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PREFACE

This is a one-semester graduate course in Network Reliability Analysis, Com-
binatorics, and Monte Carlo, for Software Engineering, Industrial Engineer-
ing, and Computer Science students. We assume that the students have
command of Calculus, of a programming language, and of Probability The-
ory with basics of Statistics.

In Reliability Theory, like in any theory, we think and operate in terms
of models. A rather popular model for studying computer/communication
network reliability is a graph with nodes and/or edges subject to failures.
The main object of the study is the so-called K-terminal network reliability,
i.e. the probability that a special set of K nodes called terminals remain
connected with each other.

For “standard” reliability analysis even a small network is a system with
a very large number of states. For example, a complete graph with 10 nodes
and unreliable edges has 245 different binary states, a huge number, and its
“straightforward” reliability calculation is impossible.

Met with this and similar situations, researchers’ efforts were directed
toward using Monte Carlo (MC) simulation. MC method is a specially
designed computerized statistical experiment by means of which it becomes
possible to obtain an estimate of the reliability parameters of interest. MC
methods usually do not work well unless they exploit the specific properties
of the object under study.

For networks and their reliability parameters, most efficient MC algo-
rithms use such notions as, e.g. minimal/maximal network spanning trees,
minimal paths and minimal cuts, so-called network destruction/construction
spectra. The power of these algorithms lies in the fact that these network
combinatorial parameters characterize topological properties of the network
and do not depend on reliability characteristics of the network’s unreliable
components.

Chapter 1 is an elementary introduction to MC methodology. It is writ-
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xii PREFACE

ten for readers who have no previous experience in MC methods. It has also
a short reminder of basic facts from Statistics needed for understanding the
future material.

Chapter 2 presents a short review of network types, network topology,
and basic reliability notions of networks and describes standard techniques
for their reliability evaluation. Special attention is paid to constructing net-
work spanning trees, one of the main combinatorial instruments for further
reliability analysis.

One of the most powerful methods of network reliability estimation is a
MC scheme called “Lomonosov’s turnip”, invented in 1974 [36] and imple-
mented in 1991 [11]. It uses an artificial edge evolution process in which each
network’s edge is supplied with a random time of its “birth”. This time must
be distributed according to the exponential distribution, due to its unique
properties. Chapter 3 studies this distribution and presents simple random
processes related to it.

Chapter 4 is a further excursion into network reliability theory and its
central topic is so-called Burtin-Pittel (BP) approximation to network fail-
ure probability [6]. BP method is based on network minimal cut sets and
produces good approximation to reliability parameters for highly reliable
networks.

Chapter 5 analyzes networks whose elements have random lifetimes. It
turns out that some “pre-failure” states (so-called “border” states) are of
special interest since they are related to network reliability gradient func-
tion. This function will be used further in connection to network component
importance and its synthesis.

When network nodes or edges fail in time, of greatest interest becomes
the ordinal number of the “critical” component whose failure signifies the
whole network failure. The lifetime distribution of the critical component
is described in terms of order statistics. In Chapter 6 we remind the basic
definitions of order statistics and describe the distribution of the “critical”
number called spectrum, which becomes a very important network reliability
combinatorial characteristic.

Chapter 7 is devoted to a rather special topic and can be omitted in the
first reading of the book. It presents a MC algorithm for estimating convo-
lutions, an issue which becomes acute in implementing Lomonosov’s turnip,
since the analytic methods can produce low accuracy and accumulation of
errors.

Chapters 1-6 can serve as an independent course in reliability of network-
type systems with some elements of their MC simulation methodology.
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The principal MC algorithms are described in Chapters 8-12. Chapter 8
presents a very efficient MC algorithm for estimating network lifetime in the
course of its destruction (when edges or nodes fail in time). This algorithm
is based on the properties of the maximal spanning tree of the network.

Chapter 9 contains a detailed description of so-called “Lomonosov’s
turnip” algorithm and its applications. This algorithm is our basic tool
for calculating the probability of network K-terminal connectivity, for both
unreliable nodes or unreliable edges. In addition, this algorithm allows to
estimate the stationary mean UP and DOWN periods for networks with re-
newable components. A slight modification of Lomonosov’s algorithm makes
it possible to compute the network reliability gradient vector.

One of the first steps in reliability theory was introducing the notion
of component importance, so-called Birnbaum Importance Measure (BIM)
[3]. To improve system reliability, the “most important” component is the
first candidate for network’s reinforcement. In reliability practice, the im-
plementation of importance measures even for small networks was minimal
since it demanded the knowledge of the analytic formula for system relia-
bility. Chapter 10 overcomes this obstacle by introducing an efficient MC
algorithm for estimating BIM’s for relatively large networks.

Chapter 11 is devoted to a relatively new topic in reliability theory - the
optimal network synthesis. It deals with the “best possible” allocation of
reliability resources into network components in order to design a network
with optimal value of its reliability.

Chapter 12 is devoted to a new and rather complicated issue in network
reliability - the study of the network exit time. It describes how to use the
Lomonosov’s algorithm to construct accurate bounds on the distribution
function of the exit time from network UP state into its DOWN state.

Chapter 13 presents reliability simulation results for a collection of com-
puter networks. It is concluded by a realistic example of an integrated
computer-communication network with unreliable nodes. On this example
we demonstrate how to apply our analytic, combinatorial, and MC tools
developed in previous chapters to obtain a comprehensive system reliability
analysis, locate the “soft” spots of the system and suggest their optimal
reinforcement strategy.

Each chapter is concluded by several problems and exercises which are
intended to help the students to get better command of the material. A few
topics, like the use of O(·) and o(·) symbols, are explained in Appendices.
Of special importance is Appendix C which contains a unique simulated
collection of destruction spectra for reliability analysis of some typical pop-
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ular network structures, such as complete graphs, hypercubes, and butterfly
networks.

We tried to reduce formal proofs to a minimum. When the proof was
necessary we tried first to present its idea using examples and intuitive
reasoning. During the first reading we advise the readers to concentrate
more on numerical examples and definitions and less on theorems and their
proofs. In order to make easier the exposition, we often repeat the previously
given facts and/or definitions to avoid from the reader the necessity to search
the preceding material.

As it happens in almost every field, the true “feeling” of the material
and its good understanding comes after solving problems and exercises and
implementing the algorithms in computer programs. We strongly recom-
mend the students to develop their own computer programs for calculating
network reliability, even if the programs use the simplest and not the most
sophisticated algorithms. A good start might be writing a computer code for
crude Monte Carlo to estimate network reliability, using the algorithms de-
scribed in detail in Chapter 2. We believe that all students taking this course
will have necessary elementary command of computer programming which
would enable them to take an active part in designing various programs for
network reliability evaluation. Heavy issues like the “turnip” algorithm and
its modifications might be an excellent project theme for this course.

It is a pleasure to acknowledge our long-standing indebtedness to Michael
Lomonosov, who introduced us to network combinatorics, with his charac-
teristic imagination and original insight.

I. Gertsbakh, Y. Shpungin

elyager@bezeqint.net yosefs@sce.ac.il

Beersheva - Tel-Aviv



Notation and Abbreviations

i.i.d. - independent identically distributed.

i.r.v. - independent random variables.

r.v. - random variable.

c.d.f., CDF - cumulative distribution function.

d.f. - density function.

τ,X, Y, Z - random variables.

X ∼ Exp(λ) - r.v. X is exponentially distributed with parameter λ.

X ∼ U(0, 1) - r.v. X is uniformly distributed on [0,1].

E[X] - mathematical expectation (mean value) of r.v. X.

V ar[X] - variance of r.v. X.

σ - square root of variance, σ =
√
V ar[X], also termed standard deviation.

σX - standard deviation of r.v. X.

X ∼ B(n, p) - r.v. X has a binomial distribution: X is the total number
of successes in n independent experiments with probability p of success in a
single experiment.

τ ∼ Exp(λ) - r.v. τ has exponential distribution with parameter λ.

X ∼ Gamma(n, λ) - r.v. X has gamma distribution with parameters n, λ.

X ∼ Poisson(Λ) - r.v. X has Poisson distribution with parameter Λ.

X ∼ F (t) - r.v. X has CDF F (t), i.e. F (t) = P (X ≤ t).
r.e.[X] - relative error of r.v. X. Defined as σX/E[X], for nonnegative r.v.’s
only.

X ∼ �(μ, σ) - r.v. X has mean value μ and st.dev σ.
ST - spanning tree.

xv



xvi NOTATION AND ABBREVIATIONS

MST - minimal spanning tree.
MaxST - maximal spanning tree.
Max(min)ST (T ) - minimal subtree of the maximal spanning tree of terminal
set T.
BIM - Birnbaum importance measure.
CMC - Crude Monte Carlo.
MC - Monte Carlo.
Sp - destruction spectrum, or D-spectrum.
Sc - construction spectrum or C-spectrum.



Chapter 1

What is Monte Carlo
Method?

A pint of example is worth a gallon of advice.

Quips and Quotes

From Cambridge Dictionary of Statistics [13]:
Monte Carlo Methods:
Methods for finding solutions to mathematical and statistical problems

by simulation. Used when the analytic solution of the problem is either
intractable or time consuming.

Simulation:
The artificial generation of random processes (usually by means of pseu-

dorandom numbers and/or computers) to imitate the behavior of particular
statistical models. See also Monte Carlo Methods.

Let us consider several examples.

1.1 Area Estimation

Suppose we have a figure A whose area S is difficult to calculate analytically.
The figure is placed into a unit square, see Fig. 1.1.

First, a basic fact. Let X ∼ U(0, 1) and Y ∼ U(0, 1) be i.r.v.’s. Then the
probability that a random point Z = (X,Y ) “thrown” on the unit square

1



2 CHAPTER 1. WHAT IS MONTE CARLO METHOD?

(X,Y)A

1

1

Figure 1.1: Figure A in a unit square

falls into A is equal to the area S of A. Formally,

P (Z ∈ A) = S. (1.1.1)

Define a binary r.v. V equal to 1 if Z ∈ A, and 0 otherwise. Obviously,
E[V ] = S, V ar[V ] = S(1− S).

Algorithm 1.1 - AREACRUDE
1. Put AREA:=0.
2. Generate X,Y , both independent and uniformly distributed on

[0,1].
3. If Z = (X,Y ) ∈ A, set AREA := AREA+ 1.
4. GOTO 2.

Repeat 2-4 N times
Estimate area S by

Ŝ = AREA/N. (1.1.2)

In fact, the estimate of S is the fraction of random points which fell into
A. Now it is easy to check that E[Ŝ] = S, i.e. Ŝ is an unbiased estimator of
S. Moreover, it is easy to check (do it!) that

V ar[Ŝ] = S(1− S)/N. (1.1.3)
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As N →∞, V ar[Ŝ]→ 0. Thus Ŝ converges to the true value of the area
S.

Comment. If you have difficulty with checking the last formula, recall
that for i.r.v.’s V1, V2, ..., Vm,

V ar[a1V1 + ...+ amVm] =
∑m

i=1 a
2
iV ar[Vi].#

The above example is quite simple and the algorithm does not seem to
create any problems. However, it turns out that the relative error (r.e.) of
the estimate Ŝ becomes very large if the area S becomes very small.

The r.e. is, by the definition, the ratio of the standard deviation of X
and its mean, i.e.

r.e.[X] =
√
V ar[X]
E[X]

= σX/E[X]. (1.1.4)

(The relative error is defined only for nonnegative random variables.)
For a binary random variable X ∼ B(1, p),

r.e.[X] =
√
p(1− p)
p

. (1.1.5)

Applying (1.1.4) to the r.v. Ŝ we obtain

r.e.[Ŝ] =
√

1− S√
S ·N . (1.1.6)

Obviously, for fixed N , r.e.[Ŝ] goes to infinity as S tends to zero. In
practical terms it means that the Monte Carlo estimator of S for small S is
highly inaccurate. We will see later how certain Monte Carlo schemes can
be modified to preserve bounded value of the r.e.

Remark
Suppose that p is close to one. Then we will be interested in accurate
estimation of q = 1 − p. The appropriate expression for the relative error
will be

√
p(1− p)/q, and this expression tends to infinity as q → 0.

1.2 Optimal Location of Components

Eight components should be positioned on a planar heat conducting board,
see Fig. 1.2 below.
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T4
0

T1
0

T2
0T3

0

T5
0 T6

0

1 2 3 4

5 6

7 8

Figure 1.2: The board and the components. T o
i are the border temperatures

The periphery of the board is kept at fixed temperature by using spe-
cial cooling devices. Component i dissipates power wi, and all components
together create, in stationary regime, a thermal field on the board with
temperature Tj at the j-th position. If the location of components changes,
the temperature field on the board also changes. Each component has its
own failure rate ψ depending on the temperature at the point where the
component is positioned. The total system failure rate is defined as

Λ(Ti(1), ..., Ti(8)) =
8∑

j=1

ψ(i(j), Ti(j)), (1.2.1)

where j is the position number, i is the component number, and Ti(j) is the
temperature at the j-th position where the i-th component is located.

Our purpose is to find the optimal location of all components which
would minimize the value of Λ. There are 8!=40320 different component
locations. Although this number is not very large, the following algorithm
which uses random search may work quite well even for considerably larger
number of components.

Denote by π = (i1, i2, ..., i8) the permutation describing the location of
components on the board: position k, k = 1, ..., 8, is occupied by component
ik.
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Algorithm 1.2 - RANDOMSEARCH
1. Choose a permutation π.
2. Compute the stationary temperature field. Denote it by T(π).
3. Compute the total system failure rate Λ(T(π)) = F0.
4. Pick randomly two components and exchange them, i.e. component

on position i is put on position j and vice versa. Denote by π∗

the new permutation after this exchange.
5. Calculate the new temperature field and the corresponding

Λ(T(π∗)) = F1.
6. If F1 < F0 − ε, put F0 := F1, π := π∗ and GOTO 4.

If F1 ≥ F0 − ε, try another random exchange.
If K random exchanges do not result in the decrease of Λ
by more than ε, then STOP.

In simple words, we are trying to improve the existing permutation π
by pairwise random exchanges of components, and do it at most K times.
If we don’t achieve decrease in the failure rate by more than some small
ε, we stop and declare the present permutation as “optimal”. In practice,
K = 10− 30.

In numerical experiments we typically observe the following behavior of
Λ, see Fig. 1.3:

Λ

N

Figure 1.3: N is the total number of permutations. Λ initially decreases
rapidly and later stabilizes as N grows

The above random search has several modifications. One of them avoids
stopping in a local minimum which is not the global minimum. If the al-
gorithm stops at a permutation which cannot be improved by K pairwise
exchanges, the algorithm accepts a permutation which is locally worse than
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Local “trap” Global minimum

Figure 1.4: The arrow shows a step in “wrong” direction

the existing one. This might avoid stopping the algorithm in a local min-
imum which is not a global one. This situation is illustrated by Figure
1.4.

1.3 Reliability of a Binary System

Suppose we have a bridge type structure (see Fig. 1.5). Edges 1,2,3,4,5 are
subject to failures. The bridge is “UP” if there is a connection between S
and T , and “DOWN ”, otherwise. Our goal is to estimate R, the probability
that the bridge is “UP”.

About the component failure probabilities we know the following: in a
“good” day the failure probabilities for all components are equal 0.01, and
on the “bad” day, the failure probabilities for the components are 0.02. The
proportion of the bad days is 20%. Our purpose is to estimate the average
system reliability in a randomly chosen day.

Algorithm 1.3 - AverageReliability
1. Put R:=0.
2. Simulate random variable DAY which is equal G with

probability 0.8 and B with probability 0.2.
3. If DAY=G, Simulate r.v.’s Xi ∼ B(1, q = 0.01),

for i = 1, ..., 5.
If DAY=B, Simulate r.v.’s Xi ∼ B(1, q = 0.02),
for i = 1, ..., 5.

4. Erase each edge i if Xi = 0.
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S T

1 2

3

4 5

Figure 1.5: Bridge structure

5. Set I:=1 if the bridge is UP and I:=0, otherwise.
6. Put R := R+ I.
7. Repeat steps 2-6 N times.
8. Estimate the system reliability R as R̂ = R/N .

1.4 Statistics: a Short Reminder

1.4.1 Unbiased estimators

Let us have a closer look at the result of the Monte Carlo simulation ex-
periment, for example, the area estimation by means of AREACRUDE al-
gorithm in the form of ratio Ŝ = AREA/N , see (1.1.2). In this formula,
AREA is the result of a random experiment. In a particular experiment, we
observe one particular replica of this random variable. Let us have a closer
look at this random variable. It is seen from the above algorithm that

AREA = V1 + V2 + ...+ VN , (1.4.1)

where Vi, i = 1, ..., N , are independent identically distributed (i.i.d) 0-1 ran-
dom variables. Such r.v.’s are called binary. P (Vi = 1) = p, P (Vi = 0) =
1 − p, where p is the probability that the random point (X,Y ) falls into
the area A shown on Fig. 1.1. By the very definition of (X,Y ) this hap-
pens with probability equal to S which equals the area A. In other words,
p = Area of A = S.

Since the result of our MC simulation experiment is random we are
interested in the statistical properties of this experiment. In particular, we
want to know how close is the simulation result Ŝ to the true value of the
area A. This leads us to the investigation of the mean value and the variance
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of the r.v. Ŝ. We will do it in a slightly more general situation in which the
quantity of interest θ̂ is represented as

θ̂ =
X1 +X2 + ...+XN

N
, (1.4.2)

where Xi, i = 1, 2, ..., N are i.i.d. random variables, not necessary of binary
type. All we know about these r.v.’s is that they have finite mean value
E[Xi] = μ and variance V ar[Xi] = σ2. We remind the reader that, physi-
cally speaking, the mean value is the center of the probability mass of the
random variable, and the variance characterizes the spread of the probability
mass around this center. More formally, it is useful to remember that

V ar[X] = E[(X − μ)2] = E[X2]− E2[X]. (1.4.3)

The first fundamental fact is the following property of the mean value of the
linear combination of random variables. It says that the mean of the linear
combination of r.v.’s is a linear combination of the means of these r.v.’s.
Important is that this remains true no matter if the random variables are
independent or not. Formally, for any collection of numbers a1, a2, ..., aN ,

E[
N∑

i=1

ai ·Xi] =
N∑

i=1

ai · E[Xi]. (1.4.4)

Now let us apply (1.4.4) to the above expression of θ̂ (1.4.2). Note that
now all Xi are i.i.d., E[Xi] = μ and all ai = 1/N . Therefore,

E[θ̂] =
N∑

i=1

μ/N = μ. (1.4.5)

Thus, the mean value of θ̂ coincides with the mean value of r.v. Xi. In
statistics we say that θ̂ is an unbiased estimator of μ. In simple words,
the result of our random experiment, on the average, is equal to the mean
value of the random variable Xi. Let us check what this property gives us
in the particular case of area estimation.

E[Ŝ] = E[AREA/N ] = E[(V1 + V2 + ...+ VN )/N ] = (1.4.6)
N∑

i=1

E[Vi]/N = p = Area of A = S.

So, Ŝ is an unbiased estimator of the area S.
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1.4.2 Variance behavior of an estimator as sample size in-
creases

Unbiasedness itself is not enough to provide an estimator of a good quality.
We must check what happens with its variance, and the highly desirable
property would be having a variance which is getting smaller as the number
of experimentsN in the simulation experiment gets larger. To verify how the
variance of θ̂ behaves let us remind (without proof) the following property
of the variance of the linear combination of random variables. Let

Y = a1X1 + a2X2 + ...+ anXN . (1.4.7)

Then

V ar[Y ] =
N∑

i=1

a2
i · V ar[Xi] + 2

∑
i�=j,i<j

Cov[Xi, Xj ] · aiaj , (1.4.8)

where Cov[Xi, Xj ] = E[Xi ·Xj ]− E[Xi] · E[Xj ].
In most cases, r.v.’s Xi in (1.4.7) will be independent and identically

distributed. Independence implies that the covariances will be equal zero,
which is a great relief. Identical distributions imply that all variances are
the same, V ar[Xi] = σ2. Then (1.4.8) simplifies to

V ar[Y ] = σ2 ·
N∑

i=1

a2
i . (1.4.9)

Suppose now that all ai = 1/N . Then

V ar[Y ] =
σ2

N
. (1.4.10)

The presence of N in the denominator is of crucial importance. If we con-
struct our estimator in a form similar to the form of Y with i.i.d. Xi-s and
ai = 1/N , the variance of our estimator will tend to zero as N →∞.

Let us check what happens with the variance of our area estimator Ŝ.

V ar[Ŝ] =
V ar[V1] + ...+ V ar[VN ]

N2
=
V ar[Vi]
N

. (1.4.11)

Since Vi is a binomial random variable which takes 1 and 0 values with
probability p and 1− p, respectively, its variance equals

V ar[Vi] = p(1− p). (1.4.12)
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Finally,

V ar[Ŝ] =
p(1− p)
N

. (1.4.13)

Therefore, our MC estimator of the area is not only unbiased, but also has
variance tending to zero as the number of experiments increases. In other
words, with the increase of N , the value of Ŝ becomes closer and closer to
the true (unknown) value of the area S.

In MC practice, we often use so-called relative error (r.e.) defined as the
ratio of the square root of the variance of the estimator θ̂ to its mean value:

r.e.[θ̂] =

√
V ar[θ̂]

E[θ̂]
. (1.4.14)

For the case of area estimation we have

r.e.[ ̂AREA] =
√

1− p√
N · p . (1.4.15)

In practice we will be satisfied with an MC experiment if it guarantees
small r.e., say of 1%. For example, if we have some a priori knowledge of
the value of the area S, we can plan in advance the number of simulation
trials to reach the desired accuracy.

Let us consider a numerical example. Suppose the area is expected to
be about 0.1. We want to guarantee r.e. of 5%. Then, solving the previous
equation with respect to N we obtain

N =
1− S

S · (r.e.)2 = 0.9/(0.1 ∗ 0.052) = 3600. (1.4.16)

Advanced probability and/or statistics courses present proof of the fact
that the sample average of the form X̄ =

∑N
i=1Xi/N tends to μ = E[Xi]

with probability 1 as N → ∞. In terms of the MC estimators considered
above, this fact means that with probability 1 the unbiased MC estimator
θ̂ tends to its mean value μ as N →∞.

We conclude this subsection with rule of thumb about the minimal num-
ber of binomial trials which is needed to estimate the unknown probability
p with a given relative error.

A rule of thumb: To estimate a small probability p from N binomial
trials, with a relative error not greater than 0.1 (10%), it is necessary to
carry out at least

N =
100
p
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binomial trials.
This rule follows immediately from (1.4.15). So, to estimate p ≈ 0.01

with 10% r.e. we need at least 10,000 trials. To estimate p ≈ 0.0001, with
r.e. = 0.1, we need at least 1,000,000 trials.

1.4.3 Variance in a multinomial experiment

It will be instructive to present a formula for the variance of an estimator
obtained in a multinomial random experiment. In a binomial experiment
we observe one of two possible outcomes. So, a random point (X,Y ) either
falls inside area A (first outcome) or outside it (the second outcome).

Imagine a random experiment which has n, n > 2 possible outcomes. Let
us number these outcomes as 1, 2, ..., n. Outcome i appears with probability
fi > 0, and f1 + f2 + ...+ fn = 1. The simplest way to create a multinomial
experiment is to partition the unit square on Fig. 1.1 into n non overlapping
parts, to number these parts from 1 to n and to denote by fi the size of the
area of the i-th part. If a random point (X,Y ) hits part k, we say that the
experiment had the outcome k.

Now suppose that we repeat the above experiment N times and register
that the outcome i has appeared Ni times, so that

N = N1 +N2 + ...+Nn. (1.4.17)

Now associate a reward ai (nonrandom) with the i-th outcome. Then the
total reward of N multinomial experiments will be

R =
n∑

k=1

akNk. (1.4.18)

Obviously, E[R] = N
∑n

k=1 ak · fk. (Prove it!)

Let us derive a formula for V ar[R]. It is a good exercise and its result
will be useful for further exposition. To simplify the derivation, let us do it
for particular case of n = 3. Suppose that we describe the result of the i-th
experiment by a three-dimensional vector

Wi = (Xi, Yi, Zi), (1.4.19)

where Wi = (1, 0, 0) if the first outcome takes place, Wi = (0, 1, 0) if the
second outcome takes places, and Wi = (0, 0, 1) if the third outcome takes
place. Obviously, Xi + Yi + Zi = 1 and

P (Xi = 1) = f1, P (Yi = 1) = f2, P (Zi = 1) = f3, f1 + f2 + f3 = 1.
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Now represent the reward in N experiments as

R =
N∑

i=1

(a1Xi + a2Yi + a3Zi). (1.4.20)

Since the outcomes of j-th and k-th experiment for k �= j are independent,
variance of the sum is a sum of variances, and

V ar[R] =
N∑

i=1

V ar[a1Xi + a2Yi + a3Zi]. (1.4.21)

Now note that Xi = X2
i , Yi = Y 2

i , Zi = Z2
i , and E[Xi] = f1, E[Yi] =

f2, E[Zi] = f3.
Note also that Xi · Yi = 0, Xi · Zi = 0, Yi · Zi = 0. Now

V ar[a1Xi + a2Yi + a3Zi] = (1.4.22)
E[(a1Xi + a2Yi + a3Zi)2]− E2[a1Xi + a2Yi + a3Zi].

After simple algebra we arrive at the following expression:

V ar[R] = N(
3∑

i=1

a2
i fi(1− fi)− 2

∑
1≤i<j≤3

aiajfifj . (1.4.23)

It is easy to guess the form of a similar expression for an experiment with
arbitrary number of outcomes n > 3. Try it as an exercise!

1.4.4 Confidence interval for population mean based on the
normal approximation

Suppose we are performing a simulation experiment in order to estimate
the population mean μ. For this purpose we draw a random sample of N
observations X1, X2, ..., XN and write the estimate as

μ̂ =
∑N

i=1Xi

N
. (1.4.24)

Suppose that Xi are i.i.d. random variables with mean μ and variance σ2.
Very often we are not satisfied with point estimate μ̂ and the respective
relative error and we want to supplement the result of the experiment by
an interval within which the true value μ lies with guaranteed probability.
Such an interval is called a confidence interval.

There are several approaches to constructing confidence intervals. The
most popular one is based on the fact that the sample mean X̄ =

∑N
i=1Xi/N
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for large N is approximately normally distributed with mean μ and standard
deviation σ/

√
N . This is equivalent to saying that

Z =
X̄ − μ
σ/N

≈ N(0, 1). (1.4.25)

We will not derive this result which follows from a rather involved theory
of normal approximation and simply present the formula for the confidence
interval. In practice one usually uses the confidence level of 95%, which
means that the confidence interval covers the population mean with proba-
bility 0.95. The confidence interval has the form [LB,UB], where

LB = μ̂− 1.96 · σ̂/
√
N ; UB = μ̂+ 1.96 · σ̂/

√
N, (1.4.26)

where σ̂ is the following estimate of the standard deviation.

σ̂ =

√∑N
i=1(Xi − X̄)2

N − 1
. (1.4.27)

In binomial experiment, the formula corresponding to (1.4.26) is

LB = μ̂− 1.96
√
p̂(1− p̂)/N ; UB = μ̂+ 1.96

√
p̂(1− p̂)/N. (1.4.28)

Example 1.4.1. Suppose, we did N = 1000 experiments in estimat-
ing the area, as described in Section 1.1. We obtained the estimate p̂ =
0.345, which means that 345 points out of 1000 fell into A. Then σ̂ =√
p̂(1− p̂)/1000 = 0.0150. Thus, according to (1.4.28) the 95% confidence

interval is [0.32, 0.38].#

1.4.5 Confidence interval for the binomial parameter: Pois-
son approximation

Suppose we carry out a binomial experiment a large number of times N ,
and the number of cases N1 in which we observed the result Xi = 1 is very
small. In other words, our estimate p̂ = N1/N is close to zero. If λ̂ = N · p̂
lies in the interval [1,30], the Normal approximation (1.4.25) may not be
accurate, and it is more adequate to use a confidence interval based on the
Poisson approximation to the distribution of N · p̂, see Morris H. DeGroot
[10], pp. 256-257.

Table 1.1 presents 0.95 - confidence intervals [LB,UP ] on the Poisson pa-
rameter λ based on the observed value λ̂. It is borrowed from L.N. Bol’shev
and N.V. Smirnov, Tables of Mathematical Statistics [4], pp. 368-369.
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Table 1.1: 0.95 -Confidence Intervals for Poisson Parameter

λ̂ = N · p̂ LB UB λ̂ = N · p̂ LB UB
1 0.0253 5.57 12 6.20 20.96
2 0.242 7.22 13 6.92 22.23
3 0.62 8.77 14 7.65 23.69
4 1.09 10.24 15 8.40 24.74
5 1.62 11.67 16 9.15 25.98
6 2.20 13.08 17 9.90 27.22
7 2.81 14.42 18 10.67 28.45
8 3.45 15.76 19 11.44 29.67
9 4.12 17.08 20 12.22 30.89
10 4.80 18.39 25 16.18 26.90
11 5.49 19.68 30 20.24 42.83

The following example explains how to use the table.
Example 1.4.2. Suppose we generated the random point (X,Y )N = 50000
times and it hit N1 = 15 times the area A. Thus p̂ = 0.0003. Entering Table
1.1 with λ̂ = N · p̂ = 15, we obtain [LB = 8.40, UP = 24.74], which gives the
lower bound on p as pLB = 8.40/50000 = 0.000168, pUB = 24.74/50000 =
0.0004955.

It is interesting to compare these bounds with the normal approximation
case.

By (1.4.28),
LB = 0.0003− 1.96

√
p̂(1− p̂)/50000 = 0.0003− 0.000155 = 0.000145,

UB = 0.0003 + 0.000155 = 0.000455.
In this case both approximations produce similar results. #

1.5 Problems and Exercises

1. Finding the Confidence Level.
Suppose that you are dealing with quality control and face the following

situation. You are taking small samples of n = 4 independent observations
X1, ..., X4 from a population with unknown distribution : X ∼ ♦(μ, σ). You
can estimate the population mean μ by the average as X̂ =

∑4
i=1Xi/4 and
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sample standard deviation σ as

s =

√√√√ 4∑
i=1

(Xi − X̂)2/3 (1.5.1)

You are interested in obtaining a 90% -confidence interval (CI) on the un-
known mean.

You remember from Statistics course that for the normal case the Stu-
dent’s confidence interval is applicable, and it has the form:

[X̂ − (s/
√

4) · 2.35, X̂ + (s/
√

4) · 2.35]. (1.5.2)

Your boss has doubts about the quality of your CI, because the normal
assumption seems to him unrealistic. In order to persuade your boss that
your proposal is reasonable, you decide to undertake Monte Carlo simulation
for the case when you know in advance the mean value. As to the unknown
distribution of Xi you decide to check two distributions which are quite
“far” from normal: the Uniform X ∼ U [10, 12], and the shifted Exponential
X ∼ 10 + Exp(λ = 1). In both cases the population mean equals 11.

Below is the printout of Mathematica program for X ∼ U(10, 12).

<< Statistics‘ContinuousDistributions‘
dist=UniformDistribution[0,2];
Q=100000:
sig=0;
For[i=1, i < Q+ 1, i++,
x1=Random[dist]+10;
x2=Random[dist]+10;
x3=Random[dist]+10;
x4=Random[dist]+10;
xbar=(x1+x2+x3+x4)/4;
stdev=Sqroot((x1−xbar)2+(x2−xbar)2+(x3−xbar)2+(x4−xbar)2)/3);
left=xbar-2.35*stdev/2;
right=xbar+2.35*stdev/2;
alpha=Sign[(right-11)(11-left)]+1;
sig=sig+alpha/2];
conf=siq/Q; conf=N[conf];
Print[“confidence=”,conf]

Repeat the calculations following this program. The confidence level for
X ∼ U(10, 12) is about 0.88.
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Modify the above program for the case of X having shifted exponential
distribution with λ = 1.

2. Optimal Job-Shop Schedule.

Suppose you have n jobs, each given by a triple of numbers

Data(i) = [t1(i), t2(i),Δ(i)], i = 1, ..., n, (1.5.3)

where t1(i) is the preplanned beginning time, t2(i) is the preplanned
completion time, and Δ(i) is tolerance on the beginning time, which is
understood as follows:

the actual beginning time T (i) ∈ [t1(i)−Δ(i), t1(i) + Δ(i)].
For sake of simplicity, all times are integers on a time grid with fixed

step of say, 15 minutes. Note that the duration of the job remains constant
for any permissible beginning time and equals t2(i)− t1(i).

Each machine in the workshop can process at any moment in time one
and only one work. Each work should be processed without interruptions.

Our goal is to find out the optimal beginning time for each job to min-
imize the total number of machines needed to process all jobs.

To formulate the main result needed to solve our problem we need to
introduce a characteristic function hi(t) for job i, i = 1, ...n. If this job starts
at time T1(i) and ends at T2(i), then

hi(t) = 1, for t ∈ [T1(i), T2(i)], and hi(t) = 0, otherwise. (1.5.4)

Dilworth’s Theorem [17].

The minimal number of machines to process all jobs with fixed beginning
times is equal to the maximum of the function

D(t) =
n∑

i=1

hi(t). #. (1.5.5)

We could find the optimal position for each job by a direct enumeration.
This is not, however, always possible. For example, we have n = 30 jobs,
and each tolerance equals ±5. So the total number of variants is 1130, a
huge number. Another approach would be to try a random choice of the job
positions for all jobs. This would work as follows: check the maximal value
of the function D(t); choose another random location of all jobs and stop
after, say, 10,000 trials. Pick up the schedule which provided the minimal
value of the maximum of D(t).
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Note that the number of machines cannot be smaller then some number
Dmin which is equal to the integer part +1 of the following ratio: total
duration of all jobs divided by the length of the time span designated for
processing all works. If our random search gives maxD = Dmin, we have
achieved our goal.

This approach can be refined by means of the following heuristics. Start
with a random location of jobs. Analyze the neighborhoods of the maxima
points of the function D(t). Usually there is a small number of jobs located
near a maximum point. Try a total enumeration of all possibilities for lo-
cating these jobs. (Try only extreme cases for Δ’s.) There are good chances
that the maximal value of D(t) will be lowered by at least one unit.

We suggest you design your own algorithm for finding the optimal sched-
ule.

Let us outline another idea which was successfully implemented in the
papers cited below. It is based on the notion of entropy.

For a discrete distribution f = (f1, f2, ..., fm) with probabilistic mass
located in the points 1, 2, ...,m, the entropy E(f) is defined as follows:

E(f) = −
m∑

i=1

log f(i) · f(i). (1.5.6)

The entropy has the following fundamental property: of all distributions
with the same support, the uniform distribution has the largest entropy.

Now note that the above defined function D(t) can be transformed into
distribution by appropriate normalization, by dividing by some constant C.
Suppose this has been done. Let us preserve the same notation for the
normalized function D(t). It is defined on a discrete grid and we can define
its entropy E(D) by the formula above. Maximal entropy would mean most
uniform “spread” of the function D(t), which means the minimal number
of machines needed to process all jobs. This observation gives rise to the
following idea first proposed by Kh. Kordonsky, [25,33].

Locate all jobs randomly within their tolerances. Compute the corre-
sponding entropy. Repeat this operation K times and obtain the average
entropy D̄. Delete from the schedule job j, and repeat the same proce-
dure for the set of all jobs without job j. Obtain the corresponding average
entropy Ē(−j). Compute the difference in the entropies Δ(j) = D̄− Ē(−j).

The crucial idea of the proposed algorithm is the following: the first pri-
ority is given for the “most demanding” job j� for which Δ(j) is maximal.

Locate this job randomly into the schedule, repeat the search for the
next candidate for the remaining jobs, etc. The algorithm is of “greedy”
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type and the computer time to perform it is linear as a function of the
number of jobs.

The paper [33] gives an example of scheduling 32 jobs, with total number
of different locations 7.4 · 1025. The optimal schedule needs 7 machines.
The above described entropy priority rule has found, after 10,000 schedules
were composed, the schedule which needs 8 machines. An improvement
of the algorithm (not described here) has found the optimal solution for 7
machines. Interesting to note that the best of 10,000 schedules with random
positioning of jobs within their tolerances and random priority rule was for
11 (!) machines.

As an exercise, design a simplified algorithm for finding an optimal
location of 10 jobs given by the following triples [b(i), c(i), δ(i)], i = 1, ..., 10,
where i is the job number, b(i) is its integer beginning time, b(i) ∈ [1, 20],
c(i) is its completion time, c(i) ∈ [1, 20], c(i) > b(i), and δ(i) is the tolerance
on the beginning time meaning that the i-th job can start in the interval
b(i)− δ(i), b(i) + δ(i).

The idea of the algorithm is the following: for job i, generate an inte-
ger uniform random variable Xi ∼ UINTEGER[−δ(i),+δ(i)]; locate the
actual job on the time scale with beginning time b(i) +Xi and completion
time c(i) + Xi. After doing it for all 10 jobs, calculate the number K of
machines needed to perform all jobs, repeat the experiment 10,000 times,
and remember the best schedule providing the minimal K. In fact this is a
simplified version of the above described search procedure, which originally
was based on using the entropy approach.

3. Lucky Numbers: a Toy Example.

We have decided to open a new business - a lottery. Each participant
draws 6 random digits uniformly distributed on the integers 0, 1, 2, 3, ..., 9.
Afterwards, he (she) sums up all of them and receives from us $1000 if
the sum is a lucky number: 4, 9, 16, 25, 36, or 49. (Only squares are lucky
numbers.) Participation in one game costs $120. Would this lottery be
profitable for us?

Obviously, to answer this question it is necessary to know the probability
to win in a single game, i.e. the probability to get a lucky number.

To find out this probability, we have decided to carry out a Monte Carlo
experiment.

Try to do it as an exercise! Write a Mathematica program to find
the probability to draw a lucky number in a single game.

4. Prove the formula E[R] = N
∑n

k=1 ak · pk for the mean reward in multi-
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nomial experiment.

5. In a multinomial experiment with n outcomes, the outcome Ωi appears
with probability fi, i > 2, f1 + f2 + ... + fn = 1. This experiment was
carried out N times, the outcome Ωi was observed Ni times, N =

∑n
i=1Ni.

Denote by f̂i the relative frequency of the outcome Ωi: f̂i = Ni/N . Define
R =

∑n
i=1 f̂iai.

Derive the formula for V ar[R].
Hint. Follow the derivation given in Section 1.4 for n = 3.

6. Continuation of Problem 5. Prove that for ai > 0,

r.e.[R] <
(max(f1, ..., fn))0.5

N0.5 min(f1, ..., fn)
. (1.5.7)

7. We say that random variable X has a uniform distribution on the in-
terval [0, 1] if the density function of X is fX(t) = 1 for t ∈ [0, 1] and zero,
otherwise. We use the notation X ∼ U(0, 1).
a. Find the mean value μ of X, μ = E[X], the variance, σ2 = V ar[X], the
so-called coefficient of variation c.v.[X] = σ/μ.
b. Find the CDF of X, FX(t) = P (X ≤ t).
8. Continuation of 7. Let X ∼ U(0, 1). We say that random variable
Y has a uniform distribution on the interval [α, β], β > α if the density
function of Y , fY (t) = 1/(β − α) for t ∈ [α, β] and zero, otherwise. We
denote this random variable as Y ∼ U(α, β). Suppose Z = C ·X+D, C > 0.
Find the density function of Z, the CDF of Z , E[Z] and V ar[Z].

9. Suppose you have a random number generator producing replicas of
X ∼ U(0, 1). Design a random number generator for obtaining r.v. Y ∼
U(−1,+1).

10. Suppose X1, X2, ..., Xn are independent random variables, each uni-
formly distributed in [0, 1]. Define Y = max(X1, X2, ..., Xn). Find the CDF
of Y and its mean value.

11. Let Xi ∼ B(1, p), i = 1, ..., n, Xi are independent r.v.’s. X1 = 1 with
probability p and zero, otherwise. We can say that Xi counts the number
of successes in a single binomial experiment. It is easy to find out that
E[Xi] = p, V ar[Xi] = p(1 − p). Define Y =

∑n
1 Xi. Y is the random

number of successes in n binomial experiments. We denote Y ∼ B(n, p).
This representation immediately gives that E[Y ] = np, V ar[Y ] = np(1−p).
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Prove that

P (Y = k) =
n!

k!(n− k)!p
k(1− p)n−k.



Chapter 2

What is Network Reliability?

Networks are everywhere.
Mark Newman

2.1 Introduction

2.1.1 General description

Networks is a vast field which deals with a wide spectrum of real-life systems
in industry, communication, software engineering, etc. Below are some WEB
definitions of various networks which demonstrate high importance and wide
usability of networks in different areas.

� An interconnected system of things or people;
� A communication system consisting of a group of broadcasting stations

that all transmit the same programs;
� A system of intersecting lines or channels;
� A system of interconnected electronic components or circuits;
� A group of computers, connected by a telecommunication links, that

share information;
� A group of stations connected by communication facilities for exchang-

ing information.
In a non formal language, a network is any system which can be thought of
and graphically represented as a collection of small circles (nodes) intercon-
nected by lines (edges).

In transportation, the circles might represent delivery points of goods,
the lines are the roads between them. In an urban street map, the nodes
are the intersections, the edges are the streets.

21
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In communication, the nodes might be information transmitters/receivers
and the edges - the telecommunication channels and the cables connecting
them.

In computer networks, the nodes represent computers and the edges -
the information transmission lines connecting these computers.

In social networks, nodes might represent individuals and the edges cor-
respond to the mutual direct correspondence between them via, for example,
the Internet.

2.1.2 Networks: Topology

Networks differ by their topology. Many network structures can be repre-
sented in a form of so-called trees. A tree is characterized by the fact that
between any two nodes there is only a single path, see for example so-called
bus network, Fig. 2.1(a). So-called star structures (Fig. 2.1(b)) are also
trees. Very often, a tree has a recurrent structure, as shown on Fig. 2.1(c).
A chain of military command from the upper level (headquarter) to lowest
level - small field units - is represented by a tree, see Fig. 2.1(d), see also
[27,28]. So-called fault trees appear in the reliability analysis in analyzing
the causes of appearance of a dangerous event [2,15].

Computer networks have a large variety of topologies. If each computer
(computation center) in the system is directly connected to each other, the
network is represented by a dense mesh, so-called complete network, see Fig.
2.1(e). The number of edges in complete networks is (n2 − n)/2, where n
is the number of nodes. In order to reduce the number of edges, computer
networks often are organized into special sparse structures which provide
good performance of the network but demand considerably smaller number
of edges.

So-called n-dimensional cube network, see Fig. 2.1(f), and Fig. 10.2, has
2n nodes and n2n−1 edges. If nodes are denoted by n-digit binary numbers,
then edges exist between any pair of nodes differing by a single digit in their
binary representation. This topology of n-cube network provides optimal
packet routing, i.e. minimal number of steps needed to reach any collection
ofN packets originated at single nodes to any collection of destination nodes,
see [39], Chapter 4. Another very popular sparse network structure is so-
called butterfly shown on Fig.2.2(a). Butterfly of order n = 4 shown on Fig.
2.2(a) has N = n · 2n−1 nodes and m = 2N edges. Nodes are organized in
2n−1 columns and n rows. In so-called wrapped butterfly, the nodes of the
upper row are glued to the corresponding nodes in the first row. Wrapped



2.1. INTRODUCTION 23

(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Various network topologies

butterfly has an important symmetry property that each node is incident
exactly to four edges. Similarly to cube networks, butterfly networks have
optimal property in packet transmission routing [39], Chapter 4.

In communication, a popular way of information transmission are so-
called channel networks [41]. The nodes of this network are divided into
k levels, the first level being a single source node s and the k-th -level - a
single terminal node. Edges connect nodes only between adjacent levels, see
Fig. 2.2(b).

It is impossible not to mention the Internet network. An excellent source
on Internet properties is the book [14]. If we consider Internet as a very large
social connection network, then one of its amazing properties is so-called
small world property: the shortest path leading from any node to any other
node is, on the average, very small, about 5-6. This is provided by the fact
that the network node weights (measured by the number of edges incident
to them) have so-called heavy tail distribution. Simply speaking, there is a
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(a)

(b)

t

s

Figure 2.2: Butterfly network of order 4 (a); Channel network (b)

relatively small number of very heavy “popular” nodes with large number
of edges and majority of nodes with relative small weight.

2.1.3 Networks: Reliability perspective

In different networks, we are interested in different performance parameters.
For urban road networks, important points are car traffic characteristics, like
waiting time, travel time index, congestion, etc. Transportation networks
usually are studied to determine the maximum capacity flow between source
node and terminal node and/or the characteristics of the shortest paths.
For information transmission networks, important parameters are maximal
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transmission speed and information transmission capacity.
Reliability theory in general and this text in particular, studies networks

mainly from the point of view of several of their principal reliability indices.
Let us briefly describe them. Nodes and edges are the main network com-
ponents (elements) which are subject to failure. Edge failure means that
it does not exist, or is erased. If a node fails, then all edges incident to it
are erased. Networks have several nodes which are of special importance
and are assumed not to fail. They are called terminals. One of the most
important network reliability parameters is so-called probability of terminal
connectivity, i.e. the probability that all terminals are connected to each
other. In particular, if all nodes are terminals, we speak about all-terminal
connectivity. In many cases, there are only two terminals, and it is vital to
provide the possibility to reach one of them from another one. This leads to
probability of so-called source-terminal or s − t connectivity. For example,
in channel networks, the nodes on the lowest and the highest level are the
terminals, see Fig. 2.2(b). The failure probability for this network is often
called “blocking” probability, since the failure here means that each path
from s to t is disrupted.

Valuable network reliability parameters are component importance mea-
sures. Component a importance measure characterizes the contribution to
the network reliability which comes from improving component a reliability.

In this book we assume that each network element (node, or edge) can
only be in two mutually exclusive states, up and down: down means failure,
up - normal functioning.

It is important to understand that any statement of type
“Probability that component a is up equals pa”, can be interpreted in

two ways, “static” and “ergodic”, or “stationary”. The static interpretation
means that time is not present in our consideration. The state of element
a is determined by means of a virtual binary statistical experiment with
success probability pa and failure probability qa = 1− pa.

We use notation “up” and “down” to denote the element (component)
state, and capital italic UP and DOWN to denote the whole system (net-
work) state.

The outcomes of all element “lotteries” determine the (static) probability
that the whole network is UP or is DOWN. For example, if network UP is
defined as the overall connectivity, and the element lottery produces down
results for all edges incident to a particular node a, then the network will be
DOWN, since a becomes isolated. Similarly, if all paths leading from source
s to terminal t are disrupted, the channel network is DOWN.
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The ergodic or stationary interpretation means the following. It is as-
sumed that each network component, independently of others, has random
periods of being up, alternating with random periods of being down, e.g.
for repair. Suppose that components functioning starts at time t = 0 and
the mean up and down periods for component a are μa(up), and μa(down),
respectively. Then, under quite general conditions, the probability that the
component will be up in some remote instant t, formally as t→∞, will be

pa(up) =
μa(up)

μa(up) + μa(down)
.

So, we may treat all network components (nodes and/or edges) as undergo-
ing alternating operation-repair processes and relate our probabilistic con-
clusions to some remote time instant. Similarly, we may assume that the
system exits and works already for a long time, and the present time instant
serves as the “remote time”.

When all components alternate being up and down, the whole system
also has some time interval of being UP, after which it enters its DOWN
interval, etc. Similarly to component stationary probability to be up, we
define the system stationary probability to be UP

PN(UP ) =
μN(UP )

μN(UP ) + μN(DOWN)
.

In connection with this framework, interesting and important network reli-
ability parameters are network mean UP and mean DOWN periods,

μN(UP ), andμN(DOWN).
Another view on network reliability will be obtained if we assume that

each network component a has random lifetime τa ∼ Fa(t). At time t = 0,
all components start their lives and are up. At some random instant τN the
network goes DOWN and remains in this state. We will be interested in the
distribution function of the network lifetime FN(t) = P (τN ≤ t). Knowing
this function allows finding network reliability at any given instant t0 as
RN(t0) = 1−FN(t0), i.e. the probability that the network is UP at instant
t0.

2.2 Spanning Trees and Kruskal’s Algorithm

2.2.1 Spanning tree: definitions, algorithms

This subsection is devoted to the description of so-called spanning trees of
the network and to the algorithms for efficient construction of these trees.
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Finding spanning trees (or checking whether such do exist) is the vital part
of almost all algorithms for finding network reliability parameters described
in this book. Let us present some basic definitions.

Definition 2.2.1. A directed graph (or digraph) G is a pair (V,E), where
V is a finite set and E is a binary relation on V . The set V is called the
vertex set of G, and its elements are called vertices (also nodes).

The set E is called the edge set of G, and its elements are called edges.
In an undirected graph G = (V,E), the edge set E consists of unordered
pairs of vertices (nodes). By convention, we use the notation e = (u, v) for
an edge, where u and v are the appropriate nodes.

An undirected graph is connected if every pair of vertices is connected
by a path. Figure 2.3 below represents undirected and directed graphs.

Figure 2.3: Undirected and directed graphs

Definition 2.2.2. A tree is an acyclic, connected, and undirected graph.
Equivalently, a tree is an undirected graph in which there exists exactly one
path between any given pair of nodes.

We present without proof the following important properties of trees:
(1) A tree with n nodes has exactly (n− 1) edges; (2) If a single edge is

added to a tree, then the resulting graph contains exactly one cycle; (3) If
a single edge is removed from a tree, then the resulting graph is no longer
connected.

For example, edges (1,4), (4,3), (3,2), and (3,5) constitute a tree for the
graph shown on Fig. 2.4(a). If we add one edge, e.g. (1,2), a cycle of nodes
(1,4,2) will be created. Removing any edge from the tree, e.g. (4,2) disrupts
the connection between nodes 1,4 and the remaining nodes 2,3,5.

Definition 2.2.3. Let G = (V,E) be a connected and undirected graph.
By Spanning Tree (ST) we call a subset T of E such that (V, T ) is a tree
and all nodes remain connected when only the edges in T are used.

Suppose now that each edge has a given length. When the sum of the
lengths of the edges in T is as small as possible, we say that T is a Minimal
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Spanning Tree (MST) of G. Similarly we can define a maximal spanning tree
(MaxST) of G which is a spanning tree with maximal sum of its edge lengths.
Note that it is possible that a graph has many MST’s (and MaxST’s).

As was mentioned in the beginning of this subsection, the notion of
ST is of great importance to many reliability problems related to networks.
Almost all algorithms in our book will be dealing with constructing spanning
trees.

Example 2.2.1. In Fig. 2.4 we see a graph with given edge lengths and one
of the MST’s of this graph. The tree (1,4), (4,2), (2,3), (3,5) is a spanning
tree, but not an MST. An MST is presented on Fig. 2.4(c).
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(a) The graph (b) Not MST (c) MST

Figure 2.4: The graph and its MST

The most famous classic algorithms for constructing MST’s are the Kruskal’s
and Prim’s algorithms. Both algorithms are very simple (but it does not
mean that proving their correctness is also very simple!). The idea of these
algorithms is as follows. In Kruskal’s algorithm, we start with empty set T
of edges and at every stage we select the shortest edge that has not yet been
chosen, so that adding this edge to T does not create a cycle. In the Prim’s
algorithm, we chose initially some node and on every stage we construct
a tree from there, by selecting the shortest available edge that can extend
the tree to an additional node. It may seem that it makes no difference
which of the two algorithms we use, but it is not so. It may be proved that
using Kruskal’s algorithm is more efficient for the case of relatively small
number of edges (so-called sparse networks), whereas the Prim’s algorithm
is more efficient for the case of relatively large number of edges (so-called
dense networks). In this book we will deal with the Kruskal’s algorithm.

The scheme of Kruskal’s algorithm can be represented in the following
simple form:
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Algorithm 2.1 - Scheme of Kruskal’s Algorithm.

1. Sort all edges by their length in increasing order.
Denote the spanning tree by ST .

2. Let index i := 0. Let ST := {}.
3. Choose the next edge (a, b) from E.
4. If adding this edge to ST creates a cycle, GOTO 3.
5. ST := ST ∪ {(a, b)}.
6. i := i+ 1.
7. If i < n Then GOTO 3. Else STOP.

Example 2.2.2. Consider the graph in Fig. 2.4. Suppose that after sorting
we get the edges in the following order: (1, 2), (1, 4), (2, 4), (3, 5), (2, 5), (1, 3),
(2, 3), (3, 4).

Now the algorithm proceeds as follows.

Step 1. i = 0, ST = {}.
Step 2. Add edge(1,2). ST = {(1, 2)}, i = 1.
Step 3. Add edge (1,4). ST = {(1, 2), (1, 4)}, i = 2.
Step 4. Reject edge (2,4) since adding it creates a cycle.
Step 5. Add edge (3,5). ST = {(1, 2), (1, 4), (3, 5)}, i = 3.
Step 6. Add edge (1,3). ST = {(1, 2), (1, 4), (3, 5), (1, 3)}, i = 4.

The MST is constructed and is given by the set ST obtained in Step 6. It
is clear from the above scheme and the example that the main difficulty
lies in checking the possibility of a cycle appearance. This can be done by
using so-called Disjoint Set Structures (DSS). We describe this important
instrument in the following subsection. We would like to note that there
exist different efficient schemes to implement the Kruskal’s algorithm. Our
criterion in choosing and describing the appropriate scheme was simplicity,
so that every reader may turn the pseudocodes of the next subsection into a
working computer program. Of course, an experienced reader may improve
the proposed pseudocodes and write his/her own more efficient programs.

In conclusion, a remark about constructing the MaxST. All the above
described algorithms remain exactly the same, with replacing the choice of
the minimal length (weight) edge by maximal length (weight) edge. So,
in Kruskal’s algorithm we choose on each step the longest edge from the
remaining edges.
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2.2.2 DSS - disjoint set structures

Suppose we have n objects numbered from 1 to n (in our case we can think
about these objects as network nodes). We will need to group these objects
into disjoint sets (components), so that at any given stage each object is in
exactly one set. Initially, all objects are in n different sets, each containing
exactly one object. We will need to execute a sequence of operations of two
kinds:

1. Given some object, we find out which set contains it, and return the
label of this set (component).

2. Given two different labels, we merge the contents of the two corre-
sponding sets, and choose a label for the combined set.

These two operations are the main parts of the Kruskal’s algorithm. Indeed,
when we choose the next edge e = (v, w) we check to which components
belong its incident nodes v and w. In cases where they belong to the same
component, a cycle has been created, and we reject this edge. In cases where
the components are different, we add this edge. It is worth mentioning that
the efficient implementation of the algorithm is of great importance. To
demonstrate this we present here two implementations of the operations on
DSS: one straight and “naive” and the other - much more efficient.

The straightforward implementation is given by the two following pseu-
docodes.
Suppose that an array Comp[1, ..., n] is given. For each object i, Comp[i]
means the label of the set containing i.

Function find1(x)
return Comp[x]

In words: this function receives the object (node) x and returns the appro-
priate component Comp[x]. The following procedure merges the sets labeled
a and b (assume that a �= b).

Procedure merge1(a, b)
for k ← 1 to n

if Comp[k] = b then Comp[k]← a.

In words: this procedure receives two components labeled a and b and pro-
duces the combined component labeled a. Note that in the latter procedure
it makes no difference, a or b is chosen as a label for the resulting set. Sup-
pose now that we construct the MST by Kruskal’s algorithm. Then we need
at least 2 · (n − 1) calls to find1 and (n − 1) calls to merge1. Taking into



2.2. SPANNING TREES AND KRUSKAL’S ALGORITHM 31

account that merge1 contains a loop of size n we arrive at the conclusion
that the implementation of Kruskal’s algorithm takes a time of O(n2). We
will describe now a more efficient version. It is based on two principal ideas:
(a) tree representation for disjoint sets.
(b) more efficient criterion for label choice in sets merging.
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Figure 2.5: (a) The tree representation of DSS; (b) “Sticking” (10→ 7→ 4)
to (6→ 1); (c) “Sticking” (6→ 1) to (10→ 7→ 4)

By (a) we represent each set (component) as a rooted tree, where each
node contains a reference to its parent. We adopt the following scheme: if
Comp[i] = i, then i is both the label of its set and the root of the cor-
responding tree; if Comp[i] = j �= i, then j is the parent in some tree.

Example 2.2.3. Consider the following array: {1, 2, 2, 4, 2, 1, 4, 8, 9, 7}. It
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represents the following disjoint sets: {1, 6}, {2, 3, 5}, {4, 7, 10}, {8}, {9}. In
Fig. 2.5 we can see the corresponding tree representation for these sets.
Now finding the set label for an element means “jumping” from a node to
a node till the condition set[i] = i will be fulfilled. For example, from the
given array (and also from the Figure 2.5(a)) we see that 4 = find(10).

The second idea is based on the following simple fact. Suppose that the
tree tr1 is shorter than tr2. Then “sticking” tr1 to tr2 gives a shorter tree
(Fig. 2.5(b)) than “sticking” in opposite order, see Fig. 2.5(c).

The above simple ideas allow to realize the operations find and merge
in a more efficient way. The appropriate function find2 is given by the
following pseudocode.

Function find2(x)
r ← x

while Comp[r] �= r

r ← Comp[r]
return r

For the new pseudocode merge2 we need to define array H[1, ..., n], which
presents the heights of the appropriate subtrees, so that H[i] is the height
of the subtree presenting the set labeled by i. For example, for the trees
on Fig. 2.5(a) we have: H[2] = 1, H[4] = 2. Initially (i.e when each set
Comp[i], i = 1, ..., n is consisting of one element), we have H[i] = 0, i =
1, ..., n.

Function merge2(a, b)
if H[a] = H[b]
then
Comp[a]← Comp[b]
H[b]← H[b] + 1
return b

else
if H[a] < H[b]
then
Comp[a]← Comp[b]
return b

else
Comp[b]← Comp[a]
return a
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For example, after applying merge2(1, 4) we get the tree on Fig. 2.5(b) with
H[4] = 2. It may be proved (see [5]) that by using merge2 we get trees with
the height at most �log2(n)�. It follows that the operation find2 needs time
O(log2(n)), i.e. using find2 and merge2 is much more effective than using
find1 and merge1.

Now we are ready to present the pseudocode for the Kruskal’s algorithm,
for both cases of connectivity - the k-terminal connectivity and the overall
connectivity. The pseudocode uses the following arrays.
a. Edge[1, ...,m] - the array of edges sorted by their lengths, so that Edge[i]
is the number of the appropriate edge.
b. Fnode[1, ...,m] - the array of edge first nodes.
c. Snode[1, ...,m] - the array of the second edge nodes. So the edge
Edge[i] has two nodes: Fnode[i] and Snode[i]. We suppose that Fnode[i] <
Snode[i].
d. Comp[1, ..., n] - the array of components for nodes, so that the node i
belongs to the component Comp[i].
e. T [n1, ..., nk] - the array of terminal numbers.
f. ST [1, ..., n− 1] - the array of the spanning tree.
g. Tcomp[1, ..., n]; Tcomp[i] gives the number of terminals belonging to the
component i.
h. H[1, ..., n] - the array defined above for merge2.

Procedure Kruskal
// Initialization

for i← 1 to n
H[i]← 0
Comp[i]← i

T comp[i]← 0
for i← 1 to k
j ← T [i]
Tcomp[j]← 1

// iT comp - the current maximal number
// of terminals in one component.

iT comp← 1
// iST - the number of edges in
// the current state of the spanning tree.

iST ← 0
i← 0
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repeat
i← i+ 1
u← Fnode[i]
v ← Snode[i]
ucomp← find2(u)
vcomp← find2(v)

// check if the nodes of the edge i
// belong to different components.

if(ucomp �= vcomp)
then
r ← merge2(ucomp, vcomp)
iST ← iST + 1
ST [iST ]← Edge[i]

// the number of terminals in the
// resulting component after merging.

j ← Tcomp[ucomp] + Tcomp[vcomp]
Tcomp[r]← j

if(j > iTcomp)
then
iT comp← j

until(iT comp = k)

Example 2.2.4.
Let us implement all stages of the Kruskal procedure for the network with
3 terminals shown on Fig. 2.6. Table 2.1 presents the sorted edges given
together with their incident nodes.

Initially we have the following values for the arrays and variables. T =
{1, 4, 6}, iT comp = 1, iST = 0, Comp = {1, 2, 3, 4, 5, 6, 7}, Tcomp =
{1, 0, 0, 1, 0, 1, 0}, H = {0, 0, 0, 0, 0, 0, 0}.
Step 1. u = Fnode(2) = 2, v = Snode(2) = 3, ucomp = 2, vcomp = 3, r =
merge2(2, 3) = 3,Comp = {1, 3, 3, 4, 5, 6, 7}, Tcomp = {1, 0, 0, 1, 0, 1, 0},
H = {0, 0, 1, 0, 0, 0, 0}, iT comp = 1, ST = {2}.
Step 2. u = Fnode(7) = 1, v = Snode(7) = 7, ucomp = 1, vcomp = 7, r =
merge2(1, 7) = 7,Comp = {7, 3, 3, 4, 5, 3, 7}, Tcomp = {1, 0, 0, 1, 0, 1, 1},
H = {0, 0, 1, 0, 0, 0, 1}, iT comp = 1, ST = {2, 7}.
Step 3. u = Fnode(9) = 2, v = Snode(9) = 6, ucomp = 3, vcomp = 6, r =
merge2(3, 6) = 3, Comp = {7, 3, 3, 4, 5, 6, 7}, Tcomp = {1, 0, 1, 1, 0, 1, 1},
H = {0, 0, 1, 0, 0, 0, 1}, iT comp = 1, ST = {2, 7, 9}.
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Table 2.1: The Sorted Edges and Their Nodes

Edge Fnode Snode
2 2 3
7 1 7
9 2 6
10 3 6
8 2 7
6 6 7
1 1 2
3 3 4
4 4 5
11 3 5
5 5 6

Step 4. u = Fnode(10) = 3, v = Snode(10) = 6, ucomp = 3, vcomp = 3.
Reject the edge.

Step 5. u = Fnode(8) = 2, v = Snode(8) = 7, ucomp = 3, vcomp = 7, r =
merge2(3, 7) = 7, Comp = {7, 3, 7, 4, 5, 6, 7}, Tcomp = {1, 0, 1, 1, 0, 1, 2},
H = {0, 0, 1, 0, 0, 0, 2}, iT comp = 2, ST = {2, 7, 9, 8}.
Step 6. u = Fnode(6) = 6, v = Snode(6) = 7, ucomp = 7, vcomp = 7.
Reject the edge.

Step 7. u = Fnode(1) = 1, v = Snode(1) = 2, ucomp = 7, vcomp = 7.
Reject the edge.

Step 8. u = Fnode(3) = 3, v = Snode(3) = 4, ucomp = 7, vcomp = 4, r =
merge2(7, 4) = 7, Comp = {7, 3, 7, 7, 5, 6, 7}, Tcomp = {1, 0, 1, 1, 0, 1, 3},
H = {0, 0, 1, 0, 0, 0, 2}, iT comp = 3, ST = {2, 7, 9, 8, 3}. Stop the process.

As it was mentioned above, the Kruskal’s algorithm is very useful in many
applications. For example, if we want to check whether some network is
connected, i.e. whether there is a path between each pair of nodes, then it
is sufficient to construct a spanning tree with edges of arbitrary length. If
we obtain that all nodes of the network belong to one component then the
network is connected.



36 CHAPTER 2. WHAT IS NETWORK RELIABILITY?

1 2 3

4

567

Step 1 1 3

2

4 5 6 7

7

1

3

2

4 5 6

7

1

3

2 6

4 5

7

1

3

2 6

4 5

7

1

3

2 6 4

5

Step 2

Step 3

Step 5

Step 7

(a)

(b) (c)

Figure 2.6: The graph (a) and Tree representation of DSS (b) and Steps of
Kruskal’s algorithm (c)

2.3 Introduction to Network Reliability

2.3.1 Static networks

In 2.1.3 the basic network reliability notions were presented. In this subsec-
tion we describe the elementary methods of reliability computing. Before
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we start with this, let us remind very briefly the following notions.
1. By network N = (V,E, T ) we denote an undirected graph with a node-set
V, |V | = n, an edge-set E, |E| = m, and a set T ⊆ V of special nodes called
terminals. For more detailed description see [5, 8].
2. Each element a (node or/and edge) is associated with a probability pa

of being up and probability qa = 1 − pa of being down. We postulate that
element failures are mutually independent events.
3. In a given network N the state of N is induced by all its elements which
are in the up state.
4. In this book we deal with terminal connectivity operational criterion.
By this criterion the state is UP if any pair of terminals is connected by
the elements in the up state. In the case that the terminal set contains k
terminals, k < n, we use the term k-connectivity. In the case of T = V ,
we will use the term overall connectivity. If T = {s, t} we use the term s-t
connectivity. The terminal connectivity has the property of being monotone:
each subset of the DOWN state is a DOWN state, and each superset of
the UP state is an UP state.
Let us now describe two elementary methods of computing the network
reliability.

Straightforward computation. Suppose that we know the set S of all
UP states of the network: S = {Si, i = 1, ...r}. By our convention, Si is a
particular set of all network elements which are up, such that the network
itself is UP . For simplicity, assume that only edges are subject to failures.
Then, denoting by Qi the complement of Si,

P (Si) =
∏
e∈Si

pe

∏
e∈Qi

qe, (2.3.1)

and

R(N) = P (N is UP ) =
r∑

i=1

P (Si). (2.3.2)

Example 2.3.1.
(a) Suppose we have a network with three nodes V = {1, 2, 3} and three

edges e1 = (1, 2), e2 = (1, 3), e3 = (2, 3), see Fig 2.7. The nodes are abso-
lutely reliable. The operational criterion is overall connectivity. Edge ei is
up with probability pi, i = 1, 2, 3. Edges are independent.

It is easy to check that there are four UP states: S1 = {e1, e2}, S2 =
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{e1, e3}, S3 = {e2, e3}, S4 = {e1, e2, e3}. Then by (2.3.1) and (2.3.2),

R(N) =
4∑

i=1

P (Si) = p1p2q3 + p1p3q2 + p2p3q1 + p1p2p3. (2.3.3)

(b) Suppose now that T = {1, 2}, i.e. nodes 1 and 2 are terminals, node
3 remains reliable. For this case, the set of all UP states is S = {S1 =
{e1}, S2 = {e1, e2}, S3 = {e1, e3}, S4 = {e2, e3}, S5 = E}. In this case we
have R(N) = p1q2q3 + p1p2q3 + p1p3q2 + p2p3q1 + p1p2p3.

1

2

3

e1

e2

e3

Figure 2.7: The network of Example 2.3.1

We can get from this example an impression that reliability computations
are quite simple. The problem with the method of this example is that we
have to enumerate all network states and check which of them are UP . Let
us take a complete network of size 10, which is a network with 10 nodes
and 45 edges connecting every pair of nodes. Suppose that only edges can
fail. The number of all states equals 245 = 35184372088832, a huge number.
Thus checking all states even for small networks is practically impossible.

Paths and Cuts. Let us define paths and cuts for networks with unreliable
edges and reliable nodes.

Definition 2.3.1. A set L = {e1, e2, ..., er} is called a path if the network is
in an UP state if all elements of the path are up. We say that the set L is a
minimal path if there does not exist such an element e∗ so that L∗ = L−{e∗}
remains a path.

For example, for all-terminal connectivity, a spanning tree is a path.
Moreover, it is a minimal path, since as we proved earlier, a spanning tree
has no redundant edges. For the network on Fig. 2.7 edges L1 = {e1, e2, e3}
constitute a path, but not a minimal path because any edge can be deleted
from L1 without destroying connectivity.
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Definition 2.3.2. A set C = {e1, e2, ..., el} is called a cut, if the network is
DOWN if all elements of C are down. We say that C is a minimal cut if
there does not exist an element in C so that C∗ = C − {e} remains a cut.
In words: a minimal cut has no redundant elements.

Minimal Path-set Method. Denote by SL = {L1, L2, ..., Lr} the set of
all minimal paths of the network.

Then the following formula is valid:

R(N) = P
( r⋃

i=1

Lup
i

)
, (2.3.4)

where Lup
i stands for the following event: all elements in Li are up. Indeed, it

is easy to see that each UP state contains some minimal path. For example,
in 2.3.1(b) the UP state S5 contains two minimal paths: S1 and S4. On the
other hand, each minimal path defines some UP state. So, the sufficient and
necessary condition for N to be in the UP is that in at least one minimal
path all elements are up.

Minimal Cut-set Method. Denote by SC = {C1, C2, ..., Cl} the set of all
minimal cuts of a network.

Then the following formula is valid:

1−R(N) = P
( l⋃

i=1

Cdown
i

)
, (2.3.5)

where Cdown
i stands for the following event: all elements in Ci are down.

The proof of the latter equation is similar to the proof of (2.3.4).

Example 2.3.1 - continued. Let us consider again a three-node network
which fails if all-terminal connectivity is violated. There are three min-path
sets: L1 = (e1, e2), L2 = (e1, e3), L3 = (e2, e3). These sets are the spanning
trees of the network. Using (2.3.4) we have to remember that the probability
of a union of events must be computed by the inclusion-exclusion formula
familiar to the readers from Probability Theory. So,

P (Lup
1 ∪Lup

2 ∪Lup
3 ) = P (Lup

1 ) +P (Lup
2 ) +P (Lup

3 )−P (Lup
1 ∩Lup

3 )−P (Lup
2 ∩

Lup
3 )− P (Lup

2 ∩ Lup
3 ) + P (Lup

1 ∩ Lup
2 ∩ Lup

3 ).

As an exercise, complete the calculations and check that you obtain the
same result as in Example 2.3.1, (a).

The straightforward use of min-path or min-cut methods is generally
not an efficient tool of computing network reliability, except for very small
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networks or networks with special structure, so-called series-parallel systems.
We will deal with them in the following chapters.

2.3.2 Dynamic networks

In static networks, the state of network component (edge or node) is fixed
once and forever on the basis of random lotteries. For example, e is up with
probability p(e) and down with probability 1 − p(e). The time coordinate
is not present at all in these lotteries.

In dynamic networks, each edge or node has a random lifetime, which
means the following. At the instant t = 0 all edges (or nodes, or both)
are down. There exist a nonnegative random variable τe ∼ Fe(t) which
is the edge e “birth” time. So, with probability Fe(θ) the edge e will be
“born”, i.e. become up, before time θ (and afterward remain in this state
forever). The lifetimes for different elements of the network are assumed to
be independent random variables.

Very often we consider networks in which initially, at t = 0, all elements
(nodes, edges or both) are up. Edge e remains up for a random time τe and
afterwards goes down (and remains down “forever”). In other words, each
component is equipped with a random lifetime τ . If τ = x, at the instant
t = x, this component becomes down and remains in this state.

The main problem for dynamic networks is finding the probabilistic de-
scription of the instant at which the whole network enters its DOWN state
(if it was initially UP ), or becomes UP , if it was initially DOWN . Further
in our course, in Chapters 8 and 9, we will study the dynamic networks and
develop special techniques for evaluation network lifetime parameters.

2.4 Multistate Networks

In this subsection we present a very short description of so-called multistate
networks. This type of networks is not at the center of our exposition in
this book. Nevertheless, we think that for better understanding of network
reliability concepts it is useful to have a more general picture of various types
of networks. The reader interested in closer acquaintance with multi-state
system reliability is referred to fundamental work [35].

Let us consider a network in which its elements have three states. One
of these states is the up state. Two other states are down states. One of
these down states is called open and another is called short.
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The terminology short and open is borrowed from considering a diode:
in the up state the diode allows passing of electric flow in only one direction.
The down states correspond to two mutually exclusive situations: the elec-
tric flow passes on both directions (short) and when the electric flow does
not pass at all (open).

As an example consider a series system of two elements and compute
it reliability. Denote by Ai, Ai,o, Ai,s the states up, open, and short, for
element i = 1, 2, respectively. By the definition, the system can be in three
states: one UP and two DOWN states. The DOWN state is defined as
follows: at least one element is open or both elements are short.

Therefore, system reliability R equals

R = P (UP ) = 1− {P (A1,o ∪A2,o) ∪ (A1,s ∩A2,s)} (2.4.1)
= 1− P (A1,o ∪A2,o)− P (A1,s ∩A2,s).

Assuming that the elements are independent and denoting pi,o = P (Ai,o),
pi,s = P (Ai,s), i = 1, 2, we obtain

R = (1− p1,o) · (1− p2,o)− p1,s · p2,s. (2.4.2)

A parallel system of two elements, by definition, is in DOWN state if one of
the elements is in the short state or if both elements are in the open state.
We arrive at the following expression:

R = P (UP ) = 1− {P (A1,s ∪A2,s) ∪ (A1,o ∩A2,o)} (2.4.3)
= 1− P (A1,s ∪A2,s)− P (A1,o ∩A2,o).

Assuming that the elements are independent, we obtain

R = (1− p1,s) · (1− p2,s)− p1,o · p2,o. (2.4.4)

The reliability formulas can be easily generalized to the series and parallel
systems of n elements.

We present without proof the following formulas for reliability of series
and parallel systems, respectively:

Rser =
n∏

i=1

(1− pi,o)−
n∏

i=1

pi,s, (2.4.5)

Rpar =
n∏

i=1

(1− pi,s)−
n∏

i=1

pi,o, (2.4.6)



42 CHAPTER 2. WHAT IS NETWORK RELIABILITY?

2.5 Network Reliability Bounds

Series, parallel, and combinations of series and parallel systems are not very
often encountered in practice in “pure” form. There is however an inter-
esting possibility to obtain lower and upper bounds on arbitrary monotone
system reliability using the patterns of series and parallel connection of com-
ponents. Let A1, A2, ..., Al be the complete list of all minimal path sets, and
let C1, C2, ..., Cm be the complete list of all minimal cut sets of a monotone
system.

The following theorem was proved by Barlow and Proschan [ 2 ], Chapter
2:
Theorem 2.5.1. Denote by pi the reliability of i-th component and by R0

the system reliability. If all system components are statistically independent,
then

l∏
k=1

(1−
∏

j∈Ck

(1− pj)) ≤ R0 ≤ 1−
r∏

s=1

(1−
∏

j∈As

pj). (2.5.1)

The theorem says that R0 is bounded from above by the reliability of a
fictitious system (with independent components) which is a parallel con-
nection of series subsystems each being the minimal path set of the original
system. Similarly, the lower bound is the reliability of a system obtained by
a series connection of parallel subsystems each being the minimal cut set of
the original system.

Fig. 2.8 illustrates this theorem.
We would like to stress that the components with identical numbers ap-

pearing in the lower and upper bounds, see Fig. 2.8, are considered as inde-
pendent and different components. For example, components with number
1 appear in two minimal cuts. It is meant that we have a specially de-
signed “lower bound” system with two different and independent copies of
component 1 having up probabilities equal to up probability of component
1.

We omit the proof of the above important theorem. It is worth noting
that the Barlow and Proschan’s theorem is true not only for independent
components but for dependent, or so-called associated components. For
details see [ 2 ].

The method of network reliability estimation suggested by the above
theorem seems very promising but in practice it is limited to small networks
which allow complete enumeration of all their minimal cut sets and minimal
path sets. In the case of the bridge network, it is easy to compose the list of
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Figure 2.8: The bridge network (a) and the networks serving as its lower
reliability bound (b) and upper reliability bound (c)

all minimal cuts and all minimal paths. The minimal cuts disrupt the s− t
connection and they are: {1, 3}, {4, 5}, {1, 2, 5}, {3, 4, 2}. The minimal paths
providing the connection between s and t are: {1, 4}, {3, 5}, {1, 2, 5}, {3, 2, 4}.
(The word “minimal” means that these sets do not contain redundant ele-
ments. For example, if we remove from the minimal path any of its elements,
the new set will no longer be a path.)

2.6 Problems and Exercises

1. Complete the calculations of Example 2.3.1-continued in Section 2.3.

2. Compose the list of all minimal cuts containing two or three edges for
the network shown on Fig. 2.9 below.

3. Suppose that for the given network G = (V,E) all nodes are terminals.
Suppose that pe is the probability that edge e is up. Denote by ST a
spanning tree of the network. The probability that the tree is UP is defined
as

P (ST ) =
∏

e∈ST

pe. (2.5.1)
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67

Figure 2.9: The network for Exercise 2. V=T, nodes are reliable

Describe an algorithm for finding the most reliable spanning tree for the
given network.

4. For the bridge network on Fig. 2.8, compute the lower and upper relia-
bility bounds assuming that all edges have probability p of being in the up
state. Compare the upper and lower bound for p = 0.9, 0.95, 0.99.

5. Prove (2.3.4), (2.3.5).

Several problems below will be devoted to the reliability of so-called mono-
tone binary systems. We introduce some new definitions.

We define a system (not necessarily a network) as a set of components
(elements). For example, in a network, components may be edges and nodes.
We assume that the components are binary, i.e. each component has only
two states: operational (up) and failed (down). The state of component
i will be described by a binary variable xi, i = 1, 2, ..., n: xi = 1 if the
component i is up and xi = 0 if the components i is down.

The whole system can only be in one of two states: UP and DOWN.
The dependence of a system’s state on the state of its components will
be determined by means of so-called structure function φ(x), where x =
(x1, x2, ..., xn): φ(x) = 1 if the system is UP and φ(x) = 0 if the system is
DOWN.

6. A system is called series system if it is UP if and only if all its components
are up. A system is called parallel if it is DOWN if and only if all its
components are down. Find the structure functions for series and parallel
systems.
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7. Consider the network on Fig. 2.7. Its components are the edges e1, e2, e3.
By definition, this network is UP if and only if all nodes are connected. Prove
that

φ(x) = 1− (1− x1x2)(1− x1x3)(1− x2x3).

8. Monotone systems. A system with structure function φ(·) is called
monotone if φ(x) has the following properties:

(i) φ(0, 0, ..., 0) = 0, φ(1, 1, ..., 1) = 1
(ii) x < y implies that φ(x) ≤ φ(y).
Explain the physical meaning of these properties.

9. Minimal paths. A state vector x is called a path vector if φ(x) = 1.
The set of all up components of this vector is called path set. If, in addition,
this path set does not contain redundant components, it is called minimal
path set. Find all minimal path sets for the bridge system shown on Fig.
2.8(a). Is the set (1,2,3,4) a minimal path set?

10. Structure function representation via minimal path sets. Let L1, L2, ..., Lr

be the collection of all minimal path sets of the system. Prove that

φ(x) = 1−
r∏

j=1

(1−
∏

i∈Lj

xi). (2.5.2)

In words: system structure function can be represented as a parallel
connection of series systems representing minimal path sets.

11. Minimal cuts. A state vector x is called a cut vector if φ(x) = 0. The
set of all down components of this vector is called cut set. If, in addition,
for any y > x φ(y) = 1, then the corresponding cut set is called minimal
cut set or simply minimal cut. Find all minimal cut sets for the bridge
system shown on Fig. 2.8(a). Is the set (1,2,3) a minimal cut set?

12. Structure function representation via minimal cut sets. Let C1, C2, ..., Cl

be the collection of all minimal cut sets of the system. Then

φ(x) =
l∏

j=1

[1−
∏

i∈Cj

(1− xi)]. (2.5.3)

What is the physical meaning of this expression ?

13. Suppose a system has four minimal cut sets (1, 2), (1, 5), (3, 4), (2, 5).
Find all minimal path sets.
Hint. Represent the system in a form similar to Fig. 2.8(b), i.e. as a series
connection of parallel subsystems, each made of the minimal cut.
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For the next several problems we need some new definitions. Assume that
the state of component i, i = 1, 2, ..., n is described by a binary random
variable Xi, where

P (Xi = 1) = pi, P (Xi = 0) = 1− pi, (2.5.4)

where 1 and 0 correspond to the up and down state, respectively. The
system state vector now becomes a random vector X = (X1, X2, ..., Xn).
We assume that the r.v.’s Xi are independent. If φ(X) = 1, the system is
UP. If φ(X) = 0, the system is DOWN.
Definition. P (φ(X) = 1) = R is called system reliability.

14. Prove that R = E[φ(X)]. Using Problem 6, find the reliability of series
and parallel systems.

15. A system has two minimal path sets (1, 2, 3) and (2, 4). Write system
structure function and find system’s reliability.

16. Ushakov-Litvak bounds on system reliability [27,28]. Let L1, L2, ..., Ls

be a collection of non intersecting minimal path sets of the system. Let
C1, C2, ..., Ck be a collection of non intersecting minimal cut sets of the
system. (It is assumed that the system has independent binary components.)
Prove the following Ushakov-Litvak bounds:

LB = 1−
s∏

j=1

(1−
∏

i∈Lj

pi) ≤ R ≤
k∏

j=1

[1−
∏

i∈Cj

(1− pi)] = UB. (2.5.5)

Remark. Since there might exist several collections of non intersecting
paths and non intersecting cuts, it is possible to construct several lower
bounds and use the largest of them. Similarly, one can construct several
upper bounds and use the smallest of them. This method is in fact the
Ushakov-Litvak original suggestion.#

17. Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be binary vectors and let
φ(·) be system binary structure function. Let z = (z1, z2, ..., zn), where zi =
1−(1−xi)(1−yi), i = 1, 2, ..., n. Prove that φ(z) ≥ 1−(1−φ(x))(1−φ(y)).

18. For a given monotone system there are two options:
(i) Each element is duplicated, i.e. an identical element is connected in
parallel to each system element.
(ii) The whole system is duplicated by another and similar one, and these
two systems are connected in parallel.
Which option is preferable from the reliability point of view ?
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Hint. Use the result of the previous problem.

19. Suppose we have a monotone binary system of n components. The
structure function of this system is φ(x) = h(x1, x2, ..., xn). Suppose that
component i is replaced by another binary monotone system with structure
function φi(y(i)), where y(i) is a binary vector, i = 1, 2, ..., n. For example,
the original system is a parallel connection of two components. Suppose we
decide to replace each component by a bridge structure. As a result, we will
have a parallel connection of two bridge systems.

Find the general expression for the structure function after the above
described replacement.

Remark. A particular case of the above described situation is a replacement
of each component of the system by a subsystem identical to the original
system. Such systems are called recurrent, see [27], Section 9.3.

20. Checking network connectivity. You are given a network with five
nodes numbered 1, 2, 3, 4, 5, and 6 edges. Each edge is represented by a five-
dimensional 0/1 vector. For example, edge e1 connecting nodes 1 and 2 is
the following vector: {1, 1, 0, 0, 0}. There are five additional edges described
as e2 = {1, 0, 1, 0, 0}, e3 = {0, 0, 0, 1, 1},e4 = {0, 0, 1, 1, 0}, e5 = {0, 1, 0, 0, 1},
e6 = {0, 1, 0, 1, 0}.

Write a Mathematica program for checking the network connectivity.
Hint. If two edge vectors have a node in common, their scalar prod-

uct is positive. If they have no nodes in common, their scalar product
is zero. For example, {1, 1, 0, 0, 0}.{1, 0, 1, 0, 0} = 1. (Dot means scalar
product.) Indeed, both edges are incident to node 1. Contrary to that,
{1, 1, 0, 0, 0}.{0, 0, 0, 1, 1} = 0.

Let us introduce a “gluing” operation of two vectors. If the scalar prod-
uct of two vectors is not zero, these two vectors are glued together just by
summation. So, gluing together edge e1 and e2 gives the vector {2, 1, 1, 0, 0}.
The nonzero elements of this vector describe a connected component of edges
e1 and e2.

If the scalar product of ei and ej is zero, “gluing” ej to ei leaves ei
unchanged.

The program must implement the following algorithm for testing con-
nectivity. Fix vector e1. Glue to it all other vectors e2, e3, ..., e6. Then fix
vector e2. Glue to it all other vectors, etc. Finally, fix e6 and glue to it all
other vectors.

If after these operations there will be at least one vector with all positive
components, then the network is connected. If all vectors have at least one
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zero component, the network is disconnected. Check this fact by considering
several examples.

21. MC program for estimating probability of network connectiv-
ity. For the network described in the previous problem, you are given the
probabilities pi that edge i is up, i = 1, ..., 6. Edges are assumed to be in-
dependent. Complement the program which you have designed to solve the
previous problem, to estimate the probability that the network is connected.

22. CMC for estimating network reliability with unreliable edges.
To estimate network reliability by CMC you have to realize the following
computational scheme.
1. For each edge, simulate its state (assuming the up probability is given).
2. Using DSS check the state of the network.
3. If the network state is UP add 1 to the appropriate variable.
4. Repeat 1-3 M times.
5. Compute the reliability estimate.
Develop a pseudocode for the above scheme.



Chapter 3

Exponentially Distributed
Lifetime

3.1 Characteristic Property of the Exponential Dis-
tribution

The notation τ ∼ Exp(λ) means that

Fτ (t) = P (τ ≤ t) = 1− e−λt, t > 0. (3.1.1)

The density function of r.v. τ is fτ (t) = λe−λt.
The characteristic property of the exponential distribution is that the

so-called failure rate h(t) is constant:

h(t) =
fτ (t)

1− Fτ (t)
= λ = Const. (3.1.2)

The probabilistic meaning of (3.1.2) is the following. Suppose we know that
a component whose lifetime τ ∼ Exp(λ) survived time t, i.e. τ > t. Then
the conditional probability to fail in the interval [t, t+ δt] does not depend
on t:

P (τ ∈ [t, t+ δt]|τ > t) =
e−λt − e−λ(t+δt)

e−λt
= 1− e−λδt � λ · δt.

Very often, it is said that an object whose lifetime has Exponential distribu-
tion is not aging: if it is “alive” at time t, its chances to survive past t+ T
are exactly the same as the chances of a “newborn” object to remain alive
during [0, T ].

49
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We advise the reader to comprehend this amazing property which is char-
acteristic only for an Exponential distribution. It is worth mentioning that
this distribution is a continuous version of Geometric distribution which you
definitely have studied in the Probability course.

In future, we will often use the probability that an object which is alive
at time t will survive another “small” time interval δt. Formally,

P (τ > t+ δt|τ > t) =
P (τ > t+ δt)
P (τ > t)

= exp[−λ · δt] = (3.1.3)

= P (τ > δt) = 1− λδt+ o(δt), as δt→ 0.

Naturally, the complementary probability to fail in the interval [t, t + δt]
given the object is alive at t is λδt+ o(δt).

3.2 Random Jump Process with Exponentially Dis-
tributed Sojourn Times

Let [ξ(t), t ≥ 0] be a continuous random process with discrete set of states
{0, 1, 2, ...}. Assume that ξ(t) sits in state i random time τi ∼ Exp(λi), and
afterwards moves into state i+ 1. Figure 3.1 shows a trajectory of ξ(t). We
will assume that the r.v.’s τi are independent.

ξ(t)

t
0

1

2

3

{ { {

τ0

τ1

τ2

τ3

Figure 3.1: Trajectory of a monotone jump process

We will be interested in finding the probability that at time θ the process is
in state k.
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Claim 3.2.1

P (ξ(θ) = k) = P (ξ(θ) ≥ k)− P (ξ(θ) ≥ k + 1). (3.2.1)

The proof is very simple. The first term in the right-hand side of (3.2.1)
is the probability to be at time θ in one of the states k, k + 1, k + 2, ....
The second term is the probability to be at time θ in one of the states
k + 1, k + 2, .... Thus the difference of these terms is the probability to be
in state k at time θ.#

It is important to note that Claim 1 remains true for arbitrary distribu-
tions of the “sitting” times τi.

Next important notion is the convolution of several c.d.f.’s. Suppose that
τi ∼ Fi(t), i = 1, ...k.
Definition 3.2.1

The CDF of the sum
∑k

i=1 τi, where τi are i.r.v.’s is called the convolution
of F1(t), ..., Fk(t) and is denoted as F (k)(t).#

The analytic expressions for the convolutions are as follows.

F (t) ≡ F (1)(t) =
∫ t

0
f1(x)dx, F (2)(t) =

∫ t

0
F (1)(t− x)f2(x)dx, (3.2.2)

F (k)(t) =
∫ t

0
F (k−1)(t− x)fk(x)dx.

It is easy to interpret these formulas using probabilistic arguments. Try it
as an exercise!

For the case of identically distributed exponential i.r.v.’s it is possible to
find an explicit analytic expression for the convolution. So, let τi ∼ Exp(λ).
Then

P (τ1 + ...+ τk ≤ t) = 1− e−λt
k−1∑
i=0

(λt)i

i!
. (3.2.3)

This is so-called Gamma distribution with parameters (k, λ). It will be
denoted as Gamma(λ, k).

Let us consider now a connection between convolutions and the number
of jumps in a random process. Suppose that our process sits in state 1 time
τ1, then jumps into state 2 and sits there random time τ2, etc. R.v.’s τi
may be arbitrary distributed and not necessarily independent. Denote by
N(t) the number of jumps of our random process on the interval (0, t]. The
probabilistic meaning of the convolution is clarified by the following
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Claim 3.2.2

P (τ1 + ...+ τk ≤ t) = P (N(t) ≥ k). (3.2.4)

The proof is obvious: if the sum of k sitting times is ≤ t, then there are
at least k jumps on (0, t]. If, on the other hand, N(t) ≥ k, the k-th jump
took place before t or at t, which implies that τ1 + ...+ τk ≤ t.#
Remark. Let us return to the process ξ(t), t ≥ 0. Suppose the sitting time
in state ξ(t) = 0 equals τ0 = t0. Where is the process at time t0? This is
the matter of agreement. We will assume that the trajectories of ξ(t) are
left-continuous. In other words, if t0 is the jumping time, at time t0 the
process state is defined to be 0. Similarly, if the jump from any state k into
k + 1 appears at time t = t�, we say that ξ(t�) = k. From numerical point
of view, our assumption has no significance because the sitting times are
continuous random variables.#

Let us prove the following useful
Lemma 3.2.1

P (ξ(t0) = k) = P (τ0 + ...+ τk ≤ t0)−P (τ0 + ...+ τk + τk+1 ≤ t).(3.2.5)

The proof is left as an exercise.

3.3 Examples

In this section we consider several simple examples of random processes
involving exponential distribution.

Example 3.3.1. Two-component system.

A system consists of two independent components. Component i has
lifetime τi ∼ Exp(λi), i = 1, 2. At t = 0 both components are operating,
i.e. they are up. Denote this state of the system by (1,1). At some random
moment, one of the components breaks down, and the system moves into
one of the states (0,1) or (1,0). (State (0,1) means that the first component
is down, and the second is up.) After some random time, the system moves
from any of these two states into the state (0,0) - the state of system failure,
see Fig. 3.2. (We can describe this system in terms of a jump process
ξ(t) with four states: (1, 1), (0, 1), (1, 0), (0, 0) corresponding to ξ = 0, 1, 2, 3,
respectively. Here the transitions 0→ 1 , 0→ 2, 1→ 3, 2→ 3 take places.)

Questions: how is the sitting time distributed in state (1,1)? What is
the probability that the system will move from state (1,1) into (0,1) or into
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(1,1)
(1,0)

(0,1)

(0,0)

Figure 3.2: Transition diagram for Example 3.3.1

(1,0)? Will this probability depend on the sitting time in (1,1)? How is the
sitting time distributed in state (0, 1) or (1, 0)?

Solution
Obviously, the system stays in state (1,1) random time τ(1, 1) = min(τ1, τ2).
Note that

P (τ(1, 1) > t) = P (τ1 > t, τ2 > t) = [because of independence] (3.3.1)
= P (τ1 > t)P (τ2 > t) = e−t(λ1+λ2).

It follows, therefore that τ(1, 1) ∼ Exp(λ1 + λ2).
Now the system moves from (1,1) to (0,1) iff τ1 < τ2.

P (τ1 < τ2) =
∫ ∞

0
f1(t)(1− F2(t))dt = (3.3.2)∫ ∞

0
λ1e

−λ1te−λ2tdt =
λ1

λ1 + λ2
.

The above example is quite elementary but very useful. As an exercise, try
to generalize it to a system with k components. Prove that the sitting time
in any state with k “alive” components is exponentially distributed with
parameter Λ =

∑k
i=1 λi, where λi-s are the failure rates of the components

alive.
As an exercise prove also that the probability of transition from state

(1,1,...,1) into state (0,1,...,1) is equal to λ1/Λ.

Hint. P (τ1 < τi for all i > 1) = P (τ1 < min{τi}, i = 2, ...k).

Example 3.3.2. Two-state alternating process.

A system has two states “UP” and “DOWN ”. At t = 0 the system
is in the UP state. It remains in this state (operation state) random time
τu ∼ Exp(λ) and then moves into state DOWN (state of repair). The sitting
time in DOWN is also exponentially distributed τd ∼ Exp(μ). System
behavior is illustrated in Fig. 3.3.
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UP

DOWN
t

τu

τd

Figure 3.3: Trajectory of a two-state alternating process

Our goal is to find Pu(t) = P (the system is UP at time t). Obviously,
Pd(t) = P (the system is DOWN at time t) = 1 − Pu(t). Besides, we want
to know the so-called stationary probability that the system is UP at some
remote time t, t→∞.

The derivation is very instructive because it demonstrates the probability
balance equation technique and relies heavily on the fact that both UP and
DOWN periods are exponentially distributed. Experienced reader may skip
this material.

Pu(t+ δt) = Pu(t)P (stay in UP during(t, t+ δt)| UP at t) +(3.3.3)
Pd(t)P (move from DOWN to UP in (t, t+ δt)| DOWN at t) =

Pu(t)(1− λδt) + Pd(t)μδt+ o(δt).

After simple algebra, letting δt→ 0, it is easy to derive the following differ-
ential equation:

dPu(t)
dt

= −Pu(t)λ+ Pd(t)μ. (3.3.4)

This equation must be solved under conditions Pu(0) = 1, Pd(0) = 0, Pu(t)+
Pd(t) = 1.

We present the final result:

Pu(t) =
μ

λ+ μ
+

λ

λ+ μ
e−(λ+μ)t, (3.3.5)

Pd(t) =
λ

λ+ μ
− λ

λ+ μ
e−(λ+μ)t,
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We advise the reader to analyze the relationship (3.3.3). The key is to under-
stand why P (move from DOWN to UP in (t, t+δt)|to be in DOWN at t) =
μδt+ o(δt), and to understand that this is true because τd ∼ Exp(μ).

Note that Pu(t) tends to μ/(λ + μ) as t tends to infinity. This is the
so-called stationary probability to be in the UP state. Also important is to
note that this probability (called often availability and denoted Av) can be
expressed via the mean values of the sitting times, as follows:

Av =
mean time in UP

mean time in UP + mean time in DOWN
. (3.3.6)

(We remind that E[τup] = 1/λ and that E[τd] = 1/μ.)

Remark 1. The formula (3.3.6) is true for arbitrary distributed UP and
DOWN times. To prove this, we need some facts from Renewal Theory, see
e.g. [2,20]. We will omit the formal proof.#

Example 3.3.3. Poisson process
There are several equivalent ways to define the Poisson process. One of

the simplest ways is the following
Definition 3.3.1. The jump process [ξ(t), t > 0] with the state space
{1, 2, 3, ...} and independent sitting times in each state i, τi ∼ Exp(λ) is
called a Poisson process with parameter λ.#

Poisson process has the following interesting properties:
(i) The probability that a jump will appear in the small interval [t, t+Δ]

is λΔ+o(Δ); it does not depend on when and how many jumps were before
t.

(ii) The number of jumps in the interval [0, T ] has a Poisson distribution
with parameter Λ = λT , i.e. P (N(T ) = k) = exp[−Λ]Λk/k!, k = 0, 1, 2, ....

(iii) The mean number of jumps on [0, T ] equals E[N(T )] = Λ = λT .
More information on Poisson process can be found in many textbooks,

see for example [20].

Remark 2. Markov property, Markov process. The jump process [ξ(t), t >
0] considered in the definition of Poisson process has the following funda-
mental property. If it is known that ξ(θ) = m, then the probability of any
event in the future of ξ(t), i.e. in the interval [θ,∞] does not depend on the
trajectory of ξ(t) before θ, i.e. on the history on [0, θ]. This is the Markov
property and the Poisson process possesses it. Loosely speaking, we say
that Markov property means that the future depends only on the actual
state and not on the previous history. The two-state process considered in
Example 3.3.2 is also a Markov process.
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It is easy to give an example of a jump process which is not a Markov
process. Suppose that jumps appear after regular intervals of length a. If
we know that the process is now in a certain state, the time of the nearest
jump does depend on the past, i.e. on the time when the previous jump took
place. The Markov property of Poisson process is provided by the amazing
memoryless properties of the exponential distribution.#

3.4 Problems and Exercises

1. A system consists of three components. Component i has failure rate
λi, i = 1, 2, 3. At t = 0 all components are up. Find the expression for the
probability that the components fail in the following order : 3→ 2→ 1.

2. Let X ∼ U(0, 1). Find the expression for the failure rate.

3. Component has failure rate h(x) and the c.d.f. F (t). Prove the following
formula:

1− F (t) = e−
∫ t

0
h(x)dx. (3.4.1)

4. Let X ∼ Gamma(n, λ) and Y ∼ Gamma(m,λ). How is Z = X + Y
distributed? (X and Y are independent).

5. Let X ∼ U(0, 1). How is Y = − log(X) distributed?

6. Derive (3.2.2) by using probabilistic arguments.

7. Suppose that the system has n independent components, the i-th com-
ponent has lifetime τi ∼ Exp(λi). At t = 0 all components are up. Find the
probability that component 1 will fail while all other components are up.

8. Geometric distribution. Let X be a discrete random variable taking on
values k ≥ 1. P (X = k) = qk−1p, q = 1− p. We say that X ∼ G(p), i.e. X
is geometrically distributed.

This distribution is a discrete analogue of exponential distribution.
Prove that P (X > M) = qM and derive from here the discrete analogue

of memoryless property:
P (X > M + N |X > M) = P (X > N). What is the physical model

behind this distribution?

9. Two-component series system. Suppose we have a system of two in-
dependent components whose failure takes place if any of them fails. One
can think of a series system as a three-node network with reliable nodes
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s, a, t and unreliable edges e1 = (s, a), e2 = (a, t). The network fails if the
connection s− t is broken. τ(e1) ∼ F1(t),τ(e2) ∼ F2(t).
9.1. Prove that the lifetime of the whole system has the c.d.f. F (t) =
1− (1− F1(t))(1− F2(t)).
9.2. Assuming that Fi(t) has density fi(t), derive an expression for the
failure rate of the system and prove that it equals to the sum of failure rates
of the components.

10. τi ∼ Exp(λ), i = 1, 2, 3 and are independent random variables. Prove
that P (τ1 ≤ τ2 ≤ τ3) = 1/6.

11. Suppose a system consists of k exponential components, component i
has failure rate λi, i = 1, 2, ..., k. At time t = 0 all components are up.
Denote by τ the random time of the appearance of the first failure. Prove
that τ ∼ Exp(

∑k
i=1 λi). Prove that the probability that component j fails

first equals λj/
∑k

i=1 λi.

12. Suppose that in Problem 11 all λi = λ. Find out the mean time to the
failure of all k components of the system.

Hint. Use the following very convenient formula for computing the mean
of nonnegative r.v. X with CDF F (t):

E[X] =
∫ ∞

0
(1− F (x))dx. (3.4.2)

13. Using the model of Gamma distribution prove that ifX ∼ Gamma(n, λ),
then E[X] = n/λ.

14. Weibull distribution. Suppose that a nonnegative random variableX
has failure rate hX(t) = αtβ−1. Derive the CDF of X and the corresponding
density function. Weibull distribution family is very popular in reliability
theory since for β > 1 it gives an increasing failure rate, so-called aging, for
β < 1, the failure rate is decreasing, and for β = 1 it becomes exponential
distribution.

15. Find the CDF of a system which is a series connection of two components
having failure rates hi(t) = αit

(β−1) i = 1, 2

16. Let X ∼ U(0, 1). Describe a method of generating, using X, Weibull
random variable with parameters (α, β).
Hint. Use the following fact: solving the equation (with respect to Y )

F (Y ) = X, (3.4.3)
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where F (·) is some continuous CDF, produces random variable Y ∼ F (·).
17. Prove the Lemma in Section 3.2.



Chapter 4

System Static and Dynamic
Reliability

Everything should be made as simple as possible, but not simpler.

Albert Einstein

4.1 System Description. Static Reliability

The system consists of n components (elements), each component has two
states : up (denoted by 1) and down (denoted by 0). The state of the whole
system is described by a vector e = (e1, e2, ..., en), where ei is 0 or 1 for
component i being down or up, respectively.

The system can be in two states too, UP and DOWN, denoted also by 1
or 0, respectively. System state is expressed via binary function φ(e). The
set of all those vectors e for which the system is UP is denoted by Up:

Up = {e : φ(e) = 1}. (4.1.1)

φ(e) is called system structure function.
The set of all n-digit binary vectors is denoted by Ω. The complement of
Up will be denoted as Down:

Down = {e : φ(e) = 0}. (4.1.2)

Obviously Down
⋃
Up = Ω.

We consider only monotone systems, which means the following.

(0, 0, ...0) ∈ Down, (1, 1, ...1) ∈ Up, v ≤ w → φ(v) ≤ φ(w). (4.1.3)

59
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In words: the system state cannot get worse if a component changes its state
from down to up.

Finally, for each state vector e we denote by U(e) and D(e) the sets
of indices corresponding to the up-components of e and down-components
of e, respectively. For example, if e = (1, 1, 0, 0, 1, 0, 1, 0) then U(e) =
{1, 2, 5, 7}, D(e) = {3, 4, 6, 8}

So far we did not introduce probability. Suppose now that component
i is up with probability pi and down with complementary probability qi =
1 − pi. All components are assumed to be statistically independent. Then
the probability that the system is in state e = (e1, ..., en) equals to

P (e) =
∏

i∈U(e)

pi

∏
i∈D(e)

qi. (4.1.4)

Finally, the probability Rs that the system is UP is determined as

Rs =
∑

e∈Up

P (e) =
∑

e∈Up

( ∏
i∈U(e)

pi

∏
i∈D(e)

qi
)
. (4.1.5)

This formula looks complex. To see that it is in fact quite simple, let us
consider an example. Suppose we have a system of four components. It is
defined to be UP if and only if at least three of the components are up.
These states are (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), and (1, 1, 1, 1).
Suppose p is the up probability for all components, q = 1− p. Then

Rs = 4p3(1− p) + p4. (4.1.6)

Remark. The reader who solved all or almost all problems in Chapter 2
will probably recognize that the notions of monotone binary systems and
structure function are already familiar to her/to him.#

We will go a little further in describing the binary systems with binary
components. Introduce a binary variable Xi for component i, put P (Xi =
1) = pi and P (Xi = 0) = 1 − pi = qi. Further, we define system state
as a binary random variable φ(X) (called structurefunction), where X =
(X1, X2, ..., Xn). The dependence of system state on the component states
is described via some function Ψ(·):

φ(X) = Ψ(X1, X2, ..., Xn). (4.1.7)

In the problems of Chapter 2 we presented several examples of Ψ(X) based
on minimal paths and minimal cuts.

Ψ(X) is a binary random variable. It leads to the following definition:
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Definition 4.1.1

P (Ψ(X) = 1)) = P (system is UP) = Rs (4.1.8)

is called system static reliability.
Since Ψ(X) is a binary random variable, the static reliability can be

expressed via the operation of finding its mean value:

Rs = E[Ψ(X)] = E[Ψ(X1, X2, ..., Xn)]. (4.1.9)

This formula is very useful and efficient if we can derive an analytic expres-
sion of the structure function. Unfortunately, this expression is available
only for a rather simple system with small number of components.

4.2 Dynamic Reliability

Now let us involve time and investigate how system reliability depends on
time. For that purpose we first introduce random component lives. Suppose
that component i is up at time t = 0, and remains in this state for a random
time τi ∼ Fi(t). After random time τi the component gets down and remains
down “forever”. Denote

Ri(t0) = P (τi > t0) = 1− Fi(t0); Qi(t0) = Fi(t0). (4.2.1)

Obviously, Ri(t0) is the probability that component i is up at time t0 and
therefore was up during the whole interval [0, t0]. Then, obviously, the
probability that the system is UP at the instant t0 is equal to

Rs(t0) =
∑

e∈Up

( ∏
i∈U(e)

Ri(t0)
∏

i∈D(e)

Qi(t0)
)
. (4.2.2)

Note the following important fact: If we have a monotone system, and it is
UP at time instant t0, then it was UP during the whole period [0, t0] and
therefore, Rs(t0) is the probability that system random lifetime τs is greater
than t0:

Rs(t0) = P (τs > t0), P (τs ≤ t0) = Fs(t0) = 1−Rs(t0). (4.2.3)

If we compare formulas for Rs and Rs(t0) we can formulate the following
rule.

For a monotone system, the reliability as a function of time can be
obtained from the expression of system static reliability by replacing pi by
Ri(t) and qi by Qi(t).
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Remark 1. Let E[Xi] = pi. It is tempting to write E[Ψ(X)] = Ψ(p1, p2, ..., pn).
In general, this is not true. For example, let Ψ(X) = 1 − (1 − X1X2)(1 −
X1X3) = X1X2 +X1X3−X1X2X3. Then E[Ψ(X)] = p1p2 +p1p3−p1p2p3 �=
1− (1− p1p2)(1− p1p3)!
To avoid possible errors we will write Rs = E[Ψ(X)] = Ψ0(p1, p2, ..., pn).#

Suppose we have an explicit expression for Rs(t) = P (τs > t). Then
there is an easy way to find the mean system UP time, i.e. the mean value
of the interval during which the system is in UP state:

E[τs] =
∫ ∞

0
Rs(t)dt. (4.2.4)

This follows from the fact known from Probability Theory: If τ is a
nonnegative random variable with CDF F (t) then

E[τ ] =
∫ ∞
0 (1− F (t))dt. We omit the proof of this useful formula.

Example 4.2.1
Consider a series system of n independent components. τi ∼ Exp(λi). As
an exercise, derive the expression for the CDF of system lifetime.

Hint. By definition, a series system is UP if and only if all its components
are up.#
Remark 2. For a series system, its lifetime is a minimum of independent
r.v.’s τ1, ..., τn.#

Example 4.2.2
Derive a formula for the CDF of system lifetime for a parallel system. A
parallel system, by definition, is DOWN if all its components are down.

Remark 3. Note that in Example 4.2.2 system lifetime is maximum of
r.v.’s τ1, ..., τn.#

4.3 Stationary Availability: Systems With Inde-
pendent Renewable Components

Now we will consider a system of n independent components, each of which
operates in the following way: component i works time τi ∼ Fi(t), then
undergoes repair during random time ωi ∼ Gi(t), which is independent on
the operation time, then again operates, is repaired, etc. We have already
considered such a system in Chapter 3, Example 3.3.2. If the operation and
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repair times are exponential, it has been proved that the probability that
the component is up at time t, t→∞, is

Avi =
E[τi]

E[τi] + E[ωi]
. (4.3.1)

Note that (4.3.1) holds true for arbitrary distributions of operation and
repair times. This result follows from renewal theory and we will not go
here into the details of the proof.

Now let us return to the two-state alternating process considered in
Chapter 3. Denote by Avi(t) the probability that the component i is up at
the instant t. Now take the expression (4.1.5) for system static probability
and replace pi by Avi(t) and qi by 1 − Avi(t). Then the formula (4.1.5)
will express the “instant” probability that the system is UP at time t. Now
if we let t → ∞, each Avi(t) → Avi, and Rs will tend to a limit which
expresses system stationary availability Avs. Avs has two interpretations:
it equals the probability that the system is UP at some remote time instant
t; it equals also to the ratio of the mean stationary UP time to the sum of
system mean stationary UP time and mean stationary DOWN time.

4.4 Burtin-Pittel Approximation to Network Re-
liability

To explain the main idea of the Burtin-Pittel (B-P) approximation, assume
that all components have failure probability β. Consider any failure state
e of the system. The probability that the system is in this state equals
Q(e) = βk(1 − β)n−k, where k is the number of down components in the
state e: k = |D(e)|. After simple algebra we obtain that for β → 0,

Q(e) = βk +O(βk+1) = βk + o(βk).
Since β is “small”, the main term in Q(e) is βk. Now among all failure

states, the largest failure probability will have the states for which |Q(e)| is
the smallest. The failure probabilities of such states make the main contri-
bution to system failure probability.

Example 4.3.1

Let us return to example of a four-component system which fails if two
or more of its components fail. There are 6 failure states with exactly 2
failed components, 4 failure states with exactly 3 failed components and 1
failure state with 4 failed components. (Check it!) Thus the probability
that the system is DOWN equals
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P (DOWN ) = 6q2(1− q)2 + 4q3(1− q) + q4.

After simple algebra we obtain the following expression

P (DOWN ) = 6q2 − 8q3 + 3q4. (4.4.1)

Now the key point is that for q → 0, the main term in the system down
probability is 6q2 and all other terms are of smaller magnitude. Formally,

P (DOWN ) = 6q2 + o(q2). (4.4.2)

The physical meaning of this result will become clear if we consider the
network which corresponds to the system under consideration. On Fig. 4.1
we see a 4-node and 4-edge network.

1

2

3

4

Figure 4.1: Network becomes disconnected if any pair of edges fail

Network failure is defined as loss of connectivity. There are exactly 6
pairs of edges whose failure leads to network failure :

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),
and 6 is the coefficient at q2 in the expression (4.4.1)!#

The Burtin-Pittel approximation is in fact a generalization of the above
approach.

Now let us proceed more formally and consider the following situation:
(i) System components are nonrenewable and have exponential lifetimes
τi ∼ Exp(λi).
(ii) Components are highly reliable, i.e. the λi are small.

This is formalized as follows. We assume that

λi = α · θi, α→ 0. (4.4.3)

An immediate consequence of (ii) is that for fixed t, as α→ 0,

P (τi > t) = e−λit = 1−αθit+O(α2), P (τi ≤ t) = αθit+O(α2).(4.4.4)
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Let us now consider the expression for the probability that the system is
down at fixed instant t, 1 − Rs(t), and use the condition (ii). To get the
desirable analytic form, let us partition the whole set of system DOWN
states D = Ω−Up into subsets Dr, Dr+1, ... according to the number of the
failed components k in the system state vectors, k = r, r+1, ...n. Obviously,

D =
⋃n

k=r Dk.

Note that Dr is the set of all down states with the smallest number of failed
elements r.

1−R(t) =
n∑

k=r

( ∑
e∈Dk

( ∏
i∈U(e)

e−λit ·
∏

i∈D(e)

(1− e−λit)
))
. (4.4.5)

Indeed, the double sum in (4.4.5) is the probability that the system is in
one of its down states. For each such state e, the elements of U(e) are up
and the elements of D(e) are down. Now use (ii).

The main term in (4.4.5) will be determined by the first summand of the
internal sum with the smallest k = r. After some algebra it follows that for
α→ 0

1−R(t) = αr · tr · g(θ) +O(αr+1) ≈ 1− exp(−αrtrg(θ)), (4.4.6)

where g(·) is the sum of the products of θi over all failure states with minimal
number r of failed components:

g(θ) =
∑

e∈Dr

∏
i∈D(e)

θi. (4.4.7)

Let us consider an example illustrating the use and the quality of the
approximation (4.4.6).

Example 4.4.1: s− t connectivity of a dodecahedron network.
Fig. 4.2 shows a network with 20 nodes and 30 edges called dodecahedron.
The nodes are absolutely reliable. The edges fail independently and their
lifetimes τ ∼ Exp(λ). The network fails if there is no path leading from
node 1 (“source”) to node 2 (“terminal”). The reliability criterion of such
a network is termed the s− t connectivity.

We assume that all θi = 1 and α is “small”. (Formally, α → 0.) The
dodecahedron has two failure states with the smallest possible number of
r = 3 edge failures. Indeed, node 1 is disconnected from node 2 if the edges
(1, 5, 26) fail, or the edges (1, 2, 27) fail. All other failure states separating
the source from the terminal have size greater than r = 3.
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Figure 4.2: The dodecahedron network

Let us fix t = 1 and check how good is the approximation to network
failure probability provided by the expression Fapprox(1) = 1− exp[α3g(θ)],
for various values of α approaching zero. Since by (4.4.7) g(θ) = 2θ3 = 2,
our approximation is Fapprox(1) = 1− exp[−2α3].

Table 4.1 shows the values of network reliability by the B-P approxima-
tion versus the exact values of network failure probabilities Fexact(1), for α
ranging from 0.22314 to 0.01005. (Fexact(1) was computed by J.S. Provan
using an algorithm based on cut set enumeration, see [20].)

It is seen from Table 4.1 that for α below 0.05 the Burtin-Pittel (BP) ap-
proximation is quite satisfactory. More details and references on this ap-
proximation can be found in [19,20].#
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Table 4.1: Comparison of exact and approximate reliability

e−α α Fapprox(1) Fexact(1) rel. error in %
0.8 0.22314 0.0219 0.0362 39
0.85 0.16252 0.0854 0.0122 30
0.90 0.10536 0.00234 0.00288 18
0.92 0.08338 0.00116 0.00136 15
0.94 0.06188 0.000474 0.000528 10
0.96 0.04082 0.000136 0.000146 7
0.98 0.02020 1.65 · 10−5 1.7 · 10−5 3
0.99 0.01005 2.0 · 10−6 2.03 · 10−6 1.5

4.5 Pivotal Formula and Birnbaum Measure of Im-
portance. Reliability Gradient Vector

We start with the representation of system static reliability R as a function
of its component reliability pi:

R = Ψ0(p1, p2, ..., pn). (4.5.1)

Let us not worry that we may not know the exact analytic form of the Ψ
function. All our conclusions we will get just from an assumption that such
function does exist.

It is worth noting that in this formula R depends only on marginal prob-
abilities pi which is correct only for a system of independent components.

Now by the total probability formula,

R = P (the system is UP) = P (i is up)P (system UP |i is up) + (4.5.2)
P (i is down)P (system UP |i is down).

This formula can be rewritten as

R = pi ·Ψ0(p1, ..., pi−1, 1, pi+1, ..., pn) + (4.5.3)
qi ·Ψ0(p1, ..., pi−1, 0, pi+1, ..., pn).

Here Ψ0(p1, ..., pi−1, 1, pi+1, ..., pn) is system reliability in which the i-th com-
ponent is replaced by absolutely reliable one. Similarly, Ψ0(p1, ..., pi−1,
0, pi+1, ..., pn) is the system reliability where the i-th component is perma-
nently down.
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These two operations are well understood for a system represented by a
network structure. If component i is an edge (a, b), and edges are subject
to failure, replacing (a, b) by absolutely reliable edge means compression of
nodes a and b into one. Replacing (a, b) by a permanently down edge means
elimination of (a, b) from the network. These two operations are illustrated
by Fig. 4.3.
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Figure 4.3: Pivotal decomposition of a bridge-type system. The pivoting is
around edge (a, b)

The formula (4.5.3) (called pivoting formula) is the core of one of the
first and rather powerful algorithms for computing s− t networks reliability.
The process of pivoting continues until the algorithm leads to a series-parallel
subnetwork with no common components for which explicit formulas are
available for reliability calculations. In Fig. 4.3, pivoting around edge 5
leads immediately to series-parallel subsystems. Choosing the “best” edge
for pivoting is, however, algorithmically a quite difficult task.

To make easier the implementation of the pivoting algorithm, let us
remind the formulas for reliability of a series, parallel, and series-parallel
systems.
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If our system consists of k subsystems connected in series, its reliability
is a product of subsystems reliability (check it!):

Rseries =
k∏

i=1

Ri, (4.5.4)

where Ri is the reliability of i-th subsystem.
If a system is a parallel connection of k subsystems, its reliability equals

(check it!)

Rparallel = 1−
k∏

i=1

[1−Ri]. (4.5.5)

Definition 4.5.1. The expression

∂Ψ0(p1, ..., pn)
∂pi

(4.5.6)

is called Birnbaum importance measure (BIM) of component i.#

It follows from (4.5.3) that

∂Ψ0(p1, ..., pn)
∂pi

= Ψ0(p1, ..., pi−1, 1, pi+1, ..., pn)− (4.5.7)

Ψ0(p1, ..., pi−1, 0, pi+1, ..., pn).

Birnbaum measure of importance, suggested in [3], as it is seen from this
expression, has a transparent physical meaning: it is the gain in system
reliability received by replacing a down component i by an absolutely reliable
one.

For the case of equal component reliability pi ≡ p, first the partial deriva-
tives (4.5.7) must be calculated and only afterwards all pi are set to be equal
p.

As an exercise consider a series and a parallel system of n components.
Find out the Birnbaum measure of importance of component i and check
that for series system, the most important is the less reliable component,
and for parallel system the most important is the most reliable component,
see Problem 10 in Section 4.6.

Definition 4.5.2. Reliability gradient vector ∇R is defined as

∇R = [
∂R

∂p1
, ...,

∂R

∂pn
].# (4.5.8)
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In words: component i of the reliability gradient vector is component’s i
BIM.

The reliability gradient vector will be later used to synthesize network
with optimal reliability parameters.

Remark 1. Several alternative importance measures (IM’s) have been pro-
posed in literature and used in reliability practice. One of them is called
Fussel-Vesely Inportance Measure (FVIM) [18], and it is defined according
to the following formula:

FVi = 1− R(p1, p2, ..., pi−1, 0, pi+1, ..., pn)
R(p1, p2, ..., pn)

. (4.5.9)

It quantifies the relative decrement in system reliability caused by a partic-
ular component failure. Contrary to the BIM and FVIM, which quantify
the importance of individual components, several other IM’s have been sug-
gested to quantify the contribution to reliability of a group of components.
They are known as Joint Importance Measures (JIM’s), see [1]. The use
of FVIM’s and JIM’s rests on the possibility to obtain in a closed form
the expression for system reliability function R(p1, ..., pn). For an impor-
tant particular case of equal failure probabilities, the Birnbaum Importance
Measure allows, via a specially designed combinatorial algorithm, to com-
pute the component BIM’s without having an analytic expression for the
reliability function. We will discuss this topic in Chapter 10.

Remark 2. For systems with renewable components more suitable measure
of component performance is so-called Barlow measure of performance. The
gradient vector is also used in this measure. For more details see [20].#

Remark 3. Estimation of network reliability may be a quite difficult task,
especially for large and highly reliable networks. The exact calculation needs
special algorithms and software. Monte Carlo simulation is a good alterna-
tive, see e.g. Elperin et al. [11]. The dodecahedron example demonstrates
that for very reliable networks with failure probability less than 10−4, the
Burtin-Pittel approximation provides with minimal efforts a reasonably ac-
curate solution.#

4.6 Problems and Exercises

1. Let ξ ∼ U(0, 1). Prove that X = − log(1− ξ) ∼ Exp(1).

2. Let ξ ∼ U(0, 1). Prove that X = −λ−1 log(1− ξ) ∼ Exp(λ).
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3. Let X ∼ F (t), F (t) is a continuous increasing function. Define a new r.v.
Y = F (X). Try to prove Smirnov’s theorem:

Y ∼ U(0, 1).

4. Let X ∼ U(0, 1), Y ∼ U(1, 2). Denote by FX(·) the c.d.f. of X, and by
FY (·) the c.d.f. of Y . Let Z ∼ pFX(t) + (1− p)FY (t). Suggest an algorithm
for simulating r.v. Z.

5. A small computer star-type network has 5 nodes: a, b, c, d, f . These nodes
are connected by the following edges (a, f), (b, f), (c, f), (d, f). Nodes are
absolutely reliable, edges are subject to failures. Network fails if the central
node f becomes disconnected from any of other nodes. Failure probabilities
are 0.05 for first two edges and 0.03 for the last two. Each edge has a
“spare” edge which can be put in parallel to this edge. These spare edges
have failure probability 0.1. You are allowed to reinforce only one edge by a
“spare” edge. What is your choice in order to achieve maximal reliability?

6. Solve Problem 5 for arbitrary edge up probabilities p1, p2, p3, p4. Find
BIM for edge i.

7. You have a star-type network described in Problem 5. Each edge mean
operation time equals 100 hours. After edge fails it undergoes repair which
lasts on the average 5 hours. Find network instant availability.

8. The network has the following structure:

a

b

cd

e
f

Figure 4.4: Pentagon-type star network
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You have at your disposal five type-1 edges and five type-2 edges. Type-1
edges have failure probability 0.01; type-2 edges have failure probability 0.05.
You are requested to design your network as to provide minimal network
failure probability. (Network failure is defined as the loss of connectivity,
i.e. separation of at least one node from other nodes.) To solve the problem
you are allowed to use Burtin-Pittel formula for failure probability. What is
the optimal location of edge types in the network?

9. If all pi = p, is it true that BIM of component i is an increasing
function of p?

Hint. Let us consider the system reliability function R = Ψ0(p1, ..., pn)
(the components are independent). We already know that component i
importance is defined as ∂Ψ0/∂pi. Let us add the condition that pi = p for
all i = 1, ..., n.

Then component i importance will be the following function of p:

∂Ψ0

∂pi |pi=p, ∀i

= Impi(p). (4.6.1)

We are interested in investigating the behavior of the function Impi(p).
Let us show that this function is not necessarily monotone increasing

function of p.
To do this we use the following property of the reliability function Ψ0(p) =

Ψ0(p1, ...pn)|pi=p, ∀i, see [2], p.45.
If the system has no paths or cuts of size 1, then the function Ψ0(p)

is S-shaped; that is, there exists a p-value p0 between 0 and 1, such that
Ψ0(p) ≤ p for p ∈ [0, p0] and Ψ(p) ≥ p for p ∈ [p0, 1]. Consider, for example,
the reliability function for a series connection of two parallel subsystems,
each having two components. For this system, Ψ0(p) = [2p− p2]2. It is easy
to verify that it has an S-shaped form. An S-shaped function has always
an inflexion point, and its second derivative changes its sign.

Now let us use the following equality:

dΨ0(p)
dp

=
n∑

i=1

Impi(p). (4.6.2)

In words: if all components have equal reliability then the derivative of
system reliability function R = Ψ0(p) with respect to p is equal to the sum
of all component importance functions. (The proof follows from the chain
rule of differentiation after setting pi ≡ p.) The solution follows if you
differentiate both sides of the last equality with respect to p.
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Figure 4.5: S-shaped function ψ(p) and its first and the second derivative

10. The system is a series connection of n components with reliability p1 <
p2 < ... < pn. Prove that the largest BIM has the less reliable component.
What is the most important component in parallel system?

11. System has five components. Components 2 and 3 are in series. Com-
ponents 4 and 5 are in series too. Subsystems (2, 3) and (4, 5) are in parallel.
The system of these four components is in a series connection with compo-
nent 1. All components are independent. Component i has two states, up
and down, denoted as xi = 1 or xi = 0, respectively, i = 1, ..., 5.

a). Find system structure function φ(x) = φ(x1, x2, ..., x5).
b). Find system reliability assuming that component i is up with prob-

ability pi.
c). Assuming that all pi = p, find system reliability function and com-

ponent importance.

12. For the system described in Problem 11, assume that component i has
lifetime τi ∼ Exp(λi). Find the expression for system reliability Rs(t).

13. A radar system consists of three identical independently operating sta-
tions. The system is UP if at least two stations are up. Assume that station
lifetime τ ∼ Exp(λ). After the system enters the DOWN state, it is repaired
and brought to its initial state. The repair lasts time 1/λ. Find the mean
duration of the UP period and system availability.
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14. A system consists of three units A, B, and C. If only one unit is up, the
system is UP. The same is true for two units. But if all three units are up,
the system is DOWN because the power supply for all units fails: there is
not enough power to support all three units. Is this system monotone?

15. Consider a small channel-type network. Source node s is connected
to “first stage” nodes a and b. Each of these two nodes is connected to
the “second stage” nodes c and d. Each of these nodes is connected to the
terminal node t. Edges (s, a) and (s, b) have numbers 1 and 2. Edges (a, c)
and (a, d) have numbers 3 and 4. Edges (b, c) and (b, d) have numbers 5 and
6, respectively. Edges (c, t) and (d, t) have numbers 7 and 8. Edge i is up
with probability pi, all edges are independent. The network is UP if s and
t are connected.

Design an algorithm for simulating the network reliability.

16. Solve Examples 4.2.1 and 4.2.2.

17. Suppose, our system is not monotone. Is it true that P (τs > t0) =
Rs(t0), where Rs is given by (4.2.2)?

18. Check (4.5.4) and (4.5.5).



Chapter 5

Border States and Reliability
Gradient

Crossing the border may be a one-way street.

Chinese saying.

5.1 Definition of Border States

In this chapter we introduce the so-called system border states and demon-
strate that their probability is intimately related to the system reliability
gradient function. This paves the way for calculating the reliability gradient
via the probabilities of the border states. The corresponding MC algorithm
will be described later, in Chapter 9.

Let us consider a monotone system of n binary components. All 2n

binary states are divided into two classes: UP and DOWN .

Definition 5.1.1

System state w = (w1, ..., wn) ∈ DOWN is called direct neighbor or
simply neighbor of state e ∈ UP if w differs from e in exactly one position.#

For example, consider so-called two-out-of-three system which has three
components and is UP , by definition, if at least two of them are UP . So,

DN = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}
UP = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Thus the state (0, 0, 1) is the border state of (1, 0, 1) ∈ UP and also the
border state of (0, 1, 1) ∈ UP . Similarly, (0,1,0) and (1,0,0) are border states

75
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of (1,1,0).

The set of all neighbor states is called border set and denoted as DN∗.
Obviously, DN∗ ⊆ DOWN .

It turns out that the reliability gradient vector introduced in Chapter 4 is
closely related to the border states. To reveal this connection, we introduce
an evolution process on system components.

Assume that at t = 0 each component is down. Component i is born
after random time τi ∼ Exp(λi). After the “birth”, component remains up
“forever”. Note that for fixed time t0,

P (τi ≤ t0) = P ( component i is up at t0) = pi = 1− e−λit0 . (5.1.1)

Example 5.1.1. Evolution of a three component system.

Fig. 5.1 below illustrates the evolution of three component two-out-of-three
system.

(000)

(001)

(010)

(100)

(011)

(101)

(110)

(111)

Level 0           Level 1 Level 2 Level 3

DN*

Figure 5.1: All states on Level 1 are border states

After the birth of the first component, the system moves from state
(0,0,0) into one of the states on level 1, afterwards - jumps to a state on
level 2 and later - to level 3. We consider the states on levels 2 and 3 as
one “large” absorbing state. All these states constitute the system’s UP
state. All other states are defined as the DOWN states of the system. The
directions of possible transitions are shown by arrows. Note that the states
directly before the UP states, on level 1, are the border states. They reach
UP in one jump, in a single transition.#

Consider two system states v = (v1, v2, ..., vi−1, 0, vi+1, ..., vn) and w =
(v1, v2, ..., vi−1, 1, vi+1, ..., vn). Suppose that at time t the system is in state v.
What is the probability that during a small time interval δt the system will
move from v to w? Obviously, it will happen if and only if the component i is
born during this interval, and all other components which are in state 0 will
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not become alive during the same interval. The first event has probability
λi · δt + o(δt) as δt → 0 (because of the exponentially distributed lifetime,
see Chapter 3). The second event has probability∏

j �=i

(1−O(λj · δt)) = 1−O(δt).

Then the probability that during [t, t + δt] there will be the transition
v→ w is λiδt+ o(δt).

Let v be a border state of the system, i.e. v ∈ DN∗. Denote by Γ(v) the
sum of λi over all set of indices i such that v + (0, ..., 1i, 0, ..., 0) ∈ UP. Call
Γ(v) the flow from v into UP . Formally

Γ(v) =
∑

[v∈DN∗
,v+(0,...,0,1i,0,...,0)∈UP]

λi. (5.1.2)

Remark. Let v ∈ DN∗. Not all down elements in v have the property
that being turned into up they cause the system to become UP. Consider,
for example a bridge structure with edges e1 = (s, 1), e2 = (s, 2), e3 =
(1, 2), e4 = (1, t), e5 = (2, t) and v = (1, 1, 0, 0, 0). When edge e3 becomes
up, the system remains in DOWN. In this example Γ(v) = (λ4 + λ5).#

5.2 Gradient and Border States

We need two other notations. Let R(p1(t), ..., pn(t)) be the probability that
the system is UP at the instant t. Let P (v; t) be the probability that the
system is in state v at time t. Now let us consider the event “the system is
in UP at time t + δt”. This event takes place if at time t the system was
already in the UP set or at time t it was in one of the border states and
went during this interval from a border state to UP . All other possibilities
which involve more than one transition during [t, t + δt] have probability
o(δt).

Formally,

R(p1(t+ δt), ..., pn(t+ δt)) = R(p1(t), ..., pn(t)) + (5.2.1)∑
v∈DN∗

P (v; t)Γ(v) · δt+ o(δt).

Transfer R(p1(t), ..., pn(t)) to the left-hand side, divide both sides of (5.2.1)
by δt and let δt→ 0. We arrive at the following relationship:

dR(p1(t), ..., pn(t))
dt

=
∑

v∈DN∗
P (v; t)Γ(v). (5.2.2)



78 CHAPTER 5. RELIABILITY GRADIENT

Now, represent the left-hand side of (5.2.2) in an alternative form using the
chain rule of differentiation:

dR(p1(t), ..., pn(t))
dt

=
n∑

j=1

∂R

∂pj
· dpj(t)

dt
= (5.2.3)

|pj(t) = 1− e−λjt, qj = e−λjt| =
n∑

j=1

∂R

∂pj
qj · λj

= ∇R • {q1λ1, ..., qnλn}.
We use in (5.2.3) the shorthand notation for the vector scalar product:

if x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn),
x • y =

∑n
i=1 x1yi. We denote ∇R = (∂R/∂p1, ..., ∂R/∂pn).

Comparing (5.2.2) and (5.2.3) we arrive at the desired relationship be-
tween the gradient vector and the border state probabilities:

∇R • {q1λ1, ..., qnλn} =
∑

v∈DN∗
P (v; t)Γ(v). (5.2.4)

We see therefore that components of the reliability gradient vector can
be expressed via the probabilities of system border states. In the situation
when the system reliability function R(p1(t), ..., pn(t)) is not available in
explicit analytic form, (5.2.4) opens an alternative way of calculating the
components of ∇R. This becomes possible in a form of a Monte Carlo
procedure by using properties of so-called Lomonosov’s algorithm which will
be introduced in Chapter 9.

Example 5.1.1 - continued.
Let us check the last formula for the three component system considered in
Example 5.1.1. We will omit the argument t and denote by pi the probability
that the component i is up.

Summing all probabilities of the system UP state (four states) we obtain
the following expression:

Rs = (1− p1)p2p3 + (1− p2)p1p3 + (1− p3)p1p2 + p1p2p3. (5.2.5)

Now it is easy to obtain the partial derivatives:
∂R
∂p1

= (1− p2)p3 + p2(1− p3).

∂R
∂p2

= (1− p1)p3 + p1(1− p3).

∂R
∂p3

= (1− p1)p2 + p1(1− p2).
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Let us write the expression for the right-hand side of (5.2.4). It is easy
to verify (see Fig. 5.1) that in our example

∑
v∈DN∗

P (v; t)Γ(v) = (1− p1)(1− p2)p3 · (λ1 + λ2) + (5.2.6)

(1− p1)p2(1− p3) · (λ1 + λ3) + p1(1− p2)(1− p3) · (λ2 + λ3).

Now let us check whether the relationship (5.2.4) holds true. For this
purpose, let us compare the coefficients at λ1. In the expression (5.2.6) this
coefficient is

(1− p1)[(1− p2)p3 + p2(1− p3)].

But it is exactly the same as the first coordinate of the gradient vector
times q1, i.e. ∂R/∂p1 multiplied by q1 = 1− p1. Similarly, we can check the
coefficients at λ2 and λ3. So, the formula (5.2.4) works!#

Remark. We have considered in this and in the previous chapter various
events related to transitions from state to state. To be more specific, let us
consider a system of two independent components with exponentially dis-
tributed lifetimes, with parameters λ1 and λ2. Let us look more closely at
three system states (0,0) - both components are down, (1,0) and (0,1) (the
first component is up, the second is down, and vice versa). We proved in
Chapter 3 that the transition (0, 0) → (1, 0) takes place with probability
λ1/(λ1 + λ2). On the other hand we considered the probability of the tran-
sition from state (0,0) into (1,0) during a small time interval [t, t+ δt]. The
result was λ1δt + o(δt). So, it seems that we have two different results for
the same event. But in fact, these are quite different events.

The first one is the probability that the system eventually moves from
state (0,0) into state (1,0), without restricting the time during which this
transition will take place. If we consider all histories describing the transition
from (0,0) into (1,0) or (0,1), then the probability λ1/(λ1 +λ2 is the relative
weight of all trajectories of type (0, 0)→ (1, 0) among all trajectories leading
from (0, 0) to the UP set.

The second situation dealt with system evolution during small time in-
terval [t, t+ δt]. If the system is in state (0,0) at time t, then at time t+ δt
it will be in (1,0) with probability λ1δt+ o(δt), or in state (0,1) with proba-
bility λ2δt+ o(δt), or remain in state (0,0) with complementary probability
1− (λ1 + λ2)δt+ o(δt) .#
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5.3 Problems and Exercises

1. Suppose that the right-hand side of (5.2.4) has the following form:
ψ1 · (λ1 + λ2) + ψ2 · (λ2 + λ3) + ψ3 · (λ1 + λ3),
where ψi are known functions of p1, p2, p3. Find the expression for the

gradient vector.

2. A network has nodes a, b, c and edges (a, b), (b, c), (a, c). Edge reliability
is p1, p2, p3, respectively. Nodes are not subject to failures. The network is
UP if it is connected. Find the expression for edge importance. Suppose
p1 < p2 < p3, all pi > 1/2. Which edge is the most and the less important?

3. A system consists of a series connection of one component and a block
of three components in parallel, se Fig. 5.2. Find all border states.

1

2

3

4

Figure 5.2: Component i has reliability pi, all components are independent

4. Assume in Problem 3 that all pi = p. Find the most important compo-
nent.

5. Consider a four-node network with nodes s, a, t, b. It has edges (s, a), (a, t),
(t, b), (s, b) and (s, t). The network is UP if s and t are connected. Find out
all border states for this network with exactly two up edges.

6. Check (5.2.4) for the system shown on Fig. 5.2.

7. Suppose that in the network of Problem 5 each edge has small failure
probability α. Use the definition of component importance given by formula
(4.5.7). Compute network reliability using the B-P approximation. Prove
that (s, t) is the most important component.

8. Consider a series connection of two parallel systems, one with three com-
ponents, another with two. Assume that all components have equal failure
probabilities, all components fail independently. Compute the BIM for sys-
tem components. Show that for all values of reliability p, the components
of the first system have smaller BIM’s than the BIM’s of the second.



Chapter 6

Order Statistics and
Destruction Spectrum

6.1 Reminder of Basics in Order Statistics

The best source on order statistics is Herbert A. David’s book [9].

Let X1, X2, ..., Xn be i.i.d. random variables, Xi ∼ F (t). We call the
collection {X1, X2, ..., Xn} a random sample. Let X(1) denote the smallest
value in the random sample, let X(2) denote the next smallest value in the
sample, and so on. In this way, X(n) denotes the largest value in the sample.
In other words,

X(1) ≤ X(2) ≤ . . . ≤ X(n). (6.1.1)

Definition 6.1.1. X(r) is called the r-th order statistic, r = 1, 2, ..., n.#

Often the notation X
(n)
(r) is used to denote the r-th order statistic in a

sample of size n.
A good way to get used to the notion of the r-th order statistic is to

imagine the following generator of sample values xr of Xr. Generate a
sample of size n from the population with CDF F (t), X ∼ F (t). Denote
these sample values by x1, x2, ..., xn. Now order these values in increasing
order. Pick up the r-th smallest value. Repeat this procedure k times. In
this way we obtain k sample values of X(r).

We assume further that all Xi are nonnegative and continuous r.v.’s, and
that Xi represents the lifetime of component i, i = 1, 2, ..., n.
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Claim 6.1.1

F(r)(t) = P (X(r) ≤ t) = P (at least r out of n Xi-s are ≤ t) = (6.1.2)
n∑

j=r

Cj
n[F (t)]j [1− F (t)]n−j .#

Here Cj
n is the number of combinations of j out of n:

Cj
n =

n!
j!(n− j)!

As an exercise, derive (6.1.2) by probabilistic arguments.
Order statistics X(1) = Xmin and X(n) = Xmax are of particular interest

to reliability theory. A system of n independent components which fails
if one of the components has failed is called series system. Obviously, if
all component lifetimes have the same CDF F (t), series system lifetime is
determined by the expression

Xmin ∼ Fmin(t) = 1− [1− F (t)]n. (6.1.3)

As an exercise, obtain this result from (6.1.2) by setting r = 1.
For the case of non identically distributed lifetimes, the last formula is

slightly more complex:

Xmin ∼ Fmin(t) = 1−
n∏

i=1

[1− Fi(t)]. (6.1.4)

As an exercise, verify formulas (6.1.3) and (6.1.4) by using probabilistic
reasoning.

A system of n independent components which fails if all its components
have failed is called parallel system. Obviously, in parallel system CDF for
identically distributed lifetimes is determined by the expression

Xmax ∼ Fmax(t) = [F (t)]n. (6.1.5)

Verify that this formula follows from (6.1.2) by setting r = n.
For the case of non identically distributed lifetimes, the last formula is

slightly more complex:

Xmax ∼ Fmax(t) =
n∏

i=1

Fi(t). (6.1.6)
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As an exercise, verify formulas (6.1.5) and (6.1.6) by using probabilistic
reasoning.
Remark. Consider a system of 5 independent components with identically
distributed lifetimes. The system is called 3-out-of-5, if it is UP if at least
3 out of 5 components are up. System lifetime is, therefore, described by
the third order statistic in a sample of 5. There are many technical systems
which consist of n similar components and are operational (UP) as long
as at least k of them are operational. Such systems are called k-out-of-n
systems, see e.g. [19].#

6.2 Min-Max Calculus for Series-Parallel Systems

Systems studied in reliability theory can be sometimes represented as a series
connection of several subsystems, each of which is a parallel system, or as a
parallel connection of subsystems each one being a series system. Fig. 6.1
below illustrates these types of systems.

(a) (b)

Figure 6.1: (a) parallel-series system; (b) series-parallel system

There is an extremely simple method of finding the analytic form of
system lifetime in case of series-parallel or parallel-series system. (All com-
ponents are assumed to be independent.)

Let us demonstrate it by an example.
Let us consider a system of seven components shown on Fig. 6.2. The

system is UP if there is connection between s and t.
The subsystem of components 1,2 has lifetime τ12 = min(τ1, τ2). Sim-

ilarly, τ34 = min(τ3, τ4). Therefore, the block of first four components has
lifetime τ1234 = max(τ12, τ3,4). Similarly, τ567 = max(τ5, τ6, τ7). Finally,
τsystem = min(τ1234, τ567).
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1 2

3 4

5

6

7

s t

Figure 6.2: Series-parallel system of 7 components

6.3 Destruction Spectrum (D-spectrum)

In this section we will consider networks with reliable nodes and unreliable
edges. All edges have identically distributed lifetimes.

Consider the system pictured on Fig. 6.3.

s t

a

b

1 3

2 4

Figure 6.3: A system of four components

It consists of four identical and independent components. Edge lifetime
τ ∼ F (t). At t = 0 all components are up. The system fails at the instant
of the loss of s − t connection. For example, if component 1 fails at t =
5, component 3 at time t = 7.5, and component 2 at t = 9, then the
disconnection appears at the instant t = 9, i.e. at the instant of the third
failure.

Denote by fr the probability of the event Ar=“system fails at the instant
of the r-th failure“. In other words, Ar takes place if and only if the system
survives the first r − 1 component failures and fails at the instant of r-th
failure.
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Definition 6.3.1. The set of probabilities

Sp = [f1, f2, ..., fn] (6.3.1)

is called the destruction spectrum, or simply D-spectrum.#

The spectrum depends on system structure and failure definition. In the
above case the system can fail on the second or on the third edge failure. If
the system failure is defined as a loss of connectivity, the failure will always
appear at the second edge failure, no matter in which order the edges fail.
For example, if edge 1 and 3 fail, the node a becomes disconnected. If first
edges 1 and 4 fail, nodes s, b become disconnected from a, t.

Note also that spectrum is a distribution, i.e.
∑n

i=1 fr = 1.
Note also (and this is very important!) that the spectrum does not

depend on edge lifetime distribution.
Let us find the destruction spectrum for the system on Fig. 6.3. The

system never fails at the first failure and always fails after three edges are
down. So, we must find only f2 and f3. There are 4!=24 different and
equally probable orderings of edge failures. It is easy to find out by direct
enumeration that f3 = 8/24 = 1/3. Therefore Sp = [0, 2/3, 1/3, 0]. (Check
it!)

Now comes an important turn: we connect the system lifetime with the
spectrum and order statistics.

Suppose edge lifetime is τ ∼ F (t).
If the system fails with the second failure (the event A2), system lifetime

coincides with X(2) and is distributed as the second order statistic from
sample of 4, i.e. has CDF F(2)(t) for sample size n = 4. Similarly, if the
event A3 takes place, system lifetime is distributed as F(3)(t). Therefore, by
the total probability formula,

P (τs ≤ t) = Fs(t) = f2F(2)(t) + f3F(3)(t). (6.3.2)

As an exercise, consider the system on Fig. 6.3. Let t be fixed. Denote
q = F (t), p = 1− F (t) and find the explicit form of Fs(t).

Hint. Note that the system on Fig. 6.3 is a parallel connection of two
series systems. An alternative approach is to use system spectrum which is
Sp = [0, 2/3, 1/3, 0] and (6.3.2). Of course, both answers must coincide.

It is easy to generalize (6.3.2) to the case of n components.
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Claim 6.3.1
If (i) edge lifetimes are i.i.d. r.v.’s Xi ∼ F (t) and (ii) the destruction

spectrum is Sp = [f1, f2, ..., fn], then the network lifetime τs has the follow-
ing CDF:

P (τs ≤ t) = Fs(t) =
n∑

r=1

frF(r)(t). # (6.3.3)

As an exercise prove this claim.

Corollary 6.3.1
Denote P (τs > t) = Rs = 1 − Fs(t), and replace in the expressions for

the order statistics F(r)(t) and 1 − F(r)(t) by 1 − p and p, respectively, for
all r = 1, ., n.

Then the expression for Rs in this new notation equals the system static
reliability, in which p is the static probability that the component is up.

See also Sections 4.1, 4.2.#

Remark 1. Suppose that the unreliable elements in the network are the
nodes and not the edges. In this situation the D-spectrum may be defined for
network nodes. For example, consider the network on Fig. 6.3 and suppose
that all edges and nodes s, t (the terminals) are not subject to failure and
the two remaining nodes are. Obviously, the network fails if and only if both
these nodes fail. Thus the node D-spectrum has the form [f1 = 0, f2 = 1].#

Remark 2. Suppose that at t = 0 all network edges are down. Edge e
is born at random time instant Xe ∼ F (t). Let us check the system state
after each birth. There is such number k having the property that after
the first k − 1 births the system was DOWN but at the instant of the k-
th birth it becomes UP (and remains UP “forever”). Denote by bk the
probability of this event. Obviously, the collection Sc = [b1, b2, ..., bn] is a
distribution and it will be called the construction spectrum or simply C-
spectrum. D-spectrum and C-spectrum are closely connected, see Problem
9 in this chapter.#

6.4 Formula for the Number of Minimal size Min-
Cuts

A cut is a set of components whose failure causes the failure of the whole
system. Minimal (or min) cut is a cut which does not contain proper subsets
which are also cuts. For example, components (1,2,3) constitute a cut for
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the system shown on Fig. 6.3. This cut, however, is not minimal: it contains
smaller subsets (1,2) and (2,3) which are also cuts. (1,2) is a minimal cut
because it cannot be reduced further and remain a cut. We will be interested
in estimating the number of min-cuts of minimal size.

Suppose that the first nonzero element in the D - spectrum is fr. Then

P (τs ≤ t) = Fs(t) = frF(r)(t) + fr+1F(r+1)(t) + . . . . (6.4.1)

Suppose that F (t) = 1 − e−λt, t is fixed, and λ → 0. Then, [F (t)]r =
λrtr + o(λr). Then, according to (6.1.2), the CDF of the order statistics can
be written for λ→ 0 as

F(r)(t) = Cr
n(λt)r + o(λr)

because all F(i)(t) for i > r are of order o(λr). After little algebra, we obtain
that

Fs(t) = frC
r
nλ

rtr + o(λr). (6.4.2)

On the other hand, the main term of the system failure probability in the
Burtin-Pittel approximation (see Chapter 4) equals

W · λrtr

where W is the number of minimal cut-sets of minimal size r. Comparing
this expression with the right-hand side of (6.4.2), we arrive at the following
simple formula:

W = fr
n!

r!(n− r)! . (6.4.3)

Thus, knowing the first nonzero term of the spectrum, we can easily calculate
the number of min size min-cuts.

For example, for the network shown on Fig. 6.3, we have f2 = 2/3,
n = 4, r = 2. (6.4.3) gives the result W = 4. Indeed, there are four cuts of
size two: (1, 2), (3, 4), (1, 4), and (3, 2). More examples will be presented in
Chapter 8.

In conclusion, let us note that we found an important topological param-
eter of a network with given operational criterion: the min-cut size and the
number of such cuts. If a reliable network fails, most probably the failure will
be in one of its “soft” spots, the minimal size min-cuts. The analytic form
of the edge lifetime CDF is not essential. Important is only the assumption
that all edge sequences of failure appearance are equally probable.
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6.5 Problems and Exercises

1. Find the spectrum of the bridge-type system (n = 5 edges). Failure is
defined as loss of the s− t connectivity.

2. Suppose X1, ..., X10 are i.i.d., Xi ∼ Exp(1). Design an algorithm for
generating a sample of size m = 15 from the population of X(7), i.e. from
the population of the seventh order statistics.

3. Derive (6.1.2), (6.1.3), (6.1.5), and (6.1.6) by using probabilistic argu-
ments.

4. Solve exercises in Section 6.3 using spectrum.

5. Prove Claim 6.3.1.

6. Suppose that in your network all edges are down at t = 0. Edges have
“birth” after random time τ ∼ F (t). After the birth, each edge becomes
permanently up. Edges are born independently, and their birth times are
i.i.d. r.v.’s.

Similarly to the destruction spectrum (call it D-spectrum), develop an
analogous theory for the “construction” spectrum (call it C-spectrum).

Define the network birth-time as the moment at which the network be-
comes UP . Formulate a claim similar to Claim 6.3.1 for the network birth-
time distribution.

7. 3-out-of-5 system. Five independent experts start simultaneously
an evaluation process of a bridge project. The evaluation time for expert
i is Xi. Xi, i = 1, 2, 3, 4, 5 are assumed to be i.i.d. random variables. At
the moment when three experts have finished their reports, the whole group
terminates its work. Suppose that Xi ∼ F (x). Find out the distribution
function of the time interval needed for the evaluation.

8. A pentagon-type network has nodes a, b, c, d, e. Nodes (a, d) are the
terminals, other nodes are subject to failure. The network has edges 1 =
(a, b), 2 = (b, c), 3 = (c, d), 4 = (d, e), 5 = (e, a). Edges do not fail. Nodes
b, c, e are subject to failures. Find the network D-spectrum for the terminal
connectivity criterion.

9. Find the C-spectrum for the s− t network on Fig. 6.3. Try to establish
the connection between the D-spectrum and the C-spectrum for the same
network.

10. System consists of seven identical and independent components. The
first three are organized into a 2-out-of-3 block. The remaining four - into
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a 2-out-of-4 block. These two blocks are connected in series. Component
lifetime τi ∼ F (t). Derive a formula for system lifetime distribution Fs(t).
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Chapter 7

Monte Carlo Estimation of
Convolutions

This chapter can be omitted during the first reading of the book. Con-
volutions appear in our exposition only in the connection with so-called
“Turnip algorithm” for network reliability estimation, in Chapter 9. This
algorithm asks for calculating a CDF of a sum of r independent exponen-
tially distributed random variables, see (9.2.7). If r < 30 − 40, we can rely
on analytic expression presented in Appendix B, see formula (5) there. For
larger number of r (this will be the case of relatively large networks) the
analytic calculations become unstable and may produce large computational
error. This happens because the above formula is constructed as a sum of
very large quantities, close to each other by their absolute values, with alter-
nating signs. It turns out that it is much safer to use Monte Carlo simulation
to estimate the convolutions.

From the point of view of simulation technique, our algorithm for esti-
mating convolutions is an interesting example of using importance sampling
to increase considerably an algorithm efficiency in comparison to a crude
Monte Carlo.

7.1 Model Formulation. Using Crude Monte Carlo
for Calculating Convolutions

Let τi ∼ Fi(t), fi(t), i = 1, 2, ...,m, be positive and independent random
variables. Our purpose is to find the CDF of their sum Tm = τ1 + . . .+ τm.

91
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There are two cases when the CDF of Tm can be easily found in a closed form:
Fi(t) - normal (with negligible negative tails) and Fi(t) ∼ Gamma(ki, λ).
Otherwise, we must use an analytic approach which is quite inconvenient
for numerical calculations. An alternative is to use simulation.

The CDF of the sum of independent random variables is called convolu-
tion. Our goal is to estimate P (Tm ≤ T ) = F (m)(T ).

What first comes to mind is to calculate convolutions using the Crude
Monte Carlo (CMC) method, which works as follows:

Algorithm 7.1 - CMC for Calculating Convolutions.
1. Set NUM=0.
2. Simulate τi = ti, for i = 1, 2., , , .m.
3. If

∑m
i=1 ti ≤ T , set I = 1, else set I = 0.

4. Put NUM:=NUM +I.
5. Repeat 2-4 N times, calculate

F̂ (m)(T ) =
NUM

N
. (7.1.1)

Obviously,

E[F̂ (m)(T )] = F (m)(T ), (7.1.2)

and thus the CMC estimator is unbiased. It is easy to verify (do it!) that

V ar[F̂ (m)(T )] = F (m)(T )(1− F (m)(T ))/N, (7.1.3)

and therefore the relative error of the CMC is unbounded as F (m)(T )→ 0.

7.2 Analytic Approach

By definition, F (1)(T ) ≡ F1(T ),

F (2)(T ) =
∫ T

0
F (1)(T − y)f2(y)dy = P (τ1 + τ2 ≤ T ), ..., (7.2.1)

F (m)(T ) =
∫ T

0
F (m−1)(T − y)fm(y)dy = P (τ1 + ...+ τm ≤ T ).

These formulas have a very transparent probabilistic interpretation. Let
us consider, for example, F (2)(T ) = P (τ1 + τ2 ≤ T ). How can sum of τ1
and τ2 be less or equal to T? One random variable, e.g. τ2 equals y, and
another is less or equal T−y. The corresponding probabilities are multiplied
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since both r.v.’s are independent, and the sum of all such possibilities is the
corresponding integral over [0, T ].

Let us look at the convolution formulas (7.2.1) from another angle,
namely how are they related to multiple integrals. By the definition, and
using the representation of multiple integral via repeated integral, we can
write that

F (2)(T ) =
∫ T

0
F (1)(T − y)f2(y)dy = (7.2.2)∫ T

y2:0
f2(y2)

( ∫ T−y2

y1:0
f1(y1)dy1

)
dy2 =∫ ∫

{0≤y1+y2≤T}
f1(y1)f2(y2)dy1dy2.

Thus, F (2)(t) is represented as a double integral over a triangular area 0 ≤
y1 + y2 ≤ T, y1 ≥ 0, y2 ≥ 0, see Fig 7.1.

T

T Y1

Y2

y2 T-y2

0

Figure 7.1: Integration area for double integral

In a similar way, one can represent F (3)(T ) as a triple integral of f1(y1) ·
f2(y2) · f3(y3) over triangular area (also called simplex) {0 ≤ y1 + y2 + y3 ≤
T, yi ≥ 0}. It can be shown that

F (m)(T ) =
∫

(m)
∫∑m

i=1
yi≤T,yi≥0

m∏
i=1

fi(yi)dy1 . . . dym. (7.2.3)

We are interested in finding an unbiased estimator of F (m)(T ). Since
in most applications this quantity is small, the CMC algorithm described
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above is non efficient and has a very large relative error. To overcome this
obstacle we propose a new algorithm described below, see [21].

7.3 Conditional Densities and Modified Algorithm

Let τi, i = 1, ...,m be nonnegative i.r.v.’s with CDF Fi(t) and density func-
tions fi(t). Consider a random vector

X = (X1, X2, ..., Xm−1) (7.3.1)

with the joint density fX(v1, ..., vm−1), defined as follows:

fX(v1, ..., vm−1) = fX1(v1)fX2|X1
(v2|v1) · · · (7.3.2)

fXm−1|X1,...,Xm−2
(vm−1|v1, ..., vm−2),

where

fX1(v1) =
f1(v1)
F1(T )

, (7.3.3)

and

fXj |X1,...,Xj−1
(vj |v1, ..., vj−1) =

fj(vj)
Fj(T − v1 − ...− vj−1)

, (7.3.4)

vj ∈ [0, T − v1 − ...− vj−1], for j = 2, ...,m− 1. Define the following r.v.:

Bm(T ) = F1(T ) · F2(T −X1) · F3(T −X1 −X2) · ... (7.3.5)
·Fm(T −X1 − ...−Xm−1).

Now we are ready to formulate our main result.
Claim 7.3.1

E[Bm(T )] =
∫

(m)
∫
{vi≥0,v1+...vm ≤T}

m∏
i=1

fi(vi)dv1...dvm. (7.3.6)

Proof.
The proof is not difficult. We shall demonstrate it for m = 3.

B3(T ) = F1(T )F2(T −X1)F3(T −X1 −X2). (7.3.7)
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Then

E[B3(T )] = (7.3.8)∫ ∫
{v1≥0,v2≥0,v1+v2≤T}

F1(T )F2(T − v1)F3(T − v1 − v2) ·

· f1(v1)f2(v2)
F1(T )F2(T − v1)dv1dv2.

After simple algebra we obtain that

E[B3(T )] = (7.3.9)∫ ∫
{v1≥0,v2≥0,v1+v2≤T}

f1(v1)f2(v2)
( ∫ T−v1−v2

0
f3(x)dx

)
dv1dv2.

And the last expression is the integral of f1(v1)f2(v2)f3(v3) over the
three dimensional simplex {vi ≥ 0, v1 + v2 + v3 ≤ T}.#

7.4 Generating Bm(T )

1. Generate X = (X1, ..., Xm−1) recursively: Generate X1 = x1 from the
population with d.f. fX1(·). Use x1 to generate the value x2 of r.v. X2 from
the conditional density fX2|X1

(·), etc.
2. Substitute X=x = (x1, x2, ..., xm−1) into (7.3.5).

For the particular case of τi ∼ Exp(λi) the generation procedure is as
follows. Let ξ ∼ U(0, 1).

Generate ξ1 = α1; put x1 = −λ−1
1 log(1−α1(1− exp(−λ1T ))). Generate

ξi = αi from U(0, 1), i = 2, ...,m− 1. Put

xi = −λ−1
i log

(
1− αi(1− exp(λi(T − x1 − ...− xi−1))

)
. (7.4.1)

The vector x = (x1, x2, ..., xm−1) is a realization of X = (X1, X2, ..., Xm−1).
The explanation follows from the minitheorem below:

Minitheorem.

If ξ ∼ U(0, 1) then X1 = −λ−1
1 log[1− ξ(1− e−λ1T )] has the density

fX1(x) =
λ1e

−λ1x

1− e−λ1T
, x ∈ [0, T ].# (7.4.2)

fX1(x) is the density function of the CDF of X1 conditioned by (X1 ≤ T ).
This CDF equals P (X1 ≤ t|X1 ≤ T ), t ∈ [0, T ].

Prove the minitheorem as an exercise.
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7.5 How Large is Variance Reduction Comparing
to the CMC?

We did not succeed in proving that our algorithm has bounded relative error
when the estimated probability P (T ) = P (τ1 + ...+ τk ≤ T )→ 0.

Nevertheless, it has very good performance characteristics. We are able
to prove the following

Claim 7.5.1

If for all i = 1, 2, ..., k, Fi(T ) < α < 1, then

V ar[Bk(T )]
V ar[CMC]

≤ αk. (7.5.1)

Proof.

V ar[Bk(T )] = E[
k∏

i=1

F 2
i (·)]− E2[

k∏
i=1

Fi(·)] (7.5.2)

≤ αk(E[
k∏

i=1

Fi(·)]− E2[
k∏

i=1

Fi(·)])

= αkE[
k∏
i

Fi(T )(1− E[
k∏
i

Fi(T )]) = αkP (T )(1− P (T )).

.
Since V ar[CMC] = P (T )(1− P (T )), the claim follows.#

Example 7.5.1. Let us compare numerically our algorithm with a CMC
for a very simple case of finding A = P (X1 + X2 ≤ 0.05) for the case of
Xi ∼ U(0, 1), i = 1, 2. Y = X1 +X2 has a so-called triangular distribution
with density function f(t) = t for t ∈ [0, 1] and f(t) = 2 − t, for t ∈ [1, 2].
So, we already know the answer: A = 0.052/2 = 0.00125.

CMC works as follows: generateX1 ∼ U(0, 1), i = 1, 2. IfX1+X2 ≤ 0.05
set Q := Q+ 1. Repeat this N times. Estimate A as Â = Q/N .

Here are the results of 5 experimental runs each of Q = 1000 trials:

0.002, 0.001, 0.001, 0.000, 0.002,

with Â = 0.0012. The result is close to the true value but the individual runs
have large variability. Sample standard deviation here equals 0.000840.
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Now let us use our algorithm. By (7.3.5) one replica of unbiased es-
timate of A is B2(0.05) = F (0.05)F (0.05 − v), where F (t) = t (uniform
distribution!), and v is a realization of random variable V ∼ U(0, 0.05),
see (7.3.3). So, our algorithm works as follows. Generate one replica of
V , call it v and calculate one replica of B2(0.05) = 0.05 · (0.05 − v). Set
SUM := SUM +B2(0.05), repeat this Q times and estimate Â = SUM/Q.

Here are the results of 5 experimental runs each of Q = 1000 trials:

0.001239, 0.001249, 0.001217, 0.001268, 0.001274,

and Â = 0.001249. The result is very close to the true value. Sample
standard deviation here equals 0.000024, almost 35 times smaller than for
the CMC! This means variance reduction of about 1200 times. According
to (7.5.1) it should be at least 400 times.

7.6 Importance Sampling in Monte Carlo

Let us forget for a while our particular situation with estimating convolutions
and have a more general look at Monte Carlo method.

Suppose we want to estimate A = E[ψ(X)], where the r.v. X has a
known density f(v). All Monte Carlo applications can be formulated in
terms of finding an estimate of mean value for an appropriately chosen ran-
dom variable. Then first what comes to mind is to generate random replicas
of the r.v. X, X1, X2, ..., XN , and to consider the following estimator

Â =
∑N

i=1 ψ(Xi)
N

. (7.6.1)

Obviously, Â is an unbiased estimator of A.
A has the following mathematical expression:

E[ψ(X)] =
∫

v∈Ω
ψ(v)f(v)dv. (7.6.2)

(In applications, X may be a k-dimensional vector and then Ω is a region
in k-dimensional space.)

Here comes a very simple but important trick, see [43], p. 167. Multiply
and divide the expression in the integral in (7.6.2) by a density function
g(v) > 0 of some random variable Y :

A = E[ψ(X)] =
∫

v∈Ω
ψ(v)f(v)dv =

∫
v∈Ω

f(v)ψ(v)
g(v)

· g(v)dv. (7.6.3)
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We see from the last expression that now A is represented as an expectation
of another random variable Z = [f(Y ) · ψ(Y )]/g(Y ):

A = E[
f(Y )ψ(Y )
g(Y )

], Y ∼ g(v). (7.6.4)

The choice of g(v) is up to us and it could be done to minimize the
variability of ψ(·)f(·)/g(·). Intuitively, it is clear that the choice of g(v)
must be done in such a way that the value of g must be small when ψ · f is
small, and g must be large if ψ · f is large.

In representing F (m)(T ) as the mean value of Bm(T ), we achieved this
goal by introducing new random variables via their joint density, see (7.3).
Originally, in the CMC, F (m)(T ) is the mean value of the indicator 0-1
random variable I. After introducing new r.v. Bk(T ), we see from Claim
7.3.1 that its mean value is an integral over the new density of random vector
(7.3.1), and Bk(T ) now is not a binary 0-1 variable.

7.7 Problems and Exercises

1. Let X ∼ U(0, T ) and 0 < T1 < T . Find the CDF of X. Prove that the
CDF of X given that X ≤ T1 coincides with the CDF of X� ∼ U(0, T1).

2. Prove the minitheorem in Section 7.4.

3. Prove the following theorem. Let r.v. V ∼ U(0, 1), and r.v. Y has
CDF F (x), where F (x) is a continuous strictly increasing function. Then
the CDF of the random variable

X = F−1(V ) (7.7.1)

is F (t), i.e. P (X ≤ t) = F (t).

4. Let Y ∼W (λ, β), i.e. P (Y ≤ t) = 1− e−λtβ . Prove that the r.v. Z = Y β

is exponentially distributed.

5. Let F (t) = 1 − exp−λtβ , t ≥ 0 be the so-called Weibull distribution
function. β is called shape parameter. If β = 1, Weibull distribution be-
comes exponential distribution. Suggest an algorithm for generating Weibull
random variables. Assume that you have a random number generator for
X ∼ (0, 1).

6. Let Xi ∼ W (1, β), i = 1, 2, 3, and Y3 = X1 + X2 + X3. Develop a
“straightforward” algorithm for an unbiased estimation of P (Y3 ≤ T ).
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7. Consider the algorithm for generating the convolutions, see Section 7.4.
Investigate its complexity and show that it is O(r) where r is the number
of summands in the convolution.
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Chapter 8

Network Lifetime in the
Process of Its Destruction

Nothing is more valuable as a workable idea.

Quips and Quotes

8.1 Introduction

In this chapter we will consider a nonrenewable network with arbitrary dis-
tributed lifetimes of unreliable edges or unreliable nodes. In Section 2, we
consider a T -terminal network with reliable nodes and unreliable edges. The
main object of our interest will be network lifetime distribution. The lifetime
is defined as the time span starting at t = 0, when all network components
are up, and terminating at the network entrance into its DOWN state. We
present two Monte Carlo algorithms for estimating network lifetime, the first
one being quite straightforward and primitive, and the second one - its re-
finement based on an important combinatorial fact (Lomonosov’s Lemma).
In Section 3 we generalize the approach of Section 2 to the case of unreliable
nodes. Section 4 is devoted to a special case of a network with identically dis-
tributed edge lifetimes (and reliable nodes). We suggest an efficient Monte
Carlo algorithm for estimating an interesting and important combinatorial
object - network destruction spectrum, so-called D-spectrum. D-spectrum
allows obtaining the number of minimal size min-cuts in the network and
provides a useful formula for estimating network lifetime in the process of its
edge or node destruction. In a similar way, all the theory works for reliable

101
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edges and identical unreliable nodes.
The reader will recognize that a part of the material in this chapter is

already partially familiar to her/him from Chapter 6.

Let us remind what is a T -terminal network and the definition of its
reliability.

A network N is an undirected graph G = (V,E) with node set V , |V | =
n, edge set E, |E| = m, and a distinguished set of nodes T , T ⊆ V , called
terminals.

Suppose first that nodes never fail while edges are subject to failures.
The state of N is defined via the set X ⊆ E as being UP if any two

terminals are connected by a path consisting of edges from the set X. If
edges from X do not provide connection between all terminals, this state is
called DOWN .

At the instant t = 0, all edges exist. Let edge e be erased (fails) at some
random instant τ(e) ∼ Fe(t). Edges fail independently of each other. Edges
are nonrenewable, i.e. after edge fails, it remains erased “forever”.

Obviously, at t = 0 the network is UP . Network lifetime τ� is de-
fined as the random instant at which the network enters the DOWN state.
More formally, on [0, τ�) the network is UP , and on [τ�,∞) the network is
DOWN .

8.2 Estimation of FN(t) = P (τ � ≤ t)

Straightforward estimation of network lifetime distribution
FN(t) = P (τ� ≤ t)

can be carried out by the following algorithm.

Algorithm 8.1 - Netlife.
1. For each e ∈ E, simulate edge e lifetime te

according to its CDF Fe(t).
2. Order the edge lifetimes in ascending order

(edges are numbered 1, 2, ...,m):
ti1 ≤ ti2 ≤ ti3 ≤ . . . ≤ tim .

3. Check the T -terminal connectivity at each of the instants tik ,
k = 1, ...m, and determine the network lifetime,
i.e. the instant t� when N enters DOWN .

4. Repeat steps 1,2,3 M times.
5. Order M replicas of t�, t�1, ..., t

�
M in ascending order.
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6. Estimate F̂N(t) as follows:

F̂N(t) =
#of t�i ≤ t

M
, t = Δ, 2Δ, ..., rΔ, (8.2.1)

where Δ is some fixed positive number.
7. Estimate the variance of F̂N(t) as

V̂ ar[F̂N(t)] =
F̂N(t)(1− F̂N(t))

M
. (8.2.2)

Crucial improvement of Algorithm 8.1 - Netlife is achieved by a modi-
fication of Step 3. A considerable time saving is provided by applying an
important combinatorial fact first discovered by M. Lomonosov [12, 23].

Now we need to repeat some material presented in Chapter 2 regarding
trees.

We will introduce some definitions. For each connected graph G(V,E)
it is possible to define the so-called spanning tree ST (G): this is a tree, i.e.
a connected graph with no cycles, which connects all vertices of G. Suppose
that for each edge e ∈ E there is defined a nonnegative number w(e) called
the weight of e. Then the weight W (ST ) is defined as the sum of its edge
weights:

W (ST ) =
∑

e∈ST

w(e). (8.2.3)

The spanning tree with maximal (minimal) weight is called the maximal
(minimal) spanning tree. The minimal spanning tree we denoted as MST
and the maximal as MaxST.

The terminal spanning tree is a tree ST (T ) that connects all terminals
and has no redundant edges in the following sense: elimination of any of its
edges disrupts the connectivity of the terminal set T . For example, Fig. 8.1
shows a network, its maximal spanning tree, and its subtree which connects
the terminals.

The MaxST is constructed by the famous Kruskal algorithm [34], see
Chapter 2. On each step of its work this algorithm joins to the tree “under
construction” one edge, in the descending order of their weights, if and only
if this edge does not create a cycle together with the edges already belonging
to the constructed tree.
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Figure 8.1: T = {v1, v2, v4, v5},
Max(min)ST (T ) = {(v1, v2), (v2, v3), (v3, v4), (v3, v5)}

Suppose that network edge e has lifetime t(e) . Suppose that all t(e), e ∈
E are distinct. Assign the weight w(e) = t(e) and consider the maximal-
weight spanning tree MaxST (G). Let Max(min)ST (T ) be its minimal sub-
set which spans all terminals in T .

Lemma 8.2.1 (Lomonosov [12, 23]).
The network lifetime equals to the smallest lifetime of the edges consti-

tuting Max(min)ST (T ).#

Fig. 8.1 illustrates this lemma. The minimal subtree Max(min)ST (T ) is
obtained from the MaxST (G) by eliminating “hanging” edge e = {v6, v5}.
The shortest lifetime in the Max(min)ST (T ) equals t� = 11 and exactly at
this instant the network loses its terminal connectivity.

Let us sketch the proof of the Lemma. Consider MaxST (G). Let its
minimal edge lifetime be t(e�). Obviously network lifetime is at least equal
t(e�). Suppose that the network is alive at time θ > t(e�). Eliminate edge
e�. Let this edge connect nodes a and b. The node-set V then “falls apart”
into two connected components V (a) and V (b), one containing node a and
another containing node b. If the network is still alive at t(e�), then there
must be an edge connecting V (a) and V (b), with weight θ greater than t(e�).
There exists therefore another spanning tree, whose weight is greater than
the existing one - contradiction.

The importance of the above lemma lies in the fact that in order to
determine network lifetime t� (Step 3 of Algorithm 1), it is necessary to
construct only one spanning tree.

Algorithm 8.2 - NetlifeModified [23].
1. For each e ∈ E, simulate edge e lifetime te according
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to its c.d.f. Fe(t).
2. Set w(e) := t(e), e ∈ E. Construct, using Kruskal algorithm,

the maximal-weight spanning tree MaxST (G).
3. Eliminate hanging edges and obtain Max(min)ST (T ),

the minimal subtree of MaxST (G), which connects all terminals.
4. Find the minimal-weight edge in Max(mim)ST (T ).

Denote its weight by τ�.
5. Repeat steps 1-4 M times.
6. Order M replicas of network lifetime:
τ�
i1
< τ�

i2
< . . . τ�

iM

7. Estimate F̂N(t) as follows

F̂N(t) =
#of τ�

ij
≤ t

M
, t = Δ, 2Δ, ..., rΔ. (8.2.4)

8. Estimate the variance of F̂N(t) as

V̂ ar[F̂N(t)] =
F̂N(t)(1− F̂N(t))

M
. (8.2.5)

Let us compare the efficiencies of Algorithms 8.1 and 8.2. Algorithm
8.1 is a typical example of a straightforward approach to simulation, and a
comparison of its efficiency with Algorithm 8.2 will show the gain obtained
using Lomonosov’s lemma. For Algorithm 8.1, Step 1 needs O(m) opera-
tions. Step 2 typically needs O(m · logn) operations. Step 3 implies that
we check the T -terminal connectivity O(m) times; each such check demands
finding a spanning tree for the terminals (if such does exist). Typically, it
consumes O(m · log n) operations. Therefore the total number of elementary
operations for Algorithm 8.1 is

O(m) +O(m · logn) +O(m)O(m · log n) = O(m2 · log n). (8.2.6)

Contrary to this, Step 3 of Algorithm 8.2 is carried out only once, and
thus the number of elementary operations is

O(m) +O(m · logn) +O(m · log n) = O(m · log n). (8.2.7)

A factor of m is, roughly speaking, the gain provided by our combinatorial
approach. For an average size dense network with n about 50 and m about
100, the factor of m is a substantial gain!
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8.3 Unreliable Nodes

Assume that in addition to failing edges, also the nodes are subject to fail-
ures. To be more accurate, we assume that all nodes, except the terminals,
have a random life, i.e. node v fails at the instant τv ∼ Fv(t), the nodes fail
independently. Besides, edge and node failures are independent events.

Let v be a fixed node, not a terminal; the edges E(v) = [e1(v), ..., ek(v)]
are incident to v. By our definition, the failure of node v is equivalent to the
failure of all edges E(v) incident to v. In terms of computer networks, nodes
typically represent computers, computer centers, information retransmission
devices, etc., while the edges represent information transmission channels.
We assume, therefore, that node v failure or the failure of all edges E(v)
have the same consequences. In other words, we can assume that the nodes
remain intact, but at the instant τv all edges E(v) incident to v fail.

If edges and nodes fail, there remains one complication. Any edge e
connects two nodes, a(e) and b(e). If nodes are subject to failure, then there
are three events which might determine edge e lifetime: the failures of nodes
a(e) and b(e) and the failure of the edge e itself. Thus the first of these
events will be the actual moment when edge e goes down. In other words,
we can assume that the nodes do not fail but the “true” instant of edge e
failure θ(e) is defined as

θ(e) = min[τe, τ(a(e)), τ(b(e))]. (8.3.1)

To treat the case of failing nodes and edges, the changes in Algorithm
8.2 are obvious. Step 1 is replaced by Steps 1a, 1b, and 1c:

1a. For each e ∈ E , simulate lifetime τe = te.
1b. For each nonterminal node v, simulate its lifetime τv = tv.
1c. For each e ∈ E, recalculate its lifetime as

the minimum of te, t(a(e)), t(b(e)).

The number of elementary operations in the modified Algorithm 8.2 is
O(m · log n), i.e. of the same order as in the original version.

The following remark establishes an important connection between the
destruction process and the static situation.
Remark: network static reliability. Suppose that network edges fail
independently, and let us consider a static situation in which edge e ∈ E
fails with probability qe = 1− pe. Imagine that in our dynamic destruction
process we take for edge e lifetime such CDF Fe(t) that Fe(t0) = qe for all e ∈
E. Now FN(t0) is, on one hand, the probability that the network is DOWN



8.4. IDENTICALLY DISTRIBUTED EDGE LIFETIMES 107

at t = t0 in our destruction process. On the other hand, at t = t0 each edge
is down with probability which coincides with its static down probability.
Therefore, FN(t0) equals network static DOWN probability.#

8.4 Identically Distributed Edge Lifetimes

In this section we return to the network with reliable nodes and add one
important assumption: all edges have the same lifetime τe ∼ F0(t). (Edge
failures remain independent events.) The material below will be familiar to
the reader from Chapter 6.

Consider edge network “destruction” process as it evolves in time. Let
edge failures appear at the instants θi:

θ1 < θ2 < . . . < θm. (8.4.1)

Let θk be the first instant at which the network fails. In other words,
the network is UP on [0, θk) and DOWN on [θk,∞). What interests us is
not the value θk but the index at the θ. This index k is random, because
it depends on the random order in which the edges fail. To clarify this
important point, let us consider a four edge network shown on Fig. 8.2 (this
example is identical to the example shown on Fig. 6.3).

s t

a

b

1 2

3 4

Figure 8.2: s− t connection fails at the instant of the second or third edge
failure, depending on the order in which edge failures take place

The terminals are s and t. There are 24 =4! different equally probable
orders in which edges fail. Direct enumeration shows that 16 of them lead to
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the network failure at the instant of the second edge failure, e.g. if the order
of edge failures is e1, e3, e2, e4. Thus k = 2 with probability 16/24=2/3. s
and t are always disconnected after the third failure. Thus P (k = 3) =
8/24 = 1/3.

Randomness of the number k at which the network fails is created by
the random order of edge failure appearance. Since all edge lifetimes are
identical and failures appear independently of each other, all m! such orders
are equally probable. The following definition is already familiar to the reader
from Chapter 6 and is identical to Definition 6.3.1.

Definition 8.4.1
The distribution of k, i.e. the collection of probabilities fj

Sp = [f1, f2, ..., fm]

is called D-spectrum of the network.#
Sp was termed in [11] internal distribution of the network.

The D-spectrum depends on G = (V,E) and the terminal set T . So, for
example, if the terminal set for the network on Fig. 8.2 is T = {a, b, s, t},
then the loss of connectivity takes places always on the second edge failure.
Therefore, the D-spectrum consists of one point f2 = 1.

A trivial but very important fact is that, by the above definition, the
D-spectrum does not depend on the edge lifetime distribution F0(t).

Consider any particular order of edge failure appearance, e.g. i1, i2,. . . , im,
and consider a set of order statistics from the population with CDF F0(t)

τ(1) ≤ τ(2) ≤ τ(3) ≤ . . . τ(m). (8.4.2)

The moment at which the first edge i1 fails is τ(1); the moment at which
edge i2 fails is τ(2), etc. The moment at which the r-th edge fails coincides
with τ(r), r = 1, ...,m. Note that τ(r) has the CDF given by the following
formula (see Chapter 6):

F(r)(t) =
m∑

j=r

m!
j!(m− j!) [F0(t)]j [(1− F0(t))]m−j . (8.4.3)

The central result of this section is identical to Claim 6.1.1.

Claim 8.4.1
For identical edge lifetimes, network lifetime τN has the following dis-

tribution:

P (τN ≤ t) = FN(t) =
m∑

r=1

frF(r)(t). (8.4.4)
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The proof follows immediately from the definitions of the spectrum and
the order statistics, by using the total probability formula.#

The importance of Claim 8.4.1 is determined by the fact that in order
to estimate network reliability for any F0(t) and any t, we need to estimate
only network spectrum and later act according to (8.4.4).

Algorithm 8.3 - NetlifeSpectrum.
1. Set N1 = N2 = ... = Nm = 0.
2. Simulate random permutation π for the numbers

1, 2, ...,m, π = (i1, i2, ..., im).
3. Assign weight r, to the r-th edge ir, r = 1, ...,m.
4. Using Kruskal’s algorithm, find the maximal-weight

spanning tree for the network.
5. Eliminate hanging nodes and find out the minimal

subtree Max(min)ST (T ) of the terminal set.
6. Find the minimal-weight edge in Max(min)ST (T ). Let its weight

be w�, 1 ≤ w� ≤ m.
7. Let q := w�; Put Nq := Nq + 1.
8. Repeat Steps 2-7 M times.
9. For r = 1, ...,m, put f̂r = Nr/M .
10. Estimate FN(t) as

F̂N(t) =
m∑

r=1

f̂rF(r)(t). (8.4.5)

This algorithm checks the terminal connectivity in the edge “destruction
process” according to the order given by π. It is separated from the process of
edge failures in real time, and thus the D-spectrum becomes a combinatorial
characteristic of the network. f̂r estimates the probability of network failure
after erasing the r-th edge ir in π. The algorithmic trick in NetlifeSpectrum
is finding the “critical” edge by constructing a single ST - see Step 4.

Representation of F̂N(t) via the estimated spectrum

Ŝp = [f̂1, f̂2, ..., f̂m]

is very convenient for variance estimation. We have the following
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Claim 8.4.2

V ar[F̂N(t)] = (8.4.6)( m∑
r=1

fr(1− fr)F 2
(r)(t)− 2

∑
i<j

F(i)(t)F(j)(t)fifj

)
M−1.

We omit the proof. It is based on the properties of covariances for
multinomial distribution, see Section 1.4.#

Since the second term in (8.4.6) is negative, the variance does not exceed
the first sum in (8.4.6). Then it is easy to obtain an upper bound on the
relative error

r.e. =
V ar[F̂N(t)])0.5

E[F̂N(t)]
≤ (max

k
fk)0.5/min

k
fk ≤ Const. (8.4.7)

We see from this expression that F(r)(t) are not presented in the bound
on the r.e. So, it remains bounded if t → 0, or t → ∞, i.e. for very small
and very large edge failure probabilities.

Remark 1. Suppose, we can not assume that all edges (nodes) have equal
failure probability. The only thing we know is that all pi ∈ [pmin, pmax].
Then, obviously, the network failure probability FN lies in the interval
[FN(min), FN(max)], where FN(min) is obtained from (8.4.5) by setting
all pi = pmax and FN(max) is obtained from (8.4.5) by setting pi = pmin.#

Remark 2: Reliable edges, unreliable nodes. Suppose we assume that
edges do not fail, some nodes which are terminals also do not fail, but the
remaining nodes have i.i.d. lifetimes. If a node fails, all edges incident to
it are erased. (We exclude the situation when there are only two terminals
directly connected by an edge so that this network never fails.) At t = 0 all
nodes are up, at some instants θ1, θ2, ..., nodes fail and at some instant τ�

the network becomes DOWN. All the theory developed earlier for unreliable
edges remains valid for the case of unreliable nodes. Similar to the edge
D-spectrum, we will find the node D-spectrum. In Chapters 10 and 13 we
will present examples of node D-spectra and consider examples of computer
networks, in which the nodes and not the edges are subject to failure.#
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8.5 Use of D-Spectra to Estimate the Number of
Min Size Min-cuts

Figures 8.3(a), 8.3(b), 8.3(c), 8.3(d) present four small networks together
with their edge D-spectra.

(a)   |E|=4, T=V,  f3=0.2, f4=0.8   (b)    |E|=10,  T=V,  f4=1/42,
     f5=4/42, f6=12/42, f7=25/42

s t

(c)   |E|=15, T=V,
f5=0.002050, f6=0.010155,
f7=0.029820, f8=0.071937,
f9=0.155212, f10=0.298834,
f11=0.431992

(d)   |E|=10, T=(s,t),
f2=0.0486, f3=0.081,
f4=0.1477, f5=0.2446,
f6=0.3052, f7=0.1409,
f8=0.032

Figure 8.3: Examples of edge D-spectra

Case 8.3(a) is a four node, five edge network, with terminal set T = V .
Case 8.3(b) is a complete five node graph, all nodes are terminals.

8.3(c) is a six node complete graph, with T = V . 8.3(d) presents a
ten edge network, T = (s, t). Spectra were estimated using M = 10, 000
replications.

Let us show how the D-spectrum can be used to estimate the number
of minimal size min-cuts W in the network. We remind that we already
discussed this problem in Chapter 6, Section 4.
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The formula we need is the following:

W = fr
m!

r!(m− r)! , (8.5.1)

where fr is the first nonzero element of the spectrum.
Let us consider the network on Fig. 8.3(c). The first nonzero term in the

spectrum is f5 = 0.00205, m = 15, r = 5. By (8.5.1) we obtain W = 6.15
which we round to 6. And this is exactly the number of minimal cuts of
minimal size 6 in the network! (These cuts isolate each of 6 nodes by deleting
the edges adjacent to these nodes.)

Table 2 of paper [11] presents the D-spectrum of the dodecahedron, see
Fig. 4.2, for two cases: a) T = V and b) T = {1, 7, 8, 11, 16}, see also
Appendix C.

For case a), the first nonzero term in the spectrum is f̂3 = 0.00476
obtained from simulating M = 105 permutations. By (8.5.1) the number of
min-cuts of minimal size (three) is Ŵ = 0.0047630!/(3! · 27!) = 19.3. The
correct number of minimal size min-cuts is 20. These min-cuts isolate each
of the nodes from others.

For case b), F̂3 = 0.00130, the true number of min size min-cuts is five.
(8.5.1) gives 5.3.

Let us consider next several examples of estimating the number of min
size cuts in relatively large networks. Suppose we investigate a network
with m = 80 edges and construct the spectrum on the basis of doing M
experiments, i.e. we generate M permutations. Suppose we found that the
minimal size of a cut set is r = 5, i.e. the first nonzero element of the
spectrum is f5. Let us estimate the probability that we missed a minimal
cut set of size r = 4.
The probability to reveal a cut set of size 4 in a single experiment by gen-
erating a random permutation of size 80 is

ε =
4! · 76!

80!
= 6.3 · 10−7 (8.5.2)

Therefore to miss the cut set of size 4 in M = 107 independent experiments
is

Pmiss = (1− ε)M ≈ e−6.3 = 0.0018. (8.5.3)

The first experiment is a hypercube H5 which has 32 nodes and 80 edges.
(A hypercube Hk has 2k nodes and k · 2k−1 edges.) Edges are subject to
failure, nodes do not fail. The network has 12 randomly chosen nodes as the
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terminals, and the reliability criteria is the terminal connectivity. We have
carried out 10 simulation runs, each run of 10,000,000 replicas.

It was found that the minimal cut dimension is r = 5. Since each run
gave a different estimate of the number of min-cut sets, we constructed
a 95 % Student small-sample confidence interval of the mean number of
cuts W (5), based on the results obtained in the 10 runs. This confidence
interval was [11.95, 12.75] and we assumed W (5) = 12. For this number
of min-cuts, we computed the Burtin-Pittel approximation to the network
reliability (denoted as B−P ), together with the estimate of network failure
probability F by using (8.4.4) and the estimated network spectrum. Below
are the numerical results for various edge failure probabilities F (t) = α:

For α = 0.4, F̂ = 0.137, B − P = 0.123;

For α = 0.2, F̂N = 0.00394, B − P = 0.00384;

For α = 0.1, F̂N = 0.000121, B − P = 0.00012;

For α = 0.05, F̂N = 3.8 · 10−6, B − P = 3.7 · 10−6.

In this example the B − P approximation provides an extremely accurate
estimate of the network failure probability.

Our next experiment was with the same H5 network, 12 terminals and
80 edges, 30 of which being randomly displaced. The minimal r was found
to be r = 3, in a run consisting of 100,000,000 replications. Only a single
minimal min size cut of r = 3 was in this run.

Below are the results of computing an estimate for the exact network
failure probability via the spectrum and theB−P approximation, for various
α values:

For α = 0.2, F̂N = 0.0151, B − P = 0.008;

For α = 0.1, F̂N = 0.00137, B − P = 0.001;

For α = 0.05, F̂N = 0.000146, B − P = 0.000125;

For α = 0.01, F̂N = 1.05 · 10−6, B − P = 1.0 · 10−6.

Here the B-P approximation is quite satisfactory for small α < 0.1.
(8.4.6) allows estimating the accuracy of network reliability using the es-

timated spectrum. For a run of 10,000,000 permutations, for theH5 network,
and edge failure probability α = 0.2, we have found that F̂N = 0.00393, and
the estimate of the corresponding standard deviation σ̂ = 0.000013. Simi-
larly, when F̂N = 0.000121, we found σ̂ = 0.0000016. The above data allow
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to conclude that the network reliability estimates are quite accurate.

The estimate of system D-spectrum allows estimating the number C(x) of
system down states with exactly x down components. This fact is formulated
in a form of the following

Claim 8.5.1.
Let Sp = [f1, f2, ..., fm] be the D-spectrum of a monotone system con-

sisting of m components. Denote by C(x) the number of its down states
with exactly x components being down and m− x being up. Then

C(x) = (f1 + f2 + ...+ fx)
m!

x! · (m− x)!#. (8.5.4)

The idea of the proof is simple. Suppose that all components fail inde-
pendently and have equal failure probability α. All failure states may be
classified into different classes according to the number of down elements
in the failure state. In this way we obtain system failure probability in the
following form (compare with (4.4.5)):

F =
x∑

k=1

C(k)αk(1− α)m−k. (8.5.5)

On the other hand, we have the spectral representation (8.4.4) of the failure
probability (with α = F0(t), see (8.4.3)). We will obtain the desired rep-
resentation (8.5.4) by comparing the coefficients at αx(1 − α)m−x in both
representations.

The formula (8.5.4) establishes a combinatorial fact. Let us present an
alternative proof of it using only combinatorial arguments.

Consider a random permutation π = (i1, i2, ..., im). Declare the first x
of its members as system’s component numbers which are down and all the
rest as being up. If this permutation determines system DOWN state, call
it (x;D)-type permutation. Denote by N(x) the total number of (x;D) per-
mutations. Obviously, the probability to have an (x;D)-type permutation
is N(x)/m!.

On the other hand, this probability equals f1 + f2 + ... + fx. It follows
from the definition of the destruction process. Suppose, a permutation has
the property that the system failure was observed at the instant of k-th
failure, 1 ≤ k ≤ x. Declare for this permutation all components whose
numbers appear on the next x− k positions as being down, and all the rest
of components as being up. In this way we will reconstruct all permutations
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of (x;D)-type. Note also that any permutation which in the destruction
process produces DOWN after the x-th step is not of (x;D)-type. Therefore,
N(x) = (f1 + f2 + ...+ f − x)m!.

When we define a system DOWN state with exactly x components be-
ing down, the order of their appearance is not relevant. All permutations
obtained by permuting x down components between themselves and (m−x)
between themselves determine, in fact, the same system failure state. There-
fore, C(x) = N(x)/(x!(m− x)!).#
Remark. Imagine a system of m independent components which all are up
at t = 0. Each component, independently of others, goes down (and remains
forever down) at some random instant τi in such a way that its probability
to be down at t0 equals qi = P (τi ≤ t0), i = 1, 2, ...,m. As the result of
this destruction process, at t0 the system will be either UP or DOWN. Let
P(system is DOWN at t0) = Qd(t0). If τi-s are i.i.d., then all qi = q.

Now imagine a binary lottery for each of system components. Compo-
nent i, i = 1, 2, ...,m, independently of others, is declared down with proba-
bility qi and up with probability pi = 1−qi. The result of these lotteries will
be UP or DOWN for the whole system. Let P (lotteries produce DOWN) =
QL. QL is system static failure probability.

The following fact is the key to computing system reliability using the
D-spectrum:

Qd(t0) = QL.

Let us go one step further and consider a network with renewable com-
ponents in stationary regime. Suppose that each component, independently
of others, undergoes an alternating sequence of up and down states, in such a
way that its stationary probability to be up equals p, and to be down equals
q = 1 − p, see Section 4.3. All components have, therefore, the same up
probability. Then the stationary probability that the whole network will be
DOWN equals the network static DOWN probability. It is easy to conclude
that if we set in (8.5.5) α = q, then F will express the network stationary
DOWN probability, and P (network is UP ) = 1− F .#

8.6 Problems and Exercises

1. Consider the network shown on Fig. 8.4.
Edge lifetimes are shown on the figure.
a). Find the network lifetime, assuming all nodes are absolutely reliable.
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Figure 8.4: Bold nodes are terminals

b). Suppose that in addition to edge failures, node v1 fails at the instant
x = 6.5, and node v2 fails at the instant y = 10.5. Find the network lifetime.

(If in the process of constructing the maximal spanning tree you have to
choose between two or more edges with equal weights, take arbitrarily any
one of them.)

2. Prove (8.4.7).

3. Prove in detail the Claim 8.5.1. Compute the number of down states
with x = 7 components for the network on Fig. 8.3(d).

4. Which number of replications M would provide the probability p > 0.999
of not missing a min-size cut of size r = 3 in a network with m = 90
unreliable edges?

5. Terminal s is connected to node 1, node 1 is connected to terminal t; in
parallel, s is connected to node 2, node 2 to node 3, node 3 to node 4, and
node 4 is connected to t. The connections do not fail, the nodes are subject
to failures. Nodes fail independently and have equal failure probability F .
The network fails if the s− t connection is broken.
a. Find the D-spectrum of the network.
b. Find using (8.4.4), the network failure probability FN. Find numerically
the maximal permissible value of F which guarantees that FG does not
exceed 0.05.

6. Design an algorithm for generating a random permutation of n > 3
integers (1, 2, 3, ..., n). Use the following recursive procedure. Suppose you
have a random permutation of k integers (i1, i2, ..., ik). Put the integer k+1
at the end of this permutation and exchange it with a randomly chosen
number among the first k numbers. Proceed until k = n.

7. Consider the five node network on Fig. 8.3(b). Find the number of
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min-cuts (of size r = 4) and the B − P approximation to network failure
probability for edge failure probability ε. Assuming that the approximation
is accurate, find the maximal ε which guarantees network failure probability
less or equal to 0.01.

8. Write a computer program which calculates system failure probability
by (8.4.4) for a given D-spectrum and given component failure probability
F0(t) = q.
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Chapter 9

Combinatorial and
Probabilistic Properties of
Lomonosov’s “Turnip”

The real crown jewels are ideas.

Quips and Quotes.

9.1 Introduction

This chapter is devoted to a very powerful and efficient Monte Carlo algo-
rithm for network reliability estimation which we call “Lomonosov’s turnip”.

The idea of this algorithm was first suggested by M.V. Lomonosov in [36]
and developed later in a series of works [11,12,37,38]. The “turnip”, called
in [36] evolution process with closure, was primarily designed for estimating
network terminal reliability for the case of arbitrary (and nonequal) net-
work edge failure probabilities, in the static setting. Lomonosov’s algorithm
introduces closure operation on network edges which eliminates so-called
non relevant edges. This allows to accelerate considerably the Monte Carlo
simulation process and makes it possible to handle relatively large networks
with hundreds of edges. Lomonosov’s algorithm uses specially designed tra-
jectories leading from the initial “zero” state to network UP state. These
trajectories allow to identify the “pre-failure” or “border” states of the net-
work and open a way for simulating dynamic network stationary mean UP
and DOWN periods as well as the reliability gradient function.

119
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The most important and common network reliability problem is the cal-
culation of its static reliability, i.e. the probability that the network is in
the UP state. The word “static” means that the time coordinate is not pre-
sented here and that each edge, independently of other edges, is subject to a
random choice of its state. This state is up with probability 1− q(e) = p(e)
and down with probability q(e). As usual, down for an edge means that it is
erased. Note that the straightforward calculation of static reliability is very
time consuming, even for moderate size networks. For example, the well
known path-set or cut-set methods demand computation time which grows
exponentially with the size of the network. Computational difficulties in the
direct calculation of static network reliability stimulated great interest in
developing Monte Carlo methods.

We do not intend to review various approaches in this direction. Inter-
ested readers can look into the fundamental monograph [16] and read the
paper [11]. In general, most works in this direction are related to the crude
Monte Carlo (CMC) and its modifications. These methods have a principal
drawback: they are inefficient for large and highly reliable or highly unreli-
able networks (because of the so-called rare event phenomenon). For most
applications, the greatest interest for computer and/or communication net-
works are highly reliable networks. Let us mention that the Lomonosov’s
approach eliminates in principle the rare event phenomenon.

9.2 The Turnip

9.2.1 The idea of the turnip

The construction which we call “turnip” is based on three ideas. The first
is introducing an artificial random process associated with each edge. The
second is defining the trajectories of a random process built on network
states. The third is using a special combinatorial operation - closure, which
considerably accelerates the computation procedure.

9.2.2 Artificial creation process

Associate with each edge an artificial creation process, see Fig. 9.1. Initially,
at t = 0 every edge e is down. At some random moment, edge e is “born”,
independently of others, and remains up forever. The random moment ξ(e)
of edge “birth” is exponentially distributed:

P (ξ(e) ≤ t) = 1− exp(−λ(e) · t), e ∈ E. (9.2.1)
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0
down

up

timet0ξ(e1) ξ(e2)

Figure 9.1: At instant t0, edge e1 does exist, while edge e2 does not

Fix an arbitrary moment t0, in particular let t0 = 1. Choose for each
edge e its “birth rate” λ(e) so that the following condition holds:

P (ξ(e) > t0) = exp(−λ(e) · t0) = q(e). (9.2.2)

This formula means the following: in the dynamic process of edge birth
the probability of being down at t0 for each edge coincides with the static
down probability q(e).

At t = 0 the network is DOWN (there are no edges). Denote by ξ(N)
network’s “birth” time, i.e. at random instant ξ(N) when the network be-
comes UP (and remains there forever). P (ξ(N) ≤ t0) is the probability that
at moment t0 in the “creation” process the network N is UP :

R(N) = P (ξ(N) ≤ t0). (9.2.3)

In words: the static probability R(N) that the network is UP coincides
with the probability that in the edge birth (“creation”) process network
state is UP at the instant t0, i.e. N became UP before or at t0. (The
reader probably has noticed that this reasoning is similar to the reasoning
in Section 8.2 with regard to edge destruction process.)

9.2.3 The closure

One of the most important advantages of the edge creation approach is
the possibility to use combinatorial features of the network, namely the
operation of closure. We will give an intuitive explanation for closure.

Suppose that the edges in the creation process appear randomly and
independently. In Fig. 9.2(a) and 9.2(c) a network with four nodes and
five edges is presented. We are going to use this network in the following
examples, for two operational criteria: all-terminal connectivity and s − t
connectivity.
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Suppose that edges 1 and 2 are already born. Then at this moment the
nodes associated with edge 3 are already connected by a path formed by
edges 1 and 2. Therefore, what happens to edge 3 (will it be born or not)
does not affect the connectivity of the component {1, 2, 3}. Thus edge
3 becomes irrelevant for the further evolution of the network and can be
ignored. For each state S ⊆ E of the network we define a closure as a subset
of edges in E such that it equals to the union of S and all irrelevant edges
(for given operational criterion). For example, in Fig. 9.2(b) the set σ21 =
{1, 2, 3} is the closure for each of the following states {1, 2}, {1, 3}, {2, 3}.
Let us carry out the closure for each connected component of the network.
(A single node is considered as a closed component.) The collection of all
network components after their closure will be called a super-state.

9.2.4 Turnip as evolution process with closure

The diagram of the creation (evolution process) is presented on Fig. 9.2(b).
The network N has four nodes and five edges, see Fig 9.2(a). By definition,
its operational criterion is all node connectivity, i.e. it is UP if all nodes are
connected. Since at the root and on the top of it there is a single super-state,
the diagram has a form of a turnip, and from here comes the word “turnip”.

Initially (at t = 0) all edges are in the down state, i.e. the initial super-
state is a collection of four one-node components. The zero-level of the
turnip (its “root”) is the set V without edges (no edge was born). We
denote it by σ0.

The first level shows all possible evolution results arising after the birth
of a single edge. There are five such super-states (σ11, ..., σ15) denoted by
circles, see Fig. 9.2(b), the first level. No closure can be performed on this
level.

The second level of the turnip shows what happens when a second edge is
born. Depending on the particular combination of the first two born edges,
we distinguish six super-states on level 2: σ21, ..., σ26. It is important to
stress that these super-states are shown together with the relevant closure.
For example, suppose that after edge 1, edge 3 is born. Then edge 2 becomes
irrelevant and is added to the existing nodes, and the corresponding super-
state is σ21 Similarly, the same σ21 appears if edge 2 is born after edge
1.

Note that the zero level represents super-states with four isolated com-
ponents. Level 1 represents super-states with three isolated components.
Level 2 represents all super-states with two components. The last, third
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level has one super-state containing one single component.

σ0

σ11 σ12
σ13 σ14

σ15

σ21 σ22 σ23 σ24 σ25 σ26

σ3

1

2

3

4

5 1

2

3

4

5

s

t

(a) all-terminal
     connectivity 

(b) Turnip (c) s-t connectivity

Figure 9.2: The “turnip” diagram for two cases of connectivity
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In the case of all-terminal connectivity, only this super-state represents
the UP state of the network.

In the case of the s− t connectivity, the UP states are those super-states
for which the nodes s, t belong to one component. Such super-states appear
on Level 2 and 3. On Fig. 9.2(b) they are double circled.

An important feature of the turnip is that simulating the transitions
from one super-state to the following is very easy. Compute, for example
the probability P (σ11 → σ21). Let the birth rate of edge k be λ(k), k =
1, ..., 5. Then, by the well-known property of the exponential distribution
(see Chapter 3), we have

P (σ11 → σ21) =
λ(2) + λ(3)

λ(2) + λ(3) + λ(4) + λ(5)
=
λ(σ11)− λ(σ21)

λ(σ11)
, (9.2.4)

where λ(σij) denotes the total birth rate for the super-state σij . Indeed, the
transition σ11 → σ21 takes place if and only if either edge 2 was born before
the birth of edges 3, 4, 5, or edge 3 was born before the birth of edges 2, 4,
5.

Let us make an important remark. It follows from (9.2.2) that

λ(e) = −(log[q(e)])/t0.

Thus t0 is the same factor appearing in all λ(e) and thus the transition
probabilities (9.2.4) are t-invariant. Therefore, these probabilities remain
the same when t0 goes to zero or to infinity, i.e. for very reliable or very
unreliable edges.

Summing up, the turnip diagram describes an artificial creation process
with closure. The probability that the network in this process is UP at
some moment t0 coincides with the corresponding static probability for the
network.

Consider a random process σ(t) whose states are the super-states of the
above described network evolution process. (For example, σ(t = 0) = σ0.)
We already mentioned that each state of σ(t) is a super-state. The following
theorem was proved in [11,12].

Theorem 9.2.1.
(i) σ(t) is a Markov process;
(ii) The time spent by σ(t) in a particular super-state σ� is distributed

as Exp(λ(σ�));
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(iii) Let σ�� be a direct successor of σ�. Then the transition σ� → σ��

takes place with probability

P (σ� → σ��) =
λ(σ�)− λ(σ��)

λ(σ�)
. (9.2.5)

Remark 1. Each successor σ�� of σ� is obtained by merging exactly two
components of σ�. In [36], σ(t) was called Merging Process (MP).#

We omit the proof which is very simple since it follows from the properties
of the exponential distribution, see Chapter 3.#

Define now a new notion, trajectory, which plays the central role in the
Merging Process and therefore in the corresponding Monte Carlo scheme.

Definition 9.2.1
A trajectory is a sequence u = (σ0, σ1, ..., σr) of super-states such that

σ0 is the initial trivial super-state, each σi is the direct successor of σi−1,
and σr is the first super-state belonging to UP .#

For example, (σ0, σ11, σ21, σ3) on Fig 9.2(b) is a trajectory.
Now, in terms of the trajectories, the network is UP at moment t if there

exists at least one trajectory that reaches UP before t. It is easy to calculate
the probability p(u) that the evolution process goes along trajectory u:

p(u) =
r−1∏
i=0

P (σi → σi+1). (9.2.6)

Denote by P (t|u) the probability that the UP state (i.e. σr) will be
reached before time t given that the evolution (the Merging Process) goes
along trajectory u. Then by (ii) of Theorem 9.2.1, our MP is sitting in each
super-state σj an exponentially distributed random time τ(σj); due to the
Markov property, the total evolution time along the trajectory u is a sum
of the respective independent exponentially distributed random variables.
More formally,

P (t|u) = P [τ(σ0) + τ(σ1) + ...+ τ(σr−1) ≤ t|u = (σ0, ..., σr)]. (9.2.7)

Note that P (t|u) is a convolution and can be computed analytically (see
Appendix B) or simulated (see Chapter 7).

Now we eventually are ready to present the main result of this chapter
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Theorem 9.2.2.
The probability that at moment t the MP reaches UP equals, by the

total probability formula,

R(N) = P [ξ(N) ≤ t] =
∑
u∈U

p(u) · P (t|u), (9.2.8)

where U is the set of all trajectories.#
The expression (9.2.8) has a form of a mean value since

∑
u∈U p(u) = 1,

and is the key for estimating R(N) by means of the following Monte Carlo
algorithm.

Algorithm 9.1 - Algorithm “Turnip”
1. Put R̂ := 0.
2. Generate trajectory u leading from the trivial super-state

to the super-state in UP . Use for its generation
the above described transition probabilities.

3. Calculate R̂ := R̂+ P (t|u).
4. Repeat 2 and 3 M times.
5. Put R̂(N) = R̂/M .

Remark 2. The trajectory u is drawn with probability (9.2.6) which does
not depend on parameter t. This explains why in the turnip scheme the rare
event phenomenon does not exist.#.

The following theorem was proved in [37,38].

Theorem 9.2.3.
For a given number of nodes and a given operational criterion, the co-

efficient of variation δ2MP is bounded uniformly for all t ∈ [0,∞) and all
λ-vectors satisfying maxλ/minλ ≤ C, for any C.#

Theorem 9.2.3 assures (through the Chebyshev’s inequality), that for
any given number of nodes n and λ(e) values, and for any positive ε, δ, there
exists sample size M such that for all t ∈ [0,∞), we have

1− ε < R̂(N)
R(N)

< 1 + ε (9.2.9)

with probability at least 1 − δ. Note that this property does not hold for
the crude Monte Carlo.
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9.3 Applications of Turnip

9.3.1 Availability Av(N)

The static reliability R(N) also expresses the equilibrium instant network
UP probability, termed also availability and denoted Av(N). In other words,
availability is the probability that the network is UP at a remote instant
t→∞.

Suppose that the life of each edge e is described by an alternating renewal
process with exponentially distributed up and down times. Consider the
process E(t) defined as the set of all edges in up state at moment t, t >
0. E(t) alternates between UP and DOWN states of the network. The
stationary availability of the whole network equals R(N) when each edge
e has the stationary down-probability q(e) = λ�(e)/(λ�(e) + μ(e)), where
λ�(e) is the failure rate and μ(e) is the repair rate of edge e.1 So, if edge
e is down at time t, the probability that it will become up in the interval
[t, t+ δt] is μ(e) · δt+ o(δt).

We remind the reader that the availability interpretation of the static
probability has been discussed earlier, see Chapter 4, Section 3.

9.3.2 The mean stationary UP and DOWN periods

Important parameters of the dynamic network are its mean equilibrium UP
and DOWN periods, denoted as μN(UP ) and μN(DOWN), respectively.

Let us define μN(UP ) more formally. (μN(DOWN) is defined simi-
larly.) Consider the sequence {Ui}, i = 1, 2, ..., of network UP periods. It
can be proved that, as i → ∞, the sequence {Ui} converges in probabil-
ity to the limit random variable U with mean value μN(UP ) = E[U ] =
limk→∞E[Uk]. (For details see [26, Chapter 3].)

Computing μN(UP ) and μN(DOWN) is a difficult task. First, let us
note, that in analogy with similar situation in renewal theory, the network
stationary availability equals (see [26,20])

Av(N) = R(N) =
μN(UP )

μN(UP ) + μN(DOWN)
. (9.3.1)

1note that λ�(e) is component e failure rate and not the artificial birth rate λ(e) in
the evolution process
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This formula alone, however, does not allow to calculate separately μN(UP )
and μN(DOWN). Another important characteristic of the dynamic net-
work in equilibrium is the so-called stationary transition rate Φ(N):

Φ(N) =
1

μN(UP ) + μN(DOWN)
. (9.3.2)

Φ(N) is a direct analogue of the equilibrium renewal rate for the alter-
nating UP − DOWN sequence of network states. In equilibrium, the av-
erage interval between two subsequent transitions DOWN → UP equals
μN(UP ) + μN(DOWN). Therefore the DOWN → UP transition rate
is exactly Φ(N). Obviously, knowing R(N) and Φ(N) allows computing
μN(UP ) and μN(DOWN).

It turns out that Φ(N) can be expressed in the terms of the edge evolution
process. First note that the transitions DOWN → UP take place only from
so-called border states, see Chapter 5. Let us recall that the border state
is such DOWN state of the network which can be transformed into the
UP state by a birth of a single edge. Denote by BD the set of all border
states. For any border state S , denote by S+ the set of all edges e such
that S+e ∈ UP . Consider, for example the state S = {4, 5} for the network
on Fig. 9.2(a). This state is presented by super-state σ26 on Fig. 9.2(b).
Clearly S is a border state and S+ = {1, 2}.
Remark. To be more accurate, let us note that earlier we operated with
“microscopic” definition of a state in a form of a binary vector. In these
terms, the super-state σ21 represents, in fact, three “microscopic” border
states v1 = (1, 1, 0, 0, 0),v2 = (1, 0, 1, 0, 0), and v3 = (0, 1, 1, 0, 0). All these
states have one property in common: adding edge 3 or 4 to any one of
them transforms these states into the UP state of the network.#

So far we didn’t know how to compute Φ(N). The key is provided by
the following elegant formula (see [26, pp. 84, 110]):

Φ(N) =
∑

S∈BD

P (S)μ(S+), (9.3.3)

where P (S) is the probability of the border state S, and

μ(S+) =
∑

e∈S+

μ(e).

In the last formula, the sum is taken over the set S+ of all edges e that are
down and whose birth with rate μ(e) will lead from the border state S into
the UP state.
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The formula (9.3.3) can be explained heuristically as follows. Multiply
the right-hand side by small time increment δt. Then the right-hand side is
the probability that the network is (in equilibrium) in one of its border states
S ∈ BD and that a transition into UP takes place during this small interval.
This is exactly what expresses the inverse of (μN(UP ) + μN(DOWN))
multiplied by δt.

9.3.3 Estimation of Φ(N) for all-terminal connectivity

The number of border states even in a relatively small network is usually
very large. Therefore we can only estimate the transition rate Φ(N). Let
us explain here briefly the Monte Carlo scheme for estimating Φ(N).

Let us consider the all-terminal connectivity. The case of s − t connec-
tivity is more complicated technically, but not in principle. The difference
between these criteria lies in the fact that for all-terminal connectivity, the
border states are located on one (the (r − 1)-st) level of the turnip, where
r is the highest level. All states on level r − 1 contain exactly two con-
nected components. In the case of s− t connectivity, the border states may
be located on each level of the turnip and may consist of any number of
components. For example, we can check on Fig. 9.2(b) that for the s − t
connectivity the state S = {5} (which is associated with the super-state σ13)
is a border state and it represents three components. (A single node is also
a component!)

Consider now the sum for Φ(N) in (9.3.3). Return to the Merging Pro-
cess and regroup the terms in (9.3.3) in such a way that the “micro” border
states are united into one super-state. Then we arrive at the following ex-
pression:

Φ(N) =
∑

σ∈BD

P (σ)μ(σ+), (9.3.4)

where μ(σ+) =
∑

e∈σ+ μ(e) means the sum taken over the super-state σ of all
edges e in down and whose birth rate μ(e) will lead from the border super-
state σ to the UP state. As it was explained earlier, the static probability
P (σ) may be interpreted as the probability that the evolution process is in
the super-state σ at the moment t0. It should be emphasized that now we
say “at the moment t0” and not “before the moment t0”. (The fact that a
random process was before the instant t0 in a non-absorbing state does not
mean, contrary to the absorbing state, that the process is at the instant t0
in this state.) The UP state is an absorbing state while the border states
(super-states) are not.
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Denote by ξ(σ) the random time for reaching the UP state. Now we
have for P (σ) the following formula:

P (σ) = P{ξ(σ) ≤ t0} − P{ξ(N) ≤ t0}. (9.3.5)

Here the first term is the probability that the Merging Process is at
t0 in super-state σ or is in UP . The second term is the probability that
the UP state was reached before t0. The difference is therefore the desired
probability that at t0 the evolution process is in σ.

Now substituting (9.3.5 ) into (9.3.4) we obtain the following formula:

Φ(N) =
∑

σ∈BD

[P{ξ(σ) ≤ t0} − P{ξ(N) ≤ t0}] · μ(σ+). (9.3.6)

To bring this formula to the form needed for Monte Carlo evaluation, let
us introduce conditioning on the trajectories u leading from σ0 to the UP
state:

Φ(N) = (9.3.7)∑
u∈U

p(u)[P{ξ(σ) ≤ t0|u} − P{ξ(N) ≤ t0|u}] · μ(σ(u)+).

We can write the formula in the above form because in the case of all-
terminal connectivity, each trajectory u determines a unique border state
σ(u), the state from which it jumps into UP . (This does not take place
for the T -terminal connectivity!). The sum in (9.3.7) has the form of mean
value (compare with (9.2.8)) which is the key for Monte Carlo estimation
on the turnip. For that purpose, we simulate trajectories u with the prob-
abilities p(u), as earlier, and compute for each simulated u the expression
in the brackets (containing a difference of two convolutions) multiplied by
μ(σ(u)+).

9.3.4 Estimation of Φ(N) for T -terminal connectivity

Now let us turn to the calculation of the transition rate Φ(N), for a network
with T -terminal connectivity. In general case, the border states can be
located on any level of the turnip, and the transition into the UP state can
take place not only from the super-state directly preceding the UP state,
but also from several other super-states on the trajectory. For example,
on Figure 9.3 the given trajectory contains the border states σ1, σ2, σ3, σ4.
Now from (9.3.4), taking into account the above remark about border states
location, we arrive at the following formula:
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Φ(N) = (9.3.8)

∑
u∈U

p(u)
ku∑

i=mu

[P{ξ(σi) ≤ t0|u} − P{ξ(σi+1) ≤ t0|u}] · μ(σi(u)+).

The inner sum in the above equation is taken over all border super-states
belonging to the trajectory u. mu is the first such state and ku is the last.
(So the super-state σku+1 is in the UP .)

s

t

1 2

3

45

6 7 8
9

10

σ0 σ2
σ1

σ3 σ4 σ5

(a)

(b) (c) (d)

(e) (f) (g)

Figure 9.3: A fragment of a turnip and a trajectory leading into UP

Consider, for example, a 6-node, 10-edge network shown on Fig. 9.3(a).
The nodes s, t are the terminals. Consider the trajectory σ0 → σ1 →
σ2 → σ3 → σ4 → UP . It corresponds to the birth of edges, for exam-
ple, in the following order: 1, 6, 2, 8, 9. The super-states on the Fig. 9.3 are
shown together with the corresponding closures. Note that the super-states
σ1, σ2, σ3, σ4 all are border states. The dotted lines show the edges whose
birth would immediately lead from the border state into the UP state. For
example, σ3 jumps into UP if any one of edges 9 or 3 makes the transition
from down to up, with rates μ9, μ3, respectively. Let us consider the part of
the sum in (9.3.8) corresponding to the above trajectory. We get:
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P (σ1)μ9 + P (σ2)μ9 + P (σ3)(μ3 + μ9) + P (σ4)(μ3 + μ4 + μ9).
Denoting by ξ(σi) the random time of reaching the super-state σi we have:
P (σ1) = P (ξ(σ1) ≤ t0)−P (ξ(σ2) ≤ t0); P (σ2) = P (ξ(σ2) ≤ t0)−P (ξ(σ3) ≤
t0); P (σ3) = P (ξ(σ3) ≤ t0) − P (ξ(σ4) ≤ t0); P (σ4) = P (ξ(σ4) ≤ t0) −
P (ξ(σ5) ≤ t0).
Taking into account that the first two terms in the sum have the same
multiplier μ9 we can “economize” on computing of appropriate convolutions:

P (σ1)μ9 + P (σ2)μ9 = (P (ξ(σ1) ≤ t0)− P (ξ(σ3) ≤ t0))μ9.
We give below the turnip algorithm for computing the transition rate Φ(N)
for the case of T -terminal connectivity.

Algorithm 9.2 - TurnipFlow
1. Put Φ(N) := 0.
2. Generate trajectory u = σ0, ..., σk leading from

the trivial super-state σ0 to the super-state σk in UP .
3. Find the first i = mu so that σi is a border super-state,

that is there exists e ∈ σ+
i leading into UP .

(Note that all following super-states in the trajectory are
also border super-states.)

4. Calculate
Φ(N) := Φ(N) + (P (ξ(σi) ≤ t0)− P (ξ(σi+1) ≤ t0))μ(σ+

i ).
5. Put i := i+ 1. If i < k Goto 4.
6. Repeat 2-5 M times.
7. Put Φ(N) := Φ(N)/M.

Note that the algorithm may be improved by using the “economizing” cal-
culation mentioned in the above example.

9.3.5 Monte Carlo algorithm for the gradient

The notion of the reliability gradient vector ∇R = (∂R/∂p1, ..., ∂R/∂pn)
was introduced in Chapter 5. Let us remind that by formula (5.2.4) we have
the following relationship between the gradient vector and the border state
probabilities:

∇R • {q1λ1, ..., qnλn} =
∑

v∈BD
P (v)Γ(v),

where

Γ(v) =
∑

[v∈BD,v+(0,...,0,1i,0,...,0)∈UP]

λi.
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Here Γ(v) is the sum of all λi-s such that adding edge i to the fixed border
state v ∈ BD “activates” this state and it becomes UP .

From the latter formula we can get the expressions for the components
of gradient vector. In fact, what we will do now, is a generalization of the
example 5.1.1. Let us regroup the terms of the above sum for Γ(v) in such
a way that for each element i we gather all border states which may be
transferred into UP by adding this element. Then we arrive at the following
expression:

∇R • {q1λ1, ..., qnλn} = (9.3.9)
n∑

i=1

λi

∑
[v∈BD,v+(0,...,0,1i,0,...,0)∈UP]

P (v).

From the latter we get the following formula for the gradient.

∇R = { ∂R
∂p1

, ...,
∂R

∂pn
}, (9.3.10)

∂R

∂pi
= {q−1

i

∑
[v∈BD,v+(0,...,0,1i,0,...,0)∈UP]

P (v)}, i = 1, ..., n.

In this formula for ∂R
∂pi

we sum together the probabilities of all border states
v which are “activated”, i.e. move to UP by adding edge i.

Introducing conditioning on the trajectories of u ∈ U and uniting the
“microscopic” states into “macro” super-states, we arrive at the following
formula for the partial derivatives:

∂R

∂pi
= (9.3.11)

q−1
i

∑
u∈U

p(u)
j=ku∑

[j=mu, σj+(0,...,0,1i,0,...,0)∈UP]

P (σj), i = 1, ..., n.

Here U is the set of all trajectories u leading from the trivial super-state σ0

into UP ,
u = (σ0, ..., σmu , ..., σku , σku+1 ∈ UP ),
p(u) is the probability of trajectory u,
σmu is the first border state on this trajectory, and σku is the last border
state on it.
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We give below the turnip algorithm for computing the gradient ∇R for the
case of T -terminal connectivity.

Algorithm 9.3 - TurnipGradient

1. Put ∂R
∂pi

:= 0, i = 1, ..., n.
2. Generate trajectory u = σ0, ..., σk leading from the trivial

state s0 to the state sk in UP .
3. Find the first j = mu so that σj is a border state,

that is there exists e ∈ σ+
j leading into UP .

4. Calculate Conv = P (ξ(σj) ≤ t0)− P (ξ(σj+1) ≤ t0));
for each ei ∈ σ+

j calculate ∂R
∂pi

:= ∂R
∂pi

+ Conv.
5. Put j := j + 1. If j < k Goto 4.
6. Repeat 2-5 M times.
7. For each i = 1, ..., n put ∂R

∂pi
/M.

To make more clear the algorithm, let us take super-states σ1 and σ4 from
the trajectory on Fig. 9.3. The super-state σ1 contributes for the partial
derivative ∂R

∂p9
the value P (ξ(σ1) ≤ t0) − P (ξ(σ2) ≤ t0)). The super-state

σ4 contributes for the partial derivatives ∂R
∂p9

, ∂R
∂p3

, ∂R
∂p4

the value P (ξ(σ4) ≤
t0)− P (ξ(σ5) ≤ t0)).

Remark: Border States. We have seen that the border states of the
network appear in the context of solving two important problems: finding
the network stationary UP and DOWN periods (for networks with renew-
able components) and finding the network reliability gradient. The most
natural way to design the corresponding Monte Carlo algorithms is using the
edge evolution process where its trajectories allow automatic identification
of the border states. The merging (closure) operation in Lomonosov’s turnip
increases the efficiency of the algorithms by grouping the “microstates” into
the “macro” super-states. It is worth noting that network border states
remain unchanged when the component reliability varies. In that sense the
border states are network invariants, which makes all the corresponding
algorithms suitable for arbitrary values of network component reliability.

In conclusion, we would like to note that using the turnip is not a unique
possible way of finding the border states. In principle, any network construc-
tion process based on edge permutations, which starts from empty set and
adds a component after component, see e.g. Section 6.3, leads to the UP
state via a border state.#
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9.4 Unreliable Nodes

Suppose that in our network the edges never fail and nodes, except the
terminal nodes, are subject to failure. We are interested, as always, in the
probability that the network is UP, i.e. all terminals are connected. (We
exclude the trivial case when there are only two terminals and they are
connected by an edge.) If we consider the birth process on the nodes, then it
develops in the following way. First, we have an initial super-state σ0 which
contains only terminal nodes and no nodes which are subject to failure. We
assume that there are no direct edges between terminal nodes.

Then nodes are born at random instants. As soon as two nodes a and
b are born, and there is an edge e = (a, b) in our network, these nodes get
immediately connected by this edge. Similarly, if there is an edge connecting
a terminal node to a newborn node, say a, this edge immediately becomes
“alive”. The node birth and evolution process goes on exactly as the above
described process on edges, with only one distinction: there is no closure
operation because there are no irrelevant nodes. As to the edges, they appear
automatically as soon as their end-point nodes are born. In the process of
appearance of new nodes, no irrelevant nodes exist.

To get used to the nodal birth and evolution process we advise the reader
to solve the Problem 5 in the next section.

All above introduced notions - birth rates, trajectories, super-states,
border states, the UP state, transition rates, sitting times - remain with
no changes. All the theory and the simulation algorithms developed for
edge evolution process (designed for unreliable edges) remain valid for node
evolution process.

Consequently, all theoretical results and all algorithms can be translated
in equivalent form from the “edge language” into the “node language”.

9.5 Problems and Exercises

1. Below there is a turnip diagram for a bridge structure, with unreliable
edges and s − t connectivity as the UP state. One super-state, call it σ23,
is missing. Find it and complement the diagram.

2. Find the probability of trajectory u = {σ0, σ11, σ23, σ3} and the CDF’s
of the sitting times in σ0, σ11, σ23. Associate with edge i its birth time
τi ∼ Exp(λi). What is the mean transition time from σ0 into UP along this
trajectory?
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3. Find, that given the trajectory u (Exercise 2), the probability P0 that
the time to reach UP is less or equal t. Find the probability P1 to be in σ11

at time t.

4. Derive a formula for the probability that the evolution process on Fig.
9.4 will be absorbed by the super-state σ26.

s

t

a b

1 2

3 4

5
σ0

σ11 σ12 σ13
σ14 σ15

σ21 σ22 σ23
σ24 σ25

σ26

σ3

Figure 9.4: Turnip diagram for bridge structure. σ23 is missing. Bold circles
belong to UP state
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5. Evolution process on network nodes.
Consider a pentagon-type network with nodes numbered clockwise 1,

2, 3, 4, 5, and edges (1,2), (2,3), (3,4), (4,5), and (5,1). Nodes 1 and 3
are terminals. Edges do not fail, nodes are subject to failure (except the
terminals). At t = 0 no node 2, 4, 5 exists. Each node i, i = 2, 4, 5 is supplied
with its birth time τi ∼ Exp(λi). If in the original network there is an edge
e = (i, j), then this edge has its “birth” at the instant of the appearance of
both nodes i and j. The network is UP at the instant the nodes 1 and 3
become connected.

Describe the node evolution process, the transition rates, and the sitting
times in the super-states. Sketch the turnip diagram.

Hint. The initial super-state is only nodes 1 and 3, with no edges. The
first level of the turnip are three super-states with nodes σ1 = (1, 3, 5), σ2 =
(1, 3, 2), σ3 = (1, 3, 4). σ1 has edge (1,5), σ2 has edges (1,2) and (2,3) and is
already an UP state, σ3 has edge (3,4). All second level super-states belong
to UP.

6. Evolution process on a triangular network.
Consider a three node network. Nodes are denoted as a, b, c. The net-

work has three edges e1 = (a, b), e2 = (b, c), and e3 = (a, c). Edge failure
probabilities are q1, q2, q3, respectively. Nodes do not fail and the network
is UP if at least two edges are up, i.e. all nodes communicate.

1. Construct the turnip diagram. Denote by σ0 the “root” super-state
with no edges and by σi the first level super-state with a single edge ei. Find
out all three trajectories u1, u2, u3 leading from σ0 to UP.

2. Determine the edge birth rates λi by the formula λi = −log(qi).
(t0 = 1). Find the distribution of the sitting time τ0 in σ0. Find the
distribution of the sitting time τi in the super-state σi, i = 1, 2, 3.

3. Determine the probability p(ui) that the evolution process goes along
ui.

4. Compute the probability P ∗ = P (τ0 ≤ 1)− P (τ0 + τ1 ≤ 1).
Hint. Use formula (5) from Appendix B.

5. Check that the static probability p(σ1) of the border state σ1 satisfies
the relationship

p(σ1) = p(u1) · P ∗.

Hint. p(σ1) = (1− q1)q2q3.
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Chapter 10

Edge and Node Importance
Calculation Using Spectrum

10.1 Introduction: Birnbaum Importance Measure

Let us remind the reader of the definition of Birnbaum Importance Measure
(BIM) [3] of system component j, j = 1, 2, ..., n. If system reliability is a
function R = Ψ(p1, p2, ..., pn) of component reliability pj , we gave in Section
4.5 the following definition of BIM for component j:

BIMj =
∂Ψ(p1, ..., pn)

∂pj
= Ψ(p1, ..., pj−1, 1, pj+1, ..., pn)− (10.1.1)

Ψ(p1, ..., pj−1, 0, pj+1, ..., pn).

The BIM has a transparent physical meaning: it is the gain in system
reliability received by replacing a down component j by an absolutely reliable
one. Since it is also a partial derivative, it gives the value (approximately)
of the system reliability increment δR resulted from component j reliability
increment by δpj . The first expression in the right-hand side of (10.1.1) is
the reliability of a system in which component j is permanently replaced
by an absolutely reliable one. The second term is the reliability of the
system in which component j is permanently down. These expressions have
an obvious interpretation for networks. If component j represents an edge
ej = (a, b) then the first term is the reliability of a network in which the
nodes a, b connected by ej are “compressed” into one, while the second term
is network reliability with edge ej being permanently erased. If j represents

139
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a node a, then the first term is system reliability if this note is absolutely
reliable, and the second term represents system reliability where node a is
eliminated, together with all edges incident to it.

The use of BIM in practice is very limited since usually we don’t know
the reliability function Ψ(·). It turns out however, that for the case of equal
component reliability pj ≡ p, there is a surprising connection between the
network spectrum and the reliability function which allows to estimate the
component BIM’s without knowing the analytic form of the reliability func-
tion. This connection was first described in [22].

Remark. If we want to calculate the BIM analytically for the case of all
pj = p we have to act as follows: first, calculate the partial derivative with
respect to pj and only afterwards plug in pj = p.#

Our exposition is as follows. In Section 2 we define the so-called cu-
mulative spectrum and derive formula for network reliability for the case of
equally reliable edges. In Section 3 we derive our main result, the so-called
BIM spectrum. In Section 4 we discuss how the component importance
ranking depends on the value p. Section 5 contains a series of examples of
edge and node importance.

10.2 Cumulative Spectrum

Example 10.2.1. Consider the network shown below:

s

t

e1

e2

e3

e4

Figure 10.1: Network with unreliable edges. It is UP if s and t are connected

Consider an arbitrary permutation π of edge numbers, e.g. π = (3, 1, 2, 4).
Imagine the following network “construction” process. We start with a net-
work without edges, and add one edge after another in the order mentioned
in π, from left to right. So, first we add edge 3, then 1, then 2, and finally
edge 4. Let us follow the state of the network in the process of its con-
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struction. Network is down after edge 3 is added; the same after edge 1 is
added. Now if we add edge 2, the network becomes UP ! Suppose now that
we want to enumerate all UP states of this network. First, we may continue
the construction process by adding edge 4, and assume that this edge is up;
we can add the same edge and immediately erase it. So far we have two
distinct UP states associated with π : (3+,1+, 2+, 4+) and (3+,1+,2+,4-)
(“+” means up, “- ” means down, respectively). Next we may find out how
many permutations there are such that the associated construction process
results in the UP state on the third step, not earlier. There are all in all
4!=24 permutations, and 14 out of them are of desired type. (Later we will
say that all these 14 permutations have anchor equal 3.) From the first
sight, we will have 14 different UP states, whose probabilistic weight will be
p4 and 14 UP states with weight p3q each, q = 1− p. Obviously, we already
did a mistake since 14 · p4 > 1 for p > 0.52. What is wrong? When we op-
erate with a permutation, for us is important the order of edge appearance.
But each of 24=4! permutations ending with four edges up defines in fact
only a single event for the network whose probability is p4. Therefore the
contribution of one permutation with all edges being up is 14p4/4! Similarly,
every permutation with two edges up and two edges down, which produces
network UP state, has 2! · 2! copies differing by the order of appearance of
the up and down components.

Let us finish the example. It can be proved that there are 4 permutations
with anchor 2, and 6 permutations with anchor 4. This brings us to the
following expression for the UP probability:

R = 4(
p2q2

2!2!
+
p3q

3!1!
+
p4

4!
) + (10.2.1)

14(
p3q

3!1!
+
p4

4!
) + 6

p4

4!
= p4 + 3p3q + p2q2 = p2 + p3 − p4.

The network on Fig. 10.1 is a series connection of edge 2 to edge 1 which
is itself in parallel to edges 3 and 4. So, it is a series-parallel network and
its reliability is easy to compute.#

Exercise. Verify the last formula for network reliability.

Definition 10.2.1.
Let π be a permutation of edges e1, ..., en. Start with a network with all

edges erased and add to it the edges in the order they appear in π, from left
to right. Stop at the first edge when the network becomes UP . The ordinal
number r of this edge is called the anchor of permutation π and denoted
r(π).#
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For example, let π = (e5, e3, e2, e4, e1) for some network with 5 edges.
Suppose that after adding e5, e3 the network is down, and after adding edge
e2 it becomes UP . Then the anchor of this permutation r(π) = 3.
Definition 10.2.2. Let xi be the total number of permutations such that
their anchor equals i. The set

C� = {x1, x2, ..., xn} (10.2.2)

is called the C�-spectrum of the network.#
For example, for the network on Fig. 10.1, the C�-spectrum is {0, 4, 14, 6}.

The sum of all xi equals to n!. Here n! = 4! = 24.
Remark. If we divide each xi by n! (normalize) we will get the C�-spectrum
in a form of a discrete distribution, which was already introduced in Chapter
6.#

Definition 10.2.3.

Let Yb =
∑b

i=1 xi, b = 1, 2, ..., n.

Then the set (Y1, Y2, ..., Yn) is called the cumulative C�-spectrum.#

Theorem 10.2.1.
For all pi ≡ p network reliability can be expressed in the following form:

R =
n∑

i=1

Yi
piqn−i

i!(n− i)! . (10.2.3)

Proof.
Yi is the total number of permutations which produce an UP state with i

edges being up and (n−i) being down. The probability of each of these states
is piqn−i. Among these states, there are copies arising from permutations
of i up edges and n − i down edges among themselves. Each “true” UP
state is counted, therefore, i!(n − i)! times, which explains the appearance
of i!(n− i)! in the denominator. ♦

10.3 BIM and the Cumulative C�-spectrum

Example 10.2.1 - revisited.
Let us consider all 14 permutations with the anchor equal 3. They are:
*(1,3,2,4) (3,2,4,1)
*(1,4,2,3) (3,4,2,1)
*(2,3,1,4) *(4,1,2,3)
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(2,3,4,1) *(4,2,1,3)
*(2,4,1,3) (4,2,3,1)
(2,4,3,1) (4,3,2,1)

*(3,1,2,4)
*(3,2,1,4)

They all have the property that after three edges are added in the con-
struction process, (and not earlier) the state becomes UP .

Let us consider the permutations with anchor equal 2. There are four of
them:

*(1,2,3,4),*(1,2,4,3),*(2,1,3,4), *(2,1,4,3).

Now let us concentrate on one particular edge, say e1, and count the
number of permutations in which e1 “took part” in the construction, i.e.
it is on the first, second, or third position in all the above permutations
(having anchor 2 or 3).

In the first group we have 8 such permutations marked by “*” and all 4
permutations in the second group, in total 12 permutations.#

Definition 10.3.1.
Denote by Zi,j the number of permutations satisfying the following two

properties:
(i) The network state constructed from the first i edges in the per-

mutation is an UP state.
(ii) Edge ej is among the first i edges of the permutation. The col-

lection of Zi,j values, i = 1, 2, ..., n; j = 1, 2, ..., n, is called Birnbaum Impor-
tance Measure Spectrum (BIM � S):

BIM � S = {Zi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ n}. (10.3.1)

Example 10.2.1 - continued. The table below presents the BIM � S for
the network.

Zi,1 Zi,2 Zi,3 Zi,4

i = 1 0 0 0 0
i = 2 4 4 0 0
i = 3 12 18 12 12
i = 4 24 24 24 24

Now we are ready to formulate the main result of this chapter.
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Theorem 10.3.2.
The BIM for component ej , j = 1, 2, ..., n, equals

BIMj =
n∑

i=1

Zi,jp
i−1qn−i − (Yi − Zi,j)piqn−i−1

i!(n− i)! . (10.3.2)

Proof.
Recall that
BIMj = R(p1, ..., pj−1, 1j , pj+1, ..., n)−R(p1, ..., pj−1, 0j , pj+1, ..., n).
The number of permutations such that the first i components in it create

an UP state and ej is up, equals Zi,j . Each fixed permutation counted in
Zi,j creates an UP state having probability pi−1qn−i. Take into account that
a specific state with i edges up and (n− i) edges down is repeated i!(n− i)!
times in different permutations. Then the sum of probabilities for the states
with i up and (n− i) down components equals

Zi,jp
i−1qn−i/(i!(n− i)!).

For the case of edge ej being down, we obtain the expression for the
corresponding probability as

(Yi − Zi,j)piqn−i−1/(i!(n− i)!), and the theorem follows.#

The main value of Theorem 10.3.2 lies in the fact that the importance
measures can be estimated in the process of estimating the C�-spectrum.
This is implemented in the following

Algorithm 10.1 - Computing BIM
1. Initialize all ai and bi,j to be zero, i = 1, ..., n; j = 1, ..., n.
2. Simulate permutation π ∈ ΠE . (ΠE is the set

of all edge permutations.)
3. Find out the minimal index of the edge r = r(π) such that

the first r edges in π create network UP state.
4. Put ar := ar + 1.
5. Find all j such that ej occupies one of the first r positions

in π, and for each such j put br,j := br,j + 1.
6. Put r := r + 1. If r ≤ n, GOTO 4.
7. Repeat 2 -6 M times.
8. Estimate Yi, Zi,j via

Ŷi =
ai · n!
M

, Ẑi,j =
bi,j · n!
M

. (10.3.3)
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10.4 BIM and the Invariance Property

Suppose that for any pair of indices α and β, α �= β,

BIMα ≤ BIMβ or BIMα ≥ BIMβ (10.4.1)

for all p ∈ [0, 1].
If this is true we say that the BIM is invariant with respect to p. In

practical terms it means that if eα is more important than eβ for a particular
value of p, then this remains true for all values of p. Therefore, the edge
ordering according to their BIM’s remains the same for all p values in the
range [0,1].

Theorem 10.4.1.
Suppose we are given the BIM �S for our network. Let us fix two indices

α and β �= α, and the corresponding Zi,α and Zi,β values from the BIM �S.

(i). If for all i, i = 1, 2, ..., n, Zi,α ≥ Zi,β , then BIMα ≥ BIMβ for all p
values.

(ii). Suppose that (i) does not take place, and let k be the maximal index
such that Zk,α �= Zk,β . Without loss of generality, assume that Zk,α > Zk,β .
Then there exists p0 such that for p ≥ p0 BIMα > BIMβ .

Proof.
(i). Comparing the expressions (10.3.2) for BIMα and BIMβ , we obtain

after little algebra that

BIMα −BIMβ =
n∑

i=1

(Zi,α − Zi,β) · pi−1 · qn−i−1

i!(n− i)! , (10.4.2)

which proves (i).
(ii). From the later expression we obtain that the same difference equals

now to the sum of nonzero terms, when i runs from 1 to k. The largest of
these terms has the factor q = 1−p→ 0 in the smallest degree, and therefore
the sign of the whole expression will be determined by the sign of the largest
term, for p close enough to 1. This proves (ii).#

Example 10.4.1. Parallel-series systems are BIM-invariant.
The system consists of n subsystems. The elements of subsystem i, i =

1, ..., n have numbers i1, i2, ..., imi and respective reliability pi1, pi2, ..., pimi .
All elements of one subsystem are connected in a series, and the subsystems
are connected in parallel. The reliability of the i-th subsystem is

Ri =
mi∏
j=1

pij , (10.4.3)
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and the reliability of the whole system is

R = 1−
n∏

i=1

(1−Ri). (10.4.4)

Now let us calculate the partial derivative of R with respect to pij :

∂R

∂pij
=

∏
k �=i

(1−Rk)
∏
k �=j

pik = (1−R)Ri(1−Ri)−1/pij . (10.4.5)

Now let us set all pij ≡ p. The multiple of (1−R)/p becomes

f(mi) =
pmi

1− pmi
. (10.4.6)

f(m) is a decreasing function of m. So, the largest BIM will be attained for
the subsystem with smallest number of elements. Suppose that m1 < m2 <
... < mn. Thus the elements of the first subsystem are the most important,
then follow the elements of the second subsystem, and so on. This ordering
remains the same for all values of p and thus the parallel-series system follows
the BIM invariance principle.

Example 10.4.2. Series-parallel systems are BIM-invariant.
Suppose that our system consists of a series connection of k subsystems

where the i-th subsystem consists of ni components in parallel. Denote by
Si the index set of elements of the i-th subsystem. Elements are indepen-
dent and element with index j has reliability pj . System reliability has the
following expression

R =
k∏

i=1

[1−
∏
j∈Si

(1− pj)]. (10.4.7)

Suppose that element with index α is in the r-th subsystem, i.e α ∈ Sr.
Let us derive an expression for ∂R/∂pα. It is seen from (10.4.7) that in the
product the terms with i �= r remain unchanged, and the derivative of the
r-th multiple becomes

∏
j∈Sr

(1− pj)/(1− pα).
Therefore,

∂R

∂pα
=

∏
i�=r

[1−
∏
j∈Si

(1− pj)] ·
∏

j∈Sr
(1− pj)

(1− pα)
. (10.4.8)

After setting pα ≡ p and replacing 1− p = q we will obtain

∂R

∂pα
= q−1

k∏
i=1

[1− qni ]qnr . (10.4.9)
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It is already obvious that all elements of one subsystem have the same
importance. Now suppose that n1 < n2 < ... < nk. Then the largest qnr cor-
responds to the smallest n1. Therefore, the elements of the subsystem with
smaller number of components are more important in this case too. This
conclusion remains true for any value of element reliability, which proves the
BIM-invariance.#

10.5 Examples

Example 10.5.1. Four-dimensional hypercube network with four
terminals.

In this example we consider a four-terminal hypercube H4, see the figure
below. It has 16 nodes and 24 · 2 = 32 edges. Nodes 1, 8, 9, and 16 are
terminals. Hypercube configurations are often used in computer network
design.

1 2

34 5 6

7 8

9 10

11 12 13 14

15 16

Figure 10.2: Nodes 1, 8, 9, and 16 are terminals

If an edge connects nodes α and β, it will be denoted as (α, β). Table
10.1 presents a fragment of simulation results based on simulating 10,000
permutations. Column 2 of the table gives the values of the cumulative C�-
spectrum (denoted as ai) for several i values. The next four columns present
the corresponding values of BIM �S. It is well seen from the table that the
BIM’s of edges (1,9) and (8,16) are equivalent and that their importance
exceeds the importance of edge (1,2) which in turn is larger than the impor-
tance of edge (3,4). More detailed considerations (not presented here) allow
to conclude that there are three groups of edges, in the descending order of
their importance. The first group - edges(1,9) and (8,16), the second group
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Table 10.1: Edge BIM’s for H4, 4 symmetric terminals

i ai bi,(1,9) bi,(8,16) bi,(1,2) bi,(3,4)

6 2 2 1 0 1
7 15 14 14 2 3
8 59 51 50 12 12
9 154 129 128 40 38
10 350 286 267 109 91
11 679 501 492 235 206
12 1333 886 904 525 438
13 2385 1478 1492 996 892
14 3723 2187 2210 1625 1547
15 5230 3012 3042 2502 2263

- all edges incident to the terminals 1, 8, 9, 16, and the third group - all the
remaining edges.#

Table 10.2: Edge BIM’s for H4, three terminals

i ai bi,(1,9) bi,(9,10) bi,(8,16) bi,(3,4) bi,(7,8)

6 13 11 11 2 0 2
7 41 33 29 8 5 4
8 99 78 72 37 23 20
9 193 163 159 93 79 68
10 322 311 310 208 167 150
11 547 583 553 441 356 320
12 795 970 923 818 660 614
13 1195 1576 1527 1416 1173 1123
14 1351 2288 2234 2151 1845 1777
15 1435 3027 3033 2969 2681 2590

Example 10.5.2. Four-dimensional hypercube, 3 terminals, edge
BIM’s.

Consider now the same hypercube, with non symmetrically located ter-
minals 1, 10, 16. Table 10.2 presents a fragment of the simulation results
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based on 10,000 replications. The notation is the same as in Table 10.1.
This case is less obvious because of non symmetrical positioning of the

terminals. We can, based on the results, rank the edges in the following
order:

(1, 9) > (9, 10) > (8, 16) > (3, 4) > (7, 8).
(A simulation run with 100,000 replications leads to the same conclu-

sion). An interesting feature of the data in Table 10.2 is that here we can
not unite in one group, as it was in Example 1, all edges incident to one of
the terminals. For example, edge (1,9) is ranked higher than edge (9,10).
Note also that edges which are not incident to any terminal do not consti-
tute a homogeneous group by their importance, as it was in Example 10.5.1.
Such edges, for example, are (3,4) and (7,8).

Table 10.3: Node BIM’s for H4,three terminals

i ai bi,(2) bi,(9) bi,(15) bi,(7) bi,(6)

6 1161 800 805 208 140 208
7 2045 1712 1718 964 837 812
8 2483 2926 2926 2307 2088 1986
9 2052 4161 4165 3821 3569 3497
10 1097 5200 5204 5038 4889 4871
11 450 6091 6088 6028 5970 5964
12 158 6912 6904 6804 6909 6879
13 49 7696 7694 7699 7694 7692
14 0 8460 8460 8458 8465 8459
15 0 9232 9228 9227 9230 9228

Example 10.5.3. Node BIM’s for H4, 3 terminals.
Table 10.3 presents the results for 10,000 replications. As it is seen from

this table, the nodes 2, 9, and 15 are ranked as (2) = (9) > (15). All
these nodes are the “neighbors” of terminals. Let us now check the last
two columns of Table 10.3. We see that b1,(7) < b1,(6), but for all i > 1
these inequalities are reversed. We have checked this fact by simulation
with larger number of replications and obtained the same result. We have a
combinatorial explanation of this fact: the number of short paths is greater
for node 6, but the number of long paths is greater for node 7. Here the
conditions of Theorem 10.4.1, (ii) hold (see Section 10.4), and therefore for
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Table 10.4: Node BIM’s for H7, five terminals

i bi,(2)/104 bi,(2)/105 bi,(2)/106

20 0 0 0.00005
30 0.01500 0.01610 0.01854
40 0.135 0.13270 0.13559
50 0.29900 0.28900 0.29929
60 0.41300 0.41660 0.42126
70 0.51200 0.51400 0.51752
80 0.60100 0.60650 0.60722
90 0.69400 0.68610 0.69079
100 0.76500 0.77090 0.77191
110 0.84400 0.85160 0.85211
120 0.93800 0.93430 0.93405
125 0.97500 0.97580 0.97583

p greater than some p0 node 7 becomes more important than node 6.

Example 10.5.4. Hypercube H7, unreliable nodes. Importance
estimates behavior for increasing number of replications.

Table 10.4 presents simulation results of importance measure for a fixed
node in hypercube H7 (128 nodes, 5 terminals, and 448 edges). Three
simulation runs were made, for K = 104, 105 and K = 106 replications. It is
seen from the table that the estimated BIM’s display very small fluctuations
with the increase of K.

10.6 Problems and Exercises

1. Solve the exercise in Section 2.

2. Investigate the connection between the C� -spectrum and the D-spectrum
introduced in Chapter 6.

3. The Fussel-Vesely importance measure (FVIM) for component i is defined
in [18] as

FWIMi = 1− Ψ(p1, ..., pi−1, 0i, pi+1, ..., pn)
Ψ(p1, ..., pi−1, pi, pi+1, ..., pn)

. (10.6.1)
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The FVIM quantifies the decrement in system reliability caused by the
failure of a particular component. Find the FVIM’s for components of the
network shown on Fig. 10.1.

4. The so-called FVIM-spectrum has been introduced in [22] as
FV IM � S = Vi,j = {Yi − Zi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n}.
Prove that

FV IMj = 1−
n∑

i=1

Vi,j · pi · qn−i−1

i!(n− i)! ·R(p)−1. (10.6.2)
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Chapter 11

Optimal Network Synthesis

11.1 Introduction: Problem Formulation, Heuris-
tic Algorithms

Optimal network synthesis is defined in a non formal way as the best possible
design of the network (in terms of its reliability) under given constraints on
the resources involved.

Example 11.1.1
Consider a four-terminal network shown on Fig. 11.1(a).

a b

cd

a b

cd
(a) (b)

Figure 11.1: Four-terminal network with unreliables edges (left) and the
network reinforced by two diagonal edges (right)

Nodes are reliable, edges fail independently and have equal failure prob-
abilities q = 0.01. The network fails if the terminals become disconnected.
Our “resource” is two “spare” edges each having failure probability q1 = 0.1.

153
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A spare edge can be put in parallel to any existing edge. The optimal syn-
thesis problem in this toy example can be formulated as follows: find the
best possible location for these two “spare parts” to minimize the network
failure probability. For evaluating network failure probability we use the
B-P approximation (see Section 4.4).

The original network has six minimal size min-cuts of size 2, and the
main term of its failure probability equals F ∼= 6q2 = 6 · 10−4. If the spare
edges are located on the diagonals, say as e1 = (a, c), e2 = (b, d), then
the network will have four min-cuts of size 3 and the corresponding failure
probability will be F1 = 4 · q2 · q1 = 4 · 10−5. It is easy to check that any
other positioning of the spare edges would give larger failure probability.
Thus the right network shown on Fig. 11.1(b) is the optimal solution to our
problem.#

In this example the network is small and its failure probability can be
easily approximated by the B-P formula or computed exactly. In fact, we act
as if we have at our disposal an analytic expression for network reliability.
In more realistic situations we don’t have a formula or even a good approx-
imation to the expression of system reliability. What we do have is the
possibility to evaluate approximately, using simulation techniques, system
reliability R = Ψ(p) for a given vector p = (p1, p2, ..., pn) of its component
reliability.

Let us formulate a general heuristic procedure for “optimal” network
synthesis.

We make the following assumptions:
1. The “initial” value of component reliability vector p(0) = (p(0)

1 , p
(0)
2 , ..., p

(0)
n )

is known.
2. For any p, we have a method of estimating network reliability function
Ψ(p).
3. For any given p, we have a method of estimating the reliability gradient
vector ∇R = ( ∂R

∂p1
, ..., ∂R

∂pn
).

4. For any network component i, we know its “improvement cost function”
ψi(x, y), where ψi(x, y) is the cost paid for changing component i reliability
x to reliability y, y > x. Assume that the equation

1 = ψi(x, y) (11.1.1)

can be solved for any x ∈ [0, 1] with respect to y:

y = ψ−1
i (x). (11.1.2)
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y is, therefore, the component i reliability obtained after investing one unit
of “resource” if before this investment this component reliability was equal
x.
5. There is a total resource C which can be spent for network optimal
synthesis. C is an additive function of component improvement costs.

Our goal is to invest the resource C to obtain the maximal system reli-
ability.

Now we formulate in a general form a heuristic algorithm for network
synthesis under assumptions 1-5.

Algorithm 11.1 - Heuristic-1
1. Estimate R0 = Ψ(p0) = Ψ(p0

1, p
0
2, ..., p

0
n).

(Use any method available, e.g. the Turnip Algorithm, Chapter 9).
2. Estimate the partial derivatives ∇i = ∂R

∂pi
, i = 1, ...n,

evaluated at the point p0. (Use any method available.)
3. Compute the change di in component i reliability caused

by investing into it one unit of resource:

di = ψ−1
i (p0

i )− p0
i . (11.1.3)

4. Find the component j for which the value

∇i · di (11.1.4)

is maximal.
5. “Invest” a unit resource into component j. Recompute the

component reliability vector replacing p0
j by p1

j = p0
j + dj

6. Repeat 2-5 until the whole resource C is exhausted.

Example 11.1.2.
Consider a series system of two renewable components with initial reliability
pi = ai/(ai+bi), i = 1, 2, where ai is the average up time and bi is the average
repair (down) time of component i, i = 1, 2.

Suppose that investing one unit of resource into component i reduces its
repair time by factor αi, αi < 1. In other words, if initially the average repair
time is bi, then after investing one unit into it, the average time becomes
bi · αi; after investing two resource units this time will be bi · α2

i .
Suppose there are in total two resource units available.

The problem is to find the optimal resource allocation to provide max-
imum system availability. Since there are only three possibilities, we can
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find the best solution by enumeration: invest two units into component 1,
or two units into component 2, or one unit into each of the components.

Let us carry out these simple calculations for ai = 1, bi = 0.4, i = 1, 2
and α1 = 0.7, α2 = 0.5.

It is easy to check that investing two units into component 1 will give
the system availability 1/[(1 + 0.4 · 0.49)(1 + 0.4)] = 1/1.674. Investing two
units into the second component results in availability 1/[(1 + 0.4)(1 + 0.4 ·
0.25)] = 1/1.54. Finally, investing one resource unit into each component
gives availability 1/[(1 + 0.4 · 0.7)(1 + 0.4 · 0.5)] = 1/1.536.

So, the right answer is to invest one unit of resource into each component.
Let us see what our algorithm Heuristic-1 will produce.

Since initially both components have equal availabilities, the partial
derivatives are equal. The reliability increase d1 = 1/(1+0.4 ·0.7)−1/1.4 =
0.067, d2 = 1/1.2−1/1.4 = 0.119. Therefore the first resource unit should be
invested into the second component. Now the component reliability vector
is p = (1/1.4, 1/1.2) and therefore ∇1 = 1/1.2,∇2 = 1/1.4.

Now compute d1 = ∇1 · (1/1.28 − 1/1.4) = 0.056; d2 = ∇2 · (1/1.1 −
1/1.2) = 0.054. Therefore, the second resource unit should be invested into
the first component, which is the same result.#

Example 11.1.3. Optimal synthesis of a 3-node network.
We consider a network shown on Fig. 11.2.

1

2 3

Figure 11.2: 3-node network with unreliables edges. All nodes are terminals

Its failure is defined as loss of connectivity. Edge reliability is x, y, z.
Network is UP if at least two of its edges are up. This leads to the following
expression of network reliability

R = xy + xz + yz − 2xyz.

It is easy to obtain the edge BIM’s:

BIMx = y + z − 2yz, BIMy = x+ z − 2xz, BIMz = x+ y − 2xy.
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Let us assume that investing one resource unit into component having
reliability p leads to the increase of its reliability by

dp = 0.2 · e−p.

Thus, investing unit resource into a more reliable component gives less than
investing it into a less reliable one. Suppose that dx, dy, dz are “small”. Then
from the relationship

R(x+ dx, y + dy, z + dz) ≈ R(x, y, z) +BIMx · dx + (11.1.5)
BIMy · dy +BIMz · dz

it follows that the investment into a single component is most efficient if we
choose the component which gives the maximal value among Qx = BIMx ·
dx, Qy = BIMy · dy, Qz = BIMz · dz. Suppose now that we have initially
x = 0.2, y = 0.3, z = 0.35 and 10 units of resource. Let us synthesize our
network, following the algorithm Heuristic-1.

Cycle 1. R = 0.193, the largest reliability increment is Qx = 0.072, we
improve the x component and set its reliability x := 0.2 + 0.164 = 0.364.
Cycle 2. R = 0.265, the largest reliability increment is Qy = 0.068, we
improve the y component and set its reliability y := 0.3 + 0.148 = 0.448.
Cycle 3. R = 0.333, the largest reliability increment is Qx = 0.067, we
improve the x component and set its reliability x := 0.364 + 0.14 = 0.504.

Let us skip the next 5 cycles and present
Cycle 9. R = 0.765, the largest reliability increment is Qy = 0.055, we
improve the y component and now its reliability x = 0.889.
Cycle 10. R = 0.873, the largest reliability increment is Qy = 0.052, we
improve the y component and now its reliability y = 0.626.

The final result is:

R=0.925, x=0.921, y=0.962, z =0.35.

Remark - nodes instead of edges: Suppose that the network on Fig.
11.2 is modified. Edge (1, 2) is replaced by edges (1, a) and (a, 2), where a
is a new node. Similarly, new nodes b and c are put between 2 and 3, and
1 and 3, respectively. Nodes 1,2,3 are declared terminals, new nodes a, b, c
are subject to failure, but all edges are declared to be reliable. Node a, b, c
reliability are x, y, z, respectively. The new network is UP if at least two
nodes are up. The network reliability is exactly the same as in the previous
case : R = xy + xz + yz − 2xyz. Therefore, we can repeat exactly the
same cyclic procedure as above, but this time it will consider optimal node
synthesis.
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11.2 “Asymptotic” Synthesis

By asymptotic synthesis we mean optimal synthesis in situations where the
network reliability function can be approximated by the asymptotic expres-
sion via the Burtin-Pittel formula (Section 4.4). The best way to demon-
strate this method is to consider an example.

Example 11.2.1. Consider a two terminal network shown on Fig. 11.3.

1

2

3

4

5

s

ta

b

Figure 11.3: s and t are terminals. Network fails if s − t connection is
disrupted

s, t are terminals, reliability criterion is s− t connectivity. Edges are subject
to failures. Edge ei, i = 1, 2, ..., 5 has failure probability α · qi, and α→ 0.

Following the derivation of the B-P approximation (see Section 4.4) it is
easy to obtain that the main term in system failure probability F0 is

F0 = α3[q1q4q5 + q2q3q5 + q1q3q5 + q2q4q5], (11.2.1)

where each term corresponds to a minimal-size min cut (of size 3).
Assume further that, up to a multiple, component (edge) failure proba-

bilities are qi = i, i = 1, 2, 3, 4, 5. Then F0 = α3(20+30+15+40) = α3 ·105.
Now assume that we have at our disposal a certain resource by means

of which we can convert any edge into absolutely reliable. In practice, it is
enough to complement an edge by a similar one put in parallel. Then the
reinforced edge e will have the failure probability α2 · q2e , i.e. a quantity
which is o(α · qe). For example, if we reinforce e1, the main term F0 will lose
all terms containing q1. In fact, it is formally equivalent to setting q1 = 0.
Obviously, reinforcing e5 will be equivalent to reducing F0 to zero, since now
the main term of system failure probability will be of magnitude O(α4). Our
resource will be “spare” edges; spare for edge i costs ci.

Let us denote by F0(i) the main term (omitting α3) after reinforcing
edge i. Obviously,

F0(1) = 70, F0(2) = 35, F0(3) = 60, F0(4) = 45, F0(5) = 0. (11.2.2)



11.2. “ASYMPTOTIC” SYNTHESIS 159

Thus the respective gain δFi (i.e. the decrease in failure probability after
reinforcing edge i, i = 1, ...5) will be

δF1 = 35, δF2 = 70, δF3 = 45, δF4 = 60, δF5 = 105. (11.2.3)

Now assume that the costs are: c1 = 1, c2 = 2.5, c3 = 5, c4 = 10, c5 = 20.
In order to compare the effects of replacing different edges, let us compute
the ratios ri = δFi/ci. These ratios express the gain in reliability per
one cost unit. In our example

r1 = 35, r2 = 28, r3 = 9, r4 = 6, r5 = 5.25. (11.2.4)

Now let us formulate the following heuristic rule for choosing the best can-
didate for reinforcement:
reinforce the edge which has the largest ri.

In our example, we start with reinforcing the edge e1. Our gain will be 35
and our spending is c1 = 1 of resource.

Now we have to rebuild the network. Node a now is placed at node s, and
the network now has nodes s, t, c and edges e2 = (s, t), e3 = (b, t), e4 = (s, b),
and e5 = (s, t), see Fig. 11.4.

2

3

4

5
s

t

a, b

Figure 11.4: The network of Fig. 11.3 after edge e1 becomes absolutely
reliable

This new network has two min-cuts of size 3: one has edges (e2, e5, e4),
another - (e2, e5, e3). Repeating the calculation similar to that already made
for the original network, we obtain that further reinforcement of edge ej
reduces the failure probability by 70, 70, 30, 40, for j = 2, 5, 3, 4, respectively.
The greatest gain in reliability per unit cost will be achieved by reinforcing
edge e2. After this, there will be a reliable s− t connection and the system
failure probability becomes O(α4). The total cost of the two reinforcements
is c1 + c2, which is optimal decision for a cost resource C = 4.#

Now we formulate a heuristic algorithm for the “asymptotic synthesis”
for given resource C.
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Algorithm 11.2 - Heuristic-2
1. For a given network, find the B-P approximation to the

failure probability F0.
2. Calculate the reliability gain δFi obtained from reinforcing edge i.
3. Calculate the quantities ri = δFi/ci and find the edge j with the

largest value of ri.
4. Construct a new network by replacing edge ej by a reliable one.

Calculate for it the B-P approximation F �
0 and set F0 := F �

0 .
5. Redefine the resource C := C − cj
6. IF C ≤ 0, or F0 = 0, STOP; else GOTO 2.

11.3 Using Component Importance Measures

In this section we demonstrate how component importance measures can be
used in designing a system with best reliability parameters. The following
example illustrates our approach.

Example 11.3.1. Consider the network shown on Fig. 11.5. It has 7 nodes
and 11 edges. We assume that edges are reliable and nodes 1,2,3,4,5 are
subject to failures. Nodes s, t are terminals. Network fails if there is no
connection between s and t.

Suppose that all nodes fail independently, and node probability to be
up is p. Suppose that we are able to replace two of the existing nodes by
another pair of more reliable nodes, each of which has reliability r, r > p.
Our task is to choose the “best” pair of nodes for this replacement in order
to maximize network reliability.

It is easy to establish, by means of a simple enumeration, that the net-
work has the following 13 UP states:

{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {2, 4, 5}, {3, 4, 5}, {1, 3, 4}, {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}.
Now we can write the formula for network UP probability R:

R = p5 + 5p4q + 6p3q2 + p2q3, (11.3.1)

where q = 1− p.
Suppose now that we replace nodes 1,2 for more reliable ones, with up
probability r.

Then it is easy to get the following formula for network reliability R12:

R12 = r2p3 + 3r2p2q + 3r2pq2 + r2q3 + 2rp3(1− r) (11.3.2)
+2rp2q(1− r) + p3(1− r)2.
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Figure 11.5: A network with reliable edges and unreliable nodes 1,2,3,4,5

Similarly, reinforcing nodes 3 and 4 (instead of 1,2) gives the reliability R34:

R34 = r2p3 + 3r2p2q + 2r2pq2 + 2rp3(1− r) + 3rp2q(1− r) (11.3.3)
+p2q(1− r)2 + p3(1− r)2.

We leave as an exercise to prove that if r > p then R12 > R34. It means
that reinforcing nodes 1,2 is preferable than reinforcing nodes 4,5.

On intuitive level, nodes 1,2 create the shortest path between s and t and
its reinforcement is apparently better than the reinforcement of any other
s− t path. In general, comparing reliability functions for all possible pair of
nodes is not a satisfactory method, even for small networks.#

Let us now formulate the problem considered in Example 11.3.1 in gen-
eral form. Suppose that k, 1 ≤ k ≤ n elements (nodes or edges) can be
simultaneously replaced by more reliable ones. The problem is to choose
the k candidates for the reinforcement in order to maximize the network
reliability.

The solution of this problem is not trivial and involves the notion of
joint importance measure. We will not investigate here this issue but instead
provide a well-working heuristic method. This method uses the notion of
BIM spectrum defined earlier in Chapter 10. For reader’s convenience we
remind some basic facts relevant to the BIM spectrum.

Definition 10.3.1
Denote by Zi,j the number of permutations satisfying the following two

properties:
(i) The network state constructed from the first i edges in the permutation
is an UP state;
(ii) Edge ej is among the first i edges of the permutation.
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The collection of Zi,j values, i = 1, 2, ..., n; j = 1, 2, ..., n, is called Birnbaum
Importance Measure spectrum:
BIM � S = {Zi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ n}.
Theorem 10.4.1.

Suppose we are given the BIM � S for our network. Let us fix two
indices α and β, β �= α, and the corresponding Zi,α and Zi,β values from the
BIM � S. Then

(i). If for all i, i = 1, 2, ..., n, Zi,α ≥ Zi,β , then BIMα ≥ BIMβ for all p
values.

(ii). Suppose that (i) does not take place, and let k be the maximal index
such that Zk,α �= Zk,β . Without loss of generality, assume that Zk,α > Zk,β .
Then there exists p0 such that for p ≥ p0 BIMα > BIMβ .♦
Let us turn now to the problem of finding the best candidates for replacement
and start with the case of replacing a single element. Suppose that the up
probability of each element equals p and for the more reliable element the
up probability is r. Let the two competing candidates for replacement be a
and b. Let us introduce the following notations:

1. Ra and Rb - network reliability after replacing the elements a and b,
accordingly.
2. Si - the number of network UP states with i elements being up and n− i
elements being down.
3. Xi - the number of network UP states with i elements being up so that
the element a is also up. Let Yi = Si −Xi. Let Di and Ti (Di + Ti = Si) -
be the same quantities for the element b.

Suppose that r > p. Replacing the elements a and b we get, accordingly:

Ra =
∑n

i=1 rp
i−1qn−iXi +

∑n
i=1 p

iqn−i−1(1− r)Yi,

Rb =
∑n

i=1 rp
i−1qn−iDi +

∑n
i=1 p

iqn−i−1(1− r)Ti.

Subtracting the second expression from the first, we obtain:
Ra −Rb =

∑n
i=1 p

i−1qn−i−1(Xi −Di)(r − p).
From the latter expression we see that if for all 1 ≤ i ≤ n the inequality
Xi ≥ Di holds, then replacing element a is preferable. It is worth to mention
that Xi (and also Di) are related to the BIM spectrum value for the element
a. Denote the corresponding value by Zi,a. Then

Xi =
Zi,a

i!(n− i)! . (11.3.4)
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If the inequality Xi ≥ Di does not hold for all i, then let m be the maximal
index such that Xm �= Dm and Xm ≥ Dm. Then, similarly to the proof of
the above mentioned theorem, it is possible to obtain that there exists p0

such that for p ≥ p0, Ra ≥ Rb.

The simultaneous replacement of k elements, k > 1, is more complicated
and it is related to the joint importance measure. In order to simplify the ex-
position for replacing several network components, we suggest the following
heuristic method.

Algorithm 11.3 - Heuristic-3
1. Estimate the BIM’s values for all elements.
2. Range the elements by their BIM’s values, from the “best”

to the “worst”.
3. Take the first “best” k elements and replace them by

more reliable ones.

Example 11.3.1. Consider the hypercube H3 network shown on Figure
11.6. It has 8 nodes and 12 edges. The nodes 1 and 6 are terminals. Edges
are reliable, all nodes, except the terminals fail. Suppose now that we want
replace two nodes by more reliable ones.

Compute the BIM spectrum by the algorithm from Section 10.3. It may
be verified that the nodes are ranked in the following order:
(node 2=node 5)>(node 4=node 8)>(node 3= node 7).

1 2

34 5 6

7 8

Figure 11.6: Hypercube H3 network, nodes 1 and 6 are terminals

That is, the most important are the nodes 2 and 5, and so on. By the
above recommended heuristic method, the best pair of nodes for reinforce-
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ment is (2, 5), which might seem obvious from Fig. 11.6. Computations
which are not presented here confirm the reliability growth as the result of
node replacement corresponds to the nodes ranking. For example, suppose
that the node up probability equals 0.6. Then network reliability (computed
by CMC) equals R = 0.889. If we replace the nodes 2 and 5 by more reliable,
say with p2 = p5 = 0.8, then we get R = 0.971. Replacing nodes 2 and 4
gives reliability R = 0.952, replacing nodes 3 and 7 gives R = 0.894.#

Remark. We can look at the previous example from a more general point
of view. Suppose that in the hypercube network H3 edges are reliable and
nodes are subject to failure. We have to locate optimally four terminals at
the hypercube nodes. By technical reasons, nodes 1 and 6 are already chosen
as terminals. The problem is to locate optimally two remaining terminals.
It obviously reduces to the previously considered situation with r = 1. We
know the answer: the terminals must be placed at the nodes 2 and 5.#

11.4 Problems and Exercises

1. Prove that R12 > R34 for r > p, see (11.3.2), (11.3.3).

2. Prove, using the definition of the partial derivative of the reliability
function ∂R/∂pi, (Section 10.1), that the maximal gain in reliability is
attained by replacing component with P (up) = p by a component with
P (up) = r = p+ δ corresponding to the maximal partial derivative.

3. Design a computer program to implement the Algorithm Heuristic-1 for
the triangular network shown on Fig. 11.2.

4. The network has 5 nodes numbered 1,2,3,4,5 and edges (1,2), (2,3),
(3,4), (4,5), and (5,1). Edges do not fail, nodes 1 and 3 are terminals. It is
necessary to locate the third terminal in one of the nodes 2, 4, or 5. q is the
failure probability of a non-terminal node.
a) What is the best location of the third terminal providing maximal relia-
bility?
b) Solve a similar problem for a six node circular network in which two
terminals are already located at the nodes 1 and 4.



Chapter 12

Dynamic Networks and
Their Reliability Parameters

12.1 Introduction: Network Exit Time

We say that a network is dynamic if its elements (nodes or edges or both)
“exist in time”, i.e. change their state in time. More precisely, we associate
with each element (unit) u a binary function ξt(u), t ≥ 0, with values 1
and 0 corresponding to the unit being up and down, respectively. Assume
further that each ξt(u) is a Markov process, i.e. ξt(u) stays in the up and
down states exponentially distributed random times with parameters f(u)
and r(u), respectively. f(u) is termed the failure rate and r(u) - the repair
rate.

The whole network is described by the set of random binary variables
Vt = {u ∈ U : ξt(u) = 1}, representing the network state at moment t.
Suppose that the network is UP at t = 0. The time τ of the first transition
of the network into its DOWN state is called the exit time:

τ = inf(s ≥ 0 : Vs ∈ DOWN). (12.1.1)

The main object of our study in this chapter is the distribution of the tran-
sition time φτ (t). φτ (t) = P (τ ≤ t) depends, of course, on the particular
state j ∈ UP of the network at time t = 0. We will try to find bounds from
below and from above for φτ (t).

Historically, the first step in this direction was made by considering the
system at t = 0 in equilibrium UP state. Namely, suppose that

(i) at time t = 0 the network is in some of its UP states;

165
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(ii) the system is already running for a very long time (formally, since
t = −∞);

(iii) nothing else is known about the behavior of the system before t = 0.

Then, assuming that the UP states are numbered as 1, 2, .., j, ..., n, it follows
from the ergodic renewal theory that the probability that the system is at
t = 0 in particular state i equals

perg
i =

pi∑n
j=1 pj

, (12.1.2)

where pi is the stationary probability of the state i ∈ UP . This probability
(12.1.2) is called the ergodic probability of state i.

The following very important fact was established by Keilson [32].

1− φτ (t) = P (τ > t) ≥ exp(−t/μN(UP )), (12.1.3)

where μN(UP ) is the mean ergodic sojourn time in UP . (A similar in-
equality is valid for the ergodic exit time from the DOWN set, with obvi-
ous changes in the initial state distribution and with replacing μN(UP ) by
μN(DOWN).)

The inequality (12.1.3) has high theoretical value, but it was not used in
practice because finding the mean up (or down) time for a stochastic system
is by itself a very difficult problem.

An efficient approach to computing μN(UP ) and μN(DOWN) (see Sec-
tion 9.3), is based on using formulae (9.3.1) and (9.3.2):

(i) Av(N) = R(N) = μN(UP )/(μN(UP ) + μN(DOWN)),
(ii) Φ(N) = 1/(μN(UP ) + μN(DOWN)),

where R(N) is the static network reliability and Φ(N) is the stationary
transition rate. As it was described in Chapter 9, both these quantities can
be efficiently calculated via Lomonosov’s turnip.

Keilson’s inequality is a simple and often quite accurate estimate of the
exit time distribution function. Its main drawback is that it is only one-
sided. The next section describes a general method of obtaining two-sided
bounds on φ(t).

12.2 Bounds on the Network Exit Time

In this section we give a short description of an efficient method [46], of ob-
taining two-sided bounds for the exit time distribution function for networks
with all-terminal connectivity criterion. Our method is based on using the
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Lomonosov’s turnip, a technique invented for calculating reliability param-
eters of static networks.

Before we describe our method in general form, let us consider an exam-
ple which illustrates the main idea.
Example 12.2.1. Consider the network given on the Fig. 12.1(a). All nodes
are terminals, the edges are subject to failures and subsequent renewals.
Suppose that at t = 0, all edges are down. Suppose also that the following
true process (Fig. 12.1(b)) of network transition from DOWN to UP is
developing as follows.

The changes in edge state appear at the instants t1 < t2 < ... < t7 < t8.
At the moments t1, t2, t3, t4, t6, t8 the edges 4, 6, 2, 7, 1, 5, respectively, are
getting up, and at the moments t5, t7 the edges 4, 2, respectively, are getting
down. The network therefore becomes UP at the moment t8.

Define now an artificial process (we call it red process) in which all
events of edges going down are ignored. This process is shown on the Fig.
12.1(c).

Since the down-events are ignored, the first random moment when the
red process goes up will be t6. Denote it by σ1 (σ1 = t6) and call it the first
guess of the exit time τ .

To demonstrate the next guess, let us start a new red process from the
true DOWN state, at the moment σ1 = t6. We see that at this moment
the edges 1,2,6,7 are up in the true process. Getting down of edge 2 at
the moment t7 is ignored. Finally, at the moment t8 both the true and the
red processes become UP . Clearly, the moment t8 is the exit time. Denote
σ2 = t8 and call it the second guess of the exit time τ .

We will use the above described random moments for constructing the
upper and lower bounds.

Let us use the red process for constructing the first lower and first upper
bound. As in the above example we will deal with the exit time fromDOWN
to UP . Let σ1 be the first guess of the exit time (we call it the convergence
time of the red process starting at the equilibrium moment t = 0). Denote
by ϕ(1)(t) = P (σ1 ≤ t) the distribution function of the convergence time of
the red process. Note that from the convergence of the true process follows
the convergence of the first red process. We have therefore the following
inequality:

ϕ(1)(t) ≥ P (τ ≤ t) = φτ (t), (12.2.1)

which is the first upper bound for the distribution function of the exit time.
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Figure 12.1: The network (a), the “true” process (b), the red process, first
guess (c), the red process, second guess (d)
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Table 12.1: Bounds on exit time for dodecahedron, T=V

q R(q) λt Ψ(1) KB φ(1)

0.5 0.024 1.0 0.08986 0.026307 0.85027
0.5 0.08118 0.15201 0.44973
0.25 0.06601 0.09045 0.17594
0.1 0.04642 0.05135 0.06431

0.3 0.462 1.0 0.75499 0.93421 0.96856
0.5 0.71222 0.81185 0.85498
0.25 0.64269 0.68277 0.70647
0.10 0.55499 0.56392 0.56952

0.15 0.919 1.0 0.99029 0.99619 0.99630
0.5 0.97858 0.98242 0.98272
0.25 0.96053 0.96225 0.96250
0.10 0.94028 0.94068 0.94081

0.05 0.997 1.0 0.99986 0.99987 0.99987
0.5 0.99940 0.99941 0.99941
0.25 0.99872 0.99873 0.99872
0.1 0.99798 0.99800 0.99800

Consider now the following event At = {(τ ≤ t)∩(σ1 = t)}, which means
that the first convergence moment of the red process coincides with the exit
time of the true process. Denote the probability of At by ψ(1)(t). Obviously,
that

ψ(1)(t) ≤ φτ (t), (12.2.2)

since the exit time may coincide with any of the subsequent convergence
moments of the red process. Thus we arrive at the lower bound for φτ (t).

Let us turn now to the computational aspects of the upper bound ϕ(1)(t).
Note that in the red process, unit u at t = 0 is down with probability
q(u) = λ(u)/(λ(u) + μ(u)). So, in the red process each unit u will be
down at the moment t with probability q(u)e−μt. From this we conclude
that the distribution function ϕ(1)(t) coincides with the reliability of the
static network, where each unit fails with the above defined probability
q(u): ϕ(1)(t) = R(N). Therefore, the upper bound may be computed by
using the Lomonosov’s turnip, see Chapter 9.

We omit here the computational aspects of the lower bound ψ(1)(t),
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because they are more complicated. Note that also ψ(1)(t) was computed
by using the Lomonosov’s turnip.

Remark. It has been proved in [46] that there is a way to iterate the
red process and to obtain a monotone increasing sequence of lower bounds
for φτ (t) and a monotone decreasing sequence of upper bounds on φτ (t).
Moreover, it has been proved that the distance between the m-th lower
bound and the m-th upper bound has magnitude of O(tm+1) as t→ 0. Part
of these bounds can be calculated using the “turnip technology”. We omit
here the details of the corresponding algorithms. The following numerical
example demonstrates that for reliable networks, the first upper and the
first lower bound on the exit time distribution are already very close to each
other.#

Example 12.2.2: Dodecahedron (see Fig. 4.2), all nodes are terminals,
edges are unreliable.

Table 12.1 presents simulation results of lower and upper bound for φτ (t).
We assume that all edges are identical, i.e. they have the same failure
rate λ(u) = λ and the same repair rate μ(u) = μ (and therefore the same
equilibrium probability of being down: q = λ/(λ+ μ).) The network static
reliability is denoted by R(q). KB is the Keilson bound, ϕ(1) is the upper
bound, and ψ(1) is the lower bound. All bounds were computed for different
values of λt. The value t was fixed, t = 1 and the values of λ and q vary.

We may certainly conclude that the pair [ψ(1), ϕ(1)] provides a good
estimate for the exit time distribution, even for not very reliable network.
The total number of iterations was chosen to guarantee the relative error of
the estimate within 1-2%. Taking 10,000 runs was enough for that purpose.



Chapter 13

Reliability of Communication
Networks: Numerical
Examples

13.1 Colbourn and Harms’ Ladder-type Network

1. Ladder network, static case. Colbourn & Harms [7] investigated
all-terminal reliability of a ladder-type computer-communication network
shown on Figure 13.1

Figure 13.1: Colbourn - Harms network, all nodes are terminals

The unreliable elements are the edges. It was assumed that all edges
are independent and have equal up probabilities p(e) ranging from 0.1 to
0.99. Using the best up-to-date known lower (LB) and upper (UB) bounds,
Colbourn & Harms compared these bounds with their exact analytic results
R0(G, p). Table 13.1, columns 2 and 3 present their lower and upper bounds
for various p values given in column 1. Our simulation results R̂MC(G, p)
obtained by the turnip algorithm (Section 9.2) are presented in column 5.
They were obtained by averaging N independent replications, column 6. It
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Table 13.1: Colbourn & Harms Bounds and Monte-Carlo Results

1 2 3 4 5 6
p(e) LB UB R0(G, p) RMC(G, p) N

0.5 0.1052 0.2049 0.170 0.1578 100
0.6 0.2423 0.4415 0.3841 0.3648 100
0.7 0.45 0.7081 0.6409 0.6216 100
0.8 0.7081 0.8712 0.8548 0.8426 100
0.9 0.9302 0.9733 0.9710 0.9675 100
0.94 0.9791 0.9913 0.9908 0.9895 100
0.96 0.9922 0.9964 0.9962 0.9962 1000
0.98 0.99855 0.99914 0.99913 0.99912 1000
0.99 0.999714 0.999793 0.999791 0.999788 1000

is worth noting that in most cases, a relatively small number of replications
N was needed to obtain an estimate R̂MC(G, p) which lies within fairly tight
bounds LB and UB.

2. Ladder network, renewable edges. Let us assume for the above
considered ladder network that each edge e has failure rate λ(e) and repair
rate μ(e) = 1, so that edge e has stationary up probability pup(e) = 1/(1 +
λ(e)). The parameter λ(e) was determined for each value of p(e) given in
Colbourn & Harms [7] to satisfy the equality p(e) = 1/(1 + λ(e)).

When edges go down and up, similar process takes place for the whole
network. Denote by μN(UP ) and μN(DOWN) the average UP and DOWN
intervals for the network. We have already mentioned on several occasions
that in order to find these intervals it is necessary to calculate the so-called
stationary transition rate Φ(N). As it was shown in subsection 9.3.4, the
estimation of Φ can be carried out by the TurnipFlow algorithm.

Table 13.2 presents the simulation results for various p(e) values (column
1.) The estimates of the network reliability R̂MC(G, p) are given in column
2, the transition rate estimates Φ̂ and the corresponding estimates T̂UP and
T̂DOWN are in columns 5, 6, and 7, respectively. Column 4 gives the relative
error δ in % of estimating Φ.

It is seen from Table 13.2, that the relative error lies within 1.3-8%, which
is a relatively small value for rather moderate number of replications N =
100−1000 (column 3). As the network edges become more reliable (p→ 1),
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Table 13.2: Ladder Network: Reliability, Transition Rate,
Mean UP and DOWN Times

1 2 3 4 5 6 7
p(e) R̂MC(G, p) N δ% Φ̂ μ̂N(UP ) μ̂N(DOWN)
0.5 0.1578 100 2.5 0.808 0.195 1.042
0.6 0.3648 100 1.3 0.977 0.373 0.649
0.7 0.6216 100 0.6 0.760 0.818 0.498
0.9 0.9675 100 6 0.0732 13.22 0.444
0.94 0.9895 100 8 0.0228 43.33 0.46
0.96 0.9962 1000 3.3 0.00821 121.4 0.465
0.98 0.99912 1000 4 0.00184 543.3 0.481
0.99 0.999788 1000 4 0.000433 2308 0.490

μN(DOWN) approaches 0.5. This can be explained by the fact that for R
near 1, the dominant network failures are “cutting off” the upper-left or the
lower-right nodes, and thus the corresponding repair rate is ≈ 2μ(e) = 2.

Table 13.3: Reliability of s− t Connectivity of a Ladder Network

1 2 3 4 5
λ(e) Q̂MC Φ̂ μ̂N(UP ) μ̂N(DOWN)
10 0.02427 4.818 0.203 0.00504
20 0.05458 11.41 0.0829 0.00478
100 0.69608 106.9 0.00284 0.00651
200 0.69794 107.0 0.00283 0.00654
400 0.69937 107.4 0.00280 0.00651
600 0.69974 107.4 0.00280 0.00651
1000 0.70016 107.4 0.00279 0.00652

3. s−t connectivity of a ladder network. Now we investigate the ladder
network shown on Fig. 13.1 for s − t connectivity assuming that only two
nodes are terminals: s in the left upper corner and t in the right lower corner.
It was assumed that μ(e) = 100 for all edges, λ(e) = 10 for vertical and
λ(e) = 20 for diagonal edges. The failure rate for horizontal edges changes
from 10 to 1000, see column 1 in Table 13.3. The estimates of network failure
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probability Q̂MC are given in column 2. Column 3 presents the estimate
of transition rate Φ̂. All MC estimates were obtained for N = 10, 000
replications. The corresponding relative errors for Q̂ and Φ̂ are quite small
and lie below 1%. Columns 4 and 5 present the MC estimates of μN(UP )
and μN(DOWN). The estimation of Φ was made, similarly to the previous
example, using the TurnipFlow algorithm.
As λ(e) grows, the prevalent connection mode between s and t becomes
a path without horizontal edges. Thus, with large probability, the s − t
connection is restored by renewing a single diagonal or vertical edge. This
explains the fact that μN(DOWN)lies below [μ(e)]−1 = 0.01.

Table 13.4: s− t Connectivity: 36 Nodes, 85 Edges, N=10,000

1 2 3 4 5
qv qh qdiag Q̂s−t QBP (s− t)

0.05 0.05 0.05 0.000271 0.00025
0.05 0.05 0.1 0.000483 0.00050
0.05 0.05 0.4 0.00189 0.002
0.05 0.05 1.0 0.00530 0.005

4. s− t connectivity of a rectangular network.
Table 13.4 presents reliability simulation results of the s− t connectivity for
a 36-node, 85-edge rectangular network shown on Fig. 13.2.

qv, qh, qdiag are the edge failure probabilities for vertical, horizontal, and
diagonal edges, respectively. The 4-th column presents network failure prob-
ability Q̂(s−t), and the fifth column - its Burtin-Pittel approximation, which
turns out to be quite accurate. Note that this network has two minimal size
min-cuts of three edges separating s and t from other nodes.

13.2 Integrated Communication Network (ICN)

13.2.1 General description

In this section we consider a more realistic example of an integrated commu-
nication network (ICN) designed for efficient coordination of several smaller
networks.

A fast growing construction company has several construction sites spread
over a large territory. These sites are represented by a network shown in the
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s

t

Figure 13.2: Rectangular network with 36 nodes and 85 edges. s, t are
terminals, nodes do not fail

right upper corner of Fig. 13.3. There are nine such sites denoted as nodes
of the network, numbered from 9 to 17. Node 13 represents the headquar-
ter of the construction company. This company works in cooperation with
three other organizations: the logistic material supply company LMS, the
equipment repair and maintenance depot network RMD. and a computer
network CN. LMS, RMD, and CN are themselves a network-type organi-
zation with branches located in different cities. Schematically, the LMS is
represented by a local network shown on the left lower part of Fig. 13.3,
RMD and CN are shown in the upper left part of Fig. 13.3 and right lower
corner, respectively. The main offices of the LMS, CN, and RMD are pre-
sented by nodes 22 (of LMS), 1 and 8 (of RMD), and 27, and 34 of CN.
Within each local network, the construction sites, local depot, computer
centers, and maintenance and repair centers are connected by communica-
tion channels represented as network edges. In order to increase the overall
efficiency of the construction works, the construction company decides to
unite all companies into one Integrated Communication Network (ICN) by
providing reliable connection between the headquarters (main offices) of all
four specialized local companies, as shown on Fig. 13.3. As a whole, the
ICN is now represented by a 34-node 54-edge network.

All communication channels (edges) are duplicated by telephone and ca-
ble connection, so that the edges are considered as being absolutely reliable.
The network elements subject to failure are the nodes.

By the definition, the ICN is operating (i.e. is in the UP state) if there
is provided the terminal connectivity between the headquarters and main
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offices 1, 8, 13, 22, 27, 34.
In our terms, these nodes are declared to be terminals (which do not

fail) and the network failure (the DOWN state) is defined as the loss of the
T -connectivity, T = {1, 8, 13, 22, 27, 34}.

13.2.2 ICN reliability

The D-spectrum. Our first task is estimating the D-spectrum of the ICN,
see Chapter 8. We have simulated N = 1, 000, 000 random permutations of
28=34-6 nodes subject to failure and remembered for each permutation the
minimal number of failed nodes causing the network failure. The simulation
results are presented in Table 13.5. The minimal size min-cut has dimension
3 and f3 = 0.010969.

Using formula (8.5.1) we find out that the number of minimal size min-
cuts equals

W = f3 · 28!/3!25! = 35.9336.

The examination of all permutations leading to network failure on the third
node failure reveals 36 such 3-node sets, which is in excellent agreement with
the above value of W . Visual examination of the ICN scheme in order to
find out all min-cuts of size 3 is not a trivial task.

Table 13.5: D-spectrum of the ICN

f3 f4 f5 f6 f7 f8

0.010969 0.035790 0.071126 0.108473 0.137634 0.149010
f9 f10 f11 f12 f13 f14

0.141963 0.120598 0.091331 0.061901 0.037152 0.019757
f15 f16 f17 f18 f19 f20

0.0009101 0.003608 0.001189 0.000329 0.000063 0.000006

Reliability and BP-approximation. Now, having the D-spectrum and
using formula (8.4.4) we calculated the network failure probability Q(G, p)
as a function of node reliability p. The results are presented in Table 13.6.
R̂(G, p) = 1− Q̂(G, p) (column 3) is the estimate of network reliability, and
QBP (column 4) is the Burtin-Pittel approximation to the network failure
probability computed by the formula

QBP = W · (1− p)3. (13.2.1)
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Figure 13.3: Scheme of the ICN: 34 nodes, 54 edges. Bold nodes are termi-
nals

As it is seen from the Table 13.6, for 1− p = q ≤ 0.1, this approximation is
rather accurate, with relative error not exceeding 4%.

If the designers of the ICN want to guarantee that the network’s UP
probability R ≥ 0.9316, the node reliability must be p ≥ 0.875.

How accurate is our D-spectrum based estimates of network reliability?
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Table 13.6: ICN Reliability

1 2 3 4
p Q̂(G, p) R̂(G, p) QBP

0.50 0.943667 0.056333 —–
0.60 0.80534 0.19466 —–
0.70 0.54365 0.45635 —–
0.8 0.233983 0.76617 —–
0.85 0.11258 0.88742
0.875 0.068433 0.931567 0.07031
0.9 0.036338 0.963662 0.03600
0.92 0.018965 0.981035 0.01843
0.93 0.012781 0.987219 0.012335
0.94 0.008077 0.991923 0.007776
0.95 0.0046780 0.995322 0.004500
0.99 0.0000364 0.999964 0.0000360

We used an upper bound for the variance of the reliability estimate which
is based on formula (8.4.6). Delete the second sum in the expression for the
variance and take M = 106. For p = 0.95 the standard deviation of the
reliability estimate σ̂R ≤ 2 · 10−5, for p = 0.99 σ̂R ≤ 3 · 10−7.

Remark. We remind the reader that Q(G, p) is computed using formula
(8.5.5), where α = 1−p, or using an equivalent formula (8.4.5), with F (t) =
1− p. The expression Q =

∑m
x=1C(x)(1− p)x · p(m−x) is the network static

failure probability for the case that all components fail independently and
have equal failure probability q = 1− p.

Obviously, system reliability R(G, p) = 1 − Q(G, p) must be a nonde-
creasing function of component reliability p. We can see it from columns
1 and 3 of Table 13.6. Then obviously if p ∈ [pmin, pmax], then system
reliability R(G, p) ∈ [R(G, pmin), R(G, pmax].

Moreover, these bounds are valid if component have different reliability
within the interval [pmin, pmax]. For example, some components have p =
0.9, some - p = 0.91 and the rest - p = 0.92. Then system reliability will be
in the interval [0.963662, 0.981035], see Table 13.6.#
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13.2.3 Network reinforcement

BP-approximation based heuristics. Our next task will be improving
ICN reliability by reinforcing several nodes, in the spirit of the approach
described in Chapter 11. Let us make the following assumptions.

1) We are able to reinforce at most 2 nodes;
2) A reinforced node becomes absolutely reliable.

Table 13.7 shows the node participation in the min-cuts (all cuts are of
size 3). In total there are 36 cuts. Line 20, for example, tells that the cut
number 20 consists of nodes (28, 22, 17).

It follows from Table 13.7 that each of the nodes 3, 4, 6, 29, 31 is involved
in 9 cuts. Nodes 11, 17, 18, 20, 26, 30 are involved in 8 cuts, Node 9 is a
member of 7 cuts, and several other nodes are involved in a single cut.

The principal observation is the following: reinforcing a single node, say
node 3, would reduce the number of min-cuts by 9, and thus, approximately,
increase the reliability by δR ≈ 9(1− p)3, see Section 11.2.

It is clear that the best single candidate for reinforcement is one of the
nodes 3, 4, 6, 29, 31. Suppose we reinforce node 3. Then we will be left with
36-9=27 cuts. Now eliminate all cuts containing node 3 from the list of 36
cuts. We have to repeat the whole procedure for the remaining cuts since
there might be a considerable overlap of min-cuts, and eliminating all cuts
with node 3 changes the contribution of the remaining nodes.

Let us spare rather elementary operations and present the final result.
There are two most prospective nodes for reinforcement: node 4 belonging
to 9 cuts and node 29 belonging also to 9 cuts after all cuts with node 4 are
reinforced.

In total, our gain in system reliability will be

δR ≈ 18 · (1− p)3

Suppose we initially set p = 0.9 for each node and thus the ICN reliability
is 0.963662 (see Table 13.6). Suppose we carry out the above described
reinforcement of two nodes 4 and 29. They together reinforce 18 min-cuts.
The gain in reliability will be δR ≈ 18 ·0.13 = 0.018, and the ICN reliability
will be R ≈ 0.98166. This is a rather considerable gain which otherwise
might have been achieved by increasing all node reliability from p = 0.9
to p ≈ 0.922. We should remember that all the above calculations are
based on B-P approximation which are not 100% accurate and can produce
an error. In our situation, the true value of ICN reliability obtained for
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Table 13.7: Node participation in min-cuts

Cut No Node No Node No Node No
1 (11) (18) (26)
2 (26) (29) (31)
3 (29) (17) (30)
4 (4) (6) (18)
5 (29) (9) (3)
6 (30) (3) (11)
7 (30) (11) (18)
8 (20) (30) (3)
9 (5) (2) (33)
10 (33) (32) (30)
11 (9) (3) (4)
12 (20) (9) (17)
13 (29) (9) (18)
14 (30) (18) (20)
15 (4) (6) (7)
16 (6) (20) (17)
17 (9) (11) (31)
18 (29) (31) (28)
19 (17) (30) (4)
20 (28) (22) (17)
21 (29) (30) (31)
22 (20) (31) (9)
23 (19) (9) (11)
24 (26) (29) (17)
25 (29) (6) (3)
26 (17) (11) (6)
27 (18) (29) (6)
28 (30) (31) (4)
29 (6) (20) (31)
30 (26) (4) (31)
31 (17) (4) (26)
32 (26) (20) (18)
33 (26) (20) (18)
34 (6) (4) (3)
35 (18) (4) (9)
36 (11) (26) (3)
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all node reliability p=0.922 is R∗ = 0.982141, which is rather close to our
approximation R = 0.981166.

Table 13.8: ICN Node BIM Ranking

Node number Node Rank
4,29 1
3,30 2
6,31 3

9,17,18,26 4
11,20 5

10,14,19,23 6
2,12,16,21,25,32 7

5,7,28,33 8
15,24 9

BIM-based heuristics. Let us now consider the node reinforcement policy
based on their importance, in the spirit of Section 11.3. The cost factor will
be ignored or, equivalently, assumed to be the same for all nodes. As it was
suggested, for the case of replacing one element (node), the algorithm is as
follows.

(1) Construct BIM’s spectrum for all nodes.
(2) Range the elements by their spectrum, from the “best” to the “worst”.
(3) Replace the most important appropriate element by more reliable.

The word “appropriate” in (3) reflects the situation in which some nodes
can not be reinforced by some reasons. For example, in the ICN only nodes
from LMS are allowed to be reinforced. In this case, after ranging the
nodes, we choose for replacement the node with the highest BIM in the set
(18, 19, 20, 21, 23, 24, 25, 26).

The ICN node ranks are presented in Table 13.8. This ranking is not
“absolute” in the sense that the same type of inequality (> or <) for a pair
of nodes not necessarily holds true for all i (for more details see Chapter
10).
Suppose that the up probability of all nodes is p = 0.85. The ICN reliability
in this case equals R ≈ 0.887. Table 13.9 presents the ICN reliability after
reinforcing node k by a node with higher reliability pr. For example, replac-
ing node 4 by a node with pr = 0.9 gives R = 0.895. We see from Table 13.9
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Table 13.9: ICN Reliability After Reinforcing
a Node k

k pr = 0.9 pr = 0.95 pr = 0.999
4 0.895 0.902 0.910
29 0.895 0.902 0.910
9 0.894 0.900 0.906
18 0.894 0.900 0.907
10 0.889 0.891 0.892
14 0.890 0.891 0.893

Table 13.10: ICN Reliability After Pairwise Replacement

Node pair (k,m) pk = pm = 0.90 pk = pm = 0.95 pk = pm = 0.999
(4,29) 0.903 0.920 0.934
(3,31) 0.903 0.917 0.932
(3,18) 0.902 0.916 0.933
(9,17) 0.900 0.912 0.923
(18,26) 0.900 0.912 0.923
(10,14) 0.891 0.893 0.896
(16,21) 0.890 0.891 0.894

that reinforcing node with higher rank is always preferable.

For a pair of nodes we use the following heuristic: reinforce the two nodes
with maximal ranks. Suppose that all node up probability is 0.85.

Table 13.10 presents the ICN reliability after replacing a pair of nodes
by more reliable ones.

In the first row we see the effect of replacing two most “important”
nodes, 4 and 29. Table 13.10 demonstrates that for pairwise replacement our
heuristic works quite well: the best results are obtained for a simultaneous
replacement of the two nodes with highest BIM’s.

Gradient-based heuristics.
Suppose now that the node up probabilities are not equal. For example, the
probabilities are the following.
The RMD node (2,3,4,5,6,7) up probabilities are equal 0.6.
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Table 13.11: Node Replacement by Gradient Algorithm

k δp 1st : ∂R
∂pk

2nd : ∂R
∂pk

3rd : ∂R
∂pk

4th : ∂R
∂pk

5th : ∂R
∂pk

3 0.35 0.250 — — — —
4 0.35 0.242 0.246 — — —
6 0.35 0.191 0.208 0.152 0.103 —
9 0.25 0.157 0.147 0.128 0.082 0.123
17 0.25 0.209 0.253 0.252 — —
18 0.15 0.151 0.239 0.194 0.181 0.169
26 0.15 0.204 0.196 0.142 0.138 0.133
29 0.05 0.169 0.135 0.215 0.199 0.156
30 0.05 0.185 0.179 0.144 0.117 0.132
31 0.05 0.171 0.214 0.185 0.293 0.195

The CC (9,10,11,12,14,15,16,17) up probabilities are equal 0.7.
The LMS node (18,19,20,21,23,24,25,26) up probabilities are equal 0.8.
The remaining nodes (28,29,30,31,32,33) CN have up probability equal 0.9.

Suppose that it is decided to replace five nodes for more reliable, with
up probability 0.95. The question is which nodes are the best candidates for
replacement to provide the maximal gain in reliability.

We suggest the following heuristic procedure based on component gra-
dient, see Chapters 9,11.

(1). Compute component gradient for the initial network reliability
by the algorithm in 9.3.5.

(2). Choose the node having the maximal product of the partial derivative
times the node reliability increase, i.e. the maximal value of
δR = δpk · ∂R

∂pk
,

where δpk = 0.95− pk and pk is the node k reliability.
(3). Set the reliability of the node found in (2) p = 0.95.
(4). Repeat (1-3) 5 times.

Table 13.11 presents the partial derivatives for some nodes (including the
chosen nodes) on all computation stages. Column j, j = 1, 2, 3, 4, 5, presents
the partial derivatives on the j-th step of the algorithm.

We see from the table that the nodes chosen for reinforcement were: 3,
4, 17, 6, 9. The reliability of the reinforced network is now 0.904, so that
the gain in reliability equals δR ≈ 0.904 − 0.571 = 0.333. To compare this
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result with other possibilities, let us take, for example, 5 nodes with highest
BIM ranks (Table 13.8): 4, 29, 3, 30, 6. In this case the appropriate network
reliability equals R ≈ 0.839.
Remark. If for some node r ∂R/∂pr = 0, this means that node r does
not affect the reliability of ICN terminal connectivity. Such nodes in our
network are 15 and 24.



Appendix A: O(·) and o(·)
symbols

When we investigate the behavior of function f(x) as x → 0 or x → ∞, it
is often desirable to compare the order of magnitude of f(x) with the order
of magnitude of some simple and/or known function g(x). In this case we
use the following notation.

1). If |f(x)
g(x) | remains bounded as x tends to its limit, we write f(x) =

O(g(x)), and say that the order of f(x) is not greater in magnitude than
the order of g(x).

2). If |f(x)
g(x) | tends to zero, we write f(x) = o(g(x)) and say that f(x) has

the order of magnitude smaller than g(x).

3). If f(x)
g(x) tends to one, then we write f(x) ∼ g(x) and say that f(x) is

asymptotically equal g(x).

4). We also use the notation O(1) to denote any function which does not
exceed a certain constant, and the notation o(1) to denote an expression (or
function) which tends to zero.

All the above notations O(f(x)), o(f(x)), O(1), o(1) have no meaning if
we did not specify exactly the situation with the limiting behavior of x. We
should tell exactly what happens with x, like x tends to zero, to infinity, etc.

Let us consider several examples.

1). f(q) = q2(1− q)4, g(q) = q2 and q → 0. Then f(q) = O(q2);
It is also correct to say that f(q) = O(g(q)), or f(q) ∼ g(q) as q → 0.

2). Suppose A(x) = a0 + a1x + a2x
2, B(x) = b0 + b1x, all coefficients

185
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ai, bi are not zeros.
Then R(x) = A(x)

B(x) = O(1) as x tends to zero, and is O(x) as x goes to
+∞.

3). Let f(x) = 1− exp[−λx], x→ 0, λ > 0 is fixed. Then f(x) = O(λx).
If g(x) = exp[−λx], then g(x) = 1− λx+ o(x) when x→ 0.



Appendix B: Convolution of
exponentials

In this appendix we will consider the exact analytic expression for the con-
volution of r exponential distributions with parameters Λi, i = 0, ..., r − 1.
It will be assumed that

Λ0 > Λ1 > Λ2 > . . . > Λr−1. (1)

The fact that we take without proof is the following: If τi ∼ Exp(Λi),
i = 0, 1, ..., r − 1, then

P (τ0 + τ1 + ...+ τr−1 ≤ t) = 1−
r∑

k=1

Ar,ke
−Λk−1t, (2)

and

r∑
k=1

Ar,k = 1. (3)

The last formula follows from the fact the the convolution equals zero
when we substitute t = 0 into (2).

The coefficients Ar,k are found by the following recursive procedure.

A1,1 = 1; (4)

Ar+1,k = Ar,k · Λr

Λr − Λk−1
, k = 1, 2, ..., r;

Ar+1,r+1 = 1−
r∑

k=1

Ar+1,k.
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Following the above recursive procedure, we would arrive at the following
formula well-known in literature (see, e.g. Ross [44], p.299):

P (
r−1∑
i=0

τi ≤ t) = 1−
r−1∑
i=0

e−Λit
∏
j �=i

Λj

Λj − Λi
. (5)

Example. Let us consider a convolution of r = 4 exponentials with param-
eters Λ0 = 4,Λ1 = 3,Λ2 = 2,Λ3 = 1.

First,
P (τ0 ≤ t) = 1− eΛ0t.

Next
P (τ0 + τ1 ≤ t) = 1−A2,1e

−4t −A2,2e
−3t = 1−A2,1e

−Λ0t −A2,2e
−Λ1t.

By (4), A2,1 = A1,1Λ1/(Λ1 − Λ0) = −3. By (2), A2,2 = 1−A1,1 = 4.
So, the convolution of the first two exponentials has the expression:

P (τ0 + τ1 ≤ t) = 1 + 3e−Λ0t − 4e−Λ1t. (6)

Now P (τ0 + τ1 + τ2 ≤ t) = 1−A3,1e
−4t −A3,2e

−3t −A3,1e
−2t and

A3,1 = A2,1Λ2/(Λ2 − Λ0) = 3 and
A3,2 = A2,2Λ2/(Λ2 − Λ1) = −8,
A3,3 = 1−A3,1 −A3,2 = 6.

So, the convolution of the first three exponentials has the expression

P (τ0 + τ1 + τ2 ≤ t) = 1− 3e−Λ0t + 8e−Λ1t − 6e−Λ2t. (7)

Finally,
P (τ0 + τ1 + τ2 + τ3 ≤ t) = 1−A4,1e

−4t −A4,2e
−3t −A4,3e

−2t −A4,4e
−t.

A4,1 = A3,1Λ3/(Λ3 − Λ0) = −1,
A4,2 = A3,2Λ3/(Λ3 − Λ1) = 4,
A4,3 = A3,3Λ3/(Λ3 − Λ2) = −6, and
A4,4 = 1−A4,1 −A4,2 −A4,3 = 4.

The convolution of four exponentials has the expression

P (τ0 + ...+ τ3 ≤ t) = 1 + e−Λ0t − 4e−Λ1t + 6e−Λ2t − 4e−Λ3t. (8)

Remark. We see from the above example that in the course of finding
the convolution of the first r exponentials we obtain the convolution of the
first r − 1 exponentials. This property is very convenient for calculations
appearing in the turnip-flow algorithm since there we may need to find
expressions of type P (

∑r
i=0 τi ≤ t)− P (

∑r+1
i=0 τi ≤ t).#



Appendix C: Glossary of
D-spectra

Table 1 presents edge D-spectra for a family of complete graphs with i nodes,
denoted as Ki, i = 5, 6, 7, 8, 9, for all-node connectivity criterion. The data
ware based on 105 − 107 simulation runs. For example, if we want to find
the 10-th element f10 of the spectrum for K9, we look at the last column,
row r = 10 and find f10 = 0.0000108

Table 2 presents edge D-spectra for a dodecahedron network (see Fig. 4.2).
The first column is for the all node connectivity, the second for the terminal
set T = (1, 20), and the third for the terminal set T = (1, 7, 8, 11, 16).

Table 3 presents the D-spectra for butterfly networks, for all node-
connectivity. Notation Bwr(24; 48) means a wrapped butterfly with 24 nodes
and 48 edges, see Fig. 2.2(a). Bnw(n,m) means a non-wrapped butterfly
network with n nodes and m vertices.

Tables 4 and 5 present the D-spectra for hypercubes H4, H5, and H6,
obtained from simulating 106, 107, and 108 permutations, respectively. For
all hypercubes the criterion was all-terminal connectivity. H4 has 16 nodes
and 32 edges, H5 has 32 nodes and 80 edges, and H6 has 64 nodes and 192
edges.

The standard use of system spectrum is calculating system (static) relia-
bility for the case that all components fail independently and have the same
probability q = 1 − p to be down and probability p to be up, see Chapters
6, 8, and Remark in Section 13.2.
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Table 1: Edge D-spectra of complete graphs. c©IEEE 1991

r K5 K6 K7 K8 K9

4 0.023810
5 0.095238 0.002050
6 0.285714 0.010155 0.0001313
7 0.595238 0.029820 0.0007801 0.0000067
8 0.071937 0.0027032 0.0000456 0.0000003
9 0.155212 0.0072358 0.0001839 0.0000023
10 0.298834 0.0163476 0.0005710 0.0000108
11 0.431992 0.0329078 0.0014265 0.0000347
12 0.0615952 0.0031581 0.0000948
13 0.1087476 0.0062342 0.0002412
14 0.1822247 0.0117001 0.0005048
15 0.2777706 0.0205843 0.0010149
16 0.3095561 0.0344280 0.0019101
17 0.0555834 0.0033827
18 0.0867635 0.0058014
19 0.1305310 0.0094990
20 0.1867045 0.0151517
21 0.2406348 0.0231700
22 0.2214444 0.0 350933
23 0.0515021
24 0.0736922
25 0.1030831
26 0.1390625
27 0.1777469
28 0.2009639
29 0.1580374
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Table 2: Simulated edge D-spectra of dodecahedron

r T = V T = (1, 20) T = (1, 7, 8, 11, 16)
3 0.004916 0.000516 0.001234
4 0.015790 0.001733 0.004222
5 0.034064 0.004003 0.009603
6 0.060511 0.007903 0.018297
7 0.094845 0.014515 0.032249
8 0.136270 0.026398 0.054172
9 0.176819 0.045296 0.084642
10 0.201748 0.072431 0.125022
11 0.180148 0.105919 0.161231
12 0.094889 0.132139 0.170705
13 0.137760 0.139571
14 0.124864 0.093504
15 0.102451 0.054498
16 0.078137 0.028049
17 0.055645 0.013280
18 0.037199 0.005932
19 0.023832 0.002483
20 0.014196 0.000920
21 0.007905 0.000292
22 0.004212 0.000081
23 0.001916 0.000011
24 0.000749 0.000002
25 0.000239
26 0.000042
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Table 3: Butterfly: simulated edge D-spectra; T=V

Bnw(32; 48) Bwr(24; 48) Bwr(64; 128)
r fr fr fr r fr

2 0.014151 32 0.025531
3 0.027989 33 0.027610
4 0.042251 0.000130 0.000006 34 0.029589
5 0.055542 0.000526 0.000020 35 0.031502
6 0.068253 0.001199 0.000071 36 0.033556
7 0.078894 0.002335 0.000129 37 0.035598
8 0.087785 0.004307 0.000212 38 0.037053
9 0.093999 0.007046 0.000322 39 0.038205
10 0.097654 0.010753 0.000504 40 0.039377
11 0.096963 0.015623 0.000733 41 0.040474
12 0.091938 0.021684 0.001050 42 0.040699
13 0.082169 0.029156 0.001291 43 0.040718
14 0.067577 0.034873 0.001794 44 0.040517
15 0.049631 0.048674 0.002299 45 0.039640
16 0.029592 0.059963 0.002775 46 0.038495
17 0.012612 0.072373 0.003413 47 0.037271
18 0.003000 0.084235 0.004129 48 0.035155
19 0.095270 0.005030 49 0.032486
20 0.103193 0.005901 50 0.029854
21 0.106647 0.007089 51 0.026795
22 0.101431 0.008245 52 0.023546
23 0.086905 0.009668 53 0.020337
24 0.063249 0.010786 54 0.016919
25 0.035391 0.012586 55 0.014006
26 0.011237 0.013860 56 0.010872
27 0.015708 57 0.008345
28 0.017718 58 0.006108
29 0.019578 59 0.004252
30 0.021441 60 0.002646
31 0.023370 61 0.001626

62 0.000885
63 0.000387
64 0.000159
65 0.000046
66 0.000007
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Table 4: H4 and H5 simulated edge D-spectra; T = V

H4; 106 trials H5; 107 trials H5; 107 trials
r fr r fr r fr

4 0.000457 37 0.0570532
5 0.001774 5 0.0000013 38 0.0592518
6 0.004570 6 0.0000076 39 0.0602235
7 0.009166 7 0.0000176 40 0.0598683
8 0.016009 8 0.0000463 41 0.0580906
9 0.026141 9 0.0000975 42 0.0546688
10 0.040212 10 0.0001715 43 0.0497777
11 0.058031 11 0.0002823 44 0.0434966
12 0.080487 12 0.0004813 45 0.0360886
13 0.105428 13 0.0006681 46 0.0277087
14 0.131438 14 0.0009577 47 0.0192216
15 0.152050 15 0.0013438 48 0.0115109
16 0.160474 16 0.0018212 49 0.0053333
17 0.138589 17 0.0024286 50 0.0014290
18 0.075174 18 0.0032513
19 19 0.0041148
20 20 0.0052082
21 21 0.0065489
22 22 0.0081189
23 23 0.0098713
24 24 0.0119244
25 25 0.0142721
26 26 0.0168695
27 27 0.0199113
28 28 0.0231152
29 29 0.0266203
30 30 0.0304834
31 31 0.0344016

32 0.0384775
33 0.0427933
34 0.0468323
35 0.0508296
36 0.0543587
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Table 5: H6 simulated edge D-spectra; T = V ; 108 trials

r fr r fr r fr r fr

5 —- 37 0.00037336 69 0.00979215 101 0.02363795
6 10−9 38 0.00043379 70 0.01048053 102 0.02268723
7 0.00000001 39 0.00050257 71 0.01121756 103 0.02158521
8 0.00000002 40 0.00057341 72 0.01193883 104 0.02043392
9 0.00000011 41 0.00065516 73 0.01272061 105 0.01914230
10 0.00000018 42 0.00074930 74 0.01347901 106 0.01775216
11 0.00000017 43 0.00084677 75 0.01429691 107 0.011632340
12 0.00000047 44 0.00096145 76 0.01511398 108 0.01487805
13 0.00000082 45 0.00108473 77 0.01595696 109 0.01340594
14 0.00000136 46 0.00121574 78 0.01680400 110 0.01193379
15 0.00000223 47 0.00136660 79 0.01768495 111 0.01048617
16 0.00000304 48 0.00152175 80 0.01854143 112 0.00905410
17 0.00000458 49 0.00171115 81 0.01937896 113 0.00771665
18 0.00000620 50 0.00189157 82 0.02020256 114 0.00647560
19 0.00000868 51 0.00210678 83 0.02105688 115 0.00533110
20 0.00001171 52 0.00233842 84 0.02186480 116 0.00429012
21 0.00001501 53 0.00257347 85 0.02260632 117 0.00338873
22 0.00002024 54 0.00284457 86 0.02337573 118 0.00260013
23 0.00002562 55 0.00313464 87 0.02401488 119 0.00194339
24 0.00003315 56 0.00343448 88 0.02464362 120 0.00140572
25 0.00004150 57 0.00376856 89 0.02520259 121 0.00097623
26 0.00005320 58 0.00412422 90 0.02568999 122 0.00065972
27 0.00006541 59 0.00449619 91 0.02606145 123 0.00041814
28 0.00008001 60 0.00490979 92 0.02638972 124 0.00024797
29 0.00009768 61 0.00534623 93 0.02656648 125 0.00013680
30 0.00011875 62 0.00578339 94 0.02662023 126 0.00006987
31 0.00014158 63 0.00629123 95 0.02662352 127 0.00002971
32 0.00016752 64 0.00680085 96 0.02645264 128 0.00001151
33 0.00018843 65 0.00734067 97 0.02613970 129 0.00000275
34 0.00023742 66 0.00791342 98 0.02573806 130 0.00000037
35 0.00027739 67 0.00850468 99 0.02516830
36 0.00032487 68 0.00914229 100 0.02448057
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algorithm
AREACRUDE, 3
AverageReliability, 6
for computing BIM, 144
for gradient, 132
for network lifetime estimation,

modified, 104
for network lifetime simulation,

109
NetlifeSpectrum, 102
RANDOMSEARCH, 5
TurnipFlow, 132
TurnipGradient, 133

anchor, definition of, 141
area estimation, 1
artificial creation process, 120
associated components, 42
availability, 56, 126, 127

Barlow and Proschan theorem, 42
Barlow measure of importance, 70
BIM

examples, estimates, 150
invariance, 145
spectrum, 143, 161

binary random variable, 3
binary system, reliability of, 6
Birnbaum Importance Measure, 69,

139
border

set, 76
state, 75–77, 127, 128, 134

state, equilibrium, 129
bounds on the exit time, 166
BP approximation, 177
bridge structure, 6
bridge structure and turnip dia-

gram, 135
bridge system, spectrum, 88
Burtin-Pittel approximation, 63, 70,

113
bus structure, 24
butterfly network, 22, 24, 189

C-spectrum and the anchor, 141
Chebyshev’s inequality, 126
closure, 121
CMC, deficiency, 120
complete graphs, 189
component importance, 80
compression of nodes, 68
conditional density, 94
confidence interval, 6, 14
confidence interval for mean, 13
confidence level, 14
constant failure rate, 49
construction process, 140
construction spectrum, C-spectrum,

88, 134
convolution, 50, 51
convolution of exponentials, 95, 187
convolutions, estimation of, 91
creation process, 121
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crude Monte Carlo (CMC), 92, 97,
120

cumulative C�-spectrum, 142
cut set enumeration, 66
cuts, minimal cuts, 38

D-spectra, 189
destruction spectrum, D-spectrum,

84, 85, 101, 108, 176
difference of convolutions, 130
Dilworth’s theorem, 16
directed graph, 26
disjoint set structures (DSS), 29
dodecahedron, 65
dynamic

network, 40, 165
process, 121
reliability, 59, 61

edge
D-spectra, examples of, 111
lives, i.i.d., 107
permutation, 141
weight, 103

edges, 21
efficiencies of algorithms, compar-

ison, 105
entropy of uniform distribution, 17
ergodic exit time, 166
ergodic probability, 166
ergodic sojourn time, 166
estimate of convolution, 95
evolution process, 75, 128
evolution-merging process, 127
exit time, bounds, 170
exit time, distribution of, 166
exponential distribution, 6

failure rate, 5, 49, 56, 165
fault tree, 22

find procedure, 32
flow into UP, 76, 77
Fussel-Vesely importance measure,

70, 150

Gamma-distribution, 51
geometric distribution, 56
gradient, 77
gradient vector, 69
graph, edges, vertices, 26

hypercubes H4, H5, H6, 189

importance function, 71
importance sampling, 97
inclusion-exclusion formula, 39
integrated communication network,

175
invariance of BIM, 145
irrelevant edges, 122

job-shop, schedule, 16
joint importance measure, 70, 161

k-out-of-n system, 83
Keilson bound, 170
Keilson inequality, 166
Kruskal’s algorithm, 26, 103, 109

lifetime of node or edge, 40
lifetime, exponentially distributed,

49
linearity property of the mean, 8
Lomonosov’s

algorithm, 119
lemma, 102, 104
turnip, 119

lucky numbers, 18

Markov process, 55, 165
Markov process on super-states, 124
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Markov property, 55
Mathematica program, 14
maximal spanning tree, 28, 103
maximum in a random sample, 82
mean, 8
mean equilibrium UP and DOWN

periods, 127
mean stationary DOWN time, pe-

riod, 63, 127
mean stationary UP time, period,

63, 127
memoryless property, 56
merge procedure, 30
merging process, 130
min size minimal cut, 86
min-max calculus, 83
minimal cut-set method, 38
minimal cuts, 45, 60
minimal path-set method, 38
minimal paths, 45, 60
minimal spanning tree (MST), 26,

28, 103
minimum, maximum of r.v.’s, 62
minimum-maximum calculus, 82
monotone binary system, 44
monotone systems, 59
Monte Carlo Method, 1
multinomial distribution, 110
multinomial experiment, 11
multistate network, 40

n-cube network, 24
n-dimensional cube, 22
network

destruction, 101
lifetime, estimation of, 102
mean UP and DOWN period,

26
reliability calculation by CMC,

120

s-t connectivity, 65
static reliability, 120
synthesis, definition of, 153
undirected, directed, 21
birth-time, 88
connectivity, 48, 64
lifetime, 40
nodes (vertices), edges, 21

node D-spectrum, C-spectrum, 86
node failure, 105, 106
normal approximation, 13
number of min size min-cuts, 86,

111

optimal location of components, 3
order of magnitude, 185
order statistics - definition, 81

packet transmission, 24
parallel system, 41, 62
parallel system, importance, 73
paths, minimal paths, 38
pentagon-type network, 71
pivotal decomposition, 68
pivotal formula, 66, 68
Poisson

approximation, 13
distribution, 55, 56
process, 55, 56

pseudorandom numbers, 1

random
jump process, 50
lottery, 18
permutation, 5
search, 5
vector, 94

rare event phenomenon, 120
recurrent systems, 47
relative error, 3, 94
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relative error, boundedness of, 110
reliability

bounds, 42
function, partial derivative, 140
gradient, 66

renewable components, 62, 63
renewal theory, 56
repair rate, 165
root of the tree, 32
rooted tree, 31

S-shaped reliability function, 72
s-t connectivity, 25, 37, 174
sample standard deviation, 6
series, parallel connection, 42
series, parallel systems, 41, 45, 62,

68
series-parallel systems, 82, 145
simulation, 1, 92
sitting time, 52
spanning tree, 26, 103
sparse network, 24
spectrum, component lifetime dis-

tribution, 85
star network, 71
star-type network, 22
static probability, 25
static reliability, 59, 61
stationary

availability, 62
probability, 25, 54
transition rate, 127, 128, 166,

172
UP and DOWN periods, 172

structure function, 59, 60
super-states, 121
super-states, closure, 124
super-states, transition probabili-

ties, 124
system equilibrium, 165

system reliability, 46

terminal, 37
terminal connectivity, 25, 37, 176
terminal spanning tree, 103
terminals, definition, 101
three dimensional simplex, 95
three-out-of-five system, 83, 88
total probability formula, 67, 125
trajectory on a turnip, 125
trajectory, border states, 131, 133
transition

probabilities for super-states,
124

probability, 52
rate, estimation of, 129
time from DOWN to UP, 165

tree network, 22, 24
tree structure, 24
tree, spanning tree, 28
turnip, 120, 129

algorithm, 91, 126, 155
as evolution process, 121
diagram, 124
the idea of, 120

TurnipFlow algorithm, 132, 172,
174

two-state alternating process, 52
two-state Markov process, 55

unbiased CMC estimator, 92
unbiased estimator, 7, 8
undirected graph, 26
uniform distribution, 6, 14
unreliable nodes, 106
UP and DOWN states, 6
urn scheme, 120
Ushakov-Litvak bounds, 46

variance, 3, 8



INDEX 203

variance in multinomial experiment,
11

variance of a sum of i.r.v.’s, 3
variance reduction, 95
vector scalar product, 78
vertices, 21

Weibull distribution, 57, 98
Weibull shape parameter, 98
wrapped butterfly network, 22
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