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Preface

Dimensioning is one of the most common engineering activities in industry. All
engineers, regardless of their field of specialization, have an intuitive idea of how to
dimension a sketch of an object of their interest. In engineering schools, most engineers
are trained in drafting or (more recently) in engineering graphics to create stylized
representations of sketches and to dimension them. Modern computer-aided drafting and
design systems provide functions that make sketching and dimensioning easy to generate
and modify using a computer. National and international standards bodies have been
standardizing projected views and symbols for dimensioning so that anyone trained in
these standards can generate or interpret drawings that conform to these standards.

However, a theory of dimensioning that is worthy of our information age is absent.
Yes, there have been some ad hoc theories to explain various steps involved in
dimensioning. These theories are, at best, codifications of useful industrial practices in
dimensioning that have evolved over a long period of time. However, it has been a matter
of some embarrassment to those of us who work in this field that we have not been able
to give a scientific explanation of dimensioning to our students and colleagues. This book
remedies that unfortunate predicament. It presents a theory of dimensioning that is
synthesized from several areas of geometry, starting from the works of Euclid and
culminating in recent advances in classification of continuous symmetry groups. It is
worth reflecting on how this synthesis has been achieved.

In the late 1980s, it became clear that existing standardized practices of dimensioning,
tolerancing, and associated metrological means of verification had hit a hard limit in
industry, which was undergoing profound changes brought about by the information
revolution. This concern was openly expressed in 1989 at an international meeting
organized by the American Society of Mechanical Engineers (ASME) and funded by the
U.S. National Science Foundation. The meeting resulted in two initiatives. One was to
quickly produce a mathematical companion to the ASME Y14.5 standard on
dimensioning and tolerancing; this goal was achieved in 1994 by a newly formed ASME
Y14.5.1 subcommittee. The other initiative was a more ambitious international effort to
produce an integrated, mathematically rigorous chain of ISO standards for dimensioning,
tolerancing, and associated metrological verification methods. In the mid-1990s, relevant
ISO groups addressed this task by organizing as one body, ISO Technical Committee
(ISO/TC) 213. The committee is currently issuing a chain of standards as envisioned
carlier. As a result of these two initiatives, greater attention has been focused on
developing a mathematically rigorous approach to dimensioning and tolerancing.

Several researchers in industry and in universities around the world had anticipated the
need for a mathematical theory of dimensioning and tolerancing even before these recent
developments. A particularly noteworthy theory was introduced in France under the
rubric of technologically and topologically related surfaces (TTRS); it was slowly
disseminated to the English-speaking world in the 1990s. This theory was based on some



new results in classification of continuous symmetry groups. The mathematical
correctness of the work was investigated and verified by a U.S. group (consisting of
researchers from Boeing and IBM) in the mid-1990s. This work seemed to provide a
useful theory of relative positioning, which was an important, and previously unavailable,
requirement for a theory of dimensioning.

While such efforts to find mathematically firm foundations for dimensioning and
tolerancing were progressing, a parallel effort was brewing in another ISO group
responsible for producing standards for exchange of geometric information in product
models. Such standards—known loosely as STEP (STandard for Exchange of Product
model data) standards—are issued by the ISO/TC 184/SC 4 subcommittee. In the late
1990s this group initiated an effort to standardize the exchange of parameters and
constraints specified in geometric models. During my participation in this effort on behalf
of IBM, it became clear that the theory being developed for dimensioning could also
serve as a theory of geometric parameterization, thereby enhancing the value of such a
theory significantly. In addition, it became evident that a theory of dimensioning is of
value independent of any consideration of tolerancing. This realization imposed a
heightened sense of urgency to bring the theoretical work on dimensioning to a
conclusion and publish it.

It was in the deliberations in these different, but related, standards committees during
the years of 2000 and 2001 that a satisfactory synthesis was achieved. It resulted in a
unification of several seemingly different theoretical ideas on size dimensioning and
position dimensioning using the simple notion of congruence. It turns out that it is the
congruence of point-sets and tuples (that is, rigid collections) of point-sets that matter.
This gave the theory of dimensioning a conceptual clarity that was easy to explain and to
understand.

You may ask, What is the use of a theory of dimensioning? After all, haven’t engineers
been dimensioning drawings for centuries? In fact, the power of a theory becomes
evident only when this task of dimensioning (and parameterizing) is computerized and
the resulting information is interpreted by other computers. Data models have to be
developed, and their completeness has to be ensured; likewise, algorithms need to be
designed and their correctness proved. A theory helps us to accomplish these aims.
Accordingly, CAD/CAM software developers and users, and the related standards
committees, have an interest in the theory of dimensioning. I hope that this book serves
this interest, and that researchers, engineers, and software developers find it helpful to
their work. It is important to point out that the theory presented here puts the current
practice of dimensioning on a strong theoretical footing. It is not disruptive, in the sense
that it proposes to reinforce and improve rather than replace the current practice. This is a
critical factor for industrial acceptance of this theory and the associated standardization.

Since the mid-1990s, I have been introducing bits and pieces of published work in
dimensioning and tolerancing in my geometric modeling course at Columbia University.
It is offered as a graduate-level course, but nearly half of the students are undergraduates
who choose it as an elective. Most of the students are from the mechanical engineering
department, but several have been from biomedical engineering, computer science, civil
engineering, and industrial engineering departments. The lecture notes for this course
were finally compiled into a “Theory of Dimensioning” text during the Spring 2002



semester; this book is a direct result of this effort. So I am confident that other teachers
will find it a useful textbook for their students.

I start the course by emphasizing that a theory of dimensioning is a prerequisite to a
good understanding of tolerancing. I also point out that the course is an introduction to
parameterizing geometric models. The link to tolerancing particularly motivates
mechanical engineering students, while the larger scope of parametric geometric
modeling attracts a wider audience. Teachers may find it advantageous to emphasize both
benefits in explaining the scope of the course.

The only prerequisite for the course is a good knowledge of basic geometry and related
mathematics, which most students acquire in high school and in any decent
undergraduate program. It helps a great deal if the student has had a course in engineering
graphics and CAD. Brief introductions to matrices, group theory, graph theory, and solids
have been included in the appendixes, which supplement the main body of the book.
Most students, at least in my class at Columbia, have no prior knowledge of group theory
It helps to teach or review these topics in the class as they arise. I have deliberately
omitted parametric curves and surfaces from the appendixes because there are several
excellent textbooks that cover this topic—it is sufficient to spend a few hours of class
time on that material.

This book is full of examples and figures, which is quite unusual for a book on theory.
I find this to be the best way to explain this theory to my students and colleagues. The
subject matter is so intuitive that illustrations become part of the thought process, and so
it is a good practice to encourage this type of thinking. However, I have taken great care
to ensure that this feature in no way detracts from the rigor of the theory. Proofs are given
for a few important theorems. If a theorem is well known or obvious, as is the case in
many instances, the reader is directed to a readily available reference where more details
can be found.

This book owes much to nearly 15 years of close interaction and collaboration with
several colleagues in industry, universities, and standards committees, as well as my
students at Columbia. Andre Clement introduced me to the group theory work in France
and Michael O’Connor showed me how to formalize this work using Lie groups. Herb
Voelcker and Mike Pratt constantly and strongly encouraged the pursuit of mathematical
theories on which industrial practices can be standardized. Alan Jones and Michael
Leyton provided valuable feedback in different phases of preparation of this book.
Colleagues at PDES Inc., ISO, and ASME kindly contributed their knowledge, time, and
support in numerous meetings on CAD, dimensioning, and tolerancing. Finally, I want to
thank the staff of Marcel Dekker, Inc., for their help in bringing this book to the market.

Vijay Srinivasan
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1
Introduction

Dimensions are numerical values assigned to certain geometric parameters. They are
expressed in units of distance or angle. In engineering drawings some dimensions are
indicated explicitly on two-dimensional projected views using standardized notations.
Three-dimensional geometric models in computer-aided design (CAD) systems carry
dimensions internally as values assigned to certain variables. A theory of dimensioning is
also a theory of parameterizing geometric models.

Standards for indicating dimensions on engineering drawings are issued in the United
States by the American Society of Mechanical Engineers (ASME) and internationally by
the International Organization for Standardization (ISO). However, they do not provide a
theory of dimensioning. The designer is expected to learn the art of dimensioning from
his peers and other sources, such as textbooks on drafting.

1.1 AN EARLIER THEORY OF DIMENSIONING

In the mid-1930s, popular engineering drafting textbooks in the United States offered a
theory of dimensioning that has survived to date. It is sufficiently compact that it can be
reproduced (from Carl Svensen, Drafting for Engineers) in a few pages, as follows.
Dimensions are indicated by arrows in the accompanying figures. In the following
narrative Svensen refers to himself as the author when discussing his earlier book
Essentials of Drafting.

Elements of the Theory of Dimensioning. The theory of dimensioning as
developed by the author was originally published in Essentials of Drafting and
is now finding its way into various courses and textbooks, where its importance
is recognized by devoting a separate chapter to it instead of a set of “general
rules” as was formerly done.

The following statement is quoted from Essentials of Drafting: “Constructions
can be separated into parts and these parts can then be divided into geometrical
solids. Each of the solids can then be dimensioned and their relations to each
other fixed.” Thus, there are two kinds of dimensions:

1. Size dimensions
2. Location dimensions

The elementary cases of size dimensioning include the common
geometrical solids shown in Fig. 1.1, which may be termed positive or negative.
The cases are conveniently classified as follows:
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1. The prism and modifications. The rectangular prism requires three
dimensions, two of which are given on one view and the third on one of the
other views.

. The cylinder requires two dimensions, diameter and length, both of which
are given on one view.

3. The cone requires two dimensions, both of which are given on one view.

The frustum of a cone requires three dimensions.

4. The pyramid may have dimensions on one or both views, depending on the

shape of the base.

S. The sphere requires only one dimension, the diameter.

5. Other solids require dimensions as determined by their geometrical

properties and the purposes for which they are used. Examples of the
application of size dimensioning are illustrated in Fig. 1.2.

[\

Location dimensions are used to fix the positions of elementary parts in relation to eack
other or the location of groups of parts in relation to axes, contact surfaces, or othei
references. Prisms are generally located with reference to surfaces, but axes may be used,
or both axes and surfaces, according to the requirements of position, kind of prism, anc
the purpose which they serve. In Figure 1.3-I there are two basic or locating surfaces,
which meet at 4, from which locating dimensions are given to the surfaces of the prism,
which meet at B. Cylinders are located by axes and bases. In Figure 1.3-1I the machinec
surface of the cylinder and the axis meet at point B, which fixes the position of the
cylinder by two dimensions from
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FIGURE 1.1 Elementary cases of size dimensioning. (From Svensen, 1935.)

the locating surfaces, which meet at A. Spheres are located by their centers. The location
dimensions for other shapes and combination of shapes are dependent on geometrical
properties and their relation to the whole object or one of its parts.

The elementary cases of location dimensioning comprise center-to-center
dimensions, surface-to-center (or center-to-surface) dimensions, and surface-to-surface
dimensions (Fig. 1.4).

Procedures in Dimensioning. The four steps to be considered in applying the theory of
dimensioning are:

1. Divide the object into elementary parts (type solids positive and negative).
2. Dimension each elementary part (size dimension).
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FIGURE 1.2 Size dimensions. (From Svensen, 1935.)

3. Determine locating axes and surfaces.
4. Locate the parts (location dimensions).

A few general remarks on the foregoing theory of dimensioning are worth making here.
First, what Svensen calls “elementary parts” or “solids” will be called features in modern
terminology. Note that these are not just surfaces; they carry additional information as to
which side of the surface the material lies using the “positive” or “negative” attribute. His
classification of these elementary parts for the purpose of size dimensioning into six
cases is empirical—but he gets very close to a rigorous classification of geometrical
objects presented in Chapter 6 on the basis of their symmetry.
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FIGURE 1.3 Location dimensions. (From Svensen, 1935.)

Second, his “location dimensions” fix the relative positions of geometrical objects. In
other words, they are numerical values assigned to certain relative position parameters.
Though he doesn’t say it explicitly, his “size dimensions” are also numerical values,
assigned to intrinsic shape parameters of his elementary parts or solids.

Third, he fumbles along in describing how to do location dimensioning. But he
captures the essence when he says that centers, axes, and surfaces play lead roles in
relative positioning. Also note that he talks about positioning not

X

CENTER TO CENTCR SURFACE TO SURFACE
SURFACT TO CENTER

FIGURE 1.4 Cases of location dimensioning. (From Svensen, 1935.)

only features (“elementary parts”) but also groups of features (“groups of parts”) relative
to each other. These notions will be formalized in Chapter 7.
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These remarks, some of which are critical, should in no way diminish our appreciation
for Svensen’s contribution. Svensen should be given full credit for his remarkable
engineering foresight. His work anticipated much of the later mathematical developments
in dimensioning. In fact, this book formalizes and generalizes Svensen’s work and
presents a theory that supports all standardized practices of dimensioning in industry.

1.2 OUTLINE OF A MODERN THEORY OF DIMENSIONING

Size dimensions define the exact shape of a geometric object. They are the intrinsic
characteristics of the shape, in the sense that these dimensions don’t change when the
geometric object is moved around. On the other hand, location dimensions define how
two geometric objects are positioned relative to each other; these dimensions change
when one object is moved relative to the other.

In the modern theory of dimensioning described in this book we abandon this simple,
flat classification of dimensions into size and location dimensions. Instead, we impose a
hierarchy on dimensions, as illustrated in Figure 1.5, because, as we will see in the rest of
book, it is more powerful in building a dimensioning theory for any complex object. The
dimensional taxonomy has two types of dimensions: intrinsic and relational. At the
simplest level, elementary curves and surfaces have intrinsic dimensions—one may call
them elementary size dimensions a la Svensen—that define the exact shapes of these
curves and surfaces. For example, an unbounded (that is, of infinite length) cylinder has
its radius (or diameter, as is normally done in engineering practice) as the intrinsic
dimension because it doesn’t change when the cylinder is moved around in space. It
defines the exact shape of the cylinder no matter where it is positioned.

When two or more such elementary objects are considered, we can dimension the
relative positioning of them—these are the relational dimensions. For example, if we
consider two cylinders whose axes are parallel, then their relative positioning is
determined solely by the distance between the axes. This distance is the relational
dimension between the two cylinders, and changing it will change their relative
positioning. However, when we consider a collection of two or more geometric objects,
the relational dimensions among the objects become part of the intrinsic dimensions of
the collection. This happens, for example, when we consider the two cylinders as holes
drilled in the same block. This collection of the two parallel cylinders has three intrinsic
dimensions: two
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FIGURE 1.5 A dimenisonal taxonomy.

cylinder radii and one distance between their axes. As we move up the hierarchy, intrinsic
dimensions subsume relational dimensions that appeared below.

Intrinsic dimensions are closely related to the concept of congruence under rigid
motion. Loosely stated, two geometric objects are congruent if each can be moved by
rigid motion so as to cover the other completely. Congruent geometric objects are
identical copies that happen to have been positioned in different places in space. We say
that geometric objects that have the same intrinsic dimensions must be congruent. Note
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that the converse need not be true, because the same geometric object can be
dimensioned in multiple ways. (Just imagine how many ways a triangle can be
dimensioned.)

The distinction between intrinsic and relational dimensions may seem artificial because
it is purely a matter of the level of hierarchy under consideration. A cleaner, but
theoretically equivalent, approach is one where dimensioning is defined recursively.
Consider a geometric object g that is divided into two subobjects g , and g ,. If g ; and g
, have been dimensioned, then dimensioning the relative position of g ; and g , completes
the dimensioning of g. The recursion ends when each subobject is deemed to have been
completely dimensioned (by some authority not yet defined) or is an elementary curve or
surface that can be easily dimensioned using geometric theories (such as, for example,
those presented in Chapters 3 and 4).

In either case, in general we define dimensions as those intrinsic characteristics of a
geometric object that remain invariant under rigid motion of the geometric object.
Because of this, it turns out that the central question we pose in the modern theory of
dimensioning is whether two given geometric objects are congruent under rigid motion.
We will devise procedures to answer this question and, in that process, come up with
certain geometric parameters. Dimensioning is then just a task of assigning numerical
values to these parameters. We start with a detailed treatment of the concept of
congruence in Chapter 2. This is followed by a discussion of dimensioning elementary
curves and surfaces in Chapters 3 and 4, respectively Chapter 5 is devoted to the
seemingly simple task of dimensioning the relative positions of elementary objects such
as points, lines, planes, and helices; it presents a special theory of relative positioning.
Chapter 6 describes the notion of symmetry using group theoretic ideas, and it sets the
stage for a general theory of dimensioning relative positions of arbitrary geometric
objects in Chapter 7. So Chapter 7 can be considered as providing a general theory of
relative positioning. Dimensional constraints are the topic of discussion in Chapter 8.
Finally, the important topic of dimensioning solids is covered in Chapter 9.

1.3 STANDARDIZED INDICATION OF DIMENSIONS

Since we will be dealing with dimensioning quite extensively, it is worth noting some
stylized indications of dimensions standardized by the ASME and ISO. As we have
already seen in Figures 1.1 through 1.4, dimensioned distances and angles are indicated
by arrows. These are called dimension lines, which, with their arrowheads, show the
direction and extent of a dimension. Dimension lines are often broken in the middle to
show the numerical value (as, for example, in Figure 1.7). These are often, but not
always, indicated on projected views of a part.

The ISO defines two alternative orthographic projection methods, as summarized in
Table 1.1. Third angle projection is the preferred method in the
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TABLE 1.1 ISO’s definition of first and third angle projection methods. The hidden
lines are shown dashed

Designation of Views

[+ View in direction a=View from the front
View in direction b View from above
’r/ View in direction c—View from the left
View in direction d—View from the right
£ -|i View in direction e—View from below
“/‘ﬂ" View in direction f—View from the rear

First Angle Projection Method

Lo With reference to the front view (a), the other
{o) | views are:

® The view from above (b), is placed underneath
® The view from below (e), is placed above

® The view from left (c), is place on the right

(d) {a) feh ® The view from the right (d), is placed on the
1 [ left

® The view from the rear (f) may be placed on
the left, or on the right, as convenient

by

Third Angle Projection Method

With reference to the front view (a), the other
views are:

® The view from above (b), is placed above

® The view from below (e), is placed underneath
® The view from left (c), is place on the left

® The view from the right (d), is placed on the
right

® The view from the rear (f) may be placed on

- the left, or on the right, as convenient

(h)

ia) (d}
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Firsi angle projection Third angle projection

FIGURE 1.6 Title block icons for first and third angle projections in
engineering drawings.

United States, while the first angle projection method is used in many countries in the rest
of the world. Because of this, it is customary to indicate an icon (in the form of a frustum
of a cone, as shown in Figure 1.6) in the title block of every drawing so that we know
which method of projection has been used in that print. It is also permissible to use
projections along a direction of viewing different from these. In such cases, the direction
of view will be indicated in the drawing.

Dimension lines are usually placed outside the outline of a part in a view. For this
reason, extension lines (also known as projection lines) are used to indicate the extension
of a surface or a point. Extension lines start with a short visible gap from the outline of
the part and extend beyond the outermost related dimension line. Sometimes, a leader
line is used to direct a dimension. Normally, a leader line will terminate in an arrowhead.
If the leader line is used just to point to a feature, then it can terminate in a dot placed on
the feature of interest. Figure 1.7 illustrates dimension lines, extension lines, and leader
lines.

Standards also permit coordinate dimensioning. Examples of rectangular (Cartesian)
coordinate dimensioning and polar coordinate dimensioning on two-dimensional
projected views are shown in Figure 1.8. This methodology

Extension line
{Projeciion line)

| Leader line '|:

FIGURE 1.7 Illustration of dimension, extension, and leader lines.
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'
L)

{a) (b)

FIGURE 1.8 (a) Rectangular (Cartesian) coordinate dimensioning. (b) Polar
coordinate dimensioning.

can be extended to three dimensions in the form of three-dimensional Cartesian
coordinate dimensions, cylindrical polar coordinate dimensions, and spherical coordinate
dimensions.

The last observation in the preceding paragraph anticipates the fact that dimensions can
also be indicated on an isometric view of a part. Here, as before, a dimension shown
between two extension lines is usually the distance not between the two parallel lines but
between two parallel planes from which the extension lines emanate. This can often be a
cause of confusion. The problem is completely avoided in a three-dimensional CAD
model because it is view independent and the dimensions are carried as values for certain
variables in the software.

1.4 EXERCISES

1. Sketch isometric views of the two solids shown in Figure 1.2. (Hint: These are third
angle projections, following the American custom.) Try to dimension each solid
completely in the isometric views. Record the assumptions made along the way.
Classify some of these assumptions as constraints, such as incidence (that is,
overlapping or coincidence), parallelism, and perpendicularity.

2. Dimension the same two parts in Figure 1.2 differently.

3. Dimensions (that is, the numerical values) are often changed during the course of a
design. Figure 1.9 shows a part that has been (partially) dimensioned in two different
ways. In Figure 1.9(a) the two dimensions are chained one after the other. (Hence the
term chain dimensioning.)
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FIGURE 1.9 A part (partially) dimensioned in two different ways.

In Figure 1.9(b) these are defined in parallel, both originating from a common
baseline, which is, actually, a base plane. (Hence the term baseline dimensioning.)
Examine the effects of changing dimensions in each case. Give an example in each
case to defend that way of dimensioning.

4. In industrial practice one often hears the terms functional dimensions and
nonfunctional dimensions. What do you think is meant by these? Can you defend the
dimensioning in Figures 1.9(a) and 1.9(b) as functional? (For the record: ASME
merely stipulates that “dimensions shall be selected and arranged to suit the function
and mating relationship of a part”. The ISO formally defines that “a functional
dimension is a dimension which is essential to the function of a part.”)

5. What do you think is meant by overdimensioning and underdimensioning? Give
simple examples of each. How would one determine that a part has been over- or
underdimensioned? Can you think of some systematic (that is, algorithmic) way to
accomplish this?

1.5 NOTES AND REFERENCES

An excellent history of engineering drawing can be found in Booker (1963). In the first
half of the 20th century, manual drafting textbooks by French (1918) and Svensen (1935)
were popular in the United States. A combined work of French and Svensen (1966)
appeared in the second half of the century. Much of their manual methods were rendered
obsolete by the arrival of computer-aided drafting systems in the late 1970s. What remain
of interest to us are their philosophies and theories of dimensioning.

British Standard No. 308-1927 (1927) was one of the earliest national drafting
standards. The first American Standard on drafting appeared in 1935 under the
chairmanship of the aforementioned Thomas E.French. It was initiated by the ASME,
which has since then been the driving force behind its further development. Revisions of
this standard appeared at roughly 10-year intervals in 1946, 1957, 1966, 1973, 1982, and
1995. Over the years, the focus shifted gradually from purely drafting and dimensioning
to geometric dimensioning and tolerancing (GD&T). The latest ASME national standard
is called the ASME Y14.5M-1994 (1995) standard on “Dimensioning and Tolerancing”
and is largely focused on tolerancing. Also in 1995, ASME published, for the first time, a
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mathematical companion called ASME Y14.5.1M-1994 that provides mathematical
definition of tolerancing principles. Relevant ISO standards on dimensioning are ISO
128-1982 (1982), dealing with drawing layout, and ISO/R 129-1959 (1959), dealing

with dimensioning rules.






2
Congruence

In high school plane geometry one learns how to determine if two triangles are
congruent. Here are some theorems learned at school.

Theorem 2.1: Side-Angle-Side If two sides and the included angle of one triangle
equal, respectively, two sides and the included angle of another triangle, the two
triangles are congruent.

Theorem 2.2: Side-Side-Side If the three sides of one triangle equal, respectively, the
three sides of another triangle, the two triangles are congruent.

Theorem 2.3: Angle-Side-Angle If two angles and the included side of one triangle
equal, respectively, two angles and the included side of another triangle, the two
triangles are congruent.

While learning these theorems the student goes through the mental process of taking
one triangle and placing it on the other, vertex-on-vertex and side-on-side, so that one
completely overlaps the other. This is called the method of superposition. In some cases
this mental exercise could be carried out by moving the triangle without leaving the
plane, as shown in Figure 2.1(a). But in

) A\

(a) (b)

FIGURE 2.1 Congruent triangles 4 and B in the plane. (a) 4 can be moved to
overlap B without leaving the plane. (b) 4 has to be lifted off the
plane by flipping to overlap B.

most cases the student has to lift a triangle out of the plane by flipping it so that it can be
placed on the other triangle; see Figure 2.1(b) for an example. In any case, Theorems 2.1,
2.2, and 2.3 teach us at least three ways to dimension a triangle: Assign numerical values
(1) for two sides and the included angle, (2) for the three sides, or (3) for one side and the
two adjacent angles. All these are intrinsic dimensions of the triangle.
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This short encounter with triangle congruence portends a general theory of
dimensioning. If congruence theorems such as these can be established for some class of
geometric objects, then we can test whether two geometric objects from this class are
congruent by comparing only a few distances and angles, which can be treated as
parameters and given symbolic names. When numerical values are assigned to these
parameters, they become the dimensions.

Since congruence plays such a prominent role in our theory of dimensioning, we will
look at it in some detail in this chapter.

2.1 POINT-SETS AND TUPLES

Terms such as shapes and geometric objects are not precise enough for mathematical
treatment. It is better to turn to sets of points, or point-sets for short, in Euclidean space.
A point-set is an unordered collection of points that are symbolically included within
curly brackets. For example, S={p ,, p ,,..., p , } is a point-set that is an unordered
collection of n points. All results from classical set theory are applicable to point-sets.
(Section A4.1 in Appendix 4 provides a brief primer on set theory, which the reader may
want to review before proceeding further.) Two point-sets S | and S , are equal (denoted
§ =8 ,) ifevery point in § | is also in S , and every pointin § , is also in S ;.

Example 2.1 Letp ,,p,,p 5, P4, P 5 be five distinct points and let S | ={p ,,
pz,p3,p4},S DyiP Dy p3} S {pl p3 ps}bepomt—sets ]ThenS
=5, and § S ;. Note that the order of elements is not important.

Example 2.2 Point-sets can also be defined using formulas as in § ,={(x, y):x
2y =1}, S ={(x, y):x=cosb, y=sinb, 0<6< 2n}, and S ={(x, y, 2):x+y+z—1=0}.
We interpret the indication for S 4 as a set of points in the plane with x-and y-
coordinates that satisfy the equation x >+y >=1. Similar interpretations hold for S
sand § . Note that § ,=S 5 because they are but different representations of the
same unit circle in the plane centered at the origin. S ¢ is a plane in space.

A set containing a finite number of elements is called a finite set, and a set containing an
infinite number of elements is an infinite set.

Example 23S, , S 9 and S in Example 2.1 are finite point-sets. S 4 S 55 and
S ¢ in Example i 2 are 1nﬁn1te point-sets.

A point-set is bounded if there is sphere of finite radius that can contain it completely;
otherwise, it is unbounded. Note that an infinite point-set can be bounded.

Example 2.4 In Examples 2.1 and 2.2, § |, S,, S5, S ,, and S 5 are bounded
point-sets. S ¢ is an unbounded point-set.

A tuple is an ordered collection whose members are symbolically enclosed by
parentheses. For example, 7=( ,, p ,,..., p ,) is a tuple of n points. A tuple can contain
other tuples as members. Familiar examples of a tuple are the ordered pair (in two
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dimensions) and ordered triplets (in three dimensions) of coordinates to indicate a point.
A tuple with » members is called an n-tuple. Two tuples are equal if and only if they have
the same number of members and the members are equal when taken pairwise in order.
More formally, we have the following definition.

Definition 2.1: Tuple Equality (S |, S ,,.... S, )=(P |, P,,.... P ) if and only if S ,
=P ,for all i.

Example 2.5 Letp |, p,, p 5, p 4 be four distinct points and let 7 \=(p ,, p , ,
Py, Pg)and T ,=(p,,p,,p5,p,) betwod-tuples. T | =T , because the
members are not equal when taken in order.

Example 2.6 With the point-sets defined in Examples 2.1 and 2.2, we have (S

1,84)=(5,. 8 5).

2.2 RIGID MOTION

Rigid motion is a particular type of transformation of points in Euclidean space. The
concept of rigid motion is central to our study of congruence. It is best represented using
matrices. Let’s start with a right-handed, orthogonal coordinate system, where the
coordinate axes are labeled x, y, and z. Consider a transformation in which a point p with
coordinates (x, y, z) is transformed to a point p’ with coordinates (x', y', z’) by the matrix
operation

X ay dyp dy X Xo
YVp=lan axn axn [{yp+q1M @h
= a3 diz a3 2 Zn

where [x 0 Yo Zo ] T is a translation vector and the coefficients a p in the 3x3 matrix 4
are real. Appendix 1 gives a brief review of matrices, which should be read along with
this chapter. Matrix A4 is called the rotation matrix, and transformation (2.1) is called
rigid motion (also known as solid displacement) when A is orthogonal and its
determinant is+1. Let’s look at this statement in some detail. Several properties of
orthogonal matrices are well known and are quoted here.

When 4 is orthogonal, 4 T 4=I. That is,

gy da a3 ayp diz dn 1 0 0
iz dary dan dap dix dn =10 1 0 (2.2)
g3 a1z dun a3 din 43 o 0o 1

This means that the nine coefficients a , cannot be chosen arbitrarily. There are nine
equations involving the coefficients that result from Eq. (2.2). These are:
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2 2 2 7 7 2 2 2 2
ay +as +ay; =1, iy, + i3, +az, = 1, @y +as, Fas, =1
11 21 3l 12 22 32 13 23 33 (2 3)

f1d2 +andn +anan =0, aas +anan +ayan =0
dzdy 3 + drady F andyy = 0, dypdy) +dady +dndy = i

aady) + dady +ayzay =0, (13812 + aaan + ayzaz; =0

Of these nine equations, the last three are duplicates of the previous three. So only six
independent equations remain for nine coefficients i Therefore, an orthogonal matrix
A can have only three independent parameters.

An important consequence of the orthogonality of A is that distances are preserved
under transformation (2.1). Recall that in classical mechanics a rigid body is defined as a
point-set in which the distance between any two points remains invariant when the body
is subjected to motion. If p | and p , are two points with coordinates (x ,, y ,, z ) and (x
55 Y5, Z, ), tespectively, then the Euclidean distance between them is denoted and given
by

d(p1,p2) = 1|.-"I|[[-TI —xf + (1 =)+ - ) 2.4)

If matrix 4 is orthogonal and transformation (2.1) is applied to both p , and p ,,
transforming them to P and 5)3, respectively, then it can be shown that

d(pr, p2) =d(p), -”JE}. In addition, it can be shown that angles are also preserved
under this transformation. Generally, when we talk about applying transformation (2.1) to
a geometric object we mean that every point in the point-set that describes the geometric
object is subjected to the same transformation and that the entire point-set is transformed
to another point-set. It is now easy to see the connection between the rigid body of
classical mechanics and the rigid motion applied to a point-set.

The determinant of an orthogonal matrix 4 can only be +1 or —1. In either case,
distances are preserved under transformation (2.1); for this reason, such a transformation
is called isometry. When the determinant of orthogonal matrix 4 is +1, transformation
(2.1) is a rigid motion consisting only of translation and rotation; 4 then becomes a
rotation matrix, and it requires only three independent parameters for its definition. The
translation vector in Eq. (2.1) requires three independent parameters as well. Hence a
rigid motion—we say, in fact, a rigid body—has six degrees of freedom: three for
translation and three for rotation.

Example 2.7 In Eq. (2.1), let the translation vector be zero and

Ad=10 1 0 2.5)
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A is orthogonal, as can be easily verified, and its determinant is —1. The
transformation is a reflection about the yz-plane. That is, the transformation
merely reverses the sign of the x-coordinate of every point. This is an isometric
transformation because it preserves distances. But it is not a rigid motion. Figure
2.2 shows how this transformation acts on a tetrahedron.

Example 2.8 In Eq. (2.1), let the translation vector be zero and

IV—I 0 0
A=7 0 1 0
\_ o o0 1J

A is orthogonal and its determinant is +1. This transformation is a rigid
motion. It applies a rotation of 180° about the y-axis to every point on which it
acts. Figure 2.3 shows its action on a tetrahedron.

Example 2.9 In two-dimensional cases, Eq. (2.1) reduces to

X _ | @z X | X
VI len an ]|y Mo 27

In the xy-plane if we let the translation vector be zero and

A= [_ﬂl ﬂ 28)

then we have a reflection about the y-axis. 4 has a determinant of —1. Again,
this is an isometry but not a rigid motion. The transformation of triangles in
Figure 2.1(b) can be achieved using

(2.6)

W

FIGURE 2.2 Reflection about the yz-plane transforms tetrahedron P to
tetrahedron Q. This is an isometry but not a rigid motion. Unlike the
triangles in Figure 2.1, P cannot be moved in three-dimensional
Euclidean space to overlap Q by rigid motion. Therefore, P and Q are
congruent under isometry but not under rigid motion.
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¥
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FIGURE 2.3 Rotation of 180° about the y-axis transforms tetrahedron P to
tetrahedron Q. This is a rigid motion. P and Q are congruent under
rigid motion.

Eq. (2.8). But if the xy-plane is then embedded in a three-dimensional space,
then the same transformation of triangles shown in Figure 2.1(b) can be
achieved via matrix 4 given by Eq. (2.6), which is a rigid motion. This example
illustrates that a reflection in a two-dimensional plane can be achieved by a rigid
motion if the plane is embedded in a three-dimensional space.

Equation (2.1) can be rewritten more compactly as

x day @2 A Xo X
Vv dx  ax 4 Mo v 2.9)
:; o 53 a3z a3y Zn z
1 0 ] 0 1 1
or simply as
X'=RX
(2.10)

where X and X' are points represented in homogeneous coordinates and R is a rigid
motion represented by a special 4x4 matrix whose elements come from rotation matrix A

and translation vector /x o,y (., 2z, / T . For computational purposes, it is useful to
remember that matrix R representing the rigid motion is composed of submatrices of the

following form:
14 X
R = [ﬂs : ] 2.11)

where 4 is the rotation matrix, X , is the translation vector, and 05 is the null row vector
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[0, 0, O].

Representing an entire rigid motion by a single matrix has some conceptual advantages
as well. If two rigid motions are applied in sequence, then the result can be obtained by
simply multiplying the two matrices that represent them, as in

C (4 %4 X [44 AX+ X
me_"ﬂa 1”03 T 212)

firmly keeping in mind that the rigid motion represented by R’ is applied before the rigid
motion represented by R. If we want to undo a rigid motion—that is, reverse the result of
a rigid motion—we just take the inverse of the matrix and premultiply it. The inverse of
R is easily computed as

| A X7 _[47 -ATX]

0; 1 05 | @.13)

where we have exploited the orthogonality (that is, its inverse is its transpose) of the
rotation matrix 4. If R is chosen as the 4x4 identity matrix, it doesn’t move the point(s) at
all. It is called the identity rigid motion. We will exploit this strong connection between
rigid motion and its matrix representation throughout our study.

As an operation on point-sets, rigid motion can be given a symbolic representation that
is motivated by the matrix form of Eq. (2.10). If we denote a rigid motion by r, then the
result of applying it on a point-set S is indicated by r(S), or S for short, which is also a
point-set.

Example 2.10 Let § | be a unit sphere centered at the origin. It can be
represented by the point-set S \={(x, y, z):x 2+y >4z >=1}. Now, represent by r a
rigid motion consisting only of unit translation along the x-axis. Then 7§ | is the
point-set that results from the application of the rigid motion 7 on § | , and it can
be represented by {(x, y, z).x >~2x+y 2+z 2=0}. To establish this, first observe
that the rigid motion transformation is given by x'=x+1, y'=y, and z'=z. The
corresponding rigid motion matrix is

D -
[ I e R
— Y —

1
0
0
0

Because of the simple nature of this transformation, it is easy to see that the
inverse transformation is given by x=x'—1, y=)', and z=z". We can also see this
by inverting the matrix R using Eq. (2.13), which yields
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o — oo

0
0
I

[ R e
o R T e ]

Substituting these in the defining equation of S| we get

PP +2 =1 -1P+P+E)P =1
=P -2+ +EP =0

Therefore 1S | can be represented by the point-set {(x', y/, z): (x!) >=2x'+(y")
2+(z') 2=0}. Since the variables involved within the curly brackets are dummy
variables, it is valid to say that 7S ,={(x, y, z):x 2 Dx+y 24z 2=0}.

Extending the notion of rigid motion to tuples, we have the following definition.

Definition 2.2: Tuple Rigid Motion (S |, S,,.... S )=(rS |, 7S ,,.... rS ).

That is, a rigid motion applied to a tuple is the tuple of rigid motions applied to its
members.

With this definition a mechanical model for a tuple of geometric objects can be offered.
Imagine that the members of a tuple are rigidly welded together by an invisible welding
material. When one member is subjected to a rigid motion, all of them move by the same
rigid motion. Since a tuple can contain other tuples as members, Definitions 2.1 and 2.2
are recursive.

Example 2.11 In the plane consider the following points defined by their x- and
y-coordinates:

p ]:(2, 1)’p 2 :(_27 1)51) }:(_27 _1),]7 4:(27 _l)

Let P be the 4-tuple (p |, p,., p 5, p 4) and apply a rigid motion r consisting
of a unit shift along the x-axis and a unit shift along the y-axis. Then P is the 4-
tuple (9 ,,49,.95,q,) where

q 1:(3’ 2)9 q 7:(_15 2)9 q 2:(_1: 0)9 q 4:(33 0)

Example 2.12 In space let p | be the point (0, 0, 0) and S | be the surface {(x, y,
z):x 2+y 24z 2=1}. Now consider the 2-tuple (p > S ;) and apply to it a rigid
motion 7 consisting of just a unit shift along the x-axis. The result is the 2-tuple »
(®,.S,)=(,.S,) where p ,=(1, 0, 0) and S ,={(x, y, z):x >-2x+y 24z 2=0}.
See Example 2.10 for the justification of the representation of S, .
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2.3 REFLEXIVE SYMMETRY AND CHIRALITY

The concept of symmetry is very important and will be developed in detail in Chapter 6.
Here we briefly discuss a particular type of symmetry related to reflection encountered in
Example 2.7.

Two points p | and p , are said to be positioned symmetrically with respect to a plane
or line if and only if this plane or line bisects the line segment between p | and p ,
perpendicularly. These points are positioned symmetrically with respect to a point if and
only if this point is the midpoint of the line segment between p | and p ,. In all three
cases, each of the points p ; and p , is said to be symmetrical to the other with respect to
the plane, line, or point.

The notion of symmetry can be extended beyond two points to a point-set. A point-set
S is symmetrical with respect to a plane (or line or point) if and only if for every point p
in § we can find a point g in S such that p and ¢ are symmetrically positioned with respect
to the plane (or line or point). We can then say that the point-set S has a plane of
symmetry, a line of symmetry (or axis), or a point of symmetry (or center).

Example 2.13

1. A sphere is symmetrical with respect to its center. It is also symmetrical
with respect to any plane or line through its center.

2. A baseball bat has an axis of symmetry, and any plane through this axis is a
plane of symmetry. It doesn’t have a point of symmetry.

3. The frame of a tennis racket has two perpendicular planes of symmetry,
intersecting at an axis of symmetry. It has no center of symmetry.

Example 2.14 In the plane the curve C={(x, ):y >=2x} defines a parabola. The
x-axis is the only line of reflexive symmetry for the parabola, so it is the unique
axis of the parabola. The parabola has no point of symmetry, that is, no center.
(Sketch the parabola to verify these results.)

Example 2.15 In the plane the curve C={(x, y):x >+2y >=1} defines an ellipse.
Both the x- and y-axes are lines of reflexive symmetry for the ellipse. Hence
these are the axes of the ellipse. The origin (0, 0) is the unique point of
symmetry, that is, the center. (Sketch the ellipse to verify these results.)
Example 2.16 In space the surface S={(x, y, z):x >+ 2y >+3z 2=1} defines an
ellipsoid. It is symmetrical with respect the xy-, yz-, and zx-planes. The x-, y-,
and z-axes are the axes of the ellipsoid. The origin (0, 0, 0) is the unique point
of symmetry, that is, the center. (Sketch the ellipsoid to verify these results.)

Closely related to reflexive symmetry is the concept of chirality. It is best defined by the
original words of Lord Kelvin: “I call any geometrical figure, or group of points, chiral,
and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself.” By this definition, tetrahedron P in Figure 2.2 is chiral and has
chirality; the same can be said of tetrahedron Q. If the definition is specialized to the
plane (meaning that we are not allowed to move out of the plane), then we see that the
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triangle 4 is chiral in the plane of Figure 2.1. Other important examples follow.

Example 2.17 A helix is a space curve. One such helix can be represented by
the point-set H ={(x, y, z).x=2co0s0, y=2 sin0, z=0.50/(2m)}. It has a base-
cylinder radius of 2 units and a pitch, which is defined as axial advance per
revolution, of 0.5 units. A mirror reflection of H | is given by the point-set H ,=
{(x, y, z): x=2 cosB, y=2 sin 0, z=—0.50/(2n)}, where the xy-plane acts as the
reflection plane. That is, H , is obtained by simply reversing the sign of the z-
coordinate in the definition of H |. We call H | a right-handed helix and H , a
left-handed helix. It can be shown that # | and H , are not congruent under rigid
motion. In general, left-and right-handed helices are not congruent. Hence a
helix is chiral.

Example 2.18 A three-dimensional right-handed, orthogonal Cartesian
coordinate system is chiral. This is due to the facts that its mirror image is a left-
handed, orthogonal coordinate system and that these two are not congruent
under rigid motion. This is an example where a tuple is given chirality.

A point-set that is not chiral is called achiral. The parabola and ellipse in Examples 2.14
and 2.15, respectively, are achiral in the plane. They are achiral even when the plane that
contains them is embedded in space. The ellipsoid of Example 2.16 is also achiral.

Often we will use the term chirality synonymously with handedness. It is important to
make sure that this use causes no confusion. It is proper to say that the right-handed and
left-handed orthogonal Cartesian coordinate systems do not have the same chirality, even
though both are chiral. Similarly, tetrahedra P and Q in Figure 2.2 do not have the same
chirality, and helices H | and H , in Example 2.17 do not have the same chirality, though
all these objects are chiral.

2.4 VECTORS AND ORIENTED POINT-SETS
Sometimes it is useful to associate an orientation to a point-set. We may want to take a

straight line and give it an orientation, as we did with each of the x-, y-, z-coordinates
axes. Orientation can be represented by vectors of the form

v T:[vx, vy v ]
(2.14)

These vectors have magnitude and direction. The magnitude of the vector is given by

M=+ +os (2.15)

and a unit vector is defined as
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Il 1'
V=—

vl (2.16)

Like points, vectors can also be transformed by rigid motion. Unlike points, vectors are
affected only by rotation and not by translation, because we care only about the
orientation of these vectors. So we can transform a vector using the rotation matrix as

v'=A4v
(2.17)

Two types of products can be defined for vectors. The first is a dot product, defined as

Vl ' VZ:lev2x+V1yv2y+vlzv22
(2.18)

The dot product, also known as the inner product of the vectors, is a scalar. If 0 is the
angle between the two vectors, then the dot product is equal to |v,[|v,| cosd. When the
two vectors are perpendicular to each other, the dot product vanishes. The second product
defined between two vectors is a cross product. It is a vector given by

Voxy. = — _ _ T
PV =V Vo ViV VYo ViYay Vi Yoy 2.19)

Its magnitude is equal to [v,||v,| sinO, which means that it vanishes if the two vectors are
oriented in the same or the opposite direction. When this is not the case, the two vectors
can be brought to lie in a plane, and the direction of the cross product is perpendicular to
this plane. The orientation of the cross product is determined by the right-hand rule:
When we curl our right-hand fingers from vector v, to v,, the extended thumb is pointing
toward the orientation of v, xv,.

If we denote the unit vectors along the x-, y-, and z-axes in a right-handed, orthogonal
Cartesian coordinate system by i, j, and &, respectively, then k=i Xj and the 3-tuple (i, j, k)
is called a right-handed triad or, simply, a trihedron. If k is chosen such that k&=—i%j, then
we have a left-handed triad.

An important property of the rigid motion is that it preserves both the dot product and
the cross product of vectors. This means that under the action of rotation matrix 4, with
its determinant equaling+1, we have

Av, - Av,=v, - v, and Av xAv,=A(v,xv,)
(2.20)

If 4 is a reflection, as in Example 2.7, then it need not preserve the cross product; that is,
the orientation can be reversed under reflection. So under rigid motion a right-handed
triad is moved to another right-handed triad, whereas a reflection with respect to a plane
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transforms a right-handed triad to a left-handed triad. As we saw earlier in Example 2.18,
this is the cause of chirality of the coordinate systems.

Straight lines and planes can be oriented by assigning a vector parallel to the straight
line and one perpendicular to the plane, respectively. Although individual oriented lines
in plane and space and oriented planes in space are achiral, we can construct tuples of
them that have chirality.

Example 2.19 Consider a 3-tuple of three mutually orthogonal, oriented lines in
space. These oriented lines can be the x-, y-, and z-axes of an orthogonal
coordinate system, and the tuple has chirality as we have already seen.

Example 2.20 A 3-tuple consisting of an oriented plane in space and two
nonparallel, oriented lines in that plane is chiral and has chirality.

2.5 CONGRUENCE, DIMENSIONS, AND PARAMETERS

Two geometric objects are congruent under rigid motion if one can be transformed by
rigid motion to the other. There is also a notion of congruence under isometry, as
illustrated in Figure 2.2 for a simple example involving tetrahedra, but for engineering
applications involving dimensioning we will stick to congruence under rigid motion. The
reason for this is the necessity to distinguish between parts that are interchangeable and
those that are not. For example, the left- and right-hand gloves are mirror images of each
other and they are congruent under isometry. But they are not interchangeable parts and,
in industrial parlance, have different part numbers. We could, however, distinguish them
by observing that these gloves are not congruent under rigid motion. From now on, when
we mention congruence we mean congruence under rigid motion.

Generically, we have the following definition.

Definition 2.3 Two point-sets S, and S, are congruent if and only if there exists a rigid
motion r such that rS,=S,. Two tuples T\ and T, are congruent if and only if there exists a
rigid motion r such that rT =T,.

Let’s try to apply this definition directly to prove some congruence based on some of
the examples examined before.

Example 2.21 The two surfaces defined by point-sets

S ={(x, y, 2):x*+y*+z>=1} and
Soz{(X, », Z).’x2—2x+y2+22:0}

are congruent because, as we saw in Example 2.10, there exists a rigid motion
r consisting of just a unit translation along the x-axis such that 7.§,=S,.
Example 2.22 In the plane consider the following points defined by their x- and
y-coordinates:

P,=(2, 1), p,=(=2, ), p;=(=2, —1), p,=~(2, ~1)
9,=(3,2), ¢,=("1, 2), ¢;=(-1, 0), ¢,=(3, 0)
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1. The 2-tuple (p,, p,) is congruent to the 2-tuple (p5, p,). It is also congruent
to the 2-tuple (q,, g,). (Why?)

2. The 2-tuple (p|, p,) is not congruent to the 2-tuple (q,, q,). (Why?)

3. The 4-tuple (p,, p,, p3, p,) is congruent to the 4-tuple (¢, 9,, ¢4, q,) because
there is a simple translation—a unit shift along the x-axis and a unit shift
along the y-axis—that moves one of the tuples to coincide with the other, as
we saw in Example 2.11.

4. However, the 4-tuple (p|, p,, p,, p3) is not congruent to the 4-tuple (g,, g,,
43 q4) because, however hard we try, we will not be able to come up with a
rigid motion 7 such that r(p,, p,, py. P3)=(41, 45 45 44)-

Example 2.23 In space consider the following points defined by their
coordinates

plz(oy Oa O) andp2:(17 la 1)
and two surfaces defined by

S \={(x, y, 2):x+y+z2=1} and
S,={(x, y, 2):x*=2x+y*+2% =0}

As we saw in Example 2.21, S, and S, are congruent. But the 2-tuple (p,, S,)
is not congruent to the 2-tuple (p,, S,) because, however hard we try, we will not
be able to find a rigid motion r such that #(p,, S,)=(p,, S,).

As the preceding examples illustrate, Definition 2.3 is an existential definition, in the
sense that it requires the existence of a rigid motion r for congruence without describing
now such a rigid motion can or cannot be found. Proving the existence or otherwise of the
rigid motion 7 is left as a tricky problem to be solved by the person asking the questior
about the congruence. Instead of searching for the elusive rigid motion, we will seek
specific congruence theorems of the following form.

Congruence Theorem Template If two {geometric objects that belong to a class} have

the same {chirality and distance and angle measures}, then they are congruent.

The triangle congruence theorems 2.1, 2.2, and 2.3 are examples of such specific
congruence theorems. Strictly speaking, in a two-dimensional plane these triangle
theorems are congruence theorems under isometry. But we will embed the plane in three-
dimensional space in which these theorems are congruence theorems under rigid motion,
as demonstrated in Example 2.9. In specific congruence theorems, the distance and angle
measures appear as variables—such as side lengths and included angles—which we call
oarameters. If there are n parameters, the geometric object under consideration is said tc
oselong to an n-parameter family. For example, a triangle belongs to a 3-parameter family.
Congruence is established if these parameters assume the same values in the twc
geometric objects. Dimensions are then just the numerical values assigned to these
oarameters.

So the congruence theorems state that two point-sets that belong to a particular class are
congruent if they have the same dimensions. The theorems also tell us what these
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dimensions are. Our interest in congruence theorems should now be obvious. As the
triangle congruence theorems demonstrate, the same point-set can be parameterized and,
hence, dimensioned in multiple ways.

Finally, a word of caution about the meaning of the term dimension is in order.
Sometimes we use the word dimension to refer to the dimensionality of space we are
dealing with. A two-dimensional plane and three-dimensional space are examples of this
usage. Later, we will also refer to higher-dimensional spaces, such as a six-dimensional
space, consisting of translations and rotations. It is also common to talk about the
dimensionality of a parametric space when referring to a parameterization of a geometric
object. However, as we have observed earlier, we also use the term dimension to refer to
a numerical value for a geometric parameter. The context should make it very clear as to
what we mean by dimension. Fortunately, there is no ambiguity about the meaning of
dimensioning in engineering; it is the act of specifying dimensions, that is, numerical
values to certain geometric parameters.

2.6 EXERCISES

1. Assume that you live in a two-dimensional planar world and are not allowed to move
out of this plane. Restate the three triangle congruence theorems (2.1, 2.2 and 2.3) for
this world. How would you define chirality in this world? How would you dimension a
triangle in this world?

2. Specialize Egs. (2.9) through (2.13) for the case of rigid motions in a two-dimensional
plane. Homogeneous coordinates for a point in the plane are given by the vector

3. In each of the following cases, give an example of a point-set that

® Has a plane of symmetry, but no axis or center.
® Has an axis, but no plane of symmetry or center.
® Has a center, but no plane of symmetry or axis.

4. Prove the following assertions:

® [f a point-set S has two planes of symmetry, then their intersection is an axis of S.

® [f a point-set S has two perpendicular, intersecting axes, then a line perpendicular to
both these axes and passing through their intersection is also an axis of S.

® [f a point-set S has a center that lies on an axis of S, then the plane perpendicular to
the axis and passing through the center is a plane of symmetry of S.

5. A triangle is dimensioned as shown in Figure 2.4(a). Is the dimensioning valid, that is,
does this define a unique triangle up to rigid motion? If so, what is the associated
congruence theorem?
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® Another triangle is dimensioned as shown in Figure 2.4(b). Try drawing it with a
ruler, a compass, and a protractor. Is the dimensioning valid? What is the associated
congruence theorem?

A ¥
L L o 1507, 3
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FIGURE 2.4 Three examples of dimensioned triangles. Are they valid?

® Yet another triangle is dimensioned as shown in Figure 2.4(c). Try drawing it with a
ruler, a compass, and a protractor. Is the dimensioning valid? What is the associated
congruence theorem? Is it chiral in the plane of the triangle?

6. When are two planar quadrilaterals congruent? Dimension the simple planar
quadrilateral shown in Figure 2.5(a) using your result. What happens when the
quadrilateral is not simple, that is, there is an edge intersecting a nonadjacent edge, as
in Figure 2.5(b).

7. When are two planar polygons congruent? Dimension a planar polygon using your
result. Consider both simple and nonsimple polygons.

8. “All planar objects are achiral when the plane that contains them is embedded in
space.” What do you think is meant by this statement? Is it true, or are there any
qualifications/exceptions to it?

9. Let S={(x, y, z):x>+2)*+32z>=1} be the point-set that represents an ellipsoid. What is
the point-set that results from applying a rigid motion of 90° rotation about the z-axis
and a translation of unit shift along the x-axis to S?

10. When are two tetrahedra congruent? Note that chirality is important here. Dimension
a tetrahedron using your result.

11. When are two polyhedra congruent? Dimension a polyhedron using your result.

2.7 NOTES AND REFERENCES

The three triangle congruence theorems, 2.1, 2.2 and 2.3, appear in Euclid’s Elements.
Joyce (http://alephO.clarku.edu/~djoyce/java/elements/elements.html) maintains an
excellent online version of the Elements with interactive graphics. The Side-Angle-Side
theorem (Book I, Proposition 4) appears very early in the Elements, where Euclid first
uses the method of “superposition” to prove it. This may require moving one triangle
outside of the plane. But the triangles don’t have to be in the same plane to begin with,
and they often are not in the same plane when this proposition is invoked in solid
geometry. Book I, Proposition 8 is the Side-Side-Side theorem, and in the same Book 1,
Proposition 26 is an elaboration of the Angle-Side-Angle theorem [in fact, in Proposition
26, he also discusses the case that supports examples like Figure 2. 4(a)]. Euclid doesn’t



Theory of dimensioning 30

use the word congruence; instead he just proves that if certain sides and angles are equal,
then the other sides and angles are also equal.

4

(a) {m

%

FIGURE 2.5 (a) A simple quadrilateral, because each edge intersects only its
adjacent edges at its endpoints. (b) A nonsimple quadrilateral, in
which an edge also intersects a nonadjacent edge.

The one-to-one correspondence of points on an oriented line and real numbers is not
quite obvious. Struik (1953) gives a simple explanation of this connection. After Rene
Descartes formally introduced coordinates in the 17th century to study geometry, the link
between algebra and geometry grew stronger. Use of matrices to represent linear
transformations such as rigid motion started only in the late 19th century.

Lord Kelvin’s quote on chirality is from his Baltimore lectures on molecular dynamics
and the wave theory of light, which were finally published in 1904. The word chiral is
derived from the Greek word kheir, which means “hand.” The concept of chirality is
quite important in chemistry because many important molecules are chiral and both
image forms appear in nature, each with different properties. The 2001 Nobel Prize in
chemistry was awarded to those who developed molecules that can catalyze important
reactions so that only one of the two mirror image forms is produced.






3
Dimensioning Elementary Curves

Curves are simple geometric objects to deal with, and they can be used to generate (for
example, by sweep operations) some commonly known surfaces. Therefore it is only
natural to start with curves. We begin by asking whether two given curves are congruent.
For circles we have an easily provable result.

Theorem 3.1: Circle Congruence Theorem If two circles have the same radius, then
they are congruent.

So for circles we can treat the radius as the sole intrinsic parameter. The circle belongs
to a l-parameter family of curves. Assigning a numerical value to this parameter
completes the task of dimensioning a circle. Actually, one may want to dimension the
diameter rather than the radius in some cases, but that is merely a matter of engineering
convenience.

In fact, it is possible to generalize Theorem 3.1 for all plane curves. A general plane
curve, of course, does not have just one radius. If the curvature (inverse of the radius of
curvature) of a curve expressed as a function of its arc length computed from a suitable
point and in a given direction, say, counterclockwise, equals that of another curve
expressed similarly, then they can be shown to be congruent. We will encounter a general
version of this theorem at the end of this chapter. That is why curvature is treated as an
intrinsic characteristic of a planar curve. This powerful result, alas, is not of much use for
dimensioning because specifying curvature at every point on a curve is not very practical.
Luckily, if we restrict ourselves to some special classes of curves we can find congruence
theorems that result in only a small number of dimensions.

The simplest curve is the unbounded straight line. It doesn’t have an intrinsic
dimension, in the sense that all straight lines are congruent to one another. The next
elementary curve is a planar curve of the second degree.

3.1 CONICS
Conics are planar algebraic curves of the second degree. They can be represented

implicitly as the set of points satisfying a general second-degree equation in coordinates x
and y as

{(x, ¥): Ax*+By*+Cxy+Dx+Ey+F=0}
(3.1)

for real coefficients 4, B, C, D, E, and F, where at least one of 4, B, C is nonzero. A soft
analysis of this second-degree equation gives us some useful insight. The six coefficients
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A, B, C, D, E, and F can take arbitrary real values, but the equation remains unaltered if
the coefficients are multiplied by the same factor. Hence only the ratios of these six
coefficients are significant. This means that a conic can have, in general, five independent
parameters (or degrees of freedom), out of which three—two translational and one
rotational—are accounted for in rigid motion in the plane. So the intrinsic shape of a
conic depends at most on two independent parameters.

This soft analysis is borne out by a more rigorous analysis in classical analytic
geometry, which gives us the following classification theorem.

Theorem 3.2: Conics Classification Theorem Any planar curve of second degree
governed by an equation of the form of Eq. (3.1) can be moved by purely rigid motion in
the plane so that its transformed equation can assume one and only one of the nine
canonical forms given in Table 3.1.

Of these nine canonical equations, only six correspond to curves in the real x-y plane,
and so we will ignore the imaginary ones as being of no relevance in engineering design.
Out of these six real curves, three (ellipse, hyperbola, and parabola) have nonzero
curvature, while the remaining three (intersecting lines, parallel lines, and coincident
lines) are special collections of a pair of straight lines. Conics is the short name for conic
sections, and this name is derived from the well-known fact that the ellipse, the
hyperbola, and

TABLE 3.1 Classification of Conics

Conic type Canonical equation Intrinsic
parameters
1 Real ellipse E T a, b
—=+—==1, a=h
as b
2 Imaginary ellipse PR Not relevant
St =]
a- b
3 Hyperbola T a, b
— e — I
LI
4 Parabola y2-20x=0 l
5 Real intersecting lines T b/a or tan” ! (b/a)
=1, a=h
a b
6 Imaginary intersecting lines [intersectingata 2 12 o Not relevant
real point (0, 0)] PRI
7 Real parallel lines x?=a* a
8 Imaginary parallel lines P=a? Not relevant
9 Coincident lines X2= None

the parabola can be obtained by intersecting a right circular cone with planes, as shown in
Figure 3.1.
An immediate consequence of the conics classification theorem is the following



Theory of dimensioning 34

<E7

Fllipe ITyperbaola Purisbsla

congruence theorem.

FIGURE 3.1 Sectioning a right circular cone by a plane, producing an ellipse
(plane cuts only one sheet of the cone completely), a hyperbola
(plane is parallel to the axis of the cone), and a parabola (plane is
parallel to a generator of the cone).

Theorem 3.3: Conics Congruence Theorem Two conics are congruent if and only if
they have the same canonical equation.

So if two conics have the same classification and the intrinsic parameters (listed in the
last column of Table 3.1) in their canonical equations assume the same values, then they
are congruent. This fact provides a simple way to dimension conics; we just have to
declare the type (from Table 3.1) of the conic and assign numerical values to its intrinsic
parameters. Thanks to the conics classification theorem, we need to consider only four
major types: the ellipse, the hyperbola, the parabola, and a pair of straight lines. Of these,
the ellipse, the hyperbola, and the parabola are called nondegenerate conics; pairs of lines
are the degenerate conics.

3.1.1 Ellipse

The ellipse belongs to a 2-parameter family of curves. It is the only bounded curve
among the conics. It has two axes of symmetry, as shown in Figure 3.2. These two axes
intersect at the center (of symmetry) of the ellipse. A geometrical interpretation of the
intrinsic parameters @ and b is shown in Figure 3.2(a), where, when positive numerical
values are assigned to them, the larger of the two is called the semimajor axis and the
smaller the semiminor axis. Calling some parameters and their numerical values axes
may sound strange, but the names have stuck through history. If a=b, we have the
important special case of a circle with a=b=the radius. If two ellipses have the same
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FIGURE 3.2 Ellipse defined by (a) the canonical algebraic equation, (b) two
foci, F| and F,, and the sum of the distances of any point on the
ellipse from the foci, and () a focus £}, a directrix, shown as the
thick vertical line, and an eccentricity &.

major axis and the same minor axis, then they have the same canonical equation and
hence are congruent. Theorem 3.1 is just a special case of this property. Figure 3.2(a) also
shows how an ellipse can be dimensioned. The ellipse is the only bounded conic.

The ellipse can be defined by other means as well. There are coordinate-free
definitions of conics dating back to the ancient Greeks. Figure 3.2(b) illustrates one such
definition of the ellipse, as the locus of a point the sum of whose distances from two fixed
points called foci is a constant. This constant is also the major axis 2a. The distance d

between the foci is equal to 2V a® — b So the distance d between the foci and the sum
2a of the distances of any point on the ellipse from the foci can be considered as another
pair of intrinsic parameters. Figure 3.2(b) shows one of the intrinsic dimensions by
indicating the distance between the foci. Though it is difficult to indicate the sum of the
distances of any point on the ellipse from the foci as the other intrinsic dimension in a
drawing, it can be captured easily within a CAD system.

Another classical definition of the ellipse invokes a directrix and a focus, which are an
arbitrarily fixed line and an arbitrarily fixed point not on the line, respectively. See Figure
3.2(c). The ellipse is the locus of a point P whose distance from the focus F| is ¢ (the
eccentricity) times its distance from the directrix M, where 0<e<l1. It is therefore possible
to consider the distance / between the focus and the directrix and the eccentricity ¢ as a
pair of intrinsic parameters for ellipses. Again, it is easy to indicate the intrinsic
dimension for /, as shown in Figure 3.2(c), in a drawing, but it is not so easy to indicate
the eccentricity as a dimension; CAD systems have better means of capturing these
dimensions.

3.1.2 Hyperbola

The hyperbola also belongs to a 2-parameter family of curves. It has two disjoint
branches, and each branch is unbounded. Its two axes of symmetry are shown in Figure
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3.3. These two axes intersect at the center (of symmetry) of the hyperbola. A geometrical
interpretation of its intrinsic parameter «a is easily shown in Figure 3.3(a). The value 2a is
called the tramsverse axis. Interpretation of the intrinsic parameter b requires some
additional considerations. The hyperbola has two asymptotes, which are intersecting
straight lines given by the equation

(3.2)

...._........._..1';...._.1;._..._....
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FIGURE 3.3 Hyperbola defined by (a) the canonical algebraic equation, (b)
two foci, /| and F,, and the difference between the distances of any
point on the hyperbola from the foci, and (c) a focus F,, a directrix,
shown as the thick vertical line, and an eccentricity ¢.

An asymptote may be regarded as the limiting case of a tangent when the point of contact
goes to infinity. The lines of Eq. (3.2) are also asymptotes for a conjugate hyperbola,
defined by

2 2
X~ W

—2—}?=—1 (3.3)

i

The asymptotes and the conjugate hyperbola are shown dotted in Figure 3.3(a). The value
2b is called the conjugate axis. 2a and 2b form the sides of a rectangle whose vertices lie
on the asymptotes, thus permitting a dimensioning scheme shown in Figure 3.3(a). We
are justified in treating them as dimensions because two hyperbolas that have the same
transverse and conjugate axes are congruent.

Other classical definitions that predate analytic geometry are available for hyperbolas.
In one of them, illustrated in Figure 3.3(b), the hyperbola is the locus of a point P the
difference of whose distances from two fixed focus points /', and F, is a constant, which
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is equal to 2a. It means that, in Figure 3.3(b), the difference between PF| and PF, is kept
a constant equal to 2a. Here again the distance d between the foci and the constant
difference 2a can be considered as intrinsic parameters of the hyperbola, permitting a
partial dimensioning, as in Figure 3.3(b).

It is also possible to define hyperbolas using the focus, the directrix, and the
eccentricity as was done with ellipse. Allowing the eccentricity & to assume positive
values exceeding unity yields hyperbolas. Similar to the ellipse, the distance / between
the focus and the directrix and ¢ can be treated as intrinsic parameters and dimensioned.
See Figure 3.3(c).

3.1.3 Parabola

The parabola has only one intrinsic parameter and only one axis of symmetry. It has no
center of symmetry. Hence it is the only noncentral conic. It is made up of one connected
piece and is unbounded. Unlike the ellipse and the hyperbola, a geometric interpretation
of its intrinsic parameter / requires a consideration of its focus. To understand how the
focus of a parabola is defined, we need to consider the locus definition of the parabola.
The parabola is the locus of a point that is equidistant from a fixed line (directrix) and a
fixed point (focus) not on the line. See Figure 3.4(b). As seen in Figure 3.4(a), the chord
of the parabola through its focus and perpendicular to its axis is called the latus rectum
and is of length 2/. The vertex of the parabola is at the origin O and is at a distance //2
from the focus. Parabolas that have the same-length latus recta are congruent.

The distance between the focus and the directrix is an intrinsic parameter / for the
parabola, and it can be dimensioned. The parabola can be obtained as a limiting case of
the ellipse by fixing / and driving ¢ toward unity in Figure 3.2(c).

p =2x=0 PF - PM fer all points on the parabola
{a) (b)

FIGURE 3.4 Parabola defined by (a) the canonical algebraic equation, and (b)
a focus F and a directrix, shown as the thick vertical line.

3.1.4 Pairs of Straight Lines

A single straight line (or, equivalently, a pair of coincident lines) does not possess any
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intrinsic dimension. However, when we have two intersecting lines, as in Figure 3.5(a),
they have the included angle 6 as a relational parameter between them. It is also an
intrinsic parameter of the pair of intersecting lines considered together, because if two
pairs of intersecting lines have the same angle of intersection then the two pairs are
congruent. It can be dimensioned as shown in Figure 3.5(a).

When two straight lines are distinct and parallel, as in Figure 3.5(b), the separating
distance between them is a relational parameter between them. It is also the intrinsic
parameter of the pair, because two pairs of parallel lines that have the same separating
distance are congruent. Such lines are dimensioned in Figure 3.5(b). The case of distinct
parallel lines is the only case of conics that is not obtained by sectioning a cone with a
plane.

These cases involving pair of straight lines illustrate how relational dimensions
between two objects become intrinsic dimensions when we consider a tuple of them.

3.1.5 Reduction to the Canonical Form

We have completed the task of dimensioning conics. However, for the sake of
completeness, let’s examine how a general second-degree equation can be reduced to its
canonical form. The first task is to determine what type of the

b ¥ X =&
. ! — U
a b
() (b

FIGURE 3.5 Pair of lines. (a) Two intersecting lines with their intrinsic

parameter b/a. Note that 6=2 tan_l(b/a). (b) Two distinct parallel
lines with their intrinsic parameter a.

conic is given by the general equation. To simplify the notation, we will recast the Eq.
(3.1) in the form

< 1x2+2c1 2xy+022y2+2cl3x+2023y+c33=0 G4

so that it can be written in a convenient matrix form as
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T I A R A X
I.r v | en e e ||y ]|=0 (-5
€3] €32 €33 |

where €317C 12 €317C 3 and C3y=C3- So the 3x3 matrix C, called the coefficient matrix, in
Eq. (3.5) is symmetric. Now define four determinants as

L) T A e B A 3.6
O Cp2 3.6
Dy = Ca Car Oy . D; — .
O3 O
C3] £37 €13
€12 €1 i
) = 3 Oy =
€32 33 €31 €33

(It will be assumed that, by now, the reader is familiar with the matrix computations
reviewed in Appendix 1.) In these determinants, one can see that o, a,,, and D, are just
the cofactors of ¢, ¢,,, and cy;, respectively, in C. It can be shown that these
determinants lead us directly to the type of the conic represented by Eq. (3.4) using Table
3.2. Once the type has been determined, the curve is rotated and translated so that it is
brought to the canonical form.

TABLE 3.2 Decision Table for Type Classification of Conics

D320 D20 |D,<0 Hyperbola
D,>0 ;D5 (or ¢,,D4)<0 Real ellipse
¢, D5 (or ¢,,D)>0 Imaginary ellipse
D,=0 Parabola
D=0 |D,#0 |D,<0 Real intersecting lines
D,>0 Imaginary intersecting lines
D,=0 o, (or a,,)<0 Real parallel lines
a,(or a,,)>0 Imaginary parallel lines
o, (or a,,)=0 Coincident lines

Example 3.1 Consider the curve defined by the second-degree equation

3x2+2xy+3y%+14x+20y—183=0. It can be written using a symmetric coefficient
matrix C as

31 7 x
[.\' ¥ IJ 1 3 10 vi=0
7 10 —183 1
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Using the definition of determinants in Eq. (3.6), we see that, for this curve,
D;==1771, D,=8, a,;=—649, and a,,=—598. Therefore, from Table 3.2 we infer

that the curve is an ellipse. See Figure 3.6 for a plot of this curve. By rotation
and translation, it can be brought to the canonical form

2 P2
100 50

Example 3.2 Consider the curve defined by the second-degree equation
3x2+10xy+3)2+46x+34y+93=0. It can be written using a symmetric coefficient

matrix C as
3 5 23 X
[x » 1] 5 3 17 l_;-!:ﬂ

23 17 93 "7 1

-20 -15 -10 -5 o

FIGURE 3.6 Plot of the curve in Example 3.1.

Using the definition of determinants in Eq. (3.6), we see that, for this curve,
D,=-32, D,=-16, a,,=-10, and a,,=—250. Therefore, from Table 3.2 we infer

that the curve is a hyperbola. See Figure 3.7 for a plot of this curve. By rotation
and translation, it can be brought to the canonical form

x2—4y2= 1

Example 3.3 Consider the curve defined by the second-degree equation
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2 2 z
47—y + 7+ B/5x + 6‘&1 -15= D. It can be written using a

symmetric coefficient matrix C as

4 =2 45~
|:.'L' v ]:I My ] 3\.{5 vi=0
45 35 =15 |1

Using the definition of determinants in Eq. (3.6), we see that, for this curve,
D3:100, D,=0, a,,=—60, and a,, =—160.

20 s ! ! ! ! ; !

-20 -15 -10 5
FIGURE 3.7 Plot of the curve in Example 3.2.

Therefore, from Table 3.2 we infer that the curve is a parabola. See Figure 3.8
for a plot of this curve. By rotation and translation, it can be brought to the
canonical form

1
'2 = —]
y=gx

3.1.6 Summary of Conics Dimensioning and Extensions

Table 3.3 summarizes commonly used intrinsic dimensions for conics. Also shown in the
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table are the corresponding intrinsic parameters.

Any conic has at least one axis of symmetry. This is due to the fact that in the
canonical form at least one coordinate variable appears only in its second power.
Replacing it by its negative will then leave the equation unchanged. Therefore the other
coordinate axis is an axis of reflection. This leads to the fact that conics are achiral in the

plane that contains them.

20

H s " u H
N T T T e T e P e P TP e

B T T T T T P

=20 H 1
20 -15 -10 5 5 10 15 20
FIGURE 3.8 Plot of the curve in Example 3.3.
TABLE 3.3 Summary of Intrinsic Dimensions for Conics
Conic type Intrinsic dimension Corresponding intrinsic Reference
name parameter figure
Ellipse Major axis 2a Figure 3.2
Minor axis 2b
Circle Diameter 2xradius
Hyperbola Transverse axis 2a Figure 3.3
Conjugate axis 2b
Parabola Latus rectum 21 Figure 3.4
Intersecting Included angle 2tan_1(b/a) Figure 3.5(a)
lines

Parallel lines

Separating distance

2a

Figure 3.5(b)




Dimensioning elementary curves 43

Conics dimensioning extends very simply to conic half-spaces, that is, two-dimensional
regions bounded by conics. For example, an elliptic disk in the plane can be defined
using the inequality

P
— 4 — =<
100 N S0~ :

Dimensioning it is the same as dimensioning the ellipse that bounds it because
congruence theorems can be found for the elliptic half-spaces just as we did for ellipses.
In general, a conic half-space can be defined using the inequality

< lx2+20 | 2xy+c?22y2+20 l3x+2c23y+c33§0 67

and dimensioning it is the same as dimensioning the bounding conic.

Conic curves can be swept in space to create surfaces. For example, sweeping an
ellipse along a line perpendicular to the plane that contains the ellipse generates an
(unbounded) elliptic surface called the elliptic cylinder. Dimensioning this elliptic
cylinder is the same as dimensioning the ellipse that is swept. Similar arguments hold for
hyperbolic and parabolic cylinders. Observe that two intersecting planes and two parallel
planes can also be generated by sweeping two intersecting lines and two parallel lines,
respectively, perpendicular to the planes that contains the pair of lines; so they can be
dimensioned similarly. All these are examples of translational sweeps of conics
perpendicular to the plane containing the conic.

Conic curves can also be subjected to rotational sweep to generate surfaces. In
particular, they can be rotationally swept about an axis of symmetry (recall that every
conic has at least one axis of reflexive symmetry) to generate a surface of revolution.

1. An ellipsoid of revolution can be generated by rotationally sweeping an ellipse about
its major or minor axis.

2. Two disjoint surfaces of revolution can be generated by rotationally sweeping a
hyperbola about its transverse axis. Just one surface of revolution can be generated
by rotationally sweeping the hyperbola about its conjugate axis.

3. A paraboloid of revolution can be generated by rotationally sweeping a parabola
about its axis of symmetry.

4. A right circular cone (consisting of two equal conical surfaces meeting at their
common apex) can be generated by rotationally sweeping two intersecting lines
about one of their two axes of symmetry.

5. A right circular cylinder can be generated by rotationally sweeping two distinct,
parallel lines about their bisector line of symmetry.

In all these cases, dimensioning each of these surfaces of revolution is the same as the
dimensioning of the swept conic.

These translational or rotational swept surfaces also bound three-dimensional half-
spaces. Just as we saw in the case of two-dimensional half-spaces, dimensioning these
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three-dimensional half-spaces is the same as dimensioning the conics that were swept.

3.2 FREE-FORM CURVES

Curves of third and higher degree do not admit simple and compact classification as
conics. This means that even for general cubics we do not have the luxury of simple
congruence theorems. Fortunately, most of the engineering uses of cubic and higher-
order curves occur as free-form curves, such as Bézier and B-spline curves.

The conic curve representation in Eq. (3.1) was referred to as implicit because the
governing equation is of the implicit form f(x, y)=0. Such curves are also called implicit
curves. A curve can also be represented parametrically by expressing x=f| (1), y=f,(?), and,
if it is a space curve, z=f;(?). In this representation ¢ is the parameter, which may be
confined to vary within a finite interval. Such curves are also called parametric curves.
This may cause some confusion in our treatment of parameters in geometric models, and
the distinction can be clarified as follows.

Recall that a curve is treated as a point-set S, where the members of the set are
individual points. In a parametric curve each value of the scalar parameter ¢ is mapped to
a unique point on the curve in a plane or in space. This is a simple way of addressing
each point in a particular point-set S. But the whole curve itself, that is, the point-set S
itself, can be dimensioned or parameterized from the outset. Under this scheme we can
have two different curves, that is, point-sets S, and S, that correspond to different sets of
dimensions. For example, a circle can be represented parametrically as x= r cos(?), y=r
sin(?), where ¢ is the angle parameter that can vary between 0 and 2z for any particular
circle. However, the circle itself is parameterized by its radius », and this holds good
whether the circle is given a parametric representation as here or an implicit
representation as in x2+y?=r2. The meaning of the term parameter should be clear from
the context.

A particular parametric representation of a curve is a linear combination of certain
functions (called basis functions), where coordinates of certain points (called control
points) are used as the multiplying coefficients, as in

x(f) X X X,
{}-‘{}'} } = {}I:; ]"F'”L” + | V) }"Fl“} + et I Vi }E:—"”H} (38)

for plane curves, or as in

.'l'{ i } Xiy Xy Xy
i) =93 Mo ggl)+ 4 ¥ gelf)+---+ 5§ W ‘FJ;{” (3.9)
=(t) n Z) Zy

for space curves. Both of Egs. (3.8) and (3.9) can be written more compactly as
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plt)y = Z;thm{!] (3.10)

i=0

Here, the points p, are called control points and the functions ¢, are called basis
functions.

Each control point pi in Eq. (3.10) has the coordinates (x; v in Eq. (3.8) in the case of
planar curves and (x, y, z;) in Eq. (3.9) in the case of space curves. When the control
points are joined in sequence by line segments, the resulting object is called the control
polygon. It might have been better to call it a “control polyline” because it doesn’t close
on itself, it may self-intersect, and it may not lie in a plane, but the name control polygon
has stuck and we will continue to use it. Note that the sequence, and hence the indices, of
the control points are important. We can also consider the tuple of control points (p,, p;,
..., p,) as a representation of the control polygon because, when the points in the tuple are
connected in the indicated sequence, it yields the control polygon.

For free-form curves, the parameter # in the basis functions ¢, is constrained to vary
within a finite real interval [o, B] so that the curves are bounded. In addition, for reasons
that will become obvious soon, the basis functions ¢, are chosen such that they satisfy an
important property called the partition of unity, given by

Z () =1 for t € [a,B] G.11)

i=l

Now we prove an interesting theorem.

Theorem 3.4: Free-Form Curve Invariance Theorem 4 free-form curve represented
by Eq. (3.10) is intrinsically invariant under rigid motion of its control points if and only
if its basis functions partition unity in the interval of interest.

Proof. To prove this theorem for the more general space curve, let’s denote the
homogeneous coordinates of the control point p; by X; so that

X
. 3.12

o (3.12)
I
1

Then, if the basis functions partition unity, we can rewrite Eq. (3.10) as
il
X(n = ZM%U] (3.13)

i=0

Here, X(?) is the homogeneous coordinate of the point p(z). Now, premultiply both sides
of Eq. (3.13) by a 4x4 matrix R, as in Eq. (2.9), that represents a rigid motion. This would
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result in

R

RX(1) =) (RX)ei(r) (3.14)

f=i

where matrix multiplication has been distributed within the summation. This shows that
the curve transformed by the rigid motion is the same as the curve obtained with control
points transformed by the same rigid motion.

To prove “the only if” part, we just need to show that intrinsic invariance under rigid
motion implies partition of unity. Assume that the curve is intrinsically invariant under
rigid motion of its control points. This means that Eq. (3.14) holds. Expanding the matrix
multiplication on both sides and looking at the last row, we obtain

1 = Ekﬁ-(!] (3.15)

=l

which is the result we seek. The planar version of the theorem is proved similarly.

A consequence of Theorem 3.4 is the following congruence theorem.

Theorem 3.5: Free-Form Curve Congruence Theorem Two free-form curves that
share the same basis functions that partition unity are congruent if the tuples of their
control points are congruent.

This implies that dimensioning a free-form curve whose basis functions partition unity
is the same as dimensioning its control polygon. It also follows that these free-form
curves can be parameterized by parameterizing their control polygons. We will now look
at some popular free-form curves.

3.2.1 Bézier Curves

When the basis functions in Eq. (3.10) are chosen to be the Bernstein basis functions
given by

1 n! i n—i
@i1) = Bl1) = mr (1r—n". where ¢ € [0,1] (3.16)

the resulting curve is called a Bézier curve. Bernstein basis functions of degree n are used
when there are n+1 control points. See Table 3.4 for some low-degree Bernstein basis
functions and plots of their graphs. Since the Bernstein basis functions are given
unambiguously by Eq. (3.16), a Bézier curve is completely defined by its control points.
Figure 3.9 shows three cubic Bézier curves, all having the same set of control points.
However, the order sequences of these control points are different in different curves, as
the control polygons illustrate. The corresponding Bézier curves are also quite different.
These curves show the importance of the tuple of control points, or, equivalently, the
control polygon. Bézier curve is a bounded curve due to the finite interval over which the
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TABLE 3.4 Low-Degree Bernstein Basis Functions

depree " Bemsicin basis functions

Plots of the functinns
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B ={1=1
B =Ml -0y
RN =3(1-1)
Blin=r
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It can be easily verified that the Bernstein basis functions partition unity. That is,

Y B=1 forsre[0,1]

=l

The best way to see this is to obtain a binomial expansion of the left side of the simple

identity

{t+(1-1)}"=1

A cursory glance at the plots in Table 3.4 should also satisfy the reader as to the veracity
of Eq. (3.17). The key result for us, then, is that a Bézier curve can be dimensioned by
dimensioning its control polygon. Figure 3.10 illustrates two ways to dimension a planar

cubic Bézier curve by dimensioning its control
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FIGURE 3.9 Three cubic Bézier curves (a—c) along with their control points
and control polygons.

polygon. In Figure 3.10(a), the three segments and their included angles are dimensioned.
In Figure 3.10(b), a coordinate dimensioning is employed, where, without loss of
generality, the first control point is fixed at the origin of a Cartesian coordinate system
and the first segment of the control polygon is aligned with the positive x-axis. Note that
these are not the only options to dimension a cubic Bézier curve.

Following these examples, a simple analysis shows that an nth-degree Bézier curve
needs 2n—1 dimensions if it lies in a plane and 3n—3 dimensions if it lies in space. These
are also the numbers of independent parameters if we choose to parameterize these
curves.

A quadratic Bézier curve (that is, of second degree), which has three control points,
requires three dimensions. It is just an arc of a parabola. From our earlier study of the
parabola, recall that an unbounded parabola needs only one dimension. But here a
parabolic arc needs two additional dimensions, to

11 (X3
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i#) ih)

FIGURE 3.10 Dimensioning the control polygon of a planar cubic Bézier
curve. (a) Segment lengths and included angles are dimensioned. (b)
Coordinate dimensioning of the control points.

indicate where it starts and where it ends. It is also instructive to dimension the control
polygon of this quadratic Bézier curve; it is the same as dimensioning a triangle. As we
saw in Chapter 2, there are many ways to accomplish even this simple task.

Before we leave Bézier curves, we should consider some of the interesting properties
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exhibited by these curves.

1. Endpoint interpolation: The Bézier curve passes through the first and the last control
points. In fact, we might say that it starts at the first control point and ends at the last
control point.

2. End tangents: The tangent to the Bézier curve at the first control point is aligned
with the first segment of the control polygon. The tangent at the last control point is
aligned with the last segment of the control polygon.

3. Convex hull containment: Note that the Bernstein basis functions are non-negative in
the [0, 1] interval. This, combined with the partition of unity property, ensures that
the Bézier curve is contained within the convex hull of its control points.

3.2.2 B-Spline Curves

When a set of Bézier curves are smoothly spliced together, we obtain a B-spline curve. In
practice, the smooth joining of the Bézier curves is accomplished by a set of B-spline
basis functions. To define these basis functions, first we choose a knot sequence [u, u,,
..., U,/ of real numbers that is nondecreasing; that is, u; <u;< u, ;. Then the nth-degree
B-spline basis function of parameter u is defined recursively as

' (1 = 1;-1) n—| (Ui — 1) i—1
i) = N'u) = ——N""'"() + ———=N'" ' (1)
J J (Uit — 1) ' (40 — 1) ah (3-19)
where
l if i) < w = u

Tl _
Ni'(u) = 0 otherwise (3.20)

Table 3.5 shows a typical B-spline basis function of first, second, and third degrees,
assuming a uniform knot sequence. In general, we treat the knot sequence as part of the
definition of the B-spline basis functions, and the knots need not be uniformly spaced.

Note that a B-spline basis function is nonzero only over a finite interval. We say that
such a function has only a compact support. This means that local modifications can be
made to a B-spline curve by moving a few control points
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TABLE 3.5 B-Spline Basis Functions of Low Degrees
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if 25u<3
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A uniform knot sequence [—1, 0, 1, 2, 3, 4] is used.

in that vicinity without affecting the curve in other places. Figure 3.11 shows a set of nine
quadratic B-spline basis functions, defined over a uniform knot sequence [—1, O, 1, 2, 3,
4,5,6,7,8,9, 10]. Notice that these functions partition unity only over the interval [1, 8].
The first seven of these basis functions have been used in constructing a second-degree
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B-spline curve in the same Figure 3.11. These are a set of five parabolic arcs that have
been chained together with tangent continuity. This B-spline curve is defined over the
parametric interval [1, 6] because the seven basis functions partition unity over that
interval. We could add as many control points as we want without increasing the degree
of the curve segments that have been smoothly spliced together to produce the composite
curve. In a general B-spline curve, the knot sequence need not be uniform.

In summary, we observe that by choosing a proper interval for # we can guarantee that
the B-spline basis functions partition unity. Then the problem reduces to dimensioning, or
parameterizing, just the control polygon.

3.2.3 Rational Curves
Of all the nondegenerate conics, only (a piece of) the parabola is represented by the

Bézier or the B-spline curve. To capture pieces of the ellipse or the
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FIGURE 3.11 A set of quadratic B-spline basis functions defined over a
uniform knot sequence, and a quadratic B-spline curve using these
bases.

hyperbola, we need a rational parametric representation of the form

]

S o wi(t) (3.21)

where wi is the scalar weight assigned to the control point p,. The parameter ¢ is confined
to the interval [a, B], as before. We can have the rational Bézier curve or the rational B-

plin =
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spline curve, depending on the choice of the basis function @,(2).

Example 3.4 A Bézier curve with three control points p,=(1, 0), p,=(1, 1), and
p4=(0, 1) defines a parabolic arc. But a rational Bézier curve with the same
control points and weights w,=1.0, w,=1.0, and w,=2.0 defines a circular arc.
(Why?)

We note that the new basis functions

witp;(1)
[1:'4' =
(1) L‘=n wiel) (3.22)

still satisfy the partition-of-unity property. (Here the weights are treated as part of the
definition of the basis functions.) Therefore, the rational curve also can be dimensioned
(or parameterized) by dimensioning (or parameterizing) its control polygon. These results
apply directly to the so-called nonuniform rational B-splines (NURBS) curves as well.

3.3 SPACE CURVES

Space curves are those that do not lie in a plane. Free-form space curves have already
been dealt with in the last section, where the problem was reduced to dimensioning or
parameterizing the control polygons that lie in space. But not all useful space curves have
the Bézier or B-spline representation. The helix is one such example.

The helix is a special space curve. It has a constant, nonzero curvature and a constant,
nonzero torsion. To understand what we mean by this, we need some background in
tangents, normals, and binormals. Consider a parametric representation of a space curve,
where the parameter s has a geometric meaning of being the arc length along the curve of
any point in question from an arbitrary reference point on the curve. It is also called a
natural representation of the curve. It gives the curve an orientation. If we regard p(s) as
the position vector of any point on the curve, then we have p(s)=/x(s), ¥(s), z(s)]T as its
coordinates in terms of the arc length s. We can then differentiate it with respect to s to
get the unit tangent vector

dx
o (3.23)
dp | dy
ds s
dz

ds

I =

A different choice of the natural representation would give the same unit tangent vector
(or its negative if the opposite orientation to the curve has been taken).



Dimensioning elementary curves 53

A normal vector to the curve is obtained by differentiating the unit tangent vector with
respect to s, as in

ﬂ = k(s
7 = Kb (3.24)

where k(s) is called the curvature at that point and M is the unit principal normal vector.
The curvature is an intrinsic quantity of the curve because it is independent of the natural
parameterization. It tells us how much the curve is curving away from the tangent. Now
consider the unit binormal vector, defined as the vector cross product

b=ixh
(3.25)

The tuple (£, 1. B) forms a right-handed, orthonormal triad. A differentiation of the unit
binormal with respect to s yields

db -
— = —7{s)n (3.26)
ds

where 7(s) is called the torsion of the curve at that point. Just as with curvature, torsion
is an intrinsic property of the curve. The torsion tells us how much the curve is twisting
away from the plane determined by the tangent and the normal vectors.
With these preliminaries, the stage is set for the following impressive theorem.
Theorem 3.6: Fundamental Existence and Uniqueness Theorem of Curves Let «(s)

and %) pe arbitrary continuous functions on a<s<b. Then there exists, except for
position in space, one and only one space curve C for which x(s) is the curvature, T(8) s

the torsion and s is a natural parameter along C.

-, = T e

FIGURE 3.12 (a) A right-handed helix. (b) A left-handed helix.



Theory of dimensioning 54

It follows immediately that two space curves are congruent if and only if they have the
same arc length parameterization of curvature and torsion. (It specializes to the case of
planar curves if we set the torsion to zero.) Obviously, this is the most general
congruence theorem for curves we have. Unfortunately, in the area of dimensioning, its
use is limited.

Fortunately, we have a direct application of this theorem for the helix. Consider the
space curve {(x, y, z).x=a cos 0, y=a sin 0, z=bB}, where a>0 and b+0. By varying its
angle parameter 0, we see that it traces a helix. Its curvature is constant and is equal to a/
(a*+b?), and its torsion is also a constant and is equal to b/(a*>+b>). If b>0, that is, if the
torsion is positive, then the helix is a right-handed curve. If b<0, then the torsion is
negative and the helix is left-handed. See Figure 3.12(a) for a right-handed helix with
a=1 and b=1, and see Figure 3.12(b) for a left-handed helix with a=1 and b=—1. Since
torsion, including its sign, is an intrinsic property of the curve, the theorem says that two
helices that have the same a and the same magnitude but different signs for b cannot be
congruent. See Example 2.17 for a similar discussion on helix.

3.4 EXERCISES

1. Determine the types of the following conics. Plot them to verify your results.

(a) 3x%+2xy+3y?—6x+14—101=0

(b) 3x2—10xy+3y*+16x—16y+8=0

© 2 4dy+ 47 — 45 =35y =0
(d) xy+x+y+6=0

() 40x2+36xy+25)*+8x—64y—101=0

() 9x*+24xy+16y2—10x+70y—75=0

2. Common household flashlights have a parabolic reflector. How would you dimension
such a reflector? What are the design considerations in the assembly of bulb, reflector,
and support casing?

3. Find some information about the planar cubic curves called cissoid of Diocles, folium
of Descartes, and witch of Agnesi. How would you dimension them?

4. The shape of a gear tooth is derived from involutes. Find out how they are defined.
How are the gear teeth dimensioned?

5. Define a parametric curve using basis functions that do not partition unity in the
interval of interest. Show that it is not intrinsically invariant under rigid motion.

6. Prove the assertion that that an nth-degree Bézier curve needs 2n—1 dimensions if it
lies in a plane and 3#—3 dimensions if it lies in space.

7. Figure 3.11 is for a quadratic B-spline curve. Repeat this exercise for a cubic B-spline
curve.

8. Give a rational Bézier representation for a quarter of an ellipse.

9. Prove that the converse of the free-form curve congruence theorem (Theorem 3.5) is
false. (Hint: Construct a simple counterexample using a Bézier curve. It remains the
same if the control points are merely labeled in the reverse order.)
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3.5 NOTES AND REFERENCES

The conics classification theorem is so well established in literature that we don’t bother
to prove it here. Apollonius of Perga wrote extensively about conics as early as the third
century B.C. He and other ancient Greeks recognized the latus rectum of a parabola as its
parameter. 1t is of historic interest to us to note the origin of this term and how it was
used in the context of geometry. An analytic treatment of conics was undertaken only in
the last few centuries. Sommerville (1951) is still a sound source for a comprehensive, if
somewhat dated, study of conics. A brief, charming introduction to conics can be found
in Hilbert and Cohn-Vossen (1983). Struik (1953) gives a nice type classification of
conics that we have adopted. A recent, readable account of reducing conics to their
canonical form is given by Rutter (2000). His book can be consulted for further
information on the canonical reduction. Our examples and exercises for canonical
reduction of general second-degree curves are intended to develop a better feel for these
curves. We rarely perform these calculations in practice, because modern CAD systems
exploit the classification theorem directly to define the nondegenerate conics.

Compared to conics, free-form curve representations are new, and their popularity can
be traced to the development of computer-aided design in the last 40 years. Farin (1993)
is a standard reference for this material. Our key result on the free-form curve invariance
is a special case of a more general invariance theorem. In fact, it can be shown that a free-
form curve is invariant under any affine transformation of its control points. But we
needed only the result that pertains to rigid motions.

The fundamental existence and uniqueness theorem for curves is one of the major
results in differential geometry Our treatment of it is very brief, and we give it here
mainly for the sake of completeness. Lipschutz (1969) is a highly readable yet rigorous
reference for this theorem.






4
Dimensioning Elementary Surfaces

Surfaces are the geometric objects through which engineering parts interact with each
other and with the environment. As such, surfaces play a crucial role in engineering
functionality. Following the approach adopted for curves, we start with elementary
surfaces and look for their classification and congruence theorems.

The unbounded plane is the simplest surface. It can be defined as the point-set

{(x, y, z): Ax+By+Cz+D=0}
4.1

for real coefficients 4, B, C, and D, where at least one of 4, B, C is nonzero. All planes in
the Euclidean space are congruent, which leaves the plane with no intrinsic dimension.
Next in the hierarchy of complexity are second-degree surfaces called quadrics, to which
we turn our attention.

4.1 QUADRICS

Quadrics are algebraic surfaces of the second degree. They can be represented implicitly
as the set of points satisfying a general second-degree equation in coordinates x, y, and z
as

{(x, v, 2): AX*+By*+Cz>+Dxy+Eyz+Fzx+Gx+Hy +Kz+L=0}
4.2)

for real coefficients 4, B, C, D, E, F, G, H, K, and L, where at least one of 4, B, C, D, E,
F is nonzero. Again, a soft analysis of this equation is fruitful. Although the 10
coefficients in Eq. (4.2) can take arbitrary real values, the equation remains unaltered if
the coefficients are multiplied by the same factor. Hence only the ratios of these 10
coefficients are significant. This means that a quadric can have, in general, nine
independent parameters (or degrees of freedom), out of which six—three translational
and three rotational—are accounted for rigid motion in space. So, intrinsically, a quadric
surface has a maximum of three independent parameters.

Classical analytic geometry gives a rigorous support for the foregoing soft analysis in
the form of the following classification theorem.

Theorem 4.1: Quadrics Classification Theorem Any surface of second degree
governed by an equation of the form of Eq. (4.2) can be moved by purely rigid motion in
space so that its transformed equation can assume one and only one of the 17 canonical
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forms given in Table 4.1.

Of the 17 canonical equations in Table 4.1, only 12 correspond to surfaces in the real
space and so we will ignore the imaginary ones. Out of these 12 real surfaces, nine have
nonzero curvature and are illustrated in Figure 4.1, while the remaining three
(intersecting planes, parallel planes, and coincident planes) are special collections of a
pair of planes.

The quadrics classification theorem leads to the following congruence theorem.

Theorem 4.2: Quadrics Congruence Theorem Two quadrics are congruent if and
only if they have the same canonical equation.

If two quadrics have the same classification and the intrinsic parameters (listed in the
last column of Table 4.1) in their canonical equations assume the same values, then they
are congruent. So we can dimension a quadric by declaring its type (from Table 4.1) and
assigning numerical values to its intrinsic parameters. Fortunately, we need to consider
only a few major types of quadrics, most of which are illustrated in Figure 4.1.

TABLE 4.1 Classification of Quadrics

Quadric type Canonical equation Intrinsic
parameters
1 Real ellipsoid 2 4 2 a b c
s+ =+==lLa=b=c¢
at bt
2 Imaginary ellipsoid P T Not relevant
st T =
a- b e
3 Hyperboloid of one sheet P T a b, c
—dm——=la=h
as b e
4 Hyperboloid of two sheet T a b c
—+=—==-la=b
as b e
5 Real quadric cone e a/c, b/c
—.,+'—._,——,,= 0, a 21’]'
a b
6 Imaginary quadric cone [with real apex 32 _1.3 =L Not relevant
(0,0,0)] atptz=0
7 Elliptic paraboloid 248 a, b
—F=—-2z2=0,a=h
a- b
8 Hyperbolic paraboloid P a, b
P ==
9 Real elliptic cylinder P a b
—4+==la=h
a- b
10 Imaginary elliptic cylinder PRt , Not relevant
—t+==-
<
a- b

11 Hyperbolic cylinder a b
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7 b
XY
at B
12 Real intersecting planes Falt b/a or tan_l(b/a)
—=——==0,a=bh
a b
13 Imaginary intersecting planes T Not relevant
[intersecting at a real line] ”_3 + h_g =0
14 Parabolic cylinder V2-2Ix=0 l
15 Real parallel planes 2=q2
16 Imaginary parallel planes 2=—42 Not relevant

17 Coincident planes =0 None
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r! - =J‘ xl‘ - =J‘ x: 3 22
adaia el St =]
a b e a b ¢ a b e
(a) Ellipsoid (b) Hyperboloid of one () Hyperboloid of two
sheet sheets

X J-': 't ¥ },: X ,‘l’:
s ="r=0 =2z=0 -t gldz=

a b o a’ Ty T a W

(d) Quadric cone (¢} Elliptic paraboloid () Hyperbolic paraboloid

xl yl-l xr-}.?-l _}'"2&50
@b @ B
(g) Elliptic cylinder (h) Hyperbolic cylinder (i) Parabolic eylinder

FIGURE 4.1 Nine real quadrics with nonzero curvature.

4.1.1 Ellipsoid

The ellipsoid is the only bounded quadric surface. It belongs to a 3-parameter family and
has three planes of reflexive symmetry. See Figure 4.1(a). In its canonical form, it cuts
off line segments of lengths 2a, 2b, and 2¢ from the x-, y-, and z-axes, respectively. These
are called the axes of the ellipsoid. The semiaxes are the intrinsic parameters a, b, and ¢
listed in Table 4.1, thus providing a geometrical interpretation for these parameters. The
ellipsoid doesn’t have the focal points described for ellipses in Chapter 3. However, the



Dimensioning elementary surfaces 61

ellipsoid intersects the planes of reflexive symmetry in ellipses. Its projection onto these
planes also yields the same result.

The three axes of the ellipsoid can be dimensioned directly on a three-dimensional
view, as in Figure 4.1(a). Alternatively, we can dimension the projected views of the
ellipsoid. By projecting the ellipsoid on two of its planes of reflexive symmetry, we
reduce the ellipsoid dimensioning problem to that of dimensioning two different ellipses.

An important special case of the ellipsoid is the sphere, when a=b=c=the radius. When
only two of the semiaxes are equal, say, b=c, we have a surface of revolution called a
spheroid. It can be obtained by taking the ellipse of Figure 3.2(a) and rotating it about the
x-axis. A spheroid is called oblate if the third axis is shorter than the first two (like the
earth), and prolate if the third axis is longer than the first two (like an egg). The spheroid
has two focal points. Its directrix is a plane. All the techniques for dimensioning an
ellipse can be applied to the spheroid.

In summary, an ellipsoid has three intrinsic dimensions, a spheroid has two, and a
sphere has only one.

4.1.2 Hyperboloids of One and Two Sheets

Figures 4.1(b) and 4.1(c) illustrate the two hyperboloids. The hyperboloid of two sheets
consists of two disjoint surfaces, whereas the hyperboloid of one sheet has only one
connected surface. They have three planes of reflexive symmetry. Both belong to 3-
parameter family of surfaces. When a plane parallel to the xy-plane intersects the
hyperboloid, it does so at a point or in an ellipse.

Each section of a hyperboloid of one sheet by a plane parallel to the yz-plane or the zx-
plane is a hyperbola or a degenerate hyperbola containing two intersecting straight lines.
The one-sheeted hyperboloid has two transverse axes (2a and 2b) and one conjugate axis
(2¢), thus providing a geometrical interpretation for its intrinsic parameters. These can be
dimensioned in sectional or projected views. When the transverse axes are equal, we have
a one-sheeted hyperboloid of revolution; it is the same as the one obtained by rotating a
hyperbola in Figure 3.3(a) about the y-axis, that is, the conjugate axis. It has two intrinsic
dimensions.

Perhaps the most surprising fact about a hyperboloid of one sheet is that it is a ruled
surface. That is, it can be generated by taking a straight line and moving this line in space
in some appropriate manner. Another way to look at it is that the hyperboloid of one
sheet contains an infinite number of straight lines. We will see more about the one-
sheeted hyperboloid as a ruled surface later, in Section 4.3.3.

Each section of a hyperboloid of two sheets by a plane parallel to the yz-plane or the
zx-plane is a hyperbola. The two-sheeted hyperbola has one transverse axis (2¢) and two
conjugate axes (2a and 2b). A two-sheeted hyperboloid of revolution results when the
conjugate axes are equal; this result can also be obtained by rotating the hyperbola of
Figure 3.3(a) about the x-axis, which is also the transverse axis. It then has two intrinsic
dimensions.
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4.1.3 Quadric Cone

This surface has reflexive symmetry with respect to three planes, as shown in Figure 4.1
(d). In its canonical form, the z-axis is its axis and the origin is its vertex. The cone in
Figure 4.1(d) is asymptotic to both the hyperboloids in Figures 4.1(b) and 4.1(c). The
surface is a cone because it is generated by moving a line that passes through a fixed
point (the vertex). It intersects any plane perpendicular to its axis in an ellipse or a single
point; the right circular cone is an important special case when the ellipse becomes a
circle. The right circular cone is the cone of revolution. The intersection of the quadric
cone with a plane is a conic curve.

A general quadric cone belongs to a 2-parameter family, and the right circular cone
belongs to a 1-parameter family. A right circular cone can be dimensioned by specifying
its apex angle (vertex angle). Dimensioning a general quadric cone requires more effort.
One method is to dimension the ellipse obtained by sectioning the cone by a plane
perpendicular to the cone axis and located at a unit distance from the vertex.

4.1.4 Elliptic Paraboloid

Figure 4.1(e) shows an elliptic paraboloid. In its canonical form, the z-axis is the axis of
the elliptic paraboloid and the origin is its vertex. It has two planes of reflexive
symmetry. When a plane perpendicular to the z-axis intersects the surface, it does so in an
ellipse or a point. The origin is the vertex of the elliptic paraboloid in its canonical form.
A paraboloid of revolution is a special case when the ellipse specializes to a circle. The
elliptic paraboloid belongs to a 2-parameter family, and the paraboloid of revolution
belongs to a 1-parameter family.

An elliptic paraboloid can be dimensioned by dimensioning the ellipse obtained by
intersecting the surface by a plane perpendicular to its axis at a distance of 1/2 units from
the vertex. A paraboloid of revolution is dimensioned by dimensioning its generating
parabola.

4.1.5 Hyperbolic Paraboloid

Arguably, the hyperbolic paraboloid is the most intriguing quadric. It is shown in Figure
4.1(f). This saddle-shaped surface has reflexive symmetry with respect to the yz- and zx-
planes. The intersection of the surface by a plane perpendicular to the z-axis is a
hyperbola that can degenerate to two intersecting lines at the origin. Intersection by
planes parallel to the other coordinate planes are parabolas. The hyperbolic paraboloid
belongs to a 2-parameter family. It may be dimensioned by dimensioning the hyperbola
obtained by intersecting the surface by the plane z=1/2.

Surprisingly, the hyperbolic paraboloid is also a ruled surface. In fact, it is a doubly
ruled surface. We will see more about this ruled surface in Sections 4.2 and 4.3.3.

4.1.6 Quadric Cylinders
Elliptic, hyperbolic, and parabolic cylinders, shown in Figures 4.1(g), 4.1(h), and 4.1(1),
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are obtained by taking an ellipse, a hyperbola, and a parabola, respectively, and sweeping
them along a direction perpendicular to the plane that contains these curves. Note that
these cylinders extend indefinitely, both forward and backward, in the sweep direction.

Intrinsic parameters for these cylinders are the same as those of the curves being swept,
as can be seen from Table 4.1. It is also intuitively clear that when the curves are swept
perpendicular to the plane that contains them, no additional dimensions (or parameters)
are introduced. Therefore, elliptic and hyperbolic cylinders belong to a 2-parameter
family, while the parabolic cylinder belongs to a 1-parameter family. Dimensioning the
underlying planar curves also dimensions these cylinders.

An important special case of the elliptic cylinder is the right circular cylinder, when the
ellipse is specialized to a circle. It then has only one intrinsic dimension, the radius.

4.1.7 Pairs of Planes

Planes are the degenerate quadrics, just as lines are the degenerate conics. Coincident
planes have no intrinsic dimension. Intersecting planes have the included angle as the
intrinsic dimension of the pair. The separating distance between parallel planes is the
intrinsic dimension of that pair.

4.1.8 Reduction to the Canonical Form

As we did in the case of conics, it is possible to infer the type of the quadric defined by a
general second-degree equation using a compact decision table. For this, we first recast
Eq. (4.2) as

2 2 2 _
C X HCy Y T Cayz 20 XY 20, yz 204 2 +20 x 20, 205,204, =0 “3)

so that it can be written in a convenient matrix form as

-t

Ci1 f1iz €13 14
[ [ ] ] [ Vv
[x v z 1] 21 12 C13 24 .
iy O3 O3 O34
C41 €42 C43  Cy4

(4.4)

(&

where, for the 4x4 symmetric coefficient matrix C4, C15=Cy1 €31=C13 Ca1=Ciar C37=Co3s
C4y=Cyy, and C43=Cay- Let?s denote the determinant of C, by A and its rank by p,. The top-
left 33 submatrix of C, is

O fiz i3
Gi=|cn e 013
€y 0y 033

4.5)
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and its rank will be denoted by p,. We can then determine the type of the quadric using
Table 4.2. In that table, the question “k’s same sign?” is answered yes if all the nonzero
eigenvalues of C; have the same sign; otherwise the answer is no. Similarly, the question
“K’s same sign?” is answered yes if all the nonzero eigenvalues of C, have the same sign;
otherwise the answer is no. Once the type has been determined, the surface can be rotated
and translated so that it is brought to the canonical form.

Example 4.1 Consider the quadric surface xy+xz+yz+ 1=0. The related matrices

arc
05 0 05 0 0 05 05
Ci=| ; and C3=[05 0 0.5
05 05 0 0 s
0 0 0 I >0

TABLE 4.2 Decision Table for Type Classification of Quadrics

P; Py A Kk’ssamesign? K’ssame sign? Type of quadric
3 4 <0 Yes Real ellipsoid

3 4 >0 Yes Imaginary ellipsoid

3 4 >0 No Hyperboloid of one sheet
3 4 <0 No Hyperboloid of two sheets
3 3 No Real quadric cone

3 3 Yes Imaginary quadric cone

2 4 <0 Yes Elliptic paraboloid

2 4 >0 No Hyperbolic paraboloid

2 3 Yes No Real elliptic cylinder

2 3 Yes Yes Imaginary elliptic cylinder
2 3 No Hyperbolic cylinder

2 2 No Real intersecting planes

2 2 Yes Imaginary intersecting planes
1 3 Parabolic cylinder

1 2 No Real parallel planes

1 2 Yes Imaginary parallel planes

1 1 Coincident planes

Then, we have p;=3, p;=4, and A=0.25. The eigenvalues of C; are —0.5, —0.5,
and 1.0. The eigenvalues of C, are —0.5, =0.5, 1.0, and 1.0. From Table 4.2 we
see that the quadric is a hyperboloid of one sheet. By proper rotation and



Dimensioning elementary surfaces 65

translation, it can be brought to the canonical form

2 2
; ) N
E-'_E_- =1

Example 4.2  Next consider the quadric  surface  x*+
2242224 2xy—2xz+2x+6y+22z—13=0. The relate matrices are

l
ci=| 1 20 and Cs=| 1 2 0
-1 0 2 | 10 2
I3 1 —13

Then we have p,=2, p,=3, and A=0. The eigenvalues of C; are 3, 2, and 0.
The eigenvalues of C, are 0, 2.3933, 3.2963, and —13.6896. From Table 4.2 we
see that the quadric is a real elliptic cylinder. By proper rotation and translation,
it can be brought to the canonical form

37
=1
i)

)
—+
9

Example 4.3 Finally, consider the quadric surface 9x>+y*+
22—6xy+6x2—2yz+18x—6y+62—7=0. The related matrices are

9 -3 3 9
-3 1 -1 -3
3 =1 1 3
9 -3 3 -7

9 -3 3
and (3= -3 1 =1
I -1 1

Cy=

Then we have p,=1, p,=2, and A=0. The eigenvalues of Cj are 0, 0, and 11.
The eigenvalues of C, are 0, 0, 15.4164, and —11.4164. From Table 4.2 we see
that the quadric is a pair of real parallel planes. By proper rotation and
translation, it can be brought to the canonical form

1z_ns.
Tl

4.1.9 Summary of Quadrics Dimensioning and Extensions

Of all the quadrics, the most popular are spheres, right circular cylinders, and right
circular cones. Each of these has only one dimension (or parameter).

The quadric cylinders of Section 4.1.6 are obtained by translational sweeps of conic
curves in a direction perpendicular to the plane that contain these curves. In fact, we
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encountered them in Section 3.1.6. Similarly, quadrics that possess rotational symmetry
about an axis (spheroids, the two hyperboloids of revolution, the paraboloid of
revolution, the right circular cone, and the right circular cylinder) are obtained by
rotational sweeps of conic curves about their axis of symmetry. In both type of sweeps,
no additional dimensions or parameters are introduced. So the problem of dimensioning
these swept surfaces reduces to the dimensioning of the underlying planar curves.

If the sweeps are restricted to a finite extent, then an additional dimension (or
parameter) is introduced. For example, if a conic is translationally swept only for a finite
distance perpendicular to it containing plane, then this distance becomes the height of the
quadric cylinder. Similarly, if a conic is rotationally swept about its axis for an angle less
than 27, this angle becomes the additional dimension (or parameter).

Swept surfaces are one popular example of what are called procedurally defined
geometric objects. They are often used in constructing a geometric model. We will
encounter many other procedurally defined objects in later chapters when we explore
how to construct complex geometric models from simpler objects.

Some solids in three-dimensional space can be defined using quadric half-spaces. Note
that most real, nondegenerate quadrics divide three-dimensional space into two parts.
(Exceptions are the hyperboloid of two sheets and the hyperbolic cylinder, which divide
space into three separate parts.) The quadric half-spaces can be bounded or unbounded. A
general quadric half-space is defined by

2 2 2
C X FCyy Y ey Z 420 Xyt 20, vz 204 2x +2¢ Xt 20, 205,704 <0 @)

A solid spherical ball of unit radius, for example, can be represented by the set S={(x, y,
z):x*+y*+z2<1}. Tt is a bounded half-space. A solid, unbounded cylinder of radius 2 can be
represented as the set {(x, y, z):x*+ y><4}. If it were a cylindrical hole, we would
represent it as the set {(x, y, z):x>+y*>4}. Dimensioning a quadric half-space is the same
as dimensioning its bounding quadric, with an additional indication as to which side of
the quadric the solid lies. Recall that Svensen used “positive” and “negative” attributes in
Figure 1.1 to indicate the material side.

Finally, we observe that all quadrics and quadric half-spaces are achiral, because each
has at least one plane of reflexive symmetry. It is easy to see this from the equations of
canonical form in Table 4.1, where there is always one variable that appears in the second
degree only. A plane of symmetry is the one in which this variable assumes a zero value.

4.2 FREE-FORM SURFACES

Free-form surfaces are the natural generalization of free-form curves. A surface patch in
three-dimensional space can be represented parametrically as

X=f,(u, v), y=f,(u, v), and z=f;(u, v)
4.7
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N
plu, v) = Zp;np,«{!r, V), (w,vie D

where =0 Here we have two parameters, u
and v, and D is their domain of variation. In contrast, a parametric representation for a
curve has only one parameter, and it varies just over an interval. Figure 4.2 shows a
simple mapping between points in the parametric domain D and points on the surface
defined by Eq. (4.7).

A surface patch can be represented parametrically as a linear combination of bivariate
basis functions, using control points in three-dimensional space as multiplying
coefficients, as in

(4.8)

W
W

I

v

X

Here ¢,(u, v) are the basis functions and p, are the N+1 control points positioned in space.
Following Theorem 3.4, we have the following.

Theorem 4.3: Free-Form Surface Invariance Theorem A firee-form surface
represented by Eq. (4.8) is intrinsically invariant under rigid motion of its control points
if and only if its basis _functions partition unity in the parametric domain D.

The proof is identical to that of Theorem 3.4. A consequence of Theorem 4.3 is the
following congruence theorem.

Theorem 4.4: Free-Form Surface Congruence Theorem 7Two free-form surfaces
that share the same basis functions that partition unity are congruent if the tuples of their
control points are congruent.

When the basis functions in Eq. (4.8) are written in a separable form

@1, v)=0,(u)e;(v)
(4.9)
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W
W

it

FIGURE 4.2 Mapping between points on the #-v domain D and points on the
parametric surface patch.

we have surface patches in tensor product form, which can be represented as

L i

P, v) =" pr i), (v) (4.10)

=0 j=0

Here p;,j are the control points. When these control points are joined according to the
adjacency of their indices in Eq. (4.10), they form a control net. See Figure 4.3(a) for an
illustration of a control net. The control net is the free-form-surface equivalent of the
control polygon for free-form curves.

Assuming the partition-of-unity property of the basis functions in Egs. (4.9) and (4.10)
over the parametric domain D, Theorem 4.4 implies that the dimensioning of a free-form
surface patch is the same as dimensioning the associated control net.

If we choose ¢,() and (pl.(v) to be Bernstein basis functions, we have a Bézier surface
patch, as shown in Figure 4.3(b). In this case, the parametric domain is a square D=[(0, 1)
x(0, 1)], over which it can be shown that the Bernstein basis functions, defi