


Multiple Imputation in 
Practice

With Examples Using IVEware



http://taylorandfrancis.com


Multiple Imputation in 
Practice

With Examples Using IVEware

Trivellore Raghunathan
Patricia A. Berglund
Peter W. Solenberger



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180510

International Standard Book Number-13:  978-1-4987-7016-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher cannot 
assume responsibility for the validity of all materials or the consequences of their use. The authors and 
publishers have attempted to trace the copyright holders of all material reproduced in this publication 
and apologize to copyright holders if permission to publish in this form has not been obtained. If any 
copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access 
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization 
that provides licenses and registration for a variety of users. For organizations that have been granted 
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Raghunathan, Trivellore, author. | Berglund, Patricia A., author. | 
Solenberger, Peter (Peter W.), author.
Title: Multiple imputation in practice : with examples using IVEware / by 
Trivellore Raghunathan, Patricia Berglund, Peter Solenberger.
Description: Boca Raton, Florida : CRC Press, [2019] | Authors have developed 
a software for analyzing mathematical data, IVEware. | Includes 
bibliographical references and index.
Identifiers: LCCN 2018005310| ISBN 9781498770163 (hardback : alk. paper) | 
ISBN 9781315154275 (e-book) | ISBN 9781498770170 (e-book (web pdf)) | ISBN 
9781351650311 (e-book (epub) | ISBN 9781351640794 (e-book (mobi/kindle)
Subjects: LCSH: Missing observations (Statistics) | Multivariate analysis. | 
Multivariate analysis--Data processing.
Classification: LCC QA276 .R2625 2019 | DDC 519.50285/53--dc23
LC record available at https://lccn.loc.gov/2018005310

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
https://lccn.loc.gov/2018005310


Contents

Preface xi

1 Basic Concepts 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definition of a Missing Value . . . . . . . . . . . . . . . . . . 1
1.3 Patterns of Missing Data . . . . . . . . . . . . . . . . . . . . 2
1.4 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . 3
1.5 What is Imputation? . . . . . . . . . . . . . . . . . . . . . . 5
1.6 General Framework for Imputation . . . . . . . . . . . . . . 9
1.7 Sequential Regression Multivariate Imputation (SRMI) . . . 10
1.8 How Many Iterations? . . . . . . . . . . . . . . . . . . . . . . 12
1.9 A Technical Issue . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Three-variable Example . . . . . . . . . . . . . . . . . . . . . 14

1.10.1 SRMI Approach . . . . . . . . . . . . . . . . . . . . . 14
1.10.2 Joint Model Approach . . . . . . . . . . . . . . . . . . 14
1.10.3 Comparison of Approaches . . . . . . . . . . . . . . . 18
1.10.4 Alternative Modeling Strategies . . . . . . . . . . . . . 18

1.11 Complex Sample Surveys . . . . . . . . . . . . . . . . . . . . 19
1.12 Imputation Diagnostics . . . . . . . . . . . . . . . . . . . . . 20

1.12.1 Propensity Based Comparison . . . . . . . . . . . . . . 21
1.12.2 Synthetic Data Approach . . . . . . . . . . . . . . . . 21

1.13 Should We Impute or Not? . . . . . . . . . . . . . . . . . . . 22
1.14 Is Imputation Making Up Data? . . . . . . . . . . . . . . . . 23
1.15 Multiple Imputation Analysis . . . . . . . . . . . . . . . . . . 24

1.15.1 Point and Interval Estimates . . . . . . . . . . . . . . 24
1.15.2 Multivariate Hypothesis Tests . . . . . . . . . . . . . . 24
1.15.3 Combining Test Statistics . . . . . . . . . . . . . . . . 25

1.16 Multiple Imputation Theory . . . . . . . . . . . . . . . . . . 26
1.17 Number of Imputations . . . . . . . . . . . . . . . . . . . . . 29
1.18 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 30

2 Descriptive Statistics 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Imputation Task . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Imputation of the NHANES 2011-2012 Data Set . . . 35
2.3 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . 38

v



vi Contents

2.3.1 Continuous Variable . . . . . . . . . . . . . . . . . . . 38
2.3.2 Binary Variable . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Practical Considerations . . . . . . . . . . . . . . . . . . . . 41
2.5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Linear Models 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Complete Data Inference . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Repeated Sampling . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . 48

3.3 Comparing Blocks of Variables . . . . . . . . . . . . . . . . . 48
3.4 Model Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Multiple Imputation Analysis . . . . . . . . . . . . . . . . . . 50

3.5.1 Combining Point Estimates . . . . . . . . . . . . . . . 50
3.5.2 Residual Variance . . . . . . . . . . . . . . . . . . . . 51

3.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Imputation . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 Parameter Estimation . . . . . . . . . . . . . . . . . . 53
3.6.3 Multivariate Hypothesis Testing . . . . . . . . . . . . 55
3.6.4 Combining F-statistics . . . . . . . . . . . . . . . . . . 57
3.6.5 Computation of R2 and Adjusted R2 . . . . . . . . . . 57

3.7 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Generalized Linear Model 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Multiple Imputation Analysis . . . . . . . . . . . . . . . . . . 64

4.2.1 Logistic Model . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1.1 Imputation . . . . . . . . . . . . . . . . . . 65
4.2.1.2 Parameter Estimates . . . . . . . . . . . . . 67
4.2.1.3 Testing for Block of Covariates . . . . . . . . 68
4.2.1.4 Estimate command . . . . . . . . . . . . . . 68

4.2.2 Poisson Model . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2.1 Full Code . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Multinomial Logit Model . . . . . . . . . . . . . . . . 71
4.2.3.1 Full Code . . . . . . . . . . . . . . . . . . . . 71

4.3 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Categorical Data Analysis 79
5.1 Contingency Table Analysis . . . . . . . . . . . . . . . . . . 79
5.2 Log-linear Models . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Three-way Contingency Table . . . . . . . . . . . . . . . . . 82
5.4 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . 83



Contents vii

5.5 Two-way Contingency Table . . . . . . . . . . . . . . . . . . 83
5.5.1 Chi-square Analysis . . . . . . . . . . . . . . . . . . . 85
5.5.2 Log-linear Model Analysis . . . . . . . . . . . . . . . . 87

5.6 Three-way Contingency Table . . . . . . . . . . . . . . . . . 88
5.6.1 Log-linear Model . . . . . . . . . . . . . . . . . . . . . 88
5.6.2 Weighted Least Squares . . . . . . . . . . . . . . . . . 92

5.7 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 95
5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Survival Analysis 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Multiple Imputation Analysis . . . . . . . . . . . . . . . . . . 100

6.2.1 Proportional Hazards Model . . . . . . . . . . . . . . 101
6.2.1.1 Outcome Imputed (Method 1) . . . . . . . . 101
6.2.1.2 Outcome Not Imputed (Method 2) . . . . . . 102

6.2.2 Tobit Model . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Structural Equation Models 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Multiple Imputation Analysis . . . . . . . . . . . . . . . . . . 115
7.4 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 117
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Longitudinal Data Analysis 121
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.2 Example 1: Binary Outcome . . . . . . . . . . . . . . . . . . 123
8.3 Example 2: Continuous Outcome . . . . . . . . . . . . . . . . 126
8.4 Example 3: A Case Study . . . . . . . . . . . . . . . . . . . . 131

8.4.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.4.2 Analysis Results . . . . . . . . . . . . . . . . . . . . . 140

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.6 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 145
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Complex Survey Data Analysis using BBDESIGN 149
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



viii Contents

10 Sensitivity Analysis 163
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 Pattern-Mixture Model . . . . . . . . . . . . . . . . . . . . . 164
10.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3.1 Bivariate Example: Continuous Variable . . . . . . . . 166
10.3.2 Binary Example . . . . . . . . . . . . . . . . . . . . . 170
10.3.3 Complex Example . . . . . . . . . . . . . . . . . . . . 173

10.4 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 176
10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Odds and Ends 181
11.1 Imputing Scores . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.2 Imputation and Analysis Models . . . . . . . . . . . . . . . . 182

11.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.3 Running Simulations Using IVEware . . . . . . . . . . . . . 184
11.4 Congeniality and Multiple Imputations . . . . . . . . . . . . 189

11.4.1 Example of Impact of Uncongeniality . . . . . . . . . 190
11.5 Combining Bayesian Inferences . . . . . . . . . . . . . . . . . 192

11.5.1 Example of Combining Bayesian Inferences . . . . . . 195
11.6 Imputing Interactions . . . . . . . . . . . . . . . . . . . . . . 198

11.6.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . 198
11.6.2 Code for Simulation Study . . . . . . . . . . . . . . . 199

11.7 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.8 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . 204
11.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A Overview of Data Sets 207
A.1 St. Louis Risk Research Project . . . . . . . . . . . . . . . . 207
A.2 Primary Biliary Cirrhosis Data Set . . . . . . . . . . . . . . 208
A.3 Opioid Detoxification Data Set . . . . . . . . . . . . . . . . . 211
A.4 American Changing Lives (ACL) Data Set . . . . . . . . . . 212
A.5 National Comorbidity Survey Replication (NCS-R) . . . . . 212
A.6 National Health and Nutrition Examination Survey, 2011-2012

(NHANES 2011-2012) . . . . . . . . . . . . . . . . . . . . . . 214
A.7 Health and Retirement Study, 2012 (HRS 2012) . . . . . . . 219
A.8 Case Control Data for Omega-3 Fatty Acids and Primary Car-

diac Arrest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.9 National Merit Twin Study . . . . . . . . . . . . . . . . . . 223
A.10 European Social Survey-Russian Federation . . . . . . . . . . 224
A.11 Outline of Analysis Examples and Data Sets . . . . . . . . . 224

B IVEware 227
B.1 What is IVEware? . . . . . . . . . . . . . . . . . . . . . . . 227
B.2 Download and Setup . . . . . . . . . . . . . . . . . . . . . . 228

B.2.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . 228



Contents ix

B.2.2 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
B.2.3 Mac OS . . . . . . . . . . . . . . . . . . . . . . . . . . 230

B.3 Structure of IVEware . . . . . . . . . . . . . . . . . . . . . . 230

Bibliography 233

Index 247



http://taylorandfrancis.com


Preface

Almost every statistical analysis involves missing data, or rather missing ele-
ments in a data set (some prefer to use the term incomplete data). Such in-
complete data may result from unit non-response where the selected subject
or the survey unit refuses to provide any information or if the data collec-
tor was unable to contact the subject/unit. Incomplete data could also occur
because of item non-response where the sampled subjects provide some infor-
mation but not the others. The third type of situation can be called partial
non-response as in, for example, drop-out in a longitudinal study at a particu-
lar wave. Another example of the partial response occurs in the National and
Health and Nutrition Examination Survey (NHANES) which has three parts:
a survey, medical examinations and laboratory measures. Some subjects may
participate in a survey but refuse to participate in the medical examination
(or not be selected for the medical examination) and/or refuse to provide a
specimen for a laboratory analysis (or not be selected for the laboratory anal-
ysis). Finally, the incomplete data may occur due to design (planned missing
data designs, split questionnaire designs etc), where not all subjects in the
study/survey are asked every question.

There are three main approaches for dealing with missing data (or the
analysis of incomplete data): (1) Weighting to compensate for nonrespondents
(typically used for unit nonresponse but can also be used for handling some
item nonresponse); (2) Imputation (typically used for item nonresponse but
can be used for handling unit and partial nonresponse); and (3) Maximum
likelihood or a Bayesian analysis based on the observed data under the posited
model assumptions (such as multivariate normal, log-linear model etc).

Among these three approaches, imputation, specifically, multiple impu-
tation, is the most versatile approach which can be implemented, relatively
easily, as it capitalizes on widely available complete data analysis software.
Under this approach, the missing set of values in a data set are replaced with
several plausible sets of values. Each plausible set and observed set forms a
completed data set (a plausible data set from the population). Each completed
data set is analyzed separately. Relevant statistics (such as point and interval
estimates, covariances, test statistics, p-values etc) are extracted from outputs
of each analysis and are then combined to form a single inference.

Imputations are usually obtained as draws from a predictive distribution
of the missing set of values, conditional on the observed set of values. There
are number of ways to construct predictive distributions. One convenient ap-
proach is through a sequence of regression models, predicting each variable

xi
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with missing values based on all other variables in the data set including
auxiliary variables which may or may not be used in any particular analy-
sis. This sequential regression or chained equation approach is flexible enough
to handle different types of variables (continuous, count, categorical, ordinal,
semi-continuous etc.) as well as complexities in a data set such as restrictions
and bounds. Restrictions imply that some variables are relevant only for a sub-
set of subjects (for example, the number of cigarettes smoked is only relevant
for smokers; the years since quit smoking is relevant only for former smokers
etc.). Bounds, on the other hand, imply logical or structural consistency be-
tween variables (for example, the number of years smoked for a smoker cannot
exceed his/her age). Another example is a longitudinal study of children or
adolescents, where the height of child in the subsequent wave cannot be less
than the height in the previous wave.

The broad objective of this book is to provide a practical guide for mul-
tiple imputation analysis from simple to complex problems using real and
simulated data sets. The data sets used in the illustration arise from a range
of studies: Cross-sectional, retrospective, prospective and longitudinal studies,
randomized clinical trials, and complex sample surveys. Simulated data sets
are used to illustrate and explore certain methodological aspects.

Numerous tools have become available to perform multiple imputation as
a part of popular statistical and programming packages such as R, SAS, SPSS
and Stata. This book uses the latest version (Version 0.3) of IVEware, the
software developed by the University of Michigan, that uses exactly the same
syntax but works with all these packages as well as a stand-alone package (SR-
CWARE) for performing multiple imputation analysis. Furthermore, IVEware
can also perform survey analysis incorporating complex sample design features
such as weighting, clustering and stratification.

Though IVEware is used to illustrate the applications of multiple imputa-
tion in a variety of contexts, the same analysis can be carried out using other
packages that are built into Stata, R, SAS and SPSS. The book emphasizes
analysis applications rather than software but using one common syntax sys-
tem makes the presentation of the multiple imputation ideas easier. Not all
features discussed in this book are built into IVEware but can be implemented
using additional calculations (using another software or spreadsheet or elec-
tronic calculators) based on the output from IVEware. Sometimes a macro
environment can be built to implement additional procedures. It is nearly im-
possible to develop a software that can calculate everything that one wants,
especially, when the funding for developing software is rather scarce in an
academic research setting.

This book consists of eleven chapters emphasizing the following nine areas
of practical applications of MI:

1. Descriptive statistics: means, proportions and standard deviations;
contrasts such as two sample comparisons of means and proportions;

2. Simple and multiple linear regression analysis;
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3. Generalized linear regression models: logistic, Poisson, ordinal and
multinomial logit models;

4. Time-to-event analysis, reliability and survival analysis;

5. Structural equation models;

6. Longitudinal data analysis for both continuous and binary out-
comes;

7. Categorical data dnalysis, log-linear models;

8. Complex survey data analysis; and

9. Sensitivity analysis under a non-ignorable missing data mechanism.

A two semester sequence in statistics or biostatistics covering topics such
as probability and distributions, statistical inference (both repeated sampling
and Bayesian perspectives) and regression analysis including model diagnos-
tics should provide sufficient background for most parts of the book. More
detailed knowledge about the complete data model and subsequent analysis
will be helpful (or even required) for other parts such as Structural Equation
Models, or Survival Analysis, etc. even though the models are briefly described
at the beginning of each chapter. A course in Bayesian analysis will also be
helpful to understand the material.

This book is designed to be a companion to Raghunathan (2016) but also
can serve as a companion to a general purpose book on analysis of incomplete
data such as Little and Rubin (2002) and a book on multiple imputation Rubin
(1987). Carpenter and Kenward (2013) is another useful companion book to
thoroughly understand the fundamental concepts about multiple imputation.
General concepts or theoretical results are only heuristically covered in this
book. Another book that serves as a practical guide for performing multiple
imputation using SAS is Berglund and Heeringa (2014) while guidance on
using MICE in the R environment is Van Buuren (2012).

Additional readings are listed at the end of each chapter. They are not
designed to be exhaustive references or a bibliography of missing data research.
The listed references are not necessarily the original research articles but they
might help further to understand the implementation and topics not covered
in the listed books. Exercises at the end of each chapter are designed to extend
the analysis presented or for additional practice with the techniques.

Both Raghunathan and Berglund have taught courses on missing data over
the past several years. These range from one day to two semester long courses
and workshops presented to a variety of audiences. They also also have con-
sulted with many applied researchers on missing data issues. Solenberger is
the chief architect of IVEware and its integration with SAS, R, Stata and
SPSS. Together, we have tried to provide important insights into using multi-
ple imputation for analyzing incomplete data. We are thankful to many stu-
dents and collaborators for many questions, comments and challenges about
one approach or the other, as these have shaped our course material and the
presentation in the book. We are thankful to Dawn Reed who meticulously
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collected all the references and compiled them for this book. We hope that
you find the book useful.

Trivellore Raghunathan (“Raghu”)
Patricia Berglund
Peter Solenberger
Ann Arbor, Michigan



1

Basic Concepts

1.1 Introduction

Almost every statistical analysis involves missing data, or rather missing ele-
ments in a data set either due to unit non-response where the selected subject
or the survey unit refuses to provide any information (also, if the data collec-
tor was unable to contact the subject) or due to item non-response where the
sampled subjects provide some information but not the others. The third type
of situation can be called partial non-response as in, for example, drop-out in
a longitudinal study at a particular wave. Another example of the partial re-
sponse occurs in the National and Health and Nutrition Examination Survey
(NHANES) which has three parts: a survey, medical examinations and lab-
oratory measures. Some subjects may participate in a survey but refuse to
participate in the medical examination (or not be selected for the medical ex-
amination) and/or refuse to provide a specimen for a laboratory analysis (or
not be selected for the laboratory analysis). Finally, the incomplete data may
occur due to design (planned missing data designs, split questionnaire designs
etc), where not all subjects in the study/survey are asked every question.

Before proceeding to discuss solutions for dealing with missing data, the
the following three questions needs to be addressed:

1. What is a missing value?

2. Is there any pattern of the location of the missing values in data
set?

3. Why are the values missing? What process lead to the missing val-
ues?

1.2 Definition of a Missing Value

A value for a variable in the analysis is heuristically defined as missing, if it
is meaningful for a particular analysis and is hidden due to nonresponse. A
clear cut example of such a variable is age of a sampled subject to be used

1
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as a covariate in a linear regression model. Now consider an example of a
survey, where a question, “In the upcoming election, are you going to vote
for the candidate B or F?”, is asked leading to a variable X with response
options (a) B, (b) F and (c) Don’t know. One may develop an analysis plan
that treats X as a three category analytical variable and, hence, there are
no missing values in this analysis. On the other hand, suppose the analysis
involves a projection of the winner in the election then subjects in the category
(c) are to be treated as missing because their actual vote is a meaningful value
for the analysis (projection of the winner) that is hidden.

Adding to this complexity, suppose that the following question is asked,
“Are you planning to vote in the election?”, leading to a variable Y with three
response options (1) Yes, (2) No and (3) Don’t know. Again, many analyses
may use the variable Y as a three category analytical variable or a combination
of X and Y as 9-response categories. For such analyses there are no missing
values. However, for the projection of a winner or for the estimation of voter
turnout rates, the “Don’t knows” have to be treated as missing. Furthermore,
the resolution of the missing values in Y determines the relevant population
for X and then requires a resolution of missing values in X.

The above discussion illustrates that the missing value determination is
specific to an analysis. That is, if the value of the variable is needed to con-
struct an estimate/inference of an “Estimand” (the population quantity) then
it is a missing value. One way of conceptualizing the missing value is to de-
termine whether the value is hidden or should it be imputed for the analysis.
In any case, even if the two variables X and Y are imputed for those in the
“Don’t know” categories, imputation flags should be created for reconstructing
“meaningful” variables for any type of analysis and for diagnostic purposes.

1.3 Patterns of Missing Data

Consider a data matrix with n rows, representing subjects in the study, and p
columns, representing variables measured on them. A pattern of missing data
describes the location of the missing values in the data matrix. Sometimes,
the rows and columns can be sorted to yield special patterns of missing data.
Figure 1.1 illustrates three special patterns of missing data. Pattern (a) is the
monotone pattern of missing data where Variable 2 is measured on a subset
of people providing Variable 1, Variable 3 is measured on a subset of people
providing Variable 2 etc. This type of pattern mostly occurs in a longitudinal
setting where people who drop out are not followed in the subsequent waves.
Pattern (b) describes a situation where a single variable is subject to missing-
ness. This pattern may occur in a regression analysis with single covariate with
missing values. Finally, Pattern (c) is common where two data sets are merged
with some common variables and some variables unique to the individual data
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sets. This pattern can also be used to describe the causal inference data struc-
ture where the non-overlapping variables are the potential outcomes under
treatments and the overlapping variables are pre-randomization or baseline
variables. Pattern of missing data can be very useful to develop models or for

Figure 1.1: Illustrations of patterns of missing data

modularizing the estimation task. For example, with the monotone pattern
of missing data with four variables, the imputation model may be developed
through the specifications of Pr(Y2|Y1), Pr(Y3|Y2, Y1) and Pr(Y4|Y1, Y2, Y3)
which leads to imputing Y2 just using Y1, imputing Y3 using observed or im-
puted Y2 and Y1, and, finally, imputing Y4 using the observed or imputed
Y3, Y2 and Y1.

For Pattern (c) with three continuous variables Y1, Y2 and Y3, there is
no information about the partial correlation coefficient between Y2 and Y3
given Y1. External information about this partial correlation coefficient will
be needed to impute the missing values.

For most practical applications, the pattern of missing data will be arbi-
trary. The methods described in this book assume this general pattern of miss-
ing data, and, thus, can be used for these special patterns as well. However,
imputation models may be simplified or augmented with external information
when necessary, and will be indicated at appropriate places.

1.4 Missing Data Mechanisms

Once the missing values are identified for a specific analysis, the question
arises “Why are they missing?” All methods for handling missing data make
assumptions about the answer to this very key question. There is no assump-
tion free approach for analyzing incomplete data. The assumptions about the
reasons for missing values are conceptualized as the missing data mechanism.



4 Multiple Imputation in Practice : With Examples Using IVEware

Consider a simple example to understand the concept of the missing data
mechanism. Suppose that Y1 and Y2 are two variables with Y1 having no miss-
ing values and Y2 having some missing values. The values of Y2 are Missing
Completely At Random (MCAR) if the probability of missingness does not
depend on Y1 or Y2. In this case, the completers, that is, subjects with both Y1
and Y2 observed, are a random sub-sample of the full sample. Define R2 = 1
for the respondents of Y2 and R2 = 0 for the nonrespondents. This assumption
implies that the joint distribution of (Y1, Y2) satisfies the equality:

Pr(Y1, Y2|R2 = 1) = Pr(Y1, Y2|R2 = 0) = Pr(Y1, Y2).

An equivalent definition of MCAR mechanism is through the response propen-
sity model, Pr(R2 = 1|Y1, Y2). Under MCAR, Pr(R2 = 1|Y1, Y2) = φ where
φ is an unknown constant. Thus, under MCAR, the complete case analysis
provides unbiased information about the population, except for increasing in
uncertainly due to the reduced sample size.

A weaker mechanism, called Missing At Random (MAR), assumes that
the missingness in Y2 may be related to Y1 but not to the actual unobserved
values of Y2. One may state this assumption using the response propensity
model as, Pr(R2 = 1|Y1, Y2, φ) = Pr(R2 = 1|Y1, φ) where φ are the unknown
parameters. Under this assumption, Pr(Y2|Y1, R2 = 1) = Pr(Y2|Y1, R2 = 0).
Note that, this assumption is not verifiable based on the observed data because
of lack of information to estimate Pr(Y2|Y1, R2 = 0).

An ignorable missing data mechanism places additional restrictions on the
MAR or MCAR mechanisms. Suppose that Pr(Y1, Y2|θ) is the complete-data
substantive model with the unknown parameter θ. Let Φ and Θ be the param-
eter spaces for the missing data mechanism parameter, φ, and the complete-
data model parameter, θ, respectively. The two parameters θ and φ are called
distinct, if there are no functional relationships between them. In other words,
the joint parameter space of (θ, φ) is Θ × Φ. Under the Bayesian framework,
the distinctness implies that θ and φ are independent a priori.

The difference between MAR and ignorable missing data mechanisms is
subtle. It is hard to conceive of a practical situation where the missing data
are MAR or MCAR but the parameters are not distinct. Therefore, for all
practical purposes, it will be assumed that when the data are MAR, the
mechanism is also ignorable. If the mechanism is MAR (or MCAR) and the
parameters are not distinct, then the implications of ignoring the mechanism
on the inferences will have to be investigated on a case by case basis.

Finally, the missing data are Missing Not At Random (MNAR) if the
missingness depends upon the unknown responses. In this case, Pr(R2 =
1|Y1, Y2, φ) is a function of Y2 (perhaps, Y1 as well). An implication of this
assumption is that

Pr(Y2|Y1, R2 = 1) 6= Pr(Y2|Y1, R2 = 0).

Note that, this assumption, like MAR, is also not verifiable because Y2 are
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not known whenever R2 = 0. In this situation, an explicit model, Pr(R2 =
1|Y1, Y2, φ), is needed, along with Pr(Y1, Y2|θ), for imputing the missing Y2’s.

In general, let Y be the complete data on p variables from n subjects
arranged as a n × p matrix . Let R be the n × p response indicator matrix
where a 1 indicates that the corresponding entry in Y is observed and 0, if it is
unobserved. Let Yobs be the collection of all the observed values in Y and Ymis
is the collection of all the missing values in Y . For a mechanism to be MCAR,
one needs Pr(R|Y, φ) = φ, where φ is a constant; a MAR mechanism implies
that Pr(R|Y, φ) = Pr(R|Yobs, φ) where φ is a vector or matrix of parameters;
and for an ignorable missing data mechanism, φ and θ are distinct where θ is
the parameter in, Pr(Y |θ), the data generating model. Since, Pr(R|Yobs, φ)
has no “informational” content about θ, conditional on knowing Yobs, the
mechanism can be ignored, or equivalently, can be completely unspecified.

The missing data mechanism is assumed to be ignorable for the most part,
except in Chapter 10 where strategies for assessing sensitivity of inferences to
this assumption are discussed. Generally, it is important to collect as many
variables as possible that are correlated with variables with missing values
to make the MAR assumption plausible and include them in the imputation
process.

1.5 What is Imputation?

An imputation of an incomplete data set involves replacing the set of missing
values by a plausible set of values (with due recognition while constructing
the statistical inferences that these imputed values are not the actual values).
The imputed data set, thus obtained is a plausible complete data set from the
population. The imputed and observed sets of values should, therefore, under
certain assumptions, inherently exhibit the properties of a typical complete
sample data set from the population. To elaborate further, consider the same
bivariate example discussed in the previous section. Assume that missing data
in Y2 are missing at random. One may be tempted to substitute all the miss-
ing values in Y2, by their predicted value under a regression model. Suppose
that the relationship is linear and the prediction equation is Ŷ2 = β̂o + β̂1Y1
where β̂o and β̂1 are the ordinary least square estimates of the intercept and
slope, respectively. In this imputed data set, all the observed values of Y2 will
typically be spread around the regression line but all of the imputed values
will be exactly on the regression line, thus not a plausible complete data set
from the population.

To heuristically understand the concept of a plausible complete data set,
consider a scatter plot of Y2 against Y1 in the imputed data set with observed
and imputed set of values distinguished through different colors or symbols.
The perspective in this book is that for the imputed data set to be a plausible
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completed data set, the two colors or symbols should be “exchangeable”, for
any Y1 value. That is, the labeling of observed or imputed should be at random,
at any given value of Y1.

The most principled approach for creating imputations is through using
Bayesian principles. Suppose that the bivariate data are arranged such that
complete-cases are the first r subjects and incomplete cases are the last n− r
subjects where n is the sample size. Assume a normal linear regression model
for Y2 on Y1, Y2 = βo + β1Y1 + ε, ε ∼ N(0, σ2). Writing Xc as a r × 2 matrix
of predictors (a column of ones and Y1 values) for the r× 1 outcome variable,
Y2c, based on the r complete cases, β = (βo, β1)T as the column vector of the
regression coefficients (the super script T denotes the matrix transpose) and
a Jeffreys prior Pr(β, σ) ∝ σ−1, the following results are from the standard
Bayesian analysis:

1. The posterior distribution of σ2 is given by (r−2)σ̂2
c/σ

2|σ̂2
c ∼ χ2

r−2.

2. The posterior distribution of β is given by

β|β̂c, σ,Xc ∼ N(β̂c, σ
2(XT

c Xc)
−1),

where β̂c = (XT
c Xc)

−1XT
c Y2c is the ordinary least squares complete-case es-

timate of β and σ̂2
c = (Y2c−Xcβ̂c)

T (Y2c−Xcβ̂v)/(r− 2) is the corresponding
residual variance.

The following steps describe the generation of imputations as draws from
the posterior predictive distribution of the missing set of values conditional
on the observed set of values. First, generate a chi-square random variable, u,
with r− 2 degrees of freedom and define σ2

∗ = (r− 2)σ̂2
c/u. Next, generate β∗

from a bivariate normal distribution with mean β̂c and the covariance matrix
σ2
∗(X

T
c Xc)

−1. Finally, generate imputations, Y ∗2i, for each missing value Y2i
from a normal distribution N(β∗o + β∗1Y1i, σ

2
∗) where i = r + 1, r + 2, . . . , n.

The above procedure incorporates uncertainty in the value of the param-
eters (β, σ) as well as the uncertainty in the value of the response variable,
Y2 for the nonrespondents. This is the proper approach for creating impu-
tations from the Bayesian perspective. When the fraction of missing values
is small, the uncertainty in the parameter may be relatively small and the
imputation can be simplified by drawing values from a normal distribution
N(β̂oc + β̂1cY1i, σ̂

2
c ), though it is not proper.

The regression model need not be linear but can be developed based on
substantive knowledge and empirical investigations. The distribution of the
residuals need not be normal. One strategy for a non-normal outcome is to
transform Y2 to achieve normality, impute values on the transformed scale and
then re-transform to the original scale. One has to be careful in applying this
strategy because an imputed value may appear reasonable on the transformed
scale but, when re-transformed, may be unreasonable on the original scale. For
example, suppose that Y2 is income and a logarithmic transformation is used
for the modeling purposes. An imputed value from the tail of the distribution
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on the logarithmic scale when exponentiated may lead to an unreasonable
imputation.

A better option, perhaps, is to use a non-normal distribution for the resid-
uals in a model on the original scale. An example of such a distribution is
Tukey’s gh-distribution that can accommodate a variety of departures from
the normal distribution.

A random variable, X, follows Tukey’s gh distribution with location µ,
scale σ, skewness parameter g(0 ≤ g ≤ 1) and the kurtosis or elongation
parameter h(0 ≤ h ≤ 1/2) if

X = µ+ σ × Z × exp(gZ)− 1

gZ
× exp(hZ2/2)

where Z is a standard normal random variable. The parameter g controls
skewness and h controls the thickness of the tail of the distribution. For mod-
eling of the residuals, µ = 0. The three unknown parameters cover a wide
variety of non-normal distributions.

For given values of the parameters, (µ, σ, g, h), it is fairly easy to draw
imputations (since X is a transformation of a standard normal deviate). How-
ever, developing the likelihood function and computing the maximum likeli-
hood estimates of the parameters, (µ, σ, g, h), are computationally complex.
The quantile based estimates are relatively easy to compute, and may even be
more attractive given their robustness properties. Specifically, let Qp denote
the quantile corresponding to probability p. That is, Pr(X ≤ Qp) = p. Let
Zp be the corresponding standard normal distribution quantile. An obvious
estimate of µ is the median Q0.5.

It is easy to show that,

Ap =
Q1−p −Q0.5

Q0.5 −Qp
= exp(−gZp).

Suppose Q̂p are the estimates for a selected set of values of p. The negative of

the slope of the regression of log Âp on Zp through the origin can be used as
an estimate of g.

Similarly, it can be shown that

Bp =
g(Q1−p −Q0.5)

exp(−gZp)− 1
= σ exp(hZ2

p/2).

Thus, regressing log B̂p on Z2
p/2 results in the intercept log σ̂ and slope ĥ.

For imputation purposes, use the ordinary least squares (or any other
robust regression technique) approach to estimate βo and β1, construct the
residuals and their quantiles and then fit the two regression models described
above to obtain, ĝ, ĥ and σ̂ (estimate of µ for the residuals is 0). The imputa-
tions are defined as:

Y ∗2i = β̂o + β̂1Y1i + σ̂ĝ−1(exp(ĝZi)− 1) exp(ĥZ2
i /2) (1.1)
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where Zi, i = r + 1, r + 2, . . . , n are independent standard normal deviates.
Note that this approach is not proper, because uncertainty in the estimates of
the parameters (βo, β1, σ, g, h) is not incorporated in the imputation process.
A simple fix, is to use a bootstrap sample of the original data, estimate the
parameters as outlined above using the bootstrap data and then apply the
imputation process described in Equation (1.1).

Imputations can also be created based on data driven techniques such as a
semiparametric model, using, for example, splines (not discussed in this book)
or a totally nonparametric approach as described below:

1. Create H strata based on all the n values Y1 and suppose that rh
and mh are the number of respondents and nonrespondents in stra-
tum h = 1, 2, . . . , h. Let Y2jh, j = 1, 2, . . . , rh denote the observed
responses in stratum h.

2. Apply a Bayesian bootstrap within each stratum to sample mh

missing values from the rh observed values as imputations. The
following are the steps for the Bayesian bootstrap:

(a) Draw, rh − 1 uniform random numbers between 0 and 1 and
order them,uo = 0 ≤ u1 ≤ u2 . . . ≤ urh−1 ≤ 1 = urh .

(b) Draw another uniform random number, v and select Y2jh as
the imputation for a missing value if uj−1 ≤ v ≤ uj where
j = 1, 2, . . . , rh.

(c) Repeat the step (b) above for all the mh missing values.

(d) Repeat the steps from (a) to (c) for all strata.

Instead of the Bayesian Bootstrap (Steps (a) -(c)), an approximate version
given below may be easy to implement.

(a*) Sample rh values with replacement from Y2jh, j = 1, 2, . . . , rh and denote
the resampled values as Y ∗2jh, j = 1, 2, . . . , rh.

(b*) Sample mh values with replacement from the resampled values in (a*).

The underlying theory behind the Bayesian Bootstrap is that the distinct
values of the observations are modeled using a multinomial distribution with
unknown cell probabilities and a non-informative Dirchelet prior distribution
for these cell probabilities.

There are numerous other possibilities. For example, Tukey’s gh distri-
bution could be used within each stratum defined by Y1 instead of the Ap-
proximate Bayesian bootstrap. The key is to construct a sensible, good fitting
prediction model for Y2 given Y1 and then use the model to generate imputa-
tions.
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1.6 General Framework for Imputation

Taking the cue from the specific bivariate example, consider now a more gen-
eral framework for creating model-based imputations. Suppose that the com-
plete data can be arranged as a n×p matrix, Y , with rows corresponding to n
subjects and p columns corresponding to variables. Let R be n×p matrix with
1’s and 0’s where 1 indicates that the corresponding elements in Y are observed
and 0 indicates missing. A statistical model is the joint distribution of (Y,R)
which can be partitioned as Pr(Y |θ)× Pr(R|Y, φ) or as Pr(Y |R,α)Pr(R|β)
where (θ, φ) and (α, β) are the unknown parameters. The former is called the
“selection” model formulation, and the latter is the “pattern-mixture” model.

Let Yobs denote all the elements in Y for which the corresponding elements
in R are equal to 1. Similarly, let Ymis be the collection of all elements in Y
corresponding to entries in R equal to 0. With a slight abuse of notation, write
Y = (Yobs, Ymis).

Consider the selection model formulation and suppose that π(θ, φ) is the
prior density for the unknown parameters (θ, φ) and let f(y|θ) and g(r|y, φ)
be the corresponding probability densities (or mass functions) for Y and R,
conditional on Y . The goal of the imputation is to draw from the predictive
distribution Pr(Ymis|Yobs, R) with the density

f(ymis|yobs, r) =

∫
f(yobs, ymis|θ)g(r|yobs, ymis, φ)π(θ, φ)dθdφ∫ ∫

f(yobs, ymis|θ)g(r|yobs, ymis, φ)π(θ, φ)dθdφdymis
,

where yobs and r are the observed values of Yobs and R in the data set being
analyzed.

Note that, under the missing at random mechanism, g(r|yobs, ymis, φ) =
g(r|yobs, φ). The distinctness condition implies π(θ, φ) = π1(θ)π2(φ). Thus,
for the ignorable missing data mechanism,

f(ymis|yobs, r) =

∫
f(yobs, ymis|θ)π1(θ)dθ∫ ∫

f(yobs, ymis|θ)π1(θ)dθdymis
.

That is, the model for the response indicator R (the missing data mechanism)
can be ignored (or unspecified) while constructing the predictive distribution
of the missing set of values for the imputation purposes. Through out the book
(except in Chapter 10) missing data mechanisms are assumed to be ignorable.
However, the imputation based approach can be used for nonignorable missing
data mechanisms.
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1.7 Sequential Regression Multivariate Imputation
(SRMI)

The general framework described in the previous section, even under the ig-
norable missing data mechanism, is difficult to implement when the data set
has a large number of variables of different types (continuous, count, categor-
ical, ordinal, censored etc.), structural dependencies (such as years smoked
cannot exceed the age of the subject or lab values have to be between certain
logical bounds etc.) and restrictions (some variables makes sense only for a
section of a sample such as years smoked is not applicable for never smokers).
Constructing a joint distribution for all the variables with missing values with
all such complexities is nearly impossible.

The sequential regression (or chained equations, flexible conditional spec-
ifications) approach uses a sequence of regression models where each variable
with missing values is regressed on all other variables as predictors. A Gibbs
sampling style iterative approach is used to draw values from the posterior
predictive distribution of the missing values under each regression model. Sup-
pose that U is a n × q matrix of q variables on n subjects with no missing
values and Y1, Y2, . . . , Yp are the p variables with some missing values. It is
not necessary to have any variables with no missing values. That is, U could
be a column of 1s representing the intercept term.

For the first iteration, Y1 is regressed on U to impute the missing values

in Y1 resulting in a completed n × 1 vector, Y
(1)
1 , of observed and imputed

values. A fully Bayesian approach is used (similar to bivariate example dis-

cussed previously). Next, Y2 is regressed on U, Y
(1)
1 to obtain Y

(1)
2 . The algo-

rithm continues until the missing values in Yp are imputed by regressing it on

U, Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
p−1.

If the missing data pattern in the sequence of p variables is monotone
then one can stop with this first iteration. If the pattern is not monotone
then the imputed values in Y1, for example, does not depend on the observed
values in the subsequent variables. Thus, the subsequent iterations use all the
variables as predictors. For example, the missing values in Y1 are re-imputed by

regressing it on U, Y
(1)
2 , Y

(1)
3 , . . . , Y

(1)
p to yield the next generation, n×1 vector,

Y
(2)
1 , of the observed and imputed values. Similarly, the missing values in Y2

are re-imputed by regressing it on U, Y
(2)
1 , Y

(1)
3 , . . . , Y

(1)
p . Thus, at iteration t,

the missing values in Yj are re-imputed by regressing the observed values of

Yj on U, Y
(t)
1 , . . . , Y

(t)
j−1, Y

(t−1)
j+1 , . . . , Y

(t−1)
p .

The imputation procedure is now described in a general form but later
adapted to a specific regression model. Let vi, i = 1, 2, . . . , r be observed
values of a variable to be imputed (one of the Y ’s above). Let zi be the
corresponding vector of predictors and zj , j = r+ 1, r+ 2, . . . , n be the vector
of predictors corresponding to missing values in v. Note that z’s will consist
of observed and imputed values of all other variables. Let E(vi|zi) = µi =
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h(zTi β) and V ar(vi|zi) = σ2g(µi) be the mean and variance of the conditional
distribution, Pr(v|z, β, σ), a member of the exponential family. Assume a
flat prior, π(β, σ) ∝ σ−1. Let π(β, σ|{vi, zi, i = 1, 2, . . . , r}) be the posterior
density of the unknown parameters. The following procedure is used to impute
the missing values:

1. Draw a value of (β, σ), say, (β∗, σ∗) from its posterior distribution.

2. Draw missing vj from its conditional distribution Pr(v|zj , β∗, σ∗).

The regression model depends upon the variable being imputed such as
normal linear (in the original or transformed scale) for continuous variables,
logistic or probit for binary, Poisson for count, multinomial logit for categorical
etc. The key is to obtain well fitting regression models for each variable. The
imputation problem reduces to developing p regression models as building
blocks.

Many data sets contain a mixed type of variable that is essentially continu-
ous but with a spike at 0. An example of such a variable is real estate income.
The value is 0 for many subjects in the study (those without income gener-
ating real estate) and a positive or negative value for the rest. These types
of variables can be handled by using a two stage imputation process. The
first stage imputes zero/non-zero status using a logistic regression model and
then, conditional imputation using a continuous variable approach to impute
non-zero values.

A normal distribution may not be a reasonable model for a continuous vari-
able, even on the transformed scale. The following non-parametric approach
(extending the Approximate Bayesian Bootstrap approach for the bivariate
data example) may be used for such variables. Suppose that Y is a continuous
variable with missing values and let R be the corresponding response indicator
or dummy variable. Let Z be the predictors. The imputation approach has
the following two steps:

1. Balance the respondents and non-respondents on Z. Run a logistic
regression of R on Z and obtain the propensity scores, P̂ . Run a
regression of Y on Z to obtain predicted values Ŷ . Create H classes
or strata through a stratification based on the two variables P̂ and
Ŷ .

2. Imputation is performed within each stratum. Let rh and mh be the
number of observed and missing values in stratum h = 1, 2, . . . ,H.
Either apply an approximate Bayesian Bootstrap or Tukey’s gh
approaches (described in Section 1.4) to impute the missing values.

The number of classes or strata depends upon the sample size, the num-
ber of respondents and non-respondents. Typically, five classes based on the
propensity scores, P̂ , removes most of the bias (90%) due to imbalances in the
covariates, Z, between the respondents and non-respondents. Further stratifi-
cation of each propensity score class into five subclasses based on Ŷ may create
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homogeneous group of respondents and non-respondents. Thus the quintiles of
the propensity scores and quintiles of the prediction score within each quintile
class are used as a default in IVEware (software used to illustrate all the ex-
amples discussed in this book). This strategy is mainly derived for large data
sets. A smaller number of classes may be chosen depending upon the sample
size.

The restrictions are handled by fitting the data to a relevant subset. Sub-
jects who do not satisfy the restriction are treated as a separate category when
the restricted variables are subsequently used as predictors. The bounds, appli-
cable only to continuous or semi-continuous variables, are handled by drawing
values from a truncated distribution where the truncation is determined by
the lower and upper bound specified by the user. These bounds can be a scalar
of variables in the data set. These features are illustrated through concrete
examples in the later chapters.

When the number of variables is large, the regression model building can
be time consuming. Some dimensionality reduction features are built into
IVEware. One is through specifying a minimum additional R2 that is needed
for a variable to be included in the model in a stepwise variable selection
procedure. Another is through specifying the maximum number of predictors
to be included in the model. Both features can be specific to a variable or
global specifications.

When building the prediction models, interactions and non-linear terms
may have to be included. As these are derived variables, the individual vari-
ables are imputed first and then derived variables are constructed to be in-
cluded as predictors. The interactions can be specific to a variable being
imputed or a global declaration where the interactions are included in all
the models (except in the models for predicting the variables in the inter-
action/nonlinear term). Additional features in IVEware will be illustrated
through examples.

The key step is to obtain well fitting regression models for each variable
with missing values. The model building task is an iterative process where ex-
ploratory data analysis and substantive theory might suggest a working model.
Model diagnostics such as residual plots, histograms of the residuals and other
procedures are used to refine the model. The refined model is assessed for how
well it fits and further refinements are made.

1.8 How Many Iterations?

Imputations using SRMI are created through a Gibbs style iterative process
and the question arises of how many iterations should be used to achieve
stable imputations. Many empirical studies show that after 5 to 10 iterations,
no further mixing is needed to garner the predictive power of the observed
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data to create imputations. One potential approach is to monitor convergence
of key statistics with the number of iterations. One general statistic is the
empirical joint moment generating function of the variables in the data set.
Let Y l = (Y l1 , Y

l
2 , . . . , Y

l
p ) be the lth completed data set on p variables where

Y li either has the observed or imputed values. Let t = (t1, t2, . . . , tp) be any
arbitrary vector of numbers centered around 0 (say, uniform numbers between
−1 and 1). Define

Mt(Y
l) =

∑
j

(∑
i

exp
(
tjY

l
ij

)
/n

)
where the sum is taken over both, p variables and n subjects in the com-
pleted data set. The multiple imputation estimate of the moment generating
function is Mt =

∑
lMt(Y

l)/M . The number of iterations can be determined
adaptively, by constructing this scalar quantity for several randomly chosen
values of t to determine the number of iterations.

1.9 A Technical Issue

Note that, the SRMI approach requires only specifications of the conditional
distributions of the variables with missing values and allows enormous flex-
ibility in developing these basic regression models. A technical issue arises
because the specifications of these conditional distributions may not corre-
spond to a joint distribution. Consider an example with two variables, X and
Y , with missing values and the following two models seem to fit the data well,

f(x|y) ∼ Normal(αo + α1y + α2y
2, σ2

1),

and
g(y|x) ∼ Normal(βo + β1x+ β2x

2 + β3x
3, σ2

2).

These two models are incompatible as no joint distribution, h(x, y), exists
with, f and g, as conditional distributions.

Though the SRMI algorithm resembles the standard Gibbs sampler, the
convergence properties are not well understood when the underlying con-
ditional distributions are not compatible with a joint distribution. Liu et
al.(2014), Hughes et al. (2014) and Zhu and Raghunathan (2015) provide
various regularity conditions for the algorithm to converge. Various simula-
tion studies in Zhu and Raghunathan (2015) and Zhu (2016) show that the
SRMI procedure produces valid inferences (in terms of bias, mean square er-
ror and confidence coverage properties) when well fitting models are used for
each conditional distribution. Thus, the practical implication of this technical
issue is not clear, and may not be important, if well fitting models are used
in the imputation process.
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1.10 Three-variable Example

1.10.1 SRMI Approach

To illustrate the model development process, consider a data set with three
variables, (Y1, Y2, Y3). Suppose that all three variables have missing values in
some arbitrary pattern. For creating imputations, three regression models are
needed: (1) Y1 on (Y2, Y3); (2) Y2 on (Y1, Y3) and (3) Y3 on (Y1, Y2). The three
scatter plots in Figure 1.2 are the first step in the model building task.

The two scatter plots in Figure 1.2 indicate nonlinear or non-additivity
relationships between Y1 and Y3 and Y2 and Y3, respectively, and the other
suggests a linear relationship between Y1 and Y2. The model building tasks
begin with fitting the following three models:

1. y1 = αo + α1y2 + α3y3 + α3y2y3 + ε1 where ε1 ∼ N(0, σ2
1);

2. y2 = βo + β1y1 + β2y3 + β3y1y3 + ε2 where ε2 ∼ N(0, σ2
2); and

3. y3 = γo + γ1y1 + γ2y2 + γ3y1y2 + ε3 where ε3 ∼ N(0, σ2
3).

The residual diagnostics suggest that Models 1 and 2 can be improved by
adding the square term y22 and y21 , respectively. The resulting final imputation
models are y1 = αo + α1y2 + α2y3 + α3y2y3 + α4y

2
2 + ε1, y2 = β0 + β1y1 +

β2y3 + β3y1y3 + β4y
2
1 + ε2 and y3 = γo + γ1y1 + γ2y2 + γ3y1y2 + ε3.

1.10.2 Joint Model Approach

A more principled approach for creating multiple imputations is to develop
a joint distribution for (Y1, Y2, Y3) and then construct the needed predictive
distributions. Given the complexity of the relationship among these variables,
developing such a joint distribution is not an easy task. One might attempt
to build such a model as follows:

1. A histogram of y1 suggests a model y1|µ, σ2 ∼ N(µ1, σ
2
1).

2. The scatter plot in Figure 1.2 suggests that y2|y1, θ, σ2 ∼ N(θo +
θ1y1, σ

2
2) where θ = (θo, θ1).

3. The regression analysis suggests that y3|y1, y2, φ, σ3 ∼ N(φo +
φ1y1 + φ2y2 + φ3y1y2, σ

2
3) where φ = (φo, φ1, φ2, φ3).

Thus, the proposed joint distribution is

f(y1, y2, y3|ω) = (2π)−3/2σ−11 σ−12 σ−13

exp

[
−
{(

y1 − µ1

σ1

)2

+
(
y2 − θo − θy1

σ2

)2

+
(
y3 − φo − φ1y1 − φ2y2 − φ3y1y2

σ3

)2
}]

(1.2)

where ω = (µ1, θ, φ, σ1, σ2, σ3).
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Figure 1.2: Scatter plots for the three-variable example
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Assume a flat prior for ω, Pr(ω) ∝ (σ1σ2σ3)−1. A Gibbs sampling algo-
rithm could be used to generate imputations as follows:

1. Generate the initial missing values using some random mechanism

2. Generate the value of ω from its posterior distribution given the
complete data. This is fairly easy to do as three distinct analyses:
marginal model of y1 (for generating (µ1, σ1), the regression of y2
on y1 (for generating (θ, σ2)) and the regression of y3 on y1 and y2
(for generating (φ, σ3))

3. Regenerate the missing values from the appropriate predictive dis-
tribution given the parameters generated in Step 2 (See Step 2a
below).

4. Iterate between Steps 1, 2 and 3 until the convergence is attained.

An alternative approach for starting the Gibbs cycle is to generate initial
values of the parameters as given below:

1a. Generate the initial value of the parameter ω, by drawing a boot-
strap sample and then estimate ω based on the complete cases in
the bootstrap sample.

2a. Generate the imputations from the predictive distribution given the
observed values and the initial value of the parameters.

3a. Generate the new value of the parameters as in Step 2 above.

4a. Iterate between Steps 1a, 2a and 3a until the convergence is at-
tained.

For Step 2 (or Step 3a), the following itemized list provides details about
the drawing the value of the parameters given the complete data:

• Let ȳ1 and s1 be the mean and standard deviations of variable Y1 in the
completed data set obtained in Step 1. Generate σ2

1 as σ∗21 = (n−1)s21/χ
2
n−1

where χ2
n−1 is chi-square random variable with n−1 degrees of freedom and

n is the sample size. Generate µ1 as µ∗1 = ȳ1+Zσ∗1/
√
n where Z is a standard

normal deviate.

• Let θ̂ = (XTX)−1XTY2 be the least squares estimate of the regression of
Y2 on Y1, where X is a n × 2 matrix of a column of ones and the values of
y1 and Y2 is a n × 1 column vector of values of y2. Let C be the Cholesky
decomposition such that CCT = (XTX)−1. Let RSS be the residual sum

of squares, (Y2 − Xθ̂)T (Y2 − Xθ̂). Define the draws of (σ2, θ), as σ∗22 =

RSS/χ2
n−2 and θ∗ = θ̂+ σ∗2CZ where χ2

n−2 is a chi-square random variable
with n−2 degrees of freedom and Z is a 2×1 vector of independent standard
normal deviates.

• Finally, for (φ, σ3) define Y3 as a n×1 vector of values of y3 and X as a n×4
matrix with a column vector of ones, values of y1, y2 and their product. Use
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the same procedure as in the previous step. The residual degrees of freedom,
however, is n− 4.

The predictive distributions needed in Step 3 (or in Step 2a) are a bit
complicated. From the joint distribution, focusing on the terms involving y3,
it is easy to see that the predictive distribution for y3 is given by the regression
of y3 on y1, y2 and y1y2 (the last term in the exponent). This involves the
generated values of (φ, σ3) and the covariate values of y1 and y2 for a subject
with missing value in y3.

Focusing on the terms involving y1 in Equation (1.1), the predictive dis-
tribution of y1 given y2 and y3 is proportional to,

exp

[
−

{(
y1 − µ1

σ1

)2

+

(
y1 − (y2 − θo)/θ1

σ2/θ1

)2

+

(
y1 − (y3 − φo − φ2y2)/(φ1 + φ3y2)

σ3/(φ1 + φ3y2)

)2
}]

,

which is a product of three normal densities.
Thus, the predictive distribution is normal with the conditional mean of

y1 given ω, y2 and y3 as

E(Y1|y2, y3, ω) =
µ1/σ

2
1 + θ1(y2 − θo)/σ2

2 + (φ1 + φ3y2)(y3 − φo − φ2y2)/σ2
3

1/σ2
1 + θ21/σ

2
2 + (φ1 + φ3y2)2/σ2

3
(1.3)

and the conditional variance as

V ar(Y1|y2, y3, ω) = (1/σ2
1 + θ21/σ

2
2 + (φ1 + φ3y2)2/σ2

3)−1 (1.4)

Similarly, the predictive distribution of y2 given y1 and y3 is proportional
to,

exp

[
−

{(
y2 − θo − θ1y1

σ2

)2

+

(
y2 − (y3 − φo − φ1y1)/(φ2 + φ3y1)

σ3/(φ1 + φ3y2)

)2
}]

,

which is a product of two normal densities. Thus, the predictive distribution
of y2 given y1, y3 and ω is normal with mean

(θo + θ1y1)/σ2
2 + (φ1 + φ3y1)(y3 − φo − φ1y1)/σ2

3

1/σ2
2 + (φ1 + φ3y1)2/σ2

3

and variance

V ar(Y2|y1, y3, ω) = (1/σ2
2 + (φ1 + φ3y1)2/σ2

3)−1.
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1.10.3 Comparison of Approaches

How does the joint model approach compare with the empirically derived
regression models in the SRMI approach? Note that Equation (1.3) is of the
form,

ao + a1y2 + a3y
2
2 + a4y2y3

bo + b1y2 + b3y22
,

where the coefficients a’s and b’s are the functions of the parameters. Consider
a linear approximation of the equation (1.3) using the Taylor series to obtain,

E(Y1|y2, y3) ≈ Ao +A1y2 +A2y3 +A3y2y3 +A4y
2
2 +A5y

2
2y3 + . . .

which is similar to the model developed based on the regression analysis.
Equation (1.4) indicates a non-constant variance but is not prominent in the
regression analysis of the actual data.

Similarly, the linear approximation of the conditional mean of Y2 given Y1
and Y3 is of the form,

Bo +B1y1 +B2y3 +B3y1y3 +B4y
2
1 + +B5y

2
1y3 + . . .

which is similar to the model used in the SRMI approach. Again, the non-
constance variance was not prominent in the regression analysis. Thus, the
functional forms of the predictive distributions are similar under the two ap-
proaches but the number of parameters fit is different. The SRMI approach
uses a total of 17 parameters (14 regression coefficients and 3 residual vari-
ances) whereas the joint model approach uses 10 unknown parameters (3
variances and 7 mean parameters). The SRMI approach uses a more flexible
system of equations involving the same predictor terms for generating impu-
tations but assumes a constant variance for the residuals. The particular data
set did not show much evidence of heteroscedasticity but the SRMI approach
can be modified to accommodate non-constant variance (See Chapter 11).

1.10.4 Alternative Modeling Strategies

Development of statistical models for imputation (for that matter, in any
statistical analysis) is both an art and science. One strategy is to transform
the variables to achieve approximate multivariate normality by considering
the Box-Cox transformation,

uj =
(yj + cj)

λj − 1

λj
,

where j = 1, 2, 3 and cj is constant to make all the values positive. λj , j =
1, 2, 3 are such that (u1, u2, u3) is approximately multivariate normal with
mean µ and covariance matrix Σ. The missing values can be imputed on the
transformed scale and re-transformed to the original scale.

Sometimes one gets trapped in the notion of a “true” or “correct” model.
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This notion is useful while developing and evaluating statistical procedures
(such as estimators, significance tests, confidence intervals etc.) from the re-
peated sampling perspective. As a practitioner, it is important to remember
that “All models are wrong but some are useful” (this quote is often at-
tributed to a great statistician, George Box). The models are an approximate
description of a plausible probabilistic mechanism generating the observed
data, and thus allowing the development of interpretable scientific quantities
or estimands of interest and statistical inferences about them. It is important,
therefore, to be careful in developing models by making sure that they fit the
data well, they are substantively sensible and one should not overly interpret
the posited models as the functioning of the nature. In other words, the mod-
els are useful ways of constructing data summaries or statistics that enable us
to study the target population of interest.

If one entertains several competing models, then sensitivity of inferences
to model assumptions should be carefully evaluated. The goal of building the
imputation model is to use all available observed information, empirical inves-
tigations and scientific understanding to develop the best possible approach
for predicting the missing values and the associated uncertainties in the pre-
diction.

1.11 Complex Sample Surveys

A finite population sample survey consists of selecting a sample (using a prob-
abilistic sampling process or mechanism) from a well defined list, a sampling
frame, and then administering a questionnaire, or other means, for collect-
ing data. A probability sample requires that every individual in the sampling
frame has a positive probability of being included in the sample.

Often to capture important features of the population (information in the
sampling frame), the sampling mechanism uses stratification of the population
and unequal probabilities of selection to achieve specific objectives. To reduce
the cost of administration (for example, interviewer travel costs), the sample
will be selected in clusters and then clusters may be sub-sampled for individual
units. These complex issues introduce stratification, weighting and clustering
as standard features in many, if not all, sample surveys.

Analysis of data from these surveys, even without any missing data, need
to incorporate these features. A variety of approaches are available to incor-
porate them in the complete data analysis and implemented in many software
packages. For example, IVEware uses a linearization or Jackknife Repeated
Replication technique to incorporate these features when constructing infer-
ences.

The imputation process also need to include these features when creating
imputation of the missing values. There are three possible approaches de-



20 Multiple Imputation in Practice : With Examples Using IVEware

pending upon the level of correlation between the design variables and survey
variables with missing values, and the fraction of missing cases. If the frac-
tion of missing cases is small and the design variables are weakly correlated
with the survey variables with missing values then one can ignore the design
variables during the imputation but incorporate them in the completed data
analysis.

The second approach is to include strata as dummy variables (or use the
variables used in the construction of strata as predictors), survey weight as a
predictor and cluster level random effects to account for correlation between
observations within the same cluster. Instead of random effects for clusters,
cluster level covariates may be used as predictors.

The number of design variables can be large in some surveys. Therefore,
one may want to use some dimensionality reduction techniques to create sum-
mary scores. As an example suppose that Z denotes a vector of design variables
and R denotes the response indicator taking the value 1, if the variable under
consideration is observed and 0 if the variable is missing. A well fitting logistic
regression model,

Pr(R = 1|Z) = [1 + exp(−ZT γ)]−1

may be fit and the estimated linear predictor ZT γ̂, where γ̂ is the maximum
likelihood estimate of γ, may be considered as a scalar summary. This bal-
ancing score may be included as an additional predictor or covariate in the
sequential regression imputation model for the variable under consideration.

The third approach is to reconstruct synthetic populations based on the
design variables using a non-parametric Bayes approach and then multiply
impute the missing values in the synthetic populations. This may be viewed
as a four step process: (1) “Un-complex” the sampling unit selection process
through creation of several synthetic populations; (2) Multiply impute the
missing values in the variables for all the sampled units propagated in each
synthetic population; (3) Compute the population quantity from each imputed
synthetic population; and (4) combine all the computed quantities to construct
inferences. This approach is computationally intensive and, perhaps, the most
principled approach of the three methods described here. Chapter 9 discusses
this method in more details.

1.12 Imputation Diagnostics

It is very important to check whether the imputations created under a set of
model assumptions are sensible and comparable to the observed set of values.
There are two possible approaches for checking the imputations. The first
approach is to compare observed and imputed values for any specific variable
conditional on the observed values of other variables. The second approach is
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to generate synthetic data sets (all imputed values under the stated imputation
model assumptions) and compare to the observed data sets. Both approaches
are possible using IVEware.

1.12.1 Propensity Based Comparison

Let yj be the variable of interest and yj,obs and yj,imp be the observed and

imputed values, respectively, for this variable. Let y
(−j)
obs denote the observed

values in all other variables other than yj . Imputations from a well fitting
model should satisfy,

pr(yj,obs|y(−j)obs ) ≈ pr(yj,imp|y(−j)obs ). (1.5)

That is, conditional on y
(−j)
obs , the observed and imputed values should be sim-

ilar in distribution. One possible approach to assess Equation (1.5) is through
the propensity score method.

Let Rj = 1 for the observed values in yj and 0 for the imputed values.

Let p̂j = Pr(Rj = 1|y(−j)obs ) be the estimated propensity score for the observed
versus imputed values in yj . Equation (1.5) can be restated as

pr(yj,obs|p̂j) ≈ pr(yj,imp|p̂j)

IVEware estimates the propensity scores and compares the distributions of
imputed and observed values conditional on the propensity score in a number
of ways. One approach for comparison of distributions is through a scatter
plot of the vector y∗j (containing observed and imputed values) against pj with
different color or symbols for the observed and imputed values. In this scatter
plot, the observed and imputed values should appear exchangeable conditional
on pj . Another approach is to compare the distribution of the residuals of y∗j
on pj for Rj = 0 and Rj = 1. For example, the histograms or the kernel
densities of the residuals should be similar for the observed (Rj = 1) and
imputed values (Rj = 0). This approach will be illustrated through examples
in the later chapters.

1.12.2 Synthetic Data Approach

The suite of regression models used in the imputation of all the variables can
be checked by creating synthetic data sets and then comparing the synthetic
data sets with the observed data set. The idea is that, if the model is reasonable
then the observed data sets should be within the realm of all these synthetic
data sets. The SYNTHESIZE module in IVEware can be used to generate
several synthetic data sets as illustrated in Figure 1.3. The observed values in
the original data can be compared to the corresponding values in the synthetic
data sets to assess the model assumptions. This approach is similar to posterior
predictive checks in a standard Bayesian analysis.
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Figure 1.3: A schematic display of synthetic data sets produced by SYN-
THESIZE module in IVEware.

The challenge is to develop a metric to compare a data set with another
data set. The box plots of the variables, probability-probability or Quantile-
Quantile plots, key statistics such mean, variances, and correlation coefficients
are a few approaches that can be used to compare the observed and synthetic
data sets.

1.13 Should We Impute or Not?

Suppose that a predictor variable X in a multiple linear regression model
(where other covariates also have some small percentage of missing values) has
a lot of missing values (say, 75% of the sample). A question arises, “Should I
impute so many missing values?” In a response to this question, it is better
to ask the second question, “What is the alternative to imputation?”, before
trying to answer the first question. If the answer to the second question is
“complete-case analysis” then obviously it does not make sense because more
than 75% of subjects will be excluded from the analysis with a potential for
bias and a definite loss of efficiency.

If the answer to the second question is “Drop the variables from the anal-
ysis” then obviously no imputation is necessary. However, the substantive
analysis has now been modified by dropping the variable and, consequently, a
different scientific question is being answered in the new analysis.

As long as this variable is important for the analysis, it is better to impute
the missing values using as much information as possible. If one expects a
large amount of missing values in a particular variable, it is better to consider
auxiliary predictors of this variable, collect them and include them in the
imputation process.

Suppose that income is a variable which is expected to have a substantial
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number of missing values. It is better to collect correlates of income, such
as house value (from the administrative data), the interviewer observations
about the house and neighborhood, the number, model and make of the auto-
mobiles etc, which may have good predictive power for predicting the missing
income, in addition to the traditional measures, demographics, occupation,
employment, industry etc. Thus, the planning for adjustment for missing data
should begin at the design stage of the study, not as post-hoc thinking.

1.14 Is Imputation Making Up Data?

This question commonly arises among many researchers based on superficial
reading or understanding of the imputation based approach as the method
for dealing with missing data. The answer is yes, if one were to impute the
missing values and then pretend as though we have complete data. The
view should be: Impute the missing values but analyze the imputed
data accounting for the imputation. That is, estimation of uncertainty
about the estimates of (or inference about) the target quantity of interest must
reflect the fact that some are real (observed values) and others (imputations)
are “made up” from the real.

Consider an extreme (or rather a silly) example. Suppose a survey was
planned with a sample of size 1,000 to collect information on a continuous vari-
able Y . However, only 100 subjects responded, yielding the respondent mean of
Y values as 25 and a standard deviation of 5. Assume a MCAR mechanism.
The correct standard error of the sample mean is obviously 5/

√
100 = 0.5.

Now, suppose that the 900 missing values were imputed using the approx-
imate Bayesian Bootstrap method described Section 1.5 (by redrawing 900
values from 100 values). It so happens that the mean and the standard de-
viation from the filled-in or completed data are 25 and 5, respectively. If the
completed data of size 1,000 were to be analyzed naively, the standard error
output will be 5/

√
1000 ≈ 0.16. Obviously, this is incorrect because the “in-

formation content” of the completed data is the same or even less (because
of adding noise) than the observed data. Therefore, the standard error of the
mean has to be larger than or equal to 0.5.

Multiple imputation is one approach for incorporating the uncertainty
about the imputed values. The goal of the multiple imputation based ap-
proach should be viewed as the “rectangularization” of most, if not all, of
the information in the observed data set such that complete data software
can be used to perform a proper analysis that reflects the uncertainty in the
imputations.
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1.15 Multiple Imputation Analysis

1.15.1 Point and Interval Estimates

As indicated earlier, any analysis of imputed data must incorporate the impu-
tation uncertainty. Multiple imputation is one method for incorporating this
uncertainty. In this approach, a chosen imputation method is repeated, say, M
times, to generate M completed data sets. Each completed data set is analyzed
separately to obtain quantities of interest. Suppose that el is the estimate of
a parameter of interest from the completed data set l = 1, 2, . . . ,M and the
corresponding sampling variance is Ul. The average, ēMI =

∑
l el/M is the

multiple imputation estimate of the parameter. The average ŪMI =
∑
l Ul/M

is approximately the variance that would have been obtained had there been
no missing data. The additional uncertainty due to missing values (imputation
uncertainty) is measured as BMI = (1 + 1/M)BM where

BM =
∑
l

(el − ēMI)
2/(M − 1).

The multiple imputation variance estimate is TMI = ŪMI+BMI . The quantity
rMI = BMI/TMI is the fraction of missing information, the proportion the
total variance that is due to missing data. Another quantity of interest is
gMI = BMI/ŪMI , the proportionate increase in variance due to missing values
relative to an estimated complete-data variance, ŪMI .

For constructing confidence intervals, a t distribution is used with νMI =
(M − 1)/r2MI degrees of freedom. This degrees of freedom assumes that the
complete data analysis is infinite (or large sample size). If the complete data
analysis is small then further adjustment is needed. Let ν be the complete
data degrees of freedom. Defining

CMI =
ν + 1

ν + 3
ν(1− rMI),

the adjusted degrees of freedom is

ν∗MI =
νMICMI

νMI + CMI
.

1.15.2 Multivariate Hypothesis Tests

Let θ be a p-dimensional vector and the inference about θ involves test-
ing the null hypothesis Ho : θ = θo. As before, let e1, e2, . . . , eM be the
M completed data sets and Ul, l = 1, 2, . . . ,M be the corresponding p × p
variance-covariance matrices. Define ēMI =

∑
l el/M , ŪMI =

∑
l Ul/M and

BMI = (1+1/M)
∑
l(el− ēMI)(el− ēMI)

T /(M−1). The multiple imputation
variance-covariance matrix is TMI = ŪMI + BMI . When M , the number of



Basic Concepts 25

imputations is small relative to p, the matric BMI may not be non-singular
and so TMI can be quite unstable. If the effect of missing data is similar across
the p, parameters, as measured by the fraction of missing information, then
one can approximate TMI ≈ T̃MI = (1 + gMI)ŪMI where gMI is the average
trace of the matrix, GMI = BMI Ū

−1
MI (the trace of a matrix is the sum of its

diagonal elements and, hence gMI = Tr(GMI)/p).
Define the test statistic,

DMI = (ēMI − θo)T Ū−1MI(ēMI − θo)/[p(1 + gMI)].

An approximate sampling distribution of DMI is an F -distribution with p
as the numerator degrees of freedom and the denominator degrees of freedom,

wMI = 4(t− 4)[1 + (1− 2t−1)/gMI ]
2

where t = p(M−1) is assumed to be greater than 4. If t ≤ 4 then wMI = t(1+
p)(1+1/gMI)

2/2. The derivation of wMI is based on asymptotic distributions
(that is, assumes large samples). If the sample size is small (that is, if the
complete-data degrees of freedom is, νC), the modification of wMI is

w∗MI =
wMIcM
wMI + cM

where

cM =
(νC + 1)νC

(νC + 3)(1 + gMI)
.

An alternative, more complicated, denominator degrees of freedom derived
in Reiter (2007) is

w∗MI = 4 +

[
1

ν∗C − 4(1 + aMI)
+

1

t− 4

(
a2MI(ν

∗
C − 2(1 + aMI))

(1 + a2MI)(ν
∗
C − 4(1 + aMI)

)]−1
where ν∗C = νC(νc + 1)(νC + 3)−1 and aMI = tgMI/(t− 2).

In some software packages, it is difficult to compute gMI . The fraction of
missing information, however, for the p parameters, rj,MI , j = 1, 2, . . . , p, is
provided as a part of the output. An approximation, 1 + gMI ≈ r̄+,MI/(1 −
r̄+,MI), may be used, where r̄+,MI =

∑
j rj,MI/p, is the average fraction of

missing information. If the fraction of information for the p parameters is not
equal, it may be prudent to use the largest fraction of missing information to
calculate the denominator degrees of freedom.

1.15.3 Combining Test Statistics

In many completed data analyses, such as goodness of fit tests, the likelihood
ratio tests, model comparisons using the generalized estimating equations, log-
linear model, contingency table analysis etc., involves computing chi-square
statistics. One may then need a framework for combining these test statistics
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across the multiply imputed data sets. Let d1, d2, . . . , dM be the M completed-
data chi-square test statistics and let the completed-data degrees of freedom
(or the number of parameters)be k. Let d̄MI =

∑
l dl/M be their average.

Define p̄MI =
∑
l

√
dl/M and vMI = (1 + 1/M)

∑
l(
√
dl − p̄MI)

2/(M − 1).
The combined test statistic is defined as,

D̃MI =
d̄MI/k − (M + 1)vMI/(M − 1)

1 + vMI
,

and is referred to an F distribution with k as the numerator degrees of freedom
and,

νd = k−3/M (1 + 1/v2MI),

as the denominator degrees of freedom.
There are many other combining rules and these will be illustrated in the

later chapters.

1.16 Multiple Imputation Theory

Theoretical justification for the combining rules involves both repeated sam-
pling and Bayesian perspectives. The notion that information about any un-
known quantity needs to be expressed through a probability distribution over
the possible values of that quantity is fundamental to this theoretical justifi-
cation. Suppose that Tn is an observable quantity that could be constructed
based on a sample of size n . The statement that (Tn−µ)/

√
V |µ, V ∼ N(0, 1)

expresses uncertainty about the plausible values of Tn for a given values of
µ and V . The statement (Tn − µ)/

√
V |Tn, V ∼ N(0, 1) expresses uncertainty

about the plausible values of µ for a given value of Tn and V . The basis of
the first normal distribution is the repeated sampling of samples of size n
given the population values of µ and V and the basis of the second normal
distribution is the Bayesian posterior distribution of µ.

The same notion can be extended when Tn cannot be analytically com-
puted but is approximated using a procedure, yielding T̃n. The statements
(Tn − T̃n)/

√
U |Tn, U ∼ N(0, 1) and (Tn − T̃n)/

√
U |U, T̃n ∼ N(0, 1) are both

valid to, respectively, express the uncertainty about the accuracy of the ap-
proximation procedure and the predictive uncertainty about actual quantity
of interest, Tn given the yield from the procedure T̃n. An example is a nu-
merical or Monte Carlo technique for approximating Tn where the value of
U may be chosen so that the difference between Tn and T̃n can be made
arbitrarily small. In such cases, the notation, (Tn − T̃n)|T̃n ∼ N(0, << T̃n),
is used to indicate that the predictive uncertainty in Tn is very small when
compared to T̃n. It is important to recognize that, conceptually, Tn is still
an unknown quantity (if it cannot be calculated using an analytical formula)
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even if all the sample values are known. There are situations where U cannot
be made arbitrarily small given the cost or computational constraints and this
additional uncertainty should be incorporated when constructing inferences.
Consider now the justification of multiple imputation with this understand-
ing of the sources, and their expressions, of uncertainty through probability
distributions.

Let f(y|θ) be the substantive model of interest. The goal is to infer about
the scalar parameter θ. With the fully observed data, D = {yi, i = 1, 2, . . . , n},
on n subjects, suppose that θ̂D is the most efficient estimate of θ and its
sampling variance be U = u(θ). Furthermore, assume that the sample size is
large enough to permit the asymptotic approximation,

U−1/2(θ − θ̂D)|θ, U ∼ N(0, 1).

Let UD be an estimate of U such that UD/U |U ∼ N(1, << U). These approx-
imations are to be interpreted from the repeated sampling perspective and is
an expression about the uncertainty in the procedure used to construct θ̂D to
estimate θ.

From the Bayesian perspective, assume U
−1/2
D (θ̂D − θ)|UD, θ̂D ∼ N(0, 1)

and UD/U |UD ∼ (1, << UD), a large sample approximation of the posterior
distribution of θ and U , conditional on the data D. It is important to note the
quantities subject to uncertainty (quantities before the |) and what is being
conditioned on(quantities after the |) in the expressions of uncertainty.

With missing data, some elements of D are not known. Let yobs denotes
the observed portion of D and ymis denotes its missing portion. Assume that
missing data mechanism is ignorable, and thus an explicit formulation of the
distribution for the response indicator, R, is not needed. Thus, now both θ̂D
and UD are the functions of the known (yobs) and the unknown (ymis) values.
Let g(ymis|yobs) be the predictive (imputation) distribution of the missing
values, ymis, given yobs. Let

θ̂o = E(θ̂D|yobs) =

∫
θ̂Dg(ymis|yobs)dymis

be the average of the complete data estimate with respect to the imputation
distribution and

Uo = E(UD|yobs) =

∫
UD(ymis|yobs)dymis.

Thus,

V ar(θ̂D|yobs) = E(UD|yobs) + V ar(E(θ̂D)|yobs) = Uo +Bo

where Bo is the increase in variance due to missing values. Furthermore, as-
sume that the posterior distribution of θ, conditional on (θo, Uo, Bo), may be
approximated as N(θo, Uo + Bo). The quantity, ro = Bo/(Uo + Bo), is the
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fractional increase in variance due to missing values or the fraction of missing
information attributed to missing data.

Assume that θ̂o, Uo and Bo, cannot be analytically calculated and a Monte
Carlo procedure is to be used through drawing values from the predictive or

imputation distribution, g(ymis|yobs). Let y
(l)
mis, l = 1, 2, . . . be the draws from

the predictive distribution g(ymis|yobs) and let θ̂l and Ul be the estimate and

its variance computed from the completed data, D(l) = (yobs, y
(l)
mis). These are

the estimate and its variance derived from the complete procedure (that is, the

procedure that would have been used to compute (θ̂D, UD) with a complete
data) .

The multiple imputation estimate is θ̄MI =
∑
l θ̂l/M and let BM =∑

l(θ̂l − θ̄MI)
2/(M − 1), be the variance of the completed data estimates

across the M imputations. Let θ̄∞ = limM→∞θ̄MI and B∞ = limM→∞BM
be the limiting quantities as the number of imputations tends to ∞. Assume
ŪMI =

∑
l Ul/M tends to Ū∞ as M →∞.

Assume that the imputation procedure is such that θ̄∞ = θ̂o, B∞ = Bo
and U∞ = Uo. That is, the observed data quantities are recoverable from the
infinite number of imputations under the imputation model.

When the number of imputations is small, assume that the uncertainty in
the approximation procedure, due to finite M , is captured by

S1. B
−1/2
∞ (θ̄MI − θ̄∞)/

√
M |θ̄∞, B∞ ∼ N(0, 1)

S2. (M − 1)BM/B∞|B∞ ∼ χ2
M−1

S3. ŪMI/U∞|U∞ ∼ (1, << U∞)

As discussed earlier, the three items enumerated above could be trans-
formed as an expression of uncertainty about (θ∞, B∞, U∞), conditional on
(θ̄MI , BMI , ŪMI) as follows:

P1. θ∞|θ̄MI , B∞ ∼ N(θ̄MI , B∞/M)

P2. B∞|BM ∼ (M − 1)BM/χ
2
M−1

P3. U∞|ŪMI ∼ (ŪMI , << ŪMI)

Thus, now the ultimate goal of constructing the posterior distribution of
θ conditional on the approximate quantities (θ̄MI , BM , ŪMI), reduces to the
following expressions:

U1. θ|θ̄∞, B∞, Ū∞ ∼ N(θ∞, Ū∞ + B∞) (Follows from θ|θo, Uo, Bo ∼
N(θo, Uo +Bo) and θo = θ̄∞, Ū∞ = Uo and Bo = B∞)

U2. θ|θ̄∞, B∞, ŪMI ∼ N(θ̄∞, ŪMI + B∞) (replacing Ū∞ by ŪMI , per-
mitted under (P3) above)

U3. θ|θ̄MI , ŪMI , B∞ ∼ N(θ̄MI , ŪMI + (1 + 1/M)B∞) (integrating with
respect to θ̄∞, permitted under (P1))
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The final step is to integrate with respect to the posterior distribution of
B∞, conditional on BM to arrive at

Pr(θ|θ̄MI , ŪMI , BM ) =

∫
φ

(
θ − θ̄MI√

ŪMI + (1 + 1/M)B∞

)
×

f(B∞|θ̄MI , ŪMI , BM )dB∞, (1.6)

where φ() is the normal density function. There are several possible ap-
proximations of this integral but consider a t approximation for analytical
convenience, and this desire for a t approximation, necessitates approximat-
ing the posterior distribution of [ŪMI + (1 + 1/M)B∞]−1, conditional on
(θ̄MI , ŪMI , BM ), by a scaled chi-square distribution aχ2

ν .
Given (P2),

[ŪMI + (1 + 1/M)B∞]−1 ≡ [ŪMI + (1 + 1/M)BMX
−1]−1

where X has a scaled chi-square distribution, χ2
M−1/(M − 1). To derive the

expressions for a and ν, the mean and variance of [ŪMI+1(1+1/M)B∞]−1 will
be equated to the mean (aν) and the variance (2aν2) of the scaled chi-square
distribution aχ2

ν .
Taylor’s expansion, around the mean of X (=1) yields,

[ŪMI + (1 + 1/M)BMX
−1]−1 ≈ [1 + rMI(X − 1)]/TMI

where TMI = ŪMI + (1 + 1/M)BM = ŪMI + BMI and rMI = (1 +
1/M)BM/TMI = BMI/TMI , an estimate of the fraction of information. It
is easy to show that

aν = 1/TMI ,

and
2a2ν = 2r2MI/[(M − 1)T 2

MI ],

leading to a = r2MI/[(M−1)TMI ] = 1/(νTMI) where ν = (M−1)/r2MI . Thus,

TMI

ŪMI + (1 + 1/M)B∞
∼ χ2

ν

ν

yielding
θ|θ̄MI , ŪMI , BMI ∼ tν(θ̄MI , TMI)

a t distribution with location θ̄MI , scale TMI and the degrees of freedom
ν = νMI = (M − 1)/r2MI .

1.17 Number of Imputations

Multiple imputation is a simulation approach for constructing the inferences
(for example, confidence intervals). The degrees of freedom for constructing
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the confidence interval, νMI = (M − 1)/r2MI , depends upon the number of
imputations M and the fraction of missing information rMI .

Obviously, M has to be greater than or equal to 2, otherwise BMI cannot
be calculated. For BMI (and therefore rMI) to be reliably estimated we need
M to be large. Also, M should be large for the degrees of freedom νMI to
be large (for shorter confidence intervals). For νMI ≥ 50, one needs M ≥
50r2MI + 1. For example, with 25% as the fraction of missing information, one
needs M ≥ 50/16+1 ≥ 4.125, hence M = 5 was suggested initially (See Rubin
(1977)). This number was also proposed in an era where the computational
landscape was quite different, both in terms of storage and the data processing
power. Nevertheless, M = 5 may not produce a reliable estimate of rMI and,
therefore, νMI is subject to considerable sampling variability.

The uncertainty in BMI is captured through it is distribution, conditional
on the observed values, given by (M − 1)BM/B∞ ∼ χ2

M−1 (See (S2) or (P2)
in the previous section). Thus, assuming that ŪM ≈ Ū∞, obtains,

rMI =
(1 + 1/M)B∞ ×X

Ū∞ + (1 + 1/M)B∞ ×X

where X = χ2
M−1/(M − 1). Taylor’s expansion of the expression for rMI as a

function of X around its mean of 1, results in

rMI ≈ r∞ + (X − 1)r∞(1− r∞),

where r∞ = (1 + 1/M)B∞/[(1 + 1/M)B∞ + Ū∞]
Thus, the uncertainty in rMI can be expressed as

var(rMI) ≈ 2r2∞(1− r∞)2/(M − 1)

which has the maximum of 1/[8(M − 1)] at r∞ = 1/2. Thus, the coefficient
of variation of, rMI , at the maximum is 1/

√
2(M − 1). For this coefficient of

variation to be less than c, one needs M ≥ 1 + 1/(2c2). For example, with
c = 0.25, M should be at least 9, with c = 0.1, M should be at least 51 and
for c = 0.05, M should be at least 201.

Current computational resources are such that hundreds and thousands
of bootstrap samples and Monte Carlo simulations can be performed in a
flash. Thus, choosing a large value of M should not be a burden. It is possible
to choose M adaptively. For example, choose, say, M = 10 and compute the
fraction of missing information and then use the largest fraction of information
to determine the number of additional imputations needed.

1.18 Additional Reading

The basic textbooks for statistical background are Hogg, McKean and Craig
(2012), Casella and Berger (2002), Cox and Hinkley (1979) and a two volume
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book by Bickel and Doksum (2006). For a more in-depth understanding of
Bayesian analysis, refer to Box and Tiao (1973), Carlin and Louis (2008) and
Gelman et al (2013). There are numerous other excellent text books but the
previously mentioned books provide examples of the full spectrum of the field
and/or the basis of statistical inference. For background on complex surveys,
see the classic texts by Cochran (1977) and Kish (1995). Also, Lohr (2009),
Thompson (2012) and Valliant, Dever and Kreuter (2013) provide more recent
and excellent coverage of the relevant topics.

As indicated in the preface, the objective of this book is to provide sufficient
information to perform multiple imputation analysis for a variety of statistical
models. The software IVEware is used for illustrative purposes. In general,
these details are enough to implement these methods using other software
packages such as “mi” or ‘ice” in Stata (Royston (2007), STATACorp(2017)),
“PROC MI/PROC MIANALYZE” in SAS (Berglund and Heeringa (2014)), or
MICE in R (Van Buuren (2012)). However, for a conceptual understanding of
issues of missing data analysis, refer to the classic text Little and Rubin (2002).
Raghunathan (2016) covers the weighting and multiple imputation methods
from a practical perspective. A classic text book providing detailed knowledge
about multiple imputation is Rubin (1987) and a more recent textbook is
Carpenter and Kenward (2014). Additional general books on missing data
include Allison (2002), Molenberghs and Kenward(2007) and Schafer (1997).

An excellent reference for Tukey’s gh distribution is Hoaglin, Mosteller,
Tukey (1985). This distribution was first used for imputation in He and
Raghunathan (2006), and generalized in He and Raghunathan (2012). The
nonparametric approach discussed in Section 1.5 is from a technical report by
Bondarenko and Raghunathan (2010).

There are excellent texts discussing model building strategies such as Gel-
man and Hill (2006), Weisberg (2013), Draper and Smith (1998), Neter, Kut-
ner, Nachtsheim and Wasserman (1996) and Hosmer, Lemeshow and Sturdi-
vant (2013). Imputation diagnostics are discussed in Abayomi, Gelman and
Levy (2008) and Bondarenko and Raghunathan (2016). Generation of syn-
thetic data sets is discussed in Raghunathan, Reiter and Rubin (2003), though
in a different context. Gelman, Carlin, Stern, Dunson, Vehtari and Rubin
(2013) provide ideas about the posterior predictive checks that can be adapted
for assessing reasonableness of the imputations.

Rubin (1976a) is the foundation for the missing data mechanism that has
changed the view on assessing the appropriate methods for analyzing data
with some missing values. Multiple imputation was proposed by Rubin (1978)
and most theoretical and practical considerations are described in the classic
book Rubin (1987). The theoretical justification given in this chapter is de-
rived in Rubin (1987) and Raghunathan (1987). Rubin and Schenker (1986)
develops the combining rules for a scalar parameter. The multiparameter case
is developed in Raghunathan (1987) and refined in Li et. al. (1991a). Com-
bining chi-square statistics was also developed in Raghunathan (1987) and
extended in Li et. al. (1991b). Barnard and Rubin (1999) developed the mod-
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ification for small sample degrees of freedom. Reiter (2007) further refined the
combining rules. Meng and Rubin (1992) developed a method for performing
the likelihood ratio test with multiply imputed data sets and is not considered
in the book because it has not been implemented in any software packages.
Raghunathan, Solenberger, Berglund, Van Hoewyk (2017) implemented many
updates to the software including imputation diagnostics, linear regression di-
agnostics, finite weighted Bayesian Bootstrap (Zhou (2014) and Zhou, Elliot
and Raghunathan, 2016a, 2016b, 2016c) and synthesis of data for confiden-
tiality reasons (Raghunathan, Reiter and Rubin (2003)).

The sequential regression approach was first suggested by Kennickell
(1991) for continuous variables in the survey of consumer finances. Brand
(1999)in a doctoral dissertation develops this method further and names it
as variabe-by-variable imputation. Van Buuren and Oudshoorn (1999) in a
technical report introduced a version and named it as Multivariate Imputa-
tion by Chained Equations and developed the R package software, MICE.
Raghunathan et al (2001) develops the methods for several types of variables,
incorporates bounds and restrictions and termed it as Sequential Regression
Multivariate Imputation (SRMI). The software IVEware implementing this
approach is available at www.iveware.org. See also Van Buuren (2007) and
White Royston and Wood (2011). There are excellent books on multiple im-
putation methods that can be used as a companion to the material presented
in this book: Little and Rubin (2002), Van Buuren (2012)and Carpenter and
Kenward (2013). Many data sets used in this book are also discussed in Raghu-
nathan (2016).

The number of imputations needed for stable inferences are considered in
Graham et al (2007) and Allison (2012).

www.iveware.org
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Descriptive Statistics

2.1 Introduction

Any analysis of missing data using the multiple imputation approach involves
three steps: (1) Imputation; (2) Completed Data Analysis of each imputed
data; and (3) Combining statistics across imputations. Imputation may use
many variables in the process even though the analysis may involve only a
subset of these variables. In the bivariate example discussed in Chapter 1, the
imputation may involve both variables Y1 and Y2 although the analysis may
involve only Y2 (such as computing the mean or standard deviation). Though,
valid inferences can be obtained by just using Y2 in both the imputation and
analysis steps, much efficiency may be gained by borrowing strength from
the observed Y1 to impute Y2. This chapter focuses on univariate descriptive
statistics and some simple comparisons. Hence, the imputation process for the
entire set of variables is described first but the subsequent analysis involves
only a subset of variables.

Suppose that the population mean of a variable, Y , is E(Y ) = µ with the
population variance σ2 = V ar(Y ). If Y is binary then µ is the population
proportion or Pr(Y = 1) = µ = E(Y ) and σ2 = µ(1 − µ). The goal is to
estimate or infer about µ and σ2 (or just the µ in the binary case). Normally,
the standard deviation, σ, is often reported as it is in the same units as µ.
The mean, proportion, and standard deviation are often used to the describe
the study population in any resultant research articles or reports.

Consider the continuous variable case and a simple random sample. Let
ȳl and s2l be the sample mean and variance from the completed data l =
1, 2, . . . ,M . Let n be the sample size. Sometimes the sample size may not be
the same across the completed data sets. Suppose that the population mean
of interest is for a subdomain (Age 65 or above, for example) and the variables
( Age in the example) defining the subdomain have some missing values and
have been imputed (Age, for example). In this situation, nl will be sample size
for subdomain in completed data set l = 1, 2, . . . ,M and the formulas given
below should be modified accordingly.

The combining rule is rather simple where µ̂MI =
∑
l ȳl/M , ŪMI =∑

l(s
2
l /n)/M (or

∑
l(s

2
l /nl)/M) andBMI = (1+M−1)

∑
l(ȳl−µ̂MI)

2/(M−1).
The degrees of freedom, assuming n is large, is νMI = (M − 1)/r2MI where
rMI = BMI/(ŪMI + BMI). The confidence interval, with level 100(1 − α)%,

33



34 Multiple Imputation in Practice : With Examples Using IVEware

is (µ̂MI ± tνMI ,α/2

√
TMI) where TMI = ŪMI + BMI . The standard error of

the estimate µ̂MI is
√
TMI .

For inference about the sample variance, note that σ̂2
MI =

∑
l s

2
l /M . The

multiple imputation standard deviation is the square root, σ̂MI . Often the
variance of the sample variance is not of interest. But it can be calculated
easily. Note that Ul = V ar(s2l ) = al/n− s4l (n− 3)/(n(n− 1)) where al is the
average of the fourth power of deviations of the observations from the mean,∑
i(yi − ȳ)4/(n− 1) calculated from the completed data l = 1, 2, . . . ,M . If Y

is approximately normal then V ar(s2l ) reduces to 2s4l /(n − 1). The standard
combining rules can be used to obtain the multiple imputation variance TMI

and the fraction of missing information rMI .
A normal approximation for the posterior distribution of log σ (or the

sampling distribution of log sl) might be more reasonable than for σ. A delta
method (using Taylor’s series expansion) may be used to compute inferences
on the logarithmic scale and re-transformed to the original scale. The com-
bining rule for log σ uses,

Ul = V ar(s2l )/(4s
4
l )

and el = log sl. If (L,U) is the confidence interval for log σ then
(exp(L), exp(U)) is the confidence interval for σ.

For the binary Y , the same strategy used for the mean of the continu-
ous variable can be used for computing the estimate and its standard error.
However, better approximations are available for constructing the confidence
interval. Two of the most promising approaches are provided here, among
many that are reported in the literature. Define,

φ̂l = log
nȳl + 1/2

n(1− ȳl) + 1/2
.

Then φ̂l is approximately normally distributed with mean φ = log(µ/(1−µ))
and estimated variance Ul = (nȳl + 1/2)−1 + (n(1 − ȳl) + 1/2)−1. The usual
combining rules can be used to obtain, TMI , rMI and νMI and the confidence
interval,(φ̂L, φ̂U ) for φ. Thus, the confidence interval for µ is [exp(φ̂L)/(1 +

exp(φ̂L)), exp(φ̂U )/(1 + exp(φ̂U ))].

The second approach is to use the transformation θ̂l = sin−1
√
ȳl which is

approximately normal with mean θ = sin−1
√
µ and variance Ul = 0.25/n. As

before, the standard combining rules can be applied to obtain the confidence
interval (θ̂L, θ̂U ) for θ which leads to (sin2 θ̂L, sin

2 θ̂U ) as the confidence interval
for µ.

Many descriptive analyses may also involve comparisons of two or more
groups. Such comparisons can be made using the “contrast” feature in IVE-
ware. For example, suppose that Y is a continuous or binary variable. Also
suppose that Z is a binary variable taking the values 0 or 1. Assume the pri-
mary analytic interest is in the contrast θ = µ[Z=1] − µ[Z=0]. The estimate of
this contrast from the completed data l is the difference in the estimates for
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subgroups formed by Z = 1 and Z = 0. The combining rule can be applied to
this estimate and the standard error and confidence interval can be obtained
for θ. This feature can be used to assess any contrast. Suppose Z1 is gender
with 1 = Female and 0 = Male and Z2 is race coded as 1 = White and
2 = African American. The contrast of interest could be difference of the
differences:

(µ[Z1=1,Z2=1] − µ[Z1=0,Z2=1])− (µ[Z1=1,Z2=0] − µ[Z1=0,Z2=0]).

Though all the contrasts can be estimated through a regression formulation,
using the descriptive statistics approach might be more convenient.

2.2 Imputation Task

2.2.1 Imputation of the NHANES 2011-2012 Data Set

The first example uses data from the NHANES 2011-2012 survey. The analysis
goal is to perform descriptive analysis of a continuous variable measuring
systolic blood pressure and categorical variables indicating high cholesterol
and obesity along with a set of linear contrasts by gender, race, and obesity
status. Prior to analysis, however, missing data in key variables is addressed
by multiple imputation. NHANES uses a complex survey design. The survey
design variables are included as predictors and a “design-based” approach is
used to correctly estimate variances. Alternative methods are discussed and
illustrated in Chapter 9.

Step 1 of the imputation task is to define a list of the variables to be
included or excluded from the imputation model. Next, consideration of the
variable type (binary, continuous, ordinal, count, or mixed), the amount of
missing data and possible bounds or restrictions to be applied in the im-
putation model is important. The imputation model should include a set of
variables that encompass the analysis variables and optimally include more
variables than the planned analysis. Usual steps in model building through
scatter plots, residual plots etc. should be performed for each variable in the
data set.

The following code is typed into the XML editor provided with IVEware
and then executed by clicking “Run”. A number of other methods are possible
(see the User’s Guide for details) but the XML editor approach is the easiest
and is used through out the book. In this example, syntax is presented and
explained prior to the analysis results, in a step by step manner.

<sas name="Descriptive Analysis Using NHANES Data">

/* Set libname */

libname nhanes ’P:\ive_and_MI_Applications_Book\DataSets
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\nhanes_2011_2012’ ;

/* Impute Missing Data */

<impute name="impute_mult1" >

title "Impute NHANES Missing Data" ;

datain nhanes.nhanes1112_18p_c5 ;

dataout impute_mult1_5 all ;

categorical sdmvstra sdmvpsu edcat age marcat mex othhis

white black other RIAGENDR ;

transfer age18p seqn ;

bounds indfmpir (>=0, <=5) ;

multiples 5 ;

seed 555 ;

diagnose bpxsy1 ;

run ;

</impute>

/* create indicator of high cholesterol and obese

from imputed data */

data impute_mult1_5_r ;

set impute_mult1_5 ;

if lbxtc >= 200 then high_cholesterol=1 ; else

high_cholesterol=0 ;

if bmxbmi >= 30 then obese=1 ; else obese=0 ;

run ;

The code above uses a “tag” to enclose SAS commands, name the analysis
project, set the “libname” used by SAS, and impute missing data using the
IMPUTE command. The DATAIN commands read the input working data
set and DATAOUT with the ALL option produces a data set containing all
5 multiples from the imputations in a “long” file called “impute mult1 5”.
Another option is to output each imputed data set using the PUTDATA
command (not shown here but demonstrated in the User’s Guide).

Other highlights of the IMPUTE syntax are use of a CATEGORICAL
statement for categorical variables, a TRANSFER statement to carry along
2 variables, AGE18P and SEQN but omit from the imputation models, and
use of the default CONTINUOUS option which treats all other variables as
continuous.

Imputation bounds applied are declared in the BOUNDS statement. Here,
use of observed data values of 0 to 5 supply bounds for the imputed values
of the family poverty/income ratio variable. The use of the MULTIPLES
and SEED statements request 5 multiples and a seed value to ensure later
replication of results. Finally, use of DIAGNOSE produces diagnostic plots
for variables listed in the statement.

The imputation section of the program is executed to impute missing data
on the variables INDFMPIR, BPXSY1, BMXBMI, LBXTC, and MARCAT
(family poverty/income ratio, systolic blood pressure measurement #1, Body
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Mass Index, total cholesterol, and marital status, respectively). Once imputa-
tion is complete, two categorical indicators are created in the SAS data step,
OBESE (coded 1 if BMI >=30) and HIGH CHOLESTEROL (coded 1 if to-
tal cholesterol (LBXTC) >=200). Because both of these variables had some
missing data, the imputed data is used to create new indicators.

Prior to descriptive analysis of completed data sets, selected output from
the imputation process is presented. For example, for just the first of the five
imputed data sets, information about observed and imputed observations(note
that the double-counted column is mostly for diagnostic purposes when user
specified restrictions or bounds are used during the imputation, see the IVE-
ware users guide for more details) for two variables is presented below. Note
that this is just a small sample of all output produced by the software. The
output provides a way to visually evaluate the imputation through inspection
of the observed versus imputed distributions to identify possible imputation
process problems. In addition, use of the DIAGNOSE option for the systolic
blood pressure variable (BPXSY1) produces plots to evaluate the imputa-
tions (discussed in Section 1.7.1). Based on evaluation of Figure 2.1, a plot
of observed v. imputed mean values for systolic blood pressure, no apparent
differences are revealed. Given satisfactory imputation results, the focus now
turns to descriptive analysis.

Variable INDFMPIR

Observed Imputed Combined

Number 5332 532 5864

Minimum 0 0.0192318 0

Maximum 5 4.95729 5

Mean 2.36687 2.27823 2.35883

Std Dev 1.66749 1.20566 1.63111

Variable BPXSY1

Observed Imputed Combined

Number 5132 732 5864

Minimum 74 67.1915 67.1915

Maximum 238 182.924 238

Mean 123.528 124.089 123.598

Std Dev 18.7225 19.3952 18.807
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Figure 2.1: Diagnostics plots to compare the observed and imputed values of
systolic blood pressure

2.3 Descriptive Analysis

2.3.1 Continuous Variable

The goal is to perform a descriptive analysis of the first measurement of sys-
tolic blood pressure, among adults age 18 and older, using the 5 completed
data sets produced by IMPUTE.

<describe name="Mean Systolic Blood Pressure and Proportion

High Cholesterol and Obese" >

title "Mean Systolic Blood Pressure" ;

datain impute_mult1_5_r ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

mean bpxsy1 ;

table high_cholesterol obese ;

run ;

</describe>

<describe name="Mean Systolic Blood Pressure with Contrast

Gender and Race" >

title "Systolic Blood Pressure by Gender and Race" ;
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datain impute_mult1_5_r ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

mean bpxsy1 ;

contrast riagendr white ;

run ;

</describe>

The previous set of commands first requests an analysis of the continuous
variable BPXSY1 (systolic blood pressure) for the total sample as well as by
those with high cholesterol and those considered obese. Use of the MEAN,
TABLE and STRATUM, CLUSTER, and WEIGHT statements provide a
correctly weighted and design-based analysis of the imputed data sets.

The results in Table 2.1 indicate that the estimated mean systolic blood
pressure for US adults in 2011-2012 is 121.96 with a standard error of 0.59.

Table 2.1: Descriptive Analysis of Systolic Blood Pressure

Number of Cases Per Multiple Mean SE
5,615 121.96 0.59

The second analysis performs linear contrasts of estimated systolic blood
pressure by gender and race. The syntax includes STRATUM, CLUSTER,
and WEIGHT statements to incorporate the complex sample design features
of the NHANES survey, a MEAN statement for analysis of the continuous vari-
able BPXSY1, and a CONTRAST statement for a contrast of mean systolic
blood pressure by Gender (coded male, female) and Race/Ethnicity (coded
White, Non-White).

Table 2.2: Descriptive Analysis of Systolic Blood Pressure by Gender and Race

Systolic Blood Pressure Mean Standard Error P Value
Male 123.49 0.62

Female 120.52 0.67
Contrast 2.97 0.52 0.00*

Non-White 121.46 0.76
White 122.22 0.77

Contrast -0.75 1.02 0.46
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Table 2.2 presents the weighted mean, standard error for males (123.49,
se=0.62) and females (120.52, se=0.67) along with the linear contrast of 2.97,
se=0.52, p=0.00, indicating a significant linear contrast.

The contrast of mean systolic blood pressure for Whites (122.22, se=0.77)
versus Non-Whites (121.46, se=0.76), however, is not significant with a differ-
ence of (-0.75, se=1.02) and p=0.46.

2.3.2 Binary Variable

The same imputed data sets are now used to perform descriptive analysis
of the prevalence of High Cholesterol in US adults as well as differences in
prevalence of High Cholesterol by obesity status and gender.

<describe name="High Cholesterol with Contrast Gender

and Obesity Status" >

title "High Cholesterol by Obese and Gender with Contrasts" ;

datain impute_mult1_5_r ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

table high_cholesterol ;

contrast riagendr obese ;

run ;

</describe>

</sas>

The previous block of command syntax includes use of the TABLE state-
ment rather than the MEAN statement for analysis of a binary variable and
also requests a contrast of high cholesterol by gender and obesity status in the
CONTRAST statement. The contrast enables a test of the null hypothesis
of no association between having a cholesterol measurement of >= 200 and
being obese (BMI >=30) and by gender. Finally, the entire program is closed
by use of the </sas > statement.

Table 2.3: Prevalence of Obesity and High Cholesterol

Obese Weighted Proportion Standard Error
Yes 0.35 0.01
No 0.65 0.01

High Cholesterol
No 0.58 0.01
Yes 0.42 0.01

The weighted proportions of Table 2.3 suggest that an estimated 35% of
US adults are obese while about 42% have high cholesterol (total cholesterol
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>= 200).

Table 2.4: Contrasts of High Cholesterol by Gender and Obesity Status

Proportion Standard P Value
(Weighted) Error

Female, High
Cholesterol 0.46 0.01
Male, High
Cholesterol 0.38 0.01

Contrast of
Gender/High Cholesterol 0.08* 0.02 0.00

Obese, High Cholesterol 0.44 0.02
Not Obese, High Cholesterol 0.41 0.02
Contrast of
Obese/High Cholesterol 0.03 0.02 0.10

Based on the results from Table 2.4, among women, 46% have high choles-
terol while among men, 38% have elevated cholesterol. The contrast is about
8% with a p value of 0.0, indicating a significant association between gender
and high cholesterol. A similar analysis shows 44% of those considered obese
have high cholesterol while among those that are not obese, 41% have high
cholesterol with a contrast of 3% with a non-significant p value of 0.10.

2.4 Practical Considerations

In this chapter we use the XML or SRCShell editor with SAS method of
execution. Of course, the XML editor method can also be used with Stata,
R, SPSS, and SRCWare (stand-alone IVEware). Other methods are covered
in the user manual on the IVEware website (www.iveware.org). Regardless of
the choice of method, the results should be the same; the differences are solely
in execution method.

Other considerations are to carefully plan the imputation model and vari-
ables to be used to impute missing data before beginning the process. For ex-
ample, make sure to declare variable type, bounds, and restrictions precisely,
and once the imputation is complete, evaluate the quality of the imputations
prior to moving to descriptive or regression analyses of complete data sets.

www.iveware.org
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2.5 Additional Reading

Many basic text books discuss construction of descriptive statistics given in
Chapter 1. For the use of transformations see Cox and Hinkley (1976). For the
analysis of complex survey data see, for example, Graubard and Korn (1999),
Lohr(2009), Heeringa et al (2017) and Lumley (2010).

2.6 Exercises

1. Download the Health and Retirement Survey 2012 data set called
EX HRS 2012, from the book web site and use multiple imputa-
tion to handle missing data. The analysis goal is to estimate mean
BMI in the total population and by gender.

(a) Use a statistical software of your choice to examine the missing
data problem. Which variables have missing data and how much
missing data is there per variable? What is the overall pattern
of missing data?

(b) Impute any missing data using the IMPUTE command. Make
sure to use the observed minimum and maximum as imputa-
tion bounds for the BMI variable (R11BMI), use a SEED value
to allow replication of results, create M=10 imputations with 5
iterations, and omit ID variables (HHID, PN) from the impu-
tation models.

(c) Perform a design-based descriptive analysis of mean BMI, using
the 10 multiply imputed data sets. Be sure to include the strat-
ification, cluster, and weight variables in the analysis. What is
the estimated mean BMI (SE) for the total population?

(d) Repeat the analysis in part c. but obtain estimated mean BMI
and standard error by gender.

(e) Perform a linear contrast of mean BMI by gender. What is the
difference in estimates and standard error for mean BMI for
men v. women? Is this difference statistically significant?

2. Download the most recent NHANES demographic and body mea-
surement data from the NHANES web site. Gather the following
variables for this exercise: Age, Gender, Race/Ethnicity, Marital
Status, Body Mass Index, the MEC 2 year weight, Masked Stra-
tum, Masked PSU, and Total Serum Cholesterol. The goal is to
analyze the overall proportion of high cholesterol (>=200) among
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U.S. adults age 20 and older plus high cholesterol by gender and
race/ethnicity. However, missing data must be imputed prior to fi-
nal analysis.

(a) Use a statistical software of your choice to examine the missing
data pattern among those age 20 and older. How many vari-
ables have fully observed and missing data? What is the overall
pattern of missing data?

(b) Impute any missing data using the IMPUTE command with
the number of multiples dependent on your judgement regard-
ing the missing data problem. Use the observed minimum and
maximum values as imputation bounds for the continuous vari-
ables BMI and total cholesterol, a SEED value to allow repli-
cation of results, and omit the case id variable from the impu-
tation models. Make sure to incorporate the complex sample
design variables and weight in the imputation.

(c) Produce imputation diagnostics (DIAGNOSE option in IM-
PUTE) for a few variables with missing data and evaluate the
imputation plots. Are there any apparent problems or issues to
investigate?

(d) Using the combined imputed data, create an indicator of high
cholesterol coded 1 if total cholesterol >=200 and 0 otherwise.
Create another indicator variable called Black coded 1 if Black
and 0 if non-Black. Perform a design-based descriptive analysis
using the DESCRIBE command to obtain the proportion of
those with high cholesterol in the total sample, and by gender
and Black/non-Black. Produce a table of results similar to that
from Section 4.3.3. What are your conclusions about estimated
high cholesterol in the US population of adults age 20+? What
about gender/race contrasts?

3. Exercise 3 also uses the Health and Retirement Survey 2012 data
set as in Exercise 1. Prior to beginning this exercise, study Chapter
9 for details on use of the BBDESIGN command for analysis of
complex survey data. Use a weighted finite population Bayesian
bootstrap approach (implemented in BBDESIGN) to produce an
expanded complex sample design data set and then impute missing
data within the expanded data set. The goal is to estimate mean
BMI in the total sample and compare these results to those from
Question 1 using a multiple imputation and design-based approach.

(a) Repeat the examination of the missing data pattern. How many
variables have fully observed and missing data? What is the
overall pattern of missing data?

(b) Use the BBDESIGN command to expand the data set to repre-
sent the complex sample design features such as stratification,
clusters, and weights. Create 25 implicates in this step.
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(c) Impute any missing data in the expanded data set using the
IMPUTE command and request M=5 with 5 iterations. Make
sure to use the observed minimum and maximum as imputation
bounds for the BMI variable (R11BMI), use a SEED value to
allow replication of results, and omit HHID, and PN from the
imputation models.

(d) Perform descriptive analysis of mean BMI in the total sample,
using the DESCRIBE command but omit the stratum, cluster,
and weight statements. Use just the imputed/expanded data
set in this step. Make sure to code or calculate the correct
variance estimates following the example in the User guide.
(Recall that the combining rules for this process are different
from MI results). Based on these results, what is the estimated
mean BMI (SE) for the population of inference? Why do we
omit the design features and weights for the analysis? How do
the results compare to those from Question 1?
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Linear Models

3.1 Introduction

Regression analysis, the backbone of quantitative social and health sciences
research, is used to investigate the relationship between a dependent variable
Y and a predictor (or a vector of predictors), X. The purpose of this rela-
tionship may be to study the effect (or influence) of a particular predictor on
explaining the variation in the outcome variable or to develop a system to
predict the outcome for subjects yet to be seen from the population.

In a nutshell, a regression model involves specifications of one or more
aspects of the conditional distribution of Y given X. A regression function is
the conditional mean, E(Y |X), which may be expressed as g(X; θ) where g
is a known function and θ is, possibly, a vector of unknown parameters. In
a semi-parametric (non-parametric) formulation, the function g is partially
specified (unspecified). This chapter deals with the linear model, a specific
form, g(X; θ) = XT θ. The linear model refers to the relationship between
E(Y |X) and X that is linear with respect to parameters θ. For example,
consider a single predictor, Z and g(X; θ) = θo + θ1Z + θ2Z

2 = XT θ where
X = [1 Z Z2]T is a vector of predictors and θ = [θo θ1 θ2]T is a vector
of regression coefficients. This is a linear model but a nonlinear relationship
between E(Y |X) (more specifically E(Y |Z)) and Z.

The second aspect of the conditional distribution is the variance,

V ar(Y |X,σ) = h(X;σ),

where h is a known function of predictors and unknown parameters, σ. For
many distributions, the mean and variance are related to each other, hence
h will be a function of g. As in the case of g, h may be partially specified
or unspecified. In this chapter, we consider the case h(X;σ) = σ2 or σ2h(X)
where h(X) is a known function of X.

Typically, the mean and variance functions are sufficient in a regression
analysis. In some instances, the full conditional distribution may be specified.
For example, f(y|x) is a normal density function with the above specified
mean and variance function. In general, a regression model may be specified
as

Y = g(X; θ) + ε
√
h(X;σ)

45
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where ε is a random variable having a distribution with density function f ,
mean 0 and variance 1. For example, a normal linear model with a constant
variance is

Y = XT θ + εσ

where ε ∼ N(0, 1) whereas the same model with a non-constant variance is

Y = XT θ + εσ
√
h(X).

3.2 Complete Data Inference

3.2.1 Repeated Sampling

A popular approach for the estimation of the unknown parameter θ (for a
given σ) based on a sample, {(yi, xi), i = 1, 2, . . . , n} of size n is using the
method of least squares. The goal is to find θ that minimizes the objective
function,

n∑
i

(
(yi − g(xi; θ))

2

h(xi;σ)

)
.

Another set of least squares equations are usually developed to estimate σ but
will not be necessary for the type of models used in this chapter.

For the linear model with the constant variance, the method of least
squares is equivalent to minimizing the familiar, residual sum of squares,∑

i

(yi − xTi θ)2

which leads to θ̂ = (XTX)−1XTY where X is a n×p matrix with rows formed
by stacking the row vectors xi, i = 1, 2, . . . , n one below the other and Y is
the corresponding n× 1 vector.

The residual sum of squares is
∑
i(yi − xTi θ̂)2 which has n− p− 1 degrees

of freedom where p is the number of predictors (not including the intercept).
It can be shown that

σ̂2 =

∑
i(yi − xTi θ̂)2

n− p− 1

is an unbiased estimate of σ2.
The covariance matrix of the regression coefficient, θ̂, is σ̂2(XTX)−1. The

sampling variance of σ̂2 is a/(n−p−1)− σ̂4(n−p−4)/((n−p−1)(n−p−2))

where a =
∑
i e

4
i /(n− p− 1) and ei = yi − xTi θ̂ is the residual corresponding

to the observation i = 1, 2, . . . , n.
If the conditional distribution of Y given X is normal with mean XT θ and

variance σ2, then it can be shown that the sampling distribution of θ̂ given θ, σ
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and X is multivariate normal with mean θ and covariance matrix σ2(XTX)−1.
The sampling distribution of σ̂2 given σ2 and X is σ2χ2

n−p−1/(n − p − 1), a
scaled chi-square distribution with n−p−1 degrees of freedom. From these two
sampling distributions, it follows that the sampling distribution of σ̂−1C(θ̂ −
θ)|θ,X is a multivariate t with n − p − 1 degrees of freedom where C is the
Cholesky decomposition such that CCT = (XTX)−1. This result forms the
basis for constructing confidence intervals for the components of θ or testing
hypothesis concerning values of θ.

For a nonconstant variance of the type V ar(Y |X) = h(X)σ2, the least
squares approach is equivalent to minimizing,

n∑
i

(yi − xTi θ)2

h(xi)
=

n∑
i

[
yi√
h(xi)

− xTi√
h(xi)

θ

]2
=
∑
i

(yi∗ − xTi∗θ)2,

where yi∗ = yi/
√
h(xi) and xi∗ = xi/

√
h(xi). That is, a regression analysis

with non-constant variance can be re-expressed as constant variance regression
analysis with an appropriate scaling.

It is often difficult to model the variance, V ar(Y |X). One approach for
drawing inferences about the regression function E(Y |X, θ), is to use a re-
peated replication technique for computing the sampling variance of any es-
timate, θ̂, of θ. In IVEware, the Jackknife Repeated Replication (JRR) tech-
nique or method can be used to estimate the sampling variance, designed for
complex surveys, by treating each individual as a “cluster”.

Let θ̂(−i) be the estimate without the subject i = 1, 2, . . . , n. A pseudo
value is defined as

θ̂∗i = nθ̂ − (n− 1)θ̂(−i)

The bias corrected Jackknife estimate is defined as

θ̂JK =
∑
i

θ̂∗i /n

with its sampling variance estimated as

vJK =
1

n(n− 1)

∑
i

(θ̂∗i − θ̂JK)(θ̂∗i − θ̂JK)T

=
n

n− 1

∑
i

(θ̂(−i) − θ̂)(θ̂(−i) − θ̂)T .

The Jackknife approach can be quite computationally intensive for a large
sample size. One can reduce the computational burden by creating random
non-overlapping k subsets of n observations and using these random subsets
as “clusters”. This feature will be useful in longitudinal analysis where one can
model just the mean function and treat each individual as a cluster to obtain
valid variance estimates without specifying the correct variance function.
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3.2.2 Bayesian Analysis

For a Bayesian analysis (normal model with constant variance), a prior distri-
bution for (θ, σ) is needed. In many practical situations, this prior distribution
is typically diffuse relative to likelihood (constructed based on the conditional
distribution of Y given X, θ, σ). It is convenient to express this prior through
a so-called non-informative improper prior, Jeffreys prior, Pr(θ, σ) ∝ σ−1.
Under this prior, it can be shown that,

1. The posterior distribution of θ given θ̂, σ and X is normal with
mean θ̂ and the covariance matrix σ2(XTX)−1.

2. The posterior distribution of σ2 given σ̂2 is given by

(n− p− 1)σ̂2

σ2
|σ̂ ∼ χ2

n−p−1,

or

σ2|σ̂ ∼ (n− p− 1)σ̂2

χ2
n−p−1

.

3. From (1) and (2), it follows that the posterior distribution of θ given

θ̂ and X (that is, integrating out σ) is a multivariate t distribution

with location θ̂ and the scale matrix σ̂2(XTX)−1 and degrees of
freedom n− p− 1.

The posterior probability statements about θ can be constructed using the
above posterior distribution. Let θj and θ̂j be the jth component of θ and

θ̂, respectively and uj be the jth diagonal element of the covariance matrix
U = σ̂2(XTX)−1. The 100(1−α)% highest posterior density interval (credible

interval) is given by θ̂j ± tn−p−1,α/2
√
uj where tn−p−1,α/2 is the quantile of

the t distribution with n − p − 1 degrees of freedom corresponding to the
probability α/2. Numerically, this is exactly the same as the 100(1 − α)%
confidence interval from the repeated sampling perspective.

3.3 Comparing Blocks of Variables

The regression coefficient, say θ1 in a regression model with two variables,
g(X, θ) = θo + θ1X1 + θ2X2 measures an average expected difference in the
outcome, Y , for a one unit positive difference in X1 when X2 is held constant.
Thus, each regression coefficient is measuring the “unique” impact of the
corresponding variable with other variables being equal or held constant. Note
that, this interpretation is not valid when predictors include non-linear terms
or interaction terms. For example, suppose that g(X, θ) = θo+θ1X1 +θ2X2 +
θ3X1×X2; then it is not possible to change X1 without automatically changing
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X3 = X1×X2. If θ3 is large then it is not possible to describe the relationship
between Y and X1 (or X2) using a single line.

Sometimes, it may be of interest to assess the impact of a block of variables
Z1 = (X1, X2, . . . , Xq) where Z2 = (Xq+1, . . . , Xp) is the remainder of the
variables in the “Full” model. The “reduced” model has just Z2 as the predic-
tors, that is, the regression coefficients corresponding to Z1 are set to zero. Let
RSSF be the residual sum of squares for the full model and RSSR be the resid-
ual sum of squares for the reduced model. The contribution of Z1 is measured
by the reduction in residual sum of squares SS(Z1) = RSSR−RSSF which is
attained by fitting q parameters. That is, on the average, the q variables con-
tribute, sN = SS(Z1)/q, towards the reduction in the residual sum of squares.
As a contrast, the unexplained residual variance is sD = RSSF /(n − p − 1)
(including the intercept term). Heuristically, the block of variables Z1 con-
tribute towards our understanding of the variation in Y , if sN is considerably
larger than sD. The ratio, F = sN/sD, is a measure of the “worth” of Z1.
Under the hypothesis that Z1 is irrelevant, the sampling distribution of F has
an F -distribution with q and n− p− 1 degrees of freedom. Thus, if the com-
puted value of F is large (or in the tail of the distribution of F with νN = q
and νD = n − p − 1 degrees of freedom) then it is worth including Z1 in the
model.

Sometimes, it is of interest to assess the overall fit of the model. Two
popular measures are R2 and adjusted R2. Suppose that the reduced model
has just the intercept term and the full model has both (Z1, Z2) and let F be
the corresponding F-statistic. The quantity

R2 =
νNF

νNF + νD

is the familiar, proportion of the total variation in Y explained by (Z1, Z2)
and the adjusted R2 is

R2
adj = 1− (1−R2)(n− 1)/(n− p− 1).

3.4 Model Diagnostics

Developing good regression models is an iterative process. Start with a working
model, use the residuals to assess the model fit, refine the models, assess the fit
again until a satisfactory model for both the mean and the variance functions
are obtained. This section describes some key diagnostic plots useful for model
building purposes.

The model diagnostics can be be classified into the following four cate-
gories:

1. Assess the fit of the mean function. Scatter plots of the outcome
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versus predictors is the first step towards developing the model.
The second step is to plot residuals (from the current model) versus
predictors to detect non-linearity and potential interaction terms.
For a good fit, the residual scatter plots should resemble a random
scatter around the horizontal line at zero value of the residual.

2. Assess the Constancy of Variance. A scatter plot of the residuals
(from the current model) versus the predicted values is useful to
assess heteroscedasticity. All the scatter plots listed under (1) can
also be useful to assess the constancy of variance of the residuals
with respect to individual predictors.

3. Normality of Residuals. Histograms and normal quantile plots of
the residuals are useful to assess whether it is reasonable to assume
a normal distribution for the residuals. Generally, the least squares
approach is fairly robust to modest departures from normality. The
goal is to detect large departures from a bell-shaped distribution.

4. Influence Diagnostics. Cooks distance,

Di = (β̂−i − β̂)T V̂ −1(β̂−i − β̂),

where β̂−i is an estimate of β without the observation i and V̂ is the
covariance matrix, is useful to assess the influence of observation i.
Another measure is leverage hi which is the diagonal element of
the “Hat” matrix, H = X(XTX)−1XT . Eigenvalues of the matrix
XTX are useful to detect collinearity. Eigenvalues close to zero are
indicative of linear dependencies among the predictors.

3.5 Multiple Imputation Analysis

This section explains how to perform a regression analysis when some covari-
ates and predictors have missing values. First, use the sequential regression
approach to impute the missing values using as many predictors as possible
even though the ultimate analysis may involve only a subset of variables. For
more details about the imputation issues see Raghunathan (2016).

3.5.1 Combining Point Estimates

Suppose that θ̂l is the estimated regression coefficient from imputed data
l = 1, 2, . . . ,M and let Ul be the corresponding covariance estimate. The
multiple imputation estimate of θ is the average, θ̂MI =

∑
l θ̂l/M and the

covariance matrix,

TMI =
∑
l

Ul/M + (1 +M−1)
∑
l

(θ̂l − θ̂MI)(θ̂ − θ̂MI)
t/(M − 1).
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= ŪMI +BMI

The square root of the diagonal element of TMI are the multiple imputation
standard errors.

Note that the matrix TMI may not be positive definite if M is smaller than
p, the dimension of θ. However, the following approximation may be useful. If
the effect of missing data is similar for all parameters, then the Eigenvalues
of BMI relative to TMI , the measures of fraction of information for θ, will be
approximately the same, leading to an approximation,

TMI = (1 + gMI)ŪMI

where gMI = (1 + M−1)Tr(BMI ŪMI)
−1/p. If this approximation is not rea-

sonable then one may have to choose M large enough to reliably estimate the
full covariance matrix TMI , an essential quantity for multivariate hypothesis
testing.

3.5.2 Residual Variance

Under normality, the completed data estimate of the residual variance, σ̂2
l , is

independently distributed (conditional on the observed data), with the follow-
ing distribution:

(n− p− 1)σ̂2
l

σ2
∼ χ2

n−p−1

or equivalently,

σ−2|Dl ∼
χ2
n−p−1

(n− p− 1)σ̂2
l

The completed data posterior mean and variance of σ−2 are σ̂−2l and Ul =
2(n − p − 1)−1σ̂−4l . Applying the combining rules, the multiple imputation
estimate of σ−2 is σ̂−2MI =

∑
l σ̂
−2
l /M and its posterior variance is

TMI =
∑
l

Ul/M + (1 +M−1)
∑
l

(σ̂−2l − σ̂
−2
MI)

2/(M − 1).

The normal approximation for the terms involving square may not be rea-
sonable. An alternative approach is suggested for inferring about the variance
components. Note that, the exact posterior distribution of σ−2 is that of a
linear combination of independent chi-square random variables. Using the ap-
proximation discussed in Satterthwaite (1943), this posterior distribution can
be expressed as

σ−2|Dobs ≈ aχ2
b

where ab = σ̂−2MI and 2a2b = TMI . Equivalently, a = 0.5 × TMI × σ̂−2MI and
b = 2(σ̂−2MI)

2/TMI .
An alternative approach is to use a normal approximation for the com-

pleted data posterior distribution of log σ with mean log σ̂l and variance
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Ul/(4σ̂
4
l ) which leads to

log σ|Dobs ≈ N(log σ̂MI , TMI)

where log σ̂MI =
∑
l log σ̂l/M and variance,

TMI = (
∑
l

Ul/σ̂
4
l /M)/4 + (1 +M−1)

∑
l

(log σ̂l − log σ̂MI)
2/(M − 1)

The confidence/credible intervals for σ−2 or log σ can be obtained using
the approximate scaled chi-square or normal approximation, respectively. The
end points can be re-transformed to the original scale (σ2).

3.6 Example

The linear regression example demonstrates the process of multiple imputation
and estimation (with diagnostic plots and multivariate tests) of linear regres-
sion. The model includes the continuous outcome total cholesterol measure-
ment predicted by continuous BMI, age in years, gender, and race/ethnicity,
using NHANES 2011-2012 data for US adults age 18+. IVEware with SAS is
used in this example. As in Chapter 2, the analysis is done using a design-
based approach though use of the weighted Bayesian Bootstrap method is
another excellent option, see Chapter 9 for details and examples.

Imputation is done with IMPUTE, the output data sets are then analyzed
with REGRESS (including optional diagnostic plots) and linear regression
while accounting for increased variability due to multiple imputation and com-
plex sample design variance estimation. Post estimation, use of SAS PROC
SURVEYREG and PROC MIANALYZE are used to produce multivariate
tests of specific variables’ contribution to the overall model. Finally, calcula-
tion of R Squared and Adjusted R Squared statistics is done in the SAS data
step using F Test information from PROC MIANALYZE.

3.6.1 Imputation

<sas name="Linear Regression Using NHANES Data">

/* Set libname */

libname nhanes ’P:\ive_and_MI_Applications_Book

\DataSets\nhanes_2011_2012’ ;

/* examine missing data */

proc means data=nhanes.nhanes1112_adults_26may2016

n nmiss mean ;
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run ;

/* Impute Missing Data */

<impute name="impute_mult1" >

title "Impute NHANES Missing Data Adults 18Plus" ;

datain nhanes.nhanes1112_adults_26may2016 ;

dataout impute_mult1 ;

categorical sdmvstra sdmvpsu edcat age marcat ridreth1

RIAGENDR ;

transfer seqn ;

bounds indfmpir (>=0, <=5) ;

multiples 5;

iterations 10 ;

seed 555 ;

run ;

</impute>

/* extract the remaining four multiply imputed datasets */

<putdata name="impute_mult1" mult="2" dataout="impute_mult2" />

<putdata name="impute_mult1" mult="3" dataout="impute_mult3" />

<putdata name="impute_mult1" mult="4" dataout="impute_mult4" />

<putdata name="impute_mult1" mult="5" dataout="impute_mult5" />

The initial set of commands (above) evaluate the missing data problem using
SAS PROC MEANS, impute missing data with the IMPUTE command, and
output 5 completed data sets using the PUTDATA command. The imputa-
tion includes the BOUNDS statement for the INDFMPIR variable, a SEED
statement, TRANSFER and an ITERATIONS statement to specify imputa-
tion model details. The PUTDATA commands extracts 5 SAS data sets of
completed data for subsequent analysis.

3.6.2 Parameter Estimation

/* Linear Regression Using Imputed Data Sets */

<regress name="Linear Regression Total Cholesterol Regressed on

BMI Gender Age and Race" >

title "Linear Regression Total Cholesterol Predicted by BMI

Gender Age and Race" ;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4

impute_mult5 ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

link linear ;
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dependent lbxtc ;

categorical riagendr ridreth1 ;

predictor bmxbmi age riagendr ridreth1 ;

estimates

black_male_age30_bmi25: Intercpt (1) bmxbmi(25) age (30)

riagendr (1) ridreth1 (4) /

black_female_age30_bmi25: Intercpt (1) bmxbmi(25) age (30)

riagendr (2) ridreth1(4) ;

plots outplots ;

run ;

</regress>

In the second block of code, parameter estimation is performed by linear re-
gression with the REGRESS command with the 5 completed data sets output
from IMPUTE. Incorporation of the STRATUM, CLUSTER, and WEIGHT
statements accounts for the complex sample design and weighting features
of the NHANES survey. The dependent variable, LBXTC, is declared on the
DEPENDENT statement, model predictors on the PREDICTOR statement,
predicted values for certain types of respondents on the ESTIMATE state-
ment, and diagnostic plots are generated by the PLOTS statement (see Figure
3.1 below).

Figure 3.1: Regression diagnostics plots

Based on Figure 3.1, a diagnostic plot of Predicted Values v. Residuals,
we have little concern about the overall regression model fit. This is one of a
number of plots produced by the PLOT option in the REGRESS command.

Table 3.1 presents results from the linear regression including parameter es-
timates, standard errors, and CI’s for BMI, Age, Gender, and Race/Ethnicity.
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Table 3.1: Estimates of Regression Parameters for Total Cholesterol

Variable Estimate Standard Error Confidence Interval
Intercept 170.766 2.721 (164.945, 176.586)
BMXBMI 0.217 0.072 (0.062, 0.374)

Age 0.384 0.056 (0.264, 0.503)
Male -8.702 1.247 (-11.370, -6.035)

Mexican 3.931 2.845 (-2.155, 10.017)
Other Hispanic 4.426 3.388 (-2.821 , 11.674)

White 5.128 2.304 (0.198, 10.057)

Black -2.247 2.657 (-7.930,3.436)

The results suggest that all but Race/Ethnicity are significant predictors of
estimated Total Cholesterol in the U.S. adult population in 2011-2012.

Table 3.2: Estimates of Predicted Total Cholesterol for Certain Types of In-
dividuals

Characteristics Estimate Standard Error

Black, Male, Age 30, BMI=25 194.748 9.616
Black, Female, Age 30, BMI=25 186.046 9.699

Table 3.2 presents predicted total cholesterol levels for Black males and
females age 30 with a BMI of 25. The estimates are higher for males as com-
pared to females with the same characteristics. These results are produced by
the ESTIMATE statement in the previous REGRESS command of IVEware.

3.6.3 Multivariate Hypothesis Testing

A multivariate test of zero contribution to the linear model is demonstrated
by use a test of two predictors, indicators of being Male and White.

/* Sort by _mult_ before running SURVEYREG */

data impute_mult1_5_r ;

set impute_mult1 impute_mult2 impute_mult3 impute_mult4

impute_mult5 ;

/* create a new variable for PROC SURVEYREG AND PROC MIANALYZE */

_imputation_= _mult_ ;

if riagendr=1 then male=1 ; else male=0 ;

run ;

proc sort ;

by _imputation_ ;

run ;

/* SAS PROC SURVEYREG with PROC MIANALYZE to do F Test and
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Multivariate Tests*/

title "SAS SURVEYREG with PROC MIANALYZE for Multivariate Tests";

proc surveyreg data=impute_mult1_5_r ;

strata sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

class ridreth1 ;

by _imputation_ ;

model lbxtc = bmxbmi age male ridreth1 / solution covb ;

ods output parameterestimates=outparms covb=outcovb ;

run ;

proc print data=outparms ;

run ;

title "Compressed Parameter" ;

* modify name of race/eth to match outcovb ;

data outparms1 ;

set outparms ;

parameter=compress(parameter) ;

run ;

proc print ;

run ;

data outcovb1;

set outcovb ;

parameter=compress(parameter) ;

ridreth11=ridreth1_1; ridreth12=ridreth1_2 ;

ridreth13=ridreth1_3 ; ridreth14=ridreth1_4 ;

ridreth15=ridreth1_5 ;

run ;

title "Compressed Covb Parameter" ;

proc print ;

run ;

/*use OUTPARMS and OUTCOVB in PROC MIANALYZE for Multivariate

Test of Race */

proc mianalyze parms=outparms1 covb=outcovb1 ;

modeleffects intercept bmxbmi age male ridreth11 ridreth12

ridreth13 ridreth14 ;

test bmxbmi,age, male ,ridreth11, ridreth12, ridreth13,

ridreth14 / mult ;

test male, ridreth14 / mult;

run ;

The above commands use the concatenated imputed data set output from
IMPUTE, execute linear regression for each of 5 multiples by SAS PROC
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SURVEYREG and save parameter estimates and standard errors in an out-
put data set for use in PROC MIANALYZE. Note the use of the SAS Data
Step to remove white space in the output parameter estimates stored in the
variable called “parameter”. This is accomplished with the COMPRESS func-
tion of SAS and is needed prior to use of PROC MIANALYZE. The MIANA-
LYZE procedure offers MI and design-adjusted multivariate tests for specified
variables. The code includes a TEST statement with the option / MULT to
perform a joint test of the specified variables’ contribution to the model.

Table 3.3: Multivariate Inference for Male and Black Race for Linear Regres-
sion Model Predicting Total Cholesterol

Average Relative Increase in Variance Num DF Den DF F Pr>F
0.069 2 570.70 30.95 <.0001

3.6.4 Combining F-statistics

An F -test of the hypothesis of zero contribution to the model for all model
predictors is performed using PROC SURVEYREG and PROC MIANALYZE
(see above syntax). This step uses a similar TEST statement as presented for
a “reduced” model but in this case, all predictor variables are included in the
TEST statement.

Table 3.4: F-Test for Linear Regression Model Predicting Total Cholesterol

Average Relative Increase in Variance Num DF Den DF F Pr>F
0.121 7 1812.30 34.48 <.0001

Results from Tables 3.3 and 3.4 suggest that indicators of being Male and
Black significantly contribute to the linear model and the overall F test indi-
cates that all 7 predictors are also significantly different than zero contribution
to the model.

3.6.5 Computation of R2 and Adjusted R2

The R2 and Adjusted R2 statistics can be calculated following the formulae
presented previously in this chapter or on page 113 of Raghunathan (2016). In
this example, we use the F test information from Section 3.6.3 and calculate
the R2 and Adjusted R2 statistics in the SAS data step.

/* R Squared and Adjusted R Squared using information from

PROC MIANALYZE */
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data rsq ;

* rsq = dfnum*F/(dfnum*F + dfdenom) ;

rsq =7*34.48 / (7*34.48 + 1812.30) ;

* adjusted R sq = 1-(1-Rsq)*(n-1)/ (n-p-1) ;

adjrsq = 1-(1-rsq)*(5864-1) /(5864-7-1);

run ;

proc print ;

var rsq adjrsq ;

run ;

</sas>

The data step syntax performs the needed calculations and finally, closes the
session by use of the </sas> tag.

Table 3.5: R2 and Adjusted R2 for Linear Regression Model Predicting Total
Cholesterol

R2 Adjusted R2

0.118 0.116

The overall R2 and the Adjusted R2 are both about .12, indicating about
12% of the variability in the outcome is explained by the seven independent
variables in this model.

3.7 Additional Reading

For a practice oriented book on regression analysis, see Gelman and Hill
(2006). There are other classic books providing a comprehensive review of
regression analysis such as Draper and Smith (1998), Weisberg (2013), Neter,
Kutner, Nachtsheim, and Wasserman (1996). Some of the early work on miss-
ing values in regression analysis is described in Afifi and Elashoff (1967) and
for the missing values in ANOVA, Allan and Wishart (1930). See also Dodge
(1985). Rubin (1976b, 1976c) discusses missing values in the outcome and pre-
dictors. A comprehensive review of regression analysis with missing predictors
is given in Little (1992). More recent references include Von Hippel (2007).
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3.8 Exercises

1. Consider the following data regarding physical fitness, collected
from men in a fitness course at N.C. State University (data ob-
tained from the SAS Institute example data sets).

(a) Read the data below into a data set ready to be imputed and
analyzed by IVEware, using your chosen statistical software.
For example, the SAS code below illustrates how to read raw
data into a SAS data set:

/* Data on Physical Fitness:

These measurements were made on men involved

in a physical fitness course at N.C. State University.

Certain values have been set to missing and the resulting

data set has an arbitrary missing pattern. Only selected

variables of Oxygen (intake rate, ml per kg body weight

per minute), Runtime (time to run 1.5 miles in minutes),

RunPulse (heart rate while running) are used. */

data Fitness1;

input Id Oxygen RunTime RunPulse @@;

datalines;

1 44.609 11.37 178 2 45.313 10.07 185

3 54.297 8.65 156 4 59.571 . .

5 49.874 9.22 . 6 44.811 11.63 176

7 . 11.95 176 8 . 10.85 .

9 39.442 13.08 174 10 60.055 8.63 170

11 50.541 . . 12 37.388 14.03 186

13 44.754 11.12 176 14 47.273 . .

15 51.855 10.33 166 16 49.156 8.95 180

17 40.836 10.95 168 18 46.672 10.00 .

19 46.774 10.25 . 20 50.388 10.08 168

21 39.407 12.63 174 22 46.080 11.17 156

23 45.441 9.63 164 24 . 8.92 .

25 45.118 11.08 . 26 39.203 12.88 168

27 45.790 10.47 186 28 50.545 9.93 148

29 48.673 9.40 186 30 47.920 11.50 170

31 47.467 10.50 170

;

run;

(b) The analytic goal is to use linear regression to predict time to
run 1.5 miles by oxygen intake and running heart rate. Begin



60 Multiple Imputation in Practice : With Examples Using IVEware

by performing an analysis of the extent of the missing data
problem and the overall missing data pattern. Use your software
of choice for this step. How would you describe the missing data
pattern?

(c) What percentage of the data would be lost if performing a
complete case analysis? How much missing data exists for each
variable and what are the variable types in this data set?

(d) Impute the missing data using 4 different M= options. Begin
with M=5 and then increase to 20, 25, and the percentage of
cases with any missing data. Save each of the output imputed
data sets in a ”long” format for use in linear regression analyses
to come.

Use the following options in the imputation: 1. transfer the ID
variable during the imputation process, 2. use a seed value to
ensure replication of results, 3. use built-in imputation diagnos-
tics to evaluate the imputations, and 4. use the ALL option on
the output data sets of imputed data.

(e) Prepare scatter plots prior to linear regression to ensure that
linear regression is a viable model choice. Also, check the dis-
tribution of the dependent variable (RUNTIME) for violation
of the normality assumption. Is linear regression a good choice
for these variables? Do any variables require transformations?

(f) Use each of the imputed data sets from d. plus the original data
(non-imputed) and perform linear regression where Running
Time is regressed on Oxygen Intake and Run Pulse. Prepare a
table including Parameter Estimates, SEs, T Tests, and p val-
ues. Do the results change as the number of imputed data sets
increases? How do the imputed results compare to the Complete
Case Analysis? Would your conclusions change if you impute
missing data?

2. Continue with the data set used in Chapter 2, Exercise 2 (based on
the most recent NHANES data with selected variables). The goal is
to perform linear regression of total cholesterol regressed on gender
and Body Mass Index and to compute a number of model fit statis-
tics such as R Squared, Adjusted R Squared, and F test statistics.
Given the complex sample and weights included in the NHANES
data, make sure to incorporate these features in the imputation
models and subsequent analyses.

(a) Repeat the examination of the extent and pattern of missing
data. How much missing data exists and what is the pattern of
missing data?

(b) Impute any missing data in the data set using M=(a number
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of your choice). Why did you choose this number of multiples?
Why include the dependent variable in the imputation model?
Make sure to consider possible restrictions or bounds needed in
your imputation. Did you use either of these statements and if
so, why?

(c) Using your imputed data sets, prepare a table of regression
results from the linear model of total cholesterol regressed on
gender and BMI. Make sure to include Parameter Estimates,
SE’s, T Test, and P values plus an overall F Test, R Squared
and Adjusted R Squared (using the correct MI combining rules
presented previously in this chapter).

3. This exercise uses selected variables from the NHANES 2005-2006
data set. The variables are drawn from the interview portion of the
survey (demographic, design variables and weights) and the Medical
Examination Component (blood pressure). The goal is imputation
of missing data followed by linear regression to predict diastolic
blood pressure by age and gender.

(a) Download the data set called EX SUBSET NHANES 0506
from the book web site and if needed, convert to a data set ap-
propriate for use in your software of choice. Note, this data set
is restricted to those age 18+ and contains a subset of variables
for imputation and analysis, n=5,563. Age has been centered
by subtracting mean age in the subpopulation of adults (45.60)
from the original age variable.

(b) Examine the extent and pattern of missing data. Impute miss-
ing data using M=(number of your choice), a seed value, bounds
for the blood pressure variable (your choice), transfer the case
ID and age 18+ indicator, and request imputation diagnostics.
Do the diagnostics suggest any problems with the imputation
and if so, what might you do to address the problems?

(c) Using the imputed data sets from b., run a ”preliminary” re-
gression model of Diastolic Blood Pressure regressed on gender
and centered age. Examine the residual*centered age plot and
evaluate the results. What does the plot suggest?

(d) Add a squared age term to the model and repeat step c. Do
you see improvement in the residual*centered age plot when
the squared term is added?

(e) Run your ”final” linear regression and present design-based and
MI combined Parameter Estimates, SE, T Tests, and p Val-
ues. Provide a short paragraph, as for publication, interpreting
these results including describing the imputation process used
and how IVEware deals with both MI variability and complex
sample design features in the analysis.
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Generalized Linear Model

4.1 Introduction

The linear models discussed in the previous chapter, mostly assuming nor-
mally distributed residuals, can be generalized to handle non-normal outcome
variables. The density functions of an exponential family of distributions is of
the form,

f(y|β) = h(y) exp(g(β)TS(y)−A(β))

where β is a vector of parameters, h(), g(), S() and A() are known functions.
Many distributions such as normal, binomial, Poisson, gamma, etc. are mem-
bers of this family. For more details about this family of distributions, see
McCullagh and Nelder (1989).

A generalized linear model uses this family of distributions, for the con-
ditional distribution of Y given X, pr(Y |X), by specifying the mean and
variance functions as follows. Let µ(x) = E(Y |X, θ) be the mean and
V (x) = V ar(Y |X, θ, σ) be the variance function. Assume that f(µ(x)) = xT θ
and V (x) = σ2V (µ). The function f is called the “link” function. For a bino-
mial distribution, with f as the logit function, σ = 1 and V (µ) = µ(1 − µ)
results in the familiar logistic regression model. Similarly, f as the logarithm,
σ = 1 and V (µ) = µ results in a Poisson regression model. There are many
choices available to handle several types of outcomes and distributions.

The method of maximum likelihood is typically used to estimate the un-
known parameters θ (and σ). These reduce to solving p+ 1 equations (corre-
sponding to p predictors and the intercept term) of the form,

∑
i

((
∂µ(xi)

∂θ

)T (
yi − µ(xi)

V (µ(xi)

))
= 0

An iterative approach is used to solve the equations employing the method of
iteratively re-weighted least squares.

The modeling approach has been generalized to handle deviations from re-
strictions imposed by the distributional assumptions. For example, the Poisson
distribution assumes that the mean and variances are exactly equal. Obviously,
the data may indicate under-dispersion or over-dispersion. These models can
be fit by assuming that σ is not equal to 1 but estimated from the data. For

63
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this case, there is no corresponding specific distribution, and the approach is
called the quasi-likelihood method for fitting generalized regression models.

Let θ̂ be the estimate of the regression parameters. The covariance matrix
of θ̂ is of the form V̂ = σ̂2(XTWX)−1 where W is a diagonal matrix and

is a function of θ̂ and X. For certain members of the exponential family, the
covariance matrix is also equivalent to

V̂ = I−1 = −
(
∂2 logL(θ|Y,X)

∂θ∂θT

)−1
,

where L is the likelihood function and I is called the observed information
matrix. The estimate of σ2 is obtained using the residuals,

σ̂2 =

[∑
i

(yi − µ̂(xi))
2/V (µ̂(xi))

]
/(n− p− 1).

When the sample size is large, C(θ− θ̂) is approximately multivariate normal

with mean 0 and identity covariance matrix where CCT = V̂ −1.
The likelihood ratio test is typically used to compare the effect of a block

of covariates. As in the previous chapter, suppose that X = (Z1, Z2), the full
model has both Z1 and Z2 as predictors and the reduced model has only Z2.
Let LF be the likelihood function from the full model evaluated at estimate θ̂F .
Similarly, let LR be the likelihood function from the reduced model evaluated
at the estimate θ̂R . Note that parameters corresponding to Z1 are set to zero
in the reduced model. It can be shown that

LR = −2(logLR − logLF )

has a chi-square distribution with p1 degrees of freedom where p1 is the num-
ber of regressors in Z1. For a quasi-likelihood model, there is no likelihood
function. The generalization of the above procedure is performed using the
deviance function (which reduces to a likelihood ratio test when appropriate).

4.2 Multiple Imputation Analysis

This section illustrates the many aspects of regression analysis using general-
ized linear models. Three models (logistic, Poisson and multinomial logistic)
are considered here but other models can be fit using a similar approach. As in
the case of linear models, the Jackknife Repeated Replication method can be
used to estimate the completed data covariance matrix by treating the vari-
ance specification as the “working” variance function and not unduly affect
the inferences.
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4.2.1 Logistic Model

For the logistic regression example, we include a step-by-step presentation and
discussion of the syntax used plus interpretation of results. For the remain-
ing examples though, we show all syntax first and then turn to results and
interpretation.

The logistic regression example uses the Primary Cardiac Arrest data set
(stored in a working data set called ”test”) to predict a binary outcome of
primary cardiac arrest (coded 1=Yes, 2=No). SAS with IVEware is used in
this example. This data set includes study controls and cases, therefore im-
putation is done within each group separately with the IMPUTE command.
Each imputation produces 5 complete data sets which are, in turn, combined
into one stacked data set for subsequent analysis. The REGRESS command
with a LINK LOGISTIC statement requests logistic regression. The logistic
model predicts the probability of having cardiac arrest by age, gender and
red-blood cell EPA/DHA values. Predicted estimates based on model predic-
tions for specific types of individuals are also demonstrated. And, a joint test
of age and gender is performed using PROC SURVEYLOGISTIC and PROC
MIANALYZE. The test process used is similar to that presented previously
for linear regression.

4.2.1.1 Imputation

<sas name="Logistic Regression Using Primary Cardiac

Arrest Data">

/* Set libname */

libname pca ’P:\Ive_and_MI_Applications_Book\DataSets\PCA

and Omega 3 Fatty Acids Data’;

data pca ;

set pca.test ;

* create variables for use in logistic regression ;

cardiac_arrest=2 ;

if casecnt=1 then cardiac_arrest=1 ; * omit no PCA in model

(highest category) ;

run ;

data case ;

set pca ;

if cardiac_arrest=1 ;

run ;

data control ;

set pca;

if cardiac_arrest=2 ;

run ;
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/* Impute Missing Data For Cases */

<impute name="imputecase" >

title "Impute Missing Data" ;

datain case ;

dataout imputecase all;

default continuous ; *age numcig yrssmoke fatindex

dha_epa

redtot wgtkg totlkcal hgtcm;

transfer studyid casecnt ;

categorical casecnt race3 hyper diab smoke

fammi edusubj3

cholesth gender;

mixed cafftot alcohol3 ;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3) ;

bounds numcig(>0) yrssmoke(>0,<=age-12)

dha_epa(>0) redtot(>0)

cafftot(>0) wgtkg(>0) totlkcal(>0) alcohol3(>0);

minrsqd .01;

iterations 5 ;

multiples 5;

seed 666 ;

run ;

</impute>

/* Impute Missing Data For Controls */

<impute name="imputecontrol" >

title "Impute Missing Data" ;

datain control;

dataout imputecontrol all;

default continuous ; * age numcig yrssmoke fatindex

dha_epa redtot wgtkg totlkcal hgtcm ;

transfer studyid casecnt ;

categorical casecnt race3 hyper diab smoke fammi

edusubj3 cholesth gender;

mixed cafftot alcohol3 ;

restrict numcig(smoke=2,3) yrssmoke(smoke=2,3) ;

bounds numcig(>0) yrssmoke(>0,<=age-12) dha_epa(>0)

redtot(>0)

cafftot(>0) wgtkg(>0) totlkcal(>0) alcohol3(>0);

minrsqd .01;

iterations 5 ;

multiples 5;

seed 666 ;

run ;
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</impute>

/* Combine Case and Control Data Sets*/

data all_imputations ;

set imputecase imputecontrol ;

proc sort ;

by _mult_ ;

run;

proc freq ;

tables _mult_ ;

run ;

The preceding commands use the IVEware IMPUTE command to impute
missing data separately within the case and control data sets. After imputa-
tion, the data sets are combined and sorted by the internal multiple imputa-
tion indicator variable called ” MULT ”. These steps are needed to produce
a working data set for regression analysis.

4.2.1.2 Parameter Estimates

/* Logistic Regression Using Imputed Data Sets */

<regress name="Logistic Regression PCA Regressed on

Age Gender and RedBlood Cell EPA and DHA" >

title "Logistic Regression Cardiac Arrest is Outcome" ;

datain all_imputations ;

link logistic ;

categorical gender ;

dependent cardiac_arrest ;

predictor age gender redtot ;

estimates Age35_fem_redtot7: intercpt(0), age(35),

gender(1), redtot(7.0) /

age35_male_redtot7: intercpt(0), age(35), gender(0),

redtot(7.0) ;

run ;

</regress>

Next, the above commands use the REGRESS command with a LINK LO-
GISTIC option to perform logistic regression to predict having a cardiac arrest
event by age, gender, and EPA/DHA red blood cell counts, using the imputed
data sets from the imputation process.

Table 4.1 below includes regression estimates in the form of Odds Ratios
and 95% Confidence Limits.

Based on the logistic regression results, all else being equal, males are sig-
nificantly more likely than women to have primary cardiac arrest, and those
with higher levels of EPA/DHA have significantly lower odds of experiencing
a PCA event.
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Table 4.1: Results from Logistic Regression of Primary Cardiac Arrest

Variable Odds Ratio Confidence Interval
Age 1.017 (1.011, 1.023)

Gender 1.190 (1.024, 1.384)
Red Blood Cell EPA/DHA Counts 0.730 (0.691, 0.772)

4.2.1.3 Testing for Block of Covariates

/* data management and multivariate test using SAS */

data all_imp_sas ;

set all_imputations ;

_imputation_=_mult_ ;

if gender=1 then female=1 ; else female=0;

proc sort ;

by _imputation_ ;

run ;

proc logistic data=all_imp_sas ;

by _imputation_ ;

model cardiac_arrest (event=’1’)=age female redtot / covb ;

ods output parameterestimates=outest covb=outcovb ;

run ;

proc mianalyze parms=outest covb=outcovb ;

modeleffects intercept age female redtot ;

testage_female: test age,female / mult ;

run ;

</sas>

Testing of a block or set of covariates is demonstrated with SAS PROC
LOGISTIC AND PROC MIANALYZE. The above commands first perform
needed data management to create a SAS data set suitable for use with PROC
LOGISTIC and PROC MIANALYZE. Then, PROC MIANALYZE combines
results from the logistic regressions and uses multivariate testing capabilities
via the TEST statement with a /MULT option.

The output from PROC MIANALYZE in Table 4.2 includes a multivariate
test of zero contribution to the logistic model for 2 variables, age and female.
In this case, these variables have a significant contribution to the overall model
with F=3.18, 2 df, and a p value of 0.042.

4.2.1.4 Estimate command

The ESTIMATE command syntax presented in Section 4.2.1.2 requests pre-
dicted estimates for men and women age 35 with red blood cell EPA/DHA
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Table 4.2: Results from Multivariate Test of Age and Gender

Average Relative Increase in Variance Num DF Den DF F Pr>F
0.008 2 38745 3.18 0.042

count equal to 7.0. The results are presented in Table 4.3 and reveal small
differences in estimates between men and women age 35 with the same red
blood cell count of 7.0.

Table 4.3: Estimates for Age 35 Adults by Gender and Red Blood Cell Counts

Name Estimate Standard Error

Age 35 Females with Red Blood Cell Count=7 -1.440 0.230
Age 35 Males with Red Blood Cell Count=7 -1.615 0.213

4.2.2 Poisson Model

The Poisson model example is demonstrated with IVEware and R, using
Health and Retirement Survey (HRS) 2012 data. The analytic goal is to pre-
dict the number of falls during the past two years, among those age 65+,
with common health conditions such as back pain, depression, dementia, heart
problems, cancer, and gender as covariates.

4.2.2.1 Full Code

<R name="Chapter_6_Poisson_Regression">

# note: settings file uses R.exe command to invoke R

# set working directory to correct path

setwd("P:/ive_and_MI_Applications_Book/Chapter6GenRegression

/Poisson Regression")

(WD <- getwd())

# import the input dataset

hrs <- read.table("poisson_hrs_small_25may2016.txt",

sep="\t", header=TRUE)

save(hrs, file="hrs.rda")

summary(hrs)

# run iveware

# multiple imputation

# Impute Missing Data

<impute name="impute_mult1">

title Poisson_Regression_Example_Chapter6_HRS_2012;

datain hrs ;

dataout impute_mult1 ;
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default categorical ;

continuous nage nwgtr ;

count numfalls24 ;

transfer hhid pn ;

multiples 5 ;

iterations 10 ;

seed 425;

run ;

</impute>

# extract the remaining four multiply imputed datasets

<putdata name="impute_mult1" mult="2" dataout="impute_mult2" />

<putdata name="impute_mult1" mult="3" dataout="impute_mult3" />

<putdata name="impute_mult1" mult="4" dataout="impute_mult4" />

<putdata name="impute_mult1" mult="5" dataout="impute_mult5" />

# run Poisson Regression

<regress name="C6_Poisson_Regression">

title Chapter 6 Poisson Regression ;

datain impute_mult1 impute_mult2 impute_mult3 impute_mult4

impute_mult5;

stratum stratum ;

cluster secu ;

weight nwgtr ;

categorical gender backpain depress dementia heartcondition

cancer ;

dependent numfalls24 ;

predictor gender backpain depress dementia heartcondition

cancer ;

link log ;

run ;

</regress>

</R>

The code first imports a subset of 2012 HRS data into R (with the
read.table command) and saves an R format data object called ”hrs”. IM-
PUTE is used to impute missing data and output 5 imputed data sets with
the PUTDATA command. Next, REGRESS with a LINK LOG statement
is used to request Poisson regression. Note that the complex sample design
features and weights are used to estimate ”design-based” variances but an al-
ternative method is the Bayesian Bootstrap implemented in the BBDESIGN
command of IVEware. The remaining code statements are similar to those
used in previous linear and logistic regression examples.

Based on the Poisson regression results in Table 4.4, as compared to
women, males have significantly more estimated falls during the 2 year ex-
posure period while each of the physical and mental health conditions have
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Table 4.4: Results from Poisson Regression of Number of Falls During Past 2
Years

Variable Risk Ratio Confidence Interval

Gender 1.257 (1.081,1.462)

Back Pain 1.707 (1.512, 1.929)

Depression 1.728 (1.517, 1.969)

Dementia 2.668 (2.102, 3.387)

Heart Condition 1.447 (1.292, 1.621)

Cancer 1.137 (0.926, 1.396)

significantly higher estimated rates of falls, as compared to those without
physical or mental health conditions, holding all else equal.

4.2.3 Multinomial Logit Model

The third example demonstrates multinomial logistic regression using NCS-R
data. This example presents use of Stata with IVEware.

Variables from the Personality Section from Part 2 of the NCS-R survey
were collapsed into variables representing personality traits including ”loner”,
”inflexible”, ”socially awkward”, and ”suspicious”. These traits plus gender
are used to predict a nominal outcome variable representing employment sta-
tus (coded 1=Employed, 2=Previously Employed, 3=Out of the Labor Force).

4.2.3.1 Full Code

<stata name="Multinomial_Logistic_Regression_Using_NCSR_Data">

cd "P:\ ive_and_MI_Applications_Book\Chapter6GenRegression

\Multinomial Regression"

use ncsr_pea_sub_22apr2016

/* Impute Missing Data For PEA Categorical Variables*/

<impute name="impute" >

title Impute Missing Data;

datain ncsr_pea_sub_22apr2016;

dataout impute all;

default categorical;

transfer SampleID ;

continuous finalp2wt Age bmi ;

multiples 5;

iterations 10 ;

seed 222 ;

diagnose pea76 ;

run ;

</impute>
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/* generate dummy variables from imputed PEA variables*/

gen loner=2

replace loner=1 if PEA76==1 | PEA81==1

gen inflexible=2

replace inflexible=1 if PEA77==1 | PEA78==1

gen awkward=2

replace awkward=1 if PEA79==1 | PEA80==1

gen suspicious=2

replace suspicious=1 if PEA82==1 | PEA83==1

gen female=2

replace female=1 if sexf==1

* reverse coding of employment category for ease of

interpretation

gen rev_empcat=.

replace rev_empcat=3 if empcat==1

replace rev_empcat=2 if empcat==2

replace rev_empcat=1 if empcat==3

save impute3, replace

<regress name="Multinomial_Logistic">

title Multinomial Logistic Regression ;

datain impute3 ;

link logistic ;

categorical rev_empcat loner inflexible awkward

suspicious female ;

dependent rev_empcat ;

predictor female loner inflexible awkward suspicious;

weight finalp2wt;

stratum str ;

cluster secu ;

run ;

</regress>

</stata>

In this example, the imputation of missing data is performed with the IM-
PUTE command before final variable construction and subsequent analysis
of completed data sets. This allows variable recoding and construction to be
done with imputed raw variables. Next, five completed data sets are output
as one stacked file by the ALL option on the DATAOUT statement. This op-
tion creates a data set with the 5 multiples vertically stacked and identified
by the MULT variable. After imputation, a series of dummy variables are
created with reverse coding, as needed, to assist in interpretation for selected
variables. Note that all data management steps are done in Stata.

Finally, the REGRESS command is used for polytomous or multinomial
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logistic regression. The LINK LOGISTIC statement requests logistic regres-
sion and the CATEGORICAL statement declares the dependent variable and
independent variables to be treated as categorical. The dependent variable in
this example has 3 discrete values therefore multinomial regression is appro-
priate. The additional REGRESS statements are similar to previous examples.

Table 4.5: Results from Multinomial Logistic Regression of Employment Sta-
tus

Variable Odds Ratio Confidence Interval
Outcome=Employed

Female 1.438 (1.086, 1.903)
Loner 1.491 (1.166, 1.906)

Inflexible 0.689 (0.567, 0.837)
Awkward 0.723 (0.583, 0.898)
Suspicious 1.08 (0.847, 1.390)

Outcome=Previously Employed
Female 2.389 (1.865, 3.060)

Loner 1.356 (1.103, 1.666)
Inflexible 0.912 (0.759, 1.096)
Awkward 1.446 (1.140, 1.835)

Suspicious 1.114 (0.907, 1.367)

Based on Table 4.5, in the first model (Outcome=Employed), women and
loners are significantly more likely than men or non-loners to be employed
versus out of the labor force (OOLF) while those that are inflexible, awkward
are significantly less likely than those not in these groups to be employed v.
OOLF. And, suspicious respondents are non-significantly more likely to be
employed v. OOLF, as compared to those not considered suspicious.

Based on results from the second model (Outcome=Previously Employed),
compared to men or those not loners or awkward, women, loners, and the
awkward are significantly more likely to be previously employed rather than
out of the labor force. Compared to their reference groups of not in the group
of interest, those inflexible are less likely (non-significant) to be previously
employed v. OOLF and those considered suspicious are slightly more likely
(non-significant) to be previously employed v. OOLF.

4.3 Additional Reading

In addition to the regression references provided in Chapter 5, a comprehen-
sive review of regression analysis with missing predictors is given in Little
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(1992). For logistic regression and extensions, see Agresti (2012) and for Pois-
son regression and count models see Long and Freese (2006) and Long (1997).
See also O’Neill and Temple (2012).

4.4 Exercises

1. Download the St. Louis Risk Research Project data from the book
web site and examine the contents of the data set. The analysis
goal is to perform logistic regression using the binary variable rep-
resenting high adverse symptoms (average per family, coded yes or
no) predicted by moderate and high parental risk scores. However,
missing data is an issue in this data set and requires imputation.

(a) Use your software of choice to evaluate the missing data prob-
lem. How much missing data exists on each variable? What
variable(s) does not have any missing data?

(b) Use IMPUTE to impute missing data and create 25 (with 5
iterations) data sets. Make sure to declare categorical variables
correctly in the imputation, use the ALL statement to create
a ”long” output data set, and use a seed value of 2016. What
assumption are you making if you impute all groups of parental
risk together? What is the rationale for 25 multiples?

(c) Check the quality of the imputations informally by studying
the IMPUTE output and also by performing a means analysis
by multiple for each imputed variable (using your chosen soft-
ware). What are the key parts of the output to check? Do you
see any issues that might require a ”fix”? For a more formal
approach for imputation diagnostics, use DIAGNOSE with the
/ALL option for one imputed variable of your choice. Does this
reveal any problems or are the results similar to the informal
approach?

(d) Using the long file containing the imputed data sets, create an
indicator of high number of child symptoms per family called
HIGH SYMPTOM (coded as 1 if imputed s1=2 and s2=2, else
coded 0). Also, create 2 binary indicator variables using the G
variable where MODRISK=1 if G=2, else MODRISK=0 and
HIGHRISK=1 if G=3, else HIGHRISK=0, (omit G=1, Low
Risk). Next, use the REGRESS command to perform logistic
regression with the outcome HIGH SYMPTOM predicted by
MODRISK and HIGHRISK. How does the REGRESS com-
mand incorporate the multiple imputation variability in the
analysis?
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(e) Provide a brief paragraph interpreting the logistic regression
results. Does parental risk group have a significant impact on
a high number of adverse symptoms among children?

2. Download the data set called EX POISSON EXERCISE HRS
(a subset of 2012 HRS data) from the book web site. This exercise
asks you to impute missing data on key variables and use Pois-
son regression to predict number of days respondents drank in an
average week by common demographic and health conditions.

(a) Prepare for imputation through examination of the variable
contents, type, and amount of missing data in the data set.
How much missing data exists and how would you describe the
missing data pattern? Make sure to set any variables where val-
ues of 8 (DK) or 9 (Refused) remain as ”valid values” to missing
prior to the imputation. Based on this work, how many multi-
ples do you recommend and how do you justify this decision?

(b) Impute missing data with IMPUTE. Make sure to correctly
declare each variable as CATEGORICAL, CONTINUOUS,
TRANSFER, MIXED, or COUNT. (Hint: set HHID and PN to
TRANSFER and set the count of days drink per week to type
COUNT). Include bounds for any imputed continuous variables
and a restriction so that NC129 is imputed only for those that
drink (NC128=1). Use a SEED value of 2016. Why are bounds
and restrictions required in this imputation?

(c) Examine the output from the IMPUTE process and check for
any imputed values outside of the observed bounds, imputed v.
observed distributions that are very different, and any double-
counted imputed variables. Do you see any problems with the
imputations? If so, what would you do to correct the issues?

(d) Run a Poisson regression using the imputed data sets with the
REGRESS command with a LINK LOG option and STRA-
TUM, SECU, and WEIGHT statements to obtain a design-
based and MI Poisson regression. The outcome variable is
imputed number of days drink alcohol in an average week
(NC129, range from 0 to 7) predicted by the variables GEN-
DER, MARCAT, DIABETES, and ARTHRITIS. Make sure to
treat GENDER and MARCAT as categorical and DIABETES
and ARTHRITIS as binary indicators in the model. As a re-
minder, the highest category of categorical variables is omitted
by default while indicators coded as 1/0 will be handled as hav-
ing the condition of interest, say arthritis, versus not having the
condition of interest.

(e) Write a short summary of the results and explain how the com-
plex sample design features and imputation variability are in-
corporated in this analysis. What covariates have a significant
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impact on the number of days drink alcohol in an average
week?

3. Download the EX MTF 2014 data set from the book web site and
translate to a format useable for your software of choice. The goal of
this exercise is use of multinomial logistic regression to predict type
of high school attended by gender, race, and if ever smoked Mari-
juana. The data set is a subset of 2014 Monitoring the Future data
for high school seniors (Monitoring the Future: A Continuing Study
of American Youth (12th-Grade Survey), 2014 (ICPSR 36263).

(a) Prepare for imputation through data exploration and determine
variable type, extent of missing data, and meaning of variable
values. What variables have missing data or have values that
may require re-coding prior to analysis? Which have the highest
rates of missing data? What is the distribution of the depen-
dent variable, v2172, and what does each value mean? Create
a new version of the dependent variable called HSTYPE where
.=. (Missing), 1=1 (College Prep), 2=2 (General HS), and 3
and 4 are collapsed into 3=Voc/Tech/Other. Also, create a se-
ries of indicator variables named FEMALE, BLACK, WHITE,
HISPANIC, and ASIAN/OTHER by coding each =1 if in the
specified group and 0 otherwise.

(b) Impute missing data with the IMPUTE command and create
M=15 multiples. Treat CASEID as a TRANSFER variable,
ARCHIVE WT as a CONTINUOUS variable, set the default
to CATEGORICAL, and SEED equal to 2014. Also, use the
DIAGNOSE option with both HSTYPE and v2150.

(c) Examine the imputation output and plots from DIAGNOSE
to identify possible issues with the imputation. Do you see any
issues to investigate? If so, describe the process you might follow
to resolve the apparent problems.

(d) Run an un-weighted complete case multinomial logistic re-
gression using the original data as follows: HSTYPE re-
gressed on FEMALE, WHITE, HISPANIC, ASIAN/OTHER
and V2115D.

(e) Next, repeat the analysis in part d. but use the 15 multiply im-
puted data sets. Compare the results and describe how multiple
imputation of missing data improves the analysis. How many
observations are used in the complete case analysis versus those
used in the MI analysis?

(f) Repeat parts d. and e. but use the complex sample design
”pseudo” variables (created as below) and weight variable in
the analysis. To create the pseudo design variables, first create
a new variable called STRATUM which is set equal to 1 for each
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record in the data set and a second variable called CLUSTER
set equal to the CASEID variable. Use the STRATUM, CLUS-
TER, and WEIGHT statements in the complete case and MI
analyses. Does weighting and incorporating the pseudo complex
design variables make a difference in your overall conclusions?
(Note that processing time will be much longer for these models
due to use of the Jackknife Repeated Replication method for
variance estimation).
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5

Categorical Data Analysis

5.1 Contingency Table Analysis

Regression models with a categorical outcome variable were discussed in Chap-
ter 4. Many categorical data analysis problems, however, involve assessing
association between several categorical variables without specifying one as
an outcome variable and others as predictors or independent variables. The
simplest analysis is assessing association between two categorical variables ar-
ranged as a two-way contingency table. Suppose Y1 and Y2 are two categorical
variables with Y1 taking R possible values labeled r = 1, 2, . . . , R and Y2 taking
C possible values labeled c = 1, 2, . . . , C. Let πrc = Pr(Y1 = r, Y2 = c) define
the joint distribution of (Y1, Y2). Let πr+ = Pr(Y1 = r) and π+c = Pr(Y2 = c)
be the marginal probabilities.

Based on the sample of size n, let nrc be the number of subjects in cell
(r, c) in a table with R rows and C columns. Let nr+ =

∑
c nrc and n+c =∑

r nrc be the marginal frequencies leading to π̂rc = nrc/n, π̂r+ = nr+/n and
π̂+c = n+c/n. These are the maximum likelihood estimates assuming that nrc
follows a multinomial distribution with cell probabilities πrc where

∑
rc πrc =

1. Additional constraints needed are
∑
r πr+ = 1 as well as

∑
c π+c = 1. Thus

the cell probabilities need to satisfy (R− 1) + (C − 1) + 1 constraints leading
R × C − {(R − 1) + (C − 1) + 1} = R × C − R − C + 1 = (R − 1) × (C −
1) free parameters. Though there are R × C cell frequencies, there is only
(R − 1)× (C − 1) degrees of freedom because the estimates will also have to
satisfy the constraints. The multinomial distribution arises from assuming a
Poisson distribution for the individual cell frequencies and conditioning on the
observed sample size and the row and column margins.

The goal of the analysis is to assess whether the two variables are inde-
pendent. Under the independence assumption, πrc = πr+π+c, and one would
expect that relationship to hold in the estimates as well. Thus, the distance
between nrc/n and nr+/n× n+c/n can be used as a measure of lack of fit of
the data to the hypothesis (of independence). A chi-square statistic measuring
this distance is defined as

D =
∑
r

∑
c

(nrc − nr+n+c/n)2

nr+n+c/n

79
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=
∑
r

∑
c

(nrc − erc)2

erc

where erc = nr+n+c/n is called the (estimated) expected frequency under the
independence assumption. Under the independence assumption, the statistic
D has a chi-square distribution with (R−1)×(C−1) degrees of freedom. Thus,
if the observed value of D is in the upper tail of the chi-square distribution
then the hypothesis is a suspect. (Interestingly, R. A. Fisher reanalyzed Gregor
Mendel’s data and concluded that the chi-square statistic was too small to be
plausible and, hence, the data should be suspect. Thus, it may be important to
look at the both tails based on the calculated value of the chi-square statistic.)

Missing values in either variable will result in a partially classified ta-
ble. Subjects with the observed values of (Y1, Y2) yield a cross-classified
table, subjects only with the observed values of Y2 provide information
about its marginal distribution and those with only Y1 observed provide
information about its marginal distribution. Suppose that the missing val-
ues have been multiply imputed resulting in M completed-data sets and
dl, l = 1, 2, . . . ,M are the completed data chi-square statistics. The mul-
tiple imputation chi-square statistic is computed as follows. Let d̄MI =∑
l dl/M , p̄MI =

∑
l

√
dl/M and vMI = (1 + 1/M)

∑
l(
√
dl− p̄MI)

2/(M − 1).
Define,

D̃MI =
d̄MI/{(R− 1)(C − 1)} − (M + 1)vMI/(M − 1)

1 + vMI

and is referred to an F -distribution with (R − 1)(C − 1) as the numerator
degrees of freedom and νd = {(R − 1)(C − 1)}−3/M (M − 1)(1 + v−2MI) as the
denominator degrees of freedom.

5.2 Log-linear Models

When more than two variables are involved, the association between them is
expressed using a log-linear model for the expected cell counts (or, equiva-
lently, the cell probabilities). For example, in the R×C contingency example
discussed in the previous section, the expected cell count for the cell (r, c) is
µrc = n× πrc. A general log-linear model takes the form,

logµrc = µ+ λ(1)r + λ(2)c + λ(12)rc

and the constraints can be expressed by requiring
∑
r λ

(1)
r =

∑
c λ

(2)
c =∑

r

∑
c λ

(12)
rc = 0. These constraints ensure that

∑
r

∑
c µrc = n. The log-

linear model is similar to the ANOVA type structure for the logarithm of the
cell frequencies. The parameter µ is the overall average cell count, λ(1) is the
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main effect of Y1, λ(2) is the main effect of Y2 and λ(12) represents the inter-
action between the two variables. This is called the fully saturated model as
no structure is placed on the cell probabilities (or frequencies). This model is
a restructure of the RC cell probabilities representing the joint distribution
of (Y1, Y2). The number of parameters used in this representation is µ, R− 1
values of λ(1), (C − 1) values of λ(2) and (R− 1)(C − 1) values of λ(12). That
is, νS = 1 + (R − 1) + (C − 1) + (R − 1)(C − 1) = RC (with the constraint
that

∑
r

∑
c µrc = n). This is a perfect fit for the two-way table (as many

parameters as the number of cells), hence, is called the saturated model.
Under this setup, independence between Y1 and Y2, is equivalent to setting

the interaction terms λ
(12)
rc = 0 ∀ r, c. Sometimes, a short hand notation,

[Y1][Y2], is used to represent this model (the saturated model is [Y1Y2]). The
reduced model is

logµrc = µ+ λ(1)r + λ(2)c .

The number of parameters in this model is νI = 1 + (R − 1) + (C − 1) =
R+C−1. The saturated and independence models are usually compared using
the likelihood ratio test. Let lS and lI be the log-likelihoods from the saturated
and independence model, respectively. The likelihood ratio test statistic is
G = 2(lS − lI) which has a chi-square distribution (under the independence
model) with ν = νS − νI = (R− 1)(C − 1) degrees of freedom.

The attractive feature of the log-linear model is that many parameters are
easily interpretable. Consider the case where R = C = 2. The following table
represents the logarithm of the cell frequencies in terms of the parameters:

Cell C = 1 C = 2 Total

R = 1 µ+ λ
(1)
1 + λ

(2)
1 + λ

(12)
11 µ+ λ

(1)
1 + λ

(2)
2 + λ

(12)
12 2µ+ 2λ

(1)
1

R = 2 µ+ λ
(1)
2 + λ

(2)
1 + λ

(12)
21 µ+ λ

(1)
2 + λ

(2)
2 + λ

(12)
22 2µ+ 2λ

(1)
2

Total 2µ+ 2λ
(2)
1 2µ+ 2λ

(2)
2 4µ

The log odds ratio is

log

(
µ11µ22

µ12µ21

)
= λ1211 + λ

(12)
22 − λ

(12)
12 − λ

(12)
21 .

The marginal log odds ratio for Y1 is log(µ2+/µ1+) = 2(λ
(1)
2 − λ

(1)
1 ) and the

marginal log-odds ratio for Y2 is log(µ+2/µ+1) = 2(λ
(2)
2 − λ

(2)
1 ).

Thus, the parameter estimates, and specifically the contrasts among the
parameters provide useful quantitative measures of strengths of associations
or the effects of variables. The contrast specifications are very similar to those
used in the analysis of variance of a continuous variable with several categori-
cal predictors. Here the cell counts play the role of a continuous variable with
categorical variables as predictors. This similarity has been used (see Grizzle,
Starmer and Koch (1969)) to develop a Weighted Least Squares (WLS) ap-
proach for the analysis of contingency table using a normal approximation for
the Poisson distribution.
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As before let, πrc, r = 1, 2, . . . , R; c = 1, 2, . . . , C denote the cell probabil-
ities and prc be the corresponding estimates from the sample data. The goal
is to fit a linear model,

F (π) = Xβ

where F is a transformation determined by substantive interest and X are
covariates or the model matrix.

For large samples, using the Taylor series approximation, F (p) ≈ F (π) +
G(p − π), we have E(F (p)) ≈ F (π) and VF = V ar(F (p)) = GV GT where
V is the covariance matrix of the sample proportions p, and G is the first
derivative of the function F evaluated at the sample proportions p.

Thus, the general linear model framework can be used to fit the model

F (p) = Xβ + ε

where ε ∼ N(0, VF ).

The weighted least squares estimate of β is β̂ = (XTV −1F X)−1XTV −1F F (p)
and its covariance matrix is (XTV −1F X)−1. Defining F (π) = log π provides the
WLS analog of the log-linear model. The ANOVA table, break down of various
sums of squares using contrasts and partial F -tests for comparing models, and
other tools used in the regression analysis can be used to infer about the main
and interaction effects. All the approaches discussed previously in Chapter 3
can be used in the missing data context as well.

5.3 Three-way Contingency Table

Consider a third variable Y3 taking the values h = 1, 2, . . . ,H. The saturated
log-linear model can be expressed as

logµrch = µ+ λ(1)r + λ(2)c + λ
(3)
h +

λ(12)rc + λ
(13)
rh + λ

(23)
ch +

λ
(123)
rch

.
For a three-variable example, (Y1, Y2, Y3), the notation [Y1][Y2][Y3] denotes

the model where all of the three variables are mutually independent, and, thus,
the log-linear model contains only the main effects (two-way and three-way
interaction terms, λ(12), λ(13), λ(23) and λ(123) are set to 0).

The notation [Y1Y2][Y3] implies that Y1 and Y2 are associated but this
association is the same across the levels of Y3 and the population distri-
bution across the categories of Y3 are not equal. Here the model contains
all three main effects and the interaction between Y1 and Y2. Similarly,
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[Y1Y2], [Y1Y3], [Y2Y3] denotes the model with all main effects, two way in-
teraction effects but no three-way interaction terms. This implies that the
association between Y1 and Y2 is the same across the levels of Y3 (and the
same is true for (Y1, Y3) across the levels of Y2; and for (Y2, Y3) across the
levels of Y1).

5.4 Multiple Imputation

Consider a three-way contingency table with an arbitrary pattern of missing
data. The completely observed units lead to an R×C ×H contingency table
and subjects with missing values may provide information about the two-way
and one-way marginal tables. Maximum Likelihood Estimates (MLE) can be
obtained using iterative algorithms such as the EM -algorithm and specialized
codes will have to be developed. The multiple imputation analysis might be
more useful because one can incorporate auxiliary variables in the imputation
process and the complete data software can be used to obtain estimates and
then combine them to form a single inference.

The imputation of Y1, Y2 and Y3 must ensure that the interaction effects
are preserved, however small. Otherwise, the completed data analysis will tilt
the estimates of the ignored interaction effects towards zero. Suppose that
X denotes auxiliary variables that are correlated with Y1, Y2 and Y3. The
suggested imputation model for Yi is a multinomial logit model with predictors
(Yj , Yk, Yj×Yk, X, . . .) where (i, j, k) is a permutation integers (1, 2, 3) and . . .
may include some interaction terms with X and Y . Similarly, for a p-way
contingency table, include all interactions up to (p − 1) in the imputation
model. This may not be the most efficient approach because it errs on the side
of the imputation model being as close to the saturated model as possible. An
alternative is to trim the model by dropping interactions that may not be of
interest (such as 4-way or higher order interactions terms as these are hard to
interpret). Sensitivity of inferences can be explored by imputing the missing
values under the general and reduced models.

5.5 Two-way Contingency Table

This example uses data from Table 13.1 of Little and Rubin (2002). The data
was converted from tabular format with cell counts to a SAS data set using the
data step and the macro language. Two 2 categorical variables are used in this
example; Y1 coded as 1 or 2 and Y2 coded as 1,2, or 3. Due to missing data
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on Y2 (190 cases are missing on Y2 but observed on Y1), multiple imputation
was performed.

SAS with IVEware is used in the demonstration. Imputation is performed
with the IMPUTE command followed by a table analysis of Y1 and Y2 with
the DESCRIBE command, using the concatenated imputed data sets. To gen-
erate a combined Chi-Square statistic, use of the SAS macro language and
PROC IML is demonstrated (modified from a conference paper by Ratitch,
Lipkovich, O’Kelly, 2013). And, for log-linear analysis, PROC CATMOD is
executed for each imputation multiple with a PRED=PROB option used in
the model statement to produce cell probabilities for each of the 6 levels of
Y 1 × Y 2. These results are combined using PROC MIANALYZE and repre-
sent MI adjusted cell probabilities for the cells from the two way contingency
table.

/* Data Set Up and Imputation Code */

<sas name="Two Way Contingency Table">

/*macro to create output raw data for example*/

%macro it (y1, y2, c) ;

data cat ;

do i=1 to &c ;

y1=&y1 ; y2=&y2 ; count=&c ;

output ;

end ;

drop i count ;

run ;

proc append base=catall data=cat ;

run ;

%mend ;

%it(1,1,20) ;

%it(1,2,30) ;

%it(1,3,40) ;

%it(2,1,50) ;

%it(2,2,60) ;

%it(2,3,20) ;

%it(1,. , 100) ;

%it(2,. , 90) ;

proc freq data=catall ;

tables y1 y2 y1*y2 / missing ;

run ;

proc mi nimpute=0 data=catall;
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var y1 y2 ;

run ;

/* impute missing data */

<impute name="c5_ex1_impute">

title "Categorical Example 1 Imputation for Two Way Table" ;

datain catall ;

dataout cat1imp all;

default categorical;

iterations 5;

multiples 15;

seed 67566;

run;

</impute>

/* table analysis with imputed data */

<describe name="c5_ex1_table">

title "Categorical Example 1 Table Analysis of Imputed Data " ;

datain cat1imp ;

categorical y1 y2 ;

table y1*y2 ;

run ;

</describe>

The previous code block first creates a working data set using a user-defined
macro and next, imputes missing data with IMPUTE (M=15) using typical
code (similar to previous examples). This step is followed by a table analysis of
Y1 and Y2 with the DESCRIBE command, using the concatenated imputed
data sets.

Table 5.1: Cell Proportions from Two Way Contingency Table Analysis

Y1 Y2
1 2 3

1 0.10000 0.15789 0.20553
2 0.21154 0.24488 0.08016

Table 5.1 presents cell proportions for the two way contingency table pro-
duced by the DESCRIBE command.

5.5.1 Chi-square Analysis

/* ChiSq Pooling done in SAS macro, df=(r-1)(c-1) or

2 for 2 by 3 table */
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* prepare output data sets from PROC FREQ ;

proc sort data=cat1imp ; by _mult_ ; run ;

proc freq data=cat1imp;

tables y1*y2 / chisq ;

by _mult_ ;

ods output chisq=outchisq (where=(statistic eq ’Chi-Square’));

run ;

proc print data=outchisq ;

run ;

%macro computePooledCh(datain,dataout,df=1);

Proc iml;

USE &datain ;

READ ALL VAR {value} INTO chval; * read values of chisq

across the 15 imputations ;

df=&df;

m=NROW(chval);

cvalroot_m = sum(chval##0.5)/m;

cval_m = SUM(chval)/m;

a=(chval##0.5-j(m,1,1)*cvalroot_m)##2;

rx = sum(a)*(1+1/m)/(m-1);

Dx=(cval_m/df - (m+1)/(m-1)*rx)/(1+rx);

df_den=(df**(-3/m))*(m-1)*(1+1/rx)**2;

Pval=1-CDF("F",Dx,df,df_den);

create F from dx[colname={"DX"}] ;

append from dx ;

create df_den from df_den[colname={"DF_den"}] ;

append from df_den ;

create rx from rx[colname={"rx"}] ;

append from rx ;

create imputations from m[colname={"M"}] ;

append from m ;

CREATE mean_chisq FROM cval_m[colname={"MeanCHISQ"}] ;

append from cval_m ;

create df from df [colname={"DF"}] ;

append from df ;

create &dataout from Pval[colname={"PvalPooledCh"}] ;

append from Pval ;

run ; quit ;

%mend;

/* call macro with 2 df for 2 by 3 table and create output
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data set called pooledchisq */

options symbolgen mprint ;

%computepooledch(outchisq, pooledchisq,df=2) ;

/* data set from ChiSq macro output */

data chisq_pval ;

merge imputations f rx df_den mean_chisq df pooledchisq ;

proc print ;

run ;

The above code demonstrates preparation of a combined chi-square statistic
for the two way contingency table generated from an output data set from
PROC FREQ with a CHISQ option on the tables statement. The combined
chi-square is ultimately obtained from PROC IML code embedded in the
SAS user-defined macro called computepooledch. The results are presented in
Table 5.2 and suggest a significant association between Y1 and Y2 (F=12.220,
numerator df=2, denonminator df=61.856, and p=0.000).

Table 5.2: Results from Chi-Square Analysis using PROC IML

F-statistic Numerator DF Denominator DF p
12.22 2 61.856 0.000

5.5.2 Log-linear Model Analysis

/* Log Linear Model for Two Way Table with r=2 and c=3 Table */

/* PROC CATMOD with PROC MIANALYZE*/

data cat1imp1 ;

set cat1imp ;

_imputation_=_mult_ ;

run ;

proc sort ;

by _imputation_ ;

run ;

proc catmod data=cat1imp1 ;

by _imputation_ ;

model y1*y2 =_response_ / noparm pred=prob ;

loglin y1 y2 y1*y2 ;

ods output predictedprobs=outprobs ;

run;

/*print out outprobs data set*/

proc print data=outprobs ;
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run ;

/*PROC MIANALYZE to combine predicted prob and SE */

proc sort ; by functionnum _imputation_ ; run ;

proc mianalyze data=outprobs ;

by functionnum ;

modeleffects predfunction ;

stderr predstderr ;

run ;

</sas>

The above command syntax employs PROC CATMOD and PROC MI-
ANALYZE to perform a log-linear analysis of the 15 completed data sets.
The PROC CATMOD setup requests response probabilities for Y1, Y2, and
Y1*Y2, that is, specifies a log-linear model of main effects plus the interac-
tion of Y1*Y2. It also requests cell probabilities (PRED=PROB) saved in
an output data set appropriate for PROC MIANALYZE. The MIANALYZE
procedure is used to combine predicted cell probabilities from the log-linear
model. Because this is a saturated model, the cell proportions match those of
the table analysis results presented in Table 5.2.

Table 5.3: Cell Proportions from Log-linear Analysis

Y1 Y2
1 2 3

1 0.10000 0.15789 0.20553
2 0.21154 0.24488 0.08016

5.6 Three-way Contingency Table

5.6.1 Log-linear Model

The next example uses data from Table 13.8 from Little and Rubin (2002),
originally analyzed by Bishop, Fienberg and Holland (1975, Table 1.4-2).
There are 3 variables of interest: Clinic, coded as 1=A or 2=B, Prenatal Care,
coded 1=Less and 2=More, and Survival, coded 1=Died and 2=Survived. The
main analytic goal is to use a Log-linear model to analyze the relationships
between the 3 categorical variables. However, 255 cases are missing data on
type of Clinic while n=715 cases are fully observed on each variable. Prior to
analysis, imputation of missing data is addressed by use of IMPUTE. This
is followed by analysis of completed data sets using PROC CATMOD and
PROC MIANALYZE using SAS.
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The IVEware/SAS code is presented in full before results in this example.
The first section of code prepares a SAS data set from tabular information with
frequency counts, imputes missing data on the clinic variable with interaction
terms in the imputation models, and produces 15 imputation multiples. Next,
PROC CATMOD is used to execute 3 log-linear models using the 15 completed
data sets: one model is fully saturated and 2 additional models with a set of
2 way interactions are considered. Finally, use of PROC MIANALYZE to
combine predicted cell proportions from CATMOD step is demonstrated.

<sas name="Three Way Contingency Table">

/*Data creation and imputation*/

%macro it1 (c, p, s, count) ;

data cat2 ;

do i=1 to &count ;

c=&c ; p=&p; s=&s ; count=&count ;

output ;

end ;

drop i count ;

run ;

proc append base=catall2 data=cat2 ;

proc print ;

run ;

%mend ;

%it1(1,1,1, 3) ;

%it1(1,1,2,176) ;

%it1(1,2,1,4) ;

%it1(1,2,2,293) ;

%it1(2,1,1, 17) ;

%it1(2,1,2,197) ;

%it1(2,2,1, 2) ;

%it1(2,2,2,23) ;

%it1(.,1, 1, 10) ;

%it1(.,1, 2, 150) ;

%it1(.,2,1,5) ;

%it1(.,2,2,90) ;

proc print data=catall2 ;

run ;

proc format ; value cf 1=’A’ 2=’B’ ; value pf

1=’Less’ 2=’More’ ; value sf 1=’Died’ 2=’Survived’ ;

proc freq data=catall2 ;
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tables c*p*s / missing list ;

format c cf. p pf. s sf. ;

run ;

proc mi nimpute=0 data=catall2 ;

var c p s ;

run ;

/* impute missing data */

<impute name="Ex2_impute" >

title "Categorical Example 2 Imputation for Three Way Table" ;

datain catall2 ;

dataout cat2imp all;

default categorical;

interact c*p c*s p*s ;

iterations 5;

multiples 15;

seed 67566;

run;

</impute>

<describe name="Ex2_Table_Analysis">

title "Categorical Example 2 Table Analysis of Imputed Data " ;

datain cat2imp ;

categorical c p s ;

table c*p*s ;

run ;

</describe>

/* Run log-linear models*/

/*First model is fully saturated*/

data cat2imp1 ;

set cat2imp ;

_imputation_=_mult_ ;

run ;

proc sort ; by _imputation_ ; run ;

proc catmod data=cat2imp1 ;

by _imputation_ ;

model c*p*s =_response_ / noparm pred=prob ;

loglin c|p|s ;

ods output predictedprobs=outprobs_sat ;
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run;

/*print out outprobs data set*/

proc print data=outprobs_sat ;

run ;

/*PROC MIANALYZE to combine predicted prob and SE */

proc sort ; by functionnum _imputation_ ; run ;

proc mianalyze data=outprobs_sat ;

by functionnum ;

modeleffects predfunction ;

stderr predstderr ;

run ;

/* 2nd Model: Log linear model with s*p s*c p*c */

proc catmod data=cat2imp1 ;

by _imputation_ ;

model c*p*s =_response_ / noparm pred=prob ;

loglin c p s s*p s*c p*c ;

ods output predictedprobs=outprobs_m1 ;

run;

/*print out outprobs data set*/

proc print data=outprobs_m1 ;

run ;

/*PROC MIANALYZE to combine predicted prob and SE */

proc sort ; by functionnum _imputation_ ; run ;

proc mianalyze data=outprobs_m1 ;

by functionnum ;

modeleffects predfunction ;

stderr predstderr ;

run ;

/* 3rd Model: Log linear model with s*p s*c */

proc catmod data=cat2imp1 ;

by _imputation_ ;

model c*p*s =_response_ / noparm pred=prob ;

loglin c p s s*p s*c ;

ods output predictedprobs=outprobs_m2 ;

run;

/*print out outprobs data set*/
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proc print data=outprobs_m2 ;

run ;

/*PROC MIANALYZE to combine predicted prob and SE */

proc sort ; by functionnum _imputation_ ; run ;

proc mianalyze data=outprobs_m2 ;

by functionnum ;

modeleffects predfunction ;

stderr predstderr ;

run ;

</sas>

Table 5.4: Proportions from Log-linear Models (SPC), (SP, SC,PC), and (SP,
SC), Fitted to Completed Data

Survival Status
Clinic Prenatal Care Died Survived

(a) Model: (SPC)
A Less 0.0050 0.2578
A More 0.0076 0.3881
B Less 0.0259 0.2813
B More 0.0037 0.0304
(b) Model: (Main Effects plus SP,SC,PC)
A Less 0.0047 0.2581
A More 0.0079 0.3878
B Less 0.0262 0.2810
B More 0.0034 0.0016
(c) Model: (Main Effects plus SP,SC)
A Less 0.0093 0.3637
A More 0.0034 0.2823
B Less 0.0217 0.1755

B More 0.0079 0.1362

Proportions from each of the three log-linear models are presented in Table
5.4. Model (a) is a saturated model including all interactions terms (S*P*C)
while models (b) and (c) include main effects plus selected interactions.

5.6.2 Weighted Least Squares

This weighted least squares example uses data from Stokes, Davis, and Koch,
(2001). This data set includes 3 categorical variables measuring cold symptoms
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in two discrete periods by gender and urban/rural county status. The data
has been modified such that randomly assigned missing data is present for
the periods with cold symptoms variable. The data set contains 3 variables: 1.
Sex (1=Female and 2=Male), 2. Residence (1=Rural and 2=Urban), and 3.
Periods (0=No cold symptoms in either period, 1=cold symptoms in 1 period
and 2=cold symptoms in 2 periods).

The analytic aim is to use the weighted least squares technique to examine
the mean number of periods with cold symptoms by gender and rural/urban
county status. The analysis is carried out with IMPUTE to handle missing
data imputation, PROC CATMOD to perform weighted least squares model-
ing using completed data sets, and PROC MIANALYZE to combine results
from PROC CATMOD.

<sas name="Weighted Least Squares">

/* Example 3 : Weighted Least Squares Analysis*/

/* Data is from Stokes, Davis, and Koch (2001), missing data

randomly assigned for Periods variable */

%macro it3 (sex, res, period, count) ;

data cat3 ;

do i=1 to &count ;

sex=&sex ; residence=&res; period=&period ; count=&count ;

output ;

end ;

drop i count ;

run ;

proc append base=catall3 data=cat3 ;

proc print ;

run ;

%mend ;

%it3(1,1,0, 45) ; %it3(1,1,1, 64) ; %it3(1,1,2,71) ;

%it3(1,2,0, 80) ; %it3(1,2,1, 104) ; %it3(1,2,2,116) ;

%it3(2,1,0, 84) ; %it3(2,1,1, 124) ; %it3(2,1,2,82) ;

%it3(2,2,0, 106) ; %it3(2,2,1,117) ; %it3(2,2,2,87) ;

data cat3_m ;

set catall3 ;

if ranuni(87655) <=.10 or ranuni(87655) >=.98 then

period=. ; else period = period ;

run ;

proc freq data=cat3_m ;
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tables sex* residence * period / missing list ;

run ;

proc mi nimpute=0 data=cat3_m ;

run ;

/* impute missing data */

<impute name="Ex3_impute">

title "Categorical Example 3 Imputation for Three Way Table" ;

datain cat3_m ;

dataout cat3imp all;

default categorical;

interact sex*residence sex*period residence*period ;

iterations 5;

multiples 10 ;

seed 54323 ;

run;

</impute>

The above commands prepare a SAS data set from the a tabular summary,
randomly simulate missing data on the ”PERIOD” variable, and then impute
missing data using IMPUTE.

/*sort data and execute SASMOD with PROC CATMOD */

proc sort data=cat3imp ; by _mult_ ; run ;

proc freq data=cat3imp ;

by _mult_ ;

tables sex* residence * period / missing list ;

run ;

<sasmod name="Ex3_catmod">

datain cat3imp ;

title "Main Effects and Interaction Model" ;

proc catmod ;

response means ;

model period =sex residence sex*residence / design ;

run;

</sasmod>

<sasmod name="Ex3_1_catmod">

datain cat3imp ;

title "Main Effects Model" ;

proc catmod ;

response means ;

model period =sex residence / design ;

run;
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</sasmod>

</sas>

In the previous set of commands, after preparing the data, the SASMOD
command is run twice, first with main effects plus the two way interaction of
sex and residence and second, with just main effects because the interaction
term in the first model is non-significant. The PROC CATMOD syntax in-
cludes the RESPONSE MEANS statement to request means for the response
variable, PERIOD. Also, the /DESIGN option produces a design grid in the
SAS output (not shown here) but since the SASMOD default output con-
sists of parameter estimates and associated statistics, they are presented in
Table 5.5. As previously mentioned, two models are tested using PROC CAT-

Table 5.5: Results from Weighted Least Squares Analysis of Mean Response,
Cold Symptoms Data, Main Effects Model

Variable Estimate SE Wald Test p
Intercept 1.037 0.008 18460.705 0.000
Female 0.071 0.008 85.575 0.000

Rural 0.027 0.008 12.794 0.000

MOD with SASMOD. The first includes main effects plus the interaction of
sex*residence but since this interaction is not significant, the model including
just main effects is considered the best model.

Based on the parameter estimates in Table 5.5, predicted values for speci-
fied types of individuals can be obtained as usual, that is, the expected mean
number of periods with cold symptoms for rural females is: 1*1.037 + 1*0.071
+ 1*0.027=1.135. For males, the calculation would be 1*1.037 - 1*0.071 +
1*0.027=.993.

5.7 Additional Reading

For more theoretical background on categorical data analysis, refer to Agresti
(2012), Bishop, Fienberg and Holland (1975), and Grizzle,Starmer and
Koch(1969). For practical guidance on how to analyze categorical variables
using SAS see Stokes, Davis, and Koch (2001).
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5.8 Exercises

1. Download the EX C5 MTF 2014 data set from the book web site.
This data set is based on the Monitoring the Future 2014 Grade 12
data and contains a subset of categorical variables for use in these
exercises. The goal is to use this data set to perform categorical
data analysis using the techniques covered in this chapter.

(a) Explore the data set and determine how many variables are
fully observed and have some missing data. Make sure to do
frequency table analyses to evaluate variable distributions and
extent of missing data problems.

(b) Which variables are fully observed and which have some miss-
ing data? How much missing data exists on those not fully
observed?

(c) Consider a cross-tabulation of Sex and Ever Smoke Cigarettes
in lifetime. Prepare a two way contingency table of these two
variables and provide information about observed and missing
data for each cell of the table.

(d) Impute missing data in the exercise data set using a reasonable
number of imputations and iterations. Make sure to transfer
the case ID variable in the imputation. Use either IVEware or
software of your choice.

(e) Using the completed data sets from (d), run a two way con-
tingency table of Sex*Ever Smoke Cigarettes and obtain a
ChiSquare statistic for each multiple.

(f) Use software or a manual approach (your choice) to calculate
a combined Chi-Square statistic. Describe the relationship be-
tween sex and ever smoke cigarettes and answer if sex and ever
smoke cigarettes are statistically independent. Provide support
for your conclusion.

2. Create a subset of data from the MTF data used in Exercise 1
and retain three variables: v2150, v2101d, and v2150. The goal of
this exercise is to perform a three way contingency table analysis of
sex, race, and ever smoke cigarettes, using log-linear models with
multiply imputed data.

(a) Explore the missing data problem with software of your choice
and determine how much missing data exists and how many
imputations are appropriate.

(b) Impute missing data using IMPUTE or other software and state
how many imputations/iterations are used, the SEED value
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used, and which interactions you included in the imputation
models. What is the value of adding interactions to the impu-
tation?

(c) Prepare a 3 way contingency table using the completed data
sets and make sure to use DESCRIBE or similar approach to
obtain combined cell proportions. Save these results for a com-
parison to output from log-linear models to come.

(d) Use the completed data sets and run a log-linear model (fully
saturated) to explore relationships between the 3 categorical
variables of choice. Use SASMOD with PROC CATMOD or
PROC CATMOD and PROC MIANALYZE (SAS Users) or
similar tools in your software of choice if not using SAS. Obtain
combined expected cell proportions from the fully saturated
log-linear model and compare to the results in part (c). Do the
proportions match and if so, is this expected?

(e) Repeat part (d) but rather than a fully saturated model, use a
model with all 2 way interactions but not a 3 way interaction.
How do the cell proportions compare to those from part (d)?
How would you explain the differences/similarities?

3. Again, use data from Exercise 1 and create another subset of data
retaining sex (V2150), high school type (HSTYPE), and number of
times drink alcohol in lifetime (NUMALC). The goal of this exercise
is to perform a weighted least squares analysis using categorical
variables.

The variable NUMALC is coded 0=no drinks in lifetime, 1=1-9
drinks in lifetime, or 2=10+ drinks in lifetime and the interest is in
how sex and Vocational/Other high school affects the mean number
of drinks (categorical) had by grade 12. For the analysis, create a
new variable called VOC coded 1 if HSTYPE=3, ’.’ if HSTYPE=.,
and 2 if HSTYPE =1 or 2. Note that VOC represents both Voca-
tional and Other types of high school. Retain just V2150, VOC, and
NUMALC.

(a) Prepare the needed subset of data and explore the missing data
problem. How would you describe the missing data pattern?

(b) Impute missing data using your chosen software. Using the im-
puted data sets, prepare a three way contingency table with
DESCRIBE or a similar tool capable of correct combining.
Make sure that all missing data is now imputed.

(c) Use PROC CATMOD with SASMOD (or equivalent) to run a
weighted least squares model with main effects and the interac-
tion of sex*vocational HS, similar to Example 3 of this chapter.
Make sure to request a mean response and obtain parameter
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estimates using correct combining rules. Why is it acceptable
to use a linear modeling technique with a categorical outcome
and what assumptions are made in doing so? Is the interaction
term significant? If not, rerun the model with just main effects
of sex and Vocational/Other HS.

(d) Prepare a table of regression estimates similar to Table 5.5 and
provide estimates of number of drinks during lifetime for a few
of the sex and Vocational/Other HS profiles. How would you
calculate and interpret the predicted value for males in Voca-
tional/Other high school?



6

Survival Analysis

6.1 Introduction

The survival analysis involves regression models where the outcome is time to
an event such as death, free of disease, divorce, marriage etc. In an industrial
setting, the time-to-event may be failure of one or more devices or components.
The distinguishing feature of this type of analysis is that the time-to-event may
not occur during the observation or study period. In this case, the observation
is right censored.

The time-to-event outcomes are generally skewed due to more events occur-
ring in the early time period and with a long right tail. Censored observations
only provide a lower bound for the actual time-to-event yet to occur. For these
reasons, typically the mean function is not modeled but the whole distribution
is modeled through a feature related to the distribution function called the
hazard function. Suppose that T is the time-to-event and C is the censoring
time (end of the study, subject dropped out and no further information is
available etc.). Let Y = Min(T,C) be the actual outcome observed. That is,
Y = T if the event were to occur during the study period (or known to have
occurred even if beyond the study period), otherwise Y = C, the last known
time without having the event occurrence. For now, assume that everybody is
subject to the event occurring (death, for example). The goal is to study the
relationship between T and X given (Y,X). Note that this situation can be
treated as a missing data problem where T is observed for uncensored subjects
and is missing among censored subjects although the missing value is known
to be greater than C.

Let the distribution function of T be F (t) = Pr(T ≤ t). The survival
function is S(t) = 1 − F (t) = Pr(T > t) and the density function is f(t) =

dF (t)/dt or F (t) =
∫ t
0
f(u)du. The hazard function measures the likelihood of

the event occurring in the “immediate future” given that it has not occurred
up until now. Let t be the current time and the immediate future is a small
time interval (t, t + dt). The conditional probability of the event occurring
during this interval given that the event has not occurred until t is

Pr(t ≤ T ≤ t+ dt)

Pr(T > t)
=
F (t+ dt)− F (t)

S(t)
=
f(t)dt

S(t)
= λ(t)dt

for an arbitrarily small dt where λ(t) = f(t)/S(t) is called the hazard function.

99
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The goal of the survival analysis is to study the relationship between λ(t) and
the covariates X.

A popular model for the hazard function is the proportional hazards or
Cox model. Let λo(t) be the “baseline” hazard function which is modified by
the covariates through the relationship,

λ(t|x) = λo(t) exp(xT θ).

Suppose that x = 1 or 0. The λo(t) is the hazard function for x = 0 and it
is proportionately high or low for x = 1 across the entire time period by the
quantity exp(θ), called hazard ratio or relative risk. Cox developed a clever
conditioning argument which compares subjects having an event to the risk
set of all those exposed to the possibility of having the event at that moment.
This argument developed a partial likelihood that did not require knowledge
of λo(t). Proportionality of the hazard is a strong assumption but the benefit
of not modeling λo(t) results in considerable robustness.

In engineering and other fields, parametric models are used for f(t) as a
function of covariates. These can be handled using the generalized linear model
framework. The analysis will impute simultaneously the censored outcomes
and missing covariates in the multiple imputation analysis. Another model
often employed is the Tobit model which involves left or right truncation.
Examples of both Cox and Tobit models (with right truncation) are presented
later in this chapter.

6.2 Multiple Imputation Analysis

The foregoing description of the survival analysis makes it clear that the out-
come is not fully observed with censored observations. However, partial infor-
mation is available in the form of a lower bound for the actual failure time
or time-to-event. The censoring time is that lower bound. Thus, the outcome
itself is missing with partial information. In addition, covariates may also be
missing.

How should the imputation of missing values then proceed? There are two
possible options:

1. Impute jointly the outcome and missing covariates treating the cen-
soring time as a lower bound for the missing outcome variable (cen-
sored cases).

2. Treat censoring/failure time and censoring indicators as covariates
in the imputation of covariates. That is, do not impute the outcome
variable.

Under approach (1), a joint model for Pr(T,X) is used in the imputation
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process where the censoring time C is incorporated when imputing the missing
values in T . Whereas approach (2) uses the conditional model Pr(X|Y,D),
where D is a censoring indicator variable, in the imputation process. Fur-
thermore, under approach (1), we have the option of performing the analysis
using the multiply imputed T or to ignore the imputed values in T but use
(Y,D) and multiply imputed X in the analysis. The choice between the two
approaches depends on whether one considers (Y,D) as the fully observed
outcome variable or as a missing outcome variable. In the next section, a par-
ticular data set will be analyzed both ways to assess the differences between
the two approaches.

6.2.1 Proportional Hazards Model

The Proportional Hazards model is demonstrated using data from the Primary
Biliary Cirrhosis data set. As previously described, the data are from a clinical
trial consisting of 418 patients where 312 agreed to be randomized to either
a placebo or to the drug D-penicillamine and another 106 patients agreed to
be followed to death.

Two methods are used. The first treats missing data on survival time and
model covariates such as Ascites, Serum Cholesterol, etc. as an imputation
task and imputes missing data on the covariates as well as survival time for
censored respondents. In the imputation of survival time for censored cases,
the time to censor is used as a lower bound along with an upper bound of 25
to prevent imputation of very large survival times.

The second method uses censor time and an indicator of being censored
as predictors in the imputation model but does not impute missing data on
survival time. Using the completed data sets, Cox models are executed using
the IVEware REGRESS command.

These examples demonstrate use of IVEware with SPSS. Detailed code
snippets are presented and explained within each section. Broadly speaking,
the first two examples perform multiple imputation of missing data using IM-
PUTE using methods 1 and 2 described above. The 25 completed data sets are
then analyzed using REGRESS with the LINK PHREG and CENSOR CEN-
SORED(1) statements to declare the type of regression desired and identify
censored cases with CENSORED=1 syntax. The final example demonstrates
imputation and execution of a Tobit model with right truncation.

6.2.1.1 Outcome Imputed (Method 1)

<spss name="Survival Analysis Cox Model">

/* run multiple imputation using censored/failure

time as outcome imputed*/

<impute name="impute">

title "Survival Analysis, Outcome Imputed" ;

datain pbcimpute_28may2016;
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dataout pbcdata_out all;

default continuous ;

transfer id imp_surv ;

categorical sex status censored stage edema ascites

hepato spiders drug;

bounds lsurv(>= lower, <= 25);

iterations 10 ;

multiples 25 ;

seed 987 ;

run ;

</impute>

<regress name="phreg">

title "Cox Model with Log Survival as Outcome Imputed" ;

datain pbcdata_out ;

link phreg ;

categorical drug ;

dependent lsurv ;

predictor drug ageyrs sex ascites hepato spiders edema

lbili lchol albumin lcopper lalk_phos

lsgot ltrig platelet protime stage ;

run ;

</regress>

The preceding syntax imputes missing data on the outcome and covariates
using IMPUTE and then analyzes the completed data sets using REGRESS
with the PHREG link along with other regression options previously discussed.

Table 6.1 presents selected output based on imputation of outcomes and
covariates, using the Proportional Hazards model.

6.2.1.2 Outcome Not Imputed (Method 2)

/*multiple imputation with censor/failure time and censor

indicator as predictors in model*/

<impute name="impute_m2">

title "Survival Analysis, Method 2" ;

datain pbcimpute_12aug2016;

dataout pbcdata_out_m2 all;

default continuous ;

transfer id ;

categorical sex status censored stage edema ascites

hepato spiders drug;

iterations 10 ;

multiples 25 ;
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Table 6.1: Results from Regression Analysis of PBC Imputed Data, Outcome
Imputed

Variable Hazard Ratio Confidence Interval

Treatment 0.902 (0.830, 0.981)

Placebo 0.951 (0.871, 1.039)

Age in Years 1.034 (1.031, 1.038)

Gender 1.100 (0.990, 1.223)

Ascites 1.469 (1.325, 1.629)
Hepatomegaly 1.108 (1.023, 1.200)

Spiders 0.993 (0.922, 1.069)

Edema 2.241 (1.993, 2.520)

Log Bilirubin 1.883 (1.785, 1.986)

Log Cholesterol 1.051 (0.958, 1.152)

Albumin 0.631 (0.577, 0.690)

Log Copper 1.473 (1.398, 1.551)

Log Alkaline Phosphate 0.935 (0.893, 0.979)

Log Serum glutamic-oxaloacetic 1.489 (1.357 1.633)

Log Triglicerides 0.875 (0.808, 0.947)

Platelet Count 1.000 (0.999, 1.000)

Prothrombin time (seconds) 1.206 (1.171,1.242)

Histologic Stage 1.385 (1.316, 1.457)
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seed 987 ;

run ;

</impute>

<regress name="phreg_m2">

title "Cox Model with Log Survival as Outcome Not Imputed" ;

datain pbcdata_out_m2 ;

link phreg ;

categorical drug ;

dependent lsurv ;

censor censored(1) ;

predictor drug ageyrs sex ascites hepato spiders edema

lbili lchol albumin lcopper lalk_phos lsgot

ltrig platelet protime stage ;

run ;

</regress>

The syntax above imputes missing data using method 2 where cen-
sor/failure time and the censor indicator are used as model covariates but
not imputed. This step is again followed by use of a Cox model from the
REGRESS command. Results from the second Cox model are presented in
Table 6.2.

Table 6.2: Results from Regression Analysis of PBC Imputed Data, Outcomes
Not Imputed

Variable Hazard Ratio Confidence Interval
Treatment 0.884 (0.812, 0.962)
Placebo 0.932 (0.853, 1.018)
Age in Years 1.035 (1.031. 1.039)

Gender 1.105 (0.994,1.228)
Ascites 1.549 (1.394 ,1.200)
Spiders 0.965 (0.895, 1.040)

Edema 2.345 (2.084, 2.637)
Log Bilirubin 1.855 (1.757,1.959)
Log Cholesterol 1.131 (1.031,1.240)
Albumin 0.636 (0.582 ,0.696 )

Log Copper 1.479 (1.403, 1.559)
Log Alkaline Phosphate 0.918 (0.876, 0.962)
Log Serum glutamic-oxaloacetic 1.522 (1.385, 1.672)
Log Triglicerides 0.847 (0.783, 0.916)
Platelet Count 1.000 (1.000, 1.001 )
Prothrombin time (seconds) 1.210 (1.175, 1.246)

Histologic Stage 1.387 (1.319, 1.459)

Results from Tables 6.1 and 6.2 are similar and both indicate that there
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is not much difference in risk between the Treatment group or Placebo group
participants, as compared to the Observed group. Significant high risk factors
are Age, presence of Edema, Ascites, elevated Serum Bilirubin, Cholesterol,
Copper, Serum GO, Prothrombin time, and Histologic Stage.

6.2.2 Tobit Model

The Tobit model example uses a hypothetical data file, tobit miss, containing
200 observations and simulated missing data on select variables, solely for
demonstration purposes. The simulated data is based on a data set obtained
from www.ats.ucla.edu/stat/sas/. The goal is to regress aptitude on reading
and math scores with type of school program attended.

The variable APT represents academic aptitude while reading and math
test scores are contained in the variables READ and MATH, respectively. The
variable PROG is the type of educational program attended and is coded as
academic (PROG = 1), general (PROG = 2), or vocational (PROG = 3).
Missing data exists on two variables, READ and MATH with fully observed
data for PROG and APT. The theoretical range for APT is 200-800, however,
there are no observed scores of 200 while some scores are truncated at 800.
A score of 800 is considered upper truncation but since there are no values of
200, lower truncation is not seen in this data.

The following syntax imputes missing data with the IMPUTE command
and uses REGRESS with a TOBIT link to predict academic aptitude by
reading and math scores and program type (with Vocational program the
reference group). Note the use of the closing tag (</spss>) to end the SPSS
session for the entire set of examples executed in this chapter.

/* Tobit Model using Right Truncated Academic

Aptitude Data with Missing Data on Covariates */

<impute name="impute_tobit" >

title "Impute Tobit Data" ;

datain tobit_miss ;

dataout tobit_imputed all;

default continuous ;

transfer id ;

categorical prog ;

iterations 5;

multiples 10;

seed 55;

run ;

</impute>

<regress name="Tobit Model with Imputed Missing">

title "Imputed Missing Data Tobit Model" ;

www.ats.ucla.edu/stat/sas/
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datain tobit_imputed ;

link tobit ;

categorical prog ;

dependent apt;

predictor read math prog;

run ;

</regress>

</spss>

Table 6.3: Results from Tobit Model of Academic Aptitude

Parameter Standard
Variable Estimate Error Wald Test p Value
Read 2.907 0.186 242.808 0.000
Math 4.951 0.211 550.543 0.000
Academic Program 50.551 4.136 149.350 0.000
General Program 38.767 3.874 100.128 0.000
Sigma 62.912 0.995 4000.000 0.000

The results presented in Table 6.3 indicate that a one unit change in read-
ing scores results in about 3 additional points on the aptitude variable and
about 5 additional points due to a one unit change in Math score. For pro-
gram type, compared to attending a Vocational program, being in an Aca-
demic program results in a 50 point increase in the aptitude score while being
in a General program results in a 39 point increase in the outcome. Sigma
can be used as a comparison to the standard deviation of academic aptitude
which was 99.21, a substantial reduction. For more on this statistic, see Tobin
(1958).

6.3 Additional Reading

For more information about Tobit models, see Amemiya (1984) and Tobin
(1958). Good references for survival analysis include Fleming and Harring-
ton (2005), Hosmer,Lemeshow and May (2008), and Kalbfleisch and Prentice
(2002). Lavori, Dawson and Shera (1995), van Buuren, Boshuizen and Knook
(1999), White and Royston (2009) deal with missing data in survival analysis.
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6.4 Exercises

1. Download the data set named EX NCSR SURVIVAL from the
book web site and examine the contents, variable type, and miss-
ing data present in this data set. The analysis goal is to predict
incidence and onset of Major Depressive Disorder using data from
Part 2 of the NCS-R (n=5,692). The data set includes a number of
variables with some missing data. The outcome variable is age of
onset for those that had a diagnosis of MDE or age at interview for
those without a MDE diagnosis (considered right-censored).

(a) Based on exploratory analysis, which variables have missing
data? What is the highest percentage of missing data? Which
variables are categorical, continuous, or any other type? How
many imputations would you recommend given the missing
data rates? Describe what the AGEEVENT and CENSOR vari-
ables represent.

(b) Impute missing data using the censor indicator (CENSOR) and
the failure/censor time (AGEEVENT) variables as predictors
in the imputation. Use M=5 with 5 iterations and a SEED=123
value. Request imputation diagnostics for the PEA76 variable.

(c) Examine the imputation results and diagnostic plots with the
goal of identifying any issues with the imputation. Do you see
any issues that require investigation?

(d) Perform survival analysis using the 5 imputed data sets from
part b. and request a PH model from the REGRESS command.
The model of interest is incidence and onset of Major Depres-
sive Episode (AGEEVENT) predicted by gender (SEX), educa-
tion in 4 categories (EDUCAT), PEA76, PEA79, PEA80, and
PEA82. Make sure to use the censor indicator variable (CEN-
SOR) set to 1 to identify the censored cases, specify LINK
PHREG to request a PH model, incorporate the complex sam-
ple design features through use of the weight, stratum, and
cluster variables and declare variable type prior to running the
model.

(e) Based on the results from part d., write a short paragraph de-
scribing how missing data was handled, and how REGRESS
handles combining MI results and also accounts for complex
sample design features and interpretation of the results.

2. Download the EX WHAS500 SURVIVAL data set (SAS for-
mat) from the book web site. For this exercise, the data set includes
randomly simulated missing data on a few covariates. The original
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data is based on the Worcester Heart Attack Study WHAS500 Data,
directed by Dr. Robert J. Goldberg of the Department of Cardiol-
ogy at the University of Massachusetts Medical School. The data
set was obtained from Hosmer, D.W. and Lemeshow, S. and May, S.
(2008). The main goal of this study is to describe factors associated
with trends over time in the incidence and survival rates following
hospital admission for acute myocardial infarction (MI). Data have
been collected during thirteen 1-year periods beginning in 1975 and
extending through 2001 on all MI patients admitted to hospitals
in the Worcester, Massachusetts Standard Metropolitan Statistical
Area. (Hosmer and Lemeshow, 2009).

(a) The aim of this exercise is to use a Cox model to predict inci-
dence and survival rates after hospital admission due to acute
Myocardial Infarction. As usual, prepare for imputation and
analysis through data exploration including identifying miss-
ing data patterns, extent of missing data, and variable type.
Which variables have missing data and what are the missing
data rates? What do the values on the LENFOL variable mean
for a censored case? What are two methods of multiple impu-
tation that could be used to handle censored outcome cases?

(b) Impute missing data using the IMPUTE command. For this
imputation, use the failure/censor time and censor indicator
variables in the imputation model as predictors. Create M=10
imputed data sets, and include a SEED value to ensure future
replication of results. Make sure perform imputation diagnos-
tics for each imputed variable using the DIAGNOSE command.
Are there any issues with the imputation and if so, address these
prior to regression analysis of imputed data sets.

(c) Use the 10 imputed data sets as input to the REGRESS com-
mand and perform survival analysis using a Cox model. The
model of interest is: LENFOL = BMI HR AFB. Be sure to use
the LINK PHREG statement and the correct specification of
the dependent variable in the syntax.

(d) Repeat parts b. and c. but treat censored survival times as
missing and impute as an outcome variable. Make sure to create
a new outcome variable set to missing for censored cases, set
the lower bound to the censor followup time and the upper
bound to the maximum number of days in the observed data.
Also impute missing data on covariates as well.

(e) Based on the results from parts c. and d., prepare a table of
results from the two approaches. Discuss and interpret the find-
ings and be sure to cover how multiple imputation improves the
analysis and how MI variability is included in the analysis of
complete data sets.
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3. Download the EX TRUNCREG MISS data set from the book
web site. The data set is derived from a hypothetical study of stu-
dents in the GATE (gifted and talented education) program. The
goal is to model achievement as a function of language skills and the
type of program in which the student is enrolled. Since all students
are required to have a minimum achievement score of 40 to enter the
GATE program, the sample is truncated at an achievement score
of 40. An additional complication is there is missing data on some
variables in the data set.

(a) Perform exploratory data analysis on each variable to determine
variable type and contents, missing data rates, and missing data
patterns. How many variables have missing data and what is
the pattern? How many imputations would you recommend?

(b) Impute missing data and include imputation diagnostics for
each variable requiring imputation. Evaluate the diagnostic
plots and determine if any imputation issues need to be ad-
dressed before regression modeling.

(c) Perform Tobit regression predicting achievement by language
scores and type of program. Run the model once using com-
plete cases only and repeat using imputed data sets produced
in part b. Write a brief comparative summary of the results
and describe how inherent lower truncation was dealt with, how
multiple imputation improves the analysis and what the Tobit
model results suggest about the relationships between achieve-
ment and the explanatory variables.
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Structural Equation Models

7.1 Introduction

Structural equation modeling is a technique used to assess whether the correla-
tion matrix of p variables can be explained through a set of pre-specified linear
regression relationships. These relationships are typically expressed through
a collection of Directed Acyclic Graph (DAG) diagrams. The graph may be
connected either through a directional (“causal”) or bi-directional (“associa-
tion”) relationship and also may involve latent variables connected to observed
variables. Figure 7.1 shows a collection of typical symbols used in expressing
the relationship through a DAG. The letters (Y ) in the square boxes are used
for observed variables (which are expressed as Z-scores), the letters in the cir-
cle (F ) are latent variables which are constructs related to observed variables
and letters E without the boxes or squares represents residuals or unexplained
variation. The one or two sided arrows are used to indicate dependence be-
tween the variables in the boxes.

Figure 7.1: Schematics used in specifying structural equation models

Figure 7.2 provides a schematic with 6 observed variables Y1, Y2, . . . , Y6,
two latent variables F1 and F2 and 6 residuals E1, E2, . . . , E6.

The first three observed variables are related to the latent construct F1

through the following regression relationships,

Y1 = β11F1 + E1

Y2 = β21F1 + E2

Y3 = β31F1 + E3

111
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Figure 7.2: An example of a structural equation model specification

Similarly, the variables Y4 and Y5 are related to the latent variable F2 through
the following regression relationships,

Y4 = β42F2 + E4

Y5 = β52F2 + E5

Finally, the last relationship is between Y6 and the two latent variables F1

and F2,
Y6 = β63F1 + β64F2 + E6.

The two latent variables are assumed to have mean 0, variance 1 and the
bi-directional arrow indicates that they are correlated with a correlation coef-
ficient, τ12. The six residuals, (E1, E2, . . . , E6), are assumed to be uncorrelated
with mean 0 and variances σ2

i , i = 1, 2, . . . , 6. The seven regression coefficients
β = (β11, β21, β31, β42, β52, β63, β64) are called path coefficients. The regression
models given above imply a structure of the covariance matrix in terms of the
residual variances, the correlation coefficient between the latent variables, and
the path coefficients. These parameters can be estimated using, for example,
the maximum likelihood approach.

Missing values in the observed variables may be multiply imputed using,
perhaps, additional covariates that may be predictive of these observed vari-
ables. Data analysis can be performed on each completed data set and multiply
imputed estimated path coefficients and their standard errors can be obtained
using the combining rules discussed in Chapter 1. Note that the imputation
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should be carried out without assuming any structure on the correlation ma-
trix (arbitrary covariance matrix). Otherwise, the completed data analysis will
be biased towards the assumed or particular structure.

7.2 Example

This example uses individual level data from the National Merit Twin Study
(n=1,678) and includes scores from National Merit tests and individual/ fam-
ily characteristics such as parent education, family income, type of twin, and
gender. See Appendix A (or Loehlin and Nichols(1976)) for more details about
the data set. The goal is to perform structural equation modeling to examine
relationships between “manifest” variables representing Mother’s and Father’s
education, Family Income, and English, Social Science, Vocabulary, Math and
Natural Science test scores. Three latent variables are included in the analysis:
Family Background, Verbal Ability and Quantitative Ability. See Figure 7.3
for a DAG schematic representing these relationships.

Figure 7.3: Schematic for structural equation model using National Merit Twin
Study data

Three approaches are contrasted in this example: (1) Complete case anal-
ysis using SAS PROC CALIS, (2) Full Information Maximum Likelihood
(FIML) also using PROC CALIS, and (3) Multiple Imputation (MI) with
IMPUTE and SASMOD (for use with SAS only). Non-SAS users may impute
missing data using the IMPUTE command and analyze output data sets in a
software of choice, assuming it can correctly combine data sets from multiple
imputation.

The code below first examines the data with a focus on descriptives and
the pattern of missing data. Next, PROC CALIS is used for both complete
case and FIML SEM analyses. Use of the “path” SAS syntax for defining
the relationships is demonstrated though a number of other syntactical op-
tions are also available in PROC CALIS. Missing data is imputed using IM-
PUTE with M=5 and a SEED value. The imputed data set is then used with
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SASMOD/PROC CALIS to perform SEM within the structure of the SAS-
MOD command. The advantage of using SASMOD with PROC CALIS is that
proper combining of MI results is done automatically. The code is presented
in full prior to presentation and discussion of results.

<sas name="SEM_Example">

libname sem ’P:\ive_and_MI_Applications_Book\Chapter8SEM’;

/*check for missing data */

proc means data=sem.merit_14dec2016 n nmiss mean min max ;

run ;

/* PROC CALIS without FIML, CC analysis */

proc calis data=sem.merit_14dec2016 ;

path

moed faed faminc <--- familybackground = 1,

english socsci vocab <--- verbal = 1,

math natsci <--- quantitative = 1,

familybackground ---> verbal,

verbal ---> quantitative;

run ;

/* PROC CALIS with FIML*/

proc calis data=sem.merit_14dec2016 method=fiml ;

path

moed faed faminc <--- familybackground = 1,

english socsci vocab <--- verbal = 1,

math natsci <--- quantitative = 1,

familybackground ---> verbal,

verbal ---> quantitative;

run ;

/* impute missing data here before proceeding to SEM */

<impute name="SEM_Impute">

title "Impute Missing Data Prior to SEM Analysis" ;

datain sem.merit_14dec2016 ;

dataout nmtdata_out all;

default continuous ;

transfer pairnum ;

categorical sex zygosity moed faed faminc;

iterations 5 ;

multiples 5 ;

seed 305 ;

run ;

</impute>
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/* run with PROC CALIS and SASMOD to compare with

Complete Case and FIML */

<sasmod name="SEM_SASMOD">

title "SASMOD with PROC CALIS for SEM Model" ;

datain nmtdata_out ;

by _mult_ ;

proc calis ;

path

moed faed faminc <--- familybackground = 1,

english socsci vocab <--- verbal = 1,

math natsci <--- quantitative = 1,

familybackground ---> verbal,

verbal ---> quantitative;

run ;

</sasmod>

</sas>

7.3 Multiple Imputation Analysis

Due to missing data on Mother’s education (missing for 38 observations),
Father’s education (missing on 48 observations), and Family Income (missing
on 124 observations), multiple imputation is executed using the IMPUTE
command and five complete data sets generated for subsequent analysis. Data
analysis is carried out as described above, complete case analysis (missing data
cases omitted), use of FIML, and analysis of multiply imputed data sets with
SASMOD. The tables below summarize the results. Default output from the
SASMOD command includes standardized regression estimates and standard
errors, Wald tests, and p values but many other outputs are available from
PROC CALIS. See full output from PROC CALIS runs for CCA and FIML
for details.

Results from Tables 7.1-7.3 indicate very few differences among the 3 meth-
ods. The default results from PROC CALIS (Tables 7.1 and 7.2) include a t
test while results from SASMOD/PROC CALIS present a Wald test, that is
the t statistic squared. Overall, each parameter is significant at the 0.05 level
and the unstandardized estimates differ in the 2nd or 3rd decimal.
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Table 7.1: Results from Complete Case Analysis of National Merit Twin Study,
n=1,536

Variable Unstandardized Estimate t Pr > |t |
Mother Education 1.000 –

Father Education 1.636 19.832 <.0001

Family Income 1.212 19.502 <.0001

English 1.000 –

Social Science 1.229 34.920 <.0001

Vocabulary 1.170 34.293 <.0001
Math 1.000 –

Natural Science 0.975 31.448 <.0001

Family Background 1.636 11.441 <.0001
Verbal 1.221 26.330 <.0001

Table 7.2: Results from FIML Analysis of National Merit Twin Study,
n=1,678.

Variable Unstandardized Estimate t Pr > |t |
Mother Education 1.000 –

Father Education 1.612 20.551 <.0001

Family Income 1.203 19.919 <.0001

English 1.000 –

Social Science 1.223 35.578 <.0001

Vocabulary 1.179 36.034 <.0001

Math 1.000 –

Natural Science 0.984 32.792 <.0001

Family Background 1.592 11.609 <.0001

Verbal 1.218 27.644 <.0001

Table 7.3: Results from MI Analysis of National Merit Twin Study, n=1,678.

Variable Unstandardized Estimate Wald Pr > |t |
Mother Education 1.000 –

Father Education 1.607 426.649 <.0001

Family Income 1.196 404.750 <.0001

English 1.000 –

Social Science 1.223 1320.388 <.0001

Vocabulary 1.180 1283.387 <.0001

Math 1.000 –

Natural Science 0.984 1075.014 <.0001

Family Background 1.571 136.041 <.0001

Verbal 1.218 759.994 <.0001
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7.4 Additional Reading

Key references for Structural Equation Modeling include Kline(1998), Schu-
macker, and Lomax(1996), and Bollen(1989). Also see Zhang and Yung
(2011) for SAS conference publications, tutorials, and related examples. En-
ders (2006, 2010) provide an excellent overview of missing data methods for
Structural Equation modeling. See also, Allison (2003), Bodner (2008) and
Schminkey, von Oertzen and Bullock (2016).

7.5 Exercises

1. Download the data set called ”Ex sem” from the book web site
and translate for use with your software of choice. The data was
obtained from SAS technical support (support.sas.com) and was
designed for use in a number of papers by Zhang and Yung (2011).
The simulated data closely mimics actual data described in detail
in Marjoribanks (1974). The point of the analysis is to use SEM
to model mental ability using 12 manifest variables and 4 latent
variables. A path diagram below represents the model relationships.

The diagram details relationships with measured variables repre-
sented by squares and latent variables represented by ovals. The
data set contains 200 observations and was generated from a multi-
variate normal distribution for the 12 observed variables. However,
50% of the observations have random missing values, (Zhang and
Yung, 2011). This exercise uses both MI and FIML with SASMOD
to address missing data problems and perform SEM with imputed
data. Note that PROC CALIS allows built-in use of FIML and the
IVEware SASMOD command permits use of PROC CALIS within
the Jackknife Repeated Replication structure of IVEware.

(a) Explore the data set via descriptive analysis, examination of
missing data patterns, variable type, and extent of missing data.
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What are the variable types in the data set? Which variables
have the highest and lowest amount of missing data?

(b) Impute missing data using IMPUTE with M=15/5 iterations,
bounds for each variable, and obtain imputation diagnostic
plots for 3 of the 12 variables in the data set. Do any of the
imputation diagnostic plot indicate problems with the imputa-
tions? If so, how might you address this issue?

(c) SAS Users: use Iveware/SASMOD and SAS/PROC CALIS
to perform SEM using the imputed data from part b., while
following the path diagram above as a guide. PROC CALIS
allows use of a number of code methods to set up the analysis.
Any code method is acceptable assuming it expresses the same
relationships.

Non-SAS users: with your chosen software and the imputed
data sets from part b., perform SEM as detailed above. Make
sure to follow the path diagram above and also make sure your
software is capable of combining results from multiply imputed
data sets used in the analysis.

(d) Based on the multiple imputation results from part c., prepare
a summary table of path parameters, standard errors and ei-
ther t or Wald tests with p values. Explain how the variability
introduced by the imputation is accounted for and also describe
the SEM model in broad terms.

(e) SAS Users: repeat the analysis in part d. but rather than
using MI to address missing data issues, use PROC CALIS
with FIML. Add the parameter estimates, standard errors and
significance test information to the table prepared in part d.
and label the results ”FIML with CALIS”. Do the MI v. FIML
results differ substantially? If so, describe the key differences or
if not, state how they are similar. How do the two approaches
compare in terms of general method?

2. Project. Generate several complete data sets with 6 variables and
DAG given in Figure 7.2 (choose any convenient values for the resid-
ual variances (for example, σ2

i = 1, i = 1, 2, . . . , 6)and path coeffi-
cients (for example, all β’s=1). Assume that Y6 has no missing
values and all other variables have missing values with the mecha-
nism depending upon Y6. Use 5 logistic models to generate varying
amount of missing data in Y1, Y2, . . . , Y5. Generate five additional
standard normal variables, Z1, Z2, Z3, Z4, Z5, where Zi is correlated
with Yi with the correlation coefficient, ρi, i = 1, 2, . . . , 5.

(a) One each complete data set (before deleting the values) fit the
SEM model, store the path coefficients, their standard errors
and 95% confidence intervals.
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(b) On each data set with missing values, apply complete case anal-
ysis, store the estimated path coefficients, their standard errors
and 95% confidence intervals.

(c) Apply FIML approach on each data set with missing values and
store the same results.

(d) Multiply impute the missing values in each data set (ignoring
the auxiliary variables Z’s) and perform multiple imputation
analysis. As before store the results.

(e) Repeat (d), except now include the Z’s in the imputation
model.

(f) Analyze the results from the above simulation study to com-
pare the bias, variance and coverage properties of various ap-
proaches. In particular, explain the benefits, or lack thereof,
in using the auxiliary variables. To assess the full impact, you
may change the amount of missing values and the correlations
between Y and Z.

(See Chapter 11 on how to run simulations using IVEware.)



http://taylorandfrancis.com


8

Longitudinal Data Analysis

8.1 Introduction

A longitudinal study involves collecting some variables repeatedly over time
(waves or periods) on a sample of subjects. Such investigations may use
different designs such as observational studies like surveys, measurement of
biomarkers, clinical measures, health conditions etc. Examples are the panel
surveys, prospective cohort studies etc. Experimental longitudinal studies are
also common where interventions are mounted in between the time periods.
Examples include cross over designs, adaptive treatment regimens etc. New
variables may also be added to the data collection at any wave. These designs
allow for investigating trends and efficient estimation of treatment effects with
a better control for confounding through within-subject comparisons. How-
ever, a big problem is missing data due to dropouts. In addition, there may
be item-missing data due to refusal to answer some questions or inability in
obtaining certain measures.

Analysis of incomplete data in a longitudinal setting can be a real chal-
lenge. Consider a simple randomized study with a single baseline covariate
X, a treatment indicator T = 1 (Treatment) or T = 0 (Control) and p waves
or periods of outcome measurements, Y : Y1, Y2, . . . , Yp. The subjects may ei-
ther drop out after a particular wave permanently or intermittently miss some
waves.

Suppose the goal is to estimate the parameter,

θ = E(Yp − Y1|T = 1, X)− E(Yp − Y1|T = 0, X)

= [E(Yp|T = 1, X)− E(Yp|T = 0, X)]− [E(Y1|T = 1, X)− E(Y1|T = 0, X)].

Consider several scenarios:

1. Missing Values: (A) No missing values in X and all the missing
values are in the outcome variables Y1, Y2, . . . , Yp ;or (B) Missing
values are in both X and Y ’s

2. Type of analysis: (A) Intent to treat (as randomized) or (B) as
treated analysis

3. Distribution of Outcome variables: (A) Normal or (B) Non-normal

121
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For the situation described by the scenario (1A, 2A, 3A), the maximum
likelihood approach (such PROC MIXED in SAS) could be used to infer about
the parameter, θ. For a binary outcome variable, technically the scenario (1A,
2A, 3B), a log-linear type model could be formulated and the maximum like-
lihood estimates could be constructed, though specialized computer code will
have to be developed to implement this approach. It is very difficult, if not im-
possible to develop maximum likelihood estimates for more complex situations
such as time-varying covariates with missing values. The multiple imputation
approach might be more attractive across all the scenarios.

First, consider the multiple imputation approach for (1A, 2A, 3A) situ-
ation. Create a data file with one line per subject with p + 2 variables: X,
T and Yj , j = 1, 2, . . . , p. Multiply impute the missing values in the data
set using the SRMI approach. For the analysis, create the difference variable
Z = Yp − Y1 and then regress Z on T and X. The regression coefficient for T
is the treatment effect θ given above. This is the classical MAR analysis where
the drop out and completers are treated as exchangeable within the assigned
treatment group and is equivalent to the maximum likelihood analysis. This
strategy, “imputation as randomized”, can be adopted for all other scenarios
involving 2A.

Now consider the modification where dropouts are assigned to the control
condition at the time of drop out for imputation purposes. This strategy can
be called “imputation as control”. Create a data file with one line per subject
with (2p + 1) variables: X, (Yj , Tj), j = 1, 2, . . . , p where Tj = 1, for those
subjects who did not drop out and for those who dropped out at wave j,
Tj = 0 and Yj is set to missing value. The same strategy works for all other
scenarios involving “drop outs considered as control” analysis. The missing
values in X can be imputed along with the Y values. The analysis strategy is
the same as given above (regressing Z on T and X). This analysis, however,
estimates the treatment effect between the two randomized groups where the
dropout outcome pattern will be more like controls rather than the treated
(as assumed in the “imputation as randomized” analysis). The two analyses
can provide deeper insights into the effect of treatment on the outcome.

There are many other assumptions that can be made while assessing the
effect of the treatment on the outcome. For example, the dropout being stable
post dropout is an extension of the Last Observation Carried Forward (LOCF)
method. Creation of completed data sets under various assumptions can pro-
vide a framework for performing sensitivity analyses to assess the trends in
the outcome variable, the effect of treatment or other baseline covariates on
the trends or the outcome variables, the role of time-varying covariates, etc.

A general strategy is to create a “wide format” data file with all the vari-
ables across all the waves “strung out” with one record per subject in the data
file. The SRMI approach is then used to multiply impute the missing values
to create M completed-data sets which can then be analyzed using complete
data methods.

The next few sections provide several example analyses of longitudinal data
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with missing covariates and outcome variables with both normal and non-
normal outcome variables. Sensitivity analysis is also performed to explore
the effect of deviation from the MAR assumption.

8.2 Example 1: Binary Outcome

This example uses data from the American Changing Lives Survey. The study
began in 1986 with a national face-to-face survey of 3,617 adults ages 25 and
up in the continental U.S., with African Americans and people aged 60 and
over over-sampled at twice the rate of the others, and face-to-face re-interviews
in 1989 of 83% (n=2,867) of those still alive. Survivors were re-interviewed by
telephone, and where necessary, face-to-face in 1994 and 2001/02 and again
in 2011/12. (http://www.isr.umich.edu/acl).

The data set used in this example is prepared in a wide format and in-
cludes a differently named impairment variable for each wave coded 1=mod-
erate/severe/death and 0 otherwise. For example, I1 represents wave 1=1986,
I2=1989, I3=1994, I4=2001/2001, and I5=2011/12. There is missing data on
each of the wave 2-5 impairment variables with fully observed data for all other
variables such as impairment at wave 1, age, sex, race, and socio-economic sta-
tus. Overall, about 50% of the cases have item missing data.

The imputation code below demonstrates the use of IMPUTE to impute
missing data on the wave 2-5 impairment variables. The IMPUTE call creates
25 multiples each with 20 iterations, use of the TRANSFER statement to
include the CASEID variable in the output data set, a SEED value, and
use of the DIAGNOSE option to output plots to assist in evaluation of the
imputation of the wave 2 impairment indicator.

<sas name="Long_Binary">

libname d ’P:\IVEware_and_MI_Applications_Book\DataSets\

ACL Data and Imputation\’;

* non imputed wide data set ;

data acl1 ;

set d.acl_raw_4sep2016 ;

* examine variables and missing data problem ;

options nofmterr ;

proc means n nmiss mean std min max nolabels ;

run ;

<impute name="bin_impute"> ;

title "Longitudinal Imputation and Analysis" ;

datain acl1 ;

http://www.isr.umich.edu/acl
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dataout aclimp all;

default categorical;

continuous v2000;

transfer caseid;

iterations 20;

multiples 25;

seed 67566;

diagnose i2 ;

run;

</impute>

The next set of commands demonstrate how to prepare the imputed data
for analysis of completed data. For example, a new variable called imputation
is set equal to mult for use in analyses to come in SAS, the wide data set
is converted to a long or multiple records per individual data set, those age
51+ are deleted to avoid bunching of deaths, and a few additional variables
are created for the final analyses. These data management steps are needed so
that analyses account for repeated measures for individuals. Specifically, we
require the correct data structure and format for use with PROC GENMOD
with a REPEATED statement. Lastly, logistic regression output from each
imputation multiple is saved and combined using PROC MIANALYZE. We
also request multivariate tests of the slopes and intercepts from this procedure
through use of the TEST statement and produce an output data set using ODS
OUTPUT for post-hoc computation of odds ratios.

* Prepare data for analysis ;

data aclimp1 ;

set aclimp ;

_imputation_ = _mult_ ;

run ;

*Prepare long imputed data set ;

data longacl ;

set aclimp1 ;

array c (1:5) i1 - i5 ;

do wave = 1 to 5 ;

impair = c(wave);

output ;

end ;

run ;

data longacl1 ;
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set longacl ;

if wave=1 then time=0;

if wave=2 then time=3/10;

if wave=3 then time=8/10;

if wave=4 then time=16/10;

if wave=5 then time=25/10;

bl_t=bl*time;

blm_t=blm*time;

bum_t=bum*time;

bh_t=bh*time;

wl_t=wl*time;

wlm_t=wlm*time;

wum_t=wum*time;

wh_t=wh*time;

if v2000 >50 then delete; * delete those over 50 years ;

run ;

proc sort;

by _Imputation_;

run ;

proc genmod data=longacl1 desc;

class caseid wave;

model impair=v1801 v2000 bl blm bum bh wl wlm wum

time bl_t blm_t bum_t bh_t wl_t wlm_t wum_t/covb

dist=bin link=logit;

repeated subject=caseid /type=un covb printmle;

by _Imputation_;

ods output ParameterEstimates=gmparms ParmInfo=gmpinfo

CovB=gmcovb;

run ;

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;

modeleffects intercept v1801 v2000 bl blm bum bh

wl wlm wum

time bl_t blm_t bum_t bh_t wl_t wlm_t wum_t;

intdiff:test bl=wl,blm=wlm,bum=wum, bh/mult;

slopediff:test bl_t=wl_t,blm_t=wlm_t,

bum_t=wum_t,bh_t/mult;

ods output testparameterestimates =outtests ;

run;

proc print data=outtests ;

run ;
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data OR ;

set outtests ;

or=exp(estimate) ;cilow=exp(estimate - (1.96*stderr)) ;

ciup=exp(estimate + (1.96*stderr)) ;

run ;

title1 "intdiff:test bl=wl,blm=wlm,bum=wum, bh/mult; " ;

title2 "slopediff:test bl_t=wl_t,blm_t=wlm_t,

bum_t=wum_t,bh_t/mult;" ;

proc print noobs ;

var test or cilow ciup ; run ;

</sas>

Table 8.1: Comparison of Intercepts and Slopes Between African-Americans
(AA) and Whites (W) in Four Socio-Economic Groups, Source: Imputed ACL
Data

AA vs W: Baseline AA vs W: OR(per decade)
SES Status OR (95% CI) (95% CI)
Low 1.469 (0.942, 2.291) 1.142 (0.819, 1.593)
Lower Middle 2.173 (1.448, 3.261) 1.072 (0.819, 1.403)
Upper Middle 2.189 (1.434, 3.342) 1.112 (0.829, 1.491)
High 3.452 (1.376, 8.658) 1.065 (0.569, 1.994)

Based on results from Column 1, Table 8.1, African-Americans have higher
baseline prevalence of impairment, as compared to Whites, for each socio-
economic group. Also from Table 8.1,Column 2 or Odds Ratios per decade,
shows higher rates of change in prevalence of impairment for AA v. Whites,
though none are significant. These results suggest that African-Americans
fare worse than Whites when evaluating prevalence of impairment by SES
and change over the decades of this study.

8.3 Example 2: Continuous Outcome

The second example uses data from the Opiod detoxification study. The data
is described in detail in Appendix A. Our analytic interest is the impact of
the treatment drug, buprenorphine-naloxone (Bup-NX), on daily visual analog
scores (VAS, range 0 to 100). The comparison is to respondents that received
the drug Clonidine. There are 113 individuals with 15 measurements, the
first is at baseline and 14 more obtained on a daily basis during the trial.
Due to missing data on the outcome, VAS, imputation using a Complete as
Randomized approach is demonstrated.
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The code below demonstrates data management and data structuring for
evaluation of the missing data problem, use of IMPUTE to impute missing
data on the 14 outcome variables (using a wide format data set and M=25
with bounds applied for each outcome variable), conversion of the imputed
wide data set to a long file appropriate for longitudinal data analysis, and
use of SAS PROC MIXED, PROC MIANALYZE, and PROC SGPLOT for
analysis of the impact of treatment on the daily VAS measurements. The code
is presented in full prior to results/discussion.

<sas name="Long_Continuous">

/* Example 2: Opioid Data Set, completed as randomized example*/

libname d3 ’P:\IVEware_and_MI_Applications_Book

\DataSets\Longitudinal Data Set’;

/* means for wide data set */

proc means data=d3.od_all n nmiss mean min max ;

class treat ;

run ;

/* impute missing data on outcomes*/

<impute name="od_imp">

title "Opioid Detox Impute" ;

datain d3.od_all;

dataout odimp all;

default continuous ;

categorical female white ;

transfer instudy usubjid ;

bounds vas0 (>=0, <=100) vas1 (>= 0, <=100)

vas2 (>=0, <=100) vas3 (>= 0, <=100) vas4 (>=0, <=100)

vas5 (>= 0, <=100)

vas6 (>=0, <=100) vas7 (>= 0, <=100) vas8 (>=0, <=100)

vas9 (>= 0, <=100) vas10 (>=0, <=100) vas11 (>= 0, <=100)

vas12 (>=0, <=100) vas13 (>= 0, <=100) vas14 (>= 0, <=100);

iterations 5 ;

multiples 25 ;

seed 2017 ;

run;

</impute>

/* analyze imputed data sets and set _mult_ to

_imputation_ for use in SAS */

data casrimpw;

set odimp ;

_Imputation_=_mult_;

drop _mult_;
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run ;

/* create a long format data set for subsequent analysis */

data casrimpl;

set casrimpw;

array avas(0:14) vas0 - vas14 ;

do day = 0 to 14 ;

vas = avas(day);

output ;

end ;

drop vas0 - vas14 ;

run ;

/* each id now has 25*15 records or

113*25*15=42375 records */

proc print data=casrimpl (obs=375) ;

run ;

/* analyze long and imputed data Complete as Randomized */

data casrimpl_analyze_mac ;

set casrimpl;

/* create a series of variables for final model */

day2=day*day;

tday=treat*day;

tday2=treat*day*day;

/* 14 day dummys plus treat*day */

%macro dum ;

%do i=1 %to 14 ;

day&i=0 ;

if day=&i then day&i=1 ;

tday&i=treat*day&i ;

%end ;

%mend dum ;

%dum ;

run ;

/* sort by _imputation_*/

proc sort;

by _imputation_;

run ;

/* PROC MIXED model with VAS predicted by covariates

of interest*/

proc mixed data=casrimpl_analyze_mac dfbw;
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class usubjid;

model vas=age female white treat day1 day2 day3

day4 day5 day6 day7 day8 day9 day10 day11 day12 day13 day14

tday1 tday2 tday3 tday4 tday5 tday6 tday7 tday8 tday9

tday10 tday11 tday12 tday13 tday14/s covb;

repeated /subject=usubjid type=un;

by _Imputation_;

ods output SolutionF=mixparms covb=mixcovb;

run;

proc mianalyze parms=mixparms covb(effectvar=rowcol)=mixcovb;

modeleffects intercept age female white treat

day1 day2 day3 day4 day5 day6 day7 day8 day9 day10 day11

day12 day13 day14

tday1 tday2 tday3 tday4 tday5 tday6 tday7 tday8 tday9

tday10 tday11 tday12 tday13 tday14;

ods output parameterestimates=outest ;

run;

/* use PROC PRINT and PROC SGPLOT to assess impact of

treatment by day of study*/

proc print data=outest ;

run ;

proc format ;

value $pf ’treat’=’0’ ’tday1’=’1’ ’tday2’=’2’

’tday3’=’3’ ’tday4’=’4’

’tday5’=’5’ ’tday6’=’6’ ’tday7’=’7’ ’tday8’=’8’ ’tday9’=’9’

’tday10’=’10’

’tday11’=’11’ ’tday12’=’12’ ’tday13’=’13’ ’tday14’=’14’ ;

run;

proc sgplot data=outest ;

title "Estimated Mean Daily Difference on VAS,

Bup-Nx v. Clonidine Groups" ;

label estimate="Estimated Mean Difference" parm=’Day’ ;

where parm in (’treat’, ’tday1’, ’tday2’, ’tday3’,

’tday4’, ’tday5’, ’tday6’,

’tday7’, ’tday8’, ’tday9’, ’tday10’, ’tday11’,

’tday12’, ’tday13’,’tday14’) ;

series x=parm y=estimate;

format parm $pf. ; yaxis min=-15 max=5 ;

run ;

</sas>
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Table 8.2: Covariate-adjusted MI Mean Difference Between Bup-NX and
Clonidine Groups for Each Study Day, Standard Error and p Value

Day Estimate SE p Value
0 -4.216 6.076 0.488
1 1.175 4.989 0.814
2 -9.328 7.825 0.233
3 -9.150 8.182 0.264
4 -6.577 8.044 0.414
5 -6.144 8.553 0.473
6 2.046 7.506 0.785
7 2.464 7.626 0.747
8 -2.286 7.685 0.766
9 -8.014 7.382 0.278
10 -12.842 7.888 0.105
11 -6.974 7.534 0.355
12 -2.764 9.411 0.770
13 -3.904 8.933 0.663
14 -9.570 9.719 0.327

Results from Table 8.2 suggest that those in the treatment (Bup-NX) group
report fewer cravings for opioid, (based on the VAS outcome), as compared
the control group (Clonidine), though none are statistically significant.

Figure 8.1 presents estimated daily mean differences between the two
groups for the 14 day period. Overall, a downward trend is observed with
a number of dips and upward trends over the 14 days.

Figure 8.1: Estimated daily mean difference between Bup-NX and clonidine
groups
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8.4 Example 3: A Case Study

Example 3 is a case study that demonstrates a step-by-step guide to data
management, imputation, and subsequent analysis of completed data using
a combination of SAS and IVEware to correctly analyze multiply imputed
complex sample data using multi-level mixed models.

The analytic goal is to estimate household head’s wages/salary over time
using linear mixed models to account for repeated measures and random
effects as well as complex sample design features and the variability intro-
duced by multiple imputation. Use of SAS PROC MI, PROC MIXED, along
with the SASMOD and IMPUTE commands of IVEware is demonstrated.
This example uses individual level data merged with family variables and
downloaded from the Panel Study for Income Dynamics (PSID) data center,
(http://psidonline.isr.umich.edu). Data set-up statements (for SAS) and raw
data were provided by the data center.

The analysis uses the household head’s wages/salary from the previous
calendar year as the dependent variable along with gender and sample type as
covariates. However, prior to imputation/analysis, cases with imputed values
on head’s wages/salary (done by PSID staff using primarily ”hotdeck” meth-
ods) were set back to missing for the demonstration of imputation using the
Sequential Regression (SMRI) method.

The following code includes four sections: 1. data management before im-
putation, 2. imputation of missing data and evaluation of imputation using
diagnostic tools, 3. data shaping to produce a ”long” data set, and 4. analysis
of completed data sets using a variety of SAS and IVEware commands for
descriptive and regression analyses.

Part 1 of the code first calls a working data set organized in a wide format
and selects individuals who were household heads and in the PSID family in
each year 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013 and part of the
original 1968 PSID sample defined as from either the Survey Research Center
(SRC) or Census sample. The SRC and Census samples are considered ”core
sample” and have been followed from 1968 to the present, see the PSID doc-
umentation for more details on the PSID sampling methods. The 2013 PSID
individual longitudinal weight is used for all analyses as it includes attrition
adjustments over the years of interest, 1997-2013 (see PSID documentation
for details on weight construction) and because all individuals were present in
each year. Other weighting options might be considered but for simplicity we
use the last weight of the years considered.

The head’s wages/salary variables are used in their original scale (dollar
amounts in year of collection) and converted to 2013 dollars post-imputation
for final analyses. Other variables included are head’s grade of completed ed-
ucation, age, gender, plus individual longitudinal weight and complex sample

http://psidonline.isr.umich.edu
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design variables required for correct design-based estimation. Note that each
of these constructs have nine individually named variables for each record.

Part 2 performs imputation of missing data for the nine head’s
wages/salary and nine education variables. Since there is a relatively small
amount of missing data, five imputation multiples are generated. The wide
data structure is recommended to ensure that within individual relationships
are maintained during the imputation. In addition, use of a BY statement in
IMPUTE requests imputation be done separately within each sample (SRC
and Census). Other options are inclusion of a combined categorical stratum
and cluster variable to account for the complex sample design, the 2013 in-
dividual longitudinal weight, and additional model covariates to enrich the
imputation. Diagnostic plots of observed v. imputed values are produced by
both IVEware (diagnose option) and PROC SGPLOT.

Part 3 of the command syntax restructures the five completed data sets
into a long data set suitable for longitudinal data analysis. Arrays are used
with an output statement to generate a set of variables that each represent
each construct at 9 time points and wages/salaries are converted to 2013
dollars (with Consumer Price Index conversion factors) during this step.

Part 4 code calls the data set produced in Part 3 to perform analyses such
as an unconditional means model stratified by sample category and year, a
plot of a few individual records over time to show individual wage/salary vari-
ation, and a linear growth model predicting head’s wages/salary using random
intercepts/slopes, an interaction between time and sample while controlling
for gender. Multi-level modeling is performed with IVEware SASMOD and
PROC MIXED since the combination of commands offers Jackknife Repeated
Replication to account for the complex sample features as well as MI combin-
ing implemented automatically.

8.4.1 Code

sas name="PSID Case Study">

/* Part 1 */

/* Chapter 12 Linear Growth Model, PSID data 1997-2013*/

/* Analysis focuses on individuals that were

1. heads in each year 1997-2013, (relationship to

head is 10 for each year)

2. and from either SRC or Census samples in 1968,

3. and sequence number 1-20 for each year

*/

libname d ’P:\IVEware_and_MI_Applications_Book

\Chapter12Simulations\Examples\PSID data’ ;

/* data j221871 refers to PSID job number produced by
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PSID data center extract system*/

data anal ;

set d.j221871;

if

(1<=er30001<=2930 or 5001<=er30001<=6872)

and er30002 <=169

and (er33403=10 and 1<=er33402<=20)

and (er33503=10 and 1<=er33502<=20)

and (er33603=10 and 1<=er33602<=20)

and (er33703=10 and 1<=er33702<=20)

and (er33803=10 and 1<=er33802<=20)

and (er33903=10 and 1<=er33902<=20)

and (er34003=10 and 1<=er34002<=20)

and (er34103=10 and 1<=er34102<=20)

and (er34203=10 and 1<=er34202<=20)

;

length samplecat $6 ;

if 1<=er30001<=2930 then samplecat=’SRC’ ;

else samplecat=’Census’ ;

* set 99 on completed education to missing and impute ;

array ed [*] er33415 er33516 er33616 er33716 er33817

er33917 er34020 er34119 er34230 ;

array edr [*] ed1-ed9 ;

* set cases imputed by PSID back to missing

(values of 1,2,3,4,5) on accuracy variables

for head wages ;

array ac [*] er12197 er16494 er20426 er24118 er27914

er40904 er46812 er52220 er58021 ;

* prepare new string of head wages with imputations removed ;

array wa [*] hdwg1-hdwg9 ;

array wa1 [*] er12196 er16493 er20425 er24117 er27913

er40903 er46811 er52219 er58020 ;

* create age in each of 9 waves from age in 1968 ;

array age [*] er33404 er33504 er33604 er33704 er33804

er33904 er34004 er34104 er34204 ;

array ag [*] age1-age9 ;

do i = 1 to 9 ;

if ed[i]=99 then edr[i]=. ; else edr[i] = ed[i] ;

if ac[i] in (1,2,3,4,5) then wa [i] = . ;

else wa[i]=wa1[i] ;



134 Multiple Imputation in Practice : With Examples Using IVEware

ag[i]=age[i] ;

end ;

* labels for new variables for imputation example ;

label

ed1=’Yrs Completed Ed 1997’

ed2=’Yrs Completed Ed 1999’

ed3=’Yrs Completed Ed 2001’

ed4=’Yrs Completed Ed 2003’

ed5=’Yrs Completed Ed 2005’

ed6=’Yrs Completed Ed 2007’

ed7=’Yrs Completed Ed 2009’

ed8=’Yrs Completed Ed 2011’

ed9=’Yrs Completed Ed 2013’ ;

label

hdwg1=’Head Wages 1996’

hdwg2=’Head Wages 1998’

hdwg3=’Head Wages 2000’

hdwg4=’Head Wages 2002’

hdwg5=’Head Wages 2004’

hdwg6=’Head Wages 2006’

hdwg7=’Head Wages 2008’

hdwg8=’Head Wages 2010’

hdwg9=’Head Wages 2012’ ;

label

age1=’Age 1997’

age2=’Age 1999’

age3=’Age 2001’

age4=’Age 2003’

age5=’Age 2005’

age6=’Age 2007’

age7=’Age 2009’

age8=’Age 2011’

age9=’Age 2013’ ;

run ;

/* Part 2 */

data psid1 ;

set anal ;

*create imputed value flags for use in diagnostics;

if ed1=. then imped1=1 ; else imped1=0 ;

if hdwg1=. then imphdwg1=1 ; else imphdwg1=0 ;

if hdwg2=. then imphdwg2=1 ; else imphdwg2=0 ;
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* create a combined stratum + psu variable ;

strat_psu = (er31996 *100) + er31997 ;

* create a unique id er30001 + er30002 ;

id=er30001*1000 + er30002 ;

keep

er30001 er30002 id strat_psu er31996 er31997 samplecat

age1-age9 er32000 ed1-ed9 hdwg1-hdwg9

er33430 er33546 er33637 er33740 er33848 er33950 er34045

er34154 er34268

imped1 imphdwg1 imphdwg2 ;

run ;

/* impute missing data on head wages 1996-2012, education

1997-2013 using gender, age, design variables and weights*/

<impute name="impute_psid_by">

title "Impute PSID Missing Data" ;

datain psid1 ;

dataout impute_psid_ive all ;

default continuous ;

transfer id er30001 er30002 imped1 imphdwg1 imphdwg2

samplecat er31996 er31997 ;

categorical er32000 ed1 ed2 ed3 ed4 ed5 ed6 ed7 ed8 ed9;

by samplecat ; *impute using by statement for sample

categories ;

*set bounds for wages ;

bounds

hdwg1 (>=0, <=1000000) hdwg2 (>=0, <=1000000)

hdwg3 (>=0, <=1000000) hdwg4 (>=0, <=1000000)

hdwg5 (>=0, <=1000000)

hdwg6 (>=0, <=1000000) hdwg7 (>=0, <=1000000)

hdwg8 (>=0, <=1000000)

hdwg9 (>=0, <=1000000) ;

iterations 5;

multiples 5;

seed 2017;

diagnose hdwg2 ;

run ;

</impute>

*plot with 4 categories as different symbols ;

data impute_psid_ive1 ;
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set impute_psid_ive ;

*compare headwage1 v. headwage2 ;

if imphdwg1=1 and imphdwg2=1 then cat1=’II’ ;

else if imphdwg1=1 and imphdwg2=0 then cat1=’IO’ ;

else if imphdwg1=0 and imphdwg2=1 then cat1=’OI’ ;

else if imphdwg1=0 and imphdwg2=0 then cat1=’OO’ ;

run ;

proc sgplot data=impute_psid_ive1 ;

where _mult_=1 ;

scatter y=hdwg1 x=hdwg2 /group = cat1 ;

run ;

/* Part 3 */

/* Create a long data set with multiple records per person

within each multiple, using completed data sets*/

data long_imputed_ive ;

set impute_psid_ive ;

if samplecat=’SRC’ then src=1 ; else src=0 ;

if er32000=2 then female=1 ; else female=0 ;

age97=age1 ;

* use arrays to output multiple records per individual ;

array w [*] hdwg1- hdwg9 ; * head wages for each year ;

array ed [*] ed1-ed9 ; * completed education for each year ;

array y [9] _temporary_ (1997 1999 2001 2003 2005 2007

2009 2011 2013) ; * create year of study ;

array wi [9] _temporary_ (1.45 1.40 1.32 1.27 1.19 1.12

1.09 1.04 1.00) ; * convert each yr to 2013 dollars ;

array weight [*] er33430 er33546 er33637 er33740

er33848 er33950 er34045 er34154 er34268 ; * weights ;

array ag [*] age1-age9 ; * age in each yr ;

do i = 1 to 9 ;

hdwg= w[i];

headwage=hdwg * wi[i] ;

wgt=weight[i];

sex=er32000;

stratum=er31996;

cluster=er31997;

age = ag[i];

year = y[i];

time = i-1 ;
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completeded=ed[i] ;

output ;

end ;

keep hdwg headwage wgt sex stratum cluster age

age97 year time completeded _mult_ er30001 er30002

er32000 samplecat er34268 id;

run ;

proc sort data=long_imputed_ive ;

by _mult_ ;

run ;

/* Part 4 */

/* Unconditional Means Model by Sample Category and Year */

<sasmod name="Unconditional Means Model with Design

Adjustments and Wgt IVEWARE">

title SASMOD Unconditional Means Model Head Wages by

Sample for 1997 to 2013 ;

datain long_imputed_ive ;

cluster stratum ;

stratum cluster ;

weight er34268 ;

/* SAS statements begin here */

proc mixed ;

class year samplecat ;

model headwage = year*samplecat / noint solution ddfm=bw;

repeated / subject=id ;

run ;

</sasmod>

* Use means from above model for plotting ;

data means ;

input Year Sample $ Estimate Se;

datalines ;

1997 Census 25821.8349808 1655.1656610

1997 SRC 50121.3210007 2096.9368941

1999 Census 28599.8266492 1793.1101554

1999 SRC 52692.2588232 2158.9495567

2001 Census 33536.8828587 4609.5273727

2001 SRC 54338.0924074 2577.3028706

2003 Census 28266.6584767 1907.7950353

2003 SRC 52632.4814954 3776.2446517
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2005 Census 29202.0905887 2556.2529193

2005 SRC 54195.5643616 3034.8029945

2007 Census 26977.7090998 2297.8630857

2007 SRC 52992.3306134 2400.5511389

2009 Census 27897.7098894 2382.9680033

2009 SRC 52285.2503362 3223.9304476

2011 Census 22184.2218272 2337.8229310

2011 SRC 43681.4480980 2330.1307490

2013 Census 21632.9758473 2220.3276362

2013 SRC 48358.8517553 5374.0000000 . .

;

run ;

/* Plot Means by Sample per Year*/

title "Plot of Mean Head Wage/Salary by Year" ;

proc sgplot data=means ;

series x=year y=estimate / group=sample markers ;

xaxis label=’Year’ ; yaxis label=’Mean Head Wage/Salary

1997 to 2013 (in 2013 Dollars)’ ;

run ;

/* Prelude to Linear Growth Model: Individual Lines to Show

Variation Between Individuals */

proc sgplot data = long_imputed_ive ;

series x=year y=headwage / group=id markers ;

where _mult_=1 and id in (7035, 2524001, 6872003, 6845006) ;

xaxis label=’Year 1997 - 2013 Odd Years’ ; yaxis label=’Head

Wage/Salary’ ;

run;

/* Linear Growth Model */

<sasmod name="Linear Growth Model with Time

SampleCat and Gender">

title SASMOD Growth Model from PROC MIXED;

datain long_imputed_ive ;

cluster stratum ;

stratum cluster ;

weight er34268 ;

proc mixed ;

class id samplecat er32000 ;

model headwage = time samplecat time*samplecat er32000

/solution ddfm=bw ;

random intercept time / type=un subject=id ;
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run ;

</sasmod>

* Predicted Head Wages using Mixed Model Results ;

data predicted;

set long_imputed_ive ;

predicted_hdwage=

32411.39 +

time * -670.29 +

(samplecat=’Census’) * -15734.37 +

(samplecat=’SRC’) * 0 +

time*(samplecat=’Census’)* 194.05 +

time*(samplecat=’SRC’)* 0 +

(er32000=1)*24897.39 +

(er32000=2)*0 ;

if er32000=1 then gender=’M’ ; else gender=’F’ ;

length samplecat_gender $55 ;

samplecat_gender=trim(samplecat)||’_’||(gender) ;

run ;

proc means data=predicted ;

var predicted_hdwage ;

class samplecat year ;

weight er34268 ;

ods output summary = outstat ;

run ;

/* By Samplecat */

proc sgplot data=outstat ;

label samplecat=’Sample Categories’ ;

series x=year y=predicted_hdwage_mean /

group=samplecat markers ;

xaxis label=’Year of Interview’ ;

yaxis label=’Predicted Mean

Head Wage/Salary 1997 to 2013 (in 2013 Dollars)’ ;

run ;

/* By Samplecat and Gender */

proc means data=predicted ;

var predicted_hdwage ;

class samplecat_gender year ;

weight er34268 ;

where age >=30 and age <=65 ;

ods output summary = outstat1 ;

run ;
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proc sgplot data=outstat1 ;

label samplecat_gender=’Sample Categories and Gender’ ;

series x=year y=predicted_hdwage_mean /

group=samplecat_gender markers ;

xaxis label=’Year of Interview’ ; yaxis label=’Predicted

Mean Head Wage/Salary 1997 to 2013 (in 2013 Dollars)’ ;

run ;

</sas>

8.4.2 Analysis Results

Figure 8.2: Head Wages/Salary (1998) by Observed v. Imputed

Figures 8.2 and 8.3 show plots of imputed v. observed values for head’s
wages/salary for year 1998 and a similar plot for wages/salary 1996 by 1998.
Neither of these diagnostic plots reveal issues/concerns about the quality of
the imputations given that the observed and imputed values distributions
appear to be similar. (See Part 2 syntax for details).

Table 8.3 and Figure 8.4 show tabular and graphical representations of
weighted means and standard errors, for head’s wages/salary by year/sample.
These statistics are derived from PROC MIXED and SASMOD using an un-
conditional means model that accounts for repeated measures of individuals
(within-subject variation), complex sample design features, and the increased
variability due to multiple imputation. The results suggest that SRC sample
respondents have much higher mean wages/salary as compared to the Census
sample while the trend over time shows rising mean wages/salaries until 2001
followed by a downward trend from 2003 to 2013. All values are in 2013 dollars
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Figure 8.3: Head Wages/Salary(1996) v. Head Wages/Salary(1998), Observed
v.Imputed

Table 8.3: Estimated Means and Standard Errors for Head Wages/Salary
1997-2013 by Year and Sample

Year Sample Mean (SE) Sample Mean(SE)
1997 Census 25821 (1655) SRC 50121 (2097)

1999 Census 28600 (1793) SRC 52692 (2159)

2001 Census 33537 (4609) SRC 54338 (2577)

2003 Census 28267 (1908) SRC 52632 (3776)

2005 Census 29202 (2556) SRC 54196 (3035)
2007 Census 26978 (2298) SRC 52992 (2401)

2009 Census 27898 (2383) SRC 52285 (3224)
2011 Census 22184 (2338) SRC 43681 (2330)

2013 Census 21633 (2220) SRC 48359 (5374)
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Figure 8.4: Head’s Wages/Salary by Year and Sample

and as a reminder, represent dollar amounts from the previous year. (See Part
4 of code for details).

Figure 8.5: Individual Trends of Head Wages/Salary by Year

Figure 8.5 illustrates trends over time for 4 unique individuals and high-
lights how each respondent has a different intercept and slope for the outcome
of interest over time. This serves as background for the next analysis which
demonstrates use of random intercepts and slopes in a linear growth model
with covariates. (see code, Part 4).

Table 8.4 presents parameter estimates, standard errors, Wald tests, and p
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Table 8.4: Parameter Estimates of Head Wages/Salary from Linear Regression
with Random Intercepts and Slopes

Variable Estimate SE Wald Prob > Chi
Intercept 32411.392 2150.473 227.157 0.000
Time -670.298 325.168 4.249 0.039
Census -15734.372 2137.028 54.209 0.000
Time*samplecat (Census) 194.052 341.493 0.323 0.570
ER32000 1(Male) 24897.390 1866.345 177.961 0.000

values from a linear growth model predicting head wages/salary using PROC
MIXED and SASMOD. The mixed model specifies random intercepts and
slopes while using sample, sample*time, and gender as predictors. Note that
time is treated as a continuous predictor in this model while sample (Cen-
sus=1, SRC=0) and gender (Male=1, Female=0) are considered dummy vari-
ables.

The results suggest that sample and gender are both significant predic-
tors of head’s wage/salary over time but the non-significant interaction in-
dicates a common slope is appropriate for this model. Again, use of PROC
MIXED/SASMOD permits design-adjusted variance estimates for a linear
growth model that also employs correct MI combining rules. The model es-
timates are then used to calculate predicted values and additional analy-
ses/plots are produced using the predicted values.

Figure 8.6: Predicted Wages/Salary by Sample, among all ages

Figures 8.6 and 8.7 use predicted values based on the growth model esti-
mates and allow examination of trends in wages/salaries over time. Figure 8.6
presents the predicted wages/salaries for all ages while Figure 8.7 is restricted
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Figure 8.7: Predicted Wages/Salary by Sample and Gender, among those age
30-65

to those aged 30-65 to cover a broad age range of working adults. The plots
suggest a small decrease in head’s wages/salary between 1996-2012 with about
a $25,000 difference between the SRC and Census samples. This same trend is
also noted when looking at predicted head’s wages/salary stratified by sample
and gender. For example, based on Figure 8.7, males earn more than women
from both samples. These results highlight a negative trend over time, income
differences between the two PSID samples as well as the persistent gender gap
in wages/salary in the US during 1996-2012.

8.5 Discussion

The multiple imputation approach used in this chapter uses an unstructured
mean and the covariance matrix to impute the missing values. However, there
may be some structural constraints that needs to be incorporated in the im-
putation process. Consider a study of young adolescents, where Zi is a vector
of baseline covariates and Yit = (Y1it, Y2it, . . . , Ypit) is a vector of variables
measured at time t = t1, t2, . . . , tT on the adolescent subject i = 1, 2, . . . , n,
and an arbitrary pattern of missing data. Suppose that one of the variable,
Y1, is height. Clearly, for any tk < tk+1 < tk+2, it is reasonable to expect the
constraint, Y1itk ≤ Y1itk+1

≤ Y1itk+2
to be met for every subject i = 1, 2, . . . , n.

Such constraints can be incorporated in IVEware using the bounds statement.
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Monotonicity constraints among the observations for each variable should be
carefully considered and incorporated as additional structures.

The second type of structure involves a temporal pattern. For example,
the variable Yj may satisfy a structure,

Yijt = fj(αi, t) + εijt

where fj is a known function of time t involving parameters specific to the
subject i, αi. The residuals, εijt, and the subject specific parameters, αi,
are treated as random with certain distributions. Multiple imputation pro-
cedures that incorporate the temporal structure may be more efficient than
the unstructured mean and covariance matrix considered in this chapter. In-
corporation of such structures involve tailored programming and needs to be
considered on the case-by-case basis. The view taken (in this book) is that
the unstructured mean and covariance are perhaps the most general purpose
approach when multiple variables of different types are collected at each time
point, in addition to the baseline covariates, with an arbitrary pattern of miss-
ing data and when the goal is to borrow as much strength as possible from
the other observed variables on each subject to predict the missing values.

8.6 Additional Reading

A common method in longitudinal clinical trials is the LOCF (last observation
carried forward) approach. A review of this and other early approaches can
be found in Heyting, Tolboom and Essers (1992). See Gadbury, Coffey and
Allison (2003) and Engels and Diehr (2009) for an overview from an applied
perspective. Lavori, Dawson and Shera (1995) proposed multiple imputation
methods. The maximum likelihood approach using the EM-algorithm is dis-
cussed in Laird and Ware (1982) and Dempster, Rubin and Tsutakawa (1981).
Little (1995) provides a lucid discussion of modeling issues with drop outs in
the longitudinal studies. Little and Rubin (2002) also provide extensive discus-
sion of the maximum likelihood estimation for longitudinal data. Siddiqui and
Ali (1998) and Mallinckrodt et al (2001, 2003) compare various approaches
for analyzing incomplete data. Diggle, Heagerty, Liang and Zeger (2002), Ver-
beke and Molenberghs (2000) and Molenberghs and Verbeke (2005) provide
comprehensive coverage of issues in the analysis of longitudinal data including
an extensive discussion of missing data. Another good read is the report by
National Research Council (2010).

The inverse probability weighting and general semiparametric approaches
for analyzing repeated measures data with missing values are discussed in
Robins, Rotnitzky and Zhao (1995). See also Davidian, Tsiatis and Leon
(2005). Preisser, Lohman and Rathouz (2002) assess the performance of
weighted estimating equation, especially with respect to mispecification of
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the missing data mechanism. The primary reference for Bup-Nx and clonidine
comparison trial is Ling et al (2005) and for the American Changing Lives
(ACL) is the ICPSR archive, House (2014).

8.7 Exercises

1. Download the data set called Ex longitudinal from the book web
site. This data comes from a study of epileptic seizures and is used
to practice methods for multiple imputation and analysis of lon-
gitudinal/repeated measures data, see Liang and Zeger, (1986) for
details.

The data set consists of counts of the number of seizures experienced
in each of four 2 week periods during the trial; the baseline number
of seizures for the 8 week period prior to the start of the clinical
trial; subject ID, age in years; an indicator of whether the subject
received an anti-epilepsy drug treatment or placebo (control); and
a time variable representing the four 2 week periods.

For this exercise, we modified the original data such that there is
missing data for one of more of the four seizure count variables.
There are 59 unique individuals in the study, each with 4 data
records, one for each of the 4 two week observation periods. The
structure of the modified data set is a multiple records per respon-
dent rectangular data array. The intended analysis focuses on a
regression of number of seizures experienced during the trial on the
covariates: baseline seizures, age, treatment status, and time (rep-
resenting the four measurements during the trial).

(a) Using your software of choice, examine the extent and pattern
of missing data and take note of the multiple records per in-
dividual data structure. What variables have missing data and
fully observed data? How much missing data is present? Why
might you restructure the data for imputation?

(b) Reshape the long data set into a wide data set with one record
per individual and include new variables containing count of
seizures at each time point 1-4.

(c) Impute missing data using the IMPUTE command. Create
M=10 data sets with 10 iterations per multiple, use a SEED
value of 45678, and make sure to correctly declare each variable
type.

(d) Restructure the concatenated imputed data sets to a long for-
mat (for data analysis) with an output statement or similar
technique depending on your software that produces 4 records
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per respondent, per imputation, that is, 10 imputations*59
unique people*4 seizure measurements =2,360 records.

(e) Run a Poisson regression model using SAS PROC GENMOD
(or similar procedure if using other statistical software) with
a repeated statement to account for the lack of independence
among respondents. Your repeated measures Poisson model
should regress the count of seizures on age, treatment status,
time period of seizure measurements, and baseline number of
seizures.

(f) Based on your results from (e), outline the data management
steps required, the imputation process used, and interpret the
regression coefficients/rates. How does the data structure used
promote maintaining relationships of seizures per time period/
individual?

2. Repeat the second example demonstrated in this chapter, using the
Opiod Detoxification data set, but use the ”Completed as Control”
method previously discussed in this chapter.

(a) Follow all data management steps as presented above, use
M=20 imputations, and be sure to create time-varying treat-
ment variables with missing data assigned to the control group.

(b) Prepare a table of results similar to Table 8.2 and discuss how
the results compare to those where Completed as Randomized
is the chosen method.

(c) Prepare a plot similar to Figure 8.2 in your software of choice
and again, describe how these results compare to Completed as
Randomized.

3. Generate 500 data sets each with n = 200 subjects and 8 observa-
tions under the following model assumptions:

(1) Z1 ∼ N(1, 2)

(2) Z2|Z1 ∼ Bernoulli(1, π(Z1)) where π(Z1) = [1 + exp(−1 −
0.5Z1)]−1

(3) Yit = β0i + β1it+ β2i log(t) + εit with i = 1, 2, . . . , n = 200 and
t = 0, 1, 2, 3, 4, 5.

(4) εit ∼ N(0, 1) andβoi
β1i
β2i

∼ BVN

 1 + Z1 + Z2

0.5 + 0.5Z1 + 0.5Z2

0.5− 0.25Z1 − 0.25Z2

,[ 1 −0.5 −0.1
−0.5 1 0.25
−0.1 0.25 1

]
(5) Missing data mechanisms: No missing values in Y0, Y3. Missing

values in Z1, Z2, Y1, Y2, Y4 and Y5 depends on Yo and Y3. Choose
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logistic models for missing data mechanisms that results in no
more than 20% missing in each variable and no more than 20%
complete cases.

The parameters of interest are the contrast in the adjusted means,

θ = E(Y5 − Y0|Z1, Z2 = 1)− E(Y5 − Y0|Z1, Z2 = 0)

The analyst procedure for estimating θ is through running a regres-
sion of Y5−Y0 on (Z1, Z2) and using the regresion coefficient for Z2

in this model as an estimate of θ.

(a) What is the true value of θ under the stated complete data
model assumptions?

(b) Apply the analyst procedure on each of the 500 complete data
sets (before deletion) and assess the sampling properties of the
estimates and compare it to the true value. Assess the mean
square and confidence coverage properties.

(c) Fit the data generating model on each of the 500 complete data
sets (treating all the parameters as unknown), and hence, derive
the estimates of θ. Compare them to the estimates obtained in
(b).

(d) Repeat (b) and (c) on complete-cases (that is, delete subjects
with missing values in Z1 and Z2).

(e) Carefully develop the imputation model using the first gener-
ated data set with missing values. Using this imputation model,
multiply impute (M = 25) the missing values in each of the re-
maining 499 data sets and then apply (b) and (c). Combine the
25 imputed data sets to obtain point and interval estimates of θ
from each of the 499 data sets. Assess the sampling properties
of these point and interval estimates.

(f) For the multiply imputed data sets in (e), apply the methods
described in (b) and (c) using the imputed Z’s and the unim-
puted Y ’s.

(g) Based on (a) to (f), write a report summarizing your findings
and recommendations.

(h) Change the values of the parameters in the data generating
model or missing data mechanisms to explore the robustness of
your findings in (g).
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Complex Survey Data Analysis using
BBDESIGN

9.1 Introduction

Most surveys involve complex design features such as stratification, clustering
and weighting (for selection, non-response or post-stratification). To the extent
that they have predictive power for variables with missing values, they should
be included in the imputation process. The second reason to include them is to
make sure that the complex survey data analysis of the completed data sets is
compatible with both, the observed and imputed values. That is, the imputed
values should reflect the same “design properties as the observed values” to
make the completed data sets as plausible data sets from the population using
the particular complex survey design.

One approach is to use the variables that are involved in the creation
of strata, clusters and weights as predictors along with the covariates in the
imputation model. The survey weight in the original and/or transformed scale
may be included as well. However, in IVEware, a nonparametric procedure is
used to generate synthetic populations based on the observed data and the
design variables. Multiple imputations are then performed on the synthetic
populations using SRMI. For this approach, the combining rules are different.
This section illustrates an application of this approach using IVEware.

The synthetic population is drawn using the approach described in Zhou,
Elliott and Raghunathan (2016a, 2016b, 2016c). The following is a brief de-
scription of the procedure. Suppose H is the number of strata with ch clusters
sampled from stratum, h = 1, 2, . . . ,H. Let njh be the number of respondents
in cluster j = 1, 2, . . . , ch from stratum h. Let wijh be the weight associated
with the respondent i = 1, 2, . . . , njh and Yijh be the corresponding vector of
survey variables (including the missing values) .

1. For each h = 1, 2, . . . ,H, draw c∗h = ch − 1 clusters using a simple
random sample with replacement from the ch clusters and index
them as j∗ = 1, 2, . . . , c∗h. All the elements in the cluster/PSU are
taken into the replicate for the selected cluster/PSU. Thus, the first
bootstrap sample is obtained.

2. Adjust the weight, w∗ijh = chwijh/(ch − 1) if the cluster j in stra-

149
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tum h is included in the replicate and set to 0, if the cluster, is
not included in the replicate. At this point, the cluster and stra-
tum indices can be dropped as they have been now replicated in
the bootstrap sample. Thus, let w∗i denote the weights for all the
elements in the replicate and normalize to size n∗, the number of
elements in the replicate.

3. Repeat the above two steps S times to generate additional repli-
cates.

4. For each bootstrap sample, s = 1, 2, . . . , S apply the Finite Popula-
tion Bayesian Bootstrap (FPBB) to generate N − n∗ non-sampled
elements in the population. Operationally, a weighted Polya urn
model is used to draw N − n∗ values from the urn containing n∗

items (indexed as A = {1, 2, 3, . . . , n∗}). The following are the steps:

(a) Draw a value from A = {1, 2, . . . , n∗} with selection probabil-
ities proportional to w∗i , i = 1, 2, . . . , n∗. This is the first of
N − n∗ non-sampled elements in the population.

(b) Replace the sampled item back into the urn and increase its
weight by 1.

(c) Repeat Step (a) with the revised weights to draw the second
item.

(d) Repeat Step (b).

(e) Continue until all N − n∗ elements have been sampled. The
value ofN may be chosen to be large relative to n∗ (for example,
N = n∗/0.01) as an approximation.

5. Repeat the FPBB a total of B times, thus, generating S × B syn-
thetic populations.

6. Missing values in each of the S×B synthetic populations is multiply
imputed M times using SRMI to generate S × B ×M completed
synthetic populations.

Let θ̂sbl, s = 1, 2, . . . , S; b = 1, 2, . . . , B; and l = 1, 2, . . . ,M be the esti-
mate of the parameter, θ, computed from the completed synthetic population
(s, b, l). Let θ̂s++ =

∑
b

∑
l θ̂sbl/(BM). The multiply Imputed estimate is

θ̂MI =
∑
s θ̂s++/S and its variance estimator is

VMI = (1 + 1/S)
∑
s

(θ̂s++ − θ̂MI)
2/(S − 1).

The confidence interval is constructed using a t distribution with ν =
min(

∑
h ch − H,S − 1) as the degrees of freedom. Note that this approach

is computationally intensive and may require several hours to run depending
upon the number of synthetic populations S, the number of finite population
Bayesian bootstrap samples, B and the number of imputations, M .
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9.2 Example

This section uses a case study approach to demonstrate use of the BBDE-
SIGN command to implement the weighted finite population Bayesian Boot-
strap technique, followed by imputation of missing data, conduct linear and
logistic regression analyses of completed data, and, finally, the implementa-
tion of the combining rules described in the previous section. The case study
uses 2011-2012 NHANES data and focuses on linear regression analysis of to-
tal cholesterol predicted by BMI, gender, and family income to poverty ratio
along with logistic regression predicting obesity status by age, gender and
family income/poverty. The example uses SAS with the SRCShell editor and
uses a combination of the SAS data step for the combining steps. These steps
can be generalized to other software tools as needed.

9.2.1 Code

The first section of code below calls SAS and gathers selected variables from
the NHANES data set and subsets the data to those respondents age 18+ and
participated in the medical examination and interview portions of the survey.

The IVEware command BBDESIGN is then used to generate 25 ”impli-
cates” or data sets (S = 5 and B = 5), using the weighted finite popula-
tion Bayesian bootstrap (FPBB) method. The bootstrap uses the Medical
Examination Component weight (WTMEC2YR) and complex sample design
variables representing the sample stratification and primary sample units (SD-
MVSTRA and SDMVPSU) to ”uncomplex” the data set. By default, 25 im-
plicate data sets are created and can be identified by the internal variable,
” impl ”.

The data set total sums to 10 (default multiplier of BBDESIGN)*original n
(5,615)* 25 implicates, that is, 10*5,615*25=1,403,750. The output data set is
saved as a temporary file called ”bbdesignout” via the DATAOUT statement.

<sas name="BBDesign Example">

/* BBDesign Example, Uses NHANES 2011-2012 DATA with

BBdesign and Impute */

libname d ’P:\IVEware_and_MI_Applications_Book

\Chapter12Simulations\Examples\Revised BBDESIGN 12feb2018’;

* gather NHANES data where age >=18 and MEC weight > 0

(participated in MEC examination) ;

data nhanes1112_sub_20jan2017 ;

set d.nhanes1112_sub_4nov2015 ;

if age >=18 and wtmec2yr > 0 ;
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drop marcat bpxsy1 - bpxsy4 bp_cat pre_hibp bpxdi1 - bpxdi4

dmdmartl irregular ;

run ;

proc means nolabels n nmiss mean min max ;

weight wtmec2yr ;

run ;

/* Use BBDesign command to prepare data set using complex

sample design variables and MEC weight:

25 implicate data sets are generated:

5 Bootstrap sample of clusters

5 FPBB using Weighted Polya posterior within each

bootstrap sample

*/

<bbdesign name="BBdesign">

datain nhanes1112_sub_20jan2017 ;

dataout d.bbdesignout ;

stratum sdmvstra ;

cluster sdmvpsu ;

weight wtmec2yr ;

csamples 5 ;

wsamples 5 ;

seed 2001;

run;

</bbdesign>

/* Confirm that there are 10 (sample inflation factor)*5,615

(original n) *25 (implicates)= 1,403,750 */

proc freq data=d.bbdesignout ;

tables _impl_ ;

run ;

Next, missing data is addressed via use of the IMPUTE command with
M=5. Since the data set has already been prepared to represent the popu-
lation of interest, we impute missing data values for total cholesterol, family
income/poverty ratio, BMI, and education within each implicate. Once this
is complete, data analysis can be done using simple random sample assump-
tions, that is, without use of complex sample design variables or probability
weights.
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/* impute missing data within each of 25 implicates

using M=5 and 5 iterations */

<impute name="Impute_BBDesign"> ;

datain d.bbdesignout ;

dataout d.imputed_samples all ;

default continuous ;

transfer ridstatr seqn ag1829 ag3044 ag4559 ag60 mex

othhis white black other _impl_ _obs_ ;

categorical riagendr ridreth1 edcat ;

bounds indfmpir (>= 0, <=5) bmxbmi (>=13, <=80)

lbxtc (>=59, <=523) ;

by _impl_;

seed 2016 ;

multiples 5;

iterations 5;

run ;

</impute> ;

Two analyses are now demonstrated; one using a linear regression model
and another using logistic regression with combining for both models. This is
needed because the default combining rules implemented in REGRESS and
PROC MIANALYZE are different from the FPBB rules, see Raghunathan
(2016) or Zhou, Elliot and Raghunathan (2016b) for details. The linear regres-
sion example uses total cholesterol predicted by gender, BMI, and the ratio
of family income to poverty thresholds. For the logistic regression example, a
binary outcome of obesity status (coded 1 if BMI >=30, and 0 otherwise) is
predicted by age, gender and the income/poverty ratio.

/* Prepare the imputed synthetic populations for analysis */

data synthpops;

set d.imputed_samples;

/*

Create 3 indices S, B, L using the fact that wsamples=5 in

the BBDESIGN code above and given the relationships:

****************************************

indexL=_mult_;

indexS=floor((_impl_-1)/wsamples)+1;

indexB=_impl_-(indexS-1)*wsamples;

****************************************

*/

indexL=_mult_;

indexS=floor((_impl_-1)/5)+1;

indexB=_impl_-(indexS-1)*5;
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run ;

/* Save imputed data */

data d.imputed_synthpops ;

set synthpops ;

male=(riagendr=1) ;

run ;

proc sort data=d.imputed_synthpops;

by indexS indexB indexL;

run ;

/* Estimate of the population mean of lbxtc and its

variance involves 2 steps:

Step 1: Average over IndexB and IndexL for each level

of IndexS */

proc means data=d.imputed_synthpops noprint mean;

var lbxtc;

by indexS;

output out=step1 mean=lbxtcbar;

run ;

/* Step 2: Compute the mean and variance across the

S synthetic populations */

proc means data=step1 mean var ;

var lbxtcbar;

run ;

/* Linear Regression analysis using PROC REG with

imputed synthetic populations*/

proc reg data=d.imputed_synthpops;

by indexS indexB indexL;

model lbxtc = bmxbmi male indfmpir ;

ods output parameterestimates=outparms ;

run ;

title "Print Out from Linear Regression" ;

proc print data=outparms ;

run ;

/* prepare combined estimates and variance using

two data steps*/

proc means data=outparms mean ;
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var estimate ;

where variable =’Intercept’ ;

by indexs ;

output out=step1_0 mean=bobar ;

run ;

proc print data=step1_0 ;

run ;

proc means data=outparms mean ;

var estimate ;

where variable =’BMXBMI’ ;

by indexs ;

output out=step1_1 mean=b1bar ;

run ;

proc print data=step1_1 ;

run ;

proc means data=outparms mean ;

var estimate ;

where variable =’male’ ;

by indexs ;

output out=step1_2 mean=b2bar ;

run ;

proc print data=step1_2 ;

run ;

proc means data=outparms mean ;

var estimate ;

where variable =’INDFMPIR’ ;

by indexs ;

output out=step1_3 mean=b3bar ;

run ;

proc print data=step1_3 ;

run ;

* Merge temp data sets into 1 for combining ;

data step1_all ;

merge step1_0 step1_1 step1_2 step1_3 ;

by indexs ;

run ;

proc print data=step1_all ;
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run ;

* use merged data above for final step ;

proc means data=step1_all mean var noprint;

var bobar b1bar b2bar b3bar;

output out=step2 mean=intercept bmxbmi male indfmpir

var=vintercept vbmxbmi vmale vindfmpir;

run ;

proc print data=step2 ;

run ;

/* Combine results for parameter estimates from above */

data combine_linear ;

set step2;

df=5-1 ; *Min(S-1,C-H);

tvalue=quantile(’T’,0.975,df);

/* Create arrays for estimate variance se and

lower/upper CI */

array estimate[4] intercept bmxbmi male indfmpir;

array variance[4] vintercept vbmxbmi vmale vindfmpir;

array se[4] se_intercept se_bmxbmi se_male se_indfmpir;

array lower95[4] l95_intercept l95_bmxbmi

l95_male l95_indfmpir;

array upper95[4] u95_intercept u95_bmxbmi

u95_male u95_indfmpir;

do i=1 to 4;

se[i]=sqrt((1+1/5)*variance[i]); * Note that

denominator must match the number used for

"csamples" in the code ;

lower95[i]=estimate[i]-tvalue*se[i];

upper95[i]=estimate[i]+tvalue*se[i];

end;

drop i;

run ;

options nodate nonumber ;

proc print data=combine_linear ;

title "Combined Estimates, SE, Lower and Upper CI from

Linear Regression" ;

var intercept se_intercept l95_intercept

u95_intercept

bmxbmi se_bmxbmi l95_bmxbmi u95_bmxbmi
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male se_male l95_male u95_male indfmpir se_indfmpir

l95_indfmpir u95_indfmpir

;

run ;

**********************************************************;

/* Logistic Regression analysis using PROC LOGISTIC,

outcome is obese predicted by male, family income to poverty

and age categories*/

data imputed_synthpops2 ;

set d.imputed_synthpops ;

if bmxbmi >=30 then obese = 1 ; else obese=0 ;

run ;

/*predict probability of being obese by gender and age in

categories and family income to poverty ratio */

proc logistic data=imputed_synthpops2;

by indexS indexB indexL;

model obese (event=’1’) = male indfmpir ag3044 ag4559 ag60 ;

ods output parameterestimates=outparms_log ;

run ;

proc print data=outparms_log ;

run ;

/* prepare combined estimates and variance using

two data steps*/

/* Create separate mean by IndexS for each variable */

proc means data=outparms_log mean ;

var estimate ;

where variable =’Intercept’ ;

by indexs ;

output out=step1_0 mean=bobar ;

run ;

proc print data=step1_0 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’male’ ;

by indexs ;
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output out=step1_1 mean=b1bar ;

run ;

proc print data=step1_1 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’INDFMPIR’ ;

by indexs ;

output out=step1_2 mean=b2bar ;

run ;

proc print data=step1_2 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag3044’ ;

by indexs ;

output out=step1_3 mean=b3bar ;

run ;

proc print data=step1_3 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag4559’ ;

by indexs ;

output out=step1_4 mean=b4bar ;

run ;

proc print data=step1_4 ;

run ;

proc means data=outparms_log mean ;

var estimate ;

where variable =’ag60’ ;

by indexs ;

output out=step1_5 mean=b5bar ;

run ;

proc print data=step1_5 ;

run ;
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data step1_all_log ;

merge step1_0 step1_1 step1_2 step1_3 step1_4 step1_5;

by indexs ;

run ;

proc print data=step1_all_log ;

run ;

/* Prepare combined estimates and variance

using two data steps*/

proc means data=step1_all_log mean var ;

var bobar b1bar b2bar b3bar b4bar b5bar;

output out=step2_log mean=intercept male indfmpir

ag3044 ag4559 ag60

var=vintercept vmale vindfmpir vag3044 vag4559 vag60;

run ;

/* Combine results for logistic regression */

data combine_log ;

set step2_log ;

df=5-1 ; *Min(S-1,C-H);

tvalue=quantile(’T’,0.975,df);

/* Create arrays to the calculations */

array estimate[6] intercept male indfmpir ag3044

ag4559 ag60;

array variance[6] vintercept vmale vindfmpir vag3044

vag4559 vag60;

array se[6] se_intercept se_male se_indfmpir

se_ag3044 se_ag4559 se_ag60 ;

array lower95[6] l95_intercept l95_male l95_indfmpir

l95_ag3044 l95_ag4559 l95_ag60;

array upper95[6] u95_intercept u95_male u95_indfmpir

u95_ag3044 u95_ag4559 u95_ag60;

array or[6] or_intercept or_male or_indfmpir

or_ag3044 or_ag4559 or_ag60;

do i=1 to 6;

se[i]=sqrt((1+1/5)*variance[i]);

or[i]=exp(estimate[i]);

lower95[i]=exp(estimate[i]-tvalue*se[i]);

upper95[i]=exp(estimate[i]+tvalue*se[i]);

end;

drop i;

run ;
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proc print data=combine_log ;

title "Combined Estimates from Logistic Regression" ;

run ;

</sas>

9.2.2 Results

Table 9.1: Estimated Effects of BMI, Gender and Family Income/Poverty
Ratio on Total Cholesterol, Linear Regression

Estimate (SE) 95% CI
Body Mass Index 0.276 (0.064) (0.083,0.468)
Gender (Male) -10.682 (0.565) (-12.251,-9.112)
Ratio Family Income/Poverty 2.798 (0.353) (1.819,3.777)

Table 9.1 includes parameter estimates, standard errors, and 95% confi-
dence intervals for the linear regression of total cholesterol on gender and
family income/poverty ratio. These results account for the complex sample
design features, weights, and increased variability due to the imputation pro-
cess since we are using the ”uncomplexed” and weighted data set along with
the correct FPBB combining rules.

The results suggest that each predictor is significant at the alpha=0.05
level. For example, a one unit increase in BMI results in an estimated 0.275
increase in total cholesterol, being male results in an estimated reduction of
10.6 points in total cholesterol, as compared to women, and each unit increase
in the family income/poverty ratio results in an estimated 2.8 point increase
in total cholesterol.

Table 9.2: Estimated Effects of Age, Gender and Family Income/Poverty Ratio
on Obesity Status, Logistic Regression

Odds Ratio 95% CI

Age 30-44 1.586 (1.155, 2.179)
Age 45-59 2.096 (1.605, 2.738)
Age 60+ 1.720 (1.236, 2.396)
Male 0.886 (0.733,1.069)
Ratio Family Income/Poverty 0.906 (0.831, 0.987)

Reference Groups are Age 18-29 and Female.

Table 9.2 includes estimated odds ratios and 95% confidence intervals from
logistic regression of obesity status (coded 1=obese and 0=not obese) re-
gressed on age, gender, and income/poverty ratio.
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Based on Table 9.2, each predictor in this model is statistically significant
at the alpha=0.05 level. The results suggest that those in older age groups
are significantly more likely to be obese than those age 18-29, males are less
likely than females to be obese, and those with higher income/poverty ratios
are less likely to be obese, as compared to lower ratios, always holding all else
equal.

9.3 Additional Reading

For an overview of complex sample designs, the classic references are Kish
(1965) and Cochran (1977). Modern references include Lohr (2009). For anal-
ysis of complex survey data, some key references are Kish and Frankel (1974),
Rust (1985), Graubard and Korn (1999), Chambers and Skinner (2003),
Heeringa et al (2017). The importance of using design variables in the im-
putation process is discussed in Reiter et al (2006). For more details about
the procedure described in this chapter see Zhou, Elliott and Raghunathan
(2016a, 2016b, 2016c) and Dong, Elliott and Raghunathan (2014a, 2014b).
See also He et al. (2010) for a practical example. These are just a few of many
good references in this particular field of research.

9.4 Exercises

1. This exercise repeats Chapter 2., Exercise 1. but requests use of the
BBDESIGN command to implement the FPBB approach presented
in this chapter rather than the design-based variance estimation
approach covered in previous chapters.

(a) Download the Health and Retirement Survey 2012 data set
called EX HRS 2012 from the book web site. The analysis
goal is to estimate mean BMI in the total population and by
gender.

(b) Repeat the examination of the missing data pattern. How many
variables have fully observed and missing data? What is the
overall pattern of missing data?

(c) Use the BBDESIGN command to expand the data set to repre-
sent the complex sample design features such as stratification,
clusters, and weights. Create 25 implicates in this step.

(d) Impute any missing data in the expanded data set using the
IMPUTE command and request M=1 with 5 iterations. Make
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sure to use the observed minimum and maximum as imputation
bounds for the BMI variable (R11BMI), use a SEED value to
allow replication of results, and omit HHID, and PN from the
imputation models.

(e) Perform descriptive analysis of mean BMI in the total sample,
using the DESCRIBE command without the stratum, cluster,
and weight statements. Use the imputed and expanded data set
in this step. Make sure to code or calculate the correct variance
estimates following the example in this chapter. (Recall that
the combining rules for this process are different than for MI
analysis). Based on these results, what is the estimated mean
BMI (SE) for the population of inference? Why do we omit the
design features and weights for the analysis?

2. Repeat Chapter 3, Exercise 3 but again use the BBDESIGN com-
mand to implement the FPBB method rather than a design-based
method.

(a) Download the data set called EX SUBSET NHANES 0506
from the book web site and if needed, convert to a data set ap-
propriate for use in your software of choice. Note, this data set
is restricted to those age 18+ and contains a subset of variables
for imputation and analysis, n=5,563. Age has been centered
by subtracting mean age in the subpopulation of adults (45.60)
from the original age variable.

(b) Use the BBDESIGN command to expand the data set to ”un-
complex” or expand the data set.

(c) Examine the extent and pattern of missing data in the ex-
panded data set from part (b). Impute missing data using
M=1, a seed value, bounds for the blood pressure variable (your
choice), transfer the case ID and age 18+ indicator.

(d) Using the imputed data set from part (c), run a ”preliminary”
regression model of Diastolic Blood Pressure regressed on gen-
der and centered age. Examine the residual*centered age plot
and evaluate the results. What does the plot suggest?

(e) Add a squared age term to the model and repeat step c. Do
you see improvement in the residual*centered age plot when
the squared term is added?

(f) Run your ”final” linear regression and present combined Pa-
rameter Estimates, SE, T Tests, and p Values using the correct
combining rules. Provide a short paragraph, as for publication,
interpreting these results including describing the process used
for the BBDESIGN command, the imputation approach, and
how the combining rules were implemented.
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Sensitivity Analysis

10.1 Introduction

So far, all of the analyses assumed ignorable missing data mecha-
nisms and, therefore, no explicit specification of the missing data
mechanism was needed. Though this assumption may be reason-
able, especially, if covariates with good predictive power for both
response indicators and the variables with missing values are avail-
able and included in the imputation process. Consider the bivariate
example discussed in Chapter 1, where Y1 is a variable with no miss-
ing values and Y2 has some missing values. Let R2 be the response
indicator variable taking the value 1 for subjects with observed Y2
and 0 for those with missing Y2. The missing at random assump-
tion suggests that Pr(R2 = 1|Y1, Y2, φ) = Pr(R2|Y1, φ) (or more,
generally, Pr(R2 = 1|Y1, Y2,obs, φ) where Y2,obs are the observed
portion of Y2). If Y1 is a good predictor of Y2 then a considerable
fraction of missing information about missing Y2 can be recovered.
Nonetheless, the ignorable missing data mechanism is an unverifi-
able assumption.

What if that assumption is not true? An explicit mechanism has
to be specified which is also external to the observed data. That
is, there is no information in the observed data to estimate such
a mechanism. For the bivariate example, a Missing Not at Ran-
dom (MNAR) mechanism can be expressed as Pr(R2 = 1|Y1, Y2, φ)
= Pr(R2 = 1|Y1, Y2,obs, Y2,mis, φ) = g(Y1, Y2, φ). For example,
g(Y1, Y2, φ) = Φ(φo + φ1Y1 + φ2Y2) where Φ(.) is the cumulative
normal density function. Obviously, this model cannot be estimated
because for every subject with R2 = 0, Y2 is missing. Specifically,
the parameter φ2 cannot be estimated. [Note that, if φ1 = 0 then φ2
can be estimated under the assumed probit model. The estimates
are highly sensitive to the normality assumption.]

Let f(y1, y2|θ) be the joint density function of (Y1, Y2). The joint
density function of (Y1, Y2, R2) is

f(y1, y2, r2|θ, φ) =
{
g(y1, y2, φ)r2(1− g(y1, y2, φ))1−r2

}
×f(y1, y2|θ)

163
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The predictive distribution of y2 given (y1, r2, φ, θ) can be con-
structed from the above equation (collecting the terms of y2 and
treating all others as constants). Once the missing values of y2 are
imputed, the draws of the parameters θ can be obtained from the
complete data posterior density,

π(θ|(y1i, y2i), i = 1, 2, . . . , n) ∝

{
n∏
i

g(y1i, y2i|θ)

}
π(θ),

where π(θ) is the prior density of θ. Similarly, φ can be drawn from
its posterior density,

η(φ|(y1i, y2i, r2i), i = 1, 2, . . . , n) ∝{∏
i

g(y1i, y2i, φ)r2i(1− g(y1i, y2i, φ)1−r2i

}
η(φ)

where η(φ) is the prior density of φ.

Thus, the Gibbs sampling approach can be applied to create imputa-
tions under the non-ignorable model. Draw initial values of missing
Y2 values (say, from an ignorable model) and then draw the parame-
ters, θ and φ, from their completed data posterior distributions, and
then redraw the missing values from the correct posterior predictive
distribution. Continue the process until convergence is achieved for
the parameters of interest. Note that some parameters in φ (like φ2
in the Probit model) are not estimable and those parameters will
have to be drawn from the prior distribution or fixed a priori. By
varying values of the non-estimable parameter (say, varying values
of φ2 in the Probit model), a sensitivity analysis may be performed.

In practice, this is called a selection model approach where the
joint distribution [Y,R] is factored into [Y ][R|Y ]. To implement
this approach, specialized code has to be developed and is specific
to the model specifications g and f . An alternative factorization is
through a pattern-mixture model, [Y,R] = [R][Y |R]. An advantage
of this approach is that it can be implemented by perturbing the
imputations obtained under the MAR assumption.

10.2 Pattern-Mixture Model

Let Pr(R2 = 1) = π be the marginal probability of being a re-
spondent. An estimate of π is the proportion of missing values in
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Y2. Let f(y2|y1, R2 = 1) be the conditional density of Y2 given
Y1 for the respondents. This conditional density can be developed
and estimated from the observed data. The conditional density
function for the non-respondents is f(y2|y1, R2 = 0), which can-
not be estimated from the observed data (just as some param-
eters in φ, in the selection model approach). For example, sup-
pose that f(y2|y1, R2 = 1, θ) ∼ N(θo + θ1y1, σ

2
1). One way to

formulate the non-ignorable missing data mechanism is to specify
f(y2|y1, R2 = 0, θ) ∼ N(a(θo + θ1y1) + b, c2σ2

1) where (a, b, c) define
the extent of non-ignorability. The constants a and b define the shift
and tilt of the regression line for the non-respondents and c governs
the increase or decrease in the residual variance. Sensitivity analysis
can be performed by choosing different values of (a, b, c).

This strategy is easy to implement once the multiple imputations
have been created under the ignorable missing data mechanism. For
every choice of (a, b, c), perturb the imputed values in each imputed
data set. Apply the combining rules to obtain inference about the
parameters. The sensitivity can be displayed by, say, plotting con-
fidence intervals as a function of (a, b, c).

Suppose that Y2 is a binary variable and the MAR imputation model
is the logistic model logitPr(y2|y1, θ) = θo+θ1y1 = l(y1). The MAR
imputation is carried out as follows: Generate an uniform random
number u and define the imputed value as 1 if log[u/(1−u)] < l(y1)
and 0 otherwise.

Suppose the perturbation proposed for a non-ignorable mechanism
is to replace some of the imputed 1’s (0’s) (under the MAR mecha-
nism) to 0’s (1’s) with certain probabilities. This may be specified
through the specification

Pr(y2,NMAR = 0|y2,MAR = 1) = a,

and
Pr(y2,NMAR = 1|y2,MAR = 0) = b.

As before, various choices of (a, b) can used to display sensitivity of
inferences to MAR assumption. The next section considers several
examples to illustrate this strategy.
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10.3 Examples

10.3.1 Bivariate Example: Continuous Variable

This example uses the Opioid Detoxification data set and examines
the visual analog score (VAS) day 14 measurement predicted by
treatment status (using linear regression). The point of the example
is to perturb the day 14 VAS score to examine sensitivity to a MAR
assumption. Use of SAS with the XML editor is demonstrated.

The example follows Example 7.5 of Raghunathan (2016) but for
simplicity, uses bivariate linear regression rather than a multivariate
approach. The day 14 VAS score is perturbed in three ways, once for
the treated and not treated groups together and then separately for
each treatment group and also for differing levels of perturbation.

The code below imputes missing data using IMPUTE and then per-
turbs imputed values (assuming MAR) for the VAS day 14 outcome
variable. A linear regression model is run for the MAR imputed val-
ues and then repeated for models with the outcome perturbed by
multiplicative factors of 1.025, 1.05, 1.10, 1.20, and 1.30. SAS PROC
REG and PROC MIANALYZE are used to run linear regression and
combining of results, though these steps could be performed with
REGRESS of IVEWARE or other software tools as well.

<sas name="Example 1 Chapter 10">

/* Set libname */

libname d3 ’P:\IVEware_and_MI_Applications_Book

\DataSets\Longitudinal Data Set’;

proc means data=d3.od_all n nmiss mean min max ;

class treat ;

run ;

/* impute missing data on outcomes, assume MAR */

<impute name="od_imp">

title "Opioid Detox Impute" ;

datain d3.od_all;

dataout odimp all;

default continuous ;

categorical female white ;

transfer instudy usubjid ;

bounds vas0 (>=0, <=100) vas1 (>= 0, <=100)

vas2 (>=0, <=100) vas3 (>= 0, <=100) vas4 (>=0, <=100)

vas5 (>= 0, <=100)
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vas6 (>=0, <=100) vas7 (>= 0, <=100) vas8 (>=0, <=100)

vas9 (>= 0, <=100) vas10 (>=0, <=100) vas11 (>= 0, <=100)

vas12 (>=0, <=100) vas13 (>= 0, <=100) vas14 (>= 0, <=100);

iterations 5 ;

multiples 25 ;

seed 2017 ;

run;

</impute>

/* analyze imputed data sets and do adjustments to

MAR imputed Y values, both groups combined*/

data odimp1;

set odimp ;

_Imputation_=_mult_;

* perturb y on both treatment groups by + 0.025 ;

vas14_025=vas14*1.025 ;

vas14_05=vas14*1.05 ;

vas14_10=vas14*1.10 ;

vas14_20=vas14*1.20 ;

vas14_30=vas14*1.30 ;

* perturb for treat only ;

tvas14=vas14 ; tvas14_025=vas14 ; tvas14_05=vas14 ;

tvas14_10=vas14 ; tvas14_20=vas14 ; tvas14_30=vas14 ;

if treat=1 then do ;

tvas14_025=vas14*1.025 ;

tvas14_05=vas14*1.05 ;

tvas14_10=vas14*1.10 ;

tvas14_20=vas14*1.20 ;

tvas14_30=vas14*1.30 ;

end ;

* perturb for not treated only ;

ntvas14=vas14 ; ntvas14_025=vas14 ; ntvas14_05=vas14 ;

ntvas14_10=vas14 ; ntvas14_20=vas14 ; ntvas14_30=vas14 ;

if treat=0 then do ;

ntvas14_025=vas14*1.025 ;

ntvas14_05=vas14*1.05 ;

ntvas14_10=vas14*1.10 ;

ntvas14_20=vas14*1.20 ;

ntvas14_30=vas14*1.30 ;

end ;

drop _mult_;

run ;

proc sort ; by _imputation_ ; run ;

%macro r (y,title) ;

options nodate nocenter nonumber;

title &title ;
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proc reg data=odimp1 ;

by _Imputation_;

model &y=treat ;

ods output parameterestimates=outparms ;

run;

proc print data=outparms ;

run ;

proc mianalyze parms=outparms ;

modeleffects intercept treat ;

ods output parameterestimates=outestmi_&y ;

run;

proc print data=outestmi_&y ;

run ;

%mend ;

/*perturb all treated or not treated*/

%r(vas14, VAS14 with Mar) ;

%r(vas14_025, VAS14 * 1.025) ;

%r(vas14_05, VAS14 * 1.05) ;

%r(vas14_10, VAS14 * 1.10) ;

%r(vas14_20, VAS14 * 1.20) ;

%R(vas14_30, VAS14 * 1.30) ;

data all_both ;

set outestmi_vas14 outestmi_vas14_025 outestmi_vas14_05

outestmi_vas14_10 outestmi_vas14_20 outestmi_vas14_30 ;

run ;

title "Both Treated and Not Treated" ;

proc print data=all_both ;

where parm=’treat’ ;

run ;

/*perturb treated only */

%r(tvas14, Treated Perturbed VAS14 with Mar) ;

%r(tvas14_025, Treated Perturbed VAS14 * 1.025) ;

%r(tvas14_05, Treated Perturbed VAS14 * 1.05) ;

%r(tvas14_10, Treated Perturbed VAS14*1.10) ;

%r(tvas14_20, Treated Perturbed VAS14*1.20) ;

%R(tvas14_30, Treated Perturbed VAS14*1.30) ;

data all_treatonly ;

set outestmi_tvas14 outestmi_tvas14_025 outestmi_tvas14_05

outestmi_tvas14_10 outestmi_tvas14_20 outestmi_tvas14_30 ;

run ;

title "Treated Only" ;

proc print data=all_treatonly ;
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where parm=’treat’ ;

run ;

/*perturb not treated only */

%r(ntvas14, Not Treated Perturbed VAS14 with Mar) ;

%r(ntvas14_025, Not Treated Perturbed VAS14 * 1.025) ;

%r(ntvas14_05, Not Treated Perturbed VAS14 * 1.05) ;

%r(ntvas14_10, Not Treated Perturbed VAS14*1.10) ;

%r(ntvas14_20, Not Treated Perturbed VAS14*1.20) ;

%R(ntvas14_30, Not Treated Perturbed VAS14*1.30) ;

data all_nottreatonly ;

set outestmi_ntvas14 outestmi_ntvas14_025 outestmi_ntvas14_05

outestmi_ntvas14_10 outestmi_ntvas14_20 outestmi_ntvas14_30 ;

run ;

title "Not Treated Only";

proc print data=all_nottreatonly ;

where parm=’treat’ ;

run ;

</sas>

Table 10.1: Estimated Treatment Effect for Day 14 Visual Analog Score (VAS)

Perturbation Both Groups Bup-NX Only Clonidine Only
0.0% (MAR) -13.441 -13.441 -13.441

2.5% -13.777 -13.052 -14.167
5.0% -14.113 -12.663 -14.891
10.0% -14.786 -11.885 -16.342

20.0% -16.130 -10.328 -19.243
30.0% -17.474 -8.771 -22.144

Based on Table 10.1, even with the various perturbed increases in
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VAS day 14 scores, the impact of the treatment drug, Bup-NX,
alone is more pronounced than the use of the drug Clonidine.

10.3.2 Binary Example

In this example, data from the Primary Cardiac Arrest study is
used to demonstrate sensitivity analysis with a binary variable.
This file has substantial missing data on the red blood cell mem-
brane measurement of DHA and EPA (REDTOT). As a reminder,
the measurement provides information about levels of acids ob-
tained mainly from eating fish and known to be protective against
heart disease and arrest. For this example, REDTOT is considered
”non-ignorable”. The REDTOT variable is first imputed assuming
MAR, then dichotomized into a binary outcome, and perturbed us-
ing methods appropriate for binary variables. The analytic goal is to
use logistic regression to predict the probability of primary cardiac
arrest by gender, smoking status, and a binary variable represent-
ing lowest quartile of imputed red blood cell membrane DHA/EPA
measurements.

The following syntax demonstrates imputation of missing data us-
ing IMPUTE followed by creation of a binary version of REDTOT
called LOWRED where those in the lowest quartile of the imputed
measure are coded 1 and all others set to 2. Perturbed versions of the
binary variable LOWRED (with proportions of .05, .10, and .25) for
setting LOWRED=1 to 2 and LOWRED=2 to 1 are prepared for
subsequent sensitivity analyses. Logistic regression predicting PCA
by age, gender, lowest quartile of DHA/EPA acids, and smoker
(coded as previous or current smoker=1 and never smoked=2) is
executed for the MAR model and for each of the perturbations,
using the REGRESS command. Results are combined using the
REGRESS command.

<sas name="Example 2 C10">

/* Example 2 is for binary outcome using PCA data

(working data set is test) */

libname pca ’P:\IVEware_and_MI_Applications_Book

\DataSets\PCA

and Omega 3 Fatty Acids Data’;

data pca ;

set pca.test ;
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cardiac_arrest=2 ;

if casecnt=1 then cardiac_arrest=1 ;

smoker=2 ;

if smoke in (2,3) then smoker=1 ;

if smoke eq . then smoker=.;

* if smoke status equal 2 or 3 then smoker=1 or yes ;

keep redtot cardiac_arrest smoker age gender studyid ;

run ;

proc means n nmiss mean min max ;

run ;

/* Impute Missing Data For Controls and Cases */

<impute name="impute">

title "Impute All Missing Data" ;

datain pca ;

dataout imputeall all;

default continuous ;

transfer studyid ;

categorical smoker cardiac_arrest gender;

iterations 5 ;

multiples 10;

seed 666 ;

run ;

</impute>

/* create variables for use in logistic regression */

data imputeall1 ;

set imputeall ;

* create low red blood total if in lowest

quartile of imputed REDTOT ;

if redtot <=3.8 then lowred=1 ; else lowred=2 ;

*1=Yes 2=No ;

run ;

/* Logistic Regression Using Imputed Data Sets */

<regress name="Cardiac Arrest regressed on Low Red

Blood Gender and Smoker">

title "MAR Logistic Regression Cardiac Arrest

is Outcome" ;

datain imputeall1;

link logistic;

categorical gender smoker cardiac_arrest lowred ;

dependent cardiac_arrest ;

predictor age gender smoker lowred ;
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run ;

</regress>

%macro rep(p, np1,np2) ;

* Perturb selected variable (redtot) using value of

macro variable p ;

data imputeall&p ;

set imputeall1 ;

* create perturbed binary versions of red blood cell

membrane, set some no on (2) to yes (1) and set some

yes to no (same value) ;

lowred&p=lowred ;

if (lowred=2 and ranuni(5678) <=&np1) then lowred&p=1 ;

else if (lowred=1 and ranuni(7888) =>&np2)

then lowred&p=2 ;

run ;

%mend rep ;

%rep(05, .05, .95) ;

%rep(10, .10, .90) ;

%rep(25, .25, .75) ;

<regress name="Logistic Regression with 0.05 Perturb

on LowRed">

title "05 Adjustment for LowRed: Logistic Regression

Cardiac Arrest is Outcome" ;

datain imputeall05;

link logistic;

categorical gender lowred05 cardiac_arrest smoker ;

dependent cardiac_arrest ;

predictor age gender smoker lowred05;

run ;

</regress>

<regress name="Logistic Regression with 0.10

Perturb on LowRed">

title ".10 Adjustment for LowRed: Logistic Regression

Cardiac Arrest is Outcome" ;

datain imputeall10;

link logistic;

categorical gender lowred10 cardiac_arrest smoker ;

dependent cardiac_arrest ;

predictor age gender smoker lowred10;

run ;
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</regress>

<regress name="Logistic Regression with 0.25

Perturb on LowRed">

title ".25 Adjustment for LowRed Logistic Regression

Cardiac Arrest is Outcome" ;

datain imputeall25;

link logistic;

categorical gender lowred25 cardiac_arrest smoker ;

dependent cardiac_arrest ;

predictor age gender smoker lowred25 ;

run ;

</regress>

</sas>

Table 10.2: Estimated Effect of Low DHA/EPA Measurements on Primary
Cardiac Arrest

Perturbation Odds Ratio 95% CI
0.0% (MAR) 2.165 (1.957, 2.395)
5.0% 1.867 (1.693, 2.059)

10.0% 1.715 (1.560, 1.886)
25.0% 1.379 (1.260, 1.507)

Based on Table 10.2, even with perturbations of 5%, 10%, and 25%,
having low levels of DHA/EPA significantly increases the incidence
of cardiac arrest, compared to those with higher DHA/EPA levels
while controlling for age, gender, and smoking status.

10.3.3 Complex Example

The example in this section uses the Round 6 European Social
Survey-Russian Federation data set. Refer to Appendix A for a more
complete description of this data set. The primary goal is to exam-
ine sensitivity for an index variable representing overall satisfaction
with life and the economy (SATISFIED) in the Russian Federation.
The index is created from the sum of imputed Satisfaction with
the Economy (STFECO, range 0 to 10) and imputed Satisfaction
with Life (STFLIF, range 0 to 10). Therefore, the summed variable
has a range of 0-20 with higher values indicating more satisfaction.
The subsequent linear regression analyses account for the complex
sample design through use of the stratification and cluster variables
(STRATIFY and PSU) and also are weighted with the design weight
(DWEIGHT). The model of interest is overall satisfaction regressed
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on gender and age, using a MAR model plus a few models with a
perturbed outcome variable.

The following code illustrates imputation of missing data (IM-
PUTE), use of SAS data step code to create the outcome index vari-
able of overall satisfaction and perturbation of the outcome variable
using selected inflation factors. The example concludes with use of
REGRESS to perform MI and weighted and complex sample design
adjusted linear regression.

<sas name="Example 3 Chapter 10">

libname r ’P:\IVEware_and_MI_Applications_Book\DataSets\ESS

Russian Federation Data’ ;

data ess6_russia ;

set r.ess6_sub_russia_13nov2015 ;

keep idno psu dweight stratify stfeco stflife gndr agea ;

run ;

proc means data=ess6_russia nolabels n nmiss mean min max

std ;

run ;

/*impute missing data on age and 2 satisfaction with life and

economy variables*/

<impute name="impute_ESS">

title "Impute All Missing Data" ;

datain ess6_russia ;

dataout imputeess all;

continuous agea dweight ;

transfer idno ;

categorical stflife stfeco stratify psu ;

iterations 5 ;

multiples 10;

seed 8765 ;

run ;

</impute>

/*prepare satisfaction index variable */

data imputeess1 ;

set imputeess ;

agea=round(agea) ;

/* prepare perturbed versions of satisfied*/

satisfied=sum(of stflife, stfeco) ;

satisfied10=satisfied*1.10 ;

satisfied20=satisfied*1.20 ;

satisfied30=satisfied*1.30 ;



Sensitivity Analysis 175

run ;

<regress name="LinearRegression 1 ESS Russian Fed

Overall Satisfaction with Life Economy">

title "ESS Russian Fed Data Satisfaction Regressed

on Age and Gender" ;

datain imputeess1 ;

categorical gndr ;

stratum stratify ;

cluster psu ;

weight dweight ;

dependent satisfied ;

predictor agea gndr ;

run ;

</regress>

<regress name="LinearRegression 2 ESS Russian

Fed Overall Satisfaction with Life Economy">

title "1.10 ESS Russian Fed Data Satisfaction

Regressed on Age and Gender" ;

datain imputeess1 ;

categorical gndr ;

stratum stratify ;

cluster psu ;

weight dweight ;

dependent satisfied10 ;

predictor agea gndr ;

run ;

</regress>

<regress name="LinearRegression 3 ESS Russian Fed Overall

Satisfaction with Life Economy">

title "1.20 ESS Russian Fed Data Satisfaction Regressed

on Age and Gender" ;

datain imputeess1 ;

stratum stratify ;

cluster psu ;

weight dweight ;

categorical gndr ;

dependent satisfied20 ;

predictor agea gndr ;

run ;

</regress>

<regress name="LinearRegression 4 ESS Russian Fed Overall
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Satisfaction with Life Economy">

title "1.30 ESS Russian Fed Data Satisfaction Regressed

on Age and Gender" ;

datain imputeess1 ;

stratum stratify ;

cluster psu ;

weight dweight ;

categorical gndr ;

dependent satisfied30 ;

predictor agea gndr ;

run ;

</regress>

</sas>

Table 10.3: Estimated Effects of Age and Gender on Overall Satisfaction with
Life and Economy

Age Gender

Perturbation Estimate (SE) p Estimate (SE) p
0.0% (MAR) -0.033 (0.006) 0.000 -0.088 (0.193) 0.651

10.0% -0.036 (0.006) 0.000 -0.097 (0.213) 0.651
20.0% -0.040 (0.007) 0.000 -0.105 (0.232) 0.651
30.0% -0.043 (0.007) 0.000 -0.114 (0.251) 0.651

Based on results from Table 10.3, being male is non-significant and
negatively associated with overall satisfaction with life, as compared
to women while a one year increase in age is significantly and nega-
tively related to overall satisfaction, all else held to 0. These results
hold for each of the MAR and three perturbed outcomes.

10.4 Additional Reading

The selection model formulation is based on Heckman (1976) where
it was used to model the selection of women into the labor force.
Lillard, Smith and Welch (1986) present an application of this ap-
proach to handle missing income values in the current population
survey. Little (1985) and Little and Rubin (1987) show that this ap-
proach is highly sensitive to the stated assumptions. Rubin (1977)
proposed the simple mixture model framework for a scalar variable
based on a normal distribution. Glynn, Laird and Rubin (1986)
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report on several simulation studies and consider extensions with
covariates. Little (1993, 1994, 1995) includs a series of influential
articles advocating the pattern mixture model for handling non-
ignorable missing data mechanism in a variety of contexts. See
Kaciroti and Raghunathan (2014) on the comparison of sensitivity
analysis under the two framework, selection and Pattern-Mixture
models.

Pregibon (1977), Little (1982), Nordheim (1984), Baker and Laird
(1988) and Stasny (1986) are some references that consider nonig-
norable missing data models for categorical data. The models con-
sider the joint cross-classification of substantive and missing data
indicator variables where the parameters that cannot be estimated
are either fixed at various values or handled through a prior distri-
bution.

For a practical application see Ratitch and O’Kelly (2011).

10.5 Exercises

(a) Exercise 1 requires replication of the imputation step of Exam-
ple 1 (of this chapter) and then extends the analysis by adding
additional predictors to the linear regression models. The focus
is to experiment with expanded models to explore sensitivity
analyses of the MAR assumption.

i. Download the Opioid Detoxification data set from the book
web site. Begin by imputing missing data on all variables, as
demonstrated in Example 1. Make sure to follow the impu-
tation code and overall logic so that the same bounds and
other options are repeated. Use either IVEware or similar
software for the imputation step.

ii. Using your software of your choice, create the perturbed out-
come variables using the same inflation factors used in Ex-
ample 1. Why should you use a variety of inflation factors
and how does this relate to testing the MAR and NMAR
assumptions?

iii. Using IVEware or another software capable of properly com-
bining MI regression results, run the models as in Example
1 but use this expanded model:
VAS Day 14 (various versions)=Intercept + Age + Female
+ White + Baseline VAS + Treatment + error

iv. Prepare a table based on results from (c) and provide general
interpretation and a comparison to the results from Example
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1. Does the addition of model covariates change your conclu-
sions about the impact of treatment on VAS scores from Day
14 of the study? Why would one treat the VAS-Day 14 Score
as ”non-ignorable” rather than MAR? Is the MAR assump-
tion used during imputation reasonable and why or why not?

(b) This exercise uses the ESS Russian Federation data set and
performs a sensitivity analysis for a binary outcome of high
satisfaction with life/economy using two types of models: one is
a ”naive” approach without weights or design features included
and the second is a proper weighted and design-based analysis.
The goal of this exercise is two-fold; the first aim is to examine
the impact of assuming that the outcome representing high
satisfaction is not ”ignorable”, and the second goal is what
impact does ignoring the complex sample features and weights
have on analytic conclusions?

i. Download the ESS Russian Federation data set from the
book web site and gather the same set of variables as used
in Example 3. Perform exploratory analysis and determine
the extent and details of the missing data problem.

ii. Impute missing data using a software of your choice. Make
sure to use a seed value and produce an appropriate num-
ber of imputation multiples. What is your rationale for your
chosen M and number of iterations? Request imputation di-
agnostics for one of the imputed variables. Do you see any
imputation issues to address? If so, how might you approach
the issues?

iii. Create an index variable which is the sum of the two satis-
faction variables, as in Example 3. Make sure that the range
of the new variable is 0-20 and that there is no missing data.
Next, create a binary indicator of high satisfaction where the
top 10% of the continuous variable is set to 1 (high satisfac-
tion) and 2 otherwise (< 90% on the continuous satisfaction
index). Also, create a binary variable called AGECAT coded
as 1 if AGEA is between 14 and 30 inclusive, and otherwise
coded=2. This variable represents the youngest age group
and will be compared to those age 31+.

iv. Run a logistic regression model as follows: High Satisfac-
tion = youngest age group (AGECAT) and gender (GNDR).
Treat each of these variables as categorical. Run the regres-
sion once without using weights or the complex sample de-
sign variables (”Naive” model) and then repeat the regres-
sion but use the weights and design variables in this model
(”Weighted and Design-Based” model). Make sure you use
a software that is capable of performing MI combining and



Sensitivity Analysis 179

design-based analyses for this step. These two models are
considered MAR analyses.

v. Repeat the steps of part (d) 2 times but alter the binary
outcome variable by changing the values of 1 or 2 using the
proportions of 0.05 and 0.10 for the re-assignments. Based
on the output from the 6 models from parts (d) and (e), pre-
pare a table of Odds Ratios and 95% CI’s for the Naive and
Weighted/Design-Based models for MAR and the Perturbed
Outcomes.

vi. Interpret the results from part (e). Discuss how ignoring the
weights and design features impacts significance levels and
overall conclusions. Also, consider the results of the sensitiv-
ity analysis and treating the outcome as non-ignorable.
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Odds and Ends

11.1 Imputing Scores

In many situations, a scale is constructed by summing several items and then
used as an outcome or predictor variable in a regression analysis. If the items
involved in the scale are missing then the scale score is also missing. What are
the options for imputing the scale values?

Consider the following approach. Let X1, X2, . . . , Xp be p individual items
and the score is the sum Y =

∑p
i Xi. Some times, if the number of missing

items is less than k, then the missing items are replaced by the average of the
observed items, otherwise the scale is set to missing (that is, if the number
of missing items exceeds k). The choice of k is, usually, arbitrary. Further-
more, all the missing items are assumed to be the same for a given individual.
Thus, the resulting data set does not resemble any plausible data set from the
population. Such ad hoc approaches should be avoided.

Three possible approaches are described depending upon the missing data
pattern. The first missing data pattern is called “either all or none”. That is,
every individual in the sample either responds to all p items or none of the
items. In this situation, no partial information is available on subjects with
missing values. The scale may then be directly imputed without loss of any
efficiency.

Next, consider an arbitrary pattern of missing data among the p items.
In this case, it may be better to impute individual items and then construct
the sum to create the scale. This allows for imputing the missing values that
exploit the correlation among the items and garner the predictive power of
observed items to predict the missing items.

This approach can be difficult to implement, if the data set has a lot of
items leading to different scale scores. An alternative approach, is to directly
impute the missing scores but use the sum of the observed scores as the lower
bound in the imputation process. Let YiL be the sum of the observed items
for subject i = 1, 2, . . . , n. Let Ymax be the maximum possible value for the
scale. The missing value of Yi may be treated as censored at YiL and use the
“Bounds” feature in IVEware to impute the missing value for subject i to be
bound between YiL and Ymax. The number of observed items may also be
used as a predictor in the imputation regression model for Y .

181
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11.2 Imputation and Analysis Models

Often in practice, more variables may be available than being used in any
specific analysis. For example, suppose that the analysis involves a regression
model with Y as the dependent variable and X1, X2, . . . , Xp as the covari-
ates. Suppose there are missing values in this analytical variable data set
(Y,X1, X2, . . . , Xp) and the missing data mechanism is ignorable. A standard
approach (Option 1) is to multiply impute the missing values and then run a
regression of observed Y on the observed or imputed X = (X1, X2, . . . , Xp).
Note that the imputed values of Y may be ignored in this particular regression
analysis because of the following reasoning. Let RY = 1 if Y is observed and
0 if Y is missing. Let Xobs and Xmis be the observed and missing portions of
X. Under MAR,

Pr(Y |RY = 1, Xobs) = Pr(Y |RY = 0, Xobs) = Pr(Y |Xobs)

and
Pr(Y |RY = 1, Xobs) ≈

∑
l

Pr(Y |RY = 1, Xobs, X
(l)
mis)/M

where X
(l)
mis are the imputed values of Xmis. That is, there is no additional

information about the regression of Y on X in the imputed values of Y .
Now suppose that additional variables, Z = (Z1, Z2, . . . , Zq), are available

and are correlated with Y and X. For simplicity, assume that Z is fully ob-
served. The alternative option (Option 2) is to include Z in the imputation
model and then fit the analyst regression model with observed Y as the de-
pendent variable and observed or imputed X as predictor variables. For this
approach, a number of subtle issues need discussion.

A technical issue is the thought experiment under which the inference pro-
cedures are evaluated from the repeated sampling perspective. Under Option
1 (Y X imputation and Y X analysis), the repeated sampling thought exper-
iment involves sampling of (Y,X) and the missing data mechanism assumes
that R, the response indictors, depends only on (Yobs, Xobs). The additional
variables Z are irrelevant (unrelated to (Y,X) and R) under this thought
experiment. Thus, the inclusion of Z in the imputation model is akin to in-
cluding irrelevant predictors in the regression model, and, hence, inefficient.
This option fits well with a typical training in the statistical analysis with no
missing data where many analysts select a specific set of variables relevant to
their substantive analysis from the large data set and do a specific analysis,
ignoring other variables in the data set.

Option 2 (Y XZ-imputation, Y X-analysis), operates under a different
thought experiment where the repeated sampling involves the joint dis-
tribution of (Y,X,Z) and R, and depends on (Yobs, Xobs, Z) in general,
(Yobs, Xobs, Zobs), if Z also has some missing values. In this situation, the
quantity being evaluated is the estimate of a parameter in the Y X model.
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The choice between Option 1 or Option 2, at least from the technical point
of view, depends on the assumptions under which inferential procedures are
to be evaluated from the repeated sampling perspective. Our training based
on the complete data analysis framework may lead us to consider Option 1 as
an extension to analysis with missing data. However, from the perspective of
practitioners, Option 2 can lead to more efficient inferences by reducing the
uncertainty in the prediction of the missing values and, hence, the expanded
thought experiment may have merit.

Now, some caveats. If the additional variables Z are weakly correlated (a
simple descriptive measure is R2 (or Pseudo R2) from the regression of Z on
(Y,X)), then the gain in efficiency may be small. An example is considered
later to shed some light on this issue. Imputation model development may be-
come complex with the addition of variables Z as covariates. If a poorly fitting
model is used to impute missing values in Y and X, then the estimates may
be biased. Additional variables need to be carefully selected and appropriately
modeled to reap the benefits to achieve the desired gain in efficiency.

11.2.1 Example

Consider a simple example with two variables, Y , with some missing values
and, X, that is fully observed. Assume that the data in Y are missing com-
pletely at random (MCAR). The analyst is interested in inferring about the
mean µY = E(Y ). Under Option 1, the best estimate of µY is the mean based
on r respondents, ȳr =

∑r
i yi/r, and its variance estimate is s2yr/r where

s2yr =
∑
i(yi − ȳr)2/(r − 1), is the sample variance based on the respondent

observations.
Suppose that the regression of Y on X is linear. The optimal estimate

under Option 2, is the regression estimator,

ȳlr = ȳr + b(x̄n − x̄r)

where b is the estimated regression coefficient of X in the linear model pre-
dicting Y , x̄n is the full sample mean of X and x̄r is the mean of X for
the respondents in Y . This estimate can be viewed as multiply imputed esti-
mate with infinite number of imputations. The approximate variance of this
estimate is

var(ȳlr) =
s2yr
r

(1− c2)

where c is the estimated correlation coefficient between Y andX. Thus, the rel-
ative efficiency of the regression estimator compared to the respondent mean
is

RE =
1/var(ȳlr)

1/var(ȳr)
= (1− c2)−1.

For example, if c = 0.5, the regression estimator is 1/3 more efficient that the
respondent mean but with c = 0.2, the regression estimator is only about 4%
more efficient than the respondent mean.



184 Multiple Imputation in Practice : With Examples Using IVEware

Now suppose that the missing data mechanism depends on X (MAR, since
X is fully observed) then Option 1 may result in a biased estimate. The analyst
needs to incorporate X in the analysis, unless X is uncorrelated with Y .
Generally, the inclusion of variables that are related to RY (response indicator
of Y ) but not to the survey measure, Y lead to inefficient estimates. Thus,
the choice between Option 1 or Option 2 depends on the kind and amount of
information available in the variables not in the substantive model of interest.
From a practical point of view, it is important to extract information from
all available data even though not all are of interest in a specific analysis
model. The goal is to leverage as much information as possible to reduce the
uncertainty due to missing values.

11.3 Running Simulations Using IVEware

Often, it is useful to run some simulations to evaluate a particular procedure
for estimating the parameter of interest. An example of such a situation is
whether to use additional covariates Z in the imputation model, as discussed
in the previous section. Consider a logistic regression simulation example dis-
cussed in Raghunathan (2016). Let D be a binary dependent variable, E, a
binary exposure variable and X, a single continuous covariate. The following
model is used to generate a complete data set of size n = 1, 000:

1. X ∼ N(0, 1),

2. E|X ∼ Bernoulli(1, π(X)) where logit[π(X)] = 0.25 + 0.75X

3. D|E,X ∼ Bernoulli (1, θ(X,E)) where logit[θ(X,E)] = −0.5 +
0.5E + 0.5X

The model in point 3 is of interest and, in particular, the regression coeffi-
cient for E is the target quantity of inference based on a sample from this
population.

Now delete some X values based on the following response mechanism,

logit[Pr(RX = 1|D,E)] = −1− 0.5D − 0.5E + 3D × E

Figure 1.2 in Raghunathan (2016) generated 500 replicates and provided his-
tograms of the complete data (before deletion) and complete-case (after dele-
tion) estimates to illustrate the potential bias in the complete case analysis.
Suppose that an additional variable Z is available with mean 0, variance 1 and
with correlation ρ to the variable with missing values, X. This is accomplished
by assuming Z|X ∼ N(ρX, 1− ρ2).

Now consider multiple imputation analysis of these 500 data sets with and
without using the additional variable Z. First, generate 500 data sets without
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missing values, each of size n = 1000, and then set some values of X to be
missing. The following portion of the SAS-code accomplishes this task:

<sas name="sasoutput">

options ls=80 ps=72 nodate nonotes;

%let n=1000;

%let nsimul=500;

%let rho=0.7;

data one (keep=d e x xobs z simul);

call streaminit(123456);

vz=sqrt(1-&rho*&rho);

do simul=1 to &nsimul;

do i=1 to &n;

/* Generate X and Z */

x=rand(’Normal’);

z=rand(’Normal’);

z=&rho*x+vz*z;

/* Generate E */

u1=rand(’uniform’);

pex=1/(1+exp(-0.25-0.75*x));

e=0;

if u1 le pex then e=1;

/* Generate D */

u2=rand(’uniform’);

pdex=1/(1+exp(0.5-0.5*e-0.5*x));

d=0;

if u2 le pdex then d=1;

/* Generate Response Indicator */

u3=rand(’uniform’);

prx=1/(1+exp(1-0.5*d-0.5*e+3*d*e));

xobs=x;

rx=0;

if u3 ge prx then rx=1;

if rx=0 then xobs=.;

output;

end;

end;

The above code generates a data set with 50,000 rows and 6 variables: Sim-
ulation number (simul), D, E, X (before deletion), Xobs (X with missing
values) and Z.

Next, IVEware is used to impute the missing values in X using the follow-
ing regression model,

X = αo + α1D + α2E + α3D × E + α4Z + ε
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where ε ∼ N(0, σ2). Setting α4 = 0 corresponds to not using Z in the imputa-
tion model (that is, treating Z as a “transfer” variable in IVEware). Assume
a non-informative prior for α and σ, Pr(α, σ) ∝ σ−1. The following code in-
vokes the IMPUTE module in IVEware to multiply impute (with M = 10)
the missing values in X without using Z as a predictor (Option 1 in Section
11.2):

/* Create a Copy of the data and generate

imputations under Option 1*/

data temp;

set one;

<impute name="temp2">

datain temp;

dataout tempout all;

default continuous;

transfer simul x z;

interact d*e;

multiples 10;

iterations 1;

by simul;

seed 234789;

run;

</impute>

Next, fit a logistic regression model with D as the dependent variable,
and E and imputed X (note that Xobs in the output multiply data set called
“tempout” has both observed and imputed values), extract the point estimates
of the regression coefficient of E and its estimated variance.

proc sort data=tempout;

by simul _mult_;

/* Fitting the logistic regression model on

each completed data */

proc logistic data=tempout descending outest=results

noprint covout;

model d=e xobs;

by simul _mult_;

/* Extract the point estimates */

data est;

set results;

if _TYPE_ ne ’PARMS’ then delete;

keep simul _mult_ e;

/* Extract the variance estimates */

data cov;

set results;

if _NAME_ ne ’e’ then delete;
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u=e;

keep simul _mult_ u;

/* Create a data set with estimates and its

completed-data variance */

data anal;

merge est cov;

by simul _mult_;

run;

The next step involves calculating the multiple imputation estimate of
the regression coefficient of E, its multiple imputation variance estimate, the
degrees of freedom and confidence interval. The following code accomplishes
these tasks:

proc means noprint mean var;

var e u;

output out=res mean=ebarmi ubarmi var=bmi umi;

by simul;

run;

data res;

set res;

drop umi; /* Variance of completed-data variances is not needed */

tmi=ubarmi+(1+1/10)*bmi;

rmi=(1+1/10)*bmi/tmi;

semi=sqrt(tmi);

numi=9/rmi/rmi;

tval=quantile(’T’,0.975,numi);

lower=ebarmi-tval*semi;

upper=ebarmi+tval*semi;

/* Generate coverage indicator 1: if the interval contains the

true value 0.5 and 0 otherwise */

cov=1;

if lower > 0.5 or upper < 0.5 then cov=0;

/* Length of the confidence interval */

length=2*tval*semi;

run;

The final step is to compute the Monte Carlo averages of the point estimates,
ēMI , coverage indicator and the length of the confidence interval. Also included
is the fraction of missing information.

proc means mean var;

var ebarmi cov rmi length;
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run;

</sas>

The results from running this program are given below:

The MEANS Procedure

Variable Mean Variance

----------------------------------------

ebarmi 0.5158024 0.0202571

cov 0.9560000 0.0421483

rmi 0.0209743 0.000116975

length 0.5553500 0.000063234

----------------------------------------

The expected value of ēMI is 0.52 which is close to the true value 0.5,
the actual coverage of the nominal 95% confidence interval is 95.6% and
the sampling variance of the estimate is 0.0203. The mean square error is
MSE = (0.5158 − 0.5)2 + 0.02026 = 0.02051. The average fraction of miss-
ing information is 2.1% which may be compared to 25% of the sample with
missing values in X. This suggests that considerable information is recovered
through multiple imputation.

To run the simulation under Option 2 (that is, include Z as a predictor in
the imputation model), the only change needed to the SAS code is where Z
is set as transfer variable in the impute module:

transfer simul x;

The results from running the simulation under Option 2 are given below:

The MEANS Procedure

Variable Mean Variance

----------------------------------------

ebarmi 0.5121622 0.0202658

cov 0.9500000 0.0475952

rmi 0.0122348 0.000040355

length 0.5527712 0.000057931

----------------------------------------

The MSE of the estimated regression coefficient when Z is included in the
imputation model is 0.02041 (practically the same as without including the
Z in the imputation model). However, the average fraction of information is
1.2%, down from 2.1%.



Odds and Ends 189

11.4 Congeniality and Multiple Imputations

When assumptions made by the analyst are not “in tune” with the assump-
tions made by the imputer, multiple imputation inferences can be mislead-
ing. Consider the bivariate example in Section 11.2.1. Further assume that
the joint distribution of (Y,X) is bivariate normal with means (µY , µX),
variances (σ2

Y , σ
2
X), and a correlation coefficient ρ. The goal is to estimate

θc = Pr(Y ≥ c) for a known constant c. Suppose imputations are devel-
oped from draws from the predictive distribution of the missing values in Y
conditional on the observed values in (Y,X).

The analyst, however, ignores the model assumptions and uses the empir-
ical estimate,

θ̃(l)c =
n∑
i

I
[y

(l)
i
≥c]/n

where y
(l)
i is the observed or imputed value for individual i and I[A] is an

indicator function taking the value 1 if A is true and 0 otherwise. However,
this empirical estimate, though convenient, is not congenial to the assump-
tions made in the imputation process. What then are the consequences for
the analyst in this situation? To explore this further, consider the repeated
sampling properties of the multiple imputation estimate,

θ̃(MI)
c =

M∑
1

θ̃(l)c /M

and its variance estimate,

T̃MI =

M∑
1

[θ̃(l)c (1− θ̃(l)c )/n]/M + (1 + 1/M)

M∑
1

(θ̃(l)c − θ̃(MI)
c )2/(M − 1).

Suppose that 1,000 data sets each of size n = 250 are generated from the
following model assumptions:

1. X ∼ N(0, 1),

2. Y |X ∼ N(ρX, 1− ρ2),

3. logitPr(RY = 1|X) = −0.5 + 0.25X (roughly resulting in 38%
missing values in Y ).

Assume that the parameter of interest is θ1 = Pr(Y ≥ 1), (the true value,
given that Y ∼ N(0, 1), is 0.1587). The three quantities compared through

simulations are (1) the bias of θ̃
(MI)
1 , (2) Coverage properties of the multiple

imputation confidence intervals for θ1, and (3) the difference between the
Monte Carlo variance of the point estimates (approximating the sampling
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variance of the MI estimates, V ar(θ̃
(MI)
1 )) and the Monte Carlo average of

T̃MI (approximating the expected value of the variance estimates).
The code given at the end of this section creates a macro to run the

simulation for a given value of ρ (input as a macro variable), runs the analysis
for three values of ρ = 0.2, ρ = 0.5, and ρ = 0.7. For ρ = 0.2, the expected

value of the estimates is E(θ̃
(MI)
1 ) = 0.1575, the actual coverage of the nominal

95% confidence interval is 99.3%, the sampling variance V ar(θ̃
(MI)
1 ) = 0.00036

and the expected value of the variance is E(T̃MI) = 0.00076. The multiple
imputation inferences lead to conservative inferences with over-estimation of
the actual sampling variance and over-coverage of the confidence intervals.
Similar conservative results are obtained for ρ = 0.5 and ρ = 0.7. Given the
large fraction of missing information, one may want to consider increasing
the number of imputations. The same code re-run with M = 100 resulted
in the confidence interval coverage to be 96.5%, though over-estimation of
the sampling variance persists. Generally, when the analyst uses inefficient
completed-data estimates relative to the imputation model assumptions, the
multiple imputation inferences are conservative.

A serious issue may arise when the imputation model is misspecified. Sup-
pose that the true model in (2) is Y |X ∼ N(ρX, (1− ρ2)X2) and the imputer
ignores this heteroscedasticity. This type of un-congeniality can be avoided
by making sure that the regression models are well fit to the observed data,
substantively sensible, and carefully checked by performing model diagnostics.
Additionally, the estimation procedures used should be fully efficient to the
extent possible to avoid overly conservative inferences.

11.4.1 Example of Impact of Uncongeniality

<sas name="uncongen1">

options ls=80 ps=72 nodate nonotes;

/* Create a Macro Environment to run the simulation for different

values of rho, the correlation between Y and X */

%macro uncong(rho);

%let n=250; /* sample size */

%let nsimul=1000; /* Number of Replications */

/* Generate Data Sets */

data one (keep=y yobs x simul);

call streaminit(123456);

vh=sqrt(1-&rho*&rho);

do simul=1 to &nsimul;

do i=1 to &n;

x=rand(’Normal’);

temp=rand(’Normal’);

y=&rho*x+vh*temp;

u1=rand(’uniform’);

prx=1/(1+exp(0.5-0.25*x));
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yobs=y;

ry=0;

if u1 ge prx then ry=1;

if ry=0 then yobs=.;

output;

end;

end;

run;

data temp;

set one;

/* Multiply Impute the Missing Values */

<impute name="uncongen2">

datain temp;

dataout tempout all;

default continuous;

transfer simul y;

multiples 10;

iterations 1;

by simul;

seed 234789;

run;

</impute>

/* Construct completed Data Estimates */

data tempout;

set tempout;

ryc=0;

if yobs >= 1 then ryc=1;

proc sort data=tempout;

by simul _mult_;

run;

proc means noprint mean;

var ryc;

output out=all mean=tildec;

by simul _mult_;

run;

/* Multiple Imputation Analysis */

proc means noprint mean var;

var tildec;

output out=res mean=tildecbar var=bmi;

by simul;

run;
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data res;

set res;

ubarmi=tildecbar*(1-tildecbar)/&n;

tmi=ubarmi+(1+1/10)*bmi;

rmi=(1+1/10)*bmi/tmi;

semi=sqrt(tmi);

numi=9/rmi/rmi;

tval=quantile(’T’,0.975,numi);

lower=tildecbar-tval*semi;

upper=tildecbar+tval*semi;

truetheta=1-cdf(’normal’,1);

cov=1;

if lower > truetheta or upper < truetheta then cov=0;

length=2*tval*semi;

run;

/* Output Monte Carlo Means and Variances */

proc means mean var;

var tildecbar tmi cov rmi length;

run;

%mend;

%uncong(0.2);

%uncong(0.5);

%uncong(0.7)

</sas>

11.5 Combining Bayesian Inferences

Software packages for performing Bayesian analysis, such as Stan, JAGS, Win-
bugs, Openbugs, and PROC MCMC etc., have made implementation rela-
tively easy for various model specifications. A common theme in Bayesian
analysis is to obtain draws from the posterior distribution of the parameters
of interest and use the draws to construct relevant inferences. Thus, one pos-
sible approach is use of a Bayesian method for each completed data set and
combine the draws across the data sets.

Suppose that a sample of observations Y = {y1, y2, . . . , yn} is generated
from the model f(y|θ) and the prior distribution of θ is π(θ). Also suppose
that some values in Y are missing and, as before, Y = {Yobs, Ymis}. Under
the ignorable missing data mechanism, the relevant quantity for constructing
the inferences is the posterior distribution of θ, conditional on Yobs, with the
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density function:

π(θ|Yobs) =

∫
π(θ|Yobs, Ymis)Pr(Ymis|Yobs)dYmis,

where

π(θ|Y = {Yobs, Ymis}) ∝ π(θ)
n∏
i

f(yi|θ)

is the complete data posterior density function and Pr(Ymis|Yobs) is the pre-

dictive distribution of the missing set of observations. If Y
(l)
mis, l = 1, 2, . . . ,M

are the imputations drawn from the predictive distribution, Pr(Ymis|Yobs),
then the above integral is approximately equal to

1

M

M∑
l=1

π(θ|Yobs, Y (l)
mis),

a mixture of M density functions with mixing probability, 1/M . Conceptu-
ally, the following procedure draws from this mixture distribution : Randomly
select a number between 1 and M , say, j, and then obtain a draw of θ from

π(θ|Yobs, Y (j)
mis). Repeating this process, say R times, obtain approximately

independent draws from the mixture distribution given above.
Computationally, of course, it makes more sense to perform the Bayesian

analysis on each completed data set to obtain R draws of the parameters from
each completed data set. Suppose that these draws are arranged in a R ×M
matrix, then all RM draws can be combined to form a single inference as sug-
gested by Gelman et al (2004). For example, the empirical percentiles (useful
for constructing Bayesian credible intervals) of the posterior distribution of
θ can be calculated using ordered RM values. An alternative is to use the
draws from each completed data posterior distributions to compute the com-
pleted data posterior mean and variance and then combine them using the
standard formula given in Section 1.13. This approach may not work well for
all estimands, as shown by Zhou and Reiter (2010). Also, they show that the
suggestion by Gelman et al (2004) may work well only when M is large.

Now consider an elaboration of the approach suggested by Gelman et al
(2004). The conceptual procedure is equivalent to drawing one element at
random from each row of this matrix to generate R draws from the mixture
distribution. Let θrl denote the rth draw from the completed data posterior

distribution with the density π(θ|Yobs, Y (l)
mis), r = 1, 2, . . . , R; l = 1, 2, . . . ,M .

Let θ∗r denote a random draw from the row r = 1, 2, . . . , R. The posterior
mean is then approximated by θ̄∗ =

∑
r θ
∗
r/R and the posterior variance by

T ∗ =
∑
r(θ
∗
r − θ̄∗)2/(R− 1).

Clearly, θ̄∗ and T ∗ are not using all other generated values and this ap-
proach is wasteful. Suppose that the process of drawing one random element
from each row and then computing the posterior mean and variance is repeated
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infinitely many times and then both θ̄∗ and T ∗ are averaged. Thus, with re-
spect to this sampling process, in expectation, E(θ∗r) = θ̄r+ =

∑
l θrl/M

and E(θ̄∗) =
∑
r θ̄r+/R = θ̄++, the overall mean of all RM draws, θ++ =∑

r

∑
l θrl/(RM).

Next, consider the expected value of T ∗. Writing (R − 1)T ∗ =
∑
r θ
∗2
r −

Rθ̄∗2, it follows that

(R− 1)E(T ∗) =
∑
r

(V ar(θ∗r) + θ̄2r+)−R(V ar(θ̄∗) + θ̄2++).

The variance of θ∗r , with respect to the sampling process is (1−1/M)vr where
vr =

∑
l(θrl − θ̄r+)2/(M − 1) (based on the Simple Random Sampling of 1

element from the population of M elements). Due to independent sampling
across the rows, V ar(θ̄∗) =

∑
r(1− 1/M)vr/R

2. Substitution and simplifica-
tion produces:

(R− 1)E(T ∗) = (1− 1/R)(1− 1/M)
∑
r

vr +
∑
r

(θ̄r+ − θ̄++)2

or
TMI = E(T ∗) = (1− 1/M)V̄R +BR

where BR =
∑
r(θ̄r+ − θ̄++)2/(R − 1) (the Between-Row Mean Square) and

V̄R =
∑
r vr/R (the Within-Row Mean Square). Note that when R and M

are large enough to ignore the term (1− 1/R)(1− 1/M), TMI is nearly equal
the overall mean square

∑
r

∑
l(θrl − θ̄++)2/(RM − 1).

Also note that, Ul =
∑
r(θrl − θ+l)

2/(R − 1) where θ̄+l =
∑
r θrl/R

is completed-data posterior variance based on the completed data l =
1, 2, . . . ,M . Define ŪMI =

∑
l Ul/M (Within-Column Mean Square). The

fraction of missing information is rMI = (TMI − ŪMI)/TMI = 1− ŪMI/TMI

and the degrees of freedom for the t distribution is νMI = (M − 1)/r2MI .
Consider the problem discussed in the previous section where the goal is

to infer about θc = Pr(Y ≥ c). It is fairly easy to draw from the posterior
distribution of θc from each completed data as follows:

1. Draw a chi-square random variate u with n− 1 degrees of freedom

and define σ∗2Y = (n− 1)s
(l)2
yn /u

2. Draw a standard normal deviate z and define µ∗Y = ȳ
(l)
n + σ∗Y z/

√
n

3. Compute θ∗c = 1− Φ [(c− µ∗Y )/σ∗Y ]

4. Repeat Steps (1)- (3), a total of R times, yielding θ∗c,r, r =
1, 2, . . . , R

5. Repeat Steps (1) to (4) for each completed data set l = 1, 2, . . . ,M
to generate a data set with RM values of θc.

Next, a series of computations of the means and variances based on these draws
is needed to construct inference about θ. The code at the end of this section
runs a simulation to evaluate the repeated sampling properties of the estimate
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θ̄MI = θ̄++ and the coverage properties of the nominal 95% confidence interval
for θ1. The setup is exactly the same as described in Section 11.4. The sample
size is n = 1000, the correlation coefficient between Y and X is ρ = 0.9,
the number of imputation is M = 5, the number of draws from the posterior
distribution is R = 100 and the number of replications or simulated data sets
is 500.

Results from this simulation are E(θ̄MI) = 0.1587, TMI = V ar(θ̄MI) =
0.000087, the coverage of nominal 95% confidence interval is 96.2% and
E(TMI) = 0.000095. The same code/setup was run to evaluate the em-
pirical estimate θ̃MI (discussed in the previous section) which resulted in
V ar(θ̃(MI)) = 0.000118. The Bayes estimate is almost 36% more efficient
than the empirical estimate with a slightly conservative interval estimates.

11.5.1 Example of Combining Bayesian Inferences

<sas name="bayesanal1">

options ls=80 ps=72 nodate nonotes;

%let n=1000; /*Sample Size */

%let nsimul=500; /* Number of Replications */

%let rho=0.9; /* Assumed Correlation between Y and X */

%let capr=100;

%let nmult=5;

/* Number of draws from the posterior distribution */

/* Generate Data sets */

data one (keep=y yobs x simul);

call streaminit(123456);

vh=sqrt(1-&rho*&rho);

do simul=1 to &nsimul;

do i=1 to &n;

x=rand(’Normal’);

temp=rand(’Normal’);

y=&rho*x+vh*temp;

u1=rand(’uniform’);

prx=1/(1+exp(0.5-0.25*x));

yobs=y;

ry=0;

if u1 ge prx then ry=1;

if ry=0 then yobs=.;

output;

end;

end;

run;

/* Multiply Impute the Missing Values */

data temp;
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set one;

<impute name="bayesanal2">

datain temp;

dataout tempout all;

default continuous;

transfer simul y;

multiples 5;

iterations 1;

by simul;

seed 234789;

run;

</impute>

/* Compute the mean and variance of imputed Y */

proc sort data=tempout;

by simul _mult_;

run;

proc means noprint mean var;

var yobs;

output out=all mean=ybarnl var=s2ynl;

by simul _mult_;

run;

/* Macro to implement draws from the posterior distribution

for each simulated imputed data set */

%macro bayesanal;

%do i=1 %to &nsimul;

%do j=1 %to &nmult;

data temp;

set all;

where simul=&i and _mult_=&j;

%do r=1 %to &capr;

runnumber=&r;

uu=rand(’chisquare’,&n-1);

sigstar=sqrt((&n-1)*s2ynl/uu);

zz=rand(’normal’);

mustar=ybarnl+sigstar*zz/sqrt(&n);

theta1star=1-cdf(’normal’,1,mustar,sigstar);

output;

%end;

/* Append the Data for each completed data and simulated data */

proc append base=empty data=temp;

%end;

%end;

%mend;
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/* Run the Macro */

%bayesanal;

/* Compute UbarMI */

proc sort data=empty;

by simul _mult_;

run;

proc means noprint var;

var theta1star;

by simul _mult_;

output out=new var=ul;

proc sort data=new;

by simul;

proc means noprint mean;

var ul;

output out=ubar mean=ubarmi;

by simul;

/* Compute VbarR, BR etc */

proc sort data=empty;

by simul runnumber;

proc means noprint mean var;

var theta1star;

by simul runnumber;

output out=new mean=thetabarr var=srsquare;

proc means noprint mean var;

var thetabarr srsquare;

output out=new2 mean=postmean sb2 var=sa2 junk;

by simul;

run;

/* Merge results for each simulated data and construct

MI inferences */

data result;

merge ubar new2;

by simul;

tmi=sa2+sb2*(1-1/&nmult);

semi=sqrt(tmi);

rmi=1-ubarmi/tmi;

nu=&nmult/rmi/rmi;

tval=quantile(’t’,0.975,nu);

lower=postmean-tval*semi;

upper=postmean+tval*semi;

truetheta=1-cdf(’normal’,1);

cov=1;

if lower > truetheta or upper < truetheta then cov=0;

run;
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proc means mean var;

var postmean tmi cov sa2 sb2;

run;

</sas>

11.6 Imputing Interactions

When building a substantive analysis regression model, nonlinear terms or in-
teractions between two or more variables may enter as predictors. If any of the
variables have missing values then these derived variables (nonlinear functions
or products) are also missing. How should the missing values in these derived
variables be handled? One possibility is to add the nonlinear and interaction
terms as “new” variables in the data set and impute them just like any other
variable. This strategy can create inconsistent values in the imputed data set.
For example, suppose that the model involves X1 and X2 = X2

1 . Whenever
X1 is missing (observed) then X2 is also missing (observed) and X2 and X1

has deterministic relationship. By treating them as two different variables in
the imputation process, there is no guarantee that this deterministic relation-
ship will be satisfied. Despite this problem, this approach (called the “Just
Another Variable” approach) has been evaluated using simulated data sets
and seems to provide reasonable point and interval estimates of the regression
coefficients in the analysis regression model.

An alternative approach is to derive the predictive regression models for
the missing values that is in tune with the specific analysis model. This prob-
lem was considered in Section 1.10.2 and used the Gibbs sampling approach
to obtain multiple imputation values/data sets. Given that it is complicated
to implement this approach, Section 1.10.1 considered the SRMI framework
where the regression models included interaction terms. The goal is to assess
whether careful modeling and the inclusion of interaction terms as described
in Section 1.10.1 can result in valid estimates of the target parameters of
interest.

11.6.1 Simulation Study

To explore this further, consider the following model assumptions:

1. X1 ∼ N(2, 1),

2. X2|X1 ∼ N(1 + 0.5X1, 0.862),

3. Y |X1, X2 ∼ N(X1 +X2 +X1X2, 5.5
2)

This setup roughly results in R2 for the model in (3) (the ultimate model of
interest) to be approximately 0.5 and the interaction term to be substantively



Odds and Ends 199

important. Both X1 and X2 have the same mean (E(X1) = E(X2) = 2) and
almost the same variance (V ar(X1) = 1, V ar(X2) ≈ 1). The correlation be-
tween X1 and X2 is approximately 0.5. This setup is similar to that considered
by Bartlett et al (2015).

The variable Y is fully observed, both X1 and X2 have missing values and
the missing data mechanism depends on Y , with 70% complete (that is, no
missing values) and the remaining with either X1 missing or X2 missing (see
the code provided at the end of the section for more details). The sample
size is fixed at n = 1, 000. The first generated data was analysed to develop
imputation models for X1 and X2 and these were:

M1. X1|X2, Y ∼ N(αo + α1X2 + α2Y + α3X2Y + α4X
2
2 + α5Y X

2
2 , σ

2
1),

M2. X2|X1, Y ∼ N(βo + β1X1 + β2Y + β3X1Y + β4X
2
1 ,+β5Y X

2
1 , σ

2
2)

These two models are consistent with the comparison of the joint model and
SRMI approaches discussed in Section 1.10.3. Higher order terms (involving
X2 in (1) and involving X1 in (2)) do improve the model fit but not substan-
tially.

The analysis model of interest is

Y = γo + γ1X1 + γ2X2 + γ3X1X2 + ε,

where E(ε|X1, X2) = 0 and V ar(ε|X1, X2) = σ2. Note that the true values of
the regression coefficients are γo = 0, γ1 = γ2 = γ3 = 1. Table 11.1 summa-
rizes the results for the three regression coefficients when the imputations are
created under the model assumptions (M1) and (M2). The simulation study
involves 250 replications with each multiply imputed with M = 100. Also, the
results are provided for the default models,

D1. X1|Y,X2 ∼ N(αo + α1Y + α2X2, σ
2
1)

D2. X2|Y,X1 ∼ N(βo + β1Y + β2X
2
1 , σ

2
2)

When the imputations are created under Models M1 and M2, the estimated
regression coefficients are close to their true values (1 for all three coefficients).
It can be checked that estimates get closer to 1 when additional terms (such
as Y X3

1 and X3
1 in Model M1 and Y X3

2 and X3
2 in Model M2) are added in

the imputation model. Thus, better imputation models may be developed by
including information about the analysis model of interest. Note that default
models (not supported by the regression analysis) are misspecified and lead
to biased inferences. Also, note that the confidence intervals under (M1,M2)
models are conservative, perhaps, a consequence of the imputation model using
many parameters and thus increasing uncertainty in the imputed values.

11.6.2 Code for Simulation Study

<sas name="interact1">

options ls=80 ps=72 nonotes;
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Table 11.1: Simulation results using SRMI when the analysis model involves
interactions

Description γ1 γ2 γ3
Imputation Under Models M1 and M2

Average of Estimates 1.0967 1.0734 0.9581
Variance of Estimates 0.1144 0.1159 0.0228
Average of MI Variances 0.1713 0.1648 0.0292
Coverage (95% nominal) 99.6 98.4 96.8

Imputation Under Default Models D1 and D2

Average of Estimates 1.3248 1.2447 0.8593
Variance of Estimates 0.1168 0.1170 0.0231
Average of MI Variances 0.1681 0.1625 0.0289
Coverage (95% nominal) 91.6 94.4 88.0

/* Generate nsimum data sets each of size n with missing values */

%let nsimul=250;

%let n=1000;

data orig(keep=simul y x1obs x2obs);

call streaminit(123456);

do simul =1 to &nsimul;

do i=1 to &n;

x1=2+rand(’normal’);

x2=1+0.5*x1+0.86*rand(’normal’);

y= x1+x2+x1*x2+5.5*rand(’normal’);

u1=rand(’uniform’);

u2=rand(’uniform’);

py=1/(1+exp(-1+0.3*y));

rx1=0;

if u1 >= py then rx1=1;

rx2=0;

if u2 >=py then rx2=1;

u3=rand(’uniform’); rx22=0;

if rx1=0 and rx2=0 and u3<=0.75 then rx22=1;

if rx22=1 then rx2=1;

if rx22=0 then rx1=1;

x1obs=x1;

x2obs=x2;

if rx1=0 then x1obs=.;

if rx2=0 then x2obs=.;

output;

end;

end;
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run;

/* Multiply impute the missing values in each simulated data */

<impute name="interact2">

datain one;

dataout oneout all;

default continuous;

interact x2obs*x2obs x2obs*y x2obs*x2obs*y

x1obs*x1obs x1obs*y x1obs*x1obs*y;

multiples 100;

iterations 10;

seed 2005;

by simul;

run;

</impute>

/* Run the Substantive model on each simulated and imputed data */

data all;

set oneout;

x1x2=x1obs*x2obs;

proc sort;

by simul _mult_;

proc reg noprint outest=results covout;

model y=x1obs x2obs x1x2;

by simul _mult_;

run;

/* Extract the Point Estimates and their variances */

data est;

set results;

if _TYPE_ ne ’PARMS’ then delete;

keep simul _mult_ x1obs x2obs x1x2;

data cov1;

set results;

if _NAME_ ne ’x1obs’ then delete;

u1=x1obs;

keep simul _mult_ u1;

run;

data cov2;

set results;

if _NAME_ ne ’x2obs’ then delete;

u2=x2obs;

keep simul _mult_ u2;

data cov3;
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set results;

if _NAME_ ne ’x1x2’ then delete;

u3=x1x2;

keep simul _mult_ u3;

run;

data anal;

merge est cov1 cov2 cov3;

by simul _mult_;

run;

/* Combine the Point eatimates and construct

multiple imputation inferences */

proc means noprint mean var;

var x1obs x2obs x1x2 u1 u2 u3;

output out=res

mean=ebar1 ebar2 ebar3 ubar1 ubar2 ubar3

var=b1 b2 b3 j1 j2 j3;

by simul;

run;

data res;

set res;

t1=ubar1+(1+1/100)*b1;

t2=ubar2+(1+1/100)*b2;

t3=ubar3+(1+1/100)*b3;

r1=(1+1/100)*b1/t1;

r2=(1+1/100)*b2/t2;

r3=(1+1/100)*b3/t3;

se1=sqrt(t1);

nu1=99/r1/r1;

tval1=quantile(’T’,0.975,nu1);

lower1=ebar1-tval1*se1;

upper1=ebar1+tval1*se1;

cov1=1;

if lower1 > 1 or upper1 < 1 then cov1=0;

length1=2*tval1*se1;

se2=sqrt(t2);

nu2=99/r2/r2;

tval2=quantile(’T’,0.975,nu2);

lower2=ebar2-tval2*se2;

upper2=ebar2+tval2*se2;

cov2=1;

if lower2 > 1 or upper2 < 1 then cov2=0;

length2=2*tval2*se2;
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se3=sqrt(t3);

nu3=99/r3/r3;

tval3=quantile(’T’,0.975,nu3);

lower3=ebar3-tval3*se3;

upper3=ebar3+tval3*se3;

cov3=1;

if lower3 > 1 or upper3 < 1 then cov3=0;

length3=2*tval3*se3;

run;

/* Monte Carlo averages and variances of point estimates,

variance estimates and coverage */

proc means mean var;

var ebar1 ebar2 ebar3 t1 t2 t3 cov1 cov2 cov3;

run;

</sas>

11.7 Final Thoughts

Multiple Imputation (MI) is a versatile and practical tool for performing the
analysis of incomplete data. Like other approaches such as weighting methods,
maximum likelihood, and fully Bayesian analyses based on observed data, MI
also involves assumptions and in fact, there are no assumption free approaches
for the analysis of incomplete data. All approaches involve assumptions about
the mechanism that resulted in the missing values and the models for the
analysis variables of interest. MI further parses the assumptions by possibly
considering two different models, a model for imputation and a model for the
analysis. This allows for the possibility of using a richer set of variables (than
those included in the analysis model) to improve the imputation process. The
goal, after all, is to obtain inferences about the parameters in the analysis
model while reducing the uncertainty about the missing values.

An imputer has to make a careful choice of variables which are predic-
tive, first and foremost, of the variables with missing values, and, if possible,
related to the missingness in the data. Exploratory analysis, model building
and checking, and diagnostic tools should be used to develop good fitting
regression models for predicting variables with missing values. This is akin
to a careful analysis that one usually does (or should do) when developing
models for scientific inference. Sometimes, there is a tendency to “automate”
the imputation process (or there is a desire for automation). Though this de-
sire is understandable, it can lead to problems. No scientific modeling can be
fully automated and choosing default options in software packages (which are
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necessary for compiling the code, are somewhat simplistic, and make routine
or standard assumptions) can be quite dangerous. Software packages are just
tools and require a careful and deliberate user to make the best use of them.

Some automation is possible, if non-parametric regression models such as
Classification and Regression Trees (CART) or Propensity score/Predictive
Mean Matching hot-deck (as discussed in Chapter 1) are used for all vari-
ables in the SRMI setup. Such procedures, however, may not be efficient and
may only be useful when the sample size is large and the fraction of missing
information is relatively small.

In practice and due to its flexibility, sequential regression multiple (or
multi-variate) imputation (SRMI) is often chosen for handling complex data
sets. But, by no means is this the only or the best method for all possible sce-
narios. This approach is easy to implement as it involves as many regression
models when there are a number of variables with missing values under con-
sideration. In addition, it allows for the use of auxiliary variables as predictors,
consistencies in values across variables are accommodated in the imputation
process, and many software packages have implemented this approach.

Possible incompatibility of the regression models with a joint distribution is
an important technical or theoretical issue. That is, the specifications f(x|y, z)
and f(y|x, z) for the two variables, (x, y) with missing values and z with no
missing values may not correspond to any joint bivariate distribution f(x, y|z).
Hence, the convergence properties of the iterative algorithm underpinning
the SRMI is not known. Though several conditions have been developed for
convergence and numerous simulation studies have shown that the approach
results in valid inferences, if the models are not a good fit for the data, the
theoretical problem is still an unresolved issue. The development of a good
fitting model is important to be in tune with the simulation studies in the
literature.

The choice of the particular software, IVEware (as an add-on to SAS),
is to provide a common thread across various techniques discussed in this
book. The same code will work with other packages with minor modifications.
Numerous other excellent software packages are available and can be used to
perform the same analyses, though not all features in IVEware are available
in other software packages. Of course, the converse, not all features available
in other software packages are available in IVEware, is also true. The choice
for this book, perhaps, is more for the convenience of the authors, as IVEware
was built by the authors!

11.8 Additional Reading

Fay (1992) first pointed out the problem with multiple imputation variance
estimates under uncongeniality but the term un-congeniality was coined by
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Meng (1994) and also provided a conceptual framework for discussing the va-
lidity of inferences when the imputation and analysis models differ. A series of
papers addressed this issue in great detail and as a result, alternative combin-
ing rules have emerged. See, for example, Robins and Wang (2000) and Kim
et al (2006). A recent article by Xie and Meng (2017), has been discussed by
several authors and a rejoinder may be useful in understanding the issues.

Imputation of interactions has received considerable attention. See for ex-
ample, Kim, Sugar, and Belin (2015), Von Hippel(2009), Jonathan et al (2015)
and Seaman et al (2012).

If one does not have a favorite Bayesian software in place, Stan (Stan
Development Team (2016)) is recommended because of its flexibility and ex-
pansiveness of model types that can be fit. Stan can run under the R package
(RStan) and therefore, can be integrated with IVEware. Another option for
SAS users is PROC MCMC though this procedure is not as versatile as the
Stan package.

Finally, this book uses multiple imputation as the primary method for in-
corporating uncertainty due to imputations. There are alternative approaches
for drawing correct inferences from the imputed data. Some references include
Rao (1996), Rao and Shao (1992), Kim and Shao (2014) and Yang and Kim
(2016).

11.9 Exercises

1. Project. Consider two variables (Y,X) with X fully observed and
normally distributed with mean 0 and variance 1. The variable Y
has some missing values with a response mechanism, logitPr(RY =
1|X) = αo + α1X. Fix the sample size at n = 500. Choose αo and
α1 to yield 30%, 50% or 70% missing values in Y .

(a) Generate values of Y from the model Y |X ∼ N(βo + β1X,σ
2).

The goal is to infer about the mean µY , standard deviation,
σY and the regression coefficient σXY /σ

2
X . Perform imputation

under this assumed model and construct multiple imputation
inferences for these parameters. Evaluate the repeated sampling
properties, bias, variance and confidence coverage by replicating
the process R = 1, 000 times.

(b) For the same setup as in (a), perform multiple imputation using
the non-parametric procedure (described as ABB in IVEware),
evaluate the repeated sampling properties and compare them
those obtained in (a).

(c) Generate values of Y from the model Y = βo + β1X + ε where
ε = σ(u − 3)/

√
6 where u has a chi-square distribution with 3
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degrees of freedom. Perform imputations under normal, Tukey’s
GH and ABB procedures (see IVEware user guide). Comment
on the robustness of imputations performed assuming normality
for each of the three parameter estimates.

(d) Generate values of Y from the model Y |X ∼ N(βo +
β1X,σ

2X2). Perform imputations assuming Y |X ∼ N(βo +
β1X,σ

2) and also using the ABB procedure.Comment on the
robustness of imputations performed assuming normality for
each of the three parameter estimates.

2. Project. Let X ∼ N(0, 1) and Y |X ∼ N(βo+β1X,σ
2X2). Suppose

that X is fully observed and Y is missing with the response mech-
anism, logit[Pr(RY = 1|X) = αo + α1X. The goal is to multiply
impute the missing values in Y . Define Z = Y/X and set Z to miss-
ing whenever Y is missing. Let V = 1/X. Use the normal regression
procedure to impute the missing values in Z just using the data set
with (Z, V ) (that is, treat Y and X as transfer variables in IVE-
ware), and then define the imputed values of Y as Z/V . Conduct
a simulation study to evaluate the multiple imputation estimate of
the mean µY and standard deviation σY .

3. As an extension of Problem (2), consider Y |X ∼ N(βo +
β1X,σ

2X2ν) where ν is unknown. Suggest an approach for esti-
mating ν and then extend the method discussed in Problem (2).
Extend the simulation study in Problem (2) for various choices of
ν.

4. Modify the code for the simulation study described in Section 11.6
to include (X3

1 , X3
2 , X3

1Y , X3
2Y ) and then (X4

1 , X4
2 , X4

1Y , X4
2Y ).

Do the results improve in terms of reducing the bias in the estimated
regression coefficients?

5. Modify the simulation study in Section 11.6 by using the ABB pro-
cedure in IVEware for imputing the missing values in X1 and X2,
instead of normal linear regression model. Compare the results with
those provided in Section 11.6 and also with those obtained as so-
lutions to Problem (4).
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Overview of Data Sets

Numerous data sets are used in the text book and these are drawn from a
variety of sources such as observational studies, clinical trials, longitudinal
studies, and data derived from complex sample designs. For each data set,
a general description, contents listing, and basic descriptives of key variables
used in applications are presented in this appendix. The selected data sets
contain interesting analysis variables along with weights and complex sample
design related variables, if applicable. Some variables are fully observed while
others have item missing data which requires imputation. In addition to core
data sets, a variety of data for use with Chapter Exercises are available from
the book web site but not fully documented here due to space considerations.

A.1 St. Louis Risk Research Project

The St. Louis Risk Research Project (SLRRP) was an observational study
to assess the effects of parental psychological disorders on various aspects of
child development. In a preliminary cross-sectional study, data were collected
on 69 families having two children each. Each family was classified into three
risk groups for parental psychological disorders. The children were classified
into two groups according to the number of adverse psychological symptoms
they exhibited. Standardized reading and verbal comprehension scores were
also collected for the children. Each family is thus described by four continu-
ous and three categorical variables. Because of its mixture of continuous and
categorical variables with missing values, the SLRRP data set has become a
classic data set for evaluating imputation methods for mixed data types. See
Little and Schluchter (1985), Schafer (1997), Little and Rubin (2002), Liu and
Rubin (1998), Raghunathan et al. (2001) and Raghunathan (2016). The key
variables and descriptive statistics are listed in Tables A.1 and A.2.

207
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Table A.1: Variables in St.Louis Risk Research Project

Variable Name Label
FAMID Family ID

G Parental Risk Group
R1 Reading Score Child 1
R2 Reading Score Child 2
S1 Symptoms Child 1
S2 Symptoms Child 2
V1 Verbal Score Child 1

V2 Verbal Score Child 2

Table A.2: Descriptive Statistics for the SLRRP Data

Variable N N Missing Mean Standard Deviation
G 69 0 1.87 0.80
R1 48 21 108.10 16.84
R2 53 16 104.70 33.21
S1 41 28 1.49 0.51
S2 42 27 1.69 15.07
V1 39 30 123.18 29.50
V2 52 17 116.31 0.47

A.2 Primary Biliary Cirrhosis Data Set

The PBC data is from a clinical trial to evaluate the treatment for the primary
biliary cirrhosis (PBC) of the liver. PBC is a rare and fatal chronic liver dis-
ease of unknown cause, with a prevalence of about 50-cases-per-million in the
population. The study and the data set is described in the book, Fleming and
Harrington (2005). The study involves 418 PBC patients who were recruited
for the randomized study. Only 312 agreed to be randomized to placebo or
to the drug D-penicillamine (treatment) and the remaining 106 agreed to be
followed to obtain the primary outcome: the survival time and subjects were
censored at the time of liver transplantation, lost-to-follow up or the end of
the study. Numerous covariates were measured at the baseline but not all
were available on every subject. Tables A.3 and A.4 provide the list of vari-
ables and their descriptive statistics, respectively. See Raghunathan, (2016)
and appropriate sections of this book for examples of use.
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Table A.3: Key Variables in Primary Biliary Cirrhosis Data Set

Variable Name Label

Age Age in Days
Albumin Albumin in gm/dlG

Alk phos Alkaline phosphatase in U/liter

Ascites Presence of ascites: 0=no 1=yes

Bili Serum bilirubin in mg/dl

Chol Serum cholesterol in mg/dl

Copper Urine copper in ug/day

Drug 1= D-penicillamine, 2=placebo

Edema Presence of edema 0=no edema or no diuretic therapy, .5
= edema present without diuretics, or edema resolved by
diuretics, 1 = edema despite diuretic therapy

Futime Number of days between registration and the earlier of
death, transplantion, or study analysis time in July, 1986

Hepato Presence of hepatomegaly 0=no 1=yes

ID Case number

Platelet Platelets per cubic ml/1000

Protime Prothrombin time in seconds

Sex 0=male, 1=female

Sgot SGOT in U/ml

Spiders Presence of spiders 0=no 1=yes

Stage Histologic stage of disease

Status 0=alive, 1=liver transplant, 2=dead

Trig Triglicerides in mg/dl
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Table A.4: Descriptive Statistics for the PBC Data

Variable N N Missing Mean Standard Deviation

ID 418 0 209.50 120.81

Futime 418 0 1917.78 1104.67

Status 418 0 0.83 0.96

Edrug 312 106 1.49 0.50

Age 418 0 18533.35 3815.85

Sex 418 0 0.89 0.31

Ascites 312 106 0.08 0.27

Hepato 312 106 0.51 0.50

Spiders 312 106 0.29 0.45

Edema 418 0 0.10 0.25

Bili 418 0 3.22 4.41

Chol 284 134 369.51 231.94

Albumin 418 0 3.50 0.42

Copper 310 108 97.65 85.61

Alk phos 312 106 1982.66 2140.39

Sgot 312 106 122.56 56.70

Trig 282 136 124.70 65.15

Platelet 407 11 257.02 98.33

Protime 416 2 10.73 1.02

Stage 412 6 3.02 0.88
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A.3 Opioid Detoxification Data Set

A randomized clinical trial was conducted to evaluate buprenorphine-naloxone
(Bup-nx) versus clonidine for opioid detoxification (Ling et al, 2005). A total
of 113 in-patients passing a screening test and satisfying inclusion criteria were
randomized with 77 patients receiving Bup-nx and 36 receiving clonidine. The
study involved measuring patients for 14 days with a base-line measure coded
as day 0 (before the treatment began). A variety of measures were collected
to assess the treatment effect with one of them a self-report measure, a visual
analog scale (VAS) based on the question, ”how much do you currently crave
for opiates?” with continuous response options ranging from 0 (no cravings)
to 100 (most extreme cravings possible). Not every patient responded to this
question on all days. Tables A.5 and A.6 provide variable list, descriptions
and summary statistics.

Table A.5: Key Variables of the Opioid Detoxification Data Set

Variable Name Label
Age Age in AGEU at RFSTDTC
Usubjid Unique Subject Identifier
Visitnum Visit Number
Day Day of Visit
Female Female

Instudy In Study
Treat 1=Bup-Nx 0=Clonidine
Vas Visual Analog Scale 0-10

White White

Table A.6: Descriptive Statistics for the Opioid Detoxification Data Set

Variable N N Missing Mean Standard Deviation
Age 113 0 36.23 9.74
Treat 113 0 0.68 0.47
Female 113 0 0.40 0.49
White 113 0 0.56 0.50

Instudy 113 0 1.00 0
Num visits 1582 320 10.65 4.84

person-visits person-visits
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A.4 American Changing Lives (ACL) Data Set

The Americans’ Changing Lives (ACL) study is the oldest ongoing nationally
representative longitudinal study of the role of a broad range of social, psycho-
logical, and behavioral factors (along with aspects of medical care and environ-
mental exposure) in health and the way health changes with age over the adult
life course. The study began in 1986 with a national face-to-face survey of 3,617
adults ages 25 and up in the continental U.S., with African Americans and
people aged 60 and over over-sampled at twice the rate of the others, and face-
to-face re-interviews in 1989 of 83% (n=2,867) of those still alive. Survivors
have been re-interviewed by telephone, and where necessary face-to-face, in
1994 and 2001/02, and again in 2011/12. (http://www.isr.umich.edu/acl). Ta-
bles A.7 and A.8 provide variable list, descriptions and summary statistics.

A.5 National Comorbidity Survey Replication (NCS-R)

The National Comorbidity Survey Replication (NCS-R) is a probability sam-
ple of the United States carried out a decade after the original 1992 NCS
(NCS-1) was conducted. The NCS-R repeats many of the questions from the
NCS-1 and also expands the questioning to include assessments based on the
diagnostic criteria of the American Psychiatric Association as reported in the
Diagnostic and Statistical Manual - IV (DSM-IV), 1994. The survey was ad-
ministered in two parts. Part I included a core diagnostic assessment of all
respondents (n=9,282) that took an average of about 1 hour to administer.
Part II included questions about risk factors, consequences, other correlates,
and additional disorders. In an effort to reduce respondent burden and con-
trol study costs, Part II was administered only to 5,692 of the 9,282 Part I
respondents, including all Part I respondents with a lifetime disorder plus a
probability sub-sample of other respondents. The two major aims of the NCS-
R were first, to investigate time trends and their correlates over the decade
of the 1990s, and second, to expand the assessment in the baseline NCS-1 in
order to address a number of important substantive and methodological issues
that were raised by the NCS-1. See www.hcp.med.harvard/ncs for details. Ta-
bles A.9 and A.10 provide variable list, descriptions and summary statistics.

http://www.isr.umich.edu/acl
www.hcp.med.harvard/ncs
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Table A.7: Key Variables of the ACL Data Set

Variable Name Label

V1801 X1:SEX OF RESPONDENT

V2000 RA0C1(1):RESPONDENT AGE
V2064 4-CAT SOCIO-ECON STATUS

V2102 W1.Respondent Race/Ethnicity, 5-Category

Bh Black and High Socio-Economic Status at 1986
Bl Black and Low Socio-Economic Status at 1986

Blm Black and Low-Middle Socio-Economic
Status at 1986

Bum Black and Upper Middle Socio-Economic
Status at 1986

Caseid CaseID

I1 Impairment Status at Wave 1 1986:
1=Moderate-Severe Impairment and
Death 0=No Impairment

I2 Impairment Status at Wave 2 1989:
1=Moderate-Severe Impairment and
Death 0=No Impairment

I3 Impairment Status at Wave 3 1994:
1=Moderate-Severe Impairment and
Death 0=No Impairment

I4 Impairment Status at Wave 4 2001/2002:
1=Moderate-Severe Impairment and
Death 0=No Impairment

I5 Impairment Status at Wave 5 2011/2012:
1=Moderate-Severe Impairment and
Death 0=No Impairment

Ewh White and High Socio-Economic Status at 1986

Wl White and Low Socio-Economic Status at 1986

Wlm White and Low-Middle Socio-Economic
Status at 1986

Wum White and Upper Middle Socio-Economic
Status at 1986
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Table A.8: Descriptive Statistics for the ACL Data

Variable N N Missing Mean Standard Deviation
V1801 3361 0 1.63 0.48
V2000 3361 0 54.19 17.60
V2064 3361 0 2.18 0.99
V2102 3361 0 1.34 0.48
Bh 3361 0 0.02 0.14
Bl 3361 0 0.16 0.37
Blm 3361 0 0.11 0.31

Bum 3361 0 0.06 0.23
Caseid 3361 0 1781.17 1044.54
I1 3361 0 0.22 0.41
I2 2844 517 0.17 0.37

I3 2756 605 0.36 0.45
I4 2718 643 0.49 0.50
I5 2344 1017 0.55 0.50

Ewh 3361 0 0.09 0.29
Wl 3361 0 0.15 0.36
Wlm 3361 0 0.20 0.40
Wum 3361 0 0.22 0.41

A.6 National Health and Nutrition Examination Survey,
2011-2012 (NHANES 2011-2012)

The National Center for Health Statistics (NCHS), Division of Health and
Nutrition Examination Surveys (DHNES), part of the Centers for Disease
Control and Prevention (CDC), has conducted a series of health and nutri-
tion surveys since the early 1960’s. The National Health and Nutrition Ex-
amination Surveys (NHANES) were conducted on a periodic basis from 1971
to 1994. In 1999, NHANES became continuous. Every year, approximately
5,000 individuals of all ages are interviewed in their homes and complete the
health examination component of the survey. The health examination is con-
ducted in a mobile examination center (MEC); the MEC provides an ideal
setting for the collection of high quality data in a standardized environment.
(http://www.cdc.gov/nchs/nhanes). Tables A.11 and A.12 provide variable
list, descriptions and summary statistics.

http://www.cdc.gov/nchs/nhanes
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Table A.9: Key Variables of the NCS-R Data Set

Variable Name Label

AGE Age at Interview
CASEID CASE IDENTIFICATION NUMBER

DSM SO DSM-IV Social Phobia (Lifetime)

ED4CAT Education 1=0-11 2=12 3=13-15 4=16+ Yrs

MAR3CAT Marital Status 1=Married 2=Previously
Married 3=Never Married

NCSRWTLG NCSR sample part 2 weight

NCSRWTSH NCSR sample part 1 weight

OBESE6CA 1=<18.5 2=18.5-24.9
3=25-29.9 4=30-34.9
5=35-39.9 6=40+

REGION 1=Northeast 2=Midwest
3=South 4=West

SECLUSTR SAMPLING ERROR CLUSTER

SESTRAT SAMPLING ERROR STRATUM

SEX Sex 1=Male 2=Female

WKSTAT3C Work Status 3 categories

Ag4cat Age 1=17-29 2=30-44
3=45-59 4=60+

Ald Alcohol Dependence 1=Yes 0=No

Mde Major Depressive Episode 1=Yes 0=No

Racecat Race 1=Other/Asian
2=Hispanic/Mexican 3=Black 4=White

Sexf Female 1=Yes 0=No

Sexm Male 1=Yes 0=No
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Table A.10: Descriptive Statistics for the NCS-R Data

Variable N N Missing Mean Standard Deviation

CASEID 9282 0 4641.50 2679.63

DSM SO 9282 0 4.51 1.31

AGE 9282 0 44.73 17.50

REGION 9282 0 2.57 1.01

MAR3CAT 9282 0 1.64 0.81

ED4CAT 9282 0 2.66 1.02

OBESE6CA 9106 176 2.93 1.11

NCSRWTSH 9282 0 1.00 0.52

NCSRWTLG 5692 3590 1.00 0.96

SEX 9282 0 1.55 0.50

WKSTAT3C 6633 2649 1.59 0.87

SESTRAT 9282 0 26.31 11.31

SECLUSTR 9282 0 1.51 0.50

Ag4cat 9282 0 2.44 1.06
Racecat 9282 0 3.52 0.86

Mde 9282 0 0.20 0.40

Ald 9282 0 0.05 0.21

Sexf 9282 0 0.55 0.50

Sexm 9282 0 0.45 0.50
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Table A.11: Key Variables of the NHANES Data Set

Variable Name Label

BMXBMI Body Mass Index (kg/m**2)

BPXDI1 Diastolic: Blood pres (1st rdg) mm Hg

BPXDI2 Diastolic: Blood pres (2nd rdg) mm Hg

BPXDI3 Diastolic: Blood pres (3rd rdg) mm Hg

BPXDI4 Diastolic: Blood pres (4th rdg) mm Hg

BPXSY1 Systolic: Blood pres (1st rdg) mm Hg

BPXSY2 Systolic: Blood pres (2nd rdg) mm Hg

BPXSY3 Systolic: Blood pres (3rd rdg) mm Hg

BPXSY4 Systolic: Blood pres (4th rdg) mm Hg

DMDMARTL Marital status

LBXTC Total Cholesterol(mg/dL)

RIAGENDR Gender

RIDRETH1 1=mex 2=oth hisp 3=white 4=black 5=other

RIDSTATR Interview/Examination status

SDMVPSU Masked variance pseudo-PSU

SDMVSTRA Masked variance pseudo-stratum

SEQN Respondent sequence number

WTINT2YR Full sample 2 year interview weight
WTMEC2YR Full sample 2 year MEC exam weight

Age Age at Interview in Years

Age18p Age 18+ 1=Yes 0=No

Black Black

Bp cat Blood Pressure 1=Normal
2=Pre-Hypertension
3=Hypertension Stage 1
4=Hypertension Stage 2

Edcat 1=0-11 2=12 3=13-15
4=16+ Years of Education

Marcat 1=married 2=prev married
3=never married

Mex Mexican

Other Other Race/Ethnicity
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Table A.12: Descriptive Statistics for the NHANES Data

Variable N N Missing Mean Standard Deviation

SEQN 9756 0 67038.50 2816.46

RIDSTATR 9756 0 1.96 0.20

RIAGENDR 9756 0 1.50 0.50

RIDRETH1 9756 0 3.23 1.25

DMDMARTL 5560 4196 2.75 3.34

WTINT2YR 9756 0 31425.86 34062.12

WTMEC2YR 9756 0 31425.86 35200.45

SDMVPSU 9756 0 1.64 0.64

SDMVSTRA 9756 0 95.87 3.98

BPXSY1 6756 3000 119.17 18.75

BPXDI1 6756 3000 66.90 15.11

BPXSY2 6908 2848 118.70 18.58

BPXDI2 6908 2848 66.28 16.07

BPXSY3 6917 2839 118.20 18.30

BPXDI3 6917 2839 65.91 16.63

BPXSY4 447 9309 118.99 21.47

BPXDI4 447 9309 71.78 14.93

BMXBMI 8602 1154 25.34 7.72
LBXTC 6988 2768 183.20 41.42

Age18p 9756 0 0.60 0.49

Edcat 8154 1602 2.10 1.16

Age 9756 0 31.40 24.58

Marcat 5553 4203 1.65 0.81

Bp cat 7055 2701 1.55 0.71

Mex 9756 0 0.14 0.35

Black 9756 0 0.28 0.45

Other 9756 0 0.17 0.38



Overview of Data Sets 219

A.7 Health and Retirement Study, 2012 (HRS 2012)

The University of Michigan Health and Retirement Study (HRS) is a lon-
gitudinal panel study that surveys a representative sample of approxi-
mately 20,000 Americans over the age of 50 every two years. See hrson-
line.isr.umich.edu for more details. Supported by the National Institute on Ag-
ing (NIA U01AG009740) and the Social Security Administration, the HRS ex-
plores the changes in labor force participation and the health transitions that
individuals undergo toward the end of their work lives and in the years that
follow. Since its launch in 1992, the study has collected information about in-
come, work, assets, pension plans, health insurance, disability, physical health
and functioning, cognitive functioning, and health care expenditures. Through
its unique and in-depth interviews, the HRS provides an invaluable and grow-
ing body of multidisciplinary data that researchers can use to address impor-
tant questions about the challenges and opportunities of aging. Tables A.13
and A.14 provide variable list, descriptions and summary statistics.

Table A.13: Key Variables of the HRS Data Set

Variable Name Label

GENDER Gender 1=Male 2=Female
H11ATOTA H11ATOTA:W11 Total of all Assets–Cross-wave
H11ITOT H11ITOT:W11 Incm: Total HHold / R+Sp only
HHID HOUSEHOLD IDENTIFICATION NUMBER
NFINR 2012 WHETHER FINANCIAL RESPONDENT
NWGTHH 2012 WEIGHT: HOUSEHOLD LEVEL
NWGTR 2012 WEIGHT: RESPONDENT LEVEL
PN RESPONDENT PERSON IDENTIFICATION

NUMBER
SECU SAMPLING ERROR COMPUTATION UNIT
STRATUM STRATUM ID
Age65p 1=Age 65+ 0=Under Age 65
Arthritis Arthritis 1=Yes 0=No
Diabetes 1=Yes Diabetes 0=No Diabetes

Edcat Education 1=0-11 Yrs 2=12 Yrs
3=13-15 Yrs 4=16+ Yrs

Marcat Marital Status 1=Married
2=Previously Married 3=Never Married

Numfalls24 Number of Falls Past 2 Years
Racecat Race 1=Hispanic 2=NH White

3=NH Black 4=NH Other
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Table A.14: Descriptive Statistics for the HRS Data

Variable N N Missing Mean Standard Deviation
NFINR 20554 0 2.24 1.85
GENDER 20553 1 1.58 0.49
SECU 20554 0 1.49 0.50
STRATUM 20554 0 29.89 15.70
NWGTHH 20554 0 4338.55 3654.94
NWGTR 20554 0 4412.71 3923.57
H11ATOTA 20554 0 375979.07 991439.87

H11ITOT 20554 0 61454.92 99654.17
Marcat 20542 12 1.47 0.59
Edcat 20454 100 2.49 1.07
Racecat 20517 37 2.12 0.67

Diabetes 20536 18 0.24 0.43
Numfalls24 10595 9959 1.19 3.32
Age65p 20554 0 0.52 0.50

Arthritis 20527 27 0.57 0.50

A.8 Case Control Data for Omega-3 Fatty Acids and
Primary Cardiac Arrest

A case-control study was conducted to assess the relationship between dietary
intake of omega-3 fatty acids and primary cardiac arrest (PCA) (defined as a
sudden pulseless condition in the absence of any prior history of heart disease).
In particular, the two fatty acids docosahexaenoic acid (DHA) and eicosapen-
taenoic (EPA) are of interest as they are not synthesized by the body and
mostly derived through dietary intake of fish.

Briefly, a population-based case-control study was conducted in Seattle
and King County, WA. All case subjects with primary cardiac arrest, aged
25 to 74 years, attended by paramedics during 1988 to 1994 (n = 334) were
identified. Control subjects were randomly identified from the same defined
population, matched by age (within 7 years) and sex (n = 493). Case and
control subjects with prior clinically recognized heart disease or other major
life-threatening morbidity and those who had taken fish-oil supplements dur-
ing the prior year were excluded. All subjects were married and were residents
of King County; their spouses participated in in-home interviews. (Siscovick
et al, 1995, 2000). Tables A.15 and A.16 provide variable list, descriptions and
summary statistics.
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Table A.15: Key Variables of the PCA and Omega-3 Fatty Acids Data

Variable Label

Age Age in Years

Casecnt Primary Cardiac Arrest Case Status
1=Case 0=Control

DHA EPA DHA EPA from Seafood Intake Study

Gender Gender 0=Male, 1=Female

Redtot Red Blood Cell Membrane EPA and DHA

StudyID Study ID

Alcohol3 Alcohol Intake, Drinks Per Day

Cafftot Caffeine Intake, MG Per Day

Cholesth Hyper-Cholesterol

Diab Diabetes

Edusubj3 Education 1=HS+,0=<HS

FAMMI Family History of MI

FATINDEX Fat Index Score

HGTCM Height

HYPER Hypertension
NUMCIG Number of Cigarettes Per Day

RACE3 Race 1=White, 0=Non-White

SMOKE Smoke Status 1=Not Smoker,
2=Former Smoker, 3=Current Smoker

TOTLKCAL Kilo-calories Per Day

WGTKG Weight

YRSSMOKE Years Smoked
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Table A.16: Descriptive Statistics for the PCA/Omega-3 Data

Variable N N missing Mean Standard Deviation

Casecnt 898 0 0.39 0.49

Age 898 0 58.63 10.19

Gender 898 0 0.21 0.41

Race3 897 1 0.94 0.24

HYPER 890 8 0.20 0.40

DIAB 894 4 0.07 0.26

SMOKE 896 2 1.80 0.75

NUMCIG 454 444 22.70 14.34

YRSSMOKE 489 409 28.16 14.67

FATINDEX 864 34 21.560 3.94

FAMMI 891 7 0.45 0.50

EDUSUBJ3 898 0 0.71 0.45

DHA EPA 898 0 4.91 5.73

REDTOT 498 400 4.65 1.17

CHOLESTH 884 14 0.23 0.42

CAFFTOT 896 2 381.701 462.21

WGTKG 845 53 81.32 16.36

TOTLKCAL 898 0 1195.84 1587.40

ALCOHOL3 897 1 0.92 1.74

HGTCM 896 2 176.22 9.23



Overview of Data Sets 223

A.9 National Merit Twin Study

The National Merit Twin Study is a data set focused on the study of twins
and test scores from the National Merit tests. The data used in this book is
at the individual level, thus each case represents an unique person. For details
and general documentation, see Loehlin,J.C. & Nichols, R.C. (1976). Genes,
Environment and Personality. Austin TX: University of Texas Press. Tables
A.17 and A.18 provide variable list, descriptions and summary statistics.

Table A.17: Key Variables of the National Merit Twin Study Data

Variable Name Label
Pairnum Twin pair number

Sex 1=Male 2=Female
Zygosity Twin Status 1=Identical 2=Fraternal
Moed Mother’s educational level

(coded 1-6, see codebook)

Faed Father’s educational level
(coded 1-6, see codebook)

Finc Family income level
(coded 1-7, see codebook)

English NMSQT Subtest: English
Math NMSQT Subtest: Mathematics
SocSci NMSQT Subtest: Social Science
NatSci NMSQT Subtest: Natural Science

Vocab NMSQT Subtest: Vocabulary

Table A.18: Descriptive Statistics for the National Merit Twin Study Data

Variable N NMiss Mean Standard Deviation
Pairnum 1678 0 761.23 10.63
Sex 1678 0 1.582 0.01
Zygosity 1678 0 1.39 0.01
Moed (Mothers Education) 1640 38 3.42 0.03
Faed (Fathers Education) 1630 48 3.60 0.04
Finc (Family Income) 1554 124 3.22 0.04
NMT: English 1678 0 19.68 0.11

NMT: Mathematics 1678 0 21.15 0.15
NMT: Social Science 1678 0 20.57 0.12
NMT: Natural Science 1678 0 19.99 0.14

NMT: Vocabulary 1678 0 20.96 0.12
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A.10 European Social Survey-Russian Federation

The European Social Survey (ESS) is an academically driven cross-national
survey that has been conducted every two years across Europe since 2001.
The survey measures the attitudes, beliefs and behaviour patterns of diverse
populations in more than thirty nations. The main aims of the ESS are to
chart stability and change in social structure, conditions and attitudes in
Europe and to interpret how Europe’s social, political and moral fabric is
changing to achieve and spread higher standards of rigour in cross-national
research in the social sciences, including for example, questionnaire design and
pre-testing, sampling, data collection, reduction of bias and the reliability of
questions to introduce soundly-based indicators of national progress, based
on citizens’ perceptions and judgements of key aspects of their societies to
undertake and facilitate the training of European social researchers in com-
parative quantitative measurement and analysis to improve the visibility and
outreach of data on social change among academics, policy makers and the
wider public. The ESS data is available free of charge for non-commercial
use and can be downloaded from this website after a short registration. See
http://www.europeansocialsurvey.org. The Russian Federation Round 6 data
is based upon a complex sample and therefore, weights, stratification and
PSU variables are included. Key questions about satisfied with present state
of economy in country, satisfaction with life, and trust in the police plus de-
mographic indicators are used for selected analyses. Tables A.19 and A.20
provide variable list, descriptions and summary statistics.

A.11 Outline of Analysis Examples and Data Sets

Table A.21 provides an outline of analysis examples and data sets used in this
book.

http://www.europeansocialsurvey.org
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Table A.19: Key Variables of the ESS Russian Federation Data

Variable Name Label

AGEA Age of Respondent

DWEIGHT Design Weight

EISCED Education level Europe

STFECO Satisfaction with Present
State of Economy

STFLIFE Satisfaction with Life

TRSTPLC Trust in Police

TVTOT Hours of TV Avg. Wkday:
0=None 1 le 0.5 hrs
2=.5-1 hrs 3=1-1.5 hrs
4=1.6-2 hrs 5=2.1-2.5 hrs
6=2.6-3 hrs 7 ge 3 hrs

AGECAT Age in Categories

IDNO Respondent ID

MALE Male

MARCAT Marital Status

PSU Primary Sampling Unit

STRATIFY Stratification

Table A.20: Descriptive Statistics for the ESS Russian Federation Data

Variable N NMiss Mean Standard Deviation

IDNO 2484 0 4354.48 2414.53

PSU 2484 0 71013.57 163694.84

TVTOT 2426 58 4.39 2.17

TRSTPLC 2390 94 3.49 2.56

VOTE 2464 20 1.39 0.57

STFLIFE 2458 26 5.79 2.33

STFECO 2362 122 3.81 2.25

GNDR 2484 0 1.62 0.49

AGEA 2478 6 45.94 18.05

EISCED 2484 0 4.97 1.67

DWEIGHT 2484 0 1.00 0.58

MALE 2484 0 0.38 0.49

AGECAT 2478 6 2.54 1.11

MARCAT 2444 40 1.80 0.80
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Table A.21: Data Sets Used in Various Examples

Analytic Technique Data Set
Descriptive Analyses of
Continuous and Categorical
Variables

NHANES 2011-2012

Linear Regression NHANES 2011-2012
Logistic Regression (Binary and
Multinomial) Primary Cardiac Arrest, NCS-R
Count Models HRS 2012
Structural Equation Models National Merit Twin Data
Categorical Models Data from Little and Rubin

(2002, Table 13.1 and Table 13.8) and
Stokes, Davis, and Koch (2000)

Longitudinal Data Analysis Opioid Detoxification Data,
Panel Study of Income Dynamics (see
Chapter 8, Longitudinal Data Analysis
for details on download and construction
of this data set), and American Changing
Lives

Survival Analysis Primary Biliary Cirrhosis Data, and
Academic Aptitude Data

Complex Survey Data Analysis
using BBDesign

NHANES 2011-2012

Sensitivity Analysis Opioid Detoxification Data,
Primary Cardiac Arrest,
ESS6 Russian Federation Data
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IVEware

B.1 What is IVEware?

IVEware (Version 0.3) is a collection of routines written under various plat-
forms and packaged to perform multiple imputations and analysis of multiply
imputed data sets. The software can also be used to perform analysis without
missing data. IVEware defaults to assuming a simple random sample, but uses
the Jackknife Repeated Replication or Taylor Series Linearization techniques
for analyzing data from complex surveys.

IVEware can be run with SAS, Stata, R, SPSS or as stand-alone under
the Windows or Linux environment. The R, Stata, SPSS and the stand-alone
versions can also be used with the Mac OS. The stand-alone version has lim-
ited capabilities for analyzing the multiply imputed data sets though the rou-
tines for creating imputations are the same across all packages. The command
structure is the same across all platforms. The most preferable way to execute
IVEware is to use the built-in XML editor. However, it can also be run using
the built-in editor within the four software packages previously mentioned.
Throughout the book, the built-in XML editor is used in all the examples and
the reader can refer to the user manual (which can be downloaded from the
web site www.iveware.org) for examples using the built-in editors within the
four software packages.

The user can also mix and match the codes from these software packages
through a standard XML toggle-parser. For example, the following code

<sas name="myfile">

SAS Commands here

</sas>

<R name="myfile">

R-commands here

</R>

will execute the SAS commands and store the commands in the file
“myfile.sas” and execute the R-commands and store them in the file
“myfile.R”.) if the provided XML editor is used to execute IVEware com-
mands.

227

www.iveware.org
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B.2 Download and Setup

IVEware can be downloaded and installed from www.iveware.org. Instal-
lation instructions and setup are slightly different for Windows, Linux and
MAC operating systems, therefore, it is very important to follow the installa-
tion instructions for IVEware to work properly.

B.2.1 Windows

Download the file srclib windows.exe and double click on it to install. By
default, all the relevant software files are extracted to the directory

C:\Program Files (x86)\srclib

You may change the directory and the location you choose will then replace

~/srclib

in the guides given later to make IVEware work with one or more packages
SAS, SPSS, Stata, and R. The installer will automatically create a desktop
icon unless you choose not to.

The next step is to make sure that IVEware can execute the appropriate
software. Find the path of the directory where the executable file of the soft-
ware is located. For example, the typical location of the file “sas.exe” to run
SAS version 9.4 is,

C:\Program Files\SASHome2\SASFoundation\9.4\sas.exe

Similarly, a 64-bit executable “Rgui.exe’ may be located in

C:\Program Files\R\R-3.2.3\bin\x64\Rgui.exe

Find the path of the other software executable files, if needed.
Next, edit the file “settings.xml” in the “srclib” directory to match your

own paths. Here is an example of a file appropriate to run IVEware with all
four software (SAS, R, Stata, and SPSS) packages:

<settings>

<frameworks>

<sas path="C:\Program Files\SASHome2\SASFoundation\9.4\sas.exe" />

<spss path="C:\Program Files\IBM\SPSS\Statistics\22\stats.exe" />

<stata path="M:\stata14SE-64bit\StataSE-64.exe" />

<R path="C:\Program Files\R\R-3.2.3\bin\x65\Rgui.exe" />

<gnuplot path="C:\Program Files\gnuplot\bin\wgnuplot.exe" />

</frameworks>

</settings>

www.iveware.org
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In this example, the Stata executable file is located in the network drive
M :. The stand-alone version uses ”GNUPLOT” for creating and displaying
graphics. You should download and install this package. For more details about
this software, see www.gnuplot.info.

To verify that IVEware is correctly installed, download the example file
ive examples windows.zip and extract it to the directory of your choice (for
example, create a subdirectory called iveware under the Documents direc-
tory). Double click the IVEware icon which will open an XML editor window.
Choose “File”, navigate to the directory with the example files, choose any
example XML file to open, and click “Run”. You can also run IVEware in
batch mode by typing:

"C:\Program Files (x86)\srclib\srcexec" ive_example_file.xml

in the command window after setting the current directory to the directory
where the example file is located. Use MS Word or another software to check
the “*.log” files produced by the run to see that there were no errors and
also compare the “*.lst” files produced by run with the corresponding “*.chk”
files. They should differ only in the dates.

B.2.2 Linux

For installing IVEware on a Linux system, download the file “sr-
clib pclinux64.tgz” from www.iveware.org and extract the srclib directory into
an appropriate parent directory, such as, “/usr/local/” or in your home direc-
tory. You can copy the files into the subdirectory of your choice. The location
you choose will replace ‘∼ /srclib” in guides for using IVEware with R, SAS,
SPSS, Stata and SRCware, as described in later examples. If you plan to use
Srclib with R, SAS, SPSS or Stata and the version cannot be invoked by
its lower-case name, edit the “srclib/settings.xml” file to provide the correct
path.

As before, you can verify that IVEware is installed correctly by download-
ing the file “ive examples pclinux.tgz” and extracting the examples directory
into an appropriate parent directory, for example, the home directory. Nav-
igate to the srclib directory, double-click the srcshell icon, click File-Open,
navigate to the Examples directory, open an appropriate setup file, for exam-
ple, “ive examples srcware.xml”, and finally, click Run. You can also run the
program in batch mode. For example, navigate to the examples directory and
use srcexec to run an appropriate setup file:

~/srclib/bin/srcexec ive_examples_sas.xml

where ∼ /srclib is the directory containing IVEware.
Use the Linux “cat” and “diff” commands (or other software such as

OpenOffice), check the *.log files produced by the run to see that there were
no errors and compare the *.lst files produced by run with the corresponding
*.chk files. Again, they should differ only in the dates.

www.gnuplot.info
www.iveware.org
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B.2.3 Mac OS

For those using a MAC-OS, IVEware can be used only as stand-alone
or with Stata, R and SPSS. To install on a Mac, download the file “sr-
cware macosx64.tgz” from www.iveware.org and extract “Srcware.app” into
an appropriate parent directory, say, /Applications/, or the home directory.
You can choose any location. A subdirectory of the location you choose will
replace ∼ /srclib in the guides for using IVEware with R, SPSS, Stata and
Srcware.

As in the case of Linux, if you plan to use Srclib with R, SPSS or Stata,
note that the syntax is case sensitive and edit the file

~/Srcware.app/Contents/MacOS/settings.xml,

to provide the correct path.
Once again, you can verify that the Srcware app is installed correctly.

Download the file “ive examples macosx.tgz” from www.iveware.org, extract
it to any directory (Examples) of your choice. Double-click Srcware.app to run
the app, click File - Open, navigate to the Examples directory, open an ap-
propriate setup file, for example, “ive examples srcware.xml”, and click Run.
IVEware can be run in batch mode by navigating to the examples directory
and submit srcexec to run an appropriate setup file, for example,

~/Srcware.app/Contents/MacOS/srcexec ive_examples_sas.xml

B.3 Structure of IVEware

IVEware is organized into seven modules to perform various tasks. The six core
modules are IMPUTE, BBDESIGN, DESCRIBE, REGRESS, SYN-
THESIZE and COMBINE and the seventh module, SASMOD, is specific
to SAS.

1. IMPUTE uses a multivariate sequential regression approach
(Raghunathan et al (2001), Raghunathan (2016)). This approach is
also called Chained Equations, (Van Buuren and Oudshoorn (1999))
and Fully Conditional Specification (Van Buuren (2012)) and is
used to impute item missing values or unit non-response. IMPUTE
can create multiply imputed data sets and can handle continuous,
categorical, count and semi-continuous variables.

2. BBDESIGN implements the weighted finite population Bayesian
Bootstrap approach to generate synthetic populations from complex
survey data. The primary goal is to incorporate weighting, cluster-
ing and stratification using a nonparametric approach for generating

www.iveware.org
www.iveware.org
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the non-sampled portion of the population from the posterior pre-
dictive distribution, conditional on the observed data and the design
information. For more details see Zhou, Elliott and Raghunathan
(2016a, 2016b, 2016c)

3. DESCRIBE estimates population means, proportions, subgroup
differences, contrasts and linear combinations of means and propor-
tions. For data from complex surveys, a Taylor Series Linearization
approach is used to obtain variance estimates appropriate for a user-
specified complex sample design.

4. REGRESS fits linear, logistic, polytomous, Poisson, Tobit and
proportional hazard regression models. For data resulting from a
complex sample design, the Jackknife Repeated Replication tech-
nique is used to obtain variance estimates.

5. SASMOD (requires SAS) allows users to take into account com-
plex sample design features when analyzing data with selected
SAS procedures. Currently the following SAS PROCS can be
called: CALIS, CATMOD, GENMOD, LIFEREG, MIXED, NLIN,
PHREG, and PROBIT.

6. SYNTHESIZE uses the multivariate sequential regression ap-
proach to create full or partial synthetic data sets to limit statisti-
cal disclosure (See Raghunathan, Reiter and Rubin (2003), Reiter
(2002) and Little, Liu and Raghunathan (2004) for more details.)
All item missing values are also imputed when creating synthetic
data sets. However, DESCRIBE, REGRESS and SASMOD modules
cannot be used to analyze synthetic data sets as they DO NOT im-
plement the appropriate combining rules. Examples of implementa-
tion of correct combining rules for synthesized data sets are provided
in the user manual available at the web site www.iveware.org.

7. COMBINE is useful for combining information from multiple
sources through multiple imputation. Suppose that Data 1 provides
variables X and Y, Data 2 provides variables X and Z and Data 3
provides variables Y and Z. COMBINE can be used to concatenate
the three data sets and multiply impute the missing values of X,
Y and Z to create large data sets with complete data on all three
variables. All item missing values in the individual data sets will
also be imputed. The multiply imputed combined data sets can be
analyzed using DESCRIBE, REGRESS and SASMOD modules (see
Schenker, Raghunathan, and Bondarenko (2010) for an application
and Dong, Elliott and Raghunathan (2014a) for more details).

There are many packages such as R (“with” and “pool”), Stata (“mi es-
timate”), and SAS (“PROC MI, PROC MIANALYZE”) to analyze multiply
imputed data sets. All these packages can be used within the “XML” structure
of IVEware.

www.iveware.org
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A more detailed manual of operation on how to use IVEware can be down-
loaded from the web site www.iveware.org. The web site also contains nu-
merous tutorials with examples, codes and output under all versions of IVE-
ware. For more details about the technical aspects, see Raghunathan (2016).

www.iveware.org
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