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Preface  

Dimensioning is one of the most common engineering activities in industry. All
engineers, regardless of their field of specialization, have an intuitive idea of how to
dimension a sketch of an object of their interest. In engineering schools, most engineers
are trained in drafting or (more recently) in engineering graphics to create stylized
representations of sketches and to dimension them. Modern computer-aided drafting and 
design systems provide functions that make sketching and dimensioning easy to generate
and modify using a computer. National and international standards bodies have been
standardizing projected views and symbols for dimensioning so that anyone trained in
these standards can generate or interpret drawings that conform to these standards. 

However, a theory of dimensioning that is worthy of our information age is absent.
Yes, there have been some ad hoc theories to explain various steps involved in
dimensioning. These theories are, at best, codifications of useful industrial practices in
dimensioning that have evolved over a long period of time. However, it has been a matter
of some embarrassment to those of us who work in this field that we have not been able
to give a scientific explanation of dimensioning to our students and colleagues. This book
remedies that unfortunate predicament. It presents a theory of dimensioning that is
synthesized from several areas of geometry, starting from the works of Euclid and
culminating in recent advances in classification of continuous symmetry groups. It is
worth reflecting on how this synthesis has been achieved. 

In the late 1980s, it became clear that existing standardized practices of dimensioning, 
tolerancing, and associated metrological means of verification had hit a hard limit in 
industry, which was undergoing profound changes brought about by the information
revolution. This concern was openly expressed in 1989 at an international meeting
organized by the American Society of Mechanical Engineers (ASME) and funded by the
U.S. National Science Foundation. The meeting resulted in two initiatives. One was to
quickly produce a mathematical companion to the ASME Y14.5 standard on
dimensioning and tolerancing; this goal was achieved in 1994 by a newly formed ASME
Y14.5.1 subcommittee. The other initiative was a more ambitious international effort to
produce an integrated, mathematically rigorous chain of ISO standards for dimensioning,
tolerancing, and associated metrological verification methods. In the mid-1990s, relevant 
ISO groups addressed this task by organizing as one body, ISO Technical Committee
(ISO/TC) 213. The committee is currently issuing a chain of standards as envisioned
earlier. As a result of these two initiatives, greater attention has been focused on
developing a mathematically rigorous approach to dimensioning and tolerancing. 

Several researchers in industry and in universities around the world had anticipated the 
need for a mathematical theory of dimensioning and tolerancing even before these recent
developments. A particularly noteworthy theory was introduced in France under the
rubric of technologically and topologically related surfaces (TTRS); it was slowly 
disseminated to the English-speaking world in the 1990s. This theory was based on some 



new results in classification of continuous symmetry groups. The mathematical
correctness of the work was investigated and verified by a U.S. group (consisting of
researchers from Boeing and IBM) in the mid-1990s. This work seemed to provide a
useful theory of relative positioning, which was an important, and previously unavailable,
requirement for a theory of dimensioning. 

While such efforts to find mathematically firm foundations for dimensioning and
tolerancing were progressing, a parallel effort was brewing in another ISO group
responsible for producing standards for exchange of geometric information in product
models. Such standards—known loosely as STEP (STandard for Exchange of Product 
model data) standards—are issued by the ISO/TC 184/SC 4 subcommittee. In the late 
1990s this group initiated an effort to standardize the exchange of parameters and
constraints specified in geometric models. During my participation in this effort on behalf
of IBM, it became clear that the theory being developed for dimensioning could also
serve as a theory of geometric parameterization, thereby enhancing the value of such a
theory significantly. In addition, it became evident that a theory of dimensioning is of
value independent of any consideration of tolerancing. This realization imposed a
heightened sense of urgency to bring the theoretical work on dimensioning to a
conclusion and publish it. 

It was in the deliberations in these different, but related, standards committees during 
the years of 2000 and 2001 that a satisfactory synthesis was achieved. It resulted in a
unification of several seemingly different theoretical ideas on size dimensioning and
position dimensioning using the simple notion of congruence. It turns out that it is the
congruence of point-sets and tuples (that is, rigid collections) of point-sets that matter. 
This gave the theory of dimensioning a conceptual clarity that was easy to explain and to
understand. 

You may ask, What is the use of a theory of dimensioning? After all, haven’t engineers 
been dimensioning drawings for centuries? In fact, the power of a theory becomes
evident only when this task of dimensioning (and parameterizing) is computerized and
the resulting information is interpreted by other computers. Data models have to be
developed, and their completeness has to be ensured; likewise, algorithms need to be
designed and their correctness proved. A theory helps us to accomplish these aims.
Accordingly, CAD/CAM software developers and users, and the related standards
committees, have an interest in the theory of dimensioning. I hope that this book serves
this interest, and that researchers, engineers, and software developers find it helpful to
their work. It is important to point out that the theory presented here puts the current
practice of dimensioning on a strong theoretical footing. It is not disruptive, in the sense
that it proposes to reinforce and improve rather than replace the current practice. This is a
critical factor for industrial acceptance of this theory and the associated standardization. 

Since the mid-1990s, I have been introducing bits and pieces of published work in
dimensioning and tolerancing in my geometric modeling course at Columbia University.
It is offered as a graduate-level course, but nearly half of the students are undergraduates
who choose it as an elective. Most of the students are from the mechanical engineering
department, but several have been from biomedical engineering, computer science, civil
engineering, and industrial engineering departments. The lecture notes for this course
were finally compiled into a “Theory of Dimensioning” text during the Spring 2002 



semester; this book is a direct result of this effort. So I am confident that other teachers
will find it a useful textbook for their students. 

I start the course by emphasizing that a theory of dimensioning is a prerequisite to a 
good understanding of tolerancing. I also point out that the course is an introduction to
parameterizing geometric models. The link to tolerancing particularly motivates
mechanical engineering students, while the larger scope of parametric geometric
modeling attracts a wider audience. Teachers may find it advantageous to emphasize both
benefits in explaining the scope of the course. 

The only prerequisite for the course is a good knowledge of basic geometry and related 
mathematics, which most students acquire in high school and in any decent
undergraduate program. It helps a great deal if the student has had a course in engineering
graphics and CAD. Brief introductions to matrices, group theory, graph theory, and solids
have been included in the appendixes, which supplement the main body of the book.
Most students, at least in my class at Columbia, have no prior knowledge of group theory
It helps to teach or review these topics in the class as they arise. I have deliberately
omitted parametric curves and surfaces from the appendixes because there are several
excellent textbooks that cover this topic—it is sufficient to spend a few hours of class 
time on that material. 

This book is full of examples and figures, which is quite unusual for a book on theory. 
I find this to be the best way to explain this theory to my students and colleagues. The
subject matter is so intuitive that illustrations become part of the thought process, and so
it is a good practice to encourage this type of thinking. However, I have taken great care
to ensure that this feature in no way detracts from the rigor of the theory. Proofs are given
for a few important theorems. If a theorem is well known or obvious, as is the case in
many instances, the reader is directed to a readily available reference where more details
can be found. 

This book owes much to nearly 15 years of close interaction and collaboration with 
several colleagues in industry, universities, and standards committees, as well as my
students at Columbia. Andre Clement introduced me to the group theory work in France
and Michael O’Connor showed me how to formalize this work using Lie groups. Herb
Voelcker and Mike Pratt constantly and strongly encouraged the pursuit of mathematical
theories on which industrial practices can be standardized. Alan Jones and Michael
Leyton provided valuable feedback in different phases of preparation of this book.
Colleagues at PDES Inc., ISO, and ASME kindly contributed their knowledge, time, and
support in numerous meetings on CAD, dimensioning, and tolerancing. Finally, I want to
thank the staff of Marcel Dekker, Inc., for their help in bringing this book to the market. 

Vijay Srinivasan
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1  
Introduction  

Dimensions are numerical values assigned to certain geometric parameters. They are
expressed in units of distance or angle. In engineering drawings some dimensions are
indicated explicitly on two-dimensional projected views using standardized notations. 
Three-dimensional geometric models in computer-aided design (CAD) systems carry 
dimensions internally as values assigned to certain variables. A theory of dimensioning is
also a theory of parameterizing geometric models. 

Standards for indicating dimensions on engineering drawings are issued in the United 
States by the American Society of Mechanical Engineers (ASME) and internationally by
the International Organization for Standardization (ISO). However, they do not provide a
theory of dimensioning. The designer is expected to learn the art of dimensioning from
his peers and other sources, such as textbooks on drafting. 

1.1 AN EARLIER THEORY OF DIMENSIONING  

In the mid-1930s, popular engineering drafting textbooks in the United States offered a 
theory of dimensioning that has survived to date. It is sufficiently compact that it can be 
reproduced (from Carl Svensen, Drafting for Engineers) in a few pages, as follows. 
Dimensions are indicated by arrows in the accompanying figures. In the following
narrative Svensen refers to himself as the author when discussing his earlier book
Essentials of Drafting. 

Elements of the Theory of Dimensioning. The theory of dimensioning as 
developed by the author was originally published in Essentials of Drafting and 
is now finding its way into various courses and textbooks, where its importance 
is recognized by devoting a separate chapter to it instead of a set of “general 
rules” as was formerly done. 
The following statement is quoted from Essentials of Drafting: “Constructions 
can be separated into parts and these parts can then be divided into geometrical 
solids. Each of the solids can then be dimensioned and their relations to each 
other fixed.” Thus, there are two kinds of dimensions: 

1. Size dimensions 
2. Location dimensions 

The elementary cases of size dimensioning include the common 
geometrical solids shown in Fig. 1.1, which may be termed positive or negative. 
The cases are conveniently classified as follows: 



1. The prism and modifications. The rectangular prism requires three 
dimensions, two of which are given on one view and the third on one of the 
other views. 

2. The cylinder requires two dimensions, diameter and length, both of which 
are given on one view. 

3. The cone requires two dimensions, both of which are given on one view. 
The frustum of a cone requires three dimensions. 

4. The pyramid may have dimensions on one or both views, depending on the 
shape of the base. 

5. The sphere requires only one dimension, the diameter. 
6. Other solids require dimensions as determined by their geometrical 

properties and the purposes for which they are used. Examples of the 
application of size dimensioning are illustrated in Fig. 1.2. 

Location dimensions are used to fix the positions of elementary parts in relation to each
other or the location of groups of parts in relation to axes, contact surfaces, or other
references. Prisms are generally located with reference to surfaces, but axes may be used,
or both axes and surfaces, according to the requirements of position, kind of prism, and
the purpose which they serve. In Figure 1.3-I there are two basic or locating surfaces,
which meet at A, from which locating dimensions are given to the surfaces of the prism,
which meet at B. Cylinders are located by axes and bases. In Figure 1.3-II the machined
surface of the cylinder and the axis meet at point B, which fixes the position of the
cylinder by two dimensions from  
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FIGURE 1.1 Elementary cases of size dimensioning. (From Svensen, 1935.) 

the locating surfaces, which meet at A. Spheres are located by their centers. The location 
dimensions for other shapes and combination of shapes are dependent on geometrical
properties and their relation to the whole object or one of its parts. 

The elementary cases of location dimensioning comprise center-to-center
dimensions, surface-to-center (or center-to-surface) dimensions, and surface-to-surface
dimensions (Fig. 1.4). 
Procedures in Dimensioning. The four steps to be considered in applying the theory of 
dimensioning are: 

1. Divide the object into elementary parts (type solids positive and negative). 
2. Dimension each elementary part (size dimension). 
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FIGURE 1.2 Size dimensions. (From Svensen, 1935.) 

3. Determine locating axes and surfaces. 
4. Locate the parts (location dimensions). 

A few general remarks on the foregoing theory of dimensioning are worth making here.
First, what Svensen calls “elementary parts” or “solids” will be called features in modern 
terminology. Note that these are not just surfaces; they carry additional information as to
which side of the surface the material lies using the “positive” or “negative” attribute. His 
classification of these elementary parts for the purpose of size dimensioning into six
cases is empirical—but he gets very close to a rigorous classification of geometrical
objects presented in Chapter 6 on the basis of their symmetry. 
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FIGURE 1.3 Location dimensions. (From Svensen, 1935.) 

Second, his “location dimensions” fix the relative positions of geometrical objects. In
other words, they are numerical values assigned to certain relative position parameters.
Though he doesn’t say it explicitly, his “size dimensions” are also numerical values, 
assigned to intrinsic shape parameters of his elementary parts or solids. 

Third, he fumbles along in describing how to do location dimensioning. But he 
captures the essence when he says that centers, axes, and surfaces play lead roles in
relative positioning. Also note that he talks about positioning not  

 

FIGURE 1.4 Cases of location dimensioning. (From Svensen, 1935.) 

only features (“elementary parts”) but also groups of features (“groups of parts”) relative 
to each other. These notions will be formalized in Chapter 7. 
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These remarks, some of which are critical, should in no way diminish our appreciation 
for Svensen’s contribution. Svensen should be given full credit for his remarkable 
engineering foresight. His work anticipated much of the later mathematical developments
in dimensioning. In fact, this book formalizes and generalizes Svensen’s work and 
presents a theory that supports all standardized practices of dimensioning in industry. 

1.2 OUTLINE OF A MODERN THEORY OF DIMENSIONING  

Size dimensions define the exact shape of a geometric object. They are the intrinsic
characteristics of the shape, in the sense that these dimensions don’t change when the 
geometric object is moved around. On the other hand, location dimensions define how
two geometric objects are positioned relative to each other; these dimensions change
when one object is moved relative to the other. 

In the modern theory of dimensioning described in this book we abandon this simple, 
flat classification of dimensions into size and location dimensions. Instead, we impose a
hierarchy on dimensions, as illustrated in Figure 1.5, because, as we will see in the rest of 
book, it is more powerful in building a dimensioning theory for any complex object. The
dimensional taxonomy has two types of dimensions: intrinsic and relational. At the 
simplest level, elementary curves and surfaces have intrinsic dimensions—one may call 
them elementary size dimensions a la Svensen—that define the exact shapes of these
curves and surfaces. For example, an unbounded (that is, of infinite length) cylinder has
its radius (or diameter, as is normally done in engineering practice) as the intrinsic
dimension because it doesn’t change when the cylinder is moved around in space. It 
defines the exact shape of the cylinder no matter where it is positioned. 

When two or more such elementary objects are considered, we can dimension the
relative positioning of them—these are the relational dimensions. For example, if we 
consider two cylinders whose axes are parallel, then their relative positioning is
determined solely by the distance between the axes. This distance is the relational
dimension between the two cylinders, and changing it will change their relative
positioning. However, when we consider a collection of two or more geometric objects,
the relational dimensions among the objects become part of the intrinsic dimensions of
the collection. This happens, for example, when we consider the two cylinders as holes
drilled in the same block. This collection of the two parallel cylinders has three intrinsic
dimensions: two  
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FIGURE 1.5 A dimenisonal taxonomy. 

cylinder radii and one distance between their axes. As we move up the hierarchy, intrinsic
dimensions subsume relational dimensions that appeared below. 

Intrinsic dimensions are closely related to the concept of congruence under rigid 
motion. Loosely stated, two geometric objects are congruent if each can be moved by
rigid motion so as to cover the other completely. Congruent geometric objects are
identical copies that happen to have been positioned in different places in space. We say
that geometric objects that have the same intrinsic dimensions must be congruent. Note
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that the converse need not be true, because the same geometric object can be
dimensioned in multiple ways. (Just imagine how many ways a triangle can be
dimensioned.) 

The distinction between intrinsic and relational dimensions may seem artificial because 
it is purely a matter of the level of hierarchy under consideration. A cleaner, but
theoretically equivalent, approach is one where dimensioning is defined recursively.
Consider a geometric object g that is divided into two subobjects g 1 and g 2. If g 1 and g
2 have been dimensioned, then dimensioning the relative position of g 1 and g 2 completes 
the dimensioning of g. The recursion ends when each subobject is deemed to have been 
completely dimensioned (by some authority not yet defined) or is an elementary curve or
surface that can be easily dimensioned using geometric theories (such as, for example,
those presented in Chapters 3 and 4). 

In either case, in general we define dimensions as those intrinsic characteristics of a 
geometric object that remain invariant under rigid motion of the geometric object.
Because of this, it turns out that the central question we pose in the modern theory of 
dimensioning is whether two given geometric objects are congruent under rigid motion. 
We will devise procedures to answer this question and, in that process, come up with
certain geometric parameters. Dimensioning is then just a task of assigning numerical
values to these parameters. We start with a detailed treatment of the concept of
congruence in Chapter 2. This is followed by a discussion of dimensioning elementary
curves and surfaces in Chapters 3 and 4, respectively Chapter 5 is devoted to the 
seemingly simple task of dimensioning the relative positions of elementary objects such
as points, lines, planes, and helices; it presents a special theory of relative positioning.
Chapter 6 describes the notion of symmetry using group theoretic ideas, and it sets the 
stage for a general theory of dimensioning relative positions of arbitrary geometric
objects in Chapter 7. So Chapter 7 can be considered as providing a general theory of 
relative positioning. Dimensional constraints are the topic of discussion in Chapter 8. 
Finally, the important topic of dimensioning solids is covered in Chapter 9. 

1.3 STANDARDIZED INDICATION OF DIMENSIONS  

Since we will be dealing with dimensioning quite extensively, it is worth noting some
stylized indications of dimensions standardized by the ASME and ISO. As we have
already seen in Figures 1.1 through 1.4, dimensioned distances and angles are indicated
by arrows. These are called dimension lines, which, with their arrowheads, show the 
direction and extent of a dimension. Dimension lines are often broken in the middle to 
show the numerical value (as, for example, in Figure 1.7). These are often, but not 
always, indicated on projected views of a part. 

The ISO defines two alternative orthographic projection methods, as summarized in 
Table 1.1. Third angle projection is the preferred method in the  
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TABLE 1.1 ISO’s definition of first and third angle projection methods. The hidden 
lines are shown dashed 

Designation of Views    

  

View in direction a=View from the front 
View in direction b View from above 
View in direction c—View from the left 
View in direction d—View from the right 
View in direction e—View from below 
View in direction f—View from the rear 

First Angle Projection Method    

 

With reference to the front view (a), the other 
views are: 
● The view from above (b), is placed underneath 
● The view from below (e), is placed above 
● The view from left (c), is place on the right 
● The view from the right (d), is placed on the 
left 
● The view from the rear (f) may be placed on 
the left, or on the right, as convenient 

Third Angle Projection Method    

 

With reference to the front view (a), the other 
views are: 
● The view from above (b), is placed above 
● The view from below (e), is placed underneath 
● The view from left (c), is place on the left 
● The view from the right (d), is placed on the 
right 
● The view from the rear (f) may be placed on 
the left, or on the right, as convenient 
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FIGURE 1.6 Title block icons for first and third angle projections in 
engineering drawings. 

United States, while the first angle projection method is used in many countries in the rest
of the world. Because of this, it is customary to indicate an icon (in the form of a frustum
of a cone, as shown in Figure 1.6) in the title block of every drawing so that we know
which method of projection has been used in that print. It is also permissible to use
projections along a direction of viewing different from these. In such cases, the direction
of view will be indicated in the drawing. 

Dimension lines are usually placed outside the outline of a part in a view. For this
reason, extension lines (also known as projection lines) are used to indicate the extension 
of a surface or a point. Extension lines start with a short visible gap from the outline of
the part and extend beyond the outermost related dimension line. Sometimes, a leader 
line is used to direct a dimension. Normally, a leader line will terminate in an arrowhead.
If the leader line is used just to point to a feature, then it can terminate in a dot placed on
the feature of interest. Figure 1.7 illustrates dimension lines, extension lines, and leader 
lines. 

Standards also permit coordinate dimensioning. Examples of rectangular (Cartesian) 
coordinate dimensioning and polar coordinate dimensioning on two-dimensional 
projected views are shown in Figure 1.8. This methodology  

 

FIGURE 1.7 Illustration of dimension, extension, and leader lines. 
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FIGURE 1.8 (a) Rectangular (Cartesian) coordinate dimensioning. (b) Polar 
coordinate dimensioning. 

can be extended to three dimensions in the form of three-dimensional Cartesian 
coordinate dimensions, cylindrical polar coordinate dimensions, and spherical coordinate
dimensions. 

The last observation in the preceding paragraph anticipates the fact that dimensions can 
also be indicated on an isometric view of a part. Here, as before, a dimension shown
between two extension lines is usually the distance not between the two parallel lines but
between two parallel planes from which the extension lines emanate. This can often be a
cause of confusion. The problem is completely avoided in a three-dimensional CAD 
model because it is view independent and the dimensions are carried as values for certain
variables in the software. 

1.4 EXERCISES  

1. Sketch isometric views of the two solids shown in Figure 1.2. (Hint: These are third 
angle projections, following the American custom.) Try to dimension each solid 
completely in the isometric views. Record the assumptions made along the way. 
Classify some of these assumptions as constraints, such as incidence (that is, 
overlapping or coincidence), parallelism, and perpendicularity. 

2. Dimension the same two parts in Figure 1.2 differently. 
3. Dimensions (that is, the numerical values) are often changed during the course of a 

design. Figure 1.9 shows a part that has been (partially) dimensioned in two different 
ways. In Figure 1.9(a) the two dimensions are chained one after the other. (Hence the 
term chain dimensioning.)  
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FIGURE 1.9 A part (partially) dimensioned in two different ways. 

In Figure 1.9(b) these are defined in parallel, both originating from a common 
baseline, which is, actually, a base plane. (Hence the term baseline dimensioning.) 
Examine the effects of changing dimensions in each case. Give an example in each 
case to defend that way of dimensioning. 

4. In industrial practice one often hears the terms functional dimensions and 
nonfunctional dimensions. What do you think is meant by these? Can you defend the 
dimensioning in Figures 1.9(a) and 1.9(b) as functional? (For the record: ASME 
merely stipulates that “dimensions shall be selected and arranged to suit the function 
and mating relationship of a part”. The ISO formally defines that “a functional 
dimension is a dimension which is essential to the function of a part.”) 

5. What do you think is meant by overdimensioning and underdimensioning? Give 
simple examples of each. How would one determine that a part has been over- or 
underdimensioned? Can you think of some systematic (that is, algorithmic) way to 
accomplish this? 

1.5 NOTES AND REFERENCES  

An excellent history of engineering drawing can be found in Booker (1963). In the first
half of the 20th century, manual drafting textbooks by French (1918) and Svensen (1935)
were popular in the United States. A combined work of French and Svensen (1966)
appeared in the second half of the century. Much of their manual methods were rendered
obsolete by the arrival of computer-aided drafting systems in the late 1970s. What remain
of interest to us are their philosophies and theories of dimensioning. 

British Standard No. 308–1927 (1927) was one of the earliest national drafting 
standards. The first American Standard on drafting appeared in 1935 under the
chairmanship of the aforementioned Thomas E.French. It was initiated by the ASME, 
which has since then been the driving force behind its further development. Revisions of
this standard appeared at roughly 10-year intervals in 1946, 1957, 1966, 1973, 1982, and
1995. Over the years, the focus shifted gradually from purely drafting and dimensioning
to geometric dimensioning and tolerancing (GD&T). The latest ASME national standard
is called the ASME Y14.5M-1994 (1995) standard on “Dimensioning and Tolerancing” 
and is largely focused on tolerancing. Also in 1995, ASME published, for the first time, a
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mathematical companion called ASME Y14.5.1M-1994 that provides mathematical 
definition of tolerancing principles. Relevant ISO standards on dimensioning are ISO
128–1982 (1982), dealing with drawing layout, and ISO/R 129–1959 (1959), dealing 
with dimensioning rules. 
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2  
Congruence  

In high school plane geometry one learns how to determine if two triangles are
congruent. Here are some theorems learned at school. 

Theorem 2.1: Side-Angle-Side If two sides and the included angle of one triangle 
equal, respectively, two sides and the included angle of another triangle, the two
triangles are congruent.  
Theorem 2.2: Side-Side-Side If the three sides of one triangle equal, respectively, the 
three sides of another triangle, the two triangles are congruent.  
Theorem 2.3: Angle-Side-Angle If two angles and the included side of one triangle
equal, respectively, two angles and the included side of another triangle, the two
triangles are congruent.  

While learning these theorems the student goes through the mental process of taking
one triangle and placing it on the other, vertex-on-vertex and side-on-side, so that one 
completely overlaps the other. This is called the method of superposition. In some cases 
this mental exercise could be carried out by moving the triangle without leaving the
plane, as shown in Figure 2.1(a). But in  

 

FIGURE 2.1 Congruent triangles A and B in the plane. (a) A can be moved to 
overlap B without leaving the plane. (b) A has to be lifted off the 
plane by flipping to overlap B. 

most cases the student has to lift a triangle out of the plane by flipping it so that it can be
placed on the other triangle; see Figure 2.1(b) for an example. In any case, Theorems 2.1, 
2.2, and 2.3 teach us at least three ways to dimension a triangle: Assign numerical values 
(1) for two sides and the included angle, (2) for the three sides, or (3) for one side and the
two adjacent angles. All these are intrinsic dimensions of the triangle. 



This short encounter with triangle congruence portends a general theory of 
dimensioning. If congruence theorems such as these can be established for some class of
geometric objects, then we can test whether two geometric objects from this class are
congruent by comparing only a few distances and angles, which can be treated as
parameters and given symbolic names. When numerical values are assigned to these
parameters, they become the dimensions. 

Since congruence plays such a prominent role in our theory of dimensioning, we will 
look at it in some detail in this chapter. 

2.1 POINT-SETS AND TUPLES  

Terms such as shapes and geometric objects are not precise enough for mathematical 
treatment. It is better to turn to sets of points, or point-sets for short, in Euclidean space. 
A point-set is an unordered collection of points that are symbolically included within 
curly brackets. For example, S={p 1 , p 2 ,…, p n } is a point-set that is an unordered 
collection of n points. All results from classical set theory are applicable to point-sets. 
(Section A4.1 in Appendix 4 provides a brief primer on set theory, which the reader may
want to review before proceeding further.) Two point-sets S 1 and S 2 are equal (denoted 
S 1=S 2) if every point in S 1 is also in S 2 and every point in S 2 is also in S 1. 

Example 2.1 Let p 1 , p 2 , p 3 , p 4 , p 5 be five distinct points and let S 1={p 1 , 
p 2 , p 3 , p 4 }, S 2={p 2 , p 1 , p 4 , p 3 }, S 3={p 1 , p 3 , p 5 } be point-sets. Then S 
1=S 2 and S 1≠S 3. Note that the order of elements is not important. 
Example 2.2 Point-sets can also be defined using formulas as in S 4={(x, y):x 
2+y 2=1}, S 5={(x, y):x=cosθ, y=sinθ, 0≤θ< 2π}, and S 6={(x, y, z):x+y+z−1=0}. 
We interpret the indication for S 4 as a set of points in the plane with x-and y-
coordinates that satisfy the equation x 2+y 2=1. Similar interpretations hold for S 
5 and S 6. Note that S 4=S 5 because they are but different representations of the 
same unit circle in the plane centered at the origin. S 6 is a plane in space. 

A set containing a finite number of elements is called a finite set, and a set containing an 
infinite number of elements is an infinite set. 

Example 2.3 S 1 , S 2 , and S 3 in Example 2.1 are finite point-sets. S 4 , S 5 , and 
S 6 in Example 2.2 are infinite point-sets. 

A point-set is bounded if there is sphere of finite radius that can contain it completely; 
otherwise, it is unbounded. Note that an infinite point-set can be bounded. 

Example 2.4 In Examples 2.1 and 2.2, S 1 , S 2 , S 3 , S 4 , and S 5 are bounded 
point-sets. S 6 is an unbounded point-set. 

A tuple is an ordered collection whose members are symbolically enclosed by 
parentheses. For example, T=(p 1 , p 2 ,…, p n ) is a tuple of n points. A tuple can contain 
other tuples as members. Familiar examples of a tuple are the ordered pair (in two
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dimensions) and ordered triplets (in three dimensions) of coordinates to indicate a point.
A tuple with n members is called an n-tuple. Two tuples are equal if and only if they have 
the same number of members and the members are equal when taken pairwise in order.
More formally, we have the following definition. 

Definition 2.1: Tuple Equality (S 1 , S 2 ,…, S n )=(P 1 , P 2 ,…, P n ) if and only if S i
=P i for all i. 

Example 2.5 Let p 1 , p 2 , p 3 , p 4 be four distinct points and let T 1=(p 1 , p 2 , 
p 3 , p 4 ) and T 2=(p 2 , p 1 , p 3 , p 4 ) be two 4-tuples. T 1 ≠T 2 because the 
members are not equal when taken in order. 
Example 2.6 With the point-sets defined in Examples 2.1 and 2.2, we have (S 
1 , S 4 )=(S 2 , S 5 ). 

2.2 RIGID MOTION  

Rigid motion is a particular type of transformation of points in Euclidean space. The
concept of rigid motion is central to our study of congruence. It is best represented using
matrices. Let’s start with a right-handed, orthogonal coordinate system, where the 
coordinate axes are labeled x, y, and z. Consider a transformation in which a point p with 
coordinates (x, y, z) is transformed to a point p′ with coordinates (x′, y′, z′) by the matrix 
operation 

where [x 0 , y 0 , z 0 ] T is a translation vector and the coefficients a ij in the 3×3 matrix A
are real. Appendix 1 gives a brief review of matrices, which should be read along with 
this chapter. Matrix A is called the rotation matrix, and transformation (2.1) is called 
rigid motion (also known as solid displacement) when A is orthogonal and its 
determinant is+1. Let’s look at this statement in some detail. Several properties of
orthogonal matrices are well known and are quoted here. 

When A is orthogonal, A T A=I. That is, 

This means that the nine coefficients a ij cannot be chosen arbitrarily. There are nine
equations involving the coefficients that result from Eq. (2.2). These are: 

(2.1) 

(2.2) 
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Of these nine equations, the last three are duplicates of the previous three. So only six
independent equations remain for nine coefficients a ij . Therefore, an orthogonal matrix 
A can have only three independent parameters. 

An important consequence of the orthogonality of A is that distances are preserved 
under transformation (2.1). Recall that in classical mechanics a rigid body is defined as a
point-set in which the distance between any two points remains invariant when the body 
is subjected to motion. If p 1 and p 2 are two points with coordinates (x 1 , y 1 , z 1 ) and (x
2 , y 2 , z 2 ), respectively, then the Euclidean distance between them is denoted and given
by 

If matrix A is orthogonal and transformation (2.1) is applied to both p 1 and p 2, 

transforming them to  and , respectively, then it can be shown that 

. In addition, it can be shown that angles are also preserved
under this transformation. Generally, when we talk about applying transformation (2.1) to
a geometric object we mean that every point in the point-set that describes the geometric 
object is subjected to the same transformation and that the entire point-set is transformed 
to another point-set. It is now easy to see the connection between the rigid body of
classical mechanics and the rigid motion applied to a point-set. 

The determinant of an orthogonal matrix A can only be +1 or −1. In either case, 
distances are preserved under transformation (2.1); for this reason, such a transformation
is called isometry. When the determinant of orthogonal matrix A is +1, transformation 
(2.1) is a rigid motion consisting only of translation and rotation; A then becomes a 
rotation matrix, and it requires only three independent parameters for its definition. The
translation vector in Eq. (2.1) requires three independent parameters as well. Hence a
rigid motion—we say, in fact, a rigid body—has six degrees of freedom: three for
translation and three for rotation. 

Example 2.7 In Eq. (2.1), let the translation vector be zero and 

(2.3) 

(2.4) 

 

(2.5) 
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A is orthogonal, as can be easily verified, and its determinant is −1. The 
transformation is a reflection about the yz-plane. That is, the transformation 
merely reverses the sign of the x-coordinate of every point. This is an isometric 
transformation because it preserves distances. But it is not a rigid motion. Figure 
2.2 shows how this transformation acts on a tetrahedron. 

Example 2.8 In Eq. (2.1), let the translation vector be zero and 

A is orthogonal and its determinant is +1. This transformation is a rigid 
motion. It applies a rotation of 180° about the y-axis to every point on which it 
acts. Figure 2.3 shows its action on a tetrahedron. 

Example 2.9 In two-dimensional cases, Eq. (2.1) reduces to 

In the xy-plane if we let the translation vector be zero and 

then we have a reflection about the y-axis. A has a determinant of −1. Again, 
this is an isometry but not a rigid motion. The transformation of triangles in 
Figure 2.1(b) can be achieved using  

 

FIGURE 2.2 Reflection about the yz-plane transforms tetrahedron P to 
tetrahedron Q. This is an isometry but not a rigid motion. Unlike the 
triangles in Figure 2.1, P cannot be moved in three-dimensional 
Euclidean space to overlap Q by rigid motion. Therefore, P and Q are 
congruent under isometry but not under rigid motion. 

 

(2.6) 

(2.7) 

(2.8) 
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FIGURE 2.3 Rotation of 180° about the y-axis transforms tetrahedron P to 
tetrahedron Q. This is a rigid motion. P and Q are congruent under 
rigid motion. 

Eq. (2.8). But if the xy-plane is then embedded in a three-dimensional space, 
then the same transformation of triangles shown in Figure 2.1(b) can be 
achieved via matrix A given by Eq. (2.6), which is a rigid motion. This example 
illustrates that a reflection in a two-dimensional plane can be achieved by a rigid 
motion if the plane is embedded in a three-dimensional space.  

Equation (2.1) can be rewritten more compactly as 

or simply as 

where X and X′ are points represented in homogeneous coordinates and R is a rigid
motion represented by a special 4×4 matrix whose elements come from rotation matrix A
and translation vector [x 0 , y 0 , z 0 ] T . For computational purposes, it is useful to
remember that matrix R representing the rigid motion is composed of submatrices of the
following form: 

where A is the rotation matrix, X 0 is the translation vector, and 03 is the null row vector

(2.9) 

X′=RX  
(2.10) 

(2.11) 
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[0, 0, 0]. 
Representing an entire rigid motion by a single matrix has some conceptual advantages

as well. If two rigid motions are applied in sequence, then the result can be obtained by
simply multiplying the two matrices that represent them, as in 

firmly keeping in mind that the rigid motion represented by R′ is applied before the rigid 
motion represented by R. If we want to undo a rigid motion—that is, reverse the result of 
a rigid motion—we just take the inverse of the matrix and premultiply it. The inverse of
R is easily computed as 

where we have exploited the orthogonality (that is, its inverse is its transpose) of the
rotation matrix A. If R is chosen as the 4×4 identity matrix, it doesn’t move the point(s) at 
all. It is called the identity rigid motion. We will exploit this strong connection between 
rigid motion and its matrix representation throughout our study. 

As an operation on point-sets, rigid motion can be given a symbolic representation that 
is motivated by the matrix form of Eq. (2.10). If we denote a rigid motion by r, then the
result of applying it on a point-set S is indicated by r(S), or rS for short, which is also a 
point-set. 

Example 2.10 Let S 1 be a unit sphere centered at the origin. It can be 
represented by the point-set S 1={(x, y, z):x 2+y 2+z 2=1}. Now, represent by r a 
rigid motion consisting only of unit translation along the x-axis. Then rS 1 is the 
point-set that results from the application of the rigid motion r on S 1 , and it can 
be represented by {(x, y, z):x 2−2x+y 2+z 2=0}. To establish this, first observe 
that the rigid motion transformation is given by x′=x+1, y′=y, and z′=z. The 
corresponding rigid motion matrix is 

Because of the simple nature of this transformation, it is easy to see that the 
inverse transformation is given by x=x′−1, y=y′, and z=z′. We can also see this 
by inverting the matrix R using Eq. (2.13), which yields 

(2.12) 

(2.13) 
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Substituting these in the defining equation of S 1 we get
 

Therefore rS 1 can be represented by the point-set {(x′, y′, z′): (x′) 2−2x′+(y′) 
2+(z′) 2=0}. Since the variables involved within the curly brackets are dummy 
variables, it is valid to say that rS 1={(x, y, z):x 2−2x+y 2+z 2=0}. 

Extending the notion of rigid motion to tuples, we have the following definition. 
Definition 2.2: Tuple Rigid Motion r(S 1 , S 2 ,…, S n )=(rS 1 , rS 2 ,…, rS n ). 
That is, a rigid motion applied to a tuple is the tuple of rigid motions applied to its

members. 
With this definition a mechanical model for a tuple of geometric objects can be offered.

Imagine that the members of a tuple are rigidly welded together by an invisible welding
material. When one member is subjected to a rigid motion, all of them move by the same
rigid motion. Since a tuple can contain other tuples as members, Definitions 2.1 and 2.2
are recursive. 

Example 2.11 In the plane consider the following points defined by their x- and 
y-coordinates: 

Let P be the 4-tuple (p 1 , p 2 , p 3 , p 4 ) and apply a rigid motion r consisting 
of a unit shift along the x-axis and a unit shift along the y-axis. Then rP is the 4-
tuple (q 1 , q 2 , q 3 , q 4 ), where 

Example 2.12 In space let p 1 be the point (0, 0, 0) and S 1 be the surface {(x, y, 
z):x 2+y 2+z 2=1}. Now consider the 2-tuple (p 1 , S 1 ) and apply to it a rigid 
motion r consisting of just a unit shift along the x-axis. The result is the 2-tuple r
(p 1 , S 1 )=(p 2 , S 2 ), where p 2=(1, 0, 0) and S 2={(x, y, z):x 2−2x+y 2+z 2=0}. 
See Example 2.10 for the justification of the representation of S 2 .  

  

p 1=(2, 1), p 2 =(−2, 1), p 3=(−2, −1), p 4=(2, −1)   

q 1=(3, 2), q 2=(−1, 2), q 3=(−1, 0), q 4=(3, 0)   
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2.3 REFLEXIVE SYMMETRY AND CHIRALITY  

The concept of symmetry is very important and will be developed in detail in Chapter 6. 
Here we briefly discuss a particular type of symmetry related to reflection encountered in
Example 2.7. 

Two points p 1 and p 2 are said to be positioned symmetrically with respect to a plane 
or line if and only if this plane or line bisects the line segment between p 1 and p 2
perpendicularly. These points are positioned symmetrically with respect to a point if and
only if this point is the midpoint of the line segment between p 1 and p 2. In all three 
cases, each of the points p 1 and p 2 is said to be symmetrical to the other with respect to 
the plane, line, or point. 

The notion of symmetry can be extended beyond two points to a point-set. A point-set 
S is symmetrical with respect to a plane (or line or point) if and only if for every point p
in S we can find a point q in S such that p and q are symmetrically positioned with respect
to the plane (or line or point). We can then say that the point-set S has a plane of 
symmetry, a line of symmetry (or axis), or a point of symmetry (or center). 

Example 2.13  

1. A sphere is symmetrical with respect to its center. It is also symmetrical 
with respect to any plane or line through its center. 

2. A baseball bat has an axis of symmetry, and any plane through this axis is a 
plane of symmetry. It doesn’t have a point of symmetry. 

3. The frame of a tennis racket has two perpendicular planes of symmetry, 
intersecting at an axis of symmetry. It has no center of symmetry. 

Example 2.14 In the plane the curve C={(x, y):y 2=2x} defines a parabola. The 
x-axis is the only line of reflexive symmetry for the parabola, so it is the unique 
axis of the parabola. The parabola has no point of symmetry, that is, no center. 
(Sketch the parabola to verify these results.) 
Example 2.15 In the plane the curve C={(x, y):x 2+2y 2=1} defines an ellipse. 
Both the x- and y-axes are lines of reflexive symmetry for the ellipse. Hence 
these are the axes of the ellipse. The origin (0, 0) is the unique point of 
symmetry, that is, the center. (Sketch the ellipse to verify these results.) 
Example 2.16 In space the surface S={(x, y, z):x 2+ 2y 2+3z 2=1} defines an 
ellipsoid. It is symmetrical with respect the xy-, yz-, and zx-planes. The x-, y-, 
and z-axes are the axes of the ellipsoid. The origin (0, 0, 0) is the unique point 
of symmetry, that is, the center. (Sketch the ellipsoid to verify these results.) 

Closely related to reflexive symmetry is the concept of chirality. It is best defined by the 
original words of Lord Kelvin: “I call any geometrical figure, or group of points, chiral, 
and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself.” By this definition, tetrahedron P in Figure 2.2 is chiral and has 
chirality; the same can be said of tetrahedron Q. If the definition is specialized to the
plane (meaning that we are not allowed to move out of the plane), then we see that the
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triangle A is chiral in the plane of Figure 2.1. Other important examples follow. 

Example 2.17 A helix is a space curve. One such helix can be represented by 
the point-set H 1={(x, y, z):x=2cosθ, y=2 sinθ, z=0.5θ/(2π)}. It has a base-
cylinder radius of 2 units and a pitch, which is defined as axial advance per 
revolution, of 0.5 units. A mirror reflection of H 1 is given by the point-set H 2=
{(x, y, z): x=2 cosθ, y=2 sin θ, z=−0.5θ/(2π)}, where the xy-plane acts as the 
reflection plane. That is, H 2 is obtained by simply reversing the sign of the z-
coordinate in the definition of H 1. We call H 1 a right-handed helix and H 2 a 
left-handed helix. It can be shown that H 1 and H 2 are not congruent under rigid 
motion. In general, left-and right-handed helices are not congruent. Hence a 
helix is chiral. 
Example 2.18 A three-dimensional right-handed, orthogonal Cartesian 
coordinate system is chiral. This is due to the facts that its mirror image is a left-
handed, orthogonal coordinate system and that these two are not congruent 
under rigid motion. This is an example where a tuple is given chirality. 

A point-set that is not chiral is called achiral. The parabola and ellipse in Examples 2.14
and 2.15, respectively, are achiral in the plane. They are achiral even when the plane that
contains them is embedded in space. The ellipsoid of Example 2.16 is also achiral. 

Often we will use the term chirality synonymously with handedness. It is important to 
make sure that this use causes no confusion. It is proper to say that the right-handed and 
left-handed orthogonal Cartesian coordinate systems do not have the same chirality, even
though both are chiral. Similarly, tetrahedra P and Q in Figure 2.2 do not have the same 
chirality, and helices H 1 and H 2 in Example 2.17 do not have the same chirality, though 
all these objects are chiral. 

2.4 VECTORS AND ORIENTED POINT-SETS  

Sometimes it is useful to associate an orientation to a point-set. We may want to take a 
straight line and give it an orientation, as we did with each of the x-, y-, z-coordinates 
axes. Orientation can be represented by vectors of the form 

These vectors have magnitude and direction. The magnitude of the vector is given by 

and a unit vector is defined as 

v T =[v x , v y , v z ]  
(2.14) 

(2.15) 
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Like points, vectors can also be transformed by rigid motion. Unlike points, vectors are
affected only by rotation and not by translation, because we care only about the
orientation of these vectors. So we can transform a vector using the rotation matrix as 

Two types of products can be defined for vectors. The first is a dot product, defined as 

The dot product, also known as the inner product of the vectors, is a scalar. If θ is the 
angle between the two vectors, then the dot product is equal to |v1||v2| cosθ. When the 
two vectors are perpendicular to each other, the dot product vanishes. The second product
defined between two vectors is a cross product. It is a vector given by 

Its magnitude is equal to |v1||v2| sinθ, which means that it vanishes if the two vectors are 
oriented in the same or the opposite direction. When this is not the case, the two vectors
can be brought to lie in a plane, and the direction of the cross product is perpendicular to
this plane. The orientation of the cross product is determined by the right-hand rule: 
When we curl our right-hand fingers from vector v1 to v2, the extended thumb is pointing 
toward the orientation of v1×v2. 

If we denote the unit vectors along the x-, y-, and z-axes in a right-handed, orthogonal 
Cartesian coordinate system by i, j, and k, respectively, then k=i×j and the 3-tuple (i, j, k)
is called a right-handed triad or, simply, a trihedron. If k is chosen such that k=−i×j, then 
we have a left-handed triad. 

An important property of the rigid motion is that it preserves both the dot product and
the cross product of vectors. This means that under the action of rotation matrix A, with 
its determinant equaling+1, we have 

If A is a reflection, as in Example 2.7, then it need not preserve the cross product; that is,
the orientation can be reversed under reflection. So under rigid motion a right-handed 
triad is moved to another right-handed triad, whereas a reflection with respect to a plane

(2.16) 

v′=Av  
(2.17) 

v1 · v2=v1xv2x+v1yv2y+v1zv2z 
(2.18) 

v
1×v2=[v1yv2z−v1zv2y, v1zv2x−v1xv2z, v1xv2y−v1yv2x]

T 
(2.19) 

Av1 · Av2=v1 · v2 and Av1×Av2=A(v1×v2) 
(2.20) 
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transforms a right-handed triad to a left-handed triad. As we saw earlier in Example 2.18, 
this is the cause of chirality of the coordinate systems. 

Straight lines and planes can be oriented by assigning a vector parallel to the straight 
line and one perpendicular to the plane, respectively. Although individual oriented lines
in plane and space and oriented planes in space are achiral, we can construct tuples of
them that have chirality. 

Example 2.19 Consider a 3-tuple of three mutually orthogonal, oriented lines in 
space. These oriented lines can be the x-, y-, and z-axes of an orthogonal 
coordinate system, and the tuple has chirality as we have already seen. 
Example 2.20 A 3-tuple consisting of an oriented plane in space and two 
nonparallel, oriented lines in that plane is chiral and has chirality. 

2.5 CONGRUENCE, DIMENSIONS, AND PARAMETERS 

Two geometric objects are congruent under rigid motion if one can be transformed by
rigid motion to the other. There is also a notion of congruence under isometry, as
illustrated in Figure 2.2 for a simple example involving tetrahedra, but for engineering 
applications involving dimensioning we will stick to congruence under rigid motion. The
reason for this is the necessity to distinguish between parts that are interchangeable and
those that are not. For example, the left- and right-hand gloves are mirror images of each 
other and they are congruent under isometry. But they are not interchangeable parts and,
in industrial parlance, have different part numbers. We could, however, distinguish them
by observing that these gloves are not congruent under rigid motion. From now on, when
we mention congruence we mean congruence under rigid motion. 

Generically, we have the following definition. 
Definition 2.3 Two point-sets S1 and S2 are congruent if and only if there exists a rigid

motion r such that rS1=S2. Two tuples T1 and T2 are congruent if and only if there exists a 
rigid motion r such that rT1=T2. 

Let’s try to apply this definition directly to prove some congruence based on some of 
the examples examined before. 

Example 2.21 The two surfaces defined by point-sets 

are congruent because, as we saw in Example 2.10, there exists a rigid motion 
r consisting of just a unit translation along the x-axis such that rS1=S2. 
Example 2.22 In the plane consider the following points defined by their x- and 
y-coordinates: 

S
1={(x, y, z):x2+y2+z2=1} and 

S
2={(x, y, z):x2−2x+y2+z2=0} 

  

p1=(2, 1), p2=(−2, 1), p3=(−2, −1), p4=(2, −1) 
q1=(3, 2), q2=(−1, 2), q3=(−l, 0), q4=(3, 0) 
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1. The 2-tuple (p1, p2) is congruent to the 2-tuple (p3, p4). It is also congruent 
to the 2-tuple (q1, q2). (Why?) 

2. The 2-tuple (p1, p2) is not congruent to the 2-tuple (q1, q3). (Why?) 
3. The 4-tuple (p1, p2, p3, p4) is congruent to the 4-tuple (q1, q2, q3, q4) because 

there is a simple translation—a unit shift along the x-axis and a unit shift 
along the y-axis—that moves one of the tuples to coincide with the other, as 
we saw in Example 2.11. 

4. However, the 4-tuple (p1, p2, p4, p3) is not congruent to the 4-tuple (q1, q2, 
q3, q4) because, however hard we try, we will not be able to come up with a 
rigid motion r such that r(p1, p2, p4, p3)=(q1, q2, q3, q4). 

Example 2.23 In space consider the following points defined by their 
coordinates 

and two surfaces defined by 

As we saw in Example 2.21, S1 and S2 are congruent. But the 2-tuple (p1, S1) 
is not congruent to the 2-tuple (p2, S2) because, however hard we try, we will not 
be able to find a rigid motion r such that r(p1, S1)=(p2, S2). 

As the preceding examples illustrate, Definition 2.3 is an existential definition, in the
sense that it requires the existence of a rigid motion r for congruence without describing
how such a rigid motion can or cannot be found. Proving the existence or otherwise of the
rigid motion r is left as a tricky problem to be solved by the person asking the question
about the congruence. Instead of searching for the elusive rigid motion, we will seek
specific congruence theorems of the following form. 
Congruence Theorem Template If two geometric objects that belong to a class  have
the same chirality and distance and angle measures , then they are congruent. 

The triangle congruence theorems 2.1, 2.2, and 2.3 are examples of such specific
congruence theorems. Strictly speaking, in a two-dimensional plane these triangle
theorems are congruence theorems under isometry. But we will embed the plane in three-
dimensional space in which these theorems are congruence theorems under rigid motion,
as demonstrated in Example 2.9. In specific congruence theorems, the distance and angle
measures appear as variables—such as side lengths and included angles—which we call
parameters. If there are n parameters, the geometric object under consideration is said to
belong to an n-parameter family. For example, a triangle belongs to a 3-parameter family.
Congruence is established if these parameters assume the same values in the two
geometric objects. Dimensions are then just the numerical values assigned to these
parameters. 

So the congruence theorems state that two point-sets that belong to a particular class are
congruent if they have the same dimensions. The theorems also tell us what these

p1=(0, 0, 0) and p2=(1, 1, 1)   

S
1={(x, y, z):x2+y2+z2=1} and 

S
2={(x, y, z):x2−2x+y2+z2 =0} 
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dimensions are. Our interest in congruence theorems should now be obvious. As the
triangle congruence theorems demonstrate, the same point-set can be parameterized and, 
hence, dimensioned in multiple ways. 

Finally, a word of caution about the meaning of the term dimension is in order. 
Sometimes we use the word dimension to refer to the dimensionality of space we are 
dealing with. A two-dimensional plane and three-dimensional space are examples of this
usage. Later, we will also refer to higher-dimensional spaces, such as a six-dimensional 
space, consisting of translations and rotations. It is also common to talk about the
dimensionality of a parametric space when referring to a parameterization of a geometric
object. However, as we have observed earlier, we also use the term dimension to refer to 
a numerical value for a geometric parameter. The context should make it very clear as to
what we mean by dimension. Fortunately, there is no ambiguity about the meaning of
dimensioning in engineering; it is the act of specifying dimensions, that is, numerical 
values to certain geometric parameters. 

2.6 EXERCISES 

1. Assume that you live in a two-dimensional planar world and are not allowed to move 
out of this plane. Restate the three triangle congruence theorems (2.1, 2.2 and 2.3) for 
this world. How would you define chirality in this world? How would you dimension a 
triangle in this world? 

2. Specialize Eqs. (2.9) through (2.13) for the case of rigid motions in a two-dimensional 
plane. Homogeneous coordinates for a point in the plane are given by the vector 

3. In each of the following cases, give an example of a point-set that 

● Has a plane of symmetry, but no axis or center. 
● Has an axis, but no plane of symmetry or center. 
● Has a center, but no plane of symmetry or axis. 

4. Prove the following assertions: 

● If a point-set S has two planes of symmetry, then their intersection is an axis of S. 
● If a point-set S has two perpendicular, intersecting axes, then a line perpendicular to 

both these axes and passing through their intersection is also an axis of S. 
● If a point-set S has a center that lies on an axis of S, then the plane perpendicular to 

the axis and passing through the center is a plane of symmetry of S. 

5. A triangle is dimensioned as shown in Figure 2.4(a). Is the dimensioning valid, that is, 
does this define a unique triangle up to rigid motion? If so, what is the associated 
congruence theorem? 
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● Another triangle is dimensioned as shown in Figure 2.4(b). Try drawing it with a 
ruler, a compass, and a protractor. Is the dimensioning valid? What is the associated 
congruence theorem? 

 

FIGURE 2.4 Three examples of dimensioned triangles. Are they valid? 

● Yet another triangle is dimensioned as shown in Figure 2.4(c). Try drawing it with a 
ruler, a compass, and a protractor. Is the dimensioning valid? What is the associated 
congruence theorem? Is it chiral in the plane of the triangle? 

6. When are two planar quadrilaterals congruent? Dimension the simple planar 
quadrilateral shown in Figure 2.5(a) using your result. What happens when the 
quadrilateral is not simple, that is, there is an edge intersecting a nonadjacent edge, as 
in Figure 2.5(b). 

7. When are two planar polygons congruent? Dimension a planar polygon using your 
result. Consider both simple and nonsimple polygons. 

8. “All planar objects are achiral when the plane that contains them is embedded in 
space.” What do you think is meant by this statement? Is it true, or are there any 
qualifications/exceptions to it? 

9. Let S={(x, y, z):x2+2y2+3z2=1} be the point-set that represents an ellipsoid. What is 
the point-set that results from applying a rigid motion of 90° rotation about the z-axis 
and a translation of unit shift along the x-axis to S? 

10. When are two tetrahedra congruent? Note that chirality is important here. Dimension 
a tetrahedron using your result. 

11. When are two polyhedra congruent? Dimension a polyhedron using your result. 

2.7 NOTES AND REFERENCES 

The three triangle congruence theorems, 2.1, 2.2 and 2.3, appear in Euclid’s Elements. 
Joyce (http://aleph0.clarku.edu/~djoyce/java/elements/elements.html) maintains an 
excellent online version of the Elements with interactive graphics. The Side-Angle-Side 
theorem (Book I, Proposition 4) appears very early in the Elements, where Euclid first 
uses the method of “superposition” to prove it. This may require moving one triangle 
outside of the plane. But the triangles don’t have to be in the same plane to begin with, 
and they often are not in the same plane when this proposition is invoked in solid
geometry. Book I, Proposition 8 is the Side-Side-Side theorem, and in the same Book I,
Proposition 26 is an elaboration of the Angle-Side-Angle theorem [in fact, in Proposition
26, he also discusses the case that supports examples like Figure 2. 4(a)]. Euclid doesn’t 
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use the word congruence; instead he just proves that if certain sides and angles are equal, 
then the other sides and angles are also equal. 

 

FIGURE 2.5 (a) A simple quadrilateral, because each edge intersects only its 
adjacent edges at its endpoints. (b) A nonsimple quadrilateral, in 
which an edge also intersects a nonadjacent edge. 

The one-to-one correspondence of points on an oriented line and real numbers is not 
quite obvious. Struik (1953) gives a simple explanation of this connection. After Rene
Descartes formally introduced coordinates in the 17th century to study geometry, the link
between algebra and geometry grew stronger. Use of matrices to represent linear
transformations such as rigid motion started only in the late 19th century. 

Lord Kelvin’s quote on chirality is from his Baltimore lectures on molecular dynamics 
and the wave theory of light, which were finally published in 1904. The word chiral is 
derived from the Greek word kheir, which means “hand.” The concept of chirality is 
quite important in chemistry because many important molecules are chiral and both
image forms appear in nature, each with different properties. The 2001 Nobel Prize in
chemistry was awarded to those who developed molecules that can catalyze important
reactions so that only one of the two mirror image forms is produced. 
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3 
Dimensioning Elementary Curves 

Curves are simple geometric objects to deal with, and they can be used to generate (for
example, by sweep operations) some commonly known surfaces. Therefore it is only
natural to start with curves. We begin by asking whether two given curves are congruent.
For circles we have an easily provable result. 

Theorem 3.1: Circle Congruence Theorem If two circles have the same radius, then 
they are congruent. 

So for circles we can treat the radius as the sole intrinsic parameter. The circle belongs 
to a 1-parameter family of curves. Assigning a numerical value to this parameter 
completes the task of dimensioning a circle. Actually, one may want to dimension the
diameter rather than the radius in some cases, but that is merely a matter of engineering
convenience. 

In fact, it is possible to generalize Theorem 3.1 for all plane curves. A general plane 
curve, of course, does not have just one radius. If the curvature (inverse of the radius of
curvature) of a curve expressed as a function of its arc length computed from a suitable
point and in a given direction, say, counterclockwise, equals that of another curve
expressed similarly, then they can be shown to be congruent. We will encounter a general
version of this theorem at the end of this chapter. That is why curvature is treated as an
intrinsic characteristic of a planar curve. This powerful result, alas, is not of much use for
dimensioning because specifying curvature at every point on a curve is not very practical.
Luckily, if we restrict ourselves to some special classes of curves we can find congruence
theorems that result in only a small number of dimensions. 

The simplest curve is the unbounded straight line. It doesn’t have an intrinsic 
dimension, in the sense that all straight lines are congruent to one another. The next
elementary curve is a planar curve of the second degree. 

3.1 CONICS 

Conics are planar algebraic curves of the second degree. They can be represented
implicitly as the set of points satisfying a general second-degree equation in coordinates x
and y as 

for real coefficients A, B, C, D, E, and F, where at least one of A, B, C is nonzero. A soft 
analysis of this second-degree equation gives us some useful insight. The six coefficients

{(x, y): Ax2+By2+Cxy+Dx+Ey+F=0} 
(3.1) 



A, B, C, D, E, and F can take arbitrary real values, but the equation remains unaltered if
the coefficients are multiplied by the same factor. Hence only the ratios of these six
coefficients are significant. This means that a conic can have, in general, five independent
parameters (or degrees of freedom), out of which three—two translational and one 
rotational—are accounted for in rigid motion in the plane. So the intrinsic shape of a 
conic depends at most on two independent parameters. 

This soft analysis is borne out by a more rigorous analysis in classical analytic 
geometry, which gives us the following classification theorem. 

Theorem 3.2: Conics Classification Theorem Any planar curve of second degree 
governed by an equation of the form of Eq. (3.1) can be moved by purely rigid motion in
the plane so that its transformed equation can assume one and only one of the nine
canonical forms given in Table 3.1. 

Of these nine canonical equations, only six correspond to curves in the real x-y plane, 
and so we will ignore the imaginary ones as being of no relevance in engineering design.
Out of these six real curves, three (ellipse, hyperbola, and parabola) have nonzero
curvature, while the remaining three (intersecting lines, parallel lines, and coincident
lines) are special collections of a pair of straight lines. Conics is the short name for conic 
sections, and this name is derived from the well-known fact that the ellipse, the 
hyperbola, and  

the parabola can be obtained by intersecting a right circular cone with planes, as shown in
Figure 3.1. 

An immediate consequence of the conics classification theorem is the following

TABLE 3.1 Classification of Conics 

Conic type Canonical equation Intrinsic 
parameters 

1 Real ellipse a, b 

2 Imaginary ellipse Not relevant 

3 Hyperbola a, b 

4 Parabola y2−2lx=0 l 
5 Real intersecting lines b/a or tan−1(b/a) 

6 Imaginary intersecting lines [intersecting at a 
real point (0, 0)] 

Not relevant 

7 Real parallel lines x2=a2 a 
8 Imaginary parallel lines x2=−a2 Not relevant 
9 Coincident lines x2=0 None 
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congruence theorem. 

 

FIGURE 3.1 Sectioning a right circular cone by a plane, producing an ellipse 
(plane cuts only one sheet of the cone completely), a hyperbola 
(plane is parallel to the axis of the cone), and a parabola (plane is 
parallel to a generator of the cone). 

Theorem 3.3: Conics Congruence Theorem Two conics are congruent if and only if 
they have the same canonical equation. 

So if two conics have the same classification and the intrinsic parameters (listed in the 
last column of Table 3.1) in their canonical equations assume the same values, then they
are congruent. This fact provides a simple way to dimension conics; we just have to
declare the type (from Table 3.1) of the conic and assign numerical values to its intrinsic
parameters. Thanks to the conics classification theorem, we need to consider only four
major types: the ellipse, the hyperbola, the parabola, and a pair of straight lines. Of these,
the ellipse, the hyperbola, and the parabola are called nondegenerate conics; pairs of lines 
are the degenerate conics. 

3.1.1 Ellipse 

The ellipse belongs to a 2-parameter family of curves. It is the only bounded curve
among the conics. It has two axes of symmetry, as shown in Figure 3.2. These two axes 
intersect at the center (of symmetry) of the ellipse. A geometrical interpretation of the
intrinsic parameters a and b is shown in Figure 3.2(a), where, when positive numerical 
values are assigned to them, the larger of the two is called the semimajor axis and the
smaller the semiminor axis. Calling some parameters and their numerical values axes
may sound strange, but the names have stuck through history. If a=b, we have the 
important special case of a circle with a=b=the radius. If two ellipses have the same 
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FIGURE 3.2 Ellipse defined by (a) the canonical algebraic equation, (b) two 
foci, F1 and F2, and the sum of the distances of any point on the 
ellipse from the foci, and (c) a focus F1, a directrix, shown as the 
thick vertical line, and an eccentricity ε. 

major axis and the same minor axis, then they have the same canonical equation and
hence are congruent. Theorem 3.1 is just a special case of this property. Figure 3.2(a) also 
shows how an ellipse can be dimensioned. The ellipse is the only bounded conic. 

The ellipse can be defined by other means as well. There are coordinate-free 
definitions of conics dating back to the ancient Greeks. Figure 3.2(b) illustrates one such 
definition of the ellipse, as the locus of a point the sum of whose distances from two fixed
points called foci is a constant. This constant is also the major axis 2a. The distance d

between the foci is equal to So the distance d between the foci and the sum 
2a of the distances of any point on the ellipse from the foci can be considered as another
pair of intrinsic parameters. Figure 3.2(b) shows one of the intrinsic dimensions by 
indicating the distance between the foci. Though it is difficult to indicate the sum of the
distances of any point on the ellipse from the foci as the other intrinsic dimension in a
drawing, it can be captured easily within a CAD system. 

Another classical definition of the ellipse invokes a directrix and a focus, which are an 
arbitrarily fixed line and an arbitrarily fixed point not on the line, respectively. See Figure 
3.2(c). The ellipse is the locus of a point P whose distance from the focus F1 is ε (the 
eccentricity) times its distance from the directrix M, where 0<ε<1. It is therefore possible 
to consider the distance l between the focus and the directrix and the eccentricity ε as a 
pair of intrinsic parameters for ellipses. Again, it is easy to indicate the intrinsic
dimension for l, as shown in Figure 3.2(c), in a drawing, but it is not so easy to indicate
the eccentricity as a dimension; CAD systems have better means of capturing these
dimensions. 

3.1.2 Hyperbola 

The hyperbola also belongs to a 2-parameter family of curves. It has two disjoint
branches, and each branch is unbounded. Its two axes of symmetry are shown in Figure 
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3.3. These two axes intersect at the center (of symmetry) of the hyperbola. A geometrical 
interpretation of its intrinsic parameter a is easily shown in Figure 3.3(a). The value 2a is 
called the transverse axis. Interpretation of the intrinsic parameter b requires some 
additional considerations. The hyperbola has two asymptotes, which are intersecting 
straight lines given by the equation 

 

FIGURE 3.3 Hyperbola defined by (a) the canonical algebraic equation, (b) 
two foci, F1 and F2, and the difference between the distances of any 
point on the hyperbola from the foci, and (c) a focus F2, a directrix, 
shown as the thick vertical line, and an eccentricity ε. 

An asymptote may be regarded as the limiting case of a tangent when the point of contact
goes to infinity. The lines of Eq. (3.2) are also asymptotes for a conjugate hyperbola,
defined by 

The asymptotes and the conjugate hyperbola are shown dotted in Figure 3.3(a). The value 
2b is called the conjugate axis. 2a and 2b form the sides of a rectangle whose vertices lie 
on the asymptotes, thus permitting a dimensioning scheme shown in Figure 3.3(a). We 
are justified in treating them as dimensions because two hyperbolas that have the same
transverse and conjugate axes are congruent. 

Other classical definitions that predate analytic geometry are available for hyperbolas.
In one of them, illustrated in Figure 3.3(b), the hyperbola is the locus of a point P the 
difference of whose distances from two fixed focus points F1 and F2 is a constant, which 

(3.2) 

(3.3) 
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is equal to 2a. It means that, in Figure 3.3(b), the difference between PF1 and PF2 is kept 
a constant equal to 2a. Here again the distance d between the foci and the constant 
difference 2a can be considered as intrinsic parameters of the hyperbola, permitting a
partial dimensioning, as in Figure 3.3(b). 

It is also possible to define hyperbolas using the focus, the directrix, and the 
eccentricity as was done with ellipse. Allowing the eccentricity ε to assume positive 
values exceeding unity yields hyperbolas. Similar to the ellipse, the distance l between 
the focus and the directrix and ε can be treated as intrinsic parameters and dimensioned.
See Figure 3.3(c). 

3.1.3 Parabola 

The parabola has only one intrinsic parameter and only one axis of symmetry. It has no
center of symmetry. Hence it is the only noncentral conic. It is made up of one connected
piece and is unbounded. Unlike the ellipse and the hyperbola, a geometric interpretation
of its intrinsic parameter l requires a consideration of its focus. To understand how the 
focus of a parabola is defined, we need to consider the locus definition of the parabola.
The parabola is the locus of a point that is equidistant from a fixed line (directrix) and a 
fixed point (focus) not on the line. See Figure 3.4(b). As seen in Figure 3.4(a), the chord 
of the parabola through its focus and perpendicular to its axis is called the latus rectum
and is of length 2l. The vertex of the parabola is at the origin O and is at a distance l/2 
from the focus. Parabolas that have the same-length latus recta are congruent. 

The distance between the focus and the directrix is an intrinsic parameter l for the 
parabola, and it can be dimensioned. The parabola can be obtained as a limiting case of
the ellipse by fixing l and driving ε toward unity in Figure 3.2(c). 

 

FIGURE 3.4 Parabola defined by (a) the canonical algebraic equation, and (b) 
a focus F and a directrix, shown as the thick vertical line. 

3.1.4 Pairs of Straight Lines 

A single straight line (or, equivalently, a pair of coincident lines) does not possess any
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intrinsic dimension. However, when we have two intersecting lines, as in Figure 3.5(a), 
they have the included angle θ as a relational parameter between them. It is also an 
intrinsic parameter of the pair of intersecting lines considered together, because if two
pairs of intersecting lines have the same angle of intersection then the two pairs are
congruent. It can be dimensioned as shown in Figure 3.5(a). 

When two straight lines are distinct and parallel, as in Figure 3.5(b), the separating 
distance between them is a relational parameter between them. It is also the intrinsic
parameter of the pair, because two pairs of parallel lines that have the same separating
distance are congruent. Such lines are dimensioned in Figure 3.5(b). The case of distinct 
parallel lines is the only case of conics that is not obtained by sectioning a cone with a
plane. 

These cases involving pair of straight lines illustrate how relational dimensions 
between two objects become intrinsic dimensions when we consider a tuple of them. 

3.1.5 Reduction to the Canonical Form 

We have completed the task of dimensioning conics. However, for the sake of
completeness, let’s examine how a general second-degree equation can be reduced to its
canonical form. The first task is to determine what type of the 

 

FIGURE 3.5 Pair of lines. (a) Two intersecting lines with their intrinsic 
parameter b/a. Note that θ=2 tan−1(b/a). (b) Two distinct parallel 
lines with their intrinsic parameter a. 

conic is given by the general equation. To simplify the notation, we will recast the Eq.
(3.1) in the form 

so that it can be written in a convenient matrix form as 

c
11x2+2c12xy+c22y2+2c13x+2c23y+c33=0 

(3.4) 
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where c21=c12, c31=c13, and c32=c23. So the 3×3 matrix C, called the coefficient matrix, in 
Eq. (3.5) is symmetric. Now define four determinants as 

(It will be assumed that, by now, the reader is familiar with the matrix computations
reviewed in Appendix 1.) In these determinants, one can see that α11, α22, and D2 are just 
the cofactors of c11, c22, and c33, respectively, in C. It can be shown that these 
determinants lead us directly to the type of the conic represented by Eq. (3.4) using Table 
3.2. Once the type has been determined, the curve is rotated and translated so that it is 
brought to the canonical form. 

Example 3.1 Consider the curve defined by the second-degree equation 
3x2+2xy+3y2+14x+20y−183=0. It can be written using a symmetric coefficient 
matrix C as 

(3.5) 

(3.6) 

TABLE 3.2 Decision Table for Type Classification of Conics 

D3≠0  D2≠0  D2<0    Hyperbola  
  D2>0  c11D3 (or c22D3)<0  Real ellipse  
  c11D3 (or c22D3)>0  Imaginary ellipse  
D2=0      Parabola  

D3=0  D2≠0  D2<0    Real intersecting lines  
D2>0    Imaginary intersecting lines  

D2=0  α11 (or α22)<0    Real parallel lines  
α11(or α22)>0    Imaginary parallel lines  
α11 (or α22)=0    Coincident lines  
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Using the definition of determinants in Eq. (3.6), we see that, for this curve, 
D3=−1771, D2=8, α11=−649, and α22=−598. Therefore, from Table 3.2 we infer 
that the curve is an ellipse. See Figure 3.6 for a plot of this curve. By rotation 
and translation, it can be brought to the canonical form 

Example 3.2 Consider the curve defined by the second-degree equation 
3x2+10xy+3y2+46x+34y+93=0. It can be written using a symmetric coefficient 
matrix C as 

 

FIGURE 3.6 Plot of the curve in Example 3.1. 

Using the definition of determinants in Eq. (3.6), we see that, for this curve, 
D3=−32, D2=−16, α11=−10, and α22=−250. Therefore, from Table 3.2 we infer 
that the curve is a hyperbola. See Figure 3.7 for a plot of this curve. By rotation 
and translation, it can be brought to the canonical form 

Example 3.3 Consider the curve defined by the second-degree equation 

  

  

x2−4y2=1   
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. It can be written using a 
symmetric coefficient matrix C as 

Using the definition of determinants in Eq. (3.6), we see that, for this curve, 
D3=100, D2=0, α11=−60, and α22 =−160. 

 

FIGURE 3.7 Plot of the curve in Example 3.2. 

Therefore, from Table 3.2 we infer that the curve is a parabola. See Figure 3.8 
for a plot of this curve. By rotation and translation, it can be brought to the 
canonical form 

3.1.6 Summary of Conics Dimensioning and Extensions 

Table 3.3 summarizes commonly used intrinsic dimensions for conics. Also shown in the
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table are the corresponding intrinsic parameters. 
Any conic has at least one axis of symmetry. This is due to the fact that in the

canonical form at least one coordinate variable appears only in its second power.
Replacing it by its negative will then leave the equation unchanged. Therefore the other
coordinate axis is an axis of reflection. This leads to the fact that conics are achiral in the
plane that contains them. 

 

FIGURE 3.8 Plot of the curve in Example 3.3. 

TABLE 3.3 Summary of Intrinsic Dimensions for Conics 

Conic type Intrinsic dimension 
name 

Corresponding intrinsic 
parameter 

Reference 
figure 

Ellipse Major axis 
Minor axis 

2a 
2b 

Figure 3.2 

Circle Diameter 2×radius   
Hyperbola Transverse axis 

Conjugate axis 
2a 
2b 

Figure 3.3 

Parabola Latus rectum 2l Figure 3.4 
Intersecting 
lines 

Included angle 2tan−1(b/a) Figure 3.5(a) 

Parallel lines Separating distance 2a Figure 3.5(b) 
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Conics dimensioning extends very simply to conic half-spaces, that is, two-dimensional 
regions bounded by conics. For example, an elliptic disk in the plane can be defined
using the inequality 

Dimensioning it is the same as dimensioning the ellipse that bounds it because
congruence theorems can be found for the elliptic half-spaces just as we did for ellipses. 
In general, a conic half-space can be defined using the inequality 

and dimensioning it is the same as dimensioning the bounding conic. 
Conic curves can be swept in space to create surfaces. For example, sweeping an

ellipse along a line perpendicular to the plane that contains the ellipse generates an
(unbounded) elliptic surface called the elliptic cylinder. Dimensioning this elliptic 
cylinder is the same as dimensioning the ellipse that is swept. Similar arguments hold for
hyperbolic and parabolic cylinders. Observe that two intersecting planes and two parallel
planes can also be generated by sweeping two intersecting lines and two parallel lines,
respectively, perpendicular to the planes that contains the pair of lines; so they can be
dimensioned similarly. All these are examples of translational sweeps of conics 
perpendicular to the plane containing the conic. 

Conic curves can also be subjected to rotational sweep to generate surfaces. In 
particular, they can be rotationally swept about an axis of symmetry (recall that every 
conic has at least one axis of reflexive symmetry) to generate a surface of revolution.  

1. An ellipsoid of revolution can be generated by rotationally sweeping an ellipse about 
its major or minor axis. 

2. Two disjoint surfaces of revolution can be generated by rotationally sweeping a 
hyperbola about its transverse axis. Just one surface of revolution can be generated 
by rotationally sweeping the hyperbola about its conjugate axis. 

3. A paraboloid of revolution can be generated by rotationally sweeping a parabola 
about its axis of symmetry. 

4. A right circular cone (consisting of two equal conical surfaces meeting at their 
common apex) can be generated by rotationally sweeping two intersecting lines 
about one of their two axes of symmetry. 

5. A right circular cylinder can be generated by rotationally sweeping two distinct, 
parallel lines about their bisector line of symmetry. 

In all these cases, dimensioning each of these surfaces of revolution is the same as the
dimensioning of the swept conic. 

These translational or rotational swept surfaces also bound three-dimensional half-
spaces. Just as we saw in the case of two-dimensional half-spaces, dimensioning these 

  

c
11x2+2c12xy+c22y2+2c13x+2c23y+c33≤0 

(3.7) 
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three-dimensional half-spaces is the same as dimensioning the conics that were swept. 

3.2 FREE-FORM CURVES 

Curves of third and higher degree do not admit simple and compact classification as
conics. This means that even for general cubics we do not have the luxury of simple
congruence theorems. Fortunately, most of the engineering uses of cubic and higher-
order curves occur as free-form curves, such as Bézier and B-spline curves. 

The conic curve representation in Eq. (3.1) was referred to as implicit because the 
governing equation is of the implicit form f(x, y)=0. Such curves are also called implicit 
curves. A curve can also be represented parametrically by expressing x=f1(t), y=f2(t), and, 
if it is a space curve, z=f3(t). In this representation t is the parameter, which may be 
confined to vary within a finite interval. Such curves are also called parametric curves. 
This may cause some confusion in our treatment of parameters in geometric models, and
the distinction can be clarified as follows. 

Recall that a curve is treated as a point-set S, where the members of the set are 
individual points. In a parametric curve each value of the scalar parameter t is mapped to 
a unique point on the curve in a plane or in space. This is a simple way of addressing
each point in a particular point-set S. But the whole curve itself, that is, the point-set S
itself, can be dimensioned or parameterized from the outset. Under this scheme we can
have two different curves, that is, point-sets S1 and S2, that correspond to different sets of 
dimensions. For example, a circle can be represented parametrically as x= r cos(t), y=r
sin(t), where t is the angle parameter that can vary between 0 and 2π for any particular 
circle. However, the circle itself is parameterized by its radius r, and this holds good 
whether the circle is given a parametric representation as here or an implicit
representation as in x2+y2=r2. The meaning of the term parameter should be clear from 
the context. 

A particular parametric representation of a curve is a linear combination of certain
functions (called basis functions), where coordinates of certain points (called control 
points) are used as the multiplying coefficients, as in 

for plane curves, or as in 

for space curves. Both of Eqs. (3.8) and (3.9) can be written more compactly as 

(3.8) 

(3.9) 
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Here, the points pi are called control points and the functions φi are called basis 
functions. 

Each control point pi in Eq. (3.10) has the coordinates (xi, yi) in Eq. (3.8) in the case of 
planar curves and (xi, yi, zi) in Eq. (3.9) in the case of space curves. When the control 
points are joined in sequence by line segments, the resulting object is called the control 
polygon. It might have been better to call it a “control polyline” because it doesn’t close 
on itself, it may self-intersect, and it may not lie in a plane, but the name control polygon
has stuck and we will continue to use it. Note that the sequence, and hence the indices, of
the control points are important. We can also consider the tuple of control points (p0, p1,
…, pn) as a representation of the control polygon because, when the points in the tuple are 
connected in the indicated sequence, it yields the control polygon. 

For free-form curves, the parameter t in the basis functions φi is constrained to vary 
within a finite real interval [α, β] so that the curves are bounded. In addition, for reasons
that will become obvious soon, the basis functions φi are chosen such that they satisfy an 
important property called the partition of unity, given by 

Now we prove an interesting theorem. 
Theorem 3.4: Free-Form Curve Invariance Theorem A free-form curve represented 

by Eq. (3.10) is intrinsically invariant under rigid motion of its control points if and only
if its basis functions partition unity in the interval of interest. 

Proof. To prove this theorem for the more general space curve, let’s denote the 
homogeneous coordinates of the control point pi by Xi so that 

Then, if the basis functions partition unity, we can rewrite Eq. (3.10) as 

Here, X(t) is the homogeneous coordinate of the point p(t). Now, premultiply both sides 
of Eq. (3.13) by a 4×4 matrix R, as in Eq. (2.9), that represents a rigid motion. This would

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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result in 

where matrix multiplication has been distributed within the summation. This shows that
the curve transformed by the rigid motion is the same as the curve obtained with control
points transformed by the same rigid motion. 

To prove “the only if” part, we just need to show that intrinsic invariance under rigid
motion implies partition of unity. Assume that the curve is intrinsically invariant under
rigid motion of its control points. This means that Eq. (3.14) holds. Expanding the matrix
multiplication on both sides and looking at the last row, we obtain 

which is the result we seek. The planar version of the theorem is proved similarly. 
A consequence of Theorem 3.4 is the following congruence theorem. 
Theorem 3.5: Free-Form Curve Congruence Theorem Two free-form curves that 

share the same basis functions that partition unity are congruent if the tuples of their
control points are congruent. 

This implies that dimensioning a free-form curve whose basis functions partition unity 
is the same as dimensioning its control polygon. It also follows that these free-form 
curves can be parameterized by parameterizing their control polygons. We will now look
at some popular free-form curves. 

3.2.1 Bézier Curves 

When the basis functions in Eq. (3.10) are chosen to be the Bernstein basis functions
given by 

the resulting curve is called a Bézier curve. Bernstein basis functions of degree n are used 
when there are n+1 control points. See Table 3.4 for some low-degree Bernstein basis 
functions and plots of their graphs. Since the Bernstein basis functions are given
unambiguously by Eq. (3.16), a Bézier curve is completely defined by its control points. 
Figure 3.9 shows three cubic Bézier curves, all having the same set of control points. 
However, the order sequences of these control points are different in different curves, as
the control polygons illustrate. The corresponding Bézier curves are also quite different. 
These curves show the importance of the tuple of control points, or, equivalently, the
control polygon. Bézier curve is a bounded curve due to the finite interval over which the

(3.14) 

(3.15) 

(3.16) 
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parameter t can vary. 

It can be easily verified that the Bernstein basis functions partition unity. That is, 

The best way to see this is to obtain a binomial expansion of the left side of the simple
identity 

A cursory glance at the plots in Table 3.4 should also satisfy the reader as to the veracity 
of Eq. (3.17). The key result for us, then, is that a Bézier curve can be dimensioned by 
dimensioning its control polygon. Figure 3.10 illustrates two ways to dimension a planar 
cubic Bézier curve by dimensioning its control  

TABLE 3.4 Low-Degree Bernstein Basis Functions 

 

(3.17) 

{t+(1−t)}n≡1 
(3.18) 
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FIGURE 3.9 Three cubic Bézier curves (a–c) along with their control points 
and control polygons. 

polygon. In Figure 3.10(a), the three segments and their included angles are dimensioned.
In Figure 3.10(b), a coordinate dimensioning is employed, where, without loss of
generality, the first control point is fixed at the origin of a Cartesian coordinate system
and the first segment of the control polygon is aligned with the positive x-axis. Note that 
these are not the only options to dimension a cubic Bézier curve. 

Following these examples, a simple analysis shows that an nth-degree Bézier curve 
needs 2n−1 dimensions if it lies in a plane and 3n−3 dimensions if it lies in space. These
are also the numbers of independent parameters if we choose to parameterize these
curves. 

A quadratic Bézier curve (that is, of second degree), which has three control points, 
requires three dimensions. It is just an arc of a parabola. From our earlier study of the
parabola, recall that an unbounded parabola needs only one dimension. But here a
parabolic arc needs two additional dimensions, to 

 

FIGURE 3.10 Dimensioning the control polygon of a planar cubic Bézier 
curve. (a) Segment lengths and included angles are dimensioned. (b) 
Coordinate dimensioning of the control points. 

indicate where it starts and where it ends. It is also instructive to dimension the control
polygon of this quadratic Bézier curve; it is the same as dimensioning a triangle. As we 
saw in Chapter 2, there are many ways to accomplish even this simple task. 

Before we leave Bézier curves, we should consider some of the interesting properties
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exhibited by these curves. 

1. Endpoint interpolation: The Bézier curve passes through the first and the last control 
points. In fact, we might say that it starts at the first control point and ends at the last 
control point. 

2. End tangents: The tangent to the Bézier curve at the first control point is aligned 
with the first segment of the control polygon. The tangent at the last control point is 
aligned with the last segment of the control polygon. 

3. Convex hull containment: Note that the Bernstein basis functions are non-negative in 
the [0, 1] interval. This, combined with the partition of unity property, ensures that 
the Bézier curve is contained within the convex hull of its control points. 

3.2.2 B-Spline Curves 

When a set of Bézier curves are smoothly spliced together, we obtain a B-spline curve. In 
practice, the smooth joining of the Bézier curves is accomplished by a set of B-spline 
basis functions. To define these basis functions, first we choose a knot sequence [u0, u1,
…, uM] of real numbers that is nondecreasing; that is, ui−1≤ui≤ ui+1. Then the nth-degree 
B-spline basis function of parameter u is defined recursively as 

where 

Table 3.5 shows a typical B-spline basis function of first, second, and third degrees, 
assuming a uniform knot sequence. In general, we treat the knot sequence as part of the
definition of the B-spline basis functions, and the knots need not be uniformly spaced. 

Note that a B-spline basis function is nonzero only over a finite interval. We say that 
such a function has only a compact support. This means that local modifications can be
made to a B-spline curve by moving a few control points  

(3.19) 

(3.20) 
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in that vicinity without affecting the curve in other places. Figure 3.11 shows a set of nine 
quadratic B-spline basis functions, defined over a uniform knot sequence [−1, 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10]. Notice that these functions partition unity only over the interval [1, 8].
The first seven of these basis functions have been used in constructing a second-degree 

TABLE 3.5 B-Spline Basis Functions of Low Degrees 

 
A uniform knot sequence [−1, 0, 1, 2, 3, 4] is used. 
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B-spline curve in the same Figure 3.11. These are a set of five parabolic arcs that have
been chained together with tangent continuity. This B-spline curve is defined over the 
parametric interval [1, 6] because the seven basis functions partition unity over that
interval. We could add as many control points as we want without increasing the degree
of the curve segments that have been smoothly spliced together to produce the composite
curve. In a general B-spline curve, the knot sequence need not be uniform. 

In summary, we observe that by choosing a proper interval for u we can guarantee that 
the B-spline basis functions partition unity. Then the problem reduces to dimensioning, or 
parameterizing, just the control polygon. 

3.2.3 Rational Curves 

Of all the nondegenerate conics, only (a piece of) the parabola is represented by the
Bézier or the B-spline curve. To capture pieces of the ellipse or the 

 

FIGURE 3.11 A set of quadratic B-spline basis functions defined over a 
uniform knot sequence, and a quadratic B-spline curve using these 
bases. 

hyperbola, we need a rational parametric representation of the form 

where wi is the scalar weight assigned to the control point pi. The parameter t is confined 
to the interval [α, β], as before. We can have the rational Bézier curve or the rational B-

(3.21) 
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spline curve, depending on the choice of the basis function φi(t).
 

Example 3.4 A Bézier curve with three control points p1=(1, 0), p2=(1, 1), and 
p3=(0, 1) defines a parabolic arc. But a rational Bézier curve with the same 
control points and weights w1=1.0, w2=1.0, and w3=2.0 defines a circular arc. 
(Why?) 

We note that the new basis functions 

still satisfy the partition-of-unity property. (Here the weights are treated as part of the 
definition of the basis functions.) Therefore, the rational curve also can be dimensioned
(or parameterized) by dimensioning (or parameterizing) its control polygon. These results
apply directly to the so-called nonuniform rational B-splines (NURBS) curves as well. 

3.3 SPACE CURVES 

Space curves are those that do not lie in a plane. Free-form space curves have already 
been dealt with in the last section, where the problem was reduced to dimensioning or
parameterizing the control polygons that lie in space. But not all useful space curves have
the Bézier or B-spline representation. The helix is one such example. 

The helix is a special space curve. It has a constant, nonzero curvature and a constant, 
nonzero torsion. To understand what we mean by this, we need some background in
tangents, normals, and binormals. Consider a parametric representation of a space curve,
where the parameter s has a geometric meaning of being the arc length along the curve of 
any point in question from an arbitrary reference point on the curve. It is also called a
natural representation of the curve. It gives the curve an orientation. If we regard p(s) as 
the position vector of any point on the curve, then we have p(s)=[x(s), y(s), z(s)]T as its 
coordinates in terms of the arc length s. We can then differentiate it with respect to s to 
get the unit tangent vector 

A different choice of the natural representation would give the same unit tangent vector
(or its negative if the opposite orientation to the curve has been taken). 

(3.22) 

(3.23) 
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A normal vector to the curve is obtained by differentiating the unit tangent vector with
respect to s, as in 

where κ(s) is called the curvature at that point and is the unit principal normal vector. 
The curvature is an intrinsic quantity of the curve because it is independent of the natural
parameterization. It tells us how much the curve is curving away from the tangent. Now
consider the unit binormal vector, defined as the vector cross product 

The tuple  forms a right-handed, orthonormal triad. A differentiation of the unit
binormal with respect to s yields 

where  is called the torsion of the curve at that point. Just as with curvature, torsion 
is an intrinsic property of the curve. The torsion tells us how much the curve is twisting
away from the plane determined by the tangent and the normal vectors. 

With these preliminaries, the stage is set for the following impressive theorem. 
Theorem 3.6: Fundamental Existence and Uniqueness Theorem of Curves Let κ(s) 

and  be arbitrary continuous functions on a≤s≤b. Then there exists, except for 

position in space, one and only one space curve C for which κ(s) is the curvature,  is 
the torsion and s is a natural parameter along C. 

 

FIGURE 3.12 (a) A right-handed helix. (b) A left-handed helix. 

(3.24) 

(3.25) 

(3.26) 
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It follows immediately that two space curves are congruent if and only if they have the
same arc length parameterization of curvature and torsion. (It specializes to the case of
planar curves if we set the torsion to zero.) Obviously, this is the most general
congruence theorem for curves we have. Unfortunately, in the area of dimensioning, its
use is limited. 

Fortunately, we have a direct application of this theorem for the helix. Consider the 
space curve {(x, y, z):x=a cos θ, y=a sin θ, z=bθ}, where a>0 and b≠0. By varying its 
angle parameter θ, we see that it traces a helix. Its curvature is constant and is equal to a/
(a2+b2), and its torsion is also a constant and is equal to b/(a2+b2). If b>0, that is, if the 
torsion is positive, then the helix is a right-handed curve. If b<0, then the torsion is 
negative and the helix is left-handed. See Figure 3.12(a) for a right-handed helix with 
a=1 and b=1, and see Figure 3.12(b) for a left-handed helix with a=1 and b=−1. Since 
torsion, including its sign, is an intrinsic property of the curve, the theorem says that two
helices that have the same a and the same magnitude but different signs for b cannot be 
congruent. See Example 2.17 for a similar discussion on helix. 

3.4 EXERCISES 

1. Determine the types of the following conics. Plot them to verify your results. 

(a) 3x2+2xy+3y2−6x+14−101=0 
(b) 3x2−10xy+3y2+16x−16y+8=0 

(c)  
(d) xy+x+y+6=0 
(e) 40x2+36xy+25y2+8x−64y−101=0 
(f) 9x2+24xy+16y2−10x+70y−75=0 

2. Common household flashlights have a parabolic reflector. How would you dimension 
such a reflector? What are the design considerations in the assembly of bulb, reflector, 
and support casing? 

3. Find some information about the planar cubic curves called cissoid of Diocles, folium 
of Descartes, and witch of Agnesi. How would you dimension them? 

4. The shape of a gear tooth is derived from involutes. Find out how they are defined. 
How are the gear teeth dimensioned? 

5. Define a parametric curve using basis functions that do not partition unity in the 
interval of interest. Show that it is not intrinsically invariant under rigid motion. 

6. Prove the assertion that that an nth-degree Bézier curve needs 2n−1 dimensions if it 
lies in a plane and 3n−3 dimensions if it lies in space. 

7. Figure 3.11 is for a quadratic B-spline curve. Repeat this exercise for a cubic B-spline 
curve. 

8. Give a rational Bézier representation for a quarter of an ellipse. 
9. Prove that the converse of the free-form curve congruence theorem (Theorem 3.5) is 

false. (Hint: Construct a simple counterexample using a Bézier curve. It remains the 
same if the control points are merely labeled in the reverse order.) 
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3.5 NOTES AND REFERENCES 

The conics classification theorem is so well established in literature that we don’t bother 
to prove it here. Apollonius of Perga wrote extensively about conics as early as the third
century B.C. He and other ancient Greeks recognized the latus rectum of a parabola as its
parameter. It is of historic interest to us to note the origin of this term and how it was 
used in the context of geometry. An analytic treatment of conics was undertaken only in
the last few centuries. Sommerville (1951) is still a sound source for a comprehensive, if
somewhat dated, study of conics. A brief, charming introduction to conics can be found
in Hilbert and Cohn-Vossen (1983). Struik (1953) gives a nice type classification of 
conics that we have adopted. A recent, readable account of reducing conics to their
canonical form is given by Rutter (2000). His book can be consulted for further
information on the canonical reduction. Our examples and exercises for canonical
reduction of general second-degree curves are intended to develop a better feel for these
curves. We rarely perform these calculations in practice, because modern CAD systems 
exploit the classification theorem directly to define the nondegenerate conics. 

Compared to conics, free-form curve representations are new, and their popularity can
be traced to the development of computer-aided design in the last 40 years. Farin (1993)
is a standard reference for this material. Our key result on the free-form curve invariance 
is a special case of a more general invariance theorem. In fact, it can be shown that a free-
form curve is invariant under any affine transformation of its control points. But we
needed only the result that pertains to rigid motions. 

The fundamental existence and uniqueness theorem for curves is one of the major 
results in differential geometry Our treatment of it is very brief, and we give it here
mainly for the sake of completeness. Lipschutz (1969) is a highly readable yet rigorous
reference for this theorem. 
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4 
Dimensioning Elementary Surfaces 

Surfaces are the geometric objects through which engineering parts interact with each
other and with the environment. As such, surfaces play a crucial role in engineering
functionality. Following the approach adopted for curves, we start with elementary
surfaces and look for their classification and congruence theorems. 

The unbounded plane is the simplest surface. It can be defined as the point-set 

for real coefficients A, B, C, and D, where at least one of A, B, C is nonzero. All planes in 
the Euclidean space are congruent, which leaves the plane with no intrinsic dimension.
Next in the hierarchy of complexity are second-degree surfaces called quadrics, to which 
we turn our attention. 

4.1 QUADRICS 

Quadrics are algebraic surfaces of the second degree. They can be represented implicitly
as the set of points satisfying a general second-degree equation in coordinates x, y, and z 
as 

for real coefficients A, B, C, D, E, F, G, H, K, and L, where at least one of A, B, C, D, E, 
F is nonzero. Again, a soft analysis of this equation is fruitful. Although the 10
coefficients in Eq. (4.2) can take arbitrary real values, the equation remains unaltered if
the coefficients are multiplied by the same factor. Hence only the ratios of these 10
coefficients are significant. This means that a quadric can have, in general, nine
independent parameters (or degrees of freedom), out of which six—three translational 
and three rotational—are accounted for rigid motion in space. So, intrinsically, a quadric 
surface has a maximum of three independent parameters. 

Classical analytic geometry gives a rigorous support for the foregoing soft analysis in
the form of the following classification theorem. 

Theorem 4.1: Quadrics Classification Theorem Any surface of second degree 
governed by an equation of the form of Eq. (4.2) can be moved by purely rigid motion in
space so that its transformed equation can assume one and only one of the 17 canonical

{(x, y, z): Ax+By+Cz+D=0} 
(4.1) 

{(x, y, z): Ax2+By2+Cz2+Dxy+Eyz+Fzx+Gx+Hy +Kz+L=0} 
(4.2) 



forms given in Table 4.1. 
Of the 17 canonical equations in Table 4.1, only 12 correspond to surfaces in the real 

space and so we will ignore the imaginary ones. Out of these 12 real surfaces, nine have
nonzero curvature and are illustrated in Figure 4.1, while the remaining three 
(intersecting planes, parallel planes, and coincident planes) are special collections of a
pair of planes. 

The quadrics classification theorem leads to the following congruence theorem. 
Theorem 4.2: Quadrics Congruence Theorem Two quadrics are congruent if and 

only if they have the same canonical equation. 
If two quadrics have the same classification and the intrinsic parameters (listed in the 

last column of Table 4.1) in their canonical equations assume the same values, then they
are congruent. So we can dimension a quadric by declaring its type (from Table 4.1) and 
assigning numerical values to its intrinsic parameters. Fortunately, we need to consider
only a few major types of quadrics, most of which are illustrated in Figure 4.1. 

TABLE 4.1 Classification of Quadrics 

Quadric type Canonical equation Intrinsic 
parameters 

1 Real ellipsoid a, b, c 

2 Imaginary ellipsoid 

  

Not relevant 

3 Hyperboloid of one sheet a, b, c 

4 Hyperboloid of two sheet a, b, c 

5 Real quadric cone a/c, b/c 

6 Imaginary quadric cone [with real apex 
(0,0,0)] 

Not relevant 

7 Elliptic paraboloid a, b 

8 Hyperbolic paraboloid a, b 

9 Real elliptic cylinder 

  

a, b 

10 Imaginary elliptic cylinder Not relevant 

11 Hyperbolic cylinder a, b 
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12 Real intersecting planes b/a or tan−1(b/a) 

13 Imaginary intersecting planes 
[intersecting at a real line] 

Not relevant 

14 Parabolic cylinder y2–2lx=0 l 
15 Real parallel planes x2=a2   
16 Imaginary parallel planes x2=−a2 Not relevant 
17 Coincident planes x2=0 None 

Dimensioning elementary surfaces     59



 

FIGURE 4.1 Nine real quadrics with nonzero curvature. 

4.1.1 Ellipsoid 

The ellipsoid is the only bounded quadric surface. It belongs to a 3-parameter family and 
has three planes of reflexive symmetry. See Figure 4.1(a). In its canonical form, it cuts 
off line segments of lengths 2a, 2b, and 2c from the x-, y-, and z-axes, respectively. These 
are called the axes of the ellipsoid. The semiaxes are the intrinsic parameters a, b, and c
listed in Table 4.1, thus providing a geometrical interpretation for these parameters. The 
ellipsoid doesn’t have the focal points described for ellipses in Chapter 3. However, the 
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ellipsoid intersects the planes of reflexive symmetry in ellipses. Its projection onto these
planes also yields the same result. 

The three axes of the ellipsoid can be dimensioned directly on a three-dimensional 
view, as in Figure 4.1(a). Alternatively, we can dimension the projected views of the
ellipsoid. By projecting the ellipsoid on two of its planes of reflexive symmetry, we
reduce the ellipsoid dimensioning problem to that of dimensioning two different ellipses. 

An important special case of the ellipsoid is the sphere, when a=b=c=the radius. When 
only two of the semiaxes are equal, say, b=c, we have a surface of revolution called a
spheroid. It can be obtained by taking the ellipse of Figure 3.2(a) and rotating it about the 
x-axis. A spheroid is called oblate if the third axis is shorter than the first two (like the 
earth), and prolate if the third axis is longer than the first two (like an egg). The spheroid 
has two focal points. Its directrix is a plane. All the techniques for dimensioning an
ellipse can be applied to the spheroid. 

In summary, an ellipsoid has three intrinsic dimensions, a spheroid has two, and a 
sphere has only one. 

4.1.2 Hyperboloids of One and Two Sheets 

Figures 4.1(b) and 4.1(c) illustrate the two hyperboloids. The hyperboloid of two sheets 
consists of two disjoint surfaces, whereas the hyperboloid of one sheet has only one
connected surface. They have three planes of reflexive symmetry. Both belong to 3-
parameter family of surfaces. When a plane parallel to the xy-plane intersects the 
hyperboloid, it does so at a point or in an ellipse. 

Each section of a hyperboloid of one sheet by a plane parallel to the yz-plane or the zx-
plane is a hyperbola or a degenerate hyperbola containing two intersecting straight lines.
The one-sheeted hyperboloid has two transverse axes (2a and 2b) and one conjugate axis 
(2c), thus providing a geometrical interpretation for its intrinsic parameters. These can be
dimensioned in sectional or projected views. When the transverse axes are equal, we have
a one-sheeted hyperboloid of revolution; it is the same as the one obtained by rotating a
hyperbola in Figure 3.3(a) about the y-axis, that is, the conjugate axis. It has two intrinsic
dimensions. 

Perhaps the most surprising fact about a hyperboloid of one sheet is that it is a ruled 
surface. That is, it can be generated by taking a straight line and moving this line in space
in some appropriate manner. Another way to look at it is that the hyperboloid of one
sheet contains an infinite number of straight lines. We will see more about the one-
sheeted hyperboloid as a ruled surface later, in Section 4.3.3. 

Each section of a hyperboloid of two sheets by a plane parallel to the yz-plane or the 
zx-plane is a hyperbola. The two-sheeted hyperbola has one transverse axis (2c) and two 
conjugate axes (2a and 2b). A two-sheeted hyperboloid of revolution results when the 
conjugate axes are equal; this result can also be obtained by rotating the hyperbola of
Figure 3.3(a) about the x-axis, which is also the transverse axis. It then has two intrinsic
dimensions. 
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4.1.3 Quadric Cone 

This surface has reflexive symmetry with respect to three planes, as shown in Figure 4.1
(d). In its canonical form, the z-axis is its axis and the origin is its vertex. The cone in 
Figure 4.1(d) is asymptotic to both the hyperboloids in Figures 4.1(b) and 4.1(c). The 
surface is a cone because it is generated by moving a line that passes through a fixed
point (the vertex). It intersects any plane perpendicular to its axis in an ellipse or a single
point; the right circular cone is an important special case when the ellipse becomes a
circle. The right circular cone is the cone of revolution. The intersection of the quadric
cone with a plane is a conic curve. 

A general quadric cone belongs to a 2-parameter family, and the right circular cone 
belongs to a 1-parameter family. A right circular cone can be dimensioned by specifying
its apex angle (vertex angle). Dimensioning a general quadric cone requires more effort.
One method is to dimension the ellipse obtained by sectioning the cone by a plane
perpendicular to the cone axis and located at a unit distance from the vertex. 

4.1.4 Elliptic Paraboloid 

Figure 4.1(e) shows an elliptic paraboloid. In its canonical form, the z-axis is the axis of 
the elliptic paraboloid and the origin is its vertex. It has two planes of reflexive
symmetry. When a plane perpendicular to the z-axis intersects the surface, it does so in an
ellipse or a point. The origin is the vertex of the elliptic paraboloid in its canonical form.
A paraboloid of revolution is a special case when the ellipse specializes to a circle. The
elliptic paraboloid belongs to a 2-parameter family, and the paraboloid of revolution 
belongs to a 1-parameter family. 

An elliptic paraboloid can be dimensioned by dimensioning the ellipse obtained by
intersecting the surface by a plane perpendicular to its axis at a distance of 1/2 units from
the vertex. A paraboloid of revolution is dimensioned by dimensioning its generating
parabola. 

4.1.5 Hyperbolic Paraboloid 

Arguably, the hyperbolic paraboloid is the most intriguing quadric. It is shown in Figure 
4.1(f). This saddle-shaped surface has reflexive symmetry with respect to the yz- and zx-
planes. The intersection of the surface by a plane perpendicular to the z-axis is a 
hyperbola that can degenerate to two intersecting lines at the origin. Intersection by
planes parallel to the other coordinate planes are parabolas. The hyperbolic paraboloid
belongs to a 2-parameter family. It may be dimensioned by dimensioning the hyperbola
obtained by intersecting the surface by the plane z=1/2. 

Surprisingly, the hyperbolic paraboloid is also a ruled surface. In fact, it is a doubly 
ruled surface. We will see more about this ruled surface in Sections 4.2 and 4.3.3. 

4.1.6 Quadric Cylinders 

Elliptic, hyperbolic, and parabolic cylinders, shown in Figures 4.1(g), 4.1(h), and 4.1(i), 
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are obtained by taking an ellipse, a hyperbola, and a parabola, respectively, and sweeping
them along a direction perpendicular to the plane that contains these curves. Note that
these cylinders extend indefinitely, both forward and backward, in the sweep direction. 

Intrinsic parameters for these cylinders are the same as those of the curves being swept, 
as can be seen from Table 4.1. It is also intuitively clear that when the curves are swept
perpendicular to the plane that contains them, no additional dimensions (or parameters)
are introduced. Therefore, elliptic and hyperbolic cylinders belong to a 2-parameter 
family, while the parabolic cylinder belongs to a 1-parameter family. Dimensioning the 
underlying planar curves also dimensions these cylinders. 

An important special case of the elliptic cylinder is the right circular cylinder, when the
ellipse is specialized to a circle. It then has only one intrinsic dimension, the radius. 

4.1.7 Pairs of Planes 

Planes are the degenerate quadrics, just as lines are the degenerate conics. Coincident
planes have no intrinsic dimension. Intersecting planes have the included angle as the 
intrinsic dimension of the pair. The separating distance between parallel planes is the
intrinsic dimension of that pair. 

4.1.8 Reduction to the Canonical Form 

As we did in the case of conics, it is possible to infer the type of the quadric defined by a
general second-degree equation using a compact decision table. For this, we first recast 
Eq. (4.2) as 

so that it can be written in a convenient matrix form as 

where, for the 4×4 symmetric coefficient matrix C4, c12=c21, c31=c13, c41=c14, c32=c23, 
c42=c24, and c43=c34. Let’s denote the determinant of C4 by ∆ and its rank by ρ4. The top-
left 3×3 submatrix of C4 is 

c
11x2+c22y2+c33z2+2c12xy+2c23yz+2c31zx +2c14x+2c24y+2c34z+c44=0 

(4.3) 

(4.4) 

(4.5) 
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and its rank will be denoted by ρ3. We can then determine the type of the quadric using
Table 4.2. In that table, the question “k’s same sign?” is answered yes if all the nonzero 
eigenvalues of C3 have the same sign; otherwise the answer is no. Similarly, the question 
“K’s same sign?” is answered yes if all the nonzero eigenvalues of C4 have the same sign; 
otherwise the answer is no. Once the type has been determined, the surface can be rotated
and translated so that it is brought to the canonical form. 

Example 4.1 Consider the quadric surface xy+xz+yz+ 1=0. The related matrices 
are 

Then, we have ρ3=3, ρ4=4, and ∆=0.25. The eigenvalues of C3 are −0.5, −0.5, 
and 1.0. The eigenvalues of C4 are −0.5, −0.5, 1.0, and 1.0. From Table 4.2 we 
see that the quadric is a hyperboloid of one sheet. By proper rotation and 

  

TABLE 4.2 Decision Table for Type Classification of Quadrics 

ρ3
 ρ4

 ∆ k’s same sign? K’s same sign? Type of quadric 

3 4 <0 Yes   Real ellipsoid 

3 4 >0 Yes   Imaginary ellipsoid 

3 4 >0 No   Hyperboloid of one sheet 

3 4 <0 No   Hyperboloid of two sheets 

3 3   No   Real quadric cone 

3 3   Yes   Imaginary quadric cone 

2 4 <0 Yes   Elliptic paraboloid 

2 4 >0 No   Hyperbolic paraboloid 

2 3   Yes No Real elliptic cylinder 

2 3   Yes Yes Imaginary elliptic cylinder 

2 3   No   Hyperbolic cylinder 

2 2   No   Real intersecting planes 

2 2   Yes   Imaginary intersecting planes 

1 3       Parabolic cylinder 

1 2     No Real parallel planes 

1 2     Yes Imaginary parallel planes 

1 1       Coincident planes 
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translation, it can be brought to the canonical form 

Example 4.2 Next consider the quadric surface x2+ 
2y2+2z2+2xy−2xz+2x+6y+2z−13=0. The relate matrices are 

Then we have ρ3=2, ρ4=3, and ∆=0. The eigenvalues of C3 are 3, 2, and 0. 
The eigenvalues of C4 are 0, 2.3933, 3.2963, and −13.6896. From Table 4.2 we 
see that the quadric is a real elliptic cylinder. By proper rotation and translation, 
it can be brought to the canonical form 

Example 4.3 Finally, consider the quadric surface 9x2+y2+ 
z2−6xy+6xz−2yz+18x−6y+6z−7=0. The related matrices are 

Then we have ρ3=1, ρ4=2, and ∆=0. The eigenvalues of C3 are 0, 0, and 11. 
The eigenvalues of C4 are 0, 0, 15.4164, and −11.4164. From Table 4.2 we see 
that the quadric is a pair of real parallel planes. By proper rotation and 
translation, it can be brought to the canonical form 

4.1.9 Summary of Quadrics Dimensioning and Extensions 

Of all the quadrics, the most popular are spheres, right circular cylinders, and right
circular cones. Each of these has only one dimension (or parameter). 

The quadric cylinders of Section 4.1.6 are obtained by translational sweeps of conic
curves in a direction perpendicular to the plane that contain these curves. In fact, we
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encountered them in Section 3.1.6. Similarly, quadrics that possess rotational symmetry
about an axis (spheroids, the two hyperboloids of revolution, the paraboloid of
revolution, the right circular cone, and the right circular cylinder) are obtained by
rotational sweeps of conic curves about their axis of symmetry. In both type of sweeps,
no additional dimensions or parameters are introduced. So the problem of dimensioning
these swept surfaces reduces to the dimensioning of the underlying planar curves. 

If the sweeps are restricted to a finite extent, then an additional dimension (or 
parameter) is introduced. For example, if a conic is translationally swept only for a finite
distance perpendicular to it containing plane, then this distance becomes the height of the
quadric cylinder. Similarly, if a conic is rotationally swept about its axis for an angle less
than 2π, this angle becomes the additional dimension (or parameter). 

Swept surfaces are one popular example of what are called procedurally defined 
geometric objects. They are often used in constructing a geometric model. We will
encounter many other procedurally defined objects in later chapters when we explore
how to construct complex geometric models from simpler objects. 

Some solids in three-dimensional space can be defined using quadric half-spaces. Note 
that most real, nondegenerate quadrics divide three-dimensional space into two parts. 
(Exceptions are the hyperboloid of two sheets and the hyperbolic cylinder, which divide
space into three separate parts.) The quadric half-spaces can be bounded or unbounded. A 
general quadric half-space is defined by 

A solid spherical ball of unit radius, for example, can be represented by the set S={(x, y, 
z):x2+y2+z2≤l}. It is a bounded half-space. A solid, unbounded cylinder of radius 2 can be
represented as the set {(x, y, z):x2+ y2≤4}. If it were a cylindrical hole, we would 
represent it as the set {(x, y, z):x2+y2≥4}. Dimensioning a quadric half-space is the same 
as dimensioning its bounding quadric, with an additional indication as to which side of
the quadric the solid lies. Recall that Svensen used “positive” and “negative” attributes in 
Figure 1.1 to indicate the material side. 

Finally, we observe that all quadrics and quadric half-spaces are achiral, because each 
has at least one plane of reflexive symmetry. It is easy to see this from the equations of
canonical form in Table 4.1, where there is always one variable that appears in the second 
degree only. A plane of symmetry is the one in which this variable assumes a zero value. 

4.2 FREE-FORM SURFACES 

Free-form surfaces are the natural generalization of free-form curves. A surface patch in 
three-dimensional space can be represented parametrically as 

c
11x2+c22y2+c33z2+2c12xy+2c23yz+2c31zx +2c14x+2c24y+2c34z+c44≤0 

(4.6) 

x=f1(u, v), y=f2(u, v), and z=f3(u, v) 
(4.7) 
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where  Here we have two parameters, u
and v, and D is their domain of variation. In contrast, a parametric representation for a
curve has only one parameter, and it varies just over an interval. Figure 4.2 shows a 
simple mapping between points in the parametric domain D and points on the surface 
defined by Eq. (4.7). 

A surface patch can be represented parametrically as a linear combination of bivariate
basis functions, using control points in three-dimensional space as multiplying 
coefficients, as in 

Here φl(u, v) are the basis functions and pl are the N+1 control points positioned in space. 
Following Theorem 3.4, we have the following. 

Theorem 4.3: Free-Form Surface Invariance Theorem A free-form surface 
represented by Eq. (4.8) is intrinsically invariant under rigid motion of its control points
if and only if its basis functions partition unity in the parametric domain D. 

The proof is identical to that of Theorem 3.4. A consequence of Theorem 4.3 is the 
following congruence theorem. 

Theorem 4.4: Free-Form Surface Congruence Theorem Two free-form surfaces 
that share the same basis functions that partition unity are congruent if the tuples of their
control points are congruent. 

When the basis functions in Eq. (4.8) are written in a separable form 

(4.8) 

φl(u, v)=φi(u)φj(v) 
(4.9) 
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FIGURE 4.2 Mapping between points on the u-v domain D and points on the 
parametric surface patch. 

we have surface patches in tensor product form, which can be represented as 

Here pi,j are the control points. When these control points are joined according to the
adjacency of their indices in Eq. (4.10), they form a control net. See Figure 4.3(a) for an 
illustration of a control net. The control net is the free-form-surface equivalent of the 
control polygon for free-form curves. 

Assuming the partition-of-unity property of the basis functions in Eqs. (4.9) and (4.10) 
over the parametric domain D, Theorem 4.4 implies that the dimensioning of a free-form 
surface patch is the same as dimensioning the associated control net. 

If we choose φi(u) and φj(v) to be Bernstein basis functions, we have a Bézier surface 
patch, as shown in Figure 4.3(b). In this case, the parametric domain is a square D=[(0, 1)
×(0, 1)], over which it can be shown that the Bernstein basis functions, defined in Eq.
(3.16), partition unity; that is, 

Similarly, if the basis functions φi(u) and φj(v) are B-spline basis functions, then B-spline 
surface patches result. Rational surface patches can also be 

(4.10) 

(4.11) 
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FIGURE 4.3 (a) A Bézier control net and (b) the resulting cubic Bézier surface 
patch in tensor product form. 

created by choosing the basis functions to be of the rational form. In all cases, the surface
patch dimensioning problem is reduced to that of dimensioning the associated control net. 

A special case of the Bézier surface patch results when we use only four noncoplanar 
control points. It is illustrated in Figure 4.4. Its parametric representation is given in
detail by 

It is a patch of a hyperbolic paraboloid. It is also a ruled surface and has two families of
straight-line rulings, one family obtained by setting u=a constant, and the other by setting 
v=a constant. These rulings are the isoparametric curves on the surface patch. 

Sometimes, instead of the tensor product form of Eq. (4.9), a barycentric or triangular 
form is used for the basis functions. In the triangular form, the Bernstein basis function is
defined as 

where u+v+w=1 and i+j+k=n, the degree of the polynomial. See Figure 4.5 for an 
example for such a surface patch, whose parametric representation is given explicitly by 

p(u, v)=p0,0(1−u)(1−v)+p0,1(1−u)v+p1,0u(1−v)+p1,1uv   

(4.12) 

p(u, v)=p0,0,2(1−u−v)2 +p1,0,12u(1−u−v) +p2,0,0u2 +p0,1,12v(1−u−v) +p1,1,02uv
+p0 2 0v2 
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FIGURE 4.4 A Bézier control net and the resulting bilinear Bézier surface 
patch in tensor product form. The result is a patch of a hyperbolic 
paraboloid. It is also a doubly ruled surface, as illustrated by the 
double rulings. 

 

FIGURE 4.5 (a) A Bézier control net and (b) the resulting Bézier surface patch 
in triangular form. 

The resulting surface patch has a triangular net, and the dimensioning and parameterizing
problem remains the same. 

In general, a free-form surface patch with N+1 control points requires 3N−3 
dimensions (or parameters). 

4.3 SWEPT SURFACES 

We saw in Sections 3.1.6 and 4.1.9 that a surface can be generated procedurally by 
taking a curve and moving it in space. Such surfaces are called swept surfaces. Some of 
the most commonly used surfaces in CAD can be defined procedurally as swept surfaces.
In general, the curve being moved can also be deformed along the way. It is possible to
give this interpretation for the tensor product surfaces of Eq. (4.10). For example, the
cubic Bézier patch in Figure 4.3 can be generated by doing the following. 
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1. Start with a space cubic Bézier curve, defined by the control points p0,0, p0,1, p0,2, 
and p0,3. 

2. Move each of its control points along another Bézier curve. That is, move the control 
point p0,0 along the Bézier curve defined by the control points p0,0, p1,0, p2,0, p2,0, and 
p3,0, and similarly move the other control points p0,1, p0,2, and p0,3. 

A more restricted, but very useful, procedure is to sweep a curve without deformation by
strict translation or strict rotation, leading to generalized cylinders and surfaces of
revolution, as described next. 

4.3.1 Generalized Cylinders 

Quadric cylinders, discussed in Section 4.1.6, are prime examples of generalized
cylinders. These are unbounded surfaces, generated by taking a plane curve and sweeping
it in a direction perpendicular to the plane that contains it. These cylinders extend
indefinitely, both forward and backward, in the sweep direction. This definition can be
stated nonprocedurally, and more formally, as follows (Figure 4.6 illustrates various
terms used in the definition). 

Definition 4.1: Generalized Cylinder Let C be a plane curve and let F denote the
family of all straight lines through points of C perpendicular to the given plane. The
surface consisting of all points of these lines is called a generalized cylinder. Each line of
the family F is called a ruling or generator, and the curve C is called a directrix. The
cylinder is said to be parallel to its rulings and perpendicular to any plane perpendicular
to its rulings. 

The term directrix here should not to be confused with the same term used in the
definition of conics in Chapter 3. In the context of quadrics, if the directrix is one or more
straight lines, the generalized cylinder is one or more planes. Otherwise, it is a curved
surface and is usually named after the directrix—as in the elliptic cylinder, the right
circular cylinder, the parabolic cylinder, and the hyperbolic cylinder. Other curves, such
as free-form curves, can also be swept to generate cylinders. 

Since no additional dimension or parameter is introduced in the sweep procedure,
dimensioning (or parameterizing) the generalized cylinder is the same as dimensioning
(or parameterizing) its directrix, namely, the planar curve C. If the sweep is restricted to a
finite extent, then the cylinder has a finite height, thereby introducing just one additional
dimension or parameter. 
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FIGURE 4.6 Illustration of definitions of terms for a generalized cylinder. 

4.3.2 Surfaces of Revolution 

A surface that is symmetrical with respect to a line and that is cut only in circular sections
by planes perpendicular to this line of symmetry is called a surface of revolution. (See 
Section 2.3 for the definition of a line of symmetry for an arbitrary point-set.) 
Procedurally, we can define the surface of revolution as follows. 

Definition 4.2: Surface of Revolution Let C be a (possibly space) curve and F be a 
straight line in space. A surface of revolution is generated by revolving C about F. The
curve C is called a generatrix and the straight line F is called the axis of revolution of the 
resulting surface. 

Quadrics contain several examples of surfaces of revolution, such as the spheroid, the
two hyperboloids of revolution, the paraboloid of revolution, the right circular cone, and
the right circular cylinder. In these examples, the generatrix is either a line or a conic
curve. We already noted how to dimension or parameterize them in Sections 3.1.6 and 
4.1.9. 

Perhaps the most important surface of revolution that does not belong to the quadrics is 
the torus. It is generated by taking a circle and revolving it about a line in the plane of the
circle but that does not pass through the center of the circle. (If the axis passes through
the center of the circle, we get a quadric, namely, a sphere, as the surface of revolution.)
Figure 4.7 shows examples of the torus as a surface of revolution. Figure 4.8 shows one 
of its dimensioning schemes. It has two dimensions (or parameters). 

1. The first dimension is the radius r of the circle being swept. It is an intrinsic 
dimension of the generatrix. 

2. The second dimension is the distance R between the center of the generatrix (circle) 
and the axis of revolution (straight line). It is the relational dimension between the 
two planar objects—the circle and the straight line. This dimension is often called 
the radius of the symmetric axis circle of the torus. Here is the first important 
instance where the relative positioning of two simple geometric objects in the plane 
enters into our dimensioning scheme. (We will say more about relative positioning in 
the next few chapters.) 
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Once a torus is constructed, both r and R become its intrinsic dimensions. To prove that
this is indeed a valid dimensioning scheme, we need a congruence theorem. It can easily
be proved by the simple method of superposition that if two tori have the same generatrix
circle radius r and the same distance R between the axis of revolution and center of the
generatrix circle, then they are congruent. 

 

FIGURE 4.7 The torus as a surface of revolution. The ring torus does not have 
a self-intersection. The horn torus self-intersects at one point. The 
spindle torus self-intersects at two points. 

A torus can be positioned canonically in a three-dimensional Cartesian coordinate system,
with the z-axis as its axis of revolution and the origin as its center of symmetry. See
Figure 4.8. An implicit equation for such a torus is given by 

(4.13) 
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FIGURE 4.8 A dimensioning scheme for the torus, viewed as a surface of 
revolution. For a ring torus R>r, for a horn torus R=r, and for a 
spindle torus R<r. 

It cannot be brought to any of the canonical equations for quadrics, and hence the torus is
not a quadric. It actually belongs to a fourth-degree algebraic surface. Toroidal patches 
are commonly used as fillets and rounds in geometric models, thus deserving our special
attention. 

Before we conclude our discussion on surfaces of revolution, we observe that a
generatrix curve can be revolved about the axis through an angle θ<2π. Then, that angle θ 
becomes an additional dimension, or parameter, for the swept surface. 

4.3.3 Ruled Surfaces 

A nonprocedural definition of a ruled surface is as follows. 
Definition 4.3: Ruled Surface A surface is a ruled surface if and only if through every

point on the surface there is a straight line (called ruling) that lies completely on the 
surface. 

Based on this definition, all generalized cylinders are ruled surfaces. The quadric cone
is also a ruled surface; it can be generated by joining every point on a conic curve to a
point that is not on the plane containing the conic, using a straight line. In general, we can
give a procedural definition of a ruled surface as the one generated by sweeping a straight
line in space in some well-defined fashion. 

A one-sheeted hyperboloid can be generated procedurally as a ruled surface, as
illustrated in Figure 4.9. First, let’s see how a one-sheeted hyperboloid of revolution can 
be generated both as a ruled surface and as a surface of revolution. Consider two skew
lines a and g in space, as in Figure 4.9(a). Treating a as the axis of revolution and g as the 
generatrix, a surface of revolution can be obtained, as shown in Figure 4.9(b). It is a one-
sheeted hyperboloid of revolution. The same surface can be obtained by choosing a
different generatrix, g′, shown in Figure 4.9(a). So here we have a doubly ruled surface;
that is, through each point on the surface we have two distinct rulings that lie completely
on the surface. A general hyperboloid of one sheet can be obtained, as shown in Figure 
4.9(c), by uniformly stretching the surface of revolution in one horizontal direction. 

The foregoing construction of a hyperboloid of one sheet as a ruled surface gives us an 
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alternative way to dimension it. For this, we observe that the relative positioning of the
axis line a and directrix line g is completely specified by the shortest distance d between 
them and the twist angle θ between them. (We will encounter the problem of the relative
positioning of a pair of skew lines in detail in the next chapter.) These are the intrinsic
dimensions of the  

 

FIGURE 4.9 Generating a one-sheeted hyperboloid as a ruled surface. (a) a 
and g are skew lines in space. g′ is a reflection of g about a plane that 
contains a and the common perpendicular between a and g. (b) The 
surface obtained by revolving the generatrix g around the axis a. The 
same surface can be obtained by revolving g′ instead of g. (c) 
Applying dilation (that is, stretching) along a horizontal direction 
results in a general hyperboloid of one sheet. 

tuple of two skew lines, and they can be used as the two dimensions needed for a one-
sheeted hyperboloid of revolution. An additional scale factor along a direction
perpendicular to the axis of revolution gives the third dimension, to fully dimension a
general hyperboloid of one sheet. 

The hyperbolic paraboloid is another quadric that can be generated as a ruled surface. 
This task is best accomplished as a bilinear Bézier patch, illustrated in Figure 4.4 and 
described in Section 4.2. 

Outside of the quadrics, the helicoid is a ruled surface of some importance. All 
threaded fasteners have helicoidal patches. A simple helicoid (also called a conoid) can 
be defined by the parametric representation 

Here, as usual, u and v are the parameters and µ is the advance per unit twist angle. The
surface is generated by first taking two intersecting, perpendicular straight lines—one as 
a generatrix and the other as the axis. The generatrix line is then revolved helically about
the axis line with the pitch µ. If µ is positive we have a right helicoid; if it is negative we
have a left helicoid. Figure 4.10 illustrates a right helicoid. For generating helicoids used 
in threaded fasteners, the generatrix line is inclined at a fixed angle θ different from 90°
to the axis line and is revolved helically about the axis with the pitch µ. The resulting 

x=u cos(v), y=u sin(v), and z=µv 
(4.14) 
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helicoid has µ and θ as the two intrinsic dimensions. 

 

FIGURE 4.10 A right helicoid as a ruled surface. 

4.4 EXERCISES 

1. Determine the types of the following quadrics. 

(a) x2+y2+z2−4x+6y−14z+37=0 
(b) xy−xz+yz−5y=0 
(c) 4x2–2y2–12z2+12yz+4xy+4x+2y+3z=0 
(d) 2x2+2y2+5z2–2xy−4xz+4yz−2x+6z—4=0 

2. Research the use of the one-sheeted hyperboloid of revolution in constructing cooling 
towers. How would you dimension such a structure? 

3. Research the so-called hypar (hyperbolic paraboloid) structures used in the 
construction of roofs. How would you dimension such hypar surface patches? 

4. Prove that the converse of the free-form surface congruence theorem (Theorem 4.4) is 
false. 

5. Prove the assertion that “a free-form surface patch with N+1 control points requires 
3N−3 dimensions.” 

6. Helical springs, helical washers, and helical threads are commonly used in mechanical 
engineering applications. Find our how their geometries are defined in their suppliers’ 
technical literature. How are these definitions related to helical sweeps? 

4.5 NOTES AND REFERENCES 

The classification of quadrics is well covered in books on solid analytic geometry.
Olmsted (1947) is a comprehensive reference on this topic. Struik (1953) and Hilbert and
Cohn-Vossen (1983) make good supplemental reading. We have adopted Olmsted’s 
quadrics type classification table. His book can be consulted for more details on the 
canonical reduction of quadrics. Farin (1993) is a good reference for free-form surfaces. 
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The counterpart of Theorem 3.6 is the fundamental existence and uniqueness theorem
of surfaces. It can be found in differential geometry books, such as Lipschutz (1969). It is
based on fundamental forms, which are intrinsic characteristics of surfaces. A general,
elegant congruence theorem for surfaces can be formulated using these intrinsic
characteristics. Unfortunately, this is of little engineering use in dimensioning surfaces. 
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5 
Dimensioning Relative Positions of Elementary 

Objects 

Thus far our attention has been focused on intrinsic dimensioning of elementary curves
and surfaces. These intrinsic dimensions are the characteristics that remain invariant
when the curve or surface is subjected to rigid motion. In exploring them using
classification and congruence theorems from classical analytic geometry, we unwittingly
stumbled on cases involving a pair of lines while dealing with conics and on a pair of
planes when we studied quadrics. 

Individually, unbounded lines and unbounded planes do not posses intrinsic 
dimensions. But when one line is placed relative to another line in a plane, we have the
task of dimensioning their relative position. Similarly, when two planes are considered in
space, the relative position of these two planes needs to be specified using a dimension.
As we saw in previous chapters, these tasks are accomplished rather easily. 

The conics classification theorem in Chapter 3 reduces the number of cases involving a
pair of lines to just three: coincident lines, parallel distinct lines, and intersecting lines.
The classification also supplied the dimensions—separating distance in the case of 
parallel lines and included angle for intersecting lines. An identical set of classification
and dimensions was repeated in Chapter 4 for a pair of planes in the quadrics
classification theorem.  

We extend these results in this chapter to all pairs involving points, lines, planes, and—
here is a surprise—helices. These results are useful by themselves. In addition, we will
show in Chapter 7 that any two geometric objects can be positioned relative to each other 
using these elementary objects. That makes the results of this chapter all the more
important. For these reasons, we devote this chapter exclusively to a special theory of
relative positioning. 

5.1 DISTANCES AND ANGLES 

The distance between two points p1 and p2 was defined in Eq. (2.4). Note that this
distance is never negative and is symmetrical; that is, d(p1, p2)=d(p2, p1). When the 
distance is zero, the points coincide. We say that the condition that two points coincide is
an incidence constraint imposed on the points. We will now define other distances 
between points, lines, and planes. 

The distance between a point p and a straight line l is defined as the minimum distance 
between p and any point in l. That is, 



This distance is also nonnegative, and we will treat this distance symmetrically; that is, d
(p, l)=d(l, p). As long as this distance is nonzero, there is a unique plane that contains
both p and l. We can drop a perpendicular from p to l, and the distance is then the 
distance between p and the foot of the perpendicular. See Figure 5.1(a). An incidence 
constraint can be invoked by demanding that the point lie on the line, in which case the
distance vanishes. 

 

FIGURE 5.1 (a) Distance between a point and a line and (b) distance between 
a point and a plane. 

The distance between a point p and a plane P can be defined similarly as 

It is the shortest distance between the point and the plane. It is also the distance between
p and the foot of the perpendicular dropped from the point p to the plane P, as shown in 
Figure 5.1(b). The distance is nonnegative and is symmetrical; that is, d(p, P)=d(P, p). 
When p lies on P, this distance goes to zero. The condition of the point lying on the plane 
is an incidence constraint. 

When two lines l1 and l2 in a plane intersect, the angle between them is denoted θ(l1, 
l2), and it is the smaller of the two complementary angles between the lines. See Figure 
5.2(a). Its value lies between 0° and 90°. If the lines are oriented (that is, directed), then
they have a unique angle whose value lies between 0° and 180°, as shown in Figure 5.2
(b). The angle between an oriented line and a nonoriented line is the same as between two 
nonoriented lines. 

(5.1) 

(5.2) 
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5.2 SOME CASES INVOLVING POINTS 

The following congruence theorems involving points are easily proved. 

Theorem 5.1 Let p1, p2, , and  be points, in a plane or in space. Then (p1, p2) is 

congruent to if and only if . 
Theorem 5.2 Let p, p′ be points and l, l′ be lines, in a plane or in space. Then (p, l) is 
congruent to (p′, l′) if and only if d(p, l)=d(p′, l′). 

 

FIGURE 5.2 (a) Angle between two lines and (b) angle between two oriented 
(directed) lines or vectors. 

Theorem 5.3 Let p, p′ be points and P, P′ be planes in space. Then (p, P) is congruent to 
(p′, P′) if and only if d(p, P)=d(p′, P′). 

Therefore, the distance between two points is their relative position parameter, and its 
value is their relative position dimension. Similarly, the distance between a point and a
line is their relative position parameter, and its value is their relative position dimension;
the distance between a point and a plane is their relative position parameter, and its value
is their relative position dimension. 

It is noteworthy that we are able to dimension these cases involving points with just 
(unsigned) distances, because of the following facts of chirality. 

1. A tuple of two points is achiral, either in a plane or in space. (A tuple of three 
distinct points is chiral in the plane that contains them, but it is achiral in space. We 
have seen triangles as examples of this fact. A tuple of four or more distinct points in 
three-dimensional space is chiral. A tetrahedron is a good example of this fact.) 

2. A tuple of a point and a line is achiral, either in the plane that contains them or in 
space. 

3. A tuple of a point and a plane is achiral. 

Incidence constraints, such as a point lying on a line (denoted p on l) and a point lying on 
a plane (denoted p on P), reduce Theorems 5.2 and 5.3 to the following corollaries. 
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Corollary 5.1 Let p, p′ be points and l, l′ be lines, in a plane or in space. Also, let there 
be incident constraints of p on l and p′ on l′. Then (p, l) is congruent to (p′, l′). 
Corollary 5.2 Let p, p′ be points and P, P′ be planes in space. Also, let there be
constraints of p on P and p′ on P′. Then (p, P) is congruent to (p′, P′). 

We will have need for these results later. 

5.3 RELATIVE POSITIONING TWO LINES 

Consider two straight lines l1 and l2 in space. If they both lie in a plane, then they are
called coplanar lines. Otherwise they are called skew lines. 

5.3.1 Coplanar Lines 

Let’s consider coplanar lines first. If the two lines are coincident, we have no relative
positioning issue. This condition can also be invoked as an incident constraint. If the lines 
are distinct and parallel, then they are coplanar. This condition is also referred to as a
parallelism constraint. The angle θ(l1, l2) between the parallel lines is clearly zero. In this
case, it is meaningful to talk about the distance d(l1, l2) between the lines as the shortest 
distance between the two lines. When two lines intersect at a point, then the two lines are
coplanar. We will now show that these are the only three cases possible for a pair of lines
in a plane; in each case we will find their relative position dimension. 

Recall that in Chapter 3 a pair of straight lines was considered as a special case of the
conics classification. A more direct theory of a system of two lines in a plane can be
formulated by considering their general equations 

where at least one of a1, b1 is nonzero and at least one of a2, b2 is nonzero. Now define 
two ranks r and R as 

Clearly, R≥r, max(r)=2, min(r)=1, max(R)=2, and min(R)=1. (Why?) These conditions 
leave us with only three possibilities. 

1. r=1, R=1. This is the case of two coincident lines. This is an incident constraint and 
we have no other relative position dimension between these two lines. 

2. r=1, R=2. This is the case of two parallel, distinct lines. This is a parallelism 
constraint. The relative position dimension between these two lines is the distance 
between them because we can easily prove the following theorem. 

Theorem 5.4 Let l1, l2 be two parallel lines, and ,  be two other parallel lines. Then 

a1x+b1y+c1=0 
a2x+b2y+c2=0 (5.3) 

(5.4) 
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(l1, l2) is congruent to  if and only .
 

3. r=2, R=2. This is the case of two lines intersecting at a point. The relative position 
between these two lines is the angle between them because we can again prove the 
following theorem. 

Theorem 5.5 Let l1, 12 be two intersecting lines and , be two other intersecting lines. 

Then (l1, 12) is congruent to  if and only if . 

Note the close similarity between this case analysis and the classification of a pair of
lines, described in Chapter 3. 

5.3.2 Skew Lines 

We will now consider two lines l1 and l2 that are skew. We can still refer to d(l1, l2) as the 
shortest distance between the two lines. It is obtained by talking a point on each of the
lines and searching for the minimum of the distance between them. That is, for skew lines 

This minimum occurs along a unique common perpendicular line l3 between the skew 
lines. It is the distance between the points of intersection of l3 with l1 and l2. See Figure 
5.3. Perpendicular to l3 are two distinct parallel planes P1 and P2 that contain l1 and l2,
respectively. We can then translate one of these lines, say, l1, parallel to itself along the 
common perpendicular till it lies in the plane P2 and intersects l2; the angle between l2
and the translated version of l1 is called the twist angle θ(l1, l2). 
Before we proceed further, we observe one interesting fact about a pair of skew lines: A
tuple of two skew lines is chiral, unless their twist angle is 90°. That is, if you take two 
skew lines whose twist angle is different from 90° and weld them together by an invisible 
welding material, then the resulting object is chiral. Its mirror image is not congruent to
the original object. Note that this is not true for the case of a pair of coplanar lines. 

(5.5) 
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FIGURE 5.3 l1 and l2 are skew lines in space. l3 is the line perpendicular to 
both the skew lines. The dotted line is parallel to l1. The distance 
between the skew lines is the distance between the two points of 
intersection shown. The twist angle θ(l1, l2) is the angle between l2 
and the dotted line. 

We can now use the method of superposition to prove the following congruence
theorem involving skew lines. 

Theorem 5.6 Let l1, l2 be two skew lines in space and , be two other skew lines in 

space. Then (l1, l2) is congruent to if and only if they have the same chirality, 

 and . 
It is possible to encode the chirality of a tuple of skew lines in the sign of their twist 

angle, as shown in Figure 5.4. A positive twist angle corresponds to a counterclockwise 
rotation (a right-handed chirality for the tuple of skew lines), and a negative twist angle 
corresponds to a clockwise rotation (a left-handed chirality for the tuple of skew lines).
Such encoding of chirality is common. Recall that the chirality of a helix can be encoded
in the sign of its torsion (see Sec. 3.3); a positive torsion corresponds to a right-handed 
helix, and a negative torsion corresponds to a left-handed helix. 

So the relative positioning of two lines involves two parameters: their shortest distance 
and the signed twist angle. Assigning numerical values to them dimensions their relative
position. When the twist angle is zero, the lines are parallel and we need to dimension
only the distance between them. When 
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FIGURE 5.4 Assigning sign to the twist angle between skew lines. The twist 
angle between l1 and l2 is taken to be positive because, as l1 is 
translated to the dotted line and twisted to coincide with l2, the 
combination of translation and rotation follows the right-hand rule. 
One can also think of this as a counterclockwise rotation. The twist 

angle between l1 and  is taken to be negative, because it follows 
the left-hand rule (or, equivalently, a clockwise rotation). 

the shortest distance between them is zero, the lines intersect and we need to dimension
only the angle between them. 

5.4 RELATIVE POSITIONING A LINE AND A PLANE 

When a line l does not lie in a plane P, it can either be parallel to it or intersect it at a
point. If the line lies in the plane, this condition is an incidence constraint. Otherwise, if l
is parallel to P, then the shortest distance between them is the distance d(l, P), which can 
be obtained by taking any point on l and finding its shortest distance to the plane P. 

If l is perpendicular to P, then we define the angle between them to be θ(l, P)=90°. If l
is neither parallel nor perpendicular to P, let l* be the projection of l on P. We can obtain 
l* by taking every point of l and perpendicularly projecting it on the plane P. Clearly l
and l* are coplanar and they intersect at the point of intersection between l and P. See 
Figure 5.5. The angle between l and l* is then denoted θ(l, P). With these measures, we 
have the following congruence theorem. 

Theorem 5.7 Let l, l′ be lines and P, P′ be planes. If l is parallel to P and l′ is parallel 
to P′, then (l, P) is congruent to (l′, P′) if and only if d(l, P)=d(l′, P′). If l is not parallel to 
P and l′ is not parallel to P′, then (l, P) is congruent to (l′, P′) if and only if θ(l, P)=θ(l′, 
P′). 

We are able to get away with just unsigned distances and angles here because a tuple
of a line and a plane is achiral. 
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FIGURE 5.5 Angle between a line and a plane in space. 

So relative positioning a line and a plane depends on a simple case analysis. If the line
lies in the plane, then it is an incidence relationship and there is no further relative
positioning issue. If they are not incident and if the line is parallel to the plane, then the
(shortest) distance between them is the relative position parameter. If the line is not
parallel to the plane, then the angle between them is the relative position parameter. In
either case, we have only one dimension to deal with. 
Theorem 5.7 specializes to the following corollary if we invoke incidence constraints,
such as a point lying on a line (p on l) and a line lying on a plane (l on P). 
Corollary 5.3 Let p, p′ be points, l, l′ be lines, and P, P′ be planes. Also, let there be 
constraints of p on l, p′ on l′, l on P, and l′ on P′. Then (l, P) is congruent to (l′, P′) and 
(p, l, P) is congruent to (p′, l′, P′). 

5.5 RELATIVE POSITIONING TWO PLANES 

If two planes P1 and P2 are not coincident, then they are parallel or they intersect in a
line. If they are coincident, then no further relative positioning is required. This condition
is also an incidence constraint. If the planes are distinct and parallel, then the shortest
distance between them is the distance d(P1, P2). It can be obtained by taking any point in
one plane and finding its shortest distance to the other plane. 

If the planes are distinct and not parallel, then they intersect in a line l. Any plane P
perpendicular to l will intersect P1 and P2 in lines l1 and l2, respectively. Then the angle θ
(P1, P2) is the angle between l1 and l2, as shown in Figure 5.6. 
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FIGURE 5.6 Angle between two intersecting planes in space. 

The results just quoted are not new. They were obtained in Chapter 4 as special cases in 
the classification of quadrics. But we can also formulate an independent theory of a
system of two planes. The procedure is the same as the one adopted in Section 5.3.1 for a 
system of two coplanar lines. Let the two planes be defined generally by the equations 

where at least one of a1, b1, c1 is nonzero and at least one of a2, b2, c2 is nonzero. Again, 
define two ranks r and R as 

Clearly, we have the conditions that R≥r, max(r)=2, min(r)=1, max(R)=2, and min(R)=1. 
(Why?) We then have only the following possibilities. 

1. r=1, R=1. The two planes are coincident. This is an incident constraint. We have no 
further relative positioning problem. 

2. r=1, R=2. The two planes are distinct and parallel. This is a parallelism constraint. 
As we will see, the relative positioning in this case involves just the distance 
between the two parallel planes. 

3. r=2, R=2. The two planes intersect in a line. In this case, as we will see, the relative 
positioning depends only on the angle between the two planes. 

Based on our case analysis, we have the following congruence theorem, which can be
proved easily. 

Theorem 5.8 Let P1, P2, , and  be planes. If P1 is parallel to P2 and  is 

parallel to , then (P1, P2) is congruent to  if and only if  

a1x+b1y+c1z+d1=0 
a2x+b2y+c2z+d2=0 (5.6) 

(5.7) 
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 If P1 is not parallel to P2 and  is not parallel to , then (P1, P2) 

is congruent to  if and only if . 
We are able to get away with just unsigned distances and unsigned angles here because

a tuple of two planes is achiral. 
Therefore, the relative positioning problem of two planes reduces to the following 

simple cases. Distinct, parallel planes have only one relative position parameter: the
distance between them. Intersecting planes have only the angle between them as the
relative position parameter. In either case, we have only one dimension for their relative 
position. Note the close similarity of this case analysis with Chapter 4’s classification of a 
pair of planes. 

5.6 CASES INVOLVING ORIENTED LINES AND ORIENTED PLANES 

In earlier sections we saw how binary information about chirality of helix and pair of
skew lines can be encoded using signed values. Similarly, we can encode binary
information about the so-called “material side” using oriented lines and oriented planes,
as illustrated in Figure 5.7. An oriented line can be embedded in space or it can lie in a 
specified plane. In Figure 5.7(a) the oriented line lies in a specified plane. To one side of
this line lies a two-dimensional region, the so-called material region, that is of interest to 
us. By convention, we assume that the material lies to the left of the oriented line. We can
then define an outward normal, which is a unit vector in the plane, perpendicular to the
oriented line and directed away from the material side. In Figure 5.7(b) a three-
dimensional region, that is, a material region, lies on one side of an oriented plane in
space. By convention, we again choose a unit normal perpendicular to the plane and
directed away from the material side as the outward normal, and we also use it to orient
the plane. Thus an oriented line in a plane and an oriented plane in space can be used to
encode the so-called material side. 

Additionally, oriented lines and oriented planes are useful to set up coordinate
reference systems. These need not be full three-dimensional coordinate frames. An 
oriented line, for example, can be used as a one-dimensional coordinate reference line by
specifying an origin point on the line. A single unit vector, such as an outward normal to
a line in a plane or an outward normal to a plane, can also serve the same purpose,
because it can be taken as the sole basis vector to define one-dimensional vectors. These 
lead to the use of signed distances and signed angles as dimensions, thus providing the
theoretical basis for coordinate dimensioning first mentioned in Section 1.3. Recall that 
we used coordinate dimensioning for free-form curves and surfaces, as in the example of 
Figure 3.10(b). 

Dimensioning relative positions of elementary objects     87



 

FIGURE 5.7 Encoding the material side using oriented lines and oriented 
planes. (a) An oriented line in a plane. The material side is assumed 
to be on the left of the oriented line. An outward normal is 
perpendicular to the oriented line and points away from the material 
side. (b) An oriented plane, whose normal also serves as an outward 
normal by pointing away from the material side. 

While considering oriented lines in a plane and oriented planes in space, it is useful to
consider an important fact about their chirality. An oriented plane is achiral in space.
However, an oriented line embedded in a plane and associated with an outward normal,
as we have already defined, is chiral in that plane. This is due to the fact that here we
have also defined an outward normal with an oriented line, and these two form an
orthogonal doublet that is chiral in the plane. That is, a mirror image (using a line in the
plane as the “mirror”) of the orthogonal doublet cannot be moved in the plane by pure 
rigid motion to coincide with the original doublet. We can make them coincide by
flipping the doublet out of the plane; but remember, that it is not allowed. 

In this section we will examine how the dimensioning problem is affected if we have 
oriented lines and oriented planes among elementary objects. Our examination will
depend on careful case analyses. Congruence theorems to support all the cases are not
difficult to state and prove, but they become somewhat repetitive and tedious. They are
best left as exercises. We will denote oriented lines and oriented planes by underscores,
as in an oriented line l and oriented plane P. 

5.6.1 Cases Involving Points 

A point, obviously, has no orientation. Figure 5.8(a) shows an oriented line in a plane and
two points in the same plane. It also illustrates how the relative position of each of the
points can be dimensioned (or parameterized) using a signed distance in the form of a
coordinate dimension. Figure 5.8(b) gives a similar illustration for dimensioning (or 
parameterizing) the relative position of a point and an oriented plane, again using signed
distances in the form of coordinate dimensions. The sign encodes the information as to
which side of the line or the plane the point lies on. In both cases, the outward unit
normal serves as the basis vector and the origin lies in the oriented line or in the oriented
plane. 

If we have just an oriented line in space without any specified plane that contains it, we 
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don’t have any outward normal to work with. So in this case, a  

 

FIGURE 5.8 Positioning a point relative to (a) an oriented line and (b) an 
oriented plane. The relative position dimension can have a positive or 
negative coordinate, depending on which side of the line or plane the 
point is located. 

point can be positioned relative to this line as though it is not oriented, as we did in
Section 5.2. 

5.6.2 Two Lines 

Here again we need to consider two cases. In the first case the two lines, at least one of
which is oriented, are coplanar. We will then assume that each oriented line also has an
outward normal that lies in the plane. In the second case the two lines, at least one of
which is oriented, are skew. Each oriented line in this case is embedded in space, and it
does not have a unique outward normal. As we will see, this simplifies the dimensioning
of oriented skew lines. 

5.6.2.1 Coplanar Lines 

Let’s consider coplanar lines first. As already remarked, at least one of these lines is
oriented. If the lines coincide and only one of them is oriented, then we have no further
relative dimensioning problem. If the coincident lines are both oriented, then we need to
specify whether they are oriented in the same direction or in opposite directions.
Otherwise, the lines either are distinct and parallel or intersect at a point. 

Figures 5.9 and 5.10 illustrate cases when the two lines are distinct and parallel. When 
only one of the two lines is oriented, the relative position dimension between the two
parallel lines can be captured as a positive or a negative coordinate dimension, depending
on which side of the oriented line the nonoriented line lies, as shown in Figure 5.9. 

When both the parallel lines are oriented, they can be pointing in the same direction,
the coparallel case, as in Figure 5.10(a), or in opposite directions, the  
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FIGURE 5.9 Dimensioning the relative position of an oriented line l1 and a 

nonoriented line, such as l2 or , when they are parallel.
 

antiparallel case, as in Figure 5.10(b). When they are coparallel, the distance between
them can lead to positive or negative coordinate dimension, depending on which line is
chosen as the origin. See Figure 5.10(a) for further details. When they are antiparallel, the
relative position dimension between them is deemed to be a positive coordinate
dimension if the outward normals are pointing toward each other and a negative
coordinate dimension if the outward normals are pointing away from each other. Figure 
5.10(b) shows these possibilities. 

The cases of intersecting lines are illustrated in Figures 5.11 and 5.12. Here the angle 
between them is the dimension. When only one of the lines is oriented, the angle between
them is the smallest angle, as defined in Figure 5.2(a) ignoring the orientation. This angle 
dimension is then given a positive or negative sign, depending on whether a
counterclockwise or clockwise rotation 

 

FIGURE 5.10 Dimensioning the relative position of two oriented, parallel 
lines. The outward normals are indicated. (a) When the lines are 
coparallel, the relative position dimension between l1 and l2 can be 
either a positive coordinate dimension or a negative coordinate 
dimension, depending on which oriented line is chosen as the origin. 

The same comment applies to the relative positioning of l1 and . (b) 
When the lines are antiparallel, positive and negative dimensions can 
be assigned that do not depend on which oriented line is chosen as 
the origin. 
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FIGURE 5.11 Dimensioning the relative position of an oriented line l1 and a 
nonoriented line l2, when they intersect at a point. The smaller angle 
between the two lines, ignoring the orientation of l1, is dimensioned. 
(a) A clockwise rotation from the oriented line to the nonoriented line 
leads to the negative dimension. (b) A counterclockwise rotation 
from the oriented line to the nonoriented line leads to the positive 
dimension. 

is involved in moving from the oriented line to the nonoriented line. See Figure 5.11 for 
more details. When both lines are oriented, the angle dimension between them is defined
by Figure 5.2(b). Depending on which oriented line is chosen as the origin, the angle
dimension indicated in Figure 5.12 can become a positive or a negative dimension. 

5.6.2.2 Skew Lines 

Compared to the coplanar case, skew lines require a surprisingly simple case analysis.
When only one of the lines is oriented, then there is no special care required—we can 
treat both as nonoriented lines and apply the results of Section 5.3.2. When both skew 
lines are oriented, there are only four possible cases, illustrated in Figure 5.13. The 
dimensions (or parameters) are the unsigned shortest distance between the two skew lines
and the signed twist angle between them. The indicated angle dimensions are positive or
negative, 

 

FIGURE 5.12 Dimensioning the relative position of two intersecting, oriented 
lines. See also Figure 5.2. Depending on which line is chosen as the 
origin, the angle dimension indicated can be a positive or a negative 
dimension. 
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FIGURE 5.13 Dimensioning the relative position of two oriented, skew lines. 

depending on whether we need a counterclockwise or clockwise rotation, as discussed
previously in Section 5.3.2. 

5.6.3 Line and Plane 

Here we assume that at least one of the elements is oriented. When the line lies in the
plane, there is no further relative positioning problem. If only the line has orientation,
then its relative position with respect to a nonoriented plane is the same as that of a
nonoriented line, and we can use the results of Section 5.4. 

If only the plane has orientation, then we need to consider two cases. 

1. If the nonoriented line is parallel to the oriented plane, then the relative position 
dimension between them can be given a positive or negative value, as shown in 
Figure 5.14. This case is very similar to that of a pair of lines illustrated in Figure 
5.9. 

 

FIGURE 5.14 Dimensioning the relative position of a nonoriented line and an 
oriented plane when they are parallel. 

2. If they intersect at a point, then the relative positioning problem is the same as that 
of a nonoriented line and a nonoriented plane. We then use the results of Section 5.4. 
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When the line and the plane are both oriented, we have the following two cases. 

1. If they are parallel, then the dimensioning problem is the same as the one illustrated 
in Figure 5.14. We just ignore the orientation of the line. 

2. If they intersect at a point, the angle dimension can be given a positive or negative 
value, as shown in Figure 5.15. 

5.6.4 Two Planes 

Here again we assume that at least one of the planes is oriented. When the planes
coincide and only one of the planes is oriented, we have no further relative positioning
problem. If the coincident planes are both oriented, then we have to specify whether their
normals are oriented in the same direction or in opposite directions. Assume that the
planes are not coincident in what follows. 

If only one of the planes is oriented, then we have the following two cases. 

 

FIGURE 5.15 Dimensioning the relative position of an oriented line and an 
oriented plane when they intersect at a point. See Figure 5.5 for 
comparison. (a) The angle dimension is considered to be a positive 
dimension because the line orientation has a positive component 
along the outward normal of the plane. (b) The angle dimension is 
considered to be a negative dimension because the line orientation 
has a negative component along the outward normal of the plane. 

 

 

FIGURE 5.16 Dimensioning the relative position of a nonoriented plane and 
an oriented plane when they are parallel. 

1. If the planes are distinct and parallel, then the relative position dimension between 
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them can be given a positive or negative value, as shown in Figure 5.16. This case is 
also very similar to that of a pair of lines illustrated in Figure 5.9. 

2. If the planes intersect in a line, then their relative positioning problem is the same as 
that of two nonoriented planes discussed in Section 5.5. Note that this case is simpler 
than the corresponding case of oriented lines illustrated in Figure 5.11. 

When both planes are oriented, we have the following two cases. 

1. If the planes are distinct and parallel, then their normals can be coparallel or 
antiparallel, as shown in Figure 5.17. The same figure also shows how their relative 
position can be dimensioned. Note the similarity between this and the case of 
oriented, parallel lines illustrated in Figure 5.10. 

2. If the planes intersect in a line, then their relative position is dimensioned by 
dimensioning the angle between their normals.  

 

FIGURE 5.17 Dimensioning the relative position of two oriented, parallel 
planes. The outward normals are indicated. (a) When the normals are 
coparallel, the relative position dimension between P1 and P2 can be 
either a positive coordinate dimension or a negative coordinate 
dimension, depending on which oriented plane is chosen as the origin. 

The same comment applies to the relative positioning of P1 . (b) 
When the normals are antiparallel, positive and negative dimensions 
can be assigned that do not depend on which oriented plane is chosen 
as the origin. 

There is no need to assign any sign to this angle. Note that this case is also simpler 
than the corresponding case of oriented lines illustrated in Figure 5.12. 

5.7 CASES INVOLVING HELICES 

It is easy to make the case for points, lines, and planes to be considered elementary
objects, because that is the way they are treated in classical geometry. Is it reasonable to
consider helices also as elementary objects, at par with points, lines, and planes? The case
for this is not obvious at the outset. We will see in the next chapter that helices play a
basic theoretical role, along with points, lines, and planes. In this section we will consider
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the helix to the extent that we need to dimension its relative position with respect to a
point, a line, a plane, or another helix. 

Intrinsically, a helix is completely defined by specifying its chirality (right-handed or 
left-handed), the diameter of its base cylinder, and its pitch. We define the axis of the
base cylinder to be the axis of the helix. See Figure 5.18. There is an important one-to-
one mapping between points on the axis of the helix and points on the helix. This
mapping is also illustrated in 

 

FIGURE 5.18 Mapping between a point q on the axis a of a helix and a point 
q′ on the helix. The plane Q is perpendicular to the axis a and 
intersects it at q. The plane also intersects the helix at the unique 
point q′. 

Figure 5.18. Through any point q on the axis a of the helix, a unique plane Q
perpendicular to the axis can be constructed. This plane intersects the helix at one and
only one point q′. Similarly, for any point q′ on the helix, we can find its unique
projection q on to the axis. Thus we have established a one-to-one mapping between q
and q′. We call q the image of q′, and q′ the preimage of q. 

In addressing the dimensioning problem, we perform a series of case analyses. 
Congruence theorems to support all these cases are not difficult, but they are somewhat
tedious and are best left as exercises. 

5.7.1 Point and Helix 

Let p be a point and h be a helix. If p lies on the axis of h, we will treat this as an 
incidence constraint, and there is no further relative positioning issue. If p does not lie on 
the axis of h, then the relative position of p and h is dimensioned as in Figure 5.19. It 
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involves the following two dimensions (or, equivalently, parameters). 

1. The distance between p and its projection q onto the axis of the helix. This 
dimensions the relative position between p and the axis of the helix. 

2. The unsigned angle between qp and qq′, where q′ is the preimage of q. This 
dimensions the relative position between two intersecting, 

 

FIGURE 5.19 Dimensioning the relative position of a point p and a helix. q is 
the projection of p onto the axis of the helix. On the helix, q′ is the 
preimage of q. 

directed lines: one line directed from q to p, and the other line directed from q to 
q′. Also see Figure 5.2(b) for the definition of the angle between directed lines. 

5.7.2 Line and Helix 

Let l be a line and h be a helix. Assume that l does not coincide with the axis a of the 
helix. We then have three cases. 

1. If l is parallel to, but distinct from, the axis a of the helix, then dimensioning the 
relative position between l and h is the same as dimensioning the relative position 
between l and a. This involves only one dimension (or parameter). 

2. If l and a intersect at a point q, then the dimensioning can be split into two tasks: 

(a) Dimensioning the relative position between the two intersecting (nonoriented) 
lines a and l. This involves only one dimension (or parameter). 

(b) Dimensioning the relative position between two oriented lines. One of them is 
the oriented line directed from q to its preimage q′ on the helix. The other oriented 
line is denoted l* in Figure 5.20 and is defined as follows. Consider the plane that 
contains a and l, and let l* be a line perpendicular to this plane and passing 
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through q. The orientation of l* is determined by the right-hand rule as we apply a 
rotation from a to l. This involves only one dimension (or parameter).  

 

FIGURE 5.20 Defining an oriented, common perpendicular l* to a (axis of a 
helix) and l (a line). a and l interset at q. The orientation of l* is 
determined by applying the right-hand rule. As we apply a rotation 
from a to l (via the smallest angle between the two) with our right-
hand fingers, l* points along the right-hand thumb. 

 

 

FIGURE 5.21 Dimensioning the relative position of a line l and a helix. pq is 
the common perpendicular between l and the axis of the helix. On the 
helix, q′ is the preimage of q. 

So a total of two dimensions (or parameters) are needed in this second case.  
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3 If l and a are skew, then again the dimensioning can be split into two tasks. See 
Figure 5.21 for an illustration. The common perpendicular between l and a passes 
through  and  On the helix, q′ is the preimage of q. 

(a) Dimensioning the relative position between the two skew lines a and l. This 
involves two dimensions (or parameters). Note that chirality is important here. 

(b) Dimensioning the relative position between the directed line from q and p and 
the directed line from q and q′. This involves just one dimension (or parameter). 

So a total of three dimensions (or parameters) are involved in this third case. 

5.7.3 Plane and Helix 

Let P be a plane and h be a helix. Assume that the axis a of the helix does not lie 
completely in P. Then there are only two possibilities. 

1. a is parallel to P. This reduces the dimensioning problem to that of dimensioning the 
relative position between line a and plane P. This involves just one dimension (or 
parameter). 

2. a intersects P at a point q. If a is perpendicular to P, then there is no further 
dimensioning issue. Otherwise, we can split the dimensioning problem into two 
tasks: 

(a) Dimensioning the relative position between line a and plane P. This involves just 
one dimension (or parameter). 

(b) Dimensioning the relative position between two oriented lines. One of them is 
the oriented line directed from q to its preimage q′ on the helix. The other oriented 
line is denoted l* in Figure 5.22 and is defined as follows. Let l* be a line in P 
that is also perpendicular to a. The orientation of l* is determined by the right-
hand rule as we apply a rotation from a to the projection of a on to P. This also 
involves just one dimension (or parameter). 

So a total of two dimensions (or parameters) are involved in this second case. 

5.7.4 Two Helices 

Let h1 and h2 be the two helices whose axes are a1 and a2, respectively. We have the 
following four cases based on the relative position between a1 and a2. 

1. a1 and a2 are coincident. Let q be any point on the coincident axis,  be its 

preimage in h1, and be its preimage in h2. We then have to  
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FIGURE 5.22 Defining an oriented line l* lying in a plane P and perpendicular 
to a (axis of a helix). P and a intersect at q. The orientation of l* is 
determined by applying the right-hand rule. As we apply a rotation 
from a to the projection of a onto P (via the smallest angle between 
the two) with our right-hand fingers, l* points along the right-hand 
thumb. 

dimension only the relative position between two coplanar, directed lines: one 

directed from q to  and the other directed from q to . This involves only one 
dimension (or parameter). 

2. a1 and a2 are distinct but parallel. Let q1 be any point on a1 and q2 be its projection 

onto a2. Also let  be the preimage of q1 in h1 and  be the preimage of q2 in h2. 
The dimensioning problem can be split into two parts. 

(a) Dimensioning the relative position between a1 and a2. This involves just one 
dimension (or parameter). 

(b) Dimensioning the relative position between two coplanar, directed lines: one 

directed from q1 to  and the other directed from q2 to . This also involves 
just one dimension (or parameter). 

So this second case involves a total of two dimensions (or parameters). 

3. a1 and a2 intersect at a point q. Let  be the preimage of q in h1 and  be the 
preimage of q in h2. Now arbitrarily assign orientations to a1 and a2, and denote the 
oriented lines (that is, axes) as a1 and a2. Let l* be an oriented line that is 
perpendicular to the plane containing a1 and a2 and passing through q. The 
orientation of l* is determined by the right-hand rule as we apply a rotation from a1 
to a2. Then the dimensioning problem is split into the following three tasks. 

(a) Dimensioning the relative position between two intersecting, oriented lines a1 
and a2. This involves just one dimension (or parameter). 

(b) Dimensioning the relative position of the line joining q and  as a polar angle 
from l*. This is a polar coordinate dimension and its value lies in the interval [0, 
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2π). Figure 5.23 illustrates 

 

FIGURE 5.23 Polar angle dimensioning. The polar angle is between the line 

joining q and  and the directed line l*. It is measured from the 
directed line l* in the counterclockwise direction determined by the 
oriented line a1. 

how this angle is determined. This also involves just one dimension (parameter). 

(c) Dimensioning the relative position of the line joining q and  as a polar angle 
from l*. This is again a polar coordinate dimension and can be determined as 
explained earlier. This also involves just one dimension (parameter). 

So this third case involves a total of three dimensions (or parameters). 

4. a1 and a2 are skew. Let their common perpendicular intersect a1 at q1 and a2 at q2. 

Also, let  be the preimage of q1 in h1 and  be the preimage of q2 in h2. Now 
arbitrarily assign orientations to a1 and a2, and denote the oriented lines (that is, axes) 
as a1 and a2. Let l* be the oriented, common perpendicular to a1 and a2. The 
orientation of l* 
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FIGURE 5.24 Polar coordinate dimensioning employed while dimensioning 
the relative position of two helices. (a) A general position of the two 

helices. (b) Polar coordinate dimension for . (c) Polar coordinate 

dimension for . 

is determined by directing it from q1 to q2. See Figure 5.24(a). The dimensioning 
problem can be split into the following three tasks. 

(a) Dimensioning the relative position between the oriented skew lines a1 and a2. 
This involves two dimensions (or parameters). 

(b) Dimensioning the relative position of the line joining q1 and  as a polar angle 
from l*. See Figure 5.24(b). This is a polar coordinate dimension and it involves 
just one dimension (or parameter). 

(c) Dimensioning the relative position of the line joining q2 and  as a polar angle 
from l*. See Figure 5.24(c). This is also a polar coordinate dimension and it 
involves just one dimension (or parameter). 

So this fourth case involves a total of four dimensions (or parameters). 
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5.8 SUMMARY 

Table 5.1 summarizes the maximum number of dimensions needed in relative positioning 
points, lines, planes, and helices. A number in a cell in the table is the maximum number
of dimensions needed for relative positioning an element from the corresponding first
row and an element from the corresponding first column. These numbers are the
maximum in the sense we may need less if the relative positions of the elements are
constrained in some manner. For example, if two lines are coplanar, we don’t need the 
two dimensions required for skew lines and indicated in the table; we can do with just
one. These special cases have been analyzed in detail in the indicated sections. 

The treatment of helices required consideration of oriented lines, which explains why the
cases involving oriented lines were introduced ahead of helices. In most engineering
drawings and geometric models, helices are treated in a simpler manner than found in this
chapter. Helical threads, for example, are seldom modeled with all the geometrical
details; instead, simple stylized indications are used to convey the information that there
are some standardized helical threads. In relative positioning problems, these helical
elements are then treated as lines that correspond to their axes. We have provided a
detailed treatment of helices mainly for theoretical completeness. It also turns out that
there are some special applications, such as Archimedes screw pumps, where the details
involving helices presented here are useful. 

5.9 EXERCISES 

1. In a plane, let l be a line defined by ax+by+c=0 and p be a point with coordinates (x0, 
y0). Set up a minimization problem per Eq. (5.1) and solve it to find the distance d(p, l) 
in terms of a, b, c, x0, and y0. Show that this is a unique solution. 

2. Repeat Exercise 1 to find the distance between a point and a plane per the 
minimization of Eq. (5.2). 

TABLE 5.1 Summary of the Maximum Number of Dimensions Needed for Relative 
Positioning Elementary Objects 

  Point Line Plane Helix 

Point 1 (Sec. 5.2) 1 (Sec. 5.2) 1 (Sec. 5.2) 2(Sec. 5.7.1) 

Line   2 (Sec. 5.3) 1 (Sec. 5.4) 3 (Sec. 5.7.2) 

Plane     1 (Sec. 5.5) 2 (Sec. 5.7.3) 

Helix       4 (Sec. 5.7.4) 

Also indicated are the section numbers that cover these cases. The table is symmetric. 
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3. Euclid’s fifth postulate, known as the parallel postulate, is equivalent to saying “Given 
any straight line and a point not on it, there exists one and only straight line that passes 
through the point and parallel to the first line.” What is the relationship between the 
parallel postulate and Theorem 5.4? 

4. Give a carefully argued proof of Theorem 5.6. 
5. State and prove a theorem in support of the relative positioning of a point and a helix, 

presented in Section 5.7.1. 
6. How would you deal with the relative positioning of an oriented line and a helix? Also, 

how would you deal with the relative positioning of an oriented plane and a helix? 

5.10 NOTES AND REFERENCES 

Olmsted (1947) provides a brief theory of systems of planes. Oriented lines and planes are
discussed in Struik (1953). Use of the rank of matrices to analyze system of lines in a
plane and system of planes in space provides a sound theoretical basis for some of the
case analyses presented in this chapter. Skew lines pose an interesting challenge, and the
chirality of skew lines is not well known. 

Screw threads provided the first practical use of helical geometry. Archytas of
Tarentum (428 BC–350 BC), a contemporary of Plato, is considered to be the inventor of
screw threads, which were initially used in presses to extract oil from olives and wine
from grapes. Archimedes (287 BC–212 BC) is credited with inventing the famous
Archimedes screw used to pump water. High precision helical threads were not made in
mass quantities until the late 18th century. This enabled precision instruments to be made,
which then permitted the manufacture of steam engines and machine tools. 
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6 
Symmetry 

In our first encounter with rigid motion in Chapter 2 it was shown that, in general, it 
contains three independent translations and three independent rotations. It was also
observed at that time that a rigid body has a maximum of six degrees of freedom in three-
dimensional space. But sometimes it can have less. For example, a sphere seems to have
only three degrees of freedom, owing to its spherical symmetry, which renders all
rotations about its center irrelevant as far as its geometry is concerned. This has an
important practical consequence because it affects the way we dimension the relative
position of a sphere with respect to, say, a plane. 

Symmetry is commonly associated with reflexive symmetry, described in Chapter 2. 
But we want to focus on a particular class of symmetry involving rigid motions. So we
want to look more closely at rigid motions and how geometric objects with various
symmetries behave under the rigid motion. Recall that a rigid motion is a transformation
that moves a geometric object to a congruent copy of the same object in Euclidean space.
The collection of rigid motions is an example of a more general mathematical abstraction
called groups. Appendix 2 gives a brief introduction to groups, which should be read
along with this chapter. 

6.1 GROUPS 

A collection G of elements with a binary group operation • is called a group if the 
following axioms are satisfied. 
Axiom G1: Closure For any  
Axiom G2: Associativity g1 • (g2 • g3)=(g1 • g2) • g3. 
Axiom G3: Identity There exists an identity element  such that g • e= e • g=g for 
all . 

Axiom G4: Inverse For each  there is an inverse element  such that 
g • g−1=g−1 • g=e. 

It can be shown that if an identity exists then it is unique and that if an element g has 
an inverse then it is unique. In these terms, then, a group is a collection of elements that is
algebraically closed under an associative binary operation with an identity element and
with each element having an inverse. Often, explicit representation of the group operation
is suppressed, so we will write g1g2 rather than g1 • g2 if the operation is clear from the 
context. Note that the group operation need not be commutative. So g1g2 can be different 
from g2g1, and hence the order of application is important. We will now examine several
examples of groups that are of interest to us. 



Example 6.1 All n×n invertible real matrices form a group, with the matrix 
multiplication as the group operation. Going through Axioms G1 through G4 in 
reverse order, we observe the following. By assumption each matrix has an 
inverse. The identity matrix I (with unity in all diagonal elements and zeros 
everywhere else) serves as the identity element. Matrix multiplication is 
associative. The product of two invertible real matrices is invertible. 

This group of n×n invertible real matrices is called the general linear group and is
denoted by  Here  stands for the set of real numbers between −∞ and +∞. 

Example 6.2 All n×n real orthogonal matrices form a group under matrix 
multiplication. Recall that a matrix is orthogonal if its transpose is its inverse. 
Again, going through Axioms G1 through G4 in reverse order, we observe the 
following. The existence of the transpose ensures the existence of the inverse. 
The identity matrix is also orthogonal. Orthogonal matrix multiplication is, of 
course, associative. Not so obvious is the fact that the product of two orthogonal 
matrices is also orthogonal. 

The group of n×n real orthogonal matrices is called the orthogonal group and is denoted
by . Since the orthogonal matrices are only special cases of invertible square
matrices, the orthogonal group is a subgroup of the general linear group. 

In general, if H is a subset of a group G and H by itself satisfies all the conditions to be
a group, then H is said to be a subgroup of G. Of particular interest to us are normal
subgroups, which are defined as follows. If  and B is a subset of G, let

 and  If B and C are subsets of G, then let
 If H is a subgroup of G, then H is said to be normal if

gH=Hg for all . 
We will often speak of a product of groups. This product has to be defined carefully. It

is not the same as group operation or matrix multiplication. If H is a normal subgroup of
G and K is a subgroup of G, then HK=KH is a subgroup of G, and we say that HK or KH
is the product of H and K. Note that the order is not important in this product. 

Sometimes we may deal with two groups defined by different symbols but whose
group structures are identical. This idea is formally captured by the notion of
isomorphism. If f is a one-to-one mapping from a group G with binary operation ○ onto a
group G′ with binary operation ○′ such that f(x○y)= f(x)○′f(y) for all x and y in G, then f is
an isomorphism and G and G′ are isomorphic. For the purposes of group theory,
isomorphic groups are equivalent. 

Our coverage of groups in this section is all too brief. As mentioned earlier, Appendix
2 is devoted to groups. The reader is encouraged to review that appendix while reading
this chapter. 

6.1.1 Rotation Group 

The 3×3 square matrix A in Eq. (2.1) was defined as a rotation matrix. It is a
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representation of rotation group, which is a subgroup of the orthogonal group. Note that
the determinant of an orthogonal matrix can only be +1 or −1. In the following example, 
we consider those orthogonal matrices whose determinants are +1. 

Example 6.3 All n×n real orthogonal matrices whose determinants are +1 form 
a group under matrix multiplication. This follows the reasoning in Examples 6.1 
and 6.2 and the fact that the determinant of a product of two matrices is the 
product of their determinants. 

Such a group is called the special orthogonal group and is denoted by SO(n, ). Note 
that its complement in the orthogonal group, namely, all n×n real orthogonal matrices 
whose determinants are −1, do not form a group. (Why?). SO(3, ) is of special interest 
to us because the rotation matrix in Eq. (2.1) belongs to this group. We often shorten the
notation and use just SO(3) to denote this rotational group in three-dimensional space. 
Let’s look at several subgroups of SO(3). 

Example 6.4 Consider a 1-parameter family of 3×3 matrices defined by 

where  is an arbitrary real number. Geometrically these matrices represent 
all rotations about the z-axis and  can be viewed as the angle of rotation 
expressed in radians. It can be easily verified that these matrices form a group 
because they meet all four conditions. (Verify this.) These are also orthogonal 
matrices whose determinants equal +1 for any real value of . Since these 
matrices are a special case of 3×3 orthogonal real matrices that have +1 for their 
determinant, these matrices form a subgroup of SO(3). 

Example 6.4 demonstrates that all rotations about the z-axis form a group. Can we then 
say that rotations about any arbitrary, but fixed, line in space also form a group?
Intuitively the answer is yes, because, via a mere change of coordinate bases, we can
make this line as the z-axis without loss of any apparent generality. More formally we
state that the rotations about any arbitrary but fixed axis is isomorphic to the rotations 
about the z-axis. So both are groups, and they are completely equivalent from an abstract
group theoretic point of view. 

Example 6.4 illustrates a continuous subgroup of SO(3), in the sense that the matrix 
elements in Eq. (6.1) vary continuously due to the smoothness of the trigonometric
functions. It is also a 1-dimensional subgroup because, loosely speaking, it belongs to a 
1-parameter family. But continuity is not necessary to qualify as a group, as the following
example shows. 

Example 6.5 Consider the set of rotations about the positive z-axis (i.e., 

(6.1) 
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counterclockwise rotation with respect to the positive z-axis) by an angle from 
the finite set (0°, 90°, 180°, 270°}. In matrix form this can be represented as the 
set of just four rotation matrices 

This set forms a group, as can be easily verified. This is a finite subgroup of 
SO(3) because the matrices are orthogonal and their determinants equal+1. But it 
is not a continuous subgroup of SO(3) 

It is important to emphasize that the rotation angles encountered in these examples are not
the groups; the matrices parameterized by the angles are the groups. Example 6.5 is a
special case of the cyclic group, which can be defined as the set of n matrices 

where  degrees, or (2π/n)i radians. It is a finite subgroup of SO(3) and is
often denoted Cn. So the matrices of Eq. (6.2) represent C4. 

Example 6.6 Augment the matrices of Example 6.5 by four additional matrices 
so that we have a set of eight special orthogonal matrices 

(6.2) 

(6.3) 

(6.4) 
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The last four are rotation matrices, each obtained by a 180° rotation (half-
turn) about a line in the xy-plane. As shown in Figure 6.1(a), these lines are the 
x-axis, the line l1, the y-axis, and the line l3, respectively. The set of matrices in 
Eq. (6.4) forms a group. It is a finite subgroup of SO(3). 

Example 6.6 is a special case of the dihedral group, which can be represented as the set of
2n matrices 

where  degrees, or (2π/n)i radians. The second matrix in Eq. (6.5) is a
rotation matrix that represents a 180° rotation (half-turn) about a line li in the xy-plane,
illustrated in Figure 6.1(b). The entire set of 2n matrices in Eq. (6.5) forms a group. It is a
finite subgroup of SO(3) and is often denoted by Dn. So the matrices of Eq. (6.4)
represent D4. 

Returning to the full SO(3), one way to parameterize it is as follows. 

 

FIGURE 6.1 Lines in the xy-plane that serve as rotation axes to obtain the 
dihedral groups. 

Example 6.7 Consider a 3-parameter family of 3×3 matrices 

(6.5) 
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parameterized by the popular Euler angles , θ, and ψ, called precession, 
nutation, and spin, respectively. These angles were introduced by Euler to study 
the motion of gyroscopes. These matrices are orthogonal, and their determinants 
equal +1 for all values of the Euler angles. They form a group because they 
satisfy all four conditions. (Verify this.) Therefore they are SO(3). 

There are other ways to parameterize SO(3), one of which follows. 
Example 6.8 Consider a 3-parameter family of 3×3 matrices 

parameterized by the Rodrigues parameters λ1, λ2, and λ3 and 
These matrices are orthogonal and their determinants equal +1 for all values of the
Rodrigues parameters. They form a group because they satisfy all four conditions. (Verify
this.) Therefore they are SO(3). 

6.1.2 Translation Group 

Although n×n matrices provide excellent representation for groups, vectors can also serve
as groups. 

Example 6.9 All n-dimensional real vectors form a group, with the group 
operation being vector addition. This group is actually a vector space, usually 
denoted by  Here the identity element is the zero vector. When two vectors 
are added the result is another vector. Vector addition is obviously associative. 

(6.6) 

(6.7) 
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The inverse of a vector is just its negative. 

 is of special interest to us because our translation vector in Eq. (2.1) belongs to this
group. It can be represented by a 3-parameter family of vectors [dx, dy, dz]

T, where dx, dy,
dz  We will also use T(3) to denote this group of translations in three-dimensional
space. 

Example 6.10 Consider a 1-parameter family of translations represented by the 
vector [0, 0, d]T, where  This is all translations along the z-axis. Vector 
addition is the group operation. Closure and associativity are easy to establish. 
The identity element is the zero vector [0, 0, 0]T. The inverse of [0, 0, d]T is 
given by [0, 0, −d]T. Therefore this is a group, and it is a continuous subgroup of 
T(3). It is also a 1-dimensional subgroup because it belongs to a 1-parameter 
family. 

The group of translations along the z-axis is isomorphic to the group of translations along
any arbitrary but fixed straight line in space. 

Example 6.11 Consider a 2-parameter family of translations represented by the 
vector [dx, dy, 0]T, where dx,  This is all translations in the xy-plane. 
Again, vector addition is the group operation. Closure and associativity are easy 
to establish. The identity element is the zero vector [0, 0, 0]T. The inverse of [dx, 
dy, 0]T is given by [−dx, −dy, 0]T. Therefore this is a group, and it is a continuous 
subgroup of T(3). It is a 2-dimensional subgroup because it belongs to a 2-
parameter family. 

The group of translations in the xy-plane is isomorphic to the group of translations in any
arbitrary but fixed plane in space. A discrete subgroup of T(3) follows. 

Example 6.12 Consider the set of translations represented by the vector [0, 0, d]
T, where d  Here  is the set of all integers (positive and negative, 
including 0). Following the same reasoning as in Example 6.10, we see that this 
set is a group. It is a discrete subgroup of T(3). 

6.1.3 Rigid Motion Group 

The rigid motion group, which is often denoted simply by R, can now be defined as the
product of the translation group T(3) and the rotation group SO(3). This is possible
because we can show that T(3) is a normal subgroup of R. The structure of the rigid
motion group is better revealed by matrices, as we show in the following. 

A rigid motion can be represented by the 4×4 matrix in Eq. (2.9), which used
homogeneous coordinates to represent points. Using this matrix notation we can show
that the set of all rigid motions is a group under a group operation that composes two
successive rigid motions. To show this we will denote a 3×3 rotation matrix by A and a
3×1 translation vector by t, so the 4×4 rigid motion matrix can be written as 
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where it is understood that the zero extends for three columns. If R1 and R2 are two rigid 
motions, then applying them in sequence is equivalent to the matrix multiplication 

The result is a rigid motion, because the product of two rotation matrices is a rotation
matrix and the product of a rotation matrix and a translation vector gives a translation
vector. The associativity of rigid motions is ensured by that of the matrix multiplication.
The identity motion is the 4×4 identity matrix. That leaves us with the task of 
establishing the inverse. Since 

we have found an inverse for a rigid motion within the rigid motion group. Thus, the set
of rigid motions is a group. It is also known as the special Euclidean group and is 
denoted by SE(3). 

The 4×4 matrix representation of the rigid motion clearly shows that the rigid motion
group is a subgroup of the general linear group Gl(4, ). A closer look at Eqs. (6.9) and 
(6.10) shows that the translation group and the rotation group are subgroups of the rigid
motion group; it also shows that the translation group is a normal subgroup. (How?) The
rigid motion group has several other subgroups as well, and some of these will be 
explored in the following examples. 

Example 6.13 Consider all combinations of translations along the z-axis and 
rotations about the z-axis. It can be represented by the 2-parameter family of 
matrices 

where  and d are two independent parameters for rotation and translation, 
respectively. It can be seen that these matrices form a group. It is a subgroup of 
the rigid motion group. It is also a continuous subgroup of the rigid motion 
group. 

Example 6.14 Consider the screw motion about the z-axis, which can be 

(6.8 

(6.9) 

(6.10) 

(6.11) 
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represented by the 1-parameter family of matrices 

where  is the independent parameter and µ is 
a constant called the pitch of the screw (advance per unit turn). These matrices 
form a group, and it is a continuous subgroup of the rigid motion group. 

Example 6.15 Consider the following set of rigid motions in the xy-plane. It 
consists of all translations in the plane and rotations about the z-axis. It can be 
represented by the 3-parameter family of matrices 

where , dx, dy,  form the independent parameters. These matrices form 
a group, and it is a continuous subgroup of the rigid motion group. 

6.2 SYMMETRY GROUPS 

We are now ready to define symmetry formally. Let the collection of automorphisms of a
point-set S in Euclidean space, denoted Aut(S), be the set of rigid motions that leave S
invariant. That is, Aut  [Recall that R is the short form for
the rigid motion group; that is, SE(3)]. Also denote by Aut0(S) the connected component
of Aut(S) that contains the identity element in the rigid motion. The notion of
automorphism captures the notion of symmetry and, in fact, is used synonymously in the
literature. Our automorphisms are somewhat more restricted than general automorphisms,
which allow any transformation r in the given definition; we permit only rigid motion and
do not allow reflection. 

We note that Aut(S) forms a group, called the symmetry group, because of the
following. 

1. If  then  Aut(S). 
2. If  Aut(S), then r1 • (r2

 • r3)=(r1 • r2) • r3 because r1, r2, 

(6.12) 

(6.13) 
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3. Since I(S)=S, we have  
4. Since  there is an inverse  such that r−1(S)= r−1 • r(S)=I(S), so 

 
Therefore, Aut(S) is a subgroup of the rigid motion group R. This crucial fact establishes
the link between symmetry and subgroups of the rigid motion group. We will now
illustrate the idea of symmetry groups using several examples. 

Example 6.16 Consider the point-set S={(x, y, z):x2+y2=4}. It is a cylinder of 
radius 2 units, and its axis is the z-axis. S is invariant with respect to translations 
along the z-axis and rotations about the z-axis. So Aut(S) can be represented by 
the set of matrices given in Example 6.13. It is a continuous subgroup of the 
rigid motion. 

Example 6.17 Consider the point-set S={(x, y, 
z):x=2 cosφ,  It is a space curve—a right-handed 
helix whose axis is the z-axis. Its base cylinder radius is 2 units, and it has a 
pitch of 1 unit (advance per revolution). The screw motion of Example 6.14 
keeps the point-set S invariant. Specifically, the matrices in Eq. (6.12) with µ=1/
(2π) form Aut(S). It is a continuous subgroup of rigid motion. 

Example 6.18 Consider the solid pyramid S shown in Figure 6.2. It has a 
square base with vertices at coordinates (1, 1, 0), (−1, 1, 0),  

 

FIGURE 6.2 A pyramid with square base. It has discrete rotational symmetry 
about the z-axis. 

(− 1, −1, 0), and (1, −1, 0). The apex of the pyramid is at the vertex (0, 0, 1). 
The pyramid has a fourfold rotational symmetry about the z-axis. Aut(S) is given 
by the rotational motion and associated matrices in Example 6.5. It is a discrete 
subgroup (C4) of the rigid motion. 

Example 6.19 Consider a square prism represented by the point-set S={(x, y, 
z):max(|x|, |y|)=1} and illustrated in Figure 6.3. It is unbounded in the z-
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direction. It has a fourfold rotational symmetry about the z-axis, and it is also 
invariant under half-turn (180°) rotations about the x-axis, the y-axis, and the 
lines in the xy-plane labeled l1 and l3 in Figure 6.1(a). In addition it has a 
translational symmetry along the z-axis. So the set of rigid motions that leave the 
point-set S invariant can be represented by the set of 1-parameter family of 
matrices 

 

FIGURE 6.3 A square prism that extends all the way up and down the z-axis. 
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where  This set forms a group and is the Aut(S). It is a continuous 
subgroup of rigid motion having eight distinct components, as seen in the 
matrices of Eq. (6.14). Only the first component, that is, 

contains the identity matrix and hence is denoted by Aut0(S). Among Aut(S) it 
is called the connected component of the identity and is a group by itself. 
Arbitrarily small rigid motions that keep the prism of Figure 6.3 invariant are to 
be found only in Aut0(S), that is, in the matrices of Eq. (6.15). 
Example 6.20 Consider the point-set  It consists of all 
planes parallel to the xy-plane that intersect the z-axis at integral values (positive 
and negative, including zero). This point-set remains invariant under a set of 
rigid motions represented by the matrices 

where , dx,  and  These matrices form a group, and this 
group is Aut(S). It is a continuous subgroup of the rigid motion group. It 
contains many connected components, and only that component for which dz=0, 
that is, the set of rigid motions represented by the matrices 

(6.14) 

(6.15) 

(6.16) 
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contains the identity element. So the connected component of the identity, 
Aut0(S), is represented by the matrices of Eq. (6.17). 
The preceding examples demonstrate the close relationship between geometric 
objects with symmetry and subgroups of the rigid motion group. Therefore it is 
natural to expect that any classification of symmetry in geometric objects will 
depend on the classification of the rigid motion group. In fact it has been found 
that the best way to classify geometric objects on the basis of symmetry is first 
to seek a classification of the rigid motion group. Perhaps the most famous 
attempt in this direction is the classification of the finite subgroups of the 
rotation group SO(3). It has been shown that there are only the following finite 
subgroups of SO(3). 

1. The cyclic group Cn, illustrated in Example 6.5. Right pyramids with 
regular polygons as their base exhibit this type of symmetry, as shown in 
Example 6.18. (Recall that a regular polygon is one in which all sides are 
equal and all angles are also equal.) 

2. The dihedral group Dn, illustrated in Example 6.6. Right prisms constructed 
by translational sweeps of regular polygons exhibit this type of symmetry. 
Example 6.19 provides an unbounded version of such an object. In fact, 
right prisms with finite height will just do as examples of objects with 
dihedral symmetry. 

3. The group of rotations of a regular solid (also known as a platonic solid). 
There are three groups in this category. 

(a) The tetrahedral group has 12 elements. A regular tetrahedron exhibits 
this symmetry and hence the name. See Figure 6.4(a). 

(b) The octahedral group has 24 elements. A cube and a regular octahedron 
(a polyhedron having eight identical triangular faces) exhibit this type of 
symmetry. See Figure 6.4(b). 

(c) The icosahedral group has 60 elements. A regular icosahedron (a 
polyhedron having 20 identical triangular faces) and a regular pentagon-
dodecahedron (a polyhedron with 12 identical pentagonal faces) exhibit 
this type of symmetry. See Figure 6.4(c). 

The compact classification of regular solids into just the five (tetrahedron, cube, 
octahedron, pentagon-dodecahedron, and icosahedron) is considered one of the 
major accomplishments of the ancient Greek geometers. In fact, the last 
theorems of Euclid’s Elements are devoted to these, and Book XIII concludes 
with the remark “I say next that no other figure, besides the said five figures, can  

(6.17) 
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FIGURE 6.4 Five platonic solids. 

be constructed which is contained by equilateral and equiangular figures equal 
to one another.” 

It turns out that a similar compact classification of geometric objects exists on 
the basis of their continuous symmetry. For this we depend on the continuous 
subgroups of the rigid motion group, to which we now turn. 

6.3 CONNECTED LIE SUBGROUPS OF THE RIGID MOTION GROUP 

First, we need to define the notion of continuous groups more precisely. Here is where Lie
groups, which are groups endowed with manifold structure such that the group operations
are C∞ functions, prove useful. Intuitively, the group operations in a Lie group are
smoothly continuous. Examples 6.13, 6.14, and 6.15 illustrate rigid motions that are
continuous and also form groups. These are Lie groups. In contrast, Examples 6.5, 6.6,
and 6.12 illustrate subgroups of rigid motions whose elements are not continuous and
therefore are not Lie groups, even though they all are subgroups of the rigid motion
group. We are mainly interested in Lie subgroups of the rigid motion group in three-
dimensional space, which we will address now. A specialization of these results for the
rigid motion in two-dimensional space follows afterwards. 

6.3.1 Three-Dimensional Case 

To start with, the full rigid motion group R is a Lie group. It is the Lie subgroups of R that
we seek. Specifically, we ask a sharp mathematical question: What are the connected Lie
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subgroups of the rigid motion group? The answer to this question is surprisingly simple,
although its proof is not. It has been rigorously shown that only the following are the
connected Lie subgroups of the rigid motion group. Some of the subgroups are defined as
products of other subgroups; in these cases, the corresponding normal subgroup has been
identified by appropriate reference. 

1. The group of rigid motions itself. As we saw earlier it is the product of the 
translation group T(3) and the rotation group SO(3). It is the full rigid motion group. 
It is also called the special Euclidean group and is denoted by SE(3). For simplicity, 
we often denote this group by R. It has six independent parameters, three for 
translation and three for rotation. It can be represented by 4×4 matrices, as in Eq. 
(2.9). See Example A2.9 in Appendix 2 for the normal subgroup of this group.  

2. The identity alone. It is the identity element in the rigid motion group. It has only 
one operation, which can be represented by the 4×4 identity matrix. 

3. The group of rotations about an arbitrary but fixed point. It is the full rotation group 
SO(3). It has three independent parameters. It can be represented by matrices in 
Examples 6.7 and 6.8. 

4. The group of translations in space. It is the full translation group T(3), also denoted 
by . It has three independent parameters. 

5. The group of translations in an arbitrary but fixed plane. See Example 6.11, which 
illustrates a case isomorphic to this subgroup. It has two independent parameters. 

6. The group of translations along an arbitrary but fixed line. See Example 6.10, which 
illustrates a case isomorphic to this subgroup. It has one independent parameter. 

7. The product of the group of rotations about an arbitrary but fixed line and the group 
of translations along the same line. Example 6.13 illustrates a group that is 
isomorphic to this. This group has two independent parameters. See Example A2.10 
in Appendix 2 for normal subgroups of this group. 

8. The product of the group of rotations about an arbitrary but fixed line and the group 
of translations in space. We have not seen an example of this subgroup. It is 
isomorphic to the rigid motion group that can be represented by the 4-parameter 
family of matrices 

where , dx, dy,  The rigid motion of Eq. (6.18) is a rotation about the z-axis 
and translations along all the three axes. It can be shown that they form a group, 
and it is a continuous subgroup of the rigid motion group. It has four independent 
parameters. See Example A2.9 in Appendix 2 for a normal subgroup of this group. 

9. The screw group of pitch µ about an arbitrary but fixed line. A screw group of pitch 
µ about a line is the group of rotations about the line that are accompanied by 
translations along the line by the amount µ per revolution. It is illustrated in Example 

(6.18) 
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6.14. Within a particular screw group, the pitch µ is treated as a constant. Therefore, 
members of a particular screw group belong to a 1-parameter family. 

10. The product of the screw group of pitch µ about an arbitrary but fixed line and the 
group of translations along a plane orthogonal to the line. We have not seen an 
example of this subgroup either. It is isomorphic to the rigid motion group 
represented by 

where , dx, dy  and µ is the pitch. It can be shown that these motions 
form a group and it is a continuous subgroup of the rigid motion group. See 
Example A2.11 in Appendix 2 for a normal subgroup of this group. 

If an engineer, as opposed to a mathematical purist, does the counting, it is customary to
consider specialization of subgroups 9 and 10 when the screw pitch µ=0. So we can have
12 connected Lie subgroups in all, with the last two being as follows. 

11. The group of rotations about an arbitrary but fixed line. Example 6.4 illustrates this 
subgroup. It is also a subgroup of SO(3). It has one independent parameter. 

12. The product of the rotation group about an arbitrary but fixed line and the group of 
translations along a plane orthogonal to the line. It is the two-dimensional rigid 
motion. Example 6.15 illustrates this subgroup. It has three independent parameters. 
See Example A2.11 in Appendix 2 for a normal subgroup of this group. 

Before we conclude this section, a couple of observations are in order. First, we note that
we asked only for the connected Lie subgroups of the rigid motion. These are the
connected components of all Lie subgroups of R that contain the identity. They
correspond to what engineers and physicists loosely call “instantaneous” or “small”
motions. Second, these subgroups themselves are not the object of our interest; they are
necessary intermediate classifications that lead us directly to a classification based on
continuous symmetry.  

6.3.2 Two-Dimensional Case 

It is easy to obtain a two-dimensional specialization of the results of Section 6.3.1.
These are presented here because several applications use two-dimensional objects. The
rigid motion group in a plane is the product of T(2) and SO(2), and it is a Lie group. See
Example 6.15 for a matrix representation of this group. It consists of translations in the
plane, denoted by T(2), and rotation about a fixed point in the plane, denoted by the
special orthogonal group SO(2). T(2) is a normal subgroup, and hence the product of T(2)
and SO(2) is well defined. The only connected Lie subgroups of the two-dimensional
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rigid motion group are the following. 

1. The group of rigid motions itself in the plane. It is the product of T(2) and SO(2). It 
has three independent parameters, two for translation and one for rotation. It can be 
represented by a 3×3 matrix of the form 

where , dx, dy  The rigid motion of Eq. (6.20) is a counterclockwize 
rotation about the origin and translations along all the x- and y-axes. 

2. The identity alone. It is the identity element in the rigid motion group. It can be 
represented by the 3×3 identity matrix. 

3. The group of translations in the plane. It is the translation group T(2), also denoted 

by . It has two independent parameters. 
4. The group of rotations about an arbitrary but fixed point in the plane. It is the 

special orthogonal group SO(2). It has only one parameter. 
5. The group of translations along an arbitrary but fixed line in the plane. This is a 

one-dimensional translation along a straight line. It has only one parameter. 

We can now turn to a classification based on continuous symmetry. 

6.4 CLASSIFICATION OF CONTINUOUS SYMMETRY GROUPS 

As we remarked earlier, our search for all connected Lie subgroups of the rigid motion
group is only a means to an end, which is a compact classification of continuous 
symmetry of geometric objects. We will achieve this objective in this section. We begin
with a discussion of the three-dimensional case; a simple specialization to two-
dimensional case will follow afterwards. 

6.4.1 Three-Dimensional Case 

The fact that there are only 12 connected Lie subgroups of the rigid motion group in
three-dimensional space is encouraging because if a point-set S were to possess 
continuous symmetry, it should come from one of these 12 subgroups. So we turn the
problem around and ask for point-sets that remain invariant under the action of each of
the 12 subgroups. To do that, we first observe that for the type of point-sets encountered 
in engineering, the set of continuous rigid motions that keep the point-set invariant are 
indeed Lie groups. Formally, we say that if the point-set S is what we encounter in 
geometric modeling, then Aut(S) is a Lie group. 

So, for all engineering applications we can assume that Aut(S) is a Lie subgroup of the 
rigid motion group. It then follows that Aut0(S) is a connected Lie subgroup of the rigid
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motion group, and, therefore, must belong to one of the 12 classes listed in Section 6.3.1. 
But some of the listed subgroups cannot preserve the point-set they act on and hence 
cannot be automorphic. For example, if a subgroup contains T(3), that is, all translations 
in space, then its action on any proper subset S of Euclidean space can sweep the entire 
space and, therefore, cannot leave S invariant. This condition applies to subgroups of the 
rigid motion group listed under classifications 1, 4, and 8 in Section 6.3.1. Classifications 
10 and 12 involve translations in a plane perpendicular to a line as well as rotations about
this line. It can be shown that these two subgroups also cannot leave the point-set S
invariant. 

Thus a total of five out of the 12 subgroups of the rigid motion group cannot leave a
point-set S on which they act invariant. The remaining seven can, and they form the 
seven classes of symmetry shown in Table 6.1. The first column lists the names of the

TABLE 6.1 Seven Classes of Symmetry 

Class Surface (example) S Aut0(S) dim(Aut0
(S)) 

Reference element 
or tuple 

Spherical Rot(3) 3 PT 

Cylindrical Product of Tr(1) 
and Rot(1) 

2 SL 

Planar Product of Tr(2) 
and Rot(1) 

3 PL 

Helical Screw group with 
pitch µ 

1 HX 

Revolute Rot(1) 1 (SL, PT) 

Prismatic Tr(1) 1 (PL, SL) 

General [ 0 (PL, SL, PT) 

PT: point; SL: straight line; PL: plane; HX: helix; Aut0(S): automorphism of S under small 
motion; Rot(n): n independent rotations; Tr(n): n independent translations; I: identity motion; dim
(Aut0(S)): dimension of the automorphism group. 
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seven classes. Example sets in the form of surfaces are shown in the second column.
These are merely examples; the point-set S need not be connected and need not even be a 
surface. The third column lists the subsets of the rigid motion that form the
automorphism groups for S, and the fourth column shows the dimension of this group,
that is, how many independent parameters are involved in that subgroup of the rigid
motion group. The last column provides for each of the seven classes simple geometric
elements, sometimes combined in the form of a tuple, that belong to the same
automorphism group as any set in that class. These simple elements and tuples consist of
just points, straight lines, planes, and helices. Since the symmetry classification of Table 
6.1 is the basis for a general theory of relative positioning in Chapter 7, each row in the 
table deserves a closer look.  

1. A sphere remains invariant under three rotations about its center and thus belongs to 
the spherical class. The dimensionality of Aut0(S) is 3 for this class. The center of 
the sphere, which is a point, also remains invariant under rotational motions about it. 
Therefore the center is the reference element for this class. 

2. A cylinder is invariant under translational motion along its axis and rotational 
motion about the axis; it belongs to the cylindrical class. The dimensionality of Aut0
(S) is 2 for this class. The axis of the cylinder, which is a straight line, does not 
change under a translational motion along it and rotational motion about it. This axis 
is then the reference element for this class. 

3. A plane, for example, is invariant under translational motion parallel to the plane and 
rotational motion about an axis perpendicular to the plane; hence, it belongs to the 
planar class. Note that a pair of two parallel planes, or any number of parallel planes, 
also belongs to this class. The dimensionality of Aut0(S) is 3 for this class. For a 
geometric object in the planar class, we can always find a plane that remains 
invariant under the automorphic motion for that object; in fact, any plane parallel to 
the chosen plane will also satisfy this condition. This plane is the reference element 
for this class. 

4. A helical surface remains invariant if, while being rotated about its axis, it is 
advanced along the axis by a distance determined by its pitch; it belongs to the 
helical class. The dimensionality of Aut0(S) is 1 for this class. For a geometric object 
in the helical class, any helix with the same axis, the same right- or left-handedness 
(that is, the same chirality), and the same pitch will do as the reference element. 

5. A cone, for example, remains invariant under rotational motion about its axis and 
hence belongs to the revolute class. The dimensionality of Aut0(S) is 1 for this class. 
For an object in the revolute class, if we choose a tuple consisting of the axis of 
revolution and a point on the axis of revolution, then this tuple will remain invariant 
under the automorphic motion for that object. (More about automorphism of tuples is 
discussed in the next section.) It is the reference tuple for this class. 

6. An elliptic cylinder, for example, remains invariant under translational motion along 
its ruling and thus belongs to the prismatic class. The dimensionality of Aut0(S) is 1 
for this class. For an object belonging to the prismatic class, if we choose a tuple 
consisting of a straight line parallel to the axis of the prism and a plane containing 
the straight line, then this tuple will remain invariant under the automorphic motion 
for that object. This is the reference tuple for this class. 
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7. A hyperbolic paraboloid, for example, cannot remain invariant under any small rigid 
motion—its automorphism contains only the identity element and it belongs to the 
general class. The dimensionality of Aut0(S) is 0 for this class. For a simple object 
belonging to the general class we can find a 3-tuple of a point, a straight line 
containing the point, and a plane containing the straight line, which remain invariant 
only under the identity motion. This will serve as the reference tuple for this class. 

It is instructive to compare these seven classes with Svensen’s six elementary cases of
size dimensioning described in Section 1.1. He got the spherical, cylindrical, revolute
(specialized as a cone), and prismatic classes right. He also covered the general class
under “other solids.” He missed the planar and helical classes, but inserted “pyramids” as
a separate case. Nevertheless, it is quite impressive that his empirical classification of
elementary objects based on considerable practical experience comes very close to the
rigorous theoretical classification based on symmetry. 

6.4.2 Two-Dimensional Case 

A specialization of Table 6.1 for the two-dimensional case, that is, for planar objects, is
shown in Table 6.2. As would be expected, considerable simplification is achieved in the
two-dimensional case. Of the five connected Lie subgroups listed in Section 6.3.2, only
three can have geometric objects in a plane that remain invariant under their action. Let’s
examine them briefly. 

1. Circular class. A circle remains invariant under rotation about a fixed point in the 
plane. The center of the circle also remains invariant under this rotational motion. 
The center is the reference element for this class. 

2. Linear class. A line remains invariant under translation along the line. It is also its 
own reference element. 

3. General class. An ellipse, with unequal major and minor axes, cannot remain 

TABLE 6.2 Three Classes of Symmetry for Planar Objects 

Class Curve (example) 
S 

Aut0(S) dim(Aut0(S)) Reference element or tuple 

Circular 

 

Rot(1) 1 PT 

Linear 

 

Tr(1) 1 SL 

General 

 

1 0 (SL, PT) 

Nomenclature the same as in Table 6.1. 
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invariant under any small rigid motion in the plane. A tuple of a line and a point on the 
line serves as a reference element for objects in this class. 

6.5 CLASSIFICATION OF TUPLES OF SETS 

Often we are interested in a group of rigid motions that leave more than one point-set
invariant. This leads us to a consideration of a “collection” or “combination” of point-
sets. This notion can be captured mathematically by the concept of a tuple of point-sets
introduced earlier. Some examples of tuples that remain invariant under rigid motion were
provided when reference tuples were discussed earlier. 

Recall that tuples are ordered, rigid collection of point-sets. We can then define a
consistent automorphism for a tuple of point-sets as 

 A couple of important properties of the
automorphism of tuples follow. 

1. From the definition of automorphism for a tuple of point-sets, it follows that 

. So by knowing the automorphisms of 
individual members of a tuple, we can quickly infer the automorphism of the tuple by 
just collecting the common elements in the automorphisms. 

2. Following arguments similar to the automorphism of a single set, we can show that 
Aut(S1, S2,…, Sn) is a subgroup of the rigid motion group R. For this, all we need to 
do is to establish that Aut(S1, S2,…, Sn) is a group.  

But is it a Lie subgroup? Not necessarily, even if Aut(Si) is a Lie subgroup for all i. 
However, it can be shown that if Aut(Si) is a Lie subgroup for all i, then Aut0(S1, 
S2,…, Sn) is a Lie subgroup of R and, therefore, belongs to one of the seven 
symmetry classes of Table 6.1. In addition, Aut0(S1, S2,…, Sn)=the identity 
component of  Aut0(Si). 

Thus, the symmetry-based classification is closed, in the sense that if we take any two
point-sets whose classification according to Table 6.1 is already known, then the
symmetry classification of the 2-tuple of these two point-sets also belongs to one of the
seven from Table 6.1. 

Example 6.21 Table 6.3 shows an example of classifying a 2-tuple (S1, S2) of 
two cylindrical surfaces. Both S1 and S2 belong to the cylindrical class, and each 
has an automorphism group that is a product of a group of translations along its 
axis and a group of rotations about this axis. Classification of the tuple depends 
on the relative orientation and location of the cylinder axes. 
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1. If the axes are parallel but distinct, the tuple belongs to the prismatic class because 
the intersection Aut0(S1) ∩ Aut0(S2) of the two cylindrical automorphism groups 
results in just a translation along the common axial direction. 

2. If the axes are coincident, then the two automorphisms are identical and their 
intersection yields an automorphism group that belongs to the cylindrical class. 

3. If the axes are skew, then the only intersection of the two automorphisms is the 
identity, which places the tuple in the general class. 

Thus a simple case analysis is sufficient to infer the 2-tuple classification. 
Classification results for tuples, such as those just presented, are sometimes referred to

as reclassification to emphasize the fact that the symmetry classification is closed for the
tuples. Table 6.4 enumerates the reclassification of 2-tuples, that is (S1, S2), from a 
knowledge of the classification of S1 and S2. It has seven rows and seven columns, and 
each of the 49 cells in the table is subjected to a case analysis similar to that shown in
Table 6.3. Since the classification of (S1, S2) is the same as the classification (S2, S1),
because of the commutativity of set intersection Aut0(S1) ∩ Aut0(S2)= Aut0(S2) ∩ Aut0
(S1), the reclassification table is symmetric. 

In the case analyses of Example 6.21 and in Table 6.4, we have tacitly assumed that the 
relative positioning of S1 and S2 can be accomplished by relative positioning their
respective reference elements or tuples. In Chapter 7 we will show that it is indeed 
possible, and this will provide a justification for our case analyses. 

The classification of any n-tuple can be derived from the 2-tuple reclassification table 
by simple iteration. We can do this because, as we saw earlier, Aut0(S1, S2,…, Sn)=the 

TABLE 6.3 Classification of a 2-Tuple (S1, S2) of Two Cylindrical Surfaces
 

Case Illustration Class 
parallel axes prismatic 

coincident axes cylindrical 

skew axes general 
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identity component of  Aut0(Si), and the intersection can be computed 
incrementally with two groups at a time. 

6.6 CLASSIFICATION OF LOWER-ORDER KINEMATIC PAIRS 

Geometrical objects can be classified on the basis of their symmetry, per Table 6.1. But 
do these classifications have anything to do with the functionality or manufacture of these
objects? In this section we will provide an affirmative answer to this question.  

A kinematic joint involves two parts and permits relative motion between the parts by
maintaining contact between their boundary elements. A ball-and-socket joint is a typical 
example of a kinematic joint. If the mutual contact between the part boundaries during
the relative motion occurs over a surface (as opposed to over a line or a point), then the
kinematic pair is called a lower pair. Mechanisms containing lower-pair kinematic joints 
are widely used in practice, especially in machine tools and robots. Engineers have long
speculated that the only possible lower pairs are the following. 

1. Spherical pair. It allows rotation about a point. 
2. Cylindrical pair. It allows rotation about the cylinder axis and a translation along the 

axis. 
3. Planar pair. It allows translation along the plane and rotation about an axis 

perpendicular to the plane. 
4. Screw pair. It allows a helical movement in terms of a fixed axial advance per 

revolution. 
5. Revolute pair. Both contact surfaces are surfaces of revolution, generated by any 

profile. It allows rotation about its axis. 
6. Prismatic pair. Both contact surfaces are generalized cylinders other than the right 

circular cylinder. It allows a translation parallel to a ruling. 

This classification is strikingly identical to the first six of the seven classes in Table 6.1. 
It shouldn’t be surprising, because lower-pair motions require that the contact surfaces 
remain invariant under relative motion. Proof for the classification of Table 6.1 also 
serves as the proof for the lower-pair classification. 

We can now see some practical benefits of classifying surfaces per Table 6.1. First 
consider their manufacture. These surfaces are commonly manufactured by machine tools
that employ guided cutting and forming tools through a chain of lower-pair kinematic 
joints. Drilling, turning, planing, milling, and broaching provide some examples of
manufacturing operations that produce the so-called “manufacturing features” that are 
subsets of surfaces that belong to the cylindrical, revolute, planar, helical, or prismatic
classes. 

Next, consider functionality. Parts in a mechanism have surfaces to enable kinematic
pairing that fall under the lower-pair classification; such surfaces are important for
designing mechanisms. Even if parts are assembled to form static systems, these
assemblies have “mating features,” such as cylindrical pins and cylindrical holes, which
belong to the lower pairs that again fall under these classes. Thus a classification based
on symmetry provides a  
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TABLE 6.4 Complete Symmetry Group Classification of a 2-Tuple (S1, S2)a
 

  Spherical 
p2 

Cylindrical 
l2 

Planar P2
 Helical 

h2 
Revolute 
(l2, p2) 

Prismatic 
(P2, l2) 

General 
(P2, l2, 

p2) 

Spherical 
p1 

If p1=p2, 
then 
spherical; 
otherwise 
revolute 

If p1 is on l2, 
then re 
volute; 
otherwise 
general 

Revolute General If p1 is on 
l2, then 
revolute; 
otherwise 
general 

General General 

Cylindrical 
l1 

  Case l1=12, 
then 
cylindrical; 
Case l1//l2, 
then 
prismatic; 
otherwise 
general 

Case 
l1//P2, 
then 
prismatic; 
Case 

 
then 
revolute; 
otherwise 
general 

If axes 
coincide, 
then 
helical; 
otherwise 
general 

If l1=l2, 
then 
revolute; 
otherwise 
general 

If l1//l2, 
then 
prismatic; 
otherwise 
general 

General 

Planar P1
     If P1//P2, 

then 
planar; 
otherwise 
prismatic 

General If  
then 
revolute; 
otherwise 
general 

If l2//P1, 
then 
prismatic; 
otherwise 
general 

General 

Helical h1
   If h1C*h2, then 

helical; otherwise 
general 

General General General 

Revolute (l1, 
p1) 

  If l1=l2, then 
revolute; otherwise 
general 

General General 

Prismatic (P1, 
l1) 

    If l1//l2, then 
prismatic; otherwise 
general 

General 

General (P1, 
l1, p1) 

      General 

aS1 is a member from a class in the first column and S2 is a member from a class in the first row, 
based on case analyses of constraints on reference elements and tuples. Parallelism constraint is 
denoted by // and perpendicularity constraint is denoted by . In the (helix, helix) case, C* 
stands for a special constraint where the axes of the helices are coincident and the helices have the 
same chirality and pitch. The lower triangular cells are not filled because the table is symmetric. 
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convenient grouping of these features in a static assembly or in an assembled mechanism
that executes a motion. 

6.7 SUMMARY 

The most important results of this chapter are summarized in the symmetry classification
of Table 6.1 and the tuple classification of Table 6.4. Quadrics supply examples for six of 
the seven classes in Table 6.1; the helical class is the exception. The real power of the 
continuous symmetry classification lies with the reclassification shown in Table 6.4, 
which establishes the fact that any tuple of geometric objects belongs to one and only one
of the seven continuous symmetry classes. This, along with the reference elements and
tuples listed in Table 6.1, forms the basis for a general theory of relative positioning 
described in the next chapter. 

6.8 EXERCISES 

1. Apply the definition of groups to verify that the matrices defined by Eq. (6.6) form a 
group. Repeat the same for the matrices defined by Eq. (6.7). 

2. Identify the continuous symmetry classification of each of the 12 real quadrics in 
Table 4.1. Include special cases as well. 

3. Identify the discrete symmetry classification of the prisms and the pyramids (both 
positive and negative) shown in Figure 1.1. 

4. Identify the continuous symmetry classification of each of the elementary cases (both 
positive and negative) shown in Figure 1.1. 

5. Give detailed proofs of Exercises A2.9, A2.10, A2.11, and A2.13 in Appendix 2. 
6. From first principles, prove that Aut(S1, S2,…, Sn) is a subgroup of the rigid motion 

group. 
7. Classify the continuous symmetry of a 2-tuple consisting of a plane and a cylinder. 

Record your results in a table similar to Table 6.3. 
8. Consider a 3-tuple consisting of a plane, a cylinder, and a cone. What is the 

classification of the continuous symmetry of this 3-tuple? Consider all possible 
outcomes. 

9. Prepare a reclassification table (a la Table 6.4) for planar objects. This is the two-
dimensional specialization of Table 6.4. (Hint: Start with Table 6.2.) 

10. Research and list some of the higher-order kinematic pairs. How are they applied in 
engineering?  

11. Study the manufacturing processes in turning, drilling, shaping, planing, milling, and 
broaching, and list the type of “manufacturing features” produced by each of these 
machining operations. Classify these features according to their continuous symmetry. 
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6.9 NOTES AND REFERENCES 

Weyl (1952) gives a nice account of symmetry for nonspecialists. Denavit and
Hartenberg (1955) provided an empirical classification of lower-order kinematic pairs 
that mirrored the symmetry classification of Table 6.1. The French pioneered the 
classification of continuous symmetry using Lie groups, for application in mechanical
engineering. Clement, Riviere, and Temmerman (1994) give the results for continuous
symmetry classification and reclassification, which we have adopted. They use the
acronym TTRS (topologically and technologically related surfaces) to refer to the
symmetry-based classification of surfaces. A mathematical proof of correctness of these 
classifications can be found in O’Connor, Srinivasan, and Jones (1996). The continuous 
symmetry classification has also been standardized recently by ISO in their document
ISO/TS 17450–1 (2003). 

Whether Aut(S) is a Lie group for any arbitrary point-set S is an open problem. But for 
most cases, we can show that Aut(S) is a Lie group. Specifically, the following has been 
shown by O’Connor, Srinivasan, and Jones (1996). 

If S is closed, then Aut(S) is a Lie group. 
If cl(S)\S is closed, then Aut(S) is a Lie group. 

Here, cl stands for set closure and \ denotes set difference. The last condition is very
generous; it states that if S has a limit set that is closed, then Aut(S) is a Lie group. All 
embedded submanifolds of Euclidean space satisfy this condition. So do algebraic and
analytic surfaces and even semialgebraic and semianalytic varieties. In fact, the sets and
their boundary elements used in geometric modeling satisfy this condition. This should
do for our purpose.  
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7  
General Theory of Dimensioning Relative 

Positions 

It was observed in earlier chapters that positioning an arbitrary three-dimensional rigid 
body in a stationary reference frame (for example, a global coordinate system) requires
six independent parameters—three for location and three for orientation—that are loosely 
called the degrees of freedom (DOF). Now consider positioning a sphere in a stationary
reference frame. It appears that we can accomplish this with considerably fewer
parameters. We only require three DOF, namely, for the location of the center of the
sphere in the stationary frame, because the symmetry of the sphere, as we saw in Chapter 
6, renders the three rotations about its center irrelevant for the positioning task. In fact, 
we can generalize this type of reasoning for any geometric object, whether a point-set or 
a tuple of point-sets, provided we know its symmetry group classification, per Table 6.1. 
The fourth column in that table tells us the dimension of its automorphism group. When
this number is subtracted from 6, which is the maximum number of DOF for any rigid
object in a stationary reference frame, we obtain the number of DOF for this object. Thus,
a cylinder has 6−2=4 DOF, a cone has 6−1=5 DOF, and so on. 

Let’s take the example further and examine the relative positioning of a sphere S and a 
plane P. Notice that we no longer need to refer to the stationary reference frame explicitly
because the relationship between the plane and the sphere doesn’t seem to care where the 
stationary frame is. Put another way, the relationship between the plane and the sphere is
unaltered as long as we move both the plane and the sphere as a whole (that is, as a single
rigid body) within the stationary reference frame. Further thought shows that the relative
positioning of S and P depends only on the distance between the center of S and P,
thereby requiring only one relative degree of freedom (RDOF). This additional reduction
for the sphere, from three DOF in a stationary reference frame to one RDOF with respect
to a plane, seems to arise from some symmetry inherent in the plane P itself, for moving 
the plane P in any direction parallel to itself leaves P unchanged. 

This informal exercise hints at two basic facts that will be formalized shortly First, the 
relative positioning of two geometric objects S1 and S2 does not depend on how the rigid 
collection (S1, S2) is positioned in a stationary reference frame. Second, the number of
RDOF of S1 and S2 is reduced from the maximum number, 6, due to symmetries in S1 and 
S2. We also note that the relative positioning problem is order independent—that is, 
positioning S1 relative to S2 is the same as positioning S2 relative to S1. 

We can develop our intuition further by examining several more examples: positioning
a cylinder relative to a plane, positioning a sphere relative to a cone, and so on. As we
examine more such cases, a third subtle, but important, fact emerges: In all these cases
the relative positioning problem seems to reduce to that of relative positioning points,
lines, and planes. (Recall that in relative positioning a sphere and a plane, we only had to



position a point—namely, the center of the sphere—relative to the plane.) We will see 
that this fact generalizes to any two arbitrary geometric objects S1 and S2, and this 
provides a powerful mathematical formalism for using just points, lines, planes, and
helices for dimensioning relative positions of geometric objects. Thus, this chapter is
devoted to a general theory of relative positioning. 

7.1 TUPLE CONGRUENCE 

We will now attempt a mathematical formalism for the three major concepts encountered
earlier and progressively build a mathematical formalism for relative positioning. The
main question we will pose and answer is whether the relative positioning of two 
geometric objects has changed when each of them is subjected to arbitrarily different
rigid motions. We call this the tuple congruence question. 

Consider an ordered rigid collection of n geometric objects denoted as a tuple (S1, S2,
…, Sn). Recall that applying a rigid motion to a tuple of geometric objects formalizes the 
notion of moving these objects as though they belong to “a single rigid body.” That is, 
applying a rigid motion to a tuple results in a congruent copy of that tuple. Using these
definitions we can formally define when a relative positioning has changed and when it
has not. 

We say that the relative positioning of S1 and S2 has not changed if a rigid motion r is 
applied to the tuple (S1, S2). That is, we say that in a 2-tuple (S1, S2), the relative 
positioning of S1 and S2 is the same as the relative positioning of rS1 and rS2 for any rigid 
motion r. 

More generally, given rigid motions r1 and r2, we say that the relative positioning of 
r1S1 and r2S2 is the same as the relative positioning of S1 and S2 if the 2-tuple (r1S1, r2S2)
is congruent to the 2-tuple (S1, S2), that is, if we can find a rigid motion r such that r(S1, 
S2)=(r1S1, r2S2). Trivially, we can find such a rigid motion if r1=r2. What is interesting is 
that we may find one even if r1≠r2. This is due to the fact, described in Chapter 6, that a 
geometric object S may possess some symmetry so that, for some rigid motion t, tS=S in 
a point-set theoretic sense. For example, applying any rotation about the center of a
sphere reproduces the sphere. 

We now get back to the original tuple congruence question of determining whether the
relative positioning of two geometric objects has remained the same or has changed
under rigid motions applied to them. More formally, our tuple congruence question is
whether the 2-tuple (r1S1, r2S2) is congruent to the 2-tuple (S1, S2). This is answered by 
the following theorem. We will use R to denote the rigid motion group. 

Theorem 7.1: 2-Tuple Congruence Theorem (r1S1, r2S2) is congruent to (S1, S2) if 
and only if we can find rigid motions   and  such 
that r1=r • α1 and r2=r • α2. 

Proof. First, consider the “if” part. Let there be rigid motions 
and  such that r1=r • α2 and r2=r • α2. Then, (r1S1, r2S2)=

(r • α1S1, r • α2S2)=(rS1, rS2)=r(S1, S2). Therefore, they are congruent. 
Next, consider the “only if” part. If the tuples are congruent, we have (r1S1, r2S2)=r(S1, 
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S2)=(rS1, rS2) for a rigid motion  Therefore r1S1=rS1, which implies that r−1 •

r1S1=S1. Hence r−1 •  Using similar argument, we have

 Letting  and  we have r−1 • r1=α1
and r−1 • r2=α2, leading to the desired result that r1=r • α1 and r2=r • α2. 

A general n-tuple congruence theorem that can be proved similarly goes as follows.  
Theorem 7.2: n-Tuple Congruence Theorem (r1S1, r2S2,…, rnSn) is congruent to (S1, 
S2,…, Sn) if and only if we can find rigid motions  

 Aut(Sn) such that r1=r • α1, r2=r • α2,…, rn=r • αn. 

The 2-tuple congruence theorem provides both the necessary and sufficient conditions 
to determine if the relative position of two geometric objects has changed. These
conditions involve memberships in automorphism groups of both S1 and S2 introduced in 
Chapter 6 to describe symmetry. Often, but not always, we will apply this theorem more 
strictly to cases where the rigid motions r1 and r2 are continuous and can be arbitrarily 
small. This would then restrict the membership of α1 and α2 to Aut0(S1) and Aut0(S2),
respectively. 

A couple of further technical observations on the 2-tuple congruence theorem are in 
order. First, its necessary and sufficient conditions are in existential form—they don’t 
provide any concrete procedure to find the rigid motions r, α1, and α2. Second, note that 
the conditions refer only to membership in automorphism groups. This is a very
important fact because it leads us to the following corollary. 
Corollary 7.1: Tuple Replacement Theorem The answer to the “tuple congruence 
question” remains unaltered if we replace the point-sets by those in the same symmetry 
class—in particular, by their reference elements or reference tuples. 

This tuple replacement theorem enables us to replace Si by ρi in the same symmetry 
class. Under such replacement, the corollary assures us, the “tuple congruence question” 
can be rephrased as to whether (r1ρ1, r2ρ2) is congruent to (ρ1, ρ2). If ρi is chosen to be a 
reference element or reference tuple form column 5 of Table 6.1 in the same symmetry 
class as Si, we have our simplification. We also have a procedural means to answer the
tuple congruence question, as the following examples demonstrate. 

Example 7.1 Let S1 and S2 be two arbitrary spheres, with centers (their 
reference elements according to Table 6.1) p1 and p2, respectively. Now 
consider the question of whether the 2-tuple (S1, S2) is congruent to the 2-tuple 
(r1S1, r2S2) for some arbitrary rigid motions r1 and r2. The tuple replacement 
theorem states that we can answer this tuple congruence question by examining 
whether (p1, p2) is congruent to (r1p1, r2p2). This can be answered quite easily 
because of Theorem 5.1, which guarantees congruence if and only if d(p1, p2)=d
(r1p1, r2p2), that is, if the center distances are equal. Note that we have a 
procedural method—in this case, comparing some specific distances—to answer 
the question. 

Therefore, the relative position of two arbitrary spheres can be parameterized 
by the distance between their centers. Their relative position is dimensioned by 
choosing a numerical value for this center distance, as shown in Figure 7.1. 
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Example 7.2 Let S be a sphere with center p and let C be an unbounded 
cylinder with axis l. Note that p is the reference element of S and l is the 
reference element of C. Now subject the sphere and the cylinder to some 
arbitrary rigid motions r1 and r2, respectively. Is the 2-tuple (r1S, r2C) congruent 
to the 2-tuple (S, C)? Thanks to the tuple replacement theorem, this question is 
identical to asking whether the 2-tuple (r1p, r2l) is congruent to the 2-tuple (p, l). 
The answer is yes if and only if d(r1p, r2l)=d(p, l), according to Theorem 5.2. 
We see that the congruence theorems of Chapter 5 are providing us with 
procedural means to answer the tuple congruence question. 

So the relative position of a sphere and a cylinder can be parameterized by the 
distance between the center of the sphere and the axis of the cylinder. It can be 
dimensioned by assigning a numerical value to this distance. See Figure 7.2. 

Example 7.3 It should be easy by now to see how a sphere is positioned 
relative to a plane. For sphere S its center p serves as its reference element. For 
plane P the reference element is P itself. So for arbitrary rigid motions r1 and r2, 
(r1S, r2P) is congruent to (S, P) if and only if (r1p, r2P) is congruent to (p, P). 
We can appeal to Theorem 5.3 that says that this is the case if and only if d(r1p, 
r2P)=d(p, P), that is, if the distance between the center  

 

FIGURE 7.1 Dimensioning the relative position of two members of the 
spherical class. 

 

FIGURE 7.2 Dimensioning the relative position of a member of the spherical 
class and a member of the cylindrical class. 
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of the sphere and the plane remains the same. In addition to providing a 
procedural means to check for congruence, we have a parameterization, and 
hence dimensioning, of the relative position of a sphere and a plane. 

Now consider how a sphere can be positioned relative to a planar half-space. 
The plane can be the reference element for the half-space, but we need to 
distinguish between the two sides of the plane because one contains the half-
space and the other doesn’t. So we have the problem of positioning a sphere 
relative to an oriented plane, as shown in Figure 7.3. The dimension is still the 
distance between the center of the sphere and the plane, but it is a signed 
dimension, in the sense that we have to specify whether the center 

 

FIGURE 7.3 Dimensioning the relative position of a member of the spherical 
class and a member of the planar class. The shaded figure is part of a 
planar half-space. The bounding plane has an outer normal denoted 

by the unit vector . 

is located in the positive or negative side indicated by the normal to the plane. 
In an engineering drawing, the projected view visually encodes the “material 
side” information, and we don’t have to assign a sign to this dimension. But in a 
CAD system this information is captured by the signed dimension, which is, in 
fact, a coordinate dimension. 

From these examples we begin to see how the relative position of geometric objects that
come from spherical, cylindrical, planar, or helical classes can be dimensioned using the
congruence theorems and the dimensioning schemes of Chapter 5. If they come from any
of the remaining three classes in Table 6.1 we can still dimension their relative positions
easily, provided we expand the coverage of Chapter 5 to include reference tuples, which
is accomplished in the rest of this chapter. In any case, we have established the fact that
the problem of dimensioning relative positions of arbitrary point-sets or tuples of point-
sets can be reduced to dimensioning relative positions of simpler entities involving just
points, lines, planes, and helices. 

It is again instructive to look back on Svensen’s scheme for location dimensions
described in Section 1.1. He located his “elementary parts” using centers, axes, and
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reference surfaces. We now know that his approach is also theoretically sound and that he
got most of the reference elements right. 

7.2 NUMBER OF DIMENSIONS FOR RELATIVE POSITIONS 

Before we address the task of relative positioning all reference elements and tuples, we
can answer some simple questions about how many dimensions are needed for the task.
For this, we first introduce the notion of a general relative position. 

Definition 7.1 Two point-sets S1 and S2 are in general relative position when dim(Aut0
(S1, S2)) is a minimum. 

For example, in Table 6.3 the two cylinders are in general relative position when their 
axes are skew because only in that configuration does dim(Aut0(S1, S2)) achieve its 
minimum value of 0. In the other two possible configurations it has a value of 1 when the
axes are parallel and distinct, because (S1, S2) then belongs to a prismatic class, and a 
value of 2 when the axes are coincident, because (S1, S2) then belongs to the cylindrical 
class.  

When two point-sets S1 and S2 are in general relative position, a soft analysis provides
the number of dimensions needed to fix this relative position. Let n1=dim(Aut0(S1)), 
n2=dim(Aut0(S2)), and n3=dim(Aut0(S1, S2)). Now consider the following sequence of
reasoning. 

1. Take S2 first. It will, in general, require six dimensions to fix its position in space 
because it can have six DOF. But of these six, n1 will correspond to those rigid 
motions that leave S1 invariant. Therefore, only 6−n1 dimensions may be needed 
position S2 relative to S1. 

2. But of these 6−n1 dimensions, n2 will correspond to those rigid motions that leave S2 
invariant. So we may need only 6−n1−n2 dimensions after all. 

3. However, in these calculations we have double counted n3 because it corresponds to 
those rigid motions that leave both S1 and S2 invariant. So we may actually need 
6−n1−n2+n3 dimensions. 

The result of this analysis remains the same if the roles of S1 and S2 are reversed. So we 
have the following theorem. 
Theorem 7.3: Relative Degrees of Freedom Theorem The number of dimensions for 
relative positioning of S1 and S2, when they are in general relative position, is given by
6−{dim(Aut0(S1))+dim(Aut0(S2))− dim(Aut0(S1, S2))}. 

Let’s verify this theorem for the case of two cylinders in Table 6.3. The formula yields 
a value of 2, which is the number of dimensions required for fixing their relative position
when the axes of the cylinders are skew, as illustrated in Figure 7.4. Table 7.1 lists the 
number of dimensions for all general 

Theory of dimensioning     136



 

FIGURE 7.4 Dimensioning the relative position of two cylinders whose axes 
are skew. The twist angle may be given as a positive or negative 
dimension to indicate chirality. 

relative positions. A comparison with Table 5.1 provides an independent verification for 
part of the results in Table 7.1. 

While our soft analysis has provided some useful information about how many
dimensions are needed for relative positioning, it does not tell us what these dimensions
are. For this, we need congruence theorems similar to those presented in Chapter 5. As 
noted earlier, Chapter 5 covered all cases where the geometric objects belong only to
spherical, cylindrical, planar, or helical classes. For other cases, we continue by adding
one class at a time. 

TABLE 7.1 Number of Dimensions for Relative Positioning of Two Point-Sets When 
They Are in General Relative Position 

  Spherical Cylindrical Planar Helical Revolute Prismatic General 

Spherical 1 1 1 2 2 2 3 

Cylindrical   2 1 3 3 3 4 

Planar     1 2 2 2 3 

Helical       4 4 4 5 

Revolute         4 4 5 

Prismatic           4 5 

General             6 

This also gives the maximum number of RDOF. Only the upper triangle is filled because the table 
is symmetric. 
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7.3 MORE ON RELATIVE POSITIONING SPHERICAL, 
CYLINDRICAL, PLANAR, AND HELICAL CLASSES 

As Table 6.1 indicates, reference elements for the spherical, cylindrical, planar, and 
helical classes are the point, the line, the plane, and the helix, respectively. So
dimensioning the relative position of two members of these classes reduces to
dimensioning the relative position of elementary objects, which we discussed in detail in
Chapter 5. There are just a few additional facts about these classes that require our
attention. 

1. The spherical class is not just one sphere. Any number of concentric spheres, in the 
form of a tuple, also belong to this class. A spherical ball (all points inside and on a 
sphere) belongs to this class, and so does its complement (a spherical void). A 
spherical annulus (points that lie between two concentric spheres) is a member of 
this class. But in all these cases, the reference element is uniquely defined. It is the 
center of these spheres. 

2. The cylindrical class may contain any number of coaxial cylinders. A solid cylinder, 
a cylindrical hole, and a hollow cylinder (points that lie between two concentric 
cylinders) also belong to this class. Again, in all these cases, the reference element is 
uniquely defined. It is the axis of these cylinders. 

3. The planar class may contain any number of parallel planes. A half-space bounded 
by a plane, an infinite slab (points that lie between two parallel planes), and its 
complement (an infinite slot) also belong to this class. Mathematically, any plane 
parallel to these planes can serve as the reference element for this class. This 
introduces some freedom, as well as ambiguity, in the reference element choice for 
this class. We will address this issue shortly. 

4. The helical class may contain any number of coaxial helices and helicoids. The 
reference element should have the same axis, chirality, and pitch of this set. The only 
freedom left is the diameter of the base cylinder of this reference helix. However, in 
most practical applications (e.g., helical threads), only the axis is used for relative 
positioning the helical class. This axis is uniquely defined. 

So the only case that has some ambiguity in the choice of the reference element is the
planar class. Here are some practical tips that engineers use to resolve this ambiguity. 

1. If the planar class contains only a planar surface, then that plane itself is chosen as 
the reference element. Figure 7.5(a) illustrates this case while dimensioning the 
relative position between a plane and a cylinder. 

2. If we have just one half-space bounded by a plane, then the bounding plane is 
oriented with an outward normal, and this oriented plane is chosen as the reference 
element. Figure 7.5(b) shows an example of how this can be done. 

3. If we have multiple parallel planes, infinite slabs/slots, etc., an attempt is made to 
find a parallel plane that is also a plane of reflexive symmetry to them. See Figures 
7.6(a) and 7.6(b) for some examples. If such a reference plane can be found, it is 
called the center plane and it need not be oriented. Otherwise, any plane parallel to 
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the  

 

FIGURE 7.5 Dimensioning the relative position between a member of the 
cylindrical class and a member of the planar class. (a) When the axis 
of the cylinder is not parallel to the plane, just the angle between the 
axis and the plane needs to be dimensioned. (b) When the axis of the 
cylinder is parallel to the plane, the distance between the axis and the 
plane is dimensioned. In this example it is a signed dimension 
because the plane may be the reference element for a planar half-
space, for example, and may be oriented by the unit outward normal 

. 

objects under consideration will do, but we need to orient the plane so that its two 
sides can be distinguished. Figures 7.6(c) and 7.6(d) illustrate such cases. 

7.4 ADDING THE REVOLUTE CLASS 

The reference tuple for the revolute class consists of a straight line and a point on the
straight line, denoted by (l, p on l). If P is a plane perpendicular to l that passes through p,
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then the tuple (l, P) can equally serve as the reference tuple for the revolute class.  

 

FIGURE 7.6 Choosing the reference element for the planar class. (a) A slab is 
a three-dimensional region that lies between two parallel planes. It 
has a plane of reflexive symmetry, called the center plane, which has 
been shown with dashes and dots, and it can serve as the reference 
element for the slab. (b) A slot is the complement of a slab. Here 
again, the plane of reflexive symmetry, called the center plane, 
shown with dashes and dots, can serve as the reference element for 
the slot. (c) A tuple of three parallel planes. Any one of them can 
serve as the reference plane, but it has to be oriented. (d) A half-space 
bounded by a plane. The bounding plane can serve as the reference 
plane, but it has to be oriented. 

Since the revolute class contains only objects of revolution, the axis of revolution
uniquely defines the reference line l. Since any point on l can serve as the point p, the 
choice of p can be ambiguous. Here are some practical tips to resolve this ambiguity. 

1. If the objects in the revolute class have a plane of reflexive symmetry, denoted P, 
that is also perpendicular to the axis of revolution l, then p is chosen to be the point 
of intersection of l and P. Figures 7.7(a) and 7.7(b) show some examples of this case. 
Then any point q on l can be positioned relative to p by the distance between p and q. 

2. If such a plane cannot be found, then any reasonable choice of p on l is acceptable. 
See Figures 7.7(c) and 7.7(d) for examples. Here, the reference tuple is (p, l), where l 
is an oriented line (axis). The orientation gives us the means to properly position 
other objects relative to the current object in the revolute class. Any point q on l can 
be positioned relative to p by the signed distance between p and q, where the sign is 
supplied by the orientation direction of l. 

Theory of dimensioning     140



 

FIGURE 7.7 Choosing the reference point on the axis of revolution l for the 
revolute class. (a) A double cone, which has a plane of reflexive 
symmetry that is perpendicular to l. (b) A torus, which also has a 
plane of reflexive symmetry that is perpendicular to l. (c) Single 
cone. Here the axis in the reference tuple should be oriented. (d) A 
stepped shaft of revolution. Here again the axis in the reference tuple 
should be oriented. 

With these preliminaries, we can break down the problem of relative positioning an
object S1 from the revolute class and an object S2 from the spherical, cylindrical, planar,
or helical class into two tasks: 

1. Positioning the axis, which may be an oriented or a nonoriented line, relative to the 
reference elements of S2. This problem was studied and solved in detail in Chapter 5. 

2. Positioning a point q on the axis relative to p and relative to S2. Positioning q relative 
to p can be accomplished easily, as discussed earlier. If oriented elements are present 
in the reference elements or tuples of S1 or S2, then this dimension may carry a sign. 

Following the foregoing scheme, Figure 7.8 illustrates dimensioning the relative position 
of a sphere and a cone. Figure 7.9 shows how to dimension the relative position of a
planar half-space and a conical half-space. 

7.5 ADDING THE PRISMATIC CLASS 

The reference tuple for the prismatic class is a plane and a line on the plane, denoted (P, l
on P). The only requirement is that line l be along the direction of the translational
motion that leaves the object in this class invariant. In fact,  
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FIGURE 7.8 Dimensioning the relative position of a sphere and a cone. The 
dimension from the apex of the cone to the projection of the center of 
the sphere on to the axis of the cone is a signed value. 

l and any plane parallel to it can also serve as the reference tuple. This gives us 
considerable freedom in the choice of l and P, and it also results in greater ambiguity. In
some cases, this ambiguity may be resolved by exploiting reflexive symmetry, as
explained next. 

If a geometric object (a point-set or a tuple of point-sets) S belongs to the prismatic 
class, then it can also be viewed as a translational sweep of a planar object C in a 
direction perpendicular to the plane P* that contains C, 

 

FIGURE 7.9 Dimensioning the relative position of a conical half-space and a 
planar half-space. It consists of two dimensions: One is the angle 
between the oriented axis and the oriented plane, and the other is the 
distance between the apex of the cone and the point of intersection of 
the axis with the plane. Both dimensions carry signs, and they happen 
to be positive in this example. 

a la generalized cylinders. In fact, C can be obtained by intersecting S with any plane P* 
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that is perpendicular to the direction of the translational motion that leaves S invariant in 
the first place. If C possesses a line of reflexive symmetry (i.e., an axis) or a point of
reflexive symmetry (i.e., a center) in the plane P*, then this fact can be exploited in 
setting up the reference elements for S. Figure 7.10 shows several examples of simple 
planar objects and their reflexive symmetries. 

In Figure 7.10(a) we see an isosceles triangle C that has only an axis of reflexive 
symmetry. If this triangle is swept perpendicular to the plane to generate the prismatic
object S, then the axis is swept to become the plane P of reflexive symmetry for S. Also, 
any point on the axis, say, the centroid of the isosceles triangle, is swept as a line l that 
lies in P and is along the direction of the translational sweep. The tuple (P, l) can then 
serve as the reference tuple for S. 

The object C in Figure 7.10(b) has a center of symmetry but no axis of reflexive
symmetry. We can then choose any convenient line, say, a horizontal line, through this
center and sweep the line and the center perpendicular to the plane to obtain the reference
plane P and the reference line l, respectively, we want. The ellipse in Figure 7.10(c)
presents an easier problem. It has an axis and a center on the axis. Their sweeps produce
the reference plane and reference line we seek. The right triangle in Figure 7.10(d) has 
neither an axis nor a center. Here we are free to choose any line, say, the one that
contains the horizontal edge, and any point on this line, say, the right angle vertex, and
sweep them to produce the desired reference plane and the reference line. 

 

FIGURE 7.10 Planar objects and reflexive symmetry. (a) An isosceles triangle 
that has an axis of symmetry but no center of symmetry. (b) An 
object with a center of symmetry but no axis of symmetry. (c) An 
ellipse that has an axis of symmetry as well as a center of symmetry. 
In fact, it also has another (minor) axis of symmetry. (d) An object 
that has neither an axis of symmetry nor a center of symmetry. 
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FIGURE 7.11 A symmetric pattern of six holes. When translationally swept 
perpendicular to the plane that contains them, we get a 6-tuple of 
parallel cylinders that belongs to the prismatic class. 

A common occurrence in engineering is a pattern of parallel cylindrical holes, an
example of which is shown in Figure 7.11 as a projected view. In the plane of the figure, 
these symmetrically placed six circles have a unique center of reflexive symmetry and 
many axes of reflexive symmetry. One such axis runs horizontally, as shown. When this
axis and the center are swept perpendicular to the plane of the figure, they produce the
reference plane P and the reference line l for the 6-tuple of parallel cylinders that belongs
to the prismatic class. 

A reference tuple (P, l on P), thus established, may need to be oriented to indicate 
which is the “material side” of P and l. The relative positioning problem can then be
broken down to positioning the (possibly oriented) plane and the (possibly oriented) line
relative to other reference elements and tuples. Figure 7.12 shows how the relative 
position of a sphere and an unbounded 

 

FIGURE 7.12 Dimensioning the relative position of an infinite bracket 
(prismatic class) and a sphere (spherical class). The reference tuple 
for the prismatic class is (P, l on P), where P and l are both oriented. 
The two dimensions shown are signed and can be considered to be 
coordinate dimensions. 
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bracket (prismatic class) can be dimensioned. Note that the reference tuple (P, l on P) for 
the bracket is oriented. It involves two coordinate dimensions. 

7.6 ADDING THE GENERAL CLASS 

The reference tuple for the general class is the 3-tuple (P, l on P, p on l). If the reference 
plane and the reference line are oriented, then the 3-tuple (P, l on P, p on l) establishes a 
full three-dimensional reference frame, which can be a Cartesian, cylindrical, or spherical
coordinate system. The choice of the reference elements is quire arbitrary, but sometimes
the particular object in the general class may have some reflexive symmetry that suggests
a preference for these reference elements. 

A hyperbolic paraboloid, for example, belongs to the general class. The surface shown
in Figure 4.1(f) does suggest some reference elements due to its reflexive symmetry. In 
this example, there are two planes of reflexive symmetry. They are the yz-plane and the 
xz-plane; either of them can serve as the reference plane P. In addition, their intersection, 
the z-axis, is an axis of reflexive symmetry and can serve as the reference line l. Finally, 
the origin, which is the sole intersection of l with the surface, can serve as the reference
point p. 

Figure 7.13 shows an example of relative positioning a cone (revolute class) and a
general object (general class). We can set up a reference tuple (P, l, p) for the object in 
the general class, as shown. Table 7.1 indicates that we need five dimensions (or
parameters) in this case. We can allocate three of them for positioning the apex of the
cone relative to the reference tuple (P, l, p). The remaining two are for positioning the
oriented axis of the cone relative to (P, l, p). 

 

FIGURE 7.13 Relative positioning a member of the revolute class and a 
member of the general class. 

7.7 SUMMARY 

The general theory of dimensioning relative positions presented in this chapter is based
on the tuple congruence theorem and its corollary, the tuple replacement theorem. The
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latter theorem reduces the problem of relative positioning geometric objects to that of
relative positioning their reference elements or tuples. This means that if we have just a
pair of objects, the relative position between them can be dimensioned or parameterized
using the results of Chapters 5 and 6 and some additional information provided in this 
chapter. The reference elements and tuples are also called datums, for dimensioning as 
well as tolerancing purposes. 

If we have more than two objects, then their relative position can be dimensioned or 
parameterized recursively by taking two objects, or tuples of objects, at a time using the
results presented thus far. If we want to dimension the relative positions among three or
more objects simultaneously, that is, without recursively combining pairwise relative
positions explicitly, we enter the domain of dimensional constraints that is discussed in
the next chapter. 

7.8 EXERCISES 

1. Identify reference elements or reference tuples for the elementary objects shown in 
Figure 1.1. 

2. Relate Svensen’s location dimensioning scheme illustrated in Figures 1.3 and 1.4 to 
that based on the general theory of this chapter. Comment in some detail on his 
location dimension description, presented in Section 1.1, in light of the general theory. 

3. Dimension the two parts in Figure 1.2 using the theory of dimensioning developed 
thus far. Start with dimensioning elementary surfaces. Then position them relative to 
each other, and build a hierarchy of dimensions of relative positions. Clearly note the 
incidence, parallelism, and perpendicularity constraints imposed along the way. 

7.9 NOTES AND REFERENCES 

Clement, Riviere, and Temmerman (1994) provide detailed illustrative examples for
relative positioning pairs of objects taken from the seven classes of symmetry. They refer
to the reference elements or tuples as minimum geometric reference elements (MGRE), 
emphasizing the simplicity in shape and quantity of the reference elements.  
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8  
Dimensional Constraints 

Consider a collection of n geometric objects, denoted by g1, g2,…, gn. These objects can 
be point-sets or tuples of point-sets. Assume that each gi has been dimensioned 
completely. Also assume that we are interested in dimensioning their relative positions so
that we can create a rigid collection, that is, an n-tuple, of these n objects. In this 
collection there are nC2 pairwise relative positions that can be dimensioned. It turns out 
that graphs, described in some detail in Appendix 3, which should be read along with this
chapter, are the best abstractions to capture such geometric relationships. Figure 8.1
illustrates this using a complete graph, where each node is a geometric object and each
arc between two nodes stands for the relative position between the objects represented by
the two nodes. (Note that each arc can contain from one up to six dimensions.) Chapter 7
showed how to dimension the relative position of any two of these arbitrary geometric
objects. But do we need to dimension all of these relative positions to define the rigid
collection, that is, an n-tuple, of these n objects? A little reflection indicates that the
answer is no, because even for four coplanar points we don’t need 4C2=6 dimensions that 
would fix the relative positions within each pair of the four points—as we know, just 5 
dimensions will do to specify a planar quadrilateral.  

 

FIGURE 8.1 A complete graph whose nodes are geometric objects and whose 
arcs are relative positions of the nodes they connect 

In general, only O(n) among the O(n2) dimensions implied by the nC2 pairwise relative 
positions may need to be specified to define a rigid collection of n objects. (We use O(n)
to denote a function of n whose highest power of n is unity. Similarly, the highest power 
of n in O(n2) is 2.) For example, we can start with just two objects and add one object at a
time to the rigid collection, thereby requiring only O(n) dimensions in total for relative 
positioning. This possibility is illustrated as an incremental scheme in Figure 8.2(a), 



along with another possibility using a balanced binary tree scheme in Figure 8.2(b). Once 
these O(n) dimensions are chosen, they determine the relative position of any pair of the 
original n objects. 

 

FIGURE 8.2 Relative positioning using hierarchical schemes. The leaf nodes 
are geometric objects (point-sets or tuples of point-sets). The interior 
nodes and the root node are tuples. (a) An incremental scheme. (b) A 
balanced binary tree scheme. 

If the relative positions of objects are dimensioned hierarchically using a binary tree 
scheme, such as those proposed in Figure 8.2 or a combination of them, then we have no
further problem to solve. The problem arises only when we have simultaneous
specification of certain dimensions of pairwise relative positions among n objects. Such 
simultaneously specified dimensions are called dimensional constraints. We then are left 
wondering whether these dimensions are sufficient and realizable in a rigid object and
what the effects of these dimensions would be on the remaining, unspecified pairwise
relative positions. These questions arise even in dimensioning the relative positions in a
collection of just three distinct points, as the following examples illustrate. 

Example 8.1 Based on Theorem 2.2 (side-side-side) for a triangle, we may 
conclude that a tuple of three points, denoted by (p1, p2, p3), can be dimensioned 
by specifying the sides of the triangle formed by these points as vertices, as 
shown in Figure 8.3(a). Each dimension indicated can be viewed as the relative 
position dimension of two points. Together, they form simultaneous 
specification of three pairwise relative positions. 

But these three dimensions cannot be chosen totally arbitrarily, because 
triangle inequality imposes the condition, or constraint, that the sum of any two 
side dimensions of this triangle must not be less than the third side dimension. 
Violation of this constraint will result in a dimensional specification that cannot 
be realized. 

In addition, in the planar case we have to indicate the chirality of the triangle. 
This may be captured as a constraint that traversing the points p1, p2, p3 and 
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back to p1, in that order, must form a counterclockwise loop. 

 

FIGURE 8.3 Relative positioning scheme for three points. (a) Simultaneous 
specification of three pairwise relative positions of points. (b) 
Simultaneous specification of a relative position of two points and 
two relative positions of a pair of lines. (c) Specification of a relative 
position between two points and the position of a point relative to a 
tuple of the first two points. This specification has a hierarchy. 

Example 8.2 Next, based on Theorem 2.3 (angle-side-angle) for a triangle, we 
may decide that a tuple of three points can be dimensioned by specifying one 
side and its two adjacent angles in the triangle formed by these points as 
vertices. Figure 8.3(b) illustrates this case. The side dimension fixes the relative 
position of two of the points, and each of the two adjacent angle dimensions 
fixes the relative position of a pair of straight lines that contain the edges of the 
triangle. 

A closer look reveals that, in fact, we have dimensioned a tuple of six objects: 
three points, p1, p2, and p3, and three lines, l1, l2, and l3, as shown in Figure 8.3
(b). We have implicitly specified six incidence constraints: 

p1, p2 are on l3 
p2, p3 are on l1 
p1, p3 are on l2 

We then explicitly specified three dimensions d(p1, p2), θ(l2, l3) and θ(l1, l3). 
Together they constitute simultaneous specification of relative positions among 
the six objects. These are the dimensional constraints. Other relative position 
dimensions, such as d(p1, p3) and θ(l1, l2), are not specified, but they are 
determined by the dimensional constraints. 

The two angle dimensions in Figure 8.3(b) cannot be chosen totally 
arbitrarily, because their sum must be less than 180°. In addition, in the planar 
case, we have to indicate the chirality of the triangle, as we did in Example 8.1. 

Example 8.3 Finally, Figure 8.3(c) shows how Theorem 2.1 (side-angle-side) 
may lead to a dimensioning scheme for a tuple of three points. We can view this 
as a dimensioning scheme that uses a hierarchy. For first we can take d(p1, p2) to 
be the dimension of the relative position of p1 and p2 to form the tuple (p1, p2) 
This tuple belongs to the general class in Table 6.2, and its reference tuple 
consists of a line l3 that contains these points and any point, say, p1, on this line. 
We then position the point p3 relative to the tuple (p1, p2) by positioning p3 
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relative to the reference tuple (l3, p1). This is accomplished by two polar 
coordinates: radial dimension d(p1, p3) and the indicated angular dimension. 

All three indicated dimensions can be chosen arbitrarily, subject only to a 
chirality constraint, which may be indicated by requiring that p3 lie to the left of 
the directed line from p1 to p2. 

Simultaneous specification of all nC2 pairwise relative positions among n geometric
objects may not guarantee that the resulting collection is rigid, and these specifications
may not even be consistent, as the following example illustrates. 

Example 8.4 Figure 8.4(a) shows three nonparallel, coplanar lines. Their 
pairwise relative positioning requires only angle dimensioning, as shown. But 
these three angles are not independent, for they should sum to 180°. In addition, 
simultaneous specification of these three pairwise relationships does not yield a 
rigid collection of three lines. To get a rigid collection, we should impose a 
hierarchy by first placing l2 relative to l1 (using just an angle dimension between 
them) and then placing l3 relative to the tuple (l1, l2) using two dimensions. 
Recall that the continuous symmetry of the 2-tuple (l1, l2) in this case belongs to 
the general class in the plane. 

In Figure 8.4(b), two of the three lines are parallel. Here the two angle 
dimensions indicated between nonparallel lines cannot be independent. 
Specifying different angle values in this case leads 

 

FIGURE 8.4 Simultaneous relative positioning of three coplanar lines. 
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to inconsistency. If we had used a hierarchy, we would have first formed the 
tuple (l1, l2) that belongs to the linear class and then placed the line l3 relative to 
the tuple using only one angle dimension. 

If all three lines are parallel, as in Figures 8.4(c) and (d), then the three 
indicated dimensions cannot be independent either. A hierarchical dimensioning 
scheme would avoid inconsistency in this case. 

These examples provide some insight into what can be expected when more than two
objects are positioned simultaneously. The general problem of resolving simultaneous
specification of constraints (that is, determining whether they have any solution and, if so,
how many and what they are) is quite difficult. If we restrict the problem to some two-
dimensional cases or simple three-dimensional cases, then they become tractable. These
are the types of constraint resolutions tackled in modern CAD systems. Before we discuss
these cases, let’s examine some basic geometric constraints commonly used in
engineering. 

8.1 BASIC GEOMETRIC CONSTRAINTS 

There are four major types of constraints occurring so frequently that they deserve some
special treatment. These are incidence, parallelism, perpendicularity, and chirality. These
constraints can be applied irrespective of whether we are using a hierarchical
dimensioning scheme or a simultaneous dimensioning scheme. In fact, in many cases,
such constraint specification is a prerequisite to any dimensioning or parameterization
scheme. For example, we need to impose the constraint that the two planes are parallel
before we can consider dimensioning or parameterizing the distance between them. 

There is a curious connection between these constraints and invariance structure of
some important geometric transformations. Figure 8.5 shows a Venn diagram of four
geometric transformations and their invariant structures, which include the four
constraints just mentioned. Let’s look at each of the constraints in some detail. 

8.1.1 Incidence Constraint 

Incidence is a general term used to indicate that one object is completely overlapped by
another object. Some examples of incidence involving just two objects are point on point,
point on line, point on plane, line on line, line on plane, and plane on plane. One may
argue that these are just special cases when  
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FIGURE 8.5 Hierarchy of geometric transformations and the corresponding 
invariances. 

some distances and angles involved in relative positioning these objects assume zero
values. This is indeed true, as, for example, “line on line” is a special case of two skew 
lines whose shortest distance and the twist angle both vanish. However, we call this out
as a major constraint because it plays a crucial role in the symmetry group classification
of a tuple of two objects in Table 6.4. 

Incidence is preserved under a projective transformation that can be defined by ratios 
of affine linear functions as 

where the coefficients aij are all real and independent. Using homogeneous coordinates, 
Eqs. (8.1) can be rewritten as 

(8.1) 
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or, more compactly, as 

The projective transformation, as represented by the invertible matrix AP, forms a group. 
Under projective transformation, points map to points, straight lines map to straight lines,
and planes map to planes. Projective transformation also preserves incidence
relationships. For example, a 2-tuple of a plane and a line in that plane transforms to a 2-
tuple of a plane and a line in that plane. 

Tangency (or cotangency) is often used as a constraint, particularly when circular 
elements are involved. We can treat it as a particular case of incidence constraint. It is
preserved under projective transformation. For example, consider a 2-tuple consisting of 
a circle and a line tangent to this circle. Under projective transformation, the circle may
be deformed to an ellipse, but the transformed line will remain tangential to this ellipse. 

Projective transformation also preserves cross ratios. But this is not of interest to us 
right now. Parallelism is not preserved under projective transformation. This is the next
constraint in the hierarchy we will now consider. 

8.1.2 Parallelism Constraint 

There are three cases of parallelism constraint: line vs. line, line vs. plane, and plane vs.
plane. These cases occur when the angle between them becomes zero. Parallelism can
influence the symmetry classification of the resulting tuple. 

Parallelism is preserved under affine transformation, which can be defined by affine 
linear functions as 

or, more compactly, as 

(8.2) 

ρX′=APX 
(8.3) 

(8.4) 

X′=AAX 
(8.5) 
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The affine transformation, as represented by the invertible matrix AA, is a subgroup of the 
group of projective transformations. It maps points to points, straight lines to straight
lines, and planes to planes. It also preserves incidence and tangency constraints. In
addition, it preserves parallelism. For example, if two lines are parallel, then their affine
transformations are also lines that are parallel.  

Affine transformation also preserves ratios of segments in a line. But it does not
preserve distances or angles (other than parallelism). In particular, it does not preserve
perpendicularity. 

8.1.3 Perpendicularity Constraint 

There are three cases of perpendicularity constraint: line vs. line, line vs. plane, and plane
vs. plane. These cases occur when the angle between them is a right angle.
Perpendicularity can also change the symmetry classification of the resulting tuple. 

Perpendicularity is preserved under isometric transformation. In fact, all distances and 
angles are preserved under isometric transformation. Incidence and parallelism are also
preserved. Isometry is a subgroup of the group of affine transformations, where the upper
left 3×3 submatrix of AA in Eq. (8.4) is restricted to be orthogonal. That is, the matrix 

is restricted to be orthogonal. Recall that we studied orthogonal matrices in some detail in
Section 2.2. 

The determinant of an orthogonal matrix can be either +1 or −1. Because of this 
possibility, isometry cannot preserve chirality. An important consequence of this property
is the fact that if a geometric object S satisfies certain specified, unsigned distance and
angle dimensions, then the mirror image of S also satisfies these dimensional constraints. 
Note that this fact holds even for a subset of the geometric object. Figure 8.6 shows some 
simple examples involving just triangles and quadrilaterals in the plane. The triangles
shown in Figures 8.6(a) and 8.6(b) are two mirror images that satisfy the side-angle-side 
dimensional specifications for a triangle. 

If a planar quadrilateral is specified using four side dimensions and one angle 
dimension, then these dimensional constraints can be satisfied by the four solutions
shown in Figures 8.6(c) through 8.6(f). While Figures 8.6(c) and 8.6(d) are mirror images 
of each other, Figures 8.6(c) and 8.6(e) are not. Only a subset of Figure 8.6(c) is a mirror 
image of a subset of Figure 8.6(e); this shows that we can modify a geometric object 
locally by mirror reflection and still satisfy the dimensional specifications. 

The examples of Figure 8.6 can be generalized to any polygon. The general lesson we 
learn is that if we can find one solution, that is, a geometric object, that satisfies certain
distance and angle dimension specifications, then  

(8.6) 
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FIGURE 8.6 Multiple solutions under isometry: (a) and (b) are for triangles; 
(c), (d), (e), and (f) are for quadrilaterals. 

we can find (finitely) many solutions by local or global mirror reflections of this solution. 

8.1.4 Chirality Constraint 

Chirality is a binary constraint. It specifies whether the geometric object is left-handed or 
right-handed. It is important for the interchangeability of parts in industry. We have seen 
several instances where this is an issue. 

Chirality is preserved under rigid motion transformation. The group of rigid motions is
a subgroup of the group of isometries, where the determinant of the orthogonal matrix in
Eq. (8.6) is restricted to be +1. In addition, rigid motion preserves distances, angles
(including parallelism and perpendicularity), and incidence relationships. Since distances
and angles alone do not indicate chirality, it is important to impose this constraint by
other means. In engineering drawings, the visual image encodes the chirality. Drawings
that are more or less to scale help us distinguish the case in Figure 8.6(c) from that in 
Figure 8.6(e). In CAD models, a boundary representation can encode the local and global 
chirality. We will say more about boundary representations in the next chapter. 
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8.2 RIGIDITY THEORY 

There is a body of literature called rigidity theory that deals with the question of whether 
a given set of dimensional constraints defines a rigid object. The rigidity theory shows
that all one-dimensional and some two-dimensional problems can be solved satisfactorily
using a graph structure of the constraints. It has also shown that the problem can get very
hard in two and three dimensions. We will review some of the results from rigidity theory
that are useful for our purpose of resolving dimensional constraints. More on rigidity
theory can be found in Appendix 3. 

8.2.1 Dimensional Constraint Graph 

Consider a graph whose vertices, which are also called nodes, are geometric objects 
(point-sets or tuples). The edges, which are also called arcs, of the graph correspond to 
specified relative positioning dimensions between the nodes that are connected by the
edges. Figure 8.1 shows a complete graph in which every node is connected to every
other node. This is a special case. Generally, in a dimensional constraint graph, only
some of the edges shown in Figure 8.1 will be present. From our study of the general 
theory of relative positioning in Chapter 7, we know that we can replace the geometric 
objects in the nodes of the graph by their reference elements or tuples consisting of just
points, lines, planes, and helices. 

From Chapter 7 we know that some of these reference elements in the nodes may be
oriented. We also know that some of the indicated dimensions represented by the graph
edges may be signed. Note that an edge in the graph may contain more than one
dimension. For example, the edge between two nodes that stand for lines that are skew
carries the shortest distance as well as the (signed) twist angle. A reference tuple may be
further split into its elements, each occupying a distinct node; in this case their incidence
relationship (such as point on line, line on plane) can be indicated by joining these nodes
by edges that stand for incidence. Appendix 3 contains more information on dimensional 
constraint graphs along with some basic graph theory. 

In a graph G we will indicate the vertex (or node) set by V and the edge set by E. The 
number of nodes, or vertices, in V will be denoted by |V| and the number of edges in E
will be denoted by |E|.  

8.2.2 One-Dimensional Rigidity 

Consider a set of distinct points that are collinear. If these are the reference elements
under consideration, then their dimensional constraint graph takes on a simple form.
Figure 8.7 shows an example along with a dimensional constraint graph. Each edge in the
graph is an unsigned distance between the points connected by the edge. 

For such one-dimensional problems it is clear that if the graph is a tree, then the points 
can be positioned using the hierarchy implied by the tree structure, and the problem is
solved. The same argument holds if we replace the collinear points by parallel lines in a
plane or by parallel planes in space. In fact, Figures 1.2, 1.4, and 1.9 illustrate how 
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parallel lines and parallel planes in actual parts are dimensioned. 
If the dimensional constraint graph is not a tree, then it is not connected or it contains 

cycles. Then we have the following problems: 

1. If the graph is not connected, then we have an underdimensioning problem. So the 
specified dimensions do not define a rigid collection of objects. This is also referred 
to as an underconstrained problem. 

2. If the graph contains one or more cycles, then we have an over-dimensioning 
problem. This is also referred to as an overconstrained problem. Overdimensioning 
need not mean that these dimensions are inconsistent; it just means that there is 
redundancy that may lead to inconsistency. See Figure 8.8. 

 

FIGURE 8.7 (a) Simultaneous dimensioning of relative positions of collinear 
points. (b) The corresponding dimensional constraint graph. 

 

FIGURE 8.8 (a) Overdimensioning that is consistent. (b) Overdimensioning 
that is inconsistent. 

The necessary and sufficient condition for a connected graph to be a tree is that 

This is a simple combinatorial condition that can easily be checked. 

|E|=|V|−1 
(8.7) 
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The dimensional constraint tree may yield as many as 2|V|−1 different solutions, only 
one of which the designer may want. This is due to the fact alluded to in Section 8.1.3. 
Since only unsigned distances are specified, the mirror image of any solution or
subsolution is also a solution to the problem. The multiplicity can be reduced if some of
the dimensions are signed values. 

8.2.3 Two-Dimensional Rigidity 

Consider a set of N distinct points in a plane and specify some pairwise distances 
between them to form a dimensional constraint graph. See Figure 8.9 for an example. 
With these distance dimensions, do we have a rigid collection of these N points? It is not 
easy to answer this general question. A partial answer that ensures the so-called generic 
rigidity (see Appendix 3 for a description of various mathematical notions of rigidity) is 
provided by the following theorem. 

 

FIGURE 8.9 A dimensional constraint graph with only distance dimensions 
for a set of points in a plane. 

Theorem 8.1: Laman’s Theorem A graph G with edge set E and vertex set V is 
generically rigid in the plane if only if there is a subset F of E that satisfies 

1. |F|=2|V|−3, and 
2. For all  where k is the number of vertices 

that are endpoints of edges in F′. 

This is only a combinatorial characterization of the rigidity problem. Obviously, we need
to add other conditions, such as triangle inequality, to ensure that we can actually realize
an embedding of this rigid collection in a two-dimensional plane. Even if it is realized,
there can be as many as 2|V|−2 different solutions to this problem. This is again for the 
reasons mentioned in Section 8.1.3. 

A mechanical model of the foregoing problem is provided by a framework in which
the nodes are revolute joints and the edges are rigid bars of the given lengths. The
revolute joints permit relative rotational motion of the bars that are joined. If such a
framework can be realized, it is either a rigid structure or a flexible mechanism. Laman’s 
first condition ensures that there are just enough edges to locate the nodes. His second
condition ensures that no subgraph is overbraced and that the edges are distributed
“wisely” throughout the graph. Applying his theorem will indicate, quite correctly, that
the planar framework represented by Figure 8.9 is not generically rigid. It will also 
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indicate that the planar frameworks in upcoming Figures 8.11 and 8.13 are generically 
rigid. This doesn’t mean that the frameworks are rigid; see Appendix 3 for a 
counterexample. 

Laman’s theorem is applicable only when the simultaneously specified dimensions are
all distances. If angles are also involved, then even a similar combinatorial
characterization of rigidity is not yet available, in spite of intense search. 

8.2.4 Three-Dimensional Rigidity 

An obvious analogue of Laman’s theorem for a set of points in three-dimensional space 
fails to provide sufficient conditions for rigidity. Here are Laman’s conditions in three-
dimensional space. 

1. |F|=3|V|−6 
2. For all  where k is the number of vertices 

that are endpoints of edges in F′. 

These are only necessary conditions, but they are not sufficient. The “double banana” 
graph of Figure 8.10 satisfies Laman’s conditions, but it is not rigid.  

 

FIGURE 8.10 A “double banana” framework in three-dimensional space that 
is not rigid. It can twist about an axis through the vertices labeled a 
and b. 

These results show that there is no simple way to simultaneously specify some distance
dimensions on a wireframe and be sure that these dimensions define a rigid structure. The
problem gets more complicated if angle dimensions are also involved. 

8.3 INDUCING HIERARCHY IN SIMULTANEITY 

The most successful attempt to date in solving dimensional constraint problems involves
inducing a hierarchy in the flat structure inherent in simultaneous dimensional
specifications. It is based on the following ideas. 
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1. Breaking down the problem into smaller ones, which are sometimes called clusters 
2. Solving these small problems by analytical or numerical methods 
3. Combining these clusters to form bigger clusters, again by analytical or numerical 

methods, till the whole problem is solved 

In general, there is no guarantee that this divide-and-conquer strategy will always work.
But for many practical problems that are two-dimensional and are not too complicated, it
has worked quite well. We will illustrate this idea in the following simple but
representative examples. 

Example 8.5 Figure 8.11 dimensions a planar pentagon using seven distances 
simultaneously We can also view this as dimensioning a rigid tuple of five 
points A, B, C, D, and E. Laman’s theorem can be used to verify that such a 
specification is  

 

FIGURE 8.11 Dimensioning a pentagon using seven distance dimensions. 

generically rigid. We can construct the pentagon by first constructing the 
three triangles ABE, BCE, and CDE because all the sides are known in these 
triangles. Then we just join them together by relative positioning to get the 
pentagon. The entire construction can be accomplished using “ruler and 
compass.” We have thus induced a hierarchy in constructing the pentagon. 

Example 8.6 Figure 8.12 shows another dimensioning of a simple pentagon in 
a plane. This involves five distance dimensions and two angle dimensions, all 
specified simultaneously. We can induce a hierarchy by doing the following: 

1. Construct triangles ABE and CDE, because they are well defined by the 
side-angle-side theorem. In this process, edges BE and CE will also be 
constructed. 

2. Then construct triangle BCE using the specified side BC and the sides BE 
and CE constructed in the previous step. 
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FIGURE 8.12 Dimensioning a pentagon using five distance dimensions and 
two angle dimensions. 

This completes the construction of the pentagon. This required only a 
knowledge of constructing triangles. With that, we were able to come up with a 
hierarchy of constructions to define the pentagon. 
Example 8.7 A planar hexagon ABCDEF has been dimensioned in Figure 8.13 
using nine distance dimensions. It can also be viewed as a dimensioning of a 
rigid tuple of six points. We can again apply Laman’s theorem to make sure that 
this specification is generically rigid. We can induce a hierarchy in this flat 
dimensional specification using the following construction procedure. 

1. Construct triangles AEF and BDC, because we know all the three sides in 
these triangles. 

2. Combine these two triangles; that is, position them relative to each other, 
using the distance specifications of AB, CF, and DE. This is a little tricky, 
but it can be done. 

The first step can be accomplished using simple “ruler and compass” 
construction. But the second step involves some detailed calculations. 

The trickiness alluded to in the second step in Example 8.7 will become clearer when one
studies Figures A3.9 and A3.10 in Appendix 3 and the explanation contained therein. 

It is possible to introduce intrinsic dimensions also as part of the constraints, as the
following example illustrates. 

Dimensional constraints     161



 

FIGURE 8.13 Dimensioning a hexagon ABCDEF using nine distance 
dimensions. 

 

FIGURE 8.14 A dimensioned planar sketch involving one circular arc. 

Example 8.8 Figure 8.14 shows a planar sketch in which an intrinsic dimension 
(radius of a circular arc) and relational dimensions (distances between points) 
simultaneously constrain the whole object. E is the center of the circular arc. 
Tangency constraint is implicit at B and C. The following construction 
procedure induces a hierarchy on this dimensioning. 

1. Construct the right triangles ABE and DCE. All dimensions are available 
for their construction. In this process, the edges AE and DE will be 
determined. 

2. Construct the triangle AED. All sides of this triangle are now known, due to 
the previous step. 

3. Now put the three triangles together to form the final object. 

Here again, we can have a finite number of multiple solutions, of which only one the
designer may want. The general idea of inducing hierarchy in dimensional constraints can
be automated using some clever algorithms and heuristics. 
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8.4 SUMMARY 

Dimensional constraints arise when certain dimensions are specified simultaneously
without any hierarchy. We have to deal with such specifications in engineering practice,
especially in planar (that is, two-dimensional) sketches that are often used in preliminary 
steps while defining part geometry. In general, it is difficult to decide whether these
specifications lead to valid geometric objects. In particular cases, as illustrated in simple
Examples 8.5–8.8, these constraints can be resolved and valid objects that obey these 
constraints can be created. Interestingly, the most successful approach to resolve the
constraints relies on geometric construction procedures that induce a hierarchy in the flat
structure inherent in the constraint specification. Modern CAD systems have adopted
such techniques to handle dimensional constraints in their software. 

Specification of dimensional constraints is also a means of parameterizing a geometric 
object and indicating an instance in the parameter family. If some constraints involve
inequalities (such as an interval within which a geometric parameter should lie), then the
specification restricts the choice to a subset of the parameterized family of objects. In this
light, dimensions can be viewed as equality constraints on some geometric parameters.
Some ISO data exchange standards take this point of view. 

8.5 EXERCISES 

1. Construct dimensional constraint graphs for the problems in Examples 8.2, 8.3, 8.6, 
and 8.8. (Hint: See Appendix 3 for an example of a dimensional constraint graph.) 

2. Construct possible multiple solutions to each of the problems in Examples 8.5, 8.6, 
8.7, and 8.8. 

3. Figure 8.15 shows a planar sketch of a pentagon. Is it valid? If so, give a construction 
procedure that builds this object hierarchically. 

4. A dimensioned planar sketch is shown in Figure 8.16. What are the implied tangency 
constraints? Is this dimensioning valid? If so, give a construction procedure to build 
this object. 

 

FIGURE 8.15 A dimensioned planar pentagon. 
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FIGURE 8.16 A dimensioned planar sketch involving two circular arcs. 

5. Does Laman’s Theorem 8.1 help us in determining whether a dimensioned two-
dimensional sketch is over- or underdimensioned? 

8.6 NOTES AND REFERENCES 

Rigidity theory has many applications, including biochemistry and ceramics, and it is an
active field of research (Thorpe and Duxbury, 1999). An important paper by Laman
(1970) started much of the current development in rigidity graph theory. 

Simultaneous specification of dimensional constraints is also called a variational
constraint scheme. Variational geometry deals with resolving such constraints to build the
underlying geometry. Early attempts in this regard depended on numerical solutions to
the set of constraint equations. Later, more robust methods based on graph theoretic ideas
were proposed by Owen (1991, 1996), Bouma et al. (1995), and Fudos and Hoffmann
(1997). These methods have also been successfully implemented in commercial CAD
systems. Research on a better understanding of the dimensional constraint problem and
on developing smarter algorithms and heuristics is still ongoing. 

ISO 10303–108 (2003) deals with data exchange issues involving parameterization and 
constraints for explicit geometric models.  
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9  
Dimensioning Solids 

All manufactured objects have solidity. Even thin parts have a certain thickness.
Although in our study thus far we discussed dimensioning curves and surfaces and then
described how to dimension the geometric relationship between these objects, our
ultimate goal is to dimension solids. A brief mathematical theory of solids is reviewed in
Appendix 4, which should be read along with this chapter. What we have studied so far is
necessary to dimension solids, but it is not sufficient, as the following case illustrates. 

Figure 9.1 shows four different solids with the same dimensions. Even the surfaces
involved in each solid are the same, as shown in Figure 9.2. These surfaces consist of an 
unbounded cylinder C of diameter d and two unbounded parallel planes, P1 and P2,
separated by a distance h and perpendicular to the axis of the cylinder. We can define the
constraints and dimensions (or parameters) of this collection of surfaces as follows. 

Constraints: 

P2||P1 
Axis of 

  



 

FIGURE 9.1 Four different solid objects with the same dimensions. 

Parameters: 
Distance h between P1 and P2 (relational dimension) 

Diameter d of C (intrinsic dimension) 

But this is not enough to define a solid object unambiguously. As Figure 9.1 illustrates, 
these constraints and dimensions may correspond to (a) a finite, solid cylindrical pin, (b)
a cylindrical through-hole, (c) a cylindrical stud  

 

FIGURE 9.2 Surfaces involved in the four solids of Figure 9.1. 
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protruding from a planar half-space, or (d) a cylindrical blind hole. How can we
distinguish among these choices? 

A key to resolving such ambiguities is to realize that we are not dimensioning just a
rigid collection of surfaces as indicated by the given constraints and parameters for
Figure 9.2, but we are defining a solid. A brief introduction to a theory of solids is given
in Appendix 4, which should be read along with this chapter. There are many ways to
define solids. Let’s start with a simple case of a solid tetrahedron and see how it can be 
modeled and dimensioned. 

9.1 DIMENSIONING A SOLID POLYHEDRON 

In three-dimensional space, a tetrahedron is the simplest polyhedron (that is, a solid
bounded by only flat faces). For this reason it is also called a three-dimensional simplex. 
One way to dimension (or parameterize) it is to specify all of its six edges, as shown in
Figure 9.3(a). But it can be ambiguous because its mirror image, shown in Figure 9.3(b), 
also satisfies these dimensional specifications. So we need to indicate the chirality of the
tetrahedron if we want to avoid this ambiguity. This can be accomplished in several
ways. One popular option is to define a boundary representation for the tetrahedron as
follows. 

The boundary of a solid tetrahedron consists of four triangular faces. Each triangular 
face can be oriented in space by specifying an outward normal that points away from the
solid. This orientation can also be encoded by specifying an order for the three vertices of
the triangle so that a right-hand rule can be used to obtain the outward normal direction. 
The tetrahedron can be embedded in three-dimensional space with a right-handed 
Cartesian coordinate system, as shown in Figure 9.4. With these preliminaries, a very 

 

FIGURE 9.3 Dimensioning a solid tetrahedron by specifying its six edges. (a) 
and (b) are mirror reflections of each other. 
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FIGURE 9.4 Embedding a tetrahedron in three-dimensional space, and an 
associated Cartesian coordinate system. 

simple boundary representation for the tetrahedron can be given in the form of a vertex
table and a face table, as shown in Table 9.1 and Table 9.2, respectively. 

The vertex table contains the x-, y-, and z-coordinates of the four vertices of the 
tetrahedron. Six of the 12 coordinates can be assigned zero values without any loss of
generality because, as Figure 9.4 shows, a Cartesian coordinate system can be assigned to
an arbitrary tetrahedron by choosing the origin as one of the vertices, the x-axis along one 
of the edges, and the xy-plane containing one of the faces. The remaining six coordinates
form the unfilled cells in Table 9.1. These can be filled in directly to define a tetrahedron,
or they can be derived from the specification of the six edge dimensions shown in Figure 
9.3(a). The latter method involves some calculations, but they are not difficult. 

The face table, shown in Table 9.2, lists the vertices of each of the four triangular
faces, numbered 1, 2, 3, and 4. The three vertices for each face are arranged in an order
so that applying the right hand-rule for each list of vertices will yield the direction of the
outward normal for that face. Together the vertex table and the face table form a
boundary representation for the tetrahedron and define it unambiguously. 

TABLE 9.1 Vertex Table for the Tetrahedron Shown in Figure 9.4 

  x y z 

A 0 0 0 

B   0 0 

C     0 

D       

Theory of dimensioning     168



Using this type of boundary representation has two benefits. First, it encodes chirality so
that the two cases shown in Figure 9.3 can be distinguished. Second, it can also
distinguish a solid tetrahedron from a tetrahedral void (that is, the complement of the
solid tetrahedron). Thus, a boundary representation of a tetrahedron provides an 
embedded instance of a parameterized solid model of a tetrahedron. 

Even the simple case of a tetrahedron reveals some subtle issues related to 
dimensioning, parameterization, and boundary representation. We first note that the
boundary representation itself is not parameterized, except when the six coordinate
entries in the unfilled cells of Table 9.1 are treated as the parameters of the tetrahedron.
But a tetrahedron is not always dimensioned by coordinate dimensioning of its vertices.
The designer may have chosen, for some functional reason, to dimension a solid
tetrahedron as in Figure 9.3(a). These dimensions determine, through some calculations,
the coordinates of the unfilled cells in the vertex table of the boundary representation.
This mapping between dimensions of a solid and its boundary representation is easily
established for simple objects like a tetrahedron. But the mapping quickly gets quite
complex for general polyhedra, as described next. 

It turns out that the simple vertex and face tables used in boundary representation of a 
tetrahedron can be extended to any polyhedron. To do this, any polygonal face of a
polyhedron that is not a triangle has to be triangulated, because the face table assumes
that the faces are all triangles. This can always be done, and let’s assume, without any 
loss of generality, that all faces of our polyhedron are triangles. 

Now let’s assume that this polyhedron is dimensioned by some distance and angle 
dimensions. Deriving a boundary representation for this polyhedron involves the
following two steps. 

1. Creating a vertex table. For this, we need to determine the coordinates of all the 
vertices in the polyhedron. Sometimes this is referred to as determining an 
embedding of the model in Euclidean space. As we saw in Chapter 8, this may 
involve solving a dimensional constraint problem in three-dimensional space. Unless 
the polyhedron is simple, this can be a difficult problem. If, for example, all the 
edges shown in Figure 8.10 are dimensioned, we will not be able to create a vertex 
table for it because it is not rigid. 

2. Creating a face table. It is the oriented triangles on the boundary that give solidity to 
the polyhedron. Dimensioning (or parameterizing) alone will not create this face 
table. It has to be created by other means. Care must be exercised to ensure that the 

TABLE 9.2 Face Table for the Tetrahedron Shown in Figure 9.4 

1 A C B 

2 A B D 

3 B C D 

4 C A D 
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oriented triangles completely cover the boundary of the solid polyhedron. 

Before we leave this section, let’s make some observations about boundary
representations. The vertex and face tables are the simplest, but not the most efficient,
way to capture the boundary of a polyhedron. It is advantageous to store the incidence
relationships (e.g., what edges are incident at a vertex, what faces are incident at an edge)
and the adjacency relationships (e.g., what edges are adjacent in a face) in a polyhedral
boundary data structure. For solids with curved boundaries, we need to define, build, and
maintain more sophisticated data structures for boundary representation. This happens to
be one of the major tasks performed inside CAD systems. From a theoretical viewpoint, it
is sufficient to know that these boundary representations are capable of informing us of
what bounds what and the incidence and adjacency relationship for any geometric entity
they have. 

Finally, note that it is not easy to modify a boundary representation directly, because
even a simple change in one element of the boundary may lead to a large number of
changes to be made to keep the boundary representation valid. Many connectivities, in the
form of incidence and adjacency relationships, may need to be reset, and many point,
curve, and surface representations may need to be recomputed. This is why, in modern
CAD systems, the current boundary representation is partially or wholly discarded when a
model change is made and a new one is computed. This fact argues against dimensioning
just the boundary representation of a solid model. 

9.2 DIMENSIONING PROCEDURALLY DEFINED SOLIDS 

Polyhedral boundary representation discussed in the last section is an example of what is
called an explicit representation of solids. It has a flat structure. It describes the solid in
its final form without any reference to how it might have been constructed. An alternative
way to represent a solid is to give the procedure used in constructing it. We will examine
some of the powerful procedural representations of solids next. 

9.2.1 Constructive Solid Geometry 

Sets can be manipulated by Boolean operations, such as complementation, union,
intersection, and subtraction (difference). Since solids are modeled as point-sets, we can
modify them using Boolean operations. (In fact, we should use regularized Boolean
operations, as described in Appendix 4.) Let’s illustrate this idea for the four solid objects
discussed earlier and shown in Figure 9.1. First, the three surfaces in Figure 9.2 are
associated with three half-spaces, denoted H1, H2, and H3, shown in Figure 9.5. Here H1
and H2 are half-spaces bounded by the planes P1 and P2, respectively, and H3 is a solid
cylindrical half-space bounded by the cylinder C. Then the following hold: 

1. (H1 ∩ H2) ∩ H3 defines a finite, solid cylindrical pin, as in Figure 9.1(a). 
2. (H1 ∩ H2)−H3 defines a cylindrical through-hole, as in Figure 9.1(b). 

3.  defines a protruding cylindrical stud, as in Figure 9.1(c). 
4. H1−(H2 ∩ H3) defines a cylindrical blind hole, as in Figure 9.1(d). 
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Several Boolean operations on point-sets have been used in these expressions. Here, 
overbar indicates complementation,  stands for union, ∩ stands for intersection, and − 
stands for subtraction. These Boolean expressions give a tree structure to the construction
procedure. They unambiguously define the indicated solid objects. Figure 9.6 shows the 
Boolean expressions for the construction of the solids in Figure 9.1, each in the  

 

FIGURE 9.5 Half-spaces associated with the simple surfaces of Figure 9.2. 

 

FIGURE 9.6 CSG tree hierarchy for the construction of each of the solids in 
Figure 9.1. The half-spaces H1, H2, and H3 are shown in Figure 9.5. 

form of a tree. It is called a constructive solid geometry (CSG) tree for that particular 
solid. Its leaf nodes are half-spaces, such as H1, H2, and H3, shown in Figure 9.5 and 
explained earlier. They may also be fully dimensioned solids. Its interior nodes are binary
Boolean operations (that is, union, intersection, and difference) on point-sets. Sometimes 
complementation, which is a unary operation, may also be specified at an interior node.
The result of each Boolean operation is a subsolid. The root operation defines the final
solid. Note that the hierarchical nature of the CSG tree makes it convenient to build solids
from simpler solids, and the process can be continued recursively as long as we want. 

Dimensioning solids     171



Each primitive half-space at the leaf nodes may have intrinsic dimensions (or 
parameters). More on dimensioning primitive half-spaces can be found in Sections 3.1.6
and 4.1.9. By convention, at any interior node that stands for a binary Boolean operation, 
the solid on the right is positioned relative to the solid on the left before the Boolean
operation is performed. Here we introduce the relational dimensions (or parameters)
depending on the symmetry group classification of the left and the right solid. 

It is instructive to examine each of the CSG trees in Figure 9.6 and the solids they 
construct in some detail. 

Example 9.1 In Figure 9.6(a) we start with the half-spaces H1 and H2, which 
have no intrinsic dimensions. Half-space H2 is first positioned relative to half-
space H1 by their bounding planes, because these are their reference elements. 
These bounding planes are constrained to be parallel, and their outward normals 
are antiparallel facing away from each other. We then require only one 
dimension for the relative position, and it is the distance between the parallel 
planes. The result of the intersection operation is an unbounded slab, which 
belongs to the planar class. The center plane of the slab can be chosen as the 
reference element for the slab. 

We then bring in the solid cylindrical half-space H3, which has an intrinsic 
dimension, namely, its diameter. Its symmetry belongs to the cylindrical class, 
and its reference element is its axis. We position the cylinder relative to the slab 
that had been constructed so far by positioning the axis of H3 relative to the 
center plane of the slab. Here we require that these reference elements be 
perpendicular, and then perform the intersection operation. It results in the 
cylindrical pin shown in Figure 9.1(a), whose symmetry belongs to the revolute 
class. 

Example 9.2 Next consider Figure 9.6(b). We construct the unbounded slab 
using the half-spaces H1 and H2, as we did in Example 9.1. We then position the 
solid cylindrical half-space H3 relative to the slab, as in that example, but now 
perform a subtraction of H3 from the slab. It results in the cylindrical through-
hole shown in Figure 9.1(b), whose symmetry also belongs to the revolute class. 

Example 9.3 Now consider Figure 9.6(c). Here we first complement the half-
space H2 and position the solid cylindrical half-space H3 relative to it so that the 
axis of H3 is perpendicular to the plane bounding the complement of H2. A 
union operation is performed, which results in a solid of revolution. We then 
bring in the half-space H1 and position it relative to the solid of revolution so 
that the bounding plane of H1 is perpendicular to the axis of revolution and is at 
a specified distance from the bounding plane of the complement of H2. (See 
Section 7.4—in particular, Fig. 7.9—for details on relative positioning a 
revolute class and a planar class.) An intersection operation then yields the pin 
protruding from a planar half-space, as shown in Figure 9.1(c), whose symmetry 
also belongs to the revolute class. 

Example 9.4 Finally, consider Figure 9.6(d). We first position the solid 
cylindrical half-space H3 relative to half-space H2 so that the axis of H3 is 
perpendicular to the bounding plane of H2 and perform the intersection 
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operation. This results in an unbounded cylinder that is cut in half, whose 
symmetry belongs to the revolute class. We then position this half-cylinder 
relative to half-space H1 so that the axis of the half-cylinder is perpendicular to 
the bounding plane of H1 and the end face of the half-cylinder is at a specified 
distance from this plane, and we perform the Boolean subtraction. This results in 
the cylindrical blind hole shown in Figure 9.1(d), whose symmetry also belongs 
to the revolute class. 

Thus a CSG tree representation is a procedural representation of a solid because it gives a
procedure to construct the solid. A hierarchical dimensioning (or parameterizing) scheme
can be woven quite naturally in this tree structure, as the examples demonstrate. The leaf
nodes carry intrinsic dimensions. Interior nodes that stand for binary Boolean operations
also carry relational dimensions. A boundary representation for each solid in Examples
9.1 through 9.4 can be derived from the CSG tree. This process of derivation is called
boundary evaluation, because the boundary is deemed as the final result of various
relative positioning and Boolean operations. 

Boolean operations can also be performed on two-dimensional regions. So it is possible
to start with primitive half-spaces in a plane and to construct dimensioned planar regions
using a CSG tree structure. A planar polygonal region, for example, can be constructed
using a CSG tree in which the leaf nodes are all half-planes (bounded by straight lines).
Figure 9.7 illustrates five half-planes, h1, h2, h3, h4, and h5, that can be used to define
polygonal regions. 

 

FIGURE 9.7 Half-planes used in the construction of a planar polygonal region. 

A convex polygonal region bounded by a convex polygon ABDFG is constructed by the
Boolean expression h1 ∩ h2 ∩ h3 ∩ h4 ∩ h5 or the associated CSG tree. A nonconvex
polygonal region bounded by the polygon ACDEG is constructed by the Boolean
expression 
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or the 
associated CSG tree. In either case, the half-planes and their Boolean combinations have 
to be positioned relative to each other using some relational dimensions. 

It turns out that given any planar polygonal region (convex or otherwise), it is possible 
to come up with a CSG tree representation for it. If the planar region is not bounded by
polygons, then more work is required to find a CSG representation for it, as Figure 9.8
illustrates. In this simple example, which involves a circular arc, tangency is implied at D
and E in Figure 9.8(a). In addition to the four half-planes h1, h2, h3, and h4 and the 
circular disk h6, we need to introduce a half-plane h5, as shown in Figure 9.8(b), so that 
the planar region can be created by the Boolean expression

 
Constructive solid geometry representation is not unique. That is, the same solid (in

two or three dimensions) may be represented by more than one CSG tree. This shouldn’t 
be a surprise to us because we know that the same object may be dimensioned in multiple
ways. 

9.2.2 Sweeps  

The CSG tree is not the only procedural representation for solids. In Section 4.3 we saw 
how useful surfaces can be generated by sweeping curves. Sweeps are also a popular
means of constructing solids. For this, we first start with a dimensioned two-dimensional 
region. The two-dimensional region may be created using a CSG approach, as explained
toward the end of the last section. 
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FIGURE 9.8 (a) A planar region. (b) Half-spaces needed to create the planar 
region using a CSG tree. 

But more often, in mechanical CAD systems, one starts with a planar sketch with some
dimensional constraints, as discussed in Chapter 8. A dimensioned planar sketch defines
one or more simple closed curves. Figure 9.9 illustrates what we mean by a simple closed
curve. It closes on itself, as in Figure 9.9(b), but it does not intersect itself as do the 
closed curves in Figures 9.9(c) and 9.9(d). The closed curve can consist of several pieces, 
such as straight-line segments and circular arcs. The power of simple closed curves lies in 
the following theorem, which would seem obvious but defies a simple proof. 

Theorem 9.1: Jordan Curve Theorem Every simple closed plane curve divides the 
plane into two, and only two, components. 

One of these components is the bounded planar region inside the curve and the other is
the unbounded region outside the curve. 

Based on this simple idea, a dimensioned planar sketch that forms a simple closed
curve can be used to define a dimensioned two-dimensional (2D) region. The 2D region
thus created is then swept (translationally, rotationally, or in some more involved way) to
create a dimensioned solid. This is how several geometric “features” are created in a 
CAD system. A solid created by a sweep operation can then, for example, be used as a
leaf node in a CSG tree. 

The most general translational sweep can be defined as a Minkowski addition. This is 
defined for two point-sets embedded in Euclidean space with a coordinate reference
system. Using the position vector of points, Minkowski addition of two point-sets A and 
B is defined as follows. 
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FIGURE 9.9 Different types of planar curves. (a) An open curve. (b) A closed 
curve that is also simple. (c) and (d) show closed curves that are not 
simple. 

Definition 9.1: Minkowski Addition  
The point-sets A and B can be of any dimensionality. Note that Minkowski addition is

commutative; that is,  
Figure 9.10 shows a simple Minkowski addition of a line segment and a circular disk. 
Figure 9.11 shows the Minkowski addition of a circle and a circular disk. In both cases,
the Minkowski addition can be viewed as a sweep of the circular disk B so that its center 
lies on the line segment A, as in Figure 9.10, or on the circle A, as in Figure 9.11. If the 
set A is chosen to be a two-dimensional region, as illustrated in Figure 9.12, its 
Minkowski addition with a circular disk B is obtained by sweeping disk B so that the 
center of the disk is positioned at every point of A. Note in Figure 9.12(b), that after the 
sweep, all convex corners have been rounded by an amount determined by the radius of
B. This fact can be exploited in a blending operation, such as rounding and filleting,
discussed in the next section. 

In general, Minkowski addition can be viewed as a translational sweep of one of the 
point-sets, which is positioned so that its origin point lies on every point of the other 
point-set. The sweep is translational in the sense that the point-set that is being swept is 
not subjected to any rotation during the sweep; it is merely translated. A dimensioning
scheme for Minkowski addition can be derived thanks to the following theorem. 

Theorem 9.2: Minkowski Addition Congruence Theorem is congruent to 
 if A is congruent to A′, B is congruent to B′, and the relative orientation of A to 

B is the same as the relative orientation of A′ to B′. 
Note that only the orientation part of the relative positioning matters in Theorem 9.2. 

See Figure 9.13 for an illustration of this fact. From this theorem we infer that
dimensioning (parameterizing) A and B and dimensioning (parameterizing) their relative
orientation will also dimension (parameterize)  
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FIGURE 9.10 Minkowski addition of a line segment and a circular disk. 

 

FIGURE 9.11 Minkowski addition of a circle and a circular disk. 

If one of the point-sets, say, B, happens to be a circular disk (in two-dimensional 
applications) or a spherical ball, then the relative orientation of B with respect to any 
arbitrary A is irrelevant owing to the symmetry of B. Therefore, we need not worry about 
dimensioning this relative orientation at all. In addition, the only intrinsic dimension for
such B is its radius (or diameter). Figures 9.10, 9.11, and 9.12 exploit this special 
property of a circular disk. The resulting Minkowski sum in these figures is 
called the constant-radius offset of the point-set A. Sometimes, the boundary of 
is also called the constant-radius offset of the boundary of A. 

9.2.3 Blends 

Blending is a means of smoothly joining two or more objects. Figure 9.14 illustrates a 
blending of a sphere and a cylinder using a surface patch that joins 
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FIGURE 9.12 Minkowski addition of a two-dimensional region with a circular 
disk. 

 

FIGURE 9.13 Relative orientation dependence of Minkowski additions. A and 
A′ are congruent, and so are B and B′. But the relative orientation of A 
and B is different from the relative orientation of A′ and B′. 

these two surfaces smoothly. Such blending can be achieved in many ways. Different
CAD systems choose different ways to achieve blending. 

Rounding and filleting are two of the most popular blend operations. Figure 9.15
shows constant-radius rounding and filleting using a two-dimensional example. Note that 
rounding and filleting sharp corners essentially involve smooth blending of the edges
incident at those corners, as 
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FIGURE 9.14 Smooth blending of a sphere and a cylinder. 

 

FIGURE 9.15 (a) A two-dimensional region with sharp corners. (b) Filleting 
the reentrant (nonconvex) corner. (c) Rounding a convex corner. (d) 
Applying both rounding and filleting. 

shown in this figure. In three-dimensional cases, rounding and filleting of edges and
vertices are essentially smooth blending of faces that are incident at these edges and
vertices. If only constant-radius rounding and filleting are involved, then the radius is the
only additional dimension (or parameter) involved in such operations. 

A simple theory of constant-radius rounding and filleting of solids can be developed 
using Minkowski sums and certain morphological operations involving spherical balls.
We have already seen Minkowski addition in Definition 9.1. Using this addition, 

Dimensioning solids     179



Minkowski subtraction is defined as follows. 

Definition 9.2: Minkowski Subtraction  
In this definition, overbar indicates complementation. Figure 9.16 illustrates 

Minkowski subtraction for two simple point-sets. Comparison of Figures 9.12 and 9.16
shows that Minkowski addition results in an expanded (dilated) object whereas
Minkowski subtraction results in a shrunken (eroded) object. 

Minkowski addition and subtraction are all we need to define the following
morphological operations. In all these morphological operations, we assume that B
indicates a spherical ball. (In two-dimensional applications, B will be considered a 
circular disk.)  

 

FIGURE 9.16 Minkowski subtraction of a two-dimensional region with a 
circular disk. 

Definition 9.3: Dilation  
Definition 9.4: Erosion  
Definition 9.5: Opening O(A, B)=D(E(A, B), B). 
Definition 9.6: Closing C(A, B)=E(D(A, B), B). 

Applying the morphological operation of opening rounds all corners of A by a constant 
radius given by the radius of B. See Figure 9.17 for an example of applying erosion
followed by dilation to achieve opening. Applying the closing operation fillets all corners 
of A by the same radius. Figure 9.18 shows the same example, but applying dilation first
and erosion next, for closing. Roughly speaking, opening “knocks down” peaks and 
closing “fills up” valleys. If both rounding and filleting are desired, then applying closing 
followed by opening, that is, O(C(A, B), B), will yield the result. 
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FIGURE 9.17 Opening A with B rounds all sharp (convex) corners. It doesn’t 
affect reentrant (nonconvex) corners. 

 

FIGURE 9.18 Closing A with B fillets the reentrant (nonconvex) corner. It 
doesn’t affect convex corners. 

So the smooth blending of a sphere and a cylinder shown in Figure 9.14 can be achieved 
by a simple closing operation: Take the union of the solid sphere and solid (finite)
cylinder and to the result apply the closing operation with a constant-radius spherical ball. 
The only additional dimension (or parameter) involved in the closing operation is the
radius of filleting (that is, the radius of B). 

Morphological operations are global in the sense that they apply to the whole of point-
set A. Often, we may want to apply rounding or filleting only to a portion of a solid 
object. In some cases this may be accomplished by selecting a subsolid in a procedural
definition of the solid and applying the morphological operation to that subsolid. See
Figure 9.19 for an example of this operation. Let’s assume that only the top vertex of the 
triangular region in Figure 9.19(a) should be rounded so that we obtain the region shown
in Figure 9.19(b). This cannot be accomplished by applying an opening operation for the
whole region. Instead, we first represent the triangular region as an intersection of three
half-planes, as shown in Figure 9.19(c). Then we round h1 ∩ h2 by applying the opening 
operation O((h1 ∩ h2), B), and intersect it with h3 to get the desired result. 
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9.2.4 Summary 

A procedurally defined solid is constructed using a series of geometric operations on
several geometric objects. Therefore, it is supposed to possess a construction history. 
Formally, construction history is a hierarchy of construction operations, such as
Booleans, sweeps, and blends, performed on well-defined geometric objects. Due to the 
hierarchical nature, a construction history of a solid can contain other construction
histories. Intrinsic and relational dimensions (and parameters) can be specified as part of
the construction history.  

 

FIGURE 9.19 Selective rounding. 

A procedurally defined solid is generally considered to be attractive because it can be
modified by just editing its construction history and rerunning it. As we saw earlier, this
is not the case with explicit representation of solids. However, editing a construction
history is not without its perils, as even the following simple case illustrates. Consider a
construction history embodied in the CSG tree of Figure 9.6(a) and explained in detail in 
Example 9.1. Let’s assume that we decide to edit this history by just locally changing the
relative positioning of H1 and H2, as shown in Figure 9.20. Where would the half-space 
H3 be placed relative to the intersection of H1 and H2 shown in Figure 9.20(b)? Since the 
edit has changed the symmetry classification of the tuple (H1, H2) from planar to 
prismatic, the original relative positioning of H3 with respect to (H1, H2) is no longer 
valid, and this also needs to be changed. So the effect of a local edit can propagate quite
far down the construction history and render the original dimensional and parametric
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specifications invalid. It is up to the creator of the model to ensure that the edited version
of a construction history remains consistent. 

An explicit representation, such as a boundary representation, can be derived for an
instance of a procedurally defined solid. In fact, most modern CAD systems keep a dual
representation of a solid—one procedural and the other an explicit instance.  

 

FIGURE 9.20 Changing the relative positioning of two half-spaces from (a) to 
(b) in a construction history embodied in the CSG tree of Figure 9.6
(a). 

9.3 DIMENSIONING FEATURES 

Features are geometric objects whose complexity lies somewhere between elementary
objects, such as curves and surfaces discussed in Chapters 3 and 4, and solids, which 
have been studied thus far in this chapter. The four geometric objects shown in Figure 9.1
can be considered as features. 

Features are often parameterized. Thus we can have parameterized macros for 
constructing them. If certain features (for example, blind threaded holes) occur frequently
in a design, then it is convenient to have such parameterized macros for these features so
that they can be quickly instantiated and incorporated in the geometric model of a
product. 

Features can be named using the vocabulary of a particular trade (e.g., “I-beam” in 
structural engineering, “dovetail slot” in mechanical engineering, “via hole” in electrical 
engineering). This enhances the user friendliness of CAD systems. More importantly,
these names may have semantic implication in downstream applications. For example, a
manufacturing application may want to know how many “I-beams” or “via holes” are 
present in a particular design. 

For each feature, its constraints, dimensions, or parameters are predefined along with 
its explicit or procedural representation. A typical feature is a relatively simple object. So
if it contains some dimensional constraints, then they can be preanalyzed and the solution
can be stored for use in a dimensional scheme. Figure 9.21 shows two examples of 
parameterized features. In each case certain constraints are implicit. In Figure 9.21(a) the 
cylindrical and conical surfaces are coaxial. In Figure 9.21(b), tangency is implied in 
several places. 
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The features shown in Figure 9.21 could be created in many ways. To create the blind
hole with conical bottom in Figure 9.21(a), one can start  

 

FIGURE 9.21 Examples of parameterized features. (a) A blind hole with a 
conical bottom. (b) An elongated slot. 

with a planar sketch, as shown in the top projected view. When proper constraints are
imposed, it becomes a well-dimensioned (or parameterized) sketch. The region outside of 
this simple closed curve can be limited by intersection with a half-plane, and the result 
can be swept rotationally about the axis to give us the desired feature. Similarly, to create
the elongated slot in Figure 9.21(b), one can start with a planar sketch, shown in the top
view. With proper constraints, it defines a planar region. (The reader is encouraged to list
these constraints explicitly.) It can then be swept translationally in a direction
perpendicular to the plane of the sketch by a finite amount, and the resulting solid can be
subtracted from a half-space to produce the desired feature. 

These examples illustrate how features can be predefined by a combination of 
dimensional constraints described in Chapter 8 and construction procedures discussed in
Section 9.2. In a typical application, such a feature can be selected by its name and 
instantiated by specifying numerical values for its parameters (that is, specifying its
dimensions). It can then be used in a construction procedure to build a solid. 

9.4 SUMMARY 

Dimensions and constraints are not sufficient to define a solid. They should be a part of a
solid representation. Ideally, a procedural representation of a solid is preferable because
its hierarchical representation can also be used for a dimensioning (or parameterizing) 
scheme. Many modern CAD systems use a hybrid of explicit and procedural
representation schemes. Typically, a subsolid in a procedural representation of a solid
may have an explicit representation. Even if a solid is defined procedurally, its boundary
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representation for an instance of the solid is also computed and stored along with it. Such
dual representations are common in modern CAD systems. 

Features can be used as parameterized macros in constructing a solid model. 
Dimensions, constraints, and parameters for the features are more easily defined than for
a general solid. This explains their popularity in modern CAD systems. 

9.5 EXERCISES 

1. Prove Theorem 9.2. Why do you think that only the orientation component of relative 
positioning of A and B matters? 

2. Use morphological operations to apply the selective rounding and filleting shown in 
Figure 9.15(d). 

3. Minkowski sums and morphological operations can be regularized (see Appendix 4 
for regularization of sets). Examine the need for such regularization and how they 
affect sweep operations. 

9.6 NOTES AND REFERENCES 

Mantyla (1988) describes boundary representations of polyhedral solids. Requicha and
Voelcker (1985) describe Boolean operations in solid modeling, with particular attention
to boundary evaluation. Hoffmann (1989) gives a good introduction to geometric and
solid modeling. Shah and Mantyla (1995) deal with features and their parameterization in
CAD/CAM. 

Matheron (1975) and Dougherty (1992) are good references for morphological
operations. Shapiro and Vossler (1995) describe problems that arise when solid models
are parameterized.  
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Appendix 1  
Matrices 

Matrices are used in many places in this book, where some knowledge of matrices is
assumed. In this appendix we give a brief review of matrices of real numbers. In the past,
the tedium of computing determinant, rank, eigenvalues, and so on of matrices was a
major impediment to the liberal use of matrices in engineering applications. Lately, this
tedium has been considerably lessened by the wide availability of high-quality software 
such as MATLAB®. Therefore we can focus on the basic properties and applications of
matrices and leave detailed computation to such software. 

A1.1 SCALARS, VECTORS, AND MATRICES 

A scalar is a real number. The set of all real numbers is denoted by . So the fact that a

is a scalar is expressed compactly by A vector of real numbers 
is an ordered collection of scalars. For example, a=[a1 a2 a3] is a vector of three real 
numbers, and we will say that a is a three-dimensional vector of real numbers and express 

this compactly by This vector can also be indicated by the familiar notation

, where  and  are the unit (basis) vectors. The
components of a vector have a single subscript. The ith component of a general n-
dimensional vector a is denoted by ai, and if all 

then we say 

that the vector  
A tensor is a generalization of a vector. This generalization is best achieved using the 

subscript notation. Thus [ai] will denote a first-order tensor, [aij] will denote a second-
order tensor, [aijk] will denote a third-order tensor, and so on. So vectors are first-order 
tensors. By convention, scalars are zeroth-order tensors. Matrices are second-order 



tensors. A component, or element, of a matrix A will be denoted by aij. The subscript 
integer j may vary from 1 to m, and the subscript integer j may vary from 1 to n. If all 

 then we say compactly that the matrix  
Matrix A itself can be written out explicitly in rows and columns as 

Each row in this matrix can be viewed as a row vector. Similarly, each column can be
viewed as a column vector. Therefore, the ith row vector of A can be written as 

and the jth column vector of A can be written as 

A zero matrix is one in which all elements are zeros. An element aii for which the row
index and the column index are the same is called a diagonal element of A. There are min
(m, n) diagonal elements in A. An element of A that is not a diagonal element is called an 
off-diagonal element. 

A1.2 BASIC MATRIX OPERATIONS 

The negative of a matrix is obtained by taking the negative of every element of the
matrix. That is, −A=[−aij]. The transpose of a matrix, denoted AT, is obtained by 
interchanging the rows and columns of A. Multiplication of a matrix A by a scalar s
produces a matrix in which every element is a multiple of the corresponding element of A
by s. That is, sA=[saij]. 

Example A1.1 Let 

  

[ai1 ai2…ain] or (ai1 ai2 ain)   

  

  

Appendix 1 Matrices     187



Then, we have: 

The operation of matrix addition, written as C=A+B, produces a matrix C with cij=aij+bij.
Only matrices with the same number of rows and the same number of columns can be
added. Matrix subtraction is defined similarly; that is, in C=A−B, cij=aij−bij. 

Example A1.2 Let 

Then we have 

Matrix addition is commutative and associative. That is, A+B=B+A and (A+B)+C=A+
(B+C). Note that the order is important in matrix subtraction. That is, A−B need not be the
same as B−A. It is easy to see that (A+B)T=AT+BT.  

The product (or multiplication) of two matrices A and B is denoted AB and is defined
only if the number of columns of A equals the number of rows of B. If

and

 then the product 
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 is defined by its elements as 

An important observation here is that matrix multiplication is not commutative. That is,
AB need not be the same as BA, even if both are well defined. 

Example A1.3 As in Example A1.2, let 

The matrix product AB is not defined because the number of columns of A 
does not match the number of rows of B. However, ATB and BAT are well 
defined and are given by 

Matrix multiplication is associative; that is, (AB)C=A(BC). It is also distributive over 
addition. That is, A(B+C)=AB+AC. What is interesting is the reverse order in which
transpose applies over multiplication; that is, (AB)T=BTAT. 

A special case of matrix multiplication is the scalar (or inner) product of two vectors of
the same dimension. If A,  then ATB=BTA is a scalar and is the scalar (or 
inner) product of the vectors A and B. If A and B are row vectors, that is, A, 
then ABT=BAT is the scalar (or inner) product.  
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A1.3 SQUARE MATRICES 

In a square matrix, the number of rows equals the number of columns. A square matrix in
which all diagonal elements are 1 and all off-diagonal elements are 0 is called an identity
(or unit) matrix. It is often denoted by the letter I. If A and I are square matrices of the 
same size (that is, the same number of rows and the same number of columns), then
AI=IA=A. A square matrix A is symmetric if A=AT. The identity matrix is symmetric; so
is a zero square matrix. 

Example A1.4 

is the  identity matrix. It is symmetric. 

is the  identity matrix. It is also symmetric. 

is symmetric. 

is not symmetric. 

Every square matrix has a determinant. The determinant of square matrix  is 
a scalar and is denoted by |A| or det(A). It can be defined recursively as follows. First, we
define the determinant of a 1×1 matrix to be equal to the scalar value of the sole element
in that matrix. Next, for any square matrix A that has more than one row (or column) we 
call Aij the cofactor of the element aij in A. This cofactor Aij is a scalar and is defined to 
be (−1)i+j times the determinant of the (n−1)×(n−1) square matrix formed by deleting the 
ith row and the jth column of A. Finally, with these notations, the determinant of A can be 
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obtained as 

Example A1.5 Let’s find the determinant of the following 2×2 square matrix 
using the preceding formula: 

We have |A|=−57.25×308.32–224.64×(−1)×71.87= −1.5064×103. Now let’s 
find the determinant of the following 3×3 square matrix 

It is given by 

It turns out to be −1.6056×104.
 

As mentioned in the beginning, computing determinants of matrices of even modest size
can be tedious and error prone. But luckily we can use reliable software to compute these
quantities. 

It can be shown that the determinant of the product of two square matrices is equal to 
the product of their determinants. That is, |AB|=|A||B|. This result can be extended to the 
product of several square matrices. It can also be shown that the determinant of a square
matrix is equal to the determinant of its transpose, that is, |A|=|AT|. 

If the determinant of a square matrix is zero, then it is called a singular matrix; 
otherwise it is called a nonsingular matrix. A nonsingular square matrix A has an inverse 
matrix, denoted by A−1, that is of the same size as A. It has the property that 
AA−1=A−1A=I. So a nonsingular matrix is also called an invertible matrix. 

Example A1.6 For matrices A and B in Example A1.5, 

|A|=det(A)=a11A11+a12A12+…+ a1nA1n   
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It can be shown that the inverse of the product of two nonsingular matrices is the product
of their inverses, taken in the reverse order. That is, (AB)−l=(B−1)(A−1). This result also
can be extended to the product of several nonsingular matrices. 

A1.4 RANK 

Let {v1, v2,…, vn} be a set of n vector of the same dimension. A linear combination of
these vectors can be expressed as α1v1+α2v2+…+ αnvn, where αi are scalars. These n
vectors are said to be linearly dependent if α1v1+α2v2+…+αnvn=0 (that is, the zero
vector), for αi≠0 for at least one i. Otherwise, the vectors are linearly independent. 

The column rank of a matrix is the maximum number of linearly independent columns
in that matrix. Similarly, the row rank of a matrix is the maximum number of linearly
independent rows in that matrix. It can be shown that for any matrix (not necessarily
square), the column and row ranks are the same, and it is called the rank of the matrix.
Simply put, the rank of a matrix is the dimension of the space spanned by its rows (or
columns); this geometric interpretation will be illustrated in the following examples. The
rank of an m×n matrix cannot exceed min(m, n). For m≠0, n≠0, only the zero matrix has a
rank of 0. 

Example A1.7 Consider the following matrix from Example 4.1. 

Its rank is 3. It is a nonsingular matrix; that is, it has a nonzero determinant. 
None of its rows (or columns) can be expressed as a linear combination of the 
other two rows (or columns). If we take the three row vectors as basis vectors, 
then any three-dimensional vector can be expressed as a linear combination of 
these three basis vectors. The same is true for the three column vectors. This is 
what we mean by the row (or column) vectors spanning a three-dimensional 
space. 
Example A1.8 Next, consider the following matrix from Example 4.2: 
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Its rank is 2. It is a singular matrix because its determinant is zero. Its third 
row can be obtained by subtracting twice the first row from the second row. So 
the rows are not linearly independent. The three row (or column) vectors span a 
two-dimensional space. Geometrically, this means that the origin and the three 
points whose coordinates are obtained from the rows (or columns) of this matrix 
are coplanar. 

Example A1.9 Finally, consider the following matrix from Example 4.3: 

Its rank is 1. It is a singular matrix. It turns out that its first row is three times 
its third row and that its second row is just the negative of its third row. The row 
(or column) vectors span only a one-dimensional space. Geometrically, this 
means that the origin and the three points whose coordinates are obtained from 
the rows (or columns) of this matrix are collinear. 

It can be shown that an n×n matrix A is of rank n if and only if it is not singular, that is, if
|A|≠0. Determining the rank of an arbitrary matrix is a difficult task. As remarked earlier,
we are lucky to have widely available software to do this for us.  

A1.5 TRANSFORMATIONS AND HOMOGENEOUS COORDINATES 

Multiplying a matrix by a vector of the right size yields another vector. This gives us a
simple means of transforming vectors. Since points can be represented by vectors of their
coordinates, we see that points and point-sets can also be transformed by matrices. This
geometric transformation is expressed compactly by the matrix notation x′=Ax, where a
vector x of coordinates is transformed to a vector of coordinates x′ by the matrix A. 

There is an even simpler transformation of vectors obtained by vector addition, because
addition of two vectors of the same size yields another vector. We can then combine these
two types of transformations in the notation x′=Ax+x0. This can be reduced to a single
matrix multiplication operation if we extend the size of the vectors by 1, as in 

The extended vector, whose last element always has a value of unity, is supposed to
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correspond to the homogeneous coordinates of a point. Matrix transformations of vectors
of both point coordinates and its homogeneous coordinates are used extensively in this
book. 

A1.6 ORTHOGONAL MATRICES 

Orthogonal matrices are square matrices with the property that ATA=I; that is, AT is the 
inverse of A. From this it follows that AAT=I. Hence the rows of an orthogonal matrix are 
orthonormal. That is, the inner product (also called dot product) of a row by itself is
unity, but the inner product of any two distinct rows is zero. The columns of an
orthogonal matrix are also orthonormal. 

Recall that |AT|=|A| for any square matrix A and |I|=1. Therefore, if A is orthogonal, 
we have |ATA|=|I|=1 and |ATA|=|AT||A|=|A|2. Hence, |A|2=1, leading to the important 
result that |A| can only be ±1 if A is orthogonal. 

The inner product of a vector with itself is always a non-negative scalar, and its 
positive square root is called the Euclidean norm, or 2-norm, of the vector. If x is a 
column vector, then the positive square root of xTx becomes the 2-norm of x. 
Geometrically we can interpret this value as the length of the vector x. That is, it is the 
Euclidean distance between the origin and the point whose coordinates are represented by
the vector x. 

Orthogonal transformation is the only matrix transformation that preserves the 2-norm 
of a vector. This is because (Ax)T(Ax)=xTATAx=xTx. We interpret this result geometrically 
by saying that only orthogonal transformations preserve distances. As described in
Chapter 2, an orthogonal transformation is a rotation if |A|=+1. 

A1.7 EIGENVALUES AND EIGENVECTORS 

Let A be an n×n square matrix and x an n×1 vector. The matrix multiplication Ax
transforms an arbitrary vector x into another n×1 vector, x′. In general, x′ will be different 
from x, but sometimes x′ can turn out to be parallel to x, that is, x′ is just a scalar multiple 
of x. We capture this condition by the equation Ax=λx, where λ is a scalar. Given a matrix 
A, we are interested in finding out those vectors that are transformed by A into parallel 
vectors—these are called eigenvectors of A. In addition, we are also interested in finding
the corresponding values for the scalar multiplier λ—these are called eigenvalues of A. 
Eigenvectors are known only within a multiplicative constant; that is, if x* is an 
eigenvector, then any constant multiple of x* is also an eigenvector for the same
eigenvalue. 

The problem of finding the eigenvalues of A can be posed as a polynomial root-finding 
problem by setting |A−λI|=0. There are better ways to find not only the eigenvalues, but
also the associated eigenvectors, and these are implemented in widely available software. 

Example A1.10 For the matrix in Example A1.7, the eigenvalues are −0.5, 
−0.5, and 1.0. The corresponding eigenvectors are 
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Note how identical eigenvalues can have distinct eigenvectors. Also recall 
that the matrix had a rank of 3. 

Example A1.11 Next, for the matrix in Example A1.8, the eigenvalues are 3, 
2, and 0. The corresponding eigenvectors are 

The matrix has a rank of 2. So one of the eigenvalues is zero. Note that the 
corresponding eigenvector is nonzero.  
Example A1.12 Finally, for the matrix in Example A1.9, the eigenvalues are 0, 
0, and 11. The corresponding eigenvectors are 

The matrix has a rank of 1. So two of the eigenvalues are zero. 

If A is a square, symmetric matrix of real numbers, then it can be shown that all of its
eigenvalues are real and its eigenvectors are orthogonal. This property is quite useful in
the study of conic curves and quadric surfaces. Matrices considered in Examples A1.10
through A1.12 are of this type. They arise from the quadratic form of the governing
equations of conics and quadrics. 

It can be shown that the sum of the diagonal elements of any square matrix A (called
the trace of A) is equal to the sum of the eigenvalues of A. Also, its can be shown that the
product of eigenvalues of A is equal to the determinant of A. 

A1.8 EXERCISES 

1. Use the recursive formula to find the determinant of matrices in Eqs. (2.5) and (2.6). 
2. Show that for a nonsingular matrix A, 

3. Prove that the product of two invertible real matrices is invertible. 
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4. Prove that the product of two orthogonal matrices is orthogonal. 

A1.9 NOTES AND REFERENCES 

A basic and elegant introduction to matrices and, in particular, eigenproblems is provided
by Lanczos (1957). Bellman (1970) gives a good introduction to matrix analysis. Golub
and Van Loan (1996) discuss matrix computations quite comprehensively.  
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Appendix 2 
Groups 

Study of geometry is incomplete without some understanding of groups. Chapter 6
covered some aspects of groups needed for our study of symmetry. In this appendix we
give an independent, but brief, introduction to groups. We will, however, refer to Chapter 
6 for several examples. 

A2.1 AXIOMS 

An abstract group is a collection G of elements with a binary operation, called the group 
operation, that will be denoted by •. This strong connection between the collection of
elements and the group operation is captured by denoting the entire group as (G, •). The 
group must satisfy the following four axioms. 
Axiom G1: Closure For any g1, , g1 • . 

Axiom G2: Associativity g1 • (g2 • g3)=(g1 • g2) • g3. 
Axiom G3: Identity There exists an identity element  such that g • e= e • g=g for 
all .  

Axiom G4: Inverse For each  there is an inverse element  G such 
that g • g−l=g−l • g=e. 

We can show that the identity element is unique. To see this, assume that there are two
identity elements e and f in the group (G, •). Then, by definition, for any we have 
a • e=e • a=a and a • f=f • a=a. Therefore, by substituting f for a first and e for a next, we 
have f • e=e • f and e • f=f • e=e. This shows that e=f, proving the uniqueness of the 
identity element. 

We can also show that there is a unique inverse for each element in the group (G, •). 
To show this, for any  we define a left inverse l and a right inverse r so that l • 
a=e and a • r=e. Therefore, l=l • (a • r)=(l • a) • r=r. This shows that the left and right 
inverses are the same and that the inverse is unique. 

The group operation need not be commutative. That is, g1 • g2 need not be equal to g2 • 
g1. If it is, then the group is called a commutative, or Abelian, group. 

Example A2.1 ( , +) is a group, where  is the set of all real numbers and + is 
the usual arithmetic addition operation. Closure and associativity are easy to 
see. Zero is the identity element. Negation gives us the inverse. ( , +) is a 
commutative group, because + is a commutative operation. 

Similarly, ( , +) is a group, where  denotes the set of all integers (including 
positive integers, negative integers, and zero). ( , +) is also a commutative 
group. 



Example A2.2 ( \0, ×) is a group, where \0 is the set of all real numbers 
excluding zero and × is the usual arithmetic multiplication operation. Closure 
and associativity are easy to see. Unity, that is, 1, is the identity element. The 
usual real inverse gives us the inverse. The last statement shows why it was 
necessary to exclude 0 from the set of numbers in the group. ( \0, ×) is also a 
commutative group. 

( \0, ×) is not a group. 

Sometimes, certain “operations” themselves form a group under a group operation that
tells us how to compose these “operations.” Such groups are studied with great interest in
geometry. Let’s start with a simple exercise in permutation operation.  

Example A2.3 Consider permutations of the three numbers (1, 2, 3). A 
particular permutation, represented by (2, 3, 1), can be shown pictorially as the 
following mapping. 

We will represent this mapping, or operation, more compactly by 

There are only 3P3=6 such permutations, and all six operations can be given 
symbolic names, α1 through α6, as enumerated in the first two columns of Table 
A2.1. If we take two operations, say, α2 and α4, then their composition α2 • α4 
can be depicted pictorially as follows: 

So the composition of α2 and α4, taken in that order, results in α5. Any number 
of such compositions can be chained together to yield a permutation. 

With these preliminaries, we can see that ({α1, α2, α3, α4, α5, α6}, •) is a 
group. This is the permutation group of order 3 and is usually denoted by S3. 
The composition table (also called Cayley table or, more loosely, multiplication 
table) for elements of this group is shown in Table A2.2. Clearly, the identity 
element is α1. The table helps us to easily verify that the closure, associativity, 
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and inverse axioms are satisfied by this group. S3 is not a commutative group, 
because Table A2.2 is not symmetric. 

We will now turn to an example from geometry.  

Example A2.4 Consider the set of six transformations shown in the last two 
columns of Table A2.1. Each of the transformations maps an equilateral triangle 

TABLE A2.1 Permutation Group S3 and Symmetry Group of Transformations of an 
Equilateral Triangle 

 
These two groups are isomorphic. 
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to itself by rotation or reflection. (The vertices of the triangle are labeled 1, 2, 
and 3 to establish a connection to the permutation group in Example A2.3.) The  

transformation matrices shown in the last column of Table A2.1 should be 
interpreted as those applied with respect to the x- and y-coordinates in the 
following diagram: 

 

These transformations can be composed by applying the matrix multiplication 
operation, which may be denoted by ×. We can see that ({m1, m2, m3, m4, m5, 
m6}, ×) is a group. (Prove it.) An important fact we should remember is that the 
matrix multiplication m1×m2 stands for a composition in which the 
transformation m2 is applied first and then followed by the application of the 
transformation m1. 

Some groups may contain subgroups, which are groups by themselves. More formally, if
(G, •) is a group, H is a subset of G, and (H, •) satisfies all the four group axioms, then (H,
•) is a subgroup of (G, •). In Example A2.3, ({α1, α2, α3}, •) can be shown to be a
subgroup of S3. (Prove it.) This subgroup is usually denoted by A3 and is called the
alternating group of order 3. A3 is a commutative group.  

TABLE A2.2 Composition (Cayley, or Multiplication) Table for Elements of the 
Permutation Group S3. 

  α1
 α2

 α3
 α4

 α5
 α6

 

α1
 α1

 α2
 α3

 α4
 α5

 α6
 

α2
 α2

 α3
 α1

 α5
 α6

 α4
 

α3
 α3

 α1
 α2

 α6
 α4

 α5
 

α4
 α4

 α6
 α5

 α1
 α3

 α2
 

α5
 α5

 α4
 α6

 α2
 α1

 α3
 

α6
 α6

 α5
 α4

 α3
 α2

 α1
 

Each interior cell is the result of αi • αj, where αj is the row element and αj is the 
column element. 
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A2.2 GROUP-ISMS 

When are two groups equivalent? Intuitively, if we take the same group and give each of
its elements two different symbols, we should not claim to have generated two different
groups. This notion can be generalized and captured more formally by the notion of
isomorphism. By isomorphism between two groups (G, •) and (G′, ○) is meant a one-to-
one correspondence g ↔ g′ (where  and ) between their elements that 

preserves the group multiplication structure; that is, if  and , then 

. For group theoretic purposes, isomorphic groups are equivalent. 

Example A2.5 Consider the set A of real numbers under addition, which was 
seen to form a group in Example A2.1. Similarly, the set of all positive real 
numbers B under multiplication form a group. These two groups can be seen to 
be isomorphic by the exponential relationship b=ea, where  and  

Example A2.6 In Table A2.1, the permutation group ({α1, α2, α3, α4, α5, α6}, 
•) explained in Example A2.3 and the transformation group ({m1, m2, m3, m4, 
m5, m6}, ×) explained in Example A2.4 are isomorphic. Keep in mind the fact 
that αi • aj corresponds to mj×mi due to the order in which matrix multiplication 
is carried out. 

Example A2.7 The group of rotations about the z-axis, represented by the 
matrices 

and the group of rotations about the x-axis, represented by the matrices 

where , are isomorphic. (Prove it.) 
Any isomorphism of a group onto itself is called a group automorphism.  

Example A2.8 The one-to-one correspondence x ↔ x3, where x, , maps 
the group  onto itself and is an isomorphism because 

. Therefore, it is a group automorphism. 
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Isomorphism between two groups is a relationship that obeys some very simple, but
important, properties. For example, the following can be shown: 

1. Reflexive: The group G is isomorphic to itself. 
2. Symmetric: If G1 is isomorphic to G2, then G2 is isomorphic to G1. 
3. Transitive: If G1 is isomorphic to G2 and G2 is isomorphic to G3, then G1 is 

isomorphic to G3. 

Therefore, isomorphism is an equivalence relation. This formalizes the notion expressed 
earlier that we treat two groups that are isomorphic as equivalent for group theoretic
purposes. This equivalence is exploited in the classification results of Chapter 6. 

A2.3 NORMAL SUBGROUPS 

Of all subgroups of a given group, there are subgroups called normal subgroups that have 
some interesting properties. Let (N, •) be a subgroup of (G, •), and let N be written as the 
set {n1, n2, n3,…}. If , then we will write gN={g • n1, g • n2, g • n3,…}, called a 
left coset of N, and Ng={n1 • g, n2 • g, n3 • g,…}, called a right coset of N. The element g 
will be called the coset leader in these cosets. 

The subgroup N is called a normal subgroup of G if for any element , gN=Ng,
that is, if the left and right cosets are the same in the set theoretic sense. Note that we are
not requiring g • n1 to be equal to n1 • g. We have encountered several normal subgroups
in the main body of this book, as recounted in the following examples. 

Example A2.9 The translation group (see Sec. 6.1.2) is a normal subgroup of the
rigid motion group SE(3) (see Sec. 6.1.3). 

, which can be represented by the matrix notation 

where dx, dy, , is also a normal subgroup of the group of motions represented by the
matrices of Eq. (6.18), which are 

where , dx, dy, 
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Prove these results. 
Example A2.10 The group of translations along the z-axis represented by the matrices 

of Eq. (6.15), which are 

where , is a normal subgroup of the group of motions represented by the matrices 
of Eq. (6.11), which are 

where ,  
It turns out that the group of rotations about the z-axis, which can be represented by the 

matrices 

where  is also a normal subgroup of the group of motions represented by the
matrices of Eq. (6.11), just shown. 

Prove these results.  
Example A2.11 The group of translations in the xy-plane, that is, , which can be 
represented by the matrices 

where dx, , is a normal subgroup of the planar rigid motion group SE(2) 
represented by the matrices of Eq. (6.13), which are 
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where , dx, .

 

 is also a normal subgroup of the group of motions represented by the matrices of Eq.
(6.19), which are 

where , dx,  and µ is a constant pitch.

 

Prove these results. 
From the basic relationship gN=Ng, it can be seen that a normal subgroup has the

important property that gNg−l=N. The operation g • x • g−l is called the conjugation of x
by g. So we see that a normal subgroup N is invariant under conjugation by any member 
of its parent group G. We also see that the conjugation of N by any member of G is a 
group automorphism of N. 

A2.4 PRODUCTS OF GROUPS 

It is possible to construct new groups from two given groups. The idea here is to
construct the new group using the notion of products. 

Given two sets M and N, the Cartesian product M×N is the set of ordered pairs (m, n)
where  and  If (M, •) and (N, ○) are groups, then the group formed by 
the Cartesian product M×N under the group operation defined by (m1, n1)(m2, n2)=(m1 • 
m2, n1 ○ n2) is called the direct product of the groups M and N. 

Example A2.12 Recall from Chapter 6 that  is the group of translations and 
SO(3) is the group of rotations in three-dimensional space. Their direct product 

×SO(3) is a group, but it is not the rigid motion group SE(3). The reason is 
that the composition of two members from this direct product does not obey the 
rules of composition of two rigid motions. (Prove it.) 

This last example provides a motivation for defining a more general product, called a
semidirect product, as follows. First, we extend the notation of cosets and say that if A
and B are subsets of a group G, then AB= {a • b: , }. Now, let N and H be 
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two subgroups of G. Then G is called a semidirect product of N and H and is denoted by 
, if the following hold: 

1. N is a normal subgroup of G. 
2. N ∩ H={e}. 
3. NH=G. 

We can now apply these conditions to see if the rigid motion can be expressed as a
semidirect product. 

1.  is a normal subgroup of the rigid motion group SE(3) (see Example A2.9). SO(3) 
is another, but not normal, subgroup of SE(3). 

2. The only common element between  and SO(3) is the identity element. 
3. The right coset SO(3), which is also equal to the left coset SO(3)  owing to the 

normality of , equals SE(3). 

Therefore, we can say that the rigid motion group is the semidirect product of the

translation group and the rotation group; that is,  

Example A2.13 Consider the cylindrical group represented by matrices of the 
form 

where  and d are two independent parameters for rotation about the z-axis 
and translation along the z-axis, respectively It can be constructed from two 
simpler groups as follows. First, consider the rotation group represented by the 
matrices 

Next, consider the translation group represented by the matrices 
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It is possible to construct the cylindrical group using the direct product 
 (Prove it.) It is also possible to construct it using 

the semidirect product; that is,  (Prove it.) 

There are instances where products of groups can be defined unambiguously without
specifying whether they are direct or semidirect products. If N is a normal subgroup of G
and M is another subgroup, not necessarily normal, of G, then it is easy to see that
NM=MN and that it is a subgroup of G. We will then simply call MN or NM the product
of M and N. All products of groups encountered in Chapter 6 are of this type. 

A2.5 LIE GROUPS 

Example A2.4 presented a group of six transformations, out of which three form a
subgroup of rotations. That is, the rotations represented by the matrices m1, m2, and m3
form a group. This is a discrete group because the members in this set are finite in
number. In contrast, the rotations represented by matrices in Example A2.7 form
continuous groups because the members in these sets are not finite in number. 

Lie groups formalize the notion of continuous groups. A Lie group G is a smooth
manifold for which the group operation and the group inverse are also smooth. Here
smoothness refers to the condition that the function and its derivatives of all order are
continuous.  

Example A2.14  is a Lie group.  is a smooth manifold. The vector 
addition is smooth. The inverse is the negation and so is smooth as well. 
Example A2.15 The general linear group  is the set of all real, 
nonsingular square matrices of order n. It is a Lie group because it can be seen 
from the formulas that the matrix multiplication (which is the group operation) 
and the matrix inversion are smooth. 
Example A2.16 The special orthogonal group  is a subgroup of 

 In  we require additionally that the row (column) vectors 
be orthogonal, which is the same as saying that the inverse is the same as the 
transpose, and that the determinant of each matrix is +1. Both  and its 
specialization  which is the group of rotations in three-dimensional 
space, are Lie groups. 
Example A2.17 The special Euclidean group  is the rigid motion 
group and is a Lie group. It has several Lie subgroups, that is, subgroups that 
also qualify as Lie groups. Some of the Lie subgroups have only one connected 
component (as opposed to several disjoint components); all such connected Lie 
subgroups of the rigid motion group are enumerated in Chapter 6. 
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A2.6 EXERCISES 

1. Why is  not a group? 
2. Following Example A2.3, enumerate all elements of the permutation group S4. Can 

you identify a subgroup A4 in S4 that is similar to A3? Can you relate A4 to the 
symmetry group of a regular tetrahedron, under rigid motion? 

3. Prove that the groups (A, +) and (B, ×) in Example 2.5 are isomorphic under 
exponentiation. 

4. Relate the permutation group S3 to the dihedral group D3 of Chapter 6. Similarly, 
relate the alternating group A3 to the cyclic group C3 of Chapter 6. 

A2.7 NOTES AND REFERENCES 

Group theory started with the work of Galois in 1830 and was developed by people like
Cayley in the 19th century. It acquired a central role in Klein’s Erlanger program, which 
essentially defined geometry as the study of transformation groups. This paved the way to
look at geometries other than Euclidean. 

There are several good books on group theory, such as Birkhoff and MacLane (1997) 
and Burn (1994). More recently, Leyton (2001) used group theory in a constructive
definition of geometric shapes.  
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Appendix 3  
Graphs 

A graph is arguably the most useful abstraction for studying relationships among objects.
This is definitely true in the case of the relationship among geometric objects. This
appendix gives a brief summary of graph theory, which is used in the main body of the
book, especially in Chapter 8. 

A3.1 BASIC DEFINITIONS 

A graph G=(V, E, ψ) is a finite set V of elements called vertices, a finite set E of elements 
called edges, and an incidence function ψ that associates with each edge in E an 
unordered pair of (not necessarily distinct) vertices in V. The vertices are sometimes 
called nodes and the edges are sometimes called arcs. We will use |E| and |V| to denote 
the number of edges in E and the number of vertices in V, respectively It is also a general 
practice to use m to denote the number of edges and n to denote the number of vertices. 

Example A3.1 Figure A3.1 shows a simple pictorial example of a graph with a 
vertex set V={v1, v2, v3} and an edge set E={e1, e2, e3}. The incidence function is 
the mapping ψ(e1)=(v1, v2), ψ(e2)=(v2, v3), and ψ(e3)=(v1, v3). Note that  

 

FIGURE A3.1 A graph with three vertices and three edges. 

such pictorial representations are merely visual aids. The graph is completely 
defined by the vertex set, the edge set, and the incidence function. 

A graph with no edges is an empty graph. A graph with no vertices (and, of course, no 
edges) is a null graph. If the incidence function ψ associates with each edge in E an 
ordered pair of (not necessarily distinct) vertices in V, then G is a directed graph. Unless 
otherwise specified, a graph is assumed to be undirected. 

If two or more edges are associated with the same pair of vertices, then they are called 



parallel edges. If an edge is associated with two identical vertices, it is called a self-loop. 
A graph is simple if it has no parallel edges and no self-loops. 

Example A3.2 Figure A3.2 shows an example of a graph with parallel edges 
and a self-loop. Its incidence function is the mapping ψ(e1)=(v1, v2), ψ(e2)=(v2, 
v3), ψ(e3)=(v1, v3), ψ(e4)=(v1, v3), and ψ(e5)=(v2, v2). Here, e3 and e4 are the 
parallel edges and e5 is the self-loop. 

 

FIGURE A3.2 A graph with parallel edges and a self-loop. 

There is a simple way to capture the incidence function using an incidence matrix. 
Consider a graph G with m edges and n vertices. Assume, for simplicity, that G has no 
self-loops. Then the incidence matrix M(G) is an n×m matrix, where each row 
corresponds to a vertex and each column corresponds to an edge. An element mij in the 
matrix M(G) is assigned the value 1 if the jth edge is incident on the ith vertex, and it is 
taken to be 0 otherwise. For example, the incidence matrix of the graph shown in Figure 
A3.1 is 

Such matrices make it easy to represent graphs in computer software. The incidence
matrix can be embellished to represent directed graphs by assigning +1 to mij if the jth 
edge is directed away from the ith vertex, and − 1 if the incident edge is directed toward
the vertex. In a similar embellishment for a self-loop, mij may be assigned the value of 2. 

It is possible to capture the incidence function more compactly using an adjacency 
matrix. Two vertices in a graph are called adjacent if there is an edge between them. 
Now, consider a graph G with m edges and n vertices. Also assume, for simplicity, that G
has no parallel edges. The adjacency matrix A(G) is an n×n matrix, where each row 
corresponds to a vertex and each column also corresponds to a vertex. An element aij in 
the matrix A(G) is assigned the value 1 if there is an edge between the ith and the jth 
vertices, and is taken to be 0 otherwise. In this scheme, the adjacency matrix of the graph
shown in Figure A3.1 is given by 
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A nonzero diagonal entry means that there are self-loops in the graph. Parallel edges can 
be accommodated by embellishing the adjacency matrix by setting the value of aij to be 
the number of such parallel edges between the ith and the jth vertices. Directed graphs 
can be represented by embellishing the adjacency matrix to have positive and negative
elements, rendering the adjacency matrix asymmetric. 

By relabeling the edges and vertices of a graph G but not changing its incidence 
function, a seemingly new graph G′ may be created. Obviously, this is not a different 
graph. We capture this “sameness” of two graphs using the notion of graph isomorphism. 
(Compare this with the notion of group isomorphism presented in Appendix 2.) Two 
graphs G and G′ are isomorphic if there is a one-to-one correspondence between the edge 
of G and G′, a one-to-one correspondence between the vertices of G and G′, and the 
corresponding edges of G and G′ are incident on corresponding vertices of G and G′. 

Consider a graph G=(V, E, ψ). A graph G′=(V′, E′, ψ′) is a subgraph of G if V′ is a 
subset of V, E′ is a subset of E and ψ′ is a restriction of ψ to E′. Two types of subgraphs 
of G=(V, E, ψ) are of some special interest. 

1. Suppose that V′ is a nonempty subset of V. The subgraph of G whose vertex set is V′ 
and whose edge set is the set of all those edges in G that have both vertices in V′ is 
called a vertex-induced subgraph of G. 

2. Now suppose that E′ is a nonempty subset of E. The subgraph of G whose vertex set 
is all the endpoints of the edges in E′ and whose edge set is E′ is called an edge-
induced subgraph of G. 

For example, the graph shown in Figure A3.1 can be obtained as an edge-induced 
subgraph of the graph shown in Figure A3.2 by choosing the edge set {e1, e2, e3}. 

A3.2 GRAPH NAVIGATION 

There are many ways to navigate a graph. By this we mean that we can traverse
continuously through vertices and edges of a graph in many ways, which are referred to
as walks, trails, paths, and circuits, as described next. 

A walk in a graph is a finite alternating sequence of vertices and edges that can be
denoted as v0, e1, v1, e2, v2, e3,…, vk−1, ek, vk, where vi−1 and vi denote the end vertices of 
the edge ei. In this walk, v0 and vk are the two end, or terminal, vertices of the walk. All 
other vertices are internal vertices of the walk. Such a walk is also referred to as a (v0−vk)
walk. In a walk, edges and vertices can appear more than once. A walk is open if the end 
vertices are distinct; if the end vertices are the same the walk is closed. 

A walk is a trail if all its edges are distinct. A trail can be open or closed. An open trail 
is a path if all its vertices are distinct. A closed trail is a circuit if all its vertices, except 
the end vertices, are distinct. A circuit is also called a cycle. 
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In a graph G, two vertices vi and vj are connected if there is a (vi−vj) path in G. A graph 
itself is connected if every pair of vertices in it is connected. A graph that is not
connected contains two or more connected components. To see this, observe that vertex 
connectedness is an equivalence relation on the vertex set V. So it is possible to partition 
V into nonempty subsets V1, V2,…, Vk such that two vertices u and v are connected if only 
if both belong to the same set Vi. The subgraph of G induced by Vi is a connected 
component of G.  

A3.3 SPECIAL GRAPHS 

There are some special graphs that are of interest to us. A graph in which there is an edge
between every pair of vertices is a complete graph. A complete graph with n vertices is 
unique up to isomorphism and is denoted by Kn. Figure A3.1 shows a complete graph K3
with three vertices. 

A tree is a special type of graph. To define a tree, we first observe that a graph is said
to be acyclic if it has no circuits (or cycles). A tree is a connected, acyclic graph. A 
connected subgraph of a tree T is called a subtree of T. It can be shown that the following 
statements are equivalent for a graph G with n vertices and m edges: 

1. G is a tree. 
2. There is exactly one path between any two vertices of G. 
3. G is connected and m=n−1. 
4. G is acyclic and m=n−1. 

These results are exploited in Section 8.2.2. An acyclic graph is also called a forest in 
which each connected component is a tree. 

 

FIGURE A3.3 Two basic nonplanar graphs. (a) The complete graph K5. (b) A 
graph normally denoted as K3,3. 

We have seen that graphs are pictorially represented by drawing them in a plane of paper.
A graph is said to be embeddable in a plane, or planar, if it can be drawn in the plane so 
that its edges intersect only at their endpoints. Such a drawing is called a planar 
embedding of the graph. It is possible to draw every simple planar graph with each edge 
as a straight-line segment. (Recall that a simple graph has no parallel edges or self-loops.) 
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Two basic nonplanar graphs are shown in Figure A3.3. These graphs are considered basic 
because every nonplanar graph contains at least one of these two as a subgraph. 

There is a remarkably simple theorem, due to Euler, that shows that the number of 
edges and vertices of a planar graph cannot be arbitrary; that is, they are related to each
other. To see this, first observe that an embedding of a planar graph divides the plane into
regions, one of which is the infinite region lying outside the graph. Euler showed that if a
connected, planar graph has m edges, n vertices, and r regions, then n−m+r=2. This is 
known as the Euler’s formula. It is a combinatorial result in the sense that it involves
only the number of vertices, edges, and regions. 

A3.4 GRAPH RIGIDITY 

A four-bar linkage, shown in Figure A3.4 in the form of a graph, is a planar mechanism 
that consists of four rigid bars, shown as edges, and four revolute joints, shown as
vertices. Although the bars are rigid, their assembly as a mechanism is not. It can flex, or
deform, in many configurations, and three of these are shown in Figure A3.4. In contrast, 
Figure A3.5 shows a graph that can be interpreted as the assembly of five rigid bars, 
again using revolute joints, and it is a rigid structure. 

It is easy to extend the notion of linkages to build mechanisms in space. Figure A3.6
shows a nine-bar linkage in three-dimensional space. The edges in the graph are rigid
bars, and the vertices are spherical (ball-and-socket) joints. The assembled mechanism is 
not rigid, and three of its deformed configurations are shown in Figure A3.6. 

These examples provide some intuition behind the problem of graph rigidity. Roughly 
speaking, we start with a connected graph and assume that the edges are rigid bars (that
is, the edge lengths are fixed) and the vertices are revolute joints if we are considering a
problem in the plane, or spherical joints if we are considering a problem in space. Such
an assembly will be called a framework. We then ask if this framework is a mechanism 
that can flex or a structure that is rigid. 

More formally, in a connected graph G with edge set E and vertex set V, we denote the 
vertex vi by a point pi(t) with the understanding that it has two 

 

FIGURE A3.4 A four-bar linkage in the plane in three different configurations. 
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FIGURE A3.5 A planar five-bar framework that is rigid. 

coordinates in a planar problem and three coordinates in a space problem, and t is a 
continuous parameter. Thus we have an embedding of the graph G in a plane or in space, 
and the edges in G are allowed to cross each other. As before, let m be the number of 
edges in E and n be the number of vertices in V. The edge length constraints are captured 
by the set of equations 

where • indicates vector dot product, for each edge in E with endpoints pi(t) and pj(t). The 
framework represented by the graph G is said to be rigid if all solutions to Eq. (A3.1) are
locally trivial, that is, if the tuple (p1(t), p2(t),…, pn(t)) is congruent under rigid motion to 
the tuple (p1(0), p2(0),…, pn(0)) for all t near 0. An equivalent statement is that the graph 
G is rigid if the distance between any pair of vertices in V is preserved whether they are 
adjacent or not. 

Solving the set of equations in Eq. (A3.1) is difficult in general. There are several 
delicate special cases that need to be handled. For example, if the nine-bar framework of 
Figure A3.6 is flattened to lie in a plane, as shown in Figure A3.7, it becomes rigid. This 
rigid configuration is unstable because if all the six vertices are not perfectly coplanar,
some flexibility of the framework is possible. 

When faced with such a difficult problem, the usual mathematical practice is to
simplify the problem by redefining it. This is precisely what is done in the following
definitions of infinitesimal rigidity and generic rigidity. 

 

FIGURE A3.6 A nine-bar linkage in space in three different configurations. 

(A3.1) 
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FIGURE A3.7 A planar nine-bar framework that is rigid. 

A3.4.1 Infinitesimal Rigidity 

The expression in Eq. (A3.1) can be differentiated with respect to t, yielding 

where  can be considered to be the velocity of ith vertex. A geometrical 
interpretation of this equation can be given by rewriting it as 

This means that in the rigid bar connecting pi and pj, the component of the velocities at 
the endpoints along the length of the bar are equal. This makes sense because the bar is
rigid and its length should remain invariant, which would not be the case if the two
endpoints move at different velocities along the length of the bar. 

Note that Eq. (A3.2) does not contain the distance . It gives one equation per edge 
in the graph, and therefore there are m equations in total. In this set of equations we will 
treat the positions of the vertices, that is, pi(t), i=1,…, n, as known quantities and the 

velocities of the vertices, that is, , i=1,…, n, as unknowns. Since each velocity has
two or three components, depending on whether we are dealing with a two-dimensional 
or a three-dimensional framework, there are nd unknowns, where d is the dimension of 
the space in which the framework is embedded. 

We thus have a system of m linear equations in nd unknowns and we can bring in all 
the powerful machinery of matrices and linear algebra to analyze it. The m×nd matrix in 
this set of linear equations is called the rigidity matrix. 

Example A3.3 Consider the planar four-bar framework shown in Figure A3.8
(a). Assume that the coordinates of the four vertices are p1=(0, 0), p2=(2, 0), p3=
(2, 1), p4=(0, 1). If we denote  

(A3.2) 

(A3.3) 
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FIGURE A3.8 Two planar frameworks. 

, the set of equations given by Eq. (A3.2) can be written 
explicitly as 

The 4×8 matrix on the left-hand side of Eq. (A3.4) is the rigidity matrix for 
this framework. 

If a framework has at least d+1 vertices in general position, as we will assume from now
on, there are always d(d+1)/2 solutions to the set of linear equations in Eq. (A3.2) that
correspond to the rigid motion of the entire framework. To be specific, for two-
dimensional frameworks there are always three solutions to the velocities (two
translational components and one rotational component), and for three-dimensional
frameworks there are always six solutions to the velocities (three translational
components and three rotational components), which correspond to the rigid motion. If
there are no other solutions, then we claim that the framework has infinitesimal rigidity
(also called first-order rigidity). We thus have the following theorem. 

Theorem A3.1 A framework with n vertices is infinitesimally rigid in d-dimensional
space if and only if its rigidity matrix has a rank of nd−(d(d+1))/2.  

Example A3.4 The rigidity matrix in the matrix equation (A3.4) has a rank of 4. 
To be infinitesimally rigid, Theorem A3.1 demands that it should have a rank of 
5. Therefore, the framework of Figure A3.8(a) is not infinitesimally rigid. We 
also know from prior engineering knowledge that this framework is a four-bar 

(A3.4) 
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linkage and is not rigid. 
Example A3.5 Consider the framework of Figure A3.8(b). It is a five-bar 

framework whose rigidity matrix is given by 

The rank of this matrix is 5, which is the same as demanded by Theorem 
A3.1. Therefore the framework of Figure A3.8(b) is infinitesimally rigid. From 
our prior engineering knowledge we know that this is a rigid structure. 

What is the relationship between a rigid framework and an infinitesimally rigid
framework? There is a general theorem regarding this. 

Theorem A3.2 Infinitesimal rigidity implies rigidity. 
The converse of this theorem need not be true, as the following example illustrates. 

Example A3.6 Consider the planar nine-bar framework shown in Figure A3.9. 
Assume that its six vertices have coordinates p1=(0, 0), p2=(3, 0), p3=(1, 1), p4=
(0, 3), p5=(3, 3), p6=(1, 2). The rigidity matrix for this framework is given by 

(A3.5) 

(A3.6) 
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FIGURE A3.9 A planar nine-bar framework. 

Its rank is 8. From Theorem A3.1, we would then infer that the framework 
shown in Figure A3.9 is not infinitesimally rigid because its rank is not 9. It is, 
however, a rigid structure. 

Before we leave the section on infinitesimal rigidity, let’s consider what it does and does
not accomplish. Note that the rigid framework problem, which depends on solving
equations defined by Eq. (A3.1), is quite different from the infinitesimally rigid
framework problem, which depends on solutions to the equations of Eq. (A3.2). In the
rigid framework problem, only the lengths of the edges of the graph that represents the
framework are specified. On the other hand, in the infinitesimally rigid framework
problem, we completely ignore the edge lengths and assume that the coordinates of the
vertices of the graph representing the framework are known; we then merely determine
whether such a framework can flex or be a rigid structure. This leads to a simple
characterization of infinitesimal rigidity in terms of the rank of a rigidity matrix. 

If we can formulate an infinitesimal rigidity problem from a rigidity problem—and this
is by no means a simple step—then we can easily determine if the framework is
infinitesimally rigid. If the framework is infinitesimally rigid, then we can be sure that the
framework is rigid. If not, the framework may or may not be rigid. 

A3.4.2 Generic Rigidity 

Determining rigidity or infinitesimal rigidity of a framework requires metrical
considerations such as edge lengths or vertex coordinates of the graph that represents the
framework. In generic rigidity we consider only combinatorial rigidity; that is, we
concentrate on the graph structure of the framework and ignore any metric information.
By this we mean that only the number of edges, the number of vertices, and the incidence
relationship of the edge and vertex sets of the graph are considered in generic rigidity. 

It is important to recognize at the outset that we should not expect too much to come
out of this type of approach. Observe that the graphs of Figures A3.9, A3.10(a), and
A3.10(b) are all isomorphic; but the frameworks in Figures A3.9 and A3.10(a) are rigid,
whereas the framework of Figure A3.10(b) is a pantograph and is flexible. Nevertheless,
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it is theoretically attractive to see what we can infer from a purely combinatorial analysis
of the graph of a framework. We start with a few definitions to set the stage for such a
study. 

A framework embedded in d-dimensional space and associated with a graph G can be 
represented as (G, p), where p is the set of coordinates of the vertices in G. Such a 
framework is called generic if all frameworks sufficiently near p have the same 
infinitesimal rigidity properties as (G, p). Also, the embedding given by the vertex
coordinates p is said to be a generic embedding if each framework with any graph on the
vertex set V is generic. A graph is generically rigid in d-dimensional space if it has a 
generic embedding that is rigid. So generic rigidity is a property of the underlying graph.
It can be shown that infinitesimal rigidity implies generic rigidity. Figure A3.11 shows 
the relationship among rigidity, infinitesimal rigidity, and generic rigidity. 

 

FIGURE A3.10 Two planar nine-bar frameworks. 

 

FIGURE A3.11 Relationship among rigid, infinitesimally rigid, and 
generically rigid frameworks. 

In the one-dimensional case, rigidity, infinitesimal rigidity, and generic rigidity coincide. 
All these are equivalent to connectivity of the underlying graph. Note that this is purely a
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graph theoretic notion—we don’t have to consider any metric information for this 
analysis. This is one of the simple, but nice, results of genetic rigidity. This result is used
in Section 8.2.2 for solving one-dimensional constraint problems. 

In the two-dimensional case, there is a surprisingly powerful result, due to Laman, that
is captured in the following theorem. 

Theorem A3.3 A graph G with edge set E and vertex set V is generically rigid in the
plane if only if there is a subset F of E that satisfies the following two conditions. 

1. |F|=2|V|−3. 
2. For all F′ ⊆ F, , |F′|≤2k−3, where k is the number of vertices that are 

endpoints of edges in F′. 

Note that this theorem provides both necessary and sufficient conditions for a graph to be
generically rigid in two-dimensional space. This is a purely graph-theoretic 
characterization and does not involve constructing a rigidity matrix and computing its
rank as in infinitesimal rigidity. Applying this theorem one may conclude that the graph
of all three two-dimensional frameworks in Figures A3.9 and A3.10 is generically rigid. 
But, as we know, the framework of Figure A3.10(b) is not rigid. This example illustrates 
the limitation of the notion of generic rigidity for determining the rigidity of a planar
framework. 

A similar characterization of generic rigidity is not yet known in the three-dimensional 
case. It remains an open problem. Even if a Laman-like theorem can be found for the 
generic rigidity of three-dimensional frameworks, it is not clear how useful that would be 
for determining the rigidity of frameworks.  

A3.5 CONSTRAINT GRAPHS 

In solving dimensional constraint problems, one often starts with constructing a
constraint graph to represent the specified constraints. In a constraint graph the vertices 
correspond to geometric elements—such as points, lines, planes, and helices—and the 
edges correspond to specified geometric constraints between the elements they connect.
These constraints may be distance or angle values. It is customary to indicate basic
constraints, such as incidence and tangency, as special types of constraints in such a
graph. 

Example A3.7 Figure A3.12(a) shows a simple dimensioning scheme of a 
planar quadrilateral that is self-evident. Its dimensional constraint graph is 
shown in Figure A3.12(b), which can be interpreted as follows. In this 
constraint graph: 

Nodes indicated as  represent points and nodes indicated as  represent 
straight lines. 

A labeled edge between two point nodes may represent a specified distance 
constraint between the points, as shown. 

When a line node is connected to a point node by an unlabeled edge, it 
indicates an incidence relationship between the line and the point. So if a line 
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node is connected to two point nodes, then the line passes through these two 
points. 

A labeled edge between two line nodes may represent a specified angle 
constraint between the lines, as shown. 

 

FIGURE A3.12 (a) A dimensioned quadrilateral, and (b) its dimensional 
constraint graph. 

Such constraint graph representations are very useful in analyzing and resolving
dimensional constraints described in Chapter 8. As remarked at the beginning of this
appendix, graphs are most useful in capturing such relationships among geometric
objects. 

A3.6 EXERCISES 

1. What are the incident and adjacency matrices of the graph shown in Figure A3.2? 
2. Assume that the coordinates of the six vertices of the nine-bar framework of Figure 

A3.10(a) are p1=(0, 0), p2=(3, 0), p3=(2, 1), p4=(0, 3), p5=(3, 3), and p6=(1, 2). What is 
its rigidity matrix? Is it infinitesimally rigid? Is it a rigid framework? 

3. Assume that the coordinates of the six vertices of the nine-bar framework of Figure 
A3.10(b) are p1=(0, 0), p2=(3, 0), p3=(1, 1), p4=(0, 3), p5=(3, 3), and p6=(1, 4). What is 
its rigidity matrix? Is it infinitesimally rigid? Is it a rigid framework? 

A3.7 NOTES AND REFERENCES 

Graph theory originated in 1736 with Euler, who solved the problem of crossing the
bridges of Königsberg using the notion of graphs. There are several excellent textbooks
on graph theory, such as Bondy and Murty (1976) and Thulasiraman and Swamy (1992).
For a treatment of rigidity theory and its applications, see Thorpe and Duxbury (1999).  
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Appendix 4  
Solids 

Even though engineers tend to dimension various geometric elements and objects,
ultimately their goal is to dimension solids. This is the topic of Chapter 9. It is well-
known that projected views and wireframes are ambiguous, in the sense that they may
represent multiple solids. Therefore, it is important to define solids unambiguously so
that we may then represent and manipulate them in a computer. A cornerstone of modern
CAD is a rigorous theory of solids that is decoupled from their representations. In this
appendix we will briefly review this mathematical theory of solids, which is based on set
theory. 

A4.1 A PRIMER ON SET THEORY 

A set is an unordered collection of objects called elements. If x is an element of a set X,
we can denote this symbolically as  This may be read as “x is an element of X” or 
“A: is a member of X.” The elements may be defined in many ways. A set of students in 
a particular class can be defined by listing their names or their university identification
numbers; this is an example of a finite set. A set of points that lie on a circle can be
defined by an equation of the circle; this is an example of an infinite set. Sets don’t 
contain duplicate elements. If a collection contains duplicate elements, we promptly
delete these duplicate elements from the collection before defining a set. 

Y is a subset of X if every element of Y is also an element of X. We will denote this as 
 Two sets X and Y are equal, denoted by X=Y, if every element of Y is an element 

of X and every element of X is an element of Y. In other words, X=Y if X is a subset of Y
and Y is a subset of X. Since sets are unordered collections, equal sets can have their 
elements in different order. Y is a proper subset of X, denoted by if Y is a subset 
of X but not equal to X. 

A universal set W is a set of all possible elements. A null set contains no element at 
all. With these preliminaries, we are ready to define operations that can be performed on
sets. The most basic of these operations are the following Boolean operations. Assume
that A and B are sets. 

Union:  
Intersection:  
Complement  
Difference:  



These Boolean operations possess the following important properties. 

Sets and Boolean operations that satisfy the preceding properties form a Boolean algebra.
All Boolean algebras have the following useful properties. 

From these properties, it is clear that the Boolean operations are not independent. If, for
example, we know how to do intersection and complementation, then we can construct
union, difference, and symmetric difference from these two operations. This is how 
Boolean operations are implemented in modern CAD systems. 

The Boolean operations are best illustrated using a Venn diagram, where sets are 
represented as simple regions, such as circular or elliptical disks, in a two-dimensional 
plane. So Venn diagrams provide a trivial example of how set theory can be applied to
point-sets in a plane. However, the conventional set theory outlined so far is necessary 
but not sufficient to define solids in terms of point-sets. For this, we need some point-set 
topology. 

A4.2 POINT-SET TOPOLOGY 

Consider a set of points, or point-sets for short, in a general d-dimensional Euclidean 
space in the following development. The Euclidean distance between two points p and q
will be denoted by |p−q|. An open ball B(p, r) centered at the point p and having radius r
can be defined as the point-set B(p, r)={q:|p−q|<r}. The universal point-set W is the set of 
all points in that space. We can now define open and closed sets. 

Symmetric difference:  

Commutativity:  
A∩B=B∩A 

Associativity:  
 

Distributivity:  
 

Identity sets:  
 

Idempotency:  
Involution: 

 
de Morgan’s laws:  
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Open set:  is open if for every point , there is a radius r>0 such that 
 

Closed set:  is closed if  is open. 
Example A4.1 In three-dimensional space: 

1. X={(x, y, z):x2+y2+z2<4} is open. 
2. X={(x, y, z):x2+y2>1} is open. 
3. X={(x, y, z):x2+y2+z2<4 or z=0} is not open. 
4. X={(x, y, z):x2+y2+z2≤4} is closed. 
5. X={(x, y, z):x2+y2≥1} is closed. 
6. X={(x, y, z):x2+y2+z2≤4 or z=0} is closed. 

Next, we need to define the interior and boundary of a point-set. 
Interior point: p is an interior point of X if there is a radius r>0 such that 

 
Interior. iX={p: p is an interior point of X}. 

Example A4.2 In three-dimensional space: 

1. If X={(x, y, z):x2+y2+z2≤4}, then iX={(x, y, z): x2+y2+z2<4}. 
2. If X={(x, y, z):x2+y2+z2<4}, then iX=X.  
3. If X={(x, y, z):x2+y2≤1 or (0≤x≤2, y=0, z= 0)}, then iX={(x, y, z):x2+y2<1}. 

Boundary point: p is a boundary point of X if for any radius r>0, 

 and . Note that a boundary point 
of X need not be an element of X. 

Boundary: ∂X={p: p is a boundary point of X}. 
Example A4.3 In three-dimensional space: 

1. If X={(x, y, z):x2+y2+z2≤4}, then ∂X= {(x, y, z):x2+y2+z2=4}. Note that X is 
closed. 

2. If X={(x, y, z):x2+y2+z2<4}, then ∂X= {(x, y, z):x2+y2+z2=4}. Note that X is 
open. 

3. If X={(x, y, z):x2+y2≤1 or (0≤x≤ 2, y=0, z=0)}, then ∂X={(x, y, z):x2+y2=1 
or (1≤x≤ 2, y=0, z=0)}. 

We can now partition the universe as  for any  
Finally, we introduce the notion of closure of a set, which then leads to an important 

operation called regularization of a set. 

Closure: cl(X)=  
Example A4.4 In three-dimensional space: 

1. If X={(x, y, z):x2+y2+z2≤4}, then cl(X)=X. 
2. If X={(x, y, z):x2+y2+z2<4}, then cl(X)= {(x, y, z):x2+y2+z2≤4}. 
3. If X={(x, y, z):x2+y2<1 or (0≤x≤2, y=0, z=0)}, then cl(X)={(x, y, z):x2+y2≤

1 or (0≤ x≤2, y=0, z=0)}. 
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Regularization: rX=cl(iX). 
Regular set: X is a regular set if and only if X=iX. 

Example A4.5 In three-dimensional space: 

1. If X={(x, y, z):x2+y2+z2≤4}, then rX=X. Hence X is a regular set. 
2. If X={(x, y, z):x2+y2+z2<4}, then rX= {(x, y, z):x2+y2+z2≤4}. So X is not a 

regular set.  
3. If X={(x, y, z):x2+y2<1 or (0≤x≤2, y=0, z=0)}, then rX={(x, y, z):x2+y2≤1}. 

So X is not a regular set. 

So regularization has the effect of removing unwanted lower-dimensional entities
protruding from solid objects. 

A4.3 SOLIDS AND REGULAR SETS 

Our aim here is to establish solids as regular point-sets. To motivate this definition, we
will first consider regularized versions of Boolean operations. 

If we start with regular sets A and B, then their regularized union is the same as their
conventional union; that is, But the other regularized operations need
not correspond to their conventional counterparts, as the following examples show. 

Regularized union:  
Regularized intersection: A∩*B=cl(i(A∩B)) 

Regularized complement:  
Regularized difference: A−*B=cl(i(A−B)) 
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FIGURE A4.1 Distinction between conventional and regularized intersections 
between two regular sets A and B. The relative positioning of A and B 
is shown in (c). 

Example A4.6 Figure A4.1 shows how regularized and conventional 
intersection operations can differ even if both operate on regular sets A and B in 
two-dimensional space. In this illustration the conventional intersection of A and 
B results in a line segment protruding from the rectangular region. This segment 
is eliminated in the regularized intersection. 

Example A4.7 Figure A4.2 shows how regularized and conventional 
complementation operations differ even on a regular set A in two-dimensional 
space. The conventional complementation does not include the circular 
boundary, whereas the regularized complementation does. 

Example A4.8 Figure A4.3 shows how regularized and conventional 
difference operations can differ even if both operate on regular sets A and B in 
two-dimensional space. In the conventional difference, the bottom line segment 
in the rectangular boundary is missing. The entire boundary is part of the 
regularized difference. 

Regular sets and regularized Boolean operations satisfy the properties of commutativity,
associativity, distributivity, and identity sets defined earlier. Therefore, they form a
Boolean algebra and hence they also satisfy idempotency, involution, and de Morgan’s 
laws, defined in Section A4.1. 

We are now ready to define a solid as a regular set. In three-dimensional space, a solid 
is a regular subset of the three dimensional Euclidean space. Often, we also restrict solids
to be bounded. (A set is bounded if there is an open ball of finite radius that contains the

Appendix 4 Solids     228



set.) A solid defined this way has the following characteristics: 

1. Rigidity 
2. Homogeneous three dimensionality (that is, no lower-dimensional entities hanging 

from it) 

 

FIGURE A4.2 Distinction between conventional and regularized 
complementations of a regular set A. 

 

 

FIGURE A4.3 Distinction between conventional and regularized differences 
between two regular sets A and B. The relative positioning of A and B 
is shown in (c). 

3. Finiteness (if boundedness is invoked) 
4. Closure under rigid motions and regularized Boolean operations 
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It is possible to specialize the notion of a solid to two-dimensional space, by defining it as 
a regular set in two-dimensional space. This is a very useful concept that is often used in
geometric modeling. 

Before we leave this section, we should note that the notion of regularization is not
restricted to Boolean operations. It is possible to define regularized sweep operations by
taking the closure of the interior of the result of conventional sweeps. 

A4.4 REPRESENTATIONS OF SOLIDS 

A representation is a way of describing a particular object. It is usually a symbol structure
constructed according to some well-defined syntactic rules and the meaning is given by 
its semantics. In Chapter 9 we saw several examples of representations of solids. One is
the boundary representation, where the solid is represented by a complete description of
its boundary. Another representation is the CSG tree, which is a particular case of
procedurally defined solids.  

Most modern CAD systems have adopted procedural representations of solids. Often,
these are converted to boundary representations for various applications. The theory of
solids described in this appendix is independent of the representations used to capture it
in a computer. However, as we saw in Chapter 9, solid dimensioning is closely tied to the 
representation used to define the solid. 

A4.5 EXERCISES 

1. Give an example of projected views that may represent more than one solid. 
2. Give an example of a three-dimensional wireframe that may represent more than one 

solid. 

A4.6 NOTES AND REFERENCES 

Tylove and Requicha (1980) describe regularized Boolean operations and their role in
solid modeling. For more information on solid representations, refer to Mantyla (1988)
and Hoffmann (1989).  
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Achiral, 24, 29, 81, 85, 87, 88 

conics, 42 
quadrics, 67 

Adjacency relationship, 171 
Analytic geometry, 33, 77, 79 
Angle: 

between two lines, 80 
between two oriented lines, 80 
between two planes, 85 
between two skew lines (see Twist angle) 

Antiparallel, 90, 94 
Apex angle, 63 
Apollonius of Perga, 56 
Archimedes screw, 103, 104 
Archytas of Tarentum, 104 
Arc length, 55 
Arc of a parabola, 49 
ASME, 1, 8, 12 
ASME Y14.5, 12  
ASME Y14.5.1, 12 
Assembly, 55 
Asymptotes of hyperbola, 35 
Attribute: 

negative, 3, 67 
positive, 3, 67 

Automorphism: 
of groups, 203, 207 
of point-sets, 113 
of tuples, 125 

Axes, 2, 4, 137 
of ellipsoid, 61 

Axis, 23, 29 
conjugate, of hyperbola, 36 
conjugate, of one-sheeted hyperboloid, 62 
conjugate, of two-sheeted hyperboloid, 62 
semimajor, of ellipse, 34 
semiminor, of ellipse, 34 
transverse, of hyperbola, 35 
transverse, of one-sheeted hyperboloid, 62 
transverse, of two-sheeted hyperboloid, 62 



Axis of cylinder, 123, 166 
Axis of helix, 95 
Axis of revolution, 72, 123, 140, 141 

 
Baltimore lectures, Lord Kelvin’s, 141 
Barycentric form, 70 
Baseball bat, 23 
Base cylinder, of helix, 95 
Baseline dimensioning, 11 
Basis functions, 45 

bivariate, 68 
Basis vectors, 193 
Bellman, R., 197 
Bernstein basis functions, 47, 69, 70 
Bézier curves, 47 

convex hull containment of, 50 
cubic, 47–9 
endpoint interpolation of, 50 
end tangents of, 50 
quadratic, 49 

Bézier patch, 69, 75 
Binomial expansion, 48 
Binormal, 53 
Biochemistry, 165 
Birkhoff, G., 211 
Bisector line of symmetry, 44 
Blends, 178 
Blind hole, 184 
Bondy, J.A., 226 
Booker, P.J., 12 
Boolean algebra, 228, 232 
Boolean operations, 171, 186, 228 

associativity of, 229 
commutativity of, 229 
complementation, 171, 229 
de Morgan’s laws, 228 
difference, 171, 229  
distributivity of, 229 
idempotency of, 229 
intersection, 171, 229 
involution of, 229 
regularized, 231 

complement, 231 
difference, 232 
intersection, 231 
union, 231 

subtraction, 171 
symmetric difference, 229 
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union, 171, 228 
Bouma, W., 165 
Boundary evaluation, 185 
British Standard, 12 
Broaching, 128, 130 
B-spline basis functions, 50, 69 
B-spline curves, 50 
Bulb, 55 
Burn, R.P., 211 

 
CAD, 1, 11, 35, 56, 71, 136, 152, 156, 164, 165, 175, 179, 183, 185, 228, 229, 234 
Canonical equations, 33, 58, 59 
Canonical forms, 33, 58 

reduction to, for conics, 38 
reduction to, for quadrics, 64 

Cayley, 211 
Center, 23, 29, 123, 132 
Center plane, 139, 140 
Centers, 3, 5, 137 
Center-to-center, 2 
Center-to-surface, 2 
Ceramics, 165 
Chain dimensioning, 10 
Chiral, 23, 83 
Chirality, 23, 87, 88, 95, 149, 150, 170 

definition of, 24 
Circular arc, 163, 174 

rational representation of, 52 
Cissoid of Diocles, 55 
Classical mechanics, 18 
Classical set theory, 16 

(see also Sets) 
Clement, A., 130, 147 
Closing, 181 

(see also Morphological operations) 
Clusters, 160 
Cofactor, 39, 191 
Coefficient matrix, 39, 64 
Cohn-Vossen, S., 56, 77 
Coincident lines, 33, 79, 82 
Coincident planes, 59, 86 
Collection: 

ordered, 16 
rigid, 125, 132, 148 
unordered, 16, 228 

Combinatorial characterization, 159 
Combinatorial condition, 158 
Compact support, for B-spline curves, 50 

Index     236



Compass, 29, 161, 162 
Composite curve, 51 
Cone, 2 

asymptotic, 63 
frustum of a, 2, 10 
imaginary quadric, 59 
quadric, 63, 75 
real quadric, 59 
right circular, 34, 44, 63, 66, 72, 124, 132, 144, 146 

Congruence, 7, 8, 15 
under isometry, 26 
under rigid motion, 26 

Congruence theorems, 27 
Congruent triangles, 15 
Conics, 32 

bounded, 34 
degenerate, 34 
noncentral, 37 
nondegenerate, 34, 52 

Conjugation, 207 
Connected component: 

of graphs, 215 
of groups, 113, 115, 117  

Conoid, 76 
Constraints: 

basic geometric, 152 
chirality, 152, 155 
coincidence, 11 
cotangency, 154 
dimensional, 146, 148, 149, 175, 183, 225 
equality, 164 
incidence, 11, 79, 85, 150, 152, 224 
overlapping, 11 
parallelism, 11, 82, 152, 154 
perpendicularity, 11, 152, 155 
tangency, 154, 163, 164, 175, 224 

Construction history, 182 
Constructive solid geometry, 171 

(see also CSG tree) 
Contact surfaces, 2 
Control net, 69, 70 
Control points: 

for free-form curves, 45 
for free-form surfaces, 68 

Control polygon, 45 
Converse, 8, 55 
Cooling towers, 77 
Coordinate reference systems, 88 
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Coordinate system: 
Cartesian, 146, 168 
cylindrical, 146 
global, 132 
right-handed, 17 
spherical, 146 

Coparallel, 90, 94 
Coplanar lines, 81, 89, 151 
Cosets, 205 
Cross product, 25 
Cross ratio, 153, 154 
CSG tree, 172–5, 183, 234 
Cube, 118 
Curvature, 32, 53 

radius of, 32 
Curves, 32 

algebraic, 32  
dimensioning elementary, 32 
implicit, 32, 45 
parametric, 45 
plane, 32 
simple closed, 175 

Cylinder, 2 
(see also Generalized cylinders) 
right circular, 44, 63, 66, 72, 114, 124, 132, 134, 166 

 
Data structure, 171 
Datum, 147 
Decision table: 

for conics classification, 38 
for quadrics classification, 64, 65 

Degrees of freedom, 18, 33, 58, 105, 132 
relative, 132 

Denavit, J., 130 
Descartes, René, 130 
Determinant, 18, 39, 64, 187, 191 
Diagonal element, 188 
Differential geometry, 56, 77 
Dimensional taxonomy, 6 
Dimensioning, 1 

Cartesian coordinate, 10 
conics, 42 
coordinate, 10, 49, 88, 90, 169 
cylindrical polar coordinate, 10 
general theory of, 16 
hierarchical, 174 
modern theory of, 6 
polar angle, 100 
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polar coordinate, 10, 101, 151 
procedures in, 3 
quadrics, 66 
rectangular, 10 
relative positions, 79 
spherical coordinate, 10 
Svensen’s theory of, 1 
valid, 29 

Dimensioning rules, 12 
Dimension lines, 8  
Dimensions, 1 
Dilation, 181 

(see also Morphological operations) 
Direction, 25 
Directrix: 

of ellipse, 35 
of generalized cylinder, 71 
of hyperbola, 36, 37 
of parabola, 37 
of spheroid, 62 

Distance: 
between point and line, 79 
between point and plane, 80 
between two points, 18 
between two skew lines, 83 

Divide-and-conquer strategy, 161 
Dodecahedron (see Pentagon-dodecahedron) 
Domain of variation, 68 
Dot product, 25, 218 
Double banana, 160 
Dougherty, E.R., 186 
Dovetail slot, 184 
Drafting, 1 

Essentials of Drafting, 1 
Drilling, 128, 130 
Dummy variable, 22 
Duxbury, P.M., 165, 226 

 
Eccentricity: 

of ellipse, 35 
of hyperbola, 36, 37 

Eigenvalues, 65, 187, 195 
Eigenvectors, 195 
Ellipse, 24, 34, 40, 125, 154 

imaginary, 33 
real, 33 

Ellipsoid, 24, 61 
imaginary, 59 
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real, 59 
of revolution, 44 

Elliptic cylinder, 44, 60, 71, 123 
imaginary, 59 
real, 59, 66 

Elliptic disk, 44 
Elliptic paraboloid, 59, 60, 63 
Elongated slot, 184 
Embedding, 159, 169 
Encoding chirality, 84 
Encoding material side, 87 
Engineering functionality, 58 
Environment, 58 
Equiangular figures, 118 
Equilateral figures, 118 
Equivalence relation, 204 
Erosion, 181 

(see also Morphological operations) 
Euclidean distance, 18, 195 
Euclidean norm, 195 
Euclidean space, 17 
Euclid’s Elements, 17, 118 
Euclid’s fifth postulate, 104 
Euler, 226 
Euler angles, 110 
Euler’s formula, 217 
Existential conditions, 134 
Existential definition, 27 
Extension lines, 9 

 
Face table, 168–70 
Farin, G., 56, 77 
Features, 4, 128, 130, 176, 184–5 
Filleting, 177, 179, 180 
Fillets, 75 
First angle projection, 8, 9 
Flashlight, 55 
Focus: 

of ellipse, 35 
of hyperbola, 36, 37 
of parabola, 37 

Folium of Descartes, 55 
Forest, 216 
Formalism, 133 
4-parameter family, 119 
Framework, 159, 217, 220  
Free-form curves, 44 
Free-form surfaces, 67 
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French, Thomas E., 12 
Fudos, I., 165 
Functional dimensions, 11 
Fundamental forms, of surfaces, 77 

 
Galois, 211 
GD&T, 12 
Gear tooth, 55 
Generalized cylinders, 71, 75, 144 
Generator, of generalized cylinder, 71 
Generatrix, 73 
Geometric dimensioning and tolerancing, 12 
Geometric models, 1, 165, 233 
Geometric objects, 16 
Geometric relationships, 148, 213 
Gloves, 26 
Golub, G.H., 197 
Graphs, 148, 213 

acyclic, 216 
adjacency matrix of, 214, 225 
arcs of, 157, 213 
circuit, 215 
complete, 148, 216 
connected, 216 
constraint, 224 
cycle, 216 
dimensional constraint, 156–8, 164, 224 
directed, 213 
edges of, 157, 213 

parallel, 214 
empty, 213 
incidence function of, 213 
incidence matrix of, 214, 225 
navigation of, 215 
nodes of, 157, 213 
null, 213 
path, 215 
planar, 216 
planar embedding, 216 
rigidity of, 217, 223 

combinatorial, 222 
first-order, 221 
generic, 222, 223 
infinitesimal, 219, 221, 223 

self-loop of, 214 
simple, 213 
trail, 215 
vertices of, 157, 213 
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walks, 215 
closed, 215 
open, 215 

Graph theory, 156, 225 
Groups, 105, 199 

(see also Subgroups) 
Abelian, 199 
alternating, 203, 211 
axioms of, 105, 199 
commutative, 199 
continuous, 118, 210 
continuous symmetry, 121 
cyclic, 108, 117, 211 
dihedral, 109, 117, 211 
discrete, 210 
equivalence of, 107 
general linear, 105, 112, 210 
icosahedral, 118 
isomorphism of, 106 
Lie, 118, 209 
octahedral, 118 
orthogonal, 106 
permutation, 201, 210, 211 
product of, 106 
rigid motion, 111, 118 
rotation, 107 
screw, 120 
special Euclidean, 111, 210 
special orthogonal, 107, 210 
symmetry, 113, 201 
(see also Symmetry) 
tetrahedral, 118 
translation, 110  

 
Half-spaces: 

conic, 43, 142 
cylindrical, 171 
planar, 136, 141, 142, 168, 171 
primitive, 172 
quadric, 67 

Handedness, 24 
Hartenberg, R.S., 130 
Helical springs, 76 
Helical sweeps, 76 
Helical threads, 76, 103 
Helical washers, 76 
Helicoid, 76 

left, 76 
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right, 76 
Helicoidal patch, 75 
Helix, 24, 53, 87, 95, 123 

left-handed, 24, 54, 84 
right-handed, 24, 54, 84, 114 

Hexagon, 162 
Hierarchy, 160, 164 

of dimensioning, 5, 152 
Hilbert, D., 56, 77 
History, of engineering drawing, 12 
Hoffmann, C.M., 165, 186, 234 
Homogeneous coordinates, 21, 28, 46, 112, 153, 194 
Hypar structures, 77 
Hyperbola, 33, 35, 41 

conjugate, 36 
Hyperbolic cylinder, 44, 59, 60, 71 
Hyperbolic paraboloid, 59, 60, 63, 70, 76, 124, 146 
Hyperboloid, 62 

of one sheet, 59, 60, 65, 75 
of revolution, 62, 67, 72, 76 
of two sheets, 59, 60 

 
I-beam, 184 
Icon, 10 
Icosahedron, regular, 117 
Identity matrix, 190  
Image, 96 

mirror, 155 
Incidence relationship, 171 
Included angle, 64, 79 
Inconsistency, 152, 158 
Independent parameters, 18, 33, 58, 122, 132 
Inner product, 25, 189 
Instantaneous motions, 120 
Interior nodes, 172, 174 
Intersecting lines, 38, 79, 82 

imaginary, 33 
real, 33 

Intersecting planes, 63, 86 
imaginary, 59 
real, 59 

Interval of interest, 46 
Intrinsic characteristics, 5, 8, 32, 78 
Intrinsic dimensions, 5, 6, 32, 38, 79, 162, 172, 173 

for conics, 42, 43 
for quadrics, 58, 59 

Intrinsic parameters, 33, 34, 172 
for conics, 42, 43 
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for quadrics, 58, 59 
Intuition, 132 
Inverse of a matrix, 21, 191 
Invertible matrix, 192 
Involutes, 55 
ISO, 1, 8, 11, 12, 130, 164, 165 
Isometric view, 10 
Isometry, 18, 19, 155 
Isomorphism: 

of graphs, 214 
of groups, 203 

Isoparametric curves, 70 
Iteration, 127 

 
Jones, A., 130 
Joyce, D., 30 

 
Kelvin, Lord, 24 
Kheir, 24  
Kinematic pairs: 

cylindrical, 127 
higher-order, 130 
lower-order, 127 
planar, 127 
prismatic, 127 
revolute, 127 
screw, 127 
spherical, 127 

Knot sequence, 50 
uniform, 50, 51 

 
Laman, G., 165, 224 
Lanczos, C., 197 
Latus rectum, of parabola, 37 
Leader line, 9 
Leaf nodes, 172, 174 
Leyton, M., 211 
Limiting case, of ellipse, 37 
Linear dependence, 193 
Linear independence, 193 
Linkages: 

five-bar, 218 
four-bar, 217 
nine-bar, 218 

Lipschutz, M.M., 56, 78 
Locating axes, 3 
Locating surfaces, 3 
Location dimensions, 1, 3, 4, 137 
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Locus: 
definition of ellipse, 35 
definition of hyperbola, 36 
definition of parabola, 37 

 
Machine tools, 104, 127 
MacLane, S., 211 
Magnitude, 25 
Mantyla, M., 186, 234 
Material region, 87 
Material side, 87, 136, 145 
Matheron, G., 186 
MATLAB®, 187  
Matrices, 17, 187 

invertible, 106, 154 
orthogonal, 17, 106, 195 

Matrix operations, 188 
addition, 189 
multiplication, 189 
multiplication by a scalar, 188 
product of matrices, 189 
subtraction, 189 

Mechanical model, 22, 159 
Mechanisms, 127, 217 
Method of superposition, 15, 73, 84 
Milling, 128, 130 
Minimum geometric reference elements (MGRE), 146 
Minkowski addition, 175, 177, 179 

defined, 176 
Minkowski subtraction, 180 

defined, 180 
Molecules, 180 
Morphological operations, 180, 181, 186 
Multiplication of matrices, 21 
Multiplying coefficients, 45, 68 
Murty, U.S.R., 226 
Natural representation of curves, 52 
Negative solids, 2 
Nobel Prize in chemistry, 2 
Nonfunctional dimensions, 11 
Nonprocedural definition, 72, 75 
Nonuniform rational B-splines (NURBS), 52 
Nonsingular matrix, 191 
Normal, 53 

outward, 87, 88, 139, 168, 173 
n-parameter family, 28 
n-Tuple classification, 126 
Nutation, 110 
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O’Connor, M.A., 130 
Octahedron, regular, 117 
Off-diagonal element, 188 
Olmsted, J.M.H., 77, 104  
1-parameter family, 32, 62, 63, 107, 110, 112, 115 
Opening, 181 

(see also Morphological operations) 
Oriented lines, 25, 26, 87, 145 
Oriented planes, 25, 26, 87, 139, 145 
Oriented point-sets, 24 
Orthogonal doublet, 88 
Overconstrained, 158 
Overdimensioning, 12, 158, 164 
Owen, J.C., 165 

 
Pairs of planes, 63 
Pairs of straight lines, 38 
Pantograph, 223 
Parabola, 23, 33, 37, 42 
Parabolic cylinder, 44, 59, 60, 71 
Parabolic reflector, 55 
Paraboloid of revolution, 44, 63, 67, 72 
Parallel lines, 38, 79, 82 

imaginary, 33 
real, 33 

Parallel planes, 64, 86, 123, 166, 173 
imaginary, 59 
real, 59, 66 

Parallel postulate, 104 
Parameterizing, 1 
Parametric interval, 45 
Partition of unity, 46, 48, 52, 68 
Part numbers, 26 
Parts: 

elementary, 1, 2, 5, 137 
engineering, 58 
group of, 2, 5 
interchangeable, 26, 155 

Pentagon, 161, 164 
Pentagon-dodecahedron, regular, 117 
Permutations, 200 
Pitch: 

of helix, 24, 95 
of screw, 120 

Plane mirror, 23 
Planing, 128, 130 
Point-sets, 16 
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Point-set topology, 229 
Polygon: 

nonsimple, 29 
regular, 117 
simple, 29 

Polyhedron, 30, 168 
Positive solids, 2 
Precession, 110 
Precision instruments, 104 
Preimage, 96 
Prism, 2, 115, 129 
Procedurally defined geometric object, 67, 70 
Products, of groups, 208 

Cartesian, 208 
direct, 208 
semidirect, 208 

Projected views, 8, 228, 234 
Projection lines, 9 
Protractor, 29 
Pyramid, 2, 114, 124, 129 

 
Quadratic form, 196 
Quadric cylinder, 63, 71 
Quadrics, 58, 129 

degenerate, 63 
Quadrilateral, 29, 148, 155, 224 

nonsimple, 29 
simple, 29 

 
Rank, of a matrix, 64, 82, 87, 187, 192, 220 

column, 193 
row, 193 

Rational curves, 52 
Ratios, 153, 155 
Reclassification, 127 
Recursion, 8 
Recursive, 22 
Redundancy, 158 
Reference elements, 122, 123, 134, 173 
Reference tuples, 122–4, 134  
Reflection, 19, 20 
Reflexive symmetry, 23, 105, 139, 141–6 
Relational dimensions, 5, 6, 38, 173 
Relative positioning, 5 

cylindrical class, 138, 139 
general class, 146 
general, definition, 137 
general theory of, 8, 129, 132, 146, 156 
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helical class, 138, 139 
planar class, 138, 139 
prismatic class, 141 
revolute class, 139 
special theory of, 8, 79 
spherical class, 138 

Representation: 
boundary, 156, 168–70, 183, 185, 234 
explicit, 171, 185 
procedural, 185 
solid, 233 

Requicha, A.A.G., 186, 234 
Revolute joints, 159, 217 
Right-hand rule, 25, 99, 168 
Rigid body, 18, 105, 132, 133 
Rigidity, 232 
Rigidity matrix, 219, 220 
Rigidity theory, 156 
Rigid motion, 17, 133, 210 

identity, 21 
Rigid structure, 217 
Riviere, A., 130, 147 
Robots, 127 
Rodrigues parameters, 110 
Root-finding, 195 
Rotation matrix, 17, 20, 106, 112 
Rotational sweeps, of conics, 43, 44, 67 
Rounding, 177, 179, 180 
Rounds, 75 
Ruled surface, 62, 70, 75 

doubly, 63, 70, 75 
Ruler, 29, 161, 162 
Ruling, 72, 75 
Rutter, J.W., 56 

 
Saddle-shaped surface, 63 
Scalars, 187 
Second-degree equation, 32, 58 
Separating distance, 64, 79 
Sets, 228 

boundary of, 230 
boundary points, 230 
bounded, 16 
closed, 230 
elements of, 228 
finite, 16, 228 
identity, 229 
infinite, 16, 228 
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interior of, 230 
interior points, 230 
member of, 228 
null, 228 
open, 230 
regular, 231 
regularization of, 231 
subsets of, 228 
unbounded, 16 
universal, 228 

Set theory, 228 
Shah, J.J., 186 
Shapes, 16 
Shaping, 130 
Shapiro, V., 186 
Signed distance, 88 
Simplex, 168 
Simultaneity, 160 
Singular matrix, 191 
Size dimensions, 1, 3–5, 124 
Sketch, 163, 165, 175, 185 
Skew lines, 75, 83, 87, 91, 152 
Small motions, 120 
Soft analysis, 32, 58, 137 
Solid displacement, 17 
Solid modeling, 185, 234  
Solids, 1, 228 

dimensioning, 166 
platonic, 117 
polyhedral, 186 
procedurally defined, 171, 234 
regular, 117 
theory of, 168, 228 

Sommerville, D.M.Y., 56 
Space curve, 23, 45, 52 
Specification, simultaneous, 149–52 
Sphere, 2, 23, 62, 66, 105, 123, 132, 134–5 
Spheroid, 62, 67, 73 

oblate, 62 
prolate, 62 

Spin, 110 
Square matrices, 190 
Srinivasan, V., 130 
Stationary reference frame, 132 
Steam engines, 104 
Struik, D.J., 104, 56 
Stylized indications, 103 
Subgraphs, 215 
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edge-induced, 215 
vertex-induced, 215 

Subgroups, 106, 203 
connected Lie, 118, 120 
continuous, 108 
finite, 108, 109 
Lie, 118 
normal, 106, 205 

Surface patch, 67, 69 
Bézier, 69, 70 
B-spline, 69 
rational, 69 

Surfaces, 4 
dimensioning elementary, 58 

Surfaces of revolution, 72 
Surface-to-center, 2 
Surface-to-surface, 2 
Svensen, C.L., 1, 124, 137, 147 
Swamy, M.N.S., 226 
Sweep operations, 32 

regularized, 233 
Sweeps, 175 
Swept surfaces, 71 
Symmetric axis circle, 72 
Symmetric matrix, 190 
Symmetry, 4, 105, 199 

line of, 23 
(see also Reflexive symmetry)  
plane of, 23, 28 
(see also Reflexive symmetry) 
point of, 23 
(see also Reflexive symmetry) 

Symmetry classes: 
circular, 124, 125 
cylindrical, 123, 136, 173 
general, 123, 124, 125, 150 
helical, 123 
linear, 125 
planar, 123, 173 
prismatic, 123, 137 
revolute, 123, 173 
spherical, 123 

System of two lines, 82 
System of two planes, 86 

 
Table: 

Caley, 200, 202 
composition, 200, 202 
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multiplication, 200, 202 
Tangent, 52 
Temmerman, M., 130, 147 
Template, congruence theorem, 27 
Tennis racket, 23 
Tensor product, 69 
Tensors, 188 

first-order, 187 
second-order, 187 
zeroth-order, 187 

Tetrahedron, 19, 30, 168 
regular, 117, 210 

Theorem: 
angle-side-angle, 15  
circle congruence, 32 
conics classification, 32 
conics congruence, 34 
free-form curve congruence, 47 
free-form curve invariance, 46 
free-form surface congruence, 68 
free-form surface invariance, 68 
fundamental existence and uniqueness, of curves, 53 
fundamental existence and uniqueness, of surfaces, 77 
Jordan curve, 175 
Laman’s, 159 
Minkowski addition congruence, 176 
n-tuple congruence, 134 
quadrics classification, 58 
quadrics congruence, 58 
relative degrees of freedom, 137 
side-angle-side, 15 
side-side-side, 15 
2-tuple congruence, 133 
tuple replacement, 134 

Third angle projection, 8, 9 
Thorpe, M.F., 165, 226 
Threaded fasteners, 76 
3-parameter family, 28, 61, 109, 110, 112 
Thulasiraman, K., 226 
Tolerancing, 147 
Toroidal patches, 75 
Torsion, 53, 84 
Torus, 73 

horn, 74 
ring, 74 
spindle, 74 

Trace of a matrix, 196 
Transformation, 17, 105, 152, 194 
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affine, 56, 153, 154 
isometric, 152, 155 
orthogonal, 195 
projective, 153 
rigid motion, 152, 156  

Translation vector, 17, 111 
Translational sweeps, 176 

of conics, 43, 66 
Transpose, of a matrix, 188 
Tree, 149, 157, 216 
Triad, 26, 54 
Triangle congruence, 15 
Triangle inequality, 149 
Triangular form, 70 
Triangular net, 70 
Trihedron, 26 
TTRS (topologically and technologically related surfaces), 130 
Tuple congruence question, 132, 133 
Tuples, 16 

definition of, 17 
equality of, 17 
rigid motion of, 22 

Turning, 128, 130 
Twist angle, 75, 83, 91 
2-norm, 195 
2-parameter family, 34, 35, 62, 63, 110, 112 
2-tuple classification, 125, 126 
Tylove, R.B., 234 

 
Unbounded line, 79 
Unbounded plane, 79 
Underconstrained, 158  
Underdimensioning, 12, 158, 164 
Unit circle, 16 
Unit matrix, 190 
Unit sphere, 22 
Unit vector, 24, 87 

 
Van Loan, C.F., 197 
Variational geometry, 165 
Vector, 24, 187 

column, 188 
row, 188 

Velocity, 219, 220 
Venn diagram, 229 
Vertex: 

of a cone, 63 
of an elliptic paraboloid, 62 
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Vertex angle, 63 
Vertex table, 169 
Via hole, 184 
Voelcker, H.B., 186 
Vossler, D.L., 186 

 
Weight, 52 
Welding material, invisible, 22, 84 
Weyl, H., 130 
Wireframes, 228, 234 
Witch of Agnesi, 55 

 
Zero matrix, 188  
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