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Preface

More than fifty years have passed since WALODDI WEIBULL presented “his” distribution

to the international scientific community (see WEIBULL (1951)), but the origins extend

back to the 1920s. The 1951 publication marked the start of triumphant progress of this

distribution in statistical theory as well as in applied statistics. Hundreds of authors around

the globe have contributed to its development and the number of publications has far ex-

ceeded expectations. I think the time has come to compile the findings that are distributed

in dozens of scientific journals and hundreds of research papers. My thanks go to all those

who in the past have worked on the WEIBULL distribution. This handbook could not have

been written without these men and women.

The idea of writing a monograph on the WEIBULL distribution first came to me in the late

1960s when —at the Technical University of Berlin (West) — I was preparing my Habilita-

tion’s thesis on strategies of maintenance and replacement. Since that time I have carefully

compiled what has been written on this distribution, and I hope that no major contribution

has escaped my attention. I had done some research of my own, e.g., on the discovery of the

WEIBULL distribution and on capability indices for WEIBULL distributed characteristics,

and I had given lectures on WEIBULL analysis to students and to practitioners, but only by

the end of my university career did I have the leisure to complete the work on this text.

This book is intended to be a general desk reference for all those people who have to

model statistical data coming from various fields, but mainly from the life sciences and the

engineering sciences. The reader should have a basic knowledge of calculus and probability

theory as well as statistical theory, but all the subjects treated are first presented in a general

setting before application to the WEIBULL distribution. The book is self-explanatory and

self-contained. Each section starts with a detailed “suggested reading” giving a path to

follow for any reader wishing to learn more. I also have included numerous illustrative

examples and exercises that expand special topics. The text includes more than 90 tables

and more than 100 figures; as an old Chinese proverb says: “A picture says more than

thousand words.” I have refrained from showing what parts of a WEIBULL analysis might

be done by statistical software packages and from reproducing any program code. Instead

in Chapter 7 I give hints about software dealing with WEIBULL applications. In preparing

this text I have applied MATHEMATICA (developed by WOLFRAM RESEARCH, Inc.) to

do algebraic calculations and formula manipulation, and GAUSS (developed by APTECH

SYSTEMS, Inc.) to do numerical calculations.

The book is divided into three parts, but most important are the first two parts. Part I is

based in the fields of probability theory and gives a careful and thorough mathematical

description of the WEIBULL distribution and all its features. Chapter 1 starts with the

fascinating history of its discovery and also reports on several physical explanations for this

distribution. The WEIBULL distribution is mainly used to model lifetime and duration data,

so I present in Chapter 2 those six functions that primarily serve to describe lifetime as a

random variable, e.g., the failure density, the failure and reliability functions, the hazard rate

and its integral and the mean residual life function. I show how these functions are affected
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by the three parameters (location, scale and shape parameters) of the WEIBULL. I further

show how the moments and percentiles depend on these parameters. Chapter 3 shows

how the WEIBULL fits into different systems of statistical distributions, how it is related to

other familiar distributions and what kinds of modifications exist. Chapter 4 is devoted to

WEIBULL processes and WEIBULL renewal theory, topics that are important in the context

of reliability growth. Chapter 5 on order statistics is of utmost importance because lifetime

data almost naturally arrive in ascending order. Chapter 6 reports on characterizations of

the WEIBULL and deals with the question of finding assumptions that uniquely determine

this distribution.

Part II, the core of this book, reports on WEIBULL analysis. The introductory Chapter 7

provides a survey of WEIBULL applications in tabular form and provides some statistical

software packages and consulting corporations doing WEIBULL analysis. The inference

process heavily depends on how the data have been sampled, so Chapter 8 reports on col-

lecting lifetime data, with an emphasis on techniques such as censoring and acceleration by

practicing stress to shorten test duration. Chapters 9 through 15 are devoted to the estima-

tion of the three WEIBULL parameters using classical as well as BAYESIAN and further ap-

proaches, comprising graphical, linear maximum likelihood and miscellaneous techniques.

The maximum likelihood method, presented in Chapter 11, is the most versatile and consid-

ers all types of censored data. I have also written a chapter on parameter estimation under

accelerated life testing (Chapter 16) and on parameter estimation for mixed WEIBULL mod-

els (Chapter 17). Inference of WEIBULL processes is dealt with in Chapter 18. Knowledge

of certain percentiles (median life or the upper and lower quartiles) and of the reliability

to survive a given age is very important for all practitioners as is the prediction of future

random quantities such as the time to the next failure or the number of failures within a

future time span. Chapters 19 and 20 are devoted to these topics. WEIBULL parameter

testing is presented in Chapter 21. Chapter 22 provides different types of goodness-of-fit

tests and methods to discriminate between WEIBULL and other distributions and to select

the better of several WEIBULL distributions.

Part III contains what is compulsory for a scientific book: lists of abbreviations and no-

tations, author and subject indexes, a detailed bibliography and a table of the gamma,

digamma, and trigamma functions that are often used in WEIBULL analysis.

It is difficult to write a book of this scope without the help and input of many people.

PAUL A. SAMUELSON, the second winner of the NOBEL prize in economics in 1970, once

said that each scientist stands upon the shoulders of his predecessors. First and foremost

I am indebted to all those who in the past have worked on the WEIBULL distribution and

increased knowledge of this distribution. Their contributions are listed in the bibliography.

Thanks are offered to my former secretary, INGE BOJARA, and one of my former stu-

dents, STEFFEN RAU, for converting parts of my manuscript into LATEX files. I further

acknowledge with thanks the help of my former assistant, DOROTHEA REIMER, who was

responsible for the layout and the creation of the LATEX style file.

Special thanks are due to my niece, MONICA WOOD, and my grandnephew, SIMON

WOOD, who are both citizens of the U.K. and native English speakers. Their help in pol-

ishing my “German” English is gratefully acknowledged.
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I would like to acknowledge PAUL A. TOBIAS, who read an early version of my text

and whose comments prompted me to incorporate some forgotten topics. BOB STERN of

the TAYLOR & FRANCIS GROUP was a great help in bringing this text to publication. I

thank the AMERICAN SOCIETY FOR QUALITY CONTROL, the AMERICAN STATISTICAL

ASSOCIATION, IEEE, and MARCEL DEKKER, Inc., for their kind permission to reprint

tables originally published in their journals and books.

I intended to finish this text soon after my retirement from office in 2005, but, unfortunately,

my work was interrupted twice by severe illness. Without the surgical skill of Dr. PETER

ROTH and Dr. PAUL VOGT of the Giessen University Clinics this book would not have

been completed at all. Last but not least I want to express my deepest appreciation to my

wife BRIGITTE who always encouraged me to continue with my research and to overcome

the setbacks to my health.

Dr. HORST RINNE, Professor Emeritus of Statistics and Econometrics

Department of Economics and Management Science

Justus–Liebig–University, Giessen, Germany





List of Figures

1/1 Densities of the extreme value distributions . . . . . . . . . . . . . . . . . 7

2/1 WEIBULL densities with differing values of the location parameter . . . . . 32

2/2 WEIBULL densities with differing values of the scale parameter . . . . . . 33

2/3 WEIBULL densities with differing values of the shape parameter . . . . . . 34

2/4 Reduced WEIBULL densities with c→ 0 . . . . . . . . . . . . . . . . . . 38

2/5 Reduced WEIBULL densities with c→ ∞ . . . . . . . . . . . . . . . . . . 39

2/6 Movement of mode and inflection points and their corresponding densities 40

2/7 WEIBULL failure distribution with differing parameter values . . . . . . . 44

2/8 Several population CDFs on WEIBULL probability paper . . . . . . . . . . 46

2/9 Hazard rates of several reduced WEIBULL distributions . . . . . . . . . . . 47

2/10 Cumulative hazard rate for a reduced WEIBULL variable . . . . . . . . . . 50

2/11 Several population CDFs on WEIBULL hazard paper . . . . . . . . . . . . 51

2/12 MRL function of several reduced WEIBULL distributions . . . . . . . . . . 58

2/13 Chains of implications for several aging criteria . . . . . . . . . . . . . . . 59

2/14 Logarithmized WEIBULL densities . . . . . . . . . . . . . . . . . . . . . 62

2/15 Mean hazard rate of the WEIBULL distribution for b = 1 . . . . . . . . . . 64

2/16 Percentile function for the reduced WEIBULL distribution . . . . . . . . . 69

2/17 Gamma function and psi function . . . . . . . . . . . . . . . . . . . . . . 75

2/18 Entropy of the reduced WEIBULL distribution . . . . . . . . . . . . . . . . 84

2/19 Mean, median and mode of the reduced WEIBULL distribution . . . . . . . 86

2/20 Combinations of b and c leading to the same mean . . . . . . . . . . . . . 89

2/21 Four densities with E(X) = 1 and different b–c combinations . . . . . . . 90

2/22 Variance, standard deviation and coefficient of variation of the reduced

WEIBULL distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2/23 Moment ratios for a WEIBULL distribution . . . . . . . . . . . . . . . . . 92

2/24 BOWLEY’s and GALTON’s measures of skewness for the WEIBULL distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3/1 Moment ratio diagram for the PEARSON system showing the WEIBULL dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3/2 Moment ratio diagram for the BURR type-XII family and the WEIBULL

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3/3 CDFs of the standardized logistic, normal and WEIBULL distributions . . . 119

3/4 Hazard rate and pseudo–hazard function for the type-I discrete WEIBULL

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3/5 Hazard rate of the reflected WEIBULL distribution (a = 0, b = 1) . . . . . 126

3/6 Density function and hazard rate of the double WEIBULL distribution (a =
0, b = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



XVIII List of Figures

3/7 Density function and hazard rate of the inverse WEIBULL distribution . . . 130

3/8 Densities of truncated and non-truncated WEIBULL distributions . . . . . . 136

3/9 Densities of a two-fold convolution of reduced WEIBULL variates . . . . . 140

3/10 Densities and hazard rates of multiplicative WEIBULL models (a = 0, b = 1) 145

3/11 Composite WEIBULL distribution with continuously joining CDFs . . . . . 148

3/12 Composite WEIBULL distribution with continuously joining CDFs, DFs and

HRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3/13 Hazard rate and density function of some two-fold WEIBULL mixtures . . 154

3/14 Hazard rate of the LAI et al. extension of the WEIBULL model . . . . . . . 161

3/15 Hazard rate of the MUDHOLKAR et al. (1996) extension of the WEIBULL

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3/16 Joint survival function of a BWD of MARSHALL/OLKIN type

(surface plot and contour plot) . . . . . . . . . . . . . . . . . . . . . . 178

3/17 Joint density function of a BWD of MARSHALL/OLKIN type

(surface plot and contour plot) . . . . . . . . . . . . . . . . . . . . . . 179

3/18 Joint density function of the absolutely continuous BWD given by LEE

(surface plot and contour plot) . . . . . . . . . . . . . . . . . . . . . . 183

4/1 Random variables of a renewal process . . . . . . . . . . . . . . . . . . . 204

4/2 Cumulative distribution function of Tn . . . . . . . . . . . . . . . . . . . . 216

4/3 BARTHOLOMEW’s approximation to the WEIBULL renewal intensity . . . 217

4/4 Mean and variance of the number of WEIBULL renewals . . . . . . . . . . 220

4/5 Joint density of the stationary WEIBULL forward and backward recurrence

times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5/1 Probability distributions of L(m) and N(n) . . . . . . . . . . . . . . . . . 234

5/2 Probability function Pr
[
∆(m) = k

]
for m = 2, 3, 4 . . . . . . . . . . . . 236

8/1 Example of an (R = 0)–plan and an (R = 1)–plan . . . . . . . . . . . . . 288

8/2 Trajectory of a plan {n, 1, G, S, T} on the left-hand side and two trajecto-

ries of a plan {10, 0, G, S, T} on the right-hand side . . . . . . . . . 293

8/3 Trajectory of a type-II censored test . . . . . . . . . . . . . . . . . . . . . 297

8/4 Distribution function of V for X ∼We(0, b, c) . . . . . . . . . . . . . . . 299

8/5 Stock function of an (R=0)-plan and two approaches to calculate TTT (D) 303

8/6 Average test duration for several variants of type-II hypercensoring for k = 4
and m = 5 and X ∼We(0, 1, c) . . . . . . . . . . . . . . . . . . . . . 311

9/1 Explanation of the QQ-plot and the PP-plot . . . . . . . . . . . . . . . . . 318

9/2 PP–plot of PY (Q) = 1−exp
{
−[(y+1)/2]2

}
against PX(Q) = 1−exp{−x2} 319

9/3 Four empirical QQ-plots, each involving at least one WEIBULL sample . . 321

9/4 Extreme value paper (upper part) and WEIBULL paper (lower part) . . . . 323

9/5 Hazard paper for the extreme value distribution (upper part) and the

WEIBULL distribution (lower part) . . . . . . . . . . . . . . . . . . . . 332

9/6 TTT-plots for several WEIBULL samples of size n = 20 . . . . . . . . . . 335



List of Figures XIX

9/7 Dataset #1 on WEIBULL-paper and OLS-fitted straight lines . . . . . . . . 338

9/8 Dataset #1 type-I singly censored at T = 100 and OLS-fitted straight lines 340

9/9 Dataset #1 type-II singly censored at x15:20 and OLS-fitted straight lines . . 341

9/10 Graphical estimation of a by trial and error . . . . . . . . . . . . . . . . . 349

9/11 Graphical estimation of a by the method of DAVID . . . . . . . . . . . . . 350

9/12 WEIBULL probability plots of mixed distributions . . . . . . . . . . . . . 353

11/1 Likelihood equation of c for dataset #1 . . . . . . . . . . . . . . . . . . . 415

11/2 Surface plot of the log-likelihood function for dataset #1 . . . . . . . . . . 418

11/3 Contour plot of the log-likelihood function for dataset #1 and path of iterations 419

11/4 Profile log-likelihood functions . . . . . . . . . . . . . . . . . . . . . . . 429

11/5 Graphs of h(c) and c−1 for dataset #1 singly censored at r = 15 . . . . . . 440

11/6 Simultaneous 90%-confidence region for b and c (dataset #1 singly censored

at r = 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

11/7 95% joint confidence region for c and log b . . . . . . . . . . . . . . . . . 453

12/1 R(c) = Γ2(1 + 1/c)
/
Γ(1 + 2/c) versus c . . . . . . . . . . . . . . . . . . 457

12/2 σ2
/
µ2 = Γ(1 + 2/c)

/
Γ2(1 + 1/c) − 1 versus c . . . . . . . . . . . . . . 459

12/3 σ/µ =
√

Γ(1 + 2/c) − Γ2(1 + 1/c)
/

Γ(1 + 1/c) versus c . . . . . . . . . 461

12/4
[
Γ2 − Γ2

1

]/[
Γ1 − (ln 2)1/c

]2
versus c . . . . . . . . . . . . . . . . . . . . 467

12/5
[
Γ2 − Γ2

1

]/[(
1 − n−1/c

)
Γ1

]2
versus c . . . . . . . . . . . . . . . . . . . 468

12/6
[
Γ2 − Γ2

1

]/
{

Γ1 −
[
− ln

(
n

n+ 1

)]1/c}2

versus c . . . . . . . . . . . . 470

13/1 Empirical distribution function and MD-estimated WEIBULL CDF function

of dataset #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

13/2 ρ∞(c) = Γ(1 + 1
/
c) exp{−ψ(1)

/
c} . . . . . . . . . . . . . . . . . . . . 507

14/1 Non-informative prior and posterior density for dataset #1 censored at r = 15 520

14/2 Uniform prior and posterior density for dataset #1 censored at r = 15 . . . 522

14/3 Prior gamma density and posterior gamma density for dataset #1 censored at

r = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

16/1 A constant-stress model . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

16/2 Cumulative exposure model of NELSON (1980) . . . . . . . . . . . . . . . 548

16/3 A simple ramp-test situation . . . . . . . . . . . . . . . . . . . . . . . . . 551

17/1 Annual mortality rates qx for females in German life tables from 1871 to 2002 563

17/2 Estimated densities of the subpopulations and the total population (females,

life table 1891/1900) . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

17/3 Mixture density and empirical frequencies of death (females, life table

1891/1900) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565



XX List of Figures

17/4 Proportions of the three subpopulations . . . . . . . . . . . . . . . . . . . 565

17/5 Estimated scale parameters of the three subpopulations . . . . . . . . . . . 565

17/6 Estimated shape parameters of the three subpopulations . . . . . . . . . . 566

17/7 Mean ages and life expectation . . . . . . . . . . . . . . . . . . . . . . . . 566

18/1 DUANE’s plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

19/1 Distribution-free estimate of R(x) for dataset #1 . . . . . . . . . . . . . . 590

19/2 R̂(x) and R(x) for dataset #1 with lower 95% confidence limit R̂L(x) . . . 593

21/1 Exact and approximate power functions of testing H0 : c ≤ 2 against HA :
c > 2 with α = 0.05 for an uncensored sample . . . . . . . . . . . . . 627

21/2 Exact and approximate power functions of testing H0 : b ≤ 80 against

HA : b > 80 with α = 0.05 (uncensored sample) . . . . . . . . . . . . 637

22/1 EDF for dataset #1 and F0(x |θ) = 1 − exp

{
−
( x

80

)1.3}
. . . . . . . . . 657

22/2 EDF and F0(x |θ) = 1 − exp
{
− (x

/
80)1.3

}
for dataset #1 censored at

r = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

22/3 EDF for transformed dataset #1 and CDF of the extreme value distribution

of the maximum with η̂ = −4.5973 and φ̂ = 0.3853 . . . . . . . . . . . 667

22/4 WEIBULL and gamma distributions fitted to dataset #1 . . . . . . . . . . . 681

22/5 WEIBULL and lognormal densities fitted to dataset #1 . . . . . . . . . . . 684



List of Tables

1/1 Comparison of the extreme value densities . . . . . . . . . . . . . . . . . 7

2/1 Relations among the six functions describing stochastic lifetime . . . . . . 31

2/2 Mean, median and mode of the reduced WEIBULL distribution for

3.20 ≤ c ≤ 3.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2/3 Skewness properties of a WEIBULL density . . . . . . . . . . . . . . . . . 96

3/1 Special cases of the generalized gamma distribution . . . . . . . . . . . . . 112

3/2 Values of c, Γ1,
√

Γ2 − Γ2
1 and Γ1

/√
Γ2 − Γ2

1 . . . . . . . . . . . . . . 113

3/3 Values of Φ(τ), F
(i)
W (τ) and ∆(i)(τ) for i = 1, 2, . . . , 6 . . . . . . . . . 115

5/1 Coefficients to approximate the covariance of order statistics from the re-

duced WEIBULL distribution . . . . . . . . . . . . . . . . . . . . . . . 241

5/2 Means, variances and covariances of all order statistics for n = 10 and c = 2
and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5/3 Means, variances and covariances of all order statistics of the reduced

Log-WEIBULL variate for n = 10 . . . . . . . . . . . . . . . . . . . . 249

7/1 WEIBULL applications in material science, engineering, physics and chemistry 275

7/2 WEIBULL applications in meteorology and hydrology . . . . . . . . . . . 277

7/3 WEIBULL applications in medicine, psychology and pharmacy . . . . . . . 278

7/4 WEIBULL applications in economics and business administration . . . . . 280

7/5 WEIBULL applications in quality control — acceptance sampling . . . . . 280

7/6 WEIBULL applications in quality control — statistical process control . . . 281

7/7 WEIBULL applications in maintenance and replacement . . . . . . . . . . 282

7/8 WEIBULL applications in inventory control . . . . . . . . . . . . . . . . . 283

7/9 WEIBULL applications in warranty . . . . . . . . . . . . . . . . . . . . . 283

7/10 WEIBULL applications in biology and forestry . . . . . . . . . . . . . . . 284

7/11 WEIBULL applications in geology, geography and astronomy . . . . . . . 284

7/12 WEIBULL applications in miscellaneous fields . . . . . . . . . . . . . . . 284

8/1 Scaled censoring time T/b to save 100w% time against Xn.n on the average 295

8/2 REET when X ∼We(0, b, c) . . . . . . . . . . . . . . . . . . . . . . . . 300

9/1 Plotting positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

9/2 Dataset #1
[
X ∼ We(0, 100, 2.5)

]
and diverse plotting positions . . . . . 338

9/3 Estimates of b and c for dataset #1 depending on the choice of the plotting

position and of the kind of regression . . . . . . . . . . . . . . . . . . . 339

9/4 Estimates of b and c for dataset #1 singly censored at T = 100 depending on

the choice of the plotting position and of the kind of regression . . . . . 340



XXII List of Tables

9/5 Estimates of b and c for dataset #1 type-II singly censored at x15:20 depend-

ing on the choice of the plotting position and of the kind of regression . 341

9/6 HJ-estimate and KM-estimate of R(x) for randomly censored dataset #1 . 344

9/7 DODSON’S estimation procedure for plotting positions belonging to the ran-

domly censored dataset #1 . . . . . . . . . . . . . . . . . . . . . . . . 345

9/8 Hazard plotting for randomly censored dataset #1 . . . . . . . . . . . . . . 347

9/9 Ordered dataset #2 from We(15, 30, 2.5) . . . . . . . . . . . . . . . . . . 348

10/1 Biases, variances and MSEs of estimators for a∗ and b∗ with n = 6 . . . . 359

10/2 First and second moments of the ordered and reduced Log-WEIBULL statis-

tics for n = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

10/3 Rank vectors, their probabilities and indicator matrices . . . . . . . . . . . 368

10/4 Relationships between the coefficients, MSEs and parameter estimators in

the BLU and BLI approaches . . . . . . . . . . . . . . . . . . . . . . . 373

10/5 Efficiencies of linear unbiased estimators for the Log-WEIBULL distribution 378

10/6 Components for the ABLIEs of a∗ and b∗ . . . . . . . . . . . . . . . . . . 386

10/7 BLUES of a∗ and b∗ based on k = 2 order statistics with optimum ranks,

coefficients, variances, covariances and relative efficiencies . . . . . . . 388

10/8 BLUES of a∗ and b∗ based on k = 3 order statistics with optimum ranks,

coefficients, variances, covariances and relative efficiencies . . . . . . . 389

10/9 BLUEs of a∗ and b∗ based on k = 4 order statistics with optimum ranks,

coefficients, variances, covariances and relative efficiencies . . . . . . . 390

10/10 Asymptotically optimum spacings λi, percentiles ui, coefficients ai and bi
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ĉ

c
− E

(
ĉ
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I

Genesis, theory and description





1 History and meaning of the

WEIBULL distribution

For more than half a century the WEIBULL distribution has attracted the attention of statis-

ticians working on theory and methods as well as in various fields of applied statistics.

Hundreds or even thousands of papers have been written on this distribution (see the bib-

liography in Part III) and the research is ongoing.1 Together with the normal, exponential,

χ2−, t− and F−distributions the WEIBULL distribution is — without any doubt — the

most popular model in modern statistics. It is of utmost interest to theory–orientated statis-

ticians because of its great number of special features and to practitioners because of its

ability to fit to data from various fields, ranging from life data to weather data or obser-

vations made in economics and business administration, in hydrology, in biology or in the

engineering sciences (see Chapter 7).

The aim of this first section is to trace the development of the distribution from its early

beginnings in the 1920s until 1951, when it was presented to a greater public by WEIBULL.

We will also comment on the physical meaning and some interpretations of the WEIBULL

distribution. An enumeration and an explanation of how and where it has been applied

successfully is delayed until the introductory section of Part II.

1.1 Genesis of the WEIBULL distribution2

Quite often a scientific method, a procedure, a theorem or a formula does not bear the

name of its true discoverer or its original author. A famous example is the GAUSS dis-

tribution, better known under the neutral name “normal distribution.” The earliest pub-

lished derivation [as a limiting form of the binomial probability distribution Pr(X = k) =(n
k

)
P k (1 − P )n−k for P fixed and n → ∞] seems to be that of ABRAHAM DE MOIVRE

(1667 – 1754) in a pamphlet dated November 12, 1733 and written in Latin. An En-

glish translation of this pamphlet with some additions can be found in the second edition

(1738) of his famous book entitled The Doctrine of Chance; or a Method of Calculating

the Probability of Events in Play, dedicated to NEWTON. In 1774 PIERRE SIMON DE

LAPLACE (1749 – 1827) obtained the normal distribution, as an approximation to the hy-

pergeometric distribution and four years later he advocated the tabulation of the probability

integral Φ(u) =
∫ u
−∞

(
σ
√

2π
)−1

exp(−x2/2) dx. Finally, in “Theoria Motus Corporum

Coelesticum” (=̂ Theory of motion of celestial bodies) from 1809 and in “Bestimmung

der Genauigkeit von Beobachtungen” (=̂ Determining the accuracy of observations) from

1816 CARL FRIEDRICH GAUSS (1777 – 1855) derived the distribution as a kind of error

1 Asking for references on the keyword “WEIBULL distribution” on the Internet, e.g., using Google, re-

trieves 119,000 entries.

2 Suggested reading for this section: HALLINAN (1993), RINNE (1995).
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law governing the size of errors made when measuring astronomical distances.

The history and discovery of what is now known as the WEIBULL distribution is even more

exciting than that of the normal distribution, which lasted 60 to 70 years. The key events

in the derivation of the WEIBULL distribution took place between 1922 and 1943. This

process is so astonishing because there were three groups of persons working independently

with very different aims, thus forming a chain of three links. WALODDI WEIBULL (1887 –

1979) is the last link of this chain. The distribution bears his name for good reasons because

it was he who propagated this distribution internationally and interdisciplinarily. Two of

the approaches leading to this distribution are located in engineering practice and are more

or less heuristic whereas the third approach, the oldest and purely scientific one, is based

on theoretical reasoning and is located in research on statistical methods and probability

theory.

1.1.1 Origins in science3

The WEIBULL distribution with density function (DF)4

f(x | a, b, c) =
c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
; x ≥ a; a ∈ R; b, c ∈ R+; (1.1a)

cumulative distribution function (CDF)

F (x | a, b, c) :=

x∫

a

f(u | a, b, c) du = 1 − exp

{
−
(
x− a

b

)c}
; (1.1b)

and hazard rate (HR)

h(x | a, b, c) :=
f(x | a, b, c)

1 − F (x | a, b, c) =
c

b

(
x− a

b

)c−1

(1.1c)

is a member of the family of extreme value distributions. These distributions are the limit

distributions of the smallest or the greatest value, respectively, in a sample with sample size

n→ ∞.

For a finite sample of size n with each sample variable Xi (i = 1, 2, . . . , n) being indepen-

dently and identically distributed with DF f(x) and CDF F (x), we define the two statistics

Yn := min
1≤i≤n

{Xi} (1.2a)

and

Zn := max
1≤i≤n

{Xi} . (1.2b)

3 Suggested reading for this section: EPSTEIN (1960), GUMBEL (1954, 1958), LEADBETTER (1974),

THEILER/ TÖVISSI (1976).

4 The functions given by (1.1a) to (1.1c) and their parameters will be discussed thoroughly in Sections 2.2

to 2.4.
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The distribution of Yn, the sample minimum, is found as follows:

Pr(Yn > y) = Pr(Xi > y ∀ i)
= Pr(X1 > y, X2 > y, . . . , Xn > y)

=
[
1 − F (y)

]n
.

Therefore,

FYn(y) := Pr(Yn ≤ y) = 1 −
[
1 − F (y)

]n
(1.3a)

is the CDF and

fYn(y) = n f(y)
[
1 − F (y)

]n−1
(1.3b)

is the corresponding DF.

The CDF of Zn, the sample maximum, is obtained as follows:

FZn(z) := Pr(Zn ≤ z) = Pr(Xi ≤ z ∀ i)

= Pr(X1 ≤ z, X2 ≤ z, . . . , Xn ≤ z)

=
[
F (z)

]n
. (1.4a)

The corresponding DF is

fZn(z) = n f(z)
[
F (z)

]n−1
. (1.4b)

The limiting distribution for n → ∞ of both Yn and Zn is degenerated. So it is quite

natural to investigate under which circumstances there will exist a non–trivial limiting ex-

treme value distribution and what it looks like. The search for an answer started in the

1920s. The opening paper from 1922 is a fundamental contribution of LADISLAUS VON

BORTKIEWICZ,5 1868–1931, on the range and the mean range in samples from the normal

distribution as a function of the sample size.

He drew attention to the fact that the largest normal values are new variates having dis-

tributions of their own. He thus deserves credit for having clearly stated the problem. In

the following year, 1923, RICHARD VON MISES, 1883–1953, introduced the fundamental

notion of the expected largest value without using this term. This was the first step toward

a knowledge of the asymptotic distribution for normal observations.

The first study of the largest value for other than the normal distribution was by E.L. DODD

(1923). He was the first to calculate the median of the largest value. The next progress was

by L.H.C. TIPPETT (1925) who calculated the numerical values of the probabilities for the

largest normal value and the mean range.

The first paper based on the concept of a class of initial distributions was by MAURICE

FRÉCHET, 1878–1973. He was also the first to obtain an asymptotic distribution of the

largest value. FRÉCHET’s paper of 1927, published in a remote Polish journal, never gained

the recognition it merited. Because R.A. FISHER, 1890–1963, and L.H.C. TIPPETT pub-

lished a paper in 1928 that is now referred to in all works on extreme values.

5 Biographical and bibliographical notes on most of the personalities mentioned in this section can be

found on the Internet under http://www-history.mcs.st-and.ac.uk/history/.
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They found again, independently of FRÉCHET, his asymptotic distribution and constructed

two other asymptotes. The key passage on the limiting distribution of the sample maximum

reads as follows (Fisher/Tippett, 1928, p. 180):

Since the extreme member of a sample m · n may be regarded as the extreme

member of a sample n of the extreme members of samples of m, and since, if

a limiting form exists, both of these distributions will tend to the limiting form

as m is increased indefinitely, it follows that the limiting distribution must be

such that the extreme member of a sample of n from such a distribution has

itself a similar distribution.

If P is the probability of an observation being less than x, the probability that

the greatest of a sample of n is less than x is Pn, consequently in the limiting

distribution we have the functional equation

Pn(x) = P (an x+ bn),

the solutions of this functional equation will give all the possible forms.

FISHER and TIPPETT as well as FRÉCHET started from a stability postulate, which means

the following: Assume we have m samples each of size n. From each sample the largest

value is taken, and the maximum of the m samples of size n is, at the same time, the

maximum in a sample of size m · n. Therefore, FISHER and TIPPETT say, the distribution

of the largest value in a sample of size m · n should be the same as the distribution of

the largest value in a sample of size n, except for a linear transformation. This postulate

is written in the above cited functional equation. FISHER and TIPPETT then continue to

show that the solutions can be members of three classes only, writing (Fisher/Tippett, 1928,

p. 182–183):

The only possible limiting curves are therefore:

I. dP = e−x−e
−x

dx, . . .

II. dP =
k

xk+1
e−x

−k
dx, . . .

III. dP = k (−x)k−1 e−(−x)k
dx, . . .

This is exactly the order of enumeration which later led to the names of these classes:

extreme value distribution (for the maximum) of type I, type II and type III.

Because of

min
i
{Xi} = −

(
max
i

{−Xi}
)
, (1.5)

the distributions of the asymptotically smallest and largest sample values are linked as

follows, Y being the minimum variable and Z the maximum variable:

Pr(Y ≤ t) = Pr(Z ≥ −t) = 1 − Pr(Z ≤ −t), (1.6a)

FY (t) = 1 − FZ(−t), (1.6b)

fY (t) = fZ(−t). (1.6c)
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The Xi are supposed to be continuous. Taking the notation of FISHER and TIPPETT, we

thus arrive at the following pairs of extreme value distributions, giving their DFs.

Table 1/1: Comparison of the extreme value densities

Maximum Minimum

Type I f(x) = exp(−x− e−x), x ∈ R f(x) = exp(x− ex), x ∈ R (1.7a/b)

Type II f(x) =
k

xk+1
exp(−x−k), x ≥ 0 f(x)=

k

(−x)k+1
exp
[
− (−x)(−k)

]
, (1.8a/b)

x ≤ 0

Type III f(x) = k (−x)k−1 exp[−(−x)k], f(x)=k xk−1 exp(−xk), x ≥ 0 (1.9a/b)

x ≤ 0

The left–hand (right–hand) part of Fig. 1/1 shows the densities of the largest (smallest)

sample value, where k = 2 has been used. The graph of the maximum–density is the

reflection of the type–equivalent minimum–density, reflected about the ordinate axis.

Figure 1/1: Densities of the extreme value distributions

Comparing (1.9b) to (1.1a) when a = 0, b = 1 and c = k, one easily recognizes that

the WEIBULL distribution is the extreme value distribution of type III for the sample min-

imum.6 In their paper of 1928 FISHER and TIPPETT did not write down the formulas

pertaining to the sample minimum because considering (1.6c), these formulas seemed to

6 The derivation of the extreme value distribution rests on the assumption of independent sample values.

GALAMBOS (1981) investigates what type of dependence might also lead to a WEIBULL distribution.
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be obvious to them.7 Furthermore, they did not think it would be necessary to general-

ize the distributions by introducing a location parameter a as well as a scale parameter

b. The main part of their paper deals with the type–I–maximum distribution being the

most general one of these distributions. Let X2 have a type–II–maximum distribution, then

X = ln
(
Xk

2

)
= k ln(X2) has the type–I–maximum distribution (1.7a). If X3 has a type–

III–maximum distribution, then X = − ln
[(

− X3

)k]
= −k ln

(
− X3

)
will also have

the type–I–maximum distribution with DF (1.7a). That is why the type–I distribution is

referred to as the extreme value distribution.8 FISHER and TIPPETT further show that a

type–I distribution appears if the sample comes from a normal distribution.

The general proof of what kind of parent distribution will lead to what type of extreme

value distribution was given in 1943 by B.V. GNEDENKO, 1912–1995, based on a paper

by R. VON MISES (1936). The resulting type of extreme value distribution depends on the

behavior of the sampled distribution on the relevant side, i.e., on the left–hand (right-hand)

side for the distribution of the minimum (maximum). The main results are:

• Type I will come up if the sampled distribution is unlimited toward the relevant side

and is of exponential type on that side, meaning that F (x), the CDF of the sam-

pled distribution, is increasing toward unity with x → ∞ (decreasing toward zero

with x → −∞) at least as quickly as an exponential function. Prototypes are the

exponential, normal and χ2–distributions.9

• Type II will come up if the sampled distribution has a range which is unlimited from

below (for the minimum type) or unlimited from above (for the maximum type) and

if its CDF is of CAUCHY–type. This means, that for some positive k and A:

lim
x→∞

xk
[
1 − F (x)

]
= A in case of a maximum or

lim
x→−∞

(−x)k F (x) = A in case of a minimum.

The convergence of F (x) or
[
1 − F (x)

]
is slower than exponential. The prototype

is the CAUCHY distribution itself.

• Type III will come up if the sampled distribution has a range which is bounded from

above (for the maximum type) or bounded from below (for the minimum type), the

bound being x0.10 Besides, F (x) must behave like

β (x0 − x)α for some α, β > 0 as x→ x−0 (case of a maximum) and like

β (x− x0)
α for some α, β > 0 as x→ x+

0 (case of a minimum).

7 The title of their paper clearly tells us that they had in mind the sample minimum too.

8 Another name is doubly exponential distribution.

9 REVFEIM (1984) gives an interesting physical model — located in meteorology — which leads to the

type–I distribution.

10 We will revert to this approach in Sect. 1.2.1.
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A prototype is the uniform distribution over some interval [A,B].

We finally mention that a type–II distribution is called FRÉCHET distribution. A type–I

distribution which has been studied extensively and applied frequently by E.J. GUMBEL,

1891 – 1966, see GUMBEL (1954, 1958), is called GUMBEL distribution.11

1.1.2 Origins in practice

In the 1930s we can locate two approaches in the engineering sciences that led to the

WEIBULL distribution. These approaches are independent among themselves and inde-

pendent of the mathematical/statistical papers on extreme values.

1.1.2.1 Grinding of material12– ROSIN, RAMMLER and SPERLING

An important branch in material sciences is the grinding and pulverization of solid mate-

rial. There are a lot of technical applications for which the distribution of ground material

according to the diameter of the “seed,” normally in the µm-band, is of high interest. Ex-

amples are sand of quartz, cement, gypsum, coal or pulverized metals. The reaction time,

the yield or the quality of a (chemical) process using this ground material depends on the

size of the seed and its surface. Engineers have developed several methods to determine

size distributions by experiment.

A very intuitive method is sieving. A given quantity M of the material is poured on a

set of sieves with standardized width of mesh x1 < x2 < . . . < xt. Then, the remain-

der R1, R2, . . . , Rt on each sieve is measured as a proportion of M . In most cases

the relationship between x, the width of mesh (=̂ diameter of the seed), and the relative

remainder R can be described reasonably well by the following formula, first given by

ROSIN/RAMMLER/SPERLING (1933):

R(x) = exp
[
− (x/b)c

]
. (1.10)

(1.10) is nothing but the complement of the WEIBULL cumulative distribution function in

(1.1b) with a = 0. (1.10) has two parameters. b is called the finesse of grinding, i.e.,

that width of mesh associated with a remainder R = exp(−1) ≈ 0.3679. Formally, b is

a scale parameter.13 Parameter c has no dimension and is a measure of the uniformity of

grinding.

How did ROSIN, RAMMLER and SPERLING arrive at their formula? — RAMMLER (1937,

p. 163) reports as follows:

11 KOGELSCHATZ (1993) gives a biography of EMIL JULIUS GUMBEL. Gumbel’s photo can be found

under www.ub.heidelberg.de.

12 Suggested reading for this section: STANGE (1953a,b).

13 In another context when x stands for lifetime, b is termed characteristic life (see Sect. 2.2.1).
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Original German text English translation

Wahrscheinlichkeitsbetrachtungen,

die wir zunächst anstellten, lieferten für

die Gewichtsverteilungskurve die Form

yG=f(x)=
dD

dx
=−dR

dx
=

ax2 e−b x
2
, (4)

We started from probabilistic reasoning14

which led to the weight distribution of the

form

yG=f(x)=
dD

dx
=−dR

dx
=

ax2 e−b x
2
, (4)

worin a und b Verteilungsfestwerte sind,

. . . , yG gibt bestimmungsgemäß den Ge-

wichtsanteil aller Körner von der Korn-

größe x an. Die praktische Nachprüfung

zeigte, daß diese Gleichung keine all-

gemeine Gültigkeit beanspruchen konnte,

sondern, daß die Exponenten nicht untere-

inander gleich und nicht gleich 2 sein kon-

nten, während der allgemeine Aufbau of-

fenbar zutraf.

a and b being fixed parameter values,15

. . . , according to the rules yG is the weight

proportion of all seeds having size x.

Practical verification showed that the for-

mula could not claim general validity but

that the exponents could not be equal to

one another and could not be equal to 2

whereas the general structure of the for-

mula seemed to be correct.

Auf verschiedenen Wegen vorgehend fan-

den schließlich Sperling einerseits, Rosin

und ich andererseits annähernd gleichzei-

tig die gesuchte Gleichung der Korngrö-

ßenzusammensetzung. Sperling ging

anschauungsgemäß von der häufigsten

Verteilungsform . . . aus und legte ihr die

Beziehung

f(x) = axm e−b x
n

(5)

Finally, working on different routes Sper-

ling on the one hand and Rosin and I

on the other hand found the equation of

the composition of the seeds nearly at

the same time.16 Sperling — by visual

perception — started from the most fre-

quent form of a distribution17 . . . taking

the equation

f(x) = axm e−b x
n
. (5)

bei. Er führte dann einen der beiden Ex-

ponenten auf den anderen zurück, indem

er

m = n− 1 (6)

Then, he reduced one of the exponents to

the other exponent by equating

m = n− 1. (6)

setzte, womit die Gleichung in

geschlossener Form integrierbar wird

D = F (x) =
a

n b

(
1 − e−b x

n)
. (7)

This leads to an equation to be integrated

in closed form

D = F (x) =
a

n b

(
1 − e−b x

n)
. (7)
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Original German text English translation

Für xmax = s wird D = 100, woraus man

weiter erhält

a =
100n b

1 − e−b sn . (8)

xmax = s leads to D = 100 and further to

a =
100n b

1 − e−b sn . (8)

Hierin kann e−b s
n ≈ 0 gesetzt werden.

Dann ergibt sich

D = F (x) = 100
(
1 − e−b x

n)
, (9)

In (8) one can set e−b s
n ≈ 0. So the result

is

D = F (x) = 100
(
1 − e−b x

n)
, (9)

R = 100 − F (x) = 100 e−b x
n
, (10) R = 100 − F (x) = 100 e−b x

n
, (10)

f(x) = 100n b xn−1 e−b x
n
. (11) f(x) = 100n b xn−1 e−b x

n
. (11)

Die Ableitung ist also spekulativer Natur,

indem von einer der Hauptformen der

Kornverteilungskurve erfahrungsgemäß

angepaßten Gleichung ausgegangen wird

. . .

The derivation is speculative in essence

because it starts from an equation which is

fitted to the main form of the distribution

curve by experience . . .

RAMMLER continues to describe the approach made by him and ROSIN giving the same

result. Their heuristic and graphic–oriented approach is based on grinding experiments and

their observation that the passage through the mesh — expressed as a function of the finesse

of the sieve — behaved like a general parabola. After several algebraic manipulations

the equation for R is the same as (10). Further, RAMMLER (1937) reports on a paper

by J.G. BENNETT (1936) based on their paper of 1933. The decisive part that slightly

connects the WEIBULL distribution, heuristically discovered as the law governing the size

distribution of ground material, and the WEIBULL distribution, theoretically derived as the

limit distribution of the smallest sample value by FISHER and TIPPETT, reads as follows

(RAMMLER, 1937, p. 164):

14 The paper does not contain any details about this kind of reasoning. (Remark of the author)

15 D is the passage through the mesh and is thus the complement to R. (Remark of the author)

16 At this point RAMMLER cites the paper from 1933 of ROSIN, RAMMLER and SPERLING. (Remark of

the author)

17 This is a density which is skewed to the right and has a mode not on the border of the domain. (Remark

of the author)
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Original German text English translation

Bennett hat nun versucht, durch

physikalische und wahrscheinlichkeit-

stheoretische Betrachtungsweise des

Zerkleinerungsvorgangs das praktische

Ergebnis theoretisch zu unterbauen. Er

geht dabei von der bekannten Überlegung

aus, daß, da die Geschwindigkeit der

Druckfortpflanzung sehr groß, verglichen

mit der elastischen Deformation ist, der

Bruch an Schwächestellen ohne Rücksicht

auf ihre Lage, eintreten wird.

Bennett now tried to support the practi-

cal findings by physical and probabilistic

reasoning. He starts from the well–known

consideration that the breaking takes place

at weak points (emphasis added) irrespec-

tive of their position, because the velocity

of the propagation of pressure is very high

compared to the elastic deformation.

The weakness of material and its breaking are explicitly dealt with in the third and last

approach undertaken by WEIBULL in 1939.

1.1.2.2 Strength of material18— WEIBULL

In 1939 the Swedish engineer WALODDI WEIBULL19 published two reports on the strength

of material in a series edited by the Royal Swedish Institute for Engineering Research.

In “A Statistical Theory of the Strength of Material” (1939a) the distribution function

is introduced, empirically based on observations experimentally obtained from tensile,

bending and torsional tests on rods made of stearic acid and plaster–of–Paris. In “The

Phenomenon of Rupture in Solids” (1939b) one can find the moments of this distribu-

tion along with graphical and tabular aids for estimation of the parameters. As with

ROSIN/RAMMLER/SPERLINGS’s approach WEIBULL’s reasoning at the decisive part of

his paper is empirical and heuristic and lacks theoretical argumentation. The relevant text

in WEIBULL (1939a, p. 7) reads as follows:

In a general manner, the distribution curve S1 (Here is a typographical error:

S1 should be Sℓ.) for any length ℓ may be computed from the distribution

curve S1 for the unit of length according to the formula

1 − Sℓ = (1 − S1)
ℓ or

log(1 − S1) = ℓ · log(1 − S1). (4)

(The left–hand side of (4) should be Sℓ.) In this case the volume V of the

stressed system is proportional to the length ℓ, and if S0 is the distribution

curve for that length of rod which corresponds to the unit of volume, we have

log(1 − S) = V · log(1 − S0). (5)

18 Suggested reading for this section: HALLINAN (1993), HELLER (1985), WEIBULL (1939a,b, 1949,

1951, 1952, 1961, 1967a,b), WEIBULL/ODQUIST (1956).

19 Biographical notes may be found in the excursus “The life and œuvre of WALODDI WEIBULL” further

down.
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If we now put B = − log(1 − S) and call B the “risk of rupture,” we find

that B is proportional to the volume and to log(1 − S0) which is a function of

the tensile strength σ alone . . . . In respect of such materials (WEIBULL thinks

of isotropic materials) we find that the risk of rupture dB for a small volume

element dv is determined by the equation

dB = − log(1 − S0) dv. (6)

As has been mentioned in the above, log(1 − S0) is a function of σ only and

is negative because 1 − S0 < 1. Hence we have

dB = −n(σ) dv. (7)

If the distribution of stresses in the body is arbitrary, the risk of rupture is

B =
∫
n(σ) dv (8)

and the probability of rupture

S ≡ 1 − e−B = 1 − e−
R
n(σ) dv. (9)

Notice the distinction made by WEIBULL betweenB, called “risk of rupture,” and S termed

“probability of rupture.” Nowadays, in life testing B is known as the cumulative hazard

rate (CHR), i.e., the integral of (1.1c) leading to H(x) = [(x− a)/b]c, and (9) gives the

well–known relation (see Table 2/1) F (x) = 1− exp
[
−H(x)

]
. Some pages later the text

reads (WEIBULL, 1939a, p. 27/28):

The system of coordinates which is best suited to the computation of distribu-

tion curves follows from, and is motivated by, equation (9) according to which

the probability of rupture is S = 1− e−
R
n(σ) dv. For a uniform distribution of

stresses throughout the volume we have S = 1 − e−V ·n(σ) and, consequently

log log
1

1 − S
= log n(σ) + log V. (76)

Hence it follows that if log log
1

1 − S
is plotted as an ordinate and an arbitrary

function f(σ) as an abscissa in a system of rectangular coordinates, then a

variation of the volume V of the test specimen will only imply a parallel dis-

placement, but no deformation of the distribution function. This circumstance,

of course, facilitates the study, especially if the material function assumes the

form

n(σ) =

(
σ − σu
σ0

)m
(77)

and if we take f(σ) = log(σ − σu) as abscissa, since in that case we obtain

log log
1

1 − S
= m log(σ − σu) −m log σ0 + V (78)

[(78) contains another typographical error. It should read log V instead of V .]

and the distribution will be linear.
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If one sets V = 1 and re–transforms (78) one reaches — written with other symbols — the

WEIBULL distribution function (1.1b) given at the beginning of Sect. 1.1.1.20 WEIBULL

demonstrated the empirical relevance of (78) by a great number of strength experiments

with very different kinds of materials, e.g., porcelain, concrete, cotton, iron and aluminium.

WEIBULL even describes how to estimate σu from the graph mentioned along with (78).

This method is “trial and error” and consists in varying the value of σu until the curved

cloud of points turns into a linearly ordered cloud of points, see the text commenting on

Fig. 2/8.

After World War II WEIBULL in his publications from 1949, 1951, 1952, 1959 and 1961

presented “his” distribution to the international scientific community. The key paper is

WEIBULL (1951). Unfortunately, when reproducing his law of distribution some typo-

graphical errors crept into his papers. Additionally, he used the same symbol with differing

meanings in different papers.21 So in the beginning of the WEIBULL analysis there was

some confusion among the scientists. The NATO–sponsored monograph WEIBULL (1961)

marks the beginning of a paradigmatic change in life testing. Up to the end of the 1950s

lifetime in the engineering sciences was nearly always modeled by the exponential dis-

tribution, see EPSTEIN (1958), which then was gradually substituted by the more flexible

WEIBULL distribution.

Excursus: The life and œuvre of WALODDI WEIBULL22

ERNST HJALMAR WALDODDI WEIBULL was born on June 18, 1887. In the 17th century his family

immigrated into Sweden from Schleswig–Holstein, at that time closely connected to Denmark, but

today a part of Germany.

He became a midshipmen in the Royal Swedish Coast Guard in 1904 and was promoted to sub-

lieutenant in 1907, to Captain in 1916 and to Major in 1940. By then he had finished the military

schools and simultaneously taken courses of the Royal Institute of Technology at Stockholm Uni-

versity, finally graduating as Fil. Lic. in 1924. He left active military service in 1917 and acted in

German and Swedish industries as an inventor (ball and roller bearings, electric hammers) and as

a consulting engineer, for example, with SAAB, an enterprize engaged in producing automobiles,

trucks and arms (combat aircrafts).

He published his first scientific paper on the propagation of explosive waves in 1914. Taking part

in expeditions to marine destinations all over the world on a research ship he could use his newly

developed technique of explosive charges to determine the type of ocean bottom sediments and their

thickness. This method is used today in offshore oil explorations.

WEIBULL became a full professor at the Royal Institute of Technology in 1924, and was awarded

the degree of Ph.D.h.c. at the University of Uppsala in 1932. In 1941 a donation from the Swedish

arms factory BOFORS gave him a personal research professorship in Technical Physics at the Royal

20 WEIBULL (1939b, p. 16/17) arrives at (1.1b) by starting from S = 1− exp


−V

„
σ − σu

σ0

«mff
and by

introducing σV := σ0 V
−1/m.

21 Details pertaining to these observations can be found in Sect. 2.2.4.

22 The greater part of this excursus rests upon R.A. HELLER (1985). Photos of WEIBULL can be found

under www.york.ac.uk and www.bobabernethy.com.



1.2 Physical meanings and interpretations of the WEIBULL distribution 15

Institute of Technology, Stockholm.

In 1953 WEIBULL retired from the Royal Institute of Technology and became professor emeritus.

For most people retirement is the end of a professional career, but not for WEIBULL. His activities

just started in this time. He became a consultant to the Fatigue Branch of the U.S. Air Force Material

Laboratory. For 14 years he conducted research and wrote many papers and technical reports which

provide valuable information and data on material properties and on the analysis of probability

distributions. He conducted work on turbine fatigue and studied new methods of estimating the

parameters of his distribution, WEIBULL (1967a,b). His work on the planning and interpretation

of fatigue data is monumental and resulted in his book from 1961. In 1963, at the invitation of

the late Professor ALFRED FREUDENTHAL, he became Visiting Professor at Columbia University’s

Institute for the Study of Fatigue and Reliability. Here he met E.J. GUMBEL.

In the course of his long and productive career, W. WEIBULL received many honors:

• the honorary doctorate from the University of Uppsala in 1932,

• the Polholm Medal in 1940,

• the ASME medal (American Society of Mechanical Engineers)23 in 1972,

• the Great Gold Medal from the Royal Swedish Academy of Engineering Sciences in 1978,

personally presented to him by the King of Sweden.

We do not hesitate to state that some people blamed WEIBULL for having been strongly engaged in

the arms industry and military research. But as is widely known, inventions and knowledge gained

in the military sphere turn out to be of value in everyday life, sooner or later.

W. WEIBULL did not only leave behind an enormous scientific œuvre but a great family too. He

was proud of his nine children and numerous grand- and great–grandchildren. He worked to the last

day of his remarkable life which completed on October 12, 1979, in Annecy, France.

1.2 Physical meanings and interpretations of the WEIBULL

distribution24

There always exists at least one physical model behind each statistical distribution. This

physical model helps to interpret the distribution and aids to identify and to select an appro-

priate distribution for a given set of empirical data. With respect to the WEIBULL distribu-

tion one can find several physical models that will be presented in the following sections.25

1.2.1 The model of the weakest link

Perhaps the oldest physical model leading to a WEIBULL distribution is connected with

its extreme value origin. Given a physical system consisting of n identical units or items

23 The other recipient of the ASME medal in the same year was astronaut NEIL ARMSTRONG, the first man

on the moon, who probably did not know that his successful voyage was partly due to the pioneering

work of W. WEIBULL.

24 Suggested reading for this section: EPSTEIN (1960), LEMOINE/WENOCUR (1985), MALIK (1975),

REVFEIM (1984), STAUFFER (1979).

25 There are early papers which deny the possibility of giving a physical meaning or interpretation to the

WEIBULL distribution, e.g., GORSKI (1968).
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connected in series, i.e. the system operates as long as all n units operate, and it fails with

the first failure of one of these units. An example of such a series system is a chain which

is as strong as its weakest link or, in other words, the life of the chain ends with the shortest

lifetime of a link.

Let Xi (i = 1, . . . , n) be the random lifetimes of the serially linked units and let the Xi be

independently and identically distributed with CDF F (x). Yn denotes the lifetime of the

series system which is given by

Yn = min
1≤i≤n

{
Xi

}
.

The CDF of Yn has already been derived in (1.3a):

FYn(y) := Pr(Yn ≤ y) = 1 −
[
1 − F (y)

]n
.

In general, it is unpleasant to work with this formula as it involves powers of 1 − F (y).
One can avoid this for large n by using a technique given in CRAMÉR (1971, p. 371). We

define the random variable Un as

Un := nF (Yn). (1.11a)

For any fixed u in [0, n] we have

Pr(Un ≤ u) = Pr
[
nF (Yn) ≤ u]

= Pr
[
Yn ≤ F−1

(u
n

)]
. (1.11b)

Substituting into (1.3a) one easily derives the following distribution function of Un:

Gn(u) = 1 −
(
1 − u

n

)n
. (1.11c)

As n → ∞, the sequence of random variables Un converges in distribution to a random

variable U because the sequence of CDFs Gn(u) converges for any u to the CDF

G(u) := lim
n→∞

Gn(u) = 1 − e−u, u ≥ 0, (1.11d)

with corresponding DF

g(u) := lim
n→∞

gn(u) = e−u, u ≥ 0. (1.11e)

It is clear from (1.11a) that the sequence of random variables Yn converges in distribution

to a random variable Y where

Y = F−1

(
U

n

)
. (1.11f)

Hence, if we can compute F−1(·), then we can determine the distribution of U .

We will now give three examples with different underlying distributions F (x), all leading

to a WEIBULL distribution for Yn.

Example 1: Xi (i = 1, 2, . . . , n) is uniformly distributed in [a, b].
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The CDF of each Xi is

F (x) =





0 for x < a,
x− a

b− a
for a ≤ x ≤ b,

1 for x > b.

(1.12a)

(1.11a) becomes

Un = n
Yn − a

b− a
, (1.12b)

so

Yn ∼ a+
b− a

n
U, (1.12c)

where ∼ reads “is distributed as.” We can state that for large n the variate Yn is exponen-

tially distributed with26

Gn(y) = 1 − exp

(
−n y − a

b− a

)
for a ≤ y ≤ b (1.12d)

and

gn(y) =
n y

b− a
exp

(
−n y − a

b− a

)
for a ≤ y ≤ b. �

(1.12e)

Example 2: Xi (i = 1, 2, . . . , n) is exponentially distributed, i.e., for each Xi we have

F (x) =





0 for x < a,

1 − exp

(
−x− a

b

)
for x ≥ a.

(1.13a)

Here, (1.11a) turns into

Un = n

(
1 − exp

[
−Yn − a

b

])
. (1.13b)

Hence,

Yn ∼ a+ b ln

[
1

1 − U
n

]
= a+ b

[
U

n
+

(
U

n

)2

+ . . .

]
. (1.13c)

Neglecting terms (U/n)k which are O

(
1

n

)
for powers greater than one we have

Yn ∼ a+ b
U

n
. (1.13d)

Thus Yn is, for large n, exponentially distributed with CDF

Gn(y) =





0 for y < a,

1 − exp

[
−n Yn − a

b

]
for y ≥ a.

�

(1.13e)

26 The exponential distribution is a special case (c = 1) of the WEIBULL distribution.
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Example 3: Xi (i = 1, 2, . . . , n) are supposed to be iid where the common distribution is

the power distribution with

F (x) =





0 for x < a,(
x− a

b

)c
for a ≤ x ≤ a+ b,

1 for x > a+ b,

(1.14a)

and

f(x) =





c

b

(
x− a

b

)c−1

for a ≤ x ≤ a+ b,

0 elsewhere.

(1.14b)

It follows from (1.11a) that

Un = n

(
Yn − a

b

)c
. (1.14c)

Hence,

Yn ∼ a+ b

(
U

n

)1/c
. (1.14d)

So, for large n, Yn has the CDF

Gn(y) = 1 − exp

[
−n
(
y − a

b

)c ]
for a ≤ y ≤ a+ b (1.14e)

and the DF

gn(y) = n c

(
y − a

b

)c−1

exp

[
−n
(
y − a

b

)c ]
for a ≤ y ≤ a+ b. �

(1.14f)

Limiting distributions of the kind obtained in the preceding three examples are called type–

III asymptotic distributions of the smallest values. These distributions arise when two con-

ditions are met.

• The range, over which the underlying density is defined, is bounded from below, i.e.,

F (x) = 0 for x ≤ x0 for some finite x0.

• F (x) behaves like β (x− x0)
α, for some α, β > 0 as x→ x+

0 .

Under these conditions, Yn = min
1≤i≤n

{Xi} is asymptotically distributed like the random

variable

x0 + (U/nβ)1/α. The associated CDF is

Gn(y) =





0 for y < x0,

1 − exp
[
− nβ (y − x0)

α
]

for y ≥ x0.
(1.15)
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1.2.2 Two models of data degradation leading to WEIBULL distributed fail-

ures

In some reliability studies, it is possible to measure physical degradation as a function of

time, e.g., the wear of a disc break or a broken block. In other applications actual physical

degradation cannot be observed directly, but measures of product performance degradation,

e.g., the output of a device, may be available. Both kinds of data are generally referred to

as degradation data and may be available continuously or at specific points in time where

measurements are taken.

Most failures can be traced to an underlying degradation process. In some applications

there may be more than one degradation variable or more than one underlying degradation

process. Using only a single degradation variable the failure would occur when this variable

has reached a certain critical level. MEEKER/ESCOBAR (1998, Chapter 13) give many

examples and models of degradation leading to failure. Generally, it is not easy to derive

the failure distribution, e.g., the DF or the CDF, from the degradation path model. These

authors give an example leading to a lognormal failure distribution. We will give two

examples of degradation processes which will result in the WEIBULL failure distribution.

A promising approach to derive a failure time distribution that accurately reflects the dy-

namic dependency of system failure and decay on the state of the system is as follows:

System state or wear and tear is modeled by an appropriately chosen random process —

for example, a diffusion process — and the occurrences of fatal shocks are modeled by a

POISSON process whose rate function is state dependent. The system is said to fail when

either wear and tear accumulates beyond an acceptable or safe level or a fatal shock occurs.

The shot–noise model27 supposes that the system is subjected to “shots” or jolts according

to a POISSON process. A jolt may consist of an internal component malfunctioning or an

external “blow” to the system. Jolts induce stress on the system when they occur. However,

if the system survives the jolt, it may then recover to some extent. For example, the mor-

tality rate of persons who have suffered a heart attack declines with the elapsed time since

the trauma. In this case, the heart actually repairs itself to a certain degree. The shot–noise

model is both easily interpretable and analytically tractable.

The system wear and tear is modeled by a BROWNIAN motion with positive drift. The

system fails whenever the wear and tear reaches a certain critical threshold. Under this

modeling assumption, the time to system failure corresponds to the first passage time of the

BROWNIAN motion to the critical level, and this first passage time has an inverse GAUS-

SIAN distribution, which is extremely tractable from the viewpoint of statistical analysis.

Based on the two foregoing models, an appropriate conceptual framework for reliability

modeling is the following: Suppose that a certain component in a physical system begins

operating with a given strength or a given operational age (e.g., extent of wear–and–tear

or stress), denoted by x, that can be measured in physical units. Suppose that, as time

goes on, component wear–and–tear or stress builds up (loss of strength with increasing

age), perhaps in a random way. (The concept of wear–and–tear buildup is dual to that of

27 A reference for this model and its background is COX/ISHAM (1980).
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declining strength.) For instance, consider the thickness of tread on a tire. The tread wears

down with use. In some cases this wear may be offset, but only in part, by maintenance

and repair. Such considerations suggest modeling component strength (or susceptibility to

failure) by a stochastic process X = {X(t), t ≥ 0} with starting state corresponding to

the initial level of strength (or initial operational age) x. This process X should tend to drift

downward (decrease) with time as wear builds up; if X is the operational age or wear–and–

tear process, then it should tend to drift upward. The component may fail when either wear

alone has reduced strength below some safe level or at the occurrence of some hazardous

event (e.g., an external shock such as the tire’s abrupt encounter with a sharp portion of road

surface) severe enough to overcome current strength. We denote by τ the time of passage of

the X process to the critical level. It seems reasonable that the rate of fatal shocks should

be modeled as a decreasing function of component strength or an increasing function of

component wear–and–tear. We denote by k(x) the POISSON killing rate associated with

state x and by T the time to failure of the component. With the above conventions and

modeling assumptions in place, we can express the probability of surviving beyond time t,
starting with strength or operational age x, as follows:

Px(T > t) = Ex



exp


−

t∫

0

k
[
X(s)

]
ds


 I{τ>t}



 . (1.16a)

Suppose that component strength evolves in accordance with a diffusion process X =
{X(t), t ≥ 0} having drift parameter µ(x) and diffusion coefficient σ2(x) in state x >
0. Then µ(x) can be interpreted as the rate at which wear and tear builds up in state x.

(Alternatively, if component wear builds up according to X, then µ(x) can be interpreted

as the rate at which strength declines in state x.) If T is the time to failure of the component,

we assume that

Pr
(
T ≤ h |T > s, X(s) = x

)
= k(x)h + o(h) ∀ s,

so that k(x) can be interpreted as the POISSON rate of occurrence of a traumatic shock of

magnitude sufficient to overcome, or “kill,” a component of strength x.

Now let w(x, t) be the probability that a component of strength x survives beyond time t,
that is

w(x, t) = Px(T > t). (1.16b)

Indeed, w(x, t) coincides with the right–hand side of (1.16a) if τ is the first passage time

of the diffusion X to the critical level. It follows from the backward differential equation

for the KAC functional of the diffusion process X that w(x, t), satisfies

∂w(x, t)

∂t
= −k(x)w(x, t) + µ(x)

∂w(x, t)

∂t
+
σ2(x)

2

∂2w(x, t)

∂x2
. (1.16c)

The initial condition for this differential equation is determined by the critical strength or

wear threshold ∆, allowing 0 ≤ ∆ ≤ +∞. If the diffusion process represents strength,
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then

w(x, t) =





1 if x > ∆,

0 otherwise.

If it represents wear or stress, then

w(x, t) =





1 if x < ∆,

0 otherwise.

The solution of (1.16c) is not always easy to find. Depending on the infinitesimal param-

eters µ(x) and σ2(x), on the killing rate function k(x) and on the failure threshold ∆,

the solution sometimes may be given in explicit form and in other cases we have to use a

computational algorithm. Different examples are given by LEMOINE/WENOCUR (1985).

We will present a subclass of the model described leading to some well–known lifetime

distributions, the WEIBULL distribution being one of them. In this subclass the buildup of

wear (or loss of strength) is assumed to be deterministic, and thus σ2(x) = 0. Under this

assumption, the system state process X = {X(t), t ≥ 0} satisfies the following equation

X(t) = x+

t∫

0

µ
[
X(s)

]
ds. (1.17a)

X may also be expressed by the differential equation

dX(t) = µ
[
X(s)

]
dt (1.17b)

with initial condition X(0) = x. The probability of system survival through time t is then

given by

Pr(T > t) = exp



−

t∫

0

k
[
X(s)

]
ds



 I{τ>t}. (1.18a)

(1.18a) can be interpreted in terms of standard reliability theory. To simplify the notation,

suppose for now that ∆ = +∞ and x = 0 and write Pr(T > t) in place of w(x, t). First,

we need to recall the hazard rate function h(t), which is usually defined by

h(t) =
−dPr(T > t)/dt

Pr(T > t)
, see Table 2/1 and (2.4).

Integrating h(·) over [0, t] and assuming Pr(T = 0) = 0 show that

t∫

0

h(s) ds = − ln
[
Pr(T > t)

]
.
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Consequently,

exp


−

t∫

0

h(s) ds


 = Pr(T > t). (1.18b)

Comparing (1.18a) and (1.18b), we see that

h(t) = k
[
X(t)

]
. (1.18c)

Therefore, the failure rate at time t is equal to the killing rate that corresponds to the “system

state” at time t.

Moreover, equations (1.17b) and (1.18c) enable us to reinterpret reliability distributions in

terms of a killing rate function and a system evolution process. We will only investigate the

WEIBULL distribution (1.1a–c) with a = 0:

Pr(T > t) = exp

[
−
(
t

b

)c ]
, t ≥ 0. (1.19a)

Then

k
[
X(t)

]
= h(t) =

d(t/b)c

dt
=
c

b

(
t

b

)c−1

. (1.19b)

Suppose that c 6= 1. Taking k(x) = xc−1 gives

X(t) = t

[
c

(
1

b

)c ]1/(c−1)

. (1.19c)

Setting δ :=

[
c

(
1

b

)c ]1/(c−1)

will simplify (1.19c) to

X(t) = δ t. (1.19d)

This implies that the wear rate function is constant, i.e.

µ(x) = δ. (1.19e)

Thus a component’s lifetime has a WEIBULL distribution when the wear rate is constant

and independent of the state and the killing rate is a non–trivial power function of the state.

When the failure threshold ∆ is finite, we will get a truncated WEIBULL distribution.

If c = 1, i.e., the WEIBULL distribution turns into an exponential distribution, then

k
[
X(t)

]
= (1/b)c ∀ t. Thus, either the killing rate function is constant or the wear rate is

zero or both. So, the exponential distribution as a failure model is a strong assumption.

1.2.3 The hazard rate approach

Engineers are interested in studying “wearing styles” and these may be expressed by a

suitable chosen hazard rate h(t). Setting h(t) = β t, β > 0, t ≥ 0 would mean that the
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hazard rate varies only linearly, so we make it more general to cover the non–linear case by

choosing a power function:

h(t) = β tγ , γ > 0. (1.20a)

Now,

h(t) =
f(t)

R(t)
, see (2.4),

and

R(t) = exp

(
− β

γ + 1
tγ+1

)
, see Table 2/1. (1.20b)

Define

η := γ + 1 and θ :=
β

γ + 1
;

then

R(t) = exp(−θ tη)

f(t) = η θ tη−1 exp
(
θ tη
)

(1.20c)

is the WEIBULL distribution in (1.1a–b) written with another set of parameters. Thus,

WEIBULL’s parameter η and θ do have a physical meaning when looked at in terms of β
and γ, the parameters of the basic hazard rate model.

Now we modify the hazard rate of (1.20a) to

h(t) = β
[
(p t)γ1 + (p t)γ2

]
, (1.21a)

where p is the fraction (0 ≤ p ≤ 1) of working time and γ1, γ1 > 1 is the corresponding

intensity of wear. p := 1−p is the portion of time when the device is not busy but still ages

with intensity γ2, 1 ≤ γ2 < γ1. For this type of intermittently working device, we can find

f(t) and R(t) from h(t) of (1.21a). After substituting:

ηi := γi + 1

θi := γi β/(γi + 1)



 i = 1, 2,

we have

f(t) =
[
η1 θ1 (p t)η1−1 + η2 θ2 (p t)η2−1

]
exp
(
−θ1 pη1−1 tη1

)
exp
(
− θ2 p

η2−1 tη2
)
.

(1.21b)

We now look at the two limiting cases. When the device is working constantly (p = 1), the

general density (1.21b) turns into

f(t) = η1 θ1 t
η1−1 exp

(
− θ1 t

η1
)



24 1 History and meaning of the WEIBULL distribution

with η1 as the new intensity of wear. Let p = 0 (the device is not working at all but is still

subject to aging), then

f(t) = η2 θ2 t
η2−1 exp

(
− θ2 t

η2
)

with η2 as the new intensity of aging.

Finally, we modify (1.21a) to

h(t) = β
[
(p t)γ + p

]
. (1.22a)

Physical interpretation of (1.22a) is that the device wears when it works; otherwise it has a

constant hazard rate. (1.22a) generates, after proper substitution,

f(t) =
[
θ2 p+ η1 θ1 (p t)η1−1

]
exp
(
− p θ2 t

)
exp
(
− θ1 p

η1−1 tη1
)
. (1.22b)

1.2.4 The broken-stick model

Another physical interpretation of the WEIBULL distribution not related to failure is given

by STAUFFER (1979) in the context of forestry, where it gives good fit to the tree–diameter

frequency distribution, see GREEN et al. (1993). This approach shows that the WEIBULL

distribution may be used as a size distribution too.

The derivation starts with the so–called broken stick model which was proposed by

MACARTHUR (1957, 1960) for the non–overlapping allocation of a critical resource among

competing species. He suggested that a limiting resource should be expected to be shared

among competing species in amounts proportional to the expected sizes of the pieces of a

randomly broken stick of unit length. If there are k pieces (= species) arranged in decreas-

ing order, the expected size of the i–th piece is given by

E(Xi) =
1

k

k∑

j=i

1

j
. (1.23)

Assuming the abundances, i.e., the number of individuals, of the species are proportional

to these resource allocations, the broken–stick model yields a ranked–abundance list rep-

resenting the ranking of the species in order of decreasing abundance or cardinality. If k
is large, ranked–abundance lists can be converted into species–abundance curves by letting

the abundance X be a continuous random variable with DF f(x) and CDF F (x). Then,

F (x) = Pr(X ≤ x)

= 1 − Pr(X > x)

= 1 − i

k
, (1.24a)

where i is the number of the species corresponding to x on the ranked–abundance list.
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Equating the expected value E(Xi) with xi,

xi =
1

k

k∑

j=i

1

j
(1.24b)

≈ 1

k

k∫

i

1

t
dt, for k being large,

=
1

k
ln

(
k

i

)
,

so that
i

k
≈ e−k xi .

Hence,

F (x) = 1 − e−k x

and

f(x) = k e−k x.

This is the exponential distribution, a special case of the WEIBULL distribution (1.1a,b)

where a = 0, c = 1 and b = 1/k.

In the context of forestry the analogues to species and abundances are the trees and the

diameter of the trees. It will now be shown how the broken–stick model can be generalized

to produce a ranked–diameter allocation list yielding a WEIBULL tree–diameter curve.

We look at the WEIBULL distribution in a slightly reparameterized version with a = 0:

f(y) =
γ

β
yγ−1 exp

(
− yγ

/
β
)
, (1.25a)

F (y) = 1 − exp
(
− yγ

/
β
)
. (1.25b)

Comparing (1.25a,b) with (1.1a,b) we have the following parameter relations:

γ = c; β = bc.

Now we reverse the procedure which led to the derivation of the exponential–abundance

curve from the broken–stick model, applying it here to the WEIBULL distribution

F (y) = 1 − Pr(Y > y)

= 1 − i

k

from the ranked–abundance list. Hence,

i

k
= exp

(
− yγi

/
β
)
.
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Solving for yi we find

yi =
[
β ln(k/i)

]1/γ

=

[
β

k∫

i

1

t
dt

]1/γ

≈
[
β

k∑

j=i

1

j

]1/γ

.

Note that yi can be expressed in terms of the broken–stick model (1.24b):

yi = (β k)1/γ
[
1

k

k∑

j=i

1

j

]1/γ

= (β k)1/γ x
1/γ
i .

This generalization of the broken–stick model produces a WEIBULL tree–diameter curve.

So β and γ effect the perturbation of the broken–stick abundances.

STAUFFER (1979) gives the following interpretations (with proofs) of the parameters β and

γ.

• The reciprocal of γ acts as an index of non–randomness for the diameters (or abun-

dances):

– when 1/γ = 1, the diameters are random as described by the original broken–

stick model;

– when 1/γ < 1, the diameters become more regular or uniform;

– when 1/γ > 1, the diameters become more aggregated or dissimilar.

Thus, γ is related to the numerical differences between the abundances or diameters.

• The parameter β is inversely proportional to the total frequency of allocations k. It

can be shown that

β = const./k,

where const. depends on γ and that

– when γ = 1, const. = 1, so that β = 1/k;

– when γ < 1, const. > 1 and β > 1/k;

– when γ > 1, const. < 1 and β < 1/k.



2 Definition and properties of the

WEIBULL distribution

This chapter gives a complete description of the WEIBULL distribution in the sense of

probability theory. Several functions representing a WEIBULL random variable will be

discussed in their dependence on the three parameters attached to this distribution. Mo-

ments, moment ratios, generating functions, percentiles and other characteristic features

are analyzed too.

2.1 Functions describing lifetime as a random variable

The time span, for which a natural unit is alive or for which a technical unit is functioning,

generally is not predetermined or fixed; instead it has to be regarded as a random variable

X called lifetime. Generally this variable is continuous and non–negative.

There exist several functions which completely specify the distribution of a random vari-

able. In the context of lifetime, six mathematically equivalent functions have evolved:

• the failure density,

• the failure distribution,

• the reliability function,

• the hazard rate,

• the cumulative hazard rate, and

• the mean residual life function.

Each of these functions completely describes the distribution of a random lifetime, and any

one of them unequivocally determines the other five as may be seen from Tab. 2/1.

These six formulas are not the only possible ways to represent a random variable X. Other

representations include the moment generating function E[exp(tX)], the characteris-

tic function E[exp(i tX)], the MELLIN transform E(Xt), the density quantile function

f [F−1(P )], and the total time on test transform
∫ F−1(P )
0 R(x) dx for 0 ≤ P ≤ 1, where

F−1(P ) is the inverse cumulative distribution function. Some of these functions will be

discussed along with their application to the WEIBULL distribution in subsequent sections.

1. The density function (abbreviated by DF) f(x) satisfying

f(x) ≥ 0 ∀ x and

+∞∫

−∞

f(x) dx = 1
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is called failure density and gives the chance of a unit to fail or to die at the age of

x. The unconditional probability of a newly born or newly produced unit to die or

to fail around the age of x is given by

Pr(x− ∆x/2 < X ≤ x+ ∆x/2) ≈ f(x)∆x; ∆x small. (2.1a)

The unconditional probability to reach an age between times xℓ and xu, xℓ < xu, is

given by

Pr(xℓ < X ≤ xu) =

xu∫

xℓ

f(x) dx. (2.1b)

Normally a failure density is skewed to the right.

2. The cumulative distribution function (CDF) is called life distribution or failure dis-

tribution:

F (x) := Pr(X ≤ x) =

x∫

0

f(z) dz. (2.2)

F (x) gives the probability of failing up to time x or having a life span of at most x.

F (x) is a non–increasing function of x satisfying

lim
x→−∞

F (x) = 0 and lim
x→+∞

F (x) = 1.

3. The complementary cumulative distribution function (CCDF) is called survival (sur-

vivor) function or reliability function:

R(x) := Pr(X > x) =

∞∫

x

f(z) dz. (2.3)

R(x) is the probability of surviving an age of x. R(x) is a non–decreasing function

of x satisfying

lim
x→−∞

R(x) = 1 and lim
x→+∞

R(x) = 0.

4. The hazard rate or instantaneous failure rate (HR; also known as rate function

or intensity function) is defined as

h(x) := lim
∆x→0

Pr(x < X ≤ x+ ∆x |X > x)

∆x
=
f(x)

R(x)
(2.4)

and satisfies

h(x) ≥ 0 ∀ x and

∞∫

0

h(x) dx = ∞.

h(x)∆x (∆x small) is the approximate probability of an x–survivor to fail imme-

diately after having reached the age of x. In contrast to (2.1a) this is a conditional
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probability; the condition “X > x” means survivorship of x. The reciprocal of the

HR is known as MILL’s ratio. In reliability work h(x) is popular because it has

the intuitive interpretation as the amount of risk associated with an item which has

survived to time x. In demography and actuarial science h(x) is known as the force

to mortality.1 In lifetables h(x) is approximated by the probability that a person of

age x will die within the following year. Some notions of aging refer to the HR:

h′(x) =
dh(x)

dx





> 0 ∀ x means positive aging;

= 0 ∀ x means no aging;

> 0 ∀ x means negative aging.

5. The cumulative hazard rate H(x), CHR for short, is given by

H(x) :=

x∫

0

h(z) dz. (2.5)

CHR is a non–decreasing function of x satisfying H(0) = 0 and limx→∞H(x) =
∞. H(x) is not normalized to the unit interval [0, 1]. Because H(x) = − ln[R(x)],
H(x) has an exponential distribution with a mean of one. Thus H−1[− ln(1 − Y )]
generates a random number for Monte Carlo simulation when Y is uniformly dis-

tributed on [0, 1]. CHR parallels the renewal function from renewal theory, see

Sect. 4.4.

6. The function

µ(x) := E(X − x |X > x) =

∞∫
x
z f(z) dz

R(x)
− x

=

∞∫
x
R(z) dz

R(x)
, if lim

x→∞
x2 f(x) = 0 (2.6)

is the mean residual life (MRL) of an x–survivor or the additional expected life of

an item aged x. It satisfies the following three conditions given by SWARTZ (1973):

µ(x) ≥ 0;
dµ(x)

dx
≥ −1;

∞∫

0

1

µ(x)
dx = ∞.

1 If X is discrete, the hazard rate is defined as

h(xk) :=
Pr(X = xk)

∞P
j=k

Pr(X = xj)
, k ∈ Z.
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The probable life or total expected life of an item having survived to x is given by

x+ µ(x). Especially,

µ(0) = E(X) = µ =

∞∫

0

R(z) dz (2.7)

is the mean age of a new item.

Table 2/1 shows the relationships among the six functions defined above.

2.2 Failure density

The distribution, originally introduced by WEIBULL in 1939, depends on three parameters.

The corresponding DF will be discussed in Sect. 2.2.1, whereas the densities having two

parameters or one parameter only will be presented in Sect. 2.2.2. The properties of the

reduced WEIBULL density, a special one–parameter version to which all other densities

may be linked easily, are analyzed thoroughly in Sect. 2.2.3.

2.2.1 Three-parameter density

A random variable X has a three–parameter WEIBULL distribution with parameters a, b
and c if its DF is given by

fX(x | a, b, c) =
c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
, x ≥ a. (2.8)

This is the most general form of the classical WEIBULL distribution; newer forms with

more than three parameters are presented in Sect. 3.3.7. The fact that the distribution of X
is given by (2.8) is noted as

X ∼We(a, b, c)
for short.

The first parameter a is defined on R, i.e., −∞ < a < +∞, and is measured in the same

unit as the realization x of X, normally a unit of time (sec., min., h., day, month). In

the context of X being a lifetime a is called delay, guarantee time, minimum life, safe

life, shelf age, more generally it is termed origin or threshold. So the domain of support

for fX(x | a.b, c) is x ≥ a. For x being a duration which normally cannot be negative and

for a being the minimum duration, the domain of a will not be R but the smaller interval

[0,∞).

From a statistical point of view a is a location parameter. Changing a when the other

parameters are held constant will result in a parallel movement of the density curve over

the abscissa (see Fig. 2/1, where FX(x | a, 1, 2) is depicted for a = 0, 0.5 and 1). Enlarging

(reducing) a causes a movement of the density to the right (to the left) so that a is called

shift parameter or translation parameter too. Formally the shifting is expressed as

fX(x | a, b, c) = fX(x− δ | a+ δ, b, c) (2.9a)

with the special case

fX(x | a, b, c) = fX(x− a | 0, b, c). (2.9b)
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Table 2/1: Relations among the six functions describing stochastic lifetime

from

to
HHHHHHHHHHHHHHHHHHHHHH

f(x) F (x) R(x) h(x) H(x) µ(x)

f(x) −
xR
0

f(z) dz
∞R
x

f(z) dz
f(x)

∞R
x

f(z) dz

− ln


∞R
x

f(z) dz

ff
∞R
0

z f(x+ z) dz

∞R
x

f(z) dz

F (x) F ′(x) − 1 − F (x)
F ′(x)

1 − F (x)
− ln{1 − F (x)}

∞R
x

[1 − F (z)] dz

1 − F (x)

R(x) −R′(x) 1 −R(x) − −R′(x)

R(x)
− ln[R(x)]

∞R
x

R(z) dz

R(x)

h(x) h(x) exp


−

xR
0

h(z) dz

ff
1 − exp


−

xR
0

h(z) dz

ff
exp


−

xR
0

h(z) dz

ff
−

xR
0

h(z) dz

∞R
x

exp


−

zR
0

h(v) dv

ff
dz

exp


−

xR
0

h(z) dz

ff

H(x) −d {exp[−H(x)]}
dx

1 − exp{−H(x)} exp{−H(x)} H ′(x) −

∞R
x

exp{−H(z)} dz

exp{−H(x)}

µ(x)

1 + µ′(x)

µ2(x)
× µ(0)×

× exp


−

xR
0

1

µ(z)
dz

ff
1 − µ(0)

µ(x)
×

× exp


−

xR
0

1

µ(z)
dz

ff

µ(0)

µ(x)
×

× exp


−

xR
0

1

µ(z)
dz

ff
1

µ(x)
{1 + µ′(x)}

ln


µ(x)

µ(0)

ff
+

+
xR
0

1

µ(z)
dz

−
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Figure 2/1: WEIBULL densities with differing values of the location parameter

The second parameter b in (2.8) has the domain (0,∞) and is measured in the same unit as

x. When the random variable X is a lifetime, b is called characteristic life for it is typical

that the CDF of all Weibull variates with the same a and b but varying c will intersect at

the point with coordinates x = a + b and FX(a + b | a, b, c) ≈ 0.6321 (cf. Sect. 2.3) i.e.,

the chance of surviving the minimum life a by b units of time is roughly 63.21%. From the

statistical point of view b is a scale parameter. Changing b while a and c are held constant

will alter the density at x in the direction of the ordinate (see Fig. 2/2 where FX(x | 0, b, 2)
is depicted for b = 0.5, 1 and 2). Enlarging b will cause a compression or reduction of the

density and reducing b will magnify or stretch it while the scale on the abscissa goes into

the opposite direction. This means that a growing (shrinking) b will cause the variation of

X to become greater (smaller). Formally the scaling function of b can be seen in

fX(x | a, b, c) = δ fX([x− a] δ + a | a, b δ, c), δ > 0, (2.10a)

with the special case

fX(x | 0, b, c) =
1

b
fX

(x
b

∣∣ 0, 1, c
)
. (2.10b)

Taken together the parameters a and b cause a linear transformation of a lifetime x into a

number u without any dimension:

x
a,b−→ x− a

b
=: u.

Starting with fX(x | 0, 1, c) the combination of (2.9a) and (2.10a) results in the well–known

relation between the DF of a random variable and its linear transformation:

fX(x | a, b, c) =
1

b
fX

(
x− a

b

∣∣∣∣ 0, 1, c
)
. (2.11)
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Figure 2/2: WEIBULL densities with differing values of the scale parameter

The third parameter in (2.8) has the domain (0,∞) and bears no dimension. It is called

WEIBULL–slope, because it gives the slope of the CDF when graphed on WEIBULL–

probability–paper (see Sect. 2.3) or the slope of the CHR graphed on WEIBULL–hazard–

paper, (see Sect. 2.5). From the statistical point of view c is a form parameter or shape

parameter. Varying c causes the graph of the DF to change its form which can be seen

in Fig. 2/3. There fX(x | 0, 1, c) is depicted for c = 0.5, 1, 2, 3.6 and 6.5. The shape

parameter is responsible for the appearance of a WEIBULL density. When c < 1, the

exponential part of the density (2.8) dominates, and the curve is J–shaped. When c > 1,

the effect of the polynomial part of the density becomes more pronounced, and the density

curve becomes skewed unimodal. As each WEIBULL density can be derived from this

special version by means of (2.11), it will be sufficient to study the behavior of this one–

parameter case depending on c only.

Looking at (2.8) one recognizes that the three parameters a, b and c perform a joined linear

and power transformation of x:

x
a,b, c−→

(
x− a

b

)c
= uc.

The relation between an arbitrary three–parameter WEIBULL density and the special den-

sity with a = 0, b = 1 and c = 1 is given by

fX(x | a, b, c) =
c

b

(
x− a

b

)c−1

fX

([
x− a

b

]c ∣∣∣∣ 0, 1, 1
)
. (2.12)

Finally it is shown that (2.8) really is a DF, meaning that the integral of (2.8) over [a,∞) is
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normalized to one:
∞∫

a

fX(x | a, b, c) dx =

∞∫

a

c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
dx

=
∞∫
0

c uc−1 exp
{
− uc

}
du =

[
− exp

{
− uc

}]∞
0

= lim
u→∞

(
− exp

{
− uc

})
+ exp

{
− 0c

}
= 1.

The result is achieved by substitution:

u =
x− a

b
and du =

1

b
dx.

Figure 2/3: WEIBULL densities with differing values of the shape parameter

2.2.2 Two- and one-parameter densities

Neutralizing the parameters a, b and c by setting a = 0 and/or b = 1 and/or c = 1 results

in three two–parameter distributions and three one–parameter distributions. Not all of them

are of equal importance in application.

The densities of the two–parameter versions are

fX(x | 0, b, c) =
c

b

(x
b

)c−1
exp
{
−
(x
b

)c}
, (2.13)

fX(x | a, 1, c) = c (x− a)c−1 exp
{
− (x− a)c

}
, (2.14)

fX(x | a, b, 1) =
1

b
exp

{
−
(
x− a

b

)}
. (2.15)
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Density curves belonging to (2.13) – (2.15) can be seen in Figures 2/1 to 2/3.

(2.13) is by far the most often found two–parameter WEIBULL distribution, called the

scale–shape–version. The reason is that items normally start to fail after the age of x = 0.

If a 6= 0 but known, one can work with (2.9b) so that the shifted variate X − a can be

modeled by (2.13). Density (2.14), the location–shape–version, is unscaled, but shifted

only. Finally (2.15), the shift–scale–version is nothing but the generalized exponential

distribution, (see Sect. 3.2.1).

The densities of the one–parameter distributions are

fX(x | 0, 1, c) = c xc−1 exp(−xc), (2.16)

fX(x | 0, b, 1) =
1

b
exp
(
−x
b

)
, (2.17)

fX(x | a, 1, 1) = exp{−(x− a)}. (2.18)

Corresponding curves can be found in Figures 2/1 to 2/3 also.

The functions (2.17) and (2.18) are nothing but special cases of the generalized exponential

distribution given by (2.15), either only scaled or only shifted. So c = 1 always leads to

an exponential distribution. (2.16), the shape–version, is called reduced or normalized

WEIBULL density. It will be analyzed in Sect. 2.2.3.

The reduced or normalized form within a distribution family, having, among other param-

eters, a location parameter and a scale parameter, results by setting the location parameter

equal to zero and the scale parameter equal to one. Each member of such a family emerges

from the reduced form by a simple linear transformation. If U , the reduced variable, has

the density fU(u), then

X = a+ bU

has the density

fX(x) =





1

b
fU

(
x− a

b

)
for b > 0,

−1

b
fU

(
x− a

b

)
for b < 0.

In most cases it will be sufficient to derive results pertaining to the reduced form from

which the results for the general location–scale–form may be found by re–transformation.

In the following sections this idea is applied to the WEIBULL distribution.

It is to be noticed that, in general, standardizing a variate X to

Y :=
X − E(X)√

Var(X)

giving E(Y ) = 0 and Var(Y ) = 1 does not result in the reduced form unless E(X) = a
and

√
Var(X) = b, as is the case with the normal distribution.
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2.2.3 Analysis of the reduced WEIBULL density2

In this section the shape of the reduced density

fU(u | c) = c uc−1 exp
(
− uc

)
; c > 0, u ≥ 0 (2.19)

in its dependence on c will be investigated, especially the curvature (convex =̂ concave

upward) or concave (=̂ concave downward)), the mode and the points of inflection.

The behavior of fU (u | c) with u→ 0 or u→ ∞ is a follows:

lim
u→0

fU(u | c) =





∞ for 0 < c < 1,

1 for c = 1,

0 for c > 1,

lim
u→∞

fU(u | c) = 0 ∀ c > 0.

The first and second derivatives of (2.19) with respect to u are

f ′U (u | c) = c uc−2
(
c− 1 − c uc

)
exp
(
− uc

)
, (2.20a)

f ′′U (u | c) = c uc−3
{
2 + c

[
c− 3 − 3 (c − 1)uc + c u2 c

]}
exp
(
− uc

)
. (2.20b)

The possible extreme values of fU (u | c) are given by the roots u∗ of f ′U(u | c) = 0:

u∗ =

(
c− 1

c

)1/c
, (2.21a)

where the density is

fU (u∗ | c) = c

(
c− 1

c e

)(c−1)/c

. (2.21b)

The possible points of inflection result from f ′′U (u | c) = 0, a quadratic equation in v = c uc

with roots

u∗∗ =

[
3 (c− 1) ±

√
(5 c − 1) (c− 1)

2 c

]1/c

, (2.22a)

where the density is

fU(u∗∗ | c)=c
[
3(c−1)±

√
(5c−1)(c−1)

2 c

](c−1)/c

exp

{
−3(c−1)±

√
(5c−1)(c−1)

2 c

}
.

(2.22b)

When studying the behavior of fU(u | c), it is appropriate to make a distinction of six cases

regarding c.

2 Suggested readings for this section: FAREWELL/PRENTICE (1977), HAHN/GODFREY/RENZI (1960),

LEHMAN (1963), PLAIT (1962).
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First case: 0 < c < 1

Since u must be positive, one can see from (2.21a) that there is no extreme value u∗. From

(2.22a) it is to be noticed that u∗∗ is negative for c ≥ 1/5 and imaginary if 1/5 < c < 1,

i.e. there is no inflection point as well. The relations

lim
u→0

fU(u | c) = ∞, lim
u→∞

fU (u | c) = 0,

f ′U(u | c) < 0 for u > 0, f ′′U (u | c) > 0 for u > 0

mean that the density comes down from positive infinity at u = 0, decreases monotonically

and is convex. An example for this case is fX(x | 0, 1, 0.5) in Fig. 2/3.

Second case: c = 1

Here (2.19) is the density of the reduced exponential distribution having a left–sided max-

imum u∗ = 0 with fU(0 | 1) = 1. As in the first case the density is decreasing, monotone

and convex (see fX(x | 0, 1, 1) in Fig. 2/3).

Third case: 1 < c ≤ 2

Under this circumstance (2.21a) has an admissible solution3 u∗ ∈
(
0,
√

0.5
]

for which

(2.21b) is negative, i.e., a genuine maximum or mode will exist. The ordinate value

fU(u∗ | c) grows as u∗ moves from 0+ to
√

0.5 with c going from 1+ to 2. Concerning

inflection points there will be only one which is to the right of u =
√

0.5 as is seen from

(2.22a) when the positive sign is used.4 Because of

fU(0 | c) = fU(∞| c) = 0 for c > 1,

the density is not monotone, it rises to a mode and then falls. The density is concave over

(0, u∗∗), where f ′′U(u | c) < 0, and convex over (u∗∗,+∞), where f ′′U (u | c) > 0. An

example of this case is fX(x | 0, 1, 2) in Fig. 2/3.

Fourth case: c > 2

Studying (2.21a) shows again a critical point u∗ < 1 which after substituting into (2.20b)

gives f ′′U (u∗ | c) < 0; thus, there is a mode. But (2.22a) now has two positive values, one

to the left and the other one to the right of the mode. The left (right) point of inflection

u∗∗ℓ (u∗∗r ) results from (2.22a) when the negative (positive) sign is used. As f ′′U (u | c) < 0
over (u∗∗ℓ , u

∗∗
r ), the density is convex whereas it is concave to the left of u∗∗ℓ and to the right

of u∗∗r . The graphs of fX(x | 0, 1, 3.6) and fX(x | 0, 1, 6.5) in Fig. 2/3 depict the behavior

in this case.

Fifth case: c→ 0

The first derivative (2.20a) tells that the density has a great negative slope in the near vicin-

ity to the right of u = 0. The density becomes still steeper with c → 0. For u ≫ 0 the

density goes to zero as does its slope. So for c → 0 the density takes the form of the letter

L and moves toward the axes of the coordinate system (see Fig. 2/4). In the limit c = 0 the

density concentrates at u = 0, meaning that all items of such a population have any life at

all.

3 LEHMAN (1963, p. 34) is wrong when he states that u∗ ∈ (0, 1).

4 The negative sign leads to a real, but non–positive value of u∗∗ which does not count.
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Figure 2/4: Reduced WEIBULL densities with c→ 0

Sixth case: c→ ∞
It can be seen from (2.21a) that the mode u∗ moves very slowly to the right and approaches

u∗max = 1 as c→ ∞. The density at u∗ gradually becomes c/ewhich in turn grows without

limits with c. Thus the ordinate at the mode becomes infinite (see Fig. 2/5). The left–hand

inflection point, which comes into existence for c ≥ 2 and is always to the left of u∗, moves

to the right according to

u∗∗ℓ ≈
[(

3 −
√

5
)/

2
]1/c

≈ 0.38201/c, c≫ 2.

In the limit (c→ ∞) the left–hand inflection point and the mode coincide.

The right–hand inflection point follows an interesting path (see Fig. 2/6). After coming into

existence, i.e., for c > 1, it is always to the right of the mode u∗, e.g., having the values

u∗∗r = 0 for c→ 1+; u∗∗r = 1 for c =
√

2;

u∗∗r =
√

3/2 ≈ 1.2247 for c = 2; u∗∗r = 1 for c→ ∞.

So as c grows, u∗∗r moves to the right for a while and then returns approaching 1 which is

the limit of the mode u∗ for c → ∞. To find the value of c which provides the rightmost

inflection point, (2.22a) has to be differentiated with respect to c and to be equated to 0.

For that purpose one defines

g(c) :=
[
3 (c− 1) +

√
(5 c− 1) (c − 1)

]/
(2 c)

so that

k(c) := g(c)1/c = u∗∗r .
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Figure 2/5: Reduced WEIBULL densities with c→ ∞

It is advisable to determine dk(c)
/

dc = du∗∗r
/

dc using the formula of logarithmic deriva-

tion leading to

k′(c) = k(c)

{
g′(c)
g(c)

1

c
− ln

[
g(c)

]

c2

}
.

Setting k′(c) equal to zero makes k(c) maximal. k′(c) = 0 leads to

c g′(c) = g(c) ln
[
g(c)

]
(2.23)

because c > 0 and k(c) > 0. The numerical solution of (2.23) is c ≈ 2.4625, so u∗∗r ≈
1.2451 is the farthest right inflection point with density fU(1.2451 | 2.4625) ≈ 0.3218.

In the limit (c → ∞) the density concentrates at u = 1 meaning that all units of the

corresponding population live until 1 and then perish simultaneously.

Fig. 2/6 summarizes all findings on the previous pages by showing in the left picture the

simultaneous behavior of mode and inflection points as a function of c. The corresponding

picture on the right traces the movement of the densities at these points.

The right–hand picture shows a crossing of the functions, depicting the densities at u∗∗ℓ and

u∗∗r . This happens for c ≈ 3.447798 giving u∗∗ℓ ≈ 0.57750732 and u∗∗r ≈ 1.21898219
and densityf ≈ 0.77351174. For c < 3.447798 the density at u∗∗ℓ is smaller than at u∗∗r
leading to a positively skewed density (=̂ skewed to the right). The opposite happens for

c > 3.447798 leading to a negatively skewed density (=̂ skewed to the left). From densities

of equal height at the left and right inflection points one might conclude that for this special

value of c the density must be symmetric. But this is not true for two reasons:



40 2 Definition and properties of the WEIBULL distribution

Figure 2/6: Movement of mode and inflection points and their corresponding densities

• Left and right inflection points with equal densities and equal distance to the mode

are necessary but not sufficient for symmetry.

• Here, the inflection points having equal densities do not have equal distances to the

mode u∗ = 0.905423260. The left–hand inflection point has distance 0.32791628
while the right–hand inflection point is 0.31355850 away from the mode. By the

way, irrespective of c the left–hand inflection always has a greater distance to the

mode than the right–hand inflection point.

So for c ≈ 3.447798 the WEIBULL density is approximately symmetric. Further inquiry

into the skewness will be done in Sect. 2.8.1, using the positions of mode and median; in

Sect. 2.9.2 with regard to mean, median and mode; and finally in Sect. 2.9.4, using moment

ratios.

The results pertaining to the general WEIBULL variable X = a+ bU, a 6= 0 and/or b 6= 1,

are

Mode:

x∗ = a+ b

(
c− 1

c

)1/c
, c ≥ 1. (2.24)
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Inflection points:

x∗∗r = a+ b

[
3 (c− 1) +

√
(5 c− 1) (c − 1)

2 c

]1/c

, c > 1; (2.25a)

x∗ℓ = a+ b

[
3 (c− 1) −

√
(5 c− 1) (c − 1)

2 c

]1/c

, c > 2. (2.25b)

c→ 0: The density concentrates at x = a.

c→ ∞: The density concentrates at x = a+ b.

2.2.4 Differing notations5

A look at the numerous papers on the WEIBULL distribution reveals a lot of differing no-

tations, and readers working with several papers may easily become confused. Especially

the scale parameter and the shape parameter are involved. This sections only enumerates

the presentations of the DF, but all other functions and characteristic features are affected

too. The reader might rewrite the latter if needed using the parameter relations given here.

Primarily, there are two reasons for having differing notations:

• Some forms are easier to handle in typesetting.

• Other forms facilitate the construction of estimators and test functions or the mathe-

matical manipulation of the distribution.

WEIBULL himself used differing notations of his distribution. The presentation (2.8),

which will be used throughout this book, is in accordance with WEIBULL’s first papers

(1939a,b), albeit he used other symbols:

• σ for the variable x,6

• σu for the shift parameter a,

• σo for the scale parameter b, and

• m for the shape parameter c.

Following World War II, WEIBULL (1949) extended the application of his distribution from

strength phenomena to cyclic fatigue phenomena. His new presentation used the slightly

modified form

fX(x | a, b1, c) = c b1 (x− a)c−1 exp{−b1 (x− a)c}, (2.26a)

where the original letters have been changed to have a closer resemblance to (2.8). The

scale parameter has been “brought upstairs” into the numerator and includes the effect of

the shape parameter c. Parameter b1 is a combined scale–shape factor

b1 =
1

bc
or b = b

−1/c
1 . (2.26b)

5 Suggested reading for this section: HALLINAN (1993).

6 The symbol σ is commonly used in engineering to represent stress and should not be confused with the

same symbol for a population standard deviation used in statistics.
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WEIBULL then introduced his distribution to the U.S. in a frequently–cited article

(WEIBULL, 1951) with unfortunate typographical errors. Those errors have spawned many

significant articles premised on an accidental and unintended function which correctly reads

fX(x | a, b2, c) = c
(x− a)(c−1)

b2
exp

{
−(x− a)c

b2

}
. (2.27a)

Here b2 is the reciprocal of b1:

b2 =
1

b1
= bc or b = b

1/c
2 . (2.27b)

In a follow–up discussion published in the journals, some readers noted that although the

printed formula looked like (2.27a) the graphs used to illustrate WEIBULL’s article from

1951 appeared to be actually represented by (2.8). WEIBULL (1952) acknowledged that

positioning of the parenthesis in the 1951 article had been an “awkward misprint,” and that

equation (2.8) was indeed intended to be the form used.

In the spirit of simplification and concerning the ease of computation some authors pre-

sented yet another form of the exponential in which the scale parameter of (2.8) is placed

in the numerator to give

fX(x | a, b3, c) = c b3
[
b3 (x− a)

]c−1
exp
{
−
[
b3 (x− a)

]c}
. (2.28a)

Here b3 is the reciprocal of the genuine scale parameter b:

b3 =
1

b
or b =

1

b3
. (2.28b)

In his monumental Fatigue Testing and Analysis of Results, published in 1961 on behalf of

NATO, WEIBULL introduced yet another formulation:

fX(x | a, b, c1) = c−1
1 b−1/c1 (x− a)(1/c1)−1 exp

{
−
(
x− a

b

)1/c1}
(2.29a)

in which the shape parameter has changed to c1, the reciprocal of c:

c1 =
1

c
or c =

1

c1
. (2.29b)

This reformulation is motivated by working with the ln–transformation Y := lnX of the

WEIBULL distributed random variable X in the inference process (see Part II). Y has a

type–I extreme–value distribution of the minimum (see Sections 3.2.2 and 3.3.4) and the

scale parameter of that distribution equals the reciprocal of c.

Equations (2.8) and (2.26a) to (2.29a) are equivalent formulations for the WEIBULL dis-

tribution, each representing the same idea of using a combined linear and power trans-

formation of a random variable which then has an exponential distribution. This idea is

legitimately traceable to (and named for) its proponent. Each of the foregoing five formu-

lations and still some more are in use, but there is a trend in the literature on the WEIBULL

distribution toward the simple looking form (2.8), where each parameter has a function of

its own and is not mingled with another parameter.

Finally, some other formulas are presented. Combining the reciprocal scale parameter b3
und the reciprocal shape parameter c1 into one formula gives a nicer looking expression
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than (2.29a):

fX(x | a, b3, c1) =
b3
c1

[
b3 (x− a)

](1/c1)−1
exp
{
−
[
b3 (x− a)

]1/c1} . (2.30)

Another still nicer looking form than (2.29a) combines c1 and the scale–shape factor b1 =
1/bc = 1

/
b1/c1 = b−1/c1 to give

fX(x | a, b1, c1) =
b1
c1

(x− a)(1/c1)−1 exp
{
−b1 (x− a)1/c1

}
. (2.31)

Sometimes one can find a rather strange looking formula where even the scale parameter

has undergone a shifting:

fX(x | a, b4, c) =
c

b4 − a

(
x− a

b4 − a

)c−1

exp

{
−
(
x− a

b4 − a

)c}
(2.32a)

with

b4 = b+ a or b = b4 − a. (2.32b)

After having introduced moments (in Sect. 2.9) and percentiles (in Sect. 2.8) still other

formulas of the WEIBULL distribution will be given where moments and percentiles as

functional parameters are used instead of the function parameters a, b and c.

2.3 Failure distribution (CDF) and reliability function (CCDF)

Integrating (2.19) with respect to v within the limits 0 and u gives the CDF of the reduced

WEIBULL distribution

FU (u | c) = Pr(U ≤ u)

=

u∫

0

c vc−1 exp(−vc) dv

= 1 − exp(−uc). (2.33a)

The CDF of the three–parameter version is

FX(x | a, b, c) = 1 − exp

{
−
(
x− a

b

)c}
, (2.33b)

so

FX(x | a, b, c) = FU

(
x− a

b

∣∣∣∣ c
)
. (2.33c)

Fig. 2/7 shows in the left part several graphs of (2.33a) and in the right part some graphs

belonging to (2.33b).
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Figure 2/7: WEIBULL failure distribution with differing parameter values

Looking at Fig. 2/7, especially at the left side, reveals two interesting features.

1. All curves belonging to the reduced WEIBULL distribution intersect in one point with

coordinates u = 1 and FU (1 | c) = 1− exp(−1) ≈ 0.6321. For the three–parameter

version on the right-hand side, one finds

FX(a+ b | a, b, c) = 1 − exp

{
−
(
a+ b− a

b

)c}

= 1 − exp(−1) ≈ 0.6321.

So there is a probability of approximately 63.21% that a WEIBULL distributed life-

time is at most b time units greater than its minimum a. The name “characteristic

life” given to b may be explained by the fact that with respect to (2.13), which is the

most frequently found version in practice, the parameter value b can be read off on

the abscissa underneath F = 0.6321. Therefore it is characteristic to all WEIBULL

distribution functions with a = 0 and the same value of b to have one common point

(0.6321, b) in the F–x–plain. In case of the three–parameter distribution this point is

shifted horizontally by the amount of a : (0.6321, a+ b) (see the graphs with a2 = 2
on the right-hand side in Fig. 2/7).

2. The distribution functions have differing curvature that is predetermined by the be-

havior of the corresponding DF:

• 0 < c ≤ 1 — F has no point of inflection and is concave.

• c > 1 — F is convex as long as the density increases, i.e., until x ≥ x∗ (=̂
mode).

F has an inflection point at x∗, and to the right of x∗ it is concave.
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The reliability function (CCDF) is the complementary function to F :

RU (u | c) = 1 − FU (u | c) = exp(−uc) (2.34a)

and

RX(x | a, b, c) = 1 − FX(x | a, b, c) = exp

{
−
(
x− a

b

)c}
. (2.34b)

The characteristic point now has coordinates (0.3679, a + b). The curvature is opposite to

that of F .

The CDF of a WEIBULL random variable can be transformed to a straight line. Starting

with (2.33b) and writing F instead of FX(x | a, b, c), one has

1 − F = exp

{
−
(
x− a

b

)c}
.

First taking the reciprocal

1

1 − F
= exp

{(
x− a

b

)c}
,

then the natural logarithm

ln

(
1

1 − F

)
=

(
x− a

b

)c
,

and finally the decimal or common logarithm

log ln

(
1

1 − F

)
= c log

(
x− a

b

)

log
[
− ln(1 − F )

]
︸ ︷︷ ︸

=: ey

= c log(x− a)︸ ︷︷ ︸
=: ex

−c log b︸ ︷︷ ︸
=: eb

, (2.35a)

results in a linear equation

ỹ = c x̃+ b̃ (2.35b)

with slope c and intercept b̃ = −c log b. The values to be plotted on the abscissa are

x̃ = log(x− a), the decimal logarithms of the re–shifted lifetime. The ordinate values are

the double logarithms of (1 − F )−1.

Paper with axes scaled in the just described manner is termed WEIBULL–probability–

paper. It is a useful tool when estimating the parameters of this distribution (see Chapter 9)

and when testing whether a sample comes from a WEIBULL population (see Sect. 22.1).

For an easy finding of the (estimated) b– and c–values the paper often is supplemented to

give a nomogram. Fig. 2/8 shows an example of the WEIBULL–probability–paper with

some CDF–graphs. A straight line appears only when a is known so that FX(x | a, b, c) is

plotted over the matching x − a. In Fig. 2/8 the parameters are a = 5 with b = 50 and
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c = 3.5. If instead FX(x | 5, 50, 3.5) is plotted over x − 0 (respectively, over x − 13.5),

i.e., a has erroneously been chosen too small (respectively, too large) then the graph results

in a curve which is concave (respectively, convex).

Figure 2/8: Several population CDFs on WEIBULL probability paper

2.4 Hazard rate (HR)7

The general formula (2.4) for an HR becomes

hU (u | c) =
fU(u | c)
RU (u | c) =

c uc−1 exp(−uc)
exp(−uc)

= c uc−1 (2.36a)

in the case of a reduced WEIBULL distribution and

hX(x | a, b, c) =
fX(x | a, b, c)
RX(x | a, b, c) =

c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}

exp

{
−
(
x− a

b

)c}

=
c

b

(
x− a

b

)c−1

(2.36b)

otherwise. The relation between these hazard rates is

hX(x | a, b, c) =
1

b
hU

(
x− a

b

∣∣∣∣ c
)
. (2.36c)

7 Suggested reading for this and the following sections: BARLOW/MARSHALL/PROSCHAN (1963), KAO

(1959), LEHMAN (1963), MUKHERJEE/ROY (1987).
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Crucial to the behavior of a WEIBULL HR and also to the aging process is the shape param-

eter, so it suffices to study (2.36a). Fig. 2/9 shows the course of (2.36a) for several values

of c. There is no common point of intersection.

Figure 2/9: Hazard rates of several reduced WEIBULL distributions

The HR in (2.36a) is a power function, and for the purpose of its discussion several cases

as in Sect. 2.2.3 have to be considered. The knowledge of the first and second derivatives

of (2.36a) with respect to u is useful:

h′U (u | c) =
dhU (u | c)

du
= c (c− 1)uc−2, (2.37a)

h
′′

U (u | c) =
d2hU (u | c)

du2
= c (c − 1) (c − 2)uc−3. (2.37b)

First case: 0 < c < 1
This case is characterized by

lim
u→0

hU (u | c) = ∞;

lim
u→∞

hU (u | c) = 0;

h′U (u | c) < 0 for u > 0;

hU
′′(u | c) > 0 for u > 0.

Thus the hazard rate comes down from positive infinity at u = 0, is monotonically decreas-

ing and convex (see hU (u | 0.5) in Fig. 2/9). With 0 < c < 1 the WEIBULL distribution

reveals a delayed and negative aging process. The probability of a u–survivor to fail im-

mediately after u is smaller the higher the age reached. During the mission of the items
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a screening takes place in the sense that weak items with hidden defects are sorted out at

young age. So in the course of time only robust and “healthy” items remain in the pop-

ulation or as LEHMAN (1963, p. 36) writes: “So once the obstacles of early youth have

been hurdled, life can continue almost indefinitely.” Distributions having h′ < 0 are called

early–failure–distributions because the majority of failures in such a population takes place

at young age. Lifetime distributions with this property have been found in practice, e.g.,

with semiconductors and other electronic parts. “Certain types of business enterprizes fol-

low this pattern.” (LEHMAN, 1963, p. 37). PROSCHAN (1963) gives an explanation for this

type of aging which he observed for the air conditioning system of Boeing–airplanes.

Second case: c = 1
This case leads to the exponential distribution which, as is generally known, has a constant

and age–independent HR:

hU (u | 1) = 1 ∀ u ≥ 0.

So items of a population with c = 1 will not undergo any aging.

Third case: 1 < c < 2
Because of

lim
u→0

hU (u | c) = 0;

lim
u→∞

hU (u | c) = ∞;

h′U (u | c) > 0 for u ≥ 0;

h
′′

U (u | c) < 0 for u ≥ 0;

the HR is starting in the origin, increases monotonically, but is concave (see hU (u | 1.3) in

Fig. 2/9). Members of such a population have the property of positive aging: the greater

the age reached the higher the probability of an immediate failure.

Fourth case: c = 2
The HR is now given by

hU (u | 2) = 2u ∀ u ≥ 0,

i.e. there is a linear (because of h
′′

= 0) and positive aging (because of h
′

> 0). This

version of a WEIBULL distribution is also called linear hazard rate distribution or

RAYLEIGH distribution.

Fifth case: c > 2
Because of

h′U (u | c) > 0 and h
′′

U (u | c) > 0,

the aging is positive and accelerated. A large value of c indicates high dependability, or

very few early deaths, then all failures can be anticipated almost simultaneously at or near

u = c, respectively, at x = b+ c in the general case.
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Summarizing the results above one can ascertain that depending on c, there are three types

of aging:

• 0 < c < 1 — negative aging,

• c = 1 — no aging,

• c > 1 — positive aging.

The HR being monotone in either case the WEIBULL distribution does not allow to model

the bathtub–form or U–form of the HR which is often found in practice. A bathtub HR

may be realized, within another family of distributions, for example, either using a HJORTH

distribution (HJORTH, 1980), or with either a mixed or a composite WEIBULL distribution

(see KAO (1959) or Sect. 3.3.6.3 and Sect. 3.3.6.4). All properties of distributions with

monotone HR, as, for example, stated by BARLOW/MARSHALL/PROSCHAN (1963), apply

to the WEIBULL distribution. Some of these properties will be discussed in the context of

aging criteria in Sect. 2.7.

With respect to equipment or machinery having a monotonically increasing HR, a policy

of preventative maintenance seems to be advisable. The withdrawal age of a still work-

ing piece of equipment might be determined by some chosen value h of the HR, i.e., a

preventative replacement takes place if

hX(xh | a, b, c) =
c

b

(
xh − a

b

)c−1

= h, (2.38a)

i.e. when the risk of failure within the next moment has reached a given critical value h.

From (2.38a) the replacement life or retired life follows as

xh = a+
(
h bc
/
c
)1/(c−1)

. (2.38b)

Analysis of hX(x | a, b, c) has so far been done mostly in the time domain, i.e., in terms

of its behavior with respect to time or age. It is quite logical to treat hX(X | a, b, c) as a

transform ofX or as a random function with an easily deducible probability distribution and

thus to analyze the failure rate in the frequency “domain.” This hazard rate transform of

the WEIBULL variable has been studied by MUKHERJEE/ROY (1987). Incidentally, some

characterizations of the WEIBULL law have been found, and failure time and failure rate

have been stochastically compared.

2.5 Cumulative hazard rate (CHR)

For some purposes, especially in testing, the cumulated or integrated hazard rate

HU (u | c) =

u∫

0

hU (v | c) dv =

u∫

0

c vc−1 dv

= uc, (2.39a)
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respectively

HX(x | a, b, c) =

(
x− a

b

)c
= HU

(
x− a

b

∣∣∣∣ c
)
, (2.39b)

is needed. CHR increases

• monotonically, but with falling rate for 0 < c < 1;

• linearly (or with constant rate) for c = 1;

• monotonically, but with growing rate for c > 1.

Because CHR easily stretches itself over several powers of ten, the ordinate in Fig. 2/10

has a logarithmic scale. The CHR–graphs of all WEIBULL variables with the same value

of a and b intersect in one point which has the coordinates H = 1 and x = a+ b.

Figure 2/10: Cumulative hazard rate for a reduced WEIBULL variable

Taking the decimal logarithm of (2.39a,b) results in a linear function:

logHU (u|c) = c log u (2.40a)

logHX(x|a, b, c) = c log(x− a) − c log b. (2.40b)

So the WEIBULL–hazard–paper is a paper with both axes being scaled logarithmicly,

the vertical axis for the log–cumulated–hazard and the horizontal axis for the logarithm

of the re–shifted lifetime x − a. This paper serves the same purposes as the WEIBULL–

probability–paper of Sect. 2.3, with the latter being more popular.
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Figure 2/11: Several population CDFs on WEIBULL hazard paper

The parameter values in Fig. 2/11 have been chosen as in Fig. 2/8. A straight line shows up

in the hazard–paper only if a has been correctly chosen, otherwise a concave curve (a too

small) or a convex curve (a too large) will result.

2.6 Mean residual life function (MRL)8

Before going into the details of the WEIBULL–MRL we have to introduce and to comment

upon the underlying variate called residual life:

Y |x := X − x |X ≥ x. (2.41a)

Y |x is a conditional variate, the condition being that an item has survived x units of time.

Thus, Y |x is the additional or further lifetime of an x–survivor. The distribution of Y |x is

found by left–truncating the distribution of the original variateX at x and shifting the origin

to this point of truncation. A variate which is closely related to (2.41a) and which must not

be confounded with X − x |X ≥ x is the variate X |X ≥ x, termed the conditional

age. The latter is the age at failure of an item which has survived at least x units of time.

X |X ≥ x is a truncated variate only,9 but it is not shifted.

8 Suggested reading for this section: AROIAN (1965), KAO (1959), LEEMIS (1986), RAJA

RAO/TALWALKER (1989), SWARTZ (1973), TANG/LU/CHEW (1999).

9 Truncation of distributions will be intensively dealt with in Sect. 3.3.5.
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The following formulas show some functions describing Y |x. First, the general expression

is given, followed by the special case of the WEIBULL distribution. The subscript X of a

function symbol indicates that this function belongs to the original, unconditioned variate

X.

Density function

f(y |x) =
fX(y + x)

RX(x)
, y ≥ 0

=
c

b

(
y + x− a

b

)c−1

exp

{(
x− a

b

)c
−
(
y + x− a

b

)c}
(2.41b)

Cumulative distribution function

F (y |x) =
FX(x+ x) − FX(x)

RX(x)
, y ≥ 0

= 1 − exp

{(
x− a

b

)c
−
(
y + x− a

b

)c}
(2.41c)

Complementary cumulative distribution function

R(y |x) =
RX(y + x)

RX(x)
, y ≥ 0

= exp

{(
x− a

b

)c
−
(
y + x− a

b

)c}
(2.41d)

Hazard rate

h(y |x) =
f(y |x))
R(y |x) =

fX(y + x)

RX(y + x)
= hX(y + x), y ≥ 0

=
c

b

(
y + x− a

b

)c−1

(2.41e)

The hazard rate of the residual life follows the same course as that of the complete life after

shifting.
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Cumulative hazard rate

H(y |x) =

y∫

0

h(z |x) dz =

y∫

0

hX(z + x) dz

=

x+y∫

x

hX(v) dv = HX(y + x) −HX(x) v = x+ z

=

(
y + x− a

b

)c
−
(
x− a

b

)c
(2.41f)

Percentile function10

yP = F−1
(
P |x

)
= F−1

X

(
P + FX(x) [1 − P ]

)
− x, 0 < P < 1

= a+ c
√

(x− a)c − bc ln(1 − P ) − x (2.41g)

Moments about zero11

E
(
Y r |x

)
=

∞∫

0

yr f(y |x) dy =

∞∫

0

yr
fX(y + x)

RX(x)
dy

= r

∞∫

0

yr−1R(y |x) dy

=
r

RX(x)

∞∫

0

yr−1RX(y + x) dy (2.41h)

The MRL–function is the special case of (2.41h) for r = 1, denoted by

µ(x) := E(Y |X ≥ x), (2.41i)

providing the interpretation of µ(x) as the average remaining lifetime of an item that has

survived to at least time x. When X has a DF fX(x) and a finite mean µ, then

µ(x) =
1

RX(x)

∞∫

x

z fX(z) dz − x (2.41j)

10 See Sect. 2.8 for more details on this concept.

11 See Sect. 2.9.1 for more details on this concept.



54 2 Definition and properties of the WEIBULL distribution

or

µ(x) =
1

RX(x)

∞∫

x

RX(z) dz. (2.41k)

Whereas (2.41j) is useful for the computation of µ(x), (2.41k) is useful for obtaining rela-

tionships between µ(x) and the CDF FX(x) = 1 −RX(x).

SWARTZ (1973, p. 108) gives the following theorem:

If µ(x) is the MRL of a random variable X with survival function RX(x) and with finite

mean µ = E(X), then

1.

µ(x) ≥ 0; (2.42a)

2.

µ(0) = µ; (2.42b)

3. if RX(x) is absolutely continuous, µ′(x) will exist and

µ′(x) ≥ −1; (2.42c)

4. ∞∫

0

1

µ(x)
dx diverges; (2.42d)

5.

RX(x) =
µ(0)

µ(x)
exp



−

x∫

0

1

µ(z)
dz



 . (2.42e)

The proofs are straightforward and are omitted.

Starting from (2.41j) and using the relationship

RX(x) = exp
{
−HX(x)

}

from Table 2/1, another representation

µ(x) = exp
{
HX(x)

} x∫

0

exp
{
−HX(z)

}
dz

follows which is useful in finding the derivative of µ(x) with respect to x:

µ′(x) =
dµ(x)

dx
= µ(x)hX(x) − 1. (2.43)

As µ(x) ≥ 0 and hX(x) ≥ 0, the result (2.42c) is proven. A consequence of (2.43) is that

• MRL is increasing, if µ(x)hX (x) > 1;
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• MRL is constant, if µ(x)hX(x) = 1;

• MRL is decreasing, if µ(x)hX(x) < 1.

A last general result on the MRL–function of a random variable X defined over a ≤ x <
∞, a ∈ R, is

µ(x) =
1

RX(a)


a− x+

∞∫

a

RX(z) dz


 = µ− x for x ≤ a, (2.44a)

µ(x) =
1

RX(x)

∞∫

x

RX(z) dz =
1

RX(x)

∞∫

0

RX(x+ v) dv for x > a. (2.44b)

(2.44b) follows with z = x+ v, whereas (2.44a) is a consequence of

µ′r = E(Xr) =

+∞∫

−∞

xr fX(x) dx = ar + r

+∞∫

a

xr−1RX(x) dx, (2.45a)

if lim
x→∞

xr+1 f(x) = 0 for any r <∞.

Proof of (2.45a):

Rewrite the last term of the above expression for µ′r as follows:

∞∫

a

[1 − FX(x)] r xr−1 dx.

Denote y = 1 − FX(x) and dv = r xr−1 dx and integrate this expression by parts. The

result is

xr [1 − FX(x)]
∣∣∣
∞

a
+ µ′r.

The upper limit of the first term vanishes if lim
x→∞

xr−1 f(x) = 0 for any finite r and

FX(a) = 0 by definition of CDF. Hence, (2.45a) is proven. �

Corollary to (2.45a):

If the distribution is defined over the range 0 ≤ x <∞, then

µ′r = r

+∞∫

0

xr−1RX(x) dx, (2.45b)
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with the special case

µ′1 = µ =

+∞∫

0

RX(x) dx. (2.45c)

Evaluation of the general MRL–function (2.41j) with respect to the WEIBULL distribution

gives12

µ(x) = B(x) − (x− a), (2.46a)

where

B(x) := exp

{(
x− a

b

)c} ∞∫

x

(z − a)
c

b

(
z − a

b

)c−1

exp

{
−
(
z − a

b

)c}
dz (2.46b)

is the a–reduced total expected life of an x–survivor.13 Let

y =

(
x− a

b

)c
resp. v =

(
z − a

b

)c

so that

dz =
b

c

(
z − a

b

)−(c−1)

,

and (2.46b) becomes

B(x) = b exp

{(
x− a

b

)c} ∞∫

y

e−v v1/c dv. (2.46c)

This definite integral may be either evaluated as an incomplete gamma function or reduced

to a χ2–distribution or a type–III–function of the PEARSONIAN distribution system. The

first two courses shall be pursued in the sequel. But before doing that, the special case

c = 1, the exponential distribution, shall be considered. Then, (2.46c) leads to

B(x) = b

(
1 +

x− a

b

)
= b+ x− a,

and (2.46a) gives

µ(x) = b.

This result is to be expected because, due to the lacking memory of this distribution, the

mean E(X − a) as well as µ(x) are both equal to b.

12 RAJA RAO/TALWALKER (1989) derived lower and upper bounds for the WEIBULL–MRL–function.

13 Working with z − a instead of z under the integral facilitates the manipulation of (2.46b), but it requires

a compensating correction, i.e., the subtraction of x− a instead of x in (2.46a).
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Evaluation of (2.46c) by the complementary incomplete gamma function14

Γ(k |u) :=

∞∫

u

e−v vk−1 dv (2.47a)

gives

B(x) = b exp

{(
x− a

b

)c}
Γ

(
1 +

1

c

∣∣∣∣
[
x− a

b

]c)

=
b

c
exp

{(
x− a

b

)c}
Γ

(
1

c

∣∣∣∣
[
x− a

b

]c)
. (2.47b)

Calculating in this way is not normally supported by statistical software because routines

to evaluate (2.47a) are rarely included.

Evaluation of (2.46c) by the χ2–distribution should not be a problem with any software.

The CDF of a χ2–distribution with ν degrees of freedom is given by

Fχ2(z | ν) =
1

2ν/2 Γ
(
ν
2

)
z∫

0

e−u/2 u(ν/2)−1 du (2.48a)

and the CCDF by

Rχ2(z | ν) = 1 − Fχ2(z | ν) =
1

2ν/2 Γ
(
ν
2

)
∞∫

z

e−u/2 u(ν/2)−1 du. (2.48b)

Now let v = u/2 in (2.46c), which then becomes

B(x) = b exp

{(
x− a

b

)c} ∞∫

2 y

e−u/2 (u/2)1/c du/2

= b exp

{(
x− a

b

)c}
2−(c+1)/c

∞∫

2 y

e−u/2 (u/2)1/c du. (2.49a)

From comparison of (2.49a) with (2.48b) the following representation of B(x) is evident:

B(x) = b exp

{(
x− a

b

)c}
Γ

(
1 +

1

c

)
Rχ2

[
2

(
x− a

b

)c∣∣∣∣ 2
(

1 +
1

c

)]

=
b

c
exp

{(
x− a

b

)c}
Γ

(
1

c

){
1 − Fχ2

[
2

(
x− a

b

)c ∣∣∣∣ 2
(

1 +
1

c

)]}
(2.49b)

14 The complete gamma function (EULER integral of the second kind) is given by

Γ(k) =

∞Z

0

e−v vk−1
dv.

For more details on the gamma function and its relatives see the excursus in Sect. 2.9.1.
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Fig. 2/12 gives the graphs of MRL belonging to the reduced WEIBULL distribution having

c = 0.5, 1, 2 and 3.5. MRL is a monotone function and

• increasing for 0 < c < 1 (The hazard rate is decreasing.);

• constant for c = 1 (The hazard rate is constant.);

• decreasing for c > 2 (The hazard rate is increasing.).

The above mentioned relationships between MRL and HR will be further discussed in the

following section, dealing with aging criteria.

Figure 2/12: MRL function of several reduced WEIBULL distributions

2.7 Aging criteria15

In the context of statistical lifetime analysis, aging does not mean that a unit becomes older

in the sense of time. Rather it is a notion pertaining to residual life. Aging is thus the phe-

nomenon that a chronological older unit has a shorter residual life in some statistical sense

than a newer or chronological younger unit. Lifetime distributions are mostly characterized

with respect to aging by the behavior of

• their HR h(x) or

• their MRL µ(x).

15 Suggested reading for this section: BARLOW/MARSHALL/PROSCHAN (1963), BARLOW/PROSCHAN

(1975), BRYSON/SIDDIQUI (1969), LEEMIS (1986), MAKINO (1984), SHAKED/LI (1997).
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But other functions may be used too, as will be demonstrated soon. The aging criteria

presented below are linked as shown in Fig. 2/13.

Figure 2/13: Chains of implications for several aging criteria

IAF

⇐
⇒

=⇒ IHRA =⇒ NBU =⇒
=⇒

DMRL =⇒
PF2 =⇒ IHR NBUE =⇒ HNBUE

⇐
⇒

IIHR

DAF

⇐
⇒

=⇒ DHRA =⇒ NWU =⇒
=⇒

IMRL =⇒
DHR NWUE =⇒ HNWUE

⇐
⇒

DIHR

The upper chain refers to positive aging. A proof of the upper chain starting with IHR can

be found in BRYSON/SIDDIQUI (1969). By an analogous argumentation the lower chain,

referring to negative or inverse aging, may be proved too.

The following presentation of aging criteria starts by considering the class of distributions

with a monotone hazard rate. The WEIBULL family is a member of that class.

Definitions:

1. A distribution function F (x) is called an IHR–distribution (increasing hazard rate)

or IFR–distribution (increasing failure rate) if its HR h(x) is non–decreasing in x:

h(x2) ≥ h(x1) ∀ x2 > x1.

2. A distribution function F (x) is called a DHR–distribution (decreasing hazard rate)

or DFR–distribution (decreasing failure rate) if its HR h(x) is non–increasing in x:

h(x2) ≤ h(x1) ∀ x2 > x1. �

The WEIBULL distribution is

• IHR for c ≥ 1,

• DHR for 0 ≤ c ≤ 1.
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The exponential distribution with c = 1 is the only continuous distribution which is IHR as

well as DHR.16

Remarks:

1. The classification introduced above is also applicable to distributions which because

of a non–existing DF function have no HR. Since the CCDF of the residual life

Y |x := X − x |X ≥ x can be written as

R(y |x) =
R(x+ y)

R(x)

=

exp



−

x+y∫

0

h(v) dv





exp



−

x∫

0

h(v) dv





(see Tab. 2/1)

= exp



−

x+y∫

x

h(v) dv





it follows that the conditional survival probability R(y |x) is an increasing (decreas-

ing) function of x, the conditioning age, if and only if the HR h(x) is increasing

(decreasing). So the following definition for distributions with non–existing HR is

obvious: F (x) is an IHR (DHR) distribution ifR(y |x) with arbitrary but fixed y ≥ 0
is monotonically increasing (decreasing) in x, 0 < x <∞.

2. The IHR (DHR) property may also be characterized by the residual life Y |x using

the notions of “stochastically larger (smaller)”:

Definition: A random variable X1 with distribution function F1(x) is called stochas-

tically larger (smaller) than a random variable X2 with distribution function F2(x),
in symbols:

X1 � X2 resp. X1 � X2,

if

F1(x) ≤ F2(x) ∀ x or Pr(X1 > x) ≥ Pr(X2 > x) ∀ x

resp.

F1(x) ≥ F2(x) ∀ x or Pr(X1 > x) ≤ Pr(X2 > x) ∀ x. �

16 The geometric distribution with probability function

Pr(X = j) = P (1 − P )j ; j = 0, 1, 2, . . . ; 0 < P < 1

is the only discrete distribution which is IHR as well as DHR.
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Obviously

Y |x1 � Y |x2 ∀ x1 ≤ x2 resp. Y |x1 � Y |x2 ∀ x1 ≤ x2

if, and only if, the underlying distribution function F (x) is IHR (DHR). Therefore,

under the aspect of the behavior of the corresponding residual life the IHR (DHR)

property is a reasonable mathematical description of aging (anti–aging).

Theorem 1: F (x) is IHR (DHR) if and only if ln[R(x)] is concave (convex).

Proof of theorem 1: As H(x) = − ln[R(x)], the conditional survival function R(y |x) is

given by R(y |x) = exp {− [H(x+ y) −H(x)]} . So F (x) is IHR (DHR) if and only if

the difference H(x+ y) −H(x) is increasing (decreasing) in x for fixed y. �

The logarithm of the general WEIBULL survival function is

ln[RX(x | a, b, c)] = −
(
x− a

b

)c
.

Its second derivative with respect to x is given by

d2 {ln[RX(x | a, b, c)]}
dx2

= −c
b

c− 1

b

(
x− a

b

)c−2

,

so

d 2 {ln[RX(x | a, b, c)]}
dx2





< 0 for 0 < c < 1 (concave),

= 0 for c = 1,

> 0 for c > 1 (convex).

Theorem 2: IHR distributions have finite moments of any order.

Remark: For DHR distributions theorem 2 is not always true.

Theorem 3: For an IHR distribution the following inequality holds

E(Xr) ≤ r!
[
E(X)

]r
; r = 1, 2, 3, . . . ; (2.50a)

whereas for a DHR distribution with existing moments we have

E(Xr) ≥ r!
[
E(X)

]r
; r = 1, 2, 3, . . . � (2.50b)

Corollary to theorem 3: For r = 2, (2.50a) gives

E(X2) ≤ 2µ2.

Combining this inequality with the representation σ2 = E(X2)−µ2 for the variance results

in
σ2 = E(X2) − µ2 ≤ µ2,
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so that CV, the coefficient of variation, of an IHR distribution is appraised as

CV =
σ

µ
≤ 1.

Applying this reasoning to a DHR distribution using (2.50b) results in the appraisal

CV =
σ

µ
≥ 1. �

CV for the WEIBULL distribution will be discussed in Sect. 2.9.3.

Instead of looking at the HR given by

h(x) =
f(x)

1 − F (x)
, (2.51a)

a generalization of the HR–classes of distributions is found by introducing a quotient of the

form

h∗(x | y) :=
f(x)

F (x+ y) − F (x)
, (2.51b)

i.e. the number 1 in the denominator of (2.51a) is replaced by F (x+ y) < 1.

Definition: A DF f(x) is called PÓLYA density of order 2, PF2 for short, If for all y > 0
the quotient (2.51b) is monotonically increasing in x.

Another equivalent definition says that for PF2–distributions, the density is log–concave.

Log–concavity of the density is the strongest aging property (see the upper part of

Fig. 2/13).

Theorem 4: A distribution belongs to the IHR–class if its density is PF2.

The inversion of theorem 4 is not necessarily true so that an IHR–distribution must not

belong to the PF2–class. Fig. 2/14 shows the graph of several logarithmized WEIBULL

densities in the reduced case (a = 0; b = 1), which are concave for c > 1.

Figure 2/14: Logarithmized WEIBULL densities
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By introducing the hazard rate average

h(x) :=
1

x

x∫
0

h(v) dv

=
H(x)

x

= − ln[R(x)]

x





, (2.52a)

the assumption of monotonicity of the HR may be weakened if instead the monotonicity of

the hazard rate average is requested.

Definitions:

1. A distribution function F (x) is called an IHRA–distribution (increasing hazard

rate average) or IFRA–distribution (increasing failure rate average) if its hazard

rate average is non–decreasing in x:

h(x2) ≥ h(x1) ∀ x2 > x1.

2. A distribution function F (x) is called a DHRA–distribution (decreasing hazard

rate average) or DFRA–distribution (decreasing failare rate average) if its hazard

rate average is non–increasing in x:

h(x2) ≤ h(x1) ∀ x2 > x1. �

For the general WEIBULL distribution having an arbitrary location parameter a ∈ R (2.52a)

has to be modified slightly to give

h(x− a) :=
1

x− a

x∫
a
hX(v | a, b, c) dv

=
HX(x | a, b, c)

x− a

=
ln[RX(x | a, b, c)]

x− a
.





(2.52b)

Using (2.39b) the WEIBULL hazard rate average is given by

h(x− a) =

(
x− a

b

)c/
(x− a) =

1

b

(
x− a

b

)c−1

, x > a, (2.52c)

so that it is increasing for c ≥ 1 and decreasing for 0 < c ≤ 1. Generally the following

theorem 5 holds.

Theorem 5: If F (x) is an IHR- (a DHR-) distribution then F (x) is IHRA (DHRA) too.

Excursus: Mean hazard rate

The hazard rate average defined in (2.52a,b) is a simple or unweighed average of the HR over

the interval [0, x] resp. [a, x]. MAKINO (1984) introduced the mean hazard rate as the density–

weighted average of the HR over its complete domain of support. So the mean hazard rate is nothing
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else but the expectation of the HR:

E
[
h(X)

]
:=

∞∫

0

h(x) f(x) dx

=

∞∫

0

[R′(x)]2

R(x)
dx.





(2.53a)

For a WEIBULL distribution this general formula turns into

E
[
h(X | a, b, c)

]
=
(c
b

)2
∞∫

a

(
x− a

b

)2 (c−1)

exp

{
−
(
x− a

b

)c}
dx,

which after some manipulation is

E
[
h(X | 0, b, c)

]
=
c

b

∞∫

0

w1−1/c e−w dw. (2.53b)

The integral in (2.53b) does not exist for 0 < c ≤ 0.5, and for c > 0.5 it is easily transformed into

the complete gamma function so that

E
[
h(X | 0, b, c)] =

c

b

∞∫

0

w(2 c−1)/c−1 e−w dw

=
c

b
Γ

(
2 c− 1

c

)
, c > 0.5. (2.53c)

Fig. 2/15 shows the course of E
[
h(X | 0, 1, c)] which is nearly linear for greater values of c, say

c > 4.

Figure 2/15: Mean hazard rate of the WEIBULL distribution for b = 1



2.7 Aging criteria 65

MAKINO (1984) used the mean hazard rate to approximate the WEIBULL distribution by a normal

distribution, equating their mean hazard rates. The solution is c ≈ 3.43927.

The probability of an x–survivor living another y units of time is

R(y |x) := Pr(Y > y |X ≥ x) =
R(x+ y)

R(x)
,

whereas the probability of a new item living more than y units of time is

Pr(Y > y |X ≥ 0) = R(y).

Definitions:

• A distribution function F (x) is called NBU (new better than used) if

R(y) ≥ R(x+ y)

R(x)
for x > 0, y > 0.

• A distribution function F (x) is called NWU (new worse than used) if

R(y) ≤ R(x+ y)

R(x)
for x > 0, y > 0. �

It is to be noticed that F (x) is NBU (NWU) if and only if Y |x is stochastically smaller

(larger) than X:

Y |x � X resp. Y |x � X.

Theorem 6:

a) F (x) is NBU if and only if H(·) is superadditive, i.e.,

H(x+ y) ≥ H(x) +H(y) for x, y > 0.

b) F (x) is NWU if and only if H(·) is subadditive, i.e.,

H(x+ y) ≤ H(x) +H(y) for x, y > 0. �

According to (2.41b) the mean residual life of an x–survivor is

E(Y |x) = µ(x) =
1

R(x)

∞∫

x

R(z) dz,

whereas the mean life of a new item is

E(Y |x = 0) = µ(0) =

∞∫

0

R(z) dz.
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Definitions:

• A distribution function F (x) is called NBUE (new better than used in expectation)

if
∞∫

x

R(z) dz ≤ µ(0)R(x) for x > 0.

• A distribution function F (x) is called NWUE (new worse than used in expectation)

if

∞∫

x

R(z) dz ≥ µ(0)R(x) for x > 0. �

Theorem 7: A non–improvable appraisal for a NBUE–distribution is given by

F (x) ≤ x

µ(0)
for x < µ(0).

Theorem 8: If F (x) is NBU (NWU) then F (x) is NBUE (NWUE) too. (The reversal is

not always true.)

Definitions: A distribution function F (x) is called HNBUE (harmonic new better than

used in expectation) if

∞∫

x

R(z) dz ≤ µ(0) exp
[
− x/µ(0)

]
for x > 0 (2.54a)

and HNWUE (harmonic new worse than used in expectation) if

∞∫

x

R(z) dz ≥ µ(0) exp
[
− x/µ(0)

]
for x > 0. � (2.54b)

The term HNBUE resp. HNWUE is to be explained as follows. Starting from the mean

residual life

µ(x) =
1

R(x)

∞∫

x

R(z) dz,

(2.54b) may be written as
1

1

x

x∫
0

1

µ(z)
dz

≤ µ(0).

This inequality says that the harmonic mean of the expected residual life µ(z) in [0, x] is at

most the harmonic mean of µ(0).
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BRYSON/SIDDIQUI (1969) introduced another aging criterion which they called specific

aging factor and which is defined as

A(x, y) =
R(x)R(y)

R(x+ y)
; x, y ≥ 0. (2.55)

Notice the interchangeability of the arguments x and y and the relationship to NBU und

NWU. If a distribution is NBU (NWU), its specific aging factor is A(x, y) ≥ 1 resp.

A(x, y) ≤ 1.

Definitions:

A distribution function F (x) is called IAF (increasing aging factor) if

A(x2, y) ≥ A(x1, y) ∀ y ≥ 0, x2 ≥ x1 ≥ 0,

and DAF (decreasing aging factor) if

A(x2, y) ≤ A(x1, y) ∀ y ≥ 0, x2 ≥ x1 ≥ 0. �

A generalization of the hazard rate average h(x), defined above, is the interval hazard

rate average:

h(x, y) :=
1

y

x+y∫

x

h(v) dv

=
H(x+ y) −H(x)

y
. (2.56)

h(y) and h(0, y) are related as follows:

h(y) = h(0, y).

Definitions:

A distribution function F (x) is called IIHR (increasing interval hazard rate average) if

h(x2, y) ≥ h(x1, y) ;∀ y ≥ 0, x2 ≥ x1 ≥ 0,

and DIHR (decreasing interval hazard rate average) if

h(x2, y) ≤ h(x1, y) ∀ y ≥ 0, x2 ≥ x1 ≥ 0. �

Finally, if the mean residual life µ(x) is monotone in x, it may be used to characterize the

aging process too.

Definitions:

A distribution function F (x) is called an IMRL– (a DIHR–)distribution if its mean resid-

ual life is non–decreasing in x:

µ(x2) ≥ µ(x1) ∀ x2 > x1 (IMRL);

µ(x2) ≤ µ(x1) ∀ x2 > x1 (DMRL). �
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2.8 Percentiles and random number generation17

For a continuous random variable X, the percentile of order P is that realization xP of X
that satisfies

F (xP ) = P, 0 < P < 1.

Because of F (x) = Pr(X ≤ x) this means:

Pr(X ≤ xP ) = P.

So xP is that value of X, e.g., that special life, reached by P 100% of the popula-

tion. An individual percentile is an indicator of location, a difference of two percentiles

xP2 − xP1, P2 > P1, is a measure of variation, and suitable combinations of more than

two percentiles may be used to indicate skewness and kurtosis. The percentile function

F−1(P ) = xP is a means for generating random numbers of X with distribution function

F (x).

2.8.1 Percentiles

Percentiles of a WEIBULL distribution are easily found because its CDF can be inverted

in closed form. Starting from (2.33a), the CDF of the reduced WEIBULL variable, this

inversion is

P = FU (uP | c)

= 1 − exp(−ucP )

=⇒ ln(1 − P ) = −ucP
ucP = − ln(1 − P )

uP =
[
− ln(1 − P )

]1/c
=

(
ln

[
1

1 − P

])1/c

. (2.57a)

The general WEIBULL percentiles are given by

xP = a+ b uP

= a+ b
[
− ln(1 − P )

]1/c
= a+ b

(
ln

[
1

1 − P

])1/c

. (2.57b)

Fig. 2/16 shows the course of the reduced WEIBULL percentile–function (2.57a) for

several values of c. There is a common point of intersection with coordinates P ≈
0.6321, u0.6321 = 1.

17 Suggested reading for this section: ISHIOKA (1990), JOHNSON (1968), MONTANARI/CAVALLINI/

TOMMASINI/CACCIARI/CONTIN (1995), RAMBERG/TADIKAMALLA (1974), TADIKAMALLA/

SCHRIBER (1977).



2.8 Percentiles and random number generation 69

Some special percentiles are

u0.5 = (ln 2)1/c ≈ 0.693151/c − median, (2.58a)

u0.25 =
[
ln (4/3)

]1/c ≈ 0.287681/c − lower quartile, (2.58b)

u0.75 =
[
ln 4

]1/c ≈ 1.386291/c − upper quartile, (2.58c)

u0.6321 ≈ 1 − characteristic life, (2.58d)

u0.1 =
[
ln (10/9

]1/c ≈ 0.105361/c − first decile.18 (2.58e)

In reliability engineering

x∗Q = x1−P , Q := 1 − P

is called reliable life, i.e., the reliable life of order Q is the percentile of order 1 − P . x∗Q
has a survival probability of Q.

Figure 2/16: Percentile function for the reduced WEIBULL distribution

A necessary, but not sufficient, condition for a DF function to be symmetric is the coin-

cidence of its mode and its median. Given a and b, the coincidence depends on c. The

condition is

(ln 2)1/c =

(
ln

[
c− 1

c

])1/c

=⇒ c =
1

1 − ln 2
≈ 3.258891, (2.59a)

18 The first decile plays an import role in assessing the life of ball–bearings and roller–bearings, see

DOURGNON/REYROLLE (1966) or MCCOOL (1966, 1974a).
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so that the realization which is being mode as well as median is

x∗ = x0.5 ≈ a+ b (ln 2)1/3.258891 ≈ a+ 0.893628 b. (2.59b)

For c < 3.258891 (c > 3.258891) the mode is to the left (to the right) of the median

indicating positive (negative) skewness. Further inquiry into the skewness will be done in

Sections 2.9.2 and 2.9.4.

Because of (2.57b) one has the opportunity to simply substitute one of the function pa-

rameters a or b by a percentile. Substituting a, the distribution function (2.33b) turns into

FX(x |xP , b, c) = 1 − exp

{
−
[
x− xP
b

+

(
ln

[
1

1 − P

])1/c
]c}

, (2.60a)

with regard to b the result is

FX(x | a, xP , c) = 1 − exp

{
−
(

ln

[
1

1 − P

])(
x− a

xP − a

)c}
. (2.60b)

P ≈ 0.6321 leads to the simple looking expressions

FX(x |x0.6321, b, c) = 1 − exp

{
−
[
x− x0.6321

b
+ 1

]c}

FX(x | a, x0.6321, c) = 1 − exp

{
−
(

x− a

x0.6321 − a

)c}
.

2.8.2 WEIBULL random numbers

Because the CDF FX(x | a, b, c) of a three–parameter WEIBULL variable is of a closed

explicit form, it is easy to generate pseudo–random numbers through the probability in-

tegral transformation. Let Z be the random variable uniformly distributed in (0, 1) and,

specifically, setting

Z = FX(X | a, b, c) = 1 − exp

{
−
(
X − a

b

)c}

and finally inverting this transformation, we obtain

X = a+ b
[
− ln(1 − Z)

]1/c
= a+ b

(
ln

[
1

1 − Z

])1/c

. (2.61)

Thus, after generating a pseudo–random observation from the uniform (0, 1)–population,

the required WEIBULL observation of X can be generated from (2.61) for specified values

of the parameters a, b and c.

Another way to simulate a WEIBULL observation is to make use of any efficient exponential

simulation algorithm. Realizing that [(X−a)/b]c is distributed as reduced exponential, we

can simulate the required WEIBULL observation of X by

X = a+ bW 1/c, (2.62)

where W denotes the reduced exponential pseudo–random observation already simulated.
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ISHIOKA (1990) has discussed the generation of WEIBULL random numbers using the ratio

of uniform pseudo–random observations. MONTANARI et al. (1995) have compared sev-

eral approaches to generate WEIBULL observations. RAMBERG/TADIKAMALLA (1974)

have demonstrated how gamma variates can be generated by using WEIBULL sampling

mechanisms.

2.9 Moments, cumulants and their generating functions

Moments and cumulants are the expected values of certain functions of a random variable.

They serve to numerically describe the variable with respect to given characteristics, as e.g.,

location, variation, skewness and kurtosis. Sect. 2.9.1 gives the definitions of several types

of moments, shows their interrelations and how they may be developed by using so–called

generating functions. The following Sections 2.9.2 to 2.9.4 go into the details of measuring

location, variation, skewness and kurtosis by means of moments.

2.9.1 General formulas19

The moments about zero (alternatively uncorrected moments or raw moments) play a

key role for all other kinds of moments because the latter can be — more or less easily —

expressed by zero–moments. Further, for the WEIBULL family it suffices to develop the

moments of the reduced variable U because those of the general variable X = a+ bU are

easily derived from the U–moments.

The expected value of Xr is termed the r–th moment about zero of the random variable

X:

µ′r(X) := E(Xr). (2.63a)

Generally, r is any real number, but for the most part r is taken as a non–negative integer.

With regard to the reduced WEIBULL variable we get

µ′r(U) = E(U r) =

∞∫

0

ur fU (u | c) du

=

∞∫

0

ur c uc−1 exp{−uc} du (2.63b)

=

∞∫

0

vr/c e−v dv. (2.63c)

The transition from (2.63b) to (2.63c) rests upon the substitution

v = uc,

19 Suggested reading for Sections 2.9.1 – 2.9.3: FLEHINGER/LEWIS (1959), JOHNSON/KOTZ/KEMP

(1992), Kao (1959), KÜBLER (1979), LEHMAN (1963), MCEWEN/PARRESOL (1991), RAJA

RAO/TALWALKER (1989).
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so that

dv = c uc−1 du resp. du =
1

c
u1−c dv.

(2.63c) is nothing but the well–known gamma function (see the following excursus), so we

have

µ′r(U) = Γ
(r
c

+ 1
)

(2.63d)

=: Γr, for short in the sequel. (2.63e)

The mean or expected value of the reduced WEIBULL variable is thus

E(U) = µU = Γ1. (2.63f)

It will be discussed in Sect. 2.9.2.

Excursus: Gamma function and its relatives20

A. Complete gamma function

There exist three equivalent definitions of the complete gamma function Γ(z), gamma function for

short.

Definition 1, due to LEONHARD EULER (1707 – 1783):

Γ(z) :=

∞∫

0

tz−1 e−t dt, z > 0

Definition 2, due to CARL FRIEDRICH GAUSS (1777 – 1855):

Γ(z) := lim
n→∞

n!nz

z (z + 1) . . . (z + n)
, z 6= 0,−1,−2, . . .

Definition 3, due to KARL WEIERSTRASS (1815 – 1897):

1

Γ(z)
:= z eγ z

∞∏

n=1

[(
1 +

z

n

)
e−z/n

]
,

where

γ = lim
n→∞

{
1 +

1

2
+

1

3
+ . . .+

1

n
− ln n

}
≈ 0.577215665

is EULER’s constant.

Integrating by parts in definition 1 gives the following recurrence formula for Γ(z),

Γ(z + 1) = z Γ(z),

enabling a definition of Γ(z) over the entire real line,21 except where z is zero or a negative integer,

as

Γ(z) =





∞∫

0

tz−1 e−t dt, z > 0

z−1 Γ(z + 1), z < 0, z 6= −1,−2, . . .

20 Suggested reading: ABRAMOWITZ/STEGUN (1965)

21 The gamma function is also defined for a complex variable t and for a complex parameter z, provided

that the respective real part is positive.
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The general recurrence formula is

Γ(n+ z) = Γ(z)
n∏

i=1

(z + i− 1).

From definition 1 we have

Γ(1) = 1 = 0!

so that using the recurrence formula

Γ(n+ 1) = n!, n = 1, 2, 3, . . .

holds. From definition 3 it can be shown that

Γ

(
1

2

)
=

√
π ≈ 1.77245,

and furthermore,

Γ

(
n+

1

2

)
=

1 · 3 · 5 · . . . · (2n− 1)

2n

√
π, n = 1, 2, 3, . . .

The table in Part III gives values of Γ(z) for 1 ≤ z ≤ 2.

There exist a lot of approximations for Γ(z). The following two formulas have been obtained using

some form of STIRLINGS’s expansion (JAMES STIRLING, 1692 – 1770) for the gamma function:

1) Γ(z) ≈
√

2 π zz−1/2 e−z exp

{
1

12 z
− 1

360 z3
+

1

1260 z5
− . . .

}
,

2) Γ(z)≈
√

2π(z − 1)z−1/2e−z−1 exp

{
1

12(z − 1)
− 1

360(z − 1)3
+

1

1260(z − 1)5
− 1

1680(z − 1)7
+. . .

}
.

The remainder terms in both formula are each less in absolute value than the first term that is

neglected, and they have the same sign.

Two polynomial approximations are

1) Γ(1+x) = 1+

5∑

i=1

ai x
i+ε(x) for 0 ≤ x ≤ 1, where |ε(x)| ≤ 5·10−5,

with

a1 = −0.5748646

a2 = 0.9512363

a3 = −0.6998588

a4 = 0.4245549

a5 = −0.1010678
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2) Γ(1+x) = 1+
8∑

j=1

bj x
j+ε(x) for 0 ≤ x ≤ 1, where |ε(x)| ≤ 3·10−7,

with

b1 = −0.577191652

b2 = 0.988205891

b3 = −0.897056937

b4 = 0.918206857

b5 = −0.756704078

b6 = 0.482199394

b7 = −0.193527818

b8 = 0.035868343

B. Polygamma functions

The first derivative of ln Γ(z) is called the digamma function or psi function:

ψ(z) :=
d

dz

[
ln Γ(z)

]
=

Γ′(z)

Γ(z)
=

dΓ(z)/dz

Γ(z)

leading to

Γ′(z) = ψ(z) Γ(z).

Similarly

ψ′(z) :=
d

dz

[
ψ(z)

]
=

d2

dz2

[
ln Γ(z)

]

is called trigamma function which leads to

d2Γ(z)

dz2
= Γ(z)

[
ψ2(z) + ψ′(z)

]
.

Generally,

ψ(n)(z) :=
dn

dzn

[
ψ(z)

]
=

dn+1

dzn+1

[
ln Γ(z)

]
; n = 1, 2, 3, . . .

is called (n+ 2)–gamma function or polygamma function. ψ′′, ψ(3), ψ(4) are the tetra-, penta-

and hexagamma functions, respectively.

The recurrence formula Γ(z + 1) = z Γ(z) yields the following recurrence formulas for the psi

function:

ψ(z + 1) = ψ(z) + z−1

ψ(z + n) = ψ(z) +

n∑

i=1

(z + i− 1)−1; n = 1, 2, 3, . . . ,

and generally for polygamma functions

ψ(n)(z + 1) = ψ(n)(z) + (−1)n n! z−n−1.
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Further we have

ψ(z) = lim
n→∞

[
ln n−

n∑

i=0

(z + i)−1

]

= −γ − 1

z
+

∞∑
i=1

z

i (z + i)
, z 6= −1,−2, . . .

= −γ + (z − 1)

∞∑

i=0

[
(i+ 1) (i+ z)

]−1
.

Particular values of ψ(z) are

ψ(1) = −γ, ψ(0.5) = −γ − 2 ln 2 ≈ −1.963510.

The table in Part III gives values of ψ(z) and ψ′(z) for 1 ≤ z ≤ 2. Fig. 2/17 shows the courses of

Γ(z) and ψ(z).

The reflection formula is

ψ(1 − z) = ψ(z) + π cot(z π).

Asymptotic expansions are

ψ(z) = ln z − 1

2 z
− 1

12 z2
+

1

120 z4
− 1

252 z6
+ . . .

Figure 2/17: Gamma function and psi function
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(leading to ψ(z) ≈ ln(z − 0.5), provided z ≥ 2) and

ψ′(z) =
1

z
+

1

2 z2
+

1

6 z3
− 1

30 z5
+

1

42 z7
− 1

30 z9
+ . . .

ψ′′(z) = − 1

z2
− 1

z3
− 1

2 z4
+

1

6 z6
− 1

6 z8
+

3

10 z10
− 5

6 z15
+ . . .

C. Incomplete gamma function

The incomplete gamma function is defined as

γ(z |u) :=

u∫

0

tz−1 e−t dt.

Another notation is

Γu(z) = γ(z |u).

The complement is

Γ(z |u) :=

∞∫

u

tz−1 e−t dt,

i.e.,

γ(z |u) + Γ(z |u) = Γ(z).

An infinite series formula for γ(z |u) is

γ(z |u) =

∞∑

i=0

(−1)i

i!

uz+i

z + i
.

The following recurrence formulas hold

γ(z + 1 |u) = z γ(z |u) − uz e−u,

Γ(z + 1 |u) = z Γ(z |u) − uz e−u.

The incomplete gamma function ratio

γ(z |u)
Γ(z)

=
Γu(z)

Γ(z)

is related to the distribution function F (x |λ, c) of a gamma–distributed random variable X with

density

f(x |λ, c) =





λ (λx)c−1 exp(−λx)
Γ(c)

for x > 0; λ, c ∈ R+

0 for x else
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as

F (x |λ, c) =





0 for x < 0

γ(c |λx)
Γ(c)

for x ≥ 0.

KARL PEARSON (1857 – 1936) has tabulated22 an especially parameterized version of the incom-

plete gamma function ratio:

I(u, p) :=
Γu

√
p+1(p+ 1)

Γ(p+ 1)
.

The moments about zero of a general WEIBULL variable are linked to those of the reduced

WEIBULL variable. Inserting X = a+ bU into (2.63a) and using (2.63d), we get

µ′r(X) = E(Xr) = E [(a+ bU)r]

=

r∑

j=0

(
r

j

)
aj br−j E

(
U r−j

)

=
r∑

j=0

(
r

j

)
aj br−j Γ

(
r − j

c
+ 1

)
. (2.64a)

With the abbreviation given in (2.63e) the first four raw moments are

µ′1(X) = E(X) = a+ bΓ1 =: µX , mean of X, (2.64b)

µ′2(X) = E(X2) = a2 + 2 a bΓ1 + b2 Γ2, (2.64c)

µ′3(X) = E(X3) = a3 + 3 a2 bΓ1 + 3 a b2 Γ2 + b3 Γ3, (2.64d)

µ′4(X) = E(X4) = a4 + 4 a3 bΓ1 + 6 a2 b2 Γ2 + 4 a b3 Γ3 + b4 Γ4. (2.64e)

The raw moment generating function MX(t) of a random variable X, if it exists (i.e., is

finite), is the expectation

MX(t) := E
(
etX

)
. (2.65a)

When MX(t) exist for some interval |t| < T , where T > 0, then µ′r(X) is the coefficient

of tr/r! in the TAYLOR–expansion of MX(t):

MX(t) = E
(
etX

)
= 1 +

∑

r≥1

tr

r!
µ′r(X), (2.65b)

or stated otherwise

µ′r(X) =
drMX(t)

dtr

∣∣∣∣
t=0

. (2.65c)

22 K. PEARSON (1922): Tables of the incomplete Γ–Function; H.M. Stationery Office, London.
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With regard to the reduced WEIBULL variable we get

MU (t) = E
(
et U
)

=

∞∫

0

c uc−1 exp
(
t u− uc

)
du. (2.65d)

There exists no closed form for the integral in (2.65d). In general, all other generating

functions, when applied to the WEIBULL distribution, also have no closed form. Combin-

ing (2.63d) with (2.65b), MU (t) may be expressed as

MU (t) = 1 +
∑

r≥1

tr

r!
Γ
(r
c

+ 1
)
. (2.65e)

The r–th moment of X about a constant a is E
[
(X − a)r

]
. When a = µ = E(X), we get

the r–th moment about the mean (also called central moment or corrected moment):

µr(X) := E
[
(X − µ)r

]
. (2.66a)

The raw moments and central moments are linked by either

µr(X) =

r∑

j=0

(
r

j

)
(−1)j µj µ′r−j (2.66b)

or

µ′r(X) =

r∑

j=0

(
r

j

)
µj µr−j. (2.66c)

So the central moments of the reduced WEIBULL variable U are

µr(U) = E
[
(U − Γ1)

r
]

=

r∑

j=0

(
r

j

)
(−1)j Γj1 Γr−j, (2.67a)

and especially for r = 1, 2, 3, 4:

µ1(U) = 0, (2.67b)

µ2(U) = Γ2 − Γ2
1 =: Var(U) =: σ2

U , variance of U, (2.67c)

µ3(U) = Γ3 − 3Γ2 Γ1 + 2Γ3
1, (2.67d)

µ4(U) = Γ4 − 4Γ3 Γ1 + 6Γ2 Γ2
1 − 3Γ4

1. (2.67e)

For the general WEIBULL variable X, we get

µr(X) = E
[{

(a+ bU) − (a+ bΓ1)
}r]

= br E
[
(U − Γ1)

r
]

= br µr(U). (2.67f)
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Especially,

µ2(X) = b2 (Γ2 − Γ2
1) =: Var(X) := σ2

X (2.67g)

is the variance of X.

The central moment generating function of a random variable X is the expectation

ZX(t) := E
[
e(X−µ) t

]

= e−t µMX(t), (2.68a)

if it exists. E
[
(X − µ)r

]
= µr is linked to ZX(t) by

ZX(t) = 1 +
∑

r≥1

tr

r!
µr. (2.68b)

There exist several other types of moments which are in close relation to the raw moments

or the central moments, respectively. Generating functions for these moments may be found

too.

1. Standardized moments:

µ∗r := E

[(
X − µ

σ

)r ]
; µ = E(X); σ =

√
Var(X) =

√
µ2(X) (2.69a)

with

µ∗r :=
µr
σr
. (2.69b)

2. Ascending factorial raw moments:

µ′[r] := E
(
X [r]

)
, X [r] := X (X + 1) (X + 2) . . . (X + r − 1), (2.70a)

with

µ′[1] = µ′1; µ′[2] = µ′2 + µ; µ′[3] = µ′3 + 3µ′2 + 2µ;

µ′[4] = µ′4 + 6µ′3 + 11µ′2 − 6µ

and generating function

NFX(t) := E
[
(1 − t)−X

]
, (2.70b)

where

µ′[r] =
drNFX(t)

dtr

∣∣∣∣
t=0

.

3. Descending factorial raw moments

µ′(r) := E
[
X(r)

]
, X(r) := X (X − 1) (X − 2) . . . (X − r + 1), (2.71a)

with

µ′(1) = µ′1; µ′(2) = µ′2 − µ; µ′(3) = µ′3 − 3µ′2 + 2µ;

µ′(4) = µ′4 − 6µ′3 + 11µ′2 − 6µ
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and generating function

NfX(t) := E
[
(1 + t)X

]
, (2.71b)

where

µ′(r) =
drNfX(t)

dtr

∣∣∣∣
t=0

.

4. Ascending factorial central moments

µ[r] := E
[
(X−µ)[r]

]
, X−µ)[r] := (X−µ) (X−µ+1) (X−µ+2) . . . (X−µ+r−1),

(2.72a)

with

µ[1] = 0; µ[2] = µ2; µ[3] = µ3 + 3µ2;

µ[4] = µ4 + 6µ′3 + 11µ′2.

The corresponding generating function is

ZFX(t) := (1 − t)µ E
[
(1 − t)X

]
(2.72b)

where

µ[r] =
drZFX(t)

dtr

∣∣∣∣
t=0

.

5. Descending factorial central moments

µ(r) := E
[
(X−µ)(r)

]
, (X−µ)(r) := (X−µ) (X−µ−1) (X−µ−2) . . . (X−µ−r+1),

(2.73a)
with

µ(1) = 0; µ(2) = µ2; µ(3) = µ3 − 3µ2;

µ(4) = µ4 − 6µ3 + 11µ2.

The generating function is

ZfX(t) := (1 + t)−µ E
[
(1 + t)X

]
(2.73b)

leading to

µ(r) =
drZfX(t)

dtr

∣∣∣∣
t=0

.

Absolute raw moments

ν ′r := E[ |X|r ] (2.74a)

of odd order r for a WEIBULL distribution must be evaluated numerically when a < 0. For

even order r we have

ν ′r = µ′r.
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Absolute central moments

νr := E[ |X − µ|r ] (2.74b)

have to be evaluated numerically for odd order r when X has a WEIBULL distribution, but

νr = µr for r = 2 k; k = 1, 2, . . .

Whereas the raw moment generating function MX(t) = E
(
etX
)

may not exist for each

random variable, the characteristic function

ϕX(t) := E
(
ei tX

)
, i :=

√
−1 (2.75a)

always exists and is uniquely determined by the CDF of X when X is continuous. It

satisfies

ϕX(0) = 1, (2.75b)

|ϕX (t)| ≤ 1, (2.75c)

ϕX(−t) = ϕX(t), (2.75d)

where the overline denotes the complex conjugate. ϕX(t) has properties similar to those of

MX(t), e.g.,

µ′r = ir ϕ
(r)
X (0), (2.75e)

where

ϕ
(r)
X (0) :=

drϕX(t)

dtr

∣∣∣∣
t=0

.

The characteristic function uniquely determines the DF fX(x) as

fX(x) =
1

2π

∞∫

−∞

e−i t x ϕX(t) dt. (2.75f)

If X1 and X2 are independent random variables with characteristic functions ϕ1(t) and

ϕ2(t), respectively, then the characteristic function of the sum X1 +X2 is

ϕX1+X2(t) = ϕ1(t) ϕ2(t),

and that of the difference X1 −X2 is

ϕX1−X2(t) = ϕ1(t) ϕ2(−t).

A concept closely related to the notion of a raw moment is that of a cumulant. The cumu-

lant of order r is denoted by κr. Cumulants and raw moments are defined by the following

identity:23

exp
{
κ1 t+ κ2 t

2/2! + κ3 t
3/3! + . . .

}
= 1 + µ′1 t+ µ′2 t

2/2! + µ′3 t
3/3! . . . (2.76a)

23 Some authors use i t (with i =
√
−1 ) instead of t.
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Evaluation of (2.76a) leads to

µ′1 = µ = κ1 = E(X),

µ′2 = κ2 + κ2
1,

µ′3 = κ3 + 3κ2 κ1 + κ3
1,

µ′4 = κ4 + 4κ3 κ1 + 3κ2
2 + 6κ2 κ

2
1 + κ4

1,

generally

µ′r =
r∑

j=1

(
r − 1

j − 1

)
µ′r−j κj . (2.76b)

For the reverse relation we have

κ1 = µ′1 = µ,

κ2 = µ′2 − µ = µ2 (variance),

κ3 = µ′3 − 3µ′2 µ+ 2µ3 = µ3 (third central moment),

κ4 = µ′4 − 4µ′3 − 3 (µ′2)
2 + 12µ′2 µ

2 − 6µ4 = µ4 − 3µ2
2.

(2.76a) may be stated by using generating functions. The natural logarithm of the raw mo-

ment generating function MX(t), defined in (2.65a), is the cumulant generating function

KX(t):

KX(t) = lnMX(t) =
∑

r≥1

tr

r!
κr. (2.77a)

(Note the missing term belonging to r = 0!) Because of

MX+a(t) = E
[
et (X+a)

]
= et aMX(t),

we have

KX+a(t) = t a+KX(t). (2.77b)

So, for r ≥ 2 the coefficients of tr/r! in the TAYLOR–expansion of KX+a(t) and KX(t)
are identical, and the cumulants for r ≥ 2 are not affected by the addition of a constant:

κr(X + a) = κr(X), r ≥ 2,

κ1(X + a) = a+ κ1(X).



 (2.77c)

For this reason the cumulants have also been called semivariants or half–invariants.

Putting a = −µ shows that, for r ≥ 2, the cumulants κr are functions of the central

moments µr. In fact
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κ2 = µ2 = σ2,

κ3 = µ3,

κ4 = µ4 − 3µ2
2,

κ5 = µ5 − 10µ3 µ2.

Let X1, X2, . . . , Xn be independent random variables and X =
n∑
j=1

Xj . Provided the

relevant functions exist, we have24

KX(t) =
n∑

j=1

KXj (t). (2.78a)

It follows from (2.78a):

κr




n∑

j=1

Xj


 =

n∑

j=1

κr(Xj) ∀ r, (2.78b)

so the cumulant of a sum equals the sum of the cumulants, finally explaining the name of

this statistical concept.

Yet another concept is that of the information generating function, defined as

TX(t) := E
[
{f(X)}t

]
, (2.79a)

from which the entropy I(X) of the distribution results as

I(X) = −dTX(t)

dt

∣∣∣∣
t=1

. (2.79b)

With respect to the reduced WEIBULL distribution, (2.79a) leads to

TU (t) = ct
∞∫

0

ut (c−1) e−t u
c

du. (2.80a)

Substituting t uc = v (taking t > 0 and noting that c > 0), we obtain

TU (t) =
ct−1

t[1+t (c−1)]/c
Γ

[
1 + t (c− 1)

c

]
, (2.80b)

so that the WEIBULL entropy is

Ic(U) = −T ′
U(1) =

c− 1

c
γ − ln c+ 1, (2.80c)

24 The corresponding proposition for the raw moment generating function is

MX(t) =

nY

j=1

MXj
(t).
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γ being EULER’s constant (γ ≈ 0.57722). Fig. 2/18 shows Ic(U) as a function of c. The

entropy takes its maximum (γ − 1)− ln γ+ 1 ≈ 1.12676 for c = γ. The limiting behavior

is lim
c→0

Ic(U) = lim
c→∞

Ic(U) = −∞.

Figure 2/18: Entropy of the reduced WEIBULL distribution

To describe a random variable with respect to its form and to see similarities between

the distributions of different variables, ratios of moments and of cumulants have been

introduced. There exist two types of moment ratios built upon the central moments:

1. α–coefficients of order r

αr :=
µr

µ
r/2
2

; r = 2, 3, . . . (2.81a)

The α–coefficients are identical to the reduced moments, see (2.69a,b):

αr = µ∗r.

2. β–coefficients of order r

βr :=





β2 k+1 :=
µ3 µ2 k+3

µk+3
2

; k = 0, 1, 2, . . .

β2 k :=
µ2 k+2

µk+1
2

; k = 1, 2, . . .





(2.81b)
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The ratios of cumulants are known as γ–coefficients and are defined as

γr :=
κr+2

κ
r/2+1
2

; r = 1, 2, . . . (2.81c)

Each of the three types of ratios is invariant with respect to a linear transformation a+ bX,

b > 0, of the random variable X. For b < 0 the sign of the ratios changes when r is of odd

order.

The application of α3 = µ3

/
µ

3/2
2 as a measure of skewness and of α4 = µ4

/
µ2

2 as a

measure of kurtosis to the WEIBULL distribution will be discussed in Sect. 2.9.4. These

two most frequently used ratios are linked to the β– and γ–coefficients as follows:

α3 :=
µ3

µ
3/2
2

= sign(µ3)
√
β1 = sign(µ3)

√
µ2

3

µ3
2

(2.82a)

= γ1 =
κ3

κ
3/2
2

, (2.82b)

α4 =
µ4

µ2
2

= β2 (2.83a)

= γ2 + 3 =
κ4

κ2
2

+ 3. (2.83b)

2.9.2 Mean and its relation to mode and median

The mean or expected value of the reduced WEIBULL variable U is given (see (2.63f)) by

E(U) = µU = Γ

(
1 +

1

c

)
=: Γ1.

Fig. 2/19 shows how E(U) depends on c in a non–monotone manner. The course of E(U) is

determined by the behavior of Γ(x), x > 0 (see Fig. 2.17). Γ(x) comes down from positive

infinity at x = 0 and falls with convex curvature to x0 ≈ 1.4616321450, where

min
x

Γ(x) = Γ(x0) ≈ 0.8856031944.

Thereafter Γ(x) grows with convex curvature to positive infinity for x→ ∞. Setting

x = 1 +
1

c
,

this behavior of the gamma function means to E(U):

• lim
c→0

Γ

(
1 +

1

c

)
= ∞,

• lim
c→∞

Γ

(
1 +

1

c

)
= 1,

• min
c

Γ

(
1 +

1

c

)
= Γ

(
1 +

1

c0

)
≈ 0.8856031944 with c0 = (x0 − 1)−1 ≈ 2.16623.
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A small value of c implies a great mean, but — see Sect. 2.9.3 — a great variance too. The

high value of the mean, occurring with early–time–failure distributions (c < 1), is thus

essentially determined by the long lifetime of the few robust items in the population.

Figure 2/19: Mean, median and mode of the reduced WEIBULL distribution

Table 2/2 shows how the mean E(U) = Γ(1 + 1/c), the median u0.5 = (ln 2)1/c and the

mode u∗ =
[
(c − 1)/c

]1/c
vary with c in the vicinity of c = 3.3. There exists no value of

c resulting in E(U) = u0.5 = u∗. Instead, we have three different values of c where two of

these parameters coincide:

• u∗ = u0.5 ≈ 0.89362816 for c ≈ 3.25889135,

• u∗ = E(U) ≈ 0.89718563 for c ≈ 3.31246917,

• E(U) = u0.5 ≈ 0.89892230 for c ≈ 3.43954065.

Looking at the size–relation of these three location parameters one can make some state-

ments on the skewness of the WEIBULL distribution depending on c:

• u∗ < u0.5 < E(U) for c < 3.25889135

indicates a positively skewed density with a relatively long right–hand tail;

• u∗ > u0.5 > E(U) for c > 3.43954065
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Table 2/2: Mean, median and mode of the reduced WEIBULL distribution for

3.20 ≤ c ≤ 3.50

c E(U) u0,5 u∗

3.200000 0.8956537 0.8917805 0.8895036
3.210000 0.8957894 0.8920987 0.8902205
3.220000 0.8959252 0.8924151 0.8909305
3.230000 0.8960612 0.8927296 0.8916337
3.240000 0.8961973 0.8930424 0.8923303
3.250000 0.8963334 0.8933532 0.8930202

3.258891 0.8964546 0.8936282 0.8936282

3.260000 0.8964697 0.8936623 0.8937036
3.270000 0.8966060 0.8939696 0.8943806
3.280000 0.8967424 0.8942752 0.8950512
3.290000 0.8968788 0.8945790 0.8957155
3.300000 0.8970153 0.8948810 0.8963736
3.310000 0.8971519 0.8951813 0.8970256

3.312469 0.8971856 0.8952552 0.8971856

3.320000 0.8972885 0.8954799 0.8976715
3.330000 0.8974251 0.8957769 0.8983114
3.340000 0.8975618 0.8960721 0.8989455
3.350000 0.8976985 0.8963657 0.8995737
3.260000 0.8964697 0.8936623 0.8937036
3.370000 0.8979719 0.8969479 0.9008128
3.380000 0.8981086 0.8972365 0.9014239
3.390000 0.8982453 0.8975236 0.9020294
3.400000 0.8983820 0.8978090 0.9026295
3.410000 0.8985187 0.8980929 0.9032241
3.420000 0.8986553 0.8983752 0.9038133
3.430000 0.8987920 0.8986559 0.9043972

3.439541 0.8989223 0.8989223 0.9049495

3.440000 0.8989286 0.8989351 0.9049759
3.450000 0.8990651 0.8992127 0.9055494
3.460000 0.8992016 0.8994889 0.9061178
3.470000 0.8993381 0.8997635 0.9066812
3.480000 0.8994745 0.9000366 0.9072395
3.490000 0.8996109 0.9003083 0.9077929
3.500000 0.8997472 0.9005785 0.9083415

indicates a negatively skewed density with a relatively long left–hand tail;

• u∗ ≈ u0.5 ≈ E(U) for 3.25889135 ≤ c ≤ 3.43954065

indicates a roughly symmetric density.
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Further details on skewness will be presented in Sect. 2.9.4.

Looking at Fig. 2.19 one can see that E(U) may be approximated by 1 for c > 0.58 with a

maximum error of 12.5%. A more accurate approximating formula is

E(U) ≈ 1 − γ

c
+

(
π2

6
+ γ

)/
(2 c2) ≈ 1 − 0.57722

c
+

0.98905

c2
, (2.84)

which is based on a TAYLOR–expansion of Γ(1 + 1
c ) around c = 1 neglecting terms of

order greater than two.

The mean of the general WEIBULL variable X is

E(X) = a+ bΓ

(
1 +

1

c

)
= a+ bΓ1, (2.85)

where higher values of a and/or b lead to a high value of E(X). Generally,

E(X) < a+ b for c > 1,

E(X) = a+ b for c = 1,

E(X) > a+ b for c < 1.

From (2.85) we have the opportunity to substitute one of the parameters a, b or c in the DF

function by µX = E(X). Because c can only be isolated from (2.85) by numerical methods

and — in the case of Γ1 < 1 (see Fig. 2/18) — not yet unequivocally, a and b are the only

candidates for this process. Substituting a in (2.8) gives

fX(x |µX , b, c) =
c

b

(
x− µX

b
+ Γ1

)c−1

exp

{
−
(
x− µX

b
+ Γ1

)c}
, (2.86a)

and substituting b leads to

fX(x | a, µX , c) =
cΓ1

µX − a

(
x− a

µX − a
Γ1

)c−1

exp

{
−
(
x− a

µX − a
Γ1

)c}
. (2.86b)

When a = 0, the last formula turns into the simple expression

fX(x | 0, µX , c) = c

(
Γ1

µX

)c
xc−1 exp

{
−
(
x

µX
Γ1

)c}
. (2.86c)

Another possibility of substituting b is to use the standard deviation σX (see Sect. 2.9.3).

Writing the WEIBULL CDF with a = 0 by once substituting b by µX and another time by

σX gives the opportunity to construct a nomogram to find FX(x | 0, b, c) as was done by

KOTELNIKOV (1964).
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From (2.85) we have

b =
E(X) − a

Γ

(
1 +

1

c

) . (2.87a)

When a = 0 the simple relation

b =
E(X)

Γ

(
1 +

1

c

) (2.87b)

tells us that there are numerous pairs of b and c leading to the same mean. Fig. 2/20 shows

for four values (1, 2, 3 and 4) of E(X) the b–c combinations with equal mean, and Fig. 2/21

depicts four densities with E(X) = 1.

Figure 2/20: Combinations of b and c leading to the same mean

2.9.3 Variance, standard deviation and coefficient of variation

The variance of the reduced WEIBULL distribution is

Var(U) = σ2
U = Γ

(
1 +

2

c

)
− Γ

(
1 +

1

c

)2

= Γ2 − Γ2
1, (2.88a)
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Figure 2/21: Four densities with E(X) = 1 and different b–c combinations

from which we derive the standard deviation

σU =
(
Γ2 − Γ2

1

)1/2
(2.88b)

and the coefficient of variation

CV(U) =
σU
µU

=

(
Γ2 − Γ2

1

)1/2

Γ1
. (2.88c)

Fig. 2/22 shows how these three measures of dispersion depend on c. All three are convexly

decreasing functions of c, coming down from positive infinity at c = 0 and converging to

zero with c→ ∞. For larger values of c the standard deviation and coefficient of variation

coincide because lim
c→∞

Γ(1 + 1/c) = 1. Small c means large dispersion and large c means

small dispersion. An approximating formula for Var(U) is

Var(U) ≈ π2

6 c2
≈ 1.64493 c−2 . (2.89)

Similar to (2.84) this approximation results from a TAYLOR–development of the gamma

function around c = 1, terminating after the quadratic term and neglecting all powers of c
smaller than −2.
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Figure 2/22: Variance, standard deviation and coefficient of variation of the reduced

WEIBULL distribution

For a general WEIBULL distribution the three measures of dispersion are

Var(X) = σ2
X = b2 Var(U) = b2

[
Γ2 − Γ2

1

]
, (2.90a)

σX = b σU = b
[
Γ2 − Γ2

1

]1/2
, (2.90b)

CV(X) =
σX
µX

=
b
[
Γ2 − Γ2

1

]1/2

a+ bΓ1
. (2.90c)

Variance and standard deviation now depend on b too and are increasing with b. The coef-

ficient of variation is depending on all three parameters. Using (2.90b), the scale parameter

b appearing in the density formula (2.8) may be substituted by σX :

fX(x | a, σX , c) =
c

σcX

[
Γ2 − Γ2

1

]c/2
(x− a)c−1 exp

{
−
(
x− a

σX

)c [
Γ2 − Γ2

1

]c/2
}
.

(2.91)

2.9.4 Skewness and kurtosis25

The most popular way to measure the skewness and the kurtosis of a DF rests upon ratios

of moments. But there exist other approaches, mainly based on percentiles, which will be

presented too.

25 Suggested reading for this section: BENJAMINI/KRIEGER (1999), COHEN (1973), DUBEY (1967a),

GROENEVELD (1986, 1998), GURKER (1995), HINKLEY (1975), LEHMAN (1963), MACGILLIVRAY

(1992), ROUSU (1973), SCHMID/TREDE (2003), VAN ZWET (1979).
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In Sect. 2.9.1 we have given three types of ratios based on moments; see (2.81a–c). Skew-

ness is measured by

α3 =
µ3

µ
3/2
2

, (2.92a)

= sign(µ3)
√
β1, (2.92b)

= γ1. (2.92c)

With respect to a WEIBULL distribution this measure turns into

α3 =
Γ3 − 3Γ2 Γ1 + 2Γ3

1(
Γ2 − Γ2

1

)3/2 ; Γi := Γ(1 + i/c). (2.93)

Fig. 2/23 shows how α3 depends on c.

Figure 2/23: Moment ratios for a WEIBULL distribution

Usually and with respect to the ratio α3 distributions are classified as follows:

• The density is called symmetric if α3 = 0. For c0 ≈ 3.60 — more accurately: c0 =
3.6023494257197 as calculated by COHEN (1973) — we have α3 = 0. But with this

value of c the WEIBULL distribution is not perfectly symmetric. For instance, mean,

median and mode do not coincide when c = c0:

E(X) = a+ 0.90114 b

x0.5 = a+ 0.90326 b

x∗ = a+ 0.91369 b,
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and the left and right inflection points are not in equal distance to the mode:

x∗∗ℓ = a+ 0.60137 b

x∗∗r = a+ 1.21337 b.

Other means to measure skewness as to be found in Tab. 2/3 will show divergent

statements on the value of c resulting into symmetry of a WEIBULL density.

• The density is called positively skewed (skewed to the right or steep on the left–hand

side) showing a relatively long right–hand tail if α3 > 0. This happens for c < c0.

• The density is called negatively skewed (skewed to the left or steep on the right–

hand side) showing a relatively long left–hand tail if α3 < 0. This occurs for c > c0.

Note, that α3 is a large positive value for small c, decreases to zero at about c0 ≈ 3.60
and then becomes moderately negative. It is not correct to say — as can be found in some

papers, e.g., LEHMAN (1963) — that α3 converges to zero with c → ∞. To study the

asymptotic behavior of α3, we look at

β1 =

(
Γ3 − 3Γ2 Γ1 + 2Γ3

1

)2
(
Γ2 − Γ2

1

)3 ; Γi := Γ(1 + i/c).

The limit of β1 for c→ ∞ is an indeterminate expression of type 0/0. After having applied

L’ HOSPITAL’s rule six times we get

lim
c→∞

β1 =
20
[
ψ′′(1)

]2

90
[
2ψ′(1)

]3 ≈ 1.298567591. (2.94a)

Because of (2.92b) the result for α3 is

lim
c→∞

α3 ≈ −1.13955. (2.94b)

Excursus: Measuring skewness

The measurement of skewness has attracted the attention of statisticians for over one hundred years.

In 1896 GALTON introduced the percentile oriented measure26

ga :=
x0.8 − x0.5

x0.5 − x0.2
; 0 ≤ ga <∞. (2.95)

ga = 1 indicates symmetry, and ga < 1 is interpreted as skewness to the left. In 1901 BOWLEY

suggested

bo :=
(x0.75 − x0.5) − (x0.5 − x0.25)

x0.75 − x0.25
: −1 ≤ bo ≤ +1. (2.96)

26 Percentile orientation of an index means that it is less affected by the tail behavior or — dealing with

sample data — by outliers.



94 2 Definition and properties of the WEIBULL distribution

For a symmetric distribution we have bo = 0, whereas bo ≈ +1 (bo ≈ −1) indicates strong right

(left) skewness. If x0.8 and x0.2 in ga are replaced by x0.75 and x0.25, respectively, then

ga =
1 + bo

1 − bo

is a monotonic increasing function of bo.

A natural generalization of BOWLEY’s coefficient is the skewness function, see MACGILLIVRAY

(1992):

γα(F ) :=

[
F−1(1 − α) − x0.5

]
−
[
x0.5 − F−1(α)

]

F−1(1 − α) − F−1(α)
; 0 < α < 0.5; (2.97)

where F−1(1 − α) is the percentile of order 1 − α belonging to the CDF F (x). We have

• |γα(F )| ≤ 1,

• γα(F ) = 0 for a symmetric density,

• γα(F ) ≈ 1 for extreme right skewness,

• γα(F ) ≈ −1 for extreme left skewness.

The tilt factor introduced by HINKLEY (1975) starts from γα(F ) and is defined as

τα(F ) :=
1 + γα(F )

1 − γα(F )
=
F−1(1 − α) − x0.5

x0.5 − F−1(α)
; 0 < α < 0.5. (2.98)

τα(F ) is a generalization of GALTON’s coefficient.

It seems reasonable to formulate some requirements to be satisfied by a general skewness parameter

γ for a continuous random variable X . The following three requirements are given by VAN ZWET

(1979):

1. γ(a+ bX) = γ(X) for any b > 0 and −∞ < a <∞,

2. γ(−X) = −γ(X),

3. If X and Y are two random variables for which X <c Y (i.e., X c–precedes Y in the sense

of VAN ZWET, see below), then γ(X) ≤ γ(Y ).

The first requirement assures that a skewness measure be location and scale invariant. The second

requirement assures that changing the sign of a random variable changes the sign of the skewness,

but not its magnitude. The c–precedence means that if X and Y have CDFs F and G, respectively,

thenX <c Y if and only if G−1(F (x)) is convex. In this case there is good reason to conclude that

Y is at least as skew to the right as X .

With respect to the (reduced) WEIBULL CDF

FU (u | c) = 1 − exp
[
− uc

]

assume that there are two parameter values of c with c2 < c1. It is easy to show that F−1
2

(
F1(u)

)
=

uc1/c2 which is convex for c2 < c1. Hence as c increases, the skewness decreases.
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α3 defined in (2.93) satisfies the aforementioned three requirements as does the measure

gr :=
E(X) − x0.5

E
(
|X − x0.5|

) (2.99)

suggested by GROENEVELD (1986) (see Tab. 2/3). But all skewness measures resting upon the

mean–median–mode inequality, as, e.g.,

E(X) − x∗

σ
or

E(X) − x0.5

σ
,

do not satisfy the third requirement.

Fig. 2/24 shows how BOWLEY’s and GALTON’s measures of skewness vary with c. We

have

• ga = 1 for c ≈ 3.3047279 and lim
c→∞

ga = 0.743231,

• bo = 0 for c ≈ 3.2883129 and lim
c→∞

bo = −0.118433.

Figure 2/24: BOWLEY’s and GALTON’s measures of skewness for the WEIBULL distribu-

tion

Tab. 2/3 summarizes how the order of mean, median and mode changes with c and what is

the sign of α3 and gr in the respective interval for c.
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Table 2/3: Skewness properties of a WEIBULL density

c Relationship of mean µ, median x0.5

and mode x∗
Sign of α3 Sign of gr

c < 3.2589 x∗ < x0.5 < µ + +

3.2589 < c < 3.3125 x0.5 < x∗ < µ + +

3.3125 < c < 3.4395 x0.5 < µ < x∗ + +

3.4395 < c < 3.6023 µ < x0.5 < x∗ + −
c > 3.6023 µ < x0.5 < x∗ − −

The kurtosis of a DF is measured by

α4 =
µ4

µ2
2

, (2.100a)

= β2, (2.100b)

= γ2 + 3. (2.100c)

The reference value for α4 is 3, the value taken by α3 when X is normally distributed. A

distribution having

• α4 = 3 is called mesokurtic,

• and platykurtic for α4 < 3,

• and leptokurtic for α4 > 3 .

α4 > 3 means that there is an excess of values in the neighborhood of the mean as well as

far away from it, with a depletion of the flanks of the curve representing the distribution.

α4 < 3 indicates a flatter top than the normal distribution, e.g., occurring with a rectangular

distribution.

With respect to the WEIBULL distribution we have

α4 =
Γ4 − 4Γ3 Γ1 + 6Γ2 Γ2

1 − 3Γ4
1(

Γ2 − Γ2
1

)2 , Γi := Γ(1 + i/c). (2.101)

Fig. 2/23 shows how α4 varies with c. α4 is decreasing until it reaches a minimum of

α4 ≈ 2.710513 at c ≈ 3.360128. Thereafter, α4 is increasing, but has a finite limit:27

lim
c→∞

α4 = 5.4. When c ≈ 2.25 and c ≈ 5.75, we have α4 = 3, i.e., the kurtosis of a

normal distribution. The WEIBULL distribution has less kurtosis than a normal distribution

for 2.25 < c < 5.75, outside that interval the kurtosis is higher than 3.

27 The limit of α4 for c → ∞ is an indeterminate expression of type 0/0. After having applied L’ HOSPI-

TAL’s rule four times, we get

lim
c→∞

α4 =
72

ˆ
ψ′(1)

˜2
+ 24ψ′′′(1)

6
ˆ
2ψ′(1)

˜2 = 5.4.

A limit of ∞ as reported by LEHMAN (1963) is wrong.
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Finally, we mention a percentile–oriented measure for kurtosis (L) given in

SCHMID/TREDE (2003), defined as the product of a measure of tail

T :=
x0.975 − x0.025

x0.875 − x0.125
(2.102a)

and a measure of peakedness

P :=
x0.875 − x0.125

x0.75 − x0.25
, (2.102b)

resulting in

L := T P =
x0.975 − x0.025

x0.75 − x0.25
. (2.102c)

When the random variable is normally distributed, we have L = 2.9058. This value is

reached by a WEIBULL variable for c ≈ 6.85.

Summarizing the findings on measuring skewness and kurtosis of a WEIBULL distribu-

tion one can state: There exist values of the shape parameter c for which the shapes of a

WEIBULL distribution and a normal distribution are almost identical, i.e., for 3.35 . c .
3.60. DUBEY (1967a) has studied the quality of correspondence of these two distributions.

His results will be commented upon in Sect. 3.2.4.

When β2 = α4 is plotted as a function of β1 = α3
1 in the so–called PEARSON–diagram in

Sect. 3.1.1, we will see which other distribution families closely resemble the WEIBULL

distribution.
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This chapter explores which other distributions the WEIBULL distribution is related to and

in what manner. We first discuss (Section 3.1) how the WEIBULL distribution fits into some

of the well–known systems or families of distributions. These findings will lead to some

familiar distributions that either incorporate the WEIBULL distribution as a special case or

are related to it in some way (Section 3.2). Then (in Sections 3.3.1 to 3.3.10) we present a

great variety of distribution models that have been derived from the WEIBULL distribution

in one way or the other. As in Chapter 2, the presentation in this chapter is on the theoretical

or probabilistic level.

3.1 Systems of distributions and the WEIBULL distribution1

Distributions may be classified into families or systems such that the members of a family

• have the same special properties and/or

• have been constructed according to a common design and/or

• share the same structure.

Such families have been designed to provide approximations to as wide a variety of ob-

served or empirical distributions as possible.

3.1.1 PEARSON system

The oldest system of distributions was developed by KARL PEARSON around 1895. Its in-

troduction was a significant development for two reasons. Firstly, the system yielded simple

mathematical representations — involving a small number of parameters — for histogram

data in many applications. Secondly, it provided a theoretical framework for various fami-

lies of sampling distributions discovered subsequently by PEARSON and others. PEARSON

took as his starting point the skewed binomial and hypergeometric distributions, which he

smoothed in an attempt to construct skewed continuous density functions. He noted that

the probabilities Pr for the hypergeometric distribution satisfy the difference equation

Pr − Pr−1 =
(r − a)Pr

b0 + b1 r + b2 r2

for values of r inside the range. A limiting argument suggests a comparable differential

equation for the probability density function

f ′(x) =
df(x)

dx
=

(x− a) f(x)

b0 + b1 x+ b2 x2
. (3.1)

1 Suggested reading for this section: BARNDORFF–NIELSEN (1978), ELDERTON/JOHNSON (1969),

JOHNSON/KOTZ/BALAKRISHNAN (1994, Chapter 4), ORD (1972), PEARSON/HARTLEY (1972).
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The solutions f(x) are the density functions of the PEARSON system.

The various types or families of curves within the PEARSON system correspond to distinct

forms of solutions to (3.1). There are three main distributions in the system, designated

types I, IV and VI by PEARSON, which are generated by the roots of the quadratic in the

denominator of (3.1):

• type I with DF

f(x) = (1 + x)m1 (1 − x)m2 , −1 ≤ x ≤ 1,

results when the two roots are real with opposite signs (The beta distribution of the

first kind is of type I.);

• type IV with DF

f(x) = (1 + x2)−m exp
{
− ν tan1(x)

}
, −∞ < x <∞,

results when the two roots are complex;

• type VI with DF

f(x) = xm2 (1 + x)−m1 , 0 ≤ x <∞,

results when the two roots are real with the same sign. (The F – or beta distribution

of the second kind is of type VI.)

Ten more “transition” types follow as special cases.

A key feature of the PEARSON system is that the first four moments (when they exist) may

be expressed explicitly in terms of the four parameters (a, b0, b1 and b2) of (3.1). In turn,

the two moments ratios,

β1 =
µ2

3

µ3
2

(skewness),

β2 =
µ4

µ2
2

(kurtosis),

provide a complete taxonomy of the system that can be depicted in a so–called moment–

ratio diagram with β1 on the abscissa and β2 on the ordinate. Fig. 3/1 shows a detail of

such a diagram emphasizing that area where we find the WEIBULL distribution.

• The limit for all distributions is given by

β2 − β1 = 1,
or stated otherwise: β2 ≤ 1 + β1.

• The line for type III (gamma distribution) is given by

β2 = 3 + 1.5β1.

It separates the regions of the type–I and type–VI distributions.

• The line for type V, separating the regions of type–VI and type–IV distributions, is

given by

β1 (β2 + 3)2 = 4 (4β2 − 3β1) (2β2 − 3β1 − 6)
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Figure 3/1: Moment ratio diagram for the PEARSON system showing the WEIBULL distri-

bution

or — solved for β2 — by

β2 =
3
(
− 16 − 13β1 − 2

√
(4 + β1)3

)

β1 − 32
, 0 ≤ β1 < 32.

We have also marked by dots the positions of four other special distributions:

• uniform or rectangular distribution (β1 = 0; β2 = 1.8),

• normal distribution (β1 = 0; β2 = 3),

• exponential distribution (β1 = 4; β2 = 9) at the crossing of the gamma–line and

the lower branch of the WEIBULL–distribution–line,

• type–I extreme value distribution (β1 ≈ 1.2986; β2 = 5.4) at the end of the upper

branch of the WEIBULL–distribution–line,

and by a line corresponding to the lognormal distribution which completely falls into the

type–VI region.

When β2 is plotted over β1 for a WEIBULL distribution we get a parametric function de-

pending on the shape parameter c. This function has a vertex at (β1, β2) ≈ (0, 2.72)
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corresponding to c ≈ 3.6023 with a finite upper branch (valid for c > 3.6023) ending at

(β1, β2) ≈ (1.2928, 5.4) and an infinite lower branch (valid for c < 3.6023). One easily

sees that the WEIBULL distribution does not belong to only one family of the PEARSON

system. For c < 3.6023 the WEIBULL distribution lies mainly in the type–I region and

extends approximately parallel to the type–III (gamma) line until the two lines intersect

at (β1, β2) = (4.0, 9.0) corresponding to the exponential distribution (= WEIBULL distri-

bution with c = 1). The WEIBULL line for c > 3.6023 originates in the type–I region

and extends approximately parallel to the type–V line. It crosses the type–III line into the

type–VI region at a point with β1 ≈ 0.5 and then moves toward the lognormal line, end-

ing on that line at a point which marks the type–I extreme value distribution. Hence, the

WEIBULL distribution with c > 3.6023 will closely resemble the PEARSON type–VI dis-

tribution when β1 ≥ 0.5, and for β1 approximately greater than 1.0 it will closely resemble

the lognormal distribution.

3.1.2 BURR system2

The BURR system (see BURR (1942)) fits cumulative distribution functions, rather than

density functions, to frequency data, thus avoiding the problems of numerical integra-

tion which are encountered when probabilities or percentiles are evaluated from PEARSON

curves. A CDF y := F (x) in the BURR system has to satisfy the differential equation:

dy

dx
= y (1 − y) g(x, y), y := F (x), (3.2)

an analogue to the differential equation (3.1) that generates the PEARSON system. The

function g(x, y) must be positive for 0 ≤ y ≤ 1 and x in the support of F (x). Different

choices of g(x, y) generate various solutions F (x). These can be classified by their func-

tional forms, each of which gives rise to a family of CDFs within the BURR system. BURR

listed twelve such families.

With respect to the WEIBULL distribution the BURR type–XII distribution is of special

interest. Its CDF is

F (x) = 1 − 1

(1 + xc)k
; x, c, k > 0, (3.3a)

with DF

f(x) = k c xc−1 (1 + xc)−k−1 (3.3b)

and moments about the origin given by

E
(
Xr
)

= µ′r = k Γ
(
k − r

c

)
Γ
(r
c

+ 1
)/

Γ(k + 1) for c k > r. (3.3c)

It is required that c k > 4 for the fourth moment, and thus β2, to exist. This family gives

rise to a useful range of value of skewness, α3 = ±√
β1, and kurtosis, α4 = β2. It may be

generalized by introducing a location parameter and a scale parameter.

2 Suggested reading for this section: RODRIGUEZ (1977), TADIKAMALLA (1980a).
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Whereas the third and fourth moment combinations of the PEARSON families do not over-

lap3 we have an overlapping when looking at the BURR families. For depicting the type–XII

family we use another type of moment–ratio diagram with α3 = ±
√
β1 as abscissa, thus

showing positive as well as negative skewness, and furthermore it is upside down. Thus

the upper bound in Fig. 3/2 is referred to as “lower bound” and conversely in the following

text. The parametric equations for
√
β1 and β2 are

√
β1 =

Γ2(k)λ3 − 3Γ(k)λ2 λ1 + 2λ3
1[

Γ(k)λ2 − λ2
1

]3/2 (3.3d)

β2 =
Γ3(k)λ4 − 4Γ2(k)λ3 λ1 + 6Γ(k)λ2 λ

2
1 − 3λ4

1[
Γ(k)λ2 − λ2

1

]3/2 (3.3e)

where

λj := Γ

(
j

c
+ 1

)
Γ

(
k − j

c

)
; j = 1, 2, 3, 4.

Figure 3/2: Moment ratio diagram for the BURR type-XII family and the WEIBULL distri-

bution

3 The same is true for the JOHNSON families (see Sect. 3.1.3).
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RODRIGUEZ states: “The type–XII BURR distributions occupy a region shaped like the

prow of an ancient Roman galley. As k varies from 4/c to +∞ the c–constant curve moves

in a counter–clockwise direction toward the tip of the ’prow’. For c < 3.6 the c–constant

lines terminate at end–points with positive
√
β1. For c > 3.6 the c–constant lines terminate

at end–points with negative
√
β1.” These end–points form the lower bound of the type–XII

region. RODRIGUEZ (1977) gives the following parametric equations of the end–points:

lim
k→∞

√
β1 =

Γ3 − 3Γ2 Γ1 + 2Γ3
1(

Γ2 − Γ2
1

)3/2 , (3.4a)

lim
k→∞

β2 =
Γ4 − 4Γ3 Γ1 + 6Γ2 Γ1 − 3Γ4

1(
Γ2 − Γ2

1

)2 , (3.4b)

where

Γi := Γ

(
1 +

i

c

)
.

This lower bound is identical to the WEIBULL curve in the
(√
β1, β2

)
–plane; compare

(3.4a,b) to (2.93) and (2.101). The identification of the lower bound with the WEIBULL

family can also be explained as follows, starting from (3.3a):

Pr

[
X ≤

(
1

k

)1/c
y

]
= 1 −

(
1 +

yc

k

)−k

= 1 − exp

{
−k ln

(
1 +

yc

k

)}

= 1 − exp

{
−k

[
yc

k
− 1

2

(
yc

k

)2
+ . . .

]}

⇒ 1 − exp
(
− yc

)
for k → ∞.

Hence, the WEIBULL family is the limiting form (k → ∞) of the BURR type–XII family.

We finally mention the upper bound for the BURR type–XII region. In the negative√
β1 half–plane the bound is given for c = ∞ stretching from the point

(√
β1, β2

)
≈

(−1.14, 5.4) to
(√
β1, β2

)
= (0.4, 2) which is associated with the logistic distribution.

In the positive
√
β1 half–plain this bound corresponds to BURR type–XII distributions for

which k = 1 and c > 4 has been proved by RODRIGUEZ (1977).

3.1.3 JOHNSON system

The transformation of a variate to normality is the basis of the JOHNSON system. By anal-

ogy with the PEARSON system, it would be convenient if a simple transformation could

be found such that, for any possible pair of values
√
β1, β2, there will be just one mem-

ber of the corresponding family of distributions. No such single simple transformation is

available, but JOHNSON (1949) has found sets of three such transformations that, when

combined, do provide one distribution corresponding to each pair of values
√
β1 and β2.
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The advantage with JOHNSON’s transformation is that, when inverted and applied to a nor-

mally distributed variable, it yields three families of density curves with a high degree of

shape flexibility.

Let T be a standardized normal variate, i.e., having E(T ) = 0 and Var(T ) = 1, then the

system is defined by

T = γ + δ g(Y ). (3.5a)

Taking

g(Y ) = ln
[
Y +

√
(1 + Y 2)

]

= sinh−1 Y (3.5b)

leads to the SU system with unbounded range: −∞ < Y <∞.

g(Y ) = lnY (3.5c)

leads to the lognormal family SL with Y > 0. The third system SB with bounded range

0 < Y < 1 rests upon the transformation

g(Y ) = ln

(
Y

1 − Y

)
. (3.5d)

The variate Y is linearly related to a variate X that we wish to approximate in distribution:

Y =
X − ξ

λ
. (3.5e)

The density of Y in the SU system is given by

f(y) =
δ√
2π

1√
1 + y2

exp

{
−
[
γ + δ sinh−1 y

]2

2

}
, y ∈ R, (3.6a)

with

√
β1 = −

[
1

2
ω (ω − 1)

]1/2

A−3/2
[
ω (ω + 2) sinh(3B) + 3 sinhB

]
(3.6b)

β2 = [a2 cosh(4B) + a1 cosh(2B) + a0]
/

(2B2), (3.6c)

where

ω := exp(1/δ2), B := γ/δ, A := ω cosh(2B) + 1,

a2 := ω2
(
ω4 + 2ω3 + 3ω2 − 3

)
, a1 := 4ω2 (ω + 2), a0 := 3 (2ω + 1).

In the SL system the density is that of a lognormal variate:

f(y) =
δ√
2π

1

y
exp

{
− [γ + δ ln y]2

2

}
, y > 0, (3.7a)
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with

√
β1 = (ω − 1) (ω + 2)2 (3.7b)

β2 = ω4 + 2ω3 + 3ω2 − 3. (3.7c)

The density in the SB system is given by

f(y) =
δ√
2π

1

y (1 − y)
exp

{
−
(
γ + δ ln[y/(1 − y)]

)2

2

}
, 0 < y < 1, (3.8)

and there exist no general and explicit formulas for the moments.

Looking at a moment–ratio diagram (see Fig. 3/1) one sees that the system SB holds for

the region bounded by β1 = 0, the bottom line β2 − β1 − 1 = 0 and the lognormal curve,

given by SL. SU holds for the corresponding region above SL. In relation to the PEARSON

system, SB overlaps types I, II, III and part of VI; similarly SU overlaps types IV, V, VII

and part of VI. As for shapes of the density, SU is unimodal, but SB may be bimodal.

The WEIBULL curve is completely located in the SL region, thus telling that the WEIBULL

distribution is a member of the JOHNSON SL system.

3.1.4 Miscellaneous

There exists a great number of further families. Some of them are based on transformations

like the JOHNSON system, e.g., the TUKEY’s lambda distributions for a variate X and

starting from the reduced uniform variable Y with DF

f(y) = 1 for 0 < y < 1

and defined by

X :=





Y λ − (1 − Y )λ

λ
for λ 6= 0,

ln

(
Y

1 − Y

)
for λ = 0.

Other families are based on expansions e.g., the GRAM–CHARLIER series, the EDGE-

WORTH series and the CORNISH–FISHER expansions.

Last but not least, we have many families consisting of two members only. This is a dichoto-

mous classification, where one class has a special property and the other class is missing

that property. With respect to the WEIBULL distribution we will present and investigate

• location–scale distributions,

• stable distributions,

• ID distributions and

• the exponential family of distributions.

A variate X belongs to the location–scale family if its CDF FX(·) may be written as

FX(x | a, b) = FY

(
x− a

b

)
(3.9)
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and the CDF FY (·) does not depend on any parameter. a and b are called location parame-

ter and scale parameter, respectively. Y := (X − a)
/
b is termed the reduced variable and

FY (y) is the reduced CDF with a = 0 and b = 1. The three–parameter WEIBULL distribu-

tion given by (2.8) evidently does not belong to this family, unless c = 1; i.e., we have an

exponential distribution (see Sect. 3.2.1). Sometimes a suitable transformation Z := g(X)
has a location–scale distribution. This is the case when X has a two–parameter WEIBULL

distribution with a = 0:

F (x) = 1 − exp
{
−
(x
b

)c}
. (3.10a)

The log–transformed variate

Z := lnX

has a type–I extreme value distribution of the minimum (see Sect. 3.2.2) with CDF

F (z) = 1 − exp

{
− exp

(
z − a∗

b∗

)}
, (3.10b)

where

a∗ = ln b and b∗ = 1/c.

This transformation will be of importance when making inference on the parameters b and

c (see Chapters 9 ff).

Let X,X1,X2, . . . be independent identically distributed variates. The distribution of X is

stable in the broad sense if it is not concentrated at one point and if for each n ∈ N there

exist constants an > 0 and bn ∈ R such that (X1 +X2 + . . .+Xn)/an − bn has the same

distribution as X. If the above holds with bn = 0 for all n then the distribution is stable in

the strict sense.4 For every stable distribution we have an = n1/α for some characteristic

exponent α with 0 < α ≤ 2. The family of GAUSSIAN distributions is the unique family

of distributions that are stable with α = 2. CAUCHY distributions are stable with α = 1.

The WEIBULL distribution is not stable, neither in the broad sense nor in the strict sense.

A random variable X is called infinitely divisible distributed (=̂ IDD) if for each n ∈ N,

independent identically distributed (=̂ iid) random variables Xn,1, Xn,2, . . . , Xn,n exist

such that

X
d
= Xn,1 +Xn,2 + . . .+Xn,n,

where
d
= denotes “equality in distribution.” Equivalently, denoting the CDFs ofX and Xn,1

by F (·) and Fn(·), respectively, one has

F (·) = Fn(·) ∗ Fn(·) ∗ . . . ∗ Fn(·) =: F ∗
n(·)

4 Stable distributions are mainly used to model certain random economic phenomena, especially in finance,

having distributions with “fat tails,” thus indicating the possibility of an infinite variance.
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where the operator ∗ denotes “convolution.” All stable distributions are IDD. The WEIBULL

distribution is not a member of the IDD family.

A concept related to IDD is reproductivity through summation, meaning that the CDF of

a sum of n iid random variables Xi (i = 1, . . . , n) belongs to the same distribution family

as each of the terms in the sum. The WEIBULL distribution is not reproductive through

summation, but it is reproductive through formation of the minimum of n iid WEIBULL

random variables.

Theorem: Let Xi
iid∼We(a, b, c) for i = 1, . . . , n and Y = min(X1, . . . ,Xn), then

Y ∼We(a, b n−1/c, c).

Proof: Inserting F (x), given in (2.33b), into the general formula (1.3a)

FY (y) = 1 −
[
1 − FX(y)

]n

gives

FY (y) = 1 −
[
exp

{
−
(
y − a

b

)c}]n

= 1 − exp

{
−n
(
y − a

b

)c}

= 1 − exp

{
−
(
y − a

b n−1/c

)c}
⇒ We

(
a, b n−1/c, c

)
.

Thus the scale parameter changes from b to b
/

c
√
n and the location and form parameters

remain unchanged. �

The exponential family of continuous distributions is characterized by having a density

function of the form

f(x | θ) = A(θ)B(x) exp
{
Q(θ) ◦ T (x)

}
, (3.11a)

where θ is a parameter (both x and θ may, of course, be multidimensional), Q(θ) and T (x)
are vectors of common dimension, m, and the operator ◦ denotes the “inner product,” i.e.,

Q(θ) ◦ T (x) =

m∑

j=1

Qj(θ)Tj(x). (3.11b)

The exponential family plays an important role in estimating and testing the parameters

θ1, . . . , θm because we have the following.

Theorem: Let X1, . . . , Xn be a random sample of size n from the density

f(x | θ1, . . . , θm) of an exponential family and let

Sj =
n∑

i=1

Tj(Xi).

Then S1, . . . , Sm are jointly sufficient and complete for θ1, . . . , θm when n > m. �
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Unfortunately the three–parameter WEIBULL distribution is not exponential; thus, the prin-

ciple of sufficient statistics is not helpful in reducing WEIBULL sample data. Sometimes

a distribution family is not exponential in its entirety, but certain subfamilies obtained by

fixing one or more of its parameters are exponential. When the location parameter a and the

form parameter c are both known and fixed then the WEIBULL distribution is exponential

with respect to the scale parameter.

3.2 WEIBULL distributions and other familiar distributions

Statistical distributions exist in a great number as may be seen from the comprehensive

documentation of JOHNSON/KOTZ (1992, 1994, 1995) et al. consisting of five volumes

in its second edition. The relationships between the distributions are as manifold as are

the family relationships between the European dynasties. One may easily overlook a re-

lationship and so we apologize should we have forgotten any distributional relationship,

involving the WEIBULL distribution.

3.2.1 WEIBULL and exponential distributions

We start with perhaps the most simple relationship between the WEIBULL distribution and

any other distribution, namely the exponential distribution. Looking to the origins of the

WEIBULL distribution in practice (see Section 1.1.2) we recognize that WEIBULL as well

as ROSIN, RAMMLER and SPERLING (1933) did nothing but adding a third parameter to

the two–parameter exponential distribution (= generalized exponential distribution) with

DF

f(y | a, b) =
1

b
exp

[
−y − a

b

]
; y ≥ a, a ∈ R, b > 0. (3.12a)

Now, let

Y =

(
X − a

b

)c
, (3.12b)

and we have the reduced exponential distribution (a = 0, b = 1) with density

f(y) = e−y, y > 0, (3.12c)

then X has a WEIBULL distribution with DF

f(x | a, b, c) =
c

b

(
x− a

b

)c−1

exp

[
−
(
x− a

b

)c ]
; x ≥ a, a ∈ R, b, c > 0. (3.12d)

The transformation (3.12b) is referred to as the power–law transformation. Comparing

(3.12a) with (3.12d) one recognizes that the exponential distribution is a special case (with

c = 1) of the WEIBULL distribution.

3.2.2 WEIBULL and extreme value distributions

In Sect. 1.1.1 we reported on the discovery of the three types of extreme value distribu-

tions. Introducing a location parameter a (a ∈ R) and a scale parameter b (b > 0) into

the functions of Table 1/1, we arrive at the following general formulas for extreme value

distributions:
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Type–I–maximum distribution:5 Y ∼ EvI(a, b)

fMI (y) =
1

b
exp

{
−y − a

b
− exp

[
−y − a

b

]}
, y ∈ R; (3.13a)

FMI (y) = exp

{
− exp

[
−y − a

b

]}
; (3.13b)

Type–II–maximum distribution: Y ∼ EvII(a, b, c)

fMII (y) =
c

b

(
y − a

b

)−c−1

exp

{
−
(
y − a

b

)−c}
, y ≥ a, c > 0; (3.14a)

FMII (y) =





0 for y < a

exp

{
−
(
y − a

b

)−c}
for y ≥ a





; (3.14b)

Type–III–maximum distribution: Y ∼ EvIII(a, b, c)

fMIII(y) =
c

b

(
a− y

b

)c−1

exp

{
−
(
a− y

b

)c}
, y < a, c > 0; (3.15a)

FMIII(y) =





exp

{
−
(
a− y

b

)c}
for y < a

1 for y ≥ a




. (3.15b)

The corresponding distributions of

X − a = −(Y − a) (3.16)

are those of the minimum and are given by the following:

Type–I–minimum distribution: X ∼ Evi(a, b) or X ∼ Lw(a, b)

fmI (x) =
1

b
exp

{
x− a

b
− exp

[
x− a

b

]}
, x ∈ R; (3.17a)

FmI (x) = 1 − exp

{
− exp

[
x− a

b

]}
; (3.17b)

5 On account of its functional form this distribution is also sometimes called doubly exponential distri-

bution.
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Type–II–minimum distribution: X ∼ Evii(a, b, c)

fmII(x) =
c

b

(
a− x

b

)−c−1

exp

{
−
(
a− x

b

)−c}
, x < a, c > 0; (3.18a)

FmII (x) =





1 − exp

{
−
(
a− x

b

)−c}
for x < a

1 for x ≥ a





; (3.18b)

Type–III–minimum distribution or WEIBULL distribution:

X ∼ Eviii(a, b, c) or X ∼We(a, b, c)

fmIII(x) =
c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
, x ≥ a, c > 0; (3.19a)

FMIII(x) =





0 for x < a

1 − exp

{
−
(
x− a

b

)c}
for x ≥ a




. (3.19b)

The transformation given in (3.16) means a reflection about a vertical axis at y = x = a,

so the type–III–maximum distribution (3.15a/b) is the reflected WEIBULL distribution,

which will be analyzed in Sect. 3.3.2.

The type–II and type–III distributions can be transformed to a type–I distribution using a

suitable logarithmic transformation. Starting from the WEIBULL distribution (3.19a,b), we

set

Z = ln(X − a), X ≥ a, (3.20)

and thus transform (3.19a,b) to

f(z) = c exp
{
c (z − ln b) − exp

[
c (z − ln b)

]}
(3.21a)

F (z) = 1 − exp
{
− exp

[
c (z − ln b)

]}
. (3.21b)

This is a type–I–minimum distribution which has a location parameter a∗ = ln b and a

scale parameter b∗ = 1/c. That is why a type–I–minimum distribution is called a Log–

WEIBULL distribution;6 it will be analyzed in Sect. 3.3.4.

We finally mention a third transformation of a WEIBULL variate, which leads to another

member of the extreme value class. We make the following reciprocal transformation to a

WEIBULL distributed variate X:

Z =
b2

X − a
. (3.22)

6 We have an analogue relationship between the normal and the lognormal distributions.



3.2 WEIBULL distributions and other familiar distributions 111

Applying the well–known rules of finding the DF and CDF of a transformed variable, we

arrive at

f(z) =
c

b

(z
b

)−c−1
exp

{
−
(z
b

)−c}
, (3.23a)

F (z) = exp

{
−
(z
b

)−c}
. (3.23b)

Comparing (3.23a,b) with (3.14a,b) we see that Z has a type–II–maximum distribution with

a zero location parameter. Thus a type–II–maximum distribution may be called an inverse

WEIBULL distribution, it will be analyzed in Sect. 3.3.3.

3.2.3 WEIBULL and gamma distributions7

In the last section we have seen several relatives of the WEIBULL distributions originating

in some kind of transformation of the WEIBULL variate. Here, we will present a class of

distributions, the gamma family, which includes the WEIBULL distribution as a special case

for distinct parameter values.

The reduced form of a gamma distribution with only one parameter has the DF:

f(x | d) =
xd−1 exp(−x)

Γ(d)
; x ≥ 0, d > 0. (3.24a)

d is a shape parameter. d = 1 results in the reduced exponential distribution. Introducing a

scale parameter b into (3.24a) gives the two–parameter gamma distribution:

f(x | b, d) =
xd−1 exp(−x/b)

bd Γ(d)
; x ≥ 0; b, d > 0. (3.24b)

The three–parameter gamma distribution has an additional location parameter a:

f(x | a, b, d) =

(x− a)d−1 exp

(
−x− a

b

)

bd Γ(d)
; x ≥ a, a ∈ R, b, d > 0. (3.24c)

STACY (1965) introduced a second shape parameter c (c > 0) into the two–parameter

gamma distribution (3.24b). When we introduce this second shape parameter into the

three–parameter version (3.24c), we arrive at the four–parameter gamma distribution,

also named generalized gamma distribution,8

f(x | a, b, c, d) =
c (x− a)c d−1

bc d Γ(d)
exp

{
−
(
x− a

b

)c}
; x ≥ a; a ∈ R; b, c, d > 0.

(3.24d)

7 Suggested reading for this section: HAGER/BAIN/ANTLE (1971), PARR/WEBSTER (1965), STACY

(1962), STACY/MIHRAM (1965).

8 A further generalization, introduced by STACY/MIHRAN (1965), allows c < 0, whereby the factor c in

c (x− a)c d−1 has to be changed against |c|.
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The DF (3.24d) contains a number of familiar distributions when b, c and/or d are given

special values (see Tab. 3/1).

Table 3/1: Special cases of the generalized gamma distribution

f(x | a, b, c, d) Name of the distribution

f(x | 0, 1, 1, 1) reduced exponential distribution

f(x | a, b, 1, 1) two–parameter exponential distribution

f(x | a, b, 1, ν) ERLANG distribution, ν ∈ N

f(x | 0, 1, c, 1) reduced WEIBULL distribution

f(x | a, b, c, 1) three–parameter WEIBULL distribution

f
(
x | 0, 2, 1, ν

2

)
χ2–distribution with ν degrees of freedom, ν ∈ N

f
(
x | 0,

√
2, 2,

ν

2

)
χ–distribution with ν degrees of freedom, ν ∈ N

f

(
x | 0,

√
2, 2,

1

2

)
half–normal distribution

f(x | 0,
√

2, 2, 1) circular normal distribution

f(x | a, b, 2, 1) RAYLEIGH distribution

LIEBSCHER (1967) compares the two–parameter gamma distribution and the lognormal

distribution to the WEIBULL distribution with a = 0 and gives conditions on the parameters

of these distributions resulting in a stochastic ordering.

3.2.4 WEIBULL and normal distributions9

The relationships mentioned so far are exact whereas the relation of the WEIBULL distri-

bution to the normal distribution only holds approximately. The quality of approximation

depends on the criteria which will be chosen in equating these distributions. In Sect. 2.9.4

we have seen that there exist values of the shape parameter c leading to a skewness of zero

and a kurtosis of three which are typical for the normal distribution. Depending on how

skewness is measured we have different values of c giving a value of zero for the measure

of skewness chosen:

• c ≈ 3.60235 for α3 = 0,

• c ≈ 3.43954 for µ = x0.5, i.e., for mean = median,

• c ≈ 3.31247 for µ = x∗, i.e., for mean = mode,

• c ≈ 3.25889 for x∗ = x0.5, i.e., for mode = median.

9 Suggested for this section: DUBEY (1967a), MAKINO (1984).
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Regarding the kurtosis α4, we have two values of c (c ≈ 2.25200 and c ≈ 5.77278) giving

α4 = 3.

MAKINO (1984) suggests to base the approximation on the mean hazard rate E
[
(h(X)

]
;

see (2.53a). The standardized normal and WEIBULL distributions have the same mean

hazard rate E
[
h(X)

]
= 0.90486 when c ≈ 3.43927, which is nearly the value of the shape

parameter such that the mean is equal to the median.

In the sequel we will look at the closeness of the CDF of the standard normal distribution

Φ(τ) =

τ∫

−∞

1√
2π

e−t
2/2 dt (3.25a)

to the CDF of the standardized WEIBULL variate

T =
X − µ

σ
=
X −

(
a+ bΓ1

)

b
√

Γ2 − Γ2
1

, Γi := Γ

(
1 +

i

c

)
,

given by

FW (τ) = Pr

(
X − µ

σ
≤ τ

)
= Pr

(
X ≤ µ+ σ τ

)

= 1 − exp

[
−
(
µ+ σ τ − a

b

)c ]

= 1 − exp

[
−
(

Γ1 + τ
√

Γ2 − Γ2
1

)c ]
, (3.25b)

which is only dependent on the shape parameter c. In order to achieve FW (τ) ≥ 0, the

expression Γ1 + τ
√

Γ2 − Γ2
1 has to be non–negative, i.e.,

τ ≥ − Γ1√
Γ2 − Γ2

1

. (3.25c)

The right-hand side of (3.25c) is the reciprocal of the coefficient of variation (2.88c) when

a = 0 und b = 1.

We want to exploit (3.25b) in comparison with (3.25a) for the six values of c given in

Tab. 3/2.

Table 3/2: Values of c, Γ1,
√

Γ2 − Γ2
1 and Γ1

/√
Γ2 − Γ2

1

c Γ1

√
Γ2 − Γ2

1 Γ1

/√
Γ2 − Γ2

1 Remark

2.25200 0.88574 0.41619 2.12819 α4 ≈ 0

3.25889 0.89645 0.30249 2.96356 x∗ ≈ x0.5

3.31247 0.89719 0.29834 3.00730 µ ≈ x∗

3.43954 0.89892 0.28897 3.11081 µ ≈ x0.5

3.60235 0.90114 0.27787 3.24306 α3 ≈ 0

5.77278 0.92573 0.18587 4.98046 α4 ≈ 0
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Using Tab. 3/2 the six WEIBULL CDFs, which will be compared with Φ(τ) in Tab. 3/3, are

given by

F
(1)
W (τ) = 1 − exp

[
−(0.88574 + 0.41619 τ)2.25200

]
,

F
(2)
W (τ) = 1 − exp

[
−(0.89645 + 0.30249 τ)3.25889

]
,

F
(3)
W (τ) = 1 − exp

[
−(0.89719 + 0.29834 τ)3.31247

]
,

F
(4)
W (τ) = 1 − exp

[
−(0.89892 + 0.28897 τ)3.43954

]
,

F
(5)
W (τ) = 1 − exp

[
−(0.90114 + 0.27787 τ)3.60235

]
,

F
(6)
W (τ) = 1 − exp

[
−(0.92573 + 0.18587 τ)5.77278

]
.

Tab. 3/3 also gives the differences ∆(i)(τ) = F
(i)
W (τ) − Φ(τ) for i = 1, 2, . . . , 6 and

τ = −3.0 (0.1) 3.0. A look at Tab. 3/3 reveals the following facts:

• It is not advisable to base a WEIBULL approximation of the normal distribution on the

equivalence of the kurtosis because this leads to the maximum errors of all six cases:∣∣∆(1)(τ)
∣∣ = 0.0355 for c ≈ 2.52200 and

∣∣∆(6)(τ)
∣∣ = 0.0274 for c ≈ 5.77278.

• With respect to corresponding skewness (= zero) of both distributions, the errors are

much smaller.

• The four cases of corresponding skewness have different performances.

– We find that c = 3.60235 (attached to α3 = 0) yields the smallest maximum ab-

solute difference
(∣∣∆(5)(τ)

∣∣ = 0.0079
)

followed by max
τ

∣∣∆(4)(τ)
∣∣ = 0.0088

for

c = 3.43945, max
τ

∣∣∆(3)(τ)
∣∣ = 0.0099 for c = 3.31247 and max

τ

∣∣∆(2)(τ)
∣∣ =

0.0105 for c = 3.25889.

– None of the four values of c with zero–skewness is uniformly better than any

other. c ≈ 3.60235 leads to the smallest absolute error for −3.0 ≤ τ ≤
−1.8, −1.0 ≤ τ ≤ −0.1 and 1.0 ≤ τ ≤ 1.6; c ≈ 3.25889 is best for

−1.5 ≤ τ ≤ −1.1, 0.2 ≤ τ ≤ 0.9 and 2.1 ≤ τ ≤ 3.0; c ≈ 3.31247 is best for

τ = −1, 6, τ = 0.1 and τ = 1.9; and, finally, c ≈ 3.43954 gives the smallest

absolute error for τ = −1.7, τ = 0.0 and 1.7 ≤ τ ≤ 1.8.

– Generally, we may say, probabilities associated with the lower (upper) tail of

a normal distribution can be approximated satisfactorily by using a WEIBULL

distribution with the shape parameter c ≈ 3.60235 (c ≈ 3.25889).

Another relationship between the WEIBULL and normal distributions, based upon the χ2–

distribution, will be discussed in connection with the FAUCHON et al. (1976) extensions in

Sections 3.3.7.1 and 3.3.7.2.
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3.2.5 WEIBULL and further distributions

In the context of the generalized gamma distribution we mentioned its special cases. One

of them is the χ–distribution with ν degrees of freedom which has the DF:

f(x | ν) =
2

√
2 Γ
(ν

2

)
(
x√
2

)ν−1

exp

{
−
(
x√
2

)2}
, x ≥ 0, ν ∈ N. (3.26a)

(3.26a) gives a WEIBULL distribution with a = 0, b =
√

2 and c = 2 for ν = 2. Substi-

tuting the special scale factor
√

2 by a general scale parameter b > 0 leads to the following

WEIBULL density:

f(x | 0, b, 2) =
2

b

(x
b

)
exp

{
−
(x
b

)2}
, (3.26b)

which is easily recognized as the density of a RAYLEIGH distribution.

Table 3/3: Values of Φ(τ), F
(i)
W (τ) and ∆(i)(τ) for i = 1, 2, . . . , 6

τ Φ(τ ) F
(1)
W (τ ) ∆(1)(τ ) F

(2)
W (τ ) ∆(2)(τ ) F

(3)
W (τ ) ∆(3)(τ ) F

(4)
W (τ ) ∆(4)(τ ) F

(5)
W (τ ) ∆(5)(τ ) F

(6)
W (τ ) ∆(6)(τ )

−3.0 .0013 − − − − .0000 −.0013 .0000 −.0013 .0001 −.0013 .0031 .0018

−2.9 .0019 − − .0000 −.0019 .0000 −.0019 .0001 −.0018 .0002 −.0017 .0041 .0023

−2.8 .0026 − − .0001 −.0025 .0001 −.0025 .0003 −.0023 .0005 −.0020 .0054 .0029

−2.7 .0035 − − .0003 −.0032 .0004 −.0031 .0007 −.0028 .0011 −.0024 .0070 .0036

−2.6 .0047 − − .0008 −.0039 .0009 −.0037 .0014 −.0033 .0020 −.0026 .0090 .0043

−2.5 .0062 − − .0017 −.0046 .0019 −.0043 .0026 −.0036 .0034 −.0028 .0114 .0052

−2.4 .0082 − − .0031 −.0051 .0035 −.0047 .0043 −.0039 .0053 −.0028 .0143 .0061

−2.3 .0107 − − .0053 −.0054 .0058 −.0050 .0068 −.0040 .0080 −.0027 .0178 .0070

−2.2 .0139 − − .0084 −.0055 .0089 −.0050 .0101 −.0038 .0115 −.0024 .0219 .0080

−2.1 .0179 .0000 −.0178 .0125 −.0054 .0131 −.0048 .0144 −.0035 .0159 −.0019 .0268 .0089

−2.0 .0228 .0014 −.0214 .0178 −.0049 .0185 −.0043 .0199 −.0029 .0215 −.0013 .0325 .0098

−1.9 .0287 .0050 −.0237 .0245 −.0042 .0252 −.0035 .0266 −.0021 .0283 −.0004 .0392 .0105

−1.8 .0359 .0112 −.0247 .0327 −.0032 .0334 −.0025 .0348 −.0011 .0365 .0006 .0470 .0110

−1.7 .0446 .0204 −.0242 .0426 −.0020 .0432 −.0013 .0446 .0001 .0462 .0017 .0559 .0113

−1.6 .0548 .0325 −.0223 .0543 −.0005 .0549 .0001 .0562 .0014 .0576 .0028 .0661 .0113

−1.5 .0668 .0476 −.0192 .0679 .0010 .0684 .0016 .0695 .0027 .0708 .0040 .0777 .0109

−1.4 .0808 .0657 −.0150 .0835 .0027 .0839 .0031 .0848 .0041 .0858 .0051 .0909 .0101
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Table 3/3: Values of Φ(τ), F
(i)
W (τ) and ∆(i)(τ) for i = 1, 2, . . . , 6 (Continuation)

τ Φ(τ ) F
(1)
W (τ ) ∆(1)(τ ) F

(2)
W (τ ) ∆(2)(τ ) F

(3)
W (τ ) ∆(3)(τ ) F

(4)
W (τ ) ∆(4)(τ ) F

(5)
W (τ ) ∆(5)(τ ) F

(6)
W (τ ) ∆(6)(τ )

−1.3 .0968 .0868 −.0100 .1012 .0044 .1015 .0047 .1022 .0054 .1029 .0061 .1057 .0089

−1.2 .1151 .1108 −.0043 .1210 .0060 .1212 .0062 .1216 .0065 .1220 .0069 .1223 .0072

−1.1 .1357 .1374 .0018 .1431 .0074 .1431 .0075 .1432 .0075 .1432 .0075 .1407 .0050

−1.0 .1587 .1666 .0079 .1673 .0087 .1672 .0085 .1669 .0082 .1665 .0078 .1611 .0024

−0.9 .1841 .1980 .0139 .1937 .0096 .1934 .0093 .1927 .0087 .1919 .0079 .1835 −.0006

−0.8 .2119 .2314 .0195 .2221 .0103 .2217 .0098 .2207 .0088 .2194 .0076 .2079 −.0039

−0.7 .2420 .2665 .0245 .2525 .0105 .2519 .0099 .2506 .0086 .2489 .0070 .2345 −.0075

−0.6 .2743 .3030 .0287 .2847 .0104 .2840 .0097 .2823 .0080 .2803 .0060 .2631 −.0112

−0.5 .3085 .3405 .0320 .3185 .0100 .3177 .0091 .3157 .0072 .3134 .0049 .2937 −.0148

−0.4 .3446 .3788 .0342 .3538 .0092 .3528 .0082 .3506 .0060 .3480 .0035 .3263 −.0182

−0.3 .3821 .4175 .0354 .3902 .0081 .3891 .0071 .3868 .0047 .3840 .0019 .3608 −.0213

−0.2 .4207 .4563 .0355 .4275 .0067 .4264 .0057 .4239 .0032 .4210 .0003 .3968 −.0239

−0.1 .4602 .4948 .0346 .4654 .0052 .4643 .0041 .4618 .0016 .4588 −.0014 .4343 −.0258

0.0 .5000 .5328 .0328 .5036 .0036 .5025 .0025 .5000 −.0000 .4971 −.0029 .4730 −.0270

0.1 .5398 .5699 .0301 .5417 .0019 .5407 .0009 .5383 −.0015 .5355 −.0043 .5125 −.0274

0.2 .5793 .6060 .0268 .5795 .0003 .5786 −.0007 .5763 −.0029 .5737 −.0055 .5524 −.0268

0.3 .6179 .6409 .0229 .6167 −.0012 .6158 −.0021 .6138 −.0041 .6114 −.0065 .5925 −.0254

0.4 .6554 .6742 .0188 .6528 −.0026 .6521 −.0033 .6503 −.0051 .6483 −.0071 .6323 −.0231

0.5 .6915 .7059 .0144 .6878 −.0037 .6871 −.0043 .6857 −.0058 .6840 −.0074 .6713 −.0201

0.6 .7257 .7358 .0101 .7212 −.0046 .7207 −.0051 .7196 −.0062 .7183 −.0075 .7092 −.0166

0.7 .7580 .7639 .0059 .7528 −.0052 .7525 −.0056 .7517 −.0063 .7508 −.0072 .7455 −.0125

0.8 .7881 .7901 .0020 .7826 −.0056 .7824 −.0058 .7819 −.0062 .7815 −.0067 .7799 −.0083

0.9 .8159 .8143 −.0016 .8102 −.0057 .8102 −.0057 .8101 −.0059 .8100 −.0059 .8119 −.0040

1.0 .8413 .8366 −.0047 .8357 −.0056 .8358 −.0055 .8360 −.0053 .8363 −.0050 .8415 .0001

1.1 .8643 .8570 −.0074 .8590 −.0053 .8592 −.0051 .8597 −.0047 .8603 −.0040 .8683 .0039

1.2 .8849 .8754 −.0095 .8800 −.0049 .8803 −.0046 .8810 −.0039 .8819 −.0030 .8921 .0072

1.3 .9032 .8921 −.0111 .8989 −.0043 .8992 −.0040 .9001 −.0031 .9012 −.0020 .9131 .0099
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Table 3/3: Values of Φ(τ), F
(i)
W (τ) and ∆(i)(τ) for i = 1, 2, . . . , 6 (Continuation)

τ Φ(τ ) F
(1)
W (τ ) ∆(1)(τ ) F

(2)
W (τ ) ∆(2)(τ ) F

(3)
W (τ ) ∆(3)(τ ) F

(4)
W (τ ) ∆(4)(τ ) F

(5)
W (τ ) ∆(5)(τ ) F

(6)
W (τ ) ∆(6)(τ )

1.4 .9192 .9070 −.0122 .9155 −.0037 .9159 −.0033 .9169 −.0023 .9182 −.0010 .9312 .0120

1.5 .9332 .9203 −.0129 .9301 −.0031 .9306 −.0026 .9317 −.0015 .9330 −.0002 .9465 .0133

1.6 .9452 .9321 −.0131 .9427 −.0025 .9432 −.0020 .9444 −.0008 .9458 .0006 .9592 .0140

1.7 .9554 .9424 −.0130 .9535 −.0019 .9540 −.0014 .9552 −.0003 .9566 .0012 .9695 .0140

1.8 .9641 .9515 −.0126 .9627 −.0014 .9632 −.0009 .9643 .0002 .9657 .0016 .9777 .0136

1.9 .9713 .9593 −.0120 .9704 −.0009 .9708 −.0004 .9719 .0006 .9732 .0019 .9840 .0127

2.0 .9772 .9661 −.0112 .9767 −.0005 .9772 −.0001 .9781 .0009 .9793 .0021 .9889 .0116

2.1 .9821 .9719 −.0103 .9819 −.0002 .9823 .0002 .9832 .0011 .9843 .0021 .9924 .0103

2.2 .9861 .9768 −.0093 .9861 .0000 .9865 .0004 .9873 .0012 .9882 .0021 .9950 .0089

2.3 .9893 .9810 −.0083 .9895 .0002 .9898 .0005 .9905 .0012 .9913 .0020 .9968 .0075

2.4 .9918 .9845 −.0073 .9921 .0003 .9924 .0006 .9929 .0011 .9936 .0018 .9980 .0062

2.5 .9938 .9874 −.0064 .9941 .0004 .9944 .0006 .9949 .0011 .9954 .0016 .9988 .0050

2.6 .9953 .9899 −.0055 .9957 .0004 .9959 .0006 .9963 .0010 .9968 .0014 .9993 .0039

2.7 .9965 .9919 −.0046 .9969 .0004 .9971 .0005 .9974 .0008 .9977 .0012 .9996 .0031

2.8 .9974 .9935 −.0039 .9978 .0004 .9979 .0005 .9982 .0007 .9985 .0010 .9998 .0023

2.9 .9981 .9949 −.0033 .9985 .0003 .9985 .0004 .9987 .0006 .9990 .0008 .9999 .0017

3.0 .9987 .9960 −.0027 .9989 .0003 .9990 .0003 .9991 .0005 .9993 .0007 .9999 .0013

Excursus: RAYLEIGH distribution

This distribution was introduced by J.W. STRUTT (Lord RAYLEIGH) (1842 – 1919) in a problem

of acoustics. Let X1, X2, . . . , Xn be an iid sample of size n from a normal distribution with

E(Xi) = 0 ∀ i and Var(Xi) = σ2 ∀ i. The density function of

Y =

√√√√
n∑

i=1

X2
i ,

that is, the distance from the origin to a point (X1, . . . , Xn) in the n–dimensional EUCLIDEAN

space, is

f(y) =
2

(2 σ2)n/2 Γ(n/2)
yn−1 exp

{
− y2

2 σ2

}
; y > 0, σ > 0. (3.27)
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With n = ν and σ = 1, equation (3.27) is the χ–distribution (3.26a), and with n = 2 and σ = b, we

have (3.26b).

The hazard rate belonging to the special WEIBULL distribution (3.26b) is

h(x | 0, b, 2) =
2

b

x

b
=

2

b2
x. (3.28)

This is a linear hazard rate. Thus, the WEIBULL distribution with c = 2 is a member of the

class of polynomial hazard rate distributions, the polynomial being of degree one.

Physical processes that involve nucleation and growth or relaxation phenomena have been

analyzed by GITTUS (1967) to arrive at the class of distribution functions that should char-

acterize the terminal state of replicates. He starts from the following differential equation

for the CDF:

dF (x)

dx
= K xm

[
1 − F (x)

]n
; K > 0, m > −1, n ≥ 1. (3.29a)

For n = 1 the solution is

F (x)m,1 = 1 − exp

{
−K xm+1

m+ 1

}
. (3.29b)

(3.29b) is a WEIBULL distribution with a = 0, b =
[
(m+ 1)/K

]1/(m+1)
and c = m+ 1.

For n > 1 the solution is

F (x)m,n = 1 −
{

(n − 1)K

m+ 1
xm+1 + 1

}1/(1−n)

. (3.29c)

The effects of m, n and K on the form of the CDF, given by (3.29c), are as follows:

• Increasing the value of m increases the steepness of the central part of the curve.

• Increasing the value of K makes the curve more upright.

• Increasing the value of n reduces its height.

The normal and the logistic distributions are very similar, both being symmetric, but the

logistic distribution has more kurtosis (α4 = 4.2). It seems obvious to approximate the

logistic distribution by a symmetric version of the WEIBULL distribution. Comparing the

CDF of the reduced logistic distribution

F (τ) =
1

1 − exp
(
− π τ/

√
3
)

with the CDF of a reduced WEIBULL distribution in the symmetric cases F
(2)
W (τ) to

F
(5)
W (τ) in Tab. 3/3 gives worse results than the approximation to the normal distribution.

Fig. 3/3 shows the best fitting WEIBULL CDF (c ≈ 3.60235 giving α3 = 0) in comparison

with the logistic and normal CDFs.
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Figure 3/3: CDFs of the standardized logistic, normal and WEIBULL distributions

3.3 Modifications of the WEIBULL distribution10

A great number of distributions have been developed that take the classical WEIBULL dis-

tribution (2.8) as their point of departure. Some of these modifications have been made in

response to questions from practice while other generalizations have their origin in pure

science. We hope that the grouping of the WEIBULL offshoots in the following ten subsec-

tions is neither overlapping nor incomplete.

3.3.1 Discrete WEIBULL distribution11

A main area of application for the WEIBULL distribution is lifetime research and reliability

theory. In these fields we often encounter failure data measured as discrete variables such

as number of work loads, blows, runs, cycles, shocks or revolutions. Sometimes a device

is inspected once an hour, a week or a month whether it is still working or has failed in the

meantime, thus leading to a lifetime counted in natural units of time. In this context, the

geometric and the negative binomial distributions are known to be discrete alternatives

for the exponential and gamma distributions, respectively. We are interested, from the

10 Suggested reading for this section: MURTHY/XIE/JIANG (2004).

11 Parameter estimation for discrete WEIBULL distributions is treated by ALI KHAN/KHALIQUE/

ABOUAMMOH (1989).
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viewpoints of both theory and practice, what discrete distribution might correspond to the

WEIBULL distribution. The answer to this question is not unique, depending on what

characteristic of the continuous WEIBULL distribution is to be preserved.

The type–I discrete WEIBULL distribution, introduced by NAKAGAWA/OSAKI (1975),

retains the form of the continuous CDF. The type–II discrete WEIBULL distribution,

suggested by STEIN/DATTERO (1984), retains the form of the continuous hazard rate. It

is impossible to find a discrete WEIBULL distribution that mimics both the CDF and the

HR of the continuous version in the sense that its CDF and its HR agree with those of the

continuous WEIBULL distribution for integral values of the variate.

We will first present these two types and compare them to each other and to the continuous

version. Finally, we mention another approach, that of PADGETT/SPURRIER (1985) and

SALVIA (1996). This approach does not start from the continuous WEIBULL distribution

but tries to generalize the notions of hazard rate and mean residual life to the discrete case.

But first of all we have to comment on the functions that generally describe a discrete

lifetime variable.

Excursus: Functions for a discrete lifetime variable

We define and redefine the following concepts:

• probability of failure within the k–th unit of time (probability mass function)

Pk := Pr(X = k); k = 0, 1, 2, . . . ; (3.30a)

• failure distribution CDF

F (k) := Pr(X ≤ k) =

k∑

i=0

Pi; k = 0, 1, 2, . . . (3.30b)

with

F (∞) = 1, F (−1) := 0 and Pk = F (k) − F (k − 1); (3.30c)

• survival function CCDF

R(k) := Pr(X > k) = 1 − F (k)

=
∞∑

i=k+1

Pi; k = 0, 1, 2, . . . (3.30d)

with

R(∞) = 0, R(−1) := 1 and Pk = R(k − 1) −R(k). (3.30e)

The most frequently used and wide–spread definition of the hazard rate in the discrete case, see

footnote 1 in Chapter 2, is

hk := Pr(X = k |X ≥ k); k = 0, 1, 2, . . . ,

=
Pr(X = k)

Pr(X ≥ k)

=
F (k) − F (k − 1)

1 − F (k − 1)

=
R(k − 1) −R(k)

R(k − 1)





(3.31a)
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with corresponding cumulative hazard rate

H(k) :=

k∑

i=0

hi. (3.31b)

We notice the following properties of (3.31a):12

• hk is a conditional probability, thus

0 ≤ hk ≤ 1. (3.32a)

• These conditional probabilities and the unconditional probabilities Pk are linked as follows:

P0 = h0

Pk = hk (1 − hk−1) · . . . · (1 − h0); k ≥ 1.



 (3.32b)

• The survival functionR(k) and the hazard rate hk are linked as

R(k) = (1 − h0) (1 − h1) · . . . · (1 − hk); h = 0, 1, 2, . . . (3.32c)

• The mean E(X), if it exists, is given by

E(X) =

k∑

i=1

R(k) =

∞∑

k=1

k∏

j=0

(1 − hj). (3.32d)

The relationships between h(x), H(x) on the one side and F (x), R(x) on the other side in the

continuous case, which are to be found in Tab. 2/1, do not hold with hk and H(k) defined above,

especially

R(k) 6= exp
[
−H(k)

]
= exp

[
−

k∑

i=0

hi

]
;

instead we have (3.32c). For this reason ROY/GUPTA (1992) have proposed an alternative discrete

hazard rate function:

λk := ln

(
R(k − 1)

R(k)

)
; k = 0, 1, 2, . . . (3.33a)

With the corresponding cumulative function

Λ(k) :=
k∑

i=0

λi

= lnR(−1) − lnR(k)

= − lnR(k), see (3.30e)




, (3.33b)

we arrive at

R(k) = exp
[
− Λ(k)

]
. (3.33c)

We will term λk the pseudo–hazard function so as to differentiate it from the hazard rate hk.

12 For discrete hazard functions, see SALVIA/BOLLINGER (1982).
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The type–I discrete WEIBULL distribution introduced by NAKAGAWA/OSAKI (1975)

mimics the CDF of the continuous WEIBULL distribution. They consider a probability

mass function P Ik (k = 0, 1, 2, . . .) indirectly defined by

Pr(X ≥ k) =
∞∑

j=k

P Ij = qk
β
; k = 0, 1, 2, . . . ; 0 < q < 1 and β > 0. (3.34a)

The probability mass function follows as

P Ik = qk
β − q(k+1)β

; k = 0, 1, 2, . . . ; (3.34b)

and the hazard rate according to (3.31a) as

hIk = 1 − q(k+1)β−kβ
; k = 0, 1, 2, . . . , (3.34c)

The hazard rate

• has the constant value 1 − q for β = 1,

• is decreasing for 0 < β < 1 and

• is increasing for β > 1.

So, the parameter β plays the same role as c in the continuous case. The CDF is given by

F I(k) = 1 − q(k+1)β
; k = 0, 1, 2, . . . ; (3.34d)

and the CCDF by

RI(k) = q(k+1)β
; k = 0, 1, 2, . . . (3.34e)

Thus, the pseudo–hazard function follows as

λIk =
[
kβ − (k + 1)β

]
ln q; k = 0, 1, 2, . . . (3.34f)

and its behavior in response to β is the same as that of hIk.

Fig. 3/4 shows the hazard rate (3.34c) in the upper part and the pseudo–hazard function

(3.34f) in the lower part for q = 0.9 and β = 0.5, 1.0, 1.5. hIk and λIk are not equal to

each other but λIk(q, β) > hIk(q, β), the difference being the greater the smaller q and/or the

greater β. λIk increases linearly for β = 2, which is similar to the continuous case, whereas

hIk is increasing but is concave for β = 2.
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Figure 3/4: Hazard rate and pseudo–hazard function for the type-I discrete WEIBULL dis-

tribution

Compared with the CDF of the two–parameter continuous WEIBULL distribution

F (x | 0, b, c) = 1 − exp
{
−
(x
b

)c}
, x ≥ 0, (3.35)

we see that (3.34d) and (3.35) have the same double exponential form and they coincide

for all x = k + 1 (k = 0, 1, 2, . . .) if

β = c and q = exp(−1/bc) = exp(−b1),

where b1 = 1/bc is the combined scale–shape factor of (2.26b).

Remark: Suppose that a discrete variate Y has a geometric distribution, i.e.,

Pr(Y = k) = p qk−1; k = 1, 2, . . . ; p+ q = 1 and 0 < p < 1;

and

Pr(Y ≥ k) = qk.

Then, the transformed variate X = Y 1/β , β > 0, will have

Pr(X ≥ k) = Pr(Y ≥ kβ) = qk
β
,

and hence X has the discrete WEIBULL distribution introduced above. When β = 1, the

discrete WEIBULL distribution reduces to the geometric distribution. This transformation
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is the counterpart to the power–law relationship linking the exponential and the continuous

WEIBULL distributions.

The moments of the type–I discrete WEIBULL distribution

E(Xr) =
∞∑

k=1

kr
(
qk

β − q(k+1)β
)

have no closed–form analytical expressions; they have to be evaluated numerically. ALI

KHAN et al. (1989) give the following inequality for the means µd and µc of the discrete

and continuous distributions, respectively, when q = exp(−1/bc):

µd − 1 < µc < µd.

These authors and KULASEKERA (1994) show how to estimate the two parameters β and

q of (3.34b).

The type–II discrete WEIBULL distribution introduced by STEIN/DATTERO (1984)

mimics the HR

h(x | 0, b, c) =
c

b

(x
b

)c−1
(3.36)

of the continuous WEIBULL distribution by

hIIk =





α kβ−1 for k = 1, 2, . . . ,m

0 for k = 0 or k > m



 , α > 0, β > 0. (3.37a)

m is a truncation value, given by

m =





int
[
α−1/(β−1)

]
if β > 1

∞ if β ≤ 1



 , (3.37b)

which is necessary to ensure hIIk ≤ 1; see (3.32a).

(3.36) and (3.37a) coincide at x = k for

β = c and α = c/bc,

i.e., α is a combined scale–shape factor. The probability mass function generated by (3.37a)

is

P IIk =





hII1

hIIk (1 − hIIk−1) . . . (1 − hII1 ) for k ≥ 2,

= α kβ−1
k−1∏

j=1

(1 − α jβ−1); k = 1, 2, . . . ,m. (3.37c)
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The corresponding survival or reliability function is

RII(k) =
k∏

j=1

(
1 − hIIk

)
=

k∏

j=1

(
1 − α jβ−1

)
; k = 1, 2, . . . ,m. (3.37d)

(3.37d) in combination with (3.33b,c) gives the pseudo–hazard function

λIIk = − ln
(
1 − α kβ−1

)
. (3.37e)

For β = 1 the type–II discrete WEIBULL distribution reduces to a geometric distribution

as does the type–I distribution.

The discrete distribution suggested by PADGETT/SPURRIER (1985) and SALVIA (1996) is

not similar in functional form to any of the functions describing a continuous WEIBULL

distribution. The only item connecting this distribution to the continuous WEIBULL model

is the fact that its hazard rate may be constant, increasing or decreasing depending on only

one parameter. The discrete hazard rate of this model is

hIIIk = 1 − exp
[
−d (k + 1)β

]
; k = 0, 1, 2, . . . ; d > 0, β ∈ R, (3.38a)

where hIIIk is

• constant with 1 − exp(−d) for β = 0,

• increasing for β > 0,

• decreasing for β < 0.

The probability mass function is

P IIIk = exp
[
−d (k + 1)β

] k∏

j=1

exp
(
−d jβ

)
; k = 0, 1, 2, . . . ; (3.38b)

and the survival function is

RIII(k) = exp


−d

k+1∑

j=1

jβ


 ; k = 0, 1, 2, . . . (3.38c)

For suitable values of d > 0 the parameter β in the range −1 ≤ β ≤ 1 is sufficient to

describe many hazard rates of discrete distributions. The pseudo–hazard function corre-

sponding to (3.38a) is

λIIIk = d (k + 1)β ; k = 0, 1, 2, . . . ; (3.38d)

which is similar to (3.37a).

3.3.2 Reflected and double WEIBULL distributions

The modifications of this and next two sections consist of some kind of transformation

of a continuous WEIBULL variate. The reflected WEIBULL distribution, introduced by

COHEN (1973), originates in the following linear transformation of a classical WEIBULL

variate X:
Y − a = −(X − a) = a−X.
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This leads to a reflection of the classical WEIBULL DF about a vertical axis at x = a
resulting in

fR(y | a, b, c) =
c

b

(
a− y

b

)c−1

exp

{
−
(
a− y

b

)c}
; y < a; b, c > 0; (3.39a)

FR(y | a, b, c) =





exp

{
−
(
a− y

b

)c}
for y < a,

1 for y ≥ a.





(3.39b)

This distribution has been recognized as the type–III maximum distribution in Sect. 3.2.2.

The corresponding hazard rate is

hR(y | a, b, c) =
c

b

(
a− y

b

)c−1 exp

{
−
(
a− y

b

)c}

1 − exp

{
−
(
a− y

b

)c} , (3.39c)

which — independent of c — is increasing, and goes to ∞ with y to a−.

Some parameters of the reflected WEIBULL distribution are

E(Y ) = a− bΓ1, (3.39d)

Var(Y ) = Var(X) = b2 (Γ2 − Γ2
1), (3.39e)

α3(Y ) = −α3(X), (3.39f)

α4(Y ) = α4(X), (3.39g)

y0.5 = a− b (ln 2)1/c, (3.39h)

y∗ = a− b (1 − 1/c)1/c (3.39i)

Figure 3/5: Hazard rate of the reflected WEIBULL distribution (a = 0, b = 1)
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By changing the sign of the data sampled from a reflected WEIBULL distribution, it can be

viewed as data from the classical WEIBULL model. Thus the parameters may be estimated

by the methods discussed in Chapters 9 ff.

Combining the classical and the reflected WEIBULL models into one distribution results in

the double WEIBULL distribution with DF

fD(y | a, b, c) =
c

2 b

∣∣∣∣
a− y

b

∣∣∣∣
c−1

exp

{
−
∣∣∣∣
a− y

b

∣∣∣∣
c}

; y, a ∈ R; b, c > 0; (3.40a)

and CDF

FD(y | a, b, c) =





0.5 exp

{
−
(
a− y

b

)c}
for y ≤ a,

1 − 0.5 exp

{
−
(
y − a

b

)c}
for y ≥ a.





(3.40b)

The density function is symmetric about a vertical line in y = a (see Fig. 3/6 for a = 0)

and the CDF is symmetric about the point (y = a, FD = 0.5). When c = 1, we have the

double exponential distribution or LAPLACE distribution.

In its general three–parameter version the double WEIBULL distribution is not easy to ana-

lyze. Thus, BALAKRISHNAN/KOCHERLAKOTA (1985), who introduced this model, con-

centrated on the reduced form with a = 0 and b = 1. Then, (3.40a,b) turn into

fD(y | 0, 1, c) =
c

2
|y|c−1 exp{− |y|c } (3.41a)

and

FD(y | 0, 1, c) =





0.5 exp
[
−
(
− y
)c ]

for y ≤ 0,

1 − 0.5 exp[−yc ] for y ≥ 0.



 (3.41b)

(3.41a) is depicted in the upper part of Fig. 3/6 for several values of c. Notice that the

distribution is bimodal for c > 1 and unimodal for c = 1 and has an improper mode for

0 < c < 1. The lower part of Fig. 3/6 shows the hazard rate

hD(y | 0, 1, c) =





c (−y)c−1 exp
{
−
(
− y
)c}

2 − exp{−(−y)c} for y ≤ 0,

c yc−1 exp{−yc}
exp{−yc} for y ≥ 0,





(3.41c)

which — except for c = 1 — is far from being monotone; it is asymmetric in any case.
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Figure 3/6: Density function and hazard rate of the double WEIBULL distribution (a =
0, b = 1)

The moments of this reduced form of the double WEIBULL distribution are given by

E(Y r) =





0 for r odd,

Γ
(
1 +

r

c

)
for r even.



 (3.41d)

Thus, the variance follows as

Var(Y ) = Γ

(
1 +

2

c

)
(3.41e)

and the kurtosis as

α4(Y ) = Γ

(
1 +

4

c

)/
Γ2

(
1 +

2

c

)
. (3.41f)

The absolute moments of Y are easily found to be

E
[
|Y |r

]
= Γ

(
1 +

r

c

)
, r = 0, 1, 2, . . . (3.41g)

Parameter estimation for this distribution — mainly based on order statistics — is con-

sidered by BALAKRISHNAN/KOCHERLAKOTA (1985), RAO/NARASIMHAM (1989) and

RAO/RAO/NARASIMHAM (1991).
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3.3.3 Inverse WEIBULL distribution13

In Sect. 3.2.2. we have shown that — when X ∼ We(a, b, c), i.e., X has a classical

WEIBULL distribution — the transformed variable

Y =
b2

X − a
has the DF

fI(y | b, c) =
c

b

(y
b

)−c−1
exp

{
−
(y
b

)−c}
; y ≥ 0; b, c > 0 (3.42a)

and the CDF

FI(y | b, c) = exp

{
−
(y
b

)−c}
. (3.42b)

This distribution is known as inverse WEIBULL distribution.14 Other names for this

distribution are complementary WEIBULL distribution (DRAPELLA, 1993), reciprocal

WEIBULL distribution (MUDHOLKAR/KOLLIA, 1994) and reverse WEIBULL distribu-

tion (MURTHY et al., 2004, p. 23).The distribution has been introduced by KELLER et al.

(1982) as a suitable model to describe degradation phenomena of mechanical components

(pistons, crankshafts) of diesel engines.

The density function generally exhibits a long right tail (compared with that of the com-

monly used distributions, see the upper part of Fig. 3/7, showing the densities of the classi-

cal and the inverse WEIBULL distributions for the same set of parameter values). In contrast

to the classical WEIBULL density the inverse WEIBULL density always has a mode y∗ in

the interior of the support, given by

y∗ = b

(
c

1 + c

)1/c

. (3.42c)

and it is always positively skewed.

Inverting (3.42b) leads to the following percentile function

yP = F−1
I (P ) = b

(
− lnP

)1/c
. (3.42d)

The r–th moment about zero is given by

E(Y r) =

∞∫

0

yr
(c
b

) (y
b

)−c−1
exp

[
−
(y
b

)−c]
dy

= br Γ
(
1 − r

c

)
for r < c only. (3.42e)

The above integral is not finite for r ≥ c. As such, when c ≤ 2, the variance is not finite.

This is a consequence of the long, fat right tail.

13 Suggested reading for this section: CALABRIA/PULCINI (1989, 1990, 1994), DRAPELLA (1993), ERTO

(1989), ERTO/RAPONE (1984), JIANG/MURTHY/JI (2001), MUDHOLKAR/KOLLIA (1994).

14 The distribution is identical to the type–II maximum distribution.



130 3 Related distributions

The hazard rate of the inverse WEIBULL distribution

hI(y | b, c) =

(c
b

)(y
b

)−c−1
exp

{
−
(y
b

)−c}

1 − exp

{
−
(y
b

)−c} (3.42f)

is an upside down bathtub (see the lower part of Fig. 3/7) and has a behavior similar to that

of the lognormal and inverse GAUSSIAN distributions:

lim
y→0

hI(y | b, c) = lim
y→∞

hI(y | b, c) = 0

with a maximum at y∗h, which is the solution of

(
b

y

)c

1 − exp

[
−
(
b

y

)c ] =
c+ 1

c
.

Figure 3/7: Density function and hazard rate of the inverse WEIBULL distribution

CALABRIA/PULCINI (1989, 1994) have applied the ML–method to estimate the two pa-

rameters. They also studied a BAYESIAN approach of predicting the ordered lifetimes in a

future sample from an inverse WEIBULL distribution under type–I and type–II censoring.
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3.3.4 Log-WEIBULL distribution15

In Sect. 3.2.2 we have introduced the following transformation of X ∼We(a, b, c) :

Y = ln(X − a); X ≥ a.

Y is called a Log–WEIBULL variable. Starting from

FX(t | a, b, c) = Pr(X ≤ t) = 1 − exp

{
−
(
t− a

b

)c}
,

we have

Pr(Y ≤ t) = Pr
[
ln(X − a) ≤ t

]

= Pr
[
X − a ≤ et

]
= Pr

[
X ≤ a+ et

]

= 1 − exp
{
−
(
et
/
b
)c}

= 1 − exp
{
− exp

[
c (t− ln b)

]}
. (3.43a)

(3.43a) is nothing but FL(t | a∗, b∗), the CDF of a type–I–minimum distribution (see

(3.17b)) with location parameter

a∗ := ln b (3.43b)

and scale parameter

b∗ := 1/c. (3.43c)

Provided, a of the original WEIBULL variate is known the log–transformation results in a

distribution of the location–scale–family which is easy to deal with. So one approach to

estimate the parameters b and c rests upon a preceding log–transformation of the observed

WEIBULL data.

DF and HR belonging to (3.43a) are

fL(t | a∗, b∗) =
1

b∗
exp

{
t− a∗

b∗
− exp

[
t− a∗

b∗

]}
(3.43d)

and

hL(t | a∗, b∗) =
1

b∗
exp

(
t− a∗

b∗

)
. (3.43e)

(3.43d) has been graphed in Fig. 1/1 for a∗ = 0 and b∗ = 1. The hazard rate is an increasing

function of t. The percentile function is

tP = a∗ + b∗ ln
[
− ln(1 − P )

]
; 0 < P < 1. (3.43f)

In order to derive the moments of a Log–WEIBULL distribution, we introduce the reduced

variable

Z = c (Y − ln b) =
Y − a∗

b∗

15 Suggested reading for this section: KOTZ/NADARAJAH (2000), LIEBLEIN/ZELEN (1956), WHITE

(1969).
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with

FL(z | 0, 1) = 1 − exp
(
− ez

)
, z ∈ R, (3.44a)

fL(z | 0, 1) = exp
(
z − ez

)
. (3.44b)

The corresponding raw moment generating function is

MZ(θ) = E
(
−eθ Z

)

=

∞∫

−∞

eθ z exp
(
z − e−z

)
dz,

=

∞∫

0

uθ e−u du, setting u = ez,

= Γ(1 + θ). (3.44c)

Using (2.65c) we easily find

E(Z) =
dΓ(1 + θ)

dθ

∣∣∣∣
θ=0

= Γ′(1)

= ψ(1) Γ(1)

= −γ ≈ −0.577216; (3.44d)

E
(
Z2
)

=
d2Γ(1 + θ)

dθ2

∣∣∣∣
θ=0

= Γ′′(1)

= Γ(1)
[
ψ2(1) + ψ′(1)

]

= γ2 + π2/6 ≈ 1.97811; (3.44e)

E
(
Z3
)

=
d3Γ(1 + θ)

dθ3

∣∣∣∣
θ=0

= Γ′′′(1)

= Γ(1)
[
ψ3(1) + 3ψ(1)ψ′(1) + ψ′′(1)

]

= −γ3 − γ π2

2
+ ψ′′(1) ≈ −5.44487; (3.44f)

E
(
Z4
)

=
d4Γ(1 + θ)

dθ4

∣∣∣∣
θ=0

= Γ(4)(1)

= Γ(1)
{
ψ4(1) + 6ψ2(1)ψ′(1) + 3

[
ψ′(1)

]2
+ 4ψ(1)ψ′′(1) + ψ′′′(1)

}

= γ4 + γ2 π2 +
3π4

20
− 4 γ ψ′′(1) ≈ 23.5615. (3.44g)
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(3.44c–d) lead to the following results for a general Log–WEIBULL variable:

E(Y ) = a∗ + b∗ (−γ) ≈ a∗ − 0.577216 b∗ ; (3.45a)

Var(Y ) = (b∗)2 π2/6 ≈ 1.644934 (b∗)2; (3.45b)

α3 ≈ −1.13955; (3.45c)

α4 ≈ 5.4. (3.45d)

So the Log–WEIBULL density is negatively skewed with a mode y∗ = a∗ and leptokurtic.

Continuing with the reduced Log–WEIBULL variable, we can state the following property

of the first order statistic (sample minimum) in a sample of size n

Z1:n = min
1≤i≤n

(Zi); Zi iid;

Pr
(
Z1:n ≤ t

)
= 1 −

[
1 − FL(t | 0, 1)

]n

= 1 − exp[−n et]
= FL

[
t+ ln(n)

]
, (3.46a)

which implies that Z1:n has the same distribution as Z − ln(n), and hence

E
(
Z1:n

)
= −γ − ln(n) (3.46b)

Var
(
Z1:n

)
= Var(Z) = π2/6. (3.46c)

We will revert to order statistics in greater detail in Sect. 5.

Parameter estimation of the Log–WEIBULL distribution can be viewed as a special case of

the estimation for extreme value distributions. DEKKERS et al. (1989) and CHRISTOPEIT

(1994) have investigated estimation by the method of moments. More information about

statistical inference is provided in the monograph by KOTZ/NADARAJAH (2000). The first,

but still noteworthy case study applying the Log–WEIBULL distribution as the lifetime

distribution for ball bearing was done by LIEBLEIN/ZELEN (1956).

We finally note that the relationship between WEIBULL and Log–WEIBULL variables is the

reverse of that between normal and log–normal variables. That is, if log X is normal then

X is called a log-normal variable, while if exp(Y ) has a WEIBULL distribution then we say

that Y is a Log–WEIBULL variable. Perhaps a more appropriate name than Log–WEIBULL

variable could have been chosen, but on the other hand one might also argue that the name

“log-normal” is misapplied.

3.3.5 Truncated WEIBULL distributions16

In common language the two words truncation and censoring are synonyms, but in sta-

tistical science they have different meanings. We join COHEN (1991, p. 1) when we say

16 Suggest reading for this section: AROIAN (1965), CROWDER (1990), GROSS (1971), HWANG (1996),

MARTINEZ/QUINTANA (1991), MCEWEN/PARRESOL (1991), MITTAL/DAHIYA (1989), SHALABY

(1993), SHALABY/AL–YOUSSEF (1992), SUGIURA/GOMI (1985), WINGO (1988, 1989, 1998).



134 3 Related distributions

truncation is a notion related to populations whereas censoring is related to samples.

A truncated population is one where — according to the size of the variable — some part

of the original population has been removed thus restricting the support to a smaller range.

A truncated distribution is nothing but a conditional distribution,17 the condition being that

the variate is observable in a restricted range only. The most familiar types of truncation,

occurring when the variate is a lifetime or a duration, are

• left–truncation In such a lower truncated distribution the smaller realizations below

some left truncation point tℓ have been omitted. This will happen when all items of

an original distribution are submitted to some kind of screening, e.g., realized by a

burn–in lasting tℓ units of time.

• right–truncation An upper truncated distribution is missing the greater realizations

above some right truncation point tr. This might happen when the items of a popu-

lation are scheduled to be in use for a maximum time of tr only.

• double–truncation A doubly truncated distribution only comprises the “middle”

portion of all items.

Censored samples are those in which sample specimens with measurements that lie in

some restricted areas of the sample space may be identified and thus counted, but are not

otherwise measured. So the censored sample units are not omitted or forgotten but they are

known and are presented by their number, but not by the exact values of their characteristic.

In a truncated population a certain portion of units is eliminated without replacement thus

the reduced size of the population, which would be less than 1 or 100%, has to be rescaled

to arrive at an integrated DF amounting to 1; see (3.48a). Censored samples are extensively

used in life–testing. We will present the commonly used types of censoring in Sect. 8.3 be-

fore turning to estimation and testing because the inferential approach depends on whether

and how the sample has been censored.

Starting with a three–parameter WEIBULL distribution, the general truncated WEIBULL

model is given by the following CDF

FDT (x | a, b, c, tℓ, tr) =
F (x | a, b, c) − F (tℓ | a, b, c)
F (tr | a, b, c) − F (tℓ | a, b, c)

; a ≤ tℓ ≤ x ≤ tr <∞,

=

exp

{
−
(
tℓ − a

b

)c}
− exp

{
−
(
x− a

b

)c}

exp

{
−
(
tℓ − a

b

)c}
− exp

{
−
(
tr − a

b

)c}

=

1 − exp

{(
tℓ − a

b

)c
−
(
x− a

b

)c}

1 − exp

{(
tℓ − a

b

)c
−
(
tr − a

b

)c} . (3.47a)

This is also referred to as the doubly truncated WEIBULL distribution. We notice the

following special cases of (3.47a):

17 See Sect. 2.6.
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• (tℓ > a, tr = ∞) gives the left truncated WEIBULL distribution with CDF

FLT (x | a, b, c, tℓ,∞) = 1 − exp

{(
tℓ − a

b

)c
−
(
x− a

b

)c}
. (3.47b)

• (tℓ = a, a < tr <∞) gives the right truncated WEIBULL distribution with CDF

FRT (x | a, b, c, a, tr) =

1 − exp

{
−
(
x− a

b

)c}

1 − exp

{
−
(
tr − a

b

)c} . (3.47c)

• (tℓ = a; tr = ∞) leads to the original, non–truncated WEIBULL distribution.

In the sequel we will give results pertaining to the doubly truncated WEIBULL distribution.

Special results for the left and right truncated distributions will be given only when they do

not follow from the doubly truncated result in a trivial way.

The DF belonging to (3.47a) is

fDT (x | a, b, c, tℓ, tr) =
f(x | a, b, c)

F (tr | a, b, c) − F (tℓ | a, b, c)
; a ≤ tℓ ≤ x ≤ tr <∞;

=

c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}

exp

{
−
(
tℓ − a

b

)c}
− exp

{
−
(
tr − a

b

)c}

=

c

b

(
x− a

b

)c−1

exp

{(
tℓ − a

b

)c
−
(
x− a

b

)c}

1 − exp

{(
tℓ − a

b

)c
−
(
tr − a

b

)c} . (3.48a)

The shape of fDT (x | a, b, c, tℓ, tr) is determined by the shape of f(x | a, b, c) over the in-

terval tℓ ≤ x ≤ tr (see Fig. 3/8) with the following results:

• (c < 1) or (c > 1 and tℓ > x∗) =⇒ fDT (·) is decreasing,

• c > 1 and tr < x∗ =⇒ fDT (·) is increasing,

• c > 1 and tℓ < x∗ < tr =⇒ fDT (·) is unimodal,

where x∗ = a+ b
[
(c− 1)/c

]1/c
is the mode of the non–truncated distribution.

The hazard rate belonging to (3.47a) is

hDT (x | a, b, c, tℓ, tr) =
fDT (x | a, b, c)

1 − FDT (x | a, b, c, tℓ, tr)
; a ≤ tℓ ≤ x ≤ tr <∞;

=
f(x | a, b, c)

F (tr | a, b, c) − F (x | a, b, c)

=
f(x | a, b, c)

1 − F (x | a, b, c)
1 − F (x | a, b, c)

F (tr | a, b, c) − F (x | a, b, c) . (3.48b)
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The first factor on the right–hand side of (3.48b) is the hazard rate (2.36b) of the non–

truncated distribution. The second factor is a monotonically increasing function, approach-

ing ∞ as x → tr. So hDT (·) can be either decreasing, increasing or bathtub–shaped. The

bathtub shape will come up in the doubly and right truncated cases when 0 < c < 1.

Figure 3/8: Densities of truncated and non-truncated WEIBULL distributions

The percentile function belonging to (3.47a) is

F−1
DT (P ) = a+ b

{
ln

[
1

1 − F (tℓ | a, b, c) − P
[
F (tr | a, b, c) − F (tℓ | a, b, c)

]
]}1/c

.

(3.48c)

MCEWEN/PARRESOL (1991) give the following formula for the raw moments of the dou-

bly truncated WEIBULL distribution:

E
(
Xr
DT

)
=

exp

{(
tℓ − a

b

)c}

1 − exp

{(
− tr − a

b

)c}
r∑

j=0

(
r

j

)
br−j aj ×

{
γ

[
r − j

c
+ 1

∣∣∣∣∣

(
− tr − a

b

)c]
− γ

[
r − j

c
+ 1

∣∣∣∣∣

(
tℓ − a

b

)c]}
, (3.48d)

where γ[· | ·] is the incomplete gamma function (see the excursus in Sect. 2.9.1). So, the

moments can be evaluated only numerically. Looking at the reduced WEIBULL variate U ,
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i.e., a = 0 and b = 1, (3.48d) becomes a little bit simpler:

E
(
U rDT

)
=

exp{tcℓ}
1 − exp{−tcr}

{
γ

[
r

c
+ 1

∣∣∣∣ tcr
]
− γ

[
r

c
+ 1

∣∣∣∣ tcℓ
]}

. (3.48e)

In the left truncated case (3.48d,e) turn into18

E
(
Xr
LT

)
= exp

{(
tℓ − a

b

)c} r∑

j=0

(
r

j

)
br−j aj ×

{
Γ

(
r − j

c
+ 1

)
− γ

[
r − j

c
+ 1

∣∣∣∣
(
tℓ − a

b

)c ]}
(3.49a)

and

E
(
U rLT

)
= exp {tcℓ}

{
Γ
(r
c

+ 1
)
− γ

[
r

c
+ 1

∣∣∣∣ tcℓ
]}

. (3.49b)

When the distribution is right truncated we have

E
(
Xr
RT

)
=

1

1 − exp

{
−
(
tr − a

b

)c}
r∑

j=0

(
r

j

)
br−j ajγ

[
r − j

c
+ 1

∣∣∣∣
(
tr − a

b

)c ]

(3.50a)

and

E
(
U rRT

)
=

1

1 − exp {−tcr}
γ

[
r

c
+ 1

∣∣∣∣ tcr
]
. (3.50b)

SUGIURA/GOMI (1985) give a moment–ratio diagram showing the right truncated

WEIBULL distribution in comparison with the doubly truncated normal distribution.

Testing hypotheses on the parameters of a truncated WEIBULL distribution is treated by

CROWDER (1990) and MARTINEZ/QUINTANA (1991). Parameter estimation is discussed

by MITTAL/DAHIYA (1989) and WINGO (1988, 1989, 1998) applying the maximum like-

lihood approach and by SHALABY (1993) and SHALABY/AL–YOUSSEF (1992) using a

BAYES approach. See CHARERNKAVANICH/COHEN (1984) for estimating the parameters

as well as the unknown left point of truncation by maximum likelihood. HWANG (1996)

gives an interesting application of the truncated WEIBULL model in reliability prediction

of missile systems.

3.3.6 Models including two or more distributions

This section presents models which result when several variates or several distributions are

combined in one way or another whereby at least one of these variates or distributions has

to be WEIBULL. We will first (Sect. 3.3.6.1) study the distribution of the sum of WEIBULL

variates. Then (Sect. 3.3.6.2) we turn to the lifetime distribution of a system made up

18 AROIAN (1965) gives an evaluation based on the χ2–distribution.



138 3 Related distributions

by linking two or more randomly failing components. Sections 3.3.6.3 to 3.3.6.5 deal

with composing and with discrete as well as continuous mixing; topics which have been

explored intensively in theory and practice.

3.3.6.1 WEIBULL folding

The distribution of the sum of two or more variates is found by convoluting or folding

their distributions. We will only report on the sum of iid WEIBULL variates. Such a sum

is of considerable importance in renewal theory (Sect. 4.4) and for WEIBULL processes

(Sect. 4.3).

First, we will summarize some general results on a sum

Y =
n∑

i=1

Xi

of n iid variates. The DF and CDF of Y are given by the following recursions:

fn(y) =

∫

R

f(x) fn−1(y − x) dx; n = 2, 3, . . . ; (3.51a)

Fn(y) =

∫

R

f(x)Fn−1(y − x) dx; n = 2, 3, . . . ; (3.51b)

with

f1(·) = f(·) and F1(·) = F (·).

R, the area of integration in (3.51a,b), contains all arguments for which the DFs and CDFs

in the integrand are defined. The raw moments of Y are given by

E(Y r) = E
[
(X1 +X2 + . . .+Xn)

r
]

=
∑ r!

r1! r2! . . . rn!
E
(
Xr1

1

)
E
(
Xr2

2

)
. . .E

(
Xrn
n

)
. (3.51c)

The summation in (3.51c) runs over all n–tuples (r1, r2, . . . , rn) with
n∑
i=1

ri = r and 0 ≤

ri ≤ r. The number of summands is
(
r+n−1

r

)
. In particular we have

E(Y ) =
n∑

i=1

E(Xi). (3.51d)

The variance of Y is

Var(Y ) =

n∑

i=1

Var(Xi). (3.51e)

Assuming

Xi ∼We(a, b, c); i = 1, 2, . . . , n,
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(3.51a,b) turn into

fn(y) =

y∫

n a

c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
fn−1(y − x) dx; n = 2, 3, . . . ; (3.52a)

Fn(y) =

y∫

n a

c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
Fn−1(y − x) dx; n = 2, 3, . . . . (3.52b)

Whereas the evaluation of (3.51d,e) for WEIBULL variates is quite simple there generally

do not exist closed form expressions for the integrals19 on the right–hand sides of (3.52a,b),

not even in the case n = 2.

An exception is the case c = 1 for all n ∈ N, i.e. the case of folding identically and indepen-

dently exponentially distributed variates. The n–fold convolution is a gamma distribution,

more precisely an ERLANG distribution as n is a positive integer. For n = 2 and c = 1 we

have

f2(y | a, b, 1) =
y − 2 a

b2
exp

[
−
(
y − 2 a

b

)]
, y ≥ 2 a,

F2(y | a, b, 1) = 1 − exp

[
−y − 2 a

b

](
y − 2 a+ b

b

)
, y ≥ 2 a.

For n ∈ N, c = 1 and a = 0, we have the handsome formulas

fn(y | 0, b, 1) =
yn−1

bn (n− 1)!
exp
(
−y
b

)
,

Fn(y | 0, b, 1) = 1 − exp
(
−y
b

) n−1∑

i=0

yi

bi i!
.

Turning to a genuine WEIBULL distribution, i.e., c 6= 1, we will only evaluate (3.52a,b) for

n = 2 and a = 0 when c = 2 or c = 3.

c = 2

f2(y | 0, b, 2) =

exp

[
−
(y
b

)2]

2 b3

{
2 b y −

√
2π exp

[
1

2

(y
b

)2]
(b2 − y2) erf

(
y

b
√

2

)}

F2(y | 0, b, 2) = 1 − exp

[
−
(y
b

)2]
−

exp

[
−1

2

(y
b

)2]

b

√
π

2
erf

(
y

b
√

2

)

19 In Sect. 3.1.4 we have already mentioned that the WEIBULL distribution is not reproductive through

summation.
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c=3

f2(y | 0, b, 3) =

exp

[
−
(y
b

)3]

16 b9/2 y5/2

{
6 (b y)3/2 (y3 − 2 b3) +

√
3π exp

[
3

4

(y
b

)3 ]
×

[
4 b6 − 4 (b y)3 + 3 y6] erf

[√
3

2

(y
b

)3/2
]}

F2(y | 0, b, 3) = 1 −
exp

[
−
(y
b

)3]

2
−

exp

[
−1

4

(y
b

)3]

4 (b y)3/2

√
π

3
(2 b3 + 3 y3) erf

[√
3

2

(y
b

)3/2
]

erf(·) is the GAUSSIAN error function:

erf(τ) =
2√
π

τ∫

0

e−t
2

dt, (3.53a)

which is related to Φ(z), the CDF of the standardized normal variate by

Φ(τ) =
1

2

[
1 + erf(τ/

√
2)
]

for τ ≥ 0. (3.53b)

Figure 3/9: Densities of a two-fold convolution of reduced WEIBULL variates
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3.3.6.2 WEIBULL models for parallel and series systems

Two simple systems in reliability theory are the series system and the parallel system,

each consisting of n components that will fail at random. For component i (1 ≤ i ≤ n) let

Fi(t) = Pr(Xi ≤ t) be the probability of failure up to time t, then Ri(t) = 1 − Fi(t) =
Pr(Xi > t) is the probability of its surviving of time t.

A series system is working as long as all its n components are working, so that the series

survival probability of time t is given by

RS(t) = Pr(X1 > t, X2 > t, . . . , Xn > t)

=

n∏

i=1

Ri(t). (3.54a)

(3.54a) holds only for independently failing components. RS(t) is a decreasing function

of n with RS(t) ≤ Ri(t) ∀ i. So, a series system is more reliable the less components are

combined into it. The series system’s failure distribution follows as

FS(t) = 1 −
n∏

i=1

Ri(t) = 1 −
n∏

i=1

[
1 − Fi(t)

]
(3.54b)

with DF

fS(t) =

n∑

i=1





n∏

j=1,j 6=i

[
1 − Fj(t)

]


 fi(t),

= RS(t)

n∑

i=1

fi(t)

Ri(t)
. (3.54c)

Thus, the HR of a series system simply is

hS(t) =
fS(t)

RS(t)
=

n∑

i=1

fi(t)

Ri(t)

=

n∑

i=1

hi(t), (3.54d)

i.e., the sum of each component’s hazard rate.

A parallel system is working as long as at least one of its n components is working and

fails when all its components have failed. The failure distribution CDF is thus

FP (t) = Pr(X1 ≤ t, X2 ≤ t, . . . , Xn ≤ t)

=

n∏

i=1

Fi(t) (3.55a)
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for independently failing units. FP (t) is a decreasing function of nwith FP (t) ≤ Fi(t) ∀ i.
Thus, a parallel system is more reliable the more components it has. The system’s reliability

function or survival function is

RP (t) = 1 −
n∏

i=1

Fi(t) = 1 −
n∏

i=1

[
1 −Ri(t)

]
(3.55b)

and its DF is

fP (t) =

n∑

i=1





n∏

j=1,j 6=i
Fj(t)



 fi(t)

= FP (t)

n∑

i=1

fi(t)

Fi(t)
. (3.55c)

The HR follows as

hP (t) =
fP (t)

RP (t)
=

FP (t)

1 − FP (t)

n∑

i=1

fi(t)

Fi(t)

=
FP (t)

RP (t)

n∑

i=1

fi(t)

Ri(t)

Ri(t)

Fi(t)

=
FP (t)

RP (t)

n∑

i=1

hi(t)
Ri(t)

Fi(t)
, (3.55d)

i.e., HR is a weighted sum of the individual hazard rates, where the weightsRi(t)
/
Fi(t) are

decreasing with t. This sum is multiplied by the factor FP (t)
/
RP (t) which is increasing

with t.

Before evaluating (3.54a–d) and (3.55a-d) using WEIBULL distributions, we should men-

tion that the two preceding systems are borderline cases of the more general “k–out–of–n–

system”, which is working as long as at least k of its n components have not failed. Thus,

an series system is a “n–out–of–n” system and a parallel system is a “1–out–of–n” system.

The reliability function of a “k–out–of–n” system is given by

Rk,n(t) =
n∑

m=k


 ∑

Z(m,n)

Ri1(t) · . . . ·Rim(t) · Fim+1(t) · . . . · Fin(t)


 . (3.56)

Z(m,n) is the set of all partitions of n units into two classes such that one class comprises

m non–failed units and the other class n−m failed units. An inner sum gives the probability

that exactly m of the n units have not failed. The outer sum rums over all m ≥ k.

We first evaluate the series system, also known as competing risk model or multi–

risk model, with WEIBULL distributed lifetimes of its components.20 Assuming Xi
iid∼

20 MURTHY/XIE/JIANG (2004) study multi–risk models with inverse WEIBULL distributions and hybrid

models for which one component has a WEIBULL distributed lifetime and the remaining components are

non–WEIBULL.
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We(a, b, c); i = 1, 2, . . . , n; (3.54a) turns into

RS(t) = exp

{
−n
(
t− a

b

)c}
= exp

{
−
(
t− a

b n−1/c

)c}
. (3.57a)

(3.57a) is easily recognized as the CCDF of a variate T ∼ We(a, b n−1/c, c), the mini-

mum of n iid WEIBULL variates (see Sect. 3.1.4). Assuming Xi
iid∼ We(a, bi, c); i =

1, 2, . . . , n; i.e., the scale factor is varying with i and the series system’s lifetime T is still

WEIBULL with

RS(t) = exp

{
−(t− a)c

n∑

i=1

1

bci

}
. (3.57b)

Now, the scale parameter of T is

(
n∑
i=1

b−ci

)−1/c

. T has no WEIBULL distribution when the

shape parameters and/or the location parameters of the components’ lifetimes are differing.

In the general case, i.e., Xi ∼ We(ai, bi, ci) and independent, assuming c1 < c2 < . . . <
cn we can state some results on the hazard rate hS(t) of (3.54d).

• The asymptotic properties are

⋄ hS(t) ≈ h1(t) for t→ 0,

⋄ hS(t) ≈ hn(t) for t→ ∞ .

For small t the hazard rate of the series system is nearly the same as that for the

component with the smallest shape parameter. For large t, it is approximately the

hazard rate for the component with the largest shape parameter.

• hS(t) can have only one of three possible shapes:

⋄ hS(t) is decreasing when c1 < c2 < . . . < cn < 1.

⋄ hS(t) is increasing when 1 < c1 < c2 < . . . < cn.

⋄ hS(t) is bathtub–shaped when c1 < . . . < cj−1 < 1 < cj < . . . < cn.

Parameter estimation in this general case is extensively discussed by MURTHY/XIE/JIANG

(2004, pp. 186–189) and by DAVISON/LOUZADA–NETO (2000), who call this distribution

a poly-WEIBULL model.

A parallel system with WEIBULL distributed lifetimes of its components is sometimes

called a multiplicative WEIBULL model, see (3.55a). Assuming Xi
iid∼ We(a, b, c); i =

1, 2, . . . , n, (3.55a) turns into

FP (t) =

[
1 − exp

{
−
(
t− a

b

)c}]n
. (3.58a)

(3.58a) is a special case of the exponentiated WEIBULL distribution, introduced by

MUDHOLKAR/SRIVASTAVA (1993) and analyzed in subsequent papers by MUDHOLKAR

et al. (1995), MUDHOLKAR/HUTSON (1996) and JIANG/MURTHY (1999). Whereas in

(3.58a) the parameter n is a positive integer, it is substituted by ν ∈ R to arrive at the

exponentiated WEIBULL distribution.
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The DF belonging to (3.58a) is

fP (t) = n fX(t)
[
FX(t)

]n−1

= n
c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}[
1 − exp

{
−
(
x− a

b

)c}]n−1

.(3.58b)

fP (t) is (see the upper part of Fig. 3/10)

• monotonically decreasing for n c ≤ 1 with fP (0) = ∞ for n c < 1 and fP (0) = 1/b
for n c = 1,

• unimodal for n c > 1 with — according to MUDHOLKAR/HUTSON (1996) — a

mode approximated by

t∗ = a+ b

{
1

2

[√
c (c− 8n + 2 c n + 9 c n2)

c n
− 1 − 1

n

]}n
. (3.58c)

It is noteworthy that the effect of the product c n on the shape of the DF for the exponenti-

ated WEIBULL distribution is the same as that of c in the simple WEIBULL distribution.

The HR belonging to (3.58a) is

hP (t) =
fP (t)

1 − FP (t)

= n
c

b

(
x− a

b

)c−1 exp

{
−
(
x− a

b

)c}[
1 − exp

{
−
(
x− a

b

)c}]n−1

1 −
[
1 − exp

{
−
(
x− a

b

)c}]n .(3.58d)

For small t we have

hP (t) ≈
(n c
b

)( t− a

b

)n c−1

,

i.e., the system’s hazard rate can be approximated by the hazard rate of a WEIBULL distri-

bution with shape parameter n c and scale parameter b. For large t we have

hP (t) ≈
(c
b

)( t− a

b

)c−1

,

i.e., the approximating hazard rate is that of the underlying WEIBULL distribution. The

shape of the HR is as follows (also see the lower part of Fig. 3/10):

• monotonically decreasing for c ≤ 1 and n c ≤ 1,

• monotonically increasing for c ≥ 1 and n c ≥ 1,

• unimodal for c < 1 and n c > 1,

• bathtub–shaped for c > 1 and ν c < 1, ν ∈ R+.
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Figure 3/10: Densities and hazard rates of multiplicative WEIBULL models (a = 0, b = 1)

The raw moments belonging to (3.58a), but with a = 0, are

µ′r = n br Γ
(
1 +

r

c

) n−1∑

j=0

(−1)j
(
n− 1

j

)
1

(j + 1)1+r/c
. (3.58e)

The percentile function is simply

F−1
P (P ) = a+ b

{
− ln

[
1 − P 1/n

]}1/c
, 0 < P < 1. (3.58f)

General results on a multiplicative WEIBULL model with components having differing

parameter values are not easy to find. When the components all have a two–parameter

WEIBULL distribution (ai = 0 ∀ i) and assuming c1 ≤ c2 ≤ . . . ≤ cn and bi ≥ bj for

i < j if ci = cj , MURTHY/XIE/JIANG (2004, p. 198/9) state the following results:

FP (t) ≈ F0(t) for small t (3.59a)

with F0(t) as the two–parameter WEIBULL CDF having

c0 =
n∑

i=1

ci and b0 =
n∑

i=1

b
ci/c0
i ,

FP (t) ≈ (1 − k) + k F1(t) for large t, (3.59b)

where k is the number of components with distribution identical to F1(t) having c1 and b1.

The DF can be decreasing or may have k modes. The HR can never have a bathtub shape,
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but has four possible shapes (decreasing, increasing, k modal followed by increasing or

decreasing followed by k modal). The asymptotes of the HR are

hP (t) ≈





h0(t) =
c0
b0

(
t

c0

)c0−1

for t→ 0

h1(t) =
c1
b1

(
t

b1

)c1−1

for t→ ∞.





(3.59c)

3.3.6.3 Composite WEIBULL distributions

A composite distribution, also known as sectional model or piecewise model, is con-

structed by knotting together pieces of two or more distributions in such a manner that the

resulting distribution suffices some smoothness criteria. The task is somewhat similar to

that of constructing a spline function. In reliability theory and life testing the composite

WEIBULL distribution, first introduced by KAO (1959) to model the lifetime distribution

of electronic tubes, is primarily used to arrive at a non–monotone hazard rate which is

not encountered in only one WEIBULL distribution. The bathtub shape, regularly found in

life–tables as the behavior of the conditional probability of death at age x, is of interest, see

ELANDT–JOHNSON/JOHNSON (1980, Chapter 7.5). We will present the WEIBULL com-

posite distribution having n ≥ 2 WEIBULL subpopulations. Of course, it is possible to

join WEIBULL and other distributions into a so–called hybrid composite model.

An n–fold composite WEIBULL CDF is defined as

Fnc(x) = Fi(x | ai, bi, ci) for τi−1 ≤ x ≤ τi; i = 1, 2, . . . , n, (3.60a)

where Fi(x | ai, bi, ci) = 1 − exp

{
−
(
x− ai
bi

)ci}
is the i–th component in CDF form.

The quantities τi are the knots or points of component partition. Because the end points

are τ0 = a1 and τn = ∞, for a n–fold composite model there are only n − 1 partition

parameters. The n–fold composite WEIBULL DF is

fnc(x) = fi(x | ai, bi, ci) (3.60b)

=
ci
bi

(
x− ai
bi

)ci−1

exp

{
−
(
x− ai
bi

)ci}
for τi−1 ≤ x ≤ τi; i = 1, 2, . . . , n;(3.60c)

with corresponding HR

hnc(x) =
fi(x | ai, bi, ci)

1 − Fi(x | ai, bi, ci)
= hi(x | ai, bi, ci) for τi−1 ≤ x ≤ τi; i = 1, 2, . . . , n.

(3.60d)

In the interval [τi−1; τi] the portion

Pi = Fi(τi | ai, bi, ci) − Fi−1(τi−1 | ai−1, bi−1, ci−1); i = 1, . . . , n, (3.60e)
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with

F0(·) = 0 and Fn(·) = 1,

is governed by the i–th WEIBULL distribution.

We first look at a composite WEIBULL model requiring only that the CDFs join continu-

ously:

Fi(τi | ai, bi, ci) = Fi+1(τi | ai−1, bi+1, ci+1); i = 1, . . . , n. (3.61a)

Fulfillment of (3.61a) does not guarantee that the DFs and the HRs join without making

a jump (see Fig. 3/11). At those endpoints, where two CDFs have to be joined, seven

parameters are involved: three parameters for each distribution and the partition parameter

τi. Because of the restriction (3.61a) six of the seven parameters are independent. The most

common way to construct (3.60a) is to fix the six parameters τi, ai, bi, ci, bi+1, ci+1 (i =
1, 2, . . . , n− 1) and to shift the right–hand CDF with index i+ 1, i.e., to determine ai+1 so

as to fulfill (3.61a). Thus, the resulting location parameter ai+1 is given by

ai+1 = τi − bi+1

(
τi − ai
bi

)ci/ci+1

; i = 1, 2, . . . , n − 1. (3.61b)

Fig. 3/11 shows the CDF, DF and HR together with the WEIBULL probability plot for a

three–fold composite model with the following parameter set:

a1 = 0; b1 = 1; c1 = 0.5; τ1 = 0.127217 =⇒ P1 = 0.3;

a2 = −0.586133; b2 = 2; c2 = 1; τ2 = 1.819333 =⇒ P2 = 0.4;

a3 = 1.270987; b3 = 0.5; c3 = 2 =⇒ P3 = 0.3.

When we want to have a composite WEIBULL model with both the CDFs and the DFs join-

ing continuously, we have to introduce a second continuity condition along with (3.61a):

fi(τi | ai, bi, ci) = fi+1(τi | ai+1, bi+1, ci+1); i = 1, 2, . . . , n− 1. (3.62a)

(3.61a) and (3.62a) guarantee a continuous hazard rate, too. In order to satisfy (3.61a) and

(3.62a) the seven parameters coming up at knot i have to fulfill the following two equations:

ai = τi −
(
ci+1

ci

b
ci/ci+1

i

bi+1

)ci+1/(ci−ci+1)

, (3.62b)

ai+1 = τi − bi+1

(
τi − ai
bi

)ci/ci+1

, (3.62c)

so five out of the seven parameters are independent.
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Figure 3/11: Composite WEIBULL distribution with continuously joining CDFs

A common procedure to construct a composite WEIBULL distribution supposes that at least

the knots τi and the shape parameters ci are fixed. Then, the algorithm is as follows:

1. Given τ1, b1, c1, b2, c2, the location parameters a1 and a2 of the first two distribu-

tions are determined using (3.62b,c).

2. For the following knots (i = 2, . . . , n− 1) the parameters τi, ai (from the preceding

step), bi, ci and ci+1 are known. bi+1, the scale parameter of distribution i + 1, is

calculated as

bi+1 =
ci+1

ci
b
ci/ci+1

i

(
τi − ai

)−(ci−ci+1)/ci+1 . (3.62d)

Then ai+1 follows from (3.62c).

Fig. 3/12 gives an example for a three–fold composite and completely continuous

WEIBULL model. The predetermined parameters are

τ1 = 1; b1 = 1; c1 = 0.5; b2 = 2; c2 = 1.0; τ2 = 2.0; c2 = 3.

The algorithm yields

a1 = 0; a2 = −1; b3 ≈ 7.862224; a3 ≈ −7.

The portions Pi of the three–sectional distributions are

P1 ≈ 0.6321; P2 ≈ 0.1448; P3 ≈ 0.2231.
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Figure 3/12: Composite WEIBULL distribution with continuously joining CDFs, DFs and

HRs

Moments of composite WEIBULL distribution have to be determined by numerical integra-

tion. Percentiles are easily calculated because (3.60a) can be inverted in closed form.

There are mainly two approaches to estimate the parameters of a composite WEIBULL

distribution. The graphical approach rests either upon the WEIBULL probability–plot,

see KAO (1959) or MURTHY/XIE/JIANG (2004), or on the WEIBULL hazard–plot, see

ELANDT–JOHNSON/JOHNSON (1980), and adheres to the kinks (Fig. 3/11 and 3/12) that

will also come up in the empirical plots. The numerical approach consists in a maxi-

mum likelihood estimation; see AROIAN/ROBINSON (1966) and COLVERT/BOARDMAN

(1976).

3.3.6.4 Mixed WEIBULL distributions21

The mixing of several WEIBULL distributions is another means to arrive at a non–monotone

hazard rate, but this will never have a bathtub–shape as will be shown further down. A

21 Suggested reading for this section: Since the first paper on mixed WEIBULL models by KAO (1959), the

literature on this topic has grown at an increasing pace. MURTHY/XIE/JIANG (2004) give an up–to–date

overview of this relative to the classical WEIBULL distribution.
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discrete or finite mixture22 is a linear combination of two or more WEIBULL distribu-

tions that — contrary to the composite model of the preceding section — have no restricted

support.23 A simple explanation of discretely mixed distributions is the following: The

population under consideration is made up of n ≥ 2 subpopulations contributing the por-

tion ωi, i = 1, 2, . . . , n; 0 < ωi < 1;
∑n

i=1 ωi = 1; to the entire population. For example,

a lot of items delivered by a factory has been produced on n production lines which are not

working perfectly identically so that some continuous quality characteristic X of the items

has DF Fi(x) when produced on line i.

Before turning to WEIBULL mixtures we summarize some general results on mixed distri-

butions:

Mixed DF

fm(x) =
n∑

i=1

ωi fi(x); 0 < ωi < 1;
n∑

i=1

ωi = 1; (3.63a)

Mixed CDF und CCDF

Fm(x) =

n∑

i=1

ωi Fi(x); (3.63b)

Rmx) =
n∑

i=1

ωiRi(x); (3.63c)

Mixed HR

hm(x) =
fm(x)

Rm(x)

=

n∑

i=1

gi(x)hi(x), (3.63d)

where hi(x) = fi(x)/Ri(x) is the hazard rate of subpopulation i and the weights gi(x) are

given by

gi(x) =
ωiRi(x)

Rm(x)
,

n∑

i=1

gi(x) = 1 (3.63e)

and are thus varying with x;

Mixed raw moments

E
(
Xr
)

=

n∑

i=1

ωi E
(
Xr
i

)
, where E

(
Xr
i

)
=

∫
xri fi(x) dx. (3.63f)

22 A continuous or infinite mixture, where the weighting function is a DF for one of the WEIBULL pa-

rameters, will be presented in Sect. 3.3.6.5. In this case the WEIBULL parameter is a random variable.

23 We will not present hybrid mixtures where some of the mixed distributions do not belong to the

WEIBULL family. Some papers on hybrid mixtures are AL–HUSSAINI/ABD–EL–HAKIM (1989, 1990,

1992) on a mixture of an inverse GAUSSIAN and a two–parameter WEIBULL distribution, CHANG (1998)

on a mixture of WEIBULL and GOMPERTZ distributions to model the death rate in human life–tables,

LANDES (1993) on a mixture of normal and WEIBULL distributions and MAJESKE/HERRIN (1995) on

a twofold mixture of WEIBULL and uniform distributions for predicting automobile warranty claims.
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From (3.63f) we have two special results:

Mean of the mixed distribution

E(X) =

n∑

i=1

ωi E
(
Xi

)
; (3.63g)

Variance of the mixed distribution

Var(X) = E
{[
X − E(X)

]2}
= E

(
X2
)
−
[
E(X)

]2

=
n∑

i=1

ωi E
(
X2
i

)
−
[

n∑

i=1

ωi E
(
Xi

)
]2

=

n∑

i=1

ωi
[
Var(Xi) + E(Xi)

]2 −
[

n∑

i=1

ωi E(Xi)

]2

=

n∑

i=1

ωiVar(Xi) +

n∑

i=1

ωi
[
E(Xi) − E(X)

]2
. (3.63h)

Thus, the variance of the mixed distribution is the sum of two non–negative components.

The first component on the right–hand side of (3.63h) is the mean of the n variances. It is

termed the internal variance or within–variance. The second component is the external

variance or between–variance, showing how the means of the individual distributions

vary around their common mean E(X).

Inserting the formulas describing the functions and moments of n WEIBULL distributions

into (3.63a–h) gives the special results for a mixed WEIBULL model. Besides parameter

estimation (see farther down) the behavior of the density and the hazard rate of a mixed

WEIBULL distribution have attracted the attention of statisticians.

We start by first developing some approximations to the CDF of a mixed WEIBULL model

where the n subpopulations all have a two–parameter WEIBULL distribution24 and assum-

ing in the sequel, without loss of generality, that ci ≤ cj , i < j, and bi > bj , when ci = cj .
Denoting

yi =

(
x

bi

)ci

we have

lim
x→0

(
yi
y1

)
=





0 if ci > c1(
b1
bi

)c1
if ci = c1





(3.64a)

and

lim
x→∞

(
yi
y1

)
=





∞ if ci > c1(
b1
bi

)c1
> 1 if ci = c1




. (3.64b)

24 The results for a three–parameter WEIBULL distribution are similar because the three–parameter distri-

bution reduces to a two–parameter distribution under a shifting of the time scale.
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From (3.64a,b) JIANG/MURTHY (1995) derive the following results from which the behav-

ior of the hazard and density functions may be deduced:

1. For small x, i.e., very close to zero,

Fm(x) =

n∑

i=1

ωi Fi(x | 0, bi, ci)

can be approximated by

Fm(x) ≈ g F1(x | 0, b1, c1), (3.65a)

where

g =

m∑

j=1

ωj

(
b1
bj

)c1
(3.65b)

and m is the number of the subpopulations with the common shape parameter c1.

When m = 1, then g = ω1.

2. For large x, Fm(x) can be approximated by

Fm(x) ≈ 1 − ω1

[
1 − F1(x | 0, b1, c1)

]
. (3.65c)

From (3.65a,b) the density of the mixed WEIBULL model can be approximated by

fm(x) ≈ g f1(x | 0, b1, c1) for small x (3.66a)

and

fm(x) ≈ ω1 f1(x | 0, b1, c1) for large x, (3.66b)

implying that fm(x) is increasing (decreasing) for small x if c1 > 1 (c1 < 1). The shape

of fm(x) depends on the model parameters, and the possible shapes are

• decreasing followed by k − 1 modes (k = 1, 2, . . . , n− 1),

• k–modal (k = 1, 2, . . . , n).

Of special interest is the two–fold mixture. The possible shapes in this case are

• decreasing,

• unimodal,

• decreasing followed by unimodal,

• bimodal.

Although the two–fold mixture model has five parameters (b1, b2, c1, c2 and ω1), as ω2 =
1 − ω1, the DF–shape is only a function of the two shape parameters, the ratio of the two

scale parameters and the mixing parameter. JIANG/MURTHY (1998) give a parametric

characterization of the density function in this four–dimensional parameter space.

From (3.66a,c) the hazard rate of the mixed WEIBULL model can be approximated by

hm(x) ≈ g h1(x | 0, b1, c1) for small x (3.67a)

and

hm(x) ≈ h1(x | 0, b1, c1) for large x. (3.67b)
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Thus, hm(x) is increasing (decreasing) for small x if c1 > 1 (c1 < 1). The shape of

hm(x) depends on the model parameters leading to the following possible shapes; see

GUPTA/GUPTA (1996):

• decreasing,

• increasing,

• decreasing followed by k modes (k = 1, 2, . . . , n − 1),

• k modal followed by increasing (k = 1, 2, . . . , n).

A special case of a decreasing mixed HR has already been given by PROSCHAN (1963).25

He proved that a mixture of exponential distributions, being WEIBULL distribution with

ci = 1; i = 1, 2, . . . , n, which have differing scale parameters bi, will lead to a mixed

model with decreasing hazard rate.

We now turn to the hazard rate of a two–fold WEIBULL mixture, which has been studied in

some detail. This hazard rate follows from (3.63d,e) as

hm(x)=
ω1R1(x | 0, b1, c1)

Rm(x)
h1(x | 0, b1, c1) +

(1 − ω1)R2(x | 0, b2, c2)
Rm(x)

h2(x | 0, b2, c2).
(3.68a)

Assuming c1 ≤ c2 JIANG/MURTHY (1998) show

hm(x) → h1(x | 0, b1, c1) for large x, (3.68b)

hm(x) → g h1(x | 0, b1, c1) for small x, (3.68c)

with

g = ω1 for c1 < c2 and g = ω1 + (1 − ω1)

(
b1
b2

)c1
for c1 = c2.

(3.68b,c) imply that for small and large x the shape of hm(x) is similar to that of h1(x | .).
When c1 < 1 (c1 > 1), then h1(x|.) is decreasing (increasing) for all x. As a result, hm(x)
is decreasing (increasing) for small and large x, so hm(x) cannot have a bathtub shape.26

The possible shapes of (3.68a) are

• decreasing,

• increasing,

• uni–modal followed by increasing,

• decreasing followed by uni–modal,

• bi–modal followed by increasing.

The conditions on the parameters b1, b2, c1, c2 and ω, leading to these shapes, are given

in JIANG/MURTHY (1998). Fig. 3/13 shows a hazard rate (right–hand side) along with its

corresponding density function (left–hand side) for the five possible hazard shapes.

25 A paper with newer results on mixtures of exponential distributions is JEWELL (1982).

26 One can even show that n–fold mixtures of WEIBULL distributions (n > 2) can never have a bathtub

shape; thus falsifying the assertion of KROHN (1969) that a three–fold mixture of WEIBULL distributions

having c1 < 1, c2 = 1 and c3 > 1 leads to a bathtub shape.
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Figure 3/13: Hazard rate and density function of some two-fold WEIBULL mixtures

The literature on parameter estimation for the mixture model is vast. So, we will cite

only some key papers. Graphical methods based the WEIBULL probability plot seem to

be dominant. The first paper based on this approach is KAO (1959) on a two–fold mix-

ture. His approach has been applied by several authors introducing minor modifications. A

newer paper circumventing some of the drawbacks of older approaches is JIANG/MURTHY

(1995). The graphical method may lead to satisfactory results for a two–fold mixture in

well–separated cases, i.e., b1 ≫ b2 or b1 ≪ b2. Some papers on analytical methods of

parameter estimation are

• RIDER (1961) and FALLS (1970) using the method of moments,

• ASHOUR (1987a) and JIANG/KECECIOGLU (1992b) applying the maximum likeli-

hood approach,

• WOODWARD/GUNST (1987) taking a minimum–distance estimator,

• CHENG/FU (1982) choosing a weighted least–squares estimator,

• ASHOUR (1987b) and AHMAD et al. (1997) considering a BAYES approach.
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3.3.6.5 Compound WEIBULL distributions27

The weights ωi, used in mixing n WEIBULL densities fi(x | ai, bi, ci), may be interpreted

as the probabilities of n sets of values for the parameter vector (a, b, c). Generally, each

parameter of a parametric distribution may be regarded as a continuous variate, so that the

probabilities ωi have to be substituted against a density function. The resulting contin-

uous mixture is termed compound distribution. In the sequel we will discuss only the

case where one of the parameters, denoted by Θ, is random. Let θ be a realization of

Θ. The density of X, given θ, is conditional and denoted by fX(x | θ). In the context of

compounding it is termed parental distribution. The density of Θ, denoted by fΘ(θ), is

termed compounding distribution or prior distribution.28

The joint density of the variates X and Θ is given by

f(x, θ) = fX(x | θ) fΘ(θ), (3.69a)

from which the marginal density of X follows as

f(x) =

∫
f(x, θ) dθ =

∫
fX(x, θ)fΘ(θ) dθ. (3.69b)

This is the DF of the compound distribution. In statistics and probability theory a special

notation is used to express compounding. For example, let the parental distribution be

normal with random mean Θ, θ being a realization of Θ, and fixed variance Var(X | θ) =
σ2
∗, i.e., X | θ ∼ No(θ, σ2

∗). Supposing a prior distribution, which is also normal, Θ ∼
No(ξ, σ2

∗∗), compounding in this case is denoted by

No(Θ, σ2
∗)

∧

Θ
No(ξ, σ2

∗∗).

∧
is the compounding operator. We shortly mention that in this example compounding

is reproductive,

No(Θ, σ2
∗)

∧

Θ
No(ξ, σ2

∗∗) = No(ξ, σ2
∗ + σ2

∗∗).

Compound WEIBULL distributions have been intensively discussed with respect to a ran-

dom scale factor. This scale factor is the reciprocal of the combined scale–shape parameter

introduced by W. WEIBULL; see (2.26a,b):

β := 1/bc = b−c. (3.70a)

Thus, the parental WEIBULL DF reads as

fX(x |β) = c β (x− a)c−1 exp{−β (x− a)c}. (3.70b)

The results pertaining to this conditional WEIBULL distribution which have been reported

by DUBEY (1968) und HARRIS/SINGPURWALLA (1968) are special cases of a more gen-

eral theorem of ELANDT–JOHNSON (1976):

27 Suggested reading for this section: DUBEY (1968), ELANDT–JOHNSON (1976), HARRIS/

SINGPUWALLA (1968, 1969).

28 The term prior distribution is used in BAYES inference, see Sect. 14, which is related to compounding.
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Let

FX(x,α |λ) =





0 for x ≤ x0

1 − exp{−λu(x,α)} for x > x0



 (3.71a)

be the CDF of the parental distribution, which is of exponential type with λ as a “special”

parameter and α as a vector of “ordinary” parameters. u(x,α) is an increasing function of

x with

u(x,α) −→ 0 as x→ x0,

u(x,α) −→ ∞ as x→ ∞.

(The parental WEIBULL distribution (3.70b) is of this type with λ = β and u(x,α) =
(x−a)c.) Further, let the compounding distribution have a raw moment generating function

EΛ(et λ) =: MΛ(t).

Then, the CDF of the compound distribution is given by

F (x) =





0 for x ≤ x0

1 −MΛ

[
− u(x,α)

]
for x > x0,



 (3.71b)

provided that MΛ

[
− u(x,α)

]
exists for x > x0. �

We will apply this theorem to a parental WEIBULL distribution of type (3.70b) where the

stochastic scale factor, denoted by B, has either a uniform (= rectangular) prior or a gamma

prior. These prior distributions are the most popular ones in BAYES inference.

First case: We(a, c
√

1/B, c)
V
B Re(ξ, δ)

The uniform or rectangular distribution over [ξ, ξ + δ] has DF

fB(y) =





1/δ for ξ ≤ y ≤ ξ + δ

0 for ξ elsewhere,



 (3.72a)

denoted by

B ∼ Re(ξ, δ).

The corresponding raw moment generating function is

MB(t) =
exp(ξ t)

δ t

[
exp(δ t) − 1

]
. (3.72b)

Putting

t = −u(x, a, c) = −(x− a)c

into (3.71b) yields the following CDF of the compound WEIBULL distribution (or

WEIBULL–uniform distribution):

F (x | a, δ, ξ, c) = 1 − exp
{
− ξ (x− a)c

}
− exp

{
− (ξ + δ) (x − a)c

}

δ (x− a)c
(3.72c)
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with corresponding DF

f(x | a, δ, ξ, c) =
c

δ
×

exp
{
−(ξ + δ)(x − a)c

}[
exp
{
δ (x− a)c

}(
1 + ξ (x− a)c

)
−(ξ + δ)(x − a)c−1

]

(x− a)c+1
.





(3.72d)

With some integration and manipulation we find

E(X) = a+
c

δ (c− 1)
Γ

(
1 +

1

c

)[
(ξ + δ)1−1/c − ξ1−1/c

]
, (3.72e)

Var(X) =
c

δ (c− 1)
Γ

(
1 +

2

c

)[
(ξ + δ)1−1/c − ξ1−1/c

]
−

c2

δ2 (c− 1)2
Γ2

(
1 +

1

c

)[
(ξ + δ)1−1/c − ξ1−1/c

]2
.





(3.72f)

When the prior density (3.72a) degenerates (δ → 0), the formulas (3.72c–f) show the

familiar results of the common three–parameter distribution for b = ξ−1/c.

Second case: We(a, c
√

1/B, c)
V
B Ga(ξ, δ, γ)

The three–parameter gamma prior Ga(ξ, δ, γ) over [ξ,∞) has DF

fB(y) =
δγ
(
y − ξ

)γ−1

Γ(γ)
exp
{
− δ (y − ξ)

}
(3.73a)

with raw moment generating function

MB(t) =
δγ exp

{
ξ t
}

(δ − t)γ
. (3.73b)

Taking

t = −u(x, a, c) = −(x− a)c

in (3.73b) turns (3.71b) into the following CDF of this compound WEIBULL distribution

(or WEIBULL–gamma distribution):

F (x | a, δ, ξ, γ, c) = 1 − δγ exp
{
− ξ (x− a)c

}
[
δ + (x− a)c

]γ (3.73c)

with DF

f(x | a, δ, ξ, γ, c) =
c δγ(x− a)c−1

{
γ + ξ

[
δ + (x− a)c

]}
exp
{
− ξ (x− a)c

}
[
δ + (x− a)c

]γ+1 .

(3.73d)

In the special case ξ = 0, there exist closed form expressions for the mean and variance:

E(X | ξ = 0) = a+

δ1/c Γ

(
γ − 1

c

)
Γ

(
1

c
+ 1

)

Γ(γ)
, (3.73e)
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Var(X | ξ = 0) =
δ2/c

Γ (γ)

{
Γ

(
γ − 2

c

)
Γ

(
2

c
+ 1

)
− 1

Γ(γ)
Γ2

(
1

c
+ 1

)}
. (3.73f)

We further mention that in the special case ξ = 0 and δ = 1, (3.73c,d) turn into the

BURR type–XII distribution; see (3.3a,b). Finally, we refer to HARRIS/SINGPURWALLA

(1969) when parameters have to be estimated for each of the two compound WEIBULL

distributions.

3.3.7 WEIBULL distributions with additional parameters

Soon after the WEIBULL distribution had been presented to a broader readership by

WEIBULL in 1951, statisticians began to re–parameterize this distribution. By introduc-

ing additional parameters, those authors aimed at more flexibility to fit the model to given

datasets. But, the more parameters that are involved and have to be estimated, the greater

will be the risk to not properly identify these parameters from the data.

In the preceding sections, we have already encountered several WEIBULL distributions with

more than the traditional location, scale and shape parameters, namely:

• the doubly truncated WEIBULL distribution (3.47a) with five parameters,

• the left and the right truncated WEIBULL distributions (3.47b,c) with four parameters

each,

• the WEIBULL competing risk model (3.57a,b) with four parameters,

• the multiplicative WEIBULL model (3.58a,b) and its generalization, the exponenti-

ated WEIBULL model, each having four parameters.

In this section we will present further WEIBULL distributions, enlarged with respect to the

parameter set.

3.3.7.1 Four-parameter distributions

MARSHALL/OLKIN extension

In their paper from 1997, MARSHALL/OLKIN proposed a new and rather general method

to introduce an additional parameter into a given distribution having F (x) and R(x) as

CDF and CCDF, respectively. The CCDF of the new distribution is given by

G(x) =
αR(x)

1 − (1 − α)R(x)
=

αR(x)

F (x) + αR(x)
, α > 0. (3.74)

Substituting F (x) and R(x) by the CDF and CCDF of the three–parameter WEIBULL

distribution, we arrive at the following CCDF of the extended WEIBULL distribution:

R(x | a, b, c, α) =

α exp

{
−
(
x− a

b

)c}

1 − (1 − α) exp

{
−
(
x− a

b

)c} . (3.75a)
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The corresponding CDF is

F (x | a, b, c, α) =

1 − exp

{
−
(
x− a

b

)c}

1 − (1 − α) exp

{
−
(
x− a

b

)c} (3.75b)

with DF

f(x | a, b, c, α) =

α c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}

[
1 − (1 − α) exp

{
−
(
x− a

b

)c}]2 (3.75c)

and HR

h(x | a, b, c, α) =

c

b

(
x− a

b

)c−1

1 − (1 − α) exp

{
−
(
x− a

b

)c} . (3.75d)

The hazard rate given by (3.75d) has the following behavior for growing x.

• for α ≥ 1 and c ≥ 1 it is increasing,

• for α ≤ 1 and c ≤ 1 it is decreasing,

• for c > 1 it is initially increasing and eventually increasing, but there may be one

interval where it is decreasing,

• for c < 1 it is initially decreasing and eventually decreasing, but there may be one

interval where it is increasing,

When |1 − α| ≤ 1, moments of this distribution can be given in closed form. Particularly

we have

E
[
(X − a)r

]
=

r

b c

∞∑

j=0

(1 − α)j

(1 + j)r/c
Γ
(r
c

)
. (3.75e)

MARSHALL/OLKIN proved that the distribution family generated by (3.74) possesses what

they call geometric–extreme stability: If Xi, i ≤ N , is a sequence of iid variates with

CCDF (3.74) and N is geometrically distributed, i.e. Pr(N = n) = P (1 − P )n; n =
1, 2, . . . ; then the minimum (maximum) of Xi also has a distribution in the same family.

LAI et al. extension

LAI et al. (2003) proposed the following extension of the WEIBULL model,29 assuming

a = 0 and using the combined scale–shape parameter30 b1 = 1/bc:

F (x | 0, b1, c, α) = 1 − exp{−b1 xc eαx} ; b1, c > 0; α ≥ 0. (3.76a)

29 In a recent article NADARAJAH/KOTZ (2005) note that this extension has been made some years earlier

by GURVICH et al. (1997); see also LAI et al. (2005).

30 For parameter estimation under type–II censoring, see NG (2005).
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The corresponding DF, HR and CHR are

f(x | 0, b1, c, α) = b1 (c+ αx)xc−1 exp
{
αx− b1 x

c eαx
}
, (3.76b)

h(x | 0, b1, c, α) = b1 (c+ αx)xc−1 exp{αx}, (3.76c)

H(x | 0, b1, c, α) = b1 x
c exp{αx}. (3.76d).

We have the following relationships with other distributions:

• α = 0 gives the general WEIBULL distribution.

• c = 0 results in the type–I extreme value distribution for the minimum, also known

as a log–gamma distribution.

• (3.76a) is a limiting case of the beta–integrated model with CHR

H(x) = b1 x
c (1 − g x)k; 0 < x < g−1;

and g > 0, k < 0. Set g = 1/ν and k = αν. With ν → ∞ we have (1−x/ν)−α ν →
exp{αx}, and H(x) is the same as (3.76d).

Moments of this extended WEIBULL model have to be evaluated by numeric integration.

Percentiles xP of order P follow by solving

xP =

[
− ln(1 − P )

b1
exp{−αxP }

]1/c
. (3.76e)

The behavior of the hazard rate (3.76c) is of special interest. Its shape solely depends on c,
and the two other parameters α and b1 have no effect. With respect to c two cases have to

be distinguished (see Fig. 3/14):

• c ≥ 1

HR is increasing.
[
h(x | ·) → ∞ as x → ∞, but h(0 | ·) = 0 for c > 1 and

h(0 | ·) = b1 c for c = 1.
]

• 0 < c < 1

h(x | ·) is initially decreasing and then increasing, i.e. it has a bathtub shape with

lim
x→0

h(x | ·) = lim
x→∞

h(x | ·) = ∞. The minimum of h(x | ·) is reached at

xh,min =

√
c− c

α
, (3.76f)

which is increasing when α decreases.

We finally mention that LAI et al. (2003) show how to estimate the model parameters by

the ML–method.
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Figure 3/14: Hazard rate of the LAI et al. extension of the WEIBULL model

Extensions by modifying the percentile function

The percentile function of the general three–parameter WEIBULL distribution is given by

(see (2.57b)):

xP = a+ b
[
− ln(1 − P )

]1/c
. (3.77)

Modifying this function and introducing a fourth parameter ν and re–inverting to P =
F (x | . . .) is another way to arrive at extended WEIBULL models. We will discuss two

approaches along this line.

MUDHOLKAR et al. (1996) transformed (3.77) into

xP = a+ b

[
1 − (1 − P )λ

λ

]1/c
, λ ∈ R. (3.78a)

The limit of the ratio [1 − (1 − P )λ]
/
λ in (3.78a) for λ → 0 is − ln(1 − P ), which is

similar to the definition of the BOX–COX–transformation, used to stabilize the variance

of a time series. So, for λ = 0 we have the general WEIBULL distribution. Solving for

P = F (x | ·) gives

F (x | a, b, c, λ) = 1 −
[
1 − λ

(
x− a

b

)c ]1/λ
. (3.78b)

The support of (3.78b) depends not only on a in the sense that x ≥ a, but also on some

further parameters:
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• λ ≤ 0 gives the support (a,∞).

• λ > 0 gives the support (a, b
/
λ1/c).

The DF and HR belonging to (3.78b) are

f(x | a, b, c, λ) =
c

b

(
x− a

b

)c−1 [
1 − λ

(
x− a

b

)c ]−1+1/λ

, (3.78c)

h(x | a, b, c, λ) =
c

b

(
x− a

b

)c−1 [
1 − λ

(
x− a

b

)c ]−1

. (3.78d)

The behavior of (3.78d) is as follows:

• c = 1 and λ = 0 ⇒ h(x | ·) = 1/b = constant,

• c < 1 and λ > 0 ⇒ h(x | ·) is bathtub–shaped,

• c ≤ 1 and λ ≤ 0 ⇒ h(x | ·) is decreasing,

• c > 1 and λ < 0 ⇒ h(x | ·) is inverse bathtub–shaped,

• c ≥ 1 and λ ≥ 0 ⇒ h(x | ·) is increasing

(see Fig. 3/15).

Figure 3/15: Hazard rate of the MUDHOLKAR et al. (1996) extension of the WEIBULL

model

The r–th moment of (X − a) according to MUDHOLKAR/KOLLIA (1994) is
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E
[
(X − a)r

]
=





br
Γ

(
1

λ

)
Γ
(r
c

+ 1
)

Γ

(
1

λ
+
r

c
+ 1

)
λr/c+1

for λ > 0,

br
Γ

(
−r
c
− 1

λ

)
Γ
(r
c

+ 1
)

Γ

(
1 − 1

λ

) (
− λ
)r/c+1

for λ < 0.





(3.78e)

Hence, if λ > 0 and c > 0, moments of all orders exist. For λ < 0 the r–th moment exists

if λ/c ≤ −r−1, and in case of 1/c < 0 — see the next paragraph — if 1/c ≥ −r−1. We

should mention that MUDHOLKAR et al. (1996) show how to estimate the parameters by

ML.

MUDHOLKAR/KOLLIA (1994) have studied a more generalized percentile function than

(3.78a), circumventing its discontinuity at λ = 0. Instead, they proposed the following

percentile function, assuming a = 0 and b = 1:

xP = c

[
1 − (1 − P )λ

λ

]1/c
− c, λ ∈ R. (3.79a)

Here, c may be negative, too, so that the inverse WEIBULL distribution (Sect. 3.3.3) is

included in this model. Solving for P = F (x | ·) leads to

FG(x | 0, 1, c, λ) = 1 −
[
1 − λ

(
1 +

x

c

)c ]1/λ
(3.79b)

with DF and HR

fG(x | 0, 1, c, λ) =
[
1 − λ

(
1 +

x

c

)c ]1
λ
−1 (

1 +
x

c

)c−1
, (3.79c)

hG(x |0, 1, c, λ) =
(
1 +

x

c

)c−1 [
1 − λ

(
1 +

x

c

)c ]−1
. (3.79d)

The support of these last three functions depends on the parameters c and λ as follows:

• c < 0

∗ If λ < 0, we have x ∈ (−∞,−c) .

∗ If λ > 0, we have x ∈ (−∞, c
/
λ1/c − c) .

• c > 0

∗ If λ < 0, we have x ∈ (−c,∞) .

∗ If λ > 0, we have x ∈ (−c, c
/
λ1/c − c) .

The raw moments of X, distributed according to (3.79b), can be expressed by the moments

given in (3.78e). (3.79a) includes the following special cases:

• λ = 0, c > 0 ⇒ reduced WEIBULL distribution,

• λ = 0, c < 0 ⇒ inverse reduced WEIBULL distribution,
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• λ = 1, c = 1 ⇒ uniform distribution over [0, 1],

• λ = 0, c = 1 ⇒ exponential distribution,

• λ = −1, c = ∞ ⇒ logistic distribution,

The limiting cases (c→ ∞, λ→ 0) are interpreted according to L’ HOPITAL’s rule.

XIE et al. extension

XIE et al. (2002) proposed a distribution that we have enlarged to a four–parameter model

by introducing a location parameter a. The CDF is

F (x) = 1 − exp

{
λα

(
1 − exp

[(
x− a

α

)β])}
, x ≥ a, (3.80a)

with λ, α, β > 0 and a ∈ R. The corresponding DF and HR are

f(x) = λβ

(
x− a

α

)β−1

exp

{(
x− a

α

)β}
exp

{
λα

(
1 − exp

[(
x− a

α

)β])}
, (3.80b)

h(x) = λβ

(
x− a

α

)β−1

exp

{(
x− a

α

)β}
. (3.80c)

The behavior of HR is determined by the shape parameter β:

• β ≥ 1 ⇒ h(x) is increasing from h(a) = 0, if β > 1, or from h(a) = λ, if β = 1.

• 0 < β < 1 ⇒ h(x) is decreasing from x < x∗ and decreasing for x > x∗, where

x∗ = a+ α (1/β − 1)1/β ,

i.e., h(x) has a bathtub shape.

We find the following relations to other distributions:

• For α = 1 we have the original version of this distribution introduced by CHEN

(2000).

• When α is large, then 1 − exp

{(
x− a

α

)β}
≈ − exp

(
x− a

α

)β
, so that (3.80a)

can be approximated by a WEIBULL distribution.

• When λα = 1, this model is related to the exponential power model of SMITH/BAIN

(1975).

KIES extension

KIES (1958) introduced the following four–parameter version of a WEIBULL distribution

that has a finite interval as support:

F (x) = 1 − exp

{
−λ
(
x− a

b− x

)β}
, 0 ≤ a ≤ x ≤ b <∞, (3.81a)

with λ, β > 0. The corresponding DF and HR are
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f(x) =

λβ (b− a) exp

{
−λ

(
x− a

b− x

)β}
(x− a)β−1

(b− x)β+1
, (3.81b)

h(x) =
λβ (b− a) (x− a)β−1

(b− x)β+1
. (3.81c)

h(x) is increasing for β ≥ 1, and it has a bathtub shape for 0 < β < 1. The approach of

KIES represents another way to doubly truncate the WEIBULL distribution (see Sect. 3.3.5).

We will revert to (3.81a) in Sect. 3.3.7.2, where this model is extended by a fifth parameter.

FAUCHON et al. extension

In Sect. 3.2.3 we have presented several extensions of the gamma distribution. One of them

is the four–parameter gamma distribution, originally mentioned by HARTER (1967). Its

density is given by

f(x | a, b, c, d) =
c

bΓ(d)

(
x− a

b

)c d−1

exp

{
−
(
x− a

b

)c}
; x ≥ a. (3.82a)

(3.82a) contains a lot of other distributions as special cases for special values of the param-

eters (see Tab. 3/1). For d = 1 we have the three–parameter WEIBULL distribution, c = 1
leads to gamma distributions, and a = 0, b = 2, c = 1, d = ν/2 gives a χ2–distribution

with ν degrees of freedom. As the χ2–distribution is related to a normal distribution in the

following way

X =
1

σ2

ν∑

j=1

Y 2
j and Yj

iid∼ No(0, σ2) =⇒ X ∼ χ2(ν),

and as both, the χ2– and the WEIBULL distributions, are linked via the general gamma

distribution, we can find a bridge connecting the WEIBULL and the normal distributions.

This relationship, which was explored by FAUCHON et al. (1976), gives an interesting

interpretation of the second form parameter d in (3.82a).

First, we will show how to combine iid normal variates to get a three–parameter WEIBULL

distribution:

1. Y1, Y2
iid∼ No(0, σ2) =⇒ (Y 2

1 + Y 2
2 ) ∼ σ2 χ2(2),

2.
√
Y 2

1 + Y 2
2 ∼ σ χ(2) = We

(
0, σ

√
2, 2
)

(see Tab. 3/1).

More generally,

Y1, Y2
iid∼ No(0, σ2) =⇒ a+ c

√
Y 2

1 + Y 2
2 ∼ We

(
a,
(
2σ2

)1/c
, c
)
.

So, when we add ν = 2 squared normal variates which are centered and of equal variance,

the second form parameter d in (3.82a) always is unity. If, instead of ν = 2, we add ν = 2 k
such squared normal variates, the second form parameter will be d = k:

Yj
iid∼ No(0, σ2), j = 1, 2, . . . , 2 k =⇒ a+ c

√√√√
2 k∑

j=1

Y 2
j ∼ We

(
a,
(
2σ2

)1/c
, c, k

)
.
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We mention some moments belonging to (3.82a):

E
(
Xr
)

=
br

Γ(d)

r∑

i=0

(
r

i

) (a
b

)r−i
Γ

(
d+

i

c

)
, (3.82b)

E(X) = a+ b

Γ

(
d+

1

c

)

Γ(d)
, (3.82c)

Var(X) =

(
b

Γ(d)

)2 [
Γ(d) Γ

(
d+

2

c

)
Γ2

(
d+

1

c

)]
. (3.82d)

The hazard rate behaves as follows: When

• (1 − d c)
/
[c (c− 1)] > 1, then it is

∗ bathtub–shaped for c > 1,

∗ upside–down bathtub–shaped for 0 < c < 1.

• Otherwise it is

∗ constant for c = 1,

∗ increasing for c > 1,

∗ decreasing for c < 1.

A five–parameter extension of (3.82a) given by FAUCHON et al. (1976) will be presented

in the following section.

3.3.7.2 Five-parameter distributions

PHANI et al. extension

PHANI (1987) has introduced a fifth parameter into (3.81a) in order to attain more flexibility

in fitting the distribution to given datasets. Instead of only one exponent β in (3.81a), this

distribution has different exponents β1 und β2 for the nominator and denominator in the

exp–term:

F (x) = 1 − exp

{
−λ(x− a)β1

(b− x)β2

}
, 0 ≤ a ≤ x ≤ b <∞, (3.83a)

f(x) =
λ (x− a)β1−1

[
(b β1 − a β2) + (β2 − β1) x

]

(b− x)β2+1
exp

{
−λ (x− a)β1

(b− x)β2

}
,(3.83b)

h(x) =
λ (x− a)β1−1

[
(b β1 − a β2) + (β2 − β1)x

]

(b− x)β2+1
. (3.83c)

The hazard rate has a bathtub shape when 0 < β1 < 1 and 0 < β2 < 1. All other

β1–β2–combinations lead to an increasing hazard rate.

FAUCHON et al. extension

The FAUCHON et al. (1976) extension in the preceding section rests upon the general-

ized gamma distribution and its relation to the χ2–distribution, the latter being the sum of
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squared and centered normal variates. If, instead, the normal variates have differing means

unequal to zero but are still homoscedastic, we know that:

Yj ∼ No(µj, σ
2); j = 1, 2, . . . , 2k and independent =⇒ Y =

2k∑

j=1

Y 2
j ∼ σ2 χ2(2k, λ),

i.e., we have a non–central χ2–distribution:

f(y) = ηk yk−1 exp
{
− (λ+ η y)

} ∞∑

j=0

(η λ y)j

j! Γ(j + k)

with non–centrality parameter

λ =
1

2σ2

2k∑

j=1

µ2
j

and scale factor

η = 2σ2.

So, if we start with Yj = No(µj , σ
2), we get

X = a+ c

√√√√
2 k∑

j=1

Y 2
j ∼We

(
a, η−1/c, c, k, λ

)

with a CDF given by

F (x) = e−λ
c

2 k

∞∑

j=0

λj

j! Γ(j + k)

(x−a)c∫

a

(
t− a

b

)c (k+j)−1

exp

{
−
(
t− a

b

)c}
dt

(3.84a)

and corresponding DF

f(x) = e−λ
c

b

(
x− a

b

)c k−1

exp

{
−
(
x− a

b

)c} ∞∑

j=0

λj

j! Γ(j + k)

(
x− a

b

)c k
.

(3.84b)

The new, fifth, parameter in this WEIBULL distribution is the non–centrality parameter λ.

The raw moments of this distribution can be expressed by the KUMMER–function, but

have to be evaluated numerically:

E
(
Xr
)

= br e−λ
Γ
(
k +

r

c

)

Γ(k)
K
(
k +

r

c
, k, λ

)
, (3.84c)

where K(·) is the KUMMER–function (E.E. KUMMER, 1810 – 1893):

K(α, β, z) :=
∞∑

j=0

(α)j z
j

(β)j j!

with

(α)j := α (α+ 1) . . . (α+ j − 1), (α)0 := 1;

(β)j := β (β + 1) . . . (β + j − 1), (β)0 := 1.



168 3 Related distributions

3.3.8 WEIBULL distributions with varying parameters

Mixed and compound WEIBULL distributions are models with varying parameters, but that

variation is at random and cannot be attributed to some other distinct variable. In this

section we will present some approaches where the WEIBULL parameters are functionally

dependent on one or more other variables. In Sect. 3.3.8.1 the explanatory variable is time

itself; in Sect. 3.3.8.2 the WEIBULL parameters will be made dependent on measurable

variables other than time, called covariates.

3.3.8.1 Time-dependent parameters

The scale parameter b and/or the shape parameter c have been made time–varying in some

generalizations of the WEIBULL distribution where the latter is the model for a stochastic

duration. We first present an approach of ZUO et al. (1999) with both, b and c, dependent

on time.

Let Y (t) be the degradation of a device at time t. Y (t) is assumed to be a random variable

with CDF

F (y | t) = Pr
[
Y (t) ≤ y

]
,

which at each point of time is a two–parameter WEIBULL distribution. Of course, Y (t) is

a non–decreasing function of t. The device will not fail as long as the degradation has not

surpassed some given critical value D. Thus, the reliability function (CCDF) of a device is

given by

R(t) = Pr(T ≥ t) = Pr
[
Y (t) ≤ D

]
.

ZUO et al. suppose the following WEIBULL CHR with respect to t:

H(t) =

(
D

b(t)

)c(t)
, (3.85a)

where b(t) and c(t) are specified as

b(t) = α tβ exp(γ t), (3.85b)

c(t) = α

(
1 +

1

t

)β
exp(γ/t). (3.85c)

The parameters α, β and γ have to be such that H(t) goes to infinity as t → ∞. Starting

with (3.85a) and using Tab. 2/1 we arrive at

R(t) = exp

{
−
[
D

b(t)

]c(t)}
, (3.85d)

f(t) = −
d exp

{
−
[
D

b(t)

]c(t)}

dt

= exp

{
−
[
D

b(t)

]c(t)} d
[
D
/
b(t)
]c(t)

dt
. (3.85e)
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SRIVASTAVA (1974) studies a WEIBULL model with a scale parameter which periodically

changes between b1 and b2, attributed to two different conditions of usage of the device.

Introducing τi(t); i = 1, 2; as the cumulative times, starting at t = 0, spent in phase i, the

hazard rate h(t) is

h(t) =
c

b1

[
τ1(t)

b1

]c−1

+
c

b2

[
τ2(t)

b2

]c−1

. (3.86a)

This approach is easily recognized to be a special case of a two–component series system or

a competing risk model with continuously joining hazard rates; see (3.54d). The difference

between (3.86a) and (3.54d) is that we have two subpopulations with independent variables

τ1(t) and τ2(t) instead of only one variable t. Some other functions describing the time to

failure of this model are

H(t) =

[
τ1(t)

b1

]c−1

+

[
τ2(t)

b2

]c−1

, (3.86b)

R(t) = exp

{
−
[
τ1(t)

b1

]c−1

−
[
τ2(t)

b2

]c−1
}
, (3.86c)

f(t) =

{
c

b1

[
τ1(t)

b1

]c−1

+
c

b2

[
τ2(t)

b2

]c−1
}

exp

{
−
[
τ1(t)

b1

]c
−
[
τ2(t)

b2

]c}
. (3.86d)

ZACKS (1984) presents a WEIBULL model where the shape parameter is given by

c





= for 0 ≤ t ≤ τ

> for t > τ



 (3.87a)

with the following hazard rate

h(t) =





1

b
for 0 ≤ t ≤ τ

1

b
+
c

b

(
t− τ

b

)c−1

for t > τ.





(3.87b)

ZACKS calls this an exponential–WEIBULL distribution. In the first phase of lifetime

up to the change point τ the device has a constant hazard rate that afterwards is super–

positioned by a WEIBULL hazard rate. This model is nothing but a special two–fold com-

posite or sectional model (see Sect. 3.3.6.3). Some other functions describing the time to

failure of this model are

H(t) =





t

b
for 0 ≤ t ≤ τ

τ

b
+

(
t− τ

b

)c
for t > τ,





(3.87c)

F (t) = 1 − exp

{
t

b
−
[(

t− τ

b

)

+

]c}
, t ≥ 0, (3.87d)

f(t) =
1

b
e−t/b

{
1 + c

[(
t− τ

b

)

+

]c−1
}

exp

{
−
[(

t− τ

b

)

+

]c}
, t ≥ 0, (3.87e)
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where (y)+ := max(0, y). ZACKS gives the following formula for raw moments

E
(
Xr
)

= br µ′r(c, τ/b) (3.87f)

with

µ′r(c, τ) = r!


1 − e−1/b

r∑

j=0

1

bj j!


+ er

r∑

j=0

(
r

j

)
τ r−jMj(c) (3.87g)

and

Mj(c) =





1 for j = 0

j

∞∫

0

xj−1 exp
{
−
(
x+ xc

)}
dx for j ≥ 1.





3.3.8.2 Models with covariates31

When the WEIBULL distribution, or any other distribution, is used to model lifetime or

some other duration variable, it is often opportune to introduce one or more other variables

that explain or influence the spell length. Two such approaches will be discussed

• The scale parameter b is influenced by the supplementary variable(s). This gives the

accelerated life model.

• The hazard rate h(t) is directly dependent on the covariate(s). The prototype of this

class is the proportional hazard model.

Farther down we will show that the WEIBULL accelerated life model is identical to the

WEIBULL proportional hazard model.

In reliability applications a supplementary variable s represents the stress on the item such

that its lifetime is some function of s. The stress may be electrical, mechanical, thermal

etc. In life testing of technical items the application of some kind of stress is a means to

shorten the time to failure (see Sect.16), thus explaining the term accelerated life testing.

The general form of the WEIBULL accelerated life model with one stress variable s is

F (t | s) = 1 − exp

{
−
[

t

b β(s)

]c}
, t ≥ 0. (3.88)

The function β(s) is the so–called acceleration factor which —in the parametrization

above —must be a decreasing function of s, leading to a higher probability of failure up to

time t the higher the stress exercised on an item. Three types of β(s) are extensively used:

• The ARRHENIUS–equation32

β(s) = exp(α0 + α1/s) (3.89a)

gives the ARRHENIUS–WEIBULL distribution.

31 Suggested reading for this section: LAWLESS (1982), NELSON (1990).

32 S.A. ARRHENIUS (1859 – 1927) was a Swedish physico–chemist who — in 1903 — received the NO-

BEL prize in chemistry for his theory of electrolytical dissociation. (3.89a) in its original version de-

scribes the dependency of temperature on the speed of reaction of some kind of material.
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• The EYRING–equation (H. EYRING, 1901 – 1981) is an alternative to (3.89a):

β(s) = α0 s
α1 exp(α2 s) (3.89b)

and leads to the EYRING–WEIBULL distribution.

• The equation

β(s) = α0/s
γ1 (3.89c)

gives the power WEIBULL distribution.

An acceleration factor which depends on a vector s of m stress variables si is given by

β(s) = exp

{
m∑

i=1

γi si

}
= exp

(
γ ′ s

)
. (3.89d)

The hazard rate corresponding to (3.88) is

h(t | s) =
c

b β(s)

(
t

b β(s)

)c−1

. (3.90a)

Thus, the ratio of the hazard rates for two items with covariates values s1 and s2 is

h(t | s1)
h(t | s2)

=

[
β(s2)

β(s1)

]c
, (3.90b)

which is independent of t. Looking at the CDF of (3.88) for two different stress levels s1
and s2, we can state

F (t | s1) = F

(
β(s2)

β(s1)
t
∣∣∣ s2
)
. (3.90c)

So, if an item with stress s1 has a lifetime T1, then an item with stress s2 has a lifetime T2

given by

T2 =
β(s2)

β(s1)
T1. (3.90d)

Because β(s) is supposed to be decreasing with s, we will have T2 < T1 for s2 > s1.

The moments belonging to (3.88) are the same as those of a common two–parameter

WEIBULL distribution with the scale parameter b replaced by b β(s).

A proportional hazard model is characterized by

h(t | s) = g(s)h0(t), (3.91a)

where h0(t) is called the baseline hazard rate. After its introduction by COX (1972) the

proportional hazard model has been extensively applied in the social and economic sciences

to model the sojourn time of an individual in a given state, e.g., in unemployment or in a

given job. The argument of the scalar–valued function g(·) may be a vector too. The most
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popular proportional hazard model takes the WEIBULL hazard rate as its baseline hazard

rate, turning (3.91a) into

h(t | s) = g(s)
c

b

(
t

b

)c−1

(3.91b)

with CDF

F (t | s) = 1 − exp

{
−g(s)

(
t

b

)c}
, t ≥ 0. (3.91c)

When
1

g(s)
=
[
β(s)

]c
,

the WEIBULL proportional hazard model and the WEIBULL accelerated life model coin-

cide.

It is also instructive to view (3.88) through the distribution of Y = lnT , when the ac-

celeration factor — in most general form — is β(s), i.e., it depends on a vector of stress

variables. The distribution of Y is of extreme value form (see (3.43a–d)) and has DF

f(y | s) =
1

b∗
exp

{
y − a∗(s)

b∗
− exp

[
y − a∗(s)

b∗

]}
, y ∈ R, (3.92a)

with

b∗ =
1

c
and a∗(s) = ln

[
b β(s)

]
.

Written another way, (3.92a) is the DF of

Y = a∗(s) + b∗ Z, (3.92b)

where Z has a reduced extreme value distribution with DF exp{z − ez}. (3.92b) is a

location–scale regression model with error Z . The constancy of c in (3.88) corresponds

to the constancy of b∗ in (3.92b), so lnT has a constant variance. A variety of functional

forms for β(s) or a∗(s) is often employed together with either (3.88) or (3.92a). The most

popular one is perhaps the log–linear form for which

a∗(s) = γ0 + γ ′ s (3.92c)

with γ0 = ln b and β(s) = γ′ s =
m∑
i=1

γi si. This linear regression can be estimated by a

multitude of methods, see LAWLESS (1982, pp. 299ff.).

We finally mention a generalization of the accelerated life model where the stress changes

with time; i.e., stress is growing with time. This approach is applied in life testing to shorten

the testing period. NELSON (1990) shows how to estimate the parameters for a step–stress

model where the stress is raised at discrete time intervals.
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3.3.9 Multidimensional WEIBULL models33

In Sect. 3.3.6.2 we have studied the lifetime distribution of two special types of a multi–

component system, i.e., the parallel and the series systems, under the rather restrictive

assumption of independently failing components. When the failure times of the compo-

nents are dependent, we need a multivariate distribution that is not simply the product of

its marginal distributions. There are mainly two approaches to introduce multivariate ex-

tensions of the one–dimensional WEIBULL distribution:

• One simple approach is to transform the bivariate and multivariate exponen-

tial distribution through power transformation. As the extension of the univari-

ate exponential distribution to a bi- or multivariate exponential distribution is

not unique, there exist several extensions all having marginal exponentials; see

KOTZ/BALAKRISHNAN/JOHNSON (2000, Chap. 47). A similar approach involves

the transformation of some multivariate extreme value distribution.

• A very different approach is to specify the dependence between two or more univari-

ate WEIBULL variates so that the emerging bi- or multivariate WEIBULL distribution

has WEIBULL marginals.

We start (Sect. 3.3.9.1) by presenting — in detail — several bivariate WEIBULL models

and finish by giving an overview (Sect. 3.3.9.2) on some multivariate WEIBULL models.

3.3.9.1 Bivariate WEIBULL distributions

We will first present some bivariate WEIBULL distributions, BWD for short, that are ob-

tained from a bivariate exponential distribution, BED for short, by power transformation. A

genuine BED has both marginal distributions as exponential. As KOTZ/BALAKRISHNAN/

JOHNSON (2000) show, many of such BEDs exist. The BED models of FREUND (1961)

and MARSHALL/OLKIN (1967) have received the most attention in describing the statis-

tical dependence of component’s life in two–component systems. These two systems rest

upon a clearly defined physical model that is both simple and realistic. So, it is appropriate

to study possible WEIBULL extensions to these two BEDs.

BWDs based on FREUND’s BED

FREUND (1961) proposed the following failure mechanism of a two–component system:

Initially the two components have constant failure rates, λ1 and λ2, with independent DFs

when both are in operation:

fi(xi |λi) = λi exp{−λi xi}; xi ≥ 0, λi > 0; i = 1, 2. (3.93a)

But the lifetimes X1 and X2 are dependent because a failure of either component does

not result in a replacement, but changes the parameter of the life distribution of the other

component to λ∗i , mostly to λ∗i > λi as the non–failed component has a higher workload.

33 Suggested reading for this section: CROWDER (1989), HANAGAL (1996), HOUGAARD (1986), KOTZ/

BALAKRISHNAN/JOHNSON (2000), LEE (1979), LU (1989, 1990, 1992a,b), LU/BHATTACHARYYA

(1990), MARSHALL/OLKIN (1967), PATRA/DEY (1999), ROY/MUKHERJEE (1988), SARKAR (1987),

SPURRIER/WEIER (1981) and TARAMUTO/WADA (2001).
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There is no other dependence. The time to first failure is exponentially distributed with

parameter

λ = λ1 + λ2.

The probability that component i is the first to fail is λi
/
λ, whenever the first failure occurs.

The distribution of the time from first failure to failure of the other component is thus a

mixture of two exponential distributions with parameters λ∗1 or λ∗2 in proportions λ2

/
λ and

λ1

/
λ, respectively. Finally, the joint DF of X1 and X2 is

fFR1,2 (x1, x2) =




f1(x1 |λ1)R2(x1 |λ2) f2(x2 − x1 |λ∗2) for 0 ≤ x1 < x2

f2(x2 |λ2)R1(x2 |λ2) f1(x1 − x2 |λ∗1) for 0 ≤ x2 < x1



 (3.93b)

=




λ1 λ

∗
2 exp

{
− λ∗2 x2 − (λ1 + λ2 − λ∗2)x1

}
for 0 ≤ x1 < x2

λ2 λ
∗
1 exp

{
− λ∗1 x1 − (λ1 + λ2 − λ∗1)x2

}
for 0 ≤ x2 < x1,



 (3.93c)

where

Ri(xi |λi) = exp
{
− λi xi

}
.

fFR1,2 (x1, x2) is not continuous at x = x1 = x2, unless λ1 λ
∗
2 = λ2 λ

∗
1. The joint survival

function CCDF is

RFr1,2(x1, x2)=





1

λ1 + λ2 − λ∗2

[
λ1 exp

{
− (λ1 + λ2 − λ∗2)x1 − λ∗2 x2

}
+

(λ2 − λ∗2) exp
{
− (λ1 + λ2)x2

}]
for 0 ≤ x1 < x2

1

λ1 + λ2 − λ∗2

[
λ2 exp

{
− (λ1 + λ2 − λ∗1)x2 − λ∗1x1

}
+

(λ1 − λ∗1) exp
{
− (λ1 + λ2)x1

}]
for 0 ≤ x2 < x1.





(3.93d)

Provided λ1 + λ2 6= λ∗i , the marginal DF of Xi is

fi(xi) =
1

λ1 + λ2 − λ∗i





(λi − λ∗i ) (λ1 + λ2) exp
{
− (λ1 + λ2)xi

}
+

λ∗i λ3−i exp
{
− λ∗i xi

}



 ; xi ≥ 0.

(3.93e)

(3.93e) is not exponential but rather a mixture of two exponential distributions for λi > λ∗i ,

otherwise (3.93e) is a weighted average. So (3.93c,d) do not represent a genuine BED.

We now substitute the exponential distributions in (3.93a) by WEIBULL distributions in the

following parametrization:

fi(yi |λi, ci) = ci λi
(
λi yi

)ci−1
exp
{
−(λi yi)

ci
}
; yi ≥ 0; λi, ci > 0; i = 1, 2. (3.94a)

When one component fails, the remaining lifetime of the other component is still

WEIBULL, but with possibly changed parameters λ∗i and c∗i . Time is reset on the surviving

component. The shape parameter c∗i might be equal to ci, but the scale parameter λ∗i is not

equal to λi generally, which makes the hazard rate of the non–failed component change.
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As time is reset on the surviving component, it has a shifted WEIBULL distribution34 and

(3.93b) turns into the following BWD:

f1,2(y1, y2)=





f1(y1 |λ1, c1) exp
{
−
(
λ2 y1

)c2} ×

c∗2 λ
∗
2

[
λ∗2 (y2− y1)

]c∗2−1
exp
{
−
[
λ∗2 (y2 − y1)

]c∗2} for 0 ≤ y1 < y2

f2(y2 |λ2, c2) exp
{
−
(
λ1 y2

)c1} ×
c∗1 λ

∗
1

[
λ∗1 (y1− y2)

]c∗1−1
exp
{
−
[
λ∗1 (y1 − y2)

]c∗1} for 0 ≤ y2 < y1.





(3.94b)

(3.94b) yields (3.93c) for the special case of all shape parameters equal to one.

LU (1989) shows that the above WEIBULL extension to FREUND’s BED is not equal to a

bivariate WEIBULL model obtained by using a direct power transformation of the marginals

of FREUND’s BED resulting in

f∗1,2(y1, y2) =





f1(y1 |λ1, c1) exp
{
−
[
(λ2 − λ∗2) y1

]c1} ×
f2(y2 |λ∗2, c2) for 0 ≤ yc11 < yc22

f2(y2 |λ2, c2) exp
{
−
[
(λ1 − λ∗1) y2

]c2} ×
f1(y1 |λ∗1, c1) for 0 ≤ yc22 < yc11 .





(3.95)

SPURRIER/WEIER (1981) modified the FREUND idea of a hazard rate change to derive

another bivariate WEIBULL model. Let U be the time to the first failure and W the time

from the first to the second failure. So the time of system failure is V = U +W . The time

U until the first failure is distributed as the minimum of two iid WEIBULL variates with

shape parameter c and scale factor λ, so

fU(u) = 2 c λ (λu)c−1 exp
{
− 2 (λu)c

}
, u ≥ 0 (3.96a)

(see Sect. 3.1.4). Upon the first failure the remaining component changes its scale factor to

θ λ, θ > 0. Then we have the following conditional density of W |u:

fW |u(w) =
c λ θ

[
λ (θ w + u)

]c−1
exp
{
−
[
λ (θ w + u)

]c}

exp{−(λu)c} , w ≥ 0. (3.96b)

The joint DF of U and W is

f(u,w) = fU(u) fW |u(w) = 2 c2 θ λ2 c uc−1 (θ w + u) ×
exp
{
−
[
λ (θ w + u)

]c − (λu)c
}

; u,w ≥ 0.(3.96c)

The DF of the time to system failure V = U+W does not in general have a closed form and

has to be determined by numerical integration of (3.96c) over the set {(u,w) : u+w = v}.

34 The shift or location parameter is equal to the time of the first failure of a component.
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Three important special cases of (3.96c) are

Case I: c = 1; θ = 1 =⇒ The lifetimes of the two components are iid exponential

variates.

Case II: c = 1; =⇒ The model reduces to a reparametrization of the FREUND model.

For cases I and II we have :

f(v) =





2 θ λ (2 − θ)−1 exp
{
− θ λ v

} [
1 − exp

{
− (2 − θ λ v)

}]
; v ≥ 0 and θ 6= 2,

4λ2 v exp
{
− 2λ v

}
; v ≥ 0 and θ = 2.

Case III: θ = 1; =⇒ The lifetimes of the two components are iid WEIBULL variates.

In this case we get

f(v) = 2 c λc vc−1
[
exp{−(λ v)c} exp{−2 (λ v)c}

]
, v ≥ 0.

We finally mention that LU (1989) has generalized the model of SPURRIER/WEIER by

introducing different shape parameters for the two components and by also allowing a

change of the shape parameter upon the first failure.

BWDs based on MARSHALL/OLKIN’s BED

The physical model behind the MARSHALL/OLKIN (1967) BED differs from that of FRE-

UND’s BED insofar as there is a third failure mechanism that hits both components si-

multaneously. To be more precise, their model is as follows: The components of a two–

component system fail after receiving a shock which is always fatal. The occurrence of

shocks is governed by three independent POISSON processes Ni(t;λi); i = 1, 2, 3. By

N(t;λ) = {N(t), t ≥ 0; λ}, we mean a POISSON process (see Sect. 4.2) with parameter

λ, giving the mean number of events per unit of time. Events in the processes N1(t;λ1)
and N2(t;λ2) are shocks to components 1 and 2, respectively, and events in the process

N3(t;λ3) are shocks to both components. The joint survival function of X1 and X2, the

lifetimes of the two components, is:

RMO
1,2 (x1, x2) = Pr(X1 > x1,X2 > x2)

= Pr
{
N1(x1;λ1) = 0, N2(x2;λ2) = 0, N3(max[x1, x2];λ3) = 0

}

= exp
{
− λ1 x1 − λ2 x2 − λ3 max[x1, x2]

}
. (3.97a)

=





exp
{
− λ1 x1 − (λ2 + λ3)x2

}
for 0 ≤ x1 ≤ x2

exp
{
− (λ1 + λ3)x1 − λ2 x2

}
for 0 ≤ x2 ≤ x1.



 (3.97b)

The marginal distributions are genuine one–dimensional exponential distributions:

Ri(xi) = exp
{
− (λi + λ3)xi

}
; i = 1, 2. (3.97c)
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The probability that a failure on component i occurs first is

Pr(Xi < Xj) =
λi

λ1 + λ2 + λ3
; i, j = 1, 2; i 6= j;

and we have a positive probability that both components fail simultaneously:35

Pr(X1 = X2) =
λ3

λ1 + λ2 + λ3
.

The latter probability is responsible for the singularity of the distribution along the line

x1 = x2. MARSHALL/OLKIN (1967) show that the joint survival function (3.97a,b) can be

written as a mixture of an absolutely continuous survival function

Rc(x1, x2) =





λ1 + λ2 + λ3

λ1 + λ2
exp
{
− λ1 x1 − λ2 x2 − λ3 max[x1, x2]

}
−

λ3

λ1 + λ2
exp
{
− (λ1 + λ2 + λ3) max[x1, x2]

}





(3.97d)

and a singular survival function

Rs(x1, x2) = exp
{
− (λ1 + λ2 + λ3) max[x1, x2]

}
(3.97e)

in the form

RMO
1,2 (x1, x2) =

λ1 + λ2

λ1 + λ2 + λ3
Rc(x1, x2) +

λ3

λ1 + λ2 + λ3
Rs(x1, x2). (3.97f)

The joint DF of the MARSHALL/OLKIN model is

fMO
1,2 (x1, x2) =





λ1 (λ2 + λ3)R
MO
1,2 (x1, x2) for 0 ≤ x1 < x2

λ2 (λ1 + λ3)R
MO
1,2 (x1, x2) for 0 ≤ x2 < x1

λ3R
MO
1,2 (x, x) for 0 ≤ x1 = x2 = x.





(3.97g)

A first WEIBULL extension to this model has been suggested by MARSHALL/OLKIN them-

selves, applying the power–law transformations Xi = Y ci
i ; i = 1, 2; thus changing

(3.97a,b) into

R1,2(y1, y2) = exp
{
− λ1 y

c1
1 − λ2 y

c2
2 − λ3 max

[
yc11 , y

c2
2

]}
(3.98a)

=





exp
{
− λ1 y

c1
1 − (λ2 + λ3) y

c2
2

}
for 0 ≤ yc11 ≤ yc22

exp
{
− (λ1 + λ3) y

c1
1 − λ2 y

c2
2

}
for 0 ≤ yc22 ≤ yc11 .



(3.98b)

35 The correlation coefficient between X1 and X2 is ̺(X1,X2) = Pr(X1 = X2) > 0.
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The areas in the y1−y2–plane, where the two branches of (3.98b) are valid, may be expressed

by y2 ≥ y
c1/c2
1 and y2 ≤ y

c1/c2
1 .

Set y1 or y2 to 0 in (3.98a,b) to get the marginal survival functions:

Ri(yi) = exp
{
− (λi + λ3) y

ci
i

}
, i = 1, 2. (3.98c)

These are genuine univariate WEIBULL distributions. Whereas the joint survival function

is absolutely continuous (see Fig. 3/16), the joint DF is not. It is given by

f1,2(y1, y2)=





λ1(λ2+λ3)c1y
c1−1
1 c2y

c2−1
2 exp

{
−λ1y

c1
1 −(λ2+λ3)y

c2
2

}
; 0≤yc11 <yc22

λ2(λ1+λ3)c1y
c1−1
1 c2y

c2−1
2 exp

{
−(λ1+λ3)y

c1
1 −λ2y

c2
2 }; 0≤yc22 <yc11

λ3c1y
c1−1
1 exp

{
− (λ1+λ2+λ3)y

c1
1 }; 0≤yc11 =yc22 .





(3.98d)

The third branch of (3.98d) represents the discrete part of the joint DF and it lies on the

curve y2 = y
c1/c2
1 in the y1−y2–plane. This locus is a straight line through the origin for

c1 = c2. The discontinuity is clearly seen in Fig. 3/17, where we have marked some points

of discontinuity on the surface grid. The discontinuity is best seen in the contour plot.

Figure 3/16: Joint survival function of a BWD of MARSHALL/OLKIN type

(surface plot and contour plot)
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Figure 3/17: Joint density function of a BWD of MARSHALL/OLKIN type

(surface plot and contour plot)
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LU (1989) has proposed a second WEIBULL extension to MARSHALL/OLKIN’s BED by

generalizing their fatal shock model, which is given by three homogeneous POISSON pro-

cesses, to non–homogeneous POISSON processes Ni(t;λi, ci) with power-law intensities36

λi ci (λi t)
ci−1; i = 1, 2, 3. As in the original MARSHALL/OLKIN model’s the processes

N1 and N2 cause failure of the component 1 and 2, respectively, while events in the process

N3 are shocks under which both components will fail simultaneously. The joint survival

function for the lifetimes Y1, Y2 of the two components are

R1,2(y1, y2) = Pr(Y1 > y1, Y2 > y2)

= Pr
{
N1(y1;λ1; c1) = 0, N2(y2;λ2, c2) = 0, N3

(
max[y1, y2];λ3, c3

)}

= exp
{
− λ1 y

c1
1 − λ2 y

c2
2 − λ3

(
max[y1, y2]

)c3}. (3.99a)

=





exp
{
− λ1 y

c1
1 − λ2 y

c2
2 − λ3 y

c3
2 for 0 ≤ y1 ≤ y2

exp
{
− λ1 y

c1
1 − λ2 y

c2
2 − λ3 y

c3
1 for 0 ≤ y2 ≤ y1.



 (3.99b)

(3.99a/b) differ from (3.98a,b) in two respects:

• The LU extension has one more parameter c3.

• The admissible regions for the two branches are different from those of the first

extension, and the borderline is given by y1 = y2.

36 This intensity function looks like a WEIBULL hazard rate. Its relation to a WEIBULL process will be

discussed in Sect. 4.3.
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(3.99a,b) have the marginals

Ri(yi) = exp
{
− λ3 y

c3
i − λi y

ci
i

}
; i = 1, 2; (3.99c)

which, in general, are not WEIBULL. Of course, this extension has no absolutely joint DF

as well.

We mention the following special cases of (3.99a,b):

• When c1 = c2 = c3 = c, (3.99a,b) coincide with the original MARSHALL/OLKIN

extension, where the marginals and the minimum T = min[Y1, Y2]; i.e., the lifetime

of the series system, are all WEIBULL variates with

R(y1) = exp
{
− (λ1 + λ3) y

c
1

}
,

R(y2) = exp
{
− (λ2 + λ3) y

c
2

}
,

R(t) = exp
{
− (λ1 + λ2 + λ3) t

c
}
.

• The univariate minimum–type distribution, introduced by FRIEDMAN/GERTSBAKH

(1980) has the survival function

R(x) = exp
{
− λ∗ x− λ∗∗ xc

}
.

It belongs to a series system with two statistically dependent components having

exponential and WEIBULL as lifetime distributions. This model is appropriate where

system failure occurs with constant and/or increasing intensity. With c1 = c2 = 1
and c3 = c, (3.99a) turns into

R(y1, y2) = exp
{
− (λ1 y1 − λ2 y2 − λ3

(
max[y1, y2]

)c}
,

which can be regarded as a bivariate extension of the minimum–type distribution

because it has marginals of the univariate minimum–type.

• The univariate linear hazard rate distribution with h(x) = a + b x has the survival

function
R(x) = exp

{
− ax− 0.5 b x2

}
.

This is a special case (c = 2) of the univariate minimum–type distribution. Taking

c1 = c2 = 2 and c3 = 1 in (3.99a), we get the following bivariate extension of the

linear hazard rate distribution:

R(y1, y2) = exp
{
− λ1 y

2
1 − λ2 y

2
2 − λ3 max[y1, y2]

}
,

which has marginals of the form of the linear hazard rate distribution. With c1 =
c2 = 1 and c3 = 2, we would get the same bivariate model.

BWD’s based on LU/BHATTACHARYYA (1990)

LU/BHATTACHARYYA (1990) have proposed several new constructions of bivariate

WEIBULL models. A first family of models rests upon the general form

R1,2(y1, y2) = exp

{
−
(
y1

b1

)c1
−
(
y2

b2

)c2
− δ ψ(y1, y2)

}
. (3.100)
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Different forms of the function ψ(y1, y2) together with the factor δ yield special members

of this family:

• δ = 0 and any ψ(y1, y2) lead to a BWD with independent variables Y1 and Y2.

• δ = λ3 and ψ(y1, y2) = max
(
yc11 , y

c2
2

)
together with λ1 = b−c11 , λ2 = b−c22 gives

the MARSHALL/OLKIN extension (3.98a).

• LU/BHATTACHARYYA proposed the two following functions:

ψ(y1, y2) =

{(
y1

b1

)c1/m
+

(
y2

b2

)c2/m}m
,

ψ(y1, y2) =

[
1 − exp

{
−
(
y1

b1

)c1}][
1 − exp

{
−
(
y2

b2

)c2}]
.

• A BWD to be found in LEE (1979):

R1,2(y1, y2) = exp
{
− λ1 d

c
1 y

c
1 − λ2 d

c
2 y

c
2 − λ3 max

[
dc1 y

c
1, d

c
2 y

c
2

]}

is of type (3.100) for c1 = c2 = c.

All BWD models presented up to here have a singular component. A BWD being abso-

lutely continuous is given by LEE (1979):

R1,2(y1, y2) = exp
{
− (λ1 y

c
1 + λ1 y

c
2)
γ }; y1, y2 ≥ 0; (3.101a)

with λ1, λ2 > 0, c > 0 and 0 < γ ≤ 1. The corresponding DF is

f1,2(y1, y2) = γ2 c2 (λ1 λ2)
γ (y1 y2)

c−1
[(
y1 y2

)c ]γ−1 ×

exp
{
−
(
λ1 y

c
1 + λ2 y

c
2

)γ}
. (3.101b)

The surface plot and the contour plot of (3.101b) in Fig. 3/18 show the continuity of this

BWD. The marginals of (3.101a) are all WEIBULL:

R1(y1) = exp{−λγ1 y
c γ
1 } ,

R2(y2) = exp{−λγ2 y
c γ
2 } .





(3.101c)

The minimum of Y1 and Y2 is also WEIBULL with shape parameter c γ.
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Figure 3/18: Joint density function of the absolutely continuous BWD given by LEE

(surface plot and contour plot)
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3.3.9.2 Multivariate WEIBULL distributions

MARSHALL/OLKIN (1967) have proposed the following multivariate exponential distri-

bution (MVE) for a vector x of p variates giving the joint survival function

R(x) = Pr(X1 > x1,X2 > x2, . . . ,Xp > xp)

= exp

{
−

p∑
i=1

λi xi −
∑
i<j

λij max[xi, xj] −

∑
i<j<k

λijk max[xi, xj, xk] − . . .− λ12...p max[x2, x2, . . . , xp]

}
.





(3.102a)

To obtain a more compact notation for (3.102a), let S denote the set of vectors

(s1, s2, . . . , sp) where each sj = 0 or 1 but (s1, s2, . . . , sp) 6= (0, 0, . . . , 0). For any

vector s ∈ S, max(si xi) is the maximum of the xi’s for which si = 1. Thus,

R(x) = exp

{
−
∑

s∈S
λs max(si xi)

}
. (3.102b)

The zero–one–variable sj in s indicates which component(s) of the p–component system is

(are) simultaneously hit by a POISSON process with shock rate λs. For example, for p = 3
we get

R(x1, x2, x3) = exp
{
− λ100 x1 − λ010 x2 − λ001 x3

− λ110 max[x1, x2] − λ101 max[x1, x2] − λ011 max[x2, x3]

− λ111 max[x1, x2, x3]} .

The k–dimensional marginals (k = 1, 2, . . . , p − 1) are all exponential. But the MVE of

dimension k ≥ 2 is not absolutely continuous because a singular part is present. At least

one of the hyperplanes xi = xj (i 6= j); xi = xj = xk (i, j, k distinct), etc., has a positive

probability.

Introducing the power transformations Xi = Y ci
i ; i = 1, . . . , p; gives a first multivariate

WEIBULL distribution — MWD for short — with joint survival function

R(y) = exp

{
−
∑

s∈S
λs max

(
si y

ci
i

)
, y ≥ o. (3.103a)

This MWD is not absolutely continuous but has WEIBULL marginals of all dimensions

k = 1, 2, . . . , p. HANAGAL (1996) discusses the following special case of (3.103a):

R(y) = exp

{
−

p∑

i=1

λi y
c
i − λ0

(
max[y1, y2, . . . , yp]

)c
}
. (3.103b)



3.3 Modifications of the WEIBULL distribution 185

For λ0 = 0 the joint distribution is the product of p independent one–dimensional

WEIBULL distributions. The one–dimensional marginals of (3.103b) are

R(yi) = exp
{
− (λi + λ0) y

c
i

}
. (3.103c)

The distribution of T = min(Y1, . . . , Yn), i.e., of the system’s lifetime, is

R(t) = exp

{
−
(

p∑

i=0

λi

)
tc

}
. (3.103d)

A MWD which is absolutely continuous and which has WEIBULL marginals of all dimen-

sions has been proposed by HOUGAARD (1986) and later on by ROY/MUKHERJEE (1988).

The joint survival function is

R(y) = exp

{[
−

p∑

i=1

λi y
c
i

]ν}
; λi > 0; c, ν > 0; yi ≥ 0. (3.104)

T = min

(
λ1

a1
Y1, . . . ,

λp
ap
Yp

)
has a one–dimensional WEIBULL distribution with shape

parameter c ν when ai ≥ 0 and such that

(
p∑
i=2

aci

)1/c

= 1.

CROWDER (1989) has extended (3.104) in two aspects:

• The exponent c is made specific for variate Yi.

• He introduced another parameter κ > 0.

Thus, the MWD of CROWDER has the joint survival distribution

R(y) = exp

{
κν −

[
κ+

p∑

i=1

λi y
ci
i

]ν}
. (3.105)

κ = 0 gives (3.104). The marginal distributions for Yi are each WEIBULL when κ = 0 or

ν = 1. For general κ and ν the marginal distributions are such that
(
κ+ λi Y

ci
i

)ν − κν is

exponential with unit mean.

PATRA/DEY (1999) have constructed a class of MWD in which each component has a

mixture of WEIBULL distributions. Specifically, by taking

Yi =
m∑

j=1

aij Yij with Yij ∼We(0, λij , cij); i = 1, 2, . . . , p, (3.106a)

where (ai1, . . . , aim) is a vector of mixing probabilities (aij ≥ 0 ∀ i, j and
∑m

j=1 aij = 1)
and by further taking an exponentially distributed variate Z with DF

f(z) = λ0 exp
{
− λ0 z

}
, (3.106b)

where the Yi and Z are all independent, they consider the multivariate distribution of

Xi = min(Yi, Z); i = 1, . . . , p.
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The joint survival function of (X1, . . . ,Xp) is

R(x) =

p∏

i=1

Pr(Xi > xi)
[
Pr(Z > x0)

]1/p

=

p∏

i=1

m∑

j=1

aij exp

{
−
(
λij x

cij
i +

λx0

r

)}
, (3.106c)

where x0 = max(x1, . . . , xp) > 0. The special case m = p = 2 is studied by PATRA/DEY

in some detail.

3.3.10 Miscellaneous

In this last section of Chapter 3 we will list some relatives to the WEIBULL distribution

which do not fit into one of the classes or models mentioned above.

The model proposed by VODA (1989) — called pseudo–WEIBULL distribution — has

the DF

g(y | b, c) =
c

bΓ
(
1 + 1

c

)
(y
c

)c
exp
{
−
(y
c

)c}
; b, c, y > 0. (3.107a)

(3.107a) is easily recognized to be

g(y | b, c) =
y

µ∗
f(y | 0, b, c), (3.107b)

where µ∗ is the mean and f(y | 0, b, c) is the DF (2.8) of a conventional WEIBULL distribu-

tion. The CDF belonging to (3.107a) is given by

G(y | b, c) =

∫ y

0
g(y | b, c) du

=
Γ√bcy

(
1 + 1

c

)

Γ
(
1 + 1

c

) (3.107c)

and — because of its dependence on the incomplete gamma function Γ·(·) (see the excursus

on the gamma function in Sect. 2.9.1) — has to be evaluated by numerical integration. The

moments are given by

E
(
Y r
)

=
br/c Γ

(
1 + r+1

c

)

Γ
(
1 + 1

c

) . (3.107d)

We have

E(Y ) =
b1/c Γ(1 + 2/c)

Γ(1 + 1/c)
, (3.107e)

Var(Y ) = b2/c
{

Γ(1 + 3/c)

Γ(1 + 1/c)
− Γ2(1 + 2/c)

Γ2(1 + 1/c)

}
. (3.107f)

(3.107a) gives a gamma density — see (3.24) — with b and d = 2:

f(x | b, 2) =
x

b2
exp(−x/b).
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But the pseudo–WEIBULL distribution is a generalization neither of the gamma distribution

nor of the WEIBULL distribution.

FREIMER et al. (1989) developed what they call an extended WEIBULL distribution

which rests upon a generalization of the percentile function xP = a+ b
[
− ln(1 − P )

]1/c
of the conventional three–parameter WEIBULL distribution:37

uP =





d
{[

− ln(1 − P )
]1/d − 1

}
for d 6= 0

ln
[
− ln(1 − P )

]
for d = 0.



 (3.108a)

Inverting, i.e., solving for P = F (u), gives the CDF

F (u | d) =





1 − exp

{
−
(
1 +

u

d

)d}
for d 6= 0

1 − exp
{
− eu

}
for d = 0.





(3.108b)

The support of F (u | d) depends on d as follows:

• d < 0 gives −∞ < u < −d,

• d > 0 gives − d < u <∞,

• d = 0 gives −∞ < u <∞.

SRIVASTAVA (1989) calls his special version a generalized WEIBULL distribution.

It has some resemblance to a WEIBULL model with time–depending parameters (see

Sect. 3.3.8.1). The general CDF

F (x) = 1 − e−Ψ(x) (3.109)

with non–decreasing function Ψ(x) where Ψ(0) = 0 and Ψ(∞) = ∞. The special case

Ψ(x) =

(
x− a

b

)c
; a ∈ R; b, c > 0

yields the conventional three–parameter WEIBULL distribution.

In Fig. 2/8 we have presented the WEIBULL-probability–paper. On this paper the following

transformation of the conventional three–parameter WEIBULL CDF

ln
{
− ln

[
1 − F (y | a, b, c)

]}
= −c ln b+ c ln(x− a) (3.110)

gives a straight line. The SLYMEN/LACHENBRUCH (1984) model rests upon a generaliza-

tion of the WEIBULL transformation (3.110):

ln
{
− ln

[
1 − F (x)

]}
= α+ β w(x), (3.111a)

where w(x) is a monotonically increasing function depending on one or more parameters

satisfying

lim
x→0

w(x) = −∞ and lim
x→∞

w(x) = ∞.

37 See also the extensions given in (3.78a) – (3.79b).
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They discussed the special function

w(x) =
xν − x−ν

2 ν
; x, ν ≥ 0. (3.111b)

Re–transformation of (3.111a) using (3.111b) gives

F (x |α, β, ν) = 1 − exp

{
− exp

[
α+

β
(
xν − x−ν

)

2 ν

]}
, x ≥ 0. (3.111c)

The corresponding HR is

h(x |α, β, ν) =
β

2

(
xν + x−ν−1

)
exp

{
α+

β
(
xν − x−ν

)

2 ν

}
, (3.111d)

which is monotonically increasing when

β >
2
[
(ν + 1)x−ν−2 − (ν − 1)xν+2

]

(xν−1 + x−ν−1)2
;

otherwise it may start with a decreasing part but finally (for x great) it will increase.



4 WEIBULL processes and

WEIBULL renewal theory

This chapter contains the description of two types of stochastic processes, both involving

a WEIBULL distribution.1 These processes are motivated by the statistical enquiry into

repairable systems. When upon the failure of a system it is repaired in such a manner that

its reliability is just like that of a brand new system, the stochastic behavior of such a system

is modeled by a WEIBULL renewal process, for the time to failure being WEIBULL (see

Sect. 4.4). ASCHER/FEINGOLD (1984) recommended the phrase “same–as–new” to name

a renewal process. If the system’s reliability does not change after a repair, i.e. the repaired

system is in the same condition after the repair as just before the failure, then the appropriate

model is a non–homogeneous POISSON process, NHPP for short. The WEIBULL process

(see Sect. 4.3), is such a NHPP with an intensity function which is of WEIBULL hazard rate

type. The term “minimal repair” has also been used to describe the effect of a failure and

subsequent repair on a system modeled by an NHPP. ASCHER/FEINGOLD recommend to

use the phrase “same–as–old” to characterize this kind of model.

For a better understanding and classification of the processes mentioned above, we first

give a concise overview on stochastic processes (Sect. 4.1). This is followed in Sect. 4.2 by

a short report on POISSON processes, especially on the homogeneous POISSON process,

HPP for short. Results for the HPP may easily be reformulated so that they pertain to an

NHPP.

4.1 Stochastic2 processes — An overview

According to the most general definition, a stochastic3 process is any family of random

variables. Synonyms are “chance process” or “random process.” More precisely, the fol-

lowing definition holds

Let [Ω,A, P ] be a probability space and T ∈ R an arbitrary, but non–random index set. A

function X that maps Ω × T into R, i.e., X : Ω × T → R, is called a one–dimensional,

real–valued stochastic process. The set of realization of X, {X(t, ω) |ω ∈ Ω, t ∈ T} is

termed the state space, whereas T is called the parameter space. �

Two rather simple classifications adhere to these last two spaces. We have

• a point process for a countable state space and

1 The inference of these processes, i.e., of the WEIBULL process, will be presented in Chapter 18.

2 Suggested reading for this section: BARTLETT (1962), DOOB (1953), FELLER (1966), KARLIN (1969),

PARZEN (1962), ROSS (1980).

3 The Greek word στoχαστικoζ means “to guess.”
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• a diffusion process (real valued process) for a state space being R or any compact

subset of R.

With respect to the parameter space T, we have

• a discrete parameter process, sometimes called a stochastic series or a stochastic

chain for T being denumerable and

• a continuous parameter process or continuous process for short when T is non–

countable.
We get

• a fixed number X(t∗, ω∗) for a fixed t∗ and a fixed ω∗,

• a random variable X(t∗, ω) for a fixed t∗, i.e., in the cross section, with a distribution

function generally depending on t∗,

• a sequence path, a trajectory or a realization X(t, ω∗) of the process for a fixed ω∗ in

the longitudinal section,

• the whole process for t and ω both varying.

A stochastic process is thus interpretable in two ways, either as a collection, an ensemble of

functions (Xt)t∈T, from which one is chosen at random by realizing a special ω∗, or as — in

the case of T being denumerable — a series of random variables X1, X2, . . . , Xt, . . . .

In most applications the parameter t represents time, but it may also be the altitude, the

latitude, the longitude or the coordinates on a plane or in a solid.4

The distinguishing features of a stochastic process {Xt} are the relationships among the

random variables Xt, t ∈ T. These relationships are specified by giving the joint dis-

tribution function of every finite family Xt1 , . . . , Xtn of variables of the process. The

joint distribution can often be specified in terms of other distributions associated with the

process. A stochastic process may be considered as well defined once its state space, in-

dex parameter and family of joint distributions are prescribed. However, in dealing with

continuous parameter processes certain difficulties arise, which will not be discussed here.

We now describe some of the classical types of stochastic processes characterized by dif-

ferent dependence relationships among Xt. Unless otherwise stated, we take T = R.

Processes with independent increments

If the random variables

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent for all choices of t1, . . . , tn satisfying

t1 < t2 < . . . < tn,

then we say {Xt} is a process with independent increments. If the index set contains a

smallest index t0, it is also assumed that

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

4 When t is a vector we rather speak of a random field.
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are independent. If the index set is discrete, T = {0, 1, 2, . . .}, then a process with inde-

pendent increments reduces to a sequence of random variables Z0 = X0, Zi = Xi−Xi−1

(i = 1, 2, 3, . . .), in the sense that knowing the individual distributions of Z0, Z1, . . .
enables one to determine the joint distribution of any finite set of the Xi. In fact,

Xi = Z0 + Z1 + . . .+ Zi; i = 0, 1, 2, . . .

Martingales

Let {Xt} be a real–valued process with discrete or continuous parameter set. We say {Xt}
is a martingale5 if, for any t1 < t2 < . . . < tn−1

E(Xtn+1 |Xt1 = x1, . . . , xtn = xn) = xn

for all values of x1, . . . , xn. It is easily verified that the process Xn = Z1 + . . . + Zn;
n = 1, 2, . . . ; is a discrete time martingale if the Zi are independent with means equal

to zero. Similarly, if Xt, 0 ≤ t < ∞ has independent increments, whose means are zero,

then {Xt} is a continuous time martingale.

MARKOV processes

A MARKOV process, named after A.A. MARKOV (1856 – 1922), is a process with the

property that, given the value of Xt, the values of Xs, s > t, do not depend on the values

of Xu, u < t; i.e., the probability of any particular future behavior of the process, when its

present state is known exactly, is not altered by additional knowledge concerning its past

behavior. In formal terms a process is said to be Markovian if

Pr
(
a < Xt ≤ b |Xt1 = x1, Xt2 = x2, . . . , Xtn = xn

)
= Pr

(
a < Xt ≤ b |Xtn = xn

)
,

(4.1a)

whenever t1 < t2 < . . . < tn < t. Let A be an interval on the real line. The function

P (x, s; t, A) = Pr(Xt ∈ A |Xs = x), t > s, (4.1b)

is called the transition probability function. It is basic to the study of the structure of

MARKOV processes. (4.1b) may be expressed as follows:

Pr(a < Xt ≤ b |Xt1 = x1, Xt2 = x2, . . . , Xtn = xn) = Pr(xn, tn; t, A), (4.1c)

when A = {ξ | a < ξ ≤ b}. The probability distribution of (Xt1 , Xt2 , . . . , Xtn) can be

computed in terms of (4.1b) and the initial distribution function of Xt1 . A MARKOV chain

has a discrete index set and a countable state space.

Stationary processes

A stationary process {Xt} for t ∈ T, when T could be one of the sets (−∞,∞), [0,∞),
{, . . . ,−1, 0, 1, . . .} or {1, 2, . . .}, is said to be strictly stationary if the joint distri-

bution function of the families of random variables (Xt1+h, Xt2+h, . . . , Xtn+h) and

5 The term martingale comes from the Provençal name of the French community Martigues. It has a long

history in a gambling context, where originally it meant a system for recouping losses by doubling the

stake after each loss. In modern statistics the concept still has to do with gambling and means a “fair”

game.



192 4 WEIBULL processes and WEIBULL renewal theory

(Xt1 , Xt2 , . . . , Xtn) are the same for all h > 0 and arbitrary selections t1, t2, . . . , tn of

T. The distribution functions are invariant with respect to a translation of all time coordi-

nates. This condition asserts that in essence the process is in probabilistic equivalence and

that the particular times at which we examine the process are of no relevance.

A stochastic process {Xt} is said to be wide sense stationary or covariance stationary if

it possesses finite second moments and if

Cov
(
Xt,Xt+h

)
= E

(
XtXt+h

)
− E(Xt) E

(
Xt+h

)

depends only on h for all t ∈ T.

Remark: A MARKOV process is said to have stationary transition probabilities if

P (x, s; t, A) defined in (4.1b) is a function only of t− s. Remember that P (x, s; t, A) is a

conditional probability, given the present state. Therefore, there is no reason to expect that

a MARKOV process with stationary transition probabilities is a stationary process, and this

is indeed the case.

Besides the four main types discussed above, there are other well–known stochastic pro-

cesses characterized by special and additional properties. Here, only a brief presentation of

point processes will be given because the POISSON process, the WEIBULL process and the

WEIBULL renewal process belong to this class.

A point process is obtained when one considers a sequence of events occurring in contin-

uous time, individual events, e.g., failures of a system, being distinguished only by their

position in time. Let Tn; n = 0, 1, 2, . . . ; be a sequence of positive random variables such

that

T0 = 0, Tn < Tn+1 and Tn −→ T∞ ≤ ∞,

Tn representing the instant of occurrence of the n–th event. The total number of events in

the interval from 0 to t is a random variable Nt that may be written in the form

Nt =

∞∑

n=0

I{TN≤t}, (4.2a)

where IA is the indicator of set A. The family N = (Nt, 0 ≤ t ≤ ∞) is a counting

process and

Nt = n if Tn ≤ t < Tn+1. (4.2b)

Note that N is an increasing process and its trajectories are right–continuous step func-

tions with upward jumps of magnitude 1. Each of the random sequences {Tn} and {Nt}
is known as a point process. Typical examples include the POISSON processes and the

renewal processes. The processes {Tn} and {Nt} are linked as follows:

Nt = max{n |Tn ≤ t}, Nt = 0 for t < T1, (4.3a)

TNt ≤ t < TNt+1, (4.3b)

Nt < n ⇐⇒ Tn > t, (4.3c)

Nt ≤ n ⇐⇒ Tn+1 > t. (4.3d)
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From (4.3c,d) we immediately get

Pr(Nt < n) = Pr(Tn > t), (4.3e)

Pr(Nt ≤ n) = Pr(Tn+1 > t). (4.3f)

(4.3e,f) lead to

Pr(Nt = n) = Pr(Nt ≤ n) − Pr(Nt < n)

= Pr(Tn+1 > t) − Pr(Tn > t). (4.3g)

The intensity of a counting process is a family of random variables λ(t) such that relative

to a history (Fs)

E
(
Nt −Ns | Fs

)
= E




t∫

s

λ(u) du | Fs


 , s ≤ t, (4.4a)

which implies that the random variables

Mt = Nt −
t∫

0

λ(u) du, (4.4b)

form a martingale relative to (Ft).

4.2 POISSON processes6

The most popular counting process {Nt} is the homogenous POISSON process, POISSON

process for short, named after S.D. POISSON (1781 – 1840). This process rests upon the

following assumptions:

1. The increments Nt0 −Nt1 , . . . , Ntn −Ntn−1 for t0 < t1 < . . . < tn are mutually

independent; thus, the POISSON process is a process with independent increments.

2. The discrete random variable

Xh := Nt0+h −Nt0 ,

i.e., the increment in (t0, t0 + h], depends only on the interval length h and neither

on t0 nor on the value of Nt0 . The increments in intervals of equal length are thus

stationary.

3. The probability of at least one event happening in a time period of length h is essen-

tially proportional to h:

p(h) := Pr(Xh ≥ 1) = λh+ o(h); h→ 0, λ > 0. (4.5a)

The proportional factor λ is the intensity of the occurrence of events.7

6 Suggested reading for this section is the same as that for Sect. 4.1.

7 f(x) = o(x), x→ 0, is the usual symbolic way of writing the relation limx→0 f(x)/x = 0.
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4. The probability of two or more events happening in time h is o(h).

The last assumption is tantamount to excluding the possibility of the simultaneous occur-

ring of two or more events.

Let Pm(t) denote the probability that exactly m events occur in an interval of length t, i.e.

Pm(t) := Pr(Xt = m); m = 0, 1, 2, . . . .

The fourth assumption from above can be stated in the form

∞∑

m=2

Pm(h) = o(h)

and clearly

p(h) = P1(h) + P2(h) + . . . (4.5b)

Because of the assumption of independence (first assumption), we have

P0(t+ h) = P0(t) · P0(h)

= P0(t) [1 − p(h)] (see (4.5b)) (4.5c)

and therefore
P0(t+ h) − P0(t)

h
= −P0(t)

p(h)

h
. (4.5d)

On the basis of the third assumption we know that p(h)/h → λ for h → 0. Therefore,

the probability P0(t) that the event has not happened during (0, t] satisfies the differential

equation

P0(t) = −λP0(t), (4.5e)

whose well–known solution is

P0(t) = c e−λ t.

The constant c is determined by the initial condition P0(0) = 1, which implies c = 1. Thus

the complete solution to (4.5e) is

P0 = e−λ t. (4.5f)

The following excursus shows that for every integerm the probability is given by the POIS-

SON probability function
(
X ∼ Po(λ)

)

Pr(Xt = m) =
(λ t)m

m!
e−λ t; m = 0, 1, 2, . . . (4.5g)

Excursus: Construction of the POISSON distribution

For everym, m ≥ 1, it is easy to see that

Pm(t+ h) = Pm(t)P0(h) + Pm−1(t)P1(h) +

m∑

i=2

Pm−i(t)Pi(h). (4.6a)
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By definition P0(h) = 1 − p(h). The fourth assumption implies that

P1(h) = p(h) + o(h) and

m∑

i=2

Pm−i(t)Pi(h) ≤
m∑

i=2

Pi(h) = o(h), (4.6b)

since obviously Pi(t) ≤ 1. Therefore, with the aid of (4.6b) we rearrange (4.6a) into the form

Pm(t+ h) − Pm(t) = Pm(t)
[
P0(h) − 1

]
+ Pm−1(t)P1(h) +

m∑

i=2

Pm−i(t)Pi(h)

= − Pm(t) p(h) + Pm−1(t)P1(h) +

m∑

i=2

Pm−i(t)Pi(h)

= − Pm(t)λh+ Pm−1(t)λh+ o(h). (4.6c)

(4.6c) gives
Pm(t+ h) − Pm(t)

h
→ −λ Pm(t) + λPm−1(t) as h→ 0

leading to the following combined difference–differential–equations

P ′
m(t) = −λPm(t) + λPm−1(t); m = 1, 2, . . . , (4.6d)

subject to the initial conditions

Pm(0) = 0; m = 1, 2, . . .

In order to solve (4.6d) we introduce the auxiliary functions

Qm(t) = Pm(t) eλ t; m = 0, 1, 2, . . . (4.6e)

Substituting (4.6e) into (4.6d) gives

Q′
m(t) = λQm−1(t); m = 0, 1, 2, . . . , (4.6f)

where Q0(t) = 1 and the initial conditions are Qm(0) = 0 for m = 1, 2, . . . . Solving (4.6f)

recursively yields

Q′
1(t) = λ =⇒ Q1(t) = λ t+ c =⇒ Q1(t) = λ t

Q′
2(t) = λ2 t =⇒ Q2(t) =

λ2 t2

2
+ c =⇒ Q2(t) =

λ2 t2

2

Q′
3(t) =

λ3 t2

2
=⇒ Q3(t) =

λ3 t3

3 · 2 + c =⇒ Q3(t) =
λ3 t3

3!
...

...
...

...
...

Q′
m(t) =

λm tm−1

(m− 1)!
=⇒ Qm(t) =

λm tm

m!
+ c =⇒ Qm(t) =

λm tm

m!
.

Resolving (4.6e) gives the POISSON probability function

Pm(t) =
(λ t)m

m!
e−λ t; m = 0, 1, 2, . . .
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The mean number of occurrences in time t is thus the expectation of the POISSON distribu-

tion:

E(Xt) =

∞∑

m=0

m
(λ t)m

m!
e−λ t = λ t, (4.7a)

also termed mean value function

Λ(t) := λ t. (4.7b)

The intensity function or arrival rate, giving the mean rate of occurrences for t→ ∞, is

λ(t) :=
dΛ(t)

dt
= λ, (4.7c)

which is constant with respect to time. We further have

E
(
Nt −Ns

)
=

t∫

s

λ(u) du

= Λ(t) − Λ(s)

= λ (t− s), s < t. (4.7d)

As the events “no occurrence in (0, t]” and “T1, the time to the first occurrence, is greater

than t” are equivalent, (4.5f) also gives

Pr(T1 > t) = e−λ t. (4.8a)

The second assumption of the POISSON process states that Xh does not depend on t0, so

the point t0 may be taken as the moment of any occurrence and the inter–arrival time Y
between any two successive events is distributed as T1 in (4.8a), the latter being the CCDF

of the exponential distribution, Ex(λ) for short. With respect to the inter–arrival time Y
of the POISSON process we have the following results:

Pr(Y ≤ t) = FY (t) = 1 − e−λ t, (4.8b)

fY (t) = λ e−λ t, (4.8c)

E(Y ) = λ−1. (4.8d)

Tn, the time of the n–th event for a POISSON process, is thus the sum of n independent,

identically and exponentially distributed variables:

Tn =
n∑

i=1

Yi, Yi
iid∼ Ex(λ). (4.9a)
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As is well known, this sum has a gamma distribution8 with DF

fn(t) =
λ (λ t)n−1 exp {−λ t}

Γ(n)
; t > 0, n = 1, 2, . . . (4.9b)

For integer n the CDF can be computed as

Fn(t) = 1 − exp{−λ t}
n−1∑

i=0

(λ t)i

i!
; t > 0; n = 1, 2, . . . (4.9c)

The mean time to the n–th event is

E
(
Tn
)

= n/λ; n = 1, 2, . . . (4.9d)

A fundamental property of the POISSON process is conditional uniformity: For each t,
given that Nt = n and regardless of the rate λ, the conditional distribution of the arrival

times T1, . . . , Tn is that of order statistics9 X1:n, . . . ,Xn:n engendered by independent

random variables X1, . . . ,Xn, each uniformly distributed on (0, t]. From this property

many computational relationships can be deduced.

For a non–homogeneous Poisson process (NHPP) on R+, the first assumption of the HPP,

the independent increments property, is retained, but the arrival rate (intensity function)

λ(t) now is a function of t. Whereas for a HPP

lim
h→0

Pr
[
Nt+h −Nt = 1 |Ns for s ≤ t

]/
h = λ (4.10a)

and

lim
h→0

Pr
[
Nt+h −Nt ≥ 2 |Ns for s ≤ t

]/
h = 0 (4.10b)

hold, the arrival–rate function of an NHPP is given by

lim
h→0

Pr
[
Nt+h −Nt = 1 |Ns for s ≤ t

]/
h = λ(t) (4.11a)

instead of (4.10a) with (4.10b) remaining as is. For an NHPP the random variable Nt −
Ns, t > s, has a POISSON distribution with parameter (= mean)

E
(
Nt −Ns

)
=

t∫

s

λ(u) du = Λ(t) − Λ(s), (4.11b)

i.e.,

Pr
(
Nt −Ns = m

)
=

[
Λ(t) − Λ(s)

]m

m!
e−
[
Λ(t)−Λ(s)

]
; m = 0, 1, 2, . . . (4.11c)

8 A gamma distribution with integer value n is also termed ERLANG distribution, named after the Danish

engineer A.K. ERLANG (1878 – 1929).

9 For order statistics see Chapter 5.
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The NHPP is appropriate for situations in which the independent property holds but that of

stationary increments fails. Such a situation may be encountered with a repairable system

involving changes in its reliability as it ages. For example, when a complex system is

in the development stage, early prototypes will often contain design flaws. During the

early testing phase, design changes are made to correct such problems. If the development

program is succeeding, one would expect a tendency toward longer times between failures.

When this occurs, such systems are said to be undergoing reliability growth; see DUANE

(1964) or CROW (1974). On the other hand, if a deteriorating system is given only minimal

repairs when it fails, one would expect a tendency toward shorter times between failures

as the system ages. If the intensity function λ(t) is increasing, the times between failures

tend to be shorten, and if it is decreasing, they tend to be longer.

We will denote the mean function giving the expected number of events of an NHPP in

(0, t] by

Λ(t) = E
(
Nt

)
=

t∫

0

λ(u) du. (4.12)

Λ(t) is

• a strictly increasing continuous function,

• defined for non–negative t and

• satisfying Λ(0) = 0 and Λ(∞) = ∞.

Some common examples of a mean function are

1. Λ(t) = λ t, λ > 0, for a HPP;

2. Λ(t) =

(
t

b

)c
; b, c > 0, for a WEIBULL process (see Sect. 4.3);

3. Λ(t) = a ln(1 + b t); a, b > 0;

4. Λ(t) = − ln

{
Φ
[
− p ln(λ t)

]}
, where Φ[.] is the standard GAUSSIAN CDF and

p > 0;

5. Λ(t) = a
[
exp(b t) − 1

]
, which is related to the GUMBEL–extreme–value density.

Let T1, T2, . . . be the waiting times or arrival times of an NHPP, and let

Yi = Ti − Ti−1; T0 = 0; i = 1, 2, . . .

be the i–th inter–arrival time. Some special relations exist between the distribution function

G1(t) of Y1 ≡ T1 and Λ(t), which characterize the law of an NHPP; see PARZEN (1962,

p. 138):

G1(t) = 1 − exp{−Λ(t)}, t ≥ 0, (4.13a)

λ(t) =
dΛ(t)

dt
=

G′
1(t)

1 −G1(t)
, t ≥ 0. (4.13b)
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The cumulative distribution of Yi, given that the (i− 1)–th event occurred at time ti−1, is

Gi
(
t | ti−1

)
=
G1

(
t+ ti−1

)
−G1

(
ti−1

)

1 −G1

(
ti−1

) ; i = 2, 3, . . . (4.13c)

Hence, in an NHPP the times between successive events are not independent and not iden-

tically distributed.

4.3 WEIBULL processes10

A special NHPP is the Weibull process. In the literature this model has been called by

many different names:

• power law process because of the form of its mean–value function (4.14a), see RIG-

DON/BASU (1989);

• RASCH–WEIBULL process, see MØLLER (1976);

• WEIBULL intensity function, see CROW (1974);

• WEIBULL–POISSON process, see BAIN/ENGELHARDT (1991a).

The WEIBULL process has the mean–value function

Λ(t) =

(
t

b

)c
; t ≥ 0; b, c > 0, (4.14a)

which is strictly monotonically increasing, and the intensity function

λ(t) =
dΛ(t)

dt
=
c

b

(
t

b

)c−1

. (4.14b)

The notions of intensity function and hazard rate, both having the same formula, should

not be confused with one another. The latter is a relative value of failure for non–repairable

systems, whereas the former is an absolute rate of failure for repairable systems. We further

want to stress that what is WEIBULL distributed in a WEIBULL process is T1, the time to the

first occurrence or first failure, whereas T2, T3, . . . and the inter–arrival times Yi = Ti−Ti−1

for i ≥ 2 are not WEIBULL.

Before listing the probability formulas of some random variables associated with the

WEIBULL process, we give a characterization; see MØLLER (1976).

A necessary and sufficient condition for a NHPP with strictly monotonically increasing

mean–value function Λ(t) to be a WEIBULL process is:

For every n ≥ 2 the stochastic vector

(T1/Tn, T2/Tn, . . . , Tn−1/Tn)

is stochastically independent of Tn. �

Proof: An NHPP can be transformed to an HPP by changing the time scale with the aid of

the mean–value function z := Λ(t) because the stochastic process {M(z); z ≥ 0}, defined

10 Suggested reading for this section: BAIN/ENGELHARDT (1991a), CROW (1974), LEE/BELL/MASON

(1988), MØLLER (1976), MURTHY/XIE/JIANG (2004), PARZEN (1962), RIGDON/BASU (1962).
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by M(z) = N
[
Λ−1(z)

]
, is an HPP with intensity 1. The relation between the arrival–time

process {Un;n = 1, 2, . . .} corresponding to {M(z); z ≥ 0} and the arrival–time process

{Tn; n = 1, 2, . . .} from the NHPP is given by Un = Λ(Tn). Therefore, for all n ≥ 2, the

conditional distribution of
(
Λ(T1), . . . ,Λ(Tn−1)

)
, given that Tn = tn, will be the same as

the distribution of n− 1 ordered, independent observations from a rectangular distribution

over the interval
(
0,Λ(Tn)

)
, as shown by PARZEN (1962, p. 143). An immediate result is

that the conditional distribution of (T1/Tn, . . . , Tn−1/Tn), given Tn = tn, is the same as

the distribution of n− 1 ordered, independent observations from the distribution

F (x) =
Λ(x tn)

Λ(tn)
for x ∈ (0, 1]. (4.15)

Thus, (T1/Tn, . . . , Tn−1/Tn) is stochastically independent of Tn precisely in the case

where the function Λ(x tn)/Λ(tn) is independent of tn or, in other words, where Λ(.)
satisfies the functional equation Λ(x t)Λ(1) = Λ(x)Λ(t). The positive, continuous, non–

decreasing solution of this functional equation, under the condition that Λ(t) need only be

defined for the set of positive real numbers, is given by Λ(t) = (t/b)c, where b and c are

positive constants. �

We now turn to some random variables which come up in a WEIBULL process.

1. Number of events N t

In any interval (s, t] we have

Pr
(
Nt −Ns = m

)
=

(
tc − sc

bc

)m

m!
exp

{
− t

c − sc

bc

}
; m = 0, 1, 2, . . . ; (4.16a)

E
(
Nt −Ns

)
=
tc − sc

bc
. (4.16b)

Especially for the interval (0, t] we get

Pr
(
Nt = m

)
=

(t/b)cm

m!
exp

{
−
(
t

b

)c}
, (4.16c)

E
(
Nt

)
=

(
t

b

)c
. (4.16d)

From (4.16d) we have

E

[
Nt

t

]
=
tc−1

bc
. (4.16e)

On taking the logarithm of both sides, we get the following linear equation:

y = (c− 1)x− c ln b, (4.16f)

where

y = ln

{
E

[
Nt

t

]}
and x = ln t.
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(4.16f) is the basis for a graphical approach to estimate the parameters b and c from

k observations (yi = ln{ni/ti}, xi = ln ti), i = 1, 2, . . . , k, where ni is the real-

ization of Nti ; see DUANE (1964) and Sect. 18.4.

If at given points in time t1, . . . , tr the corresponding numbers of events are

Nt1 , . . . , Ntr , the joint distribution of successive differences of the latter variables

is given by

Pr
[
Nt1 = n1, Nt2 −Nt1 = n2, . . . , Ntr −Ntr−1 = nr

]

=
r∏

i=1

(
tci − tci−1

bc

)ni

exp

{
− t

c
i − tci−1

bc

}/
ni!

=

(
n

n1 . . . nr

)exp

{
−
(
tr
b

)c}

n! bc n

r∏

i=1

(
tci − tci−1

)ni , (4.16g)

where t0 = 0 and n =
r∑
i=1

ni.

2. Arrival time T n

Since the transformed arrival times

Vi =

(
Ti
b

)c
; i = 1, 2, . . . , n (4.17a)

have the same distributions as the first n arrival times from an HPP with intensity one,

see (3.12b,c), it follows that Tn conforms to a generalized gamma distribution with

density

fn(t) =
1

(n− 1)!

c

b

(
t

b

)n c−1

exp

{
−
(
t

b

)c}
. (4.17b)

The corresponding CDF is

Fn(t) = γ

(
n

∣∣∣∣
(
t

b

)c)/
Γ(n), (4.17c)

i.e., an incomplete gamma function ratio. We get

• the common two–parameter WEIBULL distribution for n = 1 and

• the gamma distribution for c = 1.

The mean of Tn is

E(Tn) =

bΓ

(
n+

1

c

)

Γ(n)
, (4.17d)

which reduces to n b for c = 1, see (4.9d), and to bΓ(1 + 1/c) for n = 1, see (2.85).
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3. Conditional arrival times

The arrival times T1, T2, . . . , Tn−1, conditioned on Tn = tn, are distributed as n− 1
order statistics from a distribution with CDF

F (t) =





0 for t ≤ 0,

(t/tn)
c for 0 < t ≤ tn,

1 for t > tn.





(4.18)

4. Inter–arrival time Y i

Using (4.13a–c) we find the following CDF of the inter–arrival times Yi = Ti−Ti−1;
i = 2, 3, . . . , given that (i− 1)–th event occurred at time ti−1:

Gi(y | ti−1) = 1 − exp

{
−
(
y + ti−1

b

)c
+

(
ti−1

b

)c}
; i = 2, 3, . . . (4.19)

This is a left–truncated WEIBULL distribution, the truncation point being ti−1; see

(3.47b). As Ti = Ti+1 + Yi, (4.19) also is the CDF of the conditional arrival time of

the i–th event, given the arrival time ti−1 of the preceding event.

We finally mention two generalizations of the WEIBULL process:

1. The intensity function given in (4.14b) may be enlarged by incorporating one or more

covariates; see (3.91a–c).

2. When only every k–th event of the WEIBULL process is recorded as an event we get

the so–called modulated WEIBULL process; see MURTHY et al. (2004). The joint

density function for the recorded times t1, t2, . . . , tn of the first n events is

f(t1, . . . , tn)=

exp

{
−
(
tn
b

)c}

[
Γ(k)

]n
(c
b

)n n∏

i=1

(
ti
b

)c−1[(ti
b

)c
−
(
ti−1

b

)c ]k−1

; k = 1, 2, . . .

(4.20)

4.4 WEIBULL renewal processes

In this section we first give some general results on renewal theory (Sect. 4.4.1). This is

followed by a thorough analysis of the ordinary WEIBULL renewal process (Sect. 4.4.2),

ordinary WRP for short.

4.4.1 Renewal processes11

First, we present, in a rather informal way, the most popular types of renewal processes

(RP for short) encountered in theory and practice. Then, we describe those random vari-

ables that are associated with every renewal process and that express different aspects of its

performance.

11 Suggested reading for this section: BARLOW/PROSCHAN (1965, 1975), BAXTER/SCHEUER/

BLISCHKE/MCCONALOGUE (1981, 1982), FELLER (1966, Vol. II), GNEDENKO/BELJAJEW/

SOLOWJEW (1968), ROSS (1970), SMITH (1958).
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An ordinary renewal process, also known as normal or simple renewal process, is a

sequence of iid non–negative random variables Y1, Y2, . . . These variates may be the life-

times of a system or of a system’s components which are renewed instantaneously upon

failure. Renewal may be a replacement either by a completely new item or by a renewing

repair. Unless stated otherwise the replacement or the repair are of negligible duration. An

ordinary RP is characterized by the fact that we start the process in t = 0 with a new item

so that Y1, the time to the first failure, is a non–truncated lifetime. Then, Y1, Y2, . . . all have

the same distribution function G(y) = Pr(Yi ≤ y), called the underlying distribution.

This is the decisive difference to the counting processes presented in the preceding sections

where — with the only possible exception of the HPP — the inter–arrival times Yi have

differing distributions.

The next two types of RPs are characterized by the fact that Yi is an incomplete lifetime.

A delayed or modified renewal process starts at t = 0 with an item that has been on

duty for either a known or an unknown span of time, called backward recurrence time.

So, Y1 is the remaining or residual lifetime, also called forward recurrence time of the

item working at t = 0. The distribution G1(y) of Y1 is thus different from the underlying

distribution G(y), valid for Yi, i ≥ 2. A stationary renewal process is a special delayed

process that has been started a long time before t = 0. So, the residual lifetime Y1 of a

stationary RP has the limit distribution of the forward recurrence time.

A superposed renewal process consists of k ≥ 2 RPs that are running parallel and inde-

pendently, an example being a weaving mill, where k weaving machines of the same type

are working. In general, the renewal distances of a superposed process are not iid variates.

An exception is the superposition of k HPPs resulting in a superposed process which is

again of the POISSON type.

An alternating renewal process is characterized to be in one of two states at any time. For

example, a machine may either be running (= state 1) or be down and under repair (= state

2), and these two states alternate. The sojourn times Yi and Zi in state 1 and state 2 have

differing distribution functions GY (y) and GZ(z). In t = 0 the process starts in state 1

with probability P and in state 2 with probability 1 − P .

The feature of a cumulative renewal process is that some kind of payment Wi is attached

to the i–th renewal, e.g., the cost of replacement. Wi is a variate which may either be

dependent or be independent of Yi. The most interesting feature for a cumulative renewal

process is the total payment accrued in some interval (0, t].

There are four random variables associated to a RP (see Fig. 4/1) which are of special

interest:

1. Tn, the time elapse from t = 0 up to and including the moment of the n–th renewal,

n = 1, 2, . . . (The item installed in t = 0 is no renewal.),

2. Nt, the number of renewals in (0, t],

3. Bt, the age of an item at any point t (This the backward recurrence time to the

preceding renewal.),

4. Ft, the residual or remaining lifetime of an item at any point t on the time axis. (This

is the forward recurrence time to the following renewal.)
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Figure 4/1: Random variables of a renewal process

Time to the n–th renewal

If, upon a failure, the renewal takes place immediately and is completed in a time span of

negligible length, the waiting time Tn until the n–th renewal is given by

Tn =
n∑

i=1

Yi, n ≥ 1. (4.21a)

{Tn} is stochastic process. For a given n, Tn is a continuous variable with CDF

Fn(t) = Pr(Tn ≤ t) = Pr(Y1 + . . .+ Yn ≤ t). (4.21b)

Fn(t) may be expressed by the so–called convolution formula or convolution integral.

In the case of a normal RP we have

Fn(t) = G(n)(t). (4.21c)

G(n)(t) is the n–fold convolution of the underlying distribution G(·) with itself and is

achieved recursively:

G(n)(t) =

t∫

0

G(n−1)(t− u) dG(u); n = 2, 3, . . . , (4.21d)

with G(1)(·) = G(·). For a delayed RP we have to use G(1)(·) = G1(y), the CDF of the
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forward recurrence time. The corresponding density functions are

fn(t) = g(n)(t) =





t∫
0

g(n−1)(t− u) g(u) du − normal renewal process

t∫
0

g(n−1)(t− u) g1(u) du − delayed renewal process.





(4.21e)
The mean and variance of Tn are simply:

E
(
Tn
)

= E
(
Y1

)
+ (n− 1) E(Y ), (4.21f)

Var
(
Tn
)

= Var
(
Y1

)
+ (n − 1) Var(Y ), (4.21g)

where — for a delayed RP — E
(
Y1

)
and Var

(
Y1

)
are different from E(Y ) and Var(Y ).

There are only a few underlying distributions G(·) that lead to a simple analytical expres-

sion for (4.21c):

• Exponential distribution: G(t) = 1 − exp{−λ t}; g(t) = λ exp{−λ t}

Fn(t) = 1 −
n−1∑

i=0

(λ t)i

i!
exp{−λ t} (4.22a)

fn(t) = λ
(λ t)n−1

(n− 1)!
exp{−λ t} (4.22b)

• ERLANG distribution:

G(t) = 1 −
c−1∑

j=0

(λ t)j

j!
exp{−λ t};

g(t) = λ
(λ t)c−1

(c − 1)!
exp{−λ t}

Fn(t) = 1 −
n c−1∑

i=0

(λ t)i

i!
exp{−λ t} (4.23a)

fn(t) = λ
(λ t)n c−1

(n c− 1)!
exp{−λ t} (4.23b)

• Normal distribution: G(t) = Φ

(
t− µ

σ

)
;

g(t) = ϕ

(
t− µ

σ

)
=

1

σ
√

2π
exp

{
−(t− µ)2

2σ2

}

Fn(t) = Φ

(
t− nµ

σ
√
n

)
=

(t−n µ)/(σ
√
n)∫

−∞

1√
2π

exp

{
−u

2

2

}
du (4.24a)

fn(t) =
1

σ
√
n
ϕ

(
t− nµ

σ
√
n

)
=

1

σ
√

2π n
exp

{
−(t− nµ)2

2nσ2

}
(4.24b)
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When n is large, one can use a central limit theorem and approximate Fn(t) of a normal

RP:

Fn(t) ≈ Φ

(
t− nE(Y )√
nVar(Y )

)
, n large. (4.25)

As

max
1≤i≤n

Yi ≤
n∑

i=1

Yi

and regarding a normal RP, we have the following upper bound

Fn(t) = Pr
(
Tn ≤ t

)
≤ Pr

(
max
1≤i≤n

Yi ≤ t

)
= [G(t)]n. (4.26)

Number of renewals in (0, t]

The most important variable in any RP is Nt, the number of renewals in (0, t]. Note that

Pr
(
Nt ≥ k

)
= Pr

(
Tk ≤ t

)

= Fk(t), (4.27a)

resulting into

Pr
(
Nt = k

)
= Pr

(
Nt ≥ k

)
− Pr

(
Nt ≥ k + 1

)

= Pr
(
Tk ≤ t

)
− Pr

(
Tk+1 ≤ t

)

= Fk(t) − Fk+1(t); k = 0, 1, . . . (4.27b)

Then we get

Pr
(
Nt = 0

)
= Pr

(
T1 > t

)

= 1 −G1(t).

It is easy to show that Nt has finite moments of all orders:

E
(
N r
t

)
=

∞∑

k=0

kr
[
Fk(t) − Fk+1(t)

]

=
∞∑

k=1

[
kr − (k − 1)r

]
Fk(t). (4.27c)

The renewal function

M(t) :=
∞∑

k=1

Fk(t) (4.27d)

giving the mean number of renewals in (0, t] is of special interest. Its derivation with respect

to t is known as the renewal density:

m(t) :=
dM(t)

dt
=

∞∑

k=1

fk(t). (4.27e)
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We obtain an integral equation for the renewal function as follows. From (4.21c,d) we

have

Fk+1(t) = G(k+1)(t) =

t∫

0

G(k)(t− u) dG(u); k = 0, 1, 2, . . . , (4.28a)

where F1(t) = G(t) for a normal RP. Replacing Fk+1(t) in (4.27d) by (4.28a) leads to

M(t) = G(t) +

∞∑

k=1

t∫

0

G(k)(t− u) dG(u) (4.28b)

or

M(t) = G(t) +

t∫

0

M(t− u) dG(u). (4.28c)

(4.28c) is known as the fundamental renewal equation. For a delayed RP, (4.28c) turns

into

Md(t) = G1(t) +

t∫

0

Md(t− u) dG(u). (4.28d)

The renewal density may also be expressed by an integral equation. Upon differentiating

(4.28c,d) with respect to t, we get

m(t) = g(t) +

t∫

0

m(t− u) g(u) du, (4.28e)

md(t) = g1(t) +

t∫

0

md(t− u) g(u) du. (4.28f)

The following excursus shows how to determine higher moments of Nt.

Excursus: Higher moments ofNt

Integral equations for higher moments ofNt may be derived by considering the binomial moments

Mk(t) := E

(
Nt

k

)
= E

(
Nt [Nt − 1] . . . [Nt − k + 1]

1 · 2 · . . . · k

)
. (4.29a)

We then have

Mk(t) =

∞∑

j=0

(
j

k

)[
G(j)(t) −G(j+1)(t)

]

=
∞∑

j=k

(
j − 1

k − 1

)
G(j)(t). (4.29b)
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The convolution of Mk(t) and M(t) is

t∫

0

Mk(t− u) dM(u) =
∞∑

j=k

∞∑

i=1

(
j − 1

k − 1

) t∫

0

G(n)(t− u) dG(u)

=

∞∑

j=k

∞∑

i=1

(
j − 1

k − 1

)
G(j+i)(t)

=

∞∑

p=k+1

p−k−1∑

q=0

(
q + k − 1

k − 1

)
G(p)(t); p = i+ j, q = j − k

=

∞∑

p=k+1

(
p− 1

k

)
G(p)(t)

= Mk+1(t). (4.29c)

The moments of Nt may be derived from the Mk(t) by the relationship

E
(
Nk

t

)
=

k∑

j=1

S(k,j)Mj(t) j!, (4.30a)

where S(k,j) are STIRLING numbers of the second kind12 defined by

S(k,j) =
1

j!

j∑

i=0

(−1)j−i

(
j

i

)
ik

or recursively by

S(k,1) = 1 ∀ k and S(k,j) = 1 ∀ k = j; k = 1, 2, . . . ;

S(k,j) = jS(k−1,j) + S(k−1,j−1), 2 ≤ j ≤ k,

S(k,j) = 0, j > k.

In particular we get

E
(
Nt

)
= M1(t) = M(t), (4.30b)

E
(
N2

t

)
= M1(t) + 2M2(t), (4.30c)

E
(
N3

t

)
= M1(t) + 6M2(t) + 6M3(t), (4.30d)

E
(
N4

t

)
= M1(t) + 14M2(t) + 36M3(t) + 24M4(t). (4.30e)

Thus, the variance of Nt is

Var
(
Nt

)
= E

(
N2

t

)
−
[
E
(
Nt

)]2

= 2M2(t) +M(t)
[
1 −M(t)

]
. (4.30f)

12
S(k,j) is the number of ways of partitioning a set of k elements into j non–empty subsets.
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There are only a few underlying distributions which allow a direct evaluation of (4.28c) or

(4.28d)
• Exponential distribution; see (4.22a,b)

Pr
(
Nt = k

)
= Fk(t) − Fk+1(t) =

(λ t)k

k!
e−λ t (4.31a)

M(t) =
∞∑

k=0

k
(λ t)k

k!
e−λ t = λ t (4.31b)

m(t) = λ (4.31c)

• ERLANG distribution; see (4.23a,b)

Pr
(
Nt = k

)
= e−λ t

(k+1) c−1∑

j=k c

(λ t)j

j!
(4.32a)

M(t) = e−λ t
∞∑

k=1

∞∑

j=k c

(λ t)j

j!

=
1

c


λ t+

c−1∑

j=1

bj

1 − bj

[
1 − exp

{
−λ t

(
1 − bj

)}]

(4.32b)

where b := exp{2π i c} = cos(2π/c) + i sin(2π/c); i =
√
−1.

• Normal distribution; see (4.24a,b)

Pr
(
Nt = k

)
= Φ

(
t− k µ

σ
√
k

)
− Φ

(
t− (k + 1)µ

σ
√
k + 1

)
(4.33a)

M(t) =

∞∑

k=1

Φ

(
t− k µ

σ
√
k

)
(4.33b)

m(t) =

∞∑

k=1

1

σ
√
k
ϕ

(
t− k µ

σ
√
k

)
(4.33c)

One possibility to compute values of the renewal function consists of applying the

LAPLACE–STIELTJES transform

M∗(s) :=

∞∫

0

e−s t dM(t). (4.34a)

Taking transform in (4.28c), we obtain

M∗(s) = G∗(s) +M∗(s)G∗(s), (4.34b)

so that

M∗(s) =
G∗(s)

1 −G∗(s)
, (4.34c)
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or equivalently

G∗(s) =
M∗(s)

1 +M∗(s)
. (4.34d)

Thus, we see that M(t) is determined by G(t), and conversely, G(t) is determined M(t).
If there is an easy way to back–transform (4.34c), one has a solution of (4.28c).

Numerous methods for computing the renewal function M(t) have been proposed. A com-

prehensive review of these approaches is given by CHAUDURY (1995). Sect. 4.4.2.2 shows

how to proceed when G(t) is WEIBULL.

There exists a great number of formulas giving bounds on M(t), e.g.:

M(t) ≈ G(t), if G(t) ≪ 1, (4.35a)

G(t) ≤M(t) ≤ G(t)

1 −G(t)
, (4.35b)

M(t) ≥ t

µ
− 1, µ being the mean of G(.), (4.35c)

M(t) ≤ (≥)
t

µ
, if G(.) is NBUE (NWUE), (4.35d)

t

µ
− 1 ≤M(t) ≤ t

µ
, if G(.) is NBUE. (4.35e)

With respect to the asymptotic behavior ofNt, its moments and its distribution, we mention

the following results:
Nt

t

a.s.−→ 1

µ
as t→ ∞, (4.36a)

(a.s. stands for “almost surely”)

lim
t→∞

M(t)

t
=

1

µ
, (4.36b)

lim
t→∞

m(t) =
1

µ
, if lim

t→∞
g(t) = 0, (4.36c)

lim
t→∞

[
M(t+ ε) −M(t)

]
=

ε

µ
(BLACKWELL’s theorem). (4.36d)

SMITH (1959) has shown that under rather weak conditions on G(t) there exist constants

an and bn such that the n–th cumulant13 of Nt is given by

κn(t) = an t+ bn + o(1) as t→ ∞. (4.37a)

13 See (2.76) – (2.78) for details on cumulants.
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In particular we have

κ1(t) = M(t) = E
(
Nt

)
≈ t

µ′1
+

(
µ′2

2 (µ′1)
2
− 1

)
, (4.37b)

κ2(t) = Var
(
Nt

)
≈ µ′2 − (µ′1)

2

(µ′1)
3

t+

(
5 (µ′2)

2

4 (µ′1)
4
− 2µ′3

3 (µ′1)
3
− µ′2

2 (µ′1)
2

)
, (4.37c)

where

µ′k =

∞∫

0

tk dG(t).

Using a central limit theorem for Nt, we finally state

Nt
approx∼ No

(
κ1(t), κ2(t)

)
. (4.37d)

Recurrence times Bt and F t

The backward recurrence time at any point t is

Bt = t− TNt , (4.38a)

whereas the forward recurrence time at t is

Ft = TNt+1 − t. (4.38b)

The sum

Lt = Bt + Ft = TNt+1 − TNt (4.38c)

is the total life length of the item in service at time t. {Bt; t ≥ 0}, {Ft; t ≥ 0}
are homogenous MARKOV processes and statistically equivalent to the processes {Yi; i =
1, 2, . . .},
{Tn; n = 1, 2, . . .} and {Nt; t ≥ 0} in the sense that, given the realization of one of

these processes, the realization of any other process is to be determined uniquely.

Assuming that the underlying distribution G(.) is non–lattice,14 we have the following

results on the distributions of Bt, Ft and Lt for finite t and for B, F and L for t → ∞
(stationary case); see BLUMENTHAL (1967). The density fLt(x) of Lt can be obtained by

noting that the probability that Lt lies between (x, x + ∆x) equals the probability that a

renewal occurs at time τ in the interval (t−x, t) and that the item installed at that time has

life between x and x+ ∆x. If t < x, Lt in the interval (x, x + ∆x) can also occur if the

14 A discrete distribution is a lattice (or periodic) distribution if its discontinuity points are of the form

a+ k d; k = 1, 2, . . . ,

when a and d (d > 0) are constants.
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first item fails between (x, x+ ∆x). Thus, since

Pr
[
renewal in (τ , τ + dτ)

]
= m(τ) dτ, (4.39a)

fLt(x) = g(x)
[
M(t)−M(t−x)

]
+ δ(x−t)

[
1+M(t−x)

]
,

x ≥ 0, (4.39b)

where

δ(u) =

{
1, if u ≥ 0,

0 otherwise.

Using the facts that

lim
t→∞

[
M(t) −M(t− x)

]
=
x

µ
(BLACKWELL’S theorem)

and

lim
t→∞

δ(x − t) = 0,

we find the asymptotic or stationary density of Lt to be

fL(x) = lim
t→∞

fLt(x) =
x

µ
g(x). (4.39c)

Also, for the moments of Lt, we see that

lim
t→∞

∞∫

0

xr fLt(x) dx =
1

µ

∞∫

0

xr+1 g(x) dx; r = 1, 2, . . . , (4.39d)

whenever the expectation on the right exists.

Similar arguments give

• the density of Bt

fBt(x) =





m(t− x) [1 −G(x)] for x < t

0 for x ≥ t



 , (4.40a)

which puts mass 1 −G(t) at x = t, and

• the density of Ft

fFt(x) = g(t+ x) +

t∫

0

m(t− u) g(x + u) du, x ≥ 0. (4.40b)

The joint density of Bt and Ft is

fBt,Ft(x, y) = m(t− x) g(x + y), x ≤ t, y ≥ 0. (4.40c)

In the limit we have

fB(x) = lim
t→∞

fBt(x) = fF (x) = lim
t→∞

fFt(x) =
1 −G(x)

µ
(4.41a)

fB,F (x, y) = lim
t→∞

fBt,Ft(x, y) =
g(x+ y)

µ
; x, y ≥ 0, (4.41b)
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since m(t − x) approaches 1/µ. The random variables Bt and Ft have the same limiting

distribution as t → ∞ but are not independent. Mean, variance and covariance of the

limiting distribution are15

E(B) = E(F ) =
1

2

(
µ+

σ2

µ

)
>
µ

2
, (4.41c)

Var(B) = Var(F ) =
µ′3
3µ

−
(
µ′2
2µ

)2

, (4.41d)

Cov(B,F) =
µ′3
6µ

−
(
µ′2
2µ

)2

, (4.41e)

where µ and σ2 are the mean and variance of the underlying distribution and µ′r is r–th

moment about the origin. Mean and variance of the limiting distribution of L follow as

E(L) = 2 E(B) = 2 E(F ) = µ+
σ2

µ
, (4.41f)

Var(L) = 2
[
Var(B) + Cov(B,F )

]
,

=
µ′3
µ

− µ′2
µ2

. (4.41g)

4.4.2 Ordinary WEIBULL renewal process16

The underlying distribution for the ordinary WRP is the common reduced WEIBULL dis-

tribution17with DF

g(y) = c yc−1 exp{−yc} (4.42a)

and CDF

G(y) = 1 − exp{−yc}, (4.42b)

which are the same for all Yi in Tn =
∑n

i=1 Yi, the time from t = 0 to the instant of the

n–th renewal, n = 1, 2, . . . . We will first discuss (Sect. 4.4.2.1) the distribution of Tn.

Then, in Sect. 4.4.2.2, we turn to the number of renewals in (0, t], particularly to the re-

newal function M(t) and to the renewal density m(t). In Sect. 4.4.2.3 we will make some

comments on the forward and backward recurrence times Ft and Bt.

15 COLEMAN (1981) gives the moments of Ft for finite t.
16 Suggested reading for this section: BAXTER/SCHEUER/BLISCHKE/MCCONALOGUE (1981, 1982),

CONSTANTINE/ROBINSON (1997), FROM (2001), GARG/KALAGNANAM (1998), LOMICKI (1966),

SMITH/LEADBETTER (1963), WHITE (1964a).

17 The results achieved for this special version of the WEIBULL distribution are easily generalized to the

two–parameter distribution with a scaling parameter b 6= 1 by appropriate re–scaling of the variable.
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4.4.2.1 Time to the n–th renewal

The DF [and CDF] of Tn is the n–fold convolution of g(y) [and G(y)] with itself:

fn(t) = g(n)(t) =

t∫

0

g(n−1)(t− y) g(y) dy, (4.43a)

Fn(t) = G(n)(t) =

t∫

0

G(n−1)(t− y)G(y) dy, (4.43b)

where g(1)(y) = g(y) from (4.42a) and G(1)(y) = G(y) from (4.42b). As stated in

Sect. 3.3.6.1, there generally do exist closed form expressions for the integrals on the right–

hand sides of (4.43a,b). We will give two approximations to Fn(t):

• a power series expansion of tc, introduced by WHITE (1964a),

• an infinite series of appropriate POISSONIAN functions of tc, introduced by LOMICKI

(1966).

WHITE (1964a) finds the following infinite series expansion of Fn(t):

F1(t) = G(t) =
∞∑

j=1

(−1)j+1 a1(j)
tc j

j!
, (4.44a)

Fn+1(t) =

t∫

0

Fn(t) dF1(t)

=
∞∑

j=n+1

(−1)j+n+1 an+1(j)
tc j

j!
, (4.44b)

where

a1(j) ≡ 1 ∀ j (4.44c)

an+1(j) =

j−1∑

i=n

an(i) γ(i, j), (4.44d)

γ(i, y) =
Γ(1 + i c) Γ

[
c (j − i) + 1

]
j!

Γ(1 + j c) i! (j − i)!
. (4.44e)

(4.44d,e) show that the coefficients an+1(j) in (4.44b) also depend on the WEIBULL shape

parameter c also.

LOMICKI (1966) gives the following series expansion of Fn(t):

Fn(t) =
∞∑

j=n

αn(j)Dj(t
c). (4.45a)

The components of (4.45a) are defined as follows:

Dj(t
c) =

∞∑

i=j

(tc)i

i!
exp (−tc); j = 1, 2, . . . (4.45b)
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Thus, Dj(t
c) is the CCDF of a POISSON distribution with parameter λ τ = 1 · tc. Dj(t

c)
may be expressed by the CDF of a χ2–distribution with ν = 2 j degrees of freedom:

Dj(t
c) = Fχ2

(
2 tc | ν = 2 j

)

=

2 tc∫

0

x(ν/2)−1 e−x/2

2ν/2 Γ(ν/2)
dx. (4.45c)

The coefficients αn(j) in (4.45a) are to be computed by the following algorithm:

1.

γ(r) =
Γ(1 + r c)

Γ(1 + r)
; r =, 1, 2, . . . (4.45d)

2.

bn+1(j) =

j=1∑

i=n

bn(i) γ(j − i);

{
n = 0, 1, 2, . . . ;

j = n+ 1, n + 2 . . .

}
(4.45e)

b0(j) = γ(j); j = 0, 1, 2, . . . (4.45f)

3.

a∗n(j) =

j∑

i=n

(−1)i+n
(
j

i

)
bn(i)

γ(n)
,

{
n = 0, 1, 2, . . . ;

j = n, n+ 1, . . .

}
(4.45g)

4.

αn(n) = a∗n(n) (4.45h)

αn(j) =

j∑

i=n

a∗n(j) −
j−1∑

i=n

a∗i (j − 1); j > n (4.45i)

For numerical calculations the backward recurrence formula

αn(j) = αn+1(j) +
[
a∗n(j) − a∗n(j − 1)

]
(4.45j)

can be useful in conjunction with (4.45h).

Fig. 4/2 shows the CDFs Fn(t) for n = 1, 2, 3, 4, 5 each combined with c = 0.5, 1, 1.5
and 2. The calculation was done with WHITE’s approach. The rate of convergence is very

slow, especially when t is great. Greater values of t are needed when n and/or c are great.
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Figure 4/2: Cumulative distribution function of Tn

4.4.2.2 Number of renewals N t

The numerical evaluation of the renewal function M(t), and the renewal intensity m(t)
when the underlying distribution G(·) is WEIBULL, has attracted the attention of several

authors. Research in this area has adopted one of the following two approaches:

1. development of algorithms for explicitly computing the convolutions of the underly-

ing distribution,

2. computing the renewal function by inverting its LAPLACE–STIELTJES transform.

We start our overview on the WEIBULL renewal function by citing a general approximation

ma(t) to the renewal intensity m(t), given by BARTHOLOMEW (1963):

ma(t) = g(t) +
[
G(t)

]2
/∫ t

0

[
1 −G(u)

]
du. (4.46a)

This approximation has the following properties:

• lim
t→∞

ma(t) = lim
t→∞

m(t) =
1

E(Y )
,

• ma(0) = m(0) = g(0),

• m′
a(0) = m′(0) and m′′

a(0) = m′′(0),
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• ma(0) is an upper bound for m(t) for all t, if g(t)
/[

1 − G(t)
]

is a non–decreasing

function of t; i.e., G(t) has a non–decreasing hazard rate.

Applying (4.46a) to the reduced WEIBULL distribution we get

ma(t) = c tc−1 exp
{
− tc

}
+

[
1 − exp

{
− tc

}]2

Γ

(
1 +

1

c

)
− 1

c
Γ

(
1

c

∣∣∣ tc
) . (4.46b)

Fig. 4/3 shows (4.46b) for several values of the shape parameter c.

Figure 4/3: BARTHOLOMEW’s approximation to the WEIBULL renewal intensity

SMITH/LEADBETTER (1963) proposed a power series for

M(t) = G(t) +

t∫

0

M(t− u) dG(u),

when G(t) = 1 − exp
{
− tc

}
, giving

M(t) =

∞∑

k=1

(−1)k−1Ak t
c k

Γ(1 + k c)
, (4.47a)

where

Ak =
Γ (1 + kc)

k!
−
k−1∑

j=1

Γ(1 + jc)

j!
Ak−j and A1 = Γ

(
1 +

1

c

)
. (4.47b)
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(4.47a) converges for all t and all values of the shape parameter c > 0, but the series con-

verges too slowly, however, for large values of t, especially for large c > 1. Convergence

is rapid for all t if 0 < c ≤ 1.

The two infinite series expansion for Fn(t) given in the preceding section can be extended

to approximate M(t). The approach of WHITE (1966a), given in (4.44), results in the

following series expansions of M(t) = M1(t) and higher binomial moments Mn(t); see

(4.29):

M(t) =

∞∑

j=1

(−1)j+1 dj
tc j

j!
, (4.48a)

where

d1 = 1, (4.48b)

dj = 1 −
j−1∑

i=1

di γ(i, j), (4.48c)

and γ(i, j) given by (4.44e). With respect to higher binomial moments, we get

Mn+1(t) =

t∫

0

Mn(t− u) dM(u)

=
∞∑

j=n+1

(−1)j+n+1dn+1(j)
tc j

j!
, (4.49a)

where

d1(1) = dj (4.49b)

dn+1(j) =

j−1∑

i=n

dn(i) d1(j − i) γ(i, j). (4.49c)

The LOMICKI (1966) approach gives the following series expansion of M(t):

M(t) =

∞∑

j=1

c(j)Dj

(
tc
)
, (4.50a)

where Dj

(
tc
)

is defined in (4.45b) and

c(j) =

j∑

n=1

αn(j), j = 1, 2, . . . , (4.50b)

where αn(j) is given in (4.45i).

BAXTER et al. (1981, 1982) have extensively tabulated E(Nt) = M(t), Var(Nt) and∫ t
0 M(u) du for five underlying distribution functions, one of them being the reduced

WEIBULL distribution. They used an algorithm that generates piecewise polynomial ap-

proximations to recursively defined convolutions G(n)(t) for G ∈ C2[0,∞), assuming that

g = G′ is bounded. The essence of the algorithm is the choice of a cubic–spline represen-

tation of G(n)(t) for each n, thus providing an accurate approximation that preserves both

positivity and monotonicity.
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CONSTANTINE/ROBINSON (1997) focused attention on the calculation of M(t) when

c > 1. They used a LAPLACE transform technique to form uniformly convergent series of

damped exponential terms for M(t):

M(t) =
t

µ
+
σ2 − µ2

2µ2
+

∞∑

j=1

exp{t sj}
−sj g′(sj)

, (4.51a)

where µ and σ2 are the mean and the variance of the reduced WEIBULL distribution:

µ = Γ

(
1 +

1

c

)
; σ2 = Γ

(
1 +

2

c

)
− µ2

and

g(s) = c

∞∫

0

exp{−s u} exp
{
− uc

}
uc−1 du

=

∞∫

0

e−x exp
{
− s x1/c

}
dx, (4.51b)

which is a special case of an integral known as FAXEN’s integral. The sj are simple com-

plex zeros of g(s) = 1, and [−sj g′(sj)]−1 are the residues of the function

U(s) =
g(s)

s
[
1 − g(s)

]

at the poles s = sj . To actually compute (4.51a), it is sometimes necessary to compute 500

or more sj values, especially for small t. The authors do give very good approximations

to sj , however. They recommend the SMITH/LEADBETTER (1963) series for small t, see

(4.47), and their own exponential series for large t. They do not recommend use of the

exponential series (4.51a) for 1 < c ≤ 1.2. The approach (4.51a) is much more difficult

for the case 0 < c < 1 because g(s) has a branch–point at s = 0 and the U(s) series does

not exist.

FROM (2001) presents an approach which can be applied even if 0 < c < 1. This approach

is similar to that of GARG/KALAGNANAM (1998) approximating a modified rational func-

tion near the origin and switches to an asymptotic linear function for larger values of t. The

FROM two–piece approximation with switch–over point µ+ k σ given by

M(t) =





M̂(t), if 0 ≤ t ≤ µ+ k σ

M̃(t), if t > µ+ k σ



 , (4.52a)

where k is a suitably chosen real number with µ+ k σ ≥ 0,

M̂(t) =

G(t)

[
1 + a1

(
t

µ

)
+ a2

(
t

µ

)2

+ . . .+ an+1

(
t

µ

)n+1
]

1 + an+2

(
t

µ

)
+ an+3

(
t

µ

)2

+ . . . + a2n+1

(
t

µ

)n (4.52b)
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and

M̃(t) =
t

µ
+
σ2 − µ2

2µ2
, cf. (4.37b). (4.52c)

FROM shows how to determine the coefficients a1, a2, . . . , a2n+1 and the factor k for G(t)
being WEIBULL or truncated normal.

We close this section with Fig. 4/4 showing E(Nt) and Var(Nt) for several values of c and

for 0 ≤ t ≤ 20. The coordinates of the graphs were taken from the tables of BAXTER et al.

(1981).

Figure 4/4: Mean and variance of the number of WEIBULL renewals

4.4.2.3 Forward and backward recurrence times

In (4.38a-c) we introduced the backward recurrence time Bt, the forward recurrence time

Ft and the total life length Lt = Bt + Ft of an item in service at time t and gave general

formulas for the distributions and moments of Bt, Ft and Lt. These formulas can only be

evaluated numerically when the underlying distribution is WEIBULL and t is finite. In the

limiting case (t → ∞), however, we achieve rather simple closed–form expressions in the
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reduced WEIBULL case:

fL(x) =
x

µ
g(x), cf. (4.39c),

=
c

Γ

(
1 +

1

c

) xc exp{−xc} ; (4.53a)

fB(x) = fF (x) =
1 −G(x)

µ
, cf. (4.41a),

=
exp{−xc}

Γ

(
1 +

1

c

) ; (4.53b)

fB,F (x, y) =
g(x + y)

µ
, cf. (4.41b),

=
c

Γ

(
1 +

1

c

) (x+ y)c−1 exp{−(x+ y)c} ; (4.53c)

E(B) = E(F ) =
1

2

(
µ+

σ2

µ

)
, cf. (4.41c),

=

Γ

(
1 +

2

c

)

2Γ

(
1 +

1

c

) ; (4.53d)

Var(B) = Var(F ) =
µ′3
3µ

−
(
µ′2
2µ

)2

, cf. (4.41d),

=

Γ

(
1 +

3

c

)

3Γ

(
1 +

1

c

) −




Γ

(
1 +

2

c

)

2Γ

(
1 +

1

c

)




2

; (4.53e)

Cov(B,F ) =
µ′3
6µ

−
(
µ′2
2µ

)2

, cf. (4.41e),

=

Γ

(
1 +

3

c

)

6Γ

(
1 +

1

c

) −




Γ

(
1 +

2

c

)

2Γ

(
1 +

1

c

)




2

; (4.53f)

ρ(B,F ) =
Cov(B,F )√

Var(B) Var(F )
=

2Γ

(
1 +

1

c

)
Γ

(
1 +

3

c

)
− 3Γ2

(
1 +

1

c

)

4Γ

(
1 +

1

c

)
Γ

(
1 +

3

c

)
− 3Γ2

(
1 +

1

c

) . (4.53g)
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The correlation between B and F as indicated by (4.53g) behaves as follows:

ρ(B,F )





> 0 for 0 < c < 1,

= 0 for c = 1,

< 0 for c > 1.





E(L) = µ+
σ2

µ
, cf. (4.41f),

=

Γ

(
1 +

2

c

)

Γ

(
1 +

1

c

) ; (4.53h)

Var(L) =
µ′3
µ

− µ′2
µ2

, cf. (4.41g),

=

Γ

(
1 +

1

c

)
Γ

(
1 +

3

c

)
− Γ

(
1 +

2

c

)

[
Γ

(
1 +

1

c

)]2 . (4.53i)

Fig. 4/5 shows the joint density (4.53c) for c = 3. The density is symmetric as is indicated

by corresponding marginal densities (4.53b) and by equal means (4.53d) and variances

(4.53e).

Figure 4/5: Joint density of the stationary WEIBULL forward and backward recurrence

times



5 Order statistics and related

variables

Order statistics and their functions play an important role in probability theory to charac-

terize distributions (see Chapter 6) and in the inferential process to estimate parameters of

a distribution and to test hypotheses on these parameters (see Chapters 9 to 22).

5.1 General definitions and basic formulas1

5.1.1 Distributions and moments of order statistics

Let X1,X2, . . . ,Xn be iid with CDF F (x). The variables Xi being arranged in ascending

order and written as

X1:n ≤ X2:n ≤ . . . ≤ Xn:n

are called order statistics. The CDF of Xr:n is given by

Fr:n(x) = Pr
(
Xr:n ≤ x

)

= Pr(at least r of the Xj are less than or equal to x)

=

n∑

i=r

(
n

i

)[
F (x)

]i [
1 − F (x)

]n−i
, (5.1a)

because the term in the summand is the binomial probability that exactly i of X1, . . . ,Xn

are less than or equal to x. Fr:n(x) can be written as the incomplete beta function ratio

or beta distribution function [X ∼ Be(a, b)]:

Fr:n(x) = IF (x)(r, n − r + 1)

=

F (x)∫
0

ur−1 (1 − u)n−r du

B(r, n − r + 1)
, (5.1b)

where B(r, n− r + 1) is the complete beta function

B(a, b) =

1∫

0

ua−1 (1 − u)b−1 du =
Γ(a) Γ(b)

Γ(a+ b)
. (5.1c)

(5.1a,b) hold whether X is discrete or continuous. In the sequel we will always assume that

X is continuous. Then, the random variables

Zr = F
(
Xr:n

)
− F

(
Xr−1:n

)
; r = 1, 2, . . . , n+ 1, (5.1d)

1 Suggested reading for this section BALAKRISNAN/COHEN (1991), BALAKRISHNAN/RAO (1998),

DAVID (1981), GALAMBOS (1978), KRISHNAIAH/RAO (1988), SARHAN/GREENBERG (1962).
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with F (X0:n) = 0 and F (Xn+1:n) = 1 are called coverages. Furthermore, when f(x), the

DF of X, exists, differentiation of (5.1b) with regard to (5.1c) gives the DF of Xr:n:

fr:n(x) =
n!

(r − 1)! (n − r)!

[
F (x)

]r−1 [
1 − F (x)

]n−r
f(x). (5.1e)

Some special values of r are

• r = 1
X1:n is the sample minimum with DF

f1:n(x) = n f(x)
[
1 − F (x)

]n−1
(5.2a)

and CDF

F1:n(x) =

n∑

i=1

(
n

i

)[
F (x)

]i [
1 − F (x)

]n−i
= 1 −

[
1 − F (x)

]n
. (5.2b)

• r = n
Xn:n is the sample maximum with DF

fn:n(x) = n f(x)
[
F (x)

]n−1
(5.3a)

and CDF
Fn:n(x) =

[
F (x)

]n
. (5.3b)

• r = k + 1 for n = 2 k + 1
Xk+1:2 k+1 is the sample median.2

The joint DF of Xr:n and Xs:n, 1 ≤ r < s ≤ n, is

fr,s:n(x, y) =
n!

(r − 1)! (s − r − 1)! (n − s)!

[
F (x)

]r−1 [
F (y) − F (x)

]s−r−1 ×

[
1 − F (y)

]n−s
f(x) f(y), x < y. (5.4a)

Even if X1, . . . ,Xn are independent, order statistics are not independent random variables.

The joint CDF of Xr:n and Xs:n may be obtained by integration of (5.4a) as well as by a

direct argument valid also in the discrete case.

• For x < y we have:

Fr,s:n(x, y) = Pr(at least r Xi ≤ x and at least s Xi ≤ y)

=
n∑

j=s

j∑

k=r

Pr(exactly k Xi ≤ x and exactly j Xi ≤ y)

=
n∑

j=s

j∑

k=r

n!

k! (j − k)! (n − j)!

[
F (x)

]k [
F (y) − F (x)

]j−k ×

[
1 − F (y)

]n−j
, x < y. (5.4b)

2 The DF of the sample median for n = 2 k is given farther down in Sect. 5.1.2.
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• For x ≥ y the inequality Xs:n ≤ y implies Xr:n ≤ x, so that

Fr,s:n(x, y) = Fs:n(y), x ≥ y. (5.4c)

Next we discuss the joint DF of k order statistics Xr1:n, . . . ,Xrk:n, 1 ≤ r1 < . . . < rk ≤
n, 1 ≤ k ≤ n, for x1 ≤ x2 ≤ . . . ≤ xk:

fr1,r2,...,rk:n(x1, x2, . . . , xn) =
n!

(r1 − 1)! (r2 − r1 − 1)! . . . (n− rk)!

[
F (x1)]

r1−1 ×
[
F (x2) − F (x1)

]r2−r1−1 × . . .×
[
1 − F (xk)

]n−rk ×
f(x1) × f(x2) × . . . × f(xk). (5.5a)

The joint DF of the first r order statistics X1:n,X2:n, . . . ,Xr:n is

f1,2,...,r:n(x1, x2, . . . , xr) =
n!

(n− r)!

[
1 − F (xr:n)

]n−r r∏

i=1

f(xi); x1 ≤ x2 ≤ . . . ≤ xr.

(5.5b)

The joint DF of all n order statistics simply is

f1,2,...,n:n(x1, x2, . . . , xn) = n!

n∏

i=1

f(xi); x1 ≤ x2 ≤ . . . ≤ xn. (5.5c)

From the marginal DF of Xr:n in (5.1e) and the joint DF of Xr:n and Xs:n in (5.4a), r < s,
we obtain

• the conditional DF of Xs:n, given Xr:n = x:

fs:n(y |Xr:n = x) =
(n− r)!

(s− r − 1)! (n − s)!

{
F (y) − F (x)

1 − F (x)

}s−r−1

×
{

1 − F (y)

1 − F (x)

}n−s { f(y)

1 − F (x)

}
, x ≤ y, (5.6a)

(Since [F (y) − F (x)]/[1 − F (x)] and f(y)/[1 − F (x)] are the CDF and the DF,

respectively, of the parent distribution truncated on the left at Xr:n = x, we can

state:

The conditional distribution of Xs:n, given Xr:n = x, is the same as the distribution

of the (s − r)–th order statistic in a sample of size n − r from a population with

distribution F (.) truncated on the left at x.)

• the conditional DF of Xr:n, given Xs:n = y:

fr:n(x |Xs:n = y) =
(s− 1)!

(r − 1)! (s − r − 1)!

{
F (x)

F (y)

}r−1{F (y) − F (x)

F (y)

}s−r−1

×

f(x)

F (y)
; x ≤ y. (5.6b)

(Since F (x)/F (y) and f(x)/F (y) are the CDF and DF of the parent distribution

truncated on the right at Xs:n = y, respectively, we see that the conditional distribu-
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tion of Xr:n, given Xs:n = y, is the same as the distribution of the r–th order statistic

in a sample of size s − 1 from a population with distribution F (.) truncated on the

right at y.)

We will denote the single moments of order statistics, E(Xk
r:n), by µ

(k)
r:n, 1 ≤ r ≤ n. They

follow as

µ(k)
r:n =

∞∫

−∞

xk fr:n(x) dx

=
n!

(r − 1)! (n − r)!

∞∫

−∞

xk [F (x)]r−1 [1 − F (x)]n−r f(x) dx. (5.7a)

The most import case of (5.7a) is the mean, denoted by µr:n:

µr:n = E(Xr:n) = n

(
n− 1

r − 1

) ∞∫

−∞

x [F (x)]r−1 [1 − F (x)]n−r dF (x). (5.7b)

Since 0 ≤ F (x) ≤ 1, it follows that

|µr:n| ≤ n

(
n− 1

r − 1

) ∞∫

−∞

|x| dF (x), (5.7c)

showing that µr:n exists provided E(X) exists, although the converse is not necessarily

true.

An alternative formula for µr:n may be obtained by integration by parts in

µr:n =

∞∫

−∞

x dFr:n(x).

To this end, note that for any CDF F (x) the existence of E(X) implies

lim
x→−∞

xF (x) = 0 and lim
x→∞

x [1 − F (x)] = 0,

so that we have

E(X) =

∞∫

−∞

x dF (x)

=

0∫

−∞

x dF (x) −
∞∫

0

x d[1 − F (x)]

=

∞∫

0

[1 − F (x)] dx−
0∫

−∞

F (x) dx. (5.8a)
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This general formula gives µr:n = E(Xr:n) if F (x) is replaced by Fr:n(x) :

µr:n =

∞∫

0

[
1 − Fr:n(x)

]
dx−

0∫

−∞

Fr:n(x) dx. (5.8b)

We may also write

µr:n =

∞∫

0

[
1 − Fr:n(x) − Fr:n(−x)

]
dx, (5.8c)

and when f(x) is symmetric about x = 0, we have

µr:n =

∞∫

0

[
Fn−r+1(x) − Fr:n(x)

]
dx. (5.8d)

Product moments of order statistics may be defined similarly:

µ(k,ℓ)
r,s:n = E

(
Xk
r:nX

ℓ
s:n

)

=
n!

(r − 1)! (s − r − 1)! (n − s)!

∫∫

−∞<x<y<∞

xk xℓ
[
F (x)

]r−1 ×

[
F (y) − F (x)

]s−r−1[
1 − F (y)

]n−s
f(x) f(y) dx dy. (5.9a)

The most important case derived from (5.9a) is the covariance of Xr:n and Xs:n:

Cov
(
Xr:n,Xs:n

)
= E

(
Xr:nXs:n

)
− E

(
Xr:n

)
E
(
Xs:n

)

= µr,s:n − µr:n µs:n. (5.9b)

For the computation of moments of order statistics and for checking the results, we need

some identities and recurrence relations. By using the basic identity

(
n∑

i=1

Xk
i:n

)ℓ
=

(
n∑

i=1

Xk
i

)ℓ
, (5.10a)

several identities for single and product moments of order statistics can be established

which primarily serve the purpose of checking. By choosing ℓ = 1 and taking expectations

on both sides, we get the identity

n∑

i=1

µ
(k)
i:n = nE

(
Xk
)

= nµ
(k)
1:1. (5.10b)

Similarly, by taking k = 1 and ℓ = 2, we obtain

n∑

i=1

X2
i:n + 2

n−1∑

i=1

n∑

j=i+1

Xi:nXj:n =

n∑

i=1

X2
i + 2

n−1∑

i=1

n∑

j=i+1

XiXj . (5.10c)
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Now taking expectations on both sides leads to

n∑

i=1

µ
(2)
i:n + 2

n−1∑

i=1

n∑

j=i+1

µi,j:n = nE
(
X2
)

+ n (n− 1)
[
E(X)

]2
, (5.10d)

which, when used together with (5.10b), yields an identity for product moments of order

statistics
n−1∑

i=1

n∑

j=i+1

µi,j:n =

(
n

2

)[
E(X)

]2
=

(
n

2

)
µ2

1:1. (5.10e)

Starting from (5.10a), one can establish the triangle rule leading to a recurrence relation

for single moments of order statistics:

r µ
(k)
r+1:n + (n− r)µ(k)

r:n = nµ
(k)
r:n−1. (5.11a)

For even values of n, say n = 2m, by setting r = m and k = 1 in (5.11a), we immediately

obtain the relation

1

2

[
µm+1:2m + µm:2m

]
= µm:2m−1 (5.11b)

telling that the expected value of the median in a sample of even size 2m is exactly equal

to the expected value of the median in a sample of odd size 2m− 1.

A similar recurrence relation for the product moments of order statistics is given by3

(r − 1)µ(k,ℓ)
r,s:n + (s− r)µ

(k,ℓ)
r−1,s:n + (n− s+ 1)µ

(k,ℓ)
r−1,s−1:n = nµ

(k,ℓ)
r−1,s−1:n. (5.11c)

We only mention two bounds for moments of order statistics; for more see ARNOLD/

BALAKRISHNAN (1989). For a continuous parent distribution with mean µ and variance

σ2 the following inequalities hold

µ1:n ≥ µ− (n− 1)σ√
2n − 1

, (5.12a)

µn:n ≤ µ+
(n− 1)σ√

2n − 1
. (5.12b)

5.1.2 Functions of order statistics

We will study some linear functions of order statistics and start with two special sums of

two order statistics. The median in a sample of even size n = 2m is defined as

X̃ :=
Xm:2m +Xm+1:2m

2
. (5.13a)

Its DF f eX(y) may be derived from the joint DF of two order statistics (5.4a) by setting

n = 2m, r = m and s = m+1 and by using standard transformation methods. The mean

3 More recurrence relatives may be found in ARNOLD/BALAKRISHNAN (1989).
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of X̃ has been commented upon in (5.11b). The sum Z = Xm:2m +Xm+1:2m has DF

fZ(z) =
(2m)!

2 (m− 1)!

+∞∫

−∞

{
F (x)

[
1 − F (z − x)

]}m−1
f(x) f(z − x) dx, (5.13b)

so X̃ = Z/2 has DF

f eX(y) = 2 fZ(2 y) =
(2m)!

(m− 1)!

∞∫

−∞

{
F (x)

[
1 − F (2 y − x)

]}m−1
f(x) f(2 y − x) dx.

(5.13c)
The CDF of X̃ is given by

F eX(y) =
2

B(m,m)

y∫

−∞

[
F (x)

]m−1
{[

1−F (x)
]m−

[
1−F (2 y−x)

]m}
f(x) dx. (5.13d)

Another measure of central tendency in a sample – besides the median – is the mid–range:

M :=
X1:n +Xn:n

2
(5.14a)

with DF

fM(y) = 2n (n− 1)

y∫

−∞

[
F (2 y − x) − F (x)

]n−2
f(x) f(2 y − x) dx (5.14b)

and CDF

FM (y) = n

y∫

−∞

[
F (2 y − x) − F (x)

]n−1
f(x) dx. (5.14c)

The difference of two arbitrary order statistics

Wrs := Xs:n −Xr:n; 1 ≤ r < s ≤ n (5.15a)

has DF

fWrs(y) =
n!

(r − 1)! (s − r − 1)! (n − s)!

∞∫

−∞

[
F (x)

]r−1 [
F (y + x) − F (x)

]s−r−1 ×

[
1 − F (y + x)

]n−s
f(x) f(y + x) dx. (5.15b)

One special case of (5.15a) is the spacing of order r:

Wr := Xr:n −Xr−1:n; r = 1, 2, . . . , n and X0:n ≡ 0 (5.16a)

with DF

fWr(y) =
n!

(r − 2)! (n − r)!

∞∫

−∞

[
F (x)

]r−2 [
1−F (y+x)

]n−r
f(x) f(y+x) dx (5.16b)
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and mean

E
(
Wr+1

)
=E
(
Xr+1:n−Xr:n

)
=

(
n

r

)∞∫

−∞

[
F (x)

]r[
1−F (x)

]n−r
dx; r = 1, 2, . . . , n−1.

(5.16c)
The sum of the first r spacings Wi gives Xr:n:

Xr:n =

r∑

i=1

Wi; r = 1, 2, . . . , n,

whereas the sum of the normalized spacings nW1, (n− 1)W2, . . . , Wn gives the total

time on test when n items are put on test without replacement of failing items and the test

lasts until the last failure (see Sect. 8.3.2.4).

Another special case of (5.15a) is the range W :

W := Xn:n −X1:n (5.17a)

with DF

fW (y) = n (n− 1)

∞∫

−∞

[
F (x+ y) − F (x)

]n−2
f(x) f(x+ y) dx, (5.17b)

CDF

FW (y) = n

∞∫

−∞

[
F (x+ y) − F (x)

]n−1
f(x) dx (5.17c)

and mean and variance

E(W ) = E
(
Xn:n

)
− E

(
X1:n

)
(5.17d)

Var(W ) = Var
(
Xn:n

)
− 2 Cov

(
X1:n,Xn:n

)
+ Var

(
X1:n

)
. (5.17e)

We now proceed to more general linear functions of order statistics:

Ln =

n∑

i=1

ainXi:n.

A major use of such functions arises in the estimation of location and scale parameters a
and b for a location–scale distribution with a DF of the form

fX(x | a, b) =
1

b
g

(
x− a

b

)
; a ∈ R, b > 0,

where g(·) is parameter–free. Denoting the reduced variate by

U :=
X − a

b

and the moments of its order statistics by

αr:n := E
(
Ur:n

)
(5.18a)

βr,s:n := Cov
(
Ur:n, Us:n

)
; r, s = 1, 2, . . . , n, (5.18b)
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it follows that

Ur:n =
Xr:n − a

b
,

so that

E
(
Xr:n

)
= a+ b αr:n, (5.18c)

Cov
(
Xr:n,Xs:n

)
= b2 βr,s:n. (5.18d)

Thus E
(
Xr:n

)
is linear in the parameters a and b with known coefficients, and

Cov
(
Xr:n,Xs:n

)
is known apart from b2. Therefore, the GAUSS–MARKOV least squares

theorem may be applied, in a slightly generalized form since the covariance matrix is not

diagonal. This gives the best linear unbiased estimators (BLUEs)

â =
n∑

i=1

ainXi:n, (5.18e)

b̂ =
n∑

i=1

binXi:n, (5.18f)

where the coefficients ain and bin, which are functions of the αi:n and βi,j:n, can be evalu-

ated once and for all, depending on the DF g(.) of the reduced variate. This technique will

be applied in Chapter 10.

5.1.3 Record times and record values4

We turn to the investigation of a specific sequence L(m), m ≥ 1, of random sample

size and of the corresponding random maximum ZL(m). Let X1,X2, . . . be independent

random variables with common continuous distribution function F (x). Let L(1) = 1 and,

for m ≥ 2, let

L(m) = min
{
j : j > L(m− 1), Xj > XL(m−1)

}
. (5.19)

The sequences L(m) and XL(m) can be interpreted as follows. Consider an infinite se-

quence X1,X2, . . . of continuously iid random variables. Then let us go through the

sequence X1,X2, . . . in their order of observation with the aim of picking out larger and

larger terms. Obviously, the first largest is X1. Then, for any k, if Zk = X1, we ig-

nore X2, . . . ,Xk , and we take that X as the next one, i.e. XL(2), when for the first time,

Zk > X1. We then continue the process. In other words, the investigation of L(m) gives an

insight into the position of those observations that change Zk. The variates XL(m) = ZL(m)

thus form the increasing sequence Z1 < ZL(2) < . . . ,

4 This section is mainly based on the survey article “A record of records” by NEVZEROV/BALAKRISHNAN

in BALAKRISHNAN/RAO (1998). DALLAS (1982) gives results on record values from the WEIBULL

distribution.
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Definitions: The sequence L(m), m ≥ 1, defined in (5.19) is called sequence of upper

record times, record times for short. m is the counter for the records and

L(m) is the random position of the m–th record in the series X1,X2, . . . .

The corresponding X–value, i.e., XL(m) = ZL(m), is called an upper record,

record for short.

The sequence ∆(m) = L(m) − L(m− 1), m ≥ 2, is called the sequence of

inter–record times.

The sequence N(n), n = 1, 2, . . ., denotes the number of records within the

first n variates of X1,X2, . . . .

Remark: If we replace > in (5.19) by < we speak of lower records. In the sequel we

will only deal with upper records, because the theory would be the same for

lower records. In fact, we can obtain the lower records from the upper records

by changing the sequence X1,X2, . . . to −X1,−X2, . . . or in the case whenX’s

are positive to 1/X1, 1/X2, . . . .
5

L(m) and N(n) do not depend on the parent distribution F (x). This is evident, because

if Xj ≥ Xi, then F (Xj) ≥ F (Xi) and the sequence F (Xj) is a sequence of indepen-

dent uniform variates. Hence, for arbitrary F (x), L(m) can be defined in (5.19) by the

additional assumption that the variables Xj are independent and uniformly distributed in

[0, 1].

We will first give the distributions of L(m) and N(n), respectively. To this end we intro-

duce indicators ξ1, ξ2, . . . defined as follows:

ξi =





1 if Xi is a record,

0 otherwise,



 (5.20a)

where Pr(ξi = 1) = 1/i; i = 1, 2, . . .. Then

N(n) =

n∑

i=1

ξi (5.20b)

and

Pr
[
L(m) ≥ n

]
= Pr

[
N(n) ≤ m

]
= Pr

(
n∑

i=1

ξi ≤ m

)
.6 (5.20c)

A first result is the following theorem:

The sequence L(1), L(2), . . . is a MARKOV chain where

Pr
[
L(m) = k

∣∣L(m− 1) = ℓ
]

=
ℓ

k (k − 1)
, if k > ℓ ≥ m− 1 ≥ 2, (5.21a)

5 For a discrete distribution one can introduce weak records. For it, we have to use the sign “≥” in (5.19)

instead of “>”. In this case any repetition of a record value is a record too.

6 The relation between L(m) and N(n) is the same as that between the number of renewals Nt in (0, t]
and the time to the n–th renewal Tn; cf. (4.27a).
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and

Pr
[
L(m) > k

∣∣L(m− 1) = ℓ
]

=
ℓ

k
, if k ≥ ℓ. � (5.21b)

The joint and marginal distributions of record times are as follows:

• if 1 < k2 < k3 < . . . < km, then:

Pr
[
L(2) = k2, . . . , L(m) = km

]
=

1

km (km − 1) (km−1 − 1) · . . . · (k2 − 1)
,

(5.22a)

• for any m ≥ 2 and k ≥ m:

Pr
[
L(m) = k

]
=

∑

1<k2<...<km−1<k

1

km (km − 1) · . . . · (k2 − 1)
, (5.22b)

• in particular for m = 2:

Pr
[
L(2) = k

]
=

1

k (k − 1)
, k ≥ 2. (5.22c)

To connect the distributions of L(m) and N(n), we have to use (5.20c) and

Pr
[
L(m) = n

]
= Pr

[
N(n− 1) = m− 1, ξn = 1

]

=
1

n
Pr
[
N(n− 1) = m− 1

]
.

Let s(r,j), denote the STIRLING number of the first kind7 defined by

x (x− 1) · . . . · (x− r + 1) =

r∑

j=0

s(r,j) x
j (5.23a)

or recursively by

s(r,j) = s(r−1,j−1) − (r − 1) s(r−1,j); r ≥ j ≥ 2 (5.23b)

with

s(r,r) = 1; s(r,r−1) = −
(
r

2

)
, s(r,1) = (−1)r−1 (r − 1)!.

Then

Pr
[
L(m) = k

]
=

∣∣s(k−1,m−1)

∣∣
k!

, k ≥ m ≥ 2, (5.24a)

and

Pr
[
L(m) = k

]
≈ (ln k)m−2

k2 (m− 2)!
as k → ∞. (5.24b)

7 (−1)r−j
s(r,j) is the number of permutations of r symbols which have exactly j cycles.
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We further have

Pr
[
N(n) = k

]
=

∣∣s(k,n)

∣∣
n!

, n ≥ k ≥ 1, (5.25a)

Pr
[
N(n) = k] ≈ (lnn)k−1

n (k − 1)!
, as n→ ∞. (5.25b)

Fig. 5/1 shows (5.24a) for m = 2, 3 and 4 in the upper part and (5.25a) for n = 5, 10, 15
in the lower part.

Figure 5/1: Probability distributions of L(m) and N(n)

For the number of records N(n) in the first n sample units, we have the following moments

E
[
N(n)

]
=

n∑

i=1

1

i
, (5.26a)

Var
[
N(n)

]
=

n∑

i=1

1

i
−

n∑

i=1

1

i2
, (5.26b)

with E
[
N(n)

]/
lnn→ 1 and Var

[
N(n)

]
→ 1 as n→ ∞.
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With respect to the record times L(m) we see that Pr
[
L(2) = k

]
=
[
k (k − 1)

]−1
for

k ≥ 2. This means that E
[
L(2)] = ∞8 and hence E

[
L(m)

]
= ∞ for any m ≥ 2. But

E
[
lnL(m)

]
= n− γ +O

(
m2/2m

)
, m→ ∞, (5.27a)

Var
[
lnL(m)

]
= n− π2/6 +O

(
m3/2m

)
, m→ ∞, (5.27b)

γ ≈ 0.5772 being EULER’s constant. N(n) and lnL(m) are asymptotically normal:

Pr

[
N(n) − n√

lnn
≤ x

]
= Φ(x), n→ ∞, (5.28a)

Pr

[
L(m) −m√

m
≤ x

]
= Φ(x), m→ ∞, (5.28b)

Φ(x) being the CDF of the standard normal distribution.

With respect to the inter–record times ∆(m) = L(m) − L(m− 1), m ≥ 2, we state the

following distributional results:

Pr
[
∆(m) > k

]
=

∞∫

0

(
1 − e−x

)k xm−2 e−x

(m− 2)!
dx

=

1∫

0

uk
−
[
ln(1 − u)

]m−2

(m− 2)!
du

=
k∑

i=0

(
k

i

)
(−1)i (1 + i)1−m; k = 0, 1, . . . ;m = 2, 3, . . . . (5.29a)

Pr
[
∆(m) = k

]
=

∞∫

0

(
1 − e−x

)k−1 xm−2 e−2 x

(m− 2)!
dx

= Pr
[
∆(m) > k − 1

]
− Pr

[
∆(m) > k

]
; k = 1, 2, . . . . (5.29b)

From (5.29a,b) it follows that E
[
∆(m)

]
= ∞ for any m = 2, 3, . . . , but the logarithmic

moments can be approximated:

E
[
ln ∆(m)

]
≈ m− 1 + γ. (5.29c)

We further have

lim
m→∞

Pr

[
ln ∆(m) −m√

m
≤ x

]
= Φ(x). (5.29d)

8 Notice the meaning of this statement. If a disaster has been recorded by X1, then the value of X2

bringing an even larger disaster has probability 0.5, but the expected waiting time to a larger disaster is

infinity.
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Fig. 5/2 shows (5.29b) for m = 2, 3 and 4.

Figure 5/2: Probability function Pr
[
∆(m) = k

]
for m = 2, 3, 4

The distribution of the record values

X(m) := XL(m)

depends on F (x) and f(x) of the parent distribution in the following way:

Pr
[
X(m) ≤ x

]
= FX(m)(x) =

1

(m− 1)!

− ln[1−F (x)]∫

0

um−1 e−u du; m = 1, 2, . . .

(5.30a)
The DF of X(m) is

fX(m) =
f(x)

(m− 1)!

{
− ln[1 − F (x)]

}m−1
; m = 1, 2, . . . , (5.30b)

and the joint DF of X(ℓ) and X(m), 1 ≤ ℓ < m, is

fX(ℓ),X(m)(x, y) =
1

(ℓ− 1)! (m− ℓ− 1)!

f(x)

1 − F (x)

{
− ln[1 − F (x)]

}ℓ−1 ×

f(y)
{
− ln[1 − F (y)] + ln[1 − F (x)]

}m−ℓ−1
, x < y.(5.30c)

The MARKOV structure of record values implies

Pr
[
X(m+ 1) ≥ x

∣∣X(m) = u
]

=
Pr(X ≥ x)

Pr(X > u)
, x > u. (5.31a)
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For any m > 1 and n > 1 the following relationship between order statistics and record

values exists almost surely:

Pr
[
X(m) > x

∣∣X(m− 1) = u
]

= Pr
[
Xn:n > x

∣∣Xn−1:n = u
]
. (5.31b)

5.2 WEIBULL order statistics9

Let X1:n be the first or smallest order statistic in a sample of size n, where Xi ∼
We(a, b, c); i = 1, 2, . . . , n; i.e.:

f(x) =
c

b

(
x− a

b

)c−1

exp

{
−
(
x− a

b

)c}
,

F (x) = 1 − exp

{
−
(
x− a

b

)c}
.

Then, using (5.2a,b), we have the familiar result — cf. Sect. 3.1.4 and (3.57a):

f1:n(x) = n f(x)
[
1 − F (x)

]n−1

=
n c

b

(
x− a

b

)c−1

exp

{
−n
(
x− a

b

)c}

=
c

b∗

(
x− a

b∗

)c−1

exp

{
−
(
x− a

b∗

)c}
, (5.32a)

where

b∗ = b n−1/c (5.32b)

and

F1:n(x) = 1 − [1 − F (x)]n

= 1 − exp

{
−n
(
x− a

b

)c}

= 1 − exp

{
−
(
x− a

b∗

)c}
. (5.32c)

It is readily seen from (5.32a,c) that X1:n is also distributed as a WEIBULL variate:

X1:n ∼We(a, b∗, c).

9 Suggested reading for this section: BALAKRISHNAN/COHEN (1991), BALAKRISHNAN/JOSHI

(1981), DAVID/GROENEVELD (1982), FREIMER/MUDHOLKAR/LIN (1989), HARTER (1988), KAMPS

(1991), KHAN/KHAN/PARVEZ (1984), KHAN/PARVEZ/YAQUB (1983), KHAN/YAQUB/PARVEZ

(1983), LIEBLEIN (1955), LOCHNER/BASU/DIPONZIO (1974), MALIK/TRUDEL (1982), MOHIE–EL–

DIN/MAHMOUD/ABO–YOUSSEF (1991), NIGM/EL–HAWARY (1996), PATEL (1975), PATEL/READ

(1975).
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In other words, the WEIBULL distribution is “closed under minima.” For the raw moments

of X1:n we have the familiar expression, see (2.64a):

E
(
Xr

1:n

)
=

r∑

j=0

(
r

j

)
aj (b∗)r−j Γ

(
1 +

r − j

c

)
. (5.32d)

In the sequel when discussing the r–th order statistic, 1 ≤ r ≤ n, of a WEIBULL variate,

we take the reduced WEIBULL variate U ∼We(0, 1, c) with DF

f(u) = c uc−1 exp
{
− uc

}

and CDF

F (u) = 1 − exp
{
− uc

}
.

The corresponding results for the three–parameter distribution X ∼ We(a, b, c) can be

obtained by using the linear transformation

Xr:n = a+ bUr:n.

The DF of Ur:n, 1 ≤ r ≤ n, is

fr:n(u) = r

(
n

r

)
c uc−1 exp

{
−u(n−r+1) c

}
[1 − exp(−uc)]r−1 . (5.33)

From (5.33) we obtain the k–th raw moment of Ur:n to be

E
(
Ukr:n

)
= r

(
n

r

) ∞∫

0

uk c uc−1 exp
{
−u(n−r+1) c

} [
1 − exp

(
− uc

)]r−1
du

= r

(
n

r

) r−1∑

i=0

(−1)i
(
r − 1

i

) ∞∫

0

uk c uc−1 exp
{
− (n− r + i+ 1)uc

}
du

= r

(
n

r

)
Γ

(
1 +

k

c

) r−1∑

i=0

(−1)i
(
r − 1

i

)

(n− r + i+ 1)1+(k/c)
. (5.34)

(5.34) is due to LIEBLEIN (1955).

The computing of moments of order statistics heavily relies on recurrence relations. Be-

sides the general recurrence relation given in (5.11a), there exist special relations for the

WEIBULL distribution; see NIGM/EL–HAWARY (1996). We will present a special recur-

rence relation proposed by BALAKRISHNAN/JOSHI (1981). With respect to any arbitrary

CDF F (x), we have the following two recursions for the CDF Fr:n(x) of Xr:n:

Fr:n(x) = Fr−1:n(x) −
(

n

r − 1

)[
F (x)

]r−1 [
1 − F (x)

]n−r+1
(5.35a)

with F0:n(x) = 1 ∀ x, so that (5.35a) is true for r = 1 as well,

(r − 1)Fr:n(x) + (n− r + 1)Fr−1:n(x) = nFr−1:n−1(x). (5.35b)



5.2 WEIBULL order statistics 239

On substituting Fr−1:n(x) from (5.35b) into equation (5.35a), we get

Fr:n(x) = Fr−1:n−1(x) −
(
n− 1

r − 1

)[
F (x)

]r−1 [
1 − F (x)

]n−r+1
. (5.35c)

Then using

E
(
Ukr:n

)
= k

∞∫

0

xk−1
[
1 − Fr:n(u)

]
du

and substituting for Fr:n(u) from (5.32c), we get

E
(
Ukr:n

)
=E
(
Ukr−1:n−1

)
+ k

(
n−1

r−1

)∞∫

0

xk−1
[
1 − exp{−uc}

]r−1[
exp{−uc}

]n−r+1
du.

(5.35d)
For m ≥ 1, consider the integral

Jk(p,m) =

∞∫

0

xk−1
[
1 − exp{−uc}

]m [
exp{−uc}

]p
du

= Jk(p,m− 1) − Jk(p + 1,m− 1) (5.35e)

by writing
[
1 − exp{−uc}

]m
as
[
1 − exp{−uc}

]m−1 [
1 − exp{−uc}

]
and splitting the

integral in two. Also,

Jk(p, 0) =

∞∫

0

xk−1
[
exp{−uc}

]p
du

=
Γ(k/c)

c pk/c
. (5.35f)

Thus Jk(p, 0), p ≥ 1, can be calculated by using the gamma function. The function

Jk(p,m) for m ≥ 1 can now be obtained by using (5.35e) recursively. Finally, (5.35d) can

be written as

E
(
Ukr:n

)
= E

(
Ukr−1:n−1

)
+ k

(
n− 1

r − 1

)
Jk(n − r + 1, r − 1). (5.35g)

Starting with

E
(
Uk1:1

)
= k Jk(1, 0), (5.35h)

we obtain all the single raw moments of order statistics from a reduced WEIBULL distribu-

tion avoiding the usage of the gamma function to a great extent.

PATEL/READ (1975) give the following bounds on the first moments of Ur:n:

E
(
Ur:n

)
≤

{
r∑

i=1

(n− i+ 1)−1

}1/c

for c > 1 (5.36a)

E
(
Ur:n

)
≥

{
r∑

i=1

(n− i+ 1)−1

}1/c

for c < 1. (5.36b)
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The joint DF of Ur:n and Us:n (1 ≤ r < s ≤ n) is

fr,s:n(u, v) =
n!

(r−1)! (s−r−1)! (n−s)! c
2 (u v)c−1 exp

{
− uc

}
×

exp
{
− (n− s+ 1) vc

}[
1−exp

{
− uc

}]r−1

[
exp
{
− uc

}
−exp

{
− vc

}]s−r−1
, 0 < u < v <∞. (5.37)

From (5.37) we obtain the product moment of Ur:n and Us:n as 10

E
(
Ur:nUs:n) =

∞∫

0

v∫

0

u v fr,s:n(u, v) du dv

=
n! c2

(r−1)! (s−r−1)! (n−s)!

r−1∑

i=0

s−r−1∑

j=0

(−1)s−r−1−j+i ×

(
r−1

i

)(
s−r−1

j

) ∞∫

0

v∫

0

exp
{
− (i+ j + 1)uc

}
×

exp
{
− (n− r − j) vc } (u v)c du dv (5.38a)

=
n!

(r−1)! (s−r−1)! (n−s)!

r−1∑

i=0

s−r−1∑

j=0

(−1)s−r−1−j+i ×
(
r−1

i

)(
s−r−1

j

)
φc(i+ j + 1, n− r − j). (5.38b)

This result is due to LIEBLEIN (1955) and φc(a, b) is LIEBLEIN’s φ–function defined by

φc(a, b) = c2
∞∫

0

y∫

0

exp
{
− axc − b yc

}
x2 y2 dx dy. (5.38c)

Through a differential equation approach, LIEBLEIN has derived an explicit algebraic for-

mula for the φ–function:

φc(a, b) =

Γ2

(
1 +

1

c

)

(a b)1+(1/c)
Ia/(a+b)

(
1 +

1

c
, 1 +

1

c

)
for a ≥ b, (5.38d)

where Ip(c, d) is PEARSON’s incomplete beta function defined as

Ip(c, d) =
Γ(c+ d)

Γ(c) Γ(d)

p∫

0

tc−1 (1 − t)d−1 dt, 0 < p ≤ 1.

10 Recurrence relations between product moments E
`
U j

r:n U
k
s:n) are given by KHAN/PARVEZ/YAQUB

(1983).
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When a < b, φc(a, b) may be computed from the identity

φc(a, b) + φc(b, a) =

Γ2

(
1 +

1

c

)

(a b)1+(1/c)
. (5.38e)

(5.38a) together with E
(
Ur:n

)
and E

(
Us:n

)
leads to the covariance

Cov
(
Ur:n, Us:n

)
= E

(
Ur:nUs:n

)
− E

(
Ur:n

)
E
(
Us:n

)
.

LOCHNER/BASU/DIPONZIO (1974) give the following approximation to the covariance

of order statistics from the reduced WEIBULL distribution:

Cov
(
Ur:n, Us:n

)
≈ A(n, r, s) · (a+ b n+ c r + d s), (5.39)

where

A(n, r, s) =
[
r
/
(n+ 2) (n + 1 − r)

]
c−2

[
− ln(1 − r

/
(n+ 1))

](1/c)−1
×

[
− ln(1 − s

/
(n+ 1))

]1/c−1

with the coefficients a, b, c and d from Tab. 5/1.

Table 5/1: Coefficients to approximate the covariance of order statistics from the reduced

WEIBULL distribution

c a b c d

1.5 1.3426 −0.0270 0.0006 0.0212

2.0 1.2761 −0.0214 −0.0016 0.0190

2.5 1.2664 −0.0186 −0.0039 0.0171

3.0 1.2721 −0.0169 −0.0059 0.0155

3.5 1.2830 −0.0157 −0.0076 0.0142

There exists a number of tables giving the means, variances and covariances of order statis-

tics from the reduced WEIBULL distribution:

• WEIBULL (1959) used LIEBLEIN’s expression for E
(
Ur:n

)
to tabulate the means,

variances and covariances to five decimal places for n = 1(1)15, r = 1(1)n and c =
1/α with α = 0.1(0.1)0.6(0.2)1.0.

• WEIBULL (1967a) presented means, variances and covariances of all order statistics

for n = 5(5)20 and c−1 = 0.1(0.1)1.0 to five decimal places.

• GOVINDARAJULU/JOSHI (1968), based on LIEBLEIN’s results, tabulated the means,

variances and covariances to five decimal places for n = 1(1)10 and for c =
1.0(0.5)3.0(1.0)10.

• MCELHONE/LARSEN (1969) tabulated E
(
Ur:n

)
to six significant figures for n =

1(1)25 and c = 1(1)10, Var
(
Ur:n

)
and Cov

(
Ur:n, Us:n

)
for c = 1(1)5 for the same

set of n–values.
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• HARTER (1970) tabulated E
(
Ur:n

)
to five decimal places for n = 1(1)40, r = 1(1)n

and c = 0.5(0.5)4.0(1.0)8.0.

• BALAKRISHNAN/CHAN (1993a) proposed tables for the means, variances

and covariances of all order statistics for n up to 20 and c =
1/5, 1/4, 1/3, 1/2, 1.5(0.5)3, 4(2)10.

Table 5/2 presents — as a sample — means, variances and covariances of all order statistics

for n = 10 and c = 2 in the upper part and c = 3 in the lower part.

Table 5/2: Means, variances and covariances of all order statistics for n = 10 and c = 2
and 3

c = 2 Var
(
Ur:10

)
for r = s; Cov

(
Ur:10, Us:10

)
for s > r

r
sccccccc

1 2 3 4 5 6 7 8 9 10 E
(
Ur:10

)

1 0.02146 0.01523 0.01218 0.01025 0.00886 0.00776 0.00684 0.00601 0.00521 0.00430 0.28025

2 — 0.02462 0.01974 0.01664 0.01439 0.01262 0.01113 0.00979 0.00848 0.00700 0.43184

3 — — 0.02692 0.02273 0.01969 0.01728 0.01525 0.01342 0.01163 0.00960 0.55605

4 — — — 0.02935 0.02546 0.02237 0.01976 0.01740 0.01509 0.01246 0.67054

5 — — — — 0.03229 0.02841 0.02513 0.02214 0.01923 0.01589 0.78316

6 — — — — — 0.03615 0.03202 0.02825 0.02456 0.02032 0.89971

7 — — — — — — 0.04168 0.03685 0.03208 0.02658 1.02662

8 — — — — — — — 0.05050 0.04409 0.03663 1.17408

9 — — — — — — — — 0.06772 0.05656 1.36427

10 — — — — — — — — — 0.12092 1.67572

c = 3 Var
(
Ur:10

)
for r = s; Cov

(
Ur:10, Us:10

)
for s > r

r
sccccccc

1 2 3 4 5 6 7 8 9 10 E
(
Ur:10

)

1 0.02269 0.01369 0.00998 0.00785 0.00643 0.00537 0.00453 0.00380 0.00314 0.00243 0.41448

2 — 0.01945 0.01422 0.01122 0.00920 0.00769 0.00649 0.00545 0.00450 0.00348 0.56264

3 — — 0.01789 0.01414 0.01161 0.00971 0.00821 0.00690 0.00570 0.00441 0.66949

4 — — — 0.01717 0.01412 0.01183 0.01000 0.00842 0.00696 0.00539 0.76043

5 — — — — 0.01700 0.01427 0.01208 0.01018 0.00842 0.00653 0.84459

6 — — — — — 0.01731 0.01468 0.01240 0.01027 0.00797 0.92730

7 — — — — — — 0.01825 0.01544 0.01282 0.00997 1.01316

8 — — — — — — — 0.02016 0.01679 0.01310 1.10838

9 — — — — — — — — 0.02435 0.01913 1.22512

10 — — — — — — — — — 0.03749 1.40417
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Looking at

E
(
U r
)

= Γ
(
1 +

r

s

)

one sees that negative moments of order r > −c do exist for the reduced WEIBULL

variate. KHAN/KHAN/PARVEZ (1984) discussed the negative moments of all WEIBULL

order statistics of order greater than −c.
PATEL (1975) derived bounds on moments of linear functions of WEIBULL order statis-

tics. The bounds are obtained by using JENSEN’s inequality on the expected values of some

functions of the CDF F (·) which are convex (concave) and strictly increasing. Defining

Bi :=

n∑

j=n−i+1

1

j
, Ci := −

n∑

j=i

1

j
and m := c−1

and demanding c ≥ 1 we have the following bounds for the means of the midrange

E
[(
U1:n + Un:n

)
/2
]

≤
[(
B1)

m + (Bn)
m
]/

2 (5.40a)

E
[(
U1:n + Un:n

)
/2
]

≤
[
(B1 +B2)/2

]m
(5.40b)

E
[(
U1:n + Un:n

)
/2
]

≥
[{

− ln
(
1 − eC1

)}m
+
{
− ln

(
1 − eCn

)}m]/
2 (5.40c)

E
[(
U1:n + Un:n

)
/2
]

≥
[
ln
(
1 − exp{(C1 +C2)/2}

)]m
(5.40d)

and for the means of the range

E
(
Un:n − Un:n

)
≤

(
Bn −B1

)m
(5.41a)

E
(
Un:n − U1:n

)
≤ (Bn)

m −
{
− ln

(
1 − eC1

)}m
(5.41b)

E
(
Un:n − U1:n

)
≥

{
− ln

(
1 − eCn

)}m − (B1)
m. (5.41c)

The intervals given by (5.40a) and (5.40c) are smaller than those given by (5.40b) and

(5.40d). (5.41b) is nearer to the true value of E
(
Un:n − U1:n

)
than (5.41a). The paper of

PATEL also gives bounds on the means of the m–th midrange E
[(
Um:n + Un−m+1:n

)
/2
]

and the m–th range E
(
Un−m+1 − Um:n

)
and on the means of spacings.11

MALIK/TRUDEL (1982) derived the DF of the quotient

Z := Ur:n/Us:n, 1 ≤ r < s ≤ n,

of two WEIBULL order statistics using the MELLIN transform technique:

fZ(z) =
n!

(r−1)! (s−r−1)! (n−s)!
s−r−1∑
i=0

r−1∑
j=0

(−1)i+j
(s−r−1

i

)(r−1
j

)
×

c zc−1

[
(n − s+ i+ 1) + (s− r − i+ j) zc

]2 , 0 < z ≤ 1.





(5.42a)

11 DAVID/GROENEVELD (1982) discuss the expected length of spacings, whereas FREIMER et al. (1989)

discuss the distribution of extreme spacings Un:n − Uu−1:n.
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Some special cases of (5.42a) are

• the ratio of the extreme order statistics Z = U1:n

/
Un:n:

fz(Z)=n (n−1)
n−2∑

i=0

(−1)i
(
n−2

i

)
c zc−1

[
(i+1) + (n−i−1) zc

]2 , 0 < z ≤ 1, (5.42b)

• the ratio of consecutive order statistics Z = Ur:n
/
Ur+1:n, r = 1, 2, . . . , n− 1:

fz(Z)=
n!

(r−1)! (n−r−1)!

r−1∑

j=0

(−1)j
(
r−1

j

)
c zc−1

[
(n−r) + (j+1) zc

]2 , 0 < z ≤ 1.

(5.42c)

If one is interested in the simulation of order statistics from a three–parameter WEIBULL

distribution, i.e., Xi
iid∼ We(a, b, c), NEWBY (1979) proposed a generator that promises to

be faster than first generating n iid variates X1, . . . , Xn, see (2.61), and afterwards sorting

them in ascending order. The sequence of order statistics is directly generated by

h0 = 0,

hr+1 = hr − ln(Zr)
/
(n− r); r = 0, 1, . . . , n− 1;

Xr+1:n = a+ b
(
hr+1

)1/c
,





(5.43)

where Zr is uniformly distributed in (0,1).

5.3 WEIBULL record values12

For reasons given in the preceding section we confine ourselves to the discussion of

U ∼ We(0, 1, c). Applying (5.30a,b) to the distribution of the reduced WEIBULL vari-

ate U , we arrive at the following CDF and DF of the m–th record value U(m) in an iid

sequence U1, U2, . . . :

FU(m)(u) =
1

Γ(m)

uc∫

0

vm−1 e−v dv

= 1 − Γ(m |uc)
Γ(m)

; u > 0 and m = 1, 2, . . . ; (5.44a)

fU(m)(u) =
c ucm−1

Γ(m)
exp{−uc}; u > 0 and m = 1, 2, . . . (5.44b)

We see that (5.44a,b) are the CDF and DF of STACY’s generalized gamma distribution, cf.

(3.24d), where a = 0, b = 1 and m is the second shape parameter besides c. From (5.44b)

the r–th raw moment of U(m) is obtained to be

E
[
U(m)r

]
=

Γ
(
m+

r

c

)

Γ(m)
; r ≥ 1, m = 1, 2, . . . (5.44c)

12 Suggested reading for this section: DALLAS (1982), KAMPS (1991), PAWLAS/SZYNAL (2000a,b), SUL-

TAN/BALAKRISHNAN (1999/2000) and HOINKES/PADGETT (1994) for the maximum likelihood esti-

mation of the WEIBULL parameters based on observed record values.
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In particular, we have

E[U(m)] =

Γ

(
m+

1

c

)

Γ(m)
(5.44d)

and

Var[U(m)] =

Γ(m) Γ

(
m+

2

c

)
− Γ2

(
m+

1

c

)

Γ2(m)
. (5.44e)

We get the following recurrence relation:

E
[
U(m+ 1)r

]
=
(
1 +

r

m c

)
E
[
U(m)r

]
. (5.44f)

The joint DF of U(ℓ) and U(m), 1 ≤ ℓ < m, is

fU(ℓ),U(m)(u, v) =
c2

Γ(ℓ) Γ(m− ℓ)
(u v)c−1 uc (ℓ−1)

[
vc + uc

]c−1 ×

exp
{
− v2

}
; 0 < u < v; ℓ = 1, 2, . . . ,m− 1. (5.45a)

From (5.45a) the product moment of order 1 + 1 follows as

E
[
U(ℓ)U(m)

]
=

Γ

(
ℓ+

1

c

)

Γ(ℓ)

Γ

(
m+

2

c

)

Γ

(
m+

1

c

) , 1 ≤ ℓ ≤ m− 1, (5.45b)

so that the covariance of U(ℓ) and U(m) is

Cov
[
U(ℓ)U(m)

]
=

Γ

(
ℓ+

1

c

)

Γ(ℓ)




Γ

(
m+

2

c

)

Γ

(
m+

1

c

) −
Γ

(
m+

1

c

)

Γ(m)


 , 1 ≤ ℓ ≤ m− 1.

(5.45c)

With respect to product moments of higher order than 1 + 1, we can state the following

recurrence relations:

E
[
U(ℓ)r U(ℓ+ 1)s

]
=

ℓ c

ℓ c+ r
E
[
U(ℓ+ 1)r

]
; ℓ ≥ 1; r, s = 1, 2, . . . ; (5.45d)

E
[
U(ℓ)r U(m)s

]
=

ℓ c

ℓ c+ r
E
[
U(ℓ+ 1)r U(m)s

]
;

1 ≤ ℓ ≤ m− 2; r, s = 1, 2, . . . ; (5.45e)
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E
[
U(ℓ)r U(ℓ+ 2)s

]
=
(
1 +

s

c

)
E
[
U(ℓ)r U(ℓ+ 1)s

]
− ℓ

{
E
[
U(ℓ+ 1)r U(ℓ+ 2)s

]

−E
[
U(ℓ+ 1)r+s

]}
; ℓ ≥ 1; r, s = 1, 2, . . . ; (5.45f)

E
[
U(ℓ)r U(m+ 1)s

]
=

(
1+

s

c (m−ℓ)

)
E
[
U(ℓ)r U(m)s

]
− ℓ

m−ℓ
{
E
[
U(ℓ+ 1)r U(m+ 1)s

]

−E
[
U(ℓ+ 1)r U(m)s

]}
; 1 ≤ ℓ ≤ m− 2; r, s = 1, 2, . . . . (5.45g)

5.4 Log-WEIBULL order statistics13

Starting from the two–parameter WEIBULL distribution with scale parameter b and shape

parameter c, the logarithmic transformation converts this scale–and–shape–parameter dis-

tribution into a more tractable location–and–scale–parameter distribution; see Sect. 3.3.4.

If X ∼ We(0, b, c) with CDF

FX(x) = 1 − exp
{
−
(x
b

)c}
,

then

Y = lnX

has a type–I–minimum distribution with location parameter

a∗ = ln b, a∗ ∈ R,

and scale parameter

b∗ = 1/c, b∗ > 0;

i.e., the CDF and DF of Y are

FY (y) = 1 − exp

{
− exp

[
y − a∗

b∗

]}
, y ∈ R, (5.46a)

fY (y) =
1

b∗
exp

{
y − a∗

b∗
− exp

(
x− a∗

b∗

)}
, y ∈ R. (5.46b)

In the sequel we will only discuss the order statistics Zr:n of the reduced Log–WEIBULL

variate Z = (y − a∗)
/
b∗ having

FZ(z) = 1 − exp
{
− ez

}
, z ∈ R, (5.47a)

fZ(z) = exp
{
z − ez

}
, z ∈ R. (5.47b)

13 Suggested reading for this section: HARTER (1988), LIEBLEIN (1953), WHITE (1964b, 1967b, 1969).
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Applying (5.1e) to (5.47a,b) we get the following DF of Zr:n:

fr:n(z) =
n!

(r − 1)! (n − r)!
exp
{
z − (n− r + 1) ez

} [
1 − exp

{
− ez

}]r−1
. (5.47c)

For the first order statistic (5.47c) changes to

f1:n(z) = n exp
{
z − n ez

}
= exp

{
(z + lnn) − ez+lnn

}
(5.48a)

with corresponding CDF

F1:n(z) = 1 −
[
1 − FZ(z)

]n

= 1 − exp
{
− n ez

}
= 1 − exp

{
− ez+lnn

}
. (5.48b)

We thus see that Z1:n again has a Log–WEIBULL distribution, but with an additional lo-

cation parameter (− lnn); i.e., Z1:n has the same distribution as Y = Z − lnn and the

Log–WEIBULL distribution is “closed under minima” like the ordinary WEIBULL distribu-

tion; see (5.32a–c). So the raw moments of Z1:n can easily be traced back to those of Z;

see (3.44d–g):

E
(
Z1:n

)
= E(Z) − lnn = −γ − lnn ≈ −0.577215 − lnn, (5.48c)

E
(
Z2

1:n

)
= E

[
(Z − lnn)2

]
=

π2

6
+ (γ + lnn)2, (5.48d)

Var
(
Z1:n

)
= Var(Z − lnn) = Var(Z) =

π2

6
≈ 1.97811. (5.48e)

Applying the recurrence relation (5.11a) we can express the raw moments of Zr:n, r > 1,
in terms of the raw moments of Z1:n, e.g.:

E
(
Z2:n

)
+ (n− 1) E

(
Z1:n

)
= nE

(
Z1:n−1

)

=⇒ E
(
Z2:n

)
= −(n− 1) [−γ − lnn] + n [−γ − ln(n− 1)]

= −γ + (n− 1) lnn− n ln(n − 1).

WHITE (1969) has proposed a method to compute E(Zkr:n) directly without calculating

E
(
Zks:n

)
for all s < r. For k = 1 the formula is

E
(
Zr:n

)
= −γ −

r−1∑

j=0

(−1)j
(
n

j

)
∆j ln(n− j), (5.49a)

where ∆j is the j–th forward difference operator. For k = 2 WHITE gives

E
(
Z2
r:n

)
=

π2

6
+ γ2 + 2 γ

r−1∑
j=0

(−1)j
(
n
j

)
∆j ln(n− j) +

r−1∑
j=0

(−1)j
(−n
j

)
∆j
[
ln(n− j)

]2
.





(5.49b)
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Combining (5.49a) and (5.49b) gives

Var
(
Zr:n

)
= E

(
Z2
r:n

)
−
[
E
(
Zr:n

)]2

=
π2

6
+

r−1∑

j=0

(−1)j
(
n

j

)
∆j
[
ln(n−j)

]2−




r−1∑

j=1

(−1)j
(
n

j

)
∆j ln(n−j)





2

.(5.49c)

The problem in applying these formulas for the numerical computation, for large n, is the

buildup of rounding errors in the logarithms. So, the logarithm must be evaluated with a

great number of decimal places.

For estimating the parameters a∗ and b∗ of the Log–WEIBULL distribution — or equiva-

lently the parameters b = ea
∗

and c = 1/b∗ of the ordinary WEIBULL distribution — from

order statistics (see (5.18a–f) and Sect. 10.2) we need the covariances of Zr:n and Zs:n
which are built upon the cross moments E

(
Zr:n Zs:n

)
. The latter follow from the joint DF

of Zr:n and Zs:n:

fr,s:n(u, v) =
n!

(r−1)!(s−r−1)!(n−s)!
[
1−exp

{
− eu

}]r−1

[
exp
{
− eu

}
−exp

{
− ev

}]s−r−1 ×

exp
{
− (n−s+1) ev−eu+u+v

}
; 1 ≤ r < s ≤ n, u < v, (5.50a)

as

E
(
Zr:n Zs:n

)
=

∫∫

−∞<u<v<∞

u v fr,s:n(u, v) du dy. (5.50b)

Making the change of variable

u = ln y and v = ln z,

we have

E
(
Zr:nZs:n

)
= C

∫∫

−∞<y<z<∞

ln y ln z
[
1 − e−y

]r−1 [
e−y − e−z

]s−r−1×

exp{(n − s+ 1) z} e−y dz dy,




(5.50c)

where

C =
n!

(r − 1)! (s − r − 1)! (n − s)!
.

Expanding the integrand in (5.50c) by the binomial theorem we get

E
(
Zr:nZs:n

)
= C

r−1∑

p=1

r−s−1∑

q=1

(−1)p+q
(
r−1

p

)(
s−r−1

q

)
θ(p+s−r−q, n−s+q+1),

(5.50d)
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where

θ(ℓ,m) =

∞∫

0

∞∫

y

ln y ln z exp{−ℓ y −mz} dz dy. (5.51a)

WHITE (1964b) then uses results from LIEBLEIN (1954) to reduce the double integral in

(5.51a) such that it is suitable to numerical calculations:

θ(ℓ,m) =

π2

6
+ [γ + ln(ℓ+m)]2

m (ℓ+m)
+

(γ + ln ℓ) ln

(
m

ℓ+m

)

ℓm
−
L(1) − L

(
m

ℓ+m

)

ℓm
,

(5.51b)

where L(x) is EULER’s dilogarithm function

L(x) = −
x∫

0

ln(1 − t)

t
dt (5.51c)

with

L(1) = π2/6 and L(x) =
∞∑

k=1

xk

k2
.

Table 5/3 is compiled from WHITE (1964b)14 and gives E
(
Zr:10

)
together with

Cov
(
Zr:10, Zs:10

)
= E

(
Zr:10 Zs:10

)
− E

(
Zr:10

)
E
(
Zs:10

)
for 1 ≤ r ≤ s ≤ 10, so that

Var
(
Zr:10

)
is also included as Cov

(
Zr:10, Zr:10

)
.

Table 5/3: Means, variances and covariances of all order statistics of the reduced

Log-WEIBULL variate for n = 10

Var
(
Zr:10

)
for r = s; Cov

(
Zr:10, Zs:10

)
for s > r

r
sccccccc

1 2 3 4 5 6 7 8 9 10 E
(
Zr:10

)

1 1.64493 0.61876 0.35919 0.24260 0.17615 0.13282 0.10185 0.07803 0.05824 0.03962 –2.87980

2 — 0.64586 0.37650 0.25489 0.18536 0.13991 0.10738 0.08231 0.06148 0.04184 –1.82620

3 — — 0.39702 0.26954 0.19637 0.14842 0.11403 0.08749 0.06538 0.04453 –1.26718

4 — — — 0.28739 0.20986 0.15888 0.12221 0.09387 0.07021 0.04786 –0.86808

5 — — — — 0.22686 0.17211 0.13261 0.10200 0.07639 0.05213 –0.54361

6 — — — — — 0.18958 0.14641 0.11282 0.08463 0.05785 –0.25745

7 — — — — — — 0.16581 0.12812 0.09635 0.06603 0.01204

8 — — — — — — — 0.15191 0.11471 0.07893 0.28369

9 — — — — — — — — 0.14879 0.10319 0.58456

10 — — — — — — — — — 0.17143 0.98987

14 WHITE gives tables for means, variances and covariances of all order statistics for sample sizes from

n = 2 to n = 20.
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5.5 Order statistics and record values for several related

WEIBULL distributions

We conclude this chapter with a short section on order statistics and related variables per-

taining to the double, the truncated, the extended and the inverse WEIBULL distributions.

In Sect. 3.3.2 we have presented the double WEIBULL distribution; see (3.40a,b). The

order statistics of the reduced double WEIBULL variate with DF

fD(x | 0, 1, c) =
c

2
|x|c−1 exp

{
− |x|c

}
; x ∈ R, c > 0 (5.52a)

and CDF

FD(x | 0, 1, c) =





0.5 exp
{
− |x|c

}
for x ≤ 0

1 − 0.5 exp
{
− xc

}
for x > 0



 (5.52b)

have been studied in some detail by BALAKRISHNAN/KOCHERLAKOTA (1985). (5.52a,b)

in conjunction with (5.1e) give the following DF of Xr:n:

fr:n(x)=





Cr,n
c |x|c−1

2r
exp
{
− r |x|c

}[
1− 1

2
exp
{
− |x|c

}]n−r
for x ≤ 0

Cr,n
c xc−1

2n−r+1
exp
{
− (n− r + 1)xc

}[
1− 1

2
exp
{
− xc

}]r−1

for x > 0





(5.53a)
with

Cr,n :=
n!

(r − 1)! (n − r)!
.

The k–th raw moment of Xr:n found by BALAKRISHNAN/KOCHERLAKOTA is

E
(
Xk
r:n

)
= Cr,n Γ

(
1 +

k

c

)




(−1)k
n−r∑

i=0

(−1)i

(
n− r

i

)

2r+i (r + i)1+(k/c)
+

r−1∑

i=0

(−1)i

(
r − 1

i

)

2n−r+1+i (n− r + 1 + i)1+(k/c)
.





(5.53b)

In computing the first moments E
(
Xr:n

)
, one should observe the symmetry relation

E
(
Xr:n

)
= −E

(
Xn−r+1:n

)
.

With respect to the mixed moment E
(
Xr:nXs:n

)
, 1 ≤ r < s ≤ n, the authors derived the
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rather complicated expression

E
(
Xr:nXs:n

)
=

= Cr,s,n

{
n−s∑
i=0

s−r−1∑
j=0

(−1)s−r+i−1−j(n−s
i

)(
s−r−1
j

)
2−(s+i) φc(i+j+1, s−j−1) +

r−1∑
i=0

s−r−1∑
j=0

(−1)s−r+i−1−j(r−1
i

)(s−r−1
j

)
2−(n−r+i+1) φc(i+j+1, n−r−j) −

s−r−1∑
i=0

s−r−1−i∑
j=0

(−1)i+j
(
s−r−1
i

)(
s−r−1−i

j

) Γ2

 
1+

1

c

!

2n−s+r+i+j+1

1
[
(r+i)(n−s+1+j)

]1+(1/c)









(5.53c)

with

Cr,s,n :=
n!

(r − 1)! (s − r − 1)! (n − s)!

and φc(a, b) as LIEBLEIN’s φ–function defined in (5.38b,c).

In Sect. 3.3.5 we have introduced three types of truncated WEIBULL distributions. Order

statistics of the reduced form of the doubly truncated WEIBULL distributions with DF

fDT (x | c, tℓ, tr) =
c xc−1 exp

{
− xc

}

P −Q
, 0 ≤ tℓ ≤ x ≤ tr <∞ (5.54a)

and CDF

FDT (x | c, tℓ, tr) =
exp
{
− tcℓ

}
− exp

{
− xc

}

P −Q
, 0 ≤ tℓ ≤ x ≤ tr <∞, (5.54b)

where

P = 1 − exp
{
− tcr

}
and Q = 1 − exp

{
− tcℓ

}

have been studied by KHAN et al. (1983) and MOHIE–EL–DIN et al. (1991) with the spe-

cial aim to establish recurrence relations for the raw moments of Xr:n in a sample from

(5.54a,b). Two general results for the raw moments of Xr:n from any truncated distribution

are

E
(
Xk

1:n

)
= tkℓ + k

tr∫

tℓ

xk−1
[
1 − FDT (x)

]n
dx; n ≥ 1; k = 1, 2, . . . ; (5.55a)

E
(
Xk
r:n

)
= E

(
Xk
r−1:n−1

)
+

(n−1
r−1

)
k
tr∫
tℓ

xk−1
[
FDT (x)

]r−1[
1−FDT (x)

]n−r−1
dx; 2 ≤ r ≤ n;n ≥ 2; k = 1, 2, . . . ,





(5.55b)
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where FDT (x) is the CDF of the interesting doubly truncated distribution and under the

assumptions

lim
x→tℓ

{
xk
[
FDT (x)

]r−1[
1−FDT (x)

]n−r+1
}

= lim
x→tr

{
xk
[
FDT (x)

]r−1[
1−FDT (x)

]n−r+1
}

= 0.

Now, let

Q∗ =
1 −Q

P −Q
and P ∗ =

1 − P

P −Q
,

then 1 − FDT (x | c, tℓ, tr) from (5.54b) may be written as

1 − FDT (x | c, tℓ, tr) = −P ∗ +
exp
{
− xc

}

P −Q

= −P ∗ +
1

c
x1−c fDT (x | c, tℓ, tr). (5.56a)

Putting the value of 1 − FDT (x | c, tl, tr) into the general formula (5.55a), we get for the

moments of the first order statistic X1:n:

E
(
Xk

1:n

)
= tkℓ +k

tr∫

tℓ

xk−1
[
1−FDT

(
x | c, tℓ, tr

)]n−1
[
−P ∗+

1

c
x1−c

]
fDT

(
x | c, tℓ, tr

)
dx

and after some manipulation

E
(
Xk

1:n

)
= Q∗tkℓ − P ∗ E

(
Xk

1:n−1

)
+

k

n c
E
(
Xk−c

1:1

)
(5.56b)

with the special relation for n = 1

E
(
Xk

1:1

)
= Q∗ tkℓ − P ∗ tkr +

k

c
E
(
Xk−c

1:1

)
. (5.56c)

With (5.56a) inserted into (5.55b) and using the recurrence relation (5.11a), the raw mo-

ments of Xr:n, 2 ≤ r ≤ n, have the following recurrence:

E
(
Xk
r:n

)
= Q∗ E

(
Xk
r−1:n−1

)
− P ∗ E

(
Xk
r:n−1

)
+

k

n c
E
(
Xk−c
r:n

)
(5.56d)

with the special relation for r = n

E
(
Xk
n:n

)
= Q∗ E

(
Xk
n−1:n−1

)
− P ∗ tkr +

k

n c
E
(
Xk−c
n:n

)
. (5.56e)

The extended WEIBULL distribution, introduced in Sect. 3.3.10, has been studied by

FREIMER et al. (1989) with respect to the extreme spacings

Wn = Xn:n −Xn−1:n and W1 = X2:n −X1:n

in order to analyze the tail character. The authors defined a distribution to have a medium

right tail when, as n → ∞, anXn:n + bn converges in distribution to − ln(Y ), where

Y denotes the reduced exponential distribution with DF f(y) = exp{−y}. The extended

WEIBULL distribution with CDF given by (3.108b) has a right tail which is always medium,

but the length of the left tail measured by W1 always depends on the parameter d of the

extended WEIBULL distribution.
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The inverse WEIBULL distribution of Sect. 3.3.3 has been studied with respect to its

lower record values by PAWLAS/SZYNAL (2000a) and with respect to its lower general-

ized order statistics by PAWLAS/SZYNAL (2000b) in order to give characterizations of this

distribution.



6 Characterizations1

Characterization problems deal with the question of finding assumptions which determine

the distribution of a variate, at least to the extent that the distribution function belongs to

a certain family of distributions. Characterization theorems are located on the borderline

between probability theory and mathematical statistics, and utilize numerous classical tools

of mathematical analysis, such as the theory of functions of complex variables, differential

equations of different types, theory of series and, last but not least, the theory of functional

equations. The latter approach with respect to the WEIBULL distribution is presented in

Sect. 6.1.

The characterization may be based on nearly every function to be constructed for a variate.

Sect. 6.2 gives several WEIBULL characterizations using conditional moments. WEIBULL

characterization theorems based on different aspects of order statistics will be found in

Sect. 6.3. Miscellaneous approaches using different arguments, e.g., record values, trun-

cation, entropy, FISHER information, quantiles or the distribution of the random hazard

rate, are presented in Sect. 6.4. Chapter 6 closes with characterization theorems for several

related WEIBULL distributions.

Not all theorems characterizing a WEIBULL distribution are new. Some of them are gener-

alizations of characterizations for the exponential distribution because a WEIBULL variate

is a monotonic transformation of an exponential variate.

6.1 WEIBULL characterizations based on functional equations2

Let X be an exponential variate with CDF

F (x | b) = 1 − exp{−x/b}, x ≥ 0, b > 0. (6.1a)

An important and useful characterization of X is its lack of memory which can be stated

as

Pr(X > x+ y |X > y) = Pr(X > x) ∀ x, y ≥ 0; (6.1b)

i.e., the conditional probability of surviving another x units of time, given survival up to y,

is the same as surviving x units of time for a new item. The technique commonly employed

1 Suggested general reading on characterizations: GALAMBOS/KOTZ (1978) and KAGAN/LINNIK/RAO

(1973), on characterizations by means of order statistics: BALAKRISHNAN/RAO (1998, Part IV), on

characterizations of the WEIBULL distribution using more than one approach: JANARDAN/TANEJA

(1979a,b) and ROY/MUKHERJEE (1986).

2 Suggested reading for this section: JANARDAN/TANEJA (1979b), MOOTHATHU (1990), ROY/

MUKHERJEE (1986), SHIMIZU/DAVIES (1981), WANG (1976).
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in proving this characterization is the well–known CAUCHY functional equation

φ(x+ y) = φ(x) + φ(y) ∀ x, y ≥ 0 (6.2a)

or equivalently

ψ(x+ y) = ψ(x)ψ(y) ∀ x, y ≥ 0. (6.2b)

It is well known that if φ(·) and ψ(·) are continuous, then the solution for (6.2a) is

φ(x) = Ax ∀ x ≥ 0, φ(1) = A, (6.3a)

and the solution for (6.2b) is

ψ(x) = Bx ∀ x ≥ 0, ψ(1) = B. (6.3b)

The assumption of continuity on φ(·) and ψ(·) can be relaxed to measurability.

A generalization of the exponential distribution (6.1a) is the WEIBULL distribution with

CDF

F (x | b, c) = 1 − exp
{
−
(x
b

)c}
; x ≥ 0; b, c > 0. (6.4)

A characterization of the WEIBULL distribution in the spirit of the memoryless property of

the exponential distribution (6.1b) is presented by the property

Pr
(
X > c

√
xc + yc

∣∣X > y
)

= Pr(X > y) ∀ x, y ≥ 0. (6.5)

To prove that (6.5) is a characterizing property of (6.4) we need to solve the functional

equation:

φ
(

c
√
xc + yc

)
= φ(x) + φ(y) ∀ x, y ≥ 0 (6.6a)

or equivalently

ψ
(

c
√
xc + yc

)
= ψ(x)ψ(y) ∀ x, y ≥ 0, (6.6b)

where c 6= 0 is fixed. The solution is given in Proposition 1 where we shall assume φ(·) and

ψ(·) are right– or left–continuous. The proof of Theorem 1 establishing the characterizing

property of (6.5) for (6.4) needs only the right–continuity.

Proposition 1

Suppose φ(·) and ψ(·) are real–valued right– or left–continuous functions on R+ ={x |x ≥
0} and c 6= 0. Then φ(·) and ψ(·) satisfy the functional equations (6.6a,b) for all x, y ∈ R+

if and only if

φ(x) = Axc ∀ x ∈ R+, φ(1) = A, (6.7a)

and

ψ(x) = Bxc ∀ x ∈ R+, ψ(1) = B. (6.7b)

Hint: If c < 0, we shall take the domain of φ(·) and ψ(·) to be R+\{0}. �
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Proof of Proposition 1

The sufficient conditions are obvious. To show the necessary condition for φ(·), letting

y = x (m− 1)1/c; m = 2, 3 . . . , we have

φ
(
xm1/c

)
= φ(x) + φ

[
x (m− 1)1/c

]
for x ≥ 0 and m = 2, 3, . . . (6.8a)

(6.8a) leads to

φ
(
xm1/c

)
= mφ(x) for x ≥ 0 and m = 2, 3, . . . (6.8b)

Consequently

φ
[
x (n/m)1/c

]
= (n/m)φ(x) for x ≥ 0 and n,m = 2, 3, . . . (6.8c)

Letting x = 1, we get

φ
(
r1/c

)
= r φ(1) for all rational r ∈ R+. (6.8d)

Now, suppose φ(·) is right–continuous. Let x ∈ R+ and {rn} be a sequence of rational

numbers such that rn ≥ x and limn→∞ rn = x, then

φ
(
x1/c

)
= lim

n→∞
φ
(
r1/cn

)
= lim

n→∞
rn φ(1) = xφ(1). �

(6.8e)

Similarly, we can prove that (6.7b) is the solution of (6.6b).

Theorem 1

Let c 6= 0 and let X be a non–degenerate variate with Pr(X ≥ 0) = 1. Then X has the

WEIBULL distribution (6.4) if and only if X satisfies

Pr
(
X > c

√
xc + yc

∣∣X > y
)

= Pr(X > x) ∀ x, y ≥ 0, (6.9)

with c > 0. If c < 0 there is no variate possessing property (6.9). �

Proof of Theorem 1

It can easily be verified that (6.9) is a necessary condition for X to be WEIBULL. To prove

that is also a sufficient condition, denote R(x) = Pr(X > x). Then condition (6.9) is

equivalent to

R
(

c
√
xc + yc

)
= R(x)R(y) ∀ x, y ≥ 0. (6.10a)

It follows from the definition of R(·) that it is right–continuous. Therefore, from Proposi-

tion 1, the solution for R(·) is

R(x) = Bxc ∀ x ≥ 0 and B = R(1). (6.10b)

Since R(·) is non–increasing with R(0) = 1 and limx→∞R(x) = 0, there is no solution

of c < 0. If c > 0, the solution is

R(x) = exp
{
−
(x
b

)c}
for b > 0 and all x ≥ 0. �

(6.10c)



6.1 WEIBULL characterizations based on functional equations 257

We give two applications of Theorem 1 in reliability theory:

1. We rewrite (6.9) as

Pr(X > x |X > y) = Pr
(
X > c

√
xc + yc

)
, x ≥ y ≥ 0. (6.11)

Suppose that X, the lifetime of an item, has the WEIBULL distribution (6.4) and that

the item has not failed up to y > 0. Then the conditional probability that it will be

working at time x ≥ y can be found by calculating the unconditional probability

Pr
(
X > c

√
xc + yc

)
.

2. Now we rewrite (6.9) as

Pr(X > x+ y |X > y) = Pr
(
X > c

√
(x+ x)c − yc

)
; x, y ≥ 0. (6.12)

Since, for each x ≥ 0, the function f(y) = (x+ y)c − yc is decreasing (increasing)

in y if and only c ≤ 1 (c ≥ 1), the distribution of X is a decreasing (increasing)

hazard rate distribution if and only if c ≤ 1 (c ≥ 1).

ROY/MUKHERJEE (1986) used the multiplicative version (6.2b) of the CAUCHY functional

equation to characterize the WEIBULL distribution via its hazard function

H(x) =
(x
b

)c
; x ≥ 0; b, c > 0; (6.13a)

= λxc with λ = b−c. (6.13b)

From (6.13b) it is clear that for all x > 0, y > 0,

H(x y)H(1) = H(x)H(y), H(1) > 0. (6.14)

If conversely (6.14) holds for all x > 0 and all y > 0, then H(x) = λxc for some

c > 0, λ > 0, as guaranteed by the multiplicative version of the CHAUCHY functional

equation. Thus we have for H(1) > 0 the following.

Theorem 2

H(x y)H(1) = H(x)H(y) ∀ x, y > 0 iff X ∼We(0, b, c). �

The papers of SHIMIZU/DAVIES (1981) and MOOTHATHU (1990) also rely on a functional

equation approach to prove several characterization theorems for the WEIBULL distribu-

tion. We give the theorems without proofs.

Theorem 3 (SHIMIZU/DAVIES, 1981)

Let N be an integer valued variate independent of the X’s in {X1,X2, . . . ,XN}, which

are iid, such that Pr(N ≥ 2) = 1 and that the distribution of lnN has a finite mean and is

not concentrated on a lattice ρ, 2 ρ, . . . , for any ρ > 0. If the random variable

Y = N1/c min{X1,X2 . . . ,XN}
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has the same distribution F (·) as X1, then there exists a positive number λ such that

F (x) = 1 − exp
{
− λxc

}
. �

We will encounter a similar theorem in Sect. 6.3, namely Theorem 11, which assumes a

fixed sample size n instead of a random sample size N .

Theorem 4 (SHIMIZU/DAVIES, 1981)

Let m ≥ 2 be a fixed positive number and let Y1, Y2, . . . , Ym be a set of positive random

variables independent of the X’s in {X1, . . . ,Xm} and satisfying

Pr




m∑

j=1

Y c
j = 1


 = 1

and

Pr

(
lnYi
lnYj

is irrational for some i and j

)
> 0.

If the random variable

Z = min

{
X1

Y1
,
X2

Y2
, . . . ,

Xm

Ym

}

has the same distribution as X1, then there exists a positive constant λ such that the distri-

bution function of Xi; i = 1, . . . , n is

F (x) = 1 − exp
{
− λxc

}
. �

For Theorem 5 we need some prerequisites.

1. For fixed integer m ≥ 2 and fixed real number c > 0, consider the functions di(·, c);
i = 1, . . . ,m defined on Rm−1

+ as follows, where y = (y1, . . . , ym−1)
′ ∈ Rm−1

+ :

d1(y, c) = 1
/
(1 + yc1 + . . . , ycm−1)

1/c,

dj(y, c) = yj−1 d1(y, c); j = 2, . . . ,m.

2. Let X1, . . . ,Xm be iid variates and let Y = (Y1, . . . , Ym−1)
′ be a vector of m − 1

positive variates independent of the X’s.

3. Let

W = min

{
X1

d1(Y , c)
,

X2

d2(Y , c)
, . . . ,

Xm

dm(Y , c)

}
.

Theorem 5 (MOOTHATU, 1990)

X1 is WEIBULL with F (x) = 1 − exp
{
− λxc

}
if and only if W is independent of Y . In

either case W has the same distribution as X1. �
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6.2 WEIBULL characterizations based on conditional moments3

In the preceding section we started with a characterization of the exponential distribution,

i.e., the lack of memory property (6.1b), which was generalized to a characterization of the

WEIBULL distribution. Here, we will start in the same way by first giving a characterization

of the exponential distribution by conditional moments. SHANBHAG (1970) proved that X
is exponentially distributed if and only if

E(X |X > y) = y + E(X) ∀ y > 0. (6.15a)

(6.15) might be seen as another way of expressing “lack of memory.” A simple transforma-

tion of (6.15a) results in

E(X − y |X > y) = E(X) (6.15b)

indicating that the mean of the residual lifetime X − y after having survived up to y is the

same as the mean lifetime of a new item (y = 0).

A first generalization of (6.15a) so that the case of a WEIBULL distribution is also covered

was given by HAMDAN (1972) with the following.

Theorem 6 (HAMDAN, 1972)

An absolutely continuous variate X has CDF

F (x) =





1 − exp
{
− h(x)

/
h(b)

}
for x ∈ [α, β)

0 for x 6∈ [α, β),



 (6.16a)

where the interval [α, β) is closed on the right, whenever β is finite, b is a positive constant

and h(·) is a strictly increasing differentiable function from [α, β) onto [0,∞), if and only

if
E
[
h(X) |X > y

]
= h(y) + h(b) for y ∈ [α, β). � (6.16b)

Proof of Theorem 6

The necessity of (6.16b) can be verified directly. To prove the sufficiency of (6.16b) let

G(x) be the CDF of X. Then (6.16b) may be put in the form

[
1 −G(y)

] [
h(y) + h(b)

]
=

β∫

y

h(x) dG(x)

= E
[
h(X)

]
−

y∫

α

h(x) dG(x). (6.17a)

3 Suggested reading for this section: HAMDAN (1972), OUYANG (1987), SHANBHAG (1970), TAL-

WALKER (1977).
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Integration by parts yields

[
1 −G(y)

] [
h(y) + h(b)

]
= E

[
h(X)

]
− h(y)G(y) +

y∫

α

h′(x)G(x) dx. (6.17b)

Differentiating (6.17b) with respect to y gives

h(b)
dG(y)

dy
= h′(y)

[
1 −G(y)

]
(6.17c)

and hence

G(y) = 1 −K exp
{
− h(y)

/
h(b)

}
, (6.17d)

where K is a constant. Because of G(α) = 0, we get K = 1, noting that h(α) = 0. �

When h(x) = xc, x ∈ [0,∞) and c > 0, (6.16b) characterizes the two–parameter

WEIBULL distribution. Comparing (6.4) with (6.16a), the condition (6.16b) results in

E
(
Xc
∣∣X > y

)
= yc + bc. (6.18)

Obviously, SHANBHAG’s (1970) characterization of the exponential distribution with

E(X) = b and F (x) = 1 − exp{x/b} corresponds to c = 1.

Another special case pertaining to Theorem 6 may be derived with

h(x) = − ln(1 − x), x ∈ [0, 1],

and b such that h(b) = 1, i.e., b = 1 − e−1. Then the CDF in (6.16a) reduces to that of the

uniform distribution in [0, 1] with F (x) = x for 0 ≤ x ≤ 1. In fact, all CDFs for powers

of X, e.g., Xc, in [0, 1] are characterized by choosing h(x) = − ln(1− xc) and b such that

h(b) = 1, i.e. b = (1 − e−1)1/c.

TALWALKER (1977) extended HAMDAN’s characterization (1972) so that it covers not only

the WEIBULL distribution and the exponential distribution as its special cases but also

BURR’s distribution, the beta distribution of the second kind and the PARETO distribution.

Theorem 7 (TALWALKER, 1977)

An absolutely continuous variate X has CDF

F (x) =





1 −



h(x) +

g(k)

ψ(k) − 1

h(α) +
g(k)

ψ(k) − 1




ψ(k)/[1−ψ(k)]

for x ∈ [α, β)

0 otherwise,





(6.19a)

where the interval [α, β) is closed on the right. Whenever β is finite, h(·) is a real valued,

continuous and differentiable function on [α, β) with E
[
h(X)

]
= k and g(·) and ψ(·) are

finite, real valued functions of k if and only if

E
[
h(X)

∣∣X > y
]

= h(y)ψ(k) + g(k). � (6.19b)
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Proof of Theorem 7

Since it is easy to verify the necessity of the condition, we prove its sufficiency. Given that

E
[
h(x) |x ≥ y

]
= h(y)ψ(k) + g(k),

we get
β∫

y

h(x) dF (x) =
[
1 − F (y)

] [
h(y)ψ(k) + g(k)

]
. (6.20a)

Differentiating (6.20a) with respect to y yields

−h(y)F ′(y) = ψ(h)h′(y)
[
1 − F (y)

]
− dF (y)

[
h(y)ψ(k) + g(k)

]

=⇒ F ′(y)
{
h(y)

[
ψ(k) − 1

]
+ g(k)

}
= ψ(k)h′(y)

[
1 − F (y)

]

=⇒ F ′(y)
1 − F (y)

= ψ(k)
h′(y)

h(y)
[
ψ(k) − 1

]
+ g(k)

=⇒ −F ′(y)
1 − F (y)

=
ψ(k)

1 − ψ(k)

h′(y)

h(y) + g(k)
/[
ψ(k) − 1

]

=⇒ F (y) =





1 −



h(y) +

g(k)

ψ(k) − 1

h(α) +
g(k)

ψ(k) − 1




ψ(k)/[1−ψ(k)]

for y ∈ [α, β)

0 otherwise. �

If we set

h(x) = exp{−xc}, x ∈ [0,∞) and c > 0,

ψ(k) = k with 0 < k < 1,

g(k) = 0,

we get

F (x) = 1 −
[
exp
{
− xc

}]k/(1−k)
.

Since 0 < k < 1, we have λ := k/(1 − k) > 0 so that

F (x) = 1 −
[
exp
{
− xc

}]λ
= 1 − exp

{
− λxc

}

is the WEIBULL distribution with scale factor λ = b−c.

OUYANG (1987) gave the following characterizing theorem that incorporates the theorems

of SHANBHAG (6.15a) and of HAMDAN (6.18) as special cases.
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Theorem 8 (OUYANG, 1987)

Let X be a variate with continuous CDF

F (x) =





0 for x < α

1 − exp

{
−1

d

[
h(x) − h(α)

]}
for x ∈ [α, β)

1 for x ≥ β





(6.21a)

where d is a nonzero constant, h(x) is a real–valued continuous function defined on [α, β),
possessing a continuous derivation on (α, β) with limx↑β h(x) = ±∞ and E

[
h(x)

]
=

h(α) + d, if and only if

E
[
h(X) |X > y

]
= h(y) + d ∀ y ∈ [α, β). � (6.21b)

Proof of Theorem 8

The part of necessity can be verified directly, so that the sufficiency has to been shown. We

have

E
[
h(X) |X > y

]
=

1

1 − F (y)

β∫

y

h(x) dF (x).

Hence (6.21b) becomes

[
1 − F (y)

] [
h(y) + d

]
=

β∫

y

h(x) dF (x)

= E
[
h(x)

]
+

y∫

α

h(x) d
[
1 − F (x)

]
. (6.22a)

Integration by parts and using F (α) = 0 gives

[
1 − F (y)

] [
h(y) + d

]
= E

[
h(X)

]
+ h(y)

[
1 − F (y)

]
− h(α) −

y∫

α

h′(x)
[
1 − F (y)

]
dx

(6.22b)

or equivalently

d
[
1 − F (y)

]
= E

[
h(X)

]
− h(α) −

y∫

α

h′(x)
[
1 − F (y)

]
dx. (6.22c)

As F (·) and h′(·) are continuous by assumptions, the right–hand side of (6.22c) is differen-

tiable. Consequently, so is the left–hand side. Now differentiation of (6.22c) with respect

to y yields

d
[
1 − F (y)

]′
= −h′(y)

[
1 − F (y)

]
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or equivalently [
1 − F (y)

]′

1 − F (y)
= −h

′(y)
d

. (6.22d)

If (6.22d) is integrated from α to x, then the continuity of F (x) gives

ln
[
1 − F (y)

]
− ln

[
1 − F (α)

]
=

1

d

[
h(x) − h(α)

]
. (6.22e)

Since F (α) = 0, we can rewrite (6.22e) as

1 − F (x) = exp

{
−1

d

[
h(x) − h(α)

]}

or

F (x) = 1 − exp

{
−1

d

[
h(x) − h(α)

]}
. �

We remark

• If we take h(x) = x and d = E(X), then Theorem 8 reduces to SHANBHAG’s

characterization of the exponential distribution.

• If h(·) is a strictly increasing function from [α, β) onto [0,∞) and d = h(b), where

b is a positive constant, then Theorem 8 reduces to HAMDAN’s characterization, cf.

Theorem 6.

Corollary to Theorem 8

LetX be a variate with continuous distribution function F (x) and F (x) < 1 ∀ x ∈ [0,∞).
If

E
(
Xc |X > y

)
= xc +

1

λ
; ∀ c > 0, λ > 0 and ∀ x ∈ [0,∞),

then

F (x) = 1 − exp
{
− λxc

}
, x ∈ [0,∞).

In particular, if c = 1, then F (x) = 1 − exp{−λx} is the exponential distribution. �

Proof of Corollary to Theorem 8

Let h(x) = xc, x ∈ [0,∞) and d = 1/λ; then it can be verified that h(x) satisfies the

assumptions of Theorem 8. Therefore, (6.21a) reduces to

F (x) = 1 − exp
{
− λxc

}
, for x ∈ [0,∞).

Thus we have X ∼We(0, λ−c, c). �

OUYANG (1987) gave another characterization theorem which rests upon conditional mo-

ments where the condition is X ≤ y, i.e., truncation on the right, instead of X > y
(truncation on the left).
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Theorem 9 (OUYANG, 1987)

Let X be a variate with continuous distribution function F (x), F (x) > 0 ∀ x ∈ (α, β].
Then

F (x) =





0 for x ≤ α

exp

{
1

d

[
h(β) − [h(x)

]}
for x ∈ (α, β]

1 for x > β





(6.23a)

where d is a nonzero constant and h(x) is a real–valued monotone function continuously

differentiable on (α, β] with lim
x↓α

= ±∞ and E
[
h(x)

]
= h(β) + d, if and only if

E
[
h(X)

∣∣X ≤ y
]

= h(y) + d ∀ x ∈ (α, β]. (6.23b)

The interval (α, β] is open on the right whenever β = +∞, and in this case lim
x→∞

h(x) = 0.

�

We omit the proof of Theorem 9 and give the following.

Corollary to Theorem 9

Let X be a random variable with continuous distribution function F (x), F (x) > 0 ∀ x ∈
(0,∞). If E

{
ln
[
1 − exp

(
− λXc

)] ∣∣X ≤ y
}

= ln
[
1 − exp

(
− λ yc

)]
− 1 for c >

0, λ > 0 and for all y ∈ (0,∞), then F (x) = 1 − exp
{
− λxc

}
. �

Proof of Corollary to Theorem 9

Let h(x) = ln
[
1 − exp

(
− λxc

)]
, x ∈ (0,∞) and d = −1, then h(x) satisfies the

assumption of Theorem 9. Therefore, (6.23a) reduces to

F (x) = exp
{

ln
[
1 − exp

(
− λxc

)]}

= 1 − exp
(
− λxc

)
, x ∈ (0,∞).

Thus we have X ∼We(0, λ−1/c, c). �

6.3 WEIBULL characterizations based on order statistics4

A lot of WEIBULL characterizations have been developed which rest upon order statistics

in one way or the other. The oldest characterization in this class is that of DUBEY (1966e).

Before citing his theorem we have to mention the following four formulas needed for the

proof and which pertain to the minimum Y := min(X1, . . . ,Xn) of n iid variates Xi each

having F (x) as its CDF and f(x) as its DF:

Fn(y) = 1 −
[
1 − F (y)

]n
(6.24a)

fn(y) = n f(y)
[
1 − F (y)

]n−1
. (6.24b)

4 Suggested reading for this section: DUBEY (1966e), GALAMBOS (1975), JANARDAN/SCHAEFFER

(1978), JANARDAN/TANEJA (1979a,b), KHAN/ALI (1987), KHAN/BEG (1987), RAO/SHANBHAG

(1998).
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From (6.24a,b) we recover the common distribution of each Xi:

F (x) = 1 −
[
1 − Fn(x)

]1/n
(6.24c)

f(x) =
1

n
fn(x)

[
1 − Fn(x)

](1/n)−1
. (6.24d)

Theorem 10 (DUBEY, 1966c)

Let X1, . . . ,Xn be n iid variates having a three parameter WEIBULL distribution with

location parameter a, shape parameter c and the combined scale–shape parameter5 β =
bc and let Y the minimum of the X ′s. Then Y obeys the WEIBULL law with the same

parameters a and c but the combined scale–shape parameter β/n. Conversely, if Y has a

WEIBULL distribution with µ and d as location parameter and scale parameter, respectively,

and combined scale–shape parameter σ, then each Xi obeys the WEIBULL law with the

same parameters µ and d for location and shape but nσ as its combined scale–shape factor.

�

Proof of Theorem 10

The DF of each Xi in the parametrization given above is

f(x) = c β−1 (x− a)c−1 exp
{
− β−1 (x− a)c

}
; x ≥ a ∈ R, β, c > 0,

and its CDF is

F (x) = 1 − exp
{
− β−1 (x− a)c

}
.

From (6.24b) the DF of Y is found to be

fn(y) = n cβ−1 (x− a)c−1 exp
{
− nβ−1 (x− a)c

}
.

Hence, Y has the combined scale–shape parameter β/n. Now we shall prove the converse

of Theorem 10. Here the DF of Y is given by

fn(y) = dσ−1 (y − µ)d−1 exp
{
− σ−1 (y − µ)d

}

and its CDF by

Fn(y) = 1 − exp
{
− σ−1 (y − µ)d

}
.

From (6.25d) we get the DF of each Xi as

f(x) = (σ n)−1 d (x− µ)d−1 exp
{
− (σ n)−1 (x− µ)d

}
,

where the combined scale–shape parameter is σ n. �

DUBEY’s characterization is a special case or an application of a more general method for

characterizing distributions and which is given by GALAMBOS (1975). This method, called

the method of limit laws, can be summarized as follows: Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n

denote the order statistics of a sample of size n. Assume that a transformation TnX1:n (or

5 This parametrization of the WEIBULL distribution – see the proof of Theorem 10 – shows the effect of

taking the minimum most clearly.
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TnXn:n), for a single n, where n is either fixed or is a random variable depending on a

parameter t, reduces the distribution G(x) of TnX1:n to a function which does not depend

on n. Let further Tn be such that it admits a way to generate an infinite sequence n(j) such

that the distribution of Tn(j)X1:n(j) is also G(x). Then, if the limit law of TnX1:n exists

and G(x) is in the domain of attraction of a possible limit law Θ(x), then G(x) = Θ(x).

We can prove the following result using this method.

Theorem 11

Let n1/cX1:n be distributed as X for n ≥ 2. Let further F (x) of X satisfy the property

that lim
x↓0

F (x)/x = λ > 0, λ finite, then F (x) is given by the following WEIBULL CDF:

F (x) = 1 − exp
{
− λxc}, x > 0. � (6.25a)

Proof of Theorem 11

In this case TnX1:n = n1/cX1:n and G(x) = F (x). Let n(j) = nj/c, where j is a positive

integer. If for one n ≥ 2, G(x) = F (x), then for each j

Tn(j)X1:n(j) = n(j)X1:n(j)

also has F (x) as its own CDF. Therefore, and for each j ≥ 1,

F (x) = 1 −
[
1 − F

(
x

n(j)

)]n(j)

, F (0) = 0, (6.25b)

and by the asymptotic behavior of F (x) for small x’s, it follows that as j → ∞, the right–

hand side of (6.25b) tends to (6.25a). �

The following two theorems rest upon the distributional equivalence of order statistics or

functions thereof.

Theorem 12 (RAO/SHANBHAG, 1998)

LetX1, . . . ,Xn, n ≥ 2, be iid positive random variables and a1, . . . , an positive real num-

bers not equal to 1, such that the smallest closed subgroup of R containing ln a1, . . . , ln an
equals R itself. Then for some m ≥ 1,

min{a1 X1, . . . , anXn} and X1:m

have the same distribution if and only if the survivor function of X1 is of the form

R(x) = exp
{
− λ1 x

α1 − λ2 x
α2
}
, x ∈ R+, (6.26)

with λ1, λ2 ≥ 0, λ1+λ2 > 0 and αr; r = 1, 2; positive numbers such that
∑n

i=1 a
αr
i = m.

�

Corollary to Theorem 12

If α1 = α2, the distribution corresponding to (6.26) is WEIBULL. �

For the proof Theorem 12 and its corollary see RAO/SHANBHAG (1998).
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Theorem 13 (JANARDAN/TANEJA, 1979a)

Let X be a variate having an absolutely continuous strictly increasing distribution function

F (x) = 0 for x ≤ 0 and F (x) < 1 for all x > 0. A necessary and sufficient condition

for X to have the WEIBULL distribution with F (x) = 1 − exp
{
− λxc

}
is that for any

fixed r and two distinct numbers s1 and s2 (1 < r < s1 < s2 ≤ n), the distribution of the

statistics

Vi =
(
Xc
s1:n −Xc

r:n

)1/c
; i = 1, 2

and

Wi = Xsi−n:n−r

are identical for i = 1, 2 and c > 0. �

For a proof see the paper of JANARDAN/TANEJA (1979a).

The next two theorems are based upon the distributional independence of functions of order

statistics.

Theorem 14 (JANARDAN/SCHAEFFER, 1978)

Let F (·) be an absolutely continuous distribution function of X with F (0) = 0 and DF

f(x) = c λ xc−1 exp
{
− λxc

}
, x ≥ 0. (6.27a)

Let Xi:n; i = 1, . . . , n be the order statistics of a random sample of size n. A necessary

and sufficient condition of X to have the DF (6.27a) is that the statistics

(
Xc
m+1:n −Xc

m:n

)1/c
and Xm:n, m fixed and 1 ≤ m ≤ n− 1 (6.27b)

be independent. �

Proof of Theorem 14

Let Y = Xc and let g(y) be the DF of Y . Then Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n are the order

statistics from the above distribution. For fixed m, 1 ≤ m ≤ n − 1, SRIVASTAVA (1967)

has shown that Ym+1:n − Ym:n and Ym:n are independent iff g(y) = λ exp{−λ y}; λ >
0, y > 0. Hence, Xc

m+1:n − Xc
m:n and Xc

m:n are independent iff X has the DF given in

(6.27a). �

Theorem 15 (JANARDAN/TANEJA, 1979b)

The statistics X1:n and D =
(
Xc

2:n −Xc
1:n

)1/c
are stochastically independent if and only

if the random variable X, from which X1:n and X2:n are the first two order statistics in a

sample of size n, has the WEIBULL distribution with DF (6.27a). �

The proof of this theorem is done by showing that the conditional distribution of D, given

X1:n = y, is independent of y. For details see the paper of JANARDAN/TANEJA (1979b).

Finally, we have two characterizations of the WEIBULL law which are based on conditional

moments of order statistics.
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Theorem 16 (KHAN/ALI, 1987)

Let X be a continuous random variable with F (x) as CDF, F (0) = 0, and E
(
Xr
)
< ∞

for r > 0. If F (x) < 1 for x < ∞, then F (x) = 1 − exp
{
− λxc

}
; λ, c > 0 if and only

if for k < n, 1 ≤ i ≤ n− k

E
[
Xc
k+i:n

∣∣Xk:n = x
]

= xc +
1

λ

i−1∑

j=0

1

n− k − j
. � (6.28)

Theorem 17 (KHAN/BEG, 1987)

Let X be a continuous random variable with F (x) as CDF such that F (0) = 0 and F (x)
has a second derivative on (0,∞) and its first derivative is not vanishing on (0,∞) so that

in particular F (x) < 1 ∀ x ≥ 0. Let c > 0 and let F (x) have a raw moment of order 2 c.
If for some integer k, 0 < k < n,

Var
(
Xc
k+1:n

∣∣Xk:n = x
)

= constant

then F (x) = 1− exp
{
− λxc

}
for x ≥ 0, where λ > 0 is given by λ−2 = c (n− k)2, and

conversely. �

For the proofs of Theorems 16 and 17 the reader is referred to the original papers.

6.4 Miscellaneous approaches of WEIBULL characterizations

We first give two theorems that rely on the independence of suitably chosen random vari-

ables. As early as 1968 the following theorem was stated and proven.

Theorem 18 (SHESHADRI, 1968)

Let X and Y be two positive and independently distributed variables such that the quotient

V = X/Y has the DF

f(v) =
λ vλ−1

(1 + vλ)2
; v > 0, λ > 1. (6.29)

The random variables X and Y have the WEIBULL distribution with the same scale param-

eter if Xλ + Y λ is independent of X/Y . �

CHAUDHURI/CHANDRA (1990) have given Theorem 19 characterizing the generalized

gamma distribution (see Sect. 3.2.3), with DF

f(x) =
c xc d−1

bc d Γ(d)
exp
{
−
(x
b

)c}
, x > 0, (6.30a)

which incorporates the two–parameter WEIBULL distribution as the special case with d =
1.
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Theorem 19 (CHAUDHURI/CHANDRA, 1990)

A necessary and sufficient condition that Xi; i = 1, 2, . . . , n and n ≥ 2 be independently

distributed with DF (6.30a) is that

Vi =
Xc
i

i−1∑
j=0

Xc
j

; j = 1, 2, . . . , n (6.30b)

be independently distributed with DF

fi(v) =
1

B(ki, di)

v

di (1 + v)ci+1
, v > 0, (6.30c)

where B(·, ·) is the complete beta function and ki =
i−1∑
j=0

ci. �

The next two theorems are built upon truncated random variables. COOK (1978) used the

following truncated variables:

Zj(aj) =





Xc
j − aj for xj > aj

0 for xj ≤ aj





and supposed for some s, 1 ≤ s ≤ n − 1, that {Z1, . . . , Zs} and {Zs+1, . . . , Zn} are

independent.

Theorem 20 (COOK, 1978)

For all aj ≥ 0, E

{
n∏
j=1

Zj(aj)

}
depends on the parameters only through a function of

∑n
j=1 aj if and only if all Xj are mutually independent and follow the WEIBULL distribu-

tion. �

Theorem 21 (JANARDAN/TANEJA 1979b)

A non–negative variate X with finite expectation has a WEIBULL distribution if and only

if, for some α > 0,

αE
{
(X − s)+

}
E
{
(X − t)+

}
= E

{(
X −

[
sc + tc

]1/c)+}
(6.31)

for all s and t belonging to a dense subset of the positive half of the real line. Here (X −
u)+ = max(X − u, 0) denotes the positive part of X − u, where u ≥ 0. �

SCHOLZ (1990) gave a characterization of the three–parameter WEIBULL distribution in

terms of relationships between particular triads of percentiles as defined by

C =
{
(u, v,w) : 0 < u < v < w < 1, ln(1 − u) ln(1 − w) = [ln(1 − v)]2

}
, (6.32a)
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i.e., u, v,w are the orders of the percentiles

xP = F−1(P ) = inf{x : F (x) ≥ P} for 0 < P < 1. (6.32b)

For the three–parameter WEIBULL distribution with CDF,

F (x) = 1 − exp

{
−
(
x− a

b

)c}
for x ≥ a ∈ R; b, c > 0; (6.32c)

it is known that for some fixed t, namely t = a, the following relation holds between its

percentiles given by (2.57b):

xu xw − x2
v = t

[
xu + xw − 2xv

]
∀ (u, v,w) ∈ C. (6.32d)

Theorem 22 states that this relationship characterizes the three–parameter WEIBULL dis-

tribution (6.32c).

Theorem 22 (SCHOLZ, 1990)

A random variable X with CDF G(x) and percentiles G−1(P ) = xP satisfying the rela-

tionship (6.32d) is either degenerate or X has the three–parameter WEIBULL distribution

with t = a. �

For the proof see SCHOLZ (1990).

There exist several characterization theorems for a WEIBULL distribution based on record

values (see Sect. 5.1.3). KAMPS (1991) built upon upper record values XL(m) defined via

the record times L(m), m ∈ N0, as

L(m) = min
{
j : j > L(m− 1), Xj > XL(m−1)

}
, m ≥ 1, L(0) = 1. (6.33a)

Further, KAMPS used a specially parameterized WEIBULL distribution.

Theorem 23 (KAMPS, 1991)

Let α > 0, p > 1, k ≤ m, F−1(0+) ≥ 0 and E
(
Xα p+ε

)
<∞. Then we have

E
(
Xα
L(m)

)
≤ (k!)1/p

m!
Γ

(
(m+ 1) p − (k + 1)

p− 1

)1−1/p [
E
(
Xαp
L(k)

)]1/p
. (6.33b)

In the case k < m, equality in (6.33b) holds iff F (·) is the following WEIBULL distribution

F (x) = 1 − exp

{
−
(x
c

)α (p−1)/(m−k)
}
, x > 0, c > 0. �

(6.33c)

PAWLAS/SZYNAL (2000a) built upon the k–th upper record values defined via the k–th

upper record times L
(k)
m :

L
(k)
m+1 = min

{
j > L(k)

m : Xj:j+k−1 > X
L

(k)
m :L

(k)
m+k−1

}
; L(k)

m = 1. (6.34a)

The sequence
{
Y

(k)
m , m ≥ 1

}
, where Y

(k)
m = X

L
(k)
m

, is called the sequence of k–th upper

record values.
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Theorem 24 (PAWLAS/SZYNAL, 2000a)

Fix a positive integer k ≥ 1 and let r be a non–negative integer. A necessary and sufficient

condition for X to be distributed with DF

f(x) = λ cxc−1 exp
{
− λxc

}
; x ≥ 0; c, λ > 0 (6.34b)

is that

E

[(
Y (k)
m

)r+c]
= E

[(
Y

(k)
m−1

)r+c]
+
r + c

k λ c
E
[(
Y (k)
m

)r ]
for m = 1, 2, . . . �

(6.34c)

ROY/MUKHERJEE (1986) gave several WEIBULL characterizations. One of them departs

from the hazard rate

h(x) =
f(x)

1 − F (x)
,

but takes the argument to be a random variable X so that h(X) is a variate too. The

characterization pertains to the distribution of h(X).

Theorem 25 (ROY/MUKHERJEE, 1986)

• h(·) is strictly increasing with h(0) = 0.

• h(X) is WEIBULL with shape parameter c′ > 1 and scale factor λ′, for the

parametrization see (6.27a), iff X is WEIBULL with shape parameter c > 1, (1/c +
1/c′) = 1, and λ′ = λ (c λ′)c. �

They further showed that the FISHER–information is minimized among all members of a

class of DF’s with

• f(x) continuously differentiable on (0,∞),

• x f(x) → 0 as x→ 0+, x1+c f(x) → 0 as x→ ∞,

•
∫
xc f(x) dx = 1 and

∫
x2 c f(x) dx = 2,

when f(x) is the WEIBULL distribution with scale factor equal to 1 and c as its shape

parameter.6 Another characterization theorem given by ROY/MUKHERJEE (1986) says

that the maximum entropy distribution — under certain assumptions — is the WEIBULL

distribution.

6.5 Characterizations of related WEIBULL distributions

In Sect. 3.3.6.5 we have presented several compound WEIBULL distributions, one of them

being the WEIBULL–gamma distribution (see (3.73c,d)), where the compounding distri-

bution is a gamma distribution for B in the WEIBULL parametrization

f(x |B) = cB (x− a)c−1 exp
{
−B (x− a)c

}
.

Here, we take the parametrization

f(x |β) = c β−1 (x− a)c−1 exp
{
− β−1 (x− a)c

}
(6.35a)

6 GERTSBAKH/KAGAN (1999) also characterized the WEIBULL distribution by properties of the FISHER–

information but based on type–I censoring.
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and the compounding distribution of β is the following gamma distribution:

f(β) =
ηδ exp

{
− η β−1

}

Γ(δ)βδ+1
; β ≥ 0; η, δ > 0. (6.35b)

Then the DF of this WEIBULL–gamma distribution is

f(x) =
c δ ηδ (x− a)c−1

[
η + (x− a)c

]δ+1
, x ≥ a. (6.35c)

The characterization theorem of this compound WEIBULL distribution rests upon Y =
min(X1, . . . ,Xn), where the Xi are iid with DF given by (6.35c), and is stated by DUBEY

(1966e) as follows.

Theorem 26 (DUBEY, 1966a)

Let Y = min(X1, . . . ,Xn) of the compound WEIBULL distribution with parameters a, c, δ
and η. Then Y obeys the compound WEIBULL distribution with parameter a, c, n δ and η.

Conversely, if Y has a compound WEIBULL distribution with parameters µ, λ, θ and σ,

then each Xi obeys the compound WEIBULL law with the parameters µ, λ, θ/n and σ. �

The proof of Theorem 26 goes along the same line as that of Theorem 10 in Sect. 6.3.

EL–DIN et al. (1991) gave a characterization of the truncated WEIBULL distribution (see

Sect. 3.3.5) by moments of order statistics. EL–ARISHY (1993) characterized a mixture

of two WEIBULL distributions by conditional moments E(Xc |X > y).

Theorem 27 (EL–ARISHY, 1993)

X follows a mixture of two WEIBULL distributions with common shape parameter c and

scale parameters b1 and b2, if and only if

E
(
Xc |X > y

)
= yc +

1

b1
+

1

b2
− h(y)

b1 b2 c yc−1
, (6.36)

where h(·) denotes the hazard rate.

The inverse WEIBULL distribution of Sect. 3.3.3 was characterized by PAWLAS/SZYNAL

(2000b) using moments of the k–th record values Y
(k)
m (for a definition see the introduction

to Theorem 24). PAWLAS/SZYNAL (2000b) stated and proved the following.

Theorem 28

Fix a positive integer k ≥ 1 and let r be a positive integer. A necessary and sufficient

condition for a random variable X to have an inverse WEIBULL distribution with CDF

F (x) = exp

{
−
(
b

x

)c}
; x > 0; c, b > 0; (6.37a)

is that

E
[(
Y (k)
m

)r]
=

(
1 − r

c (m− 1)

)
E
[(
Y

(k)
m−1

)r ]
(6.37b)

for all positive integers m such that (m− 1) c > r. �
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Applications and inference





7 WEIBULL applications and

aids in doing WEIBULL analysis

The field of applications of the WEIBULL distribution and its relatives is vast and encom-

passes nearly all scientific disciplines. Using these distributions, data have been modeled

which originate from such distinct areas as the biological, environmental, health, physical

and social sciences. So we can give only a sample of problems that come from rather dif-

ferent areas and that have been solved successfully. In this section the presentation of these

papers consists in only enumerating them by the topics treated. The ways in which these

problems were solved in the papers, mostly by applying one or the other inferential proce-

dure for estimating, testing, forecasting or simulation, will not be treated in this section but

is postponed to Chapter 9 through 22.

The Tables 7/1 through 7/12 in Sect.7.1 are based on the screening of scientific jour-

nals. Monographs and books, especially on reliability theory or on life testing, con-

tain many more applications, but they are not noticeably different from those listed in

the following tables. Most recent examples — in journals which have appeared after

2003/4 — can be found on the Internet via a search engine such as Google. Besides

the great number of papers and examples in monographs showing the successful appli-

cation of the WEIBULL model, there are some critical papers that show possible perils

of unguarded fitting of WEIBULL distributions, e.g., GITTUS (1967), GORSKI (1968), or

MACKISACK/STILLMAN (1996).

Section 7.2 lists several statistical software packages capable of performing WEIBULL anal-

ysis as well as consulting corporations capable of performing reliability analysis based on

the WEIBULL.

7.1 A survey of WEIBULL applications

Table 7/1: WEIBULL applications in material science, engineering, physics and chemistry

Author(s) Topic(s)

ALMEIDA, J.B. (1999) failure of coatings

BERRETTONI, J.N. (1964) corrosion resistance of magnesium alloy

plates, leakage failure of dry batteries, re-

liability of step motors and of solid tanta-

lum capacitors

BOORLA, R. / ROTENBERGER, K. (1997) flight load variation in helicopters

CACCIARI, M. et al. (1995) partial discharge phenomena
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Author(s) Topic(s)

CONTIN, A. et al. (1994) discharge inference

DURHAM, S.D. / PADGETT, W.J. (1997) failure of carbon fiber composites

FANG, Z. et al. (1993) particle size

FOK, S.L. et al. (2001) fracture of brittle material

FRASER, R.P. / EISENKLAM, P. (1956) size of droplets in spray

GALLACE, L. (1973/4) power–hybrid burn–in

GOTTFRIED, P. / ROBERTS, H.R. (1963) failure of semiconductors and capacitors

KAO, J.H.K. (1956) failure of electron tubes

KESHRAN, K. et al. (1980) fracture strength of glass

KOLAR–ANIC, L. et al. (1975) kinetics of heterogeneous processes

KULKARNI, A. et al. (1973) strength of fibers from coconut husks

KWON, Y.W. / BERNER, J. (1994) damage in laminated composites

LIEBLEIN, J. / ZELEN, M. (1956) ball bearing failures

LIERTZ, H. / OESTREICH, U.H.P. (1976) reliability of optical wave guides for ca-

bles

MACKISACK, M.S. / STILLMAN, R.H.

(1996)

life distribution of copper–chrome–

arsenate treated power poles

MCCOOL, J.I. (1974a) ball bearing failures

MU, F.C. et al. (2000) dielectric breakdown voltage

NOSSIER, A. et al. (1980) dielectric breakdown voltage

PADGETT, W.J. et al. (1995) failure of carbon fiber composites

PERRY, J.N. (1962) semiconductor burn–in

PHANI, K.K. (1987) tensile strength of optical fibers

PLAIT, A. (1962) time to relay failure

PROCASSINI, A.A. / ROMANO, A. (1961,

1962)

time to transistor failure

QUREISHI, F.S. / SHEIKH, A.K. (1997) adhesive wear in metals

ROSIN, P. / RAMMLER, E. (1933) fineness of coal

SCHREIBER, H.H. (1963) failure of roller bearings

SHEIKH, A.K. et al. (1990) pitting corrosion in pipelines
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Author(s) Topic(s)

SINGPURWALLA, N.D. (1971) fatigue data on several materials

TSUMOTO, M. / IWATA, M. (1975) impulse breakdown of polyethylene

power cable

TSUMOTO, M. / OKIAI, R. (1974) impulse breakdown of oil–filled cable

VIERTL, R. (1981) lifetime of roller bearings

WANG, Y. et al. (1997) dielectric breakdown voltage

WEIBULL, W. (1939a) strength of rods of stearic acids and of

plaster–of–Paris

WEIBULL, W. (1939b) strength of steel

WEIBULL, W. (1951) yield strength of steel, size distribution of

fly ash, fiber strength of Indian cotton

WOLSTENHOLME, L.C. (1996) tensile strength of carbon fiber

XU, S. / BARR, S. (1995) fracture in concrete

YANG, L. et al. (1995) latent failures of electronic products

YAZHOU, J. et al. (1995) machining center failures

Table 7/2: WEIBULL applications in meteorology and hydrology

Author(s) Topic(s)

APT, K.E. (1976) atmospheric radioactivity data

BARROS, V.R. / ESTEVAN, E.A. (1983) wind power from short wind records

BOES, D.C. (1989) flood quantile estimation

CARLIN, J. / HASLETT, J. (1982) wind power

CONRADSEN, K. et al. (1984) wind speed distribution

DIXON, J.C. / SWIFT, R.H. (1984) directional variations of wind speed

DUAN, J. et al. (1998) precipitation in Pacific Northwest

HENDERSON, G. / WEBBER, N. (1978) wave heights in the English Channel

HEO, J.H. et al. (2001) flood frequency

JANDHYALA, V.K. et al. (1999) trends in extreme temperatures

JIANG, H. et al. (1997) raindrop size

LUN, I.Y.F. / LAM, J.C. (2000) wind speed distribution
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Author(s) Topic(s)

NATHAN, R.J. / MCMAHON, T.A. (1990) flood data

NESHYBA, S. (1980) size of Antarctic icebergs

PAVIA, E.J. / O’BRIEN, J.J. (1986) wind speed over the ocean

PETRUASKAS, A. / AAGARD, P.M.

(1971)

design wave heights from historical storm

data

REVFEIM, K.J.A. (1983) volume of extreme rainfalls

SCHÜTTE, T. et al. (1987) thunderstorm data

SEGURO, J.V. / LAMBERT, T.W. (2000) wind speed distribution

SEKINE, M. et al. (1979) weather clutter

SELKER, J.S. / HAITH, D.A. (1990) precipitation distribution

TALKNER, P. / WEBER, R.O. (2000) daily temperature fluctuations

TULLER, S.E. / BRETT, A.C. (1984) wind speed data

VAN DER AUWERA, L. et al. (1980) wind power distribution

VODA, V.G. (1978) reliability aspects in meteorology

WILKS, D.S. (1989) rainfall intensity

WONG, R.K.W. (1977) hydrometeorological data

ZHANG, Y. (1982) annual flood extremes

Table 7/3: WEIBULL applications in medicine, psychology and pharmacy

Author(s) Topic(s)

ABRAMS, K. et al. (1996) cancer clinical trial data

ACHCAR, J.A. et al. (1985) following–up data

ANDERSON, K.M. (1991) coronary heart disease

BERRETTONI, J.N. (1964) life expectancy of ethical drugs

BERRY, G.L. (1975) carcinogenesis experimental data, human

task performance times

CAMPOS, J.L. (1975) cell survival, neoplastic survival

CHRISTENSEN, E.R. / CHEN, C.–Y. (1985) multiple toxicity model

DASGUPTA, N. et al. (2000) coronary artery disease

DEWANJI, A. et al. (1993) tumori–genetic potency
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Author(s) Topic(s)

DYER, A.R. (1975) relationship of systolic blood pressure,

serum cholesterol and smoking to 14–

year mortality

GOLDMAN, A.I. (1986) survivorship and cure

HEIKKILÄ, H.J. (1999) pharmacokinetic data

HOMAN, S.M. et al. (1987) alcoholism relapse among veterans

IDA, M. (1980) reaction time

MORRIS, C. / CHRISTIANSEN, C. (1995) human survival times

OGDEN, J.E. (1978) shelf aging of pharmaceuticals

PAGONIS, V. et al. (2001) thermoluminescence glow

PETO, R. / LEE, P. (1973) time to death following exposure to car-

cinogenesis

PIKE, M.C. (1962) time to death following exposure to car-

cinogenesis

PORTIER, C.J. / DINSE, G.E. (1987) tumor incidence in survival/sacrifice ex-

periments

RAO, B.R. et al. (1991) relapse rate of leukemia patients

SCHWENKE, J.R. (1987) pharmacokinetic data

STRUTHERS, C.A. / FAREWELL,V.I. (1989) time to AIDS data

WHITTENMORE, A. / ALTSCHULER, B.

(1976)

lung cancer incidence in cigarette smok-

ers

WILLIAMS, J.S. (1978) survival analysis from experiments on pa-

tients
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Table 7/4: WEIBULL applications in economics and business administration

Author(s) Topic(s)

BERRETTONI, J.N. (1964) return goods after shipment, number of

down times per shift

LOMAX, K.S. (1954) business failures

MELNYK, M. / SCHWITTER, J.P. (1965) life length of machinery

NAPIERLA, M. / POTRZ, J. (1976) life length of complex production equip-

ment

NEWBY, M.J. / WINTERTON, J. (1983) duration of industrial stoppages

SILCOCK, H. (1954) labor turnover

THORELLI, H.B. / HIMMELBAUER, W.G.

(1967)

distribution of executive salaries

TSIONAS, E.G. (2000, 2002) stock returns

UNGERER, A. (1980) depreciation of the capital stock in an

economy

Table 7/5: WEIBULL applications in quality control — acceptance sampling

Author(s) Topic(s)

BALASOORIYA, U. et al. (2000) progressively censored sampling plans for

variables

BALASOORIYA, U. / LOW, C.–K. (2004) type–I progressively censored sampling

plans for variables

BALOGH, A. / DUKATI, F. (1973) sampling plans

FERTIG, K.W. / MANN, N.R.(1980) sampling plans for variables

GOODE, H.P. / KAO, J.H.K. (1961a,b,

1962, 1963, 1964)

sampling plans for attributes

HARTER, H.L. / MOORE, A.H. (1976) sequential sampling plans for attributes

HARTER, H.L. et al. (1985) sequential sampling plans for reliability

testing

HOSONO, J. et al. (1980) sampling plans for variables
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Author(s) Topic(s)

JUN, C.–H. et al. (2006) sampling plans for variables under sudden

death testing

MCCOOL, J.I. (1966) sampling plans for variables under type–II

censoring

NG, H.K.T. et al. (2004) progressive censoring plans

OFFICE OF THE ASSISTANT SECRETARY

OF DEFENSE (1961, 1962, 1963, 1965)

sampling plans for attributes

SCHNEIDER, H. (1989) sampling plans for variables

SOLAND, R.M. (1968b) BAYESIAN sampling plans for attributes

SUN, D. / BERGER, J.O. (1994) BAYESIAN sequential sampling plans

VAN WAGNER, F.R. (1966) sequential sampling plans for variables

WU, J.W. et al. (2001) failure–censored life tests

ZELEN, M. / DANNEMILLER, M.C.

(1961)

robustness of life testing procedures

Table 7/6: WEIBULL applications in quality control — statistical process control

Author(s) Topic(s)

ERTO, P. / PALLOTTA, G. (2007) SHEWHART type charts for percentiles

FRAHM, P. (1995) X–charts and block replacement

GHARE, P.M. (1981) process control with SPRT

JOHNSON, N.L. (1966) CUSUM control charts

KANJI, G.K. / ARIF, O.H. (2001) median rankit control charts

MCWILLIAMS, T.P. (1989) in–control–time of chart–controlled pro-

cesses

MUKHERJEE, S.P. / SINGH, N.K. (1998) process capability index

NELSON, P.R. (1979) control charts for WEIBULL processes

PADGETT, W.J. / SPURRIER, J.D. (1990) SHEWHART charts for percentiles

PARKHIDEH, B. / CASE, K.E. (1989) dynamic X–chart

RAHIM, M.A. (1998) economic X–control charts
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Author(s) Topic(s)

RAMALHOTO, M.F. / MORAIS, M. (1998,

1999)

EWMA charts for the scale parameter

SHEWHART charts for the scale parameter

RINNE, H. et al. (2004) process capability index

ROY, S.D. / KAKOTY, S. (1997) CUSUM control charts with WEIBULL in–

control–time

ZHANG, L. / CHEN, G. (2004) EWMA charts for the mean

Table 7/7: WEIBULL applications in maintenance and replacement

Author(s) Topic(s)

FRAHM, P. (1995) block replacement and X–charts

GEURTS, J.H.J. (1983) replacement policies and preventative

maintenance

GLASSER, G.J. (1967) age replacement

LOVE, G.E. / GUO, R. (1996) preventative maintenance

MUNFORD, A.G. / SHAHANI, A.K.

(1973)

inspection policy

NAKAGAWA, T. (1978) block replacement

NAKAGAWA, T. (1979) inspection policy

NAKAGAWA, T. (1986) preventative maintenance

NAKAGAWA, T. / YASUI, K. (1978) block replacement

NAKAGAWA, T. / YASUI, K. (1981) age replacement

SHAHANI, A.K. / NEWBOLD, S.B.

(1972)

inspection policies

TADIKAMALLA, P.R. (1980b) age replacement

WHITE, J.S. (1964a) renewal analysis

ZACKS, S. / FENSKE, W.J. (1973) inspection policy
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Table 7/8: WEIBULL applications in inventory control

Author(s) Topic(s)

CHEN, J.M. / LIN, C.S. (2003) replenishment

NIRUPAMA DEVI, K. et al. (2001) perishable inventory models

TADIKAMALLA, P.R. (1978) inventory lead time

WU, J.W. / LEE, W.C. (2003) EOQ models for items with WEIBULL de-

terioration

Table 7/9: WEIBULL applications in warranty

Author(s) Topic(s)

KAR, T.R. / NACHLOS, J.A. (1997) coordinated warranty and burn–in strategies

MAJESKE, K.D. / HERRIN, G.D. (1995) automobile warranty

MANN, N.R. (1970c) warranty bounds

MANN, N.R. (1970d) warranty periods

MANN, N.R. / SAUNDERS, S.C. (1969) evaluation of warranty assurance

OHL, H.L. (1974) time to warranty claim

PARK, K.S. / YEE, S.R. (1984) service costs for consumer product war-

ranty
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Table 7/10: WEIBULL applications in biology and forestry

Author(s) Topic(s)

BAHLER, C. et al. (1989) germination data of alfalfa

GREEN, E.J. et al. (1993) tree diameter data

JOHNSON, R.A. / HASKELL, J.H. (1983) lumber data

RAWLINGS, J.O. / CURE, W.W. (1985) ozone effects in crop yield

RINK, G. et al. (1979) germination data of sweet gum

STALLARD, N. / WHITEHEAD, A. (2000) animal carciogenicity

WEIBULL, W. (1951) length of Cyrtoideae, breadth of phasolus

vulgaris beans

Table 7/11: WEIBULL applications in geology, geography and astronomy

Author(s) Topic(s)

HAGIWARA, Y. (1974) earthquake occurrences

HUGHES, D.W. (1978) module mass distribution

HUILLET, T. / RAYNAUD, H.F. (1999) earthquake data

RAO, P. / OLSON, R. (1974) size of rock fragments

Table 7/12: WEIBULL applications in miscellaneous fields

Author(s) Topic(s)

BERRY, G.L. (1981) human performance descriptor

CHIN, A.C. et al. (1991) traffic conflict in expressway merging

FREEMAN, D.H. et al. (1978) fitting of synthetic life–tables

SHARIF, H. / ISLAM, M. (1980) forecasting technological change

YAMADA, S. et al. (1993) software reliability growth
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7.2 Aids in WEIBULL analysis

WEIBULL analysis as presented in the following chapters is mathematically complicated

and cannot be done by using only a pencil, a sheet of paper and a simple pocket-calculator,

instead computer aid is demanded. We know of no software package which has imple-

mented all the methods presented in the sequel.

Those readers who have installed a mathematical–statistical programming language on

their computer, e.g., C++, FORTRAN, GAUSS, MATLAB, PASCAL or R, and know

how to write programs will have no difficulties in converting the formulas given here. We

have been concerned about writing the formulas in an algorithmic way so that they might be

easily programmed. Each programming language offers a wide variety of routines for opti-

mization and simulation and other statistical techniques. Furthermore, each programming

language has user groups of its own to exchange programs and experiences.

Statistical software packages such as BMDP, SAS, SPSS or SYSTAT offer subroutines

for doing parts of WEIBULL analysis, e.g., parameter estimation from censored data by the

maximum likelihood method or by a linear technique supported by hazard and/or proba-

bility plotting. For example, SAS JMP has an excellent survival analysis capability, in-

corporating both graphical plotting and maximum likelihood estimation and covering, in

addition to WEIBULL, the exponential, lognormal and extreme value models.

There are consultants and software houses specializing in doing WEIBULL analysis.

Upon entering “Weibull analysis and software” into Google, the reader will get about

40,600 answers. A corporation which is very often found among these answers is Re-

liaSoft. It has offices around the world. Relia Soft maintains two public Websites:

ReliaSoft.com and weibull.com dedicated to meeting the needs of the reliabil-

ity community. ReliaSoft’s Weibull++ software has become the standard for reliability and

life data analysis for thousands of companies worldwide. Another rather comprehensive

software comes from Relex. The reader is recommended to browse through the different

site maps offered by Google to see what is best suited to meet his or her special needs. But

the reader should remember that software packages are cookbooks offering recipes. For

their proper understanding, a handbook such as this one.



8 Collecting life data1

Most applications of the WEIBULL distribution pertain to life data for either technical or bi-

ological units. The inferential process for life data heavily depends on how these data have

been compiled. So, before entering into the details of WEIBULL inference, it is advisable

to look at the different ways to gather information on the length of life.

Life data may originate from either the field, i.e., from the reports of customers using

these units (field data), or from the laboratory of the producer who tests a sample of units

according to a given plan before selling (lab data). Sect. 8.1 compares these two types of

data. Normally, lab data are superior to field data, so Chapters 9 ff. are mainly devoted to

lab data.

In Sect. 8.2 we first enumerate and describe the parameters that determine a life testing plan

and thus influence the inferential process. Sect. 8.3 is devoted to those types of plans, i.e.,

to those settings of the parameters, that are predominant in practice. The optimal parameter

setting is rather complicated, but there is a paper of NG et al. (2004) treating this topic for

progressively type–II censoring.

8.1 Field data versus laboratory data

A first option for obtaining information about the life length of a product is to collect data

on the running times of the items as reported by their buyers. A second and competitive

option is to run specially designed experiments (life tests) on a sample of items by either

the producer himself or an entrusted testing laboratory. With respect to cost, to time and to

statistics these two options show marked differences:

1. Presumably, the first option is the cheaper one. We do not have any cost for planning,

running and evaluating an experiment. The buyer delivers the information almost

free of charge. But, on the other hand, he does not receive any information about

the reliability or the propensity to fail when buying the product. The latter fact is

certainly not sales promoting.

2. With the first option we generally have to wait for a long time until a sufficient

number of failures have been reported, especially when the product is very reliable,

i.e., possesses longevity. Contrary to the second option, there does not exist the

possibility to shorten the time to failure by operation under stress, i.e., by some type

of accelerated life testing.

3. The data coming from the first option will probably be very heterogeneous as the

conditions of running and maintaining the units in the field will differ from customer

to customer. The data will be homogeneous when they originate from a well–defined

1 Suggested reading for this chapter: BARLOW/PROSCHAN (1988), COHEN (1963, 1991), NELSON

(1990), RINNE (1978).
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and properly controlled life testing experiment conforming to those conditions under

which the product is scheduled to work.

The above discussion clearly leads to the recommendation to build the inference of the life

distribution F (x) or of any parameters of X on data from planned experiments. There are

situations where field data are generated in the way as lab data. For example, we quite often

have field data that are progressively or randomly censored.

8.2 Parameters of a life test plan

The entirety of rules and specifications according to which a life test has to be run, is called

a life test plan. Among these prescriptions there are some of purely technical contents

while other specifications are of relevance for the statistician who is to analyze the data. In

the sequel we will present only the latter type of rules which will determine the estimating

and testing formulas applied to the data. These statistically important parameters are the

basis for establishing certain types of testing plans in Sect. 8.3.

A first and most relevant information for the statistician is the number n of specimens

put on test in the beginning. n need not be equal to the final or total sample size n∗ of

tested items under the plan. n∗ depends on a second directive indicating whether failing

items have to be replaced by new ones while the test is still under way. The coding of this

instruction is done by the parameter R:

R =





0 no replacement, n∗ = n,

1 replacement, n∗ ≥ n.



 (8.1a)

It is supposed that replacement takes place instantaneously or takes so little time with re-

spect to the operating time that it may be neglected. So we always have n specimens

running when R = 1. Plans with R = 1 have a variable total sample size

n∗ = n+A(D), (8.1b)

where A(D) is random and represents the accumulated failures (= replacements) in (0,D],
D being the end of testing. It should be obvious that the replacement specimens and the

first n specimens have to come from the same population. As the quality of any inferential

procedure depends directly on the total sample size n∗, plans with R = 1 will be better

or at least as good as plans with R = 0. In plans with R = 0 the random moments of

failure Xi:n; i = 1, . . . , n, are lifetimes and arrive in naturally ascending order, i.e., they

are order statistics; see the left part of Fig. 8/1. In plans with R = 1 the observable times

of failure will be noted by X∗
i:n. X1:n = X∗

1:n always is a lifetime, but X∗
i:n, i ≥ 2 are not

necessarily lifetimes; they are time spans from the beginning of the test to the i–th failure

in a superimposed renewal process consisting of n simple renewal processes, see the right

part of Fig. 8/1.
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Figure 8/1: Example of an (R = 0)–plan and an (R = 1)–plan

(R=1)–plans are preferable in one or more of the following situations:

1. A specimen does not have a high value or price, at least relative to the other cost

parameters of the plan.

2. There are only a few testing machines, i.e., the testing capacity is low and expensive,

so that the machines should not be idle until the end of the test when there are early

failures.

3. A greater number of failures and completed life spans are needed.

A third statistically relevant information of a life test plan concerns the way the failure

times are recorded, either exactly or approximately. When there is a monitoring of all

specimens on test, either by personnel or by some device, we will precisely register each

failure and the life span is exact and free of any measurement error. Exact failure times

cannot be observed when test units are inspected in time distances, generally periodically,

e.g., once a day or a week. Periodic inspections are used, for example, because

• they are more convenient,

• they are less time consuming or less expensive,

• it is sometimes impossible to test for failures when the units are being used.

If units are inspected only once to see if the unit has failed (e.g., in a destructive stress

test), the resulting data are called “quantal–response” data. If units undergo two or more

inspections, the data are called “grouped” or “interval” data. Suppose that

• a sample of units are all put on test at the same time,

• all units are initially operating,

• inspections are at specified times.
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Then, the resulting data will consist of the number of failures in each interval and the

number of units that survived until the end of the test. Thus the failure times falling into

the interval (ti, ti + ∆i] have to be estimated. A reasonable guess would be ti + ∆i/2,

resulting in a maximum error of ±∆i/2. It is evident that inferences based on grouped data

are less reliable than those using exact data, especially when the sample size is small and

we have only a small number of failures per interval. Whether the interval width should

be constant depends on the shape of the density function. If — for example — the density

function is skewed to the right, the width should increase with lifetime. MEEKER (1986)

gives guidelines for choosing statistically efficient inspection times and the approximate

sample size that achieve a specified degree of precision for estimating a particular quantile

of a two–parameter WEIBULL distribution. The parameter G encodes the way data are

recorded.

G =





0 − no grouping,

1 − grouping.



 (8.2)

The case G = 1 has to be supplemented by information on how the grouping has to be

done, e.g., equidistant.

Life testing is time consuming and will last a very long time when the specimens are highly

reliable. So engineers and statisticians have developed life test plans with reduced running

time. Engineers have proposed to shorten the time to failure by exercising some sort of

stress on the test units so that they will fail earlier than under normal operating conditions.

These approaches are called accelerated life tests (ALT). A critical point with ALT is the

specification of the life–stress relationship. In this book we will only briefly describe ALT

in conjunction with WEIBULL lifetime distributions (see Chapter 16). More details and a

lot of examples on ALT are to be found in the monograph of NELSON (1990). The coding

of a stress instruction is done by the parameter S:

S =





0 − no stress,

1 − stress.



 (8.3)

The case S = 1 has to be supplemented by stating how ALT has to be done.

Below are some common types of acceleration of tests:

1. High usage rate — Two common ways of doing such a compressed time testing are

• Faster — The product is run with a higher speed than normal, e.g., rolling

bearings run at about three times their normal speed.

• Reduced off time — Products which are off much of the time in actual use are

run a greater fraction of time, e.g., washer or dryer, toaster or coffee maker.

2. Specimen design — Life of some products can be accelerated through the size, ge-

ometry and finish of specimens. Generally large specimens fail sooner than small

ones.
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3. Stress loading — Overstress testing consists of running a product at higher than nor-

mal levels of some accelerating stresses to shorten product life or to degrade some

product performance faster. Typical accelerating stresses are temperature, pressure,

voltage, mechanical load, thermal cycling, humidity, salt, sulphur, ozone, solar, ra-

diation and vibration. In biological applications accelerated conditions arise when

large doses of a chemical or radiological agent are given. The stress loading can be

applied in various ways:

• Constant stress — Each specimen is run at a constant stress level until it fails

or the test is terminated by censoring (see below).
• Step stress — In step–stress loading, a specimen is subjected to successively

higher levels of stress. A specimen is first subjected to a specified constant

stress for a specified length of time. If it does not fail, it is subjected to a higher

stress level for a specified time. The stress on a specimen is thus increased step

by step until it fails or the end of the test has come. Usually all specimens go

through the same specified pattern of stress levels and test times, but it is also

possible to apply different patterns to different specimens.
• Progressive stress — In progressive stress loading, a specimen undergoes a

continuously increasing level of stress. The most popular case is a linearly

increasing stress,2 so that the stress at time t is given by s(t) = a t. Differ-

ent groups of specimens may undergo different progressive stress patters, i.e.,

which have different linear factors a1, . . . , ak in s(t) = ai t.
• Cyclic stress — For example, insulation under alternating current voltage sees

a sinusoidal stress. Also, many metal components repeatedly undergo a me-

chanical stress cycle.
• Random stress — Some products in use undergo randomly changing levels of

stress, e.g., airplane structural components undergo wind buffeting.

Engineers reduce the testing time by shortening the individual lifetimes whereas statisti-

cians limit the test duration D by fixing it more or less directly via some sort of censoring.

Of course, censoring may be combined with acceleration. Theory and practice have de-

veloped a great variety of censoring. A typology of test plans and how to specify D will

be presented in the following section. When lifetime data are incomplete this may be due

either to the sampling plan itself or to the unplanned withdrawal of test units during the

test. For example, in a medical experiment one or more of the subjects may leave town and

be lost to follow–up or suffer an accident or lose their lives due to some illness other than

that under study.

8.3 Types of life test plans

Summarizing the specifications enumerated so far we can briefly describe a life test plan

by the quintuple {n, R, G, S, D}. The topic of Sect. 8.3.1 through 8.3.4 is how D is

specified by various types of censoring. The impact of censoring on the inferential process,

especially on parameter estimation, will be discussed in Chapters 9 through 11, especially

2 Such type of stress loading — often called ramp–test — in conjunction with a WEIBULL distribution

for lifetime has been analyzed by BAI et al. (1992, 1997).
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in Sect. 11.3 through Sect. 11.8 for ML estimation. Not every inferential approach is appli-

cable to censored data. Estimation by the method of moments (Chapter 12) is not possible

when data are censored, whereas the maximum likelihood approach (Chapter 11) is the

most versatile method.

8.3.1 Introductory remarks

A data sample is said to be censored when, either by accident or design, the value of the

variate under investigation is unobserved for some of the items in the sample. Censoring

and truncation have to be distinguished.3 Truncation is a concept related to the population

and its distribution (see Sect. 3.3.5). Truncation of a distribution occurs when a range of

possible variate values is either ignored or impossible to observe. Truncation thus modifies

the distribution. Censoring modifies the selection of the random variables and is thus related

to sampling. A censored observation is distinct from a missing observation in that the order

of the censored observation relative to some of the uncensored observations is known and

conveys information regarding the distribution being sampled.

We further mention that censoring may be either informative (= dependent) or non–

informative (= independent); see BARLOW/PROSCHAN (1988), EMOTO/MATTHEWS

(1990) or LAGAKOS (1979). Suppose unit lifetime, X, depends on an unknown vector

of parameters, θ. A set of instruction determines when observation of a unit stops. This set

is non–informative relative to θ if it does not provide additional information about θ other

than that contained in the data. When n items are put on test, and the test is stopped at

the r–th observed failure (=̂ type–II singly censoring), the stopping rule depends only on

r and is clearly independent of life distribution parameters since r is fixed in advance. The

same is true when we stop testing at time T (=̂ type–I singly censoring) since T is fixed in

advance of testing. For non–informative sampling plans, the likelihood, up to a constant of

proportionality, depends only on the life distribution model and the data, e.g., see (8.6c,d).

This proportionality constant depends on the stopping rule, but not on the unknown param-

eters in θ. An informative stopping rule may come into existence when the withdrawal of

non–failed units is random. In this case we have informative censoring when lifetime and

withdrawal time have a common distribution which cannot be factored into the product of

the two marginal distributions.

Before going into the details of how to discontinue a life test, we premise a general remark

which is useful for a better understanding of censoring. Let t be the time elapsed since the

starting of the test and let A(t) be the sum of the random number of failed test units up to

and including t. A(t) is a discrete function of a continuous variable. In a given life test we

observe a realization (= trajectory) of A(t), denoted a(t), which may be depicted as a step

function in the (t, a)–plane (see Fig. 8/2). The life test will be stopped at that very moment

when A(t) enters a special area P of that plane. P is specified by the chosen censoring

criterion or criteria.

8.3.2 Singly censored tests

A life test is named singly censored (= single–censored) from above (= on the right)

when all test units that have not failed up to a certain time D are withdrawn from the test,

3 For a historical account on the concepts see COHEN (1991).
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which is thus terminated. Censoring from below (= on the left) means that the failure

occurred prior to some designated left censoring time.4 Censoring on the right is most

common with life testing so that — in the sequel — censoring means censoring on the

right unless stated otherwise. Left censoring might be employed to burn off “duds” or

“freaks,” i.e., early failing items which are atypical of the population targeted for study.5 In

either case a single censoring means that we know only the number of failed items outside

a certain range, but their exact value remains unknown.

8.3.2.1 Type-I censoring

In type–I censoring (= time censoring), testing is suspended when a preestablished and

fixed testing time T has been reached — the maximum duration is D = T . Presuming

S = 0 (no stress) and G = 0 (no grouping)6 in the following sections, we have two plans

with respect to R:

{n, 0, G, S, T } — no replacement of items failing prior to T ,

{n, 1, G, S, T } — replacement of items failing items.

A closer examination reveals that — ceteris paribus — these plans differ with respect to the

area P and may have differing effective test times. As failing items are replaced instanta-

neously with the (R=1)–plan, we will never run out of units on test and the effective and

the maximum durations always coincide at t = T , which is non–random. The course of

A(t) and the number of failed itemsA(t) are random. The area P is given by the half–plane

t > T (see the left–hand side of Fig. 8/2).

The average number of failing items in (0, T ] is

E
(
A(T )

)
=





n Pr(X ≤ T ) for R = 0

nE(NT ) for R = 1,



 (8.4a)

where E(NT ) =
∑∞

k=1 Fk(T ) is the renewal function, because on each of the n testing

places we observe a renewal process. These processes are assumed to run independently.

For E(NT ) in the WEIBULL case, see (4.47) ff.

Testing with the (R = 0)–plan may come to an end before T when T has been chosen

too large with respect to the lifetime distribution so that all n units fail before T , which

happens with probability

Pr(Xn:n < T ) =
[
F (T )

]n
, generally, (8.4b)

=

[
1 − exp

{
−
(
T − a

b

)c}]n
, for WEIBULL lifetime. (8.4c)

4 For doubly censoring (= censoring on both sides), see Sect. 8.3.4

5 Left censoring occurs in other than life–testing contexts when the lower limit of resolution of a measuring

device prevents the measurement of a fraction of the smallest ordered values in a sample.

6 The case G = 1 will be discussed in Sect. 8.3.4.
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This probability is lower the greater n and/or the higher the reliability of the units. The

effective test duration is

D = min(T,Xn:n), (8.4d)

which is random. Its average may be calculated as

E(D) =

T∫

0

x fn:n(x) dx+ T Pr
(
Xn:n > T

)
. (8.4e)

Now P is a three–quarter plane

P = {(t, a) : t > T ∨ a ≥ n}. (8.4f)

The right–hand side of Fig. 8/2 shows this area P for n = 10 together with two trajectories

a1(t) and a2(t) leading to differing test durations.

Figure 8/2: Trajectory of a plan {n, 1, G, S, T} on the left-hand side and two trajectories

of a plan {10, 0, G, S, T} on the right-hand side

A singly censored type–I plan with R = 0 has an expected time saving TS with respect to

an uncensored test, i.e., to the lifetime Xn:n of the last failing unit out of n units, given by

TS = E
(
Xn:n

)
− T. (8.4g)
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For X ∼We(a, b, c), we use (5.34) to get

TS = a+ b

[
nΓ

(
1 +

1

c

) n−1∑

i=0

(−1)i
(
n−1
i

)

(i+ 1)1+(1/c)

]
− T. (8.4h)

(8.4h) may be evaluated with presumptive values of a, b and c to get an idea of the cutting

of testing time.

Considering the (R=0)–plan we define the relative time saving w by

w :=
TS

E
(
Xn:n

) = 1 − T

E
(
Xn:n

) , in general,

= 1 − T

bnΓ

(
1 +

1

c

)
n−1∑
i=0

(−1)i
(
n−1
i

)

(i+ 1)1+(1/c)

, for X ∼We(0, b, c). (8.4i)

Tab. 8/1 gives the scaled censoring time

T

b
= (1 − w)nΓ

(
1 +

1

c

) n−1∑

i=0

(−1)i
(n−1

i

)

(i+ 1)1+(1/c)
(8.4j)

for several combinations of n and c when w is 0.1(0.1)0.5. Tab. 8/1 thus helps to choose n
and T when there is a reasonable guess of b and c.

Let n∗ be the effective number of units tested

n∗





= n for R = 0,

≥ n for R = 1,

and let f(·) be the DF and F (·) the CDF of a unit’s true lifetime Xi. By Yi we denote the

unit’s observable lifetime. The true lifetime Xi of an individual will be observed only if

Xi ≤ T . The data from such a setup can be represented by the n∗ pairs of random variables

(Yi, δi),

Yi = min(Xi, T ) and δi =





1 if Xi ≤ T,

0 if Xi > T.



 (8.5a)

δi indicates whether the lifetime is complete or censored, and Yi is equal to Xi if it is

observed, and to T if it is not. The joint density–probability of Yi and δi is

g(yi, δi) = f(yi)
δi
[
1 − F (T )

]1−δi . (8.5b)

To see this, note that Yi is a mixed random variable with a continuous and a discrete com-

ponent. For the discrete part we have

Pr(Yi = T ) = Pr(δi = 0) = Pr(Xi > T ) = 1 − F (T ). (8.5c)
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Table 8/1: Scaled censoring time T/b to save 100w% time against Xn.n on the average

w = 0.10

n
cllllllllll

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 6.0095 2.0550 1.5158 1.3158 1.2129 1.1506 1.1088 1.0789 1.0565 1.0391
10 9.1158 2.6361 1.8083 1.5082 1.3556 1.2638 1.2025 1.1589 1.1262 1.1008
15 11.3320 2.9864 1.9727 1.6123 1.4310 1.3226 1.2507 1.1996 1.1614 1.1318
20 13.0859 3.2380 2.0863 1.6828 1.4814 1.3616 1.2824 1.2263 1.1844 1.1521
25 14.5505 3.4344 2.1728 1.7357 1.5190 1.3905 1.3058 1.2459 1.2013 1.1668
30 15.8149 3.5955 2.2424 1.7779 1.5487 1.4133 1.3242 1.2613 1.2145 1.1784
35 16.9313 3.7321 2.3005 1.8128 1.5732 1.4320 1.3393 1.2739 1.2253 1.1878
40 17.9335 3.8507 2.3503 1.8425 1.5939 1.4478 1.3520 1.2845 1.2344 1.1958
45 18.8448 3.9577 2.3995 1.8780 1.6251 1.4776 1.3820 1.3149 1.2657 1.2283
50 19.6848 4.0900 2.5318 2.0553 1.8467 1.7349 1.6747 1.6480 1.6245 1.6257

w = 0.20
n 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 5.3418 1.8267 1.3474 1.1696 1.0781 1.0227 0.9856 0.9590 0.9391 0.9236
10 8.1029 2.3432 1.6073 1.3406 1.2050 1.1233 1.0689 1.0301 1.0011 0.9785
15 10.0729 2.6546 1.7535 1.4331 1.2720 1.1756 1.1117 1.0663 1.0324 1.0061
20 11.6319 2.8782 1.8545 1.4958 1.3168 1.2103 1.1399 1.0900 1.0528 1.0240
25 12.9338 3.0528 1.9314 1.5428 1.3502 1.2360 1.1607 1.1075 1.0678 1.0372
30 14.0577 3.1960 1.9932 1.5803 1.3766 1.2562 1.1771 1.1211 1.0796 1.0475
35 15.0500 3.3174 2.0449 1.6114 1.3984 1.2729 1.1905 1.1323 1.0892 1.0559
40 15.9409 3.4228 2.0891 1.6378 1.4168 1.2869 1.2018 1.1418 1.0972 1.0629
45 16.7510 3.5179 2.1329 1.6693 1.4445 1.3135 1.2284 1.1688 1.1251 1.0919
50 17.4976 3.6355 2.2505 1.8270 1.6415 1.5422 1.4887 1.4649 1.4440 1.4450

w = 0.30
n 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 4.6741 1.5983 1.1789 1.0234 0.9434 0.8949 0.8624 0.8392 0.8217 0.8082
10 7.0900 2.0503 1.4064 1.1730 1.0544 0.9829 0.9353 0.9013 0.8759 0.8562
15 8.8138 2.3228 1.5343 1.2540 1.1130 1.0287 0.9728 0.9330 0.9033 0.8803
20 10.1779 2.5184 1.6227 1.3088 1.1522 1.0590 0.9974 0.9538 0.9212 0.8960
25 11.3171 2.6712 1.6899 1.3500 1.1814 1.0815 1.0156 0.9690 0.9343 0.9075
30 12.3004 2.7965 1.7441 1.3828 1.2045 1.0992 1.0299 0.9810 0.9446 0.9165
35 13.1688 2.9027 1.7893 1.4100 1.2236 1.1138 1.0417 0.9908 0.9530 0.9239
40 13.9483 2.9950 1.8280 1.4331 1.2397 1.1261 1.0516 0.9990 0.9601 0.9301
45 14.6571 3.0782 1.8663 1.4607 1.2640 1.1493 1.0749 1.0227 0.9845 0.9554
50 15.3104 3.1811 1.9692 1.5986 1.4363 1.3494 1.3026 1.2818 1.2635 1.2644

w = 0.40
n 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 4.0063 1.3700 1.0105 0.8772 0.8086 0.7670 0.7392 0.7193 0.7043 0.6927
10 6.0772 1.7574 1.2055 1.0054 0.9037 0.8425 0.8017 0.7726 0.7508 0.7339
15 7.5546 1.9909 1.3151 1.0749 0.9540 0.8817 0.8338 0.7997 0.7743 0.7546
20 8.7239 2.1586 1.3909 1.1219 0.9876 0.9077 0.8550 0.8175 0.7896 0.7680
25 9.7004 2.2896 1.4485 1.1571 1.0126 0.9270 0.8705 0.8306 0.8009 0.7779
30 10.5432 2.3970 1.4949 1.1852 1.0324 0.9422 0.8828 0.8408 0.8097 0.7856
35 11.2875 2.4881 1.5336 1.2085 1.0488 0.9547 0.8928 0.8492 0.8169 0.7919
40 11.9557 2.5671 1.5668 1.2284 1.0626 0.9652 0.9013 0.8563 0.8229 0.7972
45 12.5632 2.6384 1.5996 1.2520 1.0834 0.9851 0.9213 0.8766 0.8438 0.8189
50 13.1232 2.7267 1.6879 1.3702 1.2311 1.1566 1.1165 1.0987 1.0830 1.0838

w = 0.50
n 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5 3.3386 1.1417 0.8421 0.7310 0.6738 0.6392 0.6160 0.5994 0.5869 0.5773
10 5.0643 1.4645 1.0046 0.8379 0.7531 0.7021 0.6681 0.6438 0.6257 0.6116
15 6.2955 1.6591 1.0959 0.8957 0.7950 0.7348 0.6948 0.6664 0.6452 0.6288
20 7.2699 1.7989 1.1591 0.9349 0.8230 0.7565 0.7125 0.6813 0.6580 0.6400
25 8.0836 1.9080 1.2071 0.9643 0.8439 0.7725 0.7255 0.6922 0.6674 0.6482
30 8.7860 1.9975 1.2458 0.9877 0.8604 0.7851 0.7357 0.7007 0.6747 0.6547
35 9.4063 2.0734 1.2780 1.0071 0.8740 0.7955 0.7440 0.7077 0.6807 0.6599
40 9.9631 2.1393 1.3057 1.0236 0.8855 0.8043 0.7511 0.7136 0.6858 0.6643
45 10.4694 2.1987 1.3330 1.0433 0.9028 0.8209 0.7678 0.7305 0.7032 0.6824
50 10.9360 2.2722 1.4066 1.1419 1.0259 0.9638 0.9304 0.9156 0.9025 0.9031
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For values yi ≤ T the continuous part is

Pr(yi | δi = 1) = Pr(yi |Xi < T ) = f(yi)/F (T ), (8.5d)

where for convenience we have used the notation Pr(yi | δi = 1) to represent the probability

density function of Yi, given that Xi < T . The distribution of (Yi, δi) thus has components

Pr(Yi = T, δi = 0) = Pr(δi = 0) = 1 − F (T ), yi = T,

Pr(yi, δi = 1) = Pr(yi | δi = 1) Pr(δi = 1) = f(yi), yi < T.

These expressions can be combined into the single expression Pr(yi, δi) = f(yi)
δi
[
1−

F (T )
]1−δi . If pairs (Yi, δi) are independent, the likelihood function for type–I single

censoring is

L(θ | data) = K

n∗∏

i=1

f(yi |θ)δi
[
1 − F (T |θ)

]1−δi , (8.5e)

where K denotes an ordering constant that does not depend on the parameters in θ. The

form of K depends on the underlying sampling and censoring mechanisms and is difficult

to characterize in general. Because, for most models, K is a constant not depending on the

model parameters, it is common practice to takeK = 1 and suppress K from the likelihood

expressions and computations.7

With respect to the (R = 1)–plan we remark that the observed lifetimes do not come in

natural ascending order. In both cases, R = 0 as well as R = 1, the number of failing units

is random.

8.3.2.2 Type-II censoring

Type–I censoring — especially in conjunction with replacement — is to be preferred when

the testing facilities are limited and one or more other types of products are waiting to be

tested with the same equipment. Type–I censoring is preferable too when the unit price

of an item to be tested is low compared with the operating cost of the equipment for one

unit of time. If instead the unit price is dominant and failing is destructive, one will be

interested not in using too many items. In this case the test duration may be controlled by a

given fixed number r of failures leading to type–II censoring (= failure censoring) having

a random test duration D. When R = 0, the test duration is given simply by

D = Xr:n, (8.6a)

whereas for R = 1, the duration is more difficult to determine and is given by the time X∗
r:n

of the r–th failure (= renewal) of a superposed renewal process consisting of n renewal

processes running parallel. With the (R=1)–plan it is even possible to set r > n. It should

7 ASHOUR/SHALABY (1983) show how to estimate n in the case of type–I censoring.
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be self–evident that — ceteris paribus — the expected duration of the (R=1)–plan is less

than or equal to that of the (R=0)–plan given by

E
(
Xr:n

)
= r

(
n

r

)
Γ

(
1 +

1

c

) r−1∑

i=0

(−1)i
(r−1
i

)

(n− r + i+ 1)1+(1/c)
, for X ∼We(a, b, c).

(8.6b)

Irrespective of the choice of R, type–II singly censored tests always have a fixed number

of failures but a random duration. Thus the area P is the half–plane a ≥ r (see Fig. 8/3).

Figure 8/3: Trajectory of a type-II censored test

The likelihood function for type–II singly censoring has the general formula

L(θ | data) = K

[
r∏

i=1

f(xi |θ)
]
[
1 − F (xr:n |θ)

]n−r
, (8.6c)

where the ordering constant is given as

K =
n!

(n− r)!
. (8.6d)

The form of the likelihood function (8.6c) is noteworthy: Each true lifetime contributes a

term f(xi) to the likelihood, and each censoring time contributes a term 1 − F (xr:n). It

can also be noted that although the genesis of (8.6c) is quite different from that of the like-
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lihood function (8.5e) obtained for type–I censoring, the form of the observed likelihood

function is the same in both cases when in (8.5e) T is substituted by xr:n and the product is

transformed using the number of failed and non–failed items in (0, T ]. The presentation in

(8.5e) is more general and turns out to have a wide applicability when censoring is random

(see Sect. 8.3.4).

We will now present two approaches measuring the time saving under type–II censoring

when R = 0. The first approach starts from the distribution of the random quotient

V :=
Xr:n

Xn:n
, 0 ≤ V ≤ 1, (8.7a)

which is the relative waiting time if failures r + 1 through to n are not observed. The

relative time saving is

W := 1 − V = 1 − Xr:n

Xn:n
. (8.7b)

W thus tells what portion of time could be saved when in a given random sample of n units

they are only observed until the r–th failure instead of waiting up to the last failure. W as

well as V vary at random with the sample chosen.

The second approach uses REET,8 the ratio of of average type–II censoring time to the

average complete sampling time:

REET :=
E
(
Xr:n

)

E
(
Xn:n

) ; (8.8)

thus, REET tells what is to be saved by comparing the average duration of a great number

of censored tests with the expected duration of a series of uncensored tests, each having a

sample size of n. Because Xr:n and Xn:n are dependent variates, we have

E(W ) = 1 − E

(
Xr:n

Xn:n

)
6= 1 −REET = 1 − E

(
Xr:n

)

E
(
Xn:n

) . (8.9)

In the WEIBULL case E(W ) is infinite for all c ∈ (0, 1]. W and its percentiles should be

used when we have to judge only one test, whereas REET is to be preferred when the test

is to be executed a great number of times so that the long run behavior is what counts.

MUENZ/GRUEN (1977) give the following CDF for V :

Pr(V ≤ v) = n

n−1∑

i=r

(
n− 1

i

) 1∫

0

Qv(s)
i
[
1 −Qv(s)

]n−1−i
sn−1 ds (8.10a)

where

Qv(s) = F
[
v F−1(s)

]/
s, 0 < s ≤ 1, (8.10b)

8 REET is the acronym for ratio of expected experimental times.
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and F (·) is the CDF of the lifetime variate X. For large values of n we can use the

asymptotic formula, which is based on a normal approximation of the binomial distribution

with continuity correction,

lim
n→∞

Pr(V ≤ v) = n

1∫

0

Φ


 (n− 1)Qv(s) − r + 0.5√

(n− 1)Qv(s)
[
1 −Qv(s)

]


 sn−1 ds, (8.10c)

where

Φ(u) =
1√
2π

u∫

−∞

exp{−u2/2} du

is the CDF of the standard normal distribution and r goes to infinity such that limn→∞(r/n)
is bounded away from 0 and 1.

When X ∼We(0, b, c) the term Qv(s) turns into

Qv(s) =
1 − (1 − s)v

c

s
, 0 < s ≤ 1, 0 ≤ v ≤ 1, c ∈ R+. (8.10d)

V is independent of the scale parameter b. Fig. 8/4 depicts (8.10a) for six different values

of c when n = 10 and r = 7. From Fig 8/4 we may read the 90% percentile of the relative

waiting time v0.9. Thus we have a 90% chance to save more than 100 · (1 − v0.9)% of the

complete sampling time, where the saving goes from 15% for c = 3 to 58% for c = 0.5.

Figure 8/4: Distribution function of V for X ∼We(0, b, c)
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Table 8/2: REET when X ∼We(0, b, c)

c

n r 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10 5 0.0500 0.2207 0.3637 0.4675 0.5438 0.6016 0.6467 0.6828 0.7122 0.7367

6 0.0837 0.2891 0.4369 0.5371 0.6081 0.6605 0.7008 0.7326 0.7583 0.7796

7 0.1381 0.3746 0.5203 0.6129 0.6760 0.7217 0.7562 0.7831 0.8047 0.8223

8 0.2329 0.4885 0.6219 0.7009 0.7529 0.7895 0.8167 0.8377 0.8544 0.8680

9 0.4247 0.6595 0.7596 0.8144 0.8490 0.8727 0.8900 0.9031 0.9135 0.9218

20 10 0.0343 0.1863 0.3265 0.4321 0.5111 0.5716 0.6192 0.6574 0.6888 0.7150

12 0.0586 0.2451 0.3927 0.4965 0.5714 0.6274 0.6707 0.7051 0.7331 0.7562

14 0.0988 0.3197 0.4693 0.5677 0.6362 0.6862 0.7243 0.7542 0.7783 0.7981

16 0.1713 0.4218 0.5648 0.6525 0.7112 0.7531 0.7844 0.8087 0.8281 0.8439

18 0.3297 0.5843 0.7016 0.7677 0.8100 0.8392 0.8607 0.8771 0.8901 0.9006

30 15 0.0282 0.1699 0.3075 0.4133 0.4933 0.5551 0.6039 0.6432 0.6756 0.7027

18 0.0485 0.2239 0.3700 0.4750 0.5516 0.6093 0.6541 0.6898 0.7190 0.7431

21 0.0825 0.2927 0.4427 0.5435 0.6145 0.6667 0.7066 0.7381 0.7635 0.7845

24 0.1445 0.3879 0.5342 0.6259 0.6879 0.7325 0.7660 0.7921 0.8130 0.8301

27 0.2837 0.5427 0.6681 0.7401 0.7866 0.8190 0.8429 0.8613 0.8758 0.8876

40 20 0.0248 0.1597 0.2952 0.4009 0.4816 0.5441 0.5936 0.6337 0.6667 0.6943

24 0.0429 0.2106 0.3553 0.4608 0.5384 0.5972 0.6429 0.6795 0.7094 0.7342

28 0.0732 0.2757 0.4254 0.5276 0.6000 0.6536 0.6947 0.7272 0.7535 0.7752

32 0.1288 0.3661 0.5140 0.6081 0.6722 0.7185 0.7535 0.7808 0.8026 0.8205

36 0.2554 0.5149 0.6451 0.7210 0.7703 0.8049 0.8304 0.8501 0.8657 0.8783

50 25 0.0226 0.1525 0.2864 0.3919 0.4729 0.5359 0.5860 0.6266 0.6600 0.6881

30 0.0391 0.2012 0.3447 0.4505 0.5287 0.5882 0.6347 0.6719 0.7023 0.7276

35 0.0669 0.2636 0.4129 0.5159 0.5893 0.6439 0.6858 0.7191 0.7460 0.7682

40 0.1182 0.3505 0.4993 0.5949 0.6606 0.7081 0.7441 0.7723 0.7949 0.8134

45 0.2358 0.4946 0.6280 0.7066 0.7580 0.7941 0.8209 0.8415 0.8579 0.8712

The second approach gives the following formula when X ∼We(0, b, c) and using (5.34):

REET =

(
n− 1

r − 1

)
r−1∑
i=0

(−1)i
(
r−1
i

)

(n− r + i+ 1)1+(1/c)

n−1∑
i=0

(−1)i
(n−1

i

)

(i+ 1)1+(1/c)

, (8.11a)

which — like V above — is independent of b. Using (8.11a) to compute REET is not

recommended, especially when r and/or n is large. The binomial coefficient gets huge and

its number of digits can exceed the number of precision digits of the computer software

being used. For this reason Tab. 8/2 has been computed by evaluating the defining integrals

in

E
(
Xr:n

)
= b n

1∫

0

F−1(y)

(
n− 1

r − 1

)
yr−1 (1 − y)n−r dy. (8.11b)
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As F−1(y) =
[
− ln(1 − y)

]1/c
in the WEIBULL case, we get

E
(
Xr:n

)
= b r

1∫

0

(
n

r

)[
− ln(1 − y)

]1/c
yr−1 (1 − y)n−r dy (8.11c)

E
(
Xn:n

)
= b n

1∫

0

[
− ln(1 − y)

]1/c
yn−1 dy. (8.11d)

To avoid computing a huge binomial coefficient in (8.11c), take the logarithm of the in-

tegrand first and then recover its value by the exponent operation. Tab. 8/2 gives REET
for n = 10(10)50, c = 0.5(0.5)5 and r = [0.5(0.1)0.9]n, i.e., the censoring number r is

50%, 60%, 70%, 80% and 90% of n.

HSIEH (1994) has studied a different version of REET , namely

REET ∗ =
E
(
Xr:n

)

E
(
Xr:r

) . (8.11e)

The difference to (8.8) is found in the denominator. We think that REET given by (8.8)

is more apt to measure time saving with type–II single censoring. REET ∗ uses different

sets of information from differing sample sizes, r complete lifetimes and n − r censored

lifetimes from a sample of size n in the numerator and r complete lifetimes from a sample

of size r in the denominator. REET , instead, has the same set of information in the

numerator and denominator, namely n observed lifetimes where in the numerator only

n− r life spans are known to be greater than Xr:n.

With respect to R we have two type–II censored plans:

{n, 0, G, S, Xr:n} − no replacement of items failing prior to Xr:n,

{n, 1, G, S, X∗
r:n} − replacement of failing items.

What plan to choose? It is easy to see that — for the same n and the same r — the (R=1)–
plan has a shorter duration. But with respect to the cost depending on the number of used

items, the (R= 1)–plan is less favorable. r items will be destroyed under both plans, but

the (R=1)–plan uses n+ r items instead of only n items with the (R=0)–plan.

8.3.2.3 Combined type-I and type-II censoring

If the product under life testing is highly reliable, the duration D = Xr:n or D = X∗
r:n of a

type–II plan may become very long. To have a safeguard against those costs depending on

D as well as against those costs depending on the unit price of an item, one can combine

type–I and type–II censoring and set, e.g., for R = 0,

D = min(Xr:n, T )

resulting into the plan {n, 0, G, S, min(Xr:n, T )}. The area P in the (t, a)–plane, which

when entered by the trajectory a(t) determines the end of the test, is a three–quarter plane
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similar to that on the right–hand side of Fig. 8/2 where n has to be changed against r. The

duration as well as the number of failures are random but limited above by T and r. The

average duration E(D) is computed by (8.4e) with Xn:n substituted by Xr:n and fn:n(x)
by fr:n(x). We mention that

{n, 0, G, S, min(Xn:n, T )} = {n, 0, G, S, T},

but

{n, 1, G, S, min(X∗
n:n, T )} 6= {n, 1, G, S, T}.

8.3.2.4 Indirect censoring

The inference of certain parametric distributions F (x |θ) depends on the sum of all ob-

served lifetimes whether censored or not. This statistic is called total time on test, TTT
for short. With respect to an exponential distribution TTT is a sufficient statistic, but for

a WEIBULL distribution the only sufficient statistic is the entire dataset. When TTT is to

be used, the quality of the inferential process depends on the size of TTT , which — on its

side — is determined by the test duration D, so that we write TTT (D).

Besides the function A(t) giving the number of failed items up to and including t, we

introduce another random function B(t) showing the number of items that have not failed

or have not been removed otherwise up to and including t. A realization or trajectory of

B(t) is denoted by b(t). B(t), giving the number of units on test at time t, may also be

named stock function. B(t) is

• a constant function when failing items are replaced instantaneously

b(t) = n, (8.12a)

• a descending step function which is complementary to n when we run the (R=0)–
plan

B(t) = n−A(t). (8.12b)

TTT is the integral of B(t) (see Fig. 8/5).

So, when a special value ω for TTT (D) has been chosen, which ensures the desired quality

of the inferential statement, we have one more possibility to fix D via TTT (D) = ω, i.e.,

D = TTT−1(ω). (8.13)

The test is suspended at that very moment when TTT has reached ω. We thus censor the

long lifetimes not directly by T, Xr:n, X
∗
r:n, min(T,Xr:n) or min(T,X∗

r:n) but indirectly

by the fulfilment of some other criterion.

Looking at (R= 1)–plans with always n items on test TTT (D) = ω is not an additional

censoring criterion because

• the plan {n, 1, G, S, T} with D = T has

TTT (T ) = n · T, (8.14a)
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• the plan {n, 1, G, S, X∗
r:n} with D = X∗

r:n has

TTT (X∗
r:n) = n ·X∗

r:n (8.14b)

• and the plan {n, 1, G, S, min(T,X∗
r:n)} has

TTT [min(T,X∗
r:n)] = n · min(T,X∗

r:n). (8.14c)

(R=1)–plans have a TTT statistic which is unequivocally determined by either the deter-

ministic duration T or the time of the r–th failure X∗
r:n. TTT always is a rectangle with

height n and width T or X∗
r:n.

Figure 8/5: Stock function of an (R=0)-plan and two approaches to calculate TTT (D)

(R= 0)–plans have a random course of B(t) and thus a random area TTT (t) leading to

a non–trivial supplement of direct singly censoring. Looking at a given trajectory b(t) of

B(t) (see Fig. 8/5), we have two possibilities to represent and calculate TTT . Let imax be

the number of the last failing item within (0,D], i.e.,

imax = max{i : Xi:n ≤ D}, (8.15a)

then:

1. TTT (D) is the sum of n horizontal bars representing individual lifetimes from

which imax are complete and b(D) = n − imax are incomplete and of equal length

D,

TTT (D) =

imax∑

i=1

Xi:n + (n− imax)D (8.15b)

(see the left–hand side of Fig. 8/5).
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2. TTT (D) is the sum of imax + 1 vertical bars. The first imax bars present integrals

of inter–failure times.The last vertical bar is the integral of n − imax durations

expressing the accumulated time from the last failure Ximax:n to the end of the test,

D,

TTT (D) =

imax∑

i=1

(n− i+ 1) (Xi:n −Xi−1:n) + (n− imax) (D −Ximax:n) (8.15c)

where X0:n = 0.

(8.15b,c) together with Fig. 8/5 show

• that many failures lead to a heavy decline of B(t) and thus prolong the test duration,

• that early failures also have a tendency to prolong test duration.

The area P in the (t, a)–plane is not of simple form. The limiting line of P depends on the

random course of the stochastic process A(t) = n−B(t).

Based on TTT (t) we may introduce further types of life test plans.

1. A first type is denoted by

{n, 0, G, S, TTT−1(ω)},

where the test stops when TTT = ω has been reached. When we have fairly unreli-

able items, it might happen — in analogy to the plan {n, 0, G, S, T} — that after

the last item has failed, TTT = ω has not been reached, i.e., TTT (Xn:n) < ω. The

effective test duration of this first type is thus

D = min
(
TTT−1(ω);Xn:n

)
.

2. A second type is denoted by
{
n, 0, G, S, min

(
TTT−1(ω);Xr:n

)}
.

The test is terminated by the earlier of the following two events:

• the r–th failure, but TTT (Xr:n) ≤ ω,

• TTT (D) = ω, but A(D) < r.

This second type — like the combined type–I and type–II censoring in

Sect. 8.3.2.3 — is a safeguard against using up too many items.

3. A third type is {
n, 0, G, S, min

(
TTT−1(ω);T

)}
.

The test stops when either

• a fixed time T has elapsed, but TTT (T ) ≤ ω, or

• TTT (D) = ω, but D < T .

This type is a safeguard against a very long test duration.
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4. A fourth type is

{
n, 0, G, S, min

(
TTT−1(ω);T ;Xr:n

)}
,

safeguarding against both an unduly long test duration and using up too many items.

8.3.3 Multiply censored tests

In a typical case, the life test is terminated with a single stage of censoring, no further ob-

servations being recorded for any of the survivors. In many practical situations, the initial

censoring results in withdrawal of only a portion of the survivors. Those which remain on

test continue under observation until ultimate failure or until a subsequent stage of cen-

soring is performed. For sufficiently large samples, censoring may be progressive through

several stages, thus leading to a progressively (multiply) censored test or hypercensored

test. Multiply censored tests will never have R = 1 because the reasons for hypercensor-

ing contradict a replacement of failing items. Contrary to single censoring the censored

lifetimes are not of equal length.

There are several reasons for multiple censoring:

1. Certain specimens must be withdrawn from a life test prior to failure for use as test

objects in related experimentation or to be inspected more thoroughly.

2. In other instances progressively censored samples result from a compromise between

the need for more rapid testing and the desire to include at least some extreme life

spans in the sample data.

3. When test facilities are limited and when prolonged tests are expensive, the early

censoring of a substantial number of sample specimens frees facilities for other tests

while specimens that are allowed to continue on test until subsequent failure permit

observation of extreme sample values.

If we look at a k–stage plan (k ≥ 2), the stock function B(t) not only does descend in a

natural way by failing items but it is lowered deliberately by withdrawing a certain number

ei (ei ≥ 1) of non–failed items at time ti, i = 1, 2, . . . , k and ti−1 < ti, t0 = 0. tk
represents the stopping time of testing. Generally, the numbers ei are fixed in advance —

the simplest case being e1 = e2 = . . . = ek = constant — and thus are non–random,9

whereas the process of withdrawing is random in any case. There are situations (see the

remarks on type–I progressive censoring further down), where the test stops before tk.

Then ek and even some of the ei preceding ek cannot be realized and the number of items

withdrawn at the time of premature shopping is less than the scheduled number. We have

the following ex–post representation of the sample size

n = a(tk) +

k∑

i=1

ei, (8.16a)

9 TSE/YUEN (1998) analyze a situation with random ei and a WEIBULL distributed lifetime.
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a(tk) being the number of failures in (0, tk] and resulting in complete lifetimes. The func-

tions A(t) and B(t) now are no longer complementary to n, instead we have

B(t) =





n−A(t) for 0 < t < t1,

n−
[
A(t) +

j∑
i=1

ei

]
for t ≥ tj, j = 1, . . . , k.





(8.16b)

There are different approaches to set the times ti. In progressive censoring as in single

censoring, a distinction is to be made between type–I censoring and type–II censoring.

We will first discuss type–I multiple censoring where the withdrawal times are fixed in

advance and denoted by ti = Ti; the simplest case is

Ti = i · ∆t; i = 1, 2, . . . , k,

i.e., the withdrawal times are equidistant.

We will denote a type–I progressively censored test by

{
n; 0; G; S; (T1, e1), (T1, e2), . . . , (Tk, ek)

}
.

But we cannot be sure that the test evolves in the predetermined way suggested by the

notation and that the test is terminated at t = Tk with a withdrawal of ek items. We may

distinguish two cases of premature termination:

1. The test ends at Tj , 1 ≤ j < k, with either the withdrawal of the scheduled number

ej or of fewer than ej items. The condition is

1 ≤ n−
j−1∑

i=1

ei − a(Tj − ε) ≤ ej , ε > 0, and small. (8.17a)

a(Tj − ε) is the number of failures accumulated immediately before Tj .

2. The test ends at some time t∗ between two scheduled times, i.e., Tj−1<t
∗<Tj, 1≤

j < k and T0 = 0, because the stock function B(t) has come down to zero. The

condition is

a(t∗) = n−
j−1∑

i=1

ei. (8.17b)

Summarizing the description of type–I progressive censoring, we can state that the number

of items on test at the non–random points of withdrawal Ti is a variate because the number

of failing items in the fixed interval (Ti−1, Ti] is stochastic. Denoting the number of failed

items by a(Tk) and the corresponding times to failure by xi the likelihood function for

type–I multiple censoring is

L(θ | data) =





K1

k∏
i=1

[
1 − F (Ti |θ)

]ei for a(Tk) = 0,

K2

a(Tk)∏
j=1

f(xj |θ)
k∏
i=1

[
1 − F (Ti |θ)

]ei for a(Tk) > 0,





(8.17c)
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whereK1 andK2 are constants not depending on θ. When there is a premature termination,

the index i (in the case of a(Tk) > 0) will also not reach k with consequences for the last

exponent ei.

Looking to the literature it seems that type–I multiple censoring has not been as attractive

as type–II multiple censoring where the points of withdrawal are given by failure times.

Let r1 < r2 < . . . < rk < n be k failure numbers, ri ≥ 1 for all i, and Xri:n the

corresponding failure times. The test is thus scheduled to observe rk failures. Then the

most general type–II hypercensored test is written as

{
n; 0; G; S; (Xr1:n, e1), (Xr2:n, e2), . . . , (Xrk :n, ek)

}
.

The following relation with respect to failures and removals holds

n = rk +

k∑

i=1

ei. (8.18a)

Here — contrary to type–I hypercensoring — there is no premature termination; the test

always stops at Xrk:n, which is random, and the last group of withdrawals always has the

planned size

ek = n− rk −
k−1∑

i=1

ei. (8.18b)

The stock function always has the non–random value

b(Xri:n) = n− ri −
i∑

j=1

ej , (8.18c)

at t = Xri:n, which is random. The likelihood function is

L(θ | data) = K

rk∏

ℓ=1

f(xℓ:n |θ)
k∏

i=1

[
1 − F (xri:n |θ)

]ei , (8.18d)

with K as a constant independent of θ.

A special, but more popular version of the plan just described has the first k natural

numbers as its failure numbers:

r1 = 1, r2 = 2, . . . , rk = k;

i.e., we have as many uncensored lifetimes (= failures) as there will be stages. We denote

this plan as {
n; 0; G; S; (X1:n, e1), (X2:n, e2), . . . , (Xk:n, ek)

}
.
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Its likelihood function simply reads

L(θ | data) =
k∏

i=1

ñi f(xi:n |θ)
[
1 − F (xi:n |θ)

]ei , (8.19a)

where

ñi = n− i+ 1 −
i−1∑

j=1

ej .

The average test duration is not simply given by E
(
Xk:n

)
, using (8.6b) and substituting k

against r, because we successively reduce the initial sample size by ei. We thus have to

condition Xk:n on the vector e = (e1, . . . , ek)
′. TSE /YUEN (1998) give the following

rather complicated formula for the mean duration:

E(D)=E
(
Xk:n|e

)
=K(e)

e1∑

ℓ=0

. . .

ek∑

ℓk=0

(−1)A

(
e1
ℓ1

)
. . .
(
ek
ℓk

)

k−1∏
i=1

h(ℓi)

∞∫

0

x f(x|θ)F h(ℓi)−1(x|θ) dx,

(8.19b)
where

A =
k∑
i=1

ℓi, h(ℓi) = ℓ1 + . . . + ℓi + i,

K(e) = n (n− 1 − e1) (n − 2 − e1 − e2) . . .

(
n− k + 1 −

k−1∑
j=1

ej

)
.

In the WEIBULL case — X ∼We(0, b, c) — (8.19b) turns into

E(D) = K(e) b Γ

(
1 +

1

c

) e1∑

ℓ1=0

. . .

ek∑

ℓk=0

(−1)A

(
e1
ℓ1

)
. . .
(
ek
ℓk

)

k−1∏
i=1

h(ℓi)

×

h(ℓi)−1∑

j=0

(−1)j
(
h(ℓi) − 1

j

)(
1

j + 1

)1+(1/c)

. (8.19c)

One may combine type–II hypercensoring with type–I single censoring as a safeguard

against a too long test duration:

{
n; 0; G; S; (X1:n, e1), (X2:n, e2), . . . , (Xk−1:n, ek−1), min

[
T, (Xk:n, ek)

]}
.
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Now, the test stops at the k–th failure or at a fixed time T , whichever occurs first. The

corresponding likelihood function is

L(θ|data)=





[
1−F (T |θ)

]n
for T < x1:n,

K1

j∏
i=1
f(xi:n|θ)

[
1−F (xi:n|θ)

]ei
[
1−F (T |θ)]e∗ for

{
xj:n ≤ T < xj+1:n,

j = 1, . . . , k−1,

K2

k∏
i=1

f(xi:n|θ)
[
1−F (xi:n|θ)

]ei for T ≤ xk:n,





(8.20)

with

e∗ = n− k −
j∑

i=1

ej

and K1,K2 as constants not involving θ.

JOHNSON (1964) introduced a special version of the type–II hypercensored test with ri =
i; i = 1, . . . , k, which later on was called a sudden death test; see MCCOOL (1970b,

1974a).10 The design is as follows: The tester groups the n test specimens randomly in k
sets of equal size m; i.e., we have n = km. All k sets are put on test at the same time.

Upon the first failure within a set, the surviving m − 1 specimens of this set are removed

and the test continues with k − 1 sets until the next failure in a set and so on until the

first failure in the last remaining set. In practical applications, samples of this kind might

arise from testing “throw away” units, each consisting of m identical components, when

the failure of any single component means failure of the unit; i.e., the unit is a series system

of components with identical life distribution. Such a plan is usually feasible when test

facilities are scarce but test material is relatively cheap. The likelihood function belonging

to a sudden death test is given by (8.19a) after substitution of each ei by m− 1. To develop

the formula for the average test duration of a sudden death test, we first have to notice that

the time to the first failure within set i is X
(i)
1:m; i = 1, . . . , k. So the test stops after

a duration given by the largest, the k–th order statistic of these X
(i)
1:m. Assuming X ∼

We(0, b, c), each X
(i)
1:m is a sample minimum which — on its side — is again WEIBULL

distributed:

Zi := X
(i)
1:m ∼We(0, bm−1/c, c), see (5.32a,b). (8.21a)

Upon applying (5.34) to (8.21a) we get the average test duration E
(
D1

)
of this simultane-

ous sudden death test

E
(
D1

)
= E

(
Zk:k

)
= k bm−1/c Γ

(
1 +

1

c

) k−1∑

i=0

(−1)i
(
k − 1

i

)(
1

i+ 1

)1+(1/c)

.

(8.21b)

10 These papers also contain point estimators and interval estimators for the percentiles of a WEIBULL

distribution.



310 8 Collecting life data

When the test facilities are extremely scarce, we have to run a successive sudden death

test, first introduced by BALASOORIYA (1995) for exponentially distributed lifetime. This

type of test has the following design: We have k sets of equal size m, but we have only m
test facilities. A first set is put on test and upon the first failure the set is removed and the

next set is put on test and so on. The k sets are thus tested one after the other giving rise to

k complete lifetimes within an average test time11

E
(
D2

)
= k E

(
X1:m

)
= k bm−1/c Γ

(
1 +

1

c

)
. (8.22)

We will compare E
(
D1

)
and E

(
D2

)
to the average duration E

(
D3

)
of a type–II singly

censored test when the test facilities are not limited at all, so that we may put all n = km
units on test simultaneously and wait until the occurrence of the k–th failure. We get

E
(
D3

)
= E

(
Xk:km

)

= kmb

(
km− 1

k − 1

)
Γ

(
1 +

1

c

) k−1∑

i=0

(−1)i
(
k − 1

i

)

×
(

1

km− k + i+ 1

)1+(1/c)

. (8.23)

Fig. 8/6 shows E
(
Di); i = 1, 2, 3 for the reduced WEIBULL variate U ∼We(0, 1, c) when

k = 4, m = 5 and n = k ·m = 20.12 We generally have E
(
D3

)
< E

(
D1

)
< E

(
D2

)
.

8.3.4 Further types of censoring

In (8.2) we have introduced the life test parameter G encoding whether the data are grouped

or not. For G = 1 (= grouping), the time axis is divided into k + 1 intervals, the first (last)

being opened to the left (right):

(−∞, t1], (t1, t2], . . . , (tk−1, tk], (tk,∞).

In the simplest case the inner intervals are of equal width:

ti+1 − ti = ∆; i = 1, 2, . . . , k − 1.

If we put n units on test and we only register the number di of units failing in interval i,
we have interval censoring. d1 units are censored on the left and dk+1 are censored on the

right. Let (F (x |θ) be the CDF of the lifetime; then the likelihood function has the general

form

L(θ | data) = F (t1 |θ)]d1
[
1 − F (tk |θ)

]dk+1

k∏

i=2

[
F (ti |θ) − F (ti−1 |θ)

]di . (8.24)

11 When we need ℓ > k complete lifetimes the BALASOORIYA plan is inappropriate. We have to accumu-

late more than one failure in some test sets. WU et al. (2001) have analyzed this situation by a simulation

approach to evaluate the rather complicated formula for the average test time. They also give parameter

estimates and their confidence intervals.

12 For numerical evaluation of (8.21b) and (8.30) one should use the integral representation according to

(8.11c, d).
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Figure 8/6: Average test duration for several variants of type-II hypercensoring for k = 4
and m = 5 and X ∼We(0, 1, c)

Censoring times are often effectively random, especially with field data. For example, in

a medical trial patients may enter the study in a more or less random fashion, according

to their time of diagnosis. Some of the patients are lost to follow–up because they move

or die of an illness other than that under investigation or the study is terminated at some

prearranged date. Censoring times, that is, the lengths of a patients’s time under study, are

random.

A very simple random censoring process that is often realistic is one in which each individ-

ual is assumed to have a lifetime X and a censoring time C , with X and C independent

continuous variates, having CDFs F (x) and G(c), respectively. C may be the time of a

competing risk. Let (Xi, Ci); i = 1, 2, . . . , n be independent and, as in the case of type–I

censoring (8.5a), define

Yi = min(Xi, Ci) and δi =





1 if Xi ≤ Ci,

0 if Xi > Ci.



 (8.25a)

The data from observations on n individuals consist of the pairs (yi, δi). The joint density–

probability of (yi, δi) is easily obtained using f(x) and g(c), the DFs of X and C . We have



312 8 Collecting life data

Pr(Yi = y, δi = 0) = Pr(Xi > y,Ci = y)

= [1 − F (y)] g(y), (8.25b)

Pr(Yi = y, δi = 1) = Pr(Ci > y,Xi = y)

= [1 −G(y)] f(y). (8.25c)

These can be combined into the single expression

Pr(Yi = y, δi) =
{
f(y) [1 −G(y)]

}δi {g(y) [1 − F (y)]
}1−δi , (8.25d)

and thus the joint density of the n pairs (yi, δi) is

n∏
i=1

{
f(yi) [1 −G(yi)]

}δi {g(yi) [1 − F (yi)]
}1−δi =

=

(
n∏
i=1

[1 −G(yi)]
δi g(yi)

1−δi
)(

n∏
i=1

f(yi)
δi [1 − F (yi)]

1−δi
)
.





(8.25e)

If G(y) and g(y) do not involve any parameters in θ of F (y |θ), then the first term on the

right–hand side of (8.25e) can be neglected and the likelihood function taken to be

L(θ | data) =

n∏

i=1

f(yi |θ)δi [1 − F (yi |θ)]1−δi , (8.25f)

which is of the form (8.5e).



9 Parameter estimation —

Graphical approaches

The great majority of papers on the WEIBULL distribution deal with the estimation of its

parameters a (location), b (scale) and c (shape). An initial approach, which is appropriate

for selecting good estimators for the parameters of a given distribution, is to determine the

minimal sufficient–statistic vector.1 This is the vector of smallest dimension that includes

functions of the observed data yielding all information useful in estimating the parameters

and functions thereof. The minimal vector of sufficient statistics for complete samples

of size n from a two–parameter WEIBULL distribution and a Log–WEIBULL distribution

consists of (X1:n, X2:n, . . . , Xn:n) and (X∗
1:n, X

∗
2:n, . . . , X

∗
n:n), whereX∗

i:n = ln(Xi:n).
Also, when only the first r of n sample values are observable, then (X1:n, X2:n, . . . , Xr:n)
and (X∗

1:n, X
∗
2:n, . . . , X

∗
r:n) are minimally sufficient. Thus, for r > 2, no joint complete

sufficient statistics exist and hence no unique minimum–variance unbiased estimators of the

parameters and functions. So, in the last fifty years a multitude of estimation procedures

have come into existence which exploit the information of the n sampled observations in

different ways. In this and the following seven chapters we will present these techniques.

9.1 General remarks on parameter estimation

There are two approaches to estimation and several methods for each of them. The two

approaches are point estimation and interval estimation. In point estimation, a numerical

value for the the k–dimensional vector θ of parameters is calculated. In interval estimation,

a k–dimensional region is determined in such a way that this region covers the true vector

θ with a specified and predetermined probability 1−α, 1− α ≥ 0.90 in general. 1− α is

the level of confidence. If k = 1, this region is an interval, hence the name.

Let Xi; i = 1, . . . , n be the sample variates and xi the realization of Xi in a given sample.

The expression Θ̂ = Θ̂(X1, . . . ,Xn) is called an estimator, and it is a random variable.

θ̂ = θ̂(x1, . . . , xn) is called an estimate; it is the numerical value obtained using the data

available. In the case of censoring or grouping, the estimate depends on the observed data

as well as on the censoring or grouping values.

Many methods are available for estimating the parameters, especially those of the

WEIBULL distribution, each having its advantages and disadvantages, and there is no

method which is best with respect to all characteristics that may be set up to measure its

behavior. From the viewpoint of statistical theory we have the following list of desirable

properties of estimators:2

1 Sufficiency is explained in Sect. 9.1.

2 The following listing deals with only a scalar–valued parameter. A generalization to a vector–valued

parameter is straightforward and will be given in the following sections.
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1. Unbiasedness — An estimator Θ̂n of θ is said to be unbiased if

E
(
Θ̂n

)
= θ ∀ n. (9.1a)

Unbiasedness means that repeating the estimation process a great number of times

— with the same sample size n — will lead to an average of the estimates obtained

which is (approximately) equal to θ. An estimator with E(Θ̂n) 6= θ is said to be

biased. The bias is given by

B
(
Θ̂n

)
:= E

(
Θ̂n

)
− θ. (9.1b)

B
(
Θ̂n

)
< (>) 0 means systematic underestimation (overestimation) of θ. If, in the

case of B
(
Θ̂n

)
6= 0,

lim
n→∞

E
(
Θ̂n

)
= θ, (9.1c)

Θ̂n is called asymptotically unbiased.

2. Median unbiasedness — An estimator Θ̂n of θ is said to be median unbiased if

Pr
(
Θ̂n ≤ θ

)
= 0.5 ∀ n, (9.2)

i.e., θ is the median of the distribution of Θ̂n. Median unbiasedness means that the

chances of overshooting or undershooting θ are equal.

3. Normality — An estimator Θ̂n of θ is said to be

• normal3 if
Θ̂n − E

(
Θ̂n)√

Var
(
Θ̂n

) ∼ No(0, 1) ∀ n, (9.3a)

• and asymptotically normal if

Θ̂n − E
(
Θ̂n

)
√

Var
(
Θ̂n

) ∼ No(0, 1) for n→ ∞. (9.3b)

Normality means that we can easily compute prediction intervals for Θ̂n as well

as confidence intervals for θ using the percentiles uP of the standard normal

distribution.
4. Linearity — An estimator Θ̂n of θ is said to be linear if it is of the form

Θ̂n = c0 +

n∑
ciXi; c0, ci ∈ R. (9.4)

This estimator has the most easily computable linear form, but the weighting factors

ci ensuring optimal estimators may be rather difficult to determine (see Sect. 10.2).

In general, we have c0 = 0.

3 No(0, 1) stands for the standard normal distribution with density ϕ(u) = exp(−u2/2)
‹√

2π.
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5. Consistency — An estimator Θ̂n of θ is said to be consistent if some law of large

numbers holds. We mostly use the weak law of large numbers:

lim
n→∞

Pr
(
|Θ̂n − θ| > ǫ

)
= 0, ǫ > 0 and small, (9.5a)

shortly written as,

plim Θ̂n = θ. (9.5b)

6. Sufficiency — The estimator Θ̂n of θ compresses the n variates X1, . . . ,Xn into

one variate. If there is no loss of information the estimator is called sufficient. One

way to ascertain sufficiency is to use the factorization criterion of J. NEYMAN and

R.A. FISHER:

f(x | θ) = g1(x) g2
[
Θ̂n(x); θ

]
, (9.6)

where f(x | θ) is the joint density of x = (x1, . . . , xn).

7. Efficiency — The estimate θ̂n may deviate from the true parameter value θ for two

reasons: bias and random sampling variation. The mean squared error (MSE)

and the root mean squared error (RMSE :=
√

MSE) incorporate both types of

deviation:

MSE
(
Θ̂n

)
:= E

[
(Θ̂n − θ)2

]

= E
[{

Θ̂n − E
(
Θ̂n

)}2]
︸ ︷︷ ︸ +

{
E
(
Θ̂n

)
− θ
}2

︸ ︷︷ ︸
= Var

(
Θ̂n

)
+ B

(
Θ̂n

)2
.

(9.7a)

Basically, efficiency of an estimator Θ̂n is judged by means of MSE
(
Θ̂n

)
,4 either rel-

ative to another estimator (relative efficiency) or relative to an absolute standard (ab-

solute efficiency). The most frequently used standard is the CAMÉR–RAO–bound:5

MSE
(
Θ̂n

)
≥

1 +
∂ B(Θ̂n)

∂ θ

−E

[
∂2L(θ |x)

∂ θ2

] , (9.7b)

L(θ |x) being the log–likelihood function: L(θ |x) := ln[L(θ |x)]. The denom-

inator of the term on the right–hand side is nothing but the FISHER information:

I(θ) := −E

{
∂2L(θ |x)

∂ θ2

}
= E

{(
∂ L(θ |x)

∂ θ

)2
}
. (9.7c)

4 In the case of unbiasedness MSE
`bΘn

´
reduces to Var

`bΘn

´

5 (9.7b) holds only under the following regularity conditions: The limits of integration, i.e., the limits of

variation of x, are finite and independent of θ and also, if these limits are infinite, provided that the

integral resulting from the interchange of integration and differentiation is uniformly convergent for all

θ and its integrand is a continuous function of x and θ. These are sufficient sets of conditions, but they

are not necessary.
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If an estimator Θ̂n is unbiased (9.7b) reduces to

Var
(
Θ̂n

)
≥ 1

−E

[
∂2L(θ |x)

∂ θ2

] , (9.7d)

and an estimator with variance equal to this lower bound is called a MVB

estimator (= minimum variance bound estimator). Estimators that are efficient in

this sense are also termed UMVUE (= uniformly minimum variance unbiased esti-

mator) and BLUE (= best linear unbiased estimator) if Θ̂n is linear. The condition

under which the MVB is attained reads

∂ L(θ |x)

∂ θ
= A(θ) (θ̂n − θ), (9.7e)

where A(θ) is independent of the observations. It is easily shown that the right–hand

side of (9.7d) reduces to 1/A(θ) and

min Var(θ̂n) = 1/A(θ). (9.7f)

Besides the formal criteria listed above there are other, more informal criteria for the

choice of a method of estimation:

1. Applicability to censored samples — This characteristic is very important for the

WEIBULL distribution.

2. Applicability to interval estimation — This characteristic is relevant when judging

the precision of estimation.

3. Clarity of the approach — This characteristic makes sense when the estimation

results are to be communicated to statistical laymen.

4. Simplicity of calculation — This characteristic has lost its importance with the ad-

vent of electronic computers and has been replaced by the availability of software

to implement the method on a computer.

There are a lot of ways to classify inferential procedures, especially estimation procedures.

One criterion is according to the topic to be estimated and another is the basic philosophical

or conceptual aspect of the approach.6 The contents of Chapters 9 through 17 discuss these

two aspects. Especially when estimating the distributional parameters of the WEIBULL dis-

tribution, we have stressed the philosophy behind the approach. We start with the classical

approach (Chapters 9 through 13) of FISHER, NEYMAN, PEARSON and others. A clas-

sical approach rests only on sample data, takes the parameters as unknown constants, and

works with the frequency concept of probability. The BAYES approach (Chapter 14) rests

on sample data and prior information, takes the parameters as unknown, but variates with a

given prior distribution and works with the frequency interpretation as well as with the sub-

jective interpretation of probability. Finally, Chapter 15 reports on fiducial and structural

inferences that are of minor importance in statistics.

6 For an introduction into theories of statistical inference see BARNETT (1973).
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9.2 Motivation for and types of graphs in statistics

Graphical approaches mainly serve four purposes:

• data exploration in the sense of finding a suitable model (see the works of TUKEY,

MOSTELLER, HOAGLIN, and VELLEMAN written in the 1970s);

• data analysis in the sense of estimation and validation of a model (this will be the

main topic of Section 9.3);

• data presentation as an appealing alternative to statistical tables;

• tools in statistical work, e.g., in the form of nomograms allowing quick reading of

the values of complicated mathematical–statistical functions.

There are graphs that do not serve only one purpose.

In the following text, we will present graphs which play a dominant role in confirmatory

data analysis, e.g., in statistical inference, of lifetime distributions, namely the following

five types:

• the QQ–plot or quantile plot,

• the PP–plot or percent plot,

• plots on probability paper (= probability plotting),

• hazard plotting and

• the TTT–plot.

The first four techniques have a common basis: they start with the cumulative distribution

function of a random variable. This CDF has to be a parametric function; more precisely,

it should be a member of the location–scale family. The TTT–plot is mainly a technique

in non–parametric statistics giving less information than hazard plotting and probability

plotting.

9.2.1 PP-plots and QQ-plots

Both types of plots are suitable to compare

• two theoretical CDFs,

• two empirical CDFs or

• an empirical CDF to a theoretical CDF.

They do not help in estimation but they are the basis for probability plotting, and hazard

plotting which help in estimating the distribution parameters.

Let FX(x) and FY (y) be the CDFs of variates X and Y , respectively, given in Fig. 9/1.

From this display we may deduce two types of graphs, the QQ–plot or quantile plot and the

PP–plot or percent plot.

For each value P on the ordinate axis displaying the CDF, there are at most two values on

the abscissa axis displaying the realizations of the variates, called quantiles:

xP := QX(P ) and yP := QY (P ).

A QQ–plot is a display where yP is plotted against xP with P varying, 0 < P < 1.

Conversely, for each value Q on the abscissa axis there are at most two values on the

ordinate axis:

PX(Q) := FX(Q) and PY (Q) := FY (Q).
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Figure 9/1: Explanation of the QQ-plot and the PP-plot

A PP–plot is a display where FY (Q) is plotted against FX(Q) for Q varying, Q ∈ R.

We have several modifications of these two basic displays. There is a special case where

QQ–plot and PP–plot are identical: X and Y both are uniformly distributed in [0, 1]. This

will be the case when the two variates are probability integral transforms.

We will first and briefly comment on the PP–plot which is less important. If X and Y
are identically distributed, their CDFs will coincide in Fig. 9/1 and the resulting PP–plot

will be a 45◦–line running from
(
PX(Q), PY (Q)

)
] = (0, 0) to

(
PX(Q), PY (Q)

)
= (1, 1).

Contrary to the QQ–plot the PP–plot will not be linear if one of the two variates is a linear

transform of the other one; see Fig. 9/2 where X ∼We(0, 1, 2) and Y ∼We(−1, 2, 2).

Despite the missing clear sensitivity of a PP–plot against a linear transformation of the

variates, it is of some importance. The PP–plot possesses a high discriminatory power in

the region of high density because in that region the CDF, i.e., the value of P , is a more

rapidly changing function of Q than in the region of low density. Furthermore, the idea of

the PP–plot is — contrary to that of a QQ–plot — transferable to a multivariate distribution.

For identically distributed variates X and Y , the CDFs in Fig. 9/1 will coincide, we will get

xP = yP ∀ P ∈ (0, 1), and the QQ–plot is a 45◦–line running in the direction of the origin

of the coordinate axes. If Y is a positive linear transform of X, i.e., Y = a+ bX, b > 0,
then the QQ–plot will be a straight line, which easily shown:

FY (y) = FX

(
y − a

b

)
and b > 0

=⇒ xP =
yP − a

b
or yP = a+ b xP .
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This property of linear invariance renders the QQ–plot especially useful in statistical anal-

ysis because linearity is a form which is easily perceived by the human eye, as well.

Figure 9/2: PP–plot of PY (Q) = 1−exp
{
−[(y+1)/2]2

}
against PX(Q) = 1−exp{−x2}

If one of the two distributions to be compared by a QQ–plot possesses very long tails

with rather small DF–values, then the QQ–plot will emphasize this distributional difference

whereas the difference in the “middle” region of the two distributions, where the density is

relatively high, will be blurred somewhat. The reason for this kind of sensitivity of a QQ–

plot is that a quantile changes rapidly with P where the density is low and only changes

slowly with P where the density is high.

Example 9/1: QQ–plots when one of the two distributions is WEIBULL

The two distributions to be compared in this example are always given in reduced form, i.e., their

location parameters are set to 0 and their scale parameters are set to 1.

1. WEIBULL distribution and exponential distribution

xP = [− ln(1 − P )]1/c − WEIBULL quantile

yP = − ln(1 − P ) − exponential quantile

= xc
P

The QQ–graph will be

• concave for 0 < c < 1,

• linear for c = 1,

• convex for c > 1.
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2. WEIBULL distribution and type–I distribution of the minimum

yP = ln[− ln(1 − P )] − type–I minimum quantile

= ln
(
xc

P

)

The QQ–graph will be concave.

3. WEIBULL distribution and uniform distribution in [0, 1]

yP = P − quantile of the uniform distribution

= 1 − exp
(
− xc

P

)

The QQ–graph is identical to the CDF of the reduced WEIBULL variate (see the left–hand

side of Fig. 2/7).

4. WEIBULL distribution and standard normal distribution

yP = Φ−1(P ) − quantile of the standard normal distribution

= Φ−1
(
1 − exp

[
− xc

P

])

The plot will be

• concave for 0 < c . 3.6,

• linear for c ≈ 3.6,

• convex for c & 3.6.

It is also possible to use a QQ–plot for the comparison of two empirical CDFs. When both

samples are of equal size n, the empirical QQ–plot consists of simply plotting yi:n over

xi:n for i = 1, 2, . . . , n. For samples of different sizes the procedure is as follows.

1. Let n1 be the size of the smaller sample with observations xν , ν = 1, 2, . . . , n1 and

n2 be the size of the greater sample with observations yκ, κ = 1, 2, . . . , n2.

2. The order of the empirical quantiles is chosen in such a way that the ordered x-

observations are equal to the natural quantiles, i.e.,

xpν = xν:n1; pν = ν/n1; ν = 1, 2, . . . , n1. (9.8a)

3. The y-quantile to be plotted over xν:n1 is an interpolated value:

ypν = yκ:n2 + (n2 pν − κ) (yκ+1:n2 − yκ:n2) (9.8b)

with

κ < npν ≤ κ+ 1. (9.8c)
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Fig. 9/3 shows four empirical QQ–plots for samples of equal size n = 20:

• upper row, left–hand side — The universes are the same:

Xν ∼ We(0, 1, 2), Yκ ∼ We(0, 1, 2).

The 20 points scatter around a 45◦–line running through the origin.

• upper row, right–hand side — The universes are shifted against each other:

Xν ∼ We(0, 1, 2), Yκ ∼ We(3, 1, 2).

The 20 points scatter around a 45◦–line shifted upwards.

• lower row, left–hand side — The universes are differently scaled:

Xν ∼ We(0, 1, 2), Yκ ∼ We(0, 2, 2).

Because X has a smaller variance than Y the 20 points scatter around a line which

is steeper than a 45◦–line

• lower row, right–hand side:

Xν ∼ We(0, 1, 2), Yκ are reduced exponential variates.

The 20 points scatter around a convex curve.

Figure 9/3: Four empirical QQ-plots, each involving at least one WEIBULL sample
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9.2.2 Probability plots

The two axes of a QQ–plot have a natural (= linear) scale. The most frequently used

probability papers or probability grids result into a QQ–plot too, but

• on probability paper we compare empirical quantiles of a sample to the theoretical

quantiles of a universe,

• the axes of a probability paper are generally non–linear and distorted in such a way

that the data points will scatter around a straight line when the sample has been drawn

from the given universe.

Probability paper is predominant in the location–scale family of distributions where it is

easily implemented and has many advantages (see Sect. 9.2.2.3). We will first give the

theoretical background and show how to construct a probability paper with emphasis on

the WEIBULL–paper (Sect. 9.2.2.1). A special problem in application is the choice of the

plotting position belonging to an ordered observation xi:n. Sect. 9.2.2.2 treats this subject

and shows the close connection to linear estimation procedures covered in Chapter 10.

9.2.2.1 Theory and construction

When a variate X has a two–parameter distribution, the parameters being a (a ∈ R) and

b (b > 0), which depends on only the reduced variate

U =
X − a

b
, (9.9a)

i.e.,

FX(x | a, b) = FU

(
x− a

b

)
, (9.9b)

then a is called location parameter and b is the scale parameter. a is not necessarily the

mean and b is not necessarily the standard deviation of X, an exception being the normal

distribution. The distributions of X obtained when a and b take on all values of their

domains constitute a location–scale family. U in (9.9a) has a distribution which is free of

any other parameters, so we have

FX(x | a, b) = Pr(X ≤ x | a, b)

= Pr

(
U ≤ x− a

b

)

= FU (u) = Pu, u = (x− a)/b. (9.9c)

When X is not of the location–scale type, a suitable transformation

X∗ = g(X) (9.9d)

may lead to the desired type of distribution, prominent examples being the lognormal and

the WEIBULL distributions.
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A probability paper for a location–scale distribution is constructed by taking the vertical

axis (ordinate) of a rectangular system of coordinates to lay off the quantiles of the reduced

variable,7

uP = F−1(P ), 0 < P < 1, (9.9e)

but the labeling of this axis is according to the corresponding probability P = F−1(uP )
or 100P%. This procedure gives a scaling with respect to P which — in general — is

non–linear, an exception being the uniform distribution over [0, 1]. Despite this probability

labeling, which is chosen for reasons of an easier application, the basis of this axis is a

theoretical quantile function. Sometimes a second vertical axis is given with the quantile

labeling (see Fig. 9/4) which will help to read the parameters a and b. There are cases where

the inverse F−1(P ) cannot be given in closed, analytical form but has to be determined

numerically, the normal distribution being the most prominent example of this case.

The second, horizontal axis of the system of coordinates is for the display of X, either in

linear scaling or non–linear according to g(X) when a transformation has been made. The

quantiles of the distribution of X or of g(X) will lie on a straight line

xP = a+ b uP . (9.9f)

In applications to sample data, the ordered sample values — regarded as empirical quan-

tiles — are laid off on the horizontal axis and the corresponding estimated probabilities,

called plotting positions (Sect. 9.2.2.2), on the vertical axis.

Figure 9/4: Extreme value paper (upper part) and WEIBULL paper (lower part)

7 The quantiles of some reduced variables bear special names: probit for the normal distribution, logit for

the logistic distribution and rankit for the uniform distribution.
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The type–I–minimum distribution, extreme value distribution for short, is one starting point

for the construction of WEIBULL–probability–paper; a second approach is given further

down. The extreme value distribution is a location–scale distribution. Looking at

P = FX(xP | a, b) = 1 − exp

[
− exp

(
xP − a

b

)]
; x ∈ R (9.10a)

and — for the reduced variable — at

P = FU (uP ) = 1 − exp[− exp(uP )], (9.10b)

we get upon equating the two quantiles

uP =
xP − a

b
=

1

b
xP − a

b
, (9.10c)

where

uP = ln[− ln(1 − P )], 0 < P < 1 (9.10d)

is the reduced quantile. The probability paper for the extreme value distribution thus

has a double log–scale on the ordinate and a linear scale on the abscissa (see the upper part

of Fig. 9/4).

The three–parameter WEIBULL distribution with CDF

FX(x | a, b, c) = 1 − exp

{
−
(
x− a

b

)c}
, (9.11a)

which is not a member of the location–scale family, may be transformed by taking

X∗ = g(X) = ln(X − a), (9.11b)
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provided a is known. We arrive at

FX∗(x∗ | a∗, b∗) = 1 − exp

[
− exp

(
x∗ − a∗

b∗

)]
; x∗ ≥ a∗, a∗ ∈ R, b∗ > 0, (9.11c)

where
a∗ = ln b, (9.11d)

b∗ = 1/c. (9.11e)

Thus X∗ = ln(X − a) has the extreme value distribution, and upon proceeding as above

we get

uP =
x∗P − a∗

b∗
=

1

b∗
ln(xP − a) − a∗

b∗

= = c ln(xP − a) − c ln b. (9.11f)

The probability paper for the WEIBULL distribution has the same ordinate scaling as

the extreme–value paper, but the abscissa is logarithmic according to (9.11b) (see the lower

part of Fig. 9/4). Another starting point to construct the WEIBULL grid is to take the CDF

in (9.11a) with the intention to its linearization:

ln[− ln(1 − P )] = c ln(xP − a) − c ln b.

Excursus: Further probability papers

We list some popular location–scale distributions and the scaling of the axes of their corresponding

probability papers.

1. Uniform distribution

FX(x | a, b) =
x− a

b
, a ≤ x ≤ a+ b, a ∈ R, b > 0

FU (u) = u, 0 ≤ u ≤ 1

uP = P =
xP − a

b
, 0 ≤ P ≤ 1

Both axes have a linear scale.

2. Exponential distribution

FX(x | a, b) = 1 − exp

{
x− a

b

}
, x ≥ a

FU (u) = 1 − exp{u}, u ≥ 0

uP = − ln(1 − P ) =
xP − a

b
, 0 ≤ P < 1

The abscissa is linear; the ordinate is logarithmic.

3. Normal distribution

FX(x | a, b) =

x∫

−∞

1

b
√

2 π
exp

{
− (y − a)2

2 b2

}
dy

FU (u) =

u∫

−∞

1√
2 π

exp
{
−y2/2

}
dy =: Φ(u)

uP = Φ−1(P ) =
xP − a

b
, 0 < P < 1
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The abscissa is linear; the ordinate is scaled according to the numerically inverted CDF of

the standard normal distribution.

4. Lognormal distribution

FX(x | a, b, c) =

x∫

a

1

b
√

2 π

1

y − a
exp

{
− [ln(y − a) − b]2

2 c2

}
dy, x > a

X∗ = ln(X − a)

FX∗(x∗ | a∗, b∗) =

x∗∫

−∞

1

b∗
√

2 π
exp

{
− (y∗ − a∗)2

2 b∗2

}
dy∗

a∗ = E
[
ln(X − a)

]
= b

b∗ =
√

Var
[
ln(X − a)

]
= c

uP = Φ−1(P ) =
ln(xP − a) − a∗

b∗
, 0 < P < 1

The ordinate is the same as that of the normal paper, but the abscissa is logarithmic.

5. Logistic distribution

FX(x | a, b) =

{
1 + exp

[
−x− a

b

]}−1

FU (u) =
{
1 + exp(−u)

}−1

uP = ln

(
P

1 − P

)
=

xP − a

b
, 0 < P < 1

The abscissa is linear; the ordinate is scaled according to ln[P/(1 − P )].

9.2.2.2 Plotting positions8

Let xi:n; i = 1, . . . , n be the ordered observations of a sample from a location–scale

distribution. The corresponding reduced observations would be

ui:n = (xi:n − a)/b, (9.12a)

provided a and b are known. In the latter case we could even compute the corresponding

P–value on the probability–labeled ordinate:

Pi = FU

(
xi:n − a

b

)
(9.12b)

to be plotted over xi:n. All these points would lie on a straight line. As a and b are unknown,

we have to ask how to estimate ui:n or equivalently Pi. These estimates are called plotting

positions. We have to bear in mind two aims:

1. achieving linearity when the distribution of X has been chosen correctly,

2. efficient estimation of the parameters a and b.

8 Suggested reading for this section: BARNETT (1975), BLOM (1958), KIMBALL (1960).
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This section treats only the first aim, whereas the second aim will be discussed in Chap-

ter 10.

As two equivalent quantities can be laid off on the ordinate of a probability paper, the

search for a plotting position can start at either uP or P = FU (uP ). The various plotting

conventions are based wholly on the sample size n and on the nature of FU (·). The nu-

merical values xi:n of the observations will not play a part. The conventions will indicate

appropriate values P̂i on the P–scale or values ûi:n on the axis for the reduced variate cor-

responding to the P̂i. As in formulas (9.12a,b) the P̂i may then be expressed in terms of the

ûi:n:

P̂i = FU (ûi:n) (9.13a)

or conversely

ûi:n = F−1
U (P̂i). (9.13b)

We first present the so–called “direct” method, see KIMBALL (1960, p. 549), since the

rationale involved is based directly on the order number i of xi:n.

1. A naı̈ve estimator — but simultaneously the maximum likelihood estimator

(MLE) — of FX(x)=FU
(
[x− a]/b

)
= FU (u) is the stair–case function

P̂ = F̂X(x) =





0 for x < x1:n,
i

n
for xi:n ≤ x < xi+1:n, i = 1, 2, . . . , n− 1,

1 for x ≥ xn:n,

leading to the plotting position

P̂i =
i

n
. (9.14a)

A drawback of this proposal is that for all distributions with unlimited range to the

right, P = 1 is not found on the probability scale, so that the largest sample value

xn:n has to be omitted.

2. For this reason WEIBULL (1939b) has proposed

P̂i =
i

n+ 1
. (9.14b)

Another rationale for this choice will be given below.

3. The midpoint position is

P̂i =
i− 0.5

n
, (9.14c)

motivated by the fact that at xi:n the stair–case moves upward from (i− 1)/n to i/n.

Thus we believe that xi:n is a quantile of order Pi somewhere between (i− 1)/n and

i/n, and the average of these two is the estimator in (9.14c).

4. BLOM (1958) has proposed

P̂i =
i− 0.375

n+ 0.25
. (9.14d)



328 9 Parameter estimation — Graphical approaches

This position guarantees optimality of the linear fit on normal probability paper.

Sometimes this plotting position is used for other than normal distributions.

There are plotting positions which rest on the theory of order statistics (see Chapter 5). A

first approach along this line departs from the random portion Πi of sample values less than

Xi:n and tries to estimate Pi. A second approach — discussed further down — tries to

estimate ui:n and departs from the distribution of Ui:n. The random portion Πi is defined

as

Πi = Pr(X ≤ Xi:n) = FU

(
Xi:n − a

b

)
(9.15a)

and has the following CDF:

FΠi(p) = Pr
(
Πi ≤ p

)

=

n∑

j=i

(
n

j

)
pj (1 − p)n−j . (9.15b)

The binomial formula (9.15b) results from the fact that we have n independent observations

Xi, each of them having a probability p to fall underneath the quantile xp = F−1
X (p). Then

Xi:n will be smaller than F−1
X (p) if i or more sample values will turn out to be smaller

than F−1
X (p). (9.15b) is identical to the CDF of the beta distribution with parameters i and

n− i+ 1, the DF being

fΠi(p) =
n!

(i− 1)! (n − i)!
pi−1 (1 − p)n−i, 0 ≤ p ≤ 1. (9.15c)

Taking the mean, the median or the mode of Πi gives the following three plotting positions:

• P̂i = E(Πi) =
i

n+ 1
− mean plotting position,

(9.15d)

which is equal to (9.14b).

• P̂i such that FΠi

(
P̂i
)

= 0.5

This median plotting position cannot be given in closed form, but JOHNSON (1964) sug-

gested the following approximation

P̂i ≈
i− 0.3

n+ 0.4
. (9.15e)

• P̂i =
i− 1

n− 1
− mode plotting position.

(9.15f)

(9.15f) turns into P̂1 = 0 for i = 1 and into P̂n = 1 for i = n, and because most of the

probability papers do not include the ordinate values P = 0 and P = 1, the mode plotting

position is rarely used.
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All plotting positions presented above are estimates of Pi = FX(X ≤ xi:n), and all of them

do not depend on the sampled distribution. Plotting positions on the scale of the reduced

variable U = (X − a)/b depend on the distribution of the ordered variates Ui:n, which in

turn depend on the sampled distribution; see (5.1e). The plotting position ûi:n is chosen

as one of the functional parameters of Ui:n, either the mean; see (5.18a)

ûi:n = E(Ui:n) =: αi:n (9.16a)

or the median

ûi:n = ũi:n (9.16b)

or the mode

ûi:n = u∗i:n. (9.16c)

All these plotting positions cannot be given in closed form and have to be computed nu-

merically. That is the reason plotting positions, which are directly based on U , are not very

popular.

Finally, there is a third possibility to determine plotting positions that is dependent on the

sampled distribution too. The location–scale distributed variate X and its reduced form U
are linked by a linear function, thus we have with respect to the ordered observations:

xi:n = a+ b ui:n. (9.17)

In (9.17) we only know xi:n, and a, b as well as the ui:n are unknown. We can choose

values ûi:n in such a manner that the estimators â and b̂ are optimal in a given sense. We

will revert to this approach in Chapter 10 because its emphasis is on directly estimating the

parameters a and b, and the calculation of ûi:n is a by–product.

Tab. 9/1 summarizes all the plotting positions discussed above. With respect to the choice

we can finally state that in most applications it does not matter much how Pi or ui:n are

estimated. One will only notice marked differences when the sample size is small. But even

these differences are blurred when the straight line is fitted to the data point free–hand.

9.2.2.3 Advantages and limitations

Probability papers9 are often preferred over the numerical analysis presented in later chap-

ters because plots serve many purposes, which no single numerical method can. A plot has

many advantages:

1. It is fast and simple to use. In contrast, numerical methods may be tedious to compute

and may require analytic know–how or an expensive statistical consultant. Moreover,

the added accuracy of numerical methods over plots often does not warrant the effort.

2. It presents data in an easily understandable form. This helps one to draw conclusions

from data and also to present data to others. The method is easily understood, even

by laymen.

9 For a short remark on the history of probability plotting, see BARNETT (1975).
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Table 9/1: Plotting positions

Name Reduced variate ûi:n Probability P̂i

Naı̈ve estimator ûi:n = F−1
U (i/n) P̂i = i/n

Midpoint position ûi:n = F−1
U [(i− 0.5)/n] P̂i = (i− 0.5)/n

BLOM position ûi:n = F−1
U [(i− 0.375)/(n + 0.25)] P̂i = (i− 0.375)/(n + 0.25)

Mean position

– with respect to Πi ûi:n = F−1
U [i/(n + 1)] P̂i = i/(n + 1)

– with respect to Ui:n ûi:n = αi:n P̂i = FU (αi:n)

Median position

– with respect to Πi ûi:n = F−1
U [(i− 0.3)/(n + 0.4)] P̂i = (i− 0.3)/(n + 0.4)

– with respect to Ui:n ûi:n = ũi:n P̂i = FU (ũi:n)

Mode position

– with respect to Πi ûi:n = F−1
U [(i− 1)/(n − 1)] P̂i = (i− 1)/(n − 1)

– with respect to Ui:n ûi:n = u∗i:n P̂i = FU (u∗i:n)

Positions based on
optimal estimation of

a and b
no analytic formulas

3. It provides simple estimates for a distribution: its parameters, its percentiles, its per-

centages failing and percentages surviving. When the paper is supplemented by aux-

iliary scales one can even read the hazard rate, the cumulative hazard rate, the mean

and the standard deviation.

4. It helps to assess how well a given theoretical distribution fits the data. Sometimes it

is even possible to identify and estimate a mixture of two or at most three distribu-

tions.

5. It applies to both complete and censored data. Graphical extrapolation into the cen-

sored region is easily done.

6. It helps to spot unusual data. The peculiar appearance of a data plot or certain plotted

points may reveal bad data or yield important insight when the cause is determined.

7. It lets one assess the assumptions of analytic methods which will be applied to the

data in a later stage.

Some limitations of a data plot in comparison with analytic methods are the following:

1. It is not objective. Two people using the same plot may obtain somewhat different

estimates. But they usually come to the same conclusion.

2. It does not provide confidence intervals or a statistical hypothesis test. However, a

plot is often conclusive and leaves little need for such analytic results.

Usually a thorough statistical analysis combines graphical and analytical methods.
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9.2.3 Hazard plot

The plotting of multiple and randomly censored data on probability paper causes some

problems, and the plotting positions are not easy to compute (see Sect. 9.3.2). Plotting

positions are comfortably determined as shown by NELSON (1972a) when hazard paper

is used. We will first demonstrate how to construct a hazard paper with emphasis on the

WEIBULL distribution and then shortly comment on the choice of the plotting position for

this kind of paper.

We still analyze location–scale distributions where FX(x) = FU (u) for u = (x − a)/b.
With respect to the cumulative hazard rate (see (2.5) and Table 2/1), we thus have

HX(x) = − ln[1 − FX(x)] = − ln[1 − FU (u)] = HU (u), u =
x− a

b
. (9.18a)

Let Λ, Λ > 0 be a value of the CHR, then

uΛ = H−1
U (Λ) (9.18b)

and consequently

xΛ = a+ b uΛ (9.18c)

uΛ and xΛ may be called hazard quantile, h–quantile for short. A hazard paper for a

location–scale distribution is constructed by taking the vertical axis of a rectangular system

of coordinates to lay off uΛ, but the labeling of this axis is according to the corresponding

CHR–value Λ. This procedure gives a scaling with respect to Λ which — in general — is

non–linear, an exception being the exponential distribution.

The probability grid and the hazard grid for one and the same distribution are related to one

another because

Λ = − ln(1 − P ) (9.18d)

or

P = 1 − exp(−Λ), (9.18e)

where P is a given value of the CDF. Thus, a probability grid may be used for hazard

plotting when the P–scaling of the ordinate is supplemented by a Λ–scaling (see Fig. 9/5).

Conversely, a hazard paper may be used for probability plotting.

The reduced extreme value distribution has

FU (u) = 1 − exp[− exp(u)],

so that the CHR–function is

HU(u) = − ln[1 − FU (u)]

= − ln{exp[− exp(u)]}
= exp(u) (9.19a)

and
uΛ = ln Λ (9.19b)

and finally

xΛ = a+ b uΛ = a+ b ln Λ. (9.19c)
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Figure 9/5: Hazard paper for the extreme value distribution (upper part) and the

WEIBULL distribution (lower part)

The hazard paper of the extreme value distribution has a log–scale on the ordinate and

a linear scale on the abscissa (see the upper part of Fig. 9/5). When X ∼ We(a, b, c),
we have an extreme value distribution for ln(X − a) with location parameter a∗ = ln b
and scale parameter b∗ = 1/c. So the hazard paper of the WEIBULL distribution has

the same ordinate as the extreme value hazard paper but a logarithmic scale on the abscissa

(see the lower part of Fig. 9/5) and the linear relation, connecting the h–quantiles, reads

ln(xΛ − a) = a∗ + b∗ lnΛ. (9.20)

The cumulative hazard value Λi for the i–th ordered observation xi:n has to be estimated.
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For each uncensored lifetime the hazard rate h(x | a, b) is estimated by the hazard value

ĥ(xi:n | a, b) =
1

n− i+ 1
, (9.21a)

where n − i + 1 is the number of sampled items that have not failed up to xi:n. Thus,

n − i + 1 is the size of the risk set exposed to fail at xi:n. n − i + 1 is nothing but the

reverse rank
ri := n− i+ 1, (9.21b)

which results when all lifetime data — censored as well as uncensored — would be ordered

in descending order. The hazard plotting position is estimated by

Λ̂i = ĤX(xi:n) =

i∑

j=1

1

rj
, (9.21c)

and the summation is only over those reverse ranks belonging to uncensored observations.

NELSON (1972a) proved the unbiasedness of (9.21c) when the data are type–II multiply

censored.

9.2.4 TTT-plot

The TTT–plot is a graph which mainly serves to discriminate between different types of

aging, i.e., between constant, decreasing or increasing hazard rates. With respect to the

WEIBULL distribution it thus indicates whether c = 1, c < 1 or c > 1. We will first

present TTT–plots for uncensored life tests, make some remarks on the censored–data case

and close by listing the advantages and limitations.

Let 0 = X0:n ≤ X1:n ≤ . . . ≤ Xn:n denote an ordered sample from a life distribution

F (x) with survival function R(x) = 1 − F (x). The total time on test (TTT) statistics

TTTi =

i∑

j=1

(n− j + 1) (Xj:n −Xj−1:n); i = 1, 2, . . . , n (9.22a)

have been introduced by EPSTEIN/SOBEL (1953) in connection with the inference of the

exponential distribution. For a graphical illustration of TTTi, see Fig. 8/4. The sample

mean may be expressed as

X =
1

n
TTTn. (9.22b)

The normalized quantity

TTT ∗
i =

TTTi
TTTn

=
TTTi
nx

, 0 ≤ TTT ∗
i ≤ 1 (9.22c)

is called scaled total time on test. By plotting and connecting the points (i/n, TTT ∗
i );

i = 0, 1, . . . , n, where TTT0 = 0, by straight line segments we obtain a curve called the

TTT–plot (see Fig. 9/6). This plotting technique was first suggested by BARLOW/CAMPO

(1975) and shows what portion of the total time on test has been accumulated by the portion

i/n of items failing first. The TTT–plot has some resemblance to the LORENZ–curve, the

difference being that the latter is always strictly convex and lies beneath the 45◦–line.
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To see what is revealed by a TTT–plot we look at the exponential distribution with F (x) =
1 − exp(−x/b), x ≥ 0. The theoretical counterpart to (9.22a) for this distribution is

G−1
F (P ) :=

F−1(P )∫

0

exp(−x/b) dx

=

−b ln(1−P )∫

0

exp(−x/b) dx

= b P. (9.23a)

This is called the TTT–transform of FX(x). The scale invariant transform being the the-

oretical counterpart to (9.22c) is

G−1
F (P )

µ
=
b P

b
= P, 0 ≤ P ≤ 1, (9.23b)

and the TTT–plot will be the 45◦–line. BARLOW/CAMPO (1975) have shown that the

theoretical TTT–plot will be

• concave and lying above the 45◦–line when F (x) has an increasing hazard rate,

• convex and lying below the 45◦–line when F (x) has a decreasing hazard rate.

An empirical TTT–plot that

• takes its course randomly around the 45◦–line indicates a sample from an exponential

distribution,

• is nearly concave (convex) and is mainly above (below) the 45◦–line indicates a

sample from an IHR (DHR) distribution.

BARLOW/CAMPO (1975) formulated a test of H0 : “F (x) is an exponential distribution”

against H1: “F (x) is IHR (DHR).” If the TTT–plot is completely above (below) the 45◦–

lineH0 is rejected in favor of IHR (DHR), the level of significance being α = 1/n. Fig. 9/6

shows three empirical TTT–plots of samples from different WEIBULL distributions.

With respect to censored life tests the scaled total time on test is defined as

•
TTT ∗

i =
TTTi

TTT (T )
(9.24a)

for type–I singly censoring at T and plotted against i/k; i = 1, 2, . . . , k and k fail-

ures within (0, T ],

•
TTT ∗

i =
TTTi

TTT (xr:n)
(9.24b)

for type–II singly censoring at the r–th failure and plotted against i/r; i =
1, 2, . . . , r.
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Figure 9/6: TTT-plots for several WEIBULL samples of size n = 20

The plots generated in this way will generally lie above those of an uncensored sam-

ple of equal size. For the TTT–plot when the sample is multiply censored, see

BERGMAN/KLEFSJÖ (1984) and WESTBERG/KLEFSJÖ (1994).

Compared to plots on probability paper or on hazard paper the TTT–plot has several advan-

tages:

1. The TTT–plot is well motivated in theory as well as in practice.

2. The TTT–plot is scale invariant.

3. The TTT–plot does not need a special system of coordinates; it is simply displayed

in the linearly scaled unit square.

4. Several distributions — even from different families — can be compared.

5. Its interpretation is plain.

The limitations are as follows:

1. It is only possible to give a rough classification into IHR, DHR or exponential or

neither of them.

2. Parameter estimation is impossible as is the reading of percentages or of quantiles.

9.3 WEIBULL plotting techniques

WEIBULL probability plotting was introduced by KAO (1959) and was popularized by

NELSON (1967). We will first present the procedure when the life test is either complete or
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singly censored (Sect. 9.3.1). The display of multiply censored data either on probability

paper or on hazard paper is discussed in Sections 9.3.2.1 and 9.3.2.2. Two special problems

(the existence of a location parameter a 6= 0 and the mixture of WEIBULL distributions)

are treated in Sections 9.3.3.1 and 9.3.3.2.

9.3.1 Complete samples and singly censored samples10

The approach to graphical estimation involves two parts. The first part consists in plotting

the data either on WEIBULL paper or on a paper with linear scales. This part depends on

the data available, whether they are complete or censored, and on the type of censoring.

The second part, which is the same for all types of data, comprises the fitting of a straight

line to the scatter plot and the estimation, i.e., reading or computing the parameters from

the fitted line.

First Part

1. Arrange the data in ascending order: x1:n ≤ x2:n ≤ . . . .

2. Convert the data to logarithms: x∗i:n = ln(xi:n).

3. Compute the plotting positions P̂i according to one of the methods presented in

Tab. 9/1.

4. Compute the corresponding reduced variables ûi:n = ln[− ln(1 − P̂i)].

Note to steps 3 and 4: If a direct determination of the plotting position ûi:n via

E(Ui:n) = αi:n, the median ũi:n or the mode u∗i:n, is preferred, steps 3 and 4 are

skipped.

5. Plot ûi:n on the ordinate versus x∗i:n on the abscissa.

6. Judge whether the points scatter randomly around a straight line. If not, there may

exist a location parameter a 6= 0 or a mixture of WEIBULL distributions or no

WEIBULL distribution at all.

With a WEIBULL–probability–paper at hand or with software, one can skip most of the

steps above. For singly censored data, Steps 3 to 5 have to be applied to the complete data

(see Examples 9/2 to 9/4), but for multiply censored data, Step 3 has to be modified (see

Sect. 9.3.2). For grouped data P̂i has to be plotted versus the logarithm of the upper limit

of class i.

Second Part

1. Determine the best straight–line fit either free–hand or by least squares with the fol-

lowing two options:

10 Suggested reading for this section: BERGER/LAWRENCE (1974), DODSON (1994), GIBBONS/VANCE

(1979), HOMAN (1989), MCCOOL (1974b), NELSON, L.S. (1967), NELSON, W. (1982), NEL-

SON/THOMPSON (1971), PLAIT (1962), STEINECKE (1979).
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1.1 Minimize the departures in the horizontal direction, i.e., along the axis for

the x∗i:n, which leads to the regression model

x∗i:n =
1

c
ûi:n + ln b+ ǫi. (9.25a)

1.2 Minimize the departures in the vertical direction, i.e. along the axis for the

ûi:n, giving the regression model

ûi:n = c x∗i:n − c ln b+ ηi. (9.25b)

ǫi and ηi are random disturbances. A person choosing (9.25a) takes the plotting

positions as fixed for a given sample size and argues that the life lengths are ran-

dom and would change in another sample of the same size whereas the vertical

positions will be unchanged. A person choosing (9.25b) takes the observed life

lengths as fixed and wants to estimate the unknown value of the CDF at these

points in an updated version, updated with respect to the initial estimates P̂i
that do not incorporate the observed life lengths. Because (9.25b) is the inverse

regression function of (9.25a) and not the inverse of a simple linear function,

the two sets of parameter estimates resulting from (9.25a,b) will differ. The

differences will be smaller the closer the plotted points lie to a straight line, i.e.,

the higher the correlation between x∗i:n and ûi:n.

2. Compute and/or read the estimates b̂ and ĉ for b and c.

2.1 With respect to (9.25a) we find ln b̂ as the abscissa value of the intersection

of the regression line with a horizontal line running through P ≈ 0.6321, as

u = ln[− ln(1 − 0.6321)] ≈ 0.ĉ is either the reciprocal slope of the estimated

regression line or the reciprocal of the difference (lnx∗0.9340 − ln b̂ ). lnx∗0.9340
is the abscissa value of the intersection of the regression line with a horizontal

line running through P ≈ 0.9340, as u = ln[−(1 − 0.9340)] ≈ 1.
2.2 With respect to (9.25b) the slope of the regression line yields ĉ. Compute û(0),

the ordinate intercept of the regression line, and find b̂ = exp[−û(0)/ĉ ]. We

mention that there exist WEIBULL–probability–papers having auxiliary axes

and scales to read directly off the estimates once the straight line has been

fitted.

Example 9/2: Graphical estimation for a complete life test (dataset #1)
To demonstrate the diverse estimation approaches of this and the following chapters, we will depart

from a basic set of complete lifetimes (dataset #1), which will be modified to give various models of

censoring. Dataset #1 consists of n = 20 simulated observations fromWe(0, 100, 2.5). The ordered

observations xi:20 and their corresponding plotting positions can be found in Tab. 9/2. Fig. 9/7

shows the data on WEIBULL–paper — without the 100 ∗ P%–scale — using the plotting position

i/(n + 1) together with the OLS–fitted straight lines according to (9.25a) and (9.25b). The two

lines nearly coincide because the correlation between û and x∗ is nearly perfect (r = 0.9865). The

estimated parameters b̂ and ĉ, according to (9.25a) and (9.25b) based on this choice of the plotting

position as well as on the other choices are displayed in Tab. 9/3.
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Table 9/2: Dataset #1
[
X ∼ We(0, 100, 2.5)

]
and diverse plotting positions

Plotting Position

i xi:n
i

n

i− 0.5

n

i− 0.375

n+ 0.25

i

n+ 1
αi:n

i− 0.3

n+ 0.4

i− 1

n− 1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 35 0.05 0.025 0.0309 0.0476 −3.5729 0.0343 0.0000
2 38 0.10 0.075 0.0802 0.0952 −2.5471 0.0833 0.0526
3 42 0.15 0.125 0.1296 0.1429 −2.0200 0.1324 0.1053
4 56 0.20 0.175 0.1790 0.1905 −1.6584 0.1814 0.1579
5 58 0.25 0.225 0.2284 0.2381 −1.3786 0.2304 0.2105

6 61 0.30 0.275 0.2778 0.2857 −1.1471 0.2794 0.2632
7 63 0.35 0.325 0.3272 0.3333 −0.9472 0.3284 0.3158
8 76 0.40 0.375 0.3765 0.3810 −0.7691 0.3775 0.3684
9 81 0.45 0.425 0.4259 0.4286 −0.6064 0.4265 0.4211

10 83 0.50 0.475 0.4753 0.4762 −0.4548 0.4755 0.4737

11 86 0.55 0.525 0.5247 0.5238 −0.3112 0.5245 0.5263
12 90 0.60 0.575 0.5741 0.5714 −0.1727 0.5735 0.5789
13 99 0.65 0.625 0.6235 0.6190 −0.0371 0.6225 0.6316
14 104 0.70 0.675 0.6728 0.6667 0.0979 0.6716 0.6842
15 113 0.75 0.725 0.7222 0.7143 0.2350 0.7206 0.7368

16 114 0.80 0.775 0.7716 0.7619 0.3776 0.7696 0.7895
17 117 0.85 0.825 0.8210 0.8095 0.5304 0.8186 0.8421
18 119 0.90 0.875 0.8704 0.8571 0.7022 0.8676 0.8947
19 141 0.95 0.925 0.9198 0.9048 0.9120 0.9167 0.9474
20 183 1.00 0.975 0.9691 0.9524 1.2232 0.9657 1.0000

Source of Column (7): WHITE (1967b)

Figure 9/7: Dataset #1 on WEIBULL-paper and OLS-fitted straight lines
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Table 9/3: Estimates of b and c for dataset #1 depending on the choice of the plotting position

and of the kind of regression

Plotting Regression (9.25a) Regression (9.25b) Correlation

position
b̂ ĉ b̂ ĉ

r
(
x∗, û

)

i/n 93.6627 2.6874 94.0309 2.6316 0.9895

(i− 0.5)/n 97.9444 2.8760 98.7502 2.7599 0.9796

(i− 0.375)/(n+ 0.25) 98.3173 2.7586 99.0310 2.6626 0.9824

i/(n+ 1) 99.2558 2.5029 99.8204 2.4373 0.9865

αi:n 98.8892 2.8098 99.6950 2.7038 0.9809

(i− 0.3)/(n+ 0.4) 98.5240 2.6983 99.1898 2.6109 0.9837

(i− 1)/(n− 1) 96.1792 2.9343 96.4875 2.8856 0.9917

With respect to the chosen plotting position, all estimates are close together, the only exception

being the positions (i−1)/(n−1) and i/n. Because the correlation between x∗ and û is very high,

the estimates resulting from using either (9.25a) or (9.25b) for each plotting position do not differ

markedly. The best approximation to the true parameter values b = 100 and c = 2.5 is given by

using (9.25a) in conjunction with the plotting position i/(n+ 1).

When the censoring is simple type–I or type–II censoring, probability plotting can proceed

as above except that the lifetimes associated with the non–failed elements are unknown

and hence cannot be plotted. One can plot the failures that have occurred using their order

numbers in the complete sample and perform the fitting operation using these points. Ex-

amples 9/3 and 9/4 will demonstrate the procedure by first singly censoring the dataset #1

at T = 100 (see Example 9/3) and afterwards by singly censoring the original set at the

15–th failure (see Example 9/4). Comparing the results of these two examples to those of

Example 9/2 shows the effect of censoring on the parameter estimates.

Example 9/3: Type–I singly censored dataset #1 at T = 100

Application of the censoring time T = 100 to the data in Tab. 9/2 gives 13 complete lifetimes, the

longest being x13:20 = 99, and 7 censored lifetimes. We can thus use the entries of rows i = 1 to

i = 13 to make a WEIBULL probability plot including the two straight line fits based on i/(n+ 1)
(see Fig. 9/8). Tab. 9/4 summarizes the estimation results for all plotting conventions.

The correlation between x∗ and û has weakened a little bit compared with Tab. 9/3. All estimates

have moved — but only by a small amount — from those of the complete sample so that their

departure from the true values has grown somewhat.
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Figure 9/8: Dataset #1 type-I singly censored at T = 100 and OLS-fitted straight lines

Table 9/4: Estimates of b and c for dataset #1 singly censored at T = 100 depending on

the choice of the plotting position and of the kind of regression

Plotting Regression (9.25a) Regression (9.25b) Correlation

position
b̂ ĉ b̂ ĉ

r
(
x∗, û

)

i/n 93.2981 2.6940 94.6823 2.5946 0.9814

(i− 0.5)/n 92.2498 3.2092 94.6965 2.9994 0.9667

(i− 0.375)/(n + 0.25) 93.3625 3.0331 95.4789 2.8656 0.9720

i/(n + 1) 97.4686 2.5657 95.9090 2.6660 0.9810

αi:n 93.3728 3.1172 95.6060 2.9368 0.9706

(i− 0.3)/(n + 0.4) 93.9441 2.9438 95.9198 2.7955 0.9795

(i− 1)/(n − 1) 95.3734 2.9718 96.3759 2.8869 0.9856

Example 9/4: Type-II singly censored dataset #1 at r = 15

When the test would have been terminated with the 15th failure, Tab. 9/2 would give the longest

complete lifetime x15:20 = 113. The WEIBULL probability plot and the OLS–fitted straight lines

— based on i/(n + 1) — in Fig. 9/9 now rest on the entries of rows i = 1 to i = 15 of Tab. 9/2.

The set of estimation results is presented in Tab. 9/5.

The results from single type–II censoring lie in between those of single type–I censoring and those

of the complete sample. The entries in Tab. 9/5 are a little bit closer to the true parameter values

than those of Tab. 9/4. The close agreement of the results of both types of censoring is surely due

to the fact that the censoring happened at nearly the same lifetime with nearly the same number of

incomplete observations.
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Figure 9/9: Dataset #1 type-II singly censored at x15:20 and OLS-fitted straight lines

Table 9/5: Estimates of b and c for dataset #1 type-II singly censored at x15:20 depending on the

choice of the plotting position and of the kind of regression

Plotting Regression (9.25a) Regression (9.25b) Correlation

position
b̂ ĉ b̂ ĉ

r
(
x∗, û

)

i/n 94.7934 2.6233 95.7402 2.5463 0.9852

(i− 0.5)/n 94.9642 3.0618 96.8707 2.8892 0.9714

(i− 0.375)/(n+ 0.25) 95.8132 2.9087 97.4186 2.7728 0.9763

i/(n+ 1) 97.7389 2.5880 98.8683 2.5083 0.9845

αi:n 95.9666 3.0750 97.7036 2.8350 0.9748

(i− 0.3)/(n+ 0.4) 96.2549 2.8313 97.7372 2.7114 0.9786

(i− 1)/(n− 1) 97.0572 2.8785 97.7805 2.8111 0.9882

The graphical approach essentially consists in a linearization of the WEIBULL distribution

function F (xi) = 1 − exp
{
− (xi/b)

c
}

and substituting F (xi) by appropriate estimates.

BERGER/LAWRENCE (1974) have compared the resulting linear regression estimators of b
and c to those of a non–linear regression; i.e., b and c are directly estimated by a regres-

sion of F̂ (xi) on xi. Their Monte Carlo simulations showed “that non–linear regression

does not represent an improvement in the estimation of WEIBULL distribution parameters,

and that the mean squared error of both methods is significantly greater than the asymp-
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totic variance of maximum likelihood estimators, and of best linear unbiased or best linear

invariant estimators.”

HOMAN (1989) compared the performance of six plotting conventions using least abso-

lute deviation (L 1) and least squares (L 2) regression methods under conditions of small

sample size, censoring and outlier contamination. His finding is: “A series of simulation

experiments indicate that in small samples (n = 10), L 2 regression methods are superior

in all ten situations of censoring and contamination.” A similar result has been found by

LAWRENCE/SHIER (1981) and SHIER/LAWRENCE (1984).

9.3.2 Multiply censored data

Two basic types of methods for the graphical analysis of multiply censored data have ap-

peared in the literature. These are the probability plotting methods (Sect. 9.3.2.1) and the

hazard plotting method (Sect. 9.3.2.2). The probability plotting methods employ a non–

parametric estimate of the CDF that is plotted on the probability paper belonging to some

parametric distributions. The hazard plotting method employs a non–parametric estimate

of the CHR which is plotted on the hazard paper belonging to some parametric function.

NELSON (1972a) gives a short review of the history of these two methods.

9.3.2.1 Probability plotting11

Probability plotting involves calculating the sample reliability function. This function or its

complement, the sample CDF, is plotted against age on probability paper. We will present

the HERD–JOHNSON and the KAPLAN–MEIER estimators of R(x), which are so–called

product–limit estimators. These methods are better for small samples because they plot

individual failure times. Another approach — not presented here — consists in applying

one of the various actuarial methods for constructing life–tables.12 The actuarial approach

is used for large samples where the data are grouped into time intervals.

The two product–limit estimators have a common starting point. There are n units in a

multiply censored sample, ordered from the smallest to the largest observed times. Each

censored observation time is marked by “+” (see Tab. 9/6). The observed times are num-

bered backwards with reverse ranks; the smallest is labeled n, the largest is labeled 1. If

there should be a tie between a failure time and a censored time, the censored time is con-

sidered to be a little bit greater than the failure time, i.e., the failure will receive the higher

reverse rank. The reliability function is estimated for only those times that are failures, but

the censored times have an influence in the determination of the plotting positions of the

failures. Let i be the i–th failure with reverse rank ri = n− i+ 1, then the reliability is re-

cursively calculated in both approaches. The HERD–JOHNSON estimator, HJ–estimator

for short, is
R̂∗
i =

ri
ri + 1

R̂∗
i−1, R̂

∗
0 = 1, (9.26)

11 Suggested reading for this section: DODSON (1994), HERD (1960), JOHNSON (1964), KAPLAN/MEIER

(1958).

12 See ELANDT–JOHNSON (1976).
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and the KAPLAN–MEIER estimator, KM–estimator for short, is

R̂+
i =

ri − 1

ri
R̂+
i−1, R̂

+
0 = 1. (9.27)

The corresponding failure probabilities

F̂ ∗
i = 1 − R̂∗

i and F̂+
i = 1 − R̂+

i

or their transforms

û∗i = ln
[
− ln

(
R̂∗
i

)]
and û+

i = ln
[
− ln

(
R̂+
i

)]

are the plotting positions. When the sample is complete,

• the HJ–estimator results in

F̂i =
i

n+ 1
,

which is the mean plotting position with respect to Πi (see Tab. 9/1), and

• the KM–estimator will be

F̂i =
i

n
,

which is the ML estimator of the CDF.

We further note that under KM–estimation we will get F̂+
n = 1 when the largest time in

the sample is a failure time that cannot be plotted on the WEIBULL–paper. But despite this

deficiency the KM–estimator is more popular, because it rests upon an intuitive idea, called

“redistribute–to–the–right.” The KM–estimator is defined by an algorithm that starts with

an empirical distribution that puts mass 1/n at each observed time and then moves the mass

of each censored observation by distributing it equally to all observed times to the right of

it.

Example 9/5: Randomly censored dataset #1.

We have randomly censored dataset #1 by independently generating corresponding failure times ci
of a competing risk, the ci coming fromWe(0, 100, 3); i.e., the mean of the competing risk variable

is greater than the mean of the original lifetime. The observed times yi = min(xi, ci) are listed in

column 2 of Tab. 9/6 together with an indicator “+” marking a censored observation.
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Table 9/6: HJ-estimate and KM-estimate of R(x) for randomly censored dataset #1

HERD–JOHNSON estimates KAPLAN–MEIER estimates

i yi
ri

ri + 1
R̂∗

i−1 R̂∗
i

ri − 1

ri
R̂+

i−1 R̂+
i

(1) (2) (3) (4) (5) (6) (7) (8)
1 35 0.9524 1.0000 0.9524 0.9500 1.0000 0.9500
2 38 0.9500 0.9524 0.9048 0.9474 0.9500 0.9000
3 39+ − − − − − −
4 40+ − − − − − −
5 41+ − − − − − −
6 42 0.9375 0.9048 0.8482 0.9333 0.9000 0.8400
7 51+ − − − − − −
8 56 0.9231 0.8482 0.7830 0.9167 0.8400 0.7700
9 56+ − − − − − −
10 61 0.9167 0.7830 0.7177 0.9091 0.7700 0.7000

11 67+ − − − − − −
12 76 0.9000 0.7177 0.6459 0.8889 0.7000 0.6222
13 83+ − − − − − −
14 86 0.8750 0.6459 0.5652 0.8571 0.6222 0.5333
15 94+ − − − − − −
16 99 0.8333 0.5652 0.4710 0.8000 0.5333 0.4267
17 104 0.8000 0.4710 0.3768 0.7500 0.4267 0.3200
18 109+ − − − − − −
19 117 0.6667 0.3768 0.2512 0.5000 0.3200 0.1600
20 143+ − − − − − −

Columns 3 to 5 (6 to 8) display the calculation of the HJ–estimates (KM–estimates). Despite the

differing estimators of R(x), the OLS–estimates of b and c are not too far away from each other or

from the true parameter values b = 100 and c = 2.5; see the following table:

Regression (9.25a) Regression (9.25b)

Method b̂ ĉ b̂ ĉ

HERD–JOHNSON 103.1359 2.4432 105.0804 2.3460

KAPLAN–MEIER 96.5733 2.5733 98.3540 2.4736

The following excursus shows another approach to determine the plotting positions for a

multiply censored dataset. The method has been suggested by DODSON (1994, pp. 21–25)

and consists in recursively calculating a modified order of the failed items that afterwards is

converted into one of those plotting positions in Tab. 9/1, which rest upon an order number.
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Excursus: DODSON’S method of calculating plotting positions for randomly censored

datasets
The order oj of the j–th failure (in ascending order) is given by

oj = oj−1 + ∆j (9.28a)

with

∆j =
(n+ 1) − oj−1

1 + kj
, (9.28b)

where

oj−1 = the order of the previous failure,

n = the total sample size of both censored and uncensored observations,

∆j = the increment for the j–th failure,

kj = the number of data points remaining in the dataset, including the current data point.

Table 9/7: DODSON’S estimation procedure for plotting positions belonging to the randomly cen-

sored dataset #1

i yi j xj oj−1 kj ∆j oj F̂ (xj) ûj

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 35 1 35 0 20 1 1 0.0343 −3.3552
2 38 2 38 1 19 1 2 0.0833 −2.4421
3 39+ − − − − − − − −
4 40+ − − − − − − − −
5 41+ − − − − − − − −
6 42 3 42 2 15 1.1875 3.1875 0.1415 −1.8801
7 51+ − − − − − − − −
8 56 4 56 3.1875 13 1.2723 4.4598 0.2039 −1.4783
9 56+ − − − − − − − −
10 61 5 61 4.4598 11 1.3784 5.8382 0.2715 −1.1496

11 67+ − − − − − − − −
12 76 6 76 5.8382 9 1.5162 7.3544 0.3458 −0.8572
13 83+ − − − − − − − −
14 86 7 86 7.3544 7 1.7057 9.0601 0.4294 −0.5779
15 94+ − − − − − − − −
16 99 8 99 9.0601 5 1.9900 11.0501 0.5270 −0.2895
17 104 9 104 11.0501 4 1.9900 13.0401 0.6245 −0.0207
18 109+ − − − − − − − −
19 117 10 117 13.0401 2 2.6533 15.6934 0.7546 0.3399
20 143+ − − − − − − − −

The procedure is another way of realizing the idea of “redistribute–to–the–right.” Tab. 9/7 demon-

strates the calculation using the randomly censored dataset of Tab. 9/6 and using the median
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position (oj − 0.3)/(n + 0.4) to estimate F (xj) in Column 9 and the plotting position ûj =

ln
{
− ln

[
1 − F̂ (xj)

]}
in Column 10.

Taking the failure times and their corresponding ûj from Tab. 9/7 the OLS–estimation of (9.25a)

delivers b̂ = 99.4544 and ĉ = 2.7685, whereas (9.25b) gives b̂ = 102.0762 and ĉ = 2.6066. In

both regressions the estimate for c is higher than the HJ– and the KM–estimates. The estimate for b

is closer to the true value than the HJ– and KM–estimates.

9.3.2.2 Hazard Plotting13

It is much easier and simpler for multiply censored data to use hazard plotting as outlined

in Sect. 9.2.3 than probability plotting based on the HJ–, KM– or DODSON–approaches.

The probability and data scales on a hazard paper for a given location–scale distribution

are exactly the same as those on the probability paper; compare Fig. 9/4 to Fig. 9/5 for the

extreme value distribution and the WEIBULL distribution. Thus, a hazard plot is interpreted

in just the same way as a probability plot, and the scales on hazard paper are used like

those on probability paper. The additional cumulative hazard rate Λ (see Fig. 9/5) is only

a convenience for plotting multiply censored data. The hazard plotting position on the

Λ–scale is estimated by (see (9.21c)):

Λ̂j = ĤX(xj) =

j∑

ℓ=1

1

rℓ
,

where x1 < x2 < . . . are the complete lifetimes in ascending order, and the summation is

thus over only those reverse ranks that belong to uncensored observations. The Λ̂j may be

converted to the hazard quantiles ûj of the extreme value distribution

ûj := u
(
Λ̂j
)

= ln Λ̂j

for convenient plotting and to OLS–estimation of the WEIBULL parameters in (9.25a,b).

Example 9/6: Hazard plotting of randomly censored dataset #1

We use the randomly censored data in Tab. 9/6 to demonstrate the computation of the hazard plotting

positions ûj in Column 9 of Tab. 9/8. These plotting positions may be compared to those of the

HERD–JOHNSON approach and the KAPLAN–MEIER approach in Columns 10 and 11. The hazard

plotting positions deliver b̂ = 100.7052 and ĉ = 2.4897 from (9.25a) and b̂ = 102.4495 and

ĉ = 2.3934 from (9.25b).

13 Suggested reading for this section: NELSON (1970, 1972a, 1982).
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Table 9/8: Hazard plotting for randomly censored dataset #1

Hazard plotting HJ KM

i yi ri j xj rj 1/rj Λ̂j ûj ûj ûj

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 35 20 1 35 20 0.0500 0.0500 −2.9957 −3.0202 −2.9702
2 38 19 2 38 19 0.0526 0.1026 −2.2766 −2.3018 −2.2504
3 39+ 18 − − − − − − − −
4 40+ 17 − − − − − − − −
5 41+ 16 − − − − − − − −
6 42 15 3 42 15 0.0667 0.1693 −1.7761 −1.8041 −1.7467
7 51+ 14 − − − − − − − −
8 56 13 4 56 13 0.0769 0.2462 −1.4015 −1.4079 −1.3418
9 56+ 12 − − − − − − − −
10 61 11 5 61 11 0.0909 0.3371 −1.0873 −1.1036 −1.0309

11 67+ 10 − − − − − − − −
12 76 9 6 76 9 0.1111 0.4482 −0.8024 −0.8277 −0.7456
13 83+ 8 − − − − − − − −
14 86 7 7 86 7 0.1429 0.5911 −0.5258 −0.5611 −0.4642
15 94+ 6 − − − − − − − −
16 99 5 8 99 5 0.2000 0.7911 −0.2343 −0.2838 −0.1605
17 104 4 9 104 4 0.2500 1.0411 0.0403 −0.0243 0.1305
18 109+ 3 − − − − − − − −
19 117 2 10 117 2 0.5000 1.5411 0.4325 0.3232 0.6057
20 143+ 1 − − − − − − − −

9.3.3 Special problems

A scatter plot that is significantly different from a straight line on WEIBULL–paper may

indicate the existence of either a location parameter a 6= 0 or a mixture of WEIBULL

distributions.

9.3.3.1 Three-parameter WEIBULL distribution14

Plotting ûi:n = ln
{
− ln

[
1− F̂ (xi:n)

]}
against x∗i:n = ln(xi:n) when the xi:n are sampled

from F (x) = 1 − exp{−[(x− a)/b]c} will result into an approximately convex (concave)

curve if a < 0 (a > 0) (see Fig. 2/8). The curved plot can be converted into a fairly

straight line when

1. c is known or

2. a is known.

14 Suggested reading for this section: DAVID (1975), JIANG/MURTHY (1997), KECECIOGLU (1991), LI

(1994).
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In the first case F (x) = 1 − exp{−[(x− a)/b]c} is transformed to

z =
1

b
x− a

b
(9.29a)

where

z =
{
− ln

[
1 − F (x)

])1/c
. (9.29b)

In the second case the linearizing transformation is

ln(x− a) =
1

c
ln
{
− ln

[
1 − F (x)

]}
+ ln b (9.30a)

or

ln
{
− ln

[
1 − F (x)

]}
= c ln(x− a) − c ln b. (9.30b)

The second case is more relevant in practice than the first case. Graphical oriented meth-

ods for a three–parameter WEIBULL distribution mostly attempt to estimate a first. Then,

using this estimate, the problem is reduced to estimating the remaining parameters b and c
as has been described in Sections 9.3.1 and 9.3.2. We will describe two such approaches,

the “trial and error” approach and an approach suggested by DAVID (1975), working along

this line.15 Afterward, we present two approaches, which simultaneously estimate all three

parameters, i.e., the approach of JIANG/MURTHY (1997) and a non–linear least squares

regression of (9.30b). All four approaches will be demonstrated by using dataset #2 con-

sisting of n = 20 observations from a WEIBULL distribution having a = 15, b = 30 and

c = 2.5. The ordered dataset is given in Tab. 9/9. The plotting of these data is always done

with P̂i = i/(n + 1), i.e., ûi:n = ln
[
− ln

(
1 − P̂i

)]
.

Table 9/9: Ordered dataset #2 from We(15, 30, 2.5)

i xi:20 i xi:20 i xi:20 i xi:20

1 22.8 6 34.4 11 41.6 16 49.5

2 26.3 7 35.6 12 43.5 17 52.0

3 28.8 8 37.3 13 44.7 18 53.8

4 30.9 9 38.5 14 46.2 19 57.3

5 32.4 10 39.9 15 48.4 20 66.4

Trial and error is a rather simple but subjective method to estimate a based on a graph. We

iteratively assume a value â, construct a probability plot based on x̂∗i:n = ln(xi:n − â) and

ûi:n = ln
{
− ln

[
1− F̂ (xi:n)

]}
, then revise â and plot again until there is no more obvious

curvature in the plot. When â is too small (large), the WEIBULL plot is concave (convex)

15 KECECIOGLU (1991, pp. 291–303.) gives more methods to estimate a.
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and â has to be raised (reduced). Adding a positive (negative) constant con to variable x
has the effect that ln(x + con) moves further to the right (left) for x being small than for

x being large and thus reduces a convex (concave) bending of a monotonically increasing

function of lnx.

Example 9/7: Estimating a by trial and error in dataset #2
Fig. 9/10 shows the working of the trial–and–error approach applied to dataset #2 of Tab. 9/9. The

curve marked by solid circles displays ûi:n as a function of lnxi:n and is obviously concave; i.e.,

a must be greater than zero. Introducing â = 5, 10, 15 and 20 moves the curves to the left,

reduces the concavity and finally leads to convexity when â = 20. As it is rather difficult to decide

which of the five curves is closest to linearity, we have calculated the residual sum of squares

RSS(â) for the linear fit (9.25b) to each curve: RSS(0) = 0.273, RSS(5) = 0.173, RSS(10) =
0.080, RSS(15) = 0.059 and RSS(20) = 0.585. Thus, â = 15 should be preferred.

Figure 9/10: Graphical estimation of a by trial and error

The graphical method proposed by DAVID (1975) requires the selection of three special

points on the graph of ûi:n against x∗i:n = lnxi:n. The points have the coordinates

(x∗1, u1), (x∗2, u2), (x∗3, u3)

and have to satisfy the condition

u3 − u2 = u2 − u1 = con; (9.31a)
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i.e., they are equidistant on the u–axis. When X ∼ We(a, b, c), these points are supposed

to lie on a straight line; therefore,

u3 − u2

ln(x3 − a) − ln(x2 − a)
=

u2 − u1

ln(x2 − a) − ln(x1 − a)
(9.31b)

and

(x3 − a)u2−u1 (x1 − a)u3−u2 = (x2 − a)u3−u1 . (9.31c)

(9.31c) turns into

(x3 − a)con (x1 − a)con = (x2 − a)2 con (9.31d)

observing (9.31a). The solution for a is

â =
x2

2 − x1 x3

2x2 − x1 − x3
. (9.31e)

Example 9/8: Estimating a by DAVID’s method

Fig. 9/11 demonstrates how to apply DAVID´s approach to dataset #2. The estimate â will be

subjective for two reasons. First, we have to approximate the data points (x∗i:n, ûi:n) by a smooth

curve. (Here, this step is unnecessary because the points lie on concavely banded smooth curve.)

Second, we have to choose con and a starting point u1. Fig. 9/11 shows two choices:

• con = 1 and u1 = −1 lead to â ≈ 19.2,
• con = 0.5 and u1 = −2.5 give â ≈ 15.6

Figure 9/11: Graphical estimation of a by the method of DAVID
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JIANG/MURTHY (1997) have proposed a method, which is based on a TAYLOR’s series

expansion and which simultaneously estimates all three WEIBULL parameters. A plot of

u = ln
{
− ln

[
1 − F (x)

]}
= ln

[
− lnR(x)

]
versus x∗ = lnx is a curve that intersects

the x∗–axis at x∗0. Re–transforming x∗0 gives

x0 = exp(x∗0). (9.32a)

Observing (9.30b) for ln[− lnR(x)] = 0 leads to

x0 = a+ b. (9.32b)

Using (9.32b) the reliability function may be rewritten as

R(x) = exp

[
−
(
x− x0 + b

b

)c]
(9.32c)

or

− lnR(x) =
(z
b

+ 1
)c
, (9.32d)

where

z := x− x0.

When z/b < 1 the TAYLOR’s series expansion of (9.32d) is

− lnR(x) ≈ 1 + c
z

b
+
c

2
(c− 1)

(z
b

)2
(9.33a)

or

y ≈ α+ β z, (9.33b)

where

y := − lnR(x) + 1

z
, (9.33c)

α := c
/
b, (9.33d)

β :=
c (c− 1)

2 b2
. (9.33e)

By plotting yi versus zi and fitting a straight line, e.g., by OLS regression, one can find

estimates α̂ and β̂ which may be re–transformed to estimates â, b̂ and ĉ using (9.32b) and

(9.33d,e):

ĉ =
α̂2

α̂2 − 2 β̂
, (9.34a)

b̂ =
ĉ

α̂
, (9.34b)

â = x0 − b̂. (9.34c)

Example 9/9: Estimating a, b and c by the method of JIANG/MURTHY

We apply the method described above to the data of Tab. 9/9. From Fig. 9/11 we find x0 = 45.1.

(9.34a–c) lead to

ĉ = 2.03, b̂ = 24.90, â = 20.20,
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which may be compared with the true values c = 2.5, b = 30 and a = 15.

The function (9.30b) is non–linear. A non–linear least squares estimation using numerical

derivatives produced the following estimates

ĉ = 2.4978, b̂ = 31.8234, â = 13.4868

within at most 15 iterations. The results are stable; i.e., starting with several initial values

we always finished with the results above. Besides, the NLS–estimates are extremely close

to the true values.

9.3.3.2 Mixed WEIBULL distributions16

Plotting ûi:n = ln
{
− ln

[
1 − F̂ (xi:n)

]}
versus x∗i:n = ln(xi:n) when the xi:n are sampled

from a mixture of several WEIBULL distributions (see Sect. 3.3.6.4) will result in a curve

which is not only curved in one direction, either convex or concave, but exhibits several

types of curving, provided the sample size is sufficiently large. In the following text we

will only comment upon the graphical estimation of a twofold mixture which has been

explored in some detail by several authors.

The reliability function of a twofold WEIBULL mixture17 is given by

R(x) = p exp

[
−
(
x

b1

)c1]
+ (1 − p) exp

[
−
(
x

b2

)c2]
, 0 < p < 1 (9.35)

and thus has five parameters. When c1 6= c2, then without loss of generality we take

c2 > c1. Plotting

y(t) = ln
{
− ln

[
R
(
e t
)]}

versus t = lnx

gives the curve C. This curve has to be fitted visually to the data points
(
y(ti:n), ti:n =

ln(xi:n)
)
.

The graphical estimation procedure depends on whether

1) c1 = c2 or

2) c2 > c1

and whether in the case c1 = c2 = c

16 Suggested reading for this section: BRIKC (1999), CRAN (1976), JENSEN/PETERSEN (1982),

JIANG/KECECIOGLU (1992a), JIANG/MURTHY (1995), KAO (1959).

17 The mixed distributions are supposed to have a1 = a2 = 0.
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1.1) (b2/b1)
c ≈ 1 or

1.2) (b2/b1)
c ≫ 1

and whether in the case c2 > c1

2.1) b1 ≈ b2 or

2.2) b1 ≫ b2 or

2.3) b1 ≪ b2.

When c1 = c2, the curve C will have only one point of inflection called T , whereas curve

C has three points of inflection for c2 > c1. The two subcases to case 1 are detected as

follows: when the data points are scattered on either side of T , we have (b2/b1)
c ≈ 1.

When (b2/b1)
c ≫ 1, the data are scattered either mainly on one side or on both sides of T .

To discriminate between the three subclasses of case 2, we have to determine the point of

intersection I of the asymptote to the right hand side of C with the curve C. When most of

the data points are to the left (right) of I we can assume b1 ≪ b2 (b1 ≫ b2).

The reader is referred to the original paper of JIANG/MURTHY (1995) for a description of

the procedure in each of the five cases. Besides the disadvantage of all graphical proce-

dures in statistics, the graphical analysis of mixed WEIBULL distributions demands a large

sample size to clearly perceive the underlying model. Fig. 9/12 demonstrates the latter as-

sertion for the cases c1 = c2 (upper row) and c2 > c1 (lower row) with p = 0.4 in either

case. The smooth curve in each graph represents the WEIBULL probability plot of (9.35).

Figure 9/12: WEIBULL probability plots of mixed distributions
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9.4 Nomograms and supporting graphs18

Several decades ago when electronic computers did not exist, mathematicians, statisticians,

and engineers relied on nomograms and other graphical aids to find solutions to compli-

cated mathematical functions. For example, the WEIBULL–probability–paper was supple-

mented by additional scales to find estimates of the WEIBULL parameters b and c after a

straight line has been fitted to the data points; see e.g. LLOYD/LIPOW (1962, p. 164) or

NELSON (1967). The WEIBULL–probability–paper of STEINECKE (1979) even has two

extra scales to read off estimates of the mean and the standard deviation.

A nomogram designed by KOTELNIKOV (1964), which is reprinted and whose handling is

described in JOHNSON/KOTZ/BALAKRISHNAN (1994, pp. 675–677), allows one to find an

estimate of c and of F (x) when the mean and the standard deviation of the data are given.

A rather sophisticated nomogram of SEN/PRABHASHANKER (1980) permits one to find

estimates of the three parameters a, b and c, respectively, when we have estimates µ̂, σ̂
and α̂3, α3 being the standardized third central moment; see (2.82a) and (2.93). Their

nomogram is based on the method of moments (see Chapter 12).

A series of nomograms given by STONE/ROSEN (1984) facilitates the construction of

confidence intervals for the parameters b and c and the percentiles of the two–parameter

WEIBULL distribution. The point estimates are BLIEs (see Sect. 10.3). As STONE/ROSEN

have stated, their graphs are reasonably accurate for sample sizes up to n = 25 and type–II

singly censoring at about r = 0.5n to r = n.

18 Suggested reading for this section: KOTELNIKOV (1964), LIEBSCHER (1967), LLOYD/LIPOW

(1962), NELSON (1967), NELSON/THOMPSON (1971), PLAIT (1962), SEN/PRABHASHANKER (1980),

STONE/ROSEN (1984), TYURIN (1975).
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Least squares and linear

approaches

The topic of this chapter is linear estimation; i.e., the estimators are linear combinations

of order statistics with suitably chosen coefficients. The parameters to be estimated are a∗

and b∗ of the type–I extreme value distribution of the minimum (GUMBEL’s distribution

or Log–WEIBULL distribution); see (9.11c). These parameters are linked to the WEIBULL

parameters b and c by

a∗ = ln b or b = exp(a∗) (10.1a)

and

b∗ =
1

c
or c =

1

b∗
. (10.1b)

Not all of the favorable properties of linear estimators â∗ and b̂∗ are preserved under the

non–linear transformation b̂ and ĉ according to (10.1a,b). Furthermore, the linear approach

assumes that the location parameter a of the WEIBULL distribution is zero or otherwise

known, so that one can build upon the shifted variate X − a. With the assumption that

the shape parameter c is known, the linear estimators of the location and scale parameters

a and b can be derived without using the Log–WEIBULL distribution, as will be shown in

Sect. 10.6.2.1.

This chapter is arranged as follows: Sect. 10.1 shows how the linear estimators are linked to

the graphical procedures of Chapter 9 and to least–squares regression. In Sections 10.2 and

10.3 we develop the best linear unbiased estimators (BLUEs) and the best linear invariant

estimators (BLIEs) and show their relationship.

The BLUEs and BLIEs of a∗ and b∗ require sets of weights laid down in tables which

are difficult to compute. Besides, the computations turn out to become unstable with n
increasing. So weights exist only for n ≤ 25. Therefore, modifications and approximations

are needed, which are presented in Sect. 10.4. Sometimes there are good reasons not to

build upon all order statistics available but to work with only a few of them. The optimal

choice of these order statistics is developed in Sect. 10.5. In Sect. 10.6 we show how to

proceed when only a subset of the parameters is to be estimated. Finally, in Sect. 10.7 we

treat miscellaneous problems of linear estimation.
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10.1 From OLS to linear estimation1

In Sect. 9.3.1 we frequently applied the OLS principle of regression theory instead of an

eye–fitting to arrive at a straight line2 x̂∗ = â∗ + b̂∗ û without asking for the properties of

â∗ and b̂∗. Now we will make up for what we have omitted to do.

The distribution of the Log–WEIBULL variate X∗ = ln(X − a), with X ∼ We(a, b, c)
and a = 0 or known, is a member of the location–scale family; i.e., the reduced variate

U = (X∗ − a∗)/b∗ has a distribution free of any parameters. The DF of U is

fU (u) = exp(u− eu), u ∈ R.

The ordered reduced variates Ui:n = (X∗
i:n − a∗)/b∗ will also have parameter–free distri-

butions with (see (5.18a–b)):

E
(
Ui:n

)
=: αi:n; i = 1, 2, ..., n; (10.2a)

Var
(
Ui:n

)
=: βi,i:n; i = 1, 2, ..., n; (10.2b)

Cov
(
Ui:n, Uj:n

)
=: βi,j:n; i 6= j and i, j = 1, 2, ..., n. (10.2c)

These quantities have known values depending on the form of fU (u) but not on the param-

eters a∗ and b∗. Approaches to compute αi:n and βi,j:n for the Log–WEIBULL distribution

have been presented in Sect. 5.4.

Reverting to the original ordered variates

X∗
i:n = a∗ + b∗ Ui:n, (10.3a)

we clearly have

E
(
X∗
i:n

)
= a∗ + b∗ αi:n, (10.3b)

Var
(
X∗
i:n

)
= b∗ 2 βi,i:n, (10.3c)

Cov
(
X∗
i:n,X

∗
j:n

)
= b∗ 2 βi,j:n. (10.3d)

Introducing latent disturbance variates, ǫi (10.3a) may be written as

X∗
i:n = a∗ + b∗ αi:n + ǫi; i = 1, 2, ..., n. (10.3e)

ǫi is nothing but the difference between the variate X∗
i:n and its mean, so E(ǫi) = 0 ∀ i.

We further have Var(ǫi) = Var
(
X∗
i:n

)
and Cov

(
ǫi, ǫj

)
= Cov

(
X∗
i:n,X

∗
j:n

)
. The regression

model (10.3e) does not fulfill all those conditions that are necessary for OLS estimators

to have minimum variance within the class of unbiased linear estimators. The regressands

1 Suggested reading for this section: BARNETT (1975), GANDER (1996), LLOYD (1952), NELSON/HAHN

(1974), WHITE (1965, 1967b, 1969).

2 The corresponding inverse regression leading to bu = cA∗ + cB∗ cx∗ is of minor interest. The resulting

estimators are sometimes called “least squares estimators” (see GIBBONS/VANCE (1981)); e.g., LSMR

when the median ranks ui = (i − 0.3)/(n + 0.4) are chosen as plotting positions. These estimators

as well as those based on some other plotting positions have been examined by BALABAN/HASPERT

(1972), HOSSAIN/HOWLADER (1996) and TSANG/JARDINE (1973).
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X∗
i:n are heteroscedastic (see (10.3c)) and autocorrelated (see (10.3d)). So, we have to

apply the general–least–squares (GLS) principle of AITKEN (1935) to ensure the validity

of the GAUSS–MARKOV theorem.3 LLOYD (1952) was the first to apply the GLS method

for estimating the parameters of a location–scale distribution; i.e., the results apply to each

member of the location–scale family.

We write (10.3e) in matrix–vector form:

x∗ = P θ + ǫ (10.4a)

with

x∗ =




X∗
1:n

...

X∗
n:n


, P =




1 α1:n

...
...

1 αn:n


, θ =


a

∗

b∗


, ǫ =




ǫ1
...

ǫn


.

The variance–covariance matrix Var(x∗) is given by

Ω := Var(x∗) = b∗ 2B (10.4b)

with

B =




β1,1:n β1,2:n · · · β1,n:n

β1,2:n β2,2:n · · · β2,n:n

...
...

. . .
...

β1,n:n β2,n:n · · · βn,n:n,




which is symmetric and positive–definite. The GLS estimator of the parameter vector θ is

θ̂ =
(
P ′B−1 P

)−1
P ′B−1 x∗, (10.4c)

which is BLUE. The (2 × n)–matrix

C :=
(
P ′B−1P

)−1
P ′B−1, (10.4d)

depending only on the known parameters αi:n and βi,j:n of the ordered reduced Log–

WEIBULL variates Ui:n, contains two rows of weights

(
P ′B−1 P

)−1
P ′B−1 =


a1 a2 · · · an

b1 b2 · · · bn


 , (10.4e)

which linearly combine the X∗
i:n into the estimators

â∗ =

n∑

i=1

aiX
∗
i:n with

n∑

i=1

ai = 1, (10.4f)

b̂∗ =
n∑

i=1

biX
∗
i:n with

n∑

i=1

bi = 0. (10.4g)

3 For a thorough representation of regression theory, the reader is referred to a modern textbook in

econometrics, e.g., GREENE (2003), JUDGE/GRIFFITHS/HILL/LEE (1980), RINNE (2004) or STOCK/

WATSON (2003).
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The theoretical variance–covariance matrix of the GLS estimators is

Var
(
θ̂
)

= b∗ 2 Σ = b∗ 2
(
P ′B−1P

)−1
= b∗ 2


A C

C B


. (10.4h)

Σ :=
(
P ′B−1 P

)−1
may be called the basic variance–covariance matrix. Its elements

A, B and C will play a prominent role in the following text. From (10.4h) we get

Var
(
â∗
)

= b∗ 2A, Var
(
b̂∗
)

= b∗ 2B and Cov
(
â∗, b̂∗

)
= b∗ 2 C. (10.4i)

In applications we have to use the estimated variance–covariance matrix where b∗ is

substituted by its estimator b̂∗:

V̂ar
(
θ̂
)

= b̂∗ 2 Σ. (10.4j)

Excursus: OLS estimators of a∗ and b∗

The OLS estimator of θ is

θ̂OLS = (P ′P )−1P ′ x∗. (10.5a)

This estimator is linear and unbiased, but it has the variance–covariance matrix

Var
(
θ̂OLS) = b∗ 2

(
P ′P

)−1
. (10.5b)

The difference matrix Var
(
θ̂OLS

)
−Var

(
θ̂
)

is positive–definite so that Var
(
â∗OLS

)
> Var

(
â∗
)

and

Var
(
b̂∗OLS

)
> Var

(
b̂∗
)
.

Excursus: Choice of some other plotting positions (regressors) ûi:n 6= αi:n

If instead of choosing the regressors αi:n in the design matrix P we would have taken some other

regressors (= plotting positions) ûi and applied the OLS technique, the means, variances and co-

variance of â∗
(
û
)
OLS

and b̂∗
(
û
)
OLS

, will be

E
[
â∗(û)OLS

]
= b∗ ã′α+ â∗, (10.6a)

E
[
b̂∗ (û)OLS

]
= b∗ b̃

′
α, (10.6b)

Var
[
â∗(û)OLS

]
= b∗ 2 ã′B ã, (10.6c)

Var
[
b̂∗(û)OLS

]
= b∗ 2 b̃

′
B b̃, (10.6d)

Cov
[
â∗(û)OLS , b̂∗(û)OLS

]
= b∗ 2 ã′B b̃, (10.6e)

with α′ = (α1:n, . . . , αn:n). The elements of the OLS–weighting vectors ã and b̃, which lead to

â∗(û)OLS = ã′ û and b̂∗(û)OLS = b̃
′
û, are given by

ãi =
1

n
− û (ûi − û)
∑(

ûi − û
)2 , û =

1

n

∑
ûi and b̃i =

ûi − û
∑(

ûi − û
)2 .

Unbiasedness of any estimator of a∗ thus requires

ã′α =

n∑

i=1

ãi αi:n = 0, (10.7a)
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whereas unbiasedness of any estimator of b∗ demands

b̃
′
α =

n∑

i=1

b̃i αi:n = 1. (10.7b)

(10.7a,b) are satisfied by the weights given in (10.4e). The bias B(·) and the mean squared error

MSE(·) associated with â∗(û)OLS and b̂∗(û)OLS are

B
[
â∗(û)OLS

]
= b∗ ã′α, (10.8a)

B
[
b̂∗(û)OLS

]
= b∗

(
b̃
′
α− 1

)
, (10.8b)

MSE
[
â∗(û)OLS

]
= b∗ 2

[(
ã′α

)2
+ ã′B ã

]
, (10.8c)

MSE
[
b̂∗(û)OLS

]
= b∗ 2

[(
b̃
′
α− 1

)2
+ b̃

′
B b̃

]
. (10.8d)

Tab. 10/1 — compiled according to GIBBONS/VANCE (1979) — shows biases, variances and

mean squared errors for OLS estimators, based on several plotting positions, as well as those

for BLUEs, BLIEs and BLOM’s estimators4 when n = 6. The BLUEs and BLIEs incorporate

α′ =
(
α1:n, . . . , αn:n

)
and B. BLOM’s estimators require α but use an approximation of B and

are thus easier to compute than BLUEs and BLIEs. The BLIEs minimize the MSE as expected by

their design, see Sect. 10.3. BLOM’s estimators provide a good approximation for the BLUEs. The

latter two estimators are better than all OLS estimators independent of the choice of their regressor.

Despite their biases the BLIEs have an overall error that is smaller than that of the unbiased BLUEs.

Table 10/1: Biases, variances and MSEs of estimators for a∗ and b∗ with n = 6

Plotting position and

estimation convention

b∗ = 1/c a∗ = ln b

Bias/b∗ Variance/b∗ 2 MSE/b∗ 2 Bias/b∗ Variance/b∗ 2 MSE/b∗ 2

ûi:n =
i

n+ 1
; OLS 0.228 0.249 0.301 0.001 0.194 0.194

ûi:n =
i− 0.375

n+ 0.25
; OLS 0.22 0.175 0.176 0.054 0.197 0.200

ûi:n =
i− 0.5

n
; OLS −0.055 0.151 0.154 0.073 0.199 0.204

ûi:n =
i− 0.3

n+ 0.4
; OLS 0.066 0.190 0.194 0.044 0.197 0.198

ûi:n = αi:n; OLS 0.0 0.169 0.169 0.0 0.195 0.195

BLOM 0.0 0.137 0.137 0.0 0.192 0.192

BLUE 0.0 0.132 0.132 0.0 0.192 0.192

BLIE −0.117 0.103 0.117 −0.028 0.190 0.190

10.2 BLUEs for the Log-WEIBULL distribution

Having presented the theory of linear parameter estimation, we will now elaborate the

practical and numerical details. In the preceding section we have developed the linear

estimation theory for uncensored samples. As has been proven by NELSON/HAHN (1974),

the BLU–property is still valid under single type–II censoring. Let r, 2 ≤ r ≤ n be the

4 BLIEs will be explained in Sect. 10.3 and BLOM’s estimators in Sect. 10.4.
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censoring number, X∗
i:n the first r ordered and complete log–data, b∗ 2B their variance–

covariance matrix (B of type r × r) and α′ =
(
α1:n, . . . , αr:n) the means of the first r

reduced order statistics. Then model (10.3e) with i running from 1 to r fulfills the pre–

conditions of the generalized GAUSS–MARKOV theorem. So for type-II censored samples

with failure number r, the BLUEs of a∗ and b∗ are given by formulas analogue to (10.4

f,g) when the first r sample data, which are uncensored and thus represent failure times, are

used for estimation. For this reason Sect. 10.2.1 jointly presents the complete sample case

and single type–II censored sample case.

BLUEs of a∗ and b∗ still exist when samples are progressively type–II censored but their

determination demands for some modifications and amendments, see Sect. 10.2.2. When

samples are type–I censored the number of failures is random so that the usage of the

formulas developed for type–II censoring — what usually is done in practice — is not

correct, but it usually provides a satisfactory approximation for practical purposes. Exact

BLUEs of a∗ and b∗ with type–I censoring can be deduced from their BLIEs. This approach

is postponed to Sect. 10.3.3.

10.2.1 Complete and singly type-II censored samples

The evaluation of (10.4f–j) requires a huge amount of computation, which is why the co-

efficients ai and bi and the matrix Σ =
(
P ′B−1P

)−1
have been computed once and

for all and presented in tables. LIEBLEIN/ZELEN (1956) gave the first such tables with

n = 2(1)6 and r = 2(1)n with a precision of seven decimal places. Extended ta-

bles with n = 2(1)20 and r = 2(1)n with seven significant decimal places are to be

found in WHITE (1964b). Coefficients ai, bi and the elements A, B and C of Σ for

21 ≤ n, r ≤ 25 may be derived5 from the tables of the BLIEs given in MANN (1967b)

or MANN/SCHAFER/SINGPURWALLA (1974). A procedure for linear estimation when

n > 25 is described farther down.

The first and crucial step to arrive at the vectors a′ = (a1, . . . , ar) and b′ = (b1, . . . , br)
and the matrix Σ is the computation of the mean vector α and the variance–covariance

matrix B of the ordered reduced Log–WEIBULL statistics. The adjacent computation of

a, b and Σ according to (10.4e) and (10.4h) is a matter of simple linear algebra.6 The

algorithms to arrive at α and B have been described in Sect. 5.4, and resulting tables for

2 ≤ r, n ≤ 20 are found in WHITE (1964b), the precision being eight decimal places.

Example 10/1: Computation of a, b,Σ for n=6 when the sample is complete or censored at

r=4

Tab. 10/2 displays α and B as taken from WHITE (1964b). For n = r = 6 (complete sample) we

have to take the full (6 × 6)–matrixB and the full (6 × 1)–vectorα and arrive at

Σ = (P ′B−1P ′)−1 =

(
A C

C B

)
=

(
0.1912 − 0.0314

−0.0314 0.1320

)

5 The conversion procedures is described in Sect. 10.3.1.

6 LIEBLEIN/ZELEN (1956) have used a different approach.
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and at the (2 × 6)–matrixC of coefficients αi and bi

C =
(
P ′B−1P

)−1
P ′B−1 =

(
a1 a2 . . . a6

b1 b2 . . . b6

)

=

(
0.0489 0.0835 0.1211 0.1656 0.2255 0.3554

−0.1458 − 0.1495 − 0.1267 − 0.0732 0.0360 0.4593

)
.

These results and the results below have been rounded to four decimal places. For the censored case

(r = 4) we only have to use the upper left part of Tab. 10/2 as B(4×4) and the first four αi:6 as α.

We get

Σ =

(
A C

C B

)
=

(
0.3237 0.1020

0.1020 0.2697

)

and

C =

(
a1 a2 a3 a4

b1 b2 b3 b4

)
=

( −0.0865 − 0.0281 0.0650 1.0496

−0.2859 − 0.2655 − 0.1859 0.7372

)
.

As expected the basic variances A and B are smaller for r = n = 6 than for r = 4.

Table 10/2: First and second moments of the ordered and reduced Log-WEIBULL statistics for

n = 6

βi,j:6

i
jl

l
l

1 2 3 4 5 6 αi:6

1 1.6449493406 0.59985669 0.33204512 0.20925462 0.13619097 0.08285414 −2.3689751

2 − 0.64769956 0.36145546 0.22887905 0.14945321 0.09116185 −1.2750458

3 − − 0.40185510 0.25616501 0.16806468 0.10291529 −0.6627159

4 − − − 0.29761598 0.19670624 0.12171630 −0.1883853

5 − − − − 0.24854556 0.15496732 0.2545345

6 − − − − − 0.24658202 0.7772937

For a sample of size n > 20 the tables in WHITE (1964b) can be used as follows. Randomly

divide the sample into m smaller subsamples that can be handled with available tables.

The subsamples should be as large as possible and nearly equal in size. Obtain the linear

estimates from each subsample. Suppose the BLUEs are α̂∗
j and b̂∗j (j = 1, . . . , m) with

Aj, Bj and Cj as corresponding elements of the basic variance–covariance matrices Σj .

Then the unbiased and minimum variance pooled linear estimators are

â∗ =




m∑

j=1

â∗j
/
Aj



/

m∑

j=1

A−1
j , (10.9a)

b̂∗ =




m∑

j=1

b̂∗j
/
Bj



/

m∑

j=1

B−1
j . (10.9b)
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The variances and covariance of these pooled estimators are

Var
(
â∗
)

= b∗ 2
m∑

j=1

A−1
j , (10.9c)

Var
(
b̂∗
)

= b∗ 2
m∑

j=1

B−1
j , (10.9d)

Cov
(
â∗, b̂∗

)
= b∗ 2




m∑

j=1

A−1
j

m∑

j=1

B−1
j




m∑

j=1

Cj
(
Aj Bj

)−1
. (10.9e)

These formulas are also used to pool BLUEs from independent samples from different

populations with common parameter values.

The estimators â∗ and b̂∗ may easily be transformed to estimators for the original WEIBULL

parameters b and c:

b̂ = exp(â∗), (10.10a)

ĉ = 1
/
b̂∗, (10.10b)

thereby losing the BLU–property. For instance, we have the following first order approxi-

mations:7

E
(
b̂
)

≈ b

[
1 + 0.5

√
Var
(
â∗
)]2

, (10.11a)

E
(
ĉ
)

≈ c [1 + c2 Var
(
b̂∗
)]
. (10.11b)

â∗ and b̂∗ as well as b̂ and ĉ are point estimators. When r becomes large, the linear es-

timators â∗ and b̂∗ tend to be normally distributed. Thus, we can construct the following

crude two–sided 100 (1 − α)% confidence intervals, where τ1−α/2 is the 100 (1 − α/2)%
percentile of the standard normal distribution:

1. a∗ and b

a∗ ≤ a∗ ≤ a
∗

(10.12a)

The lower and upper confidence limits are

a∗ ≈ â∗ − τ1−α/2 b̂∗
√
A, a

∗ ≈ â∗ + τ1−α/2 b̂∗
√
A. (10.12b)

For the WEIBULL scale parameter we get

exp
(
a∗
)

. b . exp
(
a
∗)
. (10.12c)

7 FEI et al. (1995) have developed an approximate unbiased estimator for the shape parameter c :

bc =
1 −B

bb∗
with Var

`
bc
´

=
c2

B−1 − 2
,

where B is defined in (10.4h). bc has a smaller MSE than bb∗.
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2. b∗ and c

b∗ ≤ b∗ ≤ b
∗

(10.13a)

The confidence limits based on the WILSON–HILFERTY χ2–approximation as sug-

gested by MANN/SCHAFER/SINGPURWALLA (1974) are

b∗ ≈ b̂∗
/[

1 − (B/9) + τ1−α/2
√
B/9

]3
,

b
∗

≈ b̂∗
/[

1 − (B/9) − τ1−α/2
√
B/9

]3
.

(10.13b)

The shape parameter c thus has the crude confidence interval

1

b
∗ ≤ c ≤ 1

b∗
. (10.13c)

The limits given above yield one–sided 100 (1 − α)% confidence intervals when τ1−α/2
is replaced by τ1−α. When the sample size is small, exact confidence intervals can be

built upon those confidence limits that have been constructed when the estimators are

BLIEs. The necessary coefficients have been found by Monte Carlo simulation (see

MANN/FERTIG/SCHEUER (1971) for 3 ≤ r, n ≤ 25 and MANN/FERTIG (1973) for

3 ≤ r, n ≤ 16). This approach will be described in Sect. 10.3.2.

Example 10/2: BLUEs of the Log–WEIBULL parameters for the complete and type-II cen-

sored dataset #1

Complete dataset #18

From WHITE (1964b) we take the following coefficients:

a′ = (0.0139614, 0.0174774, 0.0207043, 0.0238575, 0.0268727, 0.0301410,
0.0330898, 0.0360067, 0.0397778, 0.0434551, 0.0464597, 0.0503302, 0.0545472,
0.0590297, 0.0637215, 0.0693656, 0.0757046, 0.0837306, 0.0945666, 0.1172105).

b′ = (−0.0351831, −0.0376927, −0.0389337, −0.0393871, −0.0392059, −0.0383703,
−0.0372104, −0.0352635, −0.0327620, −0.0291613, −0.0255917, −0.0205968, −0.0142128,
− 0.0067182, 0.0029339, 0.0154276, 0.0321637, 0.0559418, 0.0950718, 0.2287506).

The estimates are

â∗ = 4.6068, b̂ = 100.1608,

b̂∗ = 0.4035, ĉ = 2.4782,

which are close to the true values b = 100 and c = 2.5. The estimated covariance is Ĉov
(
â∗, b̂∗

)
=

b̂∗ 2 C = 0.40352 (−0.011984) = −0.00195, and the estimated variances are

V̂ar
(
â∗
)

= b̂∗ 2 A = 0.40352 · 0.055929 = 0.00907,

V̂ar
(
b̂∗
)

= b̂∗ 2 B = 0.40352 · 0.033133 = 0.00540,

8 The observations are to be found in Example 9/2.
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giving the crude 90% confidence intervals (τ0.95 = 1.645) :

4.4498 ≤ a∗ ≤ 4.7638, 0.3064 ≤ b∗ ≤ 0.5600,

85.61 ≤ b ≤ 117.19, 1.7857 ≤ c ≤ 3.2637.

The confidence intervals for the WEIBULL parameters cover both the true values.

Dataset #1 singly censored at r = 15

From WHITE (1964b) we take the following coefficients:

a′ = (−0.0034703, −0.0002371, 0.0033313, 0.0078548, 0.0103638, 0.0183819, 0.0214801,
0.0248986, 0.0377571, 0.0348805, 0.0510985, 0.0540101, 0.0657545, 0.0753868, 0.5985093),

b′ = (−0.0577508, −0.0606651, −0.0614806, −0.0603470, −0.0603206, −0.0542982, −0.0525228,
− 0.0494348, −0.0370986, −0.0386460, −0.0214342, −0.0158828, −0.0005047,
0.0138450, 0.5565350).

The estimates are

â∗ = 4.6177, b̂ = 101.2609,

b̂∗ = 0.3967, ĉ = 2.5402

with estimated covariance Ĉov
(
â∗, b̂∗

)
= b̂∗ 2 C = 0.39672 · 0.004873 = 0.000666 and estimated

variances

V̂ar
(
â∗
)

= b̂∗ 2 A = 0.39672 · 0.069542 = 0.01078,

V̂ar
(
b̂∗
)

= b̂∗ 2 B = 0.39672 · 0.054939 = 0.00851.

The crude 90% confidence intervals result as:

4.4669 ≤ a∗ ≤ 4.7885, 0.2784 ≤ b∗ ≤ 0.6075,

85.36 ≤ b ≤ 120.12, 1.6462 ≤ c ≤ 3.5920.

10.2.2 Progressively type-II censored samples9

The general scheme of progressive type–II censoring has been described in Sect. 8.3.3.

Here, we will assume the most popular scheme with the removal of a prespecified num-

ber of non–failed units ej , ej ≤ 0, at the random time Tj of the j–th failure (j =
1, 2, .., k), k ≥ 2. The life test ends with the k–th failure at a random time Tk with the

withdrawal of the last ek surviving units. We have

n = k +

k∑

j=1

ej (10.14)

and we will observe k complete lifetimes

T1 < T2 < . . . < Tk.

9 Suggested reading for this section: FEI/KONG/TANG (1995), MANN (1971), THOMAN/WILSON (1972).
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One has to be careful in interpreting Tj . Of course, we have T1 = X1:n, but T2, T3, . . . , Tk
are not equal to X2:n, X3:n, . . . , Xk:n of a singly censored sample of equal size, which is

censored at the k–th failure. This fact has been overlooked in the paper of FEI et al. (1995).

For example, T2 may be any of the failures times X2:n, . . . , X2+e1:n of the n sampled

units. The following approach, which is based on THOMAN/WILSON (1972), derives the

first two moments of the reduced order statistics

Yj =
T ∗
j − a∗

b∗
; j = 1, . . . , k and T ∗

j = lnTj, (10.15a)

designated by

E(y) = 6α = (6α1, . . . , 6αk)′ and y′ = (Y1, . . . , Yk), (10.15b)

Var(y) = 6B = (6βi,j); i, j = 1, ...., k, (10.15c)

and derived from the corresponding moments of the reduced order statistics in complete

samples. Instead of (10.4e) we now have

(6P ′ 6B−1 6P )−1 6P ′ 6B−1 =

( 6a1, . . . , 6ak
6b1, . . . , 6bk

)
, (10.15d)

and the estimators are

̂6a∗ =
k∑

j=1

6aj T ∗
j ,

̂6b∗ =
k∑

j=1

6bj T ∗
j , (10.15e)

with variance–covariance matrix

Var

(̂6a∗
̂6b∗
)

= b∗ 2 (6P ′ 6B−1 6P )−1. (10.15f)

Excursus: Derivation of the moments of the reduced order statistics in progressively

type–II censored samples

Consider the reduced order statistics Y1 < . . . < Yk from a type–II progressive censoring pattern

e1, . . . , ek. Let U1:n < . . . < Un:n represent the reduced order statistics from the complete sample,

and Rj the random rank of Yj in the complete sample; i.e., Yj = URj:n for j = 1, . . . , k. rj is

a realization of Rj in the random rank vector (R1, . . . , Rk). rj can be described recursively for

j = 2, . . . , k with r1 = 1 by

rj =





rj−1 + 1,

rj−1 + 2,
...

j + r1 + . . .+ rj−1,





, j = 2, ..., k. (10.16a)

The probability of a realization (r1, . . . , rk) is

9 MANN (1971) has chosen a different approach.



366 10 Parameter estimation — Least squares and linear approaches

Pℓ =Pr
(
R1 = r1, . . . , Rk = rk

)
=Pr

(
R1 = r1

) k∏

j=2

Pr
(
Rj = rj |R1 = r1, . . . , Rj−1 = rj−1

)
,

(10.16b)
with Pr(R1 = 1) = 1 and ℓ = 1, . . . ,m; i.e., there are m realizations of (R1, . . . , Rk). For the ease

of notation we have suppressed the second index ℓ in rjℓ. THOMAN/WILSON (1972, p. 689) give

the following solution for the conditional probabilities in (10.16 b):

Pr
(
Rj = rj |R1 = 1, R2 = r2, . . . , Rj−1 = rj−1

)
= cj

n−
j−1∑
i=1

(ei + 1)

n− rj + 1
, (10.16c)

where

cj =





1 for rj = rj−1 + 1

rj−rj−1−1∏

ν=1

j−1∑
i=1

(ei + 1) − rj−1 − ν + 1

n− rj−1 − ν + 1
for rj ≥ rj−1 + 2.





(10.16d)

We define the following matricesDℓ (ℓ = 1, . . . ,m) of indicators dℓ
νκ

dℓ
νκ =





1 for κ = rν

0 for κ 6= rν



; ν = 1, . . . , k; κ = 1, . . . , n, (10.17a)

where rν are elements of the ℓ–th realization of (R1, . . . , Rk). Then, by writing y = Dℓ u, u
′ =(

U1:n, . . . , Un:n

)
and using α = E(u) and Var(u) = B, we arrive at

6α = E(y) = E E
(
y |Dℓ

)

= E
(
Dℓα

)

=

(
m∑

ℓ=1

Dℓ Pℓ

)
α,

(10.17b)

6B = E(y y′)− 6α 6α′

= E E
(
Dℓ uu

′D′
ℓ |Dℓ

)
− 6α 6α′

= E
[
Dℓ

(
B +αα′

)
Dℓ

]
− 6α 6α′

=
m∑

ℓ=1

Dℓ

(
B +αα′

)
D′

ℓ Pℓ − 6α 6α′ .

(10.17c)

Evaluation of the formulas given in the preceding excursus is tedious10 but can be ac-

complished by a suitable computer program. The following Example 10/3 shows how to

proceed in a rather simple case.

Example 10/3: Computing the weights for the BLUEs of a∗ and b∗ and their

variance–covariance matrix for n = 6 and the type–II censoring pattern

e1 = e2 = e3 = 1

10 That is the reason THOMAN/WILSON (1972) have examined various and simpler approximations.
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A sample of size n = 6 and a censoring scheme e1 = e2 = e3 = 1 lead to m = 5 different

realizations of the random vector (R1, R2, R3) which are listed together with their probabilities Pℓ

and indicator matrices Dℓ in Table 10/3. The vector α and the matrix B for the complete sample

of n = 6 are taken from Table 10/2.

From (10.17b,c) we get

6α = (−2.3689751,−1.1525798,−0.28953358)′,

6B =




1.6449341 0.5462944 0.2437581

− 0.6585223 0.3013714

− − 0.4484980


 .

If we had taken a singly censored sample of size n = 6, censored at r = 3, the corresponding vector

and matrix would be

α = (−2.3689751,−1.2750458,−0.6627159)′,

B =




1.64499341 0.59985669 0.20925462

− 0.64769956 0.36145546

− − 0.40185510


 .

The coefficients according to (10.15d) are


−0.171773 0.078395 1.093378

−0.374725 −0.255816 0.630541


 ,

and the variance–covariance matrix (10.15f) is

b∗ 2


0.534141 0.214164

− 0.344712


 .

A sample of n = 6 and singly censored at r = 3 would have the following coefficients to generate

â∗ and b̂∗ :


−0.315397 −0.203432 1.518829

−0.446602 −0.388649 0.835251




with corresponding variance–covariance matrix

b∗ 2


0.652941 0.333249

− 0.432116


 .

Thus, the single type–II censoring leads to greater variances of the estimators than progressive

type–II censoring with the same n and k = r.
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Table 10/3: Rank vectors, their probabilities and indicator matrices

ℓ (r1, r2, r3)ℓ Pℓ Dℓ

1 (1, 2, 3) 6/15




100000

010000

001000




2 (1, 2, 4) 4/15




100000

010000

000100




3 (1, 2, 5) 2/15




100000

010000

000010




4 (1, 3, 4) 2/15




100000

001000

000100




5 (1, 3, 5) 1/15




100000

001000

000010




10.3 BLIEs for Log-WEIBULL parameters

The subclass of the class of linear estimators for a∗ and b∗ considered so far, took into

account only the unbiased linear estimators and searched for the minimum–variance (=

best) estimator within this subclass. Sometimes it is appropriate to abandon unbiasedness,

especially when there exist estimators within another subclass having a smaller overall–

error than the minimum variance of the unbiased estimator. The overall–error is measured

by the mean squared error (MSE) being the sum of the variance, giving the effect of random

sampling errors, and the squared bias, giving the effect of systematic errors, which originate

in the sampling process and/or in the processing of the sampled data. NANCY R. MANN

(1972) has developed BLIEs as an alternative to the BLUEs.

10.3.1 BLUE versus BLIE11

Consider a variate whose distribution is a member of the location–scale family. A spe-

cial case is X∗, the Log–WEIBULL variate. The distribution of the reduced variate

11 Suggested reading for this section: MANN (1965; 1967a; 1968a,b; 1969a; 1970b), MANN/SCHAFER/

SINGPURWALLA (1974).



10.3 BLIEs for Log-WEIBULL parameters 369

U = (X∗ − a∗)/b∗ is independent of the location parameters a∗ and the scale parame-

ter b∗. For estimating the general parametric function

ψ = ℓ1 a
∗ + ℓ2 b

∗, (10.18)

the GAUSS–MARKOV theorem specifies the GLS estimator (see LLOYD (1952)), as the

unique best among unbiased linear functions of X∗
1:n, . . . , X

∗
r:n for all n and all r, 2 ≤

r ≤ n. The function ψ in (10.18) includes ψ = a∗ and ψ = b∗ as special cases. Another

special case is
x∗P = a∗ + uP b

∗, 0 < P < 1, (10.19a)

the 100P% percentile of X∗ where

uP = ln[− ln(1 − P )] (10.19b)

is the 100P% percentile of the reduced Log–WEIBULL variate.

Let ψ̂, â∗ and b̂∗ be the BLUEs of ψ, a∗ and b∗, respectively, based on the first r of n
ordered observations. It is well known that ψ̂ is equal to ℓ1 â∗ + ℓ2 b̂∗ and that these estima-

tors ψ̂, â∗ and b̂∗ enjoy all the large sample properties attributed to maximum–likelihood

estimators, including asymptotic normality (see Sect. 11.2.1).

Suppose that â∗ with variance b∗ 2A and b̂∗ 2 with variance b∗ 2B are the joint unique (with

probability 1) uniformly minimum unbiased linear estimators of a∗ and b∗, respectively,

and that b∗ 2 C is the covariance of â∗ and b̂∗; for A, B and C , see (10.4h). MANN (1967a)

stated and proved the following.

Theorem: In the class of linear estimators of ψ based on the first r of n Log–WEIBULL

order statistics and with mean squared–error loss independent of a∗, there is a unique best

one given by

̂̂
ψ = ℓ1

(
â∗ − C

1 +B
b̂∗

)
+ ℓ2

b̂∗

1 +B
(10.20a)

with mean squared error

MSE

(
̂̂
ψ

)
= E

[(̂̂
ψ − ψ

)2
]

= b∗ 2

{
ℓ21A+ 2 ℓ1 ℓ2C + ℓ22B − (ℓ1 C + ℓ2B)2

1 +B

}

= b∗ 2

{
ℓ21

[
A− C2

1 +B

]
+ 2 ℓ1 ℓ2

C

1 +B
+ ℓ22

B

1 +B

}
(10.20b)

for all ℓ1 and ℓ2. �

Let loss be defined as squared error divided by b∗ 2. Then
̂̂
ψ is the best among linear

estimators of ψ invariant under location and scalar transformations, the best linear invariant

estimator (BLIE).
̂̂
ψ also is the unique admissible minimax linear estimator of ψ based

on X∗
1:n, . . . , X

∗
r:n. It also has all the asymptotic properties of the BLUE plus that of

asymptotic unbiasedness.

From (10.20a,b) we extract the following BLIEs for a∗ and b∗ and their corresponding

MSEs:
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̂̂a∗ = â∗ − C

1 +B
b̂∗, (10.21a)

MSE

(
̂̂a∗
)

= E

[(
̂̂a∗ − a∗

)2 ]

= b∗ 2

(
A− C2

1 +B

)
, (10.21b)

̂̂
b∗ =

b̂∗

1 +B
, (10.22a)

MSE

(
̂̂
b∗
)

= E

[(
̂̂
b∗ − b∗

)2 ]
,

= b∗ 2 B

1 +B
. (10.22b)

The expected cross–product of the estimation errors is

E

[(
̂̂a∗ − a∗

)(
̂̂
b∗ − b∗

)]
= b∗ 2 C

1 +B
. (10.23)

From (10.21a) and (10.22a) it is evident that coefficients Ai and Bi in

̂̂a∗ =

r∑

i=1

AiXi:n, 2 ≤ r ≤ n, (10.24a)

̂̂
b∗ =

r∑

i=1

BiXi:n, 2 ≤ r ≤ n, (10.24b)

are related to the BLU–coefficients ai, bi given by (10.4e), as follows

Ai = ai −
C

1 +B
bi, (10.25a)

Bi =
bi

1 +B
. (10.25b)

These coefficients together with the basic MSE–terms in (10.21b), (10.22b) and (10.23)

Ã := A− C2

1 +B
, (10.25c)

B̃ :=
1

1 +B
, (10.25d)

C̃ :=
C

1 +B
(10.25e)

have been tabulated for 2 ≤ r, n ≤ 20 by MANN (1967b) and are reprinted in DODSON

(1994). An abridged table for 2 ≤ r, n ≤ 15 is contained in MANN (1967a).
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10.3.2 Type-II censored samples

For practical purposes the BLUEs and BLIEs are almost the same unless the observed

number r of order statistics is small. Moreover, for large r and n BLUEs and BLIEs and

their mean squared errors are asymptotically equal. The choice of either estimator is mostly

a matter of taste and tables available. Thus, there is no compelling reason to choose either

minimum squared error or unbiasedness as essential for a good estimator.

In this section we will first give a tabular overview showing the conversion of coefficients,

estimators and mean squared errors from the BLU approach to the BLI approach and vice

versa (see Table 10/4). Then we will extend the aforementioned Example 10/2 to BLI

estimation. Finally, we will comment upon exact confidence intervals for BLIEs.

Example 10/4: BLIEs of the Log–WEIBULL parameters for the complete and type-II cen-

sored dataset #1

We apply the conversion formulas from Table 10/4 to the results of BLU estimation given in Exam-

ple 10/2.

Complete dataset #1

We have â∗ = 4.6068 with A = 0.055929, b̂∗ = 0.4035 with B = 0.033153 and C = −0.011984
from which we get the following

̂̂
b∗ =

b̂∗

1 +B
=

0.4035

1 + 0.033153
= 0.3906 =⇒ ̂̂c =

1

̂̂
b∗

= 2.5605,

̂̂a∗ = â∗ − C

1 +B
b̂∗ = 4.6068 +

0.011984

1 + 0.033153
= 4.6184 =⇒ ̂̂

b∗ = exp
( ̂̂a∗
)

= 101.3318,

M̂SE

(
̂̂
b∗
)

=
̂̂
b∗

2
B̃ =

̂̂
b∗

2 B

1 +B
= 0.39062 0.033153

1 + 0.033153
= 0.00504,

M̂SE
( ̂̂a∗

)
=
̂̂
b∗

2
Ã =

̂̂
b∗

2
(
A− C2

1 +B

)
= 0.39062

(
0.055929− (−0.011984)2

1 + 0.033153

)
= 0.00851.

Comparing the estimation errors of the BLUEs and BLIEs, we have, as is to be expected,

M̂SE
( ̂̂a∗

)
= 0.00851 < V̂ar

(
â∗
)

= 0.00907,

M̂SE

(
̂̂
b∗
)

= 0.00504 < V̂ar
(
b̂∗
)

= 0.00540.

Dataset #1 singly censored at r = 15

Starting with â∗ = 4.6177, A = 0.069542, b̂∗ = 0.3967, B = 0.054939 and C = 0.004873 from

Example 10/2, we get the following results for the BLI approach:

̂̂
b∗ =

0.3967

1.054939
= 0.3760 =⇒ ̂̂c =

1

0.3760
= 2.6593,

̂̂a∗ = 4.6177− 0.004873

1.054939
0.3967 = 4.6159 =⇒ ̂̂

b = exp
( ̂̂a∗
)

= 101.0788,

M̂SE

(
̂̂
b∗
)

= 0.37602 0.054939

1.054939
= 0.00736,

M̂SE
( ̂̂a∗
)

= 0.37602

(
0.069542− 0.0048732

1.054939

)
= 0.00983.
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The estimation errors behave as is to be expected:

M̂SE
( ̂̂a∗

)
= 0.00983 < V̂ar

(
â∗
)

= 0.01078,

M̂SE

(
̂̂
b∗
)

= 0.00736 < V̂ar
(
b̂∗
)

= 0.00851.

MANN/FERTIG(1973) have found by Monte Carlo simulation the percentiles of the follow-

ing BLI–based variates:

W :=
̂̂
b∗

b∗
, (10.26a)

T :=
̂̂a∗ − a∗

̂̂
b∗

(10.26b)

of order P (P = 0.02, 0.05, 0.10, 0.25, 0.50, 0.60, 0.75, 0.90, 0.95, 0.98) and for

3 ≤ r, n ≤ 16.12 let

w(P, n, r) and t(P, n, r)

denote the percentiles of order P for a sample of size n singly censored at r, r ≤ n. The

exact two–sided 100 (1 − α)% confidence intervals in terms of the BLIEs are

̂̂
b∗

w(1 − α/2, n, r)
≤ b∗ ≤

̂̂
b∗

w(α/2, n, r)
, (10.27a)

̂̂a∗ − ̂̂
b∗ t(1 − α/2, n, r) ≤ a∗ ≤ ̂̂a∗ − ̂̂

b∗ t(α/2, n, r). (10.27b)

Applying the conversion formulas of Table 10/4, we get these confidence intervals in terms

of the BLUEs:

b̂∗

(1 +B)w(1 − α/2, n, r)
≤ b∗ ≤ b̂∗

(1 +B)w(α/2, n, r)
, (10.28a)

â∗ − b̂∗

1 +B

[
C + t(1 − α/2, n, r)

]
≤ a∗ ≤ â∗ − b̂∗

1 +B

[
C + t(α/2, n, r)

]
.(10.28b)

12 In MANN/FERTIG/SCHEUER (1971) the tables are extended: 3 ≤ r, n ≤ 25
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Table 10/4: Relationships between the coefficients, MSEs and parameter estimators in the

BLU and BLI approaches

Symbols for: From BLU From BLI

Item∗) BLU BLI to BLI to BLU

Coefficients
to estimate

a∗ ai Ai Ai = ai −
C

1 +B
bi ai = Ai +

C̃

1 − B̃
Bi

b∗ bi Bi Bi =
bi

1 +B
bi =

Bi

1 − B̃(
MSE/b∗ 2

)
of the

estimator for

a∗ A Ã Ã = A− C2

1 +B
A = Ã+

C̃2

1 − B̃

b∗ B B̃ B̃ =
B

1 +B
B =

B̃

1 − B̃(
Covariance/b∗ 2

)
of the

estimators for a∗and b∗ C C̃ C̃ =
C

1 +B
C =

C̃

1 − B̃

Estimators of

a∗ â∗ ̂̂a∗ ̂̂a∗ = â∗ − C

1 +B
b̂∗ â∗ = ̂̂a∗ +

C̃

1 − B̃

̂̂
b∗

b∗ b̂∗
̂̂
b∗

̂̂
b∗ =

b̂∗

1 −B
b̂∗ =

̂̂
b∗

1 − B̃

∗) In the case of BLU the variance and the MSE of an estimator are identical.

Denoting the lower (upper) confidence limit for b∗ by b∗
(
b∗
)

and those for a∗ by a∗
(
a∗
)
,

we find the following 100 (1−α)% confidence intervals for the original WEIBULL param-

eters b and c:

exp
(
a∗
)

≤ b ≤ exp
(
a∗
)
, (10.29a)

1

b∗
≤ c ≤ 1

b∗
. (10.29b)

Example 10/5: Exact confidence intervals for b∗ and c using the complete dataset #1

We set 1 − α = 0.90. In terms of the BLIE in Example 10/4 and using (10.27a), we get

0.3906

1.27
≤ b∗ ≤ 0.3906

0.70

0.3076 ≤ b∗ ≤ 0.5580

and for the WEIBULL shape parameter
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1

0.5580
≤ c ≤ 1

0.3076

1.7921 ≤ c ≤ 3.2510.

In terms of the BLUE in Example 10/2 and using (10.28a) we have

0.4035

1.033153 · 1.27
≤ b∗ ≤ 0.4035

1.033153 · 0.70

0.3075 ≤ b∗ ≤ 0.5579

and for the WEIBULL shape parameter

1

0.5579
≤ c ≤ 1

0.3075

1.7924 ≤ c ≤ 3.2520.

Compared with the approximate confidence intervals 0.3064 ≤ b∗ ≤ 0.5600 and 1.7857 ≤ c ≤
3.2638 the latter tends to be too wide.

10.3.3 Type-I censored samples

In a paper, which is not easy to read, MANN (1972b) showed how to construct BLIEs of

the Log–WEIBULL parameters a∗ and b∗ when a sample of size n is censored at a fixed and

given time T . The BLIEs thus obtained may be converted to BLUEs with the formulas in

Tab. 10/4.

Letm be the realized number of failures within (0, T ], i.e.,Xm:n ≤ T , and X∗
i:n = lnXi:n;

i = 1, . . . , m; and T ∗ = lnT . The m complete lifetimes are regarded as an ordered

sample of size m and using the BLI–coefficients Ai and Bi pertaining to n = m the

interim estimators

ãm =
m∑

i=1

Ai X
∗
i:n and b̃m =

m∑

i=1

Bi X
∗
i:n (10.30a)

are calculated. These estimators have to be adjusted by applying corrective coefficients

a(m,λm) and b(m,λm) tabulated in MANN (1972b). These coefficients depend on m and

on

λm =
b̃m

T ∗ − ãm
. (10.30b)

The final BLIEs for type–I censored samples are

̂̂a∗I = ãm − a(m,λm) b̃m, (10.30c)

̂̂
b∗I = b(m,λm) b̃m. (10.30d)
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10.4 Approximations to BLUEs and BLIEs

Many methods have been advanced for approximating the BLUEs and BLIEs of the Log–

WEIBULL parameters a∗ and b∗. This is due in part to the fact that the weights for ob-

taining the estimators are available for only sample sizes and censoring numbers up to 25.

Furthermore, the computation of the weights suffers from the extensive accumulation of

rounding errors which result from the calculation of the extremely cumbersome functions

involved in the determination of the order–statistics moments, especially of the covari-

ances (see Section 5.4). There are several methods that have been derived for obtaining

good approximations to the GLS–weights. For example, WHITE (1965) proposed WLS–

estimators (weighted least squares) that depend on the means and variances, but not on

the covariances of the order statistics. MCCOOL (1965) suggested estimators which are

functions of weights for the BLUEs, available for an uncensored sample of size smaller

than the sample size of interest. The weights of the proposed estimators are obtained as lin-

ear combinations of the latter ones with the aid of values of the hypergeometric probability

function. In the following text we will present approximations which rest upon asymptotics

(Sections 10.4.5 and 10.5.2) and some other methods (Sections 10.4.1 through 10.4.4). Ap-

proximations which rely upon a few optimally chosen order statistics will be presented in

Sect. 10.5.

10.4.1 Least squares with various functions of the variable

The following approach is due to BAIN/ANTLE (1967) and applies to complete as well as

censored samples. Suppose f(x |θ) denotes a density function with unknown parameters

in the vector θ and X1, . . . , Xn denote a random sample of size n from f(x |θ). Let

u(x,θ) be some function of the variable and the parameters such that

1. the distribution of u is independent of θ and

2. the ordering of the u(Xi,θ) can be determined from the ordering of the Xi, so that

Ui:n denotes the i–th largest value of U(X,θ) for a given sample.

An estimate of θ is the value θ̂ which maximizes — according to some criterion — the

agreement between Ui:n and E
(
Ui:n

)
. Clearly, the choice of the function u(X,θ) and

of the criterion is rather arbitrary. One possible procedure is to choose a function which

would provide a high correlation between Ui:n and E
(
Ui:n

)
and to choose the least–squares

criterion.

BAIN/ANTLE (1967) have considered various functions of the variable and pa-

rameters when f(x |θ) is the two–parameter WEIBULL distribution: f(x | b, c) =
(c/b) (x/b)c−1 exp

[
− (x/b)c

]
.

1. u(x | b, c) = (x/b)c

For this function we have

f(u) = exp(−u), u ≥ 0, (10.31a)

the reduced exponential distribution, where

E
(
Ui:n

)
= ξi =

i∑

j=1

1

n− j + 1
. (10.31b)
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Trying to minimize
n∑

i=1

[(
Xi:n

/
b
)c − ξi

]2

would not result in a closed form of the estimator for c, so BAIN/ANTLE considered

minimizing
n∑

i=1

[
ln
(
Xi:n

/
b
)c − ln ξi

]2

which gives

b̂1 =
n∏

i=1

X
1/n
i:n

/(
n∏

i=1

ξ
1/(n bc1)
i

)
, (10.31c)

ĉ1 = ski Yi

/
sYi Yi , (10.31d)

where

ski Yi
=

n∑

i=1

ki Yi −
∑
ki
∑
Yi

n
, ki = ln ξi, Yi = lnXi:n. (10.31e)

The estimators given in MILLER/FREUND (1965) are the same as b̂1 and ĉ1 with ξi
replaced by − ln

[
1 − (i− 0.5)/n

]
.

2. u(x | b, c) = 1 − exp
[
− (x/b)c

]

In this case we have

f(u) = 1, 0 ≤ u < 1, (10.32a)

the reduced uniform distribution where

E
(
Ui:n

)
= ηi =

i

n+ 1
. (10.32b)

Simple estimators can be obtained by minimizing

n∑

i=1

{
ln
[
ln
(
1 − Ui:n

)]
− ln

[
ln
(
1 − ηi

)]}2
.

This gives

b̂2 =

n∏
i=1

X
1/n
i:n

n∏
i=1

{
− ln

[
1 − i/(n+ 1)

]}1/(n bc2) , (10.32c)

ĉ2 = ski Yi

/
sYi Yi , (10.32d)

where

ki = ln
{
− ln

[
1 − i/(n + 1)

]}
, Yi = lnXi:n. (10.32e)

These estimators have also been suggested by GUMBEL (1954). Note, that these are

also the same as b̂1 and ĉ1 in (10.31c,d) with ξi replaced by − ln
(
1 − ηi

)
.
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3. u(x | b, c) = − ln
[
(x/b)c

]

In this case we have

f(u) = exp
(
− u− e−u

)
, u ∈ R, (10.33a)

the reduced form of the type–I extreme value distribution of the maximum, where

E
(
Ui:n

)
= δi (10.33b)

is not given in closed form. Estimators for b and c may be obtained by minimizing

n∑

i=1

{
− ln

[(
Xi:n/b

)c]− δn−i+1

}2
.

The estimators may be obtained by replacing ln ξi with −δn−i+1 in the expression

for b̂1 and ĉ1 above.

The aforementioned estimators are still applicable if censored sampling is employed. The

sums and products are over the set of the r observed uncensored observations and n —

except in the subscripts — is replaced by r.

10.4.2 Linear estimation with linear and polynomial coefficients

The following approach, which is due to DOWNTON (1966), is only applicable when the

sample is not censored. The observed fact — by DOWNTON and several other authors —

that the efficiencies of linear estimators for a∗ and b∗ of the Log–WEIBULL distribution

are not particulary sensitive to changes in the values of the coefficients suggests the possi-

bility that efficient estimators might be found, where the coefficients have been chosen for

convenience, rather than because they conform to some optimizing process. DOWNTON

therefore suggested instead that estimators based on

V =
n∑

i=1

X∗
i:n and W =

n∑

i=1

iX∗
i:n (10.34a)

could be used.13 When X∗
i:n are order statistics from the Log–WEIBULL distribution, we

have

E(V ) = n a∗ − n γ b∗, (10.34b)

E(W ) =
n (n+ 1)

2
a∗ +

[
n (n− 1)

2
ln 2 − n (n+ 1)

2
γ

]
b∗, (10.34c)

where γ ≈ 0.57721 is EULER’s constant. Thus, unbiased estimators of a∗ and b∗ based on

the linear coefficients defined by (10.34a) are obtained in the form

â∗1 =
(n− 1) ln 2 − (n+ 1) γ

n (n− 1) ln 2
V +

2 γ

n (n− 1) ln 2
W, (10.34d)

b̂∗1 = − n+ 1

n (n− 2) ln 2
V +

2

n (n− 1) ln 2
W. (10.34e)

13 A generalization employing higher powers in i,
P
is Xi:n, s ≥ 2, will be presented below.



378 10 Parameter estimation — Least squares and linear approaches

One great advantage of these estimators is that their variances and covariance may be ex-

plicitly evaluated as follows:

Var
(
â∗1
)

=
b∗ 2

n (n− 1)
(1.112825 n− 0.906557), (10.34f)

Var
(
b̂∗1
)

=
b∗ 2

n (n− 1)
(0.804621n − 0.185527), (10.34g)

Cov
(
â∗, b̂∗

)
= − b∗ 2

n (n− 1)
(0.228707n − 0.586058). (10.34h)

The CRAMÉR–RAO lower bounds for estimating a∗ and b∗ are given by

Var
(
â∗
)

≥ b∗ 2
[
1 + 6 (1 − γ)2

/
π2
]/
n, (10.35a)

Var
(
b̂∗
)

≥ 6 b∗ 2
/(
nπ2

)
, (10.35b)

when â∗ and b̂∗ are any unbiased estimators of a∗ and b∗. Dividing Var
(
â∗
)

from (10.35a)

by Var
(
â∗1
)

from (10.34f) and doing the same with the variances of the b∗–estimator, we

get the relative efficiencies of the linear estimators as shown in Tab. 10/5. The asymptotic

relative efficiencies (n → ∞) are

ARE
(
â∗1
)

=
1 + 6 (1 − γ2)

/
π2

1.112825
= 0.9963, (10.36a)

ARE
(
b̂∗1
)

=
6

0.804621π2
= 0.7556. (10.36b)

From Tab. 10/5 we see that the estimator â∗1 of a∗ is so efficient that there seems little point

in trying to improve upon it, but this is not true of b∗.

Table 10/5: Efficiencies of linear unbiased estimators for the Log-WEIBULL distribution

Parameter a∗

Sample size n 2 3 4 5 6 ∞
BLUE 0.8405 0.9173 0.9445 0.9582 0.9665 1

BLOM’s approximation† 0.8405 0.9172 0.9437 0.9568 0.9645 1

Linear coeff. approx. â∗1 0.8405 0.9118 0.9383 0.9521 0.9607 0.9963

Quadratic coeff. approx. â∗2 0.8405 0.9173 0.9442 0.9579 0.9660 0.9987

Parameter b∗

Sample size n 2 3 4 5 6 ∞
BLUE 0.4270 0.5879 0.6746 0.7296 0.7678 1

BLOM’s approximation† 0.4270 0.5747 0.6539 0.7047 0.7407 1

Linear coeff. approx. b̂∗1 0.4270 0.5456 0.6013 0.6337 0.6548 0.7556

Quadratic coeff. approx. b̂∗2 0.4270 0.5878 0.6714 0.7226 0.7551 0.9364

† See Sect. 10.4.4
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Suppose we need to obtain an unbiased estimator of

ψ = ℓ1 a
∗ + ℓ2 b

∗ (10.37a)

by linear combination of order statistics,14 and suppose that this estimator is of the form

ψ̂ =
n∑

s=0

θs

n∑

i=1

isX∗
i:n. (10.37b)

DOWNTON (1966) explores only the case p = 2 leading to quadratic coefficients. The

condition of unbiasedness gives the following restraints upon the coefficients θs:

n∑

s=0

θs

n∑

i=1

is = ℓ1, (10.38a)

n∑

s=0

θs

n∑

i=1

is αi:n = ℓ2, (10.38b)

where αi:n = E
(
Ui:n

)
, Ui:n being the reduced Log–WEIBULL order statistic. Introducing

the sums of powers

ps,n =
n∑

i=1

is, (10.39a)

with

p0,n = n, (10.39b)

p1,n =
n (n+ 1)

2
, (10.39c)

p2,n =
n (n+ 1) (2n + 1)

6
, (10.39d)

and letting θ be the column vector of θs and p be the column vector with ps,n, (10.38a)

may be written as

θ′ p = ℓ1. (10.40a)

Similarly, letting q be the column vector with elements

qs,n =

n∑

i=1

is αi:n,

(10.38b) becomes

θ′ q = ℓ2. (10.40b)

14 Special cases of ψ are

• ℓ1 = 1 and ℓ2 = 0 ⇒ a∗,

• ℓ1 = 0 and ℓ2 = 1 ⇒ b∗,

• ℓ1 = 1 and ℓ2 = uP = ln[− ln(1 − P )] ⇒ xP , percentile of order P .
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The first three elements of q are

q0,n = nα1:1 (10.41a)

q1,n =
n (n− 1)

2
α2:2 + nα1:1 (10.41b)

q2,n =
n (n− 1) (n − 2)

3
α3:3 +

3n (n− 1)

2
α2:2 + nα1:1, (10.41c)

based on a recurrence relationship for moments of order statistics, where

αn:n =

n∑

i=1

(−1)i
(
n

i

)
ln i− γ. (10.41d)

Using

vi,j:n = Cov
(
Ui:n, Uj:n

)
,

we define a matrix W with elements

wij = wji =
n∑

r=1

n∑

s=1

ri sj vr,s:n; i, j = 0, . . . , p. (10.42)

Then, the most efficient estimator of ψ in (10.37a) is obtained by choosing θ so as to

minimize

θ′W θ + λ1 θ
′ p+ λ2 θ

′ q,

where λ1, λ2 are LAGRANGE–multipliers, introduced to ensure the side conditions

(10.40a,b). The solution is

θ = W−1χ′[χW−1χ′ ]−1
ℓ, (10.43a)

where

χ =

(
p′

q′

)
and ℓ =

(
ℓ1
ℓ2

)
. (10.43b)

With θ given by (10.43a) the variance of ψ̂ may be explicitly evaluated as

Var
(
ψ̂
)

= b∗ 2 ℓ′
[
χW−1χ′ ]−1

ℓ. (10.44)

Based on another recurrence relationship for moments of order statistics, DOWNTON gives

the elements wij ofW in (10.42a) for p = 2 as

w00 = 1.644934n, (10.45a)

w01 = w10 = 0.582241n2 + 1.062694n, (10.45b)

w02 = w20 = 0.331209n3 + 0.753094n2 + 0.560631n, (10.45c)

w11 = 0.267653n3 + 0.703537n2 + 0.673744n, (10.45d)

w12 = w21 = 0.169092n4 + 0.519071n3 + 0.614148n2 + 0.342623n, (10.45e)

w22 = 0.112793 n5 + 0.397472n4 + 0.562378n3 + 0.410243n2 + 0.162049n.(10.45f)

The estimators based on this approach with p = 2 and quadratic coefficients are denoted

by â∗2 and b̂∗2 with efficiencies given in Tab. 10/5 for n = 2, . . . , 6 and n = ∞.
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The asymptotic estimators are

â∗2,∞ ≈ 0.308n−1
n∑

i=1

X∗
i:n + 0.707n−2

n∑

i=1

iX∗
i:n + 1.016n−3

n∑

i=1

i2X∗
i:n,(10.46a)

b̂∗2,∞ ≈ −0.464n−1
n∑

i=1

X∗
i:n − 3.785n−2

n∑

i=n

iX∗
i:n + 7.071n−3

n∑

i=1

i2X∗
i:n(10.46b)

with variance–covariance matrix

Var

(
â∗2,∞

b̂∗2,∞

)
≈ n−1

(
1.110 − 0.251

− 0.251 0.649

)
. (10.46c)

A look at Tab. 10/5 reveals an efficiency of the quadratic version that is even higher than that

of BLOM’s “unbiased nearly best estimator,” but the disadvantage of DOWNTON’s method

is to not be applicable to censored samples.

Example 10/6: Linear estimation with linear and quadratic coefficients for uncensored

dataset #1

From dataset #1 consisting of n = 20 uncensored observations of X ∼We(0, 100, 2.5), we get

20∑

i=1

lnxi = 87.7712;

20∑

i=1

i lnxi = 970.14;

20∑

i=1

i2 lnxi = 13588.62.

The estimates (10.34d,e) using linear coefficients are

â∗1 = 4.6013 =⇒ b̂ = exp(4.6013) = 99.6137,

b̂∗1 = 0.3686 =⇒ ĉ = 1
/
0.3686 = 2.7130.

Using the approach with quadratic coefficients we first have

W =




32.8987 254.1503 2962.1222

254.1503 2436.1137 31459.8000

2962.1222 31459.8000 429199.4800


 ,

χ =


 20 210 2870

−11.5443 10.4827 974.7756


 ,

the θ–coefficients for â∗2

θ′ = (0.014325, 0.001265, 0.000156),

the θ–coefficients for b̂∗2

θ′ = (−0.018442, −0.010878, 0.000924).

The estimates are

â∗2 = 4.6050 =⇒ b̂ = exp(4.6050) = 99.9830,

b̂∗2 = 0.3904 =⇒ ĉ = 1
/
0.3904 = 2.5615,

which are closer to the true values than the estimates based on linear coefficients.
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10.4.3 GLUEs of BAIN and ENGELHARDT

BAIN (1972) suggested simpler versions of the estimators in the Log–WEIBULL notation,

which are linear and unbiased and apply to complete as well as censored samples. These

estimators are identical to the BLUEs for n = 2 and for n > 2 when r = 2. Their form

is similar but not identical for larger values of r. BAIN referred to these estimators as

only good linear unbiased estimators (GLUEs). Further developments on the GLUEs are

to be found in ENGELHARDT/BAIN (1973), ENGELHARDT (1975), BAIN/ENGELHARDT

(1991a) and SMITH (1977). Tables are needed to apply the GLU–method, but these tables

are less extensive than those needed for BLUEs.

The GLUEs for â∗ and b̂∗ of the Log–WEIBULL distribution are

b̂∗ =

r∑

i=1

X∗
r:n −Xi:n

n kr:n
=

r X∗
r:n −

r∑
i=1

X∗
i:n

n kr:n
, (10.47a)

â∗ = X∗
r:n − cr:n b̂∗. (10.47b)

The unbiasing coefficients are defined as

kr:n =
1

n
E

[
r∑

i=1

(
U∗
r:n − U∗

i:n

)
]
, (10.47c)

cr:n = E
(
U∗
r:n

)
, (10.47d)

where U∗
i:n = (X∗

i:n − a∗)
/
b∗. BAIN/ENGELHARDT (1991a, pp. 255/256) give tables

for kr:n and cr:n for r/n = 0.1(0.1)0.9 and n = 5, 10(10)100 together with approxi-

mating formulas to quadratic interpolation for non–tabulated coefficients. For r/n < 0.1
interpolation is not possible and kr:n and cr:n have to be computed with the formulas for

E
(
Ui:n

)
= αi:n given in Sect. 5.4.

ENGELHARD/BAIN (1973) have shown that the asymptotic relative efficiency of (10.47a,b)

— relative to the BLUEs — is zero when r = n. Therefore, (10.47a,b) have to be modified

as follows:

b̂∗ =

−
s∑
i=1

X∗
i:n +

s

n− s

n∑
i=s+1

X∗
i:n

n kn
, for r = n, (10.48a)

â∗ =
1

n

n∑

i=1

X∗
i:n + γ b̂∗, for r = n, (10.48b)

γ being EULER’s constant. The unbiasing coefficients kn have been tabulated for n =
2(1)60.s = [0.84n], the largest integer less than or equal to 0.84n, leads to the smallest

asymptotic variance of b̂∗.

BAIN/ENGELHARDT (1991a) provide tables showing the variances and covariance of â∗

and b̂∗ according to (10.47a,b) and (10.48a,b). SCHÜPBACH/HÜSLER (1983) have im-

proved (10.47a,b) for 0.8 ≤ r/n < 1 by carrying over (10.48a,b) to censored samples.
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10.4.4 BLOM’s unbiased nearly best linear estimator

BLOM (1958, 1962) derived linear estimators for the location and scale parameters of a

location–scale distribution, termed unbiased nearly best linear, depending upon the true

expectations αi:n of the reduced order statistics but not upon the exact variances and co-

variances βi,j:n. Instead he used the asymptotic variances and covariances. WHITE (1965)

and ENGEMAN/KEEFE (1982) have carried over this approach to the Log–WEIBULL dis-

tribution.

Let Ui:n be the ordered sample statistics of some reduced location–scale distributed variate,

e.g., the Log–WEIBULL distribution with CDF

F (u) = 1 − exp{−eu}, u ∈ R. (10.49a)

Then Zi:n := F (Ui.:n) are distributed as the order statistics of a random sample of size

n from a uniform (0,1)–distribution. Defining G(z) = u as the inverse of F (u) = z and

expanding u = G(z) in a TAYLOR series about z = P , we have

u = G(z) = G(P ) + (z − P )G′(P ) + . . . (10.49b)

Thus we may expand the order statistics Ui:n in terms of the order statistics Zi:n.

Since the moments of Zi:n are

E
(
Zi:n

)
=

i

n+ 1
= Pi (10.50a)

Cov(Zi:n, Zj:n) =
i (n − j + 1)

(n+ 1)2 (n+ 2)
=

Pi (1 − Pj)

n+ 2
, i ≤ j, (10.50b)

we have expanding about Pi = E
(
Zi:n

)

Ui:n = G
(
Zi:n

)
= G

(
Pi
)

+ (Zi:n − Pi)G
′(Pi

)
+ . . . (10.51a)

E
(
Ui:n

)
= G

(
Pi
)

+ 0 + . . . (10.51b)

Cov
(
Ui:n, Uj:n

)
=

Pi (1 − Pj)

n+ 2
G′(Pi)G

′(Pj) + . . . (10.51c)

In the Log–WEIBULL case we have

G(z) = u = ln[− ln(1 − P )] (10.52a)

G′(z) =
−1

(1 − z) ln(1 − z)
. (10.52b)

We take as an approximation to the variance–covariance matrixB (see (10.4b)), the matrix

V , where

vij =
Pi (1 − Pj)

n+ 2
G′(Pi

)
G′(Pj

)
, i ≤ j, (10.53a)

vji = vij , i ≤ j. (10.53b)

The matrix V may be written as
V = DZD (10.53c)
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where D is a diagonal matrix with elements

G′(Pi
)

= − n+ 1

(n+ 1 − i) ln

(
n+ 1 − i

n+ 1

) , (10.53d)

using (10.52b) and (10.50a). The elements of the symmetric (n× n) matrix Z are

zij =
Pi (1 − Pj)

(n+ 2)
=

i (n+ 1 − j)

(n+ 1)2 (n+ 2)
, using (10.50a). (10.53e)

The inverse of Z is

Z−1 = (n+ 1) (n + 2)




2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

. . .

0 0 0 . . . 2




. (10.53f)

The elements of D−1 are simply the reciprocal of G′(Pi) given in (10.53d). Thus, V −1 is

simple to evaluate as follows:

V −1 = D−1Z−1D−1. (10.53g)

D−1 is also diagonal having the reciprocal diagonal elements of D on its diagonal.

Reverting to the original BLUEs or GLS estimators given in (10.4c) the ABLUEs

(asymptatically best linear estimators) turn out to be

θ̂ =

(
â∗

b̂∗

)
= (P ′ V −1P )−1 P ′ V −1 x∗, (10.54)

where x∗ and P are defined in (10.4a). P contains the means αi:n = E
(
Ui:n

)
.

Example 10/7: ABLUEs for singly type–II censored dataset #1

We apply the ABLU–method to dataset #1 censored at r = 15. The results should be compared

with those given in Example 10/2 for the original BLUEs. From (10.54) we have

â∗ = 4.6297 =⇒ b̂ = exp(â∗) = 102.4833

b̂∗ = 0.4184 =⇒ ĉ = 1
/
b̂∗ = 2.3901.

10.4.5 ABLIEs

Asymptotically best linear estimators (ABLIEs) of the parameters a∗ and b∗ of the Log–

WEIBULL distribution have been found by JOHNS/LIEBERMAN (1966) on the basis of the

material in CHERNOFF et al. (1967). They defined estimators in the form
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â∗ =
1

n

r∑

i=1

J1

(
i

n+ 1

)
X∗
i:n, b̂∗ =

1

n

r∑

i=1

J2

(
i

n+ 1

)
X∗
i:n, r ≤ n, (10.55)

where J1(·) and J2(·) have been chosen so that the estimators are asymptotically jointly

normal and efficient. J1(·) and J2(·) depend upon functions related to the incomplete

digamma and trigamma functions. D’AGOSTINO (1971a,b) has simplified the approach of

JOHNS/LIEBERMAN by showing that the weights in (10.55) which rely on extensive tables

can be written in closed, simple to compute forms. The only requirements are knowledge

of the proportion of available observations P = r/n and a simple table look–up (Tab. 10/6)

for four numbers dependent upon this proportion.

The estimators proposed by D’AGOSTINO are

â∗ =
1

n

[
H1(P )L1(P ) −H3(P )L2(P )

]
, 0 < P =

r

n
≤ 1, (10.56a)

b̂∗ =
1

n

[
H2(P )L2(P ) −H3(P )L1(P )

]
, (10.56b)

where

L1(P ) =

r−1∑

i=1

wi,nX
∗
i:n + wr,n,P X

∗
r:n,

wi,n = ln

(
n+ 1

n+ 1 − i

)
, wr,n,P = P −

r−1∑

i=1

wi,n,

and

L2(P ) =

r−1∑

i=1

vi,nX
∗
i:n + vr,n,P X

∗
r:n

vi,n = ln

(
n+ 1

n+ 1 − i

)[
1 + ln ln

(
n+ 1

n+ 1 − i

)]
− 1

= wi,n
(
1 + lnwi,n

)
− 1

vr,n,P = nH4(P ) −
r−1∑

i=1

vi,n.

Tab. 10/6 has been compiled from D’AGOSTINO (1971a) and givesHi(P ) for i = 1, 2, 3, 4
and for P = 0.01(0.01)1. The coefficient H4(P ) is related to the first three coefficients by

H4(P ) =
H3(P )

H1(P )H2(P ) −H3(P )2
.
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Table 10/6: Components for the ABLIEs of a∗ and b∗

P H1(P ) H2(P ) H3(P ) H4(P )

0.010 2213.1439 99.7495 −459.1133 −0.0460
0.020 809.3986 49.7490 −194.3690 −0.0781
0.030 438.3524 33.0818 −115.7530 −0.1050
0.040 279.8085 24.7479 −79.4102 −0.1284
0.050 195.7245 19.7474 −58.9076 −0.1492

0.060 145.1791 16.4135 −45.9276 −0.1679
0.070 112.1877 14.0320 −37.0643 −0.1849
0.080 89.3589 12.2458 −30.6789 −0.2004
0.090 72.8571 10.8563 −25.8908 −0.2146
0.100 60.5171 9.7447 −22.1872 −0.2277

0.110 51.0357 6.8350 −19.2505 −0.2397
0.120 43.5871 8.0769 −16.8742 −0.2507
0.130 37.6262 7.4353 −14.9187 −0.2608
0.140 32.7806 6.8852 −13.2661 −0.2702
0.150 28.7863 6.4085 −11.9065 −0.2787

0.160 25.4606 5.9912 −10.7282 −0.2865
0.170 22.6584 5.6230 −9.7124 −0.2936
0.180 20.2774 5.2955 −8.8295 −0.3001
0.190 18.2380 5.0025 −8.0565 −0.3060
0.200 16.4786 4.7388 −7.3753 −0.3113

0.210 14.9513 4.5000 −6.7715 −0.3160
0.220 13.6174 4.2830 −6.2334 −0.3202
0.230 12.4463 4.0847 −5.7515 −0.3239
0.240 11.4132 3.9029 −5.3181 −0.3270
0.250 10.4979 3.7356 −4.9268 −0.3297

0.260 9.6835 3.5811 −4.5721 −0.3320
0.270 8.9562 3.4379 −4.2494 −0.3337
0.280 8.3045 3.3050 −3.9551 −0.3351
0.290 7.7187 3.1812 −3.6857 −0.3360
0.300 7.1904 3.0655 −3.4386 −0.3365

0.310 6.7128 2.9573 −3.2113 −0.3366
0.320 6.2799 2.8558 −3.0016 −0.3363
0.330 5.8865 2.7604 −2.8079 −0.3357
0.340 5.5282 2.6705 −2.6285 −0.3346
0.350 5.2013 2.5857 −2.4620 −0.3332

0.360 4.9023 2.5056 −2.3072 −0.3315
0.370 4.6283 2.4298 −2.1631 −0.3294
0.380 4.3769 2.3579 −2.0286 −0.3269
0.390 4.1458 2.2896 −1.9030 −0.3241
0.400 3.9330 2.2247 −1.7855 −0.3210

0.410 3.7368 2.1630 −1.6754 −0.3176
0.420 3.5556 2.1041 −1.5721 −0.3136
0.430 3.3881 2.0479 −1.4751 −0.3097
0.440 3.2331 1.9942 −1.3639 −0.3053
0.450 3.0894 1.9428 −1.2980 −0.3006

0.460 2.9561 1.8937 −1.2170 −0.2956
0.470 2.8322 1.8465 −1.1406 −0.2903
0.480 2.7171 1.6013 −1.0685 −0.2847
0.490 2.6100 1.7579 −1.0003 −0.2788
0.500 2.5102 1.7162 −0.9358 −0.2726

P H1(P ) H2(P ) H3(P ) H4(P )

0.510 2.4172 1.6760 −0.8747 −0.2662
0.520 2.3305 1.6374 −0.8168 −0.2594
0.530 2.2495 1.6001 −0.7618 −0.2523
0.540 2.1739 1.5642 −0.7097 −0.2450
0.550 2.1031 1.5296 −0.6602 −0.2374

0.560 2.0370 1.4961 −0.6131 −0.2295
0.570 1.9751 1.4637 −0.5685 −0.2213
0.580 1.9171 1.4324 −0.5258 −0.2129
0.590 1.8628 1.4021 −0.4852 −0.2042
0.600 1.8120 1.3728 −0.4466 −0.1952

0.610 1.7652 1.3443 −0.4098 −0.1859
0.620 1.7195 1.3168 −0.3746 −0.1764
0.630 1.6775 1.2900 −0.3411 −0.1666
0.640 1.6381 1.2640 −0.3091 −0.1565
0.650 1.6011 1.2388 −0.2786 −0.1462

0.660 1.5664 1.2142 −0.2494 −0.1355
0.670 1.5337 1.1904 −0.2215 −0.1246
0.680 1.5031 1.1671 −0.1948 −0.1135
0.690 1.4743 1.1445 −0.1692 −0.1020
0.700 1.4473 1.1224 −0.1448 −0.0903

0.710 1.4218 1.1009 −0.1215 −0.0783
0.720 1.3980 1.0800 −0.0991 −0.0661
0.730 1.3756 1.0595 −0.0776 −0.0535
0.740 1.3545 1.0395 −0.0571 −0.0407
0.750 1.3347 1.0159 −0.0374 −0.0275

0.760 1.3061 1.0008 −0.0186 −0.0141
0.770 1.2987 0.9821 −0.0005 −0.0004
0.780 1.2823 0.9638 0.0168 0.0176
0.790 1.2670 0.9458 0.0334 0.0279
0.800 1.2526 0.9282 0.0493 0.0425

0.810 1.2391 0.9109 0.0645 0.0575
0.820 1.2265 0.8939 0.0792 0.0726
0.830 1.2147 0.8773 0.0932 0.0082
0.840 1.2037 0.8609 0.1067 0.1041
0.850 1.1934 0.8447 0.1196 0.1203

0.860 1.1838 0.8288 0.1319 0.1369
0.870 1.1748 0.8131 0.1438 0.2538
0.880 1.1665 0.7976 0.1551 0.1711
0.890 1.1588 0.7822 0.1660 0.1889
0.900 1.1507 0.7670 0.1764 0.2070

0.910 1.1451 0.7520 0.1864 0.2255
0.920 1.1390 0.7370 0.1959 0.2446
0.930 1.1335 0.7220 0.2050 0.2661
0.940 1.1284 0.7070 0.2137 0.2842
0.950 1.1239 0.6920 0.2220 0.3048

0.960 1.1198 0.6768 0.2299 0.3261
0.970 1.1162 0.6613 0.2374 0.3482
0.980 1.1130 0.6452 0.2449 0.3723
0.990 1.1105 0.6282 0.2511 0.3957
1.000 1.1087 0.6079 0.2570 0.4228

Source: D’AGOSTINO (1971a, pp. 173–175) — Reprinted with permission from Technometrics. Copyright 1971

by the American Statistical Association. All rights reserved.
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D’AGOSTINO (1971a) shows how to update the estimators when the censoring number

increases with n fix. He further demonstrates that even for small samples the MSEs of

(10.56a,b) compare favorably with other well-known estimating procedures. D’AGOSTINO

(1971b) extends the foregoing approach to the case that either of the two parameters a∗, b∗

is known.

10.5 Linear estimation with a few optimally chosen order statis-

tics15

In some experiments it is difficult, expensive or time–consuming to make measurements

on all the n individual objects with sufficient accuracy. It may be preferable to concentrate

on the making of accurate measurements of a few selected items, which still provide high

efficiency in estimation. The estimator we are interested in is LLOYD’s BLUE, which is

obtained by the GLS method. It will be found that in many cases the n–th observation

must be used. Thus, the experimental time itself — the time until Xn:n is available to be

measured — will not necessarily be shortened by using only a few of the observations.

However, time and money may be saved both in making accurate measurements on fewer

observations and in the simpler calculation of the estimates. The chosen order statistics

will be called optimum–order statistics and the corresponding BLUE will be called the

optimum BLUE.

This section is arranged as follows:

1. In Section 10.5.1 we comment on choosing k optimum–order statistics when the

sample size is small.

2. Section 10.5.2 deals with the method of quantiles. The aim is to select k sample

quantiles when the sample size is very large and to build upon the asymptotic distri-

bution of those sample quantiles.

10.5.1 Optimum-order statistics for small sample sizes

Assume, that we have k ascending order statistics X∗
n1:n, X

∗
n2:n, . . . , X

∗
nk:n from the

Log–WEIBULL distribution (type–I extreme value distribution of the minimum), where

n1, n2, . . . , nk are the ranks such that

1 ≤ n1 < n2 < . . . < nk ≤ n.

Suppose that the sample size is small and we want to estimate a∗ and b∗ in (10.3e), but

instead of processing all n order statistics as described in Sect. 10.1, we now want to use

only k of the n order statistics. Evidently this procedure is not sufficient and we will suffer

a loss in efficiency.

There exist
(
n
k

)
possible sets of k order statistics in a sample of size n, so we have to choose

an optimizing criterion to decide which set is to be taken. Let θ̂k =
(
â∗k, b̂

∗
k

)′
denote the

15 Suggested reading for this section: CHAN/KABIR (1969), CHAN/MEAD (1971), HASSANEIN (1969,

1972), MANN (1970a), MANN/FERTIG (1977), OGAWA (1951).
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estimator based on k (2 ≤ k ≤ n) order statistics; i.e., P and B are of types k × 2 and

k × k, respectively, with elements αni:n and βni,nj :n (ni, nj = 1, 2, . . . , k). The basic

variance–covariance matrix in (10.4h) is denoted by Σk and its elements are Ak, Bk and

Ck where

Ak = Var
(
â∗k
)/
b∗2, (10.57a)

Bk = Var
(
b̂∗k
)/
b∗2, (10.57b)

Ck = Cov
(
â∗k, b̂

∗
k

)/
b∗2. (10.57c)

HASSANEIN (1969) minimizes the sum of the basic variances, i.e.,

Ak +Bk
!
= min

(n1,...,nk) , (10.58a)

whereas CHAN/MEAD (1971) minimize the generalized variance, i.e., the determinant of

Σk: ∣∣Σk

∣∣ = Ak ·Bk − C2
k

!
= min

(n1,...,nk) . (10.58b)

Table 10/7: BLUES of a∗ and b∗ based on k = 2 order statistics with optimum ranks,

coefficients, variances, covariances and relative efficiencies

n n1 n2 a1 a2 b1 b2 Ak Bk Ck Eff(â∗k) Eff(b̂∗k) JEff(â∗k, b̂
∗
k)

3 1 3 0.19 0.81 −0.48 0.48 0.43 0.37 −0.05 0.94 0.93 0.88

4 1 4 0.23 0.77 −0.39 0.39 0.34 0.26 −0.07 0.85 0.86 0.77

5 2 5 0.39 0.61 −0.57 0.57 0.26 0.22 −0.06 0.88 0.75 0.68

6 2 6 0.38 0.62 −0.49 0.49 0.23 0.17 −0.06 0.83 0.78 0.67

7 2 7 0.37 0.63 −0.44 0.44 0.21 0.14 −0.05 0.78 0.79 0.65

8 2 8 0.36 0.64 −0.40 0.40 0.19 0.12 −0.05 0.74 0.79 0.62

9 3 9 0.45 0.55 −0.48 0.48 0.16 0.11 −004 0.77 0.75 0.60

10 3 10 0.44 0.56 −0.44 0.44 0.15 0.09 −0.04 0.74 0.76 0.59

11 3 11 0.43 0.57 −0.42 0.42 0.14 0.08 −0.03 0.71 0.77 0.57

12 4 12 0.49 0.51 −0.47 0.47 0.13 0.08 −0.03 0.74 0.73 0.55

13 4 13. 0.48 0.52 −0.44 0.44 0.12 0.07 −0.03 0.71 0.74 0.54

14 4 14 0.47 0.53 −0.42 0.42 0.12 0.07 −0.03 0.69 0.75 0.53

15 4 15 0.46 0.54 −0.40 0.40 0.11 0.06 −0.02 0.67 0.75 0.52

16 5 16 0.51 0.49 −0.44 0.44 0.10 0.06 −0.02 0.70 0.72 0.51

17 5 17 0.50 0.50 −0.42 0.42 0.10 0.05 −0.02 0.68 0.73 0.50

18 5 18 0.49 0.51 −0.41 0.41 0.09 0.05 −0.02 0.66 0.74 0.49

19 5 18 0.40 0.60 −0.45 0.45 0.08 0.05 −0.02 0.74 0.66 0.49

20 5 19 0.40 0.60 −0.44 0.44 0.08 0.05 −0.02 0.72 0.66 0.48

21 6 20 0.44 0.56 −0.47 0.47 0.07 0.05 −0.02 0.74 0.65 0.48

22 6 21 0.43 0.57 −0.45 0.45 0.07 0.05 −0.02 0.73 0.66 0.48

23 6 22 0.43 0.57 −0.44 0.44 0.07 0.04 −0.02 0.71 0.67 0.48

24 6 23 0.42 0.58 −0.43 0.43 0.07 0.04 −0.02 0.70 0.68 0.47

25 7 24 0.45 0.55 −0.45 0.45 0.06 0.04 −0.01 0.72 0.66 0.47
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Table 10/8: BLUES of a∗ and b∗ based on k = 3 order statistics with optimum ranks, coefficients, variances, covariances and relative

efficiencies

n n1 n2 n3 a1 a2 a3 b1 b2 b3 Ak Bk Ck Eff(â∗k) Eff(b̂∗k) JEff(â∗k, b̂
∗
k)

4 1 2 4 0.08 0.27 0.65 −0.25 −0.26 0.51 0.31 0.23 −0.04 0.96 0.99 0.95
5 1 3 5 0.09 0.38 0.53 −0.24 −0.28 0.52 0.24 0.18 −0.04 0.95 0.95 0.91
6 1 3 6 0.08 0.38 0.54 −0.19 −0.28 0.47 0.21 0.14 −0.04 0.92 0.95 0.88
7 1 3 7 0.06 0.37 0.57 −0.15 −0.28 0.43 0.19 0.11 −0.03 0.88 0.95 0.84
8 1 4 8 0.07 0.44 0.49 −0.16 −0.30 0.46 0.16 0.10 −0.03 0.89 0.91 0.81

9 1 4 9 0.06 0.43 0.51 −0.13 −0.30 0.43 0.15 0.09 −0.03 0.85 0.92 0.79
10 2 6 10 0.14 0.48 0.38 −0.27 −0.20 0.47 0.13 0.08 −0.03 0.90 0.85 0.77
11 2 7 11 0.14 0.51 0.35 −0.26 −0.19 0.46 0.11 0.08 −0.03 0.90 0.83 0.75
12 2 7 12 0.12 0.51 0.37 −0.23 −0.21 0.44 0.11 0.07 −0.02 0.88 0.84 0.74
13 2 7 13 0.11 0.50 0.39 −0.21 −0.22 0.43 0.10 0.06 −0.02 0.86 0.85 0.73

14 2 8 14 0.11 0.53 0.36 −0.21 −0.22 0.43 0.09 0.06 −0.02 0.86 0.83 0.72
15 3 10 15 0.18 0.54 0.28 −0.30 −0.13 0.43 0.08 0.06 −0.02 0.88 0.79 0.71
16 3 11 16 0.18 0.56 0.26 −0.29 −0.12 0.41 0.08 0.05 −0.02 0.88 0.79 0.70
17 3 11 17 0.16 0.56 0.28 −0.27 −0.14 0.41 0.06 0.05 −0.02 0.87 0.79 0.69
18 4 13 18 0.23 0.55 0.23 −0.34 −0.06 0.41 0.07 0.04 −0.02 0.88 0.77 0.689

19 4 14 19 0.23 0.56 0.21 −0.34 −0.06 0.40 0.07 0.05 −0.02 0.87 0.76 0.68
20 4 15 20 0.23 0.57 0.20 −0.33 −0.05 0.38 0.05 0.04 −0.02 0.86 0.76 0.68
21 4 15 21 0.20 0.58 0.22 −0.31 −0.07 0.39 0.06 0.04 −0.02 0.86 0.76 0.67
22 5 17 22 0.27 0.56 0.17 −0.36 −0.01 0.37 0.06 0.04 −0.02 0.86 0.75 0.66
23 5 18 23 0.26 0.57 0.17 −0.36 −0.00 0.36 0.06 0.04 −0.02 0.85 0.75 0.66

24 5 18 24 0.24 0.58 0.18 −0.34 −0.02 0.37 0.05 0.04 −0.01 0.86 0.75 0.65
25 5 19 25 0.24 0.58 0.18 −0.34 −0.02 0.36 0.05 0.04 −0.01 0.85 0.75 0.65
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Table 10/9: BLUEs of a∗ and b∗ based on k = 4 order statistics with optimum ranks, coefficients, variances, covariances and relative

efficiencies

n n1 n2 n3 n4 a1 a2 a3 a4 b1 b2 b3 b4 Ak Bk Ck Eff(â∗k) Eff(b̂∗k) JEff(â∗k, b̂
∗
k)

5 1 2 4 5 0.06 0.18 0.35 0.41 −0.19 −0.23 −0.08 0.50 0.24 0.17 −0.04 0.99 0.99 0.97
6 1 2 4 6 0.05 0.13 0.37 0.45 −0.15 −0.20 −0.13 0.48 0.20 0.13 −0.03 0.97 0.98 0.95
7 1 3 5 7 0.06 0.20 0.35 0.39 −0.15 −0.26 −0.05 0.46 0.17 0.11 −0.03 0.97 0.96 0.93
8 1 3 6 8 0.05 0.21 0.39 0.35 −0.13 −0.26 −0.05 0.44 0.15 0.10 −0.03 0.96 0.95 0.92
9 1 3 7 9 0.05 0.21 0.43 0.31 −0.12 −0.26 −0.04 0.42 0.13 0.09 −0.03 0.95 0.94 0.90

10 1 3 7 10 0.04 0.18 0.44 0.34 −0.10 −0.23 −0.08 0.41 0.12 0.08 −0.02 0.94 0.94 0.88
11 1 4 9 11 0.05 0.27 0.43 0.25 −0.10 −0.29 0.01 0.38 0.11 0.07 −0.02 0.93 0.92 0.87
12 1 4 9 12 0.04 0.23 0.45 0.28 −0.10 −0.27 −0.02 0.39 0.10 0.06 −0.02 0.93 0.92 0.86
13 1 4 10 13 0.04 0.23 0.47 0.26 −0.09 −0.27 −0.02 0.38 0.09 0.06 −0.02 0.92 0.91 0.85
14 2 6 12 14 0.09 0.32 0.39 0.20 −0.18 −0.26 0.09 0.35 0.09 0.06 −0.02 0.93 0.89 0.84

15 2 6 12 15 0.08 0.28 0.42 0.22 −0.16 −0.26 0.06 0.36 0.08 0.05 −0.02 0.93 0.89 0.83
16 2 6 13 16 0.07 0.28 0.44 0.21 −0.15 −0.26 0.06 0.35 0.08 0.05 −0.02 0.92 0.89 0.83
17 2 7 14 17 0.08 0.31 0.41 0.20 −0.15 −0.27 0.08 0.34 0.07 0.05 −0.02 0.93 0.88 0.82
18 2 7 15 18 0.07 0.31 0.43 0.19 −0.14 −0.27 0.08 0.33 0.07 0.04 −0.06 0.92 0.88 0.82
19 2 7 16 19 0.07 0.31 0.44 0.18 −0.13 −0.27 0.09 0.31 0.06 0.04 −0.02 0.91 0.89 0.82

20 2 8 17 20 0.07 0.34 0.42 0.17 −0.14 −0.28 0.11 0.31 0.06 0.04 −0.01 0.91 0.88 0.81
21 2 8 18 21 0.07 0.33 0.44 0.16 −0.13 −0.28 0.11 0.30 0.06 0.04 −0.01 0.90 0.88 0.81
22 2 8 18 22 0.06 0.30 0.46 0.18 −0.12 −0.28 0.09 0.31 0.06 0.03 −0.01 0.91 0.87 0.80
23 3 10 20 23 0.10 0.35 0.40 0.15 −0.17 −0.26 0.14 0.29 0.05 0.03 −0.01 0.91 0.86 0.80
24 3 10 21 24 0.09 0.35 0.41 0.15 −0.16 −0.26 0.14 0.28 0.05 0.03 −0.01 0.90 0.87 0.79
25 3 10 21 25 0.08 0.32 0.44 0.16 −0.16 −0.26 0.13 0.29 0.05 0.03 −0.01 0.91 0.86 0.79
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There are some sample sizes for which the optimum ranks resulting from (10.58a) and

(10.58b) coincide. Tables 10/7 through 10/9 are based on the criterion given by (10.58b)

and on the variances and covariances in WHITE (1964b). The tables show — for k = 2, 3
and 4 and n = k + 1(1)25 — the optimum ranks n1, . . . , nk, as well as the weights

a1, . . . , ak and b1, . . . , bk to construct the estimators

â∗k =
k∑

j=1

aj X
∗
nj :n, b̂∗k =

k∑

j=1

bj X
∗
nj :n,

their variances Ak, Bk and covariance Ck and their efficiencies relative to the BLUE based

upon the complete sample:

Eff
(
â∗k
)

= An
/
Ak,

Eff
(
b̂∗k
)

= Bn
/
Bk,

JEff
(
â∗k, b̂

∗
k

)
=

An ·Bn − C2
n

Ak · Bk − C2
k

.

For given k the efficiencies decrease with n growing.

10.5.2 Quantile estimators and ABLEs

When the sample size n is large, the k out of n order statistics are selected by applying the

asymptotic theory of sample quantiles. Consider k real numbers such that

0 = λ0 < λ1 < λ2 < . . . < λk < λk+1 = 1,

where the integer k is less than n. Let the selected sample quantiles be X∗
n1:n, . . . , X

∗
nk:n,

where ni = [nλi] + 1 and [nλi] is the greatest integer not exceeding nλi.
16 The unit

interval is subdivided into k + 1 intervals by the set of points λ1, . . . , λk. Thus the

estimator consists of the k observations spaced at these points. The quantiles of a sample

from a Log–WEIBULL distribution are asymptotically normal with

E
(
X∗
ni:n

)
= a∗ + b∗ ui, (10.59a)

Cov
(
X∗
ni:n,X

∗
nj :n

)
=

b∗2

n

λi (1 − λj)

fi fj
; i, j = 1, . . . , k, (10.59b)

where

ui = ln[− lnλi], fi = f(ui), fj = f(uj)

and

λi =

∫ ui

−∞
f(u) du with f(u) = exp

[
u− eu

]
.

A first approach to select an appropriate set of proportions giving linear estimators

â∗ =
k∑

i=1

aiX
∗
ni:n, b̂

∗ =
k∑

i=1

biX
∗
ni:n

16 Choosing ni = [n λi] results in estimators which are less efficient as shown by CHAN/MEAD (1971).
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consists in minimizing Var
(
â∗
)

+ Var
(
b̂∗
)

under the conditions

k∑

i=1

ai = 1,

k∑

i=1

bi = 0,

k∑

i=1

ai ui = 0,

k∑

i=1

bi ui = 0,

as proposed by HASSANEIN (1969). For k = 2, 3 and 4 he found results.

A second approach elaborated by HASSANEIN (1972) for the Log–WEIBULL parameters17

results in the so–called ABLEs (asymptotically best linear estimators). This approach orig-

inates in a paper of OGAWA (1951) and applies the GLS–method to the large sample dis-

tribution of sample percentiles given in (10.59a,b). The optimum spacings λ1, λ2, . . . , λk
are those which maximize the asymptotic relative efficiency of the estimators â∗ and b̂∗

given by

ARE
(
â∗, b̂∗

)
=

∆ +
2 k

n
K1

|I| ≈ ∆

I
, (10.60)

where

∆ = K1K2 −K2
3 ,

|I| = E
[
(f ′/f)2

]{
E
[(
U f ′/f)2

]
− 1
}
− E2

[
U f ′2/f2

]
,

K1 =

k+1∑

i=1

(fi − fi−1)
2

λ1 − λi−1
,

K2 =
k+1∑

i=1

(
fi ui − fi ui−1

)2

λi − λi−1
,

K3 =

k+1∑

i=1

(fi − fi−1) (fi ui − fi−1 ui−1)

λi − λi−1
,

fi = f(ui); i = 1, 2, . . . , k,

f(u0) = f(uk+1) = 0,

f = f(U) = exp
(
U − eU

)
.

For k = 2(1)10 Tab. 10/10 shows the optimum spacings λi, the percentiles ui, the coeffi-

cients ai, bi for the linear estimators â∗ and b̂∗ together with

K2

∆
=

Var
(
â∗
)

b∗2
/
n
,

K1

∆
=

Var
(
b̂∗
)

b∗2
/
n
,

K3

∆
= −Cov

(
â∗, b̂∗

)

b∗2
/
n

17 CHAN/KABIR (1969) have used this approach to estimate the parameters of the type–I extreme value

distribution for the largest value.
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Table 10/10: Asymptotically optimum spacings λi, percentiles ui, coefficients ai and bi for

the estimators â∗ and b̂∗, their variances, covariances and asymptotic relative

efficiencies (x∗n1:n > x∗n2:n > . . . > x∗nk:n)

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

λ1 0.0870 0.0550 0.0280 0.0180 0.0110 0.0080 0.0060 0.0040 0.0030
u1 0.8928 1.0648 1.2741 1.3906 1.5063 1.5745 1.6324 1.7086 1.7594
a1 0.5680 0.3386 0.1566 0.0994 0.0623 0.0439 0.0323 0.0228 0.0175
b1 0.4839 0.4372 0.2845 0.2047 0.1454 0.1112 0.0875 0.0663 0.0538

λ2 0.7340 0.4390 0.1930 0.1140 0.0710 0.0470 0.0330 0.0240 0.0180
u2 −1.1736−0.1945 0.4978 0.7754 0.9727 1.1176 1.2271 1.3163 1.3906
a2 0.4320 0.5184 0.4316 0.3030 0.2027 0.1382 0.0981 0.0737 0.0557
b2 −0.4839−0.1602 0.1526 0.2236 0.2189 0.1854 0.1531 0.1300 0.1079

λ3 0.8500 0.6040 0.4040 0.2510 0.1630 0.1110 0.0790 0.0580
u3 −1.8170−0.6848−0.0983 0.3238 0.5955 0.7877 0.9315 1.0464
a3 0.1430 0.3250 0.3673 0.3315 0.2649 0.2002 0.1512 0.1156
b3 −0.2770−0.2651−0.1012 0.0481 0.1254 0.1497 0.1481 0.1365

λ4 0.8960 0.7260 0.5470 0.3960 0.2790 0.1990 0.1450
u4 −2.2090−1.1388−0.5053−0.0765 0.2442 0.4790 0.6580
a4 0.0868 0.1804 0.2564 0.2813 0.2652 0.2277 0.1865
b4 −0.1720−0.2208−0.1733−0.0780 0.0121 0.0720 0.1026

λ5 0.9310 0.7990 0.6520 0.5130 0.3930 0.2970
u5 −2.6381−1.4944−0.8493−0.4042−0.0683 0.1912
a5 0.0499 0.1144 0.1727 0.2134 0.2278 0.2199
b5 −0.1063−0.1673−0.1680−0.1262−0.0639−0.0036

λ6 0.9510 0.8490 0.7270 0.6049 0.4910
u6 −2.9909−1.8097−1.1431−0.6848−0.3406
a6 0.0327 0.0764 0.1208 0.1579 0.1824
b6 −0.0718−0.1251−0.1439−0.1317−0.0981

λ7 0.9640 0.8840 0.7820 0.6750
u7 −3.3060−2.0932−1.4028−0.9338
a7 0.0226 0.0537 0.0874 0.1184
b7 −0.0508−0.0952−0.1191−0.1217

λ8 0.9730 0.9090 0.8240
u8 −3.5983−2.3496−1.6420
a8 0.0163 0.0393 0.0652
b8 −0.0371−0.0736−0.0980

λ9 0.9790 0.9280
u9 −3.8576−2.5940
a9 0.0122 0.0296
b9 −0.0281−0.0580

λ10 0.9840
u10 −4.1271
a10 0.0092
b10 −0.0214

Var
(
â∗
)
/(b∗ 2/n) 1.5106 1.2971 1.2287 1.1924 1.1706 1.1567 1.1470 1.1401 1.1349

Var
(
b̂∗
)
/(b∗ 2/n) 1.0749 0.9028 0.7933 0.7374 0.7043 0.6825 0.6676 0.6567 0.6486

Cov
(
â∗, b̂∗

)
/(b∗ 2/n) −0.3401−0.2579−0.2570−0.2674−0.2657−0.2628−0.2627−0.2616−0.2609

ARE
(
â∗
)

0.7339 0.8548 0.9023 0.9298 0.9471 0.9585 0.9666 0.9725 0.9769

ARE
(
b̂∗
)

0.5656 0.6734 0.7663 0.8244 0.8632 0.8907 0.9106 0.9257 0.9373

ARE
(
â∗, b̂∗

)
0.4031 0.5504 0.6770 0.7526 0.8064 0.8445 0.8726 0.8936 0.9101

Source: HASSANEIN (1972, pp. 65, 67) — Reprinted with permission from Technometrics. Copyright 1972 by

the American Statistical Association. All rights reserved.
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and their asymptotic relative efficiencies

ARE
(
â∗
)

=

{
E
[(
U f ′/f

)2]− 1
}/

|I|
K2

/
∆

,

ARE
(
b̂∗
)

=
E
[(
f ′/f

)2/|I|
K1

/
∆

and ARE
(
â∗, b∗

)
according to (10.60) using

E
[
(f ′/f)2

]
= 1, E

[
(U f ′/f)2

]
= 2.82371, E

[
U f ′2/f2

]
= −0.42279.

It occurs in practical situations that the results in Tab. 10/10 cannot be applied because of

the censoring of the extreme ordered observations in the sample. To deal with this problem

HASSANEIN (1972) has given special tables for the asymptotically optimum spacings when

λ1 is not less than 0.01 and λk not more than 0.9. MANN/FERTIG (1977) give factors for

correcting the small–sample bias in HASSANEIN’s estimators.

When estimating a subset of the parameters, we sometimes will revert to the idea of using

only a few order statistics, especially the first two of them or the last one.

10.6 Linear estimation of a subset of parameters

There are situations where we know the value of one or even two of the three WEIBULL

parameters a, b and c. In this section we will show how to linearly estimate the remaining

unknown parameter(s). Sect. 10.6.1 deals with the problem of indirectly estimating b =
exp

(
a∗
)

or c = 1/b∗ via the parameters a∗, b∗ of the Log–WEIBULL variateX∗ = ln(X−
a); i.e., the location parameter a is assumed to be known as in all preceding sections of this

chapter. In Sect. 10.6.2 we treat direct estimating a subset of {a, b, c}.

10.6.1 Estimation of one of the Log-WEIBULL parameters

We will first present the BLUEs of either a∗ or b∗ for b∗ or a∗ unknown.18 In either case

we have to reformulate the regression equation (10.4a) which has to be estimated by GLS.

First case: BLUE of a∗ when b∗ is known

The regression equation now reads

x∗ − b∗α = a∗ 1 + ε, (10.61a)

where

α′ = (α1:n, . . . , αn:n) and 1′ = (1, . . . , 1).

The GLS–estimator of a∗ is

â∗ =
(
1′B−1 1

)−1
1′B−1

(
x∗ − b∗α

)
(10.61b)

18 For a better understanding and for the definition of the symbols used here the reader should consult

Sect. 10.1.
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with variance

Var
(
â∗
)

= b∗2
(
1′B−1 1

)−1
. (10.61c)

The row vector
(
1′B−1 1

)−1
1′B−1 contains the weights for linearly combining the mod-

ified observations X∗
i:n − b∗ αi:n in the column vector x∗ − b∗α. The elements of B and

α have to be taken from tables, e.g., from WHITE (1964b) for n = 2(1)20.

Second case: BLUE of b∗ when a∗ is known

The regression equation is

x∗ − a∗ 1 = b∗α+ ε (10.62a)

giving the GLS–estimator

b̂∗ =
(
α′B−1α

)−1
α′B−1

(
x∗ − a∗ 1

)
(10.62b)

with variance

Var
(
b̂∗
)

= b∗2
(
α′B−1α

)−1
. (10.62c)

We should mention that in both cases the results may be applied to singly type–II censored

data where the index of the observations and of the elements in α and in B runs from 1

to the censoring number r. If only k of n optimally chosen order statistics should be used,

HASSANEIN (1969) shows how to proceed in both cases when k = 2, 3 and CHAN/MEAD

(1971) when k = 2, 3 and 4. CHAN/KABIR (1969) should be consulted for the ABLEs.

D’AGOSTINO (1971b) extends the ABLIE–approach of Section 10.4.5 to the two cases

mentioned above as follows:

â∗ =
1

P

[
L1(P )

n
− b∗H4(P )

]
, (10.63a)

b̂∗ = H5(P )

[
L2(P )

n
− a∗H4(P )

]
, (10.63b)

where

H5(P ) =
H1(P )H2(P ) −H3(P )2

H1(P )
.

10.6.2 Estimation of one or two of the three WEIBULL parameters

In this section we will build estimators based on the original WEIBULL variate, either

X ∼ We(a, b, c) or U ∼ We(0, 1, c), the ordered variates being Xi:n and Ui:n. For the

special case r = 2, i.e., the sample is singly type–II censored by the second failure, the

following estimators have been suggested by LEONE et al. (1960):

• a = 0, b and c unknown

ĉ is found by solving the equation

X2:n

X1:n
= n

(
n

n− 1

)1/bc
− n+ 1. (10.64a)
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• c known

â = X1:n −
X2:n −X1:n

n

[(
n

n− 1

)1/c

− 1

]−1

(10.64b)

b̂ =
1

n

(
X2:n −X1:n

) (n− 1)1/c

1 −
(
n− 1

n

)1/c

Γ

(
1 +

1

c

) (10.64c)

• b and c known

â = X1:n − b (n+ 1)−1/c (10.64d)

• a and c known

b̂ = (Xκ+1:n − a)

{
ln

[
n+ 1

n− κ

]}−1/c

, (10.64e)

where κ is the largest integer not exceeding n
(
1 − e−1

)
.

The remainder of this section is organized as follows:

• Sect. 10.6.2.1 shows how to estimate a and b when c is known by considering the

two cases:

1. usage of all available n or r order statistics,

2. usage of k out of n order statistics when n is either small (finite case) or great

(infinite case).

• Section 10.6.2.2 enumerates approaches to estimate either the shape parameter c or

the scale parameter b.

10.6.2.1 Estimating a and b with c known

The ordered reduced WEIBULL statistics

Ui:n =
Xi:n − a

b

have a distribution and hence moments depending on c (see (5.33) and (5.37) for the den-

sities and (5.34) and (5.38a) for the moments). Thus, when c is known we can compute

the means, variances and covariances (see Sect. 5.2), or look up these values in one of the

tables cited in Sect. 5.2. For given c we denote

E(u | c) := αc, (10.65a)

Var(u | c) := Bc. (10.65b)

All the formulas developed in Sections 10.2 through 10.5 for estimating a∗ and b∗ of the

Log–WEIBULL distribution can be carried over to estimate a and b by substituting α and

B with αc and Bc.
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The BLUEs of a and b based on a complete or a singly type–II censored sample are given

by

â = −α′
c Γx, b̂ = 1′ Γx, (10.66a)

where

x′ =
(
X1:n, . . . ,Xn:n

)
or x′ =

(
X1:n, . . . ,Xr:n

)
,

Γ = B−1
c

(
1α′

c −αc 1′)B−1
c

/
∆,

∆ =
(
1′B−1

c 1
) (
α′
cB

−1
c αc

)
−
(
1′B−1

c α
)2
,

withαc and 1 having n or r elements, respectively, andBc being of type (n×n) or (r×r),
respectively. The variances and covariance of â and b̂ are

Var
(
â
)

= b2
(
α′
cB

−1
c αc

)/
∆, (10.66b)

Var
(
b̂
)

= b2
(
1′B−1

c 1
)/

∆, (10.66c)

Cov
(
â, b̂
)

= −b2
(
1′B−1

c αc
)/

∆. (10.66d)

GOVINDARAJULU/JOSHI (1968) have tabulated the coefficients −α′
c Γ and 1′ Γ together

with the basic covariance −
(
1′B−1

c αc
)/

∆ for c = 3, 5, 8 and 10 and 2 ≤ r, n ≤ 10.

The reader intending to use only k of n order statistics to estimate a and b is referred

to CHAN et al. (1974) and HASSANEIN (1971). The latter gives the optimum spacings

λ1, . . . , λk and the weights for the ABLEs when k = 2, 4, 6 and c = 3(1)10, 15, 20.
CHAN et al. have explored the finite sample case and tabulated the optimum ranks

n1, . . . , nk, the weights and variances and covariances of â and b̂ for k = 3 and k = 4 in

combination with n = 3(1)15 and c = 0.5, 1.5, 2, 2.5, 3 and 4.

Further material on BLUEs of a and b is contained in ENGEMAN/KEEFE (1982), FRIED-

MAN (1981), FRIEDMAN/GERTSBAKH (1981) and YILDIRIM (1990).

10.6.2.2 Estimating either b or c

Estimation of the scale parameter b when a = 0 and c is known by the use of k optimally

selected order statistics has been discussed by CLARK (1964). The special case k = 1
has been explored by QUAYLE (1963) and MOORE/HARTER (1965, 1966). The latter

developed a one–order–statistic estimator for the parameter λ of the exponential variate Y
with density f(y) = λ−1 exp(y

/
λ) by

λ̂ = dℓ,n Yℓ:n, (10.67a)

where ℓ is the optimum order in a sample of size n, singly censored with the r–th ordered

observation. If Y has an exponential distribution with scale parameter λ, then X = Y 1/c

has a WEIBULL distribution with shape parameter c and scale parameter b = λ1/c. Thus

an estimator of b is

b̂ = d
1/c
ℓ,n Xℓ:n. (10.67b)
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The coefficients dℓ,n have been tabulated for 2 ≤ n ≤ 20 in MOORE/HARTER (1965) and

for 21 ≤ n ≤ 40 in MOORE/HARTER (1966).

VOGT (1968) has constructed a median–unbiased estimator of c when a is known and b
does not matter. The estimator is based on the first and last order statistics in an uncensored

sample. The estimator is given by

ĉ = gn
[
lnXn:n − lnX1:n

]−1
. (10.68)

Some values of gn are the following:

n 2 3 4 5 6 7 8 9 10

gn 0.477 0.802 1.009 1.159 1.278 1.375 1.458 1.530 1.594

There exist several estimators of c which are based on sample quantiles. We first give

estimators requiring a = 0 and where b does not matter. Afterwards we show how to

estimate c independently of a and b using three sample quantiles.

For large samples, when a is known to be zero, DUBBEY (1967e) has suggested to use

ĉ =
ln
{

ln(1 − pk)
/

ln(1 − pi)
}

ln
(
Xk:n

/
Xi:n

) , 0 < pi < pk < 1, (10.69a)

with k = [n pk] + 1, i = [n pi] + 1. This estimator is asymptotically unbiased and normal.

Its asymptotic variance is minimized when pi = 0.16731 and pk = 0.97366. Thus we have

ĉopt = 2.9888

{
ln

(
Xk:n

Xi:n

)}−1

. (10.69b)

MURTHY/SWARTZ (1975) derived unbiasing factors for ĉ in (10.69a).

The percentile of order p of the three–parameter WEIBULL distribution is (see (2.57b)):

xp = a+ b [− ln(1 − p)]1/c.

Suppose that X̂pi , X̂pj , X̂pk
are estimators of xp corresponding to F (x) = pi, pj, pk,

respectively, e.g., X̂p = X[np]+1:n. Given 0 < pi < pj < pk < 1, the three equations

X̂pℓ
= â+ b̂

[
− ln(1 − pℓ)

]1/bc
; ℓ = i, j, k; (10.70a)

can be solved, yielding the estimators â, b̂ and ĉ. The equation for ĉ is

ĉ =
0.5 ln

{
ln(1 − pk)

/
ln(1 − pj)

}

ln
{
(X̂pk

− X̂pj)
/
(X̂pj − X̂pi)

} . (10.70b)

DUBEY (1967e) has discussed the optimal choice of pi, pj and pk. ZANAKIS/MANN

(1982), departing from 0 < pi < pj < pk < 1 and

− ln(1 − pj) =
{

ln(1 − pi) ln(1 − pk)
}1/2

, (10.70c)



10.7 Miscellaneous problems of linear estimation 399

showed that choosing pi = 0.16731 and pk = 0.97366, leading to pj = 0.20099, gives

ĉ = 1.4944

{
ln

(
X̂pk

− X̂pj

X̂pj − X̂pi

)}−1

, (10.70d)

which produces a rather poor behavior. The optimal values of pi and pk depend on c but are

not very sensitive with respect to c. According to ZANAKIS/MANN a minimum asymptotic

variance of ĉ in (10.70b) is attained for 0.0086 < pi < 0.0202 and 0.9746 < pk < 0.9960.

10.7 Miscellaneous problems of linear estimation

The RAYLEIGH distribution is a special WEIBULL distribution having c = 2; i.e., its density

function reads

f(x) =
2x

b2
exp

{
−
(x
b

)2}
, x ≥ 0, b > 0.

DYER/WHISENAND (1973a) presented the BLUE of b for samples of size n = 2(1)15
where singly type–II censoring might occur. In a second paper, DYER/WHISENAND

(1973b) developed the BLUE for b based on k out of n ordered observations, k = 2(1)4
and n = 2(1)22. They also presented the ABLE (asymptotical BLUE) based on k = 2(1)4
order statistics. All the above estimators require table look–ups for the coefficients of the

estimator, depending on n and the censoring number r. Based on the technique of CHER-

NOFF et al. (1967), D’AGOSTINO/LEE (1975) suggested an ABLE for b which does not

rely on tabulated coefficients.

Let X1:n, . . . , Xn:n represent the ordered observations from a RAYLEIGH distribution. Of

these Xℓ:n, . . . , Xu:n, 1leqℓ ≤ u ≤ n, are available for estimation of b. Denoting

P :=
ℓ− 1

n
, Q :=

u

n
,

P := 1 − P , Q := 1 −Q,

the fractions P and Q have been censored from the lower and upper tail of the sample,

respectively. The ABLE of b is

b̂ =

[
u∑

i=ℓ

bi,nXi:n

/
n+ bℓXℓ:n + buXu:n

]/
Kℓ,u, (10.71a)

where

b2i:n = −2 ln

(
1 − i

n+ 1

)
, (10.71b)

b2ℓ = c2ℓ
(
− 2 lnP

)
, cℓ = −P

[
1 +

(
lnP

)/
P
]
, (10.71c)

b2u = Q
2 (− lnQ

)
, (10.71d)

Kℓ,u =
1

n

u∑

i=ℓ

b2i,n +
b2ℓ
cℓ

+
b2u
Q
. (10.71e)
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If ℓ = 1 (no censoring from below), then P = 0 and bℓ = b1 = 0. If u = n (no

censoring from above), then Q = 0 and bu = bn = 0. If n → ∞, Kℓ,u in (10.71e) can be

approximated by a simple formula not involving the sum of terms from ℓ to u:

lim
n→∞

Kℓ,u = 2

[
(Q− P ) +

P

P

(
lnP

)2
]
. (10.71f)

When ℓ = 1, we further get

lim
n→∞

K1,u = 2Q. (10.71g)

The efficiency of b̂ in (10.71a) relative to the BLUE is extremely good for n ≥ 5.

DUBEY (1965) developed estimators, called pseudo least squares estimators, for the scale

and shape parameters of a WEIBULL distribution19 when the items to be sampled are in-

expensive. The sampling plan is as follows: Draw random samples of a given inexpensive

product from an infinite (large) lot of sizes n(t1), n(t2), . . . , n(tk), not necessary of equal

size, at the time points t1 < t2 < . . . < tk. Let G(ti) be the random number of good items

observed in n(ti) at time ti. The estimators of b2 = bc and c are found by minimizing

k∑

i=1

(Yi − c ln ti + ln b2)
2, (10.72a)

where

Yi := ln ln R̂−1(ti) = ln
{

ln[n(ti)] − ln[G(ti)]
}

(10.72b)

and reading

ĉ =
k∑

i=1

wi Yi, (10.72c)

b̂2 = exp
[
− Y + ĉ u

]
, (10.72d)

where

wi =
ln ti − u

k∑
i=1

(ln ti − u)2

Y =
1

k

k∑

i=1

yi and u =
1

k

k∑

i=1

ln ti.

ĉ and b̂2 are asymptotically normally distributed. The asymptotic variances and covariances

19 The location parameter is assumed to be zero.
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of ĉ and b̂2 are

Var
(
ĉ
)

=

k∑

i=1

w2
i Var(Yi), (10.72e)

Var
(
b̂2
)

= b22

k∑

i=1

(
uwi −

1

k

)2

Var(Yi), (10.72f)

Cov
(
ĉ, b̂2

)
= b2

k∑

i=1

wi

(
uwi −

1

k

)
Var(Yi), (10.72g)

where the asymptotic variance of Yi is

Var(Yi) = b22
{

exp
(
tci
/
b2) − 1

}/
n(ti) t

2 c
i . (10.72h)

The DUBEY approach has some resemblance to that of HERBACH (1963) which is based

on the number of failures. It is well known that if the time to failure X has a WEIBULL

distribution, i.e., Pr(X > x) = exp{[(x− a)/b]c}, then the reduced variate Z = (X − a)c

has an exponential distribution with mean bc. It is equally well known that if the times

between failures occur independently according to an exponential distribution, the number

of failures in a fixed time interval has a POISSON distribution.

We finally mention a paper of SKINNER/HUMPHREYS (1999) that treats linear estimation

when the WEIBULL variates are error–contaminated.



11 Parameter estimation —

Maximum likelihood

approaches1

Maximum likelihood (ML) is by far the most popular method of estimation. It is generally

credited to R. A. FISHER (1890 – 1962), although its roots date back as far as J. H. LAM-

BERT (1728 – 1777), DANIEL BERNOULLI (1708 – 1782) and J. L. LAGRANGE (1736 –

1813) in the eighteenth century (see EDWARDS (1972) for a historical account). FISHER

introduced this method as an alternative to the method of moments (see Chapter 12) and to

the method of least squares (see the previous chapter). The former method FISHER criti-

cized for being arbitrary in the choice of the moment equations and the latter for not being

invariant under scale changes in the variables.

ML is considered to be one of the most versatile and reliable methods. Its properties will

be presented and discussed in Sect. 11.2. ML copes with all types of samples, whether un-

censored or censored in one way or the other and whether the data are grouped or not. One

writes down the likelihood function (see Sect. 11.1) or its logarithm, the log–likelihood

function. The likelihood function depends on the distribution of the sampled universe, its

parameters and the data and the way these data have been collected. Sect. 11.1 shows how

to set up a likelihood function. The maximum likelihood estimators are those parameter

values that maximize the likelihood function, given the data available. The process of max-

imizing will be treated in Sect. 11.2 in conjunction with the statistical properties, which

partly depend on the maximizing process and vice versa. The exact distribution of many

maximum likelihood estimators (MLEs) and the confidence limits of the estimated parame-

ters are not always known, as is the case with the WEIBULL distribution. However, they are

given approximately by the large sample theory, which involves the asymptotic variance–

covariance matrix and the FISHER information matrix. Sections 11.3 through 11.8 will

go into the details of MLEs for different kinds of samples, including small–sample and

large–sample theory.

11.1 Likelihood functions and likelihood equations

The likelihood is a tool of statistical inference used in testing (see Chapter 21) as well as

in estimating. For a given, realized sample the likelihood numerically expresses the chance

or plausibility of just having realized the sample at hand under any set of those parameters

governing the sampled universe. The term likelihood is thus distinct from the term inverse

probability used in BAYES inference (see Chapter 14). The likelihood is a function of the

1 Estimation by maximum likelihood is treated in almost every textbook on statistical inference. An easy

to read introduction to the principles of likelihood is the monograph of EDWARDS (1972).
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distributional parameters θj (j = 1, . . . , m), collected in the vector θ, given the sampled

data. Formally and depending on the nature of the sampled variate (continuous or discrete),

the likelihood is a joint density, a joint probability or a combination thereof, but the roles

of the variables and the parameters in this joint function have been interchanged.

As a rule, the data consist of a vector of n independent observations so that the likelihood

is a product of n simple factors termed likelihood elements Li, expressing the likelihood

of an individual observation. Let θ be the vector of the unknown parameters and xi an ob-

servation of a continuous variate X with density function f(x |θ) and distribution function

F (x |θ). Then we may have the following likelihood elements:

• uncensored observation xi of X

Li(θ) := f(xi |θ); (11.1a)

• interval censored observation2 of X

Li(θ) =
tj∫

tj−1

f(x |θ) dx, x ∈ (tj−1, tj ],

= F (tj |θ) − F (tj−1 |θ)
= Pr(tj−1 < Xi ≤ tj |θ);





(11.1b)

• observation singly censored on the left at T

Li =
T∫

−∞
f(x |θ) dx, xi ≤ T,

= F (T |θ)
= Pr(Xi ≤ T );





(11.1c)

• observation singly censored on the right at T

Li =
∞∫
T

f(x |θ) dx, xi > T,

= 1 − F (T |θ) = R(T |θ)
= Pr(Xi > T ).





(11.1d)

• randomly censored observation

Let C , the censoring variate, be continuous with density g(c |ψ) and distribution

function G(c |ψ). We will observe Yi = min(Xi, Ci) together with the indicator

δi := I(Xi ≤ Ci) =





1 for Xi ≤ Ci

0 for Xi > Ci.





2 Interval censored data are also termed grouped data.
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When Xi and Ci are independent variates we have the following likelihood element

of an observation (yi, δi):

Li(θ,ψ) =





f(yi |θ) [1 −G(yi |ψ)] for δi = 1

g(yi |ψ) [1 − F (yi |θ)] for δi = 0.



 (11.1e)

Furthermore, if the parameter vectors θ and ψ have no elements in common, (11.1e)

reduces to

Li(θ) = con f(yi |θ)δi R(yi |θ)1−δi

= con





f(yi |θ) for δi = 1

R(yi |θ) for δi = 0,



 (11.1f)

where con is a constant not involving any parameters of X.

The likelihood function of an independent sample of size n is

L(θ | data) = K

n∏

i=1

Li(θ), (11.2a)

where K is a combinatorial constant giving the number of ways the sample might have

been observed and thus is free of any parameter in θ. To simplify the notation we will omit

K and the hint to the data, so that we write

L(θ) =

n∏

i=1

Li(θ). (11.2b)

Strictly speaking we have L(θ) ∝
n∏
i=1

Li(θ).

The idea of maximum likelihood estimation is to find that vector θ̂ := θ̂ML, which max-

imizes (11.2b), thus assigns the highest chance of having realized the data at hand. Max-

imization of (11.2b) is rarely done by some procedure of direct optimization, e.g., by the

method of grid search, but usually by some gradient method built upon partial derivatives

of (11.2b), assuming all parameters θ1, . . . , θm to be continuous. The process of forming

these derivatives is made easier by departing from the log–likelihood function which is a

sum instead of a product:3

L(θ) := lnL(θ)

=

n∑

i=1

Li(θ), Li(θ) := lnLi(θ). (11.2c)

The partial derivative of L(θ) with respect to parameter θi (i = 1, . . . , m) is denoted by

∂L(θ)/∂θi, and
∂L(θ)

∂θi
= 0 (11.3a)

3 As the logarithmic transformation is isotonic, the extremal points bθℓ of L(θ) and L(θ) will be the same.
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is called a likelihood equation. The system of all m likelihood equations,

L(θ)

∂θ
:=

(L(θ)

∂θ1
, . . . ,

L(θ)

∂θm

)′
= o, (11.3b)

o being a vector of zeros, is often termed system of normal equations.

The solutions θ̂1, . . . , θ̂m are stationary points of the log–likelihood function and might

include the MLE as the global maximum.

Example 11/1: Normal equations of an uncensored sample from a three–parameter

WEIBULL distribution

For an uncensored sample of size n from a three–parameter WEIBULL distribution, i.e., Xi
iid∼

We(a, b, c), we get:

Li(a, b, c) =
c

b

(
xi − a

b

)c−1

exp

{
−
(
xi − a

b

)c}
, (11.4a)

Li(a, b, c) = ln c− c ln b+ (c− 1) ln(xi − a) −
(
xi − a

b

)c

, (11.4b)

L(a, b, c) = n [ln c− c ln b] + (c− 1)

n∑

i=1

ln(xi − a) −
n∑

i=1

(
xi − a

b

)c

, (11.4c)

∂L(a, b, c)

∂a
= −(c− 1)

n∑

i=1

1

xi − a
+
c

b

n∑

i=1

(
xi − a

b

)c−1

= 0, (11.4d)

∂L(a, b, c)

∂b
= −n c

b
+
c

b

n∑

i=1

(
xi − a

b

)c

= 0, (11.4e)

∂L(a, b, c)

∂c
=

n

c
− n ln b+

n∑

i=1

ln(xi − a) −
n∑

i=1

(
xi − a

b

)c

ln

(
xi − a

b

)
= 0.(11.4f)

11.2 Statistical and computational aspects of MLEs

There are cases where the MLEs, i.e., the solution to (11.3b), are unique and can be written

in closed form so that the exact distribution and the small–sample properties of θ̂ may be

found. These properties are not always favorable and do not coincide with the most favor-

able properties in the asymptotic case (n → ∞), which will be discussed in Sect. 11.2.1.

When the MLEs cannot be given in closed form because (11.3b) is a system of interdepen-

dent non–linear equations, which will be the case for the WEIBULL distribution, we have to

apply iterative methods, carried through to convergence or terminated after reaching some

given stopping criterion, to calculate or approximate the MLE resulting in a so–called it-

erated MLE. Sect. 11.2.2 comments upon the iterative solution, but the details of those

algorithms which are used in finding the roots of (11.3b) are postponed to Sections 11.3 –

11.8. The only way to judge an iterated MLE is by means of the asymptotic properties.
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11.2.1 Asymptotic properties of MLEs

The following discussion motivates the ML theory for complete data, but it can be carried

over to censored samples. It is a heuristic proof of theoretical results4 and the key result is

summarized in the following theorem using these notations:

θ̂ − MLE of θ,

θ0 − true value of the parameter vector θ,

E0(·) − expectation based on the true parameter values.

Theorem on MLE

Under regularity conditions given below and if the likelihood function attains its maximum

at θ̂ being the unique solution to (11.3b) and an interior point of the parameter space, the

MLE has the following asymptotic properties:

1. Consistency

plim θ̂ = θ0. (11.5a)

2. Asymptotic normality

θ̂
asym∼ No

(
θ0,
[
I(θ0)

]−1)
, (11.5b)

where

I(θ0) = −E0

[
∂2L

/
(∂θ0 ∂θ

′
0)
]
. (11.5c)

Thus the MLE θ̂ of θ0 is asymptotically unbiased,

lim
n→∞

E
(
θ̂n
)

= θ0 (11.5d)

with asymptotic variance–covariance matrix

lim
n→∞

Var
(
θ̂n
)

=
[
I(θ0)

]−1
. (11.5e)

3. Asymptotic efficiency

θ̂ is asymptotically efficient and achieves the CRAMÉR–RAO lower bound for a con-

sistent estimator given in (11.5c).

4. Invariance

The MLE of γ0 = ϕ(θ0) is ϕ(θ̂) if ϕ(·) is a continuous and continuously differen-

tiable function. �

The following regularity conditions, under which the above theorem holds, are informal.

A more rigorous treatment may be found in STUART/ORD (1991):

1. The first three derivatives of ln f(xi |θ) with respect to θ are continuous for almost

every xi and for all θ. This condition ensures the existence of a certain TAYLOR–

series expansion and the finite variance of the derivatives of L(θ).

4 A thorough discussion of ML theory is to be found in the literature of advanced statistical theory, e.g.,

CRAMÉR (1971), LEHMANN (1983) or STUART/ORD (1991).
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2. The conditions necessary to obtain the expectations of the first and second derivatives

of ln f(xi |θ) are met.

3. For all values of θ,
∣∣∂3 ln f(xi |θ)

/
(∂θj ∂θk ∂ θℓ)

∣∣ is less than a function that has a

finite expectation. This condition will allow us to truncate the TAYLOR–series. �

Densities that are “regular” in the sense above have three properties which are given without

proof and which in turn are used in establishing the properties of MLEs.

First property

Because we are taking a random sample,

Li = ln
[
f(Xi |θ)

]
,

gi =
∂Li
∂θ

,

H i =
∂2Li
∂θ ∂θ′





i = 1, . . . , n

are all random quantities. H i is the HESSIAN matrix of Li. The notations gi(θ0) and

Hi(θ0) indicate the derivatives evaluated at θ0.

Second property

The mean of the random vector gi(θ0) of first–order derivatives is

E0

[
gi(θ0

]
= o. (11.6a)

Third property

The variance–covariance matrix of gi(θ0) is

Var
[
gi(θ0)

]
= E0

[(
∂gi(θ0)

∂θ0

)(
∂gi(θ0)

∂θ′0

)]
(11.6b)

= −E0

[
∂2gi(θ0)

∂θ0∂θ
′
0

]
= −E0

[
H i(θ0)

]
. (11.6c)

(11.6b) gives the variance–covariance matrix as the expected square (outer product) of the

first derivative vector, which in general is easier to evaluate than (11.6c), being the negative

of the expected second derivatives matrix.

The log–likelihood function is random too:

L(θ |x) =

n∑

i=1

Li(θ |Xi).

The first derivative vector of L(θ |x), termed score vector, is

g =
∂L(θ |x)

∂θ
=

n∑

i=1

∂Li
∂θ

=

n∑

i=1

gi. (11.7a)

Since we are just adding terms, it follows from (11.6a) that at θ0 the mean score is

E0

[
∂L(θ0 |x)

∂θ0

]
= E0

[
g0

]
= o. (11.7b)
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The HESSIAN of the log–likelihood is

H =
∂2L(θ |x)

∂θ ∂θ′
=

n∑

i=1

∂2Li
∂θ ∂θ′

=

n∑

i=1

H i. (11.7c)

Evaluating once again at θ0 by taking

E0

[
g0 g

′
0

]
= E0




n∑

i=1

n∑

j=1

g0i g
′
0j




and, because of the first property above, dropping terms with unequal subscripts, we obtain

E0

[
g0 g

′
0

]
= E0

[
n∑

i=1

g0i g
′
0i

]

= E0

[
n∑

i=1

(
−H0i

)
]

= −E0

[
H0

]
, (11.7d)

so that the variance–covariance matrix of the score vector at θ0 is

Var0

[
∂L(θ0 |x)

∂θ0

]
= E0

[(
∂L(θ0 |x)

∂θ0

)(
∂L(θ0 |x)

∂θ′0

)]
(11.8a)

= −E0

[
∂2L(θ0 |x)

∂θ0 ∂θ
′
0

]
. (11.8b)

This useful result is known as the information matrix equality since

I(θ0) := Var0

(
∂L(θ0 |x)

∂θ0

)
(11.8c)

is the FISHER information matrix.

Based on the results (11.6a) through (11.8c), we now establish the asymptotic normality of

θ̂, the MLE of θ. At the MLE, the gradient of the log–likelihood equals zero

∂L
(
θ̂
)

∂θ̂
= g

(
θ̂
)

= o.

(This is the sample statistic, not the expectation!) We now expand this set of equations

in a second–order TAYLOR–series around the parameter θ0. We will use the mean value

theorem to truncate the TAYLOR–series at the second term:

g
(
θ̂
)

= g
(
θ0

)
+H

(
θ̃
)(
θ̂ − θ0

)
= o. (11.9a)

The HESSIAN is evaluated at a point θ̃ that is between θ̂ and θ0, i.e., θ̃ = w θ̂+(1−w)θ0

for some 0 < w < 1. We than rearrange this function and multiply the result by
√
n to

obtain √
n
(
θ̂ − θ0

)
=
[
−H

(
θ̃
)]−1 [√

ng(θ0)
]
. (11.9b)
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Because plim
(
θ̂ − θ0

)
= o, plim

(
θ̂ − θ̃

)
= o. The second derivatives are continuous

functions. Therefore, if the limiting distribution exists, then

√
n
(
θ̂ − θ0

) d→
[
−H

(
θ0

)]−1 [√
n g(θ0)

]
. (11.9c)

Upon dividing H(θ0) and g(θ0) by n, we obtain

√
n
(
θ̂ − θ0

) d→
[
− 1

n
H(θ0)

]−1 [√
ng(θ0)

]
. (11.9d)

We may apply the LINDEBERG–LEVY central limit theorem to
[√
ng(θ0)

]
since it

is
√
n–times the mean of a random sample. The limiting variance of

[√
n g(θ0)

]
is

−E0

[
1

n
H(θ0)

]
, so

√
ng(θ0)

d→ No

(
o,−E0

[
1

n
H(θ0)

])
. (11.9e)

By virtue of CHEBYCHEV’s inequality we have plim

[
1

n
H(θ0)

]
= −E0

[
1

n
H(θ0)

]
.

Since this result is a constant matrix, we can combine results to obtain

[
− 1

n
H(θ0)

]−1 [√
ng(θ0)

] d→

No

(
o,

{
−E0

[
1

n
H(θ0)

]}−1{
−E0

[
1

n
H(θ0)

]}{
−E0

[
1

n
H(θ0)

]}−1
)





(11.9f)

or

√
n
(
θ̂ − θ0

) d→ No

(
0,

{
−E0

[
1

n
H(θ0)

]}−1
)
, (11.9g)

which gives the asymptotic distribution of the MLE:

θ̂
asym∼ No

(
θ0,
[
I(θ0)

]−1
)
. (11.9h)

Example 11/2: HESSIAN of L(θ |x), FISHER information matrix I(θ) and its inverse for an

uncensored sample from a three–parameter WEIBULL distribution
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Referring to (11.4d–f) and substituting the observed value xi by the variateXi, we have the follow-

ing elements ofH(θ) = ∂2L(θ |x)
/
(∂θ ∂θ′) where θ′ = (a, b, c):5

∂2L
∂a2

= −(c− 1)

[∑(
1

Xi − a

)2

+
c

b2

∑(
Xi − a

b

)c−2
]
, (11.10a)

∂2L
∂a ∂b

=
∂2L
∂b ∂a

= −
(c
b

)2∑(
Xi − a

b

)c−1

, (11.10b)

∂2L
∂a ∂c

=
∂2L
∂c ∂a

= −
∑ 1

Xi−a
+
c

b

∑(
Xi−a
b

)c−1

ln

(
Xi−a
b

)

+
1

b

∑(
Xi−a
b

)c−1

, (11.10c)

∂2L
∂b2

=
c

b2

[
n− (c− 1)

∑(
Xi − a

b

)c]
, (11.10d)

∂2L
∂b ∂c

=
∂2L
∂c ∂b

= −1

b

[
n−

∑(
Xi − a

b

)c

− c
∑(

Xi − a

b

)c

ln

(
Xi − a

b

)]
,

(11.10e)

∂2L
∂c2

= − n

c2
−
∑(

Xi − a

b

)c [
ln

(
Xi − a

b

)]2
. (11.10f)

The expectations of (11.10a–f) with respect to each Xi and multiplied by (−1) are the elements of

the FISHER information matrix I(θ):6

−E

(
∂2L
∂a2

)
=

n (c− 1)2

b2
Γ

(
1 − 2

c

)
, (11.11a)

−E

(
∂2L
∂a ∂b

)
= −E

(
∂2L
∂b ∂a

)
= −n c

2

b2
Γ

(
2 − 1

c

)
, (11.11b)

−E

(
∂2L
∂a ∂c

)
= −E

(
∂2L
∂c ∂a

)
= −n

b

(
1 − 1

c

)
Γ

(
1 − 1

c

)[
1 + ψ

(
1 − 1

c

)]
,(11.11c)

−E

(
∂2L
∂b2

)
=

n c2

b2
, (11.11d)

−E

(
∂2L
∂b ∂c

)
= −E

(
∂2L
∂c ∂b

)
= −n

b
Γ′(2) = −n (1 − γ)

b
≈ −0.422784

n

b
, (11.11e)

−E

(
∂2L
∂c2

)
=

n

c2
[
1 + Γ′′(2)

]
=

n

c2

[
π2

6
+ (1 − γ2)

]
≈ 1.823680

n

c2
.

(11.11f)

5 These results are also given in FUKUTA (1963) and HEO/SALAS/KIM (2001).

6 ψ(·) denotes the digamma function.
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The symmetric variance–covariance matrix of θ̂ results as the inverse of I(θ):

Var
(
θ̂
)

=
[
I(θ)

]−1
=

1

nD




B b2

(c− 1)2
− H b2

c (c− 1)

F b c

c− 1

− Ab2

c2
bG

− − c2 C



, (11.12a)

where

A = Γ

(
1 − 2

c

)[
1 + Γ′′(2)

]
− Γ2

(
1 − 1

c

)[
1 + ψ

(
1 − 1

c

)]2
, (11.12b)

B = 1 + Γ′′(2) −
[
Γ′(2)

]2
=

π2

6
, (11.12c)

C = Γ

(
1 − 2

c

)
− Γ2

(
1 − 1

c

)
, (11.12d)

F = Γ

(
1 − 1

c

)[
1 − Γ′(2) + ψ

(
1 − 1

c

)]
, (11.12e)

G = Γ

(
1 − 2

c

)
Γ′(2) − Γ2

(
1 − 1

c

)[
1 + ψ

(
1 − 1

c

)]
, (11.12f)

H = Γ

(
1 − 1

c

){
1 + Γ′′(2) − Γ′(2)

[
1 + ψ

(
1 − 1

c

)]}
, (11.12g)

D = BC + F 2. (11.12h)

The classical regularity conditions for the asymptotic properties of MLEs are not satisfied

when X ∼ We(a, b, c) because the support of X depends upon one of the parameters. It

is easily checked from (11.11a–f) that, when c > 2, the FISHER information is finite, and

it is widely known that the classical properties hold in this case. For c ≤ 2 the FISHER

information is infinite (see (11.11a)), so the classical results are certainly not valid. SMITH

(1985) confirms that the classical results hold when c > 2 and studies the case c ≤ 2
in detail. His surprising result is that, in the latter case, estimation of a and the other

parameters are asymptotically independent: each of the MLEs of a and b, c has the same

asymptotic distribution when the other is unknown as when the other is known and these

asymptotic distributions are independent. For c = 2 (RAYLEIGH distribution) the MLEs are

asymptotically efficient and normally distributed but with different rates of convergence,

n−1/2 [lnn]−1 for b and c, [n lnn]−1/2 for a. For 1 < c < 2 there exists a consistent

sequence of MLEs as the sample size tends to infinity. For c ≤ 1 no consistent MLEs exist

at all.
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Example 11/3: L(θ |x), normal equations, HESSIAN, I(θ) and
[
I(θ)

]−1
for an uncensored

sample from a two–parameter WEIBULL distribution

Letx = (X1, . . . , Xn) withXi
iid∼We(0, b, c) for i = 1, . . . , n. The corresponding log–likelihood

function is

L(b, c) = n [ln c− c ln b] + (c− 1)

n∑

i=1

lnXi −
n∑

i=1

(
Xi

b

)c

(11.13)

with the following system of normal equations:

∂L(b, c)

∂b
= −n c

b
+
b

c

∑(
Xi

b

)c

= 0, (11.14a)

∂L(b, c)

∂c
=

n

c
− n ln b+

∑
lnXi −

∑(
Xi

b

)c

ln

(
Xi

b

)
= 0. (11.14b)

The elements ofH(θ) are as follows:7

∂2L
∂b2

=
c

b2

[
n− (c− 1)

∑(
Xi

b

)c]
, (11.15a)

∂2L
∂b ∂c

=
∂2L
∂c ∂b

= −1

b

[
n−

∑(
Xi

b

)c

− c
∑(

Xi

b

)c

ln

(
Xi

b

)]
, (11.15b)

∂2L
∂c2

=
n

c2
−
∑(

Xi

b

)c [
ln

(
Xi

b

)]2
. (11.15c)

The FISHER matrix I(θ) = −E
[
H(θ)

]
has the following elements:

−E

(
∂2L
∂b2

)
=

n c2

b2
(11.16a)

−E

(
∂2L
∂b ∂c

)
= −E

(
∂2L
∂c ∂b

)
= −n

b
Γ′(2) ≈ −0.422784

n

b
, (11.16b)

−E

(
∂2L
∂c2

)
=

n

c2
[
1 + Γ′′(2)

]
≈ 1.823680

n

c2
. (11.16c)

Finally, the asymptotic variance–covariance matrix of θ̂ =
(
b̂, ĉ
)′

is

Var
(
θ̂
)

=
[
I(θ)

]−1
=

1

n


 1.1087

b2

c2
0.2570 b

0.2570 b 0.6079 c2


 . (11.17)

From (11.17) we see that in the limit, b̂ and ĉ are correlated independent of b and c with

lim
n→∞

ρ
(
b̂, ĉ
)

= 0.3130.

Contrary to the three–parameter WEIBULL distribution, we have no problems concerning

the asymptotic properties of the MLEs to hold in the two–parameter case.

7 WATKINS (1998) also gives the third partial derivatives together with their expectations.
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11.2.2 Iterated MLEs

The MLEs of the WEIBULL parameters cannot be given in closed form. Looking at the

system of normal equations (11.4d–f) for the three–parameter case, one can simplify so

that only two non–linear equations have to be solved simultaneously by iteration. From

(11.4e) we get

b =

[
1

n

∑
(xi − a)c

]1/c

. (11.18a)

After substituting bc = 1
n

∑
(xi−a) into (11.4d) and into (11.4f) and after some rearrange-

ment, we arrive at

c− 1

c

∑
(xi − a)−1 − n

∑
(xi − a)c−1

∑
(xi − a)c

= 0, (11.18b)

1

c
+

1

n

∑
ln(xi − a) −

∑
(xi − a)c ln(xi − a)∑

(xi − a)c
= 0. (11.18c)

(11.18b,c) do not involve b and with the solution of (11.18b,c) for â and ĉ we find b̂
from (11.18a).

With regard to the two–parameter WEIBULL distribution, we have from (11.14a):

b =

[
1

n

∑
xci

]1/c

. (11.19a)

After substituting bc = 1
n

∑
xci into (11.14b) and some rearrangement, we have

1

c
+

1

n

∑
lnxi −

∑
xci lnxi∑
xci

= 0. (11.19b)

Thus only ĉ has to be found by iterating (11.19b). b̂ results from (11.19a) by inserting ĉ
from (11.19b).

A lot of numerical techniques exist to solve a single non-linear equation such as (11.19b) it-

eratively or a system of interdependent non-linear equations such as (11.18b,c) (see JUDGE

et al. (1980) for an introduction and overview). These techniques are either gradient meth-

ods using derivatives or direct search methods (derivative-free methods). Reviewing the

great bulk of papers on ML estimation of WEIBULL parameters, practically none of these

methods has been left out. This is especially true for the three–parameter case; see PAN-

CHANG/GUPTA (1989), ZANAKIS/KYPARISIS (1986) and ZANAKIS (1977).

Gradient methods must be regarded as the most popular iterative technique for maximiz-

ing L(θ). Generally, the gradient method is characterized as follows. A starting or initial

point θ̂0 is chosen and the method then proceeds to compute successive approximations to

the estimate θ̂ according to

θ̂p+1 = θ̂p − spQp γp, p = 0, 1, 2, . . . (11.20a)

The scalar sp is the step length, often sp = 1 ∀ p. Qp, the direction matrix, is square and

positive–definite and determines the direction of change from θ̂p to θ̂p+1. γp, the gradient,
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is the column vector of first partial derivatives of L(θ) with respect to θ and evaluated at

θ̂p, i.e.,

γp :=
∂L(θ)

∂θ

∣∣∣∣bθp

. (11.20b)

The gradient methods differ mainly with respect to the direction matrix. We mention only

three choices; for more see JUDGE et al. (1980) or KENNEDY/GENTLE (1980).

1. Method of steepest ascent

Here the choice is

Qp = I, (11.21)

where I is the identity matrix. Although this method is very simple, its use cannot

be recommended in most cases because it may converge very slowly if the maximum

is on a long and narrow ridge; i.e., if the objective function is ill–conditioned.

2. NEWTON–RAPHSON method

Here the choice is

Qp =
[
H(θ̂p)

]−1
; (11.22a)

i.e., we use the inverse of the HESSIAN matrix of L(θ) evaluated at θ̂p:

H(θ̂p) =
∂2L(θ)

∂θ ∂θ′

∣∣∣∣bθp

. (11.22b)

In this algorithm, the value for θ̂ at the (p+1)–th stage, with sp = 1, can be inter-

preted as the solution to a linearization around θ̂p of the system of normal equations(
∂L(θ)

/
∂θ = o

)
:

o ≈ ∂L
(
θ̂p+1

)

∂θ
≈ ∂L

(
θ̂p
)

∂θ
+
∂2L

(
θ̂p
)

∂θ ∂θ′
(
θ̂p+1 − θ̂p

)
(11.22c)

or using (11.20b) and (11.22b)

o ≈ γp+1 ≈ γp +H
(
θ̂p
) (
θ̂p+1 − θ̂p

)
. (11.22d)

3. Method of scoring

Here the choice is

Qp =
{

E
[
H
(
θ̂p
)]}−1

; (11.23a)

i.e., we use the inverse of the expected value of the HESSIAN matrix as the direction

matrix. Remember — see (11.7) and (11.8–c) — that

E
[
H
(
θ̂
)]

= −I
(
θ̂
)
, (11.23b)

so that the elements of the true, theoretical FISHER information matrix I
(
θ̂0

)
have

to be multiplied by (−1) and the true parameter values have to be replaced by their

last estimates.
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In the two–parameter case we will have no problems finding the MLEs using the NEWTON–

RAPHSON algorithm when it is properly organized. We have to apply this algorithm to only

one non–linear equation, namely to (11.19b), and b̂ then follows from (11.19a). We thus

have to show that (11.19b) has only one admissible, i.e., a positive solution, and that the

algorithm converges to that solution.8

Uniqueness of the solution to (11.19b)

We rewrite (11.19b) as

g(c) =
1

c
+ z −

n∑
i=1

zi exp(c zi)

n∑
i=1

exp(c zi)

= 0 (11.24a)

with

zi := lnxi and z :=
1

n

n∑

i=1

zi.

Figure 11/1: Likelihood equation of c for dataset #1

The roots of (11.24a) with respect to c will be the solutions of the likelihood equation.

Letting
wi := zi − z,

g(c) becomes, after some rearrangement,

g(c) =

n∑

i=1

(1 − cwi) exp(cwi) = 0. (11.24b)

8 For further details see FARNUM/BOOTH (1997), GUPTA et al. (1998) and MCCOOL (1970a).
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At c = 0 we have g(0) = n 6= 0. Hence ĉ = 0 cannot be a solution of the likelihood

equation (11.19b). In addition, it can be easily seen that g(c) → −∞ as c → ∞. Since

at least one wi must be negative,9 g(c) → −∞ as c → −∞. Differentiating (11.24b)

with respect to c gives

g′(c) = −
n∑

i=1

cw2
i exp(cwi). (11.24c)

Since g′(0) = 0, the function has a horizontal tangent at c = 0. For 0 < c < ∞, g′(c) is

negative while for −∞ < c < 0, g′(c) is positive. Thus the function g(c) has a maximum

(of n) at c = 0, a single negative root, which is non-admissible; and a single positive root ĉ
(see Fig. 11/1 for dataset #1 of Example 9/2).

Convergence of the NEWTON–RAPHSON algorithm to ĉ
The NEWTON–RAPHSON method for finding the single admissible root ĉ is given by

ĉp+1 = ĉp −
g
(
ĉp
)

g′
(
ĉp
) ; p = 0, 1, 2, . . . (11.25a)

We introduce two definitions:

1. ĉp generated by (11.25a) converges to ĉ monotonically from above if it converges

to ĉ and ĉp+1 < ĉp ∀ p > 0, ĉ0 being the initial value.

2. ĉp generated by (11.25a) quadratically converges to ĉ if it converges to ĉ and the

limit
∣∣ĉp+1 − ĉ

∣∣/∣∣ĉp − ĉ
∣∣2 exists.

Let wM be any positive wi, m be the number of wi such that wi > wM and

C =
1

wM
max{2, ln(n−m) − lnm}. (11.25b)

Then as GUPTA et al. (1998) have proven, the following theorem holds.

Theorem:

For any positive ĉ0, (11.25a) quadratically converges to the unique positive solution ĉ of

(11.24a). If ĉ0 ≥ C , C given by (11.25b), then (11.25a) converges to ĉ also monotonically

from above. �

We remark that, although theoretically the NEWTON–RAPHSON method will converge

monotonically for any ĉ0 ≥ ĉ, one would like to choose ĉ0 close to ĉ because g(c) de-

creases exponentially. Usually the choice ĉ0 = C with wM = max{wi} is good, but for

some examples, other wM with large m bring a smaller value of C , which gives a better

initial approximation ĉ0.

The determination of MLEs for the three–parameter WEIBULL model is usually considered

a non–trivial problem because of the complexity of the non–linear likelihood equations.

Despite the availability of a large number of algorithms that tackle this problem (see the

following sections), there is considerable dissatisfaction among practitioners, who report

an inability to conveniently determine the desired MLEs. As PANCHANG/GUPTA (1989)

have explored, the simple procedure outlined by LAWLESS (1982) (see Sect. 11.3.2.2) is

9 We assume that not all observations xi are the same.
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the only one that is guaranteed to yield parameter estimates that maximize the likelihood

function for any sample.

The gradient methods essentially seek to maximize L(a, b, c) by obtaining a turning point

which satisfies (11.4d–f). With regard to this approach, however, it is important to note the

following features of the likelihood function:

1. It may have no turning point in the allowable parameter space defined by b, c > 0
and a ≤ min{xi}.

2. It may have only one turning point, in which case ROCKETTE et al. (1974) have

proven that it must be a saddle point.

3. It may have two turning points, in which case the one with the larger â is a saddle

point; see ROCKETTE et al. (1974).

4. It also appears from empirical evidence that there cannot be more than two solutions

though this has not been proven.

5. Even if there is a local maximum, the likelihood function may be greater at the corner

point, as demonstrated by ROCKETTE et al. (1974).

11.3 Uncensored samples with non-grouped data

The log–likelihood function, the likelihood equations and the estimating procedure depend

upon the type of sample, i.e., whether it is uncensored or in which way it is censored;

furthermore on how the observations become available, i.e., whether they are grouped or

not; and last but not least, which parameters of the WEIBULL distribution have to be es-

timated, especially whether we assume the two–parameter case (b and c unknown) or the

three–parameter case (a, b and c unknown). Chapter 11 is structured according to these

influential items.

Here, in Sect. 11.3 we assume an uncensored sample of size n with all observations indi-

vidually known. We thus have n likelihood elements, each being a density; see (11.1a).

11.3.1 Two-parameter WEIBULL distribution

We will first show how to apply the ML–technique (Sect. 11.3.1.1). In Sect. 11.3.1.2, we

want to find results pertaining to finite samples.

11.3.1.1 Point and interval estimates for b and c

The log–likelihood function of the two–parameter WEIBULL distribution L(b, c) is given in

(11.13). BUNDAY/AL–MUTWALI (1981) have found ML estimates by directly maximiz-

ing the negative log–likelihood function. The formulas resulting from the more common

methods based on derivatives have been developed in Sect. 11.2. The ML estimates in the

following example have been found by applying the NEWTON–RAPHSON technique as laid

down in (11.25a) and (11.19a).
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Example 11/4: ML estimates for dataset #1

The n = 20 observations of dataset #1, where Xi ∼ We(0, 100, 2.5) ∀ i, are listed in Tab. 9/2.

Fig. 11/2 shows the corresponding log–likelihood function as a surface plot. Around the summit the

mountain is rather flat.

The initial value ĉ0 for starting (11.25a) has been found from (11.25b) with wM = max{wi} =
0.8209, m = 1 and n = 20 as ĉ0 = 3.5867. The iteration process giving

p ĉp b̂p

0 3.5867 105.7048

1 2.9569 101.6209

2 2.6543 99.6031

3 2.5974 99.2195

4 2.5957 99.2079

came to a stop after p = 4 iterations giving an accuracy of 10−4.

Figure 11/2: Surface plot of the log-likelihood function for dataset #1

Fig 11/3 shows the path of the iterations together with the contour plot. The points for steps p = 3
and p = 4 practically coincide on the graph.
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Applying ĉ = 2.5957 and b̂ = 99.2079 to (11.17), the estimated variance–covariance matrix results

as

V̂ar(θ̂) =


 80.9780 1.2748

1.2748 0.2048


 .

Figure 11/3: Contour plot of the log-likelihood function for dataset #1 and path of iterations

Based on the asymptotic normality we find the following two–sided 90% confidence intervals for b
and c:

84.4049 ≤ b ≤ 114.0109,

1.8513 ≤ c ≤ 3.3401,

both covering the true parameter values b = 100 and c = 2.5. The reader should compare these ML

results with those of the BLUEs in Example 10/2.

We should mention a solution technique for b̂ and ĉ suggested by QUREISHI (1964). Upon

substituting the value of b given by (11.19a) into (11.13), the log–likelihood function, now

depending on c only, reads as follows:

L(c) = n

{
ln

(
n c∑
xci

)
− 1

}
+ (c− 1)

∑
lnxi,

which can be evaluated over a finite set of values of c. We then can select that value of c
which maximizes L(c).
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Excursus: MLEs for b2 = bc and c

Sometimes the WEIBULL distribution is written with the combined scale–shape parameter b2 = bc;

see (2.27). With respect to this parametrization we have:

L(b2, c) =

n∏

i=1

f(xi | bs, c) =

(
c

b2

)n n∏

i=1

xc−1
i exp

{
−x

c
i

b2

}
, (11.26a)

L(b2, c) = n [ln c− ln b2] + (c− 1)
n∑

i=1

lnxi −
1

b2

n∑

i=1

xc
i , (11.26b)

∂L(b2, c)

∂b2
= − n

b2
+

1

b22

n∑

i=1

xc
i = 0, (11.26c)

∂L(b2, c)

∂c
=

n

c
+

n∑

i=1

ln xi −
1

b2

n∑

i=1

xc
i lnxi = 0, (11.26d)

∂2L(b2, c)

∂b22
=

n

b22
− 2

b32

n∑

i=1

xc
i , (11.26e)

∂2L(b2, c)

∂b2 ∂c
=
∂2L(b2, c)

∂c ∂b2
=

1

b22

n∑

i=1

xc
i lnxi, (11.26f)

∂2L(b2, c)

∂c2
= − n

c2
− 1

b2

n∑

i=1

xc
i

(
lnxi

)2
, (11.26g)

−E

(
∂2L(b2, c)

∂b22

)
=

n

b22
, (11.26h)

−E

(
∂2L(b2, c)

∂b2 ∂c

)
=−E

(
∂2L(b2, c)

∂c ∂b2

)
= − n

c b2

[
1 − γ + ln b2

]
≈ − n

c b2

[
0.422784 + ln b2

]
, (11.26i)

−E

(
∂2L(b2, c)

∂c2

)
=

n

c2

[
1 + γ2 − 2 γ +

π2

6
− 2 (γ − 1) ln b2 + (ln b2)

2

]

≈ n

c2
[
1.82368 + 0.84557 ln b2 + (ln b2)

2
]
. (11.26j)

From (11.26h–j) we derive the following variance–covariance matrix of θ̂ =
(
b̂2, ĉ

)′
:

Var
(
θ̂
)
≈ 1

1.644934n


b

2
2

[
1.82368 + 0.84557 ln b2 + (ln b2)

2
]

c b2 [0.422784 + ln b2]

c b2 [0.422784 + ln b2] c2


 .

(11.27)
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11.3.1.2 Finite sample results based on pivotal functions10

The distributional properties stated in the theorem on MLEs (see Sect. 11.2.1) hold only

asymptotically, so it is quite natural to look for finite sample evidences. Finite sample

results can be deduced from a well–known property of the MLEs of location and scale

parameters; see ANTLE/BAIN (1969).

Theorem on pivotal functions

Let a∗ and b∗ be the location and scale parameters, respectively, of a location–scale dis-

tributed variate and â∗, b̂∗ the MLEs of a∗ and b∗. The pivotal functions

b̂∗

b∗
,
â∗ − a∗

b∗
and

â∗ − a∗

b̂∗

are each distributed independently of a∗ and b∗. �

Perhaps the best known pivotal function occurs when one samples from a normal distribu-

tion with unknown mean µ and unknown standard deviation σ and forms — according to

the third pivot of the theorem – the pivotal function

t := (X − µ)/(s/
√
n)

for inference about µ. The distribution of this pivotal function is the well-known t–
distribution, depending only on the degrees of freedom n− 1, first given by W.S. GOSSET

in 1908.

It is clear that the results of the above theorem will also apply to other types of parame-

ters if they are appropriately related to location and scale parameters under some change

of variable. This is the case with the two–parameter Weibull distribution. After a log–

transformation of the WEIBULL variate,

a∗ = ln b and b∗ = 1/c

are the location and scale parameters, respectively, of the type–I–extreme value distribution

of the sample minimum. Thus by the theorem (1/ĉ)
/
(1/c), (ln b̂− ln b) c and (ln b̂− ln b) ĉ

have distributions that are independent of the parameters. By the invariant property of the

MLEs it follows that

c

ĉ
,

(
b̂

b

)c
and

(
b̂

b

)bc

are distributed independently of all parameters.

The above results have been observed directly in THOMAN et al. (1969) also giving the

pivotal distributions.11 In what follows, ĉ11 and b̂11 are used to denote the MLEs of c and

10 Suggested reading for this section: ANTLE/BAIN (1969), BAIN/ENGELHARDT (1986), LAWLESS (1972,

1973b, 1974), LEMON (1975), THOMAN/BAIN/ANTLE (1969). See also Section 11.3.2.4 for additional

pivotal functions.

11 Their results can be extended to the three–parameter distribution (see Sect. 11.3.2.4) and to right–

censored samples (see Sect. 11.6).
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b, respectively, when in fact the sampling is from a WEIBULL distribution with b = 1
and c = 1, i.e., from a reduced exponential distribution. THOMAN et al. then proved the

following two theorems:

Theorem on ĉ/c
ĉ/c is distributed independently of b and c and has the same distribution as ĉ11, denoted12

ĉ11
d
= ĉ/c. �

Theorem on ĉ ln(b̂/b)

ĉ ln(̂b/b) is distributed independently of b and c and has the same distribution as ĉ11 ln b̂11,

denoted

ĉ11 ln b̂11
d
= ĉ ln(̂b/b). �

The distributions of ĉ11 and of ĉ11 ln b̂11 dependent on n but cannot be given in

closed form. THOMAN et al. (1969) obtained the percentage points ℓ1(n, P ) of

ĉ11
d
= ĉ/c and ℓ2(n, P ) of ĉ11 ln b̂11

d
= ĉ ln(̂b/b) by Monte Carlo meth-

ods for P = 0.02, 0.05, 0.10, 0.25, 0.40(0.10), 0.80, 0.85(0.05), 0.95, 0.98 and n =
5(1)20(2)80(5)100, 110, 120. Tables 11/1 and 11/2 are extracts of their tables.

Thus we have

Pr

[
ĉ

c
≤ ℓ1(n, P )

]
= P (11.28a)

and

Pr
[
ĉ ln(̂b/b) ≤ ℓ2(n, P )

]
= P, (11.28b)

which serve to test statistical hypotheses on b or c and to set up confidence intervals. The

two–sided confidence intervals of b and c with confidence level 1 − α are

ĉ

ℓ1(n, 1 − α/2)
≤ c ≤ ĉ

ℓ1(n, α/2)
(11.29a)

and

b̂ exp
[
− ℓ2(n, 1 − α/2)/ĉ

]
≤ b ≤ b̂ exp

[
− ℓ2(n, α/2)/ĉ

]
. (11.29b)

Applying (11.29a,b) to ĉ = 2.5957 and b̂ = 99.2079 of Example 11/4, where n = 20, we

have the following two–sided 90% confidence intervals:

1.7914 ≤ c ≤ 3.2815

84.3543 ≤ b ≤ 116.9920,

which are not very different from those based on the asymptotic normal distribution (see

Example 11/4).

12 The symbol
d
= means that the quantities on each side have the same distribution (distributional equiv-

alence).
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Table 11/1: Percentage points ℓ1(n, P ) of ĉ/c

n
P

HHHHHHHHHHHHHHHHHHH

0.02 0.05 0.10 0.90 0.95 0.98

5 0.604 0.683 0.766 2.277 2.779 3.518
6 0.623 0.697 0.778 2.030 2.436 3.067
7 0.639 0.709 0.785 1.861 2.183 2.640
8 0.653 0.720 0.792 1.747 2.015 2.377
9 0.665 0.729 0.797 1.665 1.896 2.199
10 0.676 0.738 0.802 1.602 1.807 2.070
11 0.686 0.745 0.807 1.553 1.738 1.972
12 0.695 0.752 0.811 1.513 1.682 1.894
13 0.703 0.759 0.815 1.480 1.636 1.830
14 0.710 0.764 0.819 1.452 1.597 1.777
15 0.716 0.770 0.823 1.427 1.564 1.732
16 0.723 0.775 0.826 1.406 1.535 1.693
17 0.728 0.729. 0.829 1.388 1.510 1.660
18 0.734 0.784 0.832 1.371 1.487 1.630
19 0.739 0.788 0.835 1.356 1.467 1.603
20 0.743 0.791 0.838 1.343 1.449 1.579
22 0.752 0.798 0.843 1.320 1.418 1.538
24 0.759 0.805 0.848 1.301 1.392 1.504
26 0.766 0.810 0.852 1.284 1.370 1.475
28 0.772 0.815 0.856 1.269 1.351 1.450
30 0.778 0.820 0.860 1.257 1.334 1.429
32 0.783 0.824 0.863 1.246 1.319 1.409
34 0.788 0.828 0.866 1.236 1.306 1.392
36 0.793 0.832 0.869 1.227 1.294 1.377
38 0.797 0.835 0.872 1.219 1.283 1.363
40 0.801 0.839 0.875 1.211 1.273 1.351
42 0.804 0.842 0.877 1.204 1.265 1.339
44 0.808 0.845 0.880 1.198 1.256 1.329
46 0.811 0.847 0.882 1.192 1.249 1.319
48 0.814 0.850 0.884 1.187 1.242 1.310
50 0.817 0.852 0.886 1.182 1.235 1.301
52 0.820 0.854 0.888 1.177 1.229 1.294
54 0.822 0.857 0.890 1.173 1.224 1.286
56 0.825 0.859 0.891 1.169 1.218 1.280
58 0.827 0.861 0.893 1.165 1.213 1.273
60 0.830 0.863 0.894 1.162 1.208 1.267
62 0.832 0.864 0.896 1.158 1.204 1.262
64 0.834 0.866 0.897 1.155 1.200 1.256
66 0.836 0.868 0.899 1.152 1.196 1.251
68 0.838 0.869 0.900 1.149 1.192 1.246
70 0.840 0.871 0.901 1.146 1.188 1.242
72 0.841 0.872 0.903 1.144 1.185 1.237
74 0.843 0.874 0.904 1.141 1.182 1.233
76 0.845 0.875 0.905 1.139 1.179 1.229
78 0.846 0.876 0.906 1.136 1.176 1.225
80 0.848 0.878 0.907 1.134 1.173 1.222
85 0.852 0.881 0.910 1.129 1.166 1.213
90 0.855 0.883 0.912 1.124 1.160 1.206
95 0.858 0.886 0.914 1.120 1.155 1.199
100 0.861 0.888 0.916 1.116 1.150 1.192
110 0.866 0.893 0.920 1.110 1.141 1.181
120 0.871 0.897 0.923 1.104 1.133 1.171

Source: THOMAN et al. (1969, pp. 447/448) — Reprinted with permission from Technometrics. Copyright 1969

by the American Statistical Association. All rights reserved.
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Table 11/2: Percentage points ℓ2(n, P ) of ĉ ln(̂b/b)

n
P

HHHHHHHHHHHHHHHHHHH

0.02 0.05 0.10 0.90 0.95 0.98

5 −1.631 −1.247 −0.888 0.772 1.107 1.582
6 −1.396 −1.007 −0.740 0.666 0.939 1.291
7 −1.196 −0.874 −0.652 0.598 0.829 1.120
8 −1.056 −0.784 −0.591 0.547 0.751 1.003
9 −0.954 −0.717 −0.544 0.507 0.691 0.917
10 −0.876 −0.665 −0.507 0.475 0.644 0.851
11 −0.813 −0.622 −0.477 0.448 0.605 0.797
12 −0.762 −0.587 −0.451 0.425 0.572 0.752
13 −0.719 −0.557 −0.429 0.406 0.544 0.714
14 −0.683 −0.532 −0.410 0.389 0.520 0.681
15 −0.651 −0.509 −0.393 0.374 0.499 0.653
16 −0.624 −0.489 −0.379 0.360 0.480 0.627
17 −0.599 −0.471 −0.365 0.348 0.463 0.605
18 −0.578 −0.455 −0.353 0.338 0.447 0.584
19 −0.558 −0.441 −0.342 0.328 0.433 0.566
20 −0.540 −0.428 −0.332 0.318 0.421 0.549
22 −0.509 −0.404 −0.314 0.302 0.398 0.519
24 −0.483 −0.384 −0.299 0.288 0.379 0.494
26 −0.460 −0.367 −0.286 0.276 0.362 0.472
28 −0.441 −0.352 −0.274 0.265 0.347 0.453
30 −0.423 −0.338 −0.264 0.256 0.334 0.435
32 −0.408 −0.326 −0.254 0.247 0.323 0.420
34 −0.394 −0.315 −0.246 0.239 0.312 0.406
36 −0.382 −0.305 −0.238 0.232 0.302 0 393
38 −0.370 −0.296 −0.231 0.226 0.293 0.382
40 −0.360 −0.288 −0.224 0.220 0.285 0.371
42 −0.350 −0.280 −0.218 0.214 0.278 0.361
44 −0.341 −0.273 −0.213 0.209 0.271 0.352
46 −0.333 −0.266 −0.208 0.204 0.264 0.344
48 −0.325 −0.260 −0.203 0.199 0.258 0.336
50 −0.318 −0.254 −0.198 0.195 0.253 0.328
52 −0.312 −0.249 −0.194 0.191 0.247 0.321
54 −0.305 −0.244 −0.190 0.187 0.243 0.315
56 −0.299 −0.239 −0.186 0.184 0.238 0.309
58 −0.294 −0.234 −0.183 0.181 0.233 0.303
60 −0.289 −0.230 −0.179 0.177 0.229 0.297
62 −0.284 −0.226 −0.176 0.174 0.225 0.292
64 −0.279 −0.222 −0.173 0.171 0.221 0.287
66 −0.274 −0.218 −0.170 0.169 0.218 0.282
68 −0.270 −0.215 −0.167 0.166 0.214 0.278
70 −0.266 −0.211 −0.165 0.164 0.211 0.274
72 −0.262 −0.208 −0.162 0.161 0.208 0.269
74 −0.259 −0.205 −0.160 0.159 0.205 0.266
76 −0.255 −0.202 −0.158 0.157 0.202 0.262
78 −0.252 −0.199 −0.155 0.155 0.199 0.258
80 −0.248 −0.197 −0.153 0.153 0.197 0.255
85 −0.241 −0.190 −0.148 0.148 0.190 0.246
90 −0.234 −0.184 −0.144 0.143 0.185 0.239
95 −0.227 −0.179 −0.139 0.139 0.179 0.232
100 −0.221 −0.174 −0.136 0.136 0.175 0.226
110 −0.211 −0.165 −0.129 0.129 0.166 0.215
120 −0.202 −0.158 −0.123 0.123 0.159 0.205

Source: THOMAN et al. (1969, pp. 454/455) — Reprinted with permission from Technometrics. Copyright 1969

by the American Statistical Association. All rights reserved.
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The theorem on ĉ/c confirms the feeling expressed by JOHNSON et al. (1994, p. 657) that

the bias in ĉ is independent of the true values of b and c, but depends only on n. THOMAN et

al. (1969) have found (see Tab. 11/3) the unbiasing factors B(n) such that E[B(n) ĉ ] = c,
based on the generated distribution of ĉ11. Tab. 11/3 shows that ĉ is overestimated, in the

case of n = 20 by 7.41% of its mean.13

Table 11/3: Unbiasing factors B(n) for the MLE of c

n 5 6 7 8 9 10 11 12 13 14 15 16
B(n) 0.669 0.752 0.792 0.820 0.842 0.859 0.872 0.883 0.893 0.901 0.908 0.914

n 18 20 22 24 26 28 30 32 34 36 38 40
B(n) 0.923 0.931 0.938 0.943 0.947 0.951 0.955 0.958 0.960 0.962 0.964 0.966

n 42 44 46 48 50 52 54 56 58 60 62 64
B(n) 0.968 0.970 0.971 0.972 0.973 0.974 0.975 0.976 0.977 0.978 0.979 0.980

n 66 68 70 72 74 76 78 80 85 90 100 120
B(n) 0.980 0.981 0.981 0.982 0.982 0.983 0.983 0.984 0.985 0.986 0.987 0.990

Source: THOMAN et al. (1969, p. 449) — Reprinted with permission from Technometrics. Copyright 1969 by

the American Statistical Association. All rights reserved.

There are two approaches to approximate the distributions of the pivotal functions.

BAIN/ENGELHARDT (1981, 1986) have suggested a χ2–approximation to c/ĉ and a t–
approximation to ĉ ln(̂b/b). These approximations are based on an association between

the normal and the extreme–value distributions, established via the generalized gamma

distribution. The one–sided confidence limits of level P are

ĉP = ĉ
√
χ2

0.822 (n−1),1−P
/
(0.822n), (11.30a)

b̂P = b̂ exp
{
− 1.053 tn−1,1−P

/(
ĉ
√
n− 1

)}
, (11.30b)

where χ2
ν,α is the χ2–percentile of order α with ν degrees of freedom and tν,α the t–

percentile. Given the data of Example 11/4 (ĉ = 2.5957, b̂ = 99.2079 and n = 20) and

a confidence level of 90%, we find from (11.30a,b) the following two–sided confidence

intervals:

1.7756 ≤ c ≤ 3.2518,

84.4631 ≤ b ≤ 116.5294,

which should be compared with those based on the pivots and those given in Example 11/4.

The second approach is due to LAWLESS (1972, 1973b, 1974). He advocates the use of

conditional confidence intervals14 which are derived from the conditional distributions of

b̂∗/b∗ and (â∗ − a∗)/b̂∗, each conditioned on the ancillary statistics (ln xi − â∗)/b∗. This

approach involves numerical integration. The conditional and the unconditional confidence

13 Further methods of unbiasing bc and bb are found with HIROSE (1999), MAZZANTI et al. (1997), MON-

TANARI et al. (1997), ROSS (1996) and WATKINS (1996). MCCOOL (1970a) gives median unbiased

estimators of c.
14 The confidence intervals based on pivotal distributions are unconditional.
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intervals are nearly equivalent. We thus recommend using the approach based on the tables

of THOMAN et al. (1969) given above.

11.3.2 Three-parameter WEIBULL distribution

Finding the maximum of the likelihood function (11.4c) is no trivial task. We will first

review on how this process has been managed in the past (Sect. 11.3.2.1). The compli-

cated non–linearity of (11.4c) has caused many algorithms to fail. In Sect. 11.3.2.2 we

propose a simple procedure that guarantees to yield parameter estimates maximizing the

likelihood function for any sample. Finally, in Sect. 11.3.2.3 we will describe a procedure

that is hybrid insofar as the likelihood equation for a is replaced with alternative functional

relationships. Sect. 11.3.2.4 reports on finite sample results.

11.3.2.1 History of optimizing the WEIBULL log-likelihood 15

The log–likelihood function

L(a, b, c) = n
[
ln c− c ln b

]
+ (c− 1)

n∑

i=1

ln(xi − a) −
n∑

i=1

(
xi − a

b

)c
(11.31a)

is to be maximized with respect to a, b and c and satisfying the constraints16

0 ≤ a ≤ min
1≤i≤n

{xi}, (11.31b)

b, c > 0. (11.31c)

When a, b and c are all unknown, the log–likelihood function clearly is not bounded.17

Sometimes an interior relative maximum will exist and sometimes not. ROCKETTE et al.

(1974) conjectured and partly proved that when there is an interior relative maximum, there

will also be a saddle point, both given by solutions of the likelihood equations (11.4d–f).

If a, b and c are unknown and c is restricted to c ≥ 1, then, when no solution exists for

the likelihood equations, the maximum value for the log–likelihood function occurs at the

corner point:

â = min(xi), b̂ =
1

n

n∑

i=1

(
xi − â

)
, ĉ = 1. (11.32)

15 Suggested reading for this section: PANCHANG/GUPTA (1989), ROCKETTE/ANTLE/KLIMKO (1974),

ZANAKIS (1977), ZANAKIS/KYPARISI (1986).

16 Sometimes the constraints read 0 ≤ a ≤ min{xi} − ǫ, b ≥ ǫ and c ≥ ǫ, where a small positive

constant ǫ, say 10−8, is recommended instead of 0 for most iteration procedures, in order to avoid any

pathological situation in the logarithmic and exponential terms.

17 The following results also hold under censoring on the right. When 0 < c ≤ 1, the smallest observation

is hyper–efficient for a (see DUBEY (1966c) and Sect. 13.5.1) but no true MLE exist for the other two

parameters.
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Also, even when an interior relative maximum exists, it may or may not exceed the value

of the log–likelihood at this corner point. ROCKETTE et al. (1974) believe (on the basis of

hundreds of numerical investigations) that there will either be no solution or two solutions

and in very special cases exactly one solution.

Computational difficulties encountered by some optimizing techniques are caused by the

geometry of L(a, b, c) and its pathology when a approaches its upper bound x1:n. In sum-

mary, the location parameter causes computational difficulties because of the logarithmic

terms. Parameter b creates scaling problems (large values of b) or logarithmic term prob-

lems (low values of b). Low values of c, i.e., c ≤ 2, may favor non–concavity of L(a, b, c),
whereas high values of c may cause slow convergence.

There are two principal approaches to find the MLEs: directly maximizing (11.31a) or

solving the system of likelihood equations (11.4d–f). The first approach has been taken by

only a few researchers. PIKE (1966) substituted b of (11.18a) into (11.31a) yielding

L(a, c) = n
[
ln c+ lnn− 1

]
− n ln

{
n∑

i=1

(xi − a)c

}
+ (c− 1)

n∑

i=1

ln(xi − a) (11.33)

and then used the derivative–free search procedure of HOOKE/JEEVES (1961) to find the

bivariate maximum (â, ĉ ), which in turn produces b̂ according to (11.18a). ZANAKIS

(1977) used the adaptive pattern search of BUFFA/TAUBERT (1972), a later version of the

HOOKE/JEEVES algorithm. SEYMORE/MAKI (1969) used the ZOUTENDIJK method of

feasible directions to obtain the joint MLEs of (11.31a). These methods do not guarantee

a global optimum. Moreover, the pattern search method does not utilize second order

information and therefore will tend to be slower than the NEWTON–RAPHSON technique.

We now review some of the gradient techniques. HARTER/MOORE (1965a) applied the

rule of false position (iterative linear interpolation on first derivative equations by using

second derivatives; see BARNETT (1966)) to simultaneous equations (11.4d–f) for estimat-

ing the three unknown parameters, one at a time in the cyclic order b, c, a. The method

always yields positive estimates of b and c. However, an iteration may lead to an estimate

of a equal to min{xi}, thus causing logarithmic difficulty. This is avoided each time by

censoring the smallest sample observation(s), which subsequently is used only as an upper

bound for the location parameter. However, this results in a partial loss of information,

which may reduce the accuracy of the solution. HAAN/BEER (1967) used, in a trial- and-

error scheme, a combination of the rule of false position, the secant method and the golden

section univariate maximization search. It is well known, however, that a one–at–a–time

search may fail if sharp ridges exist. WINGO (1972, 1973) employed a modified quasi–

linearization algorithm. As pointed out by BROWN/WINGO (1975), this algorithm is a

version of a modified NEWTON–RAPHSON method tailored to the case of bounded vari-

ables. Even though the method of WINGO is very fast, it sometimes converges to a saddle

point instead of an interior maximum point. ARCHER (1980) proposed a hybrid technique

combining the value of false position for a and WINGO’s method for b and c, but it may

converge to a saddle point also.
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11.3.2.2 A non-failing algorithm 18

The iterative procedures discussed in the preceding section do not make explicit use of the

constraints given in (11.31b,c). Their role is usually limited to altering the parameter values

to the specified limit if, during an iteration, the resulting value violates the constraints. The

approach presented now is rather simple and guarantees to find the maximizing parameter

set. We will call it profile likelihood method. Its idea goes back to LAWLESS, (1982)

and it has been further explored and elaborated by PANCHANG/GUPTA (1989), LOCK-

HART/STEPHENS (1994) and QIAO/TSOKOS (1995). The following representation rests

mainly upon the version of PANCHANG/GUPTA.

The approach is based on the philosophy that the constraint (11.31b) 0 ≤ a ≤ xmin :=
min{xi} defines an allowable parameter space in which to look for a solution.19 The do-

main [0, xmin − ǫ] is divided into a suitable number J of intervals of size ∆a, and a is

then assigned values aj = (j − 1)∆a, j = 1, 2, . . . , J + 1. ǫ is a small positive number

introduced to prevent any pathological situation in the likelihood equations. For a given

value of a = aj , equations (11.4e,f) are solved to get b = bj and c = cj . This is equivalent

to solving the two–parameter MLE problem since the xi−aj may be considered as another

sample yi:
yi := xi − aj.

cj is obtained by solving (from 11.19b)

f(c | aj) =
n

c
+
∑

i

ln yi −
n
∑

i y
c
i ln yi∑
i y
c
i

= 0 (11.34a)

by NEWTON–RAPHSON and then bj is found by inserting cj into (11.19a):

bj =

[
1

n

∑

i

y
cj
i

]1/cj
. (11.34b)

Finally, we calculate the log–likelihood at (aj , bj, cj)

L(aj, bj , cj) = n

{
ln

(
cj

b
cj
j

)
− 1

}
+ (cj − 1)

∑

i

ln(xi − aj). (11.34c)

The above process is repeated for all aj and thus L(a, b, c) is obtained as a function of a:

L∗(a) := max
b,c

L(a, b, c). (11.34d)

L∗(a) is the profile log–likelihood function that is to be scanned to determine the maxi-

mum.

We make the following remarks to the above algorithm:

18 Suggested reading for this section: LAWLESS (1982, pp. 192–194), LOCKHART/STEPHENS (1994),

PANCHANG/GUPTA (1989) and QIAO/TSOKOS (1995).

19 If there is strong evidence for shelf–ageing, i.e., a < 0, the constraint has to be extended.
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1. For j = 1, i.e., a = 0, PANCHANG/GUPTA (1989) have found a good initial estimate

to be

c0,1 =
1

n lnxmax −
∑

lnxi
. (11.34e)

2. An initial estimate c0,j (j = 2, 3, ...) for solving (11.34.a), suggested by PAN-

CHANG/GUPTA and based on the observation that ĉ decreases as â increases, is

c0,j = cj−1; j = 2, 3, . . . (11.34f)

3. The number of intervals J depends on the accuracy that is desired in the estimators.

To reduce the computational burden one may start with a broad grid for a to locate

the area containing the maximum and then zoom into its vicinity using a finer grid

and so on.

4. Even if the iterated solution (â, b̂, ĉ ) is a local maximum, it may not be the max-

imum likelihood estimate. This could be the corner point (11.32). So, one should

check for this by comparing the log–likelihood at the iterated solution to the corner–

point solution.

Example 11/5: Applications of the non–failing algorithm

We have applied the PANCHANG–GUPTA algorithm to different datasets. Fig. 11/4 shows different

courses of the profile log–likelihood function L∗(a).

Figure 11/4: Profile log-likelihood functions
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The graph in part A belongs to dataset #2 (see Tab. 9/9) which was simulated using a = 15, b = 30

and c = 2.5. The maximum of L∗(a) occurs at â = 19.4 accompanied by b̂ = 25.0 and ĉ = 2.2.

The corresponding estimated variance–covariance matrix according to (11.12a) reads

V̂ar
(
θ̂
)

=




2.8279 2.2981 −0.0983
2.2981 9.0257 0.2414
−0.0983 0.2414 0.1505


 .

The 95% confidence intervals are

16.10 ≤ a ≤ 22.70, not covering the true parameter,

19.11 ≤ b ≤ 30.89,
1.44 ≤ c ≤ 2.96.

The graph in part B rests upon the sample data x′ = (3.1, 4.6, 5.6, 6.8) taken from ROCKETTE

et al. (1974). The local maximum at 1.73 has (â, b̂, ĉ ) = (1.73, 3.72, 2.71) with likelihood

0.0011. The local minimum at 2.83 has (â, b̂, ĉ ) = (2.83, 2.39, 1.44) and is a saddle point

of the likelihood function. However the likelihood is maximum with 0.0013 at the corner point

(â, b̂, ĉ ) = (3.1, 1.925, 1). The graph in part C belongs to a dataset on ocean wave heights

(PETRUASKAS/AAGARD (1971)) and looks similar to that of ROCKETTE’s data, but here the local

maximum is not at the corner, we have (â, b̂, ĉ ) = (11, 11.8, 1.51). The graph in part D belongs

to a simulated dataset x′ = (21.3, 22.5, 23.3, 24.9, 29.3, 29.8, 31.3, 35.5, 42.5, 57.8), the true

parameters being a = 20, b = 10, c = 1.0. The maximum of the graph belongs to the corner point

(â, b̂, ĉ ) = (21.3, 10.4, 1).

Fig. 11/4 does not include another possible course of profile log–likelihood. L∗(a) may

decline monotonically, from a = 0 to a = xmin. In this case the three–parameter WEIBULL

model should be dropped in favor of the two–parameter version.

11.3.2.3 Modified ML estimation

COHEN/WHITTEN (1982) proposed modified maximum likelihood estimators (MMLEs)

for a, b and c as an alternative for use when the MLEs are likely to be unsatisfactory, i.e.,

when c < 2.0. However, some of these MMLEs appear to offer advantages with respect

to ease of computation, bias and/or variance for all values of c. The various modified

estimators are obtained by replacing the first of the three likelihood equations (11.4d–f),

i.e., ∂L(a, b, c)/∂a = 0, with alternative functional relationships, enumerated MMLE–I

through MMLE-V.

MMLE–I

∂L(a, b, c)/∂a = 0 is replaced with

E
[
F (Xr:n

]
= F (xr:n). (11.35a)

Since E
[
F (Xr:n

]
= r/(n+ 1), we get

r

n+ 1
= 1 − exp

{
−
(
xr:n − a

b

)c}
, (11.35b)
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which reduces to (
xr:n − a

b

)c
= − ln

[
n+ 1 − r

n+ 1

]
. (11.35c)

COHEN/WHITTEN (1982) — although 1 ≤ r ≤ n — restrict consideration to r = 1, argu-

ing that the first order statistic x1:n contains more information about a than any of the other

order statistics and often more information than all the other order statistics combined.20

With r = 1 we have (
x1:n − a

b

)c
= − ln

(
n

n+ 1

)
. (11.35d)

The system of equations to be solved now consists of (11.35d) and — from (11.18c) — of

n∑

i=1

(1 − cwi) exp{cwi} = 0, (11.35e)

where wi = ln(xi − a) − 1
n

∑
ln(xi − a), and of

b =

[
1

n

n∑

i=1

(xi − a)c

]1/c
. (11.35f)

A first approximation a1 (a1 < xmin) is selected and (11.35e) is solved for c1, and b1
follows from (11.35f). When (11.35d) is solved by a1, b1 and c1, the task is completed.

Otherwise the cycle of computations is repeated with a new approximation a2 and continues

until we find a pair of values (ai, aj) such that |ai − aj | is sufficiently small and such that

(
x1:n − ai

bi

)ci
≷ − ln

(
n

n+ 1

)
≶

(
x1:n − aj

bj

)cj
.

We then interpolate linearly for the required estimates â, b̂, ĉ.

MMLE–II

∂L(a, b, c)/∂a = 0 is replaced with

E
(
X1:n

)
= x1:n, (11.36a)

where

E
(
X1:n

)
= a+

b

n1/c
Γ

(
1 +

1

c

)
. (11.36b)

We then have to solve (11.35e,f) and

a+
b

n1/c
Γ

(
1 +

1

c

)
= x1:n (11.36c)

by the same iteration as described above.

20 When outliers are suspected of being present, values of r > 1 might be justified.
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MMLE–III

Now ∂L(a, b, c)/∂a = 0 is replaced with

E(X) = x, (11.37a)

where

E(X) = a+ bΓ

(
1 +

1

c

)
. (11.37b)

Then (11.35e,f) and

a+ bΓ

(
1 +

1

c

)
= x (11.37c)

have to be solved iteratively.

MMLE–IV

In this case the replacing equation is

Var(X) = s2 (11.38a)

or

b2
[
Γ

(
1 +

2

c

)
− Γ2

(
1 +

1

c

)]
=

1

n− 1

n∑

i=1

(xi − x)2. (11.38b)

MMLE–V

This time, the population median is equated to the sample median x̃:

a+ b (ln 2)1/c = x̃. (11.39)

COHEN/WHITTEN (1982) recommend that MMLE–I or MMLE–II be employed regardless

of the value of c. They have further shown by simulation studies that the entries in the

asymptotic variance–covariance matrix (11.12) provide a reasonable approximation to the

variances and covariances of the MLEs when c > 2.

Example 11/6: Applications of MMLEs

We have applied MMLE–I and MMLE–II to the four datasets used in Example 11/5 and which led

to Fig. 11/4. The MMLEs failed to give any estimator for ROCKETTE’s dataset. Tab. 11/4 compares

the results of the non–failing algorithm to those of the MMLE–approaches.

Table 11/4: Comparison of the results of ML approaches

Dataset Non–failing algorithm MMLE–I MMLE–II

leading to: â b̂ ĉ â b̂ ĉ â b̂ ĉ
Figure 11/4A 19.4 25.0 2.2 5.2 40.2 3.64 12.1 33.3 2.96
Figure 11/4B 3.1 1.925 1 − − − − − −
Figure 11/4C 11 11.8 1.51 9.2 14.0 1.93 9.95 13.13 1.77
Figure 11/4D 21.3 10.4 1 19.3 13.4 1.24 19.4 13.3 1.22
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11.3.2.4 Finite sample results

Finite sample results used to construct confidence intervals, which are more correct than

those based on the asymptotic normal distribution, can be found from suitably chosen piv-

otal functions. Based on the approach of THOMAN et al. (1969) the results in Tab. 11/5

have been found by LEMON (1975). In what follows, âabc, b̂abc and ĉabc are used to denote

the MLEs of the parameters a, b and c when in fact sampling is from the three–parameter

WEIBULL distribution with the parameter values given in the suffix. So ĉ01c is the MLE of

the c when sampling from a WEIBULL distribution with parameters a = 0, b = 1 and c.

Table 11/5: Pivotal functions for WEIBULL distributions

Parameters
Pivotal functions

known unknown

none a, b, c ĉabc
d
= ĉ01c;

b̂abc
b

d
= b̂01c;

âabc − a

b̂abc

d
=
â01c

b̂01c

c a, b
b̂abc
b

d
= b̂01c;

âabc − a

b̂abc

d
=
â01c

b̂01c

b a, c ĉabc
d
= ĉ01c;

âabc − a

b

d
= â01c

a b, c
ĉabc
c

d
= ĉa11; ĉabc ln

(
b̂abc
b

)
d
= ĉa11 ln ba11

a, b c
ĉabc
c

d
= ĉa11

a, c b c ln

(
b̂abc
b

)
d
= b̂a11

b, c a
âabc − a

b

d
= â01c

Source: LEMON (1975, p. 252) — Reprinted with permission from Technometrics. Copyright 1975 by the

American Statistical Association. All rights reserved.

The principal advantage of working with the pivotal function is that their distributions are

independent of one or more of the unknown parameters and can be obtained by a Monte

Carlo simulation of the “reduced” distribution. Tab. 11/5 contains pivotal functions equated

to their equivalent “reduced” forms for the MLEs of the three–parameter WEIBULL distri-

bution. For example, the pivotal function ĉabc
d
= ĉ01c is distributed independently of the

parameters a and b and the reduced WEIBULL distribution has parameters a = 0, b = 1
and c. The pivotal functions given in Tab. 11/5 are valid for all types of censoring. But it

must be noted that the distributions of these pivotal functions are directly dependent on the

sample size and the type of censoring used. So these distributions have to be hand–tailored

by simulation in each individual case.

Looking into Tab. 11/5 we recognize that when both a and c are unknown, the pivotal

distributions depends on the unknown value of c. In these cases LEMON (1975) proposes

to approximate the distribution by using c = ĉabc, and hence, approximate confidence

intervals for b and c are obtained by Monte Carlo methods; e.g., b̂01bc is used for b̂01c. It is
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not possible to find a confidence interval for c via a pivotal distribution when c and a are

unknown; instead, one has to consider bootstrapping.

Example 11/7: Working with pivotal distributions when all three WEIBULL parameters are

unknown

In Example 11/5 we have estimated the parameters belonging to dataset #2 of size n = 20 and

found â = 19.4, b̂ = 25.0 and ĉ = 2.2. Here we generated 20,000 samples of size 20, WEIBULL

distributed with a = 0, b = 1 and c = ĉ = 2.2. In each sample we determined â0,1,2.2 by

(11.18b), the pivotal function b̂0,1,2.2 by (11.18a) and the pivotal function â0,1,2.2

/
b̂0,1,2.2. From

the distributional equivalences and the two resulting empirical distributions, we computed

Pr

(
0.671 ≤ b̂0,1,2.2 =

b̂abc

b
≤ 1.184

)
= 0.95

Pr

(
−0.504 ≤ â0,1,2.2

b̂0,1,2.2

=
âabc − a

b̂abc

≤ 0.406

)
= 0.95.

Inserting the estimates âabc = â = 19.4 and b̂abc = b̂ = 25.0 from dataset #2, we found the

following approximate 95% confidence intervals:

21.11 ≤ b ≤ 36.98 and 9.25 ≤ a ≤ 26.75

11.4 Uncensored samples with grouped data 21

Grouped data arise in a natural way when n items on test are not monitored but are in-

spected for the number of surviving items at given points in time t1 < t2 < . . . < tk−1

(see Sect. 8.3 on life test plans). Introducing t0 := 0 and tk := ∞, we thus have

k time–intervals [t0, t1), [t1, t2), . . . , [tk−1, tk) with nj failed items in the j–th interval

[tj−1, tj); j = 1, 2, . . . , k; n =
∑k

j=1 nj . In the following we will show only how to

proceed in the two–parameter case with b and c unknown.22

The likelihood element Lj(b, c) of an item which failed in the j–th interval is

Lj(b, c) =

∫ tj

tj−1

c

b

(x
b

)c−1
exp
{
−
(x
b

)c}
dx

= F (tj | b, c) − F (tj−1 | b, c)

= exp

{
−
(
tj−1

b

)c}
− exp

{
−
(
tj
b

)c}
; j = 1, . . . , k (11.40a)

with L1(b, c) = 1 − exp

{
−
(
t1
b

)c}
and Lk(b, c) = exp

{
−
(
tk−1

b

)c}
. The likelihood

21 Suggested reading for this section: ARCHER (1980, 1982), CHENG/CHEN (1988), FLYGARE/

AUSTIN/BUCKWALTER (1985), HIROSE/LAI (1977), OSTROUCHOV/MEEKER (1988), RAO/RAO/

NARASIMHAM (1994).

22 For the three–parameter case, see ARCHER (1980).
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function results as

L(b, c) =
n!
k∏
j=1

nj!

k∏

j=1

Lj(b, c)
nj (11.40b)

with
k∑
j=1

nj = n.Neglecting the pre–factor not involving the parameters, the log–likelihood

function is

L(b, c) =

k∑

j=1

nj ln
[
Lj(b, c)

]
=

k∑

j=1

nj ln

[
exp

{
−
(
tj−1

b

)c}
− exp

{
−
(
tj
b

)c}]
.

(11.40c)
Introducing

uj := tj
/
b,

the system of likelihood equations on simplification is given by

k−1∑

j=1

nj

(
tcj − tcj−1

)

exp
{
ucj − ucj−1

}
− 1

−
k∑

j=2

nj t
c
j−1 = 0, (11.41a)

n1 t
c
1

ln(u1)

exp{uc1} − 1
+
k−1∑

j=2

nj
tcj ln(uj) − tcj−1 ln(uj−1)

exp{ucj − ucj−1} − 1
−

k∑

j=2

nj t
c
j−1 ln(uj−1) = 0.

(11.41b)

With respect to (11.40c) we remark that empty intervals, i.e., nj = 0, do not contribute to

the log–likelihood.

Let ℓ ≤ k be the number of non–zeros n′js, denoted by n∗ι , and [vι, wι] be the redefined

interval corresponding to n∗ι . CHENG/CHEN (1988) proved the following.

Theorem:

The MLE (̂b, ĉ ) of (b, c) exists and is unique if and only if

• ℓ ≥ 3 or

• ℓ = 2, w1 6= v2 and v1 6= 0 or

• ℓ = 2, w1 6= v2 and w2 6= ∞. �

Let

yj := (tj
/
b)c,

Aj := yj − yj−1,

Bj := yj ln(yj) − yj−1 ln(yj−1),

Cj := exp{yj} − exp{yj−1}.
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The elements Iνκ of the information matrix I(θ) are given by

Ibb = E

[
−∂

2L
∂b2

]
= n

(c
b

)2 k−1∑

j=1

A2
j

Cj
, (11.42a)

Ibc = E

[
− ∂2L
∂b ∂c

]
=

n

b


 y2

1 ln(y1)

exp(y1) − 1
+
k−1∑

j=2

Aj Bj
Cj


 , (11.42b)

Icc = E

[
−∂

2L
∂c2

]
=

n

c2


 [y1 ln(y1)]

2

exp(y1) − 1
+

k−1∑

j=2

B2
j

cj


 . (11.42c)

RAO et al. (1994) derived the optimal interval length tj − tj−1 = ∆; j = 1, . . . , k − 1 for

an equi–class grouped sample by minimizing the generalized asymptotic variance of the

estimators, i.e., the determinant Ibb Icc − I2
bc of the variance–covariance matrix. FLYGARE

et al. (1985) presented the MLEs for the two–parameter WEIBULL distribution when the

data are given as intervals; i.e., two known data ℓj and uj surround the unknown value xj of

the response variable. Their approach is somewhat similar to the grouped–data approach,

the only exception being j = 1, 2, . . . , n and nj = 1 ∀ j.

11.5 Samples censored on both sides23

Before going into the details of the prevailing right–censoring mechanisms in Sections 11.6

and 11.7, we will briefly comment on the more general doubly censoring scheme. Let

nℓ (nr) be the number of observations censored on the left at tℓ (on the right at tr). As-

suming the three–parameter WEIBULL distribution, we further introduce the order statistics

xi := xi:n; i = nℓ + 1, . . . , n− nr,

and

ui :=
xi − a

b
, vℓ =

tℓ − a

b
, vr =

tr − a

b
.

The log–likelihood function is

L(a, b, c) =

nℓ ln
[
1 − exp

{
− vcℓ

}]
− nr v

c
r + (n− nr − nℓ) ln

(c
b

)
+ (c− 1)

n−nr∑

i=nℓ+1

[
ln(ui) − uci

]
.

(11.43a)

The resulting system of likelihood equations is given by

∂L(a, b, c)

∂a
=

−nℓ
(c
b

)
vc−1
ℓ

exp
{
− vcℓ

}

1 − exp
{
− vcℓ

} + nr

(c
b

)
vcr −

1

b

n−nr∑

i=nℓ+1

[
c− 1

ui
− c uc−1

i

]
= 0,

(11.43b)

23 Suggested reading for this section: ARCHER (1980), HARTER/MOORE (1967a), LEMON (1975) and

ZANAKIS/KYPARISIS (1986).
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∂L(a, b, c)

∂b
=

−nℓ
(c
b

)
vcℓ

exp
{
− vcℓ

}

1 − exp
{
− vcℓ

}+nr

(c
b

)
vcr−

(
n−nr−nℓ

) c
b
+
c

b

n−nr∑

i=nℓ+1

uci = 0, (11.43c)

∂L(a, b, c)

∂c
=

nℓ v
c
ℓ ln(vℓ)

exp
{
− vcℓ

}

1− exp
{
− vcℓ

} − nr v
c
r ln(vr) +

n−nr−nℓ
c

+

n−nr∑

i=nℓ+1

(
1 − uci

)
ln(ui)=0.

(11.43d)

HARTER/MOORE (1967b) have derived the asymptotic variance–covariance matrix for the

solutions â, b̂ and ĉ of (11.43b–d). As ANTLE/BAIN (1969) have noted the pivotal func-

tions considered above are valid for type–II censoring from both sides. We notice that

nℓ = nr = 0 is the complete–sample case (see (11.4c–f)) nr = 0 and nℓ > 0 is left–

censoring only and nℓ = 0, nr > 0 is singly right-censoring (see Section 11.6).

Suppose the uncensored observations, instead of being observed individually, are divided

into k groups with t0 the boundary of the first group coinciding with tℓ and tk, the upper

boundary of the last group coinciding with tr. Using the normalized boundaries

wj :=
tj − a

b
; j = 0, 1, . . . , k

together with

gj := exp(−wcj),
the log–likelihood function and the system of likelihood equations are given by

L(a, b, c) = nℓ ln
[
1 − exp

{
wc0
}]

− nr w
c
k +

k∑

j=1

nj ln
[
gj−1 − gj

]
, (11.44a)

∂L(a, b, c)

∂a
=

−nℓ
(c
b

)
wc−1

0

g0
1 − g0

+ nr

(c
b

)
wc−1
k +

c

b

k∑

j=1

nj
wc−1
j−1 gj−1 − wc−1

j gj

gj−1 − gj
= 0, (11.44b)

∂L(a, b, c)

∂b
=

−nℓ
(c
b

)
wc0

g0
1 − g0

+ nr

(c
b

)
wck +

c

b

k∑

j=1

nj
wcj−1 gj−1 − wcj gj

gj−1 − gj
= 0, (11.44c)

∂L(a, b, c)

∂c
=

nℓw
c
0 ln(w0)

g0
1−g0

− nr w
c
k ln(wk) −

k∑

j=1

nj
wcj−1 ln(wj−1) gj−1−wcj ln(wj) gj

gj−1 − gj
= 0.

(11.44d)

nj; j = 1, . . . , k is the number of observations in the j–th group. Computational tech-

niques for solving (11.43b–d) or (11.44b–d) are reviewed in ARCHER (1980).
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11.6 Samples singly censored on the right

Censoring on the right and especially its single version is the most popular way to collect

lifetime data. That is the reason it has attracted the attention of many researchers, the

focus being on type II where the number n − r of unobserved highest lifetimes is fixed.

Type–I censoring with a fixed censoring time T should be treated differently because the

number n − k of surviving items is random, but in most papers both types are treated

alike,24 an exception being the papers of SIRVANCI/YANG (1984), SIRVANCI (1984)25

and MENDENHALL/LEHMAN (1960) who derived the mean and the variance of the scale

parameter when the shape parameter is assumed known.

This section is organized as follows: We first treat the two–parameter distribution

(Sect. 11.6.1) with respect to finding and statistically evaluating the estimators; finally

(Sect. 11.6.2) we comment upon the three–parameter distribution. The results of single

censoring on the right have a lot in common with the complete–sampling case (Sect. 11.3).

11.6.1 Two-parameter WEIBULL distribution

The following two subsections are devoted to the case of non–grouped data only. CHACE

(1976) has analyzed censored and grouped life test data, but only with respect to calculating

the estimates. BHATTACHARYA (1962) has studied a similar life–testing problem. Ni items

(i = 1, 2, . . . , k) are put on test, e. g., in k different plants or departments of an enterprise.

The testing intervals (0, Ti] are different and we know only the numbers ni of failed items

up to ti. Let Pi =
∫ ti
0

c
b

(
x
b

)c−1
exp

{
−
(
x
b

)c}
dx be the probability of failure in (0, ti].

The MLEs of b and c are derived from the likelihood function
∏k
i=1

(Ni
ni

)
Pni
i (1−Pi)Ni−ni .

11.6.1.1 Solving the likelihood equations26

We note — for short — the first r ordered variates from a sample of size n by X1 ≤ X2 ≤
. . . ≤ Xr, r < n. The likelihood elements are

Li(b, c) =





f(Xi | b, c) =
c

b

(
Xi

b

)c−1

exp

{
−
(
Xi

b

)c}
for i = 1, . . . , r,

1 − F (Xr | b, c) = exp

{
−
(
Xr

b

)c}
for i = r + 1, . . . , n,





(11.45a)

24 This procedure is all right as long as one interprets the type–I results as conditional, the condition being

the number k of realized failures within (0, T ].
25 See Sect. 13.5. 2 for details of this approach.

26 Suggested reading for this section: BAIN/ENGELHARDT (1991a, pp. 211 ff.), COHEN (1965, 1966),

FARNUM/BOOTH (1997), KEATS/LAWRENCE/WANG (1997), MCCOOL (1970a).
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from which the likelihood function results as

L(b, c) =
n!

(n− r)!

(c
b

)r r∏

i=1

(
Xi

b

)c−1

exp

{
−
(
Xi

b

)c} n∏

j=r+1

exp

{
−
(
Xr

b

)c}

=
n!

(n− r)!

(c
b

)r
[

r∏

i=1

(
Xi

b

)]c−1

exp

{
−

r∑

i=1

(
Xi

b

)c
− (n− r)

(
Xr

b

)c}
.

(11.45b)

Neglecting the combinatorial pre–factor, which does not involve any of the unknown pa-

rameters, we get the log–likelihood function

L(b, c) = r
[
ln c− c ln b

]
+ (c− 1)

r∑

i=1

lnXi −
1

bc

[
r∑

i=1

Xc
i + (n− r)Xc

r

]
, (11.45c)

resulting in the likelihood equations

∂L(b, c)

∂b
= −r c

b
+
c

b

[
r∑

i=1

(
Xi

b

)c
+ (n − r)

(
Xr

b

)c]
= 0, (11.45d)

∂L(b, c)

∂c
=

r

c
−r ln b+

r∑

i=1

lnXi−
1

bc

[
r∑

i=1

Xc
i ln

(
Xi

b

)
+(n−r)Xc

r ln

(
Xr

b

)]
=0.

(11.45e)

(11.45c–e) and (11.13) through (11.14a–b) coincide when r = n. (11.45d) is reduced to

b =




r∑
i=1

Xc
i + (n− r)Xc

r

r




1/c

(11.46a)

and (11.45c) — upon substituting (11.46a) and some rearrangement — reduces to

1

c
+

1

r

r∑

i=1

lnXi −

r∑
i=1

Xc
i lnXi + (n− r)Xc

r lnXr

r∑
i=1

Xc
i + (n − r)Xc

r

= 0. (11.46b)

(11.46a,b) and (11.19a,b) coincide for r = n. The solution ĉ to (11.46b) may be found by

the NEWTON–RAPHSON method — see below — and gives b̂ when inserted into (11.46a).

FARNUM/BOOTH (1997) state the condition for the existence and uniqueness of the solu-

tion to (11.46a,b). Introducing the realizations xi and xr of the variates we rewrite (11.46b)

into

h(c) =
1

c
, (11.47a)
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where

h(c) =

r∑
i=1

xci lnxi + (n− r)xcr lnxr

r∑
i=1

xci + (n− r)xcr

− 1

r

r∑

i=1

lnxi. (11.47b)

The auxiliary function h(c) has the following properties (for a proof see FARNUM/BOOTH):

• h(c) is increasing for c ≥ 0,

• limc→∞ h(c) = lnxr −
1

r

r∑
i=1

lnxi =: V,

• h(0) =
(
1 − r

n

)
V .

Fig. 11/5 shows the graph of h(c) for dataset #1 singly censored at r = 15 (see Tab. 9/2)

along with the graph of 1/c.

Figure 11/5: Graphs of h(c) and c−1 for dataset #1 singly censored at r = 15

With the aid of Fig. 11/5 the following propositions — also proved by FARNUM/BOOTH —

are easily established:

1. If V > 0, the estimates b̂ and ĉ are unique.

2. If V > 0, then the following bounds on b̂ and ĉ hold:

ĉ > 1
/
V,

b̂ >

{
1

n

[
r∑

i=1

x
1/V
i + (n − r)x1/V

r

]}V
.
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3. V = 0 iff xi = xr ∀ i; i.e., all items fail simultaneously. In this case we will have no

solution to (11.47a).

V measures the variation in the failure data. It is always non–negative and is equal to zero

only when all observations are the same.

We may apply the NEWTON–RAPHSON formula (11.25a) developed for the complete–

sample case

ĉp+1 = ĉp −
g(ĉp)

g′(ĉp)
, p = 0, 1, 2, . . . , (11.48a)

where

g(c) =

n∑

j=1

(1 − cwj) exp(cwj) (11.48b)

g′(c) = −
n∑

j=1

cw2
j exp(cwj) (11.48c)

with

wj = lnxj −
1

r

r∑

i=1

lnxi; j = 1, 2, . . . , n

and

xj =

{
xi for j = i = 1, . . . , r,

xr for j = r + 1, . . . , n.

Looking at Fig. 11/5 the bound 1/V provides a good value to start (11.48a). But this

starting value can be improved by choosing a value between
(
1 − r

n

)
V and V , and then

converting that value into an initial value for ĉ by using the c−1–curve. FARNUM/BOOTH

(1997) have suggested using

ĉ0 =
[(

1 − r

2n

)
V
]−1

. (11.48d)

Example 11/8: MLEs for dataset #1 singly censored at r = 15

Dataset #1 consists of n = 20 observations generated from We(0, 100, 2.5) and censored at r = 15
(see Tab. 9/2). The quantity V is

V = lnx15 +
1

15

15∑

i=1

lnxi = 0.50502210.

We further get

ĉ > 1/V = 1.9801,

b̂ >

{
1

20

[
15∑

i=1

x
1/V
i + (20 − 15)x

1/V
15

]}V

= 86.6923,

ĉ0 = 3.1682.

(11.48a–c) produced ĉ = 2.7114 and (11.46a) gave b̂ = 99.2851. Both estimates come very near to

the true values.
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11.6.1.2 Statistical properties of the estimators27

We will first give results based on the asymptotic normal distribution of the MLEs and we

will conclude with finite–sample results based on pivotal functions.

We start with the construction of the asymptotic variance–covariance matrix of θ = (̂b, ĉ )′

based on the FISHER information matrix I(θ). The means of −∂2L
/
∂b2,−∂2L

/
∂b ∂c and

−∂2L
/
∂c2, which are the elements of I(θ), cannot be easily evaluated in small samples

and hence large sample approximations have to be applied when n → ∞ and P is being

fixed in r = nP , i.e.,

lim
n→∞

r

n
= P. (11.49a)

As n→ ∞, xr tends to xP :

xP = b
[
− ln(1 − P )

]1/c
. (11.49b)

We further introduce

s := (xP
/
b)c. (11.49c)

FUKUTA (1966) gives the following FISHER information matrix:

I(θ)=




c2

b2
nP −n

b

{
P+

∂

∂λ
γ(λ | s)

∣∣∣
λ=1

}

−n
b

{
P+

∂

∂λ
γ(λ | s)

∣∣∣
λ=1

}
n

c2

{
P+2

∂

∂λ
γ(λ | s)

∣∣∣
λ=1

+
∂2

∂λ2
γ(λ | s)

∣∣∣
λ=1

}


,

(11.50a)

where

γ(λ | s) =

s∫

0

uλ−1 e−u du (11.50b)

is the incomplete gamma function. From (11.50a) the variances of b̂ and ĉ follow as

Var
(
b̂
)

=
P + 2

∂

∂λ
γ(λ | s)

∣∣∣
λ=1

+
∂2

∂λ2
γ(λ | s)

∣∣∣
λ=1

n c2 ∆
, (11.51a)

Var
(
ĉ
)

=
P c2

n b2 ∆
, (11.51b)

where

∆ =

∂2

∂λ2
γ(λ | s)

∣∣∣
λ=1

−
[
∂

∂λ
γ(λ | s)

∣∣∣
λ=1

]2

b2
. (11.51c)

27 Suggested reading for this section: BAIN/ENGELHARDT (1986, 1991a pp. 218 ff.), BILL-

MAN/ANTLE/BAIN (1972), COHEN (1965, 1966), FUKUTA (1963), HARTER/MOORE (1965b), KAHLE

(1996), MEEKER/NELSON (1977), SCHULZ (1983).
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It is interesting to see how the variances (11.51a,b) in a censored sample compare with

those of an uncensored sample of equal sample size given in (11.17). Let Varc
(
b̂
)

and

Varc
(
ĉ
)

be the variances of the censored sample — cf. (11.51a,b) — and Varu
(
b̂
)

and

Varu
(
ĉ
)

those of the uncensored sample, then the efficiencies are defined by

ε
(
b̂
)

=
Varu

(
b̂
)

Varc
(
b̂
) and ε

(
ĉ
)

=
Varu

(
ĉ
)

Varc
(
ĉ
) .

Tab. 11/6 gives these efficiencies for some values of P as reported by FUKUTA 1963.

Table 11/6: Efficiencies of b̂ and ĉ (uncensored and censored samples)

P ε(̂b) in % ε(ĉ) in %

0.98 99.6 94.2
0.96 99.1 90.5
0.94 98.2 85.8
0.92 97.2 82.1
0.90 96.3 79.2
0.80 88.3 65.4
0.70 76.4 54.0
0.60 60.1 43.7
0.50 44.8 35.7
0.40 27.3 26.8

Excursus: Simultaneous confidence region for b and c based on the observed information

Some authors replace the expected information with the observed information to ease the computa-

tion. KAHLE (1996) used the following observed information matrix instead of (11.50a):

I∗(θ) =

(
I∗11 I∗12
I∗21 I22

)
(11.52)

with elements

I∗11 =
ĉ2

b̂2

r

n
,

I∗12 = I∗21 = −1

b

{
1

n

r∑

i=1

(
xi

b̂

)bc

ln

[(
xi

b̂

)bc
]

+
(
1 − r

n

)(xr

b̂

)bc

ln

[(
xr

b̂

)bc
]}

,

I∗22 =
1

b̂2

{
r

n
+

1

n

r∑

i=1

(
xi

b̂

)bc

ln2

[(
xi

b̂

)bc
]

+
(
1 − r

n

)(xr

b̂

)bc

ln2

[(
xr

b̂

)bc
]}

.

A simultaneous confidence region for θ = (b, c)′ based on the asymptotically normal distributed

vector θ̂ = (̂b, ĉ )′ is given by

(θ̂ − θ)′ I∗(θ)−1 (θ̂ − θ) < g, (11.53a)
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where

g = −2 lnα (11.53b)

is the quantile of the χ2–distribution with two degrees of freedom and 1 − α is the level of confi-

dence. Introducing

C1 :=
r

n
+

1

n

r∑

i=1

(
xi

b̂

)bc

ln2

[(
xi

b̂

)bc
]

+
(
1 − r

n

)(xr

b̂

)bc

ln2

[(
xr

b̂

)bc
]
,

C2 :=
r

n
,

C3 :=
1

n

r∑

i=1

(
xi

b̂

)bc

ln

[(
xi

b̂

)bc
]

+
(
1 − r

n

)(xr

b̂

)bc

ln

[(
xr

b̂

)bc
]
,

c̃ :=
c− ĉ

c
,

KAHLE (1996b, p. 34) suggested the following method of constructing the confidence region:

1. Upper and lower bounds for c are

ĉ

1 +B
≤ c ≤ ĉ

1 −B
(11.53c)

with

B =

√
C2 g

n (C1 C2 − C2
3 )
.

2. For every c in

[
ĉ

1 +B
,

ĉ

1 −B

]
, the parameter b is varying in

b̂ c

c+
C3

C2
c̃+A

≤ b ≤ b̂ c

c+
C3

C2
c̃−A

(11.53d)

with

A =

√
g

nC2
− c̃2

C1 C2 − C2
3

C2
2

.

Fig. 11/6 shows the 90%–confidence region for b and c belonging to dataset #1 censored at r = 15.

Finite sample results for testing hypotheses concerning b or c or for constructing confidence intervals

for b and c rest upon the distribution of pivotal functions (cf. Sect. 11.3.2.4). BILLMAN et al. (1972)

obtained the percentage points in Tables 11/7 and 11/8 by simulation.
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Figure 11/6: Simultaneous 90%-confidence region for b and c (dataset #1 singly censored at r = 15)

Table 11/7: Percentage points vP such that Pr

{√
n

[
ĉ

c
− E

(
ĉ

c

)]
< vP

}
= P

n r/n
P

ZZZZZZZZZZZZZZZZ

0.01 0.05 0.10 0.90 0.95 0.99 E
(
ĉ/c
)

1.00 −1.60 −1.20 −0.98 1.10 1.60 2.41 1.036
40 0.75 −2.15 −1.56 −1.30 1.59 2.09 3.30 1.060

0.50 −2.62 −2.09 −1.74 2.09 2.95 4.90 1.098

1.00 −1.59 −1.21 −0.97 1.05 1.43 2.18 1.024
60 0.75 −2.03 −1.50 −1.19 1.48 2.03 3.11 1.036

0.50 −2.62 −2.02 −1.62 1.96 2.70 4.28 1.060

1.00 −1.62 −1.20 −0.97 1.04 1.40 2.10 1.019
80 0.75 −2.02 −1.51 −1.21 1.49 1.99 3.06 1.027

0.50 −2.60 −1.98 −1.61 1.99 2.74 4.22 1.047

1.00 −1.63 −1.20 −0.95 1.04 1.36 2.06 1.016
100 0.75 −1.99 −1.46 −1.16 1.46 1.92 2.90 1.022

0.50 −2.54 −1.93 −1.54 1.96 2.59 4.00 1.035

1.00 −1.64 −1.26 −0.97 0.99 1.33 2.06 1.012
120 0.75 −2.05 −1.48 −1.15 1.45 1.97 2.88 1.018

0.50 −2.61 −1.93 −1.55 1.89 2.51 3.81 1.030

1.00 −1.81 −1.28 −0.99 0.99 1.28 1.81 1.000
∞ 0.75 −2.35 −1.66 −1.29 1.29 1.66 2.35 1.000

0.50 −3.05 −2.15 −1.68 1.68 2.15 3.05 1.000

Source: BILLMAN et al. (1972, p. 833) — Reprinted with permission from Technometrics. Copyright 1972 by

the American Statistical Association. All rights reserved.
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Table 11/8: Percentage points wP such that Pr
{√

n ĉ ln
(
b̂
/
b
)
< wP

}
= P

n r/n
P

QQQQQQQQQQQQQQQQ

0.01 0.05 0.10 0.90 0.95 0.99

1.00 −2.58 −1.82 −1.41 1.39 1.80 2.62
40 0.75 −3.29 −2.25 −1.69 1.40 1.85 2.71

0.50 −6.21 −3.77 −2.91 1.63 2.16 2.96

1.00 −2.48 −1.78 −1.38 1.37 1.77 2.56
60 0.75 −3.22 −2.16 −1.68 1.42 1.84 2.66

0.50 −5.37 −3.56 −2.69 1.67 2.18 3.01

1.00 −2.51 −1.76 −1.37 1.37 1.76 2.49
80 0.75 −3.11 −2.10 −1.61 1.43 1.85 2.65

0.50 −5.14 −3.45 −2.62 1.71 2.16 3.08

1.00 −2.45 −1.74 −1.37 1.35 1.73 2.50
100 0.75 −3.12 −2.09 −1.60 1.44 1.85 2.61

0.50 −4.92 −3.34 −2.49 1.78 2.26 3.19

1.00 −2.44 −1.73 −1.35 1.35 1.74 2.48
120 0.75 −3.01 −2.01 −1.58 1.45 1.86 2.63

0.50 −4.50 −3.17 −2.44 1.75 2.27 3.13

1.00 −2.45 −1.73 −1.35 1.35 1.73 2.45
∞ 0.75 −2.69 −1.90 −1.48 1.48 1.90 2.69

0.50 −3.69 −2.61 −2.03 2.03 2.61 3.69

Source: BILLMAN et al. (1972, p. 834) — Reprinted with permission from Technometrics. Copyright 1972 by

the American Statistical Association. All rights reserved.

From Tab. 11/7 we construct the two–sided (1 − α)–confidence interval for c as

ĉ

E

(
ĉ

c

)
+ v1−α/2

/√
n

≤ c ≤ ĉ

E

(
ĉ

c

)
+ vα/2

/√
n

, (11.54a)

and from Tab. 11/8 we find the two–sided (1 − α)–confidence interval for b as

b̂

exp

{
w1−α/2
ĉ
√
n

} ≤ b ≤ b̂

exp

{
wα/2

ĉ
√
n

} . (11.54b)

11.6.2 Three-parameter WEIBULL distribution

The likelihood function in the three–parameter case with censoring on the right at the r–th

failure is

L(a, b, c) =
n!

(n− r)!

(c
b

)r [ r∏
i=1

(
Xi − a

b

)]c−1

×

exp

{
−

r∑
i=1

(
Xi − a

b

)c
− (n− r)

(
Xr − a

b

)c}
.

(11.55a)
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Omitting the factorial constants we have the following log–likelihood function

L(a, b, c) = r (ln c− c ln b) + (c− 1)
r∑
i=1

ln(Xi − a) −
1

bc

{
r∑
i=1

(Xi − a)c + (n− r) (Xr − a)c
}
,

(11.55b)

which coincides with (11.4c) when n = r. (11.55b) leads to the following likelihood

equations:

∂L(a, b, c)

∂a
= −(c− 1)

r∑
i=1

1

Xi − a
+

c

b

{
r∑
i=1

(
Xi − a

b

)c−1

+ (n− r)

(
Xr − a

b

)c−1
}

= 0 ,

(11.55c)

∂L(a, b, c)

∂b
= −r c

b
+
c

b

{
r∑

i=1

(
Xi − a

b

)c
+ (n− r)

(
Xr − a

b

)c}
= 0 ,

(11.55d)

∂L(a, b, c)

∂c
=

r

c
− r ln b+

r∑
i=1

ln(Xi − a) −
r∑
i=1

(
Xi − a

b

)c
ln

(
Xi − a

b

)
−

(n − r)

(
Xr − a

b

)c
ln

(
Xr − a

b

)
= 0 ,

(11.55e)

which coincide with (11.4d–f) when n = r. A solution to the system (11.55c–e) may

be found by applying the profile likelihood method which is described in Sect. 11.3.2.2.

FUKUTA (1963, p. 5) gives the following asymptotic variances of the MLE’s:

Var
(
â
)

=
∆33

∆

b2

n (c− 1)2
, (11.56a)

Var
(
b̂
)

=
∆22

∆

b2

n c2
, (11.56b)

Var
(
ĉ
)

=
∆11

∆

c2

n
, (11.56c)

where

∆=

∣∣∣∣∣∣∣∣∣∣

P+2
∂γ(λ|s)
∂λ

∣∣∣
λ=1

+
∂2γ(λ|s)
∂λ2

∣∣∣
λ=1

−
{
P+

∂γ(λ|s)
∂λ

∣∣∣
λ=1

}
−
{
γ(1− 1

c |s)+
∂γ(λ|s)
∂λ

∣∣∣
λ=1− 1

c

}

∗ P γ(1 − 1
c |s)

∗ ∗ γ(1 − 2
c |s)

∣∣∣∣∣∣∣∣∣∣

,

and ∆ij being the cofactor of aij in ∆ = |aij |. P , s and γ(.|.) are defined in Sect. 11.6.1.2.
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11.7 Samples progressively censored on the right28

The motivation for progressively (or multiply) censored samples has been given in

Sect. 8.3.3. ML estimation of the parameters b and c or a, b and c of the two–parameter or

three–parameter WEIBULL distributions, respectively, will be discussed here.

Let n designate the total sample size, i.e., the number of items simultaneously put on test,

and m the number which fail and therefore result in completely determined life spans.

Suppose that censoring occurs in k stages (k > 1) at times tj > tj−1; j = 2, . . . , k and

that ej surviving items are removed (censored) from further observation at the j–th stage.

Thus we have

n = m+

k∑

j=1

ej . (11.57a)

The numbers ej with

0 ≤ rj ≤ n−m−
j−1∑

ℓ=1

eℓ (11.57b)

are fixed in advance together with n and m,29 but the ej items are chosen randomly from

the items still on test at tj .

Two types of censoring are generally recognized.30 In type–I progressive censoring the

tj are fixed at Tj :

tj = Tj ; j = 1, . . . , k,

and the number of survivors immediately before these times are random variables with

realizations n −∑j−1
ℓ=1 eℓ − ν, where ν is the realized number of failures before Tj and

e0 := 0. In type–II progressive censoring the tj coincide with times of failure Xj and

are random:

tj = Xj ; j = 1, . . . , k.

Thus the number k of stages and the number m of complete life spans coincide and the

number of surviving items immediately before Xj are fixed and amount to n − (j − 1) −∑j−1
ℓ=1 eℓ. We will first (Sect. 11.7.1) discuss type–I censoring where the formulas are a

little bit more cumbersome than in the type–II case (Sect. 11.7.2).

28 Suggested reading for this section: BALAKRISHNAN/AGGARWALA (2000), BALASOORIYA/LOW

(2004), BALASOORIYA/SAW/GADAG (2000), CACCIARI/MONTANARI (1987), COHEN (1965, 1975),

FEI/KONG/TANG (1995), LEMON (1975), NG/CHAN/BALAKRISHNAN (2004), RINGER/SPRINKLE

(1972), TSE/YANG/YUEN (2000), VIVEROS/BALAKRISHNAN (1994), WINGO (1973), WU (2002),

YUEN/TSE (1996).

29 YUEN/TSE (1996) consider the case where ej is random and the realization of a uniform discrete distri-

bution with probability 1/[n−m− (e1 + . . .+ej−1)+1]. TSE et al. (2000) take a binomial distribution

instead.

30 LEMON (1975) developed MLE based on various left and right progressively censored situations.
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11.7.1 Type-I censoring

Let f(x |θ) and F (x |θ) be the density and distribution functions, respectively. For a

type–I progressively censored sample the likelihood function is

L(θ |x) = C

m∏

i=1

f(xi |θ)
k∏

j=1

[
1 − F (Tj |θ)

]ej , (11.58a)

where C is a combinatorial constant and generally m 6= k. In the first product the index i
is running over failures whereas in the second product we have a different index j running

over the fixed censoring times Tj . Inserting the two–parameter WEIBULL density and

distribution functions into (11.58a), neglecting the constant C and taking logarithm, we

have the log–likelihood function

L(b, c) = m
[
ln c− c ln b

]
+ (c− 1)

m∑

i=1

lnxi −
m∑

i=1

(xi
b

)c
−

k∑

j=1

ej

(
Tj
b

)c
. (11.58b)

The system of equations to be solved for b and c results as

∂L(b, c)

∂b
= −mc

b
+
c

b




m∑

i=1

(xi
b

)c
+

k∑

j=1

ej

(
Tj
b

)c

 = 0, (11.58c)

∂L(b, c)

∂c
=
m

c
−m ln b+

m∑

i=1

lnxi−



m∑

i=1

(xi
b

)c
ln
(xi
b

)
+

k∑

j=i

ej

(
Tj
b

)c
ln

(
Tj
b

)
=0.

(11.58d)

Without censoring (ej = 0 ∀ j), (11.58b–d) will coincide with (11.13) through (11.14 a,b).

On eliminating b between (11.58c) and (11.58b), we have

1

c
+

1

m

m∑

i=1

lnxi −

m∑
i=1

xci lnxi +
k∑
j=1

ej T
c
j lnTj

m∑
i=1

xci +
k∑
j=1

ej T
c
j

= 0, (11.58e)

to be solved by the NEWTON–RAPHSON method. With ĉ thus determined, it follows from

(11.58c) that

b̂ =





1

m




m∑

i=1

xbci +
k∑

j=1

ej T
c
j







1/bc

. (11.58f)

The asymptotic variance–covariance matrix is approximated by:

V̂ar(̂b, ĉ) ≈




−∂
2L
∂b2

∣∣∣∣bb,bc
− ∂2L
∂b∂c

∣∣∣∣bb,bc

− ∂2L
∂c∂b

∣∣∣∣bb,bc
−∂

2L
∂c2

∣∣∣∣bb,bc




−1

(11.59a)
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with

−∂
2L
∂b2

∣∣∣∣bb,bc
= − ĉ

b̂2



m−

(
ĉ+ 1

)



m∑

i=1

(
xi

b̂

)bc
+

k∑

j=1

(
Tj

b̂

)bc




 , (11.59b)

− ∂2L
∂b∂c

∣∣∣∣bb,bc
= − ∂2L

∂c∂b

∣∣∣∣bb,bc
=

1

b̂

{
m− ĉ

[
m∑
i=1

(
xi

b̂

)bc
ln

(
xi

b̂

)
+

k∑
j=1

ej

(
Tj

b̂

)bc
ln

(
Tj

b̂

)
+

m∑
i=1

(
xi

b̂

)bc
+

k∑
j=1

ej

(
Tj

b̂

)bc ]}
,

(11.59c)

−∂
2L
∂c2

∣∣∣∣bb,bc
=
m

ĉ2
+

m∑

i=1

(
xi

b̂

)bc [
ln

(
xi

b̂

)]2
+

k∑

j=1

(
Tj

b̂

)bc [
ln

(
Tj

b̂

)]2
. (11.59d)

11.7.2 Type-II censoring

For a type–II progressively censored sample the likelihood function is

L(θ |x) = C

m∏

i=1

f(xi |θ)
[
1 − F (xi |θ)

]ei (11.60a)

with

C = n (n− 1 − e1) (n− 2 − e1 − e2) · . . . · (n−m+ 1 − e1 − . . . − em−1).

The log–likelihood for the two–parameter WEIBULL distribution may then be written as

L(b, c) = m
[
ln c− c ln b

]
+ (c− 1)

m∑

i=1

lnxi −
m∑

i=1

(ei + 1)
(xi
b

)c
, (11.60b)

and hence we have the likelihood equations for b and c to be

∂L(b, c)

∂b
= −mc

b
+
c

b

m∑

i=1

(ei + 1)
(xi
b

)c
= 0, (11.60c)

∂L(b, c)

∂c
=

m

c
−m ln b+

m∑

i=1

lnxi −
m∑

i=1

(ei + 1)
(xi
b

)c
ln
(xi
b

)
= 0. (11.60d)

Equation (11.60c) yields the MLE of b to be

b̂ =

{
1

m

m∑

i=1

(ei + 1)xbci

}1/bc

. (11.61a)

Equation (11.60d), in conjunction with the MLE of b in (11.61a), reduces to

1

ĉ
+

1

m

m∑

i=1

lnxi −

m∑
i=1

(ei + 1)xbci lnxi

m∑
i=1

(ei + 1)xbci

= 0, (11.61b)

which may be solved by NEWTON–RAPHSON method.
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The asymptotic variance–covariance matrix for b̂ and ĉ can be approximated by inverting

the matrix composed of the negatives of the second partial derivatives of the logarithm of

log-likelihood evaluated at the estimates, see (11.59a), but with elements

−∂
2L
∂b2

= − ĉ

b̂2

[
m+

(
ĉ+ 1

) m∑

i=1

(xi
b

)c
]
, (11.62a)

− ∂2L
∂b∂c

= − ∂2L
∂c∂b

=
1

b̂

{
m−

m∑

i=1

(ei + 1)

(
xi

b̂

)bc
− ĉ

m∑

i=1

(ei + 1)

(
xi

b̂

)bc
ln

(
xi

b̂

)}
, (11.62b)

− ∂L
∂c2

=
m

ĉ2
+

m∑

i=1

(ei + 1)

(
xi

b̂

)bc [
ln

(
xi

b̂

)]2
. (11.62c)

An exact confidence interval for c and an exact joint confidence region for b and c have been

given by CHEN (1998) and WU (2002). A two–sided 100 (1 − α)% confidence interval

for c is

ϕ
(
x1, . . . , xm;F2m−2,2,α/2

)
≤ c ≤ ϕ

(
x1, . . . , xm;F2m−2,2,1−α/2

)
, (11.63a)

where 0 < α < 1. Fν1,ν2,P is the percentile of order P of the F–distribution and

ϕ(x1, . . . , xm; t) is the solution for ĉ of the equation

m∑
i=1

(ei + 1)xbci − nxbc1

n (m− 1)xbc1
= t . (11.63b)

A 100 (1 − α)% joint confidence region for b and c is determined by the following two

inequalities:

ϕ
(
x1, . . . , xm;F2m−2,2,(1−

√
1−a )/2

)
≤ c ≤ ϕ

(
x1, . . . , xm;F2m−2,2,(1+

√
1−a )/2),(11.64a)





2
m∑
i=1

(ei + 1)xci

χ2
2m,(1+

√
1−α )/2





1/c

≤ b ≤





2
m∑
i=1

(ei + 1)xci

χ2
2m,(1−

√
1−α )/2





1/c

. (11.64b)

The results above rest upon the following facts:

1. Yi := (Xi/b)
c; i = 1, . . . ,m is a progressively type–II censored sample from an

exponential distribution with mean 1.

2. The transformations

S1 = nY1

S2 = (n− e1 − 1) (Y2 − Y1)
...

Sm = (n− e1 − . . .− em−1 −m+ 1) (Ym − Ym−1)

are generalized spacings which are iid as an exponential distribution with mean 1.



452 11 Parameter estimation — Maximum likelihood approaches

3. Then

V = 2S1 = 2nY1 ∼ χ2(2),

U = 2
m∑
i=2

Si = 2

{
m∑
i=1

(ei + 1)Yi − nY1

}
∼ χ2(2m− 2).

U and V are independent variables.

4. It is easy to show that

T1 =
U

(m− 1)V
=

m∑
i=1

(ei + 1)Yi − nY1

n (m− 1)Y1
=

m∑
i=1

(ei + 1)Xc
i − nXc

1

n (m− 1)Xc
1

∼F (2m− 2, 2),

T2 = U + V = 2
m∑
i=1

(ei + 1)Yi ∼ χ2(2m)

and T1 and T2 are independent.

Example 11/9: Confidence interval for c and joint confidence region for b and c based on

dataset #1 progressively type–II censored

We have taken dataset #1 (see Tab. 9/2), consisting of Xi
iid∼ We(0, 100, 2.5); i = 1, 2, . . . , 20 and

generated a progressively type–II censored sample with the following observations and censoring

scheme:

i 1 2 3 4

xi 35 38 81 99

ri 3 3 5 5

The ML estimates according to (11.61a,b) and with m = 4 are

ĉ = 2.4347, b̂ = 146.5101.

b̂ is a rather bad estimate, compared with the true value b = 100, whereas ĉ compares rather well

with to the true value c = 2.5.

To find a 95% confidence interval for c according to (11.63a), we need the percentiles

F6,2,0.025 = 1.3774 and F6,2,0.975 = 39.3

and get

2.1646 ≤ c ≤ 5.4725.

To obtain a 95% joint confidence region for b and c, we need the following percentiles:

F6,2,0.0127 = 0.1015, F6,2,0.9873 = 78.1,

χ2
8,0.0127 = 1.7687, χ2

8,0.9873 = 19.4347.
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The 95% joint confidence region according to (11.64a,b) is determined by the following two in-

equalities:

0.4275 ≤ c ≤ 6.1626,




2
4∑

i=1

(ei + 1)xc
i

19.4347




1/c

≤ b ≤




2
4∑

i=1

(ei + 1)xc
i

1.7687




1/c

.

In order to clearly see the shape of this confidence region, logarithmic scaling has been used for the

scale parameter b in Fig. 11/7. The region is wide when c is small and gets smaller with c increasing.

It is also wide when b is small and becomes smaller the greater b.

Figure 11/7: 95% joint confidence region for c and log b

11.8 Randomly censored samples

When the censoring variate and the lifetime variate are independent and have no parameters

in common, we have a rather simple likelihood function; see (8.25f). We can simplify

this likelihood function even more by separately indexing the data. The failure times are

denoted by xi with i running from 1 to m; the censoring times are denoted by xj with j
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running from 1 to k. Then the likelihood function turns out to be

L(θ |x) = C

m∏

i=1

f(xi |θ)
k∏

j=1

[
1 − F (xj |θ)

]
, (11.65)

which is the same as (11.58a), the likelihood function of a progressively type–I censored

sample with Tj replaced by the censoring time xj and ej = 1 ∀ j. Thus the formulas of

Sect. 11.7.1 apply to randomly censored samples as well.
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Methods of moments

Estimation of the parameters of a parametric distribution using moments is perhaps the

oldest method. The concept of statistical moments was introduced by KARL PEARSON

(1857 – 1936), and he advocated its use in parameter estimation. Its drawback compared

with other techniques, e.g., maximum likelihood or least squares, is that it is applicable to

only uncensored samples. On the other hand, the asymptotic variance–covariance matrix

of ML estimators in the three–parameter case exists only if c > 2, whereas this matrix can

be given for all values of c when estimation is done by moments. The moment estimators

of the WEIBULL parameters cannot be given in closed form as is the case with nearly all

competing estimation techniques.

This chapter is organized as follows: Sect. 12.1 reports on the traditional method of mo-

ments. The moments are of integral order, and we use as many moments as there are

parameters to be estimated. In the three–parameter case the equation involving the third

sample moment may be replaced by some other functional relationship giving rise to modi-

fied methods of moments (Sect. 12.2). Sections 12.3 through 12.5 deal with methods based

on alternative kinds of moments. All moments used in this chapter are those of the original

WEIBULL variate. We may also find estimators of the WEIBULL parameters which are

based on the moments of the log–transformed WEIBULL variate, but these are discussed in

Sect. 13.4.1.

12.1 Traditional method of moments

When the distribution function of a variate depends on m parameters θ1, . . . , θm, collected

in the vector θ, the moments of this variate will also depend on these parameters. Taking

µ′r = E(Xr), r a non–negative integer, these moments about zero will be functions of θ:

µ′r = gr(θ); r = 1, 2, . . . (12.1a)

Now we write down — starting at r = 1 — as many different moments as there are param-

eters to be estimated.

µ′1 = g1(θ)
...

µ′m = gm(θ).





(12.1b)

Then we optimally estimate the population moments µ′r by their corresponding sample

moments:

µ̂′r =
1

n

n∑

i=1

Xr
i . (12.1c)
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By equating µ′r to µ̂′r the moment estimator θ̂ follows as the solution of the system

µ̂′1 = g1(θ̂)
...

µ̂′m = gm(θ̂).





(12.1d)

Unlike ML estimation, linear estimation or minimum distance estimation (see Chapter 13),

the method of moments is not an optimizing technique. Moment estimators are always

consistent, asymptotically normal, but sometimes not efficient and not sufficient. It is even

possible to get non–plausible estimates, e.g., â > x1:n in the three–parameter WEIBULL

distribution.

12.1.1 Two-parameter WEIBULL distribution1

We will present three different ways to estimate b and c when X ∼ We(0, b, c). The first

approach, due to MIHRAM (1977), is built upon

µ = µ′1 = E(X) = bΓ(1 + 1/c) (12.2a)

and

µ′2 = E
(
X2
)

= b2 Γ(1 + 2/c). (12.2b)

The other two approaches also use (12.2a), but instead of (12.2b) BLISCHKE/SCHEUER

(1986) take the squared coefficient of variation and NEWBY (1980) takes the simple coef-

ficient of variation.

MIHRAM’s approach

The following moment ratio

R(c) =

[
E(X)

]2

E
(
X2
) =

Γ2(1 + 1/c)

Γ(1 + 2/c)
(12.3a)

is independent of the scale parameter b. The sample statistic

R̂ =

( n∑
i=1

xi/n
)2

n∑
i=1

x2
i /n

(12.3b)

equated to R(c) gives a unique2 estimate ĉ of c.

ϕ(c) = R(c) − R̂ = 0 (12.3c)

can be solved for c ≡ ĉ by using

1 Suggested reading for this section: BLISCHKE/SCHEUER (1986), MIHRAM (1977), NEWBY (1980,

1982).

2 R(c) is a monotone and decreasing function of c, see Fig. 12/1
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• a table (see Tab. 12/1) or

• a graph of R(c) versus c (see Fig. 12/1) or

• the NEWTON–RAPHSON method

ĉp+1 = ĉp −
ϕM (ĉp)

ϕ′
M (ĉp)

; p = 0, 1, 2, . . .

with

ϕ′
M (c) = −2Γ2(1 + 1/c)ψ(1 + 1/c)

c2 Γ(1 + 2/c)
. (12.3d)

With ĉ we find from (12.2a)

b̂ =
x

Γ(1 + 1/ĉ )
. (12.3e)

Monte Carlo analysis shows that c is underestimated by ĉ and there is a tendency of the

bias and the standard deviation of ĉ to diminish with n increasing. A comparison of the

distribution of ĉ with that of the MLE of c shows remarkable similarities whenever c > 1.

Figure 12/1: R(c) = Γ2(1 + 1/c)
/
Γ(1 + 2/c) versus c
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Table 12/1: R(c) = Γ2(1 + c/1)
/
Γ(1 + 2/c) versus c

c R(c) c R(c) c R(c) c R(c)

0.1 0.0000 2.2 0.8129 5.2 0.9534 8.2 0.9794
0.2 0.0040 2.4 0.8354 5.4 0.9564 8.4 0.9803
0.3 0.0331 2.6 0.8542 5.6 0.9591 8.6 0.9811
0.4 0.0920 2.8 0.8700 5.8 0.9616 8.8 0.9819
0.5 0.1667 3.0 0.8833 6.0 0.9638 9.0 0.9827

0.6 0.2445 3.2 0.8947 6.2 0.9659 9.2 0.9833
0.7 0.3186 3.4 0.9046 6.4 0.9677 9.4 0.9840
0.8 0.3863 3.6 0.9131 6.6 0.9695 9.6 0.9846
0.9 0.4467 3.8 0.9205 6.8 0.9711 9.8 0.9852
1.0 0.5000 4.0 0.9270 7.0 0.9725 10.0 0.9857

1.2 0.5881 4.2 0.9328 7.2 0.9739 10.2 0.9862
1.4 0.6562 4.4 0.9379 7.4 0.9752 10.4 0.9867
1.6 0.7095 4.6 0.9424 7.6 0.9763 10.6 0.9872
1.8 0.7516 4.8 0.9465 7.8 0.9774 10.8 0.9876
2.0 0.7854 5.0 0.9502 8.0 0.9785 11.0 0.9881

BLISCHKE/SCHEUER’s approach

The squared coefficient of variation of the two–parameter WEIBULL distribution depends

only on c and is

σ2

µ2
=

Γ(1 + 2/c)

Γ2(1 + 1/c)
− 1. (12.4a)

ĉ is found by solving

φBS(c) =
σ2

µ2
− 1 − s2

x2 = 0, (12.4b)

by using either a table (see Tab. 12/2) or a graphical aid (see Fig. 12/2) or iteratively by

means of the NEWTON–RAPHSON formula

ĉp+1 = ĉp −
ϕBS(ĉp)

ϕ′
BS(ĉp)

; p = 0, 1, 2, . . . ;

where

ϕ′
BS(c) = −2Γ(1 + 2/c)ψ(1 + 2/c)

c2 Γ2(1 + 1/c)
− 1. (12.4c)

b̂ is found with ĉ from (12.4b) using (12.3e).
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Figure 12/2: σ2
/
µ2 = Γ(1 + 2/c)

/
Γ2(1 + 1/c) − 1 versus c

Table 12/2: σ2
/
µ2 = Γ(1 + 2/c)

/
Γ2(1 + 1/c) − 1 versus c

c σ2/µ2 c σ2/µ2 c σ2/µ2 c σ2/µ2

0.1 184.8 103 2.2 0.2302 5.2 0.0488 8.2 0.0210
0.2 251.0 2.4 0.1970 5.4 0.0456 8.4 0.0201
0.3 29.24 2.6 0.1707 5.6 0.0426 8.6 0.0192
0.4 9.865 2.8 0.1495 5.8 0.0400 8.8 0.0184
0.5 5.000 3.0 0.1321 6.0 0.0376 9.0 0.0177

0.6 3.091 3.2 0.1177 6.2 0.0353 9.2 0.0169
0.7 2.139 3.4 0.1055 6.4 0.0333 9.4 0.0163
0.8 1.589 3.6 0.0952 6.6 0.0315 9.6 0.0156
0.9 1.239 3.8 0.0864 6.8 0.0298 9.8 0.0150
1.0 1.000 4.0 0.0787 7.0 0.0282 10.0 0.0145

1.2 0.7004 4.2 0.0721 7.2 0.0268 10.2 0.0139
1.4 0.5238 4.4 0.0662 7.4 0.0255 10.4 0.0134
1.6 0.4095 4.6 0.0611 7.6 0.0242 10.6 0.0130
1.8 0.3305 4.8 0.0565 7.8 0.0231 10.8 0.0125
2.0 0.2732 5.0 0.0525 8.0 0.0220 11.0 0.0121

θ̂ =
(
b̂, ĉ
)

is asymptotically normal and the asymptotic variance–covariance matrix fol-

lows from standard asymptotic theory and from a result concerning the JACOBIAN of the
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inverse of a transformation. Let

ĉ = h1

(
µ̂, σ̂2

)
,

b̂ = h2

(
µ̂, σ̂2

)

denote the implicit solutions of (12.4b) and of b̂ = µ̂
/
Γ(1 + 1/ĉ ). We get

Var


ĉ
b̂


 = DΣD′, (12.5a)

where

D =




∂h1

∂µ̂

∂h1

∂σ̂2

∂h2

∂µ̂

∂h2

∂σ̂2


 ,

and

Σ = Var


 µ̂

σ̂2


 =




σ2

n

µ3

n
µ3

n

1

n

[
µ4 −

n− 3

n− 1
σ4

]


 (12.5b)

with3

σ2 = µ2 = b2
[
Γ2 − Γ2

1

]
,

µ3 = b3
[
Γ3 − 3Γ2 Γ1 + 2Γ3

1

]
,

µ4 = b4
[
Γ4 − 4Γ3 Γ1 + 6Γ2 Γ2

1 − 3Γ4
1

]
.

The matrixD is obtained as the inverse of derivatives of µ̂ and σ̂2 with respect to b̂ and ĉ :

D =




∂µ̂

∂ĉ

∂µ̂

∂b̂

∂σ̂2

∂ĉ

∂σ̂2

∂b̂




−1

. (12.5c)

The derivatives in (12.5c) are as follows:4

∂µ̂

∂ĉ
= − b̂

ĉ2
Γ̂1 ψ̂1;

∂µ̂

∂b̂
= Γ̂1;

∂σ̂2

∂ĉ
=

2 b̂2

ĉ2

(
Γ̂2

1 ψ̂1 − Γ̂2 ψ̂2

)
;

∂σ̂2

∂b̂
= 2 b̂

(
Γ̂2 − Γ̂2

1

)
.

3 We write Γr = Γ(1 + r/c) for short.

4 We write bΓr = (1 + r/bc) and bψr = (1 + r/bc) for short.
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NEWBY’s approach

NEWBY (1980) takes the coefficient of variation, which is independent of b, to estimate c
by solving

ϕN (c) =
σ

µ
=

√
Γ(1 + 2/c) − Γ2(1 + 1/c)

Γ(1 + 1/c)
− s

x
= 0 (12.6a)

using either a graph (see Fig. 12/3) or a table (see Tab. 12/3) or by applying the NEWTON–

RAPHSON algorithm

ĉp+1 = ĉp −
ϕN (ĉp)

ϕ′
N (ĉp)

; p = 0, 1, 2, . . .

with

ϕ′
N (c) =

Γ2(1 + 1/c)ψ(1 + 1/c) − Γ(1 + 2/c)ψ(1 + 2/c)

c2 Γ(1 + 1/c)
√

Γ(1 + 2/c) − Γ2(1 + 1/c)
. (12.6b)

b̂ is found to be

b̂ =
x

Γ(1 + 1/ĉ)
.

Figure 12/3: σ/µ =
√

Γ(1 + 2/c) − Γ2(1 + 1/c)
/

Γ(1 + 1/c) versus c

The variance–covariance matrix of the asymptotically normal estimator θ̂ = (ĉ, b̂ )′ —

based on the same ideas as in BLISCHKE/SCHEUER’s approach — is found by NEWBY to

be

C =
1

n
T H T , (12.7a)
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Table 12/3: σ/µ =
√

Γ(1 + 2/c) − Γ2(1 + 1/c)
/

Γ(1 + 1/c) versus c

c σ/µ c σ/µ c σ/µ c σ/µ

0.1 429.8 2.2 0.4798 5.2 0.2210 8.2 0.1450

0.2 15.84 2.4 0.4438 5.4 0.2135 8.4 0.1417

0.3 5.408 2.6 0.4131 5.6 0.2065 8.6 0.1387

0.4 3.141 2.8 0.3866 5.8 0.1999 8.8 0.1357

0.5 2.236 3.0 0.3634 6.0 0.1938 9.0 0.1329

0.6 1.758 3.2 0.3430 6.2 0.1880 9.2 0.1301

0.7 1.462 3.4 0.3248 6.4 0.1826 9.4 0.1275

0.8 1.261 3.6 0.3085 6.6 0.1774 9.6 0.1250

0.9 1.113 3.8 0.2939 6.8 0.1726 9.8 0.1226

1.0 1.000 4.0 0.2805 7.0 0.1680 10.0 0.1203

1.2 0.8369 4.2 0.2684 7.2 0.1637 10.2 0.1181

1.4 0.7238 4.4 0.2573 7.4 0.1596 10.4 0.1159

1.6 0.6399 4.6 0.2471 7.6 0.1556 10.6 0.1139

1.8 0.5749 4.8 0.2377 7.8 0.1519 10.8 0.1119

2.0 0.5227 5.0 0.2291 8.0 0.1484 11.0 0.1099

where

T =


1 0

0 b


 , H =


h11 h12

h12 h22


 .

The standardized asymptotic variance–covariance matrixH depends only on c and is given

in Tab. 12/4 for selected values of c.

Thus we have with respect to NEWBY’s estimators:

Var
(
ĉ
)

=
1

n
h11(c), (12.7b)

Var
(
b̂
)

=
b2

n
h22(c), (12.7c)

Cov
(
ĉ, b̂
)

=
b

n
h12(c). (12.7d)

NEWBY (1980) has shown that the joint asymptotic efficiency5 of his estimator compared

with that of the MLEs is above 69% for all values of c greater than unity. A Monte Carlo

comparison of the method of moments to the ML method has been done by SAYLOR

(1977).

5 This efficiency is the ratio of the determinants of the variance–covariance matrices.
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Table 12/4: Elements of the standardized asymptotic variance–covariance matrix of

NEWBY’s moment estimators

c h11 h22 h12

0.4 2.7056 112.0224 16.7355

0.6 1.1332 6.4539 2.0048

0.8 0.9459 2.1008 0.7092

1.0 1.0000 1.1787 0.4228

1.2 1.1603 0.7884 0.3294

1.4 1.3957 0.5718 0.2922

1.6 1.6973 0.4326 0.2755

1.8 2.0626 0.3434 0.2675

2.0 2.4918 0.2778 0.2634

2.2 2.9858 0.2295 0.2611

2.4 3.5459 0.1928 0.2598

2.6 4.1736 0.1642 0.2588

2.8 4.8703 0.1416 0.2579

3.0 5.6371 0.1233 0.2571

3.2 6.4756 0.1084 0.2563

3.4 7.3867 0.0960 0.2553

3.6 8.3715 0.0857 0.2543

3.8 9.4311 0.0769 0.2532

4.0 10.5663 0.0694 0.2520

4.2 11.7780 0.0630 0.2508

4.4 13.0668 0.0574 0.2495

Source: NEWBY (1982, p. 90) — Reprinted with permission from Technometrics.

Copyright 1982 by the American Statistical Association. All rights reserved.

Example 12/1: Moment estimates for dataset #1

Dataset #1 consists of n = 20 uncensored observation from We(0, 100, 2.5) (see Tab. 9/2). Using

MIHRAM’s estimators (see (12.3c,e)), we have ĉ = 2.6094 and b̂ = 99.0086. The formulas of

BLISCHKE/SCHEUER give ĉ = 2.5350 and b̂ = 99.0898. NEWBY’s formulas lead to ĉ = 2.5351

and b̂ = 99.0897 and interpolating for ĉ in Tab. 12/4 to an estimated variance–covariance matrix

Ĉ =
1

20


1 0

0 99.0897




3.9699 0.1735

0.1735 0.2591




1 0

0 99.0897




=


0.1985 0.8596

0.8596 127.2021




 V̂ar

(
ĉ
)

Ĉov
(
ĉ, b̂
)

Ĉov
(
ĉ, b̂
)

V̂ar
(
b̂
)


 .
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12.1.2 Three-parameter WEIBULL distribution6

We need three moments to estimate the parameters a, b and c of We(a, b, c). These mo-

ments are as follows:
µ = E(X) = a+ bΓ1, (12.8a)

to estimate a as

â = x− b̂ Γ̂1, x =
1

n

n∑

i=1

xi , (12.8b)

using b̂ and ĉ from (12.9b) and (12.10b);

σ =
√

E
[
(X − µ)2

]
= b

√
Γ2 − Γ2

1 (12.9a)

to estimate b as

b̂ =
s√

Γ̂2 − Γ̂2
1

, s2 =
1

n− 1

n∑

i=1

(xi − x)2; (12.9b)

and the skewness coefficient

α3 =
µ3

µ
3/2
2

=
E
[
(X − µ)3

]

{E
[
(X − µ)2

]
}3/2

=
Γ3 − 3Γ2 Γ1 + 2Γ3

1(
Γ2 − Γ2

1

)3/2 (12.10a)

to estimate ĉ by solving7

ϕ(c) = α3 − α̂3 = α3 −

1

n

n∑
i=1

(xi − x)3

[
1

n

n∑
i=1

(xi − x)2
]3/2 = 0. (12.10b)

The solution of (12.10b) is found by using a graph of α3(c) versus c (see Fig.2/23), or a

table (see Tab. 12/5), or by applying the NEWTON–RAPHSON method with

ϕ′(c) =
1

c2(Γ2 − Γ2
1)

5/2

{[
− 3Γ′

3 + 6Γ′
2 Γ1 + 3Γ′

1 Γ2 − 6Γ′
1 Γ2

1

][
Γ2 − Γ2

1

]
+

[
3Γ′

2 − 3Γ′
1 Γ1

][
Γ3 − 3Γ2 Γ1 + 2Γ3

1

]}
.





(12.10c)

6 Suggested reading for this section: BOWMAN/SHENTON (1987, 2001), DUBEY (1966b,d,g; 1967b–d),

HEO/BOES/SALAS (2001), NEWBY (1984), RAVENIS (1964), SEN/PRABHASHANKER (1980).

7 The standardized moments

αk =
µk

µ
k/2
2

; k = 0, 1, . . .

are independent of a and b for k ≥ 3 and each of them can be used to estimate c (see RAVENIS (1964))

for k = 3 and 4 and DUBEY (1966g) for k = 3, 4 and 5)). It is not recommended to take k ≥ 4 because

the sampling variability of bαk increases with k and because αk is not a monotone function of c for k ≥ 4
(see Fig. 2/23).
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HEO/SALAS/XIM (2001) have found an approximating equation to solve (12.10b):

ĉ=−0.729268−0.338679 α̂3 + 4.96077 (α̂3 + 1.14)−1.0422 + 0.683609
[
ln(α̂3 + 1.14)

]2
,

(12.10d)

which is valid for −1.08 ≤ α̂3 ≤ 6.0 (0.52 ≤ ĉ ≤ 100) with a determination coefficient

R2 = 0.999999. It is even possible to find â, b̂ and ĉ based on x, s and α̂3 by using the

nomogram of SEN/PRABHASHANKER (1980).

Table 12/5: α3(c) versus c

c α3(c) c α3(c) c α3(c) c α3(c)

0.1 6.990 · 104 2.2 0.5087 5.2 −0.2810 8.2 −0.5461
0.2 190.1 2.4 0.4049 5.4 −0.3062 8.4 −0.5579
0.3 28.33 2.6 0.3155 5.6 −0.3299 8.6 −0.5692
0.4 11.35 2.8 0.2373 5.8 −0.3522 8.8 −0.5802
0.5 6.619 3.0 0.1681 6.0 −0.3733 9.0 −0.5907

0.6 4.593 3.2 0.1064 6.2 −0.3932 9.2 −0.6008
0.7 3.498 3.4 0.0509 6.4 −0.4121 9.4 −0.6105
0.8 2.815 3.6 0.0006 6.6 −0.4300 9.6 −0.6199
0.9 2.345 3.8 −0.0453 6.8 −0.4470 9.8 −0.6289
1.0 2.000 4.0 −0.0872 7.0 −0.4632 10.0 −0.6376

1.2 1.521 4.2 −0.1259 7.2 −0.4786 10.2 −0.6461
1.4 1.198 4.4 −0.1615 7.4 −0.4933 10.4 −0.6542
1.6 0.9620 4.6 −0.1946 7.6 −0.5074 10.6 −0.6621
1.8 0.7787 4.8 −0.2254 7.8 −0.5209 10.8 −0.6697
2.0 0.6311 5.0 −0.2541 8.0 −0.5337 11.0 −0.6771

NEWBY(1984) gives the asymptotic variance–covariance matrix:

Var




ĉ

b̂

â


 =

1

n
T H T (12.11)

where

T =




1 0 0

0 b 0

0 0 b




The elements hij of the symmetric standardized variance–covariance matrix H are listed

in Tab. 12/6. BOWMAN/SHENTON (1987, 2001) have given series expressions for the

moments of these moment estimators.
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Table 12/6: Elements of the standardized variance–covariance matrix H in the three-

parameter case

c h11 h12 h13 h22 h23 h33

0.4 104.3561 1098.2257 −1271.4367 11601.5710 −13474.1443 15735.0050
0.6 17.3525 66.0829 −43.8139 258.1763 −171.0589 115.4578
0.8 9.5787 18.3163 −11.2638 37.6456 −22.5719 14.2566
1.0 8.0000 9.3823 −6.0000 12.5034 −7.5367 5.0000
1.2 8.0002 6.5716 −4.4690 6.4185 −4.0137 2.8570

1.4 8.7500 5.5130 −3.9775 4.2454 −2.7919 2.1203
1.6 10.0459 5.1722 −3.9274 3.2923 −2.2884 1.8326
1.8 11.8587 5.2177 −4.1353 2.8389 −2.0836 1.7394
2.0 14.2302 5.5251 −4.5372 2.6350 −2.0322 1.7520
2.2 17.2420 6.0460 −5.1130 2.5768 −2.0747 1.8337

2.4 21.0050 6.7649 −5.8617 2.6156 −2.1834 1.9676
2.6 25.6553 7.6828 −6.7925 2.7265 −2.3446 2.1455
2.8 31.3530 8.8096 −7.9202 2.8957 −2.5513 2.3633
3.0 38.2821 10.1609 −9.2634 3.1158 −2.7997 2.6193
3.2 46.6510 11.7557 −10.8433 3.3825 −3.0881 2.9126

3.4 56.6926 13.6161 −12.6831 3.6932 −3.4158 3.2435
3.6 68.6653 15.7658 −14.8077 4.0469 −3.7828 3.6123
3.8 82.8535 18.2305 −17.2434 4.4431 −4.1894 4.0197
4.0 99.5681 21.0370 −20.0176 4.8817 −4.6363 4.4667
4.2 119.1471 24.2134 −23.1589 5.3630 −5.1242 4.9541

4.4 141.9564 27.7888 −26.6966 5.8876 −5.6539 5.4828
4.6 168.3898 31.7933 −30.6610 6.4560 −6.2264 6.0540
4.8 198.8700 36.2576 −35.0833 7.0690 −6.8425 6.6685
5.0 233.8485 41.2135 −39.9952 7.7274 −7.5031 7.3274

Source: NEWBY (1984, p. 194) — Reprinted with permission from Transactions on Reliability. Copyright 1984

by IEEE. All rights reserved.

Example 12/2: Moment estimates for dataset #2

We take dataset #2 from Tab. 9/9 which is a sample of n = 20 from We(15, 30, 2.5). The empirical

moments are

x = 41.5250, s = 11.0908, α̂3 = 0.3424.

Using (12.10b) we find8 ĉ = 2.5368, which — inserted into (12.9b) — gives b̂ = 29.5855, and b̂, ĉ
together with (12.8b) give â = 15.2651. All three estimates are very close to their true values.

8 (12.10d) gives a rather bad solution: bc = 2.1171.
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12.2 Modified method of moments9

In Sect. 11.3.2.3 we presented several modifications of the maximum likelihood pro-

cedure for the three–parameter case. There we substituted the likelihood equation

∂L(a, b, c)/∂a = 0 by one of five alternative relationships connecting a, b and c. Here

we will substitute the moment equation (12.10b) by one out of three alternatives.10

MME–I

A first modification suggested by COHEN/WHITTEN (1982) consists in equating the popu-

lation median x0.5 to the sample median x̃:

x0.5 − x̃ = 0

resulting in (see (2.57b))

a+ b (ln 2)1/c = x̃. (12.12a)

Elimination of a and b from (12.12a) by means of (12.8b) and (12.9b) yields

s2
(
x− x̃

)2 =
Γ2 − Γ2

1[
Γ1 − (ln 2)1/c

]2 . (12.12b)

The right–hand side of (12.12b) is no monotone function of c (see Fig. 12/4) and conse-

quently the solution of (12.12b) is not unique. Thus, this modification is not be recom-

mended.

Figure 12/4:
[
Γ2 − Γ2

1

]/[
Γ1 − (ln 2)1/c

]2
versus c

9 Suggested reading for this section: BALAKRISHNAN/COHEN (1991, pp. 275–278), COHEN/WHITTEN

(1982), COHEN/WHITTEN/DING (1984), WHITTEN/COHEN(1996).

10 Two of the five alternatives of Sect. 11.3.2.3 are the moment equations for the mean (12.8b) and the

standard deviation (12.9b) and thus are not eligible here.
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MME–II11

In this case we replace (12.10b) by

E
(
X1:n

)
− x1:n = 0;

i.e., the expectation of the first order statistic is equated to the sample minimum. Because

of (5.32d) we get

a+
b

n1/c
Γ1 = x1:n. (12.13a)

Upon elimination of a and b from (12.13a) by means of (12.8b) and (12.9b), we get

s2
(
x− x1:n

)2 =
Γ2 − Γ2

1[(
1 − n−1/c

)
Γ1

]2 , (12.13b)

which can be solved for ĉ either by iteration or by using a table or a graph of
[
Γ2 −

Γ2
1

]/[(
1 − n−1/c

)
Γ1

]2
versus c (see Fig. 12/5). Then b̂ and â are found from (12.9b) and

(12.8b) or from

b̂ =

(
x− x1:n

)
n1/bc

(
n1/bc − 1

)
Γ̂1

(12.13c)

Figure 12/5:
[
Γ2 − Γ2

1

]/[(
1 − n−1/c

)
Γ1

]2
versus c

11 For more details on this modification, see COHEN/WHITTEN/DING (1984).
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and

â =
x1:n n

1/bc − x

n1/bc − 1
. (12.13d)

MME–III12

This modification consists in replacement of (12.10b) by

E
[
F (X1:n)

]
= F (x1:n).

Since E
[
F (X1:n)

]
= 1/(n + 1) and F (x1:n) = 1 − exp

{
−
(
x1:n − a

b

)c}
, we get

(
x1:n − a

b

)c
= − ln

(
n

n+ 1

)
. (12.14a)

Elimination of a and b from (12.14a) by means of (12.8b) and (12.9b) leads to

s2
(
x− x1:n

)2 =
Γ2 − Γ2

1{
Γ1 −

[
− ln

(
n

n+ 1

)]1/c}2 , (12.14b)

which can be solved for ĉ using techniques similar to those employed in the solution of

(12.12b) or (12.13b). A graph of
[
Γ2 − Γ2

1

]/{
Γ1 −

[
− ln(n/(n + 1))

]1/c}2
versus c is

given in Fig. 12/6. ĉ from (12.14b) gives b̂ and â by inserting into (12.9b) and (12.8b) or

from

b̂ =
x− x1:n

Γ̂1 −
[
− ln

(
n

n+ 1

)]1/bc (12.14c)

and

â =

x1:n Γ̂1 − x

[
− ln

(
n

n+ 1

)]1/bc

Γ̂1 −
[
− ln

(
n

n+ 1

)]1/bc . (12.14d)

12 For more detail on this modification see, WHITTEN/COHEN (1996).
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Figure 12/6:
[
Γ2 − Γ2

1

]/
{

Γ1 −
[
− ln

(
n

n+ 1

)]1/c}2

versus c

The asymptotic variance–covariance matrix of the MLEs (see (11.12a–h)) is not strictly

applicable for the modified moment estimators, but simulation studies carried out by CO-

HEN/WHITTEN (1982) disclosed close agreement between simulated variances and cor-

responding asymptotic variances when c > 2. In order to avoid possible computational

difficulties in applications, c should be greater than 2.2.

12.3 W. WEIBULL’s approaches to estimation by moments13

WEIBULL (1961, p. 226) introduced the following class of moments of a continuous vari-

able X having the distribution function F (x):

µr :=

∫ xb

xa

[
1 − F (x)

]r
dx; r = 1, 2, 3, . . . (12.15)

with limits xa, xb chosen according to whether the distribution is complete or truncated.

These moments are named WEIBULL moments or vertical moments. For a three–

13 Suggested reading for this section: CRAN (1988), SCHREIBER (1963), WEIBULL (1961, 1967b).
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parameter WEIBULL distribution, (12.15) turns into

µr =

∫ ∞

a

[
exp

{
−
(
x− a

b

)c}]r
dx

= a+
b

r1/c
Γ1 . (12.16)

The parameters a, b and c are explicit functions of these moments:

a =
µ1 µ4 − µ2

2

µ1 + µ4 − 2µ2

, (12.17a)

b =
µ1 − a

Γ1
, (12.17b)

c =
ln 2

ln
(
µ1 − µ2

)
− ln(µ2 − µ4)

. (12.17c)

Given the ordered sample values x1:n ≤ x2:n ≤ . . . ≤ xn:n, we estimate the distribution

function as

F̂ (x) =





0 for x < x1:n ,

i

n
for xi:n ≤ x < xi+1:n ; i = 1, 2, . . . , n− 1,

1 for x ≥ xn:n,





(12.18a)

and the WEIBULL moments as

mr := µ̂r =

∫ ∞

a

[
1 − F̂ (x)

]r
dx

=
n−1∑

i=0

(
1 − i

n

)r (
xi+1:n − xi:n

)
, x0:n := 0. (12.18b)

It is easily seen that m1 = x. The estimators of a, b and c are obtained from (12.17a–c)

by substituting mr for µr. From (12.17c) and (12.17b) it can be shown that the estimators

ĉ and b̂ are non–positive and hence inadmissible when m2 ≥ (m1 +mn)
/
2. In addition it

is possible that the estimator â is inadmissible by exceeding x1:n. In these cases alternative

methods of estimation have to be used.

CRAN (1988) has found the following properties of the estimators based on mr by Monte

Carlo methods.

• For all (c, n)–combinations studied, â appears to be negatively biased whereas b̂ and

ĉ are positively biased.

• All three estimators show considerable variation. For â and ĉ the variation increases

dramatically as c increases, the pattern of variation of b̂ is a concave–upwards func-

tion of c with a minimum lying between c = 1 and c = 2.
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• â and b̂ as well as â and ĉ are negatively correlated and b̂, ĉ have a positive correla-

tion.

The procedure described above has the following advantages over the conventional method

of moments.

• The sample WEIBULL moments (12.18b) are functions of differences of the obser-

vations, rather than powers and thus are less sensitive to sample variation.

• The parameter estimates can be given in closed form.

• It is easy to decide whether a = 0. For this purpose the estimators of the three–

parameter model are compared with those of the two–parameter model where a = 0:

ĉ ∗ =
ln 2

lnm1 − lnm2
and b̂∗ =

m1

Γ

(
1 +

1

ĉ ∗

) .

If they are reasonably close then it can be assumed that a = 0.

WEIBULL proposed still another type of moments useful to estimate the parameters (see

WEIBULL (1967b)) the moments about the sample minimum:

Rj :=
1

n

n∑

i=1

(
Xi:n −X1:n

)j
; j = 1, 2. (12.19)

As n → ∞, the expected value of R2

/
R2

1 tends to a function φ(c) of the shape parameter

c. Some values of this function are to be found in Tab. 12/7 compiled from WEIBULL

(1967b).

Table 12/7: Limit of the ratio R2

/
R2

1 of moments about the smallest sample value

c φ(c) c φ(c)

0.00 1.0000 0.60 1.3801

0.01 1.0002 0.70 1.5045

0.10 1.0145 0.80 1.6480

0.20 1.0524 0.90 1.8124

0.30 1.1093 1.00 2.0000

0.40 1.1831 1.50 3.3953

0.50 1.2732 2.00 6.0000

By solving φ(c) = R2

/
R2

1, an asymptotic estimator of c can be derived which is markedly

more accurate than the estimator based on central moments when c ≥ 0.5. The asymptotic

efficiency (compared with MLEs) decreases from 97.59% (when c = 0.5) to 60.79% (when

c = 1.00), while that of a central moment estimator decreases from 17.09% to 7.60% over

the same range of values of c; see WEIBULL (1967b, p. 11).
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12.4 Method of probability weighted moments

The probability weighted moment (PWM) of order r of the three–parameter WEIBULL

distribution is given in GREENWOOD et al. (1979) as

Ar = E
{
X [1 − F (x)]r

}

=
1

r + 1

[
a+ b (r + 1)−1/c Γ

(
1 +

1

c

)]
; r = 0, 1, 2, . . . , (12.20)

where A0 = µ′1 = µ. Likewise, the sample PWMs are

Â0 =
1

n

n∑
i=1

xi

Âr =
1

n

n∑
i=1

xi
(n− i) (n − i− 1) · · · (n − i− r + 1)

(n− 1) (n − 2) · · · (n− r)
; r = 1, 2, . . .





(12.21)

From (12.20) the first three population PWMs are

A0 = a+ bΓ1, (12.22a)

A1 =
[
a+ b 2−1/c Γ1

]/
2, (12.22b)

A2 =
[
a+ b 3−1/c Γ1

]/
3. (12.22c)

By substituting these three PWMs by the corresponding sample PWMs Â0, Â1 and Â2,

the PWM estimator of the shape parameter c is the solution of

3−1/c − 1

2−1/c − 1
=

3 Â2 − Â0

2 Â1 − Â0

. (12.23a)

(12.23a) can be solved numerically for c by using the NEWTON–RAPHSON algorithm with

g(c) =
3−1/c − 1

2−1/c − 1
− 3 Â2 − Â0

2 Â1 − Â0

(12.23b)

and

g′(c) =
1

c2 (2−1/c − 1)2

[
3−1/c (2−1/c − 1) ln 3 + 2−1/c (3−1/c − 1) ln 2

]
. (12.23c)

The PWM estimators of b and a follow with ĉ from (12.23a) as

b̂ =
Â0 − 2A1(

1 − 2−1/bc) Γ̂1

(12.23d)

and

â = Â0 − b̂ Γ̂1 . (12.23e)

For a two–parameter WEIBULL distribution (a = 0), the PWM estimators may be obtained

from (12.22a) as

ĉ =
ln 2

ln
(
Â0

/
Â1

) (12.24a)
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and

b̂ =
Â0

Γ̂1

. (12.24b)

HEO/BOES/SALAS (2001) have derived the rather difficult variance–covariance matrix of

the PWM estimators.

12.5 Method of fractional moments

The moments used in the previous sections have had an integer order r. There exist some

papers14 which allow for fractional order
(
r ∈ R+

)
of moments to estimate the WEIBULL

parameters b and c. In these papers the orders r1 and r2 of the two moments are chosen by

applying some optimizing criterion so that the orders found depend on that criterion.

RAFIQ/AHMAD (1999) decided to minimize the determinant D of the asymptotic variance–

covariance matrix of the moment estimators. Let r1 and r2 be the order of the two moments;

then

D =
kr1 kr2 − kr1 − kr2 − k2

r12 + 2 kr12
b2 n2 (a1 r2 − b1 r1)2

, (12.25)

where

a1 = −r1
c2
ψ(1 + r1/c), b1 = −r2

c2
ψ(1 + r2/c),

kr1 =
Γ(1 + 2 r1/c)

Γ2(1 + r1/c)
, kr2 =

Γ(1 + 2 r2/c)

Γ2(1 + r2/c)
,

kr12 =
Γ
(
1 + [r1 + r2]/c

)

Γ(1 + r1/c) Γ(1 + r2/c)
.

For the values of r1 and r2, which minimize D, the ratios r1
/
c and r2

/
c are constant,

regardless of the values of r1, r2 and c and hence the ratios r1
/
r2 or r2

/
r1: r1

/
c ≈ 0.193,

r2
/
c ≈ 1.186 and r2

/
r1 ≈ 6.15. The value of the scale parameter b is of no importance.

The overall asymptotic relative efficiency (compared to ML) in this approach is higher for

the method of fractional moments than for the traditional method of moments using r1 = 1
and r2 = 2.

MUKHERJEE/SASMAL (1984) have found the optimal orders r1 and r2 so that the overall

relative efficiency of the moment estimators compared with the MLEs is maximized. This

efficiency turns out to be a function of c alone. Tab. 12/8 shows that it is recommendable

to use fractional moments of orders less than 1 when c < 1. The results, valid for the

traditional method of moments, are found in the row with r1 = 1 and r2 = 2.

14 See MUKHERJEE/SASMAL (1984) and RAFIG/AHMAD (1999)
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Table 12/8: Overall relative efficiency of moment estimators compared with MLEs

r1 r2 c = 0.25 c = 0.50 c = 0.75 c = 1.00 c = 2.00 c = 4.00

0.10 0.20 0.9852 0.8519 0.2518 0.6926 0.5946 0.5562

0.25 0.50 0.6079 0.9759 0.9750 0.9075 0.7381 0.6211
0.75 0.3800 0.9059 0.9937 0.9650 0.1030 0.6572
1.00 0.2154 0.7951 0.9743 0.9913 0.8570 0.6974
1.25 0.6108 0.6672 0.9248 0.9906 0.9007 0.7301

0.50 0.75 0.0067 0.7400 0.9810 0.9845 0.8635 0.7047
1.00 0.0889 0.6079 0.8829 0.9759 0.9076 0.7382
1.25 0.0436 0.4865 0.8146 0.9479 0.9412 0.7723
1.50 0.0206 0.3800 0.7333 0.9059 0.9658 0.8032
1.75 0.0145 0.5674 0.6463 0.8539 0.9821 0.8314
2.00 0.0037 0.2154 0.5644 0.7951 0.9923 0.1570

0.75 1.00 0.0158 0.4504 0.7679 0.9311 0.9411 0.7778
1.25 0.0057 0.3434 0.7073 0.8816 0.9662 0.8008
1.50 0.0070 0.2584 0.6380 0.8243 0.9808 0.8356
1.75 0.0030 0.1916 0.5225 0.7631 0.9881 0.8614
2.00 0.0013 0.1398 0.4511 0.6998 0.9888 0.8046

1.00 1.25 0.0052 0.2401 0.5885 0.8072 0.9793 0.8380
1.50 0.0024 0.1737 0.1506 0.7400 0.9845 0.8635
1.75 0.0010 0.1248 0.0624 0.6731 0.9830 0.8860
2.00 0.0004 0.0889 0.1308 0.6079 0.9759 0.9075
2.50 0.0546 0.0436 0.2426 0.4865 0.9479 0.9693

1.50 2.00 0.0000 0.0353 0.2215 0.4504 0.9311 0.9428
2.50 0.0000 0.0159 0.1383 0.3434 0.8816 0.9662

2.00 2.50 0.0003 0.0067 0.0315 0.2401 0.8072 0.9793
3.00 0.0000 0.0023 0.0095 0.1737 0.7400 0.9845

3.00 4.00 0.0000 0.0000 0.0016 0.0353 0.4604 0.9311
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More classical approaches and

comparisons

The estimation procedures contained in this chapter are generally much easier to apply than

those of the previous chapters because they are mostly given by analytic formulas. The

estimates can be used as quick rough estimates or as starting points for an iterative proce-

dure employed in deriving “better” estimates such as maximum likelihood. Sections 13.1

through 13.4 deal with methods which give estimators for all the parameters of either a

two–parameter or a three–parameter WEIBULL distribution. Sect. 13.5 shows how to es-

timate a single parameter. We finish this chapter by comparing classical approaches to

parameter estimation (Sect. 13.6).

13.1 Method of percentiles1

The design of the method of percentiles or method of quantiles is similar to the method

of moments (see Sect. 12.1), the difference being that here the role of the moments is taken

by percentiles. For any given cumulative probability P, 0 < P < 1, the 100P% percentile

xP of a WEIBULL population is

xP = a+ b
[
− ln(1 − P )

]1/c
. (13.1a)

For a sample of size n we declare the 100P% percentile x̂P to be

x̂P =





xnP :n, if nP is an integer,

x[nP ]+1:n, if nP is not an integer.



 (13.1b)

In order to derive estimators we have to set up as many population percentiles — of different

order, of course — as there are parameters to be estimated. These population percentiles are

functions of the parameters. After equating them to the sample percentiles, the percentile

(or quantile) estimators follow as the solutions of these equations.

13.1.1 Two-parameter WEIBULL distribution

In the two parameter case (a = 0) we find from (13.1a)

ln
[
− ln(1 − P )

]
= c (ln xP − ln b) . (13.2a)

1 Suggested reading for this section: DUBEY (1966g, 1967c,e,f), SCHMID (1997), ZANAKIS (1979), ZA-

NAKIS/MANN (1982).
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For two real numbers P1 and P2 such that 0 < P1 < P2 < 1, we have

ln
[
− ln(1 − Pi)

]
= c (lnxPi − ln b); i = 1, 2. (13.2b)

Solving (13.2b) for c gives

c =
ln
[
− ln(1 − P1)

]
− ln

[
− ln(1 − P2)

]

lnxP1 − lnxP2

. (13.2c)

Therefore, a percentile estimator of c, based on two ordered sample values, is:

ĉ =
ln
[
− ln(1 − P1)

]
− ln

[
− ln(1 − P2)

]

ln x̂P1 − ln x̂P2

. (13.2d)

To simplify the notation we rewrite (13.2d) as

ĉ =
k

ln y1 − ln y2
, (13.2e)

where

k := ln
[
− ln(1 − P1)

]
− ln

[
− ln(1 − P2)

]
, (13.2f)

yi := x̂Pi ; i = 1, 2. (13.2g)

The crucial point is the selection of P1 and P2. We shall determine P1 and P2 such that the

variance of ĉ is minimum. Now ĉ is asymptotically normal with mean c and variance

Var
(
ĉ
)

=
c2

n k2

[
q1
k2
1

+
q2
k2
2

− 2
q1
k1 k2

]
, (13.2h)

where

qi :=
Pi

1 − Pi
; i = 1, 2; (13.2i)

ki := − ln(1 − Pi); i = 1, 2. (13.2j)

The minimizing values of P1 and P2 are found by iteration and are

P ∗
1 (c) = 0.167307, P ∗

2 (c) = 0.973664, (13.2k)

and the minimum variance, which is independent of b, is

min
P1,P2

Var
(
ĉ
)

=
0.916275 c2

n
. (13.2l)

We have shown that the 17th and the 97th sample percentiles asymptotically yield the

percentile estimator of the shape parameter c in a class of two–observation percentile es-

timators, where b is unknown. Because the MLE of c has a variance of c2
/[
nψ′(1)

]
≈

0.6079 c2/n (see (11.17)), we have an efficiency of about 66%.
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From (13.2b) we may form a percentile estimator for the scale parameter in three obvious

ways:

b̂1 = exp

{
ln y1 −

ln
[
− ln(1 − P1)

]

ĉ

}
, (13.3a)

b̂2 = exp

{
ln y2 −

ln
[
− ln(1 − P2)

]

ĉ

}
, (13.3b)

b̂3 = exp

{
1

2

2∑

i=1

[
ln yi −

ln
[
− ln(1 − Pi)

]

ĉ

]}
, (13.3c)

where ĉ is given by (13.2d). It is easily seen that (13.3a–c) are identical and that they can

be expressed more conveniently as

b̂ = exp
{
w ln y1 + (1 − w) ln y2

}
, (13.3d)

where

w := 1 − ln k1

k
. (13.3e)

We select P1 and P2 so as to minimize the variance of (13.3d). b̂ is asymptotically normal

with mean b and variance

Var
(
b̂
)

=
b2

n c2

{
P1

1 − P1

w

k1

[
w

k1
+

2 (1 − w)

k2

]
+

P2

1 − P2

(1 − w)2

k2
2

}

=
b2

n c2 k2

{
q1
k − ln k1

k1

[
k − ln k1

k1
+

2 ln k1

k2

]
+ q2

ln2 k1

k2
2

}
. (13.3f)

The minimizing values of P1 and P2 again have to be found by iteration:

P ∗
1 (b) = 0.3977778, P ∗

2 (b) = 0.821111. (13.4a)

The corresponding minimum variance of b̂ is

min
P1,P2

Var
(
b̂
)

=
1.359275 b2

n c2
. (13.4b)

We have found that 40th and the 82nd sample percentiles asymptotically yield the best

percentile estimator of the scale parameter b, when the shape parameter is unknown, in a

class of two–observation percentile estimators. The efficiency of b̂ with (13.4a) is about

82% when compared with the MLE of b, which has a variance of b2
(
1 + ψ2(2)

ψ′(1)

)/
n c2 ≈

1.1087 b2
/
(n c2).

Notice, that the pairs
{
P ∗

1 (c), P ∗
2 (c)

}
for optimum ĉ and

{
P ∗

1 (b), P ∗
2 (b)

}
for optimum b̂

are not identical, i.e. we have to use four sample percentiles. If we want to use only the same

two sample percentiles for estimating both b and c, the orders P ∗
1 (b, c) and P ∗

2 (b, c) are
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determined such that the generalized variance (the determinant of the asymptotic variance–

covariance matrix) is minimum. This matrix has the elements Var
(
b̂
)

and Var
(
ĉ
)

given by

(13.3f) and (13.2h) and

Cov
(
b̂, ĉ
)

=
b

n k2

{
q1
k1

(
k − ln k1

k2
− ln k1

k2
− k − ln k1

k1

)
+
q2 ln k1

k2
2

}
. (13.5a)

DUBEY (1967e, p. 125) gives the minimizing orders as

P ∗
1 (b, c) = 0.238759, P ∗

2 (b, c) = 0.926561 (13.5b)

and a corresponding minimum generalized variance of 1.490259 b2/n2. The joint asymp-

totic efficiency of the percentile estimators based on the 24th and 93rd percentiles is about

41% when compared with their MLEs whose asymptotic generalized variance, i.e., the

determinant of the matrix given in (11.17), is 0.6079 b2/n2.

Excursus: Percentile estimator of c when b is known and of b when c is known

When only one of the two parameters is unknown, we need one percentile–equation for estimation.

c to be estimated assuming b = b0 to be known

A single–observation percentile estimator of c is

ĉ(b0) =
ln
[
− ln(1 − P )

]

ln x̂P − ln b0
. (13.6a)

The variance of ĉ(b0) is

Var
(
ĉ | b0

)
= c2 P

/
n (1 − P ) ln2(1 − P ) ln2[− ln(1 − P )]. (13.6b)

The minimum variance of 1.9681 c2
/
n is attained with P ∗(c | b0) = 0.1121. Because the MLE

of c, when b is known, is given by c2
/
n
[
ψ′(1) + ψ2(2)

]
≈ c2/1.8237n, we have an asymptotic

efficiency of about 28%.

b to be estimated assuming c = c0 to be known

A single–observation percentile estimator of b is

b̂(c0) =
x̂P

[− ln(1 − P )]1/c0

(13.7a)

with variance

Var
(
b̂ | c0

)
=

b2

n c20

P

1 − P
ln−2(1 − P ). (13.7b)

The minimum of (13.7b) is 1.5446 b2
/
n c20 when P ∗(b | c0) = 0.797. The MLE of b for c known is

b2
/
n c20 so that the asymptotic efficiency compared with the MLE is about 65%.
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Example 13/1: Percentile estimates of b and c for dataset #1

We will estimate b and c for dataset #1 given in Tab. 9/2 by using only one pair of sample percentiles

whose orders are fixed in (13.5b). We have x̂0.24 = x[20·0.24]+1:20 = x5:20 = y1 = 58 and

x̂0.93 = x[20·0.93]+1:20 = x19:20 = y2 = 141. From (13.2d) we get

ĉ =
ln[− ln 0.76]− ln[− ln 0.07]

ln 58 − ln 141
≈ 2.5566,

which is rather near to the true value c = 2.5. To compute b̂ according to (13.3d), we first determine

w, given P1 = 0.24 and P2 = 0.93:

w = 1 − ln k1

k
= 1 − ln[− ln(1 − P1)]

ln[− ln(1 − P1)] − ln[− ln(1 − P2)]
≈ 0.4307.

Then we find

b̂ = exp{0.4307 ln 58 + 0.5693 ln 141} = 96.1743,

which is also near to its true value b = 100.

We conclude this section by giving percentile estimators that utilize all n observations of

the sample assuming n is even, i.e., n = 2 j:

ĉ =

j∑
i=1

{ln[− ln(1 − Pi)] − ln[− ln(1 − Pi+1)]}
j∑
i=1

(ln yi − ln yi+1)

, (13.8a)

where yi are sample percentiles corresponding to 0 < P1 < P2 < . . . < Pn < 1. In

practice the Pi are chosen in such a manner that Pi = i/(n + 1), corresponding to the

ordered observations y1 < y2 < . . . < yn. The scale parameter is estimated by

b̂ = exp

{
1

n

[
n∑

i=1

ln yi −
1

ĉ

n∑

i=1

ln[− ln(1 − Pi)]

]}
, (13.8b)

where ĉ is given by (13.8a).

13.1.2 Three-parameter WEIBULL distribution

In order to derive percentile estimators of the three WEIBULL parameters, we need three

percentiles. Suppose that y1, y2, y3 are three sample percentiles according to (13.1b) and

(13.2g) corresponding to three cumulative probabilities 0 < P1 < P2 < P3 < 1. Then the

three estimators for a, b and c are derived by solving the system

ys = â+ b̂ [− ln(1 − Ps)]
1/bc; s = 1, 2, 3. (13.9a)
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It follows that

y3 − y2

y2 − y1
=

[
− ln(1 − P3)

]1/bc −
[
− ln(1 − P2)

]1/bc
[
− ln(1 − P2)]1/bc −

[
− ln(1 − P1)

]1/bc . (13.9b)

ĉ is found from (13.9b) by iteration. Using this solution ĉ we further have

b̂ =
ys − yr[

− ln(1 − Ps)]1/bc −
[
− ln(1 − Pr)]1/bc

; (r < s) ∈ {1, 2, 3}, (13.9c)

and with b̂ and ĉ we finally arrive at

â = ys − b̂
[
− ln(1 − Ps)

]1/bc
, s ∈ {1, 2, 3}. (13.9d)

We will not adhere to the estimators (13.9b–d), but recommend the approaches of DUBEY

(1967f) and SCHMID (1997). This approach needs only the choice of P1 and P3 whereas

P2 follows from

− ln(1 − P2) =
√[

− ln(1 − P1)
] [

− ln(1 − P3)
]

(13.10a)

as

P2 = 1 − exp

{
−
√[

− ln(1 − P1)
] [

− ln(1 − P3)
]}

. (13.10b)

Further down we will show how to find optimal values of P1 and P3.

As − ln(1 − P2) is the geometric mean of − ln(1 − P1) and − ln(1 − P3), it follows that

P1 < P2 < P3 and hence

a ≤ xP1 < xP2 < xP3 <∞. (13.10c)

To obtain a percentile estimator of the location parameter a, we note that (13.1a) and

(13.10a) yield (
xP2 − a

b

)c
=

√
(xP1 − a)c (xP3 − a)c

bc
. (13.11a)

Solving (13.11a) for xP2 and using the inequality between the geometric and arithmetic

means gives

xP2 <
xP1 + xP3

2
, (13.11b)

whereas solving (13.11a) for a implies

a =
xP1 xP3 − x2

P2

xP1 + xP3 − 2xP2

. (13.11c)

The denominator of (13.11c) is not zero because of (13.11b). Replacing the percentiles by

the sample percentiles yi = x̂Pi (i = 1, 2, 3), we obtain the percentile estimator of the

location parameter proposed by DUBEY (1967f):

â =
y1 y3 − y2

2

y1 + y3 − 2 y2
, if y1 + y3 6= 2 y2. (13.11d)
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Next we derive a percentile estimator of the shape parameter. With the help of (13.10a),

equation (13.9b) turns into

ln

(
y3−y2

y2−y1

)
=ln





[
−ln(1−P3)

]1/(2 bc )
{[
−ln(1−P3)

]1/(2 bc )−
[
−ln(1−P1)

]1/(2bc )
}

[
−ln(1−P1)

]1/(2bc )
{[
−ln(1−P3)

]1/(2 bc )−
[
−ln(1−P3)]1/(2 bc )

}





(13.12a)

or equivalently

ĉ =
1

2

ln

{− ln(1 − P3)

− ln(1 − P1)

}

ln

{
y3 − y2

y2 − y1

} , if y1 6= y2, y2 6= y3 and y1 + y3 6= 2 y2. (13.12b)

Contrary to (13.9b) we now have an explicit estimator of c.

There also exists an estimator of the scale parameter which is based on (13.10a). This

estimator is given by SCHMID (1997) as

b̂ =
(y2 − y1)

2 v (y3 − y2)
2 (1−v)

y1 + y3 − 2 y2
, if y1 + y3 6= 2 y2, (13.13a)

where

v := 1 − ln
[
− ln(1 − P1)

]

ln
[
− ln(1 − P1)

]
− ln

[
− ln(1 − P3)

] . (13.13b)

Table 13/1: Optimal percentile orders for estimating a

c
Optimal values

P1 P2 (n/b2) Var
(
â
)

2.5 0.0011 0.9994 1.374

3.0 0.0037 0.9986 2.978

3.5 0.0062 0.9982 5.090

4.0 0.0084 0.9979 7.696

4.5 0.0102 0.9977 10.790

5.0 0.0118 0.9975 14.367

7.5 0.0169 0.9971 39.407

10.0 0.0196 0.9970 76.292

Source: SCHMID (1997, p. 781) — Reprinted with permission from

Communications in Statistics — Theory and Methods.

Copyright 1997 by Marcel Dekker, Inc. All rights reserved.

The estimators (13.11d), (13.12b) and (13.13a) are consistent and their joint asymptotic

distribution is three–variate normal with mean vector (a, b, c)′ and a rather complicated

looking variance–covariance matrix V which is given in SCHMID (1997). This author has

searched the minima of the variances directly. These minima and the corresponding optimal

P1 and P3 depend on the shape parameter and are given in Tables 13/1 through 13/3. The

dependence is not very sensitive (see also ZANAKIS/MANN (1982)), and for most sample
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sizes we get y1 = x1:n and y3 = xn:n. The optimal pairs (P1, P3) are different for each

parameter. Table 13/4 gives an optimal pair for estimating all three parameters with the

same set of percentiles. This table is based on minimizing the generalized variance of three

estimators, i.e., the determinant of the variance–covariance matrix V .

Table 13/2: Optimal percentile orders for estimating b

c
Optimal values

P1 P2 (n/b2) Var
(
b̂
)

0.5 0.0797 0.8086 5.619

1.0 0.0103 0.7373 1.573

1.5 5 · 10−6 0.6475 0.771

2.0 0.0002 0.4944 0.797

2.5 0.0007 0.3244 1.487

3.0 0.0063 0.99996 3.886

3.5 0.0082 0.9995 6.102

4.0 0.0103 0.9990 8.742

4.5 0.0119 0.9985 11.857

5.0 0.0132 0.9982 15.449

7.5 0.0175 0.9974 40.538

10.0 0.0199 0.9971 77.450

Source: SCHMID (1997, p. 782) — Reprinted with permission from

Communications in Statistics — Theory and Methods.

Copyright 1997 by Marcel Dekker, Inc. All rights reserved.

Table 13/3: Optimal percentile orders for estimating c

c
Optimal values

P1 P3 nVar
(
ĉ
)

0.5 0.0086 0.9746 0.230

1.0 0.0048 0.9817 1.028

1.5 0.0028 0.9887 3.155

2.0 0.0033 0.9920 9.096

2.5 0.0051 0.9932 23.215

3.0 0.0072 0.9939 51.070

3.5 0.0092 0.9944 99.544

4.0 0.0109 0.9947 176.936

4.5 0.0124 0.9949 292.964

5.0 0.0136 0.9951 458.760

7.5 0.0179 0.9957 2522.943

10.0 0.0202 0.9960 8314.388

Source: SCHMID (1997, p. 782) — Reprinted with permission from

Communications in Statistics — Theory and Methods.

Copyright 1997 by Marcel Dekker, Inc. All rights reserved.
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Table 13/4: Optimal percentile orders for estimating all three WEIBULL parameters

c
Optimal values

P1 P3 (n3/b4) detV

1.5 5 · 10−c 0.9487 0.09819

2.0 0.0025 0.9366 1.029

2.5 0.0076 0.9467 2.885

3.0 0.0126 0.9524 5.607

3.5 0.0167 0.9560 9.157

4.0 0.0202 0.9585 13.514

4.5 0.0231 0.9603 18.666

5.0 0.0255 0.9617 24.605

7.5 0.0333 0.9656 65.978

10.00 0.0372 0.9674 126.686

Source: SCHMID (1997, p. 781) — Reprinted with permission from

Communications in Statistics — Theory and Methods.

Copyright 1997 by Marcel Dekker, Inc. All rights reserved.

Example 13/2: Percentiles estimates of a, b and c for dataset #2

The n = 20 observations of dataset #2 (Tab. 9/9) have been generated as Xi
iid∼ We(15, 30, 2.5).

From Tab. 13/4 we choose P1 = 0.0076 and P3 = 0.9467 (for c = 2.5) and find from (13.10b):

P2 = 1 − exp
{
−
√

(− ln 0.9924) (− ln0.0533)
}
≈ 0.1389.

The three sample percentiles are

y1 = x̂[20·0.0076]+1:20 = x̂1:20 = 22.8,

y2 = x̂[20·0.1389]+1:20 = x̂3:20 = 28.8,

y3 = x̂[20·0.9467]+1:20 = x̂19:20 = 57.3.

From (13.11d) we then find

â =
y1 y3 − y2

2

y1 + y3 − 2 y2
=

22.8 · 57.3 − 28.82

22.8 + 57.3 − 2 · 28.8
= 21.2.

As â = 21.2 < x1:20 we have an admissible estimate, but it is not near to the true value a = 15.

From (13.12b) we get

ĉ =
1

2

ln

{− ln 0.0533

− ln 0.9924

}

ln

{
57.3 − 28.8

28.8 − 22.8

} ≈ 1

2

ln 384.2979

ln 4.75
≈ 1.9098.
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This estimate differs considerably from the true value c = 2.5.

From (13a,b) we get

v = 1 − ln[− ln 0.9924]

ln[− ln 0.9924]− ln[− ln 0.0533]
≈ 0.1807

and

b̂ =
(28.8 − 22.8)2·0.1807 (57.3 − 28.8)2·0.8193

22.8 + 57.3 − 2 · 28.8
≈ 20.5565.

This estimate also differs considerably from the true value b = 30.

13.2 Minimum distance estimators2

The minimum distance method of parameter estimation is best explained by consideration

of one of the simplest cases. Let X1,X2, . . . ,Xn be iid variates with cumulative distribu-

tion G, thought to be an element of Γ = {Fθ,θ ∈ Ω}, a parameterized set of continuous

distribution functions, and let Gn denote the usual empirical distribution function. Let

δ(Gn, Fθ) be some measure of the “distance” between Gn and Fθ, such as

δK(Gn, Fθ) = sup
x∈R

∣∣∣Gn(x) − Fθ(x)
∣∣∣, (13.14a)

δC(Gn, Fθ) =

∞∫

−∞

[
Gn(x) − Fθ(x)

]2
ωθ(x) dFθ(x), (13.14b)

δA(Gn, Fθ) =

∞∫

−∞

[
Gn(x) − Fθ(x)

]2{
Fθ(x) [1 − Fθ(x)]

}−1
dFθ(x), (13.14c)

the KOLMOGOROV, the weighted CRAMÉR–VON MISES and the ANDERSON–DARLING

discrepancies, respectively.3 When the weight function ωθ(x) in (13.14b) is chosen as

ωθ(x) ≡ 1 we have the (ordinary) CRAMÉR–VON MISES statistic. The ANDERSON–

DARLING statistic is another special case of (13.14b), the weight function being ωθ(x) ≡{
Fθ(x)

[
1 − Fθ(x)

]}−1
.

The minimum distance estimator (MDE) of θ is chosen to be any vector θ̂n in Ω such

that

δ
(
Gn, Fbθn

(x)
)

= inf
θ∈Ω

δ
(
Gn, Fθ

)
, (13.15)

2 Suggested reading for this section: CARMODY/EUBANK/LARICCIA (1984), GALLAGHER/MOORE

(1990), GANDER (1996), HOBBS/MOORE/MILLER (1985), KAO (1964), LARICCIA (1982),

PARR/SCHUCANY (1980).

3 For further measures of distance, see PARR/SCHUCANY (1980). These measures also serve as test

statistics in a goodness–of–fit test (see Chapter 22).
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a value θ̂n minimizing the distance between Gn and Fθ. Discrepancies can be chosen

to measure the distance between empirical and theoretical distribution functions, charac-

teristic functions, hazard functions, density functions, quantile functions, or other such

quantities.

Computation of MDEs based on the discrepancy between empirical and theoretical distri-

bution functions and using the ordinary CRAMÉR–VON MISES discrepancy is quite simple.

Applying the computational formula for this statistic, we observe that4

δC
(
Gn, Fθ

)
=

1

12n
+

n∑

i=1

[
2 i− 1

2n
− Fθ(Xi:n)

]2
. (13.16)

Thus, computation of the MDE becomes a non–linear least–squares problem. Most simply,

the data can be fed into a non–linear regression program with (2 i − 1)
/
(2n) playing the

role of the dependent variable5 and Fθ(Xi:n) the role of the model.

Example 13/3: MDE of b and c for dataset #1

We have applied (13.16) to dataset #1 of Tab. 9/2, using the GAUSS–NEWTON method with analyt-

ical derivatives of F (x | b, c) = 1 − exp
{
− (x/b)c

}
:

∂F (x | b, c)
∂b

= −c
b

(x
b

)c
exp
{
−
(x
b

)c}
,

∂F (x | b, c)
∂c

=
(x
b

)2
ln
(x
b

)
exp
{
−
(x
b

)c}
.

The estimates turned out as follows: b̂ = 97.6428, ĉ = 2.6428, both being close to the true values

b = 100 and c = 2.5. Fig. 13/1 shows F (x | 97.6428, 2.6428), marked by u, and the staircase

function (2 i − 1)
/
(2n), marked by l. The CRAMÉR-VON MISES statistic is the sum of the

squared vertical distances between u and l plus 1
/
(12n) and amounts to 0.0208.

MDEs are consistent and robust, i.e., insensitive with respect to outliers and to the choice

of an incorrect distribution; see GALLAGHER/MOORE (1990). When the sample size is

sufficiently great so that grouping makes sense the χ2–minimum method (see KAO (1964))

may be applied as another technique of MDE.

4 When the ANDERSON–DARLING discrepancy is used, the computational formula is

δA

`
Gn, Fθ

´
= −n−

nX

i=1

2 i− 1

n

˘
lnFθ(Xi:n) + ln

ˆ
1 − Fθ(Xn+1−i:n)

˜¯
.

5 (2 i− 1)
‹
(2n) is the midpoint plotting position (see Tab. 9/1).



13.2 Minimum distance estimators 487

Figure 13/1: Empirical distribution function and MD-estimated WEIBULL CDF function of

dataset #1

CARMODY et al. (1984) have suggested a minimum quantile distance estimator for the

three–parameter WEIBULL distribution. Let

Q(P ) = − ln(1 − P ), 0 < P < 1 (13.17a)

denote the quantile function of the reduced exponential distribution. Then the quantile

function corresponding to the three–parameter WEIBULL distribution with θ = (a, b, c)′ is

Q(P,θ) = a+ bQ(p)1/c. (13.17b)

Define the sample quantile function by

Q̂(P ) = Xi:n for
i− 1

n
< P ≤ i

n
; i = 1, 2, . . . , n. (13.17c)

For a given set of k < n percentile pointsP = (P1, . . . , Pk)
′ with 0 < P1 < . . . < Pk < 1,

let

Q̂P =
(
Q̂(P1), . . . , Q̂(Pk)

)′

and

QP (θ) =
(
Q(P1,θ), . . . , Q(Pk,θ)

)′
.

Then the minimum quantile distance estimator of θ is the vector that minimizes the

quadratic form

D(θ) ≡
(
Q̂P −QP (θ)

)′
W (θ)

(
Q̂P −QP (θ)

)
(13.17d)
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as a function of θ. A good choice of the user defined matrix of weights W (θ) suggested

by CARMODY et al. (1984) is

W ∗(g) = HP (g)RP
−1HP (g) (13.17e)

where

RP = min(Pi, Pj) − Pi Pj

and HP (g) the k × k diagonal matrix having its i–th diagonal element be g(1 −
Pi)Q(Pi)

(c−1)/c. Since RP is well known to have a tridiagonal inverse, whose typical

row has non–zero entries

−(Pi − Pi−1)
−1,

Pi+1 − Pi
(Pi+1 − Pi) (Pi − Pi−1)

, −(Pi+1 − Pi)
−1,

the elements of (13.17e) can easily be evaluated.

The estimator θ̂ has no closed form but can be computed without difficulty by using a stan-

dard minimization routine. The estimator is unique, consistent and asymptotically normal.

It should also be noted that, provided the Q̂(Pi)’s are selected from the uncensored portions

of the data, this estimation technique requires no modification for use with type–II right,

left or doubly censored samples.

13.3 Some hybrid estimation methods

Hybrid methods are characterized by the fact that the estimators for the two or three

WEIBULL parameters, do not originate in the same approach. We have already encoun-

tered two such hybrid methods in Sections 11.3.2.3 and 12.2 where the MLEs and MMEs

for b and c were combined with another kind of estimating approach for the location pa-

rameter a.

Perhaps the oldest hybrid technique was proposed by WEIBULL himself; see WEIBULL

(1967a). He combined the maximum likelihood method and the linear estimation method

based on order statistics. The method starts with an unbiased estimation of the scale and

location parameters for a properly chosen set of shape parameter values by use of the best

linear method. For each such set of three parameter values, the corresponding likelihood

of the sample is computed. Finally, that set which yields the maximum likelihood is deter-

mined by interpolation and accepted as the best estimate.

Most of the hybrid methods which are used today combine simple estimators of the three

parameters as given in Sect. 13.5. ZANAKIS (1979) has run a simulation study for seven-

teen simple estimators. Among the estimators considered the best in a MSE–sense are the

following:

• for the location parameter a:

â =
X1:nXn:n −X2

2:n

X1:n +Xn:n − 2X2:n
. (13.18)

â is the nearest neighbor of X1:n. It is almost always permissable; i.e., â ≤ X1:n be-

cause for all practical purposes, X2:n is closer to X1:n than Xn:n. Although unlikely,

the opposite might occur if the sample size is extremely small. If that happens, then

use â = X1:n.
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• for the scale parameter b:

b̂ = X[0.63n]+1:n − â (13.19a)

with â according to (13.18). For smaller values of c HASSANEIN’s (1972) ABLE

combined with the MANN/FERTIG (1977) small–sample correction (see Sect. 10.5.2)

is preferred:

b̂ = exp

{
10∑

i=1

ai ln(Xni:n − â) + 0.000595 ĉ

}
(13.19b)

with â according to (13.18) and ĉ according to

ĉ = 0.979811
/ 10∑

i=1

bi ln(Xni:n − â). (13.19c)

The weights ai, bi are given in Tab. 10/10 together with the spacings λi leading to

ni = [nλi]. For smaller c and smaller sample size one should take the simple linear

unbiased estimator for the two parameters of the extreme–value (and two–parameter

WEIBULL) distributions, proposed by ENGELHARDT/BAIN (1977) and extended to

the three–parameter WEIBULL as follows:

b̂ = exp

{
0.5772

ĉ
+

1

n

n∑

i=1

ln
(
Xi:n − â

)
}

(13.19d)

with â according to (13.18) and ĉ according to

ĉ =
n kn

−
s∑
i=1

ln
(
Xi:n − â

)
+

s

n− s

n∑
i=s+1

lnXi:n

(13.19e)

where s = [0.84n] and kn as unbiasing factor (see also Sect. 10.4.3 for this ap-

proach).

• for the shape parameter c:

ĉ =
ln
[
− ln(1 − P2)

]
− ln

[
− ln(1 − P1)

]

ln
(
x̂P2 − â

)
− ln

(
x̂P1 − â)

. (13.20)

This is the percentile estimator (13.2d) modified by â according to (13.18) and with

P1 = 0.16731 and P2 = 0.97366. However, (13.19c) and (13.19e) have a slight edge

if c ≤ 1.0.

WYCKOFF et al. (1980) proposed the following procedure for the complete–sample case:6

The first order statistic X1:n is used as an initial estimate of a. An initial estimate of c,

6 They also give formulas for a type–II censored sample, but these formulas need tabulated coefficients

depending on n and the censoring number r.
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based on â1 = X1:n, is derived from DUBEY’s (1967e) formula

ĉ1 =
2.9888

ln
(
x̂P2 −X1:n

)
− ln

(
x̂P1 −X1:n

)

which is identical to (13.20). In order to re–estimate a, X1:n is set equal to its expected

value

E(X1:n) = a+ bΓ

(
1 +

1

c

)/
n1/c

= a+
[
E(X) − a

]/
n1/c.

Estimating E(X) by X =
1

n

n∑
i=1

Xi and c by ĉ1 leads to

â2 =
X1:n −X n−1/bc1

1 − n−1/bc1 . (13.21)

The parameters b and c are then estimated by assuming a = â2 and using the estimators

(3.19d,e) of ENGELHARDT/BAIN (1977). KAPPENMAN (1985b) compared the WYCKOFF

et al. (1980) estimators with the modified maximum likelihood estimators MMLE–I and

MMLE–II of COHEN/WHITTEN (1982) (see Sect. 11.3.2.3) by running a Monte Carlo

experiment for c = 0.5(0.5)2.5, 3.5 with 500 repetitions each. The MSE’s for â and ĉ using

the ENGELHARDT/BAIN–procedure were always considerably smaller than those for the

MMLEs. The same was true for the b–estimators, except for c = 0.5. These conclusions

are also essentially true for bias comparisons, except for the case where c = 3.5.

KAPPENMAN (1981) further compared the estimation procedure recommended by

ZANAKIS (1979) and consisting of (13.18) for â, (3.19a) for b̂ and (13.20a) for ĉ to a

procedure where he substituted (13.19a) by the following estimator of a:

â = 2X1:n − (e− 1)

n∑

i=1

Xi:n

ei
. (13.22)

This alternative estimator was essentially derived by COOKE (1979) although he was not

working on the WEIBULL estimation problem per se. It is derived by expressing the ex-

pectation of the first order statistic, X1:n, in terms of an integral, the integrand being X1:n

times its density. Then one uses integration by parts, replaces E(X1:n) by X1:n, replaces

the population distribution function by the empirical distribution function and solves for

a.7 The results of KAPPENMAN’s Monte Carlo study indicate that the estimator (13.22)

is better in the sense of MSE than the one given by (13.18) when the true value of c is at

least one. When the shape parameter’s value is less than one, the two estimators appear to

perform equally well. In addition, this simulation study indicated that the performance of

the estimators given by (13.19a) and (13.20) are improved when â is substituted by (13.22).

Thus we recommend the following hybrid procedure as apparently the best one:

7 For more details of this estimator see, Sect. 13. 5.1
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• Estimate a by (13.22),

• Insert this estimate into (13.19a) to estimate b,

• Insert the estimator of a into (13.20) to estimate c,

We successfully applied this procedure to establish capability indices for the tensile strength

of ultrasonically welded splices; see RINNE et al. (2004).

13.4 Miscellaneous approaches

There have appeared several more procedures to estimate the WEIBULL parameters. We

do not persist in the completeness of the following enumeration.

13.4.1 MENON’s estimators

A very popular method has been proposed by MENON (1963). MENON’s estimators are

used as initial values in most computer programs to estimate b and c by ML. These es-

timators are nothing but the re–transformed moment estimators of the parameters of the

Log–WEIBULL distribution (see Sect. 3.3.4). If X ∼ We(0, b, c), then X∗ = lnX has the

type–I–minimum distribution (or Log–WEIBULL distribution) with density

f(x∗) =
1

b∗
exp

{
1

b∗
(
x∗ − a∗

)
− exp

[
1

b∗
(
x∗ − a∗

)]}
, x∗ ≥ 0, (13.23a)

distribution function

F (x∗) = 1 − exp

{
exp

[
1

b∗
(
x∗ − a∗

)]}
, (13.23b)

mean

E
(
X∗) = a∗ − γ b∗, γ ≈ 0.577216, (13.23c)

and variance

Var
(
X∗) =

b∗
2
π2

6
≈ 1.644934 b∗

2
. (13.23d)

The parameters b and c are linked to a∗ and b∗ as

a∗ = ln b and b = exp(a∗), (13.24a)

b∗ =
1

c
and c =

1

b∗
. (13.24b)

We estimate E(X∗) by

Ê
(
X∗) = X∗ =

1

n

n∑

i=1

lnXi (13.25a)

and Var
(
X∗) by

̂Var
(
X∗) = S2

X∗ =
1

n− 1

n∑

i=1

(
lnXi −X∗ )2. (13.25b)
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Thus the moment estimators of a∗ and b∗ are

b̂∗ =

√
6

π
SX∗ ≈ 0.779697SX∗ , (13.26a)

â∗ = X∗ + γ b̂∗ ≈ X∗ + 0.450054SX∗ . (13.26b)

MENON (1963) has shown that

• b̂∗ is asymptotically normal with mean

E
(
b̂∗
)

= b∗ + b∗O(1/n) (13.27a)

and variance

Var
(
b̂∗
)

=
1.1 b∗2

n
+ b∗2O(1/n), (13.27b)

and has asymptotic efficiency of 55% as the CRAMÉR–RAO lower bound of a regular

unbiased estimate of b∗ is 0.61 b∗2
/
n;

• â∗ is asymptotically normal with mean

E
(
â∗
)

= a∗ + b∗O(1/n) (13.28a)

and variance

Var
(
â∗
)

=
1.2 b∗2

n
+ b∗2O(1/n2), (13.28b)

and has asymptotic efficiency of 92% as the CRAMÉR–RAO lower bound of a regular

unbiased estimate of a∗ is 1.1 b∗2
/
n.

Referring to (13.23a,b) and (13.25a) through (13.27b), we can state that MENON’s estima-

tors of the original WEIBULL parameters are

ĉ =
1

b̂∗
(13.29a)

with

ĉ
asym∼ No

(
c,

1.1 c2

n

)
, (13.29b)

and

b̂ = exp
(
â∗
)

(13.30a)

with

b̂
asym∼ No

(
b,

1.2 b2

n c2

)
. (13.30b)
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Example 13/4: MENON’s estimates of b and c for dataset #1

MENON’s approach applied to dataset #1 (Xi
iid∼ We(0, 100, 2.5) for i = 1, 2, . . . , n; see Tab. 9/2)

yields,

x∗ = 4.3886, s2X∗ = 0.1949,

b̂∗ = 0.3442, â∗ = 4.7328,

ĉ = 2.9050, b̂ = 113.6125,

V̂ar
(
b̂∗
)

= 0.0065, V̂ar
(
â∗
)

= 0.0071,

V̂ar
(
ĉ
)

= 0.4642, V̂ar
(
b̂
)

= 91.7710.

Both estimates b̂ and ĉ are rather different from the true values b = 100 and c = 2.5.

13.4.2 Block estimators of HÜSLER/SCHÜPBACH

The block estimators proposed by HÜSLER/SCHÜPBACH (1986) and SCHÜPBACH/HÜSLER

(1983) are a further development of BAIN’s (1972) GLUEs (see Sect. 10.4.3). They consist

of linear combinations of the partial means of two or three blocks of the ordered Log–

WEIBULL observations X∗
i:n = lnXi:n.

When two blocks are chosen, these are

X∗
1:n, . . . ,X

∗
s:n and X∗

s+1:n, . . . ,X
∗
r:n

with r < n. The estimators of b∗ = 1/c and a∗ = ln b, given in SCHÜPBACH/

HÜSLER(1983), are

b̂∗ = − s

n br,n

(
1

s

s∑

i=1

X∗
i:n

)
+

s

n br,n

(
1

r − s

r∑

i=s+1

X∗
i:n

)
(13.31a)

â∗ =
1

r

r∑

i=1

X∗
i:n − cr,n b̂∗, (13.31b)

where br,n and cr,n are unbiasing constants and s is chosen to minimize the variance of b̂∗.

The estimators have good small sample and asymptotic efficiencies.

In HÜSLER/SCHÜPBACH (1986) the idea is extended to three blocks:

X∗
1:n, . . . ,X

∗
s:n with mean X∗

1 =
1

s

s∑
i=1

X∗
i:n,

X∗
s+1:n, . . . ,X

∗
t:n with mean X∗

2 =
1

t− s

t∑
i=s+1

X∗
i:n,

X∗
t+1:n, . . . ,X

∗
r:n with mean X∗

3 =
1

r − t

r∑
i=t+1

X∗
i:n.
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The estimators are

b̂∗ = d1X∗
1 + d2X∗

2 + d3X∗
3 , (13.32a)

â∗ = e1X∗
1 + e2X∗

2 + e3X∗
3 . (13.32b)

The factors {di} and {ei} are chosen such that E(b̂∗) = b∗ and E(â∗) = a∗. Furthermore,

if s and t are also optimally chosen (possible criteria are given in HÜSLER/SCHÜPBACH

(1986)), b̂∗ and â∗ according to (13.32a,b) are more efficient than the two–block estimators

(13.31a,b).

13.4.3 KAPPENMAN’s estimators based on the likelihood ratio

Let X1, . . . ,Xn represent a sample of a continuous type variate whose density function

is f(x | b, c), where b and c are unknown parameters and b a scale parameter and c not a

location parameter. The most powerful scale invariant test of H1 : c = c1 versus H2 : c =
c2 rejects H1 whenever L1/L2 < k (This is the idea of a likelihood–ratio test.), where

Lj =

∞∫

0

[
n∏

i=1

f(v xi | 1, cj)
]
vn−1dv; j = 1, 2. (13.33)

This test suggests a procedure for selecting one from among several plausible values of c,
say c1, . . . , cm. If Lp = max{L1, . . . , Lm}, where Lj (j = 1, . . . ,m) is given by (13.33),

then the selected value is cp. Based on this idea KAPPENMAN (1985a) suggests a method

for estimating c. The estimate of c is the value of c which maximizes

L(c) =

∞∫

0

[
n∏

i=1

f(v xi | 1, c)
]
vn−1dv. (13.34a)

(13.34a) turns into

L(c) = cn−1

(
n∏

i=1

xc−1
i

)
Γ(n)

/(
n∑

i=1

xci

)n
(13.34b)

when f(x | b, c) is the two–parameter WEIBULL density. The value of c which maximizes

L(c) is the solution to the equation

n− 1

c
+

n∑

i=1

lnxi −
n

n∑
i=1

xci lnxi
∑
xci

= 0, (13.34c)

which is the partial derivative of the logarithm of L(c), set equal to zero. (13.34c) is slightly

different from (11.19b) in finding the MLE of c. (11.19b) is obtained from (13.34c) by

replacing n−1 in the first terms on the left–hand side by n. Both estimates must be worked

out by an iterative procedure, e.g., by the NEWTON–RAPHSON method; see (11.25a).

KAPPENMAN has done a Monte Carlo investigation to compare the performance of the

MLE of c with that of ĉ according to (13.34c). The bias and the MSE for the solution to

(13.34c) are smaller than the bias and MSE, for the MLE for sample sizes up to n = 100.
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As far as estimation of the scale parameter b is concerned, there are at least three possibili-

ties. The MLE for b is given by (11.19a). One might also use (11.19a), replacing the MLE

of c by the solution to (13.34c). The third possibility is exp{â}, where â is the value of a
which maximizes

∞∫

0

[
n∏

i=1

exp
{
v (x∗i − a) − exp

[
v (x∗i − a)

]}
]
vn−1 dv,

where x∗i = lnxi. Simulation studies of KAPPENMAN indicate that all three estimators

perform equally well, as far as bias and MSE are concerned.

13.4.4 KAPPENMAN’s estimators based on sample reuse

Let X1, . . . ,Xn be a random sample of n observations of a variate with density function

f(x | b, c), where b and c represent unknown parameters. Given that Xj = xj , for j =
1, 2, . . . , i − 1, i + 1, . . . , n, an estimated density function for Xi is, for any given value

of c, f(xi | b̂i, c). Here b̂i = g(x1, . . . , xi−1, xi+1, . . . , n; c) is the ML estimate of b, based

upon the given value of c and the observed values of X1, . . . ,Xi−1,Xi+1, . . . ,Xn. Set

L(c |x1, . . . , xn) =

n∏

i=1

f(xi | b̂i, c), (13.35)

where xi is the observed value of Xi, for i = 1, . . . , n. Then the sample reuse estimate

(SRE) of c is the value of c which maximizes (13.35) or, equivalently, the logarithm of

(13.35). If this value is ĉ, then g(x1, . . . , xn; ĉ) is the sample reuse estimate of b.

Note that SR estimation of c is similar to, but different from, ML estimation of c.8 To obtain

the SRE of c, one essentially reuses each sample observation n− 1 times for estimation of

b whereas for ML estimation of c, each observation is used only once for estimation of c.
That is, if b̂i in (13.35), is based upon all n sample observations, instead of just n − 1 of

them (and is then the same for all i), then the value of c maximizing (13.35) is the MLE of

c.

For the two–parameter WEIBULL density f(x | b, c) = (c/b) (x/b)c−1 exp{−(x/b)c} we

get — see (11.19a) — the following MLE

b̂i =


 1

n− 1

∑

j 6=i
xcj




1/c

. (13.36a)

If we find the partial derivative of the logarithm of (13.35) and set it equal to zero, we obtain

— compare that to (11.19b) — the equation

n

c
+

n∑

i=1

[
(n− 1) −∑

j 6=i
qcij

]
∑
j 6=i

qcij ln qij

(
∑
j 6=i

qcij

)2 = 0, (13.36b)

8 When there is only one unknown parameter to be estimated, SR estimation is equivalent to ML estima-

tion.
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where qij = xj/xi. The value of c satisfying (13.36b) and to be found by an application of

the NEWTON–RAPHSON method is the SR estimate of c.

A Monte Carlo study of KAPPENMAN revealed that the bias and MSE of the SRE of c
are substantially smaller than the bias and MSE, of the MLE for sample sizes as large as

n = 75.

13.4.5 Confidence intervals for b and c based on the quantiles of beta distri-

butions

The following approach, which is due to BRIKC (1990), gives only interval estimates of b
and c and no point estimates. The distribution function F (x) = 1− exp{−(x/b)c} may be

written as

c [ln x− ln b] = ln ln

(
1

1 − F (x)

)
=: k(F ). (13.37)

Define the events A, B in terms of two values x1, x2; x1 < x2 as follows:

Pr(A) = Pr(X ≤ x1) = F (x1), (13.38a)

Pr(B) = Pr(X ≤ x2) = F (x2). (13.38b)

If F̂11, F̂12 are the lower and upper confidence limits for F (x1) and F̂21, F̂22 are the

corresponding values for F (x2), and if these limits are known, then confidence limits ĉ1, ĉ2
for c and b̂1, b̂2 for b follow by

ĉ2 (lnx1 − ln b̂2) = ln ln
1

1 − F̂11

=: k11,

ĉ1 (lnx1 − ln b̂1) = ln ln
1

1 − F̂12

=: k12,

ĉ1 (lnx2 − ln b̂2) = ln ln
1

1 − F̂21

=: k21,

ĉ2 (lnx2 − ln b̂1) = ln ln
1

1 − F̂22

=: k22;





(13.39)

and

ĉ1 =
k22 k21 − k11 k12

(k11 + k22) (ln x2 − lnx1)
,

ĉ2 =
k22 k21 − k11 k12

(k12 + k21) (ln x2 − lnx1)
,

b̂1 = exp

{
k12 (k11 + k22) lnx2 − k22 (k12 + k21) lnx1

k11 k12 − k21 k22

}
,

b̂2 = exp

{
k11 (k12 + k21) lnx2 − k21 (k11 + k22) lnx1

k11 k12 − k21 k22

}
.





(13.40)
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(1 − α1 − α2) 100% confidence limits for P = Pr(A) = F (x1) are given by

P̂1 = 1 − βn−r,r+1,α1, (13.41a)

P̂2 = βr+1,n−r,α2 , (13.41b)

where β·, ·, α1 and β·, ·, α2 are the upper (α1, α2) quantiles of a beta distribution with pa-

rameters equal to the first two subscripts. n is the sample size, r is the number of x–

values which are less than or equal to x1. The procedure may also be carried out for

P = Pr(B) = F (x2).

It is only left to determine the values of x1 and x2. They are obtained by ordering the

sample x1:n ≤ x2:n ≤ . . . ≤ xn:n and obtaining two numbers r1, r2 by

r1 = 1 + [0.2n], r2 = [0.8n], (13.42)

which are stated to be appropriate values. x1, x2 are then defined to be

x1 =
xr1:n + xr1+1:n

2
,

x2 =
xr2:n + xr2+1:n

2
.





(13.43)

Thus the algorithm may be summarized as follows, given α1 and α2:

1. Determine r1 and r2 by (13.42) and find x1 and x2 by (13.43).

2. Use a table of the inverse beta distribution to find confidence limits for Pr(A) =
F (x1) and Pr(B) = F (x2) by (13.41a,b).

3. Determine k11, k12, k21 and k22 by (13.39).

4. Solve (13.40) to obtain the confidence intervals to the two parameters.

13.4.6 Robust estimation 9

ADATIA/CHAN (1982) propose two estimators of the scale parameter of the two–parameter

WEIBULL distribution: the maximin estimator (based on a mixture of WEIBULL distribu-

tions and the procedure of constructing the BLIE) and the adaptive estimator (based on

an adaptive procedure which chooses between the maximin estimator and the BLIE from

individual WEIBULL distributions). These two estimators are robust in the sense that their

efficiencies are high regardless of the true value of the shape parameter, provided that it is

in a prescribed interval. These two estimators are also more robust than many commonly

used estimators including the MLE, BLIE and BLUE. ADATIA/CHAN (1985) extended

their 1982 approach to all three parameters of the three–parameter WEIBULL distribution.

The MLEs are very sensitive to the occurrence of upper and lower outliers, especially when

c > 1. HE/FUNG (1999) have considered the method of medians estimator for the two–

parameter WEIBULL model. The estimator is obtained by equating the sample median

of the likelihood score function — see (11.7a) — to its population counter part. As an

9 Suggested reading for this section: HUBER (1981).
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M–estimator, it has a bounded influence function and is highly robust against outliers. It

is easy to compute as it requires solving only one equation instead of a pair of equations

as for most other M–estimators. Furthermore, no assumptions or adjustments are needed

for the estimator when there are some possibly censored observations at either end of the

sample. About 16% of the largest observations and 34% of the smallest observations may

be censored without affecting the calculations.

13.4.7 Bootstrapping 10

With complete or singly type–II censored samples, confidence intervals for the WEIBULL

parameters can be computed based on published tables of pivotal percentage points (see

Sect. 11.3.1.2). These intervals are exact, apart from the Monte Carlo sampling error inher-

ent in the tables. When the censoring is progressive, however, the exact methods generally

do not carry through. ROBINSON (1983) has proposed a simple approximation to handle

the progressive censoring case. The algorithm for computing confidence limits is a type of

bootstrapping. The method is applicable to any model that is transformable to location–

scale form and has invariant estimators.

A paper of SEKI/YOKOYAMA (1996) proposes bootstrap robust estimator methods for the

WEIBULL parameters. It applies bootstrap estimators of order statistics to the parametric

estimation procedure. Estimates of the WEIBULL parameters are equivalent to the esti-

mates using the extreme–value distribution. Therefore, the bootstrap estimators of order

statistics for the parameters of the extreme–value distribution are examined. Accuracy and

robustness for outliers are studied using Monte Carlo experiments which indicate adequate

efficiency of the proposed estimators for data with some outliers.

13.5 Further estimators for only one of the WEIBULL parame-

ters

Many estimators exist for each of the WEIBULL parameters which are mostly heuristic

and do not presuppose a preceding estimation of the other parameter(s). Most of these

estimators are easily and quickly evaluated from the observations available and thus serve

as starting points for more sophisticated estimation procedures.

13.5.1 Location parameter11

We will present three estimators of the location parameter which do not rest upon estimators

of the scale and the shape parameters and which have easy to evaluate analytic formulas.

These estimators are the following:

• the sample minimum,

• COOKE’s (1979) estimator and

• ZANAKIS’ (1979) estimator

10 Suggested reading for this section: EFRON (1979, 1982).

11 Suggested reading for this section: COOKE (1979), DUBEY (1966c, 1967f), KAPPENMAN (1981),

WYCKOFF/BAIN/ENGELHARDT (1980), ZANAKIS (1979).
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The location parameter a is a threshold and lower bound to the variate. Thus is quite natural

to take the sample minimum X1:n as an estimator â:

â = min
1≤i≤n

{Xi} = X1:n . (13.44)

Before exploring the statistical properties of â = X1:n, we remark that (13.44) is the MLE

of a for 0 < c ≤ 1. Looking at the normal equations (11.4d–f), we see from (11.4d)

∂L(a, b, c)

∂a
= −(c− 1)

n∑

i=1

1

xi − a
+
c

b

n∑

i=1

(
xi − a

b

)c−1

that ∂L(a, b, c)/∂a > 0 for 0 < c ≤ 1, which implies that the log–likelihood function

(11.4a) is monotone increasing in a. Thus the maximum value of L(a, b, c) occurs at the

maximum admissible value of a which is clearly the first ordered sample observation.

When Xi
iid∼ We(a, b, c), we have Y := min

1≤i≤n
{Xi} ∼ We(a, b n−1/c, c), as has been

shown in Sect. 3.1.4. So the estimator (13.44) has a WEIBULL distribution with the same

location and scale parameters as the sampled distribution but with a scale parameter

b̃ = b n−1/c < b for n > 1. (13.45a)

The density of Y := â = X1:n is

f(y) =
c

b̃

(
y − a

b̃

)c−1

exp

{
−
(
y − a

b̃

)c}
. (13.45b)

The moments about zero are

E(Y r) =
r∑

j=0

(
r

j

)
aj b̃r−j Γ

(
r − j

c
+ 1

)
, (13.45c)

leading to

E(Y ) = a+ b̃Γ

(
1 +

1

c

)
= a+

b
c
√
n

Γ

(
1 +

1

c

)
(13.45d)

and

Var(Y ) = b̃2
[

Γ

(
1 +

2

c

)
− Γ2

(
1 +

1

c

)]

=
b2

c
√
n2

[
Γ

(
1 +

2

c

)
− Γ2

(
1 +

1

c

)]
. (13.45e)

We see from (13.45d) that â is not an unbiased estimator of a; however, it approaches a
extremely rapidly if c is not too near unity. The bias can be removed leading to

âu = â− b
c
√
n

Γ

(
1 +

1

c

)
(13.45f)

when b and c are known. Applying estimators b̂ and ĉ to (11.45f) does not guarantee

unbiasedness. From (13.45e) we see that the variance of â (or of âu) approaches zero
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extremely rapidly for 0 < c < 1. Even for c = 1 (exponential distribution), it reduces to

Var(â) = Var(âu) =
b2

n2
, (13.45g)

which is of order O(n−2). An estimator possessing such property, is called hyper–

efficient.12 It is further seen from (13.45a,b) that â = min{Xi} does not tend to a normal

distribution with n→ ∞ for 0 < c ≤ 1. In other words the common asymptotic properties

of the MLE do not hold good here.

We now turn to the estimator of awhich was proposed by KAPPENMAN (1981) and is based

upon COOKE (1979). The approach is not restricted to the three–parameter WEIBULL

distribution but is valid for each variate X with support (a, θ), where a is known to be

finite. The estimator of a to be constructed applies whether θ is unknown or known; in

particular, when θ = ∞, the only assumption required is
∞∫
a
x2 dF (x) < ∞. We start by

considering â = Y = X1:n in (13.44) which overestimates a; see (13.45d). The CDF of

Y , when sampling from a population with distribution FX(x) is

FY (y) =
[
1 − FX(y)

]n
=
[
RX(y)

]n
(13.46a)

so

E(Y ) = −
∫ θ

a
y d
[
RX(y)

]n
. (13.46b)

When we integrate (11.46b) by parts, we get

E(Y ) = a+

∫ θ

a

[
RX(y)

]n
dy (13.46c)

or

a = E(Y ) −
∫ θ

a

[
1 − FX(y)

]n
dy. (13.46d)

(13.46d) suggest, the estimator

âC = X1:n −
∫ xn:n

xn:n

[
1 − F̂(y)

]n
dy, (13.46e)

where F̂X(y) is the empirical distribution function based on the order statistics Xi:n; i.e.,

F̂X(y) =





0 for y < Xi:n;
i

n
for Xi:n ≤ y < Xi+1:n; i = 1, . . . , n − 1;

1 for y ≥ Xn:n.

(13.46f)

12 An efficient estimator has a variance of order O(n−1).
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Now ∫ xn:n

x1:n

[
1 − F̂X(y)

]n
dy =

n−1∑

i=1

(1 − i

n
)n (xi+1:n − xi:n) (13.46g)

and (14.46e) turns into

âC = 2X1:n −
n∑

i=1

[{
1 − i− 1

n

}n
−
{

1 − i

n

}n]
Xi:n. (13.46h)

For large n we can approximate (11.46h):

âC = 2X1:n − (e− 1)

n∑

i=1

e−iXi:n. (13.46i)

ZANAKIS (1979) recommends — based on Monte Carlo studies — an estimator which uses

three order statistics: X1:n; X2:n and Xn:n; see Sect. 13.3 and (13.18):

âZ =
X1:nXn:n −X2

2:n

X1:n +Xn:n − 2X2:n
.

This estimator is almost always permissible (âZ ≤ X1:n) and might be regarded as a special

percentile estimator; see (13.11d). A similar estimator introduced by DUBEY (1966g) is

âD =
X1:nX3:n −X2

2:n

X1:n +X3:n − 2X2:n
.

Confidence bounds for the threshold a based on special goodness–of–fit statistics are pre-

sented by MANN/FERTIG (1975b) and SOMERVILLE (1977).

13.5.2 Scale parameter

Simple estimators of the scale parameter always presuppose the knowledge of the shape

parameter or of its estimate; e.g., see ZANAKIS (1979) and Sect. 13.3. We will present two

estimators of b:

• the one–order estimator of MOORE/HARTER (1965, 1966) with known shape param-

eter and

• the estimator of SIRVANCI (1984) with estimated shape parameter under singly type–

I censoring.

Looking at the two–parameter WEIBULL density function

f(x) =
c

b

(x
b

)c−1
exp
{
−
(x
b

)c}

and making the change of variable

Y = Xc, (13.47a)

we obtain

g(y) =
1

bc
exp
{
− y

bc

}
, (13.47b)
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which is the familiar exponential density function with parameter

λ = bc. (13.47c)

Now if we take the time to the r–th failure Xr:n for the WEIBULL population and calculate

Yr:n = Xc
r:n, then the Yr:n’s are exponentially distributed where λ = bc. Therefore, if

we want a one–order statistic estimator for b, we can use the best unbiased estimator of

HARTER (1961):

λ̂ = wr Yr:n = wrX
c
r:n, (13.47d)

where

wr =

r∑

j=1

1

n− j + 1
. (13.47e)

Now taking the c–th root of both sides of (13.47c) and using (13.47d), we get

b̂ = λ̂1/c = w1/c
r Xr:n. (13.47f)

A feature of type–I censoring, which distinguishes it from type–II censoring, is that — in

addition to the failure times, X1:n ≤ X2:n ≤ . . . ≤ Xm:n ≤ T — the failure count m is

also observed as part of the data. This provides the opportunity of using the failure count

as a basis for statistical inference. For this, the censoring level P is expressed in terms of

the parameters b and c as

P = 1 − exp

{
−
(
T

b

)c}
. (13.48a)

Assuming that estimators P̂ and ĉ are available; (13.48a) can be solved for b obtaining the

estimator, see SIRVANCI (1984).

b̂ =
T

[
− ln(1 − P̂ )

]1/bc , 0 < m < n. (13.48b)

An estimator of P is

P̂ =
m

n
, (13.48c)

the proportion of failed items in (0, T ]. For the reciprocal shape parameter

c1 := 1/c,

SIRVANCI/YANG (1984) have derived the estimator

ĉ1 =

m∑

i=1

(lnT − lnXi:n)
/
mh(P ); 0 < m < n, (13.48d)

where

h(P ) = ln ln

(
1

1 − P

)
− 1

P

P∫

0

ln ln

(
1

1 − t

)
dt (13.48e)
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is a bias correction factor. SIRVANCI (1984) has derived the exact moments of

ln b̂ = lnT − ĉ1 ln ln

(
1

1 − P

)
, (13.48f)

conditioned on the observed number of failures m. He also demonstrated that ln b̂ is asymp-

totically normal.

13.5.3 Shape parameter

The shape parameter c as being responsible for the type of aging has attracted the greatest

interest of statisticians, so it is quite natural that there exists a lot of estimators for this

parameter. We will present the following estimation approaches:

• tabular estimators based on descriptive statistics measuring skewness and kurtosis (=

peakedness), proposed by DUBEY (1966g, 1967c);

• estimators for the special case that there are two failures in one or more samples; see

JAECH (1964) and BAIN (1973);

• estimators of the reciprocal shape parameter, but not derived from the Log–WEIBULL

distribution; see MIHRAM (1969) and MURTHY/SWARTZ (1975);

• estimators based on the ratio of the sample arithmetic and geometric means; see

MIHRAM (1973) and CHEN (1997);

• shrunken estimators as proposed by SINGH/BHATKULIKAR (1978), PANDEY

(1983), PANDEY/SINGH (1984), PANDEY et al. (1989) and PANDEY/SINGH (1993).

In Sect. 12.1.2 we have seen that the skewness coefficient based on moments 13

α3 =
µ3

µ
3/2
2

=
Γ3 − 3Γ2 Γ1 + 2Γ3

1

(Γ2 − Γ2
1)

3/2

depends only on c and may be used to estimate c by equating the sample skewness

1
n

∑
(Xi −X)3

[
1
n

∑
(Xi −X)2

]3/2

to α3 and solving for c. There exist different statistics to measure skewness (see Sect. 2.9.4).

DUBEY (1967c) has proposed the following measures of skewness which depend only on

c and which may be tabulated to find an estimate of c when the population measure is

13 Remember: Γi := Γ(1 + i
‹
c) and bΓi := Γ(1 + i

‹
bc).
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equated to the sample measure:

S1 =
mean – median

standard deviation
=
µ− x0.5

σ
=

Γ1 − (ln 2)1/c

(Γ2 − Γ2
1)

0.5
, (13.49a)

S2 =
mean – mode

standard deviation
=
µ− x∗

σ

=





Γ1 − (1 − 1
c )

1/c

(Γ2 − Γ2
1)

0.5
for c > 1

Γ1

(Γ2 − Γ2
1)

0.5
for 0 < c ≤ 1




, (13.49b)

S3 =
median – mode

standard deviation
=
x0.5 − x∗

σ

=





(ln 2)1/c − (1 − 1
c )

1/c

(Γ2 − Γ2
1)

0.5
for c > 1

(ln 2)1/c

(Γ2 − Γ2
1)

0.5
for 0 < c ≤ 1




, (13.49c)

S4 =
(x1−α − x0.5) − (x0.5 − xα)

x1−α − xα

=

[
− lnα

]1/c − 2
[
ln 2
]1/c −

[
− ln(1 − α)

]1/c
[
− lnα

]1/c −
[
− ln(1 − α)

]1/c , 0 < α < 0.5.(13.49d)

We add the following remarks to these measures:

• For a continuous distribution function, we have −1 ≤ S1 ≤ +1.

• The three measures are not independent, e.g.,

S3 = S2 − S1.

• When S2 or S3 is to be used, we should have a large sample size to find the sample

mode from the grouped data.

• S4 is a percentile estimator and thus a generalization of the estimators found in

Sect. 13.1.2.
The kurtosis coefficient α4 based on moments (see (2.101)) depends only on c:

α4 =
µ4

µ2
2

=
Γ4 − 4Γ3 Γ1 + 6Γ2 Γ2

1 − 3Γ4
1(

Γ2 − Γ2
1

)2

and may be used to estimate c by equating the sample kurtosis

1
n

∑
(Xi −X)4

[
1
n

∑
(Xi −X)2

]2
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to α4 and solving for c. A percentile oriented measure of kurtosis is; see (2.102c):

L =
x0.975 − x0.025

x0.75 − x0.25

=

[
− ln 0.025

]1/c −
[
− ln 0.975

]1/c
[
− ln 0.25

]1/c −
[
− ln 0.75

]1/c . (13.50)

When there are two failures in a sample of size n occurring at times X1:n and X2:n, JAECH

(1964) gives the following estimator of c :

ĉ =
1

lnZ
, (13.51a)

based on the ratio of time at failure for the second failure item to time at failure for first

failed item

Z =
X2:n

X1:n
. (13.51b)

This estimator is a special case (r = 2) of the GLUE of BAIN/ENGELHARDT (see

Sect. 10.4.3), as shown by BAIN (1973). When there are k samples of size n each with

two failures, JAECH (1964) gives the estimator

ĉk =
k

k∑
i=1

lnZi

, (13.51c)

where Zi is the ratio of X2:n to X1:n in the i–th sample. A generalization of (13.51c) for

samples of unequal sizes ni is found in BAIN (1973).

The moment estimator of c in the two–parameter case, derived from the ratio[
E(X)

]2/
E
(
X2
)

= Γ2
1

/
Γ2; see (Sect. 12.1.1) and proposed by MIHRAM (1977) has its

origin in the estimator of the reciprocal c1 := 1/c; see MIHRAM (1969). Another esti-

mator of c1 has been set up by MURTHY/SWARTZ (1975). Motivated by the percentile

representation (see (13.2c)):

c =
ln ln

[
1/(1 − P1)

]
− ln ln

[
1/(1 − P2)

]

lnxP1 − lnxP2

,

they proposed for the reciprocal shape parameter c1:

ĉ1 =
(
lnXk:n − lnXℓ:n

)
B(n, k, ℓ), (13.52)

where B(n, k, ℓ) is an unbiasing factor determined by E
(
ĉ1
)

= c1. The choice of the

orders k and ℓ has been made to minimize the variance of the estimator. The efficiency

Eff
(
ĉ1
)

relative to the CRAMÉR–RAO lower limit approaches 70% with n→ ∞.
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Let

Xa =
1

n

n∑

i=1

Xi,

Xg =

{
n∏

i=1

Xi

}1/n

=

n∏

i=1

X
1/n
i

be the arithmetic and geometric means, respectively. When Xi
iid∼ We(0, b, c), we notice

that

E
(
Xa

)
= E(X) = bΓ1, Var

(
Xa) =

b2

n

[
Γ2 − Γ2

1

]
,

E
(
Xg

)
= bΓn

(
1 +

1

n c

)
, Var

(
Xg

)
= b2

{
Γn
(
1 + 2/(n c)

)
− Γ2n

(
1 + 1/(n c)

)}
.

The ratio of the arithmetic mean to the geometric mean,

R =
Xa

Xg

, (13.53a)

could be expected to have a distribution independent of the scale parameter b. MIHRAM

(1973) gives the mean of R for finite sample size n as

E(R) = ρn(c) = Γ

(
1 +

n− 1

n c

)
Γn−1

(
1 − 1/(n c)

)
, (13.53b)

provided that c > 1/n, and for n→ ∞ as

lim
n→∞

ρn(c) = ρ∞(c) = Γ

(
1 +

1

c

)
exp{−ψ(1)

/
c}, (13.53c)

where ψ(1) = −γ ≈ −0.57722. MIHRAM suggests as a WEIBULL shape estimator

ĉ = ρ−1
∞ (R), (13.53d)

which can be read from Fig. 13/2.

The estimator given in (13.53d) is consistent for c, but as shown by MIHRAM the asymp-

totic efficiency is higher than 0.5 as long as c ≤ 1, but declines rapidly when c > 1.

CHEN (1997) has built a confidence interval for an estimator that uses a sample statistic

analogous to R in (13.53a) and is valid for type–II censored samples. His estimator starts

from the reduced exponentially distributed order statistic

Yi:n =

(
Xi:n

b

)c
(13.54a)
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Figure 13/2: ρ∞(c) = Γ(1 + 1
/
c) exp{−ψ(1)

/
c}

and forms the pseudo arithmetic mean

Y
∗
a =

1

n

[
r−1∑

i=1

Yi:n + (n− r + 1)Yr:n

]
(13.54b)

and the pseudo geometric mean

Y
∗
g =

(
r−1∏

i=1

Yi:n Y
n−r+1
r:n

)1/n

. (13.54c)

When r = n (no censoring), (13.54b,c) will turn into proper means. The ratio

ξ(c;n, r) :=
Y

∗
a

Y
∗
g

=

1
n

[
r−1∑
i=1

Y c
i:n + (n − r + 1)Y c

r:n

]

(
r−1∏
i=1

Yi:n Y
n−r+1
r:n

)c/n (13.54d)

is seen not to depend on any parameter and its distribution may be found by Monte Carlo

simulation. Let ξ1−α(n, r) be the upper 1 − α critical value, then

Pr
[
ξα/2(n, r) ≤ ξ(c;n, r) ≤ ξ1−α/2(n, r)

]
= 1 − α (13.54e)
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offers a (1 − α) 100% confidence interval for ξ(c;n, r). The corresponding confidence

interval (cL, cU ) for the shape parameter may be found with cL and cU as solutions of c for

the equations

ξ(c;n, r) = ξα/2(n, r); ξ(c;n, r) = ξ1−α/2(n, r).

CHEN (1997) gives a table of percentiles ξP (n, r).

Shrunken estimation is on the borderline between classical statistical inference and

BAYESIAN inference. The idea of shrunken estimation of the shape parameter c is to com-

bine a guessed or a priori given value co with an estimate ĉ, which is coming from observed

sample data.14 The papers which have been written on this topic (in chronological order

of a publishing: SINGH/BHATKULILAR (1978), PANDEY (1983), PANDEY/SINGH (1984),

PANDEY et al. (1989) and PANDEY/SINGH (1993)) all have in common that the data sup-

ported estimate ĉ is derived from BAIN’s (1972) GLUE of b∗ = 1/c; see (10.47). Some-

times the result of a test on the validity of c0 is incorporated into the estimation procedure.

We will give no details on shrunken estimation technique as we believe that it is more fruit-

ful to apply BAYES estimation (see Chapter 14) when there exists prior knowledge on the

parameters to be estimated.

13.6 Comparisons of classical estimators

The existence of the great number of estimators for the WEIBULL parameters raises a dou-

ble question: What estimator is the best one, and how to measure its quality? — The

answers depend on the sample size.

In the asymptotic case (n→ ∞ or n very large), the benchmark is given by the CRAMÉR–

RAO lower bound of the variance of unbiased estimators and this bound is reached by the

MLEs; see (11.17) for the two–parameter case and (11.12) for the three–parameter case

when the sample is uncensored. Other estimators do not reach this lower bound and their

asymptotic relative efficiency is lower than 100%, as has been shown when presenting these

estimators in the preceding sections and chapters.

However, the superiority of the MLEs is not guaranteed when the sample size is finite and

small. The size of the systematic error of an estimator (the bias) and the size of its random

or sample error (measured by the variance or the standard deviation) or the size of the

combined systematic and random errors (measured by the mean square error, MSE, or its

root, RMSE) cannot be given by closed and analytical formulas when estimating WEIBULL

parameters. So a great number of papers have been written on Monte Carlo experiments

to gain insight into the comparative behavior of several estimators. Most of the Monte

Carlo investigations refer to the two–parameter WEIBULL distribution and to complete or

single type–II censored samples and we will discuss these studies in some detail15 and in

14 The difference between shrunken estimation and BAYESIAN estimation is that the former one works

without a prior distribution of c which expresses the uncertainty about c.
15 A comparison of the ML and moment estimation techniques for the three–parameter and complete sam-

ple case has been made by SAYLOR (1977). His results are as follows: The MM location parameter

estimators are more efficient than the ML location parameter estimators in all tests. The MMEs appear

to be more efficient than the MLEs for sample sizes less than or equal to 50. But SAYLOR’s spectrum of

tested parameter values and sample sizes is not wide and the number of Monte Carlo repetitions is rather
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chronological order.

BAIN/ANTLE (1967) compared their estimators (10.31c,d) with those given by GUMBEL

(see (10.32c,d)), by MILLER/FREUND (see Sect. 10.4.1), and by MENON (see Sect. 13.4.1).

Comparisons were made using the variances and the biases of the estimators for complete

samples of size n = 5(5)30. All of these estimators were fairly good. MENON’s estimators

are good if the bias is removed from the estimator of c for small n. MENON’s estimators

seem better for larger sample sizes although they could not be used for censored data.

Monte Carlo investigations of HARTER/MOORE (1968) indicate that MLEs and BLUEs

for b∗ = 1/c have nearly equal MSEs. For estimating a∗ = ln b the two methods are

also comparable except when n is very small, in which case the linear estimator is slightly

preferable. HARTER/MOORE state that since the MSEs of MLEs have been shown to differ

but little from those of the BLIEs and to be considerably smaller than those of the BLUEs

in some cases, especially those involving strongly asymmetric censoring, the use of the

MLEs has much to recommend it.

A combination of Monte Carlo experiments and exact small–sample and asymptotic results

has been used by MANN (1968a) to compare the expected loss (with loss equal to squared

error) of a great number of point estimators. Comparisons of MSEs for MLEs, BLIEs and

BLUEs are also given in MANN et al. (1974).

THOMAN et al. (1969) compared the MLEs and MENON’s estimators for complete samples

of sizes ranging from n = 5 to n = 100. The biases for the two estimators of c are nearly

equal. Both are highly biased for small n, i.e., for n ≤ 10. However, multiplicative

unbiasing factors were given so that both estimators of c could be rendered unbiased. The

variances of the unbiased estimators were obtained and the unbiased MLE was clearly

superior even for small values of n, i.e., 5 ≤ n ≤ 10.

MCCOOL(1970c) evaluated the median unbiased MLE and an LSE with median rank plot-

ting position proposed by JOHNSON (1964). The tenth percentile and the shape parameter

c were the parameters considered. A simulation study with observations from two sets was

conducted. One set consisted of n = 10 with the five largest values censored. The second

set was a complete sample of size n = 10. The precision of the estimates, as measured by

the ratio of the upper to lower 5% points, was uniformly better for ML than for the least

squares procedure.

GROSS/LURIE (1977) compared the estimators of BAIN/ANTLE (see (10.31c,d)) and of

GUMBEL (see (10.32c,d)) to the MLEs for samples of sizes n = 10, 25, 50, 100 and

small. HOBBS et al. (1985) and GALLAGHER/MOORE (1990) compared the MLEs with the MDEs of

a, b and c. Their main finding is as follows: “Whether the data were WEIBULL or generated from other

distributions, minimum distance estimation using the ANDERSON–DARLING goodness–of–fit statistic

on the location parameter and maximum likelihood on the shape and scale parameters was the best or

close to the best estimation technique” (GALLAGHER/MOORE, 1990, p. 575). This statement was also

affirmed by HOBBS et al. (1985).

Progressively type–II censored samples of a two–parameter WEIBULL distribution with four types of

linear estimators (BLUE, approximated BLUE, unweighed regression and linearized MLE) have been

studied by THOMAN/WILSON (1972). The biases and the variances and covariances turned out to be

smaller with the approximate BLUEs and the linearized MLEs. RINGER/SPRINKLE (1972), comparing

MMEs, MLEs and MENON’s estimators in the progressive censoring case, concluded that MENON’s

estimators are best for c < 1 and that for c ≥ 1 MLEs and MENON’s estimators are best.
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several values of c and b. Comparisons were made with respect to bias and MSE. Their

conclusions were that for samples of size n = 10, the estimators of BAIN/ANTLE and

GUMBEL were superior. For n = 25, the MLEs were comparable. For n ≥ 50, MLEs

were best on the basis of overall bias and MSE for the two parameters.

KUCHII et al. (1979) as well as KAIO/OSAKI (1980) compared the MLE, MME and a

method of WEIBULL probability paper (WPP) for n = 5, 10, 15 combined with c =
0.5, 1, 5 (b = 1 in each case). Their finding was that WPP is relatively better with respect

to bias, standard deviation and RMSE, but the number of replications being only 100 gives

no representative results.

A Monte Carlo simulation study on the performance of several simple estimators by

ZANAKIS (1979) has already been reviewed in Sect. 13.3.

GIBBONS/VANCE (1979, 1981) compared seven estimators including MLE, linear estima-

tors, least squares estimators and moment estimators. The performance of these estimators

with respect to MSE was studied in complete and type–II censored samples of n = 10
and n = 25. No estimator outperformed all the others in all situations. One estimator, the

moment estimator, was uniformly worse than the MLE.

ENGEMAN/KEEFE (1982) compared four estimators (GLS, OLS, MLE and MENON’s es-

timator) for n = 5(5)25 and 16 combinations of the parameters (b = 0.1, 1, 10, 100 and

c = 0.5, 1, 2, 4). The comparison is based on observed relative efficiencies, i.e., the ratio

of CRAMÉR–RAO lower bound to the observed MSE. The GLS estimator was found to be

best for estimating c and a close competitor to the MLE of b.

CHAO/HWANG (1986) studied the mean length of three exact confidence intervals,

based on conditional MLE (see LAWLESS (1973b, 1978)), MLE and BLIE for n =
4, 5, 8, 10, 15, 20 and several censoring levels, but for only one combination of b and c.
Their finding was that in very small sample sizes or in heavily censored samples the three

results are fairly close, but generally the MLE produced the shortest mean lengths for both

parameters.

AL–BAIDHANI/SINCLAIR (1987) compared GLS, OLS, MLE, hazard plotting and two

mixed methods (GLS of c and b with hazard plotting, GLS of c and MLE of b) for n = 10
and 25 and the same 16 combinations of b and c as used by ENGEMANN/KEEFE (1982).

Their finding was that GLS is best for c and the best method for b depends on the size of c,
the parameter estimates being assessed by their relative efficiency.

HOSSAIN/HOWLADER (1996) considered several unweighed least squares estimators, dif-

fering with respect to the plotting position, and the MLE. The spectrum of sample sizes was

very wide (n = 5, 8, 10, 12, 15, 18, 22, 25, 30, 40, 50) for c = 1.5, 2.5, 5, 100 and

b = 1. For n > 20 MLE has a slight edge over the OLS in terms of MSE whereas for

n ≤ 20 OLS with plotting position i/(n + 1) is recommended.

The findings of the cited Monte Carlo studies do not point in the same direction. Thus

we can say that the choice of an estimator is mainly a matter of taste and availability of

computer programs. But we strongly recommend not to rely on only one approach but to

evaluate at least two estimation procedures and pool their results.



14 Parameter estimation —

BAYESIAN approaches

The framework for the results in the preceding chapters has been random sample of n
observations that are either complete or censored in one way or the other. We have re-

garded these observations as realizations of independent and identically distributed random

variables with cumulative distribution function F (x |θ) and density function f(x |θ) =
dF (x |θ)/dx, where θ is a labeling vector of parameters. We also assumed that these

parameters are constants with unknown values. However, we agreed upon the parame-

ter space, i.e., the set of all possible values of the parameters, which we denoted by Ω.

Mostly we have assumed that Ω is the natural parameter space; i.e., Ω contains those val-

ues of θ for which the density function f(x |θ) is well defined, i.e., f(x |θ) ≥ 0 and∫∞
−∞ f(x |θ) dx = 1.

But there are cases in which one can assume a little more about the unknown parameters.

For example, we could assume that θ is itself a realization of a random vector, denoted

by Θ, with density function g(θ). In the WEIBULL model the scale parameter b may be

regarded as varying from batch to batch over time, and this variation is represented by a

probability distribution over Ω. Thus, the set–up is now as described in Sect. 14.1.

14.1 Foundations of BAYESIAN inference1

14.1.1 Types of distributions encountered

There are n items put on test and it is assumed that their recorded lifetimes form a random

sample of size n from a population with density function f(x |θ), called the sampling

model. This density is conditioned on θ. The joint conditional density of the sampling

vector X = (X1, . . . ,Xn)
′ is

f(x |θ) =

n∏

i=1

f(xi |θ), (14.1a)

assuming an independent sample. Given the sample data x = (x1, . . . , xn)
′, f(x |θ) may

be regarded as a function, not of x, but of θ. When so regarded, (14.1a) is referred to as the

likelihood function of θ given x, which is usually written as L(θ |x) to ensure its distinct

interpretation apart from f(x |θ), but formally we have

f(x, |θ) ≡ L(θ |x). (14.1b)

1 Suggested reading for this section: BARNETT (1973), BOX/TIAO (1973), JEFFREYS (1961), LINDLEY

(1965) and SAVAGE (1962) for the basic theory and foundations, MARTZ/WALLER (1982) for applica-

tions in life–testing and reliability.



512 14 Parameter estimation — BAYESIAN approaches

We agree to regard θ as realization of a random vector Θ having the prior density g(θ),
called the prior model. This prior density is crucial to BAYESIAN inference and has always

been a point of criticism to this approach. We will revert to the possibilities of choosing

g(θ) by the end of this section. The joint density of X and Θ is found by applying the

multiplication theorem of probabilities to be

f(x,θ) = g(θ) f(x |θ). (14.1c)

The marginal density ofX may be obtained according to

f(x) =

∫

Ω
f(x |θ) g(θ) dθ, (14.1d)

where the integration is taken over the admissible range Ω of θ. The conditional density of

Θ, given the date x, is found by using BAYES’ theorem (THOMAS BAYES, 1701 – 1761):

g(θ |x) =
f(x,θ)

f(x)
=
g(θ) f(x |θ)

f(x)
. (14.1e)

g(θ |x) is called the posterior density of Θ. This posterior model is the main object of

study and the basis of estimating θ and testing hypotheses on θ. In the remainder of this

chapter we sometimes refer to the prior distribution and posterior distributions simply as

the “prior” and “posterior.”

The prior model is assumed to represent the totality of subjective information available

concerning the parameter vector Θ prior to the observation x of the sample vector X .

Thus, it is not functionally dependent upon x. On the other hand, the sampling model

depends on the parameters in θ and is thus a conditional distribution. The posterior model

tells us what is known about θ, given knowledge of the data x. It is essentially an updated

version of our prior knowledge about θ in light of the sample data — hence, the name

posterior model. It is intuitive that the posterior model should represent a modification of

the subjective knowledge about θ expressed by the prior model in light of the observed

sample data. If the sample data support our subjective opinion about θ, then the posterior

model should reflect increased confidence in the subjective notions embodied in the prior

model. On the other hand, if the sample data do not support the subjective information, the

posterior model should reflect a weighted consideration of both assessments.

If we regard f(x |θ) in BAYES’ theorem as the likelihood function L(θ |x), then we may

write BAYES’ theorem (14.1e) as

g(θ |x) ∝ g(θ)L(θ |x), (14.1f)

which says that the posterior distribution is proportional to the product of the prior distri-

bution and the likelihood function. The constant of proportionality necessary to ensure that

the posterior density integrates to one is the integral of the product, which is the marginal

density ofX ; see (14.1d). Thus, in words we have the fundamental relationship given by

posterior distribution ∝ prior distribution × likelihood

=
prior distribution × likelihood

marginal distribution
.
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BAYES’ theorem provides a mechanism for continually updating our knowledge about θ
as more sample data become available. Suppose that we have an initial set of sample data

x1, as well as a prior distribution for Θ. BAYES’ theorem says that

g(θ |x1) ∝ g(θ)L(θ |x1). (14.2a)

Suppose now that we later obtain a second set of sample data x2 that is statistically inde-

pendent of the first sample. Then

g(θ |x1,x2) ∝ g(θ)L(θ |x1)L(θ |x2)

∝ g(θ |x1)L(θ |x2), (14.2b)

as the combined likelihood may be factored as a product. It is observed that (14.2b) is of

the same form as (14.2a) except that the posterior distribution of Θ given x1 assumes the

role of the prior distribution g(θ). This process may be repeated. In fact, each sample

observation can be processed separately if desired.

14.1.2 BAYESIAN estimation theory

Once the posterior has been obtained, it becomes the main object of further inquiries into

the parameters incorporated in Θ. We will first comment upon estimation.

In general, BAYESIAN point estimation is attached to a loss function indicating the loss

coming up when the estimate θ̂ deviates from the true value θ. The loss should be zero if

and only if θ̂ = θ. For this reason the loss function ℓ(θ̂,θ) is often assumed to be of the

form
ℓ(θ̂,θ) = h(θ)ϕ(θ − θ̂ ), (14.3a)

where ϕ(·) is a non–negative function of the error θ − θ̂ such that ϕ(0) = 0 and h(·) is

a non–negative weighting function that reflects the relative seriousness of a given error for

different values of θ. In determining BAYES’ estimators based on this loss function, the

function h(·) can be considered as a component of the prior g(θ). For this reason, it is

frequently assumed that the function h(·) in (14.3a) is a constant.

When the parameter θ is one–dimensional, the loss function can often be expressed as

ℓ(θ̂, θ) = A |θ − θ̂|B , (14.3b)

where A > 0 and B > 0. If B = 2, the loss function is quadratic and is called a squared–

error loss function. If B = 1, the loss function is piecewise linear and the loss is pro-

portional to the absolute value of the estimation error and is called an absolute–error loss

function.

When the loss function in the one–dimensional case is specified as

ℓ(θ̂, θ) = A
(
θ − θ̂

)2
, (14.4a)

the BAYES estimator, for any specified prior g(θ), will be the estimator that minimizes the

posterior risk given by

E
[
A (Θ − θ̂ )2 |x

]
=

∫

Ω
A (θ − θ̂ )2 g(θ |x) dθ, (14.4b)
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provided this expectation exists.2 After adding and subtracting E(Θ |x) and simplifying,

we have

E
[
A (Θ − θ̂)2 |x

]
= A

[
θ̂ − E(Θ |x)

]2
+AVar(Θ |x), (14.4c)

which is clearly minimized when

θ̂ = E(Θ |x) =

∫

Ω
θ g(θ |x) dθ. (14.4d)

Thus, for a squared–error loss function the BAYES estimator is simply the posterior mean

of Θ given x.

A generalization of the squared–error loss function when we have to estimate a vector θ is

the quadratic loss function

ℓ(θ̂,θ) = (θ − θ̂)′A (θ − θ̂), (14.5a)

where A is a symmetric non–negative definite matrix. We shall suppose that the mean

vector E(Θ |x) and variance–covariance matrix Cov(Θ |x) of the posterior distribution of

Θ exist. The BAYES estimator is the estimator that minimizes the posterior risk given by

E
[
(Θ − θ̂)′A (Θ − θ̂) |x] = E

{
[Θ − E(Θ |x)]′A [Θ − E(Θ |x)] |x

}

+
[
E(Θ |x) − θ̂

]′
A
[
E(Θ |x) − θ̂

]

= tr[ACov(Θ |x)
]
+
[
E(Θ |x) − θ̂

]′
A
[
E(Θ |x) − θ̂

]
.(14.5b)

This is clearly minimized when

θ̂ = E(Θ |x) =

∫

Ω
θ g(θ |x) dθ (14.5c)

and thus the posterior mean E(Θ |x) is a BAYES estimator for θ.

Assuming the absolute–error loss function the BAYES estimator will be the estimator that

minimizes E[A |Θ− θ̂| | x]. The value of θ̂ minimizing this posterior risk is the median of

the posterior distribution.

Another BAYES estimator for either a univariate or vector parameter is the value of the

parameter that maximizes g(θ |x), i.e., that satisfies the relation

g(θ̂ |x) = max
θ

g(θ |x). (14.6)

This estimator is the mode of g(θ |x). Although such an estimator may not be a BAYES

estimator for any standard loss function, it is a reasonable estimator because it measures the

location of the posterior distribution analogous to the posterior mean and posterior median.

But we can state that the most popular BAYES estimator is given by the posterior mean

(14.4d) or (14.5c).

Having obtained g(θ |x), one may ask, “How likely is it that θ lies within a specified

interval [θℓ, θu]?” This is not the same as the classical confidence interval interpretation for

θ because there θ is a constant and it is meaningless to make a probability statement about

2 The posterior risk for A = 1 resembles the MSE of classical inference.
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a constant.3 BAYESIANs call this interval based on the posterior a credible interval, an

interval which contains a certain fraction of the degree of belief. The interval4 [θℓ, θu] is

said to be a (1 − α)–credible region for θ if

θu∫

θℓ

g(θ |x) dθ = 1 − α. (14.7a)

Now we have to distinguish between three types of credible intervals.

1. For the shortest credible interval we have to minimize I = θu − θℓ subject to

condition (14.7a) which requires

g(θℓ |x) = g(θu |x). (14.7b)

2. A highest posterior density interval (HPD–interval) satisfies the following two

conditions:

(a) for a given probability 1 − α, the interval should be as short as possible,

(b) the posterior density at every point inside the interval must be greater than for

every point outside so that the interval includes more probable values of the

parameter and excludes less probable values.

3. An equal–tail (1 − α)–credible interval for θ is given by

θℓ∫

−∞

g(θ |x) dθ =

∞∫

θu

g(θ |x) dθ = α/2. (14.7c)

For a unimodal but not necessarily symmetrical posterior density, shortest credible and

HPD–intervals are one and the same. All these types of credible regions are the same

when g(θ |x) is unimodal and symmetric. The most popular type is the equal–tail interval

because it is the easiest one to determine.

14.1.3 Prior distributions

As stated previously, the prior g(θ) represents all that is known or assumed about the pa-

rameter θ (either scalar or vector) prior to the observation of sample data. Thus, the in-

formation summarized by the prior may be either objective or subjective or both. Two

examples of objective input to the prior distribution are operational data or observational

data from a previous comparable experiment. Subjective information may include an engi-

neer’s quantification of personal experience and judgments, a statement of one’s degree of

belief regarding the parameter, design information and personal opinions. The latter type

of information is extremely valuable in life–testing and reliability estimation where sample

data are difficult to obtain when the items have a long time to failure or are expensive to

obtain as the items have a high price. In some cases we may evaluate the informational

content of a prior by the number of sampled items saved and leading to the same estimate.

3 In classical statistics the confidence limits are random and the probability statement refers to the interval

and is the probability that it covers over the fixed but unknown value of θ.

4 The following ideas can be carried over to a vector parameter leading to regions in Ω.
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Prior distributions may be categorized in different ways. One common classification is

a dichotomy that separates “proper” and “improper” priors. A proper prior is one that

allocates positive weights that total one to the possible values of the parameter. Thus a

proper prior is a weight function that satisfies the definition of a probability mass function or

a density function. An improper prior is any weight function that sums or integrates over

the possible values of the parameter to a value other than one, say K . If K is finite, then an

improper prior can induce a proper prior by normalizing the function. Other classifications

of priors, either by properties, e.g., non–informative, or by distributional forms, e.g., beta,

gamma or uniform distributions, will be met in the following sections.

One general class of prior distribution is called non–informative priors or priors of ig-

norance. Rather than a state of complete ignorance, the non–informative prior refers to

the case when relatively little or very limited information is available a priori. In other

words a priori information about the parameter is not considered substantial relative to the

information expected to be provided by the sample of empirical data. Further, it frequently

means that there exists a set of parameter values that the statistician believes to be equally

likely choices for the parameter. One way of expressing indifference is to select a prior

distribution that is locally uniform, i.e., a prior that is approximately uniformly distributed

over the interval of interest. BOX/TIAO (1973) give the following definition:

If φ(θ) is a one–to–one transformation of θ, we shall say that a prior of Θ that is locally

proportional to |dφ(θ)
/

dθ| is non–informative for the parameter θ if, in terms of φ, the

likelihood curve is data translated; that is, the data x only serve to change the location of

the likelihood L(θ |x).

A general rule to find a non–informative prior has been proposed by JEFFREYS (1961),

known as JEFFREYS’ rule:
g(θ) = constant

√
I(θ) (14.8a)

for a one–dimensional prior, where I(θ) is the FISHER information and

g(θ) = constant
√

|I(θ)| (14.8b)

for a multi–dimensional prior, where |I(θ)| is the determinant of the information matrix,

see (11.8).

Another type of prior is the conjugate prior distribution introduced by RAIFFA/SCHLAIFER

(1961). A conjugate prior distribution, say g(θ), for a given sampling distribution, say

f(x | θ), is such that the posterior distribution g(θ |x) and the prior g(θ) are members of

the same family of distributions.

When the chosen prior g(θ) depends on one or more parameters, we have to find their

values unless they are given together with the function g(·). Sometimes the statistician has

some subjective information about characteristics of the distribution of Θ; e.g., he has an

impression of moments or quantiles. Then he can set up moment equations or percentile

equations which connect these characteristics with the unknown parameters of g(θ) and

solve for these parameters.

We will encounter the types of priors mentioned above in Sect. 14.2, but the assignment of

a prior contains an element of risk for the investigator. It is appropriate to ask if there is any

alternative to the use of an assumed prior or of having to ignore altogether that the prior
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distribution exists. An alternative that assumes the existence of a prior but of unknown

distributional form is the empirical BAYES procedure (see Sect. 14.3). Past data is used

to bypass the necessity for identification of the correct prior distribution.

14.2 Two-parameter WEIBULL distribution5

We will present three classes of problems:

• the shape parameter c is known and the scale parameter b is random (Sect. 14.2.1),

• the scale parameter is known and the shape parameter is random (Sect. 14.2.2),

• both parameters are random variables (Sect. 14.2.3).

BAYESIAN analysis is applied to a reparameterized version of the WEIBULL distribution,

either to
f(x |λ, c) = λ cxc−1 exp

(
− λxc

)
, (14.9a)

where

λ = b−c (14.9b)

is a scale factor, or to

f(x | θ, c) =
c

θ
xc−1 exp

(
− xc

/
θ
)
, (14.10a)

where

θ = λ−1 = bc. (14.10b)

These versions separate the two original parameters b and c and thus simplify the algebra

in the subsequent BAYESIAN manipulations.

14.2.1 Random scale parameter and known shape parameter6

In WEIBULL reliability analysis it is frequently the case that the value of the shape pa-

rameter is known.7 In this case the variate Y = Xc has an exponential distribution and

the BAYESIAN estimators follow directly from this transformation and the results for the

exponential distribution, see MARTZ/WALLER (1982, Chapter 8). We will present the

BAYESIAN estimators of λ = b−c for a non–informative prior, a uniform prior and a gamma

prior.

When c is assumed known, we can make the following transformation

Y = Xc, (14.11a)

and the parent WEIBULL densities (14.9a) and (14.10a) turn into the exponential densities

f(y |λ) = λ exp(−λ y) (14.11b)

5 BAYES estimation of the parameters of the three–parameter WEIBULL distribution is discussed in

SINHA/ SLOAN (1988), SMITH/NAYLOR (1987) and TSIONAS (2000).

6 Suggested reading for this section: CANAVOS (1983), CANAVOS/TSOKOS (1973), HARRIS/

SINGPURWALLA (1968, 1969), MARTZ/WALLER (1982), PAPADOPOULOS/TSOKOS (1975), SINHA

(1986b), SOLAND (1968b) and TSOKOS (1972).

7 SOLAND (1968b) gives a justification for this situation.
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and

f(y | θ) =
1

θ
exp(−y/θ). (14.11c)

We further have the following likelihood function of λ when a sample of size n is simply

type–II censored on the right, r ≤ n being the censoring number:

L(λ |y, n, r) ∝
r∏

i=1

[
λ exp(−λ yi)

] n∏

j=r+1

exp(−λ yr), yi = xci:n

= λr exp

{
−λ
[

r∑

i=1

yi + (n− r) yr

]}

= λr exp(−λT ), (14.12a)

where

T :=
r∑

i=1

xci:n + (n− r)xcr:n (14.12b)

is the rescaled total time on test in which the lifetimes xi and survival time xr are

“rescaled” by raising it to a power c. We remark that (14.12a,b) include the complete–

sample case where r = n.

We first want to study BAYESIAN estimation of λ when the prior distribution is non–

informative according to JEFFREYS’ rule. The log–likelihood function belonging to

(14.12a) is L(λ |y, n, r) = r lnλ− λT + constant. (14.13a)

Consequently
∂L
∂λ

=
r

λ
− T (14.13b)

and
∂2L
∂λ2

= − r

λ2
, (14.13c)

and the FISHER information is

I(λ) =
r

λ2
, (14.13d)

so that the non–informative prior according to (14.8a) is given by

g(λ) ∝
√
I(λ) ∝ 1

λ
for λ > 0, (14.13e)

and φ(λ) = lnλ is the transformation for which the approximately non–informative prior

is locally uniform.

The prior density given in (14.13e) is improper, but the posterior density — according to

(14.1e) — will be proper:

g(λ |T, r) =
λr−1 exp(−λT )

∞∫
0

λr−1 exp(−λT ) dλ

=
T r

Γ(r)
λr−1 exp(−λT ). (14.14a)
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This posterior density is recognized as the density of the gamma distribution Ga(r, T ), so

that the posterior mean and posterior variance are

E(Λ |T, r) = r
/
T, (14.14b)

Var(Λ |T, r) = r
/
T 2. (14.14c)

(14.14b) is nothing but the BAYESIAN estimator λ̂B of λwith respect to squared–error loss.

We further remark that this BAYESIAN estimator is equal to the classical MLE resulting

from (see (14.13b))
∂L
∂λ

=
r

λ
− T = 0.

After re–substitution we write

λ̂B = r

{
r∑

i=1

xci:n + (n− r)xcr:n

}−1

. (14.14d)

Excursus: A generalization of the non–informative prior 1
/
λ

When we introduce a power d, d > 0 to (14.13e), we arrive at the following generalization of the

non–informative prior:

g(λ) =
1

λd
; λ > 0, d > 0. (14.15a)

(14.15a) and (14.12a) give the following:

g(λ |T, r, d) =
T r+1−d

Γ(r + 1 − d)
λr−d exp(−λT ), d < r + 1, (14.15b)

E(Λ |T, r, d) =
r − d+ 1

T
, d < r + 1, (14.15c)

Var(Λ |T, r, d) =
r − d+ 1

T 2
, d < r + 1. (14.15d)

Since the conditional distribution of (Λ |T, r) is a gamma distribution (see (14.14a)), the

transformed variable 2T Λ follows the χ2(2 r)–distribution. This fact can be used to obtain

credible intervals for Λ. The equal–tail 100 (1 − α)% credible interval is

χ2
2 r,α/2

2T
≤ Λ ≤

χ2
2 r,1−α/2

2T
, (14.16)

where χ2
2 r,P is the percentile of order P of the χ2(2 r)–distribution.

Example 14/1: Bayesian estimation of λ = b−c for dataset #1 censored at r = 15 using

g(λ) ∝ 1/λ

Dataset #1 (see Tab. 9/2) is a sample of n = 20 from We(a, b, c) = We(0, 100, 2.5). We will use

these data censored at r = 15, i.e., xr:20 = 113, and assume c = 2.5. The rescaled total time on

test results as

T =

15∑

i=1

x2.5
i:20 + 5 x2.5

15:20 = 1,477,067.2,
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so that the BAYESIAN estimator is

λ̂B =
r

T
=

15

1,477,067.2
= 1.015526 · 10−5.

The true value is λ = 100−2.5 = 1 · 10−5. The equal–tail 95% credible interval is

16.791

2 · 1,477,067.2
≤ Λ ≤ 46.979

2 · 1,477,067.2
=⇒ 5.683899 · 10−6 ≤ Λ ≤ 1.590280 · 10−5

and includes the true value 10−5. Fig. 14/1 shows g(λ) = 1
/
λ and g(λ |T, r) together with the

lower and upper limits of the 95%–interval.

Figure 14/1: Non-informative prior and posterior density for dataset #1 censored at r = 15

We will now consider the uniform prior8

g(λ |A,B) =





1

B −A
for A ≤ λ ≤ B,

0 elsewhere.



 (14.17a)

When we combine (14.17a) and the likelihood function (14.12a) according to (14.1e), we

first get the following posterior density

g(λ |T, r,A,B) =
λr exp(−λT )

B∫
A

λr exp(−λT ) dλ

. (14.17b)

8 The BAYESIAN estimator based on a uniform prior for θ in (14.10a,b) is to be found in CANAVOS (1983),

CANAVOS/TSOKOS (1973) and PAPADOPOULOS/TSOKOS (1975).
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Introducing y = λT , the denominator of (14.17b) becomes

B∫

A

λr exp(−λT ) dλ =

B T∫

AT

yr exp(−y)
T r+1

dy

=
1

T r+1

{
γ(r + 1 |B T ) − γ(r + 1 |AT )

}
, (14.17c)

where γ(· | ·) represents the incomplete gamma function (see the excursus on the gamma

function in Sect. 2.9). Substituting (14.17c) into (14.17b) we finally have

g(λ |T, r,A,B) =
T r+1 λr exp(−λT )

γ(r + 1 |B T ) − γ(r + 1 |AT )
. (14.17d)

The posterior mean and posterior variance are

E(Λ |T, r,A,B) =
γ(r + 2 |B T ) − γ(r + 2 |AT )

T
{
γ(r + 1 |B T ) − γ(r + 1 |AT )

} , (14.17e)

Var(Λ |T, r,A,B) =
γ(r + 3 |B T ) − γ(r + 3 |AT )

T 2
{
γ(r + 1 |B T ) − γ(r + 1 |AT )

}

−
[
E(Λ |T, r,A,B)

]2
. (14.17f)

(14.17e) is the BAYESIAN estimator with respect to squared–error loss. The estimator

λ̂ = r/T is the mode of (14.17d).

The limits λℓ and λu of an equal–tail 100 (1 − α)% credible interval

λℓ ≤ Λ ≤ λu

are found from solving

Pr(Λ < λℓ |T, r,A,B) =

λℓ∫

A

T r+1 λr exp(−λT )

γ(r + 1 |B T ) − γ(r + 1 |AT )
dλ

=
γ(r + 1 |λℓ T ) − γ(r + 1 |AT )

γ(r + 1 |B T ) − γ(r + 1 |AT )
=
α

2
(14.18a)

and

Pr(Λ > λu |T, r,A,B) =

B∫

λu

T r+1 λr exp(−λT )

γ(r + 1 |B T ) − γ(r + 1 |AT )
dλ

=
γ(r + 1 |B T ) − γ(r + 1 |λu T )

γ(r + 1 |B T ) − γ(r + 1 |AT )
=
α

2
(14.18b)

using an incomplete gamma subroutine and a search program.
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Example 14/2: BAYESIAN estimation of λ = b−c for dataset #1 censored at r = 15 using a

uniform prior

We alter Example 14/1 by introducing the uniform prior

g(λ | 0.5 · 10−5, 1.5 · 10−5) = 105 for 0.5 · 10−5 ≤ λ ≤ 1.5 · 10−5.

Fig. 14/2 shows this prior density and the resulting posterior density. The prior mean is 10−5 and

the posterior mean (= BAYESIAN estimate) is 1.038118 ·10−5. The 95% credible interval according

to (14.18a,b) is

0.6256 · 10−5 ≤ Λ ≤ 1.4500 · 10−5.

Figure 14/2: Uniform prior and posterior density for dataset #1 censored at r = 15

Excursus: A general uniform prior density

TSOKOS (1972) has used the following general uniform prior for the parameter θ = λ−1 in (14.10a):

g(θ |α, β) =





(α− 1)(αβ)α−1

βα−1 − αα−1

1

θα
for α ≤ θ ≤ β

0 elsewhere,





(14.19a)

which for α = 0 reduces to the uniform density on [0, β]. Now the posterior density is

g(θ |T, r, α, β) =
T r+α−1 exp(−T

/
θ)

θr+α
{
γ(r + α− 1 | T

α ) − γ(r + α− 1 | T
β )
} (14.19b)
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with

E(Θ |T, r, α, β) = T
γ(r + α− 2 | T

α ) − γ(r + α− 2 | T
β )

γ(r + α− 1 | T
α ) − γ(r + α− 1 | T

β )
(14.19c)

and

E(Θ2 |T, r, α, β) = T 2
γ(r + α− 3 | T

α ) − γ(r + α− 3 | T
β )

{
γ(r + α− 1 | T

α ) − γ(r + α− 1 | T
β )
}2 (14.19d)

and

Var(Θ |T, r, α, β) = E(Θ2 |T, r, α, β) −
[
E(Θ |T, r, α, β)

]2
. (14.19e)

We now take a gamma prior for λ using the following parametrization; see (3.24b):

g(λ | b, d) =
λd−1 exp(−λ

/
b)

bd Γ(d)
; λ ≥ 0; b, d > 0 . (14.20a)

Combining the likelihood function (14.12a) and (14.20a), the posterior density results as

g(λ |T, r, b, d) =
λd+r−1 exp[−λ (T + 1

/
b)]

Γ(d+ r)

(
b

b T + 1

)d+r , (14.20b)

which is recognized as a gamma density where the parameters have changed: b =⇒
b
/
(b T + 1) and d =⇒ d+ r. Thus, the gamma prior is a conjugate prior.

The gamma prior has mean

E(Λ | b, d) = d b (14.20c)

and variance

Var(Λ | b, d) = b2 d, (14.20d)

whereas the mean and variance of the posterior distribution are

E(Λ |T, r, b, d) =
b (d+ r)

b T + 1
, (14.20e)

Var(Λ |T, r, b, d) =
b2 (d+ r)

(b T + 1)2
. (14.20f)

The BAYESIAN estimator (14.20e) converges almost surely to the MLE given by r/T as

r approaches infinity. Thus the likelihood tends to dominate the prior as the number r of
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failures specified (and corresponding rescaled total time on test) increases. The limits λℓ
and λu of an equal–tailed 100 (1 − α)% credible interval are found — using the familiar

relationship between gamma and χ2–distributions — to be

λℓ =
b

2 (b T + 1)
χ2

2r+2d,α/2; λu =
b

2 (b T + 1)
χ2

2r+2d,1−α/2. (14.20g)

Example 14/3: Bayesian estimation of λ = b−c for dataset #1 censored at r = 15 using a

gamma prior

Assuming the gamma prior density (14.20a), we first have to determine the values of the parameters

b and d. Past experience with theWe(0, λ, 2.5)–distributed items showed a mean value of 1.5 ·10−5

Figure 14/3: Prior gamma density and posterior gamma density for dataset #1 censored at r = 15

for λ and a variance of 1.125 · 10−10. By equating these values to the prior mean (14.20c) and prior

variance (14.20d), we find b = 0.75 · 10−5 and d = 2. From the data of set #1 we have r = 15 and

T = 1,477,067.2 so the BAYESIAN estimator (14.20e) results as λ̂B = 1.055638 · 10−5. Fig. 14/3

shows the prior and posterior densities together with their means and the equal–tailed 95% credible

interval according to (14.20g,h):

0.614948 · 10−5 ≤ Λ ≤ 1.613449 · 10−5.

If one decides to work with the parameter θ = λ−1 = bc, the conjugate prior of Θ is given

by the inverted gamma distribution.9 The prior density of this distribution is

g(θ |µ, ν) =
(µ
θ

)ν+1 exp
(
−µ
θ

)

µΓ(ν)
; θ > 0; µ, ν > 0 (14.21a)

9 See CANAVOS (1983), CANAVOS/TSOKOS (1973), PAPADOPOULUS/TSOKOS (1975) and TSOKOS

(1972).
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with mean and variance

E(Θ |µ, ν) =
µ

ν − 1
, ν > 1, (14.21b)

Var(Θ |µ, ν) =
µ2

(ν − 1)2 (ν − 2)
, ν > 2. (14.21c)

The posterior density is

g(θ |T, r, µ, ν) =

(
T + µ

θ

)r+ν−1 exp

(
−T + µ

θ

)

(T + µ) Γ(r + ν)
, (14.21d)

and the parameters have changed as follows:

ν =⇒ r + ν, µ =⇒ T + µ.

The posterior mean (= BAYESIAN estimator under squared loss) and posterior variance are

E(Θ |T, r, µ, ν) = θ̂B =
T + µ

r + ν − 1
, r + ν > 1, (14.21e)

Var(Θ |T, r, µ, ν) =
(T + µ)2

(r + ν − 1)2 (r + µ− 2)
, r + ν > 2. (14.21f)

14.2.2 Random shape parameter and known scale parameter10

There are only two papers on BAYESIAN estimation when the WEIBULL shape parameter

is random. The first paper of HARRIS/SINGPURWALLA (1968) assumes that the shape

parameter c in the parametrization of (14.9a) has a two–point prior:

Pr(C = c) =





p for c = c1

1 − p for c = c2



 , 0 < p < 1, (14.22a)

and that the loss function might be defined by the following loss table, where l1, l2 > 0:

chosen value
true value

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

c1 c2

c1 0 l2

c2 l1 0

The c that minimizes expected risk would be that c associated with

min
c1,c2

{l2 (1 − p) f(x | c2), l1 p f(x | c1)},

and thus

ĉ = c1

10 Suggested reading for this section: HARRIS/SINGPURWALLA (1968), TSOKOS (1972).
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if

l1 p1 f(x | c1) < l2 (1 − p2) f(x | c2)
or — for a non–censored sample — if

l1 p1

l2 (1 − p2)

(
c1
c2

)n n∏

i=1

xc1−c2i exp

{
−λ
[

n∑

i=1

xc1i −
n∑

i=1

xc2i

]}
< 1, (14.22b)

and ĉ = c2 when the inequality (14.22b) is reversed.

Assuming a uniform prior for the shape parameter c as done by TSOKOS (1972):

g(c |A,B) =





1

B −A
for A ≤ c ≤ B; A,B > 0

0 elsewhere



 , (14.23a)

we arrive at the following posterior density upon combining (14.23a) with the likelihood

L(c |x, n, r) =
n!

(n − r)!

{( c
θ

)r r∏

i=1

xc−1
i:n e−1

/
θ

[
r∑

i=1

xci:n + (n− r)xcr:n

]}
(14.23b)

of a type–II censored sample:

g(c |x, n, r,A,B) =

cr
r∏
i=1

xci:n e
−1
/
θ

[
r∑
i=1

xci:n + (n− r)xcr:n

]

B∫
A

cr
r∏
i=1

xci:n e
−1
/
θ

[
r∑
i=1

xci:n + (n− r)xcr:n

]
dc

. (14.23c)

There exists no closed form solution of the integral which appears in the denominator of

(14.23c). So we have to utilize numerical techniques to obtain the BAYESIAN estimator

ĉB :

ĉB =

B∫

A

c g(c |x, n, r,A,B) dc. (14.23d)

14.2.3 Random scale and random shape parameters11

The first paper on BAYESIAN estimation of both randomly varying WEIBULL parameters

is that of SOLAND (1969a). As it is not possible to find a family of continuous joint prior

distributions on the two parameters that is closed under sampling, SOLAND used a family of

prior distributions that places continuous distributions on the scale parameter and discrete

distributions on the shape parameter.

11 Suggested reading for this section: CANAVOS/TSOKOS (1973), SINHA/GUTTMAN (1988), SOLAND

(1969a), SUN (1997), TSOKOS/RAO (1976). With respect to BAYESIAN shrinkage estimators, the reader

is referred to PANDEY/UPADHYAY (1985).
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SINHA/GUTTMAN (1988) suppose that little is known a–priori about θ and c, so that JEF-

FREY’s vague prior is appropriate for this situation,12 i.e.

g(θ, c) ∝ 1

θ c
. (14.24a)

(14.24a) combined with the likelihood of a non–censored sample

L(θ, c |x) ∝
( c
θ

)n n∏

i=1

xc−1
i exp

[
−1

θ

n∑

i=1

xci

]
(14.24b)

gives the following joint posterior of (θ, c):

g(θ, c |x) ∝ cn−1

θn+1

n∏

i=1

xc−1
i exp

[
−1

θ

n∑

i=1

xci

]
. (14.24c)

From (14.24c), after integrating out θ, we have the marginal posterior of c

g(c |x) = Kc,n c
n−1

n∏

i=1

xc−1
i

/(
n∑

i=1

xci

)n
, (14.25a)

where

K−1
c,n =

∞∫

0

cn−1
n∏

i=1

xc−1
i

/(
n∑

i=1

xci

)n
dc. (14.25b)

Assuming the squared–error–loss function, the BAYESIAN estimator follows as

ĉB = E(C |x) = Kc,n

∞∫

0

cn
n∏

i=1

xc−1
i

/(
n∑

i=1

xci

)n
dc. (14.25c)

At this point we again have to resort to numerical integration for (14.25b,c) because the

integrals involved do not exist in closed form. Similarly, the marginal posterior of θ is

found after integrating out c in (14.24c):

g(θ |x) = Kθ,n θ
−(n+1)

∞∫

0

cn−1
n∏

i=1

xc−1 exp

[
−1

θ

n∑

i=1

xci

]
dc, (14.26a)

where

K−1
θ,n = Γ(n)

∞∫

0

cn−1
n∏

i=1

xci

/(
n∑

i=1

xci

)n
dc. (14.26b)

The BAYESIAN estimator of θ is given by numerical integration:

θ̂B = E(Θ |x) = Kθ,n Γ(n− 1)

∞∫

0

cn−1
n∏

i=1

xc−1
i exp

[
−1

θ

n∑

i=1

xci

]
dc. (14.26c)

12 A thorough discussion of non–informative priors for WEIBULL parameters is found in SUN (1997).
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A BAYESIAN solution by assuming independent distributions of Θ and C has been found

by CANAVOS/TSOKOS (1973). Specifically, they consider the inverted gamma prior dis-

tribution (14.21a) and the uniform prior distribution g(θ) = 1
/
δ (0 < θ < δ) for the

scale parameter while for the shape parameter the uniform prior g(c) = 1
/
(B − A) with

A ≤ c ≤ B is chosen. The resulting BAYESIAN estimators under quadratic loss function

have complicated formulas which have to be evaluated by numerical integration.

14.3 Empirical BAYES estimation13

The concept of empirical BAYES, EB for short, introduced by ROBBINS (1955), is in some

sense a hybrid combination of both classical methods and BAYESIAN methods, due to the

fact that the parameter is treated as a random variable having an unknown prior distribution

with a frequency interpretation. There are two main classes of EB estimators:

1. The first class consists of those methods that attempt to approximate the BAYESIAN

estimator without explicitly estimating the unknown prior distribution. This is the

traditional EB procedure as introduced by ROBBINS (1955).

2. The second class of EB estimators consists of those methods in which the unknown

prior distribution is explicitly estimated. The so–called smooth EB methods de-

veloped by BENNETT/MARTZ (1973), LEMON/KRUTCHKOFF (1969) and MARITZ

(1967, 1970) are based on this approach. These methods have the appeal of being

universally applicable regardless of the specific distributional family to which the

conditional density function f(x | θ) belongs. So we will present this type of EB

estimator.

Assume that the problem of estimating a realization θ of a stochastic parameter Θ, when

a random sample of measurements x = (x1, . . . , xn)
′ has been observed, occurs period-

ically and independently with likelihood function L(θ |x) and a fixed but unknown prior

distribution G(θ). Let
(
x1; θ̂1

)
,
(
x2; θ̂2

)
, . . . ,

(
xk; θ̂k

)
; k ≥ 2 (14.27)

denote the sequence of experiences (or samples) where xj is the vector of measurements of

length nj from the j–th experiment, and θ̂j is the corresponding MVU estimator of θj . It is

possible to estimate the current realization θk, when xk has been observed, by constructing

an EB decision function of the form

δk
(
xk
)

=

k∑
j=1

θj h
(
θ̂k | θj

)
dGk(θj)

k∑
j=1

h
(
θ̂k | θj) dGk(θj)

, (14.28)

where h
(
θ̂k | θj

)
is the density function of the MVU estimator θ̂k.

13 Suggested reading for this section: BENNETT (1977), BENNETT/MARTZ (1973), CANAVOS (1983),

COUTURE/MARTZ (1972), DEY/KUO (1991), MARTZ/WALLER (1982, Chapter 13).
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MARITZ (1967) and LEMON/KRUTCHKOFF (1969) suggested replacing the unknown prior

distribution in (14.28) by a step function having steps of equal height 1/k at each of the

k ≥ 2 classical estimates θ̂1, . . . , θ̂k yielding a smooth EB estimator of the form

Dk(1) =

k∑
j=1

θ̂j h
(
θ̂k | θ̂j

)

k∑
j=1

h
(
θ̂k | θ̂j

) , (14.29)

where θ̂j is the MVU estimate of θj determined as a result of the j–th experiment.

The rationale for this procedure is easily understood. If the decision process was such that

the true value of θ was revealed immediately after each decision, then one could use an

estimate of dG(θ), the frequency with which each value of θ occurred in k repetitions of

the decision-making process. Thus, dG(θ) could be approximated by

dĜ(θ) =
1

k

k∑

j=1

δ(θj , θ),

where

δ(θj , θ) =





1 if θj = θ

0 if θj 6= θ,

and

E
(
Θ | θ̂k) ≈

∑
θ

θ h
(
θ̂k | θ) dĜ(θ)

∑
θ

h
(
θ̂k | θ) dĜ(θ)

=

k∑
j=1

θj h
(
θ̂k | θj

)

k∑
j=1

h
(
θ̂k | θj)

. (14.30)

Since the values θ1, . . . , θk generally remain unknown, we simply replace each θj in

(14.30) by its corresponding estimate θ̂j and obtain the EB estimator as defined by (14.29).

Also suggested by LEMON/KRUTCHKOFF (1969), as a second possible EB estimator, is the

estimator obtained by a second iteration of (14.29) with each classical estimate θ̂j replaced

by the corresponding EB estimate Dj(1) from the first iteration. This estimator may be

denoted by Dk(2).

Along the lines of the previous paragraph we will now give a smooth EB estimator for

the WEIBULL scale parameter θ (see (14.10a,b)), when the shape parameter c is assumed

known.14 Suppose the existence of a sequence of experiences such as (14.27), where each

14 Estimation of the shape parameter is treated by COUTURE/MARTZ (1972) and MARTZ/WALLER (1982,

pp. 639–640).
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measurement is a value of a variate having a density function given by (14.10a). It is known

that for the j–th experiment the MVU estimator of θj is given by

θ̂j =
1

nj

nj∑

i=1

xαij ; j = 1, 2, . . . , k (14.31a)

while the distribution of the current MVU estimator θ̂k is gamma with density function

h
(
θ̂k | θ) =

nnk
k

Γ(nk) θnk
θ̂ nk−1
k exp

{
− nk θ̂k

/
θ
}
, θ̂k > 0. (14.31b)

Upon substitution of (14.31b) into (14.29) and after simplification, one obtains the smooth

EB estimator

θ̂k =

k∑
j=1

[
exp
{
−nk θ̂k

/
θ̂j

}/
θ̂ nk−1
j

]

k∑
j=1

[
exp
{
−nk θ̂k

/
θ̂j

}/
θ̂ nk
j

] (14.31c)

for the current realization θk as a function of the k experiences.
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Further approaches

The prevailing statistical philosophy underlying statistical inference is either the classical

approach (see Chapters 10 – 13) or the BAYESIAN approach (see Chapter 14). But there

are some more approaches, e.g., fiducial inference, likelihood inference and structural infer-

ence,1 which are of minor importance, especially in inference of the WEIBULL distribution.

This chapter will briefly present the fiducial and the structural approaches.

15.1 Fiducial inference2

It has been said that fiducial inference as put forward by R.A. FISHER is not so much a

theory as a collection of examples. The subject has been one of confusion and controversy

since its introduction in 1930.

15.1.1 The key ideas

FISHER considered inference about a real parameter θ from a maximum likelihood esti-

mate T , having a continuous cumulative distribution F (T, θ). If F (T, θ) = 1 − P has a

unique solution θP (T ), this is the fiducial 100P percent point of θ. For the case when

θP (T ) increases with T , Pr
[
θ < θP (T )

]
= P and P is the fiducial probability, equal to

the confidence level for the θ–intervals {θ < θP (T )}. If, for fixed T , the definable fiducial

probabilities take all values in (0, 1), the pairs [P, θP (T )], 0 < P < 1 formally con-

stitute a cumulative distribution for what FISHER called the fiducial distribution. When

F (T, θ) is differentiable with respect to θ, the fiducial distribution has a formal density

df = −∂F (T, θ)
/
∂θ dθ, while the distribution of the statistic for a given value of the

parameter is df = ∂F (T, θ)
/
∂T dT . FISHER was keen to promote fiducial probability

against posterior probability.

Several key ideas can be illustrated by the case of a single observation X from a normal

distribution with mean µ and unit variance, i.e., X ∼ No(µ, 1). If we make Z = X − µ,

then Z ∼ No(0, 1). A quantity like Z , which depends on the observation X and the

parameter µ and whose distribution is free of the parameter, is called a pivotal quantity

or pivot. The fiducial argument consists of writing µ = X − Z and asserting that when

we have no knowledge about µ except the value x, our uncertainty about µ is summarized

by saying that µ equals x minus an unknown value of a standard normal variate. In short,

µ ∼ No(x, 1), which is the fiducial distribution of µ. The values x ± 1.96 include all but

5% of the distribution and so would be called the 95% fiducial limits of µ.

1 A comparative description of these inference approaches is given by BARNETT (1973).

2 Suggested reading for this section: PEDERSEN (1978).
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15.1.2 Application to the WEIBULL parameters

The general results of HORA/BUEHLER (1966) can be applied directly to the two–

parameter WEIBULL distribution, but the concepts involved and the relationship to

BAYESIAN methods are more transparent in the setting of the location and scale param-

eter extreme value distribution of the logarithm of the WEIBULL data.

If X ∼ We(0, b, c, ), then Y = lnX has the extreme value distribution with location and

scale parameters that can be taken as a∗ = ln b and b∗ = 1
/
c, respectively. For simplicity

in presentation consider the case of uncensored data, and write â∗ and b̂∗ for the maximum

likelihood estimators based on a sample yi = lnxi, i = 1, 2, . . . , n.

Fiducial inferences (see BOGDANOFF/PIERCE (1973)) are obtained from the known dis-

tributions of the pivotal quantities (â∗ − a∗)
/
b̂∗ and b̂∗

/
b∗,3 except that the distributions

used are those conditional on the ancillary statistic

z′ = (z3, . . . , zn)
′ =

(
y3 − y1

y2 − y1
, . . . ,

yn − y1

y2 − y1

)′
. (15.31a)

For example, let ζ be the function of z such that

Pr

(
â∗ − a∗

b̂∗
≥ −ζ

∣∣z
)

= γ. (15.31b)

For the data
(
â∗, b̂∗,z

)
the γ–level upper fiducial limit for a∗ is given by â∗+ζ b̂∗. Similarly

the conditional distribution of b̂∗
/
b∗ given z yields fiducial limits for b∗. Fiducial limits for

certain types of functions θ
(
a∗, b∗

)
, e.g., for percentiles of Y , can be obtained in similar

ways.

It has been shown by HORA/BUEHLER (1960) that for any location and scale parameter

problem fiducial limits obtained in this manner are exactly the same as BAYESIAN limits

using the improper prior distribution

g
(
a∗, b∗

)
∝ 1

b∗
; a∗ ∈ R, b∗ > 0. (15.31c)

Thus in the preceding case the posterior distribution of a∗ satisfies

Pr
(
a∗ ≤ â∗ + ζ b̂∗ |z

)
= γ. (15.31d)

These results hold not only for the case of uncensored data but for any censoring procedure

such that the problem remains one of location and scale. Type–II censoring clearly satisfies

this condition, whereas type–I censoring does not.

15.2 Structural inference

The method of structural inference was developed by D.A.S. FRASER, first announced in

FRASER (1966). The monograph FRASER (1968) details the theory.

3 For these pivotal distributions see Sect. 11.3.1.2.
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15.2.1 The key ideas

The BAYESIAN method constructs probability density functions for the parameters of a

statistical model. BAYESIAN conclusions are therefore strong in the sense that probability

statements on parameter values can be constructed. On the other hand, the BAYESIAN

method necessitates the specification of a prior parameter density function on the basis of

non–data information. Because this specification carries an element of subjectivity, the

resulting conclusions are correspondingly subjective. An alternative approach to inference,

that of structural inference, retains the power of the BAYESIAN method in that it also

constructs probability densities of model parameters; on the other hand, the specification

of a “prior” density is made on the basis of the structure inherent in the model underlying

the analysis.

The structural approach is also firmly rooted in the classical tradition in many aspects.

There are, however, two absolutely crucial differences of attitude as compared with the

classical approach. These concern

1. the formulation of the classical model and

2. the manner in which inferences are expressed about unknown quantities (“physical

constants, relationships”), broadly interpretable as what we have previously called

parameters.

With respect to the statistical model a distinction is drawn at the outset between the “ex-

terior” nature of the usual classical model, and the concern of the “measurement model”

(or its generalization as a “structural model”) of the structural approach with the internal

mechanism governing the observable behavior of the situation under study. In the clas-

sical model we typically observe some “response variable” whose observed value x, as a

reflection of an unknown quantity θ, is governed by a probability distribution pθ(x) on the

sample space. FRASER refers to this as a “black box” approach, which ignores the fact that

we often know (directly or indirectly) much more about the internal relationship of x and

θ than is represented through such a model. He argues that situations commonly contain

identifiable sources of variation, such as errors of measurement, variation in the quality

of products, and effect of randomization in designed experiments. He calls these error

variables, though in the wider applications of the method this term needs to be liberally

interpreted. In many cases they truly determine the probabilistic structure of the situa-

tion, their variational behavior is well understood, and they constitute the natural basis for

expressing a statistical model.

These considerations provide the motivation for formulating the statistical model in a par-

ticular way. Instead of regarding the data x as being generated by the distribution pθ(x),
a quantity e (the error variable) is introduced which is expressed in terms of x and θ, and

which is assumed to have a known distribution which does not depend on θ. Thus the

statistical model consists of two parts:

• a statement of the probability distribution of the error variable (independent of θ) and

• a statement of the relationship between the observational data x (which are known)

and the unknown θ, on the one hand, and the unknown but realized value e of the

error variable on the other.
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With respect to structural inference the structural model tells us how x is related to θ
and e and also the probability mechanism under which e is generated. This relationship

frequently expresses the observed response (the data x) in terms of a simple kind of trans-

formation of the error e, governed by the value of θ. The basis for statistical inference in

the structural approach is to essentially reverse this relationship and to interpret θ as being

obtained as an associated transformation of e by the operation of the unknown data x. Thus

θ is expressed in terms of x and e, the probability mechanism by which e is obtained is as-

sumed known (in principle), so that through this inverse relationship we have a probability

statement concerning θ.

Let us consider a simple example referring to an unknown location parameter θ. The ran-

dom error variable e has two realizations (tossing of a coin):

Pr(e = +1) = P and Pr(e = −1) = 1 − P.

The coin is tossed, but the result is kept secret and only the sum x = θ+e is announced. The

statistician now says about the parameter θ that with probability P we have the parameter

value x − 1 and with probability 1 − P the parameter value will be x + 1 because e takes

on the values +1 and −1 with these probabilities and we have θ = x− e. The probability

distribution of e which depends neither on x nor on θ is transferred to θ based upon the

relationship θ = x− e.

15.2.2 Application to the WEIBULL parameters4

We take an uncensored sample of size n from a WEIBULL population with density function

f(x | b, c) =
c

b

(x
b

)c−1
exp
{
−
(x
b

)c}
for x ≥ 0. (15.5a)

Consider a logarithmic transformation of the measurement variable x

y = lnx, dx
/

dy = exp(x), (15.5b)

which maps the measurement density (15.5a) onto the location–scale model

g(y | a∗, b∗) =
1

b∗
exp

{
x− a∗

b∗
− exp

(
x− a∗

b∗

)}
, y ∈ R, (15.5c)

where a∗ = ln b and b∗ = 1
/
c. The joint structural probability density for the parameters

of a general location–scale model is derived by FRASER (1968, p. 64), and is given as

ϕ+
(
a∗, b∗ | y1, . . . , yn

)
= k

(sy
b∗

)n n∏

i=1

g+
(
yi | a∗, b∗

) 1

sy b∗
. (15.5d)

Here, the measurement model g+(·) is given by (15.5c), k is a normalizing constant, and

sy is the sample standard deviation in terms of the transformed data yi.

4 Suggested reading for this section: BURY (1973), BURY/BERNHOLTZ (1971), SHERIF/TAN (1978),

TAN/SHERIF (1974).
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In the density (15.5d), the parameters a∗ and b∗ are treated as random variables, whereas the

sample x1, . . . , xn is taken as a known set of fixed numbers which condition the density

(15.5d). Substituting for g+(·) in (15.5d), transforming variables from (a∗, b∗) to (b, c),
and changing constants from yi to xi, the joint structural density is obtained for the

WEIBULL parameters b and c:

ϕ(b, c |x1, . . . , xn) = k1 b
−n c−1 cn−1

n∏

i=1

xci exp

{
−b−c

n∑

i=1

xci

}
. (15.6a)

The normalizing constant k1 is given by

k−1
1 = Γ(n)

∞∫

0

cn−2
n∏

i=1

xci

(
n∑

i=1

xci

)−n

dc. (15.6b)

The joint density (15.6a) is conditional on the the sample x1, . . . , xn only; no prior infor-

mation is introduced to the analysis.

The marginal structural density of the WEIBULL shape parameter c is obtained from

(15.6a) as

ϕ(c |x1, . . . , xn) = k1 Γ(n) cn−2
n∏

i=1

xci

(
n∑

i=1

xci

)−n

, (15.7a)

and the marginal density of the scale parameter b is similarly found as

ϕ(b |x1, . . . , xn) = k1 b
−1

∞∫

0

cn−1
n∏

i=1

xci b
−n c exp

{
−b−c

n∑

i=1

xci

}
dc. (15.7b)

Given a sample of n observations xi from a two–parameter WEIBULL population, the den-

sities (15.7a,b), their moments and corresponding distribution functions can be computed.

Probability statements concerning the possible parameter values for the population sampled

follow directly. It is to be emphasized that such statements are probabilities in the classical

sense; they are not “confidence” statements with a sample frequency interpretation, nor are

they BAYESIAN probabilities which require the assumption of a prior parameter density

Occasionally the nature of the statistical analysis is such that conditional parameter densi-

ties are derived from the joint density (15.6a) as

ϕ(c | b0;x1, . . . , xn) = k2 c
n−1

n∏

i=1

xci exp

{
−b−c0

n∑

i=1

xci

}
(15.8a)

and

ϕ(b | c0;x1, . . . , xn) = c0 b
−n c0−1

[
Γ(n)

]−1

(
n∑

i=1

xc0i

)n
exp

{
−bc0

n∑

i=1

xc0i

}
, (15.8b)

where k2 is a normalizing constant.
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accelerated life testing1

There are two methods to shorten the test duration of a planned life test, namely acceleration

and censoring. Of course, both instruments may be combined. Engineers reduce the testing

time by applying some sort of stress on the items on test and thus shorten the individual

lifetimes, whereas statisticians limit the test duration by fixing it more or less directly via

some sort of censoring.

We will first (Sect. 16.1) review the most common relationships connecting a stress variable

to some quantifiable life measure. The following sections deal with parameter estimation

when accelerated life testing (ALT) is done in one of three different ways,2 each using

the aforementioned parametric life–stress functions. The main assumption in ALT is that

the acceleration factor is known or that there is a known mathematical model to justify the

relation between lifetime and stress. In some situations such models do not exist or are very

hard to assume. Therefore, the partially acceleration life test (PALT) is a good candidate to

perform the life test in such cases. Also, PALT is used for problems where it is desired to

test only at a specified acceleration condition and then the data are extrapolated to normal

use condition. Models for PALT are presented in Sect. 16.5.

16.1 Life–stress relationships

Sometimes we have good reasons based on physical and/or chemical considerations to use a

special mathematical function relating some quantifiable life measure to one or more stress

variables. This function contains unknown parameters which have to be estimated together

with the WEIBULL parameters. The estimation procedure to be used in the following sec-

tions will be maximum likelihood. It offers a very powerful method in estimating all the

parameters appearing in accelerated testing models, making possible the analysis of very

complex models.3

The quantifiable life measure mostly used in WEIBULL–ALT is the characteristic life (see

(2.57b) and (2.58d)), which is the percentile of order P = (e− 1)/e ≈ 0.6321:

x0.6321 = a+ b (ln e)1/c = a+ b. (16.1a)

1 An excellent monograph on accelerated life testing, including different lifetime distributions, is NELSON

(1990).

2 See Sect. 8.2 for a description of the common types of acceleration of tests.

3 There are some papers using the linear estimation approach, e.g. ESCOBAR/MEEKER (1986b), MANN

(1972a, 1978b), MAZZUCHI/SOYER/NOPETEK (1997) or NELSON (1990, chapter 4). BUGAIGHIS

(1988) has compared MLE and BLUE for parameters of an ALT model and stated that the two kinds

of estimators are of comparable efficiencies, measured by MSE. However, where there are two or fewer

uncensored observations, at any level(s) of the acceleration variable, the MLE is clearly favored.
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When X ∼We(0, b, c), which is always assumed to hold in ALT, we have

x0.6321 = b. (16.1b)

Thus, the scale parameter4 is seen to depend on some non–random stress variable s or

variables s1, s2, . . . , sℓ. The single stress relationships are

• the ARRHENIUS relationship,

• the EYRING relationship,

• the inverse power relationship sometimes called the inverse power law or simply

the power law and

• other single stress relationships.

Multivariate relationships are

• a general log–linear function,

• temperature–humidity dependence and

• temperature–non thermal dependance.

ARRHENIUS life–stress model

The ARRHENIUS relationship is widely used to model product life as a function of tem-

perature. It is derived from the reaction rate equation proposed by the Swedish physical

chemist SVANTE AUGUST ARRHENIUS (1859 – 1927) in 1887:

r = A+ exp{−E
/
(k T )}, (16.2)

where

• r is the speed of a certain chemical reaction;

• A+ is an unknown non–thermal constant, that is, a characteristic of the product fail-

ure mechanism and test conditions;

• E is the activity energy of the reaction, usually in electron–volts;

• k is the BOLTZMANN’s constant (8.6171×10−5 electron–volts per CELSIUS degree),

• T is the absolute temperature expressed in KELVIN grades (see the following excur-

sus on temperature scales).

Product failure is a result of degradation due to chemical reactions or metal diffusion. The

product is assumed to fail when some critical amount of the chemical has reacted (or dif-

fused):
critical amount = rate × time to failure

or

time to failure =
critical amount

rate
,

saying that nominal life τ to failure (“life”) is inversely proportional to the rate given in

(16.2):
τ = A exp{E

/
(k T )}, (16.3a)

4 GLASER (1984, 1995) supposes both the shape and the scale parameters are expressible as functions of

the testing environment.
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where A is a constant depending on the the size and geometry of the product and its fabri-

cation and testing method. The natural logarithm of (16.3a) is

ln τ = γ0 +
γ1

T
, (16.3b)

where γ0 := lnA and γ1 := E
/
k. Thus, the log of nominal life τ is a linear function of the

inverse absolute temperature s := 1
/
T . Raising the temperature (equivalent to lessening s)

should reduce τ , so γ1 must be positive. Nominal life τ is usually taken to be the WEIBULL

scale parameter b which also is the percentile of order P ≈ 0.6321. Thus, an increasing

temperature causes the proportion 0.6321 of failing items to occur within a shorter span of

time; i.e., raising the temperature causes a displacement of the distribution to the left. The

ARRHENIUS acceleration factor AFA refers to the ratio of the nominal life between the

use level Tu and a higher stress level Ta:

AFA =
τ(Tu)

τ(Ta)
= exp

{
γ1

(
1

Tu
− 1

Ta

)}
, (16.3c)

saying that specimens run AFA times longer at temperature Tu than at Ta.

The ARRHENIUS–WEIBULL MODEL combines a WEIBULL life distribution with an AR-

RHENIUS dependence of life on temperature with the following assumptions:

• At absolute temperature T , the product life X ∼ We
(
0, b(T ), c

)
or Y = lnX ∼

ExmI

(
a∗(T ), b∗

)
, i.e., a type–I–minimum extreme value distribution with location

parameter a∗(T ) = ln b(T ) and scale parameter b∗ = 1
/
c; see (3.21a,b).

• The WEIBULL shape parameter c is independent of the temperature as is the extreme

value parameter b∗.

• The WEIBULL scale parameter is

b(T ) = exp
{
γ0 + γ1

/
T
}
, (16.3d)

and the extreme value location parameter

a∗(T ) = ln b(T ) = γ0 + γ1

/
T (16.3e)

is a linear function of the inverse of T .

The parameters c, γ0 and γ1 are characteristic of the product and have to be estimated from

data (see Sect. 16.2 to 16.4).

Excursus: Temperature scales

There exist several scales for measuring temperature. Most of them were established in the 18th

century. Of major importance are the following:

• the CELSIUS scale (◦C) of ANDERS CELSIUS (1701 – 1744) from 1742,

• the KELVIN scale (◦K) of Lord KELVIN (WILLIAM THOMSON, 1824 – 1907) from 1848,

• the FAHRENHEIT scale (◦F) of GABRIEL FAHRENHEIT (1686 – 1736) from 1714,

• the RANKINE scale (◦Ra) of WILLIAM RANKINE (1820 – 1872) from 1859,

• the RÉAUMUR scale (◦Re) of RÉNÉ RÉAUMUR (1683 – 1757) from 1730.
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Other scales go back to JOSEPH–NICOLAS DELISLE (1688 – 1768) from 1732, Sir ISAAC NEWTON

(1643 – 1727) about 1700 and OLE RØMER (1644 – 1710) from 1701.

At three prominent points we have the following correspondences:

• Absolute zero

0◦K ≡ 0◦Ra ≡ –273.15◦C ≡ –459.67◦F ≡ –218.52◦Re,

• Freezing point of water (with normal atmospheric pressure)

0◦C ≡ 273.15◦K ≡ 32◦F ≡ 491.67◦Ra ≡ 0◦Re,

• Boiling point of water (with normal atmospheric pressure)

100◦C ≡ 373.15◦K ≡ 212◦F ≡ 671.67◦Ra ≡ 80◦Re.

Tab. 16/1 shows how to convert one scale another one.

Table 16/1: Conversion formulas for temperature scales

TK TC TRe TF TRa

TK = − TC +273.15 1.25TRe+273.15 (TF +459.67)
/
1.8 TRa

/
1.8

TC = TK−273.15 − 1.25TRe (TF −32)
/
1.8 TRa

/
1.8−273.15

TRe = 0.8 (TK−273.15) 0.8TC − (TF −32)
/
2.25 TRa

/
2.25−218.52

TF = 1.8TK−459.67 1.8TC+32 2.25TRe+32 − TRa−459.67

TRa = 1.8TK 1.8TC+491.67 2.25TRe+491.67 TF +459.67 −

EYRING life–stress model

An alternative to the ARRHENIUS relationship for temperature acceleration is the EYRING

relationship (HENRY EYRING, 1901 – 1981) based on quantum mechanics. However, the

EYRING relationship is also often used for stress variables other than temperature, such as

humidity. The relationship for nominal life τ (corresponding to the scale parameter b in the

WEIBULL case) as a function of absolute Temperature T is

τ =
A

T
exp{B

/
(k T )}. (16.4a)

Here A and B are constants characteristic of the product and its test method; k is BOLTZ-

MANN’s constant. The EYRING acceleration factor AFE is given by

AFE =
τ(Tu)

τ(Ta)
=
Ta
Tu

exp

{
B

k

(
1

Tu
− 1

Ta

)}
. (16.4b)

Comparing (16.4a) with the ARRHENIUS relationship (16.3a), it can be seen that the only

difference between the two relationships is the factor 1
/
T in (16.4a). For the small range

of absolute temperature in most applications, A/T is essentially constant and (16.4a) is

close to (16.3a). In general, both relationships yield very similar results. The EYRING–

WEIBULL model is similar to the ARRHENIUS–WEIBULL model with the exception that
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b(T ) is given by (16.4a) and that there is not such a simple relationship between b(T ) and

a∗ = ln b(T ) of the Log–WEIBULL variate.

Inverse power law (IPL)

The inverse power law is commonly used for non–thermal accelerated stress, e.g., higher

voltage. The inverse power relationship between nominal life τ of a product and a (positive)

stress variable V is

τ(V ) = a
/
V γ1 , (16.5a)

where A (positive) and γ1 are parameters to be estimated. Equivalent forms are

τ(V ) = (A∗/V )γ1 and τ(V ) = A∗∗ (V0

/
V )γ1 ,

where V0 is a specified (standard) level of stress. The acceleration factor AFI of the

inverse power law is

AFI =
τ(Vu)

τ(Va)
=

(
Va
Vu

)γ1
. (16.5b)

The natural logarithm of (16.5a) is

ln τ(V ) = γ0 + γ1 (− lnV ), γ0 = lnA, (16.5c)

showing that the log of nominal life, ln τ , is a linear function of the transformed stress

s = − lnV . The IPL–WEIBULL model is similar to the ARRHENIUS–WEIBULL model

when (16.5a) holds for the scale parameter. When looking at the Log–WEIBULL variate (=

type–I–minimum extreme value distribution), the location parameter a∗(s) = ln b(s) is of

the same linear form in both models:

a∗(s) = ln b(s) = γ0 + γ1 s, (16.5d)

but the transformed stress s is different:

s =
1

T
for the ARRHENIUS–WEIBULL model

and

s = − lnV for the IPL–WEIBULL model.

Other single stress relationships

In the following formulas s may be a transformed stress or an original stress variable:

• the exponential relationship

τ = exp(γ0 + γ1 s), (16.6a)

• the exponential–power relationship

τ = exp
(
γ0 + γ1 s

γ2
)
, (16.6b)

• the polynomial relationship

ln τ =

k∑

i=1

γi s
i. (16.6c)
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Multivariate relationships

A general and simple relationship for nominal life τ with two or more stress variables

sj, j = 1, . . . , J is the log–linear form

ln τ = γ0 +

J∑

j=1

γj sj. (16.7)

The temperature–humidity relationship, a variant of the EYRING relationship, has been

proposed when temperature T and humidity U are the accelerated stresses in a test. The

combination model is given by

τ(T,U) = A exp

{
B

T
+
C

U

}
. (16.8)

When temperature T and a second non–thermal variable V are the accelerated stresses of

a test, then the ARRHENIUS and the inverse power law models can be combined to yield

τ(T, V ) = A exp(B
/
T )
/
V C . (16.9)

16.2 ALT using constant stress models

The most common stress loading is constant stress. Each specimen is run at a constant

stress level and there must be at least two different levels in order to estimate all the param-

eters of the life–stress relationship. Fig. 16/1 depicts a constant–stress model with three

stress levels. There the history of a specimen is depicted as moving along a horizontal line

until it fails at a time shown by ×. A non–failed specimen has its age shown by an arrow.5

When in use, most products run at constant stress, thus a constant–stress test mimics actual

use. Moreover, such testing is simple and has a number of advantages:

1. In most tests it is easier to maintain a constant stress level than changing the stress

either in steps (see Sect. 16.3) or continuously (see Sect. 16.4).

2. Accelerated tests for constant stress are better developed and empirically verified for

some materials and products.

3. Data analysis for reliability estimation is well developed and computerized.

Before turning to parameter estimation for different types of parameterized life–stress

relationships in Sections 16.2.1 to 16.2.3, we present a model where the WEIBULL shape

5 BUGAIGHIS (1995) examined by simulation whether failure times, actually derived under type–I censor-

ship but treated as though type–II censorship were used, lead to an important reduction in efficiency of

the MLEs. He showed that the exchange of censorship results in only minor reduction in the efficiency

suggesting that results under type–II censorship apply to corresponding (in terms of observed failures)

type–I situations. The only exception to this general rule occurs when the number of test items at each

level of stress drops below 5.
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Figure 16/1: A constant-stress model

parameter is assumed to not depend on the stress level6 but the scale parameter depends on

stress either in a non–systematic way or according to an unknown function. The results are

not suitable to extrapolate the scale parameter under normal design stress.

The definitions and assumptions of this model are as follows:

1. There are m (m ≥ 2) stress levels si; i = 1, . . . ,m.

2. The number of specimens tested at each level without censoring is n.

3. The observed life of specimen j (j = 1, . . . , n) at stress level i is denoted by Xij .

4. The lives Xi1, . . . ,Xin (at stress level i) are independently identically distributed as:

Xij
iid∼ We(0, bi, c) ∀ i;

i.e., the scale parameter bi depends on i, but the shape parameter does not vary with

i.

From Sect. 11.2.2 we find the ML equation for a pooled estimation of c by solving

m∑

i=1




n∑
j=1

Xc
ij lnXij

n∑
j=1

Xc
ij


− m

c
−

m∑
i=1

n∑
i=1

lnXij

n
= 0. (16.10a)

The MLE ĉ is found by some iterative procedure, e.g., by the NEWTON–RAPHSON algo-

rithm; see (11.24) – (11.25). The MLE of bi, corresponding to the pooled MLE ĉ of c is;

see (11.18a)

b̂i =


 1

n

n∑

j=1

Xbcij




1/bc

∀ i. (16.10b)

6 In Sect. 21.1.1 we will show how to test the hypothesis of a constant shape parameter.
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16.2.1 Direct ML procedure of the IPL–WEIBULL model

Most approaches to parameter estimation in accelerated life testing use a rather univer-

sal log–linear life–stress function in combination with the Log–WEIBULL distribution (see

Sect. 16.2.3). Here we will show how to directly estimate an IPL–WEIBULL without lin-

earizing the power law and without forming the natural logarithm of the WEIBULL variate.

The work described in this section applies to the analysis of censored ALT in which

• a two–parameter WEIBULL distribution governs at each stress level,

• the WEIBULL scale parameter varies inversely with a power of the stress level si

bi = γ0 s
−γ1
i ; i = 1, . . . ,m, (16.11a)

• the shape parameter c is invariant with stress,

thus,

Xij
iid∼ We(0, bi, c) ∀ i. (16.11b)

At stress level si the sample size is ni, the censoring number being ri, ri ≤ ni. The total

numbers are

n =

m∑

i=1

ni, r =

m∑

i=1

ri.

For i = 1, . . . ,m the specimens are subjected to stress si and run until the occurrence of

the first ri failures. Both ni and ri are specified in advance of testing. Let Xij denote the

j–th order statistic in a sample of ni WEIBULL variates. Under the assumption (16.11b)

the log–likelihood function for stress level si is, to within an additive constant; see (11.45c)

Li(bi, c) = ri [ln c− c ln bi]+ (c−1)

ri∑

j=1

lnXij −
ni∑

j=1

(
Xij

bi

)c
; i = 1, . . . ,m, (16.12a)

where in the last sum we have Xij = Xiri for j = ri + 1, . . . , ni. Summing over all levels

i we arrive at the log–likelihood function for the complete ALT model:

L(b1, . . . , bm, c) = r ln c+ c

m∑

i=1

ri ln bi + (c− 1)Y0 −
m∑

i=1

ni∑

j=1

(
Xij

bi

)c
, (16.12b)

where

Y0 :=
m∑

i=1

ni∑

j=1

lnXij with Xij = Xiri for j = ri + 1, . . . , ni.

Inserting (16.11a) into (16.12b) and differentiating, the MLE of γ0 is

γ̂0 =





m∑
i=1

sbνi Zi

r





1/bc

, (16.12c)
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where

Zi :=

ni∑

j=1

Xbcij with Xij = Xiri for j = ri + 1, . . . , ni;

ν̂ := γ̂1 ĉ.

The estimates γ̂1 and ĉ are found by the simultaneous solution of

1

ĉ
+
Y0

r
−

m∑
i=1

sbνi
ni∑
j=1

Xbcij lnXij

m∑
i=1

sbνi Zi

= 0, (16.12d)

m∑

i=1

ri ln si −
r
m∑
i=1

sbνi Zi ln si

m∑
i=1

sbνi Zi

= 0. (16.12e)

The MLE of b(s) at any stress s is

b̂(s) = γ̂0 s
−bγ1 . (16.12f)

It is readily shown that when all testing is at a single stress, (si = s ∀ i) γ1 becomes non–

estimable as (16.12e) reduces to the trivial identity 0 = 0, and the estimator of c reduces

to the single sample expression (11.46b). Furthermore, the estimators of γ1, c and b(s) are

invariant with respect to the scale used to measure stress.

16.2.2 Direct ML estimation of an exponential life–stress relationship

At stress level si (i = 1, . . . ,m), ni specimens are put on test until they fail, Xij being the

times to failure and ri being the number of failed specimens (j = 1, . . . , ri), or they are

withdrawn from test without failure, ciℓ being the censoring times7 and ki := ni− ri (ri ≤
ni) being the number of censored life times (ℓ = 1, . . . , ki). The data at each level of stress

are modeled as statistically independent observations from a WEIBULL distribution with a

common shape parameter c and a scale parameter which is an exponential function of the

stress level:
bi = exp(γ0 + γ1 si). (16.13a)

(16.13a) is a variant of the ARRHENIUS life–temperature relationship (16.3d).

The likelihood and the log–likelihood associated with the data at stress si are

Li(bi, c) =

ri∏

j=1

c

bi

(
Xij

bi

)c−1

exp

{
−
(
Xij

bi

)c} ki∏

ℓ=1

exp

{
−
(
ciℓ
bi

)c}
and (16.13b)

Li(bi, c) = ri ln c+ (c− 1)

ri∑

j=1

lnXij − ri c ln bi − b−ci




ri∑

j=1

Xc
ij +

ki∑

ℓ=1

cciℓ


 .

(16.13c)

7 This notation allows for different ways of censoring, type–I, type–II, progressive or even at random.
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Use (16.13a) to introduce the model parameters γ0 and γ1 into (16.13c). The log–likelihood

of the entire dataset is

L(γ0, γ1, c) =
m∑

i=1

Li(bi, c)

= r ln c+ (c− 1)Sx − c (γ0 r + γ1Ss) − exp(−γ0 c)S0,0(c, γ1),(16.13d)

where

r :=
m∑

i=1

ri,

Sx :=

m∑

i=1

ri∑

j=1

lnXij ,

Ss :=

m∑

i=1

ri si,

Sα,β(c, γ1) :=
m∑

i=1

sαi exp(−γ1 c si)




ri∑

j=1

Xc
ij (lnXij)

β +

ki∑

ℓ=1

ccij (ln cij)
β




for non–negative integers α, β with 00 = 1.

This notation has been introduced by WATKINS (1994) and lends itself to efficient differ-

entiation and computer programming. For c, γ1 fixed, the γ0 which maximizes (16.13d) is

γ0 =
1

c
ln

(
S0,0(c, γ1)

r

)
. (16.14a)

Substituting (16.14a) into (16.13d) and ignoring any terms which are independent of model

parameters yields the reduced log–likelihood

L∗(c, γ1) = r ln c+ (c− 1)Sx − r lnS0,0(c, γ1) − c γ1 Ss. (16.14b)

The aim is to maximize (16.13d) with respect to γ0, γ1 and c. The approach is to maximize

(16.14b) — yielding MLEs of c and γ1 — and then calculate the MLE of γ0 using these

maximized values of c and γ1 in (16.14a). We find the MLEs of c and γ1 as the solutions

of the likelihood equations:

∂L∗(c, γ1)

∂c
= 0 and

∂L∗(c, γ1)

∂γ1
= 0.

The key formulas to find the first and second partial derivatives of L∗(γ1, c) are

∂Sα,β(c, γ1)

∂c
= Sα,β+1(c, γ1) − γ1 Sα+1,β(c, γ1), (16.15a)

∂Sα,β(c, γ1)

∂γ1
= −c Sα+1,β(c, γ1). (16.15b)
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The likelihood equations, which have to be solved by some numeric algorithm, result as

∂L∗(c, γ1)

∂c
=

r

c
+ Sx − r

S0,1(c, γ1) − c S1,0(c, γ1)

S0,0(c, γ1)
− c Ss = 0, (16.16a)

∂L∗(c, γ1)

∂γ1
=

r c S1,0(c, γ1)

S0,0(c, γ1)
− c Ss = 0. (16.16b)

16.2.3 MLE of a log-linear life–stress relationship8

Lifetimes of test items follow a two–parameter WEIBULL distribution with CDF

F (x) = 1 − exp

{
−
(

x

b(s)

)c}
, (16.17a)

where the scale parameter is now given by

b(s) = exp(γ0 + γ1 s). (16.17b)

s is either a transformed stress or the original stress variable. Generally, it is more conve-

nient to work with

Y = lnX

since the parameters in the distribution of Y appear as location and scale parameters. If

X has a two–parameter WEIBULL distribution, then Y has the smallest extreme value

distribution with CDF

F (y) = 1 − exp

{
− exp

(
y − a∗(s)

b∗

)}
; y ∈ R, a∗ ∈ R, b∗ > 0, (16.18a)

where

a∗(s) = ln b(s) = γ0 + γ1 s, (16.18b)

b∗ = 1
/
c. (16.18c)

In order to find an optimum accelerated censored life test,9 NELSON/MEEKER (1978) and

NELSON (1990) used a reparameterized model with the stress factor

ξ1 =
s− sh
sd − sh

, (16.19a)

where sh is the (probably transformed) highest stress and is specified. sd is the design

stress. For s = sh we get ξ1 = 0, and for the design stress s = sd we have ξ1 = 1.

(16.18b) may be written in terms of ξ1:

a∗(ξ1) = β0 ξ0 + β1 ξ1. (16.19b)

8 Suggested reading for this section: BARBOSA/LOUZADA–NETO (1994), BUGAIGHIS (1993),

GLASER (1995), HAGWOOD/CLOUGH/FIELDS (1999), KLEIN/BASU (1981, 1982), MEEKER (1984),

MEEKER/NELSON (1975), NELSON/MEEKER (1978), ODELL/ANDERSON/D’AGOSTINO (1992),

SEO/YUM (1991), VAN DER WIEL/MEEKER (1990).

9 The optimization criterion is to minimize the large sample variance of the MLE of the 100P–th per-

centile of this smallest extreme value distribution at a specified — usually design — stress.
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Here the new coefficients β0 and β1 are related to the previous γ0 and γ1 by

β0 = γ0 + γ1 sh and β1 = γ1 (sd − sh).

To simplify the derivations in the ML procedure we have introduced the pseudo–variable

ξ0 = 1.

We now provide the log–likelihood of an observation at a transformed stress ξ1 and with

type–I censoring. The indicator function in terms of the log–censoring time η is

δ =





1 if Y ≤ η (uncensored observation),

0 if Y > η (censored observation).

Let

Z =
Y − a∗(ξ1)

b∗
=
Y − β0 ξ0 − β1 ξ1

b∗
(16.20a)

be the reduced log–failure time with DF

ψ(z) = exp{z − exp(z)}, (16.20b)

so that the DF of Y is

f(y) =
1

b∗
ψ

(
y − β0 ξ0 − β1 ξ1

b∗

)
. (16.20c)

The CDF at the the reduced censoring time ζ = [η − a∗(ξ1)]
/
b∗ is

Ψ := Ψ(ζ) = 1 − exp{− exp(ζ)}. (16.20d)

Now, the log–likelihood L of a possibly type–I censored observation at a stress factor ξ1 is

L = δ
[
− ln b∗ − ez + z

]
+ (1 − δ) ln(1 − Ψ). (16.20e)

Suppose, the i–th observation yi = lnxi corresponds to a value ξ1i with the corresponding

log–likelihood

Li := L(β0, β1, b
∗ | yi, ξ1i, η), (16.20f)

then the sample log-likelihood for n independent observations is

L(β0, β1, b
∗ |y, ξ1, η) =

n∑

i=1

Li. (16.20g)

For a single observation the three first partial derivatives are:

∂L
∂βj

=
ξ1
b∗

[
δ (ez − 1) + (1 − δ) eζ

]
; j = 0, 1; (16.20h)

∂L
b∗

=
1

b∗

[
δ (z ez − z − 1) + (1 − δ) ζ eζ

]
. (16.20i)

These three expressions, when summed over all test units and set equal to zero, are the

likelihood equations. They have to be solved by some numerical root-finding procedure.

NELSON/MEEKER (1978) also give the FISHER information matrix, which is a prerequisite

to finding a solution for their optimization problem.
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16.3 ALT using step–stress models10

Tests at constant, high stresses can run too long because there is usually a great scatter in

failure times. Step–stress testing like progressive–stress testing (see Sect. 16.4) is intended

to reduce test time and to assure that failures occur quickly enough. A step–stress test runs

through a pattern of specified stresses, each for a specified time, until the specimen fails or

the test is stopped with specimens unfailed when a certain censoring time has been reached

(see the upper part of Fig. 16/2). The step–stress test requires the stress setting of a unit

to be changed at specified times (time–step) or upon the occurrence of a fixed number of

failures (failure–step). Often different step–stress patterns are used on different specimens.

Figure 16/2: Cumulative exposure model of NELSON (1980)

For a step–stress pattern, there is a CDF for time to failure under test, i.e., F0(t) in Fig. 16/2.

Data from this CDF are observed in the test. Not interested in life under a step–stress

pattern, one usually wants the life distribution under constant stress, which units see in use.

10 Suggested reading for this section: BAI/KIM (1993), MILLER/NELSON (1983), NELSON (1980, 1990).
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To analyze data, one needs a model that relates the distribution (or cumulative exposure)

under step–stressing to the distribution under constant stress. The widely used cumulative

exposure model (CE model) goes back to NELSON (1980): “The model assumes that the

remaining life of specimens depends only on the current cumulative fraction failed and

current stress — regardless how the fraction accumulated. Moreover, if held at the current

stress, survivors will fail according to the CDF of that stress but starting at the previously

accumulated fraction failed.”

Fig. 16/2 depicts this CE model. The upper part shows a step–stress pattern with three

steps. The figure gives the failure times (×) and censoring times (o→) of test specimens.

The middle part depicts the three CDF’s for the constant stresses s1, s2 and s3. The arrows

show that the specimens first follow the CDF or s1 up to the first hold time t1. When the

stress increases from s1 to s2, the non–failed specimens continue along the CDF for s2,

starting at the accumulated fraction failed. Similarly, when the stress increases from s2
to s3, the non–failed specimens continue along the next CDF, starting at the accumulated

fraction failed. The CDF F0(t) for life under the step–stress pattern is shown in the lower

part of Fig. 16/2 and consists of the segments of the CDF’s for the constant stresses.

We now describe how to find F0(t). Suppose that, for a particular pattern, step i runs at

stress si, starts at time ti−1 (t0 = 0) and runs to time ti. The CDF of time to failure for

units running at a a constant stress si is denoted by Fi(t).

The population cumulative fraction of units failing in step 1 is

F0(t) = F1(t), 0 ≤ t ≤ t1. (16.21)

Step 2 has an equivalent start time τ1, which would have produced the same population

cumulative fraction failing, as shown in the middle part of Fig. 16/2. So τ1 is the solution

of

F2(τ1) = F1(t1) (16.22a)

and the population cumulative fraction failing in step 2 by total time t is

F0(t) = F2

[
(t− t1) + τ1

]
, t1 ≤ t ≤ t2. (16.22b)

Step 3 has an equivalent start time τ2 that is the solution of

F3(τ2) = F2(t2 − t1 + τ1), (16.23a)

and the segment of F0(t) in step 3 is

F0(t) = F3

[
(t− t2) + τ2

]
, t2 ≤ t. (16.23b)

In general, step i has the equivalent time τi−1 that is the solution of

Fi(τi−1) = Fi−1(ti−1 − ti−2 + τi−2) (16.24a)

and

F0(t) = Fi
[
(t− ti−1) + τi−1

]
, ti−1 ≤ t ≤ ti. (16.24b)

A different step–stress pattern would have a different F0(t).
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Example 16/1: CDF under step–stress for the inverse power law

The preceding specializes to the IPL–WEIBULL model where

b = γ0 s
−γ1 , γ0 and γ1 are positive parameters, (16.25a)

as follows. By (16.25a), the CDF for the fraction of specimens failing by time t for the constant

stress si is

Fi(t) = 1 − exp

{
−
(
t sγ1

i

γ0

)c}
. (16.25b)

Then, for step 1 (16.21) becomes

F0(t) = 1 − exp

{
−
(
t sγ1

1

γ0

)c}
, 0 ≤ t ≤ t1. (16.25c)

The equivalent time τ1 at s2 is given by (16.22a) as

τ1 = t1

(
s1
s2

)γ1

. (16.25d)

For step 2 the segment of F0(t) is

F0(t) = 1 − exp

{
−
[
(t− t1 + τ1) s

γ1

2

γ0

]c}
, t1 ≤ t ≤ t2. (16.25e)

Similarly, for step 3,

τ2 = (t2 − t1 + τ1)

(
s2
s3

)γ1

, (16.25f)

and the corresponding segment of F0(t) is

F0(t) = 1 − exp

{
−
[
(t− t2 + τ2) s

γ1

3

γ0

]c}
, t2 ≤ t ≤ t3. (16.25g)

In general, for step i, with t0 = τ0 = 0:

τi−1 = (ti−1 − ti−2 + τi−2)

(
si−1

si

)γ1

, i ≥ 2, (16.25h)

F0(t) = 1 − exp

{
−
[
(t− ti−1 + τi−1) s

γ1

i

γ0

]c}
, ti−1 ≤ t ≤ ti. (16.25i)

Once one has estimates of c, γ0 and γ1, one can then use the procedure above to estimate F0(t)

under any varying stress patterns that might occur in actual use.

BAI/KIM (1973) have carried over formulas (16.21) to (16.24b) to the Log–WEIBULL dis-

tribution with a log–linear life–stress relationship (see Sect. 16.2.3) and under type–I cen-

soring. They give the log–likelihood together with its first and second partial derivatives.

For the special case of two stress levels s1 and s2, they also give the FISHER information

which is needed in finding the optimum design of this simple step–stress test. The optimum

plan — low stress and stress change time — is obtained, which minimizes the asymptotic

variance of the MLE of the median life at design stress.
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16.4 ALT using progressive stress models11

In a progressive–stress test, the stress applied to a test unit is continuously increasing in

time. A widely used progressive–stress test is the ramp–test where the stress is linearly

increasing (see Fig. 16/3). In particular, a ramp–test with two different linearly increasing

stresses is a simple ramp–test. There should be at least two different stress rates in order

to estimate the parameters of the life–stress relationship.

Figure 16/3: A simple ramp-test situation

In the following we will analyze a simple ramp–test, the assumptions being

1. k1 and k2 (k1 < k2) are the stress rates.

2. At any constant stress s, the lifetimes of a unit follow a WEIBULL distribution with

scale parameter b(s) and shape parameter c, and the inverse power law holds for b(s):

b(s) = 1eγ0
(s0
s

)γ1
, (16.26)

where γ0 and γ1 are unknown positive parameters and s0 is the known design stress.

3. For the effect of changing stress, the CE model of NELSON (1980) holds (see

Sect. 16.3).

4. The stress applied to test units is continuously increased with constant rate k1 (or k2)

from zero.

5. n1 units (n1 < n) randomly chosen among n are allocated to stress rate k1 and the

remaining n2 = n− n1 units to stress rate k2.

6. The test is continued until all test units fail or a prescribed censoring time T is

reached.

11 Suggested reading for this section: BAI/CHA/CHUNG (1992), BAI/CHUN/CHA (1997).
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The stress at time t (from assumption 4) is:

s(t) = k t. (16.27)

From the linear CE model and the inverse power law, the CDF of the lifetime X of a unit

tested under stress rate k is

Pr(X ≤ x) = 1 − exp



−




x∫

0

1

b
(
s(u)

) du



c


= 1 − exp

{
−
(x
θ

)(γ1+1) c
}
, (16.28a)

where

θγ1+1 = eγ0 (γ1 + 1)
(s0
k

)γ1
; (16.28b)

i.e., we have a WEIBULL distribution with scale parameter θ and shape parameter (γ1+1) c.

Then Y = lnX follows the smallest extreme value distribution with location parameter

a∗ = ln θ =
[
γ0 + ln(γ1 + 1) + γ1 ln

(s0
k

)]/
(γ1 + 1) (16.29a)

and scale parameter
b∗ = 1

/
c =

[
(γ1 + 1) c

]−1
. (16.29b)

We introduce the stress–rate factor as

ξ =
k

k2
. (16.29c)

For the high stress–rate, k = k2, we have ξ = 1. The low stress–rate factor is ξ = k1

/
k2 <

1. The location parameter of the log–lifetime distribution of a unit tested under stress-rate

k is

a∗(ξ) =

[
γ0 + ln(γ1 + 1) + γ1 ln

(
s0
k2

)
− γ1 ln ξ

]/
(γ1 + 1). (16.29d)

Introducing the reduced log–failure time

Z =
Y − a∗

b∗
(16.30a)

and the reduced log–censoring time

ζ =
lnT − a∗

b∗
, (16.30b)

we have the following indicator function:

δ(Z) =





1 if Y ≤ lnT,

0 if Y > lnT.
(16.30c)

The log–likelihood of a single observation y is

L(γ0, γ1, b
∗ | y) = δ(z)

[
− ln b∗ − ez + z

]
+
[
1 − δ(z)

]
ln
[
1 − Ψ(ζ)

]
, (16.31a)

where Ψ(·) is the CDF of the reduced smallest extreme value. Let the log–likelihood of

unit i(i = 1, . . . , n) be Li. The log–likelihood L0 for n statistically independent observa-
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tions is

L0 =
n∑

i=1

Li. (16.31b)

For a single observation we have

∂Li
∂γj

=
uj
b∗

{
δ(z)

(
ez − 1

)
+
[
1 − δ(z)

]
eζ
}

; j = 0, 1, (16.32a)

∂Li
∂b∗

=
1

b∗

{
δ(z)

(
z ez − z − 1

)
+
[
1 − δ(z)

]
ζ eζ

}
, (16.32b)

where

u0 = (γ1 + 1)−1,

u1 =

[
1 − ln

(
s0
k2

)
− ln ξ − γ0 − ln(γ1 + 1)

]/
(γ1 + 1)2.

The parameter values that solve these equations summed over all test units are the MLEs.

16.5 Models for PALT12

ALT models in the preceding sections assumed a life–stress relationship of known mathe-

matical form but with unknown parameters. Partially accelerated life tests (PALT) do not

have such a life–stress relationship. In step PALT, the test unit is first run at use condition,

and if the unit does not fail by the end of the specified time τ , the test is switched to a higher

level and continued until the unit fails or the test is censored. Thus, the total lifetime Y of

the unit in step PALT is given as follows:

Y =





X for X ≤ τ,

τ + β−1 (X − τ) for X < τ,
(16.33a)

where X is the lifetime of an item at use condition, τ is the stress change time and β is

the acceleration factor, usually β > 1. Because the switching to the higher stress level

can be regarded as tampering with the ordinary life test, Y is called a tampered random

variable, τ is called the tampering point and β−1 is called the tampering coefficient. If the

observed value of Y is less than the tampering point, it is called non–tampered observation;

otherwise, it is called a tampered observation. The model (16.33a) is referred to as a TRV

model (= tampered random variable model). Another approach in step PALT is the TFR

model (= tampered failure rate model) defined as

h∗(x) =





h(x) for X ≤ τ,

α h(x) for X > τ.
(16.33b)

12 Suggested reading for this section: ABDEL–GHALY/ATTIA/ABDEL–GHANI (2002),

BHATTACHARYYA/SOEJOETI (1989).
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In the following we will analyze the TRV model (16.33a), whereas BHAT-

TACHARYYA/SOEJOETI (1989) apply the ML procedure the TFR model.

Assuming the lifetime of the test item to follow the two–parameter WEIBULL distribution

with scale parameter b and shape parameter c, the CDF of the total lifetime Y as defined

by (16.33a) is given by

f(y) =





0, y ≤ 0,

(c
b

)(y
b

)c−1
exp
{
−
(y
b

)c}
, 0 < y ≤ τ,

(
β c

b

)[
β (y − τ) + τ

b

]c−1

exp

{
−
[
β (y − τ) + τ

b

]c}
, y > τ.





(16.34)

We will obtain the MLEs of the acceleration factor β, the scale parameter b and the shape

parameter c using both the type–I and the type–II censoring.

The case of type–I censoring

All the n test units are tested first under the use condition. If the test unit does not fail by

the tampering point τ , the test is continued at a higher stress level until either all units have

failed or a censoring time T has been reached. The observed values of Y are denoted by

y1:n ≤ y2:n ≤ ynu:n ≤ τ ≤ ynu+1:n ≤ . . . ynu+na:n ≤ T.

nu is the number of items failed at use condition, and na is the number of items failed at

accelerated conditions. We introduce two indicator functions:

δ1i :=





1 if Yi ≤ τ,

0 if Yi > τ,
(16.35a)

δ2i :=





1 if τ < Yi ≤ T,

0 if Yi > T,
(16.35b)

where δ1i and δ2i are their complements and i = 1, 2, . . . , n. The numbers of failing items

can be written as

nu =

n∑

i=1

δ1i and na =

n∑

i=1

δ2i. (16.35c)

The likelihood function results as

L(β, b, c |y) =
n∏

i=1

{(c
b

)(yi
b

)c−1
exp
[
−
(yi
b

)c]}δ1i

×

{(
β c

b

)[
β (yi − τ) + τ

b

]c−1

exp

[
−
(
β (yi − τ) + τ

b

)c ]}δ2i

×(16.36a)

exp

[
−
(
β (T − τ) + τ

b

)c ]δ1i δ2i

,
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and the corresponding log–likelihood function is

L(β, b, c |y) = (nu + na) (ln c− c ln b) + na lnβ +

(c− 1)

{
n∑

i=1

δ1i ln yi +

n∑

i=1

δ2i ln
[
β (yi − τ) + τ

]
}

− 1

bc
Q, (16.36b)

where

Q =

n∑

i=1

δ1i y
c
i +

n∑

i=1

δ2i
[
β (yi − τ) + τ

]c
+ (n− nu − na)

[
β (T − τ) + τ

]c
. (16.36c)

The reader should compare (16.36a–b) with the formulas (11.45b–c) when there is no ac-

celeration.

The first derivatives of (16.36b) with respect to β, b and c are given by

∂L
∂β

=
na
β

+ (c− 1)

n∑

i=1

δ2i
yi − τ

β (yi − τ) + τ
− 1

bc
Q1, (16.37a)

∂L
∂b

= −(nu + na)
c

b
+

c

bc+1
Q, (16.37b)

∂L
∂c

= (nu + na)

(
1

c
− ln b

)
+

n∑
i=1

δ1i ln yi +
n∑
i=1

δ2i ln
[
β (yi − τ) + τ

]
−

1

bc
(Q2 −Q ln b),

(16.37c)

where

Q1 =
∂Q

∂β
= c

{
n∑

i=1

δ2i (yi − τ)
[
β (yi − τ) + τ

]c−1
+

(n− nu − na) (T − τ)
[
β (T − τ) + τ

]c−1
}

(16.37d)

and

Q2 =
∂Q

∂c
=

n∑

i=1

δ1i y
c
i ln yi +

n∑

i=1

δ2i
[
β (yi − τ) + τ

]c
ln
[
β (yi − τ) + τ

]
+

(n− nu − na)
[
β (T − τ) + τ

]c
ln
[
β (T − τ) + τ

]
. (16.37e)

Setting (16.37a–c) equal to zero, we can reduce the three non–linear equations to two:

na

β̂
+ (ĉ− 1)

n∑

i=1

δ2i
yi − τ

β̂ (yi − τ) + τ
− (nu + na)

Q1

Q
= 0,(16.37f)

(nu + na)
1

ĉ
+

n∑

i=1

δ1i ln yi +
n∑

i=1

δ2i ln
[
β̂ (yi − τ) + τ

]
− (nu + na)

Q2

Q
= 0,(16.37g)
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and the MLE of b is expressed by

b̂ =

(
Q

nu + na

)1/bc
. (16.37h)

The case of type–II censoring

All of the n units are tested first under use condition, and if the test unit does not fail by τ ,

the test is continued at an accelerated condition until the predetermined number of failures

r is reached. The observed values of the total lifetime Y are denoted by

y1:n ≤ y2:n ≤ ynu:n ≤ τ ≤ ynu+1:n ≤ . . . yr:n,

where r = nu + na, The indicator function δ1i is the same as (16.35a), but δ2i is now

defined as

δ2i :=





1 if τ < Yi ≤ Yr:n,

0 if Yi > Yr:n.
(16.38)

The ML procedure is the same as above, but T has to be substituted by yr:n in (16.36a)

through (16.36h).



17 Parameter estimation for mixed

WEIBULL models

Finite mixture distributions1 have been widely used in nearly all fields of applied statis-

tical science to model heterogeneous populations. Such a population is a composition of

m (m ≥ 2) different subpopulations. When dealing with lifetime distributions the reason

for the existence of several subpopulations is that a unit can have more than one failure

mode. For example, if some units in a batch are freaks (e.g., have gross defects due to the

material processed or to improper manufacturing), then such units will have short lifetimes

or will fail at lower stress levels. The remaining units will have longer lifetimes and will

endure higher stress. In this case, the DF of the time to failure can have a bimodal or mul-

timodal shape.2 Consequently, the finite mixed WEIBULL distribution is a good candidate

to represent these times to failure.

The mixed WEIBULL model requires some statistical analysis such as estimation of pa-

rameters. The graphical estimation approach has been laid out in Sect. 9.3.3.2. This

chapter deals with analytical and numerical estimation procedures: classical estimation

in Sect. 17.1 and BAYESIAN methods in Sect. 17.2. In both approaches the number m of

subpopulations is assumed known, but two different types of situations commonly arise

which are of importance when doing statistical inference. In one case it is possible to as-

sign each unit to the appropriate subpopulation, while in the other case such information is

not available. JIANG/KECECIOGLU (1992b) refer to these cases as postmortem data (first

case) and non–postmortem data (second case). Therefore, in the first case the data would

consist of n failure times grouped according to the subpopulations

{(x11, . . . , x1n1), (x21, . . . , x2n2), . . . , (xm1, . . . , xmnm)},
where it is assumed that n1, . . . , nm are the observed frequencies in the sample belonging to

subpopulations π1, . . . , πm, respectively. Assuming that f(x |θj) is the DF corresponding

to πj , the likelihood of the sample is given by

L(θ,p |x) =
n!

n1! · · · nm!
pn1
1 · · · pnm

m

m∏

j=1

{ nj∏

i=1

f(xji |θj)
}
, (17.1a)

where the vector p = (p1, . . . , pm)′ contains the proportions pj (= relative sizes of the

subpopulations). In the second case the failure time distribution of a unit is given by

F (x |θ,p) =
m∑

j=1

pj F (x |θj)

1 The theory and the description of a mixture of WEIBULL distributions has been given in Sect. 3.3.6.4.

2 An example for this phenomenon is the life table, and we will present the decomposition of German life

tables into WEIBULL subpopulations in Sect. 17.1.2.2.



558 17 Parameter estimation for mixed WEIBULL models

with corresponding DF

f(x |θ,p) =
m∑

j=1

pj f(x |θj),

and the likelihood function results as

L(θ,p |x) =
n∏

i=1

f(xi |θ,p) =
n∏

i=1





m∑

j=1

pj f(xi |θj)



 . (17.1b)

17.1 Classical estimation approaches

We will first describe how to estimate the unknown parameters by the method of mo-

ments (Sect. 17.1.1), and afterwards we will turn to the more versatile ML procedures

(Sect. 17.1.2).

17.1.1 Estimation by the method of moments3

This estimation method requires uncensored data and a mixture of only two subpopulations.

The latter requirement is necessary to arrive at a manageable set of equations. In a mixture

of two two–parameter WEIBULL distributions there are five unknown parameters:

p — the mixing proportion,

b1, b2 — the scale parameters, and

c1, c2 — the shape parameters.

The first five moments about the origin of the mixed WEIBULL distribution with CDF

F (x) = pF1(x) + (1 − p)F2(x)

= p

[
1 − exp

{
−
(
x

b1

)c1}]
+ (1 − p)

[
1 − exp

{
−
(
x

b2

)c2}]
(17.2a)

are

µ′r = p br1 Γ

(
1 +

r

c1

)
+ (1 − p) br2 Γ

(
1 +

r

c2

)
; r = 1, . . . , 5. (17.2b)

When c1 = c2 = c and c is assumed known, we can apply the approach of RIDER (1961)

and equate the first three moments µ′1, µ
′
2, µ

′
3 of (17.2b) to the sample moments

m′
r =

1

n

n∑

i=1

Xr
i ; r = 1, 2, 3 :

p̂ b̂1 Γ

(
1 +

1

c

)
+
(
1 − p̂

)
b̂2 Γ

(
1 +

1

c

)
= m′

1, (17.3a)

p̂ b̂
2

1 Γ

(
1 +

2

c

)
+
(
1 − p̂

)
b̂ 2
2 Γ

(
1 +

2

c

)
= m′

2, (17.3b)

p̂ b̂ 3
1 Γ

(
1 +

3

c

)
+
(
1 − p̂

)
b̂ 3
2 Γ

(
1 +

3

c

)
= m′

3. (17.3c)

3 Suggesting reading for this section: FALLS (1970), RIDER (1961).
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RIDER (1961) gave the following solution of the system (17.3a–c):

b̂j =
d1 d2 − d3 ±

√
d2
3 − 6 d1 d2 d3 − 4 d2

1 d
2
2 + 4 d3

1 d3 + 4 d3
3

d2
1 − d2

, (17.4a)

where for simplification he has set

dj = m′
j Γ

(
1 +

j

c

)
; j = 1, 2, 3.

The estimator of the mixing proportion is

p̂ =
d1 − b̂2

b̂1 − b̂2
. (17.4b)

We now turn to the general case where all five parameters p, b1, b2, c1, c2 are unknown. In

order to avoid the solution of a system of five dependent non–linear equations

m′
r = p br1 Γ

(
1 +

r

c1

)
+ (1 − p) br2 Γ

(
1 +

r

c2

)
; r = 1, . . . , 5.

FALLS (1970) suggested to estimate p by the graphical approach of KAO (1959):

1. Plot the sample CDF for the mixed data on WEIBULL–probability–paper (see

Fig. 9/4) and visually fit a curve among these points (= WEIBULL plot).

2. Starting at each end of the WEIBULL plot, draw two tangent lines and denote them

by p̂ F1(x) and ̂(1 − p)F2(x), which are estimates of pF1(x) and (1 − p)F2(x),
respectively.

3. At the intersection of both tangent lines drop a vertical line on the percent scale which

gives the estimate p̂ of p.

The solution of m′
r = µ′r (r = 1, . . . , 4) with p substituted by p̂ will not be unique. When

confronted with more than one set of acceptable estimates b̂1, b̂2, ĉ2, ĉ2, FALLS (1970) sug-

gested to adopt PEARSON’s procedure and chose the set which produces the closest agree-

ment between m′
5 and the theoretical moment µ′5 when evaluated by the estimates.

17.1.2 Estimation by maximum likelihood

We will first present the solution of the special case of a two–fold mixture (Sect. 17.1.2.1)

and then turn to the general case with more than two subpopulations (Sect. 17.1.2.2).

17.1.2.1 The case of two subpopulations

When we have postmortem data that are type–I censored, T being the censoring time,

there are r1 failures in subpopulation 1 and r2 in subpopulation 2, found in a sample of n
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test units. The — unknown — relative sizes of these subpopulations are p and q = 1 − p,

respectively. The log–likelihood is

L(θ1, θ2, c1, c2, p |x) = (n− r) ln

{
p exp

[
−T

c1

θ1

]
+ (1 − p) exp

[
−T

c2

θ2

]}
+

r1 ln p+ r2 ln(1 − p) +
r1∑
j=1

[
ln c1 − ln θ1 + (c1 − 1) lnx1j + lnT −

xc11j
θ1

]
+

r2∑
j=1

[
ln c2 − ln θ2 + (c2 − 1) lnx2j −

xc22j
θ2

]
,





(17.5)

where θj = b
cj
j ; j = 1, 2; and r = r1 +r2. Differentiating with respect to the five unknown

parameters in turn, we have

∂L
∂θ1

=
k (n− r)T c1

θ2
1

− r1
θ1

+
1

θ2
1

r1∑

j=1

xc
1

1j , (17.6a)

∂L
∂θ2

=
(1 − k) (n − r)T c2

θ2
2

− r2
θ2

+
1

θ2
2

r2∑

j=1

xc
2

2j , (17.6b)

∂L
∂c1

= −k (n− r)T c1 lnT

θ1
+
r1
c1

+

r1∑

j=1

lnx1j

[
1 −

xc11j
θ1

]
, (17.6c)

∂L
∂c2

= −(1 − k) (n− r)T c2 lnT

θ2
+
r2
c2

+

r2∑

j=1

lnx2j

[
1 −

xc22j
θ2

]
, (17.6d)

∂L
∂p

=
k (n− r) + r1

p
− (1 − k) (n − r) + r2

1 − p
, (17.6e)

where

k =

{
1 +

1 − p

p
exp

[
T c1

θ1
+
T c2

θ2

]}−1

.

The resulting estimators are

p̂ =
r1
n

+ k̂
n− r

n
, (17.7a)

θ̂1 =

k̂ (n− r)T bc1 +
r1∑
j=1

xbc11j

r1
, (17.7b)

θ̂2 =

(
1 − k̂

)
(n− r)T bc2 +

r2∑
j=1

xbc22j

r2
, (17.7c)

where ĉ1 and ĉ2 are the solutions of (17.6c–d) when set equal to zero. SINHA (1986b,

pp. 111 ff.) gives an algorithm to solve these two simultaneous equations.

Turning to non–postmortem data and assuming a three–parameter WEIBULL distribution

in each subpopulation, the likelihood equations resulting for an uncensored sample are
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(j = 1, 2):

p̂ =
1

n

n∑

i=1

f(1 |xi), (17.8a)

0 = (cj − 1)

n∑

i=1

f(j |xi) (xi − aj)
−1 − cj

b
cj
j

n∑

i=1

f(j |xi) (xi − aj)
cj−1, (17.8b)

bj =

{[
n∑

i=1

f(j |xi) (xi − aj)
cj

]/ n∑

i=1

f(j |xi)
}1/cj

, (17.8c)

cj =

{
n∑

i=1

[(
xi − aj
bj

)cj
− 1

]
ln

(
xi − aj
bj

)
f(j |xi)

/ n∑

i=1

f(j |xi)
}−1

,(17.8d)

where

f(j |x) = pj
fj(x)

f(x)
, p1 = p, p2 = 1 − p,

f(x) = p f1(x) + (1 − p) f2(x),

fj(x) =

(
cj
bj

)(
x− aj
bj

)cj−1

exp

{
−
(
x− aj
bj

)cj}
.

Solving the set of seven equations given by (17.8a–d) is computationally difficult due

largely to equation (17.8b) which is not in fixed–point form. Because of the computational

difficulties of directly solving the likelihood equations and possible numerical instabili-

ties, WOODWARD/GUNST (1987) have considered the use of minimum distance estimators

(MDE) (see Sect. 13.2), using the CRAMÉR–VON MISES distance.

17.1.2.2 The case ofm subpopulations (m ≥ 2)

JIANG/KECECIOGLU (1992b) have suggested an ML procedure to estimate all the param-

eters of a mixture of m two–parameter WEIBULL distributions for non–postmortem data

as well as for postmortem data coming from time–censored samples. The parameter vector

θ contains the parameters of an m–mixed–WEIBULL distribution:

θ = (p1, . . . , pm, b1, . . . , bm, c1, . . . , cm)′.

Let

fi(c | bi, ci) =
ci
bi

(
x

bi

)ci−1

exp

{
−
(
x

bi

)ci}
; i = 1, . . . ,m (17.9a)

and

Ri(x | bi, ci) = exp

{
−
(
x

bi

)ci}
; i = 1, . . . ,m (17.9b)
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be the DF and CCDF of the i–th subpopulation, respectively; then

f(x |θ) =
m∑

i=1

pi fi(c | bi, ci), (17.9c)

R(x |θ) =

m∑

i=1

piRi(x | bi, ci) (17.9d)

are the DF and the CCDF of the mixed WEIBULL distribution, respectively.

We first consider the case of non–postmortem data coming from a time–terminated sam-

ple of size n, T being the censoring time. The vector of the ordered times to failure is

x = (x1, . . . , xr)
′, r ≤ n.

The algorithm for finding the MLEs of the parameters is given by JIANG/KECECIOGLU

(1992b) as follows:

1. Begin with an initial guess p
(0)
i , b

(0)
i and c(0); i = 1, . . . ,m.

2. In iteration h (h ≥ 1), calculate the probabilities

Pr(h)(i |xj) = p
(h−1)
i

fi
(
xj | b(h−1)

i , c
(h−1)
i

)

f
(
xj |θ(h−1)

) ∀ i, j, (17.10a)

Pr(h)(i |T ) = p
(h−1)
i

Ri
(
T | b(h−1)

i , c
(h−1)
i

)

R
(
T |θ(h−1)

) ∀ i. (17.10b)

(17.10a) is the probability that the unit comes from subpopulation i, knowing that it

failed at time xj . Similarly, for the n− r surviving units, the conditional probability

of a unit’s belonging to subpopulation i, given that it survived until T , is given by

(17.10b).

3. In iteration h, find the MLEs of p
(h)
i , b

(h)
i , c

(h)
i , given the Pr(h)(i |xj) and Pr(h)(i |T )

in the following substeps:

a) Use the NEWTON–RAPHSON iteration to find the MLE for c
(h)
i from

g
(
c
(h)
i

)
=

r∑
j=1

Pr(h)(i |xj) lnxj +
1

c
(h)
i

r∑
j=1

Pr(h)(i |xj) −
[
r∑
j=1

Pr(h)(i|xj)xc
(h)
i
j lnxj+(n−r) Pr(h)(i|T )T c

(h)
i lnT

][
r∑
j=1

Pr(h)(i|xj)
]

r∑
j=1

Pr(h)(i|xj)xc
(h)
i
j + (n−r) Pr(h)(i|T )T c

(h)
i

= 0.





(17.10c)
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b) Calculate b
(h)
i as

b
(h)
i =




r∑
j=1

Pr(h)(i |xj)xc
(h)
i
j + (n− r) Pr(h)(i |T )T c

(h)
i

r∑
j=1

Pr(h)(i |xj)




1/c
(h)
i

. (17.10d)

c) Calculate p
(h)
i as

p
(h)
i =

1

n




r∑

j=1

Pr(h)(i |xj) + (n− r) Pr(h)(i |T )


 . (17.10e)

4. Repeat steps 2 and 3 until the desired accuracy has been reached.

Example 17/1: German life table as a mixture distribution

In Germany we have had twelve sets of life tables since the foundation of the German Empire in

1871. With the exception of the last table for 2000/02 all life tables have been set up around the

year of a population census. From these tables we have extracted the conditional probabilities of

death (= the annual rates of mortality) qx, being the discrete version of the hazard rate, and we have

depicted them in Fig. 17/1. This figure pertains to females, but the same course of qx is to be found

with males, their curves lying on a somewhat higher level.

Figure 17/1: Annual mortality rates qx for females in German life tables from 1871 to 2002
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We clearly may distinguish three different types of behavior of the qx:

1. For young age (up to x ≈ 10) qx is steadily decreasing with x, expressing high infant mor-

tality.

2. For the youth (10 / x / 25) qx is first increasing and then slightly decreasing, a phenomenon

mainly caused by traffic accidents.

3. Finally, starting at x ≈ 25 the qx are steadily increasing, expressing death by “wear and tear.”

So we may look at the life table population as consisting of three subpopulations having different

courses of the rate of mortality.

Subpopulations 1 and 3 each have a monotone hazard rate and thus may be modeled by a WEIBULL

distribution. To model subpopulation 2 with a non–monotone hazard rate we have decided to take

an inverse WEIBULL distribution (see Sect. 3.3.2).4 We have to adapt the JIANG/KECECIOGLU

algorithm with respect to the second subpopulation. As shown by the following results the modified

algorithm also works.

Fig. 17/2 depicts the estimated densities of the three subpopulations and the total population for

females of the life table 1891/1900. In Fig. 17/3 we show the fit of the empirical frequencies of

deaths by the estimated mixture density, pertaining to females of the life table 1891/1900. The fit is

rather good.

Figure 17/2: Estimated densities of the subpopulations and the total population (females, life table

1891/1900)

4 For a mixture of inverse WEIBULL distributions see SULTAN et al. (2007).
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Figure 17/3: Mixture density and empirical frequencies of death (females, life table 1891/1900)

The following figures exhibit results for all the 2 × 12 life tables. Fig. 17/4 shows the behavior of

the three proportions p1, p2, p3 with time. As to be expected p1 decreases and p3 increases over

the last 130 years, mainly due to medical progress.

Figure 17/4: Proportions of the three subpopulations

Fig. 17/5 and Fig. 17/6 show the estimated scale parameters and shape parameters, respectively.

Figure 17/5: Estimated scale parameters of the three subpopulations
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Figure 17/6: Estimated shape parameters of the three subpopulations

Finally, Fig. 17/7 gives the mean ages in the three subpopulations as well as in the mixed total

population. They all behave as to be expected. We have also depicted the life expectation of a

newborn, e0, as taken from the life table which should be compared with the mean in the mixed

population. Both are in close agreement demonstrating the plausibility of the approach.

Figure 17/7: Mean ages and life expectation

We finally turn to the case of postmortem date. ni test units belong to subpopulation

i, n =
∑m

i=1 ni. For time–termination, the life test data consist of ri (ri ≤ ni) times to

failure xji (j = 1, . . . , ri) from subpopulation i, and n − r survivors at time T , where

r =
∑m

i=1 ri. The algorithm for postmortem data is just a special case of the algorithm

for non–postmortem data, where in (17.10a) Pr(h)(i |xj) is replaced by 0, if xj does not

belong to subpopulation i, and by 1, otherwise. Instead of (17.10e) we have

p
(h)
i =

ni
n

∀ h;

i.e., step 3c can be skipped.
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17.2 BAYESIAN estimation approaches5

We will first show how to proceed when there are only two subpopulations (Sect. 17.2.1)

and then turn to the general case of m ≥ 2 subpopulations (Sect. 17.2.2).

17.2.1 The case of two subpopulations

When we have non–postmortem data, we can consider two cases:

1. the two shape parameters c1 and c2 are known, and λ1, λ2, p are to be estimated;

2. all five parameters are unknown.

The mixed WEIBULL DF and CDF are

f(x) = p λ1 c1 x
c1−1exp

(
− λ1 x

c1
)

+ (1 − p)λ2 c2 x
c2−1exp

(
− λ2 x

c2
)
and (17.11a)

R(x) = p exp
(
− λ1 x

c1
)

+ (1 − p) exp
(
− λ2 x

c2
)
, (17.11b)

respectively, where
λi = b−cii ; i = 1, 2.

Case 1: c1 and c2 known, type-II censoring

A very flexible prior for p is the beta distribution with DF

g(p |α, β) =
Γ(α+ β)

Γ(α) Γ(β)
pα−1 (1 − p)β−1; 0 < p < 1, α > 0, β > 0. (17.12a)

The prior for λi is the gamma distribution (see (14.20a)) where the DFs are now

g(λi | γi, δi) =
λδi−1
i exp(−γi λi) γδii

Γ(δi)
; λi > 0, γi > 0; i = 1, 2. (17.12b)

The joint posterior DF of φ = (p, λ1, λ2)
′ takes the form

g(φ | c1, c2,x) ∝ pα−1 (1 − p)β−1
2∏

i=1

λδi−1
i exp(−γi λi)

[
R(xr:n)

]n−r r∏

j=1

f(xj:n).

(17.12c)

AHMAD et al. (1997) used LINDLEY’s (1980) approximation to find the BAYES estimators.

Case 2: All parameters unknown, type–II censoring

We keep the priors for p, λ1 and λ2 of case 1. Priors for c1 and c2 are assumed to be

discrete probability mass functions and are given by6

Pr(ci = cik) = qik ≥ 0; k = 1, 2, . . . , di;

di∑

k=1

qik; i = 1, 2. (17.13a)

5 Suggested reading for this section: AHMAD/MOUSTAFA/ABD–ELRAHMAN (1997), SINHA (1987),

TSIONAS (2002).

6 See Sect. 14.2.2, where we used a two–point prior.
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Here, the joint posterior probability function of ψ = (φ′, c1, c2)′, where ψ = (p, λ1, λ2)
′,

can be written as

g(ψ |x) ∝ q1k q1ℓ g(φ | c1k, c2ℓ,x), (17.13b)

where g(φ | c1k, c2ℓ,x) is as given by (17.12c) with c1 and c2 replaced by c1k and c2ℓ,
respectively. The BAYES estimators may be found — using LINDLEY’s approximation —

as described in AHMAD et al. (1997).

Turning to a situation with postmortem data and a type-I censoring at time T , SINHA

(1987) proposed taking the following priors, when the WEIBULL DF is given by

fi(x) =
ci
θi
xci−1 exp

{
−x

ci

θi

}
; i = 1, 2,

where
θi = λ−1

i = bcii .

1. a uniform distribution for p

g(p) = 1; 0 < p < 1; (17.14a)

2. a uniform distribution for ci

g(ci) =
1

5
; 0 < ci < 5; i = 1, 2; (17.14b)

3. a vague prior for (θ1, θ2)

g(θ1, θ2) ∝
1

θ1 θ2
; θi > 0; i = 1, 2. (17.14c)

The joint posterior DF of ψ = (p, θ1, θ2, c1, c2)
′ is given by

g(ψ |x) ∝ cr11 cr22 κc11 κc22
n−r∑
k=0

(n−r
k

)
pn−k−r2 (1 − p)r2−k ×


exp




−

r1∑
j=1

xc11j + (n− r − k)T c1

θ1





/
θr1+1
1





exp




−

r2∑
j=1

xc22j + k T c2

θ2





/
θr2+1
2


 ,





(17.14d)

where

• r1 (r2) units from subpopulation 1 (2) have failed during the interval (0, T ],

• r = r1 + r2, r ≤ n,

• x1j (x2j) is the failure time of the j–th unit belonging to subpopulation 1 (2),

• κ1 =
∏r1
j=1 x1j, κ2 =

∏r2
j=1 x2j .



17.2 BAYESIAN estimation approaches 569

For this scenario SINHA (1987) has found the following BAYES estimators using

η1 =

r1∏

j=1

t1j ;

η2 =
r−2∏

j=1

t2j;

tij = xij
/
T ; i = 1, 2;

C−1 =

n−r∑

k=0

(
n− r

k

)
B(n− k − r2 + 1, r2 + k + 1) ×

5∫

0

cr11 ηc11[
r1∑
j=1

tc11j + (n− r + k)

]r1 dc1

5∫

0

cr22 ηc22[
r2∑
j=1

tc22j + k

]r2 dc2 :

p̂ = C
n−r∑
k=0

(n−r
k

)
B(n− k − r2 + 2, r2 + k + 1) ×

5∫

0

cr11 ηc11[
r1∑
j=1

tc11j + (n− r + k)

]r1 dc1

5∫

0

cr22 ηc22[
r2∑
j=1

tc22j + k

]r2 dc2,





(17.15a)

ĉ1 = C
n−r∑
k=0

(n−r
k

)
B(n− k − r2 + 1, r2 + k + 1) ×

5∫

0

cr1+1
1 ηc11[

r1∑
j=1

tc11j + (n − r + k)

]r1 dc1

5∫

0

cr22 ηc22[
r2∑
j=1

tc22j + k

]r2 dc2,





(17.15b)

ĉ2 = C
n−r∑
k=0

(n−r
k

)
B(n− k − r2 + 1, r2 + k + 1) ×

5∫

0

cr11 ηc11[
r1∑
j=1

tc11j + (n− r + k)

]r1 dc1

5∫

0

cr2+1
2 ηc22[

r2∑
j=1

tc22j + k

]r2 dc2,





(17.15c)

θ̂1 =
C

r1 − 1

n−r∑
k=0

(n−r
k

)
B(n− k − r2 + 1, r2 + k + 1) ×

5∫

0

cr11 (T η1)
c1

[
r1∑
j=1

tc11j + (n− r + k)

]r1−1 dc1

5∫

0

cr22 ηc22[
r2∑
j=1

tc22j + k

]r2 dc2,





(17.15d)
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θ̂2 =
C

r2 − 1

n−r∑
k=0

(
n−r
k

)
B(n− k − r2 + 1, r2 + k + 1) ×

5∫

0

cr11 ηc11[
r1∑
j=1

tc11j + (n− r + k)

]r1 dc1

5∫

0

cr22 (T η2)
c2

[
r2∑
j=1

tc22j + k

]r2−1 dc2.





(17.15e)

17.2.2 The case ofm subpopulations (m ≥ 2)

Little research has been done so far for BAYESIAN analysis of finite mixtures of more than

two WEIBULL distributions. TSIONAS (2002) gave an approach for an uncensored sample

of non–postmortem data assuming that the m WEIBULL distributions have a common but

unknown location parameter a. Thus, the DF of the i–th WEIBULL distribution is (i =
1, 2, . . . , n):

f(x) = λi ci (x− a)ci−1 exp
[
− λi (x− a)ci

]
, x > a.

He chose independent priors:

g(λi) ∝ λni−1
i exp(−si λi), (17.16a)

g(ci) ∝ cni−1
i exp(−qi ci), (17.16b)

g(p) ∝
m∏

i=1

pni−1
i , p = (p1, . . . , pm)′. (17.16c)

The first two priors are gamma distributions, and the third is a DIRICHLET distribution

defined on the unit simplex. From the form of the conditioned distributions, given by

TSIONAS, these priors are conditionally conjugate. This property may help in prior elic-

itation if we consider a fictitious sample of size ni in each mixing component so that the

parameters ni reflect the prior importance of each component; see (17.16c). Within each

component the parameters λi and ci are gamma distributed a priori as shown in (17.16a–b),

so the hyperparameters of these equations may be elicited using standard results for the

moments of the gamma distribution. Further results of this approach may be found in the

paper of TSIONAS.
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The WEIBULL process, also called power law process, RASCH–WEIBULL process,

WEIBULL–POISSON process or WEIBULL intensity function, has been introduced and de-

scribed in Sect. 4.3. It is a special non–homogeneous POISSON process with mean value

function

Λ(t) =

(
t

b

)c
, t ≥ 0; b, c > 0, (18.1a)

giving the expected number of events in (0, t], and intensity function

λ(t) =
dΛ(t)

dt
=
c

b

(
t

b

)c−1

. (18.1b)

Some authors prefer a different parametrization: Λ(t) = θ tc, λ(t) = θ c tc−1, where θ =
b−c. Essentially, all of the research on WEIBULL processes has been motivated by appli-

cations in which events are failures of a repairable system. Improvement of a system, or

reliability improvement, may occur if the system is in a development program. During

testing, deficiencies are identified and subsequent redesign efforts are initiated to develop

corrections for the problem areas. If the modifications introduced into the system during

the test are effective, then the system reliability should increase over the testing phase. On

the other hand, if only minimal repairs are made each time a failure occurs, the system

will be deteriorating with time.

A characterization of a WEIBULL process is given by the sequence of successive failure

times T1, T2, . . ., where Tn represents the time until the n–th failure. The time to first

failure T1 has the WEIBULL distribution with hazard rate function equal to (18.1b) and

CDF

F (t1) = 1 − exp

{
−
(
t1
b

)c}
, 0 ≤ t1 <∞. (18.2a)

It is also true that the conditional failure times Tn, n ≥ 2, given T1 = t1, . . . , Tn−1 = tn−1,
follow a WEIBULL distribution which is truncated below the point tn−1:

F (tn|T1 = t1, . . . , Tn−1 = tn−1) = 1−exp

{
−
(
tn
b

)c
+

(
tn−1

b

)c}
, tn−1 ≤ tn <∞.

(18.2b)
The joint density of the first n times of failure T1, . . . , Tn, therefore, has a particularly

simple form:

f(t1, . . . , tn) =
(c
b

)n n∏

i=1

(
ti
b

)c−1

exp

{
−
(
tn
b

)c}
, 0 < t1 < t1 < . . . < tn <∞.

(18.2c)
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In order to do inference of a WEIBULL process, it is necessary to adopt a method of col-

lecting data. A very common way to obtain data is failure truncation (see Sect. 18.1)

whereby the process is observed for a fixed number n of failures, leading to an ordered set

of data t1 < t2 < . . . < tn. Another way to obtain data is time truncation (see Sect. 18.2)

whereby the process is observed for a fixed length of time t∗. In this case, the data have

one of the following forms, N(t∗) being the random number of failures:

1. N(t∗) = 0 or

2. N(t∗) = n > 0 and 0 < t1 < t2 < . . . < tn < t∗.

Notice that, with time truncation, the observed number of failures is part of the dataset.

There are some other ways of observing the process, e.g., distance sampling, where the

process is observed at given points τ1, τ2, . . . in time. Inference in this and other cases will

be presented in Sect. 18.3. A graphical estimation of b and c based on DUANE’s plot is

given in Sect. 18.4.

18.1 Failure truncation1

We will first present results for the case that there has only been one WEIBULL process

under observation from t = 0 onwards (Sect. 18.1.1) and then turn to the more general case

of several processes where the observation not necessarily started at t = 0 (Sect. 18.1.2).

18.1.1 The case of one observed process

When n, the number of failures to be observed, is fixed the first n successive failure times

T1, . . . , Tn of a WEIBULL process are random variables having the joint DF given by

(18.2c). Looking at (18.2c) as the likelihood function the MLEs of b and c are easily

found to be

ĉ = n

/ n∑

i=1

ln

(
Tn
Ti

)
, (18.3a)

b̂ = Tn
/
n1/bc. (18.3b)

In order to construct confidence intervals for b and c or to test hypotheses on these param-

eters, we need the distributions of b̂ and ĉ.

The variable

Z =
2n c

ĉ
, (18.4a)

1 Suggested reading for this section: CHAN/RUEDA (1992), CROW (1982), ENGELHARDT (1988), EN-

GELHARDT/BAIN (1978), FINKELSTEIN (1976), LEE/LEE (1978), RIGDON/BASU (1988, 1989).
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as noted by FINKELSTEIN (1976), is a pivotal quantity, i.e., its distribution is free of un-

known parameters, and it is has the χ2–distribution with ν = 2 (n−1) degrees of freedom:

Z =
2n c

ĉ
∼ χ2(2 (n − 1)). (18.4b)

Thus, an upper 1 − α level confidence interval for c is given by

c ≥ ĉ

2n
χ2

2 (n−1),α. (18.4c)

The variable

W =

(
b̂

b

)bc
(18.5a)

also is a pivotal quantity — for a proof see FINKELSTEIN (1976) — with CDF given by

LEE/LEE (1978) as

F (w) =

∞∫

0

H
[
(nw)z/2n; 2n

]
h
[
z; 2 (n − 1)

]
dz, (18.5b)

where H[·; ν] and h[·; ν] represent the CDF and DF of χ2(ν), respectively. Tabulated

percentiles of W , obtained by Monte Carlo simulation, are given in FINKELSTEIN (1976)

and may be used to construct confidence intervals for b. Tab. 18/1 is an extraction of the

FINKELSTEIN table.

BAIN/ENGELHARDT (1980a) have derived the following asymptotic normal approxima-

tion:
√
n ĉ ln

(
b̂

b

)/
lnn ∼ No(0, 1). (18.5c)

The unusual standardizing factor
√
n
/

lnn, rather than
√
n, suggests that larger sample

sizes may be needed to obtain high precision for inferences on b.

If the parameter c is known, then

S = 2

(
Tn
b

)c
(18.6a)

would be used for inference on the parameter b. LEE/LEE (1978) show that

2

(
Tn
b

)c
∼ χ2(2n). (18.6b)

If testing of the system is planned to end at the (n+ k)–th failure, then it may be desired to

predict the time Tn+k when testing will be completed, based on T1, . . . , Tn. The function

U = 2

[(
Tn+k

b

)c
−
(
Tn
b

)c ]
(18.7a)
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Table 18/1: Percentage points wP , such that Pr



(
b̂

b

)bc
≤ wP


 = P

n

P
ZZZZZZZZZZZZZ

0.02 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95 0.98

2 — 0.002 0.06 0.33 0.60 1.5 8.0 61.0 2380.0 * *
3 0.09 0.23 0.40 0.58 0.79 1.6 4.7 13.0 113.0 2730.0 *
4 0.26 0.36 0.47 0.65 0.86 1.6 3.7 8.0 35.0 210.0 5140
5 0.31 0.40 0.49 0.67 0.87 1.5 3.2 6.1 19.0 75.0 629.
6 0.33 0.42 0.51 0.68 0.88 1.5 3.0 5.2 14.0 43.0 220.

7 0.34 0.42 0.51 0.68 0.87 1.4 2.8 4.6 11.0 28.0 126.
8 0.35 0.42 0.51 0.68 0.86 1.4 2.6 4.1 9.2 21.0 69.
9 0.35 0.42 0.51 0.68 0.85 1.3 2.4 3.8 7.8 17.0 49.
10 0.35 0.42 0.51 0.67 0.85 1.3 2.3 3.6 7.1 15.0 42.
12 0.35 0.43 0.52 0.67 0.84 1.3 2.2 3.2 5.9 11.0 27.

14 0.36 0.43 0.52 0.67 0.83 1.3 2.0 2.9 5.1 9.0 19.
16 0.36 0.43 0.52 0.68 0.83 1.2 2.0 2.7 4.8 8.0 16.
18 0.36 0.43 0.53 0.68 0.83 1.2 1.9 2.6 4.3 6.9 13.
20 0.36 0.44 0.53 0.68 0.83 1.2 1.9 2.5 4.1 6.4 11.
22 0.36 0.44 0.53 0.68 0.82 1.2 1.8 2.4 3.9 5.9 9.8

24 0.37 0.44 0.53 0.67 0.81 1.2 1.8 2.3 3.6 5.5 9.2
26 0.37 0.45 0.53 0.67 0.81 1.2 1.7 2.3 3.4 5.1 8.2
28 0.37 0.45 0.53 0.67 0.81 1.2 1.7 2.2 3.3 4.9 7.9
30 0.37 0.45 0.53 0.67 0.81 1.1 1.7 2.2 3.2 4.7 7.1
35 0.38 0.46 0.54 0.68 0.82 1.1 1.6 2.1 3.0 4.3 6.5

40 0.39 0.46 0.55 0.69 0.82 1.1 1.6 2.0 2.8 3.9 5.9
45 0.39 0.47 0.55 0.70 0.83 1.1 1.6 1.9 2.7 3.7 5.4
50 0.39 0.47 0.56 0.70 0.83 1.1 1.5 1.9 2.6 3.5 5.0
60 0.40 0.49 0.57 0.71 0.83 1.1 1.5 1.8 2.4 3.2 4.4
70 0.42 0.49 0.58 0.71 0.82 1.1 1.4 1.7 2.3 3.0 4.0

80 0.43 0.51 0.59 0.71 0.82 1.1 1.4 1.7 2.2 2.8 3.8
90 0.44 0.51 0.60 0.71 0.83 1.1 1.4 1.7 2.1 2.6 3.5

100 0.45 0.52 0.60 0.72 0.83 1.1 1.4 1.6 2.1 2.6 3.3
* — greater than 1010

Source: FINKELSTEIN (1976, p. 116) — Reprinted with permission from Technometrics. Copyright 1976 by

the American Statistical Association. All rights reserved.

is needed to solve the problem of predicting Tn+k. U is a pivotal quantity and

U ∼ χ2(2 k), (18.7b)

as shown by LEE/LEE (1978).2 The random variables Z in (18.4a), S in (18.6a) and U
are independent. One approach to find an upper prediction limit is the following. The

2 The prediction of Tn+k based on the pivotal quantity

Y = (n− 1) bc ln(Tn+k

‹
Tn)

is considered by ENGELHARDT (1988). The distribution of Y is rather complicated, but for k = 1 an

explicit form of the lower 1 − α prediction limit TL for Tn+1 can be obtained as follows:

TL = Tn exp
nh

(1 − α)−1/(n−1) − 1
i .

bc
o
.
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distribution of

V =

(
Tn+k

Tn

)bc
(18.8a)

is found, and then to obtain, say, an upper prediction limits, the percentage point vα is

chosen so that

Pr(V ≤ vα) = 1 − α. (18.8b)

It follows that

1 − α = Pr

[(
Tn−k
Tn

)bc
≤ vα

]
= Pr

[
Tn+k ≤ Tn v

1/bc
α

]
, (18.8c)

and tn v
1/bc
α is an upper 1 − α level prediction limits for Tn+k. The distribution of V is

found by showing that it can be represented as a function of Z, S, U. We have

nU

k S
=
n

k

[(
Tn+k

Tn

)c
− 1

]
∼ F (2 k, 2n). (18.8d)

If c were known, (18.8d) could be used to construct the predictive limits for Tn+k. When c
is unknown, let us write, using (18.8d):

V =

[(
Tn+k

Tn

)c ]bc/c

=

[
k

n
F (2 k, 2n) + 1

]2n/Z
, (18.8e)

where F (2 k, 2n) and Z of (18.4a) are independent. The CDF of V is therefore given by

Pr(V ≤ v) =

∞∫

0

G
[n
k

(
vz/2n − 1

)
; 2 k, 2n

]
h
[
z; 2 (n − 1)

]
dz, (18.8f)

where G[·; ν1, ν2] is the CDF of F (ν1, ν2) and h[·; ν] is the DF of χ2(ν).

If at time tn no further improvements are planned, then it may be assumed that the system

has a constant failure rate which takes the current value of the intensity function λ(tn).
Consequently, the system’s life length has an exponential distribution with mean (= MTBF)

λ−1(tn), and the current system reliability is represented by R(t0) = exp[−λ(tn) t0] for

some time interval [0, t0) of its useful life.

The current value of the intensity function λ(tn) has the MLE

λ̂(tn) = n ĉ
/
tn, (18.9a)
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which does not involve the scale parameter. Confidence limits for λ(tn), λ
−1(tn) and

R(to) can be based on the pivotal quantity

Q =
λ(tn)

λ̂(tn)
=
Z S

4n2
, (18.9b)

which has the CDF

F (q) =

∞∫

0

H
[
4n2 q

/
z; 2n

]
h
[
z; 2 (n − 1)

]
dz, (18.9c)

where H[·; ·] and h[·; ·] are defined in the context of (18.5b). A lower 1 − α confidence

limit for λ(tn) is

λL = λ̂(tn) qα, (18.9d)

where qα is the 100α% percentile of Q, and a lower 1 − α confidence limit for R(t0) is

RL = exp
{
− λ̂(tn) t0 q1−α

}
. (18.9e)

This is also related to the mean time between failure (= MTBF) 1
/
λ(tn)). The correspond-

ing lower 1 − α confidence limit is

ML = 1
/{

λ̂(tn) q1−α
}
. (18.9f)

Tabulated values ρ1 and ρ2 are given in CROW (1982) such that

Pr
[
ρ1 M̂(tn) < M(tn) < ρ2 M̂(tn)

]
= 1 − α, (18.9g)

where M̂(tn) = tn
/
(n ĉ ). Tab. 18/2 is an extraction of the CROW–table.

It is straightforward to show also that

√
n

[
M̂(tn)

M(tn)
− 1

]
asym∼ No(0, 2). (18.10a)

Thus, for large n approximate 1 − α two–sided confidence intervals are of the form given

in (18.9g), where

ρ1 ≈
[
1 + u1−α/2

√
2/n

]−1
,

ρ2 ≈
[
1 − u1−α/2

√
2/n

]−1
,



 (18.10b)

u1−α/2 being the 100 (1 − α/2)% percentile of the standard normal distribution.
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18.1.2 The case of more than one observed process

We consider the parametrization

λ(t) = θ c tc−1, θ = b−c, (18.11)

Table 18/2: Values ρ1, ρ2, such that ρ1M̂(tn), ρ2M̂(tn) are 1−α confidence limits of

M(tn)

n

1−α
bbbbbbbbbbbbbbbb

0.80 0.90 0.95 0.98

ρ1 ρ2 ρ1 ρ2 ρ1 ρ2 ρ1 ρ2

2 .8065 33.76 .5552 72.67 .4099 151.5 .2944 389.9
3 .6840 8.927 .5137 14.24 .4054 21.96 .3119 37.60
4 .6601 5.328 .5174 7.651 .4225 10.65 .3368 15.96
5 .6568 4.000 .5290 5.424 .4415 7.147 .3603 9.995
6 .6600 3.321 .5421 4.339 .4595 5.521 .3815 7.388

7 .6656 2.910 .5548 3.702 .4760 4.595 .4003 5.963
8 .6720 2.634 .5668 3.284 .4910 4.002 .4173 5.074
9 .6787 2.436 .5780 2.989 .5046 3.589 .4327 4.469
10 .6852 2.287 .5883 2.770 .5171 3.286 .4467 4.032
11 .6915 2.170 .5979 2.600 .5285 3.054 .4595 3.702

12 .6975 2.076 .6067 2.464 .5391 2.870 .4712 3.443
13 .7033 .1.998 .6150 2.353 .5488 2.721 .4821 3.235
14 .7087 1.933 .6227 2.260 .5579 2.597 .4923 3.064
15 .7139 1.877 .6299 2.182 .5664 2.493 .5017 2.921
16 .7188 1.829 .6367 2.144 .5743 2.404 .5106 2.800

17 .7234 1.788 .6431 2.056 .5818 2.327 .5189 2.695
18 .7278 1.751 .6491 2.004 .5888 2.259 .5267 2.604
19 .7320 1.718 .6547 1.959 .5954 2.200 .5341 2.524
20 .7360 1.688 .6601 1.918 .6016 2.147 .5411 2.453
21 .7398 1.662 .6652 1.881 .6076 2.099 .5478 2.390

22 .7434 1.638 .6701 1.848 .6132 2.056 .5541 2.333
23 .7469 1.616 .6747 1.818 .6186 2.017 .5601 2.281
24 .7502 1.596 .6791 1.790 .6237 1.982 .5659 2.235
25 .7534 1.578 .6833 1.765 .6286 1.949 .5714 2.192
26 .7565 1.561 .6873 1.742 .6333 1.919 .5766 2.153

27 .7594 1.545 .6912 1.720 .6378 1.892 .5817 2.116
28 .7622 1.530 .6949 1.700 .6421 1.866 .5865 2.083
29 .7649 1.516 .6985 1.682 .6462 1.842 .5912 2.052
30 .7676 1.504 .7019 1.664 .6502 1.820 .5957 2.023
35 .7794 1.450 .7173 1.592 .6681 1.729 .6158 1.905

40 .7894 1.410 .7303 1.538 .6832 1.660 .6328 1.816
45 .7981 1.378 .7415 1.495 .6962 1.606 .6476 1.747
50 .8057 1.352 .7513 1.460 .7076 1.562 .6605 1.692
60 .8184 1.312 .7678 1.407 .7267 1.496 .6823 1.607
70 .8288 1.282 .7811 1.367 .7423 1.447 .7000 1.546

80 .8375 1.259 .7922 1.337 .7553 1.409 .7148 1.499
100 .8514 1.225 .8100 1.293 .7759 1.355 .7384 1.431

Source: CROW (1982, p. 70) — Reprinted with permission from Technometrics. Copyright 1982 by the

American Statistical Association. All rights reserved.
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of the WEIBULL intensity function. The number of systems (= processes) which are all

assumed to have the same intensity function as given in (18.11a)3 is k and the ℓ–th system

is observed from Sℓ (Sℓ ≥ 0) until the occurrence of the nℓ–th failure. The total number of

failures is

n =

k∑

ℓ=1

nℓ,

and the times of failure are denoted as Tℓi, i = 1, . . . , nℓ, assembled in vector tℓ, ℓ =
1, . . . , k. Remember, that Tℓi ≥ Sℓ. The likelihood function is

L(θ, c | t1, . . . , tk) = θn cn

(
k∏

ℓ=1

nℓ∏

i=1

T c−1
ℓi

)
exp

{
−θ

k∑

ℓ=1

(
T cℓi − Scℓ

)
}
, (18.12a)

and the MLEs are the solutions of the equations

1

ĉ
−

k∑
ℓ=1

(
T bcℓnℓ

lnTℓnℓ
− Sbcℓ lnSℓ

)

k∑
ℓ=1

(
T bcℓnℓ

− Sbcℓ
) = − 1

n

k∑

ℓ=1

nℓ∑

i=1

lnTℓi, (18.12b)

θ̂ = n

/ k∑

ℓ=1

(
Tℓnℓ

− Sbcℓ

)
. (18.12c)

For k = 1 and S1 = 0 and observing 0 ln 0 = 0, the solutions of (18.12b,c) can be given

in closed form

ĉ = n

/ n∑

i=1

ln

(
Tn
Ti

)
, (18.13a)

θ̂ = n
/
T bcn, (18.13b)

which coincide with (18.3a,b) because θ = b−c.

CHAN/RUEDA (1992) have shown that the MLEs do not exist when Sℓ > 0 and

− 1

n

k∑

ℓ=1

nℓ∑

i=1

lnTi ≥ −

k∑
ℓ=1

[(
lnTℓnℓ

)2 −
(
lnSℓ

)2]

2
k∑
ℓ=1

(
lnTℓnℓ

− lnSℓ)

. (18.14)

They also give a formula for the probability of this non-existence.

3 A test for the equality of several intensity functions is given by LEE (1980).
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18.2 Time truncation4

In this section we will proceed as in Sect. 18.1 and first look at the case of only one system

under observation and afterwards turn to the case of more than one system to be observed.

18.2.1 The case of one observed process

The process is observed from t = 0 to a preselected time t∗. The dataset consists of the

random number of failures N(t∗) and the random times to failure 0 < T1 < T2 < . . . <
TN(t∗) ≤ t∗. Suppose N(t∗) = n is the number of failures in (0, t∗]. If n = 0, then a

limited amount of statistical analysis is possible on

Λ(t∗) = E
[
N(t∗)

]
=

(
t∗

b

)c
. (18.15a)

In particular the MLE is
Λ̂(t∗) = 0 (18.15b)

and a lower 1 − α confidence limit for Λ(t∗) is

ΛL =
1

2
χ2

2,α. (18.15c)

The following results pertain to the case N(t∗) = n > 0.

The joint density function of the successive failure times T1, . . . < Tn and N(t∗) is

f(t1, . . . , tn, n) =
(c
b

)n n∏

i=1

(
ti
b

)c−1

exp

{
−
(
t∗

b

)c}
, 0 < t1 < . . . < tn ≤ t∗.

(18.16a)
The joint MLEs follow as

ĉ = n

/ n∑

i=1

ln(Ti/t
∗), (18.16b)

b̂ = t∗
/
n1/bc. (18.16c)

(18.6a–c) are similar to (18.2c) and (18.3a,b) with Tn substituted by t∗ and the summation

in (18.16b) is over i from 1 to n instead of n− 1.

Because N(t∗) is sufficient for b when c is fixed, the conditional distribution of ĉ, given

N(t∗) = n, is free of b. Furthermore, since the conditional distribution of Z as defined by

(18.4a), given N(t∗) = n, is χ2(2n), a conditional upper 1−α confidence interval for c is

found to be

c ≥ ĉ

2n
χ2

2n,α. (18.17)

Due to the time truncation, b is no longer a scale parameter, and the pivotal property of W
as given in (18.5a) does not longer hold in this case. BAIN/ENGELHARDT (1980a) give the

4 Suggested reading for this section: BAIN/ENGELHARDT (1980a), CHAN/RUEDA (1992), CROW (1982),

ENGELHARDT (1988), RIGDON/BASU (1989, 1990a).
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following approximate upper 1 − α confidence interval for b:

b ≥ b̂
{
n
[
(n+ 1)w1−α,n+1

]1/(2n+2)
}1/bc

, (18.18)

where w1−α,n+1 is the 100 (1 − α) percentage point of W in Tab. 18.1.

Conservative confidence intervals for λ(t∗), the MTBF λ(t∗)−1 and R(t0) can be found

using the conditional probability density of N(t∗) and λ(t∗) given y = n
/
ĉ; see ENGEL-

HARDT (1988):

f(n, λ(t∗) | y) =

[
t∗ λ(t∗) y

]n

n! (n− 1)!

{ ∞∑

k=1

[
t∗ λ(t∗) y

]k

k! (k − 1)!

}−1

, n = 1, 2, . . . (18.19)

A conservative 1−α confidence limit for λ(t∗) is given by the largest solution λL = λ1 of

the inequality
∞∑

k=1

f(k, λ1 | y) ≤ α. (18.20)

A conservative lower 1 − α confidence limit for R(t0) follows as

RL = exp
(
− λ2 t0

)
, (18.21a)

where λ2 is the smallest solution of

n∑

k=1

f(k, λ | y) ≤ α. (18.21b)

The corresponding lower 1−α confidence limit ML for the instantaneous MTBFM(t∗) =
λ(t∗)−1 is

ML = 1
/
λ2. (18.22a)

CROW (1982) derives a normal approximation of M̂(t∗) leading to the following lower

1 − α confidence limit

ML = n2
/(
n+ uα

√
n/2

)2
, (18.22b)

uα being the percentile of order α of the standard normal distribution.

18.2.2 The case of more than one observed process

As in Sect. 18.1.2 we take the parametrization

λ(t) = θ c tc−1, θ = b−c.

The number of systems or processes under study is k and the ℓ–th system is observed from

Sℓ to t∗ℓ , ℓ = 1, . . . , k. Suppose Nℓ = N(t∗ℓ ) = nℓ failures are observed on the ℓ–th system

at times
Tℓ1 < Tℓ2 < . . . < Tℓnℓ

≤ t∗ℓ .
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The random variable Nℓ has a POISSON distribution with mean

Λ(t∗ℓ ) =

t∗ℓ∫

Sℓ

θ c tc−1 dt = θ
(
t∗ℓ − Scℓ

)
. (18.23a)

Given Nℓ = nℓ, the failure times Tℓ1, . . . Tℓnℓ
have the same distribution as the order

statistics corresponding to nℓ independent random variables having distribution function

F (t) =





0 for t < Sℓ,
(
tc − Scℓ

)/(
t∗

c

ℓ − Scℓ
)

for Sℓ ≤ t ≤ t∗ℓ ,

1 for t > t∗ℓ .





(18.23b)

The likelihood function based only on the ℓ–th system is

n!

cnℓ

nℓ∏
i=1

T c−1
ℓi

(
t∗ℓ − Scℓ

)nℓ

exp
{
− θ

(
t∗

c

ℓ − Scℓ
)}
θnℓ
(
t∗

c

ℓ − S∗
ℓ

)nℓ

nℓ!

= θnℓ cnℓ

(
nℓ∏
i=1

T c−1
ℓi

)
exp
{
− θ

(
t∗

c

ℓ − Scℓ
)}
.





(18.24a)

Let n =
∑k

ℓ=1 nℓ. The likelihood function based on all k systems is

L(θ, c | t1, . . . , tk, n) = θn cn

(
k∏

ℓ=1

nℓ∏

i=1

T c−1
ℓi

)
exp

{
−θ

k∑

ℓ=1

(
t∗

c

ℓ − Scℓ
)
}
. (18.24b)

If n > 0, then the MLEs of θ and c are the solutions of the equations

1

ĉ
−

k∑
ℓ=1

(
t∗

bc

ℓ ln t∗ℓ − Sbcℓ lnSℓ
)

k∑
ℓ=1

(
t∗

bc

ℓ − Sbcℓ
) = − 1

n

k∑

ℓ=1

nℓ∑

i=1

lnTℓi, (18.25a)

θ̂ = n

/ k∑

ℓ=1

(
t∗

bc

ℓ − Sbcℓ
)
. (18.25b)

CHAN/RUEDA (1992) show that the MLE of c may not exist if Sℓ > 0 for each of the

k systems. A unique solution exists for (18.25a) if Sℓ = 0 for some ℓ and 0 < Tℓi <
max

(
t∗1, . . . , t

∗
k

)
for each ℓ and i.

18.3 Other methods of collecting data

Besides time truncation and failure truncation there are other sampling designs to observe

for a WEIBULL process. LEE et al. (1988) discuss two such approaches:

• same–shape sampling and

• equal–distance sampling.
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The latter approach is a special case of what is called “data form C” by MØLLER (1976).

The same–shape sampling works as follows: The WEIBULL process of interest
{
N(t)

}

with mean function Λ(t) = θ tc is observed at the waiting times
{
T ∗
n

}
of an indepen-

dent WEIBULL process
{
N∗(t)

}
with mean function Λ∗(t) = tc, i.e., with the same

known shape parameter. The data are of the form N =
(
N(T ∗

1 ), . . . , N(T ∗
r )
)′

or

Y ∗ =
(
Y ∗

1 , . . . , Y
∗
r

)′
, where Y ∗

i = N(T ∗
i ) − N(T ∗

i−1) with T ∗
0 = 0. Then Y ∗

1 , . . . , Y
∗
r

are iid with a negative binomial distribution having parameters 1 and (1 + θ)−1, and

N
(
T ∗
r ) =

∑r
k=1 Y

∗
k is also a negative binomial but with parameters r and (1 + θ)−1;

see LEE et al. (1988). The MLE of θ, given c, is

θ̂ =
N
(
T ∗
r

)

r
. (18.26)

In equal–distance sampling
{
N(t)

}
is observed at times 0 < t1 < . . . < tr, where Λ(tℓ) =

ℓΛ(t1) which means that5

tℓ = ℓ1/c t1; ℓ = 1, 2, . . . , r. (18.27a)

Here, the data are N =
(
N(t1), . . . , N(tr)

)′
or Y =

(
Y1, . . . , Yr

)′
, where Yℓ =

N(tℓ) − N(tℓ−1) with t0 = 0. It can be shown that Y1, . . . , Yr are iid with a POISSON

distribution having the parameter Λ(t1) = θ tc1. N(tr) =
∑r

k=1 Yk is POISSON distributed

with parameter rΛ(t1) = r θ tc1. The MLE of θ, given c, is

θ̂ =
N(tr)

tcr
=
N
(
t1 ℓ

1/c
)

r tc1
. (18.27b)

18.4 Estimation based on DUANE’s plot

We assume a system undergoing reliability improvement as described in the beginning of

this chapter. The standard estimator of the MTBF for a system with a constant repair or

failure rate — an HPP system — is T/r, with T denoting the total time the system was

observed and r, r > 0, being the number of failures in (0, T ]. If we calculate successive

MTBF estimators every time Ti (i = 1, 2, . . .) a failure occurs for a system undergoing

reliability improvement testing, we typically see a sequence of mostly increasing numbers:

MTBFi = Ti/i; i = 1, 2, . . . ; (18.28)

i.e., the MTBF increases when we really have an improvement of system reliability.

DUANE’s (1964) and other reliability engineers very often observed that when log MTBFi
is plotted versus log Ti, the points tended to lie on an increasing straight line. This type of

plot is called a DUANE’s plot and the slope β of the fitted line through the points is called

a reliability growth slope. This slope should as a rule of thumb lie between 0.3 and 0.6.

The lower end expresses minimally effective testing.

5 MØLLER (1976) assumes in what he called “data form C,” that the times of observation tℓ are linked by

a function such as (18.27a) or any other type.
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What is the rationale of this procedure? If the failure process is a WEIBULL process with

mean value function (see (4.14a)),

Λ(t) = E(Nt) =

(
t

b

)c
; t ≥ 0; b, c > 0,

we are plotting estimators of

t

Λ(t)
=

t

a tc
=

1

a
t1−c, (18.29a)

where

a = 1
/
bc (18.29b)

versus the time of failure t. This is the same as plotting

1

a
tβ versus t

with the reliability growth slope

β = 1 − c. (18.29c)

On log–log paper this will be a straight line6 with slope β and intercept of − log a (when

t = 1 =⇒ log t = 0). The above mentioned rule of thumb for β :0.3 ≤ β ≤ 0.6 thus

means for the shape parameter c : 0.4 ≤ c ≤ 0.7, i.e., the existence of a decreasing hazard

rate.

Putting forward the regression model for r failures with failure times Ti (i = 1, . . . , r) :

MTBF∗
i = α+ β T ∗

i + ǫ (18.30a)

with

MTBF∗
i = log MTBFi and T ∗

i = log Ti,

we find the OLS estimators of α and β to be

α̂ =

∑
MTBF∗

i

∑(
T ∗
i

)2 −∑
(
MTBF∗

i T
∗
i

)∑
T ∗
i

r
∑(

T ∗
i

)2 −
(∑

T ∗
i

)2 , (18.30b)

β̂ =
r
∑(

MTBF∗
i T

∗
i

)
−∑T ∗

i

∑
MTBFi

r
∑(

T ∗
i

)2 −
(∑

T ∗
i

)2 . (18.30c)

The original WEIBULL parameters will be estimated as

ĉ = 1 − β̂, (18.30d)

b̂ = 10bα/
bβ . (18.30e)

6 A significant departure from a straight line would be evidence for the underlying process not to be

WEIBULL.
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Example 18/1: Parameter estimation using DUANE’s plot

A reliability growth test lasted 150 hours. Eight failures at times 3, 8, 15, 34, 56, 80, 121 and

150 were recorded. The input to Fig. 18/1 and to the OLS estimation formulas are as follows:

Failure No. i 1 2 3 4 5 6 7 8

System age ti 3 8 15 34 56 80 121 150

Succ. MTBFi 3 4 5 8.5 11.2 13.33 17.29 18.75

Fig. 18/1 shows the corresponding DUANE plot. The estimated parameters of the straight line are

as follows:
α̂ = 0.1810, β̂ = 0.4955,

resulting in the WEIBULL parameter estimates:

ĉ = 0.5045, b̂ = 2.2841.

Figure 18/1: DUANE’s plot



19 Estimation of percentiles and

reliability including tolerance

limits

People working with the WEIBULL distribution in practice are generally more interested

in estimating a percentile of given order P or the reliability at a specified mission time x0

than in estimating the parameters a, b and c of this distribution. Of course, most estimation

procedures for these two quantities rest upon estimators of the WEIBULL parameters.

We will first demonstrate how percentiles and reliability and their confidence limits are

related to each other and where emphasis is on tolerance limits and tolerance intervals

(Sect. 19.1). Classical inference approaches to reliability are presented in Sect. 19.2 and to

percentiles in Sect. 19.3. The construction of tolerance intervals is described in Sect. 19.4.

This chapter is completed by BAYESIAN inference approaches to percentiles and reliability

in Sect. 19.5.

19.1 Percentiles, reliability and tolerance intervals

There are two related problems which are among the most important associated with the

life–testing situation.

• First, one may suppose that a required life x0, e.g., a guaranteed life, is specified and

an estimate of the survival proportion or reliability R(x0) = Pr(X > x0) is sought

together with a confidence interval for R(x0).

• For the second and alternative problem a survival probability γ is given1 — as a rule

γ will be a high value near unity — and an estimate of the corresponding lifetime,

the reliable life, is sought which is nothing but the percentile xP , of order P =
1−γ. Besides finding an estimate of xP , one is also interested in having a confidence

interval for xP .

Reliable life and reliability are linked as follows:

Pr(X ≤ x1−γ) = F (x1−γ) = 1 −R(x1−γ) = 1 − γ =⇒ x1−γ = F−1(1 − γ),(19.1a)

Pr(X > x1−γ) = R(x1−γ) = 1 − F (x1−γ) = γ =⇒ x1−γ = R−1(γ). (19.1b)

1 In the ball–bearing industry, the tradition is to specify γ = 0.9. Another choice is γ = 0.5 leading to the

median or half–time period x0.5.
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When X ∼We(a, b, c), these relationships are as follows:

F (x1−γ) = 1 − exp

{
−
(
x1−γ − a

b

)c}
= 1 − γ =⇒ x1−γ = 1 + b [− ln γ]1/c,

R(x1−γ) = exp

{
−
(
x1−γ − a

b

)c}
= γ =⇒ x1−γ = 1 + b [− ln γ]1/c.

Let RL be a lower (1 − α) confidence limit for R(x0), i.e.,

Pr
[
R(x0) ≥ RL

]
= 1 − α, (19.2a)

then FU = 1 −RL will be an upper (1 − α) confidence limit for F (x0):

Pr
[
1 −R(x0) ≤ 1 −RL

]
= Pr

[
F (x0) ≤ FU

]
= 1 − α. (19.2b)

A two–sided interval
[
Lt(x, 1 − α, γ), Ut(x, 1 − α, γ)

]
depending on the sample data x

is said to be a (1 − α) probability tolerance interval for proportion γ if

Pr





Ut(x,1−α,γ)∫

Lt(x,1−α,γ)

f(x |θ) dx ≥ γ





=Pr
{
F [Ut(x, 1−α, γ)|θ]−F [Lt(x, 1−α, γ)|θ] ≥ γ

}
=1−α,

(19.3)
where f(x |θ) and F (x |θ) are the DF and CDF of X, respectively. Thus, with probability

1 − α a two–sided (1 − α, γ) tolerance interval includes at least a central portion γ of the

underlying distribution, and at most a portion 1 − γ of the smallest and largest realizations

ofX is outside of
[
Lt(x, 1−α, γ), Ut(x, 1−α, γ)

]
. Because the limits Lt(x, 1−α, γ) and

Ut(x, 1 − α, γ) depend upon the sampled data, they are random and the tolerance interval

is a variate too.

One–sided tolerance intervals are defined similarly:

• Lo(x, 1 − α, γ) is a lower (1 − α, γ) tolerance limit if

Pr





∞∫

Lo(x,1−α,γ)

f(x |θ) dx ≥ γ





= Pr
{
R[Lo(x, 1 − α, γ) |θ] ≥ γ

}
= 1 − α (19.4a)

or

Pr





Lo(x,1−α,γ)∫

−∞

f(x |θ) dx ≤ 1 − γ





= Pr
{
F [Lo(x, 1 − α, γ) |θ] ≤ 1 − γ

}
= 1 − α.

(19.4b)
Thus, the lower (1 − α, γ) tolerance interval

[
Lo(x, 1 − α, γ),∞

)
includes at least

the portion γ of largest values of X or excludes at most the portion 1− γ of smallest

values of X, both statements having probability 1 − α. Note that a lower (1 − α, γ)
tolerance limit is also an (α, 1 − γ) upper tolerance limit.
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• Uo(x, 1 − α, γ) is an upper (1 − α, γ) tolerance limits if

Pr





Uo(x,1−α,γ)∫

−∞

f(x |θ) dx ≥ γ





= Pr
{
F [Uo(x, 1 − α, γ) |θ] ≥ γ

}
= 1 − α (19.5a)

or

Pr





∞∫

Uo(x,1−α,γ)

f(x |θ) dx ≤ 1 − γ





= Pr
{
R[Uo(x, 1 − α, γ) |θ] ≤ 1 − γ

}
= 1 − α.

(19.5b)

Note that an upper (1 − α, γ) tolerance limit is also an (α, 1 − γ) lower tolerance

limit.

Suppose x1−γ denotes the (1 − γ) percentile such that F (x1−γ) = 1 − γ, then Lo(x, 1 −
α, γ) will be a lower (1−α, γ) tolerance limit if it is a (1−α) level lower confidence limit

for x1−γ , because

Pr
{
Lo(x, 1 − α, γ) ≤ x1−γ

}
= Pr

{
F
[
Lo(x, 1 − α, γ)

]
≤ 1 − γ

}
= 1 − α. (19.6)

Thus one–sided tolerance limits are directly related to one–sided confidence limits on per-

centiles. They are also indirectly related to confidence limits on reliability. For tolerance

limits, the fraction 1 − γ is fixed and the limit Lo(x, 1 − α, γ) is a random variable. For

reliability, the time x0 is fixed and the fraction RL, indicating the lower confidence limit for

R(x0), is a random variable. Thus, the interpretation and application of the two methods

are slightly different and would depend on which factor was kept fixed. However, compu-

tationally there is a direct relationship between the two methods and one can be obtained

from the other. This is helpful because in some cases one procedure may be easier to de-

velop than the other. For example, suppose the tolerance limit problem has been solved, so

that Lo(x, 1 − α, γ) can be calculated for a specified γ and 1 − α. Then for a given set

of sample data, determine what value of γ would have made Lo(x, 1 − α, γ) = x0. That

value of γ then is the lower confidence limit RL for R(x0).

Example 19/1: Confidence limit forR(x0) and tolerance limit of an exponential distribution

For an exponential distribution with DF

f(x | b) =
1

b
exp
{
−x
b

}
; x ≥ 0, b > 0, (19.7a)

the percentile of order γ is

xγ = −b ln(1 − γ). (19.7b)
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The MLE of b is

b̂ =
1

n

n∑

i=1

Xi, (19.7c)

and the MLE of xγ results as

X̂γ = −b̂ ln(1 − γ) = − ln(1 − γ)
1

n

n∑

i=1

Xi. (19.7d)

Because

2

n∑

i=1

Xi

b
∼ χ2(2n), (19.7e)

the lower (1 − α) confidence limit b̂L of b is

b̂L =
2n b̂

χ2
2n,1−α

(19.7f)

leading to the lower (1 − α) confidence limit X̂γ,L of xγ

X̂γ,L = −b̂L ln(1 − γ) = −2n b̂ ln(1 − γ)

χ2
2n,1−α

, (19.7g)

which also is the lower (1 − α, γ) tolerance limit of the exponential distribution:

Lo(x, 1 − α, γ) = X̂γ,L = −2n b̂ ln(1 − γ)

χ2
2n,1−α

. (19.7h)

We now determine what value of γ would have made Lo(x, 1−α, γ) = x0. That value of γ is then

the lower confidence limits R̂L of R(x0). Setting

Lo(x, 1 − α, γ) = −b̂L ln(1 − γ) = x0 (19.7i)

gives

R̂L = 1 − γ = exp

{
−x0

b̂L

}
= exp

{
−
x0 χ

2
2n,1−α

2n b̂

}
. (19.7j)

19.2 Classical methods of estimating reliability R(x)

Most of the classical approaches to reliability estimation center around ML, but there are

other methods too. We mention the following:

• the approach of BASU (1964) to derive the minimum variance unbiased estimator of

R(x) using the theorems of RAO–BLACKWELL and LEHMANN–SCHEFFÉ when the

shape parameter c is assumed known,

• the procedure of JOHNS/LIEBERMAN (1966) and HERBACH (1970) to derive exact

asymptotically efficient confidence bounds for R(x),

• the linear estimation procedure (least squares method) of ENGELHARDT/BAIN

(1977) and ERTO/GUIDA (1985b),

• the simplified linear estimators proposed by BAIN (1978, Sect. 4.2), BAIN/

ENGELHARDT (1991a, Sect. 4.2) or KINGSTON/PATEL (1981).
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A general drawback to these methods is that they rely on a lot of tables and that they are

usually worse than the ML based estimators. Besides, the ML procedure to estimate R(x)
has been extensively elaborated. So we will present ML–oriented procedures (Sect. 19.2.2),

but we start with an easily applicable non–parametric estimator which fits all continuous

distributions (Sect. 19.2.1).

19.2.1 Non-parametric approaches2

A non–parametric or distribution–free estimator of the reliability R(x) at age x is the sam-

ple fraction that survives an age x, n being the sample size. Let Z be the number of items

failing beyond age x, then the estimator is

R̂(x) =
Z

n
. (19.8a)

R̂(x) is unbiased with variance

Var
[
R̂(x)

]
=
R(x)

[
1 −R(x)

]

n
, (19.8b)

and Z is binomial with parameters n and P = R(x).

The entire sample reliability function is obtained by estimating R(x) for all x–values ob-

served. The sample reliability function R̂(x) is a decreasing staircase function which de-

creases by 1
/
n at each data value and is constant between data values. So it needs to be

calculated only at each data value. Let x1:n ≤ x2:n ≤ . . . ≤ xn:n denote the ordered

observations; then,

R̂(x) =





1 for x < x1:n,
n− i

n
for xi:n ≤ x < xi−1:n; i = 1, . . . , n− 1,

0 for x ≥ xn:n.





(19.9)

Binomial limits apply to reliability P = R(x) at age x. Based on a familiar relationship

between the CDF of the binomial distribution and the CDF of the F–distribution,3 we have

the following two–sided (1 − α) confidence interval for R(x) when xi:n ≤ x < xi+1:n:

n− i

(n− i) + (i+ 1)F2(i+1),2(n−i),1−α/2
≤ R(x) ≤

(n − i+ 1)F2(n−i+1),2i,1−α/2
i+ (n− i+ 1)F2(n−i+1),2i,1−α/2

.

(19.10a)
For R̂(x) = 1, i.e., for i = 0, we have

n
√
α/2 ≤ R(x) ≤ 1, (19.10b)

2 Suggested reading for this section: DODSON (1994, Chapter 3), KAO (1959), NELSON (1982, Sec-

tion 6.7).

3 There is also a relationship between the binomial distribution and the beta distribution which may be

used to construct confidence intervals for R(x); see KAO (1959).
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and when R̂(x) = 0, i.e., for i = n, we have

0 ≤ R(x) ≤ 1 − n
√
α/2. (19.10c)

One–sided (1 − α) confidence intervals are

R(x) ≥ n− i

(n− i) + (i+ 1)F2(i+1),2(n−i),1−α
, 1 ≤ i ≤ n− 1,

R(x) ≥ n
√
α, i = 0,





(19.10d)

and

R(x) ≤
(n− i+ 1)F2(n−i+1),2i,1−α

i+ (n− i+ 1)F2(n−i+1),2i,1−α
, 1 ≤ i ≤ n− 1,

R(x) ≤ 1 − n
√
α, i = n.





(19.10e)

For i and n− i large, a normal approximation may be used.

R̂(x) − u1−α/2

√
R̂(x)

[
1 − R̂(x)

]

n
≤ R(x) ≤ R̂(x) + u1−α/2

√
R̂(x)

[
1 − R̂(x)

]

n
.

(19.10f)

Fig. 19/1 shows the application of (19.10d) to the n = 20 observations of dataset #1,

generated from We(0, 100, 2.5). This figure gives the true reliability function R(x) =
exp

{
− (x/100)2.5

}
together with the staircase function R̂(x) given by (19.9) and the

lower confidence limits of a one–sided 95% confidence interval.

Figure 19/1: Distribution-free estimate of R(x) for dataset #1
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The distribution–free approach has two drawbacks:

1. It gives distinct estimates only at those values of X which have been realized in the

sample.

2. Because the procedure has to be valid for all continuous distributions, the confidence

interval tends to be too wide compared with what would be expected if a method

tailored for the distribution at hand were used.

19.2.2 Maximum likelihood approaches4

We will first present results for the two–parameter WEIBULL distribution and conclude this

section by some hints to the three–parameter WEIBULL distribution.

When we insert the MLEs b̂ and ĉ, as given in Chapter 11, into the reliability function:

R̂(x) = exp

{
−
(
x

b̂

)bc}
, (19.11)

we will get the MLE of R(x) because the MLEs are functional invariant; i.e., when θ̂ is the

MLE of θ, g(θ̂) will also be the MLE of g(θ), provided g(·) is strictly monotone. Although

the MLEs b̂ and ĉ are computationally tedious to calculate, it has been shown by several

authors that they are usually better than more convenient estimators of b and c. Thus the

MLE of R(x) in (19.11) might be expected to have good properties.

In Sect. 11.3.1.2 it has been shown for the complete–sample case and in Sect. 11.6.1.2 for

the singly censored–sample case that there exist exact distributions for b̂ and ĉ based on

suitably chosen pivots to construct confidence intervals for b and c and to test hypotheses.

A pivotal quantity for R̂(x) is not available, but it can be shown that the distribution of

R̂(x) depends only on R(x) and not on x, b and c individually. This follows since

− ln R̂(x) = (x
/
b̂ )bc

=

{
(x
/
b)c

(̂b/b)c

}bc/c

=

{
− lnR(x)

(̂b
/
b)c

}bc/c
, (19.12a)

which is a function only of R(x) and the pivots given in Sect. 11.3.1.2. Another form,

useful in tolerance and percentile problems is

− ln
{
− ln R̂(x)

}
=
ĉ

c

[
ln

(
b̂

b

)c
− ln

{
− lnR(x)

}
]
. (19.12b)

4 Suggested reading for this section: ACHCAR/FOGO (1997), BAIN (1978), BAIN/ENGELHARDT (1981,

1986, 1991a), BILLMAN/ANTLE/BAIN (1972), DODSON (1994), HENTZSCHEL (1989), KLEYLE

(1978), MOORE/HARTER/ANTOON (1981), SINHA (1986b), SRINIVASAN/WHARTON (1975),

THOMAN/BAIN/ANTLE (1970).
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(19.12a) makes it feasible to study the distribution of R̂(x) empirically as has been done by

THOMAN et al. (1970) for complete samples and by BILLMAN et al. (1972) for censored

samples.

The properties of R̂(x) as a point estimator are as follows:

• The bias is quite small, especially for high values of R(x) which normally are of

interest, and it does not seem worthwhile to eliminate the bias.

• The variance is approximately equal to the CRAMÉR–RAO lower bound (CRLB) for

a regular unbiased estimator of R(x) (see (19.13a–c)) especially for the reliability

values of interest.

Thus the MLE R̂(x) is a very good point estimator of R(x).

Exact confidence limits for R(x) based on R̂(x) have been determined using Monte Carlo

methods by THOMAN et al. (1970) for a complete sample and by BILLMAN et al. (1972)

for censored samples when the censoring is 25% and 50%. Tables 19/1 and 19/2 give the

95% lower confidence limits for R(x) without and with censoring.

Example 19/2: Exact confidence limits forR(x) using dataset #1

The MLEs from dataset #1 are (see Example 11/4):

b̂ = 99.2079 and ĉ = 2.5957

leading to

R̂(x) = exp

{
−
( x

99.2079

)2.5957
}

whereas the true reliability function in this case is

R(x) = exp

{
−
( x

100

)2.5
}
.

Fig. 19/2 shows R̂(x) andR(x) together with the lower 95% confidence limit as given in Tab. 19/1.

The standard procedure for obtaining approximate confidence intervals for R(x) when n
is large is to assume that R̂(x) is normally distributed with meanR(x) and variance Var(R)
equal to the CRLB, which is found by evaluating

AVar(R) = AVar(̂b )

(
∂R(x)

∂b

)2

+ 2 ACov(̂b, ĉ )
∂R(x)

∂b

∂R(x)

∂c
+ AVar(ĉ )

(
∂R(x)

∂c

)2

.

(19.13a)
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Figure 19/2: R̂(x) and R(x) for dataset #1 with lower 95% confidence limit R̂L(x)

Table 19/1: 95% lower confidence limit for R(x) — No censoring

R̂(x)
n

HHHHHHHHHHHHHHHH

8 10 12 15 18 20 25 30 40 50 75 100

.50 − − .308 .329 .343 .353 .356 .379 .394 .404 .420 .432

.52 − .308 .325 .346 .361 .371 .384 .398 .413 .423 .439 .452

.54 .300 .323 .341 .363 .378 .389 .402 .416 .432 .442 .459 .471

.56 .316 .339 .358 .381 .396 .407 .421 .435 .451 .461 .478 .491

.58 .331 .355 .376 .398 .414 .425 .440 .454 .471 .481 .498 .510

.60 .347 .372 .393 .416 .432 .443 .459 .473 .490 .500 .517 .530

.62 .363 .389 .411 .434 .450 .462 .478 .493 .510 .519 .537 .551

.64 .380 .406 .428 .452 .469 .480 .497 .512 .530 .539 .558 .571

.66 .396 .424 .445 .471 .488 .499 .517 .532 .550 .559 .579 .592

.68 .414 .443 .464 .490 .507 .519 .536 .552 .570 .580 .599 .612

.70 .432 .461 .483 .510 .527 .538 .557 .573 .591 .601 .620 .633

.72 .450 .481 .502 .530 .547 .559 .577 .594 .612 .622 .642 .654

.74 .469 .500 .523 .550 .568 .580 .598 .616 .633 .644 .663 .675

.76 .489 .520 .544 .572 .590 .602 .620 .638 .654 .666 .684 .697

.78 .509 .542 .567 .594 .612 .625 .643 .661 .676 .688 .707 .719

.80 .529 .564 .590 .617 .636 .648 .666 .683 .700 .711 .729 .741

.82 .552 .587 .614 .641 .660 .672 .689 .706 .724 .734 .752 .763

.84 .576 .611 .638 .667 .685 .697 .714 .730 .748 .758 .775 .786

.86 .602 .638 .664 .693 .710 .723 .740 .755 .772 .783 .799 .809

.88 .629 .666 .692 .721 .737 .750 .767 .781 .798 .808 .823 .833

.90 .661 .696 .722 .751 .766 .780 .795 .809 .824 .834 .848 .857

.92 .695 .729 .755 .782 .798 .811 .825 .838 .853 .862 .874 .882

.94 .735 .767 .792 .817 .832 .845 .858 .869 .882 .890 .901 .908

.96 .782 .812 .835 .857 .872 .882 .893 .903 .915 .921 .930 .935

.98 .844 .869 .890 .907 .918 .926 .935 .943 .950 .955 .962 .965

Source: THOMAN/BAIN/ANTLE (1970, p. 368) — Reprinted with permission from Technometrics. Copyright

1970 by the American Statistical Association. All rights reserved.
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Table 19/2: 95% lower confidence limit for R(x) — Censoring

25% Censoring 50% Censoring

R̂(x)
n

HHHHHHHHHHHHHHHH

40 60 80 100 120 40 60 80 100 120

.70 .594 .626 .624 .625 .643 .600 .623 .628 .639 .646

.72 .613 .644 .643 .647 .662 .614 .641 .647 .659 .664

.74 .632 .662 .664 .669 .681 .632 .660 .667 .678 .683

.76 .651 .680 .684 .691 .701 .651 .679 .686 .698 .702

.78 .671 .699 .705 .713 .722 .671 .699 .707 .719 .722

.80 .692 .719 .726 .736 .743 .691 .719 .727 .741 .742

.82 .714 .740 .748 .759 .764 .712 .740 .749 .761 .762

.84 .737 .761 .771 .782 .786 .734 .761 .771 .782 .784

.86 .760 .784 .795 .806 .809 .757 .784 .793 .805 .806

.88 .785 .808 .819 .830 .832 .781 .807 .817 .827 .829

.90 .811 .833 .844 .854 .856 .807 .831 .841 .851 .852

.92 .839 .860 .870 .879 .881 .834 .857 .866 .876 .877

.94 .869 .888 .897 .904 .906 .863 .883 .892 .902 .903

.95 .885 .903 .911 .917 .920 .878 .879 .906 .915 .917

.96 .902 .919 .926 .932 .933 .894 .913 .920 .929 .931

.97 .920 .935 .941 .946 .948 .913 .929 .936 .946 .947

.98 .940 .953 .957 .962 .963 .933 .947 .952 .960 .961

.99 .964 .972 .976 .978 .979 .957 .968 .971 .975 .977

.9925 .970 .978 .981 .983 .984 .965 .974 .977 .980 .981

.995 .978 .984 .986 .988 .988 .973 .980 .983 .985 .986

.996 .981 .986 .988 .990 .990 .976 .983 .985 .988 .989

.997 .985 .989 .991 .992 .992 .980 .986 .988 .990 .991

.998 .988 .992 .993 .994 .995 .985 .990 .992 .993 .994

.9985 .991 .994 .995 .996 .996 .987 .992 .993 .994 .995

.999 .993 .995 .996 .997 .997 .990 .994 .995 .996 .996

Source: BILLMAN/ANTLE/BAIN (1972, p. 837) — Reprinted with permission from Technometrics. Copyright

1972 by the American Statistical Association. All rights reserved.

The asymptotic variances and covariance have to be taken from (11.17) when the sample is

complete and from the inverse of (11.50a) when the sample is singly censored on the right.

We thus get

• for the complete–sample case

AVaru(R) =
R2 (lnR)2

n

{
1.1087 − 0.5140 ln(− lnR) + 0.6079 [ln(− lnR)]2

}
,

(19.13b)

• and for the censored–sample case

AVarc(R) =
R2 (lnR)2

n

{
c11 − 2 c12 ln(− lnR) + c22 [ln(− lnR)]2

}
, (19.13c)
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where the factors c11, c12 and c22 depend on the amount of censoring (see Tab. 19/3)

and r is the censoring number.

Table 19/3: Coefficients of the asymptotic variance of R̂ for uncensored samples

r/n c11 c22 c12
1.0 1.108665 0.607927 0.257022
0.9 1.151684 0.767044 0.176413
0.8 1.252617 0.928191 0.049288
0.7 1.447258 1.122447 −0.144825
0.6 1.811959 1.372781 −0.446603

0.5 2.510236 1.716182 −0.935766
0.4 3.933022 2.224740 −1.785525
0.3 7.190427 3.065515 −3.438601
0.2 16.478771 4.738764 −7.375310
0.1 60.517110 9.744662 −22.187207

Source: BAIN (1978, p. 218) — Reprinted with permission from Statistical Analysis of Reliability

and Life–Testing Models. Copyright 1978 by Marcel Dekker, Inc. All rights reserved.

The true reliability R could be replaced by R̂ in the expressions (19.13b,c) for the asymp-

totic variances, and an approximate lower (1 − α) confidence limit would be

R̂L,1 = R̂− u1−α
[
AVari(R̂)

]1/2
; i = u, c. (19.14a)

R̂L,1 is usually too large. But, as THOMAN et al. (1970) report, this direct approximation

can be improved considerably by using an iterative procedure. This procedure calls for

replacing AVari(R̂) by AVari(R̂L,1) to obtain R̂L,2. Then R̂L,3 is obtained in the same

way, replacing AVari(R̂) by AVar(R̂L,2), etc. Thus we obtain the sequence

R̂L,j = R̂− u1−α
[
AVari(R̂L,j−1

]1/2
; i = u, c; j = 2, 3, . . . (19.14b)

THOMAN et al. (1970) observed that after four or five iterations the changes in R̂L,j were

less than 0.00005, and the values of R̂L,j were very close to the values given in Tab. 19/1

when the sample is uncensored. The maximum difference between the values in Tab. 19/1

and the iterated lower limits was 0.005 for n ≥ 40. We thus only need better approxima-

tions to the confidence limits for smaller n when there are no tables of the true confidence

limits available. The following papers contain such approximations:

• ACHCAR/FOGO (1997) suggested the re–parametrization

T (R) =

[(
R

1 −R

)λ
− 1

]/
λ

to improve the normality of the likelihood for R.

• BAIN/ENGELHARDT (1981, 1986) introduced approximations of the pivotal distri-

butions.

• KLEYLE (1978) modified the F–approximation for obtaining approximate lower

confidence limits on WEIBULL percentiles, as had been proposed by LAWLESS

(1975).
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• MOORE et al. (1981) found Monte Carlo generated estimates of AVar(R̂) for smaller

sample sizes before applying a normal approximation to RL.

• SRINIVASAN/WHARTON (1975) constructed confidence bounds on the entire CDF

using KOLMOGOROV–SMIRNOV type statistics.

When we have a three–parameter WEIBULL distribution, the MLE of R(x) is given by

R̂(x) = exp

{
−
(
x− â

b̂

)bc}
, (19.15a)

where â, b̂ and ĉ are the MLEs of a, b and c as described in Sect. 11.3.2.2. An approximate

lower (1 − α) confidence limit, based on the normal distribution, is given by

R̂L = R̂− u1−α
[
AVar(R̂)

]1/2
, (19.15b)

where

AVar(R̂) = AVar(â)

(
∂R(x)

∂a

)2

+ AVar( b̂ )

(
∂R(x)

∂b

)2

+ AVar(ĉ )

(
∂R(x)

∂c

)2

+

2 ACov(â, b̂ )
∂R(x)

∂a

∂R(x)

∂b
+ 2 ACov(â, ĉ )

∂R(x)

∂a

∂R(x)

∂c
+

2 ACov(̂b, ĉ )
∂R(x)

∂b

∂R(x)

∂c
. (19.15c)

The asymptotic variances and covariances can be taken from (11.12a).

19.3 Classical methods of estimating percentiles xP

We will proceed in this section as has been done in Sect. 19.2; i.e., we first give a non–

parametric estimator (Sect. 19.3.1) and then discuss ML based techniques (Sect. 19.3.2).

The following papers rely on other estimation approaches:

• DODSON (1994) gives a normal approximation to the confidence limits of percentiles

of the Log–WEIBULL distribution which afterwards is transformed to WEIBULL.

• Linear estimation is applied to find estimators and confidence limits of Log–

WEIBULL percentiles by HASSANEIN et al. (1984), and MANN (1969b, 1969c,

1970a).

• LAWLESS (1974, 1975) relies on the pivotal distribution of the MLEs of the Log–

WEIBULL distribution.

• SCHNEIDER/WEISSFELD (1989) improve the t–like statistic for Log–WEIBULL per-

centiles.

• WHITE (1966) gives confidence intervals for Log–WEIBULL percentiles based on

the method of moments.
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19.3.1 A non-parametric approach

Suppose the ordered observations from a continuous distributions are X1:n ≤ X2:n ≤
. . . ≤ Xn:n. Also, suppose one wishes to estimate the percentile of order P of that distri-

bution where i ≤ P (n + 1) ≤ i+ 1 for some i = 1, . . . , n− 1. Then a point estimator of

xP is

X̂P =
{
1 − [(n+ 1)P − i]

}
Xi:n +

{
(n+ 1)P − i

}
Xi+1:n, (19.16)

which is the weighted average of the two ordered observations Xi:n andXi+1:n. If P = 0.5
and n is odd, the estimator is taken to beX(n+1)/2:n. An upper one–sided (1−α) confidence

interval for xP is

xP ≥ Xk:n, (19.17a)

where k is chosen such that
k−1∑

i=0

(
n

i

)
P i (1 − P )n−i ≤ α <

k∑

i=0

(
n

i

)
P i (1 − P )n−i. (19.17b)

Similarly, a lower one–sided (1 − α) confidence interval is

xP ≤ Xm:n (19.18a)

with m so that
n∑

i=m

(
n

i

)
P i (1 − P )n−i ≤ α <

n∑

i=m−1

(
n

i

)
P i (1 − P )n−i. (19.18b)

A two–sided (1 − α) confidence interval is

Xk:n ≤ xP ≤ Xm:n,

where k and m follow from (19.17b) and (19.18b) with α replaced by α/2. For large n,

approximate k and/or m follow from a normal approximation of the binomial distribution

with continuity correction.

19.3.2 Maximum likelihood approaches5

We start estimating xP when the shape parameter c is assumed known, then we turn to the

two–parameter WEIBULL distribution with both parameters assumed unknown and finally

to the three–parameter case.

For c known the usual MLE of the scale parameter b is

b̂ =





r∑
i=1

Xc
i:n + (n − r)Xc

r:n

r





1/c

, (19.19a)

5 Suggested reading for this section: BAIN (1978), BAIN/ENGELHARDT (1991a), HEO/BOES/SALAS

(2001), HIROSE (1991), MCCOOL (1969, 1970a, 1970b, 1974a), MEEKER (1986), MEEKER/NELSON

(1976), NELSON (1985), SCHAFER/ANGUS (1979).
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(see (11.46a)) where r is the number of uncensored observations. If there are no failures,

then we have r = 0 and b̂ = ∞, indicating that the true b is likely to be much greater than

the total running time of the sample.6 According to NELSON (1985) the lower limit b̂L of

a one–sided (1 − α) confidence interval b ≥ b̂L is given by

b̂L = b̂

{
2 r

χ2
2(r+1),1−α

}1/c

for r ≥ 1, (19.19b)

or

b̂L = b̂





2
n∑
i=1

Xc
i:n

χ2
2(r+2),1−α





1/c

for r ≥ 0. (19.19c)

Note that (19.19c) also applies for r = 0, but (19.19b) is limited to r ≥ 1. Inserting b̂ as

given by (19.19a) into xP = b
[
− ln(1 − P )

]1/c
gives the usual MLE of xP :

x̂P = b̂
[
− ln(1 − P )

]1/c
. (19.20a)

The lower limit x̂P,L of a one–sided (1 − α) confidence interval xP ≥ x̂P,L is

x̂P,L = b̂L
[
− ln(1 − P )

]1/c
. (19.20b)

We will give exact confidence limits for xP when X ∼ We(0, b, c) with both b and c
unknown in the context of estimating tolerance limits (see Sect. 19.4.1). Here we will

provide two approximate large–sample confidence limits for xP .

The first method, proposed by MEEKER/NELSON (1976), starts with the MLE of the Log–

WEIBULL percentiles which are corrected to approximate normality by applying a variance

factor V . This factor depends on the order P of the percentile and on the censoring time

(type–II censoring) and can be read from a nomogram. This nomogram includes a curve

pertaining to the case of no–censoring, i.e., a censoring of infinity. The limits of the ap-

proximate two–sided (1 − α) confidence interval for the WEIBULL percentile of order P
are

x̂P,L = b̂
[
− ln(1 − p)

]1/bc/
Ψ, (19.21a)

x̂P,U = b̂
[
− ln(1 − p)

]1/bc
Ψ, (19.21b)

where b̂ and ĉ are the MLEs and

Ψ = exp

{
u1−α/2
ĉ

(
V

n

)1/2
}
. (19.21c)

A one–sided limit is obtained by replacing the percentile u1−α/2 of the standard normal

distribution by u1−α.

6 When r = 0, some people use a 50% confidence limit resulting from (19.19c) as an estimator. This

estimator tends to be low (= conservative).
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A second method, proposed by NELSON (1982, p. 232), which is valid only for uncen-

sored samples, starts with a simple estimator of the Log–WEIBULL percentile xP and its

approximate confidence limits which afterwards are transformed to limits of the WEIBULL

percentile xP . The estimator of yP is

ŷP = â∗ + zP b̂∗ (19.22a)

with

zP = ln[− ln(1 − P )] −
{
P–th percentile of the reduced

Log–WEIBULL distribution,
(19.22b)

â∗ = Y + 0.5772 b̂∗ − simple estimator of a∗ = ln b, (19.22c)

b̂∗ = 0.7797S − simple estimator of b∗ = 1/c, (19.22d)

Y =
1

n

n∑

i=1

Yi − sample mean of the Log–WEIBULL data Yi = lnXi,

(19.22e)

S2 =
1

n− 1

n∑

i=1

(
Yi − Y

)2 − sample variance of the Log–WEIBULL data. (19.22f)

Two–sided approximate (1 − α) confidence limits for yP are

ŷP,L = ŷP − u1−α/2 b̂∗
[(

1.1680 + 1.1000 z2
P − 0.1913 zP

)/
n
]1/2

, (19.23a)

ŷP,U = ŷP + u1−α/2 b̂∗
[(

1.1680 + 1.1000 z2
P − 0.1913 zP

)/
n
]1/2

, (19.23b)

leading to the (1 − α) confidence limits for the WEIBULL percentile xP :

x̂P,L = exp
(
ŷP,L

)
, x̂P,U = exp

(
ŷP,U

)
. (19.24)

Example 19/3: Approximate confidence intervals for x0.1

For the n = 20 observations of dataset #1 we have found the MLEs (see Example 11/4):

b̂ = 99.2079 and ĉ = 2.5957.

The point estimate of x0.1 is

x̂0.1 = b̂
[
− ln 0.9

]1/bc
= 41.6899.

The nomogram in MEEKER/NELSON (1976) gives V = 5, so the two–sided 95% confidence inter-

val for x0.1 according to (19.21a–c) is

41.6899
/

exp

{
1.96

2.5958

√
5

20

}
≤ x0.1 ≤ 41.6899 exp

{
1.96

2.5958

√
5

20

}

28.5801 ≤ x0.1 ≤ 60.8131.

The second method of NELSON (1982) first gives:

ŷ0.1 = 3.7306, ŷ0.1,L = 3.3263, ŷ0.1,U = 4.1342.
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The resulting confidence interval for the WEIBULL percentile x0.1 according to (19.24) is

27.8354 ≤ x0.1 ≤ 62.4400,

which is wider than that of the first approximation.

Approximate confidence limits for

xP = a+ b
[
− ln(1 − P )

]1/c
(19.25)

of the three–parameter WEIBULL distribution are given by

x̂P,L = x̂P − u1−α/2
√

AVar
(
x̂P
)
,

x̂P,U = x̂P + u1−α/2
√

AVar
(
x̂P
)
.





(19.26a)

x̂P is found by substituting a, b and c in (19.25) by their MLEs (see Sections 11.3.2.2 and

11.3.2.3). The asymptotic variance of x̂P is

AVar
(
x̂P
)

=

(
∂xP
∂a

)2

AVar
(
â
)

+

(
∂xP
∂b

)2

AVar
(
b̂
)

+

(
∂xP
∂c

)2

AVar
(
ĉ
)

+

2
∂xP
∂a

∂xP
∂b

ACov
(
â, b̂
)

+ 2
∂xP
∂a

∂xP
∂c

ACov
(
â, ĉ
)

+

2
∂xP
∂b

∂xP
∂c

ACov
(
b̂, ĉ
)
.





(19.26b)

The asymptotic variances and covariances in (19.26b) can be taken from (11.12a) in con-

junction with (11.12b–h) yielding

AVar
(
x̂P
)

=
b2

nD

{
B

(c−1)2
− 2β1/c

c (c−1)
(H+F lnβ) +

β1/c

c2
[
A−2G ln β+(lnβ)2

]
}

(19.26c)

with β = − ln(1 − P ) and A, B, D, F, G, H defined in (11.12b–h). Of course, b and c
have to be replaced by their MLEs b̂ and ĉ before applying (19.26c).

19.4 Tolerance intervals

We will first give distribution–free tolerance intervals (Sect. 19.4.1) before showing how to

obtain exact and small-sample tolerance intervals for the WEIBULL distribution based on

the MLEs of the distribution parameters (Sect. 19.4.2). The tolerance limits will also be the

confidence limits of the percentiles as shown in (19.6).

19.4.1 A non-parametric approach

Distribution–free tolerance intervals are based on the extreme sample values, provided X
is continuous. The one–sided tolerance intervals

[
X1:n,∞) and (−∞,Xn:n

]
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each include at least the portion γ of the distribution of X with probability 1 − α, where

α, γ and n are linked by
γn = α. (19.27)

When two of the three quantities are given, (19.27) may be easily solved for the third

quantity.

The two–sided tolerance interval

[
X1:n,Xn:n

]

includes at least the portion γ of the distribution of X with probability 1 − α, where α, γ
and n are linked by

n γn−1 − (n− 1) γn = α. (19.28)

When n and γ are given, (19.28) directly gives α. For the other two possibilities (α and γ
given or α and n given), (19.28) must be solved iteratively for the third quantity.

19.4.2 Maximum likelihood approaches7

The case of an uncensored sample is considered first. Starting from (19.12b) we introduce

the generalized quantity

UR =
√
n
ĉ

c

[
ln

(
b̂

b

)c
− ln

{
− lnR(x)

}
]

+
√
n ln

{
− lnR(x)

}

=
√
n
[
− ln

{
− R̂(x)

}
+ ln

{
− lnR(x)

}]
. (19.29)

The distribution of UR depends only on R := R(x) and has been tabulated in BAIN (1978,

pp. 228 ff.). It is interesting to note that for the tolerance limit problem, UR may be ex-

pressed in the following form (letting R = γ in this case):

Uγ = ĉ
√
n ln

[
x̂1−γ
x1−γ

]
, (19.30)

providing a very convenient pivotal quantity for determining confidence limits for x1−γ .

As defined in (19.4a) a lower (1 − α) probability tolerance limit for proportion γ is a

function L(x) := Lo(x, 1 − α, γ) of the sample such that

Pr





∞∫

L(x)

f(x | θ) dx ≥ γ





= 1 − α.

It has been shown in (19.6) that Lo(x, 1−α, γ) may also be interpreted as a lower (1−α)
confidence limit for the (1 − γ) percentile x1−γ of the distribution. Using (19.30) a lower

(1 − α, γ) tolerance limit for the WEIBULL distribution based on the MLEs b̂ and ĉ is

7 Suggested reading for this section: BAIN (1978), BAIN/ENGELHARDT (1981, 1986, 1991a), EN-

GELHARDT/BAIN (1977), ISAIC–MANIU/VODA (1980), LAWLESS (1975), MANN (1977, 1978a),

MANN/FERTIG (1973).
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given by

Lo(x, 1 − α, γ) = x̂1−γ exp

{−u1−α(γ)
ĉ
√
n

}

= b̂
(
− ln γ

)1/bc
exp

{−u1−α(γ)
ĉ
√
n

}
, (19.31a)

where u1−α(γ) is tabulated in Tab. 19/4a for 1−α = 0.95 and in Tab. 19/4b for 1−α = 0.05
with each table covering several values of γ. An upper (1 − α, γ) tolerance limit is given

by

Uo(x, 1 − α, γ) = Lo(x, α, 1 − γ). (19.31b)

The one–sided tolerance limits may be combined to obtain a conservative two–sided toler-

ance interval. A two–sided (1−α) probability tolerance interval for proportion γ is given

by [
Lo(x, 1 − α1, γ1), Uo(x, 1 − α2, γ2)

]
, (19.32)

where γ = γ1 + γ2 − 1 and 1−α = 1−α1 −α2. Exact two–sided intervals would require

the generation of additional tables. As BAIN (1978, p. 244) has stated, the above method

provides a good solution which is nearly exact.

As mentioned in Sect. 19.1 there is a direct connection between tolerance limits and

confidence limits on reliability. Consequently, Tables 19/4a and 19/4b may be used to

compute confidence limits on R(x). For specified x, 1 − α and R̂(x), the lower (1 − α)
level confidence limit RL is the value of γ which satisfies

x = Lo(x, 1 − α, γ) = b̂
(
− ln γ

)1/bc
exp

{−u1−α(γ)

ĉ
√
n

}
. (19.33a)

Expressing this in terms of R̂(x) gives RL as the value of γ for which

−
√
n ln

[
− ln R̂(x)

]
= −

√
n ln(− ln γ) + u1−α(γ). (19.33b)

This requires trying a few values of γ until the right–hand side of (19.33b) becomes equal

to the left–hand side, which is fixed.

Of course, the tables which allow a direct reading of the confidence limits on R(x) — see

Tables 19/1 and 19/2 — can be used inversely to obtain tolerance limits. This is of value

in the censored–sample case since there are no tables provided for the direct calculation

of tolerance limits in that case. To determine Lo(x, 1 − α, γ), set RL = γ in the body of

Tab. 19/1 (uncensored–sample case) or Tab. 19/2 (censored–sample case) and then search

for the value of R(x), say Rc, from the left–hand side, which would have resulted in RL =
γ for that n and 1 − α. Then set R̂c = exp

{
− (x

/
b̂ )1/bc, and solve for

x = Lo(x, 1 − α, γ) = b̂
(
− ln R̂c

)1/bc
. (19.34)



19.4 Tolerance intervals 603

Table 19/4a: Percentage points u0.95(γ) for lower tolerance limits and for confidence

limits of percentiles

n
γ

HHHHHHHHHHHHHHHHHHH

0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.98

10 2.579 3.090 3.792 4.257 4.842 5.613 6.712 8.468 10.059
11 2.526 3.016 3.685 4.130 4.690 5.433 6.489 8.191 9.741
12 2.482 2.956 3.603 4.033 4.573 5.293 6.314 7.949 9.412
13 2.446 2.903 3.534 3.952 4.478 5.174 6.168 7.744 9.111
14 2.415 2.863 3.473 3.880 4.393 5.074 6.038 7.565 8.853

15 2.388 2.824 3.424 3.823 4.326 4.992 5.932 7.404 8.594
16 2.362 2.789 3.380 3.772 4.264 4.916 5.835 7.267 8.388
18 2.323 2.733 3.305 3.683 4.162 4.794 5.679 7.038 8.015
20 2.292 2.689 3.247 3.634 4.079 4.691 5.548 6.846 7.724
22 2.263 2.656 3.194 3.556 4.011 4.606 5.444 6.688 7.463

24 2.241 2.622 3.150 3.508 3.949 4.537 5.353 6.554 7.246
26 2.221 2.597 3.116 3.463 3.901 4.472 5.271 6.444 7.078
28 2.204 2.568 3.080 3.424 3.853 4.419 5.205 6.343 6.911
30 2.188 2.548 3.051 3.391 3.812 4.371 5.141 6.254 6.781
32 2.175 2.530 3.027 3.361 3.779 4.328 5.089 6.176 6.641

34 2.160 2.509 3.003 3.330 3.744 4.286 5.036 6.110 6.554
36 2.151 2.498 2.982 3.307 3.714 4.248 4.990 6.041 6.438
38 2.136 2.480 2.959 3.280 3.681 4.217 4.948 5.984 6.362
40 2.128 2.468 2.941 3.258 3.662 4.187 4.912 5.931 6.263
42 2.122 2.451 2.923 3.235 3.636 4.154 4.871 5.883 6.196

44 2.113 2.443 2.906 3.218 3.616 4.133 4.840 5.836 6.123
46 2.106 2.430 2.890 3.202 3.588 4.104 4.806 4.798 6.064
48 2.096 2.420 2.876 3.181 3.568 4.074 4.778 5.756 6.021
50 2.089 2.406 2.864 3.161 3.550 4.052 4.749 5.719 5.968
52 2.080 2.403 2.849 3.152 3.534 4.031 4.721 5.688 5.921

54 2.076 2.390 2.837 3.139 3.513 4.013 4.700 5.650 5.857
56 2.069 2.382 2.822 3.121 3.495 3.989 4.674 5.626 5.837
58 2.068 2.371 3.811 3.108 3.481 3.976 4.650 5.596 5.781
60 2.056 2.365 2.805 3.099 3.471 3.958 4.637 5.560 6.725
64 2.052 2.354 2.777 3.073 3.440 3.920 4.589 5.518 5.688

68 2.041 2.336 2.763 3.044 3.414 3.893 4.549 5.474 5.641
72 2.032 2.327 2.741 3.030 3.386 3.861 4.520 5.429 5.575
76 2.027 2.313 2.729 3.009 3.366 3.836 4.486 5.395 5.536
80 2.017 2.301 2.711 2.988 3.346 3.811 4.460 5.356 5.483
∞ 1.932 2.163 2.487 2.700 2.965 3.311 3.803 4.653 5.786

Source: BAIN (1978, p. 236) — Reprinted with permission from Statistical Analysis of Reliability and Life–

Testing Models. Copyright 1978 by Marcel Dekker, Inc. All rights reserved.
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Table 19/4b: Percentage points u0.05(γ) for lower tolerance limits and for confidence

limits of percentiles

n
γ

bbbbbbbbbbbbbbbb

0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

10 −3.725 −3.317 −2.966 −2.741 −2.571 −2.436 −2.322 −2.145 −2.022
11 −3.569 −3.180 −2.852 −2.646 −2.488 −2.366 −2.263 −2.107 −2.002
12 −3.443 −3.075 −2.764 −2.569 −2.422 −2.308 −2.215 −2.076 −1.987
13 −3.349 −2.992 −2.693 −2.508 −2.369 −2.262 −2.175 −2.049 −1.974
14 −3.270 −2.922 −2.634 −2.453 −2.324 −2.224 −2.142 −2.026 −1.963

15 −3.203 −2.865 −2.583 −2.412 −2.286 −2.190 −2.112 −2.008 −1.950
16 −3.148 −2.819 −2.544 −2.375 −2.252 −2.161 −2.089 −1.990 −1.942
18 −3.063 −2.740 −2.473 −2.315 −2.198 −2.114 −2.047 −1.962 −1.928
20 −2.996 −2.678 −2.419 −2.266 −2.156 −2.077 −2.014 −1.938 −1.916
22 −2.941 −2.630 −2.378 −2.226 −2.121 −2.042 −1.986 −1.920 −1.907

24 −2.900 −2.586 −2.342 −2.193 −2.092 −2.015 −1.961 −1.903 −1.898
26 −2.860 −2.554 −2.310 −2.165 −2.066 −1.996 −1.945 −1.889 −1.889
28 −2.836 −2.528 −2.286 −2.141 −2.043 −1.976 −1.928 −1.875 −1.886
30 −2.810 −2.502 −2.262 −2.118 −2.027 −1.957 −1.914 −1.865 −1.881
32 −2.789 −2.482 −2.240 −2.102 −2.009 −1.942 −1.897 −1.858 −1.875

34 −2.752 −2.454 −2.216 −2.086 −1.995 −1.932 −1.891 −1.851 −1.875
36 −2.718 −2.423 −2.196 −2.068 −1.981 −1.922 −1.880 −1.851 −1.875
38 −2.694 −2.403 −2.182 −2.051 −1.967 −1.913 −1.870 −1.846 −1.871
40 −2.669 −2.383 −2.163 −2.041 −1.955 −1.900 −1.868 −1.837 −1.869
42 −2.637 −2.364 −2.145 −2.026 −1.945 −1.895 −1.862 −1.837 −1.870

44 −2.620 −2.347 −2.136 −2.014 −1.938 −1.886 −1.853 −1.834 −1.867
46 −2.597 −2.332 −2.123 −2.005 −1.927 −1.881 −1.847 −1.827 −1.869
48 −2.577 −2.313 −2.106 −1.993 −1.920 −1.873 −1.845 −1.825 −1.867
50 −2.566 −2.304 −2.100 −1.985 −1.910 −1.862 −1.834 −1.827 −1.870
52 −2.545 −2.285 −2.084 −1.973 −1.905 −1.863 −1.834 −1.820 −1.871

54 −2.535 −2.277 −2.079 −1.967 −1.897 −1.855 −1.825 −1.818 −1.870
56 −2.507 −2.259 −2.065 −1.958 −1.894 −1.851 −1.829 −1.822 −1.867
58 −2.498 −2.245 −2.056 −1.955 −1.890 −1.846 −1.823 −1.816 −1.870
60 −2.478 −2.237 −2.052 −1.949 −1.883 −1.839 −1.823 −1.816 −1.871
64 −2.456 −2.214 −2.032 −1.933 −1.873 −1.835 −1.811 −1.811 −1.868

68 −2.440 −2.200 −2.020 −1.919 −1.865 −1.825 −1.809 −1.809 −1.868
72 −2.409 −2.179 −2.002 −1.915 −1.851 −1.819 −1.802 −1.811 −1.871
76 −2.388 −2.160 −1.966 −1.906 −1.849 −1.816 −1.799 −1.808 −1.870
80 −2.379 −2.154 −1.985 −1.893 −1.844 −1.810 −1.792 −1.802 −1.874
∞ −2.041 −1.859 −1.728 −1.669 −1.647 −1.650 −1.673 −1.771 −1.932

Source: BAIN (1978, p. 240) — Reprinted with permission from Statistical Analysis of Reliability and Life–

Testing Models. Copyright 1978 by Marcel Dekker, Inc. All rights reserved.

There exist several approximate methods to find tolerance limits; see BAIN/ENGELHARDT

(1981, 1986, 1991a) and ENGELHARDT/BAIN (1977), LAWLESS (1975) and MANN

(1978a). The following simple method is due to BAIN/ENGELHARDT (1991a). Sup-

pose X ∼We(0, b, c), then a lower (1−α) tolerance limit for the proportion γ (or a lower

(1 − α) level confidence limit for the percentile x1−γ) based on the MLEs b̂ and ĉ is given
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by

Lo(x, 1 − α, γ) = x̂1−γ exp

{
−d+ λ1−γ

ĉ

}
, (19.35a)

where

λ1−γ = ln(− ln γ), (19.35b)

d =
c12u

2
1−α−nλ1−γ+u1−α

[
(c212−c11c22)u2

1−α+nc11−2nc12λ1−γ+nc22λ
2
1−γ
]1/2

n− c22 u1−α
.

(19.35c)

c11, c12 and c22 are the coefficients of the asymptotic variance of R̂ as given in Tab. 19/3

and u1−α is the (1 − α) percentile of the standard normal distribution. Substituting x̂1−γ
by b̂ (− ln γ)1/bc in (19.35a) gives the equivalent form

Lo(x, 1 − α, γ) = b̂ exp(−d
/
ĉ ). (19.35d)

Example 19/4: Confidence intervals for percentiles and tolerance intervals pertaining to

dataset #1

The MLEs of b and c resulting from the n = 20 uncensored observations in Tab. 9/2 are b̂ = 99.2079
and ĉ = 2.5957. The point estimate of the percentile x0.10 is

x̂0.10 = b̂ (− ln 0.90)1/bc = 99.2079 (− ln0.90)1/2.5957 = 41.69.

From (19.31a) and Tab. 19/4a the lower (1 − α = 0.95, γ = 0.90) tolerance limit is

Lo(x, 0.95, 0.90) = 41.69 exp

{ −5.548

2.5957
√

20

}
= 25.85,

which is also the lower limit of the one–sided 0.95 level confidence interval for x0.10, i.e., x0.10 ≥
25.85.

For an upper (0.95, 0.90) tolerance limit Uo(x, 0.95, 0.90), we use (19.31b), here:

Uo(x, 0.95, 0.90) = Lo(x, 0.05, 0.10),

together with Tab. 19.4b and find

Uo(x, 0.95, 0.90) = x̂0.90 exp

{
2.419

2.5957
√

20

}
= 136.8015 · 1.2317 = 168.50.

This is also the upper limit of the one–sided 0.95 level confidence interval for x0.90, i.e., x0.9 ≤
168.50.

When we bring together Lo(x, 0.95, 0.90) = 25.85 and Uo(x, 0.95, 0.90) = 168.50 the resulting

two–sided tolerance interval [25.85, 168.50] has — see (19.32) — approximate probability 1−α =
0.90 for proportion γ = 0.80.

If one had wished to determine the (0.95, 0.90) lower tolerance limits from the reliability table

the procedure would have been to find 0.90 in the (n = 20)–column of Tab. 19/1, then read R̂c ≈
0.9682 from the left–hand side. Then from (19.34)

Lo(x, 0.95, 0.90) ≈ 99.2079 (− ln0.9682)1/2.5957 = 26.44.

Due to rounding errors or other discrepancies, there is a slight difference between this result and the

result above.



606 19 Estimation of percentiles and reliability including tolerance limits

On the other hand suppose one wished to determine the lower 0.95 confidence limit for R(25.85)
by using the tolerance limit tables. This requires finding the value of γ which satisfies (19.33b).

Now −√
n ln[− ln R̂(25.85)] = −

√
20 ln[− ln 0.97] = 15.61, and trying various values of γ, we

find from Tab. 19/4a that for γ = R̂L = 0.90:8

−
√
n ln[− ln γ] + u1−α(γ) = −

√
20 ln[− ln 0.90] + 5.548 = 15.61.

If we had used Tab. 19/1 with R̂(25.85) = 0.97 to directly read off R̂L, we would have found

R̂L = 0.904. The slight difference between 0.904 and 0.90 again is due to round–off errors and

linear interpolation.

We finally mention some special papers on tolerance limit calculation:

• ISAIC–MANIU/VODA (1980) suppose that the shape parameter c is known.

• MANN (1978a) shows how to proceed when the data come from accelerated life

testing.

• MANN/FERTIG (1973) build upon the BLIEs of b and c.

19.5 BAYESIAN approaches9

We will first address BAYESIAN estimation of a percentile (or of reliable life) and then

BAYESIAN estimation of reliability. The latter topic has been treated rather intensively in

the literature.

The reliable life is defined as the time xR for which 100R% of the population will survive.

Taking the form

f(x) = λ cxc−1 exp
(
− λxc

)
, λ = b−c, (19.36a)

of the two–parameter WEIBULL density, the reliable life xR = x1−P is defined as

xR = λ−1/c (− lnR)1/c, (19.36b)

where R is a specified proportion. We restrict our consideration to the case where c is

assumed known, and consider point and interval estimators for xR when λ is the realization

of a variate Λ having one of the following prior distributions:

• uniform distribution over [A,B]; see (14.17a);

• non–informative prior; see (14.13e);

• gamma distribution; see (14.20a).

8 bRL = 0.90 agrees with result above, where Lo(x, 0.95, 0.90) was found to be 25.85.

9 Suggested reading for this section: ABDEL–WAHID/WINTERBOTTOM (1987), CANAVOS/TSOKOS

(1973), ERTO/GUIDA (1985a), MARTZ/WALLER (1982), PADGETT/TSOKOS (1979), PANDEY (1987),

PAPADOPOULOS/TSOKOS (1975), SINGPURWALLA/SONG (1988), SINHA (1986a), TSOKOS (1972),

TSOKOS/RAO (1976).
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Assuming a sample of size n which is type–II censored on the right (r ≤ n), we observe

the following re–scaled total time on test (see (14.12b)):

T :=

r∑

i=1

Xc
i:n + (n− r)Xc

r:n. (19.36c)

The posterior density of Λ when the prior is uniform, non–informative or gamma is given

in (14.17a), (14.14a) and (14.20b), respectively. Results of BAYESIAN estimation of xR
can be traced back to the results of BAYESIAN estimation of mean time to failure (MTTF)

as has been proven by MARTZ/WALLER (1982).

Excursus: MTTF estimation

The WEIBULL mean to failure is

µ = λ−1/c Γ

(
1 +

1

c

)
, (19.37a)

which is considered to be random when λ is a realization of Λ:

M = Λ−1/c Γ

(
1 +

1

c

)
. (19.37b)

MARTZ/WALLER (1982, pp. 413–418) give the following results for M :

1. Uniform prior on Λ; see (14.17a)

BAYESIAN point estimator using squared–error loss:

E(M |T,A,B) =

T 1/c Γ

(
1 +

1

c

) [
γ

(
r + 1 − 1

c

∣∣B T
)
− γ

(
r + 1 − 1

c

∣∣AT
)]

γ(r + 1 |B T ) − γ(r + 1 |AT )
(19.38a)

Posterior variance of M :

Var(M |T,A, b) =

T 2/c Γ2

(
1+

1

c

)
γ

(
r + 1 − 2

c

∣∣ b T
)
− γ

(
r+1 − 2

c

∣∣AT
)

γ(r + 1 |B T )− γ(r + 1 |AT )
−

E2(M |T,A,B)





(19.38b)

An equal–tail 100 (1−α)% credible interval forM is easily obtained from the corresponding

interval [λℓ, λu] given in (14.18a,b) as [mℓ,mu], where

mℓ = Γ

(
1 +

1

c

)
λ
−1/c
ℓ , mu = Γ

(
1 +

1

c

)
λ−1/c

u . (19.38c)

2. Non–informative prior on Λ; see (14.13e)

E(M |T ) =

T 1/c Γ

(
1 +

1

c

)
Γ

(
r − 1

c

)

Γ(r)
(19.39a)

Var(M |T ) =

T 2/c Γ2

(
1 +

1

c

)
Γ

(
r − 2

c

)

Γ(r)
− E2(M |T ) (19.39b)
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An equal–tail 100 (1 − α)% credible interval for M is given by

[
Γ

(
1 +

1

c

){
χ2

2r,α/2

/
(2T )

}−1/c

, Γ

(
1 +

1

c

){
χ2

2r,1−α/2

/
(2T )

}−1/c
]
. (19.39c)

3. Gamma prior on Λ; see (14.20a)

E(M |T, b, d) =

Γ

(
d+ r − 1

c

)
Γ

(
1 +

1

c

)

Γ(d+ r) [b
/
(b T + 1)]1/c

(19.40a)

Var(M |T, b, d) =

Γ

(
d+ r − 2

c

)
Γ

(
1 +

1

c

)

Γ(d+ r) [b
/
(b T + 1)]2/c

− E2(M |T, b, d) (19.40b)

An equal–tail 100 (1 − α)% credible region for M is given by


Γ

(
1 +

1

c

){
b χ2

2(r+d),1−α/2

2 b T + 2

}−1/c

, Γ

(
1 +

1

c

){
b χ2

2(r+d),α/2

2 b T + 2

}−1/c

 . (19.40c)

It is observed that xR in (19.36b) is of the same functional form in λ as µ in (19.37a). Thus,

all of the results for MTTF given in the excursus above apply here as well, the only change

being that the term Γ(1 + 1/c) must be replaced by the term (− lnR)1/c in all the point

and interval estimation equations.

We now turn to BAYESIAN estimation of WEIBULL reliability given by

r(x) = exp
{
− λxc

}
. (19.41)

We first assume that c is known and λ is a realization of the variate Λ. The prior

(posterior) distribution of R = R(x) may be obtained directly from the prior (posterior)

distribution of Λ by means of a transformation. Since r = r(x) is a monotonic function of

λ, the unique inverse exists which may be represented as

λ = − ln r

xc
. (19.42a)

Letting gλ(·) represent either the prior or posterior distribution of Λ, the corresponding

prior or posterior distribution of R, denoted by gr(·), may be obtained as

gr(r) = gλ

(
− ln r

xc

)(
1

xc

)
. (19.42b)

The BAYESIAN point estimator of r is the mean of the posterior distribution of R under

squared–error loss. There are two techniques that can be used to determine this mean. As

the rescaled total time on test T (see (19.36c)) is sufficient for estimating λ, we can find

the posterior mean of R given T either by directly calculating the mean of the posterior

distribution of R or by taking the expectation of R with respect to the posterior distribution

of Λ given T .
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When scale and shape parameters are random variables the BAYESIAN estimator of

r(x) turns out to be of complicated form. CANAVOS/TSOKOS (1973) studied two cases,

both assuming a type–II censored sample and independent prior distributions:

• the shape and the scale parameters both have a uniform prior,

• the shape parameter has a uniform prior and the scale parameter has an inverted

gamma prior.

PANDEY (1987) also assumes independent priors, a uniform prior for the shape parame-

ter and a non–informative prior for the scale parameter, the observations being randomly

censored.



20 Prediction of

future random quantities

Statistical prediction is the process by which values for unknown observables (potential

observations yet to be made or past ones which are no longer available) are inferred based

on current observations and other information at hand. Whereas statistical estimation is

concerned about how to get information on a distribution, usually its parameters, per-

centiles, DF, CDF or CCDF, the aim of prediction is to make inference on the value of

some statistic of a sample and to enclose it within prediction limits.

We will comment on both new–sample prediction (= two–sample prediction) and

within–sample prediction (= one–sample prediction). For new–sample prediction, data

from a past sample of size n1 is used to make predictions on one or more future units in a

second sample of size n2 from the same process or population. For example, based on pre-

vious (possibly censored) life test data, one could be interested in predicting the following:

• time to failure of a new item (n2 = 1);

• time until the r–th failure in a future sample of n2 units, n2 ≥ r;

• number of failures by time t∗ in a future sample of n2 units.

For within–sample prediction, the problem is to predict future events in a sample or process

based on early date from that sample or process. For example, if n units are followed

until censoring time tc and there are k observed failure times, x1:n, . . . , xk:n, one could be

interested in predicting the following:

• time of next failure;

• time until ℓ additional failures, ℓ ≤ n− k;

• number of additional failures in a future interval (tc, tw).

We will present classical prediction methods in Sect. 20.1 and BAYESIAN prediction meth-

ods in Sect. 20.2.

20.1 Classical prediction

20.1.1 Prediction for a WEIBULL process1

We consider a non–homogeneous POISSON process with intensity function

λ(t) =
c

b

(
t

b

)c−1

, (20.1a)

1 Suggested reading for this section: BAIN (1978, pp. 317 ff.), ENGELHARDT/BAIN (1978) and Chap-

ter 18, this book.
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called a WEIBULL process. Suppose, T1, . . . , Tn denote the first n successive occurrence

times of such a process. The time to first occurrence, T1, follows a WEIBULL distribution

with hazard function given by (20.1a). The conditional occurrence time Tn, given Tn−1 =
tn−1, . . . , T1 = t1, follows a truncated WEIBULL distribution with truncation point t =
tn−1. The joint density of T1, . . . , Tn is given by

f(t1, . . . , tn) =
(c
b

)n n∏

i=1

(
ti
b

)c−1

exp

{
−
(
tn
b

)c}
; 0 < t1 . . . tn <∞; (20.1b)

and the MLEs of b and c are

ĉ = n

/ n−1∑

1=1

ln
(
Tn
/
Ti
)
, (20.1c)

b̂ = Tn
/
n1/bc. (20.1d)

Consider a repairable system, and suppose n breakdowns have occurred and that the times

of occurrence follow a WEIBULL process. Perhaps the most natural question concerns

when the next failure will occur. This suggests that a prediction interval for Tn+1, or more

generally for Tn+m, would be quite useful. A (1 − α) level lower prediction limit for

Tn+m is a statistic TL(n,m, 1 − α) such that

Pr
(
TL(n,m, 1 − α) ≤ Tn+m

]
= 1 − α; (20.2)

i.e., the (n + m)–th failure after having observed the n–th failure will not occur before

TL(n,m, 1−α) with probability 1−α, or we will have to wait at least another TL(n,m, 1−
α) − tn time units for m additional failures to occur.

Consider first the case m = 1. The limit TL should be a function of the sufficient statistics

(20.1c,d) and the probability must be free of parameters. From Sect. 18.1.1 we have the

following distributional results, see BAIN (1978, p. 317/318):

1) U1 = 2

(
Tn+1

b

)c
∼ χ2(2 (n + 1)), (20.3a)

2) U = 2

(
Tn
b

)c
∼ χ2(2n), (20.3b)

3) V = 2n
c

ĉ
= 2 c

n−1∑

i=1

ln

(
Tn
Ti

)
∼ χ2(2 (n − 1)), (20.3c)

4) 2nW = 2n ln

(
U1

U

)
= 2n c ln

(
Tn+1

Tn

)
∼ χ2(2), (20.3d)

5) U1, U and W are independent of V, (20.3e)

6) Y = 2n (n − 1)
W

V
= (n− 1) ĉ ln

(
Tn+1

Tn

)
∼ F (2, 2 (n − 1)). (20.3f)
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From (20.3f) we have

Pr

[
(n− 1) ĉ ln

(
Tn+1

Tn

)
≥ F2,2(n−1),α

]
= 1 − α, (20.4a)

and as the 100α percentage point of F (2, 2 (n − 1)) is

F2,2(n−1),α = (n − 1)
[
(1 − α)−1/(n−1) − 1

]
, (20.4b)

we arrive at

Pr

[
Tn+1 ≥ Tn exp

{
(1 − α)−1/(n−1) − 1

ĉ

}]
= 1 − α (20.4c)

so that

TL(n, 1, 1 − α) = Tn exp

{
(1 − α)−1/(n−1) − 1

ĉ

}
. (20.4d)

We now turn to the more general case m ≥ 1. ENGELHARDT/BAIN (1978) obtained

TL(n,m, 1 − α) = Tn exp

{
yα

(n− 1) ĉ

}
, (20.5a)

where Tn and ĉ are determined from the first n failure times and yα is the solution of

α = Q(y;n,m) (20.5b)

with

Q(y;n,m) =
m∑

j=1

kj

{
1 −

[
1 + (n+ j − 1) y

n (n− 1)

]−(n−1)
}

(20.5c)

and

kj =
(−1)j−1 (n+m− 1)!

(n− 1)! (m− j)! (j − 1)! (n + j − 1)!
. (20.5d)

For the casem = 1 we have the explicit form given in (20.4d). A convenient approximation

to (20.5a) is

TL(n,m, 1 − α) ≈ Tn exp

{
ν Fν,2(n−1),α

2 (n − 1) d ĉ

}
(20.5e)

with

ν = 2

(
n+m−1∑

i=n

1

i

)2/ n+m−1∑

i=n

1

i2
, (20.5f)

d =
n+m−1∑

i=n

1

i

/(
n
n+m−1∑

i=n

1

i2

)
. (20.5g)
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The sums in (20.5f,g) can be further approximated as:

n+m−1∑

i=n

1

i
≈ ln(n+m− 0.5) − ln(n− 0.5), (20.5h)

n+m−1∑

i=n

1

i2
≈ 1

n− 0.5
− 1

n+m− 0.5
. (20.5i)

20.1.2 One-sample prediction2

Let X1:n, . . . ,Xn:n be the order statistics of a two–parameter WEIBULL distribution. Hav-

ing observed the first k failure times X1:n, . . . ,Xk:n, we want to predict the r–th ordered

observation timeXr:n, k < r ≤ n. Xr:n will be the time to complete the test under type–II

censoring with censoring number r. Setting r = n leads to a prediction of the largest obser-

vation time or of the test duration when there is no censoring. A solution to this prediction

problem is given for three cases:

• The shape parameter c is assumed known.

• There is partial knowledge on c; i.e., c is some distinct value in the interval [cℓ, cu].

• c is completely unknown.

First case: c known

When c is known the transformed WEIBULL variate

Y := Xc

has an exponential distribution with DF

f(y) = λ exp(−λx), λ = b−c,

and the prediction problem is solved by applying the well–known solutions for this distri-

bution as found in LAWLESS (1971).

Let

Sk =
n∑

i=1

Yi:n + (n− k)Yk:n; Yi:n := Xc
i:n; (20.6a)

(Sk is the transformed total time on test up to the k–th failure), and consider (for given

k < r ≤ n) the non–negative variate

U := Uk,r,n =
Yr:n − Yk:n

Sk
. (20.6b)

LAWLESS (1971) gives the following DF of U :

f(u) =
k

B(r−k, n−r+1)

r−k−1∑

i=0

(
r−k−1

i

)
(−1)i

[
1 + (n− r + i+ 1)u

]−k−1
, u > 0,

(20.6c)

2 Suggested reading for this section: ADATIA/CHAN (1982), BALASOORIYA/CHAN (1983), HSIEH

(1996), KAMINSKY/NELSON (1975), KAMINSKY/MANN/NELSON (1975), LAWLESS (1971),

WRIGHT/SINGH(1981).
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where B(·, ·) is the beta function. Integration yields the CCDF

Pr(U > t) =
k

B(r−k, n−r+1)

r−k−1∑

i=0

(
r−k−1
i

)
(−1)i

n− r + i+ 1

[
1 + (n − r + i+ 1) t ]−k

= P (t; k, r, n).





(20.6d)
The distribution of U does not involve λ.

Probability statements about U give prediction statements about Yr:n on the basis of ob-

served Sk and Yk:n. For example, the statement Pr(U > tα) = 1 − α yields the prediction

statement:

Pr
[
Yr:n > Yk:n + tα Sk

]
= 1 − α, (20.7a)

giving the one–sided 100 (1 − α)% prediction interval for Yr:n. From the transformation

Y = Xc we find the (1 − α) level lower prediction limit for the r–th WEIBULL order

statistic as

XL(n, r, 1 − α) =
(
Yk:n + tα Sk

)1/c
. (20.7b)

For given values of n, r, k and t, the probabilities P (t; k, r, n) defined in (20.6d) are easily

evaluated on a computer. If, for specified n, r and k values of t are desired which make

Pr(U > t) equal to some specified value, such as α = 0.05, these values can be found

using a simple iteration scheme.

There are two special cases concerning r: r = n and r = k + 1. If we wish to predict the

largest observation Yn:n on the basis of the k smallest, (20.6d) simplifies to

Pr(U > t) = (n − k)
n−k−1∑

i=0

(
n−k−1

i

)
(−1)i

(i− 1)
[
1 + (i+ 1) t

]k

= 1 −
n−k∑

i=0

(
n− k

i

)
(−1)i (1 + i t)−k (20.8a)

or

Pr(U ≤ t) =

n−k∑

i=0

(
n− k

i

)
(−1)i (1 + i t)−k. (20.8b)

In the case where k = r − 1 (prediction of the next failure time after Yk:n), we have

k (n− k)
Yk+1:n − Yk:n

Sk
∼ F (2, 2 k) (20.9a)

so that

Pr

[
Yk+1:n > Yk:n +

F2,2k,α

k (n− k)
Sk

]
= 1 − α. (20.9b)
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Example 20/1: 95% level lower prediction intervals using dataset #1

The n = 20 observations of dataset #1 in Tab. 9/2 have been generated with b = 100 and c = 2.5.

We set 1 − α = 0.95, k = 10 and want to give lower prediction limits for X11:20 and X20:20.

We further set c = 2.5 and transform xi:20 (i = 1, . . . , 10) to yi:20 = x2.5
i:20 and find y10:20 =

62, 761.78, s10 = 937, 015.22.

The 95% lower prediction limit for Y20:20 is found with t = 0.11997 from (20.8a) yielding

YL(20, 20, 0.95) = 175, 175.5 and XL(20, 20, 0.95) = 125.13.

The realization of X20:20 in Tab. 9/2 is x20:20 = 183 and thus lies within this prediction interval.

The 95% lower prediction limit for Y11:20 is found with F2,20,0.05 = 0.0514 from (20.9b) yielding

YL(20, 11, 0.95) = 63, 243.40 and XL(20, 11, 0.95) = 83.25.

The realization x11:20 = 86 in Tab. 9/2 lies within this prediction interval.

WRIGHT/SINGH (1981) also assumed c known and considered the first k order statistics in

a sample of size n when

• n is a fixed number or

• n is the realization of a binomially distributed random variable.

Second case: c within [cℓ, cu]

ADATIA/CHAN (1982) used the maximin estimator and the adaptive estimator of the scale

parameter b, both of which are robust (see Sect. 13.4.6), to construct prediction intervals

for Xr:n, assuming c is within [cℓ, cu]. These predictors are taken to be linear functions of

the first k order statistics with weights determined from the guaranteed efficiency required.

Necessary tables are provided.

Under the same setup BALASOORIYA/CHAN (1983) carried out a robustness study of four

types of predictors for Xr:n assuming that it is known only that c has one of the four values

1, 1.5, 2, 2.5. They considered the following four predictors:

• BLUP (best linear unbiased predictor),

• BLIP (best linear invariant predictor),

• FLUP (final linear unbiased predictor),

• CROSS (cross–validatory predictive function).

They showed that CROSS is the best in the sense of guaranteed efficiency; in addition, this

method does not require the knowledge of the covariances of WEIBULL order statistics.

Third case: c is completely unknown3

A simple linear unbiased predictor for Yr:n = lnXr:n based on Yk:n (k < r) is

Ŷr:n = Yk:n + b̂∗
[
E(Ur:n) − E(Uk:n)

]
, (20.10a)

3 General results on BLUP and BLIP of order statistics in location and scale families are to be found

in KAMINSKY/NELSON (1975) and KAMINSKY et al. (1975). HSIEH (1996) gives predictor intervals

based on quantiles of relevant pivotal statistics.
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where E(Uk:n) and E(Ur:n) are the expectations of the k–th and the r–th reduced extreme

value order statistics in a sample of size n (For tables of these expectations, see WHITE

(1967b) or DAVID (1981).) and b̂∗ is the BLUE of b∗ = 1/c. The predictor of the r–th

WEIBULL order statistic follows as

X̂r:n = exp
(
Ŷr:n

)
. (20.10b)

Two–sided (1 − α) prediction limits for Yr:n are

YL(n, r, 1 − α) = Yk:n +
b̂∗

Fν2,ν1,1−α/2

[
E(Ur:n) − E(Uk:n)

]
, (20.11a)

YU(n, r, 1 − α) = Yk:n + b̂∗ Fν1,ν2,1−α/2
[
E(Ur:n) − E(Uk:n)

]
, (20.11b)

where the degrees of freedom in the F–percentiles are

ν1 =
2
[
E(Ur:n) − E(Uk:n)

]2

Var(Ur:n) + Var(Uk:n) − 2 Cov(ur:n, Uk:n)
,

ν2 = 2
/
Bn,r, Var

(
b̂∗
)

= b∗
2
Bn,r.

The variance factors Bn,r to give the variance of the BLUE of b∗ are found in WHITE

(1964b). Prediction limits for the r–th WEIBULL order statistic Xr:n follow from

(20.11a,b) as

XL(n, r, 1 − α) = exp
[
YL(n, r, 1 − α)

]
, (20.11c)

XU (n, r, 1 − α) = exp
[
YU (n, r, 1 − α)

]
. (20.11d)

We mention that an upper prediction limit for Xn:n is related to an outlier test. If the n–th

observation is above a (1−α) upper prediction limit for Xn:n, it is a statistically significant

outlier at level α.

20.1.3 Two-sample prediction4

We have a first sample of size n1 with observations X1:n1 , . . . ,Xn1:n1 . This sample may

be censored and we want to predict Yr:n2 in a future sample of size n2 from the same

distribution. We will first give results valid for any continuous distribution. Then we will

turn to the WEIBULL distribution showing how to predict the first order statistic Y1:n2 or

any order statistic Yr:n2 .

Suppose Xi:n1 (i = 1, . . . , n) are the ordered observations in a sample from any continu-

ous distribution and the second sample of size n2 is from the same distribution. To predict

the r–th largest future observation Yr:n2 , suppose

i ≤ (n1 + 1) r

n2 + 1
≤ i+ 1

4 Suggested reading for this section: ENGELHARDT/BAIN (1979, 1982), FERTIG/MEYER/MANN (1980),

HEWETT/MOESCHBERGER (1976), LAWLESS (1973a), MANN (1970d), MANN/SAUNDERS (1969),

MEE/KUSHARY (1994), PANDEY/UPADHYAY (1986), SHERIF/TAN (1978), YANG/SEE/XIE (2003).



20.1 Classical prediction 617

for some i = 1, . . . , n1. Then a predictor for Yr:n2 is

Ŷr:n2 =

[
i+ 1 − (n1 + 1) r

n2 + 1

]
Xi:n1 +

[
(n1 + 1) r

n2 + 1
− i

]
Xi+1:n1 ; (20.12)

i.e., the predictor is the percentile of order r
/
n1 of the past sample, perhaps, interpolating

between two past observations. If we use Ŷ1:n2 = X1:n1 (smallest observation in the first

sample), the probability of Y1:n2 being above X1:n1 is

1 − α =
n1

n1 + n2
; (20.13)

i.e., X1:n1 is a (1 − α) lower prediction limit for Y1:n2 . Similarly, Xn1:n1 is an upper

prediction limit for Yn2:n2 and the probability of it being below Xn1:n1 is also given by

(20.13).

We now assume that both samples come from a two–parameter WEIBULL distribution

and first give methods to predict the smallest observation Y1:n2 in a future sample of size

n2. An interesting application of Y1:n2 is the following: A value 1 − α is specified for the

probability that no failures in a lot of identically distributed items yet to be manufactured

will occur before the expiration of the warranty period. The warranty period, which

must satisfy an assurance criterion at the prescribed probability level regardless of the true

parameters within the distribution, is to be calculated from a small preliminary sample of

size n1.

MANN/SAUNDERS (1969) and MANN (1970d) — setting 1 − α = 0.95 — derived an

expression for the lower limit of Y1:n2 (the warranty period) as a function of three suitably

chosen order statistics Xr:n1, Xp:n1 and Xq:n1 . MANN presents tables giving ν, r, p and

q for n1 = 10(1)25 and n2 = 2(1)n1 − 3 such that

Pr
(
Y1:n2 > Xr:n1 + ν (Xp:n1 −Xq:n1)

]
= 0.95. (20.14)

HEWETT/MOESCHBERGER (1976) derived an inequality which is useful in constructing

conservative simultaneous prediction intervals for functions of ℓ future samples of equal

sizes n2 = . . . = nℓ = n∗, using results from one previous sample. Let the function be the

minimum Y1:ni (i = 2, . . . , ℓ), each predicted by (20.14), then

Pr

[
ℓ⋂

i=2

{
Y1:ni > Xr:n1 + ν (Xp:n1 −Xq:n1)

}
]
≥ (1 − α)ℓ−1. (20.15)

We now turn to predict Y1:n2 based not only on three selected order statistics from the

first sample but on all the information contained in this — possibly type–II censored —

sample. ENGELHARDT/BAIN (1979) used the logarithmic transformation to change to

the type–I smallest extreme value distribution and then discussed the construction of pre-

diction limits for the minimum and, in general, the r–th smallest observation in a future
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sample.5 These intervals are based on some closed–form estimators of the Log–WEIBULL

parameters a∗ = ln b and b∗ = 1
/
c and F–approximations to the resulting pivotal quan-

tities. ENGELHARDT/BAIN (1982) subsequently presented a simplified approximation for

the lower prediction limit of Y ∗
1:n2

= lnY1:n2:

Pr
[
Y ∗

1:n2
> â∗ − t1−α b̂∗

]
= 1 − α, (20.16a)

where â∗ and b̂∗ are the GLUEs given in (10.47a,b) with censoring number k and

t1−α ≈ (A+B) −
{
(A+B)2 − C + 2A ln

[
− (1

/
n2) ln(1 − α)

]}1/2
. (20.16b)

The quantities appearing in (20.16b) are defined as:

A = gVar

(
b̂∗

b∗

)
, g = 1 +

[
5 + ln(n2)/2

]/
k,

B = Cov

(
â∗

b∗
,
b̂∗

b∗

)/
Var

(
b̂∗

b∗

)
,

C = Var

(
â∗

b∗

)/
Var

(
b̂∗

b∗

)
,

with tables of the variances and covariances given in ENGELHARDT/BAIN (1991a). The

limiting approximation of t1−α is

t1−α ≈ − ln
[
− (1/n2) ln(1 − α)

]
. (20.16c)

The (1 − α) lower prediction for the WEIBULL order statistic Y1:n2 is

Pr
[
Y1:n2 > b̂ exp

(
− t1−α

/
ĉ
)]

= 1 − α; b̂ = exp(â∗), ĉ = 1
/
b̂∗. (20.16d)

It may also be of interest to consider an interval estimate for the expectation of Y ∗
r:n. A

lower (1−α) confidence limit for E
(
Y ∗
r:n2

)
is simply a lower (1−α) level confidence limit

for proportion γ, where γ = exp
[
−exp(cr,n2)

]
as shown by BAIN/ENGELHARDT (1991a)

who also give a table for the coefficients cr,n2 . Thus, any of the tolerance limits results in

5 We mention some other papers on prediction in the WEIBULL case:

• LAWLESS (1973a) gives conditional confidence intervals for Y1:n2
, conditional on ancillary statistics,

requiring numerical integration.

• SHERIF/TAN (1978) have discussed the prediction of Y1:n2
when the available sample is type–II pro-

gressively censored.

• PANDEY/UPADHYAY (1986) assumed that the scale parameter is known and then developed prediction

limits by using the shrunken estimator of the unknown shape parameter c proposed by PANDEY (1983).

• MEE/KUSHARY (1994) used a simulation–based procedure.

• There are two papers concerning the prediction of a single future observation (n2 = 1): FERTIG et al.

(1980), along the lines of ENGELHARDT/BAIN (1979), used pivotal quantities based on the BLIEs of a∗

and b∗ of the Log–WEIBULL distribution. YANG et al. (2003) built upon transformations (BOX–COX

and KULLBACK–LEIBLER) of the WEIBULL data to near normality.
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Sect. 19.4.2 can be applied here. The lower (1 − α) level confidence limit for E
(
Y ∗
r:n2

)
is

given by
L(1 − α, γ) = â∗ − d b̂∗, (20.17)

where γ = exp
[
− exp(cr,n2)

]
and d is given in (19.35c), but evaluated with λ1−γ = cr,n2 .

20.1.4 Prediction of failure numbers6

Suppose n sample units are put on test at time 0, and by some censoring time tc, the

cumulative number of failures isN1. We would like to have a prediction (point and interval)

for the future added number N2 of units that fail by time tw, which for example may be the

end of a warranty period; i.e., N2 is the number of failures in the interval (tc, tw). Denote

by N3 the remaining number of non–failed units at time tw. (N1, N2, N3) is a random

vector having a trinomial distribution with corresponding probabilities (p1, p2, p3), where

N1 +N2 +N3 = n and p1 + p2 + p3 = 1.

Assuming a two–parameter WEIBULL distribution these probabilities are

p1 = 1 − exp

{
−
(
tc
b

)c}
, (20.18a)

p2 = exp

{
−
(
tc
b

)c}
− exp

{
−
(
tw
b

)c}
, (20.18b)

p3 = exp

{
−
(
tw
b

)c}
. (20.18c)

We will assume that the shape parameter c is known while b is unknown.

Conditional on N1, the number of additional failures N2 has a binomial distribution with

parameters n−N1 and ρ, where

ρ =
p1

p1 + p2
(20.19a)

is the conditional probability that a sample unit fails in (tc, tw) given it survived until tc.
For a given N1 and interval [N2, N2 ] the conditional coverage probability CP (·) of the

specific prediction interval with nominal confidence level 1 − α is

CP
[
PI(1 − α)

∣∣N1, b
]

= Pr
[
N2 ≤ N2 ≤ N2

∣∣N1, b
]

=





N2∑

i=0

(
n−N1

i

)
ρi (1 − ρ)n−N1−i −

N2−1∑

i=0

(
n−N1

i

)
ρi (1 − ρ)n−N1−i.





(20.19b)

6 Suggested reading for this section: MEEKER/ESCOBAR (1998, Section 12.7), NELSON (2000), NORD-

MAN/ MEEKER (2002).
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The actual conditional coverage probability in (20.19b) is random because [N 2,N 2 ] de-

pends on N1, which varies from sample to sample. This probability is also unknown here

because ρ depends on the unknown scale parameter b through (20.19a) and (20.18a,b).

Given the observed (non–zero) failures N1 by tc, the MLE of b is

b̂ =
tc{

− ln
[
1 −N1

/
n
]}1/c

. (20.20a)

NELSON (2000) suggested the following point estimator for N2:

N̂2 = n p̂2, (20.20b)

where the estimator p̂2 is obtained by substituting b̂ of (20.20a) into (20.18b), yielding

p̂2 =

(
1 − N1

n

)
−
(

1 − N1

n

)(tw/tc)c

. (20.20c)

We now derive prediction bounds for N2, considering two cases.

First case: p1 and p2 are small

p1 and p2 being small, we have

p2

p1
=

[
1 − exp

{
−
(
tw
b

)c}]
−
[
1 − exp

{
−
(
tc
b

)c}]

1 − exp

{
−
(
tc
b

)c}

≈

(
tw
b

)c
−
(
tc
b

)c

(
tc
b

)c =

(
tw
tc

)c
− 1. (20.21)

The approximation does not depend on the unknown scale parameter b. NELSON (1972b)

has given a conservative (1−α) confidence interval for the trinomial probability ratio p1

/
p2

as
[
gL(N2, N1, α1), gU (N2, N1, α2)

]
with α1 + α2 = α where

gL(N2, N!, α1) =





N1

(N2 + 1)F2(N2+1),2N1,1−α1

for N1 6= 0

0 for N1 = 0





(20.22a)

and

gU (N2, N1, α2) =
(N1 + 1)F2(N1+1),2N2,1−α2

N2
. (20.22b)

Then, using the approximation (20.21) for small p1 and p2, the preceding limits will provide

an approximate (1 − α) confidence interval for
[(
tw
/
tc
)c − 1

]−1
, i.e.,

Pr

[
gL(N2, N1, α1) ≤

1(
tw
/
tc
)c − 1

≤ gU (N2, N1, α2)

]
≈ 1 − α1 − α2. (20.22c)
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The FLOOR7 of the smallest, positive real n2 satisfying the left–hand inequality in

(20.22c) is a one–sided lower approximate (1−α1) prediction bound for N2, denoted by

N2. If N1 = 0, we define the trivial lower bound to be 0. The CEILING8 of the largest,

positive real n2 satisfying the right–hand inequality in (20.22c) is a one–sided upper ap-

proximate (1 − α2) prediction bound for N2, denoted by N2. In certain circumstances

the prediction bounds may fall outside the sample space of N2, namely bounds greater than

n −N1. If the computed value of N2 is greater than n −N1, we reset the upper bound to

n−N1. Likewise, if the procedure produces a lower prediction bound greater than n−N1,

we redefine the bound to be n − N1 − 1. We remark that the prediction bounds do not

depend on the sample size n.

NELSON (2000) gave simpler bound for large N2:

N2 = FLOOR
{
0.5
[(
tw
/
tc
)c − 1

]
χ2

2N1,α1
− 1
}
, (20.23a)

N2 = CEILING
{

0.5
[(
tw
/
tc
)c − 1

]
χ2

2(N1+1),1−α2

}
. (20.23b)

If N1 or if 0.5
[(
tw
/
tc
)c − 1

]
χ2

2N1,α1
< 1, we define N2 to be 0.

Second case: More general values of p1 and p2

For this case NELSON (2000) suggested approximate prediction bounds for N2 based on a

likelihood ratio statistic. The maximum of the two–parameter multinomial likelihood for

the observed set (n1, n2, n2) is

L∗(n1, n2) = K
(n1

n

)n1
(n2

n

)n2
(
1 − n1

n
− n2

n

)n−n1−n2

(20.24a)

where

K =
n!

n1!n2! (n − n1 − n2)!
.

Under the WEIBULL distribution model with probabilities (p1, p2, p3) given by (20.18a–

c), the one–parameter constrained sample likelihood is

K(b;n1, n2) = K

[
1 − exp

{
−
(
tc
b

)c}]n1
[
exp

{
−
(
tc
b

)c}
− exp

{
−
(
tw
b

)c}]n2

×

[
exp

{
−
(
tw
b

)c}]n−n1−n2

. (20.24b)

The MLE b̂(n1, n2) of b must be found numerically by maximizing (20.24b). We denote

the maximum of (20.24b) by K∗(n1, n2).

The log–likelihood ratio statistic comparing the constrained WEIBULL likelihood with the

unconstrained multinomial likelihood is

Q(n1, n2) = −2
{
ln
[
K∗(n1, n2)

]
− ln

[
L∗(n1, n2)

]}
. (20.24c)

7 FLOOR means rounding “down” to the nearest integer.

8 CEILING means rounding “up” to the nearest integer.
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If the true distribution is WEIBULL, then approximately

Q(n1, n2) ∼ χ2(1). (20.24d)

Hence, for the random variables N1 and N2,

Pr
[
Q(N1, N2) ≤ χ2

1,1−α
]
≈ 1 − α. (20.24e)

Given the cumulative number of failures N1 by tc, the set of n2–values for which

Q(N1, n2) ≤ χ2
1,1−α (20.24f)

is fulfilled, provides an approximate (1 − α) prediction region for N2. In particular, the

FLOOR and CEILING of the respective smallest and largest positive real values that

satisfy (20.24f) yield the approximate two–sided (1 − α) prediction interval for N2. A

one–sided (lower or upper) (1− α) prediction bound can be obtained from the appropriate

end point of a two–sided (1 − 2α) prediction interval.

20.2 BAYESIAN prediction9

One–sample prediction of Xr:n based on k preceding observations X1:n, . . . ,Xk:n, k <
r, is considered by EVANS/NIGM (1980b) using the non–informative prior

g(b, c) ∝ 1

b c
; b > 0, c > 0. (20.25a)

They derive the predictive survival function of

Zr := Xr:n −Xk:n

as

Pr(Zr > z | data) =
I(z)

I(0)
, (20.25b)

where

I(z) =
r−k−1∑

i=0

(−1)i

n−r+1+1

(
r − k − 1

i

)

×,
∞∫

0

ck−2 uc−1
[
tc + (n− r + 1 + i) zc

]−k
dc, (20.25c)

I(0) = B(r − k, n − k + 1)

∞∫

0

ck−2 uc−1 t−k c dc (20.25d)

with

u :=

k∏

i=1

Xi:n, t
c :=

k∑

i=1

Xc
i:n + (n − k)Xc

k:n.

A lower (1 − α) prediction bound for any Xr:n, k < r ≤ n, is

XL(n, r, 1 − α) = Xk:n + dr, (20.25e)

9 Suggested reading for this section: ASHOUR/RASHWAN (1981), CALABRIA/PULCINI (1994, 1995),

DELLAPORTAS/WRIGHT (1991), DIXIT (1994), EVANS/NIGM (1980a,b), LINGAPPAIAH (1977, 1990),

NIGM (1989, 1990), TZIAFETAS (1987).



20.2 BAYESIAN prediction 623

where I(dr)
/
I(0) = 1 − α. The solution dr can be derived iteratively. The simplest form

occurs when r = k + 1. In this case dr is the solution d of
∞∫
0

ck−2 uc [tc + (n− k) d ]−k dc

∞∫
0

ck−2 uc t−k c dc

= 1 − α. (20.25f)

EVANS/NIGM (1980b) also give a simplified approximation based on SOLAND (1969a).

NIGM (1989) has discussed the derivation of BAYESIAN prediction bounds for Xr:n using

an informative prior for the parameters λ = b−c and c of the bivariate form

g(λ, c) = c2 a λa+h/φ(c) exp{−c g} exp{−dλψ(c)} ,





a > −1

g, h, d > 0

λ, c > 0




, (20.26)

where φ(c) and ψ(c) are increasing functions of c. Another paper — NIGM (1990) —

assumes type–I censoring together with a gamma prior for λ when c is known and, when

both parameters are unknown, a gamma prior for λ with discrete probabilities P1, . . . , Pℓ
for a restricted set {c1, . . . , cℓ} of c. LINGAPPAIAH (1990) studies one–order BAYESIAN

prediction when an outlier is present.

Two–sample BAYESIAN prediction10 is discussed by EVANS/NIGM (1980a). The pa-

pers by NIGM (1989, 1990) also contain results on two–sample prediction. DELLAPOR-

TAS/WRIGHT (1991) have described a numerical approach and the method of evaluat-

ing the posterior expectations. LINGAPPAIAH (1990) and DIXIT (1994) assume that the

WEIBULL distribution is contaminated by one or more outliers. LINGAPPAIAH (1997) de-

scribes how to proceed when the prediction of a future order statistic can be based on more

than one preceding samples. BAYESIAN prediction of a single future observation, i.e.,

n2 = 1, is presented in TZIAFETAS (1987) after assigning WEIBULL and uniform priors

for the scale parameter b and shape parameter c, respectively.

BAYESIAN prediction of the future number of failures is treated in a paper of CALABRIA/

PULCINI (1995). Both, the one–sample and two–sample prediction problems are dealt

with, and some choices of the prior densities for the WEIBULL parameters are discussed

which are relatively easy to work with and allow different degrees of knowledge on the

failure mechanism to be incorporated in the prediction procedure. The authors also derive

useful relations between the predictive distribution of the number of future failures and the

predictive distribution of the future failure times.

10 CALABRIA/PULCINI (1994) give results when both samples come from an inverse WEIBULL distribu-

tion and ASHOUR/RASHWAN (1981) when the common distribution is a compound WEIBULL model.
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This chapter deals with statistical testing of hypotheses on parameters, either the parameters

a, b and c appearing in the WEIBULL distribution function (= function parameters) (see

Sect. 21.1) or parameters which depend on a, b and/or c such as the mean, the variance, a

reliability or a percentile (= functional parameters) (see Sect. 21.2). In some cases a test

of a function parameter is equivalent to a test of a functional parameter, for example,

• when b and c are known a hypothesis on a also is a hypothesis on the mean µ = a+b
Γ(1 + 1/c),

• when c is known a hypothesis on b also is a hypothesis on the variance σ2 = b2[
Γ(1 + 2/c) − Γ2(1 + 1/c)

]
,

or a test of a functional parameter is equivalent to a test on a function parameter, e.g., a test

on the percentile xP = b
[
− ln(1 − P )

]1/c
is also a test on the scale parameter b when

P = 1 − 1/e ≈ 0.6321.

Testing a hypothesis on only one parameter using data of only one sample (= one–sample

problem) is intimately related to setting up a confidence interval for that parameter. A

(1− α) confidence interval for a parameter θ contains all those values of θ which — when

put under the null hypothesis — are not significant, i.e., cannot be rejected, at level α. Thus,

• a two–sided (1 − α) level confidence interval for θ, θ̂ℓ ≤ θ ≤ θ̂u, will not reject

H0 : θ = θ0 in favor of HA : θ 6= θ0 for all θ0 ∈
[
θ̂ℓ, θ̂u

]
when α is chosen as level

of significance or

• a one–sided (1 − α) confidence interval θ ≤ θ̂u (θ ≥ θ̂ℓ) will not reject H0 : θ ≤ θ0
(H0 : θ ≥ θ0) for all θ0 ≤ θ̂u (θ0 ≥ θ̂ℓ) when the level of significance is α.

So, when in the preceding chapters we have given confidence intervals, these may be used

to test hypotheses in the one–sample case. For most hypotheses it is also possible to find a

likelihood–ratio test. But this test requires greater sample sizes to hold properly.

21.1 Testing hypotheses on function parameters

Perhaps the most important parameter of a WEIBULL distribution is the shape parameter c
which is responsible for the behavior of its hazard rate. Thus, we start in Sect. 21.1.1 with

hypotheses concerning the shape parameter. The following two sections 21.1.2 and 21.1.3

are devoted to the scale parameter b and the location parameter a, respectively. The last

section 21.1.4 presents tests for joint hypotheses on any two or all three types of WEIBULL

function parameters.

21.1.1 Hypotheses concerning the shape parameter c

We first show in Sect. 21.1.1.1 how to test hypotheses on one parameter (one–sample prob-

lem) followed by testing hypotheses on two or more shape parameters in Sect. 21.1.1.2
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21.1.1.1 Tests for one parameter1

We will first provide test procedures based on the MLE ĉ of c. The quantity ĉ
/
c is

a pivotal function (see Sect. 11.3.1.2 for complete samples and Sect. 11.6.1.2 for singly

censored samples), and its percentage points have been found by Monte Carlo simulation.

Tab. 11/1 gives the percentage points ℓ1(n, P ) for uncensored samples such that

Pr

[
ĉ

c
≤ ℓ1(n, P )

]
= P.

Introducing

ℓn,P := ℓ1(n, P )

for convenience we can state the following:

1. A size α test of

H0 : c ≤ c0 against HA : c > c0 (21.1a)

is to reject H0 if

ĉ > c0 ℓn,1−α. (21.1b)

The power of this test, i.e., the probability of rejecting H0 when c = c∗, is

Pr

[
ĉ

c0
> ℓn,1−α

∣∣∣ c∗
]

= Pr

[
ĉ

c∗
>
c0
c∗
ℓn,1−α

]

= 1 − Pr

[
ĉ

c∗
≤ c0
c∗
ℓn,1−α

]
. (21.1c)

The probabilities in (21.1c) may be obtained by interpolation for P from Tab. 11/1.

2. A size α test of

H0 : c ≥ c0 against HA : c < c0 (21.2a)

is to reject H0 if

ĉ < c0 ℓn,α. (21.2b)

The power of this test is

Pr

[
ĉ

c0
< ℓn,α

∣∣∣ c∗
]

= Pr

[
ĉ

c∗
<
c0
c∗
ℓn,α

]
. (21.2c)

3. A size α test of

H0 : c = c0 against HA : c 6= c0 (21.3a)

is to reject H0 if

ĉ < c0 ℓn,α/2 or ĉ > c0 ℓn,1−α/2 (21.3b)

1 Suggested reading for this section: BAIN (1978), BAIN/ENGELHARDT (1991a), BILL-

MAN/ANTLE/BAIN (1972), CHANDRA/CHAUDHURI (1990a,b), CHEN (1997), MCCOOL (1970a),

THOMAN/BAIN/ANTLE (1969).
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with power

Pr

[
ĉ

c0
<ℓn,α/2

∣∣∣c∗
]
+ Pr

[
ĉ

c0
>ℓn,1−α/2

∣∣∣c∗
]

= Pr

[
ĉ

c∗
<
c0
c∗
ℓn,α/2

]
+ Pr

[
ĉ

c∗
>
c0
c∗
ℓn,1−α/2

]

=





1 + Pr

[
ĉ

c∗
<
c0
c∗
ℓn,α/2

]
−

Pr

[
ĉ

c∗
≤ c0
c∗
ℓn,1−α/2

]




. (21.3c)

For c0 = 1 this test also is for the hypothesis that X exponentially distributed.

For large n we may use the normal approximation of ĉ :

ĉ
asym∼ No

(
c,

0.6079 c2

n

)
or U =

ĉ− c

c
√

0.6079

√
n

asym∼ No(0, 1). (21.4a)

Then, for example, testing H0 : c ≤ c0 against HA : c > c0 with size α, the approximate

critical region for H0 is

ĉ > c0

(
1 + u1−α

√
0.6079

n

)
(21.4b)

with approximate power

Pr

[
ĉ− c0

c0
√

0.6079

√
n > u1−α

∣∣∣ c∗
]

= Pr

[
U >

c0
c∗
u1−α +

c0 − c∗

c∗
√

0.6079

√
n

]
. (21.4c)

u1−α is the percentile of order 1 − α of the standard normal distribution. The reader will

easily find the approximating results for the other two tests.

Example 21/1: Testing hypotheses on c using dataset #1

Dataset #1 as given in Tab. 9/2 is an uncensored sample of size n = 20. The MLE of c is ĉ = 2.5957.

The test statistic using c0 = 2 is

ĉ

c0
= 1.2979.

We first want to test H0 : c ≤ 2 against HA : c > 2 with α = 0.05. From Tab. 11/1 we take the

critical value ℓ20,0.95 = 1.449, and as 1.2979 6> 1.449, we cannot reject H0 : c ≤ 2. (We would

have rejected H0 : c ≤ c0 for any c0 ≤ 1.79.) In order to find the power function, we have used the

original and more detailed table of ℓn,P in THOMAN et al. (1969) and found the following:

Pr

[
ĉ

c∗
>
c0
c∗
ℓ20,0.95

]
0.98 0.95 0.90 0.75 0.60 0.50 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.02

c∗ 3.90 3.66 3.45 3.12 2.90 2.77 2.64 2.51 2.44 2.36 2.26 2.16 2.00 1.84
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Applying the normal approximation (21.4b), we find the critical region

ĉ > 2

(
1 + 1.645

√
0.6079

20

)
= 2.62,

and as ĉ = 2.5957 6> 2.61, we cannot reject H0 : c ≤ 2, too.

Fig. 21/1 shows the exact power function as given in the table above and the approximate power

function (21.4c). We see that for 2 < c∗ < 3.6, the approximation leads to an enlarged power or,

stated otherwise in this region, the approximated type–II error is too small. We also have included

another pair of power functions, assuming that the sample size is n = 120. We see that both power

functions become steeper (i.e., we have a better discrimination between H0 and HA) and that the

approximation is nearly perfect.

We now test whether the sample comes from an exponential distribution; i.e., we test H0 : c = 1
against HA : c 6= 1. We take α = 0.10 and find the following acceptance region for H0:

ℓ20,0.05 = 0.0791 ≤ ĉ

c0
≤ ℓ20,0.95 = 1.449.

Because ĉ
/
c = 2.5951 is not within this region, we have to reject H0 which is in accordance with

the fact that the data have been simulated using a WEIBULL distribution with c = 2.5.

Figure 21/1: Exact and approximate power functions of testing H0 : c ≤ 2 against HA : c > 2 with

α = 0.05 for an uncensored sample



628 21 WEIBULL parameter testing

When we have a singly censored sample, r < n being the the censoring number,2 we

could work with the percentage points of
√
n
[
ĉ/c− E(ĉ/c)

]
in Tab. 11/7, but we prefer to

use Tab. 21/1 which gives the percentage points κP such that

Pr

[√
n

(
ĉ

c
− 1

)
≤ κP

]
= P,

taken from BAIN/ENGELHARDT (1991a), because this table contains values for sample

sizes as small as n = 5.

Table 21/1: Percentage points κP such that Pr
[√
n (ĉ/c − 1) ≤ κP

]
= P for censored

samples

n r/n
P

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

0.01 0.05 0.10 0.90 0.95 0.99

5 1.00 −0.99 −0.72 −0.52 2.87 4.06 7.71
0.60 −1.18 −0.82 −0.56 8.38 12.95 31.40

10 1.00 −1.14 −0.83 −0.63 1.91 2.64 4.29
0.50 −1.53 −1.11 −0.78 5.21 7.21 13.46

20 1.00 −1.28 −0.92 −0.72 1.54 1.99 3.08
0.75 −1.53 −1.14 −0.88 2.33 2.83 4.34
0.50 −1.79 −1.32 −1.00 3.27 4.43 7.20

40 1.00 −1.37 −0.97 −0.75 1.33 1.83 2.64
0.75 −1.77 −1.18 −0.92 1.97 2.47 3.68
0.50 −2.00 −1.47 −1.12 2.71 3.57 5.52

80 1.00 −1.45 −1.03 −0.80 1.21 1.57 2.27
0.75 −1.78 −1.27 −0.97 1.73 2.23 3.30
0.50 −2.18 −1.56 −1.19 2.41 3.16 4.64

120 1.00 −1.51 −1.13 −0.84 1.12 1.46 2.19
0.75 −1.89 −1.32 −0.99 1.61 2.13 3.04
0.50 −2.34 −1.66 −1.28 2.16 2.78 4.08

∞ 1.00 −1.81 −1.28 −0.99 0.99 1.28 1.81
0.75 −2.35 −1.66 −1.29 1.29 1.66 2.35
0.50 −3.05 −2.15 −1.68 1.68 2.15 3.05

Source: BAIN/ENGELHARDT (1991a, p. 226) — Reprinted with permission from Statistical Analysis of Relia-

bility and Life–Testing Models. Copyright 1991 by Marcel Dekker, Inc. All rights reserved.

Introducing

Tn :=
√
n

(
ĉ

c
− 1

)
, (21.5)

2 Strictly speaking the following procedure only holds for type-II censoring, but it also is all right as long

as one interprets the type–I results as conditional, the condition being the number of realized failures in

(0, T ].
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where ĉ is the MLE of c, we can state the following results concerning tests of hypotheses

on c with size α:

1. H0 : c ≤ c0 against HA : c > c0

Critical region for H0 :

ĉ > c0

(
κ1−α√
n

+ 1

)
or

√
n

(
ĉ

c0
− 1

)
> κ1−α (21.6a)

Power function for an alternative value c∗ of c :

Pr

[√
n

(
ĉ

c0
− 1

)
> κ1−α

∣∣∣ c∗
]

= Pr
[
Tn >

c0
c∗
κ1−α +

√
n
(c0
c∗

− 1
)]

(21.6b)

These probabilities may be obtained from Tab. 21/1 by interpolation for P .

2. H0 : c ≥ c0 against HA : c < c0

Critical region for H0 :

ĉ < c0

(
κα√
n

+ 1

)
or

√
n

(
ĉ

c0
− 1

)
< κα (21.7a)

Power function:

Pr

[√
n

(
ĉ

c0
− 1

)
< κα

∣∣∣ c∗
]

= Pr
[
Tn <

c0
c∗
κα +

√
n
(c0
c∗

− 1
)]

(21.7b)

3. H0 : c = c0 against HA : c 6= c0

Critical region for H0 :

ĉ < c0

(
κα/2√
n

+ 1

)
∪ ĉ > c0

(
κ1−α/2√

n
+ 1

)

or

√
n

(
ĉ

c0
− 1

)
< κα/2 ∪ √

n

(
ĉ

c0
− 1

)
> κ1−α/2





(21.8a)

Power function:

Pr

[√
n

(
ĉ

c0
− 1

)
< κα/2 ∪ √

n

(
ĉ

c0
− 1

)
> κ1−α/2

∣∣∣ c∗
]

=

Pr
[
Tn <

c0
c∗
κα/2 +

√
n
(c0
c∗

− 1
)]

+ Pr
[
Tn >

c0
c∗
κ1−α/2 +

√
n
(c0
c∗

− 1
)]





(21.8b)

Asymptotic results suggest that for heavy censoring, approximately

2 r c

ĉ
∼ χ2(2 (r − 1)), (21.9a)

while for complete samples the degrees of freedom in (21.9a) should be ν = 2 (n − 1).
BAIN/ENGELHARDT (1991a, p. 223) suggest the following approximation

d r

(
ĉ

c

)1+p2

∼ χ2(d (r + 1)), (21.9b)
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where

p =
r

n
and d =

2

(1 + p2)2 p c22
,

with c22 given in Tab. 19/3. To demonstrate the working of this approximation, we take the

test of H0 : c ≤ c0 against HA : c > c0. The critical region of a size α test results as

d r
(c0
ĉ

)1+p2
< χ2

d (r−1),α (21.10a)

and the corresponding power function is

Pr

[
d r
(c0
ĉ

)1+p2
< χ2

d (r−1),α

∣∣∣ c∗
]

= Pr

[
d r

(
c∗

ĉ

)1+p2

<

(
c∗

c0

)1+p2

χ2
d (r−1),α

]

= Pr

[
χ2
d (r−1) <

(
c∗

c0

)1+p2

χ2
d (r−1),α

]
. (21.10b)

Example 21/2: Testing H0 : c ≤ 2 against HA : c > 2 with α = 0.05 using dataset #1 cen-

sored at r = 15

When dataset #1 in Tab. 9/2 is censored at r = 15, we find the MLE of c to be ĉ = 2.7114 (see

Example 11/8). From Tab. 21/1 (with n = 20, r/n = 0.75 and P = 1 − α = 0.95), we take

κ0.95 = 2.83,. As
√
n

(
ĉ

c0
− 1

)
= 1.5907 6> κ0.95 = 2.83,

we cannot reject H0. We further find from Tab. 21/1 that we have a power of 0.90 at c∗ = 4.96.

Working with the approximating formulas (21.10a,b), we first interpolate for c22 in Tab. 19/3: c22 ≈
1.025. With p = 0.75 we find d = 1.066. The test statistic is

d r
(c0
ĉ

)1+p2

= 1.066 · 15 ·
(

2

2.7114

)1.5625

= 9.939

and the χ2–percentile is

χ2
1.066·14,0.05 = χ2

14.924,0.05 = 7.2081.

Because d r(c0
/
ĉ )1+p2

= 9.939 6< χ2
14.924,0.05 = 7.2981, we cannot reject H0 as above. The

approximate power at c∗ = 4.96 according to (21.10b) is

Pr

[
χ2

14.924 <

(
4.96

2

)1.5625

· 7.2081

]
= Pr

[
χ2

14.924 < 29.80
]
= 0.9877,

which is somewhat higher than 0.90 from the exact procedure. However, it should be remembered

that n = 20 is not great enough for the approximation to hold properly.
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Testing for c may also be based on any other type of estimator. For example, the GLUE

of Sect. 10.4.3 has been applied by BAIN (1978, p. 275) and by CHANDRA/CHAUDHURI

(1990a,b). There are even tests that do not require an estimate of c:

• WONG/WONG (1982) took the extremal quotient Xr:n

/
X1:n as test statistic.

• CHEN (1997) used the following ratio of the arithmetic mean to the geometric mean

as a test statistic

Q =

1

n

r−1∑
i=1

Xc0
i:n + (n− r + 1)Xc0

r:n

[
r−1∏
i=1

Xi:nX
n−r+1
r:n

]c0/n . (21.11)

21.1.1.2 Tests for k ≥ 2 parameters3

We start with the case k = 2 using MLEs. For convenience of reference the two popula-

tions about which statements are to be made will be called populations 1 and 2. The pa-

rameters, sample sizes, numbers of failures and MLEs are subscripted with the population

number from which they derive. MCCOOL (1970a) has shown that the following random

variable follows a distribution which depends upon the sample sizes and the numbers of

failures in the two samples but not upon the population parameters:

W
(
n1, n2, r1, r2

)
=
ĉ1
/
c1

ĉ2
/
c2
. (21.12a)

If the subscripts 1 and 2 are interchanged, W ⇒ 1
/
W and 1

/
W has the same distribution

as W . This implies for the percentile of order P :

wP =
1

w1−P
∀ P (21.12b)

and that w0.5 = 1. Using the percentiles wP (n1, n2, r1, r2) of the relevant W–distribution

hypotheses on the ratio of the two population parameters may be tested with size α:

1. H0 : c1 = c2 against HA : c1 > c2

Reject H0 when
ĉ1
/
ĉ2 > w1−α(n1, n2, r1, r2), (21.13a)

2. H0 : c1 = c2 against HA : c1 < c2

Reject H0 when
ĉ1
/
ĉ2 < wα(n1, n2, r1, r2), (21.13b)

3. H0 : c1 = c2 against HA : c1 6= c2

Accept H0 when

wα/2(n1, n2, r1, r2) < ĉ1
/
ĉ2 < w1−α/2(n1, n2, r1, r2). (21.13c)

3 Suggested reading for this section: BAIN (1978, pp. 286 ff.), BAIN/ENGELHARDT (1991a) BILIKAM/

MOORE/PETRICK (1979), ENGELHARDT/BAIN (1979), MCCOOL (1970a), THOMAN/BAIN (1969).
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The percentiles wP (n1, n2, r2, r2) have to be found by Monte Carlo techniques. For the

case

n1 = n2 = n and r1 = r2 = n,

i.e., for uncensored samples of equal size, a table of

w∗
P := wP (n, n, n, n)

is provided by THOMAN/BAIN (1969) which is reproduced here as Tab. 21/2. Because this

table gives percentiles only of order P > 0.5, points w∗
P for P ≤ 0.5 can be found by using

the fact that w∗
P = 1

/
w∗

1−P ; see (21.12b).

The power of a size α test of H0 : c1 = c2 against HA : c1 = k c2, k > 1, having critical

region ĉ1
/
ĉ2 > w∗

1−α, is

Pr

[
ĉ1
ĉ2
> w∗

1−α

∣∣∣c1 = k c2

]
= Pr

[
ĉ1
/
c1

ĉ2
/
c2
>

1

k
w∗

1−α

]
, (21.14)

which can be obtained from Tab. 21/2 by interpolating for P . THOMAN/BAIN (1969) give

power curves for certain values of n and for α = 0.05 and 0.10. The procedure can, of

course, be generalized to a test of

H0 : c1 = k c2 against HA : c1 = k′ c2. (21.15a)

For the case when k < k′ the rejection interval becomes

ĉ1
/
ĉ2 > kw∗

1−α (21.15b)

with power function

Pr

[
ĉ1
ĉ2
> kw∗

1−α

∣∣∣c1 = k′ c2

]
= Pr

[
ĉ1
/
c1

ĉ2
/
c2
>
k

k′
w∗

1−α

]
. (21.15c)

The case k > 2 using MLEs is discussed by BILIKAM et al. (1979) applying a maximum

likelihood ratio test. Unfortunately, the critical values of a size α test for H0 : c1 = c2 =
. . . = ck against HA : ci 6= cj for at least one pair (i 6= j) have to be found by Monte Carlo

techniques depending on the individual sample sizes n1, . . . , nk and the individual failure

numbers r1, . . . , rk (type–II censoring). BILIKAM et al. give critical points for k = 2 and

certain combinations (n1, n2), both samples being uncensored.

Tests using the GLUEs of BAIN/ENGELHARDT (see Sect. 10.4.3) are presented in

• ENGELHARDT/BAIN (1979) for the case k = 2 and

• BAIN/ENGELHARDT (1991a) for the case k ≥ 2.

These tests require a lot of tables for calculating both the test statistics and the critical

values.
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Table 21/2: Percentage points w∗
P such that Pr

[
(ĉ1
/
c1)
/

(ĉ2
/
c2) ≤ w∗

P

]
= P

n
P

HHHHHHHHHHHHHHHH

0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.98

5 1.158 1.351 1.478 1.636 1.848 2.152 2.725 3.550
6 1.135 1.318 1.418 1.573 1.727 1.987 2.465 3.146
7 1.127 1.283 1.370 1.502 1.638 1.869 2.246 2.755
8 1.119 1.256 1.338 1.450 1.573 1.780 2.093 2.509
9 1.111 1.236 1.311 1.410 1.524 1.711 1.982 2.339
10 1.104 1.220 1.290 1.380 1.486 1.655 1.897 2.213
11 1.098 1.206 1.273 1.355 1.454 1.609 1.829 2.115
12 1.093 1.195 1.258 1.334 1.428 1.571 1.774 2.036
13 1.088 1.186 1.245 1.317 1.406 1.538 1.727 1.922
14 1.084 1.177 1.233 1.301 1.386 1.509 1.688 1.917
15 1.081 1.170 1.224 1.288 1.369 1.485 1.654 1.870
16 1.077 1.164 1.215 1.277 1.355 1.463 1.624 1.829
17 1.075 1.158 1.207 1.266 1.341 1.444 1.598 1.793
18 1.072 1.153 1.200 1.257 1.329 1.426 1.574 1.762
19 1.070 1.148 1.194 1.249 1.318 1.411 1.553 1.733
20 1.068 1.144 1.188 1.241 1.308 1.396 1.534 1.708
22 1.064 1.136 1.178 1.227 1.291 1.372 1.501 1.663
24 1.061 1.129 1.169 1.216 1.276 1.351 1.473 1.625
26 1.058 1.124 1.162 1.206 1.263 1.333 1.449 1.593
28 1.055 1.119 1.155 1.197 1.252 1.318 1.428 1.566
30 1.053 1.114 1.149 1.190 1.242 1.304 1.409 1.541
32 1.051 1.110 1.144 1.183 1.233 1.292 1.393 1.520
34 1.049 1.107 1.139 1.176 1.224 1.281 1.378 1.500
36 1.047 1.103 1.135 1.171 1.217 1.272 1.365 1.483
38 1.046 1.100 1.131 1.166 1.210 1.263 1.353 1.467
40 1.045 1.098 1.127 1.161 1.204 1.255 1.342 1.453
42 1.043 1.095 1.124 1.156 1.198 1.248 1.332 1.439
44 1.042 1.093 1.121 1.152 1.193 1.241 1.323 1.427
46 1.041 1.091 1.118 1.149 1.188 1.235 1.314 1.416
48 1.040 1.088 1.115 1.145 1.184 1.229 1.306 1.405
50 1.039 1.087 1.113 1.142 1.179 1.224 1.299 1.396
52 1.038 1.085 1.111 1.139 1.175 1.219 1.292 1.387
54 1.037 1.083 1.108 1.136 1.172 1.215 1.285 1.378
56 1.036 1.081 1.106 1.133 1.168 1.210 1.279 1.370
58 1.036 1.080 1.104 1.131 1.165 1.206 1.274 1.363
60 1.035 1.078 1.102 1.128 1.162 1.203 1.268 1.355
62 1.034 1.077 1.101 1.126 1.159 1.199 1.263 1.349
64 1.034 1.076 1.099 1.124 1.156 1.196 1.258 1.342
66 1.033 1.075 1.097 1.122 1.153 1.192 1.253 1.336
68 1.032 1.073 1.096 1.120 1.151 1.189 1.249 1.331
70 1.032 1.072 1.094 1.118 1.148 1.186 1.245 1.325
72 1.031 1.071 1.093 1.116 1.146 1.184 1.241 1.320
74 1.031 1.070 1.091 1.114 1.143 1.181 1.237 1.315
76 1.030 1.069 1.090 1.112 1.141 1.179 1.233 1.310
78 1.030 1.068 1.089 1.111 1.139 1.176 1.230 1.306
80 1.030 1.067 1.088 1.109 1.137 1.174 1.227 1.301
90 1.028 1.063 1.082 1.102 1.128 1.164 1.212 1.282
100 1.026 1.060 1.078 1.097 1.121 1.155 1.199 1.266
120 1.023 1.054 1.071 1.087 1.109 1.142 1.180 1.240

Source: THOMAN/BAIN (1969, p. 806) — Reprinted with permission from Technometrics. Copyright 1969 by

the American Statistical Association. All rights reserved.



634 21 WEIBULL parameter testing

21.1.2 Hypotheses concerning the scale parameter b4

We start with the one–sample test of a hypothesis on b using the MLE b̂ of b. It has

been shown in Chapter 11 that ĉ ln
(
ĉ
/
b
)

is a pivotal quantity whose distribution solely

depends on n when the sample is uncensored or on n and r when the sample is singly

type–II censored on the right.5 Percentage points uP of U = ĉ ln
(
b̂
/
b
)

are to be found

in Tab. 11/2, called ℓ2(n, P ), for complete samples. For censored sample with censoring

fraction r/n = 1, 0.75 and 0.5, we find percentage points wP of W =
√
n ĉ ln

(
b̂
/
b
)

in Tab. 11/8. Here we give another Tab. 21/3 of W =
√
n ĉ ln

(
b̂
/
b
)
, which contains

percentage points for n as small as 5.

Table 21/3: Percentage points of wP such that Pr
[√
n ĉ ln

(̂
b
/
b
)
≤ wP

]
= P

n r/n
P

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

0.01 0.05 0.10 0.90 0.95 0.99

5 1.00 −5.17 −2.85 −2.00 1.72 2.47 4.29
0.60 −29.71 −11.82 −7.54 1.44 2.26 5.12

10 1.00 −3.18 −2.08 −1.60 1.51 2.01 3.16
0.50 −14.76 −7.98 −5.49 1.40 1.90 3.02

20 1.00 −2.77 −1.94 −1.48 1.42 1.87 2.77
0.75 −4.02 −2.59 −1.99 1.39 1.83 2.75
0.50 −7.85 −4.98 −3.63 1.49 1.97 2.84

40 1.00 −2.58 −1.82 −1.41 1.39 1.80 2.62
0.75 −3.29 −2.25 −1.69 1.39 1.85 2.61
0.50 −6.21 −3.77 −2.91 1.63 2.16 2.96

80 1.00 −2.51 −1.76 −1.37 1.37 1.76 2.49
0.75 −3.11 −2.10 −1.61 1.43 1.85 2.65
0.50 −5.14 −3.45 −2.62 1.71 2.16 3.08

120 1.00 −2.44 −1.73 −1.35 1.35 1.74 2.48
0.75 −3.01 −2.01 −1.58 1.45 1.86 2.63
0.50 −4.50 −3.17 −2.44 1.75 2.27 3.13

∞ 1.00 −2.45 −1.73 −1.35 1.35 1.73 2.45
0.75 −2.69 −1.90 −1.48 1.48 1.90 2.69
0.50 −3.69 −2.61 −2.03 2.03 2.61 3.69

Source: BAIN/ENGELHARDT (1991a, p. 231) — Reprinted with permission from Statistical Analysis of Relia-

bility and Life–Testing Models. Copyright 1991 by Marcel Dekker, Inc. All rights reserved.

Assuming an uncensored sample6 we can state the following:7

4 Suggested reading for this section: BAIN (1978), BILLMAN/ANTLE/BAIN (1972), CHAUD-

HURI/CHANDRA (1989), ENGELHARDT/BAIN (1979), MCCOOL (1970a, 1977), PAUL/THIAGARAJAH

(1992), SCHAFER/ SHEFFIELD (1976), THOMAN/BAIN (1969), THOMAN/BAIN/ANTLE (1969).

5 The results are also valid for type–I censoring when interpreted as conditional on the number of realized

failures in (0, T ].
6 For a right–censored sample we have to use wP instead of uP , either from Tab. 11/8 or from Tab. 21/3.

7 Notice that we also have to calculate the MLE bc of c.
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1. A size α test of

H0 : b ≤ b0 against HA : b > b0 (21.16a)

is to reject H0 if

b̂ > b0 exp
(u1−α

ĉ

)
. (21.16b)

The power of this test at b = b∗ is

Pr
[
b̂ > b0 exp

(u1−α
ĉ

) ∣∣∣b∗
]

= Pr

[
U > u1−α + ĉ ln

(
b0
b∗

)]
. (21.16c)

The probabilities in (21.16c) may be obtained by interpolating for P in Tab. 11/2.

2. A size α test of

H0 : b ≥ b0 against HA : b < b0 (21.17a)

is to reject H0 if

b̂ < b0 exp
(uα
ĉ

)
(21.17b)

with power

Pr
[
b̂ < b0 exp

(uα
ĉ

) ∣∣∣b∗
]

= Pr

[
U < uα + ĉ ln

(
b0
b∗

)]
. (21.17c)

3. A size α test of

H0 : b = b0 against HA : b 6= b0 (21.18a)

is to reject H0 if

b̂ < b0 exp
(uα/2

ĉ

)
or b̂ > b0 exp

(u1−α/2
ĉ

)
(21.18b)

with power

Pr
[
b̂ < b0 exp

(uα/2
ĉ

) ∣∣∣b∗
]

+ Pr
[
b̂ > b0 exp

(u1−α/2
ĉ

) ∣∣∣b∗
]

=

Pr

[
U < uα/2 + ĉ ln

(
b0
b∗

)]
+ Pr

[
U > u1−α/2 + ĉ ln

(
b0
b∗

)]
.





(21.18c)

For n→ ∞ and limn→∞ r
/
n = p, we may use the following normal approximation; see

ENGELHARDT/BAIN (1991a, p. 220):

T := ĉ

√
n

c11
ln

(
b̂

b

)
asym∼ No(0, 1), (21.19a)
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where c11 depends on p and is given in Tab. 19/3. Taking the size α test of H0 : b ≤ b0
against HA : b > b0 as an example, the critical region is τ1−α, being the (1 − α) percentile

of the standard normal distribution:

ln b̂ > ln b0 +
τ1−α
ĉ

√
c11
n

(21.19b)

with power

Pr

[
ĉ

√
n

c11
ln

(
b̂

b0

)
> τ1−α

∣∣∣b∗
]

= Pr

[
T > τ1−α + ĉ

√
n

c11
ln

(
b0
b∗

)]
. (21.19c)

Approximating results for the other two types of tests follow easily.

Example 21/3: Testing a hypothesis on b using dataset #1

Dataset #1 in Tab. 9/2 is an uncensored sample of size n = 20 from a two–parameter WEIBULL

distribution with b = 100 and c = 2.5. The MLEs are b̂ = 99.2079 and ĉ = 2.5957. We want to

test H0 : b ≤ 80 against HA : b > 80 with α = 0.05. The critical region according to (21.16b) is

b̂ > b0 exp
(u0.95

ĉ

)
=⇒ b̂ > 80 exp

(
0.421

2.5957

)
= 94.09.

As b̂ = 99.2079 > 94.09, we have to reject H0.

Applying the normal approximation to this test, we have — according to (21.19b) — the critical

region

ln b̂ > ln b0 +
τ1−α

ĉ

√
c11
n

=⇒ ln b̂ > ln 80 +
1.645

2.5957

√
1.1087

20
≈ 4.53.

As ln b̂ ≈ 4.60 > 4.53 the approximate procedure also leads to a rejection of H0.

The power function of the exact test (21.16c) as well as that of the approximate test (21.19c) are

depicted in Fig. 21/2. The approximation overestimates the true power. This figure also shows

another pair of power functions that result if we assume a sample of size n = 120, the MLEs b̂ and

ĉ being the same as above. The power increases and the approximating is nearly perfect.

Two–sample tests of b1 = b2 from two WEIBULL distributions based on MLEs have been

proposed by THOMAN/BAIN (1969) and SCHAFER/SHEFFIELD (1976). Both approaches

require the equality of the two shape parameters, i.e., c1 = c2, so that before applying the

following results one should execute a pretest of H0 : c1 = c2 against HA : c1 6= c2. The

test of H0 : b1 = b2, c1 = c2 versus HA : b1 = k b2, c1 = c2, k > 1 is equivalent to the

more general problem of testing H0 : b1 = k′ b2, c = c2 versus HA : b1 = k′′ b2, c1 = c2.

For example, under the null hypothesis the random variable W = k′X2 has a WEIBULL

distribution with shape parameter cW = c2 and scale parameter bW = k′ b2. Thus, the

hypothesis b1 = k′ b2, c1 = c2 is equivalent to b1 = bW , c1 = cW . The data X2i must be

multiplied by k′ and the test carried out as described below.
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Figure 21/2: Exact and approximate power functions of testing H0 : b ≤ 80 against HA :
b > 80 with α = 0.05 (uncensored sample)

The tests presented in THOMAN/BAIN (1969) and SCHAFER/SHEFFIELD (1976) require

equal sample sizes n1 = n2 = n and no censoring.8 In Chapter 11 it has been shown that

c ln
(
b̂
/
b
)

has the same distribution as ln b∗ and that ĉ ln
(
b̂
/
b
)

has the same distribution as

ĉ∗ ln b∗, ĉ∗ and b̂∗ being the MLEs when sampling from the special WEIBULL distribution

having shape and scale parameters both equal to unity, i.e., from the reduced exponential

distribution. For the case of two independent samples, it follows similarly that

c
[
ln
(
b̂1
/
b1
)
− ln

(
b̂2
/
b2
)
− (1

/
c) lnM

]

has the same distribution as
ln b̂∗1 − ln b̂∗2 − lnM

if c1 = c2 = c, and also that

Z(M) =
[
(ĉ1 + ĉ2)

/
2
] [

ln
(
b̂1
/
b1
)
− ln

(
b̂2
/
b2
)
− (1

/
c) lnM

]
(21.20a)

has the same distribution as

Z∗(M) =
[
(ĉ∗1 + ĉ∗2)

/
2
] [

ln b̂∗1 − ln b̂∗2 − lnM
]

(21.20b)

if c1 = c2 = c. Let GM (·) be the common CDF of Z(M) and Z∗(M). We will denote

Z(M) by Z when M = 1.

8 It is no restriction that the two samples are uncensored and assumed equal so far as methodology is

concerned, but up to now there exist only tabulated percentage points of the test statistic for this special

case.



638 21 WEIBULL parameter testing

A test of H0 : b1 = b2, c1 = c2 against HA : b1 = k b2, c1 = c2, k > 1 can now be

carried out by using the fact that

Pr

[
ĉ1 + ĉ2

2

(
ln b̂1 − ln b̂2

)
< z
∣∣H0

]
= G1(z). (21.21a)

H0 is rejected with size α when

ĉ1 + ĉ2
2

(
ln b̂1 − ln b̂2

)
> z1−α, (21.21b)

where z1−α is such that G1(z1−α) = 1−α. Percentage points z1−α have been found using

Monte Carlo techniques by THOMAN/BAIN (1969) and are reproduced in Tab. 21/4. The

power of this test can also be expressed in terms of GM :

Pr

[
ĉ1 + ĉ2

2

(
ln b̂1 − ln b̂2

)
> z1−α

∣∣HA

]
= 1 −Gkc(z1−α). (21.21c)

The probability on the left–hand side of (21.21c) clearly is

Pr

[
ĉ1 + ĉ2

2

{
ln

(
b̂1
b1

)
− ln

(
b̂2
b2

)
+ ln k

}
> z1−α

]

and

ĉ1 + ĉ2
2

{
ln

(
b̂1
b1

)
− ln

(
b̂2
b2

)
+ ln k

}
=
ĉ1 + ĉ2

2

{
ln

(
b̂1
b1

)
− ln

(
b̂2
b2

)
+

1

c
ln kc

}
.

The distribution of the latter random variable does not depend on b1 or b2, but only depends

on c through kc and its CDF is Gkc(z), which must be found by Monte Carlo techniques.

Up to now we have assumed that c1 = c2. However, as THOMAN/BAIN remarked, one

may apply the percentage points in Tab. 21/4 to give conservative tests when c1 6= c2. For

example, consider the test of H0 : b1 ≥ b2 against HA : b1 < b2 and we have c1 ≤ c2. The

test procedure to reject H0 if
ĉ1 + ĉ2

2
ln

(
b̂1

b̂2

)
< zα (21.22a)

is conservative; i.e., its probability of a type–I error will not exceed α. This follows since,

under H0:

Pr

[
ĉ1 + ĉ2

2
ln

(
b̂1

b̂2

)
< zα

]
≤ Pr

[
ĉ1 + ĉ2

2

{
ln

(
b̂1
b1

)
− ln

(
b̂2
b2

)}
< zα

]

≤ Pr

[
ĉ1
/
c1 + ĉ2

/
c2

2

{
c1 ln

(
b̂1
b1

)
− c2 ln

(
b̂2
b2

)}
<zα

]

= G1(zα) = α. (21.22b)

In a similar manner it can be seen that if c1 ≥ c2 in the above test then the power of the

test of H0 : b1 ≥ b2 against HA : b1 = k b2 with k < 1 will be at least the power of the

corresponding tests with c1 = c2, i.e. G(1/k)c1(zα).
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Table 21/4: Percentage points zP such that Pr

[
ĉ1 + ĉ2

2

(
ln b̂1 − ln b̂2

)
≤ zP

]
= P

n
P

HHHHHHHHHHHHHHHHHHH

0.60 0.70 0.75 0.80 0.85 0.90 0.95 0.98

5 0.228 0.476 0.608 0.777 0.960 1.226 1.670 2.242
6 0.190 0.397 0.522 0.642 0.821 1.050 1.404 1.840
7 0.164 0.351 0.461 0.573 0.726 0.918 1.215 1.592
8 0.148 0.320 0.415 0.521 0.658 0.825 1.086 1.421
9 0.136 0.296 0.383 0.481 0.605 0.757 0.992 1.294
10 0.127 0.277 0.356 0.449 0.563 0.704 0.918 1.195
11 0.120 0.261 0.336 0.423 0.528 0.661 0.860 1.115
12 0.115 0.248 0.318 0.401 0.499 0.625 0.811 1.049
13 0.110 0.237 0.303 0.383 0.474 0.594 0.770 0.993
14 0.106 0.227 0.290 0.366 0.453 0.567 0.734 0.945
15 0.103 0.218 0.279 0.352 0.434 0.544 0.704 0.904
16 0.099 0.210 0.269 0.339 0.417 0.523 0.676 0.867
17 0.096 0.203 0.260 0.328 0.403 0.505 0.654 0.834
18 0.094 0.197 0.251 0.317 0.389 0.488 0.631 0.805
19 0.091 0.191 0.244 0.308 0.377 0.473 0.611 0.779
20 0.089 0.186 0.237 0.299 0.366 0.459 0.593 0.755
22 0.085 0.176 0.225 0.284 0.347 0.435 0.561 0.712
24 0.082 0.168 0.215 0.271 0.330 0.414 0.534 0.677
26 0.079 0.161 0.206 0.259 0.316 0.396 0.510 0.646
28 0.076 0.154 0.198 0.249 0.303 0.380 0.490 0.619
30 0.073 0.149 0.191 0.240 0.292 0.366 0.472 0.595
32 0.071 0.144 0.185 0.232 0.282 0.354 0.455 0.574
34 0.069 0.139 0.179 0.225 0.273 0.342 0.441 0.555
36 0.067 0.135 0.174 0.218 0.265 0.332 0.427 0.537
38 0.065 0.131 0.169 0.212 0.258 0.323 0.415 0.522
40 0.064 0.127 0.165 0.206 0.251 0.314 0.404 0.507
42 0.062 0.124 0.160 0.201 0.245 0.306 0.394 0.494
44 0.061 0.121 0.157 0.196 0.239 0.298 0.384 0.482
46 0.059 0.118 0.153 0.192 0.234 0.292 0.376 0.470
48 0.058 0.115 0.150 0.188 0.229 0.285 0.367 0.460
50 0.057 0.113 0.147 0.184 0.224 0.279 0.360 0.450
52 0.056 0.110 0.144 0.180 0.220 0.273 0.353 0.440
54 0.055 0.108 0.141 0.176 0.215 0.268 0.346 0.432
56 0.054 0.106 0.138 0.173 0.212 0.263 0.340 0.423
58 0.053 0.104 0.136 0.170 0.208 0.258 0.334 0.416
60 0.052 0.102 0.134 0.167 0.204 0.254 0.328 0.408
62 0.051 0.100 0.131 0.164 0.201 0.250 0.323 0.402
64 0.050 0.099 0.129 0.162 0.198 0.246 0.317 0.395
66 0.049 0.097 0.127 0.159 0.195 0.242 0.313 0.389
68 0.049 0.095 0.125 0.157 0.192 0.238 0.308 0.383
70 0.048 0.094 0.123 0.154 0.190 0.235 0.304 0.377
72 0.047 0.092 0.122 0.152 0.187 0.231 0.299 0.372
74 0.046 0.091 0.120 0.150 0.184 0.228 0.295 0.366
76 0.046 0.090 0.118 0.148 0.182 0.225 0.291 0.361
78 0.045 0.089 0.117 0.146 0.180 0.222 0.288 0.357
80 0.045 0.087 0.115 0.144 0.178 0.219 0.284 0.352
90 0.042 0.082 0.109 0.136 0.168 0.207 0.268 0.332
100 0.040 0.077 0.103 0.128 0.160 0.196 0.255 0.315
120 0.036 0.070 0.094 0.117 0.147 0.179 0.233 0.287

Source: THOMAN/BAIN (1969, p. 810) — Reprinted with permission from Technometrics. Copyright 1969 by

the American Statistical Association. All rights reserved.
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SCHAFER/SHEFFIELD (1976) did not use the MLEs ĉ1 and ĉ2 in the first and second

sample, respectively, but they used a pooled estimator ̂̂c which results as the solution of

2n

̂̂c
− n





n∑
i=1

X
bbc
1i lnX1i

n∑
i=1

X
bbc
1i

+

n∑
i=1

X
bbc
2i lnX2i

n∑
i=1

X
bbc
2i





+

n∑

i=1

lnX1i +

n∑

i=1

lnX2i = 0. (21.23a)

̂̂c is taken instead of (ĉ1 + ĉ2)
/
2 in the above formulas where we also have to substitute b̂1

and b̂2 by

̂̂
b1 =

(
n∑

i=1

X
bbc
1i

/
n

)1
/
bbc

and
̂̂
b2 =

(
n∑

i=1

X
bbc
2i

/
n

)1
/
bbc

, (21.23b)

respectively. Of course, the percentage points in Tab. 21/4 do not apply to the test statistic

̂̂c
(
ln
̂̂
b1 + ln

̂̂
b2
)
.

SCHAFER/SHEFFIELD (1976) provided a table of the matching percentiles. The

SCHAFER/SHEFFIELD approach dominates the THOMAN/BAIN approach insofar as it has

a little more power.

Readers interested in a k–sample test of H0 : b1 = b2 = . . . = bk against HA : bi 6= bj for

at least one pair of indices (i, j), i 6= j, are referred to

• MCCOOL (1977) who develops a procedure in analogy to the one–way analysis of

variance using certain ratios of MLEs of the common but unknown shape parameters;

• CHAUDHURI/CHANDRA (1989) who also present an ANOVA test, but based on sam-

ple quantiles;

• PAUL/THIAGARAJAH (1992) who compare the performance of several test statistics.

In all three papers the k WEIBULL populations are assumed to have a common but unknown

shape parameter.

Readers who prefer GLUEs over MLEs are referred to BAIN (1978), ENGELHARDT/BAIN

(1979) and BAIN/ENGELHARDT (1991a) where the one–sample test and the k–sample test

(k ≥ 2) are treated.

21.1.3 Hypotheses concerning the location parameter a9

Perhaps the most interesting hypothesis concerning the location parameter a is whether

a = 0. MCCOOL (1998) has suggested an elegant procedure to test H0 : a = 0 versus

9 Suggested reading for this section: DUBEY (1966a), MCCOOL (1998), SCHAFER (1975).
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HA : a > 0. This procedure uses two MLEs of the shape parameter:

• one is based on all r, r ≤ n, order statistics and

• one is based just on the first r1 < r early order statistics.

The idea behind this approach is readily grasped in the context of graphical estimation (see

Sect. 9.3).

For the two–parameter WEIBULL distribution it is readily shown that

y(x) := ln
{

ln
[
1
/(

1 − F (x)
)]}

= c lnx− c ln b. (21.24a)

Thus, in this case y(x) is a linear function of lnx having slope c and intercept −c ln b. For

the three–parameter WEIBULL distribution we have

y(x) := ln
{

ln
[
1
/(

1 − F (x)
)]}

= c ln(x− a) − c ln b, x ≥ a. (21.24b)

The slope of a plot of y(x) against lnx in the three–parameter case is

dy(x)

d lnx
=

c x

x− a
, x ≥ a. (21.24c)

This slope is infinite at x = a and decreases monotonically thereafter with x to an asymp-

tote of c.

Let x1:n ≤ x2:n ≤ . . . ≤ xn:n denote the ordered observations in a sample drawn from a

two– or three–parameter WEIBULL distribution. An estimate ŷ(xi:n) may be computed by

substituting F (x) in (21.24a,b) with one of the plotting positions of Tab. 9/2. If the sample

is drawn from a two–parameter distribution, ŷ(xi:n) will tend to plot against lnxi:n as a

straight line with slope c. If a > 0, i.e., if the population is a three–parameter distribution,

then ŷ(xi:n) will tend to be a concave function of lnxi:n approaching a constant slope c for

large xi:n–values.

If the data were regarded as coming from a two–parameter WEIBULL distribution, a graph-

ical estimate of the shape parameter, ĉA, could be found as the slope of the straight line that

best fits all the sampled data. If only a subset comprising some number r1 of the smaller

ordered values were used in graphically estimating the shape parameter, the estimate ĉL
would be obtained. For three-parameter WEIBULL data, ĉL will tend to exceed ĉA. On

the other hand, when the sample is drawn from a two–parameter WEIBULL distribution

(a = 0), ĉL and ĉA will be comparable.

The MLE of c is the solution of

1

ĉ
+

1

r

r∑

i=1

lnXi:n −

r∑
i=1

Xbci:n lnXi:n + (n− r)Xbcr:n lnXr:n

r∑
i=1

Xbci:n + (n− r)Xbcr:n

= 0. (21.25)

It is well known that ĉ
/
c is a pivotal function having a distribution which depends on only

n and r.
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Denoting the solution of (21.25) as ĉA and the solution of (21.25) with censoring at r1 < r
as ĉL, the distribution of

W =
ĉL
ĉA

(21.26a)

will depend only on n, r1 and r, when the underlying distribution is WEIBULL with a = 0.

When the underlying distribution is WEIBULL with a > 0, the mean value of ĉL will exceed

the mean value of ĉA. MCCOOL (1998) determined the percentiles of W by Monte Carlo

sampling for specified r1, r and n (see Tab. 21/5). One may reject H0 : a = 0 against

HA : a > 0 at level α,10 if
ĉL
ĉA

> w1−α. (21.26b)

In Tab. 21/5 the value of r1 has been selected to give maximum power in detecting a non–

zero location parameter for a specified n and r. MCCOOL (1998) also gave the power of

this test as again found by Monte Carlo sampling.

A more general test concerning the contents of H0 and HA is given by SCHAFER (1975),

but it is restrictive in the sense that the shape parameter c must be known. The hypotheses

are H0 : a = a0 and HA : a = a1, a1 6= a0. The test statistic is

S =
Xa:n − a0

Xb:n −Xa:n
, a < b. (21.27a)

H0 cannot be rejected for k1 < S < k2, and the critical values k1 and k2 are chosen so that

1 − α =

k2∫

k1

f(s) ds. (21.27b)

The DF of S, f(s), is given by SCHAFER (1975) as

f(s) = C
b−a−1∑

j=0

a−1∑

i=0

(
b−a−1

j

)(
a−1

i

)
(−1)i+j

× c
(
s−1 + 1

)c−1

s2
[
(b−a−j+i) + (s−1+1)c (n−b+j+1)

]2 (21.27c)

with

C =
n!

(a− 1)! (b − a− 1)! (n − b)!
.

More tests for the location parameter can be found in the following section and in

Sect. 21.2.1.

10 For a test of H0 : a = 0, against HA : a < 0, the procedure has to be modified because under HA bcL
will fall short of bcA.
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Table 21/5: Percentage points wP such that Pr
(
ĉL
/
ĉA ≤ wP

)
= P

n r1 r w0.50 w0.90 w0.95

10 5 6 0.988 1.488 1.789
10 5 7 1.035 1.730 2.132
10 5 8 1.077 1.902 2.352
10 5 9 1.116 2.022 2.517
10 5 10 1.138 2.126 2.683
15 5 10 1.141 2.094 2.579
15 5 15 1.223 2.408 3.055
20 5 6 0.990 1.498 1.759
20 5 10 1.137 2.073 2.582
20 5 12 1.172 2.198 2.784
20 5 15 1.210 2.345 2.974
20 5 18 1.238 2.417 3.135
20 5 20 1.254 2.491 3.188
25 5 10 1.146 2.118 2.622
25 5 14 1.199 2.321 2.924
25 5 15 1.211 2.238 2.850
25 5 18 1.237 2.460 3.087
25 5 20 1.250 2.515 3.148
25 5 25 1.278 2.540 3.278
30 5 6 0.990 1.467 1.734
30 5 10 1.139 2.079 2.602
30 5 15 1.213 2.340 2.915
30 5 20 1.256 2.457 3.119
30 5 25 1.278 2.544 3.224
30 5 30 1.294 2.600 3.279
40 7 15 1.098 1.755 2.074
40 7 20 1.136 1.888 2.240
40 7 25 1.157 1.937 2.299
40 7 30 1.172 1.984 2.364
40 7 40 1.198 2.039 2.430
50 7 25 1.152 1.941 2.292
50 7 30 1.165 1.995 2.342
50 7 40 1.182 2.049 2.420
50 7 50 1.191 2.070 2.466
60 7 30 1.167 2.014 2.406
60 7 40 1.183 2.062 2.470
60 7 50 1.199 2.097 2.527
60 7 60 1.203 2.128 2.564
80 9 40 1.122 1.771 2.054
80 9 50 1.133 1.793 2.091
80 9 60 1.140 1.824 2.108
80 9 70 1.146 1.844 2.121
80 9 80 1.150 1.850 2.143
100 9 50 1.132 1.787 2.087
100 9 60 1.140 1.809 2.101
100 9 70 1.147 1.827 2.129
100 9 80 1.151 1.837 2.152
100 9 90 1.152 1.840 2.146
100 9 100 1.155 1.846 2.173

Source: MCCOOL (1998, p. 121) — Reprinted with permission from Journal of Quality Technology. Copyright

1998 by the American Society for Quality Control. All rights reserved.
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21.1.4 Hypotheses concerning two or more parameters

DUBEY (1966a) has compiled a number of hypotheses concerning the parameters a, θ (=
bc) and c and several statistics which are suited for their testing. The null hypotheses are as

follows:

1. H
(1)
0 : a = a0, θ = θ0, c = c0;

2. H
(2)
0 : a = a0, θ = θ0 and c known;

3. H
(3)
0 : a = a0, c = c0 and θ known;

4. H
(4)
0 : θ = θ0, c = c0 and a known;

5. H
(5)
0 : a = a0, θ and c known;

6. H
(6)
0 : θ = θ0, a and c known;

7. H
(7)
0 : c = c0, a and θ known;

8. H
(8)
0 : a = a0, c = c0 and θ unknown;

9. H
(9)
0 : a = a0, c known and θ unknown;

10. H
(10)
0 : equality of k (k ≥ 2) WEIBULL populations.

The proposed statistics and their distributions are, where r ≤ n and 1 ≤ a < b ≤ n:

S1 =
2

θ0

[
r∑

i=1

(
Xi:n − a0

)c0 + (n− r)
(
Xr:n − a0

)c0
]

∼ χ2(2 r); (21.28a)

S∗
1 =

2

θ0

n∑

i=1

(
Xi:n − a0

)c0 ∼ χ2(2n); (21.28b)

S2 =





2

θ0

{
b−1∑
i=a+1

[(
Xi:n − a0

)c0 −
(
Xa:n − a0

)c0] +

(n− b+ 1)
[(
Xb:n − a0

)c0 −
(
Xa:n − a0

)c0]} with S1 ∼ χ2(2 (b − a));





(21.29a)

S∗
2 =

2

θ0

{
n∑

i=2

[(
Xi:n − a0

)c0 +
(
X1:n − a0

)c0]
}

∼ χ2(2 (n − 1)); (21.29b)

S3=
n−b+1

b− a

[
exp

{
1

θ0

[(
Xb:n−a0

)c0−
(
Xa:n−a0

)c0]
}
−1

]
∼F (2(b−a), 2(n−b+1));

(21.30)

S4 =
n− a+ 1

a

[
exp

{
1

θ0

(
Xa:n − a0

)c0
}
− 1

]
∼ F (2 a, 2 (n − a+ 1)); (21.31)
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S5 =
n (b− 1)

(
X1:n − a0

)c0
b−1∑
i=2

[(
Xi:n−a0

)c0−
(
X1:n−a0

)c0]+(n−b+1)
[(
Xb:n−a0

)c0−
(
X1:n−a0

)c0]

∼F (2, 2(b−1)); (21.32)

S6 =
n (b− a)

(
Xa:n − a0

)c0
b−1∑
i=a+1

[(
Xi:n−a0

)c0−
(
Xa:n−a0

)c0]+(n−b+1)
[(
Xb:n−a0

)c0−
(
Xa:n−a0

)c0]
:

(21.33a)

f(s6)=
(n− 1)!

(a− 1)! (n − a)!

a−1∑

k=0

(
a− 1

k

)
(−1)k

[
1 +

n+ k − a+ 1

n (b− a)
s6

]a−b−1

, s6 > 0;

(21.33b)

S7 =

(
Xa:n − a0

)c0
(
Xb:n − a0

)c0 −
(
Xa:n − a0

)c0 , (21.34a)

f(s7) =





n!

(a− 1)!(b− a− 1)!(n − b)!

a−1∑

k=0

b−a−1∑

m=0

(
a− 1

k

)
×

(
b− a− 1

m

)
(−1)k+m

[
(n− a+ k + 1)s7 + (n− b+m+ 1)

]2 , s7 > 0;





(21.34b)

S8 =
k∑

j=1

2

θ0,j

{ rj∑

i=1

(
Xi:nj− a0,j

)c0,j + (nj−rj)
(
Xrj :nj−a0,j

)c0,j

}
∼χ2


2

k∑

j=1

rj


 ,

(21.35)

where X1:nj , . . . ,Xrj :nj are the first rj, (rj ≤ nj) ordered observations from the

j−th (j = 1, . . . , k) WEIBULL distribution;

S9 =





k∑
j=1

{
2

θ0,j

bj−1∑
i=aj+1

[(
Xi:nj − a0,j

)c0,j −
(
Xaj :nj − a0,j

)c0,j
]

+

(nj−bj + 1)
[(
Xbj :nj

−a0,j

)c0,j −
(
Xaj :nj−a0,j

)c0,j
]
}

∼ χ2

(
2

k∑
j=1

(bj − aj)

)

where 1 ≤ aj < bj ≤ nj ; j = 1, . . . , k.





(21.36)

The statistics S1, S
∗
1 , S2, S

∗
2 , S3 and S4 can be used to test the hypotheses H

(1)
0 through

H
(7)
0 . The proper choice of test functions based on these statistics depends on the type of
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data available. Because these statistics are non–negative, it seems reasonable to construct

a critical region for the rejection of H
(j)
0 ; j = 1, . . . , 7, in the upper tail of the distribution

unless other considerations suggest otherwise. Similarly, the statistics S5, S6 and S7 can

be used to test H
(8)
0 and H

(9)
0 . The statistics S8 and S9 can be used to test H

(10)
0 by assuming

a0,j, θ0,j and c0,j to be a0, θ0 and c0, respectively, for k WEIBULL distributions.

21.2 Testing hypotheses on functional parameters

Sometimes we are not interested in knowledge and inference of location, scale and shape

parameters per se, but in some other quantities which depend on these parameters. Most

important among these quantities are the mean, the variance, the reliability and the per-

centile.

21.2.1 Hypotheses concerning the mean µ

The mean of the three–parameter WEIBULL distribution is

µ = a+ bΓ

(
1 +

1

c

)
. (21.37)

A test on µ when b and c are known is equivalent to a test on the location parameter a.

For definiteness consider the one–sided test of H0 : a = a0 against HA : a > a0. Because

X1:n is the MLE of a and because X1:n is a sufficient statistic for a when c = 1 we decide

to base the test on X1:n. This is a very easy test to perform since the statistic

Z := n

(
X1:n − a0

b

)c
(21.38a)

is a reduced exponential variable with DF f(z) = z exp(−z). Thus, a size α test is to

reject H0 : a = a0 in favor of HA : a > a0 when

Z > − lnα. (21.38b)

The power of this one–sided test is

Pr
(
Z > − lnα

∣∣ a
)

= exp

{[
a0 − a

b
+

(− lnα

n

)1/c
]c}

. (21.38c)

Critical regions and power functions for other hypotheses based on Z follow easily. As

BAIN/THOMAN (1968) state that a test using Z when n is large performs better than a text

based Xn in the sense of having higher relative efficiency when c < 2.

A method based on an appropriate single order statistic can also be used performing tests

concerning µ when c is known; see BAIN/THOMAN (1968). The mean of the WEIBULL

distribution is a known percentile when c is known, not depending on a and b:

F (µ) = 1 − exp
{
−
[
Γ(1 + 1/c)

]c}
. (21.39)
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Thus, the usual method of obtaining confidence intervals or tests for percentiles (see

Sect. 21.2.4) can be applied. We have

Pr
(
Xr:n < µ

)
= B

[
F (µ); r, n − r + 1

]
, (21.40a)

where B[x; p, q] is the CDF of the beta distribution given by

B[x; p, q] =
Γ(p+ q)

Γ(p) Γ(q)

x∫

0

up−1 (1 − u)q−1du

= 1 −
p−1∑

i=0

(
p+ q − 1

i

)
xi (1 − x)p+q−1−i, for integer p and q. (21.40b)

Let BP (p, q) denote the percentile of order P , then Xr:n is a 100P% lower confidence

limit for µ if r and n are chosen so that BP (r, n − r + 1) = F (µ). In terms of a binomial

CDF, r must be chosen so that

r−1∑

i=1

(
n

i

)[
F (µ)

]i [
1 − F (µ)

]n−i
= 1 − P. (21.40c)

Because r only assumes integer values, the exact level will usually not be obtained. In

order to have a confidence level of at least P , one chooses r as the smallest integer so that

r−1∑

i=1

(
n

i

)[
F (µ)

]i [
1 − F (µ)

]n−i ≥ 1 − P. (21.40d)

In terms of hypothesis testing suppose the null hypothesis H0 : µ = µ0 is to be tested, at

significance level α, against HA : µ < µ0. H0 should be rejected if Xr∗:n < µ0, where r∗

is chosen so that Xr∗:n is a lower confidence limit for µ with confidence at least 1 − α.

When n is large and b and c are unknown, hypotheses on µ can be tested using the

conventional t–test.

21.2.2 Hypotheses concerning the variance σ2

The variance of the three–parameter as well as of the two–parameter WEIBULL distribution

is

σ2 = b2
[
Γ

(
1 +

2

c

)
− Γ2

(
1

c

)]
. (21.41)

So tests concerning σ2 can be done using the procedures described in Sect. 21.1.2.

We consider the test of H0 : b = b0 against HA : b > b0 where a is unknown. This is

comparable to a test on σ with µ unknown. We introduce the following two test statistics,

assuming c is known:

W = 2

n∑

i=1

(
Xi −X1:n

b0

)c
, (21.42a)

U = 2

n∑

i=1

(
Xi − a

b0

)c
. (21.42b)
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If a were known, the best test of H0 against HA would be to reject H0 for large values of

U . In particular, a size α test in this case would be to reject H0 if

U > χ2
2n,α. (21.42c)

Since W ≤ U , a conservative test is given by rejecting H0 if W > χ2
2n,α when a is

unknown. As an example of conservativeness, the proper value when c = 1 is χ2
2(n−1),α.

BAIN/THOMAN (1968) state that the conservativeness will increase as c increases.

21.2.3 Hypotheses on the reliabilityR(x)11

In Sect. 19.2.2 we have shown how to construct confidence intervals for the reliability R(x)
when it has been estimated as

R̂(x) = exp

{
−
(
x

b̂

)bc}
,

where b̂ and ĉ are the MLEs of b and c, respectively, so R̂(x) is MLE too. Using the

following (1 − α) level confidence intervals belonging to R̂(x)

Pr
[
R(x) ≥ R̂ℓ,α(x)

]
= 1 − α, (21.43a)

Pr
[
R(x) ≤ R̂u,1−α(x)

]
= 1 − α, (21.43b)

Pr
[
R̂ℓ,α/2(x) ≤ R(x) ≤ R̂u,1−α/2(x)

]
= 1 − α, (21.43c)

we have to reject

• H0 : R(x) ≥ R0(x) against HA : R(x) < R0(x) when R0(x) < R̂ℓ,α(x),

• H0 : R(x) ≤ R0(x) against HA : R(x) > R0(x) when R0(x) > R̂u,1−α(x),

• H0 : R(x) = R0(x) against HA : R(x) 6= R0(x) when R0(x) < R̂ℓ,α/2(x)

or R0(x) > R̂u,1−α/2(x),

the level of significance being α.

Example 21/4: Testing H0 : R(25) ≥ R0(25) = 0.90 against HA : R(25) < R0(25) =
0.90 using dataset #1 (α = 0.05)

The MLEs of b and c belonging to dataset #1 (Tab. 9/2) are

b̂ = 99.2079 and ĉ = 2.5957

giving the point estimate of R(25) as

R̂(25) = exp

{
−
(

25

99.2079

)2.5957
}

= 0.9724.

11 Suggested reading for this section: BAIN/ENGELHARDT (1991a, pp. 232 ff.), MOORE/HARTER/

ANTOON (1981).
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From Tab. 19/1 we find by linear interpolation (n = 20): R̂ℓ,0.05(25) = 0.9093, Thus

R0(25) = 0.90 < R̂ℓ,0.05(25) = 0.9093,

and we have to reject H0 : R(25) ≥ 0.90.

21.2.4 Hypotheses concerning the percentile xP
12

For testing hypotheses on xP we may either use the confidence interval given in Sect. 19.3.2

or construct critical regions. Here, we will follow the second way, assuming an uncensored

sample and MLEs.

In (19.29) we have introduced the random quantity

UR =
√
n
[
− ln

{
− ln R̂(x)

}
+ ln

{
− lnR(x)

}]

which may be expressed in the following form to be used for constructing confidence in-

tervals or testing hypotheses on xP :

Uγ = ĉ
√
n ln

{
x̂1−γ
x1−γ

}
, 1 − γ = P. (21.44a)

Let Fγ(·) denote the CDF of Uγ , so that

Fγ
[
u1−α(γ)

]
= 1 − α. (21.44b)

Tab. 19/4a and Tab. 19/4b give percentage points u0.95(γ) and u0.05(γ), respectively. The

power of the following tests can also be expressed in terms of this family of distributions.

A size α test of

• H0 : x1−γ ≤ x
(0)
1−γ against HA : x1−γ > x

(0)
1−γ is to reject H0 if

√
n ĉ ln

{
x̂1−γ

x
(0)
1−γ

}
> u1−α(γ), (21.45a)

• H0 : x1−γ ≥ x
(0)
1−γ against HA : x1−γ < x

(0)
1−γ is to reject H0 if

√
n ĉ ln

{
x̂1−γ

x
(0)
1−γ

}
< uα(γ), (21.45b)

• H0 : x1−γ = x
(0)
1−γ against HA : x1−γ 6= x

(0)
1−γ is to reject H0 if

√
n ĉ ln

{
x̂1−γ

x
(0)
1−γ

}
< uα/2(γ) or

√
n ĉ ln

{
x̂1−γ

x
(0)
1−γ

}
> u1−α/2(γ). (21.45c)

12 Suggested reading for this section: BAIN/ENGELHARDT (1991a, pp. 229 ff.), MCCOOL (1970a).
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For example, the power of the test (21.45a) when an alternative value x∗1−γ is assumed true

may be expressed as a function of
(
x

(0)
1−γ

/
x∗1−γ

)c
and is given in BAIN (1978, p. 245) as

Pr
[
reject H0 : x1−γ ≤ x

(0)
1−γ

∣∣ x1−γ = x∗1−γ
]

= 1 − FQ

[
c ln

{
x

(0)
1−γ
x∗1−γ

}
+ u1−α(γ)

]
,

(21.46)

where

Q = exp



−

(
x

(0)
1−γ
x∗1−γ

)c
(− ln γ)



 .

The power function depends on the unknown shape parameter c.

Example 21/5: Testing H0 : x10 ≤ 30 against HA : x0.10 > 30 using dataset #1

(α = 0.05)

Using the MLEs b̂ = 99.2079 and ĉ = 2.5957, we find

x̂0.10 = b̂ (− ln 0.90)1/bc = 41.69,

so that the test statistic in (21.45a) is

√
n ĉ ln

{
x̂0.10

x
(0)
0.10

}
=

√
20 · 2.5927 · ln

(
41.69

30

)
= 3.82.

From Tab. 19/4a we take u0.05(0.90)=5.548, so we cannot reject H0 because 3.82 6> u0.95(0.90)=
5.548.



22 WEIBULL goodness-of-fit testing

and related problems

Before applying the WEIBULL distribution to solve any real problem one should ask

whether this distribution is the “right model,” i.e., whether it adequately fits the sampled

data. The question here is: “WEIBULL or not?” The answer is given by carrying out a

goodness–of–fit test (see Sect. 22.1).

Sometimes we have competing distributions which for some reasons seem equally appro-

priate to describe the sampled data. Thus the question is: “WEIBULL or what other distri-

bution?” Here we have a discrimination problem (see Sect. 21.2).

A special discriminating problem arises when we are sure that all competing distributions

are WEIBULL. Then we want to select the one which is best according to a given criterion,

or we want to select those which are better than a given control distribution. Selection

will be treated in Sect. 22.3. We should mention that some authors use selection when the

choice is between different families of distributions, but we have restricted this term for

choosing among the members of one family, namely the WEIBULL family.

22.1 Goodness-of-fit testing1

There are several approaches to see whether a given dataset can be adequately described

by some distributional model. On the one hand, we have graphical procedures such as the

hazard plot or the probability plot for location–scale type distributions (see Chapter 9), and

on the other hand, there exist many numerical procedures which are proper tests insofar as

they are characterized by a level of significance indicating the probability of erroneously

rejecting the distribution asserted under H0. The latter class of procedures comprises the

following:

• tests based on χ2 as a measure of fit;

• tests based on the empirical distribution function (EDF test);

• tests using higher moments like skewness and kurtosis;

• tests based on order statistics like correlation tests, regression tests and gap–ratio

tests;

• tests based on the sample entropy;

• tests based on the empirical characteristic function.

Most goodness–of–fit testing in the WEIBULL case relies upon the EDF statistic or on

certain functions of order statistics.

1 Suggested reading for this section is the monograph of D’AGOSTINO/STEPHENS (1986).
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22.1.1 Tests of χ2-type2

The χ2 goodness–of–fit test asks for great sample sizes which are seldom met in life testing.

On the other hand, this type of test does not cause trouble when the hypothetical distribution

is not fully specified, i.e., when some or even all of its parameters have to be estimated

and/or when the sample is censored in one way or another. Let F (x |θ) be the CDF of a

variateX depending on one or more parameters collected in a vector θ. The null hypothesis

is
H0 : FX(x) = F0(x |θ),

where θ is either known or partially or even completely unknown. The χ2 goodness–of–fit

test consists of the following steps:

1. The n sampled data are classified or grouped, ni being the empirical frequency in

class i; i = 1, . . . , k. We ask for ni ≥ 10 ∀ i because the test only holds asymptoti-

cally. When there are ni < 10, we have to combine adjacent classes.

2. Let there be m unknown (unspecified) parameters in θ. These have to be estimated;

usually the MLEs are used.

3. For class i with limits xi−1 and xi, we have to calculate

Pi = F0(xi |θ) − F0(xi−1 |θ) (22.1a)

or

P̂i = F0(xi | θ̂ ) − F0(xi−1 | θ̂ ). (22.1b)

4. Then we calculate the expected frequency for each class i either as

Ei = nPi or as Ei = n P̂i, (22.1c)

demanding no Ei less than 1 and not more than 20% of the Ei being less than 5,

otherwise we again have to combine adjacent classes.

5. We calculate the test statistic

χ2 =
k∑

i=1

(ni − Ei)
2

Ei
. (22.1d)

k ≥ 2 is the number of classes after probable combinations.

6. Reject H0 : FX(x) = F0(x |θ) with level α when

χ2 > χ2
k−m−1,1−α, (22.1e)

m being the number of estimated parameters.

χ2–tests are generally less powerful than EDF tests and special purpose tests of fit.

22.1.2 Tests based on EDF statistics

In the following we consider tests of fit which start with the empirical distribution function

(EDF). The EDF is a step function, calculated from the sample observing any mode of

censoring, which estimates the population distribution function. The EDF statistics are

measures of the discrepancy between the EDF and a given distribution function, and are

used for testing the fit of the sample to the distribution which may be completely specified

2 Suggested reading for this section: FREEMAN/FREEMAN/KOCH (1978).
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(simple hypothesis) or may contain parameters which have to be estimated from the sample

(composite hypothesis).

22.1.2.1 Introduction

Given an uncensored sample, the EDF is defined by

Fn(x) =





0 for x < X1:n;
i

n
for Xi:n ≤ x < Xi+1:n; i = 1, . . . , n − 1;

1 for x ≥ Xn:n.





(22.2)

A statistic measuring the discrepancy between Fn(x) and a hypothetical distribution with

CDF F0(x |θ) will be called an EDF statistic. EDF statistics have already been used in

Sect. 13.2 to define minimum distance estimators. The EDF statistics most often used are

based on the vertical differences between Fn(x) and F0(x |θ) (see Fig. 22/1 further down)

and are divided into two classes, the supremum class and the quadratic class.

The following formulas give the definitions of the supreme statistics.

• D+ is the largest vertical difference when Fn(x) is greater than F0(x |θ):
D+ := sup

x

{
Fn(x) − F0(x |θ)

}
. (22.3a)

• D− is the largest vertical difference when Fn(x) is less than F0(x |θ):
D− := sup

x

{
F0(x |θ) − Fn(x)

}
. (22.3b)

• The most well–known EDF statistic is the KOLMOGOROV–SMIRNOV statistic

D := sup
x

{∣∣Fn(x) − F0(x |θ)
∣∣} = max

{
D+,D−}. (22.3c)

• A closely related statistic is the KUIPER statistic

V := D+ +D−. (22.3d)

D+ can be used to give a one–sided test, i.e., to test that the distribution is F0(X |θ) against

alternatives FA(x |θ) for which, ideally, FA(x |θ) ≥ F0(X |θ) ∀ x. D+ will give good

power if FA(x |θ) is greater than F0(X |θ) over most of the range, implying that the true

mean is less than that hypothesized. Similarly,D− will be used to guard against alternatives

with a larger mean. D gives a test against shifts in mean in either direction and thus leads

to a two–sided test. Statistic V , besides its use on the circle, will detect a shift in variance,

represented by clusters of Zi = F0(Xi:n |θ), or values of Zi in two groups near 0 and 1.

The quadratic class is given by the CRAMÉR–VON MISES family

Q := n

∞∫

−∞

[
Fn(x) − F0(x |θ)

]2
ω(x) dF0(x |θ), (22.4a)

where ω(x) is a weight function. Most important in this family are the following:
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• the CRAMÉR–VON MISES statistic for ω(x) = 1

W 2 := n

∞∫

−∞

[
Fn(x) − F0(x |θ)

]2
dF0(x |θ), (22.4b)

• the ANDERSON–DARLING statistic for ω(x) =
{
F0(x |θ)

[
1 − F0(x |θ)

]}−1

A2 := n

∞∫

−∞

[
Fn(x) − F0(x |θ)

]2

F0(x |θ)
[
1 − F0(x |θ)

] dF0(x |θ), (22.4c)

• the WATSON statistic

U2 := n

∞∫

−∞



Fn(x) − F0(x |θ)−

∞∫

−∞

[
Fn(x) − F0(x |θ)

]
dF0(x |θ)





2

dF0(x |θ),

(22.4d)
as a modification ofW 2 and devised originally for the circle like the KUIPER statistic

V . U2 and V are invariant with respect to the origin of x.

A goodness–of–fit test using a member of the quadratic class is usually more powerful

than a test based on a member of the supreme class, because Q is explicitly defined on all

discrepancies. A2 gives weight to observations in the tails and so tends to detect alternatives

where more such observations will arise.

The foregoing definitions of EDF statistics can be turned into straightforward computing

formulas when Fn(x) is continuous. Let

Zi = F0(Xi:n |θ), (22.5a)

then

D+ = max
1≤i≤n

{
i

n
− Zi

}
, (22.5b)

D− = max
1≤i≤n

{
Zi −

i

n

}
, (22.5c)

D = max
{
D+,D−}, (22.5d)

V = D+ +D−, (22.5e)

W 2 =
1

12n
+

n∑

i=1

[
Zi −

2 i− 1

2n

]2
, (22.5f)

U2 = W 2 − n
(
Z − 0.5

)2
, Z =

1

n

n∑

i=1

Zi, (22.5g)

A2 = −n− 1

n

n∑

i=1

(2 i− 1)
[
lnZi + ln(1 − Zn+1−i)

]
(22.5h)

= −n− 1

n

n∑

i=1

{
(2 i − 1) lnZi + (2n + 1 − 2 i) ln(1 − Zi)

}
. (22.5i)
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The KOLMOGOROV–SMIRNOV statistic has also been used to construct so–called con-

sonance sets, see SALVIA (1979), and confidence bands for the CDF, see SRINI-

VASAN/WHARTON (1975). D has also been applied to the plotting coordinates of the

stabilized probability plot; see COLES (1989) and KIMBER (1985). To assess whether an

ordered sample X1:n ≤ . . . ≤ Xn:n has been drawn from a parent population of location–

scale type with distribution function F0

[
(x − a)

/
b
]
, the plotting coordinates, (Ri, Si), of

the stabilized plot are calculated as

Ri =
2

π
sin−1

{√
F0

[(
Xi:n − a

)/
b
]}

, (22.6a)

Si =
2

π
sin−1

{√
(i− 0.5)

/
n

}
. (22.6b)

The properties of this plot are as follows:

• Deviations from the line joining the points (0, 0) and (1, 1) indicate departures from

the proposed distribution.

• The plotted points have approximately equal variances due to the asymptotic proper-

ties of Si. (As n → ∞ and i
/
n → p, the asymptotic variance of Si

√
n is π−2 and

thus independent of p.)

The KOLMOGOROV–SMIRNOV statistic based on Si and Ri is

Dsp = max
1≤i≤n

∣∣∣Ri − Si

∣∣∣. (22.6c)

COLES (1989) shows that Dsp has a high power when the parameters are estimated using a

procedure due to BLOM (1958) and gives critical values forDsp when F0(·) is the extreme–

value distribution of the minimum which after a log–transformation is also applicable to the

WEIBULL distribution.

22.1.2.2 Fully specified distribution and uncensored sample

When the null hypothesis is

H0 : F (x) = F0(x |θ = θ0), (22.7)

i.e., we declare a certain distribution with fixed parameter vector θ0 to be the parent popu-

lation of the sample, the test is given by the following steps:

1. Put the complete sample data Xi in ascending order: X1:n ≤ . . . ≤ Xn:n.

2. Calculate Zi = F0

(
Xi:n

∣∣ θ0
)
, i = 1, . . . , n.

3. Calculate the statistic desired from formulas (22.5b–i).

4. Modify the test statistic as in Tab. 22/1 using the modification3 for the upper tail, and

compare with the appropriate table of upper tail percentage points. If the statistic

3 The modifications are made in order to have a good approximation to the asymptotic distribution whose

percentage points are given in Tab. 22/1. The quadratic statistics converge more rapidly to their asymp-

totic distributions, and the modifications are relatively minor. The supremum statistics converge more

slowly.
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exceeds4 the value in the upper tail given at level α, H0 is rejected at significance

level α.

Table 22/1: Modifications and percentage points of EDF statistics based on an uncensored

sample for testing a hypothesis on a completely specified distribution

Statistic Significance level α

T Modified form T ∗ 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001

upper tail percentage points

D+(D−) D+
(√
n+ 0.12 + 0.11/

√
n
)

0.828 0.973 1.073 1.224 1.358 1.518 1.628 1.859

D D
(√
n+ 0.12 + 0.11/

√
n
)

1.019 1.138 1.224 1.358 1.480 1.628 1.731 1.950

V V
(√
n+ 0.155 + 0.24/

√
n
)

1.420 1.537 1.620 1.747 1.862 2.001 2.098 2.303

W 2
(
W 2 − 0.4/n+ 0.6/n2

)(
1.0 + 1.0/n

)
0.209 0.284 0.347 0.461 0.581 0.743 0.869 1.167

U2
(
U2 − 0.1/n+ 0.1/n2

)(
1.0 + 0.8/n

)
0.105 0.131 0.152 0.187 0.222 0.268 0.304 0.385

A2 for all n ≥ 5 1.248 1.610 1.933 2.492 3.070 3.880 4.500 6.000

lower tail percentage points

D D
(√
n+ 0.275− 0.04/

√
n
)

− 0.610 0.571 0.520 0.481 0.441 − −
V V

(√
n+ 0.41 − 0.26/

√
n
)

− 0.976 0.928 0.861 0.810 0.755 − −
W 2

(
W 2 − 0.03/n

)(
1.0 + 0.05/n

)
− 0.054 0.046 0.037 0.030 0.025 − −

U2
(
U2 − 0.02/n

)(
1.0 + 0.35/n

)
− 0.038 0.033 0.028 0.024 0.020 − −

A2 for all n ≥ 5 − 0.399 0.346 0.283 0.240 0.201 − −

Source: D’AGOSTINO/STEPHENS (1986, p. 105) — Reprinted with permission from Goodness–of–fit Tech-

niques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.

Example 22/1: Testing whether dataset #1 comes fromWe(a = 0, b = 80, c = 1.3)

The sample of size n = 20 (dataset #1 in Tab. 9/2) has been generated fromWe(a = 0, b = 100, c =
2.5), but here we maintain that it comes fromWe(a = 0, b = 80, c = 1.3); i.e., we are going to test

H0 : F (x) = F0(x |θ = θ0) = 1 − exp

{
−
( x

80

)1.3
}
.

Fig. 22/1 showsFn(x) together with F0(x |θ = θ0), θ0 = (0, 80, 1.3)′. The test statistics (22.5b–i)

and their modifications according to Tab. 22/1 are given in the following table.

Statistic D+ D− D V W 2 U2 A2

original 0.0872 0.3169 0.3169 0.4040 0.6185 0.2551 3.0445

modified 0.4025 1.4629 1.4629 1.8912 0.6300 0.2604 3.0445

4 A small value of this statistic will indicate that the Zi are superuniform, i.e., more regular than expected

for an ordered uniform sample. To detect superuniformity the lower tail of, say, D would be used.
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Reference to the percentage points on the same line as the modification in Tab. 22/1 shows that D
is significant at the 5% level and V, W 2, U2 as well as A2 are all significant at the 2.5% level.

Figure 22/1: EDF for dataset #1 and F0(x |θ) = 1 − exp

{
−
( x

80

)1.3
}

With respect to the power of the above statistics, we can state the following:

1. D is often much less powerful than W 2 and A2.

2. D+, D−, A2, W 2 and D will detect an error in the mean of F0(x |θ) as specified,

and U2 and V will detect an error in the variance.

3. A2 often behaves similarly to W 2, but is on the whole more powerful for tests when

F0(x |θ) departs from the true distribution in the tails, especially when there appears

to be too many outliers for F0(x |θ) as specified. In goodness–of–fit testing, depar-

tures in the tails are often important to detect, and A2 is the recommended statistic.

22.1.2.3 Fully specified distribution and censored sample

When the sample is censored, we have to adapt the EDF statistic of the previous sections,

and we also have to use other percentage points than those given in Tab. 22/1. We will

discuss only singly–censoring on the right as the most important case in life testing; other

forms of censoring are discussed in D’AGOSTINO/STEPHENS (1986).

The probability integral transformation may be made for the observations available, giving

a set of Zi = F0(Xi:n |θ) which itself is censored. Suppose, theX–set is right–censored of

type–I, then the values of X are known to be less than the fixed value x∗, and the available
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Zi are Z1 < Z2 < . . . < Zr < t, where t = F (x∗ |θ). If the censoring is of type–II, there

are again r values of Zi, with Zr the largest and r fixed.

KOLMOGOROV–SMIRNOV statistic

The modification for type–I censored date is

1Dt,n = max
1≤i≤r

{
i

n
− Zi, Zi −

i− 1

n
, t− r

n

}
, (22.8a)

and for type–II censored data, we have

2Dt,r = max
1≤i≤r

{
i

n
− Zi, Zi −

i− 1

n

}
. (22.8b)

D’AGOSTINO/STEPHENS (1986) have suggested the following procedure to test H0 :
F (x) = F0(x |θ = θ0), when the values of Zi = F (Xi:n |θ); i = 1, . . . , r have been

calculated.

Type–I censoring

1. Calculate 1Dt,n from (22.8a).

2. Modify 1Dt,n to D∗
t according to 5

D∗
t = 1Dt,n

√
n+ 0.19

/√
n for n ≥ 25, t = p ≥ 0.25. (22.9a)

3. Refer to Tab. 22/2 and reject H0 at significance level α if D∗
t exceeds the tabulated

value for α.

Type–II censoring

1. Calculate 2Dr,n from (22.8b).

2. Modify 2Dr,n to D∗
r according to 5

D∗
r = 2Dr,n

√
n+ 0.24

/√
n for n ≥ 25, t = p ≥ 0.40. (22.9b)

3. Refer to Tab. 22/2 and reject H0 at significance level α if D∗
r exceeds the tabulated

value for α.

5 For values of n < 25 or for censoring more extreme than the range given above, refer to tables of BARR/

DAVIDSON (1973) or DUFOUR/MAAG (1978).
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Table 22/2: Upper tail asymptotic percentage points of
√
nD, W 2 and A2 for type-I or

type-II censored data

p
α

aaaaaaaaaaaaaaaaaaaaaa

0.50 0.25 0.15 0.10 0.05 0.025 0.01 0.005

√
nD

0.2 0.4923 0.6465 0.7443 0.8155 0.9268 1.0282 1.1505 1.2361

0.3 0.5889 0.7663 0.8784 0.9597 1.0868 1.2024 1.3419 1.4394

0.4 0.6627 0.8544 0.9746 1.0616 1.1975 1.3209 1.4696 1.5735

0.5 0.7204 0.9196 1.0438 1.1334 1.2731 1.3997 1.5520 1.6583

0.6 0.7649 0.9666 1.0914 1.1813 1.3211 1.4476 1.5996 1.7056

0.7 0.7975 0.9976 1.1208 1.2094 1.3471 1.4717 1.6214 1.7258

0.8 0.8183 1.0142 1.1348 1.2216 1.3568 1.4794 1.6272 1.7306

0.9 0.8270 1.0190 1.1379 1.2238 1.3581 1.4802 1.6276 1.7308

1.0 0.8276 1.0192 1.1379 1.2238 1.3581 1.4802 1.6276 1.7308

W 2

0.2 0.010 0.025 0.033 0.041 0.057 0.074 0.094 .110

0.3 0.022 0.046 0.066 0.083 0.115 0.147 0.194 .227

0.4 0.037 0.076 0.105 0.136 0.184 0.231 0.295 .353

0.5 0.054 0.105 0.153 0.186 0.258 0.330 0.427 .488

0.6 0.070 0.136 0.192 0.241 0.327 0.417 0.543 .621

0.7 0.088 0.165 0.231 0.286 0.386 0.491 0.633 .742

0.8 0.103 0.188 0.259 0.321 0.430 0.544 0.696 .816

0.9 0.115 0.204 0.278 0.341 0.455 0.573 0.735 .865

1.0 0.119 0.209 0.284 0.347 0.461 0.581 0.743 .869

A2

0.2 0.135 0.252 0.333 0.436 0.588 0.747 0.962 1.129

0.3 0.204 0.378 0.528 0.649 0.872 1.106 1.425 1.731

0.4 0.275 0.504 0.700 0.857 1.150 1.455 1.872 2.194

0.5 0.349 0.630 0.875 1.062 1.419 1.792 2.301 −
0.6 0.425 0.756 1.028 1.260 1.676 2.112 2.707 −
0.7 0.504 0.882 1.184 1.451 1.920 2.421 3.083 −
0.8 0.588 1.007 1.322 1.623 2.146 2.684 3.419 −
0.9 0.676 1.131 1.467 1.798 2.344 2.915 3.698 −
1.0 0.779 1.248 1.610 1.933 2.492 3.070 3.880 4.500

Source: D’AGOSTINO/STEPHENS (1986, p. 112) — Reprinted with permission from Goodness–of–fit

Techniques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.
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Table 22/3: Upper tail percentage points of 2W
2
r,n and for type-II censored data

p n
α

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

0.50 0.25 0.15 0.10 0.05 0.025 0.01

20 0.006 0.018 0.038 0.058 0.099 0.152 0.243
40 0.008 0.018 0.032 0.046 0.084 0.128 0.198

0.2 60 0.009 0.020 0.031 0.044 0.074 0.107 0.154
80 0.009 0.021 0.031 0.043 0.069 0.097 0.136
100 0.009 0.022 0.031 0.043 0.066 0.092 0.127
∞ 0.010 0.025 0.031 0.041 0.057 0.074 0.094
10 0.022 0.056 0.101 0, 144 0.229 0.313 0.458
20 0.029 0.062 0.095 0.132 0.209 0.297 0.419
40 0.033 0.067 0.100 0.128 0.191 0.267 0.381

0.4 60 0.034 0.070 0.102 0.130 0.189 0.256 0.354
80 0.035 0.071 0.103 0.132 0.187 0.251 0.342
100 0.035 0.072 0.103 0.132 0.187 0.248 0.335
∞ 0.037 0.076 0.105 0.135 0.184 0.236 0.307
10 0.053 0.107 0.159 0.205 0.297 0.408 0.547
20 0.062 0.122 0.172 0.216 0.302 0.408 0.538
40 0.067 0.128 0.180 0.226 0.306 0.398 0.522

0.6 60 0.068 0.131 0.184 0.231 0.313 0.404 0.528
80 0.068 0.132 0.186 0.233 0.316 0.407 0.531
100 0.069 0.133 0.187 0.235 0.318 0.409 0.532
∞ 0.070 0.136 0.192 0.241 0.327 0.417 0.539
10 0.085 0.158 0.217 0.266 0.354 0.453 0.593
20 0.094 0.172 0.235 0.289 0.389 0.489 0.623
40 0.099 0.180 0.247 0.303 0.401 0.508 0.651

0.8 60 0.100 0.183 0.251 0.308 0.410 0.520 0.667
80 0.101 0.184 0.253 0.311 0.415 0.526 0.675
100 0.101 0.185 0.254 0.313 0.418 0.529 0.680
∞ 0.103 0.188 0.259 0.320 0.430 0.544 0.700
10 0.094 0.183 0.246 0.301 0.410 0.502 0.645
20 0.109 0.194 0.263 0.322 0.431 0.536 0.675
40 0.112 0.199 0.271 0.330 0.437 0.546 0.701

0.9 60 0.113 0.201 0.273 0.333 0.442 0.553 0.713
80 0.114 0.202 0.274 0.335 0.445 0.558 0.718
100 0.114 0.202 0.275 0.336 0.447 0.561 0.722
∞ 0.115 0.204 0.278 0.341 0.455 0.573 0.735
10 0.103 0.198 0.266 0.324 0.430 0.534 0.676
20 0.115 0.201 0.275 0.322 0.444 0.551 0.692
40 0.115 0.205 0.280 0.329 0.448 0.557 0.715

0.95 60 0.116 0.207 0.280 0.338 0.451 0.562 0.724
80 0.117 0.208 0.281 0.340 0.453 0.566 0.729
100 0.117 0.208 0.282 0.341 0.454 0.569 0.735
∞ 0.118 0.208 0.283 0.346 0.460 0.579 0.742
10 0.117 0.212 0.288 0.349 0.456 0.564 0.709
20 0.116 0.212 0.288 0.350 0.459 0.572 0.724

1.0 40 0.115 0.211 0.288 0.350 0.461 0.576 0.731
100 0.115 0.211 0.288 0, 351 0.462 0.578 0.736
∞ 0.119 0.209 0.284 0.347 0.461 0.581 0.743

Source: D’AGOSTINO/STEPHENS (1986, pp. 116/117) — Reprinted with permission from Goodness–of–fit

Techniques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.
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Table 22/4: Upper tail percentage points of 2A
2
r,n and for type-II censored data

p n
α

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

0.50 0.25 0.15 0.10 0.05 0.025 0.01

20 0.107 0.218 0.337 0.435 0.626 0.887 1.278
40 0.119 0.235 0.337 0.430 0.607 0.804 1.111
60 0.124 0.241 0.341 0.432 0.601 0.785 1.059

0.2 80 0.127 0.243 0.344 0.433 0.598 0.775 1.034
100 0.128 0.245 0.345 0.434 0.596 0.769 1.019
∞ 0.135 0.252 0.351 0.436 0.588 0.747 0.962
10 0.214 0.431 0.627 0.803 1.127 1.483 2.080
20 0.241 0.462 0.653 0.824 1.133 1.513 2.011
40 0.261 0.487 0.681 0.843 1.138 1.460 1.903

0.4 60 0.265 0.493 0.686 0.848 1.142 1.458 1.892
80 0.268 0.496 0.688 0.850 1.144 1.457 1.887
100 0.269 0.497 0.689 0.851 1.145 1.457 1.884
∞ 0.275 0.504 0.695 0.857 1.150 1.455 1.872
10 0.354 0.673 0.944 1.174 1.577 2.055 2.774
20 0.390 0.713 0.984 1.207 1.650 2.098 2.688
40 0.408 0.730 1.001 1.229 1.635 2.071 2.671

0.6 60 0.413 0.739 1.011 1.239 1.649 2.084 2.683
80 0.416 0.743 1.017 1.244 1.655 2.091 2.689
100 0.418 0.746 1.020 1.248 1.659 2.095 2.693
∞ 0.425 0.756 1.033 1.260 1.676 2.112 2.707
10 0.503 0.913 1.237 1.498 2.021 2.587 3.254
20 0.547 0.952 1.280 1.558 2.068 2.570 3.420
40 0.568 0.983 1.321 1.583 2.088 2.574 3.270

0.8 60 0.574 0.991 1.330 1.596 2.107 2.610 3.319
80 0.578 0.995 1.335 1.603 2.117 2.629 3.344
100 0.580 0.997 1.338 1.607 2.123 2.640 3.359
∞ 0.588 1.007 1.350 1.623 2.146 2.684 3.419
10 0.639 1.089 1.435 1.721 2.281 2.867 3.614
20 0.656 1.109 1.457 1.765 2.295 2.858 3.650
40 0.666 1.124 1.478 1.778 2.315 2.860 3.628

0.9 60 0.670 1.128 1.482 1.784 2.325 2.878 3.648
80 0.671 1.130 1.485 1.788 2.330 2.888 3.661
100 0.673 1.131 1.486 1.790 2.332 2.893 3.668
∞ 0.676 1.136 1.492 1.798 2.344 2.915 3.698
10 0.707 1.170 1.525 1.842 2.390 2.961 3.745
20 0.710 1.177 1.533 1.853 2.406 2.965 3.750
40 0.715 1.184 1.543 1.860 2.416 2.968 3.743

0.95 60 0.717 1.186 1.545 1.263 2.421 2.977 3.753
80 0.718 1.187 1.546 1.865 2.423 2.982 3.760
100 0.719 1.188 1.547 1.866 2.424 2.984 3.763
∞ 0.720 1.190 1.550 1.870 2.430 2.995 3.778

1.0 all n 0.775 1.248 1.610 1.933 2.492 3.070 3.880
Source: D’AGOSTINO/STEPHENS (1986, pp. 117/118) — Reprinted with permission from Goodness–of–fit

Techniques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.
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Quadratic statistics

The computing formulas differ slightly for the two types of censoring. For

type–II censoring we have

2W
2
r,n =

r∑

i=1

(
Zi −

2 i− 1

2n

)2

+
r

12n
+
n

3

(
Zr −

r

n

)3
, (22.10a)

2U
2
r,n = 2W

2
r,n − nZr

(
r

n
− Zr

2
− r Z

nZr

)
, Z =

1

n

r∑

i=1

Zi, (22.10b)

2A
2
r,n =





− 1

n

r∑
i=1

(2 i− 1)
[
lnZi − ln(1 − Zi)

]
− 2

r∑
i=1

ln(1 − Zi) −

1

n

[
(r − n)2 ln(1 − Zr) − r2 lnZr + n2 Zr

]
.





(22.10c)

For type–I censoring, suppose t (t < 1) is the fixed censoring value of Z , i.e., t =
F (x∗ |θ). This value is added to the sample set {Z1, . . . , Zr} and the statistics are now

calculated by (22.9a,b) with r replaced by r + 1, and with Zr+1 = t. They will be called

1W
2
t,n, 1U

2
t,n and 1A

2
t,n. It is possible to have r = n observations less than t, so that when

the value t is added, the new sample size is n+ 1. 1W
2
t,n and 2W

2
r,n have the same asymp-

totic distribution, similar to the other statistics. Asymptotic percentage points of W 2 are

given in Tab. 22/3 and for A2 in Tab. 22/4.

The steps for testing H0 : F (x) = F0(x |θ = θ0) with right–censored data are as follows:

1. Calculate the statistic as required.

2. Refer to Tab. 22/2 for type–I data and to Tab. 22/3 or Tab. 22/4 for type–II data,

entering at n and at p = r
/
n.

Example 22/2: Testing whether dataset #1 singly right–censored at r = 15 comes from

We(a = 0, b = 80, c = 1.3)

The EDF corresponding to the censored data is shown in Fig. 22/2 together with F0(x |θ0), θ0 =
(0, 80, 1.3)′. The test statistics result as

Statistic 2D15,20 2W
2
15,20 2A

2
15,20

original 0.3169 0.6695 2.9523

modified 1.4707 − −

When we use the modified value of 2D
2
15,20, i.e., 2D

∗
15,20 = 1.4707, and go to Tab. 22/2 — despite

n = 20 not being greater than 25 — we find for p = r
/
n = 15

/
20 = 0.75 by interpolation that

we can reject H0 at level 0.05. The table of DUFOUR/MAAG (1978), which has to be used with

2D15,20 = 0.3169, gives a level of 0.025 for rejecting H0. For 2W
2
15,20 = 0.6695, we find from

Tab. 22/3 — by interpolation — a significance level less than 0.01, and for 2A
2
15,20 = 2.9523 from

Tab. 22/4 — again by interpolation — a significance level of approximately 0.01.
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Figure 22/2: EDF and F0(x |θ) = 1 − exp
{
− (x

/
80)1.3

}
for dataset #1 censored at r = 15

22.1.2.4 Testing a composite hypothesis6

A composite hypothesis is characterized by the fact that some or all of the parameters in

θ are unknown and have to be estimated before calculating F0(Xi:n |θ). When the un-

known components of θ are location and scale parameters, and if these are estimated by

appropriate methods, e.g., by ML, the distributions of EDF statistics will not depend on the

true values of these unknown parameters, but they depend on the family tested and on the

sample size n. When there is censoring, the distributions of the EDF statistics will also

depend on the mode of censoring and the censoring fraction; see AHO et al. (1983, 1985).

When unknown parameters are not location or scale parameters, for example, when the

shape parameter of a three–parameter WEIBULL distribution is unknown, the null distribu-

tion of the EDF statistic will depend on the true values of these parameters. However, if

this dependence is very slight, then a set of tables, to be used with the estimated value of

the shape parameter, can still be valuable; see, for example, LOCKHART/STEPHENS (1994)

concerning the goodness–of–fit test of the three–parameter WEIBULL distribution. Never-

theless, the exact distributions of EDF statistics when testing a composite hypothesis are

very difficult to find and Monte Carlo studies have to be used to find percentage points.

6 Suggested reading for this section: AHO/BAIN/ENGELHARDT (1983, 1985), CHANDRA/ SINPUR-

WALLA/ STEPHENS (1981), KHAMIS (1997), LIAO/SHIMOKAWA (1999), LITTELL/ MCCLAVE/OFFEN

(1979), LOCKHART/STEPHENS (1994), SHIMOKAWA/LIAO (1999), STEPHENS (1977), WOZNIAK

(1994).
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In the following we will present only tests using one of the EDF statistics

D+, D−, D, W 2, U2 and A2 for an uncensored sample when the two–parameter

WEIBULL distribution has been transformed to an extreme–value distribution which is of

the location–scale type.7 Goodness–of–fit testing of a composite hypothesis with censored

data will be presented in Sect. 22.1.3.

The null hypothesis in this section is

H0 : “X1, . . . ,Xn come from We(a, b, c).”

We consider the case where a is known. When a = 0, H0 becomes

H0 : “The set {X1, . . . ,Xn} comes from We(0, b, c).”

If a 6= 0, but we have a = a0, a0 known, the transformed set {X1 − a0, . . . ,Xn − a0}
equally comes from We(0, b, c) under H0. In considering H0 we distinguish three cases:

• Case 1: c is known and b is unknown.

• Case 2: b is known and c is unknown.

• Case 3: Both b and c are unknown.

For the test of H0, the tables of percentage points for the type–I extreme value distribution

of the maximum (see Tab. 22/5 and Tab. 22/6) may be used. Let

Y = − lnX, (22.11a)

where X ∼ We(0, b, c). The CDF of Y becomes

F (y | η, φ) = exp

{
− exp

[
−y − η

φ

]}
, y ∈ R, (22.11b)

with

η = − ln b and φ = 1
/
c.

A test for H0 : “The set {X1, . . . ,Xn} comes from We(0, b, c)” is made by testing that Y
has the above extreme–value distribution, with one or both of η and φ unknown. The test

procedure is as follows:

1. Make the transformation Yi = − lnXi, i = 1, . . . , n.

2. Arrange the Yi in ascending order. (If the Xi were given in ascending order, the Yi
will be in descending order!)

3. Test that the Y –sample is from (22.11b) as follows:

7 KHAMIS (1997) used a δ–corrected KOLMOGOROV–SMIRNOV test. LIAO/SHIMOKAWA (1999) intro-

duced a new goodness–of–fit test with a test statistic being a combination of D, W 2 and A2. The

performance of D, A2 and W 2 is studied by LITTELL et al. (1979), SHIMOAWA/LIAO (1999) and

WOZNIAK (1994).
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3.1 Estimate the unknown parameters

φ̂ =
1

n

n∑

j=1

Yj −

n∑
j=1

Yj exp
(
− Yj

/
φ̂
)

n∑
j=1

exp
(
−
/
φ̂
) (22.11c)

by iteration and then

η̂ = −φ̂ ln





1

n

n∑

j=1

exp
(
− Yj

/
φ̂
)


 . (22.11d)

In case 1 (φ = 1/c is known.) η̂ is given by (22.11d) with φ replacing φ̂. In

case 2 (η = − ln b is known.) φ̂ is given by solving

φ̂ =
1

n




n∑

j=1

(Yj − η) −
n∑

j=1

(Yj − η) exp

{
−Yj − η

φ̂

}
 . (22.11e)

3.2 Calculate

Zi = F (Yi:n | η, φ),

where F (·) is given by (22.11b), using estimated parameters when necessary.

3.3 Use (22.5b–i) to calculate the EDF statistics.

3.4 Modify the test statistics as shown in Tab. 22/5 or use Tab. 22/6 and compare

with the the upper tail percentage points given.

Table 22/5: Modifications and upper tail percentage points of W 2, U2 and A2 for

the type-I extreme value distribution of the maximum

Significance level α

Statistic Modification 0.25 0.10 0.05 0.025 0.01

W 2 Case 1 W 2 (1 + 0.16/n) 0.116 0.175 0.222 0.271 0.338

Case 2 None 0.186 0.320 0.431 0.547 0.705

Case 3 W 2 (1 + 0.2/
√
n ) 0.073 0.102 0.124 0.146 0.175

U2 Case 1 U2 (1 + 0.16/n) 0.090 0.129 0.159 0.189 0.230

Case 2 U2 (1 + 0.15/
√
n ) 0.086 0.123 0.152 0.181 0.220

Case 3 U2 (1 + 0.2/
√
n ) 0.070 0.097 0.117 0.138 0.165

A2 Case 1 A2 (1 + 0.3/n) 0.736 1.062 1.321 1.591 1.959

Case 2 None 1.060 1.725 2.277 2.854 3.640

Case 3 A2 (1 + 0.2/
√
n ) 0.474 0.637 0.757 0.877 1.038
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Table 22/6: Upper tail percentage points of the supreme statistics for testing

the type-I extreme value distribution of the maximum

Significance level α
Statistic n 0.10 0.05 0.025 0.01√
nD+ 10 0.872 0.969 1.061 1.152

20 0.878 0.979 1.068 1.176
Case 1 50 0.882 0.987 1.070 1.193

∞ 0.886 0.996 1.094 1.211√
nD− 10 0.773 0.883 0.987 1.103

20 0.810 0.921 1.013 1.142
Case 1 50 0.840 0.950 1.031 1.171

∞ 0.886 0.996 1.094 1.211√
nD 10 0.934 1.026 1.113 1.206

20 0.954 1.049 1.134 1.239
Case 1 50 0.970 1.067 1.148 1.263

∞ 0.995 1.094 1.184 1.298√
nV 10 1.43 1.55 1.65 1.77

20 1.46 1.58 1.69 1.81
Case 1 50 1.48 1.59 1.72 1.84

∞ 1.53 1.65 1.77 1.91

Significance level α
Statistic n 0.10 0.05 0.025 0.01√
nD+ 10 0.99 1.14 1.27 1.42

20 1.00 1.15 1.28 1.43
Case 2 50 1.01 1.17 1.29 1.44

∞ 1.02 1.17 1.30 1.46√
nD− 10 1.01 1.16 1.28 1.41

20 1.01 1.15 1.28 1.43
Case 2 50 1.00 1.14 1.29 1.45

∞ 1.02 1.17 1.30 1.46√
nD 10 1.14 1.27 1.39 1.52

20 1.15 1.28 1.40 1.53
Case 2 50 1.16 1.29 1.41 1.53

∞ 1.16 1.29 1.42 1.53√
nV 10 1.39 1.49 1.60 1.72

20 1.42 1.54 1.64 1.76
Case 2 50 1.45 1.56 1.67 1.79

∞ 1.46 1.58 1.69 1.81

Significance level α
Statistic n 0.10 0.05 0.025 0.01√
nD+ 10 0.685 0.755 0.842 0.897

20 0.710 0.780 0.859 0.926
Case 3 50 0.727 0.796 0.870 0.940

∞ 0.734 0.808 0.877 0.957√
nD− 10 0.700 0.766 0.814 0.892

20 0.715 0.785 0.843 0.926
Case 3 50 0.724 0.796 0.860 0.944

∞ 0.733 0.808 0.877 0.957√
nD 10 0.760 0.819 0.880 0.944

20 0.779 0.843 0.907 0.973
Case 3 50 0.790 0.856 0.922 0.988

∞ 0.803 0.874 0.939 1.007√
nV 10 1.287 1.381 1.459 1.535

20 1.323 1.428 1.509 1.600
Case 3 50 1.344 1.453 1538 1.639

∞ 1.372 1.477 1.557 1.671

Source: D’AGOSTINO/STEPHENS (1986, pp. 146, 147/148) — Reprinted with permission from Goodness–of–

fit Techniques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.

Example 22/3: Testing whether dataset #1 comes fromWe(a = 0, b, c)

After the n = 20 observations in dataset #1 have been transformed according to (22.11a) the MLEs

of the extreme value distribution result as

η̂ = − ln b̂ = −4.5972, φ̂ = 1
/
ĉ = 0.3853.

Fig. 22/3 shows the EDF together with the estimated CDF F (y | − 4.5972, 0.3853). The fit is

extremely good. The test statistics are as follows:

W 2 (1 + 0.2
/√

n ) = 0.0242, U2 (1 + 0.2
/√

n ) = 0.0229, A2 (1 + 0.2
/√

n ) = 0.2138√
nD+ = 0.2896,

√
nD− = 0.4526,

√
nD = 0.4523,

√
nV = 0.7421.
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Comparing these values with the percentage points in Tab. 22/5 and Tab. 22/6 for case 3, we find

that H0 : “Dataset #1 comes from a WEIBULL distribution” cannot be rejected at any reasonable

level of significance.

Figure 22/3: EDF for transformed dataset #1 and CDF of the extreme value distribution of the

maximum with η̂ = −4.5973 and φ̂ = 0.3853

22.1.3 Tests using other than EDF statistics

The tests presented in Sect. 22.1.3 are especially appropriate for testing composite hypothe-

ses. Some of these tests do not even require estimates of the unknown parameters.

22.1.3.1 Tests based on the ratio of two estimates of scale8

The test statistic which will be used in the following is a modification of the well–known

W statistic introduced by SHAPIRO/WILK to see whether a given dataset can be fitted by

a normal distribution. The test statistic is obtained as the ratio of two linear estimators of

the scale parameter b∗ = 1
/
c of the Log–WEIBULL distribution. The procedure requires

an uncensored sample.

The modified W statistic suggested by SHAPIRO/BRAIN (1987) has been further modified

by ÖZTÜRK/KORUKOGLU (1988) to give a higher power. Let Yi:n = lnXi:n be the trans-

formed WEIBULL order statistics. The first estimator of b∗ = 1
/
c is the linear estimator

8 Suggested reading for this section: ÖZTÜRK/KORUKOGLU (1988), SHAPIRO/BRAIN (1987).
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suggested by D’AGOSTINO (1971a)

b̂∗ =
1

n

[
0.6079

n∑

i=1

wn+i Yi:n − 0.2570

n∑

i=1

wi Yi:n

]
(22.12a)

with weights

wi = ln

(
n+ 1

n+ 1 − i

)
; i = 1, . . . , n− 1; (22.12b)

wn = n−
n−1∑

i=1

wi; (22.12c)

wn+i = wi
(
1 + lnwi

)
− 1; i = 1, . . . , n− 1; (22.12d)

w2n = 0.4228n −
n−1∑

i=1

wn+i. (22.12e)

The second linear estimator is the probability–weighted estimator 9

σ̂ =

n∑
i=1

(2 i− n− 1)Yi:n
[
0.693147n (n − 1)

] . (22.13)

The test statistic then results as

W ∗ = b̂∗
/
σ̂. (22.14a)

In a typical sample from the Log–WEIBULL distribution, both of the statistics b̂∗ and σ̂
estimate the same parameter b∗. Since b̂∗ and σ̂ are linear unbiased estimators, the value of

W ∗ in such case must be close to 1. Deviations from the null distribution will result in W ∗

values that are expected to shift away from 1 in both directions. Hence, the proposed test

is two–sided.

Usually, it is more convenient to use the standardized version of the statistic rather than the

statistic itself. The standardized statistic suggested by ÖZTÜRK/KORUKOGLU (1988) is

W̃ ∗ =
W ∗ − 1.0 − 0.13

/√
n+ 1.18

/
n

0.49
/√

n− 0.36n
. (22.14b)

Tab. 22/7 gives percentage points W̃ ∗
n,P that have been found by performing Monte Carlo

experiments.

Example 22/4: ModifiedW–test applied to dataset #1

We have applied the test procedure given above to dataset #1 in Tab. 9/2 (n = 20). The two

estimates of b∗ are

b̂∗ = 0.3950 and σ̂ = 0.3686,

thus W ∗ = 1.0716 and W̃ ∗ = 1.1084. Assuming a significance level α = 0.05, we find from

Tab. 22/7 with n = 20:

−1.819 ≤ W̃ ∗ = 1.1084 ≤ 2.334.

Thus, H0 : “Dataset #1 comes from a WEIBULL distribution” cannot be rejected.

9 SHAPIRO/BRAIN (1987) take the usual estimator bσ =
ˆ
(1/n)

Pn
i=1(Yi:n − Y )2

˜1/2
.
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Table 22/7: Percentage points W̃ ∗
n,P

n
P

HHHHHHHHHHHHHHHHHHH

0.005 0.025 0.05 0.10 0.50 0.90 0.95 0.975 0.995

3 −1.106 −1.065 −1.019 −0.933 −0.181 0.791 0.941 1.024 1.055
4 −1.486 −1.355 −1.203 −1.036 −0.202 1.038 1.437 1.740 2.298
5 −1.728 −1.494 −1.323 −1.113 −0.165 1.212 1.684 2.079 2.853
6 −1.877 −1.587 −1.395 −1.159 −0.136 1.307 1.804 2.240 3.110
8 −2.043 −1.687 −1.470 −1.206 −0.100 1.390 1.898 2.362 3.300
7 −1.974 −1.646 −1.440 −1.188 −0.115 1.360 1.866 2.230 3.237
9 −2.094 −1.716 −1.491 −1.219 −0.089 1.409 1.915 2.382 3.330

10 −2.132 −1.737 −1.507 −1.228 −0.080 1.419 1.923 3.391 3.342
15 −2.241 −1.795 −1.547 −1.249 −0.057 1.429 1.915 2.373 3.305
20 −2.292 −1.819 −1.562 −1.256 −0.047 1.418 1.889 2.334 3.238
25 −2.322 −1.833 −1.570 −1.258 −0.041 1.405 1.864 2.298 3.176
30 −2.342 −1.841 −1.574 −1.259 −0.038 1.393 1.843 2.267 3.124

40 −2.367 −1.851 −1.578 −1.259 −0.034 1.372 1.808 2.217 3.041
50 −2.382 −1.857 −1.580 −1.258 −0.032 1.355 1.781 2.179 2.978
60 −2.393 −1.861 −1.581 −1.256 −0.030 1.342 1.759 2.149 2.928
70 −2.401 −1.863 −1.581 −1.255 −0.030 1.331 1.742 2.124 2.887
80 −2.407 −1.865 −1.582 −1.254 −0.029 1.321 1.727 2.103 2.853
90 −2.412 −1.866 −1.582 −1.253 −0.029 1.313 1.714 2.085 2.824

100 −2.417 −1.868 −1.581 −1.252 −0.028 1.306 1.703 2.070 2.798
110 −2.420 −1.868 −1.581 −1.252 −0.028 1.299 1.693 2.056 2.776
120 −2.423 −1.869 −1.581 −1.251 −0.028 1.293 1.685 2.044 2.755

130 −2.426 −1.870 −1.581 −1.250 −0.028 1.288 1.677 2.033 2.737
140 −2.428 −1.870 −1.581 −1.249 −0.027 1.283 2.670 2.023 2.721
150 −2.430 −1.871 −1.580 −1.249 −0.027 1.279 1.663 2.013 2.706
200 −2.438 −1.872 −1.579 −1.246 −0.027 1.262 1.637 1.977 2.645

300 −2.447 −1.874 −1.578 −1.243 −0.02V 1.239 1.603 1.929 2.568
400 −2.452 −1.874 −1.576 −1.240 −0.027 1.224 1.581 1.899 2.518
500 −2.455 −1.874 −1.575 −1.238 −0.027 1.213 1.565 1.876 2.481
750 −2.461 −1.875 −1.573 −1.235 −0.028 1.194 1.538 1.839 2.420
1000 −2.464 −1.875 −1.572 −1.233 −0.028 1.182 1.520 1.814 2.380

Source: ÖZTÜRK/KORUKOGLU (1988, pp. 1386) — Reprinted with permission from Communications in Statis-

tics — Simulation and Computation. Copyright 1988 by Marcel Dekker, Inc. All rights reserved.

22.1.3.2 Tests based on spacings and leaps10

Differences in ordered variates, Xi+1:n −Xi:n, from any distribution having a density are

asymptotically exponential and asymptotically independent. Thus the quantities

ℓi =
Xi+1 −Xi:n

E
(
Xi+1 −Xi:n

) ; i = 1, . . . , n− 1 (22.15a)

10 Suggested reading for this section: GIBSON/HIGGINS (2000), LITTELL/MCCLAVE/OFFEN (1979),

LOCKHART/ O’REILLY/STEPHENS (1986), MANN/FERTIG (1975a), MANN/SCHEUER/FERTIG

(1973), SOMERVILLE (1977), THIAGARAJAN/HARRIS (1976) TIKU/SINGH (1981).
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are asymptotically exponentially distributed with mean 1, and they are asymptotically in-

dependent. TUKEY called them leaps, whereas the numerators, Xi+1:n −Xi:n, are called

gaps. Thus, 2 ℓi is asymptotically χ2(2), and for a sample censored at them–th observation

(m = n for an uncensored sample) and for r + s+ 1 ≤ m ≤ n:

L(r, s,m, n) :=

1

r

m−1∑
j=m−r

ℓj

1

s

s∑
j=1

ℓj

asym∼ F (2 r, 2 s), (22.15b)

but this approximation is not equally good for all percentiles, so special tables have to be

constructed.

Goodness–of–fit tests for a WEIBULL distribution with variate X are performed via the

extreme value distribution of the minimum, i.e., using the transformation Y = lnX, where

a∗ = ln b and b∗ = 1/c. In calculating the expected values appearing in the denominator

of ℓi MANN/SCHEUER/FERTIG (1973) used the expected values of the reduced extreme

value order statistics

Y ∗
i:n = (Yi:n − a∗)

/
b∗,

which, for example, are tabulated in WHITE (1967b) for i = 1(1)50(5)100. Of course, the

value of L is not affected if one uses

ℓ∗i =
Yi+1:n − Yi:n

E
(
Y ∗
i+1:n

)
− E

(
Y ∗
i:n

) (22.15c)

instead of (22.15a). The differences E
(
Y ∗
i+1:n

)
− E

(
Y ∗
i:n

)
for n = 3(1)25, i = 1(1)n −

1, are tabulated in MANN/SCHEUER/FERTIG (1973). Sampling studies by these authors

reveal that one should form L with the average of the first m
/
2 or (m − 1)

/
2 (whichever

is an integer) leaps in the denominator and the remaining leaps in the numerator. For

convenience in calculating percentage points these authors introduced a transformation of

L which takes on only values in the unit interval. This new statistic is

S =
r

s
L

/(
1 +

r

s
L
)

(22.16a)

=

m−1∑

j=m−r
ℓ∗j

/m−1∑

j=1

ℓ∗j . (22.16b)

Taking r =
[
(m − 1)

/
2
]
, where [x] denotes the greatest integer contained in x, the final

test statistic results as

S =

m−1∑
i=[m/2]+1

Yi+1:n − Yi:n

E
(
Y ∗
i+1:n

)
− E

(
Y ∗
i:n

)

m−1∑
i=1

Yi+1:n − Yi:n

E
(
Y ∗
i+1:n

)
− E

(
Y ∗
i:n

)
. (22.16c)
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The test is one–sided and values of S greater than Sn,m,1−α are evidence against

H0 : “X has a WEIBULL distribution.” The percentiles Sn,m,1−α are given in

MANN/SCHEUER/FERTIG (1973) for n = 3(1)25, i = 1(1)m − 1, m = 3(1)n.

Note that S is much simpler to calculate than the classical EDF statistics, because the

parameters a∗ and b∗ do not need to be estimated and F0(Xi:n | θ̂) need not to calculated.

The test is also valid for complete samples (m = n) as well as type–II right–censored

samples at m < n. The performance of S compared with several other test statistics

has been studied by LITTELL et al. (1979) and LOCKHART et al. (1986) showing that,

generally, S has good power. A modification of S has been suggested by MANN/FERTIG

(1975a) to test for the two–parameter versus three–parameter WEIBULL distribution. Their

methodology for testing for a zero threshold parameter can be used to obtain a confidence

interval for this parameter; also see SOMERVILLE (1977) for this topic. A similar ratio–type

goodness–of–fit test has been suggested by THIAGARAJAN/HARRIS (1976). This test can

be applied directly to the WEIBULL distribution because the shape parameter is assumed

known.

Example 22/5: Application of the MANN–SCHEUER–FERTIG test to dataset #1 censored at

m = 15

We first form ℓ∗i =
(
Yi+1:20 − Yi:20

)/[
E
(
Y ∗

i+1:20

)
− E

(
Y ∗

i:20

)]
for i = 1, . . . , 14, where

Yi:20 = lnXi:n. The differences of the expected values are taken from the table in

MANN/SCHEUER/FERTIG (1973). The sum in the numerator runs from [m/2] + 1 = 8 to m = 14
and in the denominator from 1 to m− 1 = 14.

i Xi:20 yi:20 yi+1:20 − yi:20 E
(
Y ∗

i+1:20

)
− E

(
Y ∗

i:20

)
ℓ∗i

1 35 3.5553 0.0823 1.0259 0.0802
2 38 3.6376 0.1001 0.5270 0.1899
3 42 3.7377 0.2877 0.3617 0.7954
4 56 4.0254 0.0350 0.2798 0.1254
5 58 4.0604 0.0505 0.2314 0.2179

6 61 4.1109 0.0322 0.1999 0.1614
7 63 4.1431 0.1876 0.1782 1.0529
8 76 4.3307 0.0637 0.1627 0.3917
9 81 4.3944 0.0244 0.1515 0.1609
10 83 4.4188 0.0355 0.1437 0.2471

11 86 4.4543 0.0455 0.1384 0.3283
12 90 4.4998 0.0953 0.1356 0.7030
13 99 4.5951 0.0492 0.1350 0.3648
14 104 4.6443 0.0830 0.1371 0.6053
15 113 4.7273 − − −

We calculate

S =
2.8012

5.4243
= 0.5164.

H0 : “Dataset #1 censored at m = 15 comes from a WEIBULL distribution” cannot be rejected at

any reasonable level of significance because S is less than S20,15,0.75 = 0.59.
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22.1.3.3 Correlation tests11

Correlation tests and the closely related regression tests arise most naturally when the un-

known parameters of the tested distribution are location and scale parameters. Suppose

F0(x) is F (u) with u = (x− α)
/
β, so that α is a location parameter and β a scale param-

eter, and suppose any other parameters in F (u) are known. If a sample of values Ui were

taken from F (u) with α = 0 and β = 1, we could construct a sample Xi from F0(x) by

calculating

Xi = α+ β Ui, i = 1, . . . , n. (22.17a)

Let mi = E
(
Ui:n

)
, then

E
(
Xi:n

)
= α+ βmi, (22.17b)

and a plot of Xi:n against mi should be an approximate straight line with intercept α on the

vertical axis and slope β. The values mi are the most natural to plot along the horizontal

axis, but for most distributions they are difficult to calculate. So most authors propose

alternatives Ti, which are convenient functions of i. Then (22.17b) can be replaced by the

regression model

Xi:n = α+ β Ti + εi, (22.17c)

where εi is an error variable, which for Ti = mi will have mean 0. A frequent choice for

Ti is

Ti = F−1

(
i

n+ 1

)
; i = 1, . . . , n. (22.17d)

Now, three main approaches to testing how well the data fit to (22.17c) can be found in the

literature:

1. A test is based on the correlation coefficient R(X,T ) between the paired sets {Xi}
and {Ti}.

2. After estimates α̂ and β̂ are found by a suitable method, a test is based on the sum of

squared residuals (Xi:n − X̂i:n)
2, where X̂i:n = α̂+ β̂ Ti.

3. The scale parameter is estimated as β̂ , and the squared value is compared with an-

other estimate of β2, for example, the one, that is obtained from the sample variance

(see Sect. 22.1.3.1).

These three methods are closely connected, and we will apply only the first method, be-

cause R2(X,T ) is consistent against all alternatives, whereas methods 2 and 3 can yield

statistics that are not consistent against certain classes of alternatives.

11 Suggested reading for this section: COLES (1989), D’AGOSTINO/STEPHENS (1986), GIBSON/HIGGINS

(2000), LITTELL/MCCLAVE/OFFEN (1979), SMITH/BAIN (1976).
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Table 22/8: Upper percentage points of Z = n
[
1 −R2(X,T )

]

p n
α

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0.50 0.25 0.15 0.10 0.05 0.025 0.01

20 1.62 2.81 3.52 4.07 4.90 5.69 7.19
40 2.58 4.12 5.18 6.09 7.48 8.92 10.47

0.2 60 3.01 4.68 5.89 6.90 8.75 10.45 13.02
80 3.33 5.11 6.45 7.59 9.71 11.79 14.50
100 3.56 5.42 6.88 8.12 10.42 12.84 15.47

10 0.81 1.38 1.75 2.04 2.52 2.93 3.39
20 1.27 1.98 2.51 2.94 3.76 4.56 5.46

0.4 40 1.62 2.47 3.09 3.66 4.66 5.59 6.85
60 1.77 2.71 3.39 3.93 4.92 5.88 7.35
80 1.88 2.86 3.58 4.16 5.19 6.25 7.72
100 1.95 2.95 3.72 4.33 5.41 6.55 7.99

10 0.74 1.17 1.49 1.75 2.16 2.61 3.18
20 0.98 1.49 1.88 2.20 2.72 3.28 4.03

0.6 40 1.15 1.73 2.15 2.49 3.08 3.77 4.66
60 1.23 1.82 2.25 2.61 3.26 3.92 4.77
80 1.28 1.89 2.34 2.71 3.35 4.04 4.91
100 1.32 1.94 2.41 2.78 3.41 4.12 5.03

10 0.64 0.99 1.25 1.46 1.79 2.14 2.58
20 0.79 1.19 1.48 1.71 2.14 2.58 3.29

0.8 40 0.90 1.32 1.63 1.85 2.27 2.70 3.32
60 0.94 1.37 1.68 1.94 2.38 2.79 3.37
80 0.97 1.40 1.72 1.98 2.41 2.82 3.37
100 0.99 1.42 1.74 1.99 2.41 2.84 3.35

10 0.61 0.93 1.24 1.37 1.71 2.08 2.51
20 0.74 1.13 1.42 1.64 2.03 2.44 3.05

0.9 40 0.84 1.23 1.53 1.77 2.17 2.59 3.14
60 0.88 1.28 1.57 1.80 2.19 2.59 3.17
80 0.91 1.31 1.59 1.81 2.20 2.60 3.18
100 0.92 1.32 1.60 1.82 2.20 2.60 3.18

10 0.61 0.94 1.23 1.41 1.76 2.13 2.60
20 0.75 1.14 1.44 1.68 2.11 2.57 3.20
40 0.85 1.28 1.60 1.84 2.28 2.73 3.33

0.95 60 0.90 1.33 1.63 1.88 2.30 2.74 3.39
80 0.93 1.35 1.65 1.89 2.31 2.75 3.43
100 0.95 1.36 1.66 1.90 2.32 2.75 3.45

10 0.61 0.95 1.23 1.45 1.81 2.18 2.69
20 0.82 1.30 1.69 2.03 2.65 3.36 4.15

1.0 40 1.04 1.67 2.23 2.66 3.63 4.78 6.42
60 1.20 1.93 2.57 3.18 4.33 5.69 7.79
80 1.32 2.14 2.87 3.55 4.92 6.54 8.86
100 1.41 2.30 3.09 3.82 5.38 7.22 9.67

Source: D’AGOSTINO/STEPHENS (1986, pp. 226) — Reprinted with permission from Goodness–of–fit Tech-

niques. Copyright 1986 by Marcel Dekker, Inc. All rights reserved.

The statistic used here is

Z = n
[
1 −R2(X,T )

]
, (22.17e)

which is a transformation of the estimated coefficient of non–determination 1−R2(X,T ).
High values of Z indicate a poor fit and thus lead to a rejection of the hypothesis that the

sample comes from the hypothetical distribution. The test is one–sided. Z often has an
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asymptotic distribution or the distribution can easily be simulated by Monte Carlo tech-

niques.

For testing H0 : “The dataset comes from a WEIBULL distribution” using Z we first have

to transform the WEIBULL data to extreme value data by calculating Y = lnX. For the

extreme value distribution we have

Ti = − ln

{
− ln

[
i

n+ 1

]}
. (22.17f)

The test statistic does not require estimates of the WEIBULL or the extreme value param-

eters and can be calculated for complete as well as for type–II censored samples, r being

the censoring number. Tab. 22/8 gives the upper tail percentage points of Z , and the table

is entered at p = r
/
n and n.

A comparison of several goodness–of–fit techniques by LITTELL et al. (1979) reveals that

Z is not, relatively, worse than the EDF tests using D, W 2 and A2 and the statistics of

MANN/ SCHEUER/FERTIG (see Sect. 22.1.3.2) for the alternative distributions chosen.

COLES (1989) has applied a correlation test to the plotting coordinates of the stabilized

plot, given by (22.6a,b), which exhibited a higher power than Dsp as given in (22.6c).

Example 22/6: Application of the correlation test to dataset #1 censored at r = 15

For dataset #1 in Tab. 9/2 (n = 20) censored at r = 15, we calculate — based on yi:n = lnxi:n :

R2(X,T ) = 0.3639 and Z = n
[
1 −R2(X,T )

]
= 0.7210.

With α = 0.05, n = 20 and p = 15
/
20 = 0.75, we interpolate z0.95(n = 20, p = 0.75) = 2.285.

Because Z = 0.7210 6> z0.95(n = 20, p = 0.75) = 2.285, we cannot reject H0 that the sample

comes from a WEIBULL distribution.

22.2 Discrimination between WEIBULL and other distributions

There are situations where we have to choose among two or more distinct distributions, all

being apt to describe lifetime. We start by discriminating between the two–parameter and

the three–parameter WEIBULL distributions (Sect. 22.2.1). Then we look at pairs of distri-

butions where one member of the pair is a WEIBULL distribution (Sect. 22.2.2). Finally,

we will discuss how to proceed when there are two or more other distributions besides the

WEIBULL (Sect. 22.2.3).

22.2.1 Discrimination between the two-parameter and three-parameter

WEIBULL distributions

When we have to decide whether a sample comes from We(0, b, c) or We(a, b, c), a 6= 0,

it seems quite natural to calculate an estimate â of a, e.g., the MLE, and use â as a test

statistic. But as this approach is rather cumbersome, due to the impossibility of directly

giving the distribution of â (see Sect. 11.3.2.4), we suggest an indirect procedure to test

H0 : a = 0 versus HA : a > 0.
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This approach is a modification of the goodness–of–fit test based on spacings and leaps

(Sect. 21.1.3.2). The approach is due to MANN/FERTIG (1975). Its test statistic is

F =

k
m−1∑
i=k+1

ℓ∗i

(m− k − 1)
k∑
i=1

ℓ∗i

, (22.18a)

with ℓ∗i defined in (22.15c) and m the number of uncensored observations. (m = n means

that the sample is uncensored.) The recommended values for k can be taken from Tab. 22/9

for m small. For m ≥ 15, take k = [m
/
3].

Table 22/9: Recommended values for k

Size of test m

α 3 4 5 6 − 8 9 − 14

0.25 1 1 1 2 2
0.20 1 1 2 2 2
0.15 1 2 2 3 4
0.10 1 2 2 3 4
0.05 1 2 3 3 4
0.01 1 2 3 3 4

Source: MANN/FERTIG (1975a, p. 241) — Reprinted with permission from Technometrics.

Copyright 1975 by the American Statistical Association. All rights reserved.

As the notation in (22.18a) suggests, the test statistic — under H0 — is F–distributed:

F
approx∼ F (2 (m− k − 1), 2 k), (22.18b)

and H0 : a = 0 is rejected in favor of HA : a > 0 at level α if F > F2(m−k−1),2k,1−α.

This test can also be stated in terms of the beta distribution, where

Pk,m =

m−1∑

i=k+1

ℓ∗i

/m−1∑

i=1

ℓ∗i
approx∼ Be(m− k − 1, k), (22.18c)

and H0 is rejected if Pk,m > b1−α(m− k− 1, k), where b1−α(m− k− 1, k) is the (1−α)
percentile of Be(m− k − 1, k).

Example 22/7: Testing H0 : a = 0 versus HA : a > 0 using the modified dataset #1 cen-

sored at

m = 15

Dataset #1 with n = 20 in Tab. 9/2 comes from We(0, 100, 25). We add 150 to each observation

so that we have a sample from We(150, 100, 2.5). We censor this dataset at m = 15 so that we can

use E
(
Y ∗

i+1:20

)
− E

(
Y ∗

i:20

)
given in the work table of Example 22/5.
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i xi:20 yi:20 yi+1:20 − yi:20 E
(
Y ∗

i+1:20

)
− E

(
Y ∗

i:20

)
ℓ∗i

1 185 5.2204 0.0160 1.0259 0.0157
2 188 5.2364 0.0211 0.5270 0.0399
3 192 5.2575 0.0704 0.3617 0.1946
4 206 5.3279 0.0096 0.2798 0.0345
5 208 5.3375 0.0144 0.2314 0.0619

6 211 5.3519 0.0094 0.1999 0.0472
7 213 5.3613 0.0592 0.1782 0.3325
8 226 5.4205 0.0219 0.1627 0.1345
9 231 5.4424 0.0086 0.1515 0.0569
10 233 5.4510 0.0128 0.1437 0.0890

11 236 5.4638 0.0168 0.1384 0.1214
12 240 5.4806 0.0369 0.1356 0.2715
13 249 5.5175 0.0198 0.1350 0.1472
14 254 5.5373 0.0349 0.1371 0.2539
15 263 5.5722 − − −

We have to use k = m
/
3 = 15

/
3 = 5 and the F–statistic is calculated as F = 2.3307 and the

P–statistic as P5,15 = 0.8075. Choosing α = 0.05, we can reject H0 : a = 0 with both statistics:

F = 2.3307 > F18,10,0.95 = 2.2153 and P5,15 = 0.8075 > b0.95(9, 5) = 0.7995.

22.2.2 Discrimination between WEIBULL and one other distribution

There exist several other distributions besides the WEIBULL which may be used to model

lifetime as a random variable. We will show how to discriminate between the WEIBULL

and one of its closest competitors.

22.2.2.1 WEIBULL versus exponential distribution12

Two approaches can be found in the literature to discriminate between WEIBULL and ex-

ponential distributions, i.e., a parameter test of H0 : c = 1 versus HA : c 6= 1 and a

likelihood–ratio–type test.

We first turn to the parameter test. When we want to discriminate between a two–

parameter WEIBULL distribution We(0, b, c) with CDF

FW (x | b, c) = 1 − exp
{
− (x

/
b)c
}

and a one–parameter exponential distribution Ex(b) with CDF

FE(x | b) = 1 − exp
(
− x
/
b
)

based on the MLE ĉ of c, we refer to the tests given in Sect. 21.1.1.1. In the same way

it would be useful to discriminate between the three–parameter WEIBULL distribution

12 Suggested reading for this section: ANTLE/KLIMKO/RADEMAKER/ROCKETTE (1975), BAIN/

ENGELHARDT (1991a), CHEN (1997), ENGELHARDT/BAIN (1975), GUPTA/KUNDU (2003),

HAGER/BAIN/ANTLE (1971), ZELEN/DANNEMILLER (1961).
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We(a, b, c) with CDF

FW (x | a, b, c) = 1 − exp
{
− [(x− a)

/
b]c
}

and the two–parameter exponential distribution Ex(a, b) with CDF

FE(x | a, b) = 1 − exp
{
− (x− a)

/
b
}
.

It is possible to derive such a test and relate it back to the two–parameter WEIBULL case

by using the idea of subtracting the sample minimum from each observation to eliminate

the unknown location parameter. Suppose X1:n, . . . ,Xr:n denote the r smallest ordered

observations from We(a, b, c) and let X∗
i:n−1 = Xi+1:n −X1:n; i = 1, . . . , r − 1. Under

H0 : c = 1, the starred observations represent the first r − 1 ordered observations from

a sample of size n − 2 from We(0, b, 1) = Ex(b). Thus, any test procedure previously

available for testing H0 : c = 1 when a = 0 or a known still holds when a is unknown if it

is applied to the starred observations.13

A likelihood–ratio–type test statistic can also be developed for this problem.14 That is,

consider a test of H0 : “The sample follows Ex(bE).” against HA : “The sample follows

We(0, bW , cW ).” Consider the statistic

λ =

max
bE

n∏
i=1

1

bE
exp

(
−Xi

bE

)

max
bW ,cW

n∏
i=1

cW
bW

(
Xi

bW

)cW−1

exp

{
−
(
Xi

bW

)cW}

=

b̂−nE exp

{
−

n∑
i=1

Xi

b̂E

}

(
ĉW

b̂bcWW

)n
n∏
i=1

XbcW −1
i exp

{
−

n∑
i=1

(
Xi

b̂W

)bcW} , (22.19a)

where b̂E , b̂W and ĉW are the respective MLEs. λ is called the ratio of the maximized

likelihoods. The MLE of bE is

b̂E = X =
1

n

n∑

i=1

Xi,

and for the MLEs of bW and cW , we have

b̂bcWW =
1

n

∑
XbcWi .

13 For more general tests of H0 : c = c0, c0 6= 1, the starred observations can still be used to eliminate

the unknown parameter a; however, they will no longer be distributed as ordered exponential variables

under H0 and new percentage points would need to be determined for the test statistics.

14 See DUMONCEAUX/ANTLE/HAAS (1973a) for a general representation of likelihood–ratio tests for dis-

criminating between two models with unknown location and scale parameters.
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Thus λ reduces to

λ =
b̂nbcWW

(
X ĉW

)n n∏
i=1

XbcWi

. (22.19b)

It can be shown that λ is independent of bE under H0, so λ may be used as a test statistic.

HAGER et al. (1971) have calculated percentage points of λ by Monte Carlo experiments

(see Tab. 22/10). H0 : “The sample comes from Ex(bE)” is rejected in favor of HA : “ The

sample comes from We(0, bW , cW )” at level α when λ < λα.

Table 22/10: Percentage points λα such that Pr
(
λ < λα

)
= α

n

α
QQQQQQQQQQQQQ

0.01 0.02 0.05 0.10

10 0.0198 0.0379 0.0941 0.193
20 0.0248 0.0462 0.1160 0.214
30 0.0289 0.0584 0.1335 0.239
50 0.0399 0.0657 0.1435 0.252

Source: HAGER/BAIN/ANTLE (1971, pp. 550) — Reprinted with permission

from Technometrics. Copyright 1971 by the American Statistical

Association. All rights reserved.

There is a motivation, or even a justification, for this procedure. Suppose, one is interested

in testing one hypothesis, H1, against another, H2, where H1 asserts that the DF of a variate

is a certain, completely specified, density function and H2 asserts that the DF is a second,

completely specified, density function. If either H1 or H2 is true, then the test which min-

imizes the sum of the probability of a type–I error and the probability of a type–II error is

the one which rejects H1 if, and only if, the joint density function of the sample under H2

exceeds the joint density function of the sample under H2.

Example 22/8: Testing exponential distribution against WEIBULL distribution using dataset

#1

Dataset #1 of Tab. 9/2 has n = 20 and b̂W = 99.2079, ĉW = 2.5957 and x = 87.95. The test

statistic is λ = 3.42 · 10−43 which is far below λ0.05 = 0.0248, so we can reject the hypothesis of

an exponential distribution with great confidence.

GUPTA/KUNDU (2003) have applied the ratio of the maximized likelihoods to discriminate

between the WEIBULL and the generalized exponential distribution with CDF

F (x | b, d) =
(
1 − exp

{
− x
/
b
})d

; b, d > 0.
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22.2.2.2 WEIBULL versus gamma distribution15

Another competitor to the WEIBULL distribution with respect to modeling lifetime is the

gamma distribution. We want to discriminate between these distributions by applying a test

using the ratio of the maximized likelihoods. Suppose

fG(x | bg, cG) =
1

bcGG Γ(cG)
xcG−1 exp

(
− x

bG

)
(22.20a)

denotes the DF of the gamma distribution and

fW (x | bW , cW ) =
cW
bW

(
x

bW

)cW −1

xcW−1 exp

{
−
(
x

bW

)cW}
(22.20b)

denotes the DF of the WEIBULL distribution. The natural logarithm of the ratio of the

maximized likelihoods, where the nominator is given by the gamma likelihood, follows as

T = n

{
ĉG ln

(
X̃ ĉG

X

)
+ ĉW ln

(
b̂W

X̃

)
− ĉG + 1 − ln Γ

(
ĉG
)
− ln ĉW

}
(22.21)

with

X =
1

n

n∑

i=1

Xi and X̃ =

(
n∏

i=1

Xi

)1
/
n

.

The MLEs of the WEIBULL parameters are given by (11.19a) and (11.19b) and the MLEs

of the gamma parameters follow from

ψ(ĉG) − ln ĉG = ln





(
n∏

i=1

Xi

)1
/
n/

X





and b̂G = X
/
ĉG.

BAIN/ENGELHARDT (1980) believe the decision should be based on the rule: “Choose the

gamma distribution as the appropriate model for the n data points only if T > 0, otherwise

choose the WEIBULL model” (p. ?). This rule is equivalent to choosing the distribution

that gives a greater maximized likelihood.

To measure the performance of this rule the quantity PCS (probability of correct selec-

tion) has been introduced. PCS is given by Pr(T > 0) under a gamma distribution and by

Pr(T ≤ 0) under a WEIBULL distribution. The first of these probabilities is free of bG, but

depends on cG, so we denote

PCS(cG) = Pr(T > 0 | cG). (22.22a)

Similarly, if the sample is from a WEIBULL population, the PCS depends only on cW :

PCS(cW ) = Pr(T ≤ 0 | cW ). (22.22b)

15 Suggested reading to this section: BAIN/ENGELHARDT (1980b), BALASOORIYA/ABEYSINGHE (1994),

CHEN (1987), FEARN/NEBENZAHL (1991), KAPPENMAN (1982), PARR/WEBSTER (1965), VOLODIN

(1974).
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BAIN/ENGELHARDT (1980b) have found the PCSs in Tab. 22/11 by Monte Carlo exper-

iments. As seen in this table, if cG = cW = 1, then PCS is near 0.5 as to be expected

because in this case both models coincide to the exponential distribution and both are actu-

ally correct, so there is no reason to prefer one over the other.

Table 22/11: Probability of correct selection (Gamma versus WEIBULL)

Gamma distribution: Pr(T > 0 | cG)

n

cG
bbbbbbbbbbbbbbbb

0.5 1 2 4 8 16

10 0.60 0.51 0.53 0.57 0.61 0.64
20 0.66 0.50 0.58 0.64 0.68 0.71
40 0.70 0.49 0.62 0.72 0.77 0.81
80 0.76 0.50 0.67 0.81 0.87 0.89
160 0.83 0.48 0.75 0.89 0.95 0.97

WEIBULL distribution: Pr(T ≤ 0 | cW )

n

cW
bbbbbbbbbbbbbbbb

0.5 1 2 4 8 16

10 0.53 0.49 0.59 0.63 0.65 0.66
20 0.59 0.50 0.65 0.70 0.73 0.74
40 0.70 0.51 0.70 0.81 0.84 0.87
80 0.80 0.50 0.80 0.89 0.93 0.95
160 0.90 0.52 0.86 0.96 0.99 0.99

Source: BAIN/ENGELHARDT (1980b, p. 377) — Reprinted with permission from Communications in Statistics

— Theory and Methods. Copyright 1980 by Marcel Dekker, Inc. All rights reserved.

Example 22/9: Discrimination between WEIBULL and gamma distributions using dataset #1

The parameters of the fitted WEIBULL distribution are

b̂W = 99.2079 and ĉW = 2.5957,

and the parameters of the fitted gamma distribution are

b̂G = 15.0855 and ĉG = 5.8301.

Fig. 22/4 shows both fitted distributions where the n = 20 data points have been marked on the

density curves. The value of the discriminating quantity T is T = 0.4359, so that we have to

choose the gamma distribution, but we know that dataset #1 in Tab. 9/2 has been generated from

We(80, 100, 2.5). According to Tab. 22/11 the PCS for the WEIBULL distribution with cW = 2.5
and for n = 20 is about 66% or 2 out of 3, so we have had bad luck with this sample.
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Figure 22/4: WEIBULL and gamma distributions fitted to dataset #1

FEARN/NEBENZAHL (1991) have shown that T is approximately normally distributed

so that it is possible to find the sample size needed for a user specified value of PCS.

Discrimination between WEIBULL and generalized gamma distributions is treated by

PARR/WEBSTER (1965) and VOLODIN (1974). BALASOORIYA/ABEYSINGHE (1994)

have chosen a discrimination procedure which is based on the deviation between the ob-

served and the predicted order statistics at the far end of the sample, where the prediction

rests upon the observations in the first part of the sample.

22.2.2.3 WEIBULL versus lognormal distribution16

The lognormal distribution with DF

fL(x | bL, cL) =
1√

2π cL x
exp

{
−(lnx− ln bL)2

2 c2L

}
(22.23)

is another competitor to the the WEIBULL distribution. In order to discriminate between

these two distributions we use T , the natural logarithm of the ratio of the maximized like-

16 Suggested reading for this section: DUMONCEAUX/ANTLE/HAAS (1973b), KAPPENMAN (1982, 1988),

KUNDU/ MANGLICK (no year).
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lihoods, where the nominator is given by the maximized lognormal likelihood:

T = n



0.5 − ln


ĉL ĉW

(
b̂L

b̂W

)bcW √
2π





 (22.24)

with the MLEs

b̂L =

(
n∏

i=1

Xi

)1/n

and ĉ 2
L =

1

n

n∑

i=1

(
lnXi − ln b̂L

)2
.

The guiding rule is: “Choose the lognormal distribution if T > 0; otherwise, choose the

WEIBULL distribution.”

It can be shown that the PCSs do not depend on the value of the scale parameters bL or bW ,

but they depend on the shape parameters cL or cW , respectively. Tab. 22/12 gives the PCSs

Pr(T > 0 | cL) and Pr(T ≤ 0 | cw) generated by Monte Carlo techniques.

It can be further shown that the distribution of T in (22.24) is independent of all four

parameters bL, cL, bW and cW and that the distribution of T can be approximated by a

normal distribution. KUNDU/MANGLICK (no year) give the following approximations:

PCS(lognormal) = PCS(T > 0 | lognormal) ≈ Φ

(
0.0810614n√
0.2182818n

)
, (22.25a)

PCS(WEIBULL) = PCS(T ≤ 0 |WEIBULL) ≈ Φ

(−0.0905730n√
0.2834081n

)
, (22.25b)

where Φ(·) is the CDF of the standard normal distribution. Now, to determine the mini-

mum sample size required to achieve at least PCS(lognormal) = P , we equate P to (22.25a)

and obtain

n =
0.2182818u2

P

0.08106142
, (22.26a)

where uP is the percentile of order P of the standard normal distribution. When the data

follow a WEIBULL distribution, we equate P to (22.25b) and obtain

n =
0.2834081u2

P

0.09057302
. (22.26b)

Therefore, to achieve an overall protection level P , we need at least

n = u2
P max

(
0.2834081

0.0905302
,

0.2182818

0.08106142

)

= u2
P max(34.5, 33.2) = 34.5u2

P ; (22.26c)

e.g., for P = 0.95 and u0.95 = 1.6449, we find n = 57.
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Table 22/12: Probability of correct selection (Lognormal versus WEIBULL)

Lognormal distribution: Pr(T > 0 | cL)

n

cL
HHHHHHHHHHHHHHHHHHH

3 1.5 1 0.5 0.25

10 0.67 0.67 0.69 0.66 0.66
30 0.85 0.84 0.82 0.82 0.85
50 0.90 0.90 0.90 0.91 0.90
100 0.97 0.97 0.96 0.97 0.98
200 1.00 1.00 1.00 1.00 1.00

WEIBULL distribution: Pr(T ≤ 0 | cW )

n

cW
HHHHHHHHHHHHHHHHHHH

0.5 1 1.5 2 3

10 0.68 0.69 0.68 0.67 0.67
30 0.85 0.83 0.84 0.84 0.84
50 0.91 0.92 0.90 0.90 0.91
100 0.98 0.97 0.97 0.97 0.98
200 1.00 1.00 1.00 1.00 0.99

Source: KAPPENMAN (1982, p. 668) — Reprinted with permission from Communications in Statistics

— Theory and Methods. Copyright 1982 by Marcel Dekker, Inc. All rights reserved.

DUMONCEAUX/ANTLE/HAAS (1973b) considered the discrimination problem as a testing

of a hypothesis problem, namely:

Problem 1 — H0: “lognormal” versus HA: “WEIBULL,”

Problem 2 — H0: “WEIBULL” versus HA: “lognormal.”

They provide the exact critical regions and the power of the chosen likelihood–ratio test

based on Monte Carlo simulations. The asymptotic results of KUNDU/MANGLICK given

above can be used for testing the above two pairs of hypotheses as follows:

1. For Problem 1, reject H0 at level α if

T < 0.0810614n − uα
√

0.2182818n. (22.27a)

2. For Problem 2, reject H0 at level α if

T > −0.090570n + uα
√

0.2834081n. (22.27b)

KAPPENMAN (1988) has suggested a simple method for choosing between the lognormal

and the WEIBULL models that does not require estimates of the distribution parameters and

that performs — in terms of PCS — as well as the ratio-of–maximized–likelihood method.

The method is summarized as follows. Let Xi:n, . . . ,Xn:n represent the order statistics

from a random sample. Set Yi = lnXi:n. Compute

r =
A3 −A2

A2 −A1
, (22.28)

where A1 is the average of the first 0.05n Yi’s, A3 is the average of the last 0.05n Yi’s,

and A2 is the average of the Yi’s that remain after the first and last 0.2n Yi’s are discarded.
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For the order statistics averages, fractional observations are to be used if 0.05n and 0.2n
are not integers. For example, if n = 50,

A1 =
Y1 + Y2 + 0.5Y3

2.5
, A2 =

1

30

40∑

i=11

Yi, A3 =
0.5Y48 + Y49 + Y50

2.5
.

If r > 0.7437, select the lognormal distribution; otherwise, select the WEIBULL distribu-

tion.

Example 22/10: Discrimination between WEIBULL and lognormal distributions using dataset

#1

The parameters of the fitted WEIBULL distribution are

b̂W = 99.2079 and ĉW = 2.5957,

and the parameters of the fitted lognormal distribution are

b̂L = 80.5245 and ĉL = 0.4303.

Fig. 22/5 shows both fitted distributions with the n = 20 data points marked on the density curves.

The value of of the discriminating quantity T is T = 0.2410, so that we have to choose the lognor-

mal distribution, but we know that dataset #1 has been generated from We(0, 100, 2.5). According

to Tab. 22/12 the PCS for the WEIBULL distribution with cW = 2.5 and n = 20 is about 75% or 3

out of 4, so — as in Example 22/9 — we again have bad luck with this sample.

Figure 22/5: WEIBULL and lognormal densities fitted to dataset #1

Applying the KAPPENMAN method to this problem, we first have

A1 = lnx1:20 = 3.5553, A2 =
1

12

16∑

i=5

lnxi:20 = 4.4263, A3 = lnx20:20 = 5.2095
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and then

r =
A3 −A2

A2 −A1
=

5.2095− 4.4263

4.4263− 3.5553
= 0.8991.

Because r = 0.8991 > 0.7477 we again have to choose the lognormal distribution.

22.2.3 Discrimination between WEIBULL and more than one other distribu-

tion17

It seems quite natural to extend the idea of selecting between two distributions using the

ratio of the maximized likelihoods to more than two distributions and to choose that dis-

tribution that yields the largest value of the likelihood or the log–likelihood when applied

to the sample at hand. KAPPENMAN (1982) has studied this approach for choosing be-

tween the gamma, lognormal and WEIBULL distributions and estimated PCSs by Monte

Carlo techniques. The PCSs of these distributions do not depend on the shape parameter.

Tab. 22/13 shows the results which indicate that for each “sample size – shape parameter

value” combination it is much less likely to appropriately select the lognormal model when

three models are to be considered instead just two (see Tab. 22/12). The same thing can

be said about the WEIBULL model except for the cases where the sample size is small and

the value of the shape parameter is less than one. This statement cannot be made about

the gamma model, however. When the value of cG exceeds one, rather large sample sizes

are needed to appropriately select the gamma model with any substantial probability. All

of this appears to indicate that the gamma distribution is more WEIBULL–like than the

lognormal distribution and is more lognormal–like than is the WEIBULL distribution.

KENT/QUESENBERRY (1982) propose a selection statistic that is essentially the value of

the density function of a scale transformation maximal invariant and select that family

with the largest value. The families considered include the exponential, gamma, lognormal

and WEIBULL. QUESENBERRY/QUESENBERRY (1982) extend the above idea to type–I

censored samples. In both papers the PCSs turn out to be smaller than when selection is

based on the maximum likelihood.

TAYLOR/JAKEMAN (1985) propose a procedure which selects the distribution on the basis

of the ratio of the KOLMOGOROV–SMIRNOV statistic supx
∣∣Fn(x) − F0(x)

∣∣ to a given

(1 − α) point of the KS–statistic, here: 1 − α = 0.95. Using such a ratio, the model with

the lowest value of this ratio is selected. The simulation results comparing their procedure

with the ratio–of–maximized–likelihood approach shows that no one method is likely to

provide the “best” selection criterion.

Still another selection procedure has been proposed by PANDEY et al. (1991). It rests upon

the F–statistic that measures the closeness of a regression line for the cumulative hazard

rate or for its logarithm to the data points. With respect to PCS their method is not always

superior to the other methods when the choice is between the exponential, WEIBULL and

finite–range PARETO distributions.

17 Suggested reading for this section: KAPPENMAN (1982), KENT/QUESENBERRY (1982),

PANDEY/FERDOUS/UDDIN (1991), QUESENBERRY/QUESENBERRY (1982), TAYLOR/JAKEMAN

(1985).
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Table 22/13: Probability of correct selection between gamma, lognormal and WEIBULL

models

WEIBULL distribution

n

cW
HHHHHHHHHHHHHHHHHHH

0.5 1 1.5 2 3

10 0.20 0.43 0.55 0.59 0.62
30 0.50 0.42 0.64 0.69 0.74
50 0.62 0.50 0.68 0.73 0.81
100 0.82 0.48 0.73 0.80 0.90
200 0.93 0.49 0.78 0.90 0.95

Gamma distribution

n

cG
HHHHHHHHHHHHHHHHHHH

0.5 1 2 3 4

10 0.58 0.30 0.15 0.19 0.18
30 0.70 0.41 0.36 0.37 0.37
50 0.72 0.42 0.51 0.45 0.51
100 0.77 0.50 0.61 0.64 0.66
200 0.84 0.51 0.76 0.84 0.82

Lognormal distribution

n

cL
HHHHHHHHHHHHHHHHHHH

3 1.5 1 0.5 0.25

10 0.67 0.66 0.66 0.57 0.55
30 0.85 0.84 0.79 0.67 0.60
50 0.90 0.90 0.87 0.75 0.66
100 0.97 0.97 0.94 0.84 0.68
200 1.00 1.00 0.99 0.90 0.74

Source: KAPPENMAN (1982, p. 670) — Reprinted with permission from Communications in Statistics

— Theory and Methods. Copyright 1982 by Marcel Dekker, Inc. All rights reserved.

22.3 Selecting the better of several WEIBULL distributions18

There are three quantities that are commonly used to measure the goodness of a lifetime

distribution, here: the WEIBULL distribution:

• the mean or MTTF (mean time to failure)

E(X) = a+ bΓ

(
1 +

1

c

)
, (22.29a)

• the percentile of a given order P ∗

xP ∗ = a+ b
[
− ln(1 − P ∗)

]1/c
, (22.29b)

18 Suggested reading for this section: BHANDARI/MUKHERJEE (1992), GILL/MEHTA (1994), HILL/

PATEL (2000), HSU (1982), KINGSTON/PATEL (1980, 1982), QUREISHI (1964), QUREISHI/

NABARVIAN/ALANEN (1965), RADEMAKER/ANTLE (1975), SCHAFER/SHEFFIELD (1976),

THOMAN/BAIN (1969), TSENG (1988), TSENG/WU (1990).
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• the reliability at a given time t∗

R(t∗) = exp

{
−
(
t∗ − a

b

)c}
. (22.29c)

For all three quantities the following statement holds: “The higher the value of the quantity,

the better the corresponding distribution.” When we transfer this statement to the estimates

of these quantities, it does not necessarily hold due to sampling errors in the estimated

parameters â, b̂ and ĉ.

To ease the selection or ordering process of several WEIBULL distributions, most authors

make some assumptions:

• The threshold or location parameter a is known and/or is equal for all distributions

considered.

• The shape parameter c is known and/or is equal for all distributions considered.

• The samples taken from each population and the possible censoring numbers or cen-

soring times are of equal size.

We will present only approaches for selecting the better of two populations and shortly

comment on papers treating the case of k > 2 populations.

If both WEIBULL populations have the same location parameter a and have the same

(though perhaps unknown) value of their shape parameters, then the one with the larger

scale parameter would be the better in terms of R(t∗) for all values of t∗. THOMAN/BAIN

(1969) make use of this assumption and give the probability of correct selection for the

simple selection rule: “Select the population with the larger MLE of b” disregarding the

MLE of c.19 This procedure can be recommended when one assuredly assumes that the

shape parameters are equal, but when the actual ratio of the shape parameters is greater

than 1.2 their method ought not be used.

QUREISHI (1964) present decision rules in a quality control context for selecting the

WEIBULL population with the larger mean life. Since he also assumes equal shape pa-

rameters, his procedure would be selecting the WEIBULL with the larger reliability at all

times. However, his procedure is quite sensitive to possible differences in the shape param-

eters.

RADEMAKER/ANTLE (1975) propose a simple decision rule which does not require that

the shape parameters be equal. If Ri(t
∗ | a, bi, ci) is the reliability at time t∗ for population

i(i = 1, 2), then we simply select the first population if

R1

(
t∗ | a, b̂1, ĉ1

)
> R2

(
t∗ | a, b̂2, ĉ2

)
,

and otherwise select the second population. As b̂1, ĉ1, b̂2 and ĉ2 are the MLEs, the

estimated reliabilities are also MLEs. In order to evaluate this appealing rule, RADE-

MAKER/ANTLE presented the PCSs for equal sample sizes n1 = n2 = n and equal cen-

soring numbers r1 = r2 = r based on Monte Carlo techniques (see Tab. 22/14). The

19 SCHAFER/SHEFFIELD (1976) have slightly modified the procedure of THOMAN/BAIN by introducing a

pooled estimator of the unknown shape parameter (see Sect. 21.1.2).
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simulated PCSs produce the answer for all arrangements of the parameters b1, c1, b2, c2
and t∗ for which R1(t

∗ | a, b1, c1) = R1 and R2(t
∗ | a, b2, c2) = R2.

Table 22/14: Probability of correct selection of the better of two WEIBULL distributions

(R1, R2) = (R1, R2) = (R1, R2) =
n r (0.80, 0.90) (0.90, 0.95) (.095, 0.98)

20 20 0.869 0.807 0.860
20 15 0.847 0.781 0.784
20 10 0.845 0.765 0.762

40 40 0.948 0.892 0.902
40 30 0.933 0.861 0.863
40 20 0.930 0.844 0.836

60 60 0.978 0.939 0.947
60 45 0.965 0.910 0.910
60 30 0.961 0.897 0.891

80 80 0.991 0.964 0.970
80 60 0.980 0.940 0.940
80 40 0.980 0.927 0.920

100 100 0.996 0.976 0.982
100 75 0.993 0.960 0.965
100 50 0.992 0.955 0.949

120 120 0.998 0.984 0.990
120 90 0.997 0.974 0.973
120 60 0.995 0.964 0.960

160 160 0.998 0.993 0.993
160 120 0.998 0.986 0.986
160 90 0.997 0.984 0.980

Source: RADEMAKER/ANTLE (1975, p. 18) — Reprinted with permission from

Transactions on Reliability. Copyright 1975 by IEEE. All rights reserved.

For planning an experiment it seems worthwhile to have another table giving the sample

size needed to attain a given PCS for given pairs (R1, R2). Such table has also been cal-

culated by RADEMAKER/ANTLE and is reproduced as Tab. 22/15. The reader may object

to Tables 22/14 and 22/15, to enter them one must assume values of R1(t
∗ | a, b1, c1) and

R2(t
∗ | a, b2, c2), the unknown quantities of interest. However, the approach is necessary

because one cannot have a PCS unless one specifies something about the difference or some

lower bound on the difference in the actual probabilities.

The papers on selecting between k > 2 populations are rather difficult to read and still

more difficult to implement. BHANDARI/MUKERJEE (1992) give two– and multi–stage

procedures for selecting the most reliable of several WEIBULL populations with a common

shape parameter. HSU (1982) derives a method of constructing optimal procedures to select

a subset of the k populations containing the best population which controls the size of

the selected subset and which maximizes the minimum probability of making a correct

selection; the sample sizes may be different. KINGSTON/PATEL (1980) give a ranking

procedure when the unknown parameters are either equal or different. KINGSTON/PATEL
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(1982) and TSENG (1988) classify k populations by their reliabilities with respect to a

control population. TSENG/WU (1990) propose a locally optimal selection rule when the

shape parameters are either known or are unknown but have some prior distributions. We

finally mention two papers — GILL/MEHTA (1994) and HILL/PATEL (2000) — treating

the related problem of selecting the best of several WEIBULL populations with respect to

the shape parameter.

Table 22/15: Sample size n required for given PCS to select the better of two WEIBULL

distributions

PCS = 0.90 PCS = 0.95
R1 R2 Censoring levels Censoring levels

None 0.25n 0.50n None 0.25n 0.50n
0.75 0.80 > 160 > 160 > 160 > 160 > 160 > 160
0.75 0.85 35 38 39 54 64 65
0.75 0.90 13 15 16 22 27 28

0.80 0.85 122 135 > 160 > 160 > 160 > 160
0.80 0.90 25 29 30 41 49 51
0.80 0.95 < 10 < 10 11 15 16 17

0.85 0.90 81 94 97 156 > 160 > 160
0.85 0.95 14 19 20 25 30 33
0.85 0.98 < 10 < 10 10 10 13 14

0.90 0.95 42 55 63 68 90 96
0.90 0.98 11 15 17 18 21 29
0.90 0.99 < 10 < 10 11 11 12 16

0.95 0.98 40 56 66 62 87 103
0.95 0.99 12 21 25 26 34 44

0.98 0.99 97 118 > 160 > 160 > 160 > 160

Source: RADEMAKER/ANTLE (1975, p. 19) — Reprinted with permission from Transactions on

Reliability. Copyright 1975 by IEEE. All rights reserved.
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Table of the gamma, digamma and trigamma functions

z Γ(z) ψ(z) ψ′(z) z Γ(z) ψ(z) ψ′(z)

1.000 1.00000 −0.57722 1.64494 1.250 0.90640 −0.22745 1.19733
1.005 0.99714 −0.56902 1.63299 1.255 0.90539 −0.22148 1.19073
1.010 0.99433 −0.56089 1.62121 1.260 0.90440 −0.21555 1.18419
1.015 0.99156 −0.55281 1.60959 1.265 0.90344 −0.20964 1.17772
1.020 0.98884 −0.54479 1.59812 1.270 0.90250 −0.20377 1.17132

1.025 0.98617 −0.53683 1.58680 1.275 0.90160 −0.19793 1.16498
1.030 0.98355 −0.52892 1.57562 1.280 0.90072 −0.19212 1.15871
1.035 0.98097 −0.52107 1.56460 1.285 0.89987 −0.18634 1.15250
1.040 0.97844 −0.51327 1.55371 1.290 0.89904 −0.18059 1.14636
1.045 0.97595 −0.50553 1.54297 1.295 0.89824 −0.17488 1.14028

1.050 0.97350 −0.49784 1.53236 1.300 0.89747 −0.16919 1.13425
1.055 0.97110 −0.49021 1.52188 1.305 0.89672 −0.16353 1.12829
1.060 0.96874 −0.48263 1.51154 1.310 0.89600 −0.15791 1.12239
1.065 0.96643 −0.47509 1.50133 1.315 0.89531 −0.15231 1.11654
1.070 0.96415 −0.46761 1.49125 1.320 0.89464 −0.14674 1.11076

1.075 0.96192 −0.46018 1.48129 1.325 0.89400 −0.14120 1.10502
1.080 0.95973 −0.45280 1.47145 1.330 0.89338 −0.13569 1.09935
1.085 0.95757 −0.44547 1.46174 1.335 0.89278 −0.13021 1.09373
1.090 0.95546 −0.43818 1.45214 1.340 0.89222 −0.12475 1.08816
1.095 0.95339 −0.43094 1.44266 1.345 0.89167 −0.11933 1.08265

1.100 0.95135 −0.42375 1.43330 1.350 0.89115 −0.11393 1.07719
1.105 0.94935 −0.41661 1.42405 1.355 0.89066 −0.10856 1.07179
1.110 0.94740 −0.40951 1.41491 1.360 0.89018 −0.10321 1.06643
1.115 0.94547 −0.40246 1.40588 1.365 0.88974 −0.09789 1.06113
1.120 0.94359 −0.39546 1.39695 1.370 0.88931 −0.09260 1.05587

1.125 0.94174 −0.38849 1.38813 1.375 0.88891 −0.08733 1.05067
1.130 0.93993 −0.38157 1.37942 1.380 0.88854 −0.08209 1.04551
1.135 0.93816 −0.37470 1.37080 1.385 0.88818 −0.07688 1.04040
1.140 0.93642 −0.36787 1.36229 1.390 0.88785 −0.07169 1.03534
1.145 0.93471 −0.36108 1.35388 1.395 0.88755 −0.06652 1.03033

1.150 0.93304 −0.35433 1.34556 1.400 0.88726 −0.06138 1.02536
1.155 0.93141 −0.34762 1.33734 1.405 0.88700 −0.05627 1.02043
1.160 0.92980 −0.34095 1.32921 1.410 0.88676 −0.05118 1.01556
1.165 0.92823 −0.33433 1.32117 1.415 0.88655 −0.04611 1.01072
1.170 0.92670 −0.32774 1.31323 1.420 0.88636 −0.04107 1.00593

1.175 0.92520 −0.32119 1.30537 1.425 0.88618 −0.03606 1.00118
1.180 0.92373 −0.31469 1.29760 1.430 0.88604 −0.03106 0.99648
1.185 0.92229 −0.30822 1.28992 1.435 0.88591 −0.02609 0.99182
1.190 0.92089 −0.30179 1.28232 1.440 0.88581 −0.02114 0.98720
1.195 0.91951 −0.29540 1.27481 1.445 0.88572 −0.01622 0.98262

1.200 0.91817 −0.28904 1.26738 1.450 0.88566 −0.01132 0.97808
1.205 0.91686 −0.28272 1.26003 1.455 0.88562 −0.00644 0.97358
1.210 0.91558 −0.27644 1.25276 1.460 0.88560 −0.00158 0.96912
1.215 0.91433 −0.27019 1.24557 1.465 0.88561 0.00325 0.96470
1.220 0.91311 −0.26398 1.23845 1.470 0.88563 0.00807 0.96032

1.225 0.91192 −0.25781 1.23141 1.475 0.88568 0.01286 0.95597
1.230 0.91075 −0.25167 1.22445 1.480 0.88575 0.01763 0.95166
1.235 0.90962 −0.24556 1.21756 1.485 0.88584 0.02237 0.94739
1.240 0.90852 −0.23949 1.21075 1.490 0.88595 0.02710 0.94316
1.245 0.90745 −0.23346 1.20400 1.495 0.88608 0.03181 0.93896
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Table of the gamma, digamma and trigamma functions (Continuation)

z Γ(z) ψ(z) ψ′(z) z Γ(z) ψ(z) ψ′(z)

1.500 0.88623 0.03649 0.93480 1.750 0.91906 0.24747 0.76410
1.505 0.88640 0.04115 0.93068 1.755 0.92021 0.25129 0.76130
1.510 0.88659 0.04580 0.92658 1.760 0.92137 0.25509 0.75852
1.515 0.88680 0.05042 0.92253 1.765 0.92256 0.25887 0.75576
1.520 0.88704 0.05502 0.91850 1.770 0.92376 0.26264 0.75302

1.525 0.88729 0.05960 0.91451 1.775 0.92499 0.26640 0.75030
1.530 0.88757 0.06417 0.91056 1.780 0.92623 0.27015 0.74760
1.535 0.88786 0.06871 0.90663 1.785 0.92749 0.27388 0.74491
1.540 0.88818 0.07323 0.90274 1.790 0.92877 0.27760 0.74225
1.545 0.88851 0.07774 0.89888 1.795 0.93007 0.28130 0.73960

1.550 0.88887 0.08222 0.89505 1.800 0.93138 0.28499 0.73697
1.555 0.88924 0.08669 0.89126 1.805 0.93272 0.28867 0.73436
1.560 0.88964 0.09114 0.88749 1.810 0.93408 0.29234 0.73177
1.565 0.89005 0.09556 0.88376 1.815 0.93545 0.29599 0.72920
1.570 0.89049 0.09997 0.88005 1.820 0.93685 0.29963 0.72664

1.575 0.89094 0.10436 0.87638 1.825 0.93826 0.30325 0.72410
1.580 0.89142 0.10874 0.87273 1.830 0.93969 0.30687 0.72158
1.585 0.89191 0.11309 0.86911 1.835 0.94114 0.31047 0.71907
1.590 0.89243 0.11743 0.86552 1.840 0.94261 0.31406 0.71658
1.595 0.89296 0.12175 0.86196 1.845 0.94410 0.31764 0.71411

1.600 0.89352 0.12605 0.85843 1.850 0.94561 0.32120 0.71165
1.605 0.89409 0.13033 0.85493 1.855 0.94714 0.32475 0.70922
1.610 0.89468 0.13460 0.85145 1.860 0.94869 0.32829 0.70679
1.615 0.89529 0.13885 0.84800 1.865 0.95025 0.33182 0.70439
1.620 0.89592 0.14308 0.84458 1.870 0.95184 0.33534 0.70199

1.625 0.89657 0.14729 0.84118 1.875 0.95345 0.33884 0.69962
1.630 0.89724 0.15149 0.83781 1.880 0.95507 0.34233 0.69726
1.635 0.89793 0.15567 0.83447 1.885 0.95672 0.34581 0.69491
1.640 0.89864 0.15983 0.83115 1.890 0.95838 0.34928 0.69259
1.645 0.89937 0.16398 0.82786 1.895 0.96006 0.35274 0.69027

1.650 0.90012 0.16811 0.82459 1.900 0.96177 0.35618 0.68797
1.655 0.90088 0.17223 0.82135 1.905 0.96349 0.35962 0.68569
1.660 0.90167 0.17633 0.81813 1.910 0.96523 0.36304 0.68342
1.665 0.90247 0.18041 0.81493 1.915 0.96699 0.36645 0.68116
1.670 0.90330 0.18447 0.81176 1.920 0.96877 0.36985 0.67892

1.675 0.90414 0.18853 0.80862 1.925 0.97058 0.37324 0.67670
1.680 0.90500 0.19256 0.80550 1.930 0.97240 0.37662 0.67449
1.685 0.90588 0.19658 0.80240 1.935 0.97424 0.37999 0.67229
1.690 0.90678 0.20059 0.79932 1.940 0.97610 0.38334 0.67010
1.695 0.90770 0.20457 0.79626 1.945 0.97798 0.38669 0.66793

1.700 0.90864 0.20855 0.79323 1.950 0.97988 0.39002 0.66578
1.705 0.90960 0.21251 0.79022 1.955 0.98180 0.39335 0.66363
1.710 0.91057 0.21645 0.78724 1.960 0.98374 0.39666 0.66150
1.715 0.91157 0.22038 0.78427 1.965 0.98570 0.39996 0.65939
1.720 0.91258 0.22429 0.78133 1.970 0.98768 0.40325 0.65728

1.725 0.91361 0.22819 0.77840 1.975 0.98969 0.40653 0.65519
1.730 0.91467 0.23208 0.77550 1.980 0.99171 0.40980 0.65312
1.735 0.91574 0.23595 0.77262 1.985 0.99375 0.41306 0.65105
1.740 0.91683 0.23980 0.76976 1.990 0.99581 0.41631 0.64900
1.745 0.91793 0.24364 0.76692 1.995 0.99790 0.41955 0.64696

2.000 1.00000 0.42278 0.64493
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Abbreviations

ABLE asymptotically best linear estimator or estimate

ABLIE asymptotically best linear invariant estimator or estimate

ABLUE asymptotically best linear unbiased estimator or estimate

ALT accelerated life test

ARE asymptotic relative efficiency

BED bivariate exponential distribution

BLIE best linear invariant estimator or estimate

BLIP best linear invariant predictor

BLUE best linear unbiased estimator or estimate

BLUP best linear unbiased predictor

BWD bivariate WEIBULL distribution

CCDF complementary cumulative distribution function or reliability function

CDF cumulative distribution function

CE cumulative exposure

CHR cumulative hazard rate

CRLB CRAMÉR–RAO lower bound

DAF decreasing aging factor

DF density function

DFR decreasing failure (= hazard) rate

DFRA decreasing failure (= hazard) rate average

DHR decreasing hazard rate

DHRA decreasing hazard rate average

DIHR decreasing interval hazard rate average

DMRL decreasing mean residual life

EB empirical BAYES

EDF empirical distribution function

FLUP final linear unbiased predictor

GLS general least squares

GLUE good linear unbiased estimator or estimate

HNBUE harmonic new better than used in expectation

HNWUE harmonic new worse than used in expectation

HPD highest posterior density

HPP homogeneous POISSON process

HR hazard rate
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IAF increasing aging factor

IFR increasing failure (= hazard) rate

IFRA increasing failure (= hazard) rate average

IHR increasing hazard rate

IHRA increasing hazard rate average

iid identically and independently distributed

IDD infinitely divisible distributed

IIHR increasing interval hazard rate average

IMRL increasing mean residual life

IPL inverse power law

MDE minimum distance estimator or estimate

ML maximum likelihood

MLE maximum likelihood estimator or estimate

MME modified method of moments estimator or estimate

MMLE modified maximum likelihood estimator or estimate

MRL mean residual life

MSE mean squared error

MTBF mean time between failures

MTTT mean time to failure

MVBE minimum variance bound estimator or estimate

MVE multivariate exponential distribution

MVU minimum variance unbiased

MWD multivariate WEIBULL distribution

NBU new better than used

NBUE new better than used in expectation

NHPP non–homogeneous POISSON process

NLS non–linear least squares

NWU new worse than used

NWUE new worse than used in expectation

OLS ordinary least squares

PALT partially accelerated life test

PCS probability of correct selection

PWM probability weighted moment

REET ratio of expected experimental times

RMSE root mean squared error
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RP renewal process

RSS residual sum of squares

SRE sample reuse estimator or estimate

TFR tampered failure rate

TRV tampered random variable

TTT total time on test

UMVUE uniformly minimum variance unbiased estimator or estimate

WLS weighted least squares

WPP WEIBULL–probability–paper

WRP WEIBULL renewal process
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Mathematical and statistical notations

∼ distributed as

iid∼ independently and identically distributed

asym∼ asymptotically distributed

d
= equality in distribution

:= equal by definition

d→ convergent in distribution

∀ for all

◦ inner product operator

∗ convolution operator

∧ compounding operator

∝ proportional to

αr α–coefficient of order r

B(a, b) complete beta function

Be(a, b) beta distribution with parameters a, b

βr β–coefficient of order r

CEILING rounding “up” to nearest integer

CF(·) coefficient of variation of

χ2(ν) χ2– distribution with ν degrees of freedom

Cov(·) covariance of

d differential operator

E(·) expectation of

erf(·) GAUSSIAN error function of

Evi(a, b) type–I extreme value distribution of the minimum with parameters a, b

Evii(a, b, c) type–II extreme value distribution of the minimum with parameters a, b, c

Eviii(a, b, c) type–III extreme value distribution of the minimum with parameters a, b, c

EvI(a, b) type–I extreme value distribution of the maximum with parameters a, b

EvII(a, b, c) type–II extreme value distribution of the maximum with parameters a, b, c

EvIII(a, b, c) type–III extreme value distribution of the maximum with parameters a, b, c

Ex(λ) exponential distribution with parameter λ
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f(·) density function of

F (·) cumulative distribution of

F (ν1, ν2) F–distribution with ν1, ν2 degrees of freedom

FLOOR rounding “down” to nearest integer

Ga(· · · ) gamma distribution with parameters · · ·

γ EULER’s constant

γ(·|·) incomplete gamma function

Γ(·) complete gamma function

Γ(·|·) complementary incomplete gamma function

Γr Γ(1 + r
/
c)

I(·) entropy of

I(θ) FISHER information for parameter vector θ

Ip(a, b) PEARSON’s incomplete beta function

KX(·) cumulant generating function

κr(·) cumulant of order r of

ℓ(·, ·) loss function

L(θ | data) likelihood function for parameter vector θ

L(θ | data) log–likelihood function for parameter vector θ

lim limit

Lw(a, b) = Evi(a, b) — Log–WEIBULL distribution with parameters a, b

M sample mid–range

MX(·) raw moment generating function of X

µi:n expectation of Xi:n

µr(·) central moment (= moment about the mean) of order r of

µ[r](·) ascending factorial central moment of order r of

µ(r)(·) descending factorial central moment of order r of

µ
(k)
i:n k–th moment about zero of Xi:n

µ′r(·) raw moment (= moment about zero) of order r of

µ′[r](·) ascending factorial raw moment of order r of

µ′(r)(·) descending factorial raw moment of order r of
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µ∗r(·) standardized moment of order r of

No(µ, σ2) normal distribution with parameters µ, σ2

νr(·) absolute central moment of order r of

ν ′r(·) absolute raw moment of order r of

o(g(x)) = f(x) limx→x0

f(x)

g(x)
= 0 — LANDAU symbol

O(g(x)) = f(x) limx→x0

f(x)

g(x)
< constant — LANDAU symbol

Ω parameter space

ϕX(·) characteristic function of X

Φ(·) cumulative distribution function of No(0, 1)

plim probability limit

Po(λ) POISSON distribution

ψ(·) digamma function

ψ′(·) trigamma function

R set of real numbers

R(·) CCDF (= or reliability function)

Re(a, b) uniform (= rectangular) distribution with parameters a, b

σ(·) standard deviation of

sign(·) sign function

s(k,j) STIRLING number of the first kind

S(k,j) STIRLING number of the second kind

TX(·) information generating function of

tr(·) trace of

Var(·) variance

We(a, b, c) = Eviii(a, b, c) — WEIBULL distribution with parameters a, b, c

X sample mean of X

X̃ sample median of X

Xi:n i–th order statistic in a sample of size n

ZX(·) central moment generating function of X

Z set of non–negative integers
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ance; Sankhyā A 49, 268–271

KHAN, A.H. / KHAN, R.U. / PARVEZ, S. (1984): Inverse moments of order statistics from Weibull

distributions; Scandinavian Actuarial Journal, 91–94

KHAN, A.H. / PARVEZ, S. / YAQUB, M. (1983): Recurrence relations between product moments

of order statistics; Journal of Statistical Planning and Inference 8, 175–183

KHAN, A.H. / YAQUB, M. / PARVEZ, S. (1983): Recurrence relations between moments of order

statistics; Naval Research Logistics Quarterly 30, 419–441

KHIROSHI, S. / MIEKO, N. (1963): On the graphical estimation of the parameter of the Weibull

distribution from small samples; Bulletin of the Electrotechnical Laboratory 27, 655–663

KHIROSHI, S. / SIDERU, T. / MINORU, K. (1966): On the accuracy of estimation of the parameters

of the Weibull distribution from small samples; Bulletin of the Electrotechnical Laboratory 30, 753-

765

KIES, J.A. (1958): The strength of glass; Naval Research Lab. Report No. 5093; Washington, D.C.



Bibliography 729

KIM, B.H. / CHANG, I.H. / KANG, C.K. (2001): Bayesian estimation for the reliability in Weibull

stress–strength systems using noninformative priors; Far East Journal of Theoretical Statistics 5,

299–315

KIMBALL, B.F. (1956): The bias in certain estimates of the parameters of the extreme–value dis-

tribution; Annals of Mathematical Statistics 27, 758–767

KIMBALL, B.F. (1960): On the choice of plotting positions on probability paper; Journal of the

American Statistical Association 55, 546–560

KIMBER, A. (1996): A Weibull based score test for heterogeneity; Lifetime Data Analysis 2, 63–71

KIMBER, A.C. (1985): Tests for the exponential, Weibull and Gumbel distributions based on the

stabilized probability plot; Biometrika 72, 661–663

KINGSTON, J.V. / PATEL, J.K. (1980): Selecting the best one of several Weibull populations;

Communications in Statistics — Theory and Methods 9, 383–398

KINGSTON, J.V. / PATEL, J.K. (1981): Interval estimation of the largest reliability of k Weibull

populations; Communications in Statistics — Theory and Methods 10, 2279–2298

KINGSTON, J.V. / PATEL, J.K. (1982): Classifying Weibull populations with respect to control;

Communications in Statistics — Theory and Methods 11, 899–909

KLEIN, J.P. / BASU, A.P. (1981): Weibull accelerated life tests when there are competing causes

of failure; Communications in Statistics — Theory and Methods 10, 2073–2100

KLEIN, J.P. / BASU, A.P. (1982): Accelerated life tests under competing Weibull causes of failure;

Communications in Statistics — Theory and Methods 11, 2271–2286

KLEYLE, R. (1978): Approximate lower confidence limits for the Weibull reliability function; IEEE

Transactions on Reliability 27, 153–160

KOGELSCHATZ, H. (1993): Emil Julius Gumbel — Appreciation of his scientific work (in Ger-

man); Allgemeines Statistisches Archiv 77, 433–440

KOLAR–ANIC, L. / VELKOVIC, S. / KAPOR, S. / DUBLJEVIC, B. (1975): Weibull distribution

and kinetics of heterogeneous processes; Journal of Chem. Phys. 63, 633–668

KOTANI, K. / ISHIKAWA, T. / TAMIYA, T. (1997): Simultaneous point and interval predictions in

the Weibull distributions; Statistica 57, 221–235

KOTELNIKOV, V.P. (1964): A nomogram connecting the parameters of Weibull’s distribution with

probabilities (in Russian, English translation); Teoriya Veroyatnostei i ee Primeneniya, 9, 670–673

KOTZ, S. / BALAKRISHNAN, N. / JOHNSON, N.L. (2000): Continuous Multivariate Distributions,

Vol. I; Wiley, New York

KOTZ, S. / NADARAJAH, S. (2000): Extreme Value Distributions: Theory and Applications; Im-

perial College Press, River Edge, NJ

KRISHNAIAH, P.R. / RAO, C.R. (eds.) (1988) Quality Control and Reliability; Handbook of Statis-

tics, Vol. 7, North–Holland, Amsterdam

KROHN, C.A. (1969): Hazard versus renewal rate of electronic items; IEEE Transactions on Reli-

ability 18, 64–73
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Author index

A–Bary, H., 744

Aagard, P.M., 278, 430, 747

Abd–El–Hakim, N.S., 150, 705

Abd–Elrahman, A.M., 567, 704

Abdel–Ghaly, A.A., 553, 704

Abdel–Ghani, M.M., 553, 704

Abdel–Wahid, A.A., 606, 704

Abdelhafez, M.E., 704

Abernethy, R.B., 704

Abeysinghe, T., 679, 681, 707

Abo–Youssef, S.E., 237

Abouammoh, A.M., 119, 705

Abramowitz, M., 72, 704

Abrams, K., 278, 704

Achcar, J.A., 278, 591, 595, 704, 712

Adatia, A., 497, 613, 615, 704

Agarwal, S.K., 705

Aggarwala, R., 448, 707

Ahmad, K.E., 154, 567f., 704

Ahmad, M., 474, 748

Ahmad, S., 704

Aho, M., 663, 704

Aitken, A.C., 357, 704

Aitkin, M., 704

Al–Baidhani, F.A., 510, 705

Al–Hussaini, E.K., 150, 705

Al–Khayyal, F.A., 754

Al–Mutairi, D.K., 705

Al–Mutwali, J., 417, 711

Al–Youssef, M.H., 133, 137, 753

Alanen, J.D., 686, 748

Ali Khan, M.S., 119, 124, 705

Ali, M., 705, 760

Ali, M.A., 705

Ali, M.M., 264, 268, 709, 731

Almeida, J.B., 275, 705

Alpini, R., 705

Altschuler, B., 279, 762

Anderson, K.M., 278, 546, 705, 744

Andrade, C.S., 735

Angus, J.E., 597, 752

Antle, C.E., 111, 375, 421, 426, 437, 442,

509, 591ff., 625, 634, 676, 681,

686ff., 705, 706, 710, 718, 724,

748, 751, 758

Antoon, D.F., 591, 648, 741

Apt, K.E., 277, 705

Archer, N.P., 427, 434f., 705

Arif, O.H., 281, 730

Arnold, B.C., 228, 705

Aroian, L.A., 51, 133, 137, 149, 705

Arora, M.S., 706

Arroyo, V., 712

Ascher, H., 189, 706

Ashby, D., 704

Ashour, S.K., 154, 295, 622, 706

Aslanidou, H., 751

Attia, A.F., 553, 704, 706

Austin, J.A., 434, 720

Bae, S., 708

Baganha, M.P., 706

Bahaa, M.S., 764

Bahler, C., 284, 706

Bahuaud, J., 720

Bai, D.S., 290, 548, 550, 706

Bain, L.J., 111, 164, 199, 375, 382, 421, 425,

437, 438, 442, 489f., 493, 498, 503,

505, 508, 509, 572, 579f., 588f.,

591ff., 597, 601ff., 610f., 616ff.,

625, 628f., 631ff., 634f., 636ff.,

646ff., 663, 672, 676, 679f., 704–

706, 710, 719, 724, 755, 758, 763

Balaban, H.S., 356, 707

Balakrishnan, K., 127f.

Balakrishnan, N., 173, 223, 228, 231, 237f.,

242, 244, 250, 254, 425, 448, 467,

705, 707f., 729, 732, 744, 757, 760

Balamurali, S., 729

Balasiddamum, P., 760

Balasooriya, U., 280, 310, 448, 613, 615,

679, 681, 707

Balderossi, B., 757

Balogh, A., 280, 708

Bar Lev, S., 749

Barbosa, E.P., 546, 708

Barlow, R.E., 46, 58, 202, 286, 291, 333f.,

708

Barndorff–Nielsen, O., 98, 708

Barnett, V., 316, 326, 329, 356, 427, 511,

531, 708

Barr, D.R., 658, 708

Barr, S., 277, 763

Barros, V.R., 277, 708

Bartholomew, D.J., 216, 708



764 Author index

Bartlett, M.S., 189, 708

Bartolucci, A.A., 708

Bartolucci, A.D., 708

Basu, A.P., 199, 237, 241, 546, 572, 579, 588,

708, 732, 735, 749

Basu, S., 709

Baxter, L.R., 202, 213, 218, 220, 709

Beer, C.E., 427, 724

Beg, M.I., 264, 268, 709, 731

Begum, A.A., 709

Beljajew, J.K., 202, 723

Bell, C.B., 199, 734

Benjamini, Y., 91, 709

Bennett, G.K., 528f., 709

Bennett, J.G., 11, 709

Berger, J.O., 281, 709, 757

Berger, R.W., 336, 341, 709

Bergman, B., 335, 709

Berner, J., 276, 733

Bernholtz, B., 534, 711

Berrettoni, J.N., 275, 278, 280, 709

Berry, G.L., 278, 284, 709

Beyer, R., 709

Bhandari, S.K., 686, 689, 709

Bhatkulikar, S.G., 503, 508, 754

Bhattacharya, S.K., 438, 709f.

Bhattacharyya, G.K., 173, 181, 710, 736

Bilikam, J.E., 631, 710, 741

Billman, B.R., 442, 444, 591f., 625, 634,

707, 710

Bjarnason, H., 710

Blischke, W.R., 202, 213, 456, 709, 710

Blom, G., 326, 327, 383, 655, 710

Blumenthal, S., 710

Boah, J.K., 753

Boardman, T.J., 149, 714

Boes, D.C., 277, 464, 473, 597, 710, 726

Bogdanoff, D.A., 532, 710

Bolfarine, H., 712, 722

Bollinger, R.C., 121, 752

Bondesson, L., 710

Bonner, F.T., 750

Boorla, R., 275, 710

Booth, P., 415, 438ff., 720

Borgmann, L.E., 712

Bortkiewicz, L. von, 5, 710

Bowman, K.O., 464, 710

Box, G.E.P., 511, 516, 710

Bozorgnia, A., 722

Brännäs, K., 710

Brain, C.W., 667f., 753

Brett, A.C., 278, 759

Brikc, D.M., 352, 496, 710

Broemeling, L., 716

Broniatowski, M., 711

Brookmeyer, R., 704

Brown, E.F., 726

Brown, G.C., 427, 711

Bryson, M.C., 58f., 67, 711

Buckland, W.R., 711

Buckwalter, R.M., 434, 720

Buehler, R.J., 532f., 727

Buffa, E.S., 711

Bugaighis, M.M., 536, 541, 546, 711

Bunday, B.D., 417, 711

Burr, I.W., 101, 711

Burridge, J., 711

Bury, K.V., 534, 711

Byers, R.A., 706

Cacciari, M., 68, 275, 448, 711, 738, 741

Calabria, R., 129f., 622, 711

Campo, R., 333f., 708

Campos, J.L., 278, 712

Canavos, G.C., 517, 520, 524ff., 606, 609,

712

Cancho, V.G., 712

Canfield, R.V., 712

Carlin, J., 277, 712

Carmody, T.J., 485, 486, 712

Casciari, M., 714

Case, K.E., 281, 746

Castellino, V.C., 754

Castillo, E., 712

Cavallini, A., 68, 741

Cha, M.S., 551, 706

Chace, E.F., 438, 712

Chan, K.L., 613, 615, 707

Chan, L.K., 387ff., 391, 395, 397, 497, 613,

615, 704, 712

Chan, P.S., 242, 448, 707, 744

Chan, W., 572, 578, 581, 712

Chan, Y.C., 761

Chandra, M., 663, 712

Chandra, N.K., 268, 625, 631, 634, 640, 712,

713

Chang, I.H., 732

Chang, S.–C., 150, 713

Chao, A., 510, 713

Charernkavanich, D., 137, 713

Chaudhuri, A., 268, 625, 631, 634, 640, 712,

713



Author index 765

Chaudury, M.L., 210, 713

Chen, C.–Y., 278, 713

Chen, C.H., 434f., 713

Chen, G., 282, 764

Chen, J.M., 283, 713

Chen, W.W.S., 679, 713

Chen, Z., 164, 451, 503, 506, 625, 631, 676,

713f.

Cheney, M.O., 716

Cheng, K.F., 434f., 713

Cheng, S.W., 154, 397, 712, 713

Chernoff, H., 385, 399, 713

Cheu, R.L., 713

Chew, E.P., 51, 758

Chin, A.C., 284, 713

Chiou, K.-C., 713

Cho, Y.–S., 730

Choi, S.–H., 730

Christensen, E.R., 278, 713

Christiansen, C., 279, 741

Christofferson, R.D., 713

Christopeit, N., 133, 714

Chun, Y.R., 551, 706

Chung, S.W., 551, 706

Clark, L.J., 397, 714

Clark, V.A., 724

Clough, R., 546, 724

Cobb, E.B., 714

Cohen, A.C., 91, 125, 137, 223, 237, 286,

291, 430, 438, 442, 448, 467f., 490,

707, 713f., 762

Coleman, R., 213, 714

Coles, S.G., 655, 672, 674, 714

Colosimo, E.A., 722

Colvert, R.E., 149, 714

Conrad, H., 731

Conradsen, K., 277, 714

Constantine, A.G., 213, 219, 714

Contin, A., 68, 276, 711, 714, 738, 741

Cook, L., 269, 715

Cooke, P., 490, 498f., 715

Couture, D.J., 528f., 715

Cox, D.R., 19, 171, 715

Cramer, E., 715

Cramér, H., 16, 406, 715

Cran, G.W., 352, 470, 715

Crow, L.H., 198, 199, 572, 576ff., 715

Crowder, M., 133, 173, 185, 715

Cruise, J.F., 754

Cullen, D.E., 715

Cure, W.W., 284, 749

D’Agostino, R.B., 385f., 395, 399, 546, 651,

656ff., 665, 668, 672f., 715, 744

Dahiya, R.C., 133, 137, 741

Dallas, A.C., 231, 244, 716

Dannemiller, M.C., 281, 676, 764

Danziger, L., 716

Dasgupta, N., 278, 716

Dattatrya Rao, A.V., 760

Dattero, R., 120, 124, 756

David, H.A., 223, 237, 243, 616, 716

David, J., 347ff., 716

Davidson, T., 658, 708

Davies, L., 254, 257, 754

Davison, A.C., 143, 716

De Braganca Pereira, B., 716

de Haan, L., 716

de Meyer, F., 760

Dekkers, A.L., 133, 716

Delano, J., 726

Dell, T.R., 750

Dellaportas, P., 622, 716

Derzko, G., 734

DeSouza, D.I. Jr., 733

Deutscher Normenausschuss, 716

Dewanji, A., 279, 716

Dey, D.K., 173, 185, 528, 716, 728, 747, 751

Dibenedetto, A.T., 724

Dieterle, H., 750

Ding, Y., 467f., 714

Dinse, G.E., 279, 747

DiPonzio, M., 237, 241, 735

Dixit, U.J., 622f., 716

Dixon, J.C., 277, 716

Dodd, E.L., 5, 716

Dodson, B., 336, 342, 344, 370, 589, 591,

596, 716

Doob, J.L., 189, 716

Dourgnon, F., 69, 716

Downton, F., 377, 379, 716

Drapella, A., 129, 717

Duan, J., 277, 717

Duane, J.T., 198, 201, 582, 717

Dubey, S.D., 91, 97, 112, 155f., 264, 272,

398, 400, 426, 464, 476, 479, 481,

490, 498, 503f., 640, 644, 717f.,

725

Dubljevic, B., 732

Dufour, R., 658, 718

Dukati, F., 280, 708

Dumonceaux, R., 677, 681, 718

Durham, S.D., 276, 718, 745



766 Author index

Dyer, A.R., 279, 718

Dyer, D.D., 399, 718

Edwards, A.W.F., 402, 718

Efron, B., 498, 718f.

Einmahl, J.H.J., 716

Eisenklam, P., 276, 721

El–Arishy, S.M., 272, 718

El–Debeiky, S., 744

El–Din, M.M.M., 272, 718

El–Hawary, H.M., 237f., 744

Elandt–Johnson, R.C., 146, 149, 155, 342,

718

Elderton, W.P., 98, 718

Ellis, W.C., 718

Emoto, S.E., 291, 718

Engelhardt, M., 199, 382, 421, 425, 438, 442,

489f., 498, 572f., 579f., 588f., 591,

597, 601, 604, 610f., 616ff., 625,

628f., 631f., 634ff., 648ff., 663,

676, 679f., 704, 707, 719, 763

Engeman, R.M., 383, 397, 510, 719

English, J.R., 763

Epstein, B., 4, 14, 15, 333, 719

Erfurt, F., 742

Errington, D., 704

Erto, P., 129, 281, 588, 606, 719f.

Esary, J.D., 719

Escobar, L.A., 536, 619, 719, 740

Estevan, E.A., 277, 708

Eubank, R.L., 485, 712

Euler, L., 72

Evaggelopoulos, N., 728

Evans, I.G., 622, 720

Falls, W., 154, 558f., 720

Fang, Z., 276, 720

Farewell, V.T., 36, 279, 720, 757

Farnum, N.R., 415, 438ff., 720

Farnworth, N.R., 731

Fattorini, L., 705

Fauchon, J., 165ff., 720

Fearn, D.H., 679, 681, 720

Fei, H., 362f., 448, 720

Feingold, H., 189, 706

Feller, W., 189, 202, 720

Fenske, W.J., 282, 764

Ferdous, J., 685, 746

Fernandez–Cantelli, 712

Ferrer, G., 706

Fertig, K.W., 280, 363, 372, 387, 394, 489,

501, 601, 606, 616f., 669f., 674f.,

720, 737f.

Fields, R., 546, 724

Finkelstein, J.M., 572f., 720

Fisher, R.A., 6ff., 720

Flehinger, B.J., 71, 720

Flygare, M.E., 434f., 720

Fogo, J.C., 591, 595, 704

Fok, S.L., 276, 721

Fothergill, J.C., 741

Fotopooulos, S.B., 728

Fowlkes, E.B., 721

Frahm, P., 281, 721

Francis, B., 704

Franck, J.R., 721

Fraser, D.A.S., 532, 534, 721

Fraser, R.P., 276, 721

Frawley, W.H., 763
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Tövissi, L., 4, 758

Tomita, Y., 753

Tommasini, L., 68, 741

Tong, L.-I., 713

Topp, C.W., 395, 734

Trede, M., 91, 97, 752

Trudel, R., 237, 243, 736

Trudeu, M., 727



Author index 775

Truelove, A.J., 710

Tsai, T.R., 763

Tsang, A.H.C., 356, 759

Tse, S.–K., 305, 308, 448, 759, 764

Tseng, S.–T., 686, 689, 759

Tsionas, E.G., 280, 517, 567, 570, 759

Tsokos, C.P., 428f., 517, 520f., 524ff., 606,

609, 712, 745f., 748, 749, 759f.

Tsumoto, M., 277, 759

Tuller, S.E., 278, 759

Tummala, V.M.R., 718

Turner, M.E., 720

Tyurin, V.P., 354, 759

Tziafetas, G.N., 622f., 759

Uddin, M.B., 685, 746

Umbach, D., 760

Ungerer, A., 280, 760

Upadhyay, S.K., 526, 616f., 746

Usher, J.S., 760

Van der Auwera, L., 278, 760

Van der Wiel, S.A., 546, 760

Van Heeswijk, R.G., 757

Van Montfort, M.A.J., 760

Van Wagner, F.R., 281, 760

Van Zwet, W.R., 91, 94, 760

Vance, L.C., 336, 356, 359, 510, 722, 760

Vasudeva Rao, A, 760

Velkovic, S., 732

Venkata Ramanaiah, M., 760

Viertl, R., 277, 760

Viveros, R., 448, 760

Voda, V.G., 186, 278, 601, 606, 728, 760

Vogt, H., 398, 760

Volodin, I.N., 679, 681, 761

Vopatek, A.L., 738

Wada, C.Y., 173, 758

Walden, A.T., 747

Wallenius, K.T., 761

Waller, R.A., 511, 517, 528f., 606, 738

Wallis, J.R., 723

Wang, F.K., 438, 731

Wang, M., 763

Wang, Y., 277, 761

Wang, Y.H., 254, 761

Watkins, A.J., 412, 425, 545, 761

Watson, G.S., 761

Watson, M.W., 357, 757

Wattier, J.B., 734

Webb, D.P., 761

Webber, N., 277, 726

Weber, R.O., 278, 758

Webster, J.T., 111, 679, 681, 746

Weibull, W., 3ff., 241, 277, 284, 327, 470f.,

488, 761

Weier, D.R., 173, 175, 756

Weissfeld, L.A., 596, 752

Wells, W.T., 761

Wenocur, M.L., 15, 21, 734

Westberg, U., 335, 761

Whalen, A.D., 762

Wharton, R.M., 591, 596, 655, 756

Whisenand, C.W., 399, 718

White, J.S., 213f., 218, 246, 247f., 282, 338,

356, 360, 364, 375, 383, 395, 596,

616f., 670, 762

Whitehead, A., 284, 756

Whitehead, J., 762

Whitten, B.J., 430, 467f., 490, 714, 762

Whittenmore, A., 279, 762

Wiegand, R.P., 725

Wiener, J.G., 747

Wilks, D.S., 278, 762

Williams, J.S., 279, 762

Wilson, R.B., 762

Wilson, W.M., 364ff., 509, 758

Wingo, D.R., 133, 137, 427, 448, 711, 762

Winterbottom, A., 606, 704

Winterton, J., 280, 744

Wolstenholme, L.C., 277, 762

Wong, P.G., 631, 763

Wong, R.K.W., 278, 763

Wong, S.P., 631, 763

Woo, J., 763

Woodward, W.A., 154, 561, 763

Wozniak, P.J., 663, 763

Wright, D.E., 622, 716

Wright, W.P., 613, 615, 763

Wu, H.–J., 686, 689, 759

Wu, J.W., 281, 283, 310, 763

Wu, S.J., 448, 451, 763

Wünsche, S., 754

Wyckoff, J., 489, 498, 763

Xie, M., 119, 142ff., 149, 164, 199, 616, 733,

742, 763

Xie, P., 716, 763

Xu, M.Z., 741

Xu, S., 277, 763



776 Author index

Yam, R.C.M., 764

Yamada, S., 284, 763

Yang, C., 448, 759

Yang, G., 438, 502, 755

Yang, L., 277, 763

Yang, Z., 616, 763

Yannaros, N., 763

Yaqub, M., 237, 240, 731

Yasui, K., 282, 743f.

Yazhou, J., 277, 763

Ye, C., 763

Yee, S.R., 283, 746

Yildirim, F., 397, 764

Yokoyama, S.–I., 498, 753

Youssef, S.E.A., 718

Yuen Fung, K., 764

Yuen, H.–K., 305, 308, 448, 759, 764

Yum, B.–J., 546, 753

Zacks, S., 169, 282, 764f.

Zaher, A.M., 764

Zanakis, S.H., 398, 413, 426f., 436, 476, 482,

488, 490, 498, 501f., 510, 764

Zelen, M., 131, 133, 276, 281, 360, 676, 735,

764

Zhang, L., 282, 764

Zhang, Y., 278, 764

Zhixin, J., 763

Zhong, G., 764

Zuo, M.J., 168, 764

zur Nieden, A., 764



Subject index

ABLIE, 384ff.

ABLUE, 384

absolute central moments, 81

absolute raw moments, 80

accelerated life model, 170

accelerated life test, 289

accelerated life testing, 170f.

acceptance sampling, 280

aging, 47ff., 49

aging criteria, 58ff.

α–coefficient of order r , 84

ancillary statistic, 425, 532

Anderson–Darling statistic, 654

Arrhenius acceleration factor, 538

Arrhenius–Weibull distribution, 170

autocorrelation, 357

baseline hazard rate, 171

Bayes estimator, 513

Bayes’ theorem, 512

Bayesian estimation theory, 513ff.

Bayesian inference, 511f.

empirical, 517, 528ff.

best linear estimator, 316

beta distribution, 223

beta function

complete, 223

β–coefficient of order r, 84

bias, 314

binomial distribution, 3

binomial moment, 207

Blackwell’s theorem, 210

Boltzman’s constant, 537

Box–Cox–transformation, 161

broken–stick model, 24ff.

Brownian motion, 19

Burr system, 101ff.

Cauchy distribution, 8

Cauchy functional equation, 255

censoring, 133, 291ff.

combined type–I and type–II, 301

doubly (on both sides), 292

expected time saving, 293f.

indirect, 302ff.

interval, 310

multiple, 305ff.

type–I, 306

type–II, 307

random, 311

ratio of expected time saving, 298

single, 291ff.

from above (on the right), 291

from below (on the left), 292

type–I, 292ff.

type–II, 296ff.

central limit theorem, 409

central moment, 78

central moment generating function, 79

characteristic function, 27, 81

characteristic life, 9, 32, 44, 536

characterization, 254

χ–distribution, 112, 115

χ2–distribution, 8, 57, 112, 165, 215

non–central, 167

circular normal distribution, 112

coefficient of non–determination, 674

coefficient of variation, 62

competing risk model, see series system

completeness, 107

composite distribution, 146

compounding operator, 155

conditional age, 51

conditional density, 512

consistency, 315, 406

consonance set, 655

convolution integral, 204

corrected moment, see central moment

covariate, 168

coverage, 224

Cramér–Rao lower bound, 315, 378, 406,

492f., 592

Cramér–von Mises statistic, 654

credible interval, 515

equal–tail, 515, 519

highest posterior density (HPD), 515

shortest, 515

cumulant, 81

cumulant generating function, 82

cumulative exposure model, 549f.

cumulative hazard rate, 13, 29

data

field data, 286

lab data, 286



778 Subject index

non–postmortem, 557ff.

postmortem, 557ff.

data degradation modeling, 19ff., 168

decreasing aging factor, 67

delay, 30

density function, 28

density quantile function, 27

DFR–distribution, see DHR–distribution

DFRA–distribution, see DHRA–distribution

DHR–distribution, 59f.

DHRA–distribution, 63

diffusion process, 20

digamma function, 74f.

DIHR–distribution, 67

Dirichlet distribution, 570

discrimination, 651

distance

Anderson–Darling, 485

Cramér-von Mises, 485

Kolmogorov, 485

distance sampling, 572

distribution

compound, 155

compounding, see distribution, prior

parental, 155

prior, 155

DMRL–distribution, 67

double exponential distribution, 127

doubly exponential distribution, see extreme

value distribution of type I

Duane plot, 582ff.

EDF statistic, 653

efficiency, 315, 406

entropy, 83

Erlang distribution, 112, 139, 197

estimate, 313

estimation

Bayesian approaches, 511ff.

graphical approaches, 313ff.

interval, 313

least squares and linear, 355ff.

maximum likelihood, 402ff.

method of moments, 455ff.

minimum distance, 485ff.

point, 313

estimaton

method of percentiles, 476ff.

miscellaneous approaches, 491ff.

estimator, 313

Euler’s constant, 72

Euler’s dilogarithm function, 249

exponential distribution, 8, 17, 22, 35, 100,

112, 119, 196, 676f.

generalized, 678

exponential family, 107

exponential–Weibull distribution, 169

extreme value distribution, 4ff., 100

extreme value distribution of the maximum

type I, 6f.

type II, 6f.

type III, 6f.

extreme value distribution of the minimum

type I, 6f., 106, see Log–Weibull distri-

bution

type II, 6f.

type III, 6f., 18, see Weibull distribution

Eyring acceleration factor, 539

Eyring–Weibull distribution, 171

F–distribution, 99

factorial central moments

ascending, 80

descending, 80

factorial raw moments

ascending, 79

descending, 79

factorization criterion, 315

failure censoring, see censoring, single type–

I

failure density, 28

failure distribution, 28

failure step, 548

failure truncation, 572

fiducial distribution, 531

fiducial inference, 531ff.

fiducial probability, 531

Fisher information, 315, 516

Fisher information matrix, 408

force to mortality, 29
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Jeffreys’ rule, 516

Johnson system, 103ff.

joint density, 512

k–out–of–n–system, 142

Kaplan–Meier estimator, 343

Kolmogorov–Smirnov statistic, 653

Kuiper statistic, 653

Kummer–function, 167

kurtosis, 96, 99

lack of memory, 254

Laplace distribution, 127

Laplace–Stieltjes transform, 209

law of large numbers, 315

leap, 670

level of confidence, 313

life distribution, see failure distribution

life table, German, 563ff.

life test plan, 287ff.

parameters, 287ff.

types, 290ff.

life–stress relationship, 536ff.

Arrhenius model, 537f.

Eyring model, 539f.

further models, 540f.

inverse power law, 540

lifetime, 27

discrete, 120f.

remaining, see residual life

likelihood, 402

likelihood element, 403f.

likelihood equation, 405

likelihood function, 404, 511

for interval censoring, 310

for multiple type–I censoring, 306

for multiple type–II censoring, 307

for single type–I censoring, 296

for single type–II censoring, 297

likelihood–ratio test, 494, 624, 677, 683

linear hazard rate distribution, see Rayleigh

distribution

linearity, 314

location–scale family, 105, 322, 357

log–gamma distribution, 160

log–likelihood function, 315, 404

log–likelihood ratio statistic, 621

Log–Weibull distribution, 110, 131ff.
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Log–Weibull order statistics, 246ff.

logistic distribution, 103, 118

logit, 323

lognormal distribution, 100, 110, 112, 130,

133, 681ff.

Lorenz–curve, 333

loss function, 513

absolute–error, 513

quadratic, 514

squared–error, 513

loss table, 525

maintenance, 49, 282

marginal density, 512

marginal posterior, 527

Markov chain, 191, 232

Markov process, 191

martingale, 191

mean hazard rate, 63

mean life, 30

mean residual life, 29

mean score, 407

mean squared error, 315

mean value function, 196, 571

measures of skewness, 504

Mellin–transform, 27

method of scoring, 414

method of steepest ascend, 414

mid–range, 229

Mill’s ratio, 29

minimal repair, 198, 571

minimum life, 30

minimum variance bound estimator, 316

mixture

continuous (infinite), 149

discrete (finite), 149

hybrid, 149

MLE

asymptotic properties, 406ff.

iterated, 405, 413ff.

regularity conditions, 406f.

modified maximum likelihood estimator

(MMLE), 430f.

moment generating function, 27

moment–ratio diagram, 99, 103

moments about zero, 71

MTBF, 582f.

multi–risk model, see series system

NBU–distribution, 65

NBUE–distribution, 66

negative binomial distribution, 119

Newton–Raphson method, 414ff.

nomogram, 354ff.

normal distribution, 3, 8, 100, 110, 133

normality, 314, 406

NWU–distribution, 65

NWUE–distribution, 66

OLS method, 356f.

order statistic, 223ff.

distributions, 223ff.

function of, 228ff.

moments, 226ff.

origin, 30

outlier test, 616

parallel system, 141f.

parameter space, 189

Pearson system, 98ff.

Pearson’s incomplete beta function, 240

Pearson–diagram, 97

percentile, 585f.

non–parametric estimation, 597

percentile function, 68

piecewise model, see composite distribution

pivot, 531

pivotal distribution, 421

pivotal function, 421

plotting position, 326ff.

Blom, 327

mean, 328

median, 328

midpoint, 327

mode, 328

naı̈ve, 327

Weibull, 327

Poisson distribution, 194f., 215

Poisson process, 19, 176, 193ff.

homogeneous, 193ff.

non–homogeneous, 197f.

Pólya density of order 2, 62

polygamma functions, 74f.

polynomial hazard rate distribution, 118

posterior density, 512

posterior mean, 514

posterior risk, 514

power distribution, 18

power law process, see Weibull process

power Weibull distributon, 171

power–law transformation, 108

PP–plot, 318
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prediction, 610

one–sample (within–sample), 610

two–sample (new–sample), 610

prior

conjugate, 516, 523

gamma, 523f.

general uniform, 522

improper, 516

inverted gamma, 524

non–informative, 516, 518f.

of ignorance, 516

proper, 516

two–point, 525

uniform, 520f., 526

vague, 527

prior density, 512

prior distribution, 515f.

probability paper, 322f.

for the exponential distribution, 325

for the extreme value distribution, 324

for the logistic distribution, 326

for the lognormal distribution, 326

for the normal distribution, 325

for the uniform distribution, 325

for the Weibull distribution, 325

probability plot, 322ff.

stabilized, 655

probable life, see mean life

probit, 323

product–limit estimator, 342

profile likelihood method, 428f.

profile log–likelihood function, 428

progressive censoring, see censoring, multi-

ple

proportional hazard model, 170f.

pseudo-hazard function, 121

psi function, 74f.

QQ–plot, 317

empirical, 320

ramp–test, 290, 551

range, 230f.

rankit, 323

Rasch–Weibull process, see Weibull process

rate function, see hazard rate

ratio of cumulants, 84

ratio of moments, 84

raw moment generating function, 77f.

raw moments, see moments about zero

Rayleigh distribution, 48, 112, 115

linear estimation, 399

MLE, 411

records, 231ff.

rectangular distribution, see uniform distribu-

tion

recurrence time

backward, 203, 211f.

forward, 203, 211f.

reliability, 585f.

non–parametric estimation, 589f.

reliability function, 28

reliability growth, 198

reliability growth slope, 582

reliability improvement, 571

reliable life, 69, 585, 606

renewal density, 206

renewal function, 206

fundamental renewal equation, 207

integral equation, 207

renewal process, 202ff.

alternating, 203

cumulative, 203

delayed, 203

number of renewals, 206f.

ordinary, 203

stationary, 203

superposed, 203

time to the n–th renewal, 204f.

replacement, 282

reproductivity through

formation of the minimum, 107

summation, 107

residual life, 51, 60f.

reverse rank, 333

root mean squared error, 315

rule of false position, 427

safe life, 30

sample maximum, 5, 224

sample median, 224, 228

sample minimum, 5, 224

sample reuse estimator, 495

sampling model, 511

score vector, 407

secant method, 427

sectional model, see composite distribution

selection, 651

semivariant, 82

series system, 16, 141f.

shelf age, 30

shift parameter, 30
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shot–noise model, 19

skewed positively (negatively), 93

skewness, 99

skewness function, 94

spacing, 229, 252

normalized, 230

specific aging factor, 67

stable distribution, 106

standardized moments, 79

state space, 189

statistical process control, 281

step–stress model, 172

Stirling number of the first kind, 233

Stirling number of the second kind, 208

stochastic process, 189ff.

continuous series, 190

counting, 192

diffusion process, 190

point process, 190

stationary, 191

stochastic series, 190

with independent increments, 190

stochastically larger (smaller), 60

stock function, 302

stress, 170f., 289f.

constant, 290

cyclic, 290

loading, 290

progressive, 290

random, 290

step, 290

stress factor, 546

structural inference, 532ff.

subadditive, 65

sudden death test, 310

sufficiency, 107, 315

superadditive, 65

superuniform, 656

survival (survivor) function, see reliability

function

system of normal equations, 405

tampered random variable, 553

temperature scales, 538

TFR model, 553

threshold, 30

tilt factor, 94

time censoring, see censoring single type–I

time truncation, 572

time–step, 548

tolerance interval, 586f.

non–parametric estimation, 600

total expected life, see mean life

total time on test, 230, 302, 333

rescaled, 518

total time on test transform, 27, 334

translation parameter, 30

trigamma function, 74

truncation, 133, 291

TRV model, 553

TTT–plot, 333ff.

Tukey’s lambda distributions, 105

unbiasedness, 314

asymptotic, 314

median, 314

uncorrected moments, see moments about

zero

uniform distribution, 9, 16

uniformly minimum variance bound estima-

tor, 316

variable

reduced, 35, 106

standardized, 35

variance

external (between), 151

internal (within), 151

warranty, 283, 617

Watson statistic, 654

wear–and–tear model, 19f.

Weibull characterization

based on conditional moments, 259ff.

based on functional equations, 254ff.

based on order statistics, 264ff.

miscellaneous approaches, 268ff.

Weibull discrimination, 674ff.

Weibull distribution

applications, 275ff.

bivariate, 173ff.

central moments, 78

coefficient of variation, 89, 458

complementary, 129

composite, 49, 146ff.

compound, 155ff.

cumulative distribution function, see

failure distribution

cumulative hazard rate, 49ff.

density, 4, 30ff.

differing notations, 41ff.

discrete, 119ff.
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of type–I, 120, 122f.

of type–II, 120, 124f.

double, 127f., 250

entropy, 83

extended, 187, 252

five parameters, 166ff.

four parameters, 158ff.

failure distribution, 43f.

Fisher information matrix, 410ff.

folding, 138ff.

generalized, 187

hazard rate, 4, 46ff.

hazard rate average, 63

history, 3ff.

inverse, 111, 129f., 163, 253, 272

kurtosis, 91f., 504

location parameter, 30

location–shape version, 35

mean, 72, 77, 85ff.

mean residual life, 51ff.

median, 69f., 85ff.

mixed, 49, 149ff.

plotting, 352f.

mode, 69, 85ff.

modifications, 119ff.

moments about the sample minimum,

472

moments about zero, 71, 77

multivariate, 184ff.

normal equations, 405

normalized form, see reduced form

percentiles, 68

pseudo, 186f.

random numbers, 70

reciprocal, 129

reduced density, 36ff.

extreme values, 36

points of inflection, 36f.

skewness, 40

reduced form, 35

reflected, 110, 125

related distributions, 98ff.

characterizations, 271f.

order statistics, 250ff.

record values, 250ff.

reliability function, 45

scale parameter, 32

scale–shape factor, 41

scale–shape version, 35

shape parameter, 33

shift–scale version, 35

skewness, 91f., 464

standard deviation, 89

truncated, 133ff., 251, 272

variance, 78, 89

varying parameters, 168ff.

vertical moments (Weibull moments),

471

Weibull distribution and

covariates, 170ff.

exponential distribution, 108

extreme value distribution of the mini-

mum, type III, 7

extreme value distributions, 108ff.

gamma distributions, 111ff.

normal distribution, 112f.

parallel system, 143ff.

series system, 143f.

systems of distributions, 98ff.

Weibull goodness–of–fit testing, 651ff.

based on correlation, 672ff.

based on spacings and leaps, 669ff.

χ2–test, 652f.

using W statistics, 667ff.

using EDF statistics, 652ff.

Weibull intensity function, see Weibull pro-

cess

Weibull order statistics, 237ff.

Weibull parameter estimation

Bayesian approaches, 517ff.

bootstrapping, 498

comparisons of classical estimators,

508ff.

fiducial approaches, 532f.

graphical approaches

for complete samples, 336ff.

for multiply censored samples, 342ff.

for singly censored samples, 336ff.

Hüsler/Schüpbach’s estimator, 493f.

hybrid approaches, 488ff.

Kappenman’s estimators, 494ff.

linear approaches, 355ff.

approximations to BLUE and BLIE,

375ff.

BLIEs, 368ff.

Blom’s estimator, 383f.

BLUEs, 359ff.

GLUEs, 382

with optimally chosen order statistics,

387ff.

location parameter, 498ff.

Menon’s estimator, 491f.
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minimum distance approaches, 485ff.

mixed model, 557ff.

Bayesian approach, 567ff.

method of moments, 558f.

ML method, 559ff.

ML approaches, 402ff.

progressvely censored sample, 448ff.

randomly censored sample, 453f.

sample censored on both sides, 436f.

singly censored sample, 438ff.

uncencensored sample with non–

grouped data, 417ff.

uncensored sample with grouped

data, 434ff.

moment approaches, 455ff.

fractional moments, 474f.

modified method of moments, 467ff.

probability weighted moments, 473f.

three–parameter Weibull distribution,

464ff.

two–parameter Weibull distribution,

456ff.

Weibull’s approach, 470f.

percentile approaches, 476ff.

three–parameter Weibull distribution,

480ff.

two–parameter Weibull distribution,

476ff.

robust estimators, 497

scale parameter, 501f.

shape parameter, 503ff.

structural approaches, 534f.

under ALT, 541ff.

constant stress, 541ff.

progressive stress, 551ff.

step stress, 548ff.

under PALT, 553ff.

Weibull parameter testing, 624ff.

location parameter, 640ff.

mean, 646f.

percentile, 649f.

reliability, 648f.

scale parameter, 634ff.

shape parameter, 624ff.

two or more parameters, 644ff.

variance, 647

Weibull percentile estimation

Bayesian approaches, 607f.

ML approaches, 597ff.

Weibull plotting techniques, 335ff.

Weibull prediction, 610ff.

Bayesian approaches, 622f.

failure numbers, 619ff.

one–sample, 613ff.

two–sample, 616ff.

Weibull process, 199ff.

arrival time, 201f.

conditional arrival time, 202

estimation, 571ff.

by failure truncation, 572ff.

by other methods, 581

by time truncation, 579ff.

inter–arrival time, 202

number of events, 200

Weibull record values, 244ff.

Weibull reliability estimation

Bayesian approaches, 608

ML approaches, 591ff.

Weibull renewal process, 213ff.

number of renewals, 216ff.

recurrence times, 220ff.

time to the n–th renewal, 214f.

Weibull selection, 686ff.

Weibull tolerance interval

ML approach, 601ff.

Weibull–gamma distribution, 157, 271

Weibull–hazard–paper, 50

Weibull–Poisson process, see Weibull pro-

cess

Weibull–probability–paper, 45

Weibull–uniform distribution, 156f.
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