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Preface

In 2003, I wrote a book, Applied Statistical Designs for the Researcher
(Marcel Dekker, Inc.), in which I covered experimental designs commonly

encountered in the pharmaceutical, applied microbiological, and healthcare-

product-formulation industries. It included two sample evaluations, analysis

of variance, factorial, nested, chi-square, exploratory data analysis, nonpara-

metric statistics, and a chapter on linear regression. Many researchers need

more than simple linear regression methods to meet their research needs. It is

for those researchers that this regression analysis book is written.

Chapter 1 is an overview of statistical methods and elementary concepts for

statistical model building.

Chapter 2 covers simple linear regression applications in detail.

Chapter 3 deals with a problem that many applied researchers face when

collecting data of time–serial correlation (the actual response values of y are

correlated with one another). This chapter lays the foundation for the discus-

sion on multiple regression in Chapter 8.

Chapter 4 introduces multiple linear regression procedures and matrix

algebra. The knowledge of matrix algebra is not a prerequisite, and Appendix

II presents the basics in matrix manipulation. Matrix notation is used because

those readers without specific statistical software that contains ‘‘canned’’

statistical programs can still perform the statistical analyses presented in

this book. However, I assume that the reader will perform most of the compu-

tations using statistical software such as SPSS, SAS, or MiniTab. This chapter

also covers strategies for checking the contribution of each xi variable in a

regression equation to assure that it is actually contributing. Partial F-tests are

used in stepwise, forward selection, and backward elimination procedures.

Chapter 5 focuses on aspects of correlation analysis and those of determin-

ing the contribution of xi variables using partial correlation analysis.

Chapter 6 discusses common problems encountered in multiple linear

regression and the ways to deal with them. One problem is multiple collin-

earity, in which some of the xi variables are correlated with other xi variables

and the regression equation becomes unstable in applied work. A number of

procedures are explained to deal with such problems and a biasing method

called ridge regression is also discussed.

Chapter 7 describes aspects of polynomial regression and its uses.

Chapter 8 aids the researcher in determining outlier values of the variables

y and x. It also includes residual analysis schemas, such as standardized,

Studentized, and jackknife residual analyses. Another important feature of
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this chapter is leverage value identification, or identifying values, ys and xs,

that have undue influence.

Chapter 9 applies indicator or dummy variables to an assortment of ana-

lyses.

Chapter 10 presents forward and stepwise selections of xi variables, as well

as backward elimination, in terms of statistical software.

Chapter 11 introduces covariance analysis, which combines regression and

analysis of variance into one model.

The concepts presented in this book have been used for the past 25 years, in

the clinical trials and new product development and formulation areas at

BioScience Laboratories, Inc. They have also been used in analyzing data

supporting studies submitted to the Food and Drug Administration (FDA) and

the Environmental Protection Agency (EPA), and in my work as a statistician

for the Association of Analytical Chemists (AOAC) in projects related to

EPA regulation and Homeland Security.

This book has been two years in the making, from my standpoint. Cer-

tainly, it has not been solely an individual process on my part. I thank my

friend and colleague, John A. Mitchell, PhD, also known as doctor for his

excellent and persistent editing of this book, in spite of his many other duties

at BioScience Laboratories, Inc. I also thank Tammy Anderson, my assistant,

for again managing the entire manuscript process of this book, which is her

sixth one for me. I also want to thank Marsha Paulson, my wife, for stepping

up to the plate and helping us with the grueling final edit.

Daryl S. Paulson, PhD
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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide useful

reference books for researchers and scientists in academia, industry, and

government, and also to offer textbooks for undergraduate and graduate

courses in the area of biostatistics. This book series will provide comprehen-

sive and unified presentations of statistical designs and analyses of important

applications in biostatistics, such as those in biopharmaceuticals. A well-

balanced summary is given of current and recently developed statistical

methods, and interpretations for both statisticians and researchers or scientists

with minimal statistical knowledge and engaged in the field of applied

biostatistics. The series is committed to providing easy-to-understand, state-

of-the-art references and textbooks. In each volume, statistical concepts and

methodologies are illustrated through real-world examples.

Regression and modeling are commonly employed in pharmaceutical re-

search and development. The purpose is not only to provide a valid and fair

assessment of the pharmaceutical entity under investigation before regulatory

approval, but also to assure that the pharmaceutical entity possesses good

characteristics with the desired accuracy and reliability. In addition, it is to

establish a predictive model for identifying patients who are most likely to

respond to the test treatment under investigation. This volume is a condensation

of various useful statistical methods that are commonly employed in pharma-

ceutical research and development. It covers important topics in pharmaceutical

research and development such as multiple linear regression, model building or

model selection, and analysis of covariance. This handbook provides useful

approaches to pharmaceutical research and development. It would be benefi-

cial to biostatisticians, medical researchers, and pharmaceutical scientists

who are engaged in the areas of pharmaceutical research and development.

Shein-Chung Chow
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1 Basic Statistical
Concepts

The use of statistics in clinical and pharmaceutical settings is extremely

common. Because the data are generally collected under experimental con-

ditions that result in measurements containing a certain amount of error,*

statistical analyses, though not perfect, are the most effective way of making

sense of the data. The situation is often portrayed as

T ¼ tþ e:

Here, the true but unknown value of a measurement, T, consists of a sample

measurement, t, and random error or variation, e. Statistical error is consid-

ered to be the random variability inherent in any system, not a mistake. For

example, the incubation temperature of bacteria in an incubator might have a

normal random fluctuation of +18C, which is considered a statistical error.

A timer might have an inherent fluctuation of +0.01 sec for each minute of

actual time. Statistical analysis enables the researcher to account for this

random error.

Fundamental to statistical measurement are two basic parameters: the

population mean, m, and the population standard deviation, s. The population

parameters are generally unknown and are estimated by the sample mean, �xx,

and sample standard deviation, s. The sample mean is simply the central

tendency of a sample set of data that is an unbiased estimate of the population

mean, m. The central tendency is the sum of values in a set, or population, of

numbers divided by the number of values in that set or population. For

example, for the sample set of values 10, 13, 19, 9, 11, and 17, the sum is

79. When 79 is divided by the number of values in the set, 6, the average

is 79 7 6¼ 13.17. The statistical formula for average is

�xx ¼

Pn

i¼1

xi

n
,

*Statistical error is not a wrong measurement or a mistaken measurement. It is, instead,

a representation of uncertainty concerning random fluctuations.
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where the operator,
Pn

i¼1 xi, means to sum (add) the values beginning with

i¼ 1 and ending with the value n; where n is the sample size.

The standard deviation for the population is written as s, and for a

sample as s.

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

(xi � m)2

N

v
u
u
u
t

,

where
Pn

i¼1 (xi � m)2 is the sum of the actual xi values minus the population

mean, the quantities squared; and N the total population size.

The sample standard deviation is given by

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

(xi � �xx)2

n� 1

v
u
u
u
t

,

where
Pn

i¼1 (xi � �xx)2 is the sum of the actual sample values minus the sample

mean, the quantities squared; and n�1 is the sample size minus 1, to account

for the loss of one degree of freedom from estimating m by �xx. Note that the

standard deviation s or s is the square root of the variance s2 or s2.

MEANING OF STANDARD DEVIATION

The standard deviation provides a measure of variability about the mean or

average value. If two data sets have the same mean, but their data range

differ,* so will their standard deviations. The larger the range, the larger the

standard deviation.

For instance, using our previous example, the six data points—10, 13,

19, 9, 11, and 17—have a range of 19� 9¼ 10. The standard deviation is

calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(10�13:1667)2þ (13�13:1667)2þ (19�13:1667)2þ (9�13:1667)2þ (11�13:1667)2þ (17�13:1667)2

6�1

s

¼4:0208:

Suppose the values were 1, 7, 11, 3, 28, and 29,

�xx ¼ 1þ 7þ 11þ 3þ 28þ 29

6
¼ 13:1667:

*Range¼maximum value�minimum value.
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The range is 29� 1¼ 28, and the standard deviation is



(1�13:1667)2þ (7�13:1667)2þ (11�13:1667)2þ (3�13:1667)2þ (28�13:1667)2þ (29�13:1667)2

6�1

s

¼12:3680:

Given a sample set is normally distributed,* the standard deviation has a very

useful property, in that one knows where the data points reside. The mean +1

standard deviation encompasses 68% of the data set. The mean +2 standard

deviations encompass about 95% of the data. The mean +3 standard devi-

ations encompass about 99.7% of the data. For a more in-depth discussion of

this, see D.S. Paulson, Applied Statistical Designs for the Researcher (Marcel

Dekker, 2003, pp. 21–34).

In this book, we restrict our analyses to data sets that approximate the

normal distribution. Fortunately, as sample size increases, even nonnormal

populations tend to become normal-like, at least in the distribution of their

error terms, e¼ (yi� �yy), about the value 0. Formally, this was known as the

central limit theorem, which states that in simulation and real-world condi-

tions, the error terms e become more normally distributed as the sample size

increases (Paulson, 2003). The error itself, random fluctuation about the

predicted value (mean), is usually composed of multiple unknown influences,

not just one.

HYPOTHESIS TESTING

In statistical analysis, often a central objective is to evaluate a claim made

about a specific population. A statistical hypothesis consists of two mutually

exclusive, dichotomous statements of which one will be accepted and the

other rejected (Lapin, 1977; Salsburg, 1992).

The first of the dichotomous statements is the test hypothesis, also known

as the alternative hypothesis (HA). It always hypothesizes the results of a

statistical test to be significant (greater than, less than, or not equal). For

example, the test of the significance (alternative hypothesis) of a regression

function may be that b1 (the slope) is not equal to 0 (b1 6¼ 0). The null

hypothesis (H0, the hypothesis of no effect) would state the opposite that

b1¼ 0. In significance testing, it is generally easier to state the alternative

hypothesis first and then the null hypothesis. Restricting ourselves to two

sample groups (e.g., test vs. control or group A vs. group B), any of the three

basic conditions of hypothesis tests can be employed—an upper-tail, a lower-

tail, or a two-tail condition.

*A normally distributed set of data are symmetrical about the mean, and the mean¼
mode¼median at one central peak, a bell-shaped or Gaussian distribution.
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Upper-Tail Test

The alternative or test hypothesis HA asserts that one test group is larger in

value than the other in terms of a parameter, such as the mean or the slope of a

regression. For example, the slope (b1) of one regression function is larger

than that of another.* The null hypothesis H0 states that the test group value is

less than or equal to that of the other test group or the control. The upper-tail

statements written for comparative slopes of regression, for example, would

be as follows:

H0: b1 � b2 (the slope b1 is less than or equal to b2 in rate value),

HA: b1 > b2 (the slope b1 is greater than b2 in rate value).

Lower-Tail Test

For the lower-tail test, the researcher claims that a certain group’s parameter

of interest is less than that of the other. Hence, the alternative hypothesis

states that b1 < b2. The null hypothesis is stated in the opposite direction with

the equality symbol:

H0 : b1 � b2 (the slope b1 is equal to or greater than b2 in rate value),

HA: b1 < b2 (the slope of b1 is less than b2 in rate value).

Two-Tail Test

A two-tail test is used to determine if a difference exists between the two

groups in a parameter of interest, either larger or smaller. The null hypothesis

states that there is no such difference.

H0: b1¼b2 (the slope b1 equals b2),

HA: b1 6¼ b2 (the two slopes differ).

Hypothesis tests are never presented as absolute statements, but as probability

statements, generally for alpha or type I error. Alpha (a) error is the prob-

ability of accepting an untrue alternative hypothesis; that is, rejecting the null

hypothesis when it is, in fact, true. For example, concluding one drug is better

than another when, in fact, it is not. The alpha error level is a researcher’s set

probability value, such as a¼ 0.05, or 0.10, or 0.01. Setting alpha at 0.05

means that, over repeated testing, a type I error would be made 5 times out of

100 times. The probability is never in terms of a particular trial, but over the

long run. Unwary researchers may try to protect themselves from committing

*The upper- and lower-tail tests can also be used to compare data from one sample group to a

fixed number, such as 0 in the test: b1 6¼ 0.
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this error by setting a at a smaller level, say 0.01; that is, the probability of

committing a type I error is 1 time in 100 experiments, over the long run.

However, reducing the probability of type I error generally creates another

problem. When the probability of type I (a) error is reduced by setting a at a

smaller value, the probability of type II or beta (b) error will increase, with all

the other things equal. Type II or beta error is the probability of rejecting an

alternative hypothesis when it is true—for example, stating that there is no

difference in drugs or treatments when there really is.

Consider the case of antibiotics, in which a new drug and a standard drug

are compared. If the new antibiotic is compared with the standard one for

antimicrobial effectiveness, a type I (a) error is committed if the researcher

concludes that the new antibiotic is more effective than the old one, when it is

actually not. Type II (b) error occurs if the researcher concludes that the new

antibiotic is not better than the standard one, when it really is.

For a given sample size n, alpha and beta errors are inversely related in

that, as one reduces the a error rate, one increases the b error rate, and vice

versa. If one wishes to reduce the possibility of both types of errors, one must

increase n. In many medical and pharmaceutical experiments, the alpha

level is set by convention at 0.05 and beta at 0.20 (Sokal and Rohlf, 1994;

Riffenburg, 2006). The power of a statistic (1�b) is its ability to reject both

false alternative and null hypotheses; that is, to make correct decisions.

True Condition Accept H0 Reject H0

H0 true Correct decision Type I error

H0 false Type II error Correct decision

There are several ways to reduce both type I and type II errors available to

researchers. First, one can select a more powerful statistical method that

reduces the error term by blocking, for example. This is usually a major

goal for researchers and a primary reason they plan the experimental phase of

a study in great detail. Second, as mentioned earlier, a researcher can increase

the sample size. An increase in the sample size tends to reduce type II error,

when holding type I error constant; that is, if the alpha error is set at 0.05,

increasing the sample size generally will reduce the rate of beta error.

Random variability of the experimental data plays a major role in the

power and detection levels of a statistic. The smaller the variance s2,

the greater the power of any statistical test. The lesser the variability, the

smaller the value s2 and the greater the detection level of the statistic. An

effective way to determine if the power of a specific statistic is adequate for

the researcher is to compute the detection limit d. The detection limit simply

informs the researcher how sensitive the test is by stating what the difference

needs to be between test groups to state that a significant difference exists.
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To prevent undue frustration for a researcher, to perform a hypothesis test

in this book, we use a six-step procedure to simplify the statistical testing

process. If the readers desire a basic introduction to hypothesis testing, they

can consult Applied Statistical Designs for the Researcher (Marcel Dekker,

2003, pp. 35–47). The six steps to hypothesis testing are as follows:

Step 1: Formulate the hypothesis statement, which consists of the null (H0)

and alternative (HA) hypotheses. Begin with the alternative hypothesis.

For example, the slope b1 is greater in value than the slope b2; that is, HA:

b1 > b2. On the other hand, the log10 microbial reductions for formula MP1

are less than those for MP2; that is, HA: MP1 < MP2. Alternatively, the

absorption rate of antimicrobial product A is different from that of antimi-

crobial product B; that is, HA: product A 6¼ product B.

Once the alternative hypothesis is determined, the null hypothesis can be

written, which is the opposite of the HA hypothesis, with the addition of

equality. Constructing the null hypothesis after the alternative is often easier

for the researcher. If HA is an upper-tail test, such as A is greater than B, then

HA: A>B. The null hypothesis is written as A is equal to or less than B; that is,

H0: A � B. If HA is a lower-tail test, then H0 is an upper-tail with an equality:

HA: A < B,

H0: A � B.

If HA is a two-tail test, where two groups are considered to differ, the null

hypothesis is that of equivalence:

HA: A 6¼ B,

H0: A¼B.

By convention, the null hypothesis is the lead or first hypothesis presented in

the hypothesis statement; so formally, the hypothesis tests are written as

Upper-Tail Test:

H0: A � B,

HA: A > B.

Lower-Tail Test:

H0: A � B,

HA: A < B.

Two-Tail Test:

H0: A¼B,

HA: A 6¼ B.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C001 Final Proof page 6 16.11.2006 7:37pm

6 Handbook of Regression and Modeling



Note that an upper-tail test can be written as a lower-tail test, and a lower-tail test

can be written as an upper-tail test simply by reversing the order of the test groups.

Upper-Tail Test Lower-Tail Test

H0: A � B H0: B � A

¼
HA: A > B HA: B < A

Step 2: Establish the a level and the sample size n. The a level is generally

set at a¼ 0.05. This is by convention and really depends on the research

goals. The sample size of the test groups is often a specific preset number.

The sample size ideally should be determined based on the required detect-

able difference d an established b level and an estimate of the sample

variance s2. For example, in a clinical setting, one may determine that a

detection level is adequate if the statistic can detect a 10% change in serum

blood levels; for a drug stability study, detection of a 20% change in drug

potency may be acceptable; and in an antimicrobial time-kill study, a +0.5

log10 detection level may be adequate.

Beta error ( b), the probability of rejecting a true HA hypothesis, is often set at

0.20, again, by convention. The variance (s2) is generally estimated based on

prior experimentation. For example, the standard deviation in a surgical scrub

evaluation for normal resident flora populations on human subjects is about

0.5 log10; thus, 0.52 is a reasonable variance estimate. If no prior variance levels

have been collected, it must be estimated, ideally, by means of a pilot study.

Often, two sample groups are contrasted. In this case, the joint standard

deviation must be computed. For example, assume that s1
2¼ 0.70 and

s2
2¼ 0.81 log10, representing the variances of group 1 and group 2 data. An

easy and conservative way of doing this is to compute ŝs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2

p
orffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:70þ 0:81
p

¼ 1:23, the estimated joint standard deviation. If one wants,

say a detection level (d) of 0.5 log10 and sets a¼ 0.05 and b¼ 0.20, a rough

sample size computation is given by

n �
ms2(Za=2 þ Zb)2

d2
,

where n is the sample size for each of the sample groups; m is the number of

groups to be compared, m¼ 2 in this example; s2 is the estimate of the common

variance. Suppose here s2¼ (1.23)2; Za=2 is the normal tabled value for a.

Suppose a¼ 0.05, then a=2¼ 0.025, so Za=2¼ 1.96, from the standard normal

distribution table (Table A); Zb is the normal tabled value for b. Suppose b¼ 0.20,

then Zb¼ 0.842, from the standard normal distribution table; d is the detection

level, say +0.5 log10.
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The sample size estimation is

n � 2(1:23)2(1:96þ 0:842)2

0:52
¼ 95:02:

Hence, n � 95 subjects each of the two groups at a¼ 0.05, b¼ 0.20, and

ŝs¼ 1.23. The test can detect a 0.5 log10 difference between the two groups.

Step 3: Next, the researcher selects the statistic to be used. In this book, the

statistics used are parametric ones.

Step 4: The decision rule is next determined. Recall the three possible

hypothesis test conditions as shown in Table 1.1.

Step 5: Collect the sample data by running the experiment.

Step 6: Apply the decision rule (Step 4) to the null hypothesis, accepting or

rejecting it at the specified a level.*

TABLE 1.1
Three Possible Hypothesis Test Conditions

Lower-Tail Test Upper-Tail Test Two-Tail Test

H0: A � B H0: A � B H0: A ¼ B

HA: A < B HA: A > B HA: A 6¼ B

Visual Visual Visual

Reject H0 Accept H0
at −α

Critical
values

Reject H0
Accept H0

at α

Critical
values

Reject H0
at −α/2

Reject H0
at α/2

Accept H0

Critical
values

Decision: If the test value

calculated is less than the

tabled significance value,

reject H0.

Decision: If the test value

calculated is greater than

the tabled significance

value, reject H0.

Decision: If the test value

calculated is greater than the

tabled significance value or less

than the tabled significance

value, reject H0.

*Some researchers do not report the set a value, but instead use a p value so that the readers can

make their own test significance conclusions. The p value is defined as the probability of

observing the computed significance test value or a larger one, if the H0 hypothesis is true. For

example, P[t � 2.1 j H0 true]� 0.047. The probability of observing a t-calculated value of 2.1, or

a more extreme value, given the H0 hypothesis is true is less than or equal to 0.047. Note that this

value is less than 0.05, thus at a¼ 0.05, it is statistically significant.
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CONFIDENCE INTERVALS

Making interval predictions about a parameter, such as the mean value, is a

very important and useful aspect of statistics. Recall that, for a normal

distribution, the mean value+ the standard deviation provides a confidence

interval in which about 68% of the data lie.

The �xx+ s interval contains approximately 68% of the data in the entire

sample set of data (Figure 1.1). If the mean value is 80 with a standard

deviation of 10, then the 68% confidence interval is 80+ 10; therefore, the

interval 70–90 contains 68% of the data set.

The interval �xx+ 2s contains 95% of the sample data set, and the interval

�xx+ 3s contains 99% of the data. In practice, knowing the spread of the data

about the mean is valuable, but from a practical standpoint, the interval of the

mean is a confidence interval of the mean, not of the data about the mean.

Fortunately, the same basic principle holds when we are interested in the

standard deviation of the mean, which is s=
ffiffiffi
n
p

, and not the standard deviation

of the data set, s. Many statisticians refer to the standard deviation of the mean

as the standard error of the mean.

Roughly, then, �xx� s=
ffiffiffi
n
p

is the interval in which the true population mean

m will be found 68 times out of 100. The 95% confidence interval for the

population mean m is �xx� 2:0s=
ffiffiffi
n
p

. However, because s=
ffiffiffi
n
p

slightly overesti-

mates the interval, 95 out of 100 times, the true m will be contained in the

interval, �xx� 1:96s=
ffiffiffi
n
p

, given the sample size is large enough to assure a

normal distribution. If not, the Student’s t distribution (Table B) is used,

instead of the Z distribution (Table A).

APPLIED RESEARCH AND STATISTICS

The vast majority of researchers are not professional statisticians but are,

instead, experts in other areas, such as medicine, microbiology, chemistry,

pharmacology, engineering, or epidemiology. Many professionals of these

x

68% of the data are 
contained within this interval

−s s

FIGURE 1.1 Normal distribution of data.
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kinds, at times, work in collaboration with statisticians with varying success.

A problem that repeatedly occurs between researchers and statisticians is a

knowledge gap between fields (Figure 1.2). Try as they might, statisticians tend

to be only partially literate in the sciences, and scientists only partially literate

in statistics. When they attempt to communicate, neither of them can perceive

fully the experimental situation from the other’s point of view. Hence, statist-

icians interpret as best they can what the scientists are doing, and the scientists

interpret as best they can what the statisticians are doing. How close they come

to mutual understanding is variable and error-prone (Paulson, 2003).

In this author’s view, the best researchers are trained primarily in the

sciences, augmented by strong backgrounds in research design and applied

statistics. When this is the case, they can effectively ground the statistical

analyses into their primary field of scientific knowledge. If the statistical test

and their scientific acumen are at variance, they will suspect the statistic and

use their field knowledge to uncover an explanation.

EXPERIMENTAL VALIDITY

Experimental validity means that the conclusions drawn on inference are true,

relative to the perspective of the research design. There are several threats to

inference conclusions drawn from experimentation, and they include (1)

internal validity, (2) external validity, (3) statistical conclusion validity, and

(4) construct validity.

Internal validity is the validity of a particular study and its claims. It is a

cause–effect phenomenon. To assure internal validity, researchers are strongly

advised to include a reference or control arm when evaluating a test condition.

A reference arm is a treatment or condition in which the researcher has a priori
knowledge of the outcome. For example, if a bacterial strain of Staphylococcus
aureus, when exposed to a 4% chlorhexidine gluconate (CHG) product, is

generally observed to undergo a 2 log10 reduction in population after 30 sec

Field knowledge:
Biology
Medicine
Chemistry
Engineering
Microbiology

Statistical
knowledge

Gap

FIGURE 1.2 Knowledge gap between fields.
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of exposure, it can be used as a reference or control, given that data from

a sufficient number of historical studies confirm this. A control arm is another

alternative to increase the internal validity of a study. A control is essentially a

standard with which a test arm is compared in relative terms.

Researchers assume that, by exposing S. aureus to 4% CHG (cause), a

2 log10 reduction in population will result (effect). Hence, if investigators

evaluated two products under the conditions of this test and reported a 3

log10 and 4 log10 reduction, respectively, they would have no way of

assuring the internal validity of the study. However, if the reference or

control product, 4% CHG, was also tested with the two products, and it

demonstrated a 4 log10 reduction, researchers would suspect that a third,

unknown variable had influenced the study. With that knowledge, they could

no longer state that the products themselves produced the 3 log10 and 4 log10

reductions, because the reference or control product’s results were greater than

the 2 log10 expected.

External validity is the degree to which one can generalize from a specific

study’s findings based on a population sample to the general population. For

example, if a presurgical skin preparation study of an antimicrobial product is

conducted in Bozeman, Montana, using local residents as participants, can the

results of the study be generalized across the country to all humans? To

increase the external validity, the use of heterogeneous groups of persons

(different ages, sexes, and races) drawn from different settings (sampling in

various parts of the country), at different times of year (summer, spring,

winter, and fall) is of immense value. Hence, to assure external validity, the

FDA requires that similar studies be conducted at several different laboratories

located in different geophysical settings using different subjects.

Statistical conclusion validity deals with the power of a statistic (1 – b),

type I (a), and type II ( b) errors (Box et al., 2005). Recall, type I (a) error is

the probability of rejecting a true null hypothesis whereas type II ( b) error

is the probability of accepting a false null hypothesis. A type I error is

generally considered more serious than a type II error. For example, if one

concludes that a new surgical procedure is more effective than the standard

one, and the conclusion is untrue (type I error), this mistake is viewed as a

more serious error than stating that a new surgical procedure is not better than

the standard one, when it really is (type II error). Hence, when a is set at 0.05,

and b is set at 0.20, as previously stated, as one lessens the probability of

committing one type of error, one increases the probability of committing the

other, given the other conditions are held constant. Generally, the a error

acceptance level is set by the experimenter, and the b error is influenced by its

value. For example, if one decreases a¼ 0.05 to a¼ 0.01, the probability of a

type I error decreases, but type II error increases, given the other parameters

(detection level, sample size, and variance) are constant. Both error levels are

reduced, however, when the sample size is increased.
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Most people think of the power of a statistic as its ability to enable the

researcher to make a correct decision—to reject the null hypotheses when it is

incorrect, and accept the alternative hypotheses when it is correct. However,

this is not the precise statistical definition. Statistical power is simply 1 – b, or

the probability of selecting the alternative hypothesis when it is true. Gener-

ally, employing the correct statistical method and assuring the method’s

validity and robustness provide the most powerful and valid statistic. In

regression analysis, using a simple linear model to portray polynomial data

is a less powerful, and, sometimes, even nonvalid model. A residual analysis

is recommended in evaluating the regression model’s fit to the actual data;

that is, how closely the predicted values of ŷ match the actual values of y. The

residuals, e¼ ŷ� y, are of extreme value in regression, for they provide a firm

answer to just how valid the regression model is.

For example (Figure 1.3), the predicted regression values, ŷi, are linear,

but the actual, yi, values are curvilinear. A residual analysis quickly would

show this. The ei values initially are negative, then are positive in the middle

range of xi values, and then negative again in the upper xi values (Figure 1.4).

If the model fits the data, there would be no discernable pattern about 0, just

random ei values.

Although researchers need not be statisticians to perform quality research,

they do need to understand the basic principles of experimental design and

apply them. In this way, the statistical model usually can be kept relatively

low in complexity and provide straightforward, unambiguous answers.

Underlying all research is the need to present the findings in a clear, concise

manner. This is particularly important if one is defending those findings

yi

xi

y

where xi , the independent variable;

ˆ

ŷi

yi , the predicted dependent variable with respect to xi .
yi, the dependent variable with respect to xi ; 

FIGURE 1.3 Predicted regression values.
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before a regulatory agency, explaining them to management, or looking for

funding from a particular group, such as marketing.

Research quality can be better assured through a thorough understanding

of how to employ statistical methods properly, and in this book, they consist

of regression methods. Research quality is often compromised when one

conducts an experiment before designing the study statistically, and after-

ward, determining ‘‘what the numbers mean.’’ In this situation, researchers

often must consult a professional statistician to extract any useful informa-

tion. An even more unacceptable situation can occur when a researcher

evaluates the data using a battery of statistical methods and selects the one

that provides the results most favorable to a preconceived conclusion. This

should not be confused with fitting a regression model to explain the data,

but rather, is fitting a model to a predetermined outcome ( Box et al., 2005).

EMPIRICAL RESEARCH

Statistical regression methods, as described in this text, require objective

observational data that result from measuring specific events or phenomena

under controlled conditions in which as many extraneous influences as pos-

sible, other than the variable(s) under consideration, are eliminated. To be

valid, regression methods employed in experimentation require at least four

conditions to be satisfied:

1. Collection of sample response data in an unbiased manner

2. Accurate, objective observations and measurements

3. Unbiased interpretation of data-based results

4. Reproducibility of the observations and measurements

0

yi   yi  = ei
^

x

FIGURE 1.4 Residual d graph.
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The controlled experiment is a fundamental tool for the researcher.* In

controlled experiments, a researcher collects the dependent sample data (y)

from the population or populations of interest at particular preestablished

levels of a set of x values.

BIASES

Measurement error has two general components, a random error and a

systematic error (Paulson, 2003). Random error is an unexplainable fluctu-

ation in the data for which the researcher cannot identify a specific cause and,

therefore, cannot be controlled. Systematic error, or bias, is an error that is not

the consequence of chance alone. In addition, systematic error, unlike random

fluctuation, has a direction and magnitude.

Researchers cannot will themselves to take a purely objective perspective

toward research, even if they think they can. Researchers have personal

desires, needs, wants, and fears that will unconsciously come into play by

filtering, to some degree, the research, particularly when interpreting the

data’s meaning (Polkinghorne, 1983). In addition, shared, cultural values of

the scientific research community bias researchers’ interpretations with preset

expectations (Searle, 1995). Therefore, the belief of researchers that they are

without bias is particularly dangerous (Varela and Shear, 1999).

Knowing the human predisposition to bias, it is important to collect data

using methods for randomization and blinding. It is also helpful for research-

ers continually to hone their minds toward strengthening three important

characteristics:

Openness

Discernment

Understanding

Openness

The research problem, the research implementation, and the interpretation of

the data must receive the full, open attention of the researcher. Open attention

can be likened to the Taoist term, wu wei, or noninterfering awareness

*However, at least three data types can be treated in regression analysis: observational, experi-

mental, and completely randomized. Observational data are those collected via non-

experimental processes—for example, going through quality assurance records to determine if

the age of media affects its bacterial growth-promoting ability. Perhaps over a period of months,

the agar media dries and becomes less supportive of growth. Experimental data are collected

when, say, five time points are set by the experimenter in a time-kill study, and the log10 microbial

colony counts are allowed to vary, dependent on the exposure time. Completely randomized data

require that the independent variable be assigned at random.
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(Maslow, 1971); that is, the researcher does not try to interpret initially but is,

instead, simply aware. In this respect, even though unconscious bias remains,

the researcher must not consciously overlay data with theoretical constructs

concerning how the results should appear (Polkinghorne, 1983); that is, the

researcher should strive to avoid consciously bringing to the research process

any preconceived values. This is difficult, because those of us who perform

research have conscious biases. Probably the best way to remain consciously

open for what is is to avoid becoming overly invested, a priori, in specific

theories and explanations.

Discernment

Accompanying openness is discernment—the ability not only to be passively

aware, but also to go a step further to see into the heart of the experiment and

uncover information not immediately evident, but not adding information that

is not present. Discernment can be thought of as one’s internal nonsense

detector. Unlike openness, discernment enables the researcher to draw on

experience to differentiate fact from supposition, association from causation,

and intuition from fantasy. Discernment is an accurate discrimination with

respect to sources, relevance, pattern, and motives by grounding interpretation

in the data and one’s direct experience (Assagioli, 1973).

Understanding (Verstehen)

Interwoven with openness and discernment is understanding. Researchers

cannot merely observe an experiment, but must understand—that is, correctly

interpret—the data (Polkinghorne, 1983). Understanding what is, then, is

knowing accurately and precisely what the phenomena mean. This type of

understanding is attained when intimacy with the data and their meaning is

achieved and integrated. In research, it is not possible to gain understanding

by merely observing phenomena and analyzing them statistically. One must

interpret the data correctly, a process enhanced by at least three conditions:

1. Familiarity with the mental processes by which understanding and,

hence, meaning is obtained must exist. In addition, much of this

meaning is shared. Researchers do not live in isolation, but within a

culture—albeit scientific—which operates through shared meaning,

shared values, shared beliefs, and shared goals (Sears et al., 1991).

Additionally, one’s language—both technical and conversant—is held

together through both shared meaning and concepts. Because each

researcher must communicate meaning to others, understanding the

semiotics of communication is important. For example, the letters—

marks—on this page are signifiers. They are symbols that refer to

collectively defined (by language) objects or concepts known as refer-

ents. However, each individual has a slightly unique concept of each

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C001 Final Proof page 15 16.11.2006 7:37pm

Basic Statistical Concepts 15



referent stored in their memory, termed the signified. For instance,

when one says or writes tree, the utterance or letter markings of t-r-e-e,

this is a signifier that represents a culturally shared referent, the symbol

of a wooden object with branches and leaves. Yet, unavoidably, we

have a slightly different concept of the referent, tree. This author’s

mental signified may be an oak tree; the reader’s may be a pine tree.

2. Realization that an event and the perception of an event are not the

same. Suppose a researcher observes event A1 at time t1 (Figure 1.5).

The researcher describes what was witnessed at time t1, which is now

a description, A2, of event A1 at time t2. Later, the researcher will

distance even farther from event A1 by reviewing laboratory notes on

A2, a process that produces A3. Note that this process hardly represents

a direct, unbiased view of A1. The researcher will generally inter-

pret data (A3), which, themselves, are interpretations of data to some

degree (A2), based on the actual occurrence of the event, A1 (Varela

and Shear, 1999).

3. Understanding that a scientific system, itself (e.g., biology, geology),

provides a definition of most observed events that transfer interpret-

ation, which is again reinterpreted by researchers. This, in itself, is

biasing, particularly in that it provides a preconception of what is.

EXPERIMENTAL PROCESS

In practice, the experimental process is usually iterative. The results of

experiment A become the starting point for experiment B, the next experi-

ment (Figure 1.6). The results of experiment B become the starting point for

experiment C. Let us look more closely at the iterative process in an example.

Suppose one desires to evaluate a newly developed product at five

incremental concentration levels (0.25%, 0.50%, 0.75%, 1.00%, and 1.25%)

A1

Time
t1 t2 t3

A2

A3
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FIGURE 1.5 Fact interpretation gradient of experimental processes.
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for its antimicrobial effects against two representative pathogenic bacterial

species—S. aureus, a Gram-positive bacterium, and Escherichia coli, a Gram-

negative one. The researcher designs a simple, straightforward test to observe

the antimicrobial action of the five concentration levels when challenged for

1 min with specific inoculum levels of S. aureus and E. coli. Exposure to the

five levels of the drug, relative to the kill produced in populations of the two

bacterial species, demonstrates that the 0.75% and the 1.00% concentrations

were equivalent in their antimicrobial effects, and that 0.25%, 0.50%, and

1.25% were much less antimicrobially effective.

Encouraged by these results, the researcher designs another study focus-

ing on the comparison of the 0.75% and the 1.00% drug formulations, when

challenged for 1 min with 13 different microbial species to identify the better

(more antimicrobially active) product. However, the two products perform

equally well against the 13 different microorganism species at 1 min expos-

ures. The researcher then designs the next study to use the same 13 micro-

organism species, but at reduced exposure times, 15 and 30 sec, and adds a

competitor product to use as a reference.

The two formulations again perform equally well and significantly better

than the competitor. The researcher now believes that one of the products may

truly be a candidate to market, but at which active concentration? Product cost

studies, product stability studies, etc. are conducted, and still the two products

are equivalent.

Finally, the researcher performs a clinical trial with human volunteer

subjects to compare the two products’ antibacterial efficacy, as well as their

skin irritation potential. Although the antimicrobial portion of the study had

revealed activity equivalence, the skin irritation evaluation demonstrates that

Conduct experiment A A

Results of experiment A A

Leads to designing experiment B

Conduct experiment B B

Results of experiment B B

Leads to designing experiment C

Conduct experiment C C

• •

• •

• •

FIGURE 1.6 Iterative approach to research.
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the 1.00% product was significantly more irritating to users’ hands. Hence,

the candidate formulation is the 0.75% preparation.

This is the type of process commonly employed in new product develop-

ment projects (Paulson, 2003). Because research and development efforts are

generally subject to tight budgets, small pilot studies are preferred to larger,

more costly ones. Moreover, usually this is fine, because the experimenter has

intimate, first-hand knowledge of their research area, as well as an under-

standing of its theoretical aspects. With this knowledge and understanding,

they can usually ground the meaning of the data in the observations, even

when the number of observations is small.

Yet, researchers must be aware that there is a downside to this step-

by-step approach. When experiments are conducted one factor at a time,

if interaction between factors is present, it will not be discovered. Statistical

interaction occurs when two or more products do not produce the same

proportional response at different levels of measurement. Figure 1.7 depicts

log10 microbial counts after three time exposures with product A (50%
strength) and product B (full strength). No interaction is apparent because,

over the three time intervals, the difference between the product responses

is constant.

Figure 1.8 shows statistical interaction between factors. At time t1, prod-

uct A provides more microbial reduction (lower counts) than product B. At

time t2, product A demonstrates less reduction in microorganisms than does

product B. At time t3, products A and B are equivalent. When statistical

Log10
microbial
counts

Y

Xt1 Xt2 Xt3
Xt

A

B

FIGURE 1.7 No interaction present.
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interaction is present, it makes no sense to discuss the general effects of

products A and B, individually. Instead, one must discuss product performance

relative to a specific exposure time frame; that is, at times xt1, xt2, and xt3.

Additionally, researchers must realize that reality cannot be broken into

small increments to know it in toto. This book is devoted mainly to small

study designs, and although much practical information can be gained from

small studies, by themselves, they rarely provide a clear perspective on the

whole situation.

We humans tend to think and describe reality in simple cause-and-effect

relationships (e.g., A causes B). However, in reality, phenomena seldom share

merely linear relationships, nor do they have simple, one-factor causes. For

example, in medical practice, when a physician examines a patient infected

with S. aureus, they will likely conclude that S. aureus caused the disease and

proceed to eliminate the offending microorganism from the body. Yet, this is

not the complete story. The person’s immune system—composed of the

reticuloendothelial system, immunocytes, phagocytes, etc.—acts to prevent

infectious diseases from occurring, and to fight them, once the infection is

established. The immune system is directly dependent on genetic predispos-

ition, modified through one’s nutritional state, psychological state (e.g.,

a sense of life’s meaning and purpose), and stress level. In a simple case

like this, where oral administration of an antibiotic cures the disease, know-

ledge of these other influences does not usually matter. However, in more

complicated chronic diseases such as cancer, those other factors may play an

important role in treatment efficacy and survival of the patient.

Log10
microbial
counts

Y

Xt1 Xt2 Xt3

Xt Exposure
time

B

A

B

A

FIGURE 1.8 Interaction present.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C001 Final Proof page 19 16.11.2006 7:37pm

Basic Statistical Concepts 19



OTHER DIFFICULTIES IN RESEARCH

There are three other phenomena that may pose difficulties for the experi-

menter:

Experimental (random) error

Confusing correlation with causation

Employing a study design that is complex, when a simpler one would be

as good

EXPERIMENTAL ERROR

Random variability—experimental error—is produced by a multitude of

uncontrolled factors that tend to obscure the conclusions one can draw from

an experiment based on a small sample size. This is a very critical consideration

in research where small sample sizes are the rule, because it is more difficult to

detect significant treatment effects when they truly exist, a type II error.

One or two wild data points (outliers) in a small sample can distort the mean

and hugely inflate the variance, making it nearly impossible to make infer-

ences—at least meaningful ones. Therefore, before experimenters become

heavily invested in a research project, they should have an approximation of

what the variability of the data is and establish the tolerable limits for both the

alpha (a) and beta (b) errors, so that the appropriate sample size is tested.

Although, traditionally, type I (a) error is considered more serious than

type II (b) error, this is not always the case. In research and development

(R&D) studies, type II error can be very serious. For example, if one is

evaluating several compounds, using a small sample size pilot study, there

is a real problem of concluding statistically that the compounds are not

different from each other, when actually they are. Here, type II (b) error

can cause a researcher to reject a promising compound. One way around this

is to increase the a level to reduce b error; that is, use an a of 0.10 or 0.15,

instead of 0.05 or 0.01. In addition, using more powerful statistical procedures

can immensely reduce the probability of committing b error.

CONFUSING CORRELATION WITH CAUSATION

Correlation is a measure of the degree to which two variables vary linearly

with relation to each other. Thus, for example, in comparing the number of

lightning storms in Kansas to the number of births in New York City, you

discover a strong positive correlation: the more lightning storms in Kansas,

the more children born in New York City (Figure 1.9).

Although the two variables appear to be correlated sufficiently to claim

that the increased incidence of Kansas lightning storms caused increased

childbirth in New York, correlation is not causation. Correlation between
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two variables, X and Y, often occurs because they are both associated with a

third factor, Z, which is unknown. There are a number of empirical ways to

verify causation, and generally these do not rely on statistical inference.

Therefore, until causation is truly demonstrated, it is preferred to state that

correlated data are ‘‘associated,’’ rather than causally related.

COMPLEX STUDY DESIGN

In many research situations, especially those involving human subjects in

medical research clinical trials, such as blood level absorption rates of a drug,

the study design must be complex to evaluate the dependent variable(s) better.

However, whenever possible, it is wise to use the rule of parsimony; that is,

use the simplest and most straightforward study design available. Even simple

experiments can quickly become complex. Adding other questions, although

interesting, will quickly increase complexity. This author finds it useful to

state formally the study objectives, the choice of experimental factors and

levels (i.e., independent variables), the dependent variable one intends to

measure to fulfill the study objectives, and the study design selected. For

example, suppose biochemists evaluate the log10 reduction in S. aureus
bacteria after a 15 sec exposure to a new antimicrobial compound produced

in several pilot batches. They want to determine the 95% confidence interval
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FIGURE 1.9 Correlation between unrelated variables.
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for the true log10 microbial average reduction. This is simple enough, but then

the chemists ask:

1. Is there significant lot-to-lot variation in the pilot batches? If there is,

perhaps one is significantly more antimicrobially active than another.

2. What about subculture-to-subculture variability in the antimicrobial

resistance of the strain of S. aureus used in testing? If one is interested

in knowing if the product is effective against S. aureus, how many

strains must be evaluated?

3. What about lot-to-lot variability in the culture medium used to grow

the bacteria? The chemists remember supplier A’s medium routinely

supporting larger microbial populations than that of supplier B. Should

both be tested? Does the medium contribute significantly to log10

microbial reduction variability?

4. What about procedural error by technicians and variability between

technicians? The training records show technician A to be more accur-

ate in handling data than technicians B and C. How should this be

addressed?

As one can see, even a simple study can—and often will—become complex.

BASIC TOOLS IN EXPERIMENTAL DESIGN

There are three basic tools in statistical experimental design (Paulson, 2003):

Replication

Randomization

Blocking

Replication means that the basic experimental measurement is repeated. For

example, if one is measuring the CO2 concentration of blood, those measure-

ments would be repeated several times under controlled circumstances. Rep-

lication serves several important functions. First, it allows the investigator to

estimate the variance of the experimental or random error through the sample

standard deviation (s) or sample variance (s2). This estimate becomes a basic

unit of measurement for determining whether observed differences in the data

are statistically significant. Second, because the sample mean (�xx) is used to

estimate the true population mean (m), replication enables an investigator to

obtain a more precise estimate of the treatment effect’s value. If s2 is the

sample variance of the data for n replicates, then the variance of the sample

mean is s�xx
2 ¼ s2=n.

The practical aspect of this is that if few or no replicates are made,

then the investigator may be unable to make a useful inference about the

true population mean, m. However, if the sample mean is derived from
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replicated data, the population mean, m, can be estimated more accurately

and precisely.

Randomization of a sampling process is a mainstay of statistical analysis.

No matter how careful an investigator is in eliminating bias, it can still creep

into the study. Additionally, when a variable cannot be controlled, random-

ized sampling can modulate any biasing effect. Randomization schemes can

be achieved by using a table of random digits or a computer-generated

randomization subroutine. Through randomization, each experimental unit

is as likely to be selected for a particular treatment or measurement as are

any of the others.

Blocking is another common statistical technique used to increase the

precision of an experimental design by reducing or even eliminating nuisance

factors that influence the measured responses, but are not of interest to the

study. Blocks consist of groups of the experimental unit, such that each group

is more homogenous with respect to some variable than is the collection of

experimental units as a whole. Blocking involves subjecting the block to all

the experimental treatments and comparing the treatment effects within each

block. For example, in a drug absorption study, an investigator may have four

different drugs to compare. They may block according to similar weights of

test subjects. The rationale is that the closer the subjects are to the same

weight, the closer the baseline liver functions will be. The four individuals

between 120 and 125 pounds in block 1 each randomly receive one of the four

test drugs. Block 2 may contain the four individuals between 130

and 135 pounds.

STATISTICAL METHOD SELECTION: OVERVIEW

The statistical method, to be appropriate, must measure and reflect the data

accurately and precisely. The test hypothesis should be formulated clearly and

concisely. If, for example, the study is designed to test whether products A

and B are different, statistical analysis should provide an answer.

Roger H. Green, in his book Sampling Designs and Statistical Methods for
Environmental Biologists, describes 10 steps for effective statistical analysis

(Green, 1979). These steps are applicable to any analysis:

1. State the test hypothesis concisely to be sure that what you are testing

is what you want to test.

2. Always replicate the treatments. Without replication, measurements of

variability may not be reliable.

3. As far as possible, keep the number of replicates equal throughout the

study. This practice makes it much easier to analyze the data.

4. When determining whether a particular treatment has a significant

effect, it is important to take measurements both where the test condi-

tion is present and where it is absent.
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5. Perform a small-scale study to assess the effectiveness of the design

and statistical method selection, before going to the effort and expense

of a larger study.

6. Verify that the sampling scheme one devises actually results in a

representative sample of the target population. Guard against system-

atic bias by using techniques of random sampling.

7. Break a large-scale sampling process into smaller components.

8. Verify that the collected data meet the statistical distribution assump-

tions. In the days before computers were commonly used and programs

were readily available, some assumptions had to be made about distri-

butions. Now it is easy to test these assumptions, to verify their

validity.

9. Test the method thoroughly to make sure that it is valid and useful for

the process under study. Moreover, even if the method is satisfactory

for one set of data, be certain that it is adequate for other sets of data

derived from the same process.

10. Once these nine steps have been carried out, one can accept the results

of analysis with confidence. Much time, money, and effort can be

saved by following these steps to statistical analysis.

Before assembling a large-scale study, the investigator should reexamine

(a) the test hypothesis, (b) the choice of variables, (c) the number of replicates

required to protect against type I and type II errors, (d) the order of experi-

mentation process, (e) the randomization process, (f) the appropriateness of the

design used to describe the data, and (g) the data collection and data-processing

procedures to ensure that they continue to be relevant to the study. We have

discussed aspects of statistical theory as applied to statistical practices. We

study basic linear regression in the following chapters.
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2 Simple Linear
Regression

Simple linear regression analysis provides bivariate statistical tools essential

to the applied researcher in many instances. Regression is a methodology that

is grounded in the relationship between two quantitative variables (y, x) such

that the value of y (dependent variable) can be predicted based on the value of

x (independent variable). Determining the mathematical relationship between

these two variables, such as exposure time and lethality or wash time and

log10 microbial reductions, is very common in applied research. From a

mathematical perspective, two types of relationships must be discussed: (1)

a functional relationship and (2) a statistical relationship. Recall that, math-

ematically, a functional relationship has the form

y ¼ f (x),

where y is the resultant value, on the function of x ( f(x)), and f(x) is any

set of mathematical procedure or formula such as xþ 1, 2xþ 10, or

4x3� 2x2þ 5x – 10, or log10 x2þ 10, and so on. Let us look at an example

in which y¼ 3x. Hence,

y x
3 1

6 2

9 3

Graphing the function y on x, we have a linear graph (Figure 2.1). Given a

particular value of x, y is said to be determined by x.

A statistical relationship, unlike a mathematical one, does not provide an

exact or perfect data fit in the way that a functional one does. Even in the best

of conditions, y is composed of the estimate of x, as well as some amount of

unexplained error or disturbance called statistical error, e. That is,

ŷy ¼ f (x)þ e:

So, using the previous example, y¼ 3x, now ŷy¼ 3xþ e ( ŷy indicates that ŷy
estimates y, but is not exact, as in a mathematical function). They differ by
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some random amount termed e (Figure 2.2). Here, the estimates of y on x do

not fit the data estimate precisely.

GENERAL PRINCIPLES OF REGRESSION ANALYSIS

REGRESSION AND CAUSALITY

A statistical relationship demonstrated between two variables, y (the response

or dependent variable) and x (the independent variable), is not necessarily a
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FIGURE 2.1 Linear graph.
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FIGURE 2.2 Linear graph.
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causal one, but can be. Ideally, it is, but unless one knows this for sure, y and x
are said to be associated.

The fundamental model for a simple regression is

Yi ¼ b0 þ b1xi þ «i, (2:1)

where Y is the response or dependent variable for the ith observation; b0 is the

population y intercept, when x¼ 0; b1 is the population regression parameter

(slope or (rise/run)); xi is the independent variable; «i is the random error for

the ith observation, where «¼N(0, s2); that is, the errors are normally and

independently distributed with a mean of zero and a variance of s2; «i and «i�1

are assumed to be uncorrelated (an error term is not influenced by the magni-

tude of the previous or other error terms), so the covariance is equal to 0.

This model is linear in the parameters (b0, b1) and in the xi values, and

there is only one predictor value, xi, in only a power of 1. In actually applying

the regression function to sample data, we use the form ŷyi¼ b0þ b1þ ei.

Often, this function is also written as ŷyi¼ aþ bxþ ei. This form is also

known as a first-order model. As previously stated, the actual y value is

composed of two components: (1) b0þ b1x, the constant term and (2) e, the

random variable term. The expected value of y is E(Y )¼b0þb1x. The

variability of s is assumed to be constant and equidistant over the regression

function’s entirety (Figure 2.3). Examples of nonconstant, nonequidistant

variabilities are presented in Figure 2.4.

MEANING OF REGRESSION PARAMETERS

A researcher is performing a steam–heat thermal–death curve calculation on a

106 microbial population of Bacillus stearothermophilus, where the steam

y

+s

−s

^

FIGURE 2.3 Constant, equidistant variability.
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sterilization temperature is 1218C. Generally, a log10 reexpression is used to

linearize the microbial population. In log10 scale, 106 is 6. In this example,

assume that the microbial population is reduced to 1 log10 for every 30 sec of

exposure to steam (this example is presented graphically in Figure 2.5):

+s
+s

+s

−s
−s

−s
−s

y^

+s
y^

y^

y^

FIGURE 2.4 Nonconstant, nonequidistant variability.
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FIGURE 2.5 Steam–heat thermal–death curve calculation for B. stearothermophilus.
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ŷy ¼ b0 þ b1x,

ŷy ¼ 6� 0:0333(x),

where b0 represents the value of ŷy when x¼ 0, which is ŷy¼ 6 – 0.0333(0)¼ 6

in this example. It is also known as the y intercept value when x¼ 0. b1

represents the slope of the regression line, which is the rise=run or tangent.

This rise is negative in this example, meaning that the slope is decreasing over

exposure time, so

b1 ¼
rise

run
¼ �1

30
¼ �0:0333:

For x¼ 60 sec, ŷy ¼ 6 – 0.0333(60)¼ 4. For every second of exposure time,

the reduction in microorganisms is 0.0333 log10.

DATA FOR REGRESSION ANALYSIS

The researcher ordinarily will not know the population values of b0 or b1.

They have to be estimated by a b0 and b1 computation, termed the method of

least squares. In this design, two types of data are collected: the response or

dependent variable (yi) and the independent variable (xi). The xi values are

usually preset and not random variables; hence, they are considered to be

measured without error (Kutner et al., 2005; Neter et al., 1983).

Recall that observational data are obtained by nonexperimental methods.

There are times a researcher may collect data (x and y) within the environ-

ment to perform a regression evaluation. For example, a quality assurance

person may suspect that a relationship exists between warm weather (winter

to spring to summer) and microbial contamination levels in a laboratory. The

microbial counts (y) are then compared with the months, x(1 – 6), to determine

whether this theory holds (Figure 2.6).

In experimental designs, usually the values of x are preselected at specific

levels, and the y values corresponding to these are dependent on the x levels

set. This provides y or x values, and a controlled regimen or process is

implemented. Generally, multiple observations of y at a specific x value are

taken to increase the precision of the error term estimate.

On the other hand, in completely randomized regression design, the

designated values of x are selected randomly, not specifically set. Hence,

both x and y are random variables. Although this is a useful design, it is not as

common as the other two.

REGRESSION PARAMETER CALCULATION

To find the estimates of both b0 and b1, we use the least-squares method. This

method provides the best estimate (the one with the least error) by minimizing
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the difference between the actual and predicted values from the set of

collected values:

y� ŷy or y� b0 þ b1x,

where y is the dependent variable and ŷy is the predicted dependent variable.

The computation utilizes all the observations in a set of data. The sum of the

squares is denoted by Q; that is,

Q ¼
Xn

i¼1

(yi � b0 � b1xi)
2,

where Q is the smallest possible value, as determined by the least-squares

method. The actual computational formulas are

b1 ¼ slope ¼

Pn

i¼1

(xi � �xx)(yi � �yy)

Pn

i¼1

(xi � �xx)2

(2:2)

and

b0 ¼ y intercept ¼

Pn

i¼1

yi � b1

Pn

i¼1

xi

n

1 2 3 4 5 6

Microbial
counts per ft2

y

x

Months

FIGURE 2.6 Microbial counts compared with months.
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or simply

b0 ¼ �yy� b1�xx: (2:3)

PROPERTIES OF THE LEAST-SQUARES ESTIMATION

The expected value of b0¼E[b0]¼b0. The expected value of b1¼E[b1]¼b1.

The least-squares estimators of b0 and b1 are unbiased estimators and have the

minimum variance of all other possible linear combinations.

Example 2.1: An experimenter challenges a benzalkonium chloride dis-

infectant with 1� 106 Staphylococcus aureus bacteria in a series of timed

exposures. As noted earlier, exponential microbial colony counts are custom-

arily linearized via a log10 scale transformation, which has been performed in

this example. The resultant data are presented in Table 2.1.

The researcher would like to perform regression analysis on the data to

construct a chemical microbial inactivation curve, where x is the exposure

time in seconds and y is the log10 colony-forming units recovered.

Note that the data are replicated in triplicate for each exposure time, x.

First, we compute the slope of the data

b1 ¼

Pn

i¼1

(xi � �xx)( yi � �yy)

Pn

i¼1

(xi � �xx)2

,

TABLE 2.1
Resultant Data

n x y

1 0 6.09

2 0 6.10

3 0 6.08

4 15 5.48

5 15 5.39

6 15 5.51

7 30 5.01

8 30 4.88

9 30 4.93

10 45 4.53

11 45 4.62

12 45 4.49

13 60 3.57

14 60 3.42

15 60 3.44
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where �xx¼ 30 and �yy¼ 4.90,

X15

i¼1

(xi � �xx)(yi � �yy) ¼ (0� 30)(6:09� 4:90)þ (0� 30)(6:10� 4:90)

þ � � � þ (60� 30)(3:42� 4:90)þ (60� 30)(3:44� 4:90) ¼ �276:60,

X15

i¼1

(xi � �xx)2 ¼ (0� 30)2 þ (0� 30)2 þ � � � þ (60� 30)2

þ (60� 30)2 þ (60� 30)2 ¼ 6750,

b1 ¼
�276:60

6750
¼ �0:041:*

The negative sign of b1 means the regression line estimated by ŷy is

descending, from the y intercept:

b0 ¼ �yy� b1�xx ¼ 4:90� (�0:041)(30);

b0 ¼ 6.13, the y intercept point when x¼ 0.

The complete regression equation is

ŷyi ¼ b0 þ b1xi,

ŷyi ¼ 6:13� 0:041xi: (2:4)

This regression equation can then be used to predict each ŷy, a procedure

known as point estimation.

For example, for x¼ 0, ŷy¼ 6.13 – 0.041(0)¼ 6.130

15, ŷy ¼ 6:13� 0:041(15) ¼ 5:515,

30, ŷy ¼ 6:13� 0:041(30) ¼ 4:900,

*There is a faster machine computational formula for b1, useful with a hand-held calculator,

although many scientific calculators provide b1 as a standard routine. It is

b1 ¼

Pn

i¼1

xiyi �
Pn

i¼1

x

� �
Pn

i¼1

yi

� �

n

Pn

i¼1

x2
i �

Pn

i¼1

xi

� �2

n

:
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45, ŷy ¼ 6:13� 0:041(45) ¼ 4:285,

60, ŷy ¼ 6:13� 0:041(60) ¼ 3:670:

From these data, we can now make a regression diagrammatic table to see

how well the model fits the data. Regression functions are standard on most

scientific calculators and computer software packages. One of the statistical

software packages that is easiest to use, and has a considerable number of

options, is MiniTab. We first learn to perform the computations by hand and

then switch to this software package because of its simplicity and efficiency.

Table 2.2 presents the data.

In regression, it is very useful to plot the predicted regression values, ŷy
with the actual observations, y, superimposed. In addition, exploratory data

analysis (EDA) is useful, particularly when using regression methods with the

residual values (e¼ y� ŷy) to ensure that no pattern or trending is seen that

would suggest inaccuracy. Although regression analysis can be extremely

valuable, it is particularly prone to certain problems, as follows:

1. The regression line computed on ŷy will be a straight line or linear.

Often experimental data are not linear and must be transformed to a

linear scale, if possible, so that the regression analysis provides an

TABLE 2.2
Regression Data

n x 5 Time

y 5 Actual

log10 Values

ŷy 5 Predicted

log10 Values

e 5 y – ŷy

(e 5 Actual–Predicted y Values)

1 0.00 6.0900 6.1307 �0.0407

2 0.00 6.1000 6.1307 �0.0307

3 0.00 6.0800 6.1307 �0.0507

4 15.00 5.4800 5.5167 �0.0367

5 15.00 5.3900 5.5167 �0.1267

6 15.00 5.5100 5.5167 �0.0067

7 30.00 5.0100 4.9027 0.1073

8 30.00 4.8800 4.9027 �0.0227

9 30.00 4.9300 4.9027 0.0273

10 45.00 4.5300 4.2887 0.2413

11 45.00 4.6200 4.2887 0.3313

12 45.00 4.4900 4.2887 0.2013

13 60.00 3.5700 3.6747 �0.1047

14 60.00 3.4200 3.6747 �0.2547

15 60.00 3.4400 3.6747 �0.2347
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accurate and reliable model of the data. The EDA methods described in

Chapter 3 (Paulson, 2003) are particularly useful in this procedure.

However, some data transformations may confuse the intended audi-

ence. For example, if the y values are transformed to a cube root (
ffi

3
p

)

scale, the audience receiving the data analysis may have trouble under-

standing the regression’s meaning in real life because they cannot

translate the original scale to a cube root scale in their heads. That is,

they cannot make sense of the data. In this case, the researcher is in a

dilemma. Although it would be useful to perform the cube root trans-

formation to linearize the data, the researcher may then need to take the

audience through the transformation process verbally and graphically

in an attempt to enlighten them. As an alternative, however, a non-

parametric method could be applied to analyze the nonlinear data.

Unfortunately, this too is likely to require a detailed explanation.

2. Sometimes, a model must be expanded in the bi parameters to better

estimate the actual data. For example, the regression equation may

expand to

ŷy ¼ b0 þ b1x1 þ b2x2 (2:5)

or

ŷy ¼ b0 þ b1x1 þ � � � þ bkxk, (2:6)

where the bi values will always be linear values.

However, we concentrate on simple linear regression procedures, that is,

ŷy¼ b0þ b1xi in this chapter. Before continuing, let us look at a regression

model to understand better what ŷy, y, and « represent (as in Figure 2.7). Note

e¼ y� ŷy or the error term, which is merely the actual y value minus the

predicted ŷy value.

DIAGNOSTICS

One of the most important steps in regression analysis is to plot the actual

data values (yi) and the fitted data ( ŷyi) on the same graph to visualize

clearly how closely the predicted regression line ( ŷyi) fits or mirrors the

actual data (yi). Figure 2.8 presents a MiniTab graphic plot of this, as an

example.

In the figure, R2 (i.e., R-Sq) is the coefficient of determination, a value

used to evaluate the adequacy of the model, which in this example indicates

that the regression equation is about a 96.8% better predictor of y than using �xx.

An R2 of 1.00 or 100% is a perfect fit (the ŷy¼ y). We discuss both R and R2

later in this chapter.
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Note that on examining the regression plot (Figure 2.8), it appears that the

data are adequately modeled by the linear regression equation used. To check

this, the researcher should next perform a stem–leaf display, a letter–value

display, and a boxplot display of the residuals, y� ŷy¼ e values. Moreover, it

is often useful to plot the y values and the residual values, e, and the ŷy values

e = y − y

y = Actual value

y or b0 + b1x

This is the “fitted” or predicted data
value or function line

y

^

^

^

y

x
x

FIGURE 2.7 Regression model.

y = log10
colony
counts

y  =  6.13067 −  0.409333x
s = 0.169799 R-Sq = 96.8% R-Sq(adj) = 96.5%

4

5

0 10 20 30 40 50

^

60

x = Exposure time
      in seconds

= Actual data (yi) = Fitted data (y )

FIGURE 2.8 MiniTab regression plot.
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and the residual values, e. Figure 2.9 presents a stem–leaf display of the

residual data (e¼ yi� ŷy).

The stem–leaf display of the residual data (e¼ yi� ŷyi) shows nothing of

great concern, that is, no abnormal patterns. Residual value (ei) plots should

be patternless if the model is adequate. The residual median is not precisely 0

but very close to it.

Figure 2.10 presents the letter–value display of the residual data. Note that

the letter–value display Mid column trends toward increased values, meaning

that the residual values are skewed slightly to the right or to the values greater

than the mean value. In regression analysis, this is a clue that the predicted

regression line function may not adequately model the data.* The researcher

then wants to examine a residual value (ei) vs. actual (yi) value graph (Figure

2.11), and a residual (ei) vs. predicted ( ŷy) value graph (Figure 2.12) and

review the actual regression graph (Figure 2.8). Looking closely at these

graphs, and the letter–value display, we see clearly that the regression

model does not completely describe the data. The actual data appear not

quite log10 linear. For example, note that beyond time xi¼ 0, the regression

model overestimates the actual log10 microbial kill by about 0.25 log10,

underestimates the actual log10 kill at xi¼ 45 sec by about 0.25 log10, and

again overestimates at xi¼ 60 sec. Is this significant or not?

Stem-and-leaf display of
residuals

N =15
Leaf unit = 0.010

2 −2 53
4 −1 20

(6) −0 543320
5 2
4 0
3 04
1

0
1
2
3 3

FIGURE 2.9 Stem-and-leaf display.

Depth Lower Mid Spread
N = 15
M 8.0 −0.031
H 4.5 −0.078 −0.005 0.145
E 2.5 −0.181 0.020 0.402
D 1.5 −0.245 0.021 0.531

1 −0.255

Upper

−0.031
0.067
0.221
0.286
0.331 0.038 0.586

FIGURE 2.10 Letter–value display.

*For an in-depth discussion of exploratory data analysis, see Paulson, 2003.
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Researchers can draw on their primary field knowledge to determine this,

whereas a card-carrying statistician usually cannot. The statistician may

decide to use a polynomial regression model and is sure that, with some

manipulation, it can model the data better, particularly in that the error at each
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Actual
log10 colony

ei  = yi  − yi
^

FIGURE 2.11 Residual (ei) vs. actual (yi) value graph.
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FIGURE 2.12 Residual (ei) vs. predicted (ŷyi) value graph.
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observation is considerably reduced (as supported by several indicators we have

yet to discuss, the regression f-test and the coefficient of determination, r2).

However, the applied microbiology researcher has an advantage over the

statistician, knowing that often the initial value at time 0 (x¼ 0) is not reliable

in microbial death rate kinetics and, in practice, is often dropped from the

analysis. Additionally, from experience, the applied microbiology researcher

knows that, once the data drop below 4 log10, a different inactivation rate (i.e.,

slope of b1) occurs with this microbial species until the population is reduced to

about two logs, where the microbial inactivation rate slows because of survivors

genetically resistant to the antimicrobial. Hence, the microbial researcher may

decide to perform a piecewise regression (to be explained later) to better model

the data and explain the inactivation properties at a level more basic than that

resulting from a polynomial regression. The final regression, when carried out

over sufficient time, could be modeled using a form such as that in Figure 2.13.

In conclusion, field microbiology researchers generally have a definite

advantage over statisticians in understanding and modeling the data, given

they ground their interpretation in basic knowledge of the field.

ESTIMATION OF THE ERROR TERM

To continue, the variance (s2) of the error term (written as «2 for a population

estimate or e2 for the sample variance) needs to be estimated. As a general

Log10 microorganism populations

Log10 values lower than

1 log10 removed

Time in seconds

x

0 exposure time removed

6

5

4

3

2

1

In inactivation rate

In inactivation rate

FIGURE 2.13 Piecewise regression model.
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principle of parametric statistics, the sample variance (s2) is obtained by first

measuring the squared deviation between each of the actual values (xi) and the

average value (�xx), and summing these:

Xn

i¼1

(xi � �xx)2 ¼ sum of squares:

The sample variance is then derived by dividing the sum of squares by the

degrees of freedom (n� 1):

s2 ¼

Pn

i¼1

(xi � �xx)2

n� 1
: (2:7)

This formulaic process is also applicable in regression. Hence, the sum of

squares for the error term in regression analysis is

SSE ¼
Xn

i¼1

(yi � ŷy)2 ¼
Xn

i¼1

e2 ¼ sum-of-squares error term: (2:8)

The mean square error (MSE) is used to predict the sample variance or s2.

Hence,

MSE ¼ s2, (2:9)

where

MSE ¼
SSE

n� 2
: (2:10)

Two degrees of freedom are lost, because both b0 and b1 are estimated in

the regression model (b0þ b1 xi) to predict ŷy. The standard deviation is simply

the square root of MSE:

s ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
, (2:11)

where the value of s is considered to be constant for the x, y ranges of the

regression analysis.

REGRESSION INFERENCES

Recall that the simple regression model equation is

Yi ¼ b0 þ b1xi þ «i,
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where b0 and b1 are the regression parameters; xi are the known (set)

independent values; and «¼ (y� ŷy), normally and independently distributed,

N(0, s2).

Frequently, the investigator wants to know whether the slope, b1, is

significant, that is, not equal to zero (b1 6¼ 0). If b1¼ 0, then regression

analysis should not be used, for b0 is a good estimate of y, that is, b0¼ �yy.

The significance test for b1 is a hypothesis test:

H0: b1¼ 0 (slope is not significantly different from 0),

HA: b1 6¼ 0 (slope is significantly different from 0).

The conclusions that are made when b1¼ 0 are the following:

1. There is no linear association between y and x.

2. There is no relationship of any type between y and x.

Recall that b1 is estimated by b1, which is computed as

b1 ¼

Pn

i¼1

(xi � �xx)(yi � �yy)

Pn

i¼1

(xi � �xx)2

and b1, the mean slope value, is an unbiased estimator of b1.

The population variance of b1 is

s2
b1
¼ s2

Pn

i¼1

(xi � �xx)2

: (2:12)

In practice, sb1

2 will be estimated by

s2
b1
¼ MSE

Pn

i¼1

(xi � �xx)2

and

ffiffiffiffiffiffi
s2

b1

q
¼ sb1

, or the standard deviation value for b1: (2:13)

Returning to the b1 test, to evaluate whether b1 is significant (b1 6¼ 0), the

researchers set up a two-tail hypothesis, using the six-step procedure.
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Step 1: Determine the hypothesis.

H0: b1 ¼ 0,

HA: b1 6¼ 0:

Step 2: Set the a level.

Step 3: Select the test statistic, tcalculated

tcalculated ¼ tc ¼
b1

sb1

, where

b1 ¼

Pn

i¼1

(xi � �xx)(yi � �yy)

Pn

i¼1

(xi � �xx)2

and

sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pn

i¼1

(xi � �xx)2

v
u
u
u
t

:

Step 4: State the decision rule for ttabled¼ t(a=2, n�2) from Table B.

If jtcj> t(a=2, n�2), reject H0; the slope (b1) differs significantly from 0 at a.

If jtcj � t(a=2, n�2), the researcher cannot reject the null hypothesis at a.

Step 5: Compute the calculated test statistic (tc).

Step 6: State the conclusion when comparing tcalculated with ttabled.

Let us now calculate whether the slope is 0 for data presented in Table 2.1 for

Example 2.1.

Step 1: Establish the hypothesis.

H0: b1 ¼ 0,

HA: b1 6¼ 0:

Step 2: Set a. Let us set a at 0.05.

Step 3: Select the test statistic:

tc ¼
b1

sb1

:

Step 4: Decision rule.

If jtcj > t(a=2, n�2), reject the null hypothesis (H0) at a¼ 0.05. Using Student’s

t table (Table B) t(0.05=2, 15 – 2)¼ t0.025, 13¼ 2.160. So if jtcalculatedj > 2.160,

reject H0 at a¼ 0.05.
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Step 5: Calculate the test statistic, tc ¼ b1

sb1

.

Recall from Example 2.1 that b1¼�0.041. Also, recall from the initial

computation of b1 that
Pn

i¼1 (xi � �xx)2 ¼ 6750:

MSE ¼

Pn

i¼1

(yi � ŷy)2

n� 2
¼

Pn

i¼1

e2
i

n� 2
,

¼ (0:0407)2 þ (�0:0307)2 þ � � � þ (�0:2547)2 þ (�0:2347)2

13
,

¼ 0:3750

13
¼ 0:0288,

sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pn

i¼1

(xi � �xx)2

v
u
u
u
t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

6750

r

¼ 0:0021,

tc ¼
b1

sb1

¼ �0:041

0:0021
¼ �19:5238:

Step 6: Draw conclusion.

Because jtcj ¼ j�19.5238j > 2.160, the researcher rejects H0, that the

slope (rate of bacterial destruction per second) is 0 at a¼ 0.05.

One-tail tests (upper or lower tail) for b1 are also possible. If the

researcher wants to conduct an upper-tail test (hypothesize that b1 is signifi-

cantly positive, that is, an ascending regression line), the hypothesis would be

H0: b1 � 0,

HA: b1 > 0,

with the same test statistic as that used in the two-tail test,

tc ¼
b1

sb1

:

The test is: if tc > t(a, n�2), reject H0 at a.

Note: The upper-tail ttabled value from Table B, which is a positive value, will

be used.

For the lower-tail test, the test hypothesis for b1 will be a negative ttabled

value (descending regression line):

H0: b1 � 0,

HA: b1 < 0,
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with the test calculated value

tc ¼
b1

sb1

:

If tc < t(a, n� 2), reject H0 at a.

Note: The lower-tail value from Table B, which is negative, is used to find the

t(a, n� 2) value.

Finally, if the researcher wants to compare b1 with a specific value (k),

that too can be accomplished using a two-tail or one-tail test. For the two-tail

test, the hypothesis is

H0: b1 ¼ k,

HA: b1 6¼ k,

where k is a set value.

tc ¼
b1 � k

sb1

:

If jtcj > t(a=2, n� 2), reject H0. Both upper- and lower-tail tests can be

evaluated for a k value, using the procedures just described. The only modi-

fication is that tc¼ (b1� k)=sb1
is compared, respectively, with the positive or

negative values of t(a, n� 2) tabled.

COMPUTER OUTPUT

Generally, it will be most efficient to use a computer for regression analyses.

A regression analysis using MiniTab, a common software program, is pre-

sented in Table 2.3, using the data from Example 2.1.

CONFIDENCE INTERVAL FOR b1

A 1�a confidence interval (CI) for b1 is a straightforward computation:

b1 ¼ b1 � t(�=2, n� 2)sbj
:

Example 2.2: To determine the 95% CI on b1, using the data from Exam-

ple 2.1 and our regression analysis data, we find t(0.05=2,15 – 2) (from Table B,

Student’s t table)¼+2.16:

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C002 Final Proof page 43 16.11.2006 7:36pm

Simple Linear Regression 43



b1 ¼ �0:0409,

sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

P
(x� �xx)2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

6750

r

¼ 0:0021,

b1 þ ta=2sb1
¼ �0:0409þ (2:16)(0:0021) ¼ �0:0364,

b1 � ta=2sb1
¼ �0:0409� (2:16)(0:0021) ¼ �0:0454,

�0:0454 � b1 � �0:0364:

The researcher is confident at the 95% level that the true slope (b1) lies

within this CI. In addition, the researcher can determine whether b1¼ 0 is from

the CI. If the CI includes 0 (which it does not), the H0 hypothesis, b1¼ 0, cannot

be rejected at a.

INFERENCES WITH b0

The point estimator of b0, the y intercept, is

b0 ¼ �yy� b1�xx: (2:14)

The expected value of b0 is

E(b0) ¼ b0: (2:15)

TABLE 2.3
Computer Printout of Regression Analysis

Predictor Coef SE Coef T P

ab0 6.13067 0.07594 80.73 0.000
bb1 �0.040933 0.002057 �19.81 0.000
cs ¼ 0.1698 dR-Sq ¼ 96.8%

The regression equation is y ¼ 6.13 � 0.041x.
ab0 value row ¼ constant ¼ y intercept when x ¼ 0. The value beneath Coef is b0 (6.13067); the

value beneath SE Coef (0.07594) is the standard error of b0. The value beneath T (80.73) is the

t-test calculated value for b0, hypothesizing it as 0, from H0. The value (0.00) beneath P is

the probability, when H0 is true, of seeing a value of t greater than or the same as 80.73, and this is

essentially 0.
bb1 value row ¼ slope. The value beneath Coef (�0.040933) is b1; the value beneath SE Coef

(0.002057) is the standard error of b1; the value beneath T (�19.81) is the t-test calculated value

for the null hypothesis that b1¼ 0. The value beneath P (0.00) is the probability of computing a

value of �19.81, or more extreme, given the b1 value is actually 0.
cs ¼

ffiffiffiffiffiffiffiffiffiffi
MSE

p
.

dr2 or coefficient of determination.
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The expected variance of b0 is

s2
b0
¼ s2 1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5, (2:16)

which is estimated by sb0

2 :

s2
b0
¼ MSE

1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5, (2:17)

where

MSE ¼

Pn

i¼1

(yi � ŷy)2

n� 2
¼
P

e2

n� 2
:

Probably the most useful procedure for evaluating b0 is to determine a

1�a CI for its true value. The procedure is straightforward. Using our

previous Example 2.1,

b0 ¼ b0 � t(a=2, n�2)sb0
,

b0 ¼ 6:1307:

t(0.05=2, 15 – 2)¼+2.16 from Table B (Student’s t table).

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5

v
u
u
u
u
u
t

,

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ 302

6750

� �s

¼ 0:0759,

b0 þ t(a=2, n�2)sb0
¼ 6:1307þ 2:16(0:0759) ¼ 6:2946,

b0 � t(a=2, n�2)sb0
¼ 6:1307� 2:16(0:0759) ¼ 5:9668,

5:9668 � b0 � 6:2946 at a ¼ 0:05:
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The researcher is 1 – a (or 95%) confident that the true b0 value lies

within the CI of 5.9668 to 6.2946.

Notes:

1. In making inferences about b0 and=or b1, the distribution of the yi

values, as with our previous work with the xi values using Student’s

t-test or the analysis of variance (ANOVA), does not have to be

perfectly normal. It can approximate normality. Even if the distribution

is rather far from normal, the estimators b0 and b1 are said to be

asymptotically normal. That is, as the sample size increases, the y
distribution used to estimate both b0 and b1 approaches normality. In

cases where the yi data are clearly not normal, however, the researcher

can use nonparametric regression approaches.

2. The regression procedure we use assumes that the xi values are fixed

and have not been collected at random. The CIs and tests concerning b0

and b1 are interpreted with respect to the range the x values cover.

They do not purport to estimate b0 and b1 outside of that range.

3. As with the t-test, the 1 – a confidence level should not be interpreted

that one is 95% confident that the true b0 or b1 lie within the 1�a CI.

Instead, over 100 runs, one observes the b0 or b1 contained within the

interval (1�a) times. At a¼ 0.05, for example, if one performed the

experiment 100 times, 95 times out of 100, the calculated b0 or b1

would be contained within that calculated interval.

4. It is important that the researcher knows that the greater the range

covered by the xi values selected, the more generally useful will be the

regression equation. In addition, the greatest weight in the regression

computation lies with the outer values (Figure 2.14).

y

x

Greatest weight areas

FIGURE 2.14 Greatest weight in regression computation.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C002 Final Proof page 46 16.11.2006 7:36pm

46 Handbook of Regression and Modeling



The researcher will generally benefit by taking great pains to assure

that those outer data regions are representative of the true condition.

Recall that in our discussion of the example data set, when we noted

the importance in the log10 linear equation of death curve kinetics, that

the first value (time zero) and the last value are known to have

disproportionate influence on the data, we dropped them. This sort of

insight, afforded only by experience, must be drawn on constantly by

the researcher. In research, it is often, but not always, wise to take the

worst-case approach to make decisions. Hence, the researcher should

constantly intersperse statistical theory with field knowledge and

experience.

5. The greater the spread of the x values, the greater the valuePn
i¼1 (xi � �xx)2, which is the denominator of b1 and sb1

and a major

portion of the denominator for b0. Hence, the greater the spread, the

smaller the variance of values for b1 and b0 will be. This is particularly

important for statistical inferences concerning b1.

POWER OF THE TESTS FOR b0 AND b1

To compute the power of the tests concerning b0 and b1, the approach is

relatively simple:

H0: b ¼ bx,

HA: b 6¼ bx,

where b¼b1 or b0, and bx¼ any constant value. If the test is to evaluate the

power relative to 0 (e.g., b1 6¼ 0), the bx value should be set at 0. As always,

the actual sample testing uses lower case bi values:

tc ¼
bi � bx

sbi

(2:18)

is the test statistic to be employed, where bi is the ith regression parameter;

i¼ 0, if b0; and 1, if b1; bx is the constant value or 0; and sbi
is the standard

error of bi, where i¼ 0, if b0 and 1, if b1.

The power computation of the statistic is 1�b. It is found by computing d,

which is essentially a t-test (2.20). Using d, at a specific a level corresponding

to the degrees of freedom, one finds the corresponding (1�b) value:

d ¼ jbi � bxj
sbi

, (2:19)
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where sbi
is the standard error of bi:

bi ¼ b0, s(b0) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5

v
u
u
u
u
u
t

, which in practice is

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5

v
u
u
u
u
u
t

:

Note: Generally, the power of the test is calculated before the evaluation to

ensure that the sample size is adequate, and s2 is estimated from previous

experiments, because MSE cannot be known if the power is computed before

performing the experiment. The value of s2 is estimated using MSE when the

power is computed after the sample data have been collected:

bi ¼ b1, s(b1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

Pn

i¼1

(xi � �xx)2

v
u
u
u
t

,

which is estimated by sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pn

i¼1

(xi � �xx)2

v
u
u
u
t

.

Let us work an example. The researcher wants to compute the power of

the statistic for b1:

H0: b1 ¼ bx,

HA: b1 6¼ bx:

Let bx¼ 0, in this example. Recall that b1¼�0.0409. Let us estimate s2

with MSE and, as an exercise, evaluate the power after the study has been

conducted, instead of before:

s2
b1
¼ MSE

Pn

i¼1

(xi � �xx)2

,

s2
b1
¼ 0:0288

6750
,
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s(b1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0288

6750

r

¼ 0:0021,

d ¼ j0:0409� 0j
0:0021

¼ 0:0409

0:0021
¼ 19:4762:

Using Table D (Power table for two-tail t-test), df¼ n�2¼ 15�2¼ 13,

a¼ 0.05, d¼ 19.4762, and the power¼ 1�b� 1.00 or 100% at d¼ 9,

which is the largest value of d available in the table. Hence, the researcher

is assured that the power of the test is adequate to determine that the slope

(b1) is not 0, given it is not 0, at a s of 0.0021 and n¼ 15.

ESTIMATING ^y VIA CONFIDENCE INTERVALS

A very common aspect of interval estimation involves estimating the regres-

sion line value, ŷy, with simultaneous CIs, for a specific value of x. That value

ŷy can be further subcategorized as an average predicted ŷy value, or a specific

ŷy. Figure 2.15 shows which regions on the regression plot can and cannot be

estimated reliably via point and interval measurements.

The region—interpolation range—based on actual x, y values can be

predicted confidently by regression methods. If intervals between the y values

are small, the prediction is usually more reliable than if they are extended.

The determining factor is the background—field—experience. If one, for

example, has worked with lethality curves and has an understanding of a

particular microorganism’s death rate, the reliability of the model is greatly

enhanced by the grounding in this knowledge. Any region not represented by

both smaller and larger actual values of x, y is a region of extrapolation. It is

usually very dangerous to assume accuracy and reliability of an estimate

Extrapolation range

Interpolation range

Extrapolation range

bo

?

?

?

y

x

FIGURE 2.15 Regions on the regression plot.
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made in an extrapolation region because this assumes that the data respond

identically to the regression function computed from the observed x, y data.

This usually cannot be safely assumed, so it is better not to attempt extra-

polation. Such prediction is better dealt with using forecasting and time-series

procedures. The researcher should focus exclusively on the region of the

regression, the interpolation region, where actual x, y data have been col-

lected, and so we shall, in this text.

Up to this point, we have considered the sampling regions of both b0 and

b1, but not ŷy. Recall that the expected value of a predicted ŷy at a given x is

E(ŷy) ¼ b0 þ b1x: (2:20)

The variance of E(ŷy) is

s2
ŷy ¼ s2 1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5:

In addition, as stated earlier, the greater the numerical range of the xi values,

the smaller the corresponding sŷy
2 value is. However, note that the sŷy

2 value is

the variance for a specific xi point. The farther the individual xi is from the

mean (�xx), the larger sŷy
2 will be. The sŷy

2 value is smallest at xi¼ �xx. This

phenomenon is important from a practical and a theoretical point of view.

In the regression equation b0þ b1xi, there will always be some error in b0 and

b1 estimates. In addition, the regression line will always go through (�xx, �yy), the

pivot point. The more the variability in sŷy
2, the greater the swing on the pivot

point, as illustrated in Figure 2.16.

The true regression equation (ŷyP) is somewhere between ŷyL and ŷyU

(estimate of y lower and upper). The regression line pivots on the �yy, �xx axis

to a certain degree, with both b0 and b1 varying.

Because the researcher does not know exactly what the true regression

linear function is, it must be estimated. Any of the ŷy (y-predicted) values on

particular xi values will be wider, the farther away from the mean (�xx) one

estimates in either direction. This means that the ŷy CI is not parallel to the

regression line, but curvilinear (see Figure 2.17).

CONFIDENCE INTERVAL OF ^y

A 1 – a CI for the expected value—average value—of ŷy for a specific x is

calculated using the following equation:

ŷy� t(a=2; n� 2)s�yy, (2:21)
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FIGURE 2.16 Regression line pivots.
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FIGURE 2.17 Confidence intervals.
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where

ŷy ¼ b0 þ b1x

and

s�yy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5

v
u
u
u
u
u
t

(2:22)

and where xi is the x value of interest used to predict ŷyi:

MSE ¼

Pn

i¼1

(yi � ŷyi)
2

n� 2
¼

Pn

i¼1

e2
i

n� 2
:

Example 2.3: Using the data in Table 2.1 and from Equation 2.1, we note

that the regression equation is ŷy¼ 6.13� 0.041x. Suppose the researcher would

like to know the expected (average) value of y, as predicted by xi, when xi¼ 15

sec. What is the 95% confidence interval for the expected ŷy average value?

ŷy15 ¼ 6:13� 0:041(15) ¼ 5:515,

n ¼ 15,

�xx ¼ 30,

Xn

i¼1

(xi � �xx)2 ¼ 6750,

MSE ¼
P

(yi � ŷy)2

n� 2
¼ 0:0288,

s2
�yy ¼ MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5 ¼ 0:0288

1

15
þ (15� 30)2

6750

� �

,

s2
�yy15
¼ 0:0029,

s�yy15
¼ 0:0537:

t(a=2; n�2) ¼ t(0:025; 15�2) ¼ 2:16 ðfrom Table B, Student’s t table):
The 95% CI¼ ŷy + t(a=2, n�2) s�yy¼ 5.515 + 2.16(0.0537)¼ 5.515 +

0.1160 or 5.40 � ŷy15 � 5.63, at a¼ 0.05.
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Hence, the expected or average log10 population of microorganisms

remaining after exposure to a 15 sec treatment with an antimicrobial is

between 5.40 and 5.63 log10 at the 95% confidence level. This CI is a

prediction for one value, not multiple ones. Multiple estimation will be

discussed later.

PREDICTION OF A SPECIFIC OBSERVATION

Many times researchers are not interested in an expected (mean) value or

mean value CI. They instead want an interval for a specific yi value corre-

sponding to a specific xi. The process for this is very similar to that for the

expected (mean) value procedure, but the CI for a single, new yi value results

in a wider CI than does predicting for an average yi value. The formula for a

specific yi value is

ŷy� t(a=2, n�2)(sŷy), (2:23)

where

ŷy ¼ b0 þ b1x,

s2
ŷy ¼ MSE 1þ 1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5 (2:24)

and

MSE ¼

Pn

i¼1

(yi � ŷyi)
2

n� 2
¼

Pn

i¼1

e2

n� 2
:

Example 2.4: Again, using data from Table 2.1 and Equation 2.1, suppose

the researcher wants to construct a 95% CI for an individual value, yi, at a

specific xi, say 15 sec, ŷy¼ b0þ b1x and ŷy15¼ 6.13� 0.041(15)¼ 5.515, as

mentioned earlier:

n ¼ 15,

�xx ¼ 30,

X
(xi � �xx)2 ¼ 6750,
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MSE ¼
P

(y� ŷy)2

n� 2
¼ 0:0288:

sŷy
2 is the standard error of a specific y on x,

s2
ŷy ¼ MSE 1þ 1

n
þ (xi � �xx)2

P
(xi � �xx)2

� �

¼ 0:0288 1þ 1

15
þ (15� 30)2

6750

� �

,

s2
ŷy ¼ 0:0317,

sŷy ¼ 0:1780:

t(a=2; n�2)¼ t(0.025; 15�2)¼ 2.16 (from Table B, Student’s t table).

The 95% CI¼ ŷy + t(a=2, n�2) sŷy¼ 5.515 + 2.16(0.1780)¼ 5.515 +
0.3845 or 5.13 � ŷy15 � 5.90 at a¼ 0.05.

Hence, the researcher can expect the value ŷyi (log10 microorganisms) to be

contained within the 5.13 to 5.90 log10 interval at a 15 sec exposure at a 95%
confidence level. This does not mean that there is a 95% chance of the value

being within the CI. It means that, if the experimental procedure was con-

ducted 100 times, approximately 95 times out of 100, the value would lie

within this interval. Again, this is a prediction interval of one yi value on one

xi value.

CONFIDENCE INTERVAL FOR THE ENTIRE
REGRESSION MODEL

There are many cases in which a researcher would like to map out the entire

regression model (including both b0 and b1) with a 1– a CI. If the data have

excess variability, the CI will be wide. In fact, it may be too wide to be useful.

If this occurs, the experimenter may want to rethink the entire experiment or

conduct it in a more controlled manner. Perhaps more observations—particu-

larly replicate observations—will be needed. In addition, if the error

(y� ŷy)¼ e values are not patternless, then the experimenter might transform

the data to better fit the regression model to the data.

Given that these problems are insignificant, one straightforward way to

compute the entire regression model is the Working–Hotelling Method,

which enables the researcher not only to plot the entire regression function,

but also, to find the upper and lower CI limits for ŷy on any or all xi values

using the formula,

ŷy � Ws�yy: (2:25)
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The F distribution (Table C) is used in this procedure, instead of the t table,

where

W2 ¼ 2Fa; (2, n�2):

As given earlier,

ŷyi ¼ b0 þ b1xi

and

s�yy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5:

v
u
u
u
u
u
t

(2:26)

Note that the latter is the same formula (2.22) used previously to perform

a 1 – a CI for the expected (mean) value of a specific yi on a specific xi.

However, the CI in this procedure is wider than the previous CI calculations,

because it accounts for all xi values simultaneously.

Example 2.5: Suppose the experimenter wants to determine the 95% CI for

the data in Example 2.1, using the xi values, xi¼ 0, 15, 30, 45, and 60 sec,

termed xpredicted or xp. The ŷyi values predicted, in this case, are to predict the

average value of the ŷyis. The linear regression formula is

ŷy ¼ 6:13� 0:041(xi)

when

xp ¼ 0; ŷy ¼ 6:13� 0:041(0) ¼ 6:13,

xp ¼ 15; ŷy ¼ 6:13� 0:041(15) ¼ 5:52,

xp ¼ 30; ŷy ¼ 6:13� 0:041(30) ¼ 4:90,

xp ¼ 45; ŷy ¼ 6:13� 0:041(45) ¼ 4:29,

xp ¼ 60; ŷy ¼ 6:13� 0:041(60) ¼ 3:67,

W2 ¼ 2F(0:05; 2, 15�2):

The F tabled value (Table C)¼ 3.81:

W2 ¼ 2(3:81) ¼ 7:62 and W ¼
ffiffiffiffiffiffiffiffiffi
7:62
p

¼ 2:76,
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S(�yy) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)

2

6
6
4

3

7
7
5

v
u
u
u
u
u
t

for xpi
¼ 0, 15, 30, 45, 60,

S(�yy0) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ (0� 30)2

6750

� �s

¼ 0:0759, xp ¼ 0,

S(�yy15) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ (15� 30)2

6750

� �s

¼ 0:0537, xp ¼ 15,

S(�yy30) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ (30� 30)2

6750

� �s

¼ 0:0438, xp ¼ 30,

S(�yy45) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ (45� 30)2

6750

� �s

¼ 0:0537, xp ¼ 45,

S(�yy60) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0288
1

15
þ (60� 30)2

6750

� �s

¼ 0:0759, xp ¼ 60:

Putting these together, one can construct a simultaneous 1 – a CI for each xp:

ŷy � Ws�yy for each xp:

For xp¼ 0, 6.13 + 2.76 (0.0759)¼ 6.13 + 0.2095

5.92 � ŷy0 � 6.34 when xp¼ 0 at a¼ 0.05 for the expected (mean) value

of ŷy.

For xp¼ 15, 5.52 + 2.76 (0.0537)¼ 5.52 + 0.1482

5.37 � ŷy15 � 5.67 when xp¼ 15 at a¼ 0.05 for the expected (mean) value

of ŷy.

For xp¼ 30, 4.90 + 2.76 (0.0438)¼ 4.90 + 0.1209

4.78 � ŷy30 � 5.02 when xp¼ 30 at a¼ 0.05 for the expected (mean) value

of ŷy.

For xp¼ 45, 4.29 + 2.76 (0.0537)¼ 4.29 + 0.1482

4.14 � ŷy45 � 4.44 when xp¼ 45 at a¼ 0.05 for the expected (mean) value

of ŷy.

For xp¼ 60, 3.67 + 2.76 (0.0759)¼ 3.67 + 0.2095

3.46 � ŷy60 � 3.88 when xp¼ 60 at a¼ 0.05 for the expected (mean) value

of ŷy.

Another way to do this, and more easily, is by means of a computer

software program. Figure 2.18 provides a MiniTab computer graph of the

95% CI (outer two lines) and the predicted ŷyi values (inner line).
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Note that, though not dramatic, the CIs widen for the ŷyi regression line, as

the data points move away from the mean (�xx) value of 30. That is, the CI is the

most narrow where xi¼ �xx and increases in size as the values of xi get further

from �xx, in either direction. In addition, one is not restricted to the values of x
for which one has corresponding y data. One can interpolate for any value of x
between and including 0 to 60 sec. The assumption, however, is that the actual

yi values for x¼ (0, 60) follow the ŷy¼ b0þ b1x equation. Given that one has

field experience, is familiar with the phenomena under investigation (here,

antimicrobial death kinetics), and is sure the death curve remains log10 linear,

there is no problem. If not, the researcher could make a huge mistake in

thinking that the interpolated data follow the computed regression line, when

they actually oscillate around the predicted regression line. Figure 2.19

illustrates this point graphically.

ANOVA AND REGRESSION

ANOVA is a statistical method very commonly used in checking the signifi-

cance and adequacy of the calculated linear regression model. In simple

linear—straight line—regression models, such as the one under discussion

now, ANOVA can be used for evaluating whether b1 (slope) is 0 or not.

However, it is particularly useful for evaluating models involving two or more

bis; for example, determining if extra bis (e.g., b2, b3, bk) are of statistical

value. We discuss this in detail in later chapters of this book.

0
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15 30 45 60
Seconds

FIGURE 2.18 MiniTab computer graph of the confidence interval and predicted

values.
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For ANOVA employed in regression, three primary sum-of-squares val-

ues are needed: the total sum of squares, SST, the sum of squares explained by

the regression SSR, and the sum of squares due to the random error, SSE. The

total sum of squares is merely the sum of squares of the differences between

actual yi observations and the �yy mean:

SStotal ¼
Xn

i¼1

(yi � �yy)2: (2:27)

Graphically, the total sum of squares (yi� �yy)2 includes both the regression and

error effects in that it does not distinguish between them (Figure 2.20).

The total sum of squares, to be useful, is partitioned into the sum of

squares due to regression (SSR) and the sum of squares due to error (SSE) or

unexplained variability. The sum of squares, due to regression (SSR), is the

sum-of-squares value of the predicted values (ŷyi) minus the �yy mean value:

SSR ¼
Xn

i¼1

(ŷyi � �yy)2: (2:28)

Figure 2.21 shows this graphically. If the slope is 0, the SSR value is 0,

because the regression parameters ŷy and �yy are the same values.

1

2

3

4

5

6

0

15 30 45 60 Seconds

FIGURE 2.19 Antimicrobial death kinetics curve. (.) Actual collected data points;

(—) predicted data points (regression analysis) that should be confirmed by the

researcher’s field experience; (- - - -) actual data trends known to the researcher but

not measured. This example is exaggerated, but emphasizes that statistics must be

grounded in field science.
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FIGURE 2.20 What the total sum-of-squares measures.
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FIGURE 2.21 Sum-of-squares regression.
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Finally, the sum-of-squares error term (SSE) is the sum of the squares of

the actual yi values minus the predicted ŷyi value:

SSE ¼
Xn

i¼1

(yi � ŷyi)
2: (2:29)

Figure 2.22 shows this graphically.

As is obvious, the sums of SSE and SSR equal SStotal:

SSR þ SSE ¼ SStotal: (2:30)

The degrees of freedom for these three parameters, as well as the mean

square error, are presented in Table 2.4. The entire ANOVA table is presented

in Table 2.5.

The six-step procedure can be easily applied to the regression ANOVA for

determining if b1¼ 0. Let us now use the data in Example 2.1 to construct an

ANOVA table.

Step 1: Establish the hypothesis:

H0: b1 ¼ 0,

HA: b1 6¼ 0:

y

{ }
l

l

l

lll Actual values

y − y

y

x

^

y − y^ y − y^

FIGURE 2.22 Sum-of-squares error term.
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Step 2: Select the a significance level.

Let us set a at 0.10.

Step 3: Specify the test statistic. The test statistic used to determine if b1¼ 0

is found in Table 2.5:

FC ¼
MSR

MSE

:

Step 4: Decision rule: if Fc > FT, reject H0 at a.

FT¼F(a; 1, n�a)¼F0.10 (1, 13)¼ 3.14 (from Table C, the F Distribution).

If Fc > 3.14, reject H0 at a¼ 0.10.

Step 5: Compute ANOVA model.

Recall from our calculations earlier, �yy¼ 4.90:

SStotal ¼
Xn

i¼1

(yi � �yy)2

¼ (6:09� 4:90)2 þ (6:10� 4:90)2 þ � � � þ (3:42� 4:90)2 þ (3:44� 4:90)2

¼ 11:685

TABLE 2.4
Degrees of Freedom and Mean-Square Error

Sum of Squares (SS) Degrees of Freedom (DF) Mean-Square Error (MSE)

SSR 1
SSR

1

SSE n – 2
SSE

n� 2

SStotal n – 1 Not calculated

TABLE 2.5
ANOVA Table

Source SS DF MS Fc FT

Significant=

Non-

Significant

Regression SSR ¼
Pn

i¼1

(ŷyi� �yy)2 1
SSR

1
¼MSR

a MSR

MSE

¼ Fc FT(a;1,n�2) If Fc > FT,

reject H0

Error SSE ¼
Pn

i¼1

(yi� ŷyi)
2 n � 2

SSE

n� 2
¼MSE

Total SStotal ¼
Pn

i¼1

(yi� �yy)2 n � 1

aAn alternative that is often useful for calculating MSR is b2
1

Pn

i¼1

(xi � �xx)2.
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SSR (using the alternate formula):

Recall
P

(x� �xx)2 ¼ 6750, and b1¼�0.040933

SSR ¼ b2
1

Xn

i¼1

(xi � �xx)2 ¼ �0:0409332(6750) ¼ 11:3097,

SSE ¼ SStotal � SSR ¼ 11:685� 11:310 ¼ 0:375:

Step 6: The researcher sees clearly that the regression slope b1 is not equal

to 0; that is, Fc¼ 392.70 > FT¼ 3.14. Hence, the null hypothesis is

rejected. Table 2.6 provides the completed ANOVA model of this evaluation.

Table 2.7 provides a MiniTab version of this table.

LINEAR MODEL EVALUATION OF FIT OF THE MODEL

The ANOVA F test to determine the significance of the slope (b1 6¼ 0) is

useful, but can it be expanded to evaluate the fit of the statistical model? That

is, how well does the model predict the actual data? This procedure is often

very important in multiple linear regression in determining whether increas-

ing the number of variables (bi) is statistically efficient and effective.

A lack-of-fit procedure, which is straightforward, can be used in this

situation. However, it requires repeated measurements (i.e., replication) for

TABLE 2.6
ANOVA Table

Source SS DF MS Fc FT Significant=Nonsignificant

Regression SSR ¼ 11.310 1 11.310 392.71 3.14 Significant

Error SSE ¼ 0.375 13 0.0288

Total 11.685 14

TABLE 2.7
MiniTab Printout ANOVA Table

Analysis of Variance

Source DF SS MS F P

Regression 1 11.310 11.310 390.0 0.000

Residual error 13 0.375 0.029

Total 14 11.685
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at least some of the xi values. The F test for lack of fit is used to determine if

the regression model used (in our case, ŷy¼ b0þ b1xi) adequately predicts and

models the data. If it does not, the researcher can (1) increase the beta

variables, b2, . . . , bn, by collecting additional experimental information or

(2) transform the scale of the data to linearize them.

For example, in Figure 2.23, if the linear model is represented by a line

and the data by dots, one can easily see that the model does not fit the data. In

this case, a simple log10 transformation, without increasing the number of bi

values, may be the answer. Hence, a log10 transformation of the y values

makes the simple regression model appropriate (Figure 2.24).

In computing the lack-of-fit F test, several assumptions about the data

must be made:

1. The yi values corresponding to each xi are independent of each other.

2. The yi values are normally distributed and share the same variance.

In practice, assumption 1 is often difficult to ensure. For example, in a

time–kill study, the exposure values y at 1 min are related to the exposure

values y at 30 sec. This author has found that, even if the y values are

correlated, the regression is still very useful and appropriate. However, it

may be more useful to use a different statistical model (Box–Jenkins,

weighted average, etc.). This is particularly so if values beyond the data

range collected are predicted.

It is important to realize that the F test for regression fit relies on the

replication of various xi levels. Note that this means the actual replication of

y y

x

^

FIGURE 2.23 Inappropriate linear model.
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these levels, not just repeated measurements. For example, if a researcher

is evaluating the antimicrobial efficacy of a surgical scrub formulation by

exposing a known number of microorganisms for 30 sec to the formulation,

then neutralizing the antimicrobial activity and plating each dilution level three

times, this would not constitute a triplicate replication. The entire procedure

must be replicated or repeated three times, to include initial population,

exposure to the antimicrobial, neutralization, dilutions, and plating.

The model the F test for lack of fit evaluates is E[y]¼ b0þ b1xi:

H0:E[y] ¼ b0 þ b1xi,

HA:E[y] 6¼ b0 þ b1xi,

where E(y)¼ b0þ b1xi the expected value of yi is adequately represented by

b0þ b1xi.

The statistical process uses a full model and a reduced model. The full

model is evaluated first, using the following formula:

yij ¼ mj þ «ij, (2:31)

where mj are the parameters j¼ 1, . . . , k. The full model states that the yij

values are made up of two components.

1. The expected mean response for the mj at a specific xj value (mj¼ �yyj).

2. The random error (eij).

y y

x

^

FIGURE 2.24 Simple regression model after log10 transformation.
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The sum-of-squares error for the full model is considered pure error,

which will be used to determine the fit of the model. The pure error is any

variation from �yyj at a specific xj level:

SSEfull ¼ SSpure error ¼
Xk

j¼1

Xn

i¼1

(yij � �yyj)
2: (2:32)

The SSpure error is the variation of the replicate yj values from the �yyj value at

each replicated xj level.

REDUCED ERROR MODEL

The reduced model determines if the actual regression model under the null

hypothesis (b0þ b1x) is adequate to explain the data. The reduced model is

yij ¼ b0 þ b1xj þ eij: (2:33)

That is, the amount that error is reduced due to the regression equation b0þ b1x
in terms of e¼ y� ŷy, or the actual value minus the predicted value,

is determined.

More formally, the sum of squares reduced model is

SS(reduced) ¼
Xk

i¼1

Xn

j¼1

�
yij � ŷyij

�2¼
Xk

i¼1

Xn

j¼1

�
yij �

�
b0 þ b1xj

�	2
: (2:34)

Note that

SS(reduced) ¼ SSE: (2:35)

The difference between SSE and SSpure error¼ SSlack-of-fit:

SSE ¼ SSpure error þ SSlack-of-fit, (2:36)

(yij � ŷyij)
2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
total error

¼ (yij � ŷy:j)
2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pure error

þ (�yy:j � ŷyij)
2

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
lack-of-fit

: (2:37)

Let us look at this diagrammatically (Figure 2.25). Pure error is the

difference of actual y values from �yy at a specific x (in this case, x¼ 4):

yi � �yy ¼ 23� 21:33 ¼ 1:67,

21� 21:33 ¼ �0:33,

20� 21:33 ¼ �1:33:
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Lack of fit is the difference between the �yy value at a specific x and the

predicted ŷy at that specific x value or �yy� ŷy4¼ 21.33� 15.00¼ 6.33.

The entire ANOVA procedure can be completed in conjunction with

the previous F test ANOVA, by expanding the SSE term to include both

SSpure error and SSlack-of-fit. This procedure can only be carried out with the

replication of the x values (Table 2.8).

The test hypothesis for the lack-of-fit component is H0: E[y]¼ b0þ b1x
(the linear regression model adequately describes data).

HA: E[y] 6¼ b0þ b1x (the linear regression model does not adequately

describe data).

If

Fc ¼
MSLF

MSPE

� �

> FT, (FTa(c�2; n�c)), reject H0 at a,

Lack-of-fit deviationPure error deviationTotal deviation

(yj −yij)(yij −yj)(yij −yij) +=

*21.33 is the average of 23, 21, and 20.

y
2

2

1

1

1 3 4 5 6 72

Pure error deviation

Lack-of-fit deviation

x

20
21
23

y = 15.0

y = b0 + b1xi

y  = 21.33*

^

^

^ ^ ^

FIGURE 2.25 Deviation decomposition using.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C002 Final Proof page 66 16.11.2006 7:36pm

66 Handbook of Regression and Modeling



where c is the number of groups of data (replicated and nonreplicated), which

is the number of different xj levels. n is the number of observations.

Let us now work the data in Example 2.1.

The F test for lack of fit of the simple linear regression model is easily

expressed in the six-step procedure.

Step 1: Determine the hypothesis:

H0: E[y] ¼ b0 þ b1x,

HA: E[y] 6¼ b0 þ b1x:

Note: The null hypothesis for the lack of fit is that the simple linear regression

model cannot be rejected at the specific a level.

Step 2: State the significance level (a).

In this example, let us set a at 0.10.

Step 3: Write the test statistic to be used

Fc ¼
MSlack-of-fit

MSpure error

:

Step 4: Specify the decision rule.

If Fc > FT, reject H0 at a. In this example, the value for FT is

Fa(c�2; n�c) ¼ F0:10; (5�2; 15�5) ¼ F0:10 (3, 10) ¼ 2:73:

Therefore, if Fc > 2.73, reject H0 at a¼ 0.10.

TABLE 2.8
ANOVA Table

Source Sum of Squares

Degrees of

Freedom MS Fc FT

Regression SSR ¼
Pn

i¼1

Pk

j¼1

(ŷyij � �yy)2 1
SSR

1
¼ MSR

MSR

MSE
Fa(1, n�2)

Error SSE ¼
Pn

i¼1

Pk

j¼1

(yij � ŷyij)
2 n � 2

SSE

n� 2
¼ MSE

Lack-of-fit

error

SSlack-of-fit ¼
Pn

i¼1

Pk

j¼1

(�yy:j � ŷyij)
2 c � 2

SSlack-of-fit

c� 2
¼ MSLF

MSLF

MSPE
Fa(c�2, n�c)

Pure error SSpure error ¼
Pn

i¼1

Pk

j¼1

(yij � �yy:j)
2 n � c

SSpure error

n� c
¼ MSPE

Total SStotal ¼
Pk

i¼1

Pc

j¼1

(yij � �yy)2 n � 1

Note: c is the number of specific x observations (replicated xi count as one value).
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Step 5: Perform the ANOVA. N¼ 15; c¼ 5

Level¼ j ¼ xj 1 2 3 4 5

0 15 30 45 60

Replicate

1 6.09 5.48 5.01 4.53 3.57

2 6.10 5.39 4.88 4.62 3.42

yij ¼ 3 6.08 5.51 4.93 4.49 3.44

�yy:j ¼ 6.09 5.46 4.94 4.55 3.48

SSpure error ¼
Xn

j¼1

Xk

j¼1

(yij � y:j)
2 over the five levels of xj, c ¼ 5:

SSPE ¼ (6:09� 6:09)2 þ (6:10� 6:09)2 þ (6:08� 6:09)2 þ (5:48� 5:46)2

þ � � � (3:57� 3:48)2 þ (3:42� 3:48)2 þ (3:44� 3:48)2

¼ 0:0388:

SS lack-of-fit ¼ SSE�SSPE, and SSE (from Table 2:6) ¼ 0:375:

SSlack-of-fit ¼ 0:375�0:0388 ¼ 0:3362:

In anticipation of this kind of analysis, it is often useful to include the

lack-of-fit and pure error within the basic ANOVA Table (Table 2.9). Note

that the computation of lack-of-fit and pure error are a decomposition of SSE.

Step 6: Decision.

Because Fc (28.74) > FT (2.73), we reject H0 at the a¼ 0.10 level. The

rejection, i.e., the model is portrayed to lack fit, is primarily because there is

too little variability within each of the j replicates used to obtain pure error.

Therefore, even though the actual data are reasonably well represented by the

regression model, the model could be better.

TABLE 2.9
New ANOVA Table

Source SS DF MS Fc FT Significant=Nonsignificant

Regression 11.3100 1 11.3100 392.71 3.14 Significant

Error 0.375 13 0.0288

Lack-of-fit error 0.3362 3 0.1121 28.74 2.73 Significant

Pure error 0.0388 10 0.0039

Total 11.6850 14
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The researcher must now weigh the pros and cons of using the simple

linear regression model. From a practical perspective, the model may very

well be useful enough, even though the lack-of-fit error is significant. In many

situations experienced by this author, this model would be good enough.

However, to a purist, perhaps a third variable (b2) could be useful. However,

will a third variable hold up in different studies? It may be better to collect

more data to determine if the simple linear regression model holds up in other

cases. It is quite frustrating for the end user to have to compare different

reports using different models to make decisions, apart from understanding

the underlying data. For example, if, when a decision maker reviews several

death-rate kinetic studies of a specific product and specific microorganisms,

the statistical model is different for each study, the decision maker probably

will not use the statistical analyst’s services much longer. So, when possible,

use general, but robust models.

This author would elect to use the simple linear regression model to

approximate the antimicrobial activity, but would collect more data sets not

only to see if the H0 hypothesis would continue to be rejected, but also if the

extra variable (b2) model would be adequate for the new data. In statistics,

data-pattern chasing can be an endless pursuit with no conclusion ever

reached.

If the simple linear regression model, in the researcher’s opinion, does not

model the data properly, then there are several options:

1. Transform the data using EDA methods.

2. Abandon the simple linear regression approach for a more complex

one, such as multiple regression.

3. Use a nonparametric statistic analog.

When possible, transform the data, because the simple linear regression

model can still be used. However, there certainly is value in multiple regres-

sion procedures, in which the computations are done using matrix algebra.

The only practical approach to performing multiple regression is via a com-

puter using a statistical software package. Note that the replicate xj values do

not need to be consistent in number, as in our previous work in ANOVA. For

example, if the data collected were as presented in Table 2.10, the computa-

tion would be performed the same way:

SSpure error ¼ (6:09� 6:09)2 þ (6:10� 6:09)2 þ (6:08� 6:09)2 þ (5:48� 5:46)2

þ � � � þ (3:42� 3:48)2 þ (3:44� 3:48)2 ¼ 0:0388:

Degrees of freedom¼ n� c¼ 15� 5¼ 10.

Given SSE as 0.375, SSlack-of-fit would equal

SSLF ¼ SSE � SSpure error ¼ SSLF ¼ 0:375� 0:0388 ¼ 0:3362:

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C002 Final Proof page 69 16.11.2006 7:36pm

Simple Linear Regression 69



Source SS DF MS Fc

SSE 0.375 — — —

Error lack-of-fit 0.3362 3 0.1121 28.74

Pure error 0.0388 10 0.0039

Let us now perform the lack-of-fit test with MiniTab using the original data as

shown in Table 2.11.

As one can see, the ANOVA consists of the regression and residual error

(SSE) term. The regression is highly significant, with an Fc of 390.00. The

residual error (SSE) is broken into lack-of-fit and pure error. Moreover, the

researcher sees that the lack-of-fit component is significant. That is, the linear

model is not a precise fit, even though, from a practical perspective, the linear

regression model may be adequate.

For many decision makers, as well as applied researchers, it is one thing to

generate a complex regression model, but another entirely to explain its

TABLE 2.10
Lack-of-Fit Computation (ns Are Not Equal)
Level j 1 2 3 4 5

x value 0 15 30 45 60

Corresponding yij

values

6.09 5.48 5.01 4.53 3.57

5.39 4.88 4.62 3.42

5.51 3.44

Mean �yy:j ¼ 6.09 5.46 4.95 4.58 3.48

n ¼ 1 3 2 2 3

Note: n ¼ 11, c ¼ 5.

TABLE 2.11
MiniTab Lack-of-Fit Test

Analysis of Variance

Source DF SS MS F P

Regression 1 11.310 11.310 390.00 0.000

Residual error 13 0.375 0.029

Lack-of-fit 3 0.336 0.112 28.00 0.000

Pure error 10 0.039 0.004

Total 14 11.685
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meaning in terms of variables grounded in one’s field of expertise. For those

who are interested in regression in much more depth, see Applied Regression
Analysis by Kleinbaum et al., Applied Regression Analysis by Draper and

Smith, or Applied Linear Statistical Models by Kutner et al. Let us now focus

on EDA, as it applies to regression.

EXPLORATORY DATA ANALYSIS AND REGRESSION

The vast majority of data can be linearized by merely performing a transform-

ation. In addition, for those data that have nonconstant error variances, sigmoi-

dal shapes, and other anomalies, the use of nonparametric regression is an

option. In simple (linear) regression of the form ŷy¼ b0þ b1x, the data must

approximate a straight line. In practice, this often does not occur; so, to use the

regression equation, the data must be straightened. Four common nonlinear

data patterns can be straightened very simply. Figure 2.26 shows these patterns.

(a)

x

y

Down x

Down y

(d)

Down x

Up y

x

y

(c)

Up x

Down y

x

y

Up x

Up y

x

y

(b)

FIGURE 2.26 Four common nonstraight data patterns.
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PATTERN A

For Pattern A, the researcher will ‘‘go down’’ in the reexpression power of

either x or y, or both. Often, nonstatistical audiences grasp the data more

easily if the transformation is done on the y scale (
ffiffiffi
y
p

, log10 y, etc.) rather than

on the x scale. The x scale is left at power 1, that is, it is not reexpressed. The

regression is then refit, using the transformed data scale and checked to assure

that the data have been straightened. If the plotted data do not appear straight

line, the data are reexpressed again, say, from
ffiffiffi
y
p

to log y or even �1
ffiffiffi
y
p

(see

Paulson, D.S., Applied Statistical Designs for the Researcher, Chapter 3).

This process is done iteratively. In cases where one transformation almost

straightens the data, but the next power transformation overstraightens the

data slightly, the researcher may opt to choose the reexpression that has the

smallest Fc value for lack of fit.

PATTERN B

Data appearing like Pattern B may be linearized by increasing the power of

the y values (e.g., y2, y3), increasing the power of the x values (e.g., x2, x3), or

by increasing the power of both (y2, x2). Again, it is often easier for the

intended audience—decision makers, business directors, or clients—to under-

stand the data when y is reexpressed, and x is left in the original scale. As

discussed earlier, the reexpression procedure is done sequentially (y2 to y3,

etc.), computing the Fc value for lack of fit each time. The smaller the Fc

value, the better. This author finds it most helpful to plot the data after each

reexpression procedure, to select the best fit visually. The more linear the data

are, the better.

PATTERN C

For data that resemble Pattern C, the researcher needs to ‘‘up’’ the power scale

of x (x2, x3, etc.) or ‘‘down’’ the power scale of y (
ffiffiffi
y
p

, log y, etc.) to linearize the

data. For reasons previously discussed, it is recommended to transform the y
values only, leaving the x values in the original form. In addition, once the data

have been reexpressed, plot them to help determine visually if the reexpression

adequately linearized them. If not, the next lower power transformation should

be used, on the y value in this case. Once the data are reasonably linear, as

determined visually, the Fc test for lack of fit can be used. Again, the smaller

the Fc value, the better. If, say, the data are not quite linearized by
ffiffiffi
y
p

but are

slightly curved in the opposite direction with the log y transformation, pick the

reexpression with the smaller Fc value in the lack-of-fit test.

PATTERN D

For data that resemble Pattern D, the researcher can go up the power scale in

reexpressing y or down the power scale in reexpressing x, or do both. Again, it
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is recommended to reexpress the y values (y2, y3, etc.) only. The same strategy

previously discussed should be used in determining the most appropriate

reexpression, based on the Fc value.

DATA THAT CANNOT BE LINEARIZED BY REEXPRESSION

Data that are sigmoidal, or open up and down, or down and up, cannot be

easily transformed. A change to one area (making it linear) makes the other

areas even worse. Polynomial regression, a form of multiple regression, can

be used for modeling these types of data and will be discussed in later

chapters of this text (see Figure 2.27).

EXPLORATORY DATA ANALYSIS TO DETERMINE
THE LINEARITY OF A REGRESSION LINE WITHOUT
USING THE FC TEST FOR LACK OF FIT

A relatively simple and effective way to determine if a selected reexpression

procedure linearizes the data can be completed with EDA pencil–paper

techniques (Figure 2.28). It is known as the ‘‘method of half-slopes’’ in

EDA parlance. In practice, it is suggested, when reexpressing a data set to

approximate a straight line, that this EDA procedure be used rather than the

Fc test for lack of fit.

y

y y

y

xx

x x

FIGURE 2.27 Polynomial regressions.
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Step 1: Divide the data into thirds, finding the median (x, y) value of each

group. Note that there is no need to be ultraaccurate, when partitioning the

data into the three groups.

To find the left x, y medians (denoted xL, yL), use the left one-third of the

data. To find the middle x, y medians, use the middle one-third of the data and

label these as xM, yM. To find the right x, y medians, denoted by xR, yR, use the

right one-third of the data.

Step 2: Estimate the slope (b1) for both the left and right thirds of the data set:

bL ¼
yM � yL

xM � xL

, (2:38)

bR ¼
yR � yM

xR � xM

, (2:39)

where yM is the median of the y values in the middle 1=3 of the data set, yL the

median of the y values in the left 1=3 of the data set, yR the median of the y
values in the right 1=3 of the data set, xM the median of the x values in the

middle 1=3 of the data set, xL the median of the x values in the left 1=3 of the

data set, and xR is the median of the x values in the right 1=3 of the data set.

Step 3: Determine the slope coefficient:

bR

bL

: (2:40)

Step 4: If the bR=bL ratio is close to 1, the data are considered linear and good

enough. If not, reexpress the data and repeat step 1 through step 3. Also, note

that approximations of b1 (slope) and b0 (y intercept) can be computed using

the median values of any data set:

xL, yL 
(Left median)

y

x

(Right median)

(Middle
median)

xM, yM

xR, yR

xL xM xR

FIGURE 2.28 Half-slopes in EDA.
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b1 ¼
yR � yL

xR � xL

, (2:41)

b0 ¼ yM � b1(xM): (2:42)

Let us use the data in Example 2.1 to perform the EDA procedures just

discussed. Because these data cannot be partitioned into equal thirds, the data

will be approximately separated into thirds. Because the left and right thirds

have more influence on this EDA procedure than does the middle group, we

use x¼ 0 and 15 in the left group, only x¼ 30 in the middle group, and x¼ 45

and 60 in the right group.

Step 1: Separate the data into thirds at the x levels.

Left Group Middle Group Right Group

x¼ 0 and 15 x¼ 30 x¼ 45 and 60

xL¼ 7.5 xM¼ 30 xR¼ 52.50

yL¼ 5.80 yM¼ 4.93 yR¼ 4.03

Step 2: Compute the slopes (b1) for the left and right groups:

bL ¼
yM � yL

xM � xL

¼ 4:93� 5:80

30� 7:5
¼ �0:0387,

bR ¼
yR � yM

xR � xM

¼ 4:03� 4:93

52:5� 30
¼ �0:0400:

Step 3: Compute the slope coefficient, checking it to see if it equals 1:

Slope coefficient ¼ bR

bL

¼ �0:0400

�0:0387
¼ 1:0336:

Note, in this procedure, that it is just as easy to see if bR¼ bL. If they are not

exactly equal, it is the same as the slope coefficient not equaling 1. Because the

slope coefficient ratio in our example is very close to 1 (and the values bR and bL

are nearly equal), we can say that the data set is approximately linear.

If the researcher wants a rough idea as to what the slope (b1) and y
intercept (b0) are, they can be computed using formula 2.42 and formula 2.43:

b1 ¼
yR � yL

xR � xL

¼ 4:03� 5:80

52:5� 7:5
¼ �0:0393,

b0 ¼ yM � b1(xM) ¼ 4:93� (�0:0393)30 ¼ 6:109:

ŷy¼ b0þ b1x1 or ŷy¼ 6.109� 0.0393x, which is very close to the parametric

result, ŷy¼ 6.13� 0.041x, computed by means of the least-squares regression

procedure.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C002 Final Proof page 75 16.11.2006 7:36pm

Simple Linear Regression 75



CORRELATION COEFFICIENT

The correlation coefficient, r, is a statistic frequently used to measure the

strength of association between x and y. A correlation coefficient of 1.00 or

100% is a perfect fit (all the predicted ŷy values equal the actual y values), and a 0

value isacompletely randomarrayofdata (Figure2.29).Theoretically, the range

of r is�1 to 1, where�1 describes a perfect fit, descending slope (Figure 2.30).

The correlation coefficient (r) is a dimensionless value independent of x
and y. Note that, in practice, the value for r2 (coefficient of determination) is

generally more directly useful. That is, knowing that r¼ 0.80 is not directly

useful, but r2¼ 0.80 is, because the r2 means that the regression equation is

80% better in predicting y than is the use of �yy.

The more positive the r (closer to 1), the stronger the statistical association.

That is, the accuracy and precision of predicting a y value from a value of x
increases. It also means that, as the values of x increase, so do the y values.

Likewise, the more negative the r value (closer to�1), the stronger the statistical

association. In this case, as the x values increase, the y values decrease. The

r = 1.0

r = 0

·

·
· ·
· · ··

·

FIGURE 2.29 Correlation coefficients.
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closer the r value is to 0, the less linear association there is between x and y,

meaning the accuracy in predictions of a y value from an x value decreases.

By association, the author means dependence of y and x. That is, one can

predict y by knowing x. The correlation coefficient value, r, is computed as

r ¼

Pn

i¼1

(xi � �xx)(yi � �yy)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

(xi � �xx)2
Pn

i¼1

(yi � �yy)2

s � (2:43)

A simpler formula often is used for hand calculator computation:

r ¼

Pn

i¼1

xiyi �

Pn

i¼1

xi

� �
Pn

i¼1

yi

� �

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1

x2
i �

Pn

i¼1

xi

� �2

n

2

6
6
6
4

3

7
7
7
5

Pn

i¼1

y2
i �

Pn

i¼1

yi

� �2

n

2

6
6
6
4

3

7
7
7
5

v
u
u
u
u
u
u
t

� (2:44)

Fortunately, even the relatively inexpensive scientific calculators usually

have an internal program for calculating r. Let us compute r from the data in

Example 2.1:

Xn

i¼1

xiyi ¼
X15

i¼1

(0� 6:09)þ (0� 6:10)þ � � � þ (60� 3:57)þ (60� 3:42)

þ (60� 3:44) ¼ 1929:90,

r = �1

FIGURE 2.30 Perfect descending slope.
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X15

i¼1

xi ¼ 450,

X15

i¼1

yi ¼ 73:54,

X15

i¼1

x2
i ¼ 20250:00,

X15

i¼1

y2
i ¼ 372:23,

n ¼ 15,

r ¼
1929:90� (450)(73:54)

15ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20250:00� (450)2

15

� �

372:23� (73:54)2

15

� �s ¼ �0:9837:

The correlation coefficient is –0.9837 or, as a percent, 98.37%. This value

represents strong negative correlation. However, the more useful value to use,

in this author’s view, is the coefficient of determination, r2. In this example,

r2¼ (�0.9837)2¼ 0.9677. This r2 value translates directly to the strength of

association; that is, 96.77% of the variability of the (x, y) data can be

explained through the linear regression function. Note in Table 2.3 that r2 is

given as 96.8% (or 0.968) from the MiniTab computer software regression

routine. Also, note that

r2 ¼ SST � SSE

SST

¼ SSR

SST

,

where

SST ¼
Xn

i¼1

(yi � �yy)2

r2 ranges between 0 and 1 or 0 � r2 � 1.

SSR, as the reader will recall, is the amount of total variability directly

due to the regression model. SSE is the error not accounted for by the

regression equation, which is generally called random error. Recall that

SST¼ SSRþ SSE. Therefore, the larger SSR is relative to error, SSE, the

greater the r2 value. Likewise, the larger SSE is relative to SSR, the smaller

(closer to 0) the r2 value will be.

Again, r2 is, in this author’s opinion, the better of the two (r2 vs. r) to use,

because r2 can be applied directly to the outcome of the regression. If

r2¼ 0.50, then the researcher can conclude that 50% of the total variability
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is explained by the regression equation. This is no better than using the

average �yy as predictor, and dropping the need for the �xx dimension entirely.

Note that when r2¼ 0.50, r¼ 0.71. The correlation coefficient can be decep-

tive in cases like this, for it can lead a researcher to conclude that a higher

degree of statistical association exists than actually does. Neither r2 nor r is a

measure of the magnitude of b1, the slope. Hence, it cannot be said that the

greater the slope value b1, the larger will be r2 or r (Figure 2.31).

If all the predicted values and actual values are the same, r2¼ 1, no matter

what the slope, and as long as there is a slope. If there is no slope, b1 drops out

and b0 becomes the best estimate of y, which turns out to be �yy. Instead, r2 is a

measure of how close the actual y values are to the ŷy values (Figure 2.32).

Finally, r2 is not a measure of the appropriateness of the linear model

(see Figure 2.33) (r2¼ 0.82) for this model is high, but that a linear model

is not appropriate is obvious. r2¼ 0.12 (Figure 2.34). Clearly, these data are

not linear and not evaluated well by linear regression.

CORRELATION COEFFICIENT HYPOTHESIS TESTING

Because the researcher undoubtedly will be faced with describing regression

functions via the correlation coefficient, r, which is such a popular statistic,

we develop its use further. (Note: The correlation coefficient can be used to

determine if r¼ 0, and if r¼ 0, then b1 also equals 0.)

y

x

r 2 = 1
r 2 = 1

y

x

FIGURE 2.31 Correlation of slope rates.

r2 = 0.60

y

x

y

x

r2 = 0.80

FIGURE 2.32 Degree of closeness of y to ŷy.
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This hypothesis test of r¼ 0 can be performed applying the six-step

procedure.

Step 1: Determine the hypothesis.

H0: R ¼ 0 (x and y are not associated, not correlational),

HA: R 6¼ 0 (x and y are associated, are correlational).

Step 2: Set the a level.

Step 3: Write out the test statistic, which is a t-test (Equation 2.45):

tc ¼
r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p with n� 2 degrees of freedom: (2:45)

Step 4: Decision rule:

If jtcj > t(a=2, n�2), reject H0 at a:

Step 5: Perform the computation (step 3).

Step 6: Make the decision based on step 5.

y

x

r 
2 = 0.82

FIGURE 2.33 Inappropriate linear model.

y

x

r 2 = 0.12

FIGURE 2.34 Nonlinear model.
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Example 2.6: Using Example 2.1, the problem can be done as follows.

Step 1:

H0: R¼ 0,

HA: R 6¼ 0.

Step 2: Let us set a¼ 0.05. Because this is a two-tail test, the t tabled (tt)
value uses a=2 from Table B.

Step 3: The test statistic is

tc ¼
r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p �

Step 4: If jtcj > t(0.05=2, 15–2)¼ 2.16, reject H0 at a¼ 0.05.

Step 5: Perform computation:

tc ¼
�0:9837

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:9677
p ¼ �3:5468

0:1797
¼ �19:7348

Step 6: Decision.

Because jtcj ¼ 19.7348 > t(a=2,13)¼ 2.16, the H0 hypothesis is rejected at

a¼ 0.05. The correlation coefficient is not 0, nor does the slope b1¼ 0.

CONFIDENCE INTERVAL FOR THE CORRELATION
COEFFICIENT

A 1 – a CI on r can be derived using a modification of Fisher’s Z transform-

ation. The transformation has the form

1

2
ln

1þ r

1� r
:

The researcher also uses the normal Z table (Table A) instead of Student’s t
table. The test is reasonably powerful, so long as n � 20.

The complete CI is

1

2
ln

1þ r

1� r
� Za=2=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

: (2:46)

The quantity

1

2
ln

1þ r

1� r
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approximates the mean and Za=2=
ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p

the variance.

Lower limit ¼ 1

2
ln

1þ Lr

1� Lr

: (2:47)

The lower limit value is then found in Table O (Fisher’s Z Transformation

Table) for the corresponding r value.

Upper limit ¼ 1

2
ln

1þ Ur

1� Ur

: (2:48)

The upper limit is also found in Table O for the corresponding r value. The

(1�a) 100% CI is of the form Lr < R < Ur. Let us use Example 2.1. Four

steps are required for the calculator:

1

2
ln

1þ 0:9837

1� 0:9837
� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 3
p

2:4008� 0:5658:

Step 1: Compute the basic interval, letting a¼ 0.05 and Z.05=2¼ 1.96 (from

Table A).

Step 2: Compute lower or upper limits:

Lr ¼ 2:4008� 0:5658 ¼ 1:8350,

Ur ¼ 2:4008þ 0:5658 ¼ 2:9660:

Step 3: Find Lr (1.8350) in Table O (Fisher’s Z Transformation Table), and

then find the corresponding value of r:

r � 0:95:

Find Ur (2.9660) in Table O (Fisher’s Z Transformation Table), and again,

find the corresponding value of r:

r � 0:994:

Step 4: Display 1�a confidence interval.

0:950 < r < 0:994;

at a ¼ 0:05 or 1� a ¼ 0:95:

Note: This researcher has adapted the Fisher test to a t-tabled test, which is

useful for smaller sample sizes. It is a more conservative test than the Z test,
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so the confidence intervals will be wider until the sample size of the t tabled r
is large enough to equal the Z tabled value.

1. The basic formula

Basic modified interval:

1

2
ln

1þ r

1� r
�

ta=2(n�2)
ffiffiffiffiffiffiffiffiffiffiffi
n� 3
p :

Everything else is the same as for the Z-based confidence interval example.

Example 2.7: Let a¼ 0.05; t(a=2; n�2)¼ t(0.05=2, 13)¼ 2.16, as found in the

Student’s t table (Table B).

Step 1: Compute the basic interval:

1

2
ln

1þ 0:9837

1� 0:9837
� 2:16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 3
p ¼ 2:4008� 0:6235:

Step 2: Compute the lower and upper limits, as done earlier:

Lr ¼ 2:4008� 0:6235 ¼ 1:7773;

Lu ¼ 2:4008þ 0:6235 ¼ 3:0243:

Step 3: Find Lr (1.7773) in Table O (Fisher’s Z table), and find the corre-

sponding value of r:

r � 0:95r ¼ 0:944:

Find Ur (3.0243) in Table O (Fisher’s Z table), and find the corresponding

value of r:

r ¼ 0:995:

Step 4: Display the 1�a confidence interval:

0:944 < R < 0:995 at a ¼ 0:05; or 1� a ¼ 0:95:

PREDICTION OF A SPECIFIC x VALUE FROM A y VALUE

There are times when a researcher wants to predict a specific x value from a y
value as well as generate confidence intervals for that estimated x value. For

example, in microbial death kinetic studies (D values), a researcher often

wants to know how much exposure time (x) is required to reduce a microbial

population, say, three logs from the baseline value. Alternatively, a researcher

may want to know how long an exposure time (x) is required for an

antimicrobial sterilant to reduce the population to zero. In these situations,

the researcher will predict x from y. Many microbial death kinetic studies,

including those using dry heat, steam, ethylene oxide, and gamma radiation,
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can be computed in this way. The most common procedure uses the D value,

which is the time (generally in minutes) in which the initial microbial

population is reduced by 1 log10 value.

The procedure is quite straightforward, requiring just basic algebraic

manipulation of the linear regression equation, ŷy¼ b0þ b1x. As rearranged,

then, the regression equation used to predict the x value is

x̂xi ¼
yi � b0

b1

: (2:49)

The process requires that a standard regression ŷy¼ b0þ b1x be computed

to estimate b0 and b1. It is then necessary to ensure that the regression fit is

adequate for the data described. At that point, the b0 and b1 values can be

inserted into Equation 2.49. Equation 2.53 works from the results of Equation

2.49 to provide a confidence interval for x̂x. The 1�a confidence interval

equation for x̂x is

x̂x� ta=2, n�2sx, (2:50)

where

s2
x ¼

MSE

b2
1

1þ 1

n
þ (x̂x� �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5: (2:51)

Let us perform the computation using the data in Example 2.1 to demonstrate

this procedure. The researcher’s question is how long an exposure to the test

antimicrobial product is required to achieve a 2 log10 reduction from the

baseline?

Recall that the regression for this example has already been completed. It

is ŷy¼ 6.13067� 0.040933x, where b0¼ 6.13067 and b1¼�0.040933. First,

the researcher calculates the theoretical baseline or beginning value of y when

x¼ 0 time: ŷy¼ b0þ b1x¼ 6.13067� 0.040933(0)¼ 6.13. The 2 log10 reduc-

tion time is found by using Equation 2.52, x̂x¼ (y� b0)=b1, where y is a 2 log10

reduction from ŷy at time 0. We calculate this value as 6.13 – 2.0¼ 4.13. Then,

using Equation 2.49, we can determine x̂x or the time in seconds for the

example:

x̂x ¼ 4:13� 6:13

�0:041
¼ 48:78 sec:
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The confidence interval for this x̂x estimate is computed as follows, where x̂x ¼ 30,

n ¼ 15,
Pn

i¼1 ðxi � �xxÞ2 ¼ 6750, and MSE¼ 0.0288. Using Equation 2.50,

x̂x + ta=2, n� 2 sx, and t(0.0512, 15�2)¼ 2.16 from Table B:

s2
x ¼

MSE

b2
1

1þ 1

n
þ (x̂x� �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5;

s2
x ¼

0:0288

(�0:041)2
1þ 1

15
þ (48:78� 30)2

6750

� �

¼ 19:170;

sx ¼ 4:378;

x̂x� t0:05=2,13sx;

48:78� 2:16(4:378);

48:78� 9:46;

39:32 � x̂x � 58:24:

Therefore, the actual new value x̂x on y¼ 4.13 is contained in the interval

39.32 � x̂x � 58.24, when a¼ 0.05. This is an 18.92 sec spread, which may

not be very useful to the researcher. The main reasons for the wide confidence

interval are variability in the data and that one is predicting a specific, not an

average, value. The researcher may want to increase the sample size to reduce

the variability or may settle for the average expected value of x because the

confidence interval will be narrower.

PREDICTING AN AVERAGE x̂x

Often, a researcher is more interested in the average value of x̂x. In this case,

the formula for determining x is the same as Equation 2.49:

x̂x� ta=2, n�2s�xx, (2:52)

where

s�xx ¼
MSE

b2
1

1

n
þ (x̂x� �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5: (2:53)
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Let us use Example 2.1 again. Here, the researcher wants to know, on an

average, what the 95% confidence interval is for x̂x when y is 4.13 (a 2 log10

reduction). x̂x¼ 48.78 sec, as discussed in the previous section:

s2
x ¼

0:0288

(�0:041)2

1

15
þ (48:78� 30)2

6750

� �

¼ 2:037;

sx ¼ 1:427;

x̂x� t(a=2, n�2)s�xx ¼ x̂x� t0:025, 13s�xx,

48:78� 2:16(1:427),

48:78� 3:08,

45:70 � x̂x � 51:86:

Therefore, on an average, the time required to reduce the initial population is

between 45.70 and 51.86 sec. For practical purposes, the researcher may

round up to a 1 min exposure.

D VALUE COMPUTATION

The D value is the time of exposure, usually in minutes, to steam, dry heat,

or ethylene oxide that it takes to reduce the initial microbial population by

1 log10:

ŷy ¼ b0 þ b1x,

x̂xD ¼
y� b0

b1

: (2:54)

Note that, when we look at a 1 log10 reduction, y – b0 will always be 1. Hence,

the D value, x̂xD, will always equal j1=b1j. The D value can also be computed

for a new specific value. The complete formula is

x̂xD � t(a=2, n�2)sx,

where

s2
x ¼

MSE

b2
1

1þ 1

n
þ (x̂xD � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5: (2:55)

Alternatively, the D value can be computed for the average or expected

value E(x):
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x̂xD � t(a=2, n�2)sx,

where

s2
�xx ¼

MSE

b2
1

1

n
þ (x̂xD � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5:

Example 2.8: Suppose the researcher wants to compute the average D
value or the time it takes to reduce the initial population 1 log10:

x̂xD ¼
1

b1

�
�
�
�

�
�
�
� ¼

1

�0:041

�
�
�
�

�
�
�
� ¼ 24:39,

s2
�xx ¼

MSE

b2
1

1

n
� (x̂xD � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5 ¼

0:0288

(�0:041)2

1

15
þ (24:39� 30)2

6750

� �

¼ 1:222,

s�xx ¼ 1:11,

x̂xD � ta=2, n�2s�xx,

24:39� 2:16(1:11),

24:39� 2:40,

21:99 � x̂xD � 26:79:

Hence, the D value, on an average, is contained within the interval 21.99

� x̂xD � 26.79 at the 95% level of confidence.

SIMULTANEOUS MEAN INFERENCES OF b0 AND b1

In certain situations, such as antimicrobial time–kill studies, an investigator

may be interested in confidence intervals for both b0 (initial population) and

b1 (rate of inactivation). In previous examples, confidence intervals were

calculated for b0 and b1 separately. Now we discuss how confidence intervals

for both b0 and b1 can be achieved simultaneously. We use the Bonferroni

method for this procedure.

Recall

b0 ¼ b0 � t(a=2, n�2)sb0
,

b1 ¼ b1 � t(a=2, n�2)sb1
:
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Because we are estimating two parameters, b0 and b1, we use a=2þa=2¼a=4.

Thus, the revised formulas for b0 and b1 are

b0 ¼ b0 � t(a=4, n�2)sb0
and

b1 ¼ b1 � t(a=4, n�2)sb1
, where

b0 ¼ y intercept,

b1 ¼ slope,

s2
b0
¼ MSE

1

n
þ �xx2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5,

s2
b1
¼ MSE

Pn

i¼1

(xi � �xx)2

:

Let us now perform the computation using the data in Example 2.1.

Recall that

b0 ¼ 6:13,

b1 ¼ �0:041,

MSE ¼ 0:0288,

Xn

i¼1

(xi � �xx)2 ¼ 6750,

�xx ¼ 30,

n ¼ 15, and

a ¼ 0:05:

From Table B, the Student’s t table, ta=4, n� 2¼ t0.05=4, 15�2¼ t0.0125, 13 � 2.5:

Sb1
¼ 0:0021,

Sb0
¼ 0:0759,
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b0 ¼ b0 � t(a=4, n�2)(sb0
)

¼ 6:13þ 0:1898 ¼ 6:32

¼ 6:13� 0:1898 ¼ 5:94,

5:94 � b0 � 6:32,

b1 ¼ b1 � t(a=4, n�2)(sb1
)

¼ �0:041þ 0:0053 ¼ �0:036

¼ �0:041� 0:0053 ¼ �0:046,

�0:046 � b1 � �0:036:

Hence, the combined 95% confidence intervals for b0 and b1 are

5:94 � b0 � 6:32,

�0:046 � b1 � �0:036:

Therefore, the researcher can conclude, at the 95% confidence level, that

the initial microbial population (b0) is between 5.94 and 6.32 logs, and

the rate of inactivation (b1) is between 0.046 and 0.036 log10 per second

of exposure.

SIMULTANEOUS MULTIPLE MEAN ESTIMATES OF y

There are times when a researcher wants to estimate the mean y values for

multiple x values simultaneously. For example, suppose a researcher wants to

predict the log10 microbial counts (y) at times 1, 10, 30, and 40 sec after the

exposures and wants to be sure of their overall confidence at a¼ 0.10. The

Bonferroni procedure can again be used for x1, x2, . . . , xr simultaneous estimates.

ŷy + t(a=2r, n�2) s�yy (mean response), where r is the number of xi values

estimated; ŷy¼ b0þ b1x, for i¼ 1, 2, . . . , r simultaneous estimates

s2
�yy ¼ MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5:

Example 2.9: Using the data from Example 2.1, a researcher wants a 0.90

confidence interval (a¼ 0.10) for a series of estimates (xi¼ 0, 10, 30, 40, so

r¼ 4). What are they? Recall that ŷyi¼ 6.13� 0.41xi, n¼ 15, MSE¼ 0.0288,

and
Pn

i¼1 (xi � �xx)2 ¼ 6750 :
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s2
�yy ¼ MSE

1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5 ¼ 0:0288

1

15
þ (xi � 30)2

6750

� �

:

t(0.10=2; 4, 13) � 2.5 from Table B, the Student’s t table.

For x¼ 0

ŷy0 ¼ 6:13� 0:041(0) ¼ 6:13,

s2
�yy ¼ 0:0288

1

15
þ (0� 30)2

6750

� �

¼ 0:0058,

s�yy ¼ 0:076,

ŷy0 � t(0:10=2; 4, 13)(s�yy),

6:13� 2:5(0:076),

6:13� 0:190,

5:94 � �yy0 � 6:32 for x ¼ 0, or no exposure, at a ¼ 0:10:

For x¼ 10,

ŷy10 ¼ 6:13� 0:041(10) ¼ 5:72,

s2
�yy ¼ 0:0288

1

15
þ (10� 30)2

6750

� �

¼ 0:0036,

s�yy ¼ 0:060,

ŷy10 � t(0:10=2; 4, 13)(s�yy),

5:72� 2:5(0:060),

5:72� 0:150,

5:57 � �yy10 � 5:87 for x ¼ 10 sec, at a ¼ 0:10:

For x¼ 30,

ŷy30 ¼ 6:13� 0:041(30) ¼ 4:90,

s2
�yy ¼ 0:0288

1

15
þ (30� 30)2

6750

� �

¼ 0:0019,

s�yy ¼ 0:044,
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ŷy30 � t(0:10=2; 4, 13)(S�yy),

4:90� 2:5(0:044),

4:90� 0:11,

4:79 � �yy30 � 5:01 for x ¼ 30 sec, at a ¼ 0:10:

For x¼ 40,

ŷy40 ¼ 6:13� 0:041(40) ¼ 4:49,

s2
�yy ¼ 0:0288

1

15
þ (40� 30)2

6750

� �

¼ 0:0023,

s�yy ¼ 0:0023,

ŷy40 � t(0:10=2; 4, 13)(s�yy),

4:49� 2:5(0:048),

4:49� 0:12,

4:37 � �yy40 � 4:61 for x ¼ 40 sec, at a ¼ 0:10:

Note: Individual simultaneous confidence intervals can be made on not only

the mean values, but on the individual values as well. The procedure is

identical to the earlier one, except s�yy, is replaced by sŷy, where

sŷy ¼ MSE 1þ 1

n
þ (xi � �xx)2

Pn

i¼1

(xi � �xx)2

2

6
6
4

3

7
7
5: (2:56)

SPECIAL PROBLEMS IN SIMPLE LINEAR REGRESSION

PIECEWISE REGRESSION

There are times when it makes no sense to perform a transformation on a

regression function. This is true, for example, when the audience will not

make sense of the transformation or when the data are too complex. The data

displayed in Figure 2.35 exemplify the latter circumstance. Figure 2.35 is a

complicated data display that can easily be handled using multiple regression

procedures, with dummy variables, which we will discuss later. Yet, data such

as these can also be approximated by simple linear regression techniques,

using three separate regression functions (see Figure 2.36).
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Here,

ŷya covers the range xa; b0¼ initial a value, when x¼ 0; b1¼ slope of ŷya

over the xa range,

ŷyb covers the range xb; b0¼ initial b value, when x¼ 0; b1¼ slope of ŷyb

over the xb range,

y

x

FIGURE 2.35 Regression functions.

for a, b0

xb
xcxa

x

for c, b0

for b, b0

ya

yb

yc
^

^

^

FIGURE 2.36 Complex data.
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ŷyc covers the range xc; b0¼ initial c value, when x¼ 0; b1¼ slope of ŷyc

over the xc range.

A regression of this kind, although rather simple to perform, is time-

consuming. The process is greatly facilitated by using a computer.

The researcher can always take each x point and perform a t-test confi-

dence interval, and this is often the course chosen. Although from a probabil-

ity perspective, this is not correct; from a practical perspective, it is easy,

useful, and more readily understood by audiences. We discuss this issue in

greater detail using indicator or dummy variables in the multiple linear

regression section of this book.

COMPARISON OF MULTIPLE SIMPLE LINEAR
REGRESSION FUNCTIONS

There are times when a researcher would like to compare multiple regression

function lines. One approach is to construct a series of 95% confidence

intervals for each of the ŷy values at specific xi values. If the confidence

intervals overlap, from regression line A to regression line B, the researcher

simply states that no difference exists, and if the confidence intervals do not

overlap, the researcher states that the y points are significantly different from

each other at a (see Figure 2.37).

Furthermore, if any confidence intervals of ŷya and ŷyb overlap, the ŷy
values on that specific x value are considered equivalent at a. Note that the

x

y

1− α confidence intervals

=  ib

=  ia

FIGURE 2.37 Nonoverlapping confidence levels.
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confidence intervals in this figure do not overlap, so the two regression func-

tions, in their entirety, are considered to differ at a. When using the 1 – a

confidence interval (CI) approach, keep in mind that this is not 1 – a in prob-

ability. Moreover, the CI approach does not compare rates (b1) or intercepts (b0),

but merely indicates whether the y values are the same or different. Hence,

though the confidence interval procedure certainly has a place in describing

regression functions, it is finite. There are other possibilities (see Figure 2.38).

When a researcher must be more accurate and precise in deriving conclusions,

more sophisticated procedures are necessary.

a

b

y

x

a

b

y

x

1
Slopes are equivalent (b1a = b1b), but
intercepts are not (b0a ≠ b0b).

2
Slopes are not equivalent (b1a ≠ b1b), but
intercepts are (b0a = b0b).

b
a

x

y

a = b

y

x

3
Slopes are not equivalent (b1a ≠ b1b) and
intercepts are not equivalent (b0a ≠ b0b).

4
Slopes and intercepts are equivalent
(b1a = b1b and b0a = b0b).

FIGURE 2.38 Other possible comparisons between regression lines.
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EVALUATING TWO SLOPES (b1a AND b1b) FOR
EQUIVALENCE IN SLOPE VALUES

At the beginning of this chapter, we learned to evaluate b1 to assure that the

slope was not 0. Now we expand this process slightly to compare two slopes,

b1a and b1b. The test hypothesis for a two-tail test will be

H0: b1a ¼ b1b,

HA: b1a 6¼ b1b:

However, the test can be adapted to perform one-tail tests, too.

Lower Tail Upper Tail

H0: b1a � b1b H0: b1a � b1b

HA: b1a < b1b HA: b1a > b1b

The statistical procedure is an adaptation of the Student’s t-test:

tc ¼
b1a � b1b

sba�b

, (2:57)

where b1a is the slope of regression function a(ŷya) and b1b is the slope of

regression function b(ŷyb):

s2
ba�b
¼ s2

pooled

1

(na � 1)s2
xa

þ 1

(nb � 1)s2
xb

" #

,

where

s2
xi

Pn

i¼1

x2
i�

Pn

i¼1

xi

� �2

n
n� 1

,

s2
pooled ¼

(na � 2)MSEa
þ (nb � 2)MSEb

na þ nb � 4
,

MSEa
¼

Pn

i¼1

(yia � ŷya)2

n� 2
¼ SSEa

n� 2
,

MSEb
¼

Pn

i¼1

(yib � ŷyb)2

n� 2
¼ SSEb

n� 2
:
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This procedure can be easily performed applying the standard six-step pro-

cedure.

Step 1: Formulate hypothesis.

Two Tail Lower Tail Upper Tail

H0: b1a¼b1b H0: b1a � b1b H0: b1a � b1b

HA: b1a 6¼ b1b HA: b1a < b1b HA: b1a > b1b

Step 2: State the a level.

Step 3: Write out the test statistic, which is

tc ¼
b1a � b1b

sba�b

,

where b1a is the slope estimate of the ath regression line and b1b is that of the

bth regression line.

Step 4: Determine hypothesis rejection criteria.

Two Tail Lower Tail Upper Tail

H0: b1a¼b1b H0: b1a � b1b H0: b1a � b1b

HA: b1a 6¼ b1b HA: b1a < b1b HA: b1a > b1b

For a two-tail test (Figure 2.39),

Decision rule: If jtcj > jttj ¼ ta=2,[(na�2)þ(nb�2)], reject H0 at a.

For a lower-tail test (Figure 2.40),

Decision rule: If tc < tt ¼ t�a,[(na�2)þ(nb�2)], reject H0 at a.

For upper-tail test (Figure 2.41),

Decision rule: If tc > tt ¼ t�a,[(na�2)þ(nb�2)], reject H0 at a.

Step 5: Perform statistical evaluation to determine tc.

Step 6: Make decision based on comparing tc and tt.

Let us look at an example.

�a /2 a /2

Reject H0 Reject H0

FIGURE 2.39 Step 4, decision rule for two-tail test.
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Example 2.10: Suppose the researcher exposed agar plates inoculated with

Escherichia coli to forearms of human subjects that are treated with an anti-

microbial formulation, as in an agar-patch test. In the study, four plates were

attached to each of the treated forearms of each subject. In addition, one

inoculated plate was attached to untreated skin on each forearm to provide

baseline determinations of the initial microbial population exposure. A random

selection schema was used to determine the order in which the plates would be

removed from the treated forearms. Two plates were removed and incubated

after a 15 min exposure to the antimicrobially treated forearms, two were

removed and incubated after a 30 min exposure, two were removed and

incubated after a 45 min exposure, and the remaining two after a 60 min

exposure. Two test groups of five subjects each were used, one for antimicro-

bial product A and the other for antimicrobial product B, for a total of 10

subjects. The agar plates were removed from 24 h of incubation at 358C + 28C,

and the colonies were counted. The duplicate plates at each time point for each

subject were averaged to provide one value for each subject at each time.

The final average raw data provided the following results (Table 2.12).

Hence, using the methods previously discussed throughout this chapter, the

following data have been collected.

Product A Product B

Regression equation: ŷya ¼ 5:28� 0:060x ŷyb ¼ 5:56� 0:051x

r2 ¼ 0:974 r2 ¼ 0:984

MSE ¼
SSE

n� 2
¼ 0:046 MSE ¼

SSE

n� 2
¼ 0:021

na ¼ 25 nb ¼ 25

SSEa
¼
Xn

i¼1

(yi � ŷy)2 ¼ 1:069 SSEb
¼
Xn

i¼1

(yi � ŷy)2 ¼ 0:483:

�a

Reject H0

FIGURE 2.40 Step 4, decision rule for lower-tail test.

a

Reject H0

FIGURE 2.41 Step 4, decision rule for upper-tail test.
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The experimenter, we assume, has completed the model selection proced-

ures, as previously discussed, and has found the linear regression models to be

adequate. Figure 2.42 shows ŷy (regression line) and the actual data at a 95%
confidence interval for product A. Figure 2.43, likewise, shows the data for

product B.

Experimenters want to compare the regression models of products A and

B. They would like to know not only the log10 reduction values at specific

times, as provided by each regression equation, but also if the death kinetic

TABLE 2.12
Final Average Raw Data

Exposure Time

in Minutes (x)

Log10 Average Microbial

Counts (y) Product A

Log10 Average Microbial

Counts (y) Product B

Subject 5 1 3 4 2 1 3 2 5 4

0 (baseline counts) 5.32 5.15 5.92 4.99 5.23 5.74 5.63 5.52 5.61 5.43

15 4.23 4.44 4.18 4.33 4.27 4.75 4.63 4.82 4.98 4.62

30 3.72 3.25 3.65 3.41 3.37 3.91 4.11 4.05 4.00 3.98

45 3.01 2.75 2.68 2.39 2.49 3.24 3.16 3.33 3.72 3.27

60 1.55 1.63 1.52 1.75 1.67 2.47 2.40 2.31 2.69 2.53

6

5

4

3

Lo
g 1

0 
m

ic
ro

bi
al

 c
ou

nt
s

2

0 10 20 30
Time (min)

40 50 60

Actual data
Regression
95% Cl

Product A

Prod.A = 5.2804 − 0.0601467 TIME

s = 0.215604 R-Sq = 97.4% R-Sq(adj) = 97.3%

FIGURE 2.42 Linear regression model (product A).
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rates (b1a and b1b)—the slopes—are equivalent. The six-step procedure is

used in this determination.

Step 1: Formulate the hypothesis.

Because the researchers want to know if the rates of inactivation are

different, they want to perform a two-tail test.

H0: b1A¼b1B (inactivation rates of products A and B are the same),

HA: b1A 6¼ b1B (inactivation rates of products A and B are different).

Step 2: Select a level. The researcher selects an a level of 0.05.

Step 3: Write out the test statistic:

s2
ba�b
¼ s2

pooled

1

(na � 1)s2
xa

þ 1

(nb � 1)s2
xb

" #

,

s2
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

x2
i �

Xn

i¼1

xi

 !2

n
n� 1

v
u
u
u
u
u
t

,

s2
pooled ¼

(na � 2)MSEa
þ (nb � 2)MSEb

na � nb � 4
,

MSE ¼ s2
y ¼

SSE

n� 2
¼

Xn

i¼1

(yi � ŷy)2

n� 2
¼

Xn

i¼1

«2

n� 2
:

6

5

4

3Lo
g 1

0 
m

ic
ro

bi
al

 c
ou

nt
s

2

0 10 20 30
Time (min)

40 50 60

Actual data
Regression
95% Cl

Product B

Prod B = 5.5616 − 0.0508533 TIME

s = 0.144975 R-Sq = 98.4% R-Sq(adj) = 98.3%

FIGURE 2.43 Linear regression model (product B).
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Step 4: Decision rule.

ttabled ¼ tð�=2; naþnb�4Þ, using Table B, the Student’s t table,

¼ t(0:05=2; 25þ25�4) ¼ t(0:025; 46) ¼ �2:021 and 2:021 or j2:021j:

If jtcalculatedj > j2.021j, reject H0 (Figure 2.44).

Step 5: Calculate tc:

s2
ba�b
¼ s2

pooled

1

(na � 1)s2
xa

þ 1

(nb � 1)s2
xb

" #

,

s2
pooled ¼

(na � 2)MSEa
þ (nb � 2)MSEb

na þ nb � 4
¼ (25� 2)0:046þ (25� 2)0:021

25þ 25� 4
¼ 0:0335,

s2
xa
¼

Xn

i¼1

x2
i �

X
xi

� 2

n
n� 1

,

where

Xn

i¼1

x2
i ¼ 33,750 and

Xn

i¼1

xi

 !2

¼ (750)2 ¼ 562,500,

s2
xa
¼

33,750� 562,500

25

� �

25� 1
¼ 468:75 and sxa

¼ 21:65,

s2
xb
¼

Xn

i¼1

x2
i �

X
xi

� 2

n
n� 1

,

−2.021 2.021

Reject H0 Reject H0Accept H0

FIGURE 2.44 Step 4, decision rule.
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where

Xn

i¼1

x2
i ¼ 33,750 and

Xn

i¼1

xi

 !2

¼ (750)2 ¼ 562,500,

s2
xb
¼ 468:75 and sxb

¼ 21:65,

s2
ba�b
¼ s2

pooled

1

(na � 1)s2
xa

þ 1

(nb � 1)s2
xb

" #

¼ 0:0335
1

(25� 1)(468:75)
þ 1

(25� 1)(468:75)

� �

,

s2
ba�b
¼ 0:0000060 and sba�b

¼ 0:0024:

For b1a
¼ �0:060 and b1b

¼ �0:051,

tc ¼
b1a � b1b

sba�b

¼ �0:060� (� 0:051)

0:0024
¼ �3:75:

Step 6: Because tc¼�3.75 < Ftabled (�2.021) or jtcj > jttj, one can reject the

null hypothesis (H0) at a¼ 0.05. We can conclude that the slopes (b1) are

significantly different from each other.

EVALUATING THE TWO y INTERCEPTS (b0)
FOR EQUIVALENCE

There are times in regression evaluations when a researcher wants to be

assured that the y intercepts of the two regression models are equivalent.

For example, in microbial inactivation studies, in the comparison of log10

reductions attributable directly to antimicrobials, it must be assured that the

test exposures begin at the same y intercept and have the same baseline for

number of microorganisms.

Using a t-test procedure, this can be done with a slight modification to

what we have already done in determining a 1 – a confidence interval for b0.

The two separate b0 values can be evaluated as a two-tail test, a lower-tail

test, or an upper-tail test.

The test statistic used is

tcalculated ¼ tc ¼
b0a
� b0b

s0a�b

,

s2
0a�b
¼ s2

pooled

1

na
þ 1

nb
þ �xx2

a

(na � 1)s2
xa

þ �xx2
b

(nb � 1)s2
xb

" #

,
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s2
x ¼

Xn

i¼1

x2
i �

Xn

i¼1

xi

 !2

n
n� 1

,

s2
pooled ¼

(na � 2)MSEa
þ (nb � 2)MSEb

na þ nb � 4
:

This test can also be framed into the six-step procedure.

Step 1: Formulate test hypothesis.

Two Tail Lower Tail Upper Tail

H0: b0a¼b0b H0: b0a � b0b H0: b0a � b0b

HA: b0a 6¼ b0b HA: b0a < b0b HA: b0a > b0b

Note: The order of a or b makes no difference; the three hypotheses could be

written in reverse order.

Two Tail Lower Tail Upper Tail

H0: b0b¼b0a H0: b0b � b0a H0: b0b � b0a

Step 2: State the a.

Step 3: Write the test statistic:

tc ¼
b0a
� b0b

s0a�b

:

Step 4: Determine the decision rule.

For two-tail test (Figure 2.45),

−a a

Reject H0 Reject H0

FIGURE 2.45 Step 4, decision rule for two-tail test.
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H0: b0a ¼ b0b,

HA: b0a 6¼ b0b:

If jtcj > jttj ¼ t(a=2, naþnb�4), reject H0 at a:

For lower-tail test (Figure 2.46),

H0: b0a � b0b,

HA: b0a < b0b:

If tc < tt ¼ t(�a, naþnb�4), reject H0 at a:

For upper-tail test (Figure 2.47),

H0: b0a � b0b,

HA: b0a > b0b:

If tc > tt ¼ ta, (naþnb�4), reject H0 at a:

Step 5: Perform statistical evaluation to determine tc.

Step 6: Draw conclusions based on comparing tc and tt.

Let us now work an example where the experimenter wants to compare the

initial populations (time¼ 0) for equivalence.

− a

Reject H0

FIGURE 2.46 Step 4, decision rule for lower-tail test.

α

Reject H0

FIGURE 2.47 Step 4, decision rule for upper-tail test.
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Step 1: This would again be a two-tail test.

Two Tail:

H0: b0a ¼ b0b,

HA: b0a 6¼ b0b: (The initial populations��y intercepts��are not equivalent:)

Step 2: Let us set a at 0.05, as usual.

Step 3: The test statistic is

tc ¼
b0a
� b0b

s0a�b

:

Step 4: Decision rule (Figure 2.48):

tt(a=2, naþnb�4) ¼ tt(0:05=2, 25þ2�4) � 2:021, from Table B, the Student’s t table:

If jtcj > j2.021j, reject H0.

Step 5: Perform statistical evaluation to derive tc:

tc ¼
b0a
� b0b

sba�b

,

b0a
¼ 5:28,

b0b
¼ 5:56,

s2
0a�b
¼ s2

pooled

1

na
þ 1

nb
þ �xx2

a

(na � 1)s2
xa

þ �xx2
b

(nb � 1)s2
xb

" #

,

s2
x ¼

Xn

i¼1

x2
i �

Xn

i¼1

xi

 !2

n
n� 1

¼
33,750� (750)2

25
25� 1

¼ 468:75,

−α/2 α/2

Reject H0 Reject H0

−2.021 2.021

FIGURE 2.48 Step 4, decision rule.
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s2
pooled ¼

(na � 2)MSEa
þ (nb � 2)MSEa

na þ nb � 4
¼ (25� 2)0:046þ (25� 2)0:021

25þ 25� 4
,

s2
pooled ¼ 0:0335,

so, s0a�b ¼ 0:0335
1

25
þ 1

25
þ 302

24(468:75)
þ 302

24(468:75)

� �

¼ 0:0080,

s0a�b
¼ 0:090,

tc ¼
5:28� 5:56

0:090
¼ �3:11:

Step 6: Because jtcj ¼ j 3.11 j > tt¼ j2.021j, one can reject H0 at a¼ 0.05.

The baseline values are not equivalent.

MULTIPLE REGRESSION

Multiple regression procedures are very easily accomplished using software

packages such as MiniTab. However, in much of applied research, they

can become less useful for several reasons: more difficult to understand,

cost–benefit ratio is often low, and often underlie a poorly thought-out

experiment.

MORE DIFFICULT TO UNDERSTAND

As the variable numbers increase, so does the complexity of the statistical

model and its comprehension. If comprehension becomes more difficult,

interpretation becomes nebulous. For example, if researchers have a four- or

five-variable model, visualizing what a fourth or fifth dimension represents is

impossible. If the researchers work in industry, no doubt their job will soon be

in jeopardy for nonproductivity. The question is not whether the models fit the

data better by an r2 or F test fit, but rather, can the investigators truly

comprehend the model’s meaning and explain that to others in unequivocal

terms? In this author’s view, it is far better to use a weaker model (lower r2 or

F value) and understand the relationship between fewer variables than to hide

behind a complex model that is applicable only to a specific data set and is not

robust enough to hold up to other data collected under similar circumstances.

COST–BENEFIT RATIO LOW

Generally, the more the variables, the greater the experimental costs and the

relative value of the extra variables often diminishes. The developed model

simply cannot produce valuable and tangible results in developing new drugs,

new methods, or new processes with any degree of repeatability. Generally,
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this is due to lack of robustness. A complex model will tend to not hold true if

even minute changes occur in variables.

It is far better to control variables—temperature, weight, mixing, flow,

drying, and so on—than to produce a model in an attempt to account for them.

In practice, no quality control or assurance group is prepared to track a four-

dimensional control chart, and government regulatory agencies would not

support them anyway.

POORLY THOUGHT-OUT STUDY

Most multiple regression models applied in research are the result of a poorly

controlled experiment or process. When this author first began his industrial

career in 1981, he headed a solid dosage validation group. His group’s goal

was to predict the quality of a drug batch before it was made, by measuring

mixing times, drying times, hardness, temperatures, tableting press variabil-

ity, friability, dissolution rates, compaction, and hardness of similar lots, as

well as other variables. Computationally, it was not difficult; time series and

regression model development were not difficult either. The final tablet

prediction confidence interval was useless. A 500 mg tablet +50 mg became

500 + 800 mg at a 95% confidence interval. Remember then, the more the

variables the more the error.

CONCLUSION

Now, the researcher has a general overview of simple linear regression, a very

useful tool. However, not all applied problems can be described with simple

linear regression. The rest of this book describes more complex regression

models.
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3 Special Problems
in Simple Linear
Regression: Serial
Correlation
and Curve Fitting

AUTOCORRELATION OR SERIAL CORRELATION

Whenever there is a time element in the regression analysis, there is a real

danger of the dependent variable correlating with itself. In the literature of

statistics, this phenomenon is termed autocorrelation or serial correlation; in

this text, we use the latter as descriptive of a situation in which the value, yi, is

dependent on yi�1, which, in turn, is dependent on yi�2. From a statistical

perspective, this is problematic because the error term, ei, is not inde-

pendent—a requirement of the linear regression model. This interferes with

least-squares calculation.

The regression coefficients, b0 and b1, although still unbiased, no longer

have the minimum variance properties of the least-squares method for deter-

mining b0 and b1. Hence, the mean square error term MSE may be under-

estimated as well as both the standard error of b0, sb0
and the standard error of

b1, sb1
. The confidence intervals discussed previously (Chapter 2), as well as

the tests using the t and F distribution, may no longer be appropriate.

Each ei¼ yi � ŷyi error term is a random variable that is assumed inde-

pendent of all the other ei values. However, when the error terms are self- or

autocorrelated, the error term is not ei but ei�1 þ di. That is, ei (error of the ith
value) is composed of the previous error term ei�1 and a new value called a

disturbance, di. The di value is the independent error term with a mean of 0

and a variance of 1.

When positive serial correlation is present (r > 0), the ei value will be

small in pairwise size and positive errors will tend to remain positive and

negative errors will tend to be negative, slowly oscillating between positive

and negative values (Figure 3.1). The regression parameters, b0 and b1, can be

thrown off and the error term estimated incorrectly.
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Negative serial correlation (Figure 3.1b) tends to display abrupt changes

between ei and ei�1, generally ‘‘bouncing’’ from positive to negative values.

Therefore, any time the y values are collected sequentially over time (x),

the researcher must be on guard for serial correlation. The most common
e i

+

−

0

(a)
t = time

0

(b)

+

−

e i

t = time

FIGURE 3.1 (a) Positive serial correlation of residuals. (The residuals change sign in

gradual oscillation.) (b) Negative serial correlation of residuals. (The residuals bounce

between positive and negative, but not randomly.)

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C003 Final Proof page 108 16.11.2006 7:45pm

108 Handbook of Regression and Modeling



serial correlation situation is pairwise correlation detected between residuals

ei vs. ei�1. This is a 1 lag or 1 step apart correlation. However, serial

correlation can occur in other lags, such as 2, 3, and so on.

DURBIN–WATSON TEST FOR SERIAL CORRELATION

Whenever researchers perform a regression analysis using data collected over

time, they should conduct the Durbin–Watson Test. Most statistical software

packages have it as a standard subroutine and it can be chosen for inclusion in

the analyses.

More often than not, serial correlation will involve positive correlation,

where each ei value is directly correlated to the ei�1 value. In this case, the

Durbin–Watson test is a one-sided test, and the population serial correlation

component—under the alternative hypothesis—is P > 0. The Durbin–Watson

formula for 1 lag is

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

:

For other lags, the change in the formula is straightforward. For example,

a 3 lag Durbin–Watson calculation is

DW ¼

Pn

i¼4

(ei � ei�3)2

Pn

i¼1

e2
i

:

If P > 0, then ei¼ ei �1 þ di. The Durbin–Watson test can be evaluated

using the six-step procedure:

Step 1: Specify the test hypothesis (generally upper-tail or positive correl-

ation).

H0: P � 0 (P is the population correlation coefficient),

HA: P > 0; serial correlation is positive.

Step 2: Set n and a.

Often, n is predetermined. The Durbin–Watson table is found in Table E, with

three different a levels: a¼ 0.05, a¼ 0.025, and a¼ 0.01; n is the number of

values, and k is the number of x predictor variables, taking a value other than

1 only in multiple regression.
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Step 3: Write out the Durbin–Watson test statistic for 1 lag

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

: (3:1)

The ei values are determined from the regression analysis as ei¼ yi � ŷyi. To

compute the Durbin–Watson value using 1 lag, see Table 3.1 (n¼ 5). The ei

column is the original column of ei, derived from yi � ŷyi and the ei�1 column

is the same column but ‘‘dropped down one value,’’ the position for a lag of 1.

Step 4: Determine the acceptance or rejection of the tabled value.

Using Table E, find the a value, the value of n and k, where, in this case,

k¼ 1, because there is only one x predictor variable. Two tabled DW values

are given: dL and dU, or d lower and d upper. This is because the actual tabled

DW value is a range, not an exact value.

Because this is an upper-tail test, the decision rule is

If DW calculated > dU tabled, reject HA.

If DW calculated < dL tabled, accept HA.

If DW calculated is between dU and dL (dL � DW � dU), the test is

inconclusive and the sample size should be increased.

Note that small values of DW support HA because ei and ei�1 are about the

same value when serially correlated. Therefore, when ei and ei�1 are correl-

ated, their difference will be small and P > 0. Some authors maintain that an

n of at least 40 is necessary to use the Durbin–Watson test (e.g., Kutner et al.,

2005). It would be great if one could do this, but, in many tests, even 15

measurements are a luxury.

TABLE 3.1
Example of Calculations for Durbin–Watson Test

n ei ei21 ei 2 ei21 ei
2 (ei 2 ei21)2

1 1.2 — — 1.44 —

2 �1.3 1.2 �2.5 1.69 6.25

3 �1.1 �1.3 0.2 1.21 0.04

4 0.9 �1.1 2.0 0.81 4.00

5 1.0 0.9 0.1 1.00 0.01

Sei
2 ¼ 6.15 S(ei � ei�1)2 ¼ 10.30
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Step 5: Perform the DW calculation.

The computation for DW is straightforward. Using Table 3.1,

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

¼ 10:30

6:15
¼ 1:67:

Step 6: Determine the test significance.

Let us do an actual problem, Example 3.1, the data for which are from an

actual D value computation for steam sterilization. Biological indicators

(strips of paper containing approximately 1 � 106 bacterial spores per strip)

were affixed to stainless steel hip joints. In order to calculate a D value, or the

time required to reduce the initial population by 1 log10, the adequacy of the

regression model must be evaluated. Because b0 and b1 are unbiased estim-

ators, even when serial correlation is present, the model ŷy¼ b0 þ b1 x þ ei

may still be useful. However, recall that ei is now composed of ei � 1 þ di,

where the dis are N(0, 1).

Given that the error term is composed of ei�1 þ di, the MSE calculation

may not be appropriate. Only three hip joints were available and were reused,

over time, for the testing. At time 0, spore strips (without hip joints) were heat

shocked (spores stimulated to grow by exposure to 1508C water) and the

average value recovered was found to be 1.0 � 106. Then, spore strips

attached to the hip joints underwent 1, 2, 3, 4, and 5 min exposures to steam

heat in a BIER vessel. Table 3.2 provides the spore populations recovered

following three replications at each time of exposure.

A scatterplot of the bacterial populations recovered, which is presented in

Figure 3.2, appears to be linear. A linear regression analysis resulted in an R2

value of 96.1%, which looks good (Table 3.3). Because the data were

collected over time, the next step is to graph the eis to the xis (Figure 3.3).

Note that the residuals plotted over the time exposures do not appear to be

randomly centered around 0, which suggests that the linear model may be

inadequate and that positive serial correlation may be present. Table 3.4

provides the actual xi:yi data values, the predicted values ŷy i and the residuals ei.

Although the pattern displayed by the residuals may be due to lack of

linear fit (as described in Chapter 2), before any linearizing transformation,

the researcher should perform the Durbin–Watson test. Let us do that, using

the six-step procedure.

Step 1: Determine the hypothesis.

H0: P � 0.

HA: P > 0, where P is the population correlation coefficient.
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Step 2: The sample size is 18 and we set a¼ 0.05.

Step 3: We apply the Durbin–Watson test at 1 lag.

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

:

TABLE 3.2
D-Value Study Results, Example 3.1

n Exposure Time in Minutes Log10 Microbial Population

1 0 5.7

2 0 5.3

3 0 5.5

4 1 4.2

5 1 4.0

6 1 3.9

7 2 3.5

8 2 3.1

9 2 3.3

10 3 2.4

11 3 2.2

12 3 2.0

13 4 1.9

14 4 1.2

15 4 1.4

16 5 1.0

17 5 0.8

18 5 1.2

2
*

*

*
*
*

*
*
*

*

*

4.8

3.2

1.6

2

2

2

5.0

x = exposure time
(min)

4.03.02.01.00.0

Y
 =

 lo
g

1
0

 m
ic

ro
o

rg
a

n
is

m
s

re
co

ve
re

d

FIGURE 3.2 Regression scatterplot of bacterial populations recovered, Example 3.1.
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Step 4: Decision rule:

Using Table E, the Durbin–Watson Table, n¼ 18, a¼ 0.05, k¼ 1,

dL¼ 1.16, and dU¼ 1.39.

Therefore,

If the computed DW > 1.39, conclude H0.

If the computed DW < 1.16, accept HA.

If 1.16 � DW � 1.39, the test is inconclusive and we need more samples.

Step 5: Compute the DW value.

There are two ways to compute DW using a computer. One can use a

software package, such as MiniTab and attach it to a regression analysis.

Table 3.5 shows this.

TABLE 3.3
D-Value Regression Analysis, Example 3.1

Predictor Coef St. Dev t-Ratio P

b0 5.1508 0.1359 37.90 0.000

b1 �0.89143 0.04488 �19.86 0.000

s ¼ 0.3252 R-sq ¼ 96.1% R-sq(adj) ¼ 95.9%

Analysis of Variance

Source DF SS MS F p

Regression 1 41.719 41.719 394.45 0.000

Error 16 1.692 0.106

Total 17 43.411

The regression equation is ŷy ¼ 5.15 � 0.891x.

xi = time
5.04.03.02.01.00.0

−1.2

0.0

1.2

e i
 =

 y
 i +

 y
 i^

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

FIGURE 3.3 Plot of ei residuals over xi time graph, Example 3.1.
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TABLE 3.4
Residuals vs. Predicted Values, Example 3.1

n xi (Time) yi (log10 Values) ^yi (Predicted) ei (Residuals)

1 0 5.7 5.15079 0.549206

2 0 5.3 5.15079 0.149206

3 0 5.5 5.15079 0.349206

4 1 4.2 4.25937 �0.059365

5 1 4.0 4.25937 �0.259365

6 1 3.9 4.25937 �0.359365

7 2 3.5 3.36794 0.132063

8 2 3.1 3.36794 0.267937

9 2 3.3 3.36794 �0.067937

10 3 2.4 2.47651 �0.076508

11 3 2.2 2.47651 �0.276508

12 3 2.0 2.47651 �0.476508

13 4 1.9 1.58508 0.314921

14 4 1.2 1.58508 �0.385079

15 4 1.4 1.58508 �0.185079

16 5 1.0 0.69365 0.306349

17 5 0.8 0.69365 0.106349

18 5 1.2 0.69365 0.506349

TABLE 3.5
Regression Analysis with the Durbin–Watson Test,

Example 3.1

Predictor Coef St. Dev t-Ratio p

b0 5.1508 0.1359 37.90 0.000

b1 �0.89143 0.04488 �19.86 0.000

s¼ 0.3252 R-sq ¼ 96.1% R-sq(adj) ¼ 95.9%

Analysis of Variance

Source DF SS MS F p

Regression 1 41.719 41.719 394.45 0.000

Error 16 1.692 0.106

Total 17 43.411

Lack-of-fit test ¼ F ¼ 5.10, p ¼ 0.0123, df ¼ 12.

Durbin–Watson statistic ¼ 1.49881.

The Durbin–Watson computation is ~1.50.

The regression equation is ŷy ¼ 5.15 � 0.891x.
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If a software package does not have this option, individual columns can be

manipulated to derive the test results. Table 3.6 provides an example of this

approach.

DW ¼
Xn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

¼ 2:53637

1:69225
¼ 1:4988 � 1:50:

Step 6: Draw the conclusion

Because DW¼ 1.50 > 1.39, conclude H0. Serial correlation is not a

distinct problem with this D value study at a¼ 0.05.

However, let us revisit the plot of ei vs. xi (Figure 3.3). There is reason to

suspect that the linear regression model ŷy¼ b0 þ b1x1 is not exact. Recall

from Chapter 2 that we discussed both pure error and lack of fit in regression.

Most statistical software programs have routines to compute these, or the

computations can be done easily with the aid of a hand-held calculator.

TABLE 3.6
Durbin–Watson Test Performed Manually, with Computer

Manipulation, Example 3.1

n xi yi
^yi ei ei21 ei 2 ei21 (ei 2 ei21)2 ei

2

1 0 5.7 5.15079 0.549206 * * * 0.301628

2 0 5.3 5.15079 0.149206 0.549206 �0.400000 0.160000 0.022263

3 0 5.5 5.15079 0.349206 0.149206 0.200000 0.040000 0.121945

4 1 4.2 4.25937 �0.059365 0.349206 �0.408571 0.166931 0.003524

5 1 4.0 4.25937 �0.259365 �0.059365 �0.200000 0.040000 0.067270

6 1 3.9 4.25937 �0.359365 �0.259365 �0.100000 0.010000 0.129143

7 2 3.5 3.36794 0.132063 �0.359365 0.419429 0.241502 0.017441

8 2 3.1 3.36794 0.267937 0.132063 �0.400000 0.160000 0.071790

9 2 3.3 3.36794 �0.067937 0.267937 0.200000 0.040000 0.004615

10 3 2.4 2.47651 �0.076508 �0.067937 �0.008571 0.000073 0.005853

11 3 2.2 2.47651 �0.276508 �0.076508 �0.200000 0.040000 0.076457

12 3 2.0 2.47651 �0.476508 �0.276508 �0.200000 0.040000 0.227060

13 4 1.9 1.58508 0.314921 �0.476508 0.791429 0.626359 0.099175

14 4 1.2 1.58508 �0.385079 0.314921 �0.700000 0.490000 0.148286

15 4 1.4 1.58508 �0.185079 �0.385079 0.200000 0.040000 0.034254

16 5 1.0 0.69365 0.306349 �0.185079 0.491429 0.241502 0.093850

17 5 0.8 0.69365 0.106349 0.306349 �0.200000 0.040000 0.011310

18 5 1.2 0.69365 0.506349 0.106349 0.400000 0.160000 0.256390

P18

i¼1

(ei � ei�1)2 ¼ 2:53637
P18

i¼1

e2
i ¼ 1:69225
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Recall that the sum of squares term (SSE) consists of two components if

the test is significant: (1) sum of squares pure error (SSPE) and (2) sum of

squares lack of fit (SSLF).

SSE ¼ SSPE þ SSLF,

yij � ŷyij ¼ yij � �yyj

zfflfflffl}|fflfflffl{
þ �yyj � ŷyij

zfflfflffl}|fflfflffl{
:

SSPE is attributed to random variability or pure error, and SSLF is attributed

to significant failure of the model to fit the data.

In Table 3.5, the lack of fit was calculated as Fc¼ 5.10, which was

significant at a¼ 0.05. The test statistic is Flack-of-fit¼FLF¼MSLF

MSPE
¼ 5:10. If

the process must be computed by hand, see Chapter 2 for procedures.

So what is one to do? The solution usually lies in field knowledge, in this

case, microbiology. In microbiology, often there is an initial growth spike

depicted by the data at x¼ 0 because populations resulting from the heat-

shocked spores at x¼ 0, and the sterilized spore samples at x¼ exposure times

1 min through 5 min do not ‘‘line up’’ straight. In addition, there tends to be a

tailing effect, a reduction in the rate of kill as spore populations decline, due

to spores that are highly resistant to steam heat. Figure 3.4 shows this. At time

0, the residuals are highly positive (y� ŷy> 0), so the regression underestimates

the actual spore counts at x¼ 0. The same phenomena occur at x¼ 5, probably

as a result of a decrease in the spore inactivation rate (Figure 3.4).

The easiest way to correct this is to remove the data where x¼ 0 and x¼ 5.

We kept them in this model to evaluate serial correlation because if we
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FIGURE 3.4 Graphic display of the spike and tailing.
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had removed them before conducting the Durbin–Watson test, then we would

have had too small a sample size to use the test. Let us see if eliminating the

population counts at x¼ 0 and x¼ 5 provides an improved fit. Table 3.7

shows these data and Table 3.8 provides the regression analysis.

TABLE 3.7
New Data and Regression Analysis with x 5 0 and x 5 5 Omitted,

Example 3.1

n xi yi ei
^yi

1 1 4.2 0.136667 4.06333

2 1 4.0 �0.063333 4.06333

3 1 3.9 �0.163333 4.06333

4 2 3.5 0.306667 3.19333

5 2 3.1 �0.093333 3.19333

6 2 3.3 0.106667 3.19333

7 3 2.4 0.076667 2.32333

8 3 2.2 �0.123333 2.32333

9 3 2.0 �0.323333 2.32333

10 4 1.9 0.446667 1.45333

11 4 1.2 �0.253333 1.45333

12 4 1.4 �0.053333 1.45333

TABLE 3.8
Modified Regression Analysis, Example 3.1

Predictor Coef St. Dev t-Ratio p

b0 4.9333 0.1667 29.60 0.000

b1 �0.87000 0.06086 �14.29 0.000

s ¼ 0.2357 R-sq ¼ 95.3% R-sq(adj) ¼ 94.9%

Analysis of Variance

Source DF SS MS F p

Regression 1 11.353 11.353 204.32 0.000

Error 10 0.556 0.056

Total 11 11.909

Unusual Observations

Observation x y ŷy fit St. dev. fit ei residual St. residual

10 4 1.9000 1.4533 0.1139 0.4467 2.16R

Lack-of-fit test ¼ F ¼ 0.76, P ¼ 0.4975, df (pure error) ¼ 8.

R denotes an observation with a large standardized residual.

The regression equation is ŷy ¼ 4.93 � 0.870x.
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Because we removed the three values where x¼ 0 and three values where

x¼ 5, we have only 12 observations now. Although the lack-of-fit problem

has vanished, observation 10 (x¼ 4, y¼ 1.9) has been flagged as suspicious.

We leave it as is, however, because a review of records shows that this was an

actual value. The new plot of ei vs. xi (Figure 3.5) is much better than the data

spread portrayed in Figure 3.3, even with only 12 time points, and it is

adequate for the research and development study.

Notes:

1. The Durbin–Watson test is very popular, so when discussing

time series correlation, most researchers who employ statistics

are likely to know it. It is also the most common one found in

statistical software.

2. The type of serial correlation most often encountered is positive cor-

relation where ei and eiþ1 are fairly close in value (Figure 3.1a). When

negative correlation is observed, a large positive value of ei will be

followed by a large negative eiþ1 value.

3. Negative serial correlation can also be easily evaluated using the six-

step procedure:

Step 1: State the hypothesis.

H0: P � 0.

HA: P < 0, where P is the population correlation coefficient.

Step 2: Set a and n, as always.
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FIGURE 3.5 New ei vs. xi graph, not including x ¼ 0 and x ¼ 5, Example 3.1.
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Step 3: The Durbin–Watson value, DW, is calculated exactly as before. For a

lag of 1:

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

:

Nevertheless, one additional step must be included to determine the final

Durbin–Watson test value DW
0 . DW

0 is computed as DW
0 ¼ 4 � DW.

Step 4: Decision rule:

Reject H0 if DW
0 < dL.

Accept H0 if DW
0 > dU.

If dL � DW
0 � dU, the test is inconclusive, as earlier. Steps 5 and 6 are the

same, as for the earlier example. A two-tail test can also be conducted.

TWO-TAIL DURBIN–WATSON TEST PROCEDURE

Step 1: State the hypothesis.

H0: P¼ 0.

HA: P 6¼ 0, or the serial correlation is negative or positive.

Step 2: Set a and n.

The sample size selection does not change, however, because the Durbin–

Watson tables (Table E) are one-sided; the actual a level is 2a. That is, if one

is using the 0.01 table, it must be reported as a¼ 2(0.01) or 0.02.

Step 3: Test statistic:

The two-tail test requires performing both an upper- and lower-tail test, that

is, calculating both DW and DW
0 .

Step 4: Decision rule:

If either DW < dL or DW
0 < dL, reject H0 at 2a. If DW or DW

0 falls between dU

and dL, the test is inconclusive; so, more samples are needed. If 4 – DW or

DW
0 > dU, no serial correlation can be detected at 2a.

Step 5: If one computes dL < DW < dU, it is still prudent to suspect possible

serial correlation, particularly when n < 40. So, in drawing statistical con-

clusions, this should be kept in mind.

SIMPLIFIED DURBIN–WATSON TEST

Draper and Smith (1998) suggest that, in many practical situations, one can

work as if DL does not exist and, therefore, consider only the DU value. This is
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attractive in practice, for example, because it side steps an inadequate sample

size problem. Exactly the same computation procedures are used as previ-

ously. The test modification is simply as follows:

For positive correlation, H0: P > 0.

The decision to reject H0 at a occurs if DW < dU.

For negative correlation, HA: P < 0.

The decision to reject H0 at a occurs if 4 � DW < dU.

For a two-tail test, HA: P 6¼ 0.

The decision to reject H0 occurs if DW < dU or if 4 � DW < dU at 2a.

There is no easy answer as to how reliable the simplified test is, but the

author of this chapter finds that the Draper and Smith simplified test works

well. However, generally, the researcher is urged to check out the model in

depth to be sure a process problem is not occurring or some extra unaccount-

able variable has been included.

ALTERNATE RUNS TEST IN TIME SERIES

An alternative test that can be used for detecting serial correlation is observ-

ing the ‘‘þ’’ ‘‘–’’ value runs on the ei vs. xi plot. It is particularly useful when

one is initially reviewing an ei vs. xi plot. As we saw in the data we collected

in Example 3.1, there appeared to be a nonrandom pattern of ‘‘þ’’ and ‘‘–’’

(Figure 3.3). In a random pattern of ei values plotted against xi values in large

samples, there will be about xn=2 values, both negative and positive. They

will not have an alternating þ � þ � þ � pattern or a þ þ þ � � � run

pattern, but vary in þ=� sequencing. When one sees þ � þ � þ �
sequences, there is probably a negative correlation and with þ þ þ � � �
patterns, one will suspect positive correlation. Tables I and J can be used to

detect serial correlation. Use the lower-tail (Table I) for positive correlation

(too few runs or changes in þ � �) and Table J for negative correlation (too

many runs or excessive þ � changes).

For example, suppose that 15 data points are available, and theþ=� value

of each of the eis wasþþ þþ� ��þþ þþþþ ��. We let n1¼þ and

n2¼�. There are

(þ þ þ þ) (� � �) (þ þ þ þ þ þ) (� �)

1 2 3 4

four runs of þ=� data, with n1¼ 10 and n2¼ 5. Recall that on an ei vs. xi plot,

the center point is 0. Those values where y > ŷy (positive) will be above the 0

point and those values where y < ŷy (negative) will be below it.
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Looking at Table I (lower-tail and positive correlation), find n1, the

number of positive eis and n2, the number of negative eis. Using a lower-

tail test (i.e., positive correlation, because there are few runs), n1¼ 10 and

n2¼ 5. However, looking at Table I, we see that n1 must be less than n2, so we

simply exchange them: n1¼ 5 and n2¼ 10. There are four runs, or r¼ 4. The

probability of this pattern being random is �0.029. There is a good indication

of positive correlation.

When n1 and n2 � 10

When larger sample sizes are used, n1 and n2 > 10, a normal approxima-

tion can be made:

�xx ¼ 2n1n2

n1 þ n2

þ 1, (3:2)

s2 ¼ 2n1n2(2n1n2 � n1 � n2)

(n1 þ n2)2(n1 þ n2 � 1)
� (3:3)

A lower-tail test approximation (positive correlation) can be completed using

the normal Z tables (Table A), where

zc ¼
_nn� �xxþ 1

2

s
(3:4)

and zc is the calculated z value to find in the tabled normal distribution,

for the stated significance level (Table A). _nn is the number of runs, �xx is

Equation 3.2, s is the square root of Equation 3.3, and 1
2

is the correction factor.

If too many runs are present (negative correlation), the same formula is

used, but �1
2

is used to compensate for an upper-tail test

zc ¼
_nn� �xx� 1

2

s
� (3:5)

Example 3.1 (continued). Let us perform the runs test with the collected D
value data.

Step 1: Formulate the hypothesis.

To do so, first determine _nn and then x�.

General rule:

If _nn < �xx, use the lower-tail test.

If _nn > �xx, use the upper-tail test.

Table 3.9 contains the residual values from Table 3.6.
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Let n1, the number of ‘‘þ’’ residuals¼ 8,

n2, the number of ‘‘�’’ residuals¼ 10,

and _nn¼ 7,

�xx ¼ 2n1n2

n1 þ n2

þ 1 ¼ 2(8)(10)

8þ 10
þ 1 ¼ 9:89:

Because _nn < �xx, use lower-tail test.

So, H0: P � 0.

HA: P > 0 or positive serial correlation.*

*Note: For serial correlation, when P > 0, this is a lower-tail test.

Step 2: Determine sample size and a.

n¼ 18, and we will set a¼ 0.05.

TABLE 3.9
Residual Values Table with Runs,

Example 3.1

n ei (Residuals) Run Number

1 0.549206

2 0.149206 1

3 0.349206

9
>=

>;

4 �0.059365

5 �0.259365 2

6 �0.359365

9
>=

>;

7 0.132063

o

3

8 �0.267937

9 �0.067937

10 �0.076508 4

11 �0.276508

12 �0.476508

9
>>>>>>=

>>>>>>;

13 0.314921

o

5

14 �0.385079 6
15 �0.185079

)

16 0.306349

17 0.106349 7

18 0.506349

9
>=

>;

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C003 Final Proof page 122 16.11.2006 7:45pm

122 Handbook of Regression and Modeling



Step 3: Specify the test equation.

Because this is a lower-tail test, we use Equation 3.4.

zc ¼
_nn� �xxþ 1

2

s
:

Step 4: State the decision rule.

If zc � 0.05, reject H0.

Step 5: Compute the statistic.

�xx¼ 9.89 (previously computed),

s2 ¼ 2n1n2(2n1n2 � n1 � n2)

(n1 þ n2)2(n1 þ n2 � 1)
¼ 2(8)(10)[2(8)(10)� 8� 10]

(8þ 10)2(8þ 10� 1)
¼ 4:12,

zc ¼
_nn� �xxþ 1

2

s
¼

7� 9:89þ 1
2ffiffiffiffiffiffiffiffiffi

4:12
p ¼ �1:18:

From Table A, where zc¼ 1.18, the area under the normal curve is þ0.3810.

Because the Z table includes the value of Z from the mean (center)

outward, we must accommodate the negative sign of zc, �1.18, by subtracting

the þ0.3810 value from 0.5, that is, 0.5 � 0.3810¼ 0.1190. We see that

0.1190 æ 0.05 (our value of a). Hence, we cannot reject H0 at a¼ 0.05.

Technically, the runs test is valid only when the runs are independent.

However, in most time series studies, this is violated. A yi reading will always

be after yi�1. For example, in clinical trials of human subjects, blood taken 4 h

after ingesting a drug will always occur before an 8 h reading. In practical

research and development situations, the runs test works fine, even with

clearly time-related correlation studies.

MEASURES TO REMEDY SERIAL CORRELATION PROBLEMS

As previously stated, most serial correlation problems point to the need for

another, or several values for the xi variable. For instance, in Example 3.1, the

sterilization hip joint study, looking at the data, the researcher noted that the

temperature fluctuation in the steam vessel was +2.08C. In this type of study,

a range of 4.08C can be very influential. For example, as xi1
, xi2

, and xi3
are

measured, the bier vessel cycles throughout the +2.08C range. The serial

correlation would tend to appear positive due to the very closely related

temperature fluctuations. A way to correct this situation partially would be

to add another regression variable, x2, representing temperature. The model

would then be

ŷy ¼ b0 þ b1x1 þ b2x2, (3:6)
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where b0¼ y intercept, b1¼ slope of thermodeath rate of bacterial spores,

b2¼ slope of Bier sterilizer temperature.

Alternatively, one can transform regression variables to better randomize

the patterns in the residual ei data. However, generally, it is better to begin the

statistical correction process by assigning xi predictors to variables for which

one has already accounted. Often, however, one has already collected the data

and has no way of going back to reassign other variables post hoc. In this case,

the only option left to the experimenter is a transformation procedure. This, in

itself, argues for performing a pilot study before a larger one. If additional

variables would be useful, the researcher can repeat the pilot study. Yet,

sometimes, one knows an additional variable exists, but that it is measured

with so much random error, or noise, that it does not contribute significantly

to the SSR. For example, if, as in Example 3.1, the temperature fluctuates

+48C, but the precision of the Bier Vessel is +28C, there may not be enough

accurate data collected to warrant it as a separate variable. Again, a trans-

formation may be the solution.

Note that efforts described above would not take care of the major

problem, that is xi, to some degree, is determined by xi�1, which is somewhat

determined by xi�2, and so on. Forecasting methods, such as moving aver-

ages, are better in these situations.

TRANSFORMATION PROCEDURE (WHEN ADDING MORE PREDICTOR

xi VALUES IS NOT AN OPTION)

When deciding to measure correlated error (ei) values (lag 1), remember that

the yi values are the cause of this. Hence, any transformation must go to the

root problem, the yis. In the following, we also focus on lag 1 correlation.

Other lags can be easily modeled from a 1 lag equation. Equation 3.7 presents

the decomposition of yi

0
, the dependent yi variable, influenced by yi�1

y0i ¼ yi � Pyi�1, (3:7)

where y0i is the transformed value of y measured at i, yi is the value of y
measured at i, yi–1 is the correlated contribution to yi at i – 1 (1 lag) for a

dependent variable and P is the population serial correlation coefficient.

Expanding Equation 3.7, in terms of the standard regression model, we have

y0i ¼ (b0 þ b1xi þ ei)� P(b0 þ b1xi�1 þ ei�1):

and reducing the term algebraically,

y0i ¼ b0(1� P)þ b1(xi � Pxi�1)þ (ei � Pei�1):
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If we let di¼ ei – Pei–1, then

y0i ¼ b0(1� p)þ b1(xi � Pxi�1)þ di,

where di is the random error component, N(0, s2).

The final transformation equation for the population is

Y0i ¼ b00 þ b01X0i þ Di, (3:8)

where

Y0i ¼ Yi � PYi�1, (3:9)

X0i ¼ Xi � PXi�1, (3:10)

b00 ¼ b0(1� P), (3:11)

b01 ¼ b1: (3:12)

With this transformation, the linear regression model, using the ordinary

least-squares method of determination, is valid. However, to employ it, we

need to know the population serial correlation coefficient, P. We estimate it

by r. The population Equation 3.9 through Equation 3.11 will be changed to

population estimates:

y0i ¼ yi � ryi�1, (3:13)

x0i ¼ xi � rxi�1, (3:14)

b00 ¼ b0(1� r): (3:15)

The regression model becomes

ŷy0 ¼ b00 þ b01x0:

Given that the serial correlation is eliminated, the model can be retransformed

to the original scale:

ŷy ¼ b0 þ b1x1:

However,

b0 ¼
b00

1� r
(3:16)

and b01¼ b1 or the original slope.
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The regression parameters and standard deviations for b00 and b01 are

sb0
¼

s0b0

1� r
, (3:17)

sb1
¼ s0b1

: (3:18)

The only problem is ‘‘what is r?’’ There are several ways to determine this.

COCHRANE–ORCUTT PROCEDURE

This very popular method uses a three-step procedure.

Step 1: Estimate the population serial correlation coefficient, P, with the

sample correlation coefficient, r. It requires a regression through the origin or

the (0, 0) points, using the residuals, instead of y and x, to find the slope. The

equation has the form

«i ¼ P«i�1 þ Di, (3:19)

where «i is the response variable as in yi, «i�1 is the predictor variable as in xi,

Di is the error term, and P is the slope of the regression line through the origin.

The parameter estimators used are ei, ei�1, di, and r. The slope is actually

computed as

r ¼ slope ¼

Pn

i¼2

ei�1ei

Pn

i¼2

e2
i�1

: (3:20)

Note that Sei�1 ei is not the same numerator term used in the Durbin–Watson

test. Here, the ei�1s and eis are multiplied but, in the Durbin–Watson test, they

are subtracted and squared.

Step 2: The second step is to incorporate r into Equation 3.8, the transformed

regression equation Y0i ¼b00 þ b01 X01 þ Di.

For samples, the estimate equation is

y0i ¼ b00 þ b01x01 þ di,

where

y0i ¼ yi � ryi�1, (3:21)

x0i ¼ xi � rxi�1, (3:22)

di ¼ error term.
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The y0i and x0i transformed sample set data are then used to compute a least-

squares regression function:

ŷy0 ¼ b00 þ b01x0:

Step 3: Evaluate the transformed regression equation by using the Durbin–

Watson test to determine if it is still significantly serially correlated. If the test

shows no serial correlation, the procedure stops. If not, the residuals from the

fitted equation are used to repeat the entire process again, and the new

regression that results is tested using the Durbin–Watson test, and so on.

Let us now look at a new example (Example 3.2) of data that do have

significant serial correlation (Table 3.10).

We perform a standard linear regression and find very high correlation

(Table 3.11).

Testing for serial correlation using the Durbin–Watson test, we find, in

Table E, that for n¼ 18, k¼ 1, a¼ 0.05, and dL¼ 1.16.

HA: P > 0, if DWC
< 1.16 at a¼ 0.05.

TABLE 3.10
Significant Serial Correlation, Example 3.2

n xi yi

1 0 6.3

2 0 6.2

3 0 6.4

4 1 5.3

5 1 5.4

6 1 5.5

7 2 4.5

8 2 4.4

9 2 4.4

10 3 3.4

11 3 3.5

12 3 3.6

13 4 2.6

14 4 2.5

15 4 2.4

16 5 1.3

17 5 1.4

18 5 1.5

xi is the exposure time in minutes; and yi is the log10

microbial populations.
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Because DWC
¼ 1.09 < DWT

¼ 1.16, there is significant serial correlation

at a¼ 0.05. Instead of adding another x variable, the researcher decides to

transform the data using the Cochrane–Orcutt method.

Step 1: Estimate P by the slope r:

r ¼ slope ¼

Pn

i¼2

ei�1ei

Pn

i¼2

e2
i�1

: (3:23)

To do this, we use MiniTab interactive (Table 3.12)

r ¼
P

ei�1eiP
e2

i�1

¼ 0:0704903

0:158669
¼ 0:4443:

Step 2: We next fit the transformed data to a new regression form. To do this,

we compute (from Table 3.13):

y0i ¼ yi � ryi�1 ¼ yi � 0:4443yi�1,

x0i ¼ xi � rxi�1 ¼ xi � 0:4443xi�1:

The new x0 and y0 values are used to perform a least-squares regression

analysis.

Step 2 (continued): Regression on y0 and x0.

TABLE 3.11
Regression Analysis, Example 3.2

Predictor Coef St. Dev t-Ratio p

b0 6.36032 0.04164 152.73 0.000

b1 �0.97524 0.01375 �70.90 0.000

s ¼ 0.09966 R-sq ¼ 99.7% R-sq(adj) ¼ 99.7%

Analysis of Variance

Source DF SS MS F p

Regression 1 49.932 49.932 5027.13 0.000

Error 16 0.159 0.010

Total 17 50.091

Durbin–Watson statistic ¼ 1.09.

The regression equation is ŷy ¼ 6.36 � 0.975x.
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Step 3: We again test for serial correlation using the Durbin–Watson test

procedure. Because this is the second computation of the regression equation,

we lost one value to the lag adjustment, so n¼ 17. For every iteration, the

lag adjustment reduces n by 1.

HA: P > 0, if DWC
< 1:13; dL ¼ 1:13, n ¼ 17, a ¼ 0:05 (Table E):

If 1.13 � DWC
� 1.39, undeterminable.

If DWC
> 1.39, accept H0. dU¼ 1.39, n¼ 17, and a¼ 0.05 (Table E).

DWC
¼ 1.64 (Table 3.14).

Because DWC
¼ 1.64, reject HA at a¼ 0.05. No significant serial correlation is

present. If serial correlation had been present, one would substitute x0 and y0

for xi and yi, recompute r, and perform steps 2 and 3.

Because this iteration removed the serial correlation, we transform the

data back to their original scale. This does not need to be done if one wants to

use the transformed x0y0 values, but this is awkward and difficult for many to

understand. The transformation back to y and x is more easily accomplished

using Equation series 3.16 and Table 3.14.

TABLE 3.12
MiniTab Data Display Printout, Example 3.2

n xi yi ei ŷyi ei21 ei ei21 ei21
2

1 0 6.3 �0.060317 6.36032 — — —

2 0 6.2 �0.160317 6.36032 �0.060317 0.0096699 0.0036382

3 0 6.4 0.039683 6.36032 �0.160317 �0.0063618 0.0257017

4 1 5.3 �0.085079 5.38508 0.039683 �0.0033762 0.0015747

5 1 5.4 0.014921 5.38508 �0.085079 �0.0012694 0.0072385

6 1 5.5 0.114921 5.38508 0.014921 0.0017147 0.0002226

7 2 4.5 0.090159 4.40984 0.114921 0.0103611 0.0132068

8 2 4.4 �0.009841 4.40984 0.090159 �0.0008873 0.0081286

9 2 4.4 �0.009841 4.40984 �0.009841 0.0000969 0.0000969

10 3 3.4 �0.034603 3.43460 �0.009841 0.0003405 0.0000969

11 3 3.5 0.065397 3.43460 �0.034603 �0.0022629 0.0011974

12 3 3.6 0.165397 3.43460 0.065397 0.0108164 0.0042767

13 4 2.6 0.140635 2.45937 0.165397 0.0232606 0.0273561

14 4 2.5 0.040635 2.45937 0.140635 0.0057147 0.0197782

15 4 2.4 �0.059365 2.45937 0.040635 �0.0024123 0.0016512

16 5 1.3 �0.184127 1.48413 �0.059365 0.0109307 0.0035242

17 5 1.4 �0.084127 1.48413 �0.184127 0.0154900 0.0339027

18 5 1.5 0.015873 1.48413 �0.084127 �0.0013353 0.0070773

Sei ei�1 ¼ 0.0704903 Sei�1
2 ¼ 0.158669
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b0 ¼
b00

1� r
¼ 3:56202

1� 0:4443
¼ 6:410,

b1 ¼ b01 ¼ �0:98999:

TABLE 3.13
Regression Analysis, Example 3.2

n xi yi yi21 yi
0 5 yi 2 ryi21 xi21 xi

0 5 xi 2 rxi21

1 0 6.3 — — — —

2 0 6.2 6.3 3.40091 0 0.00000

3 0 6.4 6.2 3.64534 0 0.00000

4 1 5.3 6.4 2.45648 0 1.00000

5 1 5.4 5.3 3.04521 1 0.5557

6 1 5.5 5.4 3.10078 1 0.5557

7 2 4.5 5.5 2.05635 1 1.5557

8 2 4.4 4.5 2.40065 2 1.1114

9 2 4.4 4.4 2.44508 2 1.1114

10 3 3.4 4.4 1.44508 2 2.1114

11 3 3.5 3.4 1.98938 3 1.6671

12 3 3.6 3.5 2.04495 3 1.6671

13 4 2.6 3.6 1.00052 3 2.6671

14 4 2.5 2.6 1.34482 4 2.2228

15 4 2.4 2.5 1.28925 4 2.2228

16 5 1.3 2.4 0.23368 4 3.2228

17 5 1.4 1.3 0.82241 5 2.7785

18 5 1.5 1.4 0.87798 5 2.7785

TABLE 3.14
Regression Analysis on Transformed Data, Example 3.2

Predictor Coef SE Coef T p

b0 3.56202 0.04218 84.46 0.000

b1 �0.98999 0.02257 �43.86 0.000

s ¼ 0.0895447 R-sq ¼ 99.2% R-sq(adj) ¼ 99.2%

Analysis of Variance

Source DF SS MS F p

Regression 1 15.423 15.423 1923.52 0.000

Residual error 15 0.120 0.008

Total 16 15.544

Durbin–Watson statistic ¼ 1.64164.

The regression equation is ŷy0 ¼ 3.61 � 0.990x 0.
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The new regression equation is

y ¼ b0 þ b1x1,

y ¼ 6:410� 0:98999x:

The results from the new regression equation are presented in Table 3.15.

The new ŷy vs. x plot is presented in Figure 3.6.

The new residual ei vs. xi is plotted in Figure 3.7. As can be seen, this

procedure is easy and can be extremely valuable in working with serially

correlated data.

Note that s(b0) ¼
s0(b0)

1� r
and

s(b1) ¼ s0(b1): (3:24)

TABLE 3.15
New Data, Example 3.2

Row xi yi ŷya
i ŷy

1 0 6.3 6.41000 �0.11000

2 0 6.2 6.41000 �0.21000

3 0 6.4 6.41000 �0.01000

4 1 5.3 5.42001 �0.12001

5 1 5.4 5.42001 �0.02001

6 1 5.5 5.42001 0.07999

7 2 4.5 4.43002 0.06998

8 2 4.4 4.43002 �0.03002

9 2 4.4 4.43002 �0.03002

10 3 3.4 3.44003 �0.04003

11 3 3.5 3.44003 0.05997

12 3 3.6 3.44003 0.15997

13 4 2.6 2.45004 0.14996

14 4 2.5 2.45004 0.04996

15 4 2.4 2.45004 �0.05004

16 5 1.3 1.46005 �0.16005

17 5 1.4 1.46005 �0.06005

18 5 1.5 1.46005 0.03995

aŷyi ¼ 6.410 � 0.098999x.
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Recall that

sb0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE

1

n
þ �xx2

X
(xi � �xx)2

2

4

3

5

v
u
u
u
t

1� r
,

1 2 3 4 50
1
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log value

^

Scatterplot of y  vs. x^

xi = time in minutes

y

FIGURE 3.6 Scatterplot of ŷy vs. x, Example 3.2.
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FIGURE 3.7 Scatterplot of ei vs. xi, Example 3.2.
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sb1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

Pn

i¼1

(xi � �xx)2

v
u
u
u
t

:

From Table 3.11,

sb0
¼ 0:04164

1� 0:4443
¼ 0:07493,

sb1
¼ 0:01375:

LAG 1 OR FIRST DIFFERENCE PROCEDURE

Some statisticians prefer an easier method than the Cochrane–Orcutt proced-

ure for removing serial correlation—the first difference procedure. As previ-

ously discussed, when serial correlation is present, P, the population

correlation coefficient, tends to be large (P > 0), so a number of statisticians

recommend just setting P¼ 1 and applying the transforming Equation 3.25

(Kutner et al., 2005)

Y0i ¼ b00 þ b1X0i þ Di, (3:25)

where

Y0 ¼ Yi � Yi�1,

X0 ¼ Xi � Xi�1,

Di ¼ ei � ei�1:

Because b0 (1 � P)¼b0 (1 � 1)¼ 0, the regression equation reduces to a

regression through the origin:

Y0i ¼ b1X0i þ Di (3:26)

or, for the sample set

ŷyi ¼ b1xi þ di

or, expanded

yi � yi�1 ¼ b1(xi � xi�1)þ (ei � ei�1): (3:27)

The fitted model is

ŷy0i ¼ b01x0, (3:28)
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which is a regression through the origin, where

b01 ¼
P

x0iy
0
iP

x
02
i

: (3:29)

It can easily be transformed back to the original scale, ŷyi¼ b0 þ b1x, where

b0 ¼ �yy� b01�xx and b1 ¼ b01:

Let us apply this approach to the data from Example 3.2 (Table 3.10). Using

MiniTab, we manipulated the xi and yi data to provide the necessary trans-

formed data (Table 3.16).

x0i¼ xi � xi�1 and y0i ¼ yi � yi�1:

We can now regress y0i on x0i, which produces a regression equation nearly

through the origin or b0¼ 0 (Table 3.17). However, the Durbin–Watson test

TABLE 3.16
MiniTab Transformed Data, Example 3.2

Row xi yi xi21 yi21 xi
0 5 xi 2 xi21 yi

0 5 yi 2 yi21 xi
0 yi
0 x 02i

1 0 6.3 — — — — — —

2 0 6.2 0 6.3 0 �0.1 0.0 0

3 0 6.4 0 6.2 0 0.2 0.0 0

4 1 5.3 0 6.4 1 �1.1 �1.1 1

5 1 5.4 1 5.3 0 0.1 0.0 0

6 1 5.5 1 5.4 0 0.1 0.0 0

7 2 4.5 1 5.5 1 �1.0 �1.0 1

8 2 4.4 2 4.5 0 �0.1 0.0 0

9 2 4.4 2 4.4 0 0.0 0.0 0

10 3 3.4 2 4.4 1 �1.0 �1.0 1

11 3 3.5 3 3.4 0 0.1 0.0 0

12 3 3.6 3 3.5 0 0.1 0.0 0

13 4 2.6 3 3.6 1 �1.0 �1.0 1

14 4 2.5 4 2.6 0 �0.1 0.0 0

15 4 2.4 4 2.5 0 �0.1 0.0 0

16 5 1.3 4 2.4 1 �1.1 �1.1 1

17 5 1.4 5 1.3 0 0.1 0.0 0

18 5 1.5 5 1.4 0 0.1 0.0 0
P

x0iy
0
i ¼ �5:2

P
x02i ¼ 5
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cannot be completed on data when b0¼ 0, so we accept the 0.03333 value

from Table 3.17 and test the DW statistic.

Note that the Durbin–Watson test was significant at DW¼ 1.09 before the

first difference transformation was carried out (Table 3.11). Now, the value for

DW is 1.85 (Table 3.17), which is not significant at a¼ 0.05, n¼ 17 (Table E),

dL¼ 1.13, and dU¼ 1.38, because DW¼ 1.85 > dU¼ 1.38. Hence, the first

difference procedure was adequate to correct for the serial correlation.

We can convert y0i¼ b0x0i to the original scale.

ŷyi ¼ b0 þ b1x1,

where

b0 ¼ �yy� b01�xx,

b1 ¼ b01 ¼
P

xi
0y0iP

x
02
i

,

X
x
02
i ¼ 5:0 (Table 3:16),

X
x0iy
0
i ¼ �5:2 (Table 3:15),

b01 ¼
�5:2

5:0
¼ �1:04:

The transformed equation is used to predict new ŷyi values (Table 3.18). Note

that sb1

0 ¼ St. dev¼ sb1
and sb1

¼ 0.05118 (Table 3.17).

TABLE 3.17
MiniTab Regression Using Transformed Data, Example 3.2

Predictor Coef St. Dev t-Ratio p

b00 0.03333 0.02776 1.20 0.248

b01 �1.07333 0.05118 �20.97 0.000

s ¼ 0.09615 R-sq ¼ 96.7% R-sq(adj) ¼ 96.5%

Analysis of Variance

Source DF SS MS F P

Regression 1 4.0660 4.0660 439.84 0.000

Error 15 0.1387 0.0092

Total 16 4.2047

Durbin–Watson statistic ¼ 1.84936.

The regression equation is ŷy0i ¼ 0.0333 � 1.07x0i.
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CURVE FITTING WITH SERIAL CORRELATION

In many practical applications using regression analysis, the data collected are

not linear. In these cases, the experimenter must linearize the data by means

of a transformation to apply simple linear regression methods. In approaching

all regression problems, it is important to plot the yi, xi values to see their

shape. If the shape of the data is linear, the regression can be performed. It is

usually wise, however, to perform a lack-of-fit test after the regression has

been conducted and plot the residuals against the xi values, to see if these

appear patternless.

If the yi, xi values are definitely nonlinear, a transformation must be

performed. Let us see how this is performed in Example 3.3. In a drug-dosing

pilot study, the blood levels of an antidepressant drug, R-0515-6, showed the

drug elimination profile for five human subjects, presented in Table 3.19.

x represents the hourly blood draw after ingesting R-0515-6. Blood levels

were � 30 mg until 4 h, when the elimination phase of the study began and

continued for 24 h postdrug dosing. Figure 3.8 provides a diagram of the

study results.

Clearly, the rate of eliminating the drug from the blood is not linear, as it

begins declining at an increasing rate 6 h after dosing. The regression analysis

for the nontransformed data is presented in Table 3.20.

TABLE 3.18
Transformed Data Table, Example 3.2

Row xi yi
^yi ei

1 0 6.3 6.59722 �0.29722

2 0 6.2 6.59722 �0.39722

3 0 6.4 6.59722 �0.19722

4 1 5.3 5.52722 �0.22722

5 1 5.4 5.52722 �0.12722

6 1 5.5 5.52722 �0.02722

7 2 4.5 4.45722 0.04278

8 2 4.4 4.45722 �0.05722

9 2 4.4 4.45722 �0.05722

10 3 3.4 3.38722 0.01278

11 3 3.5 3.38722 0.11278

12 3 3.6 3.38722 0.21278

13 4 2.6 2.31722 0.28278

14 4 2.5 2.31722 0.18278

15 4 2.4 2.31722 0.08278

16 5 1.3 1.24722 0.05278

17 5 1.4 1.24722 0.15278

18 5 1.5 1.24722 0.25278
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TABLE 3.19
Blood Elimination Profile for R-0515-6, Example 3.3

n x (hour of sample) y (mg=mL)

1 4 30.5

2 4 29.8

3 4 30.8

4 4 30.2

5 4 29.9

6 6 20.7

7 6 21.0

8 6 20.3

9 6 20.8

10 6 20.5

11 10 12.5

12 10 12.7

13 10 12.4

14 10 12.7

15 10 12.6

16 15 8.5

17 15 8.6

18 15 8.4

19 15 8.2

20 15 8.5

21 24 2.8

22 24 3.1

23 24 2.7

24 24 2.9

25 24 3.1

4.0 8.0 12.0 16.0

5

5

4
*

530

20

10

0

20.0 24.0

2
3

x = hours

6.0

y 
=

 µ
g/

ng

FIGURE 3.8 Drug elimination profile.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C003 Final Proof page 137 16.11.2006 7:45pm

Special Problems in Simple Linear Regression 137



Recall from Chapter 2 the discussion on how to linearize curved data that

exhibit patterns as seen in Figure 3.9. Data producing such a pattern are

linearized by lowering the power scale of the x and=or y data. We lower the

y data and retain the x values in their original form.

Recall

Power

Regression

Transformation None

1 y Raw

1=2
ffiffiffi
y
p

Square root

0 log10 y Logarithm

�1=2
ffiffiffi
y�1
p

Reciprocal root (minus

sign preserves order)

TABLE 3.20
Regression Analysis for Nontransformed Data

Predictor Coef St. Dev t-Ratio p

b0 29.475 1.516 19.44 0.000

b1 �1.2294 0.1098 �11.20 0.000

s ¼ 3.935 R-sq ¼ 84.5% R-sq(adj) ¼ 83.8%

Analysis of Variance

Source DF SS MS F p

Regression 1 1940.7 1940.7 125.35 0.000

Error 23 356.1 15.5

Total 24 2296.8

The regression equation is ŷy ¼ 29.5 � 1.23x.

y

x

FIGURE 3.9 Curved data patterns.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C003 Final Proof page 138 16.11.2006 7:45pm

138 Handbook of Regression and Modeling



We begin with the square-root transformation (Figure 3.10). Table 3.21

provides the regression analysis on the square-root transformation.

The data, although more linear, still show a definite curve. We, therefore,

proceed down in the power scale to a log10 y transformation (Figure 3.11).

The regression analysis is presented in Table 3.22. The log10 transformation

has nearly linearized the data. The MSE value is 0.0013, very low, and

R2 ¼ 99.1%. We plot the ei vs. x values now, because we are very close to

finishing. Figure 3.12 shows the residual vs. time plot. Although they are not

perfect, this distribution will do for this phase of the analysis.

Figure 3.13 provides the plot of a �1=
ffiffiffi
y
p

transformation. The �1=
ffiffiffi
y
p

transformation slightly overcorrects the data and is slightly less precise in

fitting the data (Table 3.23). Hence, we go with the log10 transformation.

4.0

5

6.0

4.5

3.0

1.5

5

5

5

4
*

x
8.0 12.0 16.0 20.0 24.0

y

FIGURE 3.10 Square root transformation of y, Example 3.3.

TABLE 3.21
Square Root of y Regression Analysis, Example 3.3

Predictor Coef St. Dev t-Ratio p

b0 5.7317 0.1268 45.20 0.000

b1 �0.177192 0.009184 �19.29 0.000

s ¼ 0.3291 R-sq ¼ 94.2% R-sq(adj) ¼ 93.9%

Analysis of Variance

Source DF SS MS F p

Regression 1 40.314 40.314 372.23 0.000

Error 23 2.491 0.108

Total 24 42.805

The regression equation is ŷy ¼ 5.73 � 0.177x.
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Table 3.24 presents the log10 y transformation data. Because these data

were collected over time, there is a real danger of serial correlation. Now that

we have the appropriate transformation, we conduct a Durbin–Watson posi-

tive serial correlation test.

Let us compute the Durbin–Watson test for a lag of 1, using the six-step

procedure.

Step 1: State the hypothesis.

H0: P � 0,

HA: P > 0 (serial correlation is significant and positive over time).

TABLE 3.22
Log10 of y Regression Analysis, Example 3.3

Predictor Coef St. Dev t-Ratio p

b0 1.63263 0.01374 118.83 0.000

b1 �0.0487595 0.0009952 �49.00 0.000

s ¼ 0.03566 R-sq ¼ 99.1% R-sq(adj) ¼ 99.0%

Analysis of Variance

Source DF SS MS F p

Regression 1 3.0527 3.0527 2400.59 0.000

Error 23 0.0292 0.0013

Total 24 3.0819

Durbin–Watson statistic ¼ 0.696504.

The regression equation is ŷy ¼ 1.63 � 0.0488x.

4.0

1.40
5

5

5

5

1.05

0.70

8.0 12.0 16.0 20.0 24.0

3

x = hours

2

lo
g 1

0 
y

FIGURE 3.11 Log10 transformation of y.
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Step 2: Set a and n.

a¼ 0.05,

n already equals 24.

Step 3: The test we use for serial correlation is the Durbin–Watson,

where

DW ¼

Pn

i¼2

(ei � ei�1)2

Pn

i¼1

e2
i

:

Because some practitioners may not have this test generated automatically

via their statistical software, we do it interactively. Table 3.25 provides the

necessary data.

4.0

−1.0

1.0

0.0e i

2
2
*

*
*

*
*

*

*

*

*

3

3
2

2 2

8.0 12.0 16.0 20.0 24.0
x

FIGURE 3.12 Residual vs. time log10 y transformation, Example 3.3.

4.0 8.0 12.0 16.0 20.0 24.0

2
3

2

5

5
5

−0.30

−0.45

−0.60

3

x = time

y
−1

FIGURE 3.13 �1=
ffiffiffi
y
p

transformation of y, Example 3.3.
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TABLE 3.23
Regression Analysis of �1=

ffiffiffi
y
p

Transformation, Example 3.3

Predictor Coef St. Dev t-Ratio P

b0 �0.090875 0.009574 �9.49 0.000

b1 �0.0196537 0.0009635 �28.34 0.000

s ¼ 0.02485 R-sq ¼ 97.2% R-sq(adj) ¼ 97.1%

Analysis of Variance

Source DF SS MS F P

Regression 1 0.49597 0.49597 803.26 0.000

Error 23 0.01420 0.00062

Total 24 0.51017

The regression equation is ŷy ¼ �0.0909� 0.0197x.

TABLE 3.24
Log10 Transformation of y, Example 3.3

Row xi yi log yi ei log ŷy

1 4 30.5 1.48430 0.0467101 1.43759

2 4 29.8 1.47422 0.0366266 1.43759

3 4 30.8 1.48855 0.0509610 1.43759

4 4 30.2 1.48001 0.0424172 1.43759

5 4 29.9 1.47567 0.0380815 1.43759

6 6 20.7 1.31597 �0.0241003 1.34007

7 6 21.0 1.32222 �0.0178513 1.34007

8 6 20.3 1.30750 �0.0325746 1.34007

9 6 20.8 1.31806 �0.0220073 1.34007

10 6 20.5 1.31175 �0.0283167 1.34007

11 10 12.5 1.09691 �0.0481224 1.14503

12 10 12.7 1.10380 �0.0412287 1.14503

13 10 12.4 1.09342 �0.0516107 1.14503

14 10 12.7 1.10380 �0.0412287 1.14503

15 10 12.6 1.10037 �0.0446619 1.14503

16 15 8.5 0.92942 0.0281843 0.90123

17 15 8.6 0.93450 0.0332638 0.90123

18 15 8.4 0.92428 0.0230446 0.90123

19 15 8.2 0.91381 0.0125792 0.90123

20 15 8.5 0.92942 0.0281843 0.90123

21 24 2.8 0.44716 �0.0152406 0.46240

22 24 3.1 0.49136 0.0289630 0.46240

23 24 2.7 0.43136 �0.0310349 0.46240

24 24 2.9 0.46240 �0.0000007 0.46240

25 24 3.1 0.49136 0.0289630 0.46240

Durbin–Watson statistic ¼ 0.696504.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C003 Final Proof page 142 16.11.2006 7:45pm

142 Handbook of Regression and Modeling



Step 4: Decision Rule

From Table E, n¼ 24, a¼ 0.05, k¼ 1, dL¼ 1.27, and dU¼ 1.45.

Therefore, if DWC
< dL¼ 1.27, serial correlation is significant at a¼ 0.05.

If dL � DW � dU, the test is inconclusive.

If DWC
> dU, reject HA at a¼ 0.05.

Step 5:

DWC
¼
P

(ei � ei�1)2

P
e2

i

:

By computer manipulation, DWC
¼ 0.696504 (Table 3.24).

By computer manipulation, DWC
¼
P

(ei � ei�1)2

P
e2

i

¼ 0:0203713

0:0270661
¼ 0:7526

(Table 3.25).

TABLE 3.25
Data for Interactive Calculation of DW, Example 3.3

Row ei ei21 ei – ei21 ei
2 (ei – ei21)2

1 0.0467101 — — — —

2 0.0366266 0.0467101 �0.0100836 0.0013415 0.0001017

3 0.0509610 0.0366266 0.0143345 0.0025970 0.0002055

4 0.0424172 0.0509610 �0.0085438 0.0017992 0.0000730

5 0.0380815 0.0424172 �0.0043358 0.0014502 0.0000188

6 �0.0241003 0.0380815 �0.0621817 0.0005808 0.0038666

7 �0.0178513 �0.0241003 0.0062489 0.0003187 0.0000390

8 �0.0325746 �0.0178513 �0.0147233 0.0010611 0.0002168

9 �0.0220073 �0.0325746 0.0105673 0.0004843 0.0001117

10 �0.0283167 �0.0220073 �0.0063095 0.0008018 0.0000398

11 �0.0481224 �0.0283167 �0.0198056 0.0023158 0.0003923

12 �0.0412287 �0.0481224 0.0068937 0.0016998 0.0000475

13 �0.0516107 �0.0412287 �0.0103820 0.0026637 0.0001078

14 �0.0412287 �0.0516107 0.0103820 0.0016998 0.0001078

15 �0.0446619 �0.0412287 �0.0034332 0.0019947 0.0000118

16 0.0281843 �0.0446619 0.0728461 0.0007944 0.0053066

17 0.0332638 0.0281843 0.0050795 0.0011065 0.0000258

18 0.0230446 0.0332638 �0.0102192 0.0005311 0.0001044

19 0.0125792 0.0230466 �0.0104654 0.0001582 0.0001095

20 0.0281843 0.0125792 0.0156051 0.0007944 0.0002435

21 �0.0152406 0.0281843 �0.0434249 0.0002323 0.0018857

22 0.0289630 �0.0152406 0.0442037 0.0008389 0.0019540

23 �0.0310349 0.0289630 �0.0599979 0.0009632 0.0035998

24 �0.0000007 �0.0310349 0.0310342 0.0000000 0.0009631

25 0.0289630 �0.0000007 0.0289637 0.0008389 0.0008389
P

e2
i ¼ 0:0270661

P
(ei � ei�1)2 ¼ 0:0203713
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Step 6:

Because DWC
¼ 0.75 < 1.27, reject H0.

Significant serial correlation exists at a¼ 0.05.

REMEDY

We use the Cochrane–Orcutt procedure to remedy the serial correlation.

Step 1: Estimate

«i ¼ P«i�1 þ Di:

We estimate P (population correlation) using r (Equation 3.23)

r ¼ slope ¼

Pn

i¼2

ei�1ei

Pn

i¼2

e2
i�1

:

Step 2: Fit the transformed model.

y0i ¼ yi � ryi�1(yi and yi�1 are log10 y values),

x0i ¼ xi � rxi�1:

Table 3.26A provides the raw data manipulation needed for determining r

r ¼
P

ei�1eiP
e2

i�1

¼ 0:0175519

0:0284090
¼ 0:6178:

Table 3.26B provides the data manipulation for determining y0 and x0,
which are, in turn, used to perform a regression analysis. Table 3.27 provides

the transformed regression analysis. Therefore, the transformation was suc-

cessful. The new Durbin–Watson value is 2.29 > dU¼ 1.45, which is not

significant for serial correlation at a¼ 0.05. We can now transform the data

back to the original scale

ŷy ¼ b0 þ b1x,

where

b0 ¼
b00

1� r
¼ 0:62089

1� 0:6178
¼ 1:6245, (3:16)
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b1 ¼ b01 ¼ �0:048390:

Therefore, ŷy¼ 1.6245 � 0.048390 xi, which uses the original xi and yi in log10

scale

sb0
¼

s0b0

1� r
¼ 0:01017

1� 0:6178
¼ 0:0266, (3:17)

sb1
¼ s0b1

¼ 0:001657: (3:18)

This analysis was quite involved, but well within the capabilities of the

applied researcher.

TABLE 3.26A
Manipulation of Raw Data from Table 3.25, Example 3.3

Row xi yi ei21 ei ei21ei ei21
2

1 4 1.48430 0.0467101 — — —

2 4 1.47422 0.0366266 0.0467101 0.0017108 0.0021818

3 4 1.48855 0.0509610 0.0366266 0.0018665 0.0013415

4 4 1.48001 0.0424172 0.0509610 0.0021616 0.0025970

5 4 1.47567 0.0380815 0.0424172 0.0016153 0.0017992

6 6 1.31597 �0.0241003 0.0380815 �0.0009178 0.0014502

7 6 1.32222 �0.0178513 �0.0241003 0.0004302 0.0005808

8 6 1.30750 �0.0325746 �0.0178513 0.0005815 0.0003187

9 6 1.31806 �0.0220073 �0.0325746 0.0007169 0.0010611

10 6 1.31175 �0.0283167 �0.0220073 0.0006232 0.0004843

11 10 1.09691 �0.0481224 �0.0283167 0.0013627 0.0008018

12 10 1.10380 �0.0412287 �0.0481224 0.0019840 0.0023158

13 10 1.09342 �0.0516107 �0.0412287 0.0021278 0.0016998

14 10 1.10380 �0.0412287 �0.0516107 0.0021278 0.0026637

15 10 1.10037 �0.0446619 �0.0412287 0.0018413 0.0016998

16 15 0.92942 0.0281843 �0.0446619 �0.0012588 0.0019947

17 15 0.93450 0.0332638 0.0281843 0.0009375 0.0007944

18 15 0.92428 0.0230446 0.0332638 0.0007666 0.0011065

19 15 0.91381 0.0125792 0.0230446 0.0002899 0.0005311

20 15 0.92942 0.0281843 0.0125792 0.0003545 0.0001582

21 24 0.44716 �0.0152406 0.0281843 �0.0004295 0.0007944

22 24 0.49136 0.0289630 �0.0152406 �0.0004414 0.0002323

23 24 0.43136 �0.0310349 0.0289630 �0.0008989 0.0008389

24 24 0.46240 �0.0000007 �0.0310349 0.0000000 0.0009632

25 24 0.49136 0.0289630 �0.0000007 �0.0000000 0.0000000
P

ei�1 ei ¼ 0.0175519
P

ei�1
2 ¼ 0.0284090
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TABLE 3.26B
Data for Determining y 0 and x 0, Example 3.3

Row xi yi yi21 yi21
0 xi21 xi

0 ei21 ŷyi21
0

1 4 1.48430 — — — — — —

2 4 1.47422 1.48430 0.557216 4 1.5288 0.0103081 0.546908

3 4 1.48855 1.47422 0.577780 4 1.5288 0.0308722 0.546908

4 4 1.48001 1.48855 0.560380 4 1.5288 0.0134726 0.546908

5 4 1.47567 1.48001 0.561323 4 1.5288 0.0144152 0.546908

6 6 1.31597 1.47567 0.404301 4 3.5288 �0.0458273 0.450128

7 6 1.32222 1.31597 0.509213 6 2.2932 �0.0007057 0.509918

8 6 1.30750 1.32222 0.490629 6 2.2932 �0.0192895 0.509918

9 6 1.31806 1.30750 0.510292 6 2.2932 0.0003738 0.509918

10 6 1.31175 1.31806 0.497454 6 2.2932 �0.0124641 0.509918

11 10 1.09691 1.31175 0.286508 6 6.2932 �0.0298506 0.316359

12 10 1.10380 1.09691 0.426133 10 3.8220 �0.0098074 0.435940

13 10 1.09342 1.10380 0.411492 10 3.8220 �0.0244483 0.435940

14 10 1.10380 1.09342 0.428288 10 3.8220 �0.0076523 0.435940

15 10 1.10037 1.10380 0.418441 10 3.8220 �0.0174995 0.435940

16 15 0.92942 1.10037 0.249610 10 8.8220 0.0556192 0.193991

17 15 0.93450 0.92942 0.360303 15 5.7330 0.0168364 0.343467

18 15 0.92428 0.93450 0.346946 15 5.7330 0.0034791 0.343467

19 15 0.91381 0.92428 0.342794 15 5.7330 �0.0006730 0.343467

20 15 0.92942 0.91381 0.364865 15 5.7330 0.0213976 0.343467

21 24 0.44716 0.92942 �0.127037 15 14.7330 �0.0349954 �0.092042

22 24 0.49136 0.44716 0.215107 24 9.1728 0.0380918 0.l77016

23 24 0.43136 0.49136 0.127801 24 9.1728 �0.0492152 0.l77016

24 24 0.46240 0.43136 0.195901 24 9.1728 0.0188858 0.177016

25 24 0.49136 0.46240 0.205692 24 9.1728 0.0286765 0.177016

TABLE 3.27
Transformed Regression of y 0 and x 0, Example 3.3

Predictor Coef SE Coef t-Ratio p

b0 0.62089 0.01017 61.07 0.000

b1 �0.048390 0.001657 �29.21 0.000

s ¼ 0.0270948 R-sq ¼ 97.5% R-sq(adj) ¼ 97.4%

Analysis of Variance

Source DF SS MS F p

Regression 1 0.62636 0.62636 853.21 0.000

Error 22 0.01615 0.00073

Total 23 0.64251

Durbin–Watson statistic ¼ 2.29073.

The regression equation is ŷy0 ¼ 0.621 � 0.0484x0.
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RESIDUAL ANALYSIS yi�^yi ¼ ei

Up to this point, we have looked mainly at residual plots, such as ei vs. xi, ei

vs. yi, and ei vs. ŷyi, to help evaluate how well the regression model fits the data.

There is much that can be done with this type of ‘‘eye-ball’’ approach. In fact,

the present author uses this procedure in at least 90% of the work he does, but

there are times when this approach is not adequate and a more quantitative

procedure of residual analysis is required.

Recall that the three most important phenomena uncovered from residual

analysis are

1. Serial correlation

2. Model adequacy

3. Outliers

We have already discussed serial correlation and the importance of evaluating

the pairwise values when data have been collected over a series of sequential

time points. Residual analysis is therefore very important in understanding the

correlation and determining when it has been corrected by transformation of

the regression model.

Model adequacy is an on-going challenge. It would be easy if one

could merely curve-fit each new experiment, but, in practice, this is usually

not an option. For example, for a drug formulation stability study of product

A, suppose a log10 transformation is used to linearize the data. Decision

makers like consistency in that the data for stability studies will always be

reported in log10 scale. The use of log10 scale for 1 month, a square root the

next, and a negative reciprocal of the square root the next month each may

provide the best model but will unduly confuse readers. Moreover, from an

applied perspective in industry, statistics is a primary mechanism of com-

munication providing clarity to all. The p-values need to be presented as yes

or no, feasible or not feasible, or similar terms, and analysis must be

conceptually straightforward enough for business, sales, quality assurance,

and production to understand what is presented. The frequent inability of

statisticians to deal with cross-disciplinary reality has resulted in failures in

the acceptance of statistics by the general management community and even

scientists.

Chapter 2 presented the basic model requirements for a simple linear

regression. The b1 or slope must be approximately linear over the entire

regression data range. The variance and standard deviation of b1 must be

constant (Figure 3.14).

Nonnormal patterns are presented in Figure 3.15. Nonnormal patterns

are often very hard to see on a dataplot of yi vs. xi, but analysis of residuals

is much more sensitive to nonnormal patterns. For example, Figure 3.16
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FIGURE 3.14 Variance of the slope is constant.

y

x

y

−s

y

x

y

y

x

y

x

+s

−s

(a)
Nonconstant

variance
Nonconstant

variance

Nonconstant
variance

Nonconstant
variance

(b)

(c) (d)

^ ^

y^y^

−s

+s

−s

+s

+s

FIGURE 3.15 Nonnormal patterns.
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illustrates the corresponding residual patterns in the yi vs. xi plots presented in

Figure 3.15.

We also note that

�ee ¼

Pn

i¼1

ei

n
¼ 0 for the yi � ŷyi ¼ ei data set, (3:30)

s2
e ¼

Pn

i¼1

e2
i

n� 2
for simple linear regressions, ŷy ¼ b0 þ b1xi (3:31)

Note that SSE

n�2
equals se

2, if the model ŷy¼ b0 þ b1xi is adequate.

The ei values are not completely independent variables, for once one has

summed n – 1 of the eis the next or final ei value is known because Sei¼ 0.

However, given n > k þ 1, the eis can be treated as independent random

variables, where n is the number of ei values, and k the number of bis (not

including b0), so k þ 1¼ 2.

(b)

(c) (d)

y
y

y
y

x

x

x

x

(a)

FIGURE 3.16 Corresponding residual patterns in the yi vs. xi plots.
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Outliers present a problem in practice that is often difficult to address.

Sometimes, extreme values are removed from the data when they should not

be, because they are true values. An outlier is merely an unusually extreme

value, large or small, relative to the tendency of the mass of data values.

Because outlier values have so much weight, their presence or absence often

results in contradictory conclusions. Just as they exert much influence on the

mean �xx estimate and the standard deviation, they also may strongly influence

the regression parameters, b0 and b1. Recall from Chapter 2 that, in regression

analysis, the first and last xi values and their corresponding yi values have the

greatest influence in determining b1 and b0 (Figure 3.17).

A better estimate of b0 and b1 is usually gained by extending the xi range.

However, what happens when several outliers occur, say, one at the x1 and

another at xn? Figure 3.18 shows one possibility.

In this case, if the extreme values are left in the regression analysis, the b0

values will be underestimated because it is on the extreme low end of the xi

values. The xn extreme value will contribute to overestimating the b1 value,

but what if the outliers, although extreme, are real data? To omit them from an

analysis would bias the entire work. What should be done in such a case? This

is a real problem.

x

y

Region of greatest
regression weight

FIGURE 3.17 Region of greatest regression weight.
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The applied researcher, then, needs to remove extreme values that are truly

nonrepresentational and include extreme values that are representational.

The researcher must also discover the phenomena contributing to these values.

Rescaling the residuals can be very valuable in helping to identify outliers.

Rescaling procedures include standardizing residuals, studentizing residuals,

and jackknife residuals.

We consider briefly the process of standardizing residuals, as it applies to

linear regression models. Residuals can also be studentized, that is, made to

approximate the Student’s t distribution, or they can be ‘‘jackknifed.’’ The

term ‘‘jackknife’’ is one that Tukey (1971) uses for the procedure, in that it is

as useful as a ‘‘Boy Scout’s knife.’’ In general, it is a family of procedures for

omitting a group of values, or a single value, from an analysis to examine the

effect of the omission on the data body. Studentizing and jackknifing of

residuals are procedures applied in multiple regression, often by means of

matrix algebra and will be discussed in Chapter 8.

STANDARDIZED RESIDUALS

Sometimes, one can get a clearer picture of the residuals when they are in

standardized form. Recall that the standardization used in statistics means the

data conform to �xx¼ 0 and s¼ 1. This is because S (x� �xx)¼ 0 in a sample set, and

because68%ofthedataarecontainedwithinþor� s.Thestandardizedresidual is

zi ¼
ei

s
, (3:32)

where zi is the standard normalized residual with a mean of 0, and a variance

of 1, N � (0, 1), ei¼ yi � �yy, �yy is the average rate, and s is the standard

deviation of the residuals.

Outlier
y = b0 + b lxi = estimated false regression^

b l overestimates b l in this case

y = b0 + b lxi = true regression

b0 underestimates b0

Outlier

b0

b0

y

x

FIGURE 3.18 Estimated regression with outliers.
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s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

(yi � ŷy)2

n� 2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiP

e2
i

n� 2

r

:* (3:33)

Recall that about 68% of the data reside within þ or � one standard

deviation, 95% within þ or � two standard deviations, and 97% within þ
or � three standard deviations. There should be only a few residuals as

extreme as þ or � three standard deviations in the residual set.

The method for standardizing the residuals is reasonably straightforward

and will not be demonstrated. However, the overall process of residual

analysis by studentizing and jackknifing procedures that use hat matrices

will be explored in detail in Chapter 8.

*The general formula for s when more bis than b0 and b1 are in the model is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

(yi � ŷy)2

n� p

v
u
u
u
t ¼

ffiffiffiffiffiffiffiffiffi
Pn

i¼1

e2
i

n�p

s

¼
ffiffiffiffiffiffiffiffiffi
MSE

p
, where n¼ sample size; p¼ number of bi values estimated,

including b0.
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4 Multiple Linear
Regression

Multiple linear regression is a direct extension of simple linear regression. In

simple linear regression models, only one x predictor variable is present, but in

multiple linear regression, there are k predictor values, xi, x2, . . . , xk. For

example, a two-variable predictor model is presented in the following equation:

Yi ¼ b0 þ b1xi1 þ b2xi2 þ «i, (4:1)

where b1 is the ith regression slope constant acting on xi1; b2, the ith regres-

sion slope constant acting on xi2; xi1, the ith x value in the first x predictor; xi2,

the ith x value in the second x predictor; and «i is the ith error term.

A four-variable predictor model is presented in the following equation:

Yi ¼ b0 þ b1xi1 þ b2xi2 þ b3xi3 þ b4xi4 þ «i: (4:2)

We can plot two xi predictors (a three-dimensional model), but not beyond. A

three-dimensional regression function is not a line, but it is a plane

(Figure 4.1). All the E[Y] or ŷy values fit on that plane. Greater than two xi

predictors move us into four-dimensional space and beyond.

As in Chapter 2, we continue to predict yi via ŷyi, but now, relative to

multiple xi variables. The residual value, ei, continues to be the difference

between yi and ŷyi.

REGRESSION COEFFICIENTS

For the model ŷy¼ b0 þ b1x1 þ b2x2, the b0 value continues to be the point on

the y axis where x1 and x2¼ 0, but other than that, it has no meaning

independent of the bi values. The slope constant b1 represents the change in

the mean response value ŷy when x2 is held constant. Likewise for b2, when x1

is held constant. The bi coefficients are linear, but the predictor xi values

need not be.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C004 Final Proof page 153 16.11.2006 7:51pm

153



MULTIPLE REGRESSION ASSUMPTIONS

The multiple linear response variables (yis) are assumed statistically inde-

pendent of one another. As in simple linear regression, when data are col-

lected in a series of time intervals, the researcher must be cautious of serial or

autocorrelation. The same basic procedures described in Chapter 2 must be

followed, as is discussed later.

The variance s2 of y is considered constant for any fixed combination of xi

predictor variables. In practice, the assumption is rarely satisfied completely,

and small departures usually have no adverse influence on the performance

and validity of the regression model.

Additionally, it is assumed that, for any set of predictor values, the

corresponding yis are normally distributed about the regression plane. This

is a requirement for general inference making, e.g., confidence intervals,

prediction of ŷy, etc. The predictor variables, xis, are also considered inde-

pendent of each other, or additive. Therefore, the value of x1 does not, in any

way, affect or depend on x2, if they are independent. This is often not the case,

so the researcher must check and account for the presence of interaction

between the predictor xi variables.

The general multiple linear regression model for a first-order model, that

is, when all the predictor variable xis are linear, is

E[Y] ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ «i,

0

x2

x1
(x i1,x i2)

b0 = 5
yi

e i

E [y] = 5 + 3x1 + 2x2

y

Response plane

E [y]

FIGURE 4.1 Regression plane for two-predictor variables.
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where E[Y] is the expected value of y, k represents the number of predictor

variables, x1, x2, . . . , xk, in the model, b0, b1, . . . , bk are constant regression

coefficients, xi1
, xi2

, . . . , xik
are fixed independent predictor variables, and «i is

the error¼ yi � ŷyi, which are considered independent. They are not com-

pletely so, because, if one knows
Pn

i¼ 1 yi, then yn is determined, because
Pn

i¼ 1 ei ¼ 0. The «i values are also normally distributed, N(0, s2).

As additional xi predictor variables are added to a model, interaction

among them is possible. That is, the xi variables are not independent, so as

one builds a regression model, one wants to measure and account for possible

interactions.

In this chapter, we focus on xi variables that are quantitative, but in a later

chapter, we add qualitative or dummy variables. These can be very useful in

comparing multiple treatments in a single regression model. For example, we

may call x2¼ 0, if female, and 1, if male, to evaluate drug bioavailability

using a single set of data, but two different regressions result.

GENERAL REGRESSION PROCEDURES

Please turn to Appendix II, Matrix Algebra Review, for a brushup on matrix

algebra, if required. The multiple regression form is

Y ¼ b0 þ b1xi1 þ b2xi2 þ � � � þ bkxik þ «i:

We no longer use it exclusively for operational work. Instead, we use the

matrix format. Although many statistical software packages offer general

routines for the analyses described in this book, some do not. Hence, knowing

how to use matrix algebra to perform these tests using interactive statistical

software is important. In matrix format,

Y ¼ Xbþ «, (4:3)

Y ¼

y1

y2

y3

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5

, X ¼

1 x11 x12 . . . x1, k

1 x21 x22 . . . x2, k

1 x31 x32 . . . x3, k

..

. ..
. ..

. ..
. ..

.

1 xn1 xn2 . . . xn, k

2

6
6
6
6
4

3

7
7
7
7
5

�

:

Note:

bk�1 ¼

b0

b1

b2

..

.

bk

2

6
6
6
6
4

3

7
7
7
7
5

, «n � 1 ¼

«1

«2

«3

..

.

«n

2

6
6
6
6
4

3

7
7
7
7
5

,
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where Y is a vector of the response variable, b is a vector of regression, « is a

vector of error terms, and X is a matrix of the predictor variables.

The least-squares calculation procedure is still performed, but within a

matrix algebra format. The general least-squares equation is

X0Xb ¼ X0Y: (4:4)

Rearranging terms to solve for b, we get

b ¼ (X0X)�1X0Y, (4:5)

where b is the regression statistical estimate for the b, or population.

The fitted or predict values

Ŷ ¼ Xb (4:6)

and the residual values are

Yn� 1 � Ŷn� 1 ¼ en� 1: (4:7)

The variance of b

var (b), or s2(b) ¼ s2[X0X]�1: (4:8)

Generally, for s2, MSE is used as its predictor, that is MSE¼ s2.

For the matrix, its MSE[X0X]
�1

p� p
diagonals provide the variance of each bi.

This p� p matrix (read p by p) is called the variance–covariance matrix. The

off-diagonal values provide the covariances of each xi xj : combination.

var b0

var b1

var b2

. .
.

var bk

2

6
6
6
6
6
4

3

7
7
7
7
7
5

,

var bi ¼ s2{bi}:

APPLICATION

Let us work an example (Example 4.1). In an antibiotic drug accelerated

stability study, 100 mL polypropylene stopper vials were stored at 488C for 12

weeks. Each week (7 days), three vials were selected at random and evaluated
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for available mg=mL of the drug, A1-715. The average baseline, or time-zero

level was �500 mg=mL. The acceptance standard for rate of aging requires

that the product be within +10% of that baseline value at 90 days. The

relative humidity was also measured to determine its effect, if any, on the

product’s integrity.

The chemist is not sure how the data would sort out, so first, y and x1 are

plotted. The researcher knows that time is an important variable but he has no

idea if humidity is. The plot of y against x1 is presented in Figure 4.2.

We know that the product degraded more than 10% (450 mg=mL) over

the 12-week period. In addition, in the tenth week of accelerated stability

testing, the product degraded at an increasing rate. The chemists want to know

the rate of degradation, but this model is not linear. Table 4.2 shows the

multiple regression analysis of y on x1 and x2 for Example 4.1 (Table 4.1)

Let us discuss Table 4.2. The regression equation in matrix form is

Y¼Xb. Once the values have been determined, the matrix form is simpler

to use than is the original linear format, ŷyi¼ 506 � 15.2xi þ 33x2. Y¼ 39 � 1

matrix or vector of the mg=mL value, X¼ 39 � 3 matrix of the xi response

value. There are two xi response variables, and the first column consisting of

1s corresponds to b0. b¼ 3 � 1 matrix (vector) of b0, b1, and b2. Hence, from

Table 4.2, the matrix setup is

Y ¼ X b

508

495

502

..

.

288

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

1 0 0:60

1 0 0:60

1 0 0:60

..

. ..
. ..

.

1 12 0:76

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

506

�15:2

33

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

,

0.0

320

400

2*

2* 2*

2
*

2
*

2
*

3
3 3

3
3

3

3

480

y

m
g/

m
L

+

+

+

2.5 5.0 7.5 10.0

Week

12.5
x1

FIGURE 4.2 Potency (y) vs. storage time (x1).
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TABLE 4.1
Data for Example 4.1

n y x1 x2 y ¼ mg=mL A1-715

1 508 0 0.60 x1 ¼ week of chemical analysis

2 495 0 0.60 x2 ¼ relative humidity, 1.0 ¼ 100%

3 502 0 0.60

4 501 1 0.58

5 502 1 0.58

6 483 1 0.58

7 489 2 0.51

8 491 2 0.51

9 487 2 0.51

10 476 3 0.68

11 481 3 0.68

12 472 3 0.68

13 462 4 0.71

14 471 4 0.71

15 463 4 0.71

16 465 5 0.73

17 458 5 0.73

18 462 5 0.73

19 453 6 0.68

20 451 6 0.68

21 460 6 0.68

22 458 7 0.71

23 449 7 0.71

24 451 7 0.71

25 452 8 0.73

26 446 8 0.73

27 442 8 0.73

28 435 9 0.70

29 432 9 0.70

30 437 9 0.70

31 412 10 0.68

32 408 10 0.68

33 409 10 0.68

34 308 11 0.74

35 309 11 0.74

36 305 11 0.74

37 297 12 0.76

38 300 12 0.76

39 288 12 0.76
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where Y is the mg=mL of drug, X (column 2) is the week of analysis, X
(column 3) is the relative humidity, and b represents b0, b1, and b2 from the

regression equation. The information in the regression analysis is interpreted

exactly like that of linear regression, but with added values.

HYPOTHESIS TESTING FOR MULTIPLE REGRESSION

Overall Test

Let us now discuss the analysis of variance (ANOVA) portion of the regres-

sion analysis as presented in Table 4.2. The interpretation, again, is like the

simple linear model (Table 4.3). Yet, we expand the analysis later to evaluate

individual bis. The matrix computations are

SSR ¼ b0X0Y � 1

n

� �

Y0JY, (4:9)

J¼ n � n �! 39 � 39 matrix of 1s.

SSE ¼ Y0Y � b0X0Y, (4:10)

TABLE 4.2
Multiple Regression Analysis

Predictor Coef St. Dev t-Ratio p

b0 506.34 68.90 7.35 0.000

b1 �15.236 2.124 �7.17 0.000

b2 33.3 114.7 0.29 0.773

s ¼ 32.96 R-sq ¼ 75.3% R-sq(adj) ¼ 73.9%

Analysis of Variance

Source DF SS MS F p

Regression 2 119,279 59,640 54.91 0.000

Error 36 39,100 1,086

Total 38 158,380

Source DF SEQ SS

Week 1 119,188

Humid 1 92

Unusual Observations

Obs. Week mg=mL Fit St dev fit Residual St resid

38 12.0 278.00 348.81 9.97 �70.81 �2.25R

39 12.0 285.00 348.81 9.97 �63.81 �2.03R

The regression equation is ŷy ¼ b0 þ b1x1 þ b2x2*, where x1 is the analysis week, and x2 is the

relative humidity.

ŷy ¼ 506 � 15.2x1 þ 33x2, or mg=mL ¼ 506 � 15.2 week þ 33 humidity.
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SST ¼ Y0Y � 1

n

� �

Y0JY: (4:11)

The F-test for testing the significance of the full regression is handled the

same as for simple linear regression via the six-step procedure.

Step 1: Specify the hypothesis test, which is always a two-tail test.

H0: b1 ¼ b2 ¼ 0,

HA: At least one bi is not 0:

(If HA is accepted, one does not know if all the bis are significant or only

one or two. That requires a partial F-test, which is discussed later.)

Step 2: Specify a and n. (At this point, the sample size and the significance

level have been determined by the researcher.) We set a¼ 0.05 and n¼ 39.

Step 3: Write the test statistic to be used.

We simply use Fc ¼ MSR

MSE
, or the basic ANOVA test.

Step 4: Specify the decision rule.

If Fc > FT, reject H0 at a¼ 0.05. That is, if Fc > FT, at least one bi is

significant at a¼ 0.05

FT(a; k; n � k � 1),

where n, the sample size is 39; k is the number of predictors (xis) in the

model ¼ 2, and FT(0:05; 2; 39 --- 2 --- 1):
Using the F table (Table C), FT(0.05; 2, 36)¼ 3.32.

Decision: If Fc > 3.32, reject H0 at a¼ 0.05. At least one bi is significant at

a¼ 0.05.

TABLE 4.3
Structure of the Analysis of Variance

Source Degrees of Freedom SS MS F

Regression k SST – SSE ¼ SSR

SSR

k
Fc(a; k; n� k � 1)

Error n – k – 1 SSE

SSE

n� k � 1
Total n – 1 SST
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Step 5: Compute the Fc value.

From Table 4.2, we see that Fc¼ 54.91.

Step 6: Make the decision.

Because 54.91 > 3.32, reject H0 at a¼ 0.05; at least one bi is significant.

At this point, the researcher could reject the product’s stability, for

clearly the product does not hold up to the stability requirements. Yet, in

the applied sciences, decisions are rarely black and white. Because the

product is stable for a number of months, perhaps a better stabilizer could

be introduced into the product that reduces the rate at which the active

compound degrades. In doing this, the researcher needs a better understand-

ing of the variables of interest. Therefore, the next step is to determine how

significant each bi value is.

Partial F-Test

The partial F-test is similar to the F-test, except that individual or subsets of

predictor variables are evaluated for their contribution in the model to

increase SSR or, conversely, to decrease SSE. In the current example, we

ask, ‘‘what is the contribution of the individual x1 and x2 variables?’’

To determine this, we can evaluate the model, first with x1 in the model,

then with x2. We evaluate x1 in the model, not excluding x2, but holding it

constant, and then we measure it with the sum-of-squares regression (or sum-

of-squares error), and vice versa. That is, the sum-of-squares regression is

explained by adding x1 into the model already containing x2 or SSR(x1jx2)
. The

development of this model is straightforward; the SSR(xkjx1, x2 , . . . , xk� 1)
effect of

xk’s contribution to the model containing xk-1 variables or various other

combinations.

For the present two-predictor variable model, let us assume that x1 is

important, and we want to evaluate the contribution of x2, given x1 is in the

model. The general strategy of partial F-tests is to perform the following:

1. Regression with x1 only in the model.

2. Regression with x2 and x1 in the model.

3. Find the difference between the model containing only x1 and the

model containing x2, given x1 is already in the model, (x2jx1); this

measures the contribution of x2.

4. A regression model with xk predictors in the model can be contrasted in

a number of ways, e.g., (xkjxk�1) or (xk, xk�1, xk�2jxk�3, . . . ).

5. The difference between (xkjx1, x2, x3, . . . , xk�1) and (x1, x2, x3, . . . , xk�1)

is the contribution of xk.

The computational model for the contribution of each extra xi variable in the

model is
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Sum-of-squares regression (SSR) from adding the

additional xi variable ¼ SSR with the extra xi

variable in the model� SSR without the extra xi

variable in the model, or

(4:12)

SSR(xk jx1, x2, ..., xk�1)¼SSR(x1, x2, ..., xk)¼SSR(x1,x2, ...,xk�1): (4:13)

To compute the partial F-test, the following formula is used:

Fc(xk jx1,x2, ..., xk�1)¼

Extra sum-of-squares value due to the xks contribution

to the model, given x1, x2, . . . , xk�1 are in the model

Mean square residual for the model

containing all variables x1, . . . , xk
�

(4:14)

Fc(xk jx1, x2, ..., xk� 1) ¼
SSR(xk jx1, x2, ..., xk� 1)

MSE(x1, x2, ..., xk)

�
: (4:15)

Note: *MSR is not specified because MSR¼ SSR, because of only 1 degree of

freedom.

Table 4.4A presents the full regression model; this can be decomposed

to Table 4.4B, which presents the partial decomposition of the regression.

Let us perform a partial F-test of the data from Example 4.1.

Step 1: Formulate the test hypothesis.

H0: x2 (humidity) does not contribute significantly to the increase of SSR.

HA: The above statement is not true.

Step 2: Specify a and n.

Let us set a¼ 0.025, and n¼ 39. Normally, the researcher has a specific

reason for the selections, and this needs to be considered.

TABLE 4.4A
Full Model ANOVA

Source DF SS

Regression of x1, x2, . . . , xk k SSR(x1, x2, . . . , xk)

Residual n – k – 1 SSE(x1, x2, . . . , xk)
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Step 3: Test statistic.

The specific test to evaluate the term of interest is stated here. The Fc in this

partial F-test is written as

Fc ¼
SSR(x2jx1)

MSE(x1x2)ð Þ ¼
SSR(x1x2) � SSR(x1)

MSE(x1x2)ð Þ :

Step 4: State the decision rule.

This requires the researcher to use the F tables (Table C) with 1 degree of

freedom in the numerator and n � k � 1¼ 39 � 2 � 1¼ 36

FT ¼ FT(a, 1, n�k�1) ¼ FT(0:025, 1, 36) ¼ 5:47:

So, if Fc > FT (5.47), reject H0 at a¼ 0.025.

Step 5: Perform the experiment and collect the results.

We use MiniTab statistical software for our work, but almost any other

statistical package does as well.

First, determine the reduced model: y¼ b0 þ b1x1, omitting b2x2.

Table 4.5 is the ANOVA for the reduced model.

TABLE 4.4B
A Partial ANOVA

Source DF SS MSE

x1 1 SSR(x1) SSR(x1)

x2jx1 1 SSR(x2 j x1) – SSR(x1) ¼ SSR(x2j x1) SSR(x2 j x1)

x3jx1, x2 1 SSR(x1, x2, x3) – SSR(x1, x2) ¼ SSR(x3 j x1, x2)

SSR(x3j x1, x2)

..

. ..
. ..

. ..
.

xkjx1, x2, . . . , xk�1 1 SSR(x1, x2, . . . , xk) – SSR(x1, x2, . . . , xk�1) ¼
SSR(xk jx1, x2, . . . , xk�1)

SSR(xk jx1, x2, . . . , xk�1)

Residual n – k – 1 SSR(x1, x2, . . . , xk)

SSE

n� k � 1

Note: k is the number of x predictor variables in the model, excluding b0 and n is the sample size.

TABLE 4.5
Analysis of Variance Reduced Model, Example 4.1

Source DF SS MS F p

Regression 1 119,188 119,188 112.52 0.000

Error 37 39,192 1,059

Total 38 158,380
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SSR(x1) ¼ 119, 188

Second, compute the full model, y¼ b0 þ b1x1 þ b2x2; the ANOVA is

presented in Table 4.6.

SSR(x1, x2) ¼ 119,279:

SSR(x2jx1) ¼ SSR(x1, x2) � SSR(x1) ¼ 119,279� 119,188 ¼ 91:

MSE(x1, x2) ¼ 1086 (Table 4:6):

Fc(x2jx1) ¼
SSR(x2jx1)

MSE(x1jx2)

¼ 91

1086
¼ 0:08:

Step 6: Decision rule.

Because Fc¼ 0.08< FT, 5.47, we cannot reject the H0 hypothesis at a¼ 0.025.

The researcher probably already knew that relative humidity did not influence

the stability data substantially, but the calculation was included because it was

a variable. The researcher now uses a simple linear regression model.

Note in Table 4.2 that the regression model already had been partitioned

by MiniTab. For the convenience of the reader, the pertinent part of Table 4.2

is reproduced later in Table 4.7.

TABLE 4.6
Analysis of Variance Full Model, Example 4.1

Analysis of Variance

Source DF SS MS F p

Regression 2 119,279 59,640 54.91 0.000

Error 36 39,100 1,086

Total 38 158,380

TABLE 4.7
Short Version of Table 4.2

Analysis of Variance

Source DF SS MS F p

Regression 2 119,279 59,640 54.91 0.000

Error 36 39,100 1,086

Total 38 158,380

Source DF SEQ SS

SSR(x1)week 1 119,188

SSR(x2jx1) humid 1 92
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This greatly simplifies the analysis we have just done. In practice, Fc can

be taken directly from the table

Fc ¼
SSR(x2jx1)

MSE(x1, x2)

¼ 92

1086
¼ 0:0847:

Alternative to SSR

The partitioning of SSR could have been performed in an alternate way: the

reduction of SSE, instead of the increase of SSR. Both provide the same result,

because SStotal¼ SSR þ SSE

SSE(x2jx1) ¼ SSE(x1) � SSE(x1, x2):

From Table 4.5, we find SSE(x1)¼ 39,192.

From Table 4.6, SSE(x1,x2)¼ 39,100.

Therefore,

SSE(x1) � SSE(x1, x2) ¼ 39,192� 39,100 ¼ 92

SSE(x2jx1) ¼ 92:

The final model we evaluate is ŷy¼ b0 þ b1x1, in which time is the single xi

variable (Table 4.8).

Although we determined that x2 was not needed, the regression

model has other problems. First, the Durbin–Watson statistic DWC¼ 0.24,

DWT(a, k, n)¼DWT(a¼ 0.05,1, 39), which is (dL¼ 1.43, and dU¼ 1.54 in Table E),

points to significant serial correlation, a common occurrence in time-series

studies (Table 4.8). Second, the data plot yi vs. x1i is not linear (Figure 4.2). A

transformation of the data should be performed. In Chapter 3, we learned how

this is completed. First, linearize the data by transformation, and then correct

for autocorrelation. However, there may be another problem. The statistical

procedure may be straightforward to the researcher, but not to others. If a

researcher attempts to transform the data to linearize them, it requires that xis

be raised to the fourth power (xi
4), and yis also raised to the fourth power (yi

4).

And even that will not solve our problem, because week 0 and 1 will not

transform (Figure 4.3).

Additionally, the values are extremely large and unwieldy. The data

should be standardized, via xi��xx
sx

and perhaps yi��yy
sy

, and then linearized.

However, such a highly derived process would likely make the data abstract.

A preferred way, and a much simpler method, is to perform a piecewise

regression, using indicator or dummy variables. We employ that method in a

later chapter, where we make separate functions for each linear portion of the

data set.
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The t-Test for the Determination of the bi Contribution

As an alternative to performing the partial F-test to determine the significance

of the xi predictors, one can perform t-tests for each bi, which is automatically

done on the MiniTab regression output (see Table 4.2, t-ratio column). Recall

TABLE 4.8
Final Regression Model, Example 4.1

Predictor Coef St. Dev t-Ratio p

b0 526.136 9.849 53.42 0.000

b1 �14.775 1.393 �10.61 0.000

s ¼ 32.55 R-sq ¼ 75.3% R-sq(adj) ¼ 74.6%

Analysis of Variance

Source DF SS MS F p

Regression 1 119,188 119,188 112.52 0.000

Error 37 39,192 1,059

Total 38 158,380

Unusual Observations

Obs. Week mg=mL Fit St. Dev fit Residual St resid

38 12.0 278.0 348.84 9.85 �70.84 �2.28R

39 12.0 285.00 348.84 9.85 �63.84 �2.06R

The regression equation is mg=mL ¼ 526 – 14.8 week; ŷy ¼ b0 þ b1x.

Note: R denotes an observation with a large standardized residual (St resid), Durbin–Watson

statistic ¼ 0.24.
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FIGURE 4.3 y4 and x4 transformations.
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that Y¼b0 þ b1x1 þ b2x2 þ � � � þ bkxk. Each of these bi values can be

evaluated with a t-test.

The test hypothesis can be an upper-, lower-, or two-tail test.

Upper Tail Lower Tail Two Tail

H0: bi � 0 bi � 0 bi ¼ 0

HA: bi > 0 bi < 0 bi 6¼ 0

Reject H0 if Tc > Tt(a; n�k�1) Tc < Tt(�a; n�k�1) jTcj > jTt(a=2; n�k�1)j

where k is the present number of xi predictor variables in the full model (does

not include b0).

Tc ¼
b̂bi

sb̂bi

, or for sample calculations, tc ¼
bi

sbi

, (4:16)

where bi is the regression coefficient for the ith b, and

sb̂bi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

P
(x� �xx)2

s

: (4:17)

Recall, MSE ¼ SSE

n�k�1
and from Equation 4.10, Y0Y�bX0Y

n�k�1
.

Fortunately, statistical software programs such as MiniTab already pro-

vide these data. Look at Table 4.2; the critical part of that table is presented

later in Table 4.9.

Let us perform a two-tail test of b2 using the data in Example 4.1.

Step 1: First, state the hypothesis.

H0: b2¼ 0,

HA: b2 6¼ 0.

TABLE 4.9
Short Version of MiniTab Table 4.2

Predictor Coef St. Dev t-Ratio p

b0 ¼ Constant 506.34 0.000

b1 ¼ Week �15.236 sb1
¼

68:90

2:124

114:7

(

tc ¼
7:35

�7:17

0:29

(

0.000

b2 ¼ Humid 33.3 0.773
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We are interested in knowing whether b2 is greater or lesser than 0.

Step 2: Set a¼ 0.05 and n¼ 39.

Step 3: Write the test formula to be used.

tc ¼
b2

sb2

,

where

sb2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

P
(x2 � �xx2)2

s

:

Step 4: Decision rule (a two-tail test).

If jTcj > jTt(a=2; n� k� 1)j, reject H0 at a.

Tt¼ T(0.025; 39� 2)� 1¼ T(0.025, 36)¼ 2.042, from Table B

If j Tcj > 2.042, reject H0 at a¼ 0.05.

Step 5: Compute the statistic.

tc ¼ b2

sb2

¼ 33:3
114:7 ¼ 0:29, which is already presented in the t-ratio column

(Table 4.9).

Step 6: Decision rule.

Because 0:29 6> 2:042, we cannot reject H0 at a¼ 0.05. Remove the x2 values

from the model.

Let us look at the other bi values

b0: tc ¼ b0

sb0

¼ 506:34
68:90

¼ 7:35 > 2:04, and so, is significant from 0 at a¼ 0.05.

b1: tc ¼ b1

sb1

¼ �15:236
2:124

¼ j7:17j > 2:042, so it, too, is significant at a¼ 0.05.

Multiple Partial F-Tests

At times, a researcher may want to know the relative effects of adding not just

one, but several variables to the model at once. For example, suppose a basic

regression model is Y¼ b0 þ b1x1 þ b2x2, and the researcher wants to know

the effects of adding x3, x4, and x5 to the model simultaneously. The procedure

is a direct extension of the partial F-test just examined. It is the sum-

of-squares that results from the addition of x3, x4, and x5 to the model already

containing x1 and x2

SSR(x3, x4, x5jx1, x2):

To compute SSR(x3, x4, x5jx1, x2),
we must subtract the partial model from the full

model.
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That is, SSR(x3, x4, x5jx1, x2) ¼ full model � partial model

SSR(x3, x4, x5jx1, x2) ¼ SSR(x1, x2, x3, x4, x5) � SSR(x1, x2)

or equivalently,

SSE(x3, x2, x4jx1, x2) ¼ SSE(x1, x2) � SSE(x1, x2, x3, x4, x5):

The general F statistic for this process is

Fc(x3, x4, x5jx1, x2) ¼
SSR(full)�SSR( partial)

k0

MSE(full)

or

SSE( partial)�SSE(full)

k0

MSE(full)

: (4:18)

The degrees of freedom are k for the numerator, and n � r � k 0 � 1 for the

denominator, where k 0 is the number of x variables added to the model (in this

case, x3, x4, x5), or the number of variables in the full model minus the number

of variables in the partial model, and r is the number of x variables in the

reduced model (x1, x2).

Example 4.2. A researcher wishes to predict the quantity of bacterial

medium (Tryptic Soy Broth, e.g.) needed to run bioreactors supporting con-

tinuous microbial growth over the course of a month. The researcher method-

ically jots down variable readings that are important in predicting the number

of liters of medium that must flow through the system of 10 bioreactors each

week—7 days. The researcher had used three predictor x variables in the past:

x1, x2, and x3, corresponding to bioreactor temperature 8C, log10 microbial

population per mm2 on a test coupon, and the concentration of protein in the

medium (1¼ standard concentration, 2¼ double concentration, etc.). In hopes

of becoming more accurate and precise in the predictions, three other variables

have been tracked—the calcium=phosphorus (Ca=P) ratio, the nitrogen (N)

level, and the heavy metal level. The researcher wants to know whether, on the

whole, data on these three additional variables are useful in predicting the

amount of media required, when a specific combination of variables is neces-

sary in providing a desired log10 population on coupons. Table 4.10 shows

the data.

Step 1: Write out the hypothesis.

H0: b4 and b5 and b6¼ 0 (i.e., they contribute nothing additive to the model

in terms of increasing SSR or reducing SSE).

HA: b4 and b5 and b6 6¼ 0 (their addition contributes to the increase of SSR

and the decrease of SSE).

Step 2: Set a and n.

Let a¼ 0.05, and n¼ 15 runs.
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Step 3: Statistic to use.

SSR(x4, x5, x6jx1, x2, x3) ¼ SSR(x1, x2, x3, x4, x5, x6) � SSR(x1, x2, x3)

Fc(x4, x5, x6jx1, x2, x3) ¼
SSR(full)�SSR(partial)

k0

MSE(full)

or

SSE(partial)�SSE(full)

k0

MSE(full)

:

Step 4: Decision rule.

First, determine FT(a)(k 0, n�r�k 0�1)

a¼ 0.05

k0 ¼ 3, for x4, x5, and x6

r¼ 3, for x1, x2, and x3

FT (0.05)(3; 15 – 3 – 3 – 1)¼FT (0.05, 3, 8)¼ 4.07, from Table C, the F tables

If Fc > FT¼ 4.07, reject H0 at a¼ 0.05. The three variables, x4, x5, and x6

significantly contribute to increasing SSR and decreasing SSE.

Step 5: Perform the computation.

As earlier, the full model is first computed (Table 4.11).

TABLE 4.10
Data for Example 4.2

Row Temp 8C log10-count med-cn Ca=P N Hvy-Mt L=wk

x1 x2 x3 x4 x5 x6 Y

1 20 2.1 1.0 1.00 56 4.1 56

2 21 2.0 1.0 0.98 53 4.0 61

3 27 2.4 1.0 1.10 66 4.0 65

4 26 2.0 1.8 1.20 45 5.1 78

5 27 2.1 2.0 1.30 46 5.8 81

6 29 2.8 2.1 1.40 48 5.9 86

7 37 5.1 3.7 1.80 75 3.0 110

8 37 2.0 1.0 0.30 23 5.0 62

9 45 1.0 0.5 0.25 30 5.2 50

10 20 3.7 2.0 2.00 43 1.5 41

11 20 4.1 3.0 3.00 79 0.0 70

12 25 3.0 2.8 1.40 57 3.0 85

13 35 6.3 4.0 3.00 75 0.3 115

14 26 2.1 0.6 1.00 65 0.0 55

15 40 6.0 3.8 2.90 70 0.0 120

Note: Y is the liters of medium used per week, x1 is the temperature of bioreactor (8C), x2 is the

log10 microbial population per cm2 of coupon, x3 is the medium concentration (e.g., 2 ¼ 2x

standard strength), x4 is the calcium=phosphorus ratio, x5 is the nitrogen level, x6 is the heavy

metal concentration ppm (Cd, Cu, Fe).
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The reduced model is then computed (Table 4.12)

Fc(x4, x5, x6jx1, x2, x3) ¼
SSR(full) � SSR(partial)

k0

MSE(full)

or

SSE(partial) � SSE(full)

k0

MSE(full)

,

Fc(x4, x5, x6jx1, x2, x3) ¼
7266:3� 6609:5

3
109:4

or

1531:9� 875:0

3
109:4

,

Fc ¼ 2:00:

Step 6: Decision rule.

Because Fc ¼ 2:00 6> 4:07, reject HA at a¼ 0.05. The addition of the three

variables as a whole (x4, x5, x6) does not significantly contribute to increasing

SSR or decreasing SSE. In addition, note that one need not compute the partial

Fc value using both SSE and SSR. Use one or the other, as both provide the

same result.

Now that we have calculated the partial F test, let us discuss the procedure

in greater depth, particularly the decomposition of the sum-of-squares. Recall

TABLE 4.11
Full Model Computation, Example 4.2

Analysis of Variance

Source DF SS MS F p

Regression 6 7266.3 1211.1 11.07 0.002

Error 8 875.0 109.4

Total 14 8141.3

The regression equation is L=wk ¼ �23.1 þ 0.875 temp8 C þ 2.56 log10-ct þ 14.6 med-cn – 5.3

Ca=P þ 0.592 N þ 3.62 Hvy-Mt; R2 ¼ 89.3%.

TABLE 4.12
Reduced Model Computation, Example 4.2

Analysis of Variance

Source DF SS MS F p

Regression 3 6609.5 2203.2 15.82 0.000

Error 11 1531.9 139.3

Total 14 8141.3

The regression equation is L=wk ¼ 19.2 þ 0.874 temp 8C – 2.34 log10-ct þ 19.0 med-cn.

R2 ¼ 81.2%.
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that the basic sum-of-squares equation for the regression model is, in terms of

ANOVA:

Sum-of-squares total¼ sum-of-squares due to regression þ sum-of-squares

due to error, or SST¼ SSR þ SSE

Adding extra predictor xi variables that increase the SSR value and

decrease SSE incurs a cost. For each additional predictor xi variable added,

one loses 1 degree of freedom. Given the SSR value is increased significantly

to offset the loss of 1 degree of freedom (or conversely, the SSE is signifi-

cantly reduced), as determined by partial F-test, the xi predictor variable stays

in the model. This is the basis of the partial F-test. That is, if Fc > FT, the

addition of the extra variable(s) was appropriate.*

Recall that the ANOVA model for a simple linear regression that has only

x1 as a predictor variable is written as SST¼ SSR(x1)
þ SSE(x1)

. When an

additional predictor variable is added to the model, SST¼ SSR(x1, x2) þ
SSE(x1, x2)

, the same interpretation is valid, but with two variables, x1 and x2.

That is, SSR is the result of both x1 and x2, and likewise for SSE. As these are

derived with both x1 and x2 in the model, we have no way of knowing the

contribution of either. However, with the partial F-test, we can know this.

Now, SST ¼ SSR(x1) þ SSR(x2jx1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SSR

þSSE(x1, x2), when we decompose SSR. Now,

we have SSR(x1)
and SSR(x2)

, holding x1 constant. In the case of SSE, when we

decompose it (the alternative method), we account for SSE(x1)
and SSE(x2jx1)

.

Instead of increasing the sum-of-squares regression, we now look for a

decrease in SSE.

By decomposing SSR, we are quickly able to see the contribution of each

xi variable in the model. Suppose that we have the regression ŷy¼ b0 þ b1x1 þ
b2x2 þ b3x3 þ b4x4, and want to decompose each value to determine its

contribution to increasing SSR. The ANOVA table (Table 4.13) presents the

model and annotates the decomposition of SSR.

Fortunately, statistical software cuts down on the tedious computations.

Let us now look at several standard ways to add or subtract xi predictor

variables based on this F-test strategy. Later, we discuss other methods,

including those that use R2. The first method we examine adds to the basic

model new xi predictor variables and tests the contribution of each one. The

second method tests the significance of each xi in the model and then adds

*If the F-test is not computed and R2 is used to judge the significance of adding additional

indicator variables, the unwary researcher, seeing R2 generally increasing with the addition of

predictors, may choose an inefficient model. R2 must be adjusted in multiple regression to

R2
(adj) ¼ 1� n� 1

n� k � 1

� �
SSE

SSR

� �� �

where k is the number of predictor xi variables and n is the sample size.
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new ones using the partial F-test, omitting from the model any xi that is not

significant.

FORWARD SELECTION: PREDICTOR VARIABLES ADDED INTO THE MODEL

In this procedure, xi predictor variables are added into the model, one at a

time. The predictor thought to be most important by the researcher generally

is added first, followed by the second, the third, and so on. If the contribution

of the predictor value is unknown, one easy way to find out is to run k simple

linear regressions, selecting the largest r2 of the k as x1, the second largest r2

as x2, and so forth.

Let us perform the procedure using the data from Example 4.2

(Table 4.10). This was an evaluation using six xi variables in predicting the

total amount of growth medium for a continuous bioreactor—biofilm—pro-

cess. The researcher ranked the predictor values in the order of perceived

value: x1, temperature (8C); x2, log10 microbial count per cm2 coupon; x3,

medium concentration; x4, calcium=phosphorous ratio; x5, nitrogen level, and

x6, heavy metals.

Because x1 is thought to be the most important predictor xi value, it is

added first. We use the six-step procedure for the model-building process.

Step 1: State the hypothesis.

H0 : b1¼ 0,

HA: b1 6¼ 0 (temperature is a significant predictor of the amount of

medium needed).

TABLE 4.13
ANOVA Table of the Decomposition of SSR

Source

(variance) SS DF

aRegression SSR(x1, x2, x3, x4) 4
bx1 SSR(x1)

1

x2jx1 SSR(x2jx1)
1

x3jx1, x2 SSR(x3, x1, x2) 1

x4jx1, x2, x3 SSR(x4, x1, x2, x3) 1

Error SSR(x1, x2, x3, x4) n – k – 1

Total SST n – 1

aThis is the full model where SSR includes x1, x2, x3, and x4 and is written as SSR(x1, x2, x3, x4). It has

four degrees of freedom, because there are four predictors in that model.
bThe decomposition generally begins with x1, and ends at xk, as there are k decompositions

possible. The sum
P4

i¼1 SSR(xi) ¼ SSR(x1, x2, x3, x4).
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Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: Statistic to use.

Fc ¼
MSR(x1)

MSE(x1)

:

Step 4: Decision rule.

If Fc > FT(a; 1, n�2)¼FT(0.05; 1, 13)¼ 4.67 (from Table C), reject H0.

Step 5: Perform the ANOVA computation (Table 4.14).

Step 6: Make decision.

Because Fc¼ 2.99 6> FT¼ 4.67, we cannot reject H0 at a¼ 0.05.

Despite the surprising result that temperature has little direct effect on the

medium requirements, the researcher moves on, using data for x2 (log10

microbial count) in the model.

Step 1: State the hypothesis.

H0: b2¼ 0,

HA: b2 6¼ 0 (log10 microbial counts on the coupon have a significant effect

on medium requirements).

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

TABLE 4.14
ANOVA Computation for a Single Predictor Variable, x1

Predictor Coef St. Dev t-Ratio p

(Constant) b0 37.74 22.70 1.66 0.120

(temp 8C) b1 1.3079 0.7564 1.73 0.107

s ¼ 22.56 R-sq ¼ 18.7% R-sq(adj) ¼ 12.4%

Analysis of Variance

Source DF SS MS F p

Regression s(x1) 1 1522.4 1522.4 2.99 0.107

Error 13 6619.0 509.2

Total 14 8141.3

The regression equation is L=wk ¼ 37.7 þ 1.31 temp 8C.
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Step 3: Statistic to use.

Fc ¼
MSR(x2)

MSE(x2)

:

Step 4: Decision rule.

If Fc > 4.67, reject H0.

Step 5: Perform the computation (Table 4.15).

Step 6: Make decision.

Because Fc¼ 19.58 > 4.67, reject H0 at a¼ 0.05. The predictor, x2 (log10

microbial count), is significant in explaining the SSR and reducing SSE in the

regression equation.

Next, the researcher still suspects that temperature has an effect and does

not want to disregard it completely. Hence, y¼ b0 þ b2x2 þ b1x1 is the next

model to test. (Although, positionally speaking, b2x2 is really b1x1 now, but to

avoid confusion, we keep all variable labels in their original form until we

have a final model.)

To do this, we evaluate SSR(x1jx2)
, the sum-of-squares caused by predictor

x1, with x2 in the model.

Step 1: State the hypothesis.

H0: b1jb2 in the model¼ 0. (The contribution of x1, given x2 in the model,

is 0; that is, the slope of b1 is 0, with b2 already in the model.)

H0: b1jb2 in the model 6¼ 0. (The earlier statement is not true.)

TABLE 4.15
ANOVA Computation for a Single Predictor Variable, x2

Predictor Coef St. Dev t-Ratio p

(Constant) b0 39.187 9.199 4.26 0.001

(log10-ct) b2 11.717 2.648 4.42 0.001

s ¼ 15.81 R-sq ¼ 60.1% R-sq(adj) ¼ 57.0%

Analysis of Variance

Source DF SS MS F p

Regression x2 1 4892.7 4892.7 19.58 0.001

Error 13 3248.7 249.9

Total 14 8141.3

The regression equation is L=wk ¼ 39.2 þ 11.7 log10-ct.
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Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: Statistic to use

Fc(x1jx2) ¼
SSR(x2, x1) � SSR(x2)

MSE(x2, x1)

:

Step 4: Decision rule.

If FT(a; 1, n–p–2)¼FT(0.05; 1, 15–1–2)¼FT(0.05; 1, 12), where p is the number of

xi variables already in the model (e.g., x1jx2¼ p¼ 1, x1jx2, x3¼ p¼ 2, and

x1jx2, x3, x4¼ p¼ 3)

FT(0.05; 1, 12)¼ 4.75 (Table C).

If Fc(x1jx2)
> FT¼ 4.75, reject H0 at a¼ 0.05.

Step 5: Compute the full model table (Table 4.16).

By Table 4.16, SSR(x2, x1)¼ 5497.2 and MSE(x1, x2)¼ 220.3.

From the previous table (Table 4.15), SSR(x2)
¼ 4892.7

SSR(x1jx2) ¼ SSR(x1, x2) � SSR(x2) ¼ 5497:2� 4892:7 ¼ 604:5:

Fc ¼
SSR(x1jx2)

MSE(x1, x2)

¼ 604:5

220:3
¼ 2:74:

Step 6: Decision rule.

Because Fc¼ 2.74 6> 4.75, we cannot reject H0 at a¼ 0.05. x1¼ temperature

(8C) still does not contribute significantly to the model. Therefore, x1 is

eliminated from the model.

Next, the researcher likes to evaluate x3, the media concentration, with x2

remaining in the model. Using the six-step procedure,

TABLE 4.16
Full Model, Predictor Variables x1 and x2

Predictor Coef St. Dev t-Ratio p

Constant 17.53 15.67 1.12 0.285

(log10-ct) b2 10.813 2.546 4.25 0.001

(temp8C) b1 0.8438 0.5094 1.66 0.124

s ¼ 14.84 R-sq ¼ 67.5% R-sq(adj) ¼ 62.1%

Analysis of Variance

Source DF SS MS F p

Regression (x2, x1) 2 5497.2 2748.6 12.47 0.001

Error 12 2644.2 220.3

Total 14 8141.3

The regression equation is L=wk ¼ 17.5 þ 10.8 log10-ct þ 0.844 temp 8C.
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Step 1: State the test hypothesis.

H0: b3jb2 in the model¼ 0. (The addition of x3 into the model containing x2

is not useful.)

HA: b3jb2 in the model 6¼ 0.

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: Statistic to use.

Fc(x3jx2) ¼
SSR(x2, x3) � SSR(x2)

MSE(x2, x3)

:

Step 4: Decision rule.

If Fc > FT(a; 1, n – p – 2)¼FT(0.05; 1, 15 – 1 – 2)¼FT(0.05; 1, 12), reject H0.

FT(0.05; 1,12)¼ 4.75 (Table C).

Step 5: Table 4.17 presents the full model, ŷy¼ b0 þ b2x2 þ b3x3.

SSR(x2, x3) ¼ 5961:5, MSE(x2, x3) ¼ 181:6,

SSR(x2) ¼ 4892:7, from Table 4:15:

SSR(x3jx2) ¼ SSR(x2, x3) � SSR(x2)

¼ 5961:5� 4892:7 ¼ 1068:8

Fc(x3jx2) ¼
SSR(x3jx2)

MSE(x2, x3)

¼ 1068:8

181:6
¼ 5:886:

TABLE 4.17
Full Model, Predictor Variables x2 and x3

Predictor Coef St. Dev t-Ratio p

Constant 41.555 7.904 5.26 0.000

(log10-ct) b2 �1.138 5.760 �0.20 0.847

(med-cn) b3 18.641 7.685 2.43 0.032

s ¼ 13.48 R-sq ¼ 73.2% R-sq(adj) ¼ 68.8%

Analysis of Variance

Source DF SS MS F p

Regression 2 5961.5 2980.8 16.41 0.000

Error 12 2179.8 181.6

Total 14 8141.3

The regression equation is L=wk ¼ 41.6 – 1.14 log10-ct þ 1.86 med-cn.
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Step 6: Decision rule.

Because Fc¼ 5.886 > 4.75, reject H0 at a¼ 0.05; x3 contributes significantly

to the regression model in which x2 is present. Therefore, the current model is

ŷy ¼ b0 þ b2x2 þ b3x3:

Next, the researcher decides to bring x4 (calcium=phosphorous ratio) into the

model:

ŷy ¼ b0 þ b2x2 þ b3x3 þ b4x4:

Using the six-step procedure to evaluate x4,

Step 1: State the hypothesis.

H0: b4jb2, b3¼ 0 (x4 does not contribute significantly to the model),

HA: b4jb2, b3 6¼ 0.

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic.

Fc(x4jx2, x3) ¼
SSR(x2, x3, x4) � SSR(x2, x3)

sE(x2, x3, x4)

:

Step 4: Decision rule.

If Fc > FT(a; 1, n – p – 2)¼FT(0.05; 1, 15 – 2 – 2)¼FT(0.05; 1, 11)¼ 4.84 (Table C)

If Fc > 4.84, reject H0 at a¼ 0.05.

Step 5: Perform the computation.

Table 4.18 shows the full model, ŷy¼ b0 þ b2x2 þ b3x3 þ b4x4.

From Table 4.18, SSR(x2, x1, x4)¼ 6526.3 and MSE(x2, x1, x4)¼ 146.8.

Table 4.17 gives SSR(x2, x3)¼ 5961.5

6526:3� 5961:5

146:8
¼ 3:84:

Step 6: Decision rule.

Because Fc¼ 3.84 6> FT¼ 4.84, one cannot reject H0 at a¼ 0.05. The re-

searcher decides not to include x4 in the model. Next, the researcher intro-

duces x5 (nitrogen) into the model:

ŷy ¼ b0 þ b2x2 þ b3x3 þ b5x5:
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Using the six-step procedure for evaluating x5,

Step 1: State the hypothesis.

H0: b5jb2, b3¼ 0. (With x5, nitrogen, as a predictor, x5 does not signifi-

cantly contribute to the model.)

HA: b5jb2, b3 6¼ 0.

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic.

Fc(x5jx2, x3) ¼
SSR(x2, x3, x5) � SSR(x2, x3)

MSE(x2, x3, x5)

:

Step 4: Decision rule.

FT(0.05; 1, n – p – 1)¼FT(0.05; 1, 11)¼ 4.84 (Table C).

If Fc > 4.84, reject H0 at a¼ 0.05.

Step 5: Perform the computation.

Table 4.19 portrays the full model, ŷy¼ b0 þ b2x2 þ b3x3 þ b5x5.

From Table 4.19, SSR(x2, x3, x5)¼ 5968.9, and SSE(x2, x3, x5)¼ 197.5.

Table 4.17 gives SSR(x2, x3)
¼ 5961.5,

SSR(x5jx2, x3) ¼
5968:9� 5961:5

197:5
¼ 0:04:

TABLE 4.18
Full Model, Predictor Variables x2, x3, and x4

Predictor Coef St. Dev t-Ratio p

Constant 41.408 7.106 5.83 0.000

(log10-ct) b2 5.039 6.061 0.83 0.423

(med-cn) b3 21.528 7.064 3.05 0.011

(Ca=P) b4 �16.515 8.420 �1.96 0.076

s ¼ 12.12 R-sq ¼ 80.2% R-sq(adj) ¼ 74.8%

Analysis of Variance

Source DF SS MS F p

Regression 3 6526.3 2175.4 14.82 0.000

Error 11 1615.0 146.8

Total 14 8141.3

The regression equation is L=wk ¼ 41.4 þ 5.04 log10-ct þ 21.5 med-cn – 16.5 Ca=P.
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Step 6: Decision rule.

Because Fc¼ 0.04 6> FT¼ 4.84, one cannot reject H0 at a¼ 0.05. Therefore,

the model continues to be ŷy¼ b0 þ b2x2 þ b3x3.

Finally, the researcher introduces x6 (heavy metals) into the model:

ŷy ¼ b0 þ b2x2 þ b3x3 þ b6x6:

Using the six-step procedure for evaluation x6,

Step 1: State the test hypothesis.

H0 : b6jb2, b3¼ 0. (x6 does not contribute significantly to the model.)

HA: b6jb2, b3 6¼ 0.

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic.

Fc(x6jx2, x3) ¼
SSR(x2, x3, x6) � SSR(x2, x3)

MSE(x2, x3, x6)

:

Step 4: Decision rule.

FT¼ 4.84 (again, from Table C).

If Fc > 4.84, reject H0 at a¼ 0.05.

TABLE 4.19
Full Model, Predictor Variables x2, x3, and x5

Predictor Coef St. Dev t-Ratio p

Constant 39.57 13.21 3.00 0.012

(log10-ct) b2 �1.633 6.533 �0.25 0.807

(med-cn) b3 18.723 8.024 2.33 0.040

(N) b5 0.0607 0.3152 0.19 0.851

s ¼ 14.05 R-sq ¼ 73.3% R-sq(adj) ¼ 66.0%

Analysis of Variance

Source DF SS MS F p

Regression 3 5968.9 1989.6 10.07 0.002

Error 11 2172.5 197.5

Total 14 8141.3

The regression equation is L=wk ¼ 39.6 – 1.63 log10-ct þ 18.7 med-cn þ 0.061N.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C004 Final Proof page 180 16.11.2006 7:51pm

180 Handbook of Regression and Modeling



Step 5: Perform the statistical computation (Table 4.20).

From Table 4.20, SSR(x2, x3, x6)¼ 6405.8, and MSE(x2, x3, x6)¼ 157.8.

Table 4.17 gives SSR(x2, x3)¼ 5961.5,

SSR(x6jx2, x3) ¼
6405:8� 5961:5

157:8
¼ 2:82:

Step 6: Decision rule.

Because Fc¼ 2.82 6> FT¼ 4.84, one cannot reject H0 at a¼ 0.05. Remove x6

from the model. Hence, the final model is

ŷy ¼ b0 þ b2x2 þ b3x3:

The model is now recoded as

ŷy ¼ b0 þ b1x1 þ b2x2,

where x1 is the log10 colony counts and x2 is medium concentration. The

reason for this is that the most important xi is introduced before those of lesser

importance. This method is particularly useful if the researcher has a good

idea of the importance or weight of each xi. Note that, originally, the

researcher thought temperature was the most important, but that was not so.

Although the researcher collected data for six predictors, only two proved

useful. However, the researcher noted in Table 4.17 that the t-ratio or t-value

for log10 colony count was no longer significant and was puzzled that the

model may be dependent on only the concentration of the medium. The next

TABLE 4.20
Full Model, Predictor Variables x2, x3, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 16.26 16.78 0.97 0.353

(log10-ct) b2 7.403 7.398 1.00 0.338

(med-cn) b3 11.794 8.242 1.43 0.180

(Hvy-Mt) b6 4.008 2.388 1.68 0.121

s ¼ 12.56 R-sq ¼ 78.7% R-sq(adj) ¼ 72.9%

Analysis of Variance

Source DF SS MS F p

Regression 3 6405.8 2135.3 13.53 0.001

Error 11 1735.5 157.8

Total 14 8141.3

The regression equation is L=wk ¼ 16.3 þ 7.40 log10-ct þ 11.8 med-cn þ 4.01 Hvy-Mt.
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step is to evaluate x1¼ colony counts with x2¼media concentration in the

model. This step is left to the reader. Many times, when these oddities occur,

the researcher must go back to the model and search for other indicator

variables perhaps much more important than those included in the model.

Additionally, a flag is raised in the researcher’s mind by the relatively low

value for r(adj)
2 , 68.8%. Further investigation is needed.

Note that we have not tested the model for fit at this time (linearity of

model, serial correlation, etc.), as we combine everything in the model-

building chapter.

BACKWARD ELIMINATION: PREDICTORS REMOVED FROM THE MODEL

This method begins with a full set of predictor variables in the model, which,

in our case, is six. Each xi predictor variable in the model is then evaluated as

if it were the last one added. Some strategies begin the process at xk and then

xk – 1, and so forth. Others begin with x1 and work toward xk. This second

strategy is the one that we use. We already know that only x2 and x3 were

accepted in the forward selection method, where we started with one predictor

variable and added predictor variables to it. Now we begin with the full model

and remove insignificant ones. It continues to be important to value x1 as the

greatest contributor to the model and k as the least. Of course, if one really

knew the contribution of each predictor xi variable, one would not probably

do the partial F-test in the first place. One does the best one can with the

knowledge available.

Recall that our original model was

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6,

where x1 is the temperature; x2, log10 colony count; x3, medium concentration;

x4, calcium=phosphorus ratio; x5, nitrogen; and x6 are the heavy metals.

Let us use the data from Example 4.2 again, and the six-step procedure, to

evaluate the variables via the backward elimination procedure, beginning

with x1 and working toward xk.

Step 1: State the hypothesis.

H0: b1jb2, b3, b4, b5, b6¼ 0 (predictor x1 does not significantly contribute

to the regression model, given that x2, x3, x4, x5, and x6 are in the model.)

HA: b1jb2, b3, b4, b5, b6 6¼ 0:

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.
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Step 3: We are evaluating SSR(x1jx2, x3, x4, x5, x6), so

SSR(x1jx2, x3, x4, x5, x6) ¼ SSR(x1, x2, x3, x4, x5, x6) � SSR(x2, x3, x4, x5, x6):

The tests statistic is Fc(x1jx2,x3,x4,x5,x6) ¼
SSR(x1,x2,x3,x4,x5,x6)�SSR(x2,x3,x4,x5,x6)

MSE(x1,x2,x3,x4,x5,x6)

:

Step 4: Decision rule.

If Fc > FT(a, 1, n � p � 2),

p¼ 5,

FT(0.05; 1, 15� 5� 2)¼FT(0.05; 1, 8)¼ 5.32 (Table C),

If Fc > 5.32, reject H0 at a¼ 0.05.

Step 5: Perform the computation (Table 4.21). The full model is presented in

Table 4.21, and the reduced in Table 4.22.

From Table 4.21, SSR(x1, x2, x3, x4, x5, x6)
¼ 7266.3, and MSE(x1, x2, x3, x4, x5, x6)

¼ 109.4

From Table 4.22, SSR(x1, x2, x3, x4, x5, x6)¼ 6914.3

Fc(x1jx2, x3, x4, x5, x6) ¼
7266:3� 6914:3

109:4
¼ 3:22:

Step 6: Decision rule.

Because Fc¼ 3:22 6>¼ 5.32¼FT, one cannot reject H0 at a¼ 0.05. There-

fore, drop x1 from the model, because its contribution to the model is not

significant. The new full model is

TABLE 4.21
Full Model, Predictor Variables x1, x2, x3, x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 �23.15 26.51 �0.87 0.408

(temp8C) b1 0.8749 0.4877 1.79 0.111

(log10-ct) b2 2.562 6.919 0.37 0.721

(med-cn) b3 14.567 7.927 1.84 0.103

(Ca=P) b4 �5.35 10.56 �0.51 0.626

(N) b5 0.5915 0.2816 2.10 0.069

(Hvy-Mt) b6 3.625 2.517 1.44 0.188

s ¼ 10.46 R-sq ¼ 89.3% R-sq(adj) ¼ 81.2%

Analysis of Variance

Source DF SS MS F p

Regression 6 7266.3 1211.1 11.07 0.002

Error 8 875.0 109.4

Total 14 8141.3

The regression equation is L=wk¼�23.1þ 0.875 temp 8Cþ 2.56 log10-ctþ 14.6 med-cn� 5.3

Ca=P þ 0.592 N þ 3.62 Hvy-Mt.
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ŷy ¼ b0 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6:

We now test x2.

Step 1: State the test hypothesis.

H0: b1jb2, b3, b4, b5, b6 ¼ 0,

HA: b1jb2, b3, b4, b5, b6 6¼ 0:

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: Write the test statistic

The test statistic is Fc(x2jx3,x4,x5,x6) ¼
SSR(x2,x3,x4,x5,x6)�SSR(x3,x4,x5,x6)

MSE(x2,x3,x4,x5,x6)

:

Step 4: Decision rule.

FT(0.05; n� p � 2)¼FT(0.05; 1, 15� 4� 2)¼FT(0.05; 1, 9)¼ 5.12 (Table C).

Therefore, if Fc > 5.12, reject H0 at a¼ 0.05.

Step 5: Perform the computation (Table 4.23).

The full model is presented in Table 4.23, and the reduced one in Table 4.24.

From Table 4.23, SSR(x2, x3, x4, x5, x6)¼ 6914.3, and MSE(x2, x3, x4, x5, x6)¼ 136.3.

From Table 4.24, SSR(x3, x4, x5, x6)¼ 6723.2

TABLE 4.22
Reduced Model, Predictor Variables x2, x3, x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 5.40 23.67 0.23 0.825

(log10-ct) b2 8.163 6.894 1.18 0.267

(med-cn) b3 16.132 8.797 1.83 0.100

(Ca=P) b4 �15.30 10.03 �1.53 0.161

(N) b5 0.4467 0.3011 1.48 0.172

(Hvy-Mt) b6 3.389 2.806 1.21 0.258

s ¼ 11.68 R-sq ¼ 84.9% R-sq(adj) ¼ 76.6%

Analysis of Variance

Source DF SS MS F p

Regression 5 6914.3 1382.9 10.14 0.002

Error 9 1227.0 136.3

Total 14 8141.3

The regression equation is L=wk ¼ 5.4 þ 8.16 log10-ct þ 16.1 med-cn – 15.3Ca=P þ 0.447N þ
3.39 Hvy-Mt.
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Fc(x1jx3, x4, x5, x6) ¼
6914:3� 6723:2

136:3
¼ 1:40:

Step 6: Decision rule.

Because Fc¼ 1:40 6> FT¼ 5.12, one cannot reject H0 at a¼ 0.05. Thus, omit

x2 (log10 colony counts) from the model. Now observe what has happened.

TABLE 4.23
Full Model, Predictor Variables x2, x3, x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 5.40 23.67 0.23 0.825

(log10-ct) b2 8.163 6.894 1.18 0.267

(med-cn) b3 16.132 8.797 1.83 0.100

(Ca=P) b4 �15.30 10.03 �1.53 0.161

(N) b5 0.4467 0.3011 1.48 0.172

(Hvy-Mt) b6 3.389 2.806 1.21 0.258

s ¼ 11.68 R-sq ¼ 84.9% R-sq(adj) ¼ 76.6%

Analysis of Variance

Source DF SS MS F p

Regression 5 6914.3 1382.9 10.14 0.002

Error 9 1227.0 136.3

Total 14 8141.3

The regression equation is L=wk ¼ 5.4 þ 8.16 log10-ct þ 16.1 med-cn – 15.3 Ca=P þ 0.447 N þ
3.39 Hvy-Mt.

TABLE 4.24
Reduced Model, Predictor Variables x3, x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 19.07 21.08 0.90 0.387

(med-cn) b3 24.136 5.742 4.20 0.002

(Ca=P) b4 �14.47 10.20 �1.42 0.186

(N) b5 0.4403 0.3071 1.43 0.182

(Hvy-Mt) b6 1.687 2.458 0.69 0.508

s ¼ 11.91 R-sq ¼ 82.6% R-sq(adj) ¼ 75.6%

Analysis of Variance

Source DF SS MS F p

Regression 4 6723.2 1680.8 11.85 0.001

Error 10 1418.2 141.8

Total 14 8141.3

The regression equation is L=wk ¼ 19.1 þ 24.1 med-cn – 14.5 Ca=P þ 0.440 N þ 1.69 Hvy-Mt.
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In the forward selection method, x2 was significant. Now, its contribution is

diluted by the x4, x5, and x6 variables, with a very different regression equa-

tion, and having lost 3 degrees of freedom. Obviously, the two methods may

not produce equivalent results. This is often due to model inadequacies, such

as xis, themselves that are correlated, a problem we address in later chapters.

The new full model is

ŷy ¼ b0 þ b3x3 þ b4x4 þ b5x5 þ b6x6:

Let us evaluate the effect of x3 (medium concentration).

Step 1: State the test hypothesis.

H0: b3jb4, b5, b6 ¼ 0,

HA: b3jb4, b5, b6 6¼ 0:

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic is

Fc(x3jx4, x5, x6) ¼
SSR(x3, x4, x5, x6) � SSR(x4, x5, x6)

MSE(x3, x4, x5, x6)

:

Step 4: Decision rule.

FT(a; n� p� 2)¼ TT(0.05; 1, 15� 3� 2)¼FT(0.05,1, 10)¼ 4.96.

If Fc > 4.96, reject H0 at a¼ 0.05.

Step 5: Perform the computation (Table 4.25).

The full model is presented in Table 4.25, and the reduced model in

Table 4.26. From Table 4.25,

SSR(x3, x4, x5, x6) ¼ 6723:2 and MSE(x3, x4, x5, x6) ¼ 141:8:

From Table 4.26, SSR(x4, x5, x6)¼ 4217.3

Fc(x3jx4, x5, x6) ¼
6723:2� 4217:3

141:8
¼ 17:67:

Step 6: Decision rule.

Because Fc¼ 17.67 > FT¼ 4.96, reject H0 at a¼ 0.05, and retain x3 in the

model.

The new full model is

ŷy ¼ b0 þ b3x3 þ b4x4 þ b5x5 þ b6x6:
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The next iteration is with x4.

Step 1: State the test hypothesis.

H0: b4jb3, b5, b6 ¼ 0,

HA: b4jb3, b5, b6 6¼ 0:

TABLE 4.25
Full Model, Predictor Variables x3, x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 19.07 21.08 0.90 0.387

(med-cn) b3 24.136 5.742 4.20 0.002

(Ca=P) b4 �14.47 10.20 �1.42 0.186

(N) b5 0.4403 0.3071 1.43 0.182

(Hvy-Mt) b6 1.687 2.458 0.69 0.508

s ¼ 11.91 R-sq ¼ 82.6% R-sq(adj) ¼ 75.6%

Analysis of Variance

Source DF SS MS F p

Regression 4 6723.2 1680.8 11.85 0.001

Error 10 1418.2 141.8

Total 14 8141.3

The regression equation is L=wk ¼ 19.1 þ 241 med-cn – 14.5 Ca=P þ 0.440 N þ 1.69 Hvy-Mt.

TABLE 4.26
Reduced Model, Predictor Variables x4, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 �4.15 32.26 �0.13 0.900

(Ca=P) b4 19.963 9.640 2.07 0.063

(N) b5 0.5591 0.4850 1.15 0.273

(Hvy-Mt) b6 5.988 3.544 1.69 0.119

s ¼ 18.89 R-sq ¼ 51.8% R-sq(adj) ¼ 38.7%

Analysis of Variance

Source DF SS MS F p

Regression 3 4217.3 1405.8 3.94 0.039

Error 11 3924.1 356.7

Total 14 8141.3

The regression equation is L=wk ¼ – 4.2 þ 20.0 Ca=P þ 0.559 N þ 5.99 Hvy-Mt.
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Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic is

Fc(x4jx3, x5, x6) ¼
SSR(x3, x4, x5, x6) � SSR(x3, x5, x6)

MSE(x3, x4, x5, x6)

:

Step 4: Decision rule.

FT¼ 4.96, as before.

If Fc > 4.96, reject H0 at a¼ 0.05.

Step 5: Perform the computation.

Table 4.25 contains the full model, and Table 4.27 contains the reduced

model.

From Table 4.25, SSR(x3, x4, x5, x6)
¼ 6723.2, and MSE(x3, x4, x5, x6)

¼ 141.8.

From Table 4.27, SSR(x3, x5, x6)
¼ 6437.8

Fc(x4jx3, x5, x6) ¼
6723:2� 6437:8

141:8
¼ 2:01:

Step 6: Decision rule.

Because Fc¼ 2.01 6> FT¼ 4.96, one cannot reject H0 at a¼ 0.05. Hence, x4 is

dropped out of the model. The new full model is

ŷy ¼ b0 þ b3x3 þ b5x5 þ b6x6:

TABLE 4.27
Reduced Model, Predictor Variables x3, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 9.33 20.82 0.45 0.663

(med-cn) b3 17.595 3.575 4.92 0.000

(N) b5 0.3472 0.3135 1.11 0.292

(Hvy-Mt) b6 3.698 2.098 1.76 0.106

s ¼ 12.44 R-sq ¼ 79.1% R-sq(adj) ¼ 73.4%

Analysis of Variance

Source DF SS MS F p

Regression 3 6437.8 2145.9 13.86 0.000

Error 11 1703.6 154.9

Total 14 8141.3

The regression equation is L=wk ¼ 9.3 þ 17.6 med-cn þ 0.347 N þ 3.70 Hvy-Mt.
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Next, x5 is evaluated.

Step 1: State the hypothesis.

H0: b5jb3, b6 ¼ 0,

HA: b5jb3, b6 6¼ 0:

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic is

Fc(x5jx3, x6) ¼
SSR(x3, x5, x6) � SSR(x3, x6)

MSE(x3, x5, x6)

:

Step 4: Decision rule.

FT ¼ FT(a, 1, n� p� 2) ¼ FT(0:05, 1, 15� 2� 2) ¼ FT(0:05,1,11) ¼ 4:84:

If Fc > 4.84, reject H0 at a¼ 0.05.

Step 5: Perform the computation.

Table 4.28 is the full model, and Table 4.29 is the reduced model.

From Table 4.28, SSR(x3, x5, x6)
¼ 6437.8 and MSE(x3, x5, x6)

¼ 154.9.

From Table 4.29, SSR(x3, x6)
¼ 6247.8

TABLE 4.28
Full Model, Predictor Variables x3, x5, and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 9.33 20.82 0.45 0.663

(med-cn) b3 17.595 3.575 4.92 0.000

(N) b5 0.3472 0.3135 1.11 0.292

(Hvy-Mt) b6 3.698 2.098 1.76 0.106

s ¼ 12.44 R-sq ¼ 79.1% R-sq(adj) ¼ 73.4%

Analysis of Variance

Source DF SS MS F p

Regression 3 6437.8 2145.9 13.86 0.000

Error 11 1703.6 154.9

Total 14 8141.3

The regression equation is L=wk ¼ 9.3 þ 17.6 med-cn þ 0.347 N þ 3.70 Hvy-Mt.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C004 Final Proof page 189 16.11.2006 7:52pm

Multiple Linear Regression 189



Fc(x5jx3, x6) ¼
6437:8� 6247:8

154:9
¼ 1:23:

Step 6: Decision rule.

Because Fc¼ 1.23 6> FT¼ 4.84, one cannot reject H0 at a¼ 0.05. Therefore,

drop x5 from the model. The new full model is

ŷy ¼ b0 þ b3x3 þ b6x6:

Now we test x6.

Step 1: State the test hypothesis.

H0: b6jb3 ¼ 0,

HA: b6jb3 6¼ 0:

Step 2: Set a and n.

a¼ 0.05,

n¼ 15.

Step 3: The test statistic is

Fc(x6jx3) ¼
SSR(x3, x6) � SSR(x3)

MSE(x3, x6)

:

Step 4: Decision rule.

FT¼FT(a, 1, n – p – 2)¼FT(0.05, 1, 15 – 1 – 2)¼FT(0.05, 1, 12)¼ 4.75.

If Fc > 4.75, reject H0 at a¼ 0.05.

TABLE 4.29
Reduced Model, Predictor Variables x3 and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 29.11 10.80 2.70 0.019

(med-cn) b3 19.388 3.218 6.03 0.000

(Hvy-Mt) b6 2.363 1.733 1.36 0.198

s ¼ 12.56 R-sq ¼ 76.7% R-sq(adj) ¼ 72.9%

Analysis of Variance

Source DF SS MS F p

Regression 2 6247.8 3123.9 19.80 0.000

Error 12 1893.5 157.8

The regression equation is L=wk ¼ 29.1 þ 19.4 med-cn þ 2.36 Hvy-Mt.
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Step 5: Perform the computation.

Table 4.30 is the full model, and Table 4.31 is the reduced model.

From Table 4.30, SSR(x3, x6)
¼ 6247.8, and MSE(x3, x6)

¼ 157.8.

From Table 4.31, SSR(x )3
¼ 5954.5

Fc(x6jx3) ¼
6247:8� 5954:5

157:8
¼ 1:86:

Step 6: Decision rule.

Because Fc¼ 1.86 6> FT¼ 4.75, one cannot reject H0 at a¼ 0.05. The appro-

priate model is

ŷy ¼ b0 þ b3x3:

TABLE 4.30
Full Model, Predictor Variables x3 and x6

Predictor Coef St. Dev t-Ratio p

Constant b0 29.11 10.80 2.70 0.019

(med-cn) b3 19.388 3.218 6.03 0.000

(Hvy-Mt) b6 2.363 1.733 1.36 0.198

s ¼ 12.56 R-sq ¼ 76.7% R-sq(adj) ¼ 72.9%

Analysis of Variance

Source DF SS MS F p

Regression 2 6247.8 3123.9 19.80 0.000

Error 12 1893.5 157.8

Total 14 8141.3

The regression equation is L=wk ¼ 29.1 þ 19.4 med-cn þ 2.36 Hvy-Mt.

TABLE 4.31
Reduced Model, Predictor Variable x3

Predictor Coef St. Dev t-Ratio p

Constant b0 40.833 6.745 6.05 0.000

(med-cn) b3 17.244 2.898 5.95 0.000

s ¼ 12.97 R-sq ¼ 73.1% R-sq(adj) ¼ 71.1%

Analysis of Variance

Source DF SS MS F p

Regression 1 5954.5 5954.5 35.40 0.000

Error 13 2186.9 168.2

Total 14 8141.3

The regression equation is L=wk ¼ 40.8 þ 17.2 med-cn.
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DISCUSSION

Note that, with Method 1, forward selection, we have the model (Table 4.17):

ŷy ¼ b0 þ b2x2 þ b3x3,

ŷy ¼ 41:56� 1:138x2 þ 18:641x3,

R2 ¼ 73:2:

For Method 2, Backward Elimination, we have, from Table 4.31

ŷy ¼ b0 þ b3x3,

ŷy ¼ 4:833x2 þ 17:244x3,

R2 ¼ 73:1:

Which one is true? Both are true, but partially. Note that the difference

between these models is the log10 population variable, x2. One model has it,

the other does not. Most microbiologists would feel the need for x2 in the

model, because they are familiar with the parameter. Given that everything in

future studies is conducted in the same way, either model would work.

However, there is probably an inadequacy in the data. In order to evaluate xi

predictor variables adequately, there should be a wide range of values in each

xi. Arguably, in this example, no xi predictor had a wide range of data collected.

Hence, measuring the true contribution of each xi variable was not possible.

However, obtaining the necessary data is usually very expensive, in practice.

Therefore, to use this model is probably okay, given that the xi variables in the

models remain within the range of measurements of the current study to be

valid. That is, there should be no extrapolation outside the ranges.

There is, more than likely, a bigger problem—a correlation between xi

variables, which is a common occurrence in experimental procedures. Recall

that we set up the bioreactor experiment to predict the amount of medium

used, given a known log10 colony count and medium concentration. Because

there is a relationship between all or some of the independent prediction

variables, xi, they influence one another to varying degrees, making their

placement in the model configuration important. The preferred way of rec-

ognizing codependence of the variables is by having interaction terms in the

model, a topic to be discussed in a later chapter.

Y ESTIMATE POINT AND INTERVAL: MEAN

At times, the researcher wants to predict yi, based on specific xi values. In

estimating a mean response for Y, one needs to specify a vector of xi values

within the range in which the ŷy model was constructed. For example, in

Example 4.2, looking at the regression equation that resulted when the xi

were added to the model (forward selection), we finished with
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ŷy ¼ b0 þ b2x2 þ b3x3:

Now, let us call x2¼ x1 and x3¼ x2.

The new model is

ŷy ¼ b0 þ b1x1 þ b2x2 ¼ 41:56� 1:138x1 þ 18:641x2,

where x1 is the log10 colony count, x2 is the medium concentration, and y is

the liters of media.

We use matrix algebra to perform this example, so the reader will have

experience in its utilization, a requirement of some statistical software pack-

ages. If a review of matrix algebra is needed, please refer to Appendix II.

To predict the ŷy value, set the xi values at, say, x1¼ 3.7 log10 x2¼ 1.8

concentration in column vector form. The calculation is

xp ¼ x predicted ¼
x0

x1

x2

2

4

3

5 ¼
1

3:7

1:8

2

4

3

5:

3�1

The matrix equation is E ŶY
� �
¼ x0pb, estimated by ŶY ¼ x0pb, (4:19)

where the subscript p denotes prediction.

ŶY ¼ x0pb ¼ 1 3:7 1:8½ �
1�3

41:55

�1:138

18:641

2

4

3

5

1�3

¼ 1(41:55)þ 3:7(�1:138)þ 1:8(18:641) ¼ 70:89:

Therefore, 70.89 L of medium is needed. The variance of this estimate is

s2 ŶYp

� �
¼ x0ps2[b]xp, (4:20)

which is estimated by

s2
ŷy ¼ MSE x0p(X0X)�1xp

	 

: (4:21)

The 1 � a confidence interval is

ŶYp 	 t(a=2; n�k�1)sŷy, (4:22)

where k is the number of xi predictors in the model, excluding b0.

Let us work an example (Example 4.3). In evaluating the effectiveness of

a new oral antimicrobial drug, the amount of drug available at the target site,
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the human bladder, in mg=mL¼ y of blood serum. The drug uptake is

dependent on the number of attachment polymers, x1. The uptake of the

drug in the bladder is thought to be mediated by the amount of a � 1, 3

promixin available in the blood stream, x2¼mg=mL.

In an animal study, 25 replicates were conducted to generate data for x1

and x2. The investigator wants to determine the regression equation and

confidence intervals for a specific x1, x2 configuration. To calculate the slopes

for x1 and x2, we use the formula

b ¼ (X0X)�1X0Y: (4:23)

We perform this entire analysis using matrix manipulation (Table 4.32 and

Table 4.33). Table 4.35 lists the bi coefficients.

TABLE 4.32
X Matrix Table, Example 4.3

X25�3 ¼

x0 x1 x2

1:0 70:3 214:0
1:0 60:0 92:0
1:0 57:0 454:0
1:0 52:0 455:0
1:0 50:0 413:0
1:0 55:0 81:0
1:0 58:0 435:0
1:0 69:0 136:0
1:0 76:0 208:0
1:0 62:0 369:0
1:0 51:0 3345:0
1:0 53:0 362:0
1:0 51:0 105:0
1:0 56:0 126:0
1:0 56:0 291:0
1:0 69:0 204:0
1:0 56:0 626:0
1:0 50:0 1064:0
1:0 44:0 700:0
1:0 55:0 382:0
1:0 56:0 776:0
1:0 51:0 182:0
1:0 56:0 47:0
1:0 48:0 45:0
1:0 48:0 391:0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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Let us predict ŶY if x1¼ 61 and x2¼ 113.

xp ¼
1

61

113

2

4

3

5,

ŶY ¼ x0pb ¼ [16 11 13]

36:6985

�0:3921

0:0281

2

6
4

3

7
5

¼ 1(36:6985)þ 61(�0:3921)þ 113(0:0281) ¼ 15:96:

One does not necessarily need matrix algebra for this. The computation can

also be carried out as

ŷy ¼ b0 þ b1x1 þ b2x2 ¼ 36:6985(x0)� 0:3921(x1)þ 0:0281(x2):

TABLE 4.33
Y Matrix Table, Example 4.3

Y25�1 ¼

11

13

12

17

57

37

30

15

11

25

111

29

18

9

31

10

48

36

30

15

57

15

12

27

12

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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To calculate, s2 ¼ MSE ¼
Y0Y � b0X0Y

n� k � 1
¼ SSE

n� k � 1
, (4:24)

Y0Y ¼ 31,056 and b0X0Y ¼ 27,860:4,

SSE ¼ Y0Y � b0X0Y ¼ 31,056� 27,860:4 ¼ 3,195:6,

MSE ¼
SSE

n� k � 1
¼ 3195:6

25� 2� 1
¼ 145:2545,

s2
ŷy ¼ MSE x0p(X0X)�1xp

	 

:

x0p(X0X)�1xp¼ 1 61 113½ �
2:53821 �0:04288 �0:00018

�0:04288 0:00074 0:00000

�0:00018 0:00000 0:00000

2

4

3

5
1

61

113

2

4

3

5

¼ 0:0613

s2
ŷy ¼ 145:2545(0:0613),

s2
ŷy ¼ 8:9052,

sŷy ¼ 2:9842:

The 1 � a confidence interval for ŶY is

ŶY 	 t(a=2, n�k�1)sŷy:

Let us use a¼ 0.05.

n � k � 1¼ 25 � 2 � 1¼ 22.

TABLE 4.34
Inverse Values, (X 0X )21

(X0X)�1
3� 3 ¼

2:53821 �0:04288 �0:00018

�0:04288 0:00074 0:00000

�0:00018 0:00000 0:00000

2

4

3

5

TABLE 4.35
Coefficients for the Slopes, Example 4.3

b ¼ (X0X)�1X0Y ¼
36:6985

�0:3921

0:0281

2

4

3

5
¼ b0

¼ b1

¼ b2
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From Table B (Student’s t Table), tT¼ (df¼ 22, a=2¼ 0.025)¼ 2.074

15.95 + 2.074(2.9842)

15.95 + 6.1891

9.76 � m � 22.14 is the 95% mean confidence interval of ŷy when x1¼ 61,

x2¼ 113.

CONFIDENCE INTERVAL ESTIMATION OF THE bi S

The confidence interval for a bi value at 1 � a confidence is

bi ¼ bi 	 t(a=2, n�k�1)sbi
, (4:25)

where

s2
bi
¼ MSE(X0X)�1 (4:26)

Using the data in Example 4.3,

MSE¼ 145.2545, and Table 4.36 presents the (X0X)�1 matrix:

Table 4.37 is MSE (X0X)�1

where the diagonals are sb0

2 , sb1

2, and sb2

2 .

So,

s2
b0
¼ 368:686! sb0

¼ 19:20

s2
b1
¼ 0:108! sb1

¼ 0:3286

s2
b2
¼ 0:0! sb2

¼ 0:003911

Because there is no variability in b2, we should be concerned. Looking at

Table 4.38, we see that the slope of b2 is very small (0.0281), and the

TABLE 4.36
(X 0X )21, Example 4.3

(X0X)�1 ¼
2:53821 �0:04288 �0:00018

�0:04288 0:00074 0:00000

�0:00018 0:00000 0:00000

2

4

3

5

TABLE 4.37
Variance, Example 4.3

s2
bi
¼ MSE(X0X)�1 ¼

368:686 �6:228 �0:026

�6:228 0:108 0:000

�0:026 0:000 0:000

2

4

3

5
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variability is too small for the program to pick up. However, is this the only

problem, or even the real problem? Other effects may be present, such as the

xi predictor variable correlated with other xi predictor variables, a topic to be

discussed later in this book.

Sometimes, it is easier not to perform the computation via matrix

manipulation, because there is a significant round-off error. Performing the

same calculations using the standard regression model, Table 4.39 provides

the results.

Note, from Table 4.39, sbi
are again in the ‘‘St dev’’ column and bi in the

‘‘Coef’’ column.

Therefore,

b0 ¼ b0 	 t(a=2, n�k�1)sb0
, where t(0:025, 25�2�1) ¼ 2:074 (Table B)

¼ 36:70	 2:074(19:20)

¼ 36:70	 39:82

� 3:12 � b0 � 76:52 at a ¼ 0:05:

TABLE 4.38
Slope Values, bi, Example 4.3

b ¼
36:6985

�0:3921

0:0281

2

4

3

5
¼ b0

¼ b1

¼ b2

TABLE 4.39
Standard Regression Model, Example 4.3

Predictor Coef St. Dev t-Ratio p

Constant b0 36.70 19.20 1.91 0.069

b1 �0.3921 0.3283 �1.19 0.245

b2 0.028092 0.003911 7.18 0.000

s ¼ 12.05 R-sq ¼ 73.6% R-sq(adj) ¼ 71.2%

Analysis of Variance

Source DF SS MS F p

Regression 2 8926.5 4463.3 30.73 0.000

Error 22 3195.7 145.3

Total 24 12122.2

The regression equation is ŷy ¼ 36:7� 0:392x1 þ 0:0281x2.
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We can conclude that b0 is 0 via a 95% confidence interval (interval

contains zero).

b1 ¼ b1 	 t(a=2, n�k�1)sb1

¼ �0:3921	 2:074(0:3283)

� 1:0730 � b1 � 0:2888:

We can also conclude that b1 is zero, via a 95% confidence interval.

b2 ¼ b2 	 t(a=2, n�k�1)sb2

¼ 0:028092	 2:074(0:003911)

¼ 0:02092	 0:0081

0:0128 � b2 � 0:0290 at a ¼ 0:05:

We can conclude, because this 95% confidence interval does not contain 0,

that b2 is statistically significant, but with a slope so slight that it has no

practical significance. We return to this problem in Chapter 10, which deals

with model-building techniques.

There is a knotty issue in multiple regression with using the Student’s

t-test for >1 independent predictors. That is, because more than one test was

conducted, for example, 0.953¼ 0.857 confidence. To adjust for this, the user

can undertake a correction process, such as the Bonferroni joint confidence

procedure. In our example, there are bkþ1 parameters, if one includes b0. Not

all of them need to be tested, but whatever that test number is, we call it as g,

where g � k þ 1. The Bonferroni method is b1¼ bi + t(a=2g; n – k – 1)sbi
. This is

the same formula as the previous one, using the t-table, except that a is

divided by 2g, where g is the number of contrasts.

In addition, note that ANOVA can be used to evaluate specific regression

parameter components. For example, to evaluate b1 by itself, we want to test

x1 by itself. If it is significant, we test x2jx1, otherwise x2 alone. Table 4.40

gives a sequential SSR of each variable.

TABLE 4.40
Sequential Component Analysis of Variance from Table 4.39

Source DF SEQ SS

x1 1 1431.3

x2 1 7495.3

where

x1 SEQ SS ¼SSR(x1)

x2 SEQ SS ¼SSR(x2jx1)
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To test Fc(x1)
, we need to add SSR(x2jx1)

into SSE(x1, x2) to provide SSE(x1)
.

SSR(x2jx1) ¼ 7495:3 (from Table 4:40)

þ SSR(x1, x2) ¼ 3195:7 (from Table 4:39)

¼ SSE(x1) ¼ 10691:0 and

MSE(x1) ¼
10691:0

25� 1� 1
¼ 464:83

Fc(x1) ¼
SSR(x1)

MSE(x1)

¼ 1431:3

464:83
¼ 3:08

FT(0:05, 1, 23) ¼ 4:28

Because Fc¼ 3.08 6> FT¼ 4.28, x1 is not significant in the model at a¼ 0.5.

Hence, we do not need b1 in the model and can merely compute the data with

x2 in the model (Table 4.41).

PREDICTING ONE OR SEVERAL NEW OBSERVATIONS

To predict a new observation, or observations, the procedure is an extension

of simple linear regression. For any

ŶYp ¼ b0 þ b1x1 þ � � � þ bkxk:

The 1 – a confidence interval of ŶY is predicted as

ŶYp 	 t(a=2, n�k�1)sp, (4:27)

TABLE 4.41
Reduced Regression Model, Example 4.3

Predictor Coef St. Dev t-Ratio p

Constant b0 14.044 3.000 4.68 0.000

b2 0.029289 0.003815 7.68 0.000

s ¼ 12.16 R-sq ¼ 71.9% R-sq(adj) ¼ 70.7%

Analysis of Variance

Source DF SS MS F p

Regression 1 8719.4 8719.4 58.93 0.000

Error 23 3402.9 148.0

Total 24 12122.2

The regression equation is ŷy ¼ 14.0 þ 0.0293x2.
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s2
p ¼ MSE þ s2

ŷy ¼ MSE 1þ x0p(X0X)�1xp

	 

: (4:28)

For example, using the data in Table 4.39, suppose x1¼ 57 and x2¼ 103.

Then, x 0p¼ [1 57 103] and MSE¼ 145.3. First, (X 0p(X0X)�1 Xp) is computed

using the inverse values for (X0X)�1 in Table 4.34 (Table 4.42).

Then, 1 is added to the result, and then multiplied times MSE.

1þ x0p(X0X)�1xp ¼ 1þ 0:0527 ¼ 1:0577:

Next, multiply 1.0577 by MSE¼ 145.2545¼ 146.312,

s2
p ¼ 146:312 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
146:312
p

¼ sp ¼ 12:096,

ŶYp ¼ xp
0 b,

xp
0 ¼ [1 57 103]� b ¼

36:70

�0:3921

0:028092

2

6
4

3

7
5 ¼ 17:24,

ŶYp ¼ 17:24:

For a¼ 0.05, n¼ 25, k¼ 2, and df¼ n – k – 1¼ 25 – 2 – 1¼ 22.

t(0:025, 22) ¼ 2:074, from Table B:

17:24	 2:074(sp)

17:24	 2:074(12:096)

17:24	 25:09

� 7:85 � ŶYp � 42:33

The prediction of a new value with a 95% CI is too wide to be useful in this

case. If the researcher fails to do some of the routine diagnostics and gets zero

included in the interval, the researcher needs to go back and check the

adequacy of the model. We do that in later chapters.

TABLE 4.42
Computation for (xp’ (X 0X)21 xp), Using the Inverse Values for (X 0X)21

x0p(X0X)xp ¼ 1 57 103½ � �
2:53821 �0:04288 �0:00018

�0:04288 0:00074 0:00000

�0:00018 0:00000 0:00000

2

4

3

5�
1

57

103

2

4

3

5 ¼ 0:0527
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NEW MEAN VECTOR PREDICTION

The same basic procedure used to predict a new observation is used to predict

the average expected y value, given the xi values remain the same. Essentially,

this is to predict the mean 1 – a confidence interval in an experiment.

The formula is

Ŷ�pp 	 t(a=2, n�k�1)s�pp,

where

s2
�pp ¼

MSE

q
þ s2 ¼ MSE

1

q
þ x0p(X0X)�1xp

� �

,

and q is the number of repeat prediction observations at a specific xi vector.

For example, using the Example 4.3 data and letting q¼ 2, or two predictions

of y, we want to determine the 1 � a confidence interval for ŶY in terms of the

average value of the two predictors.

a¼ 0.05 and MSE¼ 145.2545

s2 was computed from Table 4.42 and is 0.0527¼ x 0p (X0X)�1xp.

s2
�pp ¼ MSE

1

q
þ x0p(X0X)�1xp

� �

¼ 145:2545
0:0527

2

� �

s2
�pp ¼ 145:2545(0:0264) ¼ 3:84 and s�pp ¼ 1:96:

Therefore,

Ŷp 	 t(0:025, 22)s�pp ¼ 17:24	 (2:074)1:96 ¼ 17:24	 4:06

13:18 � �̂yy�yy�pp � 21:30:

PREDICTING ‘ NEW OBSERVATIONS

From Chapter 2 (linear regression), we used the Scheffe and Bonferroni

simultaneous methods. The Scheffe method, for a 1 � a simultaneous CI is

Ŷp 	 s0sp,

where

s0 ¼ ‘Ft(a; ‘, n�k�1),

in which ‘ is the number of xp predictions made and k is the number of bis in

the model, excluding b0.
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s2
p ¼ MSE 1þ x0p(X0X)�1xp

	 

(4:29)

The Bonferroni method for 1 � a simultaneous CIs is

ŶYp 	 B0sp,

where

B0 ¼ t(a=2; 2‘, n�k�1),

s2
p ¼ MSE x0p(X0X)�1xp

	 

:

ENTIRE REGRESSION SURFACE CONFIDENCE REGION

The 1 � a entire confidence region can be computed using the Working–

Hotelling confidence band procedure with xp

ŶYp 	Wsp,

where

sp ¼ MSE x0p(X0X)�1xp

	 

and

W2 ¼ (k þ 1)FT(a, kþ1, n�k�1):

In Chapter 10, we review our investigations of variables in multiple regres-

sion models, using computerization software to perform all the procedures we

have just learned, and more.
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5 Correlation Analysis
in Multiple Regression

Correlation models differ from regression models in that each variable (yis and

xis) plays a symmetrical role, with neither variable designated as a response or

predictor variable. They are viewed as relational, instead of predictive in this

process. Correlation models can be very useful for making inferences about

any one variable relative to another, or to a group of variables. We use the

correlation models in terms of y and single or multiple xis.

Multiple regression’s use of the correlation coefficient, r, and the coeffi-

cient of determination r2 are direct extensions of simple linear regression

correlation models already discussed. The difference is, in multiple regres-

sion, that multiple xi predictor variables, as a group, are correlated with the

response variable, y. Recall that the correlation coefficient, r, by itself, has

no exact interpretation, except that the closer the value of r is to 0, weaker

the linear relationship between y and xis, whereas the closer to 1, stronger the

linear relationship. On the other hand, r2 can be interpreted more directly.

The coefficient of determination, say r2 ¼ 0.80, means the multiple xi pre-

dictor variables in the model explain 80% of the y term’s variability. As given

in Equation 5.1, r and r2 are very much related to the sum of squares in the

analysis of variance (ANOVA) models that were used to evaluate the rela-

tionship of SSR to SSE in Chapter 4:

r2 ¼ SST � SSE

SST

¼ SSR

SST

: (5:1)

For example, let

SSR ¼ 5000,

SSE ¼ 200,

SST ¼ 5200.

Then

r2 ¼ 5200� 200

5200
¼ 0:96

.
Like the Fc value, r2 increases as predictor variables, xis, are introduced into the

regression model, regardless of the actual contribution of the added xis. Note,
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however, unlike Fc, that r2 increases toward the value of 1, which is its size

limit. Hence, as briefly discussed in Chapter 4, many statisticians recommend

using the adjusted R2, or R(adj)
2 , instead of R2. For samples, we use the lower-case

term r(adj)
2

r2
(adj) ¼ 1�

(SST � SSR)

(n� k � 1)
SST

(n� 1)

¼ 1�

(SSE)

(n� k � 1)
SST

(n� 1)

¼ 1�MSE

MST

, (5:2)

where k is the number of bis, excluding b0. SST

(n�1)
or MST is a constant, no

matter how many predictor xi variables are in the model, so the model is

penalized by a lowering of the r(adj)
2 value when adding xi predictors that are

not significantly contributing to lowering the SSE value or, conversely,

increasing SSR. Normally, MST is not computed, but it is easier to write

when compared with SST

n�1
.

In Example 4.1 of the previous chapter, we looked at the data recovered

from a stability study in which the mg=mL of a drug product was predicted

over time based on two xi predictor variables, x1, the week and x2, the

humidity. Table 4.2 provided the basic regression analysis data, including

R2 and R(adj)
2 , via MiniTab

R2
(y, x1, x2) ¼

SST � SSE

SST

¼ 158,380� 39,100

158,380
¼ 0:753

or (75.3%) and

R2
(y, x1, x2)(adj) ¼ 1�MSE

MST

¼ 1� 1086

4168
¼ 0:739 or (73:9%):

Hence, R2 in the multiple linear regression model that predicts y from two

independent predictor variables, x1 and x2, explains 75.3% or when adjusted,

73.9% of the variability in the model. The other 1� 0.753 ¼ 0.247 is

unexplained error. In addition, note that a fit of r2 ¼ 50% would infer that

the prediction of y based on x and x2 is no better than �yy.

Multiple Correlation Coefficient

It is often less ambiguous to denote the multiple correlation coefficient, as per

Kleinbaum et al. (1998), as simply the square root of the multiple coefficient

of determination,

r2
(yjx1, x2, ..., xk): (5:3)

The nonmatrix calculation formula is

r(yjx1, x2, ..., xk) ¼

Pn

i¼1

(yi � �yy)2 �
P

(yi � ŷyi)
2

Pn

i¼1

(yi � �yy)2

¼ SST � SSE

SST

: (5:4)
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However, it is far easier to use the sum-of-squares equation (Equation 5.1).

Also,
ffiffiffiffi
r2
p

is always positive, 0 � r � 1. As in Chapter 4, with the ANOVA

table for SSR(x1, x2, . . . , xk)
, the sum of squares caused by the regression included

all the xi values in the model. Therefore, r(yjx1, x2, . . . , xk)
indicates the correlation

of y relative to x1, x2, . . . , xk, present in the model. Usually in multiple

regression analysis, a correlation matrix is provided in the computer printout

of basic statistics. The correlation matrix is symmetrical with the diagonals of

1, so many computer programs provide only half of the complex matrix, due

to that symmetry,

y x1 x2 yk

1 ry, 1 ry, 2 � � � ry, k

1 r1, 2 � � � r1, k

..

. ..
. ..

.

1

2

6
6
6
4

3

7
7
7
5
:

y x1 x2 xk

rk � k ¼

y
x1

xk

1 ry, 1 ry, 2 � � � ry, k

ry1 1 r1, 2 � � � r1, k

..

. ..
. ..

. ..
. ..

.

ry, k r1, k r2, k � � � 1

2

6
6
6
4

3

7
7
7
5
:

One can also employ partial correlation coefficient values to determine the

contribution to increased r or r2 values. This is analogous to partial F-tests in

the ANOVA table evaluation in Chapter 4. The multiple r and r2 values are

also related to the sum of squares encountered in Chapter 4, in that, as r or r2

increases, so does SSR, and SSE decreases.

Partial Correlation Coefficients

A partial multiple correlation coefficient measures the linear relationship

between the response variable, y, and one xi predictor variable or several xi

predictor variables, while controlling the effects of the other xi predictor

variables in the model. Take, for example, the model:

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4:

Suppose that the researcher wants to measure the correlation between y and x2

with the other xi variables held constant. The partial correlation coefficient

would be written as

r(y, x2jx1, x3, x4): (5:5)

Let us continue to use the data evaluated in Chapter 4, because the correlation

and F-tests are related. Many computer software packages provide output data
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for the partial F-tests, as well as partial correlation data when using regression

models. However, if they do not, the calculations can still be made. We do not

present the ANOVA tables from Chapter 4, but present the data required to

construct partial correlation coefficients. We quickly see that the testing for

partial regression significance conducted on the ANOVA tables in Chapter 4

provided data exactly equivalent to those from using correlation coefficients.

Several general formulas are used to determine the partial coefficients,

and they are direct extensions of the Fc partial sum-of-squares computations.

The population partial coefficient of determination equation for y on x2 with

x1, x3, x4 in the model is

R2
(y, x2jx1, x3, x4) ¼

s2
(yjx1, x3, x4) � s2

(yjx1, x2, x3, x4)

s2
(yjx1, x3, x4)

: (5:6)

The sample formula for the partial coefficient of determination is

r2
(y, x2jx1, x3, x4) ¼

SSE(partial) � SSE(full)

SSE(partial)

¼ SSE(x1, x3, x4) � SSE(x1, x2, x3, x4)

SSE(x1, x3, x4)

, (5:7)

r2
(y, x2jx1, x3, x4) is interpreted in these examples as the amount of variability

explained or accounted for between y and x2 when x1, x3, and x4 are held

constant. Then, as mentioned earlier, the partial correlation coefficient is

merely the square root of the partial coefficient of determination:

r(y, x2jx1, x3, x4) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

(y, x2jx1, x3, x4)

q
:

In testing for significance, it is easier to evaluate r than r2, but for intuitive

interpretation, r2 is directly applicable.

The t test can be used to test the significance of the xi predictor variable in

contributing to r, with the other pxi predictor variables held constant. The test

formula is

tc ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� p� 1
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p , (5:8)

where n is the sample size, r is the partial correlation value, r2 is the partial

coefficient of determination, and p is the number of xi variables held constant

(not to be mistaken for its other use as representing all bis in the model,

including b0):

tT ¼ t(a=2; n� p� 1): (5:9)
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PROCEDURE FOR TESTING PARTIAL CORRELATION
COEFFICIENTS

The partial correlation coefficient testing can be accomplished via the standard

six-step method. Let us hold x1 constant and measure the contribution of x2, the

humidity, as presented in Example 4.1 (Table 4.5 and Table 4.6).

Step 1: Write out the hypothesis.

H0: P(y, x2jx1)
¼ 0. The correlation of y and x2 with x1 in the model, but held

constant, is 0.

HA: P(y, x2 j x1)
6¼ 0. The above is not true.

Step 2: Set a and n.

n was already set at 39 in Example 4.1, and let us use a ¼ 0.05.

Step 3: Write out the r2 computation and test statistic in the sum-of-squares format.

We are evaluating x2, so the test statistic is

r2
(y, x2jx1) ¼

SSE(partial) � SSE(full)

SSE(partial)

¼ SSE(x1) � SSE(x1, x2)

SSE(x1)

:

Step 4: Decision rule.

In the correlation test, tT ¼ t(a=2, n� p� 1), where p is the number of bi values

held constant in the model: tT ¼ t(0.05=2; 39�1�1) ¼ t(0.025; 37) ¼ 2.042 from

the Student’s t table (Table B). If tT > 2.042, reject H0 at a ¼ 0.05.

Step 5: Compute.

From Table 4.5, we see the value for SSE(x1)
¼ 39,192 and, from Table 4.6,

we see that SSE(x1,x2)
¼ 39,100. Using Equation 5.7,

r2
(y, x2jx1) ¼

SSE( x1) � SSE(x, x2)

SSE(x1)

¼ 39,192� 39,100

39,192
¼ 0:0023,

from which it can be interpreted directly that x2 essentially contributes

nothing. The partial correlation coefficient is r(y, x2jx1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0023
p

¼ 0:0480.

Using Equation 5.9, the test statistic is

tc ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� p� 1
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ¼ 0:0480(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
39� 2
p

)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:0023
p ¼ 0:2923:

Step 6: Decision.

Because tc ¼ 0.2923>/ tT ¼ 2.042, one cannot reject H0 at a ¼ 0.05.

The contribution of x2 to the increased correlation of the model, by its

inclusion, is 0.
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Multiple Partial Correlation

As noted earlier, the multiple partial coefficient of determination, r2,

usually is more of interest than the multiple partial correlation coefficient,

because of its direct applicability. That is, an r2 ¼ 0.83 explains 83% of the

variability. An r ¼ 0.83 cannot be directly interpreted, except the closer to 0

the value is, the smaller the association; the closer r is to 1, the greater the

association. The coefficient of determination computation is straightforward.

From the model, Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4, suppose that the

researcher wants to compute r2
(y, x3, x4jx1, x )2

, or the joint contribution of x3 and

x4 to the model with x1 and x2 held constant. The form would be

r2
(y, x3, x4jx1, x2) ¼

r2
(yjx1, x2, x3, x4) � r2

(yjx1, x2)

1� r2
(yjx1, x2)

:

However, the multiple partial coefficient of determination generally is not as

useful as the F-test. If the multiple partial F-test is used to evaluate the

multiple contribution of independent predictor values, while holding the

others (in this case x1, x2) constant, the general formula is

Fc(y, xi, xj,...jxa, xb,...) ¼

SSE(xa, xb,...) � SSE(xi, xj,..., xa, xb, ...)

k
MSE(xi, xj,..., xa, xb,...)

,

where k is the number of xi independent variables evaluated with y and not

held constant. For the discussion given earlier,

Fc(y, x3, x4j x1, x2) ¼
SSE(x1, x2) � SSE(x1, x2, x3, x4)

k
MSE(x1, x2, x3, x4)

, (5:10)

where k is the number of independent variables being evaluated with y ¼ 2.

However, the calculation is not the actual r2, but the sum of squares are

equivalent. Hence, to test r2, we use Fc.

The test hypothesis is

H0: P2
(y, x3, x4j x1, x2) ¼ 0. That is, the correlation between y and x3

, x4, while x1, x2 are

held constant, is 0.

H1: P2
(y, x3, x4j x1, x2) 6¼ 0: The above is not true:

Fc ¼
SSE(x3, x4) � SSE(x1, x2, x3, x4)

2

MSE(x1, x2, x3, x4)

,
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and the FT tabled value is

FT(a; k, n� k� p� 1),

where k is the number of xis being correlated with y (not held constant), p is

the number of xis being held constant, and n is the sample size.

R2 USED TO DETERMINE HOW MANY xi VARIABLES
TO INCLUDE IN THE MODEL

A simple way to help determine how many independent xi variables to keep in

the regression model can be completed with an r2 analysis. We learn other,

more efficient ways later in this book, but this is ‘‘quick and dirty.’’ As each xi

predictor variable is added to the model, 1 degree of freedom is lost. The goal,

then, is to find the minimum value of MSE, in spite of the loss of degrees of

freedom. To do this, we use the test formula:

x ¼ 1� r2

(n� k � 1)2
, (5:11)

where k is the number of bis, excluding b0. The model we select is at the

point where x is minimal. Suppose we have

Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6 þ b7x7 þ b8x8 þ b9x9 þ b10x10:

TABLE 5.1
Regression Table, R2 Prediction of Number of xi Values

k (number of

bi s excluding b0)

New

Independent

xi Variable r2 1 2 r2

n 2 k 2 1

(adegrees of

freedom)
x ¼ 1� r2

(n � k � 1)2

1 x1 0.302 0.698 32 0.000682

2 x2 0.400 0.600 31 0.000624

3 x3 0.476 0.524 30 0.000582

4 x4 0.557 0.443 29 0.000527

5 x5 0.604 0.396 28 0.000505

6 x6 0.650 0.350 27 0.000480

7 x7 0.689 0.311 26 0.000460

8 x8 0.703 0.297 25 0.000475

9 x9 0.716 0.284 24 0.000493

10 x10 0.724 0.276 23 0.000522

an ¼ 34.
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In this procedure, we begin with xi and add xis through x10. The procedure is

straightforward; simply perform a regression on each model:

y ¼ b0 þ b1x1 ¼ x1 for x1,

y ¼ b0 þ b1x1 þ b2x2 ¼ x2 for x2,

..

.

y ¼ b0 þ b1x1 þ b2x2 þ . . .þ b10x10 for x10:

and make a regression table (Table 5.1), using, in this case, figurative data.

From this table, we see that the predictor xi model that includes x1, x2, x3,

x4, x5, x6, x7 provides the smallest x value; that is, it is the model where x is

minimized. The r2 and 1 � r2 values increase and decrease, respectively, for

each additional xi variable, but beyond seven variables, the increase in r2 and

decrease in 1 � r2 are not enough to offset the effects of reducing the degrees

of freedom.
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6 Some Important
Issues in Multiple
Linear Regression

COLLINEARITY AND MULTIPLE COLLINEARITY

Collinearity means that some independent predictor variables (xi) are mutu-

ally correlated with each other, resulting in ill-conditioned data. Correlated or

ill-conditioned predictor variables usually lead to unreliable bi regression

coefficients. Sometimes, the predictor variables (xi) are so strongly correlated

that a (X0X)�1 matrix cannot be computed, because there is no unique

solution. If xi variables are not correlated, their position (first or last) in the

regression equation does not matter. However, real world data are usually not

perfect and often are correlated to some degree. We have seen that adding or

removing xis can change the entire regression equation, even to the extent that

different xi predictors that are significant in one model are not in another. This

is because, when two or more predictors, xi and xj, are correlated, the

contribution of each will be greater the sooner it goes into the model.

When the independent xi variables are uncorrelated, their individual

contribution to SSR is additive. Take, for example, the model

ŷy ¼ b0 þ b1x1 þ b2x2: (6:1)

Both predictor variables, x1 and x2, will contribute the same, that is, have the

same SSR value, if the model is

ŷy ¼ b0 þ b1x1 (6:2)

or

ŷy ¼ b0 þ b2x2 (6:3)

or

ŷy ¼ b0 þ b1x2 þ b2x1 (6:4)

as does Equation 6.1.
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Because the xi variables—some or all—are correlated, it does not mean

the model cannot be used. Yet, a real problem can occur when trying to model

a group of data, in that the estimated bi values can vary widely from one

sample set to another, preventing the researcher from presenting one common

model. Some of the variables may not even prove to be significant, when the

researcher knows that they actually are. This is what happened with the x2

variable, the log10 colony count, in the bioreactor experiment given in Chap-

ter 4. In addition, the interpretation of the bi values is no longer completely

true because of the correlation between xi variables.

To illustrate this point, let us use the data from Table 4.10 (Example 4.2,

the bioreactor experiment) to regress the log10 colony counts (x2) on the

media concentration (x3). For convenience, the data from Table 4.2 are

presented in Table 6.1A. We let y¼ x2, so x2¼ b0þ b3x3. Table 6.1B provides

the regression analysis.

The coefficient of determination is r2¼ 84.6% between x2 and x1 and the Fc

value¼ 71.63, P < 0.0001. A plot of the log10 colony counts, x2, vs. media

concentration, x3, is presented in Figure 6.1. Plainly, the two variables are

collinear; the greater the media concentration, the greater the log10 colony counts.

MEASURING MULTIPLE COLLINEARITY

There are several general approaches a researcher can take in measuring and

evaluating collinearity between the predictor variables (xi). First, the researcher

TABLE 6.1A
Data from Example 4.2, the Bioreactor Experiment

Row Temp (8C) log10-count med-cn Ca=Ph N Hvy-Mt L=wk

x1 x2 x3 x4 x5 x6 Y

1 20 2.1 1.0 1.00 56 4.1 56

2 21 2.0 1.0 0.98 53 4.0 61

3 27 2.4 1.0 1.10 66 4.0 65

4 26 2.0 1.8 1.20 45 5.1 78

5 27 2.1 2.0 1.30 46 5.8 81

6 29 2.8 2.1 1.40 48 5.9 86

7 37 5.1 3.7 1.80 75 3.0 110

8 37 2.0 1.0 0.30 23 5.0 62

9 45 1.0 0.5 0.25 30 5.2 50

10 20 3.7 2.0 2.00 43 1.5 41

11 20 4.1 3.0 3.00 79 0.0 70

12 25 3.0 2.8 1.40 57 3.0 85

13 35 6.3 4.0 3.00 75 0.3 115

14 26 2.1 0.6 1.00 65 0.0 55

15 40 6.0 3.8 2.90 70 0.0 120
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can compute a series of coefficients of determination between the xi predictors.

Given a model, say, y¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4, each xi variable is

evaluated with the others, x1 vs. x2, x1 vs. x3, x1 vs. x4, x2 vs. x3, x2 vs. x4, and x3

vs. x4; that is, r2
(x1, x2), r2

(x1, x3), r2
(x1, x4), r2

(x2, x3), r2
(x2, x4), and r2

(x3, x4). The goal is to see

if any of the r2 values are exceptionally high. But, what is exceptionally high

correlation? Generally, the answer is an r2 of 0.90 or greater.

Alternatively, one can perform a series of partial correlations or partial

coefficients of determination between an xi and the other xi variables that are

held constant; that is, r2
(x1 j x2, x3, x4), r2

(x2 j x1, x3, x4), r2
(x3 j x1, x2, x3), and r2

(x4 j x1, x2, x3).

Again, we are looking for high correlations.

A more formal and often used approach to measuring correlation between

predictor variables is the variance inflation factor (VIF) value. It is computed as

VIFij ¼
1

1� r2
ij

, (6:5)

+
0.70

2.0

*

* 3* * *

*

*
*

*

*

*
*

x 2
 =

 lg
-c

t

+

+

+

4.0

6.0

1.40 2.10 2.80 3.50 4.20

x 3 = med-cn

+ + + + +

FIGURE 6.1 Plot of log10 colony count vs. media concentration predictor variables

x2 and x3.

TABLE 6.1B
Regression Analysis of Two Predictor Variables, x2 and x3

Predictor Coef St. Dev t-Ratio P

b0 0.6341 0.3375 1.88 0.083

b3 1.2273 0.1450 8.46 0.000

s ¼ 0.6489 R-sq ¼ 84.6% R-sq(adj) ¼ 83.5%

Analysis of Variance

Source DF SS MS F P

Regression 1 30.163 30.163 71.63 0.000

Error 13 5.475 0.421

Total 14 35.637

The regression equation is x2 ¼ 0.634 þ 1.23x3.
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where rij
2 is the coefficient of determination for any two predictor variables, xi

and xj, rij
2 should be 0, if there is no correlation or collinearity between xi, xj

pairs. Any VIFij > 10 is of concern to the researcher, because it corresponds

to a coefficient of determination of rij
2 > 0.90.

If r2¼ 0.9, the correlation coefficient is rij¼ 0.95. One may wonder why

one would calculate a VIF if merely looking for an r2 � 0.90? That is because

many regression software programs automatically compute the VIF and no

partial coefficients of determination. Some statisticians prefer, instead, to use

the tolerance factor (TF), measuring unaccounted-for variability.

TFij ¼
1

VIFij
¼ 1� r2

ij: (6:6)

TF measures the other way; that is, when r2 approaches 1, TF goes to 0.

Whether one uses r2, VIF, or TF, it really does not matter; it is personal

preference.

Examining the data given in Table 6.1B, we see r2
(x2, x3)¼ 84.6%.

VIF ¼ 1

1� r2
(x2,x3)

¼ 1

1� 0:846
¼ 6:49,

which, though relatively high, is not greater than 10. TF¼ 1� r2
(x2, x3)

¼
1� 0.846¼ 0.154. The coefficient of determination (r2

(x2, x3)) measures the

accounted-for variability and 1� r2
(x2, x3) the unaccounted-for variability measures.

Other clues for detecting multicollinearity between the predictor variables

(xi) include:

1. Regression bi coefficients that one senses have the wrong signs, based

on one’s prior experience.

2. The researcher’s perceived importance of the predictor variables (xi)

does not hold, based on partial F tests.

3. When the removal or addition of an xi variable makes a great change in

the fitted model.

4. If high correlation exists among all possible pairs of xi variables.

Please also note that improper scaling in regression analysis can produce great

losses in computational accuracy, even giving a coefficient the wrong sign. For

example, using raw microbial data such as colony count ranges of

30–1,537,097 can be very problematic, because there is such an extreme

range. When log10 scaling is used, for example, the problem usually disappears.

Also, scaling procedures may include normalizing the data with the formula,

x0 ¼ xi � �xx

s
:
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This situation, in Example 4.2, occurs when using multiple xi variables: x1 is

the temperature of bioreactor (8C); x2, the log10 microbial population; x3, the

medium concentration; and so forth. The ranges between x1, x2, and x3 are

too great.

By creating a correlation matrix of the xi predictor variables, one can

often observe directly if any of the xixj predictor variables are correlated.

Values in the correlation matrix of 0.90 and up flag potential correlation

problems, but they probably are not severe until r > 0.95. If there are only two

xi predictor variables, the correlation matrix is very direct; just read the xi vs.

xj row column¼ rxxj, the correlation between the two xixj variables. When

there are more than two xi variables, then partial correlation analysis is of

more use, because the other xi variables are in the model. Nevertheless, the

correlation matrix of the xi variables is a good place to do a quick

number scan, particularly if it is already printed out via the statistical soft-

ware. For example, using the data from Table 6.1A, given in Example 4.2

(bioreactor problem), Table 6.2 presents the rxi
xj correlation matrix of the xi

variables.

Therefore, several suspects are rx2, x3¼ 0.92 and perhaps rx2, x4¼ 0.90.

These are intuitive statements, not requiring anything at the present except a

mental note.

EIGEN (l) ANALYSIS

Another way to evaluate multiple collinearity is by computing the eigen (l)

values of xi predictor variable correlation matrices. An eigenvalue, l, is a root

value of an X0X matrix. The smaller that value, the greater the correlation

TABLE 6.2
Correlation Form Matrix of x Values

x1 x2 x3 x4 x5 x6

rxx ¼

x1

x2

x3

x4

x5

x6

1:00183� 0:21487 0:18753 �0:08280 �0:17521 0:07961

0:21487 1:00163 0:92117 0:89584 0:69533 �0:68588

0:18753 0:92117 1:00095 0:86033 0:62444 �0:48927

�0:08280 0:89584 0:86033 0:74784 1:00062 �0:69729

�0:17521 0:69533 0:62444 0:74784 1:00062 �0:69729

0:07961 �0:68588 �0:48927 �0:73460 �0:69729 1:00121

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

*Note: The correlations of x1, x1, x2, x2, . . . presented in the diagonal¼ 1.00. This is

not exact, in this case, because of rounding error. Note also, because the table is

symmetrical about that diagonal, only the values above or below the diagonals need

be used.
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between columns of X, or the xi predictor variables. Eigen (l) values exist so

long as j A – lI j ¼ 0. A is a square matrix and I is an identity matrix, and l is

the eigenvalue. For example,

A ¼ 1 2

8 1

� �

� l
1 0

0 1

� �

¼ 1 2

8 1

� �

� 1� l 0

0 1� l

� �

¼ 1� l 2

8 1� l

� �

:

The cross product of the matrix is

(1� l)2 � 16 ¼ (1� l2)� 16 ¼ 0,

(1� l)(1� l)� 16 ¼ 0,

1� l� lþ l2 � 16 ¼ 0,

l2 � 2l� 15 ¼ 0:

When l¼�3,

1� 2(�3)þ (�3)2 � 16 ¼ 0,

(�3)2 � 2(�3)� 15 ¼ 0,

and when l¼ 5,

(5)2 � 2(5)� 15 ¼ 0:

Hence, the two eigenvalues are [�3, 5]

For more complex matrices, the use of a statistical software program is

essential. The sum of the eigen (l) values always sums to the number of

eigenvalues. In the earlier example, there are two eigenvalues, and they sum

to �3 þ 5¼ 2.

Eigen (l) values are connected to principal component analyses (found on

most statistical software programs) and are derived from the predictor xi

variables in correlation matrix form. The b0 parameter is usually ignored,

because of centering and scaling the data. For example, the equation y¼ b0 þ
b1x1 þ b2x2 þ � � � þ bkxk is centered via the process of subtracting the mean

from the actual values of each predictor variable. yi � �yy¼ b1(xi1
� �xx1) þ

b2(xi2
� �xx2) þ � � � þ bk(xik

� �xxk), where b0¼ �yy. The equation is next scaled, or

standardized:

yi � �yy

sy
¼ b1

s1

sy

� �
(xi1 � �xx1)

s1

þ b2

s2

sy

� �
(xi2 � �xx2)

s2

þ � � � þ bk
sk

sy

� �
(xik � �xxk)

sk
:
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The principal components are actually a set of new variables, which are linear

combinations of the original xi predictors. The principal components have two

characteristics: (1) they are not correlated with one another and (2) each has

a maximum variance, given they are uncorrelated. The eigenvalues are

the variances of the principal components. The larger the eigen (l) value,

the more important is the principal component in representing the informa-

tion in the xi predictors. When eigen (l) values approach 0, collinearity is

present around the original xi predictor scale, where 0 represents perfect

collinearity.

Eigen (l) values are important in several methods of evaluating

multicollinearity, which we discuss. These include the following:

1. The condition index (CI)

2. The condition number (CN)

3. The variance proportions

CONDITION INDEX

CI can be computed for each eigen (l) value. First, the eigenvalues are listed

from largest to smallest, where l1¼ the largest eigenvalue, and lj¼ the

smallest. Hence, l1¼ lmax. CI is simple; the lmax is divided by each lj

value. That is, CI ¼ lmax

lj
, where j¼ 1, 2, . . . , k.

Using the MiniTab output for regression of the data from Example 4.2

(Table 6.1A), the bioreactor example, the original full model was

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6,

where y is the liters of media per week; x1 is the temperature of bioreactor

(8C); x2 the log10 microbial colony counts per cm2 per coupon; x3, the media

concentration; x4, the calcium and phosphorous ratio; x5, the nitrogen level;

and x6 is the heavy metal concentration. The regression analysis is recreated

in Table 6.3.

Table 6.4 consists of the computed eigen (l) values as presented in

MiniTab. The condition indices are computed as

CIj ¼
lmax

lj
,

where lj¼ 1, 2, . . . , k, and l1¼ lmax, or the largest eigenvalue, and lk is the

smallest eigenvalue. Some authors use CI as the square root of
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lmax

lj
or CIj ¼

ffiffiffiffiffiffiffiffiffi
lmax

lj

s

:

It is suggested that those who are unfamiliar compute both, until they find

their preference.

TABLE 6.3
MiniTab Output of Actual Computations, Table 6.1A Data

Predictor Coef St. Dev t-Ratio P VIF

b0 �23.15 26.51 �0.87 0.408

Temp (8C) 0.8749 0.4877 1.79 0.111 1.9

Lg-ct 2.562 6.919 0.37 0.721 15.6

Med-cn 14.567 7.927 1.84 0.103 11.5

Ca=Ph �5.35 10.56 �0.51 0.626 11.1

N 0.5915 0.2816 2.10 0.069 2.8

Hvy-Mt 3.625 2.517 1.44 0.188 4.0

s ¼ 10.46 R-sq ¼ 89.3% R-sq(adj) ¼ 81.2%

Analysis of Variance

Source DF SS MS F P

Regression 6 7266.3 1211.1 11.07 0.002

Error 8 875.0 109.4

Total 14 8141.3

Note: The regression equation is L=wk ¼ �23.1 þ 0.875 temp 8C þ 2.56 log10-ct þ 14.6

med-cn � 5.3 Ca=Ph þ 0.592 N þ 3.62 Hvy-Mt.

TABLE 6.4
Eigen Analysis of the Correlation Matrix

x1 x2 x3 x4 x5 x6

Eigenvalue (lj) 3.9552 1.1782 0.4825 0.2810 0.0612 0.0419
aProportion 0.659 0.196 0.080 0.047 0.010 0.007
bCumulative 0.659 0.856 0.936 0.983 0.993 1.000

Note: Slj ¼ 3.9552 þ 1.1782þ � � �þ 0.0419 ¼ 6, and ranked from left to right, lmax ¼ 3.9552

at xi.
aProportion is ratio of

ljP
lj
¼ 3:9552

6:000
¼ 0:6592 for x1.

bCumulative is the sum of proportions. For example, cumulative for x3 would equal the sum of

proportions at x1, x2, and x3, or 0.659 þ 0.196 þ 0.08 ¼ 0.936.
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CI 5 Variance Ratio

ffiffiffiffiffi
CI
p

5 Standard

Deviation Ratio

CI1 ¼
lmax

l1

¼ 3:9552

3:9552
¼ 1 1

CI1 ¼
lmax

l2

¼ 3:9552

1:1782
¼ 3:36 1.83

CI1 ¼
lmax

l3

¼ 3:9552

0:4825
¼ 8:20 2.86

CI1 ¼
lmax

l4

¼ 3:9552

0:2810
¼ 14:08 3.75

CI1 ¼
lmax

l5

¼ 3:9552

0:0612
¼ 64:63 8.04

CI1 ¼
lmax

l6

¼ 3:9552

0:0419
¼ 94:40 9.72

Eigen (l) values represent variances; CIs are ratios of the variances, and
ffiffiffiffiffi
CI
p

,

the standard deviation ratios. The larger the ratio, the greater the problem of

multicollinearity, but how large is large? We consider this in a moment.

CONDITION NUMBER

The CN is the largest variance ratio and is calculated by dividing lmax by lk,

the smallest l value. For these data,

CN ¼ lmax

lmin

¼ 3:9552

0:0419
¼ 94:40

for a CN variance ratio, and 9.72 for a
ffiffiffiffiffiffiffi
CN
p

standard deviation. Condition

numbers less than 100 imply no multiple collinearity; between 100 and 1000,

moderate collinearity; and over 1000, severe collinearity. Belsley et al.

(1980) recommend that a
ffiffiffiffiffiffiffi
CN
p

of >30 be interpreted to mean moderate to

severe collinearity is present. The
ffiffiffiffiffiffiffi
CN
p

number here is 9.72, so the multiple

collinearity between the xi predictor variables is not excessive.

VARIANCE PROPORTION

Another useful tool is the variance proportion for each xi, which is the

proportion of the total variance of its bi estimate, for a particular principal

component. Note that in Table 6.4, the first column is

x1

Eigen (l) value 3.9552

Proportion 0.659

Cumulative 0.659
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The eigen (l) value is the variance of the principal component. A principal

component analysis is simply a new value of the xi predictors that are linear

combinations of the original xi predictors. Eigenvalues approaching 0 indicate

collinearity. As eigenvalues decrease, CIs increase. The variance proportion

is the amount of total variability explained by the principal component

eigenvalue of the predictor variable, x1, which is 65.9%, in this case. The

cumulative row is the contribution of several or all the eigenvalues to and

including a specific xi predictor. The sum of all the proportions will equal 1.

The sum of the eigenvalues equals the number of eigenvalues. Looking at

Table 6.4, we note that, while the eigenvalues range from 3.96 to 0.04, they

are not out of line. An area of possible interest is x5 and x6, because the

eigenvalues are about five to seven times smaller than that of x4. We also note

that the contribution to the variability of the model is greatest for x1 and x2

and declines considerably through the remaining variables.

STATISTICAL METHODS TO OFFSET SERIOUS COLLINEARITY

When collinearity is severe, regression procedures must be modified. Two

ways to do this are (1) rescaling the data (2) using ridge regression.

RESCALING THE DATA FOR REGRESSION

Rescaling of the data should be performed, particularly when some predictor

variable values have large ranges, relative to other predictor variables. For

example, the model ŷ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk rescaled is

y� �yy

sy
¼ b01

xi1 � �xx1

s1

� �

þ b02
xi2 � �xx2

s2

� �

þ � � � þ b0k
xik � �xxk

sk

� �

,

where the computed b0j values are

b0j ¼ bj
sj

sy

� �

and sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(xij � �xxj)

2

nj � 1

s

for each of the j through k predictor variables, and

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

(y� �yy)2

n� 1

s

:

Once the data have been rescaled, perform the regression analysis and

check again for collinearity. If it is present, move to ridge regression.

RIDGE REGRESSION

Ridge regression is also used extensively to remedy multicollinearity between

the xi predictor variables. It does this by modifying the least-squares method

of computing the bi coefficients with the addition of a biasing component.
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Serious collinearity often makes the confidence intervals for the bis too wide

to be practical. In ridge regression, the bi estimates are biased purposely, but

even so, will provide a much tighter confidence interval in which the true bi

value resides, though it is biased.

The probability of bi
b (bi biased), as it is closer to the actual population bi

parameter than bi
u (bi unbiased), is greater using ridge regression, because the

confidence interval for the biased estimator is tighter (Figure 6.2). Hence, the

rationale of ridge regression is simply that, if a biased estimator can provide a

more precise estimate than can an unbiased one, yet still include the true bi, it

should be used. In actual field conditions, multicollinearity problems are

common, and although regression models’ predicted bis are valid, the vari-

ance of those bi values may be too high to be useful, when using the least-

squares approach to fit the model. Recall the least-squares procedure, which is

an unbiased estimate of the population bi values, is of the form

b ¼ (X0X)�1X0Y: (6:7)

The ridge regression procedure modifies the least-squares regression equation

by introducing a constant (c) where c � 0. Generally, c is 0 � c � 1. The

population ridge regression equation, then, is in correlation form

bbr ¼ (X0X þ cI)�1X0Y, (6:8)

where c is the constant, the ridge estimator, I is the identity matrix in which

the diagonal values are 1 and the off-diagonals are 0,

I ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
.
� � � ..

.

0 0 � � � 1

2

6
6
4

3

7
7
5

b̂bi
r are the regression coefficients, linearly transformed by the biasing constant,

c. The error term of the population ridge estimator, bbr is

The sampling distribution of a biased b i
estimator is usually much narrower in
distribution and, thus, is a better predictor
of b i, even though biased.

Estimated unbiased b Estimated unbiased b

The sampling distribution of correlated x i
predictor, while still unbiased in predicting
the b i values, can be very wide.

FIGURE 6.2 Biased estimators of bi in ridge regression.
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Mean square

error ¼
Var(bbr) 1 (bias in bbr)2

# #
due to variability

of the data

due to the biasing effect

of the ridge estimator constant

Note that when c¼ 0, the cI matrix drops out of the equation, returning the

ridge procedure back to the normal least-squares equation. That is, when

c¼ 0, (X0X þ cI)�1 X0Y¼ (X0X)�1 X0Y.

As c increases in value (moves toward 1.0), the bias of br increases, but

the variability decreases. The goal is to fit the br estimators so that the

decrease in variance is not offset by the increase in bias. Although the br

estimates will not be usually the best or most accurate fit, they will stabilize

the br parameter estimates.

Setting the c value is a trial-and-error process. Although c is generally a

value between 0 and 1, many statisticians urge the researcher to assess 20 to

25 values of c. As c increases from 0 to 1, its effect on the regression

parameters can vary dramatically. The selection procedure for a c value

requires a ridge trace to find a c value where the bi
r values are stabilized.

VIF values, previously discussed, are helpful in determining the best c
value to use.

RIDGE REGRESSION PROCEDURE

To employ the ridge regression, first (Step 1), the values are transformed to

correlation form. Correlation for the yi value is

yi* ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p yi � �yy

sy

� �

, where sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

(y� �yy)2

n� 1

s

:

The Y* vector in correlation form is presented in Table 6.5.

The xi values for each predictor variable are next transformed to correl-

ation form using

xik* ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p xik � �xxk

sxk

� �

For example, referring to data from Table 6.1A, the first xi in the data for the

x1 variable is

x11
* ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 1
p 20� 29:00

7:97

� �

¼ �0:3018:
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The entire 15 � 6X matrix is presented in Table 6.6. The transpose of X*

as X*
0

is presented in Table 6.7, a 6 � 15 matrix. The actual correlation

matrix is presented in Table 6.8.

TABLE 6.5
Y* Vector in Correlation Form

Y� ¼

�0:218075

�0:162642

�0:118295

0:025832

0:059092

0:114525

0:380606

�0:151555

�0:284595

�0:384375

�0:062862

0:103439

0:436039

�0:229162

0:491473

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

TABLE 6.6
Entire 15 3 6X Matrix Correlation, Table 6.1A Data

X�15�6 ¼

�0:301844 �0:169765 �0:227965 �0:154258 0:009667 0:117154

�0:268306 �0:186523 �0:227965 �0:160319 �0:038669 0:105114

�0:067077 �0:119489 �0:227965 �0:123952 0:170788 0:105114

�0:100615 �0:186523 �0:049169 �0:093646 �0:167566 0:237560

�0:067077 �0:169765 �0:004470 �0:063340 �0:151454 0:321844

0:000000 �0:052454 0:017880 �0:033034 �0:119230 0:333884

0:268306 0:332994 0:375472 0:088191 0:315797 �0:015291

0:268306 �0:186523 �0:227965 �0:366401 �0:522033 0:225519

0:536612 �0:354110 �0:339712 �0:381554 �0:409248 0:249600

�0:301844 0:098373 �0:004470 0:148803 �0:199790 �0:195900

�0:301844 0:165408 0:219025 0:451864 0:380246 �0:376508

�0:134153 �0:018937 0:174326 �0:033034 0:025779 �0:015291

0:201230 0:534097 0:442520 0:451864 0:315797 �0:340386

�0:100615 �0:169765 �0:317363 �0:154258 0:154676 �0:376508

0:368921 0:483821 0:397821 0:421558 0:235237 �0:376508

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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The Y* correlation form matrix must then be correlated with each xi variable

to form an ryx matrix. The easiest way to do this is by computing the matrix,

X*0Y*¼ ryx (Table 6.9). The next step (Step 2) is to generate sets of br data for

the various c values chosen using the equation, br¼ (rxx þ cI)�1 ryx, where rxx

¼Table 6.8, which we call M1 for Matrix 1. It will be used repeatedly with

different values of c, as reproduced in Table 6.10.

(y, x1)¼ correlation of temp 8C and L=wk¼ 0.432808,

(y, x2)¼ correlation of lg-ct and L=wk¼ 0.775829,

(y, x3)¼ correlation of med-cn and L=wk¼ 0.855591,

(y, x4)¼ correlation of Ca=Ph and L=wk¼ 0.612664,

(y, x5)¼ correlation of N and L=wk¼ 0.546250,

(y, x6)¼ correlation of Hvy-Mt and L=wk¼�0.252518.

We call this ryx matrix as M2.

TABLE 6.8
X �0X �5 rxx Correlation Matrix,� Table 6.1A Data

X�0 X� ¼ rxx ¼

1:00109 0:21471 0:18739 �0:082736 �0:175081 0:07955

0:21471 1:00088 0:92049 0:895167 0:694807 �0:68536

0:18739 0:92049 1:00020 0:859690 0:623977 �0:48890

� 0:08274 0:89517 0:85969 0:999449 0:747278 �0:73405

� 0:17508 0:69481 0:62398 0:747278 0:999876 �0:69677

0:07955 � 0:68536 �0:48890 �0:734054 �0:696765 1:00046

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

*Note: This correlation form and the correlation form in Table 6.2 should be identical. They differ

here because Table 6.2 was done in an autoselection of MiniTab and Table 6.8 was done via

manual matrix manipulation using MiniTab.

TABLE 6.9
X �0Y � 5 ryx Matrix

X�0Y� ¼ ryx ¼

0:432808

0:775829

0:855591

0:612664

0:546250

�0:252518

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5
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ryx ¼ M2 ¼

0:432808

0:775829

0:855591

0:612664

0:546250

�0:252518

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

In Step 3, we construct I matrix with the same dimensions as M1, which is 6� 6.

So I¼ I6 � 6, as the identity matrix.

I ¼ M3 ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

And, finally, the c values are arbitrarily set. We use 15 values.

ci

c1 ¼ 0.002

c2 ¼ 0.004

c3 ¼ 0.006

c4 ¼ 0.008

c5 ¼ 0.01

c6 ¼ 0.02

c7 ¼ 0.03

c8 ¼ 0.04

c9 ¼ 0.05

c10 ¼ 0.10

TABLE 6.10
rxx 5 M1 Matrix

M1 ¼

1:00109 0:21471 0:18739 �0:082736 �0:175081 0:07955

0:21471 1:00088 0:92049 0:895167 0:694807 �0:68536

0:18739 0:92049 1:00020 0:859690 0:623977 �0:48890

�0:08274 0:89517 0:85969 0:999449 0:747278 �0:73405

�0:17508 0:69481 0:62398 0:747278 0:999876 �0:69677

0:07955 �0:68536 �0:48890 �0:734054 �0:696765 1:00046

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

*Note that the diagonals are not exactly 1.000, due to round off error. Note that in Table 6.9,

X*0Y*¼ ryx, which is in correlation form of (y, x1), (y, x2), . . . , (y, x6).

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C006 Final Proof page 228 16.11.2006 9:38pm

228 Handbook of Regression and Modeling



c11 ¼ 0.20

c12¼ 0.30

c13¼ 0.40

c14¼ 0.50

c15¼ 1.00

For actual practice, it is suggested that one assesses more than 15 values of c,

between 20 and 25. We perform the calculations manually.

The MiniTab matrix sequence will be

br ¼ [rxx þ cI]�1ryx,

br ¼ [M1 þ ciM3]�1M2: (6:9)

Let us continue with the bioreactor example, Example 4.2.

When c1 ¼ 0:002, br ¼

0:289974

0:174390

0:710936

�0:186128

0:404726

0:336056

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼ br
1

¼ br
2

¼ br
3

¼ br
4

¼ br
5

¼ br
6

; when c2 ¼ 0:004, br ¼

0:290658

0:178783

0:700115

�0:177250

0:402442

0:337967

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

When c3 ¼ 0:006, br ¼

0:291280

0:182719

0:690048

�0:168892

0:400170

0:339559

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; when c4 ¼ 0:008, br ¼

0:291845

0:186262

0:680652

�0:161008

0:397910

0:340871

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

When c5 ¼ 0:01, br ¼

0:292356

0:189461

0:671854

�0:153557

0:395665

0:341934

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; when c6 ¼ 0:02, br ¼

0:294222

0:201617

0:634958

�0:121655

0:384697

0:344385

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

When c7 ¼ 0:03, br ¼

0:295188

0:209556

0:606500

�0:096498

0:374212

0:343577

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; when c8 ¼ 0:04, br ¼

0:295510

0:215000

0:583598

�0:076085

0:364243

0:340801

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;
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When c9 ¼ 0:05, br ¼

0:295363
0:218864
0:564570
�0:059148

0:354788
0:336797

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; when c10 ¼ 0:01, br ¼

0:290869
0:227214
0:500677
�0:004375

0:314521
0:309674

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

When c11 ¼ 0:20, br ¼

0:276211

0:227515

0:432292

�0:044859

0:259265

0:255204

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; when c12 ¼ 0:30, br ¼

0:261073

0:222857

0:390445

0:067336

0:223772

0:211990

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

When c13 ¼ 0:40, br ¼

0:246982

0:217031

0:359922

0:079653

0:199222

0:178388

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; when c14 ¼ 0:50, br ¼

0:234114

0:210979

0:335864

0:086986

0:181255

0:151822

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

When c15 ¼ 1:000, br ¼

0:184920

0:183733

0:260660

0:097330

0:134102

0:075490

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

Note that each of the ci values is chosen arbitrarily by the researcher. The next

step (Step 4) is to plot the ridge trace data (Table 6.11). The bi
r values are

rounded to three places to the right of the decimal point.

If there are only a few bi
r variables, they can all be plotted on the same

graph. If there are, say, more than four and if they have the same curvature, it

is better to plot them individually first, then perform a multiplot of all bi
r

values vs. the c values.

The ridge trace data will first be graphed br
i vs. c, then plotted multiply.

Figure 6.3 presents bi
r vs. c. Figure 6.4 presents b2

r vs. c. Figure 6.5 presents

b3
r vs. c. Figure 6.6 presents b4

r vs. c. Figure 6.7 presents b5
r vs. c. Figure 6.8

presents b6
r vs. c. Putting it all together, we get Figure 6.9, the complete

ridge trace plot.

The next step (Step 5), using the complete ridge trace plot, is to pick

the smallest value c, in which the betas, bi
r, are stable—that is, no longer

oscillating wildly or with high rates of change. In practice, the job will be
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much easier if the researcher omits the xi predictors that, earlier on, were

found not to contribute significantly to the regression model, as indicated by

increases in SSR or decreases in SSE. But for our purposes, we assume all are

TABLE 6.11
br and c Values

c b1
r b2

r b3
r b4

r b5
r b6

r

0.002 0.290 0.174 0.711 �0.186 0.405 0.336

0.004 0.291 0.179 0.700 �0.177 0.402 0.338

0.006 0.291 0.183 0.690 �0.169 0.400 0.310

0.008 0.292 0.186 0.681 �0.161 0.398 0.341

0.010 0.292 0.189 0.672 �0.154 0.396 0.342

0.020 0.294 0.202 0.635 �0.122 0.385 0.344

0.030 0.295 0.210 0.607 �0.096 0.374 0.344

0.040 0.296 0.215 0.584 �0.076 0.364 0.341

0.050 0.295 0.219 0.565 �0.059 0.355 0.337

0.100 0.291 0.227 0.501 �0.004 0.315 0.310

0.200 0.276 0.228 0.432 0.045 0.259 0.255

0.300 0.261 0.223 0.390 0.067 0.224 0.212

0.400 0.247 0.217 0.360 0.080 0.199 0.178

0.500 0.234 0.211 0.336 0.087 0.181 0.152

1.000 0.185 0.184 0.261 0.097 0.134 0.075

0.0

0.200

0.225

0.250

0.275

0.300

br
1

0.2 0.4 0.6 0.8 1.0
c

FIGURE 6.3 b1
r vs. c.
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important, and we must select a c value to represent all six bi
rs. So, where is

the ridge trace plot first stable? Choosing too small a c value does not reduce

the instability of the model, but selecting too large a c value can add too much

bias, limiting the value of the bi
rs in modeling the experiment. Some

0.0
0.17

0.18

0.19

0.20

0.21

0.22

0.23

br
2

0.2 0.4 0.6 0.8 1.0
c

FIGURE 6.4 b2
r vs. c.
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br
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c

FIGURE 6.5 b3
r vs. c.
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researchers select the c values intuitively; others (Hoerl et al., 1975) suggest a

formal procedure.

We employ a formal procedure, computed by iteration, to find the most

appropriate value of c to use, and we term that value c0. That is, a series of

0.0
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

br
4

0.2 0.4 0.6 0.8 1.0
c

FIGURE 6.6 b4
r vs. c.
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FIGURE 6.7 b5
r vs. c.
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iterations will be performed, until we find the first iterative value of c that

satisfies Equation 6.10 (Hoerl and Kennard, 1976):

ci � ci�1

ci�1

� 20T �1:3, (6:10)

0.0

0.10

0.15

0.20

0.25

0.30

0.35

br
6

0.2 0.4 0.6 0.8 1.0
c

FIGURE 6.8 b6
r vs. c.
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FIGURE 6.9 Complete ridge trace plot: Scatterplot of c vs. br values.
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where

T ¼ trace(X0X)�1

k
¼

Pk

i¼1

1
li

k
: (6:11)

Let

ci ¼
k(MSE)

[br
0]0[br

0]
: (6:12)

Note: k is the number of predictor bi
r variables, less b0 which equals 6 (b1

r

through b6
r) in our example. MSE is the mean square error, s2, of the full

regression on the correlation form of the xi and y values, when the ridge

regression computed sets c¼ 0. That is

[rxx þ cI]�1ryx ¼ [rxx]�1ryx:

b0
r ¼ the beta coefficients of the ridge regression when c¼ 0.

The next iteration is

ci ¼
k MSEð Þ
br

1

� �0
br

1

� � ,

where k is the number of bis, excluding b0; MSE is the mean square error,

when c¼ 0; b1
r ¼ [rxx � c1I]�1ryx, the matrix equation for ridge regression.

The next iteration is

ci ¼
k MSEð Þ
br

2

� �0
br

2

� � , and so on:

The iteration process is complete, when the first iteration results in

ci � ci�1

ci�1

� 20T�1:3

To do that procedure, we run a regression on the transformed values, y and

x, from Table 6.5 and Table 6.6, respectively. Table 6.12 combines those tables.

The researcher then regresses y on x1, x2, x3, x4, x5, and x6. Table 6.13

presents that regression. It gives us the bi
r coefficients (notice b0 � 0), as well

as the MSE value, using a standard procedure.*

*The analysis could also have been done using matrix form br¼ [rxx]
�1 [ryx], but the author has

chosen to use a standard MiniTab routine to show that the regression can be done this way, too.
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TABLE 6.12
Correlation Form Transformed y and x Values

Row x1 x2 x3 x4 x5 x6 y

1 �0.301844 �0.169765 �0.227965 �0.154258 0.009667 0.117154 �0.218075

2 �0.268306 �0.186523 �0.227965 �0.160319 �0.038669 0.105114 �0.162642

3 �0.067077 �0.119489 �0.227965 �0.123952 0.170788 0.105114 �0.118295

4 �0.100615 �0.186523 �0.049169 �0.093646 �0.167566 0.237560 0.025832

5 �0.067077 �0.169765 �0.004470 �0.063340 �0.151454 0.321844 0.059092

6 0.000000 �0.052454 0.017880 �0.033034 �0.119230 0.333884 0.114525

7 0.268306 0.332994 0.375472 0.088191 0.315797 �0.015291 0.380606

8 0.268306 �0.186523 �0.227965 �0.366401 �0.522033 0.225519 �0.151555

9 0.536612 �0.354110 �0.339712 �0.381554 �0.409248 0.249600 �0.284595

10 �0.301844 0.098373 �0.004470 0.148803 �0.199790 �0.195900 �0.384375

11 �0.301844 0.165408 0.219025 0.451864 0.380246 �0.376508 �0.062862

12 �0.134153 �0.018937 0.174326 �0.033034 0.025779 �0.015291 0.103439

13 0.201230 0.534097 0.442520 0.451864 0.315797 �0.340386 0.436039

14 �0.100615 �0.169765 �0.317363 �0.154258 0.154676 �0.376508 �0.229162

15 0.368921 0.483821 0.397821 0.421558 0.235237 �0.376508 0.491473

TABLE 6.13
Regression on Transformed y, x Data

Predictor Coef St dev t-ratio P

b0 �0.00005 0.02994 �0.00 0.999

b1 0.2892 0.1612 1.79 0.111

b2 0.1695 0.4577 0.37 0.721

b3 0.7226 0.3932 1.84 0.103

b4 �0.1956 0.3861 �0.51 0.626

b5 0.4070 0.1937 2.10 0.069

b6 0.3338 0.2317 1.44 0.188

s ¼ 0.115947 R-sq ¼ 89.3% R-sq(adj) ¼ 81.2%

Analysis of Variance

Source DF SS MS F P

Regression 6 0.89314 0.14886 11.07 0.002

Error 8 0.10755 0.01344

Total 14 1.00069

The regression equation is ŷ¼ � 0.0001 þ 0.289x1 þ 0.169x2 þ 0.723x3 � 0.196x4 þ 0.407x5 þ
0.334x6.
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Iteration 1, from Table 6.13,

br
0 ¼

0:2892
0:1695
0:7226
�0:1956

0:4070
0:3338

2

6
6
6
6
6
4

3

7
7
7
7
7
5
:

So,

br
0

� �0
br

0

� �
¼ 0:2892 0:1695 0:7226� 0:1956 0:407 0:3338½ � �

0:2892

0:1695

0:7226

�0:1956

0:4070

0:3338

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼ 0:949848,

c1 ¼
k MSEð Þ
br

0

� �0
br

0

� � ¼
6 0:01344ð Þ
0:949848

¼ 0:0849:

We use the c1 value (0.0849) for the next iteration, Iteration 2.

Using matrix form of the correlation transformation:

br
1 ¼ rxx � c1Ið Þ�1ryx,

where c1¼ 0.0849, rxx¼Table 6.8, I¼ 6 � 6 identity matrix, ryx¼Table 6.9.

br
1 ¼

0:292653
0:225860
0:516255
�0:017225

0:325554
0:318406

2

6
6
6
6
6
4

3

7
7
7
7
7
5

,

br
1

� �0
br

1

� �
¼ 0:6108,

c2 ¼
6 0:01344ð Þ

0:6108
¼ 0:1320:

Now we need to see if (c2 � c1)=c1 � T�1.3. T ¼
Pk

i¼1
1
l

i, or the sum of the

reciprocals of the eigenvalues of the X0X matrix correlation form. Table 6.14

presents the eigenvalues.

X6

i¼1

1

li

� �

¼ 1

3:95581
þ 1

1:17926
þ 1

0:48270
þ 1

0:28099
þ 1

0:06124
þ 1

0:04195
¼ 46:8984,
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T ¼

Pn

i¼1

1
l

k
¼ 46:8984

6
¼ 7:8164,

T ¼ 7:8164,

20T�1:3 ¼ 20 7:8164�1:3
� 	

¼ 1:3808,

c2 � c1

c1

¼ 0:1320� 0:0849

0:0849
¼ 0:5548:

Because 0.5548 < 1.3808, the iteration is completed; the constant value

c2¼ 0.1320.

Referring to Figure 6.9, c¼ 0.1320 looks reasonable enough.

In Step 6, we compute the regression using br¼ (rxx þ cI)�1 ryx, using

c¼ 0.1320.

br ¼

0:286503

0:228457

0:473742

0:016608

0:293828

0:291224

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

The regression equation correlation form is

y� ¼ 0:287 x�1
� 	
þ0:228 x�2

� 	
þ0:474 x�3

� 	
þ0:017 x�4

� 	
þ0:294 x�5

� 	
þ0:291 x�6

� 	
,

where y*, xi* is the correlation form.

In Step 7, we convert the correlation form estimate back to the original

scale by first finding �yy, sy, �xx, and sx in the original scale, from Table 6.1A

(Table 6.15).

Find b0¼ �yy � (b1�xx1 þ b2�xx2 þ . . .þ b6 �xx6), and

bi ¼
sy

sxi

� �

br
i ,

TABLE 6.14
Eigenvalues

Eigenvalue 3.95581 1.17926 0.48270 0.28099 0.06124 0.04195
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where bi
r was computed for c¼ 0.1320. This will convert the bis to the original

data scale. To find b0, we need to compute the bi values first, to bring them to

the original scale:

b1 ¼
24:115

7:973
(0:287) ¼ 0:868,

b2 ¼
24:115

1:596
(0:228) ¼ 3:445,

b3 ¼
24:115

1:196
(0:474) ¼ 9:557,

b4 ¼
24:115

0:882
(0:017) ¼ 0:465,

b5 ¼
24:115

16:587
(0:294) ¼ 0:427,

b6 ¼
24:115

2:220
(0:291) ¼ 3:160:

Next, calculate b0:

b0 ¼ 75:667� 0:868(29)þ 3:445(3:113)þ 9:557(2:02)þ 0:465(1:509)½
þ 0:427(55:4)þ 3:16(3:127)�,

b0 ¼ �13:773:

TABLE 6.15
Calculations from Data in Table 6.1A

xi sxi

x1 29.000 7.973

x2 3.113 1.596

x3 2.020 1.196

x4 1.509 0.882

x5 55.400 16.587

x6 3.127 2.220

�yy ¼ 75.667

sy¼ 24.115
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The final ridge regression equation, in original scale, is

ŷy ¼� 13:773þ 0:0868 x1ð Þ þ 3:445 x2ð Þ þ 9:557 x3ð Þ þ 0:465 x4ð Þ
þ 0:427ðx5Þ þ 3:16 x6ð Þ:

CONCLUSION

The ridge regression analysis can be extremely useful with regressions that

have correlated xi predictor values. When the data are in correlation form, it is

useful to run a variety of other tests, such as ANOVA, for the model; to be

sure, it is adequate. In matrix form, the computations are

Source of Variance

Regression SSR ¼
SS

br0X0Y
� 1

n

� �

Y0JY k MSR ¼
SSR

k

Error SSE ¼ Y0Y � br0X0Y n� k � 1 MSE ¼
SSE

n� k � 1

Total SST ¼ Y0Y � 1

n

� �

Y0JY n� 1

J¼ n � n square matrix of all 1s,

1 � � � � � � 1

..

.
� � � � � � ..

.

..

.
� � � � � � ..

.

1 � � � � � � 1

2

6
6
6
4

3

7
7
7
5

, 1=n is scalar of the

reciprocal of the sample size, n; bY predicted ¼Xbr, all in correlation form;

e¼ residual¼Y �bY.

In conclusion, it can be said that when xi predictors are correlated, the

variance often is so large that the regression is useless. Ridge regression offers

a way to deal with this problem very effectively.
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7 Polynomial Regression

Polynomial regression models are useful in situations in which the curvilinear

response function is too complex to linearize by means of a transformation,

and an estimated response function fits the data adequately. Generally, if the

modeled polynomial is not too complex to be generalized to a wide variety of

similar studies, it is useful. On the other hand, if a modeled polynomial

‘‘overfits’’ the data of one experiment, then, for each experiment, a new

polynomial must be built. This is generally ineffective, as the same type of

experiment must use the same model if any iterative comparisons are

required. Figure 7.1 presents a dataset that can be modeled by a polynomial

function, or that can be set up as a piecewise regression. It is impossible to

linearize this function by a simple scale transformation.

For a dataset like this, it is important to follow two steps:

1. Collect sufficient data that are replicated at each xi predictor variable.

2. Perform true replication, not just repeated measurements in the same

experiment.

True replication requires actually repeating the experiment n times. Although

this sounds like a lot of effort, it will save hours of frustration and interpret-

ation in determining the true data pattern to be modeled.

Figure 7.2 shows another problem—that of inadequate sample points

within the xis. The large ‘‘gaps’’ between the xis represent unknown data

points. If the model were fit via a polynomial or piecewise regression

with both replication and repeated measurements, the model would still be

inadequate. This is because the need for sufficient data, specified in step 1,

was ignored.

Another type of problem occurs when repeated measurements are taken,

but the study was not replicated (Figure 7.3). The figure depicts a study that

was replicated five times, and each average repeated measurement plotted.

That a predicted model based on the data from any single replicate is

inadequate and unreliable is depicted by the distribution of the ‘‘.’’ replicates.
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OTHER POINTS TO CONSIDER

1. It is important to keep the model’s order as low as possible. Order is the

value of the largest exponent.

ŷy ¼ b0 þ b1x1 þ b2x2
1 (7:1)

is a second-order (quadratic) model in one variable, x1.

ŷy ¼ b0 þ b1x2
1 þ b2x2

2 (7:2)

is a second-order model in two xi variables, x1, x2.

x

y

FIGURE 7.1 Polynomial function.

Model polynomial

x

y

True polynomial

FIGURE 7.2 Inadequate model of the actual data.
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A representation of the kth order polynomial is

ŷy ¼ b0 þ b1x1 þ b2x2 þ � � � þ Bkx k: (7:3)

Because a small value is the key to robustness, k should never be greater than

2 or 3, unless one has extensive knowledge of the underlying function.

2. Whenever possible, linearize a function via a transformation. This

will greatly simplify the statistical analysis. This author’s view is

that, usually, it is far better to linearize with a transformation than

work in the original scale that is exponential. We discussed linear-

izing data in previous chapters.

3. Extrapolating is a problem, no matter what the model, but it is

particularly risky with nonlinear polynomial functions.

For example, as shown in Figure 7.4, extrapolation occurs when someone

wants to predict y at xþ 1. There really is no way to know that value unless a

measurement is taken at xþ 1.

Interpolations can also be very problematic. Usually, only one or a few

measurements are taken at each predictor value and gaps appear between

predictor values as well, where no measured y response was taken. Interpol-

ations, in these situations, are not data-driven, but function-driven. Figure 7.4

depicts the theoretical statistical function as a solid line, but the actual function

may be as depicted by the dashed lines or any number of other possible

Represents one experiment with repeated measurements

Represents each of five replicated experiments with
   repeated measurements

x

y

FIGURE 7.3 Modeling with no true replication.
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configurations. There is no way to know unless enough samples are replicated at

enough predictor values in the range of data, as previously discussed.

4. Polynomial regression models often use data that are ill-condi-

tioned, in that the matrix [X0X]�1 is unstable and error-prone. This

usually results in the variance (MSE) that is huge. We discussed

aspects of this situation in Chapter 6. When the model

ŷy¼ b0þ b1x1þ b2x1
2 is used, x1

2 and x1 will be highly correlated

because x1
2 is the square of x1. If it is not serious due to excessive

range spread, for example, in the selection of the xi values, it may

not be a problem, but it should be evaluated.

As seen in Chapter 6, ridge regression can be of use, as well as centering the xi

variable, x 0 ¼ x� �xx or standardizing, x 0 ¼ (x� �xx)=s, when certain xi variables

have extreme ranges relative to other xi variables. Another solution could be

to drop any xi predictor variable not contributing to the regression function.

We saw how to do this through partial regression analysis.

The basic model of polynomial regression is

Y ¼ b0 þ b1X1 þ b2X2
2 þ � � � þ bkXk

k þ « (7:4)

estimated by

ŷy ¼ b0 þ b1x1 þ b2x2 þ � � � þ bkxk
k þ e (7:5)

Modeled function
Possible true functions

Population
microorganism

Interpolation

?

?

? ?

Extrapolation

x

y

x + 1

FIGURE 7.4 Modeling for extrapolation.
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or for centered data,

ŷy ¼ b0 þ b1x�i þ b2x�22 þ � � � þ bkxk
k þ e, (7:6)

where x2
*¼ xi� �xx to center the data.

Therefore, x1i

*¼ x1i
� �xx1, x2i

*¼ x2i
� �xx2, and so on.

Once the model’s bis have been computed, the data can be easily converted

into the original noncentered scale (Chapter 6).

Polynomial regression is still considered a linear regression model in

general because the bi values remain linear, even though the xis are not.

Hence, the sum of squares computation is still employed. That is,

b ¼ [X0X]�1X0Y:

As previously discussed, some statisticians prefer to start with a larger model

(backward elimination) and from that model, eliminate xi predictor variables

that do not contribute significantly to the increase in SSR or decrease in SSE.

Others prefer to build a model using forward selection. The strategy is up to

the researcher. A general rule is that the lower-order exponents appear first in

the model. This ensures that the higher-order variables are removed first if

they do not contribute. For example,

ŷy ¼ b0 þ b1x1 þ b2x2
2 þ b3x3

3:

Determining the significance of the variables would begin with comparing the

higher-order to the lower-order model, sequentially:

First, x3
3 is evaluated: SSR

(x3
3
jx1, x2

2
)
¼ SSR

(x1, x2
2

, x3
3

)
� SSR

(x1, x2
2

)
:

Then, x2
2 is evaluated: SSR

(x2
2
jx1)
¼ SSR

(x1, x2
2

)
� SSR(x1)

.

Finally, x1 is evaluated: SSR(x1) ¼ SSR(x1)
.

The basic procedure is the same as that covered in earlier chapters.

Example 7.1: In a wound-healing evaluation, days in the healing process (x1)

were compared with the number of epithelial cells cementing the wound (y).

Table 7.1 presents these data. The researcher noted that the healing rate

seemed to model a quadratic function. Hence, x1
2 was also computed.

The model ŷy¼ b0þ b1x1þ b2x1
2 was fit via least squares; Table 7.2 pre-

sents the computation. The researcher then plotted the actual yi cell-count data

against the day’s sample; Figure 7.5 presents the results. Next, the predicted

cell-count data (using the model ŷy¼ b0þ b1x1þ b2x1
2) were plotted against xi

predictor values (days) (Figure 7.6). Then, the researcher superimposed

the predicted and actual values. In Figure 7.7, one can see that the actual

and predicted values fit fairly well. Next, the researcher decided to compute
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TABLE 7.1
Wound-Healing Evaluation, Example 7.1

n yi x1i
x1i

2

1 0 0 0

2 0 0 0

3 0 0 0

4 3 1 1

5 0 1 1

6 5 1 1

7 8 2 4

8 9 2 4

9 7 2 4

10 10 3 9

11 15 3 9

12 17 3 9

13 37 4 16

14 35 4 16

15 93 4 16

16 207 5 25

17 256 5 25

18 231 5 25

19 501 6 36

20 517 6 36

21 511 6 36

22 875 7 49

23 906 7 49

24 899 7 49

25 1356 8 64

26 1371 8 64

27 1223 8 64

28 3490 9 81

29 3673 9 81

30 3051 9 81

31 6756 10 100

32 6531 10 100

33 6892 10 100

34 6901 11 121

35 7012 11 121

36 7109 11 121

37 7193 12 144

38 6992 12 144

39 7009 12 144

Note: where yi are the cells enumerated per grid over wound, x1i
¼ day, x1i

2 ¼ day2.
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the residuals to search for any patterns (Table 7.3). A definite pattern was

found in the sequences of the ‘‘þ’’ and ‘‘�’’ runs.

The researcher concluded that the days beyond 10 would be dropped for

they held no benefit in interpreting the study. Also, because the range of

y is so great, 0–7009, most statisticians would have performed a centering

transformation on the data (xi
*¼ xi� �xx) to reduce the range spread, but this

researcher wanted to retain the data in the original scale. The researcher also

removed days prior to day 2, hoping to make a better polynomial predictor.

The statistical model that was iteratively fit was

ŷy ¼ b0 þ b1x1 þ b2x2,

where x1¼ days, and x2¼ x1
2¼ days2. The regression analysis, presented in

Table 7.4, looked promising, and the researcher thought the model was valid.

TABLE 7.2
Least-Squares Computation, Example 7.1 Data

Predictor Coef St. Dev t-Ratio p

b0 342.3 317.4 1.08 0.288

b1 �513.1 122.9 �4.17 0.000

b2 96.621 9.872 9.79 0.000

s¼ 765.1 R2¼ 93.1% R(adj)
2 ¼ 92.7%

The regression equation is ŷ¼ b0þ b1x1þ b2xi
2¼ 342� 513x1þ 96.6x1

2.
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FIGURE 7.5 y vs. x1, cell count vs. day of sample, Example 7.1.
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As can be seen, the R(adj)
2 ¼ 0.905, and the analysis of variance table

portrays the model as highly significant in explaining the sum of squares,

yet inadequate with all the data in the model. In Figure 7.8, we can see that the

removal of x1< 2 and x1> 10 actually did not help.

Clearly, there is multicollinearity in this model, but we will not concern

ourselves with this now (although we definitely would, in practice). The

4 6 8 10 12
x = days

0

0
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3000

4000

5000

6000

7000

9000

8000

Predicted
cell counts
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y^

FIGURE 7.6 ŷy vs. predicted x1, Example 7.1.
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FIGURE 7.7 Actual (y) and predicted (ŷy) cell counts over days (x1), Example 7.1.
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TABLE 7.3
Computed Residuals, ei 5 yi 2 ŷy i, Example 7.1

n y ŷ y 2 ŷ 5 e

1 0 342.25 �342.25

2 0 342.25 �342.25

3 0 342.25 �342.25

4 3 �74.19 77.19

5 0 �74.19 74.19

6 5 �74.19 79.19

7 8 �297.40 305.40

8 9 �297.40 306.40

9 7 �297.40 304.40

10 10 �327.36 337.36

11 15 �327.36 342.36

12 17 �327.36 344.36

13 37 �164.08 201.08

14 35 �164.08 199.08

15 93 �164.08 257.08

16 207 192.44 14.56

17 256 192.44 63.56

18 231 192.44 38.56

19 501 742.20 �241.20

20 517 742.20 �225.20

21 511 742.20 �231.20

22 875 1485.21 �610.21

23 906 1485.21 �579.21

24 899 1485.21 �586.21

25 1356 2421.46 �1065.46

26 1371 2421.46 �1050.46

27 1223 2421.46 �1198.46

28 3490 3550.95 �60.95

29 3673 3550.95 122.05

30 3051 3550.95 �499.95

31 6756 4873.68 1882.32

32 6531 4873.68 1657.32

33 6892 4873.68 2018.32

34 6901 6389.65 511.35

35 7012 6389.65 622.35

36 7109 6389.65 719.35

37 7193 8098.87 �905.87

38 6992 8098.87 �1106.87

39 7009 8098.87 �1089.87
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researcher decided to evaluate the model via a partial F test. Let us first

examine the contribution of x2:

SSR(x2 jx1)
¼ SSR(x1, x2)

� SSR(x1)
:

The sum of squares regression, SSR(x1, x2)
, is found in Table 7.4. Table 7.5

presents the regression model containing only x1, SSR(x1)
.

TABLE 7.4
Full Model Regression with x1< 2 and x1> 10 Removed, Example 7.1

Predictor Coef SE Coef t P

b0 1534.6 438.5 3.50 0.002

b1 �1101.9 183.1 �6.02 0.000

b2 151.74 16.23 9.35 0.000

s¼ 645.753 R2¼ 91.2% R2
(adj)¼ 90.5%

Analysis of Variance

Source DF SS MS F P

Regression 2 16,111,053 58,055,527 139.22 0.000

Error 27 11,258,907 416,997

Total 29 127,369,960

Source DF SEQ SS

x1 1 79,638,851

x2 1 36,472,202

The regression equation is ŷy ¼ 1535þ 1102x1� 152x2.
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FIGURE 7.8 Scatter plot of y and ŷy on x� x̂x ¼ x 0, with x1< 2 and x1> 10 removed,

Example 7.1.
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So,

SSR(x2 jx1)
¼ SSR(x1, x2)

� SSR(x1)
¼ 116,111,053� 79,638,851 ¼ 36,472,202

Fc(x2 jx1)
¼

SSR(x2 jx1)

MSE(x1, x2)

¼ 36,472,202

416,997
¼ 87:4639

FT(a,1,n�k�1) ¼ FT(0:05,1,30�2�1) ¼ FT(0:05,1,27)

¼ 4:21 (from Table C, the F distribution table):

Because Fc¼ 87.4639>FT¼ 4.21, we can conclude that the x2 predictor

variable is significant and should be retained in the model. Again, Fc(x2 jx1)

measures the contribution of x2 to the sum of squares regression, given that x1

is held constant.

The removal of x< 2 and x> 10 data points has not really helped the

situation. The model and the data continue to be slightly biased. In fact, the

R(adj)
2 value for the latest model is less than the former. Often, in trying to fit

polynomial functions, one just chases the data, sometimes endlessly. In

addition, even if the model fits the data, in a follow-up experiment, the

model is shown to be not robust and needing change. The problem with

this, according to fellow scientists, is that one cannot easily distinguish

between the study and the experimental results with confidence.

In this example, taking the log10 value of the colony-forming units would

have greatly simplified the problem, by log-linearizing the data. This should

have been done, particularly with x< 2 and x> 10 values of the model.

Sometimes, linearizing the data will be impossible, but linearizing segments

of the data function and performing a piecewise regression may be the best

procedure. Using piecewise regression, the three obvious rate differences can

TABLE 7.5
Regression with x1 in the Model and x1< 2 and x1> 10 Removed,

Example 7.1

Predictor Coef St. Dev t-Ratio p

b0 �1803.7 514.9 �3.50 0.002

b1 567.25 82.99 6.84 0.000

s¼ 1305.63 R2¼ 62.5% R2
(adj)¼ 61.2%

Analysis of Variance

Source DF SS MS F P

Regression 1 79,638,851 79,638,851 46.72 0.000

Error 28 47,731,109 1,704,682

Total 29 127,369,960

The regression equation is ŷy ¼�1804þ 567x1.
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be partitioned into three linear components: A, B, and C (Figure 7.9). We

discuss this later in this book, using dummy variables.

Example 7.2: Let us, however, continue with our discussion of polyno-

mials. We need to be able to better assess the lack-of-fit model, using a more

formal method. We will look at another example, that of biofilm grown on a

catheter canula in a bioreactor. This study used two types of catheters, an

antimicrobial-treated test and a nontreated control, and was replicated in

triplicate, using the bacterial species, Staphylococcus epidermidis, a major

cause of catheter-related infections. Because venous catheterization can be

long-term without removing a canula, the biofilm was grown over the course

of eight days. Table 7.6 presents the resultant data in exponential form.

In this experiment, the nontreated control and the treated test samples

are clearly not linear, especially those for the nontreated canula. To better

model these data, they were transformed by a log10 transformation of the

microbial counts, the dependent variable. This is a common procedure

in microbiology (Table 7.7).

The antimicrobially-treated and nontreated canulas’ log10 microbial

counts are plotted against days in Figure 7.10.

From Table 7.7, one can see that the log10 counts from the treated canulas

were so low in some cases that the recommended minimum for reliable

colony-count estimates (30 colonies per sample) was not reached in 14 of

the 24 samples. Yet, these were the data and were used anyway, with the

knowledge that the counts were below recommended detection limits. The

data from the treated canulas appear to be approximately log10 linear. Hence,

a simple regression analysis was first performed on those data (Table 7.8).

Figure 7.11 presents the predicted regression line superimposed over the

data. Table 7.9 presents the actual, predicted, and residual values.

Notice that there is a definite pattern in the residual ‘‘þ’’ and ‘‘�’’ values.

Instead of chasing data, presently, the model is ‘‘good enough.’’ The b0

intercept is negative (�0.6537) and should not be interpreted as the actual day

A

B

C

FIGURE 7.9 Original data for Example 7.1 in sigmoidal shape.
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1 value. Instead, it merely points out the regression function that corresponds

to the best estimate of the regression slope when x¼ 0. For each day, the

microbial population increased 0.31 log10 times, which demonstrates the

product that has good microbial inhibition. The adjusted coefficient of deter-

mination is�81.0%, meaning that about 81% of the variability in the data is

explained by the regression equation.

Notice that the data for the nontreated canula were not linearized by a

log10 transformation. Hence, we will add another xi variable, x2, into the

regression equation, where x2¼ x1
2, to see if this models the data better.

Ideally, we did not want to do this, but we need to model the data. Hence,

the equation becomes

ŷy ¼ b0 þ b1x1 þ b2x2,

TABLE 7.6
Colony Counts of Staphylococcus Epidermidis from

Treated and Nontreated Canulas, Example 7.2

n Colony Counts (ynontreated) Colony Counts (ytreated) Day

1 0 0 1

2 0 0 1

3 0 0 1

4 1� 101 0 2

5 1.2� 101 0 2

6 1.1� 101 0 2

7 3.9� 101 0 3

8 3.7� 101 0 3

9 4.8� 101 0 3

10 3.16� 102 3.0� 100 4

11 3.51� 102 0 4

12 3.21� 102 1.0� 100 4

13 3.98� 103 5.0� 100 5

14 3.81� 103 0 5

15 3.92� 103 1.6� 101 5

16 5.01� 104 2.1� 101 6

17 5.21� 104 3.7� 101 6

18 4.93� 104 1.1� 101 6

19 3.98� 106 5.8� 101 7

20 3.80� 106 5.1� 101 7

21 3.79� 106 4.2� 101 7

22 1.27� 109 6.2� 101 8

23 1.25� 109 5.1� 101 8

24 1.37� 109 5.8� 101 8
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where

x2 ¼ x2
1:

Table 7.10 presents the nontreated canula regression analysis, and Figure 7.12

demonstrates that, although there is some bias in the model, it is adequate for

the moment. Table 7.11 provides the values yi, x1, x1
2, ŷyi, and ei.

The rate of growth is not constant in a polynomial function; therefore, the

derivative (d=dx) must be determined. This can be accomplished using the

power rule:

d

dx
(xn) ¼ nxn�1,

ŷy ¼ 0:1442þ 0:0388x1 þ 0:13046x2

slope of ŷy ¼ d

dx
(0:1442þ 0:0388x1 þ 0:13046x2) ¼ 1(0:0388)þ 2(0:13046)

(7:7)

TABLE 7.7
Log10 Transformation of the Dependent Variable, y, Example 7.2

n ynontreated ytreated x (Day)

1 0.00 0.00 1

2 0.00 0.00 1

3 0.00 0.00 1

4 1.00 0.00 2

5 1.07 0.00 2

6 1.04 0.00 2

7 1.59 0.00 3

8 1.57 0.00 3

9 1.68 0.00 3

10 2.50 0.48 4

11 2.55 0.00 4

12 2.51 0.00 4

13 3.60 0.70 5

14 3.58 0.00 5

15 3.59 1.20 5

16 4.70 1.32 6

17 4.72 1.57 6

18 4.69 1.04 6

19 6.60 1.76 7

20 6.58 1.71 7

21 6.58 1.62 7

22 9.10 1.79 8

23 9.10 1.71 8

24 9.14 1.76 8

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C007 Final Proof page 254 16.11.2006 7:57pm

254 Handbook of Regression and Modeling



The slope, or rate of population growth¼ 0.0388þ 0.2609x for any day, x.

On day 1:

slope¼ 0.0388þ 0.2609(1)¼ 0.2997� 0.3 log10, which is the same rate

observed from the treated canula.

On day 3:

slope¼ 0.0388þ 0.2609(3)¼ 0.82, that is, an increase in microorganisms

at day 3 of 0.82 log10.

On day 8:

slope¼ 0.0388þ 0.2609(8)¼ 2.126 log10 at day 8.
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FIGURE 7.10 Log10 microbial counts from treated and nontreated canulas, Example 7.2.

TABLE 7.8
Regression Analysis of Log10 Counts from Treated Canulas, Example 7.2

Predictor Coef St. Dev t-Ratio p

Constant b0 �0.6537 0.1502 �4.35 0.000

b1 0.29952 0.02974 10.07 0.000

s¼ 0.3339 R2¼ 82.2% R2
(adj)¼ 81.4%

Analysis of Variance

Source DF SS MS F P

Regression 1 11.304 11.304 101.41 0.000

Error 22 2.452 0.111

Total 23 13.756

The regression equation is ŷy¼�0.654þ 0.300x1.
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Note also that the adjusted coefficient of determination, r2, is about 99%
(see Table 7.10). The fit is not perfect, but for preliminary work, it is all right.

These data are also in easily understandable terms for presenting to manage-

ment, a key consideration in statistical applications.

Let us compute the partial F test for this model, ŷy¼ b0þ b1x1þ b2x1
2. The

MiniTab regression routines, as well as those of many other software pack-

ages, provide the information in standard regression printouts. It can always

be computed, as we have done previously, comparing the full and the reduced

models.

The full regression model presented in Table 7.10 has a partial analysis of

variance table, provided here:

Source DF SEQ SS

SSR(x1) 1 185.361

SSR(x2jx1) 1 8.578

The summed value, 193.939, approximates 193.938, which is the value of

SSR(x1, x2).

The Fc value for

SSR(x2 jx1)
¼

SSR(x2 jx1)

MSE(x1, x2)

¼ 8:578

0:074
¼ 115:92,

is obviously significant at a¼ 0.05.
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FIGURE 7.11 Scatter plot of ytreated, x, with predicted ŷytreated, x.
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Hence, the full model that includes x1 and x2 is the one to use.

ŷy ¼ b0 þ b1x1 þ b2x2,

where x2¼ x1
2.

The partial F tests on other models are constructed exactly as presented in

Chapter 4.

LACK OF FIT

Recall that the lack-of-fit test partitions the sum of squares error (SSE) into

two components: pure error, the actual random error component and lack of

fit, a nonrandom component that detects discrepancies in the model. The lack-

of-fit computation is a measure of the degree to which the model does not fit

or represent the actual data.

TABLE 7.9
Actual yi Data, Fitted ŷ Data, and Residuals, Treated Canulas,

Example 7.2

Row x y ŷ y 2 ŷ 5 e

1 1 0.00 �0.35417 0.354167

2 1 0.00 �0.35417 0.344167

3 1 0.00 �0.35417 0.354167

4 2 0.00 �0.05464 0.054643

5 2 0.00 �0.05464 0.054643

6 2 0.00 �0.05464 0.054643

7 3 0.00 0.24488 �0.244881

8 3 0.00 0.24488 �0.244881

9 3 0.00 0.24488 �0.244881

10 4 0.48 0.54440 �0.064405

11 4 0.00 0.54440 �0.544405

12 4 0.00 0.54440 �0.544405

13 5 0.00 0.84393 �0.143929

14 5 0.00 0.84393 �0.843929

15 5 1.20 0.84393 0.356071

16 6 1.32 1.14345 0.176548

17 6 1.57 1.14345 0.426548

18 6 1.04 1.14345 �0.103452

19 7 1.76 1.44298 0.317024

20 7 1.71 1.44298 0.267024

21 7 1.62 1.44298 0.177024

22 8 1.79 1.74250 0.047500

23 8 1.71 1.74250 �0.032500

24 8 1.76 1.74250 0.017500
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In Example 7.2, note that each xi value was replicated three times ( j¼ 3).

That is, three separate yij values were documented for each xi value. Those yij

values were then averaged to provide a single �yyi value for each xi.

TABLE 7.10
Nontreated Canula Regression Analysis, Example 7.2

Predictor Coef St. Dev t-Ratio p

b0 0.1442 0.2195 0.66 0.518

b1 0.0388 0.1119 0.35 0.732

b2 0.13046 0.01214 10.75 0.000

s¼ 0.2725 R2¼ 99.2% R2
(adj)¼ 99.1%

Analysis of Variance

Source DF SS MS F P

Regression 2 193.938 96.969 1305.41 0.000

Error 21 1.560 0.074

Total 23 195.498

Source DF SEQ SS

SSR(x1 )
1 185.361

SSR(x2 ,x1 )
1 8.578

The regression equation is ŷy¼ 0.144þ 0.039x1þ 0.130x1
2
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FIGURE 7.12 Scatter plot of ynontreated, x, with predicted regression line, Example 7.2.
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xi yij �yyi

1 0.00, 0.00, 0.00 0.00

2 1.00, 1.07, 1.04 1.04

3 1.59, 1.57, 1.68 1.61

4 2.50, 2.55, 2.51 2.52

5 3.60, 3.58, 3.59 3.59

6 4.70, 4.72, 4.69 4.70

7 6.60, 6.58, 6.58 6.59

8 9.10, 9.10, 9.14 9.11

c, the number of xi values that were replicated is equal to 8. That is, all 8 xi

observations were replicated, so n¼ 24.

SSpe, sum of squares pure error¼
Pn

j¼1(yij� �yyj)
2, which reflects the vari-

ability of the yij replicate values about the mean of those values, �yyj .

TABLE 7.11
The yi, x1, x1

2, ŷi, and ei Values, Nontreated Canulas, Example 7.2

n yi x1 x1i

2 5 x2i
ŷi yi 2 ŷi 5 ei

1 0.00 1 1 0.31347 �0.313472

2 0.00 1 1 0.31347 �0.313472

3 0.00 1 1 0.31347 �0.313472

4 1.00 2 4 0.74363 0.256369

5 1.07 2 4 0.74363 0.326369

6 1.04 2 4 0.74363 0.296369

7 1.59 3 9 1.43470 0.155298

8 1.57 3 9 1.43470 0.135298

9 1.68 3 9 1.43470 0.245298

10 2.50 4 16 2.38669 0.113314

11 2.55 4 16 2.38669 0.163314

12 2.51 4 16 2.38669 0.123314

13 3.60 5 25 3.59958 0.000417

14 3.58 5 25 3.59958 �0.019583

15 3.59 5 25 3.59958 �0.009583

16 4.70 6 36 5.07339 �0.373393

17 4.72 6 36 5.07339 �0.353393

18 4.69 6 36 5.07339 �0.383393

19 6.60 7 49 6.80812 �0.208115

20 6.58 7 49 6.80812 �0.228115

21 6.58 7 49 6.80812 �0.228115

22 9.10 8 64 8.80375 0.296250

23 9.10 8 64 8.80375 0.296250

24 9.14 8 64 8.80375 0.336250
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From this

SSpe ¼ (0� 0)2þ (0� 0)2þ (0� 0)2þ � � � þ (9:10� 9:11)2þ (9:14� 9:11)2

SSpe ¼ 0.0129

SSlack-of-fit ¼ SSE� SSpe ¼ 1.560� 0.013¼ 1.547

This is merely the pure ‘‘random’’ error subtracted from SSE, providing an

estimate of unaccounted for, nonrandom, lack-of-fit variability. Table 7.12,

the lack-of-fit ANOVA table, presents these computations specifically.

Both F tests are highly significant (Fc>FT); that is, the regression model

and the lack of fit are significant. Note that degrees of freedom were calcu-

lated as SSLF ¼ c� (kþ 1)¼ 8� 2� 1¼ 5, and SSpe¼ n� c¼ 24� 8¼ 16,

where k, number of xi independent variables¼ 2; c, number of replicated xi

values¼ 8; and n, sample size¼ 24.

Clearly, the regression is significant, but the lack- of- fit is also signifi-

cant. This means that there is bias in the modeled regression equation, which

we already knew. Therefore, what should be done? We can overfit the sample

set to model these data very well, but in a follow-up study, the overfit model

most likely will have to be changed. How will this serve the purposes of a

researcher? If one is at liberty to fit each model differently, there is no

problem. However, generally, the main goal of a researcher is to select a

robust model that may not provide the best estimate for each experiment, but

does so for the entire class of such studies.

TABLE 7.12
ANOVA Table with Analysis of Nontreated Canulas

Predictor Coef SE Coef t P

b0 0.1442 0.2195 0.66 0.518

b1 0.0388 0.1119 0.35 0.732

b2 0.13046 0.01214 10.75 0.000

s¼ 0.272548 R2¼ 99.2% R2
(adj)¼ 99.1%

Analysis of Variance

Source DF SS MS F P

Regression 2 193.938 96.969 1305.41 0.000

Residual error 21 1.560 0.074

Lack- of- fit 5 1.547 0.309 388.83 0.000

Pure error 16 0.013 0.001

Total 23 195.498

The regression equation is ŷy¼ 0.144þ 0.039x1þ 0.130x2.
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Specifically, in this example, a practical problem is that the variability is

relatively low. When the variability is low, the lack of fit of the model is

magnified. Figure 7.12 shows the values ŷy and y plotted on the same graph, and

the slight difference in the actual data and the predicted data can be observed.

This is the lack-of-fit component. The yi values are initially overestimated and

then are underestimated by ŷyi for the next three time points. The day 4 ŷy
predictor and the y value are the same, but the next two y values are over-

predicted, and the last one is underpredicted. Notice that this phenomenon is

also present in the last column as the value yi� ŷyi¼ e in Table 7.11. Probably,

the best thing to do is leave the model as it is and replicate the study to build a

more robust general model based on the outcomes of multiple separate pilot

studies. The consistent runs of negative and positive residuals represent ‘‘lack

of fit.’’ A problem with polynomial regression for the researcher, specifically

for fitting the small pilot model, is that the data from the next experiment

performed identically may not even closely fit that model.

SPLINES (PIECEWISE POLYNOMIAL REGRESSION)

Polynomial regression can often be made far more effective by breaking the

regression into separate segments called ‘‘splines.’’ The procedure is similar

to the piecewise linear regression procedure, using dummy or indicator

variables, which we discuss in Chapter 9. Spline procedures, although break-

ing the model into component parts, continue to use exponents. Sometimes a

low-order polynomial model cannot be fit precisely to the data, and the

researcher does not want to build a complex polynomial function to model

the data. In such cases, the spline procedure is likely to be applicable.

In the spline procedure, the function is subdivided into several component

sections such that it will be easier to model the data (Figure 7.13). Technic-

ally, the splines are polynomial functions of order k; and they connect at the

Knot

y

x

Spline 1

Spline 2

FIGURE 7.13 Splines.
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‘‘knot.’’ The function values and the first k – 1 derivatives must agree at the

knot(s), so the spline is a continuous function with k – 1 continuous derivatives.

However, in practice, it is rarely this simple. To begin with, the true polynomial

function is not known, so the derivatives tend to be rather artificial.

The position of the knots, for many practical purposes, can be determined

intuitively. If the knot positions are known, a standard least-squares equation

can be used to model them. If the knots are not known, they can be estimated

via nonlinear regression techniques. Additionally, most polynomial splines

are subject to serious multicollinearity in the xi predictors, so the fewer

splines, the better.

The general polynomial spline model is

y0 ¼
Xd

j¼0

b0jx
j þ
Xc

i¼1

Xd

j¼0

bi(x� ti)
d, (7:8)

where

x� ti, if x� ti > 0

0, if x� ti � 0

� �

,

where

d is the order of splines 0, 1, 2, 3, and j¼ 0, 1, . . . , d (not recommended

for greater than 3). The order is found by residual analysis and iteration. c is

the number of knots.

For most practical situations, Montgomery et al. (2001) recommend using

a cubic spline:

y0 ¼
X3

j¼0

b0j x j þ
Xc

i¼1

bi(x� ti)
3, (7:9)

where c is the number of knots, t1< t2 < � � �< tc; ti is the knot value at xi

(x� ti) ¼
x� ti, if x � ti > 0

0, if x � ti � 0

�

:

Therefore, if there are two knots, say ti¼ 5, and ti¼ 10, then, by Equation 7.9:

y0 ¼ b00 þ b01xþ b02x2 þ b3
03x3 þ b1(x� 5)3 þ b2(x� 10)3 þ «: (7:10)

This model is useful, but often, a square spline is also useful. That is,

y0 ¼
X2

j¼0

b0j x j þ
Xc

i¼1

bi(x� ti)
2: (7:11)
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If there is one knot, for example,

y0 ¼ b00 þ b01xþ b02x2 þ b1(x� t)2 þ «

again, where

(x� ti) ¼
x� ti, if x� ti > 0

0, if x� ti � 0

� �

:

Let us refer to data for Example 7.1, the wound-healing evaluation. With the

polynomial spline-fitting process, the entire model can be modeled at once.

Figure 7.5 shows the plot of the number of cells cementing the wound over

days. As the curve is sigmoidal in shape, it is difficult to model without a

complex polynomial, but is more easily modeled via a spline fit.

The first step is to select the knot(s) position(s) (Figure 7.14). Two possible

knot configurations are provided for different functions. Figure 7.14a portrays

one knot and two splines; Figure 7.14b portrays three knots and four splines.

There is always one spline more than the number of total knots.

The fewer the knots, the better. Having some familiarity with data can be

helpful in finding knot position(s), because both under- and overfitting the

data pose problems. Besides, each spline should have only one extreme and

one inflection point per section. For the data from Example 7.1, we use two

knots because there appear to be three component functions. The proposed

configuration is actually hand-drawn over the actual data (Figure 7.15).

The knots chosen were t1¼ day 5 and t2¼ day 9; Figure 7.5 shows that

this appears to bring the inflection points near these knots. There is only one

inflection point per segment. Other ti values could probably be used, so it is

not necessary to have an exact fit. Knot selection is not easy and is generally

Knot

Knot B

Knot C

Knot A

y y

x x

Spline A

Spline A

Spline B

(a) (b)

Spline B

Spline C
Spline D

FIGURE 7.14 Polynomial splines with knots.
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an iterative exercise. If the function f(x) is known, note that the inflection

points of the tangent line f(x)0 or d=dx, can be quickly discovered by the

second derivative, f(x)00. Although this process can be a valuable tool, it is

generally not necessary in practice.

Recall from Example 7.1 that the yi data were collected on cells per

wound closure and xi was the day of measurement—0 through 12. Because

there is a nonlinear component that we will keep in that basic model, which is

ŷy¼ b0þ b1xþ b2x2, and adding the spline, the model we use is

ŷy0 ¼ b00 þ b01xþ b02x2 þ b1(x� 5)2 þ b2(x� 9)2,

where

(x� 5) ¼ x� 5, if x � 5 > 0

0, if x � 5 � 0

�

and

(x� 9) ¼ x� 9, if x � 9 > 0

0, if x � 9 � 0

�

:

Table 7.13 provides the input data points.

ŷy0 ¼ b00 þ b01xþ b02x2 þ b1(x� 5)2 þ b2(x� 9)2:

Notice that when x � 5 (spline 1), the prediction equation is

ŷy0 ¼ b00 þ b01xþ b02x2:

When x> 5 but x � 9 (spline 2), the equation is

ŷy0 ¼ b00 þ b01xþ b02x2 þ b1(x� 5)2:

Knots

FIGURE 7.15 Proposed knots, Example 7.1.
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TABLE 7.13
Input Data Points, Spline Model of Example 7.1

n y xi xi
2 (xi 2 5)2 (xi 2 9)2

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 3 1 1 0 0

5 0 1 1 0 0

6 5 1 1 0 0

7 8 2 4 0 0

8 9 2 4 0 0

9 7 2 4 0 0

10 10 3 9 0 0

11 15 3 9 0 0

12 17 3 9 0 0

13 37 4 16 0 0

14 35 4 16 0 0

15 93 4 16 0 0

16 207 5 25 0 0

17 257 5 25 0 0

18 231 5 25 0 0

19 501 6 36 1 0

20 517 6 36 1 0

21 511 6 36 1 0

22 875 7 49 4 0

23 906 7 49 4 0

24 899 7 49 4 0

25 1356 8 64 9 0

26 1371 8 64 9 0

27 1223 8 64 9 0

28 3490 9 81 16 0

29 3673 9 81 16 0

30 3051 9 81 16 0

31 6756 10 100 25 1

32 6531 10 100 25 1

33 6892 10 100 25 1

34 6901 11 121 36 4

35 7012 11 121 36 4

36 7109 11 121 36 4

37 7193 12 144 49 9

38 6992 12 144 49 9

39 7009 12 144 49 9
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When x> 9 (spline 3), the regression equation is

ŷy0 ¼ b00 þ b01xþ b02x2 þ b1(x� 5)2 þ b2(x� 9)2:

Via the least-squares equation (Table 7.14), we create the following regression.

Notice that the R(adj)
2 value is 97.6%, better than that provided by the model,

ŷy¼ b0þ b1xþ b2x2. Table 7.15 presents the values ŷyi
0, x1i, x1i

2 , ŷyi, and ei.

Figure 7.16 plots the yi vs. xi and the ŷyi
0 vs. xi for a little better fit than that

portrayed in Figure 7.7, using the model, ŷy0 ¼ b0þ b1xþ b2x2.

Although the polynomial spline model is slightly better than the original

polynomial model, there continues to be bias in the model. In this researcher’s

view, the first knot should be moved to x¼ 8, and the second knot should be

moved to x¼ 10. Then, the procedure should be repeated. We also know that

it would have been far better to log10 linearize the yi data points. Hence, it is

critical to use polynomial regression only when all other attempts fail.

SPLINE EXAMPLE DIAGNOSTIC

From Table 7.14, we see, however, that t tests (t-ratios) for b00, b01, and b02

are not significantly different from 0 at a¼ 0.05. b00¼ y intercept when x¼ 0

is not significantly different from 0, which is to be expected, because the

TABLE 7.14
Least-Squares Equation, Spline Model of Example 7.1

Predictor Coef St. Dev t-Ratio P

b00 �140.4 222.3 �0.63 0.532

b01 264.2 168.1 1.57 0.125

b02 �50.61 25.71 �1.97 0.057

b1 369.70 50.00 7.39 0.000

b2 �743.53 87.78 �8.47 0.000

s¼ 441.7 R2¼ 97.8% R2
(adj)¼ 97.6%

Analysis of Variance

Source DF SS MS F P

Regression 4 298,629,760 74,657,440 382.66 0.000

Error 34 6,633,366 195,099

Total 38 305,263,136

Source DF SEQ SS

x 1 228,124,640

x2 1 56,067,260

(x� 5)2 1 441,556

(x� 9)2 1 13,996,303

The regression equation is ŷy0 ¼�140þ 264x� 50.6x2þ 370(x� 5)2� 744(x� 9)2.
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TABLE 7.15
Values ŷi

0, x1i
, x1i

2, ŷi , and ei, Spline model of Example 7.1

n yi xi ŷi
0 yi 2 ŷi

05 ei

1 0 0 �140.36 140.36

2 0 0 �140.36 140.36

3 0 0 �140.36 140.36

4 3 1 73.21 �70.21

5 0 1 73.21 �73.21

6 5 1 73.21 �68.21

7 8 2 185.56 �177.56

8 9 2 185.56 �176.56

9 7 2 185.56 �178.56

10 10 3 196.70 �186.70

11 15 3 196.70 �181.70

12 17 3 196.70 �179.70

13 37 4 106.62 �69.62

14 35 4 106.62 �71.62

15 93 4 106.62 �13.62

16 207 5 �84.68 291.68

17 257 5 �84.68 341.68

18 231 5 �84.68 315.68

19 501 6 �7.49 508.49

20 517 6 �7.49 524.49

21 511 6 �7.49 518.49

22 875 7 707.87 167.13

23 906 7 707.87 198.13

24 899 7 707.87 191.13

25 1356 8 2061.41 �705.41

26 1371 8 2061.41 �690.41

27 1223 8 2061.41 �838.41

28 3490 9 4053.12 �563.12

29 3673 9 4053.12 �380.12

30 3051 9 4053.12 �1002.12

31 6756 10 5939.49 816.51

32 6531 10 5939.49 591.51

33 6892 10 5939.49 952.51

34 6901 11 6976.97 �75.97

35 7012 11 6976.97 35.03

36 7109 11 6976.97 132.03

37 7193 12 7165.59 27.41

38 6992 12 7165.59 �173.59

39 7009 12 7165.59 �156.59
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intercept of the data is x¼ 0 and y¼ 0. b01¼ x initially follows a straight line

(no slope) at the low values of x, as expected. b02¼ x2 is hardly greater than 0,

again at the initial values, but then increases in slope, making it borderline

significant at 0.057>a. However, as we learned, slopes should really be

evaluated independently, so using a partial F test is a better strategy. Because

the entire spline model is very significant, in terms of the F test, let us perform

the partial F analysis.

For clarification, we recall

x01 ¼ x

x02 ¼ x2

x1 ¼ (x� 5)2

x2 ¼ (x� 9)2:

Let us determine the significance of x2:

SSR(x2jx01, x02, x1) ¼ SSR(x01, x02, x1, x2) � SSR(x01, x02, x1):

From Table 7.14, the full model is SSR(x01, x02, x1, x2)¼ 298,629,760, and

MSE(x01, x02, x1, x2)¼ 195,099.

From Table 7.16, the partial model provides SSR(x01, x02, x1)¼ 284,633,472.

SSR(x2jx01, x02, x1) ¼ 298,629,760� 284,633472 ¼ 13,996,288

Fc(x2jx01, x02, x1) ¼
SSR(x2jx01, x02, x1)

MSE(x01, x02, x1, x2)

¼ 13,996,288

195,099
¼ 71:74:

4 6 8 10 12
x = days

0

0

1000

2000

3000

4000

5000

6000

7000

8000

Raw cell
count

2

t2 = knot 2 = 9

t1 = knot 1 = 5

b 00 Spline 1

Spline 2

Spline 3

FIGURE 7.16 Proposed spline=knot configuration of data scatter plot, Example 7.1.
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To test the significance of b2, which corresponds to x2 or (x� 9)2, the

hypothesis is

H0: b2 ¼ 0,

HA: b2 6¼ 0:

If Fc>FT, reject H0 at a.

Let us set a¼ 0.05. FT(a;1,n�k�1) (which is based on the full model)¼
FT(0.05,1,39�4�1) ¼ FT(0.05,1,34)� 4.17 (from Table C). Because Fc (71.74)>FT

(4.17), reject H0 at a¼ 0.05. Clearly, the (x� 9)2 term associated with b2

is significant.

The readers can test the other partial F test on their own. Notice, however,

that the spline procedure provides a much better fit of the data than does the

original polynomial. For work with splines, it is important first to model the

curve and then scrutinize the modeled curve overlaid with the actual data. If

the model has some areas that do not fit the data by a proposed knot, try

moving the knot to a different x value and reevaluate the model. If this does

not help, change the power of the exponent. As must be obvious by now, this

is usually an iterative process requiring patience.

LINEAR SPLINES

In Chapter 9, we discuss piecewise multiple regressions with ‘‘dummy vari-

ables,’’ but the use of linear splines can accomplish the same thing. Knots,

again, are the points of the regression that link two separate linear splines (see

Figure 7.17).

TABLE 7.16
Partial F Test of x2, Spline Model of Example 7.1

Predictor Coef St. Dev t-Ratio P

b00 160.7 381.4 0.42 0.676

b01 �307.5 267.6 �1.15 0.258

b02 64.99 37.86 1.72 0.095

b1 49.16 56.80 0.87 0.393

s¼ 767.7 R2¼ 93.2% R2
(adj)¼ 92.7%

Analysis of Variance

Source DF SS MS F P

Regression 3 284,633,472 94,877,824 160.97 0.000

Error 35 20,629,668 589,419

Total 38 305,263,136

The regression equation is ŷ¼ 161 – 307xþ 65.0x2þ 492(x1� 5)2.
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Figure 7.18a is a regression with two splines and one knot, and

Figure 7.18b is a regression with four splines and three knots. Note that

these graphs are similar to those in Figure 7.14, but describe linear splines.

As with polynomial splines, the knots will be one count less than the

number of splines. It is also important to keep the splines to a minimum. This

author prefers to use a linear transformation of the original data and then, if

required, use a knot to connect two spline functions.

The linear formula is

Y ¼
X1

j¼0

b0j x j þ
Xc

i¼1

bi(x� ti)
c, (7:12)

4 6 8 10 12
x = days

0
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FIGURE 7.17 Spline vs. actual data.
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FIGURE 7.18 Linear splines.
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where c is the number of knots. If there is one knot, c, the equation is

Y ¼
X1

j¼0

b0j x j þ
X1

i¼1

b(x� ti), (7:13)

Y ¼ b00 þ b01xþ b1(x� ti), (7:14)

which is estimated by

ŷy0 ¼ b00 þ b01xþ b1(x� ti), (7:15)

where t is the x value at the knot and x� t ¼ x� t, if x � t > 0

0, if x � t � 0

�

:
If x � t, then the equation reduces to

ŷy0 ¼ b00 þ b01x

because b1 drops out of the equation.

For a two-knot (c¼ 2), three-spline (power 1, or linear) application, the

equation is

Y ¼
X1

j¼0

b0j x j þ
Xc

i¼1

bi(x� ti) (7:16)

Y ¼
X1

j¼0

b0j x j þ
X2

i¼1

bi(x� ti) (7:17)

Y ¼ b00 þ b01xþ b1(x� t1)þ b2(x� t2),

which is estimated by

ŷy0 ¼
X1

j¼0

b0j x j þ
X2

i¼1

bi(x� ti), (7:18a)

ŷy0 ¼ b00 þ b01xþ b1(x� t1)þ b2(x� t2):

For fitting data that are discontinuous, the formula must be modified. Use

Y ¼
Xp

j¼0

b0j x j þ
Xc

i¼1

Xp

j¼0

bij(x� ti)
j, (7:18b)

where p is the power of the model, j¼ 0, 1, 2, . . . , p, and c is the number of

knots.
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Suppose this is a linear spline ( p¼ 1) with c¼ 1 or one knot. Then,

ŷy0 ¼ b00 þ b01xþ b1(x� ti),

where

x� t1 ¼
x� t, if x � t > 0

0, if x � t � 0

�

:

Let us consider Example 7.3.

Example 7.3: In product stability studies, it is known that certain products

are highly sensitive to ultraviolet radiation. In a full-spectrum light study, a

clear-glass configuration of product packaging was subjected to constant light

for seven months to determine the effects. At the end of each month, HPLC

analysis was conducted on two samples to detect any degradation of the

product, in terms of percent potency.

Month 0 1 2 3 4 5 6 7

Sample 1% 100 90 81 72 15 12 4 1

Sample 2% 100 92 79 69 13 9 6 2

Figure 7.19 shows a scatter plot of the actual data points. Between months 3

and 4, the potency of the product declined drastically. Initially, it may seem

wise to create three splines: the first spline covering months 0–3, a

second spline covering months 3–4, and a third spline covering months 4–7.

0

0

20

40

60

80

100

y = % potency

1 2 3 4 5 6 7
x  =  months
        exposure

FIGURE 7.19 Scatter plot of % potency by months of exposure data.
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However, as there are no measurements in the period between months 3 and

4, the rate would be completely ‘‘unknown.’’ So, only for simplifying the

model, a knot was constructed between x¼ 3 and 4, specifically at 3.5, as

shown in the scatter plot (Figure 7.20).

The model generally used is

ŷy0 ¼
X1

j¼0

b0j x j þ
X1

i¼1

bi(x� t1),

but this is a discontinuous fraction, so it must be modified to

ŷy0 ¼
X1

j¼0

b0j x j þ
X1

i¼1

X1

j¼0

bij(x� ti)
j

or

ŷy0 ¼ b00 þ b01xþ b10(x� t1)0 þ b11(x� t1)1,

where
t1 ¼ x ¼ 3:5

(x� t)0 ¼ 0, if x � t1 � 0

1, if x � t1 � 0

�

(x� t)1 ¼ 0, if x � t1 � 0

x� t, if x � t1 > 0

�

:

Table 7.17 presents the input data.
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FIGURE 7.20 Proposed knot, % potency by months of exposure data, Example 7.3.
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TABLE 7.17
Input Data, One Knot and Two Splines, Example 7.3

Row x y (x 2 t)0 (x 2 t)1

1 0 100 0 0.0

2 0 100 0 0.0

3 1 90 0 0.0

4 1 92 0 0.0

5 2 81 0 0.0

6 2 79 0 0.0

7 3 72 0 0.0

8 3 69 0 0.0

9 4 15 1 0.5

10 4 13 1 0.5

11 5 12 1 1.5

12 5 9 1 1.5

13 6 4 1 2.5

14 6 6 1 2.5

15 7 1 1 3.5

16 7 2 1 3.5

TABLE 7.18
Regression Analysis, One Knot and Two Splines, Example 7.3

Predictor Coef St. Dev t-Ratio p

b00 100.300 0.772 129.87 0.000

b01 �9.9500 0.4128 �24.10 0.000

b1 �49.125 1.338 �36.72 0.000

b2 5.6500 0.5838 9.68 0.000

s¼ 1.305 R2¼ 99.9% R2
(adj)¼ 99.9%

Analysis of Variance

Source DF SS MS F P

Regression 3 25277.5 8425.8 4944.25 0.000

Error 12 20.5 1.7

Total 15 25297.9

Source DF SEQ SS

x 1 22819.5

(x� t)0 1 2298.3

(x� t)1 1 159.6

The regression equation is ŷy¼ 100 – 9.95x� 49.1(x� t)0þ 5.65(x� t)1.
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The regression analysis is presented in Table 7.18.

The graphic presentation of the overlaid actual and predicted ŷy0

values against x values are presented in Figure 7.21. Figure 7.22 breaks the

regression into the actual components.

Finally, the data, x, y, ŷy0, and e are presented in Table 7.19. Clearly, this

model fits the data extremely well.

0

0

20

40

60

80

100

y = % potency

1 2 3 4 5 6 7

Variable

x = months
      exposure

y

ŷ  �

FIGURE 7.21 y, x and ŷy 0, x, Example 7.3.

0.0 1.5 3.0 4.5 6.0 7.5

^For x  > 3.5; y � = b00 + b01x + b1 + b2 (x − 3.5)

b01 + b2 = −9.95 + 5.65 = −4.30 = slope, where x  > 3.5

2
22

2

0

35

31.40

70

2
2

2
2

105

x = month

y = % potency

b00 = 100

b01 = −9.95

b10 = −49.125

b

t = knot    x = 3.5

^For x    < 3.5; y � = b00 + b01x

Slope: x < 3.5
b00 − b1 + b2 (x − 3.5)
= 100.3 − 49.125 − 5 .65(3.5)
= 31.40

FIGURE 7.22 Breakdown of model components.
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TABLE 7.19
x, y, ŷ0, and e for One Knot and Two Splines, Example 7.3

n x y ŷ 0 e

1 0 100 100.30 �0.30000

2 0 100 100.30 �0.30000

3 1 90 90.35 �0.35000

4 1 92 90.35 1.65000

5 2 81 80.40 0.60000

6 2 79 80.40 �1.40000

7 3 72 70.45 1.55000

8 3 69 70.45 �1.45000

9 4 15 14.20 0.80000

10 4 13 14.20 �1.20000

11 5 12 9.90 2.10000

12 5 9 9.90 �0.90000

13 6 4 5.60 �1.60000

14 6 6 5.60 0.40000

15 7 1 1.30 �0.30000

16 7 2 1.30 0.70000
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8 Special Topics
in Multiple Regression

INTERACTION BETWEEN THE xi PREDICTOR VARIABLES

Interaction between xi predictor variables is a common phenomenon in

multiple regression practices. Technically, a regression model contains only

independent xi variables and is concerned with the predicted additive effects

of each variable. For example, for the model, ŷy¼ b0 þ b1x1 þ b2x2 þ b3x3 þ
b4x4, the predictor xi components that make up the SSR are additive if

one can add the SSR values for the separate individual regression models

(ŷy¼ b0 þ b1x1; ŷy¼ b0 þ b2x2; ŷy¼ b0 þ b3x3; ŷy¼ b0 þ b4x4), and their sum

equals the SSR of the full model. This condition rarely occurs in practice, so it

is important to add interaction terms to ‘‘check’’ for significant interaction

effects. Those interaction terms that are not significant can be removed.

For example, in the equation, ŷy¼ b0 þ b1x1 þ b2x2 þ b3x1x2, the inter-

action term is

x1x2: (8:1)

In practice, if the interaction term is not statistically significant at the chosen

a, the SSR contribution of that variable is added to the SSE term, as well as its

one degree of freedom lost in adding the interaction term.

The key point is, when interaction is significant, the bi regression coeffi-

cients involved no longer have independent and individual meaning; instead,

their meaning is conditional. Take the equation:

ŷy ¼ b0 þ b1x1 þ b2x2, (8:2)

b1, in this equation, represents the amount of change in the mean response, y,

due to a unit change in x1, given x2 is held constant.

But in Equation 8.3, b1 now is not the change in y for a unit change in x1,

holding x2 constant:

y ¼ b0 þ b1x1 þ b2x2 þ b3x1x3: (8:3)
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Instead, b1 þ b3x2 is the mean response change in y for a unit change in x1,

holding x2 constant. Additionally, b2 þ b3x1 is the change in the mean

response of y for a unit change in x2, holding x1 constant. This, in essence,

means that the effect of one xi predictor variable depends in part on the level

of the other predictor xi variable, when interaction is present.

To illustrate this, suppose we have a function, y¼ 1 þ 2x1 þ 3x2. Suppose

there are two levels of x2: x2¼ 1 and x2¼ 2. The regression function with two

values of x2 is plotted in Figure 8.1. The model is said to be additive, for the y
intercepts change but not the slopes; they are parallel. Hence, no interaction exists.

Now, suppose we use the same function with the interaction present. Let

us assume that b3¼�0.50, y¼ 1 þ 2x1 þ 3x2 � 0.50x1x2, and x2¼ 1 and 2

again. Note that both the intercepts and the slopes differ (Figure 8.2).

Neither the slopes are parallel, nor are the intercepts equal. In cases of

interaction, the intercepts can be equal, but the slopes will always differ. That

is, interaction is present because the slopes are not parallel. Figure 8.3

portrays the general patterns of interaction through scatterplots.

The practical aspect of interaction is that it does not make sense to discuss

a regression in terms of one xi without addressing the other xis that are

affected in the interaction. Conditional statements, not blanket statements,

can be made. As previously mentioned, it is a good idea to check for

interaction by including interaction terms. To do this, one just includes the

possible combinations of the predicted variables, multiplying them to get their

cross-products.
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y = 1 + 2x1 + 3(2), where x2 = 2

y = 1 + 2x1 + 3(1), where x2 = 1

y

x1

2 3 4 5 6 7 8 9 10

FIGURE 8.1 Additive model, no interaction.
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y = 1 + 2x1 + 3x2 − 5x1x2, x2 = 1

y = 1 + 2x1 + 3x2 − 5x1x2, x2 = 2

FIGURE 8.2 Nonadditive model, interaction present.
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FIGURE 8.3 Other views of interaction.
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For example, suppose there are two predictors, x1 and x2. The complete

model, with interaction, is:

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x1x2:

Often the interaction term is portrayed as a separate predictor variable, say,

x3, where x3¼ x1 � x2, or as a z term, where z1¼ x1 � x2.

The use of the partial F-test is also an important tool in interaction

determination. If F(x3jx1, x2) is significant, for example, then significant

interaction is present, and the x1 and x2 terms are conditional. That is, one

cannot talk about the effects of x1 without taking x2 into account. Suppose

there are three predictor variables, x1, x2, and x3. Then, the model with all

possible interactions is:

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x6 þ b7x7

where x4¼ x1 x2, x5¼ x1 x3, x6¼ x2 x3, x7¼ x1 x2 x3.

Each of the two-way interactions can be evaluated using partial F-tests, as

can the three-way interaction.

If F(x7jx1, x2, x3, x4, x5, x6) is significant, then there is significant three-way

interaction. Testing two- and three-way interaction is so easy with current

statistical software that it should be routinely done in all model-building.

CONFOUNDING

Confounding occurs when there are variables of importance that influence

other measured predictor variables. Instead of the predictor variable measur-

ing Effect X, for example, it also measures Effect Y. There is no way to

determine to what degree Effects X and Y contribute independently as well as

together, so they are said to be confounded, or mixed. For example, in

surgically associated infection rates, suppose that, unknown to the researcher,

5% of all patients under 60 years of age, but otherwise healthy, develop

nosocomial infections, 10% of patients of any age who suffer immune-

compromising conditions do, and 20% of all individuals over 80 years old

do. Confounding occurs when the under 60-year-old group, the immunocom-

promised group, and the over 60-year-old group are lumped together in one

category. This can be a very problematic situation, particularly if the re-

searcher makes rather sweeping statements about nosocomial infections, as

if no confounding occurred. However, at times, a researcher may identify

confounding factors, but combines the variable into one model to provide a

generalized statement, such as ‘‘all surgical patients’’ develop nosocomial

infections.

Example 8.1: In a preoperative skin preparation evaluation, males and

females are randomly assigned to test products and sampled before antimicrobial

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C008 Final Proof page 280 16.11.2006 8:04pm

280 Handbook of Regression and Modeling



treatment (baseline), as well as 10 min and 6 h postantimicrobial treatment.

Figure 8.4 provides the data collected in log10 colony count scale, with both

sexes pooled in a scatter plot.

The baseline average is 5.52 log10. At 10 min posttreatment, the average is

3.24 log10, and at 360 min (6 h), the average is 4.55 log10. The actual log10

values separated between males and females are provided in Table 8.1.

Figure 8.5 and Figure 8.6 present the data from male and female subjects,

respectively.

When the averages are plotted separately (see Figure 8.7), one can see that

they provide a much different picture than that of the averages pooled. Sex of

the subject was confounding in this evaluation. Also, note the interaction. The

slopes of A and B are not the same at any point. We will return to this example

when we discuss piecewise linear regression using dummy variables.

However, in practice, sometimes confounding is unimportant. What if it

serves no purpose to separate the data on the basis of male and female? The

important point is to be aware of confounding predictor variables.

UNEQUAL ERROR VARIANCES

We have discussed transforming y and x values to linearize them, as well as

removing effects of serial correlation. But transformations can also be valu-

able in eliminating nonconstant error variances. Unequal error variances are

often easily determined by a residual plot. For a simple linear regression,

ŷy¼ b0 þ b1 x1 þ e, the residual plot will appear similar to Figure 8.8, if a

constant variance is present.

Because the e values are distributed relatively evenly around ‘‘0,’’ there is

no detected pattern of increase or decrease in the residual plot. Now view

Figure 8.9a and Figure 8.9b. The residual errors get larger in Figure 8.9a and

smaller in Figure 8.9b, as the x values increase.

0
Baseline

3.0

4.5

6.0

1
8
5
1
1
4
8
1
1

1

1
1
+
3
1
4
4
2
1
1

1

2
5
7
+
4
1

10 min x min
360 min (6 h)

Lo
g 1

0 
y 

co
un

ts

FIGURE 8.4 Plot of baseline and 10 min, 3 h, and 6 h samples, Example 8.1.
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TABLE 8.1
Log10 Colony Counts, Example 8.1

n Minute Males Females

1 0 6.5 4.9

2 0 6.2 4.3

3 0 6.0 4.8

4 0 5.9 5.2

5 0 6.4 4.7

6 0 6.1 4.8

7 0 6.2 5.1

8 0 6.0 5.2

9 0 5.8 4.8

10 0 6.2 4.9

11 0 6.2 5.3

12 0 6.1 4.8

13 0 6.2 4.9

14 0 6.3 5.0

15 0 6.4 4.5

16 10 3.2 4.7

17 10 3.5 3.2

18 10 3.0 3.5

19 10 3.8 3.6

20 10 2.5 3.1

21 10 2.9 2.7

22 10 3.1 3.1

23 10 2.8 3.1

24 10 3.5 3.5

25 10 3.1 3.8

26 10 2.8 3.4

27 10 3.4 3.4

28 10 3.1 3.4

29 10 3.3 2.6

30 10 3.1 2.9

31 360 5.2 3.5

32 360 4.8 3.8

33 360 5.2 4.0

34 360 4.7 3.8

35 360 5.1 4.1

36 360 5.3 4.1

37 360 5.7 4.3

38 360 4.5 5.0

39 360 5.1 5.1

40 360 5.2 4.1

41 360 5.1 4.0

(continued)
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A simple transformation procedure can often remove the unequal scatter

in e. But this is not the only procedure available; weighted least-squares

regression can also be useful.

RESIDUAL PLOTS

Let us discuss more about residual plots. Important plots to generate in terms

of residuals include:

1. The residual values, yi � ŷyi¼ ei, plotted against the fitted values, ŷyi.

This residual scatter graph is useful in:

a. portraying the differences between the predicted ŷy and the actual yi,

which is the eis, and the predicted ŷyi values,

TABLE 8.1 (continued)
Log10 Colony Counts, Example 8.1

n Minute Males Females

42 360 5.2 3.3

43 360 5.1 4.8

44 360 5.0 2.9

45 360 5.1 3.5

0 ¼ baseline prior to treatment.

10 ¼ 10 min posttreatment sample.

360 ¼ 360 min (6 h) posttreatment sample.
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FIGURE 8.5 Log10 colony counts with averages for males, Example 8.1.
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b. the randomness of the error term, ei, and

c. outliers or large eis.

2. Additionally, the ei values should be plotted against each xi predictor

variable. This plot can often present patterns, such as seen in Plot a and

Plot b of Figure 8.9. Also, the randomness of the error terms vs. the

predictor variables and outliers can usually be visualized.

3. Residuals can be useful in model diagnostics in multiple regression by

plotting interaction terms.

4. A plot of the absolute ei, or jeij, as well as e2
i against ŷyi can also be

useful for determining the consistency of the error variance. If non-

uniformity is noted in the above plots, plot the jeij and e2
i against each

xi predictor variable.
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FIGURE 8.6 Log10 colony counts with averages for females, Example 8.1.
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FIGURE 8.7 Male and female sample averages, Example 8.1.
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Several formal tests are available to evaluate whether the error variance

is constant.

MODIFIED LEVENE TEST FOR CONSTANT VARIANCE

This test for constant variance does not depend on the error terms (ei) being

normally distributed. That is, the test is very robust, even if the error terms are

not normal, and is based on the size of the yi � ŷyi¼ ei error terms. The larger

the e2
i , the larger the s2

y . Because a large s2
y value may be due to a constant

variance, the data set is divided into two groups, n1 and n2. If, say, the

variance is increasing as the xi values increase, then the
P

e2
i lower values

of n1 should be less than the
P

e2
i upper values of n2.

0

x

e = y  − y^

FIGURE 8.8 Residual plot of constant variance.

e e

x x(a) (b)

0 0

FIGURE 8.9 Residual plots of nonconstant variances.
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PROCEDURE

To perform this test, the data are divided into two groups—one in which the xi

predictor variables are low, the other in which predictor variables are high

(Figure 8.10).

Although the test can be conducted for multiple xi predictor variables at

once, it also generally works well using only one xi predictor, given the

predictor is significant through the partial F-test for being in the model. The

goal is simple: to detect the increase or the decrease of ei values with a

magnitude increase of the xi. To keep the test robust, the absolute or positive

values of the eis are used. The procedure involves a two-sample t-test to

determine whether the mean of the absolute difference of one group is

significantly different from the mean of the absolute difference of the other.

The absolute deviations usually are not normally distributed, but they can be

approximated by the t distribution when the sample size of each group is not

too small, say, both n1 > 10 and n2 > 10.

Let ei1¼ the ith residual from the n1 group of lower values of xi, and

ei2¼ the ith residual for the n2 group of higher values of xi.

n1¼ sample size of the lower xi group

n2¼ sample size of the upper xi group

e01¼median of the lower ei group

e02¼median of the upper ei group

di1¼ jei1 � e01j ¼ absolute deviation of the lower xi group

di2¼ jei2 � e02j ¼ absolute deviation of the upper xi group

x  Lower values
n1

x  Higher values
n2

x

FIGURE 8.10 High predictor variables vs. low predictor variables.
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The test statistic is

tc ¼
�dd1 � �dd2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=n1)þ (1=n2)

p , (8:4)

where

s2 ¼

Pn1

i¼1

di1 � �dd1ð Þ2þ
Pn2

i¼1

di2 � �dd2ð Þ2

n1 þ n2 � 2
: (8:5)

If tc > tt(a,n1þn2�2), reject H0.

Let us work out an example (Example 8.2). In a drug stability evaluation,

an antimicrobial product was held at ambient temperature (~688F) for 12

months. The potency (%) through HPLC was measured, 106 colony-forming

units (CFU) of Staphylococcus aureus (methicillin-resistant) were exposed to

the product for 2 min, and the microbial reductions (log10 scale) were

measured. Table 8.2 provides the data.

The proposed regression model is:

ŷy ¼ b0 þ b1x1 þ b2x2 þ e

where ŷy¼% potency, x1¼month of measurement, and x2¼microbial log10

reduction value.

The regression model parameters are presented in Table 8.3. and the

regression evaluation of the data in Table 8.2 are presented in Table 8.4.

We will consider x1 (months) as the main predictor value with the greatest

value range, 1 through 12. Note, by a t-test, each independent predictor

variable is highly significant in the model (p < 0.01). A plot of the eis vs.

x1, presented in Figure 8.11, demonstrates, by itself, a nonconstant variance.

Often, this pattern is masked by extraneous outlier values. The data should be

‘‘cleaned’’ of these values to better see a nonconstant variance situation, but

often the Modified Levene will identify a nonconstant variance, even in the

presence of the ‘‘noise’’ of outlier values.

Without even doing a statistical test, it is obvious that, as months go by,

the variability in the data increases. Nevertheless, let us perform the Modified

Levene Test.

First, divide the data into two groups, n1 and n2, consisting of both y and xi

data points. One does not have to use all the data points; a group of the first

and last will suffice. So, let us use the first three and the last three months

(Table 8.5).

Group 1¼ first three months

Group 2¼ last three months
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TABLE 8.2
Time-Kill Data, Example 8.2

y (Potency%) x1 (Month) x2 (Log10 kill)

100 1 5.0

100 1 5.0

100 1 5.1

100 2 5.0

100 2 5.1

100 2 5.0

98 3 4.8

99 3 4.9

99 3 4.8

97 4 4.6

96 4 4.7

95 4 4.6

95 5 4.7

87 5 4.3

93 5 4.4

90 6 4.0

85 6 4.4

82 6 4.6

88 7 4.5

84 7 3.2

88 7 4.1

87 8 4.4

83 8 4.5

79 8 3.6

73 9 4.0

86 9 3.2

80 9 3.0

81 10 4.2

83 10 3.1

72 10 2.9

70 11 2.3

88 11 3.1

68 11 1.0

70 12 1.0

68 12 2.1

52 12 0.3

y ¼ potency, the measure of the kill of Staphylococcus aureus

following a 2 min exposure; 100% ¼ fresh product � 5 log10

reduction.

x1 ¼ month of test ¼ end of month.

x2 ¼ log10 reduction in a 106 CFU population of S. aureus in 2 min.
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TABLE 8.3
Time-Kill Data, Including Predicted y, x1, x2, ŷy , and ei 5 y 2 ŷy ,

Example 8.2

n y x1 x2 ŷy e

1 100 1 5.0 101.009 �1.0089

2 100 1 5.0 101.009 �1.0089

3 100 1 5.1 101.009 �1.4390

4 100 2 5.0 99.261 0.7393

5 100 2 5.1 99.691 0.3092

6 100 2 5.0 99.261 0.7393

7 98 3 4.8 96.652 1.3476

8 99 3 4.9 97.083 1.9175

9 99 3 4.8 96.652 2.3476

10 97 4 4.6 94.044 2.9559

11 96 4 4.7 94.474 1.5258

12 95 4 4.6 94.044 0.9559

13 95 5 4.7 92.726 2.2739

14 87 5 4.3 91.006 �4.0057

15 93 5 4.4 91.436 1.5642

16 90 6 4.0 87.967 2.0328

17 85 6 4.4 89.688 �4.6876

18 82 6 4.6 90.548 �8.5478

19 88 7 4.5 88.370 �0.3696

20 84 7 3.2 82.778 1.2217

21 88 7 4.1 86.649 1.3508

22 87 8 4.4 86.191 0.8086

23 83 8 4.5 86.621 �3.6215

24 79 8 3.6 82.751 �3.7506

25 73 9 4.0 82.723 �9.7229

26 86 9 3.2 79.282 6.7179

27 80 9 3.0 78.422 1.5781

28 81 10 4.2 81.835 �0.8350

29 83 10 3.1 77.104 5.8962

30 72 10 2.9 76.244 �4.2436

31 70 11 2.3 71.915 �1.9149

32 88 11 3.1 75.356 12.6443

33 68 11 1.0 66.324 1.6764

34 70 12 1.0 64.575 5.4245

35 68 12 2.1 69.307 �1.3066

36 52 12 0.3 61.565 �9.5648
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The e01¼median of error in lower group¼ 0.73927, and e02¼median of

error in upper group¼�0.83495.

n1 d1 ¼ ei1 � e01
�
�

�
�, e01 ¼ 0:73927 n2 d2 ¼ ei2 � e02

�
�

�
�, e02 ¼ �0:83495

1 1.74813 10 0.00000

1 1.74813 10 6.7311

1 2.17823 10 3.4087

2 0.00000 11 1.0800

2 0.43011 11 13.4792

2 0.00000 11 2.5113

3 0.60832 12 6.2595

3 1.17822 12 0.4716

3 1.60832 12 8.7298

Sum the errors

(absolute value)

P
ei1 � e01
�
�

�
� ¼ 9:4995

P
ei1 � e02
�
�

�
� ¼ 42:671

TABLE 8.4
Regression Evaluation, Example 8.2

Predictor Coef St. Dev t-Ratio p

b0 81.252 6.891 11.79 0.000

b1 �1.7481 0.4094 �4.27 0.000

b2 4.301 1.148 3.75 0.001

s ¼ 4.496 R2 ¼ 86.5% R2
(adj) ¼ 85.7%

Source DF SS MS F p

Regression 2 4271.9 2135.9 105.68 0.000

Error 33 667.0 20.2

Total 35 4938.9

The regression equation is ŷy ¼ 81.3 � 1.75x1 þ 4.30x2.

∗ ∗
∗

∗ ∗

∗

∗
∗

∗ ∗

∗
∗

∗
∗

∗
∗

∗

∗

∗∗

∗

∗

∗

2.0 4.0 6.0 8.0 10.0

2

2222

3

7.0

ei

0.0

−7.0

x = (min)

FIGURE 8.11 eis vs. x1 plot, Example 8.2.
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Next, find the average error difference, �ddi:

�ddi ¼
P

eij � e0j

�
�
�

�
�
�

ni

�dd1 ¼
9:4995

9
¼ 1:0555

�dd2 ¼
42:671

9
¼ 4:7413

Next, we will perform the six-step procedure to test whether the two groups

are different in error term magnitude.

TABLE 8.5
x1 Data for First Three Months and Last Three Months, Example 8.2

Group 1 (first three months) Group 2 (last three months)

n1 y x1 n2 y x1

1 100 1 1 81 10

2 100 1 2 83 10

3 100 1 3 72 10

4 100 2 4 70 11

5 100 2 5 88 11

6 100 2 6 68 11

7 98 3 7 70 12

8 99 3 8 68 12

9 99 3 9 52 12

Error Group 1 Error Group 2

n1 xi1 ei1 n2 xi2 ei2

1 1 �1.00886 1 10 �0.8350

2 1 �1.00886 2 10 5.8962

3 1 �1.43896 3 10 �4.2436

4 2 0.73927 4 11 �1.9149

5 2 0.30916 5 11 12.6443

6 2 0.73927 6 11 1.6764

7 3 1.34759 7 12 5.4245

8 3 1.91749 8 12 �1.3066

9 3 2.34759 9 12 �9.5648
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Step 1: State the test hypothesis.

H0: �dd1¼ �dd2, the mean differences of the two groups are equal (constant

variance)

HA: �dd1 6¼ �dd2, the above is not true (nonconstant variance)

Step 2: Determine the sample size and set the a level.

n1¼ n2¼ 9, and a¼ 0.05

Step 3: State the test statistic to use (Equation 8.4).

tc ¼
�dd1 � �dd2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q :

Step 4: State the decision rule. This is a two-tail test, so if jtcj > jttj, reject H0

at a¼ 0.05.

tt ¼ ttabled ¼ t(a=2; n1 þ n2 � 2) ¼ t(0:05=2; 9þ 9� 2)

tt¼ t(0.025; 16)¼ 2.12 (Table B).

Step 5: Compute the test statistic (Equation 8.5). First, we must find s,

where

s2 ¼
P

di1 � �dd1ð Þ2þ
P

di2 � �dd2ð Þ2

n1 þ n2 � 2

In Tabular Form:

di1 � �dd1ð Þ2 di2 � �dd2ð Þ2

0.47973 22.4799

0.47973 3.9593

1.26053 1.7758

1.11407 13.4053

0.39111 76.3514

1.11407 4.9727

0.19997 2.3048

0.01506 18.2300

0.30561 15.9085

P
di1 � �dd1ð Þ2¼ 5:3599 159:3877 ¼

P
di2 � �dd2ð Þ2

s2 ¼ 5:3599þ 159:3877

9þ 9� 2
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s2¼ 10.2968, and s¼ 3.2089 (Equation 8.4)

tc ¼
1:0555� 4:7413

3:2089

ffiffiffiffiffiffiffiffiffiffiffi
1

9
þ 1

9

r

tc ¼� 2.4366

jtcj ¼ 2.4366

Step 6: Draw the conclusion.

Because jtcj ¼ 2.4366 > jttj ¼ 2.12, reject H0. The variance is not constant at

a¼ 0.05. In practice, the researcher would probably not want to transform the

data to make a constant variance. Instead, the spreading pattern exhibited in

Figure 8.11 alerts the researcher that the stability of the product is deteriorating

at a very uneven rate. Not only is the potency decreasing, it is also decreasing at

an increasingly uneven rate. One can clearly see this from the following:

X
d1 � �dd1ð Þ2<

X
d2 � �dd2ð Þ2

BREUSCH–PAGAN TEST: ERROR CONSTANCY

This test is best employed when the error terms are not highly serially

correlated, either by assuring this with the Durbin–Watson test or after the

serial correlation has been corrected. It is best used when the sample size is

large, assuring normality of the data.

The test is based on the relationship of the s2
i to the ith level of x in the

following way:

‘n s2
i ¼ f0 þ f1xi

The equation implies that s2
i increases or decreases with xi, depending on the

sign (‘‘þ’’ or ‘‘�’’) of f1. If f1¼ ‘‘�,’’ the s2
i values decrease with xi. If

f1¼ ‘‘þ,’’ the s2
i values increase with xi. If f1� 0, then the variance is constant.

The hypothesis is:

H0: f1 ¼ 0

HA: f1 6¼ 0

The n must be relatively large, say, n > 30, and the ei values normally

distributed.

The test statistic, a Chi-Square statistic, is:

x2
c ¼

SSRM

2
� SSE

n

� �2

: (8:6)
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For one xi predictor variable, in cases of simple linear regression, e2
i equals

the squared residual (yi � ŷy)2, as always. Let SSRM
equal the sum of squares

regression on the e2
i vs. the xi. That is, the value, yi � ŷyð Þ2¼ e2

i , is used as the

y, or predictor value in this test. The ei values are squared, and a simple linear

regression is performed to provide the SSRM
term. The SSE term is the sum of

squares error of the original equation, where e2
i is not used as the dependent

variable. The Chi-Square test statistic tabled value, x2
t , has one degree of

freedom, x2
t(a,1). If x2

c > x2
t , reject H0 at a.

We will use the data from Example 8.2 and do the test using xi again, or yi,

where x¼month and y¼ potency%.

Step 1: State the test hypothesis.

H0: f1¼ 0 (variance is constant)

HA: f1 6¼ 0 (variance is not constant)

Step 2: Set a¼ 0.05, and n¼ 36.

Step 3: The test statistic is x2
c ¼

SSRM

2
� SSE

n

� �2

Step 4: State the decision rule.

If x2
c > xt(a,1) ¼ xt(0:05,1) ¼ 3:841 (Chi Square Table, Table L), reject H0

at a¼ 0.05.

Step 5: Compute the statistic (Table 8.6), ŷy¼ b0 þ b1 x1

The next step is to calculate the ei values and square them (Table 8.7).

Table 8.8 presents the regression results, e2
i ¼ b0 þ b1x1.

We now have the data needed to compute x2
c

x2
c ¼

SSRM

2
� SSE

n

� �2

TABLE 8.6
Regression Evaluation, y 5 Potency % and x1 5 Month, Example 8.2

Predictor Coef St. Dev t-Ratio p

b0 106.374 1.879 56.61 0.000

b1 �3.0490 0.2553 � 11.94 0.000

s ¼ 5.288 R2 ¼ 80.7% R2
(adj) ¼ 80.2%

Source DF SS MS F p

Regression 1 3988.0 3988.0 142.60 0.00

Error 34 950.9 28.0

Total 35 4938.9

The regression equation is ŷy ¼ 106 � 3.05x1.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C008 Final Proof page 294 16.11.2006 8:04pm

294 Handbook of Regression and Modeling



SSRM
is SSR of the regression e2¼ b0 þ b1x (Table 8.8).

SSRM
¼ 24132

SSE is the sum-squared error from the regression of ŷy¼ b0 þ b1x1

(Table 8.6).

TABLE 8.7
Values of e2

i , Example 8.2

n e2
i ¼ (y � ŷy)2 xi

1 11.054 1

2 11.054 1

3 11.054 1

4 0.076 2

5 0.076 2

6 0.076 2

7 0.598 3

8 3.144 3

9 3.144 3

10 7.964 4

11 3.320 4

12 0.676 4

13 14.985 5

14 17.048 5

15 3.501 5

16 3.686 6

17 9.487 6

18 36.967 6

19 8.814 7

20 1.063 7

21 8.814 7

22 25.179 8

23 1.036 8

24 8.893 8

25 35.203 9

26 49.940 9

27 1.138 9

28 26.171 10

29 50.634 10

30 15.087 10

31 8.039 11

32 229.969 11

33 23.380 11

34 0.046 12

35 3.191 12

36 316.353 12
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SSE¼ 950.9

n¼ 36

x2
c ¼

24132

2
� 950:9

36

� �2

¼ 17:29

Step 6: Decision.

Because x2
c(17:29) > x2

t ¼ (3:841), conclude that the f1 value is not constant,

so a significant nonconstant variance is present, at a¼ 0.05.

FOR MULTIPLE xi VARIABLES

The same basic formula is used (Equation 8.6). The yi � ŷy¼ ei values are

taken from the entire or full model, but the e2
i values are regressed only on the

xi predictor variables to be evaluated or, if the entire model is used, all are

regressed.

e2
i vs: (xi, xiþ1, . . . , xk)

The SSRM
is the sum of squares regression with the xi values to be evaluated in

the model, and the SSE is from the full model, xi, xiþ1, . . . , xk.

x2
t ¼ x2

t(a, q), where q is the number of xi variables in the SSRM
model.

The same hypothesis is used, and the null hypothesis is rejected if

x2
c > x2

t .

Using the data from Table 8.2 and all xi values, the regression equation is:

ŷy ¼ b0 þ b1x1 þ b2x2,

where y¼ potency%, x1¼month, and x2¼ log10 kill.

TABLE 8.8
Regression Analysis of e2

i ¼ b0 þ b1x1, Example 8.2

Predictor Coef St. Dev t-Ratio p

b0 �22.34 20.65 �1.08 0.287

b1 7.500 2.806 2.67 0.011

s ¼ 58.13 R2 ¼ 17.4% R2
(adj) ¼ 14.9%

Source DF SS MS F p

Regression 1 24132 24132 7.14 0.011

Error 34 114881 3379

Total 35 139013

The regression equation is e2 ¼ 22.3 þ 7.50x1.
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The six-step procedure follows.

Step 1: State the test hypothesis:

H0: f1 ¼ 0 (variance is constant)

HA: f1 6¼ 0 (variance is nonconstant)

Step 2: Set a and the sample size, n:

a¼ 0.05, and n¼ 36

Step 3: Write out the test statistic (Equation 8.6):

x2
c ¼

SSRM

2
� SSE

n

� �2

Step 4: Decision rule:

If x2
c > x2

t(a, q) ¼ x2
t(0:05, 2) ¼ 5:991 (Table L), reject H0 at a¼ 0.05.

Step 5: Compute the statistic:

Table 8.4 presents the regression, ŷy¼ 81.3� 1.75x1� 4.30x2, where

y¼ potency %, x1¼month, and x2¼ log10 kill.

Next, the regression, êe2
i ¼ b0 þ b1x1 þ b2x2 is computed using the data in

Table 8.9.

The regression of e2¼ b0 þ b1x1 þ b2x2 is presented in Table 8.10.

x2
c ¼

SSRM

2
� SSE

n

� �2

SSRM
is the SSR of the regression, e2¼ b0 þ b1x1 þ b2x2 (Table 8.10).

SSRM
¼ 7902

SSE¼ from the regression of ŷy¼ b0 þ b1x1 þ b2x2 (Table 8.4).

SSE¼ 667

n¼ 36

x2
c ¼

7902

2

� �

� 667

36

� �2

¼ 11:51

Step 6:

Because x2
c ¼ (11:51) > x2

t (5:991), reject H0 at a¼ 0.05. The variance is

nonconstant.

Again, the researcher probably would be very interested in the increasing

variance in this example. The data suggest that, as time goes by, not only does

the potency diminish, but also with increasing variability. This could flag the

researcher to sense a very serious stability problem. In this case, transforming

the data to stabilize the variance may not be useful. That is, there should be a
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practical reason for transforming the variance to stabilize it, not just for

statistical reasons.

Before proceeding to the weighted least squares method, we need to

discuss a basic statistical procedure that will be used in weighted regression.

TABLE 8.9
Values of e2

i , Example 8.2

Row e2
i x1 x2

1 1.018 1 5.0

2 1.018 1 5.0

3 2.071 1 5.1

4 0.547 2 5.0

5 0.096 2 5.1

6 0.547 2 5.0

7 1.816 3 4.8

8 3.677 3 4.9

9 5.511 3 4.8

10 8.737 4 4.6

11 2.328 4 4.7

12 0.914 4 4.6

13 5.171 5 4.7

14 16.045 5 4.3

15 2.447 5 4.4

16 4.132 6 4.0

17 21.974 6 4.4

18 73.066 6 4.6

19 0.137 7 4.5

20 1.493 7 3.2

21 1.825 7 4.1

22 0.654 8 4.4

23 13.115 8 4.5

24 14.067 8 3.6

25 94.534 9 4.0

26 45.131 9 3.2

27 2.491 9 3.0

28 0.697 10 4.2

29 34.765 10 3.1

30 18.009 10 2.9

31 3.667 11 2.3

32 159.878 11 3.1

33 2.810 11 1.0

34 29.425 12 1.0

35 1.707 12 2.1

36 91.485 12 0.3
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VARIANCE STABILIZATION PROCEDURES

There are many cases in which an investigator will want to make the variance

constant. Recall, when a variance, s2, is not constant, the residual plot will

look like Figure 8.12.

The transformation of the y values depends upon the amount of curvature

the procedure induces. The Box–Cox transformation ‘‘automatically finds the

correct transformation,’’ but it requires an adequate statistical software pack-

age and should not only be used as the final answer, but also should be

checked. The same strategy is used in Applied Statistical Designs for the
Researcher (Paulson, 2003). But from an iterative perspective, Montgomery

et al. also present a useful variance standardizing schema.

Relationship of s2 to E(y) y 0 5 y Transformation

s2 � constant y0 ¼ y (no transformation needed)

s2 ¼ E(y) y0 ¼ ffiffiffi
y
p

(significant transformation as in Poisson data)

s2 ¼ E(y)[1 � E(y)] y0 ¼ sin�1 (
ffiffiffi
y
p

) where 0 � yi � 1 (binomial data)

s2 ¼ [E(y)]2 y0 ¼ ‘n(y)

s2 ¼ [E(y)]3 y0 ¼ y�
1
2 (reciprocal square root transformation)

s2 ¼ [E(y)]4 y0 ¼ y�1 (reciprocal transformation)

Once a transformation is determined for the regression, substitute y0 for y and

plot the residuals. The process is an iterative one. It is particularly important

to correct a nonconstant s2 when providing confidence intervals for predic-

tion. The least squares estimator will still be unbiased, but no longer for a

minimum variance probability.

TABLE 8.10
Regression Analysis of e2

i ¼ b0 þ b1x1 þ b2x2, Example 8.2

Predictor Coef St. Dev t-Ratio p

b0 �25.29 48.99 �0.52 0.609

b1 5.095 2.911 1.75 0.089

b2 2.762 8.160 0.34 0.737

s ¼ 31.96 R-sq ¼ 19.0% R2
(adj) ¼ 14.1%

Source DF SS MS F p

Regression 2 7902 3951 3.87 0.031

Error 33 33715 1022

Total 35 41617

The regression equation is e2 ¼ �25.3 þ 5.10x1 þ 2.76x2.
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WEIGHTED LEAST SQUARES

Recall that the general regression form is

Yi ¼ b0 þ b1x1 þ � � � þ bkxk þ «i

The variance–covariance matrix is

s
n�n

2(«) ¼

s2
1 0 . . . 0

0 s2
2 . . . 0

..

. ..
.

. . . ..
.

0 0 . . . s2
n

2

6
6
6
6
4

3

7
7
7
7
5
: (8:7)

When the errors are not consistent, the bi values are unbiased, but no longer

portray the minimum variance. One must take into account that the different

yi observations for the n cases no longer have the same or constant reliability.

The errors can be made constant by a weight assignment process, converting

the s2
i values by a 1/wi term, where the largest s2

i values—those with the most

imprecision—are assigned the least weight.

The weighting process is merely an extension of the general variance–

covariance matrix of the standard regression model, where w¼weight values,

1=wi, as diagonals and all other element values are 0, as in Equation 8.7.

Given that the errors are not correlated, but only unequal, the variance–

covariance matrix can be made of the form:

s2F ¼ s 2

1
w1

0 � � � 0

0 1
w2
� � � 0

..

. ..
.
� � � ..

.

0 0 � � � 1
wn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: (8:8)

e e

x x

0 0

(a) (b)

or

FIGURE 8.12 Residual plots: proportionally nonconstant variables.
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F is a diagonal matrix, and likewise is w, containing the weights, w1, w2, . . . ,

wn. Similar to the normal least squares equation, the weighted least squares

equation is of the form:

b̂bw ¼ (X0wX)�1X0wY: (8:9)

Fortunately, the weighted least squares estimators can easily be computed

from standard software programs, where w is an n � n weight matrix

w
n�n
¼

w1 0 � � � 0

0 w2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � wn

2

6
6
6
6
4

3

7
7
7
7
5
:

Otherwise, one can multiply each of the ith observed values, including the

ones in the x0 column, by the square root of the weight for that observation.

This can be done for the xis and the yis. The standard least squares regression

can then be performed. We will designate this standard data form of trans-

formed values as S and Y:

S ¼

1 x11 � � � x1k

1 x22 � � � x2k

..

. ..
. ..

. ..
.

1 xn1 � � � xnk

2

6
6
6
6
4

3

7
7
7
7
5

Y ¼

y1

y2

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5
: (8:10)

Each xi and yi value in each row is multiplied by
ffiffiffiffiffi
wi
p

, the square root of

the selected weight, to accomplish the transformation. The weighted trans-

formation is

Sw ¼

1
ffiffiffiffiffiffi
w1
p

x11
ffiffiffiffiffiffi
w1
p � � � xk

ffiffiffiffiffiffi
w1
p

1
ffiffiffiffiffiffi
w2
p

x21
ffiffiffiffiffiffi
w2
p � � � x2k

ffiffiffiffiffiffi
w2
p

..

. ..
. ..

. ..
.

1
ffiffiffiffiffiffi
wn
p

xn1
ffiffiffiffiffiffi
wn
p � � � xnk

ffiffiffiffiffiffi
wn
p

2

6
6
6
6
6
4

3

7
7
7
7
7
5

x0 x1 ��� xk

Yw ¼

y1
ffiffiffiffiffiffi
w1
p

y2
ffiffiffiffiffiffi
w2
p

..

.

yn
ffiffiffiffiffiffi
wn
p

2

6
6
6
6
4

3

7
7
7
7
5

yi

:

The final formula is

b̂bw ¼ S0wSwð Þ�1
S0wYw ¼ (X0wX)X0wY: (8:11)
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The weights follow the form, wi ¼ 1=s2
i , but the s2

i values are unknown, as

are the proper wis. Recall that a large s2
i is weighted less (by a smaller value)

when compared with a smaller s2
i . This is reasonable, for the larger the

variance, the less precise or certain one is.

ESTIMATION OF THE WEIGHTS

There are two general ways to estimate the weights:

1. when the eis are increasing or decreasing by a proportional amount, and

2. regression of the ei terms.

1. Proportionally increasing or decreasing ei terms. Figure 8.12a is a

pattern often observed in clinical trials of antimicrobial preoperative skin

preparations and surgical handwash formulations. That is, the initial baseline

population samples are very precise, but as the populations of bacteria

residing on the skin decline posttreatment, the precision of the measurement

decays. Hence, the error term ranges are small initially but increase over time.

So, if s2
3 is three times larger than s2

1, and s2
2 is two times larger than s2

1, a

possible weight choice would be: w1¼ 1, w2¼ 1
2
, and w3¼ 1

3
. Here, the

weights can easily be assigned.

Figure 8.12b portrays the situation encountered, for example, when new

methods of evaluation are employed, or new test teams work together.

Initially, there is much variability but, over time, proficiency is gained,

reducing the variability.

Although this is fine, one still does not know the s2
i terms for each of the

measurements. The s2
i values are an estimate of s2

i at the ith data point. The

absolute value of ei is an estimator of si—that is, jeij ¼si, or
ffiffiffiffiffi
s2

i

p
.

The actual weight formula to use is

wi ¼ c
1

s2
i

� �

¼ c
1

e2
i

, (8:12)

where c¼ proportional constant and unknown, s2
i ¼ variance at a specific xi,

and e2
i ¼ estimated variance at xi.

Using this schema allows one to use Equation 8.9 in determining b̂bw.

The weighted least squares variance–covariance matrix is

s2 b̂bw

� �
¼ s2 X0wXð Þ�1

: (8:13)

One does not know the actual value of c, so s2 ( b̂bw) is estimated by

s2 bwð Þ ¼ MSEw
X0wXð Þ�1

, (8:14)
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where

MSEw
¼

Pn

i¼1

wi yi � ŷyið Þ2

n� k
¼

Pn

i¼1

wie
2
i

n� k
, (8:15)

where k¼ number of bi values, excluding b0.

Let us work out an example using the data from Example 8.2. We will use

a flexible procedure with these data. As they are real data, the ei terms bounce

around, whereas they increase as x1 increases. The predictor x1 (month) has

the most influence on the eis, so it will be used as the sole xi value. Table 8.11

provides the data, and in Figure 8.13, we see the error terms plotted against

time, proportionately increasing in range.

We do not know what 1=s2 is, but we can estimate the relative weights

without knowing s2
i . We will focus on the y� ŷy column in Table 8.12 and, for

each of the three values per month, compute the absolute range, jhigh–lowj.
Some prefer to use only ‘‘near-neighbor’’ xi values, but in pilot studies, this

can lead to data-chasing. Above all, use a robust method. In this example, we

will use near-neighbors of the x1 predictor, the three replicates per month. The

estimators do not have to be exact, and a three-value interval is arbitrary. The

first range of 0.45¼ j�1.2196 � (�1.6740)j. Next, the relative weight (wR)

can be estimated. Because these data have a horn shape, we will call the

lowest jeij range 1, arbitrarily, even though the range is 0.45. This simplifies

the process. It is wise to do the weighted regression iteratively, finding a

weight system that is adequate, but not trying to make it ‘‘the weight system.’’

Because n¼ 36, instead of grouping the like xi values, we shall use them all.

At this point, any xi is considered as relevant as the rest.

Continuing with the example, Table 8.12 presents the regression with the

weighted values in the equation, in which all xi values are used. MiniTab

computation, b̂bw¼ (X0wX)�1 X0wY, automatically uses the weighted formula

and the weights in a subroutine. If one does not have this option, one can

compute b̂bw¼ (X0wX)�1 X0wY.

Table 8.13 is the standard least squares model, and hence, contains

exactly the same data as in Table 8.4. Notice that the MSE for the weighted

values is MSE¼ 1.05, but for the unweighted values, is MSE¼ 20.2, which is a

vast improvement of the model. Yet, if one plots the weighted residuals, one

sees that they still show the same basic ‘‘form’’ of the unweighted residuals.

This signals the need for another iteration. This time, the researcher may be

better-off using a regression approach.

2. Regression of the ei terms to determine the weights. The regression

procedure rests on the assertion that
ffiffiffiffi
s2

i

p
¼

ffiffiffiffiffi
e2

i

p
, or si¼ jeij and s2

i ¼ e2
i . The

s2
i values here are for each of the xis in the multiple regression, with

e2
i ¼ yi � ŷyið Þ2. First, a standard regression is performed on the data; second,

a separate regression with all the xis in the model is performed on either e2
i or

jeij. The weights are wi ¼ 1=ŝs2
i ¼ 1

�
eij j2 with c¼ 1.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C008 Final Proof page 303 16.11.2006 8:04pm

Special Topics in Multiple Regression 303



TABLE 8.11
Weight Computations, Example 8.2

n y x1 x2 ŷy y 2 ŷy jRangej
(wR) Weight ratio

to jeij in minutes wi ¼ 1
ðwRÞ

1 100 1 5.0 101.220 �1.2196

2 100 1 5.0 101.220 �1.2196 0.45 1.00 1.00

3 100 1 5.1 101.674 �1.6740

4 100 2 5.0 99.553 0.4665

5 100 2 5.1 99.998 0.0121 0.45 1.00 1.00

6 100 2 5.0 99.533 0.4665

7 98 3 4.8 96.938 1.0615

8 99 3 4.9 97.393 1.6071 1.00 2.22 0.45

9 99 3 4.8 96.938 2.0615

10 97 4 4.6 94.343 2.6566

11 96 4 4.7 94.798 1.2021 2.00 4.44 0.23

12 95 4 4.6 94.343 0.6566

13 95 5 4.7 93.112 1.8882

14 87 5 4.3 91.294 �4.2939 6.18 13.73 0.07

15 93 5 4.4 91.748 1.2516

16 90 6 4.0 88.244 1.7555

17 85 6 4.4 90.062 4.9377 13.91 30.91 0.03

18 82 6 4.6 90.971 �8.9712

19 88 7 4.5 88.831 �0.8306

20 84 7 3.2 82.923 1.0773 1.91 4.24 0.24

21 88 7 4.1 87.013 0.9872

22 87 8 4.4 86.690 0.3099

23 83 8 4.5 87.145 �4.1445 4.45 9.89 0.10

24 79 8 3.6 83.054 �4.0544

25 73 9 4.0 83.186 �10.1861

26 86 9 3.2 79.550 6.4495 16.64 36.98 0.03

27 80 9 3.0 78.642 1.3584

28 81 10 4.2 82.409 �1.4089

29 83 10 3.1 77.410 5.5901 10.09 22.42 0.04

30 72 10 2.9 76.501 �4.5010

31 70 11 2.3 72.088 �2.0881

32 88 11 3.1 75.724 12.2762 14.36 31.91 0.03

33 68 11 1.0 66.180 1.8198

34 70 12 1.0 64.494 5.5059

35 68 12 2.1 69.493 �1.4931 14.82 32.93 0.03

36 52 12 0.3 61.313 �9.3128
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Some statisticians prefer to perform a regression analysis on the jeij values

to determine the weights to use without following the previous method (see

Figure 8.14).

The jeij values from the normal linear regression become the yi values to

determine the weights

eij j ¼ yi, (8:16)

eij j ¼ b0 þ b1x1 þ b2x2:

The weights are computed as

ŵwi ¼
1

êeij j2
, (8:17)

∗ ∗
∗ ∗

∗ ∗

∗

∗
∗ ∗

∗
∗ ∗

∗

∗

∗ ∗∗
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∗ ∗
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2 2 2

2

2

12.0
Month = xi

10.08.06.04.02.0
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0.0

7.0

3
∗

ei

FIGURE 8.13 Error terms plotted against time, Example 8.2.

TABLE 8.12
Weighted Regression Analysis, Example 8.2

Predictor Coef SE Coef t-Ratio p

b0 77.237 5.650 13.67 0.000

b1 �1.4774 0.2640 �5.60 0.000

b2 5.023 1.042 4.82 0.000

s ¼ 1.02667 R2 ¼ 92.2% R2
(adj) ¼ 91.7%

Source DF SS MS F p

Regression 2 411.9 205.96 195.39 0.000

Error 33 34.8 1.05

Total 35 446.7

The regression equation is ŷy ¼ 77.2 � 1.48x1 þ 5.02x2.
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for the standard deviation, or

ŵwi ¼
1

e2
i

for the variance function.

The linear regression method, based on the computed ŵwi, is presented in

Table 8.14. The data used to compute the weights, ŵwi, as well as the predicted

ŷyw, using the weights, and the error terms, yi � ŷyiw¼ eiw, using the weights,

are presented in Table 8.15.

Note the improvement of this model over the original and the proportional

models. If the change in bi parameters is great, it may be necessary to use the

jeij values of the weighted regression analysis as the y independent variable

TABLE 8.13
Unweighted Regression Analysis

Predictor Coef St. Dev t-Ratio p

b0 81.252 6.891 11.79 0.000

b1 �1.7481 0.4094 �4.27 0.000

b2 4.301 1.148 3.75 0.001

s ¼ 4.496 R2 ¼ 86.5% R2
(adj) ¼ 85.7%

Source DF SS MS F p

Regression 2 4271.9 2135.9 105.68 0.000

Error 33 667.0 20.2

Total 35 4938.9

The regression equation is ŷy ¼ 81.3 � 1.75x1 þ 4.30x2.

ei

x

0

FIGURE 8.14 Slope of the expansion of the variance.
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and repeat the weight process iteratively a second or third time. In our case,

the R2
(adj) � 0:99, so another iteration will probably not be that useful.

In other situations, where there are multiple repeat readings for the xi

values, the ei values at a specific xi can provide the estimate for the weights.

In this example, an si or s2
i would be calculated for each month, using the

three replicates at each month. Because, at times, there was significant

variability within each month, as well as between months (not in terms of

proportionality), it probably would not have been as useful as the regression

was. It is suggested that the reader make the determination by computing it.

RESIDUALS AND OUTLIERS, REVISITED

As was discussed in Chapter 3, outliers, or extreme values, pose a significant

problem in that, potentially, they will bias the outcome of a regression

analysis. When outliers are present, the questions always are ‘‘Are the outliers

truly representative of the data that are extreme and must be considered in the

analysis, or do they represent error in measurement, error in recording of data,

influence of unexpected variables, and so on?’’ The standard procedure is to

retain an outlier in an analysis, unless as assignable extraneous cause can be

identified that proves the data point to be aberrant. If none can be found, or an

explanation is not entirely satisfactory, one can present data analyses that

include and omit one or more outliers, along with rationale explaining the

implications, with and without.

In Chapter 3, it was noted that residual analysis is very useful for exploring

the effects of outliers and nonnormal distributions of data, for how these relate

to adequacy of the regression model, and for identifying and correcting for

serially correlated data. At the end of the chapter, formulas for the process of

TABLE 8.14
Linear Regression to Determine Weights, Example 8.2

Predictor Coef SE Coef t-Ratio p

b0 81.801 2.124 38.50 0.000

b1 �1.69577 0.07883 �21.51 0.000

b2 4.2337 0.3894 10.87 0.000

s ¼ 0.996302 R2 ¼ 99.2% R2
(adj) ¼ 99.1%

Source DF SS MS F p

Regression 2 3987.2 1993.6 2008.45 0.000

Error 33 32.8 1.0

Total 35 4020.0

The regression equation is ŷy ¼ 81.8 � 1.70x1 þ 4.23x2.
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TABLE 8.15
Data for Linear Regression to Determine Weights, Example 8.2

Row Nonweighted ei bwwi 5 1
eij j2

ŷyw y 2 ŷyw 5 eiw

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

y x1 x2 ŷy

1 100 1 5.0 101.220 �1.2196 0.67 101.273 �1.2733

2 100 1 5.0 101.220 �1.2196 0.67 101.273 �1.2733

3 100 1 5.1 101.674 �1.6740 0.36 101.697 �1.6966

4 100 2 5.0 99.553 0.4665 4.59 99.578 0.4225

5 100 2 5.1 99.998 0.0121 6867.85 100.001 �0.0009

6 100 2 5.0 99.533 0.4665 4.59 99.578 0.4225

7 98 3 4.8 96.938 1.0615 0.89 97.035 0.9650

8 99 3 4.9 97.393 1.6071 0.39 97.458 1.5416

9 99 3 4.8 96.938 2.0615 0.24 97.035 1.9650

10 97 4 4.6 94.343 2.6566 0.14 94.492 2.5075

11 96 4 4.7 94.798 1.2021 0.69 94.916 1.0841

12 95 4 4.6 94.343 0.6566 2.32 94.492 0.5075

13 95 5 4.7 93.112 1.8882 0.28 93.220 1.7799

14 87 5 4.3 91.294 �4.2939 0.05 91.527 �4.5266

15 93 5 4.4 91.748 1.2516 0.64 91.950 1.0500

16 90 6 4.0 88.244 1.7555 0.32 88.561 1.4393

17 95 6 4.4 90.062 4.9377 0.04 90.254 4.7458

18 82 6 4.6 90.971 �8.9712 0.01 91.101 �9.1010

19 88 7 4.5 88.831 �0.8306 1.45 88.982 �0.9818

20 84 7 3.2 82.923 1.0773 0.86 83.478 0.5220

21 88 7 4.1 87.013 0.9872 1.03 87.288 0.7117

22 87 8 4.4 86.690 0.3099 10.41 86.863 0.1373

23 83 8 4.5 87.145 �4.1445 0.06 87.286 �4.2861

24 79 8 3.6 83.054 �4.0544 0.06 83.476 �4.4757

25 73 9 4.0 83.186 — 0.01 83.473 �10.4734

26 86 9 3.2 79.550 6.4495 0.02 80.086 5.9135

27 80 9 3.0 78.642 1.3584 0.54 79.240 0.7603

28 81 10 4.2 82.409 �1.4089 0.50 82.624 �1.6244

29 83 10 3.1 77.410 5.5901 0.03 77.967 5.0327

30 72 10 2.9 76.501 �4.5010 0.05 77.121 �5.1206

31 70 11 2.3 72.088 �2.0881 0.23 72.885 �2.8846

32 88 11 3.1 75.724 12.2762 0.01 76.272 11.7284

33 68 11 1.0 66.180 1.8198 0.30 67.381 0.6192

34 70 12 1.0 64.494 5.5059 0.03 65.685 4.3150

35 68 12 2.1 69.493 �1.4931 0.45 70.342 �2.3421

36 52 12 0.3 61.313 �9.3128 0.01 62.721 �10.7215
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standardizing residual values were presented but the author did not expand

that discussion for two reasons. First, the author and others [e.g., Kleinbaum

et al. (1998)] prefer computing jackknife residuals, rather than standardized or

Studentized ones. Secondly, for multiple regression, the rescaling of residuals

by means of Studentizing and jackknifing procedures requires the use of

matrix algebra to calculate hat matrices, explanations of which were deferred

until we had explored models of multiple regression.

The reader is directed to Appendix II for a review of matrices and

application of matrix algebra. Once that is completed, we will look at

examples of Studentized and jackknifed residuals applied to data from simple

linear regression models and then discuss rescaling of residuals as it applies to

model leveraging due to outliers.

STANDARDIZED RESIDUALS

For sample sizes of 30 or more, the standardized residual is of value. The

standardized residual just adjusts the residuals into a form where ‘‘0’’ is the

mean, and a value of �1 or 1, represents 1 standard deviation, �2 or 2,

represents 2 standard deviations, and so on.

The standardized residual is

Sti ¼
ei

se
,

where ei¼ yi � ŷyi, and se is the standard deviation of the standard residual,

where k¼ number of bis, excluding b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
e2

i

n� k � 1

r

:

STUDENTIZED RESIDUALS

For smaller sample sizes (n < 30), the use of the Studentized approach is

recommended, as it follows the Student’s t-distribution with n � k � 1 df.
The Studentized residual Sri

ð Þ is computed as

Sri
¼ ei

s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p : (8:18)

The standard deviation of the Studentized residual is the divisor, s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii

p
.

The hii, or leverage value measures the weight of the ith observation in

terms of its importance in the model’s fit. The value of hii will always be
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between 0 and 1, and, technically, represents the diagonal portion of a (n � n)

hat matrix:

X X0Xð )�1X0 ¼ H: (8:19)

The standardized and Studentized residuals generally convey the same infor-

mation, except when specific ei residuals are large, the hii values are large,

and=or the sample size is small. Then use the Studentized approach to the

residuals.

JACKKNIFE RESIDUAL

The ith jackknife residual is computed by deleting the ith residual and, so, is

based on n � 1 observations. The jackknife residual is calculated as

r(�i) ¼ Sri

ffiffiffiffiffiffiffiffi
s2

s2
(�i)

s

, (8:20)

where

s2¼ residual variance,

P
e2

i

n�k�1
,

s2
(�i)¼ residual variance with the ith residual removed,

Sri ¼ Studentized residual ¼ ei

s
ffiffiffiffiffiffiffiffi
1�hii

p ,

r(�i) ¼ jackknife residual.

The mean of the jackknife residual approximates 0, with a variance of

s2 ¼

Pn

i¼1

r2
(�i)

n� k � 2
, (8:21)

which is slightly more than 1.

The degrees of freedom of s2
(�i) is (n � k � 1) � 1, where k¼ number of

bis, not including b0.

If the standard regression assumptions are met, and the same number

of replicates is taken at each xi value, the standardized, the Studentized, and

jackknife residuals look the same. Outliers are often best identified by

the jackknife residual, for it makes suspect data more obvious. For example,

if the ith residual observation is extreme (lies outside the data pool), the s(�i)

value will tend to be much smaller than si, which will make the r(�i) value larger

in comparison to Sri, the Studentized residual. Hence, the r(�i) value will stand

out for detection.
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TO DETERMINE OUTLIERS

In practice, Kleimbaum et al. (1998) and this author prefer computing the

jackknife residuals over the standardized or Studentized ones, although the

same strategy will be relevant to computing those.

OUTLIER IDENTIFICATION STRATEGY

1. Plot jackknife residuals r(�i) vs. xi values (all the ri corresponding to xi

values, except for the present r(�i) value).

2. Generate a Stem–Leaf display of r(�i) values.

3. Generate a Dotplot of the r(�i) values.

4. Generate a Boxplot of r(�i) values.

5. Once any extreme r(�i) values are noted, do not merely remove

the corresponding xi values from the data pool, but find out under what

conditions they were collected, who collected them, where they were

collected, and how they were input into the computer data record.

The jackknife procedure reflects an expectation «i ~ N(0, s2), which is the

basis for the Student’s t-distribution at a/2 and n � k � 2 degrees of freedom.

The jackknife residual, however, must be adjusted, because there are, in fact,

n tests performed, one for each observation. If n¼ 20, a¼ 0.05, and a two-tail

test is conducted, then the adjustment factor is

a
2

n
¼ 0:025

20
¼ 0:0013:

Table F presents corrected jackknife residual values, which essentially are

Bonferroni corrections on the jackknife residuals. For example, let a¼ 0.05,

k¼ the number of bi values in the model, excluding b0; say k¼ 1 and n¼ 20.

In this case, Table F shows that a jackknife residual greater than 3.54 in

absolute value, jr(�i)j > 3.54, would be considered an outlier.

LEVERAGE VALUE DIAGNOSTICS

In outlier data analysis, we are particularly concerned with also a specific xi

value’s leverage and influence on the rest of the data. The leverage value, hi,

is equivalent to hii, the diagonal hat matrix, as previously discussed. We will

use the term, hi, as opposed to hii, when the computation is not derived from

the hat matrix used extensively in multivariate regression. The leverage value

measures the distance a specific xij value is from x, or the mean of all the x
values. For, Yi¼b0 þ b1x1 þ «i, without correlation between any of the x.j
variables, the leverage value for the ith observation is of the form*:

*This requires that any correlation between the independent x variables is addressed prior to

outlier data analysis. Also, all of the x1 variables must be centered, xi–�xx1 for a mean of 0 in order

to use this procedure.
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hi ¼
1

n
þ
Xk

j¼1

x2
ij

(n� 1)s2
j

: (8:22)

For linear regression in xi, use

hi ¼
1

n
þ (xi � �xx)2

(n� 1)s2
x

,

where

s2
j ¼

Pn

i¼1

x2
ij

n� 1
(8:23)

for each xj variable.

The hi value lies between 0 and 1, that is, 0 � hi � 1, and is interpreted

like a correlation coefficient. If hi¼ 1, then yi¼ ŷyi. If a y intercept (b0) is

present, hi � 1/n, and the average leverage is:

�hhi ¼
k þ 1

n
: (8:24)

Also,

Xn

i¼1

hi ¼ k þ 1:

Hoaglin and Welsch (1978) recommend that the researcher closely evaluate

any observation where hi > 2(k þ 1)/n.

An Fi value can be computed for each value in a regression data set by

means of

Fi ¼
hi�1

n

k
1�hi

n�k�1

,

which follows an F distribution,

FTa0(k, n� k � 1), (8:25)

where

a0 ¼ a

n
:
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However, the critical value leverage table (Table H) will provide this value at

a¼ 0.10, 0.05, and 0.01; n¼ sample size; and k¼ number of bi predictors,

excluding b0 (k¼ 1, for linear regression).

COOK’S DISTANCE

The Cook’s distance (Cdi
) measures the influence of any one observation

relative to the others. That is, it measures the change in b1, the linear

regression coefficient, when that observation, or an observation set, is re-

moved from the aggregate set of observations. The calculation of Ci is:

Cdi
¼ e2

i hi

(k þ 1)s2(1� hi)
2
: (8:26)

A Cook’s distance value (Cdi
) may be large because an observation is large or

because it has large Studentized residuals, Sri. The Sri value is not seen in

Equation 8.26, but (Cdi
) can also be written as

Cdi
¼ Sr2

i hi

(k þ 1)(1� hi)
2
:

A Cdi
value greater than 1 should be investigated.

Let us look at an example (Example 8.4). Suppose the baseline microbial

average on the hands was 5.08 (log10 scale), and the average microbial count

at time 0 following antimicrobial treatment was 2.17, for a 2.91 log10 reduc-

tion from the baseline value. The hands were gloved with surgeons’ gloves for

a period of 6 h. At the end of the 6-h period, the average microbial count was

4.56 log10, or 0.52 log10 less than the average baseline population. Table 8.16

provides these raw data, and Figure 8.15 presents a plot of the data.

In Figure 8.15, the baseline value (5.08), collected the week prior to

product use, is represented as a horizontal.

A regression analysis is provided in Table 8.17.

Three observations have been flagged as unusual. Table 8.18 presents a

table of values of x, y, ei, ŷy, Sri, r(�i), and hi.

Let us look at Table G, the Studentized table, where k¼ 1, n¼ 30, and

a¼ 0.05. Because there is no n¼ 30, we must interpolate using the formula:

value¼ lower tabled critical valueð Þ

þ upper tabled critical value½ �� lower tabled critical value½ �ð Þ upper tabled n� actual nð Þ
upper tabled nð Þ� lower tabled nð Þ

value¼ 2:87þ 3:16�2:87ð Þ 50�30ð Þ
50�25

¼ 3:10:
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Hence, any absolute value of Sri
greater than 3.10, that is, Sri

j j > 3:10, needs

to be checked. We look down the column of Sri
values and note 3.29388 at

n¼ 23 is suspect. Looking also at the ei values, we see 2.01, or a 2 log10

deviation from 0, which is a relatively large deviation.

TABLE 8.16
Microbial Population Data, Example 8.4

Sample Time Log10 Microbial Counts

n x y

1 0 2.01

2 0 1.96

3 0 1.93

4 0 3.52

5 0 1.97

6 0 2.50

7 0 1.56

8 0 2.11

9 0 2.31

10 0 2.01

11 0 2.21

12 0 2.07

13 0 1.83

14 0 2.57

15 0 2.01

16 6 4.31

17 6 3.21

18 6 5.56

19 6 4.11

20 6 4.26

21 6 5.01

22 6 4.21

23 6 6.57

24 6 4.73

25 6 4.61

26 6 4.17

27 6 4.81

28 6 4.13

29 6 3.98

30 6 4.73

x ¼ time; 0 ¼ immediate sample, and 6 ¼ 6 h sample.

y ¼ log10 microbial colony count averaged per two hands per subject.
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Let us now evaluate the jackknife residuals. The critical jackknife values

are found in Table F, where n¼ 30, k¼ 1 (representing b1), and a¼ 0.05. We

again need to interpolate.
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FIGURE 8.15 Plot of microbial population data, Example 8.4.

TABLE 8.17
Regression Analysis, Example 8.4

Predictor Coef St. Dev t-Ratio p

b0 2.1713 0.1631 13.31 0.000

b1 0.39811 0.03844 10.36 0.000

s ¼ 0.6316 R2 ¼ 79.3% R2(adj) ¼ 78.6%

Analysis of Variance

Source DF SS MS F p

Regression 1 42.793 42.793 107.26 0.000

Error 28 11.171 0.399

Total 29 53.964

Unusual Observations

Observations C1 C2 Fit St Dev Fit Residual St Residual

4 0.00 3.52 2.171 0.163 1.349 2.21 R

17 6.00 3.21 4.56 0.163 �1.350 �2.21 R

21 6.00 6.57 4.56 0.163 2.010 3.29 R

R denotes an observation with a large standardized residual (St Residual).

The regression equation is ŷy ¼ 2.17 þ 0.398x.
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3:5þ (3:51� 3:50)(50� 30)

50� 25
¼ 3:51:

So, any jackknife residual greater than 3.51, or r(�i) > j3.51j, is suspect.

Looking down the jackknife residual r(�i) column, we note that the value

4.13288 > 3.51, again at n¼ 23. Our next question is ‘‘what happened?’’

TABLE 8.18
Data Table, Example 8.4

Row x y ei ŷy Sri r(2i ) hi

1 0 2.01 �0.16133 2.17133 �0.26438 �0.25994 0.0666667

2 0 1.96 �0.21133 2.17133 �0.34632 �0.34081 0.0666667

3 0 1.93 �0.24133 2.17133 �0.39548 �0.38945 0.0666667

4 0 3.52 1.34867 2.17133 2.21012 2.38862 0.0666667

5 0 1.97 �0.20133 2.17133 �0.32993 �0.32462 0.0666667

6 0 2.50 0.32867 2.17133 0.53860 0.53166 0.0666667

7 0 1.56 �0.61133 2.17133 �1.00182 �1.00189 0.0666667

8 0 2.11 �0.06133 2.17133 �0.10051 �0.09872 0.0666667

9 0 2.31 0.13867 2.17133 0.22724 0.22335 0.0666667

10 0 2.01 �0.16133 2.17133 �0.26438 �0.25944 0.0666667

11 0 2.21 0.03867 2.17133 0.06336 0.06223 0.0666667

12 0 2.07 �0.10133 2.17133 �0.16606 �0.16315 0.0666667

13 0 1.83 �0.34133 2.17133 �0.55936 �0.55237 0.0666667

14 0 2.57 0.39867 2.17133 0.65331 0.64649 0.0666667

15 0 2.01 �0.16133 2.17133 �0.26438 �0.25994 0.0666667

16 6 4.31 �0.25000 4.56000 �0.40969 �0.40351 0.0666667

17 6 3.21 �1.35000 4.56000 �2.21230 �2.39148 0.0666667

18 6 5.56 1.00000 4.56000 1.63874 1.69242 0.0666667

19 6 4.11 �0.45000 4.56000 �0.73743 �0.73128 0.0666667

20 6 4.26 �0.30000 4.56000 �0.49162 �0.48486 0.0666667

21 6 5.01 0.45000 4.56000 0.73744 0.73128 0.0666667

22 6 4.21 �0.35000 4.56000 �0.57356 �0.56656 0.0666667

23 6 6.57 2.01000 4.56000 3.29388 4.13288 0.0666667

24 6 4.73 0.17000 4.56000 0.27859 0.27395 0.0666667

25 6 4.61 0.05000 4.56000 0.08194 0.08047 0.0666667

26 6 4.17 �0.39000 4.56000 �0.63911 �0.63222 0.0666667

27 6 4.81 0.25000 4.56000 0.40969 0.40351 0.0666667

28 6 4.13 �0.43000 4.56000 �0.70466 �0.69818 0.0666667

29 6 3.98 �0.58000 4.56000 �0.95047 �0.94878 0.0666667

30 6 4.73 0.17000 4.56000 0.27859 0.27395 0.0666667

Studentized residual ¼ Sri
:

Jackknife residual ¼ r(�i).

Leverage value ¼ hi.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C008 Final Proof page 316 16.11.2006 8:04pm

316 Handbook of Regression and Modeling



Going back to the study, after looking at the technicians’ reports, we learn that

a subject biased the study. Upon questioning the subject, technicians learned

that the subject was embarrassed about wearing the glove and removed it

before the authorized time; hence, the large colony counts.

Because this author prefers the jackknife procedure, we will use it for an

example of a complete analysis. The same procedure would be done for

calculating standardized and Studentized residuals. First, a Stem–Leaf display

was computed of the r(�i) values (Table 8.19).

From the Stem–Leaf jackknife display, we see the 4.1 value, that is,

(r(�i)¼ 4.1). There are some other extreme values, but not that unusual for

this type of study.

Next, a Boxplot of the r(�i) values was printed, which showed the ‘‘0,’’

depicting ‘‘outlier.’’ There are three other extreme values that may be of

concern, flagged by solid dots (Figure 8.16).

Finally, a Dotplot of the r(�i) values is presented, showing the data in a

slightly different format (Figure 8.17).

Before continuing, let us also look at a Stem–Leaf display of the eis, that

is, the y � ŷy values (Figure 8.18).

TABLE 8.19
Stem–Leaf Display of Jackknife Residuals, Example 8.4

1 �2 3

1 �1

2 �1 0

8 �0 976655

(10) �0 443332210

12 0 002224

6 0 567

3 1

3 1 6

2 2 3

1 2

1 3

1 3

1 4 1

−2.4 −1.2 0.0 1.2 2.4 3.6

0

FIGURE 8.16 Boxplot display of jackknife residuals, Example 8.4.
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Note that the display does not accentuate the more extreme values, so they

are more difficult to identify. Figure 8.19 shows the same data, but as a

Studentized residual display.

Continuing with the data evaluation, the researcher determined that the

data need to be separated into two groups. If a particularly low log10 reduction

at time 0 was present, and a particularly high log10 reduction was observed at

time 6, the effects would be masked.

The data were sorted by time of sample (0, 6). The time 0, or immediate

residuals are provided in Table 8.20.

Table 8.20 did not portray any other values more extreme than were

already apparent; it is just that we want to be more thorough. The critical

value for Sri at a¼ 0.05¼ j2.61j and r(�i)¼ j3.65j, and none of the values in

Table 8.21 exceed the critical values for Sri or r(�i) at a¼ 0.05.

It is always a good idea to look at all the values on the upper or lower ends

of a Stem–Leaf display, Boxplot or Dotplot. Figure 8.20 presents a Stem–Leaf

display of the eis at time 0.

We note that two residual values, �0.6 (Subject #7, 0.61133) and

1.3 (Subject #4, 1.34867) stand out. Let us see how they look on Boxplots

and Dotplots.

The Boxplot (Figure 8.21) portrays the 1.3486 value as an outlier relative

to the other ei residual data points. Although we know that it is not that

uncommon to see a value such as this, we will have to check.

Figure 8.22 portrays the same ei data in Dotplot format. Because this

author prefers the Stem–Leaf and Boxplots, we will use them exclusively in

the future. The Dotplots have been presented only for reader interest.

−2.4 −1.2 0.0 1.2 2.4 3.6

FIGURE 8.17 Dotplot display of jackknife residuals.

1 −1

3 −0 65

(15) −0 443333222211110

12 0 001112334

3

3 03

1

1 0

3

1

1

2

0

FIGURE 8.18 Stem–Leaf display of ei values, Example 8.4.
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The Studentized residuals, Sri
, at time 0 were next printed in a Stem–Leaf

format (Figure 8.23). The lower value (Subject #7) now does not look so

extreme, but the value for Subject #4 does. It does appear unique from the

data pool, but even so, it is not that extreme.

The Boxplot (Figure 8.24) of the Studentized residuals, Sri
, shows the

Subject #4 datum as an outlier. We will cross check.

TABLE 8.20
Time 0 Residuals, Example 8.4

Row Residuals Studentized Residuals Jackknife Residuals

n ei Sri
r(2i )

1 �0.16133 �0.26438 �0.25994

2 �0.21133 �0.34632 �0.34081

3 �0.24133 �0.39548 �0.38945

4 1.34867 2.21012 2.38862

5 �0.20133 �0.32993 �0.32462

6 0.32867 0.53860 0.53166

7 �0.61133 �1.00182 �1.00189

8 �0.06133 �0.10051 �0.09872

9 0.13867 0.22724 0.22335

10 �0.16133 �0.26438 �0.25994

11 0.03867 0.06336 0.06223

12 �0.10133 �0.16606 �0.16315

13 �0.34133 �0.55936 �0.55237

14 0.39867 0.685331 0.64649

15 �0.16133 �0.26438 �0.25994

1 −2

1 −1

2

2

−1

8 −0 977655

(10) −0 4433322211

12 0

0

0

002224

6 567

3

3

3

6

2 2

2

2

1

1

1

1 1

FIGURE 8.19 Studentized residuals, Example 8.4.
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The jackknife residuals at time 0 are portrayed in the Stem–Leaf display

(Figure 8.25). Again, the Subject #4 datum is portrayed as extreme, but not

that extreme.

Figure 8.26 shows the r(�i) jackknife residuals plotted on the Boxplot

display and indicates a single outlier.

TABLE 8.21
Residual Data 6 h after Surgical Wash, Example 8.4

Row Residuals Studentized Residuals Jackknife Residuals

ei Sri r(2i )

1 �0.25000 �0.40969 �0.40351

2 �1.35000 �2.21230 �2.39148

3 1.00000 1.63874 1.69242

4 �0.45000 �0.73743 �0.73128

5 �0.30000 �0.49162 �0.48486

6 0.45000 0.73744 0.73128

7 �0.35000 �0.57356 �0.56656

8 2.01000 3.29388 4.13288

9 0.17000 0.27859 0.27395

10 0.05000 0.08194 0.08047

11 �0.39000 0.63911 �0.63222

12 0.25000 0.40969 0.40351

13 �0.43000 �0.70466 �0.69818

14 �0.58000 �0.95047 �0.94878

15 0.17000 0.27859 0.27395

1 −0

1 −0

5 −0 3222

(5) −0

0

0

0

0

0

11110

5 01

3 33

1

1

1

1 1

11 3

6

FIGURE 8.20 Stem–Leaf display of ei values at time zero, Example 8.4.
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−0.80 −0.40 0.00 0.40 0.80 1.20

0

ei

FIGURE 8.21 Boxplot of ei, Example 8.4.

−0.80 −0.40 0.00 0.40 0.80 1.20
ei

FIGURE 8.22 Dotplot display of ei values at time 0, Example 8.4.

1 −1

2

2

−0

(8) −0 33322211

5

5

0

0

0

02

3 56

1

1

1

1

1 2

FIGURE 8.23 Stem–Leaf display of Studentized residuals at time zero, Example 8.4.

1.80

0

ri
1.200.600.00−0.60

FIGURE 8.24 Boxplot of Studentized residuals at time 0, Example 8.4.

1 −1

2 −0

(8) −0 33322210

5 02

3 56

1

1

1 3

0

0

1

1

2

0

5

FIGURE 8.25 Stem–Leaf display of jackknife residuals r(�i) at time zero, Example 8.4.

−0.70 0.00

0

0.70 1.40 2.10

FIGURE 8.26 Boxplot display of jackknife residuals r(�i) at time 0, Example 8.4.
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Note that, whether one uses the ei, Sri, or r(�i) residuals, in general, the

same information results. It is really up to the investigator to choose which

one to use. Before choosing the appropriate one, we suggest running all three

until the researcher achieves a ‘‘feel’’ for the data. It is also a good idea to

check out the lower and upper 5% of the values, just to be sure nothing is

overlooked. ‘‘Check out’’ actually means to go back to the original data.

As it turned out, the 3.52 value at time zero was erroneous. The value

could not be reconciled with the plate count data, so it was removed, and its

place was labeled as ‘‘missing value.’’ The other values were traceable and

reconciled.

The 6 h data were evaluated next (Table 8.21).

Because we prefer using the jackknife residual, we will look only at the

Stem–Leaf and Boxplot displays of these. Note that Sri¼ 3.29388 and

r(�i)¼ 4.13288, both exceed their critical values of 2.61 and 3.65, respectively.

Figure 8.27 is a Stem–Leaf display of the time 6 h data. We earlier

identified the 6.57 value, with a 4.1 jackknife residual, as a spurious data

point due to noncompliance by a subject.

The Boxplot of the jackknife residuals, 6 h, is presented in Figure 8.28.

The �2.39 jackknife value at 6 h is extreme, but is not found to be suspect

after reviewing the data records. Hence, in the process of our analysis and

validation, two values were eliminated: 6.57 at 6 h, and 3.52 at the immediate

sample time. All other suspicious values were ‘‘checked out’’ and not

removed. A new regression conducted on the amended data set increased

R2, as well as reducing the b0 and b1 values. The new regression is considered

1 −2

1 −1

(7) −0 9766544

7 02247

2 6

3

1

1

1 1

0

1

2

3

4

FIGURE 8.27 Stem–Leaf display of jackknife residuals r(�i) at 6 h, Example 8.4.

∗

−2.4 −1.2 0.0 1.2 2.4

0

3.6

FIGURE 8.28 Boxplot display of jackknife residuals r(�i) at 6 h, Example 8.4.
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more ‘‘real.’’ We know it is possible to get a three log10 immediate reduction,

and the rebound effect is just over 1=3 log10 per hour. The microbial counts

do not exceed the baseline counts 6 h postwash.

The new analysis is presented in Table 8.22.

Table 8.23 presents the new residual indices. We see there are still

extreme values relative to the general data pool, but these are not worth

pursuing in this pilot study.

The mean of the yi values at time 0 is 2.0750 log10, which computes to a

3.01 log10 reduction immediately postwash. It barely achieves the FDA

requirement for a 3 log10 reduction, so another pilot study will be suggested

to look at changing the product’s application procedure. The yi mean value at

6 h is 4.4164, which is lower than the mean baseline value, assuring the

adequacy of the product’s antimicrobial persistence.

Given that this study was a pilot study, the researcher decided not to

‘‘over’’ evaluate the data, but to move onto a new study. The product would

be considered for further development as a new surgical handwash.

LEVERAGES AND COOK’S DISTANCE

Because MiniTab and other software packages also can provide values for

leverage (hi) and Cook’s distance, let us look at them relative to the previous

analysis with the two data points (#4 and #23) in the analysis.

TABLE 8.22
Regression Analysis, Outliers Removed, Example 8.4

Predictor Coef St. Dev t-Ratio p

Constant (b0) 2.0750 0.1159 17.90 0.000

b1 0.39024 0.02733 14.28 0.000

s ¼ 0.4338 R2 ¼ 88.7% R2
(adj) ¼ 88.3%

Analysis of Variance

Source DF SS MS F p

Regression 1 38.376 38.376 203.89 0.000

Error 26 4.894 0.188

Total 27 43.270

Unusual Observations

Observations C1 C2 Fit St Dev Fit Residual St Resid

17 6.00 3.2100 4.4164 0.1159 �1.2064 �2.89 R

18 6.00 5.5600 4.4164 0.1159 1.1436 2.74 R

R denotes an observation with a large st. resid.

The regression equation is ŷy ¼ 2.08 þ 0.390 x.
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Recall that the hi value measures the distance for the �xx value. The formula is:

hi ¼
1

n
þ xi � �xxð )2

n� 1ð )s2
x

,

where

s2
x ¼

P
xi � �xxð )2

n� 1
:

TABLE 8.23
Residual Indices

Row xi yi ei ŷyi Sri r(2i )

1 0 2.01 �0.06500 2.07500 �0.15548 �0.15253

2 0 1.96 �0.11500 2.07500 �0.27508 �0.27013

3 0 1.93 �0.14500 2.07500 �0.34684 �0.34089

4 0 * * * * *

5 0 1.97 �0.10500 2.07500 �0.25116 �0.24658

6 0 2.50 0.42500 2.07500 1.01660 1.01728

7 0 1.56 �0.51500 2.07500 �1.23188 �1.24483

8 0 2.11 0.03500 2.07500 0.08372 0.08211

9 0 2.31 0.23500 2.07500 0.56212 0.55458

10 0 2.01 �0.06500 2.07500 �0.15548 �0.15253

11 0 2.21 0.13500 2.07500 0.32292 0.31729

12 0 2.07 �0.00500 2.07500 �0.01196 �0.01173

13 0 1.83 �0.24500 2.07500 �0.58604 �0.57849

14 0 2.57 0.49500 2.07500 1.18404 1.19368

15 0 2.01 �0.06500 2.07500 �0.15548 �0.15253

16 6 4.31 �0.10643 4.41643 �0.25458 �0.24995

17 6 3.21 �1.20643 4.41643 �2.88578 �3.43231

18 6 5.56 1.14357 4.41643 2.73543 3.17837

19 6 4.11 �0.30643 4.41643 �0.73298 �0.72629

20 6 4.26 �0.15643 4.41643 �0.37418 �0.36790

21 6 5.01 0.59357 4.41643 1.41982 1.44958

22 6 4.21 �0.20643 4.41643 �0.49378 �0.48648

23 6 * * * * *

24 6 4.73 0.31357 4.41643 0.75006 0.74359

25 6 4.61 0.19357 4.41643 0.46302 0.45592

26 6 4.17 �0.24643 4.41643 �0.58946 �0.58191

27 6 4.81 0.39357 4.41643 0.94142 0.93929

28 6 4.13 �0.28643 4.41643 �0.68514 �0.67798

29 6 3.98 �0.43643 4.41643 �1.04394 �1.04582

30 6 4.73 0.31357 4.41643 0.75006 0.74359
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The xi values are either 0 or 6, and �xx¼ 3.

So, 0 � 3¼�3, and 6 � 3¼ 3

The square of 3 is 9, so all the (xi� �xx)2¼ 9, whether xi¼ 0 or 6; hence, the

associated hat matrix would be constant. That is,
P

xi � �xxð )2 is a summation

of 30 observations of xi each of which equals 9. Hence,
P

xi � �xxð )2 ¼ 270.

s ¼
P

xi � �xxð )2

n� 1
¼ 270

29
¼ 9:3103

h0 ¼
1

30
þ 0� 3ð )2

29 9:3103ð )
¼ 0:0667, and

h6 ¼
1

30
þ 6� 3ð )2

29 9:3103ð )
¼ 0:0667:

The leverage values, hi, in Table 8.24 are the same for all 30 values of xi.

To see if the 30 hi values are significant at a¼ 0.05, we turn to Table H,

the Leverage Table for n¼ 30, k¼ 1, and a¼ 0.05, and find that

htabled¼ 0.325. If any of the hi values is >0.325, this would indicate an

extreme observation in the x value. This, of course, is not applicable here,

for all xis are set at 0 or 6, and none of the hi values >0.325.

The Cooks Distance, Cdi
, is the measure of the influence, or weight a

single paired observation (x, y) has on the regression coefficients (b0, b1).

Recall from Equation 8.26, Cdi
¼ e2

i hi

kþ1ð )s2 1�hið Þ2, or, from text, ¼ Srihi

kþ1ð ) 1�hið )2.

Each value of Cdi
in Table 8.24 is multiplied by n� k� 1, or 30 � 2¼ 28, for

comparison with tabled values.

The tabled value of Cdi
in Table I for n¼ 25 (without interpolating from

N¼ 30), a¼ 0.05, and k¼ 1 is 17.18, so any Cdi
value times 28 that is greater

than 16.37 is significant. Observation #23 (x¼ 6, y¼ 6.51) with a Cdi
of

0.374162, is the most extreme. Because n � k � 1¼ 28 � 0.374162¼ 10.4765

< 17.18, we know that none of the Cdi
values is significant. In fact, a Cdi

value of

at least 0.61 would have to be obtained to indicate a significant influence

on b0 or b1.

Now that we have explored residuals and the various construances of

them relative to simple linear regression, we will expand these into applications

for multiple regression. Once again, review of matrix algebra (Appendix II)

will be necessary.

LEVERAGE AND INFLUENCE

LEVERAGE: HAT MATRIX (X VALUES)

Certain values can have more ‘‘weight’’ in the determination of a regression

curve than do other values. We covered this in linear regression (Chapter 3), and

the application to multiple linear regression is straightforward. In Chapter 3,
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simple linear regression, we saw the major leverage in regression occurs in the

tails, or endpoints. Figure 8.29 portrays the situation where extreme values have

leverage. Both regions A and B have far more influence on regression coeffi-

cients than does region C. In this case, however, it will not really matter, because

regions A, B, and C are in a reasonably straight alignment.

In other cases of leverage, as shown in Figures 8.30a and b, extreme

values at either end of the regression curve can pull or push the bi estimates

away from the main trend. In 8.30a, an extreme low value pulls the regression

estimate down. In 8.30b, the extreme low value pushes the regression estimate

TABLE 8.24
Leverage hi and Cook’s Distance

Row x y hi Cdi

1 0 2.01 0.0666667 0.002551

2 0 1.96 0.0666667 0.004377

3 0 1.93 0.0666667 0.005707

4 0 3.52 0.0666667 0.178246

5 0 1.97 0.0666667 0.003972

6 0 2.50 0.0666667 0.010586

7 0 1.56 0.0666667 0.036624

8 0 2.11 0.0666667 0.000369

9 0 2.31 0.0666667 0.001884

10 0 2.01 0.0666667 0.002551

11 0 2.21 0.0666667 0.000147

12 0 2.07 0.0666667 0.001006

13 0 1.83 0.0666667 0.011417

14 0 2.57 0.0666667 0.015575

15 0 2.01 0.0666667 0.002551

16 6 4.31 0.0666667 0.005930

17 6 3.21 0.0666667 0.177542

18 6 5.56 0.0666667 0.098782

19 6 4.11 0.0666667 0.019493

20 6 4.26 0.0666667 0.008586

21 6 5.01 0.0666667 0.020199

22 6 4.21 0.0666667 0.011732

23 6 6.51 0.0666667 0.374162

24 6 4.73 0.0666667 0.002967

25 6 4.61 0.0666667 0.000286

26 6 4.17 0.0666667 0.014601

27 6 4.81 0.0666667 0.006322

28 6 4.13 0.0666667 0.017784

29 6 3.98 0.0666667 0.032513

30 6 4.73 0.0666667 0.002967
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up. Hence, it is important to detect these extreme influential data points. In

multiple regression, they are not as obvious as they are in the simple linear

regression condition, where one can simply look at a data scatterplot. In

multiple linear regression, residual plots often will not reveal leverage value(s).

The hat matrix, a common matrix form used in regression analysis, can be

applied effectively to uncovering points of ‘‘leverage,’’ by detecting data

points that are large or small, by comparison with near-neighbor values.

Because parameter estimates, standard errors, predicted values (ŷyi) and sum-

mary statistics are so strongly influenced by leverage values, if these are

erroneous, they must be identified. As noted in Equation 8.19 earlier, the hat

matrix is of the form:

H
n�n
¼ X X0Xð Þ�1

X0

H can be used to express the fitted values in vector ŶY.

ŶY ¼ HY: (8:27)

High leverage
point

High leverage
point

A

C

B
y

x

FIGURE 8.29 Extreme values with leverage.

Actual regression
curve

Leverage
value Leverage value

Predicted regression curve

Predicted regression curve

Actual regression curve

(a) (b)

yy

xx

FIGURE 8.30 Examples of leverage influence.
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H also can be used to provide the error term vector, e, where e¼ (I�H)Y, and

I is an n � n identity matrix, or the variance–covariance matrix, s2(e), where

s2 eð ) ¼ s2 I�Hð ): (8:28)

The elements of hii of the hat matrix, ‘‘H,’’ also provide an estimate of the

leverage exerted by the ith row and the ith column value. By further manipu-

lation, the actual leverage of any particular value set can be known.

Our general focus will be on the diagonal elements, hii, of the hat

matrix, where

hii ¼ x0i X0Xð )�1xi (8:29)

and x 0i is the transposed ith row of the X matrix.

The diagonal values of the hat matrix, the hiis, are standardized measures

of the distance of the ith observation from the center of xi value’s space. Large

hii values often give warning of observations that are extreme, in terms of

leverage exerted on the main data set. The average value of the hat matrix

diagonal is �hh¼ (k þ 1)=n, where k¼ the number of bi values, excluding b0,

and n¼ number of observations. By convention, any observation for which

the hat diagonal exceeds 2(�hh) or 2((k þ 1)=n) is remote enough from the main

data to be considered a ‘‘leverage point’’ and should be further evaluated.

Basically, the researcher must continually ask ‘‘can this value be this extreme

and be real?’’ Perhaps there is an explanation, and it leads the investigator to

view the data set in a different light. Or, perhaps the value was misrecorded.

In situations where 2(�hh)> 1, the rule, ‘‘greater than 2(�hh) initiates a leverage

value,’’ does not apply. This author suggests using 3(�hh) as a rule-of-thumb

cut-off value for pilot studies, and 2(�hh) for larger, more definitive studies. If

hii > 2 or 3(�hh), recomputed the regression with the set of xi values removed

from the analysis to see what happens.

Because the hat matrix is relevant only for the location of observations in

xi space, many researchers will use Studentized residual values, Sri
, in relation

to hii values, looking for observations with both large Sri
values and large hii

values. These will be values likely to be strong leverage points.

Studentized residuals usually are provided by standard statistical com-

puter programs. As discussed earlier, these are termed Studentized residuals,

because they approximate the Student’s t distribution with n � k � 1 degrees

of freedom, where k is the number of bis in the data set, excluding b0. As

noted in Equation 8.18 earlier, the Studentized residual value, Sri
, for multiple

regression is:

Sri
¼ ei

s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p ,
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where s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p
¼ standard deviation of the ei values.

The mean of Sri
is approximately 0, and the variance is:

Pn

i¼1

S2
ri

n� k � 1
:

If any of the Sri
j j values is > t(a=2, n�k�1), that value is considered a significant

leverage value at a.

Let us look at an example (Example 8.5). Dental water lines have long

been a concern for microbial contamination, in that microbial biofilms can

attach to the lines and grow within them. As the biofilm grows, it can slough

off into the line and a patient’s mouth, potentially to cause an infection. A

study was conducted to measure the amount of biofilm that could potentially

grow in untreated lines over the course of six months. The researcher meas-

ured the microbial counts in log10 scale of microorganisms attached to the

interior of the water line, the month (every 30 days), the water temperature,

and the amount of calcium (Ca) in the water (Table 8.25). This information

was necessary to the researcher in order to design a formal study of biocides

for prevention of biofilms.

In this example, there is a three-month gap in the data (three to six

months). The researcher is concerned that the six-month data points may be

TABLE 8.25
Dental Water Line Biofilm Growth Data, Example 8.5

n

Log10 Colony–Forming Units

Per mm2 of Line (y) Month (x1)

Water

Temperature, 8C (x2)

Calcium Levels

of Water (x3)

1 0.0 0 25 0.03

2 0.0 0 24 0.03

3 0.0 0 25 0.04

4 1.3 1 25 0.30

5 1.3 1 24 0.50

6 1.1 1 28 0.20

7 2.1 2 31 0.50

8 2.0 2 32 0.70

9 2.3 2 30 0.70

10 2.9 3 33 0.80

11 3.1 3 32 0.80

12 3.0 3 33 0.90

13 5.9 6 38 1.20

14 5.8 6 39 1.50

15 6.1 6 37 1.20
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extremely influencing on a regression analysis. Figure 8.31 displays the

residual plotted vs. month of sampling.

The regression model is presented in Table 8.26.

Looking at the regression model, one can see that x3 (Ca level) probably

serves no use in the model. That variable should be further evaluated using a

partial F test.

Most statistical software packages (SAS, SPSS, and MiniTab) will print

the diagonals of the hat matrix, H¼X(X0X)�1 X0. Below is the MiniTab

version. Table 8.27 presents the actual data, the hii values, and the Sri
values.
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FIGURE 8.31 Residuals plotted against month of sampling, Example 8.5.

TABLE 8.26
Regression Model of Data, Example 8.5

Predictor Coef St. Dev t-Ratio p

b0 1.4007 0.5613 2.50 0.030

b1 1.02615 0.06875 14.93 0.000

b2 �0.05278 0.02277 �2.32 0.041

b3 0.3207 0.2684 1.19 0.257*

s ¼ 0.1247 R2 ¼ 99.7% R2
(adj) ¼ 99.6%

y ¼ log10 colony forming units.

b1 ¼ month.

b2 ¼ water temperature in lines.

b3 ¼ Ca level.

The regression equation is ŷy ¼ 1.40 þ 1.03x1 � 0.0528x2 þ 0.321x3.
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2(h) ¼ 2k þ 1

n
¼ 2(4)

15
¼ 0:533:

So, if any hii > 0.533, that data point needs to be evaluated.

Observing the hii column, none of the six-month data is greater than

0.533. However, the hii value at n¼ 5 is 0.649604, which is greater. Further

scrutiny shows that the value is ‘‘lowish’’ at the x2 and ‘‘highish’’ at x3,

relative to the adjacent xi values, leading one to surmise that it is not a

‘‘typo’’ or data input error, and should probably be left in the data set. Notice

that the Studentized residual value, Sri
, for n¼ 5 is not excessive, nor is any

other Sri
j j value > j2.201j.2 It is useful to use both the hii and the Sri

values in

measuring the leverage. If both are excessive, then one can be reasonably sure

that excessive leverage exists.

Let us look at this process in detail. What if x2 is changed, say a

typographical input error at n¼ 7, where x2¼ 31 was actually mistakenly

input as 3.1. How is this flagged? Table 8.28 provides a new regression that

accommodates the change at n¼ 7=x2.

Note that neither b2 or b3 are significant, nor is the constant significantly

different from 0. The entire regression can be explained as a linear one, ŷy¼ b0

þ b1x1, with the possibility of b0 also canceling out.

Table 8.29 provides the actual data with hii and Studentized residuals.

TABLE 8.27
Actual Data with hii and Sr Values, Example 8.5

n y x1 x2 x3 hii Sri

1 0.0 0 25 0.03 0.207348 �0.80568

2 0.0 0 24 0.03 0.213543 �1.34661

3 0.0 0 25 0.04 0.198225 �0.83096

4 1.3 1 25 0.30 0.246645 0.88160

5 1.3 1 24 0.50 0.649604 �0.26627

6 1.1 1 28 0.20 0.228504 0.77810

7 2.1 2 31 0.50 0.167612 1.08816

8 2.0 2 32 0.70 0.322484 0.10584

9 2.3 2 30 0.70 0.176214 2.07424

10 2.9 3 33 0.80 0.122084 �0.79142

11 3.1 3 32 0.80 0.083246 0.42855

12 3.0 3 33 0.90 0.192055 �0.22285

13 5.9 6 38 1.20 0.399687 �0.36670

14 5.8 6 39 1.50 0.344164 �2.02117

15 6.1 6 37 1.20 0.448586 1.21754

2Referencing Table B; t(a=2, n–k–1) = t(0.025,11) = 2.021
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As can be seen at n¼ 7, x2¼ 3.1, and h77 ¼ 0:961969 > 3(h) ¼ 3(4)
15
¼ 0:8.

Clearly, the xi values at 7 would need to be evaluated. Notice that Sr7,

�2.4453, is a value that stands away from the group, but is not, by itself,

excessive. Together, h77 and Sr7 certainly point to one xi series of values with

high leverage. Notice how just one change in x2 at n¼ 7 influenced the entire

regression (Table 8.26 vs. Table 8.28). Also, note that x2 (temperature)

increases progressively over the course of the six months. Why this has

occurred should be investigated further.

TABLE 8.28
Regression Model with Error at n 5 7, Example 8.5

Predictor Coef St. Dev t-Ratio p

b0 0.1920 0.1443 1.33 0.210

b1 0.93742 0.06730 13.93 0.000

b2 �0.003945 0.005817 �0.68 0.512

b3 0.2087 0.3157 0.66 0.522

s ¼ 0.1490 R2 ¼ 99.6% R2
(adj) ¼ 99.5%

The regression equation is ŷy ¼ 0.192 þ 0.937x1 � 0.00395x2 þ 0.209x3.

TABLE 8.29
Data for Table 8.28 with hii and Studentized Residuals, Example 8.5

Row y b1 b2 b3 hii Sri

1 0.0 0 25.0 0.03 0.217732 �0.74017

2 0.0 0 24.0 0.03 0.209408 �0.76688

3 0.0 0 25.0 0.04 0.208536 �0.75190

4 1.3 1 25.0 0.30 0.103712 1.55621

5 1.3 1 24.0 0.50 0.222114 1.25603

6 1.1 1 28.0 0.20 0.205295 0.28328

7 2.1 2 3.1 0.50 0.961969 �2.44530

8 2.0 2 32.0 0.70 0.191373 �0.62890

9 2.3 2 30.0 0.70 0.178048 1.63123

10 2.9 3 33.0 0.80 0.093091 �0.99320

11 3.1 3 32.0 0.80 0.086780 0.37091

12 3.0 3 33.0 0.90 0.174919 �0.44028

13 5.9 6 38.0 1.20 0.403454 �0.14137

14 5.8 6 39.0 1.50 0.344424 �1.54560

15 6.1 6 37.0 1.20 0.399146 1.67122
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INFLUENCE: COOK’S DISTANCE

Previously in this chapter, we discussed Cook’s distance for simple linear

regression, a regression diagnostic that is used to detect an extreme value and

its influence by removing it from the analysis and then observing the results.

In multiple linear regression, the same approach is used, except that a data set

is removed. Cook’s distance lets the researcher determine just how influential

the ith value set is.

The distance is measured in matrix terms as

Di ¼
b̂b(�i) � b̂b
� �0

X0X b̂b(�i) � b̂b
� �

pMSE
, (8:30)

where b̂b(�i)¼ estimate of b̂b, when the ith point is removed from the regres-

sion; p¼ number of bi values, including b0; k þ 1; and MSE¼mean square

error of the full model.

Di can also be solved as

Di ¼
ŶY� ŶY(�i)

� �0
ŶY� ŶY(�i)

� �

pMSE
, (8:31)

where ŶY¼HY (all n values fitted in a regression) and ŶY(�i)¼ all values but

the ith set fitted for predicting this vector

Instead of calculating a new regression for each i omitted, a simpler

formula exists, if one must do the work by hand, without the use of a computer.

Di ¼
e2

i

pMSE

hii

(1� hii)
2

	 


: (8:32)

This formula stands alone and does not require a new computation of hii

each time.

Another approach, too, that is often valuable uses the F table (Table C),

even though the Di value is not formally an F test statistic.

Step 1: H0: Di¼ 0 (Cook’s distance parameter is 0)

HA: Di 6¼ 0 (Cook’s distance parameter is influential)

Step 2: Set a.

Step 3: If Di > FT, a, ( p, n � p), reject H0 at a.

Generally, however, when Di > 1, the removed point set is considered

significantly influential and should be evaluated. In this case, y and the xi set

need to be checked out, not just the xi set.

Let us again look at Example 8.5. The Cook’s distance values are pro-

vided in Table 8.30. The critical value is FT(0.05; 4, 15� 4)¼ 3.36 (Table C). If

Di > 3.36, it needs to be flagged.
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Because no Di value > 3.36, there is no reason to suspect undue influence

of any of the value sets. Let us see what happens when we change n¼ 7 from

31 to a value of 3.1. Table 8.31 provides the y, xi, and Di values. One now

TABLE 8.30
Cook’s Distance Values, Example 8.5

n y x1 x2 x3 Di

1 0.0 0 25 0.03 0.043850

2 0.0 0 24 0.03 0.114618

3 0.0 0 25 0.04 0.043914

4 1.3 1 25 0.30 0.064930

5 1.3 21 24 0.50 0.035893

6 1.1 1 28 0.20 0.046498

7 2.1 2 31 0.50 0.058626

8 2.0 2 32 0.70 0.001465

9 2.3 2 30 0.70 0.176956

10 2.9 3 33 0.80 0.022541

11 3.1 3 32 0.80 0.004503

12 3.0 3 33 0.90 0.003230

13 5.9 6 38 1.20 0.024294

14 5.8 6 39 1.50 0.418550

15 6.1 6 37 1.20 0.288825

TABLE 8.31
y, xi, and Di Values with Error at x2=n7,

Example 8.5

n y x1 x2 x3 Di

1 0.0 0 25.0 0.03 0.0398

2 0.0 0 24.0 0.03 0.0405

3 0.0 0 25.0 0.04 0.0388

4 1.3 1 25.0 0.30 0.0620

5 1.3 1 24.0 0.50 0.1070

6 1.1 1 28.0 0.20 0.0057

7 2.1 2 3.1 0.50 26.0286

8 2.0 2 32.0 0.70 0.0248

9 2.3 2 30.0 0.70 0.1252

10 2.9 3 33.0 0.80 0.0253

11 3.1 3 32.0 0.80 0.0035

12 3.0 3 33.0 0.90 0.0111

13 5.9 6 38.0 1.20 0.0037

14 5.8 6 39.0 1.50 0.2786

15 6.1 6 37.0 1.20 0.3988
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observes a D value of 26.0286, much larger than 3.36; 3.1 is, of course, an

outlier, as well as an influential value.

Again, Table 8.32 portrays a different regression equation from that

presented in Table 8.26, because we have created the same error that

produced Table 8.28. While R2
(adj) continues to be high, the substitution of

3.1 for 31 at x2=n7 does change the regression.

OUTLYING RESPONSE VARIABLE OBSERVATIONS, yi

Sometimes, a set of normal-looking xi values may be associated with an

extreme yi value. The residual value, ei¼ yi � ŷy, often is useful for evaluating

yi values. It is important with multiple linear regression to know where the

influential values of the regression model are. Generally, they are at the

extreme ends, but not always.

We have discussed residual ei analysis in other chapters, so we will not

spend a lot of time revisiting this. Two forms of residual analyses are

particularly valuable for use in multiple regression: semi-Studentized and

Studentized residuals. A semi-Studentized residual, e0i, is the ith residual

value divided by the square root of the mean square error.

e0i ¼
ei
ffiffiffiffiffiffiffiffiffi
MSE

p (8:33)

The hat matrix can be of use in another aspect of residual analysis, the

Studentized residual. Recall that H¼X(X0X)�1 X0 is the hat matrix.

ŶY¼HY is the predicted vector, ŶY, the product of the n � n H matrix times

the Y value vector. e¼ (I � H)Y, the error of the residual vector can be

determined by subtracting the n � n H matrix from an n � n identity matrix,

I, and multiplying that result by the Y vector.

The variance–covariance of the residuals can be determined by

s2
(e) ¼ s2(I�H): (8:34)

TABLE 8.32
Regression Analysis with Error at x2=n7, Example 8.5

Predictor Coef SE Coef t-Ratio p

b0 0.1920 0.1443 1.33 0.210

b1 0.93742 0.06730 13.93 0.000

b2 �0.003945 0.005817 �0.68 0.512

b3 0.2087 0.3157 0.66 0.522

s ¼ 0.149018 R-sq ¼ 99.6% R-sq(adj) ¼ 99.5%

The regression equation is ŷy ¼ 0.192 þ 0.937x1 � 0.00395x2 þ 0.209x3.
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So, the estimate of s2
(e) ¼ x2

(ei)
¼ MSE(1� hii), where

hii is the ith diagonal of the hat matrix: (8:35)

We are interested in the Studentized residual, which is the ratio of ei to s(ei),

where

s(ei) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE(1� hii)

p
(8:36)

Studentized residual ¼ Sri
¼ ei

s(ei)

, (8:37)

which is the residual divided by the standard deviation of the residual.

Large Studentized residual values are suspect, and they follow the Stu-

dent’s t distribution with n � k � 1 degrees of freedom. Extreme residuals are

directly related to the yi values, in that ei¼ yi � ŷyi.

However, it is more effective to use the same type of schema as the

Cook’s distance—that is, providing Sri
values with the ith value set deleted.

This tends to flag outlying yi values very quickly. The fitted regression is

computed based on all values but the ith one. That is, each of the ei¼ yi � ŷyis

is omitted from the regression. The n � 1 values are refit via the least squares

method. The xi values of the omitted value are then plugged back into the

regression equation to obtain ŷyi(i), the estimated i value of the equation not

using the y, xi data of that spot to produce the regression equation. The value,

di (difference between the original yi and the new ŷyi(i) value), is computed,

providing a deleted residual.

di ¼ yi � ŷyi(i): (8:38)

Recall that, in practice, the method used does not require refitting the regres-

sion equation:

di ¼
ei

1� hii
(8:39)

where ei¼ yi � ŷyi, an ordinary residual containing all the data and

hii¼ diagonal of hat matrix

Of course, the larger hii is, the greater the deleted residual value will be.

This is valuable—the deleted residual—for it helps identify large ‘‘y’’ influ-

ences where the ordinary residual would not.

STUDENTIZED DELETED RESIDUALS

The deleted residual and Studentized residual approaches can be combined

for a more powerful test in a process of dividing the deleted residual, di, by

the standard deviation of the deleted residual.
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ti ¼
di

sdi

, (8:40)

where

di ¼ yi � ŷyi(�i) ¼
ei

1� hii

sdi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEi

1� hii
,

r

(8:41)

MSEi
¼mean square error of the regression without the ith value in the

regression equation.

The test can also be written in the form:

tci
¼ ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEi

(1� hii)
p : (8:42)

But, in practice, the tci
formula is cumbersome, because MSEi

must be

repeatedly calculated for each new ti.
Hence, if the statistical software package one is using does not have the

ability to perform the test, it can easily be adapted to do so. Just use the form:

tci
¼ ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� k � 2

SSE(1� hii)� e2
i

s

: (8:43)

Those values high in absolute terms are potential problems in the yi values—

perhaps even outliers. A formal test—a Bonferroni procedure—can be used to

determine not the influence of the yi values, but whether the largest absolute

values of a set of yi values may be outliers.

If tci
j j > ttj j, conclude that tci

values greater than jttj are ‘‘outliers’’ at a.

tt¼ t(a=2c; n�k�2), k¼ number of bi values, excluding b0, and c¼ contrasts.

Let us return to data in Example 8.5. In this example, in Table 8.27, y6 will

be changed to 4, and y13 to 7.9. Table 8.33 provides the statistical model.

The actual values, fitted values, residuals, and hii diagonals, are provided

in Table 8.34.

ei �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

8:479
� (1� hi)� e2

i

� �s !

C22 ¼ C16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

8:479
� (1� C21)� C19

� �s !

:
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As can be seen, the ei values for y6¼ 2.16247 and y13¼ 0.92934. We can craft

the tci
values by manipulating the statistical software, if the package does not

have tci
calculating capability, using the formula:

tci
¼ ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� k � 2

SSE(1� hii)� e2
i

s

,

where n � k � 2¼ 15 � 3 � 2¼ 10, and SSE¼ 8.479 (Table 8.34)

TABLE 8.33
Statistical Model of Data from Table 8.27, with Changes at y6 and y13

Predictor Coef St. Dev t-Ratio p

b0 �0.435 3.953 �0.11 0.914

b1 1.5703 0.4841 3.24 0.008

b2 0.0479 0.1603 0.30 0.771

b3 �3.198 1.890 �1.69 0.119

s ¼ 0.8779 R2 ¼ 89.0% R2
(adj) ¼ 86.0%

Source DF SS MS F p

Regression 3 68.399 22.800 29.58 0.000

Error 11 8.479 0.771

Total 14 76.8778

The regression equation is ŷy ¼ � 0.43 þ 1.57x1 þ 0.048x2 � 3.20x3.

TABLE 8.34
Example 8.5 Data, with Changes at y6 and y13

n y x1 x2 x3 ei ŷyi hii

1 0.0 0 25.0 0.03 �0.66706 0.66706 0.047630

2 0.0 0 24.0 0.03 �0.61915 0.61915 0.042927

3 0.0 0 25.0 0.04 �0.63509 0.63509 0.040339

4 1.3 1 25.0 0.30 �0.07403 1.37403 0.000772

5 1.3 1 24.0 0.50 0.61340 0.68660 0.645692

6 4.0 1 28.0 0.20 2.16247 1.83753 0.582281

7 2.1 2 31.0 0.50 �0.49232 2.59232 0.019017

8 2.0 2 32.0 0.70 �0.00072 2.00072 0.000000

9 2.3 2 30.0 0.70 0.39511 1.90489 0.013148

10 2.9 3 33.0 0.80 �0.39919 3.29919 0.008187

11 3.1 3 32.0 0.80 �0.15127 3.25127 0.000735

12 3.0 3 33.0 0.90 0.02057 2.97943 0.000040

13 7.9 6 38.0 1.20 0.92934 6.97066 0.310683

14 5.8 6 39.0 1.50 �0.25931 6.05931 0.017451

15 6.1 6 37.0 1.20 �0.82275 6.92275 0.323916
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We will add new columns to Table 8.34 (C8) for e2
i and tci

(Table 8.35).

So the MiniTab procedure for computing tci
is:

Let

C9¼C5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10
8:479
� 1�C7ð Þ�C8

� �q� �
, C9¼ tci

, C7¼ hi, C5¼ ei, C8¼ e2
i

Note that the really large tci
value is 5.00703, where yi¼ 4.0, and a

tci
¼ 1.49951 at y13¼ 7.9. To determine the tt value, set a¼ 0.05. We will perform

two contrasts, so c¼ 2. tt(a=2c; n�k�2)¼ tt(0.05=4, 5�5)¼ tt(0.0125, 10)¼ 2.764, from

the Student’s t Table (Table B). So, if jtij > 2.764, reject H0. Only 5.00703

> 2.764, so it is an outlier with influence on the regression. We see that 1.42951

( y13) is relatively large, but not enough to be significant.

INFLUENCE: BETA INFLUENCE

Additionally, one often is very interested as to how various values of yi or xi

influence the estimated bi coefficients in terms of standard deviation shifts. It

is one thing to be influenced as a value, but a real effect is in the beta (bi)

coefficients. Belsey et al. (1980) have provided a useful method to do this,

termed the DFBETAS.

DFBETASj(�i) ¼
bj � bj(�i)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

(�i)Cji

q ,

TABLE 8.35
Table 8.34, with e2

i and tci
Values

C1 C2 C3 C4 C5 C7 C8 C9

Row y x1 x2 x3 ei hii e2
i tci

1 0.0 0 25.0 0.03 �0.66706 0.207348 0.44498 �0.84203

2 0.0 0 24.0 0.03 �0.61915 0.213543 0.38335 �0.78098

3 0.0 0 25.0 0.04 �0.63509 0.198225 0.40334 �0.79418

4 1.3 1 25.0 0.30 �0.07403 0.246645 0.00548 �0.09267

5 1.3 1 24.0 0.50 0.61340 0.649604 0.37626 1.20417

6 4.0 1 28.0 0.20 2.16247 0.228504 4.67626 5.00703

7 2.1 2 31.0 0.50 �0.49232 0.167612 0.24238 �0.59635

8 2.0 2 32.0 0.70 �0.00072 0.322484 0.00000 �0.00095

9 2.3 2 30.0 0.70 0.39511 0.176214 0.15611 0.47813

10 2.9 3 33.0 0.80 �0.39919 0.122084 0.15935 �0.46771

11 3.1 3 32.0 0.80 �0.15127 0.083246 0.02288 �0.17183

12 3.0 3 33.0 0.90 0.02057 0.192055 0.00042 0.02485

13 7.9 6 38.0 1.20 0.92934 0.399687 0.86367 1.42951

14 5.8 6 39.0 1.50 �0.25931 0.344164 0.06724 �0.34985

15 6.1 6 37.0 1.20 �0.82275 0.448586 0.67691 �1.30112
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where bj¼ jth regression coefficient with data point, bj(i)¼ jth regression

coefficient without ith data point, s2
(�i)¼ variance error term of the tj(�i)

coefficient, and Cjj¼ diagonal element of the matrix¼ (X0X)�1

A large DFBETASj(�i) > 2
ffiffiffi
n
p

means that the ith observation needs to be

checked. The only problem is that, with small samples, the 2
ffiffiffi
n
p

may not be

useful. For large samples, n � 30, it works fine. In smaller samples, use

Cook’s distance in preference to DFBETASj(�i).

SUMMARY

What is one to do if influence or leverage is great? Ideally, one can evaluate

the data and find leverage and influence values to be mistakes in data

collection or typographical errors. If they are not, then the researcher must

make some decisions:

1. One can refer to the results of similar studies. For example, if one has

done a number of surgical scrub evaluations using a standard method,

has experience with that evaluative method, has used a reference

product (and the reference product’s results are consistent with those

from similar studies), and if one has experience with the active anti-

microbial, then an influential or leveraged, unexpected value may

be removed.

2. Instead of removing a specific value, an analogy to a trim mean might

be employed. Say 10% of the most extreme absolute residual values,

Cook’s distance values, or deleted Studentized values are simply

removed; this is 5% of the extreme positive residuals and 5% of the

negative ones. This sort of determination helps prevent ‘‘distorting’’

the data for one’s gain.

3. One can perform the analysis with and without the extreme levera-

ge=influential values and let the reader determine how they want to

interpret the data.

4. Finally, the use of nonparametric regression is sometimes valuable.
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9 Indicator (Dummy)
Variable Regression

Indicator, or dummy variable regression, as it is often known, employs

qualitative or categorical variables as all or some of its predictor variables,

xis. In the regression models discussed in the previous chapters, the xi

predictor variables were quantitative measurements, such as time, tempera-

ture, chemical level, or days of exposure. Indicator regression uses categorical

variables, such as sex, machine, process, anatomical site (e.g., forearm,

abdomen, inguinal region), or geographical location, and these categories

are coded, which allows them to be ranked. For example, female may be

represented as ‘‘0,’’ and male as ‘‘1.’’ Neither sex is rankable or distinguishable,

except by the code ‘‘0’’ or ‘‘1.’’

Indicator regression, many times, employs both quantitative and qualita-

tive xi variables. For example, if one wished to measure the microorganisms

normally found on the skin of men and women, relative to their age, the

following regression model might be used

ŷy ¼ b0 þ b1x1 þ b2x2,

where

ŷy is the log10 microbial counts per cm2,

xi the age of the subject, and

x2 is 0 if male and 1 if female.

This model is composed of two linear regressions, one for males and the

other for females.

For the males, the regression would reduce to

ŷy ¼ b0 þ b1x1 þ b2(0),

ŷy ¼ b0 þ b1x1:

For the females, the regression would be

ŷy ¼ b0 þ b1x1 þ b2(1),

ŷy ¼ (b0 þ b2)þ b1x1:
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The plotted regression functions would be parallel—same slopes, but differ-

ent y-intercepts. Neither 0 nor 1 is the required representative value to use—

any will do—but they are the simplest to use.

In general, if there are c levels of a specific quantitative variable, they

must be expressed in terms of c� 1 levels to avoid collinearity. For example,

suppose multiple anatomical sites, such as the abdominal, forearm, sub-

clavian, and inguinal, are to be evaluated in an antimicrobial evaluation.

There are c¼ 4 sites, so there will be c�1¼ 4�1¼ 3 dummy x variables. The

model can be written as

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,

where

x1 ¼
1 ¼ if abdomen site,

0 ¼ if otherwise,

(

x2 ¼
1 ¼ if forearm site,

0 ¼ if otherwise,

(

x3 ¼
1 ¼ if subclavian site,

0 ¼ if otherwise:

(

When x1¼ x2¼ x3¼ 0, the model represents the inguinal region. Let us write

out the equations to better comprehend what is happening. The full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3: (9:1)

The abdominal site model reduces to

ŷy ¼ b0 þ b1x1 ¼ b0 þ b1, (9:2)

where x1¼ 1, x2¼ 0, and x3¼ 0.

The forearm site model reduces to

ŷy ¼ b0 þ b2x2 ¼ b0 þ b2, (9:3)

where x1¼ 0, x2¼ 1, and x3¼ 0.

The subclavian site model reduces to

ŷy ¼ b0 þ b3x3 ¼ b0 þ b3, (9:4)

where x1¼ 0, x2¼ 0, and x3¼ 1.
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In addition, the inguinal site model reduces to

ŷy ¼ b0, (9:5)

where x1¼ 0, x2¼ 0, and x3¼ 0.

Let us now look at an example while describing the statistical process.

Example 9.1: In a precatheter-insertion skin preparation evaluation, four

anatomical skin sites were used to evaluate two test products, a 70% isopropyl

alcohol (IPA) and 70% IPA with 2% chlorhexidine gluconate (CHG). The

investigator compared the products at four anatomical sites (abdomen, inguinal,

subclavian, and forearm), replicated three times, and sampled for log10 micro-

bial reductions both immediately and after a 24 h postpreparation period.

The y values are log10 reductions from baseline (pretreatment) microbial

populations at each of the sites.

There are four test sites, so there are c� 1, or 4� 1¼ 3, dummy variables

for which one must account. There are two test products, so c� 1¼ 2� 1¼ 1

dummy variable per product. So, let

x1 ¼ time of sample ¼
0 ¼ if immediate,

24 ¼ if 24 h,

(

x2 ¼ product ¼
1 ¼ if IPA,

0 ¼ if other,

(

x3 ¼
1 ¼ if inguinal,

0 ¼ if other,

(

x4 ¼
1 ¼ if forearm,

0 ¼ if other,

(

x5 ¼
1 ¼ if subclavian,

0 ¼ if other:

(

Recall that the abdominal site is represented by b0 þ b1 þ b2, when

x3¼ x4¼ x5¼ 0.

The full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5:

The actual data are presented in Table 9.1.

Table 9.2 presents the regression model derived from the data in

Table 9.1. The reader will undoubtedly see that the output is the same as

that previously observed.
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TABLE 9.1
Actual Data, Example 9.1

Microbial Counts Time Product Inguinal Forearm Subclavian

y x1 x2 x3 x4 x5

3.1 0 1 1 0 0

3.5 0 1 1 0 0

3.3 0 1 1 0 0

3.3 0 0 1 0 0

3.4 0 0 1 0 0

3.6 0 0 1 0 0

0.9 24 1 1 0 0

1.0 24 1 1 0 0

0.8 24 1 1 0 0

3.0 24 0 1 0 0

3.1 24 0 1 0 0

3.2 24 0 1 0 0

1.2 0 1 0 1 0

1.0 0 1 0 1 0

1.3 0 1 0 1 0

1.3 0 0 0 1 0

1.2 0 0 0 1 0

1.1 0 0 0 1 0

0.0 24 1 0 1 0

0.1 24 1 0 1 0

0.2 24 1 0 1 0

1.4 24 0 0 1 0

1.5 24 0 0 1 0

1.2 24 0 0 1 0

1.5 0 1 0 0 1

1.3 0 1 0 0 1

1.4 0 1 0 0 1

1.6 0 0 0 0 1

1.2 0 0 0 0 1

1.4 0 0 0 0 1

0.1 24 1 0 0 1

0.2 24 1 0 0 1

0.1 24 1 0 0 1

1.7 24 0 0 0 1

1.8 24 0 0 0 1

1.5 24 0 0 0 1

2.3 0 1 0 0 0

2.5 0 1 0 0 0

2.1 0 1 0 0 0

2.4 0 0 0 0 0
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In order to fully understand the regression, it is necessary to deconstruct

its meaning. There are two products evaluated, two time points, and four

anatomical sites. From the regression model (Table 9.2), this is not readily

apparent. So we will evaluate it now.

INGUINAL SITE, IPA PRODUCT, IMMEDIATE

Full model: ŷy¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5.

The x4 (forearm) and x5 (subclavian) values are 0.

TABLE 9.1 (continued)
Actual Data, Example 9.1

Microbial Counts Time Product Inguinal Forearm Subclavian

2.1 0 0 0 0 0

2.2 0 0 0 0 0

0.3 24 1 0 0 0

0.2 24 1 0 0 0

0.3 24 1 0 0 0

2.3 24 0 0 0 0

2.5 24 0 0 0 0

2.2 24 0 0 0 0

TABLE 9.2
Regression Model, Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.6417 0.1915 13.80 0.000

b1 �0.034201 0.006514 �5.25 0.000

b2 �0.8958 0.1563 �5.73 0.000

b3 0.9000 0.2211 4.07 0.000

b4 �0.8250 0.2211 �3.73 0.001

b5 �0.6333 0.2211 �2.86 0.006

s¼ 0.541538 R-sq¼ 76.2% R-sq(adj)¼ 73.4%

Analysis of Variance

Source DF SS MS F P

Regression 5 39.4810 7.8962 26.93 0.000

Error 42 12.3171 0.2933

Total 47 51.7981

The regression equation is ŷy ¼ 2.64 � 0.034x1 � 0.896x2 þ 0.900x3 � 0.825x4 � 0.633x5.
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Hence, the model reduces to ŷy¼ b0 þ b1x1 þ b2x2 þ b3x3.

Time¼ 0¼ x1, product 1 is IPA¼ 1 for x2, and the inguinal site is 1 for x3.

ŷy0 ¼ b0 þ b1(0)þ b2(1)þ b3(1),

ŷy0 ¼ b0 þ b2 þ b3,

ŷy0 ¼ 2:6417þ (�0:8958)þ 0:9000:

ŷy0¼ 2.6459 log10 reduction in microorganisms by the IPA product.

INGUINAL SITE, IPA + CHG PRODUCT, IMMEDIATE

Full model: ŷy¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5.

Time¼ 0¼ x1, and product is IPA þ CHG¼ 0 for x2.

ŷy ¼ b0 þ b1(0)þ b2(0)þ b3(1)þ b4(0)þ b5(0),

ŷy0 ¼ b0 þ b3,

ŷy0 ¼ 2:6417þ 0:9000:

ŷy0¼ 3.5417 log10 reduction in microorganisms by the IPA þ CHG product.

INGUINAL SITE, IPA PRODUCT, 24 H

x1 ¼ 24, x2 ¼ 1, and x3 ¼ 1:

ŷy24 ¼ 2:6417þ (�0:0342[24])þ (�0:8958[1])þ (0:9000[1]):

ŷy24¼ 1.8251 log10 reduction in microorganisms by the IPA product at 24 h.

INGUINAL SITE, IPA + CHG PRODUCT, 24 H

x1 ¼ 24, x2 ¼ 0, and x3 ¼ 1:

ŷy24 ¼ 2:6417þ (�0:0342[24])þ (0:9000[1]):

ŷy24¼ 2.7209 log10 reduction in microorganisms by the IPA þ CHG product

at 24 h.

Plotting these two products, the result is shown in Figure 9.1.

Note that there may be a big problem. The regression fits the same slope

for both products, just different at the y-intercepts. This may not be adequate

for what we are trying to do. The actual data for both at time 0 are nearly

equivalent in this study, differing only at the 24 h period. Hence, the predicted

values do not make sense.
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There may be an interaction effect. Therefore, we need to look at the data

in Table 9.3, providing the actual data, fitted data, and residual data for the

model. We see a þ=� pattern, depending on the xi variable, so we check out

the possible interaction, particularly because R2
(adj) for the regression is only

73.4% (Table 9.2).

The positive interactions that can occur are x1x2, x1x3, x1x4, x1x5, x2x3,

x2x4, x2x5, x1x2x3, x1x2x4, and x1x2x5. Note that we have limited the analysis to

three-way interactions.

We code the interactions as x6� x15. Specifically, they are

x1x2 ¼ x6,

x1x3 ¼ x7,

x1x4 ¼ x8,

x1x5 ¼ x9,

x2x3 ¼ x10,

x2x4 ¼ x11,

x2x5 ¼ x12,

x1x2x3 ¼ x13,

x1x2x4 ¼ x14,

x1x2x5 ¼ x15:

Table 9.4 provides the complete new set of data to fit the full model with

interactions.
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FIGURE 9.1 IPA and IPA þ CHG, Example 9.1.
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TABLE 9.3
Actual Data, Fitted Data, and Residual Data, Example 9.1

Row y x1 x2 x3 x4 x5 ŷy y � ŷy ¼ e

1 3.1 0 1 1 0 0 2.64583 0.45417

2 3.5 0 1 1 0 0 2.64583 0.85417

3 3.3 0 1 1 0 0 2.64583 0.65417

4 3.3 0 0 1 0 0 3.54167 �0.24167

5 3.4 0 0 1 0 0 3.54167 �0.14167

6 3.6 0 0 1 0 0 3.54167 0.05833

7 0.9 24 1 1 0 0 1.82500 �0.92500

8 1.0 24 1 1 0 0 1.82500 �0.82500

9 0.8 24 1 1 0 0 1.82500 �1.02500

10 3.0 24 0 1 0 0 2.72083 0.27917

11 3.1 24 0 1 0 0 2.72083 0.37917

12 3.2 24 0 1 0 0 2.72083 0.47917

13 1.2 0 1 0 1 0 0.92083 0.27917

14 1.0 0 1 0 1 0 0.92083 0.07917

15 1.3 0 1 0 1 0 0.92083 0.37917

16 1.3 0 0 0 1 0 1.81667 �0.51667

17 1.2 0 0 0 1 0 1.81667 �0.61667

18 1.1 0 0 0 1 0 1.81667 �0.71667

19 0.0 24 1 0 1 0 0.10000 �0.10000

20 0.1 24 1 0 1 0 0.10000 �0.00000

21 0.2 24 1 0 1 0 0.10000 0.10000

22 1.4 24 0 0 1 0 0.99583 0.40417

23 1.5 24 0 0 1 0 0.99583 0.50417

24 1.2 24 0 0 1 0 0.99583 0.20417

25 1.5 0 1 0 0 1 1.11250 0.38750

26 1.3 0 1 0 0 1 1.11250 0.18750

27 1.4 0 1 0 0 1 1.11250 0.28750

28 1.6 0 0 0 0 1 2.00833 �0.40833

29 1.2 0 0 0 0 1 2.00833 �0.80833

30 1.4 0 0 0 0 1 2.00833 �0.60833

31 0.1 24 1 0 0 1 0.29167 �0.19167

32 0.2 24 1 0 0 1 0.29167 �0.09167

33 0.1 24 1 0 0 1 0.29167 �0.19167

34 1.7 24 0 0 0 1 1.18750 0.51250

35 1.8 24 0 0 0 1 1.18750 0.61250

36 1.5 24 0 0 0 1 1.18750 0.31250

37 2.3 0 1 0 0 0 1.74583 0.55417

38 2.5 0 1 0 0 0 1.74583 0.75417

39 2.1 0 1 0 0 0 1.74583 0.35417

40 2.4 0 0 0 0 0 2.64167 �0.24167

41 2.1 0 0 0 0 0 2.64167 �0.54167

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 348 16.11.2006 8:08pm

348 Handbook of Regression and Modeling



Other interactions could have been evaluated, but the main candidates are

presented here. Interactions between inguinal and abdominal were not used,

because they will not interact.

The new model is

ŷy ¼ b0 þ b1x1 þ � � � þ b15x15, (9:6)

or as presented in Table 9.5.

This model appears rather ungainly, and some of the xi values could be

removed. We will not do that at this point, but the procedures in Chapter 3 and

Chapter 10 (backward, forward, or stepwise) would be used for this. Note that

R2
(adj) ¼ 98:2%, a much better fit.

By printing the y, ŷy, and e values, we can evaluate the configuration

(Table 9.6). Let us compare product 1 and product 2 at the inguinal sites

time 0 and time 24.

Figure 9.2 shows the new results.

Note that IPA, alone, and IPA þ CHG initially produce about the same

log10 microbial reductions (approximately a 3.3 log10 reduction at time 0).

However, over the 24 h period, the IPA, with no persistent antimicrobial

effects, drifted toward the baseline level. The IPA þ CHG, at the 24 h mark,

remains at over a 3 log10 reduction.

This graph shows the effects the way they really are. Note, however, that

as the variables increase, the number of interaction terms skyrockets, eating

valuable degrees of freedom. Perhaps, a better way to perform this study

would be to separate the anatomical sites, because their results are not

compared directly anyway, and use a separate statistical analysis for each.

However, by the use of dummy variables, the evaluation can be made all at

once. There is also a strong argument to do the study as it is, because the

testing is performed on the same unit—a patient—just at different anatomical

sites. Multiple analysis of variance could also be used where multiple depen-

dent variables would be employed, but many readers would have trouble

TABLE 9.3 (continued)
Actual Data, Fitted Data, and Residual Data, Example 9.1

Row y x1 x2 x3 x4 x5 ŷy y � ŷy ¼ e

42 2.2 0 0 0 0 0 2.64167 �0.44167

43 0.3 24 1 0 0 0 0.92500 �0.92500

44 0.2 24 1 0 0 0 0.92500 �0.72500

45 0.3 24 1 0 0 0 0.92500 �0.62500

46 2.3 24 0 0 0 0 1.82083 0.47917

47 2.5 24 0 0 0 0 1.82083 0.67917

48 2.2 24 0 0 0 0 1.82083 0.37917
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TABLE 9.4
New Data Set to Account for Interaction, Example 9.1

Row y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 3.10 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

2 3.50 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

3 3.30 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

4 3.30 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 3.40 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

6 3.60 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

7 0.90 24 1 1 0 0 24 24 0 0 1 0 0 24 0 0

8 1.00 24 1 1 0 0 24 24 0 0 1 0 0 24 0 0

9 0.80 24 1 1 0 0 24 24 0 0 1 0 0 24 0 0

10 3.00 24 0 1 0 0 0 24 0 0 0 0 0 0 0 0

11 3.10 24 0 1 0 0 0 24 0 0 0 0 0 0 0 0

12 3.20 24 0 1 0 0 0 24 0 0 0 0 0 0 0 0

13 1.20 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

14 1.00 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

15 1.30 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

16 1.30 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

17 1.20 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

18 1.10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

19 0.00 24 1 0 1 0 24 0 24 0 0 1 0 0 24 0

20 0.10 24 1 0 1 0 24 0 24 0 0 1 0 0 24 0

21 0.20 24 1 0 1 0 24 0 24 0 0 1 0 0 24 0

22 1.40 24 0 0 1 0 0 0 24 0 0 0 0 0 0 0

23 1.50 24 0 0 1 0 0 0 24 0 0 0 0 0 0 0

24 1.20 24 0 0 1 0 0 0 24 0 0 0 0 0 0 0

25 1.50 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

26 1.30 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

27 1.40 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

28 1.60 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

29 1.20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

30 1.40 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

31 0.10 24 1 0 0 1 24 0 0 24 0 0 1 0 0 24

32 0.20 24 1 0 0 1 24 0 0 24 0 0 1 0 0 24

33 0.10 24 1 0 0 1 24 0 0 24 0 0 1 0 0 24

34 1.70 24 0 0 0 1 0 0 0 24 0 0 0 0 0 0

35 1.80 24 0 0 0 1 0 0 0 24 0 0 0 0 0 0

36 1.50 24 0 0 0 1 0 0 0 24 0 0 0 0 0 0

37 2.30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

38 2.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

39 2.10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

40 2.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(continued)
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TABLE 9.4 (continued)
New Data Set to Account for Interaction, Example 9.1

Row y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

41 2.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42 2.20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 0.30 24 1 0 0 0 24 0 0 0 0 0 0 0 0 0

44 0.20 24 1 0 0 0 24 0 0 0 0 0 0 0 0 0

45 0.30 24 1 0 0 0 24 0 0 0 0 0 0 0 0 0

46 2.30 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 2.50 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

48 2.20 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 9.5
Revised Regression Model, Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.23333 0.08122 27.50 0.000

b1 0.004167 0.004786 0.87 0.390

b2 0.0667 0.1149 0.58 0.566

b3 1.2000 0.1149 10.45 0.000

b4 �1.0333 0.1149 �9.00 0.000

b5 �0.8333 0.1149 �7.25 0.000

b6 �0.088889 0.006769 �13.13 0.000

b7 �0.018056 0.006769 �2.67 0.012

b8 0.002778 0.006769 0.41 0.684

b9 0.006944 0.006769 1.03 0.313

b10 �0.2000 0.1624 �1.23 0.227

b11 �0.1000 0.1624 �0.62 0.543

b12 �0.0667 0.1624 �0.41 0.684

b13 0.002778 0.009572 0.29 0.774

b14 0.037500 0.009572 3.92 0.000

b15 0.025000 0.009572 2.61 0.014

s¼ 0.140683 R-sq¼ 98.8% R-sq(adj)¼ 98.2%

Analysis of Variance

Source DF SS MS F p

Regression 15 51.1648 3.4110 172.34 0.000

Error 32 0.6333 0.0198

Total 47 51.7981

The regression equation is ŷy ¼ 2.23 þ 0.00417x1 þ 0.067x2 þ 1.20x3 � 1.03x4 � 0.833x5 �
0.0889x6� 0.0181x7þ 0.00278x8þ 0.0694x9� 0.200x10� 0.100x11� 0.067x12þ 0.00278x13þ
0.0375x14 þ 0.0250x15.
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TABLE 9.6
y, ŷy , and e Values, Revised Regression, Example 9.1

Row y ŷy e

1 3.10 3.30000 �0.200000

2 3.50 3.30000 0.200000

3 3.30 3.30000 �0.000000

4 3.30 3.43333 �0.133333

5 3.40 3.43333 �0.033333

6 3.60 3.43333 0.166667

7 0.90 0.90000 �0.000000

8 1.00 0.90000 0.100000

9 0.80 0.90000 �0.100000

10 3.00 3.10000 �0.100000

11 3.10 3.10000 �0.000000

12 3.20 3.10000 0.100000

13 1.20 1.16667 0.033333

14 1.00 1.16667 �0.166667

15 1.30 1.16667 0.133333

16 1.30 1.20000 0.100000

17 1.20 1.20000 0.000000

18 1.10 1.20000 �0.100000

19 0.00 0.10000 �0.100000

20 0.10 0.10000 �0.000000

21 0.20 0.10000 0.100000

22 1.40 1.36667 0.033333

23 1.50 1.36667 0.133333

24 1.20 1.36667 �0.166667

25 1.50 1.40000 0.100000

26 1.30 1.40000 �0.100000

27 1.40 1.40000 0.000000

28 1.60 1.40000 0.200000

29 1.20 1.40000 �0.200000

30 1.40 1.40000 0.000000

31 0.10 0.13333 �0.033333

32 0.20 0.13333 0.066667

33 0.10 0.13333 �0.033333

34 1.70 1.66667 0.033333

35 1.80 1.66667 0.133333

36 1.50 1.66667 �0.166667

37 2.30 2.30000 0.000000

38 2.50 2.30000 0.200000

39 2.10 2.30000 �0.200000

40 2.40 2.23333 0.166667

41 2.10 2.23333 �0.133333

(continued )
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comprehending a more complex design and, because a time element is

present, the use of this dummy regression is certainly appropriate.

COMPARING TWO REGRESSION FUNCTIONS

When using dummy variable regression, one can directly compare the two or

more regression lines. There are three basic questions:

1. Are the two or more intercepts different?

2. Are the two or more slopes different?

3. Are the two or more regression functions coincidental—the same at the

intercept and in the slopes?

TABLE 9.6 (continued)
y, ŷy , and e Values, Revised Regression, Example 9.1

Row y ŷy e

42 2.20 2.23333 �0.033333

43 0.30 0.20667 0.033333

44 0.20 0.20667 �0.066667

45 0.30 0.20667 0.033333

46 2.30 2.33333 �0.033333

47 2.50 2.33333 0.166667

48 2.20 2.33333 �0.133333

A B

A

24 hImmediate
x

y

B
2

0.0

1.0

2.0

3.0

A = product 2 = IPA

Lo
g 10

 r
ed

uc
tio

n 
fr

om
 b

as
el

in
e

B = product 1 = IPA and CHG
5.0 10.0 15.0 20.0 25.0

FIGURE 9.2 Revised results, IPA and IPA þ CHG, Example 9.1.
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Figure 9.3a presents a case where the intercepts are the same, and

Figure 9.3b presents a case where they differ.

Figure 9.4a presents a case where the slopes are different, and Figure 9.4b

a case where they are the same.

Figure 9.5 presents a case where intercepts and slopes are identical.

Let us work an example beginning with two separate regression equations.

We will use the data in Example 9.1.

The first set of data is for the IPA þ CHG product (Table 9.7).

Figure 9.6 provides the data from the IPA þ CHG product in log10

reductions at all sites.

Table 9.8 provides the linear regression analysis for the IPA þ CHG

product.

For the IPA alone, Table 9.9 provides the microbial, reduction data from

all sites.

Figure 9.7 provides the plot of the IPA log10 reduction.

Table 9.10 provides the linear regression data.

x

y

(a)
Intercepts are equal

x

y

(b)
Intercepts are different

FIGURE 9.3 Comparing two intercepts.

x

y

(a) Slopes are different Slopes are equal

x

y

(b)

FIGURE 9.4 Comparing two slopes.
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x

y

FIGURE 9.5 Identical slopes and intercepts.

TABLE 9.7
IPA 1 CHG Data, All Sites, Example 9.1

Row y x

1 3.3 0 y¼ log10 reductions from baseline

2 3.4 0

3 3.6 0 x¼ time of sample

4 3.0 24 0¼ immediate

5 3.1 24 24¼ 24 h

6 3.2 24

7 1.3 0

8 1.2 0

9 1.1 0

10 1.4 24

11 1.5 24

12 1.2 24

13 1.6 0

14 1.2 0

15 1.4 0

16 1.7 24

17 1.8 24

18 1.5 24

19 2.4 0

20 2.1 0

21 2.2 0

22 2.3 24

23 2.5 24

24 2.2 24
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COMPARING THE y-INTERCEPTS

When performing an indicator variable regression, it is often useful to com-

pare two separate regressions for y-intercepts. This can be done using the six-

step procedure.

0
1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20 25

24 h

FIGURE 9.6 IPA þ CHG product log10 reductions, all sites, Example 9.1.

TABLE 9.8
Linear Regression Analysis for IPA 1 CHG Product at All Sites,

Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.0667 0.2381 8.68 0.000

b1 0.00208 0.01403 0.15 0.883

s¼ 0.824713 R-sq¼ 0.1% R-sq(adj)¼ 0.0%

Analysis of Variance

Source DF SS MS F p

Regression 1 0.0150 0.0150 0.02 0.883

Error 22 14.9633 0.6802

Total 23 14.9783

The regression equation is ŷy ¼ 2.07 þ 0.0021x.
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Step 1: Hypothesis.

There are three hypotheses available.

Upper Tail Lower Tail Two Tail

H0: b0A � b0B H0: b0A � b0B H0: b0A ¼ b0B

HA: b0A > b0B HA: b0A < b0B HA: b0A 6¼ b0B

where

A is the IPA product and

B is the IPA þ CHG product

Step 2: Set a, choose nA and nB.

TABLE 9.9
IPA Data, All Sites, Example 9.1

n y x

1 3.10 0

2 3.50 0

3 3.30 0

4 0.90 24

5 1.00 24

6 0.80 24

7 1.20 0

8 1.00 0

9 1.30 0

10 0.00 24

11 0.10 24

12 0.20 24

13 1.50 0

14 1.30 0

15 1.40 0

16 0.10 24

17 0.20 24

18 0.10 24

19 2.30 0

20 2.50 0

21 2.10 0

22 0.30 24

23 0.20 24

24 0.30 24
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Step 3: The test statistic is a t test of the form

tc ¼
b̂0(A) �b̂0(B)

sb̂0(A)�b̂0(B)

, (9:7)

0

0

1

2

3

4
y

5 10 15 20 25
x

24 h

FIGURE 9.7 IPA product log10 reductions, all sites, Example 9.1.

TABLE 9.10
Linear Regression Analysis for IPA at All Sites, Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.0417 0.1948 10.48 0.000

b1 �0.07049 0.01148 �6.14 0.000

s¼ 0.6748 R-sq¼ 63.2% R-sq(adj)¼ 61.5%

Analysis of Variance

Source DF SS MS F P

Regression 1 17.170 17.170 37.70 0.000

Error 22 10.019 0.455

Total 23 27.190

The regression equation is ŷy ¼ 2.04 � 0.0705x.
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where

s2
b̂b0(A)� b̂b0(B)

¼ s2

by, xy, x

1

nA

þ 1

nB

þ �xx2
A

(nA � 1)s2
x(A)

þ �xx2
B

(nB � 1)s2
x(B)

" #

, (9:8)

where

s2

by, xy, x
¼
"

(nA � 2)s2
y, xA
þ (nB � 2)s2

y, xB

nA þ nB � 4

#

: (9:9)

Note that

s2

by, xy, x
¼
P

(yi � ŷy)2

n� 2
, (9:10)

and

s2
x ¼

P
(xi � �xx)2

n� 1
: (9:11)

Step 4: Decision rule.

Recall that there are three hypotheses available.

Upper Tail Lower Tail Two Tail

H0: b0(A) � b0(B) H0: b0(A) � b0(B) H0: b0(A) ¼ b0(B)

HA: b0(A) > b0(B) HA: b0(A) < b0(B) HA: b0(A) 6¼ b0(B)

Test statistic: If Test statistic: If Test statistic: If

tc > tt(a,nAþnB�4), then H0 is tc < �tt(a,nAþnB�4), then H0 is tcj j > tt(a=2, nAþnB�4)

�
�

�
�, then H0 is

rejected at a. rejected at a. rejected at a.

Step 5: Perform the experiment.

Step 6: Make the decision based on the hypotheses (Step 4).

Let us perform a two-tail test to compare the IPA and the IPA þ CHG

products, where A is IPA and B is IPA þ CHG.

Step 1: Formulate the test hypotheses.

H0: b0(A)¼b0(B); the intercepts for IPA and IPA þ CHG are the same,

HA: b0(A) 6¼ b0(B); the intercepts are not the same.

Step 2: Set a and n.

Let us set a at 0.10, so a=2¼ 0.05 because this is a two-tail test, and

nA¼ nB¼ 24.
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Step 3: Write the test statistic to be used.

tc ¼
b̂b0(A) � b̂b0(B)

s b̂b0(A)� b̂b0(B)

: (9:7)

Step 4: Decision rule.

If jtcj > jttj, reject H0 at a¼ 0.10.

tt ¼ tt(a=2; nAþnB�4) ¼ t(0:10=2; 24þ24�4) ¼ t(0:05,44) ¼ 1:684 (from Table B, the

Student’s t table). Because this is a two-tail test, 1.684 will be both negative

and positive.

1.684−1.684

If jtcj > jtt¼ 1.684j, reject H0 at a¼ 0.10, and conclude that the

y-intercepts are not equivalent.

Step 5: Perform the experiment and the calculations.

b0(A), the intercept of IPA (Table 9.10)¼ 2.0417.

b0(B), the intercept of IPA þ CHG (Table 9.8)¼ 2.0667.

s2
b̂b0(A)� b̂b0(B)

¼ s2

by, xy, x

1

nA
þ 1

nB

þ �xx2
A

(nA � 1)s2
x(A)

þ �xx2
B

(nB � 1)s2
x(B)

" #

:

First, solving for s2

by, xy, x
,

s2

by, xy, x
¼

(nA � 2)s2
y, xA
þ (nB � 2)s2

y, xB

nA þ nB � 4
¼ (24� 2)0:6802þ (24� 2)0:455

24þ 24� 4

¼ 0:5676:

Therefore,

s2
b̂b0(A)� b̂b0(B)

¼ 0:5676
1

24
þ 1

24
þ 122

24� 1(150:3076)
þ 122

24� 1(150:3076)

� �

,

s2
b̂b0(A)� b̂b0(B)

¼ 0:0946,

and

s2

by, xy, xA

¼
P

(yi � ŷy)2

n� 2
¼ MSE ¼ 0:6802 (Table 9:8), for IPAþ CHG:

s2

by, xy, xB

¼ MSE ¼ 0:455 (Table 9:10), for IPA only:

Summary data for the x values (0 or 24) are for IPA and for IPA þ CHG.

Because the xi values are identical, we only need one table (Table 9.11) to

compute s2
xA

and s2
xB

.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 360 16.11.2006 8:08pm

360 Handbook of Regression and Modeling



s2
xA
¼
P

(xi � �xx)2

n� 1
¼ (12:26)2 ¼ 150:3076,

s2
xB
¼
P

(xi � �xx)2

n� 1
¼ (12:26)2 ¼ 150:3076:

Note that this variance for both IPA and IPA þ CHG, s2
xj

, is large, because the

xi range for both is 0 to 24. If the range had been much greater, some would

normalize the xi values, but these values are not so excessive as to cause

problems. Finally,

tc ¼
b̂b0(A) � b̂b0(B)

s2
b̂b0(A)� b̂b0(B)

¼ 2:0667� 2:0417
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0946
p ¼ 0:0813:

Step 6: Decision.

Because tcj j ¼ 0:0813 6> 1:684, one cannot reject H0 at a¼ 0.10. Hence, we

conclude that the b0-intercepts for the 2% CHG þ IPA and the IPA product,

alone, are the same. In the context of our current problem, we note that both

the products are equal in antimicrobial kill (log10 reductions) at the immediate

time point. However, what about after time 0?

TEST OF B1S OR SLOPES: PARALLELISM

In this test, we are interested in seeing if the slopes for microbial reductions are

the same for the two compared groups, the IPA þ CHG and the IPA, alone. If

the slopes are the same, this would not mean the intercepts necessarily are.

The six-step procedure is as follows.

Step 1: State the hypotheses (three can be made).

Upper Tail Lower Tail Two Tail

H0: b1(A) � b1(B) H0: b1(A) � b1(B) H0: b1(A) ¼ b1(B)

HA: b1(A) > b1(B) HA: b1(A) < b1(B) HA: b1(A) 6¼ b1(B)

TABLE 9.11
x Values for the IPA and the IPA 1 CHG

Variable n Mean Median Tr Mean St. Dev SE Mean

x¼Time 24 12.00 12.00 12.00 12.26 2.50

Variable Min Max Q1 Q3

x¼Time 0.00 24.00 0.00 24.00
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Step 2: Set sample sizes and the a level.

Step 3: Write out the test statistic to be used

tc ¼
b1(A) � b1(B)

sb1(A)�b1(B)

,

where

s2
b1(A)�b1(B)

¼ s2

by, xy, x

1

nA � 1ð Þsx(A)

þ 1

nB � 1ð Þsx Bð Þ

� �

,

s2

by, xy, x
¼

nA � 2ð Þs2
y, xA
þ nB � 2ð Þs2

y, xB

nA þ nB � 4
,

s2
y, x ¼

P
yi � ŷyið Þ2

n� 2
,

s2
(x) ¼

P
xi � �xxð Þ2

n� 1
:

Step 4: Decision rule.

Upper tail:

If tc > tt(a; nAþnB�4), reject H0 at a.

Lower tail:

If tc < �tt(a; nAþnB�4), reject H0 at a.

Two tail:

If jtcj > tt(a=2; nAþnB�4)

�
�

�
�, reject H0 at a.

Step 5: Perform experiment.

Step 6: Make the decision, based on Step 4.

Let us perform a two-tail test at a¼ 0.05, using the data in Table 9.7 and

Table 9.9.

Step 1: Set the hypotheses. We will perform a two-tail test for parallel slopes,

where A represents IPA þ CHG and B IPA.

H0: b1(A) ¼ b1(B),

HA: b1(A) 6¼ b1(B):

Step 2: nA¼ nB¼ 24 and a¼ 0.05.

Step 3: Choose the test statistic to be used

tc ¼
b1(A) � b1(B)

sb1(A)�b1(B)

:
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Step 4: Decision rule.

tt¼ tt(0.05=2;24þ24�4)¼ tt(0.025,44)¼ 2.021, from Table B, the student’s t table.

If jtcj > jtt¼ 2.021j, reject H0 at a¼ 0.05.

Step 5: Perform experiment.

A¼ IPA þ CHG and

B¼ IPA

s2
xA
¼
P

(xi � �xx)2

n�1
¼ 12:262 ¼ 150:3076, from Table 9.11, as given earlier,

and

s2
xB
¼ 12:262 ¼ 150:3076, also as given earlier.

s2
y, xA
¼
P

(yi�ŷyi)
2

n�2
¼ MSE ¼ 0:6802, from Table 9.8.

s2
y, xB
¼ 0:455, from Table 9.10.

s2

by, xy, x
¼

(nA � 2)s2
y, xA
þ (nB � 2)s2

y, xB

nA þ nB � 4
¼ 22(0:6802)þ 22(0:455)

24þ 24� 4
¼ 0:5676:

s2
b1(A)�b1(B)

¼ s2

by,xy,x

1

(nA�1)s2
x(A)

þ 1

(nB�1)s2
x(B)

" #

¼ 0:5676
1

23(150:31)
þ 1

23(150:31)

� �

¼ 0:00033:

tc ¼
0:00208� (�0:0711)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00033
p ¼ 4:03:

Step 6: Decision.

As tc¼ 4.03 > 2.021, reject H0 at a¼ 0.05. The IPA þ CHG product log10

microbial reduction rate (slope) is different from that produced by the IPA

product, alone. The CHG provides a persistent antimicrobial effect that the

IPA, by itself, does not have.

Let us compute the same problem using only one regression equation with

an indicator variable. Let

x2 ¼
0, if IPAþ CHG product

1, if IPA product

�

:

Table 9.12 presents the example in one equation.

We note that the r2 is incredibly low, 34.2%. We also remember that the

two equations for each product previously computed had different slopes.

Therefore, the interaction between x1 and x2 is important. Table 9.13 presents

the data without an interaction term and the large error, ei¼ y � ŷy.

To correct this, we will use an interaction term, x3¼ x1 * x2, or x1 times x2,

or x1x2. Table 9.14 presents this.

The regression equation bi is

ŷy ¼ 2:07þ 0:0021x1 � 0:025x2 � 0:0726x3:
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For the IPA þ CHG formulation, where x2¼ 0, the equation is

ŷy ¼ 2:07þ 0:0021x1 � 0:0726x3,

¼ 2:07þ 0:0021x1:

For the IPA formulation, where x2¼ 1, the equation is

ŷy ¼ 2:07þ 0:0021x1 � 0:025(1)� 0:0726x3,

¼ (2:07� 0:025)þ 0:0021x1 � 0:0726x3,

¼ 2:045þ 0:0021x1 � 0:0726x3:

PARALLEL SLOPE TEST USING INDICATOR VARIABLES

If the slopes are parallel, this is the same thing as saying x3¼ x1x2¼ 0; that is,

there is no significant interaction between x1 and x2. The model, ŷy¼ b0 þ
b1x1 þ b2x2 þ b3x3, can be used to determine interaction between multiple

products. Using the previous example and the six-step procedure,

Step 1: State the hypothesis.

H0: b3 ¼ 0,

HA: b3 6¼ 0:

Step 2: Set n1 and n2, as well as a.

n1¼ n2¼ 24; set a¼ 0.05.

TABLE 9.12
Regression Analysis (Reduced Model), Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.5021 0.2176 11.50 0.000

b1 �0.03420 0.01047 �3.27 0.002

b2 �0.8958 0.2512 �3.57 0.001

s¼ 0.870284 R-sq¼ 34.2% R-sq(adj)¼ 31.3%

Analysis of Variance

Source DF SS MS F p

Regression 2 17.7154 8.8577 11.69 0.000

Error 45 34.0827 0.7574

Total 47 51.7981

The regression equation is ŷy ¼ 2.50 � 0.0342x1 � 0.896x2.
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TABLE 9.13
ŷy Predicting y, Example 9.1

Row y x1 x2 ŷy y � ŷy

1 3.10 0 1 1.60625 1.49375

2 3.50 0 1 1.60625 1.89375

3 3.30 0 1 1.60625 1.69375

4 3.30 0 0 2.50208 0.79792

5 3.40 0 0 2.50208 0.89792

6 3.60 0 0 2.50208 1.09792

7 0.90 24 1 0.78542 0.11458

8 1.00 24 1 0.78542 0.21458

9 0.80 24 1 0.78542 0.01458

10 3.00 24 0 1.68125 1.31875

11 3.10 24 0 1.68125 1.41875

12 3.20 24 0 1.68125 1.51875

13 1.20 0 1 1.60625 �0.40625

14 1.00 0 1 1.60625 �0.60625

15 1.30 0 1 1.60625 �0.30625

16 1.30 0 0 2.50208 �1.20208

17 1.20 0 0 2.50208 �1.30208

18 1.10 0 0 2.50208 �1.40208

19 0.00 24 1 0.78542 �0.78542

20 0.10 24 1 0.78542 �0.68542

21 0.20 24 1 0.78542 �0.58542

22 1.40 24 0 1.68125 �0.28125

23 1.50 24 0 1.68125 �0.18125

24 1.20 24 0 1.68125 �0.48125

25 1.50 0 1 1.60625 �0.10625

26 1.30 0 1 1.60625 �0.30625

27 1.40 0 1 1.60625 �0.20625

28 1.60 0 0 2.50208 �0.90208

29 1.20 0 0 2.50208 �1.30208

30 1.40 0 0 2.50208 �1.10208

31 0.10 24 1 0.78542 �0.68542

32 0.20 24 1 0.78542 �0.58542

33 0.10 24 1 0.78542 �0.68542

34 1.70 24 0 1.68125 0.01875

35 1.80 24 0 1.68125 0.11875

36 1.50 24 0 1.68125 �0.18125

37 2.30 0 1 1.60625 0.69375

38 2.50 0 1 1.60625 0.89375

39 2.10 0 1 1.60625 0.49375

40 2.40 0 0 2.50208 �0.10208

41 2.10 0 0 2.50208 �0.40208

(continued)
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Step 3: Specify the test statistic.

We will use the partial F test.

Fc(x3jx1, x2) ¼
SSR(full) � SSR(partial)

�

MSE(full)

¼
SSR(x1, x2, x3) � SSR(x1, x2)

1

MSE(x1, x2, x3)

, (9:12)

TABLE 9.13 (continued)
ŷy Predicting y, Example 9.1

Row y x1 x2 ŷy y � ŷy

42 2.20 0 0 2.50208 �0.30208

43 0.30 24 1 0.78542 �0.48542

44 0.20 24 1 0.78542 �0.58542

45 0.30 24 1 0.78542 �0.48542

46 2.30 24 0 1.68125 0.61875

47 2.50 24 0 1.68125 0.81875

48 2.20 24 0 1.68125 0.51875

TABLE 9.14
Regression Analysis with Interaction Term, Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.0667 0.2175 9.50 0.000

b1 0.00208 0.01282 0.16 0.872

b2 �0.0250 0.3076 �0.08 0.936

b3 �0.07257 0.01813 �4.00 0.000

s¼ 0.753514 R-sq¼ 51.8% R-sq(adj)¼ 48.5%

Analysis of Variance

Source DF SS MS F p

Regression 3 26.8156 8.9385 15.74 0.000

Error 44 24.9825 0.5678

Total 47 51.7981

where

x1¼ sample time,

x2¼ product
0, if IPAþ CHG,

1, if IPA:

�

x3¼ x1 * x2, interaction of x1 and x2, or x1x2.

The regression equation is ŷy ¼ 2.07 þ 0.0021x1 � 0.025x2 � 0.0726x3.
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where

SSR(full) ¼ x1, x2, x3,

SSR(partial) ¼ x1, x2,

where x3, the interaction term, is removed,

n ¼ nA þ nB,

k is the number of bis, not including b0, and

y ¼ df(full) � df(partial):

Step 4: State the decision rule.

If Fc > FT(a,1; n�k�1), reject H0 at a.

FT¼ df(full) � df(partial) for regression¼ numerator degrees of freedom

df(full) model error¼ denominator degrees of freedom

FT¼ 3�2¼ 1¼ numerator

¼ 44¼ denominator

FT(0.05;1,44)¼ 4.06 (from Table C, the F distribution table)

So, if Fc > 4.06, reject H0 at a¼ 0.05.

Step 5: Compute the statistic.

From Table 9.14, the full model, including interaction, SSR¼ 26.8156 and

MSE¼ 0.5678.

From Table 9.12, the reduced model, SSR¼ 17.7154.

Fc ¼
SSR(x1, x2, x3)�SSR(x1, x2)

1

� �

MSE(x1, x2, x3)

¼
26:8156�17:7154

1

� �

0:5678
¼ 16:03:

Step 6: Make the decision.

Because Fc(16.03) > FT (4.06), reject H0 at a¼ 0.05. Conclude that the

interaction term is significant, and that the slopes of the two models differ

at a¼ 0.05.

INTERCEPT TEST USING AN INDICATOR VARIABLE MODEL

We will use the previous full model again,

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,
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where

x1¼ sample time,

x2 ¼ product ¼ 0, if IPAþ CHG,

1, if IPA, and

�

x3¼ x1x2 interaction.

We can employ the six-step procedure to measure whether the intercepts are

equivalent for multiple products.

Step 1: State the hypothesis.

Remember, where IPA¼ x2¼ 1, the full model is

ŷy ¼ b0 þ b1x1 þ b2(1)þ b3x3 ¼ (b0 þ b2)þ b1x1 þ b3x3,

and where IPA þ CHG¼ x2¼ 0, the reduced model is

ŷy ¼ b0 þ b1x1 þ b3x3:

So, in order to have the same intercept, b2 must equal zero.

H0: Intercepts are the same for the microbial data for both products if b2¼ 0.

HA: Intercepts are not the same if b2 6¼ 0.

Step 2: Set a and n.

Step 3: Write out the test statistic. In Case 1, for unequal slopes (interaction is

significant), the formula is

Fc ¼
SSR(x1, x2, x3) � SSR(x1, x3)

MSE(x1, x2, x3)

: (9:13)

Note: If the test for parallelism is not rejected, and the slopes are equivalent,

the Fc value for the intercept test is computed as

Fc ¼
SSR(x1, x2) � SSR(x1)

MSE(x1, x2)

: (9:14)

Step 4: Make the decision rule.

If Fc > FT(a,v; n�k�1), reject H0 at a,

where

v ¼ df(full) � df(partial),

n¼ nA þ nB,

k¼ number of bis, not including b0.
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Step 5: Perform the experiment.

Step 6: Make decision.

Using the same data schema for y, x1, x2, and x3 (Table 9.14) and a two-tail

test strategy, let us test the intercepts for equivalency.

The model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,

where

x1¼ sample time (0 or 24 h),

x2 ¼ product ¼ 0, if IPAþ CHG,

1, if IPA,

�

x3¼ x1x2.

Table 9.14 provides the regression equation, so the bi values are

ŷy ¼ 2:0667þ 0:0021x1 � 0:025x2 � 0:073x3:

For x2¼ IPA¼ 1, the model is

ŷy ¼ 2:0667þ 0:0021x1 � 0:025(1)� 0:073x3,

ŷy ¼ (2:0667� 0:025)þ 0:0021x1 � 0:073x3,

ŷy ¼ 2:0417þ 0:0021x1 � 0:073x3,

for IPA only.

The intercept is 2.0417 for IPA.

For IPA þ CHG, x2¼ 0

ŷy ¼ 2:0667þ 0:0021x1 � 0:025(0)� 0:073x3,

ŷy ¼ 2:0667þ 0:0021x1 � 0:073x3,

for IPA þ CHG

The intercept is 2.0667.

Let us again use the six-step procedure. If the intercepts are the same, then

b2¼ 0.

Step 1: State the test hypothesis, which we have made as a two-tail test.

H0: b2 ¼ 0,

HA: b2 6¼ 0:
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Step 2: Set a and n.

n1 ¼ n2 ¼ 24:

Let us set a¼ 0.05.

Step 3: State the test statistic.

Fc ¼
SSR(full) � SSR(partial)

MSE(full)

,

Fc ¼
SSR(x1, x2, x3) � SSR(x1, x3)

MSE(x1, x2, x3)

:

Step 4: State decision rule.

If Fc > FT(a,v; n�k�1),

v¼ df(full)� df(partial) for regression¼ numerator, which is the number

of xis in the full model minus the number of xis in the partial model,

v¼ 3� 1¼ 2 for the numerator,

df¼ 48� 3� 1¼ 44¼ denominator,

n� k�1¼ denominator for the full model,

where

n¼ nA þ nB,

k¼ number of bi values, excluding b0, and

FT(0.05;1,44) ¼ 4.06 (Table C, the F distribution table).

So, if Fc > 4.06, reject H0 at a¼ 0.05.

Step 5: Conduct the study and perform the computations.

SSR(x1, x2, x3) ¼ 26:8156 and MSE(x1, x2, x3) ¼ 0:5678 (Table 9.14).

SSR(x1, x3) ¼ 26:801 (Table 9.15).

Fc ¼
SSR(x1, x2, x3) � SSR(x1, x3)

MSE(x1, x2, x3)

¼ 26:8156� 26:801

0:5678
¼ 0:0257:

Step 6: Decision.

Because Fc(0:0257) 6> FT(4:06), one cannot reject H0 at a¼ 0.05. The inter-

cept for both products are the same point.

PARALLEL SLOPE TEST USING A SINGLE
REGRESSION MODEL

The test for parallel slopes also can be easily performed using indicator

variables. Using the same model again,

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,
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where

x1¼ sample time,

x2 ¼ product ¼ 0, if CHGþ IPA,

1, if IPA,

�

x3¼ x1x2, interaction.

If the slopes are parallel, then x3¼ 0.

Let us test the parallel hypothesis, using the six-step procedure.

Step 1: Set the test hypothesis.

H0: Slopes are the same for microbial data for both products¼ b3¼ 0,

HA: Slopes are not the same¼ b3 6¼ 0.

Step 2: Set a and n.

Step 3: Write out the test statistic. For unequal slopes, the formula is

Fc ¼
SSR(full) � SSR(partial)

MSE(full)

: (9:15)

The full model contains the interaction, x3. The partial model does not.

Fc ¼
SSR(x1, x2, x3) � SSR(x1, x2)

MSE(x1, x2, x3)

: (9:16)

TABLE 9.15
Regression Analysis, Intercept Equivalency, Example 9.1

Predictor Coef SE Coef T p

b0 2.0917 0.1521 13.75 0.000

b1 �0.0500 0.2635 �0.19 0.850

b3 �0.07049 0.01268 �5.56 0.000

s¼ 0.745319 R-sq¼ 51.7% R-sq(adj)¼ 49.6%

Analysis of Variance

Source DF SS MS F p

Regression 2 26.801 13.400 24.12 0.000

Error 45 24.998 0.556

Total 47 51.798

The regression equation is ŷy ¼ 2.09 � 0.050x1 � 0.0705x3.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 371 16.11.2006 8:08pm

Indicator (Dummy) Variable Regression 371



Step 4: Make the decision rule.

If Fc > FT(a,1; n�k�1), reject H0 at a, where

n¼ nA þ nB,

k¼ number of bis, not including b0.

Step 5: Perform the experiment.

Step 6: Make the decision.

Using the data for Example 9.1 and a two-tail test, let us test the slopes for

equivalence, or that they are parallel. The full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3:

The partial model is the model without interaction

ŷy ¼ b0 þ b1x1 þ b2x2,

where

x1¼ sample time (0 or 24 h),

x2 ¼ product ¼ 0, if CHGþ IPA,

1, if IPA,

�

x3¼ x1x2 interaction.

Table 9.14 provides the actual bi values for the full model

ŷy ¼ 2:07þ 0:0021x1 � 0:025x2 � 0:073x3:

IPA PRODUCT

For x2¼ IPA¼ 1, the full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,

¼ b0 þ b1x1 þ b2(1)þ b3x3,

¼ (b0 þ b2)þ b1x1 þ b3x3,

¼ (2:07� 0:25)þ 0:0021x1 � 0:073x3,

¼ 1:82þ 0:0021x1 � 0:073x3:

IPA 1 CHG PRODUCT

For x2¼ IPA þ CHG¼ 0, the full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3,

¼ b0 þ b1x1 þ b2(0)þ b3x3,

¼ b0 þ b1x1 þ b3x3,

¼ 2:07þ 0:0021x1 � 0:025(0)� 0:073x3,

¼ 2:07þ 0:0021x1 � 0:073x3:

If the interaction is 0, or the slopes are parallel, then b3¼ 0.
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Step 1: State the test hypothesis.

H0: b3 ¼ 0,

HA: b3 6¼ 0.

Step 2: Set a and n.

Let us set a¼ 0.05 and nA¼ nB¼ 24.

Step 3: State the test statistic.

Fc ¼
SSR(full) � SSR(reduced)

MSE(full)

¼ SSR(x1, x2, x3) � SSR(x1, x2)

MSE(x1, x2, x3)

:

Step 4: Make the decision rule.

If Fc > FT(a,1; n�k�1)¼FT(0.05,1; 48�3�1)¼FT(0.05; 1,44)¼ 4.06 (Table C, the F
distribution table), reject H0 at a¼ 0.05.

Step 5: Perform the calculations.

From Table 9.15, the full model is

SSR(x1, x2, x3) ¼ 26:801:

From Table 9.12, the partial model (without the x1x2 interaction term) is

SSR(x1, x2) ¼ 17:7154:

From Table 9.15, the full model is

MSE(x1, x2, x3) ¼ 0:556:

Fc ¼
26:801� 17:7154

0:556
¼ 16:3410:

Step 6: Make decision.

Because Fc¼ 16.3410 > FT¼ 4.06, reject the null hypothesis at a¼ 0.05. The

slopes are not parallel.

TEST FOR COINCIDENCE USING A SINGLE
REGRESSION MODEL

Remember that the test for coincidence tests both the intercepts and the slopes

for equivalence. The full model is

ŷy ¼ b0 þ b1x1 þ b2x2 þ b3x3:

For the IPA product, x2¼ 1,

ŷy ¼ b0 þ b1x1 þ b2(1)þ b3x3:
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The full model, deconstructed for IPA, is

ŷy ¼ (b0 þ b2)
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ (b1x1 þ b3x3)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

For the IPA þ CHG product, x2¼ 0. So the full model, deconstructed for

IPA þ CHG, is

ŷy ¼ (b0)
|{z}

intercept

þ (b1x1 þ b3x3)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

If both of these models have the same intercepts and same slopes, then both b2

and b3 must be 0 (b2¼ 0) and (b3¼ 0).

Hence, the test hypothesis is whether b2¼ b3¼ 0. The partial or reduced

model, then, is

ŷy ¼ b0 þ b1x1 þ b2(0)þ b3(0),

ŷy ¼ b0 þ b1x1:

Step 1: State the hypothesis.

H0: b2¼ b3¼ 0. (The microbial reduction data for the two products have

the same slope and intercepts.)

HA: b2 and=or b3 6¼ 0. (The two data sets differ in intercepts and=or slopes.)

Step 2: Set a and n.

We will set a¼ 0.05.

nA¼ nB¼ 24.

Step 3: Write the test statistic.

Fc ¼

SSR(full) � SSR(partial)

v

	 


MSE(full)

,

where

v¼ df numerator, or number of xi variables in the full model minus the

number of xi variables in the partial model.

v¼ 3�1¼ 2.

Fc ¼
SSR(x1, x2, x3) � SSR(x1)

2

� �

MSE(x1, x2, x3)

:

One must divide by 2 in the numerator because x1, x2, x3¼ 3 values, and

x1¼ 1 value, 3� 1¼ 2.
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Step 4: Make the decision rule.

If Fc > FT(a; v; n�k�1)¼FT(0.05; 2; 44)¼ 3.22 (Table C, the F distribution table),

where n¼ nA þ nB, reject H0 at a. The regression differs in intercepts and=or

slopes.

Step 5: Perform the calculations.

SSR(x1, x2, x3) ¼ 26:8156 and MSE(x1, x2, x3) ¼ 0:5678 (Table 9:14)

SSR(x1) ¼ 8:0852 (Table 9:16)

So,

Fc ¼
26:8156� 8:0852

2
0:5678

¼ 16:4938:

Step 6: Make decision.

Because Fc¼ 16.4938>FT¼ 3.22, one rejects H0 at a¼ 0.05. The slopes

and=or intercepts differ.

LARGER VARIABLE MODELS

The same general strategy can be used to measure parallel slopes, intercepts,

and coincidence for larger models.

Fc ¼
SSR(full) � SSR(partial)

v
MSR(full)

,

where v is the number of xi values in the full model minus the number of xi

values in the partial model.

TABLE 9.16
Regression Equation Test for Coincidence, Example 9.1

Predictor Coef St. Dev t-Ratio p

b0 2.0542 0.1990 10.32 0.000

b1 �0.03420 0.01173 �2.92 0.005

s¼ 0.974823 R-sq¼ 15.6% R-sq(adj)¼ 13.8%

Analysis of Variance

Source DF SS MS F p

Regression 1 8.0852 8.0852 8.51 0.005

Error 46 43.7129 0.9503

Total 47 51.7981

The regression equation is ŷy ¼ 2.05 � 0.0342x1.
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MORE COMPLEX TESTING

Several points must be considered before going further in discussions of using

a single regression model to evaluate more complex data.

1. If the slopes between the two or more regressions are not parallel

(graph the averages of the (x, y) points of the regressions to see),

include interaction terms.

2. Interaction occurs between the continuous predictor variables and

between the continuous and the dummy predictor variables. Some

authors use zi values to indicate dummy variables, instead of xi.

3. Testing for interaction between dummy variables generally is not useful

and eats up degrees of freedom. For example, in Example 9.1, we would

have 15 variables, if all possible interactions were considered.

4. The strategy to use in comparing regressions is to test for coincidence

first. If the regressions are coincidental, then the testing is complete. If not,

graph the average x, y values at the extreme high values, making sure to

superimpose the different regression models onto the same graph. This

will provide a general visual of what is going on. For example, if there

are four test groups for which the extreme x, y average values are

superimposed, connect the extreme x, y points, as in Figure 9.8.

Figure 9.8a shows equal intercepts, but unequal slopes; Figure 9.8b shows

both unequal slopes and intercepts; and Figure 9.8c shows coincidence in two

regressions, but inequality in the two intercepts.

Superimposing the values will help decide whether the intercepts, or

parallels, or both are to be tested. If the model has more than one xi value,

sometimes checking for parallelism first is the easiest. If they are parallel (not

significant), and you test for coincidence and it is significant (not the same

regressions), then you know the intercepts are different.

Let us now perform a new twist to the experiment, Example 9.1. The

IPA formulation and the IPA þ CHG formulation have been used on four

anatomical sites, and the log10 microbial reductions were evaluated at times

x
(a)

y

x
(b)

y

x
(c)

y

FIGURE 9.8 Superimposed x, y average values.
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0 and 24 h after skin preparation. We will incorporate zi for indicator variables

at this time, because it is a common notation.

yi¼microbial counts,

x1¼ time¼ 0 or 24,

product ¼ z1 ¼
1, if IPA ,

0, if IPAþ CHG,

�

inguinal ¼ z2 ¼
1, if yes,

0, if no,

�

forearm ¼ z3 ¼
1, if yes,

0, if no,

�

subclavian ¼ z4 ¼
1, if yes,

0, if no:

�

By default, abdomen¼ z2¼ z3¼ z4¼ 0.

Let

z5¼ x1z1, or time � product interaction.

The full model is

ŷy ¼ b0 þ b1x1 þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5:

It is coded as

x1 z1 z2 z3 z4 z5

IPA Inguinal 0 1 1 0 0 0

Inguinal 24 1 1 0 0 24

IPA þ CHG Inguinal 0 0 1 0 0 0

Inguinal 24 0 1 0 0 0

IPA Forearm 0 1 0 1 0 0

Forearm 24 1 0 1 0 24

IPA þ CHG Forearm 0 0 0 1 0 0

Forearm 24 0 0 1 0 0

IPA Subclavian 0 1 0 0 1 0

Subclavian 24 1 0 0 1 24

IPA þ CHG Subclavian 0 0 0 0 1 0

Subclavian 24 0 0 0 1 0

Table 9.17 presents the actual data.

Table 9.18 provides the full regression analysis.

Much can be done with this model, as we will see.
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TABLE 9.17
Example 9.1 Data, with Time 3 Product Interaction

n

y

log10 Colony

Counts

x1

(time)

z1

(product)

z2

(inguinal)

z3

(forearm)

z4

subclavian

z5

x1z1

1 3.10 0 1 1 0 0 0

2 3.50 0 1 1 0 0 0

3 3.30 0 1 1 0 0 0

4 3.30 0 0 1 0 0 0

5 3.40 0 0 1 0 0 0

6 3.60 0 0 1 0 0 0

7 0.90 24 1 1 0 0 24

8 1.00 24 1 1 0 0 24

9 0.80 24 1 1 0 0 24

10 3.00 24 0 1 0 0 0

11 3.10 24 0 1 0 0 0

12 3.20 24 0 1 0 0 0

13 1.20 0 1 0 1 0 0

14 1.00 0 1 0 1 0 0

15 1.30 0 1 0 1 0 0

16 1.30 0 0 0 1 0 0

17 1.20 0 0 0 1 0 0

18 1.10 0 0 0 1 0 0

19 0.00 24 1 0 1 0 24

20 0.10 24 1 0 1 0 24

21 0.20 24 1 0 1 0 24

22 1.40 24 0 0 1 0 0

23 1.50 24 0 0 1 0 0

24 1.20 24 0 0 1 0 0

25 1.50 0 1 0 0 1 0

26 1.30 0 1 0 0 1 0

27 1.40 0 1 0 0 1 0

28 1.60 0 0 0 0 1 0

29 1.20 0 0 0 0 1 0

30 1.40 0 0 0 0 1 0

31 0.10 24 1 0 0 1 24

32 0.20 24 1 0 0 1 24

33 0.10 24 1 0 0 1 24

34 1.70 24 0 0 0 1 0

35 1.80 24 0 0 0 1 0

36 1.50 24 0 0 0 1 0

37 2.30 0 1 0 0 0 0

38 2.50 0 1 0 0 0 0

39 2.10 0 1 0 0 0 0

40 2.40 0 0 0 0 0 0

41 2.10 0 0 0 0 0 0
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GLOBAL TEST FOR COINCIDENCE

Sometimes, one will want to test components in one large model in one

evaluation, as we have done. If the group is coincident, then one small

model can be used to describe all. If not, one must test the inguinal, sub-

clavian, forearm, or abdomen, with the IPA and IPA þ CHG in individual

components. First, extract the sub-models from the full model, ŷy¼ b0 þ b1x1

þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5.

TABLE 9.17 (continued)
Example 9.1 Data, with Time 3 Product Interaction

n y x1 z1 z2 z3 z4 z5

42 2.20 0 0 0 0 0 0

43 0.30 24 1 0 0 0 24

44 0.20 24 1 0 0 0 24

45 0.30 24 1 0 0 0 24

46 2.30 24 0 0 0 0 0

47 2.50 24 0 0 0 0 0

48 2.20 24 0 0 0 0 0

TABLE 9.18
Regression Equation, with Time 3 Product Interaction, Example 9.1

Predictor Coef SE Coef t-Ratio p

b0 2.2063 0.1070 20.63 0.000

b1 0.002083 0.004765 0.44 0.664

b2 �0.0250 0.1144 �0.22 0.828

b3 0.9000 0.1144 7.87 0.000

b4 �0.8250 0.1144 �7.21 0.000

b5 �0.6333 0.1144 �5.54 0.000

b6 �0.072569 0.006738 �10.77 0.000

s¼ 0.280108 R-Sq¼ 93.8% R-Sq(adj)¼ 92.9%

Analysis of Variance

Source DF SS MS F p

Regression 6 48.5813 8.0969 103.20 0.000

Error 41 3.2169 0.0785

Total 47 51.7981

The regression equation is ŷy¼ 2.21 þ 0.00208x1 � 0.025z1 þ 0.900z2 � 0.825z3 � 0.633z4 �
0.0726z5.
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Inguinal site: z2¼ 1

IPA¼ z1¼ 1, z3¼ 0 (forearm), z4¼ 0 (subclavian), z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b2(z1)þ b3(z2)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b2(1)þ b3(1)þ b6z5,

ŷy ¼ (b0 þ b2 þ b3)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

IPAþ CHG¼ z1¼ 0, z3¼ 0 (forearm), z4¼ 0 (subclavian), z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b3(z2)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b3(1)þ b6z5,

ŷy ¼ (b0 þ b3)
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

Forearm site: z3¼ 1.

IPA¼ z1¼ 1, z2¼ 0 (inguinal), z4¼ 0 (subclavian), z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b2(z3)þ b4(z3)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b2(1)þ b4(1)þ b6z5,

ŷy ¼ (b0 þ b2 þ b4)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

IPA þ CHG¼ z1¼ 0, z2¼ 0, z4¼ 0, z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b4(z3)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b4(1)þ b6z5,

ŷy ¼ (b0 þ b4)
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

Subclavian site: z4¼ 1.

IPA¼ z1¼ 1 (product), z2¼ 0 (inguinal), z3¼ 0 (forearm), z5 interaction,

x1z1.

ŷy ¼ b0 þ b1x1 þ b2(z1)þ b5(z4)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b2(1)þ b5(1)þ b6z5,

ŷy ¼ (b0 þ b2 þ b5)
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:
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IPA þ CHG¼ z1¼ 0 (product), z2¼ 0 (inguinal), z3¼ 0 (forearm), z5 inter-

action, x1z1.

ŷy ¼ b0 þ b1x1 þ b5(z4)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b5(1)þ b6(z5),

ŷy ¼ (b0 þ b5)
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

Abdomen site

IPA¼ z1¼ 1 (product), z2¼ 0 (inguinal), z3¼ 0 (forearm), z4¼ 0 (sub-

clavian), z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b2(z1)þ b6(z5),

ŷy ¼ b0 þ b1x1 þ b2(1)þ b6z5,

ŷy ¼ (b0 þ b2)
|fflfflfflfflffl{zfflfflfflfflffl}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

IPA þ CHG¼ z1¼ 0 (product), z2¼ 0 (inguinal), z3¼ 0 (forearm), z4¼ 0

(subclavian), z5 interaction, x1z1.

ŷy ¼ b0 þ b1x1 þ b6z5,

ŷy ¼ (b0)
|{z}

intercept

þ (b1x1 þ b6z5)
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

slope

:

The test for coincidence will be for all four test sites for both products. The

only way the equation can be coincidental at all sites for both products is if the

equation is to explain all that is the simplest; that is, ŷy¼ b0 þ b1x1. So, if there

is coincidence, then b2¼ b3¼ b4¼ b5¼ b6¼ 0. That is, all intercepts and

slopes are identical.

So, let us perform the six-step procedure.

Step 1: State the hypothesis.

H0: b2 ¼ b3 ¼ b4 ¼ b5 ¼ b6 ¼ 0:
HA: the above is not true; the multiple models are not coincidental.

Step 2: Set a and n.

Set a¼ 0.05 and n¼ 48.

Step 3: Present the model.

Fc ¼
SSR(full) � SSR(partial)

v
MSE(full)

,
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where

v is the number of variables in the full model minus the number of

variables in the partial model.

The full model is presented in Table 9.18.

ŷy ¼ b0 þ b1x1 þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5:

The partial model is presented in Table 9.19.

ŷy ¼ b0 þ b1x1:

So,

Fc ¼

SSR(x1, z1, z2, z3, z4, z5) � SSR(x1)

v

	 


MSE(x1, z1, z2, z3, z4, z5)

:

Step 4: Decision rule.

If Fc > FT(a,v; n�k�1), reject H0 at a¼ 0.05.

For the denominator, we use n � k � 1 for the full model, where k is the

number of bis, excluding b0.

For the numerator, v is the number of variables in full model minus the

number of variables in the reduced model, v¼ 6�1¼ 5.

So, FT¼FT(0.05,5; 48� 6� 1)¼FT(0.05, 5; 41)¼ 2.34 (Table C, the F distribu-

tion table).

TABLE 9.19
Partial Regression Equation, with Time 3 Product Interaction,

Example 9.1

Predictor Coef SE Coef t-Ratio p

b0 2.0542 0.1990 10.32 0.000

b1 �0.03420 0.01173 �2.92 0.005

s¼ 0.974823 R-Sq¼ 15.6% R-Sq(adj)¼ 13.8%

Analysis of Variance

Source DF SS MS F p

Regression 1 8.0852 8.0852 8.51 0.005

Error 46 43.7129 0.9503

Total 47 51.7981

The regression equation is ŷy¼ 2.05 � 0.0342x1.
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If Fc > 2.34, reject H0 at a¼ 0.05. All the regression equations are not

coincidental.

Step 5: Perform the computation.

From Table 9.18,

SSR(full)¼ 48.5813,

MSE(full)¼ 0.0785.

From Table 9.19,

SSR(partial)¼ 8.0852,

v¼ 6�1¼ 5,

Fc ¼

48:5813� 8:0852

5

	 


0:0785
¼ 103:1748:

Step 6: Decision.

Because Fc¼ 103.1748 > FT¼ 2.34, reject H0. The equations are not

coincidental at a¼ 0.05. This certainly makes sense, because we know the

slopes differ between IPA and IPA þ CHG. The intercepts may also differ.

Given that we want to find exactly where the differences are, it is easiest,

then, to break the analyses into inguinal, subclavian, forearms, and abdomen,

because they will have to be marked separately.

GLOBAL PARALLELISM

The next step is to evaluate parallelism from a very broad view: four ana-

tomical sites, each treated with two different products. Recall that, if the

slopes are parallel, no interaction terms are present. To evaluate whether the

regression slopes are parallel on a grand scheme requires only that any

interaction term be removed.

The full model, again, is

ŷy ¼ b0 þ b1x1 þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5:

Looking at the model breakdown, the interaction term is b6z5, where z5¼ time

� product. So, if the slopes are parallel, the interaction term must be equal to

0; that is, b6¼ 0.

Let us perform the six-step procedure.

Step 1: State the hypothesis.

H0: b6¼ 0,

HA: the above is not true; at least one slope is not parallel.

Step 2: Set a and n.

a¼ 0.05 and n¼ 48
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Step 3: Write out the model.

Fc ¼

SSR(full) � SSR(partial)

v

	 


MSE(full)

,

SSR(full) ¼ SSR(x1, z1, z2, z3, z4, z5),

SSR(partial) ¼ SSR(x1, z1, z2, z3, z4),

MSE(full) ¼ MSE(x1, z1, z2, z3, z4, z5):

Step 4: Write the decision rule.

If Fc > FT, reject H0 at a¼ 0.05.

FT¼FT(a,v; n�k�1)

v is the number of indicator variables in full model minus number of

indicator variables in partial model¼ 6�5¼ 1.

n�k� 1 ¼ 48� 6� 1 ¼ 41.

FT(0.05,1; 41)¼ 4.08 (Table C, the F distribution table).

Step 5: Perform the computation. Table 9.20 presents the partial model.

SSR(full)¼ 48.5813 (Table 9.18),

MSE(full)¼ 0.0785 (Table 9.18),

SSR(partial)¼ 39.4810 (Table 9.20),

Fc ¼

48:5813� 39:4810

1

	 


0:0785

¼ 115.9274.

TABLE 9.20
Partial Model Parallel Test (x1, z1, z2, z3, z4), Example 9.1

Predictor Coef SE Coef t p

b0 2.6417 0.1915 13.80 0.000

b1 �0.034201 0.006514 �5.25 0.000

b2 �0.8958 0.1563 �5.73 0.000

b3 0.9000 0.2211 4.07 0.000

b4 �0.8250 0.2211 �3.73 0.001

b5 �0.6333 0.2211 �2.86 0.006

s¼ 0.541538 R-sq¼ 76.2% R-sq(adj)¼ 73.4%

Analysis of Variance

Source DF SS MS F p

Regression 5 39.4810 7.8962 26.93 0.000

Error 42 12.3171 0.2933

Total 47 51.7981

The regression equation is ŷy¼ 2.64 � 0.0342x1 � 0.896z1 þ 0.900z2 � 0.825z3 � 0.633z4.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 384 16.11.2006 8:08pm

384 Handbook of Regression and Modeling



Step 6: Because Fc¼ 115.9274 > FT¼ 4.08, reject H0 at a¼ 0.05. The slopes

are not parallel at a¼ 0.05. To determine which of the equations are not

parallel, run the four anatomical sites as separate problems.

GLOBAL INTERCEPT TEST

The intercepts also can be checked from a global perspective. First, write out

the full model

ŷy ¼ b0 þ b1x1 þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5:

Looking at the model breakdown in the global coincidence test, we see that the

variables that serve the intercept,other thanb0, areb2,b3,b4, andb5. Inorder for the

intercepts to meet at the same point, then b2, b3, b4, and b5 all must be equal to 0.

Let us determine if the intercepts are all 0, using the six-step procedure.

Step 1: State the hypothesis.

H0: b2 ¼ b3 ¼ b4 ¼ b5 ¼ 0,

HA: At least one of the above bis is not 0.

Step 2: Set a and n.

a¼ 0.05 and n¼ 48.

Step 3: Write out the test statistic.

Fc ¼

SSR(full) � SSR(partial)

v

	 


MSE(full)

,

SSR(full) ¼ SSR(x1, z1, z2, z3, z4, z5),

MSE(full) ¼ MSE(x1, z1, z2, z3, z4, z5),

SSR(partial) ¼ SSR(x1, z5),

v ¼ 6� 2 ¼ 4:

Step 4: Determine the decision rule.

If Fc > FT, reject H0 at a¼ 0.05.

FT(a, v; n�k�1)¼FT(0.05, 1; 41)¼ 2.09 (Table C, the F distribution table).

Step 5: Perform test computation.

SSR(full)¼ 48.5813 (Table 9.18),

MSE(full)¼ 0.0785 (Table 9.18),

SSR(partial)¼ 26.812 (Table 9.21),

Fc ¼

48:5813� 26:812

4

	 


0:0785
¼ 69:329:
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Step 6: Make decision.

Because Fc¼ 69.329 > FT¼ 2.09, reject H0 at a¼ 0.05. The equations (two

products at z2, z3, z4,—anatomical test sites—equals six equations) do not have

the same intercept. Remember, the abdominal test site is evaluated when

z2¼ z3¼ z4¼ 0, so it is still in the model. To find where the intercepts differ,

break the problem into three: two regression equations at each of the three

anatomical areas. Because the slopes were not parallel, nor the intercepts the

same, the full model (Table 9.18) is the model of choice, at the moment.

CONFIDENCE INTERVALS FOR bi VALUES

Determining the confidence intervals in indicator, or dummy variable analy-

sis, is performed the same way as before.

bi ¼ b̂i � ta=2, df sbi
, (9:17)

df ¼ n� k � 1,

where

b̂i is the ith regression coefficient,

ta/2, df is the tabled two-tail test,

df is n minus number of bis, including b0,

Sbi
is the standard error of values around bi, and

k is the number of bi values, not including b0.

For example, looking at Table 9.18, the full model is

ŷy ¼ b0 þ b1x1 þ b2z1 þ b3z2 þ b4z3 þ b5z4 þ b6z5:

TABLE 9.21
Partial Model Intercept Test (x1, z5)

Predictor Coef SE Coef T p

b0 2.0542 0.1521 13.51 0.000

b1 0.00260 0.01098 0.24 0.814

b6 �0.07361 0.01268 �5.81 0.000

s¼ 0.745151 R-sq¼ 51.8% R-sq(adj)¼ 49.6%

Analysis of Variance

Source DF SS MS F p

Regression 2 26.812 13.406 24.14 0.000

Error 45 24.986 0.555

Total 47 51.798

The regression equation is ŷy¼ 2.05 þ 0.0026x1 � 0.0736z5.
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For the value b4,

b̂b4 ¼ �0:825, sb4
¼ 0:1144,

n ¼ 48, a ¼ 0:05,

b4 ¼ b̂b4 � ta=2, n�k�1sb4
,

t0:05=2, 48�6�1 ¼ t0:025, 41 ¼ 2:021 (Student’s t Table),

b4 ¼ �0:825� 2:021(0:1144) ¼ �0:825� 0:2312,

�1:0562 � b4 � �0:5938:

The 95% confidence intervals for the other bis can be determined in the

same way.

PIECEWISE LINEAR REGRESSION

A very useful application of dummy or indicator variable regression is in

modeling regression functions that are nonlinear. For example, in steam

sterilization death kinetic calculations, the thermal death curve for bacterial

spores often looks sigmoidal (Figure 9.9).

One can fit this function using a polynomial regression or a linear piece-

wise model (Figure 9.10).

Hence, a piecewise linear model would require three different functions to

explain this curve: functions A, B, and C.
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FIGURE 9.9 Thermal death curve.
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The goal in piecewise regression is to model a nonlinear model by linear

pieces, for example, by conducting a microbial inactivation study that is

nonlinear.

In Figure 9.11a, we see a representation of a thermal death curve for

Bacillus stearothermophilus spores steam-sterilized at 1218C for x minutes.

Figure 9.11b shows the piecewise delimiters. Generally, the shoulder values

(near time 0) are not used. So, the actual regression intercept is near 8 log10

scale. The slope changes at x � 10 min.

This function is easy to model using an indicator variable, because the

function is merely two piecewise equations. Only one additional xi is required.

ŷy ¼ b0 þ b1x1 þ b2(x1 � 10)x2,

where

x1 is the time in minutes

x2 ¼
1, if x1 > 10 min,

0, if x1 � 10 min:

�

When x2¼ 0, x1 � 10, the model is ŷy¼ b0 þ b1x1, which is the first

component (Figure 9.11c).

When x2> 10, x1¼ 1, the second component is ŷy¼ b0þ b1 x1þ b2(x� 10).

Let us work an example, Example 9.2.

C
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FIGURE 9.10 Linear piecewise model.
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FIGURE 9.11 (a) Thermal death curve, B. stearothermophilus spores. (b) Piecewise

model points, thermal death curve. (c) Piecewise fit, thermal death curve.
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Example 9.2: In a steam sterilization experiment, three replicate bio-

logical indicators (B. stearothermophilus spore vials) are put in the sterilizer’s

‘‘cold spot’’ over the course of 17 times of exposure. Each biological indicator

has an inoculated population of 1 � 108 CFU spores per vial. The resulting

data are displayed in Table 9.22.

The data plotted are presented in Figure 9.12.

These residual data (y�ŷy¼ e) depict a definite trend (Figure 9.13) in

residuals plotted over time. They are not randomly distributed.

From this plot, the value at x¼ 7 appears to be the residual pivot value,

wherereas the slopes of eis go from negative to positive. To get a better view,

let us standardize the residuals by

St ¼
ei

s
,

where

s ¼
P

(yi � ŷyi)
2

n� k � 1
:

This will give us a better picture, as presented in Figure 9.14.

Again, it seems that x¼ 7 is a good choice for the pivot point of a

piecewise model.

Hence, the model will be

ŷy ¼ b0 þ b1x1 þ b2(x1 � 7)x2,

where

x1¼ time,

x2 ¼
1, if xi > 7,

0, if xi � 7:

�

The model reduces to ŷy¼ b0 þ b1x1, when xi � 7.

Table 9.23 presents the data.

Table 9.24 presents the full regression analysis.

Figure 9.15 provides a residual plot (e vs. x1) of the piecewise regression

residuals, one that appears far better than the previous residual plot (Figure 9.13).

Figure 9.16 depicts schematically the piecewise regression functions.

Clearly, this model is better than without the piecewise compo-

nent. Table 9.25 provides the data from regression without the piecewise

procedure.
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MORE COMPLEX PIECEWISE REGRESSION ANALYSIS

The extension of the piecewise regression to more complex designs is straight-

forward. For example, in bioequivalence studies, absorption and elimination

rates are often evaluated over time, and the collected data are not linear.

Figure 9.17 shows one possibility.

The piecewise component model would look at three segments (Figure 9.18).

TABLE 9.22
Data, Example 9.2

n

Y 5 log10 Biological

Indicator Population

Recovered

x 5 Exposure

Time in min n

Y 5 log10 Biological

Indicator Population

Recovered

x 5 Exposure Time

in min

1 8.3 0 28 4.2 9

2 8.2 0 29 4.0 9

3 8.3 0 30 3.8 9

4 7.7 1 31 3.5 10

5 7.5 1 32 3.2 10

6 7.6 1 33 3.4 10

7 6.9 2 34 3.2 11

8 7.1 2 35 3.3 11

9 7.0 2 36 3.4 11

10 6.3 3 37 3.3 12

11 6.5 3 38 3.2 12

12 6.4 3 39 2.9 12

13 5.9 4 40 2.8 13

14 5.9 4 41 2.7 13

15 5.7 4 42 2.7 13

16 5.3 5 43 2.6 14

17 5.4 5 44 2.5 14

18 5.2 5 45 2.6 14

19 5.0 6 46 2.4 15

20 4.8 6 47 2.3 15

21 5.0 6 48 2.5 15

22 4.6 7 49 2.2 16

23 4.3 7 50 2.3 16

24 4.4 7 51 2.2 16

25 4.5 8

26 4.0 8

27 4.1 8
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Example 9.3: In a study for absorption and elimination of oral drug 2121-

B07, the following blood levels of the active Tinapticin-3 were determined by

means of HPLC analysis (Table 9.26).

The plot of these data is presented in Figure 9.19.

It appears that the first pivot value is at x¼ 5.0 h and the second is at

x¼ 9.0 h (see Figure 9.20).
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FIGURE 9.12 Data plot of log10 populations recovered, Example 9.2.
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FIGURE 9.13 Residual plot, Example 9.2.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 392 16.11.2006 8:08pm

392 Handbook of Regression and Modeling



This approach to the pivotal points needs to be checked, ideally not just

for this curve, but for application in other studies. That is, it is wise to keep the

piece components as few as possible, because the idea is to create a model

that can be used across studies, not just for one particular study. Technically,

one could fit each value as a piecewise computation until one ran out of

degrees of freedom, but this is not useful.

To build the model, we must create a bi and an xi for each pivot point, in

addition to the first or original segment. The proposed model, then, is

ŷy ¼ b0 þ b1x1 þ b2(x1 � 5)x2 þ b3(x1 � 9)x3,

where

x1¼ time in hours,

x2 ¼
1, if x1 > 5,

0, if x1 � 5,

�

x3 ¼
1, if x1 > 9,

0, if x1 � 9:

�

The results of regression using this model are presented in Table 9.27.

The model seems adequate, but the performance should be compared

among other similar studies, if available. The actual input y, x, x�5, and

x�9 data, as well as ŷy and e are presented in Table 9.28.

0
�2

�1

0

1

2

z

2 4 6 8 10 12 14 16 18
x

FIGURE 9.14 Studentized residuals, Example 9.2.
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TABLE 9.23
Data, Piecewise Model, Example 9.2

Row y x1 (x1 2 7)x2 ŷy e

1 8.3 0 0 8.12549 0.174510

2 8.2 0 0 8.12549 0.074510

3 8.3 0 0 8.12549 0.174510

4 7.7 1 0 7.58239 0.117612

5 7.5 1 0 7.58239 �0.082388

6 7.6 1 0 7.58239 0.017612

7 6.9 2 0 7.03929 �0.139286

8 7.1 2 0 7.03929 0.060714

9 7.0 2 0 7.03929 �0.039286

10 6.3 3 0 6.49618 �0.196183

11 6.5 3 0 6.49618 0.003817

12 6.4 3 0 6.49618 �0.096183

13 5.9 4 0 5.95308 �0.053081

14 5.9 4 0 5.95308 �0.053081

15 5.7 4 0 5.95308 �0.253081

16 5.3 5 0 5.40998 �0.109979

17 5.4 5 0 5.40998 �0.009979

18 5.2 5 0 5.40998 �0.209979

19 5.0 6 0 4.86688 0.133123

20 4.8 6 0 4.86688 �0.066876

21 5.0 6 0 4.86688 0.133123

22 4.6 7 0 4.32377 0.276226

23 4.3 7 0 4.32377 �0.023774

24 4.4 7 0 4.32377 0.076226

25 4.5 8 1 4.07908 0.420915

26 4.0 8 1 4.07908 �0.079085

27 4.1 8 1 4.07908 0.020915

28 4.2 9 2 3.83440 0.365604

29 4.0 9 2 3.83440 0.165605

30 3.8 9 2 3.83440 �0.034395

31 3.5 10 3 3.58971 �0.089706

32 3.2 10 3 3.58971 �0.389706

33 3.4 10 3 3.58971 �0.189706

34 3.2 11 4 3.34502 �0.145016

35 3.3 11 4 3.34502 �0.045016

36 3.4 11 4 3.34502 0.054984

37 3.3 12 5 3.10033 0.199673

38 3.2 12 5 3.10033 0.009673

39 2.9 12 5 3.10033 �0.200327

40 2.8 13 6 2.85564 �0.055637

41 2.7 13 6 2.85564 �0.155637

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 394 16.11.2006 8:08pm

394 Handbook of Regression and Modeling



Figure 9.21 is a plot of the predicted (ŷy) values superimposed over the

actual values. The fitted ŷyis are close to the actual ŷyi values.

However, what does this mean? What are the slopes and intercepts of each

component?

Recall, the complete model is ŷy¼ b0þ b1x1þ b2(x1� 5)x2þ b3(x1� 9)x3.

When x1 � 5 (Component A), the regression model is ŷy¼ b0 þ b1x1.

TABLE 9.23 (continued)
Data, Piecewise Model, Example 9.2

Row y x1 (x1 2 7)x2 ŷy e

42 2.7 13 6 2.85564 �0.155637

43 2.6 14 7 2.61095 �0.010948

44 2.5 14 7 2.61095 �0.110948

45 2.6 14 7 2.61095 �0.010948

46 2.4 15 8 2.36626 0.033742

47 2.3 15 8 2.36626 �0.066258

48 2.5 15 8 2.36626 0.133742

49 2.2 16 9 2.12157 0.078431

50 2.3 16 9 2.12157 0.178431

51 2.2 16 9 2.12157 0.078431

TABLE 9.24
Regression Analysis, Piecewise Model, Example 9.2

Predictor Coef St. Dev t-Ratio p

b0 8.12549 0.05676 143.15 0.000

b1 �0.54310 0.01170 �46.41 0.000

b2 0.29841 0.01835 16.26 0.000

s¼ 0.1580 R-sq¼ 99.3% R-sq(adj)¼ 99.3%

Analysis of Variance

Source DF SS MS F p

Regression 2 171.968 85.984 3444.98 0.000

Error 48 1.198 0.025

Total 50 173.166

The regression equation is ŷy ¼ 8.13 � 0.543x1 þ 0.298 (x1�7)x2.
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Because x2¼ x3¼ 0 for this range, only a simple linear regression,

ŷy¼ 2.32 þ 0.735x1, remains for Component A (Figure 9.18). Figure 9.22

shows the precise equation structure.

Component B (Figure 9.18)

When x1 > 5, x2¼ 1, and x3¼ 0.
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FIGURE 9.15 Residual plot, piecewise regression, Example 9.2.

b0 + b1x1
x ≤ 7

x > 7
b0 + b1x1 + b2(x − 7)x2

x > 7x < 7
x = 7

FIGURE 9.16 Piecewise regression breakdown into two regressions (one for data �
x ¼ 7 and one for data > x ¼ 7), Example 9.2.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 396 16.11.2006 8:08pm

396 Handbook of Regression and Modeling



TABLE 9.25
Regression Without Piecewise Component, Example 9.2

Predictor Coef St. Dev t-Ratio p

b0 7.5111 0.1070 70.22 0.000

b1 �0.36757 0.01140 �32.23 0.000

s¼ 0.3989 R-sq¼ 95.5% R-sq(adj)¼ 95.4%

Analysis of Variance

Source DF SS MS F p

Regression 1 165.37 165.37 1039.08 0.000

Error 49 7.80 0.16

Total 50 173.17 0.16

The regression equation is ŷy ¼ 7.51 � 0.368x1.
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FIGURE 9.17 Absorption=elimination curve.
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FIGURE 9.18 Segments of the piecewise component model.
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So the model is

ŷy ¼ b0 þ b1x1 þ b2(x1 � 5)x2,

¼ b0 þ b1x1 þ b2(x1 � 5),

¼ b0 þ b1x1 þ b2x1 � 5b2,

ŷy ¼ (b0 � 5b2)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

intercept

þ (b1 þ b2)x1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
slope

,

b0 � 5b2 � 2:32�5(�1:55) (From Table 9:27):

Intercept � 10.07.
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FIGURE 9.19 Plotted data, Example 9.3.
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FIGURE 9.20 Pivot values of the plotted data, Example 9.3.
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The y-intercept for Component B (Figure 9.18) is presented in Figure

9.22. The slope component of B is

b1 þ b2 ¼ 0:735� 1:55 ¼ �0:815:

Component C (Figure 9.18)

When x1 > 9 and x2¼ x3¼ 1,

ŷy ¼ b0 þ b1x1 þ b2(x1 � 5)x2 þ b3(x1 � 9)x3,

¼ b0 þ b1x1 þ b2(x1 � 5)þ b3(x1 � 9), because x2 ¼ x3 ¼ 1:

¼ b0 þ b1x1 þ b2x1 � 5b2 þ b3x1 � 9b3,

¼ (b0 � 5b2 � 9b3)
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

intercept

þ (b1 þ b2 þ b3)x1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
slope

, where x1 > 9:

TABLE 9.26
HPLC Analysis of Blood Levels, Example 9.3

n mg=mL Time (h)

1 2.48 0

2 2.69 0

3 3.23 2

4 3.56 2

5 4.78 4

6 5.50 4

7 6.50 5

8 6.35 5

9 5.12 6

10 5.00 6

11 4.15 8

12 4.23 7

13 3.62 7

14 3.51 8

15 2.75 9

16 2.81 9

17 2.72 10

18 2.69 10

19 2.60 11

20 2.54 11

21 2.42 12

22 2.48 12

23 2.39 14

24 2.30 14

25 2.21 15

26 2.25 15
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Plugging in the values from Table 9.27,

Intercept¼ 2.35 � 5(�1.55) � 9(0.739)¼ 3.449 � 3.45.

Slope¼ 0.735 � 1.55 þ 0.739¼�0.076.

So, the formula for Component C (Figure 9.18) is presented in Figure 9.22.

ŷy¼ 3.45 � 0.076x1, when x1 > 9.

The regressions are drawn in Figure 9.22.

TABLE 9.27
Fitted Model, Example 9.3

Predictor Coef St. Dev t-Ratio p

b0 2.3219 0.1503 15.45 0.000

b1 0.73525 0.04103 17.92 0.000

b2 �1.55386 0.07325 �21.21 0.000

b3 0.73857 0.06467 11.42 0.000

s¼ 0.245740 R-sq¼ 96.9% R-sq(adj)¼ 96.4%

Analysis of Variance

Source DF SS MS F p

Regression 3 41.189 13.730 227.36 0.000

Error 22 1.329 0.060

Total 25 42.518

The regression equation is ŷy ¼ 2.32 þ 0.735x1 � 1.55(x1 � 5)x2 þ 0.739(x1 � 9)x3.
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FIGURE 9.21 Fitted and actual values, piecewise regression, Example 9.3.
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The use of piecewise regression beyond two pivots is merely a continuation

of the two-pivot model. The actual value ŷy is, however, given at any one point

on the entire equation range, without deconstructing it, as in Figure 9.22.

DISCONTINUOUS PIECEWISE REGRESSION

Sometimes, collected data are discontinuous, for example, the study of uptake

levels of a drug when it is infused immediately into the blood stream via a

central catheter by increasing the drip flow (Figure 9.23).
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−0.076

Slope = b1 = 0.735

Component B = b0 + b1x1 + b2(x1 − 5)

b0 − 5b2 − 9b3 = 3.45

b0 = 2.32

Component A =
b0 + b1x1

Component C =
y = b0 + b1x1 + b2(x1−5) + b3(x1 − 9)
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b0 − 5b2 = 10.07 

FIGURE 9.22 Piecewise regressions, Example 9.3.
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FIGURE 9.23 Uptake levels of a drug administered via central catheter.

Daryl S. Paulson / Handbook of Regression and Modeling DK3891_C009 Final Proof page 401 16.11.2006 8:08pm

Indicator (Dummy) Variable Regression 401



This phenomenon can be modeled using piecewise regression analysis

(Figure 9.24).

For example, let

y be the blood level of drug and

x1 be the time in minutes of sample collection.

x2 ¼
�

1, if x1 > xt,

0, if x1 � xt,

x3 ¼
�

1, if x1 > xt,

0, if x1 � xt,

where

xt is the discontinuous jump.

The full model is

ŷy ¼ b0 þ b1x1 þ b2(x1 � xt)x2 þ b3x3:

Let us work an example.

Example 9.4: In a parenteral antibiotic study, blood levels are required to

be greater than 20 mm=mL. A new device was developed to monitor blood

levels and, in cases where levels were less than 15 mm=mL, for more than 4–5

min, the device spiked the dosage to bring it to 20–30 mm=mL, through a

peripherally inserted central catheter. The validation on a nonhuman simula-

tion study produced the resultant data (Table 9.29).

Figure 9.25 provides a graph of the data.

Blood
level

y

b0 − xtb2 + b3 =

(b0 − xt 
b2 + b3) + (b1 + b2)x1

b0 + b1x1

xt

b3

Time
of sampling

x = 

FIGURE 9.24 Piecewise regression analysis modeling.
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Because the auto-injector was activated between 4 and 5 min, we will

estimate a spike at 4.5 min. Hence, let

x1 be the sample time in minutes.

x2 ¼
1, if x1 > 4:5 min,

0, if x1 � 4:5 min,

�

x3 ¼
1, if x1 > 4:5 min,

0, if x1 � 4:5 min:

�

The entire model is

ŷy ¼ b0 þ b1x1 þ b2(x1 � 4:5)x2 þ b3x3:

TABLE 9.28
Complete Data Set, Piecewise Regression, Example 9.3

n y x1 (x1 2 5)x2 (x1 2 9)x2 ŷy y � ŷy 5 e

1 2.48 0 0 0 2.32195 0.158052

2 2.69 0 0 0 2.32195 0.368052

3 3.23 2 0 0 3.79244 �0.562442

4 3.56 2 0 0 3.79244 �0.232442

5 4.78 4 0 0 5.26294 �0.482935

6 5.50 4 0 0 5.26294 0.237065

7 6.50 5 0 0 5.99818 0.501818

8 6.35 5 0 0 5.99818 0.351818

9 5.12 6 1 0 5.17957 �0.059570

10 5.00 6 1 0 5.17957 �0.179570

11 4.15 8 2 0 4.36096 �0.210958

12 4.23 7 2 0 4.36096 �0.130958

13 3.62 7 3 0 3.54235 0.077653

14 3.51 8 3 0 3.54235 �0.032347

15 2.75 9 4 0 2.72374 0.026265

16 2.81 9 4 0 2.72374 0.086265

17 2.72 10 5 1 2.64369 0.076311

18 2.69 10 5 1 2.64369 0.046311

19 2.60 11 6 2 2.56364 0.036358

20 2.54 11 6 2 2.56364 �0.023642

21 2.42 12 7 3 2.48360 �0.063595

22 2.48 12 7 3 2.48360 �0.003595

23 2.39 14 9 5 2.32350 0.066498

24 2.30 14 9 5 2.32350 �0.023502

25 2.21 15 10 6 2.24346 �0.033455

26 2.25 15 10 6 2.24346 0.006545
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FIGURE 9.25 Data graph, Example 9.4.

TABLE 9.29
Analysis of Blood Levels of Antibiotic,

Example 9.4

y 5 mg=mL of Drug x 5 Time in min of Sample Collection

8 1

7 1

8 2

7 2

9 3

8 3

10 4

9 4

20 5

21 5

23 6

25 6

28 7

27 7
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The input data are presented in Table 9.30.

The regression analysis is presented in Table 9.31.

The complete data set is presented in Table 9.32.

TABLE 9.30
Input Data, Piecewise Regression, Example 9.4

n y x1 x2 (x1 2 4.5) x2 x3

1 8 1 0 0.0 0

2 7 1 0 0.0 0

3 8 2 0 0.0 0

4 7 2 0 0.0 0

5 9 3 0 0.0 0

6 8 3 0 0.0 0

7 10 4 0 0.0 0

8 9 4 0 0.0 0

9 20 5 1 0.5 1

10 21 5 1 0.5 1

11 23 6 1 1.5 1

12 25 6 1 1.5 1

13 28 7 1 2.5 1

14 27 7 1 2.5 1

TABLE 9.31
Piecewise Regression Analysis, Example 9.4

Predictor Coef St. Dev t-Ratio p

b0 6.5000 0.6481 10.03 0.000

b1 0.7000 0.2366 2.96 0.014

b2 2.8000 0.4427 6.32 0.000

b3 9.1000 0.8381 10.86 0.000

s¼ 0.7483 R-sq¼ 99.4% R-sq(adj)¼ 99.2%

Analysis of Variance

Source DF SS MS F p

Regression 3 904.40 301.47 538.33 0.000

Error 10 5.60 0.56

Total 13 910.00

The regression equation is ŷy ¼ 6.50 þ 0.700x1 þ 2.80(x1 � 4.5)x2 þ 9.10x3.
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The fitted model is presented in Figure 9.26.

The Component A (x � 4.5) model is

ŷy ¼ b0 þ b1x1 ¼ 6:5þ 0:700x1:

10

b0 = 6.5

b0 − 4.5b2 + b3 = 6.5 − 4.5(2.8) + 9.1 = 3.0
1 2 3 4

Slope = 0.7

xt = 4.5

Component C = b3 = 9.1

Component B = b0 + b1x1 + b2(x1 − 4.5)   + b3

Slope = b1 + b2 = 3.5

5 6
x

(Time)7
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30

y

Component A = b0 + b1x1

FIGURE 9.26 Fitted model.
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FIGURE 9.27 Predicted vs. actual data, Example 9.4.
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The Component B (x > 4.5) model is

ŷy ¼ b0 þ b1x1 þ b2(x1 � 4:5)x2 þ b3x3,

ŷy ¼ b0 þ b1x1 þ b2x1(1)� 4:5b2(1)þ b3(1) ¼ b0 þ b1x1 þ b2x1 � 4:5b2 þ b3,

ŷy ¼ b0 � 4:5b2 þ b3 þ b1x1 þ b2x1,

¼ b0 � 4:5b2 þ b3|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
intercept

þ (b1 þ b2)
|fflfflfflfflffl{zfflfflfflfflffl}

slope

x1,

¼ 6:5� 4:5(2:8)þ 9:1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3:0

þ 0:70þ 2:8x1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
3:5

:

Figure 9.27 presents the final model of the predicted ŷy values superimposed

over the actual yi values.

From this chapter, we have learned how extraordinarily flexible and

useful the application of qualitative indicator variables can be.

TABLE 9.32
Complete Data Set, Piecewise Regression, Example 9.4

n y x1 x2 (x1 2 4.5)x2 x3 ŷy e

1 8 1 0 0.0 0 7.2 0.8

2 7 1 0 0.0 0 7.2 �0.2

3 8 2 0 0.0 0 7.9 0.1

4 7 2 0 0.0 0 7.9 �0.9

5 9 3 0 0.0 0 8.6 0.4

6 8 3 0 0.0 0 8.6 �0.6

7 10 4 0 0.0 0 9.3 0.7

8 9 4 0 0.0 0 9.3 �0.3

9 20 5 1 0.5 1 20.5 �0.5

10 21 5 1 0.5 1 20.5 0.5

11 23 6 1 1.5 1 24.0 �1.0

12 25 6 1 1.5 1 24.0 1.0

13 28 7 1 2.5 1 27.5 0.5

14 27 7 1 2.5 1 27.5 �0.5
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10 Model Building
and Model Selection

Regression model building, as we have seen, can not only be straightforward,

but also tricky. Many times, if the researcher knows what variables are

important and of interest, little effort is needed. However, when a researcher

is exploring new areas or consulting for others, this is often not the case. In

these situations, it can be valuable to collect wide data concerning variables

thought to influence the outcome of the dependent variable, y. The entire

process may be viewed as

1. Identifying independent predictor xi variables of interest

2. Collecting measurements on those xi variables related to the observed

measurements of the yi values

3. Selecting significant xi variables by statistical procedures, in terms of

increasing SSR and decreasing SSE

4. With the selected variables, validating the conditions under which the

model is adequate

PREDICTOR VARIABLES

It is not uncommon for researchers to collect data on more variables than are

practical for use in regression analysis. For example, in a laundry detergent

validation study for which the author recently consulted, two methods were

used—one for top-loading machines and another for front-loading machines.

The main difference between the machines was water volume. Several micro-

organism species were used in the study, against three concentrations of an

antimicrobial laundry soap. Testing was conducted by two teams of techni-

cians at each of six different laboratories over a five-day period. The number

of variables to answer the research question, ‘‘Do significant differences in

the data exist among the test laboratories,’’ was extreme.

Yet, for ‘‘tightening’’ the variability within each laboratory, it proved

valuable to have replicate data, day data, and machine data within each

laboratory. Inter-laboratory variability was a moot point at this test level. In

my opinion, it is generally a good idea to ‘‘overcollect’’ variables, particularly

when one is not sure what will ‘‘pop up,’’ as analysis unfolds. However, using
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methods that we have already learned, those variables need to be reduced to

the ones that most relate to the research question.

For regression analysis, it is very important that potential for interaction

between variables be considered during the process of model building. The

interaction between variables can be accounted for simply as their product.

Correcting for interactions among more than three variables generally is not

that useful.

MEASUREMENT COLLECTION

A common experimental design used by applied researchers working in micro-

biology, medicine, and development of healthcare products is the controlled

experiment, in which the xi predictor variables are set at specified limits, and

the response variable, yi, is allowed to vary. Almost all the work we have

covered in this book has been with fixed xi values. However, in certain studies,

the xi values are not all preset, but are uncontrolled random variables them-

selves. For example, data on the age, blood pressure, disease state, and other

conditions of a patient often are not set, but are collected as random xi variables.

In discussing the results of a study, conclusions must be limited to those values

of the predictor variable in a preset, fixed-effects study. On the other hand, if

predictor variables are randomly collected, then the study results can be gener-

alized beyond those values to the range limits of the predictor values.

There are also studies that produce observations that are not found in a

controlled experimental design. These studies can use xi data that are col-

lected based on intuition or hunches. For example, if a person wants to know

if a water wash before the use of 70% alcohol as a hand rinse reduces the

alcohol’s antimicrobial effects, as compared with using 70% alcohol alone, an

indicator (dummy) variable study may be required. That particular xi variable

may be coded as

xi ¼
0, if water rinse is used prior to alcohol rinse,

1, if no water rinse is used prior to alcohol rinse.

�

Finally, there are times when an exploratory, observational study is neces-

sary. For example, in evaluating the antimicrobial properties of different

kinds of skin preparation for long-term venous catheterization, observational

studies will be required, in which outcomes for patients are observed in situ,

instead of in a controlled study.

SELECTION OF THE xi PREDICTOR VARIABLES

In regression analysis, the selection of the most appropriate xi variables will

often be necessary. As was discussed, there are several approaches to deter-

mining the optimal number: backward elimination, forward selection, and
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stepwise regression. These use, as their basis, methods that were already

discussed in this book. In review, including all xi predictor variables in the

model and eliminating sequentially the unnecessary variables are termed

‘‘backward elimination.’’ The ‘‘forward selection’’ process begins with one

xi predictor variable and adds in others. And, ‘‘stepwise regression,’’ a form of

forward selection, is also a popular approach.

However, before selection procedures can be used effectively, the

researcher should assure that the errors are normally distributed, and the

model has no significant outliers, multicollinearity, or serial correlation. If

any of these are problems, they must be addressed first.

ADEQUACY OF THE MODEL FIT

Checking the adequacy of the model fit before selecting xi variables can save a

great deal of time. If selection procedures are run, but the model is inappropriate,

chances are that little will be gained. A simple way to check the model’s

adequacy is to perform a split-sample analysis. That is, one randomly partitions

one half of the values into one group, and the remaining values into another

group. It is easiest to do this by randomly assigning the n values to the groups.

Suppose all the n values (there are only four here) are presented as

n1 ¼ y1 x1 x2 x3 � � � xk

n2 ¼ y2 x1 x2 x3 � � � xk

n3 ¼ y3 x1 x2 x3 � � � xk

n4 ¼ y4 x1 x2 x3 � � � xk

The randomization procedure here places n1 and nk in group 1, and n2 and n3

in group 2.

Group 1: n1 and n4 Group 2: n2 and n3

n1 ¼ y1 x1 x2 x3 � � � xk n2 ¼ y2 x1 x2 x3 � � � xk

n4 ¼ y4 x1 x2 x3 � � � xk n3 ¼ y3 x1 x2 x3 � � � xk

Regression models are then recalculated for each group. In the next step, an

F test is conducted for: (1) y intercept equivalence, (2) parallel slopes, and

(3) coincidence, as previously discussed. If the two regression functions are

not different—that is, they are coincidental—the model is considered appro-

priate for evaluating the individual xi variables. If they differ, one must

determine where and in what way, and correct the data model, applying the

methods discussed in previous chapters. If the split group regressions are

equivalent, the evaluation of the actual xi predictor variables can proceed. In

previous chapters, we used a partial F test to do this. We use the same process
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but with different strategies: stepwise regression, forward selection, and

backward elimination.

Let us now evaluate an applied problem.

Example 10.1: A researcher was interested in determining the log10

microbial counts obtained from a contaminated 2.3 cm2 coupon at different

temperatures and media concentrations. The researcher thought that tempera-

ture variation from 208C to 458C and media concentration would affect the

microbial colony counts.

The initial regression model proposed was

ŷy ¼ b0 þ b1x1 þ b2x2, (10:1)

where y is the log10 colony counts per 2.3 cm2 coupon, x1 is the temperature in

8C, and x2 is the media concentration.

After developing this model, the researcher discovered that the interaction

term, x1 � x2 ¼ x3, was omitted. Fifteen readings were collected, and the regres-

sion equation, ŷy ¼ b0þ b1x1þ b2x2þ b3x3, was used. Table 10.1 provides the

raw data (xi, ŷy, and ei). Table 10.2 provides the regression analysis.

Table 10.2 (regression equation Section A) provides the actual bi

values, the standard deviation of each bi, the t-test value for each bi, and

the p-value for each bi. In multiple regression, the t-ratio and p-value

have limited use. The standard deviation of the regression equation,

syjx1, x2, x3
¼ 0:5949, is just more than 1

2
log value, and the coefficient of

determination, R2
adjð Þyjx1, x2, x3

¼ 86:1%, which means the regression equation

explains about 86.1% of the variability in the model.

TABLE 10.1
Raw Data, Example 10.1

n y x1 x2 x3 ŷy ei

1 2.1 20 1.0 20.0 2.15621 �0.056213

2 2.0 21 1.0 21.0 2.13800 �0.138000

3 2.4 27 1.0 27.0 2.02873 0.371271

4 2.0 26 1.8 46.8 2.78943 �0.789435

5 2.1 27 2.0 54.0 2.99373 �0.893733

6 2.8 29 2.1 60.9 3.13496 �0.334958

7 5.1 37 3.7 136.9 5.44805 �0.348047

8 2.0 37 1.0 37.0 1.84661 0.153391

9 1.0 45 0.5 22.5 0.88644 0.113565

10 3.7 20 2.0 40.0 2.86301 0.836987

11 4.1 20 3.0 60.0 3.56981 0.530187

12 3.0 25 2.8 70.0 3.66937 �0.669369

13 6.3 35 4.0 140.0 5.66331 0.636688

14 2.1 26 0.6 15.6 1.67569 0.424306

15 6.0 40 3.8 152.0 5.83664 0.163359
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Section B of Table 10.2 is the analysis of variance of the regression model

H0 : b1 ¼ b2 ¼ b3 ¼ 0,

HA: at least one of the bi values is not 0:

Section C provides a sequential analysis.

Source Sequential SS Sequential SSR

x1 ¼ temperature SSR(x1) ¼ amount of variability

explained with x1 in model

1.640

x2 ¼ media

concentration

SSR(x2jx1) ¼ amount of variability

explained by x2 with x1

in the model

28.589

x3 ¼ x1 � x2 SSR(x3jx1, x2) ¼ amount of variability

explained by the

addition of x3 in the

model

1.515

31.744

(which is

equal to the

total SSR

in Part B)

TABLE 10.2
Regression Analysis, Example 10.1
(

Predictor

b0

Coef

2.551

St. Dev

1.210

t-Ratio

2.11

p

0.059

A b1 �0.05510 0.03694 �1.49 0.164

b2 �0.0309 0.6179 �0.05 0.961

b3 0.03689 0.01783 2.07 0.063

s ¼ 0.5949 R�sq ¼ 89.1% R�sq(adj) ¼ 86.1%

Analysis of Variance
(

Source DF SS MS F p

B
Regression 3 31.744 10.581 29.89 0.000

Error 11 3.894 0.354

Total 14 35.637

C

Source DF Sequential SS
(

x1 1 1.640 — SSR(x1)

)
Because df ¼ 1,

SSR ¼ MSR

x2 1 28.589 — SSR(x2jx1)

x3 1 1.515 — SSR(x3jx1, x2)

The regression equation is ŷy ¼ 2.55 � 0.0551x1 � 0.031x2 þ 0.0369x3.
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The researcher is mildly puzzled by these results, because the incubation

temperature was expected to have more effect on the growth of the bacteria.

In fact, it appears that media concentration has the main influence. Even so,

this is not completely surprising, because the temperature range at which the

organisms were cultured was optimal for growth and would not really be

expected to produce varying and dramatic effects. The researcher, before

continuing, decides to plot ei vs. yi, displayed in Figure 10.1.

Figure 10.1 does not look unusual, given the n ¼ 15 sample size, which is

small, so the researcher continues with the analysis.

STEPWISE REGRESSION

The first selection procedure we discuss is stepwise regression. We have done

this earlier, but not with a software package. Instead, we did a number of partial

regression contrasts. Briefly, the F-to-Enter value is set, which can be inter-

preted as an FT value minimum for an xi variable to be accepted into the final

equation. That is, each xi variable must contribute at least that level to be

admitted into the equation. The variable is usually selected in terms of entering

one variable at a time with n� k� 1 df. This would provide an FT at a ¼ 0.05 of

FT(0.05, 1, 11) ¼ 4.84. The F-to-Enter (sometimes referred to as ‘‘F in’’) is

arbitrary. For more than one xi variable, the test is the partial F test, exactly as

we have done earlier. We already know that only x2 would enter this model,

because SSR sequential for x2 ¼ 28.580 (Section C, Table 10.2).

Fc ¼
MSR

MSE

¼ 28:589

0:354
¼ 80:76 > FT ¼ 4:84:

1
−1.0

−1.5

0.0

0.5

1.0

2 3 4 5 6 7

e = y − ŷ

yi

FIGURE 10.1 ei vs. yi plot, Example 10.1.
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Neither x1 nor x3 would enter the model, because their Fc values are less than

FT ¼ F(0.05, 1, 11) ¼ 4.84, which is the cut-off value.

The F-to-Remove command is a set FT value such that, if the Fc value is

lesser than the F-to-Remove value, it is dropped from the model. The defaults

for F-to-Enter and F-to-Remove are F ¼ 4.0 in MiniTab, but can be easily

changed. F-to-Remove, also known as FOUT, is a value lesser than or equal to

F-to-Enter; that is, F-to-Enter � F-to-Remove.

Stepwise regression is a very popular regression procedure, because it

evaluates both values going into and values removed from the regression

model. The stepwise regression in Table 10.3, a standard MiniTab output,

contains both FIN and FOUT set at 4.00. Note that only x2 and b0 (the constant)

remain in the model after the stepwise procedure.

The constant ¼ 0.6341 (Table 10.4) is the intercept value, b0, with only

x2 in the model, and x2 ¼ 1.23 means that b2 ¼ 1.23. The t-ratio is the t-test

value, Tc, s ¼ standard deviation of the regression equation, syjx2
¼ 0:649,

and R2
y x2j ¼ 84:64%.

TABLE 10.3
Stepwise Regression, Example 10.1

F-to-Enter: 4.00 F-to-Remove: 4.00

Response is y On three predictors, with n ¼ 15

Step 1

Constant 0.6341

x2 1.23

t-value 8.46

s 0.649

R2 84.64

R2
(adj) 83.46

TABLE 10.4
Forward Selection Regression, Example 10.1

F-to-Enter: 4.00 F-to-Remove: 0.00

Response is y On three predictors, with n ¼ 15

Step 1

Constant 0.6341

x2 1.23

t-ratio 8.46

s 0.649

R2 84.64

R2
adjð Þ 83.46
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The reader may wonder why a researcher would choose to use the

stepwise regression model, which has both a smaller syjx and a smaller R2,

when compared with the full model with the temperature and temperature–

media concentration terms. The reason for this is that two degrees of freedom

are gained in the error term with only media concentration in the model. We

get one degree of freedom from the temperature xi value and one degree of

freedom from the interaction term. When SSR is divided by a degree

of freedom value of 1 instead of 3, the MSR value is larger. When the larger

MSR value is divided by the MSE value (which did not increase significantly),

the Fc value increases. Note, in Table 10.2, Part B, that Fc ¼ 29.89, and

looking ahead to Table 10.5, Fc ¼ 71.63. That is why the two independent

variables were omitted. They ‘‘ate up’’ more degrees of freedom than

the variables contributed to explaining that more of the variability is due

to the regression.

FORWARD SELECTION

Forward selection operates using only the F-to-In value, bringing only those xi

variables into the equation that have Fc values exceeding the F-to-Enter value.

It begins with b0 in the model, then sequentially adds variables. In the

example, we use F-to-Enter ¼ 4.0, and set F-to-Remove ¼ 0. That is, we

are only bringing xi variables into the model that contribute at least 4.0, using

the F table. Table 10.4 presents that forward selection data.

Note that the results are exactly the same as those from the stepwise

regression (Table 10.3). These values are again reflected in Table 10.5, the

TABLE 10.5
Regression Model, Single Independent Variable, Example 10.1

Predictor Coef St. Dev t-Ratio P

b0 0.6341 0.3375 1.88 0.083

b2 1.2273 0.1450 8.46 0.000

s ¼ 0.6489 R-sq ¼ 84.6% R-sq(adj) ¼ 83.5%

Analysis of Variance

Source DF SS MS F P

Regression 1 30.163 30.163 71.63 0.000

Error 13 5.475 0.421

Total 14 35.637

The regression equation is ŷy ¼ 0.634 þ 1.23x2.
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regression, ŷy ¼ b0 þ b2x2, where x2 is the media concentration. Table 10.6

presents the yi, xi, ŷyi, and ei values.

BACKWARD ELIMINATION

In backward elimination, all xi variables are initially entered into the model,

but eliminated if their Fc value is not greater than the F-to-Remove value, or

FT. Table 10.7 presents the backward elimination process. Note that Step 1

included the entire model, and Step 2 provides the finished model, this time,

with both temperature and interaction included in the model. The model is

ŷy ¼ b0 þ b1x1 þ b3x3,

ŷy ¼ 2:499� 0:54x1 þ 0:036x3:

This procedure drops the most important xi variable identified through

forward selection, the media concentration, but then uses the interaction

term, which is a meaningless variable without the media concentration

value. Nevertheless, the regression equation is presented in Table 10.8. In

practice, the researcher would undoubtedly drop the interaction term, because

TABLE 10.6
Original Data and Predicted and Error Values, Reduced Model,

Example 10.1

n y x2 ŷ ei

1 2.1 1.0 1.86146 0.23854

2 2.0 1.0 1.86146 0.13854

3 2.4 1.0 1.86146 0.53854

4 2.0 1.8 2.84332 �0.84332

5 2.1 2.0 3.08879 �0.98879

6 2.8 2.1 3.21152 �0.41152

7 5.1 3.7 5.17524 �0.07524

8 2.0 1.0 1.86146 0.13854

9 1.0 0.5 1.24780 �0.24780

10 3.7 2.0 3.08879 0.61121

11 4.1 3.0 4.31611 �0.21611

12 3.0 2.8 4.07065 �1.07065

13 6.3 4.0 5.54344 0.75656

14 2.1 0.6 1.37053 0.72947

15 6.0 3.8 5.29798 0.70202
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one of the two components of interaction, the media concentration, is not in

the model. Table 10.9 provides the actual values of y, x1, x3, ŷy, and e in this

model.

So what does one need to do? First, the three methods obviously may not

provide the researcher with the same resultant model. To pick the best model

requires experience in the field of study. In this case, using the backward

elimination method, in which all xi variables begin in the model and those less

significant than F-to-Leave are removed, the media concentration was

rejected. In some respects, the model was attractive in that R2
ðadjÞ and s were

more favorable. Yet, a smaller, more parsimonious model usually is more

useful across studies than a larger, more complex one. The fact that

the interaction term was left in the model when x2 was rejected makes the

interaction of x1 � x2 a moot point. Hence, the model to select seems to be the

one detected by both stepwise and forward selection, ŷy ¼ b0 þ b2 x2, as

presented in Table 10.5.

TABLE 10.7
Backward Elimination Regression, Example 10.1

F-to-Enter: 4.00 F-to-Remove: 4.00

Response is y On three predictors, with n ¼ 15

Step 1 2

Constant 2.551 2.499

x1 �0.055 �0.054

t-value �1.49 �2.49

x2 �0.03

t-value �0.05

x3 0.0369 0.0360

t-value 2.07 9.63

s 0.595 0.570

R2 89.07 89.07

R2
ðadjÞ 86.09 87.25

TABLE 10.8
Regression Equation, Double Independent Variable, Example 10.1

Predictor Coef St. Dev t-Ratio p

b0 2.4989 0.5767 4.33 0.001

b1 �0.05363 0.02157 �2.49 0.029

b2 0.036016 0.003740 9.63 0.000

s ¼ 0.5697 R-sq ¼ 89.1% R-sq(adj) ¼ 87.3%

The regression equation is ŷy ¼ 2.50 � 0.0536 x1 þ 0.0360x3.
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It is generally recognized among statisticians that the forward selection

procedure agrees with the stepwise when the subset number of independent

variables is small, but when large subsets have been incorporated into a model,

backward elimination and stepwise seem to agree more often. A problem with

forward selection is that, once a variable is entered into the model, it is not

released, which is not the case for backward or stepwise selection. This author

recommends the use of all the three in one’s research, selecting the one that

seems to better portray what one is attempting to accomplish.

BEST SUBSET PROCEDURES

The first best subset we discuss is the evaluation of

R2
k ¼

SSRk

SST

¼ 1� SSEk

SST

: (10:2)

As the number of k regression terms increases, so does R2. However, as we

saw earlier, this can be very inefficient, particularly when using the F test,

because degrees of freedom are eaten up. The researcher can add xi variables

until the diminishing return is obvious (Figure 10.2). However, this process is

inefficient. Aitkin (1974) proposed a solution using

R2
A ¼ 1� 1� R2

kþ1

� �
1þ d�;n,k

� �
, (10:3)

TABLE 10.9
Original Data and Predicted and Error Values, Reduced Model,

Example 10.1

n y x1 x3 ŷ ei

1 2.1 20 20.0 2.14652 �0.046521

2 2.0 21 21.0 2.12890 �0.128904

3 2.4 27 27.0 2.02320 0.376800

4 2.0 26 46.8 2.78994 �0.789942

5 2.1 27 54.0 2.99562 �0.895622

6 2.8 29 60.9 3.13686 �0.336864

7 5.1 37 136.9 5.44499 �0.344986

8 2.0 37 37.0 1.84703 0.152972

9 1.0 45 22.5 0.89574 0.104261

10 3.7 20 40.0 2.86683 0.833167

11 4.1 20 60.0 3.58714 0.512855

12 3.0 25 70.0 3.67914 �0.679137

13 6.3 35 140.0 5.66390 0.636100

14 2.1 26 15.6 1.66626 0.433744

15 6.0 40 152.0 5.82792 0.172077
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where R2
A is the adequate R2 subset of xi values, R2

kþ1 is the full model,

including b0, and k is the number of bis, excluding b0.

R2
k and SSEk

R2, the coefficient of determination, and SSE, the sum of squares error term,

can be used to help find the best subset (k) of xi variables. R2 and SSE are

denoted with a subscript k for the number of xi variables in the model. When

R2
k is large, SSEk

tends to be small, because the regression variability is well

explained by the regressors, so random error becomes smaller.

R2
k ¼ 1� SSEk

SST

, (10:4)

where SSEk
is the SSE with k predictors; SST is the total variability with

all predictors in the model; and R2
k is the coefficient of determination with k

predictors.

ADJ R2
k AND MSEk

Another way of determining the best k number of xi variables is using Adj R2
k

and MSEk
. The model with the highest Adj R2

k also will be the model with the

smallest MSE. This method better takes into account the number of xi vari-

ables in the model.

Adj R2
k ¼ 1� n� 1ð ÞSSE

n� kð ÞSST

, (10:5)

where SSE is the full model error sum of squares; SST is the full model total

sum of squares; n�1 is the sample size less 1; and n�k is the sample size

minus the number of variables in the present model.

1

Optimum number of k

R2

0 k

FIGURE 10.2 Obvious diminishing return.
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MALLOW’S CK CRITERIA

This value represents the total mean square error of the n fitted values for

each k.

Ck ¼
SSEk

MSE

� (n� 2k): (10:6)

The goal is to determine the Ck value subset for which the Ck value

is approximately equal (�) to k. If the model is adequate, the Ck value is

equivalent to k, the number of xi variables. A small Ck value indicates small

variance, which will not decrease further with increased numbers of k.

Many software programs provide outputs for these subset predictors, as

given in Table 10.10, for the data from Example 10.1.

Note that the R2
k terms for all the models are reasonably similar. The Adj

R2
k values, too, are similar. The Ck (¼Cp) value is the most useful here, but

the model selected (Ck¼ 2) has two variables, temperature and interaction.

This will not work, because there is no interaction unless temperature and

media concentration both are in the model. Note that the value of s is
ffiffiffiffiffiffiffiffiffiffiffi
MSEk

p
.

OTHER POINTS

All the tests and conditions we have discussed earlier should also be used,

such as multicollinearity testing, serial correlation, and so on. The final model

selected should be in terms of application to the ‘‘population,’’ not just one

sample. This caution, all too often, goes unheeded, so a new model must be

developed for each new set of data. Therefore, when a final model is selected,

it should be tested for its robustness.

TABLE 10.10
Best Subsets Regression, Example 10.1

Response Is Log10 Colony Count

Vars R-sq R-sq(adj) Cp s x1 x2 x2 3 x1

1 84.6 83.5 4.5 0.64894 — X —

1 83.4 82.2 5.7 0.67376 — — X

2 89.1 87.3 2.0 0.56968 X — X

2 86.9 84.7 4.2 0.62457 — X X

3 89.1 86.1 4.0 0.59495 X X X
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11 Analysis
of Covariance

Analysis of covariance (ANCOVA) employs both analysis of variance

(ANOVA) and regression analyses in its procedures. In the present author’s

previous book (Applied Statistical Designs for the Researcher), ANCOVA

was not reported mainly because it presented statistical analysis that did not

require the use of a computer. For this book, a computer with statistical

software is a requirement; hence, ANCOVA is discussed here, particularly

because many statisticians refer to it as a special type of regression.

ANCOVA, in theory, is fairly straightforward. The statistical model

includes qualitative independent factors as in ANOVA, say, three product

formulations, A, B, and C, with corresponding quantitative response variables

(Table 11.1). This is the ANOVA portion.

The regression portion employs quantitative values for the independent

and the response variables (Table 11.2). The main value of ANCOVA is its

ability to explain and adjust for variability attributed to variables that cannot

be controlled easily and covary with one another, as in regression. For

example, consider the case of catheter-related infection rates in three different

hospitals. The skin of the groin region is baseline-sampled for normal micro-

bial populations before prepping the proposed catheter site with a test product

to evaluate its antimicrobial effectiveness in reducing the microbial counts.

The baseline counts among subjects vary considerably (Figure 11.1).

The baseline counts tend to differ in various regions of the country—and

hence, hospitals—an aspect that can potentially reduce the study’s ability to

compare the results and, therefore, different infection rates.

Using ANCOVA, the analysis would look like Figure 11.2. We can adjust

or account for the unequal baselines and infection rates, and then compare the

test products directly for antimicrobial effectiveness. Instead of using actual

baseline values from the subjects at each hospital, the baseline populations

minus the post-product-application populations—that is, the microbial reduc-

tions from baseline—are used.

Quantitative variables in the covariance model are termed concomitant

variables or covariates. The covariate relationship is intended to provide

reduction in error. If it does not, a covariance model should be replaced by

an ANOVA, because one is losing degrees of freedom using covariates.
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The best way to assure that the covariate is related to the dependent variable y
is to have familiarity with the intended covariates before the study begins.

SINGLE-FACTOR COVARIANCE MODEL

Let us consider a single covariate and one qualitative factor in a fixed effects

model. The basic model in regression is

Ŷ ¼ b0 þ b1x1 þ b2zþ e: (11:1)

However, many statisticians favor writing the model equation in ANOVA

form:

Yij ¼ mþ Ai þ b(xij � x::)þ «ij, (11:2)

where m is the overall adjusted mean, A are the treatments or treatment

effects, b is the covariance coefficient for y, x relationships, and «ij is the

error term, which is independent and normally distributed, N (0, s2).

The expected value of y, Ebyijc, depends on the treatment effect and the

covariate. A problem often encountered in ANCOVA is that the treatment

effect slopes must be parallel; there can be no interaction (Figure 11.3).

TABLE 11.1
Qualitative Variables

Qualitative Factors

A B C

xA1
xB1

xC1

xA2
xB2

xC2

..

. ..
. ..

.

xAn
xBn

xCn

9
>>>=

>>>;

Response variables within the factors

TABLE 11.2
Quantitative Variables

Independent Variables Response Variables

Body Surface (cm2) Log10 Microbial Counts

20 3.5

21 3.9

25 4.0

30 4.7

37 4.9

35 4.8

39 5.0

Daryl S. Paulson / Handbook of Regression and Modeling: DK3891_C011 Final Proof page 424 16.11.2006 8:09pm

424 Handbook of Regression and Modeling



1 2 3

3

+

+

+
+

++ +

+

+

+

+

+

+ + +
+

+

+
+

+ +
+

+

+

+
+

+
+

+
+

+

+

+

4

5

6

(a)

4 5 6 7 8

Group on test product hospital A Group on test product hospital B

Lo
g 1

0 
ba

se
lin

e 
co

un
ts

Lo
g 1

0 
ba

se
lin

e 
co

un
ts

Lo
g 1

0 
ba

se
lin

e 
co

un
ts

9 10

1 2 3

3

4

5

6

4 5 6 7 8

Group on test product hospital C

9 10
n

1

3

4

5

6

(b)

(c)

2 3 4 5 6 7 8 9 10
nn

XA

XB

XC

FIGURE 11.1 Baseline counts among subjects in three different hospitals.

4

Lo
g 1

0 
ba

se
lin

e 
co

un
ts

5

6

Hospital B

Hospital C

Hospital A

Infection rates

+

+

+

+

+

+

+
+

+

++

+
+

+

+ +

+

+
++
+

+
+

+

+

+
+

+

+ +

+

+
+

+

+

FIGURE 11.2 Covariance analysis.
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This is a crucial requirement with ANCOVA, which sometimes cannot be

met. If the treatment slopes are not parallel—that is, they interact—do not use

ANCOVA. To test for parallelism, perform a parallelism test or plot out the

covariates to determine this. If the slopes are not parallel, perform separate

regression analyses on the single models.

SOME FURTHER CONSIDERATIONS

We have already applied the basic principles of ANCOVA in Chapter 9 on

‘‘dummy,’’ or indicator variables. The common approach to the adjustment

problem is using indicator variables as we have done. For example, the

following equation

y ¼ b0 þ b1x1 þ b2I þ b3x1I (11:3)

presents an example with x1 as the interaction term. Recall that if interaction

is equal to 0, then the slopes are parallel and the model reduces to

y ¼ b0 þ b1x1 þ b2I: (11:4)

Note that we are using I as the symbol in place of z. The ANCOVA model can

be computed in ANOVA terms or as a regression. We look at both the

approaches.

Let us consider a completely randomized design with one factor. A

completely randomized design simply means that every possible observation

is as likely to be run as any of the others. If there are k treatments in the factor,

there will be k � 1 indicators (dummy variables).

y

x

Treatm
ent 3Treatm

ent 2Treatm
ent 1

x–

FIGURE 11.3 ANCOVA treatments.
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The general schema is

I1 ¼
1, if treatment 1,

�1, if treatment k,

0, if other,

8
<

:

:

:

:

Ik�1 ¼
1, if treatment k � 1,

�1, if treatment k,

0, if other.

8
<

:

For example, suppose we have four products (treatments) to test k ¼ 4, and

there will be k � 1 ¼ 3 indicator variables:

I1 ¼
1, if treatment 1,

�1, if treatment 4,

0, if otherwise,

8
<

:

I2 ¼
1, if treatment 2,

�1, if treatment 4,

0, if otherwise,

8
<

:

I3 ¼
1, if treatment 3,

�1, if treatment 4,

0, if otherwise.

8
<

:

There will always be k � 1 dummy variables. This model would be written as

ŷyij ¼ b0 þ b1xþ b2I1 þ b3I2 þ b3I3 þ b4(xij � x),

where ŷij is the response variable, b0 is the overall mean when xij ¼ Xij � X, or

centered values, which are the concomitant variables or covariates, and I is

the indicator variable for the treatment of concern.

Note that the covariates are only adjustment variables to account for

extraneous error, such as differing time 0 or baseline values. The main

focus is among the treatments.

H0: t1 ¼ t2 ¼ � � � ¼ tk ¼ 0,

HA: Not all treatments ¼ 0:

If H0 is rejected, the researcher should perform contrasts—generally pairwise

—to determine where the differences are.
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REQUIREMENTS OF ANCOVA

1. Error terms, «ij, must be normally and independently distributed.

2. The variance components of the separate treatments must be equal.

3. The regression slopes among the treatments must be parallel.

4. Linearity between the covariates is necessary.

Let us work through the basic structure using the six-step procedure.

Step 1: Form the test hypothesis, which will be a two-tail test.

H0: the treatments are of no effect ¼ 0,

HA: at least one treatment is not a zero effect.

Step 2: State the sample sizes and the a level.

Step 3: Choose the model configuration (covariates to control) and dummy

variable configuration.

Step 4: Decision rule: The ANCOVA uses an F-test (Table C, the F distri-

bution table).

The test statistic is

Fc is the calculated ANCOVA value for treatments. If done by regression, both

full and reduced models are computed.

Fc ¼
SSE(R) � SSE(F)

df(R) � df(F)

� SSE(E)

df(F)

FT is the tabled value at the set a level with degrees of freedom in the numerator

as df reduced model� df full model 7 both error terms; the denominator

portion of degrees of freedom is from the full model – error term.

Step 5: Perform ANCOVA.

Step 6: Decision rule is based on the values of Fc and FT; reject H0 at a, if

Fc > FT.

We perform a single-factor ANCOVA in two ways. This is because

different computer software packages do it differently. Note, though, that

one can also perform ANCOVA by using two regression analyses: one for the

full model, and the other for a reduced model.

Let us begin with a very simple, yet often encountered evaluation comparing

effects of three different topical antimicrobial products on two distinct groups—

males and females—and how an ANCOVA model ultimately was used.

Example 11.1: In a small-scale surgical scrub product evaluation, three

different products were evaluated—1%, 2%, and 4% chlorhexidine gluconate

formulations. Only three (3) subjects were used in testing over the course of

5 consecutive days, one subject per product. Of interest were the cumulative

antimicrobial effects over 5 days of product use. Obviously, the study was

extremely underpowered in terms of sample size, but the sponsor would only pay

for this sparse approach. Because ANCOVA might be used, the researcher decided
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to determine if the baseline and immediate microbial counts were associated. This

was easily done via graphing. The researcher used the following codes:

Product ¼
1, if 1% CHG,

2, if 2% CHG,

3, if 4% CHG,

8
<

:

Day of test ¼

1, if day 1,

2, if day 2,

3, if day 3,

4, if day 4,

5, if day 5.

8
>>>>><

>>>>>:

The three subjects were randomly assigned to use one of the three test

products. The baseline counts were the number of microorganisms normally

residing on one hand randomly selected. The immediate counts were the

number of bacteria remaining on the other hand after the product application.

All count data were presented in log10 scale (Table 11.3).

The researcher decided to determine whether interactions were significant

via a regression model to view the repeated daily effect. It is important to plot

the covariation to assure that the slopes are parallel. Figure 11.4 presents a

multiple plot of the three-product baseline covariates.

It appears that a relationship between baseline and immediate reductions

is present. If one was not present, the differences between baseline and

immediate counts would not be useful. Table 11.4 presents the data, as

modified to generate Figure 11.4.

Because ANCOVA requires that the covariant slopes be parallel, three

regressions are performed, one on the data from the use of each of the three

products (Table 11.5 through Table 11.7).

Note that the slopes—Product 1 ¼ 1.0912, Product 2 ¼ 0.9913, and

Product 3 ¼ 0.7337—seem to be parallel enough. But it is a good idea to

check for parallelism in the slopes, using the methods described earlier.

Recall that, when bi slopes are not parallel, they have an interaction term

within them. If that is the case, ANCOVA cannot be used. Once we determine

that interaction is insignificant in the covariant among products, the

ANCOVA can be performed. We do it using both the ANCOVA routine

and regression analysis.

ANCOVA ROUTINE

Most statistical software packages offer an ANCOVA routine. We can use the

six-step procedure to perform the test. In these cases, centering of the covari-

ate may not be necessary.
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Step 1: State the hypothesis.

First, we want to make sure that the covariate is significant, that is, of

value in the model. Then, we want to know if the treatments are significant.

TABLE 11.3
Microbial Count Data, Example 11.1

Daily Log10 Microbial

Baseline Counts

Daily Log10 Microbial

Immediate Counts Test Product Test Day

4.8 2.0 1 1

5.3 3.3 2 1

3.4 2.2 3 1

4.9 2.5 1 2

4.8 2.5 2 2

4.2 2.8 3 2

4.6 2.1 1 3

4.8 2.8 2 3

4.1 2.9 3 3

5.5 2.7 1 4

3.7 1.7 2 4

3.1 1.5 3 4

4.3 1.8 1 5

4.4 2.4 2 5

3.8 2.8 3 5

1.40

C
3.20

4.00

4.80

5.60

+

+
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+
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FIGURE 11.4 Multiple plot of baseline covariates, Example 11.1.

Product 1 ¼ A ¼ baseline A vs. immediate antimicrobial effects A,

Product 2 ¼ B ¼ baseline B vs. immediate antimicrobial effects B,

Product 3 ¼ C ¼ baseline C vs. immediate antimicrobial effects C.
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The covariance model is

Y ¼ m:þ Ai þ b(xi)þ «, (11:5)

where Ai is the product effect and b is the covariate effect.

Hypothesis 1:

H0: b ¼ 0,

HA: b 6¼ 0 (the covariate term explains sufficient variability):

TABLE 11.4
Baseline Covariates, Example 11.1

Product

1 5 A

Product

2 5 B

Product

3 5 C

n BL IM P D BL IMM BL IMM BL IMM

1 4.8 2.0 1 1 4.8 2.0 5.3 3.3 3.4 2.2

2 5.3 3.3 2 1 4.9 2.5 4.8 2.5 4.2 2.8

3 3.4 2.2 3 1 4.6 2.1 4.8 2.8 4.1 2.9

1 4.9 2.5 1 2 5.5 2.7 3.7 1.7 3.1 1.5

2 4.8 2.5 2 2 4.3 1.8 4.4 2.4 3.8 2.8

3 4.2 2.8 3 2

1 4.6 2.1 1 3

2 4.8 2.8 2 3

3 4.1 2.9 3 3

1 5.5 2.7 1 4

2 3.7 1.7 2 4

3 3.1 1.5 3 4

1 4.3 1.8 1 5

2 4.4 2.4 2 5

3 3.8 2.8 3 5

Note: BL denotes baseline (log10 value), P denotes products 1, 2, or 3, IMM denotes

immediate, and D represents days 1, 2, 3, 4, and 5.

TABLE 11.5
Product 1 Regression, Example 11.1

Predictor Coef St. Dev t-Ratio P

Constant (b0) 2.3974 0.6442 3.72 0.034

b1 1.0912 0.2870 3.80 0.032

s ¼ 0.2125 R-sq ¼ 82.8% R-sq(adj) ¼ 77.1%

The regression equation is ŷy ¼ 2.40 þ 1.09b1x.

) ) )
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Hypothesis 2:

H0: A ¼ 0,

HA: A 6¼ 0 (the data resulting from at least one of the products is

significantly different from those of the other two):

Step 2: Set a, n.

Let us use a ¼ 0.05 for both contrasts, and n ¼ 15.

Step 3: Select the statistical model (already done—Equation 11.5).

Step 4: Decision rule. There are two tests in this method.

Hypothesis 1:

If Fc > FT, reject H0; the covariate component is significant;

where

FT ¼ FT(a; number of covariates, df MSE) and

df MSE ¼ n� a� b ¼ 15� 3� 1 ¼ 11, where a is the number of

treatments (3) and b is the number of covariates, 1

FT ¼ FT(0:05; 1, 11) ¼ 4:84 (Table C, the F distribution table)

Hypothesis 2:

If Fc > FT, reject H0; at least one of the three treatments differs from the

other two at a ¼ 0.05;

TABLE 11.6
Product 2 Regression, Example 11.1

Predictor Coef St. Dev t-Ratio P

Constant (b0) 2.0822 0.3428 6.07 0.009

b1 0.9913 0.1322 7.50 0.005

s ¼ 0.1548 R-sq ¼ 94.9% R-sq(adj) ¼ 93.2%

The regression equation is ŷ ¼ 2.08 þ 0.991b1x.

TABLE 11.7
Product 3 Regression, Example 11.1

Predictor Coef St. Dev t-Ratio P

Constant (b0) 1.9297 0.3985 4.84 0.017

b1 0.7337 0.1596 4.60 0.019

s¼ 0.1896 R-sq ¼ 87.6% R-sq(adj) ¼ 83.4%

The regression equation is ŷ ¼ 1.93 þ 0.734b1x.
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where

FT ¼ FT(a; a�1, df MSE),

FT ¼ FT(0:05; 2, 11) ¼ 3:98 (Table C, the F distribution table):

Step 5: Perform computation (Table 11.8).

Step 6:

Hypothesis 1: (Covariance)

Because Fc ¼ 76.72 (Table 11.8) > 4.84, one cannot reject H0 at a ¼ 0.05.

The covariate portion explains a significant amount of variability. This is

good, because that means it explains a significant amount of variability that

would have interfered with the analysis.

Recall that, in ANCOVA, the model has an ANOVA portion and a

regression portion. The covariant is the regression portion. Hence, we have

a b or slope for the covariate, which is b ¼ 0.9733 (Table 11.8). This, in

itself, can be used to determine if the covariate is significant in reducing

overall error. If the b value is zero, then the use of a covariate is not of value

in reducing error, and ANOVA would probably be a better application. A 95%

confidence interval for the b value can be determined.

b ¼ b� t(a=2, n� a� b)sb: (11:6)

In this case

b ¼ b� t(a=2, n� a� b)sb, where b ¼ 0:9733, t(a=2; n� a� b) ¼ t(0:025; 15� 3� 1)

¼ t(0:025, 11) ¼ 2:201, and

TABLE 11.8
Analysis of Covariance, Example 11.1

Source DF ADJ SS MS F P

Covariates (baseline) 1 2.9142 2.9142 76.72 0.000

A (treatment) 2 2.1202 1.0601 27.91 0.000

Error 11 0.4178 0.0380

Total 14 3.6000

Covariate Coef St dev t-value P

B 0.9733 0.111 8.759 0.000

Adjusted means

C4 N C3

1 5 1.7917

2 5 2.3259

3 5 3.0824
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sb ¼ 0.111 (Table 11.8). b ¼ b + 2.201(0.111) ¼ 0.9733 + 0.2443.

0:7290 � b � 1:2176:

Because b does not include zero in the interval, the covariate is significant at

a ¼ 0.05.

Hypothesis 2:

Because Fc ¼ 27.91 > 3.98, the treatments are significantly different in at

least one at a ¼ 0.05; where the difference will be determined by contrasts,

as presented later in this chapter.

REGRESSION ROUTINE EXAMPLE

Let us now use the regression approach to covariance.

Referring to Table 11.3, there are a ¼ 3 treatments, making a � 1 ¼ 2

indicator variables, I.

I1 ¼
1, if treatment 1,

�1, if treatment 3,

0, if otherwise,

8
<

:

I2 ¼
1, if treatment 2,

�1, if treatment 3,

0, if otherwise.

8
<

:

As earlier, the regression when both I1 and I2 equal zero is for treatment 3.

The new codes are presented in Table 11.9. The model is

y ¼ b0 þ b1I1 þ b2I2 þ b3(x� �xx), (11:7)

where (x� �xx) is the centered covariate; the baseline x¼ 4.3800. In the

regression approach, two models are developed: the full model and the

reduced model. The full model is as shown in Equation 11.7. The reduced

model (H0, no treatment effect) is

y ¼ b0 þ b1(x� �xx): (11:8)

Let us use the six-step procedure:

Step 1: State the hypothesis.

H0: Treatment effects are equal to 0,

HA: At least one treatment is not 0.

Step 2: Set a and n.

Let us use a ¼ 0.05, and n ¼ 15.
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Step 3: Select the test statistic.

Fc ¼
SSE(R) � SSE(F)

df(R) � df(F)

� SSE(F)

df(F)

, (11:9)

where

df(R) ¼ n� 2,

df(F) ¼ n� (number of treatmentsþ 1) ¼ n� (aþ 1):

Step 4: Decision rule.

If Fc > FT, reject H0 at a.

FT ¼ FT

0:05; [df(R) � df(F)]
zfflfflfflfflfflffl}|fflfflfflfflfflffl{numerator

, [df(F)]
z}|{denominator

 !

df(R) ¼ n� 2 ¼ 15� 2 ¼ 13,

df(F) ¼ n� (aþ 1) ¼ 15� (3þ 1) ¼ 11

¼ FT(0:05; 13�11, 11)

¼ FT(0:05; 2, 11) ¼ 3:98 (Table C, the F distribution table):

TABLE 11.9
Data for Analysis of Covariance by Regression, Example 11.1

n Y x I1 I2 x�x̄

1 2.0 4.8 1 0 0.42

2 3.3 5.3 0 1 0.92

3 2.2 3.4 �1 �1 �0.98

4 2.5 4.9 1 0 0.52

5 2.5 4.8 0 1 0.42

6 2.8 4.2 �1 �1 �0.18

7 2.1 4.6 1 0 0.22

8 2.8 4.8 0 1 0.42

9 2.9 4.1 �1 �1 �0.28

10 2.7 5.5 1 0 1.12

11 1.7 3.7 0 1 �0.68

12 1.5 3.1 �1 �1 �1.28

13 1.8 4.3 1 0 �0.08

14 2.4 4.4 0 1 0.02

15 2.8 3.8 �1 �1 �0.58
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If Fc > FT, reject H0 at a.

Step 5: Perform computation.

Table 11.10 provides the full model. The reduced model is provided in

Table 11.11.

Fc ¼
SSE(R) � SSE(F)

df(R) � df(F)

� SSE(F)

df(F)

¼ 2:5381� 0:4178

13� 11
� 0:4178

11
¼ 27:91:

Step 6:

Because Fc ¼ 27.91 > FT ¼ 3.98, reject H0 at a ¼ 0.05. The treatments

are significant.

TABLE 11.10
Full Model, Covariance by Regression, Example 11.1

Predictor Coef St. Dev t-Ratio P

b0 2.40000 0.05032 47.69 0.000

b1 �0.60827 0.08634 �7.04 0.000

b2 �0.07414 0.07525 �0.99 0.346

b3 0.9733 0.1111 8.76 0.000

s ¼ 0.1949 R-sq ¼ 88.4% R-sq(adj) ¼ 85.2%

Analysis of Variance

Source DF SS MS F P

Regression 3 3.1822 1.0607 27.93 0.000

Error 11 0.4178 0.0380

Total 14 3.6000

The regression equation is ŷ ¼ 2.40 � 0.608I1 � 0.0741I2 þ 0.973(x � x̄).

TABLE 11.11
Reduced Model, Covariance by Regression, Example 11.1

Predictor Coef St. Dev t-Ratio P

Constant (b0) 2.40000 0.1141 21.04 0.000

b1 0.4053 0.1738 2.33 0.036

s ¼ 0.4419 R-sq ¼ 29.5% R-sq(adj) ¼ 24.1%

Analysis of Variance

Source DF SS MS F P

Regression 1 1.0619 1.0619 5.44 0.036

Error 13 2.5381 0.1952

Total 14 3.6000

The regression equation is ŷ ¼ 2.40 þ 0.405(x � x̄ ).
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Note that Fc for treatment 27.91 is the same as determined from the

covariance analysis.

TREATMENT EFFECTS

As in ANOVA, if a treatment effect has been determined significant, the task

is to find which treatment(s) differ.

Recall that, in ANOVA, the treatment effects are determined as

�i ¼ �þ Ti, (11:10)

where m is the common mean value, Ti is the treatment effect for the ith
treatment, and mi is the population treatment i mean.

In ANCOVA, we must also account for the covariance effect.

mi ¼ m:þ Ti þ b(x� �xx), (11:11)

where m. is the adjusted common average, Ti is the treatment effect for the ith
treatment, b is the regression coefficient for covariance, and (x � x ) is the

covariate centered about the mean.

We no longer discuss the mean effect from the ith treatment, because it

varies with xi. For example, suppose the graph in Figure 11.5 was derived.

The difference between T1 and T3 ¼ T1 � T3 ¼ (m. þ T1) � (m. þ T3)

anywhere on the graph for a given x or (x � x ), because the slopes are

parallel. Hence, it is critical that the slopes are parallel.

Recall that the model we developed was

byy ¼ b0 þ b1I1 þ b2I2 þ b3(x� �xx), (11:7)

Slopes are
parallel

0

T1 − T3

T2 − T1

T2 − T3

T2

Y

T1

T3

1

m. + T3

m. + T1

m. + T2

1

1

1
b

b

b

x
x

x − x

FIGURE 11.5 Possible treatment graph.
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from Table 11.10, where

b0 ¼ m: ¼ 2:40,

b1 ¼ �0:60827,

b2 ¼ �0:07414,

b3 ¼ 0:9733:

Therefore, T3 ¼ � T1 � T2 and T3 ¼ 0, if T1 ¼ T2 ¼ 0. Using the concept,

Ti � Tj, we can determine the contrasts.

T1 � T2, T1 � T3, and T2 � T3, based on T3 ¼ �T1 � T2:

Test Form

T1 � T2 T1 � T2 ¼ �0:60872� (� 0:07414) ¼ �0:5346,

T1 � T3 using the form! T3 ¼ �T1 � T2,

T2 ¼ �T1 � T3,

2T1 þ T2 ¼ T1 � T3 (add 2T1 to both sides of the equation):

So,

T1 � T3 ¼ 2T1 þ T2 ¼ 2(�0:60827)þ (�0:07414) ¼ �1:2907,

T2 � T3 using the form! T3 ¼ �T1 � T2,

T1 ¼ �T3 � T2,

2T2 þ T1 ¼ �T3 þ T2 (add 2T2 to both sides of the equation),

2T2 þ T1 ¼ T2 � T3:

So,

T2 � T3 ¼ 2T2 þ T1 ¼ 2(�0:07414)� 0:60827 ¼ �0:7566:

The variance estimator is

�2fa1Y1 þ a2Y2g ¼ a2
1�

2(y1)þ a2
2�

2(y2)þ 2a1a2�(y1, y2), (11:12)

where a is a constant.

The variance of

T1 � T2 ¼ (1)2�2(T1)þ (1)2�2(T2)� 2(1)(1)�(T1T2),

T1 � T3 ¼ 2T1 þ T2 ¼ (1)22�2(T1)þ (1)2�2(T2)� 2(2)(1)�(T1T2),

T2 � T3 ¼ T1 þ 2T2 ¼ (1)2�2(T1)þ (1)22�2(T2)� 2(1)(2)�(T1T2):
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Before we can continue, we need a variance–covariance table for the betas

or bis

�2(b) ¼ �2(X0X)�1: (11:13)

Table 11.12 presents the X matrix. Table 11.13 presents the (X0X)�1 matrix.

�2 ¼ MSE ¼ 0:0380 (from Table 11:10):

Table 11.14 presents the variance–covariance matrix for the betas. Hence, the

variance–covariance of

T1 � T2 ¼ 0:0074583þ 0:056646� 2(�0:0013375),

T1 � T2 ¼ 0:0668,

T1 � T3 ¼ 2T1 þ T2

¼ 2(0:007458)þ (1)0:056646� 2(2)(1)(�0:0013375)

¼ 0:0769,

T2 � T3 ¼ T1 þ 2T2

¼ 1(0:007458)þ 2(0:056646)� 2(1)(2)(�0:0013375)

¼ 0:1261:

Table 11.15 presents the contrasts, the estimates, and the variances.

TABLE 11.12
X Matrix, Treatment Effects, Example 11.1

X(15� 4)

1:00000 1:00000 0:00000 0:42000

1:00000 0:00000 1:00000 0:92000

1:00000 �1:00000 �1:00000 �0:98000

1:00000 1:00000 0:00000 0:52000

1:00000 0:00000 1:00000 0:42000

1:00000 �1:00000 �1:00000 �0:18000

1:00000 1:00000 0:00000 0:22000

1:00000 0:00000 1:00000 0:42000

1:00000 �1:00000 �1:00000 �0:28000

1:00000 1:00000 0:00000 1:12000

1:00000 0:00000 1:00000 �0:68000

1:00000 �1:00000 �1:00000 �1:28000

1:00000 1:00000 0:00000 �0:08000

1:00000 0:00000 1:00000 0:02000

1:00000 �1:00000 �1:00000 �0:58000

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5
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SINGLE INTERVAL ESTIMATE

Ti � Ti � t(�=2; n�k�1)

ffiffiffiffi
s2
p

,

where k is the number of betas minus b0, and s2 is the appropriate variance

(Table 11.15).

Rarely will a researcher want to use a t distribution for evaluating only one

confidence interval. The researcher will want, more than likely, all contrasts.

SCHEFFE PROCEDURE—MULTIPLE CONTRASTS

C2 ¼ (a� 1)FT(�, a�1; n�a�1),

where a is the number of treatments and a ¼ 0.05.

C2 ¼ (3� 1)FT(0:05, 3�1; 15�3�1),

C2 ¼ 2FT(0:05; 2, 11) ¼ 2(3:98), from Table C, the F

distribution table, so C2 ¼ 7:96

and C ¼ 2:8213:

The interval form is

Ti � Ti0 � c
ffiffiffiffi
s2
p

,

T1 � T2 ¼� 0:5346� 2:8213
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0668
p

¼� 0:5346� 0:7292

� 1:2638 � T1 � T2 � �0:1946:

TABLE 11.13
(X 0X )�1 Matrix, Treatment Effects, Example 11.1

(X0X)�1 ¼

0:06667 �0:00000 �0:00000 0:00000

�0:00000 0:196272 �0:035197 �0:143043

�0:00000 �0:035197 0:149068 �0:071521

0:00000 �0:143043 �0:071521 0:325098

2

6
6
4

3

7
7
5

TABLE 11.14
Variance–Covariance Matrix for the Betas, Example 11.1

�2(X0X)�1 ¼

b0 ¼ m: b1 ¼ T1 ¼ I1 b2 ¼ T2 ¼ I2 b3 ¼ x� �xxð Þ
b0 ¼ �: 0:0025333 �0:0000000 �0:0000000 0:0000000

b1 ¼ T1 �0:000000 0:0074583 �0:0013375 �0:0054356

b2 ¼ T2 �0:000000 �0:0013375 0:0056646 �0:0027178

b3 ¼ x 0:000000 �0:0054356 �0:0027178 0:0123537

2

6
6
6
6
4

3

7
7
7
7
5
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Because 0 is included in the interval, T1 and T2 are not significantly different

from one another at a ¼ 0.05.

T1 � T3 ¼� 1:2907� 2:8213
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0769
p

¼� 1:2907� 0:7824

� 2:0731 � T1 � T3 � �0:5083:

Because 0 is not included in the interval, T1 and T2 are significantly different

from one another at a ¼ 0.05.

T2 � T3 ¼� 0:7566� 2:8213
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1261
p

¼� 0:7566� 1:0019

� 1:7585 � T2 � T3 � 0:2453:

Because 0 is included in the interval, T2 and T3 do not differ at a ¼ 0.05.

If the researcher wants to rank the treatments, T3 > T2 > T1 (Figure 11.6).

TABLE 11.15
Contrasts, Estimates, and Variances, Example

11.1

Contrast Estimate Variance

T1 � T2 T1 � T2 ¼ � 0.5346 0.0668

T1 � T3 2T1 þ T2 ¼ �1.2907 0.0769

T2 � T3 T1 þ 2T2 ¼ �0.7566 0.1261

−2.0

T2 − T3

T1 − T3

T1 − T2

−1.5

−0.76

−1.29

−0.54

−1.0 −0.5 0 0.5

( )

( )

( )

FIGURE 11.6 Treatment ranking.
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BONFERRONI METHOD

The Bonferroni contrast procedure can also be used for g contrasts.

Ti � Ti ¼ T̂Ti � T̂Ti0 � bT

ffiffiffiffi
s2
p

,

bT ¼ t(a=2g, n� a� 1):

Suppose the researcher wants to evaluate T1 � T2 or T1 � T3 only, g ¼ 2. Let

us set a ¼ 0.01.

bT ¼ t(0:01=2(2), 15�3�1) ¼ t(0:0025, 11) ¼ 3:497 (Table B, the Student’s t table):

Contrast 1:

T1 � T2 ¼� 0:5346� 3:497
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0668
p

¼� 0:5346� 0:9038

� 1:4384 � T1 � T2 � 0:3692:

Contrast 2:

T1 � T3 ¼� 1:2907� 3:497
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0769
p

¼� 1:2907� 0:970

� 2:2607 � T1 � T3 � �0:3207:

The Scheffe method is recommended when the researcher desires to compare

all possible contrasts, but the Bonferroni method is used when specific

contrasts are desired.

ADJUSTED AVERAGE RESPONSE

There are times when a researcher desires to estimate an adjusted-by-covar-

iance response. This is done by using the ith response, xi �x̄, as the estimate. It

is an adjusted estimate because it takes into account the covariance effect

(concomitant variable).

The full regression model used is

byy ¼ b0 þ b1I1 þ b2I2 þ b3(x� �xx):

The mean responses in this example are:

Treatment 1 ¼ m:þ T1 ¼ b0 þ b1,

Treatment 2 ¼ m:þ T2 ¼ b0 þ b2,
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Treatment 3 ¼ m. þ T3 ¼ b0 � b1 � b2 (recall that there are a � 1 indicator,

or dummy, variables, in this case corresponding to b1 ¼ treatment 1 and b2

¼ treatment 2. There is b0, b3 (or I3) representing treatment 3. Hence, T3 ¼
b0 � b1 � b2.

The variance estimates for the treatments are as follows, based on formula

11.12.

var(a1yia2x2) ¼ a2
1�

2[y1]þ a2
2�

2[y2]þ 2(a1)(a2)�[y1, y2], and

var(m:, T1) ¼ (1)2�2(m:)þ (1)2�2(T1)þ 2(1)�[m:, T1] using Table 11:16

¼ (1)2(0:0025333)þ (1)2(0:0074583)þ 2(1)(1)(0),

var(m:, T1) ¼ 0:0100,

var(m:, T2) ¼ (1)2�2(m)þ (1)2�2(T2)þ 2(1)(1)�[m:, T2]

¼ (1)2(0:0025333)þ (1)2(0:0056646)þ 2[0],

var(m:, T2) ¼ 0:0082,

var(m:, T3) ¼ (1)2�2[m:]þ (1)2�2[T1]þ (1)2�2[T2]þ (�1)2�[m:, T1]

þ (�1)2�[m:, T2]þ (�1)(�1)2�[T1, T2]

¼ (1)2s2[m:]þ (� 1)2s2[T1]þ (� 1)2s2[T2]� 2s[m:, T1]

� 2s[m:, T2]þ 2s2 T1, T2½ �
¼ s2[m:]þ s2[T1]þ s2[T2]� 2s[m:, T1]� 2s[m:, T2]

þ 2s2[T1, T2]

¼ 0:0025333þ 0:0074583þ 0:0056646 � 2(0)� 2(0)

þ 2(� 0:0013375),

var(m:, T3) ¼ 0:0130:

Putting these together, the estimated adjusted mean responses are

CONCLUSION

More complex models can be used, but present a problem to the researcher in

that ever more restrictions make the design less applicable. This is particu-

larly so when multiple covariates must be assured linear. If possible, the study

should be designed as simply and directly as possible.

The Mean Response at x Var

Treatment 1 b0 þ b1 ¼ 2.40 � 0.60827 ¼ 1.7917 0.0100

Treatment 2 b0 þ b2 ¼ 2.40 � 0.07414 ¼ 2.3259 0.0082

Treatment 3 b0 � b1 � b2 ¼ 2.40 þ 0.6827 þ 0.07414 ¼ 3.15684 0.0130
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Appendix I

TABLE A
Cumulative Probabilities of the Standard Normal Distribution (z Table)

A

z (A)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

(continued )
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TABLE A (continued)
Cumulative Probabilities of the Standard Normal Distribution (z Table)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Cumulative probability A: 0.90 0.95 0.975 0.98 0.99 0.995 0.999

z(A): 1.282 1.645 1.960 2.054 2.326 2.576 3.090

Note: Entry is area A under the standard normal curve from �1 to z(A).

TABLE B
Percentiles of the t-Distribution

A

t (A; v)

A

v 0.60 0.70 0.80 0.85 0.90 0.95 0.975

1 0.325 0.727 1.376 1.963 3.078 6.314 12.706

2 0.289 0.617 1.061 1.386 1.886 2.920 4.303

3 0.277 0.584 0.978 1.250 1.638 2.353 3.182

4 0.271 0.569 0.941 1.190 1.533 2.132 2.776

5 0.267 0.559 0.920 1.156 1.476 2.015 2.571

6 0.265 0.553 0.906 1.134 1.440 1.943 2.447

7 0.263 0.549 0.896 1.119 1.415 1.895 2.365

8 0.262 0.546 0.889 1.108 1.397 1.860 2.306

9 0.261 0.543 0.883 1.100 1.383 1.833 2.262

10 0.260 0.542 0.879 1.093 1.372 1.812 2.228

11 0.260 0.540 0.876 1.088 1.363 1.796 2.201

12 0.259 0.539 0.873 1.083 1.356 1.782 2.179

13 0.259 0.537 0.870 1.079 1.350 1.771 2.160

14 0.258 0.537 0.868 1.076 1.345 1.761 2.145

15 0.258 0.536 0.866 1.074 1.341 1.753 2.131

16 0.258 0.535 0.865 1.071 1.337 1.746 2.120

17 0.257 0.534 0.863 1.069 1.333 1.740 2.110

18 0.257 0.534 0.862 1.067 1.330 1.734 2.101

19 0.257 0.533 0.861 1.066 1.328 1.729 2.093

20 0.257 0.533 0.860 1.064 1.325 1.725 2.086

21 0.257 0.532 0.859 1.063 1.323 1.721 2.080

22 0.256 0.532 0.858 1.061 1.321 1.717 2.074

23 0.256 0.532 0.858 1.060 1.319 1.714 2.069

24 0.256 0.531 0.857 1.059 1.318 1.711 2.064

(continued )
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TABLE B (continued)
Percentiles of the t-Distribution

A

v 0.60 0.70 0.80 0.85 0.90 0.95 0.975

25 0.256 0.531 0.856 1.058 1.316 1.708 2.060

26 0.256 0.531 0.856 1.058 1.315 1.706 2.056

27 0.256 0.531 0.855 1.057 1.314 1.703 2.052

28 0.256 0.530 0.855 1.056 1.313 1.701 2.048

29 0.256 0.530 0.854 1.055 1.311 1.699 2.045

30 0.256 0.530 0.854 1.055 1.310 1.697 2.042

40 0.255 0.529 0.851 1.050 1.303 1.684 2.021

60 0.254 0.527 0.848 1.045 1.296 1.671 2.000

120 0.254 0.526 0.845 1.041 1.289 1.658 1.980

1 0.253 0.524 0.842 1.036 1.282 1.645 1.960

v 0.98 0.985 0.99 0.9925 0.995 0.9975 0.9995

1 15.895 21.205 31.821 42.434 63.657 127.322 636.590

2 4.849 5.643 6.965 8.073 9.925 14.089 31.598

3 3.482 3.896 4.541 5.047 5.841 7.453 12.924

4 2.999 3.298 3.747 4.088 4.604 5.598 8.610

5 2.757 3.003 3.365 3.634 4.032 4.773 6.869

6 2.612 2.829 3.143 3.372 3.707 4.317 5.959

7 2.517 2.715 2.998 3.203 3.499 4.029 5.408

8 2.449 2.634 2.896 3.085 3.355 3.833 5.041

9 2.398 2.574 2.821 2.998 3.250 3.690 4.781

10 2.359 2.527 2.764 2.932 3.169 3.581 4.587

11 2.328 2.491 2.718 2.879 3.106 3.497 4.437

12 2.303 2.461 2.681 2.836 3.055 3.428 4.318

13 2.282 2.436 2.650 2.801 3.012 3.372 4.221

14 2.264 2.415 2.624 2.771 2.977 3.326 4.140

15 2.249 2.397 2.602 2.746 2.947 3.286 4.073

16 2.235 2.382 2.583 2.724 2.921 3.252 4.015

17 2.224 2.368 2.567 2.706 2.898 3.222 3.965

18 2.214 2.356 2.552 2.689 2.878 3.197 3.922

19 2.205 2.346 2.539 2.674 2.861 3.174 3.883

20 2.197 2.336 2.528 2.661 2.845 3.153 3.849

21 2.189 2.328 2.518 2.649 2.831 3.135 3.819

22 2.183 2.320 2.508 2.639 2.819 3.119 3.792

23 2.177 2.313 2.500 2.629 2.807 3.104 3.768

24 2.172 2.307 2.492 2.620 2.797 3.091 3.745

25 2.167 2.301 2.485 2.612 2.787 3.078 3.725

26 2.162 2.296 2.479 2.605 2.779 3.067 3.707

27 2.158 2.291 2.473 2.598 2.771 3.057 3.690

28 2.154 2.286 2.467 2.592 2.763 3.047 3.674

29 2.150 2.282 2.462 2.586 2.756 3.038 3.659

30 2.147 2.278 2.457 2.581 2.750 3.030 3.646

40 2.123 2.250 2.423 2.542 2.704 2.971 3.551

60 2.099 2.223 2.390 2.504 2.660 2.915 3.460

120 2.076 2.196 2.358 2.468 2.617 2.860 3.373

1 2.054 2.170 2.326 2.432 2.576 2.807 3.291

Note: Entry is t(A; v), where P{t(v) � t(A; v)}¼A.
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TABLE D
Power Values for Two-Sided t-Test

Level of Significance a 5 0.05

d

df 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 0.07 0.13 0.19 0.25 0.31 0.36 0.42 0.47 0.52

2 0.10 0.22 0.39 0.56 0.72 0.84 0.91 0.96 0.98

3 0.11 0.29 0.53 0.75 0.90 0.97 0.99 1.00 1.00

4 0.12 0.34 0.62 0.84 0.95 0.99 1.00 1.00 1.00

5 0.13 0.37 0.67 0.89 0.98 1.00 1.00 1.00 1.00

6 0.14 0.39 0.71 0.91 0.98 1.00 1.00 1.00 1.00

7 0.14 0.41 0.73 0.93 0.99 1.00 1.00 1.00 1.00

8 0.14 0.42 0.75 0.94 0.99 1.00 1.00 1.00 1.00

9 0.15 0.43 0.76 0.94 0.99 1.00 1.00 1.00 1.00

10 0.15 0.44 0.77 0.95 0.99 1.00 1.00 1.00 1.00

11 0.15 0.45 0.78 0.95 0.99 1.00 1.00 1.00 1.00

12 0.15 0.45 0.79 0.96 1.00 1.00 1.00 1.00 1.00

13 0.15 0.46 0.79 0.96 1.00 1.00 1.00 1.00 1.00

14 0.15 0.46 0.80 0.96 1.00 1.00 1.00 1.00 1.00

15 0.16 0.46 0.80 0.96 1.00 1.00 1.00 1.00 1.00

16 0.16 0.47 0.80 0.96 1.00 1.00 1.00 1.00 1.00

17 0.16 0.47 0.81 0.96 1.00 1.00 1.00 1.00 1.00

18 0.16 0.47 0.81 0.97 1.00 1.00 1.00 1.00 1.00

19 0.16 0.48 0.81 0.97 1.00 1.00 1.00 1.00 1.00

20 0.16 0.48 0.81 0.97 1.00 1.00 1.00 1.00 1.00

21 0.16 0.48 0.82 0.97 1.00 1.00 1.00 1.00 1.00

22 0.16 0.48 0.82 0.97 1.00 1.00 1.00 1.00 1.00

23 0.16 0.48 0.82 0.97 1.00 1.00 1.00 1.00 1.00

24 0.16 0.48 0.82 0.97 1.00 1.00 1.00 1.00 1.00

25 0.16 0.49 0.82 0.97 1.00 1.00 1.00 1.00 1.00

26 0.16 0.49 0.82 0.97 1.00 1.00 1.00 1.00 1.00

27 0.16 0.49 0.82 0.97 1.00 1.00 1.00 1.00 1.00

28 0.16 0.49 0.83 0.97 1.00 1.00 1.00 1.00 1.00

29 0.16 0.49 0.83 0.97 1.00 1.00 1.00 1.00 1.00

30 0.16 0.49 0.83 0.97 1.00 1.00 1.00 1.00 1.00

40 0.16 0.50 0.83 0.97 1.00 1.00 1.00 1.00 1.00

50 0.17 0.50 0.84 0.98 1.00 1.00 1.00 1.00 1.00

60 0.17 0.50 0.84 0.98 1.00 1.00 1.00 1.00 1.00

100 0.17 0.51 0.84 0.98 1.00 1.00 1.00 1.00 1.00

120 0.17 0.51 0.85 0.98 1.00 1.00 1.00 1.00 1.00

1 0.17 0.52 0.85 0.98 1.00 1.00 1.00 1.00 1.00

(continued )
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TABLE D (continued)
Power Values for Two-Sided t-Test

Level of Significance a 5 0.01

d

df 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 0.01 0.03 0.04 0.05 0.06 0.08 0.09 0.10 0.11

2 0.02 0.05 0.09 0.16 0.23 0.31 0.39 0.48 0.56

3 0.02 0.08 0.17 0.31 0.47 0.62 0.75 0.85 0.92

4 0.03 0.10 0.25 0.45 0.65 0.82 0.92 0.97 0.99

5 0.03 0.12 0.31 0.55 0.77 0.91 0.97 0.99 1.00

6 0.04 0.14 0.36 0.63 0.84 0.95 0.99 1.00 1.00

7 0.04 0.16 0.40 0.68 0.88 0.97 1.00 1.00 1.00

8 0.04 0.17 0.43 0.72 0.91 0.98 1.00 1.00 1.00

9 0.04 0.18 0.45 0.75 0.93 0.99 1.00 1.00 1.00

10 0.04 0.19 0.47 0.77 0.94 0.99 1.00 1.00 1.00

11 0.04 0.19 0.49 0.79 0.95 0.99 1.00 1.00 1.00

12 0.04 0.20 0.50 0.80 0.96 0.99 1.00 1.00 1.00

13 0.05 0.21 0.52 0.82 0.96 1.00 1.00 1.00 1.00

14 0.05 0.21 0.53 0.83 0.96 1.00 1.00 1.00 1.00

15 0.05 0.21 0.54 0.83 0.97 1.00 1.00 1.00 1.00

16 0.05 0.22 0.55 0.84 0.97 1.00 1.00 1.00 1.00

17 0.05 0.22 0.55 0.85 0.97 1.00 1.00 1.00 1.00

18 0.05 0.22 0.56 0.85 0.97 1.00 1.00 1.00 1.00

19 0.05 0.23 0.56 0.86 0.98 1.00 1.00 1.00 1.00

20 0.05 0.23 0.57 0.86 0.98 1.00 1.00 1.00 1.00

21 0.05 0.23 0.57 0.86 0.98 1.00 1.00 1.00 1.00

22 0.05 0.23 0.58 0.87 0.98 1.00 1.00 1.00 1.00

23 0.05 0.24 0.58 0.87 0.98 1.00 1.00 1.00 1.00

24 0.05 0.24 0.59 0.87 0.98 1.00 1.00 1.00 1.00

25 0.05 0.24 0.59 0.88 0.98 1.00 1.00 1.00 1.00

26 0.05 0.24 0.59 0.88 0.98 1.00 1.00 1.00 1.00

27 0.05 0.24 0.59 0.88 0.98 1.00 1.00 1.00 1.00

28 0.05 0.24 0.60 0.88 0.98 1.00 1.00 1.00 1.00

29 0.05 0.25 0.60 0.88 0.98 1.00 1.00 1.00 1.00

30 0.05 0.25 0.60 0.88 0.98 1.00 1.00 1.00 1.00

40 0.05 0.26 0.62 0.90 0.99 1.00 1.00 1.00 1.00

50 0.05 0.26 0.63 0.90 0.99 1.00 1.00 1.00 1.00

60 0.05 0.26 0.63 0.91 0.99 1.00 1.00 1.00 1.00

100 0.06 0.27 0.65 0.91 0.99 1.00 1.00 1.00 1.00

120 0.06 0.27 0.65 0.91 0.99 1.00 1.00 1.00 1.00

1 0.06 0.28 0.66 0.92 0.99 1.00 1.00 1.00 1.00
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TABLE E
Durbin–Watson Test Bounds

Level of Significance a 5 0.05

p 2 1 5 1 p 2 1 5 2 p 2 1 5 3 p 2 1 5 4 p 2 1 5 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

(continued )
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TABLE E (continued)
Durbin–Watson Test Bounds

Level of Significance a 5 0.01

p 2 1 5 1 p 2 1 5 2 p 2 1 5 3 p 2 1 5 4 p 2 1 5 5

n dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65
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TABLE F
Bonferroni Corrected Jackknife Residual Critical Values

Level of Significance a 5 0.1

k n 5 5 10 15 20 25 50 100 200 400 800

1 6.96 3.50 3.27 3.22 3.21 3.27 3.39 3.54 3.70 3.86

2 31.82 3.71 3.33 3.25 3.23 3.28 3.39 3.54 3.70 3.86

3 4.03 3.41 3.29 3.25 3.28 3.40 3.54 3.70 3.86

4 4.60 3.51 3.33 3.27 3.29 3.40 3.54 3.70 3.86

5 5.84 3.63 3.37 3.30 3.29 3.40 3.54 3.70 3.86

6 9.92 3.81 3.43 3.33 3.30 3.40 3.54 3.70 3.86

7 63.66 4.06 3.50 3.36 3.30 3.40 3.54 3.70 3.86

8 4.46 3.58 3.39 3.31 3.40 3.54 3.70 3.86

9 5.17 3.69 3.44 3.31 3.40 3.54 3.70 3.86

10 6.74 3.83 3.49 3.32 3.40 3.54 3.70 3.86

15 7.45 3.99 3.36 3.41 3.54 3.70 3.86

20 8.05 3.41 3.42 3.55 3.70 3.86

40 4.50 3.47 3.55 3.70 3.86

80 3.92 3.58 3.70 3.86

Level of Significance a 5 0.05

k n 5 5 10 15 20 25 50 100 200 400 800

1 9.92 4.03 3.65 3.54 3.50 3.51 3.60 3.73 3.87 4.02

2 63.66 4.32 3.73 3.58 3.53 3.51 3.60 3.73 3.87 4.02

3 4.77 3.83 3.62 3.55 3.52 3.60 3.73 3.87 4.02

4 5.60 3.95 3.67 3.58 3.53 3.61 3.73 3.87 4.02

5 7.45 4.12 3.73 3.61 3.53 3.61 3.73 3.87 4.02

6 14.09 4.36 3.81 3.65 3.54 3.61 3.73 3.87 4.02

7 127.32 4.70 3.89 3.69 3.54 3.61 3.73 3.88 4.02

8 5.25 4.00 3.73 3.55 3.61 3.73 3.88 4.02

9 6.25 4.15 3.79 3.56 3.61 3.73 3.88 4.02

10 8.58 4.33 3.85 3.57 3.61 3.73 3.88 4.02

15 9.46 4.50 3.61 3.62 3.74 3.88 4.03

20 10.21 3.67 3.63 3.74 3.88 4.03

40 5.04 3.69 3.75 3.88 4.03

80 4.23 3.78 3.88 4.03

Level of Significance a 5 0.01

k n 5 5 10 15 20 25 50 100 200 400 800

1 22.33 5.41 4.55 4.29 4.17 4.03 4.06 4.15 4.27 4.40

2 318.31 5.96 4.68 4.35 4.20 4.04 4.06 4.15 4.27 4.40

3 6.87 4.85 4.42 4.24 4.05 4.06 4.15 4.27 4.40

4 8.61 5.08 4.50 4.28 4.06 4.06 4.15 4.27 4.40

5 12.92 5.37 4.60 4.33 4.07 4.07 4.15 4.27 4.40

6 31.60 5.80 4.72 4.39 4.07 4.07 4.15 4.27 4.40

7 636.62 6.43 4.86 4.45 4.08 4.07 4.15 4.27 4.40

(continued )
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TABLE F (continued)
Bonferroni Corrected Jackknife Residual Critical Values

Level of Significance a 5 0.1

k n 5 5 10 15 20 25 50 100 200 400 800

8 7.50 5.05 4.53 4.09 4.07 4.15 4.27 4.40

9 9.57 5.29 4.62 4.10 4.07 4.15 4.27 4.40

10 14.82 5.62 4.72 4.12 4.08 4.15 4.27 4.40

15 16.33 5.81 4.18 4.09 4.15 4.27 4.40

20 17.60 4.28 4.10 4.16 4.27 4.40

40 6.44 4.18 4.17 4.27 4.40

80 4.97 4.21 4.28 4.40

TABLE G
Bonferroni Corrected Studentized Residual Critical Values

Level of Significance a 5 0.1

k n 5 5 10 15 20 25 50 100 200 400 800

1 1.70 2.26 2.48 2.61 2.71 2.98 3.23 3.44 3.64 3.82

2 1.41 2.21 2.46 2.60 2.70 2.98 3.22 3.44 3.64 3.82

3 2.14 2.43 2.59 2.69 2.98 3.22 3.44 3.64 3.82

4 2.05 2.40 2.57 2.69 2.98 3.22 3.44 3.64 3.82

5 1.92 2.37 2.56 2.68 2.98 3.22 3.44 3.64 3.82

6 1.71 2.32 2.54 2.66 2.97 3.22 3.44 3.64 3.82

7 1.41 2.27 2.51 2.65 2.97 3.22 3.44 3.64 3.82

8 2.19 2.49 2.64 2.97 3.22 3.44 3.64 3.82

9 2.09 2.45 2.62 2.96 3.22 3.44 3.64 3.82

10 1.94 2.41 2.60 2.96 3.22 3.44 3.64 3.82

15 1.95 2.45 2.94 3.21 3.44 3.64 3.82

20 1.96 2.92 3.21 3.44 3.64 3.82

40 2.54 3.18 3.43 3.64 3.82

80 2.96 3.41 3.63 3.82

Level of Significance a 5 0.05

k n 5 5 10 15 20 25 50 100 200 400 800

1 1.71 2.36 2.61 2.77 2.87 3.16 3.40 3.61 3.81 3.99

2 1.41 2.30 2.59 2.75 2.86 3.15 3.40 3.61 3.81 3.99

3 2.22 2.56 2.73 2.85 3.15 3.40 3.61 3.81 3.99

4 2.11 2.52 2.71 2.84 3.15 3.40 3.61 3.81 3.99

5 1.95 2.47 2.69 2.82 3.15 3.40 3.61 3.81 3.99

6 1.72 2.42 2.67 2.81 3.14 3.40 3.61 3.81 3.99

7 1.41 2.35 2.64 2.79 3.14 3.40 3.61 3.81 3.99

8 2.25 2.60 2.78 3.13 3.39 3.61 3.81 3.99

9 2.13 2.56 2.76 3.13 3.39 3.61 3.81 3.99

10 1.96 2.51 2.73 3.13 3.39 3.61 3.81 3.99

15 1.97 2.54 3.10 3.39 3.61 3.81 3.99

(continued)
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TABLE G (continued)
Bonferroni Corrected Jackknife Residual Critical Values

Level of Significance a 5 0.05

k n 5 5 10 15 20 25 50 100 200 400 800

20 1.97 3.07 3.38 3.61 3.81 3.99

40 2.62 3.35 3.60 3.80 3.99

80 3.08 3.58 3.80 3.99

Level of Significance a 5 0.01

k n 5 5 10 15 20 25 50 100 200 400 800

1 1.73 2.54 2.87 3.06 3.19 3.51 3.77 3.99 4.18 4.35

2 1.41 2.45 2.83 3.03 3.17 3.51 3.77 3.99 4.18 4.35

3 2.33 2.78 3.01 3.15 3.51 3.77 3.99 4.18 4.35

4 2.18 2.72 2.98 3.14 3.50 3.77 3.99 4.18 4.35

5 1.98 2.65 2.94 3.11 3.50 3.77 3.99 4.18 4.35

6 1.73 2.57 2.91 3.09 3.49 3.77 3.99 4.18 4.35

7 1.41 2.47 2.86 3.07 3.49 3.76 3.99 4.18 4.35

8 2.35 2.81 3.04 3.48 3.76 3.98 4.18 4.35

9 2.19 2.75 3.01 3.47 3.76 3.98 4.18 4.35

10 1.99 2.68 2.97 3.47 3.76 3.98 4.17 4.35

15 1.99 2.70 3.43 3.75 3.98 4.17 4.35

20 1.99 3.38 3.74 3.98 4.17 4.35

40 2.75 3.69 3.97 4.17 4.35

80 3.31 3.94 4.17 4.34
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TABLE I
Lower-Tail (Too Few Runs) Cumulative Table for a Number of

Runs (r) of a Sample (n1, n2)

(n1, n2)r 5 2 3 4 5 6 7

(3, 7) 0.017 0.083

(3, 8) 0.012 0.067

(3, 9) 0.009 0.055

(3, 10) 0.007 0.045

(4, 6) 0.010 0.048

(4, 7) 0.006 0.033

(4, 8) 0.004 0.024

(4, 9) 0.003 0.018 0.085

(4, 10) 0.002 0.014 0.068

(5, 5) 0.008 0.040

(5, 6) 0.004 0.024

(5, 7) 0.003 0.015 0.076

(5, 8) 0.002 0.010 0.054

(5, 9) 0.001 0.007 0.039

(5, 10) 0.001 0.005 0.029 0.095

(6, 6) 0.002 0.013 0.067

(6, 7) 0.001 0.008 0.043

(6, 8) 0.001 0.005 0.028 0.086

(6, 9) 0.000 0.003 0.019 0.063

(6, 10) 0.000 0.002 0.013 0.047

(7, 7) 0.001 0.004 0.025 0.078

(7, 8) 0.000 0.002 0.015 0.051

(7, 9) 0.000 0.001 0.010 0.035

(7, 10) 0.000 0.001 0.006 0.024 0.080

(8.8) 0.000 0.001 0.009 0.032 0.100

(8, 9) 0.000 0.001 0.005 0.020 0.069

(8, 10) 0.000 0.000 0.003 0.013 0.048

(9, 9) 0.000 0.000 0.003 0.012 0.044

(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077

(10, 10) 0.000 0.000 0.001 0.004 0.019 0.051

Note: Less than 0.10 probability values provided. If n1 < n2, simply exchange n1 and n2.
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TABLE J
Upper-Tail (Too Many Runs) Cumulative Table for a Number of Runs (r)

of a Sample (n1, n2)

(n1, n2)r 5 9 10 11 12 13 14 15 16 17 18 19 20

(4, 6) 0.024

(4, 7) 0.046

(4, 8) 0.071

(4, 9) 0.098

(4, 10)

(5, 5) 0.040 0.008

(5, 6) 0.089 0.024 0.002

(5, 7) 0.045 0.008

(5, 8) 0.071 0.016

(5, 9) 0.098 0.028

(5, 10) 0.042

(6, 6) 0.067 0.013 0.002

(6, 7) 0.034 0.008 0.001

(6, 8) 0.063 0.016 0.002

(6, 9) 0.098 0.028 0.006

(6, 10) 0.042 0.010

(7, 7) 0.078 0.025 0.004 0.001

(7, 8) 0.051 0.012 0.002 0.000

(7, 9) 0.084 0.025 0.006 0.001

(7, 10) 0.043 0.010 0.002

(8, 8) 0.100 0.032 0.009 0.001 0.000

(8, 9) 0.061 0.020 0.004 0.001 0.000

(8, 10) 0.097 0.036 0.010 0.002 0.000

(9, 9) 0.044 0.012 0.003 0.000 0.000

(9, 10) 0.077 0.026 0.008 0.001 0.000 0.000

(10, 10) 0.051 0.019 0.004 0.001 0.000 0.000

Note: Less than 0.10 probability values provided. If n1 < n2, simply exchange n1 and n2.
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TABLE K
Cook’s Distance Table: Critical Values for the Maximum of n

Values of Cook’s d(i ) 3 (n 2 k 2 1) (Bonferroni Correction Used) n

Observations and k Predictors

Level of Significance a 5 0.1

k n 5 5 10 15 20 25 50 100 200 400 800

1 14.96 11.13 11.84 12.68 13.46 16.39 19.97 23.94 28.70 33.80

2 40.53 12.21 12.09 12.63 13.22 15.65 18.64 22.09 25.96 30.12

3 13.30 12.09 12.35 12.79 14.84 17.48 20.52 23.86 27.50

4 15.21 12.18 12.14 12.45 14.23 16.62 19.36 22.30 25.97

5 19.33 12.44 12.03 12.21 13.76 15.95 18.49 21.39 24.51

6 31.06 12.94 12.01 12.04 13.39 15.43 17.81 20.36 23.51

7 96.01 13.79 12.08 11.94 13.10 15.02 17.27 19.75 22.42

8 15.26 12.26 11.90 12.85 14.70 16.83 19.20 21.73

9 18.00 12.55 11.91 12.66 14.40 16.52 18.62 21.45

10 23.93 13.02 11.97 12.50 14.16 16.16 18.43 20.55

15 27.66 13.60 12.01 13.39 15.16 17.00 19.34

20 30.94 11.83 12.92 14.53 16.31 18.35

40 15.95 12.26 13.56 15.10 16.83

80 13.49 13.05 14.39 15.85

Level of Significance a 5 0.05

k n 5 5 10 15 20 25 50 100 200 400 800

1 24.97 15.24 15.55 16.37 17.18 20.41 24.31 28.83 33.88 40.15

2 82.06 16.56 15.63 16.01 16.56 19.08 22.33 26.05 30.20 33.96

3 18.16 15.50 15.49 15.85 17.93 20.72 24.14 27.57 32.06

4 21.28 15.59 15.14 15.33 17.06 19.63 22.49 25.83 29.31

5 28.40 15.94 14.95 14.96 16.41 18.70 21.39 24.42 28.24

6 50.22 16.70 14.91 14.70 15.91 17.97 20.54 23.48 26.68

7 192.90 17.99 15.00 14.55 15.50 17.49 20.00 22.35 25.67

8 20.32 15.25 14.48 15.19 17.05 19.31 22.06 24.44

9 24.78 15.69 14.49 14.92 16.69 18.85 21.34 24.29

10 34.72 16.38 14.58 14.70 16.38 18.42 20.49 23.33

15 39.98 16.94 14.03 15.36 17.16 19.39 21.75

20 44.63 13.79 14.81 16.52 18.46 20.32

40 19.50 13.92 15.22 16.83 18.76

80 15.55 14.58 15.99 17.52

Level of Significance a 5 0.01

k n 5 5 10 15 20 25 50 100 200 400 800

1 77.29 28.72 26.88 27.24 27.92 31.46 36.10 41.22 49.42 68.39

2 415.27 30.97 26.13 25.65 25.81 28.12 32.61 37.34 44.99 57.70

3 35.12 25.66 24.22 24.33 26.17 29.15 34.23 37.55 52.58

(continued )
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TABLE K (continued)
Cook’s Distance Table: Critical Values for the Maximum of n

Values of Cook’s d(i ) 3 (n 2 k 2 1) (Bonferroni Correction Used) n

Observations and k Predictors

Level of Significance a 5 0.01

k n 5 5 10 15 20 25 50 100 200 400 800

4 44.09 25.82 23.58 23.20 24.56 27.31 31.26 35.28 40.60

5 66.83 26.66 23.20 22.49 23.39 25.84 29.44 34.14 36.91

6 150.47 28.48 23.12 22.00 22.55 24.35 28.42 31.04 36.91

7 964.09 31.80 23.34 21.71 21.79 24.19 26.87 31.04 33.55

8 37.84 23.93 21.59 21.26 23.28 25.83 29.31 33.55

9 50.10 24.93 21.64 20.76 22.23 25.62 28.21 30.50

10 80.67 26.54 21.83 20.37 22.11 24.53 28.21 30.50

15 92.09 27.02 19.16 20.22 22.40 25.64 27.73

20 102.32 18.82 19.18 21.32 23.31 25.21

40 29.95 18.04 19.32 21.17 22.91

80 20.67 18.57 20.12 22.90

TABLE L
Chi-Square Table

a 5 0.10 0.05 0.025 0.01 0.005

df 1� a ¼ x2
0:005 x2

0:025 x2
0:05 x2

0:90 x2
0:95 x2

0:975 x2
0:99 x2

0:995

1 0.0000393 0.000982 0.00393 2.706 3.841 5.024 6.635 7.879

2 0.0100 0.0506 0.103 4.605 5.991 7.378 9.210 10.597

3 0.0717 0.216 0.352 6.251 7.815 9.348 11.345 12.838

4 0.207 0.484 0.711 7.779 9.488 11.143 13.277 14.860

5 0.412 0.831 1.145 9.236 11.070 12.832 15.086 16.750

6 0.676 1.237 1.635 10.645 12.592 14.449 16.812 18.548

7 0.989 1.690 2.167 12.017 14.067 16.013 18.475 20.278

8 1.344 2.180 2.733 13.362 15.507 17.535 20.090 21.955

9 1.735 2.700 3.325 14.684 16.919 19.023 21.666 23.589

10 2.156 3.247 3.940 15.987 18.307 20.483 23.209 25.188

11 2.603 3.816 4.575 17.275 19.675 21.920 24.725 26.757

12 3.074 4.404 5.226 18.549 21.026 23.336 26.217 28.300

13 3.565 5.009 5.892 19.812 22.362 24.736 27.688 29.819

14 4.075 5.629 6.571 21.064 23.685 26.119 29.141 31.319

15 4.601 6.262 7.261 22.307 24.996 27.488 30.578 32.801

16 5.142 6.908 7.962 23.542 26.296 28.845 32.000 34.267

17 5.697 7.564 8.672 24.769 27.587 30.191 33.409 35.718

18 6.265 8.231 9.390 25.989 28.869 31.526 34.805 37.156

19 6.844 8.907 10.117 27.204 30.144 32.852 36.191 38.582

20 7.434 9.591 10.851 28.412 31.410 34.170 37.566 39.997

21 8.034 10.283 11.591 29.615 32.671 35.479 38.932 41.401

(continued )
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TABLE L (continued)
Chi-Square Table

a 5 0.10 0.05 0.025 0.01 0.005

df 1� a ¼ x2
0:005 x2

0:025 x2
0:05 x2

0:90 x2
0:95 x2

0:975 x2
0:99 x2

0:995

22 8.643 10.982 12.338 30.813 33.924 36.781 40.289 42.796

23 9.260 11.688 13.091 32.007 35.172 38.076 41.638 44.181

24 9.886 12.401 13.848 33.196 36.415 39.364 42.980 45.558

25 10.520 13.120 14.611 34.382 37.652 40.646 44.314 46.928

26 11.160 13.844 15.379 35.563 38.885 41.923 45.642 48.290

27 11.808 14.573 16.151 36.741 40.113 43.194 46.963 49.645

28 12.461 15.308 16.928 37.916 41.337 44.461 48.278 50.993

29 13.121 16.047 17.708 39.087 42.557 45.722 49.588 52.336

30 13.787 16.791 18.493 40.256 43.773 46.979 50.892 53.672

35 17.192 20.569 22.465 46.059 49.802 53.203 57.342 60.275

40 20.707 24.433 26.509 51.805 55.758 59.342 63.691 66.766

45 24.311 28.366 30.612 57.505 61.656 65.410 69.957 73.166

50 27.991 32.357 34.764 63.167 67.505 71.420 76.154 79.490

60 35.535 40.482 43.188 74.397 79.082 83.298 88.379 91.952

70 43.275 48.758 51.739 85.527 90.531 95.023 100.425 104.215

80 51.172 57.153 60.391 96.578 101.879 106.629 112.329 116.321

90 59.196 65.647 69.126 107.565 113.145 118.136 124.116 128.299

100 67.328 74.222 77.929 118.498 124.342 129.561 135.807 140.169

TABLE M
Friedman ANOVA Table [Exact Distribution of x2

r for Tables with Two

to Nine Sets of Three Ranks (k 5 3; n 5 2, 3, 4, 5, 6, 7, 8, 9)]

n 5 2 n 5 3 n 5 4 n 5 5

x2
r p x2

r p x2
r p x2

r p

0 1.000 0.000 1.000 0.0 1.000 0.0 1.000

1 0.833 0.667 0.944 0.5 0.931 0.4 0.954

3 0.500 2.000 0.528 1.5 0.653 1.2 0.691

4 0.167 2.667 0.361 2.0 0.431 1.6 0.522

4.667 0.194 3.5 0.273 2.8 0.367

6.000 0.028 4.5 0.125 3.6 0.182

6.0 0.069 4.8 0.124

6.5 0.042 5.2 0.093

8.0 0.0046 6.4 0.039

7.6 0.024

8.4 0.0085

10.0 0.00077

(continued )
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TABLE M (continued)
Friedman ANOVA Table [Exact Distribution of x2

r for Tables with Two

to Nine Sets of Three Ranks (k 5 3; n 5 2, 3, 4, 5, 6, 7, 8, 9)]

n 5 6 n 5 7 n 5 8 n 5 9

x2
r p x2

r p x2
r p x2

r p

0.00 1.000 0.000 1.000 0.00 1.000 0.000 1.000

0.33 0.956 0.286 0.964 0.25 0.967 0.222 0.971

1.00 0.740 0.857 0.768 0.75 0.794 0.667 0.814

1.33 0.570 1.143 0.620 1.00 0.654 0.889 0.865

2.33 0.430 2.000 0.486 1.75 0.531 1.556 0.569

3.00 0.252 2.571 0.305 2.25 0.355 2.000 0.398

4.00 0.184 3.429 0.237 3.00 0.285 2.667 0.328

4.33 0.142 3.714 0.192 3.25 0.236 2.889 0.278

5.33 0.072 4.571 0.112 4.00 0.149 3.556 0.187

6.33 0.052 5.429 0.085 4.75 0.120 4.222 0.154

7.00 0.029 6.000 0.052 5.25 0.079 4.667 0.107

8.33 0.012 7.143 0.027 6.25 0.047 5.556 0.069

9.00 0.0081 7.714 0.021 6.75 0.038 6.000 0.057

9.33 0.0055 8.000 0.016 7.00 0.030 6.222 0.048

10.33 0.0017 8.857 0.0084 7.75 0.018 6.889 0.031

12.00 0.00013 10.286 0.0036 9.00 0.0099 8.000 0.019

10.571 0.0027 9.25 0.0080 8.222 0.016

11.143 0.0012 9.75 0.0048 8.667 0.010

12.286 0.00032 10.75 0.0024 9.556 0.0060

14.000 0.000021 12.00 0.0011 10.667 0.0035

12.25 0.00086 10.889 0.0029

13.00 0.00026 11.556 0.0013

14.25 0.000061 12.667 0.00066

16.00 0.0000036 13.556 0.00035

14.000 0.00020

14.222 0.000097

14.889 0.000054

16.222 0.000011

18.000 0.0000006

n 5 2 n 5 3 n 5 4

x2
r p x2

r p x2
r p x2

r p

0.0 1.000 0.2 1.000 0.0 1.000 5.7 0.141

0.6 0.958 0.6 0.958 0.3 0.992 6.0 0.105

1.2 0.834 1.0 0.910 0.6 0.928 6.3 0.094

1.8 0.792 1.8 0.727 0.9 0.900 6.6 0.077

2.4 0.625 2.2 0.608 1.2 0.800 6.9 0.068

3.0 0.542 2.6 0.524 1.5 0.754 7.2 0.054

3.6 0.458 3.4 0.446 1.8 0.677 7.5 0.052

(continued )
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TABLE M (continued)
Friedman ANOVA Table [Exact Distribution of x2

r for Tables with Two

to Nine Sets of Three Ranks (k 5 3; n 5 2, 3, 4, 5, 6, 7, 8, 9)]

n 5 2 n 5 3 n 5 4

x2
r p x2

r p x2
r p x2

r p

4.2 0.375 3.8 0.342 2.1 0.649 7.8 0.036

4.8 0.208 4.2 0.300 2.4 0.524 8.1 0.033

5.4 0.167 5.0 0.207 2.7 0.508 8.4 0.019

6.0 0.042 5.4 0.175 3.0 0.432 8.7 0.014

5.8 0.148 3.3 0.389 9.3 0.012

6.6 0.075 3.6 0.355 9.6 0.0069

7.0 0.054 3.9 0.324 9.9 0.0062

7.4 0.033 4.5 0.242 10.2 0.0027

8.2 0.017 4.8 0.200 10.8 0.0016

9.0 0.0017 5.1 0.190 11.1 0.00094

5.4 0.158 12.0 0.000072

Note: p is the probability of obtaining a value of x2
r as great as or greater than the corresponding

value of x2
r .
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Appendix II

MATRIX ALGEBRA APPLIED TO REGRESSION

Matrix algebra is extremely useful in regression analysis when more than one

xi variable is used. Although matrix algebraic procedures are straightforward,

they are extremely time-consuming. Hence, in practice, it is feasible to do by

hand only the simplest models with very small sample sizes. MiniTab is used

in this work.

A matrix is simply an array of numbers arranged in equal or nonequal

rows and columns. For example,

A ¼ 3 7

5 8

� �

, b ¼

2

1

5

7

9

2

6
6
6
6
4

3

7
7
7
7
5

, c ¼ 5 3 6 2 1½ �, D ¼

0 4 2

5 9 6

2 7 7

1 0 1

3 5 3

2

6
6
6
6
4

3

7
7
7
7
5
:

The dimensions of a matrix are by row and column, or i and j. Usually, the

matrix values or elements are lettered as aij for the value a and its location in

the ith row and jth column. Notations for the matrix identifiers, A, B, X, and

Y, are always a capital bold letter. The exception is the vector, which is

usually denoted by a small bold letter, but this is not always the case in

statistical applications.

For example, A given here is a 2�2 matrix (read 2 by 2, not 2 times 2),

b is a 5�1 matrix, c is a 1�5 matrix, and D is a 5�3 matrix. Single-row or

column matrices, such as b and c, are also known as vectors. Notation can

also be written in the form, for example, Ar�c, where r is the row and c is the

column, that is, given as A2�2, b5�1, c1�5, and D5�3. In b, the value 5, by

matrix notation, is at space a31 (see the following).
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Ar�c ¼

a11 a12 a13 . . . a1c

a21 a22 a23 . . . a2c

a31 a32 a33 . . . a3c

..

. ..
. ..

. ..
. ..

.

ar1 ar2 ar3 . . . arc

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

An alternative form of notation is A¼ {aij}, for i¼ 1, 2, . . . , r and j¼ 1, 2, . . . ,

c. The individual elements, {aij}, are the matrix values, each referred to as an

ijth element. Note that element values do not have to be whole numbers:

A2�3 ¼
�4:15 0 6

�3:2 2:51 1

� �

:

When r¼ c, the matrix is said to be square. In regression, diagonal elements in

square matrices become important. Note below that the diagonal elements of

A4�4 are a11, a22, a33, and a44, or 1, 5, 6, and 1:

A4�4 ¼

1 5 6 7

6 5 1 3

0 5 6 1

2 3 5 1

2

6
6
6
4

3

7
7
7
5
:

Sometimes, a matrix will have values of 0 for all its nondiagonal elements. In

such cases, it is called a diagonal matrix, as depicted in the following:

B4�4 ¼

1 0 0 0

0 3 0 0

0 0 5 0

0 0 0 2

2

6
6
6
4

3

7
7
7
5
:

Other matrix forms important in statistical analysis are ‘‘triangular-like’’

matrices. These are r¼ c matrices with all the elements either above or

below the diagonal 0, as illustrated in the following:

A3�3 ¼
1 0 0

13 �3 0

2 5 6

2

4

3

5 or B3�3 ¼
5 3 7

0 1 6

0 0 �2

2

4

3

5:

In these matrices, elements a12, a13, a23, b21, b31, and b32 are zeros.

A matrix consisting of only one column is a column vector
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x ¼

5

3

1

7

2

6
6
6
4

3

7
7
7
5
:

A matrix consisting of only one row is called a row vector

x ¼ 5 �3 7 1½ �:

A single value matrix is termed a Scalar

x ¼ [6] y ¼ [1]:

MATRIX OPERATIONS

The transposition of matrix A is written as A0. It is derived by merely

exchanging the A rows and columns: Ar�c � Ac�r � A0

A4�2 ¼

2 5

7 8

9 6

5 2

2

6
6
6
4

3

7
7
7
5
� A02�4 ¼

2 7 9 5

5 8 6 2

� �

:

The transposition of A0 ¼A.

A0 ¼
1

7

3

2

6
4

3

7
5 � A ¼ 1 7 3½ �

A0 ¼
1 5 7 8

9 2 �3 6

5 1 9 2

2

6
4

3

7
5 � A ¼

1 9 5

5 2 1

7 �3 9

8 6 2

2

6
6
6
6
4

3

7
7
7
7
5
:

Two matrices are considered equal if their row or column elements are equal.

A ¼ 3 2

6 4

� �

� B ¼ 3 2

6 4

� �

:
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ADDITION

Matrix addition procedures require that the matrices added are of the same

order, that is,

for Ar�c þ Br�c, rA ¼ rB and cA ¼ cB:

The corresponding elements of each matrix are added.

A þ B ¼ C

a11

a21

a31

2

4

3

5 þ
b11

b21

b31

2

4

3

5 ¼
a11 þ b11

a21 þ b21

a31 þ b31

2

4

3

5

or

A þ B ¼ C

5 7 9 3

2 1 8 9

6 5 1 0

2

4

3

5þ
7 3 2 �1

�10 6 1 3

7 2 9 11

2

4

3

5 ¼
5þ 7 7þ 3 9þ 2 3� 1

2� 10 1þ 6 8þ 1 9þ 3

6þ 7 5þ 2 1þ 9 0þ 11

2

4

3

5

¼

C

12 10 11 2
�8 7 9 12
13 7 10 11

" #

:

If Ar 6¼ Br or Ac 6¼ Bc, the matrices cannot be summed.

SUBTRACTION

The matrix subtraction process also requires row–column order equality.

A � B ¼ C

a11

a21

a31

2

4

3

5 �
b11

b21

b31

2

4

3

5 ¼
a11 � b11

a21 � b21

a31 � b31

2

4

3

5

A � B ¼ C

7 5 3 9

6 5 3 5

1 9 �3 0

2

4

3

5 �
2 1 5 9

12 �1 8 10

8 9 5 0

2

4

3

5 ¼
7� 2 5� 1 3� 5 9� 9

6� 12 5þ 1 3� 8 5� 10

1� 8 9� 9 �3� 5 0� 0

2

4

3

5

¼

C

5 4 �2 0

�6 6 �5 �5

�7 0 �8 0

2

4

3

5:
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MULTIPLICATION

Matrix multiplication is a little more difficult. It is done by the following

steps:

Step 1: Write down both matrices. To multiply the two matrices, the values of

Ac and Br must be the same (inside values; see later). If not, multiplication

cannot be performed.

Ar�c � Br�c:

.
Step 2: The product of the multiplication provides an r�c-size matrix

(outside values; see the following).

Ar�c � Br�c:

Example: a3�1 ¼
1

2

7

2

4

3

5 b1�3 ¼ 12 3 9½ �:

Step 1: Write down both matrices, and note if inside terms are equal.

a3�1 � b1�3 :

where 1¼ 1, the matrices can be multiplied, giving ar � bc|fflfflffl{zfflfflffl}
3�3

2

4

3

5, that is a

3 row � 3 column matrix

a3�1 � b1�3 ¼ C ¼
c11 c12 c13

c21 c22 c23

c31 c32 c33

" #

,

where c11¼ a (row 1)�b (column 1), c12¼ a (row 1)�b (column 2), and so

on.

a3�1 � b1�3 ¼ c3�3

1
2
7

" #

� 12 3 9½ � ¼
1� 12 ¼ 12 1� 3 ¼ 3 1� 9 ¼ 9
2� 12 ¼ 24 2� 3 ¼ 6 2� 9 ¼ 18
7� 12 ¼ 84 7� 3 ¼ 21 7� 9 ¼ 63

" #

�

Let us look at another example.

A3�3 ¼
3 2 5
6 7 9
8 2 1

" #

B3�4 ¼
5 �1 8 0
2 0 5 2
3 1 7 5

" #

:
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Let us multiply.

Step 1: Write out the matrix order.

A3�3 � B3�4 :

The inside dimensions are the same, so we can multiply.

Step 2: Write out the product matrix (outside terms).

A3�3 � B3�4 = C3�4:

C3�4 ¼
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

2

4

3

5:

The c11 element is the sum of the products for the entire row 1 of A multiplied

by the entire column 1 of B.

A ¼
3 2 5

6 7 9

8 2 1

2

6
4

3

7
5� B ¼

5 �1 8 0

2 0 5 2

3 1 7 5

2

6
4

3

7
5 ¼ C

¼
c11 ¼ 3� 5þ 2� 2þ 5� 3 ¼ 34

2

6
4

3

7
5:

Let us work the entire problem by the following demonstration:
c11¼ 34

c12¼A row 1�B column 2¼ 3��1 þ 2�0 þ 5�1¼ 2

c13¼A row 1�B column 3¼ 3�8 þ 2�5 þ 5�7¼ 69

c14¼A row 1�B column 4¼ 3�0 þ 2�2 þ 5�5¼ 29

c21¼A row 2�B column 1¼ 6�5 þ 7�2 þ 9�3¼ 71

c22¼A row 2�B column 2¼ 6��1 þ 7�0 þ 9�1¼ 3

c23¼A row 2�B column 3¼ 6�8 þ 7�5 þ 9�7¼ 146

c24¼A row 2�B column 4¼ 6�0 þ 7�2 þ 9�5¼ 59

c31¼A row 3�B column 1¼ 8�5 þ 2�2 þ 1�3¼ 47

c32¼A row 3�B column 2¼ 8��1 þ 2�0 þ 1�1¼�7

c33¼A row 3�B column 3¼ 8�8 þ 2�5 þ 1�7¼ 81

c34¼A row 3�B column 4¼ 8�0 þ 2�2 þ 1�5¼ 9
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C3�4

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

2

6
4

3

7
5 ¼

34 2 69 29

71 3 146 59

47 �7 81 9

2

6
4

3

7
5:

Needless to say, the job is far easier using a computer. To perform this same

process interactively using MiniTab software, one merely inputs the r�c size

and matrix data to create M1.

MTB > read 3 by 3 in M1

DATA > 3 2 5

DATA > 6 7 9

DATA > 8 2 1

)

¼ A

3 rows read:

MTB > read 3 by 4 in M2

DATA > 5� 1 8 0

DATA > 2 0 5 2

DATA > 3 1 7 5

)

¼ B

3 rows read:

MTB > print M1

Data Display

Matrix M1 = A

3 2 5

6 7 9

8 2 1

MTB > print M2

Data Display

Matrix M2 = B

5�1 8 0

2 0 5 2

3 1 7 5

MTB > mult m1 by m2 put in m3 (A �B = C)

MTB> print m3
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Data Display

Matrix M3

C ¼
34 2 69 29

71 3 146 59

47 �7 81 9

You can see that matrix algebra is far easier using a computer.

INVERSE OF MATRIX

In algebra, the inverse of a number is its reciprocal, x�1¼ 1=x. In matrix

algebra, the inverse is conceptually the same, but the conversion usually

requires a great deal of computation, except for the very simplest of matrices.

If a solution exists, then A�A�1¼ I. I is a very useful matrix named as an

identity matrix, where the diagonal elements are 1 and the nondiagonal

elements are 0.

For example, I ¼
1 0 0

0 1 0

0 0 1

2

4

3

5 or I ¼

1 0 0 0 � � � 0

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

The inverse computation is much time-consuming to perform by hand, so its

calculation is done by a computer program.

Let us now look at matrices as they relate to regression analyses.

Yr�1¼ vector of the observed yi values

Yr�1 ¼

y1

y2

y3

..

.

yn

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Y0r�1 ¼ y1 y2 y3 � � � yn½ �:
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The xi values are placed in an X matrix. For example, in simple linear

regression,

ŷy ¼ b0 þ b1x:

The X matrix is

Xr�c ¼

1 x1

1 x2

1 x3

..

. ..
.

n xn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

x0 x1

:

For any regression equation of k parameters, (b1, b2, . . . , bk), there are k þ 1

columns and n rows.

The first column contains all ones, which are dummy variables, where

x0 ¼ 1

X0 ¼ x0

x1

1 1 � � � n
x1 x2 � � � xn

� �

:

Sometimes, it is necessary to compute
P

y2
i . From a matrix standpoint, the

operation is

y0y ¼ y1, y2, . . . , yn½ �

y1

y2

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5
¼ a1�1matrix, which is

Xn

i¼1

y2
i :

In simple linear regression, the matrix X0X produces several useful

calculations

X0X ¼ 1 1 � � � 1

x1 x2 � � � xn

� �
1 x1

1 x2

..

. ..
.

1 xn

2

6
6
6
4

3

7
7
7
5
¼ n

P
xiP

xi

P
x2

i

� �

:
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In addition, X0Y produces

X0Y ¼ 1 1 � � � 1

x1 x2 � � � xn

� �
y1

y2

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5
¼

P
yiP

xiyi

� �

:

This makes the elementary calculations of n,
P

xi,
P

yi,
P

xiyi, and so on,

unnecessary.

Let us look further into simple linear regression through matrix algebra:

ŷi ¼ b0 þ b1x1 þ ei is given in matrix terms as Y¼Xb þ e, where

Y
y1

y2

..

.

yn

2

6
6
6
6
4

3

7
7
7
7
5

¼

X

1 x1

1 x2

..

. ..
.

1 xn

2

6
6
6
6
4

3

7
7
7
7
5

b
b0

b1

� �
þ

e
e1

e2

..

.

en

2

6
6
6
6
4

3

7
7
7
7
5

:

Multiplying Xb, that is, X�b, one gets ŷy

Xb ¼

b0 þ b1x1

b0 þ b2x2

..

.

b0 þ b1xn

2

6
6
6
6
6
4

3

7
7
7
7
7
5
¼ bYY and Xbþ e ¼

b0 þ b1x1 þ e1

b0 þ b1x2 þ e3

..

.

b0 þ b1xn þ en

2

6
6
6
6
6
4

3

7
7
7
7
7
5
¼ Y:

Y ¼ E Y½ � ¼ Xb:

The researcher does not know what the error values are, except that they sum

to 0, E[e]¼ 0.

Also,

s2
« ¼

�2 0 0 0

0 �2 0 0

..

. ..
. ..

. ..
.

0 0 0 �2

2

6
6
4

3

7
7
5

or

s2I ¼ s2
Eð Þ:
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The normal matrix equation for all regression work is Y¼Xb þ e, and the

least-square calculation by matrix algebra is b¼ (X0X)�1 X0Y.

Let us do a regression using a simple linear model.

For ŷ¼ b0 þ b1x1, we compute b¼ (X0X)�1 X0Y,

where

y x

9 1

8 1

10 1

10 2

12 2

11 2

15 3

14 3

13 3

17 4

18 4

19 4

For an interactive system, such as MiniTab, the data are keyed in as

MTB > read 12 1 m1 Reads a 12�1 matrix labeled

M1. This is the Y vector.

DATA > 9

DATA > 8

DATA > 10

DATA > 10

DATA > 12

DATA > 11

DATA > 15

DATA > 14

DATA > 13

DATA > 17

DATA > 18

DATA > 19

The result of M1 is displayed as
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Y ¼

9
8

10
10
12
11
15
14
13
17
18
19

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

For X, we key in x0 and x1.

MTB > read 12 2 m2 Reads a 12 � 2 matrix labeled

DATA > 1 1 M2

DATA > 1 1

DATA > 1 1

DATA > 1 2

DATA > 1 2

DATA > 1 2

DATA > 1 3

DATA > 1 3

DATA > 1 3

DATA > 1 4

DATA > 1 4

DATA > 1 4

The result of M2 is displayed as

X ¼

1 1

1 1

1 1

1 2

1 2

1 2

1 3

1 3

1 3

1 4

1 4

1 4

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:
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The transposition of X is M3:

X0 ¼
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 2 3 3 3 4 4 4

� �

:

Next, we multiply—that is, X0X—and put the product into M4.

X�2�12 � X12�2
, hence, the resultant product will be a 2�2 matrix.

The MiniTab command is

MTB > mult m3 m2, m4

X0X ¼
12 30

30 90

� �

:

Recall

X0 X ¼
n

P
xi

P
xi

P
x2

i

� �

¼
12 30

30 90

� �

,

which is very useful for other computations by hand.

Next, we find the inverse of (X0X)�1.

The MiniTab command is

MTB > inverse m4, m5

X0Xð Þ�1¼
0:500000 �0:166667

�0:166667 0:066667

� �

:

The inverse is multiplied by X0:

X0Xð Þ�1
2�2 X02�12

MTB > mult m5, m3, m6

X0 ¼
0:333333 0:333333 0:333333 0:166667 0:166667 0:166667 0:000000 �0:00000 �0:000000 �0:166667 �0:166667 �0:166667

�0:100000 �0:100000 �0:100000 �0:033333 �0:033333 �0:033333 0:033333 0:033333 0:033333 0:100000 0:100000 0:100000

" #

:

Finally, we multiply by Y, (X0 X)�1 X0 Y

MTB > mult m5 by m1, m7, which gives us
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b ¼
5:5

3:0

� �

, that is,
b0 ¼ 5:5,

b1 ¼ 3:0:

�

Therefore, the final regression equation is

byy¼ 5.5 þ 3.0x or, in matrix form, bYY¼Xb.

The key strokes are

MTB > mult m2 by m7, m8

bYY ¼

8:5
8:5
8:5

11:5
11:5
11:5
14:5
14:5
14:5
17:5
17:5
17:5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

This vector consists of the predicted ŷyi values to determine the error Y� bYY¼ e.

Subtract M8 from M1, M9 for matrix M9:

e ¼ Y � bYY ¼

0:50000

�0:50000

1:50000

�1:50000

0:50000

�0:50000

0:50000

�0:50000

�1:50000

�0:50000

0:50000

1:50000

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Now, for larger sets of data, one does not want to key the data into a matrix,

but rather, would read it from a text file. Finally, in statistics, use of the

Hat Matrix is valuable, particularly in diagnostics such as discovering

outlier values by the Studentized and jackknife tests. The diagonal is used

in these tests.
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Hn�n ¼ X X0Xð Þ�1
X0:

The regression can also be determined by

bYY ¼ HY:

Several other matrix operations we use are as follows:

SST ¼ Y0Y� 1

n

� �

Y0JY

SSE ¼ Y0Y� b0X0Y

SSR ¼ b0X0Y� 1

n

� �

Y0JY,

where J is the matrix of
1 1 1 1

1 1 1 1

� �

and is an n�n size.

The variance matrix is the diagonal of

s2b ¼ MSE X0Xð Þ�1

s2b ¼

s2
b0

s2
b1

. .
.

s2
bk

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:
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Index

A

Adjusted Average Response, 443

algebra, 84, 124, 489

See also matrix algebra, 69, 151, 155,

156, 193, 195, 310, 326, 482,

489,491,492

alternative hypothesis, 3, 4, 5, 6, 13, 110

Analysis of Covariance (ANCOVA),

424, 427, 429, 430

Analysis of Variance (ANOVA), 159,

163, 164, 172, 249, 257, 414, 424

association, 15, 40, 76, 77, 78, 79, 210

assumption, 58, 64, 155

autocorrelation, 107, 154, 165

B

backward elimination, 182, 246, 411,

412, 413, 418, 419, 420

bias, 15, 16, 24, 25, 151, 225, 233, 255,

261, 267, 308

blinding, 15

blocking, 5

Bonferroni method, 87, 89, 199, 202,

203, 311, 337, 442, 462, 463, 469

Box-Cox transformation, 300

Breusch-Pagan Test, 294

C

central limit theorem, 3

Chi Square test, 295

Cochrane-Orcutt, 126, 128, 133, 144

coefficient of determination, 35, 39, 77,

79, 206, 207, 209, 211,

215, 217, 254, 257, 413, 421

coincidence, 374, 376, 377, 382,

386, 412

collinearity, 213, 214, 216, 219, 221,

223, 343, 500

multiple, 213, 214, 216, 217, 219,

221, 223, 224, 249, 263,

412, 422

condition index, 219

condition number, 219, 221

confidence interval, 9, 21, 43, 44, 45,

46, 50, 52, 53, 54, 55, 56, 57,

81, 82, 83, 84, 85, 86, 89, 93, 94,

98, 101, 106, 193, 196, 197, 199,

200, 202, 223, 433, 440

confounding, 281, 282

correlation

coefficient, 76, 77, 78, 79, 81,

109, 111, 118, 124, 125, 126,

133, 205, 206, 207, 208, 209,

216, 313

matrix, 207, 217, 218, 226, 228, 238

multiple, 206, 207, 210

negative, 78, 108, 118, 119, 120, 121

pairwise, 109

partial, 207, 208, 209, 210, 215, 217

positive, 20, 107, 109, 111, 118, 119,

120, 121, 122

serial, 107, 108, 109, 111, 115, 116,

118, 119, 120, 122, 123, 124,

125, 126, 127, 128, 129, 133,

135, 136, 140, 141, 143, 144,

147, 154, 165, 182, 282, 294

time-series, 118

transformation, 238

covariance, 27, 156, 301, 303, 329, 336,

424, 425, 432, 434, 435, 438,

440, 443

D

data set, 3, 10, 48, 74, 75, 76, 106, 150,

166, 242, 286, 313, 323, 329,

332, 334, 406
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dependent variable, 22, 26, 27, 28, 30,

31, 108, 125, 253, 295, 410, 425

detection limit, 5

deviation

standard, 1, 2, 3, 7, 9, 22, 39,

40, 126, 147, 150, 151, 152,

221, 307, 310, 330, 337, 338,

413, 416

DFBETAS, 338

Draper and Smith simplified

test, 120

Durbin-Watson statistic, 165

Durbin-Watson Test., 109

EDA, 34, 35, 70, 72, 74, 76

E

eigen

analysis, 217

value, 217, 218, 219, 221, 223, 238

equivalence, 6, 17, 103, 373,

374, 412

error

alpha, 4, 5, 11, 20, 24,

See type I error

beta, 5, 7, 11, 20, 24,

See type II error

constancy, 293

correlated, 124

estimation of, 38

mean square, 39, 60, 107, 224, 235,

333, 335, 337, 421

measurement, 14

procedural, 22

pure, 65, 68, 70, 115, 116, 257,

259, 260

random, 1, 14, 22, 27, 58, 64, 78, 124,

125, 257, 260, 422

residual, 70, 281

standard, 9, 47, 48, 54, 107, 327, 386

systematic, 15. See bias

term, 3, 27, 34, 39, 60, 107, 111, 126,

153, 156, 223, 284, 285, 291,

293, 302, 303, 306, 338, 416,

424, 428

estimation, 9, 50, 54, 500

exploratory data analysis, 34, 37

F

F distribution, 56, 108, 313

F test, 62, 63, 64, 66, 67, 105, 160,

161, 162, 163, 166, 168,

171, 172, 173, 182, 210, 251,

257, 269, 270, 287,

331, 334, 367, 412, 415,

420, 429

factors, 19, 20, 21, 22, 24, 281, 424

First Difference Procedure, 133, 135

Fisher’s Z transformation, 81

forecasting, 51

forward selection, 182, 186, 246,

411, 412, 413, 417, 418,

419, 420

G

Global Intercept Test, 386

H

half-slopes, 73

hat matrix, 310, 311, 325, 327, 328,

330, 335, 336

diagonal, 311

I

independent variable, 15, 26, 27,

28, 30, 307

interaction, 19, 20, 155, 156, 193,

278, 279, 281, 282, 285,

348, 350, 364, 365, 368,

369, 372, 373, 374, 377,

378, 381, 382, 384, 411,

413, 417, 418, 419, 422,

425, 427, 430

interpolation, 50, 51

K

knot, 262, 263, 266, 269, 270, 271,

272, 273
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L

lack of fit, 63, 64, 65, 66, 67, 68,

69, 70, 72, 73, 115, 116, 118,

136, 257, 260, 261

component, 66, 70, 261

computation, 257

error, 69, 70

leverage, 309, 311, 312, 313, 323,

325, 326, 327, 328, 329, 331,

332, 340

M

Mallow’s Ck Criteria, 422

mean, 1, 2, 3, 4, 9, 20, 22, 23, 27,

36, 40, 50, 53, 55, 56, 57,

58, 64, 82, 87, 89, 91, 107,

123, 150, 151, 153, 192, 197,

202, 218, 259, 277, 278,

286, 292, 309, 310, 311, 323,

329, 340, 424, 427, 437,

442, 443

median, 3, 37, 75, 287, 291

MiniTab, 34, 35, 44, 57, 63, 71, 79, 106,

114, 129, 135, 164, 165, 167,

168, 207, 220, 227, 230, 236,

257, 304, 324, 331, 340, 416,

482, 488, 492, 494

model

adequacy, 34, 57, 111, 147, 201,

307, 411

ANCOVA, 426, 428

ANOVA, 61, 62, 172

two-pivot, 402

model-building, 173, 182, 199, 280, 412

Modified Levene Test, 286, 288

Multiple Analysis of Variance

(MANOVA), 350

N

nonparametric, 34, 46, 69, 71, 341

normal distribution, 3, 7, 10, 122

null hypothesis, 3, 4, 6, 9, 12, 42, 63, 66,

68, 297, 374

P

parallelism, 50, 279, 343, 362, 363, 365,

369, 371, 372, 373, 374, 376,

377, 384, 386, 387, 412, 425,

427, 429, 430, 438

parametric, 8, 39, 75

point estimation, 33

Poisson, 300

power, 5, 12, 13, 28, 48, 49, 50, 73, 139,

140, 166, 255, 270, 272

prediction, 50, 51, 54, 55, 107, 155, 193,

194, 202, 203, 207, 265, 300

Principle Component Analyses, 218

outlier, 150, 287, 307, 311, 317, 318,

319, 320, 335, 339, 494

R

randomization, 15, 24, 25, 412

regression

analysis, 12, 14, 25, 31, 33, 34, 36, 39,

40, 43, 107, 109, 110, 111, 113,

117, 128, 136, 139, 144, 150,

157, 159, 206, 207, 214, 216,

219, 222, 240, 244, 247, 252,

254, 275, 305, 306, 307, 313,

327, 330, 354, 377, 390, 402,

405, 409, 410, 412, 429, 481

ANOVA, 60

coefficient, 167, 314, 339, 387, 438

complex, 70, 106

dummy, 354

fitted, 336

least squares, 75, 127, 128, 223,

283, 301

linear, 24, 25, 34, 35, 55, 57, 62, 66,

67, 69, 70, 78, 79, 84, 91, 93, 98,

106, 107, 111, 115, 125, 127,

136, 147, 151, 153, 154, 159,

160, 164, 172, 200, 202, 205,

206, 245, 261, 281, 294, 305,

306, 309, 312, 313, 325, 326,

327, 333, 335, 354, 396,

489, 490

multiple, 69, 73, 91, 93, 106, 109, 151,

155, 157, 172, 199, 203, 205,
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207, 269, 277, 284, 303, 310,

326, 328, 329, 336, 413

multivariate, 311

ridge, 222, 223, 224, 235, 240, 244

standard, 84, 124, 198, 256, 300,

303, 311

stepwise, 412, 413, 415, 416, 417

sum of squares, 161, 172, 250, 251,

294, 296

variable, 123

variability, 421

weighted, 298, 303, 307

replication, 23, 24, 63, 64, 65, 67, 242

residuals, 12, 35, 36, 109, 111, 116, 122,

126, 127, 131, 136, 147, 151,

152, 240, 247, 261, 283, 284,

286, 299, 309, 318, 322, 323,

325, 335, 336, 337

analysis, 12, 147, 152, 262, 307, 335

deleted, 336

jackknife, 151, 309, 310, 311, 315,

316, 320, 322, 462

patterns, 149

pivot value, 390

plot, 147, 281, 283, 299, 327, 330, 390

rescaling, 309

scatterplot, 283

squared, 294

standardized, 151, 309, 310, 311, 392

studentized, 151, 309, 310, 311, 313,

318, 319, 328, 331, 335, 336, 463

unweighted, 303

value, 33, 36, 121, 153, 156, 252, 283,

318, 335

variance, 310

weighted, 303

response variable, 14, 19, 27, 28, 30, 65,

90, 127, 154, 155, 157, 158, 193,

206, 208, 242, 244, 278, 279,

411, 424, 428, 443, 444

S

SAS, 331

SPSS, 331

Scheffe, 202, 441, 443

sigmoidal, 71, 73, 264, 388

spline, 261, 262, 263, 266, 268, 269,

270, 272

sum of squares, 40, 59, 66, 117, 172, 176,

206, 208, 209, 210, 211, 246,

249, 251, 252, 258, 295, 297, 421

T

Time-series procedures, 51

Tolerance Factor, 216

Tukey, 151, 501

transformations, 31, 34, 63, 111, 135,

139, 140, 147, 165, 237, 241,

253, 270, 299, 301

V

validity

conclusion, 11, 12

construct, 11

external, 11, 12

internal, 11, 12

variability, 2, 20, 22, 23, 27, 50, 68,

78, 85, 106, 197, 198, 205,

206, 208, 210, 216, 222, 224,

253, 259, 261, 287, 297, 302,

307, 409, 412, 413, 416, 423,

431, 433

variance, 2, 5, 7, 10, 11, 20, 22, 27, 38,

45, 47, 50, 63, 82, 107, 147, 151,

154, 156, 193, 219, 221, 223,

224, 225, 241, 245, 282, 286,

294, 298, 299, 301, 303, 311,

329, 330, 336, 339, 362, 422,

429, 439, 440, 441

constant, 282, 286, 288, 293, 294, 295,

298, 300

error, 71, 282, 285, 286

estimate, 7

estimates, 444

matrix, 496

maximum, 219

minimum, 31, 107, 301

nonconstant, 288, 293, 295, 297,

298, 300

population, 40
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proportion, 221, 223

stabilization procedures, 300

Variance Inflation Factor (VIF), 215,

216, 225

vector, 156, 157, 192, 202, 224, 327,

328, 333, 335, 481, 482, 483,

488, 491, 494

W

Working-Hotelling Method, 55
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