2

R2

�
: ð5:34Þ

The additive constant of integration expressed by R represents the boundary
condition that when r ¼ R, u2ðr ¼ RÞ ¼ 0 . This condition, u2 ¼ 0, will only
be rigorously satisfied, independent of �, as R ! 1 for an infinitely thick
cylinder of material. It will be approximately valid for a large enough
sample, at and beyond large but finite R. The solution that we have found
is approximate in this sense.

We must now see whether this solution, equation (5.34), satisfies the
other equilibrium equation (5.26). Now we have

@22u2 ¼
�
� b

4�

�
@2

�
2y

x2 þ y2

�
¼

�
� b

2�

�
ðx2 � y2Þ
ðx2 þ y2Þ2

ð5:35Þ

@21u2 ¼
�
� b

4�

�
@1

�
2x

x2 þ y2

�
¼

�
� b

2�

�
ðy2 � x2Þ
ðx2 þ y2Þ2

ð5:36Þ

whence the left-hand side of equation (5.26) is

½ð�þ 2�Þ � �� ðx
2 � y2Þ

ðx2 þ y2Þ2
�
� b

2�

�
; ð5:37Þ

in agreement with the right-hand side. We have therefore found a solution

u1 ¼ � b

2�
�; u2 ¼ � b

2�
ln

�
r

R

�
; u3 ¼ 0: ð5:38Þ
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We may use this solution to obtain the strain tensor and the stress
tensor. This will lead us to discover the boundary conditions and externally
applied stresses to which the solution is subject. Rewrite equations (5.38) in
cartesian coordinates:

u1 ¼ � b

2�
tan�1

�
y

x

�
; u2 ¼ � b

4�
ln

�
x2 þ y2

R2

�
; u3 ¼ 0: ð5:39Þ

We readily evaluate the strain tensor, defined in equation (1.5), using
equations (5.39):

"11 ¼ �"22 ¼
b

2�

y

ðx2 þ y2Þ
¼ b

2�

sin �

r
; ð5:40Þ

"12 ¼ "21 ¼ � b

2�

x

ðx2 þ y2Þ
¼ � b

2�

cos �

r
; ð5:41Þ

with all other elements zero. We note from equation (5.40) that Tr " ¼ 0, so
there is no dilatation or compression in the given strain, only shear: see
equations (1.14) and (1.19), and also equation (1.25): no rotation. We also
note that the radius R defined for equation (5.39) does not enter the strain
field equations (5.40) and (5.41). All that is required is that such a radius
exist.

For the stress in this isotropic medium we use equations (1.60)–(1.62)
and the following equation in Chapter 1, along with equation (1.44), to
obtain

�11 ¼ ��22 ¼
�b

�

sin �

r
; �12 ¼ ��b

�

cos �

r
: ð5:42Þ

In equation (5.42) the Lamé elastic constant � is known to be the shear
modulus: see equation (1.79). This reflects our earlier statement that only
shear is involved, and not dilatation or compression.

We are now in a position to determine the external forces that are
necessary to maintain the deformation field that we have derived, equations
(5.39). As for the screw dislocation of the previous section, we evaluate the
external force per unit area Pj ¼ ni�ij on a cylindrical sample of radius R,
now containing the edge dislocation, for which the stress tensor �ij is given
by equations (5.42). Again with n1 ¼ cos �, n2 ¼ sin �, we obtain

P1 ¼ P3 ¼ 0; P2 ¼ � �b

�R
: ð5:43Þ

The net force per unit length of cylinder is therefore given by

F1 ¼ F3 ¼ 0; F2 ¼
ð2�
0

d�RP2ðR; �Þ ¼ �2�b: ð5:44Þ
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The torque per unit area~tt is given by

~tt ¼ n̂nR� ~PP ¼ det

îi ĵj k̂k

R cos � R sin � 0

0 �ð�b=�RÞ 0

0
B@

1
CA ¼ �k̂k

�b

�
cos �: ð5:45Þ

The net torque ~TT per unit length of cylinder is therefore

~TT ¼
ð2�
0

d�R~ttð�Þ ¼ 0: ð5:46Þ

This result may be obvious from the symmetry of P2 with respect to the y–z
plane in equation (5.43). If r0 is the radius of the core region, then there is a
further force per unit area ð�bÞ=ð�r0Þ on the inner cylindrical boundary of the
non-core region where n1 ¼ � cos �, n2 ¼ � sin �, resulting in a further net
force F 0

2 ¼ ð2�bÞ on that boundary. The force F2 on the outer surface of
the cylinder must come from an outside object. The equal and opposite
force F 0

2 must come from the core of the dislocation. Some external agent
must be pushing on the core with this force, though experimentally such a
force is not realizable. The fully correct deformation field would not have
any such forces: the external forces on core and non-core regions would be
zero. Weertman and Weertman (1964) present a solution (their equation
(2.13)) that eliminates the need for external forces applied to the core or to
the outer surface of the cylinder. Nabarro (1967) discusses this solution in
detail. (See also Exercise 5.1). We note that it involves Poisson’s ratio, and
hence dilatation as well as shear. The solution that we have worked with,
equations (5.37), omits a term (� sin � cos �) for u1 and a term (� sin2 �) for
u2, and it overestimates the strength of the logarithmic term.

5.4 Uniform dislocation motion

We now want to examine the condition for the screw dislocation of figure 5.3
to propagate with uniform speed, sayV, in the x direction. The static solution
for the deformation field ~uuð~rr Þ is given by equations (5.7) and (5.8):

u1ð~rr Þ ¼ u2ð~rr Þ ¼ 0; u3ð~rr Þ ¼ � b

2�
� ¼ � b

2�
tan�1

�
y

x

�
: ð5:47Þ

We recall that, in figure 5.3 the deformation in the non-core region is pure
shear, and that only the shear modulus comes into the stress–strain relations
in this case. The equation of motion for deformation is given by equation
(2.33). If we look for a shear wave solution, noting that the deformation, equa-
tion (5.47), satisfies ~rr �~uu ¼ 0, then from equation (2.35) with equation (2.36),�

r2 � 1

v2T
@2t

�
~uu ¼ 0:
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From equation (5.47), this reduces to�
ð@21 þ @22Þ �

1

v2T
@2t

�
u3 ¼ 0: ð5:48Þ

Let us seek a solution u3ð~rr; tÞ ¼ u3ðx; y; tÞ which propagates in the x
direction, perpendicular to the screw dislocation line, without change of
shape:

u1 ¼ u2 ¼ 0; u3ðx; y; tÞ ¼ f ðx� Vt; yÞ: ð5:49Þ

Then

@2t f ¼ V2@2x f : ð5:50Þ

Combining equations (5.48)–(5.50),

��
1� V2

v2T

�
@2x0 þ @2y

�
f ¼ 0; ð5:51Þ

where x0 ¼ ðx� VtÞ. From equation (5.51) we can see that the requirement is

ð@2x00 þ @2yÞf ¼ 0; ð5:52Þ

where

x00 ¼ x0

�
¼ ðx� VtÞ

�
; � ¼

�
1� V2

v2T

�1=2
: ð5:53Þ

Now we have seen that our solution, equation (5.47), for the static deforma-
tion field of a screw dislocation as in figure 5.3, satisfies

ð@2x þ @2yÞu3 ¼ 0: ð5:54Þ

Thus for the time-dependent deformation, u3 ¼ f , equation (5.49), propa-
gating with speed V in the positive x-direction without change of shape,
we may take, from equation (5.52),

u3ðx; y; tÞ ¼ f ðx00; yÞ; ð5:55Þ

where

f ðx00; yÞ ¼ � b

2�
tan�1

�
y

x00

�
; ð5:56Þ

with x00 given in equation (5.53). This form will propagate without change of
shape. From equations (5.55), (5.56) and (5.53), we conclude that

u1 ¼ u2 ¼ 0; u3 ¼ � b

2�
tan�1

�
�y

x� Vt

�
: ð5:57Þ
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The relation given in equation (5.53), that at t ¼ 0,

x ¼ �x00; � ¼
�
1� V2

v2T

�1=2
;

is analogous to the Lorentz–Fitzgerald contraction in special relativity, with
the transverse speed of propagation vT now playing the role of a limiting
speed for the relative motion. We do not take the analogy to be particularly
meaningful, however, except that there is a limiting speed for the motion
described here. It is straightforward to pass from the deformation field ~uu,
equation (5.57) to strain "ij, to stress �ij , as in equations (5.13), (5.14), and
(5.17)–(5.20). The resultant stress, in cartesian coordinates, is

�31 ¼
�b

2�

�y

½ðx� VtÞ2 þ �2y2�
; ð5:58Þ

�23 ¼ ��b

2�

ðx� VtÞ
½ðx� VtÞ2 þ �2y2�

: ð5:59Þ

Consider the plane x ¼ Vt, perpendicular to the x axis, containing the
dislocation line, moving in the x direction with speed V . In the non-core
region, on this plane

�31ðx ¼ Vt; yÞ ¼ �b

2�

1�
1� V2

v2T

�1=2
y

: ð5:60Þ

Thus as V ! v�T , �31 ! 1 for finite y; the shear stress becomes infinite. Thus
V ¼ vT, the speed of shear waves in the medium, is an upper bound for the
speed of propagation of a straight screw dislocation perpendicular to the
dislocation line in the slip plane. It turns out that the same limit applies to
edge dislocations, from this level of theory (see for example Nabarro
(1967), section 7.1.1.1).

5.5 Further study of dislocations

In this chapter we have discussed only the simplest aspects of dislocations.
Even an elementary course devoted to dislocations will cover a much wider
range of topics. In this context we have already mentioned the book by
Weertman and Weertman (1964), which has a theoretical orientation. We
also mention Hull and Bacon (1995) at a similar level. At the advanced
level, we mention three works, each with somewhat different orientation,
and therefore complementary: Friedel (1964), Nabarro (1967) and Nadgorny
(1988). No doubt there are many other worthy books at both elementary and
advanced levels. Perhaps the best pedagogical work on fundamental proper-
ties known to the author is the five-volume series entitled Dislocations in
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Solids edited by Nabarro (1979 and later). This series in fact extends to at
least ten volumes with more specialized topics.

The reader can readily imagine the range of topics through which this
subject extends. For example: point defect interactions with dislocations,
including aggregation and stability; interactions of dislocations with surfaces
and interfaces; interactions amongst dislocations; configurations, dynamics,
topology and evolution of dislocation networks; optical, magnetic, electric
and chemical, as well as mechanical properties of dislocations; rate processes
involving dislocations and other crystal defects in interaction; the role of
dislocations in plastic deformation, cracking and fracture; and combinations
from the preceding list.

While we have emphasized the continuum description of dislocations in
this chapter, there is a substantial and growing literature in which atomistic
(i.e. discrete atom) models are used, either exclusively or in a hybrid com-
bination of atomistic core region with continuum non-core region. In the
former context, we mention two approaches. An atomistic modelling
scheme based on the shell model for insulating crystals has been developed
(Puls et al., 1977) and extensively applied (see for example Rabier and
Puls, 1987). The shell model will be introduced in Chapter 9. The other
approach is based on the embedded atom method (EAM) of Daw and
Baskes (1983, 1984); see also Daw et al. (1993). EAM incorporates the
inescapable many-body quantum-mechanical features of interatomic
interaction in metallic systems. Its applications to dislocations are exempli-
fied by the works of Simmons et al. (1997), and of Rao et al. (1999).
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Chapter 6

Classical theory of the polaron

6.1 Introduction

The concept of a polaron arises from considering the motion of an electron in
a dielectric medium. The electron carries a characteristic field of dielectric
polarization along with it, leaving behind a decaying wake of polarization.
One can then think of the electron and its dynamic polarization field com-
bined as a quasiparticle. It is this quasiparticle that is called a polaron.
The properties of polarons are important not only for electron motion in
insulators and semiconductors [see for example, Appel (1968), especially
sections 10 and 20 entitled ‘Experimental Situation’], but for highly diffuse
bound states, such as the excited state of an electron in the presence of an
anion vacancy (called an F center) in an ionic crystal [see for example
Fowler (1964)]. In fact, the concept generalizes widely, to the description
of various quasiparticles in condensed matter interacting with a self-
created field in the medium.

Apart from the importance of the polaron and of polaronic effects in
condensed matter, the effect of a particle’s self-created field on its dynamical
state is of major importance in the history of elementary particle field theory.
Specifically, the non-zero interaction energy of a hydrogen atom electron in
its 2s12 state with its self-field (electromagnetic), compared with that in its 2p12
state, which is zero, accounts for the Lamb–Retherford effect (1947). This
2s12–2p

1
2 energy level difference is zero at the level of Dirac electron theory

when self-interaction is omitted. In addition to an energy level shift (the
Lamb shift), the self-interaction contributes to the particle’s kinetic energy,
or to its observable mass. In quantum field theory, the numerical values of
both the mass contribution and the level shift are infinite. Consistent and
meaningful ways of dealing with these infinities to give finite results in
agreement with experiment have been developed: so-called renormalization
theory. Excellent discussions of the Lamb–Retherford effect are given by
Sakurai (1967, section 2.8), and by Baym (1969, p. 574). To the uninitiated,
it is very difficult to have an intuitive picture of mass renormalization
and energy-level shift due to self-interaction for an electron in vacuum,
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particularly when attempts at an analytical description yield divergent
integrals. On the other hand, the classical picture of the polaron to be
presented here seems to the author to be much simpler to follow and to
visualize, and it leads to explicit, finite expressions for mass renormalization,
or effective mass, and for the self-energy.

We shall consider a classical electron moving at constant speed (cor-
responding to a quantum-mechanical momentum eigenstate) in a classical
homogeneous isotropic dielectric continuum. In section 6.2 we derive the
classical equations of motion of a polaron, and in section 6.3 we solve for
the properties of a polaron with constant velocity. In section 6.4 the momen-
tum dependence of the effective potential for the polaron quasiparticle will be
used to discuss briefly an interesting aspect of the quantization process for
such a system in a magnetic field. We remark that, in a sense, this chapter
contains an extension of the continuum theory of elasticity upon which
Chapters 1 to 5 are based.

6.2 Equations of motion

Wemodel this section on an introduction to polaron theory by Fröhlich (1963).
It uses the hamiltonian formulation of mechanics: see Goldstein (1980),
especially sections 1.4 and 8.1. For polarization that is not too strong, we can
take the energy density of the field to be harmonic. The polarization ~PPð~rr; tÞ is
the electric dipole moment per unit volume of dielectric. In Chapter 9 we
shall show, in the context of a classical atomistic model of an insulator, that
~PP is proportional to the deformation field ~uuð~rr; tÞ, introduced in section 1.2.
In harmonic approximation (i.e. within the limits of linear elasticity theory),
therefore, the lagrangian density of the polarization field is of the form

lð~rr; tÞ ¼ �

2
½ _PP2ð~rr; tÞ � !2P2ð~rr; tÞ�: ð6:1Þ

In equation (6.1), the dot indicates time derivative. Fröhlich (1963) shows
that the effective ‘force constant’ (�!2) is simply related to the low and
high frequency dielectric constants of the material. We put ‘force constant’
in quotation marks because it does not have the dimensionality of a force
constant. The parameter � is proportional to the mass density, through the
linear relationship between ~PP and ~uu.

We now Fourier analyse the polarization field subject to periodic
boundary conditions on a large cubical volume V ,

P�ð~rr; tÞ ¼ V�1=2
X
~kk

q~kk;�ðtÞ e
i~kk �~rr ð6:2Þ

where

k� ¼ 2�V�1=3n�; n� ¼ 0;�1;�2; . . . ð6:3Þ
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In equations (6.2) and (6.3), � refers to cartesian components. Substituting
equation (6.2) into equation (6.1) we have for the lagrangian density

lð~rr; tÞ ¼ �

2

X
~kk;~kk 0;�

f _qq~kk;�ðtÞ _qq~kk 0;�ðtÞ � !2q~kk;�ðtÞq~kk 0;�ðtÞgV
�1 exp½ið~kkþ ~kk 0Þ �~rr �:

ð6:4Þ

The total lagrangian for the field is therefore

LPðtÞ ¼
ð
V
d3r lð~rr; tÞ: ð6:5Þ

We note that in view of equation (6.3)

V�1

ð
V
d3r exp½ið~kkþ ~kk 0Þ �~rr � ¼ �~kk;�~kk 0 : ð6:6Þ

Substituting equation (6.4) into equation (6.5) and using equation (6.6) we
obtain

LP ¼ �

2

X
~kk 0;�0

f _qq~kk 0;�0 _qq�~kk 0;�0 � !2q~kk 0;�0q�~kk 0;�0 g: ð6:7Þ

We note that LP in equation (6.7) is real because~qq�~kk ¼ ~qq�
~kk
is required so that

the polarization ~PP in equation (6.2) will be real.
We must identify the Fourier coefficients q~kk;� as the generalized co-

ordinates for the mechanical system consisting of the polarization field.
The canonical momenta are

�~kk;�
ðtÞ ¼ @

@ _qq~kk;�
LP ¼ � _qq�~kk;�: ð6:8Þ

We note that in differentiating LP, equation (6.7), with respect to _qq~kk;�, the
particular vector ~kk occurs in two terms in the sum over ~kk 0. From equations
(6.7) and (6.8) we obtain the hamiltonian for the field,

HP ¼
X
~kk;�

_qq~kk;��~kk;�
� LP

( )
: ð6:9Þ

Using equation (6.8) to eliminate _qq~kk;� in favor of �~kk;�, we obtain from
equation (6.9) with equation (6.7)

HP ¼
X
~kk 0;�0

�
1

2�
�~kk 0;�0��~kk 0;�0 þ

�!2

2
q~kk 0;�0q�~kk 0;�0

�
: ð6:10Þ

The electron part of the hamiltonian is trivial,

Hel ¼
1

2m
p2; ð6:11Þ
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where~pp is the canonical momentum of the electron and m is its mass. In fact,
if ~rrel, the position of the electron, has its components identified as the
electron’s canonical coordinates, then

p� ¼ m _rrel;�; � ¼ 1; 2; 3; ð6:12Þ

or

~pp ¼ m~vv; ~vv ¼ _~rr~rrel; ð6:13Þ
where ~vv is the electron’s velocity.

We now consider the hamiltonian term representing electron–field
interaction. If the electron were at rest at ~rrel, its displacement field ~DDð~rr;~rrelÞ
in the medium would interact with the polarization that it produces with
an energy which, in linear approximation, is

HP;el ¼ �
ð
d3r 0 ~PPð~rr 0Þ � ~DDð~rr 0;~rrelÞ="0: ð6:14Þ

When the electron is in uniform motion, a dissipative effect arising from
dynamic polarization, like a viscous drag, acts on the electron. We assume
that the electron is moving so slowly that this dissipative effect is negligible.
This validates equation (6.12) above. We Fourier analyse ~PP as in equation
(6.2) and from equation (6.14) obtain

HP;el ¼ �
X
~kk;�

d�~kk;�q~kk;� ð6:15Þ

where

d~kk;� ¼ V�1=2

ð
d3r e�i~kk �~rr D�ð~rr;~rrelðtÞÞ="0; ð6:16Þ

is the Fourier transform of ~DD="0 inV with periodic boundary conditions. We
now combine equations (6.10), (6.11) and (6.15) to get the hamiltonian for
the whole system:

H ¼ ðHP þHel þHP;elÞ

¼
�X
~kk 0;�0

�
1

2�
�~kk 0;�0��~kk 0;�0 þ

�!2

2
q~kk 0;�0q�~kk 0;�0

�

þ p2

2m
�

X
~kk 0;�0

d�~kk 0;�0 ð~rrelÞq~kk 0;�0

�
: ð6:17Þ

We note that, from equation (6.12), d~kk;� is a function of ~rrel. Here, "0 is the
permittivity of free space.

Perhaps we should comment on the use of periodic boundary conditions
for a system of net charge (�e) due to the excess electron (e > 0). We assume
that the periodically repeated volume V is so large that the effect of one such
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volume on an adjacent one is negligible: the polarons in different regions of
volume V are essentially non-interacting. In the infinite medium represented
by the periodic boundary conditions there is an infinite number of electrons
whose repulsive interaction energy is infinite, but unchanging as the system
evolves in time. Since it contributes nothing to the dynamics, we ignore it
as a harmless artifact of the formulation.

We now evaluate the hamiltonian equations of motion, from equation
(6.17):

_��~kk;�
¼ � @H

@q~kk;�
¼ f��!2q�~kk;� þ d�~kk;�ð~rrelÞg; ð6:18Þ

_pp� ¼ � @H

@rel;�
¼

X
~kk 0;�0

�
@d�~kk 0;�0

@rel;�

�
q~kk 0;�0 ; ð6:19Þ

_qq~kk;� ¼ @H

@�~kk;�

¼ 1

�
��~kk;�; ð6:20Þ

_rrel;� ¼ @H

@p�
¼ 1

m
p�: ð6:21Þ

We combine equations (6.18) and (6.20),

€qq~kk;� ¼ 1

�
_���~kk;� ¼

�
�!2q~kk;� þ

1

�
d~kk;�ð~rrelÞ

�
;

or

ð€qq~kk;� þ !2q~kk;�Þ ¼
1

�
d~kk;�ð~rrelÞ: ð6:22Þ

Let us evaluate d~kk;�ð~rrelÞ in equation (6.22) for the point charge electron
at~rrel, using the definition, equation (6.16). From Maxwell’s equation,

~rr � ~DD ¼ � ð6:23Þ

with

�ð~rr Þ ¼ �e�ð~rr�~rrelÞ; ð6:24Þ

for a classical point-charge electron, and applying Gauss’s theorem to
equation (6.23), we obtain the Coulomb result,

~DDð~rr;~rrelÞ ¼ � e

4�

ð~rr�~rrelÞ
j~rr�~rrelj3

: ð6:25Þ

We substitute from equation (6.25) into equation (6.16),

d~kk;� ¼ �V�1=2e

4�"0

ð
d3r

ð~rr�~rrelÞ
j~rr�~rrelj3

e�i~kk �~rr: ð6:26Þ
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We make a change of variable,

~rr 0 ¼ ð~rr�~rrelÞ;

and perform the integration in spherical polar coordinates with ~kk defining the
polar axis. Then d~kk;1 ¼ d~kk;2 ¼ 0, and

d~kk;3 ¼
ieV�1=2

"0
e�i~kk �~rrel

ð1
0

dr0
�
� cosðkr 0Þ

ðkr0Þ þ sinðk0rÞ
ðkr 0Þ2

�
: ð6:27Þ

Now integrating the first term by parts, with the change of variable x ¼ kr 0,

1

k

�
�
ð1
0

dx
cos x

x

�
¼ � 1

k

��
sin x

x

�1
0

þ
ð1
0

dx
sin x

x2

�
:

Thus the integral in equation (6.27) has the value

� 1

k

�
sin x

x

�1
0

¼ 1

k
; ð6:28Þ

and equation (6.27) reduces to

d~kk;� ¼ ieV�1=2

"0k
e�i~kk �~rrel��;3; ð6:29Þ

where we recall that the cartesian coordinate axis � ¼ 3 is in the direction ~kk.
We can therefore write

~dd~kk ¼ �~’’~kk e
�i~kk �~rrel : ð6:30Þ

where

~’’~kk ¼
ieV�1=2

"0�k

~kk

k
¼ ~’’�

�~kk: ð6:31Þ

With equation (6.29) we obtain the equation of motion for the polarization
field from equation (6.22),

ð€qq~kk;� þ !2q~kk;�Þ ¼ ’~kk;� e
�i~kk �~rrel : ð6:32Þ

Schultz (1963) gives an excellent discussion of the Green’s function solution
of equation (6.32).

6.3 The constant-velocity polaron

Suppose the polaron is moving with constant velocity ~vv,

~rrel ¼ ~vv � t: ð6:33Þ
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Equation (6.32) becomes

ð€qq~kk;� þ !2q~kk;�Þ ¼ ’~kk;� e
�i�~kk

t ð6:34Þ

where

�~kk ¼ ð~kk �~vv Þ ¼ ���~kk: ð6:35Þ

Equation (6.34) has a solution q~kk;� � e�i�~kk
t, namely,

q~kk;�ðtÞ ¼
’~kk;� e

�i�~kk
t

ð!2 � �2
~kk
Þ : ð6:36Þ

Next consider the equations of motion of the electron, equations (6.19)
and (6.21),

€rrel;� ¼ 1

m
_pp� ¼ 1

m

X
~kk 0;�0

@

@rel;�
ðd�~kk 0;�0 Þq~kk 0;�0 : ð6:37Þ

We ask whether this is compatible with our assumed solution~rrel ¼ ~vv � t, i.e.
€rrel;� ¼ 0: ð6:38Þ

From equations (6.30) and (6.36) we can evaluate the right hand side of
equation (6.37), to see if it is zero. We have

1

m

X
~kk 0;�0

@

@rel;�
ð�’�~kk 0;�0 e

i~kk 0 �~rrelÞ
’~kk 0;�0 e

�i~kk 0 �~rrel

ð!2 � �2
~kk 0 Þ

¼ �

m

X
~kk 0;�

ðik�0 Þ
j~’’~kk 0 j2

ð!2 � �2
~kk 0 Þ

:

ð6:39Þ

We introduce spherical polar coordinates ðk; �; ’Þ in ~kk-space, with the polar
direction given by ~vv. We replace the discrete variable ~kk, equation (6.3), by a
continuous variable, and use the density of points �k in ~kk-space that follows
from equation (6.3):

�k ¼ V=ð2�Þ3: ð6:40Þ

Equation (6.39) then becomes

�

m

V

ð2�Þ3
i
X3
�¼1

ð
d3k0 k0�

j~’’~kk 0 j2

ð!2 � �2
~kk 0 Þ

; ð6:41Þ

which with the definitions of ~’’~kk and �~kk, equations (6.31) and (6.35), becomes

�

m

V

ð2�Þ3
i

ð1
0

dk0 k0
2
ð2�
0

d’

ð1
�1

d�

�
ie

"0�k
0

�2 1

V
k0�

ð!2 � k02v2�2Þ
; ð6:42Þ
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where we have introduced � ¼ cos �. The expression in equation (6.42) is
proportional to ð1

0
dk0

ð2�
0

d’

ð1
�1

d�
k0�

ð!2 � k02v2�2Þ
: ð6:43Þ

Now the x, y, z components of ~kk 0 in polar coordinates are

k01 ¼ k0 sin � cos’ ð6:44Þ

k02 ¼ k0 sin � sin’ ð6:45Þ

k03 ¼ k0 cos � ¼ k0�: ð6:46Þ

Thus the expressions in equation (6.43) for � ¼ 1 and � ¼ 2 are zero from the
integral over ’, and that for � ¼ 3 is zero because the integrand is odd in �,
and the integration is over a symmetric region about � ¼ 0. We therefore
conclude that the equation of motion, equation (6.37) and the assumed
solution~rrel ¼ ~vv � t are compatible.

We can now evaluate the total energy from the system’s hamiltonian,
equation (6.17), using equations (6.20), (6.36) and (6.30). We have

�~kk 0;�0��~kk 0;�0 ¼ �2 _qq�~kk 0;�0 _qq~kk 0;�0 ; ð6:47Þ

q~kk 0;�0q�~kk 0;�0 ¼
j’~kk 0;�0 j2

ð!2 � �2
~kk 0 Þ2

; ð6:48Þ

d�~kk 0;�0q~kk 0;�0 ¼
�j’~kk 0;�0 j2

ð!2 � �2
~kk 0 Þ

: ð6:49Þ

In arriving at equation (6.49) we have used the result from equations (6.30)
and (6.31) that

~dd~kk ¼ �~’’~kk e
�i~kk �~rrel ¼ ~dd �

~kk
: ð6:50Þ

Now substituting from equations (6.47)–(6.49) into equation (6.17) we obtain

H ¼
�

p2

2m
þ

X
~kk 0;�0

�
�

2
ð�i��~kk 0 Þð�i�~kk 0 Þ þ

�!2

2

� j’~kk 0;�0 j2

ð!2 � �2
~kk 0 Þ2

� �
X
~kk 0;�0

j’~kk 0;�0 j2

ð!2 � �2
~kk 0 Þ

�
: ð6:51Þ

Simplifying equation (6.51) we obtain

H ¼
�

p2

2m
� �

2

X
~kk

ð!2 � 3�2
~kk
Þ

ð!2 � �2
~kk
Þ2

j~’’~kk j
2

�
; ð6:52Þ
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where we have used ��~kk ¼ ��~kk
. To see this in terms of the canonical

variables, we must express �~kk
in terms of ~pp through equations (6.35),

(6.33) and (6.21):

�~kk
¼

�~kk �~pp
m

�
: ð6:53Þ

From equations (6.52) and (6.53) we then have

H ¼ p2

2m
� �

2

X
~kk

j~’’j2

�
!2 � 3

�~kk �~pp
m

�2�
�
!2 �

�~kk �~pp
m

�2�2

8>>><
>>>:

9>>>=
>>>;
: ð6:54Þ

For low velocity ~vv, or small ~pp, we can expand the second term in equation
(6.54) to first order in ½ð~kk �~pp Þ=ðm!Þ�2:

H �
�

p2

2m
þ �

2!2

X
~kk

j~’’~kk j
2

�� ~kk �~pp
m!

�2
� 1

��
: ð6:55Þ

Since ~vv is in the z direction, so is ~pp, i.e. p� ¼ p��;3. Then

H �
�

p2

2m� �
�

2!2

X
~kk

j~’’~kk j
2

�
; ð6:56Þ

where the effective mass of the electron, m�, is given by

1

m� ¼
�

1

m
þ �

m2!4

X
~kk

j~’’~kk j
2k23

�
; ð6:57Þ

and the effective potential Es due to the electron’s interaction with its self-
induced polarization field is

Es � � �

2!2

X
~kk

j~’’~kk j
2: ð6:58Þ

With this lowest-order approximation, there is no momentum dependence
in Es. Without the approximation, we can see from equations (6.54) and
(6.57) that

H ¼ p2

2m� þ � �

2!2

X
~kk

j~’’~kk j
2

�
1� 3

�
k3p
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�2�
�
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�
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�2�2 � p2
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�
1
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1

m

�
8>>><
>>>:

9>>>=
>>>;
: ð6:59Þ

The momentum dependence of the effective potential that comes from the
denominator will be further discussed in the next section.

The constant-velocity polaron 81



In equation (6.57) the term added to (1=m) increases the kinetic energy,
for given momentum ~pp of the electron. The definition of m� given there is an
effective mass less than the free electron mass m. A more satisfactory
expression for effective mass comes from identifying the electron’s momen-
tum as ~pp ¼ m~vv, where ~vv is the velocity both of the electron and of the
polaron quasiparticle. When this substitution is made in equation (6.55)
we obtain

H �
�

1
2m

�0v2 � �

2!2

X
~kk

j~’’~kk j
2

�
ð6:60Þ

where

m�0 ¼
�
mþ �

!4

X
~kk

j~’’~kk j
2k23

�
> m: ð6:61Þ

Now, in equation (6.60), the term (m�0v2=2), the kinetic energy, is clearly that
of a quasiparticle with velocity ~vv and effective mass m�0 > m, the latter
inequality expressing the effect of the polarization field’s inertia. The
corresponding new expression for the velocity-dependent effective potential
E 0
s is

E0
s ¼ � �

2!2

X
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j~’’~kk j
2
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�2�
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>>>:
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>>>;

ð6:62Þ

whence the total energy is

H ¼ ð12m
�0v2 þ E0

sÞ: ð6:63Þ

We note, from equations (6.62) and (6.61), that the effective potential E0
s is

independent of electron mass, unlike the form Es given in equation (6.59)
with equation (6.57).

The lowest-order approximation to E0
s, to order v2, is the same as Es,

equation (6.58). To evaluate this self energy we must consider

X
~kk

j’~kk j
2 ¼ 1

V

�
e

"0�

�2 X
~kk

1

k2
: ð6:64Þ

We can convert the summation over ~kk in equation (6.64) to an integral, as we
did in going from equation (6.39) to equation (6.41):

X
~kk

1

k2
¼

ð
d3k �k

1

k2
¼ V

ð2�Þ3
4�

ð1
0

dk k2
1

k2
: ð6:65Þ

The result diverges. When this integral is encountered in quantum electro-
dynamics (Sakurai, 1967, section 2.8), a finite upper limit is introduced on
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the grounds that the theory becomes meaningless when virtual photons that
are capable of producing more electrons (along with positrons) are included.
While this is easy to grasp, it is by no means clear that introducing an upper
limit in this way should lead to physically correct results. In the present case,
however, there is a good reason why the integral should be cut off at a finite
value. It is because, in a real material, the normal modes of vibration repre-
sented by~qq~kk in equation (6.22) are limited to a shortest wavelength, or largest
~kk-value, by the finite interatomic spacing. For the free field~qq~kk, i.e. with

~dd~kk ¼ 0
in equation (6.22) the dynamical equations determine a dispersion relation
! ¼ !ð~kk Þ [see equations (2.39) and (2.46), for the continuum case]. Thus
we conclude that the model adopted in this chapter, represented by equation
(6.1), replaces !ð~kk Þ by a single value, some sort of average value, for
example. In Chapter 8, section 8.2, we see how the dispersion relation for a
classical linear chain acquires an upper limit in ~kk, as well as a non-linear !
versus k dependence. Returning to equation (6.22) with ~DD 6¼ 0, where the
vibrations of the material are determined by the driving source ~dd~kk due to
the electron’s charge, the same atomistic consideration applies.

The simplest way to take account of the atomistic nature of a solid is to
let n0 be the number of atoms per unit volume. Then there are ð3n0VÞ degrees
of freedom for the ðn0VÞ atoms in volume V of the material, and correspond-
ingly ð3n0VÞ normal modes, and ðn0VÞ normal-mode wave vectors ~kk. Let kM
be the largest k-value. Then

n0V ¼
ð
k�kM

d3k �k ¼
V

ð2�Þ3
4�

3
k3M ð6:66Þ

whence we estimate the cutoff at

kM ¼ ð6�2n0Þ1=3: ð6:67Þ

Combining equations (6.64), (6.65) cut off at k ¼ kM , and (6.67), we find
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ð6�2n0Þ1=3: ð6:68Þ

Referring to equation (6.58), we find

E 0
s � � 1

4�

�
e

"0�!

�2
ð6�2n0Þ1=3: ð6:69Þ

We can similarly evaluate the mass renormalization given by the second term
in f g brackets in equation (6.61). It is
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ð6:70Þ
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In equation (6.70) we have used the result that k3 ¼ k cos �, and have made
the substitution � ¼ cos � where � is the polar angle. The final result, from
equations (6.61) and (6.70), is

ðm�0 �mÞ ¼ n0
3�

�
e

"0!
2

�2
: ð6:71Þ

The reader should check that the dimensionality of the ratio of the calculated
expressions E0

s to (m�0 �m) in equations (6.69) and (6.71) has the required
dimensionality of (speed)2.

In summary, we have derived the hamiltonian for an electron with its
self-induced polarization field in a dielectric solid, equation (6.17) with equa-
tions (6.30) and (6.31). We have analysed the hamiltonian equations of
motion to obtain equations of motion for the polarization field, equation
(6.34) with equations (6.35) and (6.2), and for the electron, equation (6.33).
The electron’s motion,~rrel ¼ ~vvt leads to a solution for the polarization field,
equation (6.36). Substituting both into the hamiltonian gives the total
energy in terms of electron momentum ~pp, equation (6.54), or in terms of
polaron velocity ~vv, namely

H ¼
�
m�0v2

2
þ E0

sð~vv Þ
�
; ð6:72Þ

where E0
sð~vv Þ is given in equation (6.62). In terms of the electron momentum,

the electron’s mass m can be renormalized giving m�, equation (6.57), to take
account of the contribution of the polarization field to the kinetic energy
associated with the electron’s motion, leaving a momentum-dependent
potential, equation (6.59). In lowest order, i.e. for small momentum, this
potential gives a momentum-independent energy shift, but higher-order
corrections bring in momentum dependence. In terms of the polaron velocity
~vv, the electron’s mass m is renormalized to m�0, equations (6.61)–(6.63), with
equation (6.72). In this case, the kinetic energy term ðm�0v2Þ=2 is clearly
identified as characteristic of the polaron quasiparticle, both in terms of its
effective mass m�0 and its velocity ~vv. The remaining term in the energy, E 0

s,
equations (6.63) and (6.62), is identified as a velocity-dependent potential
or energy shift. When one takes account of the discrete atomic nature of
the dielectric solid, one can explicitly evaluate the mass renormalization
(m�0 �m), equation (6.71), and the lowest order, velocity-independent
energy shift (�E 0

s), equation (6.69).
The polaron theory presented in this chapter is entirely classical. When

values of �, ! and n0 for typical materials, such as NaCl and KCl, are inserted
into equation (6.71) for the mass renormalization a large number is obtained
(see exercise 6.1). This is not in agreement with either the quantum theory of
the polaron, or with experiment. The theory represented here, however, has
the merit of illustrating in a particularly simple way the self-energy and mass
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renormalization effects that are characteristic of particle–field interaction.
The polaron problem is nearly as old as quantum theory itself: Mott and
Gurney (1940, Chapter III, section 5.3), describe Landau’s work dated
1933 [Landau (1933)]. It still represents a very lively field of theoretical and
experimental investigation. The recent textbook by Marder (2000) gives a
good introduction to both aspects of the subject.

On the experimental side, Marder presents two ratios: in his notation
ðm�=mÞ, where m� is band mass due to the periodic potential of the crystal
lattice, and m is the free electron mass; and (m�

pol=m), where m�
pol is the

polaron effective mass, corresponding to our quantity m� in equation
(6.57): see also equation (6.67) and the intervening discussion. From
Marder’s notation, the polaron effective mass in units of band mass is

�
m�

pol

m�

�
¼

�
m�

pol

m

�
�
m�

m

� : ð6:73Þ

From our equation (6.57), the corresponding quantity, ðm�=mÞ in our
notation, would always be less than unity. By contrast, the experimental
results given in Marder’s table 22.1 have (m�

pol=m
�Þ > 1 in all but two

cases, only one of which, CdF2, is probably beyond experimental error.
For the alkali halides, the ratio is of the order of two, while for common
semiconductors it is close to unity.

The quantum theory of the polaron has been dominated by Fröhlich’s
effective hamiltonian [Fröhlich (1963, equation (4.24), p. 20)]. The total
energy in this formulation, in appropriate units, depends on a material-
dependent coupling constant, denoted �p in Marder. Several approximate
derivations of the effective mass ratio of equation (6.73) have been
developed. In weak coupling [see for example Fröhlich (1963, equation
(5.13), p. 24)], with �p � 1:�

m�
pol

m�

�
¼

�
1þ

�p

6

�
; ð6:74Þ

in Marder’s notation. From Marder’s Table 22.1, �p � 1 for most of the
semiconductor materials listed, and for these, equation (6.74) gives excellent
agreement with experiment. The intermediate coupling theory of Pines (1963)
extends the weak coupling result to values of �p93, as follows:

�
m�

pol

m�

�
¼ 1�

1þ
�p

6

�þ
0:02�2

p�
1þ

�p

6

�2
8><
>:

9>=
>;
�1

: ð6:75Þ

When the values of �p for the alkali halides are substituted into equation
(6.75), we obtain the results shown in table 6.1. We see that while both theory
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and experiment have the same trend as �p, the discrepancy between
experiment and theory is 22% for the smallest value of �p, namely 2.51,
and the discrepancy rises fast, to 42% at the largest value of �p, namely
3.84. We conclude that in the intermediate coupling range, the theory is
not very accurate. Feynman (1955) has applied his path integral method to
the polaron theory, obtaining analytical results that are expected to be
valid for all coupling strengths, subject to the limitation of a gaussian
wave function for the electron. Application of Feynman’s results to a
polaronic picture of the diffuse excited state of the F center (an electron
bound to an anion vacancy) in BaF2, where �p has been estimated at 4.63,
leads to a promising result in comparison with the optical excitation
energy [Vail et al. (2002)]. This is discussed further in Chapter 11, especially
section 11.8.

6.4 Polaron in a magnetic field: quantization

Let us now consider a polaron in a magnetic field, and suppose that we want
to get a quantum-mechanical description. Then we want a hamiltonian
operator, in general a functional of ~pp and ~rrel, the canonical momenta and
generalized coordinates of the electron, where ~pp and ~rrel are operators
whose components satisfy the canonical commutation rules:

½ p�; p�� ¼ 0; ð6:76Þ

½rel;�; rel;�� ¼ 0; ð6:77Þ

½ p�; rel;�� ¼ �i�h���: ð6:78Þ

Table 6.1. Effective mass ratios (m�
pol=m

�), equation (6.73), for

polarons in some alkali halides, experimental and as

calculated from intermediate coupling theory, equa-

tion (6.75), where �p is Fröhlich’s polaron coupling

constant; based on table 22.1 of Marder (2000).

(m�
pol=m

�)

Crystal �p Experiment Theory

KI 2.51 1.66 1.30

KBr 3.14 1.79 1.35

RbI 3.16 1.96 1.35

KCl 3.45 2.12 1.37

CsI 3.67 2.29 1.38

RbCl 3.84 2.38 1.39
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Since the usual approach is to start with a classical hamiltonian and then
introduce the operator properties of equations (6.76)–(6.78), we would
naturally consider the hamiltonian of equation (6.54), which consists of the
bare electron’s kinetic energy and an effective, momentum-dependent
potential, or else equation (6.59), which consists of a polaron kinetic
energy incorporating a renormalized effective mass m�, and a somewhat
different effective potential, still, however, in terms of electron momentum~pp.

We now turn on a magnetic field, with magnetic induction field ~BBð~rr Þ,
expressible in terms of a vector potential ~AAð~rr Þ by

~BB ¼ ð~rr	 ~AA Þ: ð6:79Þ
Classically, we know that the hamiltonian is modified by the replacement

~pp ! ½~pp� e~AAð~rrelÞ�; ð6:80Þ
where, in the latter,~pp is the canonical momentum, not the particle’s mechan-
ical momentumm~vv [see e.g. Goldstein (1980), section 7.9]. The kinetic energy
term, for example in equation (6.59), becomes

1

2m� p2 ! 1

2m� ½~pp� e~AAð~rrelÞ�2: ð6:81Þ

Quantization of such an expression has been found not to present any new
problem of interpretation, so long as the ordering of terms is maintained
as follows:

ð~pp� e~AA Þ � ð~pp� e~AA Þ ¼ ½p2 � eð~pp � ~AAþ ~AA �~pp Þ þ e2A2�: ð6:82Þ
In equation (6.82), since ~pp and~rrel do not commute,

~pp � ~AAð~rrelÞ 6¼ ~AAð~rrelÞ �~pp: ð6:83Þ

Schafroth (1958) has discussed the ambiguity that arises when one tries to
understand the magnetic properties of a system of particles (in the present
case, one particle) described by an effective potential that has momentum
dependence of order higher than quadratic. In equation (6.59) we have a term�

1�
�

k3
m!

�2
p2
��2

: ð6:84Þ

The meaning of such a quantum-mechanical operator is in terms of the
power series expansion, whose lowest-order term beyond quadratic is

ð p2Þ2 ¼ p4: ð6:85Þ

There is no fundamental criterion favoring one form of p4over another. In
the absence of magnetic field, they are identical in view of the commutation
relations (6.76), i.e.

p� p� p� p� ¼ p� p� p� p�; ð6:86Þ
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where Einstein summation over cartesian components is used. Furthermore
they are both gauge covariant and hermitian [Schafroth (1960)]. However,
when we turn on a magnetic field according to equation (6.80) we are led
to consider

ð�������� � ��������Þ; ð6:87Þ

where

�� ¼ ½p� � eA�ð~rrelÞ�: ð6:88Þ

From the commutation relations, equations (6.76)–(6.78), we deduce

½p�;A�ð~rrelÞ� ¼ �i�h@�A�; ð6:89Þ

whence

½��; ��� ¼ i�heð@�A� � @�A�Þ: ð6:90Þ

With equation (6.90), the expression in equation (6.87) reduces to

ð�������� � ��������Þ

¼ ���ð�i�heÞð@�A� � @�A�Þ��
¼ ðie�hÞ��f��ð@�A� � @�A�Þ þ i�h@�ð@�A� � @�A�Þg

¼ fðie�hÞ����ð@�A� � @�A�Þ � e�h2��@�ð@�A� � @�A�Þg: ð6:91Þ

It is clear that all terms with � ¼ � are zero. Performing the summation over
all other terms we obtain, from the right-hand side of equation (6.91),

ie�hf�1�2B3 � �1�3B2 � �2�1B3 þ �2�3B1 þ �3�1B2 � �3�2B1g

�e�h2f�1@2B3 � �1@3B2 � �2@1B3 þ �2@3B1 þ �3@1B2 � �3@2B1g

¼ ie�hfði�heB3ÞB3 þ ði�heB2ÞB2 þ ði�heB1ÞB1g

�e�h2fð�1@2 � �2@1ÞB3 þ ð�3@1 � �1@3ÞB2 þ ð�2@3 � �3@2ÞB1g

¼ �e�h2feB2 þ ð~��	 ~rrÞ � ~BBg

¼ �e�h2feB2 þ~�� � ð~rr	 ~BB Þg: ð6:92Þ

In obtaining equation (6.92) we have used the generalization of equation
(6.89) along with equations (6.90) and (6.79). We recall that~�� is the particle’s
mechanical momentum m~vv. From the Maxwell equation,

~rr	 ~BB ¼ �~JJ ð6:93Þ

for a time-independent system, where � is the magnetic permeability of the
medium, and ~JJ is the electrical current density which is the source of
the magnetic field. The spatial variables in equation (6.92) are those of the
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electron ~rrel: see equation (6.88). Thus if, as is usually the case, the source
currents of the magnetic field lie outside the sample, as we shall assume
here, then ~JJ ð~rrelÞ ¼ 0. In this case we see, from equations (6.91)–(6.93) that
the difference between two hamiltonian terms derived from p4, with non-
zero magnetic field, is (�e2�h2B2). This is non-zero, and involves a measurable
physical quantity. The two terms represent two distinct physical situations
with distinct physical properties, and both equally conform to the quantiza-
tion algorithm. There is thus an ambiguity associated with this algorithm
when it is applied to a hamiltonian, or an effective hamiltonian as here
for the polaron, that contains momentum beyond second order. Schafroth
(1958) gives other examples, from p4 and p6 terms, and discusses the
problem more fully in relation to gauge covariance [Schafroth (1960),
especially in sections 13c, d and e]. The latter is highly recommended to
the reader. To eliminate such ambiguities we must rely on experimental
evidence that excludes some magnetic effects but exhibits others. From the
purely theoretical viewpoint, one must introduce the magnetic field and
quantization at the level of equation (6.17), prior to eliminating the field
variables.
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Chapter 7

Atomistic quantum theory of solids

7.1 Introduction

The preceding six chapters have addressed physical properties of solids viewed
as continuous media. However, many important properties of technological
materials dependupondetails of the atomic structure that cannot be adequately
represented by continuum models, or even by classical discrete atoms. An
obvious example is optical properties due to chemical impurities. More gener-
ally, however, it is interesting to ask to what extent arbitrary properties of a
solidmaterial can be related directly, and rigorously, to the nuclei and electrons
of which the material is ultimately composed. The nuclei specify the chemical
composition of the solid and, thereby, the crystal and defect structure under
given thermodynamic conditions; whence also both equilibrium and dynamical
properties and processes. In this chapter we shall illustrate how the thermo-
dynamic equation of state of a solid is related to the electrically neutral
collection of nuclei and electrons of which it is made up. We shall establish a
formal framework so that the reader can see how, by improving the initial
model, and by adopting one or another set of systematic approximations in
the mathematical treatment, one can simulate an extremely wide range of
phenomena. The approach will be based on elementary concepts of quantum
mechanics and statistical thermodynamics. In later chapters it will become
evident that, given presently available computing power, implementation of
large parts of this agenda for specific materials and properties is a practical
undertaking. Much of this chapter closely follows Maradudin (1974).

7.2 The hamiltonian of a solid

We consider a solid to be a quantum-mechanical system consisting of N
electrons and N1 nuclei. Then Schrödinger’s equation for stationary energy
eigenstates is

HjE�i ¼ E�jE�i: ð7:1Þ
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We write the hamiltonianH in configuration space as the sum of three terms:
nuclear, electronic, and nucleus–electron interaction:

H ¼ ðHn þHe þHneÞ: ð7:2Þ

Let nuclear coordinates be denoted ~RRJ , J ¼ 1; 2; . . . ;N1, collectively denoted
R ¼ ð~RR1; ~RR2; . . . ; ~RRN1

Þ, and electron coordinates rj ¼ ð~rrj ; sjÞ, where ~rrj is
position coordinates and sj is spin, j ¼ 1; 2; . . . ;N, collectively denoted
r ¼ ðr1; r2; . . . ; rNÞ. Then nuclear and electronic energies each have kinetic
and potential parts,

Hn ¼ ðTn þ VnÞ; He ¼ ðTe þ VeÞ; ð7:3a; bÞ

where the nuclear and electronic kinetic energy parts are, respectively,

Tn ¼
XN1

J¼1

�
� �h2

2MJ

�
r2

J ; Te ¼
XN
j¼1

�
� �h2

2m

�
r2

j : ð7:4a; bÞ

In equations (7.4a,b), MJ are nuclear masses, m is the electron’s mass, ~rrJ is
gradient with respect to ~RRJ , and ~rrj is gradient with respect to~rrj .

For the potential energies, we adopt a very simple model, in which the
nuclei and electrons are non-relativistic charged point masses. Spin-
dependent effects, apart from those arising from the Pauli principle (see
Chapter 12), can therefore not be described by this model. Neglecting
gravitational and magnetic effects, potential energies are then exclusively
electrostatic, as follows:

VnðRÞ ¼
e2

4�"0
� 1
2

X
J;J 0

0 ZJZJ 0

j~RRJ � ~RRJ 0 j
; ð7:5aÞ

VeðrÞ ¼
e2

4�"0
� 1
2

X
j; j 0

0 j~rrj �~rrj0 j�1: ð7:5bÞ

Similarly, the nucleus–electron interaction, equation (7.2), is

VneðR; rÞ ¼ � e2

4�"0

X
J; j

0
ZJ j~rrj � ~RRJ j�1: ð7:6Þ

For equations (7.5a) and (7.6), ZJ is the charge of the Jth nucleus, in units of
e > 0. In equations (7.5) and (7.6), "0 is the permittivity of free space.

7.3 Nuclear dynamics: the adiabatic approximation

The adiabatic approximation has a hierarchy of levels [see for example, Vail
(1987), Stoneham (1975), Born and Huang (1954)]. Here we adopt the
simplest, namely the average field approximation. Denote the energy
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eigenstate jE�i, equation (7.1), by ��ðr;RÞ in position representation, and
then denote it by

jE�i � j��i: ð7:7Þ

Now in a crystalline solid, atomic sites are identifiable: denote them collec-
tively by R0 ¼ ð~RR10; . . . ; ~RRN10Þ. In fact, R0 defines the crystal structure. The
average field approximation is then

��ðr;RÞ �  �ðr;R0Þ �’�ðRÞ: ð7:8Þ

The implication of equation (7.8) is that the electronic motion is determined
by the crystal structure, approximately, independent of the nuclear dynamics.
A well-known exception to this approximation is superconductivity, where
the electronic states depend crucially on the dynamical interaction of
electrons and nuclei, the so-called electron–phonon interaction (see section
14.2).

Within the form of the adiabatic approximation given by equation (7.8),
we can examine the nuclear motions by averaging over the electronic
distribution represented by  �ðr;R0Þ in equation (7.8). Thus from equations
(7.1), (7.7) and (7.8),

h �jHj��i ¼ E�j’�i; ð7:9Þ

assuming  � (and ’�) are normalized. In position representation,

h �jHj��i ¼
�ð

d�r  
�
�ðr;R0Þ �Hðr;RÞ � �ðr;R0Þ

�
’�ðRÞ: ð7:10Þ

From equations (7.9) and (7.10) we can identify the quantity in { } brackets as
an effective nuclear hamiltonian; it depends only on R, and is the expectation
value of the total hamiltonian H with respect to the electronic state j �i.
Explicitly,

fTn þWðR; �Þg’�ðRÞ ¼ E�’�ðRÞ ð7:11Þ

where

WðR; �Þ ¼ fVnðRÞ þ h �jHe þ Vnej �ig: ð7:12Þ

We have used, in equation (7.11), the fact that Tn and Vn are independent of
r, and  � is normalized. In equation (7.12) we see that the effective nuclear
potential W consists of two parts, VnðRÞ, which is purely repulsive [see
equation (7.5a)], and an electronic term that depends on the electronic
state j �i, which accounts for the interatomic binding of the crystal. For
absolute zero, T ¼ 0, the crystal structure, defined by R0 (for a given elec-
tronic state) is determined by the equilibrium condition�

@W

@R

�
R¼R0

¼ 0: ð7:13Þ
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This corresponds to a model of the system in which the nuclei are viewed as
classical particles, collectively in their lowest state of total energy. Note that
in equation (7.13),  � is independent of R.

7.4 The harmonic approximation

We now take account of the fact that the nuclei spend most of the time close
to the crystalline sites. [There are, of course, exceptions to this, such as so-
called anharmonic or quantum crystals, and also very-low atomic number
impurities such as hydrogen.] We therefore write

~RRJ ¼ ð~RRJ0 þ~uuJÞ; J ¼ 1; 2; . . . ;N1; ð7:14Þ

and adopt the approximation that ~uuJ are small. Note that  �ðr;R0Þ is
independent of~uuJ . The discrete variable~uuJ here corresponds to the distortion
field ~uuð~rr Þ in the continuum mechanics of Chapters 1 to 6. We introduce a
matrix notation, in which u is a column matrix, with elements uJ�,
J ¼ 1; 2; . . . ;N1 with � ¼ 1; 2; 3 corresponding to cartesian components.
Let us now expand WðR; �Þ, equation (7.12), to second order in u: this is
the harmonic approximation:

W � fW ð0Þ þW ð1ÞT � uþ 1
2 u

T �W ð2Þ � ug: ð7:15Þ

In equation (7.15) superscripts indicate order of differentiation, in the
following sense:

W ð0Þ ¼ WðR0;  �Þ ð7:16Þ

W
ð1Þ
k ¼

�
@W

@uJ�ðkÞ

�
u¼0

ð7:17Þ

where J�ðkÞ is the kth element of u, and

W
ð2Þ
k;k0 ¼

�
@2W

@uJ�ðkÞ @uJ 0�0ðk0Þ

�
u¼0

: ð7:18Þ

Thus W ð1Þ is a column matrix and W ð2Þ is a square matrix. Superscript T
indicates transpose, in equation (7.15). Since, from equation (7.14),
@=@R ¼ @=@u, the equilibrium condition equation (7.13) gives W ð1Þ ¼ 0.
This, with equations (7.11) and (7.15), gives the Schrödinger equation for
the nuclei:

fTn þ 1
2 u

T �W ð2Þð �Þ � ug’� ¼ ½E� �W ð0Þð �Þ�’�: ð7:19Þ

In equation (7.19) we have indicated that the force constant matrix W ð2Þ

depends on the electronic state j �i, as do the total energy eigenvalue E�
and the nuclear state j’�i.
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7.5 Phonons

The nuclear Schrödinger equation (7.19) can be written in position represen-
tation as �X

J�

P2
J�

2MJ

þ 1

2

X
J�;J 0�0

W
ð2Þ
J�;J 0�0uJ�uJ 0�0

�
’� ¼ E0

�’� ð7:20Þ

where

PJ� ¼
�
�i�h

@

@uJ�

�
; ð7:21aÞ

and

E0
� ¼ ½E� �W ð0Þð �Þ�: ð7:12bÞ

We now proceed to show that, under very general conditions, equation (7.20)
is equivalent to a system of non-interacting linear simple harmonic oscillators
[see Maradudin (1974), Peierls (1955)].

7.5.1 Periodic boundary conditions for bulk properties

We begin with the Born–von Karmann boundary conditions. For this, we
consider a macroscopic sample of crystal to consist of a large number of
smaller macroscopic components, each with N1 nuclei. All such components
that are not too near the surfaces of the crystal will be very similar: approxi-
mately identical. Almost all such components will be surrounded by similar
components, all of which have properties that are representative of the bulk
material. We then say that such a component, subject to periodic boundary
conditions, will represent the bulk behaviour of the material.

For simplicity we now consider a monatomic crystal with one atom per
primitive unit cell. For simplicity of illustration, consider the case where the
crystal’s primitive translation vectors are orthogonal, e.g. orthorhombic.
Then

~RRJ0 ¼
X3
�¼1

a�"̂"��J� ð7:22Þ

where (a�"̂"�) are primitive translation vectors, "̂"� (� ¼ 1; 2; 3) are ortho-
normal basis vectors in real space, and �J� are integers. We shall Fourier
transform the nuclear Schrödinger equation (7.20). We have noted that the
vector ~uuJ is the distortion field of the crystal, having meaning only at
atomic sites J. In fact, for this discrete atomistic model of the crystal,
spatial positions are determined by J.

In such a space, consider the basis functions

�~kk ðJÞ ¼ N
�1=2
1 � expði~kk � ~RRJ0Þ: ð7:23Þ
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These basis functions must satisfy the Born–von Karmann periodic bound-
ary conditions. Let the periodically repeated volume be

V ¼
Y3
�¼1

ðN1�a�Þ; ð7:24Þ

where

N1 ¼
Y3
�¼1

N1�: ð7:25Þ

Equation (7.24) says that there are N1� atoms (primitive unit cells) in the �
direction in V , and equation (7.25) says that there are N1 atoms in V .
Then the periodic boundary conditions are

uJþN1�;�
0 ¼ uJ;�0 ; � ¼ 1; 2; 3; for given �0: ð7:26Þ

The Fourier series for ~uuJ is

~uuJ ¼ ðN1Þ�1=2
X
~kk

~qq~kk expði~kk � ~RRJ0Þ: ð7:27Þ

Substituting this into equation (7.26),X
~kk

~qq~kk expði~kk � ~RRJþN1�;0Þ ¼
X
~kk

~qq~kk expði~kk � ~RRJ0Þ: ð7:28Þ

Now,

~RRJþN1�;0 ¼ ð~RRJ0 þN1�a�"̂"�Þ: ð7:29Þ

Thus, for arbitrary ~qq~kk in equation (7.28), we require

expði~kk � "̂"�N1�a�Þ ¼ 1

or

k� ¼
�

2�

N1�a�

�
n�; n� ¼ 0;�1;�2; . . . ð7:30Þ

Consider two values of n� differing by N1�, e.g.

k0� ¼
�

2�

N1�a�

�
ðn� þN1�Þ ¼

�
k� þ

2�

a�

�
:

We then have

expði~kk 0 � ~RRJ0Þ ¼ expði~kk � ~RRJ0Þ � exp
�
i

�X
�

2�

a�
�RJ0;�

��
:
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But from equation (7.22)

exp

�
i

�X
�

2�

a�
�RJ0;�

��
¼ exp

�
i

�X
�

2�

a�
� a��J�

��

¼ exp

�
2�i

X
�

�J�

�
¼ 1;

since �J� are integers. It follows that

expði~kk 0 � ~RRJ0Þ ¼ expði~kk � ~RRJ0Þ:

Thus the set of integers n� in equation (7.30) for k� may be restricted to N1�

consecutive values:

k� ¼
�

2�

N1�a�

�
n�; n� ¼ 0; 1; 2; . . . ; ðN1 � 1Þ: ð7:31Þ

We can now show that the basis functions �~kk ðJÞ are an orthonormal set,
in the sense X

J

��~kk ðJÞ�~kk 0 ðJÞ ¼ �~kk;~kk 0 : ð7:32Þ

Clearly, for ~kk 0 ¼ ~kk, we have from equation (7.23)

XN1

J¼1

j�~kk ðJÞj
2 ¼ N�1

1

XN1

J¼1

ð1Þ ¼ 1:

For ~kk 0 6¼ ~kk in the left-hand side of equation (7.32) we have

N�1
1

X
J

exp½�ið~kk� ~kk 0Þ � ~RRJ0�: ð7:33Þ

In summing over atomic sites J, we have �J� ¼ 1; 2; . . . ;N1� in equation
(7.22) for ~RRJ0. Let

ðk� � k0�Þ ¼
2�

N1�a�
� ðn� � n 0

�Þ

from equation (7.31), and with ðn� � n 0
�Þ ¼ n 00

�, an integer,

ð~kk� ~kk 0Þ � ~RRJ0 ¼
X
�

ðk� � k0�ÞRJ�;0

¼
X
�

2�

N1�a�
� n00� � a��J�

¼
X
�

2�

N1�

� n00� � �J�: ð7:34Þ
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Thus, from equation (7.33) we have, with equation (7.34),

N�1
1

X
J

Y
�

½expð�2�in00�=N1�Þ�
�J� ¼ N�1

1

Y
�

XN1�

�J�¼1

x�J�� ð7:35Þ

where

x� ¼ ½expð�2�in00�=N1�Þ�: ð7:36Þ

Now

XN1�

�J�¼1

x�J�� ¼ ð1� xN1�
� Þ

ð1� x�Þ
:

But from equation (7.36),

xN1�
� ¼ expð�2�in00�Þ ¼ 1;

so ð1� xN1�
� Þ ¼ 0 and so therefore

N�1
1

X
J

exp½�ið~kk� ~kk 0Þ � ~RRJ � ¼ 0; if ~kk 6¼ ~kk 0:

This completes the proof of the orthonormality of the basis set �~kk ðJÞ,
equation (7.32).

Finally, we mention the completeness of the basis set �~kk ðJÞ, equation
(7.23). If they are a complete set, it will follow from the Fourier expansion,
equation (7.27), that for arbitrary distortion field ~uuJ ,

~qq~kk ¼ ðN1Þ�1=2
X
J

~uuJ expð�i~kk � ~RRJ0Þ: ð7:37Þ

We leave this as an exercise, given orthonormality, equation (7.32).

7.5.2 The dynamical matrix of the crystal

We now return to the equation of motion, equation (7.20). From trans-
lational invariance in the crystal, all properties of the system that depend
on two sites, including the elements of the force constant matrix W ð2Þ,
depend only on the relative positions of the two sites, i.e.

W
ð2Þ
J�;J 0�0 ¼ W

ð2Þ
0�;ðJ 0�JÞ�0 :

We denote the latter in a new notation by

W�;�0 ðJ 0 � JÞ � W
ð2Þ
J�;J 0�0 : ð7:38Þ
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For simplicity of illustration, consider a monatomic crystal. Equation (7.20)
now becomes, with MJ ¼ M (all J),�

1

2M

X
J�

P2
J� þ

1

2

X
J;J 0;�;�0

W�;�0 ðJ � J 0ÞuJ�uJ 0�0

�
’� ¼ E 0

�’�: ð7:39Þ

The elements of the distortion field uJ� are canonical coordinates of the
system, 3N1 in number. Their canonical momenta PJ� are also a field, with
space dependence J. The canonical quantum-mechanical commutation
rules are

½PJ�; uJ 0�0 � ¼ �i�h�J;J 0��;�0 : ð7:40Þ

The Fourier series and Fourier transform of ~PPJ are, respectively,

~PPJ ¼ N
�1=2
1

X
~kk

~pp~kk expði~kk � ~RRJ0Þ; ð7:41Þ

and

~pp~kk ¼ N
�1=2
1

X
J

~PPJ expð�i~kk � ~RRJ0Þ; ð7:42Þ

corresponding to equations (7.27) and (7.37) for~uuJ , where ~kk is restricted as in
equation (7.31).

The Fourier coefficients ~qq~kk, equation (7.27), are a new set of canonical
coordinates, 3N1 in number: see equation (7.31). The canonical commutation
rules, equation (7.40), in terms of ~qq~kk and ~pp~kk, equations (7.27) and (7.41),
become

½p~kk�; q~kk 0�0 � ¼ N�1
1

X
JJ 0

½PJ�; uJ 0�0 � exp½ið~kk � ~RRJ0 þ ~kk 0 � ~RRJ 00Þ�

¼ �i�hN�1
1

X
J;J 0

�JJ 0���0 exp½ið~kk � ~RRJ0 þ ~kk 0 � ~RRJ 00Þ�

¼ �i�h���0 �N�1
1

X
J

exp½ið~kkþ ~kk 0Þ � ~RRJ0�

¼ �i�h���0

X
J

���~kkðJÞ�~kk 0 ðJÞ from equation (7.23)

¼ �i�h���0 � ��~kk;~kk 0 from equation (7.32): ð7:43Þ

Thus p�~kk� (not p~kk�) is the canonical momentum for q~kk�.
From equation (7.39), the effective nuclear hamiltonian H is

H ¼
�
1

2
M

X
J�

P2
J� þ

1

2

X
J;J 0;��0

W��0 ðJ � J 0ÞuJ�uJ 0�0

�
: ð7:44Þ
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In terms of the new canonical variables, q~kk� and p�~kk�, substitution of
equations (7.27) and (7.41) into equation (7.44) gives

H ¼ N�1
1

�
1

2M

X
J;�

X
~kk;~kk 0

p~kk�p~kk 0� exp½ið~kkþ ~kk 0Þ � ~RRJ0�

þ 1

2

X
J;J 0;�;�0

W��0 ðJ � J 0Þ
X
~kk;~kk 0

q~kk�q~kk 0�0 exp½ið~kk � ~RRJ0 þ ~kk 0 � ~RRJ 00Þ�
�

¼
�

1

2M

X
~kk;~kk 0;�

p~kk�p~kk 0��~kk;�~kk 0 þ
1

2
N�1

1

X
J;J 00;�;�0

W��0 ðJ 00Þ
X
~kk;~kk 0

q~kk�q~kk 0�0

� exp½ið~kkþ ~kk 0Þ � ~RRJ0� expð�i~kk 0 � ~RRJ 000Þ
�

¼
�

1

2M

X
~kk�

p~kk�p�~kk� þ
1

2

X
~kk~kk 0;��0

W�~kk 0;��0q~kk�q~kk 0�0�~kk 0;�~kk

�

¼
�

1

2M

X
~kk�

p~kk�p�~kk� þ
1

2

X
~kk;�;�0

W~kk;��0q~kk�q�~kk�0

�
: ð7:45Þ

In equation (7.45), we have introduced the dynamical matrix, in the notation

W~kk;��0 ¼
X
J

W��0 ðJÞ expði~kk � ~RRJ0Þ: ð7:46Þ

This differs by a factor N
1=2
1 from the Fourier transform of W��0 ðJÞ, as we

have previously defined Fourier transforms: see equations (7.37) and (7.42).
So far, the vectors ~kk have been defined relative to a given coordinate

system, defined by "̂"�; see equation (7.22). We now adopt a different conven-
tion. For each ~kk vector,W~kk;��0 is a 3� 3 matrix. By rotation to principal axes,
W~kk;��0 becomes diagonal. In that case, W~kk;��0 has only three elements,

W~kk;��0 ¼ W~kk;��
� ���0 ;

We denote

Wk;�� � W~kk;�
: ð7:47Þ

This does not affect the ~kk-dependence of W~kk;��0 , equation (7.46), which is
borne only by scalar quantities (~kk � ~RRJ0). From equation (7.45) we now have

H ¼
X
~kk;�

�
1

2M
p~kk�p�~kk� þ

1

2
W~kk�

q~kk�q�~kk�

�
: ð7:48Þ

We re-emphasize that now W~kk;�
is the diagonal element of W~kk;��0 , equations

(7.46), (7.38) and (7.18), in the principal axes coordinate system of W~kk;��0 .
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7.5.3 The normal modes of crystal vibration

We proceed to introduce a further canonical transformation which will cast
equation (7.48) in the form of a set of independent simple harmonic oscilla-
tors. For this we consider real variables. We note that, from equation (7.37),
since ~uuJ are real displacements,

q�~kk� ¼ q�~kk�: ð7:49Þ

Thus consider

Q
ð1Þ
~kk�

¼ 2�1=2ðq~kk� þ q�~kk�Þ ¼ 21=2 Reðq~kk�Þ ð7:50Þ

and

Q
ð2Þ
~kk�

¼ �i2�1=2ðq~kk� � q�~kk�Þ ¼ 21=2 Imðq~kk�Þ: ð7:51Þ

Similarly, from equation (7.42), since ~PPJ are real momenta,

p�~kk� ¼ p�~kk�: ð7:52Þ

We therefore construct

P
ð1Þ
~kk�

¼ 2�1=2ðp~kk� þ p�~kk�Þ ¼ 21=2 Reðp~kk�Þ; ð7:53Þ

P
ð2Þ
~kk�

¼ i2�1=2ðp~kk� � p�~kk�Þ ¼ �21=2 Imðp~kk�Þ: ð7:54Þ

We note that Q
ð1Þ
~kk�

and P
ð1Þ
k� are of even parity, and Q

ð2Þ
~kk�

and P
ð2Þ
k� are of odd

parity, as functions of ~kk.
If we invert relations (7.50) to (7.54), we have

q~kk� ¼ 2�1=2ðQð1Þ
~kk�

þ iQ
ð2Þ
~kk�
Þ ð7:55Þ

p~kk� ¼ 2�1=2ðPð1Þ
~kk�

� iP
ð2Þ
~kk�
Þ: ð7:56Þ

Substituting these into the hamiltonian, equation (7.48), we obtain

H ¼ 1

2

X
j¼1;2

X
~kk�

�
1

2M
�Pð jÞ2

~kk�
þ 1

2
W~kk;�Q

ð jÞ2
~kk�

�
: ð7:57Þ

Consider the special case where the crystal has a center of symmetry. Then, in
that case,

W�~kk;� ¼ W~kk;�; ð7:58Þ

and because Q
ð jÞ
~kk�

and P
ð jÞ
~kk�

have definite parity,

H
ð jÞ
~kk�

�
�

1

2M
�Pð jÞ2

k� þ 1

2
W~kk�Q

ð jÞ2
~kk�

�
¼ H

ð jÞ
�~kk;�: ð7:59Þ
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From the commutation rules, equation (7.43), for~pp~kk and~qq~kk, we find those for
P
ð jÞ
~kk

and Q
ð jÞ
~kk
, j ¼ 1, 2, from equations (7.50), (7.51), (7.53) and (7.54),

½Pð1Þ
~kk�
;Q

ð1Þ
~kk 0�0 � ¼ 1

2 ð�i�hÞf2�~kk~kk 0���0 þ 2�~kk 0;�~kk ���0 g: ð7:60Þ

Thus, if for the moment we assume that ~kk 0 6¼ �~kk, we have canonical com-
mutation rules,

½Pð1Þ
~kk�
;Q

ð1Þ
~kk 0�0 � ¼ �i�h�~kk;~kk 0 � ���0 : ð7:61Þ

Similarly, we obtain

½Pð2Þ
~kk�
;Q

ð2Þ
~kk 0�0 � ¼ 1

2 ð�i�hÞf2�~kk~kk 0���0 � 2�~kk 0;�~kk ���0 g ð7:62Þ

or, if ~kk 6¼ �~kk 0,

½Pð2Þ
~kk�
;Q

ð2Þ
~kk 0�0 � ¼ �i�h�~kk;~kk 0 � ���0 : ð7:63Þ

Furthermore,

½PðiÞ
~kk�
;Q

ð jÞ
~kk 0�0 � ¼ 0 for i 6¼ j: ð7:64Þ

From equations (7.61) and (7.63), we conclude that, ~PP
ð1Þ
~kk

and ~QQ
ð1Þ
~kk

are a

canonical pair, and ~PP
ð2Þ
~kk
, ~QQ

ð2Þ
~kk

are a canonical pair, both subject to the

given restrictions on ~kk and ~kk 0, namely ~kk 6¼ �~kk 0.
Now consider the hamiltonian in the form of equation (7.57). Consider

j ¼ 1. Because of the symmetry relation equation (7.59), we can limit the sum
over ~kk to a single hemisphere, say kz > 0, and restrict ~kk to a semicircle for
kz ¼ 0, and introduce a factor 2. Then the restriction ~kk 0 6¼ �~kk, under
which equation (7.61) is valid, is satisfied. Similarly, for j ¼ 2, limit the ~kk-
sum to kz < 0 and the other semicircle for kz ¼ 0 and multiply by 2, validat-
ing equation (7.63). Thus j ¼ 1; 2 refer to kz > 0 and kz < 0 respectively,
limited to mutually exclusive semicircles for kz ¼ 0. The overall factor 1

2

now cancels in equation (7.57), leaving

H ¼
X
~kk;�

�
1

2M
�P2

~kk�
þ 1

2
W~kk�

Q2
~kk�

�
; ð7:65Þ

with the sum over ~kk unrestricted. In equation (7.65) P~kk� and Q~kk� correspond

to P
ð jÞ
~kk�

and Q
ð jÞ
~kk�

with j ¼ 1 or 2 in the respective regions of ~kk.
For bound states of the crystal, the force constants W~kk�

in equation
(7.65) will be real and positive. Thus introduce angular frequencies !~kk�:

!2
~kk�

¼ M�1W~kk�
: ð7:66Þ

We take it to be known that the harmonic oscillator hamiltonian

H~kk�
¼

�
1

2M
P2
~kk�

þ 1

2
M!2

~kk�
Q2
~kk�

�
ð7:67Þ
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has an eigenvalue spectrum

E~kk� ¼ ðn~kk� þ 1
2Þ�h!~kk�; ð7:68Þ

where n~kk� ¼ 0; 1; 2; . . . We denote the corresponding single-oscillator eigen-
states �n~kk�

ðQ~kk�
Þ. Furthermore, the Schrödinger equation for the nuclear

motions, equation (7.20), now has the formX
~kk;�

H~kk�

( )
’� ¼ ½E� �W ð0Þð �Þ�’�; ð7:69Þ

from equation (7.21b), where ’� is separable into 3N1 single-oscillator
eigenstates:

’�ðQÞ ¼
Y
~kk�

�n~kk�
ðQ~kk�Þ: ð7:70Þ

In equation (7.70) Q stands for the set of oscillator coordinates {Q~kk�
}, which

are related to the nuclear displacements {~uuJ} through equations (7.50) and
(7.51), and (7.37). In particular, from equation (7.37) we see that the
normal modes of the crystal are collective modes, Q~kk�, depending on all
atomic sites J, for given ~kk�.

7.5.4 Electrons and phonons: total energy

From equations (7.69) and (7.68) we obtain the total energy E� of the
crystal for a given electronic state  �ðrÞ and a given phonon state {n~kk�},
the latter representing the level of excitation of all of the 3N1 independent
harmonic modes of oscillation of the crystal, or in alternative terminology,
the number of phonons of each normal mode angular frequency !~kk�. Speci-
fically,

E� � E�;fng ¼
�
W ð0Þð �Þ þ

X
~kk�

ðn~kk� þ 1
2Þ�h!~kk�

�
; ð7:71Þ

where with E�;fng we indicate the phonon distribution n~kk�, for all
~kk�, by fng.

In equation (7.71), from equations (7.16), (7.12), (7.6) and (7.5a),

W ð0Þð �Þ ¼ fVnðR0Þ þ h �jHe þ VneðR0Þj �ig: ð7:72Þ

In equation (7.71), we note that !~kk� is a function of the electronic state,

!~kk� � !~kk�ð �Þ; ð7:73Þ

see equations (7.66), (7.47), (7.46), (7.38), (7.18) and (7.12). Thus, even in the
case where no phonons are present, i.e. n~kk� ¼ 0 for all ~kk�, we have

E� ¼
�
W ð0Þð �Þ þ

1

2

X
~kk�

�h!~kk�ð �Þ
�
: ð7:74Þ
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The second term in equation (7.74) is the zero-point energy of the phonon
field, and depends on the electronic state. This is understandable, since the
interatomic forces in the crystal depend upon the electronic configuration.

We can now discuss the determination of the electronic state. In prin-
ciple, one could variationally estimate the many-electron wave function  �
from equation (7.71) for a given level {n~kk�} of phonon excitation.
However, since the phonon state is not stationary, but participates thermo-
dynamically in the crystal’s properties, such calculations are not worthwhile.
Electronic states near absolute zero may be estimated variationally from
equation (7.74), with n~kk� ¼ 0 for all ~kk�. Even this is seldom done, though
it is practicable. Usually the phonon zero-point energy is neglected, and
the variational method is applied only to W ð0Þð �Þ, the so-called static
lattice approximation. This corresponds to the picture of the nuclei as classi-
cal particles: see the comment following equation (7.13). Thus consider

�

� �
W ð0Þ ¼ 0; subject to normalization; h �j �i ¼ 1; ð7:75Þ

where

W ð0Þ ¼ h �jHsj �i; ð7:76Þ
and the static lattice hamiltonian Hs is

Hs ¼
�

e2

4�"0
� 1
2

X
J;J 0

0
ZJZJ 0 j~RRJ0 � ~RRJ 00j�1

þ
XN
j¼1

�
� �h2

2m
r2

j �
e2

4�"0

X
J

ZJ j~rrj � ~RRJ0j�1 þ e2

4�"0

1

2

X
j0

j~rrj �~rr 0
j j�1

��
:

ð7:77Þ
See equations (7.5a), (7.3b), (7.4b), (7.5b) and (7.6). Methodologies for
implementing equations (7.75)–(7.77) for the electronic states of a crystal
are well developed [Pisani et al. (1988), Kunz (1982)]. We take up this
subject of the electronic state later, in Chapters 12 and 14.

7.6 Statistical thermodynamics of a solid

The basic result of statistical thermodynamics, based on the Gibbs canonical
ensemble, is

F ¼ �kBT lnZ ð7:78Þ
where F is the Helmholtz free energy, kB is Boltzmann’s constant, T is Kelvin
temperature, and Z is the partition function

Z ¼
X
l

expð�	ElÞ; 	 ¼ ðkBTÞ�1; ð7:79Þ
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where El are eigenvalues of H, the quantum-mechanical hamiltonian of the
system [see e.g. Schrödinger (1952)].

This result relates to equilibrium thermodynamics through the following
well known relationships,

F ¼ ðU � TSÞ; ð7:80Þ
where U is internal energy, and S is entropy; and where the combined first
and second laws of thermodynamics is

dU ¼ ðT dS � p dVÞ ð7:81Þ
where (p;V) are (pressure, volume). From equations (7.80) and (7.81),

dF ¼ ð�S dT � p dVÞ; ð7:82Þ
so the equation of state is

p ¼ �
�
@F

@V

�
T

: ð7:83Þ

7.6.1 Partition function of the crystal

We now examine the partition function Z, equation (7.79), in terms of our
crystalline solid. In equation (7.71), we have the energy eigenstates labelled
by the electronic state � and the phonon distribution {n}. Thus, we have

El ¼ E�;fng: ð7:84Þ

In this chapter, we are concentrating on nuclear dynamical properties, rather
than electronic properties. Thus, in equation (7.71), suppose that � ¼ 0 is the
electronic ground state (static lattice approximation, equations (7.75),
(7.76)), and that electronic excited states are considerably higher. Then in
equation (7.79) with equation (7.84), the sum over � will be dominated by
the term � ¼ 0. We then have

Z �
X
fng

expð�	E0;fngÞ ¼ Zel �Zph; ð7:85Þ

where

Zel ¼ expf�	W ð0Þð 0Þg ð7:86Þ
and

Zph ¼
X
fng

exp

�
�	

X
~kk�

ðn~kk� þ 1
2Þ�h!~kk�

�

¼
X
fng

Y
~kk�

expf�	ðn~kk� þ 1
2Þ�h!~kk�g: ð7:87Þ

We note that there are only 3N1 factors in
Q

~kk�
; see equation (7.31), whereas

the possible range of values each n~kk� is infinite, in principle: n~kk� ¼ 0; 1; 2; . . . :
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In practice, of course, an infinitely high level of excitation of a normal mode
would imply infinitely large nuclear excursions, leading to mechanical break-
down of the crystal. The following results are therefore only approximately
valid, to the extent that infinitely high values of n~kk� in equation (7.87)
contribute negligibly because the exponents are negative.

In equation (7.87), the sum over {n} means that each of the n~kk� may take
any value �0, integer. Thus, equation (7.87) is of the form

Zph ¼
X
fng

Y3N1

j¼1

expf�	�h!jðnj þ 1
2Þg

¼
X1
n1¼0

X
n2

. . .
X
n3N1

Y
j

expf�	�h!jðnj þ 1
2Þg

¼
Y
j

X1
nj ¼0

expf�	�h!jðnj þ 1
2Þg: ð7:88Þ

Now, consider

X1
n¼0

expf�	�h!ðnþ 1
2Þg ¼ expð�	�h!=2Þ

X1
n¼0

fexpð�	�h!Þgn

¼ expð�	�h!=2Þ � f1� expð�	�h!Þg�1

¼ fexpð	�h!=2Þ � expð�	�h!=2Þg�1

¼ 1
2 cschð	�h!=2Þ: ð7:89Þ

Combining equations (7.88) and (7.89),

Zph ¼
Y3N1

j¼1

1
2 cschð	�h!j=2Þ; j ¼ ~kk�: ð7:90Þ

7.6.2 Equation of state of the crystal

Returning now to statistical thermodynamics, we have, in equation (7.83),

p ¼ �
�
@F

@V

�
T

; ð7:91Þ

where, from equations (7.78) and (7.90),

F ¼ � 1

	
lnZ ¼ � 1

	
�
X
j

lnf12 cschð	�h!j=2Þg

¼ 1

	

X
j

lnf2 sinhð	�h!j=2Þg: ð7:92Þ
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Thus from equation (7.91)

p ¼ � 1

	
�
X
j

@

@V
fln½2 sinhð	�h!j=2Þ�gjT

¼ � 1

	
�
X
j

2 coshð	�h!j=2Þ
2 sinhð	�h!j=2Þ

� 	�h
2

�
@!j

@V

�
T

¼ � �h

2

X
j

cothð	�h!j=2Þ �
�
@!j

@V

�
T

:

Thus

p ¼ � �h

2

X
~kk�

cothð�h!~kk�=2kBTÞ
�
@!~kk�
@V

�
T

: ð7:93Þ

The equation of state, equation (7.93), is of the form p ¼ pðV ;TÞ,
where V is the volume of the crystal. Let us try to identify the volume (V)
dependence. The temperature (T) dependence is already explicit. The V-
dependence resides in f!~kk�g. From equations (7.66), (7.47), (7.46), (7.38)
and (7.18),

!2
~kk�

¼ M�1
X
J

�
@2W

@u0� @uJ�

�
u¼0

expð�i~kk � ~RRJ0Þ: ð7:94Þ

From equations (7.22) and (7.30), we note that (~kk � ~RRJ0) is independent of a�,
and therefore independent of V . The equation of state gives us the variation
of volume with pressure (at given T) for a given sample of material. Thus we
must consider N1, the number of atoms, to be fixed in the present case. For
simplicity of illustration consider a simple cubic crystal, for which a� ¼ a,
and

V ¼ N1a
3 ð7:95Þ

whence

@

@V
¼

�
@a

dV

�
� @
@a
;

and �
@a

@V

�
¼ ð3N1a

2Þ�1:

Thus in equation (7.93), the equation of state, we encounter�
@!~kk�
@V

�
T

¼ ð3N1a
2Þ�1

�
d!~kk�
da

�
:
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The volume dependence in the equation of state then becomes a question of
how !~kk� depends on a. Referring to equation (7.94), it becomes in turn, a
question of how W , equation (7.12), or rather its second derivative in the
equilibrium configuration R0 of the crystal, depends on a. We shall not
pursue the analytical details of this back through Vn and Vne, equations
(7.5a) and (7.6) nor, even more difficult, through  �ðr;R0Þ [see equation
(7.8) and equations (7.75)–(7.77)]. Suffice it to say that, within the present
formulation, such a process is possible, both in principle and in practice.

7.6.3 Thermodynamic internal energy of the crystal; phonons as bosons

Let us now consider the internal energy U, from equation (7.80):

U ¼ ðF þ TSÞ; ð7:96Þ

From equation (7.82),

S ¼ �
�
@F

@T

�
V

: ð7:97Þ

From equation (7.92), with 	 ¼ ðkBTÞ�1, we find

S ¼ kB
X
j

fð	�h!j=2Þ cothð	�h!j=2Þ � ln½2 sinhð	�h!j=2Þ�g: ð7:98Þ

Thus, from equation (7.96) with equations (7.92) and (7.98),

U ¼
X
j

�
�h!j

2

�
cothð	�h!j=2Þ: ð7:99Þ

Let us write the internal energy in terms of the distribution of phonons
among normal modes, as a function of temperature,

U ¼
X
j

�h!jðnj þ 1
2Þ; ð7:100Þ

where nj � n~kk�ðTÞ is the mean number of phonons in mode j � ~kk�, at
temperature T . Then from equations (7.99) and (7.100)

�h
!j

2
cothð	�h!j=2Þ ¼ �h!jðnj þ 1

2Þ

or

nj ¼ 1
2 fcothð	�h!j=2Þ � 1g ¼ ½expð	�h!jÞ � 1��1: ð7:101Þ

This is recognized as the distribution function for Bose statistics [see for
example Huang (1967), sections 9.5 and A.1], and leads us to identify
phonons, the quantum excitations of the normal modes of a crystal, as
bosons.
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7.7 Summary

Beginning with a collection of N1 nuclei, each with charge Z, and N elec-
trons, we have used the principles of quantum mechanics to arrive at a
description of a macroscopic solid crystal. If the solid is electrically
neutral, N is equal to (ZN1). When nuclear excursions are limited to the
harmonic approximation, equation (7.15), and the electronic system is con-
fined to a single quantum state, a useful approximation is introduced
which allows determination of the electronic state, equations (7.75)–(7.77),
the nuclear quantum dynamics, equation (7.65), and the crystal structure,
equation (7.13). These three features must, in general, be determined with
mutual self-consistency. The nuclear dynamics in this case consists of
simple harmonic collective motions, called phonons. The quantum statistical
thermodynamics of this set of oscillators leads to the explicit thermodynamic
equation of state, equations (7.93) and (7.94). Examination of the thermo-
dynamic internal energy leads to the identification of phonons as bosons.

The chapter as a whole illustrates how, for the equation of state,

p ¼ f ðV ;TÞ;
one can obtain the function f in terms of the fundamental parameters of the
atomic system, namely the nuclear charges Z and masses M.

The current state of the art of computational modelling and simulation
is such that much of the tour de force formulated above is actually being
carried out. The result is that we are in the early stages of a period in
which computer modelling and simulation can be used in the search for
solid state and molecular structures with specified properties, leaving
actual fabrication to last, in cases where that happens to be the most efficient
approach.
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Chapter 8

Phonons

8.1 Introduction

In the preceding chapter, we showed that, under commonly prevalent
conditions, a crystal behaves dynamically like a set of independent harmonic
oscillators [see equation (7.65)]. The quantized form of these oscillators are
phonons. The generalized coordinates of the oscillators are, in general, not
atomic coordinates, but rather collective coordinates involving all the
atoms of the crystal [see equations (7.37), (7.50) and (7.51)]. The normal
mode frequencies !~kk�, equation (7.66), are obtainable classically if the
force constants are known, and we have shown [equations (7.12), (7.18),
(7.38), (7.46) and (7.48)] how to derive them under the approximations of
Chapter 7 from the quantum-mechanical state of the electrons in the
crystal.

In this chapter, we shall solve for the normal mode frequencies of several
very simple model crystals. In that way, we shall see some specific features of
phonons that carry over in some sense to more realistic crystalline systems.
Our models will be one-dimensional, and the force constants will be
limited to nearest-neighbor interaction.

The results of this chapter are well-presented in many other works, but
they are repeated here so that this important subject is not left in the very
general, and intuitively unappealing, form of equations (7.67)–(7.70).
Notable references are Born and Huang (1954, section II.5), and Ashcroft
and Mermin (1976, Chapter 22).

In section 8.2 we discuss the monatomic linear chain, revealing the
sharp qualitative distinction between the dynamical behavior of a contin-
uous medium (Chapter 2) and a medium of discrete atoms. In section 8.3
we discuss the diatomic linear chain, illustrating the distinct natures of
optical and acoustic branches of the phonon spectrum. In section 8.4 we
briefly discuss the localized mode in the crystal associated with a point
defect.
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8.2 Monatomic linear chain

Consider a model in which an infinite set of identical classical atoms of mass
M is constrained to lie along a straight line, the x-axis. Let interatomic forces
be harmonic (spring-like) with force constant K , limited to nearest-neighbor
interaction. Let atomic equilibrium positions be xj ¼ ja where j is an integer
or zero, defining an equilibrium separation distance a. Let ujðtÞ be small
atomic displacements in oscillations of this ‘crystal’, and let us apply periodic
boundary conditions to a large set of N such atoms:

ujðtÞ ¼ ujþNðtÞ: ð8:1Þ

From Newton’s second law of motion, we have, for atom j,

M
d2xj

dt2
¼ M

d2uj

dt2
¼ K ½ðujþ1 � ujÞ � ðuj � uj�1Þ�; j ¼ 0; 1; 2; . . . ; ðN � 1Þ:

ð8:2Þ

In the linear chain, atomic positions xj ¼ ja are discrete, determined by
the integers j. Thus the continuum analogue of the position variable j in the
discrete linear chain is x. Correspondingly, the discrete variable ujðtÞ has the
continuum analogue uðx; tÞ,

ujðtÞ ! uðx; tÞ: ð8:3Þ

Thus, in equation (8.2),

ðujþ1 � ujÞ ! ½uðxþ�x; tÞ � uðx; tÞ�; ð8:4Þ

where

�x ¼ a: ð8:5Þ

Similarly,

ðuj � uj�1Þ ! ½uðx; tÞ � uðx��x; tÞ�: ð8:6Þ

From equations (8.4)–(8.6)

½ðujþ1 � ujÞ � ðuj � uj�1Þ� !
�
@

@x
½uðx; tÞ� � @

@x
½uðx��x; tÞ�

�
�x; ð8:7Þ

when �x ¼ a is very small, in macroscopic terms. Thus

½ðujþ1 � ujÞ � ðuj � uj�1Þ� !
@2

@x2
uðx; tÞ � a2: ð8:8Þ

Similarly equation (8.2) corresponds to

M
@2u

@t2
¼ ðKa2Þ @

2u

@x2
: ð8:9Þ
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If we identify the constant ðKa2=MÞ ¼ v2, we have, from equation (8.9),�
@2u

@x2
� 1

v2
@2u

@t2

�
¼ 0: ð8:10Þ

where v has the dimensionality of speed. In fact, equation (8.10) is the
one-dimensional form of the equation of motion for waves in a macroscopic
continuum that we obtained in equation (2.41).

We now return to the discrete atomic case, equation (8.2), and seek
a normal mode solution, in which all atoms have the same angular
frequency !:

ujðtÞ ¼ ujð0Þ e�i!t: ð8:11Þ

Substituting from equation (8.11) into equation (8.2) we have

�M!2ujð0Þ ¼ �K ½2ujð0Þ � ujþ1ð0Þ � uj�1ð0Þ�: ð8:12Þ

We now consider the phase relationship between consecutive atoms on the
linear chain in their vibrations. Let

ujþ1ð0Þ ¼ ei�ujð0Þ: ð8:13Þ

Substituting from equation (8.13) into equation (8.12) we have

M!2 ¼ Kð2� ei� � e�i�Þ

¼ 2K ½1� cosð�Þ� ¼ 4K sin2
�
�

2

�
: ð8:14Þ

We see from equation (8.14) that, for ! independent of j, the phase � in
equation (8.13) must also be independent of j. We now apply the periodic
boundary condition of equation (8.1), with equations (8.11) and (8.13):

ujþNð0Þ ¼ ujð0Þ eiN� ¼ ujð0Þ: ð8:15Þ

This requires

N� ¼ 2�n; with n ¼ 0;�1;�2; : : : ; ð8:16Þ
or

� � �n ¼
2�n

N
: ð8:17Þ

Now from equation (8.13) we have

ujð0Þ ¼ ei j�u0ð0Þ: ð8:18Þ

We now introduce the wave number kn, as in Chapter 2 [see equation (2.45)]

kn ¼
2�n

Na
¼ �n

a
: ð8:19Þ
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Along with the notation xj ¼ ja, equation (8.19) enables us to see the normal
mode, from equations (8.11) and (8.18), as a longitudinal travelling wave:

uj;nðtÞ ¼ u0ð0Þ exp½ið j�n � !ntÞ�

¼ u0ð0Þ exp½iðkn � xj � !ntÞ�: ð8:20Þ
From the periodic boundary condition of equation (8.1), we see that the
normal modes uj;nðtÞ, equation (8.20), are only distinct for a set of N con-
secutive values of n. Without loss of generality we can take N to be an odd
number, and we can then limit n to the following range

� 1
2 ðN � 1Þ � n � 1

2 ðN � 1Þ; ð8:21Þ
which now applies in equation (8.16). This says, inter alia, that there are only
N normal modes for a segment of linear chain that contains N atoms; i.e.
there are exactly as many modes as there are degrees of freedom in the
mechanical system (because each atom in the one-dimensional system has
only one degree of freedom). From equation (8.14) with equation (8.19) we
find the normal mode frequencies to be

!n ¼ !ðknÞ ¼ 2

�
K

M

�1=2 ����sin
�
kna

2

����� ¼ 2

�
K

M

�1=2 ����sin
�
n�

N

�����: ð8:22Þ

We note first that

!ðknÞ ¼ !ð�knÞ;
and that, for small kn > 0,

!n �
�
Ka2

M

�1=2
� kn ¼ v � kn; ð8:23Þ

having used equations (8.9)–(8.10). The approximately linear dispersion
relation, equation (8.23), for small kn is the same as that for a continuous
medium, equation (2.46). Indeed, the speed v in equation (8.23) is the
direct analogue of the longitudinal speed of wave propagation in a continu-
ous medium. We can see this as follows. We have

v ¼
�
Ka2

M

�1=2
¼

�
Ka

ðM=aÞ

�1=2
: ð8:24Þ

Now for the linear chain, ðM=aÞ is the mass density, corresponding to �0 in
equation (2.42) for vL:

vL ¼
�
ð�þ 2�Þ

�0

�1=2
: ð8:25Þ

Also, from the summary following equation (1.63), the numerator of
equation (8.25), right hand side, is

ð�þ 2�Þ ¼ c11; ð8:26Þ
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the longitudinal elastic constant. Now the one-dimensional definition of c11,
equation (8.26), comes from equation (1.48),

�1 ¼ c11"1; ð8:27Þ
where �1 and "1 are stress and strain respectively in Voigt notation. Stress is
defined as force per unit area: see equation (1.34a) and discussion. In one
dimension, where there is no cross-sectional area, the stress in the linear
continuum must be replaced by force. Strain is fractional deformation: see
equation (1.10) and discussion. Thus, here, from equation (8.27),

c11 ¼
�1
"1
: ð8:28Þ

In words, c11 is force per unit fractional deformation. But the corresponding
numerator in equation (8.24) is

Ka ¼ K

ða�1Þ
;

the force per unit deformation within a primitive unit cell of the linear crystal,
divided by a�1, or force per unit fractional deformation, in direct correspon-
dence with equation (8.28). The process of relating bulk properties of a
crystal, defined for a continuous medium, to the details of a classical atomis-
tic model is illustrated extensively for a realistic three-dimension system in
Chapter 9.

The fact that the speed of wave propagation in the linear chain is the
same as that which one obtains by viewing the chain as an approximate
linear continuum means that the dispersion relation

! ¼ v � k ð8:29Þ
from equation (2.46) for the linear continuum coincides with that for the
linear chain, equation (8.22), at small k: see equation (8.23). This is illustrated
in figure 8.1. The reader should show, from equation (2.45), that even if we
apply periodic boundary conditions to the linear continuum, the values of k

Figure 8.1 Dispersion relation ! versus k for a linear elastic continuum (straight line), and

!n versus kn for a monatomic linear chain of discrete atoms [see equation (8.22)].
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are unrestricted in magnitude; that is, the constraint of equation (8.21) does
not apply. Now the meaning of k (or kn for the linear chain of discrete atoms)
is that of a wave number, in the following sense:

k ¼ 2�

�
; ð8:30Þ

where � is a wavelength. The shortest wavelength that can be identified in a
discrete linear chain is two atomic spacings,

�min ¼ 2a; ð8:31Þ

so the largest wave number kn;max is

kn;max ¼
�

a
: ð8:32Þ

Now, according to equations (8.21) and (8.19),

kn;max ¼
�
2�

aN

�
� 1
2
ðN � 1Þ: ð8:33Þ

In the limit N ! 1, this becomes

kn;max ¼
�

a
; ð8:34Þ

in agreement with equation (8.32). By contrast, a linear medium that is
literally continuous can sustain waves of all wavelength, down to � ¼ 0.
This means that kmax is infinite. We further note, in figure 8.1, that !ðknÞ
ðor !ðkÞÞ are degenerate as between �kn (or �k).

A feature of our normal modes worth noting has to do with the density
of states (or modes) gð!Þ as a function of !; that is, gð!Þ is the number of
states per unit range of values of !, evaluated at a particular value of !. It
is easily deduced, qualitatively, from figure 8.1, and is shown for both
discrete chain and continuum in figure 8.2. For the more realistic model,
with discrete atoms, the singularity in gð!Þ at !n;max is indicative of the van
Hove singularities [van Hove (1953); see also Wannier (1959, Chapter 3),
and Ashcroft and Mermin (1976, Chapter 23)] that are so interesting in
three-dimensional systems.

The normal modes given in equation (8.20) are complex. To represent
the real atomic displacements, we must use the real or imaginary part of
uj;nðtÞ, namely,

Re½uj;nðtÞ� ¼ u0ð0Þ cosðknxj � !ntÞ;

Im½uj;nðtÞ� ¼ u0ð0Þ sinðknxj � !ntÞ: ð8:35Þ

In an infinite linear chain, the two are indistinguishable, and both therefore
represent the same normal mode. Let us consider the two extremities of the
dispersion relation, figure 8.1. At kn ¼ 0 (infinite wavelength), all atoms j
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oscillate in phase:

Re½uj;n¼0ðtÞ� ¼ u0ð0Þ cosð!0tÞ: ð8:36Þ

In this case there is no actual wave: the wavelength is infinite. At kn ¼ kn;max,
equation (8.34), or n ¼ nmax:

Re½uj;n¼nðtÞ� ¼ u0ð0Þ cos
�
�

a
� xj � !nt

�

¼ u0ð0Þ cosð j�� !ntÞ

¼ u0ð0Þ cosð!nt� j�Þ: ð8:37Þ

Thus, in this mode, successive atoms on the linear chain are 1808 out of phase
with each other at any instant of time, corresponding to the shortest wave-
length, as in equation (8.31). This is, in fact, a standing wave, for

cosð!nt� �jÞ ¼ ½cosð!ntÞ cosð�jÞ þ sinð!ntÞ sinð�jÞ�
¼ ð�1Þ j � cosð!ntÞ: ð8:38Þ

Thus, in equation (8.37), with equation (8.38), all ions have zero displace-
ment when

ð!ntÞ ¼ ðmþ 1
2Þ�; m ¼ 0; 1; 2; : : : ; ð8:39Þ

i.e. all at the same times, and similarly their extremal displacements, �u0ð0Þ,
all occur at the same times. For all other cases, n not equal to either zero or
nmax, the normal modes are travelling waves.

We feel that, from the simple example in the foregoing discussion, the
nature of phonon modes and spectra can be more easily visualized than in
the general theory of Chapter 7.

Figure 8.2 Density of phonon states gð!Þ versus ! for a linear elastic continuum (straight

line), and gð!nÞ versus !n for a linear chain of discrete atoms: see figure 8.1.
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8.3 Diatomic linear chain

The diatomic linear chain represents the case of a crystal whose basis consists
of two distinct chemical species. As in section 8.2, we limit interatomic inter-
actions to nearest neighbors, and distinguish the two species by their masses
M and m. Consider the one-dimensional Bravais lattice

rl ¼ al; l ¼ 0;�1;�2; . . . ; ð8:40Þ

where a is the length of a primitive unit cell. Let the equilibrium positions
of atoms of masses M and m respectively be X

ð0Þ
l and x

ð0Þ
l ,

X
ð0Þ
l ¼ al; ð8:41Þ

x
ð0Þ
l ¼ aðl þ 1

2Þ: ð8:42Þ

For the vibrating ‘crystal’, the time-dependent atomic positions are,
respectively,

XlðtÞ ¼ ½X ð0Þ
l þUlðtÞ�; ð8:43Þ

xlðtÞ ¼ ½xð0Þl þ ulðtÞ�; ð8:44Þ

where Ul and ul are small displacements, within the harmonic approxima-
tion. We apply periodic boundary conditions to a region of N consecutive
primitive unit cells:

UlþNðtÞ ¼ UlðtÞ; ulþNðtÞ ¼ ulðtÞ: ð8:45Þ

Then, with nearest-neighbor interatomic force constants K , we have the
equations of motion,

M
d2Ul

dt2
¼ K ½ðul �UlÞ � ðUl � ul�1Þ�; ð8:46Þ

m
d2ul
dt2

¼ K ½ðUlþ1 � ulÞ � ðul �UlÞ�: ð8:47Þ

Now, as in section 8.2, equation (8.12), we seek normal modes:

UlðtÞ ¼ Ulð0Þ e�i!t; ð8:48Þ

ulðtÞ ¼ ulð0Þ e�i!t: ð8:49Þ

Substitution of equations (8.48) and (8.49) into equations (8.46) and (8.47)
gives

�M!2Ulð0Þ ¼ �K½2Ulð0Þ � ulð0Þ � ul�1ð0Þ�; ð8:50Þ

�m!2ulð0Þ ¼ �K ½2ulð0Þ �Ulþ1 �Ul�: ð8:51Þ
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Again, as in section 8.2, equation (8.13), we seek the phase relationships
amongst the atoms in consecutive primitive unit cells:

Ulþ1ð0Þ ¼ ei�Ulð0Þ; ð8:52Þ

ulð0Þ ¼ ei�ul�1ð0Þ: ð8:53Þ

Substituting equations (8.52) and (8.53) into equations (8.50) and (8.51), we
have

ðM!2 � 2KÞUlð0Þ þ Kð1þ e�i�Þulð0Þ ¼ 0; ð8:54Þ

ðm!2 � 2KÞulð0Þ þ Kðei� þ 1ÞUlð0Þ ¼ 0: ð8:55Þ

The necessary and sufficient condition for a solution of equations (8.54) and
(8.55) is

fðM!2 � 2KÞðm!2 � 2KÞ � K2ð1þ e�i�Þð1þ ei�Þg ¼ 0: ð8:56Þ
Now,

ð1þ e�i�Þð1þ ei�Þ ¼ e�i�=2½2 cosð�=2Þ� � ei�=2½2 cosð�=2Þ�

¼ 4 cos2ð�=2Þ: ð8:57Þ

Thus, equation (8.56) reduces to

fðMmÞð!2Þ2 � 2KðM þmÞð!2Þ þ 4K2½1� cos2ð�=2Þ�g ¼ 0; ð8:58Þ
whose solution is

!2 ¼ 2KðM þmÞ � ½4K2ðM þmÞ2 � 16K2Mm sin2ð�=2Þ�1=2

ð2MmÞ

¼ K

�
1

�
�
�
1

�2
� 4

Mm
sin2ð�=2Þ

�1=2�
; ð8:59Þ

where

� ¼ Mm

ðM þmÞ ð8:60Þ

is the reduced mass of the primitive unit cell. From the periodic boundary
condition, equations (8.45), along with the assumed phase relations of
equations (8.52) and (8.53), we have

UlþNð0Þ ¼ eiN�Ulð0Þ ¼ Ulð0Þ; ð8:61Þ

ulþNð0Þ ¼ eiN�ulð0Þ ¼ ulð0Þ: ð8:62Þ
This is the single condition, as in equations (8.16) and (8.17),

� � �n ¼
2�

N
n; n ¼ 0;�1;�2; : : : ð8:63Þ

Diatomic linear chain 117



Thus, introducing kn as in equation (8.19), we have from equations (8.52),
(8.53), (8.41) and (8.42), the travelling wave modes for arbitrary n:

Ul;nðtÞ ¼ U0ð0Þ exp½iðkn �X ð0Þ
l � !ntÞ�; ð8:64Þ

ul;nðtÞ ¼ u0ð0Þ exp½iðkn � xð0Þl � !ntÞ�: ð8:65Þ

The dispersion relations, equation (8.59), now become

!2
n � !2ðknÞ ¼ K

�
1

�
�
�
1

�2
� 4

mM
sin2ðkna=2Þ

�1=2�
: ð8:66Þ

We note first that the phonon spectrum for this diatomic linear chain has
two branches, corresponding to the (�) signs in equation (8.66). Let us
examine these two branches, first at kn ¼ 0, i.e. at n ¼ 0:

!
ðþÞ
n¼0 ¼

�
2K

�

�1=2
; !

ð�Þ
n¼0 ¼ 0: ð8:67Þ

For small n, we note that

sinðkna=2Þ � ðkna=2Þ;

so we have

�
1� 4�2

Mm
sin2ðkna=2Þ

�1=2
�

�
1� 1

2

4�2

Mm

�
kna

2

�2�
¼

�
1� �2

2Mm
k2na

2

�
:

ð8:68Þ

Thus, equation (8.66) with equation (8.68) gives

!ð�ÞðknÞ �
�

K�

2Mm

�1=2
ðknaÞ ¼

�
Ka2

2ðM þmÞ

�1=2
ðknÞ: ð8:69Þ

This shows that !ð�ÞðknÞ rises linearly from kn ¼ 0, qualitatively the same as
the monatomic linear chain’s dispersion relation, equation (8.23), which was
shown to be analogous to longitudinal vibration, or sound waves, in a
continuous medium. For this reason, !ð�Þ is called the acoustic branch.
These matters, equations (8.67) and (8.69), are illustrated in figure 8.3,
along with the short-wave behavior to be discussed below.

Consider now the maximum value of kn, in a symmetrical region, as
discussed for equation (8.21). With N an odd number, we have from
equations (8.63) and (8.19),

kn;max ¼
2�

Na

1

2
ðN � 1Þ � �

a
; ð8:70Þ

exactly as for the linear chain, bearing in mind now, however, that a is the
primitive unit cell length, not the interatomic spacing, which is (a=2). In

118 Phonons



equation (8.66), we now have

sin2ðkn;maxa=2Þ ¼ 1: ð8:71Þ

Thus,

!
ðþÞ
n;max ¼

�
K

�

�1=2�
1þ

�
1� 4�2

Mm

�1=2�1=2
�

�
2K

m

�1=2
; ð8:72Þ

having assumed M > m, and having used equation (8.60). Similarly we
obtain

!
ð�Þ
n;max ¼

�
2K

M

�1=2
< !

ðþÞ
n;max: ð8:73Þ

If we compare equation (8.72) with the long-wave case, kn ¼ 0, for !ðþÞ
n ,

equation (8.67), we see

!
ðþÞ
n¼0 ¼

�
2K

m

�
mþM

M

��1=2
> !

ðþÞ
n;max: ð8:74Þ

The branch !ðþÞ
n is called the optical branch, corresponding to higher frequen-

cies than the acoustic branch. This is all illustrated in figure (8.3).
Let us now examine the normal mode displacements. From equations

(8.54) and (8.55),

ðM!2
n � 2KÞUlð0Þ þ 2K exp ð�ikna=2Þ cosðkna=2Þulð0Þ ¼ 0; ð8:75Þ

Ulð0Þ ¼ � 2K

ðM!2 � 2KÞ
� expð�ikna=2Þ cosðkna=2Þulð0Þ: ð8:76Þ

Figure 8.3 Dispersion relation for a diatomic linear chain, !n versus kn, showing acoustic

and optical branches, lower and upper curves respectively.

Diatomic linear chain 119



At kn ¼ 0, from equation (8.67) we have for the optical branch

½M!
ðþÞ2
0 � 2K � ¼ 2K

�
ðM þmÞ

m
� 1

�
¼ 2M

m
K : ð8:77Þ

Thus,

Ulð0Þ ¼ � m

M
ulð0Þ: ð8:78Þ

Thus, in the long-wave optical mode, the two atoms in all primitive unit cells
are displaced in opposite directions at any instant, with the center of mass
fixed,

fMUlð0Þ þmulð0Þg ¼ 0; ð8:79Þ

from equation (8.78), and all unit cells are in phase: �n ¼ 0 for n ¼ 0, in
equation (8.63). This is therefore a standing wave of wavelength a. For the
acoustic branch at kn ¼ 0, we have !

ð�Þ
0 ¼ 0 from equation (8.69) so, from

equation (8.76),

Ulð0Þ ¼ ulð0Þ; ð8:80Þ

and both ions in all primitive cells have the same displacement: the ‘crystal’
moves as a rigid structure with infinite wavelength, as in the monatomic case.
These results are illustrated in figure 8.4(a).

Next let us consider the short-wave length limit, kn ¼ kn;max ¼ ð�=aÞ,
equation (8.70). Then the cosine in equation (8.76) is zero, and from equation
(8.72) the denominator ðM!2 � 2KÞ is not zero for M > m. We therefore
have for the short-wave optical mode

Ulð0Þ ¼ 0: ð8:81Þ

The phase shift �n, equation (8.63), with n ¼ ðN � 1Þ=2 � N=2 is �: the
lighter atoms of mass m are 1808 out of phase in successive primitive unit
cells, so this standing wave has wavelength (2a). For the short-wave acoustic
mode, we have !n ¼ !

ð�Þ
n;max, equation (8.73). Then since ðM!� 2KÞ ¼ 0, we

must revert to equation (8.75), to get

ulð0Þ ¼ 0: ð8:82Þ

Strictly speaking, equation (8.75) is satisfied in this case with kn;max ¼ ð�=aÞ
in the cosine, without requiring equation (8.82), but for kn slightly less than
kn;max, equation (8.82) is approximately valid. Thus, complementary to the
short-wave optical case, equation (8.81), the short-wave acoustic mode has
the light atoms of mass m fixed while the heavier atoms of mass M oscillate
1808 out of phase in successive primitive unit cells in a standing wave of
wavelength (2a). These results are illustrated in figure 8.4(b).

In summary, with this very simple model we have been able to show
the qualitative nature of the dispersion relation, figure 8.3, along with the
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relatively simple pattern of oscillations for the four limiting cases, low- and
high-frequency limits of optical and acoustic branches.

8.4 Localized mode of a point defect

Point defects are an important feature of crystals, both for practical and
theoretical reasons. They are discussed extensively in the present work in
Chapters 10 and 11. Here we shall adapt the methods of the previous two
sections to study the effect of a point defect on the vibrational property of
a monatomic linear chain. Specifically, we consider a mass defect of mass

a

m MM
(optical branch)

Center of mass fixed
standing wave, wavelength a

a

m MM
(acoustic branch)

equal displacements

k = 0 : all unit cells in phase

2a

m MM m m

M fixed

(optical branch)

2a

m MM m

m fixed

k = kmax : standing waves wavelength 2a

(a)

(b)

Figure 8.4 (a) Normal modes of diatomic linear chain: long wavelength limit (k ¼ 0); see

equations (8.79) and (8.80). (b) Normal modes of diatomic linear chain: short wavelength

limit (k ¼ kmax); see equations (8.81) and (8.82).
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m at the origin in the linear chain of section 8.2, keeping the interatomic force
constant unchanged, even for interaction of the defect with the host ‘crystal’.
Then equation (8.2) is unchanged,

M
d2uj

dt2
¼ K ½ðujþ1 � ujÞ � ðuj � uj�1Þ�; ð8:83Þ

except for the range of values of j:

j ¼ 1; 2; . . . ; ðN � 1Þ: ð8:84Þ

For the defect atom, we have

m
d2u0
dt2

¼ K ½ðu1 � u0Þ � ðu0 � u�1Þ�: ð8:85Þ

In the present case, periodic boundary conditions mean that we are
considering an infinite ‘crystal’ with a highly dilute (N very large) periodic
array of point defects. Again we seek normal modes

ujðtÞ ¼ ujð0Þ e�i!t; ð8:86Þ

as in equation (8.12).
Substitution from equations (8.86) into equations (8.83) and (8.85)

gives

ðM!2 � 2KÞuj þ Kðujþ1 þ uj�1Þ ¼ 0; ð8:87Þ

ðm!2 � 2KÞu0 þ Kðu1 þ u�1Þ ¼ 0: ð8:88Þ

We also consider the question of phase relations among the oscillating atoms,
as in equation (8.13),

ujþ1ð0Þ ¼ ei�ujð0Þ: ð8:89Þ

We must recognize, however, that travelling waves of the type shown in
equation (8.20) will not be stable in this ‘lattice’: they would be scattered
by the point defect at the origin. Instead, we shall look for a normal mode
centered on the defect, such that the phase differences will be symmetrical
about the origin:

u�j�1ð0Þ ¼ ei�u�jð0Þ: ð8:90Þ

With equations (8.89) and (8.90), the first is meant to apply to atoms to the
right of the origin and the second to atoms to the left, with both applying to
j ¼ 0. With periodic boundary conditions, we are entitled to recast the
constraint of equation (8.84) as follows:

j ¼ � 1
2 ðN � 1Þ; . . . ;�2;�1;þ1; 2; . . . ; 12 ðN � 1Þ; ð8:91Þ
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to conform with equation (8.90). Now consider equation (8.87) with j ¼ 1,

½ðM!2 � 2KÞu1 þ Kðu2 þ u0Þ� ¼ fðM!2 � 2KÞ ei� þ Kðe2i� þ 1Þgu0 ¼ 0;

ð8:92Þ

and from equation (8.88)

½ðm!2 � 2KÞu0 þ Kðu1 þ u�1Þ� ¼ fðm!2 � 2KÞ þ Kðei� þ ei�Þgu0 ¼ 0;

ð8:93Þ

where we have used equations (8.89) and (8.90). From equation (8.92), we
require

!2 ¼ K

M
ð2� ei� � e�i�Þ; ð8:94Þ

and similarly from equation (8.93)

!2 ¼ K

m
ð2� 2 ei�Þ: ð8:95Þ

If a single mode exists with the symmetry of equations (8.89) and (8.90), then
equations (8.94) and (8.95) must be compatible; i.e. the phase � must be such
that both give the same value of !. Thus, if we denote

ei� ¼ x; ð8:96Þ
then from equations (8.94) and (8.95) we have

1

M

�
2� x� 1

x

�
¼ 2

m
ð1� xÞ

or

2ð�mþMÞxþ ðm� 2MÞx2 þm ¼ 0;

whence �
x2 � 2ðM �mÞx

ð2M �mÞ � m

ð2M �mÞ

�
¼ 0: ð8:97Þ

The solutions of equation (8.97) are simply

x ¼ 1 or x ¼
�

�m

ð2M �mÞ

�
: ð8:98Þ

We ignore the solution x ¼ 1, which would simply give ujð0Þ ¼ u0ð0Þ for all
j: oscillation of the whole ‘crystal’ rigidly, which is the long-wave limit, with
! ¼ 0: see equation (8.95), with ei� ¼ 1.

For the symmetrical mode, we see from equations (8.96) and (8.98) that

ei� ¼
�

�m

ð2M �mÞ

�
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or

i� ¼
�
lnð�1Þ þ ln

�
m

ð2M �mÞ

��

¼
�
i�� ln

�
2M

m
� 1

��
;

whence

� ¼
�
�þ i ln

�
2M

m
� 1

��
: ð8:99Þ

We rewrite equation (8.99) as

ei� ¼ �e��; ð8:100Þ

where we have used lnð1=yÞ ¼ ð� ln yÞ, and we have defined

� ¼ ln

�
2M

m
� 1

�
: ð8:101Þ

From equation (8.101) we see that � is real, as is ei�, equation (8.100). The
real part of the phase shift � in equation (8.99) is � radians, or 1808,
leaving successive atoms for j j j > 0 out of phase by this amount, oscillating
in opposite directions: see equations (8.89) and (8.90). The imaginary part of
the phase gives a real factor which together with ujð0Þ determines the ampli-
tude of oscillation of the atoms, relative to that of the central defect atom

u�jð0Þ ¼ e�j�u0ð0Þ: ð8:102Þ

We can rewrite this as

u�jð0Þ ¼ e��
0xj u0ð0Þ; ð8:103Þ

where

�0 ¼ �

a
; xj ¼ ja: ð8:104Þ

Since � is dimensionless, �0 has dimensionality (length)�1. Denote �0 as

�0 ¼ �

a
¼ 1

R
; R ¼

�
a

�

�
: ð8:105Þ

Then R is the range of the exponential decay of the oscillation’s amplitude in
equation (8.103)

u�jð0Þ ¼ e�xj=Ru0ð0Þ: ð8:106Þ

The range R is the distance within which the wave amplitude is reduced to
e�1 ¼ 0:368 of its central value. Since this mode is exponentially localized
in space, it is called a local mode. We remark that this exponentially
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damped wave has some limited similarity with the Rayleigh surface waves
described in Chapter 4, where also the waves acquired an imaginary part
to their phases as a result of breaking the translational invariance of the
medium.

Finally, let us determine the local mode frequency, from equations
(8.95), (8.100) and (8.101)

!2 ¼ 2K

m
ð1� ei�Þ;

whence

! ¼
�
2K

m
ð1þ e��Þ

�1=2
¼

�
2K

m

�
1þ

�
2M

m
� 1

��1��1=2

¼ 2

�
K

M

�1=2� M2

mð2M �mÞ

�1=2
: ð8:107Þ

The factor 2ðK=MÞ1=2 in equation (8.107) represents the maximum frequency
of the lattice when there is no point defect: see equations (8.34) and (8.22).
The other factor is

�
M2

mð2M �mÞ

�1=2
: ð8:108Þ

This is greater than unity forM > m, withm the defect mass, andM the host
atom mass. To prove this, assume the contrary, and show that it leads to a
contradiction. Thus the local mode frequency lies above the perfect
‘crystal’ spectrum, figure 8.1. A useful reference for this section, and much
else, is Kittel (1953, Chapter 5, especially pages 156–158). A more general
discussion of localized phonon modes is given by Maradudin (1963).
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Chapter 9

Classical atomistic modelling of crystals

9.1 Introduction

In Chapter 7 we gave a quantum mechanical framework for the theory of
solids. We noted, in section 7.1, the central role played by the atomic
nuclei in determining the structure and properties of a solid. Furthermore,
we have commented, in section 1.1, on the fact that under ‘terrestrial’ con-
ditions, solids are composed of identifiable atoms. The purpose of this
chapter is to conceptually bridge the gap between the atomistic description
of a solid, represented in Chapter 7, and the continuum description repre-
sented in Chapter 1. To that end we shall first, in section 9.2, describe
qualitatively how a classical atomistic model may be inferred from the
quantum-mechanical formulation of Chapter 7. Also in section 9.2 we
shall specify the classical atomistic shell model for insulating crystals. The
remainder of this chapter will then be largely devoted to derivations from
the shell model of various bulk properties that are defined in terms of the
continuum model of a solid. Thus in section 9.3 we derive the cohesive
energy of the crystal. In section 9.4 we use this to derive the elastic constants:
see section 1.4.1, especially equation (1.48). In section 9.5 we derive the
dielectric and piezoelectric constants. The content of sections 9.3–9.5 is
based on the report by Harding (1982).

9.2 The shell model for insulating crystals

In Chapter 7 we introduced a form of the adiabatic approximation which we
called the average field approximation: see equation (7.8). In this approxima-
tion, the energy of a solid could be written as the sum of nuclear kinetic
energy Tn, equation (7.4a), and an effective potential energy W , equation
(7.12); see also equation (7.11). The effective potential energy of the crystal
includes the kinetic energy Te of the electrons in the electronic part He of
the system’s hamiltonian: see equations (7.12), (7.3b) and (7.4b). It
depends on the many-electron state of the crystal  �ðr;R0Þ, where r is the
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collection of electron coordinates, and R0 is the collection of nuclear
equilibrium positions, here considered for the infinite perfect crystal. From
equations (7.12), (7.5a) and (7.6), the effective potential energy has the form

W ¼ WðR;  �ðR0ÞÞ; ð9:1Þ

where the r-dependence of  � is not shown because it is integrated out in
equation (7.12).

In this chapter we shall consider a crystal that is in equilibrium with
some external stress. In that case, the equilibrium configuration R will be
different from the perfect-crystal configuration R0, and the electronic state
 � will be determined by R. This is distinct from the situation discussed in
Chapter 7, where R is a set of dynamical variables: see equations (7.12)
and (7.14). In the present case, we therefore have, in place of equation (9.1),

W ¼ ðR;  �ðRÞÞ: ð9:2Þ

In this effective potential, the combination of the atomic nuclei, represented
by the variables R standing alone in equation (9.2), with the R-dependent
argument  �ðRÞ, constitutes a potential due to a set of interacting atoms.
The specific configurations of the individual atoms are determined by
details of the electronic distribution defined by  �ðRÞ. The spherically sym-
metrical part of  � about a particular nucleus at ~RRJ , combined with the
nuclear charge ZJ , might be simply modelled by an atomic core charge.
The remainder of the electronic distribution about ~RRJ contributes further
charge to the atom, and electric multipole moments of dipole, quadrupole,
and higher orders.

The preceding discussion has been presented because, although we shall
not carry it further, it can form the basis of a derivation of the atomistic
structure and the multipole moments of atoms in a crystal described in
terms of nuclear positions R and an electronic many-body wave function
 �, as in equation (9.2).

From the above, it is clear that a simple classical model of a crystal can
be based on ions with charges QJ , core charges (QJ � YJ), and associated
electric multipole moments. For highly ionic crystals, the perfect, undistorted
crystal can be represented to good approximation, for several basic proper-
ties, by ions with point charges QJ . Under static or dynamic deformation the
ions acquire dipole moments. This can be represented by breaking the ionic
charge into two parts, a core of charge (QJ � YJ ) and a so-called shell charge,
YJ . If the deformation displaces the shell charge YJ by a finite amount ~uuJ
relative to the core, then the ion in fact acquires multipole moments above
dipole order as well, but for small ~uuJ , the dipole effect dominates.

The earliest atomistic model of an ionic crystal neglected ionic
polarizability, and assumed that the rigid ions could be represented by
point charges QJ only. It was understood that the Coulomb attractions
between positive and negative ions (cations and anions) were in fact balanced
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by short-range interatomic repulsive forces of quantum-mechanical origin
due to the electronic structure of the ions. The balance between Coulomb
attraction and short-range repulsion accounted for the specific lattice
spacing of the crystal. A simple form of nearest-neighbor anion–cation
repulsion, inspired by quantum-mechanical analysis, was determined by
Born and Mayer (1932). The Born–Mayer potential VJJ 0 is

VJJ 0 ðrÞ ¼ BJJ 0 expð�r=�JJ 0 Þ; ð9:3Þ

where r is the interionic distance. For the rocksalt crystal structure, for
example, the parameters BJJ 0 and �JJ 0 in equation (9.3) can be determined
by fitting the calculated lattice spacing and bulk modulus to the experimental
values: see Born and Huang (1954, Chapter I, section 3). This model of a
crystal has been extensively reviewed by Tosi (1968). The model in this
form does not represent lattice dynamic or dielectric properties very well.
The attempt to improve the results by including ionic polarizability in the
form of free-ion polarizability [e.g. Tessman et al. (1953)] was never very
successful. Over time, it came to be understood that ionic polarization
depended not on only the local electric field in the crystal, but also on the
polarizing effect of one ion pressing upon another, an aspect of the short-
range repulsion.

Thereafter, the shell model as we have described it was developed, first by
Dick and Overhauser (1958), in which both the shell–core coupling and the
short-range interionic forces were taken to be harmonic. This was clearly
satisfactory when the application of the model was limited to harmonic
effects. It has been found that the best modelling is obtained if the short-
range interionic forces act between shells. The effectiveness of the model in
this form was demonstrated by the work of Brockhouse and coworkers
[Woods et al. (1960)], who by fitting the parameters to bulk properties were
able to reproduce experimental phonon dispersion relations for a variety of
alkali halides with impressive accuracy. Somewhat later [see, for example,
Lidiard and Norgett (1972)] the short-range interionic potentials were
applied in the anharmonic Buckingham form, as follows:

VJJ 0 ðrÞ ¼ fBJJ 0 expð�r=�JJ 0 Þ � CJJ 0r�6g: ð9:4Þ
In equation (9.4) we see not only the Born–Mayer repulsion of equation
(9.3), but the so-called van der Waals attraction, (CJJ 0r�6), which is also of
quantum mechanical origin. Sometimes a further term is added to VJJ 0 , of
the form (DJJ 0r�n) when n is in the range 8 to 14. This adds a hard core
of repulsion to the otherwise finite value of the Born–Mayer term at r ¼ 0.
It is possible to represent the short-range interionic potential even more
accurately by using a spline fit, rather than the simple analytical forms
mentioned earlier, and to introduce angle-dependent three-body forces for
partly covalent materials [Leslie (1981)]. Furthermore, quadrupolar defor-
mation of the ions has been incorporated in some calculations [Jacobs et al.
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(1980), Bilz (1985)]. By around 1980, the shell model had been applied
successfully in a wide range of systems, resulting in major compilations of
data to describe both phonon dispersion relations [Bilz and Kress (1979)]
and point defect properties [Stoneham (1981)]. Applications of the shell
model continue to proliferate in collating and predicting both the crystal
properties and defect processes of an ever-growing range of systems. The
current state of the art in computational modelling at this level, and in flex-
ible, user-friendly software, is represented by the work of Gale (1997).

For the purposes of the present work, we adopt a relatively simple, but
highly effective form of the shell model. The ionic total charges QJ are taken
to be given integers (units of jej, where e is the electron’s charge). Shell
charges are denoted YJ , so that core charges are (QJ � YJ ). The core and
shell of a given ion, of species J, are harmonically coupled with a coupling
constant KJ which is assumed to include the corresponding core–shell
Coulomb interaction. Short-range interionic potentials VJJ 0 are taken to be
of the Buckingham form, equation (9.4). Thus, for a binary solid, for
example, with two ionic species J ¼ 1, 2, we have in general two shell
charges Y1, Y2; two shell-core force constants K1, K2; and three sets of Buck-
ingham potential parameters: B11, �11, C11; B22, �22, C22; and B12, �12, C12.
This is a total of 13 parameters. Ideally, they are determined by fitting calcu-
lated results of the model to a corresponding number, or greater number, of
experimental bulk properties. The accuracy of the fit that is obtainable is one
measure of the appropriateness of the model for the particular material. The
business of fitting shell-model parameters to bulk properties is somewhat of
an art, best learned from an expert practitioner. The subject of computa-
tional modelling of insulators using the shell model has been discussed exten-
sively in a book edited by Catlow and Mackrodt (1982), especially in
Chapters 1 and 10.

9.3 Cohesive energy of a crystal

We begin with the total energy of a perfect infinite shell-model crystal. We
allow for small displacements of cores and shells from their equilibrium
positions. We consider only stationary configurations of this classical
system: the static-crystal approximation. Let ~rrl be a Bravais lattice site for
the crystal. Let basis ions of the crystal be labelled by an index n, and let �
label cores (� ¼ 1) and shells (� ¼ 2). Then let the position of core or shell
� of basis ion n in primitive unit cell l, measured relative to~rrl , be~rr

�
n ðlÞ.

There are three sets of potentials that contribute to the total potential
energy: Coulomb, interionic shell–shell short range, and core–shell short-
range potentials. Denote the position of a core or shell by ~XX

�
nðlÞ:

~XX
�
nðlÞ ¼ ½~rrl þ~rr �n ðlÞ�: ð9:5Þ
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Denote the distance between two elements (cores and shells) by X�� 0

nn0 ðl; l0Þ:

X�� 0

nn0 ðl; l0Þ ¼ j~XX�
nðlÞ � ~XX

� 0

n0 ðl0Þj: ð9:6aÞ

Then the total Coulomb energy EC of the crystal is

EC ¼ 1

ð4�"0Þ
1

2

X
ln�

l 0n 0� 0

00 q�nq
� 0

n 0

X�� 0

nn 0 ðl; l 0Þ
; ð9:6bÞ

in SI units, where q�n is the charge of an element, and ‘double prime’ on the
summation means omit the terms ðln�Þ � ðl 0n 0� 0Þ and omit terms l ¼ l 0,
n ¼ n 0, � 6¼ � 0. The latter restriction eliminates Coulomb interaction
between the core and shell of a given ion: recall that this interaction is
assumed to be included in the core–shell harmonic interaction.

Let the core–shell interaction vn for the ionic species of basis ion type n
be

vðnÞðuÞ ¼ 1
2Knu

2; ð9:7Þ

where u is the core–shell separation distance, and Kn is the corresponding
harmonic force constant. Then we can write the core–shell interactions as
follows:

v��
0

nn 0 ðl; l 0Þ ¼ �l;l 0�n;n 0 ; ��;1�� 0;2
1
2Kn½X�� 0

nn 0 ðl; l 0Þ�
2
: ð9:8Þ

The Krönecker deltas in equation (9.8) ensure that this interaction is only
between the core and shell of a single ion. Similarly the short-range shell–
shell interionic potentials, exemplified by equation (9.4), can be written

V�� 0

nn 0 ðl; l 0Þ ¼ ��;2�� 0;2Vnn 0 ðX�� 0

nn 0 ðl; l 0ÞÞ: ð9:9Þ

The Krönecker deltas in equation (9.9) ensure that the interaction is between
shells only (� ¼ 2, � 0 ¼ 2). We can now combine the short-range intraionic
potentials v��

0

nn 0 ðl; l 0Þ and the short-range interionic potentials V�� 0

nn 0 ðl; l 0Þ as
follows. Define

��� 0

nn 0 ðl; l 0Þ ¼ ½v��
0

nn 0 ðl; l 0Þ þ V�� 0

nn 0 ðl; l 0Þ�: ð9:10Þ
Then the total short-range energy of the shell-model crystal is

Es ¼
1

2

X
ln�;l 0n 0� 0

0
��� 0

nn 0 ðl; l 0Þ; ð9:11Þ

where ‘prime’ on the summation means omit the terms ðln�Þ � ðl 0n 0� 0Þ.
Now combining equations (9.6) and (9.11) we have the total energy E of

the crystal:

E ¼ 1

2

X
ln�;l 0n 0� 0

0
�

q�nq
� 0

n 0

4�"0X
�� 0

nn 0 ðl; l 0Þ
þ ��� 0

nn 0 ðl; l 0Þ
�
: ð9:12Þ
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In equation (9.12), the ‘prime’ on the summation incorporates the constraints
of both equations (9.6) and (9.11). Note that equation (9.12) is of the form

E ¼
X
l 0

El 0 ; ð9:13Þ

where

El0 ¼
1

2

X
ln�;n 0� 0

0
�

q�nq
� 0

n 0

4�"0X
�� 0

nn 0 ðl; l 0Þ
þ ��� 0

nn 0 ðl; l 0Þ
�
: ð9:14Þ

Now consider the case of homogeneous strain of the whole infinite
perfect crystal. It corresponds to having the configurations of all unit cells
identical, provided the unit cells are very small compared with macroscopic
dimensions. We shall assume here that all primitive unit cells are identical.
This is the modelling equivalent of the state of a finite perfect crystal when
a bulk property is being measured experimentally. In equation (9.13), El 0 is
the total energy of primitive unit cell l 0 interacting with the rest of the infinite
crystal, plus the internal interaction energy of that unit cell. But since all unit
cells are identical, the values of El 0 for all values of l

0 are equal. In particular,
they are equal to E0, (l

0 ¼ 0). Thus we have

E ¼ NE0; ð9:15Þ
where N is the number (infinite) of unit cells. We define the cohesive energy
Ecoh by

Ecoh ¼ E0; ð9:16Þ
where

Ecoh ¼ 1

2

X
ln�;n 0� 0

0
�

q�nq
� 0

n 0

4�"0X
�� 0

nn 0 ðl; 0Þ
þ ��� 0

nn 0 ðl; 0Þ
�
: ð9:17Þ

Thus, although the total energy is infinite, the cohesive energy is not.

9.4 Elastic constants

We refer to Chapter 1, where the concepts of stress, strain and elastic con-
stants are discussed in detail. Under a small strain (harmonic approximation,
linear elasticity theory) we have the following relationship, equation (1.52),

W ¼ 1

2

X
n;m

cnm"m"n: ð9:18Þ

In equation (9.18),W is the energy per unit volume, and "n and cnm are strain
and elastic constants respectively, in Voigt notation: see equations (1.44) and
(1.48). Now the cohesive energy Ecoh, equation (9.17), is the energy per
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primitive unit cell. Thus if V is the volume of the primitive unit cell, we have

W ¼ Ecoh

V
; ð9:19Þ

where W is given by equation (9.18). The elastic constants cnm, equation
(9.18) are determined from

cnm ¼ @2W

@"n @"m
¼ 1

V

@2Ecoh

@"n @"m
: ð9:20Þ

Our task now is to relate the macroscopic strain "n to the core and shell
displacements which are the arguments of Ecoh: see equation (9.17).

Referring again to Chapter 1, we recall that, in the continuum picture of
the solid, a small segment of material spanned by the vector dxj ð j ¼ 1; 2; 3Þ is
deformed under small strain "ij , in the absence of rotation, into a segment
spanned by dx 0

i ði ¼ 1; 2; 3Þ according to the relation given in equation (1.8):

dx 0
i ¼ ðdxi þ "ij dxjÞ; ð9:21Þ

where "ij is the strain tensor, with the Einstein summation convention in
equation (9.21). In terms of the matrix notation of equation (1.8), this is

dr 0 ¼ ðI þ "Þ � dr; ð9:22Þ

where I is the identity matrix with elements Iij ¼ �ij. For a homogeneous
strain, where " is independent of position in the solid, equation (9.22)
integrates trivially to

r 0 ¼ ðI þ "Þ � r ð9:23Þ

To help us remember that the strain is small, we replace " by �", so that
equation (9.23) becomes

r 0 ¼ ðI þ�"Þ � r: ð9:24Þ

We begin to apply the homogeneous strain�" to the shell model crystal
by applying it, as in equation (9.24) to positions of all elements (cores and
shells); i.e. we replace r in equation (9.24) by X �

nðlÞ: see equation (9.5).
Having done so, we note that the result will not be completely correct. The
reason is that applying equation (9.24) to the Bravais lattice positions r l
will be correct, but applying it to shells and cores at r �nðlÞ within the unit
cell will not, in general, leave them in equilibrium. There must be a further
set of displacements �r �nðlÞ, the same for all l as for l ¼ 0, which will represent
the deformation of the unit cell by the strain �". We further simplify the
notation as follows. Let

X n� l � X �
nðlÞ; ð9:25Þ
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see equation (9.5). Then we have, for the effect of strain,

X 0
n� l ¼ ½X n� l þ�" �X n� l þ �r �nð0Þ�: ð9:26Þ

The equilibrium condition for �r �nð0Þ will become clear later. We emphasize
that the matrix notation beginning with equation (9.22) and ending with
equation (9.26) deals with matrices of dimension three, corresponding to
the three cartesian components of vectors and tensors in 3-space.

The cohesive energy, Ecoh, equation (9.17), now becomes a function of
�" and �r �nð0Þ under strain: see equations (9.6)–(9.10), with ~XX

�
n ðlÞ � ~XXn� l

replaced by ~XX 0
n� l, equation (9.26). We now revert to the Voigt notation of

equation (1.44), used in equation (9.20). We introduce the column matrix
�", having six elements. We also introduce the columnmatrix �r, constructed
from the elements of �~rr �n ð0Þ, which has [2� (number of ions in the basis)� 3]
elements: 2 for � ¼ 1, 2; 3 for the cartesian components. We then introduce a
deformation vector (column matrix) �, as follows:

� ¼
�
�"

�r

�
: ð9:27Þ

In linear elasticity, all the strains are assumed to be small, so all of the ele-
ments of � must be small. Thus, in harmonic approximation, we can write
Ecoh as

Ecohð�Þ � fEcohð0Þ þ gT � � þ 1
2 �

T �W � �g; ð9:28Þ

where gT is the transpose of the column vector g, whose elements are first
derivatives of Ecohð�Þ with respect to elements of �. Similarly, W in equation
(9.28) is a square matrix of the same dimensionality as �, whose elements are
second derivatives of Ecoh with respect to elements of �. The derivatives in g
and in W are evaluated at zero strain � ¼ 0, as follows:

gm ¼
�
@Ecoh

@�m

�
�¼0

; ð9:29Þ

Wmn ¼
�
@2Ecoh

@�m @�n

�
�¼0

: ð9:30Þ

For the equilibrium configuration of the crystal in the absence of strain, we
require �

@Ecoh

@�m

�
�¼0

¼ 0 ¼ gm: ð9:31Þ

This determines the equilibrium configuration X n� l, equation (9.26). The
cohesive energy, equation (9.28) then becomes

Ecohð�Þ � fEcohð0Þ þ 1
2 �

T �W � �g: ð9:32Þ
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We now address the question of the relationship between the bulk
homogeneous strain�" and the internal strain �r in the unit cell: see equation
(9.27). To this end, let us write all matrices in terms of submatrices spanned
by the elements of�" and of �r, as in equation (9.27) for �. Then, in equation
(9.32), W takes the form

W ¼
�
W "" W "r

W r" W rr

�
: ð9:33Þ

In equation (9.33), the subscripts " and r indicate dimensionalities of �" and
of �r respectively. Note that W r" ¼ W T

"r: see equation (9.30). Thus, combin-
ing equations (9.28), (9.27) and (9.33), we have

Ecohð�"; �rÞ ¼
�
Ecohð0Þ þ

1

2

�
ð�"T; �rTÞ �

�W "" W "r

W r" W rr

�
�
�
�"

�r

���

¼ Ecohð0Þ þ 1
2 f�"

T �W "" ��"þ�"T �W "r � �r:

þ �rT �W r" � �"þ �rT �W rr � �rg: ð9:34Þ

The equilibrium configuration within the unit cell, for given bulk strain�", is
given by �

@Ecoh

@ð�rÞ

�
"

¼ 0: ð9:35Þ

From equation (9.34), this becomes

ð�"T �W "r þ �rT �W rrÞ ¼ 0: ð9:36Þ

From equation (9.36) we can solve for �r as a function of �":

�r ¼ ð�W �1
rr �W r" ��"Þ: ð9:37Þ

This is the deformation generated in the unit cell by the strain �".
Finally, we can obtain the internal energy density W in terms of Voigt

strains �" in the form of equation (9.18), by substituting from equation
(9.37) for �r into equation (9.34):

Ecohð�"Þ ¼ fEcohð0Þ þ 1
2�"

T � ½W
""
� ðW

"r
�W�1

rr
�W

r"
Þ� ��"g: ð9:38Þ

We return to equation (9.20) to obtain the explicit formula for the bulk
elastic constants (in Voigt notation) in terms of the shell model parameters:

cnm ¼ 1

V

@2ðEcohÞ
@ð�"nÞ@ð�"mÞ

¼ 1

V
fW "" � ðW "r �W �1

rr �W r"Þgnm; ð9:39Þ
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where in equation (9.39) the subscripts nm refer to the matrix element of the
matrix in { } brackets. The explicit dependence on the shell-model parameters
can be traced back through equations (9.33), (9.30), (9.27), (9.26), (9.25),
(9.17), (9.10) and (9.8). Thus, for a given shell model we can calculate the
elastic constants.

9.5 Dielectric and piezoelectric constants

We now consider the role of static, uniform electric fields in relation to bulk
properties of a crystal. Suppose that the crystal is subjected to a uniform
electric field of external origin, ~EEext, for example by being placed between
the plates of a capacitor. Then

~EEext ¼
1

"0
~DD ð9:40Þ

where the electric displacement ~DD is determined from the free charge density
� on the capacitor plates from Gauss’s law,

~rr � ~DD ¼ �: ð9:41Þ
We use SI units, and in equation (9.40) "0 is the permittivity of free space. In
terms of the shell model, the resultant electric field inside the dielectric will act
on all shells and cores of the crystal, through their charges q�n, displacing
them from their field-free positions, and producing a polarizing effect and
a deformation of the crystal. For an isotropic dielectric continuum the polar-
ization is described in terms of a polarization vector ~PP, representing the elec-
tric dipole moment per unit volume. In a linear dielectric, ~PP is proportional to
the internal electric field which we denote ~EE. Then

~PP ¼ �~EE ð9:42Þ

where � is the electric susceptibility. The internal electric field arises from
the combination of external free charge and polarization of the medium.
Specifically, if the dielectric has no free charge, then in the dielectric,

"0~EE ¼ ð~DD� ~PP Þ ð9:43Þ
where ~DD is still given by equation (9.40). We can rewrite equation (9.43), with
equation (9.42),

~DD ¼ ð"0~EE þ ~PP Þ ¼ ð"0 þ �Þ~EE ¼ K"0~EE; ð9:44Þ
where we have introduced the dielectric constant K ,

K ¼
�
1þ �

"0

�
: ð9:45Þ

A good reference for the preceding discussion is Reitz et al. (1979).
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Actually, equations (9.42)–(9.45) represent an approximation in which
the polarizing effect occurs without bulk strain. There are two kinds of
strain effects observed for dielectric media. One is electrostriction, in which
the material expands under an applied field ~EEext, equation (9.40), regardless
of the field’s direction: the strain is quadratic in the field. The other strain-
related effect is piezoelectric. The piezoelectric effect occurs only for crystals
that do not have a center of symmetry: see for example Nye (1957), section
4.1. For such crystals the relationship between strain and field is linear so
that, in a simple geometry, the field in one direction will compress the
crystal, and in the opposite direction it will expand it. The so-called direct
piezoelectric effect involves electric polarization induced by an applied
strain. In the so-called converse piezoelectric effect, an applied electric field
induces a linear strain.

The results of the preceding section on elastic constants are evidently
valid for non-piezoelectric crystals in the absence of external electric fields.
Let us now consider a piezoelectric material subject to a uniform external
field ~EEext, equation (9.40), and to specified external stresses. As we have indi-
cated, the resultant internal electric field, along with the applied stress, will
induce shell-model core and shell displacements. The cohesive energy of
the crystal, equation (9.34), will now be modified by the interaction energy
of shell–model point charges q�n with the internal electric field ~EE. We consider
only the case of weak fields, where the piezoelectric effect dominates over
electrostriction. Core and shell displacements �~rr �n ð0Þ, equation (9.26), due
to the weak field and applied stress will also be small. In that case, their elec-
tric dipole moment [q�n�~rr

�
n ð0Þ] is the dominant multipole moment, apart from

their charge, which is included in Ec, equation (9.6). The interaction energy of
this dipole moment with the electric field is�

�
X
n;�

q�n�~rr
�
n ð0Þ � ~EE

�
: ð9:46Þ

We wish to express the quantity in equation (9.46) in terms of the column
matrix �r, introduced prior to equation (9.27). Expression (9.46) is clearly
the inner product of the vector �r with another vector whose elements are
also determined by n, � and �, where � labels cartesian components, in
this case components of ~EE, and where n, � comes from the charge q�n. We
denote this vector (qE). Then

�
X
n;�

q�n�~rr
�
n ð0Þ � ~EE ¼ �ðqEÞT � �r ð9:47Þ

We add this to the cohesive energy in harmonic approximation, equation
(9.28),

Ecohð�; ~EE Þ ¼ fEcohð0Þ þ gT � � þ 1
2 �

T �W � � � ðqEÞT � �rg: ð9:48Þ

136 Classical atomistic modelling of crystals



We note that if the expansion of equation (9.48) is relative to the perfect
undistorted crystal configuration as in equations (9.28)–(9.30), then in equa-
tion (9.48), Ecoh(0) refers to ~EE ¼ 0, and the equilibrium condition is

�
@Ecohð�; ~EE Þ

@ð�Þ

�
�¼0;~EE¼0

¼ 0 ¼ g: ð9:49Þ

The term in g is therefore zero in Ecoh, equation (9.48). We can then proceed
to the expression analogous to equation (9.34) in terms of the sub-matrices of
W and �, equations (9.27) and (9.33) respectively,

Ecohð�; ~EE Þ ¼ fEcohð0Þ þ 1
2 ½�"

T �W "" ��"

þ 2�rT �W r" ��"þ �rT �W rr � �r� � ðqEÞT � �rg: ð9:50Þ

In equation (9.50) we have introduced (�") for the net strain due to applied
stress and electric field.

Analogous to equation (9.35), we now determine the core and shell dis-
placements in terms of the induced strain �" and the electric field ~EE. We
require, from equation (9.50), equilibrium condition

�
@Ecoh

@ð�rÞ

�
�";~EE

¼ ½W r" ��"þW rr � �r� ðqEÞ� ¼ 0: ð9:51Þ

The solution of equation (9.51) for �r is

�r ¼ �W �1
rr � ½W r" ��"� ðqEÞ�: ð9:52Þ

We now express the electric displacement ~DD, equation (9.43), in terms of
the shell model. From that we shall see that the dielectric and piezoelectric
constants can be determined. First we require the polarization:

~PP ¼ 1

V

X
n;�

q�n�~rr
�
n ð0Þ: ð9:53Þ

Then, from equation (9.43) with equation (9.53),

~DD ¼
�
"0~EE þ 1

V

X
n;�

q�n�~rr
�
n ð0Þ

�
: ð9:54Þ

We wish to introduce �r into equation (9.54) from equation (9.52) in order to
have ~DD as a function of ~EE and�". For this purpose, consider equation (9.54)
in cartesian component form:

D� ¼
�
"0E

� þ 1

V

X
n;�

q�n�r
�;�
n ð0Þ

�
; � ¼ 1; 2; 3: ð9:55Þ
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Let us write matrices �r,W rr andW r" in equation (9.52) in terms of cartesian
component submatrices as follows:

�r ¼
�r1

�r2

�r3

0
B@

1
CA; W rr ¼

W 11
rr W 12

rr W 13
rr

W 21
rr W 22

rr W 23
rr

W 31
rr W 32

rr W 33
rr

0
BB@

1
CCA; W r" ¼

W 1
r"

W 2
r"

W 3
r"

0
BB@

1
CCA;

ð9:56Þ
where superscripts 1, 2, 3 label the corresponding cartesian component,
denoted by � in equation (9.55). With this notation, matrices have dimension-
ality determined by the union of the dimensionalities of n and � , where the
dimensionality of � is two (cores and shells), and the dimensionality of n is
the number of atoms in the crystal basis. The last term in equation (9.55) is now

1

V
ðqT � �r�Þ: ð9:57Þ

When we substitute for �r� from equation (9.52) into equation (9.55) with
equation (9.57) we obtain

D� ¼
�
"0E

� � 1

V
qT � ðW �1

rr Þ
�� � ½W �

r" ��"� qE��
�
: ð9:58Þ

In equation (9.58), the Einstein summation convention applies to the
repeated index �. We rewrite equation (9.58) as

D� ¼
��
"0�

�� þ 1

V
qT � ðW �1

rr Þ
�� � q

�
E� � 1

V
qT � ðW �1

rr Þ
�� �W �

r" ��"
�
:

ð9:59Þ
Referring to equations (9.44) and (9.59), we now see that the dielectric con-
stant K , and the electric susceptibility �, are second rank tensors, in general.
From equation (9.59) we see

K�� ¼ 1

"0

�
@D�

@E�

�
�"

¼
�
��� þ 1

"0V
qT � ðW �1

rr Þ
�� � q

�
: ð9:60Þ

Explicitly, this is the static dielectric constant for constant strain, expressed in
terms of the shell model of the crystal.

A form of direct piezoelectric constant is also derived from equation
(9.59):

�� ¼
�
@D�

@ð�"Þ

�
~EE

¼
�
� 1

V
qT � ðW �1

rr Þ
�� �W �

r"

�
: ð9:61Þ

This is a direct piezoelectric constant at constant field, expressed in terms of
the shell model. It is not the conventional one, which is given by

d� ¼
�
@D�

@ð�	Þ

�
~EE

; ð9:62Þ

138 Classical atomistic modelling of crystals



where �	 is the stress in Voigt notation [see Nye (1957), Chapter X, section
3]. In equation (9.61) we have defined a piezoelectric constant in terms of
strain �". We can obtain d� from equation (9.61) by using the elastic
constants:

�	 ¼ c ��"; ð9:63Þ

see equation (1.48). Then, from equations (9.61) and (9.63),

�� ¼
�
@ð�	Þ
@ð�"Þ

�T

~EE

�
�
@D�

@ð�	Þ

�
~EE

¼ c �
�
@D�

@ð�	Þ

�
~EE

; ð9:64Þ

where the elastic constants must be determined at the given fixed value of ~EE.
Equation (9.64) with equation (9.62) gives

d� ¼ c�1 ���: ð9:65Þ

Referring to equations (9.61) and (9.62), if we express each element of the
Voigt strain (�") or stress (�	) in terms of the corresponding elements of
the cartesian tensor strain (�") and stress (�	) then, for example in equation
(9.61), we have

���
 ¼
�

@D�

@ð�"�
Þ

�
~EE

¼
�
� 1

V
qT � ðW �1

rr Þ
�� 0

�W � 0

r"

�
�


; ð9:66Þ

which displays explicitly the piezoelectric constant as a third rank cartesian
tensor. Furthermore, we can consider the case ~EE ¼ 0. Then, from equation
(9.43),

~DD ¼ ~PP ð~EE ¼ 0Þ: ð9:67Þ
In that case, equations (9.61) and (9.62) become

�� ¼
�
@P�

@ð�"Þ

�
~EE¼0

; d� ¼
�
@P�

@ð�	Þ

�
~EE¼0

: ð9:68Þ

The latter of equations (9.68) gives us the formula that we intuitively associ-
ate with the direct piezoelectric effect: the rate of change of polarization with
respect to applied stress at zero electric field.

To summarize, the main purpose of this chapter is to show explicitly
how to relate experimental bulk measurements such as elastic, dielectric
and piezoelectric constants for a crystal to the parameters of a shell model
for the crystal. By combining formulae such as equations (9.39), (9.60) and
(9.61) with equations (9.33), (9.30), (9.10), (9.9) and (9.4), we obtain explicit
relationships. Such relationships are used in computer programs that fit or
calculate physical properties with shell models.
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Chapter 10

Classical atomic diffusion in solids

10.1 Introduction

In the previous chapter we gave considerable detail about how an atomistic
model of a crystal can be developed and used to analyse the bulk properties.
We spoke only about perfect crystals, with periodically repeated unit cells. A
large fraction of the subject of the materials science of solids is based upon
imperfect crystals that contain chemical impurities or other point defects.
The next chapter is devoted to a description of selected theoretical calcula-
tions for point defects in insulators. Section 11.2 presents some results for
classical diffusion, and describes two fundamental defect mechanisms:
vacancy diffusion and interstitial diffusion. The reader is referred to that
discussion at this time. The movement of ions, atoms and molecules
through a crystal is responsible for a host of properties. We mention only
a very few examples at this time. A more wide-ranging discussion can be
found in works devoted to solid state diffusion, such as that by Borg and
Dienes (1988).

Charge transport in ionic insulators is usually dominated by ionic
conduction, in which host ions of the material move under an applied electric
field by vacancy or interstitial diffusion. The optical properties of ionic
crystals can often be altered by additive coloration, in which the surface of
the crystal is exposed to a gas of the crystal’s cation species. The excess of
positive ions diffuses into the crystal, creating anion vacancies that establish
overall electrical neutrality in the crystal by trapping excess electrons,
forming F centers (see sections 11.2.2, 11.3, 11.6 and 11.8). The F centers
have optical characteristics different from those of the host crystal. The
formation or dissociation of point defect complexes (sections 11.2.2 and
11.3), and aggregation of impurities at dislocations or grain boundaries
involve atomic diffusion in solids. Solid state chemical reactions involving
impurities or interdiffusion are controlled by diffusion kinetics.

We shall see that equilibrium concentrations of point defects are
determined by the temperature of the crystal, as are diffusion rates.
Atomic diffusion occurs by the conversion of phonon energy into the activa-
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tion energy for atomic site-to-site displacement. The distribution of phonon
energy, of course, depends on the temperature, as discussed in section 7.6.

Not all solid state diffusion can be described classically. The subject of
quantum diffusion is introduced briefly in section 11.9. It represents the
case where the essentially quantum-mechanical nature of diffusing atoms
cannot be ignored. In terms of the particle–wave dualism of the quantum
mechanics of particles and fields, the particle-like characteristics dominate
in classical diffusion and the wave-like characteristics dominate, or are at
least not negligible, in quantum diffusion.

In section 10.2 we derive the diffusion equation and apply it to the case of
a slab source of the diffusing species in the material. In section 10.3 the latter
problem is discussed, not on the basis of the diffusion equation, but in terms
of atomic diffusion as a random walk process. In section 10.4 the principles
of statistical thermodynamics are applied in discussing the equilibrium
concentration of point defects in a solid as a function of temperature. In
section 10.5, the Vineyard relation is derived, to demonstrate the temperature
dependence of diffusion.

Throughout this chapter, our presentation closely follows that of Borg
and Dienes (1988).

10.2 The diffusion equation

10.2.1 Derivation

Consider atomic point defects of a given species diffusing in one dimension,
by successive jumps between atomic planes in an infinite solid, where the
planes are perpendicular to the direction of diffusion. Assume that the
temperature is constant and uniform throughout the material. Consider
two planes at x and (xþ�x), where �x is the interplanar spacing, and x
is the direction of diffusion. Let NðxÞ be the density of diffusing point
defects on a plane at x. The units of NðxÞ are defects per square meter:
m�2. NðxÞ is then the planar concentration. We introduce the concept of
jump frequency �: the average number of plane-to-plane jumps executed
per unit time by a diffusing defect: units: s�1. The jump frequency, or jump
rate, �, is determined by the specific nature of the defect and of the crystal,
as well as by the temperature, as discussed in section 10.5. For simplicity,
let us consider only jumps between nearest-neighbor sites in the crystal, so
that the jump distance is �x.

We now consider the defect current density JðxÞ at any instant of time in
the crystal at x due to planar concentration NðxÞ and jump frequency �. It
has two possible directions in one dimension, relating to the fact that
(except at the surface) an atom may jump in the forward or backward direc-
tion. The current density at any instant of time, for instantaneous jumps, at
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ðxþ ð�x=2ÞÞ, halfway between atomic planes at x and (xþ�x) is, on
average,

J

�
xþ�x

2

�
¼ ½JþðxÞ � J�ðxþ�xÞ� ð10:1Þ

where J�ðxÞ is the magnitude of current density originating from a plane at x,
in the positive or negative x-direction respectively. Now,

J�ðxÞ ¼ 1
2� �NðxÞ; ð10:2Þ

from the definitions of jump rate � and planar concentration NðxÞ given
above, where the factor 1

2 takes account of the fact that on average, a
forward jump and a backward jump are equally probable for a given
atom. From equations (10.1) and (10.2), we have

J

�
þ�x

2

�
¼ � 1

2�½Nðxþ�xÞ �NðxÞ�: ð10:3Þ

We now introduce the volume concentration, henceforth referred to
simply as the concentration, CðxÞ:

CðxÞ ¼ NðxÞ
ð�xÞ : ð10:4Þ

Combining equations (10.3) and (10.4),

J

�
xþ�x

2

�
¼ � 1

2�ð�xÞ2 ½Cðxþ�xÞ � CðxÞ�
�x

: ð10:5Þ

Up to now, we have referred to�x as the interplanar spacing, which is small
compared with macroscopic scale, but non-zero. We now consider the case
where JðxÞ and CðxÞ are determined by macroscopic measurements, so
that x may be viewed approximately as a continuous variable. We replace
the factor ð�xÞ2 in equation (10.5) by a2, where a is the interplanar
spacing of the crystal. Then

J

�
xþ�x

2

�
¼ �ð12�a

2Þ ½Cðxþ�xÞ � CðxÞ�
�x

: ð10:6Þ

Taking the limit ð�xÞ ! on both sides of equation (10.6), we have

JðxÞ ¼ �D
@

@x
CðxÞ; ð10:7Þ

where we have introduced the partial derivative because in generalC will be a
function of time as well as of x, as we shall see, and we have introduced the
diffusion constant D, given in the present example by

D ¼ 1
2�a

2: ð10:8Þ
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If the diffusing species is highly dilute, so that each atom can jump in any of
the three cartesian coordinate directions on average, with equal probability if
the solid is isotropic, then we should have

D ¼ 1
6�a

2: ð10:9Þ

With arbitrary boundary conditions that may not ensure uniform diffusion in
the x direction, we should have the following generalization of equation
(10.7) for an isotropic solid or cubic crystal:

~JJð~rr; tÞ ¼ �D~rrCð~rr; tÞ; ð10:10Þ

where we have now introduced the time explicitly into equation (10.10). For
an anisotropic medium, equation (10.10) generalizes further:

Jið~rr; tÞ ¼ �Dij@jCð~rr; tÞ; ð10:11Þ

with the same notation as in earlier chapters for cartesian tensors, with
Einstein summation convention. Thus in general the diffusion constant Dij

will be a second-rank tensor. Equations (10.7), (10.10) and (10.11) are
forms of so-called Fick’s first law.

In some cases, the number of point defects of a given type may not
remain constant within a system. For example, a diffusion step may take
an interstitial atom or ion of a given species into a vacancy of the same
species. In that case the interstitial and vacancy are mutually annihilated.
Another example is when electron transfer between a monovalent ion and
a trivalent ion leaves two divalent ions. We exclude such situations from
the present discussion, so that the number of defects, all of the same type,
is constant. This constraint is in the form of a conservation rule. It means
that within an arbitrary volume V of the material, the rate of change of
the number of defects within V is equal to the rate at which defects enter
the volume V by diffusion through the surface SðVÞ bounding V . In the
notation of the present section this can be written as

d

dt

ð
V
dV Cð~rr; tÞ ¼ �

ð
SðVÞ

dS n̂n � ~JJð~rr; tÞ; ð10:12Þ

where n̂n is a unit normal outward vector on SðVÞ. On the left-hand side of
equation (10.12), ~rr is a variable of integration throughout the fixed but
arbitrary volume V in the material. Equation (10.12) may therefore be
rewritten as �ð

V
dV

@C

@t
þ
ð
S
dS n̂n � ~JJ

�
¼ 0: ð10:13Þ

Gauss’s theorem applies to the surface integral, whenceð
V
dV

�
@C

@t
þ ~rr � ~JJ

�
¼ 0: ð10:14Þ
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From the arbitrariness of V , equation (10.14) implies�
@C

@t
þ ~rr � ~JJ

�
¼ 0: ð10:15Þ

Equations (10.12) and (10.15) are exactly equivalent: they are referred to as
continuity equations. Continuity equations of this form apply to all manner of
physical quantities that are conserved in the sense described above.

Equation (10.15) can now be combined with equation (10.10) in the case
of isotropy or a cubic crystal, with the result

~rr � ~JJ ¼ � @C

@t
¼ �Dr2C ð10:16Þ

or

@C

@t
¼ Dr2C: ð10:17Þ

Equation (10.17) is the diffusion equation, the equation of motion for
concentration Cð~rr; tÞ under the fairly general conditions described above.
It is sometimes referred to as Fick’s second law. As we mentioned in
Chapter 3, it has the same mathematical form as the heat flow equation
for the temperature Tð~rr; tÞ, equation (3.44), under the condition ~rr �~uu ¼ 0,
where ~uu is the deformation field of the solid. There are therefore whole
classes of problems in heat flow and in atomic diffusion where the mathema-
tical forms of the solution are identical, despite the physical distinctness of
the two phenomena. Early in the development of quantum mechanics it
was noted that Schrödinger’s equation for a free particle had a similar form:

� �h2

2m
r2 ¼ i�h

@ 

@t
: ð10:18Þ

The fact that the ‘effective diffusion constant’ in this equation is pure imagin-
ary, however, means that apparently no physical or geometric conclusions
can be carried over to it from the fields of diffusion or heat transfer.

10.2.2 Planar source problem

The qualitative nature of the concentration as a function of both space and
time can be displayed by a solution of the one-dimensional form of equation
(10.17):

@C

@t
¼ D

@2C

@x2
: ð10:19Þ

Suppose that Cðx; tÞ is known explicitly at t ¼ 0,

Cðx; 0Þ ¼ f1ðxÞ; ð10:20Þ
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with f1ðxÞ a given function. How will the concentration profile evolve with
time?

We begin with a standard approach to the solution of equation (10.19):
separation of variables:

Cðx; tÞ ¼ f ðxÞgðtÞ: ð10:21Þ

Substitution of equation (10.21) into equation (10.19) gives

f ðxÞ dg
dt

¼ DgðtÞ d2f

dx2:
ð10:22Þ

which we rewrite as

1

Dg

dg

dt
¼ 1

f

d2f

dx2
¼ K ; ð10:23Þ

where K is necessarily independent of both x and t, because the second
equation would have it exclusively a function of x, and the first a function
of t, for which the only resolution is that it is constant. From the first
equation in equations (10.23),

dg

dt
¼ DKg ! g ¼ g0 e

þDKt: ð10:24Þ

If the concentration, equation (10.21), is to remain finite at long time t, the
separation constant must be real and negative, from equation (10.24),

K ¼ �k2; ð10:25Þ

where k is real. The equation for f ðxÞ, from equations (10.23) and (10.25) is

d2f

dx2
¼ �k2f ; ð10:26Þ

whose solutions are

f ðxÞ � e�ikx: ð10:27Þ

The general solution of equation (10.19) with equation (10.21) is an arbitrary
linear combination of the solutions, equations (10.24) with (10.25) and
(10.27),

Cðx; tÞ ¼
ð1
�1

dk g0ðkÞ e�Dk2t eikx; ð10:28Þ

where g0ðkÞ is an arbitrary function, except that for Cðx; tÞ to be real, we
must have

g0ð�kÞ ¼ g�0ðkÞ; ð10:29Þ

where � means complex conjugate.
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We now apply the initial condition, equation (10.20), with equation
(10.28):

f1ðxÞ ¼
ð1
�1

dk g0ðkÞ eikx: ð10:30Þ

From Fourier’s integral theorem, equation (10.30) must satisfy

g0ðkÞ ¼
1

2�

ð1
�1

dx 0 f1ðx 0Þ e�ikx 0
: ð10:31Þ

Equation (10.29) is automatically satisfied by equation (10.31) if f1ðxÞ is
real. We substitute equation (10.31) into equation (10.28) to obtain Cðx; tÞ:

Cðx; tÞ ¼ 1

2�

ð1
�1

dk

ð1
�1

dx 0 f1ðx 0Þ e�Dk2t eikðx�x 0Þ: ð10:32Þ

Consider the integral

I ¼
ð1
�1

dk e�Dk2t eikðx�x 0Þ: ð10:33Þ

Let

y2 ¼ Dtk2 ð10:34Þ
whence

k ¼ yðDtÞ�1=2; ð10:35Þ
and let

z ¼ ðx� x 0ÞðDtÞ�1=2: ð10:36Þ
Then equation (10.33) with equations (10.34)–(10.36) becomes

I ¼ ðDtÞ�1=2

ð1
�1

dy e�y2 eiyz: ð10:37Þ

Now, from equation (10.37),

dI

dz
¼ ðDtÞ�1=2

ð1
�1

dy e�y2ðiyÞ eiyz: ð10:38Þ

Evaluate the integral in equation (10.38) by parts:

ð1
�1

dyðy e�y2Þ eiyz ¼
�
eiyz

�
� e�y2

2

��1
�1

þ
ð1
�1

dy

�
e�y2

2

�
ðizÞ eiyz

¼
�
iz

2

�ð1
�1

dy e�y2 eiyz: ð10:39Þ

Combining equations (10.38) and (10.39), we have

dI

dz
¼ i

�
iz

2

�
I : ð10:40Þ
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We rewrite equation (10.40) and solve

dI

I
¼ � z

2
dz; ln

�
I

I0

�
¼ � z2

4
; I ¼ I0 e

�z2=4: ð10:41Þ

From equation (10.41) with equation (10.37)

I0 ¼ Iðz ¼ 0Þ ¼ ðDtÞ�1=2

ð1
�1

dy e�y2 ¼ ðDtÞ�1=2 ffiffiffi
�

p
: ð10:42Þ

We introduce the change of variable, equation (10.36) into equation (10.32)
for Cðx; tÞ, and with equations (10.33), (10.41) and (10.42) obtain

Cðx; tÞ ¼ 1

2
ffiffiffi
�

p
ð1
�1

dz f1ðx� ðDtÞ1=2zÞ e�z2=4: ð10:43Þ

Let us consider a simple form of the initial condition, equation (10.20),
in which there is a thin planar layer of the diffusing species within an infinite
solid, say at x ¼ 0. This can be expressed as

f1ðxÞ ¼ C0�ðxÞ; ð10:44Þ

where �ðxÞ is the Dirac delta function. Equation (10.43) for the concentration
profile Cðx; tÞ at time t becomes

Cðx; tÞ ¼ C0

2
ffiffiffi
�

p
ð1
�1

dz �ðx� ðDtÞ1=2zÞ e�z2=4

¼ C0

1

2ð�DtÞ1=2
exp

�
� x2

4Dt

�
: ð10:45Þ

The characteristics of this profile are, first, an amplitude that decays in time as
t�1=2 at the surface x ¼ 0; second a gaussian shape �e��x

2

at any instant;
third a spatial range of the gaussian, given by ð4DtÞ1=2, that increases
�t�1=2, indicating the distance x at which the gaussian is e�1 of its
maximum value, at given time t. Thus we see that as diffusion proceeds in
both directions into the material from the planar layer, the concentration
profile has a gaussian shape in x that diminishes in amplitude as t�1=2 and
increases in width as t1=2 .

10.3 Diffusion as a random walk

In the previous section, diffusion was viewed as a flux of particles within
the solid driven by the space- and time-dependent concentration gradient,
equation (10.10), subject to particle conservation, equation (10.15). In this
section, we take a statistical, or probabilistic, approach. We ask, for a
particle that can be expected to jump forward or backward with equal prob-
ability at each step along its way, what the probability will be of it arriving at
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a given distance from its starting point within the material, in n steps. This
can be interpreted as the mean fraction of particles that will diffuse to this
distance in n steps. The number of steps n is, of course, simply related to
the time taken, through the jump frequency.

Suppose that, for a given particle, in n steps it goes a distance x ¼ ma,
where a is the atomic interplanar distance, and m is a positive integer. As
in section 10.2.2, we consider one-dimensional diffusion. If m < n, it must
have done m0 steps backward (m0 integer, positive). Then we have (mþm0)
steps to the right, and m0 steps to the left, or

n ¼ ðmþ 2m0Þ; ð10:46Þ

whence

m0 ¼ 1
2 ðn�mÞ: ð10:47Þ

If the particle is restricted to the region x � 0, then we must exclude paths for
which, at some point along the way more backward steps have been taken
than forward. This constraint is difficult to implement analytically. We there-
fore consider, not a semi-infinite material in x > 0, but an infinite one, in
�1 < x <1, as in section 10.2.2. The question then becomes one of the
particle arriving at x ¼ �ma in n steps, with either (mþm0) steps to the
right and m0 to the left, or (mþm0) to the left and m0 to the right, subject
to equation (10.47). Then the number of distinct paths for the particle to
get to �m in n steps is just the number of ways of distributing m0 backward
steps amongst n steps in total; i.e. the number of combinations nCm 0 of n steps
m0 at a time,

nCm 0 ¼ n!

m0!ðn�m0Þ! ¼
n!�

n�m

2

�
!

�
nþm

2

�
!

; ð10:48Þ

where we have used equation (10.47) in the last step. This is, of course, the
same as nCmþm 0 , given equation (10.47). Given that the probabilities of a
forward and of a backward step are assumed here to be equal, whence the
expression ‘random walk’, the probability of a specific path is ð12Þ

n. For
arriving at x ¼ �ma in n steps, this factor is weighted by nCm 0 , equation
(10.48), in arriving at the probability for a single particle, or the average
distribution of a large number of particles over final states m. Thus the
concentration will be proportional to �ðm; nÞ, where

�ðm; nÞ ¼ ð12Þ
n
nCm 0 ¼ ð12Þ

n n!�
n�m

2

�
!

�
nþm

2

�
!

: ð10:49Þ

[Note from equation (10.46) that if n is (odd/even), m is also (odd/even), so
that in equation (10.49) (n�m) is even, and so 1

2 ðn�mÞ is an integer.]
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Now for the macroscopic distribution given by the concentration
Cðx; tÞ, the number of steps n, for macroscopic x, must be very large, since
the net displacement x ¼ �ma must be macroscopic. We are therefore
justified in using Stirling’s approximation for n! and for ½12 ðnþmÞ�! We
shall also use it for ½12 ðn�mÞ�!, on the grounds that the latter will be large
for the overwhelming fraction of cases, where m and m0 both will be very
large. Stirling’s formula is that for large n,

n! � nn e�n
ffiffiffiffiffiffiffiffi
2�n

p
: ð10:50Þ

This result is discussed in the Appendix to this chapter. In approximating �,
equation (10.49), we work with ln�,

ln� ¼ n lnð12Þ þ lnðn!Þ � ln

��
n�m

2

�
!

�
� ln

��
nþm

2

�
!

�
; ð10:51Þ

and, from equation (10.50),

lnðn!Þ � n lnðnÞ � nþ 1
2 lnð2�nÞ: ð10:52Þ

Applying equation (10.52) to ðn!Þ and to ½12 ðn�mÞ�! in equation (10.51) gives

ln� �
�
n ln

�
1

2

�
� 1

2
lnð2�Þ þ

�
nþ 1

2

�
lnðnÞ � ðnþ 1Þ ln

�
n

2

�

�
�
n�mþ 1

2

�
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2

�
ln

�
1þm

n

��
: ð10:53Þ

If we can assume that m � n for the overwhelming fraction of cases, then
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�
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�
� �m

n
: ð10:54Þ

With the approximation of equation (10.54), equation (10.53) reduces to

ln� �
�
� 1

2
lnðnÞ � 1

2
lnð2�Þ þ lnð2Þ �m2

2n

�
; ð10:55Þ

or

ln

��
n�

2

�1=2
�

�
¼ �m2

2n
; ð10:56Þ

whence

� �
�

2

n�

�1=2
e�m2=ð2nÞ: ð10:57Þ

Suppose that there are n diffusion steps on average, per unit time. Then

n ¼ �t; ð10:58Þ
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where � is the step frequency. Furthermore, m net forward steps between
planes with spacing a gets a diffusing particle to the following position
in x:

ma ¼ x: ð10:59Þ

Substituting from equations (10.58) and (10.59) into equation (10.57) we
obtain

� �
�

2

��t

�1=2
e�x2=ð2a2�tÞ: ð10:60Þ

Recall that for one-dimensional diffusion, as here, the diffusion constant D is
(�a2=2), equation (10.8). Thus, equation (10.60) becomes

� � a

ð�DtÞ1=2
e�x2=ð4DtÞ: ð10:61Þ

Recall that � is the probability of arriving at �x ¼ ðmaÞ; i.e. we may write
� ¼ �ðjxj; tÞ, in equation (10.61). Then the probability �ðx; tÞ of arriving
at x is

�ðx; tÞ ¼ 1
2�ðjxj; tÞ: ð10:62Þ

The probability density (i.e. the probability per unit length) of finding a
particle at x is

Pðx; tÞ ¼ 1

a
�ðx; tÞ: ð10:63Þ

It is left as an exercise to show that Pðx; tÞ in equation (10.63), with equations
(10.62) and (10.61), is a conventionally normalized probability:ð1

�1
dxPðx; tÞ ¼ 1: ð10:64Þ

In the present example, all of the diffusing particles start at x ¼ 0, so the
initial condition is the same as that in section 10.2.2, equation (10.44),
where C0 is the initial number of particles per unit area at x ¼ 0. Referring
to equations (10.63) and (10.62), we deduce that the probability density
Pðx; tÞ is the fractional concentration, in the sense

Cðx; tÞ
C0

¼ Pðx; tÞ ¼ 1

2ð�DtÞ1=2
e�x2=ð4Dt2Þ; ð10:65Þ

having used equation (10.61). This is the same result, equation (10.45), that
we obtained by solving the diffusion equation. It is interesting how these two
quite distinct mathematical approaches can be successfully applied to the
same physical problem.
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10.4 Equilibrium concentration of point defects

Consider a simple crystal, monatomic with a basis consisting of a single
atom. At high temperature, thermal vibration ensures that some fraction
of the atoms will not be at perfect crystal sites; that is, the crystal will not
be in a zero-temperature, perfect crystal configuration. Suppose that as a
result of some particular preparation of the material, an idealization of the
atomistic configuration has only one species of point defect, namely vacan-
cies. We now address the question of the equilibrium vacancy concentration
as a function of temperature.

If there are j vacancies distributed overN atomic sites in the crystal, then
the fractional vacancy concentration Cv is

Cv ¼
j

N
: ð10:66Þ

The number of distinct configurations gj for given j is

gj ¼
N!

j!ðN � jÞ! : ð10:67Þ

We shall assume that the concentration at thermal equilibrium is small;
that is, the distribution of vacancies is highly diffuse. In that case,
vacancy–vacancy interaction energies will be small. The reasonableness of
this assumption will be considered after the fact; i.e. after we have used
equilibrium statistical thermodynamics to estimate the concentration as a
function of temperature.

The partition function Z for our system is

Z ¼
X
i

di e
�Ei=ðkBTÞ; ð10:68Þ

where kB is the Boltzmann constant and di is the degeneracy of the energy
eigenvalue Ei for the whole system. Let us write Z, equation (10.68), as a
sum of contributions, each from the set of states with a given number, say
j, of vacancies:

Z ¼
X
j

Zj: ð10:69Þ

For those states of the system with j vacancies in a highly diffuse distribution,
i.e. j � N, the average total energy may be written as

Ej ¼ ðE0 þ j"vÞ; ð10:70Þ

where "v is approximately equal to the energy required to create a single
vacancy in a perfect crystal whose energy is E0. Then

Zj � gj e
�Ej=ðkBTÞ; ð10:71Þ
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with gj given in equation (10.67). Now suppose that the sum in equation
(10.69) is dominated by the term j ¼ J, so that

Z � gJ e
�EJ=ðkBTÞ: ð10:72Þ

Let us now evaluate the Helmholtz free energy F , using equation (10.72),

F ¼ �ðkBTÞ lnZ

¼ �ðkBTÞfln gJ � EJ=ðkBTÞg: ð10:73Þ

We use Stirling’s formula, equation (10.52), to approximate ln gJ . From
equation (10.52), for large n,

lnðn!Þ � fðnþ 1
2Þ lnðnÞ � ½n� 1

2 lnð2�Þ�g

� n½lnðnÞ � 1�: ð10:74Þ

Then, from equation (10.67) with equation (10.74),

ln gJ ¼ fNðlnN � 1Þ � Jðln J � 1Þ � ðN � JÞ½lnðN � JÞ � 1Þ�g: ð10:75Þ

In equation (10.75), all the terms with 1 in them cancel. We further
approximate the last term in equation (10.75) by using

lnðN � JÞ ¼ ln

�
N

�
1� J

N

��

¼
�
lnN þ ln

�
1� J

N

��

� lnN; ð10:76Þ

since J � N according to the assumption of low concentration: see equation
(10.66). Thus, with equation (10.76), equation (10.75) reduces to

ln gJ � ð�J ln J þ J lnNÞ ¼ �J ln

�
J

N

�
: ð10:77Þ

From equation (10.73) with equations (10.77) and (10.70), we have

F ¼
�
ðkBTÞJ ln

�
J

N

�
þ ðE0 þ J"vÞ

�
: ð10:78Þ

In terms of concentration Cv, equation (10.66), equation (10.78) becomes

F ¼ fE0 þNCv½ðkBTÞ lnCv þ "v�g: ð10:79Þ

Now consider experimental conditions of constant pressure p and tem-
perature T . We have the combined first and second laws of thermodynamics
in the form

dU ¼ ðT dS � p dV þN�v dCvÞ; ð10:80Þ
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where �v is the chemical potential for vacancies, U is internal energy, and S
and V are entropy and volume respectively. The Gibbs free energy G is
defined as

G ¼ ðU � TS þ pVÞ; ð10:81Þ
whence the combined first and second laws give

dG ¼ ð�S dT þ V dpþN�v dCvÞ: ð10:82Þ
It follows that the equilibrium condition at constant pressure and tem-
perature is

dGðT ; p;CvÞ ¼ 0 ð10:83Þ
which requires, for dCv 6¼ 0, �

@G

@Cv

�
T ;p

¼ 0: ð10:84Þ

Now the Gibbs and Helmholtz free energies are related as follows:

G ¼ ðF þ pVÞ: ð10:85Þ
Thus equation (10.84), the equilibrium condition, is�

@G

@Cv

�
T ;p

¼
��

@F

@Cv

�
T ;p

þ p

�
@V

@Cv

�
T ;p

�
¼ 0: ð10:86Þ

For a wide range of solids, F � G, whence

p

�
@V

@Cv

�
T ;p

�
�
@F

@Cv

�
T ;p

; ð10:87Þ

and the equilibrium condition, equation (10.86), becomes�
@F

@Cv

�
T ;p

� 0: ð10:88Þ

From equation (10.88) with equation (10.79) we can determine the
equilibrium concentration of vacancies:�

@F

@Cv

�
T ;p

¼ fNkBTðlnCv þ 1Þ þN"vg ¼ 0: ð10:89Þ

For low concentration, suppose

Cv 	 10�6

whence

jlnCvj � 14 
 1:

The solution of equation (10.89), neglecting 1 relative to lnCv, is

Cv ¼ e�"v=ðkBTÞ: ð10:90Þ
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We note that "v must be calculated, for this purpose, at constant T and p, in
simulation studies. How does equation (10.90) conform to our original
assumption of low concentration? Consider T � 300K and "v � 1 eV.
Then with kB ¼ 8:62� 10�5 eV/K we find

Cv � 10�17:

from equation (10.90). This certainly is consistent with the original assump-
tion, and there is a wide class of materials and point defects for which
equation (10.90) is a good approximation. The discussion of this section
closely follows that of Agulo Lopez et al. (1988), sections 2.2–2.5.

10.5 Temperature dependence of diffusion: the Vineyard relation

Consider first a very simple example of diffusion: diffusion by the vacancy
mechanism in a planar crystal. The system is illustrated in figure 10.1, where
there is one vacancy in a square two-dimensional crystal, where one atom,
the one at site A, will undergo a diffusion jump into the vacancy, which is
shown by a small square at B. All atomic sites shown are equilibrium sites in
the crystal when the diffusing atom is at A. Consider first the case that only
the atom at A moves during the diffusion jump, and all the other atoms
remain fixed during the jump. Sites A and B are energy minima for the
atom at A. Equipotential lines for the motion of the atom at A are
shown dashed. For any planar trajectory of the diffusing atom from A to
B, there is a point of maximum energy which falls on the curve labelled
S. The lowest-energy point on the curve S is at P. In moving along S in
either direction from P, the energy rises, but in moving perpendicularly to
S from P the energy drops in either direction. The point P is therefore
called the saddlepoint for the motion: the potential energy surface has a
saddle-like shape near P. In the present example, when only one atom
moves, and that in a plane, its coordinates can be denoted (y1; y2), as in
figure 10.1.

In a more realistic picture of the planar process, nearby atoms will be
displaced somewhat from their original positions as the diffusing atom
moves away from site A. In practice, this has a major effect in reducing the
maximum energy rise (the activation energy) experience by the atom in a
diffusion jump. We therefore speak of the configuration of the crystal at
any point during the diffusion jump process, and denote this configuration
in terms of the complete set of generalized coordinates (y1; y2; . . . ; yn). For
a crystal consisting of N point-mass ions in a three-dimensional crystal, we
should have n ¼ 3N, and for shell-model ions, n ¼ 6N. We denote a given
configuration by an n-dimensional vector y:

y � ðy1; y2; . . . ; ynÞ: ð10:91Þ
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In such a generalized vector terminology, y is in an n-dimensional hyperspace,
and the line S in figure 10.1 represents an ðn� 1Þ-dimensional hypersurface.

We now approach the diffusion process from the viewpoint of classical
statistical mechanics [see for example, Schrödinger (1952)]. We imagine an
ensemble of systems, infinite in number, each in a thermal bath consisting
of all the others. Each is in some mechanical state, specified by a configura-
tion space position y and a corresponding momentum-space configuration p,

p ¼ ðp1; p2; . . . ; pnÞ; ð10:92Þ

where pj is the canonical momentum conjugate to yj , equation (10.91). The
union of configuration space and momentum space, called phase space,
has points specified by (y; p), equations (10.91) and (10.92). At absolute

Figure 10.1. (a) Two-dimensional illustration for diffusion by the vacancy mechanism.

Dashed curves are equipotential lines. All diffusion paths from A to B (the vacancy site)

achieve an energy maximum on the curve S. The lowest such maximum is at P. (b) Total

energy E (schematic) along the straight-line diffusion path A–P–B in part (a). (c) Total

energy E (schematic) along the line S in part (a). Parts (b) and (c) together, with the

graphs placed perpendicular to each other while points P coincide, illustrate the nature

of the saddle point for energy E versus position in the plane of part (a).
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temperature T , the systems of the statistical ensemble are distributed among
the phase space points according to the distribution function

�ðy; pÞ ¼ �1 exp

�
�
’ðyÞ þ 1

2m
p2
�

kBT

8><
>:

9>=
>; ð10:93Þ

if all of the particles have the same mass m. In equation (10.93) ’ðyÞ is the
potential energy of the system, whose equipotential hypersurfaces are
represented schematically by dashed lines in figure 10.1. If �ðy; pÞ, equation
(10.93), is normalized, then it gives the probability density in phase space
for finding the system to be in state (y; p) at temperature T . The normalizing
condition, from equation (10.93), is

1 ¼
ð
dny dnp �ðy; pÞ

¼
ð
dny exp½�’ðyÞ=ðkBTÞ�

ð
dnp �1 exp½�p2=ð2mkBTÞ�

¼
ð
dny exp½�’ðyÞ=ðkBTÞ��1ð2�mkBTÞn=2: ð10:94Þ

In equation (10.94) we have used the fact that

p2 ¼
�X

j

p2j

�
; ð10:95Þ

and ð1
�1

dpj exp½�p2j =ð2mkBTÞ� ¼ ð2mkBT�Þ1=2: ð10:96Þ

If we denote the probability density of points in configuration space to be
�ðyÞ, where

�ðyÞ ¼ �0 exp½�’ðyÞ=ðkBTÞ�; ð10:97Þ

then normalization gives

1

�0
¼

ð
dny exp½�’ðyÞ=ðkBTÞ�: ð10:98Þ

From equation (10.94) with equation (10.98) we have

1 ¼ �1
�0

ð2�mkBTÞn=2; ð10:99Þ

determining �1 in terms of �0, equation (10.98). In equations (10.94)–(10.99),
all integrals are over the infinite range of phase space variables (y; p).

Let us refer again to the simple example represented by figure 10.1.
In that case configuration space and momentum space are both two
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dimensional. Consider the flux I of particles in the ensemble, from left to
right across the line S. It is given by

I ¼ NA

�
; ð10:100Þ

where NA is the number of elements of the ensemble with the diffusing
particle lying to the left of S, and � is the mean time between particle
jumps. Then from equation (10.100) the mean jump rate is

� � 1

�
¼ I

NA

: ð10:101Þ

When we generalize to a multi-dimensional configuration space, NA can be
evaluated as follows:

NA ¼
ð
VAð‘Þ

dny

ð
dnp �ðy; pÞ; ð10:102Þ

since different elements of the ensemble are differentiated by different points
in phase space. In equation (10.102), VAð‘Þ is the hypervolume associated
with the diffusion from site A to the left ð‘Þ of the now hypersurface S. We
can evaluate the integral over momenta in NA, equation (10.102), as
before, using equations (10.96) and (10.99) with equation (10.93),

NA ¼
ð
VAð‘Þ

dny exp½�’ðyÞ=ðkBTÞ�ð2�mkBTÞn=2�1

¼ �0

ð
VAð‘Þ

dny exp½�’ðyÞ=ðkBTÞ�: ð10:103Þ

In a similar way, the generalized flux I can be evaluated. It is the number
of phase space points per unit time passing from left to right through the
hypersurface S. This is the density of phase space points at the hypersurface
S, times the component of their velocity normal to S, provided it is outward
from VAð‘Þ, integrated over S:

I ¼
ð
SðYÞ

dn�1y n̂n �
ð
>
dnp

�
1

m
p

�
�ðy; pÞ: ð10:104Þ

In equation (10.104), Y are points on S, to which the integral over y is
limited; the n-dimensional dot product is ðn̂n � pÞ, where n̂n is a unit normal
vector on S, outward from VAð‘Þ; > limits the integral over p to momenta
such that ðn̂n � pÞ > 0; and ð1=mÞ � p is the velocity of phase space points.
Now for a given point Y on S, we can choose a coordinate system
such that one of the coordinate axes, say y1, is in the direction of n̂n there,
so that

n̂n ¼ ð1; 0; 0; . . . ; 0Þ: ð10:105Þ
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In that case,

n̂n � p ¼ p1: ð10:106Þ

Then substituting for � in equation (10.104) from equation (10.93), using
(10.95) and (10.106), we have

I ¼
ð
SðYÞ

dn�1y exp½�’ðyÞ=ðkBTÞ�
ð
dnp
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m
�1 exp

�
� 1
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Xn
j¼1

p2j =ðkBTÞ
�
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dn�1y exp½�’ðyÞ=ðkBTÞ�ð2�mkBTÞðn�1Þ=2

�
ð1
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dp1
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m
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�
� p21
ð2mkBTÞ

�
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ð2�mkBTÞ1=2
ð1
0

du
ð2mkBTÞ

2m
e�u

ð
SðYÞ

dn�1y exp½�’ðyÞ=ðkBTÞ�

¼ �0

�
kBT

2�m

�1=2 ð
SðYÞ

dn�1y exp½�’ðyÞ=ðkBTÞ�: ð10:107Þ

We can now combine equations (10.103) and (10.107) to evaluate the
mean jump rate �, equation (10.101):

� ¼

�
kBT

2�m

�1=2 ð
SðYÞ

dn�1y exp½�’ðyÞ=ðkBTÞ�
ð
VAð‘Þ

dny exp½�’ðyÞ=ðkBTÞ�

8>>><
>>>:

9>>>=
>>>;
: ð10:108Þ

We now assume that the integrals in equation (10.108) are dominated by
the region in which ’ðyÞ is smallest, because of the exponential functions.
For the integral over SðYÞ, ’ðyÞ is a minimum at the saddle point, which
we denote Y P. For the integral over VAð‘Þ, ’ðyÞ is a minimum at Y A,
indicated schematically at A in figure 10.1. We introduce Taylor expansions
of ’ðyÞ for the respective integrals about Y P and about Y A. Because these
points are minima, we have�

@’

@yi

�
y¼Y P

¼
�
@’

@yi

�
y¼Y A

¼ 0; ð10:109Þ

where the first partial derivative is restricted to the hypersurface S. If, on S
and in VAð‘Þ respectively, we denote

y ¼ ðY P þUÞ on S; ð10:110aÞ

y ¼ ðY A þ uÞ in V‘ðAÞ; ð10:110bÞ
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then we have

’ðyÞ ¼
�
’ðY PÞ þ

1

2

X
i;j

KijUiUj

�
on S; ð10:111aÞ

’ðyÞ ¼
�
’ðY AÞ þ

1

2

X
i;j

kijuiuj

�
in VAð‘Þ: ð10:111bÞ

In equations (10.111),

Kij ¼
�

@2’

@yi @yj

�
y¼Y P

on S; ð10:112aÞ

kij ¼
�

@2’

@yi @yj

�
y¼Y A

in VAð‘Þ: ð10:112bÞ

In equations (10.111) and (10.112), Kij and kij are elements of force constant
matrices K and k respectively. In equations (10.111), the quadratic terms are
of the form

1
2U

T �K �U: ð10:113Þ

in matrix notation. The matrix K can be diagonalized by a unitary trans-
formation M:

K 0 ¼ ðM �K �M�1Þ; ð10:114aÞ

U 0 � Q ¼ ðM �UÞ; ð10:114bÞ

MT ¼ M�1: ð10:114cÞ

The transformed generalized coordinates U 0 � Q are normal modes; the
diagonal elements K 0

i i of K 0 are the eigenvalues of K: they are related to
the normal mode angular frequencies �i as follows:

K 0
ij ¼ m�2

i �ij : ð10:115Þ

Exactly similar results apply to the term uT � k � u in equation (10.111b),
where

k0 ¼ ðm � k �m�1Þ; u0 � q ¼ ðm � uÞ; mT ¼ m�1; ð10:116Þ

where

k0ij ¼ m!2
i �ij: ð10:117Þ
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Note in the above that the scalarm is the particle mass, and has nothing to do
with the unitary transformation matrixm. With equations (10.113)–(10.117),
the potential energies of equations (10.111) become

’ðyÞ ¼
�
’ðY PÞ þ

1

2

X
i

m�2
i Q

2
i

�
on S; ð10:118aÞ

’ðyÞ ¼
�
’ðY AÞ þ

1

2

X
i

m!2
i q

2
i

�
in VAð‘Þ: ð10:118bÞ

We now return to the mean jump rate �, equation (10.108). The
hypersurface and hypervolume elements dn�1y and dny respectively now
become (dQ1 . . . dQn�1) and (dq1 . . .dqn) respectively. When the sums in
equations (10.118) are substituted into equation (10.108), the integrals
separate, with the following result:
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kBT

2�m

�1=2 exp

�
� ’ðY PÞ

kBT

� Yðn�1Þ

j¼1

ð1
�1

dQj exp
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9>>>>>=
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:

ð10:119Þ

The integrals are of the form

ð1
�1

dx exp

�
�mw2x2

2kBT

�
¼

�
2�kBT

m

�1=2 1

w
: ð10:120Þ

Thus, from equations (10.119) and (10.120),

� ¼ 1

ð2�Þ

Yn
j¼1

!j

Yðn�1Þ

j¼1

�j

0
BBBBB@

1
CCCCCA

exp

�
� ½’ðY PÞ � ’ðY AÞ�

kBT

�
: ð10:121Þ

In terms of natural frequencies �j about Y A and � 0
j about Y P,

!j ¼ 2��j ð10:122aÞ

�j ¼ 2�� 0
j; ð10:122bÞ

we have, from equation (10.121),

� ¼ �0 exp

�
� ½’ðY PÞ � ’ðY AÞ�

kBT

�
; ð10:123Þ
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where

�0 ¼

Yn
j¼1

�j

Yðn�1Þ

j¼1

� 0
j

0
BBBBB@

1
CCCCCA
: ð10:124Þ

Equation (10.123) with equation (10.124) constitutes the Vineyard relation
[Vineyard (1957)]. In equation (10.123) we have the migration energy, or
the activation energy for the given diffusion process, which we denote "a,
where

"a ¼ ½’ðY PÞ � ’ðY AÞ�: ð10:125Þ
This is simply the difference between the potential energy of the system in the
activated configuration Y P, and in the initial equilibrium configuration Y A.
Furthermore, the amplitude �0 of the mean jump rate is determinable
from the normal mode frequencies of oscillation for the system, � 0

j and �j
in the corresponding configurations. Contemporary modelling methods at
the level, for example, of the shell model of the previous chapter, are
capable of determining these normal modes in good approximation. Note
especially that neither configuration Y P nor Y A is the perfect crystal config-
uration: they are different defect configurations, and indeed, � 0

j are normal
modes of vibration restricted to the hypersurface of activated configurations.

The result given by equation (10.123) with equation (10.125) is the
temperature dependence of diffusion, the so-called Arrhenius relation:

� ¼ �0 e
�"a=ðkBTÞ: ð10:126Þ

In cases where the theory of this chapter is valid, the standard semi-log plot
of experimental values of ln� versus ðkBTÞ�1 gives a straight line from whose
negative slope "a can be read off.

Appendix to Chapter 10: Stirling’s formula

We here sketch a derivation, based on Courant (1937), of Stirling’s formula,
which is an approximation to the factorial function n!, n an integer, for
large n.

Consider the definite integral I :

I ¼
ðn
1
dx ln x ¼ ½n lnðnÞ � ðn� 1Þ�: ðA10:1Þ

The integral can be approximated as a sum of trapezoidal areas Aj between
n ¼ j and n ¼ ð j þ 1Þ:

Aj ¼ 1
2 ½lnð jÞ þ lnð j þ 1Þ�: ðA10:2Þ
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Then

I 0
Xðn�1Þ

j¼1

Aj ¼
Xðn�1Þ

j¼1

lnð jÞ þ 1
2 lnðnÞ

8<
:

9=
;; ðA10:3Þ

where we have used 1
2 ln 1 ¼ 0 ¼ ln 1. Thus from equation (A10.3) we have

I 0
�Xn

j¼1

lnð jÞ � 1
2 lnðnÞ

�
¼ lnðn!Þ � 1

2 lnðnÞ: ðA10:4Þ

Combining equations (A10.1) and (A10.4),

½n lnðnÞ � ðn� 1Þ�0 lnðn!Þ � 1
2 lnðnÞ ðA10:5Þ

or

lnðn!Þ9 fðnþ 1
2Þ lnðnÞ � nþ 1g: ðA10:6Þ

For large n, replace the inequality as follows:

lnðn!Þ ¼ fðnþ 1
2Þ lnðnÞ � nþ ð1� anÞg: ðA10:7Þ

Courant shows that an < 1. From equation (A10.7) we have

n! ¼ eð1�anÞ ffiffiffi
n

p
nn e�n: ðA10:8Þ

Courant further proves that

lim
n!1

ðeð1�anÞÞ ¼
ffiffiffiffiffiffi
2�

p
: ðA10:9Þ

The reader is encouraged to look up and work through this derivation, which
is well within the scope of undergraduate calculus. Combining equations
(A10.8) and (A10.9), we obtain the result given in equation (10.50):

n! ¼
ffiffiffiffiffiffiffiffi
2�n

p
nn e�n: ðA10:10Þ

Already at the level of equation (A10.5), however, by neglecting 1 and 1
2

relative to n, we had the main qualitative result:

n! � nn e�n: ðA10:11Þ
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Chapter 11

Point defects in crystals

11.1 Introduction

Among solid materials there are several categories, including crystalline,
amorphous and nanostructured solids. Amorphous solids are completely
lacking in the translational symmetries that characterize crystals, but do
have short-range order arising from the fact that the material consists of
atoms that are tightly bound to each other and that have definite spatial
size, characterized by angstroms (10�10 m). Thus one atom is more likely to
have nearest-neighbor atoms at a distance of approximately one atomic
diameter, rather than at slightly more or less distance. Nanostructured solids
consist of tightly bound crystallites, within each of which translational crystal-
line order is qualitatively evident, but limited to nanometer (10�9 m) size. Para-
doxically, the mismatch of different crystallite orientations at their mutual
boundaries produces a higher level of disorder than occurs in amorphous
solids. The situation is clearly illustrated and discussed by Birringer (1989).

11.1.1 Crystals and defects

In this chapter we discuss an aspect of disorder in crystals that are nearly
perfect. We do not discuss crystalline symmetry in general. An excellent
reference for such a discussion is by Ashcroft and Mermin (1976,
Chapter 7). We shall, however, give a brief, qualitative description. There
are two essential elements in the definition of a crystal: the basis and the
Bravais lattice. The Bravais lattice expresses the translational invariance of
the crystal: the fact that for an infinite crystal, certain spatial translations
leave the crystal invariant. The Bravais lattice is then a set of points, infinite
in all three spatial dimensions, generated by the set of all translations that
leave the infinite crystal invariant. The basis of the crystal is a collection of
atoms, in a specific spatial relation to each other, such that applying to it
all the translations of the Bravais lattice generates the whole infinite
crystal. The basis determines the chemical composition of the crystal, as
well as additional, non-translational, symmetries.
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We refer to such an infinite crystal as an ideal crystal. Real crystals are
finite, bounded by crystalline surfaces. A perfect crystal sample will be a finite
segment of an ideal crystal. Relative to an ideal crystal, the surfaces of a
perfect crystal may be thought of as a kind of defect: they break the transla-
tional symmetry. We have seen in Chapter 4 that, in the continuum model,
surfaces have dynamical properties distinct from the bulk properties that
are essentially characteristic of the infinite solid. In the discrete-atom
picture of a real solid, the atomic ordering at a surface will always deviate
from that in a perfect crystal. At the least, atomic positions at the surface
will relax to equilibrium sites that differ slightly from perfect-crystal sites.
In some crystals, atomic ordering on a surface crystal plane is different
from that on the corresponding plane in an infinite crystal. A famous
example is silicon [see, for example, Burns (1985), section 17-4c], where
surface reconstruction is quite spectacular.

Apart from surfaces, which are one type of two-dimensional defect,
there is a wide variety of other crystalline defects. In Chapter 5 we discussed
dislocations, which are linear, one-dimensional defects. In this chapter we
concentrate on point defects which on a macroscopic scale are zero-
dimensional. Point defects involve one site or a small number of spatially
concentrated atomic sites. A simple example is a vacancy: one atomic site
from which the atom is missing: see figure 11.1. Another is an interstitial:
an atom at a position that does not correspond to an atomic site in the
perfect crystal: see figure 11.3. An interstitial may be an atom of one of the
host species (i.e. one of the chemical components of the perfect crystal), or
it may be an impurity. An impurity atom may also be a substitutional,
substituting at a perfect crystal site for one of the perfect crystal atoms.

In this chapter we not only limit ourselves to point defects, but to a
selection of point-defect types in ionic crystals. The prototypical ionic
crystal is an insulator consisting of well-defined ions, each with net charge
equal to a non-zero, usually integral multiple of e, the charge of the
proton. Consider, for example, sodium chloride, NaCl. The electrically
neutral sodium atom in free space has an electronic configuration
1s2 2s2 2p6 3s1. [The meaning of such notation is of central importance in
understanding the electronic structure of atoms, molecules and solids: see
for example Goswami (1992), section 20.2.] Similarly, neutral free chlorine
is 1s2 2s2 2p6 3s2 3p5. At interionic distances as close as those in a NaCl
crystal, the total energy is much lower in the ionic states Naþ: 1s2 2s2 2p6

and Cl�: 1s2 2s2 2p6 3s2 3p6, due to the Coulomb attraction between them.
We can say that the crystal is bound primarily by an electron transfer
from sodium to chlorine, relative to the electrically neutral atomic configura-
tions. The sodium chloride crystal, called rocksalt, has a particularly simple
structure: its ions are located on a simple cubic array of sites with alternating
charge. The basis is a NaCl ‘molecule’, and the Bravais lattice is face-centered
cubic (f.c.c.), in which the lattice points occupy not only simple cubic
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structure sites, but the centers of all cube faces in that structure as well. The
edges of the primitive cubes of the Bravais lattice are twice the length of
the nearest-neighbor interionic distances in the crystal. Many crystals have
this rocksalt structures: all the alkali halides formed by combining alkali
cations (Liþ, Naþ, Kþ, Rbþ, Csþ) with halide anions (F�, Cl�, Br�, I�),
with the exception of body-centered cubic CsCl, CsBr and CsI; divalent
MgO (Mg2þ, O2�) and NiO (Ni2þ, O2�) and related compounds, and
many others. Figure 11.1 illustrates the rocksalt structure with NaCl. In
figure 11.1 also are represented several point defects, namely, impurity sub-
stitutional (Mg2þ), self-interstitial (Cl�), and sodium vacancy. A standard
reference for crystal structures is Wyckoff (1963).

11.1.2 Modelling of point defects in ionic crystals

In Chapter 9, we have introduced the shell model as a classical atomistic
model of an ionic crystal, and have discussed it at some length. The reader
is referred to section 9.2 at this time. There is an important class of point
defect problems for which the shell model by itself is satisfactory. For

Figure 11.1. The rocksalt crystal structure exemplified by NaCl, and point defects: (1) sub-

stitutional cation impurityMg2þ ; (2) Cl� anion self-interstitial half an interplanar distance

in front of the other ions: see also figure 11.3; (3) Naþ vacancy.
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example, in section 11.2.1 we discuss impurity diffusion in alkali halides,
based on such an approach. It does require, of course, that shell-model
parameters for impurity–host short-range interactions be available, as well
as those for the host crystal itself.

There are many point defect properties, however, where classical
modelling alone is intrinsically inappropriate, as illustrated in sections 11.4
to 11.10. For example, classical modelling of an optical excitation process
is inappropriate: indeed, the need to explain the Balmer series for the excita-
tion spectrum of hydrogen was a major impetus for the development of
quantum theory. [See for example Born (1951), section V.1.] In other
problems also, however, it may seem more satisfactory, and be more accu-
rate, to use a quantum-mechanical method. Thus, for example, in section
11.2.2 where the dissociation of a defect complex consisting of an O� ion
and a fluoride vacancy in BaF2 is discussed, the diffusion of F� by the
vacancy mechanism is involved, and is analysed quantum-mechanically,
although one might have used the shell model exclusively for this process,
as in section 11.2.1.

Let us now discuss more fully the quantum-mechanical aspect of
modelling point defects and their properties. In general, apart from the
defect sites, a point defect produces a significant perturbation of the other-
wise perfect crystal, involving only ions close to the defect sites. Thus,
apart from ions close to the defect, the positions and electronic structures
of ions are the same as those for the perfect crystal. The exception is when
net electrostatic moments of the defect produce long or medium range defor-
mation and polarization in the crystal such that the effect on the total energy
is not negligible. The strongest such effect comes from defects with non-zero
charge relative to the perfect crystal: this is the case of the monopole moment.
The ‘charge relative to the perfect crystal’ is the deviation of the defect’s
charge from that of the perfect crystal region that it occupies. For
example, referring to figure 11.1, a Mg2þ impurity ion substituting for a
Naþ ion in NaCl has a charge of þ1 (units of e) relative to the perfect
crystal. Henceforth, this will be referred to simply as the defect charge.
There are cases where the dipole or quadrupole moment of the defect also
needs to be taken into account.

We now return to the issue of perturbation of the crystal’s electronic
configuration by the defect. If this perturbation is of short range, apart
from dipole polarization of more distant ions, then we note that only a
small number of ions is involved. These ions will be regarded as a molecular
cluster that includes the defect sites. Accordingly, well developed methods of
quantum chemistry can be used to determine the detailed electronic con-
figuration of the defect and its nearby region in the crystal. These
methods are mentioned in Chapter 12, and one of them, the Hartree–Fock
approximation with many-body perturbation theory (MBPT) correlation
correction, is discussed in detail.
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For point defects in ionic crystals, the molecular cluster analysis must
include two crystal-related effects: both the short-range quantum-mechanical
effects and the long-range Coulomb effects of the rest of the crystal upon the
cluster. The long-range Coulomb effects are derived simply from the core and
shell charges of shell-model ions; i.e. the region outside the defect cluster is
represented by an embedding shell-model crystal. The short-range inter-
action between the cluster and the embedding shell-model crystal may be
represented at various levels. Most simply, it may be the shell-model Buck-
ingham or other classical potential. This is how all the computations to be
described in sections 11.3 to 11.10 have been done. Such an approach
requires special treatment of the atomic orbital basis set for the cluster. A
more realistic model would have a region surrounding the cluster represented
by ionic pseudopotentials. This would subject electrons in the quantum
cluster to the non-point charge nature of the ions, and depending on the
pseudopotential, to Pauli and other interelectronic correlation effects. Still
more realistic would be the inclusion in the Fock operator for the cluster
calculation of terms that are more directly derived from the quantum
mechanical treatment of the infinite defect crystal. This ‘embedding
problem’ is discussed in some detail in section 12.5. The above methodology,
up to embedding pseudopotentials combined with more distant shell-model
embedding, is called the ICECAP method [Harding et al. (1985)]. We
elaborate on this method in the Appendix to this chapter.

In the remainder of this chapter we discuss nine experimental properties
and processes, and related computations, for point defects in ionic crystals.
In the process, we introduce a wide variety of point defect types. In all
cases, results are calculated for specific materials by the ICECAP program,
and are applicable to the case of highly dilute defect concentration in the
crystal. In many cases, computed results can be compared with experiment,
and in all but one case the comparison is favorable. In that exception, the
reliability of the calculation points to an essential aspect of the theory
(quantum diffusion, section 11.9) that requires additional attention. Those
computations for which no experimental results are available are similar
enough to others for which experimental results do exist that the predictions
are credible. Among these nine types of defect properties, one can discern a
web of interconnections that will be commented on in section 11.11. All
of the computed results are due to the author and his collaborators, as is
the ICECAP methodology. Through their variety, I believe they give the
reader a fair glimpse into the much wider general topic of defects in
crystalline solids, not limited to the ionic type. Briefly, the properties to be
discussed are: classical diffusion, charge-state stability, defect-complex
stability, optical excitation, spin densities, local band-edge modification,
electronic localization, quantum diffusion and local modes. The style of
this chapter deviates from that of the rest of the book by being descriptive
and computationally and experimentally oriented, rather than being oriented
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toward the theoretical structure of the subject. As such, it exemplifies the
objective to whose achievement the other chapters of the book are directed,
namely reliable computational simulation of solid materials.

At this point we direct the reader to other important sources for point
defects in insulators. The book Physics of Color Centers edited by Fowler
(1968) is still a mine of valuable information, as is Stoneham’s Theory of
Defects in Solids (1975). The periodical Radiation Effects and Defects in
Solids (Gordon and Breach) is largely devoted to this topic, although impor-
tant papers are also published in many other journals. For point defects in
semiconductors and in metals, one may refer to Lannoo and Bourgouin
(1981) and Bourgouin and Lannoo (1983), and to Leibfried and Breuer
(1978) and Dederichs et al. (1980), respectively.

11.2 Classical diffusion

By classical diffusion we mean thermally activated hopping of ions from one
site in the crystal to another. The process has been discussed in some detail in
Chapter 10. Classical treatment of the ions is justified, although in section
11.2.2 the diffusing ion and its nearest neighbors are in fact treated
quantum mechanically. Two examples are given: impurity diffusion in
alkali halides, and dissociation of a vacancy-impurity defect complex.

11.2.1 Copper and silver diffusion in alkali halides

We have calculated the activation energies for diffusion of copper and silver
in selected alkali halides [Meng et al. (1989)]. The results are given in table
11.1. Two mechanisms are considered: vacancy and interstitial, illustrated
in figures 11.2 and 11.3 respectively. In each figure, the activated and
initial configurations are illustrated, and it is the difference in the energies
of these two configurations that determines the activation energy. [See also
Chapter 10, equations (10.123)–(10.126).] The straight line diffusion path is
indicated by a dashed line in each case.

Experimental results are available for three processes in KCl: for Cuþ

by vacancy and interstitial mechanisms, and for Agþ by the interstitial
mechanism. We note that not only are the corresponding calculated values
reasonably good, to �0.1 eV, but the ordering of these three values is given
correctly, a quite sensitive test of the computational method.

There is reason to question whether the straight-line diffusion path is
the actual one for vacancy diffusion. The diffusing ion will follow the path
of least resistance; the real activated configuration will be the one of lowest
energy. Might not the ion pass somewhere below the edge of the diagonal
plane, keeping a greater distance from the straddling negative ions whose
electronic structures repel it? We have tested this conjecture in all Agþ
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vacancy diffusion cases. As indicated in the table, we found that in two cases
the activation energy was lower along a path deviating from the straight-line,
the so-called non-collinear mechanism illustrated in figure 11.4. In these two
cases, Agþ in RbCl andKCl, the activation energy is markedly lower than for
the other, straight line cases.

The computed energies for table 11.1 were based on shell-model calcu-
lations in which all ions (cores and shells) were taken to be in equilibrium.
This implies that the ionic positions of the host crystal follow the motion
of the impurity ion instantaneously. All calculations were so-called lattice
static, i.e. ionic vibration effects were completely ignored. In order to do
such shell-model calculations, we need to have impurity-halide short-range

Table 11.1. Calculated and experimental activation energies �E (eV)

for vacancy and interstitial mechanisms of Cuþ and Agþ

impurities in some alkali halides.

�E

Material Mechanism Calculated Experiment

KCl :Cuþ Vacancy 1.19 1.1 a

Interstitial 0.78 0.83 b

KCl :Agþ Interstitial 0.83 0.95 b

RbCl :Agþ Vacancy c 0.44 –

KCl :Agþ Vacancy c 0.51 –

NaCl :Agþ Vacancy 0.93 –

NaF :Agþ Vacancy 0.72 –

a Henke et al. (1986).
b Pershitz and Kallenikova (1981).
c Non-collinear mechanism: see figure 11.4.
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Figure 11.2. Diffusion by the vacancy mechanism of a monovalent substitutional cation

impurity in an alkali halide: initial and activated configurations.
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Figure 11.3. Diffusion by the interstitial mechanism of a monovalent cation impurity in an

alkali halide: initial and activated configurations.

Figure 11.4. Activated configuration for diffusion of a monovalent cation substitutional

impurity by the non-collinear vacancy mechanism in an alkali halide: compare with

figure 11.2.
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Buckingham potentials. While we considered the possibility of transferring
potentials from pure silver halide and copper halide crystals, we concluded
that such an approach is not, in general, reliable. Instead, we derived our
potentials from embedded quantum clusters. The approach was as follows.
Evaluate the total energy of a crystal, say KCl, containing a nearest-neighbor
AgCl6 quantum molecular cluster. Vary the nearest-neighbor distance,
inward and outward from the perfect KCl crystal value. Use the resultant
total energy versus distance curve to fit Buckingham potential parameters
(B, �, C): see equation (9.4); i.e. determine (B, �, C) such that the curve
from an all shell-model calculation fits that from the quantum cluster.

Although the results given in table 11.1, particularly the comparisons
with experiment, are very encouraging, the method of calculation is such
that many improvements could be contemplated. The reader is referred to
the original paper [Meng et al. (1989)] for deeper insight into modelling
details for such problems.

11.2.2 Dissociation of the oxygen-vacancy defect complex in BaF2

Barium fluoride BaF2 is one of a large class of high-density luminescent
materials used for �-ray detection in environmental, medical and high-
energy particle accelerator applications. The subject has been reviewed in
Weber et al. (1994). In practice, the crystal’s high luminescent efficiency is
degraded by radiation damage. At one time, oxygen was suspected to be
responsible for this effect. Although this is no longer the case, it is worthwhile
to understand the defect processes that were postulated, since they are
undoubtedly representatives of processes that affect material properties in
some situations.

The basis of the BaF2 crystal is a molecular cluster (Ba2þ)1 � (F�)2. The
Bravais lattice is f.c.c. The crystal type is called the fluorite structure (for
CaF2). It is most easily visualized as a simple cubic array of F� ions with
Ba2þ ions at the center of every second cube of the fluoride sublattice.
Thus every F� ion has four nearest-neighbor Ba2þ ions in tetrahedral
coordination, while every Ba2þ ion has eight nearest-neighbor F� ions.

It is conjectured that in the crystal growth process, at relatively high
temperature, oxygen impurity is unavoidable, and it occurs substitutionally
for F� in the filled-shell O2� configuration 1s2 2s2 2p6. This impurity’s net
charge (�1) relative to the perfect crystal is compensated by a fluoride
vacancy (net charge þ1). Furthermore, the two defects occur at nearest-
neighbor sites on the fluoride sublattice (second-neighbor sites in the
crystal), forming a (O2� � vF�) defect complex, where vF� stand for the
fluoride vacancy (see figure 11.5). This defect we refer to as dipolar: it consists
of a net charge of (þ1) on one site and (�1) on the other, which at a large
distance has predominantly an electric dipole moment. It is conjectured
that this dipolar defect complex is stable in the presence of the crystal’s
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intrinsic luminescent radiation and that it does not have excitation levels cor-
responding to the luminescence.

It is further conjectured that (a) �-ray absorption (radiation damage)
dissociates the (O2� � vF� ) defect complex; (b) the free O2� ion is unstable
in the presence of a dissociated vacancy vF� , transferring an electron to the
vacancy; (c) the resulting O� ions have excitation energies that do approxi-
mately coincide with the intrinsic luminescence, absorbing it and thereby
degrading the efficiency of the detector. Conjecture (c) appears not to be
correct, as discussed in section 11.5.3, casting attention toward other
defect complexes, possibly involving rare-earth impurities. Conjecture (a)
can be represented by the process

½ðO2�Þ � ðvF�Þ þ �h!� ! ½O2� þ vF� �: ð11:1Þ
In equation (11.1), �h! is the energy from radiation damage, possibly the �-
ray photon itself, that initiates the activation energy for diffusion of the
vacancy away from the O2� impurity. The process is illustrated in figure
11.5, where diffusion of the vacancy in one direction is equivalent to diffusion
of an F� ion in the opposite direction. We have calculated the activation
energy as the difference in energy between activated and original configura-
tions [Vail et al. (1998a)]. Our modelling is based on the embedded quantum
clusters ðvF�Þ � ðO2�Þ1 � ðF�Þ5 � ðBa2þÞ4 as shown in figure 11.5, where oxygen
and fluoride ions are given all-electron treatment (bare nuclei) and Ba2þ ions
are represented by pseudopotentials. The calculated activation energy is
0.93 eV. This is similar to values obtained for impurities in the alkali
halides (see table 11.1). The difference between the present calculation and
those of section 11.2.1 is that there the process was modelled entirely in
terms of the shell model, whereas here it is entirely in terms of quantum
clusters (embedded, of course, in an infinite shell-model crystal).

Figure 11.5. Dissociation process for a vacancy-impurity dipole defect complex

ðO2�Þ � ðvF� Þ in BaF2 (with Ba2þ ions omitted from the diagram). The process involves

diffusion of the fluoride vacancy along the path shown in the activated configuration.

The dipole complex is shown in the initial configuration.
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We shall return to the problem of oxygen in BaF2 in future sections:
in section 11.4.2 the charge state stability of free O2� ions in the presence
of vF� is discussed; in section 11.5.3 the optical excitation of O� is discussed;
and in section 11.7.2 the local modification by O� of the conduction band
edge is discussed. We also discuss the F center in BaF2, in section 11.8.

11.3 Defect complex stability

It can happen that the atomistic ordering of a defect complex is in question,
or the relative stability of alternative configurations may be of interest. An
example of this situation is the ðFþ

2 Þ� center in NaF :Mg [Hofmann et al.
(1985)]. This is one of many examples of an F-type center: electrons bound
in vacancies. This particular defect is created by combining two defect
complexes. One is an Fþ

2 center: one electron bound in two nearest F�

vacancies, whence the superscript notation (þ), indicating a net charge of
(þ1) relative to the perfect crystal. It would be electrically neutral if there
were two electrons: it would then be a two-F center complex, whence the
subscript 2. The second defect complex is a substitutional Mg2þ ion on an
Naþ site, compensated for its net charge (þ1) by a nearest Naþ vacancy:
an impurity–vacancy dipole complex, similar to that seen with O2� in
BaF2, section 11.2.2. These two defects are illustrated in figure 11.6.

How the two defects combine is a matter of interest. The simplest, most
symmetrical combination is shown in figure 11.7. In that case, the excess
electron of the F-type center would be symmetrically shared between the
two F� vacancies. The experimental work of Hofmann et al. (1985) shows
that this is not the case: the ground-state character of the ðFþ

2 Þ� center
is more like a weakly perturbed one-electron F center involving a single
F� vacancy. There is a large number of distinct possible unsymmetrical

Figure 11.6. Two point defect complexes in NaF: (a) the Fþ
2 center; (b) the impurity-

vacancy dipole defect ðMg2þÞ � ðvNaþ Þ.
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configurations, particularly if one considers impurity–vacancy dipole config-
urations involving second-neighboring sites on the cation sublattice, as was
done by Hofmann et al. (1985). We have studied 39 configurations in all at
a relatively simple level of modelling [Vail et al. (1998b)]. From those we
selected six that were lowest in total energy, and therefore most promising.
All six were unsymmetrical, forcing the excess electron into a single F�

vacancy. These were analysed in terms of a nearest-neighbor embedded
quantum cluster containing the six nearest-neighboring Naþ ions of the F-
type center. The calculated total energies of these six configurations are
given in table 11.2. Two of these configurations were strongly preferred
over the others on the basis of lower total energies. They are illustrated in
figures 11.8 and 11.9. One, denoted configuration no. 6, figure 11.8, is a
planar four-site defect. The other, configuration no. 24, figure 11.9, is non-
coplanar. Within the limitations of the calculations, these are our candidates
for the ðFþ

2 Þ� center’s configuration. It may be that the defect occurs at
ordinary temperatures in more than one configuration, all of approximately

Figure 11.7. The symmetrical configuration of the ðFþ
2 Þ� center in NaF: see also figures

11.6(a) and (b).

Table 11.2. Computed total energies E

(eV) of six configurations for

the ðFþ
2 Þ� center in NaF :Mg.

Configuration no. E

6 �26 647.35

24 �26 645.40

18 �26 619.52

31 �26 618.63

7 �26 598.58

15 �26 568.95
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the same energy. Further calculations, which are extremely difficult, and
particularly more detailed experimental characterization, are needed to
determine these issues definitively. One possible contribution to such
progress is discussed in section 11.6.3.

Figure 11.8. Low-energy planar configuration [no. 6: see Vail et al. (1998b)] of the ðFþ
2 Þ�

center in NaF.

Figure 11.9. Low-energy non-planar configuration [no. 24: see Vail et al. (1998b)] of the

ðFþ
2 Þ� center in NaF.
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It is important to understand this defect at the level discussed above for
practical reasons. There is a type of laser based on F-type centers that has
unique value for studies of small organic molecules [Baldacchini (1989)].
To date, these lasers have the particular disadvantage of not being usable
above liquid nitrogen temperature (77K). At higher temperatures the
defect complexes upon which they are based dissociate or become otherwise
irreversibly modified. The ðFþ

2 Þ� center in NaF:Mg does not suffer from this
disadvantage: its laser properties are room-temperature stable. Although
ðFþ

2 Þ� center lasers are not marketable, it is hoped that by understanding
this defect’s stability it may be possible to develop other room-temperature
F-center lasers that will be marketable.

11.4 Impurity charge-state stability

Since different charge states of an impurity species have distinct optical and
chemical properties, it is important to be able to determine the charge state,
either by experimental or computational means. In this section we discuss
two such systems: nickel in MgO and oxygen in BaF2.

11.4.1 Nickel in MgO

Simply on the basis of electrostatics, we expect nickel to be stable in MgO in
charge state (þ2), as a Ni2þ substitutional for a Mg2þ host ion. In terms of
overall electrical neutrality for the crystal, one might ask whether diffuse
distributions of Niþ and N3þ ions would be energetically favored, or not,
over a diffuse distribution of Ni2þ ions. At high enough temperature,
thermal activation would tend to bring Niþ ions (net charge �1) to form
impurity dipole defect complexes with Ni3þ ions (net charge þ1). Therefore,
we consider only low enough temperature so that the diffuse distributions
will be stable.

We have calculated the total energies of all three charge states of Ninþ

(n ¼ 1, 2, 3), substitutional in MgO [Meng et al. (1990a)]. We conclude that:

ðNiþ þNi3þÞ ! 2ðNi2þÞ þ 10:1 eV: ð11:2Þ
It is therefore clear that so-called disproportionation, in a homogeneous
dilute mixture of Niþ and Ni3þ, is counterindicated quite strongly. The
detailed electronic structure of the calculations for Niþ and Ni3þ show inter-
esting features. For Niþ, the net charge (�1) is not located primarily on the
impurity, but on the second-neighbor Mg2þ ions, leaving the impurity ion
essentially in charge state (þ2). Similarly for Ni3þ, the net charge (þ1)
resides primarily in the form of a hole in the electronic structure of
nearest-neighbor O2� ions, again leaving the impurity in charge state (þ2).
In the real crystal, where electronic and hole states of more distant ions
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are available, the electron trapping (hole loss) of Niþ and electron loss (hole
capture) of Ni3þ might be more diffuse, possibly even fully spread out
through the valence and conduction bands, respectively, of the host
crystal. In our calculations, second neighbor embedded quantum clusters
ðNinþÞ1 � ðO2�Þ6 � ðMg2þÞ12, n ¼ 1, 2, 3, were used, with the Mg2þ ions
represented by pseudopotentials.

Experimental studies of MgO:Ni have failed to show evidence either of
free, stable Niþ or Ni3þ ions. The Ni3þ ion has been stabilized experimentally
by noncovalent impurity cations, notably Liþ [Verwey et al. (1950)]. The con-
ditions for Niþ to exist in defect complexes or metastably have not been
clearly determined [Low and Offenbacher (1965)].

11.4.2 Oxygen in BaF2

In section 11.2.2 we introduced the subject of oxygen in BaF2, and discussed
the defect–complex dissociation process represented by equation (11.1).
After the complex dissociates into an O2� ion and a fluoride vacancy vF� ,
one charged negatively and the other positively relative to the host crystal,
the question of charge-state stability must be considered, just as for Niþ

and Ni3þ in the previous section, equation (11.2). Electron transfer from
O2� to the vacancy would leave O� and an F center Fc, each electrically
neutral. The process is represented as follows:

ðO2� þ vF�Þ ! ðO� þ e� þ vF�Þ ! ðO� þ FcÞ: ð11:3Þ

Again, to determine the stable charge states, we need only evaluate the total
energy of isolated O2� ion and vF� on the one hand, and of isolated O� and
Fc on the other. We have done this in terms of embedded quantum clusters
[Vail et al. (1998a)], with the following result:

ðO2� þ vF�Þ ! ðO� þ Fc þ 1:4 eVÞ: ð11:4Þ
It is therefore clear that, in isolation, the stable charge state of oxygen in
BaF2 is O�, when associated with a charge-compensating vacancy-type
defect. We shall take up these defects again in section 11.5.3, where their
optical excitations are discussed.

11.5 Optical excitation

In section 11.1.2, in the introduction to this chapter, we identified optical
excitation processes as representative of defect problems that are intrinsically
quantum mechanical. In this section we describe such processes in MgO
(section 11.5.1), in NaF (section 11.5.2), and in BaF2 (section 11.5.3). In
all three sections, optical excitation of impurities is discussed. In sections
11.5.1 and 11.5.3, intrinsic processes are also discussed. In MgO, the
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excitation of O2� (the Frenkel exciton problem) is addressed, and in BaF2

the F center problem is commented on, both specifically and in the wider
context of other host materials. Optical absorption by the F center in BaF2

is discussed further in section 11.8.
Some general comments on modelling optical excitations in ionic

crystals are in order here. All our calculations are for small, embedded
quantum clusters. Thus, systems whose optical transitions are not localized
within first, or at most second, neighbor distances require special treatment.
This is particularly emphasized in the F-center discussion of section 11.5.3
and in section 11.8. Our calculations have two particular strengths. One is
that optical transition energies are calculated as differences between many-
body states, not single-particle states. The other is that, at least in sections
11.5.2 and 11.5.3, care is given to the inclusion of correlation effects.

The study of optical processes is relevant to a variety of materials
properties. They cast light (no pun intended) on the intrinsic nature of the
crystalline solid and determine technologically significant properties for
optical applications of approximately perfect bulk samples. They determine
properties of point defects, again for the purpose of characterizing the
defects, and for technological applications. Finally, optical excitations in
perfect and defected crystals are increasingly being used to tailor electronic
and atomistic structures to specific properties and purposes. A recent work
on this aspect of defect excitation is Itoh and Stoneham (2000).

In what follows, the choice of examples is quite narrow in a field where
the experimental results are extremely far reaching. In particular, we do not
give any examples of optical de-excitation, or emission, which is at least half
of the subject. While our methods are capable of dealing with the emission
process, we have not yet done any studies of that sort.

11.5.1 Frenkel exciton and impurity absorption in MgO

The optical excitation of a crystal may be viewed as the creation of an elec-
tron–hole pair. Such a combination is referred to as an exciton. An exciton
localized in atomic dimensions is referred to as a Frenkel exciton. Pandey
et al. (1989) have analysed the Frenkel exciton in MgO using the identical
embedded quantum cluster (ICECAP) method whose results are presented
throughout this chapter. Their results, obtained at the Hartree–Fock level
for both singlet and triplet excited states, agree remarkably well with
experiment. The computed singlet and triplet excitations are 7.77 eV and
7.73 eV respectively compared with experimental values of 7.76 eV and
7.69 eV [Roessler and Walker (1967) and (1966)]. These results indicate
that, in this material, the exciton is highly localized, corresponding to a
2p6 ! 2p5 3s transition of O2�. The Frenkel exciton may be regarded as a
defect, involving only the local electronic structure, but not affecting the
atomistic structure of the crystal.
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Pandey and co-workers have also studied optical excitation of impurities
in MgO. In the previously cited work [Pandey et al. (1989)] they considered
the isovalent anion impurities S2� and Se2�, substitutional for O2� in MgO.
While experimental values are not available, singlet and triplet values calcu-
lated for S2� were 7.12 eV and 7.09 eV respectively, and for Se2�, 6.71 eV and
6.68 eV respectively. The systematic downward trend in excitation energy
with increasing atomic number is to be noted. Pandey and Kunz (1990)
have also calculated the 2p6 ! 2p5 3s transition of F� substitutional impur-
ity inMgO. They obtain an excitation energy of 15.2 eV, about double that of
the host O2� Frenkel exciton. Since O2� and F� have the same number of
electrons, ten, this result might seem surprising, until one recognizes that
F� is a positively charged defect in MgO. The positive charge comes from
incompletely charge-compensated nearest-neighbor Mg2þ ions, whose con-
tribution to the Madelung field deepens the effective potential well seen by
the F� ion’s electrons. This has the effect of increasing the separation of
the energy levels.

11.5.2 Cu
þ
in NaF

In the previous section we discussed electric dipole excitations in MgO. In
this section we shall deal with the dipole forbidden, two-photon excitations
of Cuþ (d10 ! d9 s), substitutional for Naþ in NaF. We refer here to the
ICECAP computations of Meng et al. (1988), augmented as they were by
careful treatment of correlation correction. Meng’s calculated average
value over the excited states is 4.02 eV, compared with 4.01 eV from the
experimental work of Berg and McClure (1989). Overall, this excellent
agreement with experiment, while significant, is moderated by the fact
that the computed ordering of excited states of different symmetries is not
entirely in agreement with experiment. Meng’s calculated value of crystal
field splitting, 0.31 eV, also compares very well with the experimental
value of 0.35 eV [Payne et al. (1984)]. We shall return to Cuþ in NaF in
section 11.10.

11.5.3 O
�
in BaF2

Substitutional oxygen impurity in BaF2 has been introduced and discussed
earlier, with respect to its origin in a defect complex, section 11.2.2, equation
(11.1), and with respect to its charge state stability, section 11.4.2. The picture
has been developed of O� being created in two stages, first by radiation
damage dissociating the ðO2� � vF�Þ defect complex, equation (11.1), and
second by electron transfer from O2� to vF� , creating O� and F center
defects, equation (11.3). The issue has been raised whether O� can then
absorb the intrinsic luminescence of the crystal, thereby degrading its
luminescent efficiency in �-ray detectors.
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The optical absorption energies of O� in BaF2 are not known experi-
mentally. Using the ICECAP method of embedded quantum clusters, with
pseudopotential Ba2þ ions, and including correlation correction, we have
calculated these energies for dipole-allowed, single photon absorption. We
predict excitations of 8.95 eV and 9.74 eV [Vail et al. (1998a)]. This is to be
compared with the intrinsic luminescence of BaF2, which is 5.64 eV and
6.36 eV [Zhu (1994)]. We conclude that absorption by O� is not responsible
for degrading the luminescence.

The calculated splitting of the O� absorption line in BaF2 has an inter-
esting physical origin. As we have mentioned, O2� is a filled-shell ion
1s2 2s2 2p6. It follows that O� will have one electron less than the filled
shell: it will have one electron whose spin (say spin up) is not paired with
another electron in the same spatial orbital. There is therefore a hole in the
filled shell configuration, and it turns out that the missing spin-down electron
is in a 2p-like state oriented along one of the crystal’s cubic axes, say the z
axis. We therefore have a pz-like hole, with geometrical character (cos �z).
The situation is illustrated schematically in figure 11.10. This configuration
1s2 2s2 2p5 has a quadrupole moment that is prolate in the z direction. This
in turn generates a local quadrupolar strain that is oblate in the z direction,
tending to screen the quadrupole field of the O� ion. Excitations occur from
O� p-like states that are symmetrical linear combinations of 2px and 2py,
denoted 2px;y. The unequal electronic configurations in the occupied spin
up " and spin down # manifolds produce spin polarization, so that 2px;y"
and 2px;y# have different single-particle energies. This arises from applying
the so-called unrestricted Hartree–Fock approximation: see Chapter 12.
The fact that the final states of these two transitions are correspondingly
spin polarized accounts for the absorption-line splitting. It turns out that
the final states are not oxygen-like localized states, but are locally perturbed
parts of the conduction band. This feature of O� in BaF2 will be discussed
further in section 11.7.2.

In the picture of the radiation damage process presented above
and in sections. 11.2.2 and 11.4.2, O� is not responsible for absorption of

Figure 11.10. Electronic distribution of O� substitutional impurity ion in BaF2, showing

pz-like hole, producing a prolate quadrupole moment.
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the luminescence. Experimental radiation damage studies [Woody et al.
(1989)] show a broad optical absorption band centered at 2.18 eV, probably
due to a variety of point defects, undoubtedly including the F center, whose
absorption energy is accurately known to be 2.03 eV [Cavenett et al. (1967)].
Thus it is clear that the F center is also not responsible for luminescent
absorption.

While our calculations for the F center optical absorption in BaF2 could
be included in this section, we defer it to section 11.8, where we emphasize the
spatial diffuseness of its excited state.

11.6 Spin densities

The hyperfine interactions of a defect electron’s magnetic moment with the
magnetic moments of nuclei in a solid provide a particularly sensitive test
of the electron’s wave function throughout a localized region. More
correctly, what is involved is a many-electron molecular cluster containing
the defect. If it has an unpaired electron, as in the previous section (O� in
BaF2), then the isotropic part of the hyperfine interaction is proportional
to the electronic spin density at the nuclear position, represented by

h�j
X
j

�ð~RR�~rrjÞ~SSjj�i ð11:5Þ

where j�i is the many-electron wave function, rj is the position vector of
electron j, ~SSj is the electron’s spin, and ~RR is the nuclear position. The
subject of spin resonance is discussed by Seidel and Wolf (1968) and by
Stoneham (1975). For nuclei that are inequivalent with respect to the elec-
tronic wave function, the spin resonance can be resolved by a combination
of nuclear and electron spin resonance effects: ENDOR, standing for
electron-nuclear double resonance [Feher (1959), Seidel and Wolf (1968)].
We now discuss three related defects for which spin densities have been
computed, for one of which experimental results are also available.

11.6.1 F center in NaF

We have determined the F-center ground state in NaF, using a second-
neighbor embedded cluster [Vail and Yang (1993)]. The spin densities at
the six equivalent nearest-neighbor Naþ ions and twelve equivalent
second-neighbor F� ions are converted to MHz units for the isotropic
hyperfine constant. These can be compared with the experimental values of
Seidel and Wolf (1968). The results for Naþ are 80 :107 and for F� 32 :97
(computed :experimental), all in units of MHz. The 25% discrepancy
between computation and experiment for nearest neighbors may seem
large, unless one realizes the sensitivity of the result to the detailed shape
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of the electronic spin density and to the positions of the nuclei in the locally
deformed crystal. The factor of three discrepancy for second neighbors
suggests that the computations represent an F center that is significantly
more localized than the experimentally observed one.

11.6.2 F
þ
2 center in NaF

The Fþ
2 center in NaF has three inequivalent sets of nearest-neighbor Naþ

ions, as can be seen from figure 11.6. Their coordinates are represented, in
units of nearest-neighbor spacing, by (0.5, �0.5, 0), (1.5, 0.5, 0) and (0.5,
0.5, 1.0) in the absence of local strain. Our calculated results [Vail and
Yang (1993)] show these coordinates to be modified by the defect to (0.55,
�0.55, 0), (1.55, 0.49, 0) and (0.49, 0.49, 1.05). This represents the expansion
of the surrounding crystal by the Coulomb forces that act on the Naþ ions,
arising from the net positive charge of the defect. The isotropic hyperfine
constants for these sets of Naþ ions are, respectively, 189MHz, 12MHz
and 31MHz. This result indicates that the Fþ

2 center is most strongly loca-
lized about its center of symmetry rather than about the centers of its two
F� vacancies. This qualitative result is borne out by the experimental spin
resonance results of Hofmann et al. (1985), although they were unable to
resolve the individual components. Thus no quantitative comparison with
experiment is available. Our calculated results were based on an embedded
quantum cluster containing the ten nearest-neighbor Naþ ions of the Fþ

2

center.

11.6.3 ðFþ
2 Þ� center in NaF

This four-site point defect complex has been introduced in section 11.3. In
figures 11.8 and 11.9 we presented our two best candidates for its stable
ground-state configuration. The computed energies for those two con-
figurations, table 11.2, are too close to choose between them. If the spin
densities could be determined experimentally, it might be possible to
choose between them on the basis of symmetry and if our modelling
were accurate enough, on the basis of quantitative comparison with
experiment. Our calculated spin densities are shown in table 11.3 [Vail
et al. (1998b)]. As a result of reflection symmetry in the plane of configura-
tion no. 6, figure 11.8, two of its spin densities are degenerate, unlike
configuration 24, which has no symmetry. Unfortunately, it is unlikely
that the ENDOR results could give sufficient accuracy to allow us to
distinguish between two such configurations, and it is also unlikely that
our modelling is accurate enough to be reliable for the distinctions that
appear in table 11.3. This modelling is based on the embedded quantum
cluster of six nearest neighbors of the F� vacancy that contains the
excess electron.
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11.7 Local band-edge modification

Point defects can locally alter the chemical nature of the valence and/or
conduction band edges in insulators. In other words, excitation from the
valence band may come predominantly from ions of one chemical species
in the perfect crystal, but from another species in excitations that involve
the defect. Similarly, excitations to the conduction band may go pre-
dominantly to ions of one species in the perfect crystal, but to another
species when the defect is involved. When the defects come to have large
concentrations, the optical and other properties of the material may be
fundamentally changed. Such behavior is apparently crucial to the high-
temperature superconducting property of some cuprate materials [Müller
and Bednorz (1987) and Chu (1987)].

In this section we discuss both possibilities: in section 11.7.1 the local
modification of the top of the valence band in Li-doped NiO, and in
section 11.7.2 the spin-splitting of the bottom of the valence band in BaF2

into barium and fluoride sub-bands by O� impurity.

11.7.1 Valence band edge in NiO :Li

In NiO, the top of the valence band is known experimentally to be dominated
by nickel 3d orbitals [Eastman and Freeouf (1975)]. When lithium impurity is
introduced substitutionally in increasing concentration, experimental study
[Kuiper et al. (1989)] shows that the hole associated with Liþ resides
primarily in oxygen rather than in nickel. We have found indications of
these characteristics by using small embedded quantum clusters [Meng
et al. (1990b)]. First, from an Ni2þ-centered nearest-neighbor cluster in a
NiO crystal (rocksalt structure, divalent ions) we observed some heavy

Table 11.3. Spin densities of the six nearest neighbors of the ðFþ
2 Þ� center

in NaF :Mg in the two lowest-energy configurations, nos. 6

and 24. Units: �h=ð2a30Þ. Atomic sites specified relative to the

F-center position.

Configuration no. 6 Configuration no. 24

Atomic site Spin density Atomic site Spin density

ð1; 0; 0Þ 0.0914 ð1; 0; 0Þ 0.0942

ð�1; 0; 0Þ 0.1029 ð�1; 0; 0Þ 0.1051

ð0; 1; 0Þ 0.0874 ð0; 1; 0Þ 0.0945

ð0;�1; 0Þ 0.1090 ð0;�1; 0Þ 0.1021

ð0; 0; 1Þ 0.0930 ð0; 0; 1Þ 0.0958

ð0; 0;�1Þ 0.0930 ð0; 0;�1Þ 0.0957

Local band-edge modification 183



admixture of Ni2þ 3d orbitals with O2� 2p orbitals at the top of the valence
band, qualitatively in agreement with Eastman and Freeouf (1975). Second,
we considered a similar nickel-centered cluster with a lithium impurity added
at a second-neighbor position. This cluster will be discussed further as to
detailed electronic distribution in section 11.8.2. The point to be noted
here, however, is that the role of the Ni2þ 3d orbitals was now completely
suppressed at the top of the valence band, leaving pure oxygen 2p character.
While this is a local effect in our modelling, which only applies to a highly
dilute (extremely low concentration) lithium content, it is reasonable to
expect it to show up as a bulk property at the concentrations (1 :20 to 1 :2)
studied by Kuiper et al. (1989).

11.7.2 Conduction band edge in BaF2 :O
�

The optical excitation process for substitutional oxygen in charge state (�1),
O� in BaF2 has been discussed in section 11.5.3, and the role of O� in
radiation damage of BaF2 has been discussed there and in sections 11.2.2
and 11.4.2. The second-neighbor oxygen-centered embedded quantum
cluster, containing four Ba2þ pseudopotential ions and six all-electron F�

ions has been analysed in detail, computationally [Vail et al. (1998a)]. We
have already mentioned some features, such as the quadrupole strain and
spin polarization effects. These led us to consider two excitations, both
from 2px;y-like levels, in spin-up and spin-down manifolds respectively.
The triplet excited state, dipole forbidden, must be projected out of each of

Figure 11.11. Optical excitation process for O� substitutional impurity ion in BaF2,

showing spin polarization and local chemical differentiation by spin of the bottom of

the conduction band.
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these, after correlation correction. The results show that the spin-down
excitation, in the manifold containing the hole (see figure 11.11), has a
Ba2þ 6s-like excited state (excitation energy 9.74 eV). The spin-up excitation,
by contrast, has fluoride F� 3d-like character in its final state (excitation
energy 8.95 eV). We therefore conclude that O� substitutional impurity in
BaF2 has the effect of splitting the bottom of the conduction band, at least
locally, into spin-polarized, chemically distinct sub-band edges.

11.8 Electronic localization

In section 11.3 we introduced the ðFþ
2 Þ� four-site defect in NaF:Mg, and

returned to it in section 11.6.3. In section 11.3 we presented the qualitative
computational result, in agreement with experimental spin resonance
measurements [Hofmann et al. (1985)], that the defect was unsymmetrical
with respect to the two nearest anion vacancies (see figures 11.8 and 11.9)
[Vail et al. (1998b)]. This has the effect of reducing the otherwise symmetrical
Fþ
2 center, with its electron shared equally by the two vacancies, figure 11.5,

to a perturbed F center, with the excess electron localized in one vacancy
only. In this case then, electronic localization is associated with symmetry
breaking in the atomistic configuration.

We remind the reader that in section 11.6.2, we deduced from spin
density calculations the result, also determined experimentally [Hofmann
et al. (1985)], that the Fþ

2 center in NaF, while symmetrical (figure 11.6), is
strongly localized about the center of symmetry, rather than spread out
into two lobes localized near the vacancy centers. This then represents
another kind of localization from that which occurs with the ðFþ

2 Þ� center.
In section 11.7.1, we introduced the subject of lithium substitutional

impurity in NiO, discussing its effect on the valence band edge of the
crystal. Other calculations on this system [Meng et al. (1990b)] cast further
light on the electronic configuration associated with lithium in this case.
First, since lithium is to substitute for Ni2þ with no charge-compensating
defect, it must go into NiO with two electrons missing. In charge state
(þ2), Li2þ has one 1s-like electron. We have found, in our calculations,
that Li2þ in NiO is unstable with respect to electron capture from its O2�

neighbors, leaving it in the 1s2 charge state Liþ, associated with an
oxygen-like hole. The lithium ion’s tendency to form the filled 1s2 shell Liþ

configuration overwhelms the tendency of the crystal’s Madelung potential
to hold it in the 1s configuration Li2þ. We have further considered two
possibilities for this oxygen-like hole: Is it shared equally among the Liþ

ion’s six nearest-neighbor oxygen ions, or is it trapped by a single oxygen
ion, which would then be in charge state (�1), as O�? The answer is the
latter: the lithium impurity actually exists as a dipolar defect consisting of
an Liþ ion substituting for an Ni2þ ion, and a nearest neighbor positively
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charged defect consisting of an O2� binding a hole, amounting to an O� ion.
In all these calculations, relaxation of the surrounding crystal to equilibrium
with the particular defect was included.

The issue addressed here is electronic localization, actually hole localiza-
tion on a single oxygen ion rather than the more diffuse sharing of it among
more oxygen neighbors of the impurity lithium. The stabilization of the
ðLiþÞ � ðO�Þ defect dipole of C4v symmetry relative to the Oh symmetrical
configuration is calculated to be 3.1 eV. The system also illustrates the
charge-state stabilization of lithium as Liþ in NiO, and as such might have
been discussed in section 11.4.

In section 11.2.2 we discussed how the F center in BaF2 is related to
oxygen impurity through the radiation damage process of equations (11.1)
and (11.3). Its optical excitation energy is known experimentally to be
2.03 eV [Cavenett et al. (1967)]. We have studied this process, using the
same kind of embedded cluster as for the O� impurity, in this case
Fc � ðBa2þÞ4 � ðF�Þ6 [Vail et al. (2002)]. The computed results indicate an
excitation energy of 3.33 eV, comparing badly with the experimental value.
We are therefore led to suspect that the true excited state of this F center,
although inevitably bound to the vacancy, is more spatially diffuse than
our quantum cluster, with the excess electron overlapping far more ions.
With the ICECAP modelling method, ions outside the quantum cluster are
represented by the classical shell model. Thus, while they have appropriate
charges and positions, they lack quantum-mechanical features, namely
spatial extent, exchange and correlation. Furthermore, it is known that
electrons in diffuse quantum states interact quantum-mechanically with the
vibrations of the crystal to an extent that, for strongly ionic materials,
significantly affects their properties, as discussed in Chapter 6. We have
therefore investigated the possibility of a diffuse excited state for the F
center in BaF2. It has been known experimentally for some time that the
F-center excited states in KI [Mollenauer and Baldacchini (1972)] and in
KBr [Baldacchini and Mollenauer (1973)] are diffuse, as documented by
ENDOR analysis (see section 11.6). Indeed, it is suspected that many F
centers have diffuse excited states.

We have found that, with static shell-model embedding, a diffuse excited
state gives an estimate of the excitation energy of 2.56 eV, which is much
lower, and closer to experiment, than found from localization within the
cluster. We have therefore systematically corrected the ICECAP calculation,
replacing the excited state’s interaction with the shell model crystal by a
polaronic description [Fröhlich (1963)]. The periodic potential of the
crystal is replaced by an effective band mass, and the interaction of the elec-
tron with the vacancy is replaced by a point charge and an effective dielectric
constant [Fröhlich (1963)]. The interaction with phonons is represented by a
polaronic factor [see equation (6.73)] which, due to the relatively strong
electron–phonon coupling in BaF2, must be evaluated by Feynman’s
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method [Feynman (1955)]. The result of all this is an estimated excitation
energy of 2.04 eV, in almost exact agreement with experiment. While such
close agreement must be in part fortuitous, given the many limitations of
the model applied in these calculations, the fact that the polaronic treatment
is of the correct order of magnitude, and in the right direction, is encouraging.

11.9 Quantum diffusion

The classical description of the diffusion process has been discussed in
Chapter 10, and in section 11.2.2 we showed how this process can be analysed
in the static-crystal approximation based entirely on embedded quantum
clusters. While this picture of an atom, described classically or quantum-
mechanically, hopping from site to site within the crystal is undoubtedly
valid, given the wealth of experimental data with which it conforms,
another view of mass transport in a crystal needs to be considered also.
The alternative view is based on the quantum-mechanical Bloch states of a
particle in the periodic potential of the crystal. Bloch states are not associated
with single sites, but rather are extended throughout the crystal. The semi-
classical theory of conduction is based on wave packets constructed from
Bloch states [see Ashcroft and Mermin (1976), Chapter 13].

In descriptive terms, the site-to-site hopping mechanism needs to be
activated by vibrational energy from surrounding atoms, and is also
facilitated by the way that such vibrations open up gaps in the periodic
potential. Thus it is favored at higher temperatures. The Bloch-like motion
relies on the periodic potential not being too much disrupted by crystal vibra-
tions, or by phonon scattering. It is therefore favored at lower temperatures.
Quantum-mechanical behavior of this latter type is favored for particles
whose masses are small compared with those of the crystal’s ions: electrons,
obviously, and decreasingly, muons and muonium, protons and hydrogen,
helium and lithium.

Considerable work has been done to develop a unified theoretical
treatment of diffusion that spans both mechanisms through a broad
enough temperature range. Work up to 1995 is summarized by McMullen
et al. (1995). The following results in this section are based on the theoretical
framework established by Flynn and Stoneham (1970), Kagan and Klinger
(1974) and McMullen and Bergersen (1978). Two physical parameters are
essential: the intersite transfer matrix element tð0Þ [see for example Ashcroft
and Mermin (1976), Chapter 10] and the particle–phonon coupling constant
gð0Þ. If these are evaluated for a static crystal, then the effects on them of
crystal vibration, referred to as phonon renormalization, need to be taken
into account subsequently.

Very well characterized experimental results for diffusion of muonium
(Mu) as a function of temperature have been published for KCl [Kiefl et al.
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(1989)] and for NaCl [Kadono et al. (1990)]. Muonium is a hydrogenic atom
consisting of a nucleus that is a positive muon �þ binding one electron. The
small mass of �þ compared with that of the proton in hydrogen, �0.1,
renders Mu an excellent test of the theory, and provides a striking illustration
of the transition from the coherent (Bloch-like) to incoherent (site-to-site)
diffusion mechanisms with rising temperature.

Based on embedded quantum cluster calculations for interstitial Mu in
NaF [McMullen et al. (1995)] we have estimated the parameters tð0Þ and gð0Þ.
These values have then been used to compute the Mu hop rate as a function
of temperature. The intrinsic similarity between KCl and NaF, and the
observed experimental similarity for this process between KCl and NaCl,
encourage us to believe that muonium diffusion will be qualitatively
similar in all three crystals. The calculated results for NaF are plotted
along with the experimental results for KCl in figure 11.12. While the
temperatures for minima of the two data sets are comparable, the hop-rate
magnitudes as computed are too low by a factor �10�8. This teaches a
powerful lesson, or two. First, to the extent that the discrepancy is due to
neglect of phonon renormalization, the latter effect must be very large, and
therefore cannot be included as a perturbation, contrary to some suggestions
in the literature [see for example Kagan and Prokofev (1990)]. We believe

Figure 11.12. Hop rates 1=�s for interstitial muonium diffusion as a function of tempera-

ture: calculated for NaF; experimental data points for KCl [see Kiefl et al. (1989)], with a

parametric fit of the theory.
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that the discrepancy arises largely from the use of tð0Þ, the unrenormalized
tunnelling matrix element, which is underestimated by a factor �300,
compared with what is required for a fit of theory to experiment near the
curve’s minimum, as shown in figure 11.12. The limitations of our embedded
cluster method do not seem to admit any discrepancy of this magnitude,
considering the method’s wide-ranging success in comparisons with other
experimental properties, as reported in the rest of this chapter. Another
lesson, therefore, is that if phonon renormalization turns out to be as impor-
tant as our results suggest, namely zeroth order, then the general formulation
should not be carried too far without it. The present results emphasize the
importance of quantitative modelling of real materials to provide guidance
in the development of theoretical formalism. Furthermore, the deviations
at very low temperature between experimental data and a parametric fit of
the theory (figure 11.12) suggest a further fundamental weakness of the
theory.

11.10 Effective force constants for local modes

We have discussed local-mode vibrations in a simple, one-dimensional
example in Chapter 8. It is possible to estimate the effective force constant
and local phonon mode frequency from some of our defect calculations.

In section 11.5.2 we introduced the Cuþ substitutional impurity in NaF.
By varying the size of the nearest-neighbor embedded quantum cluster,
Meng et al. (1988) deduced the force constant K and frequency � of this
‘breathing’ mode to be 10.0 eV a�2

0 and (35.2/h)meV. The latter result
agrees quite well with the experimental value (24.8/h)meV [Payne et al.
(1984)]. In the above units, a0 is the Bohr radius and h is Planck’s constant.
The force constant K is found by fitting a parabola to the curve of energy E
versus displacement x for nearest-neighbor F� ions,

E ¼ 1
2Kx

2; or K ¼ 2E

x2
; ð11:6Þ

and the frequency � is given by the harmonic oscillator expression,

� ¼ !

2�
¼ 1

2�
ðK=MÞ1=2; ð11:7Þ

where M is the mass of all six fluoride ions.
We have reported the results of similar calculations for Cu2þ and Ni2þ

substitutional impurities in MgO [Meng et al. (1990a)], a system first
discussed in section 11.4.1. The effective force constants for metal–oxygen
interaction are respectively, K ¼ 31:3 eV a�2

0 for Cu2þ and 35.3 eV a�2
0 for

Ni2þ. These values lead to local phonon mode energy predictions of
69.8meV for Cu2þ and 71.4meV for Ni2þ.
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11.11 Summary

We have presented in some detail a selection of properties of point defects in
ionic crystals. For each defect discussed, computations have been reported,
based on quantum-molecular clusters embedded with some physical con-
sistency in an infinite shell-model crystal. In a good smattering of cases,
comparison with experimental results has been possible. In all calculations,
a common physical model has been used, applying a single computer
program bearing the acronym ICECAP [Harding et al. (1985)]. This fact
enables us to assess the reliability of the model and method across a consid-
erable range of materials, defect types and defect properties. We believe that
this gives the reader a good introduction to the science of defects, even
though the topics covered necessarily represent only a small fraction of the
subject. We now review these topics to indicate some of the relationships
among them.

We establish four categories: quantitative defect properties for which
comparable experimental data are available, and similar properties for
which they are not, leaving us with computationally based predictions; and
qualitative defect properties that are correspondingly experimentally
known or predictive. We begin by summarizing quantitative results.

In section 11.2.1, activation energies for vacancy and interstitial diffu-
sion of Cuþ and interstitial diffusion for Agþ, all in KCl, are computed,
table 11.1. Good quantitative agreement is obtained with experiment, for
the activation energies and their ordering. Vacancy activation energies are
quantitatively predicted for Agþ in four other alkali halides, in two of
which the qualitative feature of a non-collinear mechanism, figure 11.4, is
predicted. In table 11.1, the calculations are all based on shell-model
representation of the impurity, derived from subsidiary embedded
quantum cluster calculations. The diffusing ion is a noble metal impurity
cation in all cases. In section 11.2.2, by contrast, vacancy diffusion of the
host anion F� in BaF2 is analysed with full embedded quantum cluster
modelling rather than by the shell model exclusively. The context is that of
defect complex dissociation, namely for the dipolar O2�–fluoride vacancy
complex. Here the resultant activation energy of 0.93 eV is predictive, with
no experimental value available.

Three kinds of optical excitation process are discussed in section 11.5, all
in quantitative terms. One, in section 11.5.1, is an intrinsic excitation inMgO,
the Frenkel exciton involving the O2� anion. Excellent agreement is obtained
with experiment for both singlet and triplet excitations. Another, in section
1.5.3, is the O� substitutional impurity ion in BaF2, whose singlet line is
split by spin polarization. This result is predictive. Also predictive are the
calculated excitations of substitutional impurity S2� and Se2� anions in
MgO. Third, in section 11.5.2, the calculated excitation of the substitutional
impurity Cuþ cation in NaF agrees well with experiment, as does its crystal
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field splitting. The optical absorption of the F center in BaF2 is discussed in
section 11.8, where good quantitative agreement with experiment is obtained
when a polaronic correction is introduced into the calculations to account for
the diffuseness of the excited state.

Quantitative spin densities calculated for three related F-type centers in
NaF are presented in section 11.6. In section 11.6.1, fair agreement is
obtained between calculated and experimental spin density for nearest
neighbors of the F center, an intrinsic defect. Experimental values are not
available for the Fþ

2 center, another intrinsic defect, but the quantitative
calculated values of section 11.6.2 agree with a qualitative experimental
feature mentioned later, namely electronic localization. For the ðFþ

2 Þ�
center, a four-site impurity-related defect, basically a perturbed F center,
quantitative spin densities for inequivalent nearest neighbors are calculated
in section 11.6.3. Experimental values are unavailable and are likely to
remain so. Furthermore, the calculations are so much more difficult than
and different from the others mentioned here that they cannot be assumed
to be reliable. They do illustrate, however, how different atomistic configura-
tions can be distinguished through different spin density patterns (table 11.3).

Local phonon mode frequencies have been calculated for three substi-
tutional impurity cations. For Cuþ in NaF, fair quantitative agreement
with experiment has been obtained. For Cu2þ and Ni2þ in MgO, experimen-
tal values are not available, so the calculated values are predictive. For Cuþ

in NaF, the local mode energy is 35.2meV (calculated) and 24.8meV (experi-
mental), while for Cu2þ and Ni2þ in MgO the calculated values are 69.8meV
and 71.4meV respectively.

We now turn to qualitative results, which can be just as revealing as
quantitative results are about the nature of the defect solid and about the
computational model’s reliability.

The stability of a defect complex has been exemplified by a study of the
ðFþ

2 Þ� center in NaF:Mg in section 11.3. Quantitative analysis of a large
number of configurations led to two qualitative conclusions. First, the
symmetric configuration, figure 11.7, is not energetically favored. This con-
clusion conforms with experiment. Second, two particular configurations,
quite close in energy, figures 11.8 and 11.9, have significantly lower energies
than other configurations. One of these is planar, invariant under a single
symmetry operation; the other is non-coplanar, with no symmetry.

Charge-state stability of substitutional impurity ions has been studied in
two systems. In section 11.4.1, we determined that nickel in MgO is stable in
charge state (þ2) as Ni2þ, compared with an equal mixture of Ni3þ and Niþ.
This qualitative result conforms with the experimental fact that neither Ni3þ

or Niþ are found free-standing in MgO. In fact, our calculations show that
Ni3þ transforms to Ni2þ with an associated hole in neighboring oxygen
ions, and Niþ transforms to Ni2þ with an excess electron associated with
neighboring magnesium ions. The disproportionation energy required to
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transfer an electron from one Ni2þ ion to another, creating the polarization
fields in the crystal associated with Niþ and Ni3þ, is estimated to be 10.1 eV.
In section 11.4.2, oxygen in BaF2 associated with a vacancy is found to be
stable in charge state (�1) as O�, associated with the one-electron F
center. Again, to transfer the F-center electron to oxygen, making it the
filled shell ion O2�, the energy required is calculated to be 1.4 eV. While
the first of these examples involves cations (nickel) and the second involves
anions (oxygen), in both cases the stable charge states are uncharged point
defects, Ni2þ in MgO and O� and F center in BaF2.

Local modification of electronic band edges have been described in two
systems in section 11.7. The effect is described as chemical, since the atomic
species that dominates the band-edge states is affected by the point defect. In
section 11.7.1 we showed how the impurity lithium anion, substitutional in
NiO, suppresses the nickel 3d character of the valence-band edge, exposing
pure oxygen 2p character. This conforms with experimental results at signif-
icant concentration. The substitutional lithium must have charge (þ2).
However it is found to exist as filled-shell Liþ with an associated hole in
neighboring oxygen ions. In section 11.7.2 the substitutional impurity
cation O� in BaF2 is again discussed. The ion’s unpaired electron creates a
symmetry-breaking electric quadrupole moment and a local screening quad-
rupole strain. The spin polarization, particularly, splits the bottom of the
conduction band into barium and fluoride parts, the splitting showing up
energetically in the optical absorption process. Thus in section 11.7, a
cation lithium impurity in NiO modifies the top of the host crystal’s
valence band, as found experimentally, and an anion oxygen impurity in
BaF2 locally modifies the bottom of the conduction band. For the latter
effect, experimental results are unavailable.

Electronic localization is discussed for four defects, in section 11.8.
Lithium substitutional impurity in NiO consists of an Liþ cation plus a
hole. In fact, the hold localization is on a single oxygen ion, and is energeti-
cally favored over distribution on six nearest neighbors by 3.1 eV. This
results in an impurity dipole complex consisting of the negative defect Liþ

and the positive defect O� in NiO. We might therefore characterize this
defect as another example of charge-state stability and also of defect-
complex stability, both of which have already been discussed for other
systems. In the Fþ

2 center in NaF, the excess electron is found to be localized
about the defect’s center of symmetry, while in the ðFþ

2 Þ� center it is forced
into one vacancy by symmetry breaking. For both of these F-type centers,
experimental results support the qualitative conclusions derived from com-
putational modelling. The spatial diffuseness of the F-center excited state
in BaF2 predicted by our calculations leads to quantitative agreement with
experimental optical absorption.

Quantum diffusion in alkali halides, as described in section 11.9, has
been well characterized experimentally. Application of the standard theory
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without phonon renormalization is made possible by physically reliable
embedded quantum cluster calculations. In this case, spectacular disagree-
ment with experiment teaches us something useful, namely that the renorma-
lization effects must be large, ruling out perturbative treatment. Qualitative
agreement between experiment and computation is obtained for the cross-
over temperature between coherent and incoherent diffusion mechanisms.

The network of results summarized in this section involves different
materials, defect types, and processes; some qualitative results, some
quantitative; some predictive results, some supported by experiment. As
such it supports the view that the methodology (ICECAP) based on shell-
model embedding for quantum molecular clusters can be widely reliable
for point defects in insulators when properly applied.

Appendix to Chapter 11: the ICECAP method

The ICECAP method referred to in section 11.1.2 has been reviewed by Vail
et al. (1991). We give a brief outline in this appendix.

In order to model a point defect in an ionic crystal, we must calculate the
total energy of the crystal containing the defect, in a particular physical state.
We represent the point defect and its immediate surroundings in the crystal
as a molecular cluster, treated quantum mechanically. The rest of the crystal
is represented by the shell model (section 9.2). We begin with an infinite,
perfect shell-model crystal. We define a cluster region in this crystal: a set
of shell-model ions that will be replaced by the defect quantum molecular
cluster. In general, the defect quantum cluster will have a charge distribution
differing from that of the perfect-crystal shell-model ions in the cluster
region. This cluster charge distribution must be in equilibrium with shell-
model ion displacements and polarizations in the embedding classical crystal.

In order to accomplish this, we first replace the cluster region with a
classical representation of the defect, in terms of shell-model ions and
additional point charges (when needed), at specific sites. Consider, as an
example, the O� ion in BaF2, figure 11.10. The ion has a prolate quadrupole
moment, as discussed in section 11.5.3. Thus, in addition to charge (�1) at
the oxygen ion site, we would add two charges, each of charge q > 0 at
positions �u on the z axis, and a further charge (�2q) at the ionic site to
maintain total charge (�1). These quadrupole simulators induce a polariza-
tion field in the surrounding shell-model crystal when the total energy of
the classical defected crystal is minimized with respect to all core and shell
positions. The ICECAP program contains a sub-program [HADES: see
Norgett (1974)] that performs this operation.

With initial values of point charge simulators (q in the BaF2 :O
�

example) and their positions (u in the example) having determined the
embedding polarization field, we now replace the cluster region with a
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quantum-molecular cluster. The quantum cluster, in general, consists of
nuclei, electrons and atomic pseudopotentials. In the example, suppose we
take a second-neighbor cluster consisting of the O� ion, its four nearest-
neighbor Ba2þ ions, and its six second-neighbor F� ions. We must specify
the number of electrons. For all-electron treatment of this cluster, from the
periodic table of the elements we conclude that we need 9 electrons for O�,
54 electrons for each Ba2þ ion, and 10 electrons for each F� ions, for a
total of 285 electrons. If this leads to calculations that are prohibitively
large, as in our case, then we can replace the Ba2þ ions by pseudopotentials.
A pseudopotential is a relatively simple effective potential that approximates
the effect of the ion on electrons outside the ion. Many forms of pseudo-
potential have been derived and tabulated. The ICECAP program accepts
three types: KKLP [Kunz and Klein (1978)], BHS [Bachelet et al. (1982)],
and TOP [Topiol et al. (1978)]. In this case, the quantum cluster consists
of four Ba2þ pseudopotentials, one oxygen nucleus (charge þ8), six fluorine
nuclei (charges þ9), and 69 electrons.

The total energy and many-body wave function of the electrons in the
presence of the fixed nuclei, pseudopotentials, and the shell-model point
charges of the embedding crystal, are now determined by a Hartree–Fock
program [Kunz (1982)] incorporated in ICECAP. The Hartree–Fock
approximation and its application are discussed in chapter 12, especially in
sections 12.2 and 12.3. This requires us to specify a basis set within which
the Fock equation is solved exactly. The solution is, of course, by no
means exact, because the chosen basis set is finite, rather than complete in
the mathematical sense. Many useful tabulations of atomic orbital basis
sets exist. One that we have found useful for point-defect calculations is by
Huzinaga (1984). If one uses relatively small basis sets, as we do, it will gen-
erally be necessary to optimize the basis functions by minimizing the total
energy of the defected crystal with respect to exponential coefficients and
contraction coefficients: see equation (12.110) and discussion following it.

The total energy of the defected crystal, from the ICECAP calculation
described above, is the sum of three terms. These are: (1) the total energy
of the polarized embedding shell-model crystal, relative to the energy of
the unpolarized (perfect) embedding; (2) the Coulomb interaction energy
among nuclei and pseudopotentials of the quantum cluster, and between
them and the embedding shell-model ions; and (3) the Hartree–Fock
energy of the cluster electrons, including their interactions with nuclei and
pseudopotentials of the cluster and with the shell-model embedding ions.
A fourth contribution to the total energy can be added: correlation (see
section 12.6).

For a given state of the defected crystal, two more computational
processes need to be carried out. One is to achieve consistency between
point-charge simulators and the Hartree–Fock solution. This is achieved
by minimizing the total energy, as defined in the previous paragraph, with
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respect to variation of charges and positions of the simulators, denoted q and
u respectively in the example of BaF2 :O

�. The other process is to minimize
the total energy with respect to nuclear and pseudopotential positions within
the quantum cluster. The various optimizations mentioned (basis set, point-
charge simulators, and molecular cluster configuration) need to be carried
through to mutual consistency (‘global’ total energy minimization) by
iteration.

Optical excitations are often thought of in terms of the Condon
approximation, in which ionic positions do not relax to equilibrium with
the electronic distribution of the excited state during the transition. The
ICECAP program enables us to take this approach, by keeping nuclei and
pseudopotentials fixed in the positions they have in the ground state, and
also maintaining the polarization of the embedding crystal in the ground
state configuration.

The embedding problem is discussed in section 12.5. Basically, it
consists of ensuring that the cluster electrons experience, in some way, the
quantum-mechanical effects of nearby ions in the embedding region, even
though these ions are in fact classical shell-model ions, with no actual
quantum-mechanical properties. The preferred method of embedding is to
have the outer ions of the molecular cluster represented exclusively by
pseudopotentials.
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Chapter 12

Theoretical foundations of molecular

cluster computations

12.1 Introduction

In the previous chapter we described a computational model for point defects
in insulators. In it, the local region containing the defect is to be analysed
quantum-mechanically, and the rest of the crystal is to be described in
terms of a classical atomistic model. In the applications described in
Chapter 11, all atomic positions and configurations were assumed to be
static. The quantum-mechanical part of the model consists of the electrons
associated with a small molecular cluster containing the point defect,
including the interaction of the electrons with nuclei in the cluster and with
the classical atoms of the embedding region. This chapter is devoted to the
theoretical background of such a quantum-mechanical calculation.

In sections 12.2 to 12.6 we describe a particular approach to embedded
molecular cluster calculation, based on the Hartree–Fock approximation
(sections 12.2 and 12.3), including correlation correction (section 12.6). In
a crystal, quantum-mechanical aspects of cluster-embedding interaction
must be considered (sections 12.4 and 12.5). In section 12.7 some general
considerations are presented regarding the N-body problem that may in
future lead to improved computational methods, namely density functional
methods. Currently, and in fact since the 1950s, a single-particle density
functional method has provided a useful alternative to the Hartree–Fock
based approach, as discussed in section 12.7.2.

While molecular cluster methods are very important in the theory of
solid materials for the calculation of point-defect and other localized elec-
tronic properties, and indeed for electronic band structure, their significance
is in fact far broader, and fast increasing. With the development of quantum-
mechanical embedding schemes, the method will become increasingly
applicable to semiconductor and metallic materials. Already, molecular
cluster methods are of great value in the analysis of local properties on
surfaces [see for example Sushko et al. (2000)]. Of course, such methods
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originated in the field of quantum chemistry, where the analysis of isolated
molecules is of major importance. But there is another area of science
where these and other methods of theoretical and experimental atomic-
scale physics are important and proliferating. This is the field of molecular
biology. The methods of this chapter apply to local electronic and related
properties of large biomolecules, and to smaller free biomolecules. Beyond
this, however, is the fast-emerging field in which biomolecules, either alone
or combined with inorganic atomistic elements, have properties that allow
radical new device components to be fabricated. As a single example we
cite Bhyrappa et al. (1999), who created a molecular complex with a metallic
ion at its center such that, depending on the complex’s detailed configuration,
differently shaped natural biomolecules would be selected to bind to the
metallic ion. At the American Physical Society March 2000 meeting there
was a series of six focused sessions on the subject of molecular scale elec-
tronics [see APS Bulletin, 2000, 45(1), 20]. The key to the explosive growth
in sub-nanoscale technology now taking place in the physical and life sciences
is the ability to control, by chemical and physical means, the detailed atom-
by-atom configurations of molecular clusters. This is where the material of
this chapter comes in, for complementary computational modelling of
known or postulated clusters.

12.2 Hartree–Fock approximation

12.2.1 The approximation

The Hartree–Fock approximation, and the Fock equation of the next
section, are standard subjects in quantum chemistry and solid state
physics. As such, they are introduced in many books. Some of the best are
Reitz (1955, sections I–III), Slater (1963, especially Chapter 5 and Appen-
dices 4–9), and Szabo and Ostlund (1982, Chapters 2 and 3).

The theoretical description of a solid, in terms of its electrons, nuclei and
crystal structure, is formulated in sections 7.1 and 7.2, and the first paragraph
of section 7.3. We refer the reader to these sections now. We begin from the
last paragraph of section 7.5, in which the nuclei are viewed as classical point
charges in equilibrium with the electrons: equations (7.13) and (7.75). These
equations require that the many-electron wave function  �ðrÞ, with
r ¼ ð~rr1; s1;~rr2; s2; . . . ;~rrN ; sNÞ, should be an eigenstate of the static crystal
hamiltonian Hs, equation (7.77) or equivalently, of the last two terms of
Hs which in this chapter we simply denote H:

H ¼
XN
j¼1

�
� �h2

2m
r2

j �
e2

4�"0

�X
J

ZJ j~rrj � ~RRJ j�1 � 1

2

X
j 0

0j~rrj �~rrj 0 j�1

��
:

ð12:1Þ
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It is common to re-express this in terms of Bohr–Hartree atomic units, where
energy is measured in units of hartree [1Hy ¼ 2Ry ¼ ðme4=�h2Þ ¼ 27:2 eV]
and length is measured in bohr [1 bohr � a0 ¼ ð4�"0�h2Þ=ðme2Þ ¼ 0:529A].
In these units, equation (12.1) reduces to

H ¼
XN
j¼1

�
� 1

2
r2

j �
X
J

ZJ j~rrj � ~RRJ j�1 þ 1

2

X
j 0

0j~rrj �~rrj 0 j�1

�
: ð12:2Þ

In equations (12.1) and (12.2), RJ is the nuclear position, and the double
sum over j and j 0 omits the term j ¼ j 0, indicated by the prime on

P
. This

hamiltonian is appropriate for the electrons in a molecular cluster, but
does not contain the Coulomb interaction energy among the nuclei.

Now consider the many-electron wave function  �ðrÞ, corresponding to
the energy eigenvalue E�:

Hj �i ¼ E�j �i: ð12:3aÞ

Let us first think of Fourier analysing an arbitrary function f ðrÞof one-
particle variables in terms of a complete orthonormal set of single-particle
basis functions f’kðr jÞg, where r j ¼ ð~rrj; sjÞ are single-particle position and
spin coordinates. Then orthonormality is expressed asð

drj ’
�
kðr jÞ’k0 ðr jÞ ¼ �k;k0 ; ð12:3bÞ

where the symbol
Ð
drj forms the inner product of spin orbitals ’k and ’k0 in

both configuration and spin subspaces ~rrj and sj respectively. The Fourier
series for f ðrÞ then becomes

f ðr1; r2; . . . ; rNÞ ¼
X

k1;k2;...;kN

ck1;k2;...;kN’k1ðr1Þ’k2ðr2Þ; . . . ; ’kN ðrNÞ; ð12:4Þ

where in the summation each index kj ranges over the whole infinite
orthonormal set f’kðr jÞg. There are two popular approximations to
the many-electron wavefunction arising from equation (12.4). One is the
Hartree approximation, which begins by taking a single term from the
sum, with the condition that (k1; k2; . . . ; kN) are all different. This satisfies
the Pauli exclusion principle intuitively by having each electron’s coordinates
restricted to a single function, distinct from all the others. Unfortunately, this
renders the electrons distinguishable. The other approximation is the
Hartree–Fock approximation.

The Hartree–Fock approximation arises upon applying the Pauli
principle in its general form to the many-particle function f ðrÞ, equation
(12.4). If f ðrÞ is to be a many-electron wave function  �ðrÞ, then it must be
odd with respect to pairwise interchange of any pair of particles,

Pij �ðrÞ ¼ � �ðrÞ; ð12:5Þ
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for all ði; jÞ with i 6¼ j, where Pij is the operator that interchanges particle
coordinates i and j:

Pij �ðr1; . . . ; r i; . . . ; r j ; . . . ; rNÞ ¼  �ðr1; . . . ; r j ; . . . ; r i; . . . ; rNÞ: ð12:6Þ

In equation (12.4), now consider all those terms for which the sets of indices
ðk1; k2; . . . ; kNÞ are the same, with the kj only permuted amongst themselves.
If any two, say ki and kj, are equal, then the action of Pij, equation (12.6), in
interchanging r i and r j produces no change, and in particular does not
introduce the negative sign of equation (12.5), regardless of the values of
the coefficients ck1;...;kN of these terms. Such coefficients must therefore be
zero, and the only terms in equation (12.4) that may be non-zero are those
for which the indices ðk1; k2; . . . ; kNÞ are all different. Denote such a set of
indices by k without regard for the ordering of k1; k2; . . . ; kN .

Because the sums in equation (12.4) all range over the infinite complete
set f’kðr jÞg, all permutations of ðk1; k2; . . . ; kNÞ occur. Let PN be a particular
permutation of ðk1; k2; . . . ; kNÞ. Then PN consists of a non-unique set of pair-
wise interchanges. Two different sets of pairwise interchanges giving PN

differ by an even number of pairwise interchanges. Thus, for given k, the
non-zero terms in equation (12.4) areX

PN

PNðck1;...;kN’k1 ; . . . ; ’kN Þ: ð12:7Þ

The sets of terms for different sets of indices k in equation (12.4) are linearly
independent. Thus every pairwise interchange applied to equation (12.7)
must give a negative sign. Such a pairwise interchange of coordinates r i
and r j is indistinguishable from the corresponding interchange of indices ki
and kj. Thus, from equation (12.7) and equation (12.5) applied to a particular
set of terms defined by k,

Pij

X
PN

PNðck1;...;kN’k1
; . . . ; ’kN

Þ ¼ �
X
PN

PNðck1;...;kN’k1
; . . . ; ’kN

Þ: ð12:8Þ

Consider two specific permutations ~PPN and Pij
~PPN from the sum in the right-

hand side of equation (12.8). They are:

ð ~PPNck1;...;kN Þð ~PPN’k1
; . . . ; ’kN

Þ þ ðPij
~PPNck1;...;kN ÞðPij

~PPN’k1
; . . . ; ’kN

Þ: ð12:9Þ

Under the operation of Pij as in equation (12.8), the two products
~PPN’k1

; . . . ; ’kN
and ðPij

~PPN’k1
; . . . ; ’kN

Þ interchange, and this interchange
must produce a sign change, because all different specific permutations ~PPN

are linearly independent. It follows from equation (12.9) that

ðPij
~PPNck1;...;kN Þ ¼ �ð ~PPNck1;...;kN Þ: ð12:10Þ

This condition is satisfied in general if and only if

ð ~PPNck1;...;kN Þ / ð�1Þ� ~PPN ð12:11Þ
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where � ~PPN
is the number of pairwise interchanges in ~PPN . While this number is

not unique, ð�1Þ� ~PPN is unique. Thus, apart from normalization, the terms for
a given set of N indices k in equation (12.4) are, from equations (12.7) and
(12.11), X

PN

PNð�1Þ�PN ð’k1
; . . . ; ’kN

Þ: ð12:12Þ

It follows that the most general many-fermion wave function, satisfying
equation (12.5) is, from equations (12.4) and (12.12),

 ðrÞ ¼
X
k

ck
X
PN

PNð�1Þ�PN
Y
k

’k0j
ðr jÞ; ð12:13Þ

where k is a distinct set of N indices ðk01; . . . ; k0NÞ, all different, chosen from
the infinite set of indices ðk1; . . . ; kN ; kNþ1; . . .Þ, ck are arbitrary constants,
subject to normalization,

Q
k ’k0j

ðr jÞ is the product ð’k0
1
; . . . ; ’k0

N
Þ, and PN

is a permutation of ðk01; . . . ; k0NÞ.
Equation (12.13) is commonly written as

 ðrÞ ¼
X
k

ckA
Y
k

’k0j
ðr jÞ; ð12:14Þ

where the antisymmetrizing operator A is defined by equations (12.13) and
(12.14) as

A ¼
X
P

Pð�1Þ�P ; ð12:15Þ

where in equation (12.15) we have suppressed the subscriptN for theN-body
system. While equation (12.14) represents the most general many-fermion
wave function, the most general many-boson wave function (symmetric
under pairwise interchange), has the form

~  ðrÞ ¼
X
k

ckS
Y
k

’k0j
ðr jÞ; ð12:16Þ

where the symmetrizing operator is

S ¼
X
P

P: ð12:17Þ

We can now specify the Hartree–Fock approximation. Using the
language of Hilbert space (single-particle function space in the present
case), each term in equation (12.14), corresponding to a different set k of
N single particle functions, comes from a different N-dimensional manifold
of Hilbert space. If a single term from equation (12.14), i.e. a single N-
dimensional manifold, dominates the wave function  ðrÞ, then we have the
Hartree–Fock approximation:

 ðrÞ � nA
Y
k

’k0j
ðr jÞ ð12:18Þ
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where n is the normalizing factor. Referring to equation (12.15) with equa-
tion (12.18), we see that an alternative form for  ðrÞ is in terms of a determi-
nant, the so-called Slater determinant:

 ðrÞ ¼ n : det

’1ðr1Þ ’2ðr1Þ . . . ’Nðr1Þ
’1ðr2Þ ’2ðr2Þ . . . ’Nðr2Þ

..

.

’1ðrNÞ ’2ðrNÞ . . . ’NðrNÞ

0
BBB@

1
CCCA: ð12:19Þ

In equation (12.19) we have simplified the notation ðk1; k2; . . . ; kNÞ to
ð1; 2; . . . ;NÞ, labelling the N single-particle functions, which we reiterate
are an orthonormal set.

12.2.2 Normalization

We must now learn how to calculate with Hartree–Fock wave functions, or
Slater determinants. First, a general result. Consider a symmetrical N-body
operator OðrÞ such that POðrÞ ¼ OðrÞP. Its matrix element between two
Slater determinants is, from equations (12.18) and (12.15),ð

d�r  
�
1ðrÞOðrÞ 2ðrÞ ¼ n2

ð
d�r

�X
P

Pð�1Þ�p
Y
k

’�
kj
ðr jÞ

�

�OðrÞ
�X

P0
P0ð�1Þ�P0

Y
l

’lj
ðr jÞ

�
; ð12:20Þ

where the sets k and l may differ. In each term in the sum over P, we now
relabel the variables ðr1; r2; . . . ; rNÞ as ðr 01; r 02; . . . ; r 0NÞ where

ðr 01; r 02; . . . ; r 0NÞ ¼ P�1ðr1; r2; . . . ; rNÞ: ð12:21Þ

Now

P�1 : d�r ¼ d�r; unchanged;

P�1 :P
Y
k

’�
kj
ðr jÞ ¼

Y
k

’�
kj
ðr jÞ;

and P�1 applied to OðrÞ leaves OðrÞ unchanged. We thus have, for equation
(12.20),ð
d�r  

�
1ðrÞOðrÞ �

2ðrÞ ¼ n2
X
P

ð
d�r

�Y
k

’�
kj
ðr jÞ

�

�OðrÞ
�X

P0
P�1 :P0 : ð�1Þ�P0 þ �P

Y
l

’lj
ðr jÞ

�
; ð12:22Þ
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since ð�1Þ�P ¼ ð�1Þ�P�1 , and if we let P�1 :P0 ¼ P00, thenX
P0

P�1P0ð�1Þ�P0 þ �P�1 ¼
X
P00

P00ð�1Þ�P00 ¼ A: ð12:23Þ

It follows thatð
d�r  

�
1ðrÞOðrÞ 2ðrÞ ¼ n2

X
P

ð
d�r

�Y
k

’�
kj
ðr jÞ

�
OðrÞ

�
A
Y
l

’lj
ðr jÞ

�

¼ n2 :N!

ð
d�r  

ðHÞ�
1 ðrÞOðrÞ ðHFÞ

2 ðrÞ: ð12:24Þ

since
P

P is N! identical terms, and where Hartree (H) and Hartree–Fock
(HF) wave functions are

 
ðHÞ
1 ðrÞ ¼

Y
k

’kj
ðrÞ; ð12:25Þ

 
ðHFÞ
2 ðrÞ ¼ A

Y
l

’lj ðr jÞ: ð12:26Þ

We use equation (12.24) first for normalization, by considering OðrÞ to
be the identity operator, independent of r, and  1 ¼  2:ð

d�r  
�ðrÞ ðrÞ ¼ 1

¼ n2 :N!

ð
dr2 dr2; . . . ;drNf’�

1ðr1Þ; . . . ; ’�
NðrNÞg

� Af’1ðrÞ1; . . . ; ’NðrNÞg ð12:27Þ

where we have replaced ðk1; . . . ; kNÞ by ð1; . . . ;NÞ. But only the identity
permutation in A, equation (12.15), gives a non-zero result for equation
(12.27), due to orthonormality of the set f’kðr jÞg. It follows that

1 ¼ n2 :N!; ð12:28Þ

whence the normalized N-electron Slater determinant is, from equations
(12.18) and (12.28):

 ðrÞ ¼ ðN!Þ�1=2A
Y
k

’jðr jÞ: ð12:29Þ

12.2.3 Total energy

Next we consider the total energy, as estimated in Hartree–Fock approxi-
mation,

E � h jHj i; ð12:30Þ
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where j i is a Slater determinant, equation (12.29), withH given by equation
(12.2). We note first that H is a symmetrical operator:

PH ¼ HP: ð12:31Þ

Thus we apply equation (12.24), with  1 ¼  2, O ¼ H, and n2N! ¼ 1 [equa-
tion (12.28)]:

E �h jHj i

¼
ð
dr1; . . . ; drNf’�

1ðr1Þ; . . . ; ’�
NðrNÞgH :Af’1ðr1Þ; . . . ; ’NðrNÞg: ð12:32Þ

First consider the single-particle terms H1 in H, equation (12.2):

H1 ¼
X
j

h1ðr jÞ; h1ðr jÞ ¼
�
� 1

2
r2

j �
X
J

ZJ jr j � RJ0 j
�1

�
: ð12:33Þ

Without loss of generality, consider the term j ¼ 1 from equation (12.33) in
equation (12.32). It isð

dr1; . . . ; drNf’�
1ðr1Þ; . . . ; ’�

NðrNÞgh1ðr1ÞAf’1ðr1Þ; . . . ; ’NðrNÞg: ð12:34Þ

Now, again from orthonormality, only the identity permutation in A gives a
non-zero result. With this identity term we have, from equation (12.34),ð

dr1 ’
�
1ðr1Þh1ðr1Þ’1ðr1Þ

ð
dr2 ’

�
2ðr2Þ’2ðr2Þ � � �

ð
drN ’

�
NðrNÞ’NðrNÞ

¼
ð
dr1 ’

�
1h1’1 ¼ h’1jh1j’1i: ð12:35Þ

In equation (12.35) we have introduced Dirac notation for single-particle
functions. From equations (12.33) and (12.35) we have the single-particle
energy E1:

E1 ¼ h jH1j i ¼
XN
j¼1

h’jjh1j’ji: ð12:36Þ

Next consider the two-particle terms H2 in the hamiltonian, equation
(12.2):

H2 ¼
1

2

X
j; j 0

0
h2ðr j ; r j 0 Þ; h2ðr j ; r j 0 Þ ¼ j~rrj �~rrj 0 j�1: ð12:37Þ

Similar to equation (12.34) we now have a term in the energy:ð
dr1; . . . ;drNf’�

1ðr1Þ’�
2ðr2Þ; . . . ; ’�

NðrNÞh2ðr1; r2ÞA’1ðr1Þ’2ðr2Þ; . . . ; ’NðrNÞg:

ð12:38Þ
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Now from the antisymmetrizer A, only two terms give non-zero results. They
are

f’1ðr1Þ’2ðr2Þ � ’1ðr2Þ’2ðr1Þg’3ðr3Þ; . . . ; ’NðrNÞ;

that is, from the two permutations that differ only in the ordering of r1 and
r2; r3 must be in ’3, etc. for orthonormality to give non-zero. We thus have,
for the two-particle energy E2,

E2 ¼h jH2j i

¼ 1

2

X
j; j 0

0
�ð

dr1 dr2 ’
�
j ðr1Þ’�

j 0 ðr2Þh2ðr1; r2Þ

� ½’jðr1Þ’j 0 ðr2Þ � ’jðr2Þ’j 0 ðr1Þ�
�

¼ 1

2

X
j; j 0

0h’j’j 0 jh2ð1� Pjj 0 Þj’j’j 0 i; ð12:39Þ

where we have introduced Dirac-like notation for products of two single-
particle function, and the pairwise interchange operator Pjj 0 from equation
(12.6).

We now collect equations (12.36) and (12.39) to get the total energy:

E ¼ ðE1 þ E2Þ

¼
X
j

�
h’jjh1j’ji þ

1

2

X
j 0

0h’j’j 0 jh2ð1� Pjj 0 Þj’j’j 0 i
�
: ð12:40Þ

12.2.4 Charge density and exchange charge

It is tempting to give a simplified interpretation of equation (12.40). The
single-particle term is the sum of one-electron energies for particles in
states, j’ji, j ¼ 1; 2; . . . ;N. The two-particle term has two parts. The first
is the Coulomb repulsive energy between pairs of electrons (the factor 1

2

eliminating double counting) in states j’ji and j’j 0 i,

h’j’j 0 jh2j’j’j 0 i ¼
ð
dr dr 0 ’�

j ðrÞ’�
j 0 ðr 0Þj~rr�~rr 0j�1’jðrÞ’j 0 ðr 0Þ

¼
ð
dr dr 0

�jðrÞ�j 0 ðr 0Þ
j~rr�~rr 0j ; ð12:41Þ

where

�jðrÞ ¼ j’jðrÞj2 ð12:42Þ
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is the charge density (in the given units) of a particle in state j’ji. The other
two-particle term is called the exchange term. It consists of terms like

�
ð
dr dr 0

’�
j ðrÞ’�

j 0 ðr 0Þ’jðr 0Þ’j 0 ðrÞ
j~rr�~rr 0j : ð12:43Þ

If ’jðrÞ are eigenstates of a component of spin, say the z-component, then we
see that the generalized integral in equation (12.43) gives zero from spin
orthogonality for orbitals ’j and ’j 0 of opposite spin, since h2 is independent
of spin. Only pairs of orbitals ’j and ’j 0 with parallel spins contribute to the
exchange term. In equation (12.40) for the total energy, the two-particle
terms in j ¼ j 0 are omitted, because the classical Coulomb interaction
among particles is evaluated without including the infinite self energy of a
point charge interacting with itself: see also equation (12.37). However,
from equations (12.41)–(12.43), we see that the quantum-mechanical
Coulomb and exchange terms for j ¼ j 0 are not necessarily zero, but they
are equal and opposite. Henceforth we therefore include these terms j ¼ j 0

in the two-particle interaction energy in equation (12.40), knowing that
they cancel.

It is natural to think of the single-particle part of the total energy, E1,
equation (12.36), as the sum of N single-particle energies, with one particle
in each of the orbitals f’jg that make up the Slater determinant, equation
(12.19). This picture can be extended to include the two particle part, E2,
equation (12.39), by considering the particle density, �ð~rr Þ. Its operator
�opð~rr Þ is:

�opð~rr Þ ¼
XN
j¼1

�ð~rr�~rrjÞ: ð12:44Þ

By analogy with the derivation of equation (12.36), which applies to any sum
over identical single-particle operators,

�ð~rr Þ ¼ h j�opj i ¼
XN
j¼1

h’jj�ð~rr�~rrjÞj’ji

¼
XN
j¼1

ð
drjj’jðr jÞj2�ð~rr�~rrjÞ ¼

XN
j¼1

j’jðrÞj2 ¼
XN
j¼1

�jðrÞ: ð12:45Þ

The last equation in (12.45) introduces the density �jðrÞ that was defined in
equation (12.42). Thus from equations (12.40) and (12.41), the Coulomb
contribution to the total energy (including the term j ¼ j 0) is

1

2

X
j; j 0

ð
dr dr 0

�jðrÞ�j 0 ðr 0Þ
j~rr�~rr 0j ¼ 1

2

ð
dr dr 0

�ðrÞ�ðr 0Þ
j~rr�~rr 0j ; ð12:46Þ

Hartree–Fock approximation 205



where we have also used equation (12.45). The exchange contribution, from
equation (12.43), summed over j and j 0, can be written in a similar form, as
follows:

� 1

2

X
j; j 0

ðjj spinsÞ

ð
dr dr 0

’�
j ðrÞ’�

j 0 ðr 0Þ’jðr 0Þ’j 0 ðrÞ
j~rr�~rr 0j

¼ � 1

2

X
j

ð
dr dr 0

�jðrÞ�j;exðr 0; rÞ
j~rr�~rr 0j ; ð12:47Þ

where

�j;exðr 0; rÞ ¼
X
j 0

ðjj spinsÞ

’�
j 0 ðr 0Þ’j 0 ðrÞ’�

j ðrÞ’jðr 0Þ
’�
j ðrÞ’jðrÞ

: ð12:48Þ

In words, the exchange charge density �j;exðr 0; rÞ can be thought of as a
charge density at r 0 due to the Pauli principle, which is seen by an electron
in state ’j; more precisely, by that part of the wave function ’j in the vicinity
of r.

We have presented the exchange contribution in the form of equation
(12.48) because it is sometimes encountered in the literature, and is helpful
in visualizing the exchange effect, as follows. Let us write the two-electron
energy, from equations (12.46) and (12.47) as follows:

1

2

X
j

ð
dr dr 0

�jðrÞf�ðr 0Þ � �j;exðr 0; rÞg
j~rr�~rr 0j : ð12:49Þ

Let us see what total charge is involved in the charge density seen by an
electron in state ’j. It is, from equation (12.49),ð

dr 0f�ðr0Þ � �j;exðr 0; rÞg: ð12:50Þ

Now, from equation (12.45),

ð
dr 0 �ðr 0Þ ¼

XN
j¼1

ð
dr 0 j’jðr 0Þj2 ¼ N; ð12:51Þ

from the normalization of the ’j . From equation (12.48),ð
dr 0 �j;exðr 0; rÞ ¼

ð
dr 0

X
j 0
’�
j 0 ðr 0Þ’jðr 0Þ

’j 0 ðrÞ
’jðrÞ

¼
X
j 0
�j 0j

’j 0 ðrÞ
’jðrÞ

¼ 1: ð12:52Þ
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Thus from equations (12.50)–(12.52) we find the total effective charge for the
interaction of a single elecron with all the others to beð

dr 0f�ðr 0Þ � �j;exðr 0; rÞg ¼ ðN � 1Þ: ð12:53Þ

In our formulation, the Coulomb effect, including self-interaction, is contrib-
uted by all N electrons, while the exchange interaction subtracts a total
charge equal to that of one electron, contributed to by all electrons with
spins parallel to that of the single electron in question. While the Kronecker
delta in equation (12.52) might suggest that exchange simply subtracts off the
single-electron self-energy, the explicit form of �j;exðr 0; rÞ, equation (12.48),
shows that the effective exchange charge distribution is not simply that of
’j, but involves all electrons of a given spin.

12.2.5 The single-particle density functional

We now proceed to an important result, namely that the Hartree–Fock
approximation to the total energy of the system is a unique functional of
the so-called single-particle density. We introduce the single-particle
density matrix �1ðr; r 0Þ as a generalization of equation (12.45):

�1ðr; r 0Þ ¼
XN
j¼1

’�
j ðrÞ’jðr 0Þ: ð12:54Þ

We note that in terms of this notation

�1ðr; rÞ ¼ �ðrÞ: ð12:55Þ
Equation (12.54) can also be expressed in Dirac notation as

�1ðr; r 0Þ ¼
XN
j¼1

hrj j ih jjr 0i; ð12:56Þ

where j j i stands for j’ji, as it appears in equation (12.45). We then arrive at
the concept of the single-particle density operator �1, expressed in matrix
form, from equation (12.56), as

�1 ¼
XN
j¼1

j j ih jj: ð12:57Þ

This is referred to as the Fock–Dirac density. Along with two-body and n-
body density matrices, it will be discussed further in section 12.7. In terms
of �1 we see from equations (12.46), (12.47) and (12.54) that the two-body
part of the total energy is

E2 ¼
1

2

ð
dr dr 0

f�1ðr; rÞ�1ðr 0; r 0Þ � �1ðr; r 0Þ�1ðr 0; rÞg
j~rr�~rr 0j : ð12:58Þ
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Equation (12.58) is important in terms of general theory because it gives the
exchange energy, as well as the Coulomb energy, as an explicit functional of
the single-particle density, �1. The same can be done trivially for the single-
particle part of the energy, E1. From equations (12.33) and (12.36), it is

E1 ¼
XN
j¼1

h’j jh1j’1i

¼
XN
j¼1

h’j j
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ0
j�1

�
j’ji

¼
X
j

ð
dr’�

j ð~rr Þ
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ0
j�1

�
’jðrÞ

¼
X
j

ð
dr’�

j

�
� 1

2
r2

�
’j �

X
J

ð
dr

ZJ�1ðr; rÞ
j~rr� ~RRJ0

j

¼ �
ð
dr dr 0 �ðr� r 0Þ 1

2
r02�1ðr; r 0Þ �

X
J

ð
dr ZJ

�1ðr; rÞ
j~rr� ~RRJ j

: ð12:59Þ

In equation (12.59), the operators r2 and r02 involve differentiation with
respect to the components of ~rr and ~rr 0, respectively. Combining equations
(12.58) and (12.59) we see that the total N-electron energy E ¼ ðE1 þ E2Þ
is an explicit functional of the Fock–Dirac density �1. Indeed, the single-
particle energy E1, equation (12.59), is a linear functional of �1. We leave
it to the reader to show that, using a trick similar to that applied to the r2

term in equation (12.59), the two-particle energy E2 can be expressed as
the integral of an explicit operator acting on a single product of two �1.

12.3 The Fock equation

12.3.1 The variational derivation

In section 12.2.1 we described the Hartree–Fock approximation in terms of
an N-dimensional manifold in the Hilbert space of single-particle functions.
We said that the approximation would be useful if a single such manifold
dominates the many-electron wave function. We now consider how to
specify this manifold.

According to equation (12.40), the total energy E in Hartree–Fock
approximation is

E ¼
�XN

j¼1

h jjh1j j i þ
1

2

X
j; j 0

h jj 0jh2ð1� Pjj 0 Þj jj 0i
�
: ð12:60Þ
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In equation (12.60) we have replaced the ket j’ji simply by j j i, and we
have included the terms j ¼ j 0 in the two-body part, as discussed
following equation (12.43). The total energy E in equation (12.60) is
clearly determined by the choice of N-dimensional manifold spanned by
the set fj1i; j2i; . . . ; jNig � fj j igN . The variational principle would then
say that the optimal set fj j igN satisfies the condition that E is a minimum
with respect to variation of the N-dimensional manifold. The following
approach, so far as the author knows, is due to Pryce (1961).

Consider first the single-particle terms in the total energy E, equation
(12.60). They constitute a part of the trace of h1 in the Hilbert space of
single-particle functions. Thus, if p is a projection operator onto an N-
dimensional manifold,

XN
j¼1

h jjh1j j i ¼ Trðh1 : pÞ: ð12:61Þ

The two-particle part of E, equation (12.60), can be expressed in similar
terms:

1

2

X
j; j 0

h jj 0jh2ð1� Pjj 0 Þj jj 0i ¼
1

2
Trf�hh2p : p0g ð12:62Þ

where

�hh2ðr; r 0Þ ¼ h2ðr; r 0Þ½1� Pðr; r 0Þ� ð12:63Þ
and where p acts in a Hilbert space of functions of r, and p0 acts in a Hilbert
space of functions of r 0.

We note some properties of these projection operators. First, com-
mutativity:

½ p; p0� ¼ 0: ð12:64Þ
Second, idempotency:

p2 ¼ p: ð12:65Þ
Proof: If jui lies in the manifold, and jvi lies outside, orthogonal to it, then

pjui ¼ jui; pjvi ¼ 0;

and so if, for arbitrary j’i,
j’i ¼ ðjui þ jviÞ;

then

pj’i ¼ jui
and

p2j’i ¼ pjui ¼ jui ¼ pj’i:
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Third, hermiticity. Consider

j’1i ¼ ðju1i þ jv1iÞ

j’2i ¼ ðju2i þ jv2iÞ

with juii in the manifold and jvii outside, so that

h’1j pj’2i ¼ h’1ju2i ¼ hu1ju2i ð12:66Þ

¼ hu2ju1i� ¼ fðhu2j þ hv2jÞju1ig�

¼ h’2ju1i� ¼ h’2j pj’1i�: ð12:67Þ

In these equations, � means complex conjugate. The equality of the first and
last expressions in equations (12.66) and (12.67) respectively, for arbitrary
j’1i and j’2i, is the definition of hermiticity for an operator p. Fourth:

Trð pÞ ¼ N: ð12:68Þ
Proof: If fj j ig, j ¼ 1; 2; . . . ;1, is an orthonormal basis, and if fj j igN ,
j ¼ 1; 2; . . . ;N, is an N-dimensional subset, then if p projects onto fj j igN :

Trð pÞ ¼
X1
j¼1

h jj pj j i ¼
XN
j¼1

h jj pj j i ¼
XN
j¼1

h jj j i ¼ N:

We now return to equations (12.61) and (12.62). We may use them to
write the total energy E as follows:

E ¼ Trf½h1 þ 1
2 Tr

0 �hh2 : p
0� pg; ð12:69Þ

where Tr and Tr0 are traces over the whole infinite-dimensional Hilbert
spaces of functions of r and r 0 respectively. However, because of the opera-
tors p and p0 in equation (12.69) the traces are effectively reduced to the finite
N-dimensional subspace.

The variational principle identifies the stationary states of the system as
satisfying the condition that, for small variation �p of the N-dimensional
projection p, the variation �E of E will be approximately zero. Thus consider

ðE þ �EÞ ¼ fTr½h1ð pþ �pÞ� þ 1
2 TrTr

0½�hh2ð pþ �pÞð p0 þ �p0Þ�g
or

�E ¼ 0 ¼ fTrðh1 : �pÞ þ 1
2 Tr Tr

0½�hh2ð p�p0 þ p0�pÞ�g: ð12:70Þ

If we think of the trace as a sum of matrix elements, all of which are
expressible as integrals, then we recognize that interchanging r and r 0 in
the two-particle integrals changes nothing. Thus,

p0�p ¼ p�p0: ð12:71Þ
Thus, equation (12.70) reduces to

Trf½h1 þ Tr 0 �hh2 : p
0� : �pg ¼ 0; ð12:72Þ
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where Tr0 is the trace in the Hilbert space of functions of r 0. Here, in equation
(12.72) and later, in equation (12.94) for the Fock operator, we note that
the two-particle term in �hh2 is not preceded by a factor 1

2, as occurs in the
expression for the total energy, equation (12.40), and later in equations
(12.99) and (12.100).

Now imagine that the N-dimensional manifold determined by equation
(12.72) is spanned by the orthonormal basis fjkigN , and that these N basis
functions are the first N elements of the basis for the infinite-dimensional
Hilbert space. In such a basis, the projection operator p has a matrix
representation of the form

p ¼
�
IN 0

0 0

�
ð12:73Þ

where IN is the identity N �N matrix. We note that this satisfies our fourth
condition, Trð pÞ ¼ N, equation (12.68). Now let us write �p in the same
representation, subject to hermiticity, equation (12.66) and (12.67),

�p ¼
�

a b

b† c

�
; ð12:74Þ

where b† is the complex conjugate transpose of b, and a and c are hermitian.
We now apply the idempotency requirement, (equation (12.65), to the
variation

ð pþ �pÞ2 � ð p2 þ p : �pþ �p : pÞ ¼ ð pþ �pÞ; ð12:75Þ
valid to first order, which, with p2 ¼ p reduces to

ð p : �pþ �p : pÞ ¼ �p: ð12:76Þ
In the matrix notation of equations (12.73) and (12.74) this becomes��

a b

0 0

�
þ
�

a 0

b† 0

��
¼

�
a b

b† c

�
ð12:77Þ

or �
2a b

b† 0

�
¼

�
a b

b† c

�
: ð12:78Þ

Equation (12.78) requires a ¼ c ¼ 0, whence

�p ¼
�

0 b

b† 0

�
: ð12:79Þ

Let us now write equation (12.72) in the form

Trðh : �pÞ ¼ 0 ð12:80Þ
where

h � ½h1 þ Tr 0ð�hh2 : p0Þ�: ð12:81Þ
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Note that h in equation (12.81) is a single particle operator. Writing h in a
matrix form corresponding to that for �p, equation (12.79), we find that
equation (12.80) becomes

Tr

��
h11 h12

h†12 h22

��
0 b

b† 0

��
¼ Tr

�
h12b

† h11b

h22b
† h†12b

�
¼ 0: ð12:82Þ

For arbitrary submatrix b, i.e. arbitrary variation �p of the projection, this
requires that h12 ¼ 0. Thus,

h ¼
�
h11 0

0 h22

�
: ð12:83Þ

Now what, exactly, has this energy extremalization process taught us
about the optimal N-dimensional manifold from which we shall construct
the Slater determinant, equation (12.19)? First, we note that the operator
h, equation (12.81), is the physical entity involved, equation (12.80). To
see how h is involved, we consider its eigenvectors, using the matrix
representation, equation (12.83), where the first N orthonormal basis
vectors are those that extremalize the Hartree–Fock estimate of the total
energy. The form of equation (12.83) comes from the fact that the projection
p is idempotent, equations (12.65) and (12.73). Let aj be an eigenvector of
h, equation (12.83), consisting of subvectors a

ð1Þ
j and a

ð2Þ
j in and outside the

N-dimensional manifold, respectively. Then, from equation (12.83),

h : aj ¼ "jaj ð12:84Þ

or

�
h
11

0

0 h
22

��
a
ð1Þ
j

a
ð2Þ
j

�
¼ "j

�
a
ð1Þ
j

a
ð2Þ
j

�
ð12:85Þ

whence

h
11
: a

ð1Þ
j ¼ "ja

ð1Þ
j ; ð12:86Þ

h
22
: a

ð2Þ
j ¼ "ja

ð2Þ
j : ð12:87Þ

Equations (12.86) and (12.87) allow solutions with a
ð2Þ
j ¼ 0, j ¼ 1; 2; . . . ;N

and with a
ð1Þ
j ¼ 0 for j > N. The eigenvectors therefore are split into two

classes, those in and those outside of the N-dimensional manifold, respec-
tively, with the optimal choice of this manifold. Without the variational
constraint, we should have had

h ¼
� h

11
h
12

h†
12

h
22

�
; ð12:88Þ
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leading to the eigenvalue equations

ðh
11
: a

ð1Þ
j þ h

12
: a

ð2Þ
j Þ ¼ "ja

ð1Þ
j ; ð12:89Þ

ðh†
12
: a

ð1Þ
j þ h

22
: a

ð2Þ
j Þ ¼ "ja

ð2Þ
j : ð12:90Þ

These eigenvectors cannot include those with a
ð2Þ
j ¼ 0, except for the unique

and uninteresting case a
ð1Þ
j ¼ 0, i.e. aj ¼ 0.

Returning to equation (12.86), we see that the optimal N-dimensional
manifold is spanned by the eigenvectors a

ð1Þ
j , which are eigenvectors of h11.

This eigenvalue equation is called the Fock equation, and the operator h is
called the Fock operator. Explicitly,

h ¼ ½h1 þ Tr 0ð�hh2 : p0Þ�; ð12:81Þ

h1 ¼
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ0 j
�1

�
; ð12:33Þ

�hh2 ¼ fh2ðr; r 0Þ½1� Pðr : r 0Þ�g; ð12:63Þ
whence

Tr 0ð�hh2 : p0Þ ¼
�XN

j¼1

h j 0jh2ðr; r 0Þ½1� Pðr; r 0Þ�j j 0i
�
; ð12:91Þ

where in this case the prime in j j 0i indicates integration is over r 0, and where

h2ðr; r 0Þ ¼ ðj~rr�~rr 0j�1Þ: ð12:37Þ
We now change the notation for h to

h � F ; ð12:92Þ
see equation (12.81), hereby defining the Fock operator F . The Fock
equation is now

F j j i ¼ "jj j i: ð12:93Þ

In equation (12.93) the Fock operator F is

F ¼
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ0
j�1 þ

XN
j0 ¼1

h j 0j�hh2j j 0i
�
; ð12:94Þ

see equations (12.33, 12.37, 12.38, 12.63, 12.81, and 12.91). Note that F is a
hermitian operator, with infinitely many eigenvalues, in general. Thus the
Fock equation (12.93) does not give us the N-dimensional manifold for the
Slater determinant explicitly. Any choice of N of its eigenstates j j i will
extremalize the total energy; i.e. all excited states are stationary for the
given hamiltonian H, equation (12.2).

The Fock operator is a hermitian single-particle operator and, as we
have mentioned, it is useful, though not precisely correct, to think of the
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Hartree–Fock approximation as consisting of N electrons, each in one of the
Fock eigenstates j j i, j ¼ 1; 2; . . . ;N. The Fock operator consists of three
parts: kinetic energy, potential energy due to nuclei J ¼ 1; 2; . . . ; and a
further potential energy due to electron–electron Coulomb and exchange
interactions. This final term is called the self-consistent field, because it is
not a given potential, but depends on the solution fj j igN itself.

12.3.2 Total energy algorithm

The total energy, equation (12.69) is

E ¼ Trf½F � 1
2 Tr

0ð�hh2 : p0Þ�pg; ð12:69Þ

where F � h is given in equation (12.94). Now, from equation (12.93),

TrðF : pÞ ¼
XN
j¼1

"j: ð12:95Þ

Furthermore, from equation (12.81),

TrðF : pÞ ¼ Trf½h1 þ Tr 0ð�hh2 : p0Þ�pg: ð12:96Þ
We thus arrive at two alternative expressions for E. From equations (12.69)
and (12.95),

E ¼
�XN

j¼1

"j �
1

2
TrTr 0ð�hh2 : p0 : pÞ

�
: ð12:97Þ

From equations (12.69) and (12.96),

E ¼ Trf½h1 þ 1
2Tr

0ð�hh2 : p0Þ� pg ¼ 1

2

�XN
j¼1

"j þ Tr h1

�
: ð12:98Þ

More explicitly equations (12.97) and (12.98) are

E ¼
XN
j¼1

�
"j �

1

2

XN
j 0 ¼1

h jj 0j�hh2j jj 0i
�
; ð12:99Þ

and

E ¼ 1

2

XN
j¼1

ð"j þ h jjh1j j iÞ: ð12:100Þ

12.3.3 Solution of the Fock equation

Suppose we want to calculate the electronic distribution and total energy of a
specific molecular cluster: that is, where the nuclei are specified both as to
chemistry, ZJ , and as to atomic positions ~RRJ : see equation (12.2). We
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cannot solve the Fock equation exactly, even if we ignore the self-consistent
field (scf ), which we do not want to do: see equations (12.39) and (12.40).
There are three elements in the most commonly applied strategy. First, the
scf is handled iteratively: that is, it is first formed from a zeroth-order
initial guess at what the solution fj j igN will be, and with this specific
potential replacing the scf, the Fock equation is solved, giving a first
approximation to fj j igN , whence a first-order form for the scf, and iterated
to consistency. Formally, given the zeroth-order guess fj j ið0ÞgN , from
equations (12.93), (12.94) and (12.33), solve

�
h1 þ

XN
j¼1

ð0Þh j 0j�hh2j j 0ið0Þ
�
j j ið1Þ ¼ "

ð1Þ
j j j ið1Þ; ð12:101Þ

then solve
�
h1 þ

XN
j¼1

ð1Þh j 0j�hh2j j 0ið1Þ
�
j j ið2Þ ¼ "

ð2Þ
j j j ið2Þ; ð12:102Þ

and continue to iterate until the sets of vectors fj j iðnÞgN and fj j iðnþ1ÞgN are
equal, to within a predetermined limit, or until the total energy fails to change
by more than a predetermined tolerance from nth order to ðnþ 1Þst order.

The second element of strategy is to think of the eigenvector as
expanded in terms of a complete set fjkig. Then, formally,

j j i ¼
X
k

ajðkÞjki; ð12:103Þ

and the Fock equation is of the form

F

�X
k

ajðkÞjki
�

¼ "j

�X
k

ajðkÞjki
�
: ð12:104Þ

In equation (12.104), the Fock operator F depends quadratically on the
coefficient ajðkÞ through the scf, but since the scf is fixed at each level of
iteration, solution of the Fock equation becomes a linear problem. This
problem is then solved by standard matrix methods. Thus, take the inner
product with jk0i from the left in equation (12.104) and obtainX

k

hk0jF jkiajðkÞ ¼ "j
X
k

hk0jkiajðkÞ: ð12:105Þ

This is an equation for matrix multiplication:

F : aj ¼ "jS : aj ð12:106Þ

where hk0jF jki is an element of the square matrix F , hkjk0i is an element of the
so-called overlap matrix S, and aj is the column matrix determining the
eigenvector j j i, equation (12.103). If the basis fjkig is orthonormal, then S
is the identity matrix, I .
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Equation (12.106) could be solved by standard matrix computational
methods for the eigenvalue problem if the complete set fjkig were not infi-
nite, which it is. In this case, the dimensionality of the matrix representation
is infinite. This leads us to the third element of the strategy, namely to choose
a basis set fjkigN 0 such that, for the given physical problem, a finite set of
N 0 � N elements is, for practical purposes, approximately complete. The
key to this step is that, for essentially all terrestrial material problems, the
material consists of recognizable atoms. By this we mean that internuclear
distances in the material are comparable with or greater than atomic
diameters. Let us see how this works out in a quantitative example. Consider
the NaF crystal. Each ion is in the electronic configuration 1s2 2s2 2p

6
, Na

being in charge state þ1 and F in charge state �1. We can estimate the
ionic diameters in free space in terms of the radial part of the 2s hydro-
genic-type orbital. Such an orbital contains an exponential factor,

 � e��r; � ¼ Z

2
; ð12:107Þ

in Bohr units, where Z is the nuclear charge in units of proton charge. In the
case of Na, Z ¼ 11, and for F, Z ¼ 9. We define a range R0 in terms of
j j2 � e�2�r, namely,

R0 ¼ ð2�Þ�1; ð12:108Þ
so that

j j2 � e�r=R0
: ð12:109Þ

Thus R0 is the distance at which the exponential factor in j j2 drops to
e�1 � 0:37 of its maximum value. Then ð2R0Þ is a measure of the ion’s
diameter D, namely,

for Naþ; D � 2=11 ¼ 0:18 a0;

for F�; D � 2=9 ¼ 0:22 a0;

where a0 is one Bohr. The nearest-neighbor spacing of the NaF crystal is
4.37 a0. We see that for this highly ionic material, the internuclear distant
is 	20� the ionic diameters. The explicit atomicity of matter is clearly
demonstrated by a variety of experimental techniques. None is more
graphic than that of field ion microscopy [see Müller and Tsong (1969)],
one of the finest experimental developments not to have won a Nobel
prize, in this author’s opinion. Since atoms are so clearly recognizable in
condensed matter, we shall, as our third strategic element, give an atomic-
like representation for the basis functions jki of the expansion of the Fock
eigenstates, equation (12.103).

Atomicity is represented mainly by using functions that are localized
on nuclear sites, and possibly other sites also. Each localized function is
associated with a spherical harmonic. A finite set encompassing a sufficient
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range of spherical harmonics is required. The radial localization is expressed
in terms of gaussian functions, rather than the so-called Slater type exponen-
tials of equation (12.107), for technical reasons of computational efficiency:
see Szabo and Ostlund (1982, Section 3.5.1). However, close to the nuclei, the
actual radial dependence is Slater-like, with a cusp, rather than bell-shaped
like a gaussian. The radial dependences therefore require linear combinations
of gaussians. We now express all this formally. The space–spin representa-
tion of the atomic-like basis functions is

hrjki ¼ nk

�X
i

di exp½��ij~rr� ~RRJ j2�
�
Ym

l ð�Þ : �kðsÞ: ð12:110Þ

In equation (12.110), nk is a normalizing factor, and in the restricted or
unrestricted Hartree–Fock approximation, �kðsÞ is a spin eigenstate (an
eigenstate of a component, say SZ, of the spin). Also, the notation in
equation (12.110) is simplified, because for a given function jki, the set of
linear coefficients di and the set of exponential coefficients �i are in general
unique to jki, and the choice of nuclear site J and the order of the spherical
harmonic ðl;mÞ are specific to jki. Thus the notation might show di, �i, J, l
and m all as functions of k, for all i. The linear coefficients di are called
contraction coefficients. The angular position � in equation (12.110) is in
spherical polar coordinates centered on site J. The function jki is called an
atomic orbital (AO) basis function. A single exponential with its spherical
harmonic and spin eigenstate, normalized, is called a primitive atomic orbital.

We have referred to restricted and unrestricted Hartree–Fock approxi-
mations (RHF and UHF respectively) in the preceding paragraph. In
RHF, the molecular cluster contains an even number, N ¼ 2M, of electrons,
which are assigned in pairs to pairs of AOs that differ only as to spin. The
spatial ~rr-dependent parts of the Fock eigenstates are then determined
from matrices of dimension M only, as we shall see. The UHF approxi-
mation is used for calculations with unequal numbers of spin-up and
spin-down electrons, necessarily including clusters with an odd number of
electrons. The Fock equations for spin-up and spin-down manifolds are
then solved separately, using a common scf, of course. If �kðsÞ in equation
(12.110) is not to be a spin eigenstate, the method is referred to as generalized
Hartree–Fock (GHF).

Let us now return to the Fock equation (12.106). We note first that our
AO basis set, equation (12.110), is non-orthogonal, so the overlap matrix
S 6¼ I . We also note that, since we need N Fock eigenstates aj, we must
use at least N atomic orbital basis functions jki, equation (12.110). In prac-
tice, acceptable accuracy may require a larger number N 0 > N. In that case,
solution of the Fock equation (12.106) will produce N 0 > N eigenstates and
eigenvalues. The decision as to which set of N to choose from N 0, in order to
evaluate the total energy and N-electron wave function, is dictated by the
nature of the state that we wish to study: the ground state or a particular
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excited state. The set of N states that we choose span the so-called occupied
manifold. The remaining states define the virtual manifold. An eigenstate j j i,
equation (12.103), defined in terms of its linear coefficients ajðkÞ, or the eigen-
vector aj of equation (12.106), is from equation (12.103) a linear combination
of atomic orbitals: LCAO. Since in general a single eigenstate j j i is in this way
associated spatially with the whole molecule, it is called a molecular orbital:
MO, or more fully an LCAO-MO.

Further details of how the Fock equation is solved in practice, along
with additional theoretical considerations involving the nature of the AO
basis set, are to be found in standard textbooks on quantum chemistry, for
example Szabo and Ostlund (1982). Those aspects of the computations
that can be reduced to a formal sequence of operations are incorporated in
highly sophisticated, reliable, flexible, user-friendly programs that are
readily available. For molecular clusters, the GAUSSIAN program is prob-
ably pre-eminent at present. GAUSSIAN is revised annually, each year
adding new features of physical or computational value (see GAUSSIAN
in the bibliography). Electronic band structure is similarly served by the
CRYSTAL program (see CRYSTAL in the bibliography). Apart from
formal processes that can be incorporated in a program, however, there
are elements of craft in quantum cluster computation, having to do with
the development of suitable AO basis sets for particular problems. In
simplest terms, this often involves a subsidiary process of computationally
determining contraction and exponential coefficients, di and �i respectively,
equation (12.110), that are in some sense optimal.

12.4 Localizing potentials

Consider the solutions of a problem in Hartree–Fock approximation. In
general we seek occupied and unoccupied eigenstates of the Fock operator,
j jocci and j jvirti, with jocc ¼ 1; 2; . . . ;N and jvirt ¼ N þ 1; . . . ;N 0 > N,
where ‘occ’ and ‘virt’ stand for occupied and virtual. There may be con-
vergence problems associated with the AO basis set chosen, for a given
Fock operator F . Also, we may want, or need, to have a subset of the
eigenstates with a particular mathematical or physical property, at least
approximately. For example, we might want, for purposes of computation
or visualization, to have eigenstates that correspond (approximately) to a
single atom or group of atoms in a molecular cluster, or to a single molecular
cluster within an extended solid. The latter case will in fact be discussed in
detail in the next section, section 12.5. The best that we can do in these
cases is to modify the Fock operator so that the modified eigenstates still
correspond to the occupied and virtual manifolds of the original problem
with the chosen AO basis set, while satisfying our requirement of localization
or other property. This can be accomplished by adding a so-called localizing
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potential to the Fock operator F . A good reference for this subject is Gilbert
(1964).

Formally, consider

F 0 ¼ ðF þ AFÞ; ð12:111Þ
where AF is the localizing potential, and F 0 the modified Fock operator. Let
fji igN be the occupied manifold of F . We require F 0 to be hermitian, and
therefore so must AF be

A†
F ¼ A; ð12:112Þ

where y indicates hermitian conjugate. Next consider the eigenstates of F 0:

F 0j ~jj i ¼ ~""jj ~jj i: ð12:113Þ
For j ~jj i, j ¼ 1; 2; . . . ;N, to span the occupied manifold of F , we required

j ~jj i ¼
XN
i¼1

cij ji i; ð12:114Þ

where the transformation between orthonormal sets spanning the same
manifold, represented by the matrix cij, is unitary. Thus,

F j ~jj i ¼
XN
i¼1

cij"iji i ð12:115Þ

and

AF j ~jj i ¼
XN
i¼1

cijAF ji i: ð12:116Þ

Combining equations (12.115), (12.116), (12.111) and (12.113):

F 0j ~jj i ¼ ðF þ AF Þj ~jj i ¼
XN
i¼1

cijð"i þ AF Þji i ¼ ~""jj ~jj i: ð12:117Þ

From equation (12.117), the vector ðAF ji iÞmust lie in the occupied manifold,
because j ~jj i on the right-hand side does. The localizing potential must
therefore project onto the occupied manifold.

We recall that the Fock operator F is completely and uniquely
determined by the Fock–Dirac density �1, equation (12.56), see equation
(12.58). We further note that �1 projects onto the occupied manifold. Con-
sider an arbitrary state vector j i,

j i ¼
�X

jocc

cjj j i þ
X
j 0
virt

dj 0 j j 0i
�
; ð12:118Þ

where ‘occ’ and ‘virt’ are occupied and virtual manifolds respectively, which
are mutually orthogonal:

h joccj j 0virti ¼ 0: ð12:119Þ
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Then, from equation (12.57),

�1 ¼
X
j 0occ

j j 0ih j 0j: ð12:57Þ

Trivially then, applying equation (12.57) to equation (12.118),

�1j i ¼
X
jocc

cjj j i: ð12:120Þ

Because AF must project onto the occupied manifold, and because of the
projection property of �1, we consider AF in the form

AF ¼ A0
F : �1: ð12:121Þ

Hermiticity, equation (12.112), then requires

A†
F ¼ �1 :A

0†
F ¼ A0

F : �1; ð12:122Þ
since �1 is hermitian. The solution of equation (12.122) for A0

F is

A0
F ¼ �1 :A ð12:123Þ

where A is hermitian:

A† ¼ A: ð12:124Þ
From equations (12.121) and (12.123),

AF ¼ �1 :A : �1; ð12:125Þ
where A is an arbitrary hermitian operator, which may be chosen to be a
single-particle operator. Equation (12.125) is the definition of a localizing
potential. Thus A must have matrix elements that involve only a single
electron coordinate in r space.

We must now examine the relationship between the N-electron system
and the modified Fock equation. From equations (12.93), (12.111),
(12.113) and (12.114), we have:

F j ji ¼ "jj j i;

F 0j ~jj i ¼ ðF þ AF Þj ~jj i ¼ ~""jj ~jj i;

j ~jj i ¼
X
i

cijji i:

Recall that, from equations (12.69) and (12.94), the total energy E is:

E ¼ Trf½F � 1
2 Tr

0ð�hh2 : p0Þ� : pg; ð12:126Þ

where, with the projection operators p and p0, the traces reduce to:

TrNðOÞ �
XN
j¼1

h jjOj j i;
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in which O is a hermitian operator. But the trace is independent of basis
set, so:

TrNðOÞ ¼
XN
j¼1

h ~jjjOj ~jj i:

Now, from equations (12.126) and (12.113) we have:

E ¼ fTrN ½F 0 � 1
2 Tr

0
Nð�hh2Þ� � TrNðAFÞg; ð12:127Þ

where the traces are evaluated in terms of matrices represented in the basis
fj ~jj igN . Thus, having solved the modified Fock equation, we can use the
resulting matrices directly to evaluate the total energy in terms of the
appropriate traces, equation (12.127). We note that, in equation (12.127),

TrNðF 0Þ ¼
XN
j¼1

~""j ; ð12:128Þ

from equation (12.113). Equation (12.99) or (12.100) can be used also, rewrit-
ten in terms of ~""j and j ~jj i, to evaluate the first term in equation (12.127), but
then the second term must not be forgotten.

The Slater determinant constructed from the eigenstates of the modified
Fock operator will be a different N-electron wave function from that derived
from the original Fock operator. Thus we must obtain the original Fock
eigenstates. This can be done most easily simply by solving

F j j i ¼ "jj j i;

using the Fock matrix F as given in the modified basis j ~jj i, which is available
from the solution of equation (12.113).

Much more detailed discussion of localizing potentials is to be found in
Gilbert (1964).

12.5 Embedding in a crystal

12.5.1 Introduction

When we use a quantum-molecular cluster in a computation to represent
local electronic properties in a crystal, we must take account of how the
local electronic structure is affected by the rest of the crystal. For example,
in a highly ionic crystal, the electronic charge density is highly localized
about each ion. It is then plausible to think of there being a specific
number of electrons on each ion, and therefore to think of a molecular
cluster as being electronically isolated, approximately, from the rest of the
crystal. In that case, only the Madelung field, that is the Coulomb field of
the ions of the embedding crystal, affects the cluster. This assumes, of
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course, that the computational cluster is localized precisely as dictated by the
surrounding crystal. This localization arises, of course, from effects from the
electrons of embedding ions, including quantum-mechanical Coulomb,
exchange and correlation effects, in combination with attraction by the
nuclei of the cluster, plus the embedding Madelung field.

The quantum-mechanical embedding effects, in the context described
above, can be accounted for quite well by a set of subsidiary embedded
cluster calculations. Consider, for example, a binary ionic crystal, KCl. An
atomic orbital basis set fjkig [see equation (12.110)] can then be developed,
accurately reflecting the quantum-mechanical effects surrounding each ionic
species, Kþ and Cl� in the example. The procedure is as follows. Consider
two embedded quantum clusters, one centered on each of the ionic species.
In an ionic crystal, the embedding might be represented by a shell-model
crystal. For nearest-neighbor clusters, the two clusters would be (KCl6)
and (K6Cl) respectively. With a plausible initial basis set, such as those for
free ions, optimize the Kþ basis set in the (KCl6) cluster. Optimization
means, in this case, to minimize the total energy of the crystal, cluster plus
embedding, with respect to variation of both exponential coefficients �i

and contraction coefficients di, equation (12.110), keeping the Cl� basis set
fixed. Then introduce the optimized Kþ basis set into the (K6Cl) cluster
and, keeping this basis set fixed, optimize the Cl� basis set. Iterate this
process between clusters to convergence, i.e. until the total energy cannot
be further reduced, within a specified accuracy.

This process should give quite a good picture of perfect-crystal ions.
However, it does not give us a good description of the perfect crystal’s
properties. The reason is that the clusters that determine the electronic
distribution within the ions do not give wave functions with the periodicity
of the crystal lattice, nor do they give an appropriate density of states,
because so few electrons are involved in the cluster. The basis sets derived
from perfect crystal embedded clusters may, however, be used with very
good effect to analyse point-defect properties, provided certain conditions
are satisfied. Basically, a point-defect embedded-cluster calculation must
contain enough atoms so that the outer atoms of the cluster are essentially
unperturbed by the defect relative to their perfect crystal configurations. In
that case, the point defect sites and the perturbed near neighbors will be
subject to realistic quantum-mechanical effects from the surrounding
crystal. The problem is that satisfying these conditions will often be prohibi-
tive, in terms of present-day computational capacity and speed. Then, if a
cluster of practical size is such that the outer ions of the cluster are perturbed
by the defect, this perturbation needs to be determined variationally, by total
energy minimization. But when we minimize the total energy by varying the
electronic configuration of the outer ions, two effects are in operation. One
physically valid effect is the tendency of the defect to perturb the ion. The
other effect, however, is spurious. It represents the fact that the outer ions
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can, in general, reduce the total energy by allowing their electrons to spread
out, or polarize, into the surrounding embedding region, which does not
interact quantum-mechanically with the cluster. The best that we can do in
this case is to limit the variational flexibility, by keeping the host-ion basis
sets fixed. This does not prevent electronic charge redistribution amongst
the basis functions from being affected by both physically valid and
physically spurious effects, however.

The question that follows from the preceding discussion is whether we
can limit the calculation of local defect properties to a small molecular
cluster, containing only host ions that are perturbed by the defect. If so,
the Fock operator [equations (12.94) and (12.37)] for the cluster must be
modified by adding a term that accounts for the quantum-mechanical
effect of the embedding on the cluster. This question in turn leads us to
a deeper analysis of the problem than we have contemplated so far.
The point is that, if we consider the whole crystal in a rigorous quantum-
mechanical way, we conclude that it has few, if any, eigenstates that are
localized on the cluster region, as implied by our basis set, equation
(12.110), where the index J labelling ionic nuclei is limited to a small
cluster region. Thus, while we might consider, as we shall do, using the
Fock operator for the whole crystal to determine a set of cluster-localized
LCAO-MOs from which to construct the cluster Hartree–Fock wave
function, this crystal Fock operator does not, in general, possess such
cluster-localized eigenstates: see equations (12.110), (12.103) and (12.29),
where ’jðrÞ � hrj j i: The question which now arises is: If the crystal does
not possess cluster-localized eigenstates, then in what way are cluster-
localized states related to local properties of the crystal?

12.5.2 Approximate partitioning with a localizing potential

From our knowledge of localizing potentials for the Fock equation, section
12.4, we are led to consider looking for a localizing potential AF such that the
modified Fock equation for the whole crystal possesses a sufficient number of
at least approximately cluster-localized eigenstates: recall

F 0j ~jj i � ðF þ AF Þj ~jj i ¼ ~""jj ~jj i: ð12:113Þ

In equation (12.113) we emphasize that F is the Fock operator for the whole
crystal. What we want, then, is for AF to form eigenstates fj ~jj ig which are
linear combinations of the eigenstates fj j ig of F , such that fj ~jj ig are as
strongly localized about the cluster region as possible. To be specific,
suppose that the crystal is macroscopic, so that the total number of electrons
Ntot 0 1023, whereas the cluster region will involve N electrons, with
N9 103. Then for the eigenstates fj ~jj ig to include Ntot occupied states, we
would need an AO basis set of at least this many atomic orbitals, distributed
over all the nuclei of the crystal. One would expect that linear combinations
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of such a large number of linearly independent basis functions could form
some, perhaps many, orthonormal combinations that are approximately
localized in the cluster region. We say only approximately localized
because even the large crystal-wide AO basis set is not complete. In any
case, we want to order the modified Fock eigenvalues ~""j according to strength
of cluster localization. We could then solve approximately the modified Fock
equation for the first N 0 eigenstates fj ~jj igN 0 and eigenvalues fj~""jigN 0 using
the cluster-centered basis fjkigN 0 . This approximate solution would be
more accurate relative to F 0, equation (12.113), than the corresponding
cluster-localized approximate solutions in the same AO manifold, would
be relative to F . The reason is simply that the eigenvectors being found
from the molecular cluster computation in both cases, ðF 0; j ~jj iÞ and ðF ; j j iÞ,
are precisely localized in the cluster with amplitudes that decay gaussian
exponentially outside the cluster, since they are based only on the N 0 AOs
that are centered on sites within the cluster. In other words, only N 0-
dimensional matrices are used for F 0 and F . At the same time, while F 0

has many eigenvectors that are approximately localized in the cluster
region, and others that are correspondingly depleted, the original Fock
operator F has few if any such eigenvectors. Thus, while solutions with F
and F 0 for the whole crystal will give identical total energies, based on a
given AO basis set, the same will not be true for approximate, strictly
cluster-localized solutions for a cluster energy based on traces TrN and
Tr0N over the cluster manifold only, using equation (12.127).

We can expand on these ideas analytically. Suppose that F 0 ¼ ðF þ AF Þ
for the whole crystal has eigenstates fj ~jj ig, a complete set withNtot occupied,
where Ntot 0 1023 is the total number of electrons. Arbitrarily, let us divide
fj ~jj ig into two sets fj ~jj ig0 and fj ~jj ig1, where fj ~jj ig0 consists of the N 0 most
strongly cluster-localized elements of fj ~jj ig: N 0 must in fact be equal to the
number of AOs centered in the cluster region. For the moment, assume
that fj ~jj ig0 are perfectly localized within the cluster region, where the
cluster region has spatially sharp boundaries, so that fj ~jj ig0 are exactly
zero outside these boundaries. Similarly, assume that fj ~jj ig1 are exactly
zero inside these cluster boundaries. Then TrtotðOÞ, the trace over the Ntot-
dimensional occupied manifold of the crystal, for arbitrary operator O
separates precisely into cluster and embedding parts,

TrtotðOÞ ¼
XNtot

j¼1

h ~jjjOj ~jj i

¼
�XN 0

j¼1

h ~jjjOj ~jj i þ
X
j 0>N 0

h ~jj 0jOj ~jj 0i
�

ð12:129Þ

or

TrtotðOÞ ¼ fTr0ðOÞ þ Tr1ðOÞg: ð12:130Þ
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Then from equation (12.98), the total energy Etot of the whole crystal is

Etot ¼ Tr0f½h1 þ 1
2 Tr

0
0ð�hh2 : p0Þ� : pg

þ Tr1f½h1 þ 1
2 Tr

0
1ð�hh2 : p0Þ� : pg

þ Tr0 Tr
0
1ð�hh2 : p0 : pÞ: ð12:131Þ

At this point, a further technical question may occur to the reader. In
practice, the analysis of an embedded cluster will include determination of
atomic positions within the cluster, usually variationally. It may also
involve varying the AO basis set within the cluster. Both of these variations
affect the cluster manifold, and with it the embedding manifold. Thus each of
the traces Tr0 and Tr1 are different for each change of atomic positions or of
basis set, in equation (12.131). However, if the embedding region is, to good
approximation, unperturbed, then its manifold is essentially unaffected by
variations of the cluster, and it can be approximately determined once, for
use throughout the cluster analysis. In that case the second term in equation
(12.131) will be fixed, and in the third term, Tr01ð�hh2 : p0Þ will be a given
function of r.

In equation (12.131), h1 contains the electron–nucleus interaction [see
equation (12.33)], ranging over all nuclei of the crystal. In order that the
first term in equation (12.131) may represent the cluster energy, it is necessary
to add electrons to the nuclei outside the cluster; a corresponding remark
applies to the second term. We therefore rewrite equation (12.131) as

Etot ¼ Tr0f½h1 þ 1
2 Tr

0
0ð�hh2 : p0Þ þ 1

2 Tr
0
1ð�hh2 : p0Þ� : pg

þ Tr1f½h1 þ 1
2 Tr

0
1ð�hh2 : p0Þ þ 1

2 Tr
0
0ð�hh2 : p0Þ� : pg: ð12:132Þ

In thus separating the total crystal energy into cluster and embedding parts,
we see that evaluation of the cluster energy requires knowledge of the embed-
ding eigenstates as well, in the term Tr01ð�hh2 : p0Þ.

Recall that the result of equation (12.132) is based on perfect cluster
localization forN 0 eigenvectors of the whole-crystal modified Fock operator.
Since any localizing potential that we are likely to use will not produce this
result, the equation for the cluster energy E will only be approximate:

E � Tr0fh1 þ 1
2 Tr

0
0ð�hh2 : p0Þ þ 1

2 Tr
0
1ð�hh2 : p0Þ� : pg: ð12:133Þ

We persist in writing Tr 0ð�hh2 : p0Þ in terms of its cluster and embedding parts
Tr00 and Tr01 because, of course, we shall not obtain the solution for the
embedding part from the solution of the cluster modified Fock equation.
The embedding eigenstates will have to be obtained from calculations
that are independent of the detailed solution that we will generate for
the cluster. Once an approximate solution has been obtained for these
embedding eigenstates, they can be kept fixed in the modified cluster Fock
equation; that is, they will not be updated during the iterative process for
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the self-consistent field. If these eigenstates are taken to be known, and fixed,
then in equation (12.133) the term

1
2 Tr

0
1ð�hh2 : p0Þ : p ð12:134Þ

is a given single-particle operator. Returning to equation (12.33) for h1, we
note that

h1 ¼
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ j�1

�
: ð12:135Þ

Here the sum over J includes all the nuclei in the crystal. Let us denote the
combined single-particle terms �hh1 from equation (12.133), using equations
(12.134) and (12.135), as follows:

�hh1 ¼
�
� 1

2
r2 �

X
JðclÞ

ZJ j~rr� RJ j�1

þ
�
�

X
JðembÞ

ZJ j~rr� RJ j�1 þ 1

2
Tr01ð�hh2 : p0Þ : p

��
: ð12:136Þ

In equation (12.136), J(cl) and J(emb) refer to nuclear sites in the cluster and
embedding regions. We see that the expression in [ ] brackets represents
nuclei and their associated electrons, i.e. whole ions, in the embedding
region. In fact, it is the potential VembðrÞ seen by cluster electrons due to
the embedding region. Thus a point-charge shell-model representation of
the embedding region may be adequate if quantum-mechanical effects are
negligible. If not, some other, quantum-mechanically based approximate
determination of the occupied embedding Fock eigenstates fj ~jj ig1, defining
Tr01 in equation (12.136), can be used.

We note that the operators p and p0 in equations (12.133) and (12.136)
project onto the occupiedmanifold of the whole crystal. But in these equations,
the traces Tr0 and Tr1 span only cluster and embedding sub-manifolds
respectively. Thus p and p0 become redundant, and will be omitted. Now,
fromcombining equations (12.133) and (12.136)wehave, for the cluster energy,

E � Tr0f�hh1 þ 1
2 Tr

0
0ð�hh2Þg: ð12:137Þ

We re-emphasize that this formula, equation (12.137), can only be a useful
approximation, representing the contribution to the total energy from the
cluster region, if it is based on whole-crystal eigenstates that separate into
cluster and embedding localized sets respectively. These must be eigenstates
of the modified Fock operator F 0, equation (12.113).

In terms of F 0, the expression for the total energy, from equation
(12.69), becomes

Etot ¼ Trf½F � 1
2 Tr

0ð�hh2 : p0Þ� : pg ð12:69Þ

¼ Trf½ðF 0 � AF Þ � 1
2 Tr

0ð�hh2 : p0Þ� : pg: ð12:138Þ
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Now, from equations (12.125) and (12.57), we can write

AF ¼
X
i;i 0

j~ii ih~ii jAj~ii 0ih~ii 0j; ð12:139Þ

where we do not need to restrict the sums to occupied states, since that is
accomplished by the operator p in equation (12.138). Since fj ~jj ig are a
complete orthonormal set, we have, from equation (12.139) that

TrAF ¼ TrA; ð12:140Þ

whereA is a single-particle operator. The total energy algorithm is then, from
equations (12.138) and (12.140),

Etot ¼ Trf½ðF 0 � AÞ � 1
2 Tr

0ð�hh2 : p0Þ� : pg; ð12:141Þ

in which

TrðF 0 : pÞ ¼
�XNtot

j¼1

~""j

�
; ð12:142Þ

with ~""j the occupied eigenvalues of F 0, equation (12.113). As in equation
(12.132), we can write Etot as the sum of cluster energy E, and embedding
energy E1. From equation (12.141),

Etot ¼ ðE þ E1Þ; ð12:143Þ
E ¼ Tr0fF 0 � A� 1

2 Tr
0
1ð�hh2Þ � 1

2 Tr
0
0ð�hh2Þg; ð12:144Þ

E1 ¼ Tr1fF 0 � A� 1
2 Tr

0
0ð�hh2Þ � 1

2 Tr
0
1ð�hh2Þg: ð12:145Þ

Concentrating on the cluster energy, equation (12.144), we reiterate that, in
practice, Tr01ð�hh2Þ must be determined from subsidiary computation, yielding
a single-particle operator. This operator, combined with a similar term in F 0

(with factor (þ1) instead of (� 1
2)) represents the electronic effects from

embedding ions (see equation 12.136)). As in equation (12.142), we now
have in equation (12.144)

Tr0ðF 0Þ ¼
XN
j¼1

~""j; ð12:146Þ

the sum of the occupied eigenvalues.

12.5.3 Summary

In summary, local properties in a crystal can be determined computationally
from a localized, embedded molecular cluster, if and only if the total energy
of the crystal can be separated into cluster and embedding parts. Since the
total energy is a trace over occupied states, the occupied states must
divide, at least approximately, into cluster and embedding localized sets. In
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general this is not the case for the Fock eigenstates. The condition may be
satisfied, however, by eigenstates of a modified Fock operator containing a
localizing potential. The total energy algorithm for the cluster, as well as
those for the embedding region and the whole crystal, are expressible in
terms of the modified Fock eigenstates and eigenvalues. The cluster energy
is given in equation (12.144). The modified Fock equation for the cluster is

F 0j ~jj i ¼ ~""jj ~jj i; ð12:113Þ

where

F 0 ¼ f�hh1 þ Tr00ð�hh2Þ þ AFg: ð12:147Þ

In equation (12.147), the single-particle term �hh1 is

�hh1 ¼
�
� 1

2
r2 �

X
JðclÞ

ZJ j~rr� ~RRJ0
j�1 þ Vembð~rr Þ

�
; ð12:136Þ

from equation (12.136), and the embedding potential Vemb is

Vembð~rr Þ ¼
�
�

X
JðembÞ

ZJ j~rr� ~RRJ j�1 þ 1

2
Tr01ð�hh2Þ

�
: ð12:148Þ

From equations (12.130) and (12.63), the partial trace in equation (12.148) is

Tr01ð�hh2Þ ¼
X

j 0ðembÞ
h ~jj 0j~rr�~rr 0j�1 : ½1� Pðr; r 0Þ�j ~jj 0i: ð12:149Þ

Similarly in equation (12.147), the trace is

Tr00ð�hh2Þ ¼
X
j 0ðclÞ

h ~jj 0j~rr�~rr 0j�1 : ½1� Pðr; r 0Þ�j ~jj 0i: ð12:150Þ

Equations (12.149) and (12.150) represent the two-particle cluster-embedding
and intra-cluster interactions, respectively. Also in equation (12.147), the
localizing potential AF is

AF ¼ �1 :A : �1 ð12:125Þ
from equation (12.125) where A is a hermitian, single-particle operator,
chosen to give cluster-embedding separation for the modified Fock eigen-
states, and the Fock–Dirac density �1 from equation (12.57) can be expressed
in terms of the modified Fock eigenstates, as follows:

�1 ¼
X
j 0ðoccÞ

j j 0ih j 0j ¼
X
j 0ðoccÞ

j ~jj 0ih ~jj 0j: ð12:151Þ

We can prove equation (12.151) as follows. For a given arbitrary vector j� i,
write

j� i ¼ fj� iocc þ j� i?g; ð12:152Þ
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where j� iocc and j� i? are components in the occupied manifold, and
orthogonal to it, respectively. ThenX

j 0ðoccÞ
j j 0ih j 0j� i ¼ j� iocc;

and X
j 0ðoccÞ

j ~jj 0ih ~jj 0j� i ¼ j� iocc:

Thus � X
j 0ðoccÞ

j j 0ih j 0j �
X
j 0ðoccÞ

j ~jj 0ih ~jj 0j
�
j� i ¼ 0:

Since j� i is arbitrary, this proves equation (12.151). Because the modified
Fock equation (12.113) has approximately localized eigenstates, a strictly
localized approximate solution in terms of LCAO-MOs will be more
accurate than such a solution for the Fock equation based on the Fock
operator F ¼ ðF 0 � AF Þ, equation (12.147), where F does not, in general,
have eigenstates that are as well localized.

There remains the central problem of determining a suitable localizing
operator A, equation (12.125). While the author has published a proposed
form for A [Vail (2001)], it will not be described here, because better ideas
will surely emerge before long.

12.6 Correlation

We have discussed in detail the Hartree–Fock approximation, in which the
many-fermion wave function is approximated by a single Slater determinant,
equation (12.19). We have also described a procedure for solving the Fock
equation in the approximation of a finite AO basis, section 12.3.3, thereby
determining the Slater determinant. When, as is usual, the atomic orbital
basis set fjkigN 0 , consisting of N 0 elements, has N 0 > N, then N 0 eigen-
vectors aj are generated by the Fock equation (12.106). The AO basis
functions jki are given in position representation in equation (12.110). This
solution for the Fock equation provides us with a means of improving on
the Hartree–Fock approximation, as we shall see.

Recall the hamiltonian for the N-electron system, equation (12.2), and
the Fock operator, equation (12.94) with equation (12.91). Comparing
these two, we are led to write

H ¼
XN
j¼1

�
~FFð~rrj ; rÞ �

1

2

XN
j 0¼1

0j~rrj �~rrj 0 j�1

�
; ð12:153Þ
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where

~FFð~rr; rÞ ¼
�
� 1

2
r2 �

X
J

ZJ j~rr� ~RRJ j�1 þ
XN
j 0¼1

0j~rr�~rrj 0 j�1

�
; ð12:154Þ

where we recall that the notation r stands for ðr1; r2; . . . ; rNÞ. Examining
equation (12.153), we see that the hamiltonian H can be broken into two
parts, such that some eigenstates of one part are already known from the
solution of the Fock equation. Specifically, let

H ¼ ðH0 þH1Þ; ð12:155Þ
where

H0 ¼
X
j

~FFð~rrj; rÞ; ð12:156Þ

H1 ¼
�
� 1

2

X
j 0

0j~rrj �~rrj 0 j�1

�
: ð12:157Þ

If all the eigenstates of H0 were known, then H0 would form the basis of
a perturbation-theory approach to the Schrödinger equation (12.3). Thus,
consider the eigenvalue equation,

H0j 
ð0Þ
� i ¼ E

ð0Þ
� j ð0Þ

� i; ð12:158Þ

or

E
ð0Þ
� ¼ h ð0Þ

� jH0j 
ð0Þ
� i

¼
X
j

h ð0Þ
� j ~FFð~rrj; rÞj 

ð0Þ
� i: ð12:159Þ

We now recall that the total energy in Hartree–Fock approximation looks
somewhat like the right-hand side of equation (12.159), with equation
(12.154): see equation (12.60) with equations (12.30), (12.33) and (12.37).
In that case, j i is a Slater determinant, equation (12.29). Thus, as in
equation (12.60), but without the factor 1

2, if we consider j ð0Þ
� i to be a

Slater determinant, then we have

E
ð0Þ
� ¼

XN
j¼1

h jj
��

h1 þ
X
j 0
h j 0jh2ð1� Pjj 0 Þj j 0i

��
j j i: ð12:160Þ

But the quantity in { } brackets in equation (12.160) is precisely the Fock
operator, equation (12.94), so that with the Fock equation (12.93), we
have, from equation (12.160),

E
ð0Þ
� ¼

XN
j¼1

h jj"j j j i ¼
�XN

j¼1

"j

�
: ð12:161Þ
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It follows that in equation (12.158), j ð0Þ
� i are Slater determinants formed

from distinct selections of N eigenstates of the Fock operator. This of
course assumes that the Fock eigenstates are exact. In that case they are a
complete orthonormal set, as is the collection of all distinct Slater deter-
minants that can be formed from them. We therefore have, in equations
(12.155)–(12.157), along with equations (12.158) and (12.161), the pre-
requisite for a perturbative treatment of the N-electron system, based on
the Hartree–Fock equation.

We now illustrate how many-body perturbation theory generates cor-
rections to the Hartree–Fock approximation. Since correlation is defined
as the difference between the exact solution and the Hartree–Fock solution,
these corrections are called correlation corrections. Thouless (1972, especially
Chapter IV, section 1), has given a brilliant critique of many-body perturba-
tion theory, including the issue of system size dependence (N-dependence);
see also Davidson and Silver (1977). Thouless describes Rayleigh–Schrödinger
perturbation theory. We follow his lead. Let H0 be a hamiltonian whose
eigenvalue problem has been solved, as above:

H0j 
ð0Þ
� i ¼ E

ð0Þ
� j ð0Þ

� i: ð12:158Þ

Consider the exact solution,

Hj �i ¼ ðH0 þH1Þj �i ¼ E�j �i; ð12:162Þ
from equations (12.155), (12.156) and (12.157). Expand j �i in terms of the
complete orthonormal set fj ð0Þ

� ig:

j �i ¼
X1
�¼0

c�0�j 
ð0Þ
�0 i; ð12:163Þ

where

c�0� ¼ h ð0Þ
�0 j �i: ð12:164Þ

Thus

j �i ¼
�
c��j 

ð0Þ
� i þ

X
�0 6¼�

c�0�j 
ð0Þ
�0 i

�
; ð12:165Þ

where the second term in { } in equation (12.165) gives the perturbative
correction to j ð0Þ

� i, for given �. Substituting for c�0� from equation
(12.164) into equation (12.165):

f1� j ð0Þ
� ih ð0Þ

� jgj �i ¼
X
�0 6¼�

c�0�j 
ð0Þ
�0 i: ð12:166Þ

The right-hand side of equation (12.166) is clearly orthogonal to j ð0Þ
� i. Thus

the operator P� projects orthogonal to j ð0Þ
� i, where

P� ¼ f1� j ð0Þ
� ih ð0Þ

� jg: ð12:167Þ
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From equation (12.167), it follows that

j �i ¼ fj ð0Þ
� ih ð0Þ

� j �i þ P�j �ig: ð12:168Þ

The perturbative correction, P�j �i in equation (12.168), would be clearer if
it were seen as a correction to j ð0Þ

� i. This can be accomplished by applying an
unconventional normalization to the exact eigenstate j �i, namely requiring

h ð0Þ
� j �i ¼ 1: ð12:169Þ

With such a normalization, the interpretation of j �i as a probability
amplitude is not valid. We shall return to this point in a moment. With
equation (12.169) we have, from equation (12.168),

j �i ¼ fj ð0Þ
� i þ P�j �ig: ð12:170Þ

We can now construct a probability amplitude, with unit norm. From
equation (12.170),

ð1� P�Þj �i ¼ j ð0Þ
� i: ð12:171Þ

Applying equation (12.169) to equation (12.171),

h �jð1� P�Þj �i ¼ 1: ð12:172Þ

Thus, the state vector h 0
�j is normalized, where, from equation (12.172),

j 0
�i ¼ ð1� P�Þ1=2j �i; ð12:173Þ

with the normalization of equation (12.169).
We now return to the exact eigenvalue equation (12.162), in the spirit of

perturbation theory, using equation (12.170):

ðH0 � E�Þj �i ¼ �H1j �i: ð12:174Þ

We solve this formally for E�, using equations (12.158) and (12.169),

h ð0Þ
� jðH0 � E�Þj �i ¼ h ð0Þ

� jðEð0Þ
� � E�Þj �i

¼ ðEð0Þ
� � E�Þ ¼ �h ð0Þ

� jH1j �i;

or

E� ¼ fEð0Þ
� þ h ð0Þ

� jH1j �ig: ð12:175Þ

Of course, since we do not know j �i explicitly, equation (12.175) is an
implicit equation for the perturbative correction to the energy E

ð0Þ
� .

We similarly obtain a formal, perturbative solution for the state vector.
From equation (12.170),

j �i ¼ fj ð0Þ
� i þ P�j �ig: ð12:170Þ
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We formally solve equation (12.174) for j �i,

j �i ¼ �ðH0 � E�Þ�1 :H1j �i;

and substitute this for j �i in the right-hand side of equation (12.170),

j �i ¼ fj ð0Þ
� i þ P�ðE� �H0Þ�1 :H1j �ig: ð12:176Þ

We see here the perturbative correction, linear in H1, but with H1 involved
implicitly to all higher orders in E� and j �i in the second term in { }
brackets.

Equations (12.175) and (12.176) can be proliferated iteratively. First
consider j �i, equation (12.176). For the first-order correction, replace

j �i � j ð0Þ
� i

in the right-hand side, obtaining

j ð1Þ
� i � fj ð0Þ

� i þ P�ðE� �H0Þ�1 :H1j 
ð0Þ
� ig: ð12:177Þ

Substitute this for j �i to get the second-order correction:

j ð2Þ
� i � fj ð0Þ

� i þ P�ðE� �H0Þ�1 :H1j 
ð1Þ
� ig

¼ fj ð0Þ
� i þ P�ðE� �H0Þ�1 :H1j 

ð0Þ
� i

þ P�ðE� �H0Þ�1 :H1 :P�ðE� �H0Þ�1 :H1j 
ð0Þ
� ig: ð12:178Þ

In equations (12.177) and (12.178) the orders ofH1 are still partly implicit to
all orders through the terms in E�. This procedure generates a power series in
the operator O defined by

O� ¼ P�ðE� �H0Þ�1 :H1: ð12:179Þ

In fact, we obtain, formally,

j �i ¼
X1
n¼0

On
�j 

ð0Þ
� i ¼ ð1�O�Þ�1 : j ð0Þ

� i: ð12:180Þ

If we now substitute equation (12.180) into equation (12.175), we
obtain, for the energy, the formal expression

E� ¼ E
ð0Þ
� þ h ð0Þ

� jH1ð1�O�Þ�1j ð0Þ
� i: ð12:181Þ

Equations (12.180) and (12.181) represent the Wigner–Brillouin perturbation
theory. We can eliminate the implicit dependence on E� by approaching
equation (12.170) differently, through the Schrödinger equation (12.162).
Since we do not like having ðH0 � E�Þ�1 in our formulae, we manipulate
equation (12.162) to avoid it. Consider

Hj �i ¼ ðH0 þH1Þj �i ¼ E�j �i; ð12:162Þ
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whence

ðH0 � E
ð0Þ
� Þj �i ¼ ðE� �H1 � E

ð0Þ
� Þj �i: ð12:182Þ

Now in equation (12.182), ðE� � E
ð0Þ
� Þ is a first-order small quantity, as isH1,

although it contains all higher small orders as well. Thus, we rewrite
equation (12.170), replacing j �i on the right-hand side by using equation
(12.182) in the form

j �i ¼ ðH0 � E
ð0Þ
� Þ�1 : ðE� � E

ð0Þ
� �H1Þj �i; ð12:183Þ

obtaining

j �i ¼ fj ð0Þ
� i þ P�ðE

ð0Þ
� �H0Þ�1 : ðH1 � E� þ E

ð0Þ
� Þj �ig: ð12:184Þ

This in turn can be used with equation (12.175) to generate a fully explicit
power series in H1:

E� ¼ fEð0Þ
� þ h ð0Þ

� jH1j �ig: ð12:185Þ
The result is called Rayleigh–Schrödinger perturbation theory.

From equations (12.184) and (12.185) we obtain first the zeroth-order
solutions:

j �i � j ð0Þ
� i; ð12:186Þ

E� � E
ð0Þ
� : ð12:187Þ

In equations (12.186) and (12.187), the solution j ð0Þ
� i and E

ð0Þ
� are deter-

mined by the choice of H0; see equations (12.155)–(12.158). If the system is
such that its exact solution j �i and E� do not satisfy equations (12.186)
and (12.187) approximately, then the perturbative method will not give
physically correct results. An example of such a case is given in Chapter 14.

We now define the first order solution to come from substituting the
zeroth order solutions into equations (12.184) and (12.185), and the nth
order to come from substituting the ðn� 1Þst order. Thus, in first order,

j �i � fj ð0Þ
� i þ P�ðE

ð0Þ
� �H0Þ�1 :H1j 

ð0Þ
� ig; ð12:188Þ

E� � fEð0Þ
� þ h ð0Þ

� jH1j 
ð0Þ
� ig: ð12:189Þ

From equations (12.161), (12.157) and (12.99), we see that this first-order
energy, equation (12.189), is just the Hartree–Fock approximation. Pro-
ceeding to second order, we substitute equations (12.188) and (12.189) into
equations (12.184) and (12.185):

j �i � fj ð0Þ
� i þ P�ðE

ð0Þ
� �H0Þ�1ðH1 � h ð0Þ

� jH1j 
ð0Þ
� iÞ

� ½j ð0Þ
� i þ P�ðE

ð0Þ
� �H0Þ�1 :H1j 

ð0Þ
� i�g; ð12:190Þ

E� � fEð0Þ
� þ h ð0Þ

� jH1j 
ð0Þ
� i þ h ð0Þ

� jH1 :P�ðE
ð0Þ
� �H0Þ�1 :H1j 

ð0Þ
� ig:
ð12:191Þ
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We note parenthetically at this point that the present formulation is not
satisfactory for j �i, because of the term in equation (12.190) of the form

�P� : ðE
ð0Þ
� �H0Þ�1 : h ð0Þ

� jH1j 
ð0Þ
� i : j ð0Þ

� i: ð12:192Þ

Since h ð0Þ
� jH1j 

ð0Þ
� i is a real number, the operator ðEð0Þ

� �H0Þj 
ð0Þ
� i gives

zero, from equation (12.158), and thus the operator ðEð0Þ
� �H0Þ�1 is singular.

Formally, this can be avoided by replacingE
ð0Þ
� by ðEð0Þ

� þ i	Þ, with 	 real, and
then taking the limit 	 ! 0 after all other operations have been performed.
An explicit expression for j �i in second order can be obtained by the
usual power-series treatment of perturbation theory: see Szabo and
Ostlund (1989), Chapter 6.

We now return to equation (12.191) to obtain the second-order pertur-
bative term in the energy, the lowest-order correction to the Hartree–Fock
approximation. It is

h ð0Þ
� jH1 :P�ðE

ð0Þ
� �H0Þ�1 :H1j 

ð0Þ
� i: ð12:193Þ

If we use the representation of equation (12.167) for P�, along with the
identity I in the form

I ¼
X
n

j ð0Þ
n ih ð0Þ

n j; ð12:194Þ

and the fact that j ð0Þ
n i is an eigenstate ofH0 belonging to eigenvalue Eð0Þ

n , we
obtain from equation (12.193)

X
nð6¼�Þ

jh ð0Þ
� jH1j ð0Þ

n ij2

ðEð0Þ
� � E

ð0Þ
n Þ

: ð12:195Þ

Equation (12.195) can be expressed entirely in terms of eigenstates and
eigenvalues of the Fock equation. Since n 6¼ � in the summation, there
must be at least one Fock eigenstate, say jci, in the occupied manifold of
state  ð0Þ

n that is outside the occupied manifold of state  
ð0Þ
� : see equation

(12.93), with j replaced by c. Furthermore, the manifolds � and n cannot
differ by more than two Fock eigenstates, by an extension of the discussion
following equation (12.38). Orthogonality among the Fock eigenstates
requires that ðn� 2Þ of the Fock eigenstates that make up the Slater deter-
minant j ð0Þ

� i be the same as ðn� 2Þ of those that make up j ð0Þ
n i, for the

matrix element of each two-particle term in H1, equation (12.195), involves
integration over two single-particle variables.

In fact, the matrix element ofH1 in equation (12.195) is zero when � and
n differ by only a single Fock eigenstate. We can see this by evaluating the
matrix element for such a case. The proof in its most elegant form depends
on Brillouin’s theorem [Brillouin (1934)], see also Slater (1963, Appendix
4). This states that the total hamiltonian H has zero matrix elements
between such eigenstates. But H1 ¼ ðH �H0Þ, equations (12.155)–(12.157),
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and from equation (12.158)

H0j ð0Þ
n i ¼ Eð0Þ

n j ð0Þ
n i; ð12:196Þ

so

h ð0Þ
� jH0j ð0Þ

n i ¼ Eð0Þ
n h ð0Þ

� j ð0Þ
n i: ð12:197Þ

Thus, through the orthogonality of j ð0Þ
� i and j ð0Þ

n i with n 6¼ �, the matrix
elements of H0 are also zero for such states, and so therefore are the
matrix elements of H1.

We now prove Brillouin’s theorem. Suppose, as in equation (12.29),

 
ð0Þ
� ¼ A’1ðr1Þ’2ðr2Þ � � �’NðrNÞ; ð12:29Þ

and

 ð0Þ
n ¼ A’cðr1Þ’2ðr2Þ � � �’NðrNÞ: ð12:198Þ

Then, from equations (12.29) and (12.198), with equation (12.2),

h ð0Þ
� j

XN
j¼1

h1ð~rrjÞj ð0Þ
n i ¼

ð
dr1 � � � drN ½’1ðr1Þ’2ðr2Þ � � �’NðrNÞ��

�
XN
j¼1

h1ð~rrjÞ :A½’cðr1Þ’2ðr2Þ � � �’NðrNÞ�

¼
ð
dr1 ’

�
1ðr1Þh1ðr1Þ’cðr1Þ

¼ h’1jh1j’ci; ð12:199Þ

where h1 is defined in equation (12.33). Similarly,

h ð0Þ
� j 1

2

X
j; j 0

0
h2ð~rrj;~rrj 0 Þj ð0Þ

n i

¼
ð
dr1 � � � drn½’1ðr1Þ’2ðr2Þ � � �’NðrNÞ�

� 1

2

X
j; j 0

0
h2ð~rrj ;~rrj 0 Þ :A½’cðr1Þ’2ðr2Þ � � �’NðrNÞ�: ð12:200Þ

This can only be non-zero if j is equal to one, or if j 0 is equal to one. Thus
equation (12.200) becomes

1

2

X
j 0ð6¼1Þ

ð
dr1 drj 0 ’

�
1ðr1Þ’�

j 0 ðr j 0 Þh2ð~rr1;~rrj 0 Þ½1� Pðr1; r j 0 Þ�’cðr1Þ’j 0 ðr j 0 Þ

þ 1

2

X
jð6¼1Þ

ð
dr1 drj ’

�
1ðr1Þ’�

j ðr jÞh2ð~rrj;~rr1Þ½1� Pðr j; r1Þ�’cðr1Þ’jðr jÞ: ð12:201Þ
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Since h2ð~rr;~rr 0Þ ¼ h2ð~rr 0;~rr Þ and similarly for P, we have for (12.200)

X
jð6¼1Þ

h’1’jjh2ð1� PÞj’c’ji ¼ h’1j
� X

jð6¼1Þ
h’jjh2ð1� PÞj’ji

�
j’ci: ð12:202Þ

Combining equations (12.199) with (12.200) and (12.202),

h ð0Þ
� jHj ð0Þ

n i ¼ h’1j
�
h1 þ

X
jð6¼1Þ

h’jjh2ð1� PÞj’ji
�
j’ci: ð12:203Þ

But the operator in { } brackets in equation (12.203), with the redundant
restriction jð6¼ 1Þ removed [see discussion following equation (12.43)] is
just the Fock operator, equation (12.94) with equations (12.33) and
(12.63). Furthermore, j’ci is a Fock eigenstate with eigenvalue "c. Thus
equation (12.203) is

h ð0Þ
� jHj ð0Þ

n i ¼ "ch’1j’ci ¼ 0; ð12:204Þ

from the orthogonality of Fock eigenstates j’1i and j’ci. This, with equa-
tions (12.29) and (12.198), proves Brillouin’s theorem. We combine equation
(12.204) with the similar result in equation (12.197),

h’ð0Þ
� jH0j ð0Þ

n i ¼ 0; ð12:205Þ

to obtain

h ð0Þ
� jðH �H0Þj ð0Þ

n i ¼ h ð0Þ
� jH1j ð0Þ

n i ¼ 0: ð12:206Þ

From the discussion following equation (12.195) and the result of
equation (12.206) we see that the second-order perturbative correction to
the Hartree–Fock approximation involves states j ð0Þ

� i and j ð0Þ
n i that

differ by exactly two single-particle Fock eigenstates. Thus, in general, we
can get j ð0Þ

n i from j ð0Þ
� i by de-occupying two Fock eigenstates, say j’ai

and j’bi, from the occupied manifold of j ð0Þ
� i, and occupying two of

its virtual manifold eigenstates, say j’ci and j’di. The matrix element in
equation (12.195) is now

h ð0Þ
� jH1j ð0Þ

n i ¼ habjH1ð1� PÞjcdi; ð12:207Þ

with jai and jbi from the occupied manifold of j ð0Þ
� i, and jci and jdi from its

virtual, or unoccupied manifold. In equation (12.207),

jai � j’ai ð12:208Þ

and similarly for jbi, jci and jdi, and j ð0Þ
n i is not given by equation (12.198),

but rather

j ð0Þ
n i ¼ fA’1ðr1Þ � � �’cðraÞ � � �’dðrbÞ � � �’NðrNÞg: ð12:209Þ

Correlation 237



Recalling the definition of E
ð0Þ
� , equation (12.161), we find the energy

denominator in equation (12.195) to be

ðEð0Þ
� � Eð0Þ

n Þ ¼ ð"a þ "b � "c � "dÞ: ð12:210Þ

Thus combining equations (12.207) and (12.210) we obtain for equation
(12.195):

X
nð6¼�Þ

jh ð0Þ
� jH1j ð0Þ

n ij2

ðEð0Þ
� � E

ð0Þ
n Þ

¼
X

a<bðoccÞ
c<dðvirtÞ

jhabjH1ð1� PÞjcd ij2

ð"a þ "b � "c � "dÞ
: ð12:211Þ

We note that the second-order perturbative correlation correction, equation
(12.211), is negative, because "c and "d are greater than "a and "b. Higher-
order corrections quickly become much more complicated, and require
special methods, as discussed lucidly by Thouless (1972). Second-, and
even third- and fourth-order Rayleigh–Schrödinger many-body perturbation
theory correlation corrections are practicable, and are incorporated in
quantum-chemistry-type computations routinely. In many problems, includ-
ing some optical absorption processes, for example, correlation must be
included in order to get quantitative accuracy.

12.7 One-, two- and N-particle density functionals

12.7.1 Introduction

The Hartree–Fock method has two features, at least, that one might wish
to improve on. First, the Slater determinant wave function, equation
(12.29), must have N molecular orbitals ’j . For most problems, this
means that computations are large, perhaps larger than one might like.
Consider, for example, a molecular cluster ðBa2þÞ1ðF�Þ8 embedded in a
BaF2 crystal. In that case N ¼ ½54þ ð10� 8Þ� ¼ 134. Matrices of at least
this dimensionality need to be manipulated in obtaining the solution. On
the other hand, rather than knowing all that detail, one might be content
to have a rough picture of the nine ions, representable as a combination
of, at minimum, nine localized functions. Something closer to nine than
to 134 might give a perfectly adequate picture of the molecular cluster,
in terms of particle density. For the analysis of physical properties and
processes, however, accurate total energies are required. One is therefore
led to ask whether a rigorous relationship exists between particle density
and total energy and, further, whether the variational principle can be
applied to determine the density, as is done, for example, in solving the
Fock equation. The other unsatisfactory feature of the Hartree–Fock
method is that it is not useful for problems for which correlation is
dominant, and not very accurate where correlation is significant. One
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would like to have a rigorous analytical approach in which correlation is
not treated as a separate, small correction.

In section 12.7.2 we discuss the so-called density functional formulation
of Hohenberg and Kohn (1964), in which it is shown that the total energy is a
unique functional of the particle density. This is obviously a very powerful
result. The fact that the functional is not explicitly known, however, is a
drawback. In section 12.7.3 we show how to write the total energy of an
arbitrary system, fermions or bosons, with n-body interactions, explicitly
as a functional of a so-called reduced n-particle density matrix. In section
12.7.4 we examine the applicability of this formulation to the many-
fermion system. It turns out not to lead to a simple variational method,
but its attractive features encourage continuing efforts to use it as the basis
of a computational scheme. In section 12.7.5 we show the relationship
between the reduced density matrix (two-particle formulation) and the
single-particle density Hohenberg and Kohn formulation.

12.7.2 Density functional of Hohenberg and Kohn

The many-electron hamiltonian, equation (12.2), possesses eigenstates for
which a particle density �ð~rr Þ can be identified, equation (12.45):

�ð~rr Þ ¼ h j
X
j

�ð~rr�~rrjÞj i: ð12:212Þ

We concentrate on the ground state j i. The specific atomic system, and its
ground state, depend solely on the nuclear charges ZJ and positions ~RRJ ,
which determine the potential external to the electronic system, Vextð~rr Þ,
where

Vextð~rr Þ ¼ �
X
J

ZJ j~rr� ~RRJ j�1; ð12:213Þ

see equation (12.2). The ground-state wave function  , and thus the density
�, are therefore functionals of Vext. The converse is also true, namely, the
external potential Vext is a functional of the density �. Furthermore, the
total ground-state energy E0, is also therefore a functional of �. If it is a
unique functional, then one can consider the possibility of determining the
ground state by minimizing the energy with respect to variation of �. We
shall show that Vext, and therefore the total ground-state energy E0, are
unique functionals of the density �. This is the Hohenberg–Kohn theorem.

The proof is as follows [Hohenberg and Kohn (1964)]. Consider two
physically distinct N-electron systems, corresponding to Vext and V 0

ext, differ-
ing by more than a constant. The corresponding Schrödinger equations are

Hj i ¼ E0j i; ð12:214Þ

H 0j 0i ¼ E0
0j 0i; ð12:215Þ
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where

ðH 0 �HÞ ¼ ðV 0 � VÞ; ð12:216Þ
where V is the potential energy of the system due to Vext:

V ¼
XN
j¼1

Vextð~rrjÞ: ð12:217Þ

Note then that in equation (12.216), V and V 0 differ by having different sets
of values for ðZJ ;RJÞ: see equation (12.213). Since j 0i is the ground state for
H 0, equation (12.215), we have, from equations (12.214)–(12.216),

h 0jH 0j 0i < h jH 0j i ¼ h jHj i þ h jðV 0 � VÞj i; ð12:218Þ
or

E0
0 < fE0 þ h jðV 0 � VÞj ig: ð12:219Þ

Now we can write

V ¼
X
j

Vextð~rrjÞ ¼
X
j

ð
d~rr �ð~rr�~rrjÞVextð~rr Þ: ð12:220Þ

Thus, from equation (12.220),

h jV j i ¼
ð
d~rr Vextð~rr Þh j

X
j

�ð~rr�~rrjÞj i: ð12:221Þ

From equation (12.212), this becomes

h jV j i ¼
ð
d~rr Vextð~rr Þ�ð~rr Þ: ð12:222Þ

In turn, using equation (12.222), equation (12.219) is now

E0
0 <

�
E0 þ

ð
d~rr ½V 0

extð~rr Þ � Vextð~rr Þ��ð~rr Þ
�
: ð12:223Þ

Similarly to equation (12.218), we can write

h jHj i < h 0jHj 0i ¼ fh 0jH 0j 0i � h 0jðV 0 � VÞj 0ig ð12:224Þ
or

E0 < fE0
0 � h 0jV 0 � V j 0ig ð12:225Þ

which, with equation (12.222), becomes

E0 <

�
E0
0 þ

ð
d~rr ½Vextð~rr Þ � V 0

extð~rr Þ��0ð~rr Þ
�
: ð12:226Þ

Now assume that the ground state density �0ð~rr Þ associated with V 0
extð~rr Þ is the

same as �ð~rr Þ associated with the distinct potential Vextð~rr Þ; i.e. assume

�0ð~rr Þ ¼ �ð~rr Þ: ð12:227Þ
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Then equation (12.226) becomes

E0 <

�
E 0

0 þ
ð
d~rr ½Vextð~rr Þ � V 0

extð~rr Þ��ð~rr Þ
�
; ð12:228Þ

and combining equations (12.223) and (12.228) we conclude that

ðE 0
0 þ E0Þ < ðE 0

0 þ E0Þ: ð12:229Þ

The contradiction expressed by equation (12.229) shows that the assumption
of equation (12.227) is invalid. Thus, a unique density �ð~rr Þ, equation
(12.212), for the ground-state  , cannot come from two distinct external
potentials, Vextð~rr Þ, equation (12.213). It means that �ð~rr Þ is a unique
functional of Vextð~rr Þ, and vice versa, Vextð~rr Þ is a unique functional of �ð~rr Þ.
Consequently V , equation (12.217), and therefore the ground-state energy
E0 and wavefunction  , are unique functionals of the density �, which we
express as

E0 ¼ E0½��: ð12:230Þ
So far, the seminal result of equation (12.230) has not led to the explicit,

general functional relationship E0½��. Nevertheless, it has led to computa-
tional procedures that are, in practice, widely useful in determining the
ground-state properties of a variety of solid, molecular, and atomic
systems. So much so that, in 1998, Walter Kohn shared the Nobel Prize in
Chemistry for the progress that this discovery had made possible. Kohn
shared the Nobel Prize with J A Pople, whose contribution had been in
Hartree–Fock-based computational methods. In the field of computational
quantum chemistry, methods based on the density functional theorem rival
if not surpass in popularity those based on the Hartree–Fock approximation.
In the field of quantum electronic structure computations in physics,
particularly in the US, density functional methods have been dominant.
Much theoretical work has been done, elucidating and refining such
methods. The qualitative difference between Hartree–Fock and density func-
tional methods is that the explicit form used for part of the density functional
is essentially empirical. Pedagogically, the work by Parr and Yang (1989)
serves as an introduction to both the basic theory and the applications of
the density functional method. Beyond that, the relevant literature is
extremely voluminous, and growing. In section 12.7.5 we show a formal
implicit relationship between the particle density � and the total energy,
involving the two-particle density matrix. The utility of this relationship,
however, has yet to be demonstrated.

12.7.3 Reduced density matrices

Let us re-examine the many-particle total energy, with a view to developing
a computational method that does not rely on one, or a few, Slater
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determinants. Let ðE; j iÞ be the total energy and its eigenstate,

E ¼ h jHj i; ð12:231Þ

where

 �  ðr1; r2; . . . ; rNÞ: ð12:232Þ

For H, we limit ourselves to the non-relativistic, field-free, spin-independent
form with two-particle interactions only, as in equation (12.2). We consider
N identical particles, fermions or bosons, for which the symmetry conditions
are, respectively,

Pij ðr1; . . . ; rNÞ ¼ 
 ðr1; . . . ; rNÞ; ð12:233Þ

where Pij is the particle pairwise interchange operator, as in equation (12.6).
For fermions, equation (12.233) is the general statement of the Pauli
principle.

Consider the external, single-particle potential contribution V to the
energy E, from equation (12.217). It is

h jV j i ¼
XN
j¼1

ð
dr1; . . . ; drN 

�ðr1; . . . ; rNÞVextð~rrjÞ ðr1; . . . ; rNÞ; ð12:234Þ

where

Vextð~rr Þ ¼ �
X
J

ZJ j~rr� ~RRJ j�1: ð12:235Þ

Consider an arbitrary term j in equation (12.234). Interchange variables r j
and r1 in the integration. Then we haveVextð~rrjÞ ! Vextð~rr1Þ. We can thereafter
interchange r j and r1 in both  � and  , introducing the factor ð
1Þ2 ¼ þ1 for
either fermions or bosons. It follows that equation (12.234) reduces to

h jV j i ¼ N

ð
dr1; . . . ; drN 

�ðr1; . . . ; rNÞVextð~rr1Þ ðr1; . . . ; rNÞ

¼ N

ð
dr : dr2; . . . ; drN 

�ðr; r2; . . . ; rNÞVextð~rr Þ ðr; r2; . . . ; rNÞ:

ð12:236Þ

Note that in this section the notation r refers to a single-particle space and
spin coordinate, unlike its meaning in earlier sections. The same kind of
result occurs for the kinetic energy, and a similar one for the pairwise inter-
actions. The net result is that the energy can be written

E ¼ N

ð
dr :dr 0 : dr3; . . . ; drN 

�ðr; r 0; r3; . . . ; rNÞ

� f� 1
2r

2 þ VextðrÞ þ 1
2 ðN � 1Þvðr; r 0Þg :  ðr; r 0; r3; . . . ; rNÞ; ð12:237Þ
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where

vðr; r 0Þ ¼ j~rr�~rr 0j�1: ð12:238Þ

Equation (12.236), in comparison with equation (12.234), shows that the
total external potential energy is simply N times a single-particle potential
energy. Given the indistinguishability of identical particles, this result
should be obvious: in a many-body system, since all particles are identical,
all must contribute equally to the energy, be it single-particle potential
energy, or kinetic energy, as seen in equation (12.237). Similarly, the two-
body energy is contributed equally by all pairs of particles in the system.
Thus the result of equation (12.237) supports the idea that indistinguish-
ability has been correctly incorporated into the formulation.

The potential energy terms in equation (12.237) simplify further, as
follows:

N

ð
dr : dr 0fVextð~rr Þ þ 1

2 ðN � 1Þvðr; r 0Þg

�
ð
dr3; . . . ; drN 

�ðr; r 0; r3; . . . ; rNÞ :  ðr; r 0; r3; . . . ; rNÞ: ð12:239Þ

The integral over ðdr3; . . . ; drNÞ is simply the probability density of finding
a specific particle at r and another specific particle at r 0. Since the identical
particles are indistinguishable, this is not an observable. Rather, we speak
of the probability density of finding any particle (a particle) at ~rr, and any
other at ~rr 0. For N particles there are NðN � 1Þ specific pairs. We therefore
define the two-particle density �2ðr; r 0; r; r 0Þ as follows:

�2ðr; r 0; r; r 0Þ ¼ NðN � 1Þ
ð
dr3; . . . ; drN 

�ðr; r 0; r3; . . . ; rNÞ

�  ðr; r 0; r3; . . . ; rNÞ: ð12:240Þ

The notation for �2 is more cumbersome than needed because we want to
generalize it as follows:

�2ðr; r 0; q; q 0Þ ¼ NðN � 1Þ
ð
dr3; . . . ; drN 

�ðr; r 0; r3; . . . ; rNÞ

�  ðq; q 0; r3; . . . ; rNÞ: ð12:241Þ

Equation (12.241) defines the two-particle density operator �2ðr; r 0; q; q 0Þ. It
is referred to as a reduced density matrix for the following reason. The
probability density for finding specific particles at ðr1; . . . ; rNÞ is

j j2 ¼  �ðr1; . . . ; rNÞ ðr1; . . . ; rNÞ

¼ hr1; . . . ; rN j ih jr1; . . . ; rNi: ð12:242Þ
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From equation (12.242) ðj ih jÞ is identified as theN-particle density operator.
In a matrix representation, it is referred to as theN-particle density matrix. If it
is averaged (integrated) over ðN � 2Þ particles, as in equation (12.241), it
becomes the two particle reduced density matrix, or, more simply, the two-
particle density matrix. The two-particle density matrix is sometimes defined
without the normalization NðN � 1Þ given in equation (12.241).

Returning to equations (12.237) and (12.239), we see that the total
energy E can be expressed in terms of �2, equation (12.241), as follows:

E ¼
ð
dr : dr 0

ð
dq : dq 0 : �ðr� qÞ�ðr 0 � q 0Þ

� fðN � 1Þ�1½� 1
2r

2
q þ VextðqÞ� þ 1

2 vðq; q
0Þg�2ðr; r 0; q; q 0Þ: ð12:243Þ

We thus see that the total energy is an explicit linear functional of �2. This
remarkable result was apparently first discovered by Husimi (1940).

The complexity of having a function of four variables, �2ðr; r 0; q; q 0Þ, is
only apparent. In fact, equation (12.243) simplifies as follows:

E ¼
�ð

dr : dqðN � 1Þ�1�ðr� qÞð�1
2r

2
qÞ
ð
dr 0 �2ðr; r 0; q; r 0Þ

þ
ð
drðN � 1Þ�1VextðrÞ

ð
dr 0 �2ðr; r 0; r; r 0Þ

þ 1

2

ð
dr : dr 0 vðr; r 0Þ�2ðr; r 0; r; r 0Þ

�
: ð12:244Þ

Thus the term in v has �2 dependent on only two variables, r and r 0. As we
saw earlier, in equation (12.222), the term in Vext isð

dr VextðrÞðN � 1Þ�1

ð
dr 0 �2ðr; r 0; r; r 0Þ ¼

ð
dr Vextð~rr Þ�ðrÞ; ð12:245Þ

where �ðrÞ is the density of particles. Thus,

�ðrÞ ¼ ðN � 1Þ�1

ð
dr 0 �2ðr; r 0; r; r 0Þ

¼ N

ð
dr2 dr3; . . . ; drN 

�ðr; r2; r3; . . . ; rNÞ :  ðr; r2; r3; . . . ; rNÞ: ð12:246Þ

The second line of equation (12.246) comes from the definition of �2,
equation (12.241). Correspondingly, we define the first-order, or single-
particle reduced density matrix, �1ðr; qÞ, as follows:

�1ðr; qÞ ¼ N

ð
dr2; . . . ; drN  

�ðr; r2; . . . ; rNÞ ðq; r2; . . . ; rNÞ

¼ ðN � 1Þ�1

ð
dr 0 �2ðr; r 0; q; r 0Þ: ð12:247Þ
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From equations (12.247) and (12.246), we see

�ðrÞ ¼ �1ðr; rÞ: ð12:248Þ

It follows from equation (12.246) thatð
dr �ðrÞ ¼ N; ð12:249Þ

from the normalization of  . Equation (12.249) is, of course, required from
the definition of particle density in an N-particle system. Finally, combining
equations (12.244), (12.245) and (12.247),

E ¼
ð
dr

�ð
dq �ðr� qÞð� 1

2r
2
qÞ�1ðr; qÞ þ VextðrÞ�ðrÞ

þ 1

2

ð
dr 0 vðr; r 0Þ�2ðr; r 0; r; r 0Þ

�
: ð12:250Þ

Thus E is a linear combination of explicit linear functionals of �1 and �2 [see
equation (12.248)]. Basically, there is only one physical constraint on this
system, namely that the number of particles should be N. From equations
(12.247)–(12.249),

NðN � 1Þ ¼
ð
dr dr 0 �2ðr; r 0; r; r 0Þ: ð12:251Þ

This expresses the constraint in terms of �2, compatible with the energy
functional, equation (12.243). Other constraints, such as given total spin or
given total angular momentum, can be expressed in terms of �2, analogous
to equation (12.251).

The derivation of equation (12.243), leading to the two-particle density
functional for a system ofN particles with two-body interactions, generalizes
to a similar linear functional of the n-particle density for systems with n-body
interactions. We reiterate these results are equally valid for bosons and
fermions.

12.7.4 The many-fermion system

Since we have an explicit energy functional in terms of �2, equation (12.143),
and a corresponding constraint, equation (12.151), we might consider the
possibility of applying the minimum-energy variational principle. In practi-
cal terms, we might consider also an expansion in terms of a complete set
of atomic-like orbitals, as in equations (12.103) and (12.110) for the
Hartree–Fock approximation. In practice, an incomplete set would have to
be endured. Denote such a set f f�ðrÞg. Then

�2ðr; r 0; q; q 0Þ ¼
X
��0

0

~cc��0

0 f�ðrÞf�0 ðr 0Þf
ðqÞf
0 ðq 0Þ; ð12:252Þ
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for an arbitrary function of four such variables. In our case, for fermions, the
Pauli principle requires the following constraints:

�2ðr; r 0; q; q 0Þ ¼ ��2ðr 0; r; q; q 0Þ ¼ ��2ðr; r 0; q 0; qÞ ¼ �2ðr 0; r; q 0; qÞ: ð12:253Þ

See the definition of �2, equation (12.241), and the requirement of the Pauli
principle, equation (12.233). The constraints of equation (12.253) can be
satisfied by introducing antisymmetrical pairs of single-particle functions:

f��0 ðr; r 0Þ ¼ 2�1=2½ f�ðrÞf�0 ðr 0Þ � f�ðr 0Þf�0 ðrÞ�: ð12:254Þ

Such pair functions are sometimes called geminals. From equations (12.253)
and (12.254) we now have

�2ðr; r 0; q; q 0Þ ¼
X
��0

0

~cc��0

0f��0 ðr; r 0Þf

0 ðq; q 0Þ: ð12:255Þ

In fact, since

f��0 ðr; r 0Þ ¼ �f�0�ðr; r 0Þ; ð12:256Þ
we can, without loss of generality, write equation (12.255) in the form

�2ðr; r 0; q; q 0Þ ¼
X

�>�0;
>
0
c��0

0 f��0 ðr; r 0Þf

0 ðq; q 0Þ: ð12:257Þ

In equations (12.252) and (12.257), note the distinction between ~cc��0

0 and
c��0

0 .

We now substitute the Fourier expansion for �2, equation (12.257),
into the total-energy and normalization equations (12.243) and (12.251)
respectively. The result is:

E ¼
X

�>�0;
>
0
c��0

0h��0

0 ; ð12:258Þ

NðN � 1Þ ¼
X

�>�0;
>
0
c��0

0n��0

0 ; ð12:259Þ

where

h��0

0 ¼
ð
dr dr 0 f��0 ðr; r 0ÞfðN � 1Þ�1½� 1

2r
2 þ VextðrÞ� þ vðr; r 0Þg f

0 ðr; r 0Þ;

ð12:260Þ

n��0

0 ¼
ð
dr dr 0 f��0 ðr; r 0Þf

0 ðr; r 0Þ: ð12:261Þ

Several features of the formalism developed here are of interest. First,
there is no self-consistent field problem. Second, there does not appear to
be a requirement that an approximation scheme must be based on any
minimum number (greater than two) of basis functions f�ðrÞ. Third,
correlation is not identified separately. However, upon examining equations
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(12.258) and (12.259), insuperable difficulties emerge. We naturally think of
applying the variational principle to the energy E, by varying the coefficients
c��0

 0 , to obtain minimum energy, subject to the constraint equation
(12.259). This does not work out, because, in the space of variables c��0

 0 ,
to be taken of finite dimension for practical computation, equations
(12.258) and (12.259) are hyperplanes. If we consider the set of independent
variables fc��0

 0 g as defining a hyperspace, denote the vector fc��0

 0 g by x.
Then equations (12.258) and (12.259) take the form

h : x ¼ E; ð12:262Þ
n : x ¼ NðN � 1Þ: ð12:263Þ

Equations (12.262) and (12.263) are represented schematically in figure 12.1,
in which the hyperplanes are represented as planes in three-dimensional
space and are viewed edge-on. For fixed n, the plane defined by its non-
unit normal n and by NðN � 1Þ, is fixed. We have�

1

n

�
n : x ¼ NðN � 1Þ

n
¼ d1; ð12:264Þ

where d1 is the perpendicular distance of the plane from the origin O.
Similarly, for given E the plane defined by its non-unit normal h and by E
is shown. In general, the two planes intersect in a line perpendicular to the
plane of the page, i.e. perpendicular to the plane of h and n, and this inter-
section fails to determine x uniquely: x may lie anywhere on the line.
Furthermore, there is no minimum value of E required to satisfy these
equations: E may become negative more than any finite negative number,
and still have the planes intersecting. In two dimensions, the value of x is
unique, but possible values of E are still unbounded below.

The question of appropriate additional constraints is still unresolved,
after more than sixty years, although it is still very much a question of
lively investigation. This is most eloquently illustrated by the recent

Figure 12.1. Illustrating hyperplanes for many-electron energy and normalization in

Fourier coefficients x of the two-particle density: see equations (12.262) and (12.263)

and associated discussion.
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volumes by Coleman and Yukalov (2000) and by Cioslowski (2000). An
important earlier source of detailed information on reduced density matrices
is the book by Davidson (1976). We can see the nature of the outstanding
problem from one point of view by re-examining the definition of �2,
equation (12.240), and the role of the Pauli principle as we have introduced
it so far, equation (12.253); see also equations (12.5) and (12.6). We have

�2ðr; r 0; q; q 0Þ ¼ NðN � 1Þ
ð
dr3; . . . ; drN  

�ðr; r 0; r3; . . . ; rNÞ

�  ðq; q 0; r3; . . . ; rNÞ; ð12:265Þ

�2ðr; r 0; q; q 0Þ ¼ ��2ðr 0r; q; q 0Þ ¼ �2ðr 0; r; q 0; qÞ: ð12:266Þ

The problem is that equation (12.266) would be satisfied by a wave function
 ðr; r 0; r3; . . . ; rNÞ that is not antisymmetric in the variables r3; . . . ; rN . The
problem of analytically representing the additional constraints needed to
fully satisfy the Pauli principle is called the N-representability problem. The
further practical problem is to correctly include Pauli-principle effects in a
viable, efficient computational approximation.

The formulation presented in this section has been presented because of
its elegance, and because of the hope that theN-representability problem can
be managed in such a way that the apparent advantages of the formulation
can be realized in a computationally efficient manner.

12.7.5 The density functional and the two-particle density operator

In section 12.7.2 we discussed the theorem of Hohenberg and Kohn, that
the ground-state energy E0 of a many-body system is a unique, unspecified
functional E0½�� of the single-particle density �ð~rr Þ, equation (12.212); see
also equation (12.230). In section 12.7.4 we saw that the total energy is an
explicit linear functional of the two-particle density �2, as in equation
(12.243):

E ¼ W ½�2�: ð12:267Þ

Furthermore, the single-particle density � is an explicit linear functional of
�2, from equations (12.247) and (12.248):

� ¼ �½�2�: ð12:268Þ

The relationships of equation (12.267) and (12.268) may provide a frame-
work within which a fruitful re-examination of the Hohenberg–Kohn
theorem can be conducted. equation (12.243) is of the form

E ¼
ð
dr dr 0 dq dq 0 hðr; r 0; q; q 0Þ�2ðr; r 0; q; q 0Þ; ð12:269Þ
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and equations (12.248) and (12.247) can be combined in the form

�ðrÞ ¼ ðN � 1Þ�1

ð
dr 0 dq dq 0 �ðq� rÞ�ðq 0 � r 0Þ�2ðr; r 0; q; q 0Þ: ð12:270Þ

Equations (12.269) and (12.270) show the formal, implicit integral relation-
ship between the total energy E and the single-particle density �, both as
explicit linear functionals of �2. This lets us see clearly why, to date, no
explicit form of the Hohenberg–Kohn density functional has been found.
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Chapter 13

Paramagnetism and diamagnetism in the

electron gas

13.1 Introduction

Magnetism is a subject of great scope, both in variety of phenomena and in
theoretical challenges. In this chapter we limit ourselves to two of the latter:
paramagnetism and diamagnetism in the electron gas. The electron gas is an
oversimplified model of conduction electrons in a metal. Paramagnetism
represents the tendency of electron spin magnetic moments to align with an
applied magnetic induction field, making a characteristic contribution to the
magnetic susceptibility of the system. Diamagnetism represents the fact that
electrons in such a field have orbits whose perpendicular projections are
circular, and the resultant current loops make a different contribution to the
magnetic susceptibility. The treatment of electron paramagnetism is
presented here in section 13.2 as a particularly instructive application of
quantum statistical thermodynamics. In section 13.3, diamagnetism is dis-
cussed, where the quantization of electron orbits in a magnetic induction
field, section 13.3.2, results in a spectacular change in the topology of the
Fermi surface, sections 13.3.3 and 13.3.4, attended by periodic variation of
the magnetic susceptibility as a function of magnetic induction field: the De
Haas–van Alphen effect (section 13.3.5). A well-known but nonetheless
surprisingly simple relationship between low-temperature paramagnetic and
diamagnetic susceptibilities is arrived at in section 13.3.6. For paramagnetism,
I have expanded somedetails ofHuang’s presentation (1967, especially sections
8.1, 8.3, 9.6, 11.1 and 11.5) in his excellent work on statistical mechanics, and
for diamagnetism I have similarly adopted Pippard’s elegant discussion at
the 1961 Les Houches Summer School [Pippard (1962, p. 11, section IIA)].

To study the subject of magnetism in a more extensive and balanced way,
the reader might consider, among others, the following: van Vleck’s (1932)
timeless, lucid exposition of susceptibilities; Morrish’s (1965) still relevant text-
book; White’s (1983) theoretical outline; Mattis’s (1987) coverage of some
modern topics; and Majlis’s (2000) contemporary textbook.
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13.2 Paramagnetism of the electron gas

13.2.1 The total energy

Consider a metal where the conduction electrons, in their interaction with the
periodic field of the rest of the crystal, may be approximated by free non-
interacting electrons with effective band mass mb [see for example Grosso
and Pastori Parravicini (2000, Chapter I, section 6)]. The electrons have
intrinsic magnetic moment ~��, according to Dirac electron theory [see for
example Sakurai (1967, section 3.3)] given by

~�� ¼ �
�
e�h

2m

�
~��; e > 0; ð13:1Þ

where ~�� are Pauli spin matrices. Consider a uniform, time-independent
magnetic induction field ~BB in the z direction,

~BB ¼ Bêe3; ð13:2Þ
where B ¼ j~BB j and êe3 is a unit vector in the z direction. Then

~�� : ~BB ¼ �3B ¼
1 0

0 �1

� �
:B; ð13:3Þ

using a representation of the Pauli matrices in which �3 is diagonal [see for
example Sakurai (1967, p. 80, footnote)]. Thus the interaction energy of
the electron’s spin magnetic moment with the ~BB field [see for example,
Greiner (1989, chapter 12)] is

�~�� : ~BB ¼ �BB�3; ð13:4Þ
where �B ¼ ½e�h=2m� is the Bohr magneton. The hamiltonian for the N-
electron system in such a ~BB-field is

H ¼
XN
j¼1

�
1

2mb

ð~ppj þ e~AAð~rrjÞÞ
2 þ �BB�3j

�
; ð13:5Þ

where ð~ppj;~rrjÞ are canonical momentum and position vector operators of
the jth electron, and ~AAð~rr Þ is the vector potential [see for example Goldstein
(1980, p. 346)]. For a sufficiently weak field, B ‘small’, the term in A2 in
equation (13.5) may be neglected.

Apart from the terms ½ p2j =ð2mbÞ�, consider the remaining terms, in
expectation value, �

1

2mb

� e � h~pp : ~AAþ ~AA :~pp i þ �BBh�3i
�
: ð13:6Þ

We take h�3i ¼ 1. Also,

ð~rr� ~AA Þ ¼ ~BB: ð13:7Þ
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Let us estimate h~pp : ~AAþ ~AA :~pp i as follows:

h~pp : ~AAþ ~AA :~pp i � 2ðmbvavÞ :B
�

�h

mbvav

�
� 2B�h: ð13:8Þ

This is done on the basis that the partial derivatives in ð~rr� ~AA Þ, equation
(13.7), render ~AA in the expectation value to be of order ~BB=ð~pp=�hÞ, on the
basis that ~pp ¼ �i�h~rr, and assuming that ~pp in the expectation value contri-
butes of order mbj~vvavj, where j~vvavj ¼ vav is some average value of the speed
of an electron in the N-electron system. Actually, of course, we know that

~vvj ¼
1

mb

ðpj þ e~AAð~rrjÞÞ: ð13:9Þ

Substituting equation (13.8) into equation (13.6), we have

ð13:6Þ �
�

e

2mb

: 2B�hþ �BB

�
¼ Be�h

mb

�
1þ mb

2m

�
; ð13:10Þ

where we have used equation (13.1) for �B. Thus the term in h~pp : ~AAþ ~AA :~pp i
will be negligible relative to the term in h�3i in equation (13.6) if

mb � 2m: ð13:11Þ
We assume this to be the case, and so consider the effective hamiltonian

H ¼
XN
j¼1

�
� �h2

2mb

r2
j þ �BB�3j

�
: ð13:12Þ

The magnetic property of such a many-electron system is called para-
magnetic. As we shall see, it simply represents the tendency of free electron
spin magnetic moments to align with an applied ~BB-field. The discussion of
section 13.2 is largely based on that of Huang (1967), especially his sections
8.3, 9.6, 11.1 and 11.5.

We can easily determine eigenstates of this paramagnetic hamiltonian,
equation (13.12). They are Slater determinants [see section 12.2.1, equation
(12.19)] consisting of products of single-particle states  ~kk;s that are simul-
taneous eigenstates of p2 and of �3. Let the eigenstates of �3 be denoted �s.
Then, from equation (13.3),

�3�s ¼ s�s ! s ¼ �1 ð13:13Þ
and

�1 ¼
1

0

� �
; ��1 ¼

0

1

� �
: ð13:14Þ

Let the eigenstates �kð~rr Þ of p2 be determined subject to Born–von Karmann
boundary conditions (see section 7.5.1). Then

’~kkð~rr Þ ¼ ��1=2 ei
~kk �~rr; ð13:15Þ
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where

� ¼ L3; k� ¼ 2�n�
L

; n� ¼ 0;�1;�2; . . . ; � ¼ 1; 2; 3: ð13:16Þ

The single-particle eigenstates of equation (13.12) are then

 ~kk;s ¼ ’~kk : �s; ð13:17Þ

or in Dirac notation j~kk; si, where

p2jk; si ¼ �h2k2j~kk; si ð13:18Þ

and

�3j~kk; si ¼ sj~kk; si: ð13:19Þ

Correspondingly, the single-particle eigenvalues "~kk;s are

"~kk;s ¼
�
�h2k2

2mb

þ �BBs

�
: ð13:20Þ

An N-electron eigenstate and the corresponding N-electron eigenvalues
contain a set of N or fewer distinct ~kk-values: N if all are of the same spin,
fewer if some ~kk values occur with both s ¼ �1. We can write the total
energy EN simply in terms of the occupancy, one or zero, in each single-
particle state j~kk; si:

EN ¼
X
~kk;s

n~kks"~kk;s ¼
X
~kk

�
n
ðþÞ
~kk

�
�h2k2

2mb

þ �BB

�
þ n

ð�Þ
~kk

�
�h2k2

2mb

� �BB

��
; ð13:21Þ

where n
ð�Þ
~kk

� n~kk;�1
is the number (zero or one) of electrons in j~kk;�1i. We

define the total number Nð�Þ of spin-up or spin-down,

Nð�Þ ¼
X
~kk

n
ð�Þ
~kk
; ð13:22Þ

and require the constraint upon equation (13.21) of total number of
electrons N,

N ¼ ðNðþÞ þNð�ÞÞ: ð13:23Þ

Then equation (13.21) simplifies to

EN ¼
�X

~kk

ðnðþÞ
~kk

þ n
ð�Þ
~kk

Þ �h
2k2

2mb

þ �BBðNðþÞ �Nð�ÞÞ
�
: ð13:24Þ

From equation (13.24), we can see that a many-electron eigenfunction can
be specified by a set of occupation numbers fnð�Þ

~kk
g, subject to the constraint

of equation (13.23) with equation (13.22). There are degeneracies among the

Paramagnetism of the electron gas 253



possible eigenvalues:

EN ¼ ENðfn
ð�Þ
~kk

gÞ: ð13:25Þ

13.2.2 The magnetic susceptibility

The magnetic susceptibility is a measure of the tendency of a material to
acquire a magnetic moment in the presence of an applied magnetic induction
field. We define the magnetic susceptibility as

��� ¼ �0

�
@M�

@B�

�
;

a second rank tensor where �0 is the permeability of free space, and ~MM is the
magnetization, i.e. the induced magnetic dipole moment per unit volume.
For a linear isotropic material,

~MM ¼ �m

�0
~BB;

where �m is a scalar, and more generally:

�m ¼ �0
@M

@B
: ð13:26Þ

These matters are reviewed, for example, in Reitz et al. (1979), sections 9.5
and 9.6. For a specific state, characterized by fnð�Þ

~kk
g, as in equation

(13.25), the magnetization is

M ¼ ��B
�

ðNðþÞ �Nð�ÞÞ ¼ ��B
�

ð2NðþÞ �NÞ; ð13:27Þ

where we have used equation (13.23).
We wish to apply equilibrium statistical thermodynamics to determine

the dependence of M on B [see equation (13.26)] as a function of tem-
perature. For this purpose, we shall need to know the thermal average
valuesN

ðþÞ
andN

ð�Þ
. We begin with the partition functionQN of the system,

QN ¼
X
fnð�Þ

~kk
g

0
exp½��ENðfn

ð�Þ
~kk

gÞ�; ð13:28Þ

where � ¼ ðkBTÞ�1, kB is Boltzmann’s constant, and T is the Kelvin tem-
perature. We shall use equation (13.24) for ENðfn

ð�Þ
~kk

gÞ. In equation
(13.28), the prime on the sum limits it to the cases

n
ð�Þ
~kk

¼ 0 or 1;
X
~kk

ðnðþÞ
~kk

þ n
ð�Þ
k Þ ¼ N; ð13:29Þ

where X
~kk

n
ðþÞ
~kk

¼ NðþÞ;
X
~kk

n
ð�Þ
k ¼ Nð�Þ ¼ ðN �NðþÞÞ: ð13:30Þ
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Using equation (13.24) in equation (13.28), we have

QN ¼ expð��BBNÞ
X
NðþÞ

0
expð�2��BBN

ðþÞÞ

�
X
n
ðþÞ
k

00
exp

�
��

X
~kk

�h2k2

2mb

n
ðþÞ
~kk0

�X
n
ð�Þ
k

000
exp

�
��

X
~kk

�h2k2

2mb

n
ð�Þ
~kk

�
: ð13:31Þ

In equation (13.31)
P0 ranges over 0 	 NðþÞ 	 N, and

P00 and
P000 are

subject to the two constraints of equations (13.30). The last two factors in
equation (13.31) are of the same form Q

ð0Þ
N 0 , where

Q
ð0Þ
N 0 ¼

X
fn~kkg

exp

�
��

X
~kk

�h2k2

2mb

n~kk

�
: ð13:32Þ

In equation (13.32), the symbol fn~kkg refers to a particular set of values of n~kk
for all ~kk that satisfy the restrictionsX

~kk

n~kk ¼ N 0; n~kk ¼ 0 or 1: ð13:33Þ

In terms of the notation of equation (13.32), the partition function, equation
(13.31) becomes

QN ¼ expð��BBNÞ
XN

NðþÞ ¼1

expð�2��BBN
ðþÞÞQð0Þ

NðþÞQ
ð0Þ
N�NðþÞ : ð13:34Þ

Now QN , the partition function, is related to the Helmholtz free energy
ANð�;TÞ by the relationship

lnQN ¼ ��ANð�;TÞ; ð13:35Þ

see Huang (1967), section 8.1. Let us define Að0ÞðNÞ by

A
ð0Þ
N ¼ � 1

�
lnQ

ð0Þ
N � Að0ÞðNÞ: ð13:36Þ

Then, from equations (13.34) to (13.36), the Helmholtz free energy per
particle is

1

N
Að�;TÞ ¼ � 1

N�
lnQN

¼
�
��BB� 1

N�
ln
X
NðþÞ

exp½�gðNðþÞ�
�
; ð13:37Þ

where

gðNðþÞÞ ¼ f�2�BBN
ðþÞ � Að0ÞðNðþÞÞ � Að0ÞðN �NðþÞÞg: ð13:38Þ
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Now in equation (13.37), the (ln
P

) term is of the form

ln

�XN
n¼0

xn

�
: ð13:39Þ

Let xM be the largest of the values of xn. Then

ln

�XN
n¼0

xn

�
¼ ln

�
xM

�
1þ

X
n

0 xn
xM

��

¼
�
lnðxMÞ þ ln

�
1þ

X
n

0 xn
xM

��
: ð13:40Þ

Now all of the terms summed in the second term of equation (13.40) are less
than or equal to one. In the term

P0
n, the prime indicates a sum over only N

terms. Thus, for large N

ln

�
1þ

X
n

0 xn
xM

�
9 lnðN þ 1Þ � lnðNÞ: ð13:41Þ

It follows from equations (13.40) and (13.41) that

ln

�XN
n¼0

xn

�
¼ lnðxMÞ þOðlnNÞ; ð13:42Þ

whereOðNÞ indicates ‘of the order ofN’. We now return to equation (13.37),
and identify N

ðþÞ
as the value of NðþÞ that maximizes gðNðþÞÞ. Applying the

results of equations (13.39)–(13.42), we have

1

N
Að�;TÞ ¼

�
��BB� 1

N�
ln½expð�gðNðþÞÞÞ� � 1

N�
OðlnNÞ

�
: ð13:43Þ

From the definition of g, equation (13.38), we see that equation (13.43)
reduces to

1

N
Að�;TÞ � ��BB� 1

N�
� f�2�BBN

ðþÞ � Að0ÞðNðþÞÞ � Að0ÞðN �N
ðþÞg

¼
�
��BB

�
1� 2N

ðþÞ

N

�
þ 1

N
½Að0ÞðNðþÞÞ þ Að0ÞðN �N

ðþÞ�
�
;

ð13:44Þ

where in equation (13.44) we have neglected the small termOðN�1 lnNÞ from
equation (13.43). In equation (13.44) we see contributions to ðN�1AÞ from
spin-up and spin-down parts of the system in the absence of magnetic
induction field B, plus the B-dependent contribution.

We now observe that the equilibrium value of N
ðþÞ

will minimize the
Helmholtz free energy A under the given conditions of temperature and

256 Paramagnetism and diamagnetism in the electron gas



field. Thus N
ðþÞ

is determined by

1

N

@A

@N
ðþÞ ¼

2�BB

N
þ 1

N

�
@Að0ÞðNðþÞÞ
@N

ðþÞ þ @

@N
ðþÞ A

ð0ÞðN �N
ðþÞÞ

�
¼ 0;

ð13:45Þ

having used equation (13.44) for A. From equation (13.45) we have N
ðþÞ

determined by

�
@Að0ÞðNðþÞÞ
@N

ðþÞ � @Að0ÞðN �N
ðþÞÞ

@ðN �N
ðþÞÞ

�
¼ �2�BB: ð13:46Þ

We recall from equations (13.36) and (13.32) that Að0ÞðnÞ is the Helm-
holtz free energy of a gas of n fermions all of the same spin. From classical
thermodynamics, we then have

@A0ÞðnÞ
@ðnÞ ¼ �ð0ÞðnÞ; ð13:47Þ

where �ð0ÞðnÞ is the chemical potential per particle. From equations (13.46)
and (13.47) we then have

f�ð0ÞðNðþÞÞ � �ð0ÞðN �N
ðþÞÞg ¼ �2�BB: ð13:48Þ

The left-hand side of equation (13.48) is simply the difference in chemical
potential between spin-up and spin-down particles in our original Fermi
gas. When the solution for N

ðþÞ
is substituted for NðþÞ in equation (13.27),

we obtain the magnetization as a function of B, whence the magnetic suscept-
ibility, equation (13.26).

13.2.3 Solution at low temperature

It remains to determine the explicit functional dependence of the chemical
potential �ð0Þ onN

ðþÞ
in equation (13.48). We approach it from the viewpoint

of the grand partition function, bearing in mind that the system in question is
a Fermi gas of particles all of the same spin. According to Huang (1967),
section 8.3, the grand partition function Q is

Q ¼
X1
N¼0

Q
ð0Þ
N expðN��ð0ÞÞ: ð13:49Þ

With equation (13.32), this can be written as

Q ¼
X1
N¼0

zN
X
fn~kkg

0
exp

�
��

X
~kk

n~kk "~kk

�
: ð13:50Þ
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In equation (13.50), we have substituted

z ¼ expð��ð0ÞÞ; ð13:51Þ

"~kk ¼
�h2k2

2mb

: ð13:52Þ

Also, the prime on the sum indicates that the possible values of n~kk are limited
to zero and one, such that X

~kk

n~kk ¼ N: ð13:53Þ

Equation (13.50) can therefore be written as

Q ¼
X1
N¼0

X
fn~kkg

0 Y
~kk

½z expð��"~kkÞ�
n~kk : ð13:54Þ

Now the double summation contains all sets of n~kk adding up to N ¼ 0;
N ¼ 1; . . . to infinity. The product is of the formY

~kk

ðx~kkÞ
n~kk : ð13:55Þ

Thus in the double sum in equation (13.54), each term contains as many
factors as there are ~kk values, see equation (13.16), but the powers of x~kk
that occur span all possibilities n ¼ 0; 1; 2; . . . ;1. Thus equation (13.54) is

Q ¼
Y
~kk

½ðx~kkÞ
0 þ ðx~kkÞ

1� ¼
Y
~kk

f1þ z expð��"~kkÞg: ð13:56Þ

We now obtain the thermal average N
ðþÞ

of the number of particles.
From equation (13.50) with equation (13.32), the thermal average is

N
ðþÞ ¼ 1

Q

X1
N¼0

NzNQ
ð0Þ
N ¼ z

@

@z
lnQ: ð13:57Þ

From equation (13.56) this becomes

N
ðþÞ ¼ z

@

@z
ln

�Y
~kk

½1þ z expð��"~kk �
�

¼ z
@

@z

�X
~kk

ln½1þ z expð��"~kk �
�

¼ z
X
~kk

expð��"~kkÞ
½1þ z expð��"~kkÞ�

¼
X
~kk

1

½z�1 expð�"kÞ þ 1�
: ð13:58Þ
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We convert the sum to an integral,

N
ðþÞ ¼

X
~kk

n~kk ¼
ð
d3k dð~kk Þnð~kk Þ ð13:59Þ

where the density dð~kk Þ of points in ~kk space is

dð~kk Þ ¼
�
ð2�Þ3

�

��1

¼ �

ð2�Þ3
: ð13:60Þ

From equation (13.58) we identify the thermal average nð~kk Þ of the particle
distribution,

nð~kk Þ ¼
�
z�1 exp

�
��h2k2

2mb

�
þ 1

��1

: ð13:61Þ

From equations (13.59)–(13.61) we have

N
ðþÞ ¼ �

ð2�Þ3
4�

ð1
0

dk k2
�
z�1 exp

�
��h2k2

2mb

�
þ 1

��1

¼ �

2�2

�
2mb

��h2

�3=2 ð1
0

du u2½z�1 expðu2Þ þ 1��1
; ð13:62Þ

where

u2 ¼ ��h2k2

2mb

: ð13:63Þ

Equation (13.62) gives N
ðþÞ

as a function of z and �, or from equations
(13.51) and the definitions

z ¼ expð��ð0ÞÞ; � ¼ ðkBTÞ�1; ð13:64Þ

we have N
ðþÞ

as a function of T and chemical potential �ð0Þ. Inverting that
relationship would give �ð0Þ as a function of N

ðþÞ
and T , from which

equation (13.48) could, in principle, be solved for N
ðþÞ

as a function of B
and T . We proceed to carry out this process in the low-temperature approx-
imation in this section, and at high temperature in the next section.

First we rewrite equation (13.62),

	3N
ðþÞ

�
¼ 4ffiffiffi

�
p

ð1
0

du u2½z�1 expðu2Þ þ 1��1
; ð13:65Þ

where

	 ¼
�
2��h2�

mb

�1=2
: ð13:66Þ
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From equation (13.64), define

�ð0Þ

kBT
¼ 
; ð13:67Þ

so that z ¼ e
, and the integral in equation (13.65) becomesð1
0

du u2½expðu2 � 
Þ þ 1��1; t ¼ ðu2 � 
Þ; ð13:68Þ

¼
ð1
�


dt
1

2
ðtþ 
Þ1=2½expðtÞ þ 1��1; integrate by parts

¼ 1

2

�
2

3
ðtþ 
Þ3=2½expðtÞ þ 1��1

����
1

�


� 2

3

ð1
�


dtðtþ 
Þ3=2ð�1Þ½expðtÞ þ 1��2 expðtÞ
�

¼ 1

3

ð1
�


dt
ðtþ 
Þ3=2

ðet þ 1Þ2
et: ð13:69Þ

In equation (13.69) we have used the result, verifiable by using L’Hôpital’s
rule twice, that

lim
t!1

ðtþ 
Þ3=2

ðet þ 1Þ ¼ 0: ð13:70Þ

Relating to equation (13.69), consider

ð�

�1

dt
ðtþ 
Þ3=2et

ðet þ 1Þ2
¼

ð0
�1

dy
y3=2eye�


½eðy� 
Þ þ 1�2
� e�
; y ¼ ðtþ 
Þ: ð13:71Þ

Now for small T , 
 ¼ ��ð0Þ is large, so the integral in equation (13.71) is
negligible. Thus equation (13.69) is approximately

1

3

ð1
�1

dt
ðtþ 
Þ3=2et

ðet þ 1Þ2
: ð13:72Þ

Now, for large 
,

ðtþ 
Þ3=2 ¼ 
 3=2

�
1þ t




�3=2
� 
 3=2

�
1þ 3

2

t



þ 3

8

t2


 2
þ 
 
 


�
ð13:73Þ

for t < 
. Furthermore the integrand in equation (13.72) goes to zero as
t ! �1. Thus we may write, approximately for equations (13.69) and
(13.72),

1

3

�

 3=2

ð1
�1

dt et

ðet þ 1Þ2
þ 
�1=2 3

8

ð1
�1

dt t2et

ðet þ 1Þ2
�
; ð13:74Þ
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to second order, the first-order term being zero because its integrand has odd
parity, and the region of integration is symmetrical. The first integral isð1

�1

dt et

ðet þ 1Þ2
¼

ð1
�1

d

�
�1

ðet þ 1Þ

�
¼ 1: ð13:75Þ

The second integral may be transformed into a Riemann zeta function, asð1
�1

dt t2et

ðet þ 1Þ2
¼ lim

	!1

@

@	

�
2

ð1
0
dt t

�
�1

ðe	t þ 1Þ

��

ðu ¼ 	tÞ ! ¼ lim
	!1

@

@	

�
� 2

	2

ð1
0

du u

ðeu þ 1Þ

�
: ð13:76Þ

Now, from Jahnke and Emde (1945), p. 269, the Riemann zeta function �ðnÞ
is

�ðnÞ ¼ 1

ð1� 21�nÞ
1

ðn� 1Þ!

ð1
0

du un�1

ðeu þ 1Þ ; ð13:77Þ

whence

�ð2Þ ¼ 2

ð1
0

du u

ðeu þ 1Þ ; ð13:78Þ

and equation (13.76) reduces toð1
�1

dt t2et

ðet þ 1Þ2
¼ 2�ð2Þ: ð13:79Þ

From Jahnke and Emde (1945), p. 272,

�ð2Þ ¼ 2�2

ð2!Þ
1

6
¼ �2

6
: ð13:80Þ

Thus combining equations (13.65), (13.69), (13.74), (13.75), (13.79) and
(13.80), we have

	3N
ðþÞ

�
¼ 4ffiffiffi

�
p 1

3

�

 3=2 þ �2

8

�1=2

�
: ð13:81Þ

We solve equation (13.81) first in lowest order,

	3N
ðþÞ

�
¼ 4

3
ffiffiffi
�

p 
 3=2: ð13:82Þ

Now in equations (13.58) and (13.59) we introduced the quantity

n~kk ¼ ½z�1 expð�"~kkÞ þ 1��1 ð13:83Þ

which from equation (13.59) has the meaning of the thermal average of n~kk,
the number of particles in state ~kk. We also recall from equations (13.64)
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and (13.67) that

z ¼ e
: ð13:84Þ
Thus

n~kk ¼ ½expð�"~kk � 
Þ þ 1��1: ð13:85Þ

From equation (13.67),


 ¼ ��ð0Þ; ð13:86Þ
so equation (13.85) is

n~kk ¼ fexp½�ð"~kk � �ð0ÞÞ� þ 1g�1
: ð13:87Þ

From equation (13.82) with equation (13.86), we evaluate �ð0Þ:

�ð0Þ ¼ 1

�

�
	3N

ðþÞ
3

ffiffiffi
�

p

4�

�2=3

¼
�
2��h2

mb

��
3

ffiffiffi
�

p
N

ðþÞ

4�

�2=3

¼ �h2

2mb

�
6�2N

ðþÞ

�

�2=3
; ð13:88Þ

where we have used equation (13.66), the definition of 	, in the first step of
equations (13.88). In the limit of low temperature, T ! 0, � ! 1, we
denote �ð0Þ by "

ð0Þ
F , the Fermi energy,

"
ð0Þ
F ¼ �h2

2mb

ð6�2�ð0ÞÞ2=3 ð13:89Þ

where

lim
T!0

�
N

ðþÞ

�

�
¼ N

�
� �ð0Þ; ð13:90Þ

the particle density. Then equation (13.87) for the occupation numbers n~kk at
T ¼ 0 becomes

n~kk ¼ lim
�!1

fexp ½�ð"~kk � "
ð0Þ
F Þ� þ 1g

�1

¼ 0 for "~kk > "
ð0Þ
F ;

¼ 1 for "k 	 "
ð0Þ
F : ð13:91Þ

From equation (13.89), we denote the quantity

ð6�2�ð0ÞÞ1=3 ¼ k
ð0Þ
F ; ð13:92Þ
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the Fermi wave number. For particles all of one spin, it is the largest occupied
value of j~kk j. We can see this as,

ðkð0Þ
F

0
d3k dð0Þð~kk Þ ¼ N; ð13:93Þ

whence from equation (13.60),

N ¼ 4�

ðkð0Þ
F

0
dk k2

�
�

ð2�Þ3
�
¼ �

1

2�2
k
ð0Þ3
F

3
; ð13:94Þ

in agreement with equation (13.92).
Now returning to equation (13.86), in zeroth order, in the limit T ¼ 0,

�ð0Þ ¼ kBT
 ¼ "
ð0Þ
F ðT ¼ 0Þ: ð13:95Þ

This shows clearly that for low temperature, 
 is large. Referring to equation
(13.81), we had, to second order,

	3N
ðþÞ

�
� 4

3
ffiffiffi
�

p 
 3=2

�
1þ �2

8
 2

�
: ð13:96Þ

Now N
ðþÞ

is determined, in non-zero field, from equation (13.48). To get 
,
or �ð0Þ, from equation (13.96) in terms of N

ðþÞ
, we approximate the second

order term, in 
�2, at T ¼ 0,

�2

8
 2
� �2

8

�
kBT

"
ð0Þ
F

�2
; ð13:97Þ

having used equation (13.95). We then solve equation (13.96) with equation
(13.97):


 3=2 � 3
ffiffiffi
�

p
	3N

ðþÞ

4�

�
1þ �2

8

�
kBT

"
ð0Þ
F

�2� ð13:98Þ

or


 �
�
3

ffiffiffi
�

p
	3N

ðþÞ

4�

�2=3�
1� 2

3

�2

8

�
kBT

"
ð0Þ
F

�2�
: ð13:99Þ

having used

ð1þ �Þ�2=3 � ð1� 2
3�Þ; �� 1: ð13:100Þ

Now, we are considering an electron gas of N electrons that may be either
spin-up or spin-down, whereas "

ð0Þ
F is determined for electrons all of the

same spin. The density of states dð~kk Þ for electrons of either spin is double
that for a single spin, dð0Þð~kk Þ, preceding equation (13.94), so the Fermi
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wave number kF, from equation (13.94) is

kF ¼ ð3�2N=�Þ1=3 ð13:101Þ

and the Fermi energy, from equation (13.89) becomes

"F ¼ �h2

2mb

ð3�2N=�Þ2=3: ð13:102Þ

Thus, from equation (13.89),

"
ð0Þ
F ðNÞ ¼ �h2

2mb

ð3�22N=�Þ2=3 ¼ "Fð2NÞ; ð13:103Þ

see equation (13.102). In equation (13.99), with equation (13.66),

�
3

ffiffiffi
�

p
	3N

ðþÞ

4�

�2=3

¼
�
3

ffiffiffi
�

p
N

ðþÞ

4�

�2=3 2��h2�

mb

¼ ��h2

2mb

ð6�2NðþÞ
=�Þ2=3 ¼ �"Fð2N

ðþÞÞ; ð13:104Þ

having also used equation (13.103). Thus equation (13.99) takes the form


ðNðþÞÞ � �"Fð2N
ðþÞÞ

�
1� 1

12

�
�

�"Fð2N
ðþÞÞ

�2�
: ð13:105Þ

In order to determine N
ðþÞ

, we need to solve equation (13.48), where the
second term is

�ð0ÞðN �N
ðþÞÞ ¼ �ð0ÞðNð�ÞÞ: ð13:106Þ

In equation (13.106), we therefore have again the chemical potential for
particles of one spin, namely, spin down. Thus, equation (13.105) can be
adapted, as follows:


ðN �N
ðþÞÞ ¼ �"Fð2ðN �N

ðþÞÞÞ
�
1� 1

12

�
�

�"Fð2ðN �N
ðþÞÞÞ

�2�
:

ð13:107Þ

Then from equation (13.86), with equations (13.105), (13.107) and (13.48),
we have�

½"Fð2N
ðþÞÞ � "Fð2N � 2N

ðþÞÞ�

� 1

12

�
�

�

�2� 1

"Fð2N
ðþÞÞ

� 1

"Fð2N � 2N
ðþÞÞ

��
¼ �2�BB: ð13:108Þ
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We can make equation (13.108) appear more malleable by introducing

r ¼
�
2N

ðþÞ

N
� 1

�
; 2N

ðþÞ ¼ Nð1þ rÞ ð13:109Þ

where we note that, since 0 	 NðþÞ 	 N,

�1 	 r 	 1: ð13:110Þ

Now referring to the definition of "F, equation (13.103), we see

"FðNð1� rÞÞ ¼ "FðNÞð1� rÞ2=3: ð13:111Þ

Thus, substituting equations (13.109) and (13.111) into equation (13.108), we
have

�
½ð1þ rÞ2=3 � ð1� rÞ2=3� � 1

12

�
�

�"FðNÞ

�2

� ½ð1þ rÞ�2=3 � ð1� rÞ�2=3�
�

¼ �2�BB

"FðNÞ : ð13:112Þ

In equation (13.112), consider first the low-temperature limit, T ! 0,
� ! 1. Now from equation (13.110), namely the requirement that
N

ðþÞ 	 N, we see that jrj 	 1. Thus, we expand as follows:

½ð1þ rÞ2=3 � ð1� rÞ2=3� � ½ð1þ 2
3 rþ 
 
 
Þ � ð1� 2

3 rþ 
 
 
Þ� � 4
3 r: ð13:113Þ

Then for equations (13.112) and (13.113) to be consistent with jrj 	 1 we
require

�1 	 r �
�
�3�BB

2"FðNÞ

�
	 0: ð13:114Þ

The present results will therefore only be valid for relatively weak field, in the
sense of equation (13.114). For still weaker field,

B � 2"FðNÞ
3�B

; ð13:115Þ

we have, from equation (13.109),

r ¼
�
2N

ðþÞ

N
� 1

�
�

�
�3�BB

2"FðNÞ

�
ð13:116Þ

or

N
ð�Þ � N

2

�
1� 3�BB

2"FðNÞ

�
: ð13:117Þ

We note that this gives the reasonable result that at zero field, N
ðþÞ ¼

N
ð�Þ ¼ ðN=2Þ:

Paramagnetism of the electron gas 265



For the first-order correction to equation (13.116), we expand

½ð1þ rÞ�2=3 � ð1� rÞ�2=3� � � 4
3 r: ð13:118Þ

With equations (13.118) and (13.113), equation (13.112) becomes

4

3
r

�
1þ 1

12

�
�

�"FðNÞ

�2�
� �2�BB

"FðNÞ ; ð13:119Þ

or

r � �3�BB

2"FðNÞ

�
1� 1

12

�
�

�"FðNÞ

�2�
: ð13:120Þ

We are finally in a position to evaluate the magnetic susceptibility �,
from equation (13.26) with equations (13.27), (13.109) and (13.120). We have

M ¼ ��B
�

ð2NðþÞ �NÞ ¼ ��B�ð0Þr

� 3�2B�
ð0ÞB

2"FðNÞ

�
1� 1

12

�
�kBT

"FðNÞ

�2�
ð13:121Þ

where recall that �B, the Bohr magneton is

�B ¼
�
e�h

2m

�
;

and

�ð0Þ ¼ N

�
; � ¼ ðkBTÞ�1:

It follows from equation (13.121) with equation (13.26) that the para-
magnetic susceptibility �p at low temperature is

�p ¼
�0M

B
¼ 3�2B�

ð0Þ�0
2"FðNÞ

�
1� 1

12

�
�kBT

"FðNÞ

�2�
: ð13:122Þ

This is a parabola, opening downward, as shown schematically in figure 13.1.
In equations (13.121) and (13.122), M and �p are thermal averages in the
sense of statistical thermodynamics. Note also that, in equation (13.122),

"FðNÞ ¼ �h2

2mb

ð3�2�ð0ÞÞ2=3; ð13:123Þ

from equation (13.103).

13.2.4 Solution at high temperature

We return to the general relationship, for all temperatures T , for N
ðþÞ

,
equation (13.65). From the definition of 	, equation (13.66), we see that

	3N
ðþÞ

�
� 1

ðkBTÞ3=2
; ð13:124Þ
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provided, as we expect and as we shall show, N
ðþÞ

is approximately indepen-
dent of T at high temperature. Thus the integral in equation (13.65) must go
to zero as T ! 1. Now the integral goes to zero (from above) as z ! 0þ.
Furthermore, the integral increases monotonically with z > 0, and therefore
does not approach zero for any other value of z.

Proof:

@

@z

ð1
0

du u2

ðz�1eu
2 þ 1Þ

¼
ð1
0

du u2eu
2

ðeu2 þ zÞ2
> 0: ð13:125Þ

Thus the Taylor series expansion of the integral about z ¼ 0 must apply for
high temperature:

ð1
0

du u2

ðz�1eu
2 þ 1Þ

� z lim
z!0þ

ð1
0

du u2eu
2

ðeu2 þ zÞ2

¼ z

ð1
0
du u2e�u2 ¼

ffiffiffi
�

p

4
z: ð13:126Þ

Thus, from equations (13.65) and (13.126),

	3N
ðþÞ

�
� expð��ð0ÞÞ; ð13:127Þ

having used equation (13.51). Inverting equation (13.127), we have

�ð0ÞðNðþÞÞ � 1

�
ln

�
	3N

ðþÞ

�

�
: ð13:128Þ

Figure 13.1. Paramagnetic susceptibility �P of the electron gas (schematic) as a function of

temperature T , for weak field B < ð2"FÞ=ð3�BÞ, equation (13.115), showing parabolic

behaviour �P ¼ �0ð1� T2Þ at low temperature and �P � T�1 at high temperature: see

equations (13.122) and (13.136) respectively.
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Substituting equation (13.128) into equation (13.48), and using the notation
of equations (13.109), we have�

ln

�
	3

�

N

2
ð1þ rÞ

�
� ln

�
	3

�

N

2
ð1� rÞ

��
¼ �2�B�B; ð13:129Þ

or

ln

�
1þ r

1� r

�
¼ �2�B�B; ð13:130Þ

whose solution is �
1þ r

1� r

�
¼ expð�2�B�BÞ; ð13:131Þ

r ¼ ½expð�2�B�BÞ � 1�
½expð�2�B�BÞ þ 1� ¼ � tanhð�B�BÞ; ð13:132Þ

Now from the first line of equations (13.121), this gives, for the magnetization,

M ¼ ��B�ð0Þr ¼ �B�
ð0Þ tanhð�B�BÞ; ð13:133Þ

for high temperature. Thus the high-temperature, paramagnetic suscepti-
bility, �p from equation (13.26) is

�p ¼ �0
@M

@B
¼ �0�

2
B�

ð0Þ�½sechð�B�BÞ�2 �
1

ðkBTÞ : ð13:134Þ

As in section 13.2.3, consider weak field, equation (13.115). Then denote
x ¼ ð�B�BÞ, and consider

ðsech xÞ2 ¼ 4

ðex þ e�xÞ2

� 4

½ð1þ xþ 1
2 x

2 þ 
 
 
Þ þ ð1� xþ 1
2 x

2 
 
 
Þ�2

� 4

ð2þ x2Þ2
� 4

ð4þ 4x2Þ
¼ 1

ð1þ x2Þ
� ð1� x2Þ: ð13:135Þ

Thus, in lowest order of weak-field approximation, equations (13.134) and
(13.135) give

�p �
�0�

2
B�

ð0Þ

ðkBTÞ : ð13:136Þ

This high-temperature behavior is shown in figure 13.1, along with the
low-temperature case, equation (13.122). From this figure we can see the
qualitative dependence of the paramagnetic susceptibility of the electron
gas over the whole range 0 	 T <1.
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13.3 Diamagnetism of the electron gas

13.3.1 Introduction

We refer back to section 13.2.1, where, in weak magnetic induction field ~BB,
the effective hamiltonian for a system of metallic electrons of band mass
mb is given in equation (13.6). In section 13.2 we discussed paramagnetism
based on the approximation of equation (13.11). Paramagnetism arises
from the tendency of the intrinsic magnetic dipole moment of electrons to
align with an applied magnetic induction field, producing magnetization
parallel to the field, and a characteristic magnetic susceptibility, shown
schematically in figure 13.1. We now consider the opposite case:

mb � m: ð13:137Þ

This will lead us to diamagnetic properties. If neither equation (13.11) or
(13.137) applies, then themagnetic properties of the approximately freemetallic
electrons will be a combination of paramagnetic and diamagnetic features.

We are familiar, presumably, with the fact that the Lorentz force upon a
charged particle in a magnetic induction field causes the particle to follow an
orbit centered on an axis parallel to the field. The orbit is that of a circular
helix if the particle has a velocity component parallel to the field, and
simply circular if not. The Lorentz force for an electron is

~FF ¼ �eð~vv� ~BB Þ; ð13:138Þ

where ~vv is the electron’s velocity, and ~BB is the magnetic induction field.
Looking along the direction of ~BB, we would see the electron circling clock-
wise, from the right-hand rule for the vector cross product. This constitutes
a counterclockwise electrical current, because of the electron’s negative
charge (�e). Such a counterclockwise current loop is associated with a
magnetic dipole moment oriented in the direction opposite to ~BB. Thus, the
contribution of electrons in an electron gas to the magnetization due to
the Lorentz force is expected to be in the direction opposite to ~BB, and the
corresponding magnetic susceptibility is expected to be negative. It can be
shown that for classical charged particles in thermal equilibrium this, and
all other magnetic effects, are zero, a result known as van Leeuwen’s
theorem. [For a succinct proof, see Ashcroft and Mermin (1976, p. 646, fn.
7.)] In quantum systems, however, the result is not zero, and the effect is
called diamagnetism. In this chapter we shall discuss only the low tempera-
ture limit: T ¼ 0. This leads us, in section 13.3.2, to the de Haas–van
Alphen effect, an oscillatory dependence of magnetization on ~BB field. In
section 13.3.3 we obtain the low-temperature susceptibility, and compare it
with the corresponding paramagnetic susceptibility. Section 13.3 is largely
based on Pippard (1962). Other insightful discussions are given by Madelung
(1978, section 2.1.2) and by Huang (1967, sections 11.3–11.4).
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13.3.2 The Landau levels

We now consider the high-field case, for the electron gas, equation (13.5),
omitting the paramagnetic term:

H �
XN
j¼1

�
1

2mb

�
ð~ppj þ e~AAð~rrjÞÞ

2
: ð13:139Þ

We choose a specific gauge, in which

~AA ¼ Bx"̂"2; ð13:140Þ

where position vector~rr has cartesian components ðx; y; zÞ, and "̂"j ð j ¼ 1; 2; 3Þ
are unit vectors in the ðx; y; zÞ directions. This ensures that, from equation
(13.140),

ð~rr� ~AA Þ ¼ B"̂"3 ¼ ~BB; ð13:141Þ

with ~BB in the z direction. From equations (13.139) and (13.140),

H ¼ 1

2mb

X
j

ð~ppj þ eBxj "̂"2Þ2: ð13:142Þ

Because there are no electron–electron interactions in our effective hamil-
tonian equation (13.142), the total energy at the Hartree–Fock level will be
the sum of N eigenvalues of the single particle hamiltonian (Fock operator):

H1 ¼
1

2mb

ð~ppþ eBx"̂"2Þ2: ð13:143Þ

We note that, from equation (13.143),

½p3;H1� ¼ ½p2;H1� ¼ 0; ð13:144Þ

where ½p	;H1� is the commutator,

½p	;H1� � ðp	H1 �H1p	Þ; ð13:145Þ

and 	 labels cartesian components. Equation (13.144) says that p3 and p2 are
conserved quantities. Initially, this seems counterintuitive, because the
physical system is cylindrically symmetrical about the direction of ~BB, i.e.:
the z or "̂"3 direction, and so why is p2 conserved? We defer this question,
remarking only that ~pp is the canonical momentum, not to be confused with
m~vv, where ~vv is the electron’s velocity.

In position representation,

~pp ¼ �i�h~rr; ð13:146Þ

and the eigenstates of p3 and p2 satisfy

p	’	 ¼ �hk	’	; ð13:147Þ
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whence, from equations (13.146) and (13.147),

’3 � expðik3zÞ; ’2 � expðik2yÞ: ð13:148Þ

The full single-particle eigenfunctions are thus

’ð~rr Þ ¼ exp½iðk2yþ k3zÞ� f ðxÞ: ð13:149Þ

From equations (13.143) and (13.149), the single-particle Schrödinger (or
Fock) equation becomes

H1’ ¼ 1

2mb

½p2 þ eBðp2xþ xp2Þ þ ðeBxÞ2�’

¼ 1

2mb

½p21 þ �h2ðk22 þ k23Þ þ 2eBx�hk2 þ ðeBxÞ2�’ ¼ "’; ð13:150Þ

where " is the single-particle energy eigenvalue. With equation (13.149), this
reduces to �

1

2mb

p21 þ
�
m

mb

��
eB

m

�
�hk2xþ �h2

2mb

ðk22 þ k23Þ

þ 1

2

�
m2

mb

��
eB

m

�2
x2
�
f ðxÞ ¼ "f ðxÞ: ð13:151Þ

We now introduce the cyclotron frequency !c (actually, angular frequency)
for a free electron:

!c ¼
�
eB

m

�
; ð13:152Þ

Then equation (13.151) becomes
�

1

2mb

p21 þ
1

2
mb

�
m!c

mb

�2
x2 þ

�
m!c

mb

�
�hk2x

�
f

¼
�
"� �h2

2mb

ðk22 þ k23Þ
�
f : ð13:153Þ

For the terms in x2 and x on the left-hand side of equation (13.153), complete
the square, as follows:�

1

2
mb ~!!

2
cx

2 þ ~!!c�hk2x

�

¼
�
1

2
mb ~!!

2
c

�
x2 þ 2

�
�hk2
mb ~!!c

�
xþ

�
�hk2
mb ~!!c

�2�
�
�
�h2k22
2mb

��

¼
�
1

2
mb ~!!

2
cðx 0Þ2 �

�
�h2k22
2mb

��
: ð13:154Þ
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In equation (13.154), we have introduced x0 in terms of x0, and ~!!c, where

~!!c ¼
m

mb

!c; x 0 ¼ ðxþ x0Þ; x0 ¼
�

�hk2
mb ~!!c

�
: ð13:155Þ

Now, in equation (13.153),

p1 ¼ �i�h
@

@x
¼ �i�h

@

@x 0 ¼ p01: ð13:156Þ

Thus equation (13.153) with equations (13.154)–(13.156) becomes�
1

2mb

ðp01Þ2 þ
1

2
mb ~!!

2
cðx 0Þ2

�
gðx 0Þ ¼

�
"� �h2k23

2mb

�
gðx 0Þ; ð13:157Þ

where, through equation (13.155),

gðx 0Þ ¼ f ðxÞ: ð13:158Þ

The left-hand side of equation (13.157) contains the hamiltonian of a
harmonic oscillator on the x-axis about the center x ¼ �x0, whose eigen-
values are�

"� �h2k23
2mb

�
¼

�
nþ 1

2

�
�h~!!c; n ¼ 0; 1; 2; . . . ; ð13:159Þ

whence the single particle energies " are

"ðn; k3Þ ¼
��

nþ 1

2

�
�h~!!c þ

�h2k23
2mb

�
: ð13:160Þ

Referring to equation (13.160), we see that the ~kk-space geometry only
enters the solution through k3, even though p2 is conserved: see equation
(13.144) and discussion following it. The momentum components �hk1 and
�hk2 associated with a free electron only enter the motion through the
harmonic oscillator states gðx 0Þ, equations (13.157) and (13.158).

We can now examine the relationship between the corresponding
classical oscillator and our expectation that the classical motion is circular
when projected on the x–y plane, with angular frequency ~!!c, even though
the gauge which we have chosen, equation (13.140), gives a hamiltonian
that appears to be biased in the y-direction, equation (13.143). For
uniform circular motion in the x–y plane with radius R about the point
x ¼ �x0 [see equation (13.155)], y ¼ 0, with angular frequency ~!!c, we have

x ¼ �x0 þ R cosð~!!ctÞ; v1 ¼ �~!!cR sinð~!!ctÞ;
y ¼ R sinð~!!ctÞ; v2 ¼ ~!!cR cosð~!!ctÞ:

ð13:161Þ

From equations (13.161) we see that

v2 ¼ ~!!cðxþ x0Þ: ð13:162Þ
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Now, from the hamiltonian formulation,

v2 ¼
1

mb

ðp2 þ eBxÞ; ð13:163Þ

see equation (13.143). In equation (13.163), p2 is constant [from equation
(13.144)], and from equation (13.147) its value has been taken to be ð�hk2Þ.
Thus, with equations (13.155) and (13.152), equation (13.163) becomes

v2 ¼
1

mb

ð�hk2 þ eBxÞ ¼
�
�hk2
mb

þ ~!!cx

�
¼ ~!!cðxþ x0Þ: ð13:164Þ

What we have shown is that v2, as determined from our original hamiltonian,
equation (13.143), with the gauge given in equation (13.140), which appears
to destroy the cylindrical symmetry of the system about the z-axis, in fact
does not do so, but leaves v2 (distinct from (p2=m)) in the form required
for uniform circularmotion in the x–y plane about x ¼ �x0, y ¼ 0, expressed
by the one-dimensional harmonic oscillator part of equation (13.157). For the
free electron gas, the energy of an electron is given by

�h2

2mb

ðk21 þ k22 þ k23Þ: ð13:165Þ

In a magnetic induction field in the z-direction, the term in k23 is maintained
where k� (� ¼ 1; 2; 3) are quasi-continuous variables:

k� ¼ 2�n�
L

; n� ¼ 0;�1;�2; . . . ; ð13:166Þ

where L2 ¼ � is the Born–von Karmann volume: see section 7.5.1. The
other two terms, in ðk21 þ k22Þ, however, are replaced by quantized harmonic
oscillator levels, the so-called Landau levels:�

nþ 1

2

�
�h~!!c ¼

�
nþ 1

2

�
e�hB

mb

; ð13:167Þ

see equation (13.159). The level spacing of the transverse part of the motion,
instead of being of order L�2 with L ! 1, is of the order of the field strength
B, and the new levels are highly degenerate, as we shall see.

13.3.3 The Fermi distribution

We now introduce the Fermi energy "F, the highest occupied energy level at
absolute zero, T ¼ 0. It depends primarily on the number of particles (for
given total volume �). The quantum numbers ðn; k3Þ for the occupied
levels must satisfy the condition

"ðn; k3Þ ¼
��

nþ 1

2

�
�h~!!c þ

�hk23
2mb

�
	 "F; ð13:168Þ
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see equation (13.160). Since ~!!c � B, we see that, for a given value of B, nmust
satisfy the relationship �

nþ 1

2

�
	 "F

�h~!!c

� 1

B
: ð13:169Þ

Thus, for small B, many oscillator levels will be occupied (each with high
degeneracy), and for large B, only a small number. For a given value of n,
at given field, the values of k3 must satisfy

jk3j 	 ðk3ÞF;n �
�
2mb

�h2

�
"F �

�
nþ 1

2

�
�h~!!c

��1=2
; ð13:170Þ

thus defining the position ðk3ÞF;n of the Fermi surface in k-space in the z-
direction for given n. Clearly, for large enough field ~BB (large enough ~!!c:
see equations (13.155) and (13.152)), "F must depend on B in equation
(13.170) in such a way that the square root is real. We consider here the
approximation of ~BB-field weak enough so that "F is approximately equal
to the zero-field value, equation (13.102): see Pippard (1961), p. 23.

Now we know that applying a ~BB-field does not change the energy of a
charged particle: classically, it only drives the particle into a circular (two
dimensions) or helical (three dimensions) orbit. Thus, comparing equations
(13.160) and (13.165), we might think that

�h2

2mb

ðk21 þ k22Þ ¼
�
nþ 1

2

�
�h~!!c: ð13:171Þ

This cannot be taken literally, because in the free electron gas, most electrons
do not have values of ðk1; k2Þ that can satisfy equation (13.171), for any value
of n within the occupied range given by equation (13.169). In fact, it is
quantization of the oscillation associated with the B-field that drives the
transverse motion into the discrete oscillator levels labelled by n. The
situation regarding equation (13.171) is that the sum over all electrons, or
all occupied states ðk1; k2Þ for the free electrons, and all occupied n in the
presence of the ~BB-field, must be equal in total energy in the sense of equation
(13.171). The total number of occupied states in the two cases must be equal.
Since k1 and k2 are quasi-continuous for a large Born–von Karmann volume,
and n is not very large for B not too small (equation (13.169)), the degeneracy
of states in n must be high. What is this degeneracy? Well, from equation
(13.155) we see that the classical orbits in a non-zero B-field are centered
on points x ¼ �x0, given by

x0 ¼
�

�hk2
mb ~!!c

�
; ð13:172Þ

where, from equation (13.166),

k2 ¼
2�n2
L

; n2 ¼ 0;�1;�2; . . . ð13:173Þ

274 Paramagnetism and diamagnetism in the electron gas



Possible values of x0 are therefore

x0 ¼
�

�h

mb ~!!c

��
2�n2
L

�
; ð13:174Þ

The spacing S of centers is therefore

S ¼
�

2��h

mb ~!!cL

�
: ð13:175Þ

The range of values of x0 within the Born–von Karmann volume is L. The
number of centers is therefore L=S,

L

S
¼

�
mb ~!!cL

2

2��h

�
: ð13:176Þ

For spin-12 the degeneracy, for each oscillator level n, is twice this, namely,

ðdegeneracyÞ ¼
�
mb ~!!cL

2

��h

�
: ð13:177Þ

Since this many electrons, equation (13.177), all have the same energy
for a state with given n, we can represent them in ~kk-space as all having
values of ðk1; k2Þ satisfying equation (13.171) for a given value of k3. Such
points in ~kk-space lie on a circular cylinder with axis corresponding to the
k3 axis and, with radius Rn (see figure 13.2),

Rn ¼
�
2mb ~!!c

�h

�
nþ 1

2

��1=2
: ð13:178Þ

Note that Rn increases with n. Since it is a radius in ~kk-space, its dimension-
ality is inverse length. According to equation (13.170), these concentric
cylinders all have lengths 2ðk3ÞF;n, where the cylinder with n ¼ 0 is longest,
with length decreasing as n increases. For large enough B (large ~!!c), only
n ¼ 0 is occupied (see equation (13.170)), and the cylindrical occupied area
in ~kk-space, from equation (13.178) has radius

Rn¼0 ¼
�
mb ~!!c

�h

�1=2
: ð13:179Þ

For N electrons in volume � ¼ L3, we can determine ðk3ÞF;n¼0,

N ¼ ðdegeneracyÞ �
ðþðk3ÞF;0

�ðk3ÞF;0
dk3

�
L

2�

�
; ð13:180Þ

where ‘(degeneracy)’ is that of the oscillator n ¼ 0 (independent of n) from
equation (13.177), and L=ð2�Þ is the density of points in the k3 direction.
Thus, equation (13.180) gives

N ¼
�
mb ~!!cL

2

��h

�
L

2�
2ðk3ÞF;0; ð13:181Þ
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whence

ðk3ÞF;0 ¼ �2
�

�h

mb ~!!c

�
�ð0Þ ¼ �2

R2
0

�ð0Þ; ð13:182Þ

where �ð0Þ is the density of electrons,

�ð0Þ ¼ N

L3
¼ N

�
; ð13:183Þ

and R0 is given by equation (13.179). The result of equation (13.182) is to
be compared with the Fermi radius k

ð0Þ
F for the free electron gas,

N ¼ 2

�
L

2�

�3
4�

ðkð0Þ
F

0
dk k2

¼ L3

�2
k
ð0Þ3
F

3
ð13:184Þ

whence

k
ð0Þ
F ¼ ð3�2�ð0ÞÞ1=3: ð13:185Þ

In the literature [e.g. Madelung (1978, figure 2.8, p. 34)] it is often
indicated that for ‘strong field’, the cylinder n ¼ 0, holding all the occupied
states on its surface, has the condition

ðk3ÞF;0 < k
ð0Þ
F : ð13:186Þ

Let us examine the ratio

ðk3ÞF;0
k
ð0Þ
F

¼

�
�2�h�ð0Þ

mb ~!!c

�

ð3�2�ð0ÞÞ1=3
¼

�
�4

3

�1=3�
�h

mb ~!!c

�
ð�ð0ÞÞ2=3

¼
�
�4

3

�1=3�
�h

eB

�
ð�ð0ÞÞ2=3; ð13:187Þ

having used equations (13.152) and (13.155) for ~!!c. Now, for typical metals,
k
ð0Þ
F � 1010 m�1 [see Ashcroft and Mermin (1976, table 2.1, p. 38)]. With this

value, equation (13.185) gives

�ð0Þ ¼ ðkð0ÞF Þ3

3�2
� 3� 1028 m�3: ð13:188Þ

Using this in equation (13.187), we have

ðk3ÞF;0
k
ð0Þ
F

�
�
�4

3

�1=3�
1

2�� 2:4� 1014

�
ð3� 1028Þ2=3

B

� 2� 104

B
: ð13:189Þ
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Thus, for equation (13.186) to be satisfied, we should need a magnetic
induction field B, with

B > 104 tesla: ð13:190Þ

Such a field strength is orders of magnitude greater than those that are usual
for studies of magnetic properties. Nevertheless, it is what must be under-
stood by ‘strong magnetic field’ in the present context. It shows that
essentially all studies of diamagnetism will be performed at ‘low fields’,
such that the largest n-value in equation (13.169) will be much larger than
unity.

Let us further discuss the ‘weak field’ case. First, rewrite equation
(13.170) as

"F ¼
�
�h2ðk3Þ2F;n
2mb

þ �h~!!c

�
nþ 1

2

��
: ð13:191Þ

For very weak field B  0, the Fermi energy "F must be approximately equal
to the free-electron Fermi energy "

ð0Þ
F :

"
ð0Þ
F ¼ �h2k

ð0Þ2
F

2mb

; ð13:192Þ

see equations (13.184) and (13.185). Thus, from equation (13.191) with
equations (13.152) and (13.155),

�
�h2ðk3Þ2F;n
2mb

þ e�hB

mb

�
nþ 1

2

��
� "

ð0Þ
F : ð13:193Þ

Recalling our expression for the radius of the nth cylinder in k-space,
equation (13.178), we have, from equation (13.193),

�h2

2mb

fðk3Þ2F;n þ R2
ng � "

ð0Þ
F : ð13:194Þ

From equation (13.194) with equation (13.192), we see that, even for n ¼ 0,

ðk3ÞF;0 9 k
ð0Þ
F ; ð13:195Þ

and in general

½ðk3Þ2F;n þ R2
n� � ðkð0ÞF Þ2: ð13:196Þ

This situation is illustrated in figure 13.2.
The topology of the Fermi surface, as illustrated in figure 13.2, changes

discontinuously as the strength of the B-field is varied. Specifically, as B
increases, we see that the number of cylinders (the number of occupied
oscillator levels) decreases in integer steps. We now begin the study of this
effect. Consider an arbitrary value of k3 < ðk3ÞF;0 which is overlapped by
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one or more cylinders. Consider a slab of k-space of thickness �k3 at k3. Let
�Nðk3;BÞ be the number of states in the slab. From the degeneracy given in
equation (13.177), this number, for a given value of n, is

�
mb ~!!cL

2

��h

��
L

2�

�
�k3 ¼

�
mb ~!!c�

2�2�h

�
�k3; ð13:197Þ

where ½L=ð2�Þ� is the density of points on k3 and � ¼ L3 is the Born–von
Karmann volume. From equations (13.152) and (13.155), this is

�eB

2�2�h
�k3 � B; ð13:198Þ

independent of n. Now let n0 be the largest integer satisfying equation
(13.191). Then from equation (13.198), we have

�Nðk3;BÞ ¼ ðn 0 þ 1Þ
�

e

2�2�h

�
B��k3: ð13:199Þ

The factor ðn 0 þ 1Þ accounts for the oscillator level n ¼ 0. Now consider
decreasing B continuously from infinity. At some value, n0 increases by
unity from zero to one [see equation (13.169)], and �Nðk3;BÞ, for given

0
k3

(k3)
F,n k

F
(0)

Rn

Figure 13.2. The Fermi surface of the electron gas under diamagnetic conditions, with

weak magnetic induction field ~BB in the z-direction. The k3 component of ~kk vectors is the

z-component. Illustrated are the field-free Fermi sphere of radius k
ð0Þ
F , and the coaxial

cylindrical surfaces for B00, of length 2ðk3ÞF;n and radius Rn: see equations (13.196)

and (13.178) respectively.

278 Paramagnetism and diamagnetism in the electron gas



value of k3, increases by �
e

2�2�h

�
B��k3 � B: ð13:200Þ

This discontinuous increase occurs when the end of the cylinder for n0 ¼ 0
coincides with the chosen value of k3. In order to visualize this better, let
us rewrite equation (13.191) as

"F �
�
�h2k2F
2mb

�
¼

�
�h2ðk3Þ2F;n0

2mb

þ e�hB

mb

�
n0 þ 1

2

��
: ð13:201Þ

Equation (13.201) defines kF. Now with ðk3ÞF;n0 equal to the chosen value
of k3, we can see from equation (13.201) that the value of B for which the
discontinuities occur is given by

Bn0 ¼
�h

2e

ðk2F � k23Þ
ðn0 þ 1

2Þ
: ð13:202Þ

We can now plot �N, equation (13.199), as a function of B. This is
commonly done in terms of the variable B�1, increasing to the left, as in
figure 13.3. From equation (13.199) we have, in between discontinuities,

�Nðk3;B�1Þ ¼ ðn 0 þ 1Þ
�

e

2�2�h

�
�

B�1
�k3: ð13:203Þ

B

α
2

3α
2

5α
2

7α
2

0 δN(k3,0)

δN(k3,B)

n′ = 3 n′ = 2 n′ = 1 n′ = 0

B–1

∞

Figure 13.3. The number of occupied states �N in a slab of ~kk-space perpendicular to the k3
axis, as a function of B�1, for the diamagnetic electron gas in a magnetic induction field ~BB:

see equations (13.203)–(13.205).
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The discontinuities occur, according to equation (13.202) at

B�1
n0 ¼ �ðn0 þ 1

2Þ; n0 ¼ 0; 1; 2; . . . ; ð13:204Þ

where

� ¼ 2e

�hðk2F � k23Þ
: ð13:205Þ

We note that, with B ¼ 0, i.e. for the free electron gas,

�Nðk3;B ¼ 0Þ ¼ �ðkð0Þ
2

F � k23Þ2
�
L

2�

�3
�k3; ð13:206Þ

see figure 13.4. Now from equations (13.203)–(13.205), approaching the
discontinuity from values of B�1 above it, we have

�Nðk3;B�1
n0 Þ ¼

��
B�1
n0

�

�
þ 1

2

��
e

2�2�h

�
�

B�1
n0
�k3

¼ �

�

�
e

2�2�h

�
�k3 þ

1

2

�
e

2�2�h

�
�

B�1
n0
�k3: ð13:207Þ

The second term in equation (13.207) is one half of the discontinuity: see
equation (13.200). Furthermore, the first term is, from equation (13.205),

�ðk2F � k23Þ
4�2

�k3: ð13:208Þ

Figure 13.4. The region of the field-free Fermi sphere corresponding to a slab of thickness

�k3 at k3 on the k3-axis, for the electron gas: see equation (13.206).
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For weak field, where kF � k
ð0Þ
F , this is �Nðk3;B ¼ 0Þ: see equation (13.206).

Thus, equation (13.207) reads

�Nðk3;B�1Þ ¼ f�Nðk3;B ¼ 0Þ þ 1
2 ðdiscontinuityÞg; ð13:209Þ

for a value of B�1 just above that at the discontinuity. This shows that the
discontinuities in figure 13.3 are symmetrical about �Nðk3;B ¼ 0Þ, as shown.

13.3.4 Energy considerations

For finite, non-zero field, the cylinders, figure 13.2, do not coincide exactly
with the free-electron Fermi sphere. Let us consider the deviation of the
energy for electrons in the slab of thickness �k3 at k3, relative to the free-
electron ðB ¼ 0Þ case. For this, we equate the number of electrons in a
small region of ~kk-space within the Fermi surface with the number of ~kk-
space points (times 2 for spin) in the same region. That is, we view the
effect of the ~BB-field as squeezing electrons out of the free-electron Fermi
sphere in the ðk1; k2Þ directions, into states of energy �h2k2=ð2mbÞ. Still

considering a slab of ~kk-space, of thickness �k3 at k3, we have an annulus of

thickness �k3, width �k0, and inner radius ðkð0Þ
2

F � k23Þ1=2, outside the free-
electron Fermi sphere: see figure 13.5. Then the number of occupied states

Figure 13.5. Annulus of ~kk-space points outside the field-free Fermi sphere that come onto

segments of cylinders (figure 13.2) when a weak ~BB-field is applied to the electron gas. Width

of annulus is �k0, thickness is �k3, with the annulus perpendicular to the k3 axis at k3: see

equation (13.210).
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in the annulus is

f�Nmaxðk3;B�1Þ � �Nðk3;B ¼ 0Þg

¼ 2�ðkð0Þ
2

F � k23Þ1=2 �k3 �k0 2
�

ð2�Þ3

¼ ðkð0Þ
2

F � k23Þ1=2 �k3 �k0
�

ð2�2Þ
: ð13:210Þ

Now the maximum energy, Emax, of any state in the annulus is

Emax �
�h2

2mb

f½ðkð0Þ
2

F � k23Þ1=2 þ �k0�2 þ k23g; ð13:211Þ

and the minimum energy, Emin, is

Emin ¼ �h2

2mb

k
ð0Þ2
F : ð13:212Þ

Thus the maximum excess energy of the states in the annulus is
ðEmax � EminÞ, and we take the mean excess energy of these states to be
half this,

1

2
ðEmax � EminÞ �

1

2

�h2

2mb

f½ðkð0Þ
2

F � k23Þ þ 2ðkð0Þ
2

F � k23Þ1=2�k0� þ k23 � k
ð0Þ2
F g

¼ �h2

2mb

ðkð0Þ
2

F � k23Þ1=2�k0; ð13:213Þ

to lowest order in �k0. From equation (13.210), equation (13.213) is

1
2 ðEmax � EminÞ ¼ ðmean excess energy per stateÞ

¼ �h2

2mB

�
2�2

�

�
½�Nðk3;B�1Þ � �Nðk3;B ¼ 0Þ�

�k3
: ð13:214Þ

Now denote the total excess energy associated with the slab �k3 by �E. Then,
from equation (13.214) and equation (13.210),

�E ¼ ðmean excess energy per stateÞ � ðnumber of statesÞ

¼ �h2

2mb

�
2�2

�

�
½�N � �N0�2

�k3
; ð13:215Þ

where

�N0 � �Nðk3;B ¼ 0Þ: ð13:216Þ

To the extent that �Nðk3;B�1Þ in figure 13.3 is approximately linear in
between discontinuities, �E, equation (13.215) is approximately parabolic.
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This is illustrated in figure 13.6. As a function of B�1, the maximum value
�Emax of �E occurs at the discontinuities of �N. The maximum value of
ð�N � �N0Þ, we have shown, equation (13.209), is half the discontinuity,
namely, from equation (13.200),

ð�N � �N0Þmax ¼
1

2

�
eB�

2�2�h
�k3

�
: ð13:217Þ

From equations (13.215) and (13.217),

�Emax ¼
�h2

2mb

�
2�2

�

��
eB�

4�2�h

�2
�k3 ¼

�
eB

4�

�2 ��k3
mb

: ð13:218Þ

In terms of B�1, we have, from (13.218),

�Emax �
1

ðB�1Þ2
: ð13:219Þ

Thus �Emax drops off as 1=x2 as a function of x ¼ B�1: this is the locus of
maxima shown in figure 13.6.

13.3.5 Magnetization: the de Haas–van Alphen effect

For a linear, isotropic material, we had preceding equation (13.26):

~MM ¼ �m

�0
� ~BB; ð13:220Þ

Figure 13.6. Excess energy �E as a function of B�1 for the electron gas due to interaction of

orbital magnetic moment with applied ~BB-field for occupied states in a slab �k3 of ~kk-space:

see equations (13.215)–(13.219) and associated discussion.
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where �m, the magnetic susceptibility, is a scalar. The potential energy
density " of magnetization in a material due to its interaction with the
~BB-field is

" ¼ � ~MM � ~BB; ð13:221Þ
see Jackson (1962), p. 150. Thus,

M� ¼
�
� @"

@B�

�
; ð13:222Þ

where � labels cartesian coordinates.
From equation (13.215) we can deduce the contribution �" to the energy

density from the ~kk-space slab �k3 at k3:

�" ¼ �E

�
¼ �h2

2mb

�
2�2

�2

�
ð�N � �N0Þ2

�k3
: ð13:223Þ

Then applying equation (13.222), we determine the corresponding contribu-
tion �M to the magnetization,

�M ¼ � �h2

2mb

�
4�2

�2

�
ð�N � �N0Þ

�k3

@ð�NÞ
@B

; ð13:224Þ

with ~MM in the direction ~BB. From equation (13.203), this is

�M ¼ � e�h

mb

ð�N � �N0Þ
�

ðn 0 þ 1Þ: ð13:225Þ

We recall that in equations (13.203) and (13.225), n0 is the largest integer
satisfying equation (13.191),

n09
��
"F � �h2k23

2mb

�
mb

e�hB
� 1

2

�
: ð13:226Þ

For small B, we neglect the number (1/2) relative to the other term in
equation (13.226), and replace "F by "

ð0Þ
F : see equation (13.192):�

"F � �h2k23
2mb

�
� �h2

2mb

ðkð0Þ
2

F � k23Þ: ð13:227Þ

With these approximations, equations (13.225)–(13.227) give

�M ¼ �ð�N � �N0Þ
�B

�h2

2mb

ðkð0Þ
2

F � k23Þ: ð13:228Þ

We see from equation (13.228) that �M has the same pattern of discon-
tinuities as those of �N (see figure 13.3) modulated as to amplitude by the
factor (1/B).

We shall now concoct an analytical approximation to �M as a function of
B�1, similar to figure 13.3 for �N. Due to the negative sign in equation
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(13.228), �M slopes up when �N slopes down. Also from equation (13.228),
the maxima of �M are

j�Mmaxj ¼
j�N � �N0jmax

�B

�h2

2mb

ðkð0Þ
2

F � k23Þ; ð13:229Þ

where B is evaluated at a discontinuity. From equations (13.207) and
(13.209), we have

j�N � �N0jmax ¼
e��k3B

4�2�h
� B:

From this we see that j�Mjmax in equation (13.229) is independent of B. We
therefore deduce that �M versus B�1 is qualitatively as shown in figure 13.7.
We view this approximately as part of an infinite sawtooth pattern, with
straight line segments between discontinuities. For this pattern we have

�M � ð2�MmaxÞ
�

B�1; for ��

2
	 B�1 	 �

2
: ð13:230Þ

This is periodically repeated with period � in B�1 from minus infinity to plus
infinity. We now introduce a variable x, proportional to B�1, which ranges
from �� to � as B�1 ranges from ð��=2Þ to ðþ�=2Þ, namely,

x ¼ ð2�B�1=�Þ: ð13:231Þ

Substituting this into equation (13.230), we have

�M ¼ 2�Mmax

�

�

2�
x ¼

�
�Mmax

�

�
x: ð13:232Þ

Define

C ¼ ð�Mmax=�Þ: ð13:233Þ

Figure 13.7. Diamagnetic magnetization �M as a function of B�1 for the electron gas, for a

slab �k3 of occupied states in ~kk-space: see equation (13.229) and associated discussion.
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Then

�M ¼ Cx for �� 	 x 	 �: ð13:234Þ

Since �M, equation (13.234), is an odd function, the Fourier series for the
periodic repetition of �M in equation (13.234) is

�M ¼ Cx ¼
X1
�¼1

A� sinð�xÞ; ð13:235Þ

where � are integers. We evaluate the linear coefficients A�, using Fourier’s
theorem:ð�

��
dxCx sinð� 0xÞ ¼

X
�

A�

ð�
��

dx sinð� 0xÞ sinð�xÞ

¼
X
�

A����;� 0 ¼ �A� 0 : ð13:236Þ

For the first integral in equation (13.236), we have

ð�
��

dxx sinð� 0xÞ ¼
�
x cosð� 0xÞ
ð�� 0Þ

��
��

�
ð�
��

dx
cosð� 0xÞ
ð�� 0Þ ; ð13:237Þ

having integrated by parts. The last integral in equation (13.237) is zero.
Thus,

ð�
��

dxx sinð� 0xÞ ¼ ½�ð�1Þ�
0
� ð��Þð�1Þ�

0
�

ð�� 0Þ

¼ 2�ð�1Þ�
0 þ1

� 0 : ð13:238Þ

From equations (13.236) and (13.238) we conclude that

A� ¼ 2ð�1Þ�þ1

�
C; ð13:239Þ

where recall C is defined in equation (13.233).
Let us now write out the expression for �M, equation (13.235),

explicitly. From equation (13.239),

�M ¼
X1
�¼1

A� sinð�xÞ

¼
X
�

2ð�1Þ�þ1

�
C sinð�xÞ: ð13:240Þ
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Thus, from equations (13.233) and (13.229),

�M ¼
X
�

2ð�1Þ�þ1

�

j�N � �N0jmax

��B

�h2

2mb

ðkð0Þ
2

F � k23Þ sin
�
�

�
2�

�B

��
; ð13:241Þ

so from equation (13.205), with equations (13.207) and (13.209),

�M ¼
X
�

2ð�1Þ�þ1

�

e

4�3�h
�k3

�h2

2mb

ðkð0Þ
2

F � k23Þ

� sin

�
�
2��h

2eB
ðkð0Þ

2

F � k23Þ
�
: ð13:242Þ

This simplifies to

�M ¼ e

2�3�h

X
�

ð�1Þ�þ1

�
"
ð0Þ
F

�
1� k23

k
ð0Þ2
F

�

� sin

�
�2�

"
ð0Þ
F

�h~!!c

�
1� k23

k
ð0Þ2
F

��
�k3: ð13:243Þ

In order to determine the total magnetization ~MM, we now integrate over
all slabs �k3, for

�k
ð0Þ
F 9k39k

ð0Þ
F ; ð13:244Þ

introducing the notation

k3

k
ð0Þ
F

¼ y: ð13:245Þ

Then equations (13.243)–(13.245) give

M ¼
ð
�M ¼ ek

ð0Þ
F "

ð0Þ
F

2�3�h

X
�

ð�1Þ�þ1

�

ð1
�1

dy ð1� y2Þ

� sin

�
2��

"
ð0Þ
F

�h~!!c

ð1� y2Þ
�
: ð13:246Þ

The nature of the integral in equation (13.246) becomes clearer if we
substitute

u ¼ ð1� y2Þ: ð13:247Þ

Then we define the integral I by

I ¼
ð1
�1

dy ð1� y2Þ sin
�
2�

	
ð1� y2Þ

�

¼ 2

ð1
0

du

2ð1� uÞ1=2
u sin

�
2�

	
u

�
; ð13:248Þ
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where the wavelength 	 of the sine in the variable u is

	 ¼
�
�h~!!c

�"
ð0Þ
F

�
; ð13:249Þ

the longest wavelength being

	max ¼
�
�h~!!c

"
ð0Þ
F

�
¼

�
e�hB

mb"
ð0Þ
F

�
: ð13:250Þ

Since the integration, equation (13.248), has u ranging over values u 	 1, we
can formulate weak ~BB-field in terms of equation (13.250),

�
e�hB

mb"
ð0Þ
F

�
¼ 	max � 1: ð13:251Þ

This in turn means that the sine in equation (13.248) undergoes many oscilla-
tions within the range 0 	 u 	 1. The integrand of equation (13.248) has two
factors: sinð2�u=	Þ and 1

2 uð1� uÞ�1=2, which are shown schematically in
figure 13.8, along with their product. It is clear that most of the contribution
to the integral comes from the vicinity of u ¼ 1, or from equation (13.247),
y ¼ 0. Thus equation (13.248) can be approximated as

I ¼ 2

ð1
0
dy ð1� y2Þ sin

�
2�

	
ð1� y2Þ

�

� 2

ð�
0
dy ð1� y2Þ sin

�
2�

	
ð1� y2Þ

�

� 2

ð�
0
dy sin

�
2�

	
ð1� y2Þ

�
; ð13:252Þ

with � � 1. Now, as we shall see, the integral in equation (13.252) can be
evaluated exactly if the upper limit � is extended to infinity. For y > 1, the
phase of the sine increases in magnitude quadratically, giving an increasingly
fast oscillation whose integral is negligible. In order to estimate the integral,
we shall neglect the discrepancy associated with including the region
� < y 	 1 in the integration. We therefore consider

I � 2

ð1
0

dy sin

�
2�

	
ð1� y2Þ

�
: ð13:253Þ

The right hand side of equation (13.253) can be expanded to

I � 2

ð1
0

dy

�
sin

�
2�

	

�
cos

�
2�y2

	

�
� cos

�
2�

	

�
sin

�
2�y2

	

��
: ð13:254Þ
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Figure 13.8. The integrand of the integral I in equation (13.248) as a function of u. (a)

uð1� uÞ�1=2; (b) sinð2�u=	Þ; (c) the integrand: the product uð1� uÞ�1=2 sinð2�u=	Þ.
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Now we can evaluate explicitly the integrals in equation (13.254): see
Appendix 13.1. The result is

ð1
0

dy
cos

sin

�
2�y2

	

�
¼

�
	

2�

�1=2 1
2

�
�

2

�1=2
: ð13:255Þ

We now return to equation (13.246) for the magnetization M, and
assemble the intervening results. From equations (13.246), (13.248),
(13.254) and (13.255),

M ¼ ek
ð0Þ
F "

ð0Þ
F

2�3�h
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�¼1

ð�1Þ�þ1
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��
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ð0Þ
F

2�3�h

X
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In the last three lines we have used the following results

sin
�

4
¼ cos

�

4
¼ 1ffiffiffi

2
p ; ð13:257Þ

kFð0Þ ¼
ð2mb"

ð0Þ
F Þ1=2

�h
; ð13:258Þ

	 ¼
�

�h~!!c

�"
ð0Þ
F

�
; ð13:259Þ

sinð�� ��Þ ¼ ð�1Þ� sin �; ð13:260Þ

�h~!!c ¼
�
e�hB

mb

�
: ð13:261Þ

Referring to equation (13.256), we see that the magnetizationM is given by a
Fourier series, periodic in B�1 with period �:

� ¼
�

e�h

mb"
ð0Þ
F

�
: ð13:262Þ
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The amplitude as a function of B�1 drops off as ðB�1Þ�1=2. This periodic
variation of M with (B�1) is the de Haas–van Alphen effect, illustrated in
figure 13.9. The periodicity �, equation (13.262), varies as ð"ð0ÞF Þ�1. The
observed periodicity therefore gives us the Fermi energy, which is direction-
ally dependent in crystalline metals. This accounts for the fact that the de
Haas–van Alphen effect is a powerful tool in mapping out the Fermi
surfaces of metals.

13.3.6 Diamagnetism at T ¼ 0

We now wish to evaluate a diamagnetic susceptibility �D which incorporates
an average over the range of B-values within one oscillation of the de Haas–
van Alphen effect. According to equation (13.220) this requires an average
over ~MM, which in turn, according to equation (13.221) with equation
(13.223) requires an average over the total excess energy �E of the slab
�k3, equation (13.215),

�E ¼ �h2

2mb

�
2�2

�

�
½�N � �N0�2

�k3
: ð13:263Þ

We have remarked, following equation (13.216), that �E is approximately
parabolic as a function of B�1 between discontinuities. The discontinuities
occur at

B�1 ¼
�
n0 � 1

2

�
� ¼

�
n0 � 1

2

�
2e

�hðk2F � k23Þ
; ð13:264Þ

Figure 13.9. Diamagnetic magnetization M (schematically) as a function of B�1 for the

electron gas, including the entire Fermi distribution: see equation (13.256).
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see figure 13.6 and equation (13.205). At the discontinuities,

�Emax ¼
�
eB

4�

�2 � �k3
mb

: ð13:265Þ

see equation (13.218). We represent �E as a parabola within one oscillation,

�E ¼ Ax2; x ¼ ðB 0Þ�1; ð13:266Þ

where B 0 is the B field measured relative to the minimum of �E: see figure
13.10. The variable x ranges over values such that ð��=2Þ 	 x 	 ð�=2Þ:
see equations (13.230) and (13.205). At the endpoints of this range, �E has
the value �Emax, equation (13.265). Thus

�Emax ¼ Að�=2Þ2; ð13:267Þ

whence

A ¼
�
2

�

�2
�Emax; ð13:268Þ

and so, from equations (13.266) and (13.268),

�E � �Emax

�
2x

�

�2
� �k3; ð13:269Þ

Figure 13.10. Parabolic representation of �E as a function of ðB 0Þ�1 (B measured relative

to the minimum of the curve), for a slab �k3 of occupied states in ~kk-space: see equations

(13.264)–(13.268).
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see equation (13.265). We now define the average value �Eav of �E over one
oscillation

�Eav ¼
1

�

ðð�=2Þ
ð��=2Þ

dxAx2 ¼ 1

3
�Emax: ð13:270Þ

Correspondingly, we define the average value �Mav of �M over one
oscillation:

�Mav ¼ � 1

�

@

@B
ð�EavÞ: ð13:271Þ

see equations (13.222). For the average total magnetization Mav, we must
integrate over k3 within the Fermi surface
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F B

12�2mb

: ð13:272Þ

In equation (13.272) we have successively used equations (13.271), (13.270),
(13.268) and (13.265). It follows that the diamagnetic susceptibility �D at
T ¼ 0 is given by

�D ¼ �0

�
@Mav

@B

�
T ¼ 0

¼
�
�e2k

ð0Þ
F �0

12�2mb

�
: ð13:273Þ

We can compare �D, equation (13.273), with the paramagnetic suscept-
ibility �P at T ¼ 0, given by equation (13.122),

�P ¼
�
3�2B�

ð0Þ�0
2"F

�
: ð13:274Þ

where, from equations (13.1) and (13.90),

�B ¼
�
e�h

2m

�
; �ð0Þ ¼ N

�
; ð13:275Þ
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where m is the free electron mass and, from equations (13.101) and
(13.102),

"F ¼ �h2k2F
2mb

; kF ¼ ð3�2�ð0ÞÞ1=3: ð13:276Þ

Then, from equation (13.274),

�P ¼ 3

2

�
e�h

2m

�2 �ð0Þ�0�
�h2

2mb

�
ð3�2�ð0ÞÞ2=3

¼ 3

2

e2

m

�
mb

m

�
kF�0
6�2

: ð13:277Þ

We note that in this section, section 13.3, the symbol k
ð0Þ
F , equation (13.185),

where superscript (0) refers to zero field (B ¼ 0), has the same meaning as kF
in section 13.2, equation (13.101). [In section 13.2, the symbol k

ð0Þ
F referred to

electrons all of the same spin.] Thus in equation (13.277) we must identify kF
with k

ð0Þ
F . Comparing equations (13.273) and (13.277) with kF � k

ð0Þ
F , we then

see that

�P ¼ �3

�
mb

m

�2
�D; ð13:278Þ

or

�D ¼ � 1

3

�
m

mb

�2
�P; T ¼ 0: ð13:279Þ

Since from equation (13.122), �P > 0 (which is also intuitively obvious, since
the intrinsic dipole moments of the electrons align parallel to the ~BB-field in
paramagnetism), we see that from equation (13.279) the diamagnetic suscept-
ibility is negative. As we mentioned in section 13.2.1, this simply reflects the
fact that electrons (negatively charged) are induced into orbits that circle the
~BB-field in the right hand sense (see equation (13.138)), constituting electric
current loops with current in the left-hand sense. Such current loops
represent, in lowest multipole order, magnetic dipoles oriented oppositely
to the ~BB-field, whence the negative susceptibility.
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We wish to evaluateð1
0

dy
cos

sin

�
2�y2

	

�
¼

�
	

2�

�1=2 Re
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ð1
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dx eix
2

; ðA13:1Þ
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where Re and Im refer to real and imaginary parts: see equation (13.255).
This leads us to consider an application of the Cauchy integral theorem
(see standard textbooks on complex variables) for a contour C in the plane
of complex numbers z

z ¼ ðxþ iyÞ; x; y both real. ðA13:2Þ

That is, we consider þ
C
dz eiz

2

: ðA13:3Þ

Note that x and y in equation (A13.1) are not the same things as x and y in
equation (A13.2). We want to determine that part of the contour integral
which lies on the positive real (x) axis, since x ¼ ReðzÞ. Thus C must
contain the positive real axis. The integrand in equation (A13.3) is infinite
(diverges), as follows. Let

z ¼ ðxþ iyÞ ¼ r ei�; ðA13:4Þ

with both r and � real and r is positive. Then

z2 ¼ r2 e2i� ðA13:5Þ

and since

i ¼ expði�=2Þ

iz2 ¼ r2 exp
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�
2�þ �

2

��

¼ r2
�
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�
2�þ �

2

�
þ i sin

�
2�þ �

2

��
: ðA13:6Þ

Thus the real part of ðiz2Þ is positive for

��

2
<

�
2�þ �

2

�
<
�

2

i.e.

�� < 2� < 0:

Thus for 0 	 � 	 2�, i.e. 0 	 2� 	 4�, the real part of ðiz2Þ is positive for

� �

2
< � < 0 and

�

2
< � < �; ðA13:7Þ

i.e. in the second and fourth quadrants of the ðx; yÞ plane. As r ! 1, the
integrand expðiz2Þ diverges within these quadrants. We therefore consider
the contour C in the first quadrant, shown in figure 13.11. It contains no
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singularity. Thus, from the residue theorem,þ
C
dz expðiz2Þ ¼ 0

¼ lim
R!1
�! 0þ

�ðz¼ðRþ i�Þ

z¼�ðcot�þ iÞ
dz expðiz2Þ

þ
ðr¼ð�= sin’Þ

r¼R
dr ei’ exp½ir2ðcos 2’þ i sin 2’Þ�

þ
ð’
0
d�ðiR ei�Þ exp½iR2ðcos 2�þ i sin 2�Þ�

�
: ðA13:8Þ

In equation (A13.8), ’must be determined in such a way that we can use this
equation to evaluate the real integrals in equation (A13.1). The last integral
in equation (A13.8) is zero, due to the factor expð�R2 sin 2�Þ in the
integrand, taken in the limit R ! 1, provided ’ < �=2. Consider the
second integral,

I ¼ ei’
ð0
1

dr exp½ir2ðcos 2’þ i sin 2’Þ�: ðA13:9Þ

Here, the integral becomes real, and can be evaluated, if ’ ¼ �=4, so that
cosð2’Þ ¼ cosð�=2Þ ¼ 0. We then have

I ¼ ei�=4
�
� 1

2

�ð1
�1

dr e�r 2 ¼ � 1

2
ei�=4ð�Þ1=2: ðA13:10Þ

Figure 13.11. Contour for the evaluation of the integrals of the Appendix to Chapter 13:

see equation (A13.1).
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Returning to equation (A13.8), we now have

0 ¼
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dx eix
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Equating real and imaginary parts of equation (A13.11), we haveð1
0

dx
cos

sin
ðx2Þ ¼ 1

2

�
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2

�1=2
; QED: ðA13:12Þ
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Chapter 14

Charge density waves in solids

14.1 Introduction

The periodicity of the electronic density in crystals is a consequence of the
translationally invariant symmetry of the atomic ordering. It is manifest in
the solution, in terms of Bloch functions, for the many-electron problem in
the presence of static nuclei. We shall see that nuclear vibrations, or
phonons, introduce a further effective potential into the problem, and that
this potential may tend to induce a periodicity into the electronic distribution
that is distinct from that of the static-crystal symmetry. This result was first
articulated by Fröhlich (1954). It had been presaged in work by Slater (1951)
and was described qualitatively by Peierls in 1955. The approach of this
chapter is based on a study by the present author [Vail (1964)] that examined
the relationship between the Fermi level and charge-density-wave periodicity
on the one hand, and stability of the charge density wave on the other.

As we shall see, the charge density wave ground state of an interacting
electron gas, when it exists, is fundamentally distinct from the more
common uniform state. Both theoretically and experimentally, such a
system provides a fertile situation for the study of fundamental mechanisms
in the solid state. The thermodynamic transition from the normal to the
charge density wave state is evidenced in the specific heat, in the Kohn
anomaly [Kohn (1959)] of the phonon spectrum, in commensurate or
incommensurate perturbation of the crystal lattice, in quasiparticle excita-
tion processes, and in electronic transport characteristics. Many special
aspects of charge density wave systems are also relevant to the fields of super-
conductivity and spin density waves. There is extensive literature, dating
back many years, on experimental studies of charge density waves in solids
[see for example the review byWilson and Yoffe (1969)]. The current archival
literature in condensed matter physics presents frequent examples of new
studies. An up-to-date pedagogical treatment of the subject is given by
Grüner (1994). An earlier work that gives a wide-ranging view of research
topics is Hutiray and Sólyom (1985). A more recent work discusses charge
density waves in nanoscale systems [Kim et al. (2001)].
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In the present work, we discuss the charge density wave ground state of a
solid using a simple mathematical approximation to the one-dimensional
model. In section 14.2 we show how electron–phonon interaction can
modify the effective electron–electron interaction. In section 14.3 we apply
the Hartree approximation to determine the uniform-density solution and
to illustrate the periodic (charge density wave) case. In section 14.4 we solve
the Hartree equation in the form of the Mathieu equation for the periodic
case, using perturbation theory. In section 14.5 we discuss the analytical
features of the result in the context of perturbation theory, emphasizing the
importance of a physically correct unperturbed state as a starting point.

14.2 Effective electron–electron interaction

In section 7.2 we laid out the hamiltonian of a solid in terms of nuclei and
electrons, equations (7.2)–(7.6). We then averaged this hamiltonian over
the electronic state, defined in terms of the average field version of the adia-
batic approximation, section 7.3, equation (7.10) with equation (7.8), to
obtain the effective hamiltonian for the nuclei, equations (7.11) and (7.12).
Suppose we have a metallic system such that, for example in Hartree–Fock
approximation, equations (12.93) and (12.94), the single-particle Fock
eigenvalues for occupied states consist of one or more filled valence bands,
and a partially filled conduction band, all represented schematically in
figure 14.1, in a one-dimensional model. Now we want to concentrate on
the conduction electrons, and think of the valence electrons as bound with

0–K –kF –K
2

kFK
2

k

εk

K

Figure 14.1. Valence and conduction bands of a one-dimensional ‘metal’, showing electron

single-particle energies "k, band gaps at k ¼ �K=2, and the Fermi level at k ¼ �kF. Shaded

area represents total energy.
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the nuclei to constitute atomic cores. It is a tricky theoretical and compu-
tational problem to do this with a realistic treatment of the electrons. If we
can do it in some acceptable approximation, however, we can then consider
a system of n conduction electrons interacting with atomic cores, rather
than with nuclei. Equations (7.2)–(7.6) will then be replaced by an effective
hamiltonian H:

H ¼ ðHc þHe þHceÞ; ð14:1Þ

Hc ¼
�XN1

J¼1

�
� �h2r2

J

2MJ

�
þWðRÞ

�
; ð14:2Þ

He ¼
�Xn

j¼1

�
�
�h2r2

j

2m

�
þ e2

4�"0

1

2

XðnÞ
j; j 0

0j~rrj �~rrj 0 j�1

�
; ð14:3Þ

Hce ¼ Vðr;RÞ: ð14:4Þ
In equation (14.1), we have contributions Hc for cores, He for conduction
electrons, and Hce for core–electron interaction. In equation (14.2), WðRÞ
is the core–core interaction energy, where the cores are assumed to be
rigid, andMJ is the mass of the core centered on nuclear or core position ~RRJ .

We now consider small oscillations of core positions R, relative to
reference positions R0, by small displacements u. Then in equation (14.2)
we have, in harmonic approximation,

WðRÞ � fW0 þW T
1 : uþ 1

2 u
T :W 2 : ug ð14:5Þ

where

W0 ¼ WðR 0Þ; ð14:6Þ

W 1ðR0Þ ¼
�
@W

@R

�
R¼R 0

; ð14:7Þ

W 2ðR0Þ ¼
�
@2W

@R @R

�
R¼R 0

: ð14:8Þ

The matrix notation of equation (14.5) is the same as that of section 7.4.
Similarly, in equation (14.4), we have

Vðr;RÞ � fV0 þ V T
1 : uþ 1

2 u
T :V 2 : ug; ð14:9Þ

where

V0ðr;R0Þ ¼ Vðr;R0Þ; ð14:10Þ

V 1ðr;R0Þ ¼
�
@V

@R

�
R¼R 0

; ð14:11Þ

V 2ðr;R0Þ ¼
�
@2V

@R @R

�
R¼R 0

: ð14:12Þ
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We now simplify the effective hamiltonian given by equations (14.1)–
(14.4) with equations (14.5)–(14.12). First, in equation (14.10), V0ðr;R0Þ
represents the interaction of conduction electrons with atomic cores in the
periodic crystal lattice. Let us represent this simply in terms of the band
mass mb for the conduction electrons [see any textbook of solid state
physics]. Then, from equations (14.3), (14.4) and (14.10),

�
� �h2

2m

X
j

r2
j þ V0ðr;R0Þ

�
!

�
� �h2

2mb

X
j

r2
j

�
: ð14:13Þ

Without loss of generality, letWðR 0Þ be the reference value for energy. Then
W0 ¼ 0. Then from equations (14.5) and (14.9), introduce V 0

1 and V 0
2, as

follows:

V 0
1ðr;R0Þ ¼ fV 1ðr;R0Þ þW 1ðR0Þg; ð14:14Þ

V 0
2ðr;R0Þ ¼ fV 2ðr;R0Þ þW 2ðR0Þg: ð14:15Þ

At this stage, we have the following effective hamiltonian:

H �
�
� �h2

2mb

X
j

r2
j þ

e2

8�"0

X
j; j 0

0j~rrj �~rrj 0 j�1 þ V 0T
1 ðr;R0Þ : u

þ
X
J

P2
J

2MJ

þ 1

2
uT :V 0

2ðr;R 0Þ : u
�
; ð14:16Þ

where we have introduced the momentum operator ~PPJ for cores,

~PPJ ¼ ð�i�h~rrJÞ: ð14:17Þ

We can see that the core reference positions R0 are not determined in any
meaningful way from equation (14.16) by the usual prescription,�

@H

@u

�
u¼0

¼ V 0
1ðr;R 0Þ ¼ 0; ð14:18Þ

because of the r-dependence from the conduction electrons. We take R0 to be
the average core positions at finite temperature, in the presence of the
electrons. With this prescription, the linear term in u remains non-zero in
equation (14.16), indicating that the small oscillations of core positions in
the presence of conduction electrons are not centered on R0 in any particular
electronic configuration.

We can eliminate the linear term in u in equation (14.16), therefore, by
a formal transformation to new variables u 0 that are translated from the
original variables u, as

u0 ¼ ðuþ ’Þ: ð14:19Þ

Effective electron–electron interaction 301



We substitute for u in terms of u0, equation (14.19), into equation (14.16). The
linear terms in u0 are

ðV 0T
1 � ’T :V 0

2Þ : u0: ð14:20Þ

Setting the coefficient of u0 equal to zero in equation (14.20) gives

’ ¼ ðV 0
2Þ�1 :V 0

1: ð14:21Þ

In obtaining equation (14.21), we have used

V 0T
2 ¼ V 0

2; ð14:22Þ

see equations (14.15), (14.12) and (14.8). Also note, from equations (14.21),
(14.15), and (14.14), that ’, and therefore u0, equation (14.19), are functions
of r and R0:

u0ðr;R0Þ ¼ fuþ ’ðr;R 0Þg

¼ fuþ ½V 0
2ðr;R0Þ�

�1
:V 0

1ðr;R0Þg: ð14:23Þ

The substitution for u from equation (14.19) into equation (14.16) also
introduces a term

f12’
T :V 0

2 : ’� V 0T
1 : ’g ð14:24Þ

so that the effective hamiltonian, equation (14.16) with equations (14.19) and
(14.21), becomes

H �
�
� �h2

2mb

X
j

r2
j þ

e2

8�"0

X
j; j 0

0j~rrj �~rrj 0 j�1 ð14:25Þ

� 1

2
V 0T

1 : ½V 0
2�
�1
:V 0

1 ð14:26Þ

þ
X
J

P2
J

2MJ

þ 1

2
u0T :V 0

2 : u
0
�
: ð14:27Þ

In equation (14.27), the fact that the modified phonon variable u0, equation
(14.23), and the force constant matrix V 0

2, equation (14.15) are dependent on
conduction electron coordinates r represents the renormalization of the
phonon variables u and the force constant matrix W 2 by the conduction
electrons.

We now make some major approximations, in order to simplify the
mathematical form of the problem while retaining the physical basis of
charge density waves. We treat the renormalized phonons as classical
phonons. Then at zero temperature (Kelvin), we have P ¼ u0 ¼ 0. The
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effective hamiltonian, equations (14.25)–(14.27), reduces to an electronic
hamiltonian:

H �
�
� �h2

2mb

X
j

r2
j þ

e2

8�"0

X
j; j 0

0j~rrj � rj 0 j�1 � v0ðrÞ
�
: ð14:28Þ

In equation (12.28)

v0ðrÞ ¼ f12V
0T
1 : ½V 0

2�
�1
:V 0

1g; ð14:29Þ

which is also a function of R0, the equilibrium configuration for the cores
alone. The potential energy v0ðrÞ, equation (14.29), is an effective many-elec-
tron potential energy arising from dynamical electron–phonon interaction:
see equation (14.14), equation (14.15) and equation (14.4). We can imagine
fitting v0ðrÞ as a sum of single-particle, two-particle, . . . n-particle terms.
We then assume that the two-particle term, which we denote v00, is dominant,
and we neglect all others. We further assume that the two-body terms are
functions of j~rrj �~rrj 0 j, i.e. two-body distances only. Then

v0ðrÞ � 1

2

X
j; j 0

0
v00ðj~rrj �~rrj 0 jÞ: ð14:30Þ

When this is incorporated in equation (14.28), we have

H �
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2mb
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j �
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j; j 0

0
vðj~rrj � rj 0 jÞ

�
; ð14:31Þ

where

vðrÞ ¼
�
v00ðrÞ � e2

4�"0r

�
: ð14:32Þ

The above discussion shows how electron–phonon interaction can modify
the effective pairwise interaction among the electrons from pure Coulomb
repulsion to an effective interaction vðrÞ, as in equation (14.32). We reiterate
that this depends implicitly on the core-position configuration R0.

14.3 The Hartree equation: uniform and periodic cases

14.3.1 The Hartree approximation

The Hartree approximation represents an intuitive simplification of the
Hartree–Fock approximation, which we have discussed in sections 12.2
and 12.3. In the Hartree approximation, the many-electron wave function
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 ðrÞ is approximated by a single product,

 ðrÞ �
Yn
j¼1

’jðr jÞ; ð14:33Þ

where r j ¼ ð~rrj; sjÞ, as at the beginning of section 12.2.1. Note that the differ-
ence between equation (14.33) and the Hartree–Fock approximation is that
here the product is not antisymmetrized: see equations (12.25) and (12.26).
Strictly speaking, the particles are distinguishable in a wave function like
equation (14.33), where the jth particle is in the jth orbital ’j . This is contrary
to the eminently logical quantum-mechanical principle that identical
particles are indistinguishable. Nevertheless, we persist with it. In order to
satisfy the Pauli principle approximately, we require the set of orbitals
ð’1; ’2; . . . ; ’nÞ to be distinct: we choose them to be an orthonormal set.
The derivation carried out in section 12.3.1 to determine the optimal mani-
fold f’jg, in terms of total energy minimization, can be adapted to the
Hartree approximation, equation (14.33). The only difference is that the
exchange term does not come into the two-body part of the energy, equation
(12.62). The result, from the effective hamiltonian equation (14.31), is the
Hartree equation:

�
� �h2

2mb

r2 �
X
j 0

0h j 0jvj j 0i
�
j j i ¼ "j j j i: ð14:34Þ

In equation (14.34) we have introduced Dirac notation:

’jð~rr Þ ! j j i: ð14:35Þ

The summation in equation (14.34) is restricted to j 0 6¼ j by the prime onP
. If vðr ¼ 0Þ, equation (14.32), were finite, we should be able to include

the term j 0 ¼ j in the effective hamiltonian, equation (14.31), and measure
total energy relative to the value ½nvð0Þ=2� in which case, the self-consistent
field in the Hartree equation (14.34) would include the term j 0 ¼ j, and
be the same for all j. We assume that this is the case. Then the total energy
E is

E � h jHj i ¼
�X

j

"j þ
1

2

X
j; j 0

h jj 0jvj jj 0 i
�
: ð14:36Þ

We can recast the Hartree equation (14.34) and the Hartree energy E,
equation (14.36) in terms of the particle density, as defined in equation
(12.44),

�opð~rr Þ ¼
X
j

�ð~rr�~rrjÞ: ð14:37Þ
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Let us Fourier analyse the potential v,

vðrÞ ¼
X
~kk

v~kk e
i~kk � ~rr; ð14:38Þ

where

v~kk ¼
1

�

ð
d3r 0 vðr 0Þ e�i~kk � ~rr 0

; ð14:39Þ

where � is the Born–von Karmann volume: see section 7.5.1, equations
(7.22)–(7.31). If we Fourier analyse �opð~rr Þ in the same way, we have

�op ¼
X
~kk

�~kk e
i~kk � ~rr: ð14:40Þ

From the general form of Fourier’s theorem, equations (14.38) and (14.39),
we have the well-known representation of the delta function,

1

�

X
~kk

ei
~kk � ð~rr�~rr 0Þ ¼ �ð~rr�~rr 0Þ: ð14:41Þ

Then, from equation (14.37) with equation (14.41),

�opð~rr Þ ¼
X
~kk

�
1

�

X
j

e�i~kk � ~rrj
�
ei
~kk � ~rr: ð14:42Þ

Comparing equations (14.40) and (14.42), we conclude that

�~kk ¼
1

�

X
j

e�i~kk � ~rrj : ð14:43Þ

Now the second term in the total energy, equation (14.36), is

1

2

X
j; j 0

h jvðj~rrj �~rrj 0 jÞj i ¼
1

2

X
j; j 0

h j
X
~kk

v~kk e
i~kk � ð~rrj �~rrj 0 Þj i

¼ 1

2

X
~kk

v~kk

�X
j

ð
d3rj ’

�
j ð~rrjÞ ei

~kk � ~rrj ’jð~rrjÞ
�

�
�X

j 0

ð
d3rj 0 ’

�
j 0 ð~rrj 0 Þ e�i~kk � ~rrj 0 ’j 0 ð~rrj 0 Þ

�
ð14:44Þ

where we have used equation (14.39) and equations (14.35) and (14.33). Now
consider equation (14.43). We find

h j�~kkj i ¼ h j 1
�

X
j

e�i~kk � ~rrj j i

¼ 1

�

X
j

ð
d3rj ’

�
j ð~rrjÞ e�i~kk � ~rrj ’jð~rrjÞ: ð14:45Þ
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Thus, we identify the quantities in { } brackets in equation (14.44) as

1

2

X
j; j 0

h jvðj~rrj �~rrj 0 jÞj i ¼
�2

2

X
~kk

v~kkjh�~kkij
2 ð14:46Þ

where

h�~kki � h j�~kkj i; ð14:47Þ

and we have used equation (14.45), plus the fact that, from equation (14.43),

�~kk ¼ ���~kk : ð14:48Þ

Combining equations (14.46) and (14.36), we obtain the total energy
algorithm for the Hartree approximation,

E ¼
�X

j

"j þ
n2

2�20

X
~kk

v~kk jh�~kkij
2

�
; ð14:49Þ

where we have introduced the mean density �0, in terms of the number of
electrons n and the volume �,

�0 ¼
n

�
: ð14:50Þ

We can similarly rewrite the self-consistent field term in the Hartree equation
(14.34) as

X
j 0

h j 0jvj j 0i ¼
X
j 0

ð
d3rj 0 ’

�
j 0 ðrj 0 Þvðj~rrj �~rrj 0 jÞ’j 0 ð~rrj 0 Þ

¼ �
X
~kk

v~kkh��~kki e
i~kk � ~rrj ; ð14:51Þ

having used equations (14.38), (14.45), and (14.47). Then equation (14.34)
with equation (14.50) becomes�

� �h2

2mb

r2 � n

�0

X
~kk

v~kkh��~kki e
i~kk � ~rr

�
j j i ¼ "j j j i: ð14:52Þ

14.3.2 The uniform solution

In the absence of electron–electron interaction vðrÞ, equation (14.32), the
Hartree equation (14.52) becomes

� �h2

2mb

r2j j i ¼ "jj j i: ð14:53Þ

We now consider the one-dimensional case, involving the x-axis. Then, in
position representation,

’jð~rr Þ � h~rr j j i; ð14:54Þ

306 Charge density waves in solids



we have

� �h2

2mb

d2

dx2
’j ¼ "j’j: ð14:55Þ

This has solutions

’jðxÞ � eikjx; ð14:56Þ
with

"j ¼
�h2k2j
2mb

: ð14:57Þ

Suppose there are n electrons in a length �: see equation (14.50). We apply
periodic boundary conditions,

’jðxþ �Þ ¼ ’jðxÞ: ð14:58Þ

Substituting equation (14.56) into (14.58) we have

eikj� ¼ 1; ð14:59Þ
or

kj ¼
2�

�
nj; ð14:60Þ

where nj is an integer: positive, negative or zero. The ground state of the n-
electron system, the state of lowest total energy, is found from equation
(14.36), here with v ¼ 0. It consists of particles in the n states ’jðxÞ, equation
(14.56) with equation (14.60), with the smallest values of "j, equation (14.57).
To be a bit more realistic, we let two particles, of spins ��h=2, occupy each
state ’j, equation (14.56). The single-particle energy spectrum, equation
(14.57), as a function of the quasi-continuous variable k (for large �: see
equation (14.60)), is parabolic. The ground state encompasses k-values
symmetrical about k ¼ 0. There are two states of opposite spins in a
k-space interval (2�=�Þ: see equation (14.60). The density of states dðkÞ in
k-space is therefore

dðkÞ ¼ 2

�
2�

�

��1

: ð14:61Þ

There must be n states in a region (�kF � k � kF), where kF, the Fermi wave
number, is the highest-energy occupied single-particle state for the ground
state of the n-electron system. Thus

n ¼
ðkF
�kF

dk dðkÞ ¼ 2

�
�

2�

�
ð2kFÞ ¼

2�kF
�

; ð14:62Þ

or, using equation (14.50),

kF ¼ �

2
�0: ð14:63Þ
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The ground state energy E is

E ¼
Xn
j¼1

"j ¼
ðkF
�kF

dk dðkÞ �h
2k2

2mb

¼ �

�

�h2

2mb

2k3F
3
;

having used equation (14.36) with v ¼ 0, and equations (14.57) and (14.51).
If we define the Fermi energy "F by

"F ¼ �h2k2F
2mb

; ð14:64Þ

then the total energy can be written in the alternative forms

E ¼ n

3
"F ¼ nð��h�0Þ2

24mb

: ð14:65Þ

The first form shows that the total energy is extensive, that is, proportional to
the size of the system, if one notes than n ¼ �0�.

It is trivial to show that the normalized single-particle Hartree eigen-
functions ’j , equation (14.56), are

’jðxÞ ¼ ��1=2 eikjx: ð14:66Þ

Then from equation (14.33), the many-electron wave function is

 ðxÞ ¼ ��n=2
Yn
j¼1

eikjx ð14:67Þ

and the electronic probability density j j2 is

j j2 ¼ ��n: ð14:68Þ

In equation (14.68) we see explicitly that the probability density for particles
to be at ~rr1; . . . ;~rrn is uniform; that is, independent of all the electronic
coordinates. This has the consequence, of course, that the expectation
value for the particle density, proportional to the charge density, from
equations (14.37) and (14.67), is

h j�opj i ¼
1

�n

Xn
j¼1

ð
dx1; . . . ; dxn �ðx� xjÞ

¼ ��n�n�1
Xn
j¼1

ð�
0
dxj �ðx� xjÞ

¼ n

�
¼ �0: ð14:69Þ

The result of the last integration in equation (14.69) is valid, of course, only in
the limit � ! 1. The fact that the expectation value is uniform in equation
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(14.69), taken together with the Fourier expansion equation (14.40), shows
that

h�ki ¼ 0 for k 6¼ 0 ð14:70aÞ

¼ �0 for k ¼ 0: ð14:70bÞ

Equation (14.70a) follows directly from the definition of �k, equation (14.43)
as well, when taken with equation (14.67).

Equations (14.70) have an important consequence for the Hartree equa-
tion with non-zero interactions, equation (14.52), which in one dimension is�

� �h2

2mb

d2

dx2
� n

�0

X
k

vkh��ki eikx
�
j j i ¼ "jj j i: ð14:71Þ

We see that, if we substitute the uniform solution into the self-consistent field
terms in h��ki, then equation (14.71) becomes

� �h2

2mb

d2

dx2
’j ¼ ð"j þ nv0Þ’j; ð14:72Þ

so that the uniform solution equation (14.56) is a solution of the Hartree
equation even with non-zero electron interaction, where now, however, the
eigenvalue "j and eigenfunction ’j are

"j ¼
�
�h2k2j
2mb

� nv0

�
; ’j ¼ ��1=2 eikjx: ð14:73Þ

In equations (14.72) and (14.73) v0 is

v0 ¼ ðvkÞk¼0 ¼
1

�

ð�
0
dx vðxÞ; ð14:74Þ

from equation (14.39), adapted to one dimension. Thus v0 is simply the
spatial average of the pairwise electronic interaction. The only difference
between the total energy in the uniform state with arbitrary pairwise elec-
tronic interaction, and that with none, is at most an additive constant: see
equations (14.74), (14.63) and (14.49). The uniform state, equation (14.67),
is therefore a solution in the Hartree approximation for the pairwise inter-
acting electron gas.

14.3.3 The periodic solution

Referring to equation (14.71), suppose that there were a self-consistent
solution such that, for a particular value of k, say k ¼ K , the coefficient
vKh��Ki is dominant in comparison with other k values, and that the self-
consistent field is symmetric in~rr, as v is: see equation (14.38). Then

v�Kh�Ki ¼ vKh��Ki; ð14:75Þ
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and the Hartree equation reduces to�
� �h2

2mb

d2

dx2
� 2n

�0
vKh��Ki cosðKxÞ

�
’j ¼ ~""j’j; ð14:76Þ

where

~""j ¼ ð"j þ nv0Þ: ð14:77Þ

Equation (14.76) is a form of the Bloch equation for electrons in a
periodic potential. From elementary solid state theory, and to be shown in
the next section, the Bloch eigenstates are of the form

’jðxÞ ¼ eikjxujðxÞ ð14:78Þ

where ujðxÞ is periodic with wavelength

� ¼ 2�

K
; ð14:79Þ

which is the periodicity of the potential: see equation (14.76). It follows from
equation (14.78) with equation (14.33) that, similarly to equation (14.69), the
charge density is

h j�opj i ¼ ��n �n�1
Xn
j¼1

ð�
0
dxj �ðx� xjÞjeikjxj ujðxjÞj2

¼ 1

�

Xn
j¼1

jujðxÞj2: ð14:80Þ

which is periodic in x because ujðxÞ are. Let us at this point compare the
results of the uniform solution with the postulated periodic case. In the
uniform case we have

~""k ¼
�
�h2k2

2mb

�
; ’k ¼ ��1=2 eikx: ð14:81Þ

from equation (14.73) with (14.77) where here and henceforth we shall label
Hartree eigenstates and eigenvalues by k rather than j. In the periodic case
we have ~""k, an eigenvalue of the Bloch equation (14.76), with eigenfunction
of the form

’kðxÞ ¼ eikx ukðxÞ: ð14:82Þ
We know, and shall later show, that in the periodic case, the Bloch eigenvalue
spectrum will have gaps at k ¼ ð�mK=2Þ, with m an integer and K the primi-
tive translation vector of the reciprocal lattice of the periodic potential, as
illustrated in figure 14.1. Below the gap, introduction of a periodic potential
lowers the single-particle energy relative to the parabola of the uniform case,
equation (14.81); just above the gap the energy is raised. We therefore arrive
at the following conclusion. If the interacting one-dimensional electron gas
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has a periodic state such that the first gap occurs at jkj ¼ kF, then the total
energy will be lower than that of the uniform solution. The difference in
energy will be given by the shaded area in figure 14.2. In that case, the
ground state will be this particular periodic state: that is why we have
limited the previous statement to the first gap, although the statement may
still be correct for higher gaps.

We note that the periodicity associated with K=2 ¼ kF has a wavelength
� in x-space of

� ¼ 2�

K
¼ �

kF
: ð14:83Þ

In general, this has no simple relationship with the periodicity of the static
crystal lattice, i.e. the atomic ordering, which has been removed from the
problem by introduction of the band mass mb, in order to illustrate the
charge density wave effect most simply. However, if we consider a monatomic
one-dimensional ‘crystal’ with one atom in the primitive unit cell, and one
conduction electron per atom, the average distance between atomic cores in
the crystal is

� ¼ �

n
: ð14:84Þ

From equation (14.83) with equation (14.62), we have for the wavelength of
the electronic density distribution in the periodic case,

� ¼ �

kF
¼ 2�

n
; ð14:85Þ

i.e. twice the average distance in the atomic ordering. For this ‘crystal’ as a
whole, therefore, electrons plus atomic cores, the periodicity will be twice

Figure 14.2. Lowering of total electronic energy (shaded area), relative to the uniform

solution, of a periodic solution with first band gap at k ¼ K=2 ¼ kF, in one dimension.
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the average interatomic distance, even though the atomic cores are identical.
In equilibrium, the cores will not be evenly spaced with interatomic distances
�, but rather will be spaced according to a pattern (�þ �), (�� �), (�þ �),
etc. In experimentally observed charge density wave materials, this perturba-
tion of the crystalline order can be observed upon transition to the charge
density wave state. Equation (14.85) represents the simplest case of a
commensurate charge density wave, where the wavelength is a rational
multiple of the average atomic spacing. It may also happen that atomic
ordering, expressed more accurately than simply through the band mass,
prevents formation of a self-consistent field whose periodicity places a
band gap at k ¼ kF. The total energy in a charge density wave state may
still be lower in such a system than that of the ‘uniform’ state, however, pro-
vided that, in the one-dimensional illustration, only a small number of states
are occupied above the gap, so that the total area under the curve in figure
14.2 up to kF0K=2 is still less than that under the parabola for k � kF.

In two and three dimensions, a new consideration enters the problem. In
three dimensions, with a periodic potential, the regions of forbidden energy
(the band gaps) occur for ~kk-values that define a set of planes in k-space
(reciprocal space) as orthogonal bisectors of the reciprocal lattice vectors.
These planes constitute Brillouin zone boundaries. Working outward from
the origin of k-space one first encounters the first Brillouin zone boundary.
Continuing outward, one encounters the second Brillouin zone boundary,
and so on. The Brillouin zones are therefore volumes in the three-dimensional
case, bounded by surfaces. These matters are covered in standard discussions
of crystal structure and band theory: see for example Grosso and Pastori
Parravicini (2000). In a two-dimensional system, the Brillouin zones are
areas, bounded by straight-line segments, and in one dimension the Brillouin
zones are segments of the one-dimensional line, bounded by points
k ¼ �ðmK=2Þ, as we have said. In figure 14.3 we show the first Brillouin
zone boundary for a square Bravais crystal lattice in two dimensions. The
first Brillouin zone is also square. (For a simple cubic crystal lattice the
first Brillouin zone is a cube.) Thus in two dimensions, there is a band gap
everywhere on the square boundary of the first Brillouin zone. For a weak
periodic potential, the one-electron energies are approximately proportional
to j~kk j2, and the band gaps are narrow. In such a case it commonly occurs that
the energy in the corners of the first Brillouin zone is higher than that above
the band gap at the center of a side of the zone: points A and B respectively in
figure 14.3. Thus generally the question whether or not there will be a charge
density wave ground state depends on details of the crystal structure and of
the pairwise interaction for electrons. What is clear, however, is that if the
electronic distribution spills over the band gap at some points without
filling the Brillouin zone, then the material will not be an insulator: infinitely
small energy excitations will be possible into the corners of the Brillouin
zone, and to states adjacent (in k-space) to those that are occupied just
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above the gap, as in figure 14.3. Exactly similar remarks apply to the three-
dimensional case, but with even greater likelihood of the ground state not
being an insulator. We emphasize the possible origin of an insulator
ground state associated with a charge density wave electronic configuration.
It is an insulator state not due to the atomic ordering in the crystal, but rather
due to an ordering induced by the characteristics of the effective pairwise
interaction among conduction electrons.

14.4 Charge density waves: the Mathieu equation

14.4.1 The Mathieu equation

We now return to the one-dimensional example with a single dominant
sinusoidal term in the periodic self-consistent field in the Hartree approxima-
tion, equation (14.76). This is in fact a form of the Mathieu equation
(Mathieu, 1868). Apart from the self-consistency feature, our treatment
follows that of Slater (1952). For the wave number K , we choose the value
that puts the first band gap at kF, namely K ¼ 2kF, equation (14.83). We
introduce dimensionless variables and parameters as follows:

� ¼ kFx; q ¼ k

kF
; � ¼ vK

"F
; "0 ¼ ~""

"F

s ¼ 4n
vKh��Ki
�0"F

; ð14:86Þ

Figure 14.3. Illustration of how the Fermi region (shaded) in a two-dimensional charge

density wave solution may fail to have an energy gap everywhere at its boundary, even

though the first Brillouin zone (the square) contains exactly one state per electron.
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where kF and "F are given in equations (14.63) and (14.64), and ~"" is given in
equation (14.77). From equation (14.77) we should have

~""k ¼ ð"k þ nv0Þ; ð14:87Þ

labelling Hartree eigenstates by k rather than j, and therefore

"0 � "0q: ð14:88Þ

In equations (14.86), � is a dimensionless form of the pairwise electron–
electron coupling constant, and s is a dimensionless amplitude of the periodic
potential. With these notations we have, from equation (14.76),�

� d2

d�2
� 1

2
s cosð2�Þ � "0q

�
’qð�Þ ¼ 0: ð14:89Þ

We now derive the properties of ’qð�Þ, equation (14.89), that follow
from the periodic potential. We introduce a complete orthonormal set of
basis functions for the region 0 � x � � with periodic boundary conditions.
Consider the function �qð�Þ,

�qð�Þ � eiq�; ð14:90Þ

where q ¼ k=kF; � ¼ kFx. Periodic boundary conditions require

qkF� ¼ 2�m; m ¼ 0;�1;�2; . . . ð14:91Þ

Using equation (14.62) for kF, this becomes

q ¼ 4m

n
; ð14:92Þ

where n is the number of particles. Since we have � ¼ n�=2 when x ¼ �, for
orthonormality we consider

ðn�=2
0

d� e�iq� eiq
0� ¼

ðn�=2
0

d� exp

�
4i

n
ðm0 �mÞ�

�

¼ n�

2

ei�ðm
0�mÞ sin½ðm0 �mÞ��
½ðm0 �mÞ�� : ð14:93Þ

In equation (14.93), if m 6¼ m0, the result is zero, from the sine. For the case
m ¼ m0 we consider

lim
x!0

�
sin x

x

�
¼ 1; ð14:94Þ

and conclude ðn�=2
0

d� e�iq� eiq
0� ¼ n�

2
�q;q0 ð14:95Þ
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whence the normalized basis functions

�qð�Þ ¼
�

2

n�

�1=2
eiq�: ð14:96Þ

From equation (14.83), the wavelength of the periodic potential in x is
(�=kF), and in � it is � (since � ¼ kFx). The elements of the Bravais lattice
in � are therefore (��), � ¼ 0;�1;�2; . . . ; and the elements of the reciprocal
lattice are

Q	 ¼
2�

ð�Þ 	 ¼ 2	; 	 ¼ 0;�1;�2; . . . ð14:97Þ

Now Bloch’s theorem [see for example Ashcroft and Mermin (1976,
Chapter 8)] requires the eigenfunction ’qð�Þ, equation (14.89), to be of the
form given in equation (14.82), namely,

’qð�Þ ¼
�

2

n�

�1=2
eiq� uqð�Þ; ð14:98Þ

where uqð�Þ has periodicity of � in �, in the present case. Thus uqð�Þ has the
form

uqð�Þ ¼
X
�

a�ðqÞ e2i��; ð14:99Þ

where � ¼ 0;�1;�2; . . . : Consider now the normalization condition for the
coefficients a� in equation (14.99),

1 ¼
ðn�=2
0

d� j’qð�Þj2

¼
�

2

n�

�X
�;�0

a��ðqÞa�0 ðqÞ
ðn�=2
0

d� e2ið�
0��Þ�

¼
X
�;�0

a��ðqÞa�0 ðqÞ eið�
0 ��Þn�=2 sin½ð�0 � �Þn�=2�

½ð�0 � �Þn�=2� : ð14:100Þ

Now we have an even number n ¼ 2n0 of electrons, each occupied spatial
Hartree eigenfunction ’qð�Þ being found in both spin-up and spin-down
manifolds. Thus in equation (14.100) we have

sin½ð�0 � �Þn0��
½ð�0 � �Þn0��

¼ 0 for �0 6¼ �;

¼ 1 for �0 ¼ �;
ð14:101Þ
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see equation (14.94). Thus equation (14.100) reduces to

1 ¼
X
�

ja�j2: ð14:102Þ

We now substitute the Bloch wave, equation (14.98) with equation
(14.99) into the Mathieu equation (14.89), writing the cosine in terms of
complex exponentials,

X1
�¼�1

f½ðqþ 2�Þ2 � "0q� eiðqþ2�Þ� � 1
4 s½e

i½qþ2ð�þ1Þ�� þ ei½qþ2ð��1Þ���ga�ðqÞ ¼ 0:

ð14:103Þ

Thus if we multiply equation (14.103) by exp½�iðqþ 2�0Þ�� and integrate over
(0; n�=2), we obtain

0 ¼ f½ðqþ 2�0Þ2 � "0q�a�0 ðqÞ � 1
4 s½a�0 �1ðqÞ þ a�0 þ1ðqÞ�g: ð14:104Þ

This is an alternative form of the Mathieu equation (14.89): it gives the
relationship that must be satisfied by the Fourier coefficients a�ðqÞ of the
Bloch-type solution, equations (14.98) and (14.99).

14.4.2 Solution away from the band gap

We now apply perturbation theory to solve equation (14.104), based on the
assumed weakness of the self-consistent field periodic potential: s 	 1 in
equations (14.89) and (14.104): see also equation (14.86) for the definition
of s. In the relationship

s ¼ 4nvKh��Ki
�0"F

; ð14:105Þ

h��Ki will be a function of s, as is the wave function used in the expectation
value. Equation (14.105) will therefore determine the functional relationship
between s and vK , which are both being assumed small. The specific
relationship that will be obtained enables us to discuss, in section 14.5, the
non-analytical relationship between the uniform and charge density wave
solutions. Such a non-analytical relationship occurs in a variety of
quantum-mechanical systems.

If the Bloch electrons are to form a sinusoidal charge density wave, of
wave number K ¼ 2kF, so that Kx ¼ 2�, then we should expect the periodic
part of the Bloch wave, uq, equation (14.99), to be dominated by the terms in
expð�2i�Þ, i.e. the terms in � ¼ �1. We assume that these terms have
coefficients a�1 of the order of s, with higher harmonics, j�j > 1, having
coefficients �sj�j. We shall find that such a solution exists. On this basis,
we shall apply perturbation theory to the Mathieu equation (14.104), in
order to obtain a solution to second order. This entails terms up to

316 Charge density waves in solids



j�0j ¼ 2, namely

�0 ¼ 0: ðq2 � "0qÞa0 ¼ 1
4 sða�1 þ a1Þ; ð14:106Þ

�0 ¼ 1: ½ðqþ 2Þ2 � "0q�a1 ¼ 1
4 sða0 þ a2Þ; ð14:107Þ

�0 ¼ �1: ½ðq� 2Þ2 � "0q�a�1 ¼ 1
4 sða�2 þ a0Þ; ð14:108Þ

�0 ¼ 2: ½ðqþ 4Þ2 � "0q�a2 � 1
4 sða1Þ; ð14:109Þ

�0 ¼ �2: ½ðq� 4Þ2 � "0q�a�2 � 1
4 sða�1Þ; ð14:110Þ

We also write "0q as

"0q � ½"ð0Þq þ s"ð1Þq þ s2"ð2Þq �: ð14:111Þ

We now build up the solution in successive orders of s. In zeroth order, from
equations (14.111) and (14.106),

"ð0Þq ¼ q2: ð14:112Þ

In first order, from equations (14.106), (14.111) and (14.112),

"ð1Þq ¼ 0; ð14:113Þ

and, from equations (14.107) and (14.108),

½ðqþ 2Þ2 � q2�a1 ¼
1

4
sa0 ! a1 ¼

s

16

a0
ðqþ 1Þ ; ð14:114Þ

½ðq� 2Þ2 � q2�a�1 ¼
1

4
sa0 ! a�1 ¼

s

16

a0
ð�qþ 1Þ : ð14:115Þ

In second order, we have, from equations (14.106) and (14.112)–(14.115),

�s2"ð2Þq a0 ¼
1

4

s2

16

�
1

ðqþ 1Þ þ
1

ð�qþ 1Þ

�
a0

or

"ð2Þq ¼ � 1

32

1

ð1� q2Þ
; ð14:116Þ

and, from equations (14.109) and (14.110),

½ðqþ 4Þ2 � q2�a2 ¼
1

4

s2

16

a0
ðqþ 1Þ ; ð14:117Þ

½ðq� 4Þ2 � q2�a�2 ¼
1

4

s2

16

a0
ð1� qÞ ð14:118Þ
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or

a�2 ¼
1

2

�
s

16

�2 a0
ðq� 1Þðq� 2Þ : ð14:119Þ

Normalization of the eigenfunctions, equation (14.98) with equation (14.102)
determines a0,

1 ¼ ðja0j2 þ ja1j2 þ ja�1j2Þ; ð14:120Þ

to second order in s. From equations (14.114) and (14.115), equation (14.120)
becomes

1 ¼ a20

�
1þ

�
s

16

�2 2ð1þ q2Þ
ð1� q2Þ2

�
;

or, still to second order,

a20 ¼
�
1þ

�
s

16

�2 2ð1þ q2Þ
ð1� q2Þ2

��1

�
�
1�

�
s

16

�2 2ð1þ q2Þ
ð1� q2Þ2

�
: ð14:121Þ

14.4.3 Solution near the band gap

Examining equations (14.114), (14.115) and (14.119), we see that a�1 and a�2

diverge as q ! �1, and therefore, since q ¼ k=kF, and the first band gap is to
be at jkj ¼ K=2 ¼ kF, i.e. at jqj ¼ 1, the solutions obtained so far are not
valid near the gap. As is well known [see for example Mott and Jones
(1936, Chapter II, section 4)] the method of degenerate perturbation
theory must be applied in this case. Near q ¼ þ1 (k ¼ þkF), we see from
equation (14.114) that a�1 becomes comparable in magnitude with a0, and
therefore cannot be considered to be first order in s. The zeroth-order
problem from the Mathieu equation (14.104) then is

�0 ¼ 0: ðq2 � "ð0Þq Þa0 ¼ 1
4 sa�1 ð14:122Þ

�0 ¼ �1: ½ðq� 2Þ2 � "ð0Þq �a�1 ¼ 1
4 sa0: ð14:123Þ

The necessary and sufficient condition for a solution to exist for this system
of homogeneous linear equations is that the determinant of coefficients of a0
and a�1 should vanish,�

ðq2 � "ð0Þq Þ½ðq� 2Þ2 � "ð0Þq � �
�
s

4

�2�
¼ 0; ð14:124Þ

whose solution is

"ð0Þq ¼
�
q2 þ 2ð1� qÞ �

�
4ðq� 1Þ2 þ

�
s

4

�2�1=2�
: ð14:125Þ
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In equation (14.125) we have chosen the negative square root, so that "ð0Þq will
be less than q2 for 0 < q91. Substituting equation (14.125) into equation
(14.122) we obtain

�
�2ð1� qÞ þ

�
4ðq� 1Þ2 þ

�
s

4

�2�1=2�
a0 ¼

1

4
sa�1: ð14:126Þ

We substitute the zeroth order solution "ð0Þq , equation (14.125), into equations
(14.107) and (14.110), noting that now, for 0 < q91, a�2 will be first order
small

½ðqþ 2Þ2 � "ð0Þq �a1 ¼ 1
4 sa0; ð14:127Þ

½ðq� 4Þ2 � "ð0Þq �a�2 ¼ 1
4 sa�1: ð14:128Þ

We substitute for a1 and a�2 into equations (14.106) and (14.108), using
equations (14.127) and (14.128) to express a1 and a�2 in terms of the
dominant coefficients a0 and a�1. The results are

a1 ¼ ½ðqþ 2Þ2 � "ð0Þq ��1

�
s

4

�
a0; ð14:129Þ

a�2 ¼ ½ðq� 4Þ2 � "ð0Þq ��1

�
s

4

�
a�1; ð14:130Þ

whence, from equations (14.106) and (14.108),

ðq2 � "0qÞa0 ¼
�
s

4

��
a�1 þ ½ðqþ 2Þ2 � "ð0Þq ��1

�
s

4

�
a0

�
ð14:131Þ

½ðq� 2Þ2 � "0q�a�1 ¼
�
s

4

��
½ðq� 4Þ2 � "ð0Þq ��1

�
s

4

�
a�1 þ a0

�
: ð14:132Þ

We rewrite equations (14.131) and (14.132) in standard form as
�
q2 � "0q �

�
s

4

�2
½ðqþ 2Þ2 � "ð0Þq ��1

�
a0 �

�
s

4

�
a�1 ¼ 0 ð14:133Þ

�
s

4

�
a0 �

�
ðq� 2Þ2 � "0q �

�
s

4

�2
½ðq� 4Þ2 � "ð0Þq ��1

�
a�1 ¼ 0: ð14:134Þ

In the above equations (12.127)–(12.134), "ð0Þq is given by equation (14.125).
The necessary and sufficient condition that equations (14.133) and (14.134)
have a solution is that the determinant of the coefficients for a0 and a�1 be
zero, determining "0q in second order. We note that equation (14.125) for
"ð0Þq contains a term of order s. We assume that the region near the band
gap at q ¼ kF is defined by

ð1� qÞ � s: ð14:135Þ
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Let us now obtain the correction of order s2 to "ð0Þq , equation (14.125).
Write

"0q � ð"ð0Þq þ s2"ð2Þq Þ: ð14:136Þ

The determinantal condition applied to equations (14.133) and (14.134) gives
�
ðq2 � "ð0Þq Þ½ðq� 2Þ2 � "ð0Þq � �

�
s

4

�2�

þ ðq2 � "ð0Þq Þ
�
�s2"ð2Þq �

�
s

4

�2

2

�

þ ½ðq� 2Þ2 � "ð0Þq �
�
�s2"ð2Þq �

�
s

4

�2

1

�

þ
�
�s2"ð2Þq �

�
s

4

�2

1

��
�s2"ð2Þq �

�
s

4

�2

2

�
¼ 0: ð14:137Þ

In equation (14.137), we have defined


1 ¼ ½ðqþ 2Þ2 � "ð0Þq ��1; ð14:138Þ


2 ¼ ½ðq� 4Þ2 � "ð0Þq ��1: ð14:139Þ

In equation (14.137), note that the first line is zero: see equation (14.124). We
note that 
1 and 
2 are of leading order s

0. Expanding out equation (14.137),
we now have

ðs2"ð2Þq Þ2 þ
�
s

4

�2
ð
1 þ 
2Þs2"ð2Þq þ

�
s

4

�4

1
2

� ½ðq2 � "ð0Þq Þ þ ðq� 2Þ2 � "ð0Þq �s2"ð2Þq

�
�
s

4

�2
fðq2 � "ð0Þq Þ
2 þ ½ðq� 2Þ2 � "ð0Þq �
1g ¼ 0: ð14:140Þ

Now from equation (14.125) for "ð0Þq , we find

ðq2 � "ð0Þq Þ ¼ �2ð1� qÞ þ
�
4ð1� qÞ2 þ

�
s

4

�2�1=2
; ð14:141Þ

and

½ðq� 2Þ2 � "ð0Þq � ¼ 2ð1� qÞ þ
�
4ð1� qÞ2 þ

�
s

4

�2�1=2
: ð14:142Þ

We therefore see from equation (14.135) that both equations (14.141)
and (14.142) are of order s. Thus the first line of equation (14.140) is of
order s4, while the second and third lines are of order s3. Neglecting the
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first line, we have

�2

�
4ð1� qÞ2 þ

�
s

4

�2�1=2
s2"ð2Þq ¼

�
s

4

�2
fðq2 � "ð0Þq Þ
2 þ ½ðq� 2Þ2 � "ð0Þq �
1g:

ð14:143Þ

We now want 
1 and 
2 to order s0. From equations (14.138),


1 ¼ ½q2 þ 4ðqþ 1Þ � "ð0Þq ��1

¼ ½4ðq� 1Þ þ 8þ q2 � "ð0Þq ��1

¼
�
8� 4ð1� qÞ � 2ð1� qÞ þ

�
4ð1� qÞ2 þ

�
s

4

�2�1=2��1

� 1

8
: ð14:144Þ

Similarly from equation (14.139),


2 �
1

8
: ð14:145Þ

Now, using equations (14.141), (14.142), (14.144) and (14.145), equation
(14.143) becomes

�2

�
4ð1� qÞ2 þ

�
s

4

�2�1=2
s2"ð2Þq �

�
s

4

�2 1
8
2

�
4ð1� qÞ2 þ

�
s

4

�2�1=2

or

s2"ð2Þq � � 1

8

�
s

4

�2
: ð14:146Þ

Thus, from equations (14.136), (14.125) and (14.146), we have the single-
particle energy to order s2 for ð1� qÞ � s, near the gap,

"0q ¼
�
q2 þ 2ð1� qÞ �

�
4ð1� qÞ2 þ

�
s

4

�2�1=2
� 1

8

�
s

4

�2�
: ð14:147Þ

We now return to equations (14.133) and (14.134) to determine a�1 in
terms of a0, to order s2,

�
s

4

�
a�1 ¼

�
�2ð1� qÞ þ

�
4ð1� qÞ2 þ

�
s

4

�2�1=2�
a0; ð14:148Þ

�
s

4

�
a0 ¼

�
þ2ð1� qÞ þ

�
4ð1� qÞ2 þ

�
s

4

�2�1=2�
a�1; ð14:149Þ
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having used equation (14.147) along with equations (14.138), (14.139),
(14.144) and (14.145). Thus, from equations (14.148) and (14.149),

�
a�1

a0

�2
¼

�
�2ð1� qÞ þ

�
4ð1� qÞ2 þ

�
s

4

�2�1=2�

�
þ2ð1� qÞ þ

�
4ð1� qÞ2 þ

�
s

4

�2�1=2� : ð14:150Þ

Normalization to order s2 can be achieved now by using equations (14.150),
(14.129) and (14.130),

1 ¼ fja0j2 þ ja�1j2 þ ja1j2 þ ja�2j2g: ð14:151Þ

Now, to order s, from equations (14.129), (14.130), (14.144) and (14.145),

a1 ¼ � s

32
a0; ð14:152Þ

a�2 ¼ � s

32
a�1; ð14:153Þ

so, from equation (14.151),

1 ¼
��

1þ
�

s

32

�2�
ðja0j2 þ ja�1j2Þ

�
; ð14:154Þ

or

ðja0j2 þ ja�1j2Þ �
�
1�

�
s

32

�2�
¼ 2ja0j2

2ð1� qÞ�
4ð1� qÞ2 þ

�
s

4

�2�1=2 þ 1

8><
>:

9>=
>;

: ð14:155Þ

The last line of equation (14.155) follows from equation (14.150). Solving
equation (14.155) we have

ja0j2 ¼
1

2
1þ 2ð1� qÞ�

4ð1� qÞ2 þ
�
s

4

�2�1=2
8><
>:

9>=
>;

�
1�

�
s

32

�2�
: ð14:156Þ

14.4.4 The self-consistency condition

We are now in a position to establish self consistency for the Hartree wave
functions by solving equation (14.105) for s as a function of � ¼ ðvK="FÞ,
thereby obtaining the wave functions, equations (14.82) or (14.98) and
(14.99), directly in terms of the physical parameters of the crystal. From
equation (14.105), we must evaluate h��Ki. From equations (14.47) and
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(14.45), with equation (14.33), we have

h��Ki ¼
1

�

X
k

ð
dx’�

kðxÞ eiKx ’kðxÞ: ð14:157Þ

In equation (14.157) we now introduce � ¼ kFx, equation (14.86) and
equation (14.90), along with q ¼ k=kF, equation (14.86). In the present
case we are considering K ¼ 2kF, so we have Kx ¼ 2�. From equations
(14.98) and (14.99), the integrals in equation (14.157) become

ð�kF
0

d�j’qð�Þj2 e2i� ¼
�

2

n�

�X
�;�0

a��ðqÞa�0 ðqÞ
ðn�=2
0

d� e2ið�
0 ��þ1Þ�

¼
�

2

n�

�X
�;�0

a��ðqÞa�0 ðqÞ
n�

2
��0;��1 ð14:158Þ

whence

ð�kF
0

d�j’qð�Þj2 e2i� ¼
X
�

a��ðqÞa��1ðqÞ: ð14:159Þ

In equation (14.158), the Kronecker delta comes as a trivial adaptation of
equations (14.100) and (14.101). Equations (14.157) and (14.159) now give us

h��Ki ¼
1

�

X
q

X
�

a��ðqÞa��1ðqÞ: ð14:160Þ

We can now address the self-consistency condition, equation (14.105)
which, with equations (14.160) and (14.86) becomes

s ¼ 4n

�0

�

�

X
q

X
�

a��ðqÞa��1ðqÞ: ð14:161Þ

Now from q ¼ k=kF, the density of points in q space is

dðqÞ ¼ 2�
2�

�kF

� ¼ �kF
�

¼ n

2
: ð14:162Þ

Thus, converting the sum over k in equation (14.161) to an integral, we have

s ¼ 2n�
X
�

ð1
�1

dq a��ðqÞa��1ðqÞ; ð14:163Þ

having used �0 ¼ n=�, and the fact that the range of k in the first Brillouin
zone for this charge density wave case is ð�kF � k � kFÞ, corresponding to
ð�1 � q � 1Þ. In fact, from the symmetry of ukðxÞ about k ¼ 0, we can
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write equation (14.163) as

s ¼ 4n�
X
�

ð1
0
dq a��ðqÞa��1ðqÞ: ð14:164Þ

We now have the problem of substituting into equation (14.164)
expressions for a�ðqÞ, equations (14.114), (14.115), (14.119) with (14.121)
for 0 � q � ð1� sÞ, and equations (14.129) and (14.130) with equations
(14.150) and (14.156) for ð1� sÞ � q � 1, and then evaluating the integrals.
We first collect the above expressions.

For 0 � q � ð1� sÞ,

a�1 ¼
s

16

a0
ð1� qÞ ; ð14:165Þ

a�2 ¼
1

2

�
s

16

�2 a0
ð1� qÞð2� qÞ ; ð14:166Þ

a20 ¼
�
1�

�
s

16

�2 2ð1þ q2Þ
ð1� q2Þ2

�
: ð14:167Þ

For ð1� sÞ � q � 1,

a1 ¼ ½ðqþ 2Þ2 � "ð0Þq ��1

�
s

4

�
a0; ð14:168Þ

a�2 ¼ ½ðq� 4Þ2 � "ð0Þq ��1

�
s

4

�
a�1: ð14:169Þ

From equations (14.138), (14.139), (14.144) and (14.145), we have, to lowest
order,

a1 ¼
s

32
a0; ð14:170Þ

a�2 ¼
s

32
a�1: ð14:171Þ

In addition, equations (14.156) and (14.155) give

ja0j2 ¼
1

2
1þ 2ð1� qÞ�

4ð1� qÞ2 þ
�
s

4

�2�1=2
8><
>:

9>=
>;

�
1�

�
s

32

�2�
; ð14:172Þ

and

ja�1j2 ¼
1

2
1� 2ð1� qÞ�

4ð1� qÞ2 þ
�
s

4

�2�1=2
8><
>:

9>=
>;

�
1�

�
s

32

�2�
: ð14:173Þ

324 Charge density waves in solids



Returning to equation (14.164), the lowest order terms are:

For 0 � q � ð1� sÞ, away from the band gap, from equation (14.165),

ða0a�1 þ a1a0Þ �
s

16

2

ð1� q2Þ
: ð14:174Þ

For ð1� sÞ � q � 1, near the band gap, from equations (14.170) and
(14.171),

½a0a�1 þ ða1a0 þ a�1a�2Þ� ¼
�
a0a�1 þ ðja0j2 þ ja�1j2Þ

�
s

32

��
: ð14:175Þ

From equations (14.172) and (14.173), to lowest order,

ja0j2 ¼ 1
2 ð1þ 
Þ; ð14:176Þ

ja�1j2 ¼ 1
2 ð1� 
Þ; ð14:177Þ

where


 ¼ 2ð1� qÞ�
4ð1� qÞ2 þ

�
s

4

�2�1=2 : ð14:178Þ

For evaluating (a0a�1) in equation (14.175), we choose the positive square
root for a0,

a0 ¼ 2�1=2ð1þ 
Þ1=2: ð14:179Þ

For a�1, we must choose the sign that matches a�1, away from the band
gap, i.e. from the region 0 � q � ð1� sÞ at q ¼ ð1� sÞ. In this region,
from equation (14.165),

a�1ðq ! ð1� sÞ�Þ ¼ � s

16

a0
ð1� 1þ sÞ ¼

a0
16
: ð14:180Þ

In the same region, from equation (14.167),

ja0ðq ! ð1� sÞ�Þj2 ¼
�
1� 2

162

�
: ð14:181aÞ

Thus

a0ðq ! ð1� sÞ�Þ �
�
1� 1

162

�
� 1; ð14:181bÞ

so equation (14.180) gives

a�1ðq ! ð1� sÞ� � 1

16
: ð14:182Þ
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From equation (14.177), for ð1� sÞ � q � 1, near the band gap,

a�1 ¼ �2�1=2ð1� 
Þ1=2: ð14:183Þ

From equation (14.178),


ðq ! ð1� sÞþÞ ¼ 2s�
4s2 þ

�
s

4

�2�1=2 ¼
1�

1þ 1

64

�1=2 �
�
1� 1

128

�
: ð14:184Þ

Returning to equation (14.183) with equation (14.184),

a�1ðq ! ð1� sÞþÞ ¼ �2�1=2

�
1�

�
1� 1

128

��1=2

¼ �2�1=2 ð128Þ�1=2 ¼ � 1

16
: ð14:185Þ

Comparing equations (14.182) and (14.185), we conclude that

a�1 ¼ 2�1=2ð1� 
Þ1=2; ð1� sÞ � q � 1: ð14:186Þ

Returning now to equation (14.175), using equations (14.179), (14.186) and
(14.155), we have, near the band gap,

½a0a�1 þ ða1a0 þ a�1a�2Þ� ¼
�
1

2
ð1� 
2Þ1=2 þ

�
s

32

��
1�

�
s

32

�2��
:

ð14:187Þ

From equation (14.178), this reduces to�
s

8

�
1�

4ð1� qÞ2 þ
�
s

4

�2�1=2 þ
1

4

8><
>:

9>=
>;

ð14:188Þ

to order s.
For the self-consistency condition, equation (14.164), we have the fol-

lowing integrals, from equations (14.174), away from the band gap, and
(14.188), near the band gap,

X
�

ð1
0
dq a��ðqÞa��1ðqÞ �

s

8

ðð1� sÞ

0
dq

1

ð1� q2Þ

þ s

8

ð1
ð1� sÞ

dq
1�

4ð1� qÞ2 þ
�
s

4

�2�1=2 þ
1

4

2
64

3
75: ð14:189Þ
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Now ðð1� sÞ

0
dq

1

ð1� q2Þ
¼

ðð1� sÞ

0
dq

1

2

�
1

ð1� qÞ þ
1

ð1� qÞ

�

¼ 1

2
ln

�
1þ q

1� q

�����
ð1� sÞ
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¼ 1
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f�ln sþ lnð2� sÞg
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2
f�ln sþ ln 2g ð14:190Þ

for small s. Also in equation (14.189)

1

4

ð1
ð1� sÞ

dq ¼ s

4
; ð14:191Þ

which gives a term �s2 in equation (14.189), which we are neglecting.
Furthermore,ð1

ð1� sÞ
dq

1�
4ð1� qÞ2 þ

�
s

4

�2�1=2 ; u ¼ ð1� qÞ

¼
ðs
0
du

1�
4u2 þ

�
s

4

�2�1=2 ¼
1

2

ðs
0
du

1�
u2 þ

�
s

8

�2�1=2

¼ 1

2
ln

�
uþ

�
u2 þ

�
s

8

�2�1=2�����
s

0

¼ 1

2
ln

�
sþ

�
s2 þ

�
s

8

�2�1=2�
� 1

2
ln

�
s

8

�

¼ 1

2
ln

�
s

�
1þ

�
1þ 1

64

�1=2��
� 1

2
ln

�
s

8

�

¼ 1

2
ln

��
1þ ð65Þ1=2

8

�
� 8
�

� 1

2
lnð16Þ ¼ 2 ln 2: ð14:192Þ

Thus, collecting results from equations (14.189) to (14.192) we have the
self-consistency condition equation (14.164),

s ¼ 4n�

�
s

8

�
1

2
ð�ln sþ ln 2Þ þ 2 ln 2

��
: ð14:193Þ

Charge density waves: the Mathieu equation 327



Thus

1 ¼ �4n�
1

16
ðln s� 5 ln 2Þ;

whence

1

16
ln

�
s

32

�
¼ �1

4n�
;

or finally,

s ¼ 32 exp½�4=ðn�Þ�: ð14:194Þ

Now our perturbative treatment requires s 	 1, which can only be true in
equation (14.194) if � is small and positive. From the definition of � (equation
(14.86)), this requires not only that vKh��Ki be dominant in the scf in equation
(14.71) for K ¼ 2kF, but also

vK ¼ v2kF ¼ � kF > 0; ð14:195Þ

that is, that the effective pairwise potential in equation (14.32) should be
attractive at Fourier component k ¼ K ¼ 2kF. For this to be the case, the
corresponding Fourier component of the effective pairwise potential due to
electron–phonon interaction, ½�v0ðrÞ� must be attractive also, with sufficient
strength to exceed in magnitude the corresponding Fourier component of the
electron–electron Coulomb repulsion: see equations (14.28)–(14.32).

14.4.5 The total energy

We can now compare the total energy of the charge density wave solution, in
Hartree approximation, with that of the uniform solution. From equation
(14.73), we see that in the presence of the periodic potential, as in equation
(14.76), the uniform solution gives

"j ¼
�h2k2j
2mb

; ð14:196Þ

since v0 ¼ 0 for a sinusoidal potential. The total energy E0 for the uniform
case is therefore given by equation (14.49),

E0 ¼
X
j

"j; ð14:197Þ

since h�ki ¼ 0 for k 6¼ 0, equation (14.70a), and vk ¼ 0 for k ¼ 0, as
mentioned above. Thus, from equation (14.197) with equation (14.86) for
"ðqÞ,

E0

"F
¼

ð1
�1

dq dðqÞq2 ¼ 2

ð1
0
dq dðqÞq2 ð14:198Þ
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where the density of states dðqÞ of q-space points is given, in equation
(14.162) to be ðn=2Þ. Thus, equation (14.198) gives

E0

"F
¼ 2

n

2

ð1
0
dq q2 ¼ n

3
: ð14:199Þ

Now consider the total energy of the periodic solution given in the
previous section. Let us first consider the term from the self-consistent field
(scf ) in the energy expression (14.49); denote it E1:

E1

"F
¼ n2

2�20"F
fvK jh��Kij2 þ v�K jh�Kij2g

¼ n2

�20"F
vK jh�Kij2; ð14:200Þ

the last line coming from equation (14.75) plus the fact that vK ¼ v�K . In our
dimensionless units, equations (14.86), this becomes

E1

"F
¼ s2

1

16

"F
vK

¼ s2
1

16

1

�
: ð14:201Þ

Now from our scf solution, equation (14.194), this is

E1

"F
¼ � s2

16

n

4
ln

�
s

32

�
: ð14:202Þ

The rest of the energy, E2, comes from the Hartree eigenvalues "j, or "ðqÞ,

E2

"F
¼

X
j

"j
"F

¼ 2

ð1
0
dq

n

2
"ðqÞ ð14:203Þ

where "ðqÞ is as follows:

For 0 � q � ð1� sÞ,

"ðqÞ ¼
�
q2 � s2

32

1

ð1� q2Þ

�
ð14:204Þ

from equations (14.111)–(14.113) and (14.116);

for ð1� sÞ � q � 1,

"ðqÞ ¼
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q2 þ 2ð1� qÞ �

�
4ð1� qÞ2 þ

�
s

4

�2�1=2
� 1

8

�
s

4

�2�
ð14:205Þ

from equation (14.147). The total energy E in the periodic case, is

E ¼ ðE1 þ E2Þ: ð14:206Þ
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Thus, the difference in total energy between uniform and periodic solutions is

ðE0 � EÞ
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: ð14:207Þ

Note that the terms in q2 in the integrand are completely cancelled. The
various integrals in equation (14.207) areðð1� sÞ

0
dq

1

ð1� q2Þ
¼ 1

2

ðð1� sÞ

0
dq
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¼ 1
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f�ln sþ lnð2� sÞg; ð14:208Þ
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2
; ð14:209Þ
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dq
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; ð14:210Þ
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Using these results, equation (14.207) becomes

ðE0 � EÞ
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¼ ns2
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Note that the terms in (s2 ln s) cancel, and that lnð2� sÞ � ln 2 for s 	 1. We
neglect the term in s3, and are left with

ðE0 � EÞ
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¼ ns2
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� 1
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: ð14:213Þ

We expand
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Combining equations (14.213) to (14.215), the final result is

ðE0 � EÞ
"F

¼ ns2
�

1

128
þ 1

82
1

256

�
� ns2

128
: ð14:216Þ

The conclusions from equation (14.216) are that the periodic solution has
energy lower than that of the uniform solution, proportional to the
number of electrons n and of order s2. Harking back to equation (14.194)
for s, we can express equation (14.216) as

ðE0 � EÞ
"F

¼ 8n exp½�8=ðn�Þ�: ð14:217Þ

14.5 Discussion

We have been considering a one-dimensional interacting electron gas in
Hartree approximation. The interactions include Coulomb forces, and
other effective pairwise forces arising from interaction of the electrons with
an external field, such as the phonon field of a solid. We have found that
in such a system, where the Hartree equation takes the form of equation
(14.71), the spatially uniform state, equation (14.67), is always an exact
solution. We have then raised the question whether the uniform solution is
the ground state. We have found that if the net effective pairwise interaction,
Coulomb plus externally mediated, is attractive, and is dominated by a
particular Fourier component, then a spatially periodic solution (a Bloch
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state) exists, determined by a Mathieu-type Hartree equation (14.76). If the
wavenumber K of the periodic self-consistent field has the value K ¼ 2kF,
equation (14.83), then the first band-gap of the Bloch wave spectrum
occurs at the Fermi level, k ¼ kF, and the total energy may be expected to
be lower than that of the uniform state. In the approximation of weak net
effective pairwise interaction,

vK
"F

¼ � 	 1; ð14:218Þ

a self-consistent solution of the Hartree equation exists only for � > 0. This
means that the net effective pairwise interaction is an attractive force. Since
the Coulomb force between electrons is repulsive, it means that the externally
(phonon) mediated effective force must itself be attractive, and large enough
to overcome Coulomb repulsion at the given wavenumber k ¼ 2kF.

Since the uniform solution is an exact solution of the Hartree equation
for non-interacting electrons equations (14.55), (14.59) and (14.60), we might
think of trying to get to the periodic solution in the presence of weak inter-
actions by a perturbative expansion based on power series in � for the
Hartree eigenfunctions and eigenvalues, of the form

f ð�Þ ¼ f f0 þ f1�þ f2�
2 þ 
 
 
g: ð14:219Þ

Now the effect of the perturbation due to weak interaction is borne by the
strength s of the periodic self-consistent field in the Hartree equation,
expressed in dimensionless form in equation (14.89) where, from equations
(14.86),

s ¼ 4n�
h��Ki
�0

: ð14:220Þ

Applying perturbation theory to equation (14.89), the power series expan-
sions for Hartree eigenfunctions and eigenvalues are of the form

FðsÞ ¼ fF0 þ F1sþ F2s
2 þ 
 
 
g: ð14:221Þ

Now the dependence of s on � is not simply linear, as equation (14.220) may
seem to imply, because h��Ki depends on � through the Hartree eigen-
functions (see equation (14.45)), and the eigenfunctions depend on �. If
the dependence of s on � could be expressed in terms of powers of �, then
equation (14.221) could be rewritten in the form of equation (14.219), and
the interacting periodic state would be obtainable in terms of small pertur-
bative corrections to the uniform non-interacting state. In fact, we have
found the explicit relationship between s and � to be of the form

s � expð��=�Þ; � > 0; ð14:222Þ
see equation (14.195). Write

� ¼ �g; ð14:223Þ
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so that equation (14.222) becomes

s � e�1=g: ð14:224Þ
Clearly, from equation (14.224), s is small when g, or �, is small. But consider
the possibility of expanding s as a Taylor series in g, about the value g ¼ 0.
For that, we need to know the values of the derivatives of s with respect to g,
evaluated at g ¼ 0. Now,

ds

dg
� 1

g2
e�1=g: ð14:225Þ

The limit (g ! 0þ) is indeterminate, and L’Hôpital’s rule does not help, for
differentiating numerator and denominator of equation (14.225) gives

e�1=g

ð2g3Þ: ð14:226Þ

The result, as g ! 0þ, is still indeterminate as are all higher order derivatives.
We therefore have non-analytic behavior for s as a function of g, or �,
near g ¼ 0, although the curve approaches s ¼ 0 smoothly as g ! 0þ.
Consequently, the properties of the system cannot be described in terms of
relationships of the form of equation (14.219). From the second derivative,

d2s

dg2
�

�
� 2

g3
þ 1

g4

�
e�1=g; ð14:227Þ

we see that sðgÞ has a point of inflection, and a horizontal asymptote as
g ! 1. Our derivation, however, is only valid near g ¼ 0, s ¼ 0.

In summary, we have the situation that a weak perturbation, the specific
effective pairwise potential described above, with strength �, when intro-
duced to the non-interacting electron gas, creates a periodic ground state
that is not accessible in any order of perturbation theory based on the
small parameter �, by starting from the non-interacting uniform ground
state. The reason is because the perturbed ground state behaves non-
analytically as a function of � near � ¼ 0. This then amounts to a cautionary
note, that the application of perturbation theory must be limited to cases
where the unperturbed starting point is qualitatively like the perturbed
state, in the sense that the latter is analytically related to the former. The
situation, illustrated here by charge density waves in the electron gas, also
occurs in some other vitally interesting quantum-mechanical systems,
among them the BCS theory of superconductivity [Bardeen et al. (1957)].
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Grüner G 1994 Density Waves in Solids (Reading MA: Addison-Wesley)

Harding J H 1982 Harwell Report AERE-R 10546

Harding J H, Harker A H, Keegstra P, Pandey R, Vail J M andWoodward C 1985 Physica

131B 151

Henke K P, Richtering M and Ruhrberg W 1986 Solid State Ionics 21 171

HofmannDM, Lohse F, Paus H J, Smith DY and Spaeth J-M 1985 J. Phys. C: Solid State

Phys. 18 443

Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

Huang K 1967 Statistical Mechanics (New York: Wiley)

Hull D and Bacon D J 1995 Introduction to Dislocations 3rd edition (Woburn, MA:

Butterworth-Heinemann)

Husimi K 1940 Proc. Math. Phys. Soc. Japan 22 264
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Exercises

Chapter 1

1.1 Consider a deformation field ~uuð~rrÞ in a homogeneous isotropic solid
material, given by

~uuð~rrÞ ¼
X3
�¼1

u�ð~rrÞ"̂"�

in SI units, where "̂"� is a unit vector in the direction of the �th cartesian
coordinate axis, and

~rr ¼
X3
�¼1

x�"̂"�

is the position vector in the material. Suppose

u1ð~rrÞ ¼ 0:2x1 � 5:6x2 þ 2:1x3;

u2ð~rrÞ ¼ 0:2x1 � 5:6x2 þ 2:1x3;

u3ð~rrÞ ¼ 3:1x3;

in units of 10�5 m.

(a) Evaluate the fractional volume change of the sample.
(b) Evaluate the shear angle of the material in the (x1; x2), (x2; x3) and

(x3; x1) planes, and sketch the shear deformation of a rectangle in
each of these planes.

(c) Evaluate the rotation of the sample, giving magnitude and direc-
tion of the rotation. For the direction of rotation, give the
cosines of the angles between the axis of rotation and the x1, x2
and x3 axes.

1.2 Consider a cubic sample of a homogeneous isotropic solid material of
volume 1 cm3. It is subject to static stresses described by the stress
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tensor �:

� ¼
2:3 �3:1 0:8

�3:1 �0:4 2:2

0:8 2:2 4:6

0
B@

1
CA

in units of 106 Nm�2.
Evaluate the force (vector) that must be applied uniformly to each

of the six faces of the cube to produce this stress tensor. Show directly
that the resultant torque from all these forces is zero.

1.3 The stresses described in problem 1.2 produce the following strain
tensor ":

" ¼
0:6831 �3:2529 0:8395

�3:2529 2:1500 2:3085

0:8395 2:3085 3:0965

0
B@

1
CA

in units of 10�5. What are the Voigt elastic constants c11 and c12,
accurate to two significant figures, for the material?

1.4 Using only equations (1.67), (1.68) and (1.77), derive the expression
for Poisson’s ratio in terms of Young’s modulus and the bulk
modulus.

Chapter 2

2.1 From the definitions of grad, div and curl, derive equations (2.1), (A2.2)
and (A2.12).

2.2 Equation (2.33) is consistent to first-order small quantities, for the
dynamics of an isotropic solid continuum. Carry out the derivation of
this chapter to second order, beginning with equation (2.26), to
obtain the corrections to the quantity (�~aa), equation (2.18), right-
hand side. Can the new expression be equated to the force per unit
volume, equation (2.16)? Explain your answer.

2.3 Suppose that, in equation (2.33), �0 is replaced by

�0ð1� ~rr �~uuÞ
introducing a second-order correction.

(a) Do shear waves propagate undeformed?
(b) If so, are plane shear waves transverse, and what is their speed of

propagation?
(c) Do dilatational waves propagate undeformed?
(d) If so, are plane dilatational waves longitudinal, and what is their

speed of propagation?

In each part, explain your answer.
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Chapter 3

3.1 From equation (3.47), evaluate the phase difference (in radians)
between the damped plane wave and its associated thermal distribution
wave in an isotropic continuous solid medium.

3.2 Derive equations (3.63) and (3.64) from equations (3.61) and (3.62).
3.3 Derive equations (3.68) and (3.69) from equations (3.66) and (3.67).

Chapter 4

4.1 Using computer software, plot the curve � versus �, for �1 � � � 1
2,

equation (4.22). Then plot the family of cubics in (�2), the left-hand
side of equation (4.21), for a selection of values of � within the appro-
priate range. From the resulting plot, verify the qualitative assertions
that are deduced between equations (4.24) and (4.26).

4.2 Derive equation (4.34) from equation (4.33). Then derive equation (4.35).
For z ¼ 0, i.e. on the surface, use computer software to plotR versus � in
the physical range, and thereby verify the qualitative assertions that are
made between equations (4.35) and (4.36). Plot R, equation (4.35),
versus z for cT ¼ 2:31� 103 m/s and cL ¼ 4:69� 103 m/s, at a frequency
of 106 s�1 and thereby verify the qualitative assertions that are made in
the last two sentences of Chapter 4.

4.3 Derive an expression in terms of cT, � and angular frequency ! for the
depth jzj at which a Rayleigh wave has no x-component: see equation
(4.35) etc.

Chapter 5

5.1 Instead of our equations (5.38) for the deformation field of an edge
dislocation, the Weertmans (1964) give the following solution:

u1 ¼ � b

2�

�
tan�1

�
y

x

�
þ ð�þ 	Þ
ð�þ 2	Þ

xy

ðx2 þ y2Þ

�

u2 ¼ � b

2�

�
� 	

2ð�þ 2	Þ ln
�
x2 þ y2

R2

�
þ ð�þ 	Þ
ð�þ 2	Þ

y2

ðx2 þ y2Þ

�
:

(a) Derive the strain tensor for this case.
(b) Derive the stress tensor. Note that �33 is not zero in this case.
(c) Derive the force per unit area (P1, P2) on the surface of a cylinder

of radius R with axis coinciding with the dislocation. Show that in
cylindrical coordinates, P1 � sinð2
Þ and P2 � cosð2
Þ.

Chapter 5 341



(d) Prove that the net force on the surface at r ¼ R is zero.
(e) Show that the given deformation field is a function of only one

material constant, �, Poisson’s ratio.

Chapter 6

6.1 (a) Evaluate the polaron fractional mass renormalization

�
m�0

m
� 1

�
¼ n0

3 mm

�
e

"0!
2

�2

[taken from equation (6.71)], for KCl. In order to do so, use Fröhlich’s
formula, adjusted for SI units

"0	!
2 ¼ K ; K ¼ ðK�1

1 � K�1
0 Þ�1

where K0 and K1 are low- and high-frequency dielectric constants
respectively. Also use the relationship

!2 ¼
�
K0

K1

�
!2
t :

To evaluate n0, the number of particles per unit volume, use the estimate
given by

n0 ¼
�0

1
2 ðmK þmClÞ

where mK and mCl are the atomic masses of K and Cl respectively, and
�0 is the mass density. For KCl, use the following data:

�0 ¼ 1:99 g cm�3

mK ¼ 64:9� 10�27 kg

mCl ¼ 58:9� 10�27 kg

K0 ¼ 4:68

K1 ¼ 2:13

!t ¼ 2:71� 1013 s�1

(b) Evaluate the polaron self energy E0
s, equation (6.69), for KCl.

6.2 Referring to section 6.4, evaluate:

ð�������� � ��������Þ;

in terms of the applied ~BB field or its source current density.
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Chapter 7

7.1 Consider a form of the adiabatic approximation, equation (7.8), in
which the electronic part of the wave function, taken to be normalized,
depends linearly on the nuclear displacements u, equation (7.14), as
follows:

 �ðr;RÞ ¼ f ð0Þ
� ðr;R0Þ þ  

ð1ÞT
� � ug

 
ð1Þ
� ðr;R0Þ ¼ ðrJ �ÞR¼R0

:

(a) Determine the new effective ‘hamiltonian’ for nuclear motion in
the harmonic approximation. We have placed ‘hamiltonian’ in
quotation marks because the kinetic energy term now involves
the variables u.

(b) Ignoring this complication, determine the modified equilibrium
condition and force constant matrix.

Note: If we do not ignore the complication in the kinetic energy term,
we must treat the u-dependent parts as momentum-dependent contribu-
tions to the potential energy, or as constituting a mass renormalization
in the kinetic energy.

7.2 Determine the analytical expression for the coefficient of thermal
expansion at constant pressure for the crystalline solid in terms its
phonon frequencies.

Chapter 8

8.1 Consider the monatomic linear chain of section 8.2 where, however, the
atomic motions are constrained to one transverse direction (say the y
direction). Assume that atomic displacements are all small compared
with the interatomic spacing.

(a) Assuming that the interatomic ‘springs’ are not under compression
or tension when the atoms are undisplaced, derive the equations of
motion for the atoms. Is the motion harmonic? Explain your
answer.

(b) Suppose the ‘springs’ are all under tension, corresponding to
elongation x0, when the atoms are undisplaced. Derive the equa-
tions of motions for the atoms. Is the motion harmonic? Explain
your answer.

(c) What is the situation if the ‘springs’ are under compression when
the atoms are undisplaced?
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Chapter 9

9.1 Consider a monatomic linear chain, as in section 8.2, consisting of shell-
model type atoms, with uncharged cores and shells. Let the core and
shell masses be M and m respectively, and let shell–shell and shell–
core force constants be K and k respectively.

(a) Derive the equations of motion for the system (in longitudinal
vibration).

(b) In general, such a system will have two branches to its phonon
spectrum, as in section 8.3, even though there is only one atom
per primitive unit cell. This will not be the case, experimentally.
This problem is commonly dealt with in shell-model simulations
by takingm ¼ 0, which may seem reasonable if the shells represent
the polarizable part of the electron cloud. Making the approxima-
tion m ¼ 0, evaluate the dispersion relation.

Compare this dispersion relation with that obtained for rigid atoms,
equation (8.22).

Chapter 10

10.1 Derive equation (10.64), using equations (10.61)–(10.63).
10.2 Consider a large (essentially infinite) sample of a binary alloy of atomic

species X and Y . Initially, to the left of a planar interface, the concentra-
tion of X isC1, and to the right it isC2, withC1 > C2. The concentration
difference,C0 ¼ ðC1 � C2Þ is small, so that the diffusion constant is essen-
tially the same for species X in both regions. Solve equation (10.19), i.e.
evaluate equation (10.43), to determine the concentration difference in
the region to the right of the interface as a function of position and time.

Chapter 12

12.1 Carry out the demonstration mentioned in the last sentence of section
12.2.5, expressing the two-particle part of the total energy in Hartree–
Fock approximation as a single linear operator acting on the single-
particle density matrix.

12.2 Derive equation (12.195) from equation (12.193).
12.3 Explain in words the meaning of X

a< bðoccÞ
c< dðvirtÞ

in equation (12.211).
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12.4 Refer to the two-particle density formulation of the many-body
problem, equations (12.243) and (12.251).

(a) Express total spin in terms of �2.
(b) Express total angular momentum in terms of �2.

12.5 Refer to equation (12.110). We want to analyse, at the Hartree–Fock
level, a hydrogen diatomic molecule, using an atomic orbital basis
consisting of an s-type (l ¼ 0) and a p-type (l ¼ 1) orbital centred on
each of the nuclei (protons). Write out explicit formulae for each of
these four basis functions, normalized. Give a diagram on which your
notation is based.

Chapter 13

13.1 The low-temperature paramagnetic susceptibility of an electron–gas
system is 1:36� 10�5. What is the electron density of the system?
Assume free-electron mass for the electrons.

13.2 From equation (13.130), prove equation (13.132).
13.3 Evaluate the integral of equation (A13.1) by considering a contour C in

the third quadrant of the complex-number plane; i.e. construct the argu-
ment corresponding to equations (A.13.8)–(A.13.12).

Chapter 14

14.1 Prove the assertion following equation (14.35): ‘If vðr ¼ 0Þ . . . same for
all j.’

14.2 From equation (14.194) and the discussion following it, show that this
theory is valid only for s < 32: see also equation (14.202).

14.3 Show, both analytically and graphically, that at g ¼ 0

d

dg
ðe�1=gÞ ¼ 0:

See equation (14.217), and the discussion following equation (14.225).

Chapter 14 345



Answers

Chapter 1

1.1 (a) �V=V ¼ �2:3� 10�5.
(b) �12 ¼ �2:7� 10�5 radians, <0.

�23 ¼ 1:05� 10�5 radians, >0.
�31 ¼ 1:05� 10�5 radians, >0.

(c) R ¼ 3:3� 10�5 radians: cos �1 ¼ �1:05� 10�5,
cos �2 ¼ 1:05� 10�5, cos �3 ¼ 2:9� 10�5.

1.2 Unit outward normal vectors n̂nj, j ¼ 1; 2; . . . ; 6 on the faces of the cube:

n̂n1 ¼ ð�1; 0; 0Þ; ~FF1 ¼ ð�2:3; 3:1;�0:8Þ;
n̂n2 ¼ ð1; 0; 0Þ; ~FF2 ¼ ð2:3;�3:1; 0:8Þ;
n̂n3 ¼ ð0;�1; 0Þ; ~FF3 ¼ ð3:1; 0:4;�2:2Þ;
n̂n4 ¼ ð0; 1; 0Þ; ~FF4 ¼ ð�3:1;�0:4; 2:2Þ;
n̂n5 ¼ ð0; 0;�1Þ; ~FF5 ¼ ð�0:8;�2:2;�4:6Þ;
n̂n6 ¼ ð0; 0; 1Þ; ~FF6 ¼ ð0:8; 2:2; 4:6Þ;
all in units (�102 N).

Resultant torque ~�� :

~�� ¼
X
j

ð~rrj � ~FFjÞ;

~rrj ¼ ð0:5� 10�2Þn̂njN, whence ~�� ¼ 0.
1.3 c11 ¼ 2:0� 1011 Nm�2,

c12 ¼ 1:0� 1011 Nm�2.

1.4 � ¼ 1

2

�
1� E

3B

�
:

Chapter 2

2.2 Correction to ð�~aaÞ is

�0f�ð~rr �~uuÞ@2t þ @tð~uu �~rrÞ@t þ @tð@t~uuÞ �~rrg~uu:
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The force per unit volume, equation (2.16), has not been derived to
second order, so the new expression for ð�~aaÞ cannot be used in this way.

2.3 (a) Yes, because for shear waves ð~rr �~uuÞ ¼ 0, so � is unchanged.
(b) Shear waves are still transverse with speed vT because the wave

equation is unchanged.
(c) No. The equation for dilatational waves is now

fð�þ 2�Þr2~uu� �0@
2
t~uug ¼ ��0ð~rr �~uuÞ@2t~uu:

A travelling wave like equation (2.45) does not satisfy this
equation. The effective speed of propagation is

�
ð�þ 2�Þ

�0ð1� ~rr �~uuÞ

�1=2
;

which depends on ð~rr; tÞ.

Chapter 3

3.1 � ¼ ð�þ �0Þ; �0 ¼ tan�1

�
!cv
k2	

�
:

Chapter 4

4.3 jzj ¼ cT


!

���� 1

½ð1� 
2�Þ1=2 � ð1� 
2Þ1=2�
ln

�
ð1� 
2Þ1=2ð1� 
2�Þ1=2

ð1� 
2=2Þ

�����:

Chapter 5

5.1 (a) "11 ¼
by

2�

�
ð2�þ 3�Þx2 þ �y2

ð�þ 2�Þðx2 þ y2Þ2
�
;

"22 ¼ � by

2�

�
ð2�þ �Þx2 � �y2

ð�þ 2�Þðx2 þ y2Þ2
�
;

"12 ¼ � 1

2

by

2�

2ð�þ �Þ
ð�þ 2�Þ

ðx2 � y2Þ
ðx2 þ y2Þ2

:

Note the factor 1
2 in "12, omitted in Weertmans. Note:

2ð�þ �Þ
ð�þ 2�Þ ¼

1

ð1� �Þ :
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(b) �11 ¼
by

2�

�

ð1� �Þ
ð3x2 þ y2Þ
ðx2 þ y2Þ2

;

�22 ¼ � by

2�

�

ð1� �Þ
ðx2 � y2Þ
ðx2 þ y2Þ2

;

�33 ¼
by

2�

��

ð1� �Þ
1

ðx2 þ y2Þ
;

�12 ¼ � bx

2�

�

ð1� �Þ
ðx2 � y2Þ
ðx2 þ y2Þ2

:

(c) P1 ¼
b� sinð2�Þ
2�ð1� �Þr ;

P2 ¼
�b� cosð2�Þ
2�ð1� �Þr :

(d)

ð2�
�¼0

d�RPj ¼ 0; j ¼ 1; 2:

(e) From
2ð�þ �Þ
ð�þ 2�Þ ¼

1

ð1� �Þ ; � ¼ f

�
�

�

�
!

�
�

�

�
¼ gð�Þ:

Chapter 6

6.1 (a)

�
m�0

m
� 1

�
¼ 5:4� 103:

(b) E0
s ¼ 1:5 eV.

6.2 ð������ � ������Þ ¼ �e�h2~�� � ð~rr� ~BBÞ ¼ �e�h2�~�� � ~JJ.

Chapter 7

7.1 Omitting the index �, and replacing bracketed superscripts by sub-
scripts, write

 ¼ ð 0 þ  T
1 � uÞ

or, in Dirac notation,

j i ¼ ðj0i þ j1iT � uÞ;

where column matrices j1i and u have the dimensionality of R0, section
7.3.
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(a) Then the effective hamiltonian Heff is

Heff ¼ h jHj i

� fh0j0iTn þ uT � ðTnh1j0iÞþðTnh0j1iT � uÞ

þ ðuT � h1jÞðj1iTTn � uÞg þ h0j0iW0

þ fh0j ~WWT
1 j0i þ 2W0h0j1iTg � u

þ 1
2 u

T � fh0j ~WW
2
j0i þ 2h0j ~WW1j1iT

þ 2h1j ~WWT
1 j0i þ 2W0h1j1iTg � u:

(b) Equilibrium condition:

fh0j ~WWT
1 j0i þ 2W0h0j1iTg ¼ 0:

Force constant matrix:

fh0j ~WW
2
j0i þ 2h0j ~WW1ðj1iTÞ þ 2h1j ~WWT

1 j0i þ 2W0h1j1iTg:

Note outer products of the form ~WW1ðj1iTÞ, giving square matrices.
We have introduced the notation:

~WW1 ¼
�
@ ~WW

@R

�
R¼R0

; ~WW
2
¼

�
@2 ~WW

@R @R

�
R¼R0

;

~WW ¼ fVnðRÞ þHeðrÞ þ VneðR; rÞg;
see equations (7.3)–(7.6).

7.2

1

V

�
@V

@T

�
p

¼
� 1

V

�
@p

@T

�
V�

@p

@V

�
T

¼

1

V

X
j

�
�h!j

2kBT
2

�
d!j

@V

�
csch2

�
�h!j

2kBT

��

X
j

�
�h

2kBT

�
d!j

@V

�2
csch2

�
�h!j

2kBT

�
�
�
d2!j

dV2

�
coth

�
�h!j

2kBT

�� :

Chapter 8

8.1 (a)
M d2yj

dt2
¼ � K

2a2
fðyj � yj�1Þ3 þ ðyj � yjþ1Þ3g;

cubic, not linear in small displacements: anharmonic.
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(b) M d2yj

dt2
¼ � K

2a2
fðyj � yj�1Þ3 þ ðyj � yjþ1Þ3g

�Kx0
ðyj � yj�1Þ

½a2 þ ðyj � yj�1Þ2�1=2
þ

ðyj � yjþ1Þ
½a2 þ ðyj � yjþ1Þ2�1=2

( )

� �Kx0
a

fðyj � yj�1Þ þ ðyj � yjþ1Þg;

to first order in small displacements: harmonic.
(c) Under compression, the straight-line configuration is in unstable

equilibrium, so the small oscillations take place relative to bow-
shaped linear configurations above or below the x-axis.

Chapter 9

9.1 (a) M d2Uj

dt2
¼ �kðUj � ujÞ;

m d2uj

dt2
¼ �K ½2uj � ðuj�1 þ ujþ1Þ� � kðuj �UjÞ:

(b)
!n ¼ 2

�
K

M

�����sin
�
n�

N

����� �
�
1þ 4K

k
sin2

�
n�

N

��1=2
:

Chapter 10

10.2
Cðx; tÞ ¼ C0

2

�
1� erf

�
x

2ðDtÞ1=2

��
; for x � 0;

where

erfðyÞ ¼
ðy
0
dy0 expð�y0

2Þ:

Chapter 12

12.1
E2 ¼ 1

2

ð
dr dr0j~rr�~rr0j�1

ð
d� d�0 �ð�� rÞ�ð�0 � r0Þ

� ½1� Pð�; �0Þ��1ðr; �Þ�1ðr0; �0Þ;

where Pð�; �0Þ is the pairwise interchange operator.
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12.3 We have Fock eigenstates labelled by a, b, c, d, . . ., ordered in increasing
energy "a < "b < "c < "d . . ., divided into occupied and virtual
(unoccupied) manifolds, with "a < "b if a is occupied and b unoccupied.
In equation (12.211), we have sums over pairs of occupied states and
over pairs of unoccupied states:

1

4

X
a;b
ðoccÞ

0 X
c;d
ðvirtÞ

0;

the factor ð1=4Þ ¼ ð1=2Þ2 eliminating double counting, and primes
avoiding self-interaction in the summand. An alternative way of
doing such a double sum is:

1

2

X
a;b

0 ¼
X
a<b

;

where a and b are positive integer indices 1; 2; . . .
In

P
a<b, the sum over b for a given value of a is limited to b > a.

12.4 (a) Total spin ~SS:

~SS ¼
XN
j¼1

~SS1ðrjÞ

where ~SS1ðrjÞ is the single-electron spin operator, acting on the spin
variable dependence of particle j. Then

h j~SSj i ¼
ð
dr1; . . . ; drN  ðr1; . . . ; rNÞ

XN
j¼1

~SS1ðrjÞ ðr1; . . . ; rNÞ

� N

ð
dr dr0

ð
dq �ðr� qÞ~SS1ðqÞ�2ðr; r0; q; r0Þ:

(b) Total angular momentum ~JJ:

~JJ ¼
XN
j¼1

J1ðrjÞ;

whence

J ¼ N

ð
dr dr0

ð
dq�ðr� qÞJ1ðqÞ�2ðr; r0; q; r0Þ:

12.5 hrj1i ¼ n1½expð��s1j~rr� ~RR1j2Þ�;

hrj2i ¼ n2½expð��p1j~rr� ~RR1j2Þ� cos �1;

hrj3i ¼ n3½expð��s2j~rr� ~RR2j2Þ�;

hrj4i ¼ n4½expð��p2j~rr� ~RR2j2Þ� cos �2:
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�1 is the angle between the z axis and the vector ð~rr� ~RR1Þ; �2 is the
corresponding angle with ð~rr� ~RR2Þ. ~RRj are the proton positions,
j ¼ 1; 2. By symmetry, we should take �s1 ¼ �s2; �p1 ¼ �p2. Then

n1 ¼ n3 ¼
�
2�s1

�

�3=4
; n2 ¼ n4 ¼ 31=2

�
2�p1

�

�3=4

:

Chapter 13

13.1 4:0� 1029 m�3.
13.3 Choose ’ ¼ 5�=4. Then:

0 ¼
þ
c
dz eiz

2

¼ lim
R!1
�! 0þ

�ðz¼�ðRþ i�Þ

z¼��ð1þ iÞ
dz eiz

2

þ
ðr¼ ffiffi

2
p

��

r¼R
dr ei � 5�=4 expð�r2Þ

þ
ð5�=4
�

d�ðiR ei�Þ exp½iR2ðcos 2�þ i sin 2�Þ�
�

¼
�
�
ð1
0

dx eix
2

þ 1

2

�
�

2

�1=2
ð1þ iÞ

�

Chapter 14

14.1
H ¼

�
� �h2

2m

X
j

rj �
1

2

X
j; j 0

vðj~rrj �~rrj0 jÞ þ
N

2
vð0Þ

�
:

14.2 From equation (14.194), s > 0. This requires, in equation (14.202), that
lnðs=32Þ be negative, whence s < 32.

14.3
lim
g!0

d

dg
ðe�1=gÞ ¼ lim

g!0

�
e�1=g

g2

�
; let x ¼ g�1

¼ lim
x!1

ðx2 e�xÞ ¼ lim
x!1

�
x2

ex

�

¼ lim
x!1

�
2x

ex

�
¼ lim

x!1

�
2

ex

�
¼ 0;

having used l’Hôpital’s rule twice.
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Continuity equations, 143�144
Continuum model, 1
analogy, monatomic linear chain,

112�113
Contraction, 19
coefficients, 217, 218, 222

Convection, 39

Copper, 44, 168
wave attenuation in, 46
wave speed in, 45

Core, atomic, 127
charge, shell model, 127
�shell interaction, 130

Correlation, 166, 167, 194, 196, 229�238,
246

correction, optical excitations in
NaF :Cu, 179

in BaF2, 180
second-order, 237�238

Coulomb’s law, 23

Coupling constant, electron�electron,
314

polaron, 85, 86

Crystal, anharmonic, 93
atomistic modelling, classical,

126�139
basis, 129, 163

functions, 94, 96�97

358 Subject index



Bravais lattice, 129, 163

canonical coordinates andmomenta, 98
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electronic state, 102�103
equation of state, 105�107
field splitting, Cu in NaF optical

excitation, 179
force constant matrix, 93, 97
ideal, 164
insulating, shell model, 126�129
internal energy, 107
ionic, 164; see also crystal, insulating
polarizability, 128

local mode, 109
normal modes, 100�102
nuclear hamiltonian, 98�99, 101
partition function, 103, 104
perfect, 164
phonon, mode distribution, 107
state, 102

point defects in, 163�195
primitive translation vectors, 94
unit cell, 129

quantum, 93
real, 164
Schrödinger equation for nuclei, 102

static lattice approximation, 103
structure, 92, 171
surface atomic relaxation, 164

surface reconstruction, 164
temperature dependence, 106
total energy, 102
translational invariance, 97

volume dependence, 106�107
with center of symmetry, 100
zero-point energy, 103

CRYSTAL program, 218
Crystalline solids, 163
cubic, 19

CsBr, 165
CsCl, 165
CsI, 86, 165

Cu impurity in NaF, two photon
excitations, 179

Cuþ in NaF, 179
Cubic, crystals, 19

equation, 53

Current density, defect, 141

Cyclotron frequency, 271

Damping coefficient, thermal, 42

Damping factors, 54
de Haas�van Alphen effect, 250, 269,

283�291
Defect, complex, dissociation of, 166,

168
current density, 141
dipolar, 171�172
extended, 31
in BaF2, 171
point, 31, see also Point defects

stability, 167, 173
Deformation, 7, 22
and polarization by a point defect,

166
angular, 18
field, 2, 20, 21
dislocation, 62�69

plastic, 57, 59
tensor, 3

Degenerate perturbation theory, 318

Delta function, representation of, 305
Density, functional, 238�249

and the two-particle density, 248

Hartree�Fock, single-particle,
207�208

method, single-particle, 239�241
matrix, reduced, 239, 241
single-particle, 207
two-particle, 244

of states, monatomic linear chain,

114�115
two-particle, 243

Diamagnetic susceptibility, low

temperature, 293�294
Diamagnetism, at T ¼ 0, 291�294
energy considerations in, 281

hamiltonian for, 270
in electron gas, 250, 269�294
strong magnetic field for, 277

topology of the Fermi surface, 277
total magnetization in, 287�291

Diatomic linear chain, 109, 116�121,
see also phonons

optical branch, 119
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Dielectric constant, 135, 138

effective, for vacancy, 186
tensor for shell-model crystal, 138

Diffuse excited states, 186

Diffusion, activation energy, 140, 154,
161, 168�171

Arrhenius relation in, 161

classical, 141�161, 167�171
coherent mechanism for, 188
concentration profile, 147
configuration space for, 155

constant, 142, 143, 150
equation, 40, 141�145
equipotential lines in, 154, 155

force constant matrices in, 159
fractional concentration, 150
impurity in alkali halides, 166, 168

incoherent mechanism for, 188
interstitial mechanism, 168, 170
kinetics, 140
mean jump rate in, 157, 158, 160�161
mechanisms, 188
migration energy in, 161
momentum space for, 155

non-collinear mechanism, 169, 170
normal modes in, 159, 161
particle flux in, 157

phase space for, 155
planar source, 144
probability density, 150

quantum, 141, 167, 187�189
random walk, 147�150
rates, 140
saddlepoint for, 154, 155

temperature dependence of, 154
vacancy mechanisms, 166, 168, 169

Dilatation, 3, 6, 10

Diltatational waves, see Waves,
dilatational

Dipolar defect, 171�172
Dipole, electric, 8
moments, atomic, 127

Dirac, delta function, 22, 305

electron theory, 251
Dislocation, 57�72, 164
atomistic modelling, 72
core, 63

deformation field, 62�69

edge, 21, 58, 59, 60

deformation field, 65�69
equilibrium equation, 66
strain tensor, 68

stress tensor, 68
line, 60
loop, 60

mixed, 59
processes, 71�72
screw, 21, 59, 60, 63, 69
deformation field, 63–65

equilibrium condition, 64
strain tensor, 64
stress tensor, 65

uniform motion, deformation field,
69�71

Dispersion relation, 28, 29, 30, 41�43,
51�54, 112�113

diatomic linear chain, 117�118
dielectric medium, 83
linear elastic continuum, 113

Displacement field, 2, 76, see also
distortion field

of electron, 76�78
Disproportionation, 176
Dissipative processes, 34
Dissociation, vacancy-impurity defect

complex, 168, 171�172
point defect complexes, 140

Distortion field, 24, 48, 50, 93, see also

displacement field
Divergence, 23
Dualism of quantum mechanics,

particle-wave, 141

Dynamical matrix of a crystal, 97�99

Edge dislocation: see Dislocation, edge

Effective, electron�electron interaction,
299�303

pairwise interaction, 299�303, 332
polaron mass, 81�82, 84, 85, 86
potential energy, 127
potential, polaron, 81�82

Einstein summation convention, 3
Elastic, constant, tensor, 12
constants, 35, 37, 51, 139
adiabatic, 36

in shell-model crystal, 131
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Elastic, constants (continued )

isothermal, 36
Lamé, 14, 25, 50
scalar, 14

moduli, 16�18
solids, isotropic, 24

Elasticity, linear, 3, 10�20
Electric, displacement, 135, 137, 138
field, 23
susceptibility, 135, 138
tensor for shell-model crystal, 138

Electrical current density, 88
Electromagnetism, 22
Electron�electron coupling constant, 314

interaction, effective, 299�303, 332
Electron, gas, 250

diamagnetism in, 250, 269�294
paramagnetism in, 250, 251�268

loss, Ni3þ in MgO, 177
magnetic moment, 251
nuclear double resonance, ENDOR,

181, 186
phonon interaction, 92, 186, 299, 303
in ionic crystals, 186

trapping, Niþ in MgO, 177
Electronic, band structure, 196
localization, 185�187
localization, Fþ

2 center in NaF, 185
localization, hole state in NiO :Li,

185�186
localization, in ðFþ

2 Þ� center in
NaF :Mg, 185

properties, 31
localized, 196

state, 102
transport, 298

Electrons, in magnetic field, 270�281
Electrostatics, 23
Electrostriction, 8, 136
Ellipse, 56

Elongation, fractional, 4
Embedded molecular cluster, 227
Embedding, in a crystal, 221�229
potential, 226
problem, 167, 195
shell-model crystal, 167

ENDOR, electron�nuclear double
resonance, 181, 186

Energy density, solid, 121, 131

functional, two-particle density, 245
Entropy, 12, 104
density, 40

Equation of state, phonons, 104�107
Equilibrium, concentration of point

defects, 140, 141, 151�154
concentration of vacancies, 151, 153
condition, screw dislocation, 64
nuclei in a solid, 92, 93

equation, edge dislocation, 66

in solid continuum, 20
in statistical thermodynamics, 151, 254
thermodynamic, 104, 153

Equipotential lines in diffusion, 154, 155
Euler’s theorem, 13
Exchange, 204, 205

charge density, 205
Excited states, diffuse, 186
Exciton, Frenkel, 178
Exclusion principle, Pauli, 198

Exponential, coefficients, gaussian, 217,
218, 222

decay, 49, 124

F center, 73, 86, 140, 173, 177, 178, 179,
181, 181�182, 185, 186�187, 191,
192

Fþ
2 center in NaF, 173, 182, 185, 191,

192

ðFþ
2 Þ center in NaF :Mg, 173�176, 191,
192

Fluorine, impurity in MgO, 179
Factorial function, 161

Fermi, distribution, 273�281
energy, 262, 264, 308
surface in diamagnetism, topology of,

277
surface of metals, 291
wave number, 263, 264, 307

Feynman, polaron theory, 85
Fick’s first law, 143
second law, 144

Field ion microscopy, 216
Field theories, 22
Fluorite crystal structure, 171
Flux density, heat, 39

Foams, polymer, 19
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Fock, equation, 194, 208�218
modified, 220, 223, 228
solution of, 214

operator, 213, 230

modified, 219, 226
�Dirac density, 207, 219, 228

Forbidden two-photon excitations, 179

Force constants, for local modes,
effective, 189

in NaF :Cu, 189
in MgO:Ni, 189

in MgO:Cu, 189
matrix, 93, 97

in diffusion, 159

Forces, body, 8, 10
compressive, 10
dilatational, 10

external, 10
interatomic, 8
internal, 8, 11
Madelung, 8

short-range, 8
surface, 8, 11

Fourier, series, function of many

variables, 198
integral theorem, 146
theorem, 286, 305

Free energy, Gibbs, 35, 153
Helmholtz, 18, 35, 103, 152, 153, 255,

256, 257

Frenkel exciton in MgO, 178
Fröhlich, polaron hamiltonian, 85

Gamma rays, 172

detection, 171
Gauss’s theorem, 8, 11, 23, 32, 39, 77
Gaussian functions, 217, 218, 222

GAUSSIAN program, 218
Geminals, 246
Generalized Hartree�Fock, 217
Gibbs, canonical ensemble, 103
free energy, 35, 153

Gradient, thermal, 37

Grand partition function, 257
Gravity, 10
Green’s function, 78

HADES program, 193

Hamiltonian, for a solid, 90�91
for charge density waves, 300�303
for diamagnetism, 270
for paramagnetism, 251�252
many-electron, 197�198
polarization field, 75
polaron, 85

Hard core, atomic, 128
Harmonic, approximation, 13

for nuclei in a solid, 93
oscillator hamiltonian, 101

Hartree, approximation, 198, 299
for charge density waves, 303�306
total energy algorithm for, 306

equation, 304
Hartree�Fock
approximation, 166, 194, 196,

197�218, 234
method, 238
single-particle density functional,

207�208
Heat, 34
flow equation, 40, 144
flux density, 39

Helmholtz free energy, 18, 35, 103, 152,
153, 255, 256, 257

Hermiticity, 210, 211

Hilbert space, 200, 208, 209, 211
Hohenberg�Kohn theorem, 239, 249
Hole, capture, Ni3þ in MgO, 177

loss, Niþ in MgO, 177
Hooke’s law, 12, 50
Hydrostatic pressure, 17
Hyperfine interactions, isotropic part,

181, 182

ICECAP, program, 179, 186, 189, 194,

195
method, 167, 178, 193�195

Idempotency, 209, 211

Identical particles, indistinguishability
of, 243

Identity matrix, 4

Impurity, 164
optical absorption, in MgO, 178, 179
in NaF, 179
in BaF2, 179�181

charge-state stability, 176
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diffusion in alkali halides, 166

�vacancy dipole complex in NaF, 173
Incoherent mechanism for diffusion, 188
Indistinguishability of identical particles,

243
Insulating crystal, see Crystal
Insulator state of a crystal, 313

Interacting electron gas, ground state,
331

one-dimensional, 309�331
Interatomic binding in a crystal, 92

Interfaces, 31
Intermediate coupling, polaron, 85
Internal energy, 104, 107, 153

Interstitial, 164, 165
Intrinsic luminescence of BaF2, 180
Ionic conduction, 140

Ionic, crystal, 164
electron�phonon interaction, 186
modelling optical excitations in, 178
point defect in, 193

polarizability, insulating crystals, 128
pseudopotentials, 167

Irreversible processes, 43

Irrotational vector, 22
Irrotational waves, see Waves,

irrotational

Isothermal elastic constants, 35�36
Isotropic, hyperfine constants, 181, 182
materials, 19, 20

Jump frequency, diffusion, 141
rate, diffusion, 141

KBr, 86, 186
KCl, 86, 168, 169, 171, 187, 190
polaron mass, 84

Kelvin temperature, 103
KI, 86, 186
Kohn, Walter, 241, 298

anomaly, 298
Kronecker delta, 3

L’Hôpital’s rule, 260, 333
Lamb, shift, 73

�Retherford effect, 73
Lamé elastic constants, 14, 18, 25, 37, 50,

68

Landau levels, 270�273
Laser, F center, 176
LCAO�MO, 218
Levi-Civitá symbol, 9

Linear, approximation, 38
combination of atomic orbitals:

LCAO, 218

dielectric, 135
elastic continuum, dispersion relation,

113
elasticity, 20

Local, band-edge modification, 183�185
mode frequency, 125
in MgO:Ni, 189

in MgO:Cu, 189
in NaF :Cu, 189

modes, 109, 121�125, 167, 189
effective force constants for, 189

properties on surfaces, 196
Localization, electronic, 167, 185�189
Fþ
2 center in NaF, 185

ðFþ
2 Þ� center in NaF :Mg, 185

hole, in NiO :Li, 185�186
Localized electronic properties, 196

Localizing potential, 218�221, 223�228
Longitudinal waves, see Waves,

longitudinal

Loop, dislocation, 60
Lorentz�Fitzgerald contraction, 70
Luminescence, intrinsic, in BaF2, 180

Luminescent materials, 171

Madelung, field, 179, 221, 222
force, 8

Magnetic, induction field, 87, 251
moment, electron, 251
permeability, 88

susceptibility, 254
vector potential, 87

Magnetism, 250

Magnetization, 254, 268
diamagnetic, 287�291
paramagnetic, high-temperature, 268

the de Haas�van Alphen effect, 283
Many-body, perturbation theory, 231
problem, 196
boson wave function, 200

electron hamiltonian, 197�198
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Many-body (continued )

potential, effective, 303
fermion system, two particle density,

245�249
wave function, 200

Many-particle, see N-particle
Mass, density, 51

renormalization, polaron, 73, 83
effective, 82

Material time derivative, 26, 39
Mathieu equation, 299, 313�331
Maxwell, relations, 34, 35
equation, 23, 77, 78

Mean jump rate in diffusion, 157, 158,

160�161
MgO, 165, 176�177, 178�179, 190, 191,

192

MgO:Cu, local mode force constants, 189
MgO:Ni, local mode force constants, 189
Migration energy in diffusion, 161
Minimum-energy variational principle,

245
Modelling and simulation,

computational, 108

of point defects in ionic crystals,
165�166

optical excitations in ionic crystals,

178
Modified Fock, equation, 220, 223, 228
operator, 219, 226

Modulus, bulk, 17, 19, 35, 37
shear, 17, 18, 19, 37, 68
Young’s, 16, 19

Molecular biology, 197

Molecular cluster computations, 196�249
embedded, 227
for point defect, 166, 167

Molecular orbital: MO, 218
Momentum space for diffusion, 155
Monatomic linear chain, 109, 110�115
continuum analogy, 112�113
density of states, 114�115
local mode, 122�125
see also, phonons

Multipole moments, atomic, 127
Muon, 188
Muonium, diffusion in alkali halides,

187�189

N-body problem, 196

N-particle, density, matrix, 244
operator, 244

energy, two-particle density, 244

N-representability problem, 248
NaCl, 164, 165, 166, 169, 188
polaron mass, 84

NaF, 169, 173�176, 177, 179, 181�183,
185, 188, 190, 191, 192, 216

F center, 181
Fþ
2 center, 173, 182

ðFþ
2 Þ� center, 182

NaF:Cu local mode, force constants, 189
frequencies, 189

Nanostructured solids, 163
Newton’s second law, 25
Ni in MgO, 176�177
NiO, 165, 183�184, 185, 192
NiO :Li, valence band edge in, 183�184
Nobel prize, 216
in Chemistry, 241

Non-analytic function, 333
Non-collinear mechanism, 169
Normal modes, diatomic linear chain,

118�121
crystal vibration (phonons), 100�102
in diffusion, 159, 161

monatonic linear chain, 112�115
point defect in linear chain, 122�125

Normalization, in many-body

perturbation theory, 232
Normalizing factor for Hartree�Fock

wave function, 201�202
Nuclei in a solid, Schrödinger equation,

93�94

Oblate quadrupole strain, 180

Occupation numbers, 253, 262
Occupied manifold, 218
One-dimensional interacting electron

gas, 331
Optical branch, phonons, diatomic linear

chain, 119

Optical emission, 178
Optical excitation, 167, 173, 177�181, 184
forbidden, Cu in NaF, 179
in crystals, 166, 178

O� in BaF2, 173
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point defects, 177�181
Overlap matrix, 215, 217
Oxygen in BaF2, 171, 173, 177, 179�181,

193

local perturbation of conduction
band, 180

oblate quadrupole strain in ground

state, 180
optical excitation, 180, 184
prolate quadrupole moment of ground

state, 180

spin polarization of ground state, 180
spin splitting of optical excitation, 180

Oxygen-vacancy defect complex in BaF2,

171

Pairwise, interaction, effective, 332

interchange of fermions, 197�198
Paramagnetic, magnetization,

high-temperature, 268
susceptibility, 293�294
high temperature, 266�268
low temperature, 257�267, 293�294

Paramagnetism, hamiltonian for,

251�252
in electron gas, 250, 251�268

Particle, density, 205, 304

flux in diffusion, 157
�phonon coupling, 187, 188
�wave dualism of quantum

mechanics, 141
Partition function, 103, 104, 151, 254, 255
grand, 257

Path integral method, 85

Pauli, effects, 167
exclusion principle, 198, 246, 248
Hartree approximation, 304

spin matrices, 251
Periodic self-consistent field, 313
solution for interacting electron gas,

309�331
Periodicity of charge density wave, 311
Permeability of free space, 254

Permittivity of free space, 23, 135
Perturbation theory, 333
cautionary note, 333
degenerate, 318

many-body, 231

Perturbative expansion, 332

Phase space for diffusion, 155
Phonons, 94�103, 109�125
dispersion relation, alkali halides, 128

electron�phonon interaction, 299�303
equation of state, 104�107
in quantum diffusion, 187�189
see also diatomic linear chain
monatomic linear chain

Piezoelectric, constant, 135, 136,
138�139

effect, converse, 136
direct, 136, 139

Piezoelectricity, 8, 138�139
Planar source, diffusion, 144
Plane wave, 28�30, 49
Plastic deformation, 57, 59

Point defects, 121, 151�154
aggregation of, 140
calculations, 196
charge, 166

complex, dissociation of, 140
deformation and polarization by, 166
equilibrium concentrations of, 140,

141, 151
in an ionic crystal, 193
modelling, 165, 166

in crystals, 163�195
molecular cluster for, 166, 167
optical excitation, 177�181
partition function, 151

Poisson’s ratio, 16, 19, 52, 53, 54, 56, 69
negative, 19

Polarizability, ionic, 128

Polarization, 74, 137, 166
field, 74
canonical momenta, 75

equation of motion, 78
generalized coordinates, 75
hamiltonian, 75

interaction with electron, 76
lagrangian density, 75

point defect, 166

vector, 28, 29, 135
Polaron, 73�89, 186�187
classical, constant velocity, 78
coupling constant, 85, 86

effective, mass, 81�82, 85, 86
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Polaron (continued )

NaCl and KCl, 84
potential, 81�82

equations of motion, 77

F center excited state, 86
hamiltonian, Fröhlich, 85
in a magnetic field, 86�89
intermediate coupling, 85
mass renormalization, 83
quasiparticle, 73
self energy, 82�83
total energy, 80
theory, Feynman, 85
velocity-dependent potential, 84

wake, 73
weak coupling, 85

Polymer foams, 19

Pople, J. A., 241
Potential, effective, 82
energy, effective, 127
embedding, 226

momentum-dependent, quantization
ambiguity, 87�89

Pressure, 10, 17

Primitive, translation vectors, 94
unit cell, 129

Principal axes, 4, 18

Probability density for diffusion, 150
Prolate quadrupole moment, 180
Propagation vector, 28

Pseudopotentials, 167, 194

Quadrupolar strain, 180
Quadrupole moment, 180

atomic, 127
Quantitative modelling, 189
Quantum chemistry, 166, 197

Quantum crystals, 93
Quantum diffusion, 141, 167, 187�189
Quantum-molecular cluster, 221

Quasiparticle, excitation, 298
polaron, 73

Radiation damage, 171, 172, 181
Radiation Effects and Defects in Solids,

journal, 168
Random walk, diffusion, 141, 147�150
Range of atomic orbital, 216

Rayleigh waves, 48, 49, 125, see also

Surface waves
Rayleigh�Schrödinger many-body

perturbation theory, 231, 234, 238

RbCl, 86, 169
RbI, 86
Reciprocal lattice, 310

charge density waves, 315
Reduced density matrix, 239, 241, 243
single-particle, 244
two-particle, 244

Renormalization theory, 73
Restricted Hartree�Fock, 217
Riemann zeta function, 261

Rocksalt crystal structure, 164
Rotation, 3, 7, 28
tensor, 3, 6

Rotational waves, see Waves, shear

S, impurity in MgO, 179
Saddlepoint for diffusion, 154, 155

Scalar invariants, 14
Schrödinger equation, 93
in relation to the diffusion equation,

144
Screw dislocation, see Dislocation, screw
Se, impurity in MgO, 179

Second-order correlation correction,
237�238

Self-consistency condition for charge

density waves, 322
Self-consistent field, 246
charge density wave, 329
Hartree�Fock, 214, 215
in Hartree approximation, 304, 306,

309, 316
periodic, 313

Self-energy, polaron, 82�83
Self-interaction, 73
Separation of variables, 145

Shear, 3, 5, 18, 28
angle, 6
modulus, 17, 18, 19, 37, 68

waves, see Waves, shear
Shell, charge, shell model, 127
model, 126, 161, 165, 193
calculations for impurities, 169�171

Shell�shell interaction, 130
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Short-range forces, 8

shell model, 128
Si, 164
Silver, 168

Simulation, computational, 108
Single-particle density, 239
functional, Hartree�Fock, 207�208
functional method, 196
matrix, 207, 244

Size dependence, N-body system, 231
Slater, determinant, 201, 221

�type exponentials, 216, 217
Slip plane, 59
Sodium, atom, 164

chloride, 164, 165
Solid, isotropic, 13
Specific heat capacity, 35, 36, 37, 298

Spin, 180
densities, 167, 181, 182
density waves, 298
matrices, Pauli, 251

N-body system, 245
polarization, 180
splitting, optical excitation, 180

Spline fit, 128
Stability, defect complex, 173
in solid continuum, 18

of the charge density wave, 298
Static lattice approximation, 103
Statistical thermodynamics, equilibrium,

151, 254
of a solid, 103�108

Step frequency, diffusion, 150
Stirling’s, approximation, 149

formula, 152, 161�162
Strain, 1, 35
in shell-model crystal, 133

lateral, 16
longitudinal, 16
tensor, 3, 4�6, 50, 64
edge dislocation, 68

Stress, 1, 7�10, 35, 71
tensor, 8, 65

edge dislocation, 68
Stretching, 19
Sub-nanoscale technology, 197
Substitutional impurity in crystals, 164

Summation convention, Einstein, 3

Superconductivity, 31, 92, 298, 333

high-temperature, 183
Surface, 22, 35
as a crystal defect, 164

atomic relaxation in crystals, 164
forces, 8, 11
local properties on, 196

reconstruction in crystals, 164
waves, 48�56, see also Wave, surface

Susceptibility, electric, 135
Symmetrizing operator, 200

Symmetry, conditions for N-particle
systems, 242

crystalline, 163

Taylor series, 158, 267, 333
Technology, sub-nanoscale, 197

Temperature, Kelvin, 12, 103
Tension, 19
Thermal, conductivity, coefficient of, 39
expansion, coefficient, 37

properties, 34
Thermodynamics, classical, 11, 34, 104
combined first and second laws, 34,

104, 152, 153
equation of state, 104
equilibrium, 104, 153

Thermometric measurement, 35
Three-body forces, 128
Topology of the Fermi surface in

diamagnetism, 277
Torque, 8
Total, angular momentum, 245
Coulomb energy, 130

energy, algorithm, Hartree, 306
Hartree�Fock, 214, 227

many-particle, 244

charge density wave, 328
Hartree�Fock, 202�204
modified Hartree�Fock, 221
solid, 102

magnetization in diamagnetism,
287�291

spin, 245
Trace, 4
Transfer matrix, 187, 188, 189
Translational invariance, 97

Transport, electronic, 298
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Transverse waves, see Waves shear

Two-particle density, 243
atomic orbital basis set, 245
density functional, 248

energy functional, 245
many-fermion system, 245�249
matrix, 244

reduced, 244

Uniform solution for electron gas,
306�309

Unrestricted Hartree�Fock, 217

Vacancies, equilibrium concentration of,

153
Vacancy, 164, 165
and interstitial mechanisms, diffusion,

168
�defect complexes, 171�176
diffusion, 154, 155, 166

mechanism, 168�169
non-collinear, 169, 171

equilibrium concentration, 151
�impurity dipole complex, 173

Valence band, 299
edge in NiO :Li, 183

van der Waals potential, shell model, 128

van Hove singularities, 114
van Leeuwen’s theorem, 269
Variational principle, minimum-energy,

209, 245
Vector, field, 22�24, 31�33

longitudinal, 24
transverse, 24

irrotational, 22
polarization of, 28
potential, 251

propagation, 28
Velocity-dependent, potentials, 84
field, 25, 26

Vineyard relation, 141, 154, 161
Virtual manifold, 218
Voigt notation, 12, 34

Volume, concentration, 142
fractional change, 6

Wake, polaron, 73

Wave, attenuation, by thermal
conduction, 41�47
length, thermal, 42, 43, 44, 46�47

charge density, 31, 298�333, see also
Charge density waves

damping coefficient, thermal, 42

dilatational, 28�30, 41�47
dispersion relation, dilatational, 29,

30
shear 28, 30

surface wave, 51�54
with thermal damping, 41�43

equation, bulk media, 27

irrotational, 28�30
�particle dualism of quantum

mechanics, 141

plane, dilatational, 29
shear, 28
surface, 49

polarization, 28, 29

propagation in bulk media, 27�31
Rayleigh, see Surface waves and

Waves, surface

rotational, 27�28
shear, 27�28
speed, dilatational, 29

monatomic linear chain, 111, 113
shear, 27�28
with thermal damping, 42, 43,

44�45, 46�47
spin density, 298
surface, 48�56
dispersion relation, 51�54
longitudinal component, 55�56
plane wave, 49
transverse component, 55�56

Weak coupling, polaron, 85
Wigner�Brillouin perturbation theory,

233

Work, 11

Young’s modulus, 16, 19

Zero-point energy, 103
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