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Editor's Foreword

The problem of communicating hi a coherent fashion recent developments
hi the most exciting and active fields of physics continues to be with us.
The enormous growth hi the number of physicists has tended to make
the familiar channels of communication considerably less effective. It has
become increasingly difficult for experts hi a given field to keep up with
the current literature; the novice can only be confused. What is needed
is both a consistent account of a field and the presentation of a definite
"point of view" concerning it. Formal monographs cannot meet such a
need hi a rapidly developing field, while the review article seems to have
fallen into disfavor. Indeed, it would seem that the people most actively
engaged hi developing a given field are the people least likely to write at
length about it.

FRONTIERS IN PHYSICS was conceived hi 1961 hi an effort to im-
prove the situation hi several ways. Leading physicists frequently give a
series of lectures, a graduate seminar, or a graduate course hi their spe-
cial fields of interest. Such lectures serve to summarize the present status
of a rapidly developing field and may well constitute the only coherent

XI
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account available at the time. Often, notes on lectures exist (prepared
by the lecturer himself, by graduate students, or by postdoctoral fellows)
and are distributed hi mimeographed form on a limited basis. One of the
principal purposes of the FRONTIERS IN PHYSICS Series is to make
such notes available to a wider audience of physicists.

It should be emphasized that lecture notes are necessarily rough and
informal, both hi style and content; and those hi the Series will prove no
exception. This is as it should be. One point of the Series is to offer new,
rapid, more informal, and, it is hoped, more effective ways for physicists
to teach one another. The point is lost if only elegant notes qualify.

The above words, written some twenty-five years ago, continue to be
applicable. During this period the field of laser plasma interactions has
emerged as a major sub-field of applied plasma physics. William Kruer has
been a leading contributor to our understanding of laser plasma physics.
He is thus especially well qualified to provide an introductory overview
of this important and active field. His book contains a clear, physically
motivated, description of the major physical processes which determine
the interaction of intense lightwaves with plasmas. It should thus prove
useful not only as a text for an introductory graduate course hi plasma
physics, but as a reference book for all scientists interested hi plasma
phenomena.

David Pines
Urbana, Illinois

August 1987



Preface

The subject of this book is the physics of laser plasma interactions. This
exciting field of applied plasma physics has received great stimulation
from nearly two decades of research in laser fusion. The field has been a
fruitful test bed for exploring a wide range of basic plasma phenomena,
including the excitation of plasma waves, generation and saturation of
plasma instabilities, and transport of intense heat fluxes. Numerous non-
linear effects have been characterized and observed in experiments, and
regimes of optimum coupling have been identified and tested. Hence this
book is of interest not only to those active in the use of high power lasers,
but also to scientists in many other fields where plasma phenomena are
involved.

My aim has been to give a clear, physically-motivated treatment of the
major processes. Since the subject is of interest to scientists with many dif-
ferent specialties, very little prior knowledge of plasma physics is assumed.
In Chapter 1, basic plasma concepts are introduced and a theoretical de-
scription of plasmas is developed. In Chapter 2, a complementary and very
useful numerical model of plasmas is presented. These two complementary
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levels of description are then used to describe laser plasma interactions.
Chapters 3, 4, and 5 treat the linear theory of light wave propagation
in plasmas, including linear mode conversion into plasma waves and col-
lisional damping. The excitation of a variety of plasma instabilities by
intense light waves is then treated hi Chapters 6, 7, and 8. In Chapters
9, 10, and 11, important nonlinear consequences of the various processes
are discussed using both simple theoretical models and computer simula-
tions. The physics of electron heat transport in laser-produced plasma is
discussed in Chapter 12. Finally, some experimental observations of the
various laser plasma processes are discussed hi Chapter 13.

This manuscript is based on lectures given hi a graduate course in the
Department of Applied Science of the University of California, Davis. A
detailed review of laser plasma interactions is beyond the scope of this
book. However, a broad cross-section of references to the literature is
given, particularly hi those areas of very active research. Lastly, I do not
consider either implosion physics or the very rich topic of electromagnetic
waves in magnetized plasmas.

I am grateful to numerous colleagues with whom I have worked, and
especially to present and former members of the plasma physics group hi
the laser fusion program at the Lawrence Livermore National Laboratory:
J. Albritton, J. Denavit, K. Estabrook, R. Faehl, D. Hewett, A. B. Lang-
don, B. Lasinski, W. Mead, C. Max, C. Randall, J. Thomson, E. Valeo and
E. Williams. I also thank many others for helpful comments on portions
of the manuscript, including J. M. Dawson, E. M. Campbell, H. Baldis,
R. P. Drake, T. L. Crystal, C. S. Liu, R. Turner, D. Phillion, M. Rosen,
J. DeGroot, J. Delettrez, L. Goldman, T. Tajima, and R. Lehmberg. I
acknowledge the encouragement of J. Nuckolls and J. Lindl. S. Auguadro
typed the original lecture notes. T. L. Crystal very ably produced the final
manuscript. He and A. Wylde provided just the right amount of support
and pressure to finish. I am grateful to the Lawrence Livermore National
Laboratory, and particularly to B. Quick and P. Brown for a variety of
assistance. Finally, I warmly thank my family for generously allowing me
to devote many evenings and weekends to this manuscript.
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CHAPTER

Basic Concepts and
Two-Fluid Description

of Plasmas

The study of the interaction of intense laser light with plasmas serves
as an excellent introduction to the field of plasma physics. Both the lin-
ear and nonlinear theory of plasma waves, instabilities and wave-particle
interactions are important for understanding the laser plasma coupling.
Indeed, the field is a veritable testing ground for many fundamental pro-
cesses. Numerous plasma effects have now been observed in laser plasma
experiments, and many challenging problems remain to be understood.

Since laser plasma interactions are of interest to scientists from many
different fields of expertise, little prior background hi plasma physics will
be assumed. Even for those with plasma experience, it can be very in-
structive and refreshing to begin from the basics and examine a field of
applications. Two levels of description will be used - a theoretical one
based on the two-fluid theory of plasmas and a numerical one based on
particle simulation codes. These two descriptions both reinforce and com-
plement one another. For example, the particle simulations allow one to
both test the theory and develop some understanding of the nonlinear
effects.



1 Basic Concepts

1.1 BASIC PLASMA CONCEPTS
Let's begin. A plasma is basically just a system of N charges which are cou-
pled to one another via their self-consistent electric and magnetic fields.
Consider then following the evolution of these N charges. Even neglecting
magnetic fields and electromagnetic waves, we must in principle solve 6N
coupled equations:

Here m^ qi and r; are the mass, charge and position of the ith particle,
and E is the electrostatic field. This is clearly an unpromising approach
if a nontrivial number of charges is considered.

Fortunately a very great simplification is possible if we focus our at-
tention on collisionless plasma behavior. We can decompose the electric
field into two fields (Ei and £2) which have distinct spatial scales. The
field EI has spatial variations on a scale length much less than the so-
called electron Debye length, which is the length over which the field of
an individual charge is shielded out by the response of the surrounding
charges. EI represents the rapidly fluctuating microfield due to multiple
and random encounters (collisions) among the discrete charges. In con-
trast, £2 represents the field due to deviations from charge neutrality over
space scales greater than or comparable to the Debye length. This field
gives rise to "collective" or coherent motion of the charges.

We thus have a natural separation into collisional and collective be-
havior. Not surprisingly, the collisional behavior becomes negligible when
the number of electrons in a sphere with a radius equal to the electron
Debye length becomes very large. To motivate this, let us carry out a sim-
ple calculation of electron scattering by ions. As illustrated hi Fig. 1.1,
we consider an electron with velocity v, mass m and charge e streaming
past an ion with charge Ze. The distance of closest approach is 6. The
electron undergoes a change in velocity Av which is approximately

~" ~ m&2
which is just the maximum electrostatic force times the interaction time
(~ 2b/v). If we assume many randomly spaced ions, (Av) = 0, where
the brackets denote an average. However, there is a change hi the mean
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square velocity. This average rate of change is given by (At;)2 times the
rate of encounters, which is Tilery. Here Hi is the ion density and a is the
cross-section of impact. Summing over all encounters gives

{(At;)2) = j 27r6d&n;t;(At;)2 .
dt

If we substitute for At; and integrate over impact parameters, we obtain

/ / A x2 v 87rn;Z2e4 hi A
(Av)2 - —2 t ,rrrv

where A is the ratio of the maximum and minimum impact parame-
ters (6max and &min)- The maximum impact parameter is approxi-
mately the electron Debye length, since other electrons in the plasma
shield out the Coulomb potential over this distance. The minimum im-
pact parameter is the larger of either the classical distance of closest
approach (6min ~ Ze2/mv2) or the DeBroglie wavelength of the electron
(fcmin ~ fi/mv), where h is Planck's constant. Using the first, the distance
of closest approach, we have A « 9JV0/Z, where ND is the number of
electrons in a Debye sphere. In particular ND = |TT ne\^ where ne is
the electron density and ADC is the electron Debye length. This important
length will be derived later in this chapter.

It is convenient to define a ninety-degree deflection time (£90°) by the
condition that the root-mean-square change in velocity becomes as large
as the velocity. Hence

£90° =
ra2t;3

i Z2e4 hi A '

Averaging over a Maxwellian distribution of velocities then provides us
with a convenient measure of the mean rate (1/90° = 1/^90°) a^ which
electron-ion collisions scatter electrons through a large angle:

_ 87rn»Z2e4 In A
6.4 m2t;|

Here v€ = ^/6e/m is the electron thermal velocity and 9e is the electron
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b

Ze

Figure 1.1 An electron is deflected as it streams past an ion.

u

temperature. We note that

1/90° Z In A 1
^ ~ 10 ND'

where upe is the electron plasma frequency, which we will see is a fre-
quency characteristic of collective electron motion.

The important point we wish to make is now apparent. The fine scale,
collisional interactions can be neglected to zeroth order in the parameter
I/ND- If we express the electron density hi cm~3 and the electron tem-
perature hi eV, then ND = 1.7 x 109 (fl^/rie)1/2. ND can be very large
even in a rather dense plasma, provided the electron temperature is high.
For example, if ne = 1021 cm~3 and 9e = 1 keV, ND « 1700. In the
collisionless limit (ND —> oo), the fine scale fluctuating microfields associ-
ated with discrete charges are completely negligible. The plasma behavior
can then be investigated by solving for the motion of the charges hi the
smoothed or coarse-grained fields which arise from the collective motion
of large numbers of charges.

We will develop two parallel levels of description for the collective be-
havior. One level is analytical. Starting from the Vlasov equation, we will
derive moment (fluid-like) equations for the electrons and ions by averag-
ing over the velocities of the charges. This so-called two-fluid description
will then be used extensively to describe a wide variety of laser plasma
interactions. The second level of description is numerical: the use of par-
ticle simulations. These simulations are a powerful tool for investigating
nonlinear effects and kinetic effects (effects which depend on the details
of the velocity distribution of the particles).
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1.2 THE VLASOV EQUATION
The natural starting point for describing the evolution of a collisionless
plasma is the Vlasov equation. We first introduce the phase space distri-
bution function /j (x, v, t). This is simply the function which characterizes
the location of the particles of species j in phase space (x, v) as a function
of time. Knowing the laws of motion, we can readily derive an equation for
fj;(x, v, t). Since particles are assumed to be neither created nor destroyed
as they move from one location in phase space to another (no ionization
or recombination), /j(x, v,t) must obey the continuity equation:

Prom the laws of motions, we have

x = v
v x B \ (1.3)

where qj and rrij are the charge and mass of the jth species and E and
B are the coarse-grained fields associated with the collective behavior.
Noting that x and v are independent variables and substituting Eq. (1.3)
into Eq. (1.2), we arrive at the Vlasov equation:

at ox mj

This equation simply says that /j(x(t), v(£),t) is a constant; i.e., the
phase space density is conserved following a dynamical trajectory. Such
an equation applies to each charge species hi the plasma.

The Vlasov equation, augmented with Maxwell's equations, is a com-
plete description of collisionless plasma behavior. In practice, we need a
more tractable description which can be obtained by averaging over the
velocities of the individual particles. By taking different velocity moments
of the Vlasov equation, we can derive equations for the evolution hi space
and time of the density, mean velocity, and pressure of each species. As
we will see, each moment brings in the next higher moment, generating an
infinite set of moment equations. However, we can fortunately truncate
the series of equations by introducing assumptions about the heat flow.
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1.3 THE MOMENT EQUATIONS
Let us now derive the moment equations and motivate their truncation.
First, we note that the density (nj), mean velocity (uj), and pressure
tensor (|?.) are determined by averaging the various moments of the phase
space distribution function over velocities:

"j = /,'(*, v,t)dv (1.5)

njUj = v/ j(x,v,t)dv (1.6)

j (v - u,-)(v - u,-) £(x, v, t) dv . (1.7)

In deriving the moment equations, we will suppress the subscript j,
since it is clear that these equations will apply to each charge species.
Averaging the Vlasov equation over velocity gives

. (1.8)
at

The first two terms hi Eq. (1.8) give

_ df 3n<jv — = —
at atI

f , df f ^ dfI dv v • -^ = / dv > Vi -^—~
J 9x J ^ dxi

The third term in Eq. (1.8) vanishes, as can be seen by integrating by
parts and noting that / — > 0 as |v| — > oo. Hence the first moment of the
Vlasov equation gives the continuity equation for the particle density:

The next moment of the Vlasov equation is
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The first term in Eq. (1.10) is straightforward:

j df d
d vv —- = — n u

ot ut

The second term gives

— — - ( — + n uu ) .
dx \m J

This result is readily obtained by rewriting the integral as

dv (v - u + u)(v -u + u)/ = — + n u u ,
m

since / (v - u) / dv = 0. Evaluation of the last term in Eq. (1.10) yields

v x B\ df nq / u x B>\ nqfn).^f = -- ^ IE
) dv m \m\ c v m

where we have integrated by parts. Collecting the above terms, we obtain
the equation of motion for the charged fluid:

d ( . d , , nq / u x B\ d E . .
— (nu) + — • (n uu) = — - (E + - ) - TT- • — • (1-H)a t v y 9 x v ; m V c ) d x m v 7

It is convenient to rewrite the first two terms of Eq. (1.11) using the
continuity equation and to assume that the pressure is isotropic, i.e.,
I? = I, p where X is the unit dyad. Then

du du n q / u x B \ 1 dp , .
n — + nu.— = -^ (E + - ) -- -£ . (1.12

a t o x m V c / m o x

Observe that each moment brings in the next higher one. The continu-
ity equation for the density involves the mean velocity; the force equation
for the velocity brings hi the pressure. The next moment will give us an
equation for the pressure (energy density) which involves the heat flow.
Continuing, we would end up with an infinite set of coupled equations,
hardly a practical description.
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Fortunately, we can truncate the moment equations by making various
assumptions about the heat flow, which gives us a so-called equation of
state. The simplest assumption is that the heat flow is so rapid that the
temperature of the charged fluid is a constant. In this case, we have the
isothermal equation of state: p — nO, where the temperature 9 is a
constant. This equation of state, plus the continuity and force equations
for the fluid, and Maxwell's equations form a closed description.

The isothermal equation of state is appropriate when o;/fc <C vt,
where u> and k are the frequency and wave number characteristic of the
physical process being considered and vt is the thermal velocity of the
particles. In the opposite limit (u;/fe ^> vt) we can simply neglect the
heat flow. This assumption leads to an adiabatic equation of state, which
we will now derive.

To obtain an equation for the pressure, we multiply the Vlasov equa-
tion by the kinetic energy and average over velocity:

mv2 df df qs v x

At this point, let us specialize to one-dimension to simplify the algebra.
The first term can be written as

ITl d F ~ , v 9 , l ^ / 9\

y ft J f (v - u + u) dv = 2 ft(p + nmu ) '

The next term in Eq. (1. 13) gives

m d f p , X3 ,, dQ 3 d , . m d 3,-- J f(V-u + ufdV = £ + -^(«p) + y^(n«»),

where Q = (ra/2) f(v - u)3 f dv. The final term in Eq. (1.13) is simply

Collecthig terms, we obtain

(1.14)
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A great deal of simplification results from the use of the lower moment
equations. In particular,

d /nmu2\ mu2 dn du

Using Eqs. (1.9) and (1.12), substituting into Eq. (1.14), and cancelling
terms gives

To obtain the adiabatic equation of state, we neglect the heat flow.
This assumes that dQ/dx is much less than the other terms in Eq. (1.15).
For example, demanding that dQ/dx <C dp/dt gives up ^> k Q, where w
and k are a frequency and wavenumber characteristic of the process being
considered. Clearly Q < Qmax ~ n6vt, where vt is the thermal velocity.
Hence, to neglect heat flow it is sufficient to assume that u/k ^> vt.

With this assumption, Eq. (1.15) reduces to

t + «£ + »5-»- <'•">
The continuity equation allows us to express du/dx as

Substituting Eq. (1.17) into Eq. (1.16) gives

3n n = 0 '
or

(1+ "!)£-•• <••»>
This equation shows that, following the plasma flow, p/n3 — constant,
which is the adiabatic equation of state for motion with one degree of
freedom. This equation of state is readily generalized to p/n7 = constant,
where 7 = (2 + N)/N and N is the number of degrees of freedom.
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1.4 THE TWO-FLUID DESCRIPTION OF PLASMA

Finally let us summarize the fluid equations, which we have derived by
taking moments with respect to velocity of the Vlasov equation. The first
two equations are the continuity and force equations for the density and
mean velocity of particles with charge qj and mass nij.

^ + ! '(n;u,)=0 (1.19)

+ u' • ̂ ) = — (E + — ) - -tr- Wat ax / rrij \ c / m j ax

The pressure of each charged fluid is related to its density by an equation
of state, which depends on the characteristic frequency (a;) and wavenum-
ber (fe) of the process being considered. When o;/fc <C Vj, the isothermal
equation of state is valid:

Pj = nj Qj , (1.21)

where 9j is the constant value of the temperature and Vj = x/^/mj-
When u/k ^> Vj, the adiabatic equation of state obtains:

^ = constant , (1.22)
U3

where 7 = (2 + N)/N and N is the number of degrees of freedom.
When (jj/k ~ v3 ;, the details of the velocity distribution of the charges are
important. The fluid description is then inadequate, and we must return
to the Vlasov equation.

For a plasma composed of electrons and one species of ions, Eqs. (1.19-
1.22) constitute the well-known two-fluid model. This description is com-
pleted by Maxwell's equations, which relate the electric and magnetic
fields to the charge and current densities of the plasma. In cgs units,
Maxwell's equations are

V - E = 47rp (1.23)

V - B = 0 (1.24)

(1.25)
c at

, .
c c at

where p = ̂  Uj qj , J = ̂  rij qj Uj , and c is the velocity of light.
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1.5 PLASMA WAVES
Using the two fluid model (the electrons as one fluid, the ions as the
other) , we can investigate a wide range of plasma behavior. A character-
istic feature of a plasma is its ability to support waves or collective modes
of interaction. In the simplest case, these waves correspond to charge den-
sity fluctuations at a characteristic frequency determined by the electrons
and/or the ions. In a plasma with no large imposed magnetic fields, there
are two such plasma waves: a high frequency one called an electron plasma
wave and a low frequency one called an ion acoustic wave.

Let us first investigate the high frequency charge density fluctuations
associated with the motion of the electrons. Because this is a high fre-
quency oscillation, we can treat the massive ions as an immobile, uniform,
neutralizing background with density no*. Since the wave is electrostatic
and the relevant electron motion is along the wave vector (taken to be in
the x-direction), a one-dimensional treatment suffices. The equations for
an electron fluid with density ne, mean velocity ue, and pressure pe then
are

£ + ;|<n«U«) , 0 (1.27)

(n, u.) + („, •« = - - - ^ (1.28)at ox me me dx

|̂ = constant . (1.29)
ne

We are using the adiabatic equation of state under the assumption that
the wave has a phase velocity u/k > ve, the electron thermal velocity.

It is straightforward to develop an equation for the fluctuations in
electron density. First we take a time derivative of Eq. (1.27), a spatial
derivative of Eq. (1.28), and eliminate the term d2 neue/dtdx to obtain

We then use Poisson's equation to relate the electric field to the density:

— = - 47re (ne - Znoi) , (1.31)

where Z is the charge state of the ions.
We next consider small amplitude perturbations in density, velocity

and electric field and linearize the equations, i.e., ignore products of the
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perturbations. If we let ne = n0 + n , txe = ii , pe = n00e + p , and
£ = £7, Eqs. (1.29-1.31) give

p - 3 m ^ n (1.32)

5£7
— = - 4 7 r e n (1.33)v '

_ _ _ _
dt* m dx dx* ' l j

Substitution of Eqs. (1.32-1.33) into Eq. (1.34) then gives a wave equation
describing the small amplitude fluctuations in electron density:

where tt>pe = ^/47re2no/me is the electron plasma frequency for a plasma
with electron density no = Znm. If the density is expressed in units of
cm~3, then u>pe = 5.64 x 104 nl/2.

Looking for a wave-like solution (n ~ eikx-iut^ we reacmv obtain
from Eq. (1.35) the dispersion relation for electron plasma oscillations:

a;2 = U7*e + 3k2vl . (1.36)

Note that the frequency of these waves is essentially u;pe, the electron
plasma frequency, with a small thermal correction dependent on wavenum-
ber. If kinetic effects are allowed, there will also be a small damping or
growth depending on the details of the electron distribution function for
velocities near the phase velocity of the wave. This damping will be dis-
cussed in Chapter 9.

A plasma will also support charge density oscillations at a much lower
frequency determined by the ion inertia. To investigate these oscillations,
we need to consider the motion of both the electron and the ion fluids.
Since the frequency of these oscillations is much less than the character-
istic frequency with which electrons respond (a;pe), we can neglect the
inertia of the electrons; i.e., neglect the electron mass. If we again con-
sider motion only along the direction of propagation (taken to be the x
direction), the force equation for the electron fluid reduces to

n e e E = - . (1.37)
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Since u/k <C ve, the electrons are described by the isothermal equation of
state: pe — n€0e. Substituting pe into Eq. (1.37) and letting ne = n0 -f ne

and E = E, we obtain the linearized equation:
c\ ~

n0 e E = - Oe -£- , (1.38)
ox

where no is the luiiform unperturbed density of the electrons.
The equations for the ion fluid with density n;, mean velocity HI, and

pressure pi are

^ + ^(n,u.) = 0 (1.39)

|<-> + |<-?> = f^-st U.40,

— | = constant ,

where Z is the charge state and M the mass of the ions. We use the
adiabatic equation of state for the ions under the assumption that c«;/fc ^>
Vi, the ion thermal velocity. To derive an equation for the evolution of the
ion density, we proceed as before. Take a time derivative of Eq. (1.39), a
spatial derivative of Eq. (1.40), and eliminate d2niUi/dtdx to obtain

' * " _ „ . (1.41)2at2 dx2 M dx M dx2

We now take n; = (riQ/Z) + n;, Ui = iii, pi = Pio+Pi, and E = E, where
the superscript denotes small perturbation; further, pi = 30 ,̂ where 0i
is the ion temperature. Substituting these expressions into Eq. (1.41) and
neglecting products of the perturbed quantities, we obtain

Zen0 dE _ 3^ _
W M dx M dx2 ( A2)

A wave equation for the fluctuations in ion density is now readily obtained
by substituting from Eq. (1.38) into Eq. (1.42) and noting that ne ~ Z n^
since the electrons closely follow the slow motion of the massive ions:
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If we search for wave-like solutions (hi ~ el kx~lu;t^ Eq. (1.43) readily
gives the dispersion relation for ion acoustic waves:

(jj = ± k vs , (1.44)

where vs = ^/(Z0e -f 30i)/M is called the ion-sound velocity. These low
frequency waves are the analogue of sound waves in an ordinary gas.
The ions provide the inertia, and fluctuations in the pressure provide the
restoring force. The electron pressure fluctuations are transmitted to the
ions by the electric field. If kinetic effects are allowed, there is a damping
due to both the electrons and the ions as will be discussed later in Chapter
9. This damping is small provided that u)/k ^> v^ which requires that
Z0e ^> Oi. The assumption of quasi-neutrality requires that fcAoe -C 1.

1.6 DEB YE SHIELDING
Finally, it is instructive to show how a plasma modifies or shields the elec-
tric field of a discrete charge. We place a charge q at rest in a plasma with
an initially uniform electron density no and treat the ions as a fixed, neu-
tralizing background. The electrical potential (E = — V</>) is determined
by Poisson's equation:

V2( /> = -47rg<5(x) + 4 7 r e ( n e - n 0 ) , (1.45)

where the charge is located at r — 0 for convenience. In the static limit,
the force equation for the electron fluid reduces to

ne e E = - 0e Vne ,

where an isothermal equation of state has been used i.e., pe — ne 9e,
where 6e is the electron temperature. Since E = - V</>, the electron
density then is

ne = n0
 e x p ~ • (L46)

Noting that ecf)/0€ <C 1, we expand the exponential in Eq. (1.46) and
substitute ne into Eq. (1.45) to obtain

V2(/> - -£- - -47rg«(x ) , (1.47)
ADe
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where Aoe = ^Oe/47rriQe2 defines the electron Debye length. If 9e is ex-
pressed in units of ev and no in units of cm~3, ADC — 743 (0e/no) •
Equation (1.47) is easily solved by Fourier-transforming and then invert-
ing, which gives

. (1.48)

The solution is readily verified by direct substitution. This result demon-
strates an important feature of a plasma alluded to earlier in this Chapter.
The plasma electrons shield out the field of a discrete charge hi a charac-
teristic distance which is ADC- In general, the ions also contribute to the
shielding.
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CHAPTER

Computer Simulation
of Plasmas

Using Particle Codes

Having considered a theoretical description hi which the plasma is treated
as two charged fluids, let us introduce a complementary numerical descrip-
tion of plasma behavior using particle codes [1-12]. Computer simulation
of plasma using particle codes is a very direct and powerful approach, par-
ticularly for investigating kinetic and/or nonlinear effects. The approach
is extremely simple: numerically follow the motion of a large collection
of charges in then: self-consistent electric and magnetic fields. The basic
cycle is illustrated in Fig. 2.1. Prom the positions and velocities at any
given time, compute the charge and current densities on a spatial grid
sufficiently fine to resolve the collective behavior. Using these charge and
current densities, next compute the self-consistent electric and magnetic
fields via Maxwell's equations. Then use these fields hi the equations of
motion to advance the positions and velocities of the charges. Finally, con-
tinue around this basic cycle with a time step sufficiently small to resolve
the highest frequency in the problem (which is often the electron plasma
frequency).

17
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{ & . * }

Figure 2.1 The basic cycle of a particle simulation code.

Again, what makes this approach viable is that we are investigating
the collective behavior which occurs on a space scale greater than or com-
parable to the electron Debye length rather than the fine scale fluctuating
microfield associated with discrete particle collisions. As we have discussed
hi Chapter 1, these microfields can be systematically ignored in a collision-
less plasma (i.e., when the number of particles in a Debye sphere is much
greater than one). This is fortunate since it would be extremely difficult
in practice to use a spatial grid fine enough to resolve these microfields,
which occur on space scales even less than the interparticle spacing.

Alternatively, we can view our approach as using "finite-size" charges
(of size a). It is physically obvious that the behavior of a collection of such
charges is the same (with minor modifications) as the behavior of point
charges for scale lengths I ^> a, but fluctuations with scale lengths / <C a
are suppressed. By choosing a ~ ADC (the electron Debye length), we
thus achieve with a "trick" what nature does with the use of an enormous
number of particles i.e., smooth out the fine scale length microfields.

From a computational viewpoint, a particle code is remarkably sim-
ple. The reader can easily write his/her own code. We will first discuss
the basic ingredients. Then a very simple code will be presented. This
code, and modifications easily made, will be very useful to test theoret-
ical calculations and to investigate various nonlinear effects not readily
amenable to analytic treatment.
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2.1 BASIC INGREDIENTS OF A PARTICLE CODE
Discussion of a very simple but useful particle code will suffice to illustrate
the basic ingredients of all such codes. We treat the ions as a fixed, neu-
tralizing background, assume no imposed magnetic fields, and consider
only electrostatic fields. In this electrostatic limit, the magnetic field gen-
erated by plasma currents is negligible, and Maxwell's equations reduce
to Poisson's equation, V • E = 4 TT p. Here E is the electric field, p is the
charge density, and cgs units are used. Variations are allowed in only one
direction, and periodic boundary conditions are adopted.

Our first task is to compute the charge density. Our system extends
from 0 to L, as shown in Fig. 2.2. We divide this system into NC cells and
for convenience take the cell size (6) to be unity (i.e., L = NC). The grid
points are identified as the integer values of the position, augmented by
1 so that the counting begins with 1. Note that the NC + 1th grid point
is then identical with the first, due to the assumed periodic boundary
conditions. Given the position of the charge, many schemes can be used
to assign it to the spatial grid. For example, we could just assign the
charge to its nearest grid point location. A better scheme is to share the
charge between its two nearest grid points. For a charge located a distance
Ax to the right of the ith grid point, we then have

Ap(z) = q(l - Ax)

where Ap is the increment to the charge density.
Having assigned the charges and determined the charge density on

the spatial grid, we next determine the self-consistent electric field using
Poisson's equation:

dE
— = 4 ; r p .
ox

The simplest approach is to finite-difference Poisson's equation,

An alternative approach is to Fourier transform the charge density, use
Poisson's equation to find E^ (i k Ek = 4?r p&) , and invert the transform
to determine the electric field on the spatial grid.
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Figure 2.2 The charge sharing scheme for finite-size particles.

The last step in the basic cycle is to use the electric field to move the
particles. The electrical force is assigned from the grid to the individual
particles using the same scheme chosen to assign the charges to the grid.
For example, considering a particle a distance Ax to the right of the ith

grid point and using linear interpolation, we obtain for the force F on the
particle

F = qE(i)[l - Ax] + qE(i + l)Ax .

The velocity (v) and position (x) of each particle are then advanced At
in time using a "leap frog" algorithm, i.e.,

= vn-l/2 + pn

n+l/2

The superscripts denote time step. By defining x and v one-half time step
apart, we achieve second-order accuracy in the time step. In the initial
conditions, x and v are defined at the same time (t = 0), but it is straight-
forward to then displace the velocities backward in time using the force
at t = 0.

The plasma evolution is computed by simply continuing around the
basic cycle using a time step small enough to resolve the characteristic
oscillations of the plasma. As discussed in Chapter 1, in this electrostatic
limit, the highest frequency oscillation has a frequency near a;pe, the elec-
tron plasma frequency. Hence a time step of about 0.2^;"^ is commonly
used. Of course, it is also necessary to resolve the scale lengths character-
istic of the collective behavior. Hence a grid size of about ADC is commonly
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used. It is interesting to note that a numerical instability would be intro-
duced if ADC were chosen to be a small fraction of the grid size [13]. This
instability is due to aliasing, which arises from the fact that on the grid a
disturbance with wave number k cannot be distinguished from spurious
ones with wavenumbers k + 2 TT n/6, where 6 is the grid spacing and n is
an integer.

2.2 A 1-D ELECTROSTATIC PARTICLE CODE
As is now apparent, a particle code is quite straightforward from a compu-
tational viewpoint. Of course, particle codes become more complex when
the full set of Maxwell's equations is allowed and magnetic fields act on
the particles. But the basic concepts are the same: use of a spatial grid,
the spacing of which is chosen to resolve the collective behavior, and the
mapping between the discrete grid and the particles. To further illustrate
the ideas, a specific 1-D electrostatic particle code will be presented. For
tutorial purposes, the code has intentionally been kept in a form which is
easily deciphered. Before presenting this code, it is helpful to briefly dis-
cuss two topics: the dimensionless units chosen and the finite-difference
solution of Poisson's equation.

The basic equations under consideration are:

dv _ eE
dt m
dx
& =V

— = - 47re (n - nav) ,

where nav is the density of the fixed ion background and n is the den-
sity of the simulation electrons with charge e and mass m. We choose
dimensionless variables in the following way:

t' = c j e t

E1 =
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where S = L (system size)/ATC (the number of cells), nav = NP (the
number of simulation particles)/!/, and upe = (4 TT nav e2/m)1/2. In these
variables, the equations become

dv' F>a* = ~E
dx'

Here AT = n 8 is the number of particles initially assigned to each cell
and Nav = nav<$ = NP/NC. In terms of these variables, the total
energy (TE) of the system is

NP NC
TE = > —vf+y -*-6

Z^ 2 * f^ &7T

ATP ATC
rp,- '" ̂ pe ^ V^ ,2 .̂ V^ ^2
^ = r ^ V» + ^av ̂  ^i

The finite-difference solution to Poisson's equation is also straightfor-
ward. Defining a normalized charge density RH , we have

After the charges are assigned to the grid, we know RH(i), (i = 1,
Dropping the prime notation and taking 6 = 1 then gives

E(i + l) = E ( i ) + I [RH(i + l) + RH(i)} .
2t

Considering only periodic boundary conditions imposes the constraint
that E(NC + 1)= E(l).

Our procedure is to first solve for £7(1), using the condition that the
spatially-averaged electric field is zero i.e.,

NC

3=1
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For j > 1,

E ( j ) = E(l) + "!P - [RH(i) + RH(i + I)] .
r^ 2

Substituting, we obtain

j=2

Hence
ATC j—i

ATC x E(l) = - V V - [flff (i) + #ff (^

Since j is simply a counting variable, we let jr = j — 1 to obtain

NC j-l NC-l j'

£ £ = £ £•
Note that we can add the jf = NC term since by charge neutrality the
spatially-averaged charge density vanishes ( J2i=i RH(i) = 0 ). Hence

ATC j'
ATC x £7(1) = - £ £ - [##(*) + RH(i + l)] .

j'=i t=i

With -E(l) determined, each of the E(i) is readily found.
A Fortran implementation of the code is presented in Fig. 2.3. The

coding is self-explanatory; many comment cards are included. Arrays x
and v have dimensions corresponding to the number of particles NP and
arrays RH and E have dimensions corresponding to the number of cells
ATC. For clarity of presentation, various optimization techniques, such
as time normalization in units of At, have not been exploited. The cells
to which a given particle is assigned are determined by truncation of its
position using fixed-point arithmetic conversion. Prior to entering the ba-
sic cycle, the particles are initialized to represent the initial state of the
plasma for the problem under consideration. The most common diagnos-
tics are the temporal evolution of the electrostatic and kinetic energies,
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PROGRAM RAIN!INPUT,HSP)
CALL KEEPB0!1)

C ONE DIMENSIONAL PARTICLE SIMULA
C PERIODIC BOUNDARY CONDITIONS
C FIXED IONS
C NC IS THE NUMBER OF CELLS

C THES
DIM

C THESE
DIME I

C THESE ARI
DIMEI

DIM
I OR NC

0)
C GIVE INPUT DATA

WRITEI59.21)
21 FORMAT!" GIVE NC.NP.MP IN 15")

HEADI59.22) NC.NP.MP
22 FORMAT (315)

WRITEI69.23) NC.NP.MP
23 FORMAT!" NC • ".I5/" NP » ".

1 I5/" MP « ".151
WRITE (59.24)

24 FORMAT!" GIVE VTE.DT.TEND IN F9.5")

1" TEND « ".F9.5I
CALL SETCHI 1..40.. 1.0. 1
WRITE!100.23) NC.NP.MP
WRITE! 100,26) VTE.DT.TEI
CALL FRAME
ANC*NC
NC1*NC* 1
ANP*NP

T«0.
K 1 « 0
L1*0
M1«0
NDT*1./DT
ND1-NDT-1
MEND=TEND+0.1

MPLOT*MEND
IF (NC.GT.MPLOT) MPLOT-NC
DO 3001 I-1.MPLOT
AI»I

3001 PLIII'AI
AK1«6.2832/ANC

C INITIALIZE THE PARTICLES
C MAKE SURE PARTICLES IN SYSTEM

DO 1 1 = 1 , N P
AI-I-.5
X I I I * A I « ANORM
IF < X ( I ) .LT.0. ) XI I I « X ( I I + ANC
IF (XI I) .GE.ANC) XI 1)*X(I)-ANC

1 CONTINUE
VB*0.
DO 2 I«1 .NP
VB=-VB
CALL RANDUMIVVI

2 V(I)*VTE« VV+VB
C I N I T I A L L Y ASSIGN THE CHARGE TO THE

DO 3 1=1.NCI
3 RH(II*0.

DO 4 I*1.NP
N«Xl I I
AN-N

RH(N)«RH(N)-1.»(1.-DX)
RHIM)*RH(M)-DX

4 CONTINUE
5 CONTINUE

RHI 1 )«RH( 1 )»RH(NC+ 1 )
C ADD IN CHARGE OF UNIFORMLY SPACED IONS

DO 6 I-1.NC
RH I I I - R H ! I I + A N P / A N C

C SOLVE POISSONS EQUATION
C FIND Ed) --AVERAGE FIELD IS ZERO

ERUN2*0.
DO 32 J« 1 .NC
ERUN1=0.
DO 31 I» 1 . J
K«I + t
IF (K.GT.NCI K«1

31 ERUN1*ERUN1+0.5« (RH(I)+RH(K))
32 ERUN2*ERUN2»ERUN1

Ell)*-ERUN2/ANC
NCM«NC-1
DO 7 I=I.NCM

7 E(1+ 1)*E(I) + 0.5« < R H ( I * 1)»RH(I) )
E (NO 1 ) =E ( I I

DO 8 1*1,NCI
8 R H I 1 I - 8 .

C COMPUTE KINETIC AND FIELD ENERGIES
IF (K1 .LT.ND1) GO TO 41
EEA*0.
DO 42 1-1.NC

42 EEA*EEA+E(I)* E ( I )

EEA*EEA/ANORM
EK1«0.
DO 43 1*1,NP

43 E K 1 - E K 1 * V I I)•VI I)
41 CONTINUE

C TO STAGGER THE VELOCITIES
IFU.NE.0. ) GO TO 51
DO 50 1*1.NCI

50 E(I)«0.5'E(I)
51 CONTINUE

AN*N
DX*X(I)-AN
N*N+ 1

FORCE*-E(N)' .-DXI-E(M)'DX

X( I I *X(I)+V(I)•DT
C MAKE SURE PARTICLE IS WITHIN THE SYSTEM

IF (X(I).LT.0.) XI I ) «X( I ) + ANC
IF ( X ! I ) . G E . A N C ) X I I ) * X I I I-ANC

C ASSIGN CHARGE TO THE G R I D - - A R E A WEIGHTIN I
N * X ( I I
AN'N
D X * X ( I ) - A N
N*N* 1
M*N+ 1
R H ( N ) ' R H ( N ) - ( 1 . - D X )
RHIM!*RH(M)-DX

9 CONTINUE
T*T+DT
K 1 « K 1 + 1
IF (K1.LT.NDT) GO TO 5
K1*0
L 1*L 1+ 1

C COMPUTE THE KINETIC ENERGY
EK2<0.
DO 44 1-1.NP

E E I L 1 1 - E E A
TE(L1)=EK(L
M1*M1* 1

C SUBSTITUTE YOUR LOCAL PLOTTING ROUTINES
IF (Ml.LT.MP) GO TO 10
Mt-0

CALL MAPGI0.,ANC.YMIN.YMAX)
CALL SETCHI0..2.,0,0,1.0,0)
WRITEI100.61) T

61 FORMAT!" E FIELD VS POSITION "/
1" TIME - ".F10.5)
CALL T R A C E I P L . E . N C , 1 , 1 )
CALL FRAME
VMIN*-12.* VTE
VMAX*12.•VTE

1" TIME * ".F10.5I
CALL POINTS!X.V,NP, 1, 1 I
CALL FRAME

CALL SETCHI0 . .2 . .0.0. 1 .0.0)
WRITEI 100.63) T

63 FORMAT!" E FIELD ENERGY VS TIME "/
1" T I ME * " . F 1 0 . 5 I
CALL TRACEIPL.EE.MEND.1.11
CALL FRAME

CALL MAPGI0..TEND,YMIN.YMAXI
CALL SETCHI0. .2. .0.0. 1 .0.0)
WRITEI 100.64) T

64 FORMAT!" KINETIC ENERGY VS TIM
1" TIME * ".F10.51
CALL THACEIPL.EK.MEND.1.1)
CALL FRAME

CALL MAPGI0..TEND.YMIN.YMAX)
CALL SETCHI0. .2. .0.0. 1 .0.0)
WRITEI 100. 65) T

65 FORMAT I" TOTAL ENERGY VS TIME
1" T I ME * " , F 1 0 . 5 I
CALL TRACEIPL.TE.MEND,1.11
CALL FRAME
CALL EXIT
END

C COMPUTE RANDOM NUMBERS
C WITH A GAUSSIAN DISTRIBUTION

SUBROUTINE RANDUMIX1)
X1*0.
DO 15 1*1,12

15 X1*X 1 + RNFL(DO)-.5
RETURN
END

• DATA

1 I

Figure 2.3 Listing of a one-dimensional particle code.
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snapshots of the electric field as a function of position, and plots of the
x — v phase space of the particles at various times. Finally, we note that
energy conservation is an important test of the code performance.

Even with this simplest particle code, many instructive problems can
be investigated. For example, we can excite electron plasma waves and
examine their behavior in both the linear and nonlinear regimes. The code
can be easily extended to include ion motion, and the reader is encour-
aged to do this as a learning experience. After becoming familiar with
the basic techniques, one can easily graduate to the use of more flexi-
ble and optimized particle codes, such as ESI which is available through
NMFECC, the national computer center for magnetic fusion energy. Al-
though less accessible, large 2 and 2-| dimensional (two-dimensions in
space and three in velocity) electromagnetic, relativistic particle codes
now exist. Such codes solve the full set of Maxwell's equations and use
relativistic particle dynamics. So-called implicit particle codes have also
been constructed [14]. These codes allow time steps greater than u>~* BIl(^
are used to more economically study low frequency kinetic phenomena.
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CHAPTER

Electromagnetic Wave
Propagation in Plasmas

3.1 WAVE EQUATION FOR LIGHT
WAVES IN A PLASMA

Having examined the characteristic charge density oscillations which are
supported by a plasma, let us now consider how a plasma modifies the
propagation of electromagnetic waves. Motivated by laser fusion applica-
tions, we will continue to assume that there are no large imposed (or self-
generated) magnetic fields. We begin by examining the linearized plasma
response to a high frequency field of the form [1]

E = E(x) exp(-zu;t) . (3.1)

Since the frequency uj is assumed to be J> a;pe, the ions are treated as a
stationary, neutralizing background with density noi(x). If we neglect the
terms involving ue • Vue and ue x B as products of small quantities

27
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(i.e., ~ |E|2), the linearized force equation for the velocity of the electron
fluid reduces to f\

~dt~ = ~ m E^ exPH^*) •
Since the current density is J = — no(x) eue,

93

where u>*e = 47re2no/m and no = Z no; is the electron density. Hence

4?r u;

where the high frequency conductivity of the plasma is a = iu;pe/47ru;.
To develop wave equations for the oscillating electric and magnetic

fields, we first consider Faraday's law and Ampere's law, which become

V x E = — B , (3.3)c

VxB = ^ a E - ^ E . (3.4)
C C

Substituting for a into Eq. (3.4) gives

V x B = - — e E , (3.5)
c

where e = I — Upe/u2 defines the dielectric function of the plasma.
Taking the curl of Eq. (3.3), substituting from Eq. (3.5), and using a
standard vector identity gives

2
V2 E - V(V - E) + -5- c E = 0 . (3.6)

The wave equation for B is developed hi a similar fashion. The curl
of Eq. (3.5) gives

V x ( V x B ) = - — V x (cE).c
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Since V x eE = eV x E + Ve x E, we obtain

V2B + ^-eB + ^Ve x (V x B) = 0. (3.7)

As our first application of these results, let vis derive the dispersion
relation for electromagnetic waves hi a plasma with a uniform density.
Since Ve = 0 and V • E = 0 , the wave equations for E and B become
identical. Assuming a spatial dependence of exp(ik - x) then gives the
dispersion relation for electromagnetic waves in a plasma:

or
u>2 - w2

e + fc2c2. (3.8)

Note that o;pe is the minimum frequency for propagation of a light wave hi
a plasma i.e., k becomes imaginary for u; < a>pe. Since the characteristic
response time for electrons is u;"^, the electrons shield out the field of
a light wave when u; < a;pe. Hence the condition a;pe = a; defines
the maximum plasma density to which a light wave can penetrate. This
so-called critical density is ncr = 1.1 x 1021/\i2 cm~3, where AM is the
free-space wavelength of the light hi units of microns (1/im = 10~4 cm).

To investigate some of the basic features of the propagation of light
waves hi an inhomogeneous plasma, let's consider plane waves normally
incident onto a plasma slab. Assuming variations only hi the z direction,
we then have

e = e(u,z)
E(x) = E(z) exp(-turt) . (3.9)

In Cartesian coordinates, the wave equation for E (Eq. 3.6) becomes

d2 u;2x>y + ~#eE*>y = ° »
cEz = 0. (3.10)
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Likewise, the wave equation for B (Eq. 3.7) reduces to

d2
 W2 IdedB^

^Bx,y + ̂ eBx,y- -_^_ =0,

dBz

IT = 0 "

We will first develop a WKB solution for the fields. Although limited
to weak density gradients, this solution provides an excellent illustration
of how gradients in the density affect the wave propagation. Then we will
complement this analysis with an exact solution for the fields, assuming
a linear variation in the plasma density.

3.2 WKB SOLUTION FOR WAVE PROPAGATION
IN AN INHOMOGENEOUS PLASMA

A very useful approximate solution for the wave propagation can be ob-
tained in the limit that the fields vary slowly in space. It's most convenient
to solve for the electric field. If we take the electric vector to be hi the x
direction and let Ex — E, Eq. (3.10) becomes

'4e(u,z)E = 0. (3.11)
d22 , .

We assume a slow variation in the dielectric function of the plasma (i.e.,
a weak gradient in density) and look for a solution of the form

E(z) = Eo(z) exp *(z')dz' , (3.12)

where the amplitude EQ(Z) and the phase *(z) are slowly varying func-
tions. Differentiating E(z) and substituting into Eq. (3.11) yields

c c2 c c—

where the prime denotes a derivative with respect to z. To lowest order,
we neglect all derivatives, obtaining

* = y/e(w9z). (3.13)
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To next order in the gradients,

*"L9Eo.+ *J!**L=0, (3.14)
c c

with the solution
, . constant /rt -, ,-\Eo(z) = ~~ • ( }

Substituting Eqs. (3.13) and (3.15) into (3.12) then gives

E(z) = ̂ | exp [̂  f x/^Odz'] , (3.16)

where E?s is the value of the electric field hi free space.
It is apparent from Eq. (3.16) that the amplitude of the electric field

increases as the light wave propagates toward higher density. This be-
havior is readily explained physically by noting that the energy flux is
conserved, i.e.,

STT
where vg is the group velocity of the light wave hi the plasma. Using the
dispersion relation (Eq. 3.8) to relate the local value of the group velocity
to the local value of the dielectric function gives vg/c = <^e(u,z). Hence,
Eq. (3.17) becomes

I F, / \ I
\EQ(Z)\ =

in agreement with the WKB result. Since the energy flux can also be
expressed as c E x B/4 TT , we can easily see that the amplitude BQ of the
magnetic field of a light wave is decreased in a plasma, i.e.,

\Bo(z)\ = Brse1/4,

where Bps is the value of the magnetic field hi vacuum.
The validity condition for the WKB solution can be readily estimated.

For example, in deriving Eq. (3.14), we required that

£o" « -*;#o, -*£(/.
c c

Noting from Eq. (3.16) that k(z) = u;*/c, it suffices to require that
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Substituting for E0 from Eq. (3.16), we then obtain the condition

A —- <C STT e , (3.18)

where \(z) — 27r/k(z). In other words, the variation in the plasma den-
sity must be sufficiently slow that the fractional change hi the dielectric
function in a local wavelength is very small. Note that the WKB solution
breaks down near the critical density where e —> 0 and A —»• oo.

3.3 ANALYTIC SOLUTION FOR PLASMA WITH
A CONSTANT DENSITY GRADIENT

The WKB solution is especially valuable because it provides us with a very
intuitive way to describe the wave propagation. The wave is assigned a
wavenumber and group velocity which are defined via the local disper-
sion relation. The amplitude and the phase of the wave are related to
these locally-defined characteristics hi a physically obvious way. However,
strictly speaking, this approximation is valid only for very gentle density
gradients and in particular breaks down near the cutoff density where the
wave reflects. Hence it's important to complement the WKB solution with
a more complete solution of the wave propagation. Fortunately, an exact
solution can readily be obtained for a plasma with a linear variation hi
density [2].

We again consider a plane electromagnetic wave normally incident
onto an inhomogeneous plasma slab and allow variations only hi the z
direction. The wave equation for the electric field E(z) is

d*E J , ,„ „

Assuming that the plasma density is a linear function of position (n =
ncr z/L, where ncr = mu;2/47re2 is the critical density), we obtain

A change of variables to rj = (o;2/c2L)1/3(z - L) gives

J2 IT»
~ - r,E = 0 . (3.20)
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Ai(x)

-10

-1.0 L

Figure 3.1 A plot of the Airy function Ai(x).

This differential equation defines the well-documented Airy functions, A;
and B; [3]. The general solution of Eq. (3.20) is

E(n) =
where a and (3 are constants which are determined by matching to the
boundary conditions.

On physical grounds, we expect E to represent a standing wave for
77 < 0 and to decay as T] — > oo. Since Bi(r?) — * oo as 17 — > oo, we choose
(3 = 0. A plot of Ai(r)) is shown in Fig. 3.1. Note that the wavelength
and the amplitude of the field increases as the reflection point (r? = 0) is
approached, as expected from the WKB solution. Beyond the reflection
point, the field is attenuated.

The constant a is chosen by matching the electric field with the field
of the incident light wave at the interface between the vacuum and the
plasma at z = 0 i.e., at 77 = — (u;L/c)2/3. If we assume that uL/c ^> 1
and use the asymptotic representation,

1 cos (f"'" - 5) -
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we obtain

./2u; n\
'(3 V - 4)

Note that we can express E(z = 0) as the sum of an incident wave with
amplitude Ep$ and a reflected wave with the same amplitude but shifted
in phase i.e.,

provided
t-(^L

a = 2v/7r ( —
V c V

Here J5ps is the free-space value of the electric field of the incident light
wave and (p is just a phase factor which does not affect \E\. Hence

E(n) = 2 0? (—) EFS j> Ai(rj) . (3.21)
\ C /

As can be seen from Fig. 3.1, the amplitude of the electric field
reaches a maximum value at 77 = 1, which corresponds to (z — L) =
- (c2 L/t*;2)1/3. This maximum amplitude (Emax) is

~ 3.6 C^Y" . (3.22)
< C /\

We would expect a factor of four increase in E2 because a standing wave is
set up. The additional swelling is due to the decrease in the group velocity
of the light wave as the dielectric function becomes small.

A similar swelling of the peak electric field amplitude can be ob-
tained by heuristic arguments based on WKB theory. Here we use k =
y/c (u;/c) and \E\ = Eps/t1/4- As e becomes smaller, the wavelength be-
comes longer. Intuitively we expect the wave to average over the plasma
properties within at least half of its local wavelength. Hence we expect
a minimum value of e, which is roughly the value of e averaged over
half a local wavelength near the reflection point. For a linear density
profile, emin w 7r/(2feminL). Since k^in = ^L u/c> we ^en °btain
emin ~ (7rc/2u;L)2/3. Including the factor of 2 in amplitude which is due
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to the standing wave, we then estimate \Em3X/Eps\2 ~ 3.5(ct;L/c)1/3, a
value in reasonable agreement with the exact solution. It's also interesting
that the phase shift between the incident and reflected waves is given by
the WKB solution if we simply subtract ?r/2 to account for reflection at
the critical density surface. In other words,

,- 7T 4 CjL 7T
V€dZ ~ 2 = 3V ~ 2 "

The magnetic field of the light wave is readily calculated from the
solution for E. Noting that the electric vector is hi the x direction and
that the wave is propagating in the z direction, we take the y-component
of Faraday's law to obtain

icdE

Changing variables from z to rj and using Eq. (3.21) gives

( r \ 1/6
^) ^se^A^T,), (3.23)

where the prime denotes a derivative with respect to rj. At the reflection
point, \B(rj = 0)| « 0.92 (c/u;!/)1/6 Ep$. Note that B decreases as E
swells, as qualitatively shown by the WKB solution.
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CHAPTER

Propagation of Obliquely
Incident Light Waves in
Inhomogeneous Plasmas

To complete our introduction to the propagation of light waves in inho-
mogeneous plasmas, let us now consider a light wave whose propagation
vector is at an angle to the density gradient. We again consider a plane
electromagnetic wave incident onto a plasma slab with electron density
ne(z). The vacuum-plasma interface is taken to be at z = 0, where the
angle of incidence 9 is defined as the angle between the propagation vector
k and the direction of the density gradient (z). Without loss of generality,
we take the plane of incidence (defined by the vectors Vn and k) to be the
y — z plane, as shown in Fig. 4.1. With this choice, there are no variations
in the x-direction (i.e., kx = 0 and ^ =' 0). At the vacuum-plasma
interface, we note that ky = (u/c) sin0 and kz = (u/c) cos 9. As we will
show, the wave propagation now depends on whether the electric vector
E of the incident light wave lies in or out of the plane of incidence.

37
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e = 0

E=sin2e

Figure 4.1 A sketch illustrating a light ray obliquely incident onto an inho-
mogeneous plasma slab.

4.1 OBLIQUELY INCIDENT S-POLARIZED
LIGHT WAVES

If the electric vector points out of the plane of incidence, the light wave
is termed s-polarized. If we then take E = Exx, the wave equation for
E (Eq. 3.6) becomes

82EX

dz* ' c2+ -=- e(z) Ex = 0 . (4.1)

Since the dielectric function (e) of the plasma is a function of z alone, ky
must be conserved. Hence ky = (uj/c)sm0 and

„ ,-,/ % /i^y sin# \Ex - £(z) exp (^—=- J (4.2)

where 9 is the angle of incidence. Substituting Eq. (4.2) into Eq. (4.1)
then gives

(4.3)

It is apparent that reflection of the light wave now occurs when

e(z) = sin20. (4.4)

Since e = 1 - u>2
e(z)/t<;2, reflection takes place where the electron plasma

frequency u>pe = u> cos#. An obliquely incident light wave reflects at a
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density lower than the critical density i.e., where ne — ncr cos2 9. Here
the critical density is defined as ncr — rao;2/47re2.

Our previous analyses can be carried out with the straightforward
substitution e(z) —> e(z) — sin2 0. For example, in a plasma with a linear
density profile, ne = nCTz/L, the wave reflects at z = L cos2 0, and the
Airy function pattern occurs relative to this point rather than at z = L.

4.2 OBLIQUELY INCIDENT P-POLARIZED
LIGHT WAVES — RESONANCE ABSORPTION

If the electric vector of the light wave lies in the plane of incidence, the
light wave is termed p-polarized. In this case, there's a component of the
electric vector which oscillates electrons along the direction of the density
gradient i.e., E-Vne ^ 0. Since this oscillation generates fluctuations in
charge density which can be resonantly enhanced by the plasma, the wave
is no longer purely electromagnetic. Part of the energy of the incident light
wave is transferred to an electrostatic oscillation (electron plasma wave),
a phenomenon termed resonance absorption [1,2].

We again consider a plane electromagnetic wave incident with an angle
6 onto an inhomogeneous plasma slab with density ne(z), as shown in
Fig. 4.1. Now the electric vector is taken to be hi the plane of incidence i.e.,
E = Ey y + Ezz.It is readily seen that the field acquires an electrostatic
component. Poisson's equation gives

V - ( c E ) = 0,

where e(z) = 1 — u;2
e(z)/u;2 is the dielectric function of the plasma. Since

V • (cE) = e V • E + V e • E, we obtain

Note the resonant response when e = 0, i.e., where upe = w.
The physical interpretation is straightforward. Oscillation of electrons

between regions of differing density directly creates a charge density fluc-
tuation, £n, which is

6n = ne(x + Xos) - MX)
~ Xos • Vne ,
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where XQS is the amplitude of oscillation of an electron hi the electric field
of the light wave (XoS = eE/mu;2). Where u; = U7pe, this imposed charge
density fluctuation is at just the frequency at which the plasma resonantly
responds. Hence an electron plasma wave is excited where e = 0; that is,
at the critical density.

Even though an obliquely incident light wave reflects at a density less
than the critical density, its fields still tunnel into the critical density
region and excite the resonance. To determine the energy transfer to the
excited plasma wave, we need to determine the size of the electric field
along the density gradient near the critical density. In order to evaluate
Ez, it is most convenient to work in terms of the magnetic field of the
p-polarized wave. Noting that B = xBx and using the conservation of
ky = (u;/c)sin0, we express

(4.5)

The electric field is related to the magnetic field by substituting Eq. (4.5)
into Ampere's law:

i LJ
V x B = -- € E . (4.6)c

The z component of Eq. (4.6) then gives

Since Ez is strongly peaked at the critical density, we approximate the
resonantly driven field as J5d/e(z), where Ed is evaluated at the resonance
point. Physically, Ed is simply the component of the electric field of the
light wave which oscillates electrons along the density gradient at the
critical density i.e., the field driving the resonance.

To evaluate Ed, we need to calculate the magnetic field at the critical
density. For our purposes, it suffices to simply estimate the value of the
magnetic field using the insight obtained from our previous calculations of
wave propagation in inhomogeneous plasmas. Assuming a linear density
profile (ne = ncrz/L), we represent B(z = L) as its value at the turning
point B(z = Lcos2 0) multiplied by an exponential decay from the turn-
ing point to the critical density. The value of B at the turning point is
estimated using the Airy function solution for an s-polarized wave, which
gives B(z = Lcos20) w 0.9 EFS (c/u;L)1/6. Here EPS is the value of the
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electric field of the light wave in free space. The decay of the field as it
penetrates beyond the turning point is estimated by e-/3, where

dz.c

For a linear density profile, /3 = (2uL/3c) sin3 0. Hence, we obtain

/ c \i/6 /-2wL sin30\ t A 0,B(Z=L) * 0.9£Fs (^) exp( - - - ) . (4.8)

The important physical features of resonance absorption can be de-
duced from our approximate treatment for Ed [3]. Using Eq. (4.8) and
defining a new variable r = (c^L/c)1/3 sin0, we obtain

Ed = 4>(r) , (4.9)

where (f>(r) ~ 2.3 r exp(— 2r3/3). The driver field vanishes as r — > 0, since
the component of the electric vector of the incident light wave along the
density gradient varies as sin0. Likewise, the driver field becomes very
small for large r, since the incident wave then has to tunnel through too
large a distance to reach the critical density surface. Between these two
limits, there is an optimium angle of incidence given approximately by
(u>L/c)l'*WLe~ 0.8.

In Fig. 4.2 we compare our simple estimate for 4>(r) with the result
obtained by Denisov [2] by numerically solving the wave equation. Note
that our heuristic estimate is in reasonable agreement with the detailed
calculation. As expected, our heuristic solution is quite accurate for r <C 1,
since our estimate for B(z = L) becomes exact as r —» 0. Our expression
for (f)(r) is qualitatively correct even for r ^> 1, since the dominant phys-
ical effect is then the attenuation of the incident field as it tunnels from
the cut-off density to the critical density.

Having related the electrostatic field near the critical density to the
electric field and the angle of incidence of the light wave, we can now
calculate the energy absorption. As shown in Eq. (4.7), the resonantly-
driven field is Ez — Ed/t(z). If we include a small damping of the wave
with frequency z/, e(z) = 1 — ̂ e(z)/u(u + iv), as we will show in
the next chapter. Hence, Ez has a resonance behavior near z = L , i.e.,
the maximum value of Ez is proportional to i/"1 and the width of the
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Figure 4.2 A plot of the function 0(r), which characterises the efficiency of
resonance absorption. The solid line is from Ginzberg (1964).

resonant region is proportional to v. This feature of Ez will enable us
to compute the energy absorbed via excitation of the electrostatic wave
without specifying the detailed value of v (assuming i//u; <^ 1). Hence,
v can represent dissipation by electron-ion collisions, linear or nonlinear
wave-particle interactions, or even propagation of the wave out of the
resonant region.

The absorbed energy flux (/abs) is

(4.10)
|e |

For a linear density profile (ne = nCT z/L), we have

ui 2 = (4.11)

Substituting Eq. (4.11) into Eq. (4.10) and approximating Ed as constant
over the narrow width of the resonance function gives

•*abs —
87T Jo (1 -(1-z/LY

(4.12)
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The integral is easily evaluated to give TT ujv. Hence

. (4.13)

By conservation of energy, Jabs = /AC EFS/^I where /A is the frac-
tional absorption of the incident light wave due to the excitation of an
electrostatic wave at the critical density. Substituting for Ed(z = L) from
Eq. (4.9), we then obtain /A - </>2(r)/2, where </>(r) is the characteristic
resonance function describing the strength of the excitation as a function
of the angle of incidence and the scale length of the density gradient.

Our simple model emphasizes the physics of resonance absorption
and captures its basic features. For a linear density profile, the fractional
absorption peaks at 0max « sin~1[0.8(c/o;L)1/3] and is sizeable for a range
of angles of incidence A0 ~ 0max- The peak absorption is somewhat over-
estimated. Detailed numerical calculations for a linear density profile show
a peak resonance absorption of about 0.5 [4-6].
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CHAPTER

Collisional Absorption of
Electromagnetic Waves

in Plasmas

So far we have focused on collisionless plasma behavior. As discussed in
Chapter 1, collisional effects due to discrete particle encounters can be
systematically neglected as the number of particles in a Debye sphere
(TV/)) becomes very large. Even when TVp is large, there are, of course,
some collisions, which can be iteratively included by going to first order
hi the expansion parameter 1/N&. A collision term is then added to the
Vlasov equation, which becomes

£U ' n- 'Ot C/X. TTflj

where (d f j k / d t ) c represents the rate of change of fj due to colhsions with
the /cth charge species.

The contribution of collisions to the moment equations is straightfor-
ward. If we neglect ionization and recombination, collisions do not change
the number of charges of each species. Hence J dv Y^k (^fjk/^)c = ̂ '

45
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and the continuity equation is unchanged. Noting that collisions between
charges of the same species lead to no net change of momentum, we have

thwhere (drijUj/dt)k denotes the rate of change in the momentum of the j
species due to collisions with charge species k. Hence the force equation
becomes

\ 1
J - ̂ «a_w» ^ <"'

5.1 COLLISIONAL DAMPING OF LIGHT WAVES
To investigate collisional damping, we again consider the linearized plasma
response to a high-frequency field of the form E(x) e****. Treating the
ions with charge state Z as a fixed, neutralizing background with density
ne(x)/Z, we need only treat the dynamics of the electron fluid. For an
electron fluid with density ne and velocity Ue interacting with a stationary
ion fluid, it is convenient to express

( — neuej = vei n€Ue , (5.2)

where vei is a collision frequency which describes electron scattering by
the ions.

This collision frequency vei depends on an average over the velocity
distribution of the electrons. Indeed, the form of the average depends on
the physical process under consideration, and so a more detailed treat-
ment is needed in order to derive the numerical value of vei. Fortuitously,
for a Maxwellian distribution of electron velocities, the electron-ion colli-
sion frequency which describes the damping of a high-frequency wave is
essentially the same as the characteristic electron-ion collision frequency
which we estimated in Eq. (1.2). A derivation of this result will be pre-
sented in Section 5.4.
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The analysis is straightforward. If we use Eqs. (5.1) and (5.2), the
linearized force equation for the electron fluid becomes

= --E - l/rflle. (5.3)
at m

Since the field varies harmonically with time,

-ieE
Ue = - 7 - r .

ra(u; + ivei)

The plasma current density is then

zu;2

J = -neeu€ = - — - - f—. - r E ,
47r(u> + ivei)

where u>pe is the electron plasma frequency. Note that the plasma con-
ductivity a ( J = aE) is now complex: a = zo;2

e/[47r(t<; + ivei)]-
Faraday's and Ampere's laws become

V x E = — B (5.4)
c

V x B = — a E - — E = - — cE , (5.5)
c c c

where the dielectric function of the plasma is now

a;2
- - . .
a; (a; + ivei)

(5.6)

The wave equation for E is obtained by taking the curl of Eq. (5.4) and
substituting for V x B from Eq. (5.5):

2
V2E - V(V-E) + -r-eE = 0. (5.7)cz

Let us first derive the dispersion relation for light waves hi a spatially
uniform plasma. Taking E(x) ~ elk'x and substituting for e into Eq. (5.7)
gives

a,2 = fcV + ̂  (l - «^) , (5.8)
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where we have assumed that vei/u <C 1. The Ught waves are now damped.
Expressing a; = ur — i i//2, where v is the energy damping rate, we
obtain

The collisional damping has a simple physical interpretation. The rate
of energy loss from the light wave ( vE2/8K ) must balance the rate at
which the oscillatory energy of the electrons is randomized by the electron-
ion scattering with a frequency vei ( vei HQ m v2

s/2 ). Since vos = e E/mur,
this power balance gives v = z/eiu;2

e/u;2.
It is instructive to also consider a spatial problem i.e., let a; be real

and k be complex. Then, substituting k = kr + i k{/2 into Eq. (5.8) and
assuming that ki <C fer, we obtain

1
-"Pe

(jj*

where fc^ is rate at which the energy decays in space and vg is the group
velocity of the light wave. Note that the energy damping length (fc"1) is
simply Vg/v, where v is given in Eq. (5.9).

5.2 COLLISIONAL DAMPING OF A LIGHT WAVE
IN AN INHOMOGENEOUS PLASMA

Let us now investigate collisional damping of a light wave propagating into
an inhomogeneous plasma. First, we will neglect the density dependence of
the collision frequency and compute the absorption of a normally incident
wave both from an analytic solution for a plasma with a linear density
profile and from a WKB treatment. Then we will use the WKB treatment
to allow for the density dependence of the collision frequency and for
oblique incidence.

We start by again considering a plane wave propagating in the z
direction into a plasma slab with electron density ne(z). Since there is
only variation in the z direction, Eq. (5.7) becomes

, „ f ^€(z)E = 0, (5.10)
CLZ C
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where we have taken E = E x. If we assume a linear density profile
(ne — ncr z/L) and neglect the dependence of i/ei on the plasma density,

e = 1 - r t , *,.* / . • (5'11)

where ve{ is approximated by its value (^*J at the critical density. This is
a reasonable first approximation, since most of the collisional absorption
occurs near the critical density where the electron-ion collision frequency
maximizes and the group velocity of the light wave minimizes. Note that
we are also assuming that the plasma with a density less than or equal to
the critical density is isothermal. Substituting Eq. (5.11) into Eq. (5.10)
gives

, ,2

dz* ~" ~~~9~
E = 0.

By changing variables, we again obtain Airy's equation

- nE = 0 ,

where 77 is now a complex variable:

1/3

(5.12)

77 =

As discussed in Chapter 3, the solution which satisfies physically rea-
sonable boundary conditions is

E(n) - a Ai( (5.14)

where Aj(r/) is a well-documented Any function. The constant a is chosen
by matching to the incident light wave at the vacuum-plasma interface at
2 = 0. For \rj\ ^> 1, we can evaluate E(rj) using the asymptotic represen-
tation for Aj(r?) i.e.,

cos I -
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Hence at z = 0, E can be represented as an incident plus a reflected wave
whose amplitude is multiplied by the quantity e*^, where

3/2 TT

Since rj is now complex, there is both a phase shift and a damping of the
reflected wave. At z = 0, rj = - [(u;L/c)(l + ^*;A*>)]2/3- For »£A> < 1,
the phase shift (the real part of (/>) is the same as in the collisionless
calculation i.e., c^ai = (4u;L/3c) - Tr/2. The imaghiary part of </> is
4iAL/3c, which means that the reflected wave is decreased hi amplitude
by exp(— 4iAL/3c), or in energy by exp(— Si/^L/Sc). Hence the fractional
absorption /A due to collisional damphig is

fA = 1 - e x p - . (5.15)

Let's now calculate the collisional absorption hi a plasma with a linear
density profile using WKB theory. Here

fZ

where
11/2

The energy of the wave decreases by the factor e~2^, where

- • " f- * ,• L
The symbol Sm denotes the imaginary part, and the factor of two enters
since the wave is absorbed as it propagates both into and out of the
plasma. Substituting for e from Eq. (5.11) gives

2"c^ f= 3m /
c Jo

I -
z'

1/2

dz'.

For i/£/u;< 1, 6 = 4i/£L/3c. Hence the energy of the light wave
decays by the factor exp(-8z/*i L/3c), the same result as that given by
the analytic solution.
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5.3 COLLISIONAL ABSORPTION INCLUDING
OBLIQUE INCIDENCE AND A DENSITY
DEPENDENT COLLISION FREQUENCY

Using WKB theory, let's now extend our calculations of collisional absorp-
tion to include obliquely-incident light waves and to allow for the depen-
dence of the collision frequency on density. For definiteness, we consider
s-polarized plane waves incident onto a plasma slab with electron density
ne(z). As discussed in Chapter 4, the local dispersion relation then is

= e(z) - sin20, (5.16)

where 9 is the angle of incidence. Substituting Eq. (5.11) into Eq. (5.16)
gives

,2
I.kz = -

c
cos2 0 -

The density dependence of vei is easily included. Referring to Eq. (1.2)
of Chapter 1, we neglect any weak dependence on density introduced by
In A and note that the collision frequency is then simply proportional to
the plasma density. Hence we will approximate vei = i/*^ ne/ncr, where
i/*^ is again the collision frequency evaluated at the critical density.

In the WKB approximation, the wave energy decays by e~26, where

fLt
6 = 2 3m / kz(z') dz' ,

Jo
and Lt is the turning point. If we assume a linear density profile and use
Eq. (5.17), we obtain

2 - , fLcos2e r i / - * / \ - i l / 2
6 = — 5m / cos20 -L

C JQ [ L

where we have assumed that i^/u; «: 1. This standard integral gives
6 = (IGi/^L/lSc ) cos5 0. Hence the fractional absorption is

U - 1 -exp(-?^cos50). (5.18)

For normal incidence (9 = 0), the density-dependence of i/ei has re-
duced the coefficient in the exponent of Eq. (5.15) from 8/3 to 32/15
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i.e., by about 20%. Note also that the absorption is a sensitive function
of the angle of incidence. Since an obliquely incident wave reflects at a
lower density, less colhsional plasma is traversed. Finally, we note that the
colhsional absorption will depend in detail on the density profile of the
plasma. For example, for an exponential profile (ne — ncrexp(—z/L)),

/A = 1 -

5.4 DERIVATION OF THE DAMPING COEFFICIENT
As a final topic, let us give a derivation of the colhsional damping rate
of a light wave. To determine the electron-ion collision frequency heuris-
tically introduced in Eq. (5.2), we need to start with a representation
for (dfei/dt)c. The simplest description starts with the Fokker-Planck
equation

where (Av) describes the slowing down of electrons due to electron-ion
encounters and (AvAv) their diffusion hi velocity space. These coeffi-
cients can be derived by computing the changes hi velocity of electrons
streaming past ions and summing over encounters i.e., by a more detailed
treatment of the approach used in Chapter 1 to estimate the 90° collision
frequency. With this motivation, we will simply give the standard result,

a U2l - w a/J
at Jc "av [ v* «v j '

Here A = (2 TV n€Z e4/rn? ) hi A where ne is the electron density, Z is
the ion charge state and A is the ratio of the maximum and minimum
impact parameters as discussed in Chapter 1. A detailed discussion of the
derivation of Eq. (5.19) is given hi Chapter 7 of Shkarofsky et a/., 1966.

To calculate the high-frequency resistivity, we consider a plasma with
a uniform electron density ne and a fixed, neutralizing background of ions.
The electric field of the light wave is treated hi the dipole approximation
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Figure 5.1 A sketch of the coordinate system.

i.e., E = E0 cosutf. If we substitute Eq. (5.19) into Eq. (5.1), the kinetic
equation for the electrons becomes

/)f_ P flf_ d \ v2

= A — - } —'•
- VV

dt m dv
^ + Cee(fe) , (5.20)

where fe is the electron distribution function and Cee(fe) denotes a similar
but more complex operator describing electron-electron collisions. These
electron-electron collisions are important for determining the form of the
zero-order distribution function but can be neglected otherwise.

For low-intensity light, we decompose the distribution function into
a zero-order part which depends only on the absolute value of v plus a
perturbation driven by the field i.e., /(v) — fo(v) + fi(v)cos0, where 9
is the angle between v and E as shown hi Fig. 5.1. The linearized kinetic
equation then becomes

eE9/0

ôv
2 A

(5.21)dt m
Here we have used the fact that the collision operator vanishes for any
function of Ivl = v and

~ V V

— f i ( v ) cosO = r-av v6
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Since E = E0 e~iu;t, the driven solution of Eq. (5.21) is

ft(v) = 1£ °̂ ̂  L + iM] . (5.22)
m ov [ v6 ]

The perturbed current density is Ji — — e / /i (t>) cos 0 v dv, and
the average rate of the absorption of energy by the plasma is

< J i - E ) = — \-eEo I /!(<;)<; cos2 0dv . (5.23)

The symbol JJe denotes the real part. Substituting for f\ (v) from Eq. (5.22)
and integrating over angles gives

dv d(v) • (5.24)

Here /0 = ne/0, vos = (ejE70/mo;), and g(v) = [1 + (2 A/i;3o;)2 ]~l. Note
that (2 A/v3u) ~ vei(v)/uj, where vei(v) is a characteristic collision fre-
quency for electrons with velocity v. Since vei(v)/u <C 1 for all but a
small class of electrons, we approximate g(v) « 1 hi the integral, giving

Finally, we invoke energy balance to equate (Ji -E) with the rate of energy
loss from the field, which is v E2/87t. If we use Eq. (5.24), the rate v at
which energy is damped by electron-ion collisions becomes

t\
t, = <3z*£A-fo(Q)t (5.25)

(jj o

where o;pe is the electron plasma frequency.
The damping rate depends on the zero-order distribution function.

The form of this distribution function in turn depends on whether electron-
electron collisions (with frequency vee) can equilibrate the distribution
faster than electron-ion collisions cause it to heat. If vee v* ^> vei v%s
(i.e., if (ZvlJvl) < 1 ), the distribution function remains Maxwellian.
Evaluation of Eq. (5.25) for a Maxwellian distribution then gives the re-
sult usually quoted in the literature

3(27T)3/2 nv3
hi A , (5.26)
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where ve is the electron thermal velocity. A modification of the usual
expression for In A should be noted. The maximum impact parameter is
now ve/(jj rather than the electron Debye length. Since z/ = vei Upe/u;2,
Eq. (5.26) determines the electron-ion collision frequency which describes
the damping of a high frequency wave hi a plasma. If the density is ex-
pressed in cm~3 and the electron temperature in ev,

i/ri ~ 3 x 10-6 In A ~ . (5.27)
#ev

However, if Z(vos/ve)2 ^> 1, electron-electron collisions cannot equi-
librate the distribution function sufficiently rapidly. The form of the dis-
tribution function becomes determined by the collisional heating [4,5]. In
this limit, we return to Eq. (5.20) and balance dfo/dt with the heating
term,

dfo = /eE_mdf\ \
dt \ m ' dv I '

where the brackets denote an average over angles. Noting that f\ =
f i (v) cos 6 and averaging over angles gives

Substituting for f i ( v ) from Eq. (5.22), approximating g(v) w 1, and look-
ing for a self-similar solution, we find

(5'29)

where

Hence the self-consistent distribution function is super-Gaussian in this
limit. Since this distribution has fewer particles than a Maxwellian near
v = 0, the collisional damping rate is reduced by a factor of about 2.
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CHAPTER 6
Parametric Excitation of
Electron and Ion Waves

As we have seen in our consideration of resonance absorption, the oscil-
lation of electrons in the direction of a spatial variation in the plasma
density drives charge density fluctuations. When the frequency of the os-
cillation is near the electron plasma frequency, an electron plasma wave is
resonantly excited. In the case of resonance absorption, the spatial varia-
tion was due to the density gradient produced by plasma expansion into
a vacuum. However, the spatial variation in the density can also be due
to ion density fluctuations associated with ion waves.

We will first discuss this coupling of a light wave into an electron
plasma wave by an ion density fluctuation. Then we will show that this
coupling can lead to unstable growth of both electron and ion waves, when
account is taken of the generation of ion density fluctuations via the so-
called ponderomotive force. A physical picture of the instability will be
given, followed by a derivation from the two-fluid model.

57
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6.1 COUPLING VIA ION DENSITY FLUCTUATIONS
To investigate the coupling of a light wave into an electron plasma wave by
an ion density fluctuation, a simple, one-dimensional model is sufficient.
First, we model the light wave as a spatially homogeneous oscillating
electric field: EQ = xJE7oexp(— iut). In other words, the wave number of
the light wave is neglected on the assumption that it is much less than fe,
the wave number of the fluctuation in ion density. Since the frequency of
an ion wave is much less than the frequency of a light wave, we describe the
ion density fluctuation as a static modulation in the plasma density, n =
no + An cos fcr, where no is the average density and An is the amplitude
of the density fluctuation. Finally, we treat the ions as fixed on this time
scale and describe the electrons as a fluid with density ne, mean velocity
ite, and pressure pe.

To derive an equation for the high frequency electron density fluc-
tuations, we take a time derivative of the continuity equation, a spatial
derivative of the force equation, and combine to obtain

e dn€E _ 1 32pe _ dneue

m dx mdx2 Vei dx ' ( }

where we have included collisions with frequency vei. We next linearize
this equation, i.e., let ne = no+Ancos fcx+n, E = E^+E and ue = UQ+U,
where the tilde denotes a small perturbation and UQ is the oscillation
velocity of electrons in the field EQ. If we treat n < An < n0, Eq. (6.1)
becomes

<92n e dE 2d2n dn eEQ . , .
•S3- -- n° A -- 3ve7T2 + ^AT = -- Anfcsmfcz . (6.2)dt2 m dx ox2 at m

We have used an adiabatic equation of state, assuming w/k > ve, the
electron thermal velocity. Then by substituting the Poisson equation
(dE/dx = -47ren) into Eq. (6.2), we obtain

d2E dE 47re2 .smfex,

where o;2e = 47rn0e2/m. Integration gives



6.1 Coupling Via Ion Density Fluctuations 59

Equation (6.3) describes the excitation of an electron plasma wave by
interaction of the pump field (light wave) with an ion density fluctuation.

The driven solution to Eq. (6.3) is straightforward. Noting that the
pump field varies as exp(— 2*u;t), we obtain

(6.4)
no e , u ;

where
,, . - "pe +e(fc,u;) = 1 -- - -v 7

Since energy is coupled into the driven wave, the pump field is damped.
The energy damping rate, i/*, is determined by balancing the rate of
energy lost (z/*£7|/87r) with the rate of energy absorption via the driven
wave i.e.,

..* 17»2 k
V jC/n K

STT 2?r J0 8 TT

By substituting for E from Eq. (6.4) and noting that 3m e = vei/u, we
then obtain [1,2]

(jj 2 \ricr) |e(fc,u;) |2

Here ncr is the critical density determined by the condition u^e = a;2.
We note that the electric field becomes very large when e(fc,u;) ~ 0

i.e., when the pump field resonantly couples to an electron plasma wave.
Of course, our linearized analysis fails if €(fe, a;) becomes too small, and
nonlinear effects must then be considered. One such nonlinear effect is
repeated mode coupling. When |An/nCT| > |e(fc,u;)|, the driven wave
becomes as large as the pump. It hi turn acts like a pump to drive a
wave at 2fe, which in turn can beat with the ion density fluctuation to
drive a plasma wave at 3fe, and so on. A spectrum of driven waves is
obtained; the maximum wave number can be estimated by the condition
| e(Nk,u>) | ~ An/ncr. Note that even a modest density fluctuation can
efficiently couple a long wavelength plasma wave into shorter wavelength
ones.



60 6 Parametric Excitation of Electron and Ion Waves

6.2 THE PONDEROMOTIVE FORCE
The coupling of a light wave into electron plasma waves by density fluctu-
ations is a very basic phenomenon, which emphasizes that electromagnetic
and electrostatic waves are inherently coupled hi a turbulent plasma. If
sizeable levels of ion fluctuations exist in the plasma, this coupling can
clearly be very significant. In fact, sizeable ion density fluctuations can
be self-consistently produced hi the light-plasma interaction, since an ex-
cited plasma wave beats with the light wave to generate variations hi
electric field pressure. This gradient in field pressure gives rise to a force
(the so-called ponderomotive force), which acts to generate ion density
fluctuations.

To introduce the ponderomotive force, we consider the response of a
homogeneous plasma to a high frequency field whose amplitude is spatially
dependent i.e., E = E(x)sinu;t, where u; ^ a;pe > u;pi. We treat the
electrons as a fluid and compute their response to order E2. If we neglect
the electron pressure, the force equation is

+ Ue - Vue = - — E(x) sinu;* . (6.6)ot m

To lowest order hi |E|, ue = uh where

e „/ . -= -- E(x) sin (jjt ,
^ ;m

h eE
u = - cosrau;

(6.7)

The electrons are simply oscillating hi the local electric field. By av-
eraging the force equation over these rapid oscillations, we obtain

t , (6.8)
ot

where ( )t denotes an average over high frequency oscillation and u3 =
(ue)t, E5 = (E)t. Substituting for uh from Eq. (6.7), we obtain

) . (6.9)
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Observe that the electrons experience a force which pushes them away
from regions of high field pressure. This ponderomotive force (Fp) is pro-
portional to the gradient of the electric field pressure i.e.,

In a uniform plasma with density n, the ponderomotive force density
fp can be expressed as fp = -V(nm(u|)/2). In other words, the time-
averaged energy density of motion hi the electric field plays the same role
as the ordinary pressure, which represents the random or thermal energy
density.

6.3 INSTABILITIES — A PHYSICAL PICTURE
We can now easily see that a light wave can excite an instability in which
both ion waves and electron plasma waves grow. An ion density fluctu-
ation couples the light wave into an electron plasma wave. In turn, the
electron plasma wave beats with the light wave to generate a spatial vari-
ation hi the electric field intensity, which can enhance the ion density
fluctuation via the ponderomotive force. Hence, there's a feed-back loop,
and instability can result.

A physical picture of the instability can be given [3]. Consider first
a static ion density fluctuation hi an otherwise homogeneous plasma i.e.,
n = no + Ancosfex. The electric field of the light wave is again approxi-
mated as a spatially homogeneous field of the form Ed — EQ sinu;t. The
electrostatic field E associated with the excited plasma wave is then given
by Eq. (6.4). Explicitly including the time dependence and neglecting col-
lisions, we then have

_ u;pe An _
E = 9 9 E Q coskx sinurt ,

u* - u;k n0

where (J^k = u;£e + Sfc2!^. Since E has a spatial dependence, the time-
averaged electric field intensity has a gradient. To lowest order in the
small amplitude An of the (thermal) ion density fluctuation, we obtain

n0
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COek

Figure 6.1 When UQ < u>efc, the ponderomotive force acts to enhance the
density fluctuation, i.e., to push more plasma into regions of higher density.

The ponderomotive force Fp is then

2mo;2 a;2 - fc sinfcx .
'ek

As shown in Fig. 6.1, the ponderomotive force acts to reduce the
density fluctuation when u; > u;efc. However, when u < u;efc, the pon-
deromotive force acts to enhance the density fluctuation. Hence a purely
growing (zero frequency) ion density fluctuation will spontaneously grow
from the noise. As it grows in amplitude, so also does the associated
electron plasma wave. This instability is called the oscillating two stream.

We next consider the ion density fluctuation associated with an ion
acoustic wave. The fluctuation is no longer static, but has a frequency
equal to kvs, where vs is the ion sound velocity. In this case, the instability
is most easily thought of as the resonant decay of the light wave into
an electron plasma wave plus an ion acoustic wave. The instability is
strongest when all three waves are matched in frequency i.e., when u; —

+ kva. Hence this instability is often called the ion acoustic decay.

6.4 INSTABILITY ANALYSIS
We can derive these instabilities [4-9] from the two-fluid plasma descrip-
tion. For simplicity, we consider a spatially uniform plasma driven by a
pump field of the form E^ = EQ cos u;o£, where LJQ is near u;pe, the electron
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plasma frequency. We further consider only electrostatic perturbations
and restrict the analysis to one-dimensional perturbations along the di-
rection of the pump field.

The fluid equations for the electrons are

^ + %^ = 0 (6.11)at ax
due due e I dpe ,„ 1 ox
"5T + Ue "IT = E ~* "eUe '6'12)at ox m mne ox

—^ = constant , (6.13)

where 7 = 3 for high frequency perturbations and 7 — 1 for low frequency
ones. Note that we have included collisions with frequency ve to model
either collisional or Landau damping of the electron waves. To proceed, we
divide the electron fluctuations into low and high frequency components

ne = no + nf + nf ,
** C G (n i A\

i h (6-14)ue = vos + ue + ue ,

where the superscripts i and h denote low and high frequency, respectively,
no is the uniform background density, and vos is the oscillation velocity
of electrons in the pump field. To analyze for instability, we linearize by
assuming that n^ or n£ <C no and ue

e or u^ <C vos and neglecting products
of the perturbed quantities.

For spatially dependent electrostatic fluctuations, we can write

^ + 4;rJ - 0, (6.15)at

where J is the longitudinal part of the current density. Equation (6.15) is
readily obtained from Poisson's equation and the equation for continuity
of charge. Linearizing and taking the high frequency component gives

— = 47T e (nvuh
e + nl

evos) . (6.16)

In turn, the high frequency component of the linearized force equation
becomes

_ _ _
at ox m no ox
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where we have used p^ — 3mv^n^. Taking a time derivative of Eq. 6.17
and substituting from Eq. (6.16) gives

f\ /
_ _j_ Ve ~~e _j_ I VQS

 e \ _|_ ^ r_
dt2 dt dt \ os dx ) no dtdx

The third term in Eq. (6.18) can be neglected relative to the other
terms. First note that

A L 9A\~ ̂  M
dt \ °8 5x / ~ 9t 5x '

since the low frequency is assumed to be <C UIQ ~ o>pe. We next use the
low frequency component of the continuity equation to give

.. ^ ^os 1

at ax at n\

Direct comparison shows that these terms are neglegible compared with
the other terms of Eq. (6.18), provided that fe2^ <C u;pe,

Lastly, we use the high frequency component of the continuity equa-
tion to simplify the thermal correction term hi Eq. (6.18). In particular,

dn| du%_

which gives

°
_ _ _

no dtdx ~ e 9x* n0 °" dx* '

The second term on the right hand side can be neglected compared to
(47re2/m)ngVos, provided fc2A2

3e «C 1. Hence we finally obtain

9 o d2

To obtain an equation for the low frequency fluctuations, we must
consider both the electron and ion responses. If we neglect electron inertia
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(Zm <C M) and use an isothermal equation of state, the low frequency
component of the force equation becomes

m
(6-20)

In other words, the low frequency electric field transmits the ponderomo-
tive force and the electron pressure to the ions.

The fluid equations for the ions with mass M and charge Ze are

^ + ^(mui) = 0 (6.21)

"i%r = —E- -^-^ - w (6.22)dx M v '

^ = constant , (6.23)
ni

where we have included collisions with frequency Vi to model either colli-
sional or Landau damping of the ion fluctuations. Neglecting the response
of the massive ions to the high frequency fields, we linearize these equa-
tions by assuming

ni = 7 + nl (6.24)
Ui = U{ .

The linearized continuity and force equations become

^ + n0l ̂  = 0 (6.25)

du\ _ Ze e Svtdni ,
"ft ~ ~ME -^-fo-^- (6'26)

We next take d/dt of Eq. (6.25), d/dx of Eq. (6.26), and eliminate the
common term d2u\/dxdt to obtain

t ^ °- (6-27)

Substituting for E from Eq. (6.20) and noting that Zn\ ~ ne
e then gives

m
( ^(6.28)

where v2
s = (Z6e + 3^)/M and ̂  = 47rn0e2Z/M.
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6.5 DISPERSION RELATION
The coupled equations for u^ and nf describe the feedback which leads
to instability. To derive the dispersion relation, we assume that u^ and
n£

e vary as exp(i/ex — iut) and represent vos(t) as

= vos
J '

where vos = eEQ/mu>Q. The Fourier transforms hi space and time of
Eqs. (6.19) and (6.28) give

t&M - (6.29)

4?re2 vos \ i * ^ £ "I
m 2 L e e J

&(<*) = (6-30)

where o;2fc = u;^e -f 3fe2v2 . Chooshig a; as low frequency, we use
Eq. (6.29) to eliminate u£fc(u; ±WQ) from Eq. (6.30). Nothig that \w ±
2o;o| ~ 2u;o, we neglect as very off-resonant the terms ne

ek(u + 2u;o) and
nefc(u; ~~ 2^o)« Hence we obtain the dispersion relation

, (6.31)
4

wheree(fc,o;) = a;2 + i^ea; — cc;2^.
This dispersion relation can be simplified considerably. First, note

that

, u; ± c<;o) = ( u; ± o;o + Uek) ( ̂  ± ^o — ̂ efc )

Defining 6 = U;Q — u;efc, approximatuig O;Q +tt>efc — 2c«;o, and assummg that
(jj < u;0 gives

±<5) ± zi/eo;o . (6.32)
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Substituting Eq. (6.32) into (6.31) and rearranging, we obtain

-0. (6.33)

Both the oscillating two stream and ion-acoustic decay instability
are readily determined from this dispersion relation. Let us first look
for a purely growing instability, which corresponds to the oscillating two
stream. For u; = 17, Eq.(6.33) becomes

+*4.i. . . ,,34)

where Vi has been taken to be zero as is appropriate for ion Landau damp-
ing of a wave with zero phase velocity. Clearly 7 > 0 requires that 6 < 0
i.e., u>o < uek as expected from the physical picture of this instability
which we discussed in Section 6.3.

Expressions for the maximum growth rate are readily obtained hi both
the weak and strong growth limits. In the weak growth limit, 7 <C kvs
and Eq. (6.34) becomes

We find the mismatch 6 (and hence wavenumber fe) which corresponds to
maximum growth by taking the derivative d/86 of Eq. (6.35) and setting
d^/d6 = 0. Hence 6 = -(v08/ve)*UQ/8. Substituting 6 into Eq. (6.35)
then gives the maximum growth rate, which is

1 ivos\ ve f .
7 - -( — ) a;0 - — • (6.36)o\ ve / 2

Due to the damping of the plasma wave, the amplitude of the pump
field must exceed a certain threshold value for net growth to occur. This
threshold value is simply given by the condition 7 = 0:

H = 4 ^ . (6.37)

Let us next consider the regime of very strong growth. For growth
rate 7 > (kvs, ve), Eq. (6.34) becomes

!*E^A = o. (6.38)
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We again take d/d6 of Eq. (6.38) and set d-y/dti = 0 to estimate the
6 which corresponds to the maximum growth rate. After straightforward
algebra, we obtain

7 ~ ( —^ ——u>o ) , (6.39)

for a mismatch 6 = — 7.
The mentioned ion-acoustic-decay instability is also readily obtained

from Eq. (6.33). We first examine the weak growth regime, assuming that
7 < kvs. Maximum growth clearly occurs when both the ion acoustic
wave and the electron plasma wave are nearly resonant. Hence we take
LU — kvs + z*7 and choose 6 = UQ — uek = kvs. Substitution into Eq. (6.33)
then gives a quadratic equation for the growth rate 7:

472 + 27(i^ + i/e) + i^i/e - -( — ) kv3u0 = 0 , (6.40)
4 V ve >

where we have used 7 <C kv3. Growth again requires that the pump field
exceed a threshold value, which is obtained by the condition that 7 = 0:

= 4— -̂ - . (6.41)
rri TT , . l,n i ^ '1 rl (JUQ KV3

For a growth rate much greater than either collision frequency but still
much less than the ion acoustic frequency,

(6.42)

For large amplitude pump fields, the frequency of the ion wave can be
determined by the pump field intensity. In this limit, the ion wave is called
a quasi-mode since it is not a mode of the undriven plasma. Assuming
that \u\ > kv3 and ignoring the damping terms, we return to Eq.(6.33)
to obtain

Jc ?; /)
9 / 9 f*) \ 9 OS r\ / £* /IO\(jj ((jj — 6 ) + a; j — — = 0 . (6.43)

To solve Eq. (6.43), we take a; = \u\ exp(z</>) and and 6 = a |u;|, where a
is a parameter to be varied to maximize the growth. The imaginary part
of Eq. (6.43) then gives sin</> = '|>/2 - a2. The real part of this equation
gives

M —
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The growth rate, 7 — |u;| sin</>, maximizes when a = l/\/2. Hence we
obtain the real part of the frequency (LUT) and the growth rate:

i/s <6'44)

6.6 INSTABILITY THRESHOLD DUE TO
SPATIAL INHOMOGENEITY

The threshold for instability is often determined not by collisions but
by spatial inhomogeneties. In a plasma with a gradient in density, the
oscillating-two-steam and ion acoustic decay instabilities are excited only
over a region of limited size i.e., where U>Q ~ a;pe. There is then a loss
mechanism, since the unstable waves can propagate out of the region in
which they are excited. Let us conclude our discussion of these instabilities
by estimating the effect of a density gradient on the threshold [10].

We start by considering a plasma wave driven unstable by the electric
vector of a light wave which is normally incident onto an inhomogeneous
plasma. For simplicity, we consider only the oscillating two stream insta-
bility and assume that the plasma density varies linearly near the critical
density with scale length L. Where the excitation is strongest, the plasma
wave has a wavenumber fey aligned with the electric vector of the light
wave. However, at a lower density, the wave vector must develop a compo-
nent (kz) down the density gradient so that the increase hi the frequency
due to the thermal correction balances the decrease due to lower density.
Hence

3 kl Je = <£ £ , (6.45)

where z = 0 corresponds to the place where k = fc||. As kz increases, the
efficiency of the coupling between the light wave and the plasma wave
decreases, since the plasma wave begins to propagate more and more
in a direction orthogonal to the electric vector of the pump field. If we
estimate the size (£INT) of the interaction region by the condition kz ~ fcy,
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PINT — (Sfgfen Z//u7pe). The time that it takes for wave energy to propagate
out of this region is

r = [INT ^, (6.46)
JO VgZ

where vgz is the component of the group velocity of the plasma wave down
the density gradient. Noting that vgz = 3kzvl/upe and using Eq. (6.45) for
fc2, we readily obtain r = 2k\\L/upe. The effective damping rate (i/ = 1/r)
becomes v/upe = l/2k\\L. Substituting this damping into Eq. (6.37) for
the threshold gives

2 2- Try • (6-47)
TH k\\L

6.7 EFFECT OF INCOHERENCE IN
THE PUMP WAVE

Finally let's note that either temporal or spatial incoherence in the pump
wave will reduce the instability growth rate. As a simple example, consider
the ion-acoustic decay instability driven by a spatially homogeneous pump
field with a frequency near u>pe and with a random modulation hi its
amplitude [11]. In particular, we let

E = EQ a(t) cosurt ,

where E is the electric field, u is the frequency, and a(t) is a stochastic
variable with a zero mean and a variance of unity. When the growth rate
is much less than the ion acoustic frequency, the amplitude (/) of an
unstable wave can be represented by terms of the form

/ = /3exp[7o / <*(t')dt] . (6.48)

Here 70 is the growth rate hi the absence of amplitude modulation, damp-
ing has been neglected, and /? is a constant determined by the initial
conditions. If we assume that a(t) is Gaussian,

{/} = 0 exp [ | jf dt' jT dt" (a(t')<*(t") } ] , (6.49)
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where the brackets denote an average. The effective bandwidth Ao; is
defined via the autocorrelation function:

— = fAu; Jo
dr(a(t)a(t + T)).

'o

If Au> > 70, Eq. (6.49) gives

- (6-50)

Hence the growth rate is reduced by the ratio 7o/Au>.
This reduction hi the growth rate is readily understood. The intensity

of the pump wave is distributed over a bandwidth Ao;, and the resonance
width of the instability is the growth rate. Hence when Au; ^> 70, only
some fraction of the pump wave resonantly couples to any two given
unstable waves. A random modulation hi the phase of the pump waves
leads to the same reduction hi the growth rate [12,13], In general, a spread
in the wave vectors of the pump field or even random turbulence in the
plasma [14] can also limit the coherence and contribute to the effective
bandwidth.

References

1. Dawson, J. M. and C. Oberman, Effect of ion correlations on high-frequency
plasma conductivity, Phys. Fluids 6, 394 (1963).

2. Faehl, R. J. and W. L. Kruer, Laser light absorption by short wavelength ion
turbulence, Phys. Fluids 20, 55 (1977).

3. Chen, F. F. Introduction to Plasma Physics. Plenum Press, New York,
1974.

4. Silin, V. P., Parametric resonances in a plasma, Sov. Phys. JETP 21, 1127
(1965).

5. DuBois, D. F. and M. V. Goldman, Radiation-induced instability of electron
plasma waves, Phys. Rev. Letters 14, 544 (1965).

6. Nishikawa, K., Parametric excitation of coupled waves I. General formulation,
J. Phys. Soc. Japan, 24, 1152 (1968).

7. Kaw, P. K. and J. M. Dawson, Laser-induced anomalous heating of a plasma,
Phys. Fluids 12, 2586 (1969).

8. Sanmartin, J. R., Electrostatic plasma instabilities excited by high-frequency
electric field, Phys. Fluids 13, 1533 (1970).



72 6 Parametric Excitation of Electron and Ion Waves

9. Mima, K. and K. Nishikawa, Parametric instabilities and wave dissipation
in plasmas; in Handbook of Plasma Physics, Vol. 2, (A. A. Galeev and R.
N. Sudan, eds.), p.451-517. North Holland Physics Publishing, Amsterdam,
1984.

10. Perkins, F. W. and J. Flick, Parametric instabilities in inhomogeneous plas-
mas, Phys. Fluids 14, 2012 (1971).

11. Thomson, J. J., W. L. Kruer, S. E. Bodner and J. S. DeGroot, Parametric
instability thresholds and their control, Phys. Fluids 17, 849 (1974).

12. Valeo, E. J. and C. Oberman, Model of parametric excitation by an imperfect
pump, Phys. Rev. Lett. 30, 1035 (1973).

13. Thomson, J. J. and J. I. Karush, Effect of finite-bandwidth driver on the
parametric instability, Phys. Fluids 17, 1608 (1974).

14. Williams, E. A., J. R. Albritton, and M. N. Rosenbluth, Effect of spatial
turbulence on parametric instabilities, Phys. Fluids 22, 139 (1979).



CHAPTER

Stimulated
Raman

Scattering

An important class of instabilities involves the coupling of a large ampli-
tude light wave into a scattered light wave plus either an electron plasma
wave (the Raman instability) or an ion acoustic wave (the Brillouin in-
stability). In this Chapter, we will consider the Raman instability and a
related instability in which a light wave couples into two electron plasma
waves. In the next chapter, we will discuss the Brillouin instability and
a related instability which can lead a beam of light to break up into fila-
ments.

The Raman instability can be most simply characterized as the reso-
nant decay of an incident photon into a scattered photon plus an electron
plasma wave (or plasmon). The frequency and wave number matching
conditions then are

where UQ (u;3) and ko (ks) are the frequency and wave number of the
incident (scattered) hght wave, and u;efc (k) is the frequency (wavenumber)
of the electron plasma wave. Since the minimum frequency of a hght wave

73
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in a plasma is u;pe, the electron plasma frequency, it is clear that this
instability requires that o;0 ;> 2u;pe i.e., n <; ncr/4, where n is the plasma
density and ncr is the critical density.

In this process, part of the incident energy is scattered, and part is
deposited into the electron plasma wave. If we simply multiply the fre-
quency matching condition by ft (Planck's constant) and note that ftu; is
the energy of a photon or plasmon, it is clear that for each photon un-
dergoing this process, the fraction of its energy transferred to the plasma
wave is (JO^/UQ). This portion of the energy will heat the plasma as the
electron plasma wave damps. As we will see, this electron plasma wave
can have a very high phase velocity (of order the velocity of light) and so
can produce very energetic electrons when it damps. Since such electrons
can preheat the fuel hi laser fusion applications, the Raman instability is
a particularly significant concern.

The physics of the Raman instability is straight forward. Consider a
light wave with electric field amplitude EL propagating through a plasma
whose density is rippled along the direction of propagation by the density
fluctuation 8n associated with an electron plasma wave. Since the elec-
trons are oscillating in the light wave with the velocity VL = eE^/rac^o,
a transverse current <5J = — e\i 6n is generated. If the wave numbers
and frequencies are properly matched, this transverse current generates a
scattered light wave with an amplitude <5E. In turn, this scattered light
wave interferes with the incident light to produce a variation hi the wave
pressure: V(J52/87r) = V(EL • 6E)/47r. Variations in wave pressure act
just like variations in the ordinary kinetic pressure i.e., plasma is pushed
from regions of high pressure to regions of low pressure and vice versa,
and a density fluctuation is generated. Due to this feed-back loop, an
instability is possible. A small density fluctuation leads to a transverse
current which generates a small scattered light wave, which can in turn
reinforce the density fluctuation via a variation in the wave pressure.

7.1 INSTABILITY ANALYSIS
The coupled equations describing the Raman instability can be read-
ily derived [1-3]. For clarity, let us consider a light wave propagating
through a plasma with a uniform density and temperature. It is conve-
nient to express the electric and magnetic fields in terms of the vector
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potential A and the electrostatic potential </>, where B = V x A and
E — —c~ldA/dt — V<f>. We begin with Ampere's law

c c dt

Substituting for B and E and choosing V • A = 0, we obtain

_ !_V<£. (7.3)
cdt v '

We next separate the current density J into a transverse part Jt (associ-
ated with the light waves) and a longitudinal part J^ (associated with the
electrostatic plasma wave). The longitudinal part of J can be related to
Vc/> via Poisson's equation and the equation for conservation of charge:

V2 0 = - 4?r p (7.4)

^ + V J = 0, (7.5)

where p is the charge density. In particular, taking d/dt of Eq. (7.4) and
substituting for dp/dt from Eq. (7.5) gives

' = 0. (7.6)

Since V • Jt = 0, we then obtain

6
nJe. (7.7)

ISL

Hence Eq. 7.3 becomes

L = tljt . (7.8)

If we restrict ourselves to the condition A • Vne = 0, the transverse
current can be simply expressed as Jt = — ne eut. Here ut is the oscillation
velocity of an electron in the electric field of the light wave and ne is the
electron density. For \ut\ <C c, ut = eA/mc since

~dt
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Hence, we obtain an equation for the propagation of a light wave in a
plasma:

The scattering of a large amplitude light wave (A^) by a small amplitude
density fluctuation (h€) is easily determined by substituting into Eq. 7.10
for A = AL + A and for n = n0 + he where n0 is the uniform background
plasma density. We then obtain

The right hand side is simply the transverse current (oc neVjr,) which
produces the scattered light wave (A).

To derive an equation for the density fluctuation associated with the
electron plasma wave, we treat the massive ions as a fixed, neutralizing
background and describe the electrons as a warm fluid. The continuity
and force equations then are

^ + V • (neue) = 0 (7.12)

~ + Ue • Vue = — (E + U e > < B ) - — , (7.13)at m \ c / nem

where ne, ue and pe are the density, velocity and pressure of the electron
fluid. (As we have shown in Chapter 1, these equations are readily derived
as the first two moments of the Vlasov equation.) Separating the veloc-
ity into longitudinal and transverse components (ue = UL + eA/mc),
substituting into Eq. (7.13), and using a standard vector identity gives

(7,4,
dt m 2 \ me) nem

The second term on the right hand side is the ponderomotive force and is
proportional to the gradient of the intensity of both the longitudinal and
transverse components of the electric field.

We now use the adiabatic equation of state (pe/nl — constant) and
linearize Eqs. (7.12) and (7.14.) In particular, we take UL = u, ne =
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n0 + n€, A = AL + A and (j) = ^> where the tilde denotes an infinitesimal
quantity. Then

+ noV-a = 0 (7.15)

i (7.16)

where ve is the electron thermal velocity. Taking a time derivative of
Eq. (7.15), then a divergence of Eq. (7.16), and finally eliminating the
term d(V • ui)/dt gives

- * > » . -)».-£*>(**,• A). ,7.17)

Here we have also made use of Poisson's equation (V2(/> = 47rene) to
eliminate 0. This equation describes the generation of a fluctuation in
the electron density by variations in the intensity of the electromagnetic
waves.

7.2 DISPERSION RELATION

Equations (7.11) and (7.17) describe the coupling of the electrostatic and
electromagnetic waves discussed in the introduction to this chapter. To
derive the dispersion relation for the Raman instability, we here take
A^ = AQ cos(ko • x — (jj$i) and Fourier-analyze these equations:

4 7T € [
A0 ne(fc -L2m

(u;2 - o.2fc) ne(k,u;) = (7.19)

27 2 2

° ' A(fc

where o;efc = l^pe + 3fc2fg is the Bohm-Gross frequency and LJQ and
/CQ are the frequency and wave number of the large amplitude light wave.
We next use Eq. (7.18) to eliminate A from Eq. (7.19). Taking a; ~ cjpe
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and neglecting the terms he(k - 2fc0, u; - 2ct;0) and ne(k + 2fc0, u + 2u;0) as
very nonresonant, we obtain the dispersion relation:

I __ _ _ (7 201
' V '

Here D(u;, fc) = u;2 — fc2c2 — u;2e and vos is the oscillatory velocity of an
electron in the large amplitude light wave.

The instability growth rates are readily found from Eq. (7.20). For
back or sidescatter, we can neglect the upshifted light wave as nonreso-
nant, giving

(u,* - u4) [(u,-u;o)2 - (k-ko)V - «£] = &#*•. . (7.2i)

We take u; = a;efc + 60;, where 6u <C u;efc, and note that maximum growth
occurs when the scattered light wave is also resonant i.e., when

(wefc - o;0)2 - (k-ko)2c2 - u£e = 0. (7.22)

Then, <5u; = 17, where

2 I1/2

4

The wave number fe is determined by Eq. (7.22). For example, for
direct backscatter where the growth rate maximizes,

2 . (7.24)

The wave number starts from fe = 2fco for n < ricr/4, and goes to fc = fco
for n ~ ncr/4, as is apparent from the matching condition.

The wave number and growth rate are less for any 90° sidescatter
(fc ~ \/2feo for n <C ncr/4). For the more general case of sidescatter in
which A • Vn ^ 0, the growth rate is further reduced since the electric
vectors of the incident and scattered light waves are no longer aligned. For
example, it is apparent from Eq. (7.17) that the growth rate will vanish
when A • AQ = 0. Hence sidescatter occurs preferentially out of the plane
of polarization, the case we have treated.
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For forward scatter at very low density, k <C tt>o/c. Both upshift ed and
downshifted light waves can now be nearly resonant i.e.,

± u>o, k ± ko) ~ 2(u;pe

where we have chosen k = u>pe/c and let u; = u>pe + &*>, where 6w <C u>pe.
Substituting into Eq. (7.20), we readily find the maximum growth rate

(7.25)

Lastly, let us note that there is also a kinetic instability which rep-
resents stimulated Compton scattering by the electrons [4,5]. Now the
electrostatic fluctuation is no longer a resonant mode of the plasma but
rather a beat mode which interacts with the electrons. This instability can
be readily derived from Eq. (7.20) if we replace a;2 — u;2e by a;2 e(fc, a;)
where e(fe,a;) is the fully kinetic dielectric function. For a Maxwellian
velocity distribution, the growth rate peaks when u>o — us + kve. Not
surprisingly, the maximum growth rate is much less than that for the
Raman instability, unless the plasma wave is heavily damped. The two
processes then merge.

7.3 INSTABILITY THRESHOLDS
Damping of the unstable waves introduces a threshold intensity for in-
stability generation. The simplest way to include the effect of damping is
to add terms vs (dk/dt) and i/e (dn/dt) to Eqs. (7.11) and (7.17), where
vs (ve) is the energy damping rate for the scattered light wave (the elec-
tron plasma wave). The dispersion relation remains the same as Eq. (7.20)
with the substitutions

The instability analysis proceeds as before. For example, for back
or sidescatter, we again retain only the down-shifted light wave, take
k> = uek + ry, and choose k according to Eq. (7.22) to obtain maximum
growth. Then we obtain

(7 + 7e) (7 + 7*) = 7o i
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where 7e and js are the amplitude damping rates (half of the energy
damping rates) and 70 is the growth rate in the absence of damping. The
threshold condition due to damping then is

7o > ^/W~s. (7.27)

As an example, we consider backscatter for wpe/ujQ <^C 1/2 and assume
only collisional damping. Substituting Eq. (7.23) into Eq. (7.27) then gives

(7.28)

where vei is the collision frequency discussed in Chapter 5. This threshold
intensity can be quite low. In general, Landau damping of the plasma
wave needs to be included, as will be discussed hi Chapter 9.

In practice, the threshold intensity is usually determined by gradients
in the plasma density rather than by damping. Let us conclude our dis-
cussion of the linear theory of the Raman instability with a heuristic cal-
culation of the threshold hi a plasma with a linear density profile. Plasma
inhomogeneity limits the region over which three waves can resonantly
interact, and propagation of wave energy out of this region introduces an
effective dissipation which must be overcome. Noting that the wave num-
bers are now a function of position, let us define K = k\(z) — k%(z) — k^(z).
At some point K, = 0 (i.e., the waves are resonantly coupled), but away
from this point a mismatch develops. The resonant coupling is spoiled
when a significant phase shift develops. Hence we can estimate the size
PINT of the interaction region by the condition /0

/JVT «dz ~ 1/2. Tay-
lor expanding about the matching point (K = «(0) + K' z) then gives
PINT ~ \j\fd. Propagation of wave energy out of this interaction region
introduces an effective damping rate of approximately t^/^r/vr? where vgi
is the component of the group velocity of the ith wave along the gradient.
Inserting these damping rates into Eq. (7.27) then gives the Rosenbluth
criterion for exp(2?r) amplification in a plasma with linear variation hi K:

T-T^- r £ 1 . (7-29)

where 1 and 2 refer to the growing waves.
As an example, we consider Raman backscatter at n <C ncr/4. Since

the wave number of the electron plasma wave depends more sensitively on
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density than do the wave numbers of the transverse waves, «/ ~ — dk/dx
and |v0p«/| ~ duipe/dx. Neglecting temperature gradients and assuming
a locally linear variation in density with a scale length L = n/(dn/dx),
dupe/dx ~ upe/2L. Noting that vg2 ~ c and substituting into Eq. (7.29),
we obtain the threshold condition:

(T)
2

>c / fco L

In general, a more detailed treatment of the instability generation in
inhomogeneous plasma is required. As the region of ncr/4 is approached,
the group velocity of the scattered light wave decreases towards zero, and
the WKB approximation fails. There the threshold becomes lower by a
factor of ~ (fco L)ll*, which is roughly the maximum factor by which the
group velocity of a light wave decreases hi an inhomogeneous plasma.
The threshold for Raman sidescatter is also lower than that given in
Eq. (7.30) by a similar factor, since the sidescattered light wave is more
weakly affected by the gradient in density. The threshold intensity is also
substantially reduced at density maxima (where «; = 0). In all these
cases the instability can become absolute. The unstable waves do not
then limit by convection but grow hi time until nonlinear effects onset.
An extensive discussion of the thresholds due to plasma inhomogeneity
and the convective or absolute nature of the instability is given hi the
literature [6-11].

7.4 THE 2u;pe INSTABILITY
Finally, let us briefly consider a related instability in which the laser
light decays into two electron plasma waves [12-17]. The frequency and
wavenumber matching conditions for this so-called 2u;pe instability are

-0 = »* +

kb = ki + k2 , v '

where u>o (ko) is the laser light frequency (wave number) and ueki (ki)
and (jjeia (k2) are the frequencies (wave numbers) of the electron plasma
waves. Since ueki and u>efc2 are approximately u>pe, this instability clearly
takes place at a density ra ~ ncr/4. The 2a;pe instability is a preheat
concern, since electron plasma waves are generated.
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To derive this instability, we can simply treat the ions as a fixed,
neutralizing background and describe the electrons as a warm fluid. If we
again express ue — UL+VOS where vos = eAo/mc and linearize Eqs. (7.12)
and (7.14), we obtain

(J V~L
- + n0V • UL + Vos • Vfie = 0 (7.32)

= V0 - Vfie - V(vos • UL ) , (7.33)
m no

where u^, he and </> are treated as infinitesimal quantities. We next take
a time derivative of Eq. (7.32), a divergence of Eq. (7.33), use Poisson's
equation, and combine to eliminate the term 9(V • \LL)/dt. This gives

+04. - 3"e2V2 K + -n0V2(vos-uL) = 0 . (7.34)

Representhig t;os = vos[exp(ikQ • x — i^t) + exp(— zko • x + iuQt)]/2
and Foiurier-analyzing Eq. (7.34) gives

— k - vos ^e(fc - feo5^ ~^o) + ne(fc + fco5^ + ^o) (7.35)

= 0 .

An equation for ne(k — fco, u;— ̂ o) can be dkectly obtained from Eq. (7.35)
by simply replacing fc,o; with fe — feo,o; — a;o. If we choose u; ~ a;pe and
neglect as off-resonant any responses at a; + CJQ or a; — 2a;o, we easily
obtain coupled equations for ne(fc,o;) and he(k — fco? ̂  —

(-a;2 +a;2
fc)ne(fc,a;)

+ ̂  • [w k ne(fc - fcd,a; - a;0) (7.36)

+ n0fc2UL(fc - fco,^> — wo) I = 0

ne(fc - fc0, w - «jo) (7-37)

- 0.
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Here we have noted that ko-vos = 0. These equations describe the coupling
of electron plasma waves with wave numbers k and fc — fco by the laser
light.

The Fourier-analyzed continuity equation is next used to approximate
UL in the coupling terms as

- n \ k e , / 7 Q Q xuL(k,u) ~ -r^ u — - - - , (7.38)
K* no

where we are neglecting the additional term involving vos which would
simply give a correction of order v%s. We then substitute Eq. (7.37) into
Eq. (7.36) to obtain the dispersion relation

The coupling term has been simplified by approximating uj c± o;pe and
(jJ — UQ ~ — CJpe.

The growth rate is readily found by substituting u = u>ek + ij and
invokhig frequency matching. Then

7 ~
(k-kp)2 - fc2

fc|k-ko| (7.40)

For fc ̂ > fco, the growth rate maximizes at 7 ~ fco^os/4 for plasma waves
propagating at 45° to both ko and vos.

Either dissipation or plasma inhomogeneity introduce a threshold in-
tensity for the instability. The collisional threshold is simply given by the
condition that 7 = i/e/2, where ve is the energy damping rate due to
either electron-ion collisions or Landau damping. The threshold due to
inhomogeneity is

12

where L is the density scale length at nCT/4. The inhomogeneous threshold
for the 2u;pe instability is lower than that for the Raman instability at
ncr/4 unless the plasma is quite hot.
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CHAPTER 8
Stimulated

Brillouin
Scattering

In this chapter we will consider the Brillouin instability, which involves the
coupling of a large amplitude light wave into a scattered light wave plus
an ion acoustic wave. The physics of this instability is analogous to that
of the Raman instability, except that now the density fluctuation which
provides the coupling to the scattered light wave is the density fluctuation
associated with a low frequency ion acoustic wave. Our analysis will be
sufficiently general to show another instability, which is also associated
with the variations of plasma density induced by variations of light wave
pressure. This latter instability is called the filamentation instability, since
it can lead to the break-up of a light wave into filaments.

The Brillouin instability can be most simply characterized as the res-
onant decay of an incident photon with frequency UQ and wavenumber
ko into a scattered photon with frequency u>3 and wavenumber ks plus
an ion acoustic phonon. The frequency and wave number matching con-
ditions then are

UQ = U3 + (jJ

ko = ks + k ,

87
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where now uj and k are the frequency and wave number of the ion acoustic
wave. Since the frequency of an ion acoustic wave is much less than CJQ, it
is clear that this instability can occur throughout the underdense plasma.
Furthermore, nearly all the energy can be transferred to the scattered
light wave. Hence this instability is a significant concern for laser fusion
applications, since the process can either degrade the absorption or change
its location.

8.1 INSTABILITY ANALYSIS
To obtain the coupled equations [1,2] describing the Brillouin instability,
we again consider the response of an initially uniform plasma driven by
a large amplitude light wave. We have already derived in the previous
chapter an equation for the generation of a scattered light wave with
vector potential A by the coupling of a large amplitude light wave with
vector potential AL with an electron density fluctuation ne:

(8.1)

where u;pe is the electron plasma frequency. Only the fluctuation in elec-
tron density appears in Eq. (8.1), since the ion resonse to the high fre-
quency field of the light wave is less than the electron response by Zm/M,
where Z is the charge state, m the electron mass, and M the ion mass.

For the Brillouin instability, the density fluctuation ne is the low fre-
quency fluctuation associated with an ion acoustic wave. To derive an
equation for this low frequency fluctuation, the ion motion must also be
included. We again describe the electrons as a warm fluid and separate
the fluid velocity ue into longitudinal (UL) and transverse components
(eA/rac). Then, as shown in Eq. (7.14),

dt m 2 V mc

where </> is the electrostatic potential, pe the electron pressure, and ne the
electron density. Since we are now considering a low frequency fluctuation,
we neglect the electron inertia (dui/dt —» 0) and use the isothermal
equation of state (pe = n€0e, where 9e is the electron temperature). We
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then linearize Eq. (8.2) by letting ne = n0 + ne, A = AL + A and <j> = (j>,
which gives

-V~4> = -^V(AL-A) + ^Vne , (8.3)
m m*cz \ / n o

where ve is the electron thermal velocity. The electrical potential transmits
the ponderomotive force to the ions.

To treat the ion response, we describe the ions as a charged fluid with
density n{ and velocity u^. The continuity and force equations are

= 0

where we have neglected the ion pressure for simplicity. We next linearize
these equations by taking Hi = noi + n^ u^ = Ui and </> = </>. Then

u^O (8.5)

Taking a time derivative of Eq. (8.5), a divergence of Eq. (8.6) and com-
bining to eliminate the term dV • Ui/dt gives

(8.7)

If we substitute for (f> using Eq. (8.3), note that Znoi = no and approx-
imate Zfii ~ ne, we finally obtain an equation for the low frequency
density fluctuation:

IF -**«•- IS? ̂ -A)- <8'8'

Here cs — (Z6e/M)1/2 is the ion acoustic velocity. Equation (8.8) describes
the excitation of an ion acoustic wave by the interaction between the
incident and scattered light waves.
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8.2 DISPERSION RELATION
To derive the dispersion relation from the coupled equations for A and
ne, we take AL = A£ cos(ko • x — wrf) and Fourier-analyze Eqs. (8.1) and
(8.8) to obtain

47TC A. /" r
) = -- —

TTl

. /" r ~\
— ne(fc-fco,^-^o)+ne(fe-ffco,a;+a;o) (8.9)
<L L J

(u;2-fc2c2)ne(fc,u;) = (8.10)

mMc2 ~2~
where D(fc, a;) = a;2 - fcV - u;2e. We next use Eq. (8.9) to eliminate
A(fe — fc0, ̂  — ̂ o) and A(fc + fco> k> + <^o) from Eq. (8.10). If we choose u;
to be low frequency (u; <C u>o) and neglect as^nonresonant the terms with
ne(k ± 2feo? ̂  ± 2o;o), we obtain the dispersion relation:

1 1

Here vos = cAi/mc, and cc;pi is the ion plasma frequency which is given
by cjpj = (^pe^/Zrn/M.

Instability growth rates are readily found from Eq. (8.11). For Bril-
louin back or sideward scatter, fe is of order fco and so only the down-
shifted light wave need be retained. Then

(a;2 - fe2c2) (a;2 - 2uuQ + 2ko • kc2 - fc2c2) = ^ . (8.12)

As an example, we consider backscatter which has the largest growth
rate. If we consider first the weak field limit, in which a; = kcs + ry, where
7 < fec5, Eq. (8.12) becomes

\ fc2v2

2 1 k cs 7 (-2za;o7 - ^^cs + 2kk0c2 - fc2c2 J = —<*£ - (8.13)

Maximum growth clearly occurs for k such that the scattered light wave
is also a resonant mode. Then

i (8.14)
C C

1 &o ôs ̂ pi
7 =
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In the strong field limit, |u;| > kcs, and Eq. (8.11) then becomes a
cubic equation for a;. Again choosing k as given by Eq. (8.14) for maximum
growth, we now obtain

Note that in this strong field limit, the frequency of the electrostatic
wave is determined by the amplitude of the light wave. In this limit,
the electrostatic wave is sometimes called a quasi-mode, since it is not a
normal mode of an undriven plasma.

The wave number k corresponding to sidescatter is less than that for
backscatter, since the ion wave has to take up less momentum. For exam-
ple, for 90° sidescatter, k = \/2 fco- As is then apparent from Eq. (8.11),
the growth rate is also less for sidescatter. We again note that sidescatter
occurs preferentially into light waves propagating out of the plane defined
by the electric and propagation vectors of the large amplitude light wave.
In this case, the electric vectors of the light waves can be aligned, maxi-
mizing the ponderomotive force. This is the case we have focused on with
our simplifying assumption that A • Vne = 0.

There is also a kinetic version of the Brillouin instability, which rep-
resents stimulated scattering from the ions. In this instability, the two
electromagnetic waves beat together to produce an electrostatic fluctua-
tion which resonates with the bulk of the ions i.e., u>o — u>5 ~ kvi, where
Vi is the ion thermal velocity. Since the electrostatic disturbance is not a
normal mode of the plasma, the growth rate is much less than that for
the Brillouin instability unless the ion waves are heavily damped. This in-
stability can be included hi the dispersion relation by replacing our fluid
description of the ions with a kinetic treatment.

8.3 INSTABILITY THRESHOLDS
Damping of the unstable waves introduces a threshold intensity for in-
stability generation. As we have discussed in the previous chapter, net
growth of the unstable pair of waves requires that

where 7 is the growth rate hi the absence of damping, 7^ is the amplitude
damping rate of the scattered light wave, and 7^ is the amplitude damping
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rate of the ion acoustic wave. As an example, let us consider backscat-
ter and assume collisional damping of the light wave (7^ ~ i/e;u;£e/2u;0,
where vei is the electron-ion collision frequency defined in Chapter 5).
Substituting Eq. (8.15) into Eq. (8.17) then gives

> 4ve

The damping of the ion wave is usually determined by Landau damp-
ing, which will be discussed in a later chapter. We need only note here
that 7; < fcoCs> and so the threshold due to damping is usually quite low
i.e., (vos/Ve)2 < 1.

In practice, the threshold intensity is usually determined by gradients
in the plasma density and expansion velocity rather than by damping. As
indicated in the previous chapter, instability growth hi an inhomogeneous
plasma is a very rich topic. To illustrate the effects of inhomogeneity, let's
again simply consider the Rosenbluth criterion for exp(2?r) connective
growth hi a plasma with a linear variation in the wavenumber matching:

72 1 • (8.19)
\dVglVtf\

Here K' is the gradient of the wave number mismatch and vg\ and vg2 are
the components of the group velocities of the unstable waves along this
gradient. As an example, we consider Brillouin backscatter hi a plasma
with a density gradient with scale length L = n/(dn/dx). Then K' =
9(kQ -k3- k)/dx ~ 2(dkQ/dx) ~ J^Ju§cL, for u;pe < o;0. Substituting
into Eq (8.19) gives

(V\2 ^ J_ . (8.20)
\ve J k^L

A gradient hi expansion velocity can be even more effective in lim-
iting the region over which the coupling is resonant. In an expanding
plasma, u; = k(cs + vexp). Then K' = -dk/dx ~ kc3L~l/(cs + ve3q>), where
Lv = c3/(dvexp/dx) is the velocity gradient scale length. Substituting K!
into Eq. (8.19), we then obtain the result shown in Eq. (8.20) with the
replacement of L by Lvu*e/2ujQ.

The threshold intensity due to inhomogeneity is lower for sidescatter,
since a sidescattered light wave spends a longer time in the region of
interaction. If we refer to the discussion hi Chapter 3, the group velocity
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along the density gradient of a light wave propagating principally in the
direction orthogonal to the gradient is ~ c/(koL)1/3. As is apparent from
Eq. (8.19), the threshold intensity is then reduced by a factor of order
(fcoL)1/3.

8.4 THE FILAMENTATION INSTABILITY
The dispersion relation shown in Eq. (8.11) also describes the filamenta-
tion instability [3-6], which corresponds to the growth of zero-frequency
density perturbations (and the corresponding modulations in intensity)
in the plane orthogonal to the propagation vector of the light wave. If we
assume that u; = 27 <C UQ and k-ko = 0, we find that £)(o;±u;o, k±ko) ~
±2«o;o7 — fc2c2. Substituting into Eq. (8.11), we obtain

/ 2

(72 + fc2c*) 72
'8 u>5

For illustration, let us here derive the maximum growth rate in the limit
7 <C kcs. The wave number for maximum growth is found by differen-
tiating Eq. (8.21) with respect to k and requiring that d^/dk = 0. The
growth rate is then evaluated for this value of fe. In the limit 7 <C kc3 and
neglecting the ion temperature, we obtain

l/^os\2 ^pe
7 — ~ ( — ) ~^S\ve / u;0
, _ WpeVoe
rv - ~~ .

2c ve

We note that the density fluctuations are purely growing. They simply
correspond to the variations in plasma density driven via the ponderomo-
tive force by intensity modulations hi the light beam. Whole beam self-
focusing results from the same physical process and can be considered a
special case of the filamentation process. Since resonance with an ion wave
is not involved, the filamentation instability is not extremely sensitive to
plasma inhomogeneity. The instability is often characterized by its spatial
gain coefficient K, which is the growth rate divided by the group velocity
of the light wave. For 7 < fcc5, K ~ (l/S)(vos/ve)2 (u;2

e/c^)(a;o/c).
Filamentation and self-focusing can also be driven by either thermal

forces [7-10] or relativistic effects [11]. In the first case, a localized increase
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in the intensity of a light wave raises the plasma temperature via the en-
hanced heating. Refraction of the light wave into the resulting density
depression enhances the perturbation in intensity, completing the feed-
back loop. These thermal effects can be particularly important in dense,
cold plasmas where collisional absorption is efficient. The relativistic ef-
fect can be significant for a very intense light wave. Since w^G = 47rne2/m,
the relativistic increase in the mass of an electron oscillating in the light
wave has the same effect as a decrease in the plasma density. The light
wave is focused, enhancing its intensity.
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CHAPTER 9
Heating by

Plasma Waves

The Wave-Particle Interaction

We have examined a number of different processes whereby intense laser
light couples either into electrostatic waves (resonance absorption and the
oscillating-two-stream, ion acoustic decay and 2upe instabilities) or into
both electrostatic and scattered light waves (the Raman and Brillouin in-
stabilities). In order to understand the evolution and the consequences
of these processes, it is necessary to consider how electrostatic waves
are damped by the plasma particles. Since electrostatic waves are sim-
ply charge density fluctuations and then: associated electric fields, these
waves do not readily escape from the plasma. Their energy is ultimately
transferred to the particles via either linear or nonlinear damping mech-
anisms. We will first discuss the damping of a small amplitude electron
plasma wave, which is already sufficient to illustrate important features of
the heating via plasma waves. We will then briefly consider the damping
of a large amplitude electron plasma wave. Finally we conclude with a
discussion of electron heating by parametric instabilities near the critical
density, including a brief discussion of plasma wave collapse.
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9.1 COLLISIONAL DAMPING
Electron-ion collisions provide the simplest mechanism for the damping
of an electron plasma wave. Our discussion of this collisional damping
is quite analogous to that previously given for an electromagnetic wave.
The coherent motion of oscillation of electrons in the electric field of the
wave is converted to random (or thermal) motion at the rate at which
electron-ion collisions occur. To balance the energy dissipated, the energy
of the wave then damps at the rate v i.e.,

n m t£
STT (9.1)

where vw — eE/mu, E is the amplitude and u; is the frequency of the
electric field, n is the plasma density, and vei is the electron-ion collision
frequency. Hence i/ = u^i/ei/^2, where u;pe is the electron plasma fre-
quency. The value of i/e{ is the same as that derived in Chapter 5 for the
collisional damping of a light wave. For an electron plasma wave, u ~ ct>pe
and so i/ ~ i/^.

As discussed hi previous chapters, collisional damping can determine
the threshold intensity for instabilities, an effect which can be quite sig-
nificant for dense, low temperature, high Z plasmas. However, the colli-
sional thresholds are often greatly exceeded, particularly in laser-fusion
applications with very intense and/or long wavelength laser light. Other
mechanisms for the wave damping must then be considered.

9.2 LANDAU DAMPING
An electrostatic wave can be damped even in the absence of collisions.
This so-called collisionless or Landau damping can be qualitatively un-
derstood rather simply. Consider an electrostatic wave with electric field
E sin(fc# — u;t). Most particles are non-resonant i.e., have a velocity v
much different than u;/fc, the phase velocity of the wave. These particles
simply oscillate in the field and experience no secular gain or loss hi en-
ergy. In contrast, resonant particles with v c± u;/fc experience a nearly
constant field and so can be efficiently accelerated or decelerated. These
particles do exchange energy with the wave.

A very straight forward and physical treatment of Landau damping
can be given [1]. We will first calculate the changes in the energy of par-
ticles moving in a given field. Then we will average these energy changes
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over a distribution of particles. Finally we will invoke energy balance to
determine the rate at which the field damps or grows due to its interaction
with the particles.

Since we consider an electrostatic wave and neglect any magnetic
fields, a one dimensional treatment is sufficient. The particle dynamics
are determined by

x = —E sin(fcx - utf) , (9.2)
ra

where q and ra are the charge and mass and E is the amplitude of the
electric field. We compute the dynamics by expanding about the free-
streaming motion of a particle with initial position XQ and initial velocity
VQ. In particular, we assume that

x = x0 + v0t + xi + x2 (9.3)
v = VQ + vi + vt . (9.4)

The subscript 1 denotes a first-order correction which is proportional to E]
the subscript 2 denotes a second-order correction proportional to E2. As
will become apparent, our expansion parameter is fc£x, where 6x is the
change between the free-streaming position of a particle and its actual
position.

To compute the energy changes to order E2, we must simply compute
the motion to second order. If we substitute Eqs. (9.3) and (9.4) into
Eq. (9.2) and expand, we obtain

qE
vi = — sin(fcx0 - fit) (9.5)

qE
V2 = — kxi cos(fexn — fit) , (9.6)ra ' v y

where fl = u> — kv$. Several trivial integrations of Eq. (9.5) give

vi = —— cos(fcxo — fit) — cos fcxo (9.7)m\l l J v '

xi = —- I sin(fex0 - fit) — sin fex0 + fit cos fcx01 . (9.8)

Substitution of Eq. (9.8) into Eq. (9.6) gives

:os(fcx0 - fit) sin(fex0 - fit) — sin fex0 + fit cos fex0 j . (9.9)
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We next compute the rate of change of the energy (S£ ) of a set of
particles with random initial positions. First, note that (6£i) = (mv^vi) =
0, where { ) denotes the average over initial positions. To second order,
we obtain (6£2) = mvofa) + m(vivi). Substituting from Eqs. (9.7) and
(9.9) gives

\ 1

) J •

Considerable simplification results if we now take the long-time limit
and express the results in terms of a delta function. A useful representation
of a delta function is

Hence Eq. (9.10) can be expressed as

(9.12)

Since 6(0; — kvv) = Ife]"1 S(VQ — o;/fe), we then obtain

> - £ £ [-*»-£>]• <9-13>
Lastly, we average the rate of the energy change over a distribution

of initial velocities, /(VQ). Then

£2) = / dvQ /(VQ) (6£z) , (9-1^)

where the bar denotes the average over velocities. Substituting Eq. (9.13)
into Eq. (9.14) and integrating gives the rate at which the particles gain
or lose energy:

Equation (9.15) illustrates some very important features of the wave-
particle interaction in the collisionless limit. The energy exchange is de-
termined by the resonant particles (those with VQ c± u;/fc) and depends on
the slope of the velocity distribution at the phase velocity of the wave.
In particular, particles with velocity slightly less than u/k gain energy;
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particles with velocity slightly greater than w/k lose energy. If the veloc-
ity distribution decreases with velocity, the particles gain energy from the
wave. If the slope of the distribution function is inverted, the particles
lose energy to the wave.

By energy conservation, the rate of change hi the energy of the parti-
cles must be balanced by a growth or damping of the wave. Specializing
to an electron plasma wave, we have

27^ + <«5) = 0, (9.16)
07T

where 7 is the rate at which the electric field grows or damps. Substituting
from Eq. (9.15) gives

i- \ £ ins) - <*»>
where / = nf and u;pe is the electron plasma frequency with density n.
Note that 7 depends on the slope of the distribution function evaluated
at the phase velocity of the wave. This Landau damping (or growth) rate
can also be readily derived directly from the Vlasov equation.

If we consider as an example a Maxwellian distribution with thermal
velocity t;e,

2 --I/I
Note that the Landau damping of an electron plasma wave is a strong
function of its phase velocity. The damping becomes sizeable whenever
(jj/k <; 3ve i.e., when feAoe £ 0.4 where Ar^ is the electron Debye length

Let us conclude our discussion of linear Landau damping with a sim-
ple mechanical analogy. Consider a group of boxes translating along at a
velocity equal to u;/fe. Inside the boxes are uniformly-distributed parti-
cles, some moving slightly slower than u;/fc, some moving slightly faster.
As illustrated in Fig. 9.1, those particles moving slower than u;/fe are over-
taken by the wall to their left and gain energy as they are bounced off.
Likewise, those particles moving faster than u;/fc overtake the right wall
and lose energy as they are reflected. For a time less than the transit time
of a particle through the box, the net energy change simply depends on
whether more particles are initially moving faster or slower than u/k.
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co/k

Figure 9.1 A mechanical analogue for Landau damping.

9.3 LINEAR THEORY LIMITATIONS — TRAPPING
Let us now note some important restrictions on the linear theory of the
wave-particle interaction. Our expansion about the free-streaming orbit
requires that k6x <C 1, a condition that fails after a finite time which
depends on the wave amplitude. This limitation on the linear theory can
easily be seen by examining (k2x2). Using Eq. (9.8), we obtain

The condition (k2x\) <C 1 is most stringent for a resonant particle (ft = 0):
(k2e2E2/Sm2)t4 < 1. Defining a frequency u^> = (eEk/m)1/2, we then
have u^t < 81/4.

Physically, u^ is a characteristic frequency with which trapped elec-
trons oscillate in the potential troughs of the wave. Consider the motion
of a resonant electron in the field E sin(fex - u>t) . If we use the transforma-
tion £ = x — (w/k)t to change to a frame moving with the phase velocity,
Eq. (9.2) becomes

£ = --Esmk£. (9.19)
m

For electrons near the bottom of the potential troughs (i.e., well trapped
electrons), sinfc£ ~ k£. Hence,

(9.20)
ra

describing harmonic motion with a bounce frequency o^> = (eEk/m)1/2.
The linear theory only describes the early phase of this motion i.e., for
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1. Alternatively, the linear theory requires that 7 ^> o^ i.e., that
the wave damp before electrons can oscillate in the troughs.

In the opposite limit (7 <C ^), we encounter trapping of electrons
in the potential troughs of the electrostatic wave. Since the motion of
the resonant particles (both trapped and untrapped) becomes periodic,
we then expect the amplitude of the wave to oscillate, as it first gives
and then recovers energy from the particles. In other words, first there
are more electrons moving slightly slower than the phase velocity of the
wave. The wave damps as the slower electrons gain energy. This leads to a
situation in which there are now more electrons moving slightly faster than
u;/fe, and the wave regains energy from the particles. Such an oscillation in
the energy exchange is also present in the mechanical analogy discussed in
the previous section. Electrons bouncing off one wall and gaining energy
clearly lose this energy after they transit the box and bounce off the other
wall.

Of course, electrons in a sinusoidal potential trough actually have
bounce frequencies which depend on their initial positions. Hence the pe-
riodic interchange of energy between the wave and the particles gradually
phase mixes away, as the slope of the distribution function flattens in
the neighborhood of the phase velocity [2]. It should also be noted that
the trapped electrons can also generate the so-called sideband instability,
which leads to an exponentiation of nearby waves [3].

9.4 WAVEBREAKING OF ELECTRON
PLASMA WAVES

Let us now discuss a useful picture which illustrates some important qual-
itative features of the nonlinear wave-particle interaction. As linear theory
has shown, a small amplitude wave is damped only by those particles with
a velocity quite near its phase velocity. However, in a large amplitude elec-
tron plasma wave, the oscillation velocity of an electron in the field can
be large enough to bring even an initially cold, main body particle into
resonance with the field. That is, when (eE/mu) ~ w/fc, numerous
particles can "resonantly interact" with the wave. A strong, nonlinear
damping results as electrons are efficiently accelerated by the wave. The
wave amplitude is often referred to as the amplitude at which breaking
occurs in a cold plasma [4].

At the wave breaking amplitude, large numbers of formerly nonreso-
nant particles become strongly "trapped." The wave energy is suddenly
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damped as these slow particles are accelerated by falling into the potential
troughs of the wave. At this wavebreaking, u^> = (eEk/m)1/2 = u. Since
a?^" is the characteristic time for resonant particles to move hi the field
and hence take energy from it, the energy exchange to the particles takes
place very rapidly.

The amplitude of the field at which particles are nonlinearly brought
into resonance with a wave (i.e., are strongly trapped) is significantly
reduced [5] hi a warm plasma for several reasons. Faster electrons are more
easily brought into resonance, and the sizeable pressure force associated
with the density fluctuation of the wave gives an additional acceleration.

We can crudely model the effect of plasma temperature on wavebreak-
ing by considering a water bag model, which corresponds to replacing a
Maxwellian distribution with a velocity distribution which is constant be-
tween ±v/3ve. Such an idealized distribution is convenient since it has
the same pressure as does a Maxwellian distribution with thermal ve-
locity ve, yet there is a well-defined maximum initial velocity of \/3ve.
Although there are particles with an arbitrarily high velocity present in
a Maxwellian distribution, the number of particles is not sizeable until
v £ 2ve. Hence the water bag distribution can be expected to roughly
model the condition that significant numbers of particles are nonlinearly
brought into resonance.

In this model which assumes fixed ions, the average density (n) and
velocity (u) satisfy the same equations as those for a warm electron fluid,
as is apparent from taking moments of the Vlasov equation. Hence the
continuity and force equations are

UTl U

du du e 1 dp
dt dx m mndx

Since we are considering a high frequency electron plasma wave, the
pressure p is determined by the adiabatic equation of state. Introduc-
ing E = —d<f>/dx and transforming to the wave frame with velocity — vp

gives

nu = riQVp (9.23)

L = v* + 3v2
e. (9.24)

m ~ n2 p



9.4 Wavebreaking of Electron Plasma Waves 103

Here ve is the electron thermal velocity and no is the density of the uni-
form, unperturbed plasma. Substituting Eq. (9.23) into Eq. (9.24), we
obtain

« £ * _ ! > _ ! _ „ + „!£, (9.25)
m Vp v£ u*

where ft = Sv^/v^. By differentiating Eq. (9.25) with respect to u, it
is easy to see that <f> has an extremum (0cr) when u/vp = ft1/4. The
corresponding potential is

mv* = (l - v^) . (9-26)

This simply corresponds to the condition that the net energy of the fastest
electron be zero in the wave frame.

To determine the critical value of the electric field, we consider Pois-
son's equation: d*<t>/dx2 = 4tre (n — no). Multiplying by d<j>/dx and
using Eqs. (9.23) and (9.24) gives (m the wave frame)

-2 3

^- + 4?r I n0 e</> - nmu2 - n0m \?e ̂  1 = (9.27)
2 L n0 J

The constant has been evaluated by noting that <j) = 0 when </> = </>CT. The
maximum electric field (Em3X = — </»max) obtains when </> = 0:

(9.28)

The maximum field amplitude is plotted hi Fig. 9.2 as a function of
\/3 ve/vp. For ve = 0, the cold plasma result is recovered. Note the size-
able decrease of the maximum field as the plasma temperature increases.
For example, for vp = 5ve, (eEmaLX/mupevp) c± 0.3.
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Figure 9.2 The wavebreaking amplitude as a function of thermal velocity.

9.5 ELECTRON HEATING BY THE
OSCILLATING-TWO-STREAM AND
ION ACOUSTIC DECAY INSTABILITIES

We will continue our consideration of electron heating via plasma waves
with a discussion of some particle simulations of a simple but instructive
model problem. A plasma with a uniform density is driven by an imposed
spatially-independent pump field (Eosinuot) with a frequency (u;o) near
the electron plasma frequency. Such a pump field models the electric field
of a light wave near its critical density under the assumption that the wave
number of the light wave is negligible compared with the wave numbers
of the plasma waves which are excited. Since the unstable plasma waves
preferentially grow along the electric vector of the pump field, a great
deal can be learned by using a one-dimensional electrostatic particle code
[6-8].
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Figure 9.3 Computed evolution of (a) the electron plasma wave energy and
(b) the total energy of a plasma driven by an electric field oscillating near the
electron plasma frequency (from Kruer et a/., 1970).
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A few sample results from a simulation illustrate important features
of the collective heating[7]. In this example UQ = 1.04u;pe, eEQ/mu>pe =
0.5ve, and the ion-electron mass ratio is 100 which is sufficient to clearly
separate the electron and ion time scales. Fig. 9.3(a) shows the evolution
of the energy in plasma waves, and Fig. 9.3(b) shows the evolution of
the total energy of the simulated plasma. At first there is essentially no
plasma heating, reflecting the fact that the plasma is nearly collisionless.
Meanwhile the plasma waves are exponentiating in amplitude. Finally
these waves saturate, concomitant with the onset of a rapid plasma heat-
ing due to the acceleration of plasma particles by the large amplitude
plasma waves. An effective collision frequency corresponding to the col-
lective heating is very large; i/* w 0.06u;o, where i/* describes the rate at
which the plasma energy increases with time in the nonlinear state.

The computer simulations emphasize another very important feature
of the anomalous heating. Figure 9.4 shows a typical heated electron veloc-
ity distribution calculated with the particle code. The heating has been
principally a production of very high velocity tails on the distribution
function [9]. This generation of very high velocity electrons takes place
since large amplitude electron plasma waves readily accelerate particles
out to their phase velocity.

The physics of the nonlinear saturation can be very rich. There are a
number of different regimes depending on the pump field intensity. When
the plasma is strongly driven (eEo/mupeve ^ 1), the dominant process
is simply strong electron trapping hi the most unstable plasma wave.
Strong trapping occurs when many electrons are nonlinearly brought into
resonance with the wave. A large energy transfer then occurs, as the
electrons are efficiently accelerated by the wave.

We can use the calculations of the wave breaking amplitude to es-
timate the saturation in the simulations, considering an example in the
trapping regime: eEQ/muQVe = 1.0 and UQ = 1.04u;pe. Linear theory ap-
plied to this case predicts that the most unstable plasma wave has a
wave number ~ Q.25upe/ve for the electron-ion mass ratio of 0.01 used in
this simulation. Equation (9.28) then predicts that strong trapping on-
sets when eE/mupeve — 0.8, which compares reasonably well with the
computed value of eE/mu>peve ~ 0.6 at saturation.

A simple estimate of the anomalous heating rate can also be given.
We estimate the energy transfer from the external driver to the electron
plasma oscillations as 27 (£J^)/47r, where 7 is the linear growth rate and

7r is the energy density of the plasma oscillations. The transfer of
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Figure 9.4 A typical heated electron velocity distribution from a particle
simulation of a plasma driven by an electric field oscillating near u>pe.
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energy to the particles is given by our definition of the anomalous heating
rate as i/*E$/87r. When the plasma waves saturate, these energy flows
balance. Hence, we estimate z/* as

, (9.29)

where (E^) is the mean square amplitude of the electric field at satura-
tion. For the example discussed above, Eq. (9.29) predicts i/* ~ 0.04a>pe,
again comparing reasonably with the computed value of i/* = 0.06u;pe.

There are other nonlinear regimes. A particularly important one ob-
tains when the amplitude of the pump field is weaker. Then the excited
plasma waves obtain an amplitude E ~ EQ without trapping. Hence they
in turn act like efficient "pumps" to drive even shorter wavelength plasma
waves, and so on. The net result is a cascade (collapse) of energy from
long wavelength waves to short wavelength ones which Landau damp.
Again the saturated state is characterized by a steady transfer of energy
from the pump field to plasma waves to a heated tail of electrons. This
nonlinear transfer of energy to shorter wavelength waves is also important
in the evolution of beam-driven instabilities [10-12].

A reduced description was shown to reproduce these moderately-
pumped simulations quite well [13]. In this description, the two fluid
equations were used to describe the coupled evolution of the electron
plasma waves and the ion fluctuations. Simultaneously the electron dis-
tribution function (and hence the Landau damping) was evolved by solv-
ing a diffusion equation with the diffusion coefficient made a function of
the electric field amplitudes. And even though the field structures locally
became quite spiky [14], test particle calculations showed that diffusion
was a reasonable approximation for the coarse-grained evolution of the
distribution function [15].

9.6 PLASMA WAVE COLLAPSE
The tendency of intense plasma waves to cascade to higher wave numbers
or to collapse to shorter scale lengths is a very important property of this
turbulence. Weak turbulence theory only includes processes such as the
ion acoustic decay instability and stimulated scattering on the particles,
which down-shift the wave frequency and so transfer energy to longer
wavelength (higher phase velocity) waves [16]. In the absence of sufficient
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collisional damping, wave energy in a driven plasma would indefinitely
accumulate at long wavelengths. However, when £?2/47rn0e ^> fc2A£)e,
nonlinear contributions to the wave dispersion relation begin to exceed
thermal corrections. Here E is the electric field and k a typical wavenum-
ber of the plasma oscillation, 9e is the electron temperature, and ADC is
the electron Debye length. Weak turbulence theory then no longer applies
and wave energy can indeed be coupled into shorter wavelength oscilla-
tions, where Landau damping provides an energy sink. The oscillating
two stream instability discussed in Chapter 6 is an excellent example of
this generation of higher wavenumber plasma waves.

It's very instructive to consider the nonlinear processes hi space rather
than in a Fourier representation. A local region of intense field expels
plasma via the ponderomotive force, forming a density cavity which fur-
ther localizes and intensifies high frequency oscillations. In two or three
dimensions (or hi strongly-driven one-dimensional plasmas), the resulting
cavity plus its self-consistent high frequency oscillation continues to col-
lapse until efficient damping of the high frequency oscillation onsets. This
Landau (or transit-time) damping onsets when the cavity size is of order
10-20ADe.

The basic theory of electron plasma wave collapse was developed by
Zakharov [17]. The analysis is based on a generalization of the coupled
equations for the plasma waves and the ion waves discussed hi Chapter
6. First we explicitly remove the high frequency time dependence at upe
i.e., let

ueh = ^ueh(x,t] e-^^ ,

where ueh is the oscillation velocity of the electron fluid in the high fre-
quency electrostatic field. Equation (6.19) is then readily generalized:

-at 2 u>pe / 2 n

Note that the driving term on the right hand side of this equation simply
represents the coupling of the plasma wave with n^, the low frequency
fluctuation in the electron density. Likewise, Eq. (6.28) becomes

Zm d2 _2

where vs is the ion sound velocity. Equations (9.30) and (9.31) are called
the Zakharov equations. The physics of the coupling is clear from our
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discussion in Chapter 6, where a linearized version of these equations was
used to derive the oscillating two stream and ion acoustic decay instabil-
ities.

If ion inertia is neglected, Eq. (9.31) shows that n^/n = -ulh/4v*.
Substitution for n^ into Eq. (9.30) then gives a nonlinear Schrodinger
equation [18]. However, neglect of ion inertia is an extremely restrictive
assumption which is quickly violated in the collapse process. The rate (7C)
at which the high frequency field localizes is proportional to its intensity,
which in turn is proportional to the depth of the cavity in this limit. In
particular, 7c/u;p ~ u*h/4v* ~ n^/n. Localization of the fields to the
cavity requires that the decrease of the plasma wave frequency due to
the depression in density be compensated by the increase due to thermal
dispersion i.e., fe2Aj)e ~ n^/n. The condition for ignoring ion inertia is
7C <^ kva. If we substitute the above estimates for jc and fe, this condition
becomes n^/n <C Zm/M, where m/M is the electron-ion mass ratio and
Z is the ion charge state.

The Zakharov equations admit of solitary wave solutions in one di-
mension [19-21]. The width of the soliton is related to its amplitude since
the nonlinearity is balanced by thermal dispersion. However, such solitons
are unstable to two-dimensional perturbations [22,23]. Numerical studies
show a collapse to smaller scale lengths, followed by so-called burn-out
due to damping by the particles. After burn-out of the high frequency
field, the unsupported cavity breaks up into ion acoustic waves which
serve as a seed for additional coupling in a driven plasma. A variety of
self-similar solutions have been derived to describe the collapse stage, and
simulations to isolate the collapse have been carried out [24].

Localized regions of intense high frequency fields within cavities have
been observed in a number of experiments in low density laboratory plas-
mas [25-30]. In some of these experiments [30], the three-dimensional col-
lapse of beam-driven plasma waves has been measured. Although much
remains to be understood, the general picture of plasma wave turbulence
as a set of randomly occurring collapsing cavities is clearly a very fruitful
one. Several reviews of the ongoing work on plasma wave collapse and
strong plasma wave turbulence are now available [31-35].
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CHAPTER 10
Density
Profile

Modification

Studies of light-plasma interactions in a plasma with a uniform density
are very valuable for understanding many aspects of the physics and have
some direct applications to heating of low density, magnetically-confined
plasmas. However, laser-produced plasmas are typically rather inhomoge-
neous. The light-plasma interactions take place hi an expanding corona
blowing off from an irradiated target. The plasma inhomogeneity affects
the mix of the interaction processes. In turn, the interactions can signifi-
cantly modify the plasma inhomogenity and temperature.

Steepening of the density profile by intense laser light near its critical
density is an important example of the interplay between the plasma and
the light. As normally incident light reflects at the critical density, twice
its pressure is transmitted to the plasma via the ponderomotive force.
The plasma expansion is perturbed, leading to a local steepening of the
density profile. The profile modification can be enhanced for obliquely-
incident, p-polarized light by the ponderomotive force of the resonantly-
generated electrostatic waves. As we will see, the profile modification can
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be substantial and can play an important role in determining both the
mix and the scaling of interaction processes near the critical density.

To gain insight into the profile modification, we will first consider a
freely expanding plasma and then develop a simple model for profile steep-
ening by normally incident light reflecting at its critical density. Lastly we
will briefly examine some simulations of resonance absorption including
density profile modification.

10.1 FREELY EXPANDING PLASMA
We begin by deriving a self-similar solution to describe one-dimensional
expansion of a planar, isothermal plasma. We again use the two-fluid
equations to describe the electrons and ions. With the neglect of electron
inertia, the electron momentum equation simply determines the electric
field:

neeE = -Vpe , (10.1)

where ne is the electron density and pe the electron pressure. This electric
field transmits the electron pressure to the ions.

The continuity and force equations for the ion fluid give

W + lTx(nu} = °
du du ZeE VPi

where n and u are the ion density and flow velocity, Z the ion charge
state, M the ion mass and pi the ion pressure. We next substitute from
Eq. (10.1) into Eq. (10.3), neglect the ion pressure relative to the electron
pressure, and take ne ~ Zra, which is an excellent approximation for length
scales much greater than the electron Debye length. With an isothermal
equation of state for the electrons, Eq. (10.3) becomes

du du o 1 &n

where c8 = (ZTe/M)1/2 is the well-known ion sound velocity and Te is
the electron temperature.
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A self-similar solution describing the plasma expansion can be readily
found from Eqs. (10.2) and (10.4) by letting n = f(x/i) and u = g(x/t),
where / and g are functions to be determined. These equations then give

/ '(</- f ) + f9' = 0 (10.5)

c]f =0, (10.6)

where the prime denotes the derivative with respect to x/t.
Straightforward manipulations yield g = (x/t) + cs and f ' / f = -cj1.

Hence the self-similar solution is

u = c. + - (10.7)

n = n0 expl -V cst

where no is the density at x = 0. Note that the density gradient length
increases with time i.e., L = n/(dn/dx) = cat. Note also that, in a frame
moving with a point of constant density, u = cs. In other words, the
plasma flows through a point of constant density at the sound speed.

10.2 STEEPENING OF THE DENSITY PROFILE
If this expanding plasma is pushed on at a preferred location (for example,
at n = ncr), the density profile will be locally steepened. The simplest
example of this local steepening is that due to the momentum deposition
of normally incident light reflecting at its critical density. The basic idea
is that twice the pressure of the light wave is taken up by the plasma
near the reflection point, and this local momentum deposition steepens
the density profile near the critical density [1].

It is instructive to develop a simple model of this profile steepening. In
particular, we consider a normally incident light wave reflecting from the
critical surface of an isothermal, freely-expanding, collisionless plasma.
Again adopting a two-fluid description and assuming planar geometry,
we easily obtain equations for the density (n) and flow velocity (u) of the
plasma [2-4]. The analysis parallels that discussed hi the previous section,
with the inclusion of the ponderomotive force exerted by the light wave
on the plasma.
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If we include the ponderomotive force, Eq. (10.1) becomes

, (10.9)

where vw is the velocity of oscillation of an electron in the electric field of
the light wave. Eq. (10.4) now becomes

du du <?Bdn Zm d 2~ -

where c3 is the ion sound velocity, Z the ion charge state, and M the ion
mass.

Anticipating that the profile will be steepened from a density n\ <
ncr to a density HI > ncr, we use Eqs. (10.2) and (10.10) to express
the variation in density and flow velocity in the frame moving with the
steepened surface. In this frame, we have

^(nu) = 0 (10.11)

Zm d

If we normalize the flow velocity to the sound speed and substitute from
Eq. (10.11) into Eq. (10.12), we obtain

where v€ is the electron thermal velocity. Since the density gradient re-
mains finite, it is clear that the sonic point (u = 1) must be at the
maximum of the field of the standing light wave i.e., where dvw/dx = 0.
Integrating Eqs. (10.11) and (10.13), we then readily obtain

(10.14)
n n3 v v

Here ns is the density at the sonic point and vmax is the value of vw at the
maximum of the standing wave. There are two solutions of Eq. (10.14):
^i <na (HI> \) which corresponds to a lower density plateau and n<z >
ns (^2 < 1)) which corresponds to the upper density shelf. A schematic
of the steepened density profile is shown in Fig. 10.1.
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Figure 10.1 A schematic of the ponderomotively-steepened density profile.

To make further progress, we must now relate the density at the sonic
point to the critical density (ncr) by considering the solution for the stand-
ing electromagnetic wave. A crude treatment will allow us to obtain ana-
lytic estimates. We approximate the density profile as locally linear from
ns to ncr with a density scale length of L and express the electric field E
by the well-known Airy function solution discussed in Chapter 3:

E = aAi[(|l)
1/3

(L-x) (10.15)

where a is a constant determined by fitting to the incoming light wave.
This locally linear assumption would be a reasonable approximation when-
ever vos/ve <C 1, where t;os is the oscillation velocity of an electron in the
free space value of the electric field of the light. The assumption fails
when (vos/ve)2 ^> 1, since the jump in density becomes too large. Match-
big the peak of the Airy function solution to the field at the sonic point,
we then obtain v%,(n = nCT) ~ 0.44^^. In addition, we note that the
sonic point and the critical point are separated by Ax ~ (c^L/u;2)1/3.
Equation (10.14) then becomes

^- + = 1 + 0.28

where v ~ 3. and = (ncr - ns)

(10.16)
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The solutions for ni, ns, and n^ are now straightforward. (For ni and
, vw — 0.) For weak fields (v^/Ve <; 0.1) analytic results can be given:

0.8
— - 1 -0.77(^"nCT V ve

n, /v™\°-8

— ~ 1 +0.97( —HI \ ve
nA

- 1.5

(10.17)

-1.2

Note that the jump in the density scales as a fractional power of the in-
tensity. For more intense fields, numerical solutions of the transcendental
equations are required. Results for the steepened scale length as a function
of v08 are shown in Fig. 10.2. In one interesting regime that is typical of
many current applications (0.1 < (v^/Ve] < 1.), (o;L/c) ~ 2(v03/ve)~l.
Numerical solutions for n\ and n^ including the detailed structure of the
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Figure 10.2 Model predictions for the steepened density scale length as a
function of vos/ve. See Estabrook and Kruer, (1983).
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field are given in Ref. [2].
Since a freely expanding, planar plasma flows through a point of con-

stant density at the sound speed, the momentum deposition at the critical
density resonantly perturbs the flow. Hence the profile is steepened over
a significant range of densities even for relatively low intensity light. As
we will see in the next section, such a profile modification can have a
significant effect on the coupling processes near the critical density.

10.3 RESONANCE ABSORPTION WITH
DENSITY PROFILE MODIFICATION

Let us conclude our discussion of density profile modification with a more
complicated example, which illustrates the nonlinear interplay between
resonance absorption of an obliquely incident, p-polarized light wave and
profile modification. In this case, the steepening of the density profile is
generated both by the pressure of the reflecting, obliquely incident light
wave and by the pressure of an intense, resonantly-generated electrostatic
field near the critical density [5-10]. We can see the essential features
of the nonlinear evolution by examining some computer simulations of
resonance absorption.

These simulations [5] are carried out with a two-dimensional code
which solves the complete set of Maxwell's equations and includes rela-
tivistic particle dynamics. Plane light waves are propagated from vacuum
into an inhomogeneous slab of plasma. Variations are followed both along
the propagation vector of the light and along its electric vector, which
allows for resonance absorption and for the generation of parametric in-
stabilities. Reflected light waves are allowed to freely pass out of the sys-
tem. Particle boundary conditions are chosen to model a freely expanding
plasma adjacent to a reservoir of constant temperature plasma. The ini-
tial density varies with x (the direction normal to the slab) from zero to
a supercritical value. A region of vacuum is included adjacent to the low
density boundary to allow for free expansion of the plasma. Particles im-
pinging on the high density boundary are replaced with equal incoming
flux distributed according to vx/m(v), where vx is the component of the
velocity normal to the boundary and fm(v) is the initial Maxwellian ve-
locity distribution. The plasma evolution is followed until a quasi-steady
state has been established.

A typical simulation will again illustrate the principal effects. In this
example, p-polarized light is incident at an angle of 24° onto an initial
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density profile which rises linearly from 0 to 1.7 ncr in a distance of 3Ao
(where AQ is the free space wavelengths). The free space amplitude of the
electric field of the light is eE/muQC = 0.09, which corresponds to an
intensity of I\% ~ 1016 W-/^2/cm2. The initial electron temperature is 4
keV, and the ion-electron mass ratio is 100.

After the light wave penetrates to its turning point, an electrostatic
field is resonantly excited at the critical density. The magnitude of this
field initially grows linearly hi time, becoming more and more localized to
the critical density surface, as expected from the discussion of resonance
absorption hi Chapter 4. Finally the resonantly-driven field becomes suf-
ficiently intense and localized that electrons can be accelerated through it
in one oscillation period, a process called wavebreaking. Physically, wave-
breaking corresponds to the onset of strong electron "trapping" hi the
localized oscillating field. At wavebreaking, electrons which enter the os-
cillating field with the proper phase are efficiently heated, taking energy
from the driven field and saturating its growth.

The feedback of these intense fields (and the concomitant localized
heating) on the plasma density profile is a crucial feature of the long-time
evolution of the coupling. The pronounced profile modification is demon-
strated in Fig. 10.3, which shows three snapshots of the density profile
as it evolves from its initial linear profile to a quasi-steady, very steepened
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Figure 10.3 The ion density profile at three different times from a simulation
of resonance absorption: (a) the initial profile, (b) the profile after the resonantly-
driven field has grown, and (c) the asymptotic profile which shows a characteristic
step-plateau feature. See Estabrook et a/., (1975).
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profile. The ponderomotive force due to the intense, localized electrostatic
field ejects plasma, digging a hole in the plasma density at the critical
surface. The plasma ejected towards the vacuum expands away, leaving
a locally steepened density profile which is supported by the pressure of
both the localized electrostatic wave and the reflecting light wave.

This profile steepening has important consequences for the mix of
absorption processes. In particular, resonance absorption becomes impor-
tant for a wide range of angles of incidence. This effect is demonstrated
hi Fig. 10.4, which is a plot of the fractional absorption of p-polarized
light (after the profile steepening) versus angle of incidence as computed
hi a series of simulations with the same initial plasma conditions as the
sample simulation. Note that the absorption peaks at about 50% for a
sizable angle of incidence (0max — 24°) and is quite large over a broad
range of angles (A0 ~ 0max)- This is qualitatively as expected from our
simple theoretical discussion of resonance absorption. In addition, para-
metric instabilities near the critical density (discussed hi the previous
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Figure 10.4 The fractional laser light absorption after profile steepening ver-
sus angle of incidence as computed in a series of simulations. See Estabrook et
a/., (1975).
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chapter) are strongly limited, since there's a very small region of plasma
in which these instabilities can operate. Note that the absorption is only
about 15% for normally incident light.

Finally, the profile steepening strongly reduces the heated electron
energies due to the resonantly-generated wave. As the wave becomes large
enough to nonlinearly interact with the electrons, a small fraction of the
electrons (those entering the wave with the proper phases) are strongly
heated to an effective temperature of order mv^ where vw is the oscillation
velocity of an electron in the resonantly-driven wave (vw = eE/mu$}. As
is apparent from our discussion of nonlinear wave-particle interactions,
the resonantly-driven field decreases hi amplitude as the profile steepens.
Physically, the wave then has a smaller spatial extent which corresponds
to a lower effective phase velocity. Hence it "traps" electrons at a lower
amplitude and heats them to a lower energy.

As expected, the heating via the localized electron plasma oscilla-
tion produces a population of suprathermal electrons. Figure 10.5 shows

0 TOO 200 300 400 500 keV

Electron energy - keV

Figure 10.5 The heated electron distribution function from a simulation of
resonance absorption.
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the electron distribution computed in the steepened, nonlinear state in a
sample simulation. The distribution is composed of a relatively cold main
body plus a quasi-Maxwellian heated tail.

Self-consistent steepening of the density profile can play an important
role in many other laser plasma processes. For example, the two-plasmon-
decay instability occurs for a narrow range of densities near one-fourth the
critical density. As will be discussed in the next chapter, a local steepen-
ing of the profile can help limit this instability. Calculations of collisional
absorption must also take profile steepening into account. Even neglect-
ing ponderomotive forces, the density profile is modified by temperature
changes driven by the localized heating which occurs on a length scale
comparable to the collisional absorption length. This ablative steepening
depends on the details of the electron transport.
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CHAPTER 11
Nonlinear Features of

Under dense Plasma
Instabilities

In Chapter 10, we discussed some nonlinear phenomena in the neighbor-
hood of the critical density. Let us now examine some nonlinear features
of of the light-driven instabilities which can take place hi a plasma whose
density is significantly below the critical density. In particular, we consider
the Brillouin, Raman, two-plasmon decay, and filamentation instabilities.
These processes can become significant when large regions of underdense
plasma are produced, as is expected for reactor targets in laser fusion. As
we will see, both the absorption and the preheat can be strongly affected.

11.1 NONLINEAR FEATURES OF BRILLOUIN
SCATTERING

Let us first consider Brillouin scattering. This scattering can most simply
be described as the resonant decay of an incident photon into a scattered
photon plus an ion sound wave. Hence

127
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where u>o(^s) is the frequency of the incident (reflected) light wave and
(jJi is the frequency of the ion sound wave. As is apparent from the fre-
quency matching conditions, this process occurs throughout the under-
dense plasma. In addition, since UQ ^> c^, nearly all the energy of an
incident photon undergoing this process is transferred to the scattered
photon. Hence Brillouin scattering can significantly impact the absorp-
tion.

As shown by linear theory, gradients hi either expansion velocity or
density inhibit the onset of Brillouin scattering. Intensity thresholds due
to gradients have been discussed in Chapter 8. These thresholds are very
useful for identifying regimes for which Brillouin scatter is not a concern.
However, these threshold intensities are often far exceeded, particularly
when large regions of underdense plasma are irradiated. The nonlinear
behavior [1-9] of this instability then becomes an important issue.

To illustrate nonlinear aspects of the Brillouin instability, let us con-
sider a very simple model problem: the backscattering of a light wave
propagating through a slab of underdense plasma with a uniform density.
If we postulate that the density fluctuation associated with the ion wave
is nonlinearly saturated at some value 6n, we can readily calculate the
reflectivity [2]. The wave equation which describes the propagation of a
light wave with amplitude E through a plasma with density ne is

5 = 0 , (11.2)

where u;2 = 47rnee2/m. We decompose E into an incident and reflected
part with slowing varying amplitudes Ei(x) and ET(x), respectively, and
let ne = n0 + <$nsin(fc;x - u>it). If we substitute ne into Eq. (11.2) and
assume frequency and wave number matching, we obtain

dEr *l 6n^
dx 4fcoc2

dx 4fcoc2 * Er . (11-4)

Since ^ <C ct>0, we have approximated ki — 2fc0, where fc0 is the wave
number of the incident light wave.

A conservation law is apparent (dE^/dx = dEf/dx), which then gives

El - El = tf?(0)(l-r), (11.5)



11.1 Nonlinear Features of Brillouin Scattering 129

where the reflectivity r = El(0)/'£7?(0). Defining y = Er(x)/Ei(Q) and
substituting from Eq. (11.5) into Eq. (11.3), we obtain

dy "PC tn /.., + 1 _ r _ (U6)

The solution to this standard differential equation is

y = VT^ sinh [ -̂ f - (x - *0)1 , (11.7)
[ 4fc0c2 n0 J

where XQ is a constant of integration which is determined by noting that
at x — 0, y = v/r. We finally obtain the reflectivity by assuming that
y ~ 0 at x = L i.e., Er(L) > JE?i(O). Then

In order to illustrate the magnitude of the reflectivity, let's estimate
the level to which the density fluctuation can be nonlinearly driven. Strong
ion trapping (or wave breaking) is one effect commonly invoked to limit
the ion wave amplitude. The basic idea has already been discussed in
Chapter 9 for electron plasma waves. As the amplitude of the ion wave
increases, its potential becomes large enough to nonlinearly bring ions
into resonance with the waves. Since such ions are efficiently accelerated
by the wave, a strong damping results, which serves to restrict the ion
wave amplitude from further increase. If the ions are cold, the trapping
condition is simply Ze</> = Mvp/2, where </> is the potential, M the ion
mass, and vp the phase velocity of the wave. Neglecting Debye length
corrections, the trapping condition corresponds to SH/HQ ~ e(/)/0e ~ 1/2,
which is a large amplitude.

It is important to realize that even a small ion temperature signifi-
cantly reduces the trapping amplitude. This temperature effect is readily
estimated if one assumes a so-called waterbag velocity distribution for the
ions. In one-dimension, such a distribution is constant with velocity be-
tween ±\/3vi (vi is the ion thermal velocity) and zero elsewhere. Since the
majority of the ions in a Maxwellian distribution have velocities < 2v;,
the waterbag distribution gives a reasonable first approximation for the
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onset of strong trapping. Trapping now occurs when the fastest ion is
nonlinearly brought into resonance with the wave i.e.,

6n

Here 9i(9e) is the ion (electron) temperature, Z is the ion charge, and
the Debye length correction to the phase velocity has been neglected. For
0i/Z0e = 0.2, Eq. (11.9) predicts a fluctuation amplitude of <5n/n0 ~ 0.12.
Clearly the ion temperature serves to significantly reduce the amplitude,
but note that the trapping amplitude is still of order 10%, unless the ions
are quite hot (i.e., 9i/Z0e ~ O(l)). Strong trapping does not, hi general,
limit the fluctuation amplitude to a small value.

Using the ion trapping estimate for 6n, we can now calculate a reflec-
tivity. As an example, consider a 30 AO slab of plasma with a uniform den-
sity of no = 0.33ncr and an ion-electron temperature ratio of0e/Z0i = 0.2.
Here AQ is the free-space wavelength of the light. Substituting from Eq.
(11.9) into Eq. (11.8), we obtain r ~ 94%. Even a modest fluctuation
amplitude can lead to a sizable reflectivity in a large underdense plasma.

Wavebreaking (or strong trapping) arguments only give an estimate of
the amplitude at which a strong damping onsets due to wave-particle in-
teractions. When a significant number of ions are accelerated and sizeable
tails develop on the ion distribution function, a more complex description
of the nonlinear wave particle interaction is needed. To gain insight into
these effects, let's now consider some computer simulations of Brillouin
scattering.

Figure 11.1 shows the temporal evolution of the Brillouin back reflec-
tion and the energy in the ions computed with a one-dimensional code [3]
which treated the ions as particles and the electrons as a fluid. In this ex-
ample, light with an intensity of JA§ = 3 x 1015 W-//2/cm2 is incident onto
a 30Ao slab of plasma with an initially uniform density of no = 0.33nCT,
an electron temperature of 3 keV, and an ion-electron temperature ratio
of 0.2. In the simulation, ions reaching the right plasma boundary were
re-emitted with the initial thermal temperature, modeling transport of
heated ions to a higher density plasma. As shown in Fig. 11.1 (a), the re-
flectivity rapidly proceeds to a large level of about 65%, as the unstable
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Figure 11.1 Evolution of the reflectivity (time-averaged over many cycles)
and the mean ion energy from a computer simulation of Brillouin backscatter.

ion wave grows to a large amplitude and traps ions. However, concomitant
with this large reflectivity is a substantial heating of the ions, as shown in
Fig. ll.l(b). In detail, this heating consists of the formation of a sizable
tail of energetic ions as expected from our discussion of collisionless wave
particle heating hi Chapter 9. This strong self-consistent distortion of the
ion velocity distribution hi turn enhances the damping of the ion wave
and lowers its amplitude. Finally a quasi-steady state is reached in which
the heating of ions by the wave is balanced by their transport out of
the underdense plasma. The reflectivity drops to a more modest value of
about 25%.

This ion heating or energetic tail formation is an intrinsic feature
of the Brillouin scattering. In the scattering process a fraction UI/UQ of
the reflected light energy is deposited into the ion wave and then into
the heated ions when the wave damps. We first estimate an effective
temperature of the heated ions as Mv^/2 which is the energy of an ion
moving with the phase velocity (vs) of the wave. The density n^ of the
ion tail is then estimated by balancing the energy flux into the ion wave
with that carried away by the heated ion tail; i.e.,

u;o
(11.10)
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Here the flux carried by the heated ions has been described in a free-
streaming limit. For the example discussed above, Eq. (11.10) predicts
(™/*Aio) ~ 0.4 in the nonlinear state, which compares well with the sim-
ulation.

The ion heating is a clear manifestation of the damping of the ion
wave in the nonlinear state. If we represent the scattering as a reflection
from a heavily damped wave, the reflectivity can be readily calculated
hi terms of this damping. A heuristic estimate for the damping in the
nonlinear state is Landau damping on the self-consistent ion tail (or on
the heated main body when the heating is very strong). Estimates of the
reflectivity obtained hi this way [2,4] compare favorably with simulation
results, as well as illustrate some of the qualitative trends. For example,
for a given size of underdense plasma, the reflectivity tends to saturate
with intensity. The increase in light intensity is balanced by an increase
hi the self-consistent damping associated with the greater ion heating.

Finally there are other nonlinear mechanisms for limiting the Brillouin
instability. Harmonic generation [4-6], quasi-resonant decay of ion waves
[7], nonlinear frequency shifts [8,9], and profile steepening can play a sig-
nificant role in some regimes. Quantitative calculations [10,11] of Brillouin
scattering also require consideration of the noise sources as well as of the
detailed profile of the density and expansion velocity of the plasma. A
significant complication is that partial reflection of the light wave from
the critical surface can serve as a noise source hi an expanding plasma
[12,13]. The angular distribution of the scattering and the competition
with other underdense plasma processes such as inverse bremsstrahlung
and filament ation are other important issues.

11.2 NONLINEAR FEATURES OF RAMAN
SCATTERING

To complement this brief discussion of Brillouin scattering, let us now
consider some nonlinear aspects [1,14-20] of the Raman instability. The
Raman instability can be most simply characterized as the resonant decay
of an incident photon into a scattered photon plus an electron plasma
wave. The frequency and wave number matching conditions then are

u;pe
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where UQ (u>3) and ko (k5) are the frequency and wave number of the
incident (scattered) light wave, and upe (kp) is the frequency (wave num-
ber) of the electron plasma wave. Since the minimum frequency of a light
wave in a plasma is c^pe, the electron plasma frequency, it is clear that
this process requires that u;o <: 2upe i.e., n <> nCT/4, where n is the plasma
density and nCT is the critical density. In this process, part of the incident
energy is scattered, and part is deposited in the electron plasma wave.
This latter portion of the energy hi turn will heat the plasma as the elec-
tron plasma wave damps. Since the plasma frequency is much greater
than the ion acoustic frequency, the Raman instability is clearly not as
efficient in scattering the incident laser light as is the Brillouin instability.
However, the electron plasma wave which is generated can have a high
phase velocity (of order c) and so can produce very energetic electrons
when it damps. Since such electrons can preheat the fuel in laser fusion
applications, the Raman instability is a particularly significant concern.

As discussed hi Chapter 7, the intensity threshold due to a density
gradient is rather high but can clearly be exceeded hi a large underdense
plasma irradiated with intense light. Again, we will use simulations to
give us some estimates of what to expect in the nonlinear regime. To most
simply explore the nonlinear effects, consider a 1-| dimensional particle
simulation [14] in which laser light with intensity I \% = 2.5 x 1015 W-
/i2/cm2 is propagated through a 127Ao region of plasma with a uniform
density of O.lncr, an electron temperature of 1 keV, and an electron-ion
temperature ratio of three. In this simulation, the back reflection due to
the Raman instability builds up to about 15%, accompanied by strong
tail heating of the electrons by the electron plasma wave associated with
the scatter. (There is also a modest back reflection of ~ 20% due to
the Brillouin instability hi this example.) The resulting heated electron
distribution is shown in Fig. 11.2. Note the heated tail, which is roughly
Maxwelhan in shape with a characteristic temperature OH — 13 keV. Such
energetic tail formation is characteristic of heating via a large amplitude
electron plasma wave. A useful rule of thumb estimate for the heated
temperature found in these strongly-driven simulations is OH ~ rat;2/2,
which is simply the energy of an electron accelerated to the phase velocity
vp of the plasma wave. As can be seen from the frequency and wave
number matching conditions, such a temperature depends on both the
density and background electron temperature and can easily be of order
50-100 keV, even for backscatter.
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Figure 11.2 The heated electron distribution from a computer simulation of
Raman backscatter. See Estabrook et a/., (1980).

This self-consistent electron heating is a significant feature of the non-
linear evolution and can play a role hi restricting the scatter. It is instruc-
tive to estimate the size of the heated tail hi the nonlinear state by bal-
ancing the energy flux deposited hi the electron plasma wave (and hence
into heated electrons when the wave damps) with the energy flux carried
away by the heated tail. Neglecting background thermal effects and using
a free-streaming estimate of the hot electron transport gives

rl fpe (11.12)

where r is the reflectivity and n^ is the tail density. If we consider
backscatter, assume u;pe/u;o ̂  1/2, and use our estimate of OH, we obtain

n n
(11.13)

where n is the plasma density, t;os is the oscillation velocity of the electrons
in the light wave, and c is the velocity of light. Clearly even a modest
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reflectivity is sufficient to drive the instability into a regime hi which a
significant fraction of the electrons are resonant with the plasma wave.

A ball-park estimate of the Raman back reflection hi the sample sim-
ulation can be obtained by estimating the damping of the plasma wave
associated with the hot electron generation. If the damping is crudely
modeled as Landau damping on the heated tail, the reflectivity due to
this damped plasma wave is readily calculated, giving r ~ 10% for the
above example. This back-of-the-envelope model illustrates some impor-
tant features of the nonlinear evolution: the self-consistent generation of
hot electrons and their feedback on the instability.

Ion fluctuations can also play an important role [16-21] hi Raman
scattering. The ion fluctuations are produced either by the Brillouin in-
stability or by collapse of the Raman-generated plasma wave. As discussed
in Chapters 6 and 9, an ion fluctuation efficiently couples plasma waves
provided 6n/n > Acj/cjpe, where 6n is the amplitude of the density fluc-
tuation and Au> is the frequency mismatch between the plasma waves.
This energy transfer from the Raman-driven plasma wave into shorter
wavelength plasma waves both reduces the level of the primary wave
and produces less energetic heated tails. Frequency shifts hi the primary
plasma wave due to the ion waves may also be significant.

Even when the Raman instability is not operative, an incident light
wave can still undergo stimulated scattering on the electrons [22,23].
There also are important multi-dimensional effects, including Raman side-
scattering and filamentation of the incident light wave. Two-dimensional
simulations [24] using a very intense beam of light emphasize the im-
portance of Raman sidescattering and even show filamentation due to
relativistic effects. The latter is accentuated by self-generated magnetic
fields driven by the Weibel instability of the heated electrons.

11.3 NONLINEAR FEATURES OF THE
TWO-PLASMON DECAY AND
FILAMENTATION INSTABILITIES

Let's now consider another instability involving electron plasma waves:
the two-plasmon decay or 2upe instability. As discussed hi Chapter 7, this
instability represents the resonant decay of a light wave into two electron
plasma waves. The frequency matching condition clearly requires that
U;Q ~ 2u;pe i.e., n ~ ncr/4. The feedback mechanism leading to instability
is similar to that already discussed for the Raman instability, except now
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both growing waves are electron plasma waves. The maximum growth
rate in a uniform plasma is the same as that for the Raman instability at
ncr/4, but now a broad spectrum of plasma waves is unstable.

Because the 2o;pe instability is confined to a narrow range of densities
near ncr/4, a local nonlinear steepening of the density profile can play
an especially important role in the nonlinear evolution. A density profile
from an illustrative simulation [25,26] of the 2(x;pe instability is shown hi
Fig. 11.3. In the two-dimensional simulation, laser light with an intensity
of JA0 = 1016 W-/i2/cm2 is incident onto an initially inhomogeneous
plasma slab. The initial electron temperature is 1 keV, and the electron-
ion mass ratio is 0.01. Note the pronounced steepening which takes place
near ncr/4 due to the instability-generated plasma waves.

In the simulation, the instability occurs hi bursts, as the density profile
steepens and relaxes. The averaged absorption hi the steepened profile is
modest (of order 10%). During periods of instability generation, hot elec-
tron tails are formed with an effective temperature of about 100 keV for
this strongly-driven example. Ion fluctuations driven by beating of the
unstable plasma waves are observed to play an important role hi the non-

5 10 15 20 25 30 35

Figure 11.3 A density profile from simulation of the 2u;pe instability. Langdon
et al (1979).
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linear evolution. The importance of ion density fluctuations is also em-
phasized by the nonlinear theory [27-29].

Finally we conclude with a brief discussion of the filamentation insta-
bility, which can have an important effect on the mix of coupling processes.
As discussed hi Chapter 6, this instability represents the development of
filamentary structure in the intensity profile of a light wave. The insta-
bility occurs throughout the underdense plasma and is related to whole-
beam self-focusing. Both filamentation and whole-beam self-focusing can
be driven by ponderomotive, thermal, or even relativistic effects [30]. The
processes can be accentuated by resonantly-enhanced fields [31]. For sim-
plicity, we will here concentrate on ponderomotive filamentation.

To illustrate the rich possibilities introduced by filamentation, con-
sider a two-dimensional simulation [32] in which the temporal evolution
of an intense light wave is followed in a doubly-periodic plasma. The
background plasma density is 0.31nCT, the electron temperature is 4 keV,
and the intensity of the light wave is / Ag ~ 2.3 x 1016 W-^2/cm2. The
electron-ion mass ratio is 0.01, and the ion temperature is large hi order
to suppress the competing effects of the Brillouin instability. A small si-
nusoidal density modulation perpendicular to the direction of the wave
propagation and along the direction of the electric field of the light wave
serves as an initial perturbation for the growth. This density perturbation
and the corresponding modulation in the intensity of the light wave grows
hi time. When the density hi the channel has been depressed to about 0.25
ncr, the laser light decays into intense electrostatic fields, which hi turn
heat the electrons. A contour plot of the electrostatic potential hi the
simulation at this time is shown in Fig. 11.4. Note that the electrostatic
fields are concentrated hi the channel. In other simulations, another type
of decay analogous to stimulated Raman scattering was observed.

The competition of filamentation with other processes is a very rich
topic. In some two-dimensional simulations [33], it has been found that
intense Brillouin sidescattering can suppress filamentation. In other calcu-
lations [34], self-focusing of a light wave was arrested by intense Brillouin
backscattering which onset as the intensity of the light wave increased. In
addition, calculations have shown that filaments can be unstable [35] to
bending along the direction of then* propagation. A general picture of the
role of filaments hi laser plasma interactions has not yet emerged.

In summary, hi this chapter we have illustrated some important ef-
fects produced by intense laser light in a plasma with a density below the
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Figure 11.4 Contour plot of the electrostatic potential in the simulation when
channel density has been depressed to about ncr/4. From Lang don and Lasinski
(1975).

critical density. Our discussion emphasizes that crucial features of the cou-
pling can depend on the size of the underdense plasma in a laser-irradiated
target. The possible consequences of sizable regions of underdense plasma
include significant degradation of the absorption and/or the generation
of very energetic electrons, which can complicate fusion target design.



11.3 References 139

References

1. Forslund, D. W., J. M. Kindel, and E. L. Lindman, Plasma simulation studies
of stimulated scattering processes in laser-irradiated plasmas, Phys. Fluids
18, 1002 (1975).

2. Kruer, W. L., Nonlinear estimates of Brillouin scatter in plasma, Phys.
Fluids 23, 1273 (1980).

3. Kruer, W. L., E. J. Valeo, and K. G. Estabrook, Limitation of Brillouin
scattering in plasmas, Phys. Rev. Lett. 35, 1076 (1975).

4. Kruer, W. L. and K. G. Estabrook, Nonlinear behavior of stimulated scatter
in large underdense plasmas; in Laser Interaction and Related Plasma
Phenomena, Vol. 5, p.783-800 (H. Schwarz, H. Hora, M. Lubin, and B.
Yaakobi, eds.). Plenum Press, New York, 1981.

5. Silin, V. P. and V. T. Tikhonchuk, Nonlinear saturation of SMBS in a rarefied
nonisothermal plasma, JETP Letters 34, 365 (1981).

6.Heikkinen, J. A., S. J. Kartunnen, and R. R. E. Saloman, Ion acoustic non-
linearities in stimulated Brillouin scattering, Phys. Fluids 27, 707 (1984).

7. Kartunnen, S. J., J. N. McMullin, and A. A. Offenberger, Saturation of
stimulated Brillouin scattering by ion wave decay in a dissipative plasma,
Phys. Fluids 24, 447 (1981).

8. Casanova, M., G. Laval, R. Pellat, and D. Pesme, Self-generated loss of
coherency in Brillouin scattering and reduction of reflectivity, Phys. Rev.
Lett. 54, 2230 (1985).

9. Ikezi, H., K. Schwarzeneggar, A. L. Simons, Y. Ohsawa, and T. Kamimura,
Nonlinear self-modulation of ion-acoustic waves, Phys. Fluids 21, 239
(1978).

10. Ramani, A. and C. E. Max, Stimulated Brillouin scattering in an inhomoge-
neous plasma with broad bandwidth thermal noise, Phys. Fluids 26, 1079
(1983).

11. Colombant, D. G. and W. M. Manheimer, A model of anomalous absorption,
backscatter and flux limitation in laser-produced plasmas, Phys. Fluids
13, 2512 (1980).

12. Randall, C. J., J. R. Albritton, and J. J. Thomson, Theory and simulation
of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion
systems, Phys. Fluids 24, 1474 (1981).

13. Randall, C. J. and J. R. Albritton, Chaotic nonlinear stimulated Brillouin
scattering, Phys. Rev. Lett. 52, 1887 (1984).

14. Estabrook, K. G., W. L. Kruer, and B. F. Lasinski, Heating by Raman
backscatter and forward scatter, Phys. Rev. Letters 45, 1399 (1980).



140 11 Nonlinear Features of Underdense Plasma Instabilities

15. Biskamp, D. and H. Welter, Stimulated Raman scattering from plasmas
irradiated by normally and obliquely incident laser light, Phys. Rev. Lett.
34, 312 (1975).

16. Bonnaud, G., Ion mobility influence on stimulated Raman scattering in homo-
geneous laser-irradiated plasma, Laser and Particle Beams 5, 101 (1987).

17. Estabrook, K. and W. L. Kruer, Theory and simulation of one-dimensional
Raman backward and forward scattering, Phys. Fluids 26, 1892 (1983).

18. Aldrich, C. H., B. Bezzerides, D. F. DuBois, and H. A. Rose, Langmuir
nucleation and collapse in stimulated laser light scatter, Comm. Plasma
Phys. 10, 1 (1986).

19. Rozmus, W., R. P. Sharma, J. C. Samson, and W. Tighe, Nonlinear evolu-
tion of stimulated Raman scattering in homogeneous plasmas, Phys. Fluids
(1987).

20. Barr, H. C. and G. A. Gardner, Harmonic emission from the quarter critical
density surface of laser-produced plasmas; in Proceedings of the Interna-
tional Conference on Plasma Physics Vol II, p.265 (Q. Tran and R. J.
Verbeek, eds.). Ecole Polytechnique de Lausanne, Lausanne, 1984.

21. Barr, H. C. and F. F. Chen, Raman scattering in a nearly resonant density
ripple, Phys. Fluids 30, 1180 (1987).

22. Ott, E., W. M. Manheimer, and H. H. Klein, Stimulated Compton scattering
and self-focusing in the outer regions of a laser fusion plasma, Phys. Fluids
17, 1757(1974).

23. Lin, A. T. and J. M. Dawson, Stimulated Compton scattering of electromag-
netic waves hi plasma, Phys. Fluids 18, 201 (1975).

24. Forslund, D. W., J. M. Kindel, W. B. Mori, C. Joshi, and J. M. Dawson,
Two-dimensional simulations of single-frequency and beat-wave laser-plasma
heating, Phys. Rev. Lett. 54, 558 (1985).

25. Langdon, A. B., B. F. Lasinski and W. L. Kruer, Nonlinear saturation and
recurrence of the two-plasmon decay instability, Phys. Rev. Letters 43, 133
(1979).

26. Langdon, A. B., B. F. Lasinski, and W. L. Kruer, ZOHAR simulations of
two-plasmon-decay; in Lawrence Livermore National Laboratory UCRL-
50021-85, p.2-43 (1986).

27. Chen, H. H. and C. S. Liu, Soliton formation and saturation of decay insta-
bility of an electromagnetic wave into two plasma waves, Phys. Rev. Lett.
39, 881 (1977).

28. Kartunnen, S. J., Saturation of parametric instabilities by the nonlinear decay
of electrostatic daughter wave, Plasma Phys. 22, 151 (1980).



11.3 References 141

29. Shapiro, V. D. and V. I. Shevchenko, Strong turbulence of plasma oscillations;
in Handbook of Plasma Physics, Vol II, p. 123-182 (A. A. Galeev and R.
N. Sudan, eds.). North Holland, Amsterdam, 1984.

30. Max, C. E., Physics of the coronal plasma in laser fusion fusion targets;
in Laser-Plasma Interaction, (R. Balian and J. C. Adam, eds.). North
Holland, Amsterdam, 1982.

31. Joshi, C., C. E. Clayton, and F. F. Chen, Resonant self-focusing of laser light
in a plasma, Phys. Rev. Lett. 48, 874 (1982).

32. Langdon, A. B. and B. F. Lasinski, Filamentation and subsequent decay of
laser light in plasmas, Phys. Rev. Lett. 34, 934 (1975).

33. Estabrook, K. G., Critical surface bubbles and corrugations and their impli-
cations to laser fusion, Phys. Fluids 19, 1733 (1976).

34. Randall, C. J., Simultaneous self-focusing and Brillouin backscattering of
Gaussian laser beams; in Lawrence Livermore National Laboratory
UCRL -50021-79, p.3-45 (1980).

35. Valeo, E. J., Stability of filamentary structures, Phys. Fluids 17, 1391
(1974).



http://taylorandfrancis.com


CHAPTER 12
Electron

Energy
Transport

In the previous chapters, we have discussed a number of different processes
by which laser light heats the plasma surrounding a laser-irradiated tar-
get. As we have seen, the energy is deposited primarily into electrons. The
rate at which the electrons hi turn transport this energy to the higher den-
sity colder plasma determines both the efficiency of the implosion and the
plasma conditions hi the region of deposition. Not surprisingly, the trans-
port of large fluxes of energy hi inhomogeneous plasmas is itself a rich
and complex topic. We will begin with the classical diffusive calculation
of electron heat conduction and then discuss its extension to multigroup,
flux-limited diffusion. Lastly, we will indicate some of the additional com-
plications due to self-generated magnetic fields or ion acoustic turbulence
and conclude with a brief summary of what experiments have indicated.
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12.1 ELECTRON THERMAL CONDUCTIVITY
It's instructive to begin with the classical Spitzer-Harm calculation [1,2]
of electron thermal conductivity in a plasma with no magnetic fields.
Neglecting hydrodynamic motion and density gradients, we start with
the kinetic equation introduced hi Chapter 5:

df df eE df d \v2l - vv df] , x
l£+v '^ 7tT=Al^' H*-3 ^T +c'"(/)- U2.1ut ax. m av av VA av

In this expression, / is the electron velocity distribution function, A =
(27rnZe4/m2) In A, and Cee(f) denotes a similar but more complex opera-
tor giving electron-electron collisions. Further, n is the plasma density, Z
the ion charge-state, and In A is the Coulomb logarithm. In order to carry
heat, the distribution function must be warped hi the direction of the
heat flow. Adopting spherical coordinates, we represent the distribution
function as the first two terms of an expansion hi Legendre polynomials:

/ = fo(v) + f i (v) cose, (12.2)

where v = |v| and e is the angle between v and the direction of the heat
flow (also the direction of E). Substituting for f ( v ) into Eq. (12.1) and
collecting the terms proportional to cos 0, we obtain an equation for f\(v):

,
-57- + V— --- -^~ -- 3"dt dz m av v6

Here we have assumed for simplicity a high Z plasma and neglected the
effect on f i ( v ) of electron-electron collisions relative to electron-ion ones.
The steady-state solution is

fl = -£(**>-*?*>}. (12.4)J1 2A\dz mvdvj v '

The electric field is determined by the condition that charge neutrality be
preserved i.e., Jz = —effj.fi pvdv = 0, where fj, = cos 6. This condition
gives

fJo

7eEdf0 0/o
dvv' -- - --- x- = 0 .\ rav ov oz I
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We next assume that electron-electron collisions maintain the zero-order
distribution /0(t;) as a Maxwellian with a local temperature 6e(z):

n mv,2
(12.6)

20e(z)\ '

where v*(z) = 0e(z)/m. Equation (12.5) is now readily integrated to give

Hence f\ becomes

The heat flow Q is obtained by using f\ (v) to evaluate

Q = f ^-/^/i/id3v. (12.9)

After straight-forward integration, we obtain,

Q = -K-fT- > (12.10)

4l5/2

Note that the thermal conductivity « is independent of density and is
proportional to 0J . A convenient representation is K ~ 14nVg/i/ez? where
vei is the collision frequency which describes collisional damping of a light
wave as discussed in Chapter 5.

For small to moderate values of Z, it becomes important to directly
include electron-electron collisions which, of course, reduce the conduc-
tivity. A simple approximation to the numerical results of Spitzer-Harm
is given by multiplying K given in Eq. (12.11) by g(Z) ~ (1 + 3.3/Z)"1.
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12.2 MULTIGROUP FLUX-LIMITED DIFFUSION
Although an instructive point of departure, this classical calculation of
diffusive heat flow needs to be extended in several important ways. First,
since the mean free-path is energy-dependent, a conductivity which av-
erages over a distribution of disparate velocities is clearly inadequate to
properly treat the transport of energy into a target. Hence the heat trans-
port is usually modeled as multigroup diffusion [3]. In this description, the
electrons axe divided into energy groups, with the lowest energy group de-
scribed as a thermal one, with a Maxwellian velocity distribution. Each
group is assigned a diffusion coefficient, and the groups are coupled to
one another by self-consistent electric fields imposed by charge neutral-
ity. Such a description is especially important when high energy tails are
produced by collective absorption processes.

In general, a second extension is also needed, since the diffusive calcu-
lation of the heat flow fails for strong temperature gradients. For example,
when (vc/i/ci) £ 0.1LT (L?1 = d]n0e/dz), Eq. (12.10) gives Q ;> n0eve.
This result is clearly unphysical, since electrons cannot carry an energy
flux greater than their energy density times some typical velocity. In fact,
the Spitzer-Harm calculation is expected to fail [4,5] for even smaller heat
fluxes (i.e., for longer LT)- We first note from Eqs. (12.8) and (12.9) that
electrons with velocities up to about 4-5 ve contribute significantly to the
heat flow. Substituting Eq. (12.10) into Eq. (12.8) gives

Q
fl = f°

Demanding that |/i| < /o for v ~ 4ve then requires that Q & nQeve/5.
From a physical standpoint, the breakdown of Eq. (12.10) for strong

temperature gradients represents the transition to collisionless behavior in
which electrons simply free-stream rather than diffuse. Heuristic attempts
to match onto this collisionless regime have been made by simply limiting
the heat flow to a maximum flux. To illustrate, we again return to the
simple example in which electrons are characterized by a temperature 0e.
Then Q = imn[Kd6e/dz, fn0€ve], where / is the so-called flux limit.
Initially / was chosen to be about 0.6, since the maximum energy flux
(neglecting fields) carried by electrons with a Maxwellian distribution of
velocities is about 0.6 n6eve. However, clearly the flux limit is just a crude
but efficient attempt to describe the heat flow as the classical theory fails.

To properly describe the heat flux hi this limit, both numerical calcu-
lations of the full kinetic equation (including electron-electron collisions)
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and Monte-Carlo calculations have been carried out [6-15]. In comparison
to the Spitzer-Harm treatment, more angular structure and/or modifica-
tions to the zero-order distribution functions have been included. Indeed,
the modification of fo(v) is obviously essential to include in many appli-
cations, since classical absorption can generate super-Gaussian velocity
distributions as discussed in Chapter 5. Furthermore, the transport itself
can strongly modify the zero-order distribution function. These calcula-
tions have indicated that the heat flux tends to saturate at a value of
order Q.ln0eve but also emphasize that a single flux limit is in general
too simple a parameterization. A significant challenge is to now incorpo-
rate these insights into improved transport models which are sufficiently
economical for routine use in design codes.

12.3 OTHER INFLUENCES ON ELECTRON
HEAT TRANSPORT

Thus far we have considered the electron heat transport as determined
by Coulomb collisions hi a plasma with no magnetic fields. The heat
transport becomes an even more complex calculation when one includes
self-generated magnetic fields. There are many source terms [16-18] for
such fields; the best known is that which arises when the density and tem-
perature gradients are not parallel. This effect can be simply illustrated.
If we treat the electrons as a fluid and neglect then: inertia, the force
equation gives the electric field necessary to preserve charge neutrality:

U X B
ne

Here u is the plasma flow velocity, pe the electron pressure, and B the
magnetic field. Substitution of E into Faraday's law then gives

IdB ^ / u x B Vpe\
— 5T = V x - + — ) • 12'13c at \ c ne J

Equation (12.13) shows that a magnetic field is generated whenever the
condition V x (Vpe /n) ^ 0 holds i.e., when Vn x V0e ^ 0.

To show that a sizable inhibition is possible via these fields, con-
sider here a crude order-of-magnitude estimate. Setting dB/dt — 0 and
denoting all gradient lengths by some L, we find with Eq. (12.13) that
\B\ & (c/u)(9e/eL). The energy flux carried by electrons across the field
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can be estimated as Ie « nOe D/L, where D is the diffusion coefficient.
Since the B fields can be quite inhomogeneous, we conservatively take
Bohm-like diffusion (D « a;cer^e, where UCG is the electron cyclotron fre-
quency and rce the gyroradius). Combining these estimates then gives
Ie w n0eu, that is, the characteristic energy flow speed is the plasma flow
velocity which is typically of the order of the ion sound velocity.

For quantitative results, it is essential to address many important
questions — the size and extent of the self-generated fields, how electrons
diffuse across them and other mechanisms for their generation. The B
fields can also be generated by other mechanisms such as instabilities
produced by the anisotropic heated electron distribution or by velocity
anisotropies associated with the heat flow. The resulting B fields can be
quite inhomogeneous, and so their influence [19] on the electrons is itself
a very rich topic.

Lastly the transport coefficient can also be modified by ion turbulence
in the plasma. The most commonly invoked mechanism for producing
this turbulence is the ion-acoustic drift instability driven by the heat flow
[20-22]. The basic idea is very simple. The electron distribution function
carrying a heat flux Q is skewed, as shown by Eq. (12.8). In particular,
the low-energy electrons have a drift Vd ~ Q/n9e relative to the ions.
Physically this drift is produced by the self-consistent electric field nec-
essary to draw a return current to compensate for the flow of the hotter
electrons which carry the heat flow. When this drift exceeds the threshold
for the ion-acoustic drift instability, ion-acoustic waves are driven unsta-
ble. It has been hypothesized that the ion turbulence then so effectively
scatters the electrons that the heat flow is locked into a value near the
instability threshold. In other words, Qmax ~ n9ev3, when Z0e > 0;. Here
vs is the ion sound velocity and Oi is the ion temperature. There has been
considerable controversy over whether the ion-acoustic turbulence can be
this effective, particularly for electrons of very high energy. Computer
simulations [23] have suggested that the ion turbulence does not strongly
limit the heat flux.
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12.4 HEAT TRANSPORT IN LASER-IRRADIATED
TARGETS

Theoretical description of large electron heat fluxes in laser-irradiated
targets is clearly a challenging problem. Let's conclude this chapter with
a very brief synopsis of the experimental feedback. In laser-irradiated
targets, the heat transport has been inferred from a variety of different
measurements, including x-ray images of the heated plasma, the ratio
of the energy in fast and slow ion expansion, the implosion and mass
ablation efficiencies, the density profile in the underdense plasma, and
the burn-through rate of thin films and layered targets.

As an example, let's consider experiments [24] in which Al disks coated
with a layer of CH were irradiated with a 100 ps pulse of 1.06/x laser
light with a peak intensity of 1015W/cm2. The thickness of the CH layer
was varied, and the x-ray emission at energies between 1 and 3 keV was
measured as a monitor of the energy transported to the Al substrate. As
shown in Fig. 12.1, a rather thin layer of CH led to an abrupt decrease
in the x-ray emission, indicating poor electron transport. Calculations of
electron energy transport model this data by using a flux limit of / ~ 0.01.

A similar inhibition of the heat transport (/ ~ 0.01-0.04) has been
inferred from many other experiments [25-29] on disk targets. The trans-
port inhibition appears to decrease as the intensity and/or the wave-
length of the light is reduced. Furthermore, in at least some experiments
[30-36] hi which spherical targets are rather uniformly irradiated, the
electron energy transport appears to saturate at a value close to that ex-
pected from numerical calculations of the Fokker-Planck equation (i.e.,
Q ~ 0.1 nOeve). This suggests that B field generation and/or lateral en-
ergy transport may be playing a significant role in the disk experiments.
Many of the recent transport experiments and calculations are reviewed
in Ref. 15.

Although much remains to be understood, there has clearly been sig-
nificant progress in both characterizing and understanding electron en-
ergy transport in laser irradiated targets. More experiments are needed
to clarify the dependence of the heat transport on such critical features
as target geometry, uniformity of irradiation, and laser light wavelength
and intensity. Improved measurements of the underdense plasma condi-
tions are also needed. These conditions are an important indicator of the
transport and directly influence the coupling processes, which serve as
source terms driving the energy transport.
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Figure 12.1 The fraction of incident laser energy converted in Al line radi-
ation (A) and into l-3Kev x-rays (o) as a function of the thickness of the CH
overlayer. See Young et a/., (1977).
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CHAPTER 13
Laser

Plasma
Experiments

In previous chapters, we have discussed a variety of mechanisms for laser
plasma coupling, ranging from collisional absorption to excitation of many
different instabilities. Figure 13.1 illustrates the rich variety of coupling
processes as a function of the plasma density. Near the critical density
(ncr), we have resonance absorption and instabilities leading to the exci-
tation of electron and ion waves. Near ncr/4, we have the 2upe instability.
The Raman instability operates for densities <J ncr/4. The Brillouin and
filamentation instabilities take place throughout the underdense plasma,
as does inverse bremsstrahlung absorption. Throughout the underdense
plasma there can be self-generated magnetic fields or elevated levels of
ion turbulence driven by a variety of processes associated with the plasma
heating and expansion.

The mix of coupling processes depends on the intensity, wavelength,
and beam quality of the laser light and upon the gradient lengths, plasma
composition, and other plasma conditions. In turn, these depend on the
mix of coupling processes. An understanding of this coupled nonlinear
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Figure 13.1 A schematic of the density profile in the underdense plasma
illustrating the many processes which affect laser plasma coupling.

problem requires close collaboration between theory, computer simula-
tion and experiments. Although the understanding is far from complete,
calculations have at least qualitatively predicted many important plasma
effects observed in experiments. These include steepening of the density
profile, hot electron generation, resonance absorption, stimulated Raman
and Brillouin scattering, and favorable wavelength scaling. In this final
chapter, let us briefly consider some of the experimental evidence for var-
ious laser plasma processes.

The characteristic size (L) of the underdense plasma is a very use-
ful parameter to consider when discussing experiments. If L is small
(L/Ao ^ 0(10), where A0 is the free space wavelength of the laser light),
then many of the coupling processes are either before threshold or weakly
occurring, and we are primarily concerned with how light is absorbed near
the critical density surface. On the other hand, if there is an extensive
region of underdense plasma [L/\o £ 0(100)], theory indicates that pro-
cesses such as Brillouin and Raman scattering, filamentation and inverse
bremsstrahlung can begin to play a significant role.

We can estimate the size of the underdense plasma in laser-irradiated
targets as the minimum of c*r/2 or R where c* is a typical plasma ex-
pansion velocity, r is the pulse length of the laser light, and R is the focal
spot radius. To give some feeling for the numbers, let us take an expansion
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velocity of 3 x 107 cm/sec, which is approximately the ion sound speed in
a hydrogen plasma with an electron temperature of 1 keV. Then

L min l.5 x 102r(ns),

A0

where 'min' denotes minimum, r is expressed hi nanoseconds, and R
and AQ are expressed in micrometers. Hence experiments with 1.06/um
light and pulse lengths of <> 30ps have rather small underdense plas-
mas, whereas experiments with pulse lengths ^ Ins and large focal spot
have large underdense plasmas. Note also the scaling as T/\Q. With this
distinction in mind, we will first examine some short-pulse-length exper-
iments (with small underdense plasmas) and then consider some longer
pulse-length ones.

13.1 DENSITY PROFILE STEEPENING
As we discussed in Chapter 10, calculations show a pronounced steepening
of the density profile near the critical density. This steepening is impor-
tant because the scale length near the critical density affects the mix of
absorption processes and the heated electron temperatures. This profile
steepening has been confirmed by interferometric measurements [1-3] of
the density of a laser-heated plasma. In one experiment [1] a 41/xm diam-
eter glass microballoon was irradiated with a 30ps, 1.06/mi laser pulse at
an intensity of 3 x 1014W/cm2. An interferogram was taken with a 15ps,
0.26/mi probe beam and Abel-inverted to determine the axial electron
density profile plotted in Fig. 13.2. In both experiment and simulations
the profile is steepened to an upper density nu that is roughly determined
by pressure balance:

nu ~ ncr fe)1]-
where VQS is the oscillation velocity of an electron in the laser light field, ve
is the electron thermal velocity and ncr is the critical density. The profile
is steepened down to a lower density that is determined by how the light
pressure and localized heating dams the plasma flow. This lower density
typically appears to be somewhat less in experiments than in the particle
simulations, perhaps because of energy-transport inhibition.
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Figure 13.2 A plasma density profile in a laser-irradiated target measured
by interferometry using a 0.26^um light pulse. See Attwood et al (1978).

Calculations with a focused light beam [4] show an additional, re-
lated effect: cratering of the critical density surface. Physically, the den-
sity surface is preferentially pushed in where the light intensity is greatest.
This effect has also been observed in experiments. Figure 13.3 shows an
Abel inverted transverse density contour measured in an experiment [1]
hi which a disk target was irradiated with 1.06/iin light with an intensity
of ~ 3 x 1014 W/cm2. The density cavity has a transverse scale length
approximately equal to that of the incident light beam. A smaller scale
rippling of the critical density surface has also been inferred in experi-
ments using higher intensity light. These ripples are probably due to hot
spots hi the incident light beam and/or to a critical surface instability
found in computer simulations [5-7].

13.2 ABSORPTION OF INTENSE, SHORT
PULSE-LENGTH LIGHT

Many important features of the absorption measured hi experiments with
short pulse length, high intensity laser light can be understood in terms
of resonance absorption in a steepened density profile. In such experi-
ments, the underdense plasma has both a high temperature and a small

' x 3/2
spatial extent. Because colhsional absorption varies as 9e (0e is the
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Figure 13.3 A transverse density profile measured by interferometry. See
Attwood et a/., (1978).

electron temperature) and as the scale length of the plasma, it is rela-
tively weak in these experiments. However, as discussed in Chapter 4,
computer simulations showed that there would still be a sizeable absorp-
tion due principally to resonance absorption with some additional absorp-
tion due to nonlinearly-generated ion fluctuations. These early simulation
results assumed plane waves incident onto a plasma slab. In practice, a
focussed light beam (say, with hot spots) both craters and ripples the
critical density surface as discussed hi the previous section. These sur-
face ripples average the absorption over angle as well as change part of
the p-polarized light into s-polarized light and vice versa [8-10]. A sim-
ple theory [8] was used to extend the ideal simulation results to crudely
include this additional critical surface rippling. The result for the absorp-
tion as a function of polarization and angle of incidence is shown by the
black line in Fig. 13.4.

The absorption has been measured in detail hi numerous experi-
ments [11-17]. In some of these experiments [11], plastic disks were irra-
diated with about 30ps pulses of 1.06/Lxm light with an intensity of 1015 -
1016W/cm2. The measured absorption, denoted by the circles in Fig. 13.4,
was both polarization-dependent and broad hi angle. The absorption of
p-polarized light peaked at approximately the predicted angle, and the
absorption of s-polarized light monotonically decreased with the angle of
incidence. The magnitude of the absorption was also in reasonable agree-
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Figure 13.4 Laser light absorption as a function of angle of incidence, shown
here for (a) p-polarization and (b) s-polarization. Circles denote the absorption
measured in a series of experiments in which plastic disks were irradiated with
30ps pulses of 1.06>m light. See Manes et a/., (1977).

ment. The principal discrepancy is an additional 10-15% absorption,
rather independent of angle of incidence and polarization. This addi-
tional absorption may be due to a number of effects such as inverse
bremsstrahlung, critical surface rippling, or self-generated magnetic fields.
At very high intensities (!\Q ^ 1017W-/x2/cm2), the measured fractional
absorption increases significantly [16]. This effect has been attributed to
the development of a highly turbulent critical surface.

13.3 HEATED ELECTRON TEMPERATURES
The heated velocity distribution is a very important feature of the ab-
sorption process. The light primarily heats electrons, since their motion
in the oscillating fields is much larger than that of the massive ions. As
discussed in the Chapter 9, absorption via plasma waves in general leads
to high energy tails on the electron distribution function. Physically this is
because plasma waves tend to preferentially heat the faster (more nearly
resonant) electrons. The simulations of resonance absorption discussed in
Chapter 10 predict that a roughly two-temperature distribution will re-
sult [18,19]. The lower temperature is that typical of electrons streaming
into the absorption region and is determined by how the heat transports
to higher density. The hot temperature is that characteristic of the elec-
trons heated by resonance absorption, which in the simulations are found
to have a quasi-Maxwellian velocity distribution.
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The generation of an electron distribution with at least two character-
istic temperatures is supported by measurements of the x-ray spectrum in
many different experiments using short-pulse-length laser light. As an ex-
ample, Fig. 13.5 shows the x-ray spectrum observed in an experiment [20]
in which a plastic disk was irradiated with a 80ps pulse of 1.06/L/m light
at a peak intensity of ~ 2 x 1015W/cm2. The low energy x-rays indicate
an electron temperature of ~ 700eV, and the high energy x-rays a tem-
perature of ~ 8 keV. A third, higher temperature component has been
observed in experiments with small underdense plasmas for sufficiently
intense irradiation [16,17].

Figure 13.6 shows the heated electron temperature inferred from the
high energy x-rays in short pulse experiments over a wide intensity regime.
The various symbols with error bars represent data from a series of exper-
iments [21] in which disks or microballoons were irradiated with 1.06/um
light with pulse lengths hi the range of about 50-200ps. The open x's are
values of the resonantly-heated electron temperature calculated in a se-
ries of two-dimensional simulations [18] of resonance absorption. Both the
magnitude and intensity scaling of the heated electron temperatures are
hi reasonable agreement, especially in view of the fact that the simulations
are quite ideal and do not include the space-and time-averaging inherent
in the experiments. Experiments using laser light with other wavelengths

1016
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£
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Figure 13.5 The x-ray spectrum measured in an experiment in which a plastic
disk was irradiated by a SOps pulse of 1.06/im light with an intensity of about
2 X 1015 W/cm2. See Haas et a/., (1977).
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Figure 13.6 The heated electron temperature as a function of incident laser
light intensity. The symbols with error bars are values inferred from the high
energy x-rays in experiments hi which disks or microballoons were irradiated with
1.06/̂ m light. The open x's are values calculated hi a series of two-dimensional
simulations. See Manes et a/., (1977).

have given quite similiar results. One simply has to scale the intensity as
7A0 (where An is the free-space wavelength of the light), as theoretically
expected.

13.4 BRILLOUIN SCATTERING
We have been discussing short-pulse-length experiments which are char-
acterized by a small region of plasma with density less than nCT. These
experiments have been typical of the exploding-pusher target experiments
carried out in the early days of the laser fusion program. Laser plasma
coupling is more complex in long-pulse-length experiments with larger
regions of underdense plasma. Such experiments are more characteristic
of the ablative compressions needed to compress fuel to a high density to
achieve high gain [22]. In the longer scale length plasmas, effects such as
collisional absorption, Brillouin and Raman scattering, and filamentation
can all play a much more important role. Let's now discuss experiments
on some of these processes.
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Experiments [23-37] with longer scale length plasmas and 1.06/im
light show that significant Brillouin scattering is possible. In these exper-
iments, sizeable underdense plasmas (I//A0 > 30) were formed in various
ways: by using a prepulse, a long pulse length in the sense of r/A0, or a
preformed plasma. Let's consider a specific example in which a larger un-
derdense plasma was created by use of a prepulse. As shown in Fig. 13.7,
the addition of a prepulse about 2ns prior to a 75ps main pulse was found
to increase the backscatter of the main pulse which was normally incident
onto a CH slab [23]. As the prepulse energy was increased, the fraction of
the main pulse which was back-reflected increased from c± 15% to c± 40%
and the net absorption decreased from ~ 50% to ~ 20%. For a fixed ratio
of prepulse energy to main pulse energy, the backscattered light increased
with the intensity of the main pulse and was rather insensitive to the angle
at which the targets were tilted. In addition, it was shown that the light
rays retraced their path. All these features are as expected if the light
reflection is due to the Brillouin instability hi the underdense plasma.

Experiments have also shown evidence for Brillouin sidescatter. This
instability preferentially scatters light out of the plane of polarization. As
shown in Fig. 13.8, the sideward scattering out of the plane of polarization
has been observed to greatly exceed that into the plane of polarization
in experiments with large focal spots [27]. Typically, the polarization-
dependent, sideward scattering observed to date has been <J 30% of the
incident laser energy.
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Figure 13.7 The fraction of the main pulse energy which was backscattered
into an f/1.9 lens versus the fraction of the energy into a prepulse. See Ripin et
a/., (1977).
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Figure 13.8 The angular distribution of the light scattered from a Au disk
irradiated with 1.06/iin light focussed to an intensity of about 3 X 1014 W/cm2.
The focal spot diameters are 150/im and 450/4m. See Rosen et a/., (1979).

Quite detailed studies of the nonlinear aspects of Brillouin scattering
have been carried out in microwave experiments with low density plasmas
[38,39]. In some of these experiments, the amplitudes of both the driven
ion wave and its harmonic were measured via Thomson scattering of mil-
limeter waves. In addition, a heated ion tail was observed and its density
measured. These experiments emphasize that ion tail formation is a very
potent saturation mechanism.

The behavior of Brillouin scattering in laser experiments needs further
study. Identification of the scattering by its frequency spectrum is often
uncertain due to Doppler shifts in the expanding plasma. Often the ob-
served scattered light with frequency near LJQ does not appear to exhibit
any well-defined growth or saturation [32]. In experiments to date with
overdense targets and short wavelength light, the backscattering is quite
modest (<; 10%).

13.5 RAMAN SCATTERING
There are numerous experiments [40-53] on Raman scattering in laser-
irradiated plasmas. This process is relatively simple to identify since the
scattered light is down-shifted by an electron plasma frequency. In exper-
iments with a large region of underdense plasma, the energy in Raman-
scattered light has been measured to be as large as 10-20% of the inci-
dent laser energy. In addition, the expected correlation with hot electron
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generation has been observed. Let us briefly mention several of these ex-
periments.

In early experiments which showed a significant level of Raman scat-
tering [47], a large region of underdense plasma was formed by irradiating
a thin CH foil (7000A thick) with a 900ps, 3kJ pulse of 1.064/im light.
Computer calculations predicted this foil to go underdense and expand
through a density of a few tenths of the critical density somewhat before
the peak of the laser pulse. When this happens, the laser light is propa-
gating through a relatively flat region of underdense plasma. If we simply
use the radius of the focal spot as a measure of the distance over which
the plasma density is reasonably flat, the characteristic plasma size is of
order 200^m, which is sufficient to produce sizeable Raman scatter. In-
deed, about 10% of the light was observed to be Raman scattered. Figure
13.9 shows the measured angular distribution of the spectrally integrated
Raman scattered light. Most of the scattering was into the rear hemi-
sphere, but even a small fraction of the incident light was scattered into
the forward hemisphere.

200

100

Raman light energy
angular distribution

30° 60° 120° 150° 180°
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Figure 13.9 The angular distribution of the spectrally-integrated Raman
scattered light measured in experiments in which thin foils were irradiated
with 1.06/im light. The different symbols denote two separate experiments. See
Phillion et a/., (1982).
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Subsequent experiments [49] with thin foils irradiated with 0.53/1 and
0.26/i light have shown comparable levels ofRaman scattering. As ex-
pected on the basis of collisional damping, the scattering was found to
decrease dramatically for Au foils irradiated with 0.26// light. In other
thin foil experiments using 0.53/x light, both the up- and down-shifted
components expected from Raman forward scattering were observed [50].

In experiments [51] at the University of Alberta, Raman backscatter
was observed when a rather uniform low density plasma in a solenoid was
irradiated with CO2 laser light. The plasma density was about 1/40 of
the critical density, the background electron temperature about 80 eV,
and the interaction length about 3mm, as estimated from the depth of
focus of the laser light. As shown in Fig. 13.10, back reflection due to
the Raman instability was observed to onset at an intensity of ~ 4 x
1010 W/cm2, which was calculated to be the expected threshold intensity.
When the intensity was further increased, the reflectivity from this rather
low density plasma saturated at a value of about 0.7%.
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Figure 13.10 The back reflection due to the Raman instability measured in
experiments in which a low density plasma in a solenoid was irradiated with
10.6/im light. See Offenberger et a/., (1982).
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Raman reflected light has also been observed in experiments with
rather inhomogeneous plasma blowing off from an overdense target. The
spectra measured in such experiments [45,46] have indicated Raman scat-
tering from the region near ncr/4 as well as from the plasma at lower
densities down to about O.05-O.lncr. The level of the scattered light in
these experiments is often quite low: hi the range of 10~6-10~4 of the
incident light. However, this level has been found to increase rapidly as
the focal spot size and pulse length is increased, leading to more gentle
gradients. For example, in experiments [47,52] in which thick disk targets
were irradiated with 1.06/x or 0.53/1 light, up to several percent of the
incident laser light was observed to be Raman scattered.

Finally a correlation of Raman scattering with hot electron genera-
tion has been observed in experiments [52] in which Au disks were irra-
diated with Ins pulses of 0.53/im light. In these experiments, the laser
energy varied from 0.5-4.0kJ and the nominal intensity from about 1014-
2 x 1016W/cm2. The slope of the high energy x-rays indicates hot electrons
with a temperature of about 30keV. Figure 13.12 shows the fraction of
the laser energy deposited into hot electrons as inferred from the level
of the hard x-rays versus the measured fraction of the laser energy in
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Figure 13.11 Hard x-ray spectrum from Au disk irradiated with a 3.6kJ, Ins
pulse of 0.53/im light focussed onto 740/im spot. See Drake et a/., (1984).



166 13 Laser Plasma Experiments

10"

10,-2

E 10'3

I
o

10,-4

10,-5

io-4
10,-3 10r2 10pi

Raman scattered light fraction

Figure 13.12 The fraction of the laser energy absorbed into hot electrons
versus the fraction in Raman-scattered light in Au disks irradiated by Ins pulses
of 0.53//m light. See Drake et al, (1984).

Raman-scattered light. Note the impressive correlation. The solid line
represents the expected correlation using the Manley-Rowe relations with
the measured mean value of the frequency of the scattered light. Because
of the error bars, it is quite possible that other processes such as the 2u>pe
instability are also contributing to hot electron generation.

Although many trends in the observations agree with expectations,
there are also challenging puzzles [54]. There is usually a gap in the fre-
quency spectrum, showing that Raman scattering is much weaker than
expected for a narrow range of densities near ncr/4. In addition, a low
level of Raman backscattering is often observed below the nominal inten-
sity threshold. Both these puzzles may indicate that Raman scattering
is being seeded by an enhanced level of plasma waves excited by other
processes. For example Simon and Short [55,56] postulate that bursts of
hot electrons due to the 2u>pe instability preferentially excite the plasma
waves in the lower density region. Below the Raman instability threshold,
we would then have ordinary Thomson scattering from enhanced fluctu-
ations. Above threshold, the instability grows from the enhanced levels.
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13.6 OTHER PLASMA PROCESSES
There is also experimental evidence for many other plasma processes in
laser-produced plasmas. Electron plasma waves due to the 2<jjpe instability
have been directly observed by Thomson scattering in experiments with
10.6/mi light. The growth rate, the local density profile steepening, and
the generation of ion waves in the nonlinear state have been measured
in some detail [57-59]. A useful signature of this instability is emission
near 3u;o/2, which arises from the coupling of the incident and reflected
light wave with a plasma wave near ncr/4. Unfortunately the level of the
instability is difficult to estimate from this signal, since the emission only
indirectly indicates the level of part of the spectrum of driven plasma
waves.

The 3o;o/2 emission is frequently diagnosed in laser plasma exper-
iments [60-62]. For example, in some experiments at the University of
Rochester [62], CH spheres were irradiated with a 600-700ps pulse of
0.35/mi light. The 3cJo/2 emission was observed to onset at an intensity
of about 2 x 1014W/cm2, the estimated threshold intensity of the 2u;pe
instability. The level of the emission increased with the intensity of irra-
diation but then saturated at rather a low level when the intensity was
about 3 x 1014 W/cm2. Hard x-rays indicating suprathermal electrons
with a temperature of about 35keV were observed to be correlated with
the 3u;o/2 emission. The inferred fraction of the laser energy in these
suprathermal electrons saturated at a low value of about 10~4 of the in-
cident energy in these experiments with L/\Q & 150.

Filamentation of laser light is perhaps the least characterized of the
plasma processes we have discussed. Much of the evidence is rather in-
direct: inferrences from structure [63-65] in x-ray pictures of the heated
plasma or in images of the back-reflected light. Filamentation has also
been inferred from the angular distribution [45] of the half-harmonic light
or from frequency shifts [66] in the reflected light. Filamentary structures
have been directly observed by using optical shadowgraphy [67], by imag-
ing the second harmonic emission [68], and by Thomson scattering from
electron plasma waves generated in the walls of the filament [69].

Parametric instabilities near the critical density have been inferred
from frequency shifts in the second harmonic emission [70-72] as well
as from Thomson scattering measurements [73] of ion acoustic waves in-
duced by a 10.6/im laser. The unstable waves and the plasma heating
have been measured in some detail in microwave experiments with low
density plasmas [74-77]. Excitation of waves near the critical density has
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also been studied extensively in ionospheric heating experiments [78,79].
In addition, self-generated magnetic fields with values up to 106 Gauss
have been measured in laser experiments using Faraday rotation of a
probe beam [80,81]. Since we've already considered a number of different
plasma processes, we will now proceed to the important topic of wave-
length scaling.

13.7 WAVELENGTH SCALING OF LASER
PLASMA COUPLING

As both calculations and experiments have amply demonstrated, laser
plasma coupling can be influenced by a rich variety of collective plasma
effects. Many of these collective processes either decrease the absorption
or give absorption into a tail of very energetic electrons. The advantages
of enhancing collisional absorption and reducing collective effects have
placed a premium on the use of short wavelength laser light [82,83].

When the laser wavelength (Ao) is decreased, the light wave penetrates
to higher density plasma since the critical density increases as A^2. For
a given absorbed intensity, the heated plasma is both denser and lower
hi temperature and hence much more collisional. In addition to being
reduced by this greater collisionality, the collective processes are more
weakly driven by short wavelength light. For a given intensity, the oscil-
lation velocity of an electron in the light wave is proportional to the laser
wavelength.

Many experiments [84-88] with 0.53/um, 0.35/um and 0.26/um light
have demonstrated that important features of the coupling improve as
the wavelength decreases. Figure 13.13 shows a compendium [89] of the
absorption as a function of intensity measured in a variety of experiments
using laser light with wavelengths ranging from 1.OS/on to 0.26/mi. In
these experiments on CH targets, the pulse lengths varied from lOOps to
Ins, but the focal spot size was typically rather small. Note the dramatic
increase in absorption as the wavelength decreases, as expected since in-
verse bremsstrahlung depends strongly on wavelength. A very strong de-
crease in hot electron generation has also been shown in such experiments.
Figure 13.14 shows x-ray spectra measured in experiments [90] hi which a
GOOps pulse of light was focused to an intensity of about 3 x 1014 W/cm2

onto an Al disk. The level of the high energy x-rays decreased by sev-
eral orders of magnitude as the wavelength of the light was changed from
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Figure 13.13 The absorption versus intensity measured using laser light with
wavelengths ranging from 1.05yum to 0.26/um. See Ripin and Kruer, (1986).
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1.06/Lon to 0.355/xm, illustrating a significant reduction in collective plasma
interactions.

Not surprisingly, there has been a strong trend to the use of short-
wavelength lasers. Most large laser fusion facilities now operate or plan
to operate at wavelengths ̂  0.5/x. These wavelength scaling experiments
are being extended to include long-scale-length plasmas, which are more
characteristic of reactor targets. Such experiments will be able to quantify
the regimes of intensity and wavelength for optimum coupling.

Finally, increased attention is being focussed on techniques to smooth
the intensity profile of a laser beam [91-94]. Smoother beams will allow
more uniform illumination of fusion targets and clarify the role of beam
structure in experiments. Induced spatial incoherence (ISI) is one tech-
nique for beam smoothing [91]. In the usual embodiment of ISI, a pair of
reflecting, echelon-like mirrors is used to divide a broad bandwidth laser
beam into many independent beamlets. The echelons introduce time de-
lays between the beamlets which are longer than the laser coherence time.
The beamlets are overlapped onto a target, producing a very smooth in-
tensity profile when averaged over time scales long compared to the coher-
ence time. Experiments [94] with induced spatial incoherence are showing
that the use of a smoother beam further improves the coupling of short
wavelength laser light with targets.

In summary, laser plasma coupling is a rich and challenging area of
applied physics. Many different processes can compete to determine the
coupling, ranging from collisional absorption to a variety of plasma insta-
bilities. As lasers have become more energetic and targets larger, more of
these plasma processes have been shown to indeed play a role hi experi-
ments. Much has been learned through the fruitful and close interaction
between theory and experiment, and many challenging problems remain
to be understood. There are many important theoretical issues, includ-
ing the multidimensional and nonlinear behavior of the instabilities, the
competition of the various coupling processes, and the heat transport hi
strongly driven plasmas. There are likewise many important experiments
yet to be done to better diagnose the plasma and irradiation conditions
and to extend the data base to the larger plasmas which are more char-
acteristic of reactor targets. Laser plasma coupling continues to be an
exciting and important area of research for laser fusion applications.
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