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Preface

Aim of the book

The field of directional statistics has received a lot of attention over the past two

decades. This is mainly due to new demands from domains such as bioinformat-

ics, machine learning and cosmology, but also to the availability of massive data

requiring adapted statistical techniques, and to technological advances. Our goal is

to provide a thorough overview of the developments that have taken place since the

beginning of the 21st century, hereby building upon earlier works like the seminal

and inspiring monograph by Mardia & Jupp (2000). We shall focus here solely

on theoretical developments; the description of modern datasets and their analysis

will be provided in the companion book Applied Directional Statistics: Modern

Methods and Case Studies for which the authors are acting as editors.

Complementarity with existing literature

The present book has a well-defined target: reference the methodological improve-

ments on directional statistics that have appeared after the cornerstone reference

books by Mardia & Jupp (2000) and Jammalamadaka & SenGupta (2001). This

has so far been only partially done by Pewsey et al. (2013) but specifically for the

circular setting and with more focus on applications. The present book fills this

gap and will therefore be of interest for researchers and practitioners dealing with

directional data and aiming for a recent methodological flavour.
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Introduction

1.1 Overview

1.1.1 A brief introduction to directional statistics

Directional statistics is a branch of statistics dealing with observations that are di-

rections. In most cases, these observations lie on the circumference of the unit

circle of R2 (one then speaks of circular statistics) or on the surface of the unit hy-

persphere of Rp for p ≥ 3 (implying the terminology of spherical statistics)1. Data

of this type typically arise in meteorology (wind directions), astronomy (directions

of cosmic rays or stars), earth sciences (location of an earthquake’s epicentre on the

surface of the earth) and biology (circadian rhythms, studies of animal navigation),

to cite but these. The key difficulty when dealing with such data is the curvature of

the sample space since the unit hypersphere or circle is a non-linear manifold. This

can readily be seen on a very simple example. Imagine two points on the sphere

of R3 and consider their average. This point will in general not lie on the sphere.

This reasoning of course extends to several points on the sphere, entailing that the

basic concept of sample mean needs to be adapted in order to yield a true mean

direction on the sphere. Thus, the wheel has to be reinvented for virtually every

classical concept from multivariate statistics.

This state of mind has, however, been ignored for a long time. Primitive statis-

tical analysis of directional data can be traced back to the beginning of the 19th cen-

tury by the likes of C. F. Gauss, yet it took till the seminal paper by Fisher (1953)

before researchers became fully aware of the necessity to take the curved nature of

the sample space into account. Sir Ronald Fisher successfully laid out the conse-

quences of simplifying every directional problem through linear approximations.

Quoting Fisher (1953): “Any topological framework requires the developments of

a theory of errors of characteristic and appropriate mathematical form.” Indeed,

while it was perfectly reasonable that Gauss used a tangent space approximation

1This includes data on the torus (product of two circles or spheres) and cylinder (product of Rp

with a circle or sphere), but not other more general manifolds such as Stiefel or Grassmann manifolds.

1



2 Chapter 1. Introduction

for his highly concentrated (directional) astronomical measurements, the same can-

not be said about more dispersed datasets. Fisher used as illustrating example the

direction of remanent magnetism found in igneous or sedimentary rocks.

The impact of the Fisher (1953) paper led to a methodological and system-

atic study of directional data holding account of their actual topology. Numerous

procedures and directional distributions were proposed and studied, mostly by ex-

tending to the directional setting classical concepts from multivariate analysis such

as point estimation, one- and multi-sample testing procedures, or regression. For

detailed accounts of these early developments from distinct perspectives, we re-

fer the reader to the monographs by Mardia (1972), Watson (1983), Fisher et al.

(1987) and Fisher (1993), to the discussion paper by Mardia (1975) as well as to

the review paper by Jupp & Mardia (1989).

After this very active period, there was almost a lull in directional research

in the 1990s. The situation has fortunately changed since the beginning of the

new millennium. We have identified three main reasons for this resurgence of in-

terest. First, the highly influential and very comprehensible book by Mardia &

Jupp (2000) rendered directional statistics very popular. The ease of exposition

combined with the versatility of presented results attracted the interest of theoret-

ical statisticians as well as practitioners. Moreover, one year later appeared the

seminal book by Jammalamadaka & SenGupta (2001) focussing on circular statis-

tics. Second, and partially a consequence of the previous argument, researchers

from life sciences, ecology and machine learning, among others, recognized the

importance of directional statistics for their works. This has led to new demands

and hence the necessity of novel methods and procedures. Third and finally, the

technological advances have reshaped the entire field of statistics. The exponen-

tial increase in computing power and the availability of massive amounts of data

have brought computer-intensive methods and high-dimensional statistics to the

forefront of modern research in statistics, and hence also to directional statistics.

1.1.2 A brief outline of the theoretical advances presented in this book

The present book covers important theoretical developments in directional statistics

over the past two decades, more precisely since the cornerstone reference books by

Mardia & Jupp (2000) and Jammalamadaka & SenGupta (2001). We perceive it as

a natural complement to these monographs, emphasizing modern research in the

field without repeating the material covered in earlier books. The book is meant
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to be self-contained. We provide in Section 1.3 the basic knowledge required to

follow the exposition of material throughout the monograph. The chapters all start

with an introduction to the topic and briefly mention the state-of-the-art before the

year 2000.

Numerous research themes in directional statistics have been addressed in re-

cent years, resulting in a vast number of relevant methods and studies. We have

decided to build our book on the following five pillars:

• Flexible parametric modeling: most classical distributions are able to model

the center of a data cloud and the concentration around that center. Aspects

such as skewness, peakedness or multi-modality cannot be addressed with

these models. Flexible modeling means the search for versatile parametric

distributions able to capture directional data features beyond location and

concentration. This domain has flourished since 2005.

• Non-parametric inference: non-parametric statistics refer here mostly to ker-

nel density estimation and rank-based inference. First defined at the end of

the 1980s for spherical data, kernel density estimates have been largely stud-

ied, extended to other settings (torus and cylinder) and refined over the past

ten years. Rank-based inferential procedures have a long-standing history on

Rp but only appeared recently in directional statistics.

• Asymptotic statistics: most inferential procedures, also for directional data,

rely on asymptotic results. We shall describe crucial concepts such as con-

tiguity, local asymptotic normality and Le Cam’s theory of asymptotic ex-

periments. The latter is a complex but highly useful methodology to build

efficient statistical methods based on solid mathematical statistics grounds.

Initially designed for linear statistics, it was extended to the spherical set-

ting in 2013 by the authors and their coauthors. We shall further discuss the

nowadays unavoidable (n, p)-asymptotics where both the sample size n and

the dimension p of the data are very large. This is intrinsically linked to the

next point, namely

• High-dimensional directional statistics: high-dimensional statistics figure

among the hottest topics in contemporary statistics. Numerous datasets have

dimensions larger than the sample size, thwarting the validity of existing

methods. This challenge has been taken up over the past decade, in particu-

lar driven by machine learning and genetics applications.
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• Computational and graphical methods: the incredible increase in both com-

puting power and complexity of the data have led to new handles for direc-

tional data. One the one hand, new visualization techniques reveal impor-

tant underlying data structures. On the other hand, efficient and computa-

tionally fast algorithms allow dealing with complex datasets such as high-

dimensional data or order-restricted data.

These ideas will be expounded in six thematic chapters whose detailed content is

given in Section 1.4. Of course, there are several further topics we had envisaged

to cover. We imposed on ourselves the above restriction for the sake of clarity and

to avoid overlaps with other recent books and the companion book Applied Direc-

tional Statistics: Modern Methods and Case Studies, hereafter MMCS, for which

we act as editors. The stochastic properties of needlets, a new form of spherical

wavelets, as well as their applications to cosmic microwave background radiation

data are reviewed in Chapter 10 of Marinucci & Peccati (2011). The even more re-

cent monograph by Pewsey et al. (2013) is dedicated to a detailed account of how

to implement circular statistics methods in R. The growing field of spatial direc-

tional statistics will be covered in MMCS. Modern application domains presented

in MMCS will include bioinformatics, machine learning, cosmology, ecology, en-

vironmental sciences and behavioral sciences.

1.2 Directional datasets

We now want to further familiarize the reader with directional statistics by describ-

ing five types of directional datasets. These are taken from completely different

domains and most of them reflect the aforementioned modern application areas.

They have thus been a driving force behind several of the theoretical developments

that we present in the subsequent chapters.

1.2.1 Paleomagnetism

We start with the classical domain of application that underpinned the argument

of Fisher (1953) to take into account the correct topology of the data: paleomag-

netism. This term refers to the study of the Earth’s magnetic field in rocks, sed-

iments, lava flows or other archeological materials. Certain minerals indeed con-

serve the direction of magnetic field when they cool down, allowing geologists to

gain information about the Earth’s magnetic field from ancient times as well as
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about plate tectonics. The associated data are spherical by nature, as illustrated in

Figure 1.1. This figure represents measurements of remanent magnetization in red

slits and claystones made at two different locations in Eastern New South Wales,

Australia.

Figure 1.1: Measurements of remanent magnetization in red slits and claystones made at
two different locations in Australia.

Typical research questions related to such data are the estimation of their modal

direction, estimation of the concentration around that direction, related hypothesis

tests about specific values, the determination of a probability distribution fitting

the data or a graphical device to illustrate the main features of the data. We de-

scribe several modern methods dealing with these issues throughout this mono-

graph. In the special situation of Figure 1.1, that is, when two or more datasets at

different locations are involved, new information can be gathered about the above-

mentioned tectonic plate movements or about whether the magnetization has been

acquired before some deformation. In plain words, one is interested in the question:

“do measurements of remanent magnetization at different locations come from the

same source?” This problem is rather old in paleomagnetism. It was popularized in

the seminal paper by Graham (1949) who developed the fold test for paleomagnetic

data. In mathematical terms, this problem becomes a hypothesis testing problem.

Suppose that we have m distinct datasets spread around sources µµµi, i = 1, . . . ,m,

where each source µµµi lies on the unit sphere of R3. Then the question becomes

an ANOVA testing problem of the form H0 : µµµ1 = µµµ2 = · · · = µµµm against

H1 : ∃1 ≤ i 6= j ≤ m such thatµµµi 6= µµµj . Several papers have addressed this issue,

and in recent years the underlying assumptions have been lowered thanks to new

theoretical advances. We refer in particular to Chapter 5.
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1.2.2 Political sciences

Circular data are not only measured via a compass, but also via a clock. Be it the

24-hour clock or the 12-months period, it is very convenient to represent time data

on a circle if the end points (0.00 a.m. and 12.00 p.m., or January 1 and December

31) are naturally linked. This gain of information was recently recognized by polit-

ical scientists (Gill & Hangartner 2010). In Figure 1.2 we show a rose diagram of

gun crimes committed in Pittsburgh, Pennsylvania, between January 1, 1992 and

May 31, 1996. The data are recorded in intervals of an hour and represent the time

when an incident with a firearm (murder, robbery, assault, etc.) was reported. As

can be expected, the peak of gun crimes lies around midnight.

Figure 1.2: Rose diagram of gun crimes committed in Pittsburgh, Pennsylvania, and mea-
sured at the hourly level on the 24-hour clock.

The gun crimes dataset raises several questions. Is the data unimodal, and if

so, symmetric about its mode? Which distribution describes best the gun crimes

data? Answers can be obtained through the methods described in the subsequent

chapters, especially Chapter 2 which contains various choices for parametric dis-

tributions that may fit the data from Figure 1.2.

1.2.3 Text mining

A popular branch of machine learning is text mining, where the goal is to catego-

rize a variety of texts according to the similarity of their contents. This is achieved
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by considering an ensemble of words appearing neither too regularly nor too rarely

in texts, and by counting the number of occurrences of each word in each text. One

thus attributes to every observation, i.e., text, a vector with dimension the cardi-

nality of the ensemble of words. In statistical terms, the categorization then corre-

sponds to a cluster analysis of the resulting vectors. Empirical evidence suggests

that one should normalize the vectors in order to remove potential categorization

bias due to different text lengths. Think, for instance, of two texts where the second

is obtained by copy-pasting and aligning ten times the first text. Their information

content is exactly the same, but the word vectors will have highly distinct lengths.

It is therefore the direction of the vector that is relevant for the cluster analysis.

Now, these directional word vectors are typically high-dimensional. Banerjee

et al. (2005) considered inter alia Classic3, a collection of 3893 documents among

which 1400 are from aeronautical system papers, 1033 from medical papers, and

1460 from information retrieval papers. The related word vector consists of 4666

words. Other text sources used by Banerjee et al. (2005) stem from Yahoo News

and the CMU Newsgroup.

These text mining data thus are both high-dimensional and directional by na-

ture, inducing the need for appropriate methods to analyze them. Such methods

are displayed in Chapter 7, and the difficulty of parameter estimation in high di-

mensions is briefly addressed in Chapter 4. We shall not discuss here the relevant

directional clustering algorithm as this problem will be addressed in the companion

book Applied Directional Statistics: Modern Methods and Case Studies.

1.2.4 Wildfire orientation

Fire ecology is a branch of ecology that focuses on the origins of wildfires and tries

to assess relationships with the surrounding environment. Mediterranean type cli-

mate countries are especially concerned with wildfires. The landscape changes in

Portugal, for instance, are mainly driven by large and devastating wildfires. Barros

et al. (2012) subdivided the map of Portugal into 102 watersheds and suggested the

existence of preferential fire perimeter orientation at the level of these watersheds;

see Figure 1.3. Their dataset spans over 31 years (1975–2005) and consists of the

orientation as well as the size (in hectares) of each wildfire. The orientation can

be considered at both the two-dimensional and three-dimensional level, yielding

circular and spherical data. Combined with the fire size, which is a positive real

value, this leads to cylindrical data.
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Figure 1.3: Left: map of wildfires in Portugal with the 102 watersheds identified by Barros
et al. (2012). The dark regions are watersheds where the fires have preferential alignment.
Right: contour plot for fires in a watershed with 1543 fires; the fires’ orientation has a
preferential alignment with the watershed orientation. We thank the authors from García-
Portugués et al. (2014) for allowing us to use their pictures.

The main question of interest in the present context is to know whether there

exists a relationship between fire orientation and fire size, as this would provide

further insight into the study of wildfires. A non-parametric independence test is

described in Chapter 3. Figure 1.3 provides a contour plot of orientation-size data

for a given watershed. An interesting challenge is to find a parametric distribution

incorporating this joint behavior.

1.2.5 Life sciences and bioinformatics

Predicting the correct three-dimensional structure of a protein on the basis of its

one-dimensional protein sequence is a fundamental problem in life sciences. Solv-

ing this holy grail problem would have wide-reaching consequences in drug dis-

covery, biotechnology and evolutionary biology, for instance. Nowadays massive

databases of DNA and protein sequences are available, and structural bioinfor-

matics is the domain within bioinformatics concerned with the prediction of the

associated three-dimensional structure.

A protein consists of a sequence of amino acids, which essentially defines

a protein’s three-dimensional shape and dynamic behavior. Mathematically, the

structure is for many purposes adequately described using dihedral angles (assum-

ing ideal bond lengths and bond angles). The global shape of the protein, in particu-
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lar the backbone structure, can be parameterized using the φ and ψ dihedral angles,

between certain atoms of amino acids; see Figure 1.4. The vast existing database of

known protein structures allows drawing scatter plots of the pair (φ,ψ) and hence

knowing what configurations are more likely than others. This scatter plot bears

the name Ramachandran plot (Ramachandran et al. 1963) and is illustrated in Fig-

ure 1.4. In recent years, it has been noted that it can be highly beneficial to develop

probabilistic models of these angles in proteins. The data being two angles per

amino acid, we are thus facing toroidal data structures.

Figure 1.4: Top: Representation of the dihedral angles φ and ψ in glutamate. These
angles are the main degrees of freedom for the backbone of an amino acid. The χ angles
determine its side chain. Bottom: Example of a Ramachandran plot of the dihedral angles
φ and ψ, expressed in radians. We thank Thomas Hamelryck for providing us with these
pictures of which the former appeared in the paper Harder et al. (2010).
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The most natural research question related to the protein data is to find a prob-

ability distribution matching the joint behavior of the φ and ψ angles, ideally con-

ditional on the protein sequence. This can be achieved via some of the models

presented in Chapter 2. Non-parametric approaches provide a distinct vision on

the structure of proteins. Dealing with the dihedral angles is of course just one

instance of the protein structure prediction problem. We shall not delve here into

further details on this topic, which will be treated in the companion book Applied

Directional Statistics: Modern Methods and Case Studies. For very detailed infor-

mation, we refer the reader to the book by Hamelryck et al. (2012).

1.3 Basics and notations

In this section, we shall equip the reader with the necessary background to under-

stand and appreciate the developments of the subsequent chapters. In particular,

we shall explain recurrently used notations and abbreviations.

Points on the unit circle of R2 will not be represented as a two-dimensional

vector x = (x1,x2)′ ∈ R2 with Euclidean norm ||x|| =
√
x′x = 1, but instead as

an angle θ = arctan∗(x2/x1) where

arctan∗(x2/x1) :=


arctan(x2/x1) if x1 ≥ 0

arctan(x2/x1) + π if x1 < 0,x2 > 0

arctan(x2/x1)− π if x1 < 0,x2 ≤ 0

with arctan taking values in [−π/2,π/2]. In this definition we have arbitrarily

fixed the origin of the circle at (1, 0)′ as well as its orientation as anti-clockwise;

see Figure 1.5. A circular random variable thus can be perceived as a random

angle over the interval [−π,π) (or [0, 2π)), subject to the restriction that its density

takes the same values at both endpoints. In other words, circular densities are

simply defined as densities f (with respect to the Lebesgue measure) on the interval

[−π,π) for which f(−π) = f(π). We opt in this book for the interval [−π,π)

instead of [0, 2π) because then circular reflective symmetry can be nicely expressed

as f(−θ) = f(θ)∀θ ∈ [−π,π). Cumulative distribution functions F are defined

as integrals between−π and the point at which they are evaluated, and they further

satisfy the important periodicity condition F (z + 2π) − F (z) = 1 for all z ∈ R
(which means that any arc of length 2π has probability 1).

To provide the reader with a taste of the difficulties inherent to directional

statistics, let us consider the very simple sample average of circular data points.
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x

(1, 0)′
θ

Figure 1.5: Representation of circular variables as angles measured anti-clockwise

from the direction (1, 0)′.

The two most obvious definitions yield erroneous answers: the sample average

of two points x1 = (cos(θ1), sin(θ1))′ and x2 = (cos(θ2), sin(θ2))′ can be ob-

tained neither by considering the angular average (θ1 + θ2)/2 (e.g., the average

of −π + 0.01 and π − 0.01 would yield 0 instead of −π) nor through the vector

average (x1 + x2)/2 (the resulting point will nearly always lie inside the disc).

Instead, the mean direction θ̄ of a set of angles θ1, . . . , θn is defined as the angle

related with the direction of
∑n

i=1 xi and given by

θ̄ = arctan∗
(∑n

i=1 sin(θi)∑n
i=1 cos(θi)

)
. (1.1)

The concentration around the mean direction is measured by the mean resultant

length

R̄ = n−1

√√√√( n∑
i=1

cos(θi)

)2

+

(
n∑
i=1

sin(θi)

)2

, (1.2)

a quantity that we will often encounter on the following pages.

The (hyper-)sphere in Rp for p ≥ 3 will be denoted Sp−1 := {z ∈ Rp : ||z|| =
1}. Here we will not consider angles or spherical coordinates, but instead data

points x on Sp−1. This is why we shall throughout express densities on Sp−1, p ≥
3, under the form f(x) subject to ||x|| = 1. It is to be noted that we will express all

our densities with respect to the usual surface area measure σp−1 on Sp−1, defined

as

σp−1(Sp−1) = ωp :=
2πp/2

Γ(p/2)
.

The spherical mean of points x1, . . . ,xn is given by x̄
||x̄|| where x̄ = 1

n

∑n
i=1 xi. It

is to be noted that the mean resultant length on hyper-spheres is conveniently given
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by R̄ = ||x̄|| (which is the spherical equivalent to (1.2)).

The two other directional supports with which we shall work, the torus and

the cylinder, can easily be described with help of the above. The torus T 1 is the

product of two unit circles S1 × S1 (or, for the hyper-torus T p−1, the product

Sp−1×Sp−1), while the cylinder C1 is the product of a unit circle and the real line

S1 × R (or, for the hyper-cylinder Cp−1,k, the product Sp−1 × Rk with integer k

not necessary equal to p− 1). In this book (Chapters 2 and 3), our goal with these

supports shall mainly be to describe, parametrically and non-parametrically, their

joint behavior, which is a non-trivial task.

The notations established above for random variables will not vary throughout

the book. A random angle will be represented by the symbol Θ, a random vector

on the sphere by X, a random variable on the real line by Z and a random vector

on Rp by Z. The corresponding non-random quantities are denoted by θ,x, z and

z, respectively. Moreover, location parameters shall invariably be represented by

the symbol µ: µ for an angle, µµµ for a point on the sphere, µ′ for a point on the real

line (except when no ambiguity is possible, in which case we shall also use simply

µ on the real line).

We conclude this section by some general notations and remarks. The ab-

breviation iid stands for “independent and identically distributed”. The p × p

identity matrix is written Ip and a vector of, say p zeros, will be denoted 000 =

(0, 0, . . . , 0)′ ∈ Rp. We shall often indicate the asymptotic behavior of functions

or variables by having recourse to o(·) and O(·) quantities. Consider two functions

a(n) and b(n). The notation a(n) = o(b(n)) as n → ∞ means that a(n)
b(n) → 0 as

n → ∞, while a(n) = O(b(n)) as n → ∞ means that there exists M > 0 such

that limn→∞
a(n)
b(n) ≤ M . The notations oP (·) and OP (·) are used in the same way

for convergence in probability of random variables. Finally, throughout the book

we shall encounter special functions such as the modified Bessel function or the

associated Legendre function. We shall briefly indicate a definition at their first

occurrences, but refer the interested reader to the books by Abramowitz & Stegun

(1965) and Gradshteyn & Ryzhik (2015) for more insights into special functions.

1.4 Plan of the book

The remainder of the book is organized as follows. Each of the six chapters starts

by recalling the relevant notions from linear statistics on Rp before delving into the

directional statistics themes, and ends with a “Further reading” section. All refer-
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ences are given in the bibliography at the very end of the book. Before describing

the plan of the book in more detail, we would like to attract the reader’s attention

to an important point. When passing from Chapter 4 to Chapter 5, the tone will

change as the presented material will become more mathematically involved. The

second half of the book is strongly oriented towards hypothesis testing on direc-

tional supports.

Chapter 2 provides a very detailed description of the recently proposed prob-

ability distributions for data on the circle, sphere, torus and cylinder. The quest

for flexible models that do fit the often complex aspects in modern datasets has

culminated in a plethora of new distributions, especially on the circle. We hope to

provide the reader with a guidance through this jungle of densities by trying to un-

derline the respective merits and drawbacks of each proposal. To this end, we start

with a brief recollection of the classical models like the von Mises, cardioid and

wrapped Cauchy densities, and underline their limitations. This chapter on flexi-

ble models is a smooth start to the book and equips the reader with the necessary

distributional knowledge to read the subsequent chapters.

Chapter 3 is in some sense the opposite of Chapter 2 as it deals with non-

parametric density estimation. Kernel density estimators are well-established tools

in linear statistics, and they were extended to the sphere in the late 1980s. Refine-

ments of these proposals, especially with respect to the choice of the bandwidth

parameter, have been suggested over the past years. Moreover, non-parametric

density estimators were designed for toroidal and cylindrical data. We shall re-

trace these developments and amend them with related non-parametric inferential

procedures such as goodness-of-fit tests, independence tests and regression.

Chapter 4 deals with computational and graphical methods. It consists of four

distinct topics: ordering on the sphere, inference under order restrictions on the

circle, non-parametric exploratory data analysis on the circle, and computationally

fast parameter estimation for high-dimensional Fisher–von Mises–Langevin distri-

butions. Each topic is reported in a separate section.

• Ordering data on the sphere is performed by means of spherical quantiles

and depth functions. As will be shown, these intuitive notions allow the con-

struction of QQ-plots, DD-plots and goodness-of-fit tests. The visualization

of spherical quantiles provides new insight into the concentration of the data

around their center.

• Ordering points around the circle forms the basis of order-restricted infer-
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ence. Motivated by examples from genomics (phase angles of cell-cycle

genes) and psychology, the aim is to estimate several angles under a given

order restriction on these parameters. This is achieved by adapting the clas-

sical PAVA algorithm to the circular setting.

• Non-parametric exploratory data analysis on the circle is a graphical adden-

dum to the non-parametric density estimation theory of Chapter 3. It de-

scribes a tool, the CircSiZer, that allows assessing visually the main features

of a data set like the number of modes. As the name suggests, the CircSiZer

is a circular extension of the popular SiZer on R.

• The prevalence of high-dimensional datasets entails computational intrica-

cies. In particular, estimating the concentration parameter of FvML distri-

butions becomes very tricky. Its maximum likelihood estimate, despite be-

ing available in closed form, involves complex functions and hence requires

approximations. The state-of-the-art approximations from Mardia & Jupp

(2000) however cease to be valid in high-dimensional settings. We shall re-

trace the path of constantly improving approximations developed over the

past years, and discuss their computational costs.

Chapter 5 exposes the adaptation of Le Cam’s theory of asymptotic experi-

ments from Rk to the spherical setting, a research stream initiated inter alia by

the authors. In order to familiarize the reader with the topic, we begin with a de-

tailed description of the classical linear Le Cam theory and illustrate the respective

steps through a red-thread example. We then move to the spherical adaptation and

show how this new theory permits us to build asymptotically optimal yet robust in-

ferential procedures. In particular, we consider signed-rank-based estimation and

hypothesis testing for the spherical location parameter, ANOVA on spheres and

asymptotic power calculations.

Chapter 6 is a pure hypothesis testing chapter. More precisely, it considers re-

cent advances in two classical topics: testing for uniformity and symmetry on the

sphere (and circle). On the one hand, we will show how the well-known Rayleigh

test of uniformity enjoys optimality features, discuss Sobolev and random projec-

tion type tests of uniformity, and treat the very delicate issue of testing uniformity

in the presence of noisy data. On the other hand, we will present optimal semi-

parametric tests for reflective symmetry on the circle and for rotational symmetry

on the sphere, where optimality is reached against classes of skew distributions in-
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troduced in Chapter 2. We then slightly deviate from the main topic of the chapter

by reconsidering the spherical location problem from a new angle, namely in the

vicinity of uniformity. All procedures involving optimality features rely on the Le

Cam methodology from Chapter 5.

Finally, Chapter 7 addresses high-dimensional situations. We start by introduc-

ing distributions on high-dimensional spheres, hereby complementing Chapter 2.

Next we show how to extend classical tests to the high-dimensional setting. In

particular, we consider uniformity, location and concentration tests. The different

convergence regimes of the tests are particularly salient: certain tests require that

the dimension p grows as a certain function of the sample size n, while other tests

are free from such restrictions. The latter are said to be (n, p)-universally valid, a

highly desirable situation in practice. We conclude the chapter with the description

of principal nested spheres, an elegant dimension-reduction technique mimicking

principal component analysis.
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Advances in flexible parametric
distribution theory

2.1 Introduction

2.1.1 Flexible parametric modeling: an active research area on Rp

Probability distributions are the building blocks of several branches of statistics,

among which are data modeling, hypothesis testing, regression and time series

analysis. The normal, exponential, Student t, beta and log-normal are popular

examples of distributions on the real line or on subintervals of R. In higher dimen-

sions, the multivariate normal and the class of elliptically symmetric distributions

on Rp, p ≥ 2, have been thoroughly studied and are nowadays classical textbook

examples (Fang et al. 1990).

Since more and more data tend to exhibit non-trivial characteristics such as

skewness, varying tailweight or multimodality, there is an increasing need for dis-

tributions able to capture these features. Such distributions are usually referred to

as flexible, and we shall adopt that terminology here. Popular instances of flexible

models on Rp, developed since the end of the nineteenth century, include

• the skew-symmetric distributions popularized by Adelchi Azzalini in the

1980s, resulting from multiplying a symmetric density by a so-called skew-

ing function (Azzalini & Capitanio 2014);

• the two-piece distributions, mainly used in the scalar case, resulting from

separating a symmetric distribution at its center, introducing distinct scale

parameters on either side and glueing together the two halves (Wallis 2014);

• the transformation-of-variables distributions, resulting from the transforma-

tion of a random variable/vector by means of a monotone increasing diffeo-

morphism (Ley & Paindaveine 2010a);

• mixture distributions, resulting from a convex combination of two or more

unimodal distributions (McLachlan & Peel 2000).

17
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These distributions have been successfully used to model datasets from domains

such as finance, economics, environmetrics or biometrics. Flexible distributions

on Rp are nowadays so numerous that categorizations, such as that above, have

become essential. We refer to the recent review papers by Jones (2015) and Ley

(2015) for details, many further distributions and a plethora of references on this

active research area.

2.1.2 Organization of the remainder of the chapter

The quest for flexible distributions has also become an important research topic in

directional statistics over the past two decades. This chapter is devoted to mod-

ern advances in flexible modeling on directional supports such as the circle (Sec-

tion 2.2), the torus and cylinder (Section 2.4) and the hypersphere (Section 2.3).

As the reader will notice, the major part of this chapter is dedicated to circular

distributions, as they are by far the most studied.

2.2 Flexible circular distributions

2.2.1 Four ways to construct circular densities

The simplest example of a distribution on the circle is the uniform distribution, with

density fU (θ) = 1
2π over [−π,π). A reader unfamiliar with directional statistics

may find it a priori difficult to define non-uniform distributions on the circle, which

is why we start by describing four general ways to construct circular densities.

• Wrapping approach: a distribution on R is wrapped around the circumfer-

ence of the unit circle. Letting Z be a random variable with density fZ

on R, the wrapped-f circular random variable Θ ∈ [−π,π) is defined via

Θ = (Z + π) (mod 2π)− π and its density is given by

fΘ(θ) =

∞∑
k=−∞

fZ(θ + 2πk). (2.1)

For instance, if fZ is the normal density, one obtains the well-known

wrapped normal distribution. The latter, like the majority of known wrapped

distributions on the circle, suffers however from a major drawback: (2.1)

does not simplify to a closed form. As a consequence, wrapped circular

densities are often not easy to handle, the best known exception being the

wrapped Cauchy distribution; see Section 2.2.2.
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• Conditioning approach: express a distribution on R2 as the joint dis-

tribution of the polar coordinates length and angle (r, Θ), and consider

then the distribution of the angle conditionally on the restriction r = 1.

A well-known example is the von Mises distribution (see Section 2.2.2),

obtained by conditioning a bivariate normal distribution with mean

(cos(µ), sin(µ))′ and covariance matrix(
κ−1 0

0 κ−1

)
,

µ ∈ [−π,π),κ > 0.

• Projection approach: a distribution on R2 is radially projected onto the unit

circle. In terms of polar coordinates, the length part is integrated out to obtain

the marginal density of the angular part. A popular case of this approach is

the projected normal distribution; see Section 3.5.6 of Mardia & Jupp (2000).

A common feature of the three approaches is that they build upon distributions

on R or R2. In contrast to this, the fourth approach is more direct:

• Perturbation approach: a circular density is multiplied by a function under

the constraint that the resulting product is again a proper circular density.

The cardioid distribution (see Section 2.2.2) is a classical example of this

approach.

2.2.2 The classics: von Mises, cardioid and wrapped Cauchy distri-
butions

We shall now briefly present three popular circular distributions. All three distribu-

tions are obtained by one of the constructions described in the previous section, all

three are characterized by two parameters, a location parameter µ ∈ [−π,π) and a

non-negative parameter regulating the concentration of the distribution around µ,

all three contain the circular uniform distribution as special case and, except for

that special case, all three are symmetric about their unique mode µ. This notion

of symmetry on the circle is called reflective symmetry, but we shall in this chapter

simply speak of symmetry.

The von Mises distribution has density

θ 7→ 1

2πI0(κ)
exp(κ cos(θ − µ)), (2.2)
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with I0 the modified Bessel function of the first kind and of order 0,1 and concen-

tration κ ≥ 0. It plays a core role among circular distributions. It is hence not

surprising that Gumbel et al. (1953) refer to it as the Circular Normal distribution.

Initially derived by von Mises (1918) via a maximum likelihood characterization

(see Section 2.3.2), numerous distinct generations of the von Mises density have

been proposed in the literature, among which is the conditioning approach men-

tioned in the previous section. We refer the reader to Section 3.5.4 of Mardia &

Jupp (2000) and Section 2.2.4 of Jammalamadaka & SenGupta (2001) for a thor-

ough study of the density (2.2).

The cardioid distribution has density

θ 7→ 1

2π
(1 + 2ρ cos(θ − µ)) , (2.3)

with concentration 0 ≤ ρ < 1/2. We readily see that the cardioid density is a

perturbation of the uniform density by multiplication with (1 + 2ρ cos(θ − µ)).

Jeffreys (1948), page 302, introduced this circular distribution, whose properties

are described in Section 3.5.5 of Mardia & Jupp (2000).

Finally, the wrapped Cauchy distribution has density

θ 7→ 1

2π

1− `2
1 + `2 − 2` cos(θ − µ)

, (2.4)

with concentration 0 ≤ ` < 1. It stands out as one of the rare wrapped densi-

ties with closed form. Its origins can be traced back to Lévy (1939). Mardia &

Jupp (2000) discuss various properties of thewrapped Cauchy distribution in their

Section 3.5.7.

The von Mises, cardioid and wrapped Cauchy distributions contain the uniform

as a special case, obtained for κ = ρ = ` = 0, respectively. The effects of the

concentration parameters and the differences between the three distributions can be

appreciated from a consideration of Figure 2.1. We direct the reader’s attention to

the fact that properties such as trigonometric moments or the mean resultant length

for the three models can be deduced from the general results of Section 2.2.4. We

conclude this succinct introduction to the circular classics by referring the reader
1The modified Bessel function of the first kind and of order α ≥ 0, Iα(z) for z > 0, admits the

integral representation

Iα(z) =
1

π

∫ π

0

exp(z cos(θ)) cos(αθ)dθ − sin(απ)

π

∫ ∞
0

exp(−z cosh(y)− αy)dy.

This formula readily shows why the modified Bessel function of the first kind and order 0, I0(z),

appears in the normalizing constant of the von Mises density on the circle.
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once again to the monographs by Mardia & Jupp (2000) and Jammalamadaka &

SenGupta (2001) for inferential aspects related to these distributions.
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Figure 2.1: Top: von Mises densities with κ = 0.1, 1, 5, 8. Middle: cardioid

densities with ρ = 0.05, 0.1, 0.2, 0.4. Bottom: wrapped Cauchy densities with

` = 0.05, 0.2, 0.5, 0.7. In each figure, the location is zero and increasing values of

the concentration correspond to the solid, dashed, dash-dotted and dotted lines.
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2.2.3 Beyond the classics: modern flexible circular modeling

The von Mises, cardioid and wrapped Cauchy distributions are symmetric and uni-

modal and their shapes are determined by a single concentration parameter. They

share these properties with other known distributions such as the wrapped normal.

Consequently, such densities cannot capture data features such as asymmetry, bi-

modality or multimodality.

In response to these needs, various flexible models for circular data have been

proposed over the past decade, some of which we shall highlight in the following

sections. An important question in this context is: what properties should a “good”

flexible circular model possess, besides the capacity to model diverse distributional

shapes? We have identified the following list of desirable features for a flexible

family of circular distributions:

• The density should be of a tractable form and amenable to calculations. This

is crucial when one wishes to determine, for instance, the probability of hav-

ing data occurring far away from the mode.

• The number of parameters should be as small as possible and the parameters

should have clear interpretations.

• Parameter estimation should be straightforward: usually maximum likeli-

hood or method of moments estimation methods are used.

• The family should nest well-known sub-models, as this permits model re-

duction.

In the subsequent sections, we shall analyze various recent proposals of flexible

circular models on the basis of those requirements.

2.2.4 Flexible modeling of symmetric data: the Jones–Pewsey distri-
bution

The seminal paper by Jones & Pewsey (2005) introduced a general three-parameter

family of symmetric circular distributions that contains several well-known distri-

butions from the literature. Its density is given by

θ 7→ (cosh(κψ))1/ψ

2πP1/ψ(cosh(κψ))
(1 + tanh(κψ) cos(θ − µ))1/ψ , (2.5)
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where Pα(·) is the associated Legendre function of the first kind of degree α ∈ R
and order 0,2 µ ∈ [−π,π) is the location parameter, κ ≥ 0 the concentration

parameter and ψ ∈ R is a shape parameter termed the shape index by Jones and

Pewsey. When κ = 0 or ψ → ±∞ (with κ finite), (2.5) is the uniform density. The

choices ψ = 1 and−1 respectively yield the cardioid and wrapped Cauchy density,

while the limit ψ → 0 yields the von Mises density. When ψ > 0 and κ→∞, the

Jones–Pewsey density (2.5) corresponds to Cartwright’s power-of-cosine density

(Cartwright 1963), whereas for −1 < ψ < 0 it becomes the circular t-density of

Shimizu & Iida (2002). We omit shapes of (2.5) here, as they can be seen as a

continuous variation between the densities shown in Figure 2.1. The normalizing

constant of the circular Jones–Pewsey family of Section 2.2.4 is given by∫ π

−π
(1 + tanh(κψ) cos(θ))1/ψdθ =

1

cosh1/ψ(κψ)

∫ π

−π
(cosh(κψ) + sinh(κψ) cos(θ))1/ψdθ =

2πP1/ψ(cosh(κψ))

cosh1/ψ(κψ)
,

where the last equality holds for both positive and negative ψ.

The wide range of the symmetric Jones–Pewsey family is not the only reason

for its popularity. Further distributional trumps are its unique mode µ for all ψ ∈ R
and all κ > 0, a normalizing constant expressed in terms of known functions,

and stochastic representations as conditional distributions of spherically/elliptically

symmetric distributions on R2 (see Section 2.5 of Jones & Pewsey 2005).

To simplify the presentation of the characteristic function and trigonometric

moments, we fix µ = 0. The sine moments βk = E[sin(kΘ)] are all zero due

to the symmetry of the Jones–Pewsey density. Consequently, the characteristic

function {φk = E[eikΘ] : k = 0,±1, . . .}, with Θ following the Jones–Pewsey

density (2.5), is defined via the cosine moments αk = E[cos(kΘ)] given by

αk =


Γ(1/ψ+1)Pk

1/ψ
(cosh(κψ))

Γ(1/ψ+k+1)P1/ψ(cosh(κψ)) if ψ > 0,
Ik(κ)
I0(κ) if ψ = 0,
Γ(1/|ψ|−k)Pk

1/ψ
(cosh(κψ))

Γ(1/|ψ|)P1/ψ(cosh(κψ)) if ψ < 0,

where Γ(·) denotes the gamma function and P βα (·) the associated Legendre func-
2For z ∈ [1,∞), the integral representation of the associated Legendre function Pα(z) corre-

sponds to

Pα(z) =
1

2π

∫ π

−π

(
z +

√
z2 − 1 cos(θ)

)α
dθ.
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tion of the first kind of degree α ∈ R and order β ∈ R+.3 Of particular interest is

the (population) mean resultant length

ρ = α1 =
|ψ|

(1 + ψ)

P 1
1/ψ(cosh(κψ))

P1/ψ(cosh(κψ))
.

It increases with concentration κ, while there is no monotone effect in ψ.

Concerning parameter estimation, no closed-form expressions exist for the

maximum likelihood (ML) estimators of the parameters of the Jones–Pewsey den-

sity, and numerical optimization methods are required. Provided that |κψ| < 6,

the profile log-likelihood surface for these two parameters (obtained by maximiz-

ing the likelihood with respect to µ) is concave with a clearly defined maximum,

leading to rapid convergence of the numerical maximization procedure. Instabili-

ties only arise for |κψ| too big. It is notable that the ML estimate for the location

parameter is asymptotically independent of the ML estimates of the other two pa-

rameters, which are correlated. For more details, see Section 3 of Jones & Pewsey

(2005), as well as the appendix of that paper where the elements of the observed

and expected information matrix are provided.

2.2.5 Sine-skewing: a simple tool to skew any symmetric distribution

In order to model asymmetric data on the circle, Umbach & Jammalamadaka

(2009) and Abe & Pewsey (2011a) proposed a simple means to skew any symmet-

ric distribution, thereby exploiting the richness of existing symmetric circular laws.

Their construction consists in perturbing a density f symmetric about µ ∈ [−π,π)

into

θ 7→ f(θ − µ)(1 + λ sin(θ − µ)), (2.6)

where λ ∈ (−1, 1) plays the role of a skewness parameter. When λ = 0, no

perturbation occurs and the base symmetric density is retained, otherwise (2.6)

3The associated Legendre function of the first kind, P βα (z) for z ∈ [1,∞), with degree α ∈ R
and order β ∈ R+ admits the integral representations

P βα (z) =
(−α)β
π

∫ π

0

cos(βθ)

(z +
√
z2 − 1 cos(θ))α+1

dθ

=
Γ(α+ 1)

πΓ(α− β + 1)

∫ 0

−π

cos(βθ)

(z −
√
z2 − 1 cos(θ))α+1

dθ,

where

(−α)β = (−1)β
Γ(α+ 1)

Γ(α− β + 1)
.
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is skewed to the left (λ > 0) or to the right (λ < 0). Abe and Pewsey term such

densities sine-skewed because they are obtained by perturbing f with (1+λ sin(θ−
µ)) (recall the perturbation approach discussed in Section 2.2.1). A sine-skewed-f

random variable ΘSSF with location µ = 0 is generated via the following very

simple mechanism:

1. Generate a circular random variable ΘF with density f symmetric about 0.

2. Generate independently a uniform random variable U on [0, 1].

3. Define ΘSSF as follows:

ΘSSF =

{
ΘF if U ≤ (1 + λ sin(ΘF ))/2

−ΘF if U > (1 + λ sin(ΘF ))/2.

A clear advantage of sine-skewing is that the normalizing constant is unaffected.

Trigonometric moments are expressed in terms of the moments of f ; see Abe &

Pewsey (2011a) for details. A drawback lies in the potential bimodality of sine-

skewed densities. The strictly unimodal sine-skewed wrapped Cauchy distribution

is a notable exception. As an illustration of this fact, we provide in Figure 2.2 the

plots of sine-skewed von Mises, cardioid and wrapped Cauchy densities. It is also

worth noting that, for f the uniform density, (2.6) becomes the cardioid density

with mode at (µ+ π/2 + π) (mod 2π)− π.

Concerning inferential properties, Abe & Pewsey (2011a) warn that method

of moments estimators will not always exist. Maximum likelihood estimation

requires numerical maximization, for which Abe and Pewsey recommend using

a global optimization routine based on a differential evolution algorithm instead

of the Nelder–Mead simplex method, as the latter may yield local maxima. Fur-

ther inferential properties of sine-skewed densities can be found in Section 6.6 of

Chapter 6, which describes tests for symmetry (λ = 0) that are optimal against

sine-skewed alternatives.

Umbach & Jammalamadaka (2009) also suggested a more general skewing

method that transforms the symmetric density f into

θ 7→ 2f(θ − µ)G(ω(θ − µ)) (2.7)

where G(θ) =
∫ θ
−π g(y)dy is the cumulative distribution function (cdf) of a given

circular symmetric density g and ω is a weighting function satisfying for all θ ∈
[−π,π) the three conditions ω(−θ) = −ω(θ), ω(θ + 2πk) = ω(θ)∀k ∈ Z, and
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Figure 2.2: Sine-skewed versions of the von Mises density with κ = 5 (top),

cardioid density with ρ = 0.45 (middle) and wrapped Cauchy density with ` =

0.6 (bottom), for λ = 0, 0.1, 0.5 and 0.9. In each figure, increasing values of λ

correspond to the solid, dashed, dash-dotted and dotted lines.
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|ω(θ)| ≤ π. Choosing G(θ) = (π + θ)/(2π), the cdf of the circular uniform

distribution, and ω(θ) = λπ sin(θ) with λ ∈ (−1, 1) obviously leads to (2.6).

The densities (2.6) and (2.7) are the circular analogs of the skew-symmetric

distributions on Rp mentioned in Section 2.1.1.

2.2.6 Skewness combined with unimodality: the scale-transforming
approach

In the previous section we learnt that sine-skewing can produce bimodal skew dis-

tributions. The goal of Jones & Pewsey (2012) was to avoid this by proposing

skew densities that remain unimodal. Their construction turns any symmetric cir-

cular density f with mode µ = 0 (again, for simplicity of presentation only) into

its scale-transformed version via

f(θ)
τ⇒ f(τ(θ)) (2.8)

for some monotone scaling function τ . The idea underpinning (2.8) is not new and

can be traced back to the late 1970s with Papakonstantinou (1979) and Batschelet

(1981). The two transformations considered in those papers are

τν1(θ) = θ + ν1 sin(θ) and τν2(θ) = θ + ν2 cos(θ)

with ν1, ν2 ∈ R. While τν1 maintains symmetry but affects peakedness (render-

ing f either more flat-topped or more sharply peaked), τν2 skews any symmetric

density. Both τν1 and τν2 preserve unimodality when −1 ≤ ν1, ν2 ≤ 1. Papakon-

stantinou applied the two transformations to the cardioid density, Batschelet to the

von Mises density. In recent years, these transformations have seen a resurgence of

interest. Abe et al. (2009) provided an in-depth study of Papakonstantinou’s τν1-

scaled cardioid density, while Pewsey et al. (2011) did the same for Batschelet’s

τν1-scaled von Mises density. Abe et al. (2013) studied the effects of both transfor-

mations in considerable generality.

Let us now come back to the Jones & Pewsey (2012) paper and their goal of a

simple means of obtaining a skew unimodal density. Their idea consists in slightly

extending τν2 into

τ2,ν(θ) = θ − ν − ν cos(θ), −1 ≤ ν ≤ 1,

and then considering τν,JP (θ) = τ−1
2,ν (θ). This allows turning any symmetric den-

sity f into

f(τν,JP (θ)) = f
(
τ−1

2,ν (θ)
)

(2.9)
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with skewness parameter ν and explains why Jones and Pewsey speak of inverse

Batschelet distributions. Densities (2.9) are unimodal; we provide plots of τν,JP -

transformed von Mises, cardioid and wrapped Cauchy densities in Figure 2.3. In

contrast to the original proposals τν1 and τν2 , τν,JP leaves the normalizing constant

unchanged, sharing this advantage with sine-skewed densities. There exists, in fact,

a direct link between both skewing methods: if Θ follows (2.9), then τν,JP (Θ) gen-

erates a random variable following the corresponding sine-skewed f density (2.6).

Since sine-skewed densities are simple to generate (see Section 2.2.5), this link im-

plies that inverse Batschelet densities inherit this property. Deepening the compar-

ison between inverse Batschelet transforming and sine-skewing, the former leads

in general to higher degrees of asymmetry, while the latter is more amenable to

calculations such as trigonometric moments.

Parameter estimation for scale-transformed or inverse Batschelet densities is

performed via maximum likelihood, Jones and Pewsey suggesting the Nelder–

Mead algorithm. Of course, the inverse operation in (2.9) slows down the max-

imisation procedure. These densities enjoy a remarkable inferential property when

applied to a three-parameter symmetric distribution (such as the Jones–Pewsey, for

instance), namely parameter orthogonality between a block formed by the location

and skewness parameter and another block formed by the concentration and addi-

tional shape parameter. This property entails that, asymptotically, the ML estimate

of concentration, for example, has no influence on the behavior of the skewness

ML estimate. This rare property mimicks two-piece distributions on the real line,

see Jones & Anaya-Izquierdo (2011).

2.2.7 A general device for building symmetric bipolar distributions

Bimodal data have often been modeled by means of two-component mixtures of

unimodal distributions. Symmetric bipolar data are bimodal data symmetric about

the two modes µ1 and µ2 which are diametrically opposed, that is, separated by π

radians. Such data arise in a variety of natural sciences such as meteorology and

animal behavior experiments.

Abe & Pewsey (2011b) proposed a general way to model symmetric bipolar

data. Starting from a unimodal symmetric density f(θ − µ) with mode at µ ∈
[−π,π), their two-step procedure proceeds as follows:

1. Duplicate f(θ − µ) into f(2(θ − µ)), an antipodally symmetric density

(meaning that the density takes the same values for opposite points on the



2.2. Flexible circular distributions 29

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

–3 –2 –1 0 1 2 3

0.1

0.2

0.3

0.4

–3 –2 –1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.3: Scale-transformed (inverse Batschelet) versions of the von Mises den-

sity with κ = 5 (top), cardioid density with ρ = 0.4 (middle) and wrapped Cauchy

density with ` = 0.6 (bottom), for ν = 0, 0.1, 0.5 and 0.8. In each figure, in-

creasing values of ν correspond to the solid, dashed, dash-dotted and dotted lines.
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circle and sphere).

2. Perturb f(2(θ−µ)) by multiplication with (1 +λ cos(θ−µ)) for λ ∈ [0, 1].

The first step creates a bimodal density whose modes are separated by π radians,

and the second step assigns different weights to both modes depending on the value

of λ, which hence endorses the role of mode-weighting parameter. The resulting

symmetric bipolar densities are of the form

θ 7→ (1 + λ cos(θ − µ))f(2(θ − µ)). (2.10)

For λ = 0, densities of form (2.10) are antipodally symmetric, while increasing

values of λ increase the probability mass around µ. This effect of λ is illustrated

in Figure 2.4. The above construction, based on duplication and cosine perturba-

tion, avoids the calculation of complex normalizing constants and yields simple

expressions for the trigonometric moments as functions of the trigonometric mo-

ments of the base density f . A potential drawback lies in the fact that densities of

form (2.10) can also be uni- and trimodal.

Parameter estimation via method of moments can be, depending on the initial

density f , straightforward. Abe & Pewsey (2011b) suggest using the method of

moments estimates as initial values for maximum likelihood estimation. However,

an identifiability issue arises at λ = 0: the “main mode” µ is no longer identifiable

(see (2.10)). In such a case one should restrict µ to lie in [−π/2,π/2). Antipodal

symmetry can readily be tested via a likelihood ratio test of the null hypothesis

H0 : λ = 0 against the alternative hypothesisH1 : λ 6= 0.

2.2.8 A brief description of three other flexible models

In the previous sections we have highlighted general ways to introduce skewness,

varying tail-weight and multimodality into symmetric unimodal distributions. In

contrast, we shall now present a selection of flexible constructions that were tailor-

made to extend a single targeted density.

The Generalized von Mises distribution

At first sight, the Generalized von Mises (GvM) distribution may seem out of place

in our listing of “new” models, as it has a long history; relevant references include

Maksimov (1967), Rukhin (1972) and Yfantis & Borgman (1982). However, it still



2.2. Flexible circular distributions 31

–3 –2 –1 0 1 2 3

0.5

1.0

1.5

–3 –2 –1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

–3 –2 –1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2.4: Duplicated and cosine perturbated versions of the von Mises density

with κ = 5 (top), cardioid density with ρ = 0.4 (middle) and wrapped Cauchy den-

sity with ` = 0.6 (bottom), for λ = 0, 0.2, 0.5 and 0.9. In each figure, increasing

values of λ correspond to the solid, dashed, dash-dotted and dotted lines.
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occupies an important role in modern distribution theory, as reflected by the refer-

ences Gatto & Jammalamadaka (2007), Gatto (2008) and Gatto (2009) who have

further studied the GvM. The GvM distribution is built from a bivariate normal

distribution on R2 by a conditioning argument and has a density proportional to

θ 7→ exp (κ1 cos(θ − µ1) + κ2 cos(2(θ − µ2))) , (2.11)

where µ1,µ2 ∈ [−π,π) are location and κ1,κ2 ≥ 0 concentration parameters.

Such a construction can be considered as multiplicative mixing and is particularly

suitable for modeling bimodal data. The GvM can capture asymmetry as well as

symmetry, and obviously has the von Mises as a special case. The conditions for

unimodality/bimodality depend on the behavior of the roots of a quartic equation.

The normalizing constant is rather convoluted, and must be computed numerically

or estimated via truncated series expansions as provided in Gatto (2009). Trigono-

metric moments, consequently, suffer from the same drawback.

Maximum likelihood estimation works very well for GvM distributions, as the

log-likelihood function is concave and hence leads to a unique maximum. This

nice feature follows from the fact that the GvM belongs to the exponential family

of distributions.

We attract the reader’s attention regarding terminology. The GvM distribution

with density (2.11) is also referred to as the GvM2 distribution (e.g., in Gatto

2009), a special case of Generalized von Mises distributions of order k, GvMk,

with k locations µ1, . . . ,µk and k concentrations κ1, . . . ,κk.

The Möbius-transformed distributions of Kato & Jones (2010)

Applying monotone increasing transformations to normal random variables is one

of the oldest approaches to create flexible distributions on the real line. On the

circle, one transformation has raised particular interest in recent years: the Möbius

transformation. It transforms an angle Θ̄ into Θ via the mapping

Θ̄ 7→ Θ := µ+ ν + 2 arctan

(
ωr tan

(
1

2
(Θ̄− ν)

))
(2.12)

or

eiΘ = eiµ
eiΘ̄ + reiν

rei(Θ̄−ν) + 1
,

where −π ≤ µ < π, 0 ≤ ν < 2π, 0 ≤ r < 1 are the three parameters of the

transformation, with ωr = (1 − r)/(1 + r) and complex number i =
√
−1. Kato
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& Jones (2010) introduced a new four-parameter family on the circle by applying

the Möbius transformation (2.12) to a random variable following a von Mises dis-

tribution centered at 0 and with concentration κ ≥ 0. The resulting density is given

by

θ 7→ 1− r2

2πI0(κ)
exp

[
κ (ξ cos(θ − η)− 2r cos(ν))

1 + r2 − 2r cos(θ − γ)

]
1

1 + r2 − 2r cos(θ − γ)
,

(2.13)

where γ = µ+ ν, ξ =
√
r4 + 2r2 cos(2ν) + 1 and

η = µ+ arg
(
r2 cos(2ν) + 1 + ir2 sin(2ν)

)
.

It contains as special cases the von Mises (r = 0), the wrapped Cauchy (κ = 0) as

well as the uniform (r = κ = 0). Advantages of this Kato–Jones proposal are the

simple normalizing constant and closure under Möbius transformation; note that

the wrapped Cauchy is itself a Möbius-transformed uniform distribution. Param-

eter interpretation, however, is less clear-cut. While µ plays the role of a location

parameter, it is the interplay between ν, r and κ that controls the skewness of the

density. For instance, (2.13) is symmetric if and only if ν = 0, ν = π, r = 0

or κ = 0. Concentration and peakedness are mostly determined by κ and r. As

for the Generalized von Mises distribution, density (2.13) can be both uni- and

bimodal, with the conditions for unimodality depending on the discriminant of a

quartic equation involving the three parameters ν, r and κ.

Regarding inferential issues, it seems from Kato & Jones (2010) that unique-

ness of maxima of the log-likelihood is not guaranteed and they hence suggest

multiple restarts of the optimization algorithm. An important bonus of the Möbius-

transformed density (2.13) is that it lends itself well to circular-circular regression

problems.

We conclude by remarking that the Möbius transformation can, more gener-

ally, be applied to other symmetric base densities, such as for instance the Jones–

Pewsey density as briefly mentioned in Section 8 of Kato & Jones (2010), but this

would result in a less parsimonious five-parameter model. Wang & Shimizu (2012)

studied the Möbius-transformed cardioid distribution.

The very flexible unimodal distribution of Kato & Jones (2015)

Adopting a completely different approach, Kato & Jones (2015) proposed yet an-

other four-parameter family based on the wrapped Cauchy distribution. Recalling
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the notation from (2.4), the trigonometric moments of the wrapped Cauchy density

are given by φWC
k = (`eiµ)k for non-negative k and φWC

k = φWC
−k for negative k,

with z̄ being the complex conjugate of z. Kato and Jones extend this expression to

φKJ15
k = γ(`eiη)−1

(
`ei(µ+η)

)k
, k = 1, 2, . . . , (2.14)

with γ ≥ 0 and −π ≤ η < π. The wrapped Cauchy moments are retrieved

when γ = ` and η = 0. Starting from this expression, there exists an absolutely

continuous density on the circle whose trigonometric moments equal (2.14) if and

only if µ, η ∈ [−π,π) and `, γ ∈ [0, 1) satisfy

(` cos(η)− γ)2 + (` sin(η))2 ≤ (1− γ)2, (2.15)

and the corresponding density is of the form

θ 7→ 1

2π

(
1 + 2γ

cos(θ − µ)− ` cos(η)

1 + `2 − 2` cos(θ − µ− η)

)
. (2.16)

In addition to the wrapped Cauchy, the cardioid density is also a special case

of (2.16), obtained when ` = 0. For γ > 0, the density is always unimodal,

while γ = 0 yields the uniform distribution. This property is quite remarkable,

as density (2.16) can be symmetric or asymmetric, flat-topped or sharply peaked.

Moreover, the parameters bear clear interpretations: µ is the mean direction and

γ is the mean resultant length. The circular skewness and kurtosis of Batschelet

(1981), defined respectively as the imaginary and real parts of φKJ15
2 exp(−2iµ),

are conveniently given by cS = γ` sin(η) and cK = γ` cos(η). It is hence possible

to reparametrize the density in terms of the parameters cS and cK so as to have

pleasing parameter interpretability in terms of location, concentration, skewness

and kurtosis. Random variable generation can be achieved by acceptance/rejection

algorithms based on random variables generated from a wrapped Cauchy distribu-

tion.

Parameter estimation is possible via both method of moments and maximum

likelihood. The method of moments is particularly appealing thanks to the sim-

ple trigonometric moments, and the resulting estimates are good starting values

for the numerical maximization of the log-likelihood function. In order to avoid

condition (2.15) on the parameters during the optimization procedure, a reparame-

terization is suggested in Section 5.2 of Kato & Jones (2015).

Finally, we mention that the same pair of authors derived a further tractable

four-parameter density in Kato & Jones (2013), again based on the wrapped
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Cauchy density but this time derived via Brownian motion. Their distribution can

be symmetric or asymmetric, unimodal or bimodal, peaked or flat-topped. No in-

ferential issues are considered in the paper.

2.3 Flexible spherical distributions

In contrast to the circle S1, new flexible models on the (hyper-)sphere are rela-

tively scarce. In addition to the intrinsic complexity of Sp−1 when p > 2, this

dearth might be due to the fact that various spherical distributions were studied

in the 1970s (e.g., mixture models). Consequently, only one recent flexible pro-

posal will be described in detail (Section 2.3.3), and we place more emphasis

on new developments and known results for rotationally symmetric distributions

(Section 2.3.2), an important class of spherical densities that we will recurrently

encounter throughout this book.

2.3.1 Classical spherical distributions

The best known and simplest spherical distribution is the uniform distribution with

density 1
ωp

over Sp−1, where we recall that ωp = 2πp/2/Γ(p/2) is the surface area

of Sp−1. No other distribution is invariant under both rotation and reflection. All

four constructions of Section 2.2.1 remain valid on hyper-spheres; see Section 9.1

of Mardia & Jupp (2000). Letting x ∈ Sp−1 be a point on the unit hypersphere,

popular non-uniform directional densities are the

• Fisher–von Mises–Langevin (FvML) density

x 7→
(
κ
2

)p/2−1

2πp/2Ip/2−1(κ)
exp(κx′µµµ), (2.17)

with Ip/2−1 the modified Bessel function of the first kind and of order p/2−
1 (see Section 2.2.2). Density (2.17) is unimodal about the location µµµ ∈
Sp−1 and its concentration around the mode is regulated by κ ≥ 0, the limit

κ = 0 yielding the uniform distribution. For p = 2 we retrieve the von

Mises (1918) density, for p = 3 the Fisher (1953) density and, for general

p, the Langevin (1905b,a) densities; hence the terminology. Like the von

Mises on the circle, the FvML distribution plays a central role in spherical

statistics. A further similarity is its genesis by conditioning on a p-variate

normal distribution.
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• Fisher–Bingham density

x 7→ 1

a(κ,A)
exp(κx′µµµ+ x′Ax), (2.18)

with location parameter µµµ ∈ Sp−1, concentration κ ≥ 0 and A a symmetric

p × p matrix, and where a(κ,A) is a normalizing constant. Without loss

of generality, one can assume that tr(A) = 0 since x′x = 1. When A is

the zero matrix, (2.18) reduces to (2.17), when κ = 0 the Bingham density

(Bingham 1964) is obtained and for p = 2 it takes the form of a Generalized

von Mises density (Section 2.2.8). Approximating the normalizing constant

a(κ,A) is a challenging task that several researchers have addressed, see,

e.g., Kume & Wood (2005).

• Kent density, which corresponds to (2.18) under the additional condition that

A′µµµ = 000. This modification, proposed in Kent (1982), leads to oval density

contours around µµµ, the matrix A being a shape parameter.

• (Dimroth–Scheidegger–) Watson density

x 7→ Γ(p/2)

2πp/2M
(

1
2 , p2 ,κ

) exp(κ(x′µµµ)2), (2.19)

with locationµµµ ∈ Sp−1 and concentration κ ∈ R, and whereM(1/2, p/2,κ)

denotes the Kummer function.4 For κ > 0, the Watson density is bipolar

with maxima at±µµµ, while for κ < 0 it is concentrated around the great circle

like girdle densities. Density (2.19) is invariant under reflections and hence

is suited for modeling axial data (data that are axes, hence such that each

direction is considered as equivalent to the opposite direction). This distri-

bution was introduced independently by Dimroth (1962, 1963) and Watson

(1965).

For properties of these distributions, especially those of the FvML, and fur-

ther classical directional distributions, see Sections 9.3 and 9.4 of Mardia & Jupp

(2000).

4An integral representation of the Kummer function M(a, b, z) with a, b, z ∈ R is

M(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

−1

et
2zt2a−1(1− t2)b−a−1dt.
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2.3.2 Rotationally symmetric distributions

Most of the classical densities mentioned in the previous section share the common

feature that they are rotationally symmetric about their location µµµ ∈ Sp−1. The

distribution of a random X ∈ Sp−1 is said to be rotationally symmetric about µµµ

if OX is equal in distribution to X for any orthogonal p × p matrix O satisfying

Oµµµ = µµµ. This gives rise to densities of the form

x 7→ cfa,pfa(x
′µµµ), (2.20)

where the angular function fa : [−1, 1] → R+ is absolutely continuous and cfa,p

is a normalizing constant. The terminology “angular function” reflects the fact

that the distribution of X only depends on the angle (colatitude angle when p =

3) between X and µµµ. The FvML and Watson distributions are popular instances

of this class of distributions, with their respective angular functions being t 7→
exp(κt) and t 7→ exp(κt2), t ∈ [−1, 1]. Other popular rotationally symmetric

distributions are the Arnold distribution with angular function t 7→ exp(−κ|t|)
(Arnold 1941), the Selby distribution with angular function t 7→ exp(±κ(1 −
t2)1/2) (Selby 1964) and the Purkayastha distribution with angular function t 7→
exp(−κ arccos(t)) (Purkayastha 1991), with κ ≥ 0 each time playing the role of

concentration parameter.

Over the past decade this list of distributions has been further extended.

Shimizu & Iida (2002) defined Pearson Type VII and t-distributions on the sphere,

Siew & Shimizu (2008) introduced generalized symmetric Laplace distributions,

while García-Portugués (2013) proposed the directional Cauchy and skew-normal

densities. Jones & Pewsey (2005) extended the Jones–Pewsey family (Sec-

tion 2.2.4) to the directional case by replacing the cosine function in their den-

sity (2.5) with the scalar product x′µµµ, and adapting the normalizing constant to

the p-dimensional setup. Ley et al. (2013) introduced the directional linear, log-

arithmic, logistic and square-root distributions with respective angular functions

t 7→ t + a, t 7→ log(t + a), t 7→ a exp(−b arccos(t))
(1+a exp(−b arccos(t)))2

and t 7→ √t+ a, with

a and b constants chosen in such a way that each mapping qualifies as an angular

function. The directional linear distribution is an extension of the circular cardioid

distribution.

Numerous statistical procedures presuppose rotational symmetry of the data at

hand. In astronomy, for example, this assumption is natural when the earth’s rota-

tion only allows one to know the colatitude of the emission direction of certain ra-
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diations, and not the exact direction. Such practical constraints are, however, rather

rare, and rotationally symmetric distributions are most often assumed because they

generalize the FvML distribution and nest several other popular directional dis-

tributions; this parallels elliptically symmetric distributions on Rp (Paindaveine

2012) which are a convenient extension of the multivariate normal distribution. A

further, and by no means minor, appeal of rotationally symmetric distributions are

their nice stochastic properties.

An essential structural decomposition of random vectors X ∈ Sp−1 is the

tangent-normal decomposition in the direction µµµ ∈ Sp−1:

X = (X′µµµ)µµµ+ (1− (X′µµµ)2)1/2Sµµµ(X) (2.21)

where the sign vector Sµµµ(X) := (X− (X′µµµ)µµµ)/‖X− (X′µµµ)µµµ‖ is defined on the

tangent space

Sp−1(µµµ⊥) := {v ∈ Rp | ‖v‖ = 1,v′µµµ = 0}.

Figure 2.5 illustrates this decomposition. In the case of rotationally symmetric dis-

tributions, it leads to a very nice and useful property, which will play an important

role also in later chapters of this book.

Lemma 2.3.1 (Watson 1983) Let the distribution of X be rotationally symmetric

on Sp−1 about µµµ. Then (i) X′µµµ and Sµµµ(X) = (X− (X′µµµ)µµµ)/‖X− (X′µµµ)µµµ‖ are

stochastically independent and (ii) the multivariate sign vector Sµµµ(X) is uniformly

distributed on Sp−1(µµµ⊥) := {v ∈ Rp | ‖v‖ = 1,v′µµµ = 0}.

X
(X′µµµ)µµµ

µµµ

(1 − (X′µµµ)2)1/2Sµµµ(X)

Sµµµ(X)

Figure 2.5: Illustration of the tangent-normal decomposition of a vector X ∈ Sp−1.



2.3. Flexible spherical distributions 39

This decomposition of the sphere leads to the change of variables dσp−1(x) =

(1− t2)(p−3)/2dtdσp−2(v) with t ∈ [−1, 1] and v ∈ Sp−2. With this in hand, one

can readily see that the density of the projection X′µµµ, for X rotationally symmetric

around µµµ, is given by

t 7→ f̃a(t) :=
ωp cfa,p

B(1
2 , 1

2(p− 1))
fa(t)(1− t2)(p−3)/2, −1 ≤ t ≤ 1, (2.22)

where B(·, ·) is the beta function. Indeed,∫
Sp−1

cfa,pfa(x
′µµµ)dσp−1(x) =

∫
Sp−2

∫ 1

−1
cfa,pfa(t)(1− t2)(p−3)/2dtdσp−2(v)

=

∫ 1

−1
ωp−1cfa,pfa(t)(1− t2)(p−3)/2dt

=

∫ 1

−1

ωp cfa,p

B(1
2 , 1

2(p− 1))
fa(t)(1− t2)(p−3)/2dt,

where the last equality follows from ωp/ωp−1 = B
(

1
2 , p−1

2

)
. A further appeal-

ing aspect of rotationally symmetric models is their belonging to statistical group

models (Chang 2004).

We conclude this section with a characterization of rotationally symmetric dis-

tributions via their maximum likelihood estimators (MLEs), established in Duer-

inckx & Ley (2012). This property mimics MLE characterizations on Rp. In-

deed, a classical characterization result of Gauss (1809) states that the MLE of the

parameter in a location family of distributions on the real line equals the sam-

ple mean for all samples X1, . . . ,Xn of all sample sizes n if and only if the

samples are drawn from a Gaussian population. A similar characterization ex-

ists for the FvML distribution with respect to the spherical mean X̄/||X̄||: it was

proved in the circular case by von Mises (1918), in the three-dimensional spher-

ical setting by Arnold (1941) and Breitenberger (1963) and, for any dimension,

in Bingham & Mardia (1975). This property is one of the major reasons why the

FvML is considered to be the directional analogue of the normal distribution on

Rp. Duerinckx & Ley (2012) considered rotationally symmetric distributions in

general. Defining, for t ∈ [−1, 1], the functions Hfa(t) := tϕfa

(√
1− t2

)
and

H̄fa(t) := tϕfa

(
−
√

1− t2
)

with ϕfa(t) = f ′a(t)/fa(t), they established the fol-

lowing result.

Theorem 1 (Duerinckx & Ley 2012) Let fa and ga be two continuously differen-

tiable angular functions on [−1, 1] associated with rotationally symmetric distri-
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butions on Sp−1, p ≥ 2, and write their respective location MLEs as µ̂µµfa and µ̂µµga .

Suppose that Hfa is invertible on [−1, 1].

(i) Fix N = 3 + d(Hfa(1))−1 maxt∈[0,1] H̃fa(t) − 1e. Then µ̂µµfa = µ̂µµga for

all samples of fixed sample size n ≥ N if and only if there exist constants

c, d ∈ R+
0 such that ga(t) = c(fa(t))

d ∀t ∈ [−1, 1].

(ii) Fix N = 3 and suppose that fa is such that ϕfa is even. Then µ̂µµfa = µ̂µµga for

all samples of fixed sample size n ≥ N if and only if there exist constants

c, d ∈ R+
0 such that ga(t) = c(fa(t))

d ∀t ∈ [−1, 1].

This theorem states which rotationally symmetric distributions can be charac-

terized through their location MLE and provides the minimal conditions (in terms

of required sample size and regularity of angular functions) under which this char-

acterization holds.

2.3.3 A general method to skew-rotationally symmetric distributions

In order to model asymmetrically distributed data on the sphere, Ley & Verdebout

(2017) propose a general means of skewing any rotationally symmetric distribu-

tion. Let cfa,pfa(x
′µµµ) be a rotationally symmetric density about µµµ ∈ Sp−1 and

Π : R→ [0, 1] a skewing function, that is, a monotone increasing continuous func-

tion satisfying Π(−y) + Π(y) = 1 for all y ∈ R (for instance, Π can be the cdf

of any symmetric density on R). We write ΥΥΥµµµ for the semi-orthogonal matrix such

that

ΥΥΥµµµΥΥΥ
′
µµµ = Ip −µµµµµµ′ and ΥΥΥ′µµµΥΥΥµµµ = Ip−1,

where Ip is the p × p identity matrix. The Π-skewed version of cfa,pfa(x
′µµµ) ac-

cording to Ley & Verdebout (2017) is then defined as

x 7→ 2cfa,pfa(x
′µµµ)Π(λλλ′ΥΥΥ′µµµx) (2.23)

with λλλ ∈ Rp−1 a skewness parameter. The base symmetric density corresponds

to λλλ = 000, whilst non-zero values of λλλ produce skewed spherical densities. The

motivation behind density (2.23) is to break rotational symmetry at the level of

the uniformly distributed (over Sp−1(µµµ⊥)) sign vector Sµµµ(X), see Lemma 2.3.1.

Ley & Verdebout (2017) refer to densities of the form (2.23) as skew-rotationally-

symmetric densities, by analogy with the skew-symmetric distributions on Rp (Az-

zalini & Capitanio 2014). They are a natural spherical extension of the sine-skewed



2.3. Flexible spherical distributions 41

circular densities presented in Section 2.2.5. As in the circular setting, the nor-

malizing constant is unaffected, which is an even stronger asset in the case of

hyper-spheres. Skew-rotationally-symmetric data can be readily generated thanks

to a simple stochastic representation, see Ley & Verdebout (2017) for details. As

an illustration, we have generated n = 100 observations from skewed versions

of the FvML distribution; see Figure 2.6. Inferential procedures related to skew-

rotationally-symmetric distributions are discussed in Section 6.7.

Figure 2.6: Illustration of skew-rotationally-symmetric distributions through the

generation of 100 skew-FvML observations with concentration κ = 10. The data

are increasingly skewed with (from top left to bottom right) ||λλλ|| = 0, 2
√

2, 4
√

2,

and 8
√

2. The black point indicates the location parameter µµµ of the various distri-

butions.
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2.4 Flexible toroidal and cylindrical distributions

Modeling and analyzing data with two directional components or with a directional

and a linear component has gained increasing interest in recent years, mainly mo-

tivated by datasets from emerging scientific disciplines such as bioinformatics and

by advances in circular-circular and circular-linear regression.

In what follows, the vast majority of the directional components in toroidal

and cylindrical models will be of a circular nature. Consequently, in most cases

densities on the unit torus S1 × S1 will be of the form (θ1, θ2) 7→ fT (θ1, θ2) for

θ1, θ2 ∈ S1 and cylindrical densities will be of the form (θ, z) 7→ fC(θ, z) for

θ ∈ S1 and z lying on (a subset of) the real line; fT and fC are the focus of our

interest.

The structure of the present section slightly differs from Sections 2.2 and 2.3

in that we imbed the classical models in the description of the recent flexible mod-

els. Since toroidal and cylindrical models have received less attention in earlier

monographs, we begin with a historical note and motivations for the use of these

models.

2.4.1 Some history, motivations and goals

The first proposals for probability distributions on the torus or cylinder can be

traced back to the 1970s, under the impetus of the seminal papers by Mardia

(1975), Mardia & Sutton (1978) and Johnson & Wehrly (1978). Between 1978

and the year 2000 there was almost a lull in the search for new distributions. This

fact is reflected by only two short sections (3.7 and 11.4) on such models in Mardia

& Jupp (2000) and one short section (2.3) in Jammalamadaka & SenGupta (2001),

in contrast to both books dedicating an entire chapter (Chapter 11 in Mardia &

Jupp 2000 and Chapter 8 in Jammalamadaka & SenGupta 2001) to directional-

directional, respectively directional-linear, regression and correlation. We refer to

Kato et al. (2008), Bhattacharya & SenGupta (2009) and Chapter 8 of Pewsey et al.

(2013) for more recent information on those topics.

A strong resurgence of interest in toroidal and cylindrical models has occurred

in recent years, motivated primarily by demands from other scientific domains.

The main motivation for new toroidal distributions comes from structural bioinfor-

matics where it is essential to model the joint distribution of dihedral angles when

analyzing protein structures, see Section 1.2.5. Environmental sciences drive the
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research for flexible cylindrical models, especially the combination of wind direc-

tion with wind speed, temperature, SO2 concentration or other air quality indica-

tors. A more detailed example on wildfires is provided in Section 1.2.4. The study

of animal behavior and oceanography are also driving forces behind advances in

linear-circular analyses.

In addition to the desirable features identified in Section 2.2.3, one should also

expect appealing toroidal and cylindrical models to possess

• tractable marginal and conditional distributions, ideally of well-known

forms;

• a versatile dependence structure.

The former point is essential for regression purposes; the latter allows, for instance,

modeling situations where the directional concentration increases with the length

of the linear component.

The following sections are intended to draw the most complete picture of up-

to-date advances in toroidal and cylindrical modeling.

2.4.2 The bivariate von Mises distribution and its variants

Mardia (1975) introduced the bivariate von Mises (bvM) density on the torus

(θ1, θ2) 7→ C exp (κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) (2.24)

+(cos(θ1 − µ1), sin(θ1 − µ1))A(cos(θ2 − µ2), sin(θ2 − µ2))′
)

,

with normalizing constant C, circular location parameters µ1,µ2 ∈ [−π,π),

concentration parameters κ1,κ2 ≥ 0 and circular-circular dependence parame-

ter A, a 2 × 2 matrix. The bvM distribution has the attractive property of be-

ing a maximum entropy distribution subject to constraints involving E[cos(Θ1)],

E[sin(Θ1)], E[cos(Θ2)], E[sin(Θ2)], E[cos(Θ1) cos(Θ2)], E[cos(Θ1) sin(Θ2)],

E[sin(Θ1) cos(Θ2)] and E[sin(Θ1) sin(Θ2)]. With a total of eight parameters, the

bvM is overparametrized, which is why special cases were proposed almost imme-

diately after its introduction. In particular, Rivest (1988) considered the subclass

of densities proportional to

exp (κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + α cos(θ1 − µ1) cos(θ2 − µ2)

+β sin(θ1 − µ1) sin(θ2 − µ2)) , (2.25)
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with α,β ∈ R. To achieve further parameter parsimony, Singh et al. (2002) partic-
ularized (2.25) to the setting where α = 0, leading to the Sine model with density

(θ1, θ2) 7→ C exp (κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2) + β sin(θ1 − µ1) sin(θ2 − µ2))

where the normalizing constant C is given by

C−1 = 4π2
∞∑
i=0

(
2i

i

)(
β2

4κ1κ2

)i
Ii(κ1)Ii(κ2).

In the same spirit, Mardia et al. (2007) investigated (2.25) with α = β = −κ3,
leading to the Cosine model with density

(θ1, θ2) 7→ C exp (κ1 cos(θ1 − µ1) + κ2 cos(θ2 − µ2)− κ3 cos(θ1 − µ1 − θ2 + µ2)) ,

where the normalizing constant C is given by

C−1 = 4π2

[
I0(κ1)I0(κ2)I0(κ3) + 2

∞∑
i=1

Ii(κ1)Ii(κ2)Ii(κ3)

]
.

The shapes of the Rivest, Sine and Cosine submodels, together with the indepen-

dence model (with A being the zero matrix), are shown in Figure 2.7 in the form

of contour plots. Yet another special case, which is intimately related to the Rivest

(1988) model and reduces to the latter in certain circumstances, is the so-called

hybrid model briefly described in Kent et al. (2008). An insightful review of the

various variants of bivariate von Mises distributions is presented in Chapter 6 of

Hamelryck et al. (2012).

The Sine and Cosine models have conditional von Mises densities, while

the marginal densities are proportional to expressions of the form I0(h(θ −
µ)) exp(κ cos(θ − µ)) for some function h, some location µ ∈ [−π,π) and some

concentration κ ≥ 0. These marginal densities are symmetric but can be both

unimodal and bimodal, depending on conditions involving the non-location pa-

rameters. The conditions for uni- or bimodality of the joint distributions are of a

simpler form. We refer the reader to Mardia et al. (2007) for details, as well as for

a thorough comparison of the Sine and Cosine models in their Section 3.2.

A multivariate extension of the Sine model with p angular components was

proposed in Mardia et al. (2008). The density reads

(θ1, . . . , θp) 7→ Cp exp
(
κκκ′c(θθθ,µµµ) + s(θθθ,µµµ)′βββs(θθθ,µµµ)

)
,

where c(θθθ,µµµ) = (cos(θ1 − µ1), . . . , cos(θp − µp))
′, s(θθθ,µµµ) = (sin(θ1 −

µ1), . . . , sin(θp − µp))
′, βββ is a real-valued symmetric matrix with zeroes on the
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Figure 2.7: Contour plots of variants of the bivariate von Mises density with a11 =

1, a12 = 0, a21 = 0, a22 = 4, corresponding to the Rivest submodel (top left),

a11 = 0, a12 = 0, a21 = 0, a22 = 4, corresponding to the Sine model (top right),

a11 = 4, a12 = 0, a21 = 0, a22 = 4, corresponding to the Cosine model (bottom

left), and a11 = a12 = a21 = a22 = 0, yielding the independence model (bottom

right). In each case, µ1 = µ2 = 0 and the concentrations are κ1 = 2 and κ2 = 4.
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diagonal, and Cp is a normalizing constant whose explicit form is unknown for

p > 2. Similarly, a multivariate extension of the Cosine distribution was defined in

Mardia & Patrangenaru (2005).

2.4.3 Mardia–Sutton type cylindrical distributions

Starting from the idea that a cylindrical model should have a simple dependence

structure and that, in the case of independence, the linear and circular parts should

respectively be the normal and von Mises distributions, Mardia & Sutton (1978)

proposed the density

(θ, z) 7→ 1

σ(2π)3/2I0(κ)
exp

{
−(z − (µ′ + λ cos(θ − ν)))2

2σ2
+ κ1 cos(θ − µ)

}
(2.26)

with circular location µ ∈ [−π,π) and concentration κ ≥ 0, linear location µ′ ∈ R
and dispersion σ > 0, and circular-linear parameters ν ∈ [−π,π) and λ ≥ 0.

The latter parameter regulates the dependence structure, λ = 0 corresponding to

the product of independent von Mises and normal densities. We call (2.26) the

Mardia–Sutton density. This distribution can be derived in a rather elegant way.

Recalling that the von Mises distribution is obtained by conditioning on a bivariate

normal distribution, the Mardia–Sutton density follows from a conditioning argu-

ment on a trivariate normal distribution whose first component is the linear part

in (2.26). The highly desirable conditional distributions pave the way to regression

analysis. The marginal circular density is again a von Mises, while the form of the

marginal linear part is complicated.
Kato & Shimizu (2008) investigated a flexible extension of the Mardia–Sutton

model, again by conditioning a trivariate normal distribution. The corresponding
density is

(θ, z) 7→ C exp

(
− (z − (µ′ + λ cos(θ − ν)))2

2σ2
+ κ1 cos(θ − µ1) + κ2 cos(2(θ − µ2))

)
with σ > 0, κ1,κ2 ≥ 0, −π ≤ µ1, ν < π, 0 ≤ µ2 < π, µ′ ∈ R, λ ≥ 0 and

normalizing constant

C−1 = (2π)3/2σ

{
I0(κ1)I0(κ2) + 2

∞∑
i=1

Ii(κ2)I2i(κ1) cos{2i(µ1 − µ2)}
}

.

The Mardia–Sutton density is retrieved when κ2 = 0. Contour plots of the Mardia–

Sutton and Kato–Shimizu models are provided in Figure 2.8. As can be seen, the

Kato–Shimizu density can have more than one mode. This has a simple reason:
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the von Mises part in the Mardia–Sutton model is replaced with a Generalized

von Mises, capable of modeling symmetry and asymmetry as well as unimodal-

ity and bimodality (see Section 2.2.8). Consequently, the circular conditional and

marginal laws are GvM distributions, while the linear conditional distribution is a

normal, as in the Mardia–Sutton model. Both models enjoy a maximum entropy

characterization like the bivariate von Mises distribution of Section 2.4.2. Max-

imum likelihood estimation is straightforward, especially for the Mardia–Sutton

model where the estimators have closed-form expressions.

Very recently, Sugasawa et al. (2015) proposed a new flexible cylindrical model

obtained by conditioning a trivariate t distribution. They term it the generalized t-

distribution on the cylinder.

2.4.4 Johnson–Wehrly type cylindrical distributions

Aiming to construct maximum entropy distributions under various moment condi-

tions, Johnson & Wehrly (1978) proposed three different circular-linear densities

plus an additional fourth density for higher-dimensional linear and directional vec-

tors. Their first density is of the very simple form

(θ, z) 7→ (λ2 − κ2)1/2

2π
exp (−λz + κz cos(θ − µ)) , (2.27)

with circular location µ ∈ [−π,π), linear dispersion λ > 0 and circular-linear

parameter 0 ≤ κ < λ which governs dependence. The conditional linear and cir-

cular distributions are exponential and von Mises, respectively, while the marginal

circular law is wrapped Cauchy. The marginal linear density takes the form

(λ2 − κ2)I0(κz)e−λz .

The second Johnson–Wehrly density resembles the Mardia–Sutton model of

Section 2.4.3:

(θ, z) 7→ C
e−κ

2/(4σ2)

√
2πσ

exp

(
−(z − µ′)2

2σ2
+
κz

σ2
cos(θ − µ)

)
, (2.28)

with

C−1 = 2π

(
I0

(
κµ′

σ2

)
I0

(
κ2

4σ2

)
+ 2

∞∑
i=1

Ii

(
κ2

4σ2

)
I2i

(
κµ′

σ2

))

and circular location µ ∈ [−π,π), linear location µ′ ∈ R and dispersion σ > 0,

and dependence parameter κ ≥ 0. The conditional laws are von Mises and normal,
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Figure 2.8: Contour plots of the Kato–Shimizu (top) and Mardia–Sutton (bottom)

cylindrical densities with κ1 = 2,κ2 = 4,σ = 1,λ = 3 (top left), κ1 = 2,κ2 =

4,σ = 3,λ = 3 (top right), κ1 = 2,κ2 = 0,σ = 1,λ = 3 (bottom left), and

κ1 = 2,κ2 = 0,σ = 3,λ = 3 (bottom right). In each case, µ1 = µ2 = 0.
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as for (2.26), the marginal circular is GvM while the marginal linear is proportional

to exp(−(z − µ′)2/(2σ2))I0(κz/σ2).

A common drawback of the first two Johnson–Wehrly distributions (2.27, 2.28)

lies in the dependence structure: the circular part becomes uniform when κ = 0,

i.e., in the case of independence. In order to overcome this limitation, Johnson and

Wehrly proposed a third model of the form

(θ, z) 7→ (λ2 − κ2)1/2

2π (I0(ν) + 2
∑∞

i=1 ρ
iIi(ν) cos(i(µ1 − µ2)))

× exp (−λz + κz cos(θ − µ1) + ν cos(θ − µ2)) ,

with circular locations µ1,µ2 ∈ [−π,π), circular concentration ν ≥ 0, lin-

ear dispersion λ > 0 and dependence parameter 0 ≤ κ < λ, and where

ρ = κ(λ + (λ2 − κ2)1/2)−1. As for (2.27), the conditional laws are von Mises

and exponential, but here the marginal laws are less tractable. When κ = 0, the

circular part becomes von Mises, as was the motivation underpinning this third

model. A drawback is the normalizing constant which involves an infinite sum.
Abe & Ley (2017) introduced a Johnson–Wehrly-like model that overcomes

the shortcomings of (2.27) and (2.29). Their density reads

(θ, z) 7→ αβα

2π cosh(κ)
(1 + λ sin(θ − µ)) zα−1 exp (−(βz)α (1− tanh(κ) cos(θ − µ)))

(2.29)

with circular location µ ∈ [−π,π) and skewness λ ∈ (−1, 1), linear dispersion

β > 0 and shape parameter α > 0, and where κ ≥ 0 is both a circular concen-

tration and the cylindrical dependence parameter, as in the other Johnson–Wehrly

distributions. The multiplication by (1 + λ sin(θ − µ)) is reminiscent of the sine-

skewing in Section 2.2.5. Indeed, the Abe–Ley density increases the flexibility

of (2.27) in several ways: the linear exponential part is turned into the more gen-

eral Weibull distribution, the circular von Mises part becomes sine-skewed, and

the latter transformation also entails that, when κ = 0, the circular part of (2.29) is

cardioid instead of uniform. Figure 2.9 exhibits contour plots of the Abe–Ley and

first Johnson–Wehrly densities for various parameter choices.

The Johnson–Wehrly model (2.27) is retrieved when λ = 0 and α = 1.

Compared to (2.29), the Abe–Ley density enjoys the attractive feature of a

very simple normalizing constant, rendering, for instance, moment calcula-

tions simple. The conditional circular and linear laws are sine-skewed von

Mises and Weibull, respectively, while the circular marginal law is sine-

skewed wrapped Cauchy. The linear marginal density is proportional to



50 Chapter 2. Advances in flexible parametric distribution theory

I0(zαβα tanh (κ))zα−1 exp(−(βz)α). Circular-linear regression is straightfor-

ward, and parameter estimation works well via maximum likelihood. A close in-

spection of the conditional circular law reveals that the concentration parameter of

the sine-skewed von Mises is (βz)α tanh(κ), showing that the Abe–Ley model as

well as its Johnson–Wehrly submodel are able to model cylindrical data where the

circular concentration increases with the linear part (see Section 2.4.1).

2.4.5 The copula approach

A popular means of constructing flexible distributions in Rp is provided by copu-

las, as they accommodate modeling the marginal distributions and the dependence

structure between the p components separately; see Joe (1997) or Nelsen (2010)

for monographs on copulas. It is thus hardly surprising that copula-like structures

have been put forward for toroidal and cylindrical distributions, too. Under their

most general form, copula-based densities read

(θ, y) 7→ c (F1(θ),F2(y)) f1(θ)f2(y) (2.30)

where y is either a linear or a circular component, f1 and F1 (respectively, f2 and

F2) are a circular (respectively, a linear or a circular) density and its associated dis-

tribution function, and c is a bivariate copula density regulating the dependence. In

the toroidal setting, c is a density on the torus with uniform marginals. Jones et al.

(2015) coin the term circula for the copula c in such settings. Densities (2.30) have

not yet been studied in full generality and will certainly, in the near future, lead to

interesting new cylindrical and toroidal probability laws with specified marginals

f1 and f2 (or with p marginals, in the p-dimensional setting).

One particular case of (2.30) has received considerable attention in the litera-

ture. It corresponds to

(θ, y) 7→ 2πcb
(
2π (F1(θ)− qF2(y))

)
f1(θ)f2(y), (2.31)

with q = 1 in the cylindrical and q = 1 or −1 in the toroidal setting, and with cb a

circular density called binding function. This choice was popularized in Johnson &

Wehrly (1978) and Wehrly & Johnson (1980), with no mention of copulas. Johnson

& Wehrly (1977) and Isham (1977) had previously used similar constructions. An

in-depth study of the copula-structure (2.31) is provided in Jones et al. (2015), and

parametric bootstrap goodness-of-fit tests for the toroidal case are given in Pewsey

& Kato (2016).
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Figure 2.9: Contour plot of the Abe–Ley cylindrical density with α = 2,λ = 0

(top), α = 2,λ = 0.5 (middle) and α = 1,λ = 0, which corresponds to the first

Johnson–Wehrly density (bottom). In each case, µ is fixed to 0, β to 1 and κ to 1.
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One special case of (2.31) is particularly interesting on the torus, namely the bi-
variate wrapped Cauchy (bwC) model recently proposed in Kato & Pewsey (2015).
Choosing both marginals as well as the binding function to be wrapped Cauchy
leads to a density proportional to the inverse of(
c0−c1 cos(θ1−µ1)−c2 cos(θ2−µ2)−c3 cos(θ1−µ1) cos(θ2−µ2)−c4 sin(θ1−µ1) sin(θ2−µ2)

)
for constants c1, c2, c3, c4 depending on two circular concentration parameters and

a dependence parameter. The bwC enjoys several nice properties such as unimodal-

ity, clear parameter interpretability, a simple normalizing constant, closed-form

expressions for the trigonometric moments and hence fast method of moments

estimation of its parameters and, most remarkably, also the circular conditional

distributions are wrapped Cauchy.

Numerous further copula-based models have been investigated in the literature,

and we refer to Jones et al. (2015) for detailed information and to the part “On the

torus and the cylinder” of the next section for references.

2.5 Further reading

So far in this chapter we have attempted to describe the main recent advances in the

flexible modeling of directional data, with particular focus on the circular setting.

We now provide further references for the interested reader.

On the circle

We have briefly presented the classical distributions such as the von Mises, cardioid

and wrapped Cauchy. For more details on these aspects and other classical circular

distributions, we refer the interested reader to Section 3.5 of Mardia & Jupp (2000),

Chapter 2 of Jammalamadaka & SenGupta (2001) and Section 4.3 of Pewsey et al.

(2013). Of particular interest is Section 3.5.1 of Mardia & Jupp (2000) where the

authors describe the broad families of exponential and transformation models and

their respective links with inferential procedures. This source nicely complements

the present chapter, where we have purposely not referred to such issues.

As examples of wrapped distributions, we have considered the wrapped nor-

mal and the wrapped Cauchy. However, new wrapped circular models have seen

the light over the last two decades. Unimodal symmetric proposals include the

wrapped t densities of Pewsey et al. (2007), while unimodal asymmetric models are

the wrapped skew-normal (Pewsey 2000), the wrapped (skew) Laplace (Jammala-

madaka & Kozubowski 2003, Jammalamadaka & Kozubowski 2004), the wrapped
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normal-Laplace and wrapped generalized normal-Laplace (Reed & Pewsey 2009).

The unimodal wrapped stable distribution, first appearing in Mardia (1972), has

received particular attention: in its three-parameter symmetric form by Jammala-

madaka & SenGupta (2001), Section 2.2.8, SenGupta & Pal (2001) and Gatto &

Jammalamadaka (2003), and in its more flexible four-parameter, potentially skew,

form by Pewsey (2008).

Besides wrapping, inverse stereographic projection via the tangent function

is another approach which can be used to convert linear densities into circular

ones. Minh & Farnum (2003) applied this method to obtain a circular t distribu-

tion which happens to coincide with Cartwright’s power-of-cosine distribution (see

Section 2.2.4), while Abe et al. (2010) combined this procedure with the structure

inherent to the Jones–Pewsey family to obtain a new flexible symmetric unimodal

distribution.

We have mentioned on various occasions finite mixture distributions as a means

of producing multimodal distributions. The best known and most thoroughly stud-

ied mixtures to date are mixtures of von Mises distributions (Mardia & Sutton

1975, Spurr & Koutbeiy 1991), which have been reconsidered in, e.g., Mooney

et al. (2003). See also Section 5.5 of Mardia & Jupp (2000), Section 4.3 of Jam-

malamadaka & SenGupta (2001) and Section 4.3.16 of Pewsey et al. (2013).

An approach similar in spirit to finite mixtures was adopted by Fernández-

Durán (2004) who considered non-negative trigonometric sums. The resulting

densities are θ 7→ 1
2π + 1

π

∑n
j=1(aj cos(jθ) + bj sin(jθ)) with aj − ibj =

2
∑n−j

ν=0 cν+j c̄ν for complex numbers cj (with c̄j the complex conjugate of cj)

such that
∑n

j=0 |cj |2 = (2π)−1. The number n of terms in the sum is not fixed

and can become unpleasantly large for certain data shapes, hence is an additional

parameter. In particular, n = 0 produces the uniform and n = 1 the cardioid.

For inferential issues for such densities we refer the reader to Fernández-Durán &

Gregorio-Domínguez (2010).

Throughout this chapter we have already mentioned the t distribution on the

circle proposed by Shimizu & Iida (2002), which belongs to the Jones–Pewsey

family, as well as the wrapped t distribution of Pewsey et al. (2007). Yet another

circular t distribution, the generalized t distribution, was introduced in Siew et al.

(2008).
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On the (hyper-)sphere

As for the circular case, multimodal spherical data are in general best modeled

using finite mixtures of popular unimodal distributions. Multimodal spherical

datasets appear in a variety of disciplines such as the study of fractures in rock

masses (Peel et al. 2001), genetics and text mining (Banerjee et al. 2005). Notable

recent contributions in this direction are finite mixtures of Kent distributions, stud-

ied in Peel et al. (2001), and mixtures of FvML distributions (Banerjee et al. 2005,

Ferreira et al. 2008).

Finite mixtures of FvML distributions were actually not the main goal of Fer-

reira et al. (2008). These authors constructed directional distributions able to cope

with both skewness and multimodality, which they called directional log-spline

distributions. Their densities are expressed as splines on hyperspheres (Taijeron

et al. 1994), which explains their flexibility because hyperspherical splines can ap-

proximate any continuous function.

For symmetric axial data, which can be seen as a special form of bimodality,

Oualkacha & Rivest (2009) introduced a new distribution, which they applied to a

human body data set.

On the torus and the cylinder

In Section 2.4.5 we have described a copula-like approach to modeling toroidal and

cylindrical data. In addition to the sources mentioned in that section, several other

authors have investigated particular instances of model (2.31). Shieh & Johnson

(2005) studied a toroidal distribution with von Mises marginals where cb is also a

von Mises density. Fernández-Durán (2007) used the non-negative trigonometric

sums circular densities (see “On the circle” above) for cb as well as for both circular

densities in the toroidal case and for the single circular density in the cylindrical

setting (with linear Weibull density). Shieh et al. (2011) proposed a model with

Generalized von Mises marginals and cb of von Mises type.

A particularly notable contribution is Kato (2009). We refer to that paper for

further insight into the copula-like structure, as well as for toroidal distributions

with, on the one hand, von Mises marginals and, on the other, uniform marginals.

Finally, we wish to mention Jupp (2015) where copulae on a product of Rie-

mannian manifolds are studied.



Advances in kernel density
estimation on directional

supports

3.1 Introduction

We described in Chapter 2 a plethora of directional densities designed to best de-

scribe the directional data at hand. That approach is fully parametric, as the only

unknown parts of the density are the parameters which we need to estimate. A

completely different path is taken in the present chapter, where no underlying para-

metric density is assumed and where, hence, the density itself has to be estimated.

3.1.1 Kernel density estimation on the real line

Kernel density estimation is the classical way to produce non-parametric density

estimates on the real line. Its roots can be found in the seminal works of Rosenblatt

(1956) and Parzen (1962). Letting Z1, . . . ,Zn be iid observations from a popula-

tion with unknown density f on R, the kernel density estimator (KDE) at some

point z ∈ R is defined as

f̂g(z) =
1

ng

n∑
i=1

K`

(
z − Zi
g

)
(3.1)

where the linear kernel K` is a non-negative, continuous, bounded and symmet-

ric function integrating to one, and g > 0 is the bandwidth parameter controlling

the smoothness of the estimator. Note that here the index ` in K` indicates a ker-

nel designed for linear data, as opposed to Ks for spherical data, see (3.4). The

conditions on the kernel ensure that f̂g integrates to one. Plainly speaking, the

KDE (3.1) averages, at each point z, the impact of the observations via the quanti-

ties 1
gK`

(
z−Zi
g

)
, i = 1, . . . ,n, where the effect of each Zi depends on its distance

from z, re-scaled through division by g. The precise choice of K` has low impact

on the overall shape of f̂g; usually the kernel is a fast decaying function taking its

55
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maximal value at 0. Typical examples are densities on R, especially the standard

normal density. In contrast, the choice of the bandwidth g is crucial: large values

of g lead to oversmoothed, small values to undersmoothed, estimates f̂g. Choosing

a good bandwidth is a challenging problem, and numerous papers have addressed

the bandwidth selection issue. We refer the reader to Chiu (1996) for a review and

references.

The difficulty of finding a reasonable bandwidth is well illustrated by the bias

and variance expressions of f̂g(z). Assuming that f is twice differentiable, that the

quantities

µ2(K`) =

∫
R
z2K`(z)dz

and
∫
RK

2
` (z)dz are finite and that the bandwidth g = gn is a sequence of numbers

such that g → 0 and ng →∞ as n→∞, the bias of f̂g(z) is given by

E
[
f̂g(z)

]
− f(z) =

1

2
µ2(K`)f

′′(z)g2 + o(g2) (3.2)

while the variance is

Var
[
f̂g(z)

]
=

1

ng
R(K`)f(z) + o

(
(ng)−1

)
(3.3)

with

R(ψ) :=

∫
R
ψ2(z)dz

for some function ψ on R. Expressions (3.2) and (3.3) show that the bias is of

order O(g2) and the variance of order O
(
(ng)−1

)
, underlining the ambiguous

role played by the bandwidth g and the need to find a compromise between quick

and slow convergence to zero. Minimization of the mean squared error, MSE =

bias2 + variance, is achieved for g proportional to n−1/5.

There are various ways of measuring the performance of a density estimate,

based on distinct error criteria. The MSE is a local criterion. A commonly adopted

global error measurement criterion is the Mean Integrated Squared Error (MISE)

MISE
[
f̂g

]
= E

[∫
R

(
f̂g(z)− f(z)

)2
dz

]
.

The integral alone, without the expectation, also defines a criterion, namely the

Integrated Squared Error. Under additional regularity conditions, the MISE can

be expressed as

MISE
[
f̂g

]
=

1

4
(µ2(K`))

2R(f ′′)g4 +
1

ng
R(K`) + o

(
g4 + (ng)−1

)
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where the part 1
4(µ2(K`))

2R(f ′′)g4 + 1
ngR(K`) is referred to as the Asymptotic

MISE (AMISE). Minimizing the AMISE in g is a simple procedure to find as opti-

mal bandwidth

gAMISE =

[
R(K`)

(µ2(K`))2R(f ′′)n

]1/5

which is of order O
(
n−1/5

)
. To be of practical use, the curvature term R(f ′′)

involving the unknown f needs to be estimated. Silverman (1986) suggested the

rule of thumb of calculating R(f ′′) on basis of the normal distribution as reference

density f .

We recommend the interested reader who wishes to learn more about kernel

density estimation on R as well as on Rp to consult the books by Silverman (1986),

Wand & Jones (1995) and Scott (2015).

3.1.2 Organization of the remainder of the chapter

The present chapter will take the reader on a journey through recent advances in

non-parametric density estimation for directional data. The focus will lie on kernel

estimation methods; a very successful alternative approach is based on spherical

needlets (Baldi et al. 2009). After defining the main concepts of directional kernel

density estimation in Section 3.2, we shall discuss in detail the important issue

of bandwidth selection in Section 3.3 and finally describe inferential procedures

based on kernel density estimation in Section 3.4.

3.2 Definitions and main properties

We shall not describe in detail kernel density estimation for all kinds of directional

supports in order to avoid repetition. Besides kernel density estimation on spheres

(and hence, circles), we have opted to present cylindrical kernel density estimation

as this combines directional with linear variables. For toroidal kernel density es-

timation, we refer the reader to the papers by Di Marzio et al. (2011) and Taylor

et al. (2012).
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3.2.1 Spherical kernel density estimation

Kernel density estimates on (hyper-)spheres were proposed by Hall et al. (1987)

and Bai et al. (1988).1 For iid observations X1, . . . ,Xn ∈ Sp−1 from a population

with unknown density f , the corresponding spherical KDE at some x ∈ Sp−1 is

given by

f̂h(x) =
ch,p(Ks)

n

n∑
i=1

Ks

(
1− x′Xi

h2

)
(3.4)

with bandwidth parameter h = hn > 0, spherical kernel Ks and normalizing

constant ch,p(Ks) to be discussed below. There are a couple of differences be-

tween (3.4) and the linear KDE (3.1). The linear distance z − Zi is replaced with

a natural angular distance2 1 − x′Xi varying between 0 when Xi = x and 2

when Xi = −x. Consequently, the spherical kernel Ks is a non-negative func-

tion defined on R+ that must also satisfy
∫
Sp−1 Ks

(
1−x′y
h2

)
dσp−1(y) <∞ for all

x ∈ Sp−1. Recalling the tangent-normal decomposition (2.21), the latter condition

can be reexpressed in more familiar terms as∫ 1

−1
Ks

(
1− t
h2

)
(1− t2)(p−3)/2dt <∞

⇐⇒
∫ 2/h2

0
Ks(v)v(p−3)/2(2− vh2)(p−3)/2dv <∞.

Since hn → 0 when n→∞, the latter expression can be shown to be finite by the

dominated convergence theorem under the condition∫ ∞
0

Ks(v)v(p−3)/2dv <∞. (3.5)

The spherical kernel has to satisfy this condition for every dimension p ≥ 2, which

means that Ks is rapidly decaying, more rapidly than any polynomial. A typical

example isKs(v) = e−v, the von Mises or FvML kernel. This terminology follows

from the fact that the resulting KDE can then be seen as a mixture of FvML den-

sities where each FvML component has Xi as location and 1/h2 as concentration

parameter. Contrary to the linear setting, the spherical kernel Ks is not a density,

1These papers are usually considered as initiators of research on spherical kernel density estima-

tion. It is however worth mentioning that Beran (1979a) had previously analyzed in his Section 3.2 a

spherical KDE, as a by-product of investigations on exponential models on the sphere. Neither Hall

et al. (1987) nor Bai et al. (1988) mentioned that paper.
2It is interesting to note that 1 − x′Xi = 1

2
||x −Xi||2. The use of a squared distance between

x and Xi provides an explanation as to why the bandwidth h is squared in (3.4).
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which explains the need for the normalizing constant ch,p(Ks) in (3.4). The latter

is given by

ch,p(Ks)
−1 =

∫
Sp−1

Ks

(
1− x′y

h2

)
dσp−1(y)

= hp−1ωp−1

∫ 2/h2

0
Ks(v)v(p−3)/2(2− vh2)(p−3)/2dv (3.6)

= O(hp−1)

as n→∞ under the condition specified above. The asymptotic O(hp−1) behavior

follows from the same developments that led to (3.5).

Conditions for pointwise, uniform and L1-norm strong consistency are studied

in Bai et al. (1988). Bias and variance formulae for the spherical KDE f̂h(x)

were investigated in Hall et al. (1987), Klemelä (2000) and Zhao & Wu (2001).

The following conditions must be verified by the density f , the kernel Ks and the

bandwidth h to derive these results:

- SKDE1: Extending f from Sp−1 to Rp via f(x) → f(z/||z||) for z 6= 000,

the gradient vector ∇∇∇f(z) =
(
∂f(z)
∂z1

, . . . , ∂f(z)
∂zp

)′
and the Hessian matrix

Hf(z) =
(
∂f(z)
∂zi∂zj

)
1≤i,j≤p

exist and are continuous on Rp\{000} (hence they

are square-integrable on Sp−1).

- SKDE2: The kernel Ks satisfies condition (3.5) and (only for the variance)∫ ∞
0

K2
s (v)v(p−3)/2dv <∞.

- SKDE3: Assuming that h = hn, the bandwidth is a sequence of positive

numbers such that hn → 0 and nhp−1
n →∞ as n→∞.

The expressions for the bias and variance at some point x ∈ Sp−1 are then given

by

E
[
f̂h(x)

]
− f(x) = bp(Ks)ΨΨΨ(f ,x)h2 + o(h2) (3.7)

with

bp(Ks) =

∫∞
0 Ks(v)v(p−1)/2dv∫∞
0 Ks(v)v(p−3)/2dv

ΨΨΨ(f ,x) = (p− 1)−1(∇2f(x)− x′Hf(x)x), (3.8)

and

Var
[
f̂h(x)

]
=
ch,p(Ks)

n
dp(Ks)f(x) + o

(
(nhp−1)−1

)
(3.9)
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with

dp(Ks) =

∫∞
0 K2

s (v)v(p−3)/2dv∫∞
0 Ks(v)v(p−3)/2dv

,

respectively. The notation ∇2f(x) in (3.8) stands for the Laplacian
∑p

i=1
∂2f(x)
∂x2i

.

The bias is of order O(h2) and involves the curvature of f via the Hessian matrix.

From (3.6) it is readily seen that the variance is of orderO
(
(nhp−1)−1

)
. We attract

the reader’s attention to the potentially misleading fact that often in the literature

the quantity−x′∇∇∇f(x) is present in the expression of ΨΨΨ(f ,x). This is not an error

but just not needed, because x′∇∇∇f(x) = 0 as can be seen by extending x ∈ Sp−1

into x/||x|| and then noting that∇∇∇f(x) = (Ip − xx′)∇∇∇f(x).

3.2.2 Cylindrical kernel density estimation

Kernel density estimation in the spherical-linear setting was first consid-

ered in García-Portugués et al. (2013b). Considering iid observations

(X1,Z1), . . . , (Xn,Zn) ∈ Sp−1 × R from a population with unknown density

f(x, z), the spherical-linear or cylindrical kernel density estimate is defined as

f̂h,g(x, z) =
ch,p(Ks)

ng

n∑
i=1

Ks

(
1− x′Xi

h2

)
K`

(
z − Zi
g

)
(3.10)

with bandwidth parameters h, g > 0 and normalizing constant ch,p(Ks) from (3.6).

The kernel product structure Ks(·)K`(·) could be replaced with a general cylindri-

cal kernel Kc

(
1−x′Xi
h2

, z−Zig

)
that links the spherical and linear parts in a more

complicated way.

The gradient vector∇∇∇f(x, z) = ((∇∇∇xf(x, z))′,∇zf(x, z))′ and Hessian ma-

trix

Hf(x, z) =

(
Hxf(x, z) Hx,zf(x, z)

H′x,zf(x, z) Hzf(x, z)

)
are straightforward extensions of ∇∇∇f(x) and Hf(x) from the spherical setting
(see Section 3.2.1). Adapting conditions SKDE1-SKDE2 to the cylindrical setting
is straightforward, while the bandwidth parameters h = hn and g = gn need to
satisfy hn → 0, gn → 0 and nhp−1

n gn → ∞ as n → ∞. The bias and variance
expressions at some point (x, z) ∈ Sp−1 × R then correspond to

E
[
f̂h,g(x, z)

]
− f(x, z) = bp(Ks)ΨΨΨx(f ,x, z)h2 +

1

2
µ2(K`)Hzf(x, z)g2 + o(h2 + g2)

(3.11)
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with

ΨΨΨx(f ,x, z) = (p− 1)−1
(
∇2

xf(x, z)− x′Hxf(x, z)x
)

where

∇2
xf(x, z) =

p∑
i=1

∂2f(x, z)

∂x2
i

,

and

Var
[
f̂h,g(x, z)

]
=
ch,p(Ks)

ng
dp(Ks)R(K`)f(x, z) + o

(
(nhp−1g)−1

)
. (3.12)

Pleasingly, the spherical and linear parts are identified in both the bias (under

addition form) and the variance (under product form). This is also reflected

in the respective orders, the bias having order O(h2 + g2) and the variance

O
(
(nhp−1g)−1

)
. Asymptotic normality of f̂h,g(x, z) holds under an additional

smoothness assumption on the product kernel Ks(·)K`(·); see García-Portugués

et al. (2013b).

3.3 A delicate yet crucial issue: bandwidth choice

As in the linear setting, the choice of the bandwidth plays a crucial role in direc-

tional kernel density estimation. Figure 3.1 provides the reader with an idea of

the impact of the bandwidth choice for circular data, hereby using three bandwidth

selectors that are described in the next sections.

3.3.1 Spherical AMISE and bandwidth selection

As in the linear setting, minimization of the Asymptotic Mean Integrated Squared

Error is a natural way to tackle the bandwidth selection problem. The spherical

MISE, and hence the AMISE, is readily obtained from the bias and variance ex-

pressions from Section 3.2.1. Indeed, (3.7) and (3.9) lead to

AMISE
[
f̂h(x)

]
= (bp(Ks))

2R(ΨΨΨ, f)h4 +
ch,p(Ks)

n
dp(Ks), (3.13)

with curvature term R(ΨΨΨ, f) =
∫
Sp−1 ΨΨΨ2(f ,x)dσp−1(x). Minimizing (3.13)

with respect to h is complicated due to ch,p(Ks). We therefore suggest replacing

(ch,p(Ks))
−1 with the asymptotically equivalent expression (see (3.6))

hp−1λp(Ks) := hp−12(p−3)/2ωp−1

∫ ∞
0

Ks(v)v(p−3)/2dv. (3.14)
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Figure 3.1: Circular kernel density estimators (top) for 580 azimuths of cross-

beds in the Kamthi river, an asymmetric dataset as illustrated via a rose diagram

(bottom). The bandwidth selection methods are mixtures of von Mises distributions

à la Oliveira et al. (2012) (solid line), likelihood cross-validation (dashed line) and

Taylor’s rule of thumb based on a single von Mises distribution (dotted line). We

thank the authors from Oliveira et al. (2012) to provide us with these pictures.

This substitution is possible since the AMISE is the asymptotic part of the MISE.

Minimizing (3.13) with respect to h is now straightforward and yields

hAMISE =

(
(p− 1)dp(Ks)

4(bp(Ks))2λp(Ks)R(ΨΨΨ, f)n

) 1
3+p

. (3.15)
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This expression cannot be used in practice, since it depends on the unknown density

f through the factor R(ΨΨΨ, f). The following sections present ways to circumvent

this issue.

3.3.2 Rule of thumb based on the FvML distribution

As explained in Chapter 2, the Fisher–von Mises–Langevin distributions are spher-

ical analogues of the normal distribution. It is hence not surprising that Silverman

(1986)’s rule of thumb, based on a normal kernel and normal reference density (see

Section 3.1), can be adapted to the spherical setting through an FvML kernel and

an FvML reference density f .

García-Portugués (2013) showed that the curvature term R(ΨΨΨ, f) for f the

FvML density with location µµµ ∈ Sp−1 and concentration κ ≥ 0 is given by

κp/2

2p+1πp/2(I(p−2)/2(κ))2(p− 1)

(
2(p− 1)Ip/2(2κ) + (p+ 1)κI(p+2)/2(2κ)

)
.

(3.16)
Substituting a suitable estimator κ̂ for the concentration parameter then leads to the
following automatic bandwidth expression for general kernel Ks:

hAUTO =

(
(p− 1)2dp(Ks)2

p+1πp/2(I(p−2)/2(κ̂))2

κ̂p/24(bp(Ks))2λp(Ks)
(
2(p− 1)Ip/2(2κ̂) + (p+ 1)κ̂I(p+2)/2(2κ̂)

)
n

) 1
3+p

where λp(Ks) is still defined as in (3.14). With the popular FvML kernel

Ks(v) = e−v, the different factors involved simplify into bp(FvML) = (p −
1)/2, dp(FvML) = 2(1−p)/2 and λp(FvML) = (2π)(p−1)/2, and one can readily

simplify hAUTO. For the sake of comparison with what follows, we explicitly give

this selector in the circular setting:

hAUTO;FvML =

(
4π1/2(I0(κ̂))2

κ̂ (2I1(2κ̂) + 3κ̂I2(2κ̂))n

)1/5

.

Taylor (2008) was the first to propose an automatic bandwidth selector for the

circular case. His approach slightly differs from Silverman (1986) in that he calcu-

lated bias and variance expressions, and hence the AMISE, by replacing from the

beginning the unknown f with the von Mises density, and not only at the level of

R(ΨΨΨ, f). This leads to a change in the AMISE expression, and consequently to the

following automatic bandwidth selector:

hTAY =

(
4π1/2(I0(κ̂))2

κ̂23I2(2κ̂)n

)1/5

.
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The difference between hAUTO;FvML and hTAY is the term 2I1(2κ̂) in the denom-

inator of hAUTO;FvML. The bandwidth hTAY is more sensible to departures from

the von Mises assumption for f than hAUTO;FvML.

3.3.3 A gain in generality: AMISE via mixtures of FvML densities

Despite being less von Mises dependent than hTAY, the automatic bandwidth se-

lector hAUTO;FvML still suffers from a lack of flexibility due to replacing f with the

FvML density when calculating the curvature term (see (3.16)). The FvML density

is not versatile enough to capture densities with multimodality and it approximates

them by the flat uniform density. A natural way to overcome this limitation is to

calculate R(ΨΨΨ, f) when f is a more flexible density, see Chapter 2. Oliveira et al.

(2012) and García-Portugués (2013) both opted for mixtures of FvML densities,

with the number of componentsM depending on the data under investigation. Mix-

tures of M FvML densities fFvML(x;µµµi,κi) with respective location µµµi ∈ Sp−1

and concentration κi ≥ 0, i = 1, . . . ,n, have densities of the form

fFvML
M (x;µµµ1, . . . ,µµµM ,κ1, . . . ,κM ) :=

M∑
i=1

pif
FvML(x;µµµi,κi),

with
M∑
i=1

pi = 1, pi ≥ 0 ∀i = 1, . . . ,n.

A drawback of this gain in generality however is that the curvature term

R(ΨΨΨ, fFvML
M ) can no longer be expressed in closed form when M > 1, and needs

to be computed numerically. This can be done either by numerical or Monte Carlo

integration methods. Using the general hAMISE expression in (3.15), bandwidth se-

lectors based on mixtures of FvML distributions are then constructed in two steps:

1. From the observations X1, . . . ,Xn ∈ Sp−1, choose the best-fitting mixture

fM̂ (x) := fFvML
M̂

(x; µ̂µµ1, . . . , µ̂µµM̂ , κ̂1, . . . , κ̂M̂ )

with M̂ the estimated number of components.

2. Compute numerically R(ΨΨΨ, fM̂ ) and hence

hAMI =

(
(p− 1)dp(Ks)

4(bp(Ks))2λp(Ks)R(ΨΨΨ, fM̂ )n

) 1
3+p

where AMI refers to Asymptotic MIxtures.
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Step 1 requires some comments. For a fixed number of components M , the

parameters µµµ1, . . . ,µµµM and κ1, . . . ,κM can be estimated using an Expectation-

Maximization (EM) algorithm described in Banerjee et al. (2005). The most suit-

able number of components, M̂ , can then be found by means of some information

criterion, e.g., the Akaike Information Criterion or the Bayesian Information Cri-

terion.

This plug-in rule, based on FvML mixtures instead of the single FvML distribu-

tion when calculating the curvature term, improves on the rule of thumb selectors

of the previous section in terms of generality and robustness towards departures

from the FvML assumption. This fact has been corroborated in a thorough simula-

tion study reported in García-Portugués (2013).

In the circular case, Oliveira et al. (2012) proceeded along similar lines with a

mixture of von Mises densities. They however used a different AMISE expression,

namely that of Di Marzio et al. (2009) based on Fourier expansion of the circular

kernel.

3.3.4 Three further proposals

Minimizing the AMISE is, of course, not the only automatic bandwidth selection

method. Further proposals have been put forward in the literature, and we shall

briefly mention three of them.

The first two proposals stem from Hall et al. (1987) and are based on cross-

validation. For a sample of n independent observations X1, . . . ,Xn ∈ Sp−1, the

Least Squares Cross-Validation selector hLSCV minimizes the squared error loss if

it maximizes

CV2(h) =
2

n

n∑
i=1

f̂−ih (Xi)−
∫
Sp−1

(f̂h(x))2dσp−1(x)

where f̂−ih stands for the kernel density estimator obtained without the i-th obser-

vation. In a similar way, the Likelihood Cross-Validation selector hLCV minimizes

the Kullback–Leibler loss if it maximizes

CVKL =

n∑
i=1

log f̂−ih (Xi).

The third proposal is due to García-Portugués (2013) and is grounded on the

idea of minimizing (with respect to h) the MISE instead of the AMISE. This re-

sults in a gain in accuracy for small to moderate sample sizes, where the AMISE
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can differ substantially from the MISE; in turn, it also requires more involved cal-

culations. For a mixture of FvML densities as reference density f and von Mises

kernel Ks, García-Portugués et al. (2013b) provided a non-trivial closed-form ex-

pression for the MISE. The related bandwidth parameter is denoted by hEMI for

Exact MIxtures.

3.3.5 Bandwidth selection in the cylindrical setting

Bandwidth selection in cylindrical settings is far more convoluted than on hyper-

spheres, given that a spherical as well as a linear bandwidth need to be determined.

The AMISE expression can be derived from (3.11) and (3.12). Getting closed-

form expressions for (h, g)AMISE is cumbersome, and numerical optimization tools

must be used. García-Portugués et al. (2013b) therefore considered the special case

where g = βh for some β > 0. Under such a proportionality assumption, they de-

rived hAMISE and provided a closed-form expression for β in the circular-linear

setting.

3.4 Inferential procedures

Besides density estimation per se, kernel density estimation methods pave also the

way for various non-parametric inferential procedures. In this section, we shall

describe a selection of recent advances in this direction.

3.4.1 Non-parametric goodness-of-fit test for directional data

Consider a sample of n iid observations X1, . . . ,Xn on Sp−1, and suppose we are

interested in identifying the unknown common density f of the Xi’s. We shall

distinguish here two situations: a simple null hypothesis H0 : f = f0 for some

fixed density f0 (for examples, see Section 2.3 of Chapter 2) and a composite

hypothesisH0 : f ∈ F = {fϑϑϑ} for ϑϑϑ some vector of parameters (e.g., location and

concentration for FvML densities). In the latter scenario, the parameter ϑϑϑ needs to

be estimated by some estimator ϑ̂ϑϑ under the null hypothesis.

In both settings, a non-parametric goodness-of-fit test can be based on some

distance between f0, respectively f
ϑ̂ϑϑ

, and the kernel density estimate f̂h from (3.4).

Typical choices for distances are theLp distances, prominently theL2 distance. For

instance, Zhao & Wu (2001) studied the asymptotic behavior of the L2 distance
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between f0 and f̂h. However, it is advisable not to compare f̂h with f0, respec-

tively f
ϑ̂ϑϑ

, directly, because of the inherent bias of f̂h. Depending on the choice of

the bandwidth h, this may cause serious power loss when the bias becomes large.

Consequently, it is better to define test statistics based on the distance between f̂h
and its estimated value under the null hypothesis, which is a smooth version of f0,

respectively f
ϑ̂ϑϑ

. This respectively leads to consider distances of the form

Ts,n =

∫
Sp−1

(
f̂h(x)−Kh(f0(x))

)2
dσp−1(x)

and

Tc,n =

∫
Sp−1

(
f̂h(x)−Kh(f

ϑ̂ϑϑ
(x))

)2
dσp−1(x),

where Kh(ψ(x)) = ch,p(Ks)
∫
Sp−1 Ks

(
1−x′y
h2

)
ψ(y)dσp−1(y) is the expected

value of f̂h(x) under the density ψ. Tests based on Ts,n and Tc,n were investi-

gated in Boente et al. (2014). Assuming SKDE1-SKDE3 to hold, and that, for

Tc,n, (i) ϑϑϑ 7→ fϑϑϑ is twice continuously differentiable with bounded and uniformly

continuous (in (ϑϑϑ,x)) partial derivatives, and (ii) ϑ̂ϑϑ is a root-n consistent estimator

for ϑϑϑ, they proved the asymptotic normality of Ts,n and Tc,n at convergence rate

nh(p−1)/2.

Given this rather slow rate of convergence, one can expect that the normal ap-

proximation does not work well for small or moderate sample sizes. Consequently,

bootstrap versions of the tests based on Ts,n and Tc,n should be considered. These

can be built in three steps:

1. Generate a random sample X∗1, . . . ,X∗n of size n from f0, respectively f
ϑ̂ϑϑ

,

for some root-n consistent estimator ϑ̂ϑϑ.

2. Compute T ∗s,n =
∫
Sp−1

(
f̂∗h(x)−Kh(f0(x))

)2
dσp−1(x) and

T ∗c,n =

∫
Sp−1

(
f̂∗h(x)−Kh(f

ϑ̂ϑϑ
∗(x))

)2
dσp−1(x),

where the estimates f̂∗h(x) and ϑ̂ϑϑ
∗

are obtained from the sample X∗1, . . . ,X∗n.

3. Repeat Steps 1 and 2 a total of B times and establish the em-

pirical distribution of the sequences (T ∗s,n)1, . . . , (T ∗s,n)B , respectively

(T ∗c,n)1, . . . , (T ∗c,n)B .

The rejection rules for Ts,n and Tc,n are then based on quantiles derived from the

empirical distributions of Step 3.
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Similar procedures for cylindrical data were proposed in García-Portugués

et al. (2015), in conjunction with a Central Limit Theorem for the Integrated

Squared Error of (3.10).

3.4.2 Non-parametric independence test for cylindrical data

In the same vein as the goodness-of-fit tests of the previous section, non-parametric

tests for spherical-linear independence were studied in García-Portugués et al.

(2014) and García-Portugués et al. (2015). Retaining the notation f(x, z) for the

common density of the iid observations (X1,Z1), . . . , (Xn,Zn), the null hypoth-

esis of independence can be written as

H0 : f(x, z) = fX(x)fZ(z) ∀(x, z) ∈ Sp−1 × R

where fX(x) and fZ(z) denote the spherical and linear marginal densities, respec-

tively. The alternative hypothesis reads H1 : f(x, z) 6= fX(x)fZ(z) for some

(x, z) ∈ Sp−1 × R.

A natural non-parametric test for independence is based on the L2 distance

between the cylindrical kernel density estimate f̂h,g of (3.10) and the product

f̂X;hf̂Z;g of the marginal kernel density estimates f̂X;h and f̂Z;g, respectively de-

fined in (3.4) and (3.1). The corresponding test statistic

Tind,n =

∫
Sp−1×R

(
f̂h,g(x, z)− f̂X;h(x)f̂Z;g(z)

)2
dσp−1(x)dz

is asymptotically normal under the null hypothesis with convergence rate

nh(p−1)/2g1/2, subject to the usual assumptions plus the additional assumption

that hp−1
n /gn converges to 0 < c < ∞ as n → ∞. Computing Tind,n is not an

easy task, except when using a spherical FvML kernel and a linear normal kernel.

Like all omnibus tests based on smoothing, the test for independence suffers

from slow rates of convergence. Instead of a bootstrap version, the null hypothesis

of independence suggests the application of the permutation principle. The latter

advocates to first recalculate the test statistic for B samples {(Xi,Zperb(i)), i =

1, . . . ,n}, where perb is a permutation of {1, . . . ,n} for b = 1, . . . ,B, and then

compare the original Tind,n to the resulting empirical quantile. We refer the reader

to Hallin & Ley (2012a) for a general review of permutation tests.
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3.4.3 An overview of non-parametric regression

Regression models with a spherical response and/or spherical predictor have been

studied a lot over the past decades. Notable recent contributions in this area are the

seminal papers by Presnell et al. (1998), Downs & Mardia (2002) and Kato et al.

(2008). Moreover, each new toroidal or cylindrical distribution (see Section 2.4)

gives rise to a regression model. A detailed account of spherical regression models

could be the topic of an entire book. Here we shall therefore only briefly mention

relevant advances in non-parametric kernel-based regression involving a spheri-

cal response or predictor. In mathematical terms, we are interested in regression

models of the form W1 = m(W2) + σ(W2)εεε where W1 and W2 are linear or

spherical random variables/vectors, the error εεε is of the same type as W1 and inde-

pendent of W2, σ2(·) is the conditional variance of W1 and the unknown function

m contains the dependence structure between W1 and W2. The following settings

have been investigated over the past decade:

• linear response and circular or toroidal predictor: Di Marzio et al. (2009)

considered W1 a real-valued scalar response and W2 a vector of p angles,

and a real-valued error ε with mean zero and unit variance. They proposed

local linear kernel estimates for the unknown function m(·) by minimizing

a weighted sum of squares, the weights being based on a product of circular

kernels. Deschepper et al. (2008) investigated the setting where W2 is cir-

cular, σ(·) = 1 and the errors have mean zero and constant variance. They

proposed a graphical tool to assess the fit of a certain choice of m, accompa-

nied by a formal lack-of-fit test.

• linear response and spherical predictor: this setup is similar to the previous

one, with W2 now taking values on Sp−1. Di Marzio et al. (2014) mod-

ified the approach of Di Marzio et al. (2009) for linear-toroidal regression

to the linear-spherical setting by relying on the tangent-normal decomposi-

tion (2.21) for W2 and using spherical kernels. A different approach was

taken by García-Portugués et al. (2017) who do not rely on a tangent-normal

decomposition but directly extend m(W2) into a Taylor series expansion

and then minimize a weighted sum of squares. Whenever W2 is circular,

their approach coincides with that of Di Marzio et al. (2009). The primary

aim of García-Portugués et al. (2017), however, does not lie in estimating m

but rather on goodness-of-fit tests for certain parametric choices of m.
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• circular response and linear or circular predictor: Di Marzio et al. (2013)

considered W1 to lie on the unit circle S1 and W2 to be either defined on

S1 or on the interval [0, 1]. The circular nature of the response is taken ac-

count of by estimatingm(·) via the arctangent of the ratio of sample statistics

based on weighted sines and cosines, the weights depending on circular, re-

spectively linear, kernels. The same problem is also addressed in Di Marzio

et al. (2016) by means of quantile regression.

• spherical response and spherical predictor: Di Marzio et al. (2014) con-

sidered W1 and W2 to take values on unit hyperspheres with potentially

different dimensions. The regression function m is estimated as the solution

to a weighted least squares problem.

3.5 Further reading

In this chapter we have discussed advances in directional kernel density estima-

tion, amended by some modern inferential procedures. Particular focus was on the

crucial issue of bandwidth selection. We now complement the preceding pages by

providing the reader with references to further interesting work published in recent

years.

Estimation of density-related quantities

In the preceding sections we have focussed on the estimation of the probability

density function itself. Density-related quantities such as distribution functions or

derivatives of densities have as well been studied in recent years. Klemelä (2000)

investigated estimation of the Laplacian of densities on Sp−1 as well as other types

of derivatives. Circular distribution functions were estimated by kernel methods

in Di Marzio et al. (2012). The same paper also proposed non-parametric esti-

mates for the related circular quantiles. Conditional circular quantiles, when the

conditioning variable can be linear or circular, were studied in Di Marzio et al.

(2016).

Cylindrical kernel density estimation exploiting copula structures

Kernel density estimation for cylindrical data was considered in Section 3.2.2.

For the particular case of circular-linear data, the same problem has been tack-

led from a different angle, namely by using the copula-like structure described
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in Section 2.4.5. For iid observations (Θ1,Z1), . . . , (Θn,Zn), García-Portugués

et al. (2013a) proceeded in three steps: (i) estimate, via kernel density estima-

tion methods, the circular and linear marginal densities f1 and f2 from (2.30), and

the corresponding distribution functions F1 and F2; (ii) compute an artificial sam-

ple (F̂1(Θi), F̂2(Zi)), i = 1, . . . ,n, and estimate the copula structure c; (iii) the

circular-linear density estimate is then calculated as ĉ
(
F̂1(θ), F̂2(z)

)
f̂1(θ)f̂2(z).

If the copula c is of the simpler form (2.31) with binding function cb a circular den-

sity, then circular kernel density estimation can be employed in (ii). Otherwise the

copula can be estimated non-parametrically by adapting to the circular setting the

kernel density methods of Gijbels & Mielniczuk (1990). At the same level of gen-

erality, Carnicero et al. (2013) used the versatile non-parametric Bernstein copulas

in order to estimate the copula structure.
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Computational and graphical
methods

This chapter is a collection of computational and graphical methods that have ap-

peared in the literature in recent years. Its structure differs from that used in the

other chapters, in that each section contains its own introduction with links to pro-

cedures from Rp, and then describes the corresponding advances in directional

statistics.

4.1 Ordering data on the sphere: quantiles and depth
functions

4.1.1 Ordering on R and Rp, and organization of the remainder of the
section

Ordering data on the real line is simple and the concept of quantiles is extremely

popular. Basic features of a given data set such as location, dispersion, skewness

and kurtosis are typically described by the median, interquartile range, Bowley co-

efficient of skewness and Moor coefficient of kurtosis. The QQ-plot is a simple

and widely used graphical tool to assess the adequacy of a parametric model for

the data at hand. Numerous robust inferential procedures rely on quantiles, such as

quantile regression (Koenker 2005), quantile goodness-of-fit tests (LaRiccia 1991)

or parameter estimation by quantile matching (Dominicy & Veredas 2013). Defin-

ing quantiles in Rp is a much more delicate issue, as there is no canonical means

of ordering multivariate observations.

Providing such a multivariate ordering is the goal of depth functions. These

functions provide a center-outward ordering for any data set by assigning to every

point z ∈ Rp a value measuring its centrality within the data cloud. Numerous

concepts of depth exist, reflecting the aforementioned lack of a natural ordering in

Rp. Two well-known occurrences are Tukey’s half-space depth, defined for each

point z as the minimum probability mass carried by closed half-spaces containing

73
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z, and the simplicial depth of Liu (1990), defined as the proportion of data-based

simplices containing z. Data-based simplices are simplices whose p + 1 vertices

are all drawn from the data set. A systematic treatment of depth functions is pro-

vided by Zuo & Serfling (2000) who set up a list of four desirable properties a

statistical depth function should satisfy: (1) affine-invariance, i.e., the depth should

not depend on the underlying coordinate system, (2) maximality at the center, for

symmetric cases, (3) monotonicity relative to the deepest point, i.e., the depth of

z should be decreasing as z moves away from the unique deepest point along any

ray from that point, and (4) vanishing at infinity, i.e., when ||z|| → ∞.

The remainder of this section is organized as follows. After a brief description

in Section 4.1.2 of depth functions introduced around the beginning of the 1990s,

we focus, in Sections 4.1.3 and 4.1.4, on the very recent quantile and depth con-

cepts introduced in Ley et al. (2014). Related inferential procedures, descriptive

statistics and exploratory data analysis tools are discussed in Section 4.1.5.

4.1.2 Classical depth functions on the sphere

The first notions of depth functions on the sphere can be traced back to Small

(1987) and Liu & Singh (1992). Writing Pf (A) the probability measure of A ⊆
Sp−1 for a probability law with density f on Sp−1, these papers introduced the

following depth functions:

• Angular Tukey’s depth (Small 1987, Liu & Singh 1992): for a spherical

density f , the angular Tukey’s depth of a point x ∈ Sp−1 is defined as

ATDf (x) = inf
H:x∈H

Pf (H),

whereH is a closed hemisphere of Sp−1 containing x either on its boundary

or in its interior.

• Angular simplicial depth (Liu & Singh 1992): for a spherical density f , the

angular simplicial depth of a point x ∈ Sp−1 is defined as

ASDf (x) = Pf (x ∈ Simp(X1,X2, . . . ,Xp)),

where Simp(X1,X2, . . . ,Xp) stands for the simplex on Sp−1 with vertices

X1, . . . ,Xp that are iid random vectors with density f .
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• Arc distance depth (Liu & Singh 1992): for a spherical density f , the arc

distance depth of a point x ∈ Sp−1 is defined as

ADDf (x) = π −
∫
Sp−1

`(x,y)f(y)dσp−1(y),

where `(x,y) stands for the length of the short arc joining x and y on the

great circle containing x and y.

The empirical versions of ATD and ADD are defined by replacing Pf with

the empirical probability measure of the random observations X1, . . . ,Xn ∈ Sp−1,

while the empirical angular simplicial depth is calculated as

1(
n
p

) ∑
1≤i1<i2<...<ip≤n

I[x ∈ Simp(Xi1 ,Xi2 , . . . ,Xip)],

where the sum runs over all p-tuples 1 ≤ i1 < i2 < . . . < ip ≤ n.

These classical depth functions provide center-outward ordering of the data on

spheres and can be used to define various spherical medians. However, asymptotic

normality or asymptotic representation results, and hence inferential procedures

based on these data depths, are extremely difficult to obtain. Moreover, the an-

gular Tukey’s depth suffers from the unpleasant feature that all points of an entire

hemisphere (the one with the lowest probability measure) are given the same depth.

4.1.3 Projected quantiles and related asymptotic results

Ley et al. (2014) introduced a novel concept of spherical quantiles which we call

projected quantiles for reasons that will shortly become obvious.

Consider the class F of probability distributions on Sp−1 that have a bounded

density and a unique median direction. This rules out antipodally symmetric distri-

butions, for which quantiles would anyhow make little sense. The choice of median

is arbitrary, hence we simply denote it by µµµm without commenting on its concrete

definition. Note that, for rotationally symmetric distributions (Section 2.3.2), vari-

ous medians such as the Fisher median (Section 5.3.2) or the deepest points of the

angular Tukey’s or simplicial depths all coincide with the unique mode. Let X be a

random vector on Sp−1 following a probability law in F and consider the quantile

check function ρτ (z) := z(τ − I[z ≤ 0]), z ∈ R, τ ∈ [0, 1]. Define

cτ := arg min
c∈[−1,1]

E
[
ρτ (X′µµµm − c)

]
(4.1)
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as the univariate quantile of order τ obtained after projecting the vector X onto

the median µµµm. The quantity cτ is termed the τ th projection quantile and the

related τ th quantile is thus cτµµµm, hence the name projected quantile. The value

τ = 1, for which c1 = 1, is attained by µµµm, while τ = 0, for which c0 = −1,

is attained by −µµµm provided the neighborhood of −µµµm has a positive probability

mass. Otherwise, an entire cap centered at −µµµm will be assigned the value τ = 0.

Furthermore, each cτ leads to the subsets

C+
τ := {x ∈ Sp−1 |x′µµµm ≥ cτ} and C−τ := {x ∈ Sp−1 |x′µµµm < cτ}

which are upper and lower quantile caps for X. These quantile caps provide a

simple graphical means of assessing the spread of the data distribution around the

median direction. We illustrate this statement in Figure 4.1, which portrays upper

quantile caps for a concentrated (κ = 10) and a less concentrated (κ = 2) FvML

distribution.

The empirical version of the projected quantiles for observations X1, . . . ,Xn

is built in three steps:

1. compute a root-n consistent empirical median µ̂µµm;

2. compute the projections X′1µ̂µµm, . . . ,X′nµ̂µµm;

3. calculate

ĉτ := arg min
c∈[−1,1]

n−1
n∑
i=1

ρτ (X′iµ̂µµm − c).

The resulting projected quantile of order τ corresponds to ĉτµ̂µµm. It is rotation-

equivariant by construction. Letting fproj denote the common density of the

X′iµµµm’s, Ley et al. (2014) showed that there exists a p-vector ΓΓΓµµµm,cτ such that1

n1/2(ĉτ − cτ ) =
n−1/2

Γcτ

n∑
i=1

(τ − I[X′iµµµm ≤ cτ ])−
ΓΓΓ′µµµm,cτ

Γcτ
n1/2(µ̂µµm−µµµm) +oP(1)

(4.2)

as n → ∞, where Γcτ := fproj(cτ ). This asymptotic result is a Bahadur-type

representation of ĉτ , and simplifies considerably when the observations are drawn

1In fact, the derivation of this asymptotic result requires the use of a locally and asymptotically

discrete version of the median µ̂µµm; see Section 5.3.3 for details. While important for theoretical

developments, this requirement has no impact at finite sample size n.
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Figure 4.1: Upper quantile caps of order τ = 0.05 and 0.5 for FvML distributions

centered at µµµ = (1, 0, 0)′ and with respective concentrations κ = 2 (in grey) and

κ = 10 (in black).

from a rotationally symmetric distribution within F :

n1/2(ĉτ − cτ ) =
n−1/2

Γcτ

n∑
i=1

(τ − I[X′iµµµm ≤ cτ ]) + oP(1) (4.3)

as n → ∞. This result implies that n1/2(ĉτ − cτ ) is asymptotically normal with

mean zero and variance (1− τ)τ/f2
proj(cτ ). A similar asymptotic normality result

can be established using the general representation (4.2) provided one can prove
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the joint asymptotic normality of(
n−1/2

n∑
i=1

(τ − I[X′iµµµm − cτ ≤ 0]),n1/2(µ̂µµm −µµµm)′

)′
. (4.4)

The very simple Bahadur-type representation (4.3) suggests that the projected

quantiles are tailor-made for rotationally symmetricdistributions.

4.1.4 The angular Mahalanobis depth

Consider a spherical distribution with density f . Ley et al. (2014) translated the

projected quantiles into a depth setting by calculating, for every x ∈ Sp−1, the

quantile value Df (x) := arg minτ∈[0,1]{cτ ≥ x′µµµm}. This value measures the

centrality of x with respect to f and provides a center-outward ordering from the

center µµµm. The resulting depth, called the angular Mahalanobis depth because of

its similarities with the Mahalanobis depth on Rp, is readily defined in terms of

Df :

AMHDf (x) :=
1

1 + 1
Df (x)

.

This rewriting ensures the depth to be of the form 1/(1 + Of (x)) for some mea-

sureOf (x) of outlyingness with respect to the deepest point, exactly like the Maha-

lanobis depth in Rp where the measure of outlyingness is the Mahalanobis distance

from the deepest point. The depth AMHDf satisfies the four requirements identi-

fied in Section 4.1.2. Its contours coincide with the boundary separating upper and

lower quantile caps. Finally, the empirical angular Mahalanobis depth is readily

obtained by replacing cτ by ĉτ in Df .

4.1.5 Statistical procedures based on projected quantiles and the an-
gular Mahalanobis depth

We shall now describe various statistical procedures based on the projected quan-

tiles and the angular Mahalanobis depth. Clearly, the quantiles can serve as robust

measures of concentration and hence as information-rich complements to the mean

resultant length. QQ-plots for spherical distributions are easily constructed and

generalize the colatitude plots of Lewis & Fisher (1982) designed to explore the fit

of FvML distributions. Four QQ-plots are depicted in Figure 4.2, with target distri-

butions the FvML and the Purkayastha distribution, defined in Section 2.3.2. The

depth-based analogue of QQ-plots are DD-plots, which compare theoretical depth
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Figure 4.2: QQ-plots (theoretical quantiles versus sample quantiles) using theoret-

ical quantiles from an FvML distribution with concentration 1, denoted FvML(1),

in the upper plots and theoretical quantiles from a Purkayastha distribution with

concentration 1, denoted Pur(1), in the lower plots. In each case, we generated a

sample of 1000 observations from various distributions: for the upper left QQ-plot

from an FvML(1) distribution, for the upper right QQ-plot from an FvML(3) dis-

tribution, for the lower left QQ-plot from a Pur(1) distribution, and for the lower

right QQ-plot from a Pur(3) distribution.

values with their empirical counterparts. The angular Mahalanobis depth allows us

to draw such DD-plots, see Figure 4.3. Similar plots can also, of course, be built

via the angular Tukey’s, simplicial and distance depth functions.

Both the QQ-plots and DD-plots are exploratory tools to assess whether a

parametric distribution fits the observations under investigation. A more formal

goodness-of-fit test for the problemH0 : f = f0 versusH1 : f 6= f0 for a rotation-

ally symmetric f0 ∈ F can be constructed thanks to the asymptotic normality of

expression (4.3). Consider the statistic T(n)
τττ := n1/2((ĉτ1 − c0

τ1), . . . , (ĉτr − c0
τr))
′,

where τττ := (τ1, . . . , τr) ∈ (0, 1)r for r ∈ N while the c0
τi’s and ĉτi’s denote the

projection quantiles under f0 and their empirical counterparts, respectively. Under
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Figure 4.3: DD-plots (theoretical depths versus empirical depths) using theoretical

depths from an FvML distribution with concentration 1, denoted FvML(1), in the

upper plots and theoretical depths from a Purkayastha distribution with concentra-

tion 1, denoted Pur(1), in the lower plots. In each case, we generated a sample

of 100 observations from various distributions: for the upper left DD-plot from

an FvML(1) distribution, for the upper right DD-plot from an FvML(3) distribu-

tion, for the lower left DD-plot from a Pur(1) distribution, and for the lower right

DD-plot from a Pur(3) distribution.

H0, T(n)
τττ is asymptotically normal with mean zero and r × r covariance matrix

ΣΣΣ =

(
min(τi, τj)− τiτj

f0;proj(c0
τi)f0;proj(c0

τj )

)
1≤i,j≤r

.

The null hypothesis is rejected at asymptotic level α whenever (T
(n)
τττ )′ΣΣΣ−1T

(n)
τττ

exceeds χ2
r;1−α.
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4.2 Statistical inference under order restrictions on the
circle

4.2.1 Isotonic regression estimation and organization of the remain-
der of the section

Isotonic regression is a mathematical technique designed to solve the following

problem. Given a real-valued sequence a1, . . . , aq, find a monotone sequence

am := (am1 , . . . , amq )′ that best summarizes the information contained in the origi-

nal sequence. In other words, we want to find

am = argminy∈Rq

q∑
i=1

(yi − ai)2 under the constraint y1 ≤ y2 ≤ · · · ≤ yq.

(4.5)

The L2 distance is often used because of the direct link with the sum of squared er-

rors. There are instances where the L2 distance is replaced with other Lp distances.

It can also occur that weights w1, . . . ,wq are associated to the summands. Isotonic

regression can thus be interpreted as linear regression under order constraints.

As the formulation (4.5) reveals, such problems typically fall under the um-

brella of numerical analysis and require operational research tools to be solved.

Suppose we have observations Z1, . . . ,Zn on Rp and we want to estimate their

common location parameter µµµ = (µ1, . . . ,µp)
′ ∈ Rp under the constraint that

µµµ ∈ L ⊆ Rp with L := {v = (v1, . . . , vp)
′ ∈ Rp : v1 ≤ v2 ≤ · · · ≤ vp}. Denot-

ing the unrestricted estimator of µµµ by µ̂µµ, the constrained estimator µ̂µµL is found by

determining the point in L that is closest to µ̂µµ with respect to a given metric. This

estimator is called the isotonic regression estimator as it is the solution to (4.5)

with ai = µ̂i, i = 1, . . . , p. More complicated constraints can of course also be

considered.

Problem (4.5) admits a unique solution that can be found by applying the pool

adjacent violators algorithm (PAVA). Order-restricted inferential procedures were

first studied in the 1950s, the PAVA algorithm being a major contribution to the

field. It can be informally summarized as follows:

• Set yi = ai for all i = 1, . . . , q.

• Start from y1 and move in the sequence of yi’s until the first violation yj >

yj+1.
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• (Pooling adjacent violators) Replace the pair (yj , yj+1) with their average,

and check if this does not violate monotonicity with respect to yj−1. If not,

continue the iterative scheme; if it does, back-average until monotonicity is

reached, and then continue the iterative scheme.

• Stop the procedure when the value of yq is found.

Besides its simplicity, PAVA is popular because of its linear algorithmic complex-

ity. Extensions of PAVA to more complex situations, a description of its computa-

tional aspects, and details on the R package for isotonic regression are provided in

the recent paper by de Leeuw et al. (2009). Classical reference books dealing with

order restricted inference are Barlow et al. (1972) and Robertson et al. (1988).

The remainder of this section is organized as follows. We first explain the

geometry underpinning circular order restrictions in Section 4.2.2. Subsequently,

in Section 4.2.3, we explain in detail how to estimate parameters subject to order

restrictions on the circle.

4.2.2 Order restrictions on the circle

Consider a set of p-dimensional angular observations ΘΘΘ1, . . . ,ΘΘΘn ∈ [0, 2π)p

whose location parameter µµµ = (µ1, . . . ,µp)
′ ∈ [0, 2π)p we wish to estimate under

order restrictions. Here we opt for the interval [0, 2π) instead of the usual [−π,π)

because it clarifies the statements. Ordering p angles µ1, . . . ,µp on the unit circle

obviously differs from ordering p real numbers a1, . . . , ap: while a1 ≤ · · · ≤ ap

is unambiguous, the same cannot be said of µ1 ≤ · · · ≤ µp because the actual

values of the angles depend on the choice of the origin and the clockwise or anti-

clockwise direction used to measure them. An unambiguous circular order means

that the points (cos(µi), sin(µi))
′, i = 1, . . . , p, follow each other anti-clockwise,

in accordance with the standards defined in the Introduction. The circular order

therefore is denoted by µ1 � · · · � µp � µ1 and corresponds to situations like

those in Figure 4.4.

Writing µµµ = (µ1, . . . ,µp)
′, this order restriction is equivalent to µµµ ∈ C :=

{φφφ ∈ [0, 2π)p : φ1 � · · · � φp � φ1}. In terms of classical inequalities, the set C
corresponds to ∪pi=1Ci with

Ci = {φφφ ∈ [0, 2π)p : 0 ≤ φi ≤ φi+1 ≤ · · · ≤ φi−1 ≤ 2π}, i = 1, . . . , p.

This definition of Ci is a slight abuse of notation when i = p or i = 1; we tacitly

put φp+1 = φ1 and φ0 = φp.
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Figure 4.4: Two situations corresponding to the same circular order µ1 � µ2 �
µ3 � µ4 � µ1. If one used a non-circular ordering, then the distinct emplacements

of the zero angle would lead to two distinct orders.

4.2.3 Circular isotonic regression

Order constrained inference with angular parameters was first considered in Rueda

et al. (2009) in relation with phase angles of cell-cycle genes. Recall our goal to

estimate angular parameters µ1, . . . ,µp under the constraint µ1 � · · · � µp � µ1,

and that we have some unrestricted estimator µ̂µµ = (µ̂1, . . . , µ̂p)
′ (typically the

vector of sample circular mean directions). As in the linear case, the goal is to find

µ̂µµc = (µ̂c1, . . . , µ̂cp)
′ ∈ C that is closest to µ̂µµ in terms of some distance. In the linear

setting, the distance is motivated as sum of squared errors; mimicking this choice

in the circular setting, it seems natural to use the sum of circular errors (SCE) given

by

SCE(µ̂µµ, µ̂µµc) =

p∑
i=1

ri(1− cos(µ̂i − µ̂ci ))

where the ri’s are mean resultant lengths. This circular distance is not new to

the attentive reader: it is of the same nature as the angular distance leading to the

spherical kernel density estimate (3.4). The order-restricted estimator µ̂µµc is then

defined as

µ̂µµc = argminφφφ∈CSCE(µ̂µµ,φφφ). (4.6)

By similarity with (4.5), the solution µ̂µµc is termed the circular isotonic regression

estimator (CIRE). Applying the PAVA algorithm directly to (4.6) is not possible

for two reasons. First, the linear average (µ1 + µ2)/2 has to be replaced with the

circular average; see (1.1). Second, since the data lie on the circle, there is no

unique violator as in the linear case. Thus, even a circular adaptation of PAVA,

which we write CPAVA and which simply replaces the classical average in PAVA

with the circular average (1.1), needs to evaluate all the possible settings in terms
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of SCE, rendering the problem computationally demanding. Rueda et al. (2009)

suggested a computationally efficient and exact algorithm to solve (4.6). Their

proposal is based on theoretical findings characterizing those situations where the

CPAVA yields the CIRE.

This algorithm, and hence the CIRE, is implemented in the R package isocir
described in Barragán et al. (2013). That package contains a set of functions to

analyze angular data under circular order constraints. In particular, it contains a

generalization of the CIRE to more general order restrictions of the form
µ1

µ2

...

µi

 �


µi+1

...

µj

 �


µj+1

...

µp

 (4.7)

where 1 ≤ i < j < p. In such settings, each element of {µ1, . . . ,µi}must precede

each element of {µi+1, . . . ,µj}, but within each set there are no order restrictions.

4.3 Exploring data features with the CircSiZer

4.3.1 The SiZer, scale space theory and organization of the remainder
of the section

In the absence of any parametric assumptions, non-parametric density estimation

can provide useful information about the structure of the data. Kernel density es-

timation was described in Chapter 3. As explained there, the choice of the (here,

linear) bandwidth parameter g regulating the smoothness of the estimated curve is

a delicate issue. Depending on the value of g, f̂g(·) from (3.1) can exhibit very

diverse shapes, as we illustrate in the left-hand panel of Figure 4.5. A particularly

striking feature of this figure is that the number of modes varies with g, prompt-

ing the question “Which features are really there?” The seminal papers by Chaud-

huri & Marron (1999) and Chaudhuri & Marron (2000) popularized a user-friendly

graphical tool, the SiZer (SIgnificant ZERo crossing of derivatives) map, to help

answer this question.

The method of Chaudhuri and Marron differs substantially from standard ker-

nel density estimation procedures. Instead of trying to detect the “best” bandwidth

g, it uses a variety of distinct bandwidths. Their approach is motivated by ideas

from computer vision, namely by scale-space theory. It consists in viewing the
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Figure 4.5: The left-hand panel depicts a multimodal mixture of normal densi-

ties on the real line (grey) together with kernel density estimates with bandwidth

g equal to 0.3 (solid), 0.7 (dashed) and 2.4 (dotted). The right-hand picture ex-

hibits the corresponding SiZer map where the grey level represents the behavior

of E
[
f̂g(z)

]
: the areas in black indicate an increasing trend, areas in dark grey a

decreasing trend, areas in light grey no significant trend and areas in white a lack

of information. Thus, at every fixed value of g one can easily visualize the features

of the data over their domain.

same picture at different levels of resolution, hence at different scales. Applied to

density estimation, this corresponds to representing various estimates f̂g(·) at the

same time, with large g yielding a macroscopic vision and small g a microscopic

vision on the features within the data. A second crucial aspect of this method is a

shift of focus from the unknown true density f(z) to E
[
f̂g(z)

]
, function that shares

the main features of f(z) for most values of g. Since f̂g is an unbiased estimator of

E
[
f̂g(z)

]
, the bias (3.2), which increases with the bandwidth, is avoided. The goal

is hence to extract relevant information about f through differently scaled versions

of f̂g. Figure 4.5 gives an idea of how the SiZer works. In order to avoid repetition,

we shall not explain its construction here but refer the reader to Section 4.3.2 where

we provide details on the CircSiZer.

The remainder of the section is organized as follows. A description of the

CircSiZer, related information and illustrations are given in Section 4.3.2, while

Section 4.3.3 briefly addresses the issue of the kernel function choice.
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4.3.2 The CircSiZer

Oliveira et al. (2014a) proposed a circular version of the popular SiZer, namely the

CircSiZer. Its implementation in R can be found in the package NPCirc, described

in Oliveira et al. (2014b). Besides the CircSiZer, NPCirc contains R codes for

most of the circular and circular-linear density estimation procedures described in

Chapter 3.

The purpose of the CircSiZer is to provide a graphical tool to assess the main

features of a data set Θ1, . . . , Θn ∈ S1 by showing a group of kernel density

estimates at distinct scales. These scales are determined by the bandwidth h in the

definition of f̂h; see (3.4). Subsequent inference is based on the smoothed curve

f(θ;h) = E
[
f̂h(θ)

]
instead of on f(θ). It is to be noted that the distance 1−x′Xi

simplifies in the circular setting to 1 − cos(θ − Θi) for all i = 1, . . . ,n. We shall

from here on follow the parsimonious notation of Oliveira et al. (2014a) and write

f̂h(θ) = 1
n

∑n
i=1Kc;h(θ −Θi) with circular kernel Kc;h.

Information about peaks and valleys in the density f(θ) is contained in the

derivative f ′(θ). The CircSiZer, like the SiZer, focusses instead on f ′(θ;h) =

E
[
f̂ ′h(θ)

]
and builds confidence intervals for f ′(θ;h) of the form[
f̂ ′(θ;h)− q1−αŝd(f̂ ′(θ;h)); f̂ ′(θ;h)− qαŝd(f̂ ′(θ;h))

]
(4.8)

where qα and q1−α are the α-lower and upper quantiles of the distribution of

f̂ ′(θ;h) with mean f ′(θ;h) and standard deviation sd(f̂ ′(θ;h)). The latter quantity

is estimated in (4.8) as the square root of

V̂ar
[
f̂ ′(θ;h)

]
=

1

n
s2
(
(Kc;h)′(θ −Θ1), . . . , (Kc;h)′(θ −Θn)

)
where s2(·) stands for the sample variance of the derivatives of the Kc;h(θ−Θi)’s.

From the interval (4.8) we readily draw the following conclusions:

(a) The interval (4.8) has a lower value that is positive ⇒ increasing trend for

f(θ;h);

(b) The interval (4.8) has an upper value that is negative⇒ decreasing trend for

f(θ;h);

(c) The interval (4.8) contains 0⇒ no significant trend for f(θ;h).

For any couple (θ,h), one of these situations will hold. Letting θ vary in [−π,π)

and h between 0 and some upper value hmax leads to a disc with radius hmax, disc
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that can be divided into areas satisfying any of the three conditions. The areas are

marked with distinct scales of grey: black for areas of type (a), dark grey for areas

of type (b) and grey for areas of type (c). A fourth shade, light grey, is added to

indicate those areas where insufficient data is available to draw meaningful conclu-

sions. All couples (θ,h) for which the estimated effective sample size

ESS(θ,h) =

∑n
i=1Kc;h(θ −Θi)

Kc;h(0)

satisfies ESS(θ,h) < 5 are considered as too weak in information. Thus, the grey-

scale disc consists for each h ∈ (0,hmax] of a color ring with four colors. This

circular color map is the CircSiZer.

It is straightforward to infer significant features from the CircSiZer map. At

a fixed bandwidth, a significant peak corresponds to a black region followed by a

dark grey region, with potentially a small grey region in between. Conversely, the

sequence dark grey to black identifies a valley in the data. We illustrate the modus

operandi of the CircSiZer by means of two examples in Figure 4.6, where it is

applied to one asymmetric unimodal density and one multimodal density.

A technical difficulty in the construction of the CircSiZer is the estimation of

the quantiles qα and q1−α. Oliveira et al. (2014a) opted for a bootstrap approach,

whose mechanism is summarized in the following steps:

1. Generate B random samples drawn with replacement from the original data.

2. For b = 1, . . . ,B, compute

V ∗b :=
f̂ ′(θ;h)∗b − f̂ ′(θ;h)

ŝd
(
f̂ ′(θ;h)∗b

)
where f̂ ′(θ;h)∗b is obtained on basis of the b-th bootstrap sample and

ŝd
(
f̂ ′(θ;h)∗b

)
estimates its standard deviation.

3. Compute the α-lower and upper quantiles of the series V ∗1 , . . . ,V ∗B , and de-

note them t̂(α) and t̂(1−α).

This algorithm, called the “bootstrap-t” approach (hence the notation), yields qα =

t̂(α) and q1−α = t̂(1−α). Note that the bootstrap standard deviations are estimated

in the same way as ŝd(f̂ ′(θ;h)).
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Figure 4.6: Left-hand picture: CircSiZer map for a sine-skewed von Mises den-

sity (2.6) with µ = π,κ = 1 and λ = 0.4. Right-hand picture: CircSiZer map

for a multimodal mixture of von Mises densities with four modes, one near 0, two

between 3π/4 and π and one close to 3π/2 (the mixture corresponds to an equal

combination of five von Mises densities with the following pairs of parameters

(µ,κ): (0, 8), (π/4, 4), (3π/4, 10), (π, 10) and (3π/2, 4)). In each case, the Circ-

SiZer bandwidths vary between 5 and 50, and the following color legend holds:

areas in black stand for an increasing trend, areas in dark grey for a decreasing

trend, areas in grey for no significant trend and light grey means a lack of informa-

tion at the corresponding area.

4.3.3 Kernel choice based on causality: the special role of the wrapped
normal

A more formal treatment of the CircSiZer and associated circular scale-space the-

ory was proposed in Huckemann et al. (2016). In particular, they considered the

issue of causality, which means that the number of modes should be decreasing

when the smoothing increases. In the linear setting, only the normal kernel can

assure this property. In the circular case, the situation is similar: the only causal

kernel is the wrapped normal kernel. As a reminder, the wrapped normal density

corresponds to using fZ(z) = (2π)−1/2 exp(−z2/2) in (2.1). Therefore, to en-

sure proper inference, we recommend using this kernel; the von Mises kernel is

computationally simpler and also provides useful information about the data.
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4.4 Computationally fast estimation for high-dimensional
FvML distributions

4.4.1 Maximum likelihood expressions for the parameters of FvML
distributions and organization of the section

For the ease of readability, we recall the density of a p-dimensional Fisher–von

Mises–Langevin distribution:

x 7→
(
κ
2

)p/2−1

2πp/2Ip/2−1(κ)
exp(κx′µµµ)

where Ip/2−1 is the modified Bessel function of the first kind and of order p/2− 1,

described in detail in Section 2.2.2. Further details on the FvML distribution are

provided in Section 2.3.1. Letting X1, . . . ,Xn be iid observations from an FvML

population, it is easy to derive the maximum likelihood estimates for the location

parameter µµµ ∈ Sp−1 and the concentration parameter κ ≥ 0:

µ̂MLE =
X̄

||X̄|| and κ̂MLE = A−1
p (R̄) (4.9)

with X̄ = 1
n

∑n
i=1 Xi, R̄ = ||X̄|| and

Ap(κ) :=
Ip/2(κ)

Ip/2−1(κ)
. (4.10)

Despite being defined through a closed-form expression, the ML estimate of κ

involves the inverse of a ratio of modified Bessel functions. Given the complexity

of these functions, computational methods are required to achieve this inversion.

The rest of the section is organized as follows. We start by providing the

state-of-the-art approximations for κ̂ from around the year 2000, and discuss their

limitations in modern applications (Section 4.4.2). Section 4.4.3 contains various

new approximations proposed over the past decade to deal especially with high-

dimensional settings, and we provide a numerical comparison between those pro-

posals.

4.4.2 Approximations for the concentration parameter from Mardia
& Jupp (2000) and their limitations in high dimensions

In numerous applications involving directional statistics, the data are assumed to

follow an FvML distribution. It is hence not surprising that several solutions have
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been put forward to overcome the computational complexity related to the esti-

mation of κ. Section 10.3.1 of Mardia & Jupp (2000) contains the following two

approximations for κ̂MLE (from here on we drop the index MLE):

• when κ is large and R̄ close to 1:

κ̂ ≈ p− 1

2(1− R̄)
; (4.11)

• when κ is small as well as R̄:

κ̂ ≈ pR̄
(

1 +
p

p+ 2
R̄2 +

p2(p+ 8)

(p+ 2)2(p+ 4)
R̄4

)
. (4.12)

These numerical approximations assume either that p is not too large or κ is

very small compared to p. Take for example p = 1000,κ = 800 and R̄ ≈ 0.55:

(4.11) and (4.12) respectively give 1120.92 and 776.80 as approximated estimates

for κ while for instance the improved formula (4.13) yields 800.13 (these results

are taken from Banerjee et al. 2005). Thus, approximations (4.11) and (4.12) are

not suited for various situations including high-dimensional datasets. The latter

have however become a characteristic of contemporary science and of modern sta-

tistical research; see Chapter 7. Moreover, several high-dimensional datasets from

text mining (see Section 1.2.3 of the Introduction) or genetics will typically lead to

R̄ neither too large nor too small. These limitations of the Mardia–Jupp approxi-

mations have motivated the research community to work out improved methods to

accurately estimate κ, which we shall describe in what follows.

4.4.3 New (high-dimensional) approximations for the concentration
parameter

One of the first high-dimensional approximations was proposed in Banerjee et al.

(2005). Noting that the ratio of Bessel functions (4.10) allows the continued frac-

tion representation

Ap(κ) =
1

p
κ + 1

p+2
κ

+···

and, writing Ap(κ̂) = R̄, we get the approximation 1
R̄
≈ p

κ̂ + R̄ and hence κ̂ ≈
pR̄/(1 − R̄2). Banerjee et al. (2005) noticed on an empirical basis that the latter

expression can be further improved in the high-dimensional setting and especially

for medium-size values of R̄ via the correction term −R̄3/(1− R̄2), resulting in

κ̂ ≈ R̄p− R̄3

1− R̄2
(Banerjee et al. 2005 approximation) . (4.13)
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A different path is taken by Tanabe et al. (2007), who made use of an iterative

algorithm based on fixed-point theory. Rewriting (4.9) as κ̂ = κ̂R̄/Ap(κ̂), consider

the recurrence formula

κr+1 =
κrR̄

Ap(κr)
.

If the sequence (κr)r∈N converges as r →∞, then the limit is a fixed point. Tanabe

et al. (2007) showed that the mapping κ 7→ κR̄/Ap(κ) admits a unique fixed point,

hence necessarily limr→∞ κr = κ̂ if the limit converges, motivating their iterative

procedure. Of course, the entire procedure is speeded up by using a good starting

point. To this end, Tanabe et al. (2007) used the Amos-type inequality

1
p
κ +Ap(κ)

≤ Ap(κ) ≤ κ

p/2− 1 +
√
κ2 + (p/2− 1)2

. (4.14)

Inequalities of this type and further results on modified Bessel functions and their

ratios were studied in the seminal paper by Amos (1974). Straightforward calcula-

tions allow deducing from (4.14) that

R̄(p− 2)

1− R̄2
≤ κ̂ ≤ R̄p

1− R̄2
(Tanabe et al. 2007 bounds) . (4.15)

The fixed point iterative method thus uses an initial value from this interval. One

can further deduce from (4.15) that

κ̂ =
R̄(p− c)
1− R̄2

(Tanabe et al. 2007 formula) (4.16)

for some constant c ∈ [0, 2]. Note that (4.13) corresponds to c = R̄2, while

c = 1 yields the mid-point value. Moreover, writing κl and κu the lower and upper

bounds in (4.15) and defining Φp(κ) = R̄κ/Ap(κ), a linear interpolation argument

yields the further approximation

κ̂ =
κlΦp(κu)− κuΦp(κl)

Φp(κu)− Φp(κl)− (κu − κl)
(Tanabe et al. 2007 approximation) .

Sra (2011) suggested improving (4.13) via two iterations of the Newton method

applied on Ap(κ) = R̄. Starting with κ0 given by (4.13) and using the formula

A′p(κ) = 1−Ap(κ)2 − p− 1

κ
Ap(κ),

this approach consists in computing successively

κN ;1 = κ0 −
Ap(κ0)− R̄
A′p(κ0)
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and

κN ;2 = κN ;1 −
Ap(κN ;1)− R̄
A′p(κN ;1)

(Sra 2011 approximation) .

The restriction to two iterations to approximate κ̂ via κN ;2 is motivated by the

parsimony of calculations of the ratio Ap(κ).

A similar approach is adopted by Song et al. (2012), who however used Halley

iterations to solve Ap(κ) = R̄, based on a second-order Taylor expansion. Thanks

to the second derivative formula

A′′p(κ) = 2Ap(κ)3 +
3(p− 1)

κ
Ap(κ)2 +

p2 − p− 2κ2

κ2
Ap(κ)− p− 1

κ

a Halley-based two-step iteration, starting again from κ0 as in (4.13), results in

κH;1 = κ0 −
2
(
Ap(κ0)− R̄

)
A′p(κ0)

2(A′p(κ0))2 −
(
Ap(κ0)− R̄

)
A′′p(κ0)

and (Song et al. 2012 approximation)

κH;2 = κH;1 −
2
(
Ap(κH;1)− R̄

)
A′p(κH;1)

2(A′p(κH;1))2 −
(
Ap(κH;1)− R̄

)
A′′p(κH;1)

.

Both κH;2 and κN ;2 only require two calculations of Ap(κ).

Hornik & Grün (2014) reinvestigated the upper and lower bounds of Tanabe

et al. (2007). Defining the function

Gα,β(κ) :=
κ

α+
√
κ2 + β2

they derived the following tighter bounds on Ap(κ):

Gp/2−1/2,p/2+1/2(κ) ≤ Ap(κ) ≤ min
(
Gp/2−1,p/2+1(κ),G

p/2−1/2,
√
p2−1/2

(κ)
)

.

(4.17)

Note how the right-hand side of (4.14) can be expressed asGp/2−1,p/2−1(κ), which

can be shown to be larger than the right-hand side of (4.17); the left-hand side of

(4.17) also improves on that in (4.14). A particularly appealing feature of Gα,β is

that this function is strictly increasing on [0,∞) and hence allows a unique inverse

given by

G−1
α,β(R̄) =

R̄

1− R̄2

(
α+

√
R̄2α2 + (1− R̄2)β2

)
.

This readily leads to tighter upper and lower bounds for the maximum likelihood

estimate (Hornik & Grün 2014 bounds)

max

(
G−1
p/2−1,p/2+1(R̄),G−1

p/2−1/2,
√
p2−1/2

(R̄)

)
≤ κ̂ ≤ G−1

p/2−1/2,p/2+1/2(R̄).
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(p,κtrue) Banerjee et al. (2005) Tanabe et al. (2007) Sra (2011) Song et al. (2012)

(10, 10) 1.63E-01 1.50E-02 2.56E-07 6.23E-21

(10, 100) 4.54E-01 3.34E-02 4.01E-08 5.28E-33

(10, 1000) 4.95E-01 3.43E-02 5.98E-11 9.80E-49

(100, 10) 9.26E-04 3.54E-07 1.69E-20 3.44E-44

(100, 100) 1.70E-01 1.03E-03 2.64E-10 3.39E-29

(100, 1000) 4.52E-01 2.44E-03 3.87E-11 1.11E-40

(1000, 10) 9.96E-07 3.98E-13 2.63E-38 9.51E-79

(1000, 100) 9.58E-04 3.65E-08 2.03E-23 4.93E-52

(1000, 1000) 1.71E-01 9.93E-05 2.64E-13 3.19E-37

Table 4.1: Absolute approximation errors |κ̂ − κtrue| for distinct pairs (p,κtrue).

These values are taken from numerical experiments in Song et al. (2012), who used

1000 digits of precision.

Like (4.15), this interval allows choosing a meaningful initial value for iterative

algorithms such as the fixed-point algorithm of Tanabe et al. (2007) or some other

root-finding algorithm such as simple bisection.

We conclude this section with some comparative comments on the various

aforementioned approximations. First, the tighter Hornik & Grün (2014) bounds

obviously lead to a (slightly) quicker convergence of iterative algorithms than the

Tanabe et al. (2007) bounds. A comparison of the performance of the four approx-

imations for κ̂ is shown in Table 4.1 based on numerical experiments conducted in

Song et al. (2012). We have chosen the three possible situations, namely p close

to κ, p >> κ and p << κ. Unsurprisingly, the most recent Song et al. (2012)

approximation does best. However, in very high dimensions computational feasi-

bility is extremely important, and here the Banerjee et al. (2005) approximation is

recommended, as it is very simple, yields good results and needs no evaluation of

Ap(κ). In terms of computational cost, the other three approximations are similar

given that they require two evaluations of Ap(κ), hence one may want to choose

the most accurate, although all three perform very well. As remarked by several

authors, the increased accuracy happens to be more of an academic concern.



94 Chapter 4. Computational and graphical methods

4.5 Further reading

Ordering data on the sphere: quantiles and depth functions

We defined in Section 4.1.2 three distinct notions of spherical depth functions. For

properties of these, such as monotonicity or determination of the maximal value

of a depth function, we refer the reader to Liu & Singh (1992) and Agostinelli &

Romanazzi (2013). The latter paper also nicely illustrates their uses in practice by

analyzing animal orientation and wind data.

Statistical inference under order restrictions on the circle

We provided in Section 4.2 an introduction to order restricted inference for circular

data, with particular focus on circular isotonic regression. Testing for a particular

order C among angular parameters was considered in Fernández et al. (2012) and

extended to partial orders of the type (4.7) by Barragán et al. (2013). The testing

problem may be formulated as follows:

H0 : µ1, . . . ,µp follow a specific known order

H1 : H0 is not true.

The isocir package includes R codes for the respective testing procedures.

The very recent article by Barragán et al. (2015) addressed the problem of

checking whether the temporal order among the components of an oscillatory bi-

ological system is unchanged in different populations. This article also provides

numerous references to domains where order-restricted inference can play an im-

portant role, including cell biology, genetics and evolutionary psychology.

Circular order-restricted inference in psychology is developed in the papers

by Klugkist et al. (2012), Baayen et al. (2012) and Baayen & Klugkist (2014).

When dealing with directions or measurements on circular scales, psychologists

often wish to test their ideas of “natural” orders, which is where the methods and

algorithms of this section come into play.

For an extensive overview of the developments in order restricted circular in-

ference, we refer the interested reader to the chapter by Rueda et al. (2015) in the

book by Dryden & Kent (2015) written in honor of Professor Kanti Mardia.
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Exploring data patterns with the CircSiZer

We described in Section 4.3 the CircSiZer, an exploratory data analysis tool for de-

tecting major patterns in circular data, and briefly mentioned circular scale space

issues. We refer the interested reader to Huckemann et al. (2016) for a detailed

formal development of this theory (with proofs) as well as for an insightful appli-

cation to stem cell stress fibre structures. Formal tests for the number of modes in

the data Θ1, . . . , Θn were also investigated in Huckemann et al. (2016).

The focus of Section 4.3 lies on circular density features, but the CircSiZer can

as well be used for regression models with circular predictors and linear responses.

The specificities of the CircSiZer in this setting can be found in Oliveira et al.

(2014a).

Computationally fast parameter estimation for high-dimensional Fisher–von
Mises–Langevin distributions

We retraced in Section 4.4.3 the development of new improved approximations for

the maximum likelihood estimate of the concentration parameter in FvML families.

We refer the interested reader to the respective papers for more detailed derivations

of the individual results. We also point out that Baricz (2014) corrected an error

from Tanabe et al. (2007), and that the paper by Banerjee et al. (2005) is backed up

by the technical report by Dhillon & Sra (2003).

Yet another article tackling this problem from an alternative angle is provided

by Christie (2015). The paper makes use of (4.16) by considering c as of function

of R̄ (as is the case for (4.13)) and then builds a Taylor series expansion

c(R̄) =

N∑
i=0

c(i)(R̄0)

i!
(R̄− R̄0)i

where the derivatives c(i)(·), i = 1, . . . ,N , are iteratively calculated and where

R̄0 = Ap(κ0) with κ0 given by (4.13). The advantage of this approach is thatAp is

only evaluated once, in the expression for R̄0; the precision of the approximation

is of course improved with the size of N . We refer the reader to Christie (2015) for

the expressions of the derivatives c(i)(·).

We have focussed so far only on approximations of maximum likelihood esti-

mates for a single FvML distribution in high dimensions. The same issue has also

been investigated for mixtures of FvML distributions as well as for Watson distri-

butions, where relevant references are, respectively, Banerjee et al. (2005) and Sra
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& Karp (2013). We are not entering into further details here, as these issues will be

part of the companion book Applied Directional Statistics: Modern Methods and

Case Studies (see the Preface to the present book).



Local asymptotic normality for
directional data

5.1 Introduction

5.1.1 The LAN property on Rp and its deep impact on asymptotic
statistics

The notion of local asymptotic normality of a sequence of statistical models (here-

after also called “experiments”) was introduced in the seminal paper “Locally

asymptotically normal families of distributions" by Le Cam (1960). That paper

figures among the best-known contributions of Lucien Le Cam to mathematical

statistics. Part of his work has been presented in the more recent paper by van der

Vaart (2002). The Le Cam asymptotic theory of experiments, and in particular the

Local Asymptotic Normality (LAN) property, is the backbone of many different

recent contributions to the statistical literature. LAN-type results have been estab-

lished or used in many different statistical contexts on Rp:

• Time series: long disturbances (Hallin et al. 1999), efficient estimation in

nonlinear autoregressive models (Koul & Schick 1997), multivariate ARMA

models (Garel & Hallin 1995, Hallin & Paindaveine 2004), unit root tests

(Hallin et al. 2011) and GARCH models (Francq & Zakoïan 2004, 2012).

• Semiparametric models: general results (Bickel et al. 1993, Choi et al. 1996,

Hallin & Werker 2003), copula models (Genest & Werker 2002, Chen et al.

2006, Segers et al. 2014), inference for elliptical distributions with emphasis

on the location parameter (Hallin & Paindaveine 2002), on the scatter pa-

rameter (Hallin & Paindaveine 2006) and on Principal Component Analysis

(Hallin et al. 2010).

• Infinite dimensional models: efficiency in non-parametric models (Begun

et al. 1983) and, very recently, inference for high-dimensional models

(Onatski et al. 2013, 2014, Cutting et al. 2017a).

97
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This selection of references provides an indication of the importance and im-

pact of LAN-based research on Rp, and shows the variety of topics that can be

addressed using this methodology.

5.1.2 Organization of the remainder of the chapter

Given the complexity of the topic, we start by providing a detailed description of

the fundamentals of the LAN property on Rp. This is achieved in Section 5.2.2.

We then explain in Section 5.3.1 how to establish the LAN property for curved ex-

periments, that is, on non-linear manifolds. The targeted extension to hyperspheres

is given in Section 5.3.2, while concrete examples of LAN-based inferential pro-

cedures for directional data are described in Sections 5.3.3–5.3.5.

5.2 Local asymptotic normality and optimal testing

5.2.1 Contiguity

The concept of contiguity was introduced by Le Cam (1960). Let (Ωn,An) be

measurable spaces equipped with two sequences of probability distributions P(n)

and Q(n). The sequence Q(n) is contiguous to P(n) (which we denote as Q(n) C

P(n)) if P(n)(An) → 0 implies Q(n)(An) → 0 for every sequence of measurable

sets An ∈ An. If Q(n) C P(n) and P(n) C Q(n), we say that Q(n) and P(n) are

mutually contiguous (and we write Q(n) CBP(n)). The following famous result is

known as the First Le Cam Lemma. It provides some properties for the likelihood

ratio dP(n)

dQ(n) .

Proposition 5.2.1 (First Le Cam Lemma) Consider two sequences of probability

measures P(n) and Q(n) defined on measurable spaces (Ωn,An). The following

are equivalent:

(i) Q(n) C P(n)

(ii) dP(n)

dQ(n) converges weakly (under Q(n) ) to a random variable U along a sub-

sequence, then P(U > 0) = 1.

(iii) dQ(n)

dP(n) converges weakly (under P(n)) to a random variable V along a sub-

sequence, then E[V ] = 1.

(iv) Any statistic Sn : Ωn → Rp is such that if Sn = oP(1) under P(n), then

Sn = oP(1) under Q(n).
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The First Le Cam Lemma implies that if P(n) and Q(n) are sequences such that

dQ(n)

dP(n)

D→ exp(N (µ,σ2))

under P(n) as n → ∞ with N (µ,σ2) a normal distribution with mean µ and

variance σ2, we have that P(n) C Q(n). Furthermore, it can be shown that

P(n)CBQ(n) if and only if µ = −1
2σ

2. The next crucial result is the so-called Third

Le Cam Lemma. It can be used to compute the asymptotic distribution of a statistic

Sn under Q(n) using the asymptotic distribution of Sn under P(n), provided that

Q(n) and P(n) are mutually contiguous.

Proposition 5.2.2 (Third Le Cam Lemma) Consider two sequences of proba-

bility measures P(n) and Q(n) defined on measurable spaces (Ωn,An) and let

Sn : Ωn → Rp be a statistic. Assume that Sn

log
(

dQ(n)

dP(n)

)  D→ Np+1

((
µµµ

−1
2σ

2

)
,

(
ΣΣΣ τττ

τττ ′ σ2

))

under P(n) as n→∞, with σ2 > 0,µµµ,τττ ∈ Rp and ΣΣΣ a p×p real-valued symmetric

positive definite matrix. Then, Sn
D→ Np(µµµ+ τττ ,ΣΣΣ) under Q(n) as n→∞.

The Third Le Cam Lemma is extremely useful for computing the asymp-

totic power of test procedures under sequences of experiments that are locally and

asymptotically normal. A definition of the concept of local asymptotic normality

is provided in the following section.

5.2.2 Local asymptotic normality

Let Z1, . . . ,Zn be an iid sample from a parametric distribution Pϑϑϑ, ϑϑϑ ∈ V ⊂ Rp;
write P

(n)
ϑϑϑ for the joint distribution of the Zi’s. Conceptually, a sequence of statisti-

cal experiments is locally and asymptotically normal (LAN) if the related sequence

of local log-likelihood ratios resembles, asymptotically, those of a Gaussian loca-

tion model. The following definition of LAN is given in Le Cam & Yang (2000).

For all sample size n, let

E(n) =
(
X (n),A(n),P(n) := {P(n)

ϑϑϑ |ϑϑϑ ∈ V ⊂ Rp}
)

be a sequence ofϑϑϑ-parametric experiments associated with Z1, . . . ,Zn. The family

of probability distributions P(n) is said to be LAN if for all ϑϑϑ ∈ V there exist
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(i) a sequence ννν(n) of p×p full rank non-random matrices such that ‖ννν(n)‖ → 0

as n→∞, with ‖ννν(n)‖ denoting the Frobenius norm of ννν(n);

(ii) a sequence of random p-vectors ∆∆∆(n)(ϑϑϑ) called the central sequence;

(iii) a non-random p× p matrix ΓΓΓ(ϑϑϑ), the Fisher information matrix,

such that for every bounded sequence of vectors τττ (n) ∈ Rp, we have

log
dP

(n)

ϑϑϑ+ννν(n)τττ (n)

dP
(n)
ϑϑϑ

= (τττ (n))′∆∆∆(n)(ϑϑϑ)− 1

2
(τττ (n))′ΓΓΓ(ϑϑϑ)τττ (n) + oP(1) (5.1)

and ∆∆∆(n)(ϑϑϑ)
D→ Np(0,ΓΓΓ(ϑϑϑ)), both under P

(n)
ϑϑϑ as n → ∞. Here ννν(n) is called the

contiguity rate between the sequences of models P
(n)

ϑϑϑ+ννν(n)τττ (n)
and P

(n)
ϑϑϑ .

Example. We illustrate here the notion of local asymptotic normality on the well-

known general linear model. Assume that a sequence Z1, . . . ,Zn satisfies

Zi = Y′iβββ + εi, (5.2)

where βββ := (β1, . . . ,βp)
′ is the regression parameter, the Yi := (Yi1, . . . ,Yip)

′,

i = 1, . . . ,n, are the regression constants and where ε1, . . . , εn is an iid sequence

with a strictly positive density f such that

(A1) ∫
R
zf(z) dz = 0;

∫
R
z2f(z) dz =: σ2

f <∞;

(A2) f is absolutely continuous with a.e. derivative ḟ ;

(A3) letting ϕf := −ḟ/f be the score function,∫
R
ϕ2
f (z)f(z) dz =: If <∞.

Letting Ȳj := n−1
∑n

i=1 Yij and C(n) := n−1
∑n

i=1 YiY
′
i, we also assume that

(A4) C(n) is positive definite and converges to some positive definite matrix C;

(A5)
max1≤i≤n(Yij − Ȳj)2∑n

i=1(Yij − Ȳj)2

is o(1) as n→∞.
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For the general linear model in (5.2), the likelihood of the residuals Zri (βββ) :=

Zi − Y′iβββ is given by L(n)(βββ) :=
∏n
i=1 f(Zri (βββ)). Under Assumptions (A1)–

(A5), taking ννν(n) = n−1/2(C(n))−1/2, we have for any βββ ∈ Rp and any bounded

sequence τττ (n) that

Λ
(n)

f ;βββ+ννν(n)τττ (n)/βββ
:= log

(
L(n)(βββ + ννν(n)τττ (n))

L(n)(βββ)

)
= (τττ (n))′∆∆∆

(n)
f (βββ)− 1

2
(τττ (n))′ΓΓΓfτττ

(n) + oP(1)

as n → ∞ under P
(n)
f ;βββ , the joint distribution of the Zri (βββ)’s (equivalently, of the

εi’s in (5.2)), where

∆∆∆
(n)
f (βββ) := n−1/2(C(n))−1/2

n∑
i=1

ϕf (Zri (βββ))Yi

and ΓΓΓf = IfIp. It follows from this LAN property that for any statistic T(n) such

that ((T(n))′, (∆∆∆(n)(βββ))′)′ is asymptotically normal under P
(n)
f ;βββ , one can easily

derive the asymptotic behavior of T(n) under local alternatives P
(n)

f ;βββ+ννν(n)τττ (n)
using

Proposition 5.2.2.

We easily see that the log-likelihood ratio log
dP

(n)

ϑϑϑ+ννν(n)τττ(n)

dP
(n)
ϑϑϑ

in (5.1) behaves asymp-

totically like the log-likelihood ratio of the classical Gaussian shift experiment

EΓΓΓ(ϑϑϑ) = (Rp,Bp,Pϑϑϑ := {Np (ΓΓΓ(ϑϑϑ)τττ ,ΓΓΓ(ϑϑϑ))|τττ ∈ Rp}) ,

with a single observation which we denote as ∆∆∆. Here, Bp denotes the Borel sigma-

field on Rp. This approximation of the statistical experiments E(n) by the normal

experiment EΓΓΓ(ϑϑϑ) has important consequences for the construction of locally and

asymptotically optimal test procedures as it means that, asymptotically, all power

functions that are implementable in the local experiments E(n) are the power func-

tions that are possible in the limiting Gaussian shift experiment EΓΓΓ(ϑϑϑ). In view of

these considerations, it follows that asymptotically optimal tests in the local mod-

els can be derived by analyzing the Gaussian limit model. More precisely, if a

test φ(∆∆∆) enjoys some exact optimality property in the Gaussian experiment EΓΓΓ(ϑϑϑ),

then the corresponding sequence φ(∆∆∆(n)) inherits, locally and asymptotically, the

same optimality properties in the sequence of experiments E(n).

Now, let fϑϑϑ be a density of Pϑϑϑ with respect to some measure m. It can be

shown that the LAN property (5.1) is essentially a consequence of a condition
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that involves the first derivative of f1/2
ϑϑϑ : the quadratic mean differentiability of

ϑϑϑ 7→ f
1/2
ϑϑϑ (see Theorem 7.2 in van der Vaart 1998). The mapping ϑϑϑ 7→ f

1/2
ϑϑϑ is

differentiable in quadratic mean if there exists a function ḟϑϑϑ such that∫ (
f

1/2
ϑϑϑ+τττ − f

1/2
ϑϑϑ − 1

2
τττ ′ḟϑϑϑf

−1/2
ϑϑϑ

)2

dm

is o(‖τττ‖2) as ‖τττ‖ → 0.

A slightly reinforced version of LAN is ULAN, the Uniform Local Asymptotic

Normality. Using the same notations as for LAN, a sequence of experiments is

said to be ULAN if for every ϑϑϑ ∈ V , any sequence ϑϑϑ(n) of the form ϑϑϑ(n) =

ϑϑϑ+O(‖ννν(n)‖) and any bounded sequence τττ (n), we have

log
dP

(n)

ϑϑϑ(n)+ννν(n)τττ (n)

dP
(n)

ϑϑϑ(n)

= (τττ (n))′∆∆∆(n)(ϑϑϑ(n))− 1

2
(τττ (n))′ΓΓΓ(ϑϑϑ)τττ (n) + oP(1) (5.3)

under P
(n)
ϑϑϑ as n → ∞. In plain words, the LAN property holds uniformly in a

neighborhood of the parameter of interest ϑϑϑ. The main attractive feature of ULAN

compared to LAN is that it implies the asymptotic linearity property

∆∆∆
(n)

ϑϑϑ+ννν(n)τττ (n)
−∆∆∆

(n)
ϑϑϑ = ΓΓΓ(ϑϑϑ)τττ (n) + oP(1) (5.4)

under P
(n)
ϑϑϑ as n → ∞. This asymptotic linearity plays a fundamental role when

dealing with inferential procedures involving statistics based on the central se-

quence ∆∆∆
(n)
ϑϑϑ . The asymptotic linearity property greatly simplifies the replacement

of the unknown parameter ϑϑϑ (or only of the nuisance part of ϑϑϑ) in such statistics

with any root-n consistent estimator satisfying some mild regularity conditions.

The control on the asymptotic impact of such a replacement is often obtained by

replacing adequately in (5.4) the non-random sequence τττ (n) by the random se-

quence (ννν(n))−1(ϑ̂ϑϑ
(n) − ϑϑϑ) for ϑ̂ϑϑ

(n)
such a root-n consistent estimator of ϑϑϑ under

P
(n)
ϑϑϑ .

5.2.3 Optimal testing in LAN experiments

Consider a sequence of univariate experiments

E(n) =
(
X (n),A(n),P(n) := {P(n)

ϑ |ϑ ∈ V ⊂ R}
)

which is LAN with central sequence ∆(n)(ϑ) and contiguity rate ν(n) = n−1/2. A

combination of the definition of a LAN sequence with the Third Le Cam Lemma
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implies that ∆(n)(ϑ) converges in distribution to a Gaussian random variable with

mean Γ(ϑ)τ and variance Γ(ϑ) under P
(n)

ϑ+n−1/2τ
as n→∞ (use ∆(n)(ϑ) as statis-

tic Sn in Proposition 5.2.2). Within such a sequence of models, consider the prob-

lem of testing {
H0 : ϑ ≤ ϑ0

H1 : ϑ > ϑ0

(5.5)

for some fixed ϑ0 ∈ V . Taking ϑ of the form ϑ = ϑ0 + n−1/2τ , (5.5) can be

rewritten (locally) as {
Hloc

0 : τ ≤ 0

Hloc
1 : τ > 0.

(5.6)

As explained in the previous section, LAN implies that the sequence of experiments

E(n) converges to the Gaussian shift experiment

EΓ(ϑ) = (R,B,Pϑ := {N (Γ(ϑ)τ , Γ(ϑ))| τ ∈ R}) .

Letting ∆ stand for an observation generated from this Gaussian experiment, a uni-

formly most powerful test for (5.6) rejects the null hypothesis Hloc
0 at the nominal

level α when

Γ(ϑ0)−1/2∆ > z1−α,

where zβ is the β quantile of the standard normal distribution. It follows from LAN

that the test φ(n) rejecting the null hypothesisH0 when

Γ(ϑ0)−1/2∆(n)(ϑ0) > z1−α

is locally and asymptotically most powerful within the sequence of experiments

E(n) at asymptotic level α.

Consider now the same problem as in (5.5) except that τττ is multivariate of

dimension p. The problem {
H0;p : ϑϑϑ = ϑϑϑ0

H1;p : ϑϑϑ 6= ϑϑϑ0,
(5.7)

which can be rewritten locally as{
Hloc

0;p : τττ = 0

Hloc
1;p : τττ 6= 0,

(5.8)

is intrinsically multisided. A most powerful test for this problem does not in gen-

eral exist in Gaussian shift experiments. However, optimal procedures can be ob-

tained by considering so-called maximin tests. In all generality, a test φ∗ is called
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maximin in the class Cα of level-α tests for some null hypothesis H0 against the

alternativeH1 if (i) φ∗ has level α and (ii) the power of φ∗ is such that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

In the Gaussian shift model EΓΓΓ(ϑϑϑ) = (Rp,Bp,Pϑϑϑ := {Np (ΓΓΓ(ϑϑϑ)τττ ,ΓΓΓ(ϑϑϑ))|τττ ∈ Rp})
a maximin test for (5.8) does not exist. However, letting ∆∆∆ be an observation from

EΓΓΓ(ϑϑϑ), the test rejecting the null when

∆∆∆′ΓΓΓ−1(ϑϑϑ0)∆∆∆

exceeds χ2
p;1−α, the α-upper quantile of the chi-squared distribution with p degrees

of freedom, is maximin within the class of level-α tests for{
Hlocbis

0;p : τττ = 0

Hlocbis
1;p : τττ ′ΓΓΓ(ϑϑϑ0)τττ > c

(5.9)

irrespective of c > 0. It follows that if a sequence of experiments

E(n) =
(
X (n),A(n),P(n) := {P(n)

ϑϑϑ |ϑϑϑ ∈ V ⊂ Rp}
)

is LAN with central sequence ∆∆∆(n)(ϑϑϑ), the sequence of tests rejecting the null (at

the asymptotic level α) when

∆∆∆(n)(ϑϑϑ0)′ΓΓΓ−1(ϑϑϑ0)∆∆∆(n)(ϑϑϑ0) > χ2
p;1−α

is locally and asymptotically maximin for the same problem.

Example (Continued). The problem of testing H0 : βββ = βββ0 for some βββ0 ∈ Rp in

the general linear model (5.2) is clearly of interest. Considering local perturba-

tions of βββ0 of the form βββ0 +ννν(n)τττ (n), the null hypothesis rewritesH0 : τττ (n) = 0 in

the vicinity of βββ0. The test that rejects the null hypothesis (at the asymptotic level

α) when

I−1
f ‖∆∆∆

(n)
f (βββ0)‖2 > χ2

p;1−α

is locally and asymptotically maximin in the f -parametric model.

Finally, lettingM(A) stand for the vector space spanned by the columns of a

matrix A, consider the problem of testing{
H0 : τττ ∈M(ΥΥΥ)

H1 : τττ /∈M(ΥΥΥ),
(5.10)
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where ΥΥΥ is a p× r matrix of rank r < p. Again, in the Gaussian shift model EΓΓΓ(ϑϑϑ),

a most powerful test for this problem does not exist but a solution can be obtained

using the concept of stringency. A test φ∗ is called most stringent in the class of

level-α tests Cα for testingH0 againstH1 if (i) φ∗ has level α and (ii) is such that

sup
P∈H1

rφ∗(P) ≤ sup
P∈H1

rφ(P) ∀φ ∈ Cα,

where rφ0(P) stands for the regret of the test φ0 under P ∈ H1 defined as

rφ0(P) :=

[
sup
φ∈Cα

EP[φ]

]
− EP[φ0].

Thus the regret is the deficiency in power of φ0 under P ∈ H1 compared to the

highest possible power under P. Defining proj(A) := A(A′A)−1A′, the most

stringent test within the class of level-α tests for (5.10) in the Gaussian shift model

rejects the null when∥∥∥(Ip − proj(ΓΓΓ1/2(ϑϑϑ)ΥΥΥ)
)

ΓΓΓ−1/2(ϑϑϑ)∆∆∆
∥∥∥2
> χ2

p−r;1−α

so that in a LAN sequence with central sequence ∆∆∆(n)(ϑϑϑ) and contiguity rate ννν(n),

the test based on the rejection rule∥∥∥(Ip − proj(ΓΓΓ1/2(ϑϑϑ)(ννν(n))−1ΥΥΥ)
)

ΓΓΓ−1/2(ϑϑϑ)∆∆∆(n)(ϑϑϑ)
∥∥∥2
> χ2

p−r;1−α

is locally and asymptotically most stringent.

5.2.4 LAN, semiparametric efficiency and invariance

In this section we consider semiparametric models, that is, models indexed by a

finite-dimensional parameter ϑϑϑ ∈ V ⊂ Rp along with an infinite-dimensional pa-

rameter f that belongs to some class of functionsF . That is, we consider sequences

of experiments of the form

E(n) =
(
X (n),A(n),P(n) := {P(n)

ϑϑϑ,f |ϑϑϑ ∈ V ⊂ Rp, f ∈ F}
)

, (5.11)

where the parameter f plays the role of a nuisance parameter throughout this sec-

tion. We first consider a sequence of parametric models

P(n) = {P(n)
ϑϑϑ ,ϑϑϑ := (ηηη′1,ηηη′2)′;ηηη1 ∈ N ⊂ Rm,ηηη2 ∈ H ⊂ Rm−p}
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such that the resulting sequence of experiments is LAN with central sequence(
(∆∆∆

(n)
1 (ϑϑϑ))′, (∆∆∆

(n)
2 (ϑϑϑ))′

)′
and full rank Fisher information matrix

ΓΓΓ(ϑϑϑ) :=

(
ΓΓΓ11(ϑϑϑ) ΓΓΓ12(ϑϑϑ)

ΓΓΓ21(ϑϑϑ) ΓΓΓ22(ϑϑϑ)

)
,

where ∆∆∆
(n)
1 (ϑϑϑ) is the ηηη1-part and ∆∆∆

(n)
2 (ϑϑϑ) the ηηη2-part of the central sequence. As-

sume now that we are interested in performing inference about ηηη1. Intuitively, this

is more complicated in the sequence of models P(n) than in a sequence of submod-

els of the form

P(n)
sub = {P(n)

ηηη1,ηηη0 ;ηηη1 ∈ N ⊂ Rm}

where ηηη2 is fixed as ηηη0 (treated as known). The information bound for estimat-

ing ηηη1 in P(n)
sub is ΓΓΓ−1

11 (ϑϑϑ), whereas this bound becomes (ΓΓΓ−1(ϑϑϑ))11 = (ΓΓΓ11(ϑϑϑ) −
ΓΓΓ12(ϑϑϑ)ΓΓΓ−1

22 (ϑϑϑ)ΓΓΓ21(ϑϑϑ))−1 in P(n). Such an information bound can be attained

by considering asymptotic inference based on the parametric efficient central se-

quence

∆̃∆∆
(n)
1 (ϑϑϑ) := ∆∆∆

(n)
1 (ϑϑϑ)−ΓΓΓ12(ϑϑϑ)ΓΓΓ−1

22 (ϑϑϑ)∆∆∆
(n)
2 (ϑϑϑ). (5.12)

As a consequence, working with unspecified ηηη2 decreases the information on ηηη1 by

ΓΓΓ12(ϑϑϑ)ΓΓΓ−1
22 (ϑϑϑ)ΓΓΓ21(ϑϑϑ). Note that if ΓΓΓ12(ϑϑϑ) = 000 it is possible to perform inference

equally well on ηηη1 in P(n) and P(n)
sub. The condition ΓΓΓ12(ϑϑϑ) = 000 is a necessary

condition for adaptivity in such parametric models (see Chen & Bickel 2006 for

details). The central sequence ∆∆∆
(n)
1 (ϑϑϑ) and its efficient version ∆̃∆∆

(n)
1 (ϑϑϑ) can be

interpreted geometrically in the Hilbert space of P
(n)
ϑϑϑ -square-integrable functions.

More precisely, ∆̃∆∆
(n)
1 (ϑϑϑ) can be seen as the projection of ∆∆∆

(n)
1 (ϑϑϑ) on the orthogonal

complement of ∆∆∆
(n)
2 (ϑϑϑ) in L2(P

(n)
ϑϑϑ ), which we denote by

∆̃∆∆
(n)
1 (ϑϑϑ) := Pr[∆∆∆

(n)
1 (ϑϑϑ)|(∆∆∆(n)

2 (ϑϑϑ))⊥].

This projection takes into account the information loss due to not knowing ηηη2,

and the new central sequence (5.12) enjoys efficiency features under these circum-

stances.

In a similar fashion, the nuisance parameter f in the semiparametric experi-

ments (5.11) renders asymptotic inference on ϑϑϑ more difficult than in fixed-f para-

metric models. Semiparametric efficiency has to be understood in the Le Cam

sense as follows. Assume as previously that the sequence of f -parametric models

is LAN, meaning that as n→∞
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log
dP

(n)

ϑϑϑ+ννν(n)τττ (n),f

dP
(n)
ϑϑϑ,f

= (τττ (n))′∆∆∆
(n)
f (ϑϑϑ)− 1

2
(τττ (n))′ΓΓΓf (ϑϑϑ)τττ (n) + oP(1) (5.13)

and ∆∆∆
(n)
f (ϑϑϑ) is asymptotically normal with mean zero and covariance ΓΓΓf (ϑϑϑ), both

under P
(n)
ϑϑϑ,f . We attract the reader’s attention to the fact that, now, we add the index

f to all f -dependent quantities; previously, this dependence was implicit as our

models were fully parametric. As for the finite-dimensional setup discussed above,

efficient inference procedures about ϑϑϑ can be obtained by computing an efficient

central sequence that takes care of the (infinite-dimensional) nuisance parameter f .

In order to obtain such a central sequence, we here need to project ∆∆∆
(n)
f (ϑϑϑ) on the

orthocomplement of the so-called tangent space. Such a tangent space can often

be obtained by applying the following strategy. Let Q denote the set of all maps

q : (−1, 1)p → F such that q(0) = f . Then the tangent space can be obtained by

computing the space generated by the gradient of log dP
(n)
ϑϑϑ,q(ξξξ) with respect to ξξξ in

the vicinity of ξξξ = 0. Writing L
(n)
q|f (ϑϑϑ) for the tangent space, an efficient central

sequence can be defined as

∆̃∆∆
(n)
q|f (ϑϑϑ) := Pr(∆∆∆

(n)
f (ϑϑϑ)|(L(n)

q|f (ϑϑϑ))⊥].

The major problem of ∆̃∆∆
(n)
q|f (ϑϑϑ) is that it still depends on the choice of the surface (in

a Hilbert space) indexed by q ∈ Q. Therefore there is no guarantee that ∆̃∆∆
(n)
q|f (ϑϑϑ)

will be orthogonal to L
(n)
q′|f (ϑϑϑ) for every q′ in Q and as a result semiparametric

efficiency is not guaranteed either.

There are essentially two distinct approaches to deal with this particular prob-

lem. First, semiparametric efficiency can sometimes be reached by estimating the

nuisance parameter f (Chen & Bickel 2006). Another possibility is to get rid of the

nuisance f by invoking the invariance principle. We discuss this second solution

in more detail. Consider the sequence of experiments

E(n) =
(
X (n),A(n),P(n) := {P(n)

ϑϑϑ,f |f ∈ F}
)

, (5.14)

associated with the fixed-ϑϑϑ model and a sequence of σ-fields B(n)(ϑϑϑ) ⊂ An such

that the restriction of P
(n)
ϑϑϑ,f to B(n)(ϑϑϑ), denoted as P

(n)

ϑϑϑ,f |B(n)(ϑϑϑ)
, does not depend on

f ∈ F . The σ-fields B(n)(ϑϑϑ) are in general generated by the orbits of some group

of transformations acting on (X (n),A(n)). Hallin & Werker (2003) established that
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for any q ∈ Q, L(n)
q|f (ϑϑϑ) is asymptotically orthogonal to B(n)(ϑϑϑ) in the sense that

Eϑϑϑ,f [L
(n)
q|f (ϑϑϑ)|B(n)(ϑϑϑ)] = oL1(1)

as n → ∞ under P
(n)
ϑϑϑ,f and therefore that asymptotic semiparametric efficiency is

attained by considering the central sequence

∆̃∆∆
(n)
|f (ϑϑϑ) := Eϑϑϑ,f [∆∆∆

(n)
f (ϑϑϑ)|B(n)(ϑϑϑ)].

To illustrate the use of the invariance principle, consider an n-tuple Z1, . . . ,Zn

of iid univariate random variables with an absolutely continuous (with respect to

the Lebesgue measure) distribution, symmetric about some µ ∈ R. More precisely,

assume that the common density of the Zi’s is of the form f(x − µ) where f

belongs to the class F of positive densities that are symmetric around zero. We are

interested in the problem of testing{
H0 : µ = 0

H1 : µ 6= 0,

for which the infinite-dimensional parameter f ∈ F is a nuisance parameter. In

order to eliminate the effect of this nuisance f , we consider the group of transfor-

mations G := {G(n)
g0 } defined as

G(n)
g0 (Z1, . . . ,Zn) = (g0(Z1), . . . , g0(Zn)),

where g0 is an odd, monotone increasing, continuous function such that

limz→+∞ g0(z) = +∞ and limz→−∞ g0(z) = −∞. It is clear that if Z1, . . . ,Zn

is an n-tuple that belongs to H0, the n-tuple g0(Z1), . . . , g0(Zn) also belongs to

H0. The transformations induced by G only act on the infinite-dimensional nui-

sance parameter f . The null hypothesis is therefore invariant with respect to G.

The invariance principle advocates test procedures that are invariant with respect

to G. Since every invariant statistic is measurable with respect to some maximal

invariant1 for G, the resulting procedures have to be based on that maximal invari-

ant. Letting Si = sign(Zi) and Ri be the rank of |Zi| among |Z1|, . . . , |Zn|, it is

easy to check that the maximal invariant associated with G is the vector

I(n) := (S1, . . . ,Sn,R1, . . . ,Rn)

1A function T is a maximal invariant for a transformation group G acting on X (n) if T (z1) =

T (z2) iff there exists g ∈ G such that z1 = g(z2) for all z1, z2 ∈ X (n).
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of signs and ranks. Since G is a generating group of the null hypothesis (i.e., it

has a single orbit), procedures based on I(n) will be distribution-free. Let B(n)

be the sigma-field associated with I(n) and assume that the model is LAN with

central sequence ∆
(n)
0 at µ = 0. Semiparametric efficiency can then be reached by

considering test procedures based on E[∆
(n)
0 |B(n)].

Example (continued). In the case of a centered iid noise as in the example

(5.2), consider the group of transformations G := {G(n)
g0 } defined as

G(n)
g0 (Zr1(βββ), . . . ,Zrn(βββ)) = (g0(Zr1(βββ)), . . . , g0(Zrn(βββ))),

where g0 is a monotone increasing, continuous function such that limz→+∞ g0(z) =

+∞, limz→−∞ g0(z) = −∞ and g0(0) = 0. The maximal invariant associated

with this group of transformations is the vector of signs (S
(n)
1 , . . . ,S

(n)
n ), where

S
(n)
i = sign(Zri (βββ)), and ranks (R1, . . . ,Rn), where Ri is here the rank of Zri (βββ)

among Zr1(βββ), . . . ,Zrn(βββ). The corresponding central sequence is therefore ob-

tained as

E[∆∆∆(n)(βββ)|(S(n)
1 , . . . ,S(n)

n ,R
(n)
1 , . . . ,R(n)

n )],

where the expectation is taken under P
(n)
βββ,f .

5.3 LAN for directional data

The first extension of the Le Cam methodology to directional supports was pro-

vided by Ley et al. (2013), in the context of rotationally symmetric distributions

(see Section 2.3.2 of Chapter 2). Proving that rotationally symmetric experiments

are ULAN is far from trivial, the major difficulty being that the location parameter

µµµ belongs to the unit sphere Sp−1 which is curved.

The solution of Ley et al. (2013) consists in (i) expressing all quantities in

spherical coordinates which are defined on a linear domain, (ii) establishing the

ULAN property for these new parameters, and (iii) translating the ULAN property

into the original parameterization by using a lemma proved in Hallin et al. (2010).

With this “directional ULAN property” in hand, Ley et al. (2013) constructed opti-

mal R-estimators for the location parameter of rotationally symmetric distributions.

A more general version of this property, in the case of m independent populations,

permitted Ley et al. (2017) to propose efficient ANOVA for spherical distributions.

In what follows, we present some of the results obtained in Ley et al. (2013)

and Ley et al. (2017). We also illustrate the usefulness of the Third Le Cam Lemma
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by computing the local powers of tests for the concentration parameter of Fisher–

von Mises–Langevin distributions (Ley & Verdebout 2014a). However, we start by

summarizing the general results related to curved experiments obtained in Hallin

et al. (2010).

5.3.1 The Le Cam methodology for curved experiments and associ-
ated efficient tests

We discuss here a general theory developed in Hallin et al. (2010) for locally

asymptotically optimal tests in curved ULAN experiments. Consider a sequence

of experiments

E(n)
1 =

(
X (n),A(n),P(n) := {P(n)

ωωω : ωωω ∈ ΩΩΩ}
)

,

where ΩΩΩ is an open subset of Rp1 . Let

E(n)
2 :=

(
X (n),A(n),P(n) := {P(n)

ϑϑϑ : ϑϑϑ ∈ΘΘΘ := d̄(ΩΩΩ)}
)

,

where the mapping d̄ : Rp1 → Rp2 (p1 ≤ p2) is of full column rank so that in

general ΘΘΘ is possibly a non-linear manifold of Rp2 . In such a case, the experiments

E(n)
2 are said to be curved. We observe that the experiments E(n)

1 and E(n)
2 are vir-

tually the same but are indexed by different parameterizations through ϑϑϑ = d̄(ωωω).

If the sequence of experiments E(n)
1 is ULAN, then E(n)

2 is also ULAN as shown in

the following result.

Lemma 5.3.1 (Hallin et al. 2010) Consider a family of probability distributions

P(n) = {P(n)
ωωω | ωωω ∈ ΩΩΩ} with ΩΩΩ an open subset of Rp1 (p1 ∈ N0). Suppose that the

parameterization ωωω 7→ P
(n)
ωωω is ULAN for P(n) at some point ωωω0 ∈ Ω, with central

sequence ∆∆∆(n)(ωωω0) and Fisher information matrix ΓΓΓ(ωωω0). Let d̄ : ωωω 7→ ϑϑϑ := d̄(ωωω)

be a continuously differentiable mapping from Rp1 to Rp2 (p1 ≤ p2 ∈ N0)

with full column rank Jacobian matrix Dd̄(ωωω) at every ωωω in some neighbor-

hood of ωωω0. Write ΘΘΘ := d̄(ΩΩΩ), and assume that ϑϑϑ 7→ P
(n); d̄
ϑϑϑ , ϑϑϑ ∈ ΘΘΘ, pro-

vides another parameterization of P(n). Then ϑϑϑ 7→ P
(n); d̄
ϑϑϑ is also ULAN for

P(n) at ϑϑϑ0 = d̄(ωωω0), with central sequence ∆∆∆(n); d̄(ϑϑϑ0) = (D− d̄(ωωω0))′∆∆∆(n)(ωωω0)

and Fisher information matrix ΓΓΓd̄(ϑϑϑ0) = (D− d̄(ωωω0))′ΓΓΓ(ωωω0)D− d̄(ωωω0), where

D− d̄(ωωω0) := ((Dd̄(ωωω0))′Dd̄(ωωω0))−1(Dd̄(ωωω0))′ is the Moore–Penrose inverse

of Dd̄(ωωω0).
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Now, let us consider a sequence of curved ULAN experiments

E(n)
2 =

(
X (n),A(n),P(n) := {P(n)

ϑϑϑ : ϑϑϑ ∈ΘΘΘ}
)

with ΘΘΘ a non-linear manifold of

Rp. Besides Lemma 5.3.1, Hallin et al. (2010) provide a general method to con-

struct locally and asymptotically most stringent tests for null hypotheses of the

form

H0 : ϑϑϑ ∈ C ∩ΘΘΘ,

where C is an r-dimensional manifold in Rp, r < p. To obtain a locally (at

ϑϑϑ0 ∈ H0) and asymptotically optimal test in the ϑϑϑ-parameterization, one has to

find a local chart b̄ : A ⊆ Rr → Rp (at ϑϑϑ0) for the manifold C ∩ΘΘΘ and estab-

lish the ULAN property in the simpler parameterization ηηη0 := b̄−1(ϑϑϑ0). Then,

letting ∆∆∆(n)(ϑϑϑ0) and ΓΓΓ(ϑϑϑ0) be, respectively, the central sequence and the Fisher

information associated with the ΘΘΘ-experiments E(n)
2 , the test that rejects the null

when (A− stands for the Moore–Penrose pseudo-inverse of A and Db̄(ηηη0) is the

Jacobian matrix of b̄ computed at ηηη0)

Q
(n)
ϑϑϑ0

:= (∆∆∆
(n)
ϑϑϑ0

)′(ΓΓΓ−ϑϑϑ0 −Db̄(ηηη0) (Db̄′(ηηη0)ΓΓΓϑϑϑ0Db̄(ηηη0))−Db̄′(ηηη0))∆∆∆
(n)
ϑϑϑ0

(5.15)

exceeds the α-upper quantile of the chi-squared distribution with p− r degrees of

freedom is locally and asymptotically most stringent for H0 : ϑϑϑ ∈ C ∩ΘΘΘ against

H1 : ϑϑϑ /∈ C ∩ΘΘΘ.

5.3.2 LAN property for rotationally symmetric distributions

Throughout this section, let X1, . . . ,Xn be a sequence of iid rotationally sym-

metric observations. We mostly consider here statistical inference for the location

parameter µµµ ∈ Sp−1 of a rotationally symmetric distribution. Estimation and test-

ing procedures for µµµ have been extensively studied in the literature, with much of

the focus in the past years being put on the class ofM -estimators. AnM -estimator

µ̂µµ associated with a given function ρ0(x;µµµ) is defined as the value of µµµ that mini-

mizes the objective function

µµµ 7→ ρ(µµµ) :=

n∑
i=1

ρ0(Xi;µµµ).

These M -estimators are robust to outliers and enjoy nice asymptotic properties,

see Chang & Rivest (2001), Chang & Tsai (2003), or Chang (2004). In particular,

the choice ρ0(x;µµµ) = arccos(x′µµµ) yields the spherical median of Fisher (1985),

whereas ρ0(x;µµµ) = ‖x−µµµ‖2 yields µ̂µµ = X̄/‖X̄‖, the spherical mean.
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Recently Ley et al. (2013) and Paindaveine & Verdebout (2015) considered

locally asymptotically optimal inference for µµµ. The techniques used in both papers

are based on the general results presented in the previous section. The various

results provided in what follows are based on the following assumption.

ASSUMPTION A. X1, . . . ,Xn are iid with common distribution Pµµµ,f characterized

by a density of the form

x 7→ fµµµ(x) = cp,f f(x′µµµ), x ∈ Sp−1, (5.16)

where µµµ ∈ Sp−1 is the location parameter and the angular function f : [−1, 1] →
R+

0 is absolutely continuous and monotone non-decreasing.

We denote here by F the set of functions f satisfying Assumption A. Sec-

tion 2.3.2 of Chapter 2 gives numerous examples of angular functions f and pro-

vides further insight into rotationally symmetric distributions. For the sake of read-

ability, we restate here some important results, but refer to Section 2.3.2 for the

details. If X1, . . . ,Xn are iid with density (5.16), then X′1µµµ, . . . ,X′nµµµ are iid with

density

t 7→ f̃(t) := c̃p,ff(t)(1− t2)(p−3)/2, −1 ≤ t ≤ 1, (5.17)

where c̃p,f is a normalizing constant. Rotational symmetry implies that, for each

i = 1, . . . ,n, X′iµµµ and the multivariate sign

Sµµµ(Xi) =
Xi − (X′iµµµ)µµµ

‖Xi − (X′iµµµ)µµµ‖
are independent. Furthermore, Sµµµ(Xi) is uniformly distributed on the sphere

Sp−1(µµµ⊥) := {v ∈ Rp |v′v = 1,v′µµµ = 0}. In the sequel we let P
(n)
µµµ,f denote

the joint distribution of X1, . . . ,Xn under Assumption A.

In Ley et al. (2013), it is shown that the rotationally symmetric model is ULAN

(with respect to µµµ). This requires another technical assumption.

ASSUMPTION B. Letting ϕf := ḟ/f (ḟ is the a.e.-derivative of f ), the quantity

Jp(f) :=
∫ 1
−1 ϕ

2
f (t)(1− t2)f̃(t)dt < +∞.

Let µµµ(n) ∈ Sp−1 be such that µµµ(n) − µµµ = O(n−1/2) and consider local al-

ternatives on the sphere of the form µµµ(n) + n−1/2t(n) with t(n) ∈ Rp a bounded

sequence. Forµµµ(n) +n−1/2t(n) to remain in Sp−1, it is necessary that the sequence

t(n) satisfies

0 = (µµµ(n) + n−1/2t(n))′(µµµ(n) + n−1/2t(n))− 1

= 2n−1/2(µµµ(n))′t(n) + n−1(t(n))′t(n). (5.18)
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Consequently, t(n) must be such that 2n−1/2(µµµ(n))′t(n) + o(n−1/2) = 0. There-

fore, for µµµ(n) + n−1/2t(n) to remain in Sp−1, t(n) must belong, up to a o(n−1/2)

quantity, to the tangent space to Sp−1 at µµµ(n). The following result can then be

established.

Proposition 5.3.1 (Ley et al. 2013) Let Assumptions A and B hold. Then the fam-

ily of probability distributions
{

P
(n)
µµµ,f | µµµ ∈ Sp−1

}
is ULAN with central sequence

∆∆∆
(n)
µµµ;f := n−1/2

n∑
i=1

ϕf (X′iµµµ)(1− (X′iµµµ)2)1/2Sµµµ(Xi)

and Fisher information matrix

ΓΓΓµµµ;f :=
Jp(f)

p− 1
(Ip −µµµµµµ′).

More precisely, for any µµµ(n) ∈ Sp−1 such that µµµ(n) − µµµ = O(n−1/2) and any

bounded sequence t(n) as in (5.18), we have

log

dP
(n)

µµµ(n)+n−1/2t(n),f

dP
(n)

µµµ(n),f

 = (t(n))′∆∆∆
(n)

µµµ(n);f
− 1

2
(t(n))′ΓΓΓµµµ;ft

(n) + oP(1)

and ∆∆∆
(n)

µµµ(n);f

D→ Np(0,ΓΓΓµµµ;f ), both under P
(n)

µµµ(n),f
, as n→∞.

This result was used in Ley et al. (2013), Paindaveine & Verdebout (2015) and

Ley et al. (2017) to obtain locally and asymptotically optimal estimators and tests

based on signed-ranks that combine semiparametric efficiency and invariance as

described in Section 5.2.4. We briefly discuss these results in the next two sections.

5.3.3 Application 1: Optimal inference based on signed-ranks

Fix µµµ ∈ Sp−1 and consider the family
⋃
f∈F P

(n)
µµµ,f . We recall the tangent normal

decomposition (2.21):

Xi = (X′iµµµ)µµµ+
√

1− (X′iµµµ)2Sµµµ(Xi).

Now, let G(n)
h be the group of transformations of the form g

(n)
h : (X1, . . . ,Xn) 7→

(gh(X1), . . . , gh(Xn)) with

gh(Xi) := h(X′iµµµ)µµµ+
√

1− h(X′iµµµ)2Sµµµ(Xi), i = 1, . . . ,n, (5.19)
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where h : [−1, 1] → [−1, 1] is a continuous monotone non-decreasing function

such that h(1) = 1 and h(−1) = −1. For any g(n)
h ∈ G(n)

h , it is easy to verify

that ‖g(n)
h (Xi)‖ = 1, meaning that g(n)

h ∈ G(n)
h is a monotone transformation

from
(
Sp−1

)n to
(
Sp−1

)n. The group G(n)
h is a generating group of the family of

distributions
⋃
f∈F P

(n)
µµµ,f .

These considerations naturally raise the issue of finding the maximal invariant

associated with G(n)
h . Note that it is easy to verify that Sµµµ(gh(Xi)) = Sµµµ(Xi) so

that the vector of signs Sµµµ(X1), . . . ,Sµµµ(Xn) is invariant under the action of G(n)
h .

However, it is not a maximal invariant; indeed, the latter is composed of signs and

ranks. Define, for all i = 1, . . . ,n, Ri as the rank of X′iµµµ among X′1µµµ, . . . ,X′nµµµ.

The fact that gh(Xi)
′µµµ = h(X′iµµµ) directly implies the invariance of these new

ranks under the action of the group G(n)
h . The maximal invariant associated with

G(n)
h thus corresponds to the combination of the signs Sµµµ(X1), . . . ,Sµµµ(Xn) with

the ranks R1, . . . ,Rn. It follows that any statistic measurable with respect to the

signs Sµµµ(Xi) and ranks Ri is distribution-free under
⋃
f∈F P

(n)
µµµ,f .

In accordance with these findings, R-estimation in Ley et al. (2013) and signed-

rank tests in Paindaveine & Verdebout (2015) are based on a signed-rank version

of the parametric central sequence obtained in Proposition 5.3.1, namely on

∆∆∆˜ (n)
µµµ;K := n−1/2

n∑
i=1

K

(
Ri
n+ 1

)
Sµµµ(Xi), (5.20)

where K is a score function satisfying some regularity conditions. Letting µ̂µµ(n)

stand for a preliminary root-n consistent and locally discrete estimator,2 the pro-

posed R-estimators are of the form

µ̂µµ
(n)
K :=

µ̂µµ(n) + (p− 1)(Ĵ (K, g))−1 ∆∆∆˜ (n)

µ̂µµ(n);K

‖µ̂µµ(n) + (p− 1)(Ĵ (K, g))−1 ∆∆∆˜ (n)

µ̂µµ(n);K
‖

,

where g is an angular function as in Assumption A and Ĵ (K, g) is a consistent

estimator of the cross-information quantity J (K, g) :=
∫ 1

0 K(u)Kg(u)du with

Kg(u) := ϕg(G̃
−1(u))(1− (G̃−1(u))2)1/2. Here G̃ is the cumulative distribution

function associated with g̃ given by (5.17). When based on Kf , µ̂µµKf is asymptoti-

cally efficient under P
(n)
µµµ,f . These estimators are called one-step estimators, because

2This means that µ̂µµ(n) only takes a bounded number of distinct values in µµµ-centered balls with

O
(
n−1/2

)
radius. This discretization condition is a purely technical requirement with little practical

implications.
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they update any preliminary root-n consistent estimator and turn it into an efficient

one.

In Paindaveine & Verdebout (2015), the authors provided signed-rank based

tests that rejectH0 : µµµ = µµµ0 at asymptotic level α when

TK :=
(p− 1)

J (K)
‖∆∆∆˜ (n)

µµµ0;K‖2 > χ2
p−1;1−α

where J (K) :=
∫ 1

0 K
2(u)du. When based on Kf , TKf is locally and asymptoti-

cally optimal under P
(n)
µµµ,f .

5.3.4 Application 2: ANOVA on spheres

Let us now consider m(≥ 2) mutually independent samples Xi1, . . . ,Xini , i =

1, . . . ,m, of rotationally symmetric observations on Sp−1 satisfying

ASSUMPTION A. For all i = 1, . . . ,m, Xi1, . . . ,Xini are iid with joint distribution

P
(n)
µµµi;fi

, with location parameter µµµi ∈ Sp−1 and angular function fi : [−1, 1]→ R+
0

an absolutely continuous and monotone non-decreasing mapping.

ASSUMPTION B. The Fisher information associated with the location parameter µµµ

is finite; this finiteness is ensured if, for i = 1, . . . ,m and letting ϕfi := ḟi/fi (ḟi
is the a.e.-derivative of fi), Jp(fi) :=

∫ 1
−1 ϕ

2
fi

(t)(1− t2)f̃i(t)dt < +∞.

In order to be able to state the ULAN result below, we need to impose some

conditions on the sample sizes ni, i = 1, . . . ,m. This we achieve via the following

ASSUMPTION C. Letting n =
∑m

i=1 ni, for all i = 1, . . . ,m the ratio r(n)
i := ni/n

converges to a finite constant ri as n → ∞. A matrix made up of these constants

is defined as

r(n) := diag

((
r

(n)
1

)−1/2
Ip, . . . ,

(
r(n)
m

)−1/2
Ip

)
.

Throughout this section, we denote by Fm the collection of m-tuples of angu-

lar functions f := (f1, f2, . . . , fm), by ϑϑϑ := (µµµ′1, . . . ,µµµ′m)′ the parameter of

interest and, consequently, by P
(n)
ϑϑϑ,f the joint distribution of all n observations.

Under Assumptions A, B and C, the objective of Ley et al. (2017) was to ad-

dress the spherical ANOVA problem H0 : µµµ1 = . . . = µµµm versus the alternative

H1 : ∃1 ≤ i 6= j ≤ m for which µµµi 6= µµµj . This is a problem of capital importance
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in paleomagnetism, see Section 1.2.1 of the Introduction. The proposed tests are

based on the following extension of the ULAN property from Proposition 5.3.1.

Proposition 5.3.2 (Ley et al. 2017) Let Assumptions A, B and C hold. Then the

model
{

P
(n)
ϑϑϑ,f | ϑϑϑ ∈ (Sp−1)m

}
is ULAN with central sequence

∆∆∆
(n)
ϑϑϑ;f :=

(
(∆∆∆

(n)
µµµ1;f1

)′, . . . , (∆∆∆
(n)
µµµm;fm

)′
)′

, where

∆∆∆
(n)
µµµi;fi

:= n
−1/2
i

ni∑
j=1

ϕfi(X
′
ijµµµi)(1− (X′ijµµµi)

2)1/2Sµµµi(Xij), i = 1, . . . ,m,

and Fisher information matrix ΓΓΓϑϑϑ;f := diag(ΓΓΓµµµ1;f1 , . . . ,ΓΓΓµµµm;fm) where

ΓΓΓµµµi;fi :=
Jp(fi)
p− 1

(Ip −µµµiµµµ′i), i = 1, . . . ,m.

More precisely, for any ϑϑϑ(n) ∈ (Sp−1)m such that ϑϑϑ(n) − ϑϑϑ = O(n−1/2) and any

bounded sequence t(n) = (t
(n)′
1 , . . . , t

(n)′
m )′ ∈ Rpm as in (5.18), we have

log

dP
(n)

ϑϑϑ(n)+n−1/2r(n)t(n),f

dP
(n)

ϑϑϑ(n),f

 = (t(n))′∆∆∆
(n)

ϑϑϑ(n);f
− 1

2
(t(n))′ΓΓΓϑϑϑ;ft

(n) + oP(1)

(5.21)

and ∆∆∆
(n)

ϑϑϑ(n);f

D→ Nmp(000,ΓΓΓϑϑϑ;f ), both under P
(n)
ϑϑϑ,f , as n→∞.

Proposition 5.3.2 provides all the necessary tools for building optimal procedures

for the ANOVA testing problem. The related null hypothesis is the intersection

between (Sp−1)m and the linear subspace (of Rmp)

C := {v = (v′1, . . . ,v′m)′ |v1, . . . ,vm ∈ Rp and v1 = . . . = vm} =:M(1m⊗Ip)

where we set 1m := (1, . . . , 1)′ ∈ Rm and A⊗B denotes the Kronecker product

between A and B. Such a restriction, namely an intersection between a linear sub-

space and a non-linear manifold, is exactly the type of testing problems discussed

in Section 5.3.1. As explained in that section, one has to consider the locally and

asymptotically most stringent test for the null hypothesis defined by the intersec-

tion between C and the tangent to (Sp−1)m. Let µµµ denote the common value of

µµµ1, . . . ,µµµm under the null hypothesis. In the vicinity of 1m ⊗ µµµ, the intersection

between C and the tangent to (Sp−1)m is given by{
(µµµ′ + n−1/2(r

(n)
1 )−1/2t

(n)′
1 , . . . ,µµµ′ + n−1/2(r

(n)
m )−1/2t

(n)′
m )′, (5.22)

µµµ′t
(n)
1 = . . . = µµµ′t

(n)
m = 0, (r

(n)
1 )−1/2t

(n)
1 = . . . = (r

(n)
m )−1/2t

(n)
m

}
.
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Solving the system (5.22) yields

r(n)t(n) =
(

(r
(n)
1 )−1/2t

(n)′
1 , . . . , (r(n)

m )−1/2t(n)′
m

)′
∈M(1m ⊗ (Ip −µµµµµµ′)).

(5.23)
Loosely speaking, we have converted the initial null hypothesisH0 into a linear re-
striction of the form (5.23) in terms of local perturbations t(n), for which Le Cam’s
asymptotic theory then provides a locally and asymptotically optimal parametric
test under fixed f . Using Proposition 5.3.2 and letting ΥΥΥϑϑϑ := 1m⊗ (Ip−µµµµµµ′) and

ΥΥΥ
(n)
ϑϑϑ;r := (r(n))−1ΥΥΥϑϑϑ, an asymptotically most stringent test φ(n)

f is then obtained by
rejectingH0 at asymptotic level α if

Q
(n)
f := (∆∆∆

(n)
ϑϑϑ;f )′

(
ΓΓΓ−ϑϑϑ;f −ΥΥΥ

(n)
ϑϑϑ;r

(
(ΥΥΥ

(n)
ϑϑϑ;r)′ΓΓΓϑϑϑ;fΥΥΥ

(n)
ϑϑϑ;r

)−
(ΥΥΥ

(n)
ϑϑϑ;r)′

)
∆∆∆

(n)
ϑϑϑ;f > χ2

(m−1)(p−1);1−α.

(5.24)

The parametric test φ(n)
f is locally and asymptotically optimal but nevertheless

suffers from some drawbacks. First it is only valid under the prespecified m-tuple

f = (f1, . . . , fm). Since it is highly unrealistic in practice to assume that the

underlying densities are known, these tests are useless for practitioners. Second,

it assumes the value of the common location parameter µµµ to be known, which is

unrealistic, too. In practice, µµµ has to be estimated. Both issues are taken care of

by Ley et al. (2017), who proposed pseudo-FvML tests and rank-based versions of

φ
(n)
f .

The idea underpinning the pseudo-FvML test is similar in flavor to the pseudo-
Gaussian tests developed in the classical “linear” framework in Hallin & Paindav-
eine (2008). More specifically, the approach employed makes use of the FvML as
basis distribution, building the (parametric) locally and asymptotically most strin-
gent test under a m-tuple (f1, . . . , fm) of FvML densities, and “correcting” it in
such a way that the resulting test φ(n) remains valid under the entire class of rota-
tionally symmetric distributions. Let Xi1, . . . ,Xini , i = 1, . . . ,m, denote m inde-
pendent samples, µ̂µµ(n) be an adequate root-n consistent estimator of the common
value µµµ of µµµ1, . . . ,µµµm under the null hypothesis, and put X̄i := n−1

i

∑ni
j=1 Xij ,

i = 1, . . . ,m. The resulting locally and asymptotically most stringent pseudo-
FvML test statistic corresponds to

Q(n) = (p−1)

(
m∑
i=1

niD̂i X̄
′
i(Ip − µ̂µµ(n)(µ̂µµ(n))′)X̄i −

m∑
i,j

ninj
n

ÊiÊj X̄
′
i(Ip − µ̂µµ(n)(µ̂µµ(n))′)X̄j

)

where D̂i and Êi are estimators of quantities which depend on the moments of the

X′ijµµµ’s.

The rank-based version of φ(n)
f is obtained as follows. Since there exists a

group of monotone transformations that generates the null hypothesis, we construct

tests based on the maximal invariant associated with this group. LettingRij denote
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the rank of X′ijµµµ among X′i1µµµ, . . . ,X′iniµµµ, i = 1, . . . ,m, the maximal invariant is

given by (
R11, . . . ,Rmnm ,S′µµµ(X11), . . . ,S′µµµ(Xmnm)

)′
,

where Sµµµ(Xij) represents the multivariate sign vector of Xij with respect to the
common value µµµ. The resulting tests are based on estimated versions of the
spherical signs and ranks described above. They are asymptotically valid under
any m-tuple of rotationally symmetric densities. This second approach, how-
ever, implies that for any given m-tuple (f1, . . . , fm) of rotationally symmet-
ric densities (not necessarily FvML ones) one has to correctly choose the ap-
propriate m-tuple K = (K1, . . . ,Km) of score functions to guarantee that the
resulting test is asymptotically most stringent under (f1, . . . , fm). Letting µ̂µµ(n)

still denote an adequate root-n consistent estimator of µµµ and R̂ij the rank of
X′ijµ̂µµ

(n) among X′i1µ̂µµ
(n), . . . ,X′iniµ̂µµ

(n), put Ūi := n−1
i

∑ni
j=1 Uij with Uij :=

Ki

(
R̂ij/(ni + 1)

)
S
µ̂µµ(n)

(Xij), i = 1, . . . ,m. A locally and asymptotically most
stringent test then rejects the null hypothesis at asymptotic level αwhen the signed-
rank test statistic

Q˜ (n)
K := (p−1)

 m∑
i=1

niD̂K,iŪ
′
iŪi −

m∑
i,j=1

ninj
n

ÊK,iÊK,j Ū
′
iŪj

 > χ2
(m−1)(p−1);1−α

where the D̂K,i’s and ÊK,i’s are estimators of cross-information quantities which

depend on the choice of K.

5.3.5 Application 3: Asymptotic power of tests of concentration

A further advantage of the Le Cam theory for spherical data described in Sec-

tion 5.3.2 is that it can be used to calculate the power of testing procedures. We

shall conclude this chapter by exhibiting how to calculate the power of tests for the

concentration parameter of FvML distributions. These results were derived in Ley

& Verdebout (2014a). Let the data points X1, . . . ,Xn be iid with common FvML

density with location µµµ ∈ Sp−1 and concentration κ > 0. We denote their joint

distribution by P
(n)
ϑϑϑ with ϑϑϑ := (κ,µµµ′)′ ∈ R+

0 ×Sp−1. Consider testing the null hy-

pothesisHκ00 : κ = κ0 for some fixed κ0 > 0 against the alternativeHκ01 : κ 6= κ0.

To derive efficient procedures for this problem and calculate their powers, Propo-

sition 5.3.1 needs to be extended to take the concentration parameter into account.

The following result holds for the FvML family.

Proposition 5.3.3 (Ley & Verdebout 2014a) The family
{

P
(n)
ϑϑϑ | ϑϑϑ ∈ R+

0 × Sp−1
}

is ULAN. More precisely, for any sequenceϑϑϑ(n) ∈ R+
0 ×Sp−1 such thatϑϑϑ(n)−ϑϑϑ =
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O(n−1/2) and any bounded sequence τττ (n) = (τ
(n)
1 , (τττ

(n)
2 )′) ∈ R × Rp for which

κ(n) + n−1/2τ
(n)
1 > 0 and τ (n)

2 satisfies condition (5.18), we have

log

dP
(n)

ϑϑϑ(n)+n−1/2τττ (n)

dP
(n)

ϑϑϑ(n)

 = (τττ (n))′∆∆∆
(n)

ϑϑϑ(n)
− 1

2
(τττ (n))′ΓΓΓϑϑϑτττ

(n) + oP(1) (5.25)

and ∆∆∆
(n)

ϑϑϑ(n)
D→ Np+1(000,ΓΓΓϑϑϑ) under P

(n)

ϑϑϑ(n)
as n→∞. The central sequence

∆∆∆
(n)
ϑϑϑ :=

((
∆

(I)(n)
ϑϑϑ

)
,
(
∆∆∆

(II)(n)
ϑϑϑ

)′)′
is defined by

∆
(I)(n)
ϑϑϑ := n−1/2

n∑
i=1

(X′iµµµ−Ap(κ))

with3

Ap(κ) =
Ip/2(κ)

Ip/2−1(κ)

and

∆∆∆
(II)(n)
ϑϑϑ := κn−1/2

n∑
i=1

(1− (X′iµµµ)2)1/2Sµµµ(Xi),

and the associated Fisher information is given by

ΓΓΓϑϑϑ :=

(
1− p−1

κ Ap(κ)− (Ap(κ))2 0

0
κ2Jp(κ)
p−1 (Ip −µµµµµµ′)

)
,

where Jp(κ) := 1− E[(X′iµµµ)2] under P
(n)
ϑϑϑ .

The reader will by now know how the ULAN property from Proposition 5.3.3

helps the construction of locally and asymptotically optimal (here, maximin) tests

for Hκ00 against Hκ01 . Since κ is the parameter of interest, locally and asymptot-

ically maximin tests for Hκ00 can be built upon ∆
(I)(n)
ϑϑϑ , the κ-part of the central

sequence. The diagonal structure of the information matrix is attractive as it allows

µµµ to be replaced by a root-n consistent estimator µ̂µµ(n) without asymptotic effect on

∆
(I)(n)
ϑϑϑ (recall the asymptotic linearity property (5.4)). The resulting test rejects

the null hypothesis at asymptotic level α when

Q(n)
κ0 :=

(∑n
i=1

(
X′iµ̂µµ

(n) −Ap(κ0)
))2

n(1− p−1
κ0
Ap(κ0)− (Ap(κ0))2)

> χ2
1;1−α. (5.26)

3The quantity Ap(κ) appearing in the κ-part of the central sequence is further discussed in Sec-

tion 4.4 of Chapter 4.
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The Third Le Cam Lemma (Proposition 5.2.2) is tailor-made to pro-

vide the asymptotic power of Q
(n)
κ0 under local alternatives of the form

∪µµµ∈Sp−1P
(n)

(κ0+n−1/2τ
(n)
1 ,µµµ)

. Writing τ1 := limn→∞ τ
(n)
1 , the power is given by

semiparametricwhere Fχ2
ν(y) denotes the distribution function of the non-central

chi-squared distribution with ν degrees of freedom and non-centrality parameter y.

5.4 Further reading

This chapter has described the extension of the Le Cam theory, especially of the

ULAN property and ensuing inferential procedures, to the setting of rotationally

symmetric data on unit hyperspheres. Chapter 6 contains further examples where

this methodology is put to use. For the interested reader, we now mention papers

that are related to the methods and statistics considered in the previous sections of

the present chapter.

One-sample and multi-sample concentration problems

In Section 5.3.5 we explained how the Le Cam theory can be used to compute

the power of a maximin test for concentration within the FvML family. This

test was first derived in Watamori & Jupp (2005) as a score test. That same pa-

per also proposed a score test for the multi-sample concentration homogeneity

problem in FvML families, a test whose power was calculated in Ley & Verde-

bout (2014a). The multi-sample concentration homogeneity problem was also ad-

dressed in Verdebout (2015) from a semiparametric point of view by proposing

rank-based tests for this problem.

Rank-based tests based on a different definition of ranks on spheres

Rank-based location tests for rotationally symmetric data on unit hyperspheres

were first introduced in Neeman & Chang (2001), and a few years later Tsai &

Sen (2007) built locally best rotation-invariant rank tests by invoking the First Le

Cam Lemma (however without using the ULAN methodology). There is an im-

portant structural difference between the ranks they used and the ranks defined in

Section 5.3.3. While the quantities Ri, i = 1, . . . ,n, are the ranks of X′iµµµ amongst

X′1µµµ, . . . ,X′nµµµ, Neeman & Chang (2001) and Tsai & Sen (2007) considered in-

stead R+
i as the rank of ||Xi − (X′iµµµ)µµµ|| amongst ||X1 − (X′1µµµ)µµµ||, . . . , ||Xn −

(X′nµµµ)µµµ||.



Recent results for tests of
uniformity and symmetry

6.1 Introduction

In this chapter, we consider two fundamental types of test procedures on hyper-

spheres, namely tests for uniformity and for symmetry. The problem of testing

uniformity on the unit hypersphere Sp−1 is one of the oldest problems in direc-

tional statistics. It can be traced back to the discussion by Bernoulli (1735) on the

solution to the problem of whether the closeness of the orbital planes of various

planets arose by chance or not. Rayleigh (1880) was the first to study the resul-

tant length of bivariate uniform unit vectors, and the first test of uniformity was

proposed in Rayleigh (1919). Since then, the problem has attracted considerable

attention. Kuiper (1960) studied Kolmogorov–Smirnov type tests for the circular

case while Watson (1961) introduced Cramér–von Mises type tests. Ajne (1968)

tested circular uniformity by comparing the number of observations in each semi-

circle with the expected value of n/2; this test was extended to Sp−1 by Beran

(1968). That same paper, together with Beran (1969), introduced a class of circu-

lar tests that are locally most powerful invariant against a specific non-parametric

alternative, while Giné (1975) proposed Sobolev tests of uniformity on the unit

hypersphere. Bingham (1974) constructed tests of uniformity of axial data by ex-

ploiting the idea that the sample scatter matrix should, under uniformity, be close

to Ip/p. Cordeiro & Ferrari (1991) modified the Rayleigh test in the circular case

in order to improve the chi-squared approximation at the limit as n → ∞. Jupp

(2001) extended the results of Cordeiro & Ferrari (1991) to the hypersphere. We

refer the reader to Sections 6.3, 8.3, 10.4.1, 10.7.1 and 10.8 of Mardia & Jupp

(2000) for detailed information about most of the aforementioned tests.

Tests for symmetry on Rp have been widely studied in the past decades. Clas-

sical tests for (univariate or multivariate) symmetry include the Cramér–von Mises

type test of Rothman & Woodrofe (1972), the elliptical symmetry test of Beran

(1979b), the triples test of Randles et al. (1980), the runs test of McWilliams (1990)

121
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and the spherical symmetry test of Baringhaus (1991). This line of research is of

continued interest as the recent contributions of Dyckerhoff et al. (2015), Einmahl

& Gan (2016) and Partlett & Patil (2017) attest.

Testing for symmetry on directional supports has received considerably less

attention in the literature. This can be seen from the very short Sections 8.2 and

10.7.2 in Mardia & Jupp (2000) dealing with this issue. The literature indeed is

extremely scarce. Schach (1969) built tests for circular reflective symmetry about

a fixed axis (see Section 2.2.2 for the notion of reflective symmetry), however these

tests strongly resemble location tests. Mardia & Jupp (2000) suggest tackling the

problem using suitably adapted versions of sign and one-sample Wilcoxon tests.

An exploratory graphical tool to check if unimodal densities are reflectively sym-

metric is suggested in Section 4.2 of Fisher (1993). Jupp & Spurr (1983) proposed

rank-based procedures for testing a different notion of symmetry on the circle,

namely l-fold symmetry (which is not the aim of this chapter). On general hy-

perspheres, most tests for rotational symmetry boil down to parametric submodel

tests, where a certain distribution is the only symmetric member of a larger fam-

ily of distributions. Numerous likelihood ratio or Rao score tests have been pro-

posed, see, e.g., Section 10.7.2 of Mardia & Jupp (2000). A very good account of

such tests, referring also to new smooth goodness-of-fit tests, is given by Boulerice

& Ducharme (1997) who provide generalized versions of the Beran (1979a) test

based on spherical harmonics.

The recent growth in interest in non-symmetric distributions on the circle and

sphere (see Sections 2.2 and 2.3) reflects an awareness of the need to go beyond

the classical directional distributions founded on some notion of symmetry along

with a need of tests for symmetry. In this chapter we highlight the new proposals

of tests for symmetry from the year 2000 onwards.

6.1.1 Organization of the remainder of the chapter

We start, in Section 6.2, by describing recent advances concerning the Rayleigh

test of uniformity. Section 6.3 contains results from Jupp (2008) related to Sobolev

tests of uniformity, while tests based on random projections are presented in Sec-

tion 6.4. In Section 6.5, we consider tests of uniformity in the presence of noisy

data. Tests for reflective symmetry and rotational symmetry are addressed in Sec-

tions 6.6 and 6.7, respectively. Finally, we then turn our attention to location tests

in the vicinity of uniformity, i.e., where the concentration parameter vanishes as a
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function of the sample size (Section 6.8).

6.2 Recent advances concerning the Rayleigh test of uni-
formity

Let X1, . . . ,Xn be a sample of iid random vectors on Sp−1. The Rayleigh test

(Rayleigh 1919) rejects the null hypothesis of uniformityHunif
0 for large values of

Rn =
p

n

n∑
i,j=1

X′iXj = np‖X̄‖2 (6.1)

with X̄ = n−1
∑n

i=1 Xi. Under Hunif
0 , the Xi’s have mean zero and covariance

matrix 1
pIp so that the multivariate Central Limit Theorem implies that, for any

fixed p, the Rayleigh statisticRn converges to χ2
p as n→∞. Therefore, Rayleigh’s

test rejects the null hypothesis, at asymptotic level α, whenever Rn > χ2
p;1−α. A

detailed account of the Rayleigh test is provided in Section 10.4.1 of Mardia &

Jupp (2000). In particular, the Rayleigh test is the score test for testing unifor-

mity against FvML distributions. It is also locally most powerful invariant against

the same FvML alternatives as pointed out by Chikuse (2012). Jupp (2001) gave

corrections to the Rayleigh test which improve the large-sample chi-squared ap-

proximation to the sampling distribution of Rn.

Very recently, Cutting et al. (2017a) showed that the Rayleigh test is also lo-

cally and asymptotically optimal in the Le Cam sense (see Chapter 5) against a

family of rotationally symmetric distributions. Here we briefly outline the argu-

ments that led to this result in the FvML case. Consider the reparametrization

ηηη = κµµµ, where κ ≥ 0 and µµµ ∈ Sp−1 are respectively the concentration and the

location parameter of an FvML distribution. The null hypothesis of uniformity

within the FvML family indexed by ηηη can be represented byH0 : ηηη = 0. Consider

now the log-likelihood ratio

Λ(n) := log

dP
(n)√

p
n
e(n)

dP
(n)
0

 ,

where P
(n)
ηηη denotes the joint distribution of the sample X1, . . . ,Xn of FvML ran-

dom vectors with parameter ηηη, and e(n) is a bounded sequence in Rp. The reader

will recognize here the formulations from Chapter 5. Like the log-likelihood ratios
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there, that can be written as Taylor expansions involving a central sequence and the

Fisher information, the ratio Λ(n) can be expressed as

Λ(n) = (e(n))′∆∆∆(n) − 1

2
‖e(n)‖2 + oP(1)

as n → ∞ under the null hypothesis of uniformity, with ∆∆∆(n) :=
√

p
n

∑n
i=1 Xi

that is asymptotically normal with mean zero and covariance Ip. It directly follows

from the results of Section 5.2.3 that the test rejecting H0 at asymptotic level α

when

(∆∆∆(n))′∆∆∆(n) > χ2
p;1−α

is locally and asymptotically maximin against FvML alternatives. The alert reader

will have noticed that (∆∆∆(n))′∆∆∆(n) is Rn, hence the result applies specifically to

the Rayleigh test.

As seen in Chapter 5, this enables us to calculate the asymptotic power of the

Rayleigh test under local alternatives of the form P
(n)

n−1/2c(n)µµµ
for some sequence

c(n) with limiting value c > 0. That power is given by

1− Fχ2
p(c2/p)(χ

2
p;1−α),

and we refer the reader to the end of Section 5.3.5 for an explanation of the notation

Fχ2
p(c2/p)(χ

2
p;1−α).

6.3 Sobolev tests of uniformity

Despite its optimality properties against FvML distributions, the major drawback

of the Rayleigh test is its non-consistency against alternatives for which E[X] = 0.

This lack of consistency has motivated the construction of numerous alternative

tests of uniformity, as mentioned in Section 6.1. Here we focus on Sobolev tests

of uniformity, first proposed in Giné (1975). The idea underpinning the Giné pro-

cedures is to construct tests based on the eigenfunctions of the Laplacian operator

acting on Sp−1. Denoting by Ek (with dimension dk) the space of eigenfunctions

corresponding to the k-th non-zero eigenvalue of the Laplacian, there exists a well-

defined mapping tk : Sp−1 → Ek that can be written as

tk(x) :=

dk∑
i=1

gi(x)gi,
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where the gi’s form an orthonormal basis of Ek. Letting v1, v2, . . . be a real se-

quence such that the series
∑∞

k=1 v
2
kdk is finite, the function

x 7→ t(x) :=
∞∑
k=1

vktk(x) (6.2)

is a mapping from Sp−1 to the Hilbert space L2(Sp−1, dPu) of measurable func-

tions f for which ∫
Sp−1

f2(x) dPu(x) <∞,

where dPu is the uniform measure on Sp−1. Letting X1, . . . ,Xn be an iid sample

of unit random vectors, the Giné test rejects the null hypothesis of uniformityHunif
0

for large values of

Sn := n−1

∥∥∥∥∥
n∑
i=1

t(Xi)

∥∥∥∥∥
2

L2

= n−1
n∑

i,j=1

〈t(Xi), t(Xj)〉,

where 〈·, ·〉 denotes the inner product on L2(Sp−1, dPu) defined as

〈f , g〉 :=

∫
Sp−1

f(x)g(x)dPu(x).

Closed forms of t for S1 and S2 are provided in Section 6 of Giné (1975).

This construction was revisited in recent years, when Jupp (2008) constructed

new Sobolev-type tests. More precisely, Jupp (2008) started by showing that the

score test of uniformity against the exponential model proposed in Beran (1979a)

is also of the form (6.2) and rejects uniformity for large values of

Sk := n−1

∥∥∥∥∥
n∑
i=1

t(k)(Xi)

∥∥∥∥∥
2

L2

,

where t(k) corresponds to t computed with the weights vj = 1 for j ≤ k and

vj = 0 for j > k. The major problem with tests based on Sk is the selection of k.

Jupp (2008) suggested a data-driven selection of k based on a modification of the

Bayesian Information Criterion. Using the penalized score statistic

BS(k) := Sk −
(

k∑
i=1

di

)
log n,

where the di’s again denote the dimensions of the spaces of eigenfunctions, the

proposed estimator k̂ of k is

k̂ := inf
k∈N

{
BS(k) = sup

m∈N
BS(m)

}
.
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We remark that the infimum of the empty set is∞. This choice yields the following

properties:

(i) k̂ is almost surely finite in the absolutely continuous case; that is, P[k̂ =

∞] = 0 when the sample size n is larger than 3;

(ii) under the null hypothesis of uniformity, k̂ converges in probability to one.

Under the null hypothesis of uniformity, the test statistic Sk̂ is asymptotically chi-

squared with d1 degrees of freedom, a result closely related to (ii) above. The

resulting test that rejectsHunif
0 at asymptotic level α when Sk̂ > χ2

d1;1−α is univer-

sally consistent, unlike the Rayleigh test.

6.4 Uniformity tests based on random projections

A class of non-parametric tests based on random projections for testing unifor-

mity on Sp−1 was introduced by Cuesta-Albertos et al. (2009). Consider a sample

X1, . . . ,Xn of iid random vectors on Sp−1. Letting U denote a uniformly dis-

tributed vector on Sp−1 that is independent of the Xi’s, the common distribution

of the projections

Y1 = X′1U, . . . ,Yn = X′nU

uniquely determines (with probability one) the distribution of the Xi’s. We denote

by F0 the common distribution of the Yi’s when the Xi’s are uniform. Closed

forms for F0 for the important cases p = 2 and p = 3 are available. For example,

when p = 3, F0 is the uniform distribution on the unit interval [−1, 1]. The random

projection test can be summarized by the following two steps:

(i) Compute the projections Y1, . . . ,Yn.

(ii) Letting Fn denote the empirical distribution function of the Yi’s, the null

hypothesis of uniformity is rejected for large values of

Tn = sup
x∈[−1,1]

|Fn(x)− F0(x)|.

Note that Tn is a Kolmogorov–Smirnov test statistic for F0. Consequently, the

critical values of Tn are obtained via those of a traditional Kolmogorov–Smirnov

test.

The tests proposed by Cuesta-Albertos et al. (2009) are not based on a sin-

gle projection U (and therefore a single p-value or critical value). Instead they
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consider N random projections and use a “Bonferroni type” procedure to achieve

the correct nominal level. The conclusion of the simulation study performed in

Cuesta-Albertos et al. (2009) is that in terms of empirical level/power the overall

performances of tests based on random projections is quite satisfactory.

6.5 Testing for uniformity with noisy data

We shall now deviate slightly from the uniformity tests of the previous sections

and consider the more complex situation in which we seek to test uniformity in

the presence of noisy data. Such data typically arise in astronomy where the in-

coming directions of cosmic rays are very likely to be perturbed by galactic and

intergalactic fields.

Consider two independent sequences X1, . . . ,Xn and εεε1, . . . , εεεn where the

Xi’s are iid on the sphere S2 and the εεεi’s are iid on SO(3), the rotation group

in R3. Assume that the observed sequence on S2 is of the form

X∗1 = εεε1X1, . . . ,X∗n = εεεnXn.

If both sequences X1, . . . ,Xn and εεε1, . . . , εεεn are absolutely continuous with re-

spect to the uniform measure on S2 and the Haar measure on SO(3), respectively,

then the common density fX∗ of the X∗i ’s is the convolution product

fX∗(x) = fεεε ? f(x) :=

∫
SO(3)

fεεε(R)f(RRR−1x)dR

of the common density f of the Xi’s with the common density fεεε of the εεεi’s. Lacour

& Pham Ngoc (2014) and Kim et al. (2016) considered the problem of testing the

null hypothesis H0 : f = f0 with f0 the uniform density on S2 in a setup in

which the density fεεε of the noise is assumed to be known. The alternative H1 =

H(F , δ,M) consists in a set of densities

H(F , δ,M) := {f ∈ F , ‖f − f0‖L2 ≥Mδ}

where M is a constant and δ is referred to as the separation rate. In Lacour &

Pham Ngoc (2014) the set F is a Sobolev class on the unit sphere with smoothness

s defined as follows. Letting C∞(S2) denote the space of infinitely continuously

differentiable functions on S2, the Sobolev norm ‖ · ‖Ws of a function f is defined

as

‖f‖2Ws
:=

∞∑
l=0

l∑
m=−l

(1 + l(l + 1))sf̂2
l ,
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where the f̂l’s are the components of the spherical Fourier transform of f ; see

Lacour & Pham Ngoc (2014) for details. The Sobolev norm of any probability

density f on S2 is such that ‖f‖2Ws
≥ (4π)−1 with equality for the uniform distri-

bution. The class F then consists of those densities f that belong to the Sobolev

space Ws(S2) (the completion of C∞(S2) with respect to the s-norm) and satisfy

‖f‖2Ws
≤ 1

4π
+ c

for some constant c > 0. Let δ = δn be a sequence indexed by n. If fεεε belongs to

some class with regularity ν (assumed to be known), an adaptive procedure (that

does not require the specification of s) cannot have a faster separation rate than

δn = (n/
√

log log n)−2s/(2(s+ν)+1).

Lacour & Pham Ngoc (2014) proposed a test that achieves this rate.

6.6 Tests of reflective symmetry on the circle

Let Θ1, . . . , Θn be iid random angles on [−π,π). Ley & Verdebout (2014b) built

semiparametric tests for reflective symmetry about a fixed center µ ∈ [−π,π) that

are designed to be efficient against k-sine-skewed alternatives

θ 7→ f0(θ − µ)(1 + λ sin(k(θ − µ))),

a special family of the densities defined in Section 2.2.5. Here f0 is reflectively

symmetric about µ, and λ ∈ (−1, 1) plays the role of skewness parameter. Hence

the null hypothesis of reflective symmetry corresponds to Hsym
0 : λ = 0. This

null hypothesis is semiparametric, as f0 is not specified. Following the Le Cam

methodology described in Chapter 5, the semiparametrically efficient test forHsym
0

rejects the null hypothesis for too large or small values of

Q
(n)
k :=

n−1/2
∑n

i=1 sin(k(Θi − µ))(
n−1

∑n
i=1 sin2(k(Θi − µ))

)1/2 . (6.3)

This test is obtained by means of a studentization of the optimal f0-parametric

test.1 More precisely, the test φ(n)
k that rejectsHsym

0 at the asymptotic level α when

1For more details on its construction, we refer the reader to Section 6.7 where efficient semipara-

metric tests for rotational symmetry on hyperspheres against skew-rotationally-symmetric alterna-

tives, again under specified location, are derived.
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|Q(n)
k | exceeds the α/2-upper quantile of a standard normal distribution is locally

and asymptotically most powerful in the Le Cam sense against k-sine-skewed alter-

natives. Quite remarkably, φ(n)
k is not only valid under any f0, but also the optimal

test against any k-sine-skewed f0 alternative. Such uniform optimality occurs very

rarely. The test with k = 1 is optimal against the sine-skewed alternatives of Abe

& Pewsey (2011a), while the test for k = 2 coincides with the b∗2 test proposed a

decade earlier by Pewsey (2004).

These powerful properties are lost when the location parameter µ is not as-

sumed to be known. This situation was considered by Pewsey (2002) who built a

test rejecting reflective symmetry for large absolute values of

T (n) :=
n−1/2

∑n
i=1 sin(2(Θi − µ̂))√

V̂ar[sin(2(Θi − µ̂))]

,

where µ̂ is the method of moments estimator of µ and V̂ar[sin(2(Θi − µ̂))] is a

consistent estimator (under the null hypothesis) of Var[sin(2(Θi − µ̂))]. Pewsey

(2002) shows that T (n) is asymptotically normal under the null hypothesis. This

omnibus test is based on the sample second sine moment about µ̂, which is a mea-

sure of skewness popularized by Batschelet (1965).

6.7 Tests of rotational symmetry on hyperspheres

The higher-dimensional analogue of reflective symmetry on S1 is rotational sym-

metry on Sp−1 for p > 2, see Section 2.3.2. Similarly, the skew-rotationally-

symmetric densities of Section 2.3.3 are natural extensions of the sine-skewed dis-

tributions on the circle. It is hence not surprising that efficient tests for rotational

symmetry about a fixed direction µµµ ∈ Sp−1 were constructed against alternatives

of the form (2.23). Ley & Verdebout (2017) proposed a most efficient test for the

null hypothesisHsym
0 : λλλ = 000 against the alternative that λλλ ∈ Rp−1 \{000}. We shall

outline their construction in what follows.

Consider a sample of iid observations X1, . . . ,Xn on Sp−1 with common den-

sity (2.23). For any rotationally symmetric density with angular function fa and

any skewing function Π, denote by P
(n)
ϑϑϑ;fa,Π, with ϑϑϑ := (µµµ′,λλλ′)′ ∈ Sp−1 × Rp−1,

the joint distribution of X1, . . . ,Xn. Since, for λλλ = 000, the resulting den-

sity does not depend on Π, we drop the index Π and simply write P
(n)
ϑϑϑ0;fa

at

ϑϑϑ0 := (µµµ′, 000′)′. Letting (e(n),d(n)) be bounded sequences in Rp × Rp−1 such that
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µµµ + n−1/2e(n) ∈ Sp−1, the first step consists in showing that the log-likelihood

ratio

log
dP

(n)

((µµµ+n−1/2e(n))′,n−1/2(d(n))′)′;fa,Π

dP
(n)
(µµµ′,000′)′;fa

admits a ULAN decomposition as seen in Chapter 5. We leave this task to the

reader. It then follows from the general results of Chapter 5 that the locally and

asymptotically optimal test forHsym
0;fa

: λλλ = 0 againstH1;fa : λλλ 6= 0 is based on the

central sequence

∆∆∆
(n)
Π;2(µµµ) = 2Π′(0)n1/2ΥΥΥ′µµµX̄,

where Π′ is the derivative of Π. Under the fa-parametric null hypothesis, this

statistic is asymptotically normal with mean zero and covariance matrix

ΓΓΓfa,Π;ϑϑϑ0 =
4(Π′(0))2Ap(fa)

p− 1
Ip−1

with Ap(fa) := 1 − Efa [(X′1µµµ)2] < ∞. Consequently, the locally and asymp-

totically optimal fa-parametric procedure φ(n)
fa

consists in rejecting the parametric

null hypothesis at asymptotic level α whenever

T
(n)
fa

(µµµ) :=
(
∆∆∆

(n)
Π;2(µµµ)

)′
(ΓΓΓfa,Π;ϑϑϑ0)−∆∆∆

(n)
Π;2(µµµ)

=
n(p− 1)

Ap(fa)
X̄′(I−µµµµµµ′)X̄

exceeds χ2
p−1;1−α. Here A− denotes the Moore–Penrose pseudo-inverse of the

matrix A.

In order to render this fa-parametric test semiparametric, and hence tackle

the general hypothesis Hsym
0 , one needs to estimate the quantity Ap(fa). This

can be achieved using the consistent (under any fa) estimator Âp := 1 −
n−1

∑n
i=1(X′iµµµ)2, so that the resulting testing procedure φ(n) rejects Hsym

0 at

asymptotic level α whenever

T (n) = n(p− 1)Â−1
p X̄′(I−µµµµµµ′)X̄ (6.4)

exceeds χ2
p−1;1−α. Note that T (n) does not depend on fa: the test φ(n) is hence not

only valid under any fa, but also uniformly the most efficient test, mimicking thus

the uniformly optimal test for reflective symmetry described in Section 6.6. To the

best of our knowledge, this test is the first test for rotational symmetry. Quite in-

terestingly, the test statistic (6.4) coincides with the statistic used in Watson (1983)
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to address the directional location problem under rotational symmetry. Hence the

Watson test, well known as efficient for the location problem, also happens to be

an efficient test for rotational symmetry against skew-rotationally-symmetric alter-

natives under specified location µµµ.

Testing rotational symmetry against skew-rotationally-symmetric alternatives

under unspecified location µµµ is more delicate. First, the associated parametric test

statistics will involve the angular function fa under which they are built, preventing

uniformly optimal tests. Second, the need to estimate µµµ requires the consideration

of the Fisher information matrix associated with µµµ and λλλ. This matrix can become

singular. Ley & Verdebout (2017) indeed proved that this matrix is of lower rank

in the vicinity of λλλ = 000 if and only if fa is the FvML angular function. This Fisher

information singularity result very much resembles a similar result in Rp, where

the only base symmetric density leading to singular information matrices in skew-

symmetric models is the multivariate normal, as established in Ley & Paindaveine

(2010b) and Hallin & Ley (2012b).

6.8 Testing for spherical location in the vicinity of the uni-
form distribution

The topic of this section differs from the main theme of the present chapter. Con-

sider the following situation: we observe spherical data that look uniformly dis-

tributed, but traditional tests will reject uniformity. Testing for the center of such

(non-uniform) data is possible albeit very delicate, given the very low concentra-

tion around that center. For example, the Rayleigh test applied to the incoming

directions of cosmic rays in Figure 6.1 rejects the null hypothesis of uniformity.

However, a quick inspection of Figure 6.1 reveals that even if the data are not uni-

form they are very lowly concentrated. We shall now describe how to deal with the

location testing problem H0 : µµµ = µµµ0 against H1 : µµµ 6= µµµ0, where µµµ0 ∈ Sp−1

is fixed, in the vicinity of the uniform distribution. This complicated version of

a classical problem has been very recently addressed in Paindaveine & Verdebout

(2017).

Let Xni, i = 1, . . . ,n,n = 1, 2, . . . , be a triangular array of observations

where, for each n, Xn1, . . . ,Xnn are independent and identically distributed with

common rotationally symmetric density of the form x 7→ cfa,κnfa(κnµµµ
′
nx) with

angular function fa, location µµµn ∈ Sp−1 and concentration κn ≥ 0 for all n. The
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Figure 6.1: Representation of n = 148 measurements of incoming directions of cosmic
rays. The data come from Toyoda et al. (1965).

associated sequence of joint distributions will be denoted as P
(n)
µµµn,κn,fa

. A sequence

P
(n)
µµµn,κn,fa

is said to be in a ηn-neighborhood of uniformity with locality parameter

ξ if κn =
√
pξηn + oP(1) as n → ∞. Therefore the sequence ηn will determine

“how close” the sequence of hypotheses P
(n)
µµµn,κn,fa

is to the uniform case. We call

settings where ηn → 0 when n→∞ “shrinking to uniformity (SU)”.

Within such sequences P
(n)
µµµn,κn,fa

, Paindaveine & Verdebout (2017) considered

the sequence of testing problems H(n)
0 : µµµn = µµµ0 and compared the performances

of two traditional semiparametric tests that are based on the sample average X̄n :=
1
n

∑n
i=1 Xni. More precisely, their goal was to check if these tests remain valid

in the special setting where the concentration can tend to zero as a function of the

sample size. The first test under investigation is the Watson test φWn built upon

Wn defined in (7.4). The second test is the Wald test φSn (Hayakawa & Puri 1985,

Hayakawa 1990) based on the test statistic

Sn :=
n(p− 1)(µµµ′0X̄n)2

(
X̄n

||X̄n||

)′
(Ip −µµµ0µµµ

′
0) X̄n

||X̄n||

1− 1
n

∑n
i=1(X′niµµµ0)2

.

Both tests reject a concentration-fixed null hypothesis H0 : µµµ = µµµ0 against

H1 : µµµ 6= µµµ0 at asymptotic level α whenever their respective test statistics ex-

ceed χ2
p−1;1−α.

Unsurprisingly, the two tests φWn and φSn are asymptotically equivalent away

from uniformity (when ηn = O(1)) in the sense that Sn −Wn is oP(1) as n→∞
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under P
(n)
µµµn,κn,fa

. However, they exhibit very different asymptotic behaviors under

ηn = o(1)-neighborhoods. More precisely, Wn converges weakly to a chi-squared

random variable with p − 1 degrees of freedom in any ηn = o(1)-neighborhood

as n→∞. On the contrary, Sn is no longer asymptotically chi-squared under ηn-

neighborhoods of the form ηnn→ 1 as n→∞. We refer the reader to Paindaveine

& Verdebout (2017) for the exact expression of the limiting distribution of Sn in

such settings. We thus conclude that the Watson test φWn is robust to SU settings

while the Wald test φSn is not.

It would be desirable that the robustness of the Watson test φWn is not obtained

at the expense of efficiency. Therefore it is essential to also study the asymptotic

behavior of φWn under P
(n)
µµµn,κn,fa

with µµµn := µµµ0 + νnτττ
(n) as n → ∞ and for

some bounded sequence τττ (n) ∈ Rp such that µµµn ∈ Sp−1 for all n. Paindaveine

& Verdebout (2017) obtained expressions for the local power of φWn under various

ηn-neighborhoods and showed that

• when ηn = 1, the Watson test is optimal at the FvML distribution only;

• when ηn is o(1) with ηn
√
n → ∞ as n → ∞, the Watson test is optimal

uniformly-in-fa;

• when ηn
√
n→ 1 as n→∞, the Watson test is optimal uniformly-in-fa but

only locally-in-τττ (n);

• when ηn
√
n→ 0 as n→∞, the Watson test is optimal uniformly-in-fa, but

in a degenerate way.

As a conclusion, the Watson test φWn remains an extremely competitive test in semi-

parametric rotationally symmetric models when one has to deal with distributions

that are close to uniformity.

6.9 Further reading

Uniformity tests

We have already mentioned in Section 6.1 various other tests for uniformity, and

referred to the relevant references. Sobolev-like tests, as introduced in Giné (1975),

have been revived in recent years, as described in Section 6.3. A review of data-

driven versions of Sobolev tests for uniformity on Riemannian manifolds is pro-

vided in Jupp (2009). The same paper also discusses a variant of such tests for
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product manifolds. Sobolev tests for uniformity were also investigated in Bour-

guin et al. (2016), under the additional difficulties of high-frequency data and data

available only on a portion of the sphere.

Another universally consistent test for uniformity was suggested in Pycke

(2007). The author considers a U -statistic based on the geometric mean of dis-

tances between observations. That test statistic can be decomposed into various

statistics that are asymptotically independent.

Universally consistent tests are not designed to be particularly powerful against

a specific alternative. Most efficient tests can be built by nesting the uniform distri-

bution into a family of non-uniform distributions and then considering likelihood

ratio or Rao score tests. It is well known, and reestablished in Section 6.2, that the

Rayleigh test is the most efficient test against FvML alternatives. The Beran-type

tests are also locally most powerful invariant tests against a certain type of alter-

native. In recent years, Su & Wu (2011) constructed a test of uniformity against

embedding smooth alternatives based on spherical harmonics.

Finally, it is interesting to mention recent power comparison studies between

distinct uniformity tests. Figueiredo (2007) compared the Rayleigh, Ajne and Giné

tests against FvML alternatives, while Figueiredo & Gomes (2003) studied the

power of the Bingham and Giné tests against Watson distributions. These studies

complement earlier findings presented, for example, in Stephens (1969) and Diggle

et al. (1985).

Symmetry tests

Besides the b∗2 test mentioned in Section 6.6, Pewsey (2004) proposed three further

tests of reflective symmetry about a known median direction. All three are circular

versions of tests for symmetry on the real line: the one-sample Wilcoxon test, the

runs test of McWilliams (1990) and the modified runs test of Modarres & Gastwirth

(1996). We refer to Pewsey (2004) for a comparison of the performance of those

tests by means of a Monte Carlo simulation study.



High-dimensional directional
statistics

7.1 Introduction

7.1.1 High-dimensional techniques in Rp

Modern computer tools allow the collection and the storage of massive datasets, a

recent phenomenon commonly referred to as “big data”. The treatment and analy-

sis of these increasingly vast and complex datasets is nowadays one of the biggest

challenges for statisticians and data analysts. Consequently, in the last decade there

has been a huge activity related to high-dimensional problems. In particular, clas-

sification and dimension reduction problems have been considered in many recent

papers. Classification techniques such as linear discriminant analysis, support vec-

tor machines, tree classifiers and nearest neighbor classifiers are still well used and

studied techniques (see, e.g., Paindaveine & Van Bever 2015 and Scornet et al.

2015). In high-dimensional situations, however, those classical techniques tend

to perform poorly, as pointed out by Bickel & Levina (2004). As a consequence,

new high-dimensional classification methods have recently been brought to the sta-

tistical community: Guo et al. (2007) proposed regularized discriminant analysis,

Witten & Tibshirani (2011) provided methods based on penalized linear discrim-

inant analysis, while methods based on random projections were investigated in

Cannings & Samworth (2017).

Principal Component Analysis (PCA) has also attracted much attention in the

high-dimensional case. Consider Z1, . . . ,Zn a random sample of iid centered

random vectors taking values in Rp. Classical principal components (PCs) are

obtained by projecting the Zi’s along the eigenvectors of the sample covariance

matrix S := n−1
∑n

i=1 ZiZ
′
i. The situation changes completely in the high-

dimensional case: without any further assumptions, the eigenvectors of S are no

longer consistent when the dimension p becomes arbitrarily large. In particular,

Johnstone (2001) showed that letting v̂ and v respectively be the eigenvectors as-

135
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sociated with the largest eigenvalue of S and ΣΣΣ, the unknown common covariance

matrix of the observations, the angle between v̂ and v may not converge to 0 when

p is of the form pn = O(n). As a consequence, several papers have been devoted to

estimating PCs in sparse high-dimensional models, such as Cai, Ma & Wu (2013),

Croux et al. (2013) and Han & Liu (2014), among many others.

Test procedures related to high-dimensional PCA have also been widely stud-

ied over the past years. In particular, many papers have addressed the problem of

testing sphericity or unit covariance against spiked covariance matrices of the form

σ(Ip + λvv′), (7.1)

where Ip is the identity matrix, σ > 0,λ > 0 and v is a unit vector. In par-

ticular, Ledoit & Wolf (2002), Birke & Dette (2005), Bai et al. (2009) and Chen

et al. (2010) proposed different tests for this problem in high-dimensional models.

Berthet & Rigollet (2013) tackled the problem when v is sparse while Onatski et al.

(2013) computed high-dimensional powers of many different tests for this problem

when p = pn = O(n).

High-dimensional tests, in general, have been in the spotlight recently. One

natural and important challenge is to check if test procedures based on the classical

n-asymptotics approximations remain valid in the new (n, p)-asymptotics frame-

work where p can potentially be larger than n. Checking this validity is a non-

trivial issue, which either leads to the confirmation of existing tests or reveals the

need to modify them. Under the impetus of the influential paper by Ledoit & Wolf

(2002), a large number of problems have been investigated, such as one- and multi-

sample location tests (Chen & Qin 2010, Srivastava & Kubokawa 2013), one- and

multi-sample covariance/scatter matrix tests (Chen et al. 2010, Li & Chen 2012) or

likelihood ratio tests (Jiang & Yang 2013).

7.1.2 Organization of the remainder of the chapter

We start the chapter by describing in Section 7.2 distributions on Sp−1 when p

becomes very large. Having familiarized the reader with the difficulties of high-

dimensional directional statistics, we then show how classical inferential problems

have been solved for these settings: uniformity tests (Section 7.3), location tests

(Section 7.4), and concentration tests (Section 7.5). We conclude the chapter with

a discussion of the directional analogue of PCA, namely Principal Nested Spheres

(Section 7.6).
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7.2 Distributions on high-dimensional spheres

The present section is meant to complement Chapter 2 as we introduce models for

a random vector X distributed on Sp−1 with p large.

We start by showing, via some heuristics, that the unit norm constraint can

arise naturally in high-dimensional situations. Consider a Gaussian random vector

Z with mean zero and covariance matrix p−1Ip (meaning that Z is spherically sym-

metric). Consequently, p‖Z‖2 follows a chi-squared distribution with p degrees of

freedom. Now, from the Central Limit Theorem, we have that

p‖Z‖2 − p√
2p

=

√
p√
2

(
‖Z‖2 − 1

)
converges weakly to a standard Gaussian random variable as p → ∞. It therefore

follows that ‖Z‖2 = 1 + OP(p−1/2) as p → ∞ so that Z is almost surely a point

on the unit hypersphere as p→∞. Note that this happens despite the fact that the

origin is the point with highest density. As a consequence, Gaussian vectors and

directional vectors are closely related in the high-dimensional setup.

Providing high-dimensional models for directional data is a non-trivial task.

This is mainly due to the fact that the surface area of the unit hypersphere

ωp =
2πp/2

Γ(p/2)
→ 0

as the dimension p increases,1 combined with measure concentration effects. For

instance, recall formula (2.22), the density of X′µµµ when X is rotationally symmet-

ric around µµµ ∈ Sp−1. One readily sees that the factor (1− t2)(p−3)/2 tends to zero

except for t = 0, yielding a concentration around the value X′µµµ = 0. Thus, in

high dimensions, all classical models of Section 2.3.1 tend to behave like girdle

distributions, i.e., they are concentrated around the equator with respect to µµµ. One

way to overcome this feature is to introduce a dimension-related concentration, as

done below.

High-dimensional distributions on Sp−1 were proposed and studied in Dryden

(2005), who used a relation with Wiener measures. Letting C := {h ∈ C[0, 1] :

h(0) = 0} be the set of continuous paths on [0, 1] starting at zero, define

Qp(x, k/p) :=
k∑
i=1

xi, (7.2)

1Note that the mapping p 7→ ωp is not monotone and has a peak at p = 7.
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where x = (x1, . . . ,xp)
′ ∈ Sp−1. The path Qp(x, ·) in (7.2) is well defined on

C since Qp(x, 0) = 0. It follows from Cutland & Ng (1993) that when X is

uniformly distributed on Sp−1, Qp(X, k/p) tends to a Wiener process on C as p→
∞. This relation between the uniform measure on S∞ and the Wiener measure can

be exploited to provide probability measures on S∞. As shown in Dryden (2005)

if X follows a FvML or a Watson distribution with density

x 7→

(
p1/2κ

2

)p/2−1

2πp/2Ip/2−1(p1/2κ)
exp(p1/2κx′µµµ)

or

x 7→ Γ(p/2)

2πp/2M
(

1
2 , p2 , pκ

) exp(pκ(x′µµµ)2)

respectively and if Ph is a p × h matrix with h orthogonal columns, we have that

p1/2P′hX is asymptotically normal as p → ∞. We refer the reader to Dryden

(2005) for details on the properties of high-dimensional FvML and Watson distri-

butions.

7.3 Testing uniformity in the high-dimensional case

Before entering into problem-specific details, we describe a quite general high-

dimensional testing setup. Consider an asymptotic (as n → ∞) fixed-p test φ(n)

that rejects some null hypothesis H0 at asymptotic level α whenever some statis-

tic Q(n) > χ2
`(p);1−α, where the mapping p 7→ `(p) is monotone increasing. The

Central Limit Theorem teaches us that if some random variable Yd is chi-squared

with d degrees of freedom, then (Yd − d)/
√

2d converges weakly to the standard

normal distribution as d → ∞. Thus it may be expected that the test φ(n)
p reject-

ing H0 whenever QSt = Q(n)−`(p)√
2`(p)

> z1−α, the α-upper quantile of the standard

normal distribution, has asymptotic level α underH0 when both n and p converge

to infinity. Of course, establishing that the sequence of tests φ(n)
p — hence also

the sequence of tests φ(n) — is valid in the high-dimensional setup, that is, has

asymptotic level α under the null when both n and p tend to infinity, requires a for-

mal proof. All the more so as the result does not always hold true: an (n, p)-limit

cannot always correspond to the limit obtained by first letting n go to infinity, p

fixed, and then let p grow to infinity. Some test statistics indeed need to be appro-

priately corrected to obtain valid (n, p)-asymptotic results, while some others do

not. We refer the interested reader to Ledoit & Wolf (2002) where precisely two
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such situations are addressed. The test statistics that do not need to be corrected

can be called high-dimensional (HD-)robust following the Paindaveine & Verde-

bout (2016) terminology. The test statisticQ(n) is thus HD-robust if, under the null

hypothesis, Q
(n)−`(pn)√

2`(pn)
converges weakly to a standard Gaussian random variable

as n and p = pn tend to infinity.

Now, consider iid random vectors X1, . . . ,Xn taking values on Sp−1. We

described in Section 6.2 the classical Rayleigh test of uniformity, rejecting Hunif
0

for large values of

Rn =
p

n

n∑
i,j=1

X′iXj

which converges to a χ2
p distribution as n→∞. Here we discuss how this statistic

behaves when the dimension p becomes large, too. To this end, first reexpress it as

Rn =
p

n

(
n+

∑
1≤i6=j≤n

X′iXj

)
= p+

2p

n

∑
1≤i<j≤n

X′iXj ,

and then consider the standardized statistic

RSt
n =

Rn − p√
2p

=

√
2p

n

∑
1≤i<j≤n

X′iXj . (7.3)

It was shown in Paindaveine & Verdebout (2016) that, under minimal assumptions,

RSt
n does converge to a standard normal distribution as n, p→∞. More precisely,

using a central limit theorem for martingale differences, they show that RSt
n is

asymptotically normal as min(n, p) → ∞. As a consequence, the Rayleigh test

is HD-robust. This convergence can be appreciated from a consideration of the

histograms in Figure 7.1, where the behavior under Hunif
0 is analyzed by means

of Monte Carlo simulations for various combinations of n and p. Regarding the

power of the Rayleigh test in high-dimensional settings, Cutting et al. (2017a)

established that, against FvML alternatives with concentration κn ∼ p3/4
n /
√
n, the

Rayleigh test has non-trivial powers (neither α nor 1) as n → ∞ and pn → ∞.

It furthermore enjoys the property of being locally and (n, p)-asymptotically most

powerful invariant.

A different approach to test uniformity, based on the behavior of the random

cosines ρij := X′iXj (i 6= j), was considered by Cai & Jiang (2012) and Cai,

Fan & Jiang (2013). The ρij’s play an important role in the study of the coherence

of random matrices. The coherence of a random matrix is defined as the largest

magnitude of the off-diagonal elements of the sample correlation matrix generated
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Figure 7.1: Histograms, for the specified values of n and p, of the standardized

Rayleigh test statistic RSt calculated using M = 10,000 random samples of size

n from the uniform distribution on Sp−1. The standard Gaussian density (black)

appears superimposed in each frame.
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from a random matrix. The quantity of interest is therefore

`n := max1≤i<j≤n|ρij |.

Contrary to the high-dimensional Rayleigh test, the limiting distribution of `n de-

pends crucially on how p = pn goes to infinity as a function of n. Three distinct

regimes are considered:

(i) The sub-exponential regime: the positive sequence pn is such that

log(pn)/n→ 0 as n→∞.

(ii) The exponential regime: the positive sequence pn is such that log(pn)/n →
β ∈ (0, +∞) as n→∞.

(iii) The super-exponential regime: the positive sequence pn is such that

log(pn)/n→ +∞ as n→∞.

In the sub-exponential regime, Cai & Jiang (2012) showed that `n → 0 in proba-

bility as n→∞ and, letting Tn := log(1− `2n), that the statistic

nTn + 4 log pn − log log pn

converges weakly to an extreme value distribution with distribution function

z 7→ 1− exp

(
− 1√

8π
exp

(z
2

))
.

The speed of convergence of `n to zero follows from the fact that
√

n
log(pn)`n →

2 in probability as n → ∞. In the exponential case, `n converges to√
1− exp(−4β) in probability as n → ∞ and nTn + 4 log pn − log log pn con-

verges weakly to a random variable with distribution function

z 7→ 1− exp

(
−
√

β

2π(1− exp(−4β))
exp

(
z + 8β

2

))

as n→∞. Since
√

β
2π(1−exp(−4β)) tends to 1√

8π
as β → 0, the result is consistent

with that of the sub-exponential regime. Finally, in the super-exponential case,

`n → 1 in probability as n→∞ and nTn + 4n
n−2 log pn − log n converges weakly

to a random variable with distribution function

z 7→ 1− exp

(
− 1√

2π
exp

(z
2

))
.

All these results can be used to derive tests of uniformity. For instance, the null

hypothesis can be rejected if `n is too large. The critical values of the different

tests can be obtained from the asymptotic results for the various regimes provided

above.
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7.4 Location tests in the high-dimensional case

Let X1, . . . ,Xn be a random sample from a rotationally symmetric distribution

around µµµ ∈ Sp−1 and consider the location testing problem H0 : µµµ = µµµ0 against

the alternativeH1 : µµµ 6= µµµ0, whereµµµ0 ∈ Sp−1 is fixed. The underlying distribution

of the observations is unspecified. Letting X̄ = 1
n

∑n
i=1 Xi, the classical test for

this location problem rejects the null hypothesis for large values of the Watson

statistic (Watson 1983)

Wn :=
n(p− 1)X̄′(Ip −µµµ0µµµ

′
0)X̄

1− 1
n

∑n
i=1(X′iµµµ0)2

. (7.4)

Under very mild assumptions on the underlying distribution, the fixed-p asymp-

totic null distribution of Wn is χ2
p−1. The resulting test φWn therefore rejects the

null hypothesis, at asymptotic level α, whenever Wn > χ2
p−1;1−α. As well as

achieving asymptotic level α under virtually any rotationally symmetric distribu-

tion, φWn is optimal — more precisely, locally and asymptotically maximin (see

Chapter 5)— when the underlying distribution is FvML. We refer the interested

reader to Paindaveine & Verdebout (2015) for details.

The high-dimensional version of φWn was investigated in Ley et al. (2015).

Consider a triangular array of observations Xni, i = 1, . . . ,n, n = 1, 2, . . . , where

Xni takes values on Spn−1, pn tends to infinity with n and define

uni :=
√

1− (X′niµµµ0)2.

Assume the following extremely mild conditions:

(i) for any n, Xn1,Xn2, . . . ,Xnn are mutually independent and share a com-

mon rotationally symmetric distribution on Spn−1 with location µµµ0;

(ii) E[u2
n1] > 0, which only excludes the degenerate case when the Xni’s are

located at µµµ0 almost surely;

(iii) E[u4
n1]/(E[u2

n1])2 = o(n) as n→∞.

The latter condition deserves some comments. A sufficient condition for (iii) is

that
√
nE[u2

n1] → ∞ as n → ∞. In other words, if (iii) does not hold, then there

exists some constant C > 0 such that

E[(X′n1µµµ0)2] ≥ 1− C√
n
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for infinitely many n, meaning that the distribution of each Xni concentrates in

the direction µµµ0 in the expanding Euclidean space Rpn . Condition (iii) rules out

these pathological settings. It is satisfied, for instance, by the FvML distribution

for which Ley et al. (2015) established that E[u4
n1]/(E[u2

n1])2 ≤ 3.

Under conditions (i)–(iii), and without any particular requirements on how pn

tends to infinity as a function of n, we have that

W̃n :=
Wn − (pn − 1)√

2(pn − 1)

D→ N (0, 1) (7.5)

as n → ∞. We therefore say that (7.5) is an (n, p)-universal result, which fur-

ther shows that the Watson test is HD-robust in the sense of the previous section.

The speed of convergence is illustrated in Figure 7.2 where the behavior of the

standardized Watson statistic W̃n under H0 is illustrated using the results from a

Monte Carlo study for various combinations of n and p.

The high-dimensional location testing problem was also addressed in Paindav-

eine & Verdebout (2016) who considered the sign statistic

Q̃n :=

√
2(pn − 1)

n

∑
1≤i<j≤n

Sµµµ0(Xni)
′Sµµµ0(Xnj).

They proved that Q̃n is also (n, p)-universally asymptotically standard normal un-

der mild conditions. This raises the question as to when W̃n and Q̃n are asymptot-

ically equivalent in probability underH0. The answer is quite intuitive: it happens

in the rare cases when the uni’s become asymptotically constant, in the sense that

Var[uni]/(E[uni])
2 → 0 as n→∞. We refer to Ley et al. (2015) for details.

7.5 Concentration tests in the high-dimensional case

Let X1, . . . ,Xn be an iid sequence of FvML random vectors with common lo-

cation µµµ and concentration κ. We consider the problem of testing H0 : κ = κ0

againstH1 : κ 6= κ0, where κ0 > 0 is a fixed value. It is well known that

e1 := E[X′iµµµ] =
Ip/2(κ)

Ip/2−1(κ)
= Ap(κ).

The function Ap(κ) takes values in [0, 1] and plays a crucial role in maximum like-

lihood estimation for FvML distributions; see Section 4.4 of Chapter 4. Since it is

a one-to-one mapping, concentration may equivalently be measured through e1,

and one may rephrase the null hypothesis H0 : κ = κ0 as H0 : e1 = e10,
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Figure 7.2: Histograms, for the specified values of n and p, of the standardized

Watson statistic W̃n calculated using M = 2,500 random samples of size n from

the p-dimensional FvML distribution with concentration parameter κ = 2. The

standard Gaussian density (black) appears superimposed in each frame.
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with e10 := Ap(κ0). In Section 5.3.5 we saw that the most efficient test for the

concentration problem rejects the null hypothesis at asymptotic level α whenever

Q(n)
κ0 :=

n(‖X̄‖ − e10)2

1− p−1
κ0
e10 − e2

10

> χ2
1;1−α.

This is a slight modification of the test statistic (5.26), obtained by replacing the

general root-n consistent estimator µ̂µµ(n) by the sample mean X̄/||X̄||. Unlike the

Watson test for the location problem, the concentration test based on Q(n)
κ0 is not

HD-robust. This was established in Cutting et al. (2017b). The non-robustness is

strongly linked to the concentration effects in high dimensions mentioned in Sec-

tion 7.2, and is further strengthened by the fact that e10 =
Ip/2(κ0)

Ip/2−1(κ0) converges to

zero as p → ∞, a result that can be deduced from Section 4.4. This implies that

the one-to-one correspondence between a test for e1 and a test for κ does not hold

in the high-dimensional case. Therefore, rather than considering fixed values κ0,

it is sensible to tackle the concentration testing problem H0 : en1 = e10 under

sequences of FvML distributions indexed by a sequence of concentrations κn such

that κn →∞ as n→∞. In other words, we work with triangular arrays of obser-

vations Xni, i = 1, . . . ,n, n = 1, 2, . . . such that, for any n, Xn1,Xn2, . . . ,Xnn

are iid FvML with location µµµn and concentration κn.

We are thus here dealing with a setting where the sample size n, the dimension

pn and the concentration κn all tend to infinity. This raises the natural question of

the speed of convergence of κn compared to that of pn. As the following result

indicates, the convergence regime plays a fundamental role.

Proposition 7.5.1 (Cutting et al. 2017b) Let (pn)n be a sequence of positive in-

tegers converging to∞, (µµµn)n be an arbitrary sequence such that µµµn ∈ Spn−1 for

any n, and (κn)n be a sequence in (0,∞). Write en1 := E[X′n1µµµn] and ẽn2 :=

Var[X′n1µµµn]. We have the following results (all convergences are as n→∞) :

(i) κn/pn → 0⇐⇒ en1 → 0;

(ii) κn/pn → c ∈ (0,∞)⇐⇒ en1 → g1(c), where g1 : (0,∞)→ (0, 1) : z 7→
z/
(

1
2 +

(
z2 + 1

4

)1/2) is one-to-one;

(iii) κn/pn →∞⇐⇒ en1 → 1.

In cases (i) and (iii), ẽn2 → 0, whereas in case (ii), ẽn2 → g2(c), for some func-

tion g2 : (0,∞)→ (0, 1).



146 Chapter 7. High-dimensional directional statistics

These convergence results are very intuitive. In setting (i), the concentration grows

too slowly compared to the dimension, hence the observations cluster around the

equator with respect to µµµ = limn→∞µµµn. Setting (iii) is exactly the opposite, and

all observations tend to coincide with µµµ. In both settings, it is natural that the

variance vanishes. The only non-trivial case thus is setting (ii).

A direct consequence of Proposition 7.5.1 is that the values e10 ∈ (0, 1) can

only be tested when κn ∼ pn. In the other two cases, the only values of e10 which

are admissible are either zero or one. While the null hypothesis H0 : en1 = 0

coincides with the null hypothesis of uniformity, the nullH0 : en1 = 1 is extremely

pathological since it implies that all the observations have to coincide. In such a

setting, a better and simpler test would reject the null hypothesis when there exists

one Xni such that Xni 6= Xnj for some j 6= i. The only meaningful concentration

problem thus corresponds to the second situation in Proposition 7.5.1. For this

problem, Cutting et al. (2017b) proposed the test φ(n)
CPV that rejectsH0 : en1 = e10

at asymptotic level α whenever

|Q(n)
CPV| > z1−α/2,

where

Q
(n)
CPV :=

√
pn
(
n‖X̄n‖2 − 1− (n− 1)e2

10

)
√

2
(
pn
(
1− e10

c0
− e2

10

)2
+ 2npne2

10

(
1− e10

c0
− e2

10

)
+
(
e10
c0

)2)1/2 ,

with

c0 = g−1
1 (e10).

This test is valid in the high-dimensional setting, and Q(n)
CPV can be perceived as a

high-dimensional modification of Q(n)
κ0 .

7.6 Principal nested spheres

Principal Component Analysis is one of the most important tools in multivariate

analysis. The main objective of PCA is dimension reduction: the original dataset

may involve a considerable number of correlated variables that can often be sum-

marized using far fewer uncorrelated variables called the principal components.

The analysis of Principal Nested Spheres (PNS) is a decomposition method

introduced by Jung et al. (2012). It yields a sequence of submanifolds

A1,A2, . . . ,Ap−2 of Sp−1 such that

A1 ⊂ A2 ⊂ · · · ⊂ Ap−2 ⊂ Sp−1.
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The terminology follows from the fact that these submanifolds will be identified

with unit spheres in lower dimensions, as we shall now explain. The geodesic

distance dg on the unit sphere is defined as

dg(x,y) := arccos(x′y), x,y ∈ Sp−1,

which is the length of the shortest great circle segment (geodesic) joining x and y.

Note that the shortest path is unique unless x′y = −1. A subsphere Ap−2 of Sp−1

is defined in terms of an axis v and a distance r ∈ (0,π/2] as

Ap−2(v, r) := {x ∈ Sp−1 : dg(x,v) = r}.

The sphere Ap−2 is nothing other than the intersection between Sp−1 and a hyper-

plane of the form {z ∈ Rp|v′z = cos(r)}; it is therefore a (p − 2)-dimensional

sphere nested within Sp−1. See Figure 7.3 for an illustration when p = 3. It is,

in general, not a unit sphere. The subsphere Ap−2 can be mapped onto the unit

hypersphere Sp−2 via a simple invertible mapping f1 (see Jung et al. 2012 for its

expression), hence it can be identified with Sp−2 and treated as a unit sphere. The

next subsphere Ap−3 can then be built from Sp−2 (given a new axis v∗ ∈ Sp−2

and a new distance r∗ ∈ (0,π/2]) and identified with a submanifold of Sp−1

via f−1
1 (Ap−3) ⊂ Ap−2. Continuing this process, we can define the (p − k)-

dimensional nested sphere of Sp−1 as

Ap−k =

{
f−1

1 ◦ . . . ◦ f−1
k−2(Ap−k) if k = 3, . . . , p− 1

Ap−2 if k = 2,

where the fj’s are the consecutive invertible mappings linking subspheres Ap−j−1

with unit spheres Sp−j−1.

Now, let X1, . . . ,Xn be a sample taking values on Sp−1. The residual of

a point x ∈ Sp−1 for the subsphere Ap−2(v1, r1) is the (signed) length of the

geodesic that joins x to Ap−2(v1, r1) given by dg(x,v1) − r1. The best fitting

least squares subsphere is then based on

(v̂1, r̂1) := argmin(v,r)∈(Sp−1×(0,π/2])

n∑
i=1

(dg(Xi,v)− r)2. (7.6)

The choice of the objective function in (7.6) is arbitrary and the robustness of

the estimator could probably be improved by choosing other types of objective

functions. The (p − 2)-dimensional empirical nested sphere Âp−2 is therefore
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A1(v, r)
v

r

Figure 7.3: Illustration of a nested sphere.

Ap−2(v̂1, r̂1). The data are then projected onto this nested sphere along the mini-

mal geodesic joining each observation to Âp−2, and the same process as in (7.6) is

applied to these projected data to find the second best fitting sphere Ap−3(v̂2, r̂2)

and hence Âp−3 ⊂ Âp−2 ⊂ Sp−1.

Principal nested spheres have been used for various applications such as the

analysis of the migration paths of elephants, sea sand grains and human move-

ments, to cite but these.

7.7 Further reading

We started this chapter by indicating how the distributions on Sp−1 need to be

adapted to the setting of high-dimensional spheres. In particular, Section 7.2 de-

scribes the high-dimensional FvML and Watson distributions. Further well-known

distributions have been analyzed in high-dimensional settings by Dryden (2005),

including the Bingham or Fisher-Bingham models.

The high-dimensional Watson test of Section 7.4 can be used in the solution of

non-directional problems. Indeed, as shown in Ley et al. (2015), it happens to be

as well a valid procedure for testing if the covariance matrix of high-dimensional

random vectors on Rp has a spiked form as in (7.1).
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