

Numerical Methods
for Engineers

Second Edition

Numerical Methods
for Engineers

Second Edition

D.V. Griffiths
Colorado School of Mines

Golden, Colorado

I.M. Smith
University of Manchester

Manchester, UK

Front cover illustration: Stiffness matrix eigenmodes of a 20-node hexahedral finite element after
Smith and Kidger (1991), computed using Program 4.6. Courtesy of Dr. Jinsong Huang.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110713

International Standard Book Number-13: 978-1-4200-1024-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To Valerie, Will and James

List of Programs

2.1 Gaussian elimination for linear simultaneous equations 17

2.2 Gaussian elimination using [L][U] factorization 23

2.3 Gaussian elimination using [L][D][L]T factorization 28

2.4 Cholesky [L][L]T factorization using banded storage 34

2.5 Cholesky [L][L]T factorization using skyline storage 36

2.6 [L][U] factorization with pivoting 40

2.7 Cholesky [L][L]T factorization using skyline storage 43
prescribed solutions by penalty method

2.8 Jacobi iteration for linear simultaneous equations 49

2.9 Gauss-Seidel iteration for linear simultaneous equations 54

2.10 Successive overrelaxation for linear simultaneous equations 58

2.11 Steepest descent for linear simultaneous equations 62

2.12 Conjugate gradients for linear simultaneous equations 65

2.13 Stabilized bi-conjugate gradients for 70
linear simultaneous equations

2.14 Preconditioned conjugate gradients for 74
linear simultaneous equations

2.15 BiCGSTAB scheme (left preconditioned) 77

2.16 BiCGSTAB scheme (right preconditioned) 79

3.1 Iterative substitution for a single root 92

3.2 Bisection method for a single root 98

3.3 False position method for a single root 102

3.4 Newton-Raphson method for a single root 106

3.5 Modified Newton-Raphson method for a single root 109

3.6 Iterative substitution for systems of equations 114

3.7 Newton-Raphson for systems of equations 119

3.8 Modified Newton-Raphson for systems of equations 123

List of Programs (continued)

4.1 Vector iteration for “largest” eigenvalue 137
and its eigenvector

4.2 Shifted vector iteration for eigenvalue 140
and its eigenvector

4.3 Shifted inverse iteration for nearest eigenvalue 145
and its eigenvector

4.4 Vector iteration for [K]{x} = λ[M]{x} 151

4.5 Conversion of [K]{x} = λ[M]{x} 155
to symmetrical standard form

4.6 Jacobi diagonalization for eigenvalues 163
of symmetrical matrices

4.7 Householder reduction of symmetrical matrix 169
to tridiagonal form

4.8 Lanczos reduction of symmetrical matrix 173
to tridiagonal form

4.9 [L][R] transformation for eigenvalues 177

4.10 Characteristic polynomial method 184
for eigenvalues of symmetrical tridiagonal matrix

5.1 Interpolation by Lagrangian polynomials 196

5.2 Interpolation by forward differences 204

5.3 Interpolation by cubic spline functions 211

5.4 Curve fitting by least squares 232

6.1 Repeated Newton-Cotes rules 262

6.2 Repeated Gauss-Legendre rules 275

6.3 Adaptive Gauss-Legendre rules 280

6.4 Gauss-Laguerre rules 287

6.5 Multiple integrals by Gauss-Legendre rules 302

7.1 One-step methods for systems of ODEs 337

7.2 Theta-method for linear ODEs 345

7.3 Fourth order predictor-corrector methods 356

7.4 Shooting method for second order ODEs 371

8.1 Explicit finite differences in 1D 424

8.2 Simple FE analysis of Example 8.3 432

Contents

1 Introduction and Programming Preliminaries 1
1.1 Introduction . 1
1.2 Running programs . 1
1.3 Hardware . 2
1.4 External Fortran subprogram libraries 2
1.5 A simple Fortran program 4
1.6 Some simple Fortran constructs 7
1.7 Intrinsic functions . 7
1.8 User-supplied functions and subroutines 8
1.9 Errors and accuracy . 9

1.9.1 Roundoff . 9
1.9.2 Truncation . 10
1.9.3 Cancellation . 11
1.9.4 Intrinsic and library-supplied precision routines 11

1.10 Graphical output . 12
1.11 Conclusions . 13

2 Linear Algebraic Equations 15
2.1 Introduction . 15
2.2 Gaussian elimination . 15

2.2.1 Observations on the elimination process 20
2.3 Equation solution using factorization 20

2.3.1 Observations on the solution process by factorization . 25
2.4 Equations with a symmetrical coefficient matrix 25

2.4.1 Quadratic form and positive definiteness 30
2.4.2 Cholesky’s method . 31

2.5 Banded equations . 33
2.6 Compact storage for variable bandwidths 35
2.7 Pivoting . 38

2.7.1 Ill-conditioning . 41
2.8 Equations with prescribed solutions 42
2.9 Iterative methods . 46

2.9.1 The iterative process 46
2.9.2 Very sparse systems 52
2.9.3 The Gauss-Seidel method 52
2.9.4 Successive overrelaxation 57

2.10 Gradient methods . 61

2.10.1 The method of ‘steepest descent’ 61
2.10.2 The method of ‘conjugate gradients’ 64
2.10.3 Convergence of iterative methods 68

2.11 Unsymmetrical systems . 68
2.12 Preconditioning . 72
2.13 Comparison of direct and iterative methods 81
2.14 Exercises . 82

3 Nonlinear Equations 89
3.1 Introduction . 89
3.2 Iterative substitution . 91
3.3 Multiple roots and other difficulties 94
3.4 Interpolation methods . 97

3.4.1 Bisection method . 97
3.4.2 False position method 100

3.5 Extrapolation methods . 103
3.5.1 Newton-Raphson method 104
3.5.2 A modified Newton-Raphson method 107

3.6 Acceleration of convergence 112
3.7 Systems of nonlinear equations 112

3.7.1 Iterative substitution for systems 113
3.7.2 Newton-Raphson for systems 116
3.7.3 Modified Newton-Raphson method for systems 121

3.8 Exercises . 125

4 Eigenvalue Equations 131
4.1 Introduction . 131

4.1.1 Orthogonality and normalization of eigenvectors . . . 132
4.1.2 Properties of eigenvalues and eigenvectors 134
4.1.3 Solution methods for eigenvalue equations 136

4.2 Vector iteration . 136
4.2.1 Shifted vector iteration 140
4.2.2 Shifted inverse iteration 143

4.3 Intermediate eigenvalues by deflation 148
4.4 The generalized eigenvalue problem [K]{x} = λ[M]{x} . . . 150

4.4.1 Conversion of generalized problem to symmetrical stan-
dard form . 154

4.5 Transformation methods . 158
4.5.1 Comments on Jacobi diagonalization 167
4.5.2 Householder’s transformation to tridiagonal form . . . 167
4.5.3 Lanczos transformation to tridiagonal form 171
4.5.4 LR transformation for eigenvalues of tridiagonal matri-

ces . 176
4.6 Characteristic polynomial methods 180

4.6.1 Evaluating determinants of tridiagonal matrices 180

4.6.2 The Sturm sequence property 181
4.6.3 General symmetrical matrices, e.g., band matrices . . 187

4.7 Exercises . 188

5 Interpolation and Curve Fitting 193
5.1 Introduction . 193
5.2 Interpolating polynomials . 193

5.2.1 Lagrangian polynomials 194
5.2.2 Difference methods . 198
5.2.3 Difference methods with equal intervals 199

5.3 Interpolation using cubic spline functions 207
5.4 Numerical differentiation . 214

5.4.1 Interpolating polynomial method 215
5.4.2 Taylor series method 219

5.5 Curve fitting . 226
5.5.1 Least squares . 226
5.5.2 Linearization of data 229

5.6 Exercises . 237

6 Numerical Integration 245
6.1 Introduction . 245
6.2 Newton-Cotes rules . 247

6.2.1 Introduction . 247
6.2.2 Rectangle rule, (n = 1) 247
6.2.3 Trapezoid rule, (n = 2) 248
6.2.4 Simpson’s rule, (n = 3) 250
6.2.5 Higher order Newton-Cotes rules (n > 3) 252
6.2.6 Accuracy of Newton-Cotes rules 253
6.2.7 Summary of Newton-Cotes rules 254
6.2.8 Repeated Newton-Cotes rules 255
6.2.9 Remarks on Newton-Cotes rules 264

6.3 Gauss-Legendre rules . 265
6.3.1 Introduction . 265
6.3.2 Midpoint rule, (n = 1) 265
6.3.3 Two-point Gauss-Legendre rule, (n = 2) 267
6.3.4 Three-point Gauss-Legendre rule, (n = 3) 270
6.3.5 Changing the limits of integration 271
6.3.6 Accuracy of Gauss-Legendre rules 277

6.4 Adaptive integration rules 278
6.5 Special integration rules . 284

6.5.1 Gauss-Chebyshev rules 288
6.5.2 Fixed weighting coefficients 289
6.5.3 Hybrid rules . 290
6.5.4 Sampling points outside the range of integration . . . 290

6.6 Multiple integrals . 292

6.6.1 Introduction . 292
6.6.2 Integration over a general quadrilateral area 299

6.7 Exercises . 307

7 Numerical Solution of Ordinary Differential Equations 317
7.1 Introduction . 317
7.2 Definitions and types of ODE 317
7.3 Initial value problems . 319

7.3.1 One-step methods . 321
7.3.2 Reduction of high order equations 330
7.3.3 Solution of simultaneous first order equations 332
7.3.4 θ-methods for linear equations 343
7.3.5 Predictor-corrector methods 349
7.3.6 Stiff equations . 359
7.3.7 Error propagation and numerical stability 360
7.3.8 Concluding remarks on initial value problems 361

7.4 Boundary value problems . 362
7.4.1 Finite difference methods 362
7.4.2 Shooting methods . 368
7.4.3 Weighted residual methods 376

7.5 Exercises . 386

8 Introduction to Partial Differential Equations 393
8.1 Introduction . 393
8.2 Definitions and types of PDE 393
8.3 First order equations . 394
8.4 Second order equations . 399
8.5 Finite difference method . 401

8.5.1 Elliptic systems . 404
8.5.2 Parabolic systems . 417
8.5.3 Hyperbolic systems . 427

8.6 Finite element method . 430
8.7 Exercises . 434

A Descriptions of Library Subprograms 445

B Fortran 95 Listings of Library Subprograms 447

C References and Additional Reading 469

Index 475

Chapter 1

Introduction and Programming
Preliminaries

1.1 Introduction

There are many existing texts aimed at introducing engineers to the use
of the numerical methods which underpin much of modern engineering prac-
tice. Some contain “pseudocode” to illustrate how algorithms work, while
others rely on commercial “packaged” software such as “Mathematica” or
“MATLAB”. But the vast majority of the large computer programs which lie
behind the design of engineering systems are written in the Fortran language,
hence the use of the latest dialect, Fortran 95, in this book. Nearly fifty entire
programs are listed, many being made more concise through the use of “li-
braries” of approximately twenty five subprograms which are also described
and listed in full in Appendices A and B. Free Fortran 95 compilers are also
widely available and users are therefore encouraged to modify the programs
and develop new ones to suit their particular needs.

1.2 Running programs

Chapters 2-8 of this textbook describe 49 Fortran 95 programs covering a
wide range of numerical methods applications. Many of the programs make
use of a subprogram library called nm_lib which holds 23 subroutines and
functions. In addition, there is a module called precision which controls the
precision of the calculations.

Detailed instructions for running the programs described in this textbook
are to be found at the web site:

www.mines.edu/~vgriffit/NM

After linking to this site, consult the readme.txt file for information on:
1) how to download all the main programs, subprograms and sample data

files,

1

2 Numerical Methods for Engineers

2) how to download a free Fortran 95 compiler, e.g., from the Free Software
Foundation at www.g95.org,

3) how to compile and execute programs using a simple batch file

In the interests of generality and portability, all programs in the book as-
sume that the data and results files have the generic names nm95.dat and
nm95.res respectively. A batch file that can be downloaded from the web
with the main programs and libraries called run2.bat copies the actual data
file (say fred.dat) to nm95.dat before execution. Finally, after the program
has run, the generic results file fe95.res is copied to the actual results file
name (say fred.res). If users wish to use the run2.bat batch file, data files
and results files must have the extensions *.dat and *.res respectively. See
the readme.txt file as described above for more details.

1.3 Hardware

The use of Fortran means that the numerical methods described can be
“ported” or transferred, with minimal alteration, from one computer to an-
other. For “small” problems and teaching purposes a PC will suffice whereas
Smith and Griffiths (2004) show how the same philosophy can be used to solve
“large” problems, involving many millions of unknowns, on parallel “clusters”
of PCs or on “supercomputers”.

1.4 External Fortran subprogram libraries

Another advantage of the use of Fortran is the existence of extensive sub-
program libraries already written in that language. These can therefore easily
be inserted into programs such as those described herein, avoiding unneces-
sary duplication of effort. Some libraries are provided by manufacturers of
computers, while others are available commercially, although academic use is
often free.

A good example is the NAG subroutine library (www.nag.co.uk) which
contains over 600 subroutines. These cover a wide range of numerical appli-
cations, and are organized into “Chapters” which are listed in Table 1.1. The
NAG “Chapters” can very broadly be classified into “deterministic” numerical
analyses, statistical analyses and “utility” routines. The present book deals
only with the first of these classes and even then with a subset. In the first
column of Table 1.1 the number in parentheses indicates the chapter of the

Introduction and Programming Preliminaries 3

current text which forms an introduction to the same topic.

Other Fortran libraries with which readers may be familiar include HSL,
IMSL, LINPACK and EISPACK, the last two being sublibraries dealing with
linear algebra (Chapter 2 in this book) and eigenvalue problems (Chapter 4)
respectively. LINPACK and EISPACK have been largely superseded by the
more modern LAPACK1. It can be seen that the majority of deterministic
analysis methods will be dealt with in the following chapters. The selection
is governed by limitations of space and of teaching time in typical courses.
Attention is directed specifically towards coverage of probably the most im-
portant areas of numerical analysis concerning engineers, namely the solution
of ordinary and partial differential equations. In the chapters that follow, it
will be illustrated how subprograms are constructed and how these are as-
sembled to form small computer programs to address various numerical tasks.
This will serve as an introduction for students and engineers to the use of more
comprehensive software such as the NAG mathematical subroutine library.

TABLE 1.1: Contents of NAG mathematical subroutine library
Chapter in NAG Subject area

present book “Chapter”
1 Utilities
3 Special Functions
4 Matrix and Vector Operations

(2) 5 Linear Equations
(4) 6 Eigenvalues and Least-Squares Problems

7 Transforms
(5) 8 Curve and Surface Fitting

9 Optimization
(3) 10 Nonlinear Equations
(6) 11 Quadrature
(7) 12 Ordinary Differential Equations
(8) 13 Partial Differential Equations

19 Operations Research
20 Statistical Distribution Functions
21 Random Number Generation
22 Basic Descriptive Statistics
25 Correlation and Regression Analysis
28 Multivariate Analysis
29 Time Series Analysis

1See Appendix C for Web references to all these libraries.

4 Numerical Methods for Engineers

1.5 A simple Fortran program

For the details of Fortran 90/95 see for example Smith(1995). Shown in the
following pages are two variants of Program 4.1 from Chapter 4, involving the
calculation of the numerically largest eigenvalue of a matrix a(n,n).

PROGRAM nmex
!---Vector Iteration for "Largest" Eigenvalue and Eigenvector---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::big,l2,tol,zero=0.0_iwp
LOGICAL::converged; REAL(iwp),ALLOCATABLE::a(:,:),x(:),x1(:)
READ*,n; ALLOCATE(a(n,n),x(n),x1(n))
READ*,a; READ*,x; READ*,tol,limit
a=TRANSPOSE(a); iters=0
DO; iters=iters+1; x1=MATMUL(a,x); big=zero
DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO; x1=x1/big
converged=checkit(x1,x,tol)
IF(converged.OR.iters==limit)EXIT; x=x1

END DO
l2=norm(x1); x1=x1/l2
PRINT*,"Iterations to Convergence:",iters
PRINT*,"Largest Eigenvalue:",big
PRINT*,"Corresponding Eigenvector:"; PRINT*,x1

END PROGRAM nmex

Every Fortran program has a name, in this case nmex. There are rules for
the construction of names - basically they must consist of letters and digits
and begin with a letter. The first line of every program is PROGRAM followed
by the program’s name, and the last line is END PROGRAM followed again by
the program’s name. PROGRAM could be written program or Program etc. but
we hold to the convention that all words specific to the Fortran language are
written in capitals. Spaces are necessary where confusion could occur, for
example after PROGRAM and after END. The symbol ! denotes a “comment”
and text preceded by it can be used to describe what is going on, or to render
code inoperable, since symbols on the line after ! are ignored by the compiler.

The statements USE precision and USE nm_lib (note that the underscore
can be used in names) mean that the program is making use of “libraries”
called precision and nm_lib. Such libraries (see also Section 1.4) contain
subprograms, which thus become available to many main programs which
can call on them. The statement IMPLICIT NONE means that all variables
used in the program - i,n,big etc. must be declared by statements such as
INTEGER::i,n,iters,limit. The IMPLICIT NONE statement is optional but
is helpful in debugging programs.

Introduction and Programming Preliminaries 5

There are four TYPEs of variable declared in the example program, namely
INTEGER, REAL, LOGICAL and REAL,ALLOCATABLE. Integers are mainly used for
counting while logical variables are used for discriminating and can only take
the values .TRUE. or .FALSE.

Arithmetic is usually carried out using real numbers, which cannot be rep-
resented exactly in any actual computer. These numbers are therefore held
to a given precision (if attainable by that computer), represented here by the
appendage _iwp . We return to the questions of arithmetic, precision and
associated errors in Section 1.9.

Many of our computations will involve arrays of real numbers, which are
declared as REAL,ALLOCATABLE and their names followed by (:), for one-
dimensional arrays, (:,:) for two-dimensional and so on. The alternative
versions of the program illustrate two methods for getting information into
and out of the calculation. The first uses the simpler READ* and PRINT* input
and output statements. These read information typed in on the keyboard,
and output information direct to the screen, in what is called “free” format.

In the present example n is the size of the n×nmatrix a whose largest eigen-
value we seek, tol is the numerical tolerance to which the result is sought and
limit is the maximum number of iterations we will allow in the iterative pro-
cess. If these are 3, 10−5 and 100 respectively we can type in : 3 1.E-5 100
or 03 0.00001 100 or any other correct representation of the input numbers
separated by one or more spaces. “Free” format means that what appears as
a result on the screen, although correct, cannot be controlled by the user. On
a particular PC, the following appeared on the screen:

Iterations to Convergence: 19
Largest Eigenvalue: 33.70929144206253
Corresponding Eigenvector:
0.30015495757009153 0.36644583305469774 0.8806954370739892

In order to avoid re-typing input numbers on the keyboard, they can be
saved in a FILE. Similarly results can be saved and printed later. So in the
second version of the example program called nmey we OPEN two FILEs called
nm95.dat and nm95.res for input data and output results respectively. The
numbers 10 and 11 are essentially arbitrary UNIT numbers (but avoid low
numbers like 1 or 2). Input can then be read from UNIT 10 using READ(10,*)
to replace the previous READ*. The * means we are retaining the convenience
of free format for the input numbers.

PROGRAM nmey
!---Vector Iteration for "Largest" Eigenvalue and Eigenvector---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::big,l2,tol,zero=0.0_iwp
LOGICAL::converged; REAL(iwp),ALLOCATABLE::a(:,:),x(:),x1(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)

6 Numerical Methods for Engineers

READ(10,*)n; ALLOCATE(a(n,n),x(n),x1(n))
READ(10,*)a; READ(10,*)x; READ(10,*)tol,limit
a=TRANSPOSE(a); iters=0
DO; iters=iters+1; x1=MATMUL(a,x); big=zero
DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO; x1=x1/big
converged=checkit(x1,x,tol)
IF(converged.OR.iters==limit)EXIT; x=x1

END DO
l2=norm(x1); x1=x1/l2
WRITE(11,’(A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Largest Eigenvalue",big
WRITE(11,’(/,A,/,6E12.4)’)"Corresponding Eigenvector",x1

END PROGRAM nmey

When it comes to output, using in this case UNIT 11, it is convenient to
be able to control the appearance of the information, and (/,A,/,6E12.4)
and (A,/,I5) are examples of “format specifications”. A format is used for
text, / signifies a new line, E format is for REAL numbers in scientific notation
(e.g., 0.3371E+02) and I format is for INTEGERs. The 6 and 4 in the first
example signify the maximum number of REAL numbers to be displayed on a
single line, and the number of significant figures respectively. The 12 and 5 in
these examples specify the “field” width which the number has to occupy. I5
format can therefore not display an integer like 222222 for example. Another
useful “format specification” not used in this example is F format. A format
specification such as (F16.4) would display a REAL number with a field width
of 16 and 4 numbers after the decimal point (e.g., 33.7093).

The second version of the program yields the results:

Iterations to Convergence
19

Largest Eigenvalue
0.3371E+02

Corresponding Eigenvector
0.3002E+00 0.3664E+00 0.8807E+00

Returning to the example program, after n is known, arrays a, x and x1
can be ALLOCATEd, that is, space can be reserved in the computer for them.

Within the program, variables can be assigned values by means of state-
ments like iters=0 or x1=x1/big using the normal symbols of arithmetic with
the exception of * for multiplication.

Introduction and Programming Preliminaries 7

1.6 Some simple Fortran constructs

The above programs employ two of the most fundamental constructs of any
programming language, namely loops and conditions. A loop is enclosed by
the Fortran words DO and END DO. The version DO i=1,n will be completed
n times but if the i=1,n part is missing the loop is left after EXIT if some
condition is satisfied. (Be careful, in case this is never true.) Conditional
statements can in general take the form:

IF(condition) THEN
Statements

ELSE IF(condition) THEN
Statements

END IF

But often the simpler form:

IF(condition) Statement

suffices, as in the present program.
In IF statements, “condition” will often involve the “relational operators”

<, >, <=, /= and so on, following the usual mathematical convention.
A useful alternative conditional statement, used for discriminating on the

value of simple quantities, for example an integer nsp, reads:

SELECT CASE(nsp)
CASE(1)

Statements
CASE(2)

Statements
CASE(etc.)

Statements
END SELECT

1.7 Intrinsic functions

Both programs make use of the “intrinsic” Fortran FUNCTION ABS, which de-
livers the absolute value of its argument. There are about 40 such FUNCTIONs
in Fortran 95. These undertake commonly used mathematical tasks like find-
ing a square root (SQRT), or a logarithm to the base e (LOG), or, for an angle
expressed in radians, its sine, cosine (SIN, COS) and so on. “Intrinsic” mean-
s that these are part of the language and are automatically available to all

8 Numerical Methods for Engineers

programs. A further set of intrinsic FUNCTIONs operates on arrays and there
are about a dozen of these in Fortran 95. Both programs also make use of
MATMUL for multiplying two arrays or matrices together. Also widely used are
DOT_PRODUCT, TRANSPOSE, MAXVAL (which finds the maximum array element)
and SUM (which returns the sum of all the elements of an array).

1.8 User-supplied functions and subroutines

Fortran has always encouraged the use of subprograms so that users can
encapsulate code which may be used many times in a single program or in
other programs. The form of these subprograms has been copied in other
languages - compare the following Fortran and MATLAB versions of LU
factorization (see Chapter 2):

Fortran 95 MATLAB

FUNCTION lu(a) function A=lu(A)
! LU factorization % LU factorization
REAL::a(:,:) [n,m]=size(A)
REAL::lu(SIZE(a,1),SIZE(a,2)) for k=1,n-1
INTEGER::i,j,k,n; n=SIZE(a,1) for i=k+1,n
DO k=1,n-1 A(i,k)=A(i,k)/A(k,k)
DO i=k+1,n for j=k+1,n
a(i,k)=a(i,k)/a(k,k) A(i,j)=A(i,j)-A(i,k)*A(k,j)
DO j=k+1,n end
a(i,j)=a(i,j)-a(i,k)*a(k,j) end

END DO end
END DO end
END DO
lu=a

END FUNCTION lu

Whereas a FUNCTION delivers a single quantity (REAL, LOGICAL etc.) as its
result, a SUBROUTINE can deliver several quantities to the program which
CALLs it. Subprograms are collected together in a “library” such as precision
and nm_lib in our example and are made available to the main program by
statements like USE nm_lib.

Programs nmex and nmey employ two user-supplied subprograms from li-
brary nm_lib, namely checkit which checks whether arrays {x} and {x1}
are nearly the same, and norm which calculates the “L2 norm” of vector {x1}.

Library precision contains instructions about the precision with which
REAL numbers (employing the suffix _iwp as in zero=0.0_iwp) are held in the

Introduction and Programming Preliminaries 9

computer, so it is appropriate now to consider the whole question of errors and
accuracy in numerical computations (see Higham (2002) for a full discussion).

1.9 Errors and accuracy

In the chapters which follow, it is assumed that calculations in numerical
methods will be made using a digital computer. It will be very rare for
computations to be made in exact arithmetic and, in general, “real” numbers
represented in “floating point” form will be used. This means that the number
3 will tend to be represented by 2.99999 . . .9 or 3.0000 . . .1. Therefore, all
calculations will, in a strict sense, be erroneous and what will concern us is
that these errors are within the range that can be tolerated for engineering
purposes.

Employing the Fortran 95 intrinsic function SELECTED_REAL_KIND in library
precision we attempt in the calculations in this book to hold REAL numbers
to a precision of about 15 decimal places. The most significant measure of
error is not the “absolute” error, but the “relative” error. For example, if
x0 is exact and x an approximation to it, then what is significant is not
x − x0 (absolute) but (x − x0)/x0 (relative). In engineering calculations it
must always be remembered that excessive computational accuracy may be
unjustified if the data (for example some physical parameters) are not known
to within a relative error far larger than that achievable in the calculations.

Modern computers (even “hand” calculators) can represent numbers to a
high precision. Nevertheless, in extreme cases, errors can arise in calculations
due to three main sources, called “roundoff”, “truncation” and “cancellation”
respectively.

1.9.1 Roundoff

The following examples illustrate how accuracy can be affected by rounding
to two decimal places. First consider

0.56 × 0.65 = 0.36 hence (0.56 × 0.65) × 0.54 = 0.19

whereas

0.65 × 0.54 = 0.35 hence 0.56 × (0.65 × 0.54) = 0.20

In this case the order in which the rounding was performed influences the
result.

Now consider the sum,

51.4 × 23.25 − 50.25× 22.75 + 1.25 × 10.75 − 1.2 × 9.8 = 53.54 (exactly)

10 Numerical Methods for Engineers

If this calculation is worked to zero decimal places, two decimal places, three
significant figures and four significant figures respectively, adding forwards (F)
or backwards (B), rounding after multiplication (R) or before multiplicatione
(C), the answers given in Table 1.2 are found. These represent extremes

TABLE 1.2: Influence on accuracy of precision
level and order of calculations

FR FC BR BC
0 decimal places 53 24 53 24
2 decimal places 53.54 53.54 53.54 53.54
3 significant figures 61.6 51.7 60 50
4 significant figures 53.68 53.68 54 54

by modern standards, since calculations tend to be done on computers, but
illustrate the potential pitfalls in numerical work.

In doing floating point arithmetic, computers hold a fixed number of digits
in the “mantissa”, that is the digits following the decimal point and preceding
the “exponent” ×106 in the number 0.243875× 106. The effect of roundoff in
floating point calculations can be seen in these alternative calculations to six
digits of accuracy,

(0.243875× 106 + 0.412648× 101) − 0.243826× 106 = 0.530000× 102

and

(0.243875× 106 − 0.243826× 106) + 0.412648× 101 = 0.531265× 102

It should however be emphasized that many modern computers represent
floating point numbers by 64 binary digits, which retain about 15 significant
figures, and so roundoff errors are less of a problem than they used to be, at
least on scalar computers. For engineering purposes, sensitive calculations on
machines with only 32-bit numbers should always be performed in “double
precision”.

1.9.2 Truncation

Errors due to this source occur when an infinite process is replaced by a
finite one. For example, some of the intrinsic FUNCTIONs in Fortran 95 men-
tioned earlier compute their result by summing a series where, for example,

S =
∞∑

i=0

ai x
i would be replaced by the finite sum

N∑
i=0

ai x
i

Introduction and Programming Preliminaries 11

Consider the errors that might be introduced in the computation of ex with
N = 5, thus

ex ≈ 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!

Suppose we wish to calculate e1/3 using the intrinsic function EXP(0.3333).
Even before considering truncation, we have introduced a rounding error by
replacing 1/3 by 0.3333, thus

ε1 = e0.3333 − e1/3

= −.0000465196

Then we might truncate the series after five terms, leading to a further error
given by

ε2 = −
(

0.33335

5!
+

0.33336

6!
+

0.33337

7!
+

0.33338

8!
+

0.33339

9!
+ . . .

)
= −.0000362750

Finally we might sum with values rounded to 4 decimal places, thus

1 + 0.3333 + 0.0555 + 0.0062 + 0.0005 = 1.3955

where the propagated error from rounding is -0.0000296304, leading to a final
total error of -0.0001124250 to 10 decimal places.

1.9.3 Cancellation

The quadratic equation x2−2ax+ε = 0 has the roots x1 = a+
√
a2 − ε and

x2 = a−√
a2 − ε. If a is 100 and ε is 1, x2 = 100 −√

10000− 1. In extreme
cases, this could lead to dangerous cancellation and it would be safer to write
x2 =

ε(
a+

√
a2 − ε

) .

1.9.4 Intrinsic and library-supplied precision routines

To assist users in questions of error and accuracy Fortran 95 provides sev-
eral intrinsic FUNCTIONs, for example EPSILON, CEILING, FLOOR, HUGE, RADIX,
RANGE and TINY which return properties of REAL numbers attainable on a
particular processor.

Mathematical subroutine libraries often contain useful routines which help
users to appreciate the possibilities of numerical errors in digital compu-
tations. For example, the NAG library (see Table 1.1) contains a utility
MODULE nag_error_handlingwhich controls how errors are to be handled by
the Library and the information communicated to a user’s program.

12 Numerical Methods for Engineers

1.10 Graphical output

We expect that users of the programs and libraries described in this book
will wish to create graphical interpretations of their results in the form of “x−y
plots” and contour maps. While we do not provide any plotting software, by
listing the Fortran 95 source code users are invited to modify the output to
produce the results they require in a convenient format. Plotting can then be
performed using any of the numerous graphics packages available.

As an example, consider the widely used Excel plotting system, which is
part of Microsoft�Office Suite. Figure 7.4 described in Chapter 7 shows
the numerical solution of a second order differential equation describing the
motion of a simple damped oscillator from Example 7.7. The results produced
by Program 7.1 give three columns of numbers representing respectively, from
left to right, time, displacement and velocity of the oscillator. A typical set
of results (truncated here for the sake of brevity) is given in Results 1.1.

---One-Step Methods for Systems of ODEs---

***** 4TH ORDER RUNGE-KUTTA METHOD ****

x y(i) , i = 1, 2
0.00000E+00 -0.25000E-01 -0.10000E+01
0.50000E-02 -0.29713E-01 -0.88435E+00
0.10000E-01 -0.33835E-01 -0.76358E+00
0.15000E-01 -0.37343E-01 -0.63939E+00
0.20000E-01 -0.40226E-01 -0.51347E+00
0.25000E-01 -0.42478E-01 -0.38744E+00
0.30000E-01 -0.44103E-01 -0.26284E+00
0.35000E-01 -0.45111E-01 -0.14111E+00

.

.
88 lines removed

.

.
0.48000E+00 0.51851E-02 -0.16502E-01
0.48500E+00 0.50729E-02 -0.28215E-01
0.49000E+00 0.49045E-02 -0.39013E-01
0.49500E+00 0.46845E-02 -0.48810E-01
0.50000E+00 0.44182E-02 -0.57534E-01

Results 1.1: Typical results from Program 7.1 (Example 7.7 in Chapter 7)

In order to plot time vs. displacement using Excel we could follow the
following steps:

Introduction and Programming Preliminaries 13

1)“Copy” (ctrl-c) lines 6-106 of the output file (excluding the first five lines
of text and blank lines) and “Paste” (ctrl-v) them into cell A1 of the spread-
sheet.

2) Select cell A1 and then on the Excel Tool Bar go to Data|Text to Column-
s...

3) Check on “Delimited” and click on “Next>”
4) Check “Space”, click on “Next>” and then “Finished”.
5) This procedure should result in each column of data having its own

lettered column in the spreadsheet. Since there was white space before the
first column, it is likely that the first column of numbers appears in column
B.

6) If any cell appears as “########” the width needs adjusting, in which
case highlight the cell by clicking on it and on the Excel Tool Bar go to
Format|Column|Autofit Selection.

7) In order to plot Column B against Column C, highlight both columns
by clicking on “B” and then while holding down “ctrl” click on “C”.

8) On the Excel Tool Bar click on the “Chart Wizard”, select “XY(Scatter)”,
select the “Chart sub-type” and click on “Next>”, “Next>”, “Next>” and
“Finish”.

9) The Graph should now be visible on the screen. There is great flexibility
available for customizing the appearance of the graph by right-clicking on the
white space and selecting “Chart Options...”

Figure 7.4 and many other graphs presented in this text were obtained using
a similar approach to that described above.

1.11 Conclusions

A style of programming using portable subprograms (SUBROUTINEs and
FUNCTIONs in Fortran 95) has been outlined. Using this strategy, in sub-
sequent chapters the same subprograms will find use in many different con-
texts of numerical analysis. Attention has to be devoted to the possibility
of calculation errors, for example due to roundoff, which will vary from one
machine to another. Due to the relatively large “wordlengths” commonly
used in modern computers, this may seem to be a forgotten issue, but see
Smith and Margetts (2006) in the context of parallel computing. Chapters 2
to 8 go on to describe concise programs built up using subprograms wherever
possible. These chapters cover a subset of, and form an introduction to, more
comprehensive subroutine libraries such as NAG.

Chapter 2 deals with the numerical solution of sets of linear algebraic equa-
tions, while Chapter 3 considers roots of single nonlinear equations and sets of

14 Numerical Methods for Engineers

nonlinear equations. In Chapter 4, eigenvalue equations are considered, while
Chapter 5 deals with interpolation and curve fitting. Chapter 6 is devoted to
numerical “quadrature”, that is to say to numerical evaluation of integrals,
while Chapter 7 introduces the solution of ordinary differential equations by
numerical means. Chapter 8 is an introduction to the solution of partial d-
ifferential equations, using finite difference and finite element approaches. In
all chapters, mathematical ideas and definitions are introduced as they occur,
and most numerical aspects are illustrated by compact computer programs.
The “library” routines are described and listed in Appendices A and B re-
spectively.

All software described in the text can be downloaded from the web site
www.mines.edu/~vgriffit/NM

Chapter 2

Linear Algebraic Equations

2.1 Introduction

One of the commonest numerical tasks facing engineers is the solution of
sets of linear algebraic equations of the form,

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2 (2.1)
a31x1 + a32x2 + a33x3 = b3

commonly written
[A]{x} = {b} (2.2)

where [A] is a “matrix” and {x} and {b} are “vectors”.
In these equations the aij are constant known quantities, as are the bi. The

problem is to determine the unknown xi. In this chapter we shall consid-
er two different solution techniques, usually termed “direct” and “iterative”
methods. The direct methods are considered first and are based on row by
row “elimination” of terms, a process usually called “Gaussian elimination”.

2.2 Gaussian elimination

We begin with a specific set of equations

10x1 + x2 − 5x3 = 1 (a)
−20x1 + 3x2 + 20x3 = 2 (b) (2.3)

5x1 + 3x2 + 5x3 = 6 (c)

To “eliminate” terms, we could, for example, multiply equation (a) by two
and add it to equation (b). This would produce an equation from which the
term in x1 had been eliminated. Similarly, we could multiply equation (a) by
0.5 and subtract it from equation (c). This would also eliminate the term in
x1 leaving an equation in (at most) x2 and x3.

15

16 Numerical Methods for Engineers

We could formally write this process as

(b) −
(−20

10

)
× (a) −→ 5x2 + 10x3 = 4 (d)

(2.4)

(c) −
(

5
10

)
× (a) −→ 2.5x2 + 7.5x3 = 5.5 (e)

One more step of the same procedure would be

(e) −
(

2.5
5

)
× (d) −→ 2.5x3 = 3.5 (2.5)

Thus, for sets of n simultaneous equations, however big n might be, after n
steps of this process a single equation involving only the unknown xn would
remain. Working backwards from equation (2.5), a procedure usually called
“back-substitution”, x3 can first be found as 3.5/2.5 or 1.4. Knowing x3,
substitution in equation 2.4(d) gives x2 as 2.0 and finally substitution in
equation 2.3(a) gives x1 as 1.0. Writing the back-substitution process in
terms of matrices and vectors, we have

⎡
⎣ 10 1 −5

0 5 10
0 0 2.5

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

1
4

3.5

⎫⎬
⎭ (2.6)

or

[U]{x} = {y} (2.7)

The matrix [U] is called an “upper triangular matrix” and it is clear that such
matrices will be very convenient in linear equation work.

In a similar way, if we had the system of equations

⎡
⎣ l11 0 0
l21 l22 0
l31 l32 l33

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩
y1
y2
y3

⎫⎬
⎭ (2.8)

or

[L]{x} = {y} (2.9)

it would be relatively easy to calculate {x} given [L] and {y}. The matrix
[L] is called a “lower triangular matrix”, and the process of finding {x} in
equations (2.9) is called “forward-substitution”. The direct methods we shall
discuss all involve, in some way or another, matrices like [L] and [U].

Linear Algebraic Equations 17

Example 2.1

Use Gaussian elimination to solve the following set of equations.

2x1 − 3x2 + x3 = 7
x1 − x2 − 2x3 = −2
3x1 + x2 − x3 = 0

Solution 2.1

Eliminate the first column:

2x1 − 3x2 + x3 = 7
0.5x2 − 2.5x3 = −5.5
5.5x2 − 2.5x3 = −10.5

Eliminate the second column:

2x1 − 3x2 + x3 = 7
0.5x2 − 2.5x3 = −5.5

25x3 = 50

Back-substitute:

x3 = 2
x2 = (−5.5 + 2.5(2))/0.5 = −1
x1 = (7 − 2 + 3(−1))/2 = 1

Program 2.1: Gaussian elimination for linear simultane-
ous equations

PROGRAM nm21
!---Gaussian Elimination for Linear Simultaneous Equations---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,j,k,n; REAL(iwp)::x,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n)); READ(10,*)a; READ(10,*)b
WRITE(11,’(A)’) &

18 Numerical Methods for Engineers

"---Gaussian Elimination for Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b

!---Convert to Upper Triangular Form---
DO k=1,n-1
IF(ABS(a(k,k))>1.E-6_iwp)THEN
DO i=k+1,n

x=a(i,k)/a(k,k); a(i,k)=zero
DO j=k+1,n; a(i,j)=a(i,j)-a(k,j)*x; END DO
b(i)=b(i)-b(k)*x

END DO
ELSE; WRITE(11,*)"Zero pivot found in row",k; STOP
END IF

END DO
WRITE(11,’(/,A)’)"Modified Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Modified Right Hand Side Vector",b

!---Back-substitution---
DO i=n,1,-1
x=b(i)
IF(i<n)THEN
DO j=i+1,n; x=x-a(i,j)*b(j); END DO

END IF
b(i)=x/a(i,i)

END DO
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm21

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Data 2.1: Gaussian Elimination

Linear Algebraic Equations 19

List 2.1:

Scalar integers:
i simple counter
j simple counter
k simple counter
n number of equations to be solved

Scalar reals:
x elimination factor
zero set to zero

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n, overwritten by solution

---Gaussian Elimination for Linear Simultaneous Equations---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Modified Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
0.0000E+00 0.5000E+01 0.1000E+02
0.0000E+00 0.0000E+00 0.2500E+01

Modified Right Hand Side Vector
0.1000E+01 0.4000E+01 0.3500E+01

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.1: Gaussian Elimination

In equations (2.4) and (2.5) it can be seen that the elements of the original
arrays [A] and {b} are progressively altered during the calculation. In Pro-
gram 2.1, once the terms in {x} have been calculated, they are stored in {b}
since the original {b} has been lost anyway.

In passing it should be noted that equations (2.4) involve division by the
coefficient a11 (equal to 10 in this case) while equations (2.5) involve division

20 Numerical Methods for Engineers

by the modified coefficient a22 (equal to 5 in this case).
These coefficients akk where 1 ≤ k ≤ n are called the “pivots” and it will

be clear that they might be zero, either at the beginning of the elimination
process, or during it. We shall return to this problem later, but for the moment
shall merely check whether akk is or has become zero and stop the calculation
if this is so. Input details are shown in Data 2.1 with output in Results 2.1.

The program begins by reading in the number of equations n, the array [A]
(stored in a) and the right-hand side vector {b} (stored in b). Because of the
way Fortran READ works, a must first be transposed. A check is first made
to see if diagonal akk is greater than “zero” (a small number in this case).
Rows 2 to n are then processed according to equations (2.4) and (2.5) and the
modified [A] and {b} printed out for comparison with equations (2.6). The
back-substitution calculation is then performed, leaving the original unknowns
{x} stored in {b} which is printed out.

2.2.1 Observations on the elimination process

Since only the upper triangle of the modified matrix is needed for back-
substitution, it is not necessary to compute the zero terms below the pivot
at each stage of the elimination process. In order to emphasize the upper
triangular nature of the modified matrix however, Program 2.1 explicitly sets
the terms below the pivot to zero. Further, during the conversion of [A] to
upper triangular form, it was necessary to operate also on {b}. Therefore if
equations with the same coefficients [A] have to be solved for different {b},
which are not known in advance as is often the case, the conversion of [A] to
triangular form would be necessary for every {b} using this method.

2.3 Equation solution using factorization

We therefore seek a way of implementing Gaussian elimination so that mul-
tiple right-hand side {b} vectors can be processed after only a single “decom-
position” of [A] to triangular form. Such methods involve “factorization” of
[A] into triangular matrix components. For example, it can be shown that
matrix [A] can always be written as the product

[A] = [L][U] (2.10)

where [L] is a lower triangular matrix and [U] an upper triangular matrix, in
the forms

[L] =

⎡
⎣ l11 0 0
l21 l22 0
l31 l32 l33

⎤
⎦ (2.11)

and

[U] =

⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦ (2.12)

Linear Algebraic Equations 21

The diagonal terms lkk and ukk are arbitrary except that their product is
known. For example,

lkkukk = akk (2.13)

so it is conventional to assume that either lkk or ukk is unity, hence⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =

⎡
⎣ 1 0 0
l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦ (2.14)

is a typical statement of [L][U] factorization.
When the triangular factors [L] and [U] in equation (2.10) have been com-

puted, equation solution proceeds as follows:

[A]{x} = {b}

or
[L][U]{x} = {b} (2.15)

We now let
[U]{x} = {y} (2.16)

hence
[L]{y} = {b} (2.17)

Since [L] and {b} are known, and [L] does not depend on {b}, this process
is simply the “forward-substitution” we saw in equation (2.9). Once equation
(2.17) has been solved for {y}, equation (2.16) is then the “back-substitution”
described previously by equation (2.7). A solution algorithm will therefore
consist of three phases, namely a factorization (equation 2.15) followed by a
forward-substitution (equation 2.17) and a back-substitution (equation 2.16).
The procedures of factorization and forward- and back-substitution will be
used in other contexts in this book and elsewhere, so that it makes sense to
code them as library subroutines. They are called lufac, subfor and subbac
respectively and their actions and parameters are described in Appendix A
with full listings in Appendix B.

Equations (2.14) are evaluated as follows:

Row 1: u11 = a11, u12 = a12, u13 = a13

This shows that with unity on the diagonal of [L], the first row of [U] is
simply a copy of the first row of [A]. Subroutine lufac therefore begins by
nulling [L] (called lower) and [U] (called upper) and by copying the first row
of [A] into upper.

Row 2: l21u11 = a21, hence l21 =
a21

u11

22 Numerical Methods for Engineers

Having found l21, u22 and u23 can be computed from

l21u12 + u22 = a22, hence u22 = a22 − l21u12 and

l21u13 + u23 = a23, hence u23 = a23 − l21u13

Row 3: l31u11 = a31, hence l31 =
a31

u11

l31u12 + l32u22 = a32, hence l32 =
a32 − l31u12

u22

Having found l31 and l32, u33 can be computed from

l31u13 + l32u23 + u33 = a33, hence u33 = a33 − l31u13 − l32u23

Subroutine lufac carries out these operations in two parts, commented
“Lower Triangular Factors” and “Upper Triangular Factors” respectively. A
“zero pivot” is tested for in the same way as was done in Program 2.1.

Example 2.2

Use [L][U] factorization to solve the following set of equations

2x1 − 3x2 + x3 = 7
x1 − x2 − 2x3 = −2
3x1 + x2 − x3 = 0

Solution 2.2

Factorize the coefficient matrix into upper and lower triangular matrices,
hence [A] = [L][U],⎡

⎣ 2 −3 1
1 −1 −2
3 1 −1

⎤
⎦ =

⎡
⎣ 1 0 0
l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦

Solving for lij and uij gives

[L] =

⎡
⎣ 1. 0. 0.

0.5 1. 0.
1.5 11. 1.

⎤
⎦

[U] =

⎡
⎣ 2. −3. 1.

0. 0.5 −2.5
0. 0. 25.

⎤
⎦

Linear Algebraic Equations 23

Forward-substitution gives [L]{y} = {b}⎡
⎣ 1. 0. 0.

0.5 1. 0.
1.5 11. 1.

⎤
⎦
⎧⎨
⎩
y1
y2
y3

⎫⎬
⎭ =

⎧⎨
⎩

7
−2

0

⎫⎬
⎭

hence
y1 = 7, y2 = −2 − 0.5(7) = −5.5

y3 = −1.5(7) + 11(5.5) = 50

Back-substitution gives [U]{x} = {y}⎡
⎣ 2. −3. 1.

0. 0.5 −2.5
0. 0. 25.

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

7.
−5.5
50.

⎫⎬
⎭

hence
x3 = 50/25 = 2, x2 = (−5.5 + 2.5(2))/0.5 = −1

x1 = (7 − 2 + 3(−1))/2 = 1

Program 2.2: Gaussian elimination using [L][U] factoriza-
tion

PROGRAM nm22
!---Gaussian Elimination using LU Factorization---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,n; REAL(iwp),ALLOCATABLE::a(:,:),b(:),lower(:,:), &
upper(:,:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),lower(n,n),upper(n,n),b(n))
READ(10,*)a; READ(10,*)b
WRITE(11,’(A)’) &
"---Gaussian Elimination using LU Factorization---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
CALL lufac(a,lower,upper)
WRITE(11,’(/,A)’)"Lower Triangular Factors"
DO i=1,n; WRITE(11,’(6E12.4)’)lower(i,:); END DO
WRITE(11,’(/,A)’)"Upper Triangular Factors"
DO i=1,n; WRITE(11,’(6E12.4)’)upper(i,:); END DO
CALL subfor(lower,b); CALL subbac(upper,b)
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm22

24 Numerical Methods for Engineers

List 2.2:

Scalar integers:
i simple counter
n number of equations to be solved

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n, overwritten by solution
lower lower triangular factor of a
upper upper triangular factor of a

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Data 2.2: [L][U] Factorization

---Gaussian Elimination using LU factorization---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Lower Triangular Factors
0.1000E+01 0.0000E+00 0.0000E+00
-0.2000E+01 0.1000E+01 0.0000E+00
0.5000E+00 0.5000E+00 0.1000E+01

Upper Triangular Factors
0.1000E+02 0.1000E+01 -0.5000E+01
0.0000E+00 0.5000E+01 0.1000E+02
0.0000E+00 0.0000E+00 0.2500E+01

Linear Algebraic Equations 25

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.2: [L][U] Factorization

The program simply consists of reading in n, [A] and {b} followed by three
subroutine calls to lufac, subfor and subbac. The lower and upper triangu-
lar factors are printed out, followed by the solution which has overwritten the
original right-hand side in {b}. Input data are as in Data 2.2, with output in
Results 2.2.

2.3.1 Observations on the solution process by factorization

Comparison of outputs in Results 2.1 and 2.2 will show that the upper
triangular factor of [A] in Results 2.2 is precisely the same as the modified
upper triangular part of [A] in Results 2.1. Thus Programs 2.1 and 2.2 have
much in common. However, if many {b} vectors were to be processed, it
would merely be necessary to call lufac once in Program 2.2 and to create a
small loop reading in each new {b} and calling subfor and subbac to produce
the solutions. Since the time taken in lufac is substantially more than that
taken in subfor and subbac, this yields great economies as n increases.

Inspection of the arithmetic in lufac will show that storage could be saved
by overwriting [A] by lower and upper, and this will be done in subsequent
programs. It has not been implemented in this first factorization program in
an attempt to make the computational process as clear as possible.

2.4 Equations with a symmetrical coefficient matrix

If the coefficients of the [A] matrix satisfy the condition

aij = aji (2.18)

that matrix is said to be symmetrical. For example the matrix

[A] =

⎡
⎣ 16 4 8

4 5 −4
8 −4 22

⎤
⎦ (2.19)

has symmetrical coefficients. If subroutine lufac is used to factorize this
matrix, the result will be found to be

[L] =

⎡
⎣ 1. 0. 0.

0.25 1. 0.
0.5 −1.5 1.

⎤
⎦ (2.20)

26 Numerical Methods for Engineers

[U] =

⎡
⎣16 4 8

0 4 −6
0 0 9

⎤
⎦ (2.21)

If the rows of [U] are then divided by ukk we get

[U1] =

⎡
⎣1 0.25 0.5

0 1 −1.5
0 0 1

⎤
⎦ (2.22)

and it can be seen that [L] = [U1]T . The scaling of [U] to [U1] is accomplished
in matrix terms by

[U] = [D][U1] (2.23)

where [D] is the diagonal matrix

[D] =

⎡
⎣ 16 0 0

0 4 0
0 0 9

⎤
⎦ (2.24)

Thus, if [A] is a symmetrical matrix, we can write

[A] = [L][U] = [L][D][U1] = [L][D][L]T (2.25)

Since the terms in [L]T (the “transpose”) can be inferred from the terms in
[L], it will be sufficient to compute only [L] (or [L]T), involving approximately
half the work in the [L][U] factorization of unsymmetrical matrices.

Example 2.3

Use [L][D][L]T factorization to solve the symmetrical equations

3x1 − 2x2 + x3 = 3
−2x1 + 3x2 + 2x3 = −3
x1 + 2x2 + 2x3 = 2

Solution 2.3

The [L][D][L]T factors can be written in the form

[L][D][L]T =

⎡
⎣ 1 0 0
l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣d11 0 0

0 d22 0
0 0 d33

⎤
⎦
⎡
⎣1 l21 l31

0 1 l32
0 0 1

⎤
⎦

=

⎡
⎣ 1 0 0
l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣d11 d11l21 d11l31

0 d22 d22l32
0 0 d33

⎤
⎦

Linear Algebraic Equations 27

hence

[A] =

⎡
⎣ 3 −2 1
−2 3 2

1 2 2

⎤
⎦ =

⎡
⎣ 1 0 0
l21 1 0
l31 l32 1

⎤
⎦
⎡
⎣d11 d11l21 d11l31

0 d22 d22l32
0 0 d33

⎤
⎦

Solving for the factors gives

d11 = 3, l21 = −2/3 = −0.6667, l31 = 1/3 = 0.3333

d22 = 3− 3(−0.6667)2 = 1.6667, l32 = (2− 3(−0.6667)(0.3333))/1.6667 = 1.6

d33 = 2 − 3(0.3333)2 − 1.6667(1.6)2 = −2.6

thus,

[L] =

⎡
⎣ 1. 0. 0.
−0.6667 1. 0.

0.3333 1.6 1.

⎤
⎦

and

[D][L]T =

⎡
⎣ 3. −2. 1.

0. 1.6667 2.6667
0. 0. −2.6

⎤
⎦

Forward-substitution gives

[L]{y} = {b}⎡
⎣ 1. 0. 0.
−0.6667 1. 0.

0.3333 1.6 1.

⎤
⎦
⎧⎨
⎩
y1
y2
y3

⎫⎬
⎭ =

⎧⎨
⎩

3
−3

2

⎫⎬
⎭

hence,

y1 = 3, y2 = −3 + 3(0.6667) = −1

y3 = 2 − 0.3333(3) + 1.6 = 2.6

Back-substitution gives

[D][L]T {x} = {y}⎡
⎣3. −2. 1.

0. 1.6667 2.6667
0. 0. −2.6

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

3
−1

2.6

⎫⎬
⎭

hence

x3 = −1, x2 = (−1 + 2.6667)/1.6667 = 1

x1 = (3 + 1 + 2)/3 = 2

28 Numerical Methods for Engineers

Program 2.3: Gaussian elimination using [L][D][L]T factor-
ization

PROGRAM nm23
!---Gaussian Elimination Using LDLT Factorization---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,j,n; REAL(iwp),ALLOCATABLE::a(:,:),b(:),d(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n),d(n))
DO i=1,n; READ(10,*)a(i,i:n); a(i:n,i)=a(i,i:n); END DO
READ(10,*)b; WRITE(11,’(A)’) &
"---Gaussian Elimination using LDLT Factorization---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4,/)’)"Right Hand Side Vector",b
CALL ldlt(a,d)
WRITE(11,’(/A)’)"Lower Triangular Factors"
DO i=1,n; WRITE(11,’(6E12.4)’)(a(i,j)/d(j),j=1,i); END DO
WRITE(11,’(/,A)’)"Diagonal Terms"
WRITE(11,’(6E12.4)’)d
CALL ldlfor(a,b)
DO i=1,n; a(i,:)=a(i,:)/d(i); END DO
CALL subbac(a,b)
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm23

List 2.3:

Scalar integers:
i simple counter
j simple counter
n number of equations to be solved

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n, overwritten by solution
d diagonal matrix (stored as a vector)

Linear Algebraic Equations 29

Number of equations n
3

Coefficient matrix (a(i,:),i=1,i)
16. 4. 8.

5. -4.
22.

Right hand side b
4. 2. 5.

Data 2.3: [L][D][L]T Factorization

---Gaussian Elimination using LDLT Factorization---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Lower Triangular Factors
0.1000E+01
0.2500E+00 0.1000E+01
0.5000E+00 -0.1500E+01 0.1000E+01

Diagonal Terms
0.1600E+02 0.4000E+01 0.9000E+01

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.3: [L][D][L]T Factorization

The program reads in the number of equations to be solved, the upper-
triangle of the symmetrical coefficient matrix and the right-hand side vector.

Subroutine ldlt forms the matrix [U] from equation (2.21), which over-
writes [A], and the diagonal matrix [D] in equation (2.24), which is stored as
a vector. The program then infers [L] from [U] and prints out [L] together
with the diagonals from [D].

In the program, forward-substitution operating on [L] is accomplished us-
ing the special subroutine for symmetrical matrices ldlfor. Conventional

30 Numerical Methods for Engineers

back-substitution operating on [D][L]T using subroutine subbac completes
the process and the results are printed. Input data are as in Data 2.3, with
output in Results 2.3.

A useful by-product of this factorization is that the determinant of the
coefficient matrix [A] can be found as the product of the diagonal elements
of [D], that is 16 × 4 × 9 in this case, or 576.

2.4.1 Quadratic form and positive definiteness

A “quadratic form” can be defined as a second degree expression in n vari-
ables of the form

Q(x) =
n∑

i=1

n∑
j=1

aijxixj where aij = aji (2.26)

This quadratic form is “positive” if it is equal to or greater than zero for
all values of its variables xi, i = 1, 2, · · · , n. A positive form which is zero
only for the values x1 = x2 = · · · = xn =0 is said to be “positive definite”. A
positive quadratic form which is not positive definite is said to be “positive
semi-definite”.

With our usual definition of vectors and matrices, namely

{x} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1

x2

...
xn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, [A] =

⎡
⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

the quadratic form can be written compactly as

Q(x) = {x}T [A]{x} (2.27)

where [A] is the “matrix of the quadratic form Q(x)”. Q(x) is “singular” or
“nonsingular” if |A| is zero or nonzero respectively.

For the quadratic form {x}T [A]{x} to be positive definite, the determinants

a11,

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , · · · ,
∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
must all be positive.

Linear Algebraic Equations 31

Example 2.4

Show that the quadratic form

[
x1 x2 x3

] ⎡⎣ 1 2 −2
2 5 −4

−2 −4 5

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

x2
1 + 2x1x2 − 2x1x3

+2x2x1 + 5x2
2 − 4x2x3

−2x3x1 − 4x3x2 + 5x2
3

is positive definite.

Solution 2.4

The three determinants,

1,
∣∣∣∣1 2
2 5

∣∣∣∣ = 1,

∣∣∣∣∣∣
1 2 −2
2 5 −4

−2 −4 5

∣∣∣∣∣∣ = 1

are all positive, hence the quadratic form

Q(x) = (x1 + 2x2 − 2x3)2 + x2
2 + x2

3

is positive definite, since it can only be zero if x1 = x2 = x3 = 0.

2.4.2 Cholesky’s method

When the coefficient matrix [A] is symmetrical and positive definite, a
slightly different factorization can be obtained by forcing [U] to be the trans-
pose of [L]. This factorization can be written

[A] = [L][L]T (2.28)

or ⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =

⎡
⎣ l11 0 0
l21 l22 0
l31 l32 l33

⎤
⎦
⎡
⎣ l11 l21 l31

0 l22 l32
0 0 l33

⎤
⎦ (2.29)

In this case l211 = a11 and so l11 =
√
a11 and in each row a square root

evaluation is necessary. For the [A] given by equation (2.19) the Cholesky
factors are

[A] =

⎡
⎣ 16 4 8

4 5 −4
8 −4 22

⎤
⎦ =

⎡
⎣4 0 0

1 2 0
2 −3 3

⎤
⎦
⎡
⎣ 4 1 2

0 2 −3
0 0 3

⎤
⎦ = [L][L]T (2.30)

If the symmetrical matrix to be factorized is not positive definite, then the
Cholesky factorization will fail as indicated by the need to take the square
root of a negative number.

32 Numerical Methods for Engineers

It may be noted that the Cholesky factor [L] can also be retrieved from the
[L][D][L]T factors (equation 2.25) by multiplying each of the columns of [L]
by the square root of the corresponding diagonal term from [D].

Example 2.5

Use Cholesky factorization to solve the system of equations

16x1 + 4x2 + 8x3 = 16
4x1 + 5x2 − 4x3 = 18

8x1 − 4x2 + 22x3 = −22

Solution 2.5

Assuming the coefficient matrix is positive definite, factorize as

[A] = [L][L]T

⎡
⎣ 16 4 8

4 5 −4
8 −4 22

⎤
⎦ =

⎡
⎣ l11 0 0
l21 l22 0
l31 l32 l33

⎤
⎦
⎡
⎣ l11 l21 l31

0 u22 l32
0 0 u33

⎤
⎦

Solving for lij gives

[L] =

⎡
⎣ 4 0 0

1 2 0
2 −3 3

⎤
⎦

Forward-substitution gives
[L]{y} = {b}⎡

⎣ 4 0 0
1 2 0
2 −3 3

⎤
⎦
⎧⎨
⎩
y1
y2
y3

⎫⎬
⎭ =

⎧⎨
⎩

16
18

−22

⎫⎬
⎭

hence
y1 = 16/4 = 4, y2 = (18 − 1(4))/2 = 7

y3 = (−22 + 3(7) − 2(4))/3 = −3

Back-substitution gives
[L]T {x} = {y}⎡

⎣ 4 1 2
0 2 −3
0 0 3

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

4
7

−3

⎫⎬
⎭

hence
x3 = −3/3 = −1, x2 = (7 − 3(1))/2 = 2

x1 = (4 − 1(2) − 2(−1))/4 = 1

Linear Algebraic Equations 33

2.5 Banded equations

In many engineering applications, equations have to be solved when the
coefficients have a “banded” structure (see, for example, Chapter 8). This
means that the nonzero coefficients are clustered around the diagonal stretch-
ing from the top left-hand corner of the matrix [A] to the bottom right-hand
corner. A typical example is shown in Figure 2.1 where there are never more
than two nonzero coefficients to either side of the “leading diagonal” in any
row. The “bandwidth” of this system is said to be 5. If the coefficients are
symmetrical, only the leading diagonal and two more coefficients per row need
to be stored and operated on. In this case the “half bandwidth” is said to be
2 (not including the leading diagonal).

Figure 2.1: Structure of a banded matrix.

If [A] is symmetrical and we wish to store only the nonzero terms in the
lower triangle as indicated by the bold font in Figure 2.1, only 15 terms are
involved as opposed to 36 (if we stored the entire matrix). A reasonably
economical method of storage is to keep the band in a rectangular array, by
shifting the rows to obtain the structure⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 a11

0 a21 a22

a31 a32 a33

a42 a43 a44

a53 a54 a55

a64 a65 a66

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.31)

This is still slightly inefficient since we have had to store 18 terms by including
zeros which are not required in the first two rows. This storage method has

34 Numerical Methods for Engineers

the advantage however that there are three terms (the half bandwidth plus 1)
in each row, which makes programming rather easy. The diagonal terms or
“pivots” are also conveniently located in the third column.

Program 2.4: Cholesky [L][L]T factorization using banded
storage

PROGRAM nm24
!---Cholesky LLT Factorization Using Banded Storage---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iw,iwp1,j,n; REAL(iwp),ALLOCATABLE::b(:),lb(:,:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n,iw; iwp1=iw+1; ALLOCATE(b(n),lb(n,iwp1))
READ(10,*)(lb(i,:),i=1,n); READ(10,*)b
WRITE(11,’(A)’) &
"---Cholesky LLT Factorization Using Banded Storage---"

WRITE(11,’(/,A)’)"Banded Coefficient Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)lb(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
CALL cholin(lb)
WRITE(11,’(/,A)’)"L in Band Form"
DO i=1,n; WRITE(11,’(6E12.4)’)lb(i,:); END DO
CALL chobac(lb,b)
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm24

Number of equations n iw
and half bandwidth 3 2

Coefficient matrix (lb(i,:),i=1,n)
(lower triangle in band form) 0. 0. 16.

0. 4. 5.
8. -4. 22.

Right hand side b
4. 2. 5.

Data 2.4: Cholesky [L][L]T Factorization Using Banded Storage

---Cholesky LLT Factorization Using Banded Storage---

Banded Coefficient Matrix
0.0000E+00 0.0000E+00 0.1600E+02
0.0000E+00 0.4000E+01 0.5000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Linear Algebraic Equations 35

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

L in Band Form
0.0000E+00 0.0000E+00 0.4000E+01
0.0000E+00 0.1000E+01 0.2000E+01
0.2000E+01 -0.3000E+01 0.3000E+01

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.4: Cholesky [L][L]T Factorization Using Banded Storage

List 2.4:

Scalar integers:
i simple counter
iw half-bandwidth
iwp1 half-bandwidth plus 1
j simple counter
n number of equations to be solved

Dynamic real arrays:
b “right hand side” vector of length n, overwritten by solution
lb lower triangle coefficients stored as a band (see equation 2.31)

The number of equations and half bandwidth are read in, followed by the
lower “half” of [A] in the appropriate form of equation (2.31). Subroutine
cholin computes the lower triangular factor which is printed out in band
form. A call to chosub completes the substitution phase and the results, held
in b, are printed. Input data are as in Data 2.4, with output in Results 2.4.

2.6 Compact storage for variable bandwidths

It is quite common to encounter symmetrical equation coefficient matrices
which have the structure indicated in Figure 2.2.

The system is banded, with a half bandwidth of 4, but also has a significant
number of zeros within the band. If the progress of factorization is monitored,

36 Numerical Methods for Engineers

Figure 2.2: Structure of a skyline matrix.

it will be found that, in the lower triangle, zeros lying closer to the diagonal
than a nonzero coefficient in that row will become nonzero during the calcula-
tion (called “fill in”) whereas zeros lying further away from the diagonal than
the outermost nonzero coefficient in that row will remain zero throughout the
calculation and need not be stored or processed.

In the upper triangle, the same can be said of columns, and in Figure 2.2
a dashed line delineates the outermost extent of coefficients which need to be
processed. Because of the appearance of this line in the upper triangle it is
sometimes called the “skyline” of the coefficients.

In the case of the coefficients shown in Figure 2.2, only 16 actually need
be stored (marked in bold), compared with 30 in a fixed bandwidth method
such as that used in Program 2.4. The “skyline” coefficients would typically
be stored in a one-dimensional array of the form

[
a11 a12 a22 a23 a33 a44 a15 0 a35 a45 a55 a26 a36 0 a56 a66

]T
(2.32)

The penalty incurred by using a variable bandwidth technique is that addi-
tional information must be kept of the number of coefficients to be processed
in each column (row). This information is conveniently provided by a second
one-dimensional (integer) array that holds the locations of the diagonal terms
in the array of equation (2.32), thus

[
1 3 5 6 11 16

]T (2.33)

Program 2.5: Cholesky [L][L]T factorization using skyline
storage

PROGRAM nm25
!---Cholesky LLT Factorization Using Skyline Storage---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::ir,n; INTEGER,ALLOCATABLE::kdiag(:)

Linear Algebraic Equations 37

REAL(iwp),ALLOCATABLE::a(:),b(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(kdiag(n),b(n))
READ(10,*)kdiag; ir=kdiag(n); ALLOCATE(a(ir)); READ(10,*)a
READ(10,*)b; WRITE(11,’(A)’) &
"---Cholesky LLT Factorization Using Skyline Storage---"

WRITE(11,’(/,A,/,6E12.4)’)"Coefficient Vector",a
WRITE(11,’(/,A)’)"Diagonal Locations"; WRITE(11,’(8I5)’)kdiag
WRITE(11,’(/,A)’)"Right Hand Side Vector"; WRITE(11,’(6E12.4)’)b
CALL sparin(a,kdiag); CALL spabac(a,b,kdiag)
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm25

In the program, n is first read in, followed by the diagonal location vector
called kdiag as described in equation (2.33). Then the equation coefficients
called a are then read in,

followed by the right-hand side vector b. Calls to the “skyline” factorization
and substitution routines sparin and spabac complete the solution process
and the results, held in b, can be printed. To test the program, we return to
our familiar set of three simultaneous equations, leading to the input of Data
2.5 and the output of Results 2.5.

List 2.5:

Scalar integers:
ir length of coefficient vector a
n number of equations to be solved

Dynamic integer array:
kdiag addresses of diagonal components of a

Dynamic real arrays:
a skyline coefficients stored as a vector or length ir
b “right hand side” vector of length n, overwritten by solution

Number of equations n
3

Skyline diagonal locations kdiag
1 3 6

Coefficient matrix a
(in skyline form) 16. 4. 5. 8. -4. 22.

38 Numerical Methods for Engineers

Right hand side b
4. 2. 5.

Data 2.5: Cholesky [L][L]T Factorization Using Skyline Storage

---Cholesky LLT Factorization Using Skyline Storage---

Coefficient Vector
0.1600E+02 0.4000E+01 0.5000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Diagonal Locations
1 3 6

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.5: Cholesky [L][L]T Factorization Using Skyline Storage

2.7 Pivoting

In the solution of unsymmetrical equations using conventional Gaussian
elimination (Program 2.1) or [L][U] factorization (Program 2.2) we side-
stepped the problem of what to do should a leading diagonal component
of the coefficient matrix be zero to start with, or become zero during the
solution process. In the next program, we illustrate how to cope with this
by using a row interchange technique usually called “pivoting”. We saw that
the crucial terms or pivots lay on the leading diagonal and so the technique
involves searching for the “largest” (absolute) coefficient in the rows not so
far processed, and moving it into the leading diagonal position by row and
column interchange.

For example, returning to equation (2.3) the “largest” coefficient is -20 in
row 2, so this is interchanged with row 1 to give

−20x1 + 3x2 + 20x3 = 2
10x1 + x2 − 5x3 = 1
5x1 + 3x2 + 5x3 = 6

(2.34)

Linear Algebraic Equations 39

After one step of elimination (or factorization) we would have

−20x1 + 3x2 + 20x3 = 2
2.5x2 + 5x3 = 2

3.75x2 + 10x3 = 6.5
(2.35)

The largest coefficient in rows 2 to 3 is now 10 in row 3/column 3, so row 3
is interchanged with row 2 and column 3 interchanged with column 2 to give

−20x1 + 20x3 + 3x2 = 2
10x3 + 3.75x2 = 6.5
5x3 + 2.5x2 = 2

(2.36)

leading to the final factorization,

−20x1 + 20x3 + 3x2 = 2
10x3 + 3.75x2 = 6.5

0.625x2 = −1.25
(2.37)

Back-substitution leads to

x2 = −1.25/0.625 = −2, x3 = (6.5 − 3.75(−2))/10 = 1.4

x1 = (2 − 3(−2)− 20(1.4))/(−20) = 1

which is the same solution as before, but the unknowns are obtained in a
different order dictated by the preceding column interchanges.

In an effective but somewhat less robust approach involving only row inter-
changes, the search is called “partial pivoting”. In this approach, the search
for the largest absolute term is limited to the column below the diagonal
terms.

For equations with unsymmetrical coefficients, pivoting is to be recom-
mended. Even if a pivot does not become zero in a conventional elimination,
a “small” pivot is undesirable because of potential “round-off” errors (see
Chapter 1). Should the pivot become “zero”, the set of equations is singular
or very nearly so. Fortunately, for equations with symmetrical coefficients
which are “positive definite” (see Section 2.4.1), pivoting is not necessary and
Programs 2.3 to 2.5 can be used. It is also the case that systems of equations
developed by engineering analysis techniques, notably the finite difference and
finite element methods (see Chapter 8), are often “diagonally dominant”.

The process in Program 2.6 is available in the nm_lib library as function
eliminate, so that the statement eliminate(a,b) will return the desired
result (see, e.g., Program 4.6).

40 Numerical Methods for Engineers

Program 2.6: [L][U] factorization with pivoting

PROGRAM nm26
!---LU Factorization With Pivoting---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,n; INTEGER,ALLOCATABLE::row(:)
REAL(iwp),ALLOCATABLE::a(:,:),b(:),sol(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n),row(n),sol(n)); READ(10,*)a
READ(10,*)b; WRITE(11,’(A)’) &
"---LU Factorization With Pivoting---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
CALL lupfac(a,row); CALL lupsol(a,b,sol,row)
WRITE(11,’(/,A,/,6I5)’)"Back-Substitution Order",row
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",sol

END PROGRAM nm26

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Data 2.6: [L][U] Factorization with Pivoting

---LU Factorization With Pivoting---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Linear Algebraic Equations 41

Back-Substitution Order
2 3 1

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.6: [L][U] Factorization with Pivoting

List 2.6:

Scalar integers:
i simple counter
n number of equations to be solved

Dynamic integer array:
row column interchange numbers

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
sol solution vector of length n

In this program the interchanges are carried out in a special [L][U] factor-
ization using subroutine lupfac. This stores the new row order in an integer
array row for use in the substitution phase, carried out by subroutine lupsol.
The factorization arithmetic remains the same. The data are exactly the
same as for Program 2.2. The program reads in n, a and b, calls the factoriza-
tion and substitution routines and outputs the order in which the unknowns
are computed in the back-substitution phase. The solution is output in the
conventional order. Input data are as in Data 2.6, with output in Results 2.6.

2.7.1 Ill-conditioning

Despite our best efforts to select optimum pivots, a set of linear equations
may not be solvable accurately by any of the methods we have just described,
especially when “hand” calculation techniques are employed. When this is so,
the set of equations is said to be “ill-conditioned”. Fortunately, modern elec-
tronic calculators are capable of working to many decimal places of accuracy
and so the conditioning of sets of equations is not of such great importance as
it was when “hand” calculations implied only a few decimal places of accuracy.

A very well-known example of ill-conditioned equations arises in the form
of the “Hilbert matrix” obtained from polynomial curve fitting. The set of

42 Numerical Methods for Engineers

equations so derived take the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

1
6

1
7

1
8

1
9

1
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

x4

x5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1

1

1

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.38)

In Table 2.1, numerical solutions rounded off to 4, 5, 6, 7 and 8 decimal places
are compared with the true solution. It can be seen that something like 8 dec-
imal places of accuracy are necessary for an answer adequate for engineering
purposes. When using computers with 32-bit words, engineers are advised to
use “double precision” , i.e., 64-bit words, which should achieve something like
15 decimal places of accuracy and be sufficient for most practical purposes.

The precision of calculation performed by programs described in this text is
typically in “double precision” and controlled by the module precision (see
Chapter 1).

TABLE 2.1: Influence of precision on accuracy of numerical solutions to
equation (2.38)

True Solution x1 = 30 x2 = −420 x3 = 1680 x4 = −2520 x5 = 1260
4DP -8.8 90.5 -196.0 58.9 75.6
5DP 55.3 746.5 2854.9 4105.2 1976.9
6DP 13.1 229.9 1042.7 1696.4 898.1
7DP 25.9 373.7 1524.4 2318.6 1171.4
8DP 29.65 416.02 1666.62 2502.69 1252.39

Although mathematical measures of ill-conditioning, called “condition num-
bers,” can be calculated, this process is expensive and not used in engineering
practice. By far the best guides to solution accuracy are independent checks
on the physical consistency of the results.

2.8 Equations with prescribed solutions

Consider a common engineering occurrence of the system of equations
[A]{x} = {b} where [A] represents the stiffness of an elastic solid, {b} the

Linear Algebraic Equations 43

forces applied to the solid and {x} the resulting displacements. In some cases
we will know all the components of {b} and have to calculate all the compo-
nents of {x}, but in others we may be told that some of the displacements (or
solutions) are known in advance. In this event we could eliminate the known
components of {x} from the system of equations, but this involves some quite
elaborate coding to reshuffle the rows and columns of [A]. A simple scaling
procedure can be used instead to produce the desired result without modifying
the structure of [A].

Suppose that in the symmetrical system⎡
⎣ 16 4 8

4 5 −4
8 −4 22

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩
b1
b2
b3

⎫⎬
⎭ (2.39)

we know that x2 = 5, while b1 = 4 and b3 = 5. We can force x2 to be 5
by adding a very large number, say 1020, to the corresponding diagonal term
a22. The purpose of this is to make the diagonal term in row 2 several orders
of magnitude larger than the off-diagonal terms in that row. Following this
modification, row 2 will appear as

4x1 + (5 + 1020)x2 − 4x3 = b2 (2.40)

and the term in x2 swamps the other two terms. To get the desired result of
x2 = 5, it is clear that the right-hand side should be set to b2 = (5 + 1020)5.
We could also use this technique to fix x2 to “zero” by setting b2 = 0. The
large number is a simple example of what is more generally called a “penalty
method” applied to that equation.

Program 2.7: Cholesky [L][L]T factorization using skyline
storage, prescribed solutions by penalty method

PROGRAM nm27
!---Cholesky LLT Factorization With Skyline Storage---
!---Prescribed Solutions by Penalty Method---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::ir,n,nfix; REAL(iwp)::penalty=1.E20_iwp
REAL(iwp),ALLOCATABLE::a(:),b(:),val(:)
INTEGER,ALLOCATABLE::kdiag(:),no(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(kdiag(n),b(n))
READ(10,*)kdiag; ir=kdiag(n); ALLOCATE(a(ir))
READ(10,*)a; READ(10,*)b
READ(10,*)nfix; ALLOCATE(no(nfix),val(nfix))

44 Numerical Methods for Engineers

READ(10,*)no; READ(10,*)val
WRITE(11,’(A)’)"-Cholesky Factorization With Skyline Storage-"
WRITE(11,’(A)’)"---Prescribed Solutions by Penalty Method---"
WRITE(11,’(/,A,/,6E12.4)’)"Coefficient Vector",a
WRITE(11,’(/,A,/,8I5)’)"Diagonal Locations",kdiag
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,8I5)’)"Prescribed Solution Number(s)",no
WRITE(11,’(/,A,/,6E12.4)’)"Prescribed Solution Value(s)",val
a(kdiag(no(:)))=a(kdiag(no(:)))+penalty
b(no)=a(kdiag(no(:)))*val(:)
CALL sparin(a,kdiag); CALL spabac(a,b,kdiag)
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",b

END PROGRAM nm27

Program 2.7 is essentially the same as Program 2.5 with the option of in-
cluding fixed solutions. The addresses of the terms in the solution vector to
be fixed and their values are read into arrays no and val respectively. The
leading diagonal terms in the skyline storage vector {a} are located using
kdiag, and the appropriate entries in {a} augmented by the “penalty” num-
ber 1020. The appropriate terms in {b} are then set to the corresponding
augmented diagonal terms multiplied by the required values of the solutions.
The program is demonstrated using the same set of equations considered by
Program 2.5 but with the solution x2 set equal to 5. Input and output are
shown in Data 2.7 and Results 2.7 respectively.

List 2.7:

Scalar integers:
ir length of coefficient vector a
n number of equations to be solved
nfix number of fixed “solution”

Scalar reals:
penalty set to 1 × 1020

Dynamic integer arrays:
kdiag addresses of diagonal components of a
no addresses of fixed “solutions”

Dynamic real arrays:
a skyline coefficients stored as a vector or length ir
b “right hand side” vector of length n, overwritten by solution
val values of fixed “solutions”

Linear Algebraic Equations 45

Number of equations n
3

Skyline diagonal locations kdiag
1 3 6

Coefficient matrix a
(in skyline form) 16. 4. 5. 8. -4. 22.

Right hand side b
4. 2. 5.

Number of prescribed solutions nfix
1

Prescribed solution number(s) no
2

Prescribed solution value(s) val
5.

Data 2.7: Cholesky Factorization with Prescribed Solutions

-Cholesky Factorization With Skyline Storage-
---Prescribed Solutions by Penalty Method---

Coefficient Vector
0.1600E+02 0.4000E+01 0.5000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Diagonal Locations
1 3 6

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Prescribed Solution Number(s)
2

Prescribed Solution Value(s)
0.5000E+01

46 Numerical Methods for Engineers

Solution Vector
-0.1917E+01 0.5000E+01 0.1833E+01

Results 2.7: Cholesky Factorization with Prescribed Solutions

2.9 Iterative methods

In the previous sections of this Chapter, “direct” solution methods for sys-
tems of linear algebraic equations have been described. By “direct” we meant
that the solution method proceeded to the answer in a fixed number of arith-
metic operations. Subject to rounding errors, the solutions were as “exact” as
the computer hardware permitted. There was no opportunity for intervention
by the user in the solution process.

In contrast, this section deals with iterative or “indirect” methods of solu-
tion. These proceed by the user first guessing an answer, which is then suc-
cessively corrected iteration by iteration. Several methods will be described,
which differ in the technique by which the corrections are made, and will be
found to lead to different rates of convergence to the true solution.

The question whether convergence will be achieved at all is outside the
scope of this book. In general it can be stated that equations with a coef-
ficient matrix which is “diagonally dominant” are likely to have convergent
iterative solutions. Roughly defined, this means that the diagonal term in
any row is greater than the sum of the off-diagonal terms. As we saw earlier,
it is fortunate that in many engineering applications this diagonal dominance
exists.

Since it is very unlikely that the user’s starting guess will be accurate, the
solution will normally become gradually closer and closer to the true solution,
and the opportunity is afforded for user intervention in that a decision as to
whether the solution is “close enough” to the desired one is possible. For
example, if the solution has in some sense hardly changed from the previous
iteration, the process can be terminated. Thus, in general terms, the number
of arithmetic operations to reach a solution is not known in advance for these
methods.

2.9.1 The iterative process

Suppose we are looking for an iterative method of solving the equations

2x1 + x2 = 4 (2.41)
x1 + 2x2 = 5

Linear Algebraic Equations 47

The central feature of iterative processes is to arrange to have the unknowns
occurring on both sides of the equations. For example, we could write equa-
tions (2.41) as

x1 = 2 − 0.5x2 (2.42)
x2 = 2.5 − 0.5x1

In the simplest approach called “Jacobi iteration”, we make a guess at (x1, x2)
on the right-hand side, say (1, 1). Equations (2.42) then yield{

x1

x2

}
=
{

1.5
2.0

}
(2.43)

so the guess was wrong. However, if this simple iteration process were to
converge, we could speculate that equations (2.43) represent a better solution
than the initial guess, and substitute it on the right-hand side of equations
(2.42) giving {

x1

x2

}
=
{

1.0
1.75

}
(2.44)

and the process is continued, with the results given in Table 2.2.

TABLE 2.2: Convergence of equations (2.42) by Jacobi
iteration

Iteration 0 1 2 3 4 5 6
x1 1.0 1.5 1.0 1.125 1.0 1.03125 1.0
x2 1.0 2.0 1.75 2.0 1.9375 2.0 1.984375

In this trivial example, it is clear that the iterative process is converging on
the true solution of x1 = 1.0 and x2 = 2.0.

In order to get started, the initial equations in the form [A]{x} = {b} are
modified by dividing each row by the corresponding diagonal of [A], such that
the leading diagonal terms of the modified coefficient matrix are unity, thus⎡

⎣ 1 a12 a13

a21 1 a23

a31 a32 1

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩
b1
b2
b3

⎫⎬
⎭ (2.45)

In the following explanation, the matrix [A] and the right-hand side vector {b}
are assumed to hold the modified coefficients obtained after dividing through
by the diagonals as described above.

The coefficient matrix may now be split as follows

[A] = [I] − [L] − [U] (2.46)

48 Numerical Methods for Engineers

where [I] is the unit matrix

[L] =

⎡
⎣ 0 0 0
−a21 0 0
−a31 −a32 0

⎤
⎦ (2.47)

and

[U] =

⎡
⎣ 0 −a12 −a13

0 0 −a23

0 0 0

⎤
⎦ (2.48)

Note that these triangular matrices [L] and [U] have nothing to do with the
[L][U] factors we met previously in direct methods since they are additive
components of [A], not multiplicative.

With these definitions, the modified system [A]{x} = {b} may be written
as

[[I] − [L] − [U]]{x} = {b} (2.49)

or
{x} = {b} + [[L] + [U]]{x} (2.50)

in which the unknowns now appear on both sides of the equations, leading to
the iterative scheme

{x}k+1 = {b} + [[L] + [U]]{x}k (2.51)

where k represents the iteration number.

Example 2.6

Solve the equations

16x1 + 4x2 + 8x3 = 4
4x1 + 5x2 − 4x3 = 2

8x1 − 4x2 + 22x3 = 5

by simple iteration.

Solution 2.6

Divide each equation by the diagonal term in the coefficient matrix and
rearrange as

{x}k+1 = {b} + [[L] + [U]]{x}k

hence ⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

k+1

=

⎧⎨
⎩

0.25
0.4
0.2273

⎫⎬
⎭+

⎡
⎣ 0.0 −0.25 −0.5
−0.8 0.0 0.8
−0.3636 0.1818 0.0

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

k

Linear Algebraic Equations 49

As a starting guess, let ⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

0

=

⎧⎨
⎩

1
1
1

⎫⎬
⎭

hence ⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

1

=

⎧⎨
⎩

−0.5
0.4
0.0455

⎫⎬
⎭

and ⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

2

=

⎧⎨
⎩

0.1273
0.8364
0.4848

⎫⎬
⎭ −→

⎧⎨
⎩

−0.25
1.0
0.5

⎫⎬
⎭ (after many iterations)

In this case, convergence is very slow (see Program 2.8). To operate this
scheme on a computer, we can see that the library modules we shall need are
merely a matrix-vector multiply routine to compute [[L] + [U]]{x}, a vector
addition to add {b} and some means of checking on convergence.

Program 2.8: Jacobi iteration for linear simultaneous e-
quations

PROGRAM nm28
!---Jacobi Iteration For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::diag,tol,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:),x(:),xnew(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n),x(n),xnew(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’) &
"---Jacobi Iteration For Linear Simultaneous Equations---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
DO i=1,n
diag=a(i,i); a(i,:)=a(i,:)/diag; b(i)=b(i)/diag

END DO; a=-a
DO i=1,n; a(i,i)=zero; END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
xnew=b+MATMUL(a,x); IF(iters<5)WRITE(11,’(6E12.4)’)x

50 Numerical Methods for Engineers

IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew
END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm28

List 2.8:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
diag temporary store for diagonal components
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
x approximate solution vector
xnew improved solution vector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.8: Jacobi Iteration

Linear Algebraic Equations 51

---Jacobi Iteration For Linear Simultaneous Equations---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
-0.5000E+00 0.4000E+00 0.4545E-01
0.1273E+00 0.8364E+00 0.4818E+00
-0.2000E+00 0.6836E+00 0.3331E+00

Iterations to Convergence
51

Solution Vector
-0.2500E+00 0.9999E+00 0.5000E+00

Results 2.8: Jacobi Iteration

Input shown in Data 2.8 consists of the number of equations to be solved
n followed by the coefficient matrix a and the right hand side vector b. The
initial guess x is then read followed by the convergence tolerance tol and the
iteration limit limit.

The program scales the original coefficients and right-hand sides, by divid-
ing by the diagonal coefficient in each row (called diag in the program).

The intrinsic routine MATMUL performs the matrix-vector multiply called for
by the right-hand side of equation (2.51) and puts the temporary result in
xnew. This can then be added to right-hand side b to give a new solution,
still called xnew. This can be compared with x by using the library function
checkit which checks for convergence. If xnew agrees with x to the specified
tolerance the iterations are terminated.

The program prints out the number of iterations taken and the values of the
solution vector for the first 4 iterations and at convergence. Output shown in
Results 2.8 indicates that 51 iterations are required to give a result accurate
to about 4 places of decimals using this simple technique.

52 Numerical Methods for Engineers

2.9.2 Very sparse systems

An obvious advantage of iterative methods occurs when the set of equation
coefficients is very “sparse”, that is there are very few nonzero entries. In the
case of direct methods, we saw that “fill-in” occurred in the coefficient matrix
during solution, except outside the “skyline” (Section 2.6), whereas in iterative
methods, the coefficient matrix retains its sparsity pattern throughout the
calculation. In such cases, one would not wish to retain the matrix form for
[A] in programs like Program 2.8 but rather use specialized coding involving
pointers to the nonzero terms in the coefficient matrix. In the Finite Element
Method (e.g., Smith and Griffiths, 2004) [A] may never be assembled at all
leading to very effective parallelizable algorithms.

2.9.3 The Gauss-Seidel method

In Jacobi’s method, all of the components of {x}k+1 (called xnew in Pro-
gram 2.8) are evaluated using all the components of {x}k (x in the program).
Thus the new information is obtained entirely in terms of the old.

However, after the first row of equations (2.51) has been evaluated, there
is a new (x1)k+1 available which is presumably a better approximation to the
solution than (x1)k. In the Gauss-Seidel technique, the new value (x1)k+1 is
immediately substituted for (x1)k in the “old” solution x. After evaluation of
row two, (x2)k+1 is substituted for (x2)k and so on. The convergence of this
process operating on equation (2.42) is shown in Table 2.3.

TABLE 2.3: Convergence of
equations (2.42) by Gauss-Seidel

Iteration 0 1 2 3
x1 1.0 1.5 1.125 1.03125
x2 1.0 1.75 1.9375 1.984375

which is clearly better than than in Table 2.2.

The Gauss-Seidel iterative process is based as before on the additive factors
given by equation (2.46), but has a different rearrangement as follows

[[I] − [L]]{x}k+1 = {b} + [U]{x}k (2.52)

which is possible because in the operation [U]{x}k, the evaluation of row i
does not depend on xi, xi−1, etc., and so they can be updated as they become
available. The equations are shown in expanded form in (2.53).

Linear Algebraic Equations 53

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . 0
a21 1 0 . . 0
a31 a32 1 . . 0
.
.
an1 an2 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

.

.
xn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

k+1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b1
b2
b3
.
.
bn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −a12 −a13 . . −a1n

0 0 −a23 . . −a2n

0 0 0 . . −a3n

.

.
0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

.

.
xn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

k

(2.53)
It will be obvious by comparing equations (2.52) and (2.51) that for non-

sparse systems the right-hand side can be computed again by using a matrix-
vector multiply and a vector addition, leading to

[[I] − [L]]{x}k+1 = {y}k (2.54)

These equations take the form⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . 0
a21 1 0 . . 0
a31 a32 1 . . 0
.
.
an1 an2 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

.

.
xn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

k+1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1
y2
y3
.
.
yn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

k

(2.55)

which is just one of the processes we encountered in “direct” methods when
we called it “forward-substitution”. Library subroutine subfor is available to
carry out this task.

Example 2.7

Solve the equations

16x1 + 4x2 + 8x3 = 4
4x1 + 5x2 − 4x3 = 2

8x1 − 4x2 + 22x3 = 5

by Gauss-Seidel iteration.

Solution 2.7

Divide each equation by the diagonal term and rearrange as

[[I] − [L]]{x}k+1 = {b} + [U]{x}k

hence⎡
⎣ 1 0 0

0.8 1 0
0.3636 −0.1818 1

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

k+1

=

⎧⎨
⎩

0.25
0.4
0.2273

⎫⎬
⎭+

⎡
⎣ 0 −0.25 −0.5

0 0 0.8
0 0 0

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

k

54 Numerical Methods for Engineers

As a starting guess, let ⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

0

=

⎧⎨
⎩

1
1
1

⎫⎬
⎭

hence ⎡
⎣ 1 0 0

0.8 1 0
0.2626 −0.1818 1

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

1

=

⎧⎨
⎩

−0.5
1.2
0.2273

⎫⎬
⎭

which after forward-substitution gives⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

1

=

⎧⎨
⎩

−0.5
1.6
0.7

⎫⎬
⎭

The second iteration gives⎡
⎣ 1 0 0

0.8 1 0
0.2626 −0.1818 1

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

2

=

⎧⎨
⎩

−0.5
0.96
0.2273

⎫⎬
⎭

and again after forward-substitution⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

2

=

⎧⎨
⎩

−0.5
1.36
0.6564

⎫⎬
⎭ −→

⎧⎨
⎩

−0.5
1.0
0.5

⎫⎬
⎭ (after many iterations)

Convergence is still slow (see Program 2.9), but not as slow as in Jacobi’s
method.

Program 2.9: Gauss-Seidel iteration for linear simultane-
ous equations

PROGRAM nm29
!---Gauss-Seidel Iteration For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::diag,tol,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:),u(:,:),x(:),xnew(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),u(n,n),b(n),x(n),xnew(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’) &
"-Gauss-Seidel Iteration For Linear Simultaneous Equations-"

Linear Algebraic Equations 55

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
DO i=1,n
diag=a(i,i); a(i,:)=a(i,:)/diag; b(i)=b(i)/diag

END DO
u=zero; DO i=1,n; u(i,i+1:)=-a(i,i+1:); a(i,i+1:)=zero; END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
xnew=b+MATMUL(u,x); CALL subfor(a,xnew)
IF(iters<5)WRITE(11,’(6E12.4)’)x
IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm29

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.9: Gauss-Seidel Iteration

-Gauss-Seidel Iteration For Linear Simultaneous Equations-

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

56 Numerical Methods for Engineers

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
-0.5000E+00 0.1600E+01 0.7000E+00
-0.5000E+00 0.1360E+01 0.6564E+00
-0.4182E+00 0.1260E+01 0.6084E+00

Iterations to Convergence
30

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.9: Gauss-Seidel Iteration

List 2.9:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
diag temporary store for diagonal components
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
u “right hand side” upper triangular matrix
x approximate solution vector
xnew improved solution vector

The same scaling of [A] is necessary and matrices [L] and [U] are formed
as in equation (2.46). At the same time as [U] is formed from [A], the matrix
[I]− [L] overwrites [A]. In the iteration loop, the right-hand side of equations

Linear Algebraic Equations 57

(2.54), called xnew, is formed by successive calls to MATMUL and vector ad-
ditions. The forward substitution then takes place using subfor leaving the
new solution in xnew. As before, convergence is checked using checkit. The
input and output are shown in Data 2.9 and Results 2.9 respectively, illus-
trating that the number of iterations required to achieve the same tolerance
has dropped to 30, compared to Jacobi’s 51.

2.9.4 Successive overrelaxation

In this technique, the difference between successive iterations is augmented
by a scalar parameter called the “overrelaxation factor” ω where

{x}k+1 − {x}k =⇒ ω{{x}k+1 − {x}k} (2.56)

which can be rearranged as

ω{x}k+1 = {x}k+1 − (1 − ω){x}k (2.57)

The Gauss-Seidel method is a special case of this approach where ω = 1, but
in general 1 < ω < 2.

From the simple Jacobi method (equation 2.51) we have

{x}k+1 = {b} + [[L] + [U]]{x}k (2.58)

hence
ω{x}k+1 = ω{b} + [ω[L] + ω[U]]{x}k (2.59)

Comparing equations (2.57) and (2.59) we get

{x}k+1 − (1 − ω){x}k = ω{b} + [ω[L] + ω[U]]{x}k (2.60)

With solution updating as in Gauss-Seidel, ω[L]{x}k can be replaced by
ω[L]{x}k+1, hence

[[I] − ω[L]]{x}k+1 = ω{b} + [(1 − ω)[I] + ω[U]]{x}k (2.61)

Equations (2.61) have similar properties to equations (2.52) in that the eval-
uation of row i on the right-hand side does not depend on xi, xi−1 etc., and
so updating is possible.

58 Numerical Methods for Engineers

Program 2.10: Successive overrelaxation for linear simul-
taneous equations

PROGRAM nm210
!--Successive Overrelaxation For Linear Simultaneous Equations--
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::diag,omega,one=1.0_iwp, &
tol,zero=0.0_iwp

REAL(iwp),ALLOCATABLE::a(:,:),b(:),u(:,:),x(:),xnew(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),u(n,n),b(n),x(n),xnew(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x,omega,tol,limit
WRITE(11,’(A)’)"---Successive Overrelaxation---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
WRITE(11,’(/,A,/,E12.4)’)"Overrelaxation Scalar",omega
DO i=1,n; diag=a(i,i); a(i,:)=a(i,:)/diag; b(i)=omega*b(i)/diag
END DO; u=zero; a=a*omega
DO i=1,n; u(i,i+1:)=-a(i,i+1:); a(i,i+1:)=zero; END DO
DO i=1,n; a(i,i)=one; u(i,i)=one-omega; END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
xnew=b+MATMUL(u,x); CALL subfor(a,xnew)
IF(iters<5)WRITE(11,’(6E12.4)’)x
IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm210

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

Linear Algebraic Equations 59

Initial guess x
1. 1. 1.

Overrelaxation factor omega
1.5

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.10: Successive Overrelaxation

---Successive Overrelaxation---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

Overrelaxation Scalar
0.1500E+01

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
-0.1250E+01 0.2800E+01 0.1286E+01
-0.1015E+01 0.1961E+01 0.7862E+00
-0.4427E+00 0.1094E+01 0.4877E+00

Iterations to Convergence
18

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.10: Successive Overrelaxation

There is one extra input quantity, ω in this case, which is the overrelaxation
factor, but no other major changes. First [A] and {b} are scaled as usual and

60 Numerical Methods for Engineers

List 2.10:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
diag temporary store for diagonal components
omega overrelaxation factor
one set to 1.0
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
u “right hand side” upper triangular matrix
x approximate solution vector
xnew improved solution vector

Figure 2.3: Influence of overrelaxation factor on rate of convergence of
SOR.

{b} multiplied by ω as required by equation (2.61). [A] is then also multiplied
by ω and [U] and [A] organized as before. In order to end up with [[I]−ω[L]]
and [(1 − ω)[I] + ω[U]] on the left- and right-hand sides of equations (2.61)
the diagonals of [A] and of [U] are replaced by 1 and (1 − ω) respectively.

Iteration proceeds using exactly the same loop as for Gauss-Seidel in Pro-

Linear Algebraic Equations 61

gram 2.9. For the input shown in Data 2.10 with omega=1.5 the number of
iterations for convergence has dropped to 18 as shown in the output in Results
2.10. The variation of iteration count with the overrelaxation factor for this
problem is shown in Figure 2.3 and is seen to be optimal for ω ≈ 1.4. In
general, however, the optimal value of ω is problem dependent and difficult
to predict.

2.10 Gradient methods

The methods described in the previous sections are sometimes called “sta-
tionary” methods because there is no attempt made in them to modify the
convergence process according to a measure of the error in the trial solution.
In gradient methods, by contrast, an error function is repeatedly evaluated,
and used to generate new trial solutions. In our first examples we shall con-
fine our interest to equations with symmetrical, positive definite coefficient
matrices. Although it will soon be apparent that in this case the gradien-
t methods are very simple to program, the mathematical reasoning behind
them is somewhat involved. For example, the reader is referred to Jennings
(1977) pp. 212-216 for a reasonably concise exposition in engineering terms.

2.10.1 The method of ‘steepest descent’

For any trial solution {x}k the error or “residual” will clearly be expressible
as

{r}k = {b} − [A]{x}k (2.62)

We start with an initial guess of the solution vector {x}0. In the method
of steepest descent, the error implicit in {r}k is minimized according to the
following algorithm:

{r}0 = {b} − [A]{x}0 (to start the process)

{u}k = [A]{r}k (a)

αk =
{r}T

k {r}k

{r}T
k {u}k

(b)

{x}k+1 = {x}k + αk{r}k (c)

{r}k+1 = {r}k − αk{u}k (d)

(2.63)

To implement this algorithm we can make use of the power of Fortran 95
which enables us to multiply a matrix by a vector in step (a), to calculate

62 Numerical Methods for Engineers

vector inner or “dot” products in step (b), to multiply a vector by a scalar
in steps (c) and (d) and to add and subtract vectors in steps (c) and (d)
respectively, all by features intrinsic to the language. We therefore anticipate
very efficient implementations of these types of algorithm.

Program 2.11: Steepest descent for linear simultaneous
equations

PROGRAM nm211
!---Steepest Descent For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::alpha,tol
REAL(iwp),ALLOCATABLE::a(:,:),b(:),r(:),u(:),x(:),xnew(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n),x(n),xnew(n),r(n),u(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’) &
"---Steepest Descent For Linear Simultaneous Equations---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
WRITE(11,’(/,A)’)"First Few Iterations"; r=b-MATMUL(a,x); iters=0
DO; iters=iters+1
u=MATMUL(a,r); alpha=DOT_PRODUCT(r,r)/DOT_PRODUCT(r,u)
xnew=x+alpha*r; r=r-alpha*u
IF(iters<5)WRITE(11,’(6E12.4)’)x
IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm211

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

Linear Algebraic Equations 63

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.11: Steepest Descent

List 2.11:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
alpha see equations (2.63)
tol convergence tolerance

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
r see equations (2.63)
u see equations (2.63)
x approximate solution vector
xnew improved solution vector

---Steepest Descent For Linear Simultaneous Equations---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

64 Numerical Methods for Engineers

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
0.9133E-01 0.8864E+00 0.2049E+00
-0.8584E-01 0.7540E+00 0.4263E+00
-0.1305E+00 0.7658E+00 0.3976E+00

Iterations to Convergence
61

Solution Vector
-0.2500E+00 0.9999E+00 0.5000E+00

Results 2.11: Steepest Descent

The program uses the same input as the previous iterative programs as
shown in Data 2.11, requiring as input the number of equations to be solved
(n) followed by the equation left- and right-hand sides (a and b). The iteration
tolerance (tol) and limit (limit) complete the data.

The operations involved in equations (2.63) start with matrix-vector mul-
tiply [A]{x}0 and subtraction of the result from {b} to form {r}0. The
iterations in equations (2.63) can then proceed by using MATMUL as in step (a)
and two dot products giving α in step (b). Steps (c) and (d) involve simple
additions of scaled vectors, and it remains only to check the tolerance by com-
paring the relative change between {x}k and {x}k+1 using checkit, and to
continue the iteration or stop if convergence has been achieved. The results
are shown in Results 2.11, where it can be seen that 61 iterations are required
to achieve the desired accuracy.

2.10.2 The method of ‘conjugate gradients’

The results obtained by running Program 2.11 show that the method of
steepest descent is not competitive with the other iteration methods tried so
far. However, it can be radically improved if the descent vectors are made
mutually “conjugate” with respect to [A]. That is, we introduce “descent
vectors” {p} which satisfy the relationship

{p}T
i [A] {p}j = 0 for i �= j (2.64)

Linear Algebraic Equations 65

The equivalent algorithm to equation (2.63) becomes

{p}0 = {r}0 = {b} − [A]{x}0 (to start the process)

{u}k = [A]{p}k (a)

αk =
{r}T

k {r}k

{p}T
k {u}k

(b)

{x}k+1 = {x}k + αk{p}k (c)

{r}k+1 = {r}k + αk{u}k (d)

βk =
{r}T

k+1{r}k+1

{r}T
k {r}k

(e)

{p}k+1 = {r}k+1 + βk{p}k (f)

(2.65)

Program 2.12: Conjugate gradients for linear simultane-
ous equations

PROGRAM nm212
!---Conjugate Gradients For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::alpha,beta,tol,up
REAL(iwp),ALLOCATABLE::a(:,:),b(:),p(:),r(:),u(:),x(:),xnew(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),b(n),x(n),xnew(n),r(n),p(n),u(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’)"---Conjugate Gradients---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
r=b-MATMUL(a,x); p=r
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
u=MATMUL(a,p); up=DOT_PRODUCT(r,r); alpha=up/DOT_PRODUCT(p,u)
xnew=x+alpha*p; r=r-alpha*u; beta=DOT_PRODUCT(r,r)/up

66 Numerical Methods for Engineers

p=r+beta*p; IF(iters<5)WRITE(11,’(6E12.4)’)x
IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm212

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.12: Conjugate Gradients

---Conjugate Gradients---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
0.9133E-01 0.8864E+00 0.2049E+00
-0.1283E+00 0.7444E+00 0.4039E+00
-0.2500E+00 0.1000E+01 0.5000E+00

Linear Algebraic Equations 67

Iterations to Convergence
4

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.12: Conjugate Gradients

List 2.12:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
alpha see equations (2.65)
beta see equations (2.65)
tol convergence tolerance
up see equations (2.65)

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
p see equations (2.65)
r see equations (2.65)
u see equations (2.65)
x approximate solution vector
xnew improved solution vector

The starting procedure leads to {r}0 which is copied into {p}0. The it-
eration process then proceeds. Vector {u}k is computed by MATMUL in step
(a) followed by αk as required by step (b) involving up. Step (c) leads to the
updated x, called xnew as before. Step (d) gives the new {r}k+1, followed by
βk in step (e). It remains to complete step (f) and to check convergence using
checkit.

The same input as used previously as shown in Data 2.12 led to the output
shown in Results 2.12. The iteration count has dropped to 4, making this the
most successful method so far. In fact theoretically, in perfect arithmetic, the
method would converge in n (3 in this case) steps.

68 Numerical Methods for Engineers

Figure 2.4: Convergence of iterative methods and error contours.

2.10.3 Convergence of iterative methods

Figure 2.4 illustrates how the five iterative methods described so far in this
chapter converge on the solution (x1, x2) = (1.0, 2.0) of equations (2.41). Also
shown are contours of the total error E, defined

√
e(x1)2 + e(x2)2 where e(x1)

and e(x2) are the relative errors in x1 and x2. Although not easily demonstrat-
ed by the small example problems described in this book, gradient methods
attempt to steer successive approximations normal to the error contours, and
hence towards the true solution by the shortest path in n-dimensional vector
space.

2.11 Unsymmetrical systems

The ideas outlined in the previous section can be extended to the case where
the equation coefficients are not arranged symmetrically. Again, although the
programming of the resulting methods is rather simple, a full mathemati-

Linear Algebraic Equations 69

cal description is beyond the scope of this book. Readers are referred to
Kelley(1995) and Greenbaum(1997), for example, for more details. They de-
scribe a large class of methods generally called “minimum residual” methods
of which “GMRES” or “generalised minimum residual” is a prominent one.
We choose to program a method based on the conjugate gradient approach
of the previous section called “BiCGSTAB”, or “stabilized bi-conjugate gra-
dients”. The algorithm takes the following steps,

Initial Phase:

{r̂}0 = {r}0 = {b} − [A]{x}0

{v}0 = {p}0 = {0} (2.66)
ρ10 = {r̂}T

0 {r}0

ρ00 = w0 = α0 = 1

Iteration Phase: k = 0, 1, 2, · · ·

(a) βk =
ρ1kαk

ρ0kwk

{p}k+1 = {r}k + βk ({p}k − wk{v}k) (2.67)
{v}k+1 = [A]{p}k+1

(b) αk+1 =
ρ1k

{r̂}T
0 {v}k+1

{s}k+1 = {r}k − αk+1{v}k+1

{t}k+1 = [A]{s}k+1

wk+1 =
{t}T

k+1{s}k+1

{t}T
k+1{t}k+1

(2.68)

ρ0k+1 = ρ1k

ρ1k+1 = −wk+1{r̂}T
0 {t}k+1

{x}k+1 = {x}k + αk+1{p}k+1

{r}k+1 = {s}k+1 − wk+1{t}k+1

Comparing with equations (2.65) we see a similar but more complicated
structure. There are now two (hence “bi”) matrix-vector multiplication sec-
tions (a) and (b) with associated vector operations. The coding of Program
2.13 is still compact however, and involves only Fortran 95 intrinsic features.

70 Numerical Methods for Engineers

Program 2.13: Stabilized bi-conjugate gradients for linear
simultaneous equations

PROGRAM nm213
!---Stabilized Bi-Conjugate Gradients---
!---For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; LOGICAL::converged
REAL(iwp)::alpha,beta,one=1.0_iwp,rho0,rho1,tol,w,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:),p(:),r(:),r0_hat(:),s(:), &
t(:),v(:),x(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n
ALLOCATE(x(n),v(n),r(n),b(n),r0_hat(n),p(n),s(n),t(n),a(n,n))
READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’)"---Stabilized Bi-Conjugate Gradients---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
r=b-MATMUL(a,x); r0_hat=r
rho0=one; alpha=one; w=one; v=zero; p=zero
rho1=DOT_PRODUCT(r0_hat,r)
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1; converged=norm(r)<tol*norm(b)
IF(iters==limit.OR.converged)EXIT
beta=(rho1/rho0)*(alpha/w); p=r+beta*(p-w*v); v=MATMUL(a,p)
alpha=rho1/DOT_PRODUCT(r0_hat,v); s=r-alpha*v; t=MATMUL(a,s)
w=DOT_PRODUCT(t,s)/DOT_PRODUCT(t,t); rho0=rho1
rho1=-w*DOT_PRODUCT(r0_hat,t); x=x+alpha*p+w*s; r=s-w*t
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm213

Linear Algebraic Equations 71

List 2.13:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
alpha see equations (2.68)
beta see equations (2.67)
one set to 1.0
rho0 see equations (2.66)
rho1 see equations (2.66)
tol convergence tolerance
w see equations (2.66)
zero set to 0.0

Scalar logical:
converged set to .TRUE. if converged

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
p see equations (2.66)
r see equations (2.66)
r0_hat see equations (2.66)
s see equations (2.68)
t see equations (2.67)
v see equations (2.66)
x approximate solution vector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Initial guess x
1. 1. 1.

72 Numerical Methods for Engineers

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.13: Stabilized Bi-Conjugate Gradients

---Stabilized Bi-Conjugate Gradients---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1851E+00 0.1113E+01 0.1411E+00
0.1845E+00 0.1116E+01 0.1399E+00
0.1000E+01 -0.2000E+01 0.1400E+01

Iterations to Convergence
4

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.13: Stabilized Bi-Conjugate Gradients

The program follows the steps outlined in equations (2.66-2.68). Input
is listed as Data 2.13 with output as Results 2.13. For this small system
of equations convergence is rapid, taking 4 iterations. For large systems of
equations, the number of iterations to convergence can be significantly lower
than the number of equations n.

2.12 Preconditioning

The effects of ill-conditioning on coefficient matrices were described in Sec-
tion 2.7.1 for “direct” solution methods. When iterative methods are used,

Linear Algebraic Equations 73

these effects can translate into very slow convergence rates and indeed to no
convergence at all. Therefore it is natural when solving

[A]{x} = {b} (2.69)

to see whether this can be transformed into an equivalent system,

[A∗]{x} = {b∗} (2.70)

for which the convergence properties of the iterative process are better. The
transformation process is called “preconditioning” using the “preconditioner”
matrix [P] to give

[P][A]{x} = [P]{b} (2.71)

for so-called “left-preconditioning” or

[A][P]{x} = [P]{b} (2.72)

for “right-preconditioning”.
If [P] were the inverse of [A] no iteration would be required but the com-

putational work could be prohibitive. Instead, approximations to [A]−1 are
sought which can be obtained cheaply. The simplest of these is a diagonal
matrix (stored as a vector) formed by taking the reciprocals of the diagonal
terms of [A]. The idea can be extended by including more diagonals of [A]
in the inverse approximation (called “incomplete factorizations”), but in the
following programs we illustrate only the pure diagonal form. We begin by
applying diagonal preconditioning to the process described in Program 2.12 to
form a “preconditioned conjugate gradient” or “PCG” algorithm. The steps
in the algorithm are shown in equations (2.73-2.74).

Initial Phase:

{r}0 = {b} − [A]{x}0 (2.73)

{precon} = { 1
diag[A]

}

From here on, we don’t need {b} so in the actual
coding {r} is replaced by {b}.

{d}0 = {precon}{r}0

{p}0 = {d}0

74 Numerical Methods for Engineers

Iteration Phase: k = 0, 1, 2, · · ·

{u}k = [A]{p}k (2.74)

αk =
{r}T

k {d}k

{p}T
k {u}k

{x}k+1 = {x}k + αk{p}k

{r}k+1 = {r}k − αk{u}k

{d}k+1 = {precon}{r}k+1

βk =
{r}T

k+1{d}k+1

{r}T
k {d}k

{p}k+1 = {d}k+1 + βk{p}k

Program 2.14: Preconditioned conjugate gradients for lin-
ear simultaneous equations

PROGRAM nm214
!---Preconditioned Conjugate Gradients---
!--- For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n
REAL(iwp)::alpha,beta,one=1.0_iwp,tol,up
REAL(iwp),ALLOCATABLE::a(:,:),b(:),d(:),p(:),precon(:),u(:), &
x(:),xnew(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n
ALLOCATE(a(n,n),b(n),x(n),xnew(n),d(n),p(n),u(n),precon(n))
READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’)"---Preconditioned Conjugate Gradients---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
DO i=1,n; precon(i)=one/a(i,i); END DO

! If x=.0 p and r are just b but in general b=b-a*x
b=b-MATMUL(a,x); d=precon*b; p=d
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
u=MATMUL(a,p); up=DOT_PRODUCT(b,d); alpha=up/DOT_PRODUCT(p,u)
xnew=x+alpha*p; b=b-alpha*u; d=precon*b

Linear Algebraic Equations 75

beta=DOT_PRODUCT(b,d)/up; p=d+beta*p
IF(iters<5)WRITE(11,’(6E12.4)’)x
IF(checkit(xnew,x,tol).OR.iters==limit)EXIT; x=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm214

List 2.14:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations to be solved

Scalar reals:
alpha see equations (2.74)
beta see equations (2.74)
one set to 1.0
tol convergence tolerance
up numerator of α, see equations (2.74)

Dynamic real arrays:
a n× n matrix of coefficients
b “right hand side” vector of length n
d see equations (2.74)
p see equations (2.74)
precon see equations (2.73)
u see equations (2.74)
x approximate solution vector
xnew improved solution vector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
16. 4. 8.
4. 5. -4.
8. -4. 22.

Right hand side b
4. 2. 5.

76 Numerical Methods for Engineers

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.14: Preconditioned Conjugate Gradients

---Preconditioned Conjugate Gradients---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1600E+02 0.4000E+01 0.8000E+01
0.4000E+01 0.5000E+01 -0.4000E+01
0.8000E+01 -0.4000E+01 0.2200E+02

Right Hand Side Vector
0.4000E+01 0.2000E+01 0.5000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.1000E+01 0.1000E+01
-0.4073E-01 0.5837E+00 0.3377E+00
-0.8833E-01 0.7985E+00 0.3543E+00
-0.2500E+00 0.1000E+01 0.5000E+00

Iterations to Convergence
4

Solution Vector
-0.2500E+00 0.1000E+01 0.5000E+00

Results 2.14: Preconditioned Conjugate Gradients

Input and output are shown in Data 2.14 and Results 2.14 respectively.
For this small system of equations convergence still takes 4 iterations but for
larger systems, convergence can be significantly accelerated.

When preconditioning is applied to the algorithm described by equations
(2.66-2.68) the resulting Programs 2.15 (left preconditioning) and 2.16 (right
preconditioning) are clearly recognized as derivatives from Program 2.13.

Linear Algebraic Equations 77

Program 2.15: BiCGSTAB scheme (left preconditioned)

PROGRAM nm215
!---BiCGSTAB Scheme(Left Preconditioned)---
!---For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; LOGICAL::converged
REAL(iwp)::alpha,beta,one=1.0_iwp,rho0,rho1,tol,w,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:),p(:),precon(:),r(:), &
r0_hat(:),s(:),t(:),v(:),x(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(x(n),v(n),r(n),b(n),r0_hat(n),p(n),s(n), &
t(n),a(n,n),precon(n))

READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’)"---BiCGSTAB Scheme(Left Preconditioned)---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x

!---Simple diagonal preconditioner---
DO i=1,n; precon(i)=one/a(i,i); END DO
DO i=1,n; a(i,:)=a(i,:)*precon(i); END DO

!---Apply preconditioner to left hand side---
b=b*precon; r=b-MATMUL(a,x); r0_hat=r; rho0=one; alpha=one; &
w=one; v=zero; p=zero; rho1=DOT_PRODUCT(r0_hat,r)
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1; converged=norm(r)<tol*norm(b)
IF(iters==limit.OR.converged)EXIT
beta=(rho1/rho0)*(alpha/w); p=r+beta*(p-w*v); v=MATMUL(a,p)
alpha=rho1/DOT_PRODUCT(r0_hat,v); s=r-alpha*v; t=MATMUL(a,s)
w=DOT_PRODUCT(t,s)/DOT_PRODUCT(t,t); rho0=rho1
rho1=-w*DOT_PRODUCT(r0_hat,t); x=x+alpha*p+w*s; r=s-w*t
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm215

78 Numerical Methods for Engineers

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.15: BiCGSTAB Scheme (Left Preconditioned)

---BiCGSTAB Scheme(Left Preconditioned)---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.3725E+00 0.2634E+01 0.6040E-01
-0.2603E+01 0.1665E+02 -0.4630E+01
0.1000E+01 -0.2000E+01 0.1400E+01

Iterations to Convergence
4

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.15: BiCGSTAB Scheme (Left Preconditioned)

Linear Algebraic Equations 79

Input data are as in Data 2.15, with output in Results 2.15. Again due
to the small number of equations, no obvious benefits of preconditioning are
apparent, but these benefits can be substantial for larger systems.

List 2.15:

Same as List 2.13 with one additional array

Dynamic real arrays:
precon see equations (2.73)

Program 2.16: BiCGSTAB scheme (right preconditioned)

PROGRAM nm216
!---BiCGSTAB Scheme(Right Preconditioned)---
!---For Linear Simultaneous Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; LOGICAL::converged
REAL(iwp)::alpha,beta,one=1.0_iwp,rho0,rho1,tol,w,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),b(:),p(:),precon(:),p1(:),r(:), &
r0_hat(:),s(:),s1(:),t(:),v(:),x(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n
ALLOCATE(x(n),v(n),r(n),b(n),r0_hat(n),p(n),s(n),t(n),a(n,n), &
precon(n),p1(n),s1(n))

READ(10,*)a; READ(10,*)b; READ(10,*)x,tol,limit
WRITE(11,’(A)’)"---BiCGSTAB Scheme(Right Preconditioned)---"
WRITE(11,’(A)’)"---For Linear Simultaneous Equations---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,6E12.4)’)"Right Hand Side Vector",b
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x

!---Simple diagonal preconditioner---
DO i=1,n; precon(i)=one/a(i,i); END DO
DO i=1,n; a(i,:)=a(i,:)*precon(i); END DO

!---Apply preconditioner to right hand side---
b=b*precon; r=b-MATMUL(a,x); r0_hat=r; x=x/precon; rho0=one
alpha=one; w=one; v=zero; p=zero; rho1=DOT_PRODUCT(r0_hat,r)

80 Numerical Methods for Engineers

WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1; converged=norm(r)<tol*norm(b)
IF(iters==limit.OR.converged)EXIT
beta=(rho1/rho0)*(alpha/w); p=r+beta*(p-w*v); p1=p*precon
v=MATMUL(a,p1); alpha=rho1/DOT_PRODUCT(r0_hat,v); s=r-alpha*v
s1=s*precon; t=MATMUL(a,s1)
w=DOT_PRODUCT(t,s)/DOT_PRODUCT(t,t); rho0=rho1
rho1=-w*DOT_PRODUCT(r0_hat,t); x=x+alpha*p+w*s; r=s-w*t
IF(iters<5)WRITE(11,’(6E12.4)’)x*precon

END DO
x=x*precon
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x

END PROGRAM nm216

List 2.16:

Same as List 2.13 with three additional arrays

Dynamic real arrays:
precon see equations (2.73)
p1 see p.81
s1 see p.81

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 1. -5.
-20. 3. -20.
5. 3. 5.

Right hand side b
1. 2. 6.

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 2.16: BiCGSTAB Scheme (Right Preconditioned)

Linear Algebraic Equations 81

---BiCGSTAB Scheme(Right Preconditioned)---
---For Linear Simultaneous Equations---

Coefficient Matrix
0.1000E+02 0.1000E+01 -0.5000E+01
-0.2000E+02 0.3000E+01 0.2000E+02
0.5000E+01 0.3000E+01 0.5000E+01

Right Hand Side Vector
0.1000E+01 0.2000E+01 0.6000E+01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.7171E+00 0.3563E+01 0.1126E+00
0.1407E+01 -0.3938E+01 0.2070E+01
0.1000E+01 -0.2000E+01 0.1400E+01

Iterations to Convergence
4

Solution Vector
0.1000E+01 -0.2000E+01 0.1400E+01

Results 2.16: BiCGSTAB Scheme (Right Preconditioned)

In this algorithm care has to be taken to precondition intermediate vectors
p and s to give p1 and s1 (Kelley,1995). Input and output are as shown in
Data 2.16 and Results 2.16 respectively.

2.13 Comparison of direct and iterative methods

In the era of scalar digital computing, say up to 1980, it could be stated
that in the majority of cases, direct solution was to be preferred to iterative
solution. Exceptions were possible for very sparse systems, and some ill-
conditioned systems, but the degree of security offered by direct solution was
attractive. It has been shown in the examples of iterative solutions presented
in this chapter that a very wide range of efficiencies (as measured by iteration
count to convergence and work per iteration) is possible and so the amount of
time consumed in the solution of a system of equations is rather unpredictable.

82 Numerical Methods for Engineers

However, the widespread use of “vector” or “parallel” processing computers
has led to a revision of previous certainties about equation solution. Com-
parison of programs like Program 2.14 (preconditioned conjugate gradient
technique) with Program 2.2 (LU decomposition) will show that the former
consists almost entirely of rather straightforward operations on vectors which
can be processed very quickly by nonscalar machines. Even if the coefficient
matrix [A] is sparse or banded, the matrix-vector multiplication operation is
vectorizable or parallelizable.

In contrast, the [L][U] factorization is seen to contain more complicated
code involving conditional statements and variable length loops which present
greater difficulties to the programmer attempting to optimize code on a non-
scalar machine.

It can therefore be said that algorithm choice for linear equation solution
is far from simple for large systems of equations, and depends strongly upon
machine architecture. For small systems of equations, direct methods are still
attractive.

2.14 Exercises

1. Solve the set of simultaneous equations

6x1 + 3x2 + 6x3 = 30
2x1 + 3x2 + 3x3 = 17
x1 + 2x2 + 2x3 = 11

Answer: x1 = 1, x2 = 2, x3 = 3

2. Solve the system

⎡
⎢⎢⎣

1 1 2 −4
2 −1 3 1
3 1 −1 2
1 −1 −1 1

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
5
5
0

⎫⎪⎪⎬
⎪⎪⎭

by [L][U] factorization.

Answer: [L] =

⎡
⎢⎢⎣

1 0 0 0
2 1 0 0
3 2

3 1 0
1 2

3
7
19 1

⎤
⎥⎥⎦ [U] =

⎡
⎢⎢⎣

1 1 2 −4
0 −3 −1 9
0 0 − 19

3 8
0 0 0 − 75

19

⎤
⎥⎥⎦

and x1 = x2 = x3 = x4 = 1

Linear Algebraic Equations 83

3. Solve the symmetrical equations

9.3746x1 + 3.0416x2 − 2.4371x3 = 9.2333
3.0416x1 + 6.1832x2 + 1.2163x3 = 8.2049

−2.4371x1 + 1.2163x2 + 8.4429x3 = 3.9339

by [L][D][L]T decomposition.
Answer: x1 = 0.8964, x2 = 0.7651, x3 = 0.6145. The diagonal terms
are D11 = 9.3746, D22 = 5.1964, D33 = 7.0341 and the determinant of
the coefficient matrix is 342.66.

4. Solve the symmetrical equations

5x1 + 6x2 − 2x3 − 2x4 = 1
6x1 − 5x2 − 2x3 + 2x4 = 0
−2x1 − 2x2 + 3x3 − x4 = 0
−2x1 + 2x2 − x3 − 3x4 = 0

Answer: x1 = 0.12446, x2 = 0.07725, x3 = 0.11159, x4 = −0.06867

5. Solve the symmetrical equations

x1 + 2x2 − 2x3 + x4 = 4
2x1 + 5x2 − 2x3 + 3x4 = 7

−2x1 − 2x2 + 5x3 + 3x4 = −1
x1 + 3x2 + 3x3 + 2x4 = 0

Answer: x1 = 2, x2 = −1, x3 = −1, x4 = 2

6. Attempt to solve Exercises 4 and 5 by Cholesky’s method (Program
2.4).
Answer: Square roots of negative numbers will arise.

7. Solve the symmetrical banded system

⎡
⎢⎢⎣

4 2 0 0
2 8 2 0
0 2 8 2
0 0 2 4

⎤
⎥⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩

4
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

Answer: x1 = 1.156, x2 = −0.311, x3 = 0.089, x4 = −0.044

8. Solve the following system using elimination with pivoting⎡
⎢⎢⎣

1 0 2 3
−1 2 2 −3

0 1 1 4
6 2 2 4

⎤
⎥⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩

1
−1

2
1

⎫⎪⎪⎬
⎪⎪⎭

84 Numerical Methods for Engineers

Answer: x1 = − 13
70 , x2 = 8

35 , x3 = − 4
35 , x4 = 33

70 . The interchanged row
order is 4, 2, 1, 3.

9. Solve the following equations using elimination with pivoting

x1 + 2x2 + 3x3 = 2
3x1 + 6x2 + x3 = 14
x1 + x2 + x3 = 2

Answer: x1 = 1, x2 = 2, x3 = −1. The interchanged row order is 2, 3,
1.

10. Attempt to solve Exercise 9 without pivoting.
Answer: Zero pivot found in row 2.

11. Solve the equations

20x1 + 2x2 − x3 = 25
2x1 + 13x2 − 2x3 = 30

x1 + x2 + x3 = 2

using (a) Jacobi and (b) Gauss-Seidel iterations, using a starting guess
x1 = x2 = x3 = 0.
Answer: x1 = 1, x2 = 2, x3 = −1.

12. Compare the iteration counts, for a tolerance of 1×10−5, in the solution
of Exercise 11 by the following methods: (a) Jacobi, (b) Gauss-Seidel,
(c) SOR (ω = 1.2), (d) Steepest descent, (e) Conjugate gradients.
Answer: (a) 16, (b) 10, (c) 30, (d) 69, (e) Does not converge. The last
method is suitable only for symmetrical, positive definite systems.

13. Solve Exercises 4 and 5 by the method of Conjugate gradients.
Answer: For a tolerance of 1× 10−5, solution obtained in 5 iterations in
both cases.

14. Check that the solution vector [1.22 − 1.02 3.04]T is a solution to the
system

9x1 + 9x2 + 8x3 = 26
9x1 + 8x2 + 7x3 = 24
8x1 + 7x2 + 6x3 = 21

to within a tolerance of 0.01. Find the true solution. What do these
results imply about the system of equations?
Answer: True solution [1 1 1]T . The system is ill-conditioned.

Linear Algebraic Equations 85

15. Solve the following set of equations by using Gaussian elimination with
pivoting to transform the matrix into lower triangular form.

⎡
⎢⎢⎣

0 2 0 3
1 0 3 4
2 3 0 1

−3 5 2 0

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
7

−9
−12

⎫⎪⎪⎬
⎪⎪⎭

Answer: x1 = −1, x2 = −3, x3 = 0, x4 = 2

16. Estimate the solution to the following set of equations using the Gauss-
Seidel method with an initial guess of x1 = 10, x2 = 0 and x3 = −10

⎡
⎣ 4 −2 −1

1 −6 2
1 −2 12

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

40
−28
−86

⎫⎬
⎭

Answer: Solution is [x1 x2 x3]T = [10.11 3.90 − 7.36]T

After two iterations you should have [9.45 3.79 − 7.32]T

17. Solve the following set of equations using Gaussian elimination.

⎡
⎢⎢⎣

4 3 −6 1
4 3 2 2

−6 −6 3 −1
−1 3 −1 2

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

−5
12
−1
−9

⎫⎪⎪⎬
⎪⎪⎭

Answer: [x1 x2 x3 x4]T = [3 − 2 2 1]T

18. Decompose the matrix [A] into the factors [L][D][L]T and hence com-
pute its determinant

[A] =

⎡
⎣ 2 1 0

1 3 1
0 1 2

⎤
⎦

Answer: [L][D][L]T =

⎡
⎣ 1 0 0

0.5 1 0
0 0.4 1

⎤
⎦
⎡
⎣ 2 0 0

0 2.5 0
0 0 1.6

⎤
⎦
⎡
⎣ 1 0.5 0

0 1 0.4
0 0 1

⎤
⎦,

det[A] = 8

19. In a less stringent approach to avoiding zero-diagonal terms known as
“Partial pivoting”, at each stage of the elimination process, the terms in
the column below the active diagonal are scanned, and the row contain-
ing the largest (absolute) term is interchanged with the row containing
the diagonal.

86 Numerical Methods for Engineers

Use this method to solve the following set of equations:

⎡
⎣ 4 −4 −6

4 3 2
−6 −6 3

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

2.5
−4.6

4.95

⎫⎬
⎭

Answer: x1 = −0.55, x2 = −0.50, x3 = −0.45

20. Use Cholesky’s method to solve the following two systems of simultane-
ous equations

⎡
⎣ 1 2 −2

2 5 −4
−2 −4 5

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

−4
2
4

⎫⎬
⎭ ,

⎡
⎣ 1 2 −2

2 5 −4
−2 −4 5

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

2
−4

4

⎫⎬
⎭

Briefly describe any labor saving procedures that may have helped you
to solve these two problems.

Answer: [−32 10 − 4]T , [34 − 8 8]T . Factorize once, followed by
forward and back-substitution for each problem.

21. Attempt to solve the following system of equations using Cholesky’s
Method.

⎡
⎣ 3 −2 1
−2 3 2

1 2 2

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

3
−3

2

⎫⎬
⎭

What do your calculations indicate about the nature of the coefficient
matrix?

Answer: Cholesky factorization not possible, hence symmetrical coeffi-
cient matrix is not positive definite.

22. Perform a couple of Gauss-Seidel iterations on the following system of
equations

⎡
⎣ 1.00 −0.62 0.37
−0.62 1.00 −0.51

0.37 −0.51 1.00

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

3
−3

2

⎫⎬
⎭

Answer: [2.5 − 1.1668 0.4799]T after 2 iteration with an initial guess
of [1 1 1]T . Solution [1.808 − 1.622 0.504]T

23. An engineering analysis involves repeated solution (i = 1, 2 · · · etc.) of
a set of equations of the form: [A]{x}i = {b}i where

Linear Algebraic Equations 87

[A] =

⎡
⎣ 4 3 −6

3 3 2
−6 −2 3

⎤
⎦

Choose an appropriate method for solving these equations, and use it

to solve for the case when {b}1 =

⎧⎨
⎩

−4
3

−6

⎫⎬
⎭

Work to 4 decimal places of accuracy.

Answer: The appropriate method involves factorization of [A].
x1 = 2.2530, x2 = −2.0241, x3 = 1.1566

24. The coefficient matrix of a symmetrical, positive definite system of e-
quations is stored in “skyline” form as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1080.0
−180.0

120.0
60.0
20.0
40.0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

with diagonal terms in the first, third and sixth locations. Retrieve the
original coefficient matrix and solve the equations to an accuracy of four
decimal places using a suitable method with a right hand side vector of:⎧⎨

⎩
10.0
0.0
0.0

⎫⎬
⎭

Answer: [0.0170 0.0324 − 0.0417]T

25. Prove that the BiCGStab algorithm (Program 2.13) leads to a solution
of the unsymmetrical equation systems of Excercises 1,2,8,9 and 11 in n
or n+1 iterations in every case. For these small systems, preconditioning
(Programs 2.15 or 2.16) is not necessary.

Chapter 3

Nonlinear Equations

3.1 Introduction

In the previous chapter we dealt with “linear” equations which did not
involve powers or products of the unknowns. A common form of “nonlinear”
equations which frequently arises in practice does contain such powers, for
example,

x3
1 − 2x1x2 + x2

2 = 4
x1 + 4x1x2 + 3x2

2 = 7 (3.1)

would be a pair of nonlinear equations satisfied by various combinations of x1

and x2.
In the simplest situation, we might have a single nonlinear equation such

as
y = f(x) = x3 − x− 1 = 0 (3.2)

A graphical interpretation helps us to understand the nature of the solutions
for x which satisfy equation (3.2). A plot of f(x) versus x is shown in Figure
3.1. Where f(x) intersects the line y = 0 is clearly a solution of the equation,
often called a “root”, which in this case has the value x ≈ 1.3247.

Note that we could also write equation (3.2) as

y = g(x) = x3 − x = 1 (3.3)

and look for the intersection of g(x) with the line y = 1 as a solution of the
equation, also shown in the figure.

Since we now know that x ≈ 1.3247 is a solution, we can factorize f(x) to
yield

f(x) ≈ (x− 1.3247)(x2 + 1.3247x+ 0.7549) = 0 (3.4)

Taking the roots of the quadratic equation (3.4), we arrive at solutions

x ≈ −1.3247±√−1.2648
2

(3.5)

showing that the remaining two roots are imaginary ones.

89

90 Numerical Methods for Engineers

It is immediately apparent that finding solutions to general sets of nonlinear
equations will be quite a formidable numerical task. As in the last chapter,
where we said that many physical systems produced diagonally dominant
and/or symmetric systems of linear equations, it is fortunate that in many
physical situations which give rise to nonlinear sets of equations, the nature of
the problem limits the possible values that the roots may have. For example,
we may know in advance that all the roots must be real, or even that they
must all be real and positive. In this chapter we shall concentrate on these
limited problems.

Figure 3.1: Root of f(x) = x3 − x− 1 obtained graphically.

We shall also see that the methods for solving nonlinear equations are in-
trinsically iterative in character. Referring to Figure 3.1, it should be clear
that such an iterative process might depend strongly on the quality of an
initial guessed solution. For example, a guess of x = 1 or x = 2 in that case
might have much more chance of success than a guess of x = −100 or x = 100.

Nonlinear Equations 91

3.2 Iterative substitution

A simple iterative process is to replace an equation like equation (3.2) which
had the form

f(x) = x3 − x− 1 = 0

by an equivalent equation
x = F (x) (3.6)

The iterative process proceeds by a guess being made for x, substitution of
this guess on the right-hand side of equation (3.6) and comparison of the result
with the guessed x. In the unlikely event that equality results, the solution
has been found. If not, the new F (x) is assumed to be a better estimate of x
and the process is repeated.

An immediate dilemma is that there is no single way of determining F (x).
In the case of equation (3.2), we could write

x = F1(x) = x3 − 1 (a)

x = F2(x) =
1

x2 − 1
(b) (3.7)

x = F3(x) = 3
√
x+ 1 (c)

When these are plotted, as in Figure 3.2, further difficulties are apparent. In
each case the root is correctly given by the intersection of y = Fi(x) with
y = x. The function F3(x), however, has no real value for x < −1.0 and the
function F2(x) has singular points at x ± 1.0. It can also be seen that F1(x)
and F2(x) are changing very rapidly in the region of the root (x = 1.3247) in
contrast to F3(x) which is changing very slowly. The following simple analysis
gives insight into the convergence properties of the method.

Consider a typical step of the method “close” to the required solution, then

xi+1 = F (xi) (3.8)

If the exact solution is α, then

α = F (α) (3.9)

hence from equations (3.8) and (3.9)

α− xi+1 = F (α) − F (xi)

≈ (α− xi)
dF

dx
(3.10)

If the method is to converge, |α− xi+1| < |α− xi|, hence∣∣∣∣dFdx
∣∣∣∣ < 1 (3.11)

92 Numerical Methods for Engineers

Figure 3.2: Different choices of x=F(x) in equation (3.7).

It is clear from Figure 3.2 that only F3(x) satisfies this convergence criterion
in the vicinity of the root. Furthermore, F3(x) from equation 3.7(c) will only
yield a correct result if the starting guess is x > −1.0.

Program 3.1: Iterative substitution for a single root

PROGRAM nm31
!---Iterative Substitution for a Single Root---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit; REAL(iwp)::tol,x0,x1
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Iterative Substitution for a Single Root---"
READ(10,*)x0,tol,limit
WRITE(11,’(/,A,/,E12.4)’)"Guessed Starting Value",x0
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
x1=f31(x0)
IF(check(x1,x0,tol).OR.iters==limit)EXIT; x0=x1
IF(iters<5)WRITE(11,’(3E12.4)’)x1

Nonlinear Equations 93

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Solution",x1
CONTAINS

FUNCTION f31(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f31
f31=(x+1.0_iwp)**(1.0_iwp/3.0_iwp)
RETURN
END FUNCTION f31

END PROGRAM nm31

List 3.1:

Scalar integers:
iters iteration counter
limit iteration limit

Scalar reals:
tol convergence tolerance
x0 approximate solution
x1 improved solution

Initial value x0
1.2

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.1: Iterative Substitution

---Iterative Substitution for a Single Root---

Guessed Starting Value
0.1200E+01

First Few Iterations
0.1301E+01
0.1320E+01

94 Numerical Methods for Engineers

0.1324E+01
0.1325E+01

Iterations to Convergence
7

Solution
0.1325E+01

Results 3.1: Iterative Substitution

The program expects F (x) to be provided in the user-supplied function f31
at the end of the main program. In this case, the function F3(x) = 3

√
x+ 1 is

generated as

f31=(x+1.0_iwp)**(1.0_iwp/3.0_iwp)

The program merely reads a starting value x0, and calculates a new value x1 =
F (x0). If x1 is close enough to x0, checked by library subroutine check (This
is done in the same way as checkit does for arrays.), the process terminates.
To guard against divergent solutions, a maximum number of iterations limit
is prescribed as data. Input and output are shown in Data and Results 3.1
respectively.

One might question whether the starting guess influences the computation
very much (as long as, of course, x0 > −1.0). The table below shows that
with a tolerance of 1 × 10−5 the influence is small in this case.

Starting value Number of iterations
x0 to convergence

0.0 8
1.2 7
1.3 8

10.0 9
100.0 10

3.3 Multiple roots and other difficulties

It can readily be shown that the nonlinear equation

f(x) = x4 − 6x3 + 12x2 − 10x+ 3 = 0 (3.12)

Nonlinear Equations 95

can be factorized into

f(x) = (x− 3)(x− 1)(x− 1)(x− 1) = 0 (3.13)

so that of the four roots, three are coincident. This function is illustrated in
Figure 3.3. Following our experience with equation (3.2), we may think of
expressing the equation for iterative purposes as

x = F (x) = 4
√

6x3 − 12x2 + 10x− 3 (3.14)

This function is also shown in Figure 3.3 where it can be seen that for x < 1.0,

F (x) becomes imaginary. For x in the range 1 < x < 2.16,
dF

dx
> 1, although

in the vicinity of the root at x = 3,
dF

dx
< 1.

When Program 3.1 is used to attempt to solve this problem, a starting guess
x0 = 1.1 converges to the root x = 3 in 311 iterations while starting guesses
of x0 = 2.0 and x0 = 4.0 converge to the root x = 3 in close to 100 iterations.
We can see that convergence is slow, and that it is impossible to converge on
the root x = 1 at all.

Example 3.1

Use Iterative Substitution to find a root close to 0.5 of the function

f(x) = x3 − 3x+ 1 = 0

Solution 3.1

Possible rearrangements take the form

x = F1(x) =
x3 + 1

3
(a)

x = F2(x) =
1

3 − x2
(b)

x = F3(x) = 3
√

3x− 1 (c)

Taking arrangement (a) with initial guess x0 = 0.5 leads to

x1 =
0.53 + 1

3
= 0.3750

x2 =
0.37503 + 1

3
= 0.3509

x1 =
0.35093 + 1

3
= 0.3477

which is almost converged on the exact solution x ≈ 0.3473 to 4 decimal
places.

96 Numerical Methods for Engineers

Figure 3.3: Functions f(x) and F (x) from equations (3.13) and (3.14).

In this example it is easily shown that the three roots of the cubic in this
example are to 4 decimal places given by 1.5321, 0.3473 and -1.8794. Analy-
sis of rearrangements (a), (b) and (c) above are summarized in the table below.

Root
dF1

dx
= x2 dF2

dx
=

2x
(3 − x2)2

dF3

dx
=

1
(3x− 1)2/3

-1.8794 3.53 -13.35 imaginary
0.3473 0.12 0.08 8.41
1.5321 2.35 7.19 0.43

The Table indicates the values of the derivatives
dFi

dx
in the vicinity of

Nonlinear Equations 97

each of the roots. Derivatives with absolute values less than one (in bold)
indicate that some arrangements of the original function can converge on
certain roots but not others. For example F1(x) and F2(x) can converge
on the root x = 0.3473, while F3(x) can converge on the root x = 1.5321.
None of the arrangements can converge on the root x = −1.8794 since the
absolute values of the derivatives that are real are all greater than one. In
the next section, we turn to other methods, beginning with those based on
interpolation between two estimates to find a root.

3.4 Interpolation methods

This class of methods is based on the assumption that the function changes
sign in the vicinity of a root. In fact if, for the type of function shown in
equation (3.13), there had been a double root rather than a triple one, no
sign change would have occurred at the double root, but this occurrence is
relatively rare. Let us begin by assuming that the vicinity of a root, involv-
ing a change in sign of the function, has been located - perhaps graphically.
The next two sections describe methods whereby the root can be accurately
evaluated.

3.4.1 Bisection method

To take a typical example, we know that the function given by equation
(3.2), namely

y = f(x) = x3 − x− 1 = 0 (3.15)

has a root close to 1.3, and that f(x) changes sign at that root (see Figure 3.1).
To carry out the bisection process, we would begin with an underestimate of
the root, say x = 1.0, and proceed to evaluate f(x) at equal increments of x
until a sign change occurs. This can be checked, for example, by noting that
the product of f(xi+1) and f(xi) is negative. We avoid for the moment the
obvious difficulties in this process, namely that we may choose steps which are
too small and involve excessive work or that for more complicated functions
we may choose steps which are too big and miss two or more roots which have
involved a double change of sign of the function.

Having established a change of sign of f(x), we have two estimates of the
root which bracket it. The value of the function half way between the esti-

mates is then found, i.e., f(
xi+1 + xi

2
) or f(xmid). If the sign of the function

at this midpoint is the same as that of f(xi), the root is “closer” to xi+1 and
xmid replaces xi for the next bisection. Alternatively, of course, it replaces
xi+1. When successive values of xmid are “close enough”, i.e., within a certain

98 Numerical Methods for Engineers

tolerance, iterations can be stopped.

Example 3.2

Use the Bisection method to find a root of the function,

f(x) = x3 − x− 1 = 0

which lies in the range 1.3 < x < 1.4.

Solution 3.2

A tabular approach is useful, i.e.,

x f(x)

1.3 -0.1030
1.4 0.3440
1.35 0.1104
1.325 0.0012
1.3125 -0.0515
1.31875 -0.0253
1.32188 -0.0121
1.32344 -0.0055
1.32422 -0.0021 etc.

Hence at this stage the root lies in the range

1.32422 < x < 1.325

Program 3.2: Bisection method for a single root

PROGRAM nm32
!---Bisection Method for a Single Root---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit
REAL(iwp)::half=0.5_iwp,tol,xmid,xi,xip1,xold,zero=0.0_iwp
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Bisection Method for a Single Root---"
READ(10,*)xi,xip1,tol,limit; WRITE(11,’(/,A,/,E12.4,A,E12.4)’) &
"Starting Range",xi," to", xip1
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0; xold=xi
DO; iters=iters+1; xmid=half*(xi+xip1)
IF(f32(xi)*f32(xmid)<zero)THEN

xip1=xmid; ELSE; xi=xmid; END IF

Nonlinear Equations 99

IF(iters<5)WRITE(11,’(3E12.4)’)xmid
IF(check(xmid,xold,tol).OR.iters==limit)EXIT; xold=xmid
END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Solution",xmid
CONTAINS

FUNCTION f32(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f32
f32=x**3-x-1.0_iwp
RETURN
END FUNCTION f32

END PROGRAM nm32

List 3.2:

Scalar integers:
iters iteration counter
limit iteration limit

Scalar reals:
half set to 0.5
tol convergence tolerance
xmid average of xi and xi+1

xi underestimate of root xi

xip1 overestimate of root xi+1

xold average from last iteration
zero set to 0.0

Initial values xi xip1
1.0 2.0

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.2: Bisection Method

100 Numerical Methods for Engineers

---Bisection Method for a Single Root---

Starting Range
0.1000E+01 to 0.2000E+01

First Few Iterations
0.1500E+01
0.1250E+01
0.1375E+01
0.1312E+01

Iterations to Convergence
17

Solution
0.1325E+01

Results 3.2: Bisection Method

The function is again equation (3.2) and this has been programmed into
function f32 at the end of the main program. The input and output are as
shown in Data and Results 3.2 respectively. Numbers to be input are the first
underestimate of the root, the first overestimate, the iteration tolerance and
the maximum number of iterations allowed.

As long as convergence has not been achieved, or the iteration limit reached,
the estimates of the root are bisected to give xmid, and the lower or upper es-
timate are updated as required. A library routine check checks if convergence
has been obtained.

When the tolerance has been achieved, or the iterations exhausted, the
current estimate of the root is printed together with the number of iterations
to achieve it.

As shown in Results 3.2, for the tolerance of 1×10−5, the Bisection method
takes 17 iterations to converge to the root x = 1.325 from lower and upper
starting limits of 1.0 and 2.0.

3.4.2 False position method

Again this is based on finding roots of opposite sign and interpolating be-
tween them, but by a method which is generally more efficient than bisection.

Figure 3.4 shows a plot of a function f(x) with a root in the region of x = 2.
Let our initial under- and overestimates be x = 1 and x = 3. The False
Position method interpolates linearly between (xi, f(xi)) and (xi+1, f(xi+1)),
taking the intersection of the interpolating line with the x-axis as an improved
guess at the root. Using the same procedure as in the Bisection method, the
improved guess replaces either the previous lower or upper bound as the case

Nonlinear Equations 101

may be. The interpolation can be written

xnew = xi − f(xi)
[

xi+1 − xi

f(xi+1) − f(xi)

]
(3.16)

Figure 3.4: False Position method.

Example 3.3

Use the False Position method to find a root of the function

f(x) = x3 − x− 1 = 0

which lies in the range 1.3 < x < 1.4.

Solution 3.3

A tabular approach is again useful, and using equation (3.16) we get

x f(x)

1.3 -0.1030
1.4 0.3440
1.32304 -0.0071
1.32460 -0.0005
1.32471 -0.0000 etc.

Convergence of this method can also be observed by f(x) → 0.

102 Numerical Methods for Engineers

Program 3.3: False position method for a single root

PROGRAM nm33
!---False Position Method for a Single Root---
USE nm_lib; USE precision; IMPLICIT NONE; INTEGER::iters,limit
REAL(iwp)::tol,xi,xip1,xnew,xold,zero=0.0_iwp
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---False Position Method for a Single Root---"
READ(10,*)xi,xip1,tol,limit
WRITE(11,’(/,A,/,E12.4,A,E12.4)’)"Starting Range",xi," to", xip1
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0; xold=xi
DO; iters=iters+1; xnew=xi-f33(xi)*(xip1-xi)/(f33(xip1)-f33(xi))
IF(f33(xi)*f33(xnew)<zero)THEN
xip1=xnew; ELSE; xi=xnew; END IF

IF(iters<5)WRITE(11,’(3E12.4)’)xnew
IF(check(xnew,xold,tol).OR.iters==limit)EXIT; xold=xnew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Solution",xnew
CONTAINS

FUNCTION f33(x)
IMPLICIT NONE; REAL(iwp),INTENT(IN)::x; REAL(iwp)::f33
f33=x**3-x-1.0_iwp
RETURN
END FUNCTION f33

END PROGRAM nm33

List 3.3:

Scalar integers:
iters iteration counter
limit iteration limit

Scalar reals:
tol convergence tolerance
xi underestimate of root xi

xip1 overestimate of root xi+1

xnew interpolated value
xold interpolated value from last iteration
zero set to 0.0

Nonlinear Equations 103

Initial values xi xip1
1.0 2.0

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.3: False Position Method

---False Position Method for a Single Root---

Starting Range
0.1000E+01 to 0.2000E+01

First Few Iterations
0.1167E+01
0.1253E+01
0.1293E+01
0.1311E+01

Iterations to Convergence
13

Solution
0.1325E+01

Results 3.3: False Position Method

The program is very similar to the previous one described for the Bisection
method. The same problem is solved with data and output shown in Data and
Results 3.3. It can be seen that the False Position method gives convergence
in 13 iterations as opposed to 17 iterations with the same tolerance by the
Bisection method. This increased efficiency will generally be observed except
in cases where the function varies rapidly close to one of the guessed roots.

3.5 Extrapolation methods

A disadvantage of interpolation methods is the need to find sign changes
in the function before carrying out the calculation. Extrapolation methods
do not suffer from this problem, but this is not to say that convergence dif-
ficulties are avoided, as we shall see. Probably the most widely used of all
extrapolation methods is often called the Newton-Raphson method. It bases
its extrapolation procedure on the slope of the function at the guessed root.

104 Numerical Methods for Engineers

3.5.1 Newton-Raphson method

Suppose we expand a Taylor series about a single guess at a root, xi. For
a “small” step h in the x direction the Taylor expansion is

f(xi+1) = f(xi + h) = f(xi) + hf ′(xi) +
h2

2!
f ′′(xi) + · · · (3.17)

Dropping terms in the expansion higher than f ′(x), and assuming that xi+1

is a root, i.e., f(xi + h) = 0, we can write

f(xi) + hf ′(xi) = 0 (3.18)

or
f(xi) + (xi+1 − xi)f ′(xi) = 0 (3.19)

After rearrangement, we can write the recursive formula

xi+1 = xi − f(xi)
f ′(xi)

(3.20)

Obviously this has a simple graphical interpretation as shown in Figure 3.5.
The extrapolation is just tangential to the function at the guessed point xi.
The new feature of the method is the need to calculate the derivative of the
function, and this can present difficulties (see Chapter 5). However, for simple
algebraic expressions like equation (3.2) the differentiation is easily done, and
the derivative returned as a function at the end of the main program as will
be shown in Program 3.4.

Figure 3.5: The Newton-Raphson process.

This method often has good convergence properties; however, by comparing
equations (3.20) and (3.8) we can conclude that the Newton-Raphson method

Nonlinear Equations 105

will converge only if ∣∣∣∣ ddx
(
x− f(x)

f ′(x)

)∣∣∣∣ < 1 (3.21)

or ∣∣∣∣f(x)f ′′(x)
(f ′(x))2

∣∣∣∣ < 1 (3.22)

in the vicinity of the root.
Analysis of this expression is beyond the scope of this text, but it can be

seen that the method may run into difficulties if f(x) becomes large or f ′(x)
becomes very small. With reference to Figure 3.5 if an initial guess happens
to give f ′(x) ≈ 0, the tangent will run virtually parallel to the x-axis. In this
case the next estimate of x would be far removed from the root and conver-
gence slow.

Example 3.4

Use the Newton-Raphson method to find a root close to x = 2 of the
function

f(x) = x3 − x− 1 = 0

Solution 3.4

The Newton-Raphson formula is

xi+1 = xi − f(xi)
f ′(xi)

hence in this case

xi+1 = xi − x3
i − xi − 1
3x2

i − 1

We can use a tabular approach as follows

x f(x)
2.0 5.0
1.54545 1.1458
1.35961 0.1537
1.32580 0.0046
1.32472 0.0000 etc.

displaying rapid convergence in this case. It may be noted that the column
marked f(x) was not strictly necessary in this case, since the recursive formula
was derived explicitly in terms of xi only.

106 Numerical Methods for Engineers

Program 3.4: Newton-Raphson method for a single root

PROGRAM nm34
!---Newton-Raphson Method for a Single Root---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit; REAL(iwp)::tol,x0,x1
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Newton-Raphson Method for a Single Root---"
READ(10,*)x0,tol,limit
WRITE(11,’(/,A,/,E12.4)’)"Guessed Starting Value",x0
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
x1=x0-f34(x0)/f34dash(x0)
IF(check(x1,x0,tol).OR.iters==limit)EXIT; x0=x1
IF(iters<5)WRITE(11,’(3E12.4)’)x1

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Solution",x1
CONTAINS

FUNCTION f34(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f34
f34=x**3-x-1.0_iwp
RETURN
END FUNCTION f34

FUNCTION f34dash(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f34dash
f34dash=3.0_iwp*x**2-1.0_iwp
END FUNCTION f34dash

END PROGRAM nm34

Initial value x0
1.2

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.4: Newton-Raphson Method

Nonlinear Equations 107

---Newton-Raphson Method for a Single Root---

Guessed Starting Value
0.1200E+01

First Few Iterations
0.1342E+01
0.1325E+01
0.1325E+01

Iterations to Convergence
4

Solution
0.1325E+01

Results 3.4: Newton-Raphson Method

List 3.4:

Scalar integers:
iters iteration counter
limit iteration limit

Scalar reals:
tol convergence tolerance
x0 approximate solution
x1 improved solution

Program 3.4 differs from the simple Iterative Substitution Program 3.1 in
only one line, where xi (called x0 in the program) is updated to xi+1 (called
x1) according to equation (3.20). The function and its derivative are contained
in the user-supplied functions f34 and f34dash.

When the program is run with the data from Data 3.4, convergence is now
achieved in 4 iterations as shown in Results 3.4. This can be compared with
the 7 iterations needed for convergence for the same problem and data using
Iterative Substitution (Results 3.1).

3.5.2 A modified Newton-Raphson method

For large systems of equations, the need to be forever calculating derivatives
can make the iteration process expensive. A modified method can be used

108 Numerical Methods for Engineers

(there are many other “modified” methods) in which the first evaluation of
f ′(x0) is used for all further extrapolations. This is shown graphically in
Figure 3.6, where it can be seen that the extrapolation lines are now parallel
with a gradient dictated by the derivative corresponding to the initial guessed
value of x0.

Figure 3.6: A Modified Newton-Raphson process with a constant gradient.

Example 3.5

Use the Modified Newton-Raphson method to find a root close to x = 2 of
the function,

f(x) = x3 − x− 1 = 0

Solution 3.5

The Modified Newton-Raphson formula is

xi+1 = xi − f(xi)
f ′(x0)

Nonlinear Equations 109

hence in this case

xi+1 = xi − x3
i − xi − 1
3(2)2 − 1

= xi − x3
i − xi − 1

11

We can use a tabular approach as follows

x f(x)

2.0 5.0
1.54545 1.14576
1.44129 0.55275
1.39104 0.30063
1.36371 0.17241
1.34801 0.10164
1.33880 0.06085
1.33327 0.03676 etc.

The convergence in this case is rather slow because the gradient at x = 2,
which remains unchanged, is a poor approximation to the “correct” gradient
at the root x ≈ 1.32472.

Program 3.5: Modified Newton-Raphson method for a
single root

PROGRAM nm35
!---Modified Newton-Raphson Method for a Single Root---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit; REAL(iwp)::fd,tol,x0,x1
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Newton-Raphson Method for a Single Root---"
READ(10,*)x0,tol,limit
WRITE(11,’(/,A,/,E12.4)’)"Guessed Starting Value",x0
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0; fd=f35dash(x0)
DO; iters=iters+1
x1=x0-f35(x0)/fd
IF(check(x1,x0,tol).OR.iters==limit)EXIT; x0=x1
IF(iters<5)WRITE(11,’(3E12.4)’)x1

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Solution",x1
CONTAINS

110 Numerical Methods for Engineers

FUNCTION f35(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f35
f35=x**3-x-1.0_iwp
RETURN
END FUNCTION f35

FUNCTION f35dash(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f35dash
f35dash=3.0_iwp*x**2-1.0_iwp
END FUNCTION f35dash

END PROGRAM nm35

List 3.5:

Scalar integers:
iters iteration counter
limit iteration limit

Scalar reals:
fd holds initial gradient f ′(x0)
tol convergence tolerance
x0 approximate solution
x1 improved solution

Initial value x0
1.0 (or 1.2)

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.5: Modified Newton-Raphson Method

---Newton-Raphson Method for a Single Root---

Guessed Starting Value
0.1000E+01

First Few Iterations
0.1500E+01

Nonlinear Equations 111

0.1062E+01
0.1494E+01
0.1074E+01
0.1492E+01

.

.

.
0.1490E+01
0.1081E+01
0.1490E+01
0.1081E+01
0.1490E+01

Iterations to Convergence
100

Solution
0.1081E+01

Results 3.5a: Modified Newton-Raphson Method (first example)

---Newton-Raphson Method for a Single Root---

Guessed Starting Value
0.1200E+01

First Few Iterations
0.1342E+01
0.1319E+01
0.1326E+01
0.1324E+01

Iterations to Convergence
8

Solution
0.1325E+01

Results 3.5b: Modified Newton-Raphson Method (second example)

The program is almost identical to the previous one. The function and
its derivative are contained in the user-supplied functions f35 and f35dash.
Unlike the full Newton-Raphson algorithm, this “modified” version calls the
function f35dash once only. The initial derivative is called fd and used there-
after as a constant. The program is used to solve the familiar cubic equation,
but with two different starting guesses of x0 = 1.0 and x0 = 1.2 as shown

112 Numerical Methods for Engineers

in Data 3.5. The results in each case are given in Results 3.5a and 3.5b re-
spectively, illustrating one of the typical problems of Newton-Raphson type
methods. It can be seen that with a starting value of 1.0 the estimated root
oscillates between two constant values, and will never converge to the correct
solution. On the other hand, if the starting guess is changed to 1.2, con-
vergence occurs in 8 iterations, which can be compared with the 4 iterations
required with the “full” Newton-Raphson algorithm from Program 3.4.

We can see that the process is far from automatic and that the closer to
the solution the initial guess is, the better.

3.6 Acceleration of convergence

For slowly convergent iterative calculations, “Aitken’s δ2 acceleration” pro-
cess is sometimes effective in extrapolating from the converging solutions to
the converged result.

The method can be simply stated. If we have three estimates of a root, xi,
xi+1 and xi+2 the “δ2” process extrapolates to the new solution

xnew =
xixi+2 − x2

i+1

xi − 2xi+1 + xi+2
(3.23)

3.7 Systems of nonlinear equations

For simplicity of presentation, we have so far concentrated on a single non-
linear equation. In practice we may have systems of nonlinear equations to
solve simultaneously of the general form

f1(x1, x2, · · · , xn) = 0
f2(x1, x2, · · · , xn) = 0

... (3.24)
fn(x1, x2, · · · , xn) = 0

A solution or root of such a system will consist of a set of variables of the form
(x1, x2, · · · , xn) and there will typically be multiple solutions that satisfy the
equations.

The methods already described, namely Iterative Substitution and Newton-
Raphson, can be extended to tackle systems of nonlinear equations, and these
will be revisited in subsequent sections.

Nonlinear Equations 113

3.7.1 Iterative substitution for systems

The standard equations (3.24) are rearranged in the form

x1 = F1(x1, x2, · · · , xn)
x2 = F2(x1, x2, · · · , xn)

... (3.25)
xn = Fn(x1, x2, · · · , xn)

and the method proceeds by making an initial guess for all the variables
(x1, x2, · · · , xn)0. These values are substituted into the right hand sides of
equation (3.25) yielding updated values of the variables (x1, x2, · · · , xn)1 and
so on. Iterations continue until none of the variables is changing by more than
a specified tolerance.

A disadvantage of this method is that for most systems of nonlinear e-
quations, several rearrangements of the type shown in equations (3.25) are
possible. Some rearrangements will have convergent properties and others
may not. In the case of a single equation, convergence was conditional on the
magnitude of the gradient of the function F (x) in the vicinity of the root as
shown by equation (3.11). From similar arguments, two nonlinear equations,
for example, will only be convergent if∣∣∣∣∂F1

∂x1

∣∣∣∣+
∣∣∣∣∂F1

∂x2

∣∣∣∣ < 1∣∣∣∣∂F2

∂x1

∣∣∣∣+
∣∣∣∣∂F2

∂x2

∣∣∣∣ < 1 (3.26)

As the number of equations increases, the restrictions on convergence become
ever more stringent, limiting the value of the method in practice.

Example 3.6

Use Iterative Substitution to find a root close to x1 = 1, x2 = 1 of the
functions

2x2
1 + x2

2 = 4.32
x2

1 − x2
2 = 0

Solution 3.6

It is recommended that the equations are first arranged in “standard form”
whereby the right hand sides equals zero, thus

f1(x1, x2) = 2x2
1 + x2

2 − 4.32 = 0
f2(x1, x2) = x2

1 − x2
2 = 0

114 Numerical Methods for Engineers

We now rearrange the equations such that each variable appears on the left
hand side. There are several ways that this could be done, with one possible
arrangement being as follows

x1 = F1(x1, x2) =
√

2.16 − 0.5x2
2

x2 = F2(x1, x2) =
√
x2

1 = x1

With the recommended starting guess of x1 = x2 = 1.0 we can set up a table

Iteration x1 x2

number

0 1.00 1.00
1 1.29 1.00
2 1.29 1.29
3 1.15 1.29
4 1.15 1.15
5 1.22 1.15
6 1.22 1.22
7 1.19 1.22

which is clearly converging on the result x1 = x2 = 1.2. In the manner of
Gauss-Seidel iteration, the convergence could be improved by using updated
values as soon as they become available.

Program 3.6: Iterative substitution for systems of equa-
tions

PROGRAM nm36
!---Iterative Substitution for Systems of Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit,n; REAL(iwp)::tol
REAL(iwp),ALLOCATABLE::x(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’) &
"---Iterative Substitution for Systems of Equations---"

READ(10,*)n; ALLOCATE(x(n)); READ(10,*)x,tol,limit
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
IF(checkit(f36(x),x,tol).OR.iters==limit)EXIT
x=f36(x); IF(iters<5)WRITE(11,’(6E12.4)’)x

Nonlinear Equations 115

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x
CONTAINS

FUNCTION f36(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:); REAL(iwp)::f36(UBOUND(x,1))
f36(1)=SQRT(2.16_iwp-0.5_iwp*x(2)*x(2))
f36(2)=x(1)
END FUNCTION f36

END PROGRAM nm36

List 3.6:

Scalar integers:
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
tol convergence tolerance

Dynamic real arrays:
x vector holding old and updated variables

Number of equations n
2

Initial values x
1.0 1.0

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.6: Iterative Substitution for Systems of Equations

116 Numerical Methods for Engineers

---Iterative Substitution for Systems of Equations---

Guesssed Starting Vector
0.1000E+01 0.1000E+01

First Few Iterations
0.1288E+01 0.1000E+01
0.1288E+01 0.1288E+01
0.1153E+01 0.1288E+01
0.1153E+01 0.1153E+01

Iterations to Convergence
31

Solution Vector
0.1200E+01 0.1200E+01

Results 3.6: Iterative Substitution for Systems of Equations

The program is essentially the same as Program 3.1 with arrays in place of
simple variables. Functions F1, F2, · · · , Fn from equations (3.25) are provided
in the user-supplied function called f36. Data and results for a problem with
two equations are shown in Data and Results 3.6. Additional data n indicates
the number of nonlinear equations to be solved. The library function checkit
is used to check convergence of successive solution vectors. With a tolerance
of tol=0.00001 convergence is achieved in 31 iterations for the starting guess
x1 = x2 = 1.0.

3.7.2 Newton-Raphson for systems

This is based on Taylor expansions in several variables. For example, in
the case of two equations, such as equations (3.26), suppose we expand a
Taylor series about a guess at a root (xi

1, x
i
2)

1. For “small” steps Δx1 in
the x1 direction and Δx2 in the x2 direction, the first order Taylor expansion
becomes

f i+1
1 = f i

1 + Δx1

(
∂f1
∂x1

)i

+ Δx2

(
∂f1
∂x2

)i

f i+1
2 = f i

2 + Δx1

(
∂f2
∂x1

)i

+ Δx2

(
∂f2
∂x2

)i

1We have placed the iteration counter as a superscript in this section to avoid conflict with
the variable number subscripts.

Nonlinear Equations 117

where
xi+1

k = xi
k + Δxk

f i
k = fk(xi

1, x
i
2)

(
∂fk

∂x1

)i

=
∂fk(xi

1, x
i
2)

∂x1

(
∂fk

∂x2

)i

=
∂fk(xi

1, x
i
2)

∂x2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k = 1, 2

If we assume (xi+1
1 , xi+1

2) is a root, then f i+1
1 = f i+1

2 = 0 and we can write

f1 + Δx1
∂f1
∂x1

+ Δx2
∂f1
∂x2

= 0

f2 + Δx1
∂f2
∂x1

+ Δx2
∂f2
∂x2

= 0

or in matrix form ⎡
⎢⎢⎢⎣
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎥⎥⎦
⎧⎨
⎩

Δx1

Δx2

⎫⎬
⎭ =

⎧⎨
⎩

−f1

−f2

⎫⎬
⎭ (3.27)

where all functions and derivatives are evaluated at (xi
1, x

i
2).

Thus for a system of n simultaneous nonlinear equations, we must solve n
simultaneous linear equations to find the vector of variable changes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δx1

Δx2

...
Δxn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.28)

which are then used to update all the variables

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1

x2

...
xn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

i+1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1

x2

...
xn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

i

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δx1

Δx2

...
Δxn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.29)

The process repeats itself iteratively until successive solution vectors from
equation (3.19) are hardly changing as dictated by a convergence criterion.

118 Numerical Methods for Engineers

The matrix on the left-hand side of equation (3.27) is called the “Jacobian
matrix” [J] and its determinant simply “the Jacobian” . Clearly, if the Jaco-
bian is zero, the process fails, and if it is close to zero, slow convergence may
be anticipated.

For a starting guess of x1 = x2 = 1.0, the iteration matrix for the first
iteration on the problem shown in Example 3.6 is[

4 2
2 −2

]{
Δx1

Δx2

}
=
{

1.32
0.0

}
which yields Δx1 = Δx2 = 0.22 and hence an improved solution of x1 = x2 =
1.22

Example 3.7

Use the Newton-Raphson method to find a root of the equations

xy = 1
x2 + y2 = 4

close to x = 1.8 and y = 0.5.

Solution 3.7

First we arrange the equations in standard form with subscript notation as

f1(x1, x2) = x1x2 − 1 = 0
f2(x1, x2) = x2

1 + x2
2 − 4 = 0

Form the Jacobian matrix by differentiation according to equation (3.17)

[J] =
[
x2 x1

2x1 2x2

]

In a small system of equations such as this it is convenient to simply invert
the Jacobian matrix, thus

[J]−1 =
1

2x2
2 − 2x2

1

[
2x2 −x1

−2x1 x2

]

1st iteration

Initial guess, x1 = 1.8, x2 = 0.5, hence

[J]−1 =
[−0.1672 0.3010

0.6020 −0.0836

]
and

{−f1
−f2

}
=
{

0.1
0.51

}

Thus, {
Δx1

Δx2

}
=
[−0.1672 0.3010

0.6020 −0.0836

]{
0.1
0.51

}
=
{

0.1368
0.0176

}

Nonlinear Equations 119

2nd iteration

Updated values

x1 = 1.8 + 0.1368 = 1.9368
x2 = 0.5 + 0.0176 = 0.5176

hence

[J]−1 =
[−0.1486 0.2780

0.5560 −0.0743

]
and

{−f1
−f2

}
=
{−0.0025
−0.0191

}

Thus, {
Δx1

Δx2

}
=
[−0.1486 0.2780

0.5560 −0.0743

]{−0.0025
−0.0191

}
=
{−0.0049

0.0000

}

3rd iteration

Updated values

x1 = 1.9368− 0.0049 = 1.9319
x2 = 0.5176 + 0.0000 = 0.5176 etc.

Note how Δx1,Δx2 −→ 0 as iterations proceed and the root is approached.

Program 3.7: Newton-Raphson for systems of equations

PROGRAM nm37
!---Newton-Raphson for Systems of Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit,n; REAL(iwp)::tol
REAL(iwp),ALLOCATABLE::x0(:),x1(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Newton-Raphson for Systems of Equations---"
READ(10,*)n; ALLOCATE(x0(n),x1(n)); READ(10,*)x0,tol,limit
WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x0
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1
x1=x0-MATMUL(inverse(f37dash(x0)),f37(x0))
IF(checkit(x1,x0,tol).OR.iters==limit)EXIT; x0=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x0

120 Numerical Methods for Engineers

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x0
CONTAINS

FUNCTION f37(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:); REAL(iwp)::f37(UBOUND(x,1))
f37(1)=2.0_iwp*x(1)*x(1)+x(2)*x(2)-4.32_iwp
f37(2)=x(1)*x(1)-x(2)*x(2)
END FUNCTION f37

FUNCTION f37dash(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:)
REAL(iwp)::f37dash(UBOUND(x,1),UBOUND(x,1))
f37dash(1,1) = 4.0_iwp*x(1); f37dash(2,1) = 2.0_iwp*x(1)
f37dash(1,2) = 2.0_iwp*x(2); f37dash(2,2) =-2.0_iwp*x(2)
END FUNCTION f37dash

END PROGRAM nm37

List 3.7:

Scalar integers:
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
tol convergence tolerance

Dynamic real arrays:
x0 vector holding old variables
x1 vector holding updated variables

Number of equations n
2

Initial values x0
1.0 1.0

Nonlinear Equations 121

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.7: Newton-Raphson for Systems of Equations

---Newton-Raphson for Systems of Equations---

Guessed Starting Vector
0.1000E+01 0.1000E+01

First Few Iterations
0.1220E+01 0.1220E+01
0.1200E+01 0.1200E+01
0.1200E+01 0.1200E+01

Iterations to Convergence
4

Solution Vector
0.1200E+01 0.1200E+01

Results 3.7: Newton-Raphson for Systems of Equations

The input data and output results are given in Data and Results 3.7 re-
spectively. The number of equations n is provided followed by an initial guess
of the solution vector x0 and the tolerance and iteration limit. The actual
functions and their derivatives are contained in the user-supplied functions
f37 and f37dash. The program assumes that the Jacobian matrix is small
enough to be inverted by the library function inverse. Note that for large
systems, inverse should be replaced by an appropriate solution algorithm
from Chapter 2. Results 3.7 shows that convergence was achieved in this
simple case in 4 iterations.

3.7.3 Modified Newton-Raphson method for systems

In the full Newton-Raphson algorithm, the presence of function inverse, or
an alternative equation solver if n becomes large, means that substantial com-
putation is required at each iteration. Furthermore, since the coefficient ma-
trix is typically nonsymmetric and changes from one iteration to the next, no
advantage can be taken of factorization strategies. Modified Newton-Raphson
strategies seek to reduce the amount of work performed at each iteration, but
at the expense of needing more iterations for convergence. For example, in-
stead of updating and inverting the Jacobian matrix every iteration, we could
update it periodically, every mth iteration say.

An extreme, but very simple form of modification is where we compute
and invert the Jacobian matrix once only, corresponding to the initial guess.

122 Numerical Methods for Engineers

This was the method described in Program 3.5 for a single equation, and is
presented again here as Program 3.8 for systems of equations. In general, it
will require more iterations than the full Newton-Raphson procedure. It will
be a question in practice of whether the increase in iterations in the modified
method more than compensates for the reduction in equation solving.

Example 3.8

Use the Modified Newton-Raphson method to find a root of the equations

ex + y = 0
cosh y − x = 3.5

close to x = −2.4 and y = −0.1.

Solution 3.8

First we arrange the equations in standard form with subscript notation as

f1(x1, x2) = ex1 + x2 = 0
f2(x1, x2) = −x1 + coshx2 − 3.5 = 0

Form the Jacobian matrix by differentiation according to equation (3.27)

[J] =
[
ex1 1
−1 sinhx2

]

In a small system of equations such as this it is convenient to simply invert
the Jacobian matrix, thus

[J]−1 =
1

1 + ex1 sinhx2

[
sinhx2 −1

1 ex1

]

Initial guess, x1 = −2.4, x2 = −0.1, hence

[J]−1 =
[−0.1011 −1.0092

1.0092 0.0915

]

In the modified version of Newton-Raphson described in this text, [J]−1 re-
mains constant.

1st iteration

Initial guess, x1 = −2.4, x2 = −0.1, hence{−f1
−f2

}
=
{ −ex1 − x2

x1 − coshx2

}
=
{

0.0093
0.0950

}

Nonlinear Equations 123

Thus, {
Δx1

Δx2

}
=
[−0.1011 −1.0092

1.0092 0.0915

]{
0.0093
0.0950

}
=
{−0.0968

0.0181

}

2nd iteration

Updated values

x1 = −2.4 − 0.0968 = −2.4968
x2 = 0.1 + 0.0181 = −0.0819

hence {−f1
−f2

}
=
{ −ex1 − x2

x1 − coshx2

}
=
{−0.0004
−0.0002

}
Thus, {

Δx1

Δx2

}
=
[−0.1011 −1.0092

1.0092 0.0915

]{−0.0004
−0.0002

}
=
{

0.0002
−0.0004

}

3rd iteration

Updated values

x1 = −2.4968 + 0.0002 = 1.9319
x2 = −0.0819− 0.0004 = 0.5176 etc.

Program 3.8: Modified Newton-Raphson for systems of
equations

PROGRAM nm38
!---Modified Newton-Raphson for Systems of Equations---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::iters,limit,n; REAL(iwp)::tol
REAL(iwp),ALLOCATABLE::inv(:,:),x0(:),x1(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’) &
"---Modified Newton-Raphson for Systems of Equations---"

READ(10,*)n; ALLOCATE(x0(n),x1(n),inv(n,n))
READ(10,*)x0,tol,limit

124 Numerical Methods for Engineers

WRITE(11,’(/,A,/,6E12.4)’)"Guessed Starting Vector",x0
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
inv=inverse(f38dash(x0))
DO; iters=iters+1
x1=x0-MATMUL(inv,f38(x0))
IF(checkit(x1,x0,tol).OR.iters==limit)EXIT; x0=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x0

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,6E12.4)’)"Solution Vector",x0
CONTAINS

FUNCTION f38(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:); REAL(iwp)::f38(UBOUND(x,1))
f38(1)=2.0_iwp*x(1)*x(1)+x(2)*x(2)-4.32_iwp
f38(2)=x(1)*x(1)-x(2)*x(2)
END FUNCTION f38

FUNCTION f38dash(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:)
REAL(iwp)::f38dash(UBOUND(x,1),UBOUND(x,1))
f38dash(1,1)=4.0_iwp*x(1); f38dash(1,2)= 2.0_iwp*x(2)
f38dash(2,1)=2.0_iwp*x(1); f38dash(2,2)=-2.0_iwp*x(2)
END FUNCTION f38dash

END PROGRAM nm38

List 3.8:

Scalar integers:
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
tol convergence tolerance

Dynamic real arrays:
inv holds inverse of the Jacobian matrix evaluated with initial guess
x0 vector holding old variables
x1 vector holding updated variables

Nonlinear Equations 125

Number of equations n
2

Initial values x0
1.0 1.0

Tolerance and tol limit
iteration limit 1.E-5 100

Data 3.8: Modified Newton-Raphson for Systems of Equations

---Modified Newton-Raphson for Systems of Equations---

Guessed Starting Vector
0.1000E+01 0.1000E+01

First Few Iterations
0.1220E+01 0.1220E+01
0.1196E+01 0.1196E+01
0.1201E+01 0.1201E+01
0.1200E+01 0.1200E+01

Iterations to Convergence
7

Solution Vector
0.1200E+01 0.1200E+01

Results 3.8: Modified Newton-Raphson for Systems of Equations

The only difference from Program 3.7 is that inverse is moved outside the
iteration loop. When run with the data given in Data 3.8 it produces the
results shown in Results 3.8. In this simple case, convergence is reached in 7
iterations using the modified method which can be compared with 4 iterations
using the full Newton-Raphson approach with Program 3.7

3.8 Exercises

1. Find a root of the equation x4−8x3 +23x2+16x−50 = 0 in the vicinity
of 1.0 by Iterative Substitution.
Answer: 1.4142

126 Numerical Methods for Engineers

2. Find the root of the equation x3 − 3x2 + 2x− 0.375 = 0 in the vicinity
of 1.0 by Iterative Substitution in the form x = [(x3 +2x−0.375)/3]1/2.
Answer: 0.5 in 95 iterations for a tolerance of 1 × 10−5.

3. Find a root of the equation in Exercise 1 in the range 1.0 < x < 2.0 by
the Bisection Method.
Answer: 1.4142 in 17 iterations for a tolerance of 1 × 10−5.

4. Find a root of the equation in Exercise 1 in the range 1.0 < x < 2.0 by
the False Position Method.
Answer: 1.4142 in 3 iterations for a tolerance of 1 × 10−5.

5. Find a root of the equation in Exercise 2 in the range 0.35 < x < 1.0 by
the Bisection Method.
Answer: 0.5 in 17 iterations for a tolerance of 1 × 10−5.

6. Find a root of the equation in Exercise 2 in the range 0.4 < x < 0.6 by
the False Position Method.
Answer: 0.5 in 12 iterations for a tolerance of 1 × 10−5.

7. Find a root of the equation in Exercise 1 in the vicinity of 1.0 by the
Newton-Raphson Method.
Answer: 1.4142 in 3 iterations for a tolerance of 1 × 10−5.

8. Find a root of the equation in Exercise 2 in the vicinity of 1.0 by the
Newton-Raphson Method.
Answer: 0.5 in 6 iterations for a tolerance of 1 × 10−5.

9. Find a root of the equation in Exercise 1 in the vicinity of 1.0 by the
Modified Newton-Raphson Method.
Answer: 1.4142 in 5 iterations for a tolerance of 1 × 10−5.

10. Find a root of the equation in Exercise 2 in the vicinity of 1.0 by the
Modified Newton-Raphson Method.
Answer: 0.5 in 30 iterations for a tolerance of 1 × 10−5.

11. Solve the equations

x1 + x2 − x
1/2
2 − 0.25 = 0

8x2
1 + 16x2 − 8x1x2 − 5 = 0

by Iterative Substitution from a starting guess x1 = x2 = 1.
Answer: x1 = 0.5 and x2 = 0.25 in 11 iterations for a tolerance of
1 × 10−5.

12. Solve the equations

2x2
1 − 4x1x2 − x2

2 = 0
2x2

2 + 10x1 − x2
1 − 4x1x2 − 5 = 0

Nonlinear Equations 127

by the Newton-Raphson procedure starting from x1 = x2 = 1.
Answer: x1 = 0.58 and x2 = 0.26 in 5 iterations for a tolerance of
1 × 10−5.

13. Solve the equations in Exercise 12 by the Modified Newton-Raphson
procedure starting from (a) x1 = x2 = 1 and (b) x1 = 0.5, x2 = 0.25.
Answer: x1 = 0.58, x2 = 0.26 in (a) 1470 iterations and (b) 6 iterations
for a tolerance of 1 × 10−5.

14. Solve the equations in Exercise 11 starting from x1 = 1.0, x2 = 0.1 by
(a) the Newton-Raphson procedure and
(b) the Modified Newton-Raphson procedure
Answer: x1 = 0.5, x2 = 0.25 in (a) 5 iterations and (b) 20 iterations for
a tolerance of 1 × 10−5.

15. Estimate a root of the following equations close to θ = 0.5 and α = 0.5
using the Modified Newton-Raphson Method.

3 cos θ + sinα = 3.1097

α tan θ = 0.2537

Answer: θ = 0.488, α = 0.478

16. Estimate a root of the following equations close to x = 0.5 and y = 2.5
using the Modified Newton-Raphson Method.

x sin y + x2 cos y = 0

ex + xy − 2 = 0

Answer: Solution is x = 0.248, y = 2.899
After two iterations you should have x = 0.249, y = 2.831

17. The depth of embedment d of a sheet-pile wall is governed by the equa-
tion:

d = (d3 + 2.87d2 − 10.28)/4.62

An engineer has estimated the correct depth to be d = 2.5. Use the
Modified Newton Raphson Method to improve on this estimate.

Answer: 2.002

18. An engineer has estimated the critical depth of flow down an open chan-
nel, yc, to be in the range 4-5 ft. If the governing equation is given by:

Q2b

gA3
= 1

128 Numerical Methods for Engineers

where:

Q = Flow rate = 520 ft3/s
g = Gravity = 32.2 ft/s2
A = Area of flow = (5 + 2yc)yc ft2
b = Surface width = 5 + 4yc ft

Improve on this estimate, correct to one decimal place, using the False
Position method.

Answer: 4.2

19. The rate of fluid flow down a sloping channel of rectangular cross-section
is given by the equation:

Q =
S1/2(BH)5/3

n(B + 2H)2/3

where:

Q = Flow rate (5 m3/s)
B = Channel width (20 m)
H = Depth of flow
S = Slope gradient (0.0002)
n = Roughness (0.03)

An engineer has estimated that the depth of flow must lie in the range
0.6 m < H < 0.9 m. Use any suitable method to estimate the actual
depth of flow.

Answer: H = 0.7023m

20. The Hazen-Williams equation governing gravity flow down circular pipes
is of the form:

Q = 0.281CD2.63S0.54

where, assuming use of a consistent system of units

Q = flow rate
C = pipe roughness coefficient
D = pipe diameter
S = pipe gradient

A particular pipe has a flow rate of 273, a roughness coefficient of 110
and a gradient of 0.0023. The diameter of the pipe is estimated to be
about 10. Perform a few iterations of the Newton-Raphson method to
improve this estimate.

Answer: 7.969 after 4 iterations with a tolerance of 1 × 10−5

Nonlinear Equations 129

21. The vertical stress σz generated at point X in an elastic continuum
under the edge of a strip footing supporting a uniform pressure q shown
in Figure 3.7 is given by Boussinesq’s formula to be:

σz =
q

π
{α+ sinα cosα}

Figure 3.7

Use the Modified Newton-Raphson Method to estimate the value of α
at which the vertical stress σz will be 25% of the footing stress q. Use
an initial guess of α = 0.4. Note that α must be expressed in radians.

Answer: 0.4159

22. The displacement/time function for free vibration of a simple damped
oscillator is given by:

u(t) = e−4.95t [7.48 sin13.23t+ 0.05 cos13.23t]

Use the False Position method to estimate the time in the range 0.2 <
t < 0.3 at which the oscillator first passes through its equilibrium posi-
tion at u = 0.0.

Answer: 0.237 secs

130 Numerical Methods for Engineers

23. The depth d of submergence of a solid pine sphere of radius r = 100,
floating in water, is given by the equation:

π(2552 − 30d2 + d3)
3

= 0

Within what range must the required root lie? Use the Bisection method
with appropriate initial guesses to compute d to the nearest whole num-
ber.

Answer: 12 (exact 11.8615)

24. Find the root of the equation:

2x(1 − x2 + x) lnx = x2 − 1

in the interval [0.1, 0.5] correct to two decimal places.

Answer: 0.33

Chapter 4

Eigenvalue Equations

4.1 Introduction

Equations of the type
[A]{x} = λ{x} (4.1)

often occur in practice, for example in the analysis of structural stability or
the natural frequencies of vibrating systems. We have to find a vector {x}
which, when multiplied by [A], yields a scalar multiple of itself. This multiple
λ is called an “eigenvalue” or “characteristic value” of [A] and we shall see
there are n of these for a matrix of order n. Physically they might represent
frequencies of oscillation. There are also n vectors {x}, one associated with
each of the eigenvalues λ. These are called “eigenvectors” or “characteristic
vectors” . Physically they might represent the mode shapes of oscillation.

A specific example of equation (4.1) might be⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ = λ

⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ (4.2)

which can be rewritten⎡
⎣ 16 − λ −24 18

3 −2 − λ 0
−9 18 −17 − λ

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.3)

A nontrivial solution of this set of linear simultaneous equations is only pos-
sible if the determinant of the coefficients is zero∣∣∣∣∣∣

16 − λ −24 18
3 −2 − λ 0
−9 18 −17 − λ

∣∣∣∣∣∣ = 0 (4.4)

Expanding the determinant gives

λ3 + 3λ2 − 36λ+ 32 = 0 (4.5)

which is called the “characteristic polynomial”. Clearly one way of solving
eigenvalue equations would be to reduce them to an nth degree characteristic

131

132 Numerical Methods for Engineers

polynomial and use the methods of the previous chapter to find its roots. This
is sometimes done, perhaps as part of a total solution process, but on its own
is not usually the best means of solving eigenvalue equations.

In the case of equation (4.5) the characteristic polynomial has simple factors

(λ− 4)(λ− 1)(λ+ 8) = 0 (4.6)

and so the eigenvalues of our matrix are 4, 1 and -8.
Note that for arbitrary matrices [A] the characteristic polynomial is likely

to yield imaginary as well as real roots. We shall restrict our discussion to
matrices with real eigenvalues and indeed physical constraints will often mean
that matrices of interest are symmetrical and “positive definite” (see Chapter
2) in which case all the eigenvalues are real and positive.

Having found an eigenvalue, its associated eigenvector can, in principle, be
found by solving a set of linear simultaneous equations. For example, for the
case of λ = 1 substituted into equation (4.3) we get

⎡
⎣ 15 −24 18

3 −3 0
−9 18 −18

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.7)

Carrying out the first stage of a Gaussian elimination gives
⎡
⎣ 15.0 −24.0 18.0

0.0 1.8 −3.6
0.0 3.6 −7.2

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.8)

As we knew already from the zero determinant, the system of equations
exhibits linear dependence and we have fewer equations than unknowns. We
can however see from the second and third equations of (4.8) that the ratio
of x2 to x3 is 2 : 1 and by substitution in the first equation of (4.8) that the
ratio of x1 to x2 is 1 : 1. So any vector with the ratios x1 : x2 : x3 = 2 : 2 : 1 is
an eigenvector associated with the eigenvalue λ = 1. Similar operations could
be used to find the eigenvectors corresponding to the other two eigenvalues.

4.1.1 Orthogonality and normalization of eigenvectors

The previous section showed that eigenvectors have unique directions, but
their magnitudes are arbitrary. This is easily shown by multiplying both sides
of equation (4.1) by an arbitrary constant α to give

[A]α{x} = λα{x} (4.9)

In this modified equation, α{x} and {x} are equally valid eigenvectors corre-
sponding to eigenvalue λ, of array [A]. Two methods of eigenvector normal-

Eigenvalue Equations 133

ization are commonly used. Consider the symmetrical matrix

[A] =

⎡
⎢⎢⎢⎢⎣

4 1
2 0

1
2 4 1

2

0 1
2 4

⎤
⎥⎥⎥⎥⎦ (4.10)

which has eigenvalues

λ1 = 4 +
1√
2
, λ2 = 4, λ3 = 4 − 1√

2
(4.11)

with corresponding eigenvectors

{x1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

√
2

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x2} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

0

−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x3} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

−√
2

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.12)

A convenient form of eigenvector normalization involves scaling the length,
otherwise known as the “L2 norm” or “Euclidean norm” to unity. Thus for
an eigenvector of n components, we scale the vector such that

(
n∑

i=1

x2
i

)1/2

= 1 (4.13)

which is easily achieved by dividing all the components of an unnormalized
eigenvector by the square root of the sum of the squares of all the components.

Thus, for the first eigenvector from (4.12) we would divide each component
by a factor given by √

12 + (
√

2)2 + 12 = 2 (4.14)

This, together with similar operations on the other two eigenvectors, leads to
the normalized eigenvectors

{x1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

1√
2

1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x2} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2

0

− 1√
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x3} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

− 1√
2

1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.15)

Eigenvectors of symmetrical matrices are said to exhibit “orthogonality”
one to the other. That is, the dot product of any two different eigenvectors
from the same matrix will equal zero, while the dot product of an eigenvector

134 Numerical Methods for Engineers

with itself gives its length squared. An attractive feature of setting the Eu-
clidean norm to unity, therefore, is that the eigenvector dot products either
equal zero or unity, and can be summarized as

{xi}T{xj} =
{

1 for i = j
0 for i �= j

(4.16)

A simple alternative form of eigenvector normalization is to divide through
by the component with the largest (absolute) magnitude. This results in
a normalized eigenvector whose largest component equals unity. Returning
again to the eigenvectors of equations (4.12), the first eigenvector would be
divided through by

√
2, the second eigenvector would be unaltered because

its largest term is already equal to unity and the third eigenvector would be
divided through by −√

2 leading to the normalized vectors

{x1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2

1

1√
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x2} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

0

−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, {x3} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1√
2

1

− 1√
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.17)

4.1.2 Properties of eigenvalues and eigenvectors

The numerical methods described in this chapter make use of theorems that
describe the influence of various matrix transformation on the eigenvalues and
eigenvectors. Some of the most useful of these relationships are summarized
here as a reference.

• If an n × n matrix [A] has real eigenvalues λ1, λ2, · · · , λn, [I] is the
unit matrix and p is a scalar shift, then

[A][A] has eigenvalues λ2
1, λ

2
2, · · · , λ2

n

[A] + p[I] has eigenvalues λ1 + p, λ2 + p, · · · , λn + p

[A]−1 has eigenvalues
1
λ1
,

1
λ2
, · · · , 1

λn

[[A] − p[I]]−1 has eigenvalues
1

λ1 − p
,

1
λ2 − p

, · · · , 1
λn − p

All these cases have the same eigenvectors.

Eigenvalue Equations 135

• The sum of the diagonals of an n × n matrix is called the “trace” and
is also equal to the sum of the eigenvalues, thus

tr[A] =
n∑

i=1

aii =
n∑

i=1

λi (4.18)

• The product of the eigenvalues of an n×nmatrix equals the determinant
of the matrix, thus

det[A] = λ1 λ2 · · ·λn (4.19)

• The diagonals of an n× n triangular matrix are the eigenvalues.

• Given two square matrices [A] and [B].
(a) [A]][B] and [B][A] will have the same eigenvalues.
(b) If {x} is an eigenvector of [A][B], [B]{x} is an eigenvector of [B][A].
This is shown by writing the equation

[A][B]{x} = λ{x} (4.20)

and then premultiplying both sides by [B] to give

[B][A][B]{x} = λ[B]{x} (4.21)

• Given two square matrices [A] and [P], where [P] is nonsingular.
(a) [A] and [P]−1[A][P] have the same eigenvalues.
(b) If {x} is an eigenvector of [A], [P]−1{x} is an eigenvector of
[P]−1[A][P].
This is shown by writing the equation

[A]{x} = λ{x} (4.22)

and then premultiplying both sides by [P]−1 to give

[P]−1[A]{x} = λ[P]−1{x} (4.23)

Insert the identity matrix in the form [P][P]−1 = [I] to give

[P]−1[A][P][P]−1{x} = λ[P]−1{x} (4.24)

• If [A] is an n×nmatrix with eigenvalues and eigenvectors λ1{x1}, λ2{x2},
· · · , λn{xn} and [P] is a matrix whose columns are the eigenvectors of
[A] scaled so that their Euclidean norms equal unity, then

[P]−1[A][P] =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

...
...

0 · · · 0 λn−1 0
0 · · · 0 0 λn

⎤
⎥⎥⎥⎥⎥⎦ (4.25)

136 Numerical Methods for Engineers

4.1.3 Solution methods for eigenvalue equations

Because of the presence of the unknown vector {x} on both sides of equa-
tion (4.1) we can see that solution methods for eigenvalue problems will be
essentially iterative in character. We have already seen one such method,
which involved finding the roots of the characteristic polynomial. A second
class of methods comprises “transformation methods” in which the matrix [A]
in equation (4.1) is iteratively transformed into a new matrix, say [A∗], which
has the same eigenvalues as [A]. However, these eigenvalues are easier to
compute than the eigenvalues of the original matrix. A third class of methods
comprises “vector iteration” methods which are perhaps the most obvious of
all. Just as we did in Chapter 3 for iterative substitution in the solution of
nonlinear equations, a guess is made for {x} on the left-hand side of equation
(4.1), the product [A]{x} is formed, and compared with the right-hand side.
The guess is then iteratively adjusted until agreement is reached. In the fol-
lowing sections we shall deal with these classes of methods in reverse order,
beginning with vector iteration.

4.2 Vector iteration

This procedure is sometimes called the “power” method and is only able
to find the largest (absolute) eigenvalue and corresponding eigenvector of the
matrix it operates on. As will be shown however, this does not turn out to
be quite the restriction it seems, since modifications to the initial matrix will
enable other eigensolutions to be found. The rate of convergence of vector
iteration depends upon the nature of the eigenvalues.

Example 4.1

Find the “largest” eigenvalue and corresponding eigenvector of the matrix⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦

Solution 4.1

The eigenvalue equation is of the form⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦
⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭ = λ

⎧⎨
⎩
x1

x2

x3

⎫⎬
⎭

and let us guess the solution {x} = [1 1 1]T .

Eigenvalue Equations 137

Matrix-by-vector multiplication on the left-hand side yields⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦
⎧⎨
⎩

1
1
1

⎫⎬
⎭ =

⎧⎨
⎩

10
1

−8

⎫⎬
⎭ = 10

⎧⎨
⎩

1.0
0.1

−0.8

⎫⎬
⎭

where we have normalized the resulting vector (see Section 4.1.1) by dividing
by the largest absolute term in it to give |xi|max = 1. The normalized {x} is
then used for the next round, so the second iteration becomes⎡

⎣ 16 −24 18
3 −2 0

−9 18 −17

⎤
⎦
⎧⎨
⎩

1.0
0.1

−0.8

⎫⎬
⎭ =

⎧⎨
⎩

−0.8
2.8
6.4

⎫⎬
⎭ = 6.4

⎧⎨
⎩

−0.125
0.4375
1.0

⎫⎬
⎭

and the third⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦
⎧⎨
⎩

−0.125
0.4375
1.0

⎫⎬
⎭ =

⎧⎨
⎩

5.5
−1.25
−8.0

⎫⎬
⎭ = −8.0

⎧⎨
⎩

−0.6875
0.15625
1.0

⎫⎬
⎭

and the fourth⎡
⎣ 16 −24 18

3 −2 0
−9 18 −17

⎤
⎦
⎧⎨
⎩

−0.6875
0.15625
1.0

⎫⎬
⎭ =

⎧⎨
⎩

3.17
−2.39
−7.865

⎫⎬
⎭ = −7.865

⎧⎨
⎩
−0.404

0.304
1.0

⎫⎬
⎭

illustrating convergence towards the eigenvalue λ = −8, which is the eigenval-
ue of largest absolute value (see the solution to the characteristic polynomial
from equation 4.6).

Program 4.1: Vector iteration for “largest” eigenvalue
and its eigenvector

PROGRAM nm41
!---Vector Iteration for ’Largest’ Eigenvalue and Eigenvector---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::big,l2,tol,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),x(:),x1(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),x(n),x1(n))
READ(10,*)a; READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’)"---Vector Iteration for ’Largest’ Eigenvalue &
&and Eigenvector---"; WRITE(11,’(/,A)’)"Coefficient Matrix"

a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO

138 Numerical Methods for Engineers

WRITE(11,’(/,A)’)"Guessed Starting Vector"
WRITE(11,’(6E12.4)’)x
WRITE(11,’(/,A)’)"First Few Iterations" ; iters=0
DO; iters=iters+1; x1=MATMUL(a,x); big=zero
DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO; x1=x1/big
IF(checkit(x1,x,tol).OR.iters==limit)EXIT; x=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO
l2=norm(x1); x1=x1/l2
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Largest Eigenvalue",big
WRITE(11,’(/,A,/,6E12.4)’)"Corresponding Eigenvector",x1

END PROGRAM nm41

List 4.1:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
big term of largest absolute magnitude in a vector
l2 L2 norm of a vector
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a matrix of coefficients
x old estimate of eigenvector
x1 new estimate of eigenvector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 5. 6.
5. 20. 4.
6. 4. 30.

Eigenvalue Equations 139

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.1: Vector Iteration

---Vector Iteration for ’Largest’ Eigenvalue and Eigenvector---

Coefficient Matrix
0.1000E+02 0.5000E+01 0.6000E+01
0.5000E+01 0.2000E+02 0.4000E+01
0.6000E+01 0.4000E+01 0.3000E+02

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.5250E+00 0.7250E+00 0.1000E+01
0.4126E+00 0.5860E+00 0.1000E+01
0.3750E+00 0.5107E+00 0.1000E+01
0.3588E+00 0.4692E+00 0.1000E+01

Iterations to Convergence
19

Largest Eigenvalue
0.3371E+02

Corresponding Eigenvector
0.3002E+00 0.3664E+00 0.8807E+00

Results 4.1: Vector Iteration

Input and output for the program are shown in Data 4.1 and Results 4.1
respectively. The program reads in the number of equations to be solved
followed by the coefficient matrix and the initial guessed eigenvector. The
tolerance required of the iteration process and the maximum number of it-
erations complete the data set. After a matrix-vector multiplication using
intrinsic routine MATMUL, the new eigenvector is normalized so that its largest
component is 1.0. The checkit function then checks if convergence has been
achieved and updates the eigenvector. If more iterations are required, the
program returns to MATMUL and the process is repeated. After convergence,
the eigenvector is normalized to have a length of unity. Results 4.1 shows that

140 Numerical Methods for Engineers

convergence to the “largest” eigenvalue λ = 33.71 is achieved in 19 iterations
to the tolerance requested of 1 × 10−5.

4.2.1 Shifted vector iteration

The rate of convergence of the vector iteration method depends upon the
nature of the eigenvalues. For closely spaced eigenvalues, convergence can
be slow. For example, taking the [A] matrix of equation (4.10) and using
Program 4.1 with an initial guess of {x} = [1 1 1]T , convergence to 4.7071
is only achieved after 26 iterations for a tolerance of 1 × 10−5. The device of
“shifting” can improve convergence rates and is based on the solution of the
modified problem,

[[A] − p[I]] {x} = (λ− p){x} (4.26)

For example, again solving the [A] matrix of equation (4.10) with the same
initial guess, but using a shift of 3.5 (see Program 4.2) leads to convergence
to 4.7071 in 7 iterations.

A useful feature of shifted iteration is that it enables the ready calculation
of the smallest eigenvalue of [A] for systems whose eigenvalues are all positive.
Vector iteration can first be used to compute the largest eigenvalue of [A],
say p, which is then used as the “shift” in the modified problem of equation
(4.26). Vector iteration can then be used to find the “largest” eigenvalue of
the modified matrix [[A] − p[I]]. Finally p is added to this value leading to
the eigenvalue of [A] closest to zero.

Program 4.2: Shifted vector iteration for eigenvalue and
its eigenvector

PROGRAM nm42
!--Shifted Vector Iteration for Eigenvalue and its Eigenvector--
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::big,l2,shift,tol, &
zero=0.0_iwp; REAL(iwp),ALLOCATABLE::a(:,:),x(:),x1(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),x(n),x1(n))
READ(10,*)a; READ(10,*)shift; READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’) &
"--Shifted Vector Iteration Eigenvalue and its Eigenvector--"

WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A,/,E12.4)’)"Shift",shift
WRITE(11,’(/,A)’)"Guessed Starting Vector"

Eigenvalue Equations 141

WRITE(11,’(3E12.4)’)x; DO i=1,n; a(i,i)=a(i,i)-shift; END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1; x1=MATMUL(a,x); big=zero
DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO; x1=x1/big
IF(checkit(x1,x,tol).OR.iters==limit)EXIT; x=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO; l2=norm(x1); x1=x1/l2
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Eigenvalue",big+shift
WRITE(11,’(/,A,/,6E12.4)’)"Corresponding Eigenvector",x1

END PROGRAM nm42

List 4.2:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
big term of largest absolute magnitude in a vector
l2 L2 norm of a vector
shift shift
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a matrix of coefficients
x old estimate of eigenvector
x1 new estimate of eigenvector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 5. 6.
5. 20. 4.
6. 4. 30.

Shift shift
33.71

142 Numerical Methods for Engineers

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.2: Shifted Vector Iteration

This program only differs from the previous one in that shift is read, a
line is added to perform the subtraction of p [I] from [A] and shift is added
to the eigenvalue before printing. The input and output are shown in Data
and Results 4.2 respectively. Using the largest eigenvalue of λ = 33.71 found
in the Program 4.1 example as the shift, it can be seen that Program 4.2 leads
to the smallest eigenvalue λ = 7.142.

---Shifted Vector Iteration for Eigenvalue and Eigenvector---

Coefficient Matrix
0.1000E+02 0.5000E+01 0.6000E+01
0.5000E+01 0.2000E+02 0.4000E+01
0.6000E+01 0.4000E+01 0.3000E+02

Shift
0.3371E+02

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.3706E+00 -0.4949E+00
0.1000E+01 0.8298E-01 -0.3753E+00

0.1000E+01 -0.9242E-01 -0.3024E+00
0.1000E+01 -0.1946E+00 -0.2598E+00

Iterations to Convergence
20

Eigenvalue
0.7142E+01

Corresponding Eigenvector
0.9334E+00 -0.3032E+00 -0.1919E+00

Results 4.2: Shifted Vector Iteration

Eigenvalue Equations 143

4.2.2 Shifted inverse iteration

A more direct way of achieving convergence of the vector iteration method
on eigenvalues other than the “largest” is to recast equation (4.1) in the form

[[A] − p[I]]−1 {x} =
1

λ− p
{x} (4.27)

where p is a scalar “shift”, [I] is the unit matrix and λ is an eigenvalue of [A].
As shown in Section 4.1.2, the eigenvectors of [[A] − p[I]]−1 are the same as
those of [A], but it can be shown that the eigenvalues of [[A] − p[I]]−1 are
1/(λ−p). Hence, the largest eigenvalue of [[A] − p[I]]−1 leads to the eigenvalue
of [A] that is closest to p. Thus, if the largest eigenvalue of [[A] − p[I]]−1 is
μ, then the eigenvalue of [A] closest to p is given by

λ =
1
μ

+ p (4.28)

For small matrices it would be possible just to invert [[A] − p[I]] and to use
the inverse to solve equation (4.27) iteratively in exactly the same algorithm
as was used in Program 4.1. For larger matrices however, we saw in Chapter
2 that factorization methods are the most applicable for equation solution,
especially when dealing with multiple right-hand sides and a constant coeffi-
cient matrix. Thus, whereas in the normal shifted iteration method we would
have to compute in every iteration

[[A] − p[I]] {x}0 = {x}∗1 (4.29)

in the inverse iteration we have to compute

[[A] − p[I]]−1 {x}0 = {x}∗1 (4.30)

or
[[A] − p[I]] {x}∗1 = {x}0 (4.31)

By factorizing [[A] − p[I]] (see Chapter 2) using the appropriate library sub-
routine lufac we can write

[[A] − p[I]] = [L][U] (4.32)

and so
[L][U]{x}∗1 = {x}0 (4.33)

If we now let
[U]{x}∗1 = {y}0 (4.34)

and
[L]{y}0 = {x}0 (4.35)

144 Numerical Methods for Engineers

we can see that equation (4.33) is solved for {x}∗1 by solving in succession
equation (4.35) for {y}0 and equation (4.34) for {x}∗1. These processes are
just the forward- and back-substitution processes we saw in Chapter 2, for
which subroutines subfor and subbac were developed.

By altering p in a systematic way, all the eigenvalues of [A] can be found
by this method.

Example 4.2

Use shifted inverse iteration to find the eigenvalue of the matrix

[A] =
[

3 2
3 4

]

that is closest to 2.

Solution 4.2

For such a small problem by hand we can use vector iteration operating
directly on the matrix, so let

[B] = [[A − p [I]]−1

where p = 2 in this case.

[B] =
[[

3 2
3 4

]
− 2

[
1 0
0 1

]]−1

hence

[B] =
[

1 2
3 2

]−1

= −0.25
[

2 −2
−3 1

]
=
[−0.5 0.5

0.75 −0.25

]
Let

{x}0 =
{

1
1

}
and {x}∗k be the value of {x}k before normalization.

First iteration (k = 1)

{x}∗1 =
[−0.5 0.5

0.75 −0.25

]{
1
1

}
=
{

0.0
0.5

}
, {x}1 =

{
0.0
1.0

}
λ1 = 0.5

Second iteration (k = 2)

{x}∗2 =
[−0.5 0.5

0.75 −0.25

]{
0
1

}
=
{

0.5
−0.25

}
, {x}2 =

{
1.0

−0.5

}
λ2 = 0.5

Third iteration (k = 3)

{x}∗3 =
[−0.5 0.5

0.75 −0.25

]{
1.0

−0.5

}
=
{−0.75

0.875

}

Eigenvalue Equations 145

{x}3 =
{−0.8571

1.0

}
λ3 = 0.875

Fourth iteration (k = 4)

{x}∗4 =
[−0.5 0.5

0.75 −0.25

]{−0.8571
1.0

}
=
{

0.9286
−0.8929

}

{x}4 =
{

1.0
−0.9616

}
λ4 = 0.9286

and after many iterations {x} =
{

1.0
−1.0

}
λ = 1.0000

Program 4.3: Shifted inverse iteration for nearest eigen-
value and eigenvector

PROGRAM nm43
!---Shifted Inverse iteration for Nearest Eigenvalue
!and Eigenvector---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n
REAL(iwp)::big,l2,one=1.0_iwp,shift,tol,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),lower(:,:),upper(:,:),x(:),x1(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),lower(n,n),upper(n,n),x(n),x1(n))
READ(10,*)a; READ(10,*)shift; READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’)"---Shifted Inverse Iteration---"
WRITE(11,’(A)’)"---for Nearest Eigenvalue and Eigenvector---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A)’)"Guessed Starting Vector"
WRITE(11,’(6E12.4)’)x; WRITE(11,’(/,A,/,E12.4)’)"Shift",shift
DO i=1,n; a(i,i)=a(i,i)-shift; END DO; CALL lufac(a,lower,upper)
WRITE(11,’(/,A)’)"First Few Iterations"; x1=x; iters=0
DO; iters=iters+1
CALL subfor(lower,x1); CALL subbac(upper,x1); big=zero
DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO; x1=x1/big
IF(checkit(x1,x,tol).OR.iters==limit)EXIT; x=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO
l2=norm(x1); x1=x1/l2
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’)"Nearest Eigenvalue",one/big+shift
WRITE(11,’(/,A,/,6E12.4)’)"Corresponding Eigenvector",x1

END PROGRAM nm43

146 Numerical Methods for Engineers

List 4.3:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
big term of largest absolute magnitude in a vector
l2 L2 norm of a vector
one set to 1.0
shift shift
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a matrix of coefficients
lower lower triangular factor of [A] − p [I]
upper upper triangular factor of [A] − p [I]
x old estimate of eigenvector
x1 new estimate of eigenvector

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 5. 6.
5. 20. 4.
6. 4. 30.

Shift shift
20.0

Initial guess x
1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.3: Shifted Inverse iteration

Eigenvalue Equations 147

---Shifted Inverse Iteration---
---for Nearest Eigenvalue and its Eigenvector---

Coefficient Matrix
0.1000E+02 0.5000E+01 0.6000E+01
0.5000E+01 0.2000E+02 0.4000E+01
0.6000E+01 0.4000E+01 0.3000E+02

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01

Shift
0.2000E+02

First Few Iterations
0.2391E+00 0.1000E+01 -0.7065E+00
0.2293E+00 0.1000E+01 -0.4823E+00
0.2237E+00 0.1000E+01 -0.4931E+00
0.2237E+00 0.1000E+01 -0.4923E+00

Iterations to Convergence
6

Nearest Eigenvalue
0.1915E+02

Corresponding Eigenvector
0.1967E+00 0.8796E+00 -0.4330E+00

Results 4.3: Shifted Inverse iteration

Typical input data and output results are shown in Data and Results 4.3
respectively. The number of equations and the coefficients of [A] are read in,
followed by the scalar shift, the first guess of vector {x}, the tolerance and
the maximum number of iterations. The initial guess {x} is copied into x1 for
future reference, and the iteration loop entered. Matrix [A] − p [I] is formed
(still called [A]) followed by factorization using lufac, and calls to subfor
and subbac to complete the determination of {x}∗1 following equations (4.34)
and (4.35). Vector {x}∗1 is then normalized to {x}1 and the convergence
check invoked. When convergence is complete the converged vector {x}1 is
normalized so that

(∑n
i=1 x

2
i

)1/2 = 1 (see Section 4.1.1) and the eigenvector,
the eigenvalue of the original [A] closest to p and the number of iterations
to convergence printed. In the example shown, the intermediate eigenvalue
of the matrix considered by Programs 4.1 and Program 4.2 is found with a
shift of p = 20, which is the average of the largest and smallest eigenvalues

148 Numerical Methods for Engineers

previously found. As shown in Results 4.3, convergence to the eigenvalue,
λ = 19.15, is achieved in 6 iterations.

4.3 Intermediate eigenvalues by deflation

In the previous section we have shown that by using vector iteration, or
simple variations of it, convergence to the numerically largest eigenvalue, the
numerically smallest or the eigenvalue closest to a given quantity can usually
be obtained. Suppose, however, that the second largest eigenvalue of a sys-
tem is to be investigated. One means of doing this is called “deflation” and
it consists essentially in removing the largest eigenvalue from the system of
equations, once it has been computed by, for example, vector iteration.

Eigenvectors obey the orthogonality rules described in Section 4.1.1, namely
that

{xi}T{xj} =
{

1 for i = j
0 for i �= j

(4.36)

We can use this property to establish a modified matrix [A∗] such that

[A∗] = [A] − λ1{x1}{x1}T (4.37)

where λ1 is the largest eigenvalue of [A] and {x1} its corresponding eigenvec-
tor.

We now multiply this equation by any eigenvector {xi} to give

[A∗]{xi} = [A]{xi} − λ1{x1}{x1}T {xi} (4.38)

so when i = 1 equation (4.38) can be written as

[A∗]{x1} = [A]{x1} − λ1{x1}{x1}T {x1}
= λ1{x1} − λ1{x1} (4.39)
= 0

and when i > 1 equation (4.38) can be written as

[A∗]{xi} = λi{xi} (4.40)

Thus the first eigenvalue of [A∗] is zero, and all other eigenvalues of [A∗] are
the same as those of [A].

Having “deflated” [A] to [A∗], the largest eigenvalue of [A∗] will thus equal
the second largest eigenvalue of [A] and can be found, for example, by vector
iteration.

Eigenvalue Equations 149

Example 4.3

Show that the second largest eigenvalue of

[
2 1
1 2

]

becomes the largest eigenvalue of the modified problem following deflation.

Solution 4.3

The characteristic polynomial of the original problem is readily shown to
be

(λ− 3)(λ− 1) = 0

and so the eigenvalues are λ1 = 3 and λ2 = 1 with corresponding normalized
eigenvectors [1/

√
2 1/

√
2]T and [1/

√
2 − 1/

√
2]T respectively.

From equation (4.37),

[A∗] =
[

2 1
1 2

]
− 3

{
1/

√
2

1/
√

2

}
[1/

√
2 1/

√
2]

=
[

2 1
1 2

]
− 3

[
0.5 0.5
0.5 0.5

]

=
[

0.5 −0.5
−0.5 0.5

]

The eigenvalues of [A∗] are then given by the characteristic polynomial

λ(λ− 1) = 0

illustrating that the remaining nonzero eigenvalue of [A∗] is the second largest
eigenvalue of [A], namely λ = 1.

Example 4.4

The matrix

[A] =

⎡
⎢⎢⎢⎢⎣

4 1
2 0

1
2 4 1

2

0 1
2 4

⎤
⎥⎥⎥⎥⎦

150 Numerical Methods for Engineers

has eigensolutions given by

λ1 = 4 +
1√
2
, {x1} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

1√
2

1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

; λ2 = 4, {x2} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2

0

− 1√
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and λ3 = 4 − 1√
2
, {x3} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

− 1√
2

1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Obtain the deflated matrix and use Program 4.1 is find its largest eigenvalue.

Solution 4.4

The deflation process leads to the modified matrix

[A∗] =

⎡
⎢⎢⎢⎢⎢⎣

3 − 1
4
√

2
1
4 −√

2 −1 − 1
4
√

2

1
4 −√

2 2 − 1
2
√

2
1
4 −√

2

−1 − 1
4
√

2
1
4 −√

2 3 − 1
4
√

2

⎤
⎥⎥⎥⎥⎥⎦

When Program 4.1 is applied to this matrix with a starting guess of {x} =
[1 1 1]T convergence occurs not to the second eigenvalue of [A] λ2 = 4,
but rather to the third eigenvalue λ3 = 4 − 1√

2
= 3.2929 with associated

eigenvector [12 − 1√
2

1
2]T = [0.5 − 0.7071 0.5]T in 2 iterations.

A change in the guessed starting eigenvector, to {x} = [1 0 − 1
2]T for

example, leads to convergence on the expected second eigenvalue and eigen-
vector in 46 iterations for the given tolerance.

This example shows that care must be taken with vector iteration methods
when applied to deflated matrices or matrices with closely spaced eigenvalues
if one is to be sure that convergence to a desired eigenvalue has been attained.

4.4 The generalized eigenvalue problem [K]{x} = λ[M]{x}
Frequently in engineering practice there is an extra matrix on the right-hand

side of the eigenvalue equation leading to the form

[K]{x} = λ[M]{x} (4.41)

Eigenvalue Equations 151

For example in natural frequency or buckling analysis, [K] would be the “s-
tiffness matrix” and [M] the “mass” or “geometric” matrix of the system.

By rearrangement of equation (4.41) we could write either of the equivalent
eigenvalue equations,

[M]−1[K]{x} = λ{x} (4.42)

or
[K]−1[M]{x} =

1
λ
{x} (4.43)

The present implementation yields the largest eigenvalue 1/λ of equation
(4.43), the reciprocal of which corresponds to the smallest eigenvalue λ of
equation (4.42) (see Section 4.1.2).

Performing vector iteration on equation (4.41) we can let λ = 1 and make a
guess at {x}0 on the right-hand side. A matrix-by-vector multiplication then
yields

[M]{x}0 = {y}0 (4.44)

allowing a new estimate of {x}∗1 to be established by solving the set of linear
equations

[K]{x}∗1 = {y}0 (4.45)

When the new {x}∗1 has been computed, it may be normalized by dividing
through by the “largest” component to give {x}1 and the procedure repeated
from equation (4.44) onwards to convergence.

Since the [K] matrix is unchanged throughout the iterative process, the
repeated solution of equation (4.45) is efficiently achieved by obtaining the
[L][U] factors of [K] (see Program 2.2). Once this is done, all that remains is
forward- and back-substitution to compute {x}∗i at each iteration.

Program 4.4: Vector iteration for [K]{x} = λ[M]{x}
PROGRAM nm44
!---Vector Iteration for Kx=lambda*Mx---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::big,l2,one=1.0_iwp,tol, &
zero=0.0_iwp

REAL(iwp),ALLOCATABLE::k(:,:),m(:,:),lower(:,:),upper(:,:), &
x(:),x1(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n
ALLOCATE(k(n,n),lower(n,n),m(n,n),upper(n,n),x(n),x1(n))
DO i=1,n; READ(10,*)k(i,i:n); k(i:n,i)=k(i,i:n); END DO;
DO i=1,n; READ(10,*)m(i,i:n); m(i:n,i)=m(i,i:n); END DO;

152 Numerical Methods for Engineers

READ(10,*)x; READ(10,*)tol,limit
WRITE(11,’(A)’)"---Vector Iteration for Kx=lambda*Mx---"
WRITE(11,’(/,A)’)"Matrix K"
DO i=1,n; WRITE(11,’(6E12.4)’)k(i,:); END DO
WRITE(11,’(/,A)’)"Matrix M"
DO i=1,n; WRITE(11,’(6E12.4)’)m(i,:); END DO
WRITE(11,’(/,A)’)"Guessed Starting Vector"
WRITE(11,’(6E12.4)’)x; CALL lufac(k,lower,upper)
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0
DO; iters=iters+1; x1=MATMUL(m,x)
CALL subfor(lower,x1); CALL subbac(upper,x1)
big=zero; DO i=1,n; IF(ABS(x1(i))>ABS(big))big=x1(i); END DO
x1=x1/big; IF(checkit(x1,x,tol).OR.iters==limit)EXIT; x=x1
IF(iters<5)WRITE(11,’(6E12.4)’)x

END DO
l2=norm(x1); x1=x1/l2
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A,/,E12.4)’) &
"’Smallest’ Eigenvalue of Inv(M)*K",one/big

WRITE(11,’(/,A,/,6E12.4)’)"Corresponding Eigenvector",x1
END PROGRAM nm44

List 4.4:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
big term of largest absolute magnitude in a vector
l2 L2 norm of a vector
one set to 1.0
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
k coefficients of matrix [K]
m coefficients of matrix [M]
lower lower triangular factor of [K]
upper upper triangular factor of [K]
x old estimate of eigenvector
x1 new estimate of eigenvector

Eigenvalue Equations 153

Number of equations n
4

Coefficient matrix (k(i,:),i=1,n)
8.0 4.0 -24.0 0.0

16.0 0.0 4.0
192.0 24.0

8.0

Coefficient matrix (m(i,:),i=1,n)
0.06667 -0.01667 -0.1 0.0

0.13333 0.0 -0.01667
4.8 0.1

0.06667

Initial guess x
1. 1. 1. 1.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.4: Vector Iteration for [K]{x} = λ[M]{x}

---Vector Iteration for Kx=lambda*Mx---

Matrix K
0.8000E+01 0.4000E+01 -0.2400E+02 0.0000E+00
0.4000E+01 0.1600E+02 0.0000E+00 0.4000E+01
-0.2400E+02 0.0000E+00 0.1920E+03 0.2400E+02
0.0000E+00 0.4000E+01 0.2400E+02 0.8000E+01

Matrix M
0.6667E-01 -0.1667E-01 -0.1000E+00 0.0000E+00
-0.1667E-01 0.1333E+00 0.0000E+00 -0.1667E-01
-0.1000E+00 0.0000E+00 0.4800E+01 0.1000E+00
0.0000E+00 -0.1667E-01 0.1000E+00 0.6667E-01

Guessed Starting Vector
0.1000E+01 0.1000E+01 0.1000E+01 0.1000E+01

First Few Iterations
0.1000E+01 0.1639E-01 0.3443E+00 -0.9672E+00
0.1000E+01 0.6400E-03 0.3209E+00 -0.9987E+00

154 Numerical Methods for Engineers

0.1000E+01 0.2628E-04 0.3191E+00 -0.9999E+00
0.1000E+01 0.1068E-05 0.3189E+00 -0.1000E+01

Iterations to Convergence
6

’Smallest’ Eigenvalue of Inv(M)*K
0.9944E+01

Corresponding Eigenvector
0.6898E+00 0.5358E-09 0.2200E+00 -0.6898E+00

Results 4.4: Vector Iteration for [K]{x} = λ[M]{x}

Data 4.4 shows data from a typical engineering analysis which leads to
the generalized problem of equation (4.41). In this case the [K] represents the
stiffness matrix of a compressed strut and [M] the geometric matrix relating to
the destabilizing effect of the compressive force (see, e.g., Smith and Griffiths
2004). There are four equations to be solved to a tolerance of 10−5 with an
iteration limit of 100. The guessed starting vector {x}0 is [1.0 1.0 1.0 1.0]T .

The data present the number of equations n followed by the upper trian-
gles of symmetrical matrices [K] and [M]. In preparation for the equation
solution of equation (4.45), [K] is factorized using subroutine lufac. The
iteration loop begins by the multiplication of [M] by {x}0 as required by e-
quation (4.44). Forward- and back-substitution by subroutines subfor and
subbac, respectively, complete the equation solution and the resulting vector
is normalized. The convergence check is invoked and iteration continues if
convergence is incomplete, unless the iteration limit has been reached. The
final normalization involving the sum of the squares of the components of the
eigenvector is then carried out and the normalized eigenvector and number of
iterations printed. In this case the reciprocal of the “largest” eigenvalue is the
“buckling” load of the strut, which is also printed. The output is shown in
Results 4.4 where the estimate of the buckling load of 9.94 after 6 iterations
can be compared with the exact solution of π2 = 9.8696.

4.4.1 Conversion of generalized problem to symmetrical s-
tandard form

Several solution techniques for eigenvalue problems require the equation to
be cast in the “standard form”

[A]{x} = λ{x} (4.46)

where [A] is also symmetrical.
If the generalized eigenvalue equation is encountered as

Eigenvalue Equations 155

[K]{x} = λ[M]{x} (4.47)

it is always possible to convert it to the standard form of equations (4.42) or
(4.43); however even for symmetrical [K] and [M] the products [K]−1[M] and
[M]−1[K] are not in general symmetrical. In order to preserve symmetry, the
following strategy can be used.

Starting from equation (4.47) we can factorize [M] by Cholesky’s method
(see Chapter 2) to give

[M] = [L][L]T (4.48)

hence
[K]{x} = λ[L][L]T {x} (4.49)

Now let
[L]T {x} = {z} (4.50)

or
{x} = [L]−T {z} (4.51)

which after substitution in (4.49) gives

[K][L]−T {z} = λ[L]{z} (4.52)

Finally
[L]−1[K][L]−T {z} = λ{z} (4.53)

which is a standard eigenvalue equation in which the left-hand side matrix
[L]−1[K][L]−T is also symmetrical.

The transformed equation (4.53) has the same eigenvalues λ as the gener-
alized equation (4.47) but different eigenvectors {z}. Once the transformed
eigenvectors {z} have been found they can easily be converted back to {x}
from equation (4.51).

Program 4.5: Conversion of [K]{x} = λ[M]{x} to symmetrical
standard form

PROGRAM nm45
!---Conversion of Kx=lambda*Mx to Symmetrical Standard Form---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,j,n
REAL(iwp),ALLOCATABLE::c(:,:),d(:),e(:),k(:,:),m(:,:),s(:,:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(c(n,n),d(n),e(n),k(n,n),m(n,n),s(n,n))
DO i=1,n; READ(10,*)k(i,i:n); k(i:n,i)=k(i,i:n); END DO;

156 Numerical Methods for Engineers

DO i=1,n; READ(10,*)m(i,i:n); m(i:n,i)=m(i,i:n); END DO;
WRITE(11,’(A)’)"---Conversion of Kx=lambda*Mx to Symmetrical &
&Standard Form---"

WRITE(11,’(/,A)’)"Matrix K"
DO i=1,n; WRITE(11,’(6E12.4)’)k(i,:); END DO
WRITE(11,’(/,A)’)"Matrix M"
DO i=1,n; WRITE(11,’(6E12.4)’)m(i,:); END DO
CALL ldlt(m,d); d=SQRT(d)
DO j=1,n; DO i=j,n; m(i,j)=m(i,j)/d(j); END DO; END DO
DO j=1,n; e=k(:,j); CALL subfor(m,e); c(:,j)=e; END DO
WRITE(11,’(/,A)’)"Matrix C"
DO i=1,n; WRITE(11,’(6E12.4)’)c(i,:); END DO
DO j=1,n; e=c(j,:); CALL subfor(m,e); s(:,j)=e; END DO
WRITE(11,’(/,A)’)"Final symmetrical matrix S"
DO i=1,n; WRITE(11,’(6E12.4)’)s(i,:); END DO

END PROGRAM nm45

List 4.5:

Scalar integers:
i simple counter
j simple counter
n number of equations

Dynamic real arrays:
c temporary storage of matrix [C] = [L]−1[K]
d diagonal matrix (vector) in [L][D][L]T
e temporary storage vector
k symmetrical array [K] in equation (4.47)
m symmetrical array [M] in equation (4.47)
s final symmetrical matrix [S] = [L]−1[K][L]−T

Number of equations n
4

Coefficient matrix (k(i,:),i=1,n)
8.0 4.0 -24.0 0.0

16.0 0.0 4.0
192.0 24.0

8.0

Eigenvalue Equations 157

Coefficient matrix (m(i,:),i=1,n)
0.06667 -0.01667 -0.1 0.0

0.13333 0.0 -0.01667
4.8 0.1

0.06667

Data 4.5: Conversion of [K]{x} = λ[M]{x} to Symmetrical Standard
Form

---Conversion of Kx=lambda*Mx to Symmetrical Standard Form---

Matrix K
0.8000E+01 0.4000E+01 -0.2400E+02 0.0000E+00
0.4000E+01 0.1600E+02 0.0000E+00 0.4000E+01
-0.2400E+02 0.0000E+00 0.1920E+03 0.2400E+02
0.0000E+00 0.4000E+01 0.2400E+02 0.8000E+01

Matrix M
0.6667E-01 -0.1667E-01 -0.1000E+00 0.0000E+00
-0.1667E-01 0.1333E+00 0.0000E+00 -0.1667E-01
-0.1000E+00 0.0000E+00 0.4800E+01 0.1000E+00
0.0000E+00 -0.1667E-01 0.1000E+00 0.6667E-01

Matrix C
0.3098E+02 0.1549E+02 -0.9295E+02 0.0000E+00
0.1670E+02 0.4730E+02 -0.1670E+02 0.1113E+02
-0.5029E+01 0.4311E+01 0.7184E+02 0.1149E+02
0.4001E+01 0.2400E+02 0.8000E+02 0.3200E+02

Final symmetrical matrix S
0.1200E+03 0.6466E+02 -0.1948E+02 0.1549E+02
0.6466E+02 0.1432E+03 0.8496E+01 0.6957E+02
-0.1948E+02 0.8496E+01 0.3011E+02 0.4215E+02
0.1549E+02 0.6957E+02 0.4215E+02 0.1333E+03

Results 4.5: Conversion of [K]{x} = λ[M]{x} to Symmetrical Stan-
dard Form

The program achieves the transformations described in equations (4.47)-
(4.53) by introducing the temporary array [C] defined as

[C] = [L]−1[K] (4.54)

which is solved by repeated forward substitutions of

[L][C] = [K] (4.55)

158 Numerical Methods for Engineers

using the columns of [K].
The final symmetrical matrix from equation (4.53) is stored in array [S]

given as
[S] = [L]−1[K][L]−T = [C][L]−T (4.56)

hence
[S]T = [S] = [L]−1[C]T (4.57)

Thus, [S] is found by repeated forward substitutions of

[L][S] = [C]T (4.58)

using the columns of [C]T .
The data shown in Data 4.5 indicate that the program begins by reading in

the number of equations n and the upper triangles of symmetrical matrices [K]
and [M]. Matrix [M] is factorized using library routine ldlt and the Cholesky
factors are then obtained by dividing the upper triangle of the factorized [M]
by the square root of the diagonals of [D] (see Section 2.4.2).

Equation (4.55) is then solved for [C]. This is achieved by first copying the
columns of [K] into a temporary storage vector e and forward substitution
using subfor leads to the columns of [C]. The [C] matrix is printed out.
Then, in a very similar sequence of operations, equation (4.58) is solved for
[S] (=[S]T) by first copying the columns of [C]T into e and then once again
calling subfor. The final symmetrical matrix is printed out as shown in
Results 4.5.

If the “largest” eigenvalue of this matrix is calculated using Program 4.1
with a tolerance of 1 × 10−5, convergence to the eigenvalue λ = 240 will be
found in 15 iterations.

If [K] and [M] are switched, the eigenvalues of the resulting symmetrical
matrix found by this program would be the reciprocals of their previous values.
For example, if [K] and [M] are switched and the resulting symmetrical matrix
treated by Program 4.1, the “largest” eigenvalue is given as λ = 0.1006. This is
the reciprocal of 9.94 which was the “smallest” eigenvalue obtained previously
by Program 4.4.

4.5 Transformation methods

Returning to the standard eigenvalue equation

[A]{x} = λ{x} (4.59)

it was shown in Section 4.1.2 that for any nonsingular matrix [P], the standard
equation can be transformed into an equation with the same eigenvalues given
by

[A∗]{z} = λ{z} (4.60)

Eigenvalue Equations 159

where
[A∗] = [P]−1[A][P] (4.61)

and
{z} = [P]−1{x} (4.62)

The concept behind such a transformation technique is to employ it so as
to make the eigenvalues of [A∗] easier to find than were the eigenvalues of the
original [A].

If [A] is symmetrical however, it is highly unlikely that the transformation
given by equation (4.61) would retain symmetry. It is easily shown though
that the transformation

[A∗] = [P]T [A][P] (4.63)

would retain symmetry of [A∗]. In order for the eigenvalues [A∗] given in
equation (4.63) to be the same as those of [A], we must arrange for the
additional property

[P]T = [P]−1 or [P]T [P] = [I] (4.64)

Matrices of this type are said to be “orthogonal”, and a matrix which has
this property is the so-called “rotation matrix”

[P]T =
[

cosα − sinα
sinα cosα

]
(4.65)

Applying this transformation to the [A] matrix considered in Example 4.3,
we have

[A∗] =
[

cosα sinα
− sinα cosα

] [
2 1
1 2

] [
cosα − sinα
sinα cosα

]

=
[

2 + 2 sinα cosα cos2 α− sin2 α
cos2 α− sin2 α 2 − 2 sinα cosα

]
(4.66)

in which [A∗] is clearly symmetrical for any value of α. In this case the obvious
value of α to choose is the one that results in [A∗] being a diagonal matrix
(Section 4.1.2) in which case the diagonals are the eigenvalues. Elimination
of the off-diagonal terms will occur if

cos2 α− sin2 α = 0 (4.67)

in which case tanα = 1 and α = π/4, giving sinα = cosα = 1/
√

2.
The resulting transformed matrix is

[A∗] =
[

3 0
0 1

]
(4.68)

indicating that the eigenvalues of [A] are 3 and 1.

160 Numerical Methods for Engineers

For matrices [A] which are bigger than 2 × 2, the transformation matrix
[P] must be “padded out” by putting ones on the leading diagonals and zeros
on all off-diagonals, except those in the rows and columns corresponding to
the terms to be eliminated. For example, if [A] is 4 × 4, the transformation
matrix could have any of 6 forms depending on which off-diagonal terms in
the initial matrix are to be eliminated, e.g.,

[P] =

⎡
⎢⎢⎣

cosα − sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (4.69)

[P] =

⎡
⎢⎢⎣

1 0 0 0
0 cosα 0 − sinα
0 0 1 0
0 sinα 0 cosα

⎤
⎥⎥⎦ (4.70)

and so on.
Matrix (4.69) would eliminate terms a12 and a21 in the original matrix [A]

after the transformation via [P]T [A][P] while matrix (4.70) would eliminate
terms a24 and a42. The effect of the ones and zeros is to leave the other rows
and columns of [A] unchanged. This means that off-diagonal terms which
become zero during one transformation revert to nonzero values (although
usually “small”) on subsequent transformations and so the method is iterative
as we have come to expect.

The earliest form of this type of iteration is called “Jacobi diagonalization”
, which proceeds by eliminating the “largest” off-diagonal terms remaining at
each iteration.

Generalizing equations (4.66) for any symmetrical matrix [A] we have

[A∗] =
[

cosα sinα
− sinα cosα

] [
aii aij

aji ajj

] [
cosα − sinα
sinα cosα

]
(4.71)

leading to off-diagonal terms in [A∗] of the form

a∗ij = a∗ji = (−aii + ajj) cosα sinα+ aij(cos2 α− sin2 α) (4.72)

Solving for α in order to make these term equal zero we get

tan 2α =
2aij

aii − ajj
(4.73)

hence

α =
1
2

tan−1

(
2aij

aii − ajj

)
(4.74)

To make a simple program for Jacobi diagonalization we have therefore to
search for the “largest” off-diagonal term in [A] and find the row and column

Eigenvalue Equations 161

in which it lies. The “rotation angle” α can then be computed from equa-
tion (4.74) and the transformation matrix [P] of the type shown in equations
(4.69-4.70) set up. Matrix [P] can then be transposed using an intrinsic li-
brary function, and the matrix products to form [A∗], as required by equation
(4.63), carried out. This process is repeated iteratively until the leading di-
agonals of [A∗] have converged to the eigenvalues of [A] within acceptable
tolerances.

Example 4.5

Use Jacobi diagonalization to estimate the eigenvalues of the symmetrical
matrix

[A] =

⎡
⎣ 3.5 −6.0 5.0
−6.0 8.5 −9.0

5.0 −9.0 8.5

⎤
⎦

Solution 4.5

The following results are quoted to four decimal places but the actual cal-
culations were performed with many more decimal places of accuracy.

First iteration,

The “largest” off-diagonal term is a23 = a32 = −9.0, hence from equation
(4.74)

α =
1
2

tan−1

(
2(−9)

8.5 − 8.5

)
= −45o

The first transformation matrix will include the terms

p22 = p33 = cos(−45) = 0.7071
p23 = − sin(−45) = 0.7071
p32 = sin(−45) = −0.7071

hence

[P1] =

⎡
⎣ 1 0 0

0 0.7071 0.7071
0 −0.7071 0.7071

⎤
⎦

The transformed matrix from equation (4.71) is given by

[A1] = [P1]T [A1][P1]

162 Numerical Methods for Engineers

so performing this triple matrix product in stages gives

[P1]T [A] =

⎡
⎣1 0 0

0 0.7071 −0.7071
0 0.7071 0.7071

⎤
⎦
⎡
⎣ 3.5 −6.0 5.0
−6.0 8.5 −9.0

5.0 −9.0 8.5

⎤
⎦

=

⎡
⎣ 3.5 −6.0 5.0
−7.7782 12.3744 −12.3744
−0.7071 −0.3536 −0.3536

⎤
⎦

and finally

[A1] =

⎡
⎣ 3.5 −6.0 5.0
−7.7782 12.3744 −12.3744
−0.7071 −0.3536 −0.3536

⎤
⎦
⎡
⎣ 1 0 0

0 0.7071 0.7071
0 −0.7071 0.7071

⎤
⎦

=

⎡
⎣ 3.5 −7.7782 −0.7071
−7.7782 17.5 0.0
−0.7071 0.0 −0.5

⎤
⎦

Second iteration,

The “largest” off-diagonal term is a12 = a21 = −7.7782, hence from equa-
tion (4.74)

α =
1
2

tan−1

(
2(−7.7781)

3.5 − 17.4997

)
= 24.0071o

The second transformation matrix will include the terms

p11 = p22 = cos(24.0075) = 0.9135
p12 = − sin(24.0075) = −0.4069
p21 = sin(24.0075) = 0.4069

hence

[P2] =

⎡
⎣ 0.9135 −0.4069 0

0.4069 0.9135 0
0 0 1

⎤
⎦

Similar matrix products as before lead to the transformed matrix

[A2] = [P2]T [A1][P2] =

⎡
⎣ 0.0358 0.0 −0.6459

0.0 20.9642 0.2877
−0.6459 0.2877 −0.5000

⎤
⎦

Note that although positions (2, 3) and (3, 2) are no longer zero, they are
“small” compared with their values in the initial matrix [A]. As iterations
proceed, the rotation angle αk −→ 0, the transformation matrix [Pk] −→
[I] and the transformed matrix [Ak] tends to a diagonal matrix with the
eigenvalues on the diagonal.

Eigenvalue Equations 163

In this example, after six iterations with a convergence tolerance of 1×10−5,
we get

[A6] =

⎡
⎣ 0.4659 0.0000 0.0000

0.0000 20.9681 0.0000
0.0000 0.0000 −0.9340

⎤
⎦

thus the eigenvalues of [A] are λ = 0.4659, 20.9681 and −0.9340. The corre-
sponding eigenvectors can be retrieved in the usual way by solving the singular
systems of equations as discussed in Section 4.1.

Program 4.6: Jacobi diagonalization for eigenvalues of
symmetrical matrices

PROGRAM nm46
!-Jacobi Diagonalization for Eigenvalues of Symmetrical Matrices-
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,j,limit,n,nc,nr
REAL(iwp)::alpha,big,ct,den,d2=2.0_iwp,d4=4.0_iwp,hold,l2, &
one=1.0_iwp,penalty=1.E20_iwp,pi,st,small=1.E-20_iwp,tol, &
zero=0.0_iwp

REAL(iwp),ALLOCATABLE::a(:,:),a1(:,:),a2(:,:),enew(:),eold(:), &
p(:,:),x(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),a1(n,n),a2(n,n),enew(n),eold(n), &
p(n,n),x(n))

DO i=1,n; READ(10,*)a(i,i:n); a(i:n,i)=a(i,i:n); END DO; a2=a
READ(10,*)tol,limit; pi=d4*ATAN(one)
WRITE(11,’(A)’)"-Jacobi Diagonalization for Eigenvalues of &
&Symmetrical Matrices-"

WRITE(11,’(/,A)’)"Matrix A"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0; eold=zero
DO; iters=iters+1; big=zero
DO i=1,n; DO j=i+1,n
IF(ABS(a(i,j))>big)THEN
big=ABS(a(i,j)); hold=a(i,j); nr=i; nc=j

END IF
END DO; END DO
IF(ABS(big)<small)EXIT
den=a(nr,nr)-a(nc,nc)
IF(ABS(den)<small)THEN
alpha=pi/d4; IF(hold<zero)alpha=-alpha

ELSE
alpha=ATAN(d2*hold/den)/d2

END IF

164 Numerical Methods for Engineers

ct=COS(alpha); st=SIN(alpha); p=zero
DO i=1,n; p(i,i)=one; END DO
p(nr,nr)=ct; p(nc,nc)=ct; p(nr,nc)=-st; p(nc,nr)=st
a=MATMUL(MATMUL(TRANSPOSE(p),a),p)
IF(iters<5)THEN
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO; WRITE(11,*)

END IF
DO i=1,n; enew(i)=a(i,i); END DO
IF(checkit(enew,eold,tol).OR.iters==limit)EXIT; eold=enew

END DO
WRITE(11,’(A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/,A)’)"Final Transformed Matrix A"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO; WRITE(11,*)
DO i=1,n; a1=a2; DO j=1,n; a1(j,j)=a1(j,j)-a(i,i); END DO
x=zero; a1(i,i)=penalty; x(i)=penalty; x=eliminate(a1,x)
l2=norm(x); WRITE(11,’(A,E12.4)’)"Eigenvalue ",a(i,i)
WRITE(11,’(A,6E12.4)’)"Eigenvector",x/l2; WRITE(11,*)

END DO

END PROGRAM nm46

Number of equations n
3

Coefficient matrix (a(i,:),i=1,n)
10. 5. 6.

20. 4.
30.

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.6: Jacobi Diagonalization for Symmetrical Matrices

-Jacobi Diagonalization for Eigenvalues of Symmetrical Matrices-

Matrix A
0.1000E+02 0.5000E+01 0.6000E+01
0.5000E+01 0.2000E+02 0.4000E+01
0.6000E+01 0.4000E+01 0.3000E+02

First Few Iterations
0.8338E+01 0.3751E+01 -0.7238E-15
0.3751E+01 0.2000E+02 0.5190E+01

Eigenvalue Equations 165

0.7746E-15 0.5190E+01 0.3166E+02

0.8338E+01 0.3506E+01 0.1334E+01
0.3506E+01 0.1803E+02 -0.6245E-16
0.1334E+01 0.3548E-15 0.3364E+02

0.7203E+01 0.3584E-15 0.1269E+01
-0.4033E-15 0.1916E+02 0.4111E+00
0.1269E+01 0.4111E+00 0.3364E+02

0.7142E+01 -0.1967E-01 0.4136E-16
-0.1967E-01 0.1916E+02 0.4106E+00
0.1395E-14 0.4106E+00 0.3370E+02

Iterations to Convergence
6

Final Transformed Matrix A
0.7142E+01 -0.4032E-18 -0.5549E-03
-0.7679E-15 0.1915E+02 0.9087E-06
-0.5549E-03 0.9087E-06 0.3371E+02

Eigenvalue 0.7142E+01
Eigenvector 0.9334E+00 -0.3032E+00 -0.1919E+00

Eigenvalue 0.1915E+02
Eigenvector 0.1967E+00 0.8796E+00 -0.4330E+00

Eigenvalue 0.3371E+02
Eigenvector 0.3002E+00 0.3664E+00 0.8807E+00

Results 4.6: Jacobi Diagonalization for Symmetrical Matrices

The data shown in Data 4.6 involve the number of equations followed by
the upper triangle of the symmetrical array [A]. The convergence tolerance
and iteration limit complete the data. The iteration loop takes up the rest of
the program. The largest off-diagonal term is stored as hold with its position
in row and column nr and nc respectively.

The rotation angle alpha is then computed from equation (4.74) and its
cosine ct and sine st, followed by the explicit changes to the matrix as outlined
above. The diagonals of the transformed [A] matrix are stored in vector enew
and compared with their values at the previous iteration held in eold using
subroutine checkit. Once convergence has been achieved and the diagonals
are hardly changing from one iteration to the next, the final transformed
diagonal matrix is written to the output file shown in Results 4.6. In this case

166 Numerical Methods for Engineers

the eigenvalues are λ = 7.14, 19.15 and 33.71.

Once the eigenvalues have been computed the program runs through a
final loop computing the normalized eigenvectors that go with each of the
eigenvalues. This is achieved by solving the characteristic equations of the
type shown in equation (4.3). The “penalty method” (see Program 2.7) is used
to fix one of the components to unity, and the function eliminate (see Section
2.7) completes the solution of the remaining equations. The eigenvector is then
normalized so that its Euclidean norm equals unity and written to output.

List 4.6:

Scalar integers:
i simple counter
iters iteration counter
j simple counter
limit iteration limit
n number of equations
nc column of term to be eliminated
nr row of term to be eliminated

Scalar reals:
alpha rotation angle α in radians
big term of largest absolute magnitude in array
ct cosα
den denominator of expression for α
d2 set to 2.0
d4 set to 4.0
hold temporary store
l2 L2 norm of a vector
one set to 1.0
penalty set to 1 × 1020

pi set to π
small set to 1 × 10−20

st sinα
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
a1 temporary n× n storage matrix
a2 temporary n× n storage matrix
enew “new” diagonals of transformed matrix
eold “old” diagonals of transformed matrix
p n× n transformation matrix
x eigenvector

Eigenvalue Equations 167

4.5.1 Comments on Jacobi diagonalization

Although Program 4.6 illustrates the transformation process well for teach-
ing purposes, it would not be used to solve large problems. One would never,
in practice, store the transformation matric [P], but perhaps less obvious-
ly, the searching process itself becomes very time-consuming as n increases.
Alternatives to the basic Jacobi method which have been proposed include
serial elimination in which the off-diagonal elements are eliminated in a pre-
determined sequence, thus avoiding searching altogether, and a variation of
this technique in which serial elimination is performed only on those elements
whose modulus exceeds a certain value or “threshold”. When all off-diagonal
terms have been reduced to the threshold, it can be further reduced and the
process continued.

Jacobi’s idea can also be implemented in order to reduce [A] to a tridiag-
onal matrix [A∗] (rather than diagonal) having the same eigenvalues. This
is called “Givens’s method”, which has the advantage of being noniterative.
Of course, some method must still be found for calculating the eigenvalues
of the tridiagonal [A∗]. A more popular tridiagonalisation technique is called
“Householder’s method” which is described in the next section.

4.5.2 Householder’s transformation to tridiagonal form

Equation (4.64) gave the basic property that transformation matrices should
have, namely

[P]T [P] = [I] (4.75)

and the Householder technique involves choosing

[P] = [I] − 2{w}{w}T (4.76)

where {w} is a column vector normalized such that its Euclidean norm equals
unity, thus

{w}T {w} = 1 (4.77)

For example, let

{w} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2

1√
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.78)

which has the required product. Then

2{w}{w}T =

⎡
⎣1 1

1 1

⎤
⎦ (4.79)

168 Numerical Methods for Engineers

and we see that

[P] = [I] − 2{w}{w}T =

⎡
⎣ 0 −1

−1 0

⎤
⎦ (4.80)

which has the desired property that

[P]−1 = [P]T = [P] (4.81)

In order to eliminate terms in the first row of [A] outside the tridiagonal,
the vector {w} is taken as

{w} = [0 w2 w3 · · · wn]T (4.82)

Thus the transformation matrix for row 1, assuming [A] is 3 × 3, is

[P] =

⎡
⎣ 1 0 0

0 1 − 2w2
2 −2w2w3

0 −2w3w2 1 − 2w2
3

⎤
⎦ (4.83)

When the product [P][A][P] is carried out, the first row of the resulting matrix
contains the following three terms

a∗11 = a11

a∗12 = a12 − 2w2(a12w2 + a13w3) = r (4.84)
a∗13 = a13 − 2w3(a12w2 + a13w3) = 0

Letting
h = a12w2 + a13w3 (4.85)

the second and third of equations (4.84) can be written as

a∗12 = a12 − 2w2h = r (4.86)
a∗13 = a13 − 2w3h = 0

Equation (4.77) gives us another equation in the wi, namely

w2
2 + w2

3 = 1 (4.87)

hence by squaring both of equations (4.86), adding them together and making
the substitutions from equations (4.85) and (4.87) we get

r2 = a2
12 + a2

13 (4.88)

Also from equations (4.86) we can write

w2 =
a12 − r

2h
(4.89)

w3 =
a13

2h

Eigenvalue Equations 169

which can also be squared and added together with substitutions from equa-
tions (4.86) and (4.88) to give

2h2 = r2 − a12r (4.90)

From equations (4.89) we can also write

{w} =
1
2h

{v} (4.91)

where
{v} = 2h{w} = [0 (a12 − r) a13]T (4.92)

leading to the transformation matrix

[P] = [I] − 1
2h2

{v}{v}T (4.93)

In equation (4.88) for the determination of r, the sign should be chosen such
that r is of opposite sign to a12 in this case.

For a general row i, the vector {v} will take the form

{v} = [0 0 0 · · · (ai,i+1 − r) ai,i+2 ai,i+3 · · · ai,n]T (4.94)

Program 4.7: Householder reduction of symmetrical ma-
trix to tridiagonal form

PROGRAM nm47
!---Householder Reduction of a Symmetrical Matrix
!to Tridiagonal Form---
USE precision; IMPLICIT NONE
INTEGER::i,k,l,n; REAL(iwp)::h,one=1.0_iwp,r,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),a1(:,:),p(:,:),v(:,:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),a1(n,n),p(n,n),v(n,1))
DO i=1,n; READ(10,*)a(i,i:n); a(i:n,i)=a(i,i:n); END DO
WRITE(11,’(A,A)’)"---Householder Reduction of a Symmetrical &
&Matrix to Tridiagonal Form---"

WRITE(11,’(/,A)’)"Coefficient Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
DO k=1,n-2
r=zero; DO l=k,n-1; r=r+a(k,l+1)*a(k,l+1); END DO
r=SQRT(r); IF(r*a(k,k+1)>zero)r=-r
h=-one/(r*r-r*a(k,k+1)); v=zero

170 Numerical Methods for Engineers

v(k+1,1)=a(k,k+1)-r; DO l=k+2,n; v(l,1)=a(k,l); END DO
p=MATMUL(v,TRANSPOSE(v))*h
DO l=1,n; p(l,l)=p(l,l)+one; END DO
a1=MATMUL(a,p); a=MATMUL(p,a1)

END DO
WRITE(11,’(/,A)’)"Transformed Main Diagonal"
WRITE(11,’(6E12.4)’)(a(i,i),i=1,n)
WRITE(11,’(/,A)’)"Transformed Off-Diagonal"
WRITE(11,’(6E12.4)’)(a(i-1,i),i=2,n)

END PROGRAM nm47

List 4.7:
Scalar integers:
i simple counter
k simple counter
l simple counter
n number of equations

Scalar reals:
h term −1/(2h2) from equation (4.93)
one set to 1.0
r term from equations (4.86) and (4.88)
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
a1 temporary n× n storage matrix
p n× n transformation matrix
v vector {v} from equation (4.92)

Number of equations n
4

Coefficient matrix (a(i,:),i=1,n)
1.0 -3.0 -2.0 1.0

10.0 -3.0 6.0
3.0 -2.0

1.0

Data 4.7: Householder Reduction to Tridiagonal Form

Eigenvalue Equations 171

---Householder Reduction of a Symmetrical Matrix
to Tridiagonal Form---

Coefficient Matrix
0.1000E+01 -0.3000E+01 -0.2000E+01 0.1000E+01
-0.3000E+01 0.1000E+02 -0.3000E+01 0.6000E+01
-0.2000E+01 -0.3000E+01 0.3000E+01 -0.2000E+01
0.1000E+01 0.6000E+01 -0.2000E+01 0.1000E+01

Transformed Main Diagonal
0.1000E+01 0.2786E+01 0.1020E+02 0.1015E+01

Transformed Off-Diagonal
0.3742E+01 -0.5246E+01 -0.4480E+01

Results 4.7: Householder Reduction to Tridiagonal Form

The input is shown in Data 4.7. The number of equations and upper trian-
gle of symmetrical matrix [A] are first read in. Then n − 2 transformations
are made for rows designated by counter k. Values of r, h and v are computed
and the vector product required by equation (4.93) is carried out. Transfor-
mation matrix [P] can then be formed and two matrix multiplications using
MATMUL complete the transformation. Results 4.7 show the resulting tridi-
agonalized matrix [A∗], whose eigenvalues would then have to be computed
by some other method, perhaps by vector iteration as previously described
or by a characteristic polynomial method as shown in the following section.
Alternatively, another transformation method may be used, as shown in the
next program.

The matrix arithmetic in this algorithm has been deliberately kept sim-
ple. In practice, more involved algorithms can greatly reduce storage and
computation time in this method.

4.5.3 Lanczos transformation to tridiagonal form

In Chapter 2, we saw that some iterative techniques for solving linear e-
quations, such as the steepest descent method, could be reduced to a loop
involving a single matrix by vector multiplication followed by various simple
vector operations. The Lanczos method for reducing matrices to tridiagonal
form, while preserving their eigenvalues, involves very similar operations, and
is in fact linked to the conjugate gradient technique of Program 2.12.

The transformation matrix [P] is in this method constructed using mutually
orthogonal vectors. As usual we seek an eigenvalue-preserving transformation
which for symmetrical matrices was given by equation (4.63) as

[P]T [A][P] (4.95)

172 Numerical Methods for Engineers

A means of ensuring [P]T [P] = [I] is to construct [P] from mutually orthogo-
nal, unit length normalized vectors, say {p}, {q} and {r}. For a 3× 3 matrix
for example, we would get

[P]T [P] =

⎡
⎣ p1 p2 p3

q1 q2 q3
r1 r2 r3

⎤
⎦
⎡
⎣ p1 q1 r1
p2 q2 r2
p3 q3 r3

⎤
⎦

=

⎡
⎣ {p}T{p} {p}T {q} {p}T{r}
{q}T {p} {q}T {q} {q}T{r}
{r}T {p} {r}T {q} {r}T{r}

⎤
⎦ = [I] (4.96)

In the Lanczos method, we require [P]T [A][P] to be a symmetrical tridiagonal
matrix, say

[M] = [P]T [A][P] =

⎡
⎣α1 β1 0
β1 α2 β2

0 β2 α3

⎤
⎦ (4.97)

and so
[A][P] = [P][M] (4.98)

Since [P] is made up of the orthogonal vectors

[P] = [{p} {q} {r}] (4.99)

we can expand equation (4.98) to give

[A] {p} = α1{p} + β1{q}
[A] {q} = β1{p} + α2{q} + β2{r} (4.100)
[A] {r} = β2{q} + α3{r}

Multiplying the first, second and third of equations (4.100) by {p}T , {q}T

and {r}T respectively, and noting orthogonality of vectors, we get

{p}T [A]{p} = α1

{q}T [A]{q} = α2 (4.101)
{r}T [A]{r} = α3

To construct the “Lanczos vectors” {p}, {q} and {r} and solve for the tridi-
agonal terms αi and βi we can follow the following algorithm:

1) Make a starting guess for vector {p} with a unit length (e.g., [1 0 0]T)

2) From equations (4.101) compute α1 = {p}T [A]{p}

3) From equations (4.100) compute β1{q} = [A]{p} − α1{p}

Eigenvalue Equations 173

4) The length of {q} is unity, hence compute β1 and {q} by normalization

5) From equations (4.101) compute α2 = {q}T [A]{q}

6) From equations (4.100) compute β2{r} = [A]{q} − α2{q} − β1{p}

7) The length of {r} is unity, hence compute β2 and {r} by normalization

8) From equations (4.101) compute α3 = {r}T [A]{r} etc.

In general, for an n × n matrix [A] and denoting the orthogonal vector
columns of [P] by {y}j, j = 1, 2, · · · , n, the algorithm used by Program 4.8
is as follows (setting β0 = 0):

{v}j = [A]{y}j

αj = {y}T
j {v}j

{z}j = {v}j − αj{y}j − βj−1{y}j−1 (4.102)

βj =
({z}T

j {z}j

)1/2

{y}j+1 =
1
βj

{z}j

Program 4.8: Lanczos reduction of symmetrical matrix to
tridiagonal form

PROGRAM nm48
!---Lanczos Reduction of a Symmetrical Matrix
!to Tridiagonal Form---
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,j,n; REAL(iwp)::zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),alpha(:),beta(:),v(:),y0(:), &
y1(:),z(:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),alpha(n),beta(0:n-1),v(n),y0(n), &
y1(n),z(n))

DO i=1,n; READ(10,*)a(i,i:n); a(i:n,i)=a(i,i:n); END DO
READ(10,*)y1
WRITE(11,’(A)’)"---Lanczos Reduction of a Symmetrical Matrix &
&to Tridiagonal Form---"

174 Numerical Methods for Engineers

WRITE(11,’(/,A)’)"Coefficient Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A)’)"Guessed Starting vector"
WRITE(11,’(6E12.4)’)y1; y0=zero; beta(0)=zero
DO j=1,n
v=MATMUL(a,y1); alpha(j)=DOT_PRODUCT(y1,v); IF(j==n)EXIT
z=v-alpha(j)*y1-beta(j-1)*y0; y0=y1
beta(j)=SQRT(DOT_PRODUCT(z,z)); y1=z/beta(j)

END DO
WRITE(11,’(/A)’)"Transformed Main Diagonal"
WRITE(11,’(6E12.4)’)alpha
WRITE(11,’(/A)’)"Transformed Off-Diagonal"
WRITE(11,’(6E12.4)’)beta(1:)

END PROGRAM nm48

List 4.8:

Scalar integers:
i simple counter
j simple counter
n number of equations

Scalar reals:
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
alpha diagonal of tridiagonal matrix from equation (4.97)
beta off-diagonal of tridiagonal matrix from equation (4.97)
v
y0
y1
z

⎫⎪⎬
⎪⎭ temporary vectors, see equations (4.102)

Number of equations n
4

Coefficient matrix (a(i,:),i=1,n)
1.0 -3.0 -2.0 1.0

10.0 -3.0 6.0
3.0 -2.0

1.0

Eigenvalue Equations 175

Starting vector y1
1.0 0.0 0.0 0.0

Data 4.8: Lanczos Reduction to Tridiagonal Form

---Lanczos Reduction of a Symmetrical Matrix
to Tridiagonal Form---

Coefficient Matrix
0.1000E+01 -0.3000E+01 -0.2000E+01 0.1000E+01
-0.3000E+01 0.1000E+02 -0.3000E+01 0.6000E+01
-0.2000E+01 -0.3000E+01 0.3000E+01 -0.2000E+01
0.1000E+01 0.6000E+01 -0.2000E+01 0.1000E+01

Guessed Starting vector
0.1000E+01 0.0000E+00 0.0000E+00 0.0000E+00

Transformed Main Diagonal
0.1000E+01 0.2786E+01 0.1020E+02 0.1015E+01

Transformed Off-Diagonal
0.3742E+01 0.5246E+01 0.4480E+01

Results 4.8: Lanczos Reduction to Tridiagonal Form

Note that the process is not iterative. Input and output are listed in Data
and Results 4.8 respectively. The number of equations, n, is first read in,
followed by the upper triangle coefficients of the symmetrical [A] matrix.
The starting vector {y}1, which is arbitrary as long as {y}T

1 {y}1 = 1, is then
read in and β0 is set to 0.

The main loop carries out exactly the operations of equations (4.102) to
build up n values of α and the n − 1 values of β which are printed at the
end of the program. For the given starting vector {y}1 = [1 0 0 0]T ,
the Lanczos method yields a slightly different tridiagonal matrix than by
Householder’s method (Results 4.7), but both tridiagonal matrices have the
same eigenvalues.

Correct answers have been obtained in this small example but in practice
for larger problems roundoff becomes a serious drawback and more elaborate
algorithms which deal with this difficulty are necessary.

176 Numerical Methods for Engineers

4.5.4 LR transformation for eigenvalues of tridiagonal ma-
trices

A transformation method most applicable to sparsely populated (band or
tridiagonalized) matrices is the so-called “LR” transformation. This is based
on repeated [L][U] factorization of the type described in Chapter 2.

Thus,
[A]k = [L][U] = [L][R] (4.103)

for any step k of the iterative transformation. The step is completed by re-
multiplying the factors in reverse order, that is

[A]k+1 = [U][L] = [R][L] (4.104)

Since from equation (4.103)

[U] = [L]−1[A]k (4.105)

the multiplication in equation (4.104) implies

[A]k+1 = [L]−1[A]k[L] (4.106)

showing that [L] has the property required of a transformation matrix [P]. As
iterations proceed, the transformed matrix [A]k tends to an upper triangular
matrix whose eigenvalues are equal to the diagonal terms (see Section 4.1.2).

Example 4.6

Perform “LR” factorization on the nonsymmetrical matrix

[A] =
[

4 3
2 1

]

Solution 4.6

[A]0 =
[

4 3
2 1

]
=
[

1.0 0.0
0.5 1.0

] [
4.0 3.0
0.0 −0.5

]

[A]1 =
[

4.0 3.0
0.0 −0.5

] [
1.0 0.0
0.5 1.0

]
=
[

5.5 3.0
−0.25 −0.5

]

=
[

1.0 0.0
−0.045 1.0

] [
5.5 3.0
0.0 −0.3636

]

[A]2 =
[

5.5 3.0
0.0 −0.3636

] [
1.0 0.0

−0.045 1.0

]
=
[

5.365 3.0
0.0164 −0.3636

]

=
[

1.0 0.0
0.0031 1.0

] [
5.365 3.0
0.0 −0.3728

]

Eigenvalue Equations 177

[A]3 =
[

5.365 3.0
0.0 −0.3728

] [
1.0 0.0
0.0031 1.0

]
=
[

5.3743 3.0
−0.0012 −0.3728

]

[A]3 is nearly upper triangular, hence its eigenvalues are approximately 5.37
and -0.37 which are exact to 2 decimal places.

Although the method would be implemented in practice using special stor-
age strategies, it is illustrated in Program 4.9 for the simple case of a square
matrix [A].

Program 4.9: [L][R] transformation for eigenvalues

PROGRAM nm49
!---LR Transformation for Eigenvalues---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,limit,n; REAL(iwp)::tol,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::a(:,:),enew(:),eold(:),lower(:,:), &
upper(:,:)

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)n; ALLOCATE(a(n,n),upper(n,n),lower(n,n),eold(n), &
enew(n)); READ(10,*)a,tol,limit

WRITE(11,*)"---LR Transformation for Eigenvalues---"
WRITE(11,’(/,A)’)"Coefficient Matrix"
a=TRANSPOSE(a); DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO
WRITE(11,’(/,A)’)"First Few Iterations"; iters=0; eold=zero
DO; iters=iters+1; CALL lufac(a,lower,upper)
a=MATMUL(upper,lower)
IF(iters<5)THEN
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO; WRITE(11,*)

END IF
DO i=1,n; enew(i)=a(i,i); END DO
IF(checkit(enew,eold,tol).OR.iters==limit)EXIT; eold=enew

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
WRITE(11,’(/A)’)"Final Transformed Matrix"
DO i=1,n; WRITE(11,’(6E12.4)’)a(i,:); END DO

END PROGRAM nm49

178 Numerical Methods for Engineers

List 4.9:

Scalar integers:
i simple counter
iters iteration counter
limit iteration limit
n number of equations

Scalar reals:
tol convergence tolerance
zero set to 0.0

Dynamic real arrays:
a n× n matrix of coefficients
enew “new” diagonals of transformed matrix
eold “old” diagonals of transformed matrix
lower lower triangular factor of [A]k
upper upper triangular factor of [A]k

Number of equations n
4

Coefficient matrix (a(i,:),i=1,n)
1.0000 3.7417 0.0 0.0
3.7417 2.7857 5.2465 0.0
0.0 5.2465 10.1993 4.4796
0.0 0.0 4.4796 1.0150

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.9: LR Transformation

---LR Transformation for Eigenvalues---

Coefficient Matrix
0.1000E+01 0.3742E+01 0.0000E+00 0.0000E+00
0.3742E+01 0.2786E+01 0.5247E+01 0.0000E+00
0.0000E+00 0.5247E+01 0.1020E+02 0.4480E+01
0.0000E+00 0.0000E+00 0.4480E+01 0.1015E+01

First Few Iterations
0.1500E+02 0.3742E+01 0.0000E+00 0.0000E+00
-0.4196E+02 -0.1367E+02 0.5247E+01 0.0000E+00
0.0000E+00 -0.5920E+01 0.1424E+02 0.4480E+01
0.0000E+00 0.0000E+00 -0.2021E+00 -0.5708E+00

Eigenvalue Equations 179

0.4533E+01 0.3742E+01 0.0000E+00 0.0000E+00
0.8957E+01 0.6497E+01 0.5247E+01 0.0000E+00
0.0000E+00 0.8394E+01 0.4341E+01 0.4480E+01
0.0000E+00 0.0000E+00 0.1653E-01 -0.3715E+00

0.1193E+02 0.3742E+01 0.0000E+00 0.0000E+00
-0.1770E+01 -0.5004E+02 0.5247E+01 0.0000E+00
0.0000E+00 -0.5011E+03 0.5349E+02 0.4480E+01
0.0000E+00 0.0000E+00 -0.1152E-03 -0.3728E+00

0.1137E+02 0.3742E+01 0.0000E+00 0.0000E+00
0.7346E+01 0.3632E+01 0.5247E+01 0.0000E+00
-0.8438E-14 0.3741E+01 0.3681E+00 0.4480E+01
-0.2632E-17 0.1787E-16 0.1159E-03 -0.3714E+00

Iterations to Convergence
48

Final Transformed Matrix
0.1433E+02 0.3742E+01 0.0000E+00 0.0000E+00
0.3551E-21 0.4457E+01 0.5247E+01 0.0000E+00
-0.1913E-40 0.7503E-04 -0.3415E+01 0.4480E+01
-0.1313E-86 0.8507E-64 0.2549E-46 -0.3714E+00

Results 4.9: LR Transformation

Input and output are shown in Data and Results 4.9 respectively. The
program begins by reading the number of equations n, followed by the coef-
ficients of [A], the convergence tolerance and iteration limit. The iteration
loop is then entered, and begins with a call to lufac which completes the
factorization of the current [A]k into [L] and [U]. These are multiplied in
reverse order following equation (4.104) using MATMUL and the new estimate
of the eigenvalues is found in the diagonal terms of the new [A]k+1. The data
shown in Data 4.9 are the tridiagonal matrix terms produced by the Lanczos
method from Program 4.8 (see Results 4.8). The output in Results 4.9 indi-
cates that the transformed matrix following 48 iterations is essentially upper
triangular, with diagonal terms indicating eigenvalues λ = 14.33, 4.46, −3.42
and −0.37. As would be expected these are also the eigenvalues of the initial
matrix used in the Lanczos example, namely

[A] =

⎡
⎢⎢⎣

1 −3 −2 1
−3 10 −3 6
−2 −3 3 −2

1 6 −2 1

⎤
⎥⎥⎦

180 Numerical Methods for Engineers

4.6 Characteristic polynomial methods

At the beginning of this chapter we illustrated how the eigenvalues of a
matrix form the roots of an nth order polynomial, called the “characteristic
polynomial”. We pointed out that the methods of Chapter 3 could, in prin-
ciple, be used to evaluate these roots, but that this will rarely be an effective
method of eigenvalue determination. However, there are effective methods
which are based on the properties of the characteristic polynomial. These are
particularly attractive when the matrix whose eigenvalues has to be found
is a tridiagonal matrix, and so are especially appropriate when used in con-
junction with the Householder or Lanczos transformations described in the
previous sections.

4.6.1 Evaluating determinants of tridiagonal matrices

In the previous section we illustrated noniterative methods of reducing ma-
trices to tridiagonal equivalents. The resulting eigenvalue equation for an
n× n system became⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 0 0 · · · · · · · · ·

β1 α2 β2 0 0 · · · · · · · · ·

0 β2 α3 β3 0 · · · · · · · · ·
...

...
...

...
...

...
...

...
· · · · · · · · · · · · · · · · · · αn−1 βn−1

· · · · · · · · · · · · · · · · · · βn−1 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

...

...
xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

...

...
xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.107)

The problem therefore becomes one of finding the roots of the determinantal
equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 − λ β1 0 0 0 · · · · · · · · ·

β1 α2 − λ β2 0 0 · · · · · · · · ·

0 β2 α3 − λ β3 0 · · · · · · · · ·
...

...
...

...
...

...
...

...
· · · · · · · · · · · · · · · · · · αn−1 − λ βn−1

· · · · · · · · · · · · · · · · · · βn−1 αn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4.108)

Although we shall not find these roots directly, consider the calculation of the
determinant on the left-hand side of equations (4.108).

Eigenvalue Equations 181

For n = 1
det1(λ) = α1 − λ (4.109)

For n = 2

det2(λ) =
∣∣∣∣α1 − λ β1

β1 α2 − λ

∣∣∣∣ = (α1 − λ)(α2 − λ) − β2
1 (4.110)

For n = 3

det3(λ) =

∣∣∣∣∣∣
α1 − λ β1 0
β1 α2 − λ β2

0 β2 α3 − λ

∣∣∣∣∣∣ = (α3 − λ)
∣∣∣∣α1 − λ β1

β1 α2 − λ

∣∣∣∣− β2
2(α1 − λ)

(4.111)
and so on.

We see that a recurrence relationship builds up enabling det3(λ) to be evalu-
ated simply from a knowledge of det2(λ) and det1(λ). So if we let det0(λ) = 1,
the general recurrence may be written

detn(λ) = (αn − λ) detn−1(λ) − β2
n−1 detn−2(λ) (4.112)

Therefore, for any value of λ, we can quickly calculate detn(λ), and if we
know the range within which a root detn(λ) = 0 must lie, its value can
be computed by, for example, the Bisection method of Program 3.2. The
remaining difficulty is to guide the choices of λ so as to be sure of bracketing
a root. This task is made much easier due to a special property possessed
by the “principal minors” of equations (4.108), which is called the “Sturm
sequence” property.

4.6.2 The Sturm sequence property

A specific example of the left-hand side of equation (4.108) is shown below,
for n = 5:

(4.113)

The principal minors of |A| are the determinants of the submatrices out-
lined by the dotted lines, i.e., formed by eliminating the nth, (n − 1)th, etc.,
row and column of [A]. The eigenvalues of [A] and of its principal minors will
be found to be given by the following table (e.g., by using Program 4.9)

182 Numerical Methods for Engineers

[A] = [A5] [A4] [A3] [A2] [A1]

3.732
3.618

3.0 3.414
2.618 3.0

2.0 2.0 2.0
1.382 1.0

1.0 0.586
0.382

0.268

The characteristic polynomials of [Ai], i = 0, 1, 2, · · · , n from equation (4.112)
are shown plotted in Figure 4.1 indicating their roots which are also their
eigenvalues. From the tabular and graphical representations it can be seen
that each succeeding set of eigenvalues of [A]n, [A]n−1, [A]n−2 etc., always
“separates” the preceding set, that is, the eigenvalues of [Ai−1] always occur
in the gaps between the eigenvalues of [Ai]. This separation property is found
for all symmetrical [A] and is called the “Sturm sequence” property.

Its most useful consequence is that for any guessed λ, the number of sign
changes in deti(λ) for i = 0, 1, 2, · · · , n is equal to the number of eigenvalues
of [A] which are less than λ. When counting the sign changes it should be
recalled that det0(λ) = 1, and noted that deti(λ) = 0 does not count as a
change.

For the specific example shown in equation (4.113), let us guess a value of
λ = 4 and evaluate deti(4), i = 0, 1, 2, · · · , 5 to give the table

det0(4) 1.0
det1(4) -2.0
det2(4) 3.0
det3(4) -4.0
det4(4) 5.0
det5(4) -6.0

Starting at det0(4) = 1.0 and moving down the table we see 5 sign changes,
hence there are 5 eigenvalues less than 4.

Now let’s try λ = 3.5. In this case the table is

det0(3.5) 1.0
det1(3.5) -1.5
det2(3.5) 1.25
det3(3.5) -0.375
det4(3.5) -0.6873
det5(3.5) 1.4060

Eigenvalue Equations 183

Figure 4.1: Characteristic polynomials for [A]i from equations (4.112).

and we see only 4 sign changes, thus there are 4 eigenvalues less than 3.5.
These two results indicate that the largest eigenvalue must lie in the range
3.5 < λ < 4. The table below summarizes results for a selection of λ values.

λ Number of sign changes
=

number of eigenvalues < λ

4 5
3.5 4
2.5 3
1.5 2
0.5 1

184 Numerical Methods for Engineers

Program 4.10: Characteristic polynomial method for eigen-
values of symmetrical tridiagonal matrix

PROGRAM nm410
!---Characteristic Polynomial Method---
!---for Eigenvalues of Symmetrical Tridiagonal Matrix---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,iters,j,limit,n,number
REAL(iwp)::al,almax,aold,half=0.5_iwp,oldl,one=1.0_iwp,sign, &
small=1.E-20_iwp,tol

REAL(iwp),ALLOCATABLE::alpha(:),beta(:),det(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Characteristic Polynomial Method---"
WRITE(11,’(A)’)"---for Eigenvalues of Symmetrical Tridiagonal &
&Matrix---"

READ(10,*)n; ALLOCATE(alpha(n),beta(n-1),det(0:n))
READ(10,*)alpha; READ(10,*)beta
READ(10,*)j,al,almax,tol,limit
WRITE(11,’(/,A)’)"Main Diagonal"; WRITE(11,’(6E12.4)’)alpha
WRITE(11,’(/,A)’)"Off-Diagonal"; WRITE(11,’(6E12.4)’)beta
WRITE(11,’(/,A)’)"Eigenvalue required, 1=largest,2=second &
&largest etc."; WRITE(11,’(I8)’)j

WRITE(11,’(/,A)’)"Eigenvalue Determinant Number of roots &
&less than"

iters=0; det(0)=one; aold=almax
DO; iters=iters+1; det(1)=alpha(1)-al
DO i=2,n
det(i)=(alpha(i)-al)*det(i-1)-beta(i-1)*beta(i-1)*det(i-2)

END DO; number=0
DO i=1,n
IF(ABS(det(i))<small)CYCLE
IF(ABS(det(i-1))<small)THEN
sign=det(i)*det(i-2)

ELSE
sign=det(i)*det(i-1)

END IF
IF(sign<small)number=number+1

END DO
IF(number<=n-j) THEN
oldl=al; al=half*(al+almax)

ELSE
almax=al; al=half*(oldl+al)

END IF

Eigenvalue Equations 185

IF(det(n)<small)number=number-1
IF(MOD(j,2)==0)number=number-1
WRITE(11,’(2E12.4,I15)’)al,det(n),number
IF(check(al,aold,tol).OR.iters==limit)EXIT; aold=al

END DO
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters

END PROGRAM nm410

Number of equations n
5

Diagonals alpha
2.0 2.0 2.0 2.0 2.0

Off-diagonals beta
-1.0 -1.0 -1.0 -1.0

Eigenvalue required j
1

Starting value al
2.5

Upper estimate almax
5.0

Tolerance and tol limit
iteration limit 1.E-5 100

Data 4.10: Characteristic Polynomial Method for Tridiagonal Ma-
trix

---Characteristic Polynomial Method---
---for Eigenvalues of Symmetrical Tridiagonal Matrix---

Main Diagonal
0.2000E+01 0.2000E+01 0.2000E+01 0.2000E+01 0.2000E+01

Off-Diagonal
-0.1000E+01 -0.1000E+01 -0.1000E+01 -0.1000E+01

Eigenvalue required, 1=largest,2=second largest etc.
1

186 Numerical Methods for Engineers

Eigenvalue Determinant Number of roots less than
0.3750E+01 -0.1031E+01 2
0.3125E+01 -0.2256E+00 4
0.3438E+01 0.5183E+00 4
0.3594E+01 0.1431E+01 4
0.3672E+01 0.1129E+01 4
0.3711E+01 0.6148E+00 4
0.3730E+01 0.2397E+00 4
0.3740E+01 0.1891E-01 4
0.3735E+01 -0.1003E+00 4
0.3733E+01 -0.3995E-01 4
0.3732E+01 -0.1034E-01 4
0.3732E+01 0.4332E-02 4
0.3732E+01 -0.2990E-02 4
0.3732E+01 0.6740E-03 4
0.3732E+01 -0.1157E-02 4
0.3732E+01 -0.2414E-03 4
0.3732E+01 0.2164E-03 4

Iterations to Convergence
17

Results 4.10: Characteristic Polynomial Method for Symmetrical
Tridiagonal Matrix

Input and output are shown in Data and Results 4.10 respectively. The
number of equations n is first read in followed by the diagonal alpha and
off-diagonal beta terms of the tridiagonal symmetrical matrix previously ob-
tained by methods such as Householder or Lanczos. The remaining data
consist of j, the required eigenvalue where j=1 is the largest etc., a starting
guess of λ (al), an upper limit on λ (almax), a convergence tolerance and
iteration limit. Since symmetrical, positive definite [A] are implied, all of the
eigenvalues will be positive.

The data relate to the example given in equations (4.113) and involve a
search for the largest (j=1) eigenvalue. An upper limit of 5.0 is chosen as
being bigger than the biggest eigenvalue, and the first guess for λ is chosen
to be half this value, that is 2.5. The value of det0(λ) called det(0) is set to
1.0 and an iteration loop for the bisection process executed. The procedure
continues until the iteration limit is reached or the tolerance, tol, is satisfied
by subroutine check. The value of det1(λ) is set to α1−λ and then the other
deti(λ), i = 2, 3, · · · , n are formed by recursion from equation (4.112). The
number of sign changes is detected by sign and accumulated as number.

The output shown in Results 4.10 reports the trial eigenvalue λ, the value
of the determinant det5(λ) and the number of eigenvalues less than the cur-
rent value. At convergence the largest eigenvalue is given as λ = 3.732 with

Eigenvalue Equations 187

4 eigenvalues less than this value. In general more elaborate interpolation
processes will be necessary, especially as numbers of equations become large.

List 4.10:

Scalar integers:
i simple counter
iters iteration counter
j eigenvalue required (1=largest, 2=second largest, etc.)
limit iteration limit
n number of equations
number number of equations

Scalar reals:
al current estimate of root
almax upper estimate of root
aold previous estimate of root
half set to 0.5
oldl lower estimate of root
one set to 1.0
sign detects sign changes
small set to 1 × 10−20

tol convergence tolerance

Dynamic real arrays:
alpha diagonal of tridiagonal matrix from equation (4.107)
beta off-diagonal of tridiagonal matrix from equation (4.107)
det holds values of deti(λ), i = 0, 1, 2, · · · , n

4.6.3 General symmetrical matrices, e.g., band matrices

The principles described in the previous section can be applied to general
matrices, but the simple recursion formula for finding det(λ) no longer applies.
A way of computing det(λ) is to factorize [A], using the techniques described
in Program 2.3, to yield [A] = [L][D][L]T . The product of the diagonal
elements in [D] is the determinant of [A]. Further useful information that
can be derived from [D] is that in the factorization of [A] − λ[I], the number
of negative elements in [D] is equal to the number of eigenvalues smaller than
λ.

188 Numerical Methods for Engineers

4.7 Exercises

1. Use vector iteration to find the eigenvector corresponding to the largest
eigenvalue of the matrix ⎡

⎣ 2 2 2
2 5 5
2 5 11

⎤
⎦

Answer: [0.2149 0.4927 0.8433]T corresponding to eigenvalue 14.43.

2. Use vector iteration to find the largest eigenvalue of the matrix[
3 −1

−1 2

]

and its associated eigenvector.

Answer: 3.618 associated with [0.8507 − 0.5257]T

3. Use shifted vector iteration to find the smallest eigenvalue and eigen-
vector of the system given in Exercise 1.
Answer: Smallest eigenvalue 0.954 corresponding to eigenvector
[0.8360 0.5392 0.1019]T .

4. The eigenvalues of the matrix⎡
⎢⎢⎢⎢⎣

5 1 0 0 0
1 5 1 0 0
0 1 5 1 0
0 0 1 5 1
0 0 0 1 5

⎤
⎥⎥⎥⎥⎦

are 5 + 2 cos iπ
6 . Confirm these values using shifted inverse iteration

with shifts of 6.7, 6.1, 5.3, 4.1 and 3.3.
Answer: 6.732, 6.0, 5.0, 4.0, 3.268

5. Find the eigenvalues and eigenvectors of the system[
2 1
1 1

]{
x1

x2

}
= λ

[
5 2
2 1

]{
x1

x2

}

Answer: λ1 = 2.618, {x1} = [−0.3568 0.9342]T

λ2 = 0.382, {x2} = [0.9342 − 0.3568]T

6. Show that the system in Exercise 5 can be reduced to the “standard
form” [

0.4 0.2
0.2 2.6

]{
x1

x2

}
= λ

{
x1

x2

}

Eigenvalue Equations 189

and hence find both of its eigenvalues. How would you recover the
eigenvectors of the original system?
Answer: 0.382, 2.618. See Section 4.4.1

7. User Householder’s method to tridiagonalize the matrix⎡
⎢⎢⎣

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎤
⎥⎥⎦

Answer: ⎡
⎢⎢⎣

1.0 −1.7321 0.0 0.0
−1.7321 7.6667 1.2472 0.0

0.0 1.2472 0.9762 −0.1237
0.0 0.0 −0.1237 0.3571

⎤
⎥⎥⎦

8. Use Lanczos’s method to tridiagonalize the matrix in Exercise 7, using
the starting vector [0.5 0.5 0.5 0.5]T .
Answer: ⎡

⎢⎢⎣
7.5 2.2913 0.0 0.0
2.2913 1.6429 0.2736 0.0
0.0 0.2736 0.5390 0.0694
0.0 0.0 0.0694 0.3182

⎤
⎥⎥⎦

9. Find the eigenvalues of the tridiagonalized matrices in Exercises 7 and
8.
Answer: 8.291, 1.00, 0.4261, 0.2832 in both cases.

10. Find all the eigenvalues of the matrix⎡
⎣3 0 2

0 5 0
2 0 3

⎤
⎦

and show that the eigenvectors associated with the eigenvalues are or-
thogonal.
Answer: λ1 = 1, λ2 = 5, λ3 = 5 associated with orthogonal eigenvec-
tors, [1 0 − 1]T , [1 0 1]T , [0 1 0]T respectively.

11. Using the characteristic polynomial method for symmetrical tridiago-
nal matrices, calculate all the eigenvalues of the matrix below. Use a
tolerance that will give solutions accurate to six decimal places.⎡

⎢⎢⎢⎢⎣
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

190 Numerical Methods for Engineers

Answer: 3.732051, 3.000000, 2.000000, 1.000000, 0.267949 with a toler-
ance of about 1 × 10−7

12. Use shifted inverse iteration to estimate the eigenvalue closest to 6 of
the matrix: [

5 2
2 3

]
Check your solution by solving the characteristic polynomial for both
the eigenvalues and hence find also the eigenvectors normalized to a
Euclidean norm of unity.
Answer: λ1 = 1.7639, {x1} = [−0.5257 0.8507]T ; λ2 = 6.2361, {x2} =
[0.8507 0.5257]T

13. Use an iterative method to estimate the largest eigenvalue of the matrix
below using an initial guess of [0.3 0.4 0.9]T⎡

⎣ 10 5 6
5 20 4
6 4 30

⎤
⎦

Obtain the corresponding eigenvector and normalize it such that its
length (Euclidean norm) equals unity.
Answer: λ = 33.71, {x} = [0.300 0.366 0.881]T

14. An eigenvector of the matrix: ⎡
⎣4 5 0

5 4 5
0 5 4

⎤
⎦

is given by: ⎧⎨
⎩

0.353535
0.500000
0.353535

⎫⎬
⎭

Find the corresponding eigenvalue and hence use the characteristic poly-
nomial method to obtain the other two eigenvalues.
Answer: λ1 = 11.07, λ1 = 4, λ1 = −3.07

15. Use an iterative method to find the largest eigenvalue and corresponding
eigenvector of the following matrix correct to 2 decimal places.⎡

⎣ 2 2 2
2 4 6
2 6 12

⎤
⎦

If the eigenvector corresponding to the smallest eigenvalue is given by:⎧⎨
⎩

−0.54
x2

−0.31

⎫⎬
⎭

Eigenvalue Equations 191

estimate x2.
Answer: λ1 = 15.747, {x} = [0.2254 0.5492 1]T , x2 = 0.79

16. A vibrating system with two degrees of freedom is defined by a stiffness
matrix [K] and mass matrix [M] as follows:

[K] =
[

5 −2
−2 2

]
[M] =

[
1 0
0 4

]

Without inverting any matrices, use an iterative method to estimate the
lowest natural frequency of this system.
Answer: ω = 0.5365 (Eigenvalue equals ω2)

17. An eigenvalue of the following matrix is approximately equal to 25. Set
up an iterative numerical method for obtaining a more accurate estimate
of this eigenvalue, and perform the first iteration of the method by hand.
Use a starting vector of [0 1 0]T .⎡

⎣ 30 6 5
6 40 7
5 7 20

⎤
⎦

Although you are asked to perform just one iteration, the operations
should be performed in such a way that subsequent iterations will be
facilitated. Briefly describe how you will interpret your result once a
converged solution has been obtained. Do not invert any matrices.
Answer: After 1 iteration α1 = −0.165, λ1 = 1

−0.165 + 25 = 18.9 and
[1 − 0.769 − 0.077]T .
Converged solution α = 0.418, λ = 1

0.418 + 25 = 27.4 and
[1 − 0.558 0.147]T

18. Use a transformation method to estimate all the eigenvalues of the ma-
trix: ⎡

⎣4 2 0
2 3 0
0 0 5

⎤
⎦

Find the eigenvector of the smallest eigenvalue, expressed with its largest
component set equal to unity.
Answer: Eigenvalues: 5.5616, 1.4384, 5, eigenvector [−0.7808 1 0]T

19. One of the eigenvalues of the matrix⎡
⎣1 2 4

3 7 2
5 6 9

⎤
⎦

is known to be −0.8946. Use the characteristic polynomial to find the
other two eigenvalues and hence find the eigenvector of the intermediate

192 Numerical Methods for Engineers

eigenvalue scaled to have unit length.
Answer: Eigenvalues -0.8946, 4.1467 and 13.7480, intermediate eigen-
vector [0.2992 − 0.7383 0.6045]T

20. Set up an iterative method that would eventually lead to the smallest
eigenvalue of the matrix ⎡

⎣ 2 2 2
2 5 5
2 5 11

⎤
⎦

Perform two iterations by hand with a starting vector of [1 − 1 0]T .
You can use ordinary Gaussian elimination working to four decimal
places of accuracy.
Answer: After 1 iteration normalized vector is [1.0000 −0.7143 0.1429]T .
By computer solution, the smallest eigenvalue is 0.9539.

21. Working to an accuracy of four decimal places, find all the eigenval-
ues and the eigenvector corresponding to the smallest eigenvalue of the
matrix: ⎡

⎣4 0 4
0 7 0
4 0 5

⎤
⎦

Normalize the eigenvector to a Euclidean norm of unity.
Answer: Eigenvalues 8.5311, 7.0, 0.4689,
eigenvector [0.7497 0.0 − 0.6618]T

Chapter 5

Interpolation and Curve Fitting

5.1 Introduction

This chapter is concerned with fitting mathematical functions to discrete
data. Such data may come from measurements made during an experimen-
t, or perhaps numerical results obtained from another computer program.
The functions will usually involve polynomials, which are easy to operate on,
although other types of function may also be encountered.

Two general approaches will be covered. Firstly, functions which pass ex-
actly through every point, and secondly, functions which are a “good fit” to
the points but do not necessarily pass through them. The former approach
leads to “interpolating polynomials” and the latter to “curve fitting” or “ap-
proximating polynomials”.

We may have several reasons for wishing to fit functions to discrete data.
A common requirement is to use our derived function to interpolate between
known values, or estimate derivatives and integrals. Numerical integration
makes extensive use of approximating polynomials in Chapter 6, whereas es-
timation of derivatives from discrete data is discussed later in this chapter.

5.2 Interpolating polynomials

Firstly we consider the derivation of a function which passes exactly through
a series of np discrete data points. While there is an infinite number of
functions that could achieve this, we will focus on the simplest one which can
be shown to be an nth order polynomial, where n = np − 1. We will call this
function the “interpolating polynomial” of the form

Qn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n (5.1)

Hence, if our n+ 1 points are given as (xi, yi) for i = 0, 1, 2, . . . , n, then

Qn(xi) = yi for i = 0, 1, 2, . . . , n (5.2)

193

194 Numerical Methods for Engineers

In the next two subsections we will describe two methods for derivingQn(x);
Both methods are quite general and work for any set of initial data points,
however the Difference method will be shown to offer several advantages if
the x-data is equally spaced.

5.2.1 Lagrangian polynomials

This approach works for any general set of n+ 1 data points (xi, yi), i =
0, 1, 2, . . . , n, leading to an interpolating polynomial of the form

Qn(x) = L0(x)y0 + L1(x)y1 + . . .+ Ln(x)yn (5.3)

The Li(x), i = 0, 1, 2, . . . , n are themselves polynomials of degree n called
“Lagrangian Polynomials” defined

Li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x − xi+1) . . . (x− xn−1)(x − xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn−1)(x− xn)
(5.4)

It can be noted from equation (5.4) that Lagrangian Polynomials have the
property

Li(xj) = 1 if i = j
Li(xj) = 0 if i �= j

}
i = 0, 1, 2, . . . , n (5.5)

A further property of Lagrangian Polynomials is that they sum to unity,
thus

n∑
i=0

Li(x) = 1 (5.6)

Example 5.1

Use Lagrangian polynomials to derive a polynomial passing through the
points

x0 = 1 y0 = 1
x1 = 3 y1 = 5
x2 = 6 y2 = 10

and hence estimate y when x = 4.5.

Solution 5.1

There are three (np = 3) data points, hence n = 2 and the required inter-
polating polynomial will be second order, thus

Q2(x) = L0(x)y0 + L1(x)y1 + L2(x)y2

Interpolation and Curve Fitting 195

The three Lagrangian polynomials can be computed according to equation
(5.4), hence

L0(x) =
(x− 3)(x− 6)
(1 − 3)(1 − 6)

=
1
10

(x2 − 9x+ 18)

L1(x) =
(x− 1)(x− 6)
(3 − 1)(3 − 6)

= −1
6
(x2 − 7x+ 6)

L2(x) =
(x− 1)(x− 3)
(6 − 1)(6 − 3)

=
1
15

(x2 − 4x+ 3)

After “weighting” each Lagrangian polynomial by the corresponding y-value
from equation (5.3) we get after some simplification

Q2(x) = − 1
15

(x2 − 34x+ 18)

As a check, the three values of x can be substituted into the interpolating
polynomial to give

Q2(1) = 1 Q2(3) = 5 Q2(6) = 10

shown plotted in Figure 5.1. The required interpolation is given by

Q2(4.5) = 7.65

Figure 5.1: Quadratic interpolation from Example 5.1.

It may be noted that the x-values in the Lagrangian polynomial method do
not need to be equidistant, nor do they need to be arranged in any particular
order.

196 Numerical Methods for Engineers

A disadvantage of the Lagrangian approach is the high number of arith-
metic operations that must be carried out in order to compute an interpolate.
Each Lagrangian polynomial is itself of order n, and must be evaluated at
the required value of x. A further problem relating to the efficiency of the
Lagrangian approach is that if new data points are added to a set that has
already been operated on, no advantage can be gained from the Lagrangian
polynomials already computed, and the whole process must start again from
scratch.

Program 5.1: Interpolation by Lagrangian polynomials

PROGRAM nm51
!---Interpolation Using Lagrangian Polynomials---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,j,np; REAL(iwp)::one=1.0_iwp,term,xi,yi,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::x(:),y(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)np; ALLOCATE(x(np),y(np))
READ(10,*)(x(i),y(i),i=1,np),xi
WRITE(11,’(A,/)’)"---Interpolation Using Lagrangian &
&Polynomials---"

WRITE(11,’(A/A)’)" Data Points"," x y"
WRITE(11,’(2E12.4)’)(x(i),y(i),i=1,np); yi=zero
DO i=1,np
term=one
DO j=1,np; IF(j/=i)term=term*(xi-x(j))/(x(i)-x(j)); END DO
yi=yi+term*y(i)

END DO
WRITE(11,’(/A/A)’)" Interpolated Point"," x y"
WRITE (11,’(2E12.4)’)xi,yi

END PROGRAM nm51

Number of data points np
4

Data point coordinates (x(i),y(i),i=1,np)
1. 1.
3. 5.
6. 10.
5. 9.

Interpolation point xi
4.5

Data 5.1: Interpolation by Lagrangian Polynomials

Interpolation and Curve Fitting 197

List 5.1:

Scalar integers:
i simple counter
j simple counter
np number of input data points (np = n+ 1)

Scalar reals:
one set to 1.0
term used to form Lagrangian polynomial terms
xi x−value at which interpolation is required
yi interpolated value of y
zero set to 0.0

Dynamic real arrays:
x input data x-values
y input data y-values

Program 5.1 computes the nth order interpolating polynomialQn(x) derived
from Lagrangian polynomials, and then obtains an interpolated value of y for
a given value of x.

The input data and results files from Program 5.1 are given in Data and
Results 5.1 respectively. Initially the number of input data points (np) is read
followed by (x, y) values (np times). The last number read is the value of x
at which interpolation is required (xi).

In this case there are np=4 data points, so the program obtains the inter-
polated value of y using a cubic Q3(x) interpolating polynomial. The output
in Results 5.1 indicates the interpolated value of y = 8.175 corresponding to
x = 4.5.

---Interpolation by Lagrangian Polynomials---

Data Points
x y

0.1000E+01 0.1000E+01
0.3000E+01 0.5000E+01
0.6000E+01 0.1000E+02
0.5000E+01 0.9000E+01

Interpolated Point
x y

0.4500E+01 0.8175E+01

Results 5.1: Interpolation by Lagrangian Polynomials

198 Numerical Methods for Engineers

5.2.2 Difference methods

An alternative approach to finding the interpolating polynomials that will
pass exactly through np data points given as (xi, yi), i = 0, 1, 2, . . . , n (where
n = np − 1) starts by writing the interpolating polynomial in the alternative
form (compare equation 5.1),

Qn(x) = C0 + C1(x− x0) + C2(x− x0)(x− x1) + . . .

+Cn(x− x0)(x − x1) . . . (x − xn−2)(x − xn−1) (5.7)

where the constants Ci, i = 0, 1, 2, . . . , n can be determined from the require-
ment that

Qn(xi) = yi for i = 0, 1, 2, . . . , n (5.8)

which leads after some rearrangement to

C0 = y0

C1 =
y1 − C0

(x1 − x0)

C2 =
y2 − C0 − C1(x2 − x0)

(x2 − x0)(x2 − x1)
(5.9)

C3 =
y3 − C0 − C1(x3 − x0) − C2(x3 − x0)(x3 − x1)

(x3 − x0)(x3 − x1)(x3 − x2)
etc.

A pattern is clearly emerging in the form of the Ci expressions, and they
can readily be computed and substituted into equation (5.7). It may also
be noted that unlike the Lagrangian approach, if additional data points are
added to the original list, the resulting higher order polynomial is derived by
the simple addition of more terms to the lower order polynomial already found.

Example 5.2

Here we repeat the example given with Program 5.1. Use the Difference
method to derive a polynomial passing through the points

x0 = 1 y0 = 1
x1 = 3 y1 = 5
x2 = 6 y2 = 10

and then modify the polynomial to account for the additional point

x3 = 5 y3 = 9

Estimate the value of y when x = 4.5 in both cases.

Interpolation and Curve Fitting 199

Solution 5.2

The first part of the question involves three data points, hence the interpo-
lating polynomial will be quadratic (n = 2). First we compute the constants
from equations (5.8)

C0 = 1

C1 =
5 − 1

(3 − 1)
= 2

C2 =
10 − 1 − 2(6 − 1)

(6 − 1)(6 − 3)
= − 1

15

which are then substituted into equation (5.7) to give

Q2(x) = 1 + 2(x− 1) − 1
15

(x− 1)(x− 3)

After simplification

Q2(x) = − 1
15

(x2 − 34x+ 18)

which is the same result found in Example 5.1.
The fourth data point x3 = 5 y3 = 9 will lead to a cubic interpolating

polynomial. The additional constant is given by

C3 =
9 − 1 − 2(5 − 1) + 1

15 (5 − 1)(5 − 3)
(5 − 1)(5 − 3)(5 − 6)

= − 1
15

giving a cubic term from equation (5.7) which is simply added to the second
order polynomial already found, thus

Q3(x) = − 1
15

(x2 − 34x+ 18) − 1
15

(x− 1)(x− 3)(x− 6)

or

Q3(x) = − 1
15

(x3 − 9x2 − 7x)

The cubic is shown in Figure 5.2 and leads to the interpolated value of
y = 8.175 when x = 4.5.

5.2.3 Difference methods with equal intervals

If the data are provided at equally spaced values of x, such that xi−xi−1 =
h, derivation of the coefficients Ci, i = 0, 1, 2, . . . , n from equation (5.7) is
considerably simplified.

200 Numerical Methods for Engineers

Figure 5.2: Cubic interpolation from Example 5.2.

Before proceeding, we introduce a new notation whereby, a “forward differ-
ence” is defined as

Δyi = yi+1 − yi (5.10)

and a “backward difference” as

Δyi = yi − yi−1 (5.11)

Furthermore, we can have “differences of differences”, whereby for example,
the second forward difference could be written as

Δ2yi = Δyi+1 − Δyi (5.12)

and more generally

Δjyi = Δj−1yi+1 − Δj−1yi (5.13)

and so on.

The following development could use either “forward” or “backward” dif-
ferences, but we will use “forward difference” in the remainder of this section.

Interpolation and Curve Fitting 201

Returning to equations (5.9) we can write

C0 = y0

C1 =
y1 − C0

x1 − x0

=
y1 − y0
x1 − x0

=
Δy0
h

C2 =
y2 − y0 − Δy0(x2 − x0)/h

(x2 − x0)(x2 − x1)
(5.14)

=
(y2 − y1) − (y1 − y0)

2h2

=
(Δy1 − Δy0)

2h2

=
Δ(Δy0)

2h2

=
Δ2y0
2h2

etc.

It is easily shown that in general

Cj =
Δjy0
j! hj

(5.15)

TABLE 5.1: Forward Difference Table
x0 y0

Δy0
x1 y1 Δ2y0

Δy1 Δ3y0
x2 y2 Δ2y1 Δ4y0

Δy2 Δ3y1 Δ5y0
x3 y3 Δ2y2 Δ4y1

Δy3 Δ3y2
x4 y4 Δ2y3

Δy4
x5 y5

It is apparent from equations 5.11-5.13 that the Δjy0 terms can be evaluated
recursively. For hand calculation purposes, a tabular layout is useful for this
purpose as shown in Table 5.1 for an example with six data points.

202 Numerical Methods for Engineers

The particular scheme described in Table 5.1 is known as (Newton) For-
ward Differences, and is characterized by subscripts remaining the same along
downward sloping diagonals going from top left to bottom right. Other lay-
outs are possible, such as Backward Differences, and Gaussian methods, but
these will not be discussed here. When substituting values from Table 5.1
into equation (5.15) it should be noted that the “zeroth” difference terms are
the y-values themselves, thus

Δ0y0 = y0 etc. (5.16)

Example 5.3

Given the following data based on the function y = cosx where x is in
degrees

x y

20 0.93969
25 0.90631
30 0.86603
35 0.81915
40 0.76604

use a forward difference scheme to estimate cos 27o.

Solution 5.3

First we arrange the data as a forward difference table, thus

x y Δy Δ2y Δ3y Δ4y

20 0.93969
−0.03338

25 0.90631 −0.00690
−0.04028 0.00030

30 0.86603 −0.00660 0.00007
−0.04688 0.00037

35 0.81915 −0.00623
−0.05311

40 0.76604

Referring to the general equation (5.7) for the interpolating polynomial, x0

can be chosen to be any of the initial values of x. However, if we wish to
include all five data points leading to a fourth order interpolating polynomial
Q4(x), x0 should be set equal to the top value in the table, i.e., x0 = 20.
Noting that the constant interval between x-values is given as h = 5, the
coefficients can be evaluated in tabular form as follows

Interpolation and Curve Fitting 203

j Δjy0 Cj =
Δjy0
j! hj

0 0.93969 0.93969
1 −0.03338 −0.00668
2 −0.00690 −0.00014
3 0.00030 0.00000
4 0.00007 0.00000

Working to five decimal places, the interpolating polynomial from equation
(5.7) can therefore be written as

Q4(x) = 0.93969− 0.00668(x− 20) − 0.00014(x− 20)(x− 25)
+0.00000(x− 20)(x− 25)(x− 30)
+0.00000(x− 20)(x− 25)(x− 30)(x− 35)

and expanded to give

Q4(x) = 1.00329− 0.00038x− 0.00014x2

+negligible higher order terms

which is exactly the same interpolation polynomial we would have obtained to
five decimal places using Lagrangian polynomials. Substitution of the required
value of x = 27 leads to the interpolated value

Q4(27) = 0.89097

which is accurate to four decimal places.

It is clear from the above general expression for Q4(x) that the C3 and C4

terms are contributing very little to the overall solution.

The ability to truncate the interpolating polynomial if the coefficients be-
come sufficiently small is a useful feature of the difference approach. Not only
does it save computational effort, but it also gives physical insight into the
theoretical origins of the data points.

In the Lagrangian approach no such saving is possible and the full nth or-
der polynomial must be derived whether it is needed or not. The Lagrangian
approach does have the advantage of simplicity however, and is relatively easy
to remember for hand calculation if only a few points are provided.

204 Numerical Methods for Engineers

Program 5.2: Interpolation by forward differences

PROGRAM nm52
!---Interpolation by Forward Differences---
IMPLICIT NONE
INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::factorial,i,j,np; REAL(iwp)::h,one=1.0_iwp,term,xi,yi
REAL(iwp),ALLOCATABLE::c(:),diff(:,:),x(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)np; ALLOCATE(c(0:np-1),diff(0:np-1,0:np-1),x(0:np-1))
READ(10,*)(x(i),diff(i,0),i=0,np-1),xi
WRITE(11,’(A/)’)"---Interpolation by Forward Differences---"
WRITE(11,’(A/A)’)" Data Points"," x y"
WRITE(11,’(2E12.4)’)(x(i),diff(i,0),i=0,np-1)
h=x(1)-x(0)
DO i=1,np-1
DO j=0,np-1-i; diff(j,i)=diff(j+1,i-1)-diff(j,i-1); END DO

END DO
c(0)=diff(0,0); yi=c(0); term=one; factorial=one
DO i=1,np-1
factorial=factorial*i; c(i)=diff(0,i)/(factorial*h**i)
term=term*(xi-x(i-1)); yi=yi+term*c(i)

END DO
WRITE(11,’(/A/A)’)" Polynomial Coefficients"," C"
WRITE(11,’(E12.4)’)c
WRITE(11,’(/A/A)’)" Interpolated Point"," x y"
WRITE(11,’(2E12.4)’)xi,yi

END PROGRAM nm52

Number of data points np
4

Data point coordinates (x(i),y(i),i=1,np)
0.0 1.0
1.0 1.0
2.0 15.0
3.0 61.0

Interpolation point xi
2.8

Data 5.2a: Interpolation by Forward Differences (first example)

Interpolation and Curve Fitting 205

List 5.2:

Scalar integers:
i simple counter
j simple counter
np number of input data points (np = n+ 1)

Scalar reals:
h data interval in x-direction
one set to 1.0
term used to form interpolating polynomial
xi x−value at which interpolation is required
yi interpolated value of y

Dynamic real arrays:
c polynomial coefficient values
diff forward difference table values
x input data x-values

---Interpolation by Forward Differences---

Data Points
x y

0.0000E+00 0.1000E+01
0.1000E+01 0.1000E+01
0.2000E+01 0.1500E+02
0.3000E+01 0.6100E+02

Polynomial Coefficients
C

0.1000E+01
0.0000E+00
0.7000E+01
0.3000E+01

Interpolated Point
x y

0.2800E+01 0.4838E+02

Results 5.2a: Interpolation by Forward Differences (first example)

Program 5.2 computes an interpolated value of y for a given value of x
based on np input data points that are equally spaced along the x-axis. The
interpolate is computed using the nth order (where n = np − 1) interpolating
polynomialQn(x) derived from a forward difference table using equation (5.7).

206 Numerical Methods for Engineers

Number of data points np
5

Data point coordinates (x(i),y(i),i=1,np)
0.0 1.0
1.0 1.0
2.0 15.0
3.0 61.0
4.0 100.0

Interpolation point xi
2.8

Data 5.2b: Interpolation by Forward Differences (second example)

---Interpolation by Forward Differences---

Data Points
x y

0.0000E+00 0.1000E+01
0.1000E+01 0.1000E+01
0.2000E+01 0.1500E+02
0.3000E+01 0.6100E+02
0.4000E+01 0.1000E+03

Polynomial Coefficients
C

0.1000E+01
0.0000E+00
0.7000E+01
0.3000E+01
-0.2375E+01

Interpolated Point
x y

0.2800E+01 0.5029E+02

Results 5.2b: Interpolation by Forward Differences (second exam-
ple)

The data for Program 5.2 have a format that is exactly the same as for
Program 5.1. Initially the number of input data points (np) is read followed
by (x, y) values (np times). The last number read is the value of x at which
interpolation is required (xi).

Interpolation and Curve Fitting 207

The example data shown in Data 5.4a have np=4 data points, so the pro-
gram obtains the interpolated value of y using a cubic Q3(x) interpolating
polynomial. The output in Results 5.4a indicates the interpolated value of
y = 48.38 corresponding to x = 2.8. It may be noted that the polynomial
coefficient C1 = 0 in this case.

A second example shown in Data 5.5b adds an additional data point x = 4
and y = 100, so np=5. As shown in Results 5.5b, the resulting fourth order
Q4(x) polynomial involves an additional coefficient C4 = −2.375 but the other
coefficients are unaffected. The interpolated value in this case is y = 50.29.

5.3 Interpolation using cubic spline functions

The interpolating methods described so far in this chapter lead to high
order polynomials, in general of order equal to one less than the number
of data points. In addition to being laborious computationally, these high
order polynomials can lead to undesirable maxima and minima between the
given data points. An alternative approach to interpolation involves fitting
low order polynomials from point to point across the range in a “piece-wise”
manner. The order of the polynomials is up to the user. For example if the
polynomials are chosen to be linear, the data points are simply connected by
straight lines with “corners” at each point where the straight lines join. It
should be noted that the discontinuous nature of linear functions may not be
a problem in engineering applications if there are numerous data points close
together.

The most popular piecewise polynomial method involves cubic functions
fitted between neighboring points, which are able to preserve second derivative
continuity at the joins. Such cubic polynomials are often referred to as “Spline
Functions” because the interpolating function can be visualized as a flexible
elastic beam (or spline), initially straight, deformed in such a way that it
passes through the required points (xi, yi), i = 0, 1, . . . , n.

Figure 5.3 shows how interpolation through four points might be achieved
by the use of three cubic functions f1(x), f2(x) and f3(x). In general, if we
have np points, n cubic spline functions will be required (where n = np − 1),
which can be written in the form

fi(x) = A0i +A1ix+A2ix
2 +A3ix

3, i = 1, 2, . . . , n (5.17)

The 4n unknown coefficients Aji can be determined from the following 4n
conditions:

208 Numerical Methods for Engineers

1. The cubics must meet at all internal points leading to the 2n equations.

fi(xi) = yi, i = 1, 2, . . . , n
fi+1(xi) = yi, i = 0, 1, . . . , n− 1 (5.18)

2. The first derivative must be continuous at all internal points leading to
the n− 1 equations.

f ′
i(xi) = f ′

i+1(xi), i = 1, 2, . . . , n− 1 (5.19)

3. The second derivative must also be continuous at all internal points
leading to further n− 1 equations.

f ′′
i (xi) = f ′′

i+1(xi), i = 1, 2, . . . , n− 1 (5.20)

4. The final two conditions refer to the two ends of the spline, where the
second derivative is set to zero, thus

f ′′
1 (x0) = 0
f ′′

n (xn) = 0 (5.21)

These final boundary conditions preserve the “structural” analogy, and imply
a zero bending moment at the ends of the “beam”.

Although 4n equations in 4n unknowns could be solved to obtain the re-
quired coefficients, conditions 1. and 3. above can be combined to give a
rearranged version of the original cubic function from equation (5.17) as

fi(x) =
f ′′(xi−1)(xi − x)3 + f ′′(xi)(x− xi−1)3

6Δxi−1

+
(
yi−1

Δxi−1
− f ′′(xi−1)Δxi−1

6

)
(xi − x) (5.22)

+
(

yi

Δxi−1
− f ′′(xi)Δxi−1

6

)
(x− xi−1)

where i = 1, 2, . . . , n , xi−1 ≤ x ≤ xi and Δxi−1 = xi − xi−1 which is the
same “forward difference” notation used previously from equation (5.10).

Differentiation of equation (5.22) and imposition of condition 2. above for
continuity of first derivatives leads to

Δxi−1f
′′(xi−1) + 2(Δxi−1 + Δxi)f ′′(xi) + Δxif

′′(xi+1)

= 6
(

Δyi

Δxi
− Δyi−1

Δxi−1

)
(5.23)

where i = 1, 2, . . . , n− 1 and Δyi−1 = yi − yi−1.

Interpolation and Curve Fitting 209

This is now equivalent to a system of n−1 linear equations in the unknown
second derivatives at the internal points as follows

⎡
⎢⎢⎢⎢⎢⎣

2(Δx0 + Δx1) Δx1 0 . . . 0
Δx1 2(Δx1 + Δx2) Δx2 . . . 0

0 Δx2 2(Δx2 + Δx3) . . . 0
...

...
...

...
...

0 0 0 . . . 2(Δxn−2 + Δxn−1)

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ′′(x1)
f ′′(x2)
f ′′(x3)

...
f ′′(xn−1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 6

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δy1/Δx1 − Δy0/Δx0

Δy2/Δx2 − Δy1/Δx1

...
Δyn−1/Δxn−1 − Δyn−2/Δxn−2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.24)

It may be noted that the coefficient matrix is symmetric and tridiagonal,
which influences the chosen solution method (see Chapter 2). Once the sec-
ond derivatives f ′′(xi), i = 1, 2, . . . , n − 1 have been obtained, they can be
combined with the boundary conditions f ′′(x0) = f ′′(xn) = 0, enabling all
the cubic functions from equation (5.22) to be evaluated if required.

To obtain an estimate of y corresponding to a particular value of x, it must
first be determined which cubic function to use by observing the location of x
relative to the original data points, xi, i = 0, 1, . . . , n. Once this is done, the
appropriate values of f ′′(xi) and f ′′(xi−1) can be substituted into equation
(5.22) and the function evaluated at the required point.

Example 5.4

Given the four data points

i xi yi

0 0.0 2.0
1 1.0 1.3
2 1.5 0.4
3 2.3 0.9

use cubic spline functions to estimate y when x = 1.3.

Solution 5.4

In this example there will be three cubic splines spanning the four coordi-
nates. We will assume that the second derivatives at x = 0.0 and x = 2.3
equal zero, hence two second derivatives remain to be found at x = 1.0 and
x = 1.5.

From equation (5.24) we can write for this case[
2(Δx0 + Δx1) Δx1

Δx1 2(Δx1 + Δx2)

]{
f ′′(x1)
f ′′(x2)

}
= 6

{
Δy1/Δx1 − Δy0/Δx0

Δy2/Δx2 − Δy1/Δx1

}

210 Numerical Methods for Engineers

The required forward difference terms can be obtained in tabular form as
follows (compare this with Table 5.1 and Solution 5.3)

x Δx y Δy

0.0 2.0
1.0 −0.7

1.0 1.3
0.5 −0.9

1.5 0.4
0.8 0.5

2.3 0.9

which after substitution lead to the pair of equations[
3.0 0.5
0.5 2.6

]{
f ′′(x1)
f ′′(x2)

}
=
{−6.60

14.55

}

which are easily solved to give{
f ′′(x1)
f ′′(x2)

}
=
{−3.2364

6.2185

}

All second derivatives are now known as f ′′(0) = 0, f ′′(1) = −3.2364,
f ′′(1.5) = 6.2185 and f ′′(2.3) = 0, hence the three cubic functions can be
retrieved from equation (5.22). They are shown plotted in Figure 5.3

Figure 5.3: Cubic splines from Example 5.3.

Interpolation is required at x = 1.3 which lies in the range 1.0 < x < 1.5
covered by cubic spline f2(x). By setting i = 2 this function from equation

Interpolation and Curve Fitting 211

(5.22) is given by

f2(x) =
f ′′(x1)(x2 − x)3 + f ′′(x2)(x− x1)3

6Δx1

+
(
y1

Δx1
− f ′′(x1)Δx1

6

)
(x2 − x)

+
(
y2

Δx1
− f ′′(x2)Δx1

6

)
(x− x1)

hence

f2(x) =
−3.2364(1.5− x)3 + 6.2185(x− 1.0)3

6(0.5)

+
(

1.3
0.5

− −3.2364(0.5)
6

)
(1.5 − x)

+
(

0.4
0.5

− 6.2185(0.5)
6

)
(x− 1.0)

= 3.1517x3 − 11.0732x2 + 10.9126x− 1.6911

and

f2(1.3) = 0.7058

Program 5.3: Interpolation by cubic spline functions

PROGRAM nm53
!---Interpolation by Cubic Spline Functions---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,np; REAL(iwp)::d6=6.0_iwp,xi,yi,two=2.0_iwp, &
zero=0.0_iwp

REAL(iwp),ALLOCATABLE::diffx(:),diffy(:),kv(:),rhs(:),x(:),y(:)
INTEGER,ALLOCATABLE::kdiag(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)np
ALLOCATE(diffx(0:np-2),diffy(0:np-2),kdiag(np-2), &
kv(2*(np-2)-1),rhs(0:np-1),x(0:np-1),y(0:np-1))

READ(10,*)(x(i),y(i),i=0,np-1),xi
WRITE(11,’(A/)’)"---Interpolation by Cubic Spline Functions---"
WRITE(11,’(A/A)’)" Data Points"," x y"
WRITE(11,’(2E12.4)’)(x(i),y(i),i=0,np-1)
DO i=0,np-2
diffx(i)=x(i+1)-x(i); diffy(i)=y(i+1)-y(i)

END DO
rhs=zero

212 Numerical Methods for Engineers

DO i=1,np-2
kdiag(i)=2*i-1; kv(kdiag(i))=two*(diffx(i-1)+diffx(i))
rhs(i)=d6*(diffy(i)/diffx(i)-diffy(i-1)/diffx(i-1))

END DO
DO i=1,np-3; kv(2*i)=diffx(i); END DO
CALL sparin(kv,kdiag); CALL spabac(kv,rhs,kdiag)
WRITE(11,’(/A/A)’)" Interpolated Point"," x y"
DO i=1,np-1
IF(xi<x(i))THEN; yi=(rhs(i-1)*(x(i)-xi)**3+ &
rhs(i)*(xi-x(i-1))**3)/(d6*diffx(i-1))+ &
(y(i-1)/diffx(i-1)-rhs(i-1)*diffx(i-1)/d6)*(x(i)-xi)+ &
(y(i)/diffx(i-1)-rhs(i)*diffx(i-1)/d6)*(xi-x(i-1))
EXIT

END IF
END DO
WRITE(11,’(2E12.4)’)xi,yi

END PROGRAM nm53

List 5.3:

Scalar integers:
i simple counter
np number of input data points (np = n+ 1)

Scalar reals:
d6 set to 6.0
xi x−value at which interpolation is required
yi interpolated value of y
two set to 2.0
zero set to 0.0

Dynamic real arrays:
diffx forward difference table values in x
diffy forward difference table values in y
kv holds equation coefficients in skyline form
rhs holds right hand side and solution vector
x input data x-values
y input data y-values

Dynamic integer arrays:
kdiag diagonal term location vector

Interpolation and Curve Fitting 213

Number of data points np
5

Data point coordinates (x(i),y(i),i=1,np
0.0 0.0000E+00
2.5 -0.4538E-02
5.0 -0.5000E-02
8.0 0.0000E+00

10.0 0.4352E-02

Interpolation point xi
6.5

Data 5.3: Interpolation by Cubic Spline Functions

---Interpolation by Cubic Spline Functions---

Data Points
x y

0.0000E+00 0.0000E+00
0.2500E+01 -0.4538E-02
0.5000E+01 -0.5000E-02
0.8000E+01 0.0000E+00
0.1000E+02 0.4352E-02

Interpolated Point
x y

0.6500E+01 -0.2994E-02

Results 5.3: Interpolation by Cubic Spline Functions

Program 5.3 computes an interpolated value of y for a given value of x based
on cubic spline interpolation between the input data points. The input data
do not have to be equally spaced along the x-axis, but must be presented in
ascending values of x. The interpolate is computed using the particular spline
function that spans the range within which the required interpolated value lies.
The program includes two SUBROUTINES from the nm_lib library called sparin
and spabac, which perform factorization and forward/back-substitution on
symmetric coefficient matrices stored in skyline form (see Chapter 2). The
data for Program 5.3 has a format that is exactly the same as for Programs
5.1 and 5.2. Initially the number of input data points (np) is read followed
by (x, y) values (np times). The last number read is the value of x at which
interpolation is required (xi).

The example data shown in Data 5.7 have np=5 data points, so the program
will compute three internal second derivatives, enabling four cubic splines

214 Numerical Methods for Engineers

to be derived between each pair of adjacent points. The output in Results
5.7 indicates an interpolated value of y = −2.994 × 10−3 corresponding to
x = 6.5. It may be noted that the fourth order interpolating polynomial given
by Program 5.1 for this input data leads to the slightly different interpolated
value of y = −3.078× 10−3.

Users wishing to generate a plot such as the one in Figure 5.3 showing the
whole interpolating function can do so by adding an additional DO-loop to the
main program in which x is increased incrementally across the full range of
input data (see Chapter 1 for advice on creating x− y plots).

5.4 Numerical differentiation

Numerical differentiation involves estimating derivatives from a set of dis-
crete data points that might be produced from laboratory measurements, or
from some other numerical computations.

It should be realized that numerical differentiation can be an unreliable
process which is highly sensitive to small fluctuations in data. This is in
contrast to numerical integration covered in the next chapter, which is an
inherently accurate process.

As an example, consider the case of a particle moving with uniform acceler-
ation. Under experimental conditions, the velocity is measured as a function
of time at discrete intervals. The results of these readings are plotted in Figure
5.4a. The response is essentially a straight line, but due to inevitable small
fluctuations in the readings the line is ragged. If these data are differentiated
to give accelerations, it is clear that the small ripples will have a dramatic
effect on the calculated derivative as shown in Figure 5.4b. The ripples have
virtually no influence on the displacement plot however, which is obtained by
integration of the velocity data as shown in Figure 5.4c.

Although numerical differentiation of discrete data is vulnerable to fluctu-
ations, especially from measured data, with “well behaved” data the process
can lead to reasonable estimates of derivatives.

Numerical differentiation of discrete data essentially involves finding the
interpolating polynomial Qn(x), as discussed in Section 5.2 and differentiating
it as required. The number of points (nd) used in the differentiation formula
and hence the order of the interpolating polynomial n (where n = nd − 1) is
up to the user. Bearing in mind that we are generally interested in first and
second derivatives in engineering analysis, low order polynomials (e.g., n ≤ 4)
are usually preferred.

The notation used throughout this section is that x0 will be the location at
which the derivative y′0, y′′0 , etc. is to be estimated. It will also be assumed
that the x-values of the discrete data are equally spaced as in xi+1 − xi = h.

Interpolation and Curve Fitting 215

Figure 5.4a: Measured data of velocity vs. time.

5.4.1 Interpolating polynomial method

Consider three data points (x0, y0), (x1, y1) and (x2, y2), which may be a
subset of a much longer list, from which we wish to estimate y′0 and y′′0 . First
we use either the Lagrangian or the Difference method to derive the Q2(x)
interpolating polynomial. Let us use the Difference Method from Section 5.2.3
hence

Q2(x) = C0 + C1(x− x0) + C2(x− x0)(x− x1) (5.25)

where

C0 = y0

C1 =
y1 − y0
h

(5.26)

C2 =
y2 − 2y1 + y0

2h2

Differentiation of (5.25) gives

Q′
2(x) = C1 + C2(2x− (x0 + x1)) (5.27)

and
Q′′

2(x) = 2C2 (5.28)

216 Numerical Methods for Engineers

Figure 5.4b: Acceleration vs. time following numerical differentiation.

Substitution of the coefficients from equation (5.26) and letting x = x0

leads to
Q′

2(x0) = y′0 =
1
2h

(−3y0 + 4y1 − y2) (5.29)

and
Q′′

2(x0) = y′′0 =
1
h2

(y0 − 2y1 + y2) (5.30)

Equations (5.29) and (5.30) are our first examples of “Numerical Differen-
tiation Formulas”. Equation (5.29) is a “Three-point, forward difference, first
derivative formula”, and Equation (5.30) is a “Three-point, forward difference,
second derivative formula”.

The term “forward” in this context means that the y-values in the formula
are all to the right (in the positive x-direction) of the point at which the
derivative is required. Two other types of formula are available. Central
difference formulas take equal account of points both to the right and left of the
point at which the derivative is required, and backward difference formulas,
which are the mirror image of forward difference formulas, look only to the
left (in the negative x-direction). Figure 5.5 summarizes the different types
of formulas.

There are many different types of numerical differentiation formulas de-
pending on the following three descriptors:

• The number of points included in the formula (nd).

• The “direction” of the formula (forward, central or backward).

Interpolation and Curve Fitting 217

Figure 5.4c: Displacement vs. time following numerical integration.

• The required derivative (first, second, etc.).

If we wanted to estimate derivatives in the middle of the three points giv-
en in our original example, we would redefine our subscripts as (x−1, y−1),
(x0, y0) and (x1, y1) to ensure that a zero subscript corresponded to the place
where derivatives are required. In this case, equations (5.25-5.30) become

Q2(x) = C0 + C1(x− x−1) + C2(x− x−1)(x− x0) (5.31)

where

C0 = y−1

C1 =
y0 − y−1

h
(5.32)

C2 =
y1 − 2y0 + y−1

2h2

Differentiation of (5.31) gives

Q′
2(x) = C1 + C2(2x− (x−1 + x0)) (5.33)

and
Q′′

2(x) = 2C2 (5.34)

218 Numerical Methods for Engineers

Figure 5.5: Forward, central and backward difference formulas.

Substitution of the coefficients from equation (5.32) and letting x = x0

leads to

Q′
2(x0) = y′0 =

1
2h

(−y−1 + y1) (5.35)

Interpolation and Curve Fitting 219

and
Q′′

2(x0) = y′′0 =
1
h2

(y−1 − 2y0 + y1) (5.36)

Equations (5.35) and (5.36) are examples of “Three-point, central difference,
first and second derivative formulas” respectively.

It should be noted that equations (5.30) and (5.36) are identical, since the
second derivative derived from three points is constant. Further differentiation
ofQ2(x) from equations (5.25) and (5.31) would be pointless, because the third
and higher derivatives equal zero. In general, if we include nd data points, the
interpolating polynomial will be of order n = nd − 1, and the nth derivative
will be the highest that can be deduced. If for example we wanted to derive
a third derivative formula, at least four points would be required.

5.4.2 Taylor series method

The previous section showed how the interpolating polynomial could be
used to derive differentiation formulas. While this method was quite straight-
forward, it gave us no indication of the accuracy of the resulting formula.
This can be overcome by the use of the Taylor series which offers a general
approach for deriving numerical differentiation formulas and their dominant
error terms.

Given a general function f(x) passing through the point (x0, y0), the Taylor
series can be used to estimate the value of f(x) at a neighboring point x0 + ih
(i is a positive or negative integer) as follows

f(x0 + ih) ≈ f(x0) + (ih) f ′(x0) +
(ih)2

2!
f ′′(x0) +

(ih)3

3!
f ′′′(x0) + . . . (5.37)

Using the notation that y0 = f(x0), yi = f(x0 + ih), y′0 = f ′(x0), and so
on, the Taylor expansion from equation (5.37) can be written in the shortened
form as

yi ≈ y0 + (ih) y′0 +
(ih)2

2!
y′′0 +

(ih)3

3!
y′′′0 + . . . (5.38)

The derivation of a particular numerical differentiation formula now pro-
ceeds by using the Taylor series from equation (5.38) to generate estimates of
the yi-values required by the formula. Following this, derivative terms that are
not needed are eliminated while the required derivative is made the subject
of the formula. A summary of forward, central and backward differentiation
formulas, together with the dominant error terms derived by this method, is
given in Tables 5.5, 5.6 and 5.7 respectively.

Example 5.5

Use the Taylor series method to derive the three point, backward difference,
first and second derivative formulas, and their dominant error terms.

220 Numerical Methods for Engineers

TABLE 5.2: Forward Difference Derivative Formulas
nd C w0 w1 w2 w3 w4 E

2
1
h

-1 1 −1
2
hy′′

3
1
2h

-3 4 -1
1
3
h2y′′′

y′0
4

1
6h

-11 18 -9 2 −1
4
h3yiv

5
1

12h
-25 48 -36 16 -3

1
5
h4yv

3
1
h2

1 -2 1 −hy′′′

y′′0 4
1
h2

2 -5 4 -1
11
12
h2yiv

5
1

12h2
35 -104 114 -56 11 −5

6
h3yv

4
1
h3

-1 3 -3 1 −3
2
hyiv

y′′′0

5
1

2h3
-5 18 -24 14 -3

7
4
h2yv

yiv
0 5

1
h4

1 -4 6 -4 1 −2hyv

y(k) = C

nd−1∑
i=0

wiyi + E

Solution 5.5

We will assume the data have a uniform spacing of h in the x-direction, so
in this case we are looking for formulas of the form:

y′0 ≈ f1(h, y−2, y−1, y0)

and
y′′0 ≈ f2(h, y−2, y−1, y0)

Interpolation and Curve Fitting 221

TABLE 5.3: Central Difference Derivative Formulas
nd C w−3 w−2 w−1 w0 w1 w2 w3 E

3
1
2h

-1 0 1 −1
6
h2y′′′

y′0 5
1

12h
1 -8 0 8 -1

1
30
h4yv

7
1

60h
-1 9 -45 0 45 -9 1 − 1

140
h6yvii

3
1
h2

1 -2 1 − 1
12
h2yiv

y′′0 5
1

12h2
-1 16 -30 16 -1

1
90
h4yvi

7
1

180h2
2 -27 270 -490 270 -27 2 − 1

560
h6yviii

5
1

2h3
-1 2 0 -2 1 −1

4
h2yv

y′′′0

7
1

8h3
1 -8 13 0 -13 8 -1

7
120

h4yvii

5
1
h4

1 -4 6 -4 1 −1
6
h2yvi

yiv
0

7
1

6h4
-1 12 -39 56 -39 12 -1

7
240

h4yviii

y(k) = C

m∑
i=−m

wiyi + E where m =
nd − 1

2

First we expand the Taylor series about y0 to estimate y−1 and y−2, noting
that in a backward difference formula the shift is negative (e.g., −h and −2h),
thus

y−1 = y0 − h y′0 +
h2

2!
y′′0 − h3

3!
y′′′0 . . . (i)

y−2 = y0 − 2h y′0 +
4h2

2!
y′′0 − 8h3

3!
y′′′0 . . . (ii)

222 Numerical Methods for Engineers

TABLE 5.4: Backward Difference Derivative Formulas
nd C w−4 w−3 w−2 w−1 w0 E

2
1
h

-1 1
1
2
hy′′

3
1
2h

1 -4 3
1
3
h2y′′′

y′0
4

1
6h

-2 9 -18 11
1
4
h3yiv

5
1

12h
3 -16 36 -48 25

1
5
h4yv

3
1
h2

1 -2 1 hy′′′

y′′0 4
1
h2

-1 4 -5 2
11
12
h2yiv

5
1

12h2
11 -56 114 -104 35

5
6
h3yv

4
1
h3

-1 3 -3 1
3
2
hyiv

y′′′0

5
1

2h3
3 -14 24 -18 5

7
4
h2yv

yiv
0 5

1
h4

1 -4 6 -4 1 2hyv

y(k) = C

0∑
i=−(nd−1)

wiyi + E

To obtain the three point, backward difference, first derivative formula we
will eliminate y′′0 from the above two equations by multiplying equation (i)
by four and subtracting equation (ii) from equation (i), thus

4y−1 − y−2 = 3y0 − 2h y′0 +
2h3

3
y′′′0

Interpolation and Curve Fitting 223

which after rearrangement becomes

y′0 =
1
2h

(y−2 − 4y−1 + 3y0) +
1
3
h2y′′′0

Similarly, to obtain the three point, backward difference, second derivative
formula we will eliminate y′0 from the above two equations by multiplying
equation (i) by two and subtracting equation (ii) from equation (i), thus

2y−1 − y−2 = y0 − h2 y′′0 + h3 y′′′0

which after rearrangement becomes

y′′0 =
1
h2

(y−2 − 2y−1 + y0) + hy′′′0

The dominant error terms do not give the absolute error, but are useful
for comparing the errors generated by different formulas. The dominant er-
ror terms for these first and second derivative formulas are 1

3h
2y′′′0 and hy′′′0

respectively. The presence of a third derivative in both these error terms in-
dicates that the methods are of similar order of accuracy, thus both formulas
would be exact if the third derivative disappeared. This would happen, for
example, if the data were derived from a second order (or lower) polynomial.
The coefficients of 1

3h
2 and h from the two formulas indicate that for “small”

h, the first derivative formula is the more accurate.

Example 5.6

Use the Taylor series method to derive the five-point, central difference,
first derivative formula and its dominant error term.

Solution 5.6

We will assume the data have a uniform spacing of h in the x-direction, so
in this case we are looking for a formula of the form,

y′0 ≈ f(h, y−2, y−1, y0, y1, y2)

In this case we expand the Taylor series about y0 to estimate y−2, y−1,y1
and y2, thus

y−2 = y0 − 2h y′0 +
4h2

2!
y′′0 − 8h3

3!
y′′′0 +

16h4

4!
yiv
0 − 32h5

5!
yv
0 . . . (i)

y−1 = y0 − h y′0 +
h2

2!
y′′0 − h3

3!
yiii
0 +

h4

4!
yiv
0 − h5

5!
yv
0 . . . (ii)

y1 = y0 + h y′0 +
h2

2!
y′′0 +

h3

3!
yiii
0 +

h4

4!
yiv
0 +

h5

5!
yv
0 . . . (iii)

y2 = y0 + 2h y′0 +
4h2

2!
y′′0 +

8h3

3!
y′′′0 +

16h4

4!
yiv
0 +

32h5

5!
yv
0 . . . (iv)

224 Numerical Methods for Engineers

To obtain the five point, central difference, first derivative formula we need
to eliminate y′′0 , y′′′0 and yiv

0 from the above four equations and make y′0 the
subject. This can be achieved by multiplying equations by constants and
subtracting them from each other, in a similar way to that used in the previous
example. It is left to the reader to show that the elimination of terms in this
case leads to

y′0 =
1

12h
(y−2 − 8y−1 + 8y1 − y2) +

1
30
h4yv

Note that this is still a “five-point” formula although the coefficient of the
y0 term in this case happens to equal zero.

Example 5.7

The following data rounded to four decimal places were taken from the
function y = sinx with x expressed in radians.

x y

0.4 0.3894
0.6 0.5646
0.8 0.7174
1.0 0.8415
1.2 0.9320

Use forward differences to estimate y′(0.4) and y′′(0.4), central differences
to estimate y′(0.8) and backward differences to estimate y′(1.2).

Solution 5.7

The data are equally spaced in x with the constant interval given by h = 0.2.
In order to estimate y′(0.4) we have a choice of formulas, depending on how
many points we wish to include. As an example, from Table 5.2, the four-point
(nd = 4) forward difference formula for y′(0.4) gives the following expression

y′(0.4) ≈ 1
6(0.2)

(−11(0.3894) + 18(0.5646)− 9(0.7174) + 2(0.8415)) = 0.9215

The exact solution is given by cos(0.4) = 0.9211, hence the relative error in
this case is

Erel =
0.9215− 0.9211

0.9211
× 100 = 0.04%

Similarly, the four-point (nd = 4) forward difference formula for y′′(0.4)
gives

y′′(0.4) ≈ 1
0.22

(2(0.3894)− 5(0.5646) + 4(0.7174)− 1(0.8415)) = −0.4025

Interpolation and Curve Fitting 225

To illustrate the influence of the number of points included in the formulas of
Tables 5.2–5.4, results are presented in tabular form for the cases considered,
together with the relative errors.

Forward differences for y′(0.4) (Exact: 0.9211)

nd y′(0.4) Erel%

2 0.8760 −4.90
3 0.9320 1.18
4 0.9215 0.04
5 0.9198 −0.15

Forward differences for y′′(0.4) (Exact: −0.3894)

nd y′′(0.4) Erel%

3 −0.5600 43.80
4 −0.4025 3.36
5 −0.3704 −4.88

Central differences for y′(0.8) (Exact: 0.6967)

nd y′(0.8) Erel%

3 0.6923 −0.64
5 0.6969 0.03

Backward differences for y′(1.2) (Exact: 0.3624)

nd y′′(1.2) Erel%

2 0.4525 24.88
3 0.3685 1.70
4 0.3603 −0.56
5 0.3621 −0.08

In the forward difference calculation of y′(0.4), the greatest accuracy was
apparently obtained with the four-point formula. The larger error recorded in
the “more accurate” five-point formula occurred as a result of the tabulated
data having been rounded after four decimal places.

The three-point forward difference result of −0.5600 for y′′(0.4) was very
poor with a relative error of nearly 49%. This is because three-point formulas
predict a constant value for the second derivative over the range under con-
sideration (in this case 0.4 < x < 0.8). With the second derivative varying
quite rapidly over this range (−0.3894 > y′′(x) > −0.7174) the three-point
formula would only be able to give a reasonable result at x = 0.6 where
y′′(0.6) = −0.5646.

226 Numerical Methods for Engineers

The error terms in Tables 5.2–5.4 show that for a given number of data
points, the central difference formulas are always the most accurate. This is
confirmed by the small relative errors computed in this example.

The relative error recorded in the two-point backward difference calcula-
tion of y′(1.2) was very significant at nearly 25 per cent. This was due to a
relatively large value of the second derivative in the vicinity of the required
solution. As shown in Table 5.4, the dominant error term for this formula is
given by

E =
1
2
hy′′ = −1

2
(0.2) sin(1.2) = −0.093

which approximately equals the difference between the exact (0.3624) and
computed (0.4525) values.

5.5 Curve fitting

If we are seeking a function to follow a large number of data points that
might be measured in an experiment or generated by a computer program, it is
often more practical to seek a function which represents a “best fit” to the data
rather than one which passes through all points exactly. Various strategies
are possible for minimizing the error between the individual data points and
the approximating function. One of the best known is the Method of Least
Squares which gives the user the ability to choose the functions to be used in
the curve fitting exercise. The method is also known as “linear regression” or
“multiple linear regression” in the case of two or more independent variables.

5.5.1 Least squares

Consider np data points (x̃1, y1), (x̃2, y2), . . . , (x̃np , ynp), where x̃ represents
the independent variables [x1, x2, . . . , xnv]T and y represents the dependent
variable. The number of independent variables, nv, can take any desired value,
although in conventional linear regression it would be set to 1.

The required “best fit” function can be written in the form

F (x̃) = C1f1(x̃) + C2f2(x̃) + . . .+ Ckfk(x̃) (5.39)

where fj(x̃), j = 1, 2, . . . , k are chosen functions of x̃ and the Cj , j = 1, 2, . . . , k
are constants that will be optimized by the least squares process. The term
“linear” in linear regression refers only on the model’s dependence in equation
(5.39) on the Cj constants. The fj(x̃) functions, which are under the user’s
control, can be nonlinear if required.

The goal is to make F (x̃) as close as possible to y, so consider the sum of
the squares of the differences between these quantities at each of the np data

Interpolation and Curve Fitting 227

points as follows

E =
np∑
i=1

{
[F (x̃i) − yi]

2
}

=
np∑
i=1

{
[C1f1(x̃i) + C2f2(x̃i) + . . .+ Ckfk(x̃i) − yi]

2
}

(5.40)
The error term given by equation (5.40) can be minimized by partial differ-
entiation of E with respect to each of the constants Cj in turn and equating
the result to zero, thus

∂E

∂C1
= 2

np∑
i=1

{[C1f1(x̃i) + C2f2(x̃i) + . . .+ Ckfk(x̃i) − yi] f1(x̃i)} = 0

∂E

∂C2
= 2

np∑
i=1

{[C1f1(x̃i) + C2f2(x̃i) + . . .+ Ckfk(x̃i) − yi] f2(x̃i)} = 0

... (5.41)

∂E

∂Ck
= 2

np∑
i=1

{[C1f1(x̃i) + C2f2(x̃i) + . . .+ Ckfk(x̃i) − yi] fk(x̃i)} = 0

This symmetric system of k linear simultaneous equations can be written in
matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

np∑
i=1

{f1(x̃i)f1(x̃i)}
np∑
i=1

{f1(x̃i)f2(x̃i)} . . .

np∑
i=1

{f1(x̃i)fk(x̃i)}

np∑
i=1

{f2(x̃i)f1(x̃i)}
np∑
i=1

{f2(x̃i)f2(x̃i)} . . .

np∑
i=1

{f2(x̃i)fk(x̃i)}

...
...

...
...

np∑
i=1

{fk(x̃i)f1(x̃i)}
np∑
i=1

{fk(x̃i)f2(x̃i)} . . .

np∑
i=1

{fk(x̃i)fk(x̃i)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1

C2

...

Ck

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

np∑
i=1

{f1(x̃i)yi}

np∑
i=1

{f2(x̃i)yi}

...

np∑
i=1

{fk(x̃i)yi}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.42)

228 Numerical Methods for Engineers

and solved for C1, C2, . . . , Ck using an appropriate method from Chapter 2.
Finally, the optimized Cj constants are substituted back into the curve fitting
equation (5.39) which can then be used as required for further interpolation.

Example 5.8

Use the Least Squares method to derive the best fit straight line to the np

data points given by (x1, y1), (x2, y2), . . . , (xnp , ynp).

Solution 5.8

This example has just one independent variable x, thus nv = 1. Further-
more, if a linear equation is to be fitted to the data, the following function
involving two unknown constants (k = 2) could be used where

F (x) = C1f1(x) + C2f2(x)
= C1 + C2x

where f1(x) = 1 and f2(x) = x.

From the matrix equation (5.41) we have

⎡
⎢⎢⎢⎢⎢⎢⎣

np

np∑
i=1

xi

np∑
i=1

xi

np∑
i=1

{
x2

i

}

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1

C2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

np∑
i=1

yi

np∑
i=1

{xiyi}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

which can be solved to give

C1 =

n∑
i=1

yi − C2

n∑
i=1

xi

n

C2 =

n

n∑
i=1

{xiyi} −
n∑

i=1

xi

n∑
i=1

yi

n
n∑

i=1

{
x2

i

}−
(

n∑
i=1

xi

)2

After substitution of C1 and C2 into the above expression for F (x), the
classical linear regression equation is obtained.

Interpolation and Curve Fitting 229

It may be noted that the correlation coefficient for the data is given as

r =

n

n∑
i=1

{xiyi} −
n∑

i=1

xi

n∑
i=1

yi

⎧⎨
⎩
⎡
⎣n n∑

i=1

{
x2

i

}−
(

n∑
i=1

xi

)2
⎤
⎦
⎡
⎣n n∑

i=1

{
y2

i

}−
(

n∑
i=1

yi

)2
⎤
⎦
⎫⎬
⎭

1
2

The Coefficient of Determination is given by r2 and is a measure of the
degree of linear dependence of the data.

5.5.2 Linearization of data

In order to use the least squares method, the proposed curve fitting func-
tion must be in the“linear” standard form of equation (5.39). Some quite
commonly encountered curve fitting functions useful in engineering analysis
are not initially in this form, but can be transformed into the standard form
by a simple change of variable.

Consider for example attempting to fit a “power law” function of the form

y = AxB (5.43)

to some data. The function given by equation (5.43) is not in the standard
form of equation (5.39) because the constant B appears as an exponent, and
is not a simple multiplying coefficient. By taking logs of both sides of the
equation we get

ln y = ln(AxB)
= lnA+B lnx (5.44)

Now if we make the substitutions X = lnx and Y = ln y we have

Y = lnA+BX (5.45)

or in standard form as
F (X) = C1 + C2X (5.46)

where C1 = lnA and C2 = B. The change of variables has delivered a linear
relationship between lnx and ln y in the standard form. The least squares
method will now lead to optimized coefficients C1 and C2 with the original
constants retrieved from A = eC1 and B = C2.

The process just described is called “linearization”, and can be applied to a
number of functions that do not initially fit the standard form. In some cases
linearization can be achieved by transforming just one of the variables. A
summary of some transformations that lead to linearization is given in Table
5.5. In some cases it may be noted that more than one transformation is
possible.

230 Numerical Methods for Engineers

TABLE 5.5: Examples of transformations leading to linearization
Function Linearized form Variables Constants
y = f(x) Y = C1 + C2X (X,Y) (C1, C2)

y =
A

x+B
y =

A

B
− 1
B
xy X = xy C1 =

A

B

Y = y C2 = − 1
B

y =
A

x+B

1
y

=
B

A
+

1
A
x X = x C1 =

B

A

Y =
1
y

C2 =
1
A

y =
1

Ax+B

1
y

= B +Ax X = x C1 = B

Y =
1
y

C2 = A

y =
x

Ax+B

1
y

= A+B
1
x

X =
1
x

C1 = A

Y =
1
y

C2 = B

y = AeBx ln y = lnA+Bx X = x C1 = lnA
Y = ln y C2 = B

y = AxB ln y = lnA+B lnx X = lnx C1 = lnA
Y = ln y C2 = B

y =
1

(Ax +B)2
1√
y

= B +Ax X = x C1 = B

Y =
1√
y

C2 = A

y = Axe−Bx ln
y

x
= lnA−Bx X = x C1 = lnA

Y =
y

x
C2 = −B

y =
L

1 +AeBx
ln
(
L

y
− 1

)
= X = x C1 = lnA

L = constant lnA+Bx Y = ln
(
L

y
− 1

)
C2 = B

Interpolation and Curve Fitting 231

Example 5.9

A damped oscillator has a natural frequency of ω = 91.7 s−1. During free
vibration, measurements indicate that the amplitude (y) decays with time (t)
as follows:

t (s) y (m)

0.00 0.05
0.07 0.0139
0.14 0.0038
0.21 0.0011

A curve fit of the form:
f(t) = yoe

−ζωt

has been suggested. Use a Least Squares approach to find this function, and
hence estimate the fraction of critical damping ζ.

Solution 5.9

This exponentially decaying curve fitting function is not in standard form
so it needs to be transformed. The initial equation is given by

y = yoe
−91.7ζt

which with reference to Table 5.5 can be written in the linearized form

ln y = ln y0 − 91.7ζt

and hence
Y = C1 + C2X

where Y = ln y, X = t, C1 = ln y0 and C2 = −91.7ζ. With reference to
equation (5.39), the functions that will be used to develop the simultaneous
equations are f1(X) = 1 and f2(X) = X .

For hand calculation a tabular approach is recommended, thus

X = t Y = ln y f1 f2 f1f1 f1f2 f2f2 f1Y f2Y

0.00 −2.9957 1 0.00 1 0.00 0.0000 −2.9957 0.0000
0.07 −4.2759 1 0.07 1 0.07 0.0049 −4.2759 −0.2993
0.14 −5.5728 1 0.14 1 0.14 0.0196 −5.5728 −0.7802
0.21 −6.8124 1 0.21 1 0.21 0.0441 −6.8124 −1.4306∑

4 0.42 0.0686 −19.6568 −2.5101

From equation (5.42),[
4 0.42

0.42 0.0686

]{
C1

C2

}
=
{−19.6568

−2.5101

}

232 Numerical Methods for Engineers

leading to solutions {
C1

C2

}
=
{ −3.002
−18.210

}

Since C2 = −18.210 it follows that ζ =
−18.210
−91.7

= 0.20.

Program 5.4: Curve fitting by least squares

PROGRAM nm54
!---Curve Fitting by Least Squares---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,ic,j,k,nc,np,nv; INTEGER,ALLOCATABLE::kdiag(:)
REAL(iwp)::es,my,r2,sd,yi,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::c(:),f(:),kv(:),x(:,:),y(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)np,nv,nc
ALLOCATE(kdiag(nc),kv(nc*(nc+1)/2),f(nc),c(nc),x(np,nv),y(np))
READ(10,*)(x(i,:),y(i),i=1,np)
WRITE(11,’(A)’)"---Curve Fitting by Least Squares---"
c=zero; kv=zero; my=SUM(y)/np
DO i=1,np
CALL f54(x(i,:),f); ic=0
DO j=1,nc
c(j)=c(j)+f(j)*y(i)
DO k=1,j; ic=ic+1; kv(ic)=kv(ic)+f(j)*f(k); END DO

END DO
END DO
DO i=1,nc; kdiag(i)=i*(i+1)/2; END DO
CALL sparin(kv,kdiag); CALL spabac(kv,c,kdiag)
WRITE(11,’(/A,/,5E12.4)’)" Optimized Function Coefficients",c
WRITE(11,’(/A)’)" Data points and fitted point"
WRITE(11,’(A,I1,A)’)" (x(i),i=1,",nv,"), y, yi"
sd=zero; es=zero
DO i=1,np; CALL f54(x(i,:),f); yi=DOT_PRODUCT(c,f)
sd=sd+(y(i)-my)**2; es=es+(y(i)-yi)**2
WRITE(11,’(5E12.4)’)x(i,:),y(i),yi
END DO
r2=(sd-es)/sd
WRITE(11,’(/A,/,E12.4)’)" r-squared",r2
CONTAINS

SUBROUTINE f54(x,f)
IMPLICIT NONE

Interpolation and Curve Fitting 233

REAL(iwp),INTENT(IN)::x(:)
REAL(iwp),INTENT(OUT)::f(:)
f(1)=1.0_iwp
f(2)=LOG(x(1))

! f(2)=x(1)
! f(3)=x(2)
RETURN
END SUBROUTINE f54

END PROGRAM nm54

Number of data points, np nv nc
independent variables 5 1 2
and functions (constants)

Data points (x(i,:),y(i),i=1,np)
29. 1.6
50. 23.5
74. 38.0

103. 46.4
118. 48.9

Data 5.4a: Curve Fitting by Least Squares (first example)

---Curve Fitting by Least Squares---

Optimized Function Coefficients
-0.1111E+03 0.3402E+02

Data Points and Fitted Point
(x(i),i=1,1), y, yi
0.2900E+02 0.1600E+01 0.3428E+01
0.5000E+02 0.2350E+02 0.2196E+02
0.7400E+02 0.3800E+02 0.3530E+02
0.1030E+03 0.4640E+02 0.4655E+02
0.1180E+03 0.4890E+02 0.5117E+02

r-squared
0.9881E+00

Results 5.4a: Curve Fitting by Least Squares (first example)

Program 5.4 performs multiple linear regression based on input involving
several independent variable. The program includes two SUBROUTINES from
the nm_lib library called sparin and spabac, which perform factorization

234 Numerical Methods for Engineers

List 5.4:

Scalar integers:
i simple counter
ic simple counter
j simple counter
k simple counter
nc number of constants in curve fitting function
np number of input data points
nv number of independent variables

Scalar reals:
es running total of the squared error
my mean of the initial y-values
r2 the coefficient of determination, r2
sd running total of the squared deviation from the mean
yi interpolated value of y
zero set to 0.0

Dynamic integer arrays:
kdiag diagonal term location vector

Dynamic real arrays:
c coefficients to be found by least squares
f function values
kv holds equation coefficients in skyline form
x input data x-values
y input data y-values

and forward/back-substitution on the symmetric system of equations created
by equation (5.42). There is a SUBROUTINE called f54 at the end of the main
program which evaluates the values of the user supplied functions fj(x̃), j =
1, 2, . . . , k at each of the input data points. The functions required for the
curve fitting must be input by the user into f54 and will vary from one problem
to the next.

The data start with np the number of data points, nv the number of inde-
pendent variables and nc the number of constants to be evaluated. This is
followed by the np data values, which each consist of nv values of x and one
value of y.

In the first example, a function of the form

F (x) = C1 + C2 lnx

is to be fitted to data given by

Interpolation and Curve Fitting 235

x y

29.0 1.6
50.0 23.5
74.0 38.0

103.0 46.4
118.0 48.9

The data shown in Data 5.4a indicate that five (np=5) data points are read,
involving just one (nv=1) independent variable. The curve fitting function
F (x) consists of two coefficients so nc=2 with the functions programmed into
SUBROUTINE f54 as

f(1)=1.0_iwp
f(2)=LOG(x(1))

noting that x(1) represents the only independent variable in this case.

Figure 5.6: Curve fit from first Program 5.4 example.

The output shown in Results 5.4b gives the optimized coefficients, C1 and
C2 together with a table of the original data points (x̃, y) together with the
fitted values of F (x) in the right column.

In this case C1 = −111.1 and C2 = 34.02, hence the “best fit” function is

f(x) = −111.1 + 34.02 lnx

which is shown plotted, together with the original points in Figure 5.6. The
output also reports the coefficient of determination r2 reflecting the degree of
linear dependence of the data

The data and results from a second example involving two independent
variables are given in Data and Results 5.4. The data come from a stability

236 Numerical Methods for Engineers

analysis in geotechnical engineering, in which the Factor of Safety (FS) of a
particular embankment has been calculated for a range of soil shear strength
values given by a cohesion (c′) and friction angles (φ′).

c′ φ′ FS

1.0 20.0 1.37
2.0 25.0 2.07
1.5 23.0 1.75
2.2 22.0 1.99
0.8 21.0 1.32
0.5 25.0 1.41
0.1 22.0 1.02

A function of the form

FS = C1 + C2c
′ + C3φ

′

is thought to represent a reasonable fit to the data, so the least squares method
will be used to compute the optimal coefficients. The data file shown in Data
5.4b indicates there are seven (np=7) data points, two independent variables
(nv=2) and the function to be fitted has three coefficients (nc=3). This is
followed by the (c′, φ′, FS) values (np times). The functions must be pro-
grammed into the SUBROUTINE f54 as follows

f(1)=1.0_iwp
f(2)=x(1)
f(3)=x(2)

where x(1) represents the cohesion c′ and x(2) the friction angle φ′.

Number of data points, np nv nc
independent variables 7 2 3
and functions (constants)

Data points (x(i,:),y(i),i=1,np)
1.0 20. 1.37
2.0 25. 2.07
1.5 23. 1.75
2.2 22. 1.99
0.8 21. 1.32
0.5 25. 1.41
0.1 22. 1.02

Data 5.4b: Curve Fitting by Least Squares (second example)

Interpolation and Curve Fitting 237

---Curve Fitting by Least Squares---

Optimized Function Coefficients
-0.1808E+00 0.4544E+00 0.5389E-01

Data Points and Fitted Point
(x(i),i=1,2), y, yi
0.1000E+01 0.2000E+02 0.1370E+01 0.1351E+01
0.2000E+01 0.2500E+02 0.2070E+01 0.2075E+01
0.1500E+01 0.2300E+02 0.1750E+01 0.1740E+01
0.2200E+01 0.2200E+02 0.1990E+01 0.2005E+01
0.8000E+00 0.2100E+02 0.1320E+01 0.1314E+01
0.5000E+00 0.2500E+02 0.1410E+01 0.1394E+01
0.1000E+00 0.2200E+02 0.1020E+01 0.1050E+01

r-squared
0.9979E+00

Results 5.4b: Curve Fitting by Least Squares (second example)

The fitted values shown in the output given in Results 5.4b clearly represent
a reasonable fit to the original data. The coefficient of determination equals
0.998 in this case. Users interested in more rigorous measures of “goodness-
of-fit” are invited to make the necessary modifications to the main program.

5.6 Exercises

1. Given the data

θ F (θ)

0 1.00
π/4 2.12
π/2 0.00

express the Lagrangian polynomials as function of θ, and hence estimate
the value of F (π/3).
Answer: F (π/3) = 1.773

2. Use Lagrangian polynomials to obtain an interpolating polynomial for
the data

238 Numerical Methods for Engineers

x y

0.0 0.1
0.1 0.1005
0.2 0.1020
0.3 0.1046

and use it to estimate the value of y when x = 0.4. Note: This question
involves extrapolation which is less reliable than interpolation.
Answer: y(0.4) = 0.1084

3. Given the cubic
f(x) = x3 − 2x2 + 3x+ 1

derive an interpolating polynomial g(x) that coincides with f(x) at x =
1, 2 and 3, and hence show that

∫ 3

1

f(x) dx =
∫ 3

1

g(x) dx

Answer: g(x) = 4x2 − 8x+ 7, Simpson’s Rule is able to integrate cubics
exactly.

4. Derive a polynomial which passes through the points

x y

0 1
1 1
2 15
3 61

using (a) Lagrangian polynomials and (b) the Difference Method.
Answer: f(x) = 3x3 − 2x2 − x+ 1

5. Rework Exercise 4 using the Difference Method to obtain the fourth or-
der interpolating polynomial, if the additional point (4, 100) is included.
Answer: f(x) = −2.375x4 + 17.25x3 − 28.125x2 + 13.25x+ 1

6. Given the “sampling points”

x1 = −
√

3
5

, x2 = 0 x3 =

√
3
5

form the Lagrangian polynomials L1(x), L2(x) and L3(x) and show that

∫ −1

−1

L1 dx =
∫ −1

−1

L3 dx =
5
9
,

∫ −1

−1

L2 dx =
8
9

Interpolation and Curve Fitting 239

7. The following data are based on the function y = sinx where x is in
degrees

x y

10 0.17365
15 0.25882
20 0.34202
25 0.42262
30 0.50000

Set up a table of forward differences, and by including more terms each
time, estimate sin 28o using first, second, third and fourth order inter-
polating polynomials.
Answer: First order 0.4690, second order 0.4694, third order 0.4695,
fourth order 0.4695.

8. Rework Exercise 1 using a cubic spline function and hence estimate
F (π/3).
Answer: F (π/3) = 1.713

9. Rework Exercise 2 using a cubic spline function and hence estimate the
value of y when x = 0.15.
Answer: y(0.15) = 0.1011

10. Rework Exercise 3 to derive a cubic spline function which coincides with
f(x) at x = 1, 2 and 3. Compute the value of the cubic spline and f(x)
at x = 1.5 and x = 2.5.
Answer: spline(1.5) = 4.25, f(1.5) = 4.375; spline(2.5) = 12.25,
f(2.5) = 11.625

11. Rework Exercise 4 using cubic spline functions to estimate the value of
y when x = 2.5.
Answer: y(2.5) = 35.15

12. Rework Exercise 6 using a cubic spline function to estimate the value of
y when x = 17.
Answer: y(17) = 0.2924

13. Given the data of Exercise 1 estimate F ′(0), F ′(π/4) and F ′(π/2) mak-
ing use of as much of the data as possible.
Answer: F ′(0) ≈ 3.49, F ′(π/4) ≈ −0.64, F ′(π/2) ≈ −4.76

14. Given the data from Exercise 7 estimate y′(30) using 2-, 3-, 4- and
5-point backward difference formulas. Compare your results with the
exact solution of 0.86603.
Answer: 0.887, 0.868, 0.866, 0.866

240 Numerical Methods for Engineers

15. Given the data from Exercise 7 estimate y′(20) using 3- and 5-point cen-
tral difference formulas. Compare your results with the exact solution
of 0.93969.
Answer: 0.939, 0.940

16. Given the data from Exercise 7 estimate y′′(10) using 3-, 4- and 5-
point forward difference formulas. Compare your results with the exact
solution of −0.17365.
Answer: −0.259, −0.176, −0.175

17. Given the data from Exercise 7 estimate y′′′(10) and yiv(10) using 5-
points in each case. Compare your results with the exact solutions of
−0.98481 and 0.17365 respectively.
Answer: 0.971, 0.172

18. In geotechnical engineering, the relationship between Prandtl’s bearing
capacity factor Nc and the friction angle φ is summarized in the table
below

φ Nc

0 5.14
5 6.49

10 8.35
15 10.98
20 14.83
25 20.72
30 30.14

Use least squares to fit first, second and third order polynomials to this
data, and use these to estimate Nc when φ = 28.
Answer: First order 24.02, second order 26.08, third order 26.01

19. Use least squares to fit a straight line to the data

x 1.3 2.1 3.4 4.3 4.7 6.0 7.0
y 2.6 3.5 3.2 3.0 4.1 4.6 5.2

and hence estimate the value of y when x = 2.5 and x = 5.5.
Answer: f(x) = 2.083 + 0.4035x, hence y(2.5) ≈ 3.092, y(5.5) ≈ 4.302.

20. Use least squares to fit a power equation of the form, y = axb to the
data

x 2.5 3.5 5.0 6.0 7.5 10.0 12.5
y 4.8 3.5 2.1 1.7 1.2 0.9 0.7

Answer: Following linearization, f(x) = 15.34e−1.23x

Interpolation and Curve Fitting 241

21. Use least squares to fit an exponential equation of the form

x 0.6 1.0 2.3 3.1 4.4 5.8 7.2
y 3.6 2.5 2.2 1.5 1.1 1.3 0.9

Answer: Following linearization, f(x) = 3.24e−0.188x

22. Given the following data, use the difference method to estimate the value
of y when x = −1.5 using two, three and all four points from the table
(3 answers in total).

x y

-1 -2
-2 -18
-3 -52
-4 -110

Answer: −10,−7.75,−8.125

23. Derive the three-point backward difference formula for a first derivative
y′o and the dominant error term.

Answer: y′o =
1
2h

(3yo − 4y−1 + y−2) +
1
3
h2y′′′o

24. Measured readings from a 1-d consolidation test on a saturated clay gave
the following values of the Time Factor (T) and the Average Degree of
Consolidation (U):

T U

0.196 0.5
0.286 0.6
0.403 0.7
0.567 0.8
0.848 0.9

It has been suggested that an equation of the form

T = a log10(1 − U) + b

would represent a suitable fit to these results. Estimate the values of a
and b.
Answer: a = −0.931, b = −0.084

25. Given the following data:

242 Numerical Methods for Engineers

x y

1.0 -2.000
0.8 -0.728
0.6 0.016
0.4 0.424
0.2 0.688

use a forward difference table to derive the interpolating polynomial.
What do the coefficients of the interpolating polynomial indicate about
the nature of the tabulated data?
Answer: Q3(x) = 0.688 − 1.320(x − 0.2) − 1.8009(x − 0.2)(x − 0.4) −
4(x − 0.2)(x − 0.4)(x − 0.6), 4th order terms do not participate in the
solution.

26. Find the least-squares parabola, f(x) = Ax2 + Bx + C for the set of
data:

x y

-3 15
-1 5
1 1
3 5

Answer: f(x) = 0.875x2 − 1.7x+ 2.125

27. The function y = L/(1 + CeAx) has been suggested as a suitable fit to
the data given below. Linearize the function, and hence estimate A and
C. The constant L = 1000.

x y

0 200
1 400
2 650
4 950

Answer: A = −1.086, C = 1.459, y(3) = 858.0

28. Use least squares to fit a power equation of the form f(x) = axb to the
data:

x y

2.5 4.8
3.5 3.5
5.0 2.1
6.0 1.7
7.5 1.2

Answer: y = 16.14x−1.27

Interpolation and Curve Fitting 243

29. Form a difference table with the data below to generate a polynomial
function that passes through all the points:

x y

2.5 4.8
3.0 3.5
3.5 2.1
4.0 1.7

Modify your polynomial if the additional point (4.5, 1.2) is added to the
table.
Answer: Q3(x) = 4.8 − 2.6(x− 2.5) − 0.2(x− 2.5)(x − 3) + 1.4667(x−
2.5)(x−3)(x−3.5), Q4(x) = Q3(x)−1.4667(x−2.5)(x−3)(x−3.5)(x−4)

Chapter 6

Numerical Integration

6.1 Introduction

Numerical integration or “quadrature” is used whenever analytical integra-
tion approaches are either inconvenient or impossible to perform. Numerical
integration techniques can be applied to mathematical functions, or discrete
data that might be measured in an engineering experiment. Initially in this
chapter, we will consider methods for numerical integration of a function of
one variable, i.e.,

∫ b

a

f(x) dx (6.1)

although area and volume integrals of functions of more than one variable will
also be considered subsequently.

This chapter will cover several numerical integration formulas (also known
as “rules”) for numerical integration. The methods will usually not depend on
the type of function being integrated, although some “customized” approaches
will also be discussed.

Although numerical integration sometimes leads to an exact solution, espe-
cially if the function under consideration is a simple polynomial, our solutions
will often be approximate. This is especially true when integrating combi-
nations of transcendental functions (e.g., sine, cosine, logarithm, etc.) which
may in any case have no exact analytical solution. Once approximate so-
lutions have been obtained, it will then be important to get a sense of the
magnitude of the errors. In some cases the numerical integration rule can
have an adaptive feature that seeks a target level of accuracy.

The first step in numerical integration methods is to replace the function
to be integrated, f(x), by a simple polynomial Qn−1(x) of degree n− 1 which
coincides with f(x) at n points xi where i = 1, 2, . . . , n.

Thus,

∫ b

a

f(x) dx ≈
∫ b

a

Qn−1(x) dx (6.2)

where

245

246 Numerical Methods for Engineers

Qn−1(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 (6.3)

and the ai are constant coefficients.
Polynomials such as Qn−1(x) are easily integrated analytically, and are also

exactly integrated numerically. Hence, provided the approximation given by
equation (6.2) is reasonable, we should be able to obtain reasonable estimates
of the required integral.

Numerical integration “rules” are usually expressed as a summation of the
form

∫ b

a

Qn−1(x) dx =
n∑

i=1

wiQn−1(xi) (6.4)

hence

∫ b

a

f(x) dx ≈
n∑

i=1

wif(xi) (6.5)

The xi are called “sampling points”, being those places where the function
f(x) is evaluated, and the wi are constant “weighting coefficients”. Equation
(6.5) forms the basis for all our numerical integration methods in a single
variable.

Although Qn−1(x) is the function that is actually being integrated from
equation (6.4), we do not usually need to know its exact form since the sam-
pling points will be substituted into f(x).

All that distinguishes one numerical integration rule from another is the
number and location of the sampling points and the corresponding weighting
coefficients.

Methods in which the sampling points are equally spaced within the range
of integration are called “Newton-Cotes” rules, and these are considered first.
It is later shown that “Gaussian” rules, in which the sampling points are op-
timally spaced, lead to considerable improvements in accuracy and efficiency.

Other aspects of numerical integration dealt with in this chapter include
adaptive methods with error control, special integrals in which the integrand
contains an exponentially decaying function or a certain type of singulari-
ty, and multiple integrals in which functions of more that one variable are
integrated numerically over areas or volumes.

With reference to equation (6.5), sampling points usually lie within the
range of integration, thus a ≤ xi ≤ b; however rules

will also be described that sample outside the range of integration. Such
rules have applications to the solution of ordinary differential equations that
will be covered in Chapter 7.

Numerical Integration 247

6.2 Newton-Cotes rules

6.2.1 Introduction

Newton-Cotes rules are characterized by sampling points that are equally
spaced within the range of integration and include the limits of integration
themselves. In the following subsections we will describe the first few members
of the Newton-Cotes family, starting with the simplest method that uses just
one sampling point.

6.2.2 Rectangle rule, (n = 1)

In this simple method, which is also known as the “Rectangle rule”, the
function to be integrated from equation (6.2) is approximated by a “zero
order” polynomial Q0(x) which coincides with f(x) at one point only, namely
the lower limit of integration as shown in Figure 6.1.

Figure 6.1: Rectangle rule.

Since the function being integrated is constant, the solution is the area of

248 Numerical Methods for Engineers

the shaded rectangle, thus

Rectangle rule:
∫ x2

x1

f(x) dx ≈ hf(x1) (6.6)

Clearly the method is not particularly accurate, and will only give exact
solutions if f(x) is itself a zeroth order polynomial, i.e., a line parallel to the
x-axis.

Example 6.1

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Rectangle rule.

Solution 6.1

h =
π

4
hence

I ≈ π

4
sin

π

4

= 0.5554 (cf. exact solution 0.7071)

The solution is very poor in this case due to sampling at a location that is
so unrepresentative of the function over the range to be integrated.

While the method is not recommended for routine integration of functions,
the simplicity of the method has attractions, especially when combined with
a small step length h. As will be shown in Chapter 7, an important group of
numerical methods for solving ordinary differential equations called “explicit”
algorithms are based on this rule.

6.2.3 Trapezoid rule, (n = 2)

This is a popular approach in which f(x) is approximated by a first order
polynomial Q1(x) which coincides with f(x) at both limits of integration. As
shown in Figure 6.2, the integral is approximated by the area of a trapezoid.

Trapezoid rule:
∫ x2

x1

f(x) dx ≈ 1
2
h(f(x1) + f(x2)) (6.7)

Numerical Integration 249

Figure 6.2: Trapezoid rule.

The formula will be exact for f(x) of degree 1 or less.

Example 6.2

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Trapezoid rule.

Solution 6.2

h =
π

4
hence

I ≈ 1
2
π

4

[
sin

(π
4

)
+ sin

(π
2

)]

= 0.6704 (cf. exact solution 0.7071)

250 Numerical Methods for Engineers

While better than the result produced by the Rectangle rule, the numerical
solution is still poor. More accurate estimates can be found by using “repeat-
ed” rules as will be described in a later section.

6.2.4 Simpson’s rule, (n = 3)

Another well known method is where f(x) is approximated by a second
order polynomial Q2(x) which coincides at three points, namely the limits
of integration and middle of the range as shown in Figure 6.3. Unlike the
previous examples however, the area under Q2(x) cannot be deduced from
simple geometry, so we use this opportunity to introduce a powerful and
general method for deriving numerical integration rules called the “Polynomial
Substitution Method.”

Figure 6.3: Simpson’s rule.

6.2.4.1 Polynomial Substitution Method

In this example we will use the Polynomial Substitution Method to derive
the weighting coefficients of a three-point (n = 3) Newton-Cotes rule of the
general form

Numerical Integration 251

∫ x3

x1

f(x) dx ≈ w1f(x1) + w2f(x2) + w3f(x3) (6.8)

where x2 = (x1 + x3)/2 and x3 − x2 = x2 − x1 = h.
From the pattern established by the first two Newton-Cotes rules, it can be

assumed that Simpson’s rule with three sampling points from equation (6.8)
will be exact if f(x) is a polynomial of order 0,1 or 2. This will enable us to
generate 3 equations in the unknown w1, w2 and w3.

Before starting the derivation however, it is convenient and algebraically
simpler to make a temporary transformation of the problem such that the
mid-point of the range is at the origin, and the limits of integration1 lie at
±h. In order to do this, we shift all x-values by x2 leading to a transformed
function F (x), where

∫ x3

x1

f(x) dx ≡
∫ h

−h

F (x) dx (6.9)

and

F (x) = f(x+ x2) (6.10)

Let F (x) = 1

∫ h

−h

1 dx = 2h = w1 + w2 + w3 (6.11)

.
Let F (x) = x

∫ h

−h

x dx = 0 = w1(−h) + w2(0) + w3(h) = −w1h+ w3h (6.12)

.
Let F (x) = x2

∫ h

−h

x2 dx =
2
3
h3 = w1(−h)2 + w2(0)2 + w3(h)2 = w1h

2 + w3h
2 (6.13)

.
Solution of equations (6.11), (6.12) and (6.13) leads to

w1 = w3 =
1
3
h and w2 =

4
3
h (6.14)

thus

1As discussed later in this chapter, a special case used by some generalized integration rules
is obtained by setting h = 1.

252 Numerical Methods for Engineers

∫ h

−h

F (x) dx ≈ 1
3
F (−h) +

4
3
F (0) +

1
3
F (h) (6.15)

which after transformation back to the original function and limits, gives∫ x3

x1

f(x) dx ≈ 1
3
f(x1) +

4
3
f(x2) +

1
3
f(x3) (6.16)

Example 6.3

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using Simpson’s rule.

Solution 6.3

h =
π

8
hence

I ≈ 1
3
π

8

[
sin

(π
4

)
+ 4 sin

(
3π
8

)
+ sin

(π
2

)]

= 0.7072 (cf. exact solution 0.7071)

The reader is encouraged to re-derive the one and two-point rules given by
equations (6.6) and (6.7) to gain confidence in the generality of the Polynomial
Substitution Method.

It turns out that Simpson’s rule given by equation (6.16) is exact for f(x) up
to degree 3, although we did not need to assume this in the derivation. This
anomaly, and other issues of accuracy, will be discussed in Section (6.2.6).

6.2.5 Higher order Newton-Cotes rules (n > 3)

There is no limit to the number of sampling points that could be incor-
porated in a Newton-Cotes rule. For example, following the pattern already
established in previous sections, a four-point rule would fit a cubic to f(x)
and is exact for f(x) of degree 3 or less. A five-point rule would fit a quartic
to f(x) and is exact for f(x) of degree 5 or less and so on.2

2As will be shown, all odd-numbered Newton-Cotes rules with n ≥ 3 give an extra order of
accuracy.

Numerical Integration 253

These higher order rules are rarely used in practice however, as “repeated”
lower order methods (see Section 6.2.8) are often preferred.

6.2.6 Accuracy of Newton-Cotes rules

Rules with an even number of sampling points (i.e., n = 2, 4, . . .) will exactly
integrate polynomials of degree up to one less than the number of sampling
points (i.e., n − 1). Rules with an odd number of sampling points (i.e., n =
3, 5, . . .) are more efficient, in that they will exactly integrate polynomials of
degree up to the number of sampling points (i.e., n). The reason for this
difference is demonstrated by Figure 6.3 for Simpson’s rule (n = 3), where
it is easily shown that if f(x) is cubic, it will be integrated exactly because
the errors introduced above and below the approximating polynomial Q2(x)
cancel out.

In order to assess the accuracy of Newton-Cotes rules more formally, we
need to compare the result generated by the rule, with the exact solution
written as a Taylor series. The largest term from the series ignored by the
approximate solution is known as the “dominant error term”.

6.2.6.1 Error in the Rectangle rule (n = 1)

Consider the Taylor series expansion of f(x) about the lower limit of inte-
gration x1, i.e.,

f(x) = f(x1) + (x− x1)f
′
(x1) +

(x− x1)2

2!
f

′′
(x1) + . . . (6.17)

Integration of both sides of this equation gives

∫ x2

x1

f(x) dx =
[
xf(x1 +

1
2
(x− x1)2f

′
(x1) +

1
6
(x− x1)3f

′′
(x1) + . . .

]x2

x1

(6.18)
which after substitution of the limits of integration and noting that h = x2−x1

becomes∫ x2

x1

f(x) dx = hf(x1) +
1
2
h2f

′
(x1) +

1
6
h3f

′′
(x1) + . . . (6.19)

Comparing equations (6.19) and (6.6) shows that the Rectangle rule trun-
cates the series after the first term, hence the Dominant Error Term is 1

2h
2f

′
(x1).

6.2.6.2 Error in the Trapezoid rule (n = 2)

Noting again that h = x2 −x1, consider the Taylor series expansion of f(x)
about the lower limit of integration x1 to obtain f(x2), i.e.,

f(x2) = f(x1) + hf
′
(x1) +

h2

2!
f

′′
(x1) + . . . (6.20)

254 Numerical Methods for Engineers

After multiplying through by 1
2h and rearranging, we can write

1
2
h2f

′
(x1) =

1
2
hf(x2) − 1

2
hf(x1) − 1

4
h3f

′′
(x1) − . . . (6.21)

Substitution of equation (6.21) into (6.19) gives∫ x2

x1

f(x) dx =
1
2
h (f(x1) + f(x2)) − 1

12
h3f

′′
(x1) − . . . (6.22)

which after comparison with (6.7) indicates a Dominant Error Term for this
rule of − 1

12h
3f

′′
(x1).

6.2.6.3 Error in Simpson’s rule (n = 3)

An alternative approach to finding the dominant error term can be used,
if the highest order of polynomial for which the rule is exact is known in
advance.

Simpson’s rule exactly integrates cubics, but will only approximately in-
tegrate quartics, so it follows that the dominant error term must contain a
fourth derivative, thus

∫ h

−h

f(x) dx =
1
3
f(−h) +

4
3
f(0) +

1
3
f(h) + αf iv(x) (6.23)

Letting f(x) = x4 we get

∫ h

−h

x4 dx =
2
5
h5 =

1
3
h5 + 0 +

1
3
h5 + 24α (6.24)

hence

α =
h5

24

(
2
5
− 2

3

)
= − 1

90
h5 (6.25)

so Simpson’s rule has a Dominant Error Term − 1
90h

5f iv(x).

6.2.7 Summary of Newton-Cotes rules

All Newton-Cotes rules can be written in the form

∫ b

a

f(x) dx = h

n∑
i=1

Wif(xi) + Chk+1fk(x) (6.26)

where h represents the distance between sampling points xi = a + (i − 1)h
with coefficients Wi for i = 1, 2, . . . , n and C is a constant. fk(x) represents
the kth derivative of f(x). A summary of values in equation (6.26) is given in
Table 6.1.

Numerical Integration 255

TABLE 6.1: Summary of Newton-Cotes rules
n Name h W1 W2 W3 W4 W5 C k

1 Rectangle b− a 1 1
2 1

2 Trapezoid b− a 1
2

1
2 − 1

12 2

3 Simpson’s b−a
2

1
3

4
3

1
3 − 1

90 4

4 4-point b−a
3

3
8

9
8

9
8

3
8 − 3

80 4

5 5-point b−a
4

14
45

64
45

24
45

64
45

14
45 − 8

945 6

An alternative way of portraying the Newton-Cotes rules that facilitates
comparison with the Gaussian rules to be described later in this chapter is to
consider a normalized problem with limits of integration of ±1, thus

∫ 1

−1

f(x) dx =
n∑

i=1

wif(xi) + Cfk(x) (6.27)

In this case the interval h is always known, so it is included directly in the
weighting coefficients wi. A summary of values in equation (6.27) is given in
Table 6.2 and Table 6.3 gives a summary of sampling points and weights in
decimal form for the first five normalized Newton-Cotes rules.

It should be noted that the weighting coefficients are always symmetrical
about the midpoint of the range of integration and their sum must always
equal the range of integration.

Although the coefficient C of the dominant error term is a guide to the
accuracy of these rules, the actual dominant error term includes both h raised
to some power, and a derivative of the function being integrated. Clearly as
h gets smaller (for h < 1), the error term gets smaller still; however care must
be taken with certain functions to ensure that the higher derivatives fk(x)
are not becoming excessively large within the range of integration.

6.2.8 Repeated Newton-Cotes rules

If the range to be integrated is large, an alternative to trying to fit a higher
order polynomial over the full range is to break up the range into strips and

256 Numerical Methods for Engineers

TABLE 6.2: Normalized Newton-Cotes rules
n Name h w1 w2 w3 w4 w5 C k

1 Rectangle 2 2 2 1

2 Trapezoid 2 1 1 − 2
3 2

3 Simpson’s 1 1
3

4
3

1
3 − 1

90 4

4 4-point 2
3

1
4

3
4

3
4

1
4 − 2

405 4

5 5-point 1
2

7
45

32
45

12
45

32
45

7
45 − 1

30240 6

to use lower order polynomials over each strip. All of the methods described
so far can be used in this “repeated” mode.

6.2.8.1 Repeated Rectangle rule

As shown in Figure 6.4, the range of integration [A,B] is split into k strips
with widths of hi, i = 1, 2, . . . , k. Although it is simpler to make all the strips
the same width, the strips can be made narrower in regions where the function
is changing rapidly. In “adaptive” quadrature methods the width of the strips
can be modified automatically as will be described later in this chapter.

In the Repeated Rectangle rule the area of each strip is approximated by a
rectangle with a height given by the value of the function at the lower limit
of the strip. These are then added together to give the overall solution, thus

∫ B

A

f(x) dx ≈ h1f(A) + h2f(A+ h1) + h3f(A+ h1 + h2) + . . .+ hkf(B− hk)

(6.28)
It can be seen from Figure 6.4 that the method amounts to replacing a

smooth continuous function f(x) by a sequence of horizontal lines. The more
strips taken, the more closely the actual shape of the function is reproduced.

If all the strips are the same width h, the formula becomes

∫ B

A

f(x) dx ≈ h (f(A) + f(A+ h) + f(A+ 2h) + . . .+ f(B − h)) (6.29)

Numerical Integration 257

TABLE 6.3: Sampling Points and Weights for
Normalized Newton-Cotes rules
n Name xi wi

1 Rectangle -1.000000000000000 2.000000000000000

2 Trapezoid -1.000000000000000 1.000000000000000
1.000000000000000 1.000000000000000

3 Simpson’s -1.000000000000000 0.333333333333333
0.000000000000000 1.333333333333333
1.000000000000000 0.333333333333333

4 4-point -1.000000000000000 0.250000000000000
-0.333333333333333 0.750000000000000
0.333333333333333 0.750000000000000
1.000000000000000 0.250000000000000

5 5-point -1.000000000000000 0.155555555555556
-0.500000000000000 0.711111111111111
0.000000000000000 0.266666666666667
0.500000000000000 0.711111111111111
1.000000000000000 0.155555555555556

Example 6.4

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Repeated Rectangle rule with three (k = 3) strips of equal width.

Solution 6.4

From equation (6.29)

h =
π

12

hence

I ≈ π

12
(sin(π/4) + sin(π/3) + sin(5π/12))

= 0.6647 (cf. exact solution 0.7071)

258 Numerical Methods for Engineers

Figure 6.4: Repeated Rectangle rule.

It can be seen that while the numerical solution is poor, it represents a
significant improvement over the result of 0.5554 obtained with a single ap-
plication of this rule. Better accuracy still could be obtained by taking more
strips.

6.2.8.2 Repeated Trapezoid rule

In the Repeated Trapezoid rule the area of each strip is approximated by a
trapezoid as shown in Figure 6.5.

Each trapezoid coincides with the function at two locations. These are then
added together to give the overall solution, thus

∫ B

A

f(x) dx ≈ 1
2
h1 (f(A) + f(A+ h1)) +

1
2
h2 (f(A+ h1) +

f(A+ h1 + h2)) + . . .+
1
2
hk (f(B − hk) + f(B)) (6.30)

It can be seen from Figure 6.5 that the method amounts to replacing a
smooth continuous function f(x) by a sequence of linear line segments. If all
the strips are the same width h, the formula becomes

Numerical Integration 259

Figure 6.5: Repeated Trapezoid.

∫ B

A

f(x) dx ≈ 1
2
h(f(A) + 2f(A+ h) + 2f(A+ 2h) + . . .

. . . + 2f(B − h) + f(B)) (6.31)

Example 6.5

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Repeated Trapezoid rule with three (k = 3) strips of equal width.

Solution 6.5

From equation (6.31)

h =
π

12
hence

260 Numerical Methods for Engineers

I ≈ 1
2
π

12
(sin(π/4) + 2 sin(π/3) + 2 sin(5π/12) + sin(π/2))

= 0.7031 (cf. exact solution 0.7071)

It can be seen that in this case the numerical solution is much improved by
the linear approximations. It may be recalled that a single application of the
Trapezoid rule in Example 6.2 (k = 1) gave the solution 0.6704.

6.2.8.3 Repeated Simpson’s rule

A single application of Simpson’s rule requires three sampling points, so the
repeated rule must have an even number of strips as shown in Figure 6.6.

Figure 6.6: Repeated Simpson’s rule.

Each pair of strips must have the same width, but widths may differ from
pair to pair. The repeated Simpson’s rule fits a parabola over each set of three
sampling points, leading to the following expression assuming k (even) strips

Numerical Integration 261

∫ B

A

f(x) dx ≈ 1
3
h1(f(A) + 4f(A+ h1) + f(A+ 2h1)) +

1
3
h2(f(A+ 2h1) + 4f(A+ 2h1 + h2) + f(A+ 2h1 + 2h2)) + . . .

. . .+
1
3
hk(f(B − 2hk) + 4f(B − hk) + f(B)) (6.32)

If all strips are of equal width h, the rule simplifies to

∫ B

A

f(x) dx ≈ 1
3
h(f(A) + 4f(A+ h) + 2f(A+ 2h) + 4f(A+ 3h) + . . .

. . . + 2f(B − 2h) + 4f(B − h) + f(B)) (6.33)

Example 6.6

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Repeated Simpson’s rule with four (k = 4) strips of equal width.

Solution 6.6

From equation (6.33)

h =
π

16

hence

I ≈ 1
3
π

16
(sin(π/4) + 4 sin(5π/16) + 2 sin(3π/8) + 4 sin(7π/16) + sin(π/2))

= 0.7071 (cf. exact solution 0.7071)

In this case the result is accurate to 4DP. It may be recalled that a single
application of Simpson’s rule in Example 6.3 (k = 1) was almost as accurate,
giving 0.7072.

262 Numerical Methods for Engineers

Program 6.1: Repeated Newton-Cotes rules

PROGRAM p61
!---Repeated Newton-Cotes Rules---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,j,nr,nsp
REAL(iwp)::a,area,b,cr,hr,pt5=0.5_iwp,wr,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::samp(:,:),wt(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)a,b,nsp,nr; ALLOCATE(samp(nsp,1),wt(nsp))
CALL newton_cotes(samp,wt)
wr=(b-a)/nr; hr=pt5*wr; area=zero
DO i=1,nr
cr=a+(i-1)*wr+hr
DO j=1,nsp; area=area+wt(j)*hr*f61(cr+samp(j,1)*hr); END DO

END DO
WRITE(11,’(A)’)"---Repeated Newton-Cotes Rules---"
WRITE(11,’(/,A,2F12.4)’)"Limits of integration",a,b
WRITE(11,’(A,I7)’)"Newton Cotes Rule ",nsp
WRITE(11,’(A,I7)’)"Number of repetitions",nr
WRITE(11,’(A,F12.4)’)"Computed result ",area
CONTAINS

FUNCTION f61(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f61
f61=SIN(x)*SIN(x)+x
RETURN
END FUNCTION f61

END PROGRAM p61

Program 6.1 estimates the value of the integral

I =
∫ b

a

f(x) dx

using a Repeated Newton-Cotes rule of the user’s choice. Input data consist
of the limits of integration a and b, the number of sampling points nsp in each
application of the rule and the number of repetitions nr of the rule across the
range. Each application of the Newton-Cotes rule acts over strips of width h
which are assumed constant.

The sampling points and weighting coefficients for each repetition are held,

Numerical Integration 263

List 6.1:

Scalar integers:
i simple counter
j simple counter
nr number of rule repetitions across the range
nsp number of sampling points (=2 for Trapezoid Rule, etc.)

Scalar reals:
a lower limit of integration
area holds running total of area from each repetition
b upper limit of integration
cr central coordinate of each repetition
hr half the range of each repetition
pt5 set to 0.5
wr width of each repetition
zero set to 0.0

Dynamic real arrays:
samp holds sampling points
wt holds weighting coefficients

respectively, in the first columns of array samp and in wt, provided by sub-
routine newton_cotes held in library nm_lib.

All subroutines used in this book are described and listed in Appendices A
and B.

To illustrate use of the program, the following problem is solved using the
Trapezoid rule repeated five times.

I =
∫ 0.75

0.25

(sin2 x+ x) dx

The input and output files from Program 6.1 are given in Data 6.1 and
Results 6.1 respectively. The function to be integrated, f(x) = sin2 x+x, has
been programmed into f61 at the end of the main program.

Limits of integration a b
0.25 0.75

Number of sampling points nsp
per repetition 2

Number of repetitions nr
5

Data 6.1: Repeated Newton-Cotes rules

264 Numerical Methods for Engineers

---Repeated Newton-Cotes Rules---

Limits of integration 0.2500 0.7500
Newton Cotes Rule 2
Number of repetitions 5
Computed result 0.3709

Results 6.1: Repeated Newton-Cotes rules

As shown in Results 6.1 with nsp=2 and nr=5, the method gives a value for
the above integral of 0.3709, which compares quite well with the analytical
solution of 0.3705. In problems of this type, especially when no analytical
solution is available, it is good practice to repeat the calculation with more
strips to ensure that the solution is converging with sufficient accuracy. For
example, if the above problem is recalculated with nr=10, the computed result
improves to 0.3706.

6.2.9 Remarks on Newton-Cotes rules

The choice of a suitable method for numerical integration is never com-
pletely straightforward. If the analyst is free to choose the position of the
sampling points, then Newton-Cotes methods should probably not be used at
all, as the Gaussian rules covered in the next section are more efficient. The
Newton-Cotes have the advantage of simplicity however, especially the lower
order members of the family such as the Trapezoid and Simpson’s rules.

Generally speaking, frequently repeated low order methods are preferred to
high order methods, and the repeated Trapezoid rule presented in Program
6.1 will give acceptable solutions to many problems.

The choice of the interval h in a repeated rule presents a further difficulty.
Ideally, h should be “small” but not so small that excessive computer time is
required, or that the accuracy is affected by computer word-length limitations.
When using Program 6.1 to integrate a function, it is recommended that two
or three solutions are obtained using an increasing number of repetitions. This
will indicate whether the result is converging. Lack of convergence suggests a
“badly behaved” function which could contain a singularity requiring special
treatment.

The repeated Trapezoid rule is also suitable for integrating tabulated data
from an experiment where, for example, the interval at which measurements
are made is not constant. In such cases, a formula similar to equation (6.30)
would be used.

Numerical Integration 265

6.3 Gauss-Legendre rules

6.3.1 Introduction

Newton-Cotes rules were easy to use, because their sampling points were
evenly spaced within the range of integration, and the weighting coefficients
easy to remember (at least up to Simpson’s rule).

Gaussian rules allow the sampling points to be optimally spaced within
the range of integration and achieve greater accuracy for a given number of
sampling points. These optimal sampling point locations are still symmetrical
about the middle of the range of integration, but the positions are not intuitive
and certainly harder to remember. This latter point may be a slight hindrance
to “hand” calculation using Gaussian methods, but not when the information
can be stored in a subroutine library.

In Gaussian rules the summation notation adopted previously is still appli-
cable, thus

∫ b

a

f(x) dx ≈
n∑

i=1

wif(xi) (6.34)

however when using polynomial substitution to develop Gaussian rules, not
only the wi but also the xi are initially treated as unknowns. In order to
solve for the resulting 2n equations it will be necessary to force the formula
to be exact for integration of f(x) up to degree 2n − 1. This represents a
considerable improvement over the equivalent Newton-Cotes rule, which, for
the same number of sampling points, will only be exact for f(x) up to degree
n− 1 (or n if n is odd and greater than 1).

There are various types of Gaussian rules, but the most important and
widely used are the Gauss-Legendre rules, which will be considered first.

Instead of using limits of a and b as indicated in equation (6.34) the de-
velopment of these rules is greatly simplified and generalized by considering
normalized limits of ±1. A similar approach was considered for Newton-Cotes
rules leading to Table 6.3. This in no way limits the generality of these meth-
ods because solutions corresponding to the actual limits can be easily retrieved
by a simple transformation.

In the following subsections we will describe the first few members of the
Gauss-Legendre family, starting with the simplest method that is commonly
known as the Midpoint rule.

6.3.2 Midpoint rule, (n = 1)

If we can sample the function to be integrated at one point only, it is
intuitively obvious that the point should be in the middle of the range of
integration as shown in Figure 6.7.

266 Numerical Methods for Engineers

Figure 6.7: Midpoint rule.

The function f(x) is approximated by Q0(x) which runs parallel to the
x-axis and coincides with the function to be integrated at the mid-point of
the range. The formula given by equation (6.35) will be exact for f(x) up to
degree 1 and takes the form

∫ 1

−1

f(x) dx ≈ 2f(0) (6.35)

Example 6.7

Estimate the value of

I =
∫ π/2

π/4

sinx dx

using the Midpoint rule.

Solution 6.7

Although the limits of integration are not ±1, we can solve the problem by
a simple transformation of the x-coordinate followed by a scaling of weighting
coefficients. The sampling point will be at the mid-point of the range of

Numerical Integration 267

integration, and the weighting coefficient must equal the range of integration
thus

x1 =
3π
8

and w1 =
π

4
. hence

I ≈ π

4
sin

3π
8

= 0.7125 (cf. exact solution 0.7071)

The Midpoint rule with its optimally located sampling point clearly gives
a significantly improved result compared with the Rectangle rule (which gave
0.5554), in spite of both methods involving the same amount of computational
effort.

6.3.3 Two-point Gauss-Legendre rule, (n = 2)

In this case we have no idea where the optimal locations of the sampling
points will be, so we will use the Polynomial Substitution Method to find
them.

The formula will be of the form

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2) (6.36)

which contains four (2n) unknowns, w1,x1,w2 and x2. In order to generate
four equations to solve for these values, we must force the formula given by
equation (6.35) to be exact for f(x) = 1, f(x) = x, f(x) = x2 and f(x) = x3.

Let f(x) = 1, hence

∫ 1

−1

1 dx = 2 = w1 + w2 (6.37)

Let f(x) = x, hence
∫ 1

−1

x dx = 0 = w1x1 + w2x2 (6.38)

Let f(x) = x2, hence

∫ 1

−1

x2 dx =
2
3

= w1x
2
1 + w2x

2
2 (6.39)

Let f(x) = x3, hence

268 Numerical Methods for Engineers

∫ 1

−1

x3 dx = 0 = w1x
3
1 + w2x

3
2 (6.40)

From equations (6.37) and (6.39) we can write

w1

w2
= −x2

x1
= −x

3
2

x3
1

(6.41)

hence x2 = ±x1 (6.42)

Assuming the sampling points do not coincide, we must have x2 = −x1 so
from equation (6.37)

w1 = w2 and from equation (6.36) w1 = w2 = 1 (6.43)

Finally from equation (6.38)

x2
1 = x2

2 =
1
3

(6.44)

thus x1 = − 1√
3

and x2 =
1√
3

(6.45)

The two-point rule with normalized limits of integration can therefore be
written as

∫ 1

−1

f(x) dx ≈ f(− 1√
3
) + f(

1√
3
) (6.46)

and will be exact for polynomial f(x) up to degree 3. The method is actually
finding the area under a linear function Q1(x) that coincides with f(x) at the
strategic locations x = ± 1√

3
as shown in Figure 6.8.

Numerical Integration 269

Figure 6.8: Two-point Gauss-Legendre.

Example 6.8

Estimate the value of

I =
∫ 1

−1

(x3 + 2x2 + 1) dx

using the two-point Gauss-Legendre rule.

Solution 6.8

This question is posed with the normalized limits of integration, so the
weights and sampling points can be applied directly, thus

I ≈
[(

− 1√
3

)3

+ 2
(
− 1√

3

)2

+ 1

]
+

[(
1√
3

)3

+ 2
(

1√
3

)2

+ 1

]

=
10
3

(which is exact) (6.47)

As expected, the two-point Gauss-Legendre rule is able to integrate cubics
exactly. It should be noted that in order to integrate a cubic exactly with a
Newton-Cotes rule, we needed Simpson’s rule with three sampling points.

270 Numerical Methods for Engineers

TABLE 6.4: Sampling Points and Weights
for Normalized Gauss-Legendre rules
n xi wi

1 0.000000000000000 2.000000000000000

2 -0.577350269189626 1.000000000000000
0.577350269189626 1.000000000000000

3 -0.774596669241484 0.555555555555556
0.000000000000000 0.888888888888889
0.774596669241484 0.555555555555556

4 -0.861136311594053 0.347854845137454
-0.339981043584856 0.652145154862546
0.339981043584856 0.652145154862546
0.861136311594053 0.347854845137454

5 -0.906179845938664 0.236926885056189
-0.538469310105683 0.478628670499366
0.000000000000000 0.568888888888889
0.538469310105683 0.478628670499366
0.906179845938664 0.236926885056189

6.3.4 Three-point Gauss-Legendre rule, (n = 3)

This rule will take the form
∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2) + w3f(x3) (6.48)

and will be exact for f(x) up to degree (2n − 1) = 5. Although there are
six unknowns in equation (6.47) which would require polynomial substitution
of f(x) up to degree 5, advantage can be taken of symmetry to reduce the
number of equations. As with Newton-Cotes rules, the weighting coefficients
and sampling points are always symmetric about the midpoint of the range
of integration, hence it can be stated from inspection that

w1 = w3

x1 = −x3 (6.49)
x2 = 0 (6.50)

The six equations from Polynomial Substitution must still be generated; how-
ever there are only three independent unknowns given by x1, w1 and w2. It is
left as an exercise for the reader to show that the final form of the three-point
Gauss-Legendre rule is as follows

Numerical Integration 271

∫ 1

−1

f(x) dx ≈ 5
9
f(−

√
3
5
) +

8
9
f(0) +

5
9
f(

√
3
5
) (6.51)

Figure 6.9 shows the locations of the three sampling points for this rule.
Following the same pattern as before, the actual integration is performed
under a second order polynomialQ2(x) (not shown in the figure) that coincides
with f(x) at the three sampling points.

Figure 6.9: Three-point Gauss-Legendre.

We have described the first three members of the Gauss-Legendre family,
which are summarized together with the next two members of the family (up
to n = 5) in Table 6.4. The method is so called because the sampling points
are the roots of a family of polynomials called Legendre polynomials which
take the form

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n = 0 (6.52)

6.3.5 Changing the limits of integration

All the Gauss-Legendre rules described in this section used limits of inte-
gration of ±1. Naturally we usually wish to integrate functions between other
limits, so in order to use the normalized weights and sampling points we need

272 Numerical Methods for Engineers

to transform our problem. By a change of variable we can arrange for the
normalized problem to

yield the same solution as the original problem, thus

∫ b

a

f(x) dx ≡
∫ 1

−1

f(ξ) dξ (6.53)

In order to achieve this transformation we make the substitutions

x =
(b− a)ξ + (b+ a)

2
(6.54)

and

dx =
(b− a)

2
dξ (6.55)

Once the problem has been transformed in this way, the familiar Gauss-
Legendre weights and sampling points can be applied.

Example 6.9

Estimate the value of

I =
∫ 4

1

x cosx dx

using the three-point (n = 3) Gauss-Legendre rule with a change of variable.

Solution 6.9

Since the limits are not ±1 we must first transform the problem by making
the substitutions given in equations (6.52) and (6.53), thus

x =
3ξ + 5

2
and dx =

3
2
dξ

After substitution, the problem becomes

I =
∫ 4

1

x cosx dx ≡ 3
4

∫ 1

−1

(3ξ + 5) cos
(

3ξ + 5
2

)
dξ

which can be solved directly using the values in Table 6.4. In this example
we will use the version given in equation (6.50) which leads to

Numerical Integration 273

I ≈ 3
4

{
5
9

(
−3

√
3
5

+ 5

)
cos

(
1
2

(
−3

√
3
5

+ 5

))

+
8
9
5 cos

5
2

+
5
9

(
3

√
3
5

+ 5

)
cos

(
1
2

(
3

√
3
5

+ 5

))}

≈ −5.0611 (cf. exact solution -5.0626)

The result is quite accurate; however since the function being integrated is
transcendental, it can never be exactly integrated by conventional rules.

An alternative approach which uses the normalized values in Table 6.4 is
to proportion the sampling points symmetrically about the midpoint of the
range. This method involves no change of variable and the original limits of
integration are maintained. The weights must also be scaled such that they
add up to the actual range of integration. The normalized weights for any
given rule always add up to 2, so for general limits these normalized values
must be multiplied by half the range of integration. Example 6.9 is now re-
peated using this approach.

Example 6.10

Estimate the value of

I =
∫ 4

1

x cosx dx

using the three-point (n = 3) Gauss-Legendre rule with proportioning of
sampling points and weights.

Solution 6.10

As shown in Figure 6.10, the sampling points are located by proportion-
ing the normalized values from Table 6.4 about the center of the range of
integration.

For n = 3 and using the version given in equation (6.50) the normalized
sampling points are given as

x1 = −
√

3
5

x2 = 0 x3 =

√
3
5

and the normalized weights as

274 Numerical Methods for Engineers

Figure 6.10: Sampling point locations in three-point Gauss-Legendre.

w1 =
5
9

w2 =
8
9

w3 =
5
9

To find the actual sampling points, the normalized sampling points are multi-
plied by half the range of integration, i.e., 3/2, and positioned relative to the
midpoint of the range, i.e., 5/2. The standard weights are also multiplied by
half the range of integration so that they will add up to the range, i.e., 3.

Hence the actual sampling points are given by

x1 =
5
2
− 3

2

√
3
5

= 1.33810, x2 =
5
2

= 2.5, x3 =
5
2

+
3
2

√
3
5

= 3.66190

and the actual weights by

w1 =
3
2

(
5
9

)
= 0.83333 w2 =

3
2

(
8
9

)
= 1.33333 w3 =

3
2

(
5
9

)
= 0.83333

The required integral is given by

I ≈ 0.8333(1.3381) cos1.3381 + 1.3333(2.5) cos2.5 + 0.8333(3.6619) cos3.6619
= −5.0611 (cf. exact solution -5.0626)

Numerical Integration 275

Program 6.2: Repeated Gauss-Legendre rules

PROGRAM p62
!---Repeated Gauss-Legendre Rules---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,j,nr,nsp
REAL(iwp)::a,area,b,cr,hr,pt5=0.5_iwp,wr,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::samp(:,:),wt(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)a,b,nsp,nr; ALLOCATE(samp(nsp,1),wt(nsp))
CALL gauss_legendre(samp,wt); wr=(b-a)/nr; hr=pt5*wr; area=zero
DO i=1,nr
cr=a+(i-1)*wr+hr
DO j=1,nsp; area=area+wt(j)*hr*f62(cr+samp(j,1)*hr); END DO

END DO
WRITE(11,’(A)’)"---Repeated Gauss-Legendre Rules---"
WRITE(11,’(/,A,2F12.4)’)"Limits of Integration",a,b
WRITE(11,’(A,I7)’)"Gauss-Legendre Rule ",nsp
WRITE(11,’(A,I7)’)"Number of Repetitions",nr
WRITE(11,’(A,F12.4)’)"Computed Result ",area
CONTAINS

FUNCTION f62(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f62
f62=x*COS(x)
RETURN
END FUNCTION f62

END PROGRAM p62

For larger ranges of integration, Gauss-Legendre rules can be repeated as
described earlier for Newton-Cotes rules. The second program in this chapter
estimates the value of the integral

I =
∫ b

a

f(x) dx

using a Repeated Gauss-Legendre rule of the user’s choice. Input data consist
of the limits of integration a and b, the number of sampling points nsp in each
application of the rule and the number of repetitions nr of the rule across the
range. Each application of the Gauss-Legendre rule acts over a strip of width
h which is assumed constant.

276 Numerical Methods for Engineers

List 6.2:

Scalar integers:
i simple counter
j simple counter
nr number of rule repetitions across the range
nsp number of Gauss-Legendre points

Scalar reals:
a lower limit of integration
area holds running total of area from each repetition
b upper limit of integration
cr central coordinate of each repetition
hr half the range of each repetition
pt5 set to 0.5
wr width of each repetition
zero set to 0.0

Dynamic real arrays:
samp holds sampling points
wt holds weighting coefficients

Program 6.2 is essentially the same as Program 6.1 except for subroutine
gauss_legendre that provides the sampling points and weighting coefficients.
The function f(x) to be integrated has been inserted directly into function
f62(x) at the end of the main program. To illustrate use of the program,
the same problem considered in Examples 6.9 and 6.10 is considered again
but this time with two repetitions (nr=2) of the 3-point Gauss-Legendre rule
(nsp=3). The problem to be solved is

I =
∫ 4

1

(x cosx) dx

The input and output for Program 6.2 are given in Data 6.2 and Results 6.2
respectively. The function x cos(x) has been programmed into f62 at the end
of the main program.

Limits of integration a b
1.00 2.00

Number of sampling points nsp
per repetition 2

Number of repetitions nr
5

Data 6.2: Repeated Gauss-Legendre rules

Numerical Integration 277

---Repeated Gauss-Legendre Rules---

Limits of Integration 1.0000 4.0000
Gauss-Legendre Rule 3
Number of Repetitions 2
Computed Result -5.0626

Results 6.2: Repeated Gauss-Legendre rules

As shown in Results 6.2, the repeated rule gives a value for the above
integral of −5.0626 which agrees with the exact solution to four decimal places.

6.3.6 Accuracy of Gauss-Legendre rules

Gauss-Legendre rules with n sampling points will exactly integrate polyno-
mials up to degree 2n − 1. Since we know the highest degree for which the
rules will be exact, we can find the dominant error term using the method
described in Section 6.2.6 for Simpson’s rule.

The two-point Gauss-Legendre rule will integrate cubic functions exactly,
but not quartics, so the dominant error term must include a fourth derivative,
hence

∫ 1

−1

f(x) dx = f(− 1√
3
) + f(

1√
3
) + Cf iv(x) (6.56)

Substitution of f(x) = x4 in which f iv(x) = 4! = 24 gives

∫ 1

−1

x2 dx =
2
5

=
1
9

+
1
9

+ 24C (6.57)

therefore C = 1
135 .

In order to compare Newton-Cotes and Gauss-Legendre rules we can return
to the general form first expressed in equation (6.27) as

∫ 1

−1

f(x) dx =
n∑

i=1

wif(xi) + Cfk(x) (6.58)

For Gauss-Legendre rules, k = 2n and it is easily shown that the coefficient
of the dominant error term can be written as

C =
22n+1(n!)4

(2n+ 1)[(2n)!]3
(6.59)

Table 6.5 summarizes the dominant error from equation (6.58) for the two
families of rules up to n = 5. The greater accuracy of Gauss-Legendre in
terms of both the coefficient C and the order k is striking.

278 Numerical Methods for Engineers

TABLE 6.5: Comparison of
Dominant Error Terms in Normalized
Newton-Cotes and Gauss-Legendre
rules

Newton-Cotes Gauss-Legendre
n C k C k

1 2 1 1
3 2

2 - 2
3 2 1

135 4

3 - 1
90 4 1

15750 6

4 - 2
405 4 1

3472875 8

5 - 1
30240 6 1

1237732650 10

6.4 Adaptive integration rules

In the discussion of repeated rules in Section 6.2.8, the possibility was raised
of adapting the widths of the strips to reflect the behavior of the function be-
ing integrated. For example if the function was changing rapidly over some
region, the strips might be made narrower, whereas if the function was vary-
ing gradually, wider strips might achieve the same level of accuracy. It would
clearly be tedious to implement these alterations manually, so in this sec-
tion we introduce an adaptive algorithm to adjust the widths of the strips
automatically.

The basis of this adaptive approach is an estimate of the error over each strip
obtained by comparing the results obtained by two rules that have significantly
different levels of accuracy. The more accurate rule is assumed to give the
“exact” result, so the error is estimated as the difference between the two
results. If this error estimate exceeds user-specified error tolerances, the strip
under consideration is divided into two and the process repeated.

The algorithm starts with a single strip across the full range, which is
bisected into smaller strips iteratively until the error criteria are satisfied for
all strips.

A typical sequence is shown in Figure 6.11. Figure 6.11(a) shows the
first iteration which involves integration over the full range. The letter F

(for“false”) indicates that the error exceeded the tolerance, so the range is
split into two strips of equal width. Figure 6.11(b) shows the second iteration
which involves integration over both strips. The letter T (for “true”) indicates
that the right strip has satisfied the error criteria; however the F means the

Numerical Integration 279

left strip has not, so that range is again split into two smaller strips of equal
width. Figure 6.11(c) shows the third iteration which involves integration over
both strips in the left half of the range. Once more, the right half has satisfied
the error bound but the left half has not, requiring a further subdivision of the
strip marked F. The fourth and final iteration in this demonstration shown
in Figure 6.11(d) indicates that all strips are now marked T, thus all strips
satisfy the error bounds. The solutions over each strip using the more accurate
rule are then summed and printed. It should be noted that once a strip has
satisfied the error tolerance and is marked T, it is not revisited.

Figure 6.11: Adaptive integration with error control.

The algorithm demonstrates the need for both absolute and relative error
criteria (see Section 1.8). The relative error is the most important from a en-
gineering viewpoint since it limits the errors to some user-specified proportion
of the area being estimated. The absolute error is also needed however as a
safeguard, in the event of the area of any strip becoming very close to zero, in
which case the relative error tolerance might be unreasonably severe. In this
case the absolute error would take precedence.

280 Numerical Methods for Engineers

Program 6.3: Adaptive Gauss-Legendre rules

PROGRAM p63
!---Adaptive Gauss-Legendre Rules---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::cf,ct,i,j,inew,nr1=1,nr2,nsp1,nsp2
REAL(iwp)::a,abserr,ans,area,area1,area2,b,errest,hr,relerr, &
one=1.0_iwp,pt5=0.5_iwp,tol,tot_err,wr,zero=0.0_iwp

LOGICAL::verdict
REAL(iwp),ALLOCATABLE:: &
answer1(:),err1(:),limits1(:,:),samp1(:,:),wt1(:), &
answer2(:),err2(:),limits2(:,:),samp2(:,:),wt2(:)

LOGICAL,ALLOCATABLE::conv1(:),conv2(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
ALLOCATE(answer1(nr1),err1(nr1),conv1(nr1),limits1(nr1,2))
ALLOCATE(answer2(nr1),err2(nr1),conv2(nr1),limits2(nr1,2))

!---Rule 2 Should be More Accurate than Rule 1 so nsp2 >> nsp1
READ(10,*)limits1,abserr,relerr,nsp1,nsp2
ALLOCATE(samp1(nsp1,1),samp2(nsp2,1),wt1(nsp1),wt2(nsp2))
CALL gauss_legendre(samp1,wt1); CALL gauss_legendre(samp2,wt2)
WRITE(11,’(A)’)"---Adaptive Gauss-Legendre Rules---"
WRITE(11,’(/A,E12.4)’)’Absolute Error Tolerance ’,abserr
WRITE(11,’(A,E12.4)’) ’Relative Error Tolerance ’,relerr
WRITE(11,’(/A,2F12.4)’)’Limits of Integration ’,limits1
WRITE(11,’(A,I5)’)’Low Order Gauss-Legendre Rule’,nsp1
WRITE(11,’(A,I5)’)’High Order Gauss-Legendre Rule’,nsp2
conv1=.FALSE.
DO
area=zero; tot_err=zero; ct=0; cf=0
DO i=1,nr1
IF(.NOT.conv1(i))THEN; a=limits1(i,1); b=limits1(i,2)
nsp1=UBOUND(samp1,1); nsp2=UBOUND(samp2,1)
wr=b-a; hr=pt5*wr; area1=zero; area2=zero
DO j=1,nsp1

area1=area1+wt1(j)*hr*f63(a+hr*(one-samp1(j,1)))
END DO
DO j=1,nsp2

area2=area2+wt2(j)*hr*f63(a+hr*(one-samp2(j,1)))
END DO
errest=area1-area2; tol=MAX(abserr,relerr*ABS(area2))
ans=area2; verdict=.FALSE.
IF(ABS(errest)<tol)verdict=.TRUE.
answer1(i)=ans; conv1(i)=verdict; err1(i)=errest

Numerical Integration 281

END IF
IF(conv1(i))THEN; ct=ct+1; ELSE; cf=cf+1; END IF
area=area+answer1(i); tot_err=tot_err+err1(i)

END DO
IF(cf==0)THEN
WRITE(11,’(A,I5)’)"Number of Repetitions ",nr1
WRITE(11,’(/A)’)" *****Strip Limits***** Strip Area&
& Error"

DO i=1,nr1
WRITE(11,’(2E12.4,2E16.8)’)limits1(i,:),answer1(i),err1(i)

END DO
WRITE(11,’(/A,2E16.8)’)"Solution and Total Error", &
area,tot_err; EXIT

END IF
limits2=limits1; answer2=answer1; conv2=conv1; err2=err1
nr2=nr1; nr1=ct+2*cf
DEALLOCATE(answer1,conv1,err1,limits1)
ALLOCATE(answer1(nr1),conv1(nr1),err1(nr1),limits1(nr1,2))
conv1=.FALSE.; inew=0
DO i=1,nr2
IF(conv2(i))THEN; inew=inew+1
limits1(inew,:)=limits2(i,:); answer1(inew)=answer2(i)
err1(inew)=err2(i); conv1(inew)=.TRUE.

ELSE
inew=inew+1; limits1(inew,1)=limits2(i,1)
limits1(inew,2)=(limits2(i,1)+limits2(i,2))*pt5
inew=inew+1
limits1(inew,1)=(limits2(i,1)+limits2(i,2))*pt5
limits1(inew,2)=limits2(i,2)

END IF
END DO
DEALLOCATE(answer2,conv2,err2,limits2)
ALLOCATE(answer2(nr1),conv2(nr1),err2(nr1),limits2(nr1,2))

END DO
CONTAINS

FUNCTION f63(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f63
f63=x**(1.0_iwp/7.0_iwp)/(x**2.0_iwp+1.0_iwp)
RETURN
END FUNCTION f63

END PROGRAM p63

282 Numerical Methods for Engineers

List 6.3:

Scalar integers:
cf counts .FALSE. strips
ct counts .TRUE. strips
i simple counter
inew simple counter
nr1 number of strips in current iteration
nr2 number of strips in next iteration
nsp1 number of sampling points in rule number 1
nsp2 number of sampling points in rule number 2

Scalar reals:
a lower limit of integration
abserr absolute error bound
ans area of an individual strip
area total area
b upper limit of integration
errest estimated error of an individual strip
one set to 1.0
pt5 set to 0.5
relerr relative error bound
tot_err estimated total error
zero set to 0.0

Scalar logicals:
verdict .TRUE. if error bounds of strip satisfied

Dynamic real arrays:
answer1 holds strip areas in current iteration
answer2 holds strip areas in next iteration
err1 holds errors of strips in current iteration
err2 holds errors of strips in next iteration
limits1 holds limits of integration in current iteration
limits2 holds limits of integration in next iteration
samp1 holds sampling points for rule number 1
samp2 holds sampling points for rule number 2
wt1 holds weighting coefficients for rule number 1
wt2 holds weighting coefficients for rule number 2
Dynamic logical arrays:
conv1 holds .TRUE. or .FALSE. for all strips in current iteration
conv2 holds .TRUE. or .FALSE. for all strips in next iteration

Numerical Integration 283

The program makes use of two library subroutines from nm_lib, namely
gauss_legendre as used in Program 6.2, and adapt. Subroutine adapt esti-
mates the area of each strip and returns the LOGICAL variable verdict that
is .TRUE. if the accuracy criteria are satisfied and .FALSE. if not.

The program estimates the integral

I =
∫ b

a

f(x) dx

to an accuracy defined by the user in the form of the maximum permissible
absolute and relative errors over each strip. The program uses two Gauss-
Legendre rules of different accuracy levels.

The example problem used here to illustrate the adaptive approach is the
integral

I =
∫ 1

0

x1/7

(x2 + 1)
dx

where the function to be integrated has been programmed into the f63 at the
end of the main program.

Input for Program 6.3 is given in Data 6.3 and consists of the limits of
integration 0.0 and 1.0 which are read into the array limits1, the absolute and
relative error bounds which are read into abserr=1.e-3 and relerr=1.e-3
respectively, and finally the number of sampling points for each of the Gauss-
Legendre rules to be applied over each strip read into nsp1 and nsp2.

Limits of integration a b
0.0 1.0

Error bounds abserr relerr
1.e-3 1.e-3

Number of sampling points nsp1 nsp2
in the two rules 1 4

Data 6.3: Adaptive Gauss-Legendre rules

---Adaptive Gauss-Legendre Rules---

Absolute Error Tolerance 0.1000E-02
Relative Error Tolerance 0.1000E-02

Limits of Integration 0.0000 1.0000
Low Order Gauss-Legendre Rule 1
High Order Gauss-Legendre Rule 4
Number of Repetitions 7

284 Numerical Methods for Engineers

*****Strip Limits***** Strip Area Error
0.0000E+00 0.3125E-01 0.16702531E-01 0.54465760E-03
0.3125E-01 0.6250E-01 0.20089520E-01 0.49172107E-04
0.6250E-01 0.1250E+00 0.44058131E-01 0.12112609E-03
0.1250E+00 0.2500E+00 0.94711137E-01 0.35966429E-03
0.2500E+00 0.3750E+00 0.96258990E-01 0.18593671E-03
0.3750E+00 0.5000E+00 0.93126544E-01 0.10465749E-03
0.5000E+00 0.1000E+01 0.30689542E+00 0.21998188E-03

Solution and Total Error 0.67184228E+00 0.15851962E-02

Results 6.3: Adaptive Gauss-Legendre rules

The basis of the method is that the second rule should be significantly more
accurate than the first, so nsp2>>nsp1. Strips that pass the accuracy test are
not visited again, but strips that fail the accuracy test are split into two and
their areas and error estimates recalculated.

In this example, the more accurate rule is given four sampling points (nsp2=
4) and the less accurate rule, one sampling point (nsp1=1, Midpoint rule).
For the purposes of illustration in this example, the error bounds have been
made quite large so that the method does not generate too many strips.

The results shown in Results 6.3 indicate that seven strips were generated
by the adaptive algorithm across the range, with strip widths varying from
0.03125 to 0.5. The overall result, obtained by summing the areas of each
strip (computed using the more accurate rule), is given as 0.6718. An overall
error estimate of 0.0016 is also provided, which is obtained by summing the
error estimates of each strip. The computed area of each strip will have an
estimated error that is smaller than the error bound, given as the larger of
the absolute and relative errors. Figure 6.12 shows the locations of the strips
following application of the adaptive algorithm.

Fortran95 allows the use of RECURSIVE FUNCTIONs as an alternative to the
above approach which can lead to more compact algorithms.

6.5 Special integration rules

The conventional rules considered so far incorporated finite limits of inte-
gration, and placed no restriction on the form of the function to be integrated.
In this section, some rather more specialized rules are described, which are
customized for certain classes of problems that are not conveniently tackled
using the conventional approaches.

Numerical Integration 285

Figure 6.12: Location of strips at convergence from Program 6.3 example.

6.5.0.1 Gauss-Laguerre rules

Gauss-Laguerre rules are specifically designed for integration of an expo-
nentially decaying function of the form

∫ ∞

0

e−xf(x) dx ≈
n∑

i=1

wif(xi) (6.60)

The weights and sampling points for this rule assume the presence of the
exponential term and the semi-infinite range of integration. It should be noted
from the right-hand side of equation (6.60) that the sampling points for this
rule are substituted only into the function f(x) and not the whole integrand
e−xf(x).

The method is so called because the sampling points are the roots of a
family of polynomials called Laguerre polynomials which take the form

Ln(x) = ex dn

dxn
(e−xxn) = 0 (6.61)

A summary of the weights and sampling points for this method up to n = 5
is given in Table 6.6. Note how rapidly the weighting coefficients diminish
as the order of the method is increased. Gauss-Laguerre rules can be derived
using Polynomial substitution as described in a previous section. For example,
substitution of f(x) = 1 into equation (6.60) yields the following relationships
for this rule

286 Numerical Methods for Engineers

n∑
i=1

wi = 1

(6.62)
n∑

i=1

wixi = 1

TABLE 6.6: Sampling Points and Weights
for Gauss-Laguerre rules
n xi wi

1 1.000000000000000 1.000000000000000

2 0.585786437626905 0.853553390593274
3.414213562373095 0.146446609406726

3 0.415774556783479 0.711093009929173
2.294280360279042 0.278517733569241
6.289945082937479 0.010389256501586

4 0.3225476896193923 0.603154104341634
1.7457611011583466 0.357418692437800
4.5366202969211280 0.038887908515005
9.3950709123011331 0.000539294705561

5 0.2635603197181409 0.521755610582809
1.4134030591065168 0.398666811083176
3.5964257710407221 0.075942449681708
7.0858100058588376 0.003611758679922

12.6408008442757827 0.000023369972386

Example 6.11

Estimate the value of

I =
∫ ∞

0

e−x sinx dx

using the three-point (n = 3) Gauss-Laguerre rule.

Solution 6.11

From Table 6.6 with n = 3

Numerical Integration 287

I ≈ 0.71109 sin(0.41577) + 0.27852 sin(2.29428) + 0.01039 sin(6.28995)
= 0.4960 (cf. exact solution 0.5)

Program 6.4: Gauss-Laguerre rules

PROGRAM p64
!---Gauss-Laguerre Rules---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,nsp; REAL(iwp)::area,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::samp(:,:),wt(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)nsp; ALLOCATE(samp(nsp,2),wt(nsp))
CALL gauss_laguerre(samp,wt); area=zero
DO i=1,nsp; area=area+wt(i)*f64(samp(i,1)); END DO
WRITE(11,’(A)’)"---Gauss-Laguerre Rules---"
WRITE(11,’(/,A,I7)’)"Gauss-Laguerre’s Rule ",nsp
WRITE(11,’(A,F12.4)’)"Computed result ",area
CONTAINS

FUNCTION f64(x)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x; REAL(iwp)::f64
f64=SIN(x)
RETURN
END FUNCTION f64

END PROGRAM p64

This program evaluates integrals of the form

I =
∫ ∞

0

e−xf(x) dx

The user provides the number of sampling points (nsp), and the corre-
sponding sampling points and weights are provided by library subroutine
gauss_laguerre.

The demonstration problem is the same as Example 6.11, namely

I =
∫ ∞

0

e−x sinx dx

288 Numerical Methods for Engineers

List 6.4:

Scalar integers:
i simple counter
nsp number of Gauss-Laguerre points

Scalar reals:
area holds running total of area from each sampling point
zero set to 0.0

Dynamic real arrays:
samp holds sampling points
wt holds weighting coefficients

which has been programmed into f64 at the end of the main program, and
will be solved this time with nsp=5 sampling points. Input and output to
Program 6.4 are given as Data 6.4 and Results 6.4. With 5 sampling points,
the computed result is 0.4989, which represent some improvement over the
solution of 0.4960 obtained in Example 6.11 with 3 sampling points. The
exact solution in this case is 0.5.

Number of sampling points nsp
5

Data 6.4: Gauss-Laguerre rules

---Gauss-Laguerre Rules---

Gauss-Laguerres Rule 5
Computed result 0.4989

Results 6.4: Gauss-Laguerre rules

6.5.1 Gauss-Chebyshev rules

This method is specially designed for integration of functions of the form

∫ 1

−1

f(x)
(1 − x)

1
2
dx ≈

n∑
i=1

wif(xi) (6.63)

In this case, the “weighting function” is (1 − x)−
1
2 and contains singular-

ities at x = ±1. As might be expected from the symmetry of the limits of
integration in equation (6.62), the weights and sampling points will also be

Numerical Integration 289

symmetrical about the middle of the range. It can be shown that the general
equation is of the form

∫ 1

−1

f(x)
(1 − x)

1
2
dx ≈ π

n

n∑
i=1

f

(
cos

2i− 1
2n

π

)
+

2π
22n(2n)!

f2n(x) (6.64)

and it is left to the reader to compute the required sampling points. The
weighting coefficients are seen to involve simple multiples of π.

6.5.2 Fixed weighting coefficients

Using the polynomial substitution technique, many different variations on
the methods already described are possible. In the Newton-Cotes approaches,
the sampling points were prescribed and the weighting coefficient treated as
unknowns. In the Gauss-Legendre approaches, both sampling points and
weighting coefficients were treated as unknowns.

A further variation could be to fix the weighting coefficients and treat the
sampling points as unknowns. A special case of this type of rule would be
where all weighting coefficients are equal to 2/n, leading to a rule of the form

∫ 1

−1

f(x) dx ≈ 2
n

n∑
i=1

f(xi) (6.65)

It may be noted that when n = 2, the rule will be identical to the corre-
sponding Gauss-Legendre rule.

Consider then the case of n = 3, hence

∫ 1

−1

f(x) dx ≈ 2
3

[f(x1) + f(x2) + f(x3)] (6.66)

By inspection, x1 = −x3 and x2 = 0, so only one unknown remains to be
found.

Using Polynomial Substitution, let f(x) = x2 giving

∫ 1

−1

x2 dx =
2
3

=
2
3
[
x2

1 + 0 + x2
1)
]

(6.67)

thus x2
1 = 1

2 , x1 = −x3 = −
√

1
2 and equation(6.65) becomes

∫ 1

−1

f(x) dx ≈ 2
3

[
f(−

√
1
2
) + f(0) + f(

√
1
2
)

]
(6.68)

290 Numerical Methods for Engineers

6.5.3 Hybrid rules

Hybrid rules refer to all other combinations, in which some sampling points
and/or weighting coefficients are prescribed, but not others. For example,
Lobatto rules always sample at the limits of integration, but allow the inter-
mediate sampling points to be optimally placed. In general, these rules can
be written as

∫ 1

−1

f(x) dx ≈ w1f(−1) +
n−1∑
i=2

wif(xi) + wnf(1) (6.69)

It may be noted that when n = 2, the rule will be identical to the cor-
responding Newton-Cotes rule (Trapezoid rule) and for higher order rules of
this type, w1 = wn and the remaining weights and sampling points will also
be symmetrical about the middle of the range.

Using Polynomial Substitution, it is left to the reader to show that the
four-point rule (n = 4) of this type will be of the form

∫ 1

−1

f(x) dx ≈ 1
6
f(−1) +

5
6
f(−

√
1
5
) +

5
6
f(

√
1
5
) +

1
6
f(1) (6.70)

6.5.4 Sampling points outside the range of integration

All the methods of numerical integration described so far involved sampling
points within the range of integration. Although the majority of problems will
be of this type, there exists an important class of rule used in the solution of d-
ifferential equations called “predictors” which require sampling points outside
the range of integration.

For example with reference to Figure 6.13, consider a three-point (n = 3)
integration rule of the type

∫ x4

x3

f(x) dx ≈ w1f(x1) + w2f(x2) + w3f(x3) (6.71)

The sampling points include the lower limits of integration and two more
points to the left. Since the sampling points are equally spaced at h apart,
this rule is of the Newton-Cotes type.

Derivation of this rule by Polynomial Substitution is facilitated by a tem-
porary transformation of the problem as follows

∫ h

0

f(x) dx ≈ w1f(−2h) + w2f(−h) + w3f(0) (6.72)

The three unknown weights can be found by forcing the rule to be exact for
f(x) up to degree 2; thus let f(x) = 1, x and x2 to generate three equations
leading to

Numerical Integration 291

Figure 6.13: Sampling points outside the range of integration.

∫ h

0

f(x) dx ≈ h

12
[5f(−2h)− 16f(−h) + 23f(0)] (6.73)

The general form can then be retrieved as

∫ x4

x3

f(x) dx ≈ h

12
[5f(x1)) − 16f(x2) + 23f(x3)] (6.74)

Higher order “predictors” of this type can be derived by similar means; for
example a four-point (n = 4) rule is given by

∫ x5

x4

f(x) dx ≈ h

24
[−9f(x1)) + 37f(x2) − 59f(x3) + 55f(x4)] (6.75)

and is exact for f(x) up to degree 3. Formulas such as those given by e-
quations (6.73) and (6.74) are called Adams-Bashforth predictors, and will
be encountered again in Chapter 7 which deals with the solution of ordinary
differential equations.

292 Numerical Methods for Engineers

6.6 Multiple integrals

6.6.1 Introduction

In engineering analysis we are frequently required to integrate functions
of more than one variable over an area or volume. Analytical methods for
performing multiple integrals will be possible in a limited number of cases,
but in this section we will consider numerical integration techniques.

Consider integration of a function of two variables over the two-dimensional
region R as shown in Figure 6.14. The function f(x, y) could be considered
to represent a third dimension coming out of the page at right angles over the
region R.

Figure 6.14: Integration over a 2-d region R.

The required integral is

I =
∫ ∫

R

f(x, y) dx dy (6.76)

By extrapolation of the techniques described previously for a single integral,
double integrals involving two variables will lead to integration rules of the
form

Numerical Integration 293

∫ ∫
R

f(x, y) dx dy ≈
n∑

i=1

wif(xi, yi) (6.77)

Sampling points now lie in the plane ofR and involve coordinates (xi, yi), i =
1 . . . n where the function is to be evaluated. Each function evaluation is
weighted by wi and the sum of the weights must add up to the area of R.

Clearly, a problem arises in defining explicitly the limits of integration for
an irregular region such as that shown in Figure 6.14. In practice, it may be
sufficient to subdivide the irregularly shaped region into a number of smaller
simple subregions (e.g., rectangles), over which numerical integration can be
easily performed. The final approximate result over the full region R would
then be obtained by adding together the solutions obtained over each subre-
gion. This approach is analogous to the “repeated” rules covered earlier in
the chapter.

Initially, we consider integration over rectangular regions which lie parallel
to the Cartesian coordinate directions, as this greatly simplifies the definition
of the limits. Later on, the concepts are extended to integration over gen-
eral quadrilateral and triangular regions in the xy plane. All the methods
described in this Section are readily extended to triple integrals.

6.6.1.1 Integration over a rectangular region

Consider, in Figure 6.15, integration of a function f(x, y) over
the rectangular region shown. As the boundaries of the rectangle lie parallel

to the Cartesian coordinate directions, the variables can be uncoupled, and
any of the methods described previously can be applied directly.

Figure 6.15: Trapezoid rule over a rectangular region.

294 Numerical Methods for Engineers

Newton-Cotes

For example, the Trapezoid rule applied in each direction would lead to four
sampling points (n = 4), with one at each corner of the rectangle as shown,
leading to the rule

∫ y2

y1

∫ x2

x1

f(x, y) ≈ 1
4
hk [f(x1, y1) + f(x2, y1) + f(x1, y2) + f(x2, y2)] (6.78)

Simpson’s rule applied in each direction would lead to the nine sampling
points (n = 9) as shown in Figure 6.16, leading to the rule

∫ y3

y1

∫ x3

x1

f(x, y) ≈ 1
9
hk [f(x1, y1) + 4f(x2, y1) + f(x3, y1)+

4f(x1, y2) + 16f(x2, y2) + 4f(x3, y2) +
f(x1, y3) + 4f(x2, y3) + f(x3, y3)] (6.79)

Figure 6.16: Simpson’s/Trapezoid rule over a rectangular region.

It should be noted that the weighting coefficients in both (6.77) and (6.78)
come from a simple product of the weighting coefficients that would have been
obtained in each direction considered separately.

Numerical Integration 295

Example 6.12

Estimate the value of

I =
∫ 3

1

∫ 2

1

xy(1 + x) dx dy

using the Trapezoid rule in each direction.

Solution 6.12

In one-dimension, the Trapezoid rule has 2 sampling points, so in a double
integral we will use n = 22 = 4 sampling points. With reference to Figure
6.16, h = 1 and k = 2, so from equation (6.77)

I ≈ 1
2
hk [f(1, 1) + f(2, 1) + f(1, 2) + f(2, 2)]

= 16.0000 (cf. exact solution 15.3333)

Example 6.13

Estimate the value of

I =
∫ 3

1

∫ 2

1

xy(1 + x) dx dy

using Simpson’s rule in each direction.

Solution 6.13

In one-dimension, the Simpson’s rule has 3 sampling points, so in a double
integral we will use n = 32 = 9 sampling points. With reference to Figure
6.16, h = 0.5 and k = 1, so from equation (6.78)

I ≈ 1
18

[f(1, 1) + 4f(1.5, 1) + f(2, 1)+

4f(1, 2) + 16f(1.5, 2) + 4f(2, 2) +
f(1, 3) + 4f(1.5, 3) + f(2, 3)]

= 15.3333

In this instance, it was inefficient to use Simpson’s rule in both directions.
The exact solution could also have been achieved with Simpson’s rule in the
x-direction and the Trapezoid rule (say) in the y-direction. In this case we
would have used n = 3 × 2 = 6 sampling points (circled in Figure 6.16),
leading to

296 Numerical Methods for Engineers

I ≈ 1
6

[f(1, 1) + 4f(1.5, 1) + f(2, 1) + f(1, 3) + 4f(1.5, 3) + f(2, 3)]

= 15.3333

Gauss-Legendre
Gauss-Legendre rules can also be applied to multiple integrals of this type,

but care must be taken to find the correct locations of the sampling points.
One approach would be to perform a coordination transformation so that
the limits of integration in each direction become ±1. This would enable
the weights and sampling points from Table 6.4 to be used directly. The
general topic of transformation is covered in the next section on integration
over general quadrilateral areas.

An alternative approach for rectangular regions is to scale the weights and
proportion the sampling points from Table 6.4 about the midpoint of the
range in each of the coordinate directions.

Consider two-point Gauss-Legendre integration over the rectangular region
shown in Figure 6.17.

Figure 6.17: Two-point Gauss-Legendre over a rectangular region.

In the x-direction the sampling points will be located at

x1 = ax + h− 1√
3
h and x2 = ax + h+

1√
3
h (6.80)

with corresponding weighting coefficients w1 = w2 = h. Similarly in the
y-direction the sampling points will be located at

Numerical Integration 297

y1 = ay + k − 1√
3
k and y2 = ay + k +

1√
3
k (6.81)

with corresponding weighting coefficients w1 = w2 = k, hence the rule be-
comes

∫ by

ay

∫ bx

ax

f(x, y) dx dy ≈ hk [f(x1, y1) + f(x2, y1) + f(x1, y2) + f(x2, y2)]

(6.82)

Example 6.14

Estimate the value of

I =
∫ 0

−1

∫ 2

0

x3y4 dx dy

using the 2-point Gauss-Legendre rule in each direction.

Solution 6.14

In this double integral we will use n = 22 = 4 sampling points. With
reference to Figure 6.17, h = 1 and k = 0.5, so from equations (6.79) and
(6.80) the sampling points are located at

x1 = 0.4226 x2 = 1.5774
y1 = −0.7887 x2 = −0.2113

Hence from equation (6.81)

I ≈ 0.5 [f(0.4226,−0.7887)+ f(1.5774,−0.7887)
+f(0.4226,−0.2113)+ f(1.5774,−0.2113)]

= 0.7778 (cf. exact solution 0.8)

In this example, the 2-point rule is capable of exact integration in the x-
direction, but not in the y-direction.

By similar reasoning, the three-point Gauss-Legendre rule shown in Figure
6.18 leads to the following sampling points and weighting coefficients in x

298 Numerical Methods for Engineers

x1 = ax + h−
√

3
5
h x2 = ax + h x3 = ax + h+

√
3
5
h

(6.83)

w1 =
5
9
h w2 = 8

9h w3 =
5
9
h

and in y

y1 = ay + k −
√

3
5
k y2 = ay + k y3 = ay + k +

√
3
5
k

(6.84)

w1 =
5
9
k w2 = 8

9k w3 =
5
9
k

hence the rule becomes

∫ by

ay

∫ bx

ax

f(x, y) dx dy ≈ hk

81
[25f(x1, y1) + 40f(x2, y1) + 25f(x3, y1)

+ 40f(x1, y2) + 64f(x2, y2) + 40f(x3, y2) (6.85)
+ 25 f(x1, y3) + 40f(x2, y3) + 25f(x3, y3)]

Figure 6.18: Three-point Gauss-Legendre over a rectangular region.

Numerical Integration 299

Example 6.15

Estimate the value of

I =
∫ 0

−1

∫ 2

0

x3y4 dx dy

using the 3-point Gauss-Legendre rule in each direction.

Solution 6.15

In this double integral we will use n = 32 = 9 sampling points. With
reference to Figure 6.18, h = 1 and k = 0.5, so from equations (6.82) and
(6.83) the sampling points are located at

x1 = 0.2254 x2 = 1 x3 = 1.7746
y1 = −0.8873 y2 = −0.5 y3 = −0.1127

hence from equation (6.84), we get I = 0.8 which is the exact solution.

An exact solution to the integration of the quartic terms in y was achieved
by the three-point rule in this case, although a two-point rule would have been
sufficient in the x-direction making a total of six sampling points. Although
it is easy to implement different integration rules in different directions, most
numerical integration software packages use the same rule in all directions.

6.6.2 Integration over a general quadrilateral area

We now turn our attention to numerical integration of a function f(x, y)
over a general quadrilateral area such as that shown in Figure 6.19. Analytical
integration of functions over a nonrectangular region is complicated by the
variable limits. It should also be noted that the required order of integration
to obtain exact solutions over such regions is higher than for regions whose
boundaries are parallel to the Cartesian coordinate directions.

The quadrilateral could be broken down into subregions consisting of rectan-
gles and triangles, so consider integration of f(x, y) = xmyn over the hatched
triangular region in Figure 6.19

I =
∫ x3

x2

∫ g(x)

y2

xmyn dy dx (6.86)

where g(x) is the equation of the straight line between corners 2 and 3.
Let the equation of g(x) be given by

g(x) = ax+ b (6.87)

300 Numerical Methods for Engineers

Figure 6.19: Integration over a general quadrilateral region.

Performing the inner integral first with respect to y, and substituting the
limits leads to

I =
1

n+ 1

∫ x3

x2

xm[(ax+ b)n+1 − yn+1
2] dx (6.88)

The remaining outer integral involves an (m+n+ 1)th order polynomial in
x, which indicates the order or the rule required for an exact solution. This
may be contrasted with the same function integrated over a rectangular region
as considered previously in examples 6.14 and 6.15. In those cases the order
of integration required for an exact solution was governed by the polynomial
of order m or n (whichever was the greater).

Consider Gauss-Legendre rules for integration of the problem shown in Fig-
ure 6.19. Before proceeding, we will perform a coordinate transformation,
which replaces the actual problem with integration over the region R, by a
normalized problem with integration over a square region with limits of inte-
gration in both directions of ±1 as shown in Figure 6.20, thus

I =
∫ ∫

R

f(x, y) dx dy ≡
∫ 1

−1

∫ 1

−1

g(ξ, η) dξ dη (6.89)

This is analogous to equation (6.52) considered earlier for a single variable.
A one-to-one correspondence between points in the two regions can be

achieved by the transformation relationships

x(ξ, η) = N1(ξ, η)x1 +N2(ξ, η)x2 +N3(ξ, η)x3 +N4(ξ, η)x4

y(ξ, η) = N1(ξ, η)y1 +N2(ξ, η)y2 +N3(ξ, η)y3 +N4(ξ, η)y4 (6.90)

Numerical Integration 301

Figure 6.20: Transformation from global to local coordinates.

where

N1(ξ, η) =
1
4
(1 − ξ)(1 − η)

N2(ξ, η) =
1
4
(1 − ξ)(1 + η)

N3(ξ, η) =
1
4
(1 + ξ)(1 + η) (6.91)

N4(ξ, η) =
1
4
(1 + ξ)(1 − η)

The N -functions are frequently called “shape functions” as used in finite
element theory (see Chapter 8), with the properties

Ni(ξj , ηj) =
{

1 if i = j
0 if i �= j

(6.92)

and

4∑
i=1

Ni = 1 (6.93)

Thus corner (x1, y1) is mapped onto (−1,−1) in the transformed space,
(x2, y2) onto (−1, 1) and so on. In addition, the line joining (x2, y2) to (x3, y3)
is mapped onto the line η = 1 etc.

The transformation indicated in equation (6.88) can therefore be written as

I =
∫ ∫

R

f(x, y) dx dy ≡
∫ 1

−1

∫ 1

−1

J(ξ, η) f(x(ξ, η), y(ξ, η)) dξ dη (6.94)

where J is called the “Jacobian” and is the scaling factor relating dx dy to
dξ dη.

302 Numerical Methods for Engineers

As indicated in equation (6.94), J is a function of position within the trans-
formed region and is computed as the determinant of the “Jacobian matrix”
(see Section 3.7.2) by

J(ξ, η) = det

∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

∣∣∣∣∣∣∣∣∣
(6.95)

The Jacobian matrix is readily computed from equations (6.90), thus

∂x

∂ξ
=
∂N1

∂ξ
x1 +

∂N2

∂ξ
x2 +

∂N3

∂ξ
x3 +

∂N4

∂ξ
x4

∂y

∂ξ
=
∂N1

∂ξ
y1 +

∂N2

∂ξ
y2 +

∂N3

∂ξ
y3 +

∂N4

∂ξ
y4

∂x

∂η
=
∂N1

∂η
x1 +

∂N2

∂η
x2 +

∂N3

∂η
x3 +

∂N4

∂η
x4 (6.96)

∂y

∂η
=
∂N1

∂η
y1 +

∂N2

∂η
y2 +

∂N3

∂η
y3 +

∂N4

∂η
y4

where from equations (6.90)

∂N1

∂ξ
= −1

4
(1 − η)

∂N3

∂η
=

1
4
(1 + ξ) and so on. (6.97)

It should be noted that the shape functions from equation (6.90) are only
smooth functions of ξ and η provided all interior angles of the untransformed
quadrilateral are less than 180o.

Program 6.5: Multiple integrals by Gauss-Legendre rules

PROGRAM p65
!---Multiple Integrals by Gauss-Legendre Rules---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::i,ndim,nod,nsp; REAL(iwp)::res,zero=0.0_iwp
REAL(iwp),ALLOCATABLE::coord(:,:),der(:,:),fun(:),samp(:,:), &
wt(:)

Numerical Integration 303

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)ndim
IF(ndim==1)nod=2; IF(ndim==2)nod=4; IF(ndim==3)nod=8
ALLOCATE(coord(nod,ndim),der(ndim,nod),fun(nod))
READ(10,*)(coord(i,:),i=1,nod),nsp
ALLOCATE(samp(nsp,ndim),wt(nsp))
CALL gauss_legendre(samp,wt); res=zero
DO i=1,nsp; CALL fun_der(fun,der,samp,i)
res=res+determinant(MATMUL(der,coord))*wt(i)* &
f65(MATMUL(fun,coord))

END DO
WRITE(11,’(A)’)"--Multiple Integrals by Gauss-Legendre Rules--"
WRITE(11,’(/A,I5/)’)"Number of dimensions ",ndim
DO i=1,nod
WRITE(11,’(A,3F12.4)’)’Coordinates (x,y[,z])’,coord(i,:)

END DO
WRITE(11,’(/A,I5)’)"Number of sampling points",nsp
WRITE(11,’(/A,F12.4)’)"Computed result ",res
CONTAINS

FUNCTION f65(point)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::point(:)
REAL(iwp)::x,y,z,f65
x=point(1); y=point(2); z=point(3)
f65=x**2*y**2

! f65=x**3-2*y*z
RETURN
END FUNCTION f65

END PROGRAM p65

This program can perform single, double or triple integrals using Gauss-
Legendre rules. The user specifies the dimensionality of the problem in the
data through the input parameter ndim. Depending on the value of ndim, the
following problems can be solved:

ndim = 1(line) I ≈ ∫
f(x) dx nsp = 1, 2, 3, ...

ndim = 2(quadrilateral) I ≈ ∫ ∫
f(x, y) dx dy nsp = 1, 4, 9, ...

ndim = 3(hexahedron) I ≈ ∫ ∫ ∫
f(x, y, z) dx dy dz nsp = 1, 8, 27, ...

The user provides the number of sampling points (nsp) and the corre-
sponding sampling points and weights are provided by library subroutine

304 Numerical Methods for Engineers

List 6.5:

Scalar integers:
i simple counter
ndim number of dimensions
nod number of corners of domain of integration
nsp total number of sampling points

Scalar reals:
res holds running total of result from each sampling point
zero set to 0.0

Dynamic real arrays:
coord coordinates defining limits of integration
der derivatives of shape functions with respect to local coordinates
fun shape functions
samp local coordinates of sampling points
wt weighting coefficients at each sampling point

gauss_legendre. It should be noted above that nsp in this context rep-
resents the total number of Gauss-Legendre sampling points assuming the
same rule is being used in each of the (local) coordinate directions. Thus in
2-d, nsp will be a perfect square and in 3-d, a perfect cube.

Figure 6.21: Domain of integration in first Program 6.5 example.

The first demonstration problem is a double integral

I =
∫ ∫

R

x2y2 dx dy

over the quadrilateral region shown in Figure 6.21. The function has been

Numerical Integration 305

programmed into f65 at the end of the main program.
Input shown in Data 6.5a provide the dimensionality of the problem (ndim),

followed by the (x, y) coordinates of the corners of the quadrilateral (coord).
It is important that these coordinates are provided in a clockwise sense, since
this is the order in which the shape functions have been arranged in the
subroutine library. The final data item refers to the number of sampling points
required which is set to nsp=9 implying three Gauss-Legendre sampling points
in each of the local coordinate directions.

ndim
2
Corner coordinates (clockwise)
0.0 0.0
1.0 2.0
4.0 3.0
6.0 1.0

nsp
9

Data 6.5a: Multiple Integrals (first example)

--Multiple Integrals by Gauss-Legendre Rules--

Number of dimensions 2

Coordinates (x,y[,z]) 0.0000 0.0000
Coordinates (x,y[,z]) 1.0000 2.0000
Coordinates (x,y[,z]) 4.0000 3.0000
Coordinates (x,y[,z]) 6.0000 1.0000

Number of sampling points 9

Computed result 267.4389

Results 6.5a: Multiple Integrals (first example)

The output given in Results 6.5a gives a result of 267.4389. This is the
exact solution as expected in this case. With reference to equation (6.87),
exact integration in this case requires integration of a 5th order polynomial
which 3-point Gauss-Legendre is able to do.

A second example of the use of Program 6.5 demonstrates a triple integral
of the form

I =
∫ 4

−4

∫ 6

0

∫ 3

−1

(x3 − 2yz) dx dy dz

306 Numerical Methods for Engineers

The integration domain is a cuboid of side lengths 4, 6 and 8 in the x, y
and z-directions as shown in Figure 6.22.

Figure 6.22: Domain of integration in second Program 6.5 example.

ndim
3
Corner coordinates (clockwise,front then back)
-1.0 0.0 -4.0
-1.0 0.0 4.0
3.0 0.0 4.0
3.0 0.0 -4.0

-1.0 6.0 -4.0
-1.0 6.0 4.0
3.0 6.0 4.0
3.0 6.0 -4.0

nsp
8

Data 6.5b: Multiple Integrals (second example)

---Multiple Integrals by Gauss-Legendre Rules---

Number of dimensions 3

Numerical Integration 307

Coordinates (x,y[,z]) -1.0000 0.0000 -4.0000
Coordinates (x,y[,z]) -1.0000 0.0000 4.0000
Coordinates (x,y[,z]) 3.0000 0.0000 4.0000
Coordinates (x,y[,z]) 3.0000 0.0000 -4.0000
Coordinates (x,y[,z]) -1.0000 6.0000 -4.0000
Coordinates (x,y[,z]) -1.0000 6.0000 4.0000
Coordinates (x,y[,z]) 3.0000 6.0000 4.0000
Coordinates (x,y[,z]) 3.0000 6.0000 -4.0000

Number of sampling points 8

Computed result 960.0000

Results 6.5b: Multiple Integrals (second example)

This time the program transforms the 3-d domain into normalized local
coordinates (ξ, η, ζ) with limits of ±1 in each direction. Subroutine fun_deriv
provides the values of the shape functions and their derivatives for hexahedral
shapes with respect to the local coordinates at each of the nsp sampling points.
A running total of the estimated integral accumulated from all the sampling
points is held in res and printed.

Input and output for this example are shown in Data 6.5b and Results 6.5b
respectively. Since the domain of integration is parallel with the coordinate
directions, the variables can be considered

separately. The highest order term in f(x, y, z) is the cubic term x3, thus a
two-point Gauss-Legendre rule will give exact solutions with nsp=23=8 sam-
pling points. For a three-dimensional problem, ndim=3 and the coordinates of
the corners must be read in clockwise for any front plane, followed by clock-
wise for the corresponding back plane. The exact result of 960 is returned as
indicated in Results 6.5b.

6.7 Exercises

1. Calculate the area of a quarter of a circle of radius a by the following
methods and compare with the exact result πa2/4.

Equation of a circle:x2 + y2 = a2

(a) Rectangle rule
(b) Trapezoid rule
(c) Simpson’s rule
(d) 4-point Newton-Cotes

308 Numerical Methods for Engineers

(e) 5-point Newton-Cotes

Answer: (a) a2, (b) 0.5a2, (c) 0.7440a2, (d) 0.7581a2, (e) 0.7727a2

2. Attempt exercise 1 above using the following methods repeated twice.

(a) Rectangle rule
(b) Trapezoid rule
(c) Simpson’s rule

Answer: (a) 0.9330a2, (b) 0.6830a2, (c) 0.7709a2

3. Calculate the area of a quarter of an ellipse whose semi-axes are a and
b (a = 2b) by the following methods, and compare with the exact result
of πb2/2.

Equation of an ellipse:
x2

a2
+
y2

b2
= 1

(a) Rectangle rule
(b) Trapezoid rule
(c) Simpson’s rule
(d) 4-point Newton-Cotes
(e) 5-point Newton-Cotes

Answer: (a) 2b2, (b) b2, (c) 1.4880b2, (d) 1.5161b2, (e) 1.54542

4. Attempt exercise 3 above using the following methods repeated twice.

(a) Rectangle rule
(b) Trapezoid rule
(c) Simpson’s rule

Answer: (a) 1.8660b2, (b) 1.3660b2, (c) 1.5418b2

5. Determine the weights w1, w2 and w3 in the integration rule∫ 2h

0

f(x) dx ≈ w1f(0) + w2f(h) + w3f(2h)

which ensure that it is exact for all polynomials f(x) of degree 2 or less.
Show that the formula is in fact also exact for f(x) of degree 3.
Answer: w1 = h/3,w2 = 4h/3,w3 = h/3

6. How many repetitions of the Trapezoid rule are necessary in order to
compute ∫ π/3

0

sinxdx

accurate to three decimal places?
Answer: 11 repetitions.

Numerical Integration 309

7. Compute the volume of a hemisphere by numerical integration using the
lowest order Newton-Cotes method that would give an exact solution.
Answer: Simpson’s rule gives 2πr3/3

8. Estimate ∫ 3

0

(x3 − 3x2 + 2) dx

using (a) Simpson’s rule and (b) the Trapezoid rule repeated three times.
Which method is the most accurate in this case and why.
Answer: (a) −0.75 (Simpson’s rule is exact for cubics), (b) 0.0!

9. From the tabulated data given, estimate the area between the function
y(x), and the lines x = 0.2 and x = 0.6.

x y

0.2 1.221403
0.3 1.349859
0.4 1.491825
0.5 1.648721
0.6 1.822119

using the following method repeated twice.

(a) Simpson’s rule

(b) Trapezoid rule

(c) Midpoint rule

If the exact solution is given by y(0.6)−y(0.2) comment on the numerical
solution obtained.
Answer: (a) 0.6007, (b) 0.6027, (c) 0.5997

10. Calculate the area of a quarter of a circle of radius a by the following
methods and compare with the exact result of πa2/4.

Equation of a circle: x2 + y2 = a2

(a) Midpoint rule

(b) 2-point Gauss-Legendre

(c) 3-point Gauss-Legendre

Answer: (a) 0.8660a2, (b) 0.7961a2, (c) 0.7890a2

11. Attempt exercise 10 using the same methods repeated twice.
Answer: (a) 0.8148a2, (b) 0.7891a2, (c) 0.7867a2

310 Numerical Methods for Engineers

12. Use Polynomial Substitution to find the weighting coefficients w0, w1

and w2, and the sampling points x0, x1, and x2 in the Gauss-Legendre
formula ∫ 1

−1

= w1f(x1) + w2f(x2) + w3f(x3)

You may assume symmetry of weights and sampling points about the
middle of the range.
Answer: w1 = w2 = 5/9, w2 = 8/9, x1 = −x3 = −1/

√
3, w2 = 0

13. Derive the two-point Gauss-Legendre integration rule, and use it to
estimate the area enclosed by the ellipse

x2

4
+
y2

9
= 1

Answer: 19.1067, 20.7846 (Exact: 18.8496)

14. Estimate ∫ 0.8

0.3

e−2x tanxdx

using the Midpoint rule repeated once, twice and three times.
Answer: 0.1020, 0.1002, 0.0999 (Exact: 0.0996)

15. Use Gauss-Legendre integration to find the exact value of∫ 1

0

(x7 + 2x2 − 1) dx

Answer: 4-point gives -0.2083

16. Estimate the value of ∫ 3

1

dx

(x4 + 1)1/2

using

(a) Midpoint rule
(b) 2-point Gauss-Legendre
(c) 3-point Gauss-Legendre

Answer: (a) 0.4851, (b) 0.5918, (c) 0.5951 (Exact: 0.5941)

17. Attempt exercise 16 using the same methods repeated twice.
Answer: (a) 0.5641, (b) 0.5947, (c) 0.5942 (Exact: 0.5941)

18. Use Gauss-Legendre integration with four sampling points to estimate
the value of

(a)
∫ 2

−2

dx

1 + x2
(a)

∫ 1

0

x exp(−3x2) dx

Answer: (a) 2.1346 (Exact: 2.2143) (b) 0.1584. (Exact: 0.1584)

Numerical Integration 311

19. Estimate the value of ∫ ∞

0

e−x cosxdx

using Gauss-Laguerre rules with

(a) 1-point

(b) 3-points

(c) 5-points

Answer: (a) 0.5403, (b) 0.4765, (c) 0.5005 (Exact: 0.5)

20. Determine approximate values of the integral∫ ∞

0

e−x

x+ 4
dx

by using Gauss-Laguerre rules with one, two and three sampling points.
Answer: 0.2000, 0.2059, 0.2063 (Exact: 0.2063)

21. Use two-point Gauss-Legendre integration to compute

∫ 2

1

∫ 4

3

f(x, y) dy dx

where f(x, y)= (a) xy, (b) x2y, (c) x3y, (d) x4y Check your estimates
against analytical solutions.
Answer: (a) 5.25, (b) 8.1667, (c) 13.125, (d) 21.6806 (approx)

22. Estimate the value of ∫ 1

0

∫ 1

0

e−x2
y2 dy dx

using Gauss-Legendre rules with (a) 1-point and (b) 2-points.
Answer: (a) 0.1947, (b) 0.2489

23. Use the minimum number of sampling points to find the exact value of
∫ 2

1

∫ 3

0

xy3 dy dx

Answer: Gauss-Legendre 1-point in x and 2-points in y gives 30.375

24. Estimate of value of ∫ 0

−2

∫ 3

0

ex sinxdx dy

Answer: 3-point Gauss-Legendre gives −2.4334

312 Numerical Methods for Engineers

25. Find the exact solution to ∫ ∫
R

x2y dx dy

where R is a region bounded by the (x, y) coordinates (0, 0), (0.5, 1),
(1.5, 1.5) and (2, 0.5).
Answer: 3-point Gauss-Legendre gives 1.5375

26. Estimate the triple integral

∫ 1

0

∫ 2

1

∫ 0.5

0

exyz dx dy dz

using Gauss-Legendre rules with (a) 1-point and (b) 2-points in each
direction.
Answer: (a) 0.6031, (b) 0.6127

27. Use numerical integration with the minimum number of sampling points
to exactly integrate the function f(x, y) = xy5 over the region shown in
Figure 6.23. Answer: 925.75

Figure 6.23

28. Derive the optimal values of the unknown weights and sampling point
in the following two-point numerical integration rule which samples the
function at the lower limit of integration and at one other location.

∫ 1

0

f(x)dx = w1f(0) + w2f(x1)

Numerical Integration 313

Estimate the value of: ∫ 2

−1

1
1 + x2

dx

using both the rule you have just derived and the conventional 2-point
Gauss-Legendre rule.
Answer: w1 = 1/4, w2 = 3/4, x1 = 2/3, 1.5, 1.846 (Exact: arctan(2) +
π/4 = 1.8925)

29. Derive the optimal values of the unknown weights and sampling points
in the following four-point numerical integration rule which samples the
function at the limits of integration and at two other locations.∫ 1

−1

f(x)dx = w−2f(−1) + w−1f(x−1) + w1f(x1) + w2f(1)

Use the rule you have just derived to estimate the value of:∫ 2

−1

1
1 + x2

dx

Answer: w−2 = w2 = 1/6, w−1 = w1 = 5/6, x−1 = −1/
√

5, x1 = 1/
√

5,
1.9168 (Exact: arctan(2) + π/4 = 1.8925)

30. Use a 4-point integration rule to estimate the value of:∫ 2

0

e−x(x2 + 3) dx

Answer: 3.2406 (Exact: −13e−2 + 5 = 3.2406)

31. Derive the optimal values of the unknown weights and sampling point
in the following two-point numerical integration rule∫ 1

0

f(x)dx = w1f(x1) + w2f(1)

The Seivert integral is defined:

S(x, θ) =
∫ θ

0

e−x sec φ dφ

Use the rule you have just derived to estimate S(1.0, π/3).
Answer: w1 = 3/4, w2 = 1/4, x1 = 1/3, 0.3064 (Exact: 0.3077)

32. Use 2-point Gauss-Legendre integration to estimate the value of∫ 1

−1.5

∫ 2

−1

ex sin y dx dy

Answer: −3.2130 (Exact: −3.2969)

314 Numerical Methods for Engineers

33. Estimate the value of ∫ 1

0

∫ ∞

0

e−x sinx sin y dx dy

as accurately as you can using three sampling points in each direction
(nine sampling points in total).
Answer: 0.228 (Exact: 0.2298)

34. A seven-point rule for numerically evaluating integrals over the triangu-
lar region shown in Figure 6.24 is given by

∫ 1

0

∫ 1−x

0

f(x, y) dy dx ≈
7∑
1

wi f(xi, yi)

with weights and sampling points as follows:

xi yi wi

0.3333 0.3333 0.2250
0.5000 0.5000 0.0667
0.0000 0.5000 0.0667
0.5000 0.0000 0.0667
1.0000 0.0000 0.0250
0.0000 1.0000 0.0250
0.0000 0.0000 0.0250

Use the rule to estimate

Figure 6.24

I =
∫ 1

0

∫ 1−x

0

(cos2 x− sin2 y) dy dx

Answer: 0.3550 (Exact: 0.3540)

Numerical Integration 315

35. An obscure numerical integration rule called Gauss-Griffiths (Griffiths,
1991) takes the general form

∫ 1

0

x f(x) dx =
n∑

i=1

wi xi f(xi)

Set up the equations that would enable you to derive the weights and
sampling points for the case when n = 2, but do not attempt to solve
the equations. If it is later shown that:

x1 = 0.355051 w1 = 0.512486
x2 = 0.844949 w2 = 0.376403

use the method to estimate: ∫ 1

0

x cosxdx

Answer: 0.38172 (Exact: cos(1) + sin(1) − 1 = 0.38177)

36. Use any suitable numerical integration rule(s) to estimate the value of:∫ ∞

0.3

(6x− x2 − 8)e−x dx

Answer: −2.1410

Chapter 7

Numerical Solution of Ordinary
Differential Equations

7.1 Introduction

The need to solve differential equations arises in a great many problem-
s of engineering analysis where physical laws are expressed in terms of the
derivatives of variables rather than just the variables themselves.

The solution to a differential equation essentially involves integration and
can sometimes be arrived at analytically. For example, the simplest type of
differential equation is of the form

dy

dx
= f(x) (7.1)

where f(x) is a given function of x, and y(x) is the required solution. Provided
f(x) can be integrated, the solution to equation (7.1) is of the form

y =
∫
f(x) dx+ C (7.2)

where C is an arbitrary constant. In order to find the value of C, some
additional piece of information is required, such as an initial value of y corre-
sponding to a particular value of x.

Differential equations can take many different forms and frequently involve
functions of x and y on the right hand side of equation (7.1). Before describ-
ing different solution techniques therefore, we need to define some important
classes of differential equations, as this may influence our method of tackling
a particular problem.

7.2 Definitions and types of ODE

Differential equations fall into two distinct categories depending on the
number of independent variables they contain. If there is only one independent

317

318 Numerical Methods for Engineers

variable, the derivatives will be “ordinary”, and the equation will be called
an “ordinary differential equation”. If more than one independent variable
exists, the derivatives will be “partial”, and the equation will be called a
“partial differential equation”.

Although ordinary differential equations (ODEs) with only one independent
variable may be considered to be a special case of partial differential equations
(PDEs), it is best to consider the solution techniques for the two classes quite
separately. The remainder of this chapter is devoted to the solution of ODEs
while an introduction to the solution of PDEs will be discussed in Chapter 8.

The “order” of an ODE corresponds to the highest derivative that appears
in the equation, thus

y′′ − 3y′ + 4 = y is second order (7.3)

where we use the notation

y′ =
dy

dx
; y′′ =

d2y

dx2
etc.

and
d4y

dx4
+
(
d2y

dx2

)2

= 1 is fourth order (7.4)

A “linear” ODE is one which contains no products of the dependent variable
or its derivatives, thus equation (7.3) is linear whereas (7.4) is nonlinear, due
to the squared term. A general nth order linear equation is given as

An(x)
dny

dxn
+An−1(x)

dn−1y

dxn−1
+ . . .+A1(x)

dy

dx
+A0(x)y = R(x) (7.5)

The “degree” of an ODE is the power to which the highest derivative is
raised, thus equations (7.3) and (7.4) are both first degree. A consequence
of this definition is that all linear equations are first degree, but not all first
degree equations are linear, for example,

y′′ + 2y′ + y = 0 is second order, first degree, linear, while (7.6)
y′′ + 2y′ + y2 = 0 is second order, first degree, nonlinear (7.7)

Nonlinear equations are harder to solve analytically and may have multiple
solutions.

The higher the order of a differential equation, the more additional infor-
mation must be supplied in order to obtain a solution. For example, equations
(7.8)-(7.10) are all equivalent statements mathematically, but the second order
equation (7.8) requires two additional pieces of information to be equivalent
to the first order equation (7.9) which only requires one additional piece of
information.

y′′ = y + x+ 1, y(0) = 0, y′(0) = 0 (7.8)
y′ = y + x, y(0) = 0 (7.9)
y = ex − x− 1 (7.10)

Numerical Solution of Ordinary Differential Equations 319

The third equation (7.10) is purely algebraic and represents the solution to
the two differential equations.

In general, to obtain a solution to an nth order ordinary differential equation
such as that given in equation (7.5), n additional pieces of information will
be required.

The way in which this additional information is supplied greatly influences
the method of numerical solution. If all the information is given at the same
value of the independent variable, such as in equations (7.8) and (7.9), the
problem is termed an “initial value problem” or IVP. If the information is
provided at different values of the independent variable, such as in the second
order system given by equation (7.11), the problem is termed a “boundary
value problem” or BVP

y′′ +
1
x
y′ − 1

x2
y =

6
x2
, y(1) = 1, y(1.5) = −1 (7.11)

It should also be noted that as first order equations only require one piece
of additional information, all first order equations may be treated as initial
value problems. Boundary value problems however will be at least of second
order.

The numerical solution techniques for initial and boundary value problems
differ substantially, so they will be considered separately in this Chapter.

7.3 Initial value problems

We will limit our discussion for now to the numerical solution of first order
equations subject to an initial condition of the form

dy

dx
= f(x, y), with y(x0) = y0 (7.12)

where f(x, y) is any function of x and y. The equation is first order and first
degree, however it could be linear or nonlinear depending on the nature of the
function f(x, y).

It may be noted that if f(x, y) is linear the equation can be solved analyti-
cally by separation of variables or by using an “integrating factor”. If f(x, y) is
nonlinear however, the analytical approach is greatly limited, and may prove
impossible. Only a limited number of nonlinear differential equations can be
solved analytically.

All numerical techniques for solving equation (7.12) involve starting at the
initial condition (x0, y0) and stepping along the x-axis. At each step, a new
value of y is estimated. As more steps are taken, the form of the required
solution y(x) is obtained.

320 Numerical Methods for Engineers

Fundamentally, the change in y caused by a change in x is obtained by

integrating
dy

dx
, thus

yi+1 − yi =
∫ xi+1

xi

dy

dx
dx (7.13)

where (xi, yi) represents the “old” solution at the beginning of the step, and
yi+1 is the “new” estimate of y corresponding to xi+1. The step length in x
is usually under the user’s control and is defined as h, thus

xi+1 − xi = h (7.14)

Rearrangement of equation (7.13) leads to

yi+1 = yi +
∫ xi+1

xi

dy

dx
dx (7.15)

or alternatively[
“new” value

of y

]
=
[

“old” value
of y

]
+
[

change in
y

]
(7.16)

Equations (7.15) and (7.16) give the general form of all the numerical solu-
tion techniques described in this section for advancing the solution of initial
value problems. In the previous chapter we integrated under a curve of y vs. x
to compute an “area”, but in this chapter we will be integrating under a curve
of y′ vs. x to compute the change in y. Many of the methods of numerical
integration described in the previous chapter still apply. The main difference
here is that the function to be integrated may depend on both x and y; thus
we will need to modify our methods to account for this.

There are two main approaches for performing the integration required by
equation (7.15):

(a) One-step methods,which use information from only one preceding point,
(xi, yi), to estimate the next point (xi+1, yi+1).

(b) Multi-step methods, which use information about several previous points,
(xi, yi), (xi−1, yi−1) . . . etc. to estimate the next point (xi+1, yi+1). These
methods are also sometimes known as “Predictor-Corrector” methods, since
each step can make use of two formulas; one that “predicts” the new solution
yi+1, and another that refines or “corrects” it.

One-step methods are self-starting, using only the initial condition provided,
whereas Multi-step methods require several consecutive initial values of x and
y to get started. These additional initial values may be provided by a One-step
method if not provided in the initial data.

We will concentrate initially on numerical solution techniques for a single
first order equation of the standard form given in equation (7.12).

Numerical Solution of Ordinary Differential Equations 321

It will be shown later in this section that higher order ODEs can be broken
down into systems of first order equations which can be solved by the same
methods.

7.3.1 One-step methods

One-step methods are so called, because information about one previous
step only is needed to generate the solution at the next step. This makes One-
step methods relatively easy to implement in a computer program. There are
many One-step methods of differing levels of complexity. As is typical of many
numerical methods, the more work done at each step, the greater the accuracy
that is usually obtained. The trade-off to be sought is between increasing the
work per step and decreasing the number of steps to span a given range. All
the one-step methods covered in this section are eventually implemented in
Program 7.1 described later in the Chapter.

7.3.1.1 The Euler method

This method has the advantage of simplicity; however it usually requires
small step lengths to achieve reasonable accuracy. The method is widely used
in codes that use “explicit” algorithms.

The numerical integration of equation (7.15) is performed using the Rectan-
gle rule (see Section 6.2.2) where the derivative is “sampled” at the beginning
of the step.

Starting with the standard problem

dy

dx
= f(x, y), with y(x0) = y0 (7.17)

the Euler method estimates the new value of y using the sequence

K0 = hf(x0, y0) (7.18)

y1 = y0 +K0 (7.19)

where
h = x1 − x0 (7.20)

The method is then repeated using the “new” initial conditions (x1, y1) to
estimate y2 and so on. In general we get

K0 = hf(xi, yi) (7.21)

yi+1 = yi +K0 (7.22)

where
h = xi+1 − xi (7.23)

322 Numerical Methods for Engineers

The similarity between equations (7.16) and (7.22) can be noted.

Figure 7.1 shows how the Euler method operates. The numerical approxi-
mate solution follows a straight line corresponding to the tangent at the be-
ginning of each step. Clearly an error is introduced by this assumption unless
the actual solution happens to be linear. Errors can accumulate quite rapidly
in this method unless a small step length h is used, but there is a limit to how
small h can be made from efficiency and machine accuracy considerations.

Figure 7.1: The Euler Method.

Example 7.1

Given the equation

y′ =
x+ y

x
with y(2) = 2

estimate y(2.5) using the Euler method. Let (a) h = 0.25 and (b) h = 0.1

Solution 7.1

For hand calculation purposes in this simple method, the intermediate step
involving K0 has been directly incorporated into equation (7.22).

Numerical Solution of Ordinary Differential Equations 323

(a) Two steps will be required if h = 0.25

y(2.25) = 2 + 0.25
(

2 + 2
2

)
= 2.5

y(2.5) = 2.5 + 0.25
(

2.25 + 2.5
2.25

)
= 3.028

(b) Five steps will be required if h = 0.1

y(2.1) = 2 + 0.1
(

2 + 2
2

)
= 2.2

y(2.2) = 2.2 + 0.1
(

2.1 + 2.2
2.1

)
= 2.405

y(2.3) = 2.405 + 0.1
(

2.2 + 2.405
2.2

)
= 2.614

y(2.4) = 2.614 + 0.1
(

2.3 + 2.614
2.3

)
= 2.828

y(2.5) = 2.828 + 0.1
(

2.4 + 2.828
2.4

)
= 3.046

The exact solution in this case is given by y = x[1 + ln(x/2)], hence y(2.5) =
3.058.

7.3.1.2 The Modified Euler method

A logical refinement to the Euler method is to use a higher order integration
rule to estimate the change in y. The Modified Euler method performs the
numerical integration of equation (7.15) using the Trapezoid rule (see Section
6.2.3) where the derivative is “sampled” at the beginning and the end of the
step.

Starting with the standard problem

dy

dx
= f(x, y), with y(x0) = y0 (7.24)

The Modified Euler method estimates the new value of y using the sequence

K0 = hf(x0, y0) (7.25)
K1 = hf(x0 + h, y0 +K0) (7.26)

y1 = y0 +
1
2
(K0 +K1) (7.27)

whereK0 is the change in y based on the slope at the beginning of the step (see
Figure 7.1), andK1 is the change in y based on the slope at the end of the step.

324 Numerical Methods for Engineers

As shown in Figure 7.2, the numerical solution follows the exact solution more
closely than the simple Euler method, because the integration of equation
(7.15) is performed by sampling the derivative f(x, y) at the beginning and
end of the step.

Figure 7.2: The Modified Euler Method.

The calculation of K0 in equation (7.25) is equivalent to a simple Euler step,
which is then used to compute K1 in equation (7.26) leading to a “modified”
Euler approach. The estimated change in y is then a simple average of the
two K-values as given in equation (7.27).

Example 7.2

Given the equation

y′ =
x+ y

x
with y(2) = 2

estimate y(2.5) using the Modified Euler method. Let h = 0.25.

Solution 7.2

Two steps will be required if h = 0.25

Numerical Solution of Ordinary Differential Equations 325

Step 1:

K0 = 0.25
(

2 + 2
2

)
= 0.5

K1 = 0.25
(

2.25 + 2.5
2.25

)
= 0.528

y(2.25) = 2 +
1
2
(0.5 + 0.528) = 2.514

Step 2:

K0 = 0.25
(

2.25 + 2.514
2.25

)
= 0.529

K1 = 0.25
(

2.5 + 3.043
2.5

)
= 0.554

y(2.5) = 2.514 +
1
2
(0.529 + 0.554) = 3.056

As compared with the exact solution of 3.058, this clearly represents a con-
siderable improvement over the simple Euler solution of 3.028 using the same
step length of h = 0.25.

7.3.1.3 Mid-Point method

The Mid-Point method performs the numerical integration of equation
(7.15) using the Mid-Point rule (or One-point Gauss-Legendre rule, see Sec-
tion 6.2.4) in which the derivative is “sampled” at the mid-point of the step as
shown in Figure 7.3. The method has a similar order of accuracy to the Mod-
ified Euler method, and will actually give the same solutions for derivative
functions that are linear in both x and y.

Starting with the standard problem

dy

dx
= f(x, y), with y(x0) = y0 (7.28)

the Mid-Point method estimates the new value of y using the sequence

K0 = hf(x0, y0) (7.29)

K1 = hf(x0 +
h

2
, y0 +

K0

2
) (7.30)

y1 = y0 +K1 (7.31)

326 Numerical Methods for Engineers

Figure 7.3: Mid-Point Method.

where K0 as before is a simple Euler step (see Figure 7.1), but in this case
K1 is the change in y based on the slope in the middle of the step.

Example 7.3

Given the equation

y′ =
x+ y

x
with y(2) = 2

estimate y(2.5) using the Mid-Point method. Let h = 0.25.

Solution 7.3

Two steps will be required of h = 0.25.

Step 1:

K0 = 0.25
(

2 + 2
2

)
= 0.5

K1 = 0.25
(

2.125 + 2.25
2.125

)
= 0.515

y(2.25) = 2 + 0.515 = 2.515

Numerical Solution of Ordinary Differential Equations 327

Step 2:

K0 = 0.25
(

2.25 + 2.515
2.25

)
= 0.529

K1 = 0.25
(

2.375 + 2.779
2.375

)
= 0.543

y(2.5) = 2.515 + 0.543 = 3.057

7.3.1.4 Runge-Kutta methods

“Runge-Kutta” methods refer to a family of one-step methods for numerical
solution of initial value problems, which include the Euler and Modified Euler
methods, which are first and second order methods respectively. The “or-
der” of a method indicates the highest power of h included in the equivalent
truncated Taylor series expansion (see Section 7.3.1.5).

The general form of all Runge-Kutta methods for advancing the solution
by one step is as follows

yi+1 = yi +

∑r−1
j=0 WjKj∑r−1

j=0 Wj

(7.32)

where the Wj are weighting coefficients and r is the order of the method. The
Kj terms are estimates of the change in y evaluated at r locations within the
step of width h.

A surprisingly simple fourth order Runge-Kutta method has received widespread
use, and is sometimes referred to as the Runge-Kutta method.

Starting with the standard problem

dy

dx
= f(x, y), with y(x0) = y0 (7.33)

the fourth order Runge-Kutta method estimates the new value of y using the
sequence

K0 = hf(x0, y0) (7.34)

K1 = hf(x0 +
h

2
, y0 +

K0

2
) (7.35)

K2 = hf(x0 +
h

2
, y0 +

K1

2
) (7.36)

K3 = hf(x0 + h, y0 +K2) (7.37)

y1 = y0 +
1
6
(K0 + 2K1 + 2K2 +K3) (7.38)

328 Numerical Methods for Engineers

The simplicity and accuracy of this method makes it one of the most pop-
ular of all one-step methods for numerical solution of first order differential
equations. From equation (7.38) it may be noted that the function is sampled
at the beginning, middle and end of the step in the ratio of 1 : 4 : 1, indicating
a “Simpson-like” rule for estimating the change in y.

Example 7.4

Given the equation

y′ =
x+ y

x
with y(2) = 2

estimate y(2.5) using the fourth order Runge-Kutta method.

Solution 7.4

Since we are using a higher order method in this case, a solution will be
attempted using one step of h = 0.5

Step 1:

x = 2, y = 2

K0 = 0.5
(

2 + 2
2

)
= 1

x = 2.25, y = 2.5

K1 = 0.5
(

2.25 + 2.5
2.25

)
= 1.056

x = 2.25, y = 2.528

K2 = 0.5
(

2.25 + 2.528
2.25

)
= 1.062

x = 2.5, y = 3.062

K3 = 0.5
(

2.5 + 3.062
2.5

)
= 1.112

y(2.5) = 2 +
1
6
[1 + 2(1.056) + 2(1.062) + 1.112] = 3.058

which is in agreement with the exact solution to three decimal places.

7.3.1.5 Accuracy of one-step methods

Since One-step methods involve numerical integration, the dominant error
term as discussed in Chapter 6 is again a useful way of comparing methods.

Numerical Solution of Ordinary Differential Equations 329

Here we will discuss the dominant error term corresponding to the first two
methods discussed previously.

The Euler method is clearly equivalent to the Taylor series expanded about
x0, truncated after the first order term, where

y1 = y0 + hy′0 +
1
2
h2y′′0 + . . . (7.39)

hence the dominant error term is given by
1
2
h2y′′0 .

The h2 term implies that if the step length is reduced by a factor of 2, the
local error will be reduced by a factor of 4. The global error, however, will
only be reduced by a factor of 2 because twice as many of the smaller steps
will be required to span a given range.

Interpretation of the dominant error term in the Modified Euler method
starts by writing the method in the form

y1 = y0 +
h

2
[y′0 + y′1] (7.40)

followed by a simple forward difference approximation of the second derivative
(see Section 7.4.1) as

y′′0 =
y′1 − y′0
h

(7.41)

Elimination of y′1 from equations (7.40) and (7.41) leads to

y1 = y0 + hy′0 +
1
2
h2y′′0 (7.42)

which are the first three terms of a truncated Taylor series expanded about
x0. The dominant error term is therefore the first term left out of the series,

namely
1
6
h3y′′′0 .

Halving the step length in this instance will reduce the local error by a
factor of 8, but due to a doubling of the number of steps required to span a
given range, the global error is only reduced by a factor of 4.

In summary, if the dominant error term in a one-step method based on a
truncated Taylor series involves hk+1, then the global error at a particular val-
ue of x will be approximately proportional to hk. Although one-step methods
on their own do not give direct error estimates, the dominant error term can
be used to estimate the step length needed to achieve a given level of accuracy.

Example 7.5

Given the equation

dy

dx
= (x+ y)2 with y(0) = 1

330 Numerical Methods for Engineers

estimate y(0.5) using the Modified Euler method with (a) 5 steps of h = 0.1
and (b) 10 steps of h = 0.05. Use these two solutions to estimate the value of
h that would be required to give a solution correct to 5 decimal places.

Solution 7.5

Using Program 7.1 for example (see later)

(a) 5 steps of h = 0.1 gives y(0.5) = 2.82541

(b) 10 steps of h = 0.05 gives y(0.5) = 2.88402

The global error by the Modified Euler method is proportional to h2, hence

yexact − 2.82541 = C(0.1)2

yexact − 2.88402 = C(0.05)2

where C is a constant of proportionality.

Solving these equations gives C = 7.81477.

In order for the solution to be accurate to five decimal places, the error must
not be greater than 0.000005, thus

0.000005 = 7.81477h2 hence h = 0.0008

A final run of Program 7.1 with 625 steps of h = 0.0008 gives y(0.5) =
2.90822. The reader can confirm that this result is accurate to five decimal
places as compared with the exact solution, which in this case is given by

y = tan(x+
π

4
) − x.

A more pragmatic approach to error analysis, and probably the one most
often used in engineering practice, is to repeat a particular calculation with a
different step size. The sensitivity of the solution to the value of h will then
give a good indication of the accuracy of the solution.

7.3.2 Reduction of high order equations

All the examples considered so far have involved the solution of first order
equations. This does not prove to be a restriction to solving higher order
equations, because it is easily shown that an nth order differential equation
can be broken down into an equivalent system of n first order equations. In
addition, if the n conditions required to obtain a particular solution to the
nth order equation are all given at the same value of the independent variable,

Numerical Solution of Ordinary Differential Equations 331

then the resulting set of initial value problems can be solved using the same
methods as described previously.

Consider a first degree nth order differential equation arranged so that all
terms except the nth derivative term are placed on the right-hand side, thus

dny

dxn
= f

(
x, y,

dy

dx
,
d2y

dx2
+ · · · + dn−1y

dxn−1

)
(7.43)

with n initial conditions given as

y(x0) = A1,
dy

dx
= A2,

d2y

dx2
= A3, · · · ,

dn−1y

dxn−1
= An (7.44)

We now replace all terms on the right-hand side of equation (7.43) (except
x) with simple variable names, hence let

y = y1,
dy

dx
= y2,

d2y

dx2
= y3, · · · ,

dn−1y

dxn−1
= yn (7.45)

By making these substitutions, each variable is itself a first derivative of the
term that precedes it, thus we can write the system as n first order equations
as follows

dy1
dx

= y2, y1(x0) = A1

dy2
dx

= y3, y2(x0) = A2

...
...

dyn−1

dx
= yn, yn−1(x0) = An−1

dyn

dx
= f(x, y1, y2, · · · , yn), yn(x0) = An

(7.46)

All the derivatives up to the n− 1th are simply treated as dependent vari-
ables. This process of reducing a high order equation to a system of first order
equations always results in n− 1 equations with simple right-hand sides, and
one final equation resembling the original differential equation.

Equations (7.46) have been arranged in “standard form” whereby the first
derivative term of each equation is placed on the left-hand side with all other
terms placed on the right.

332 Numerical Methods for Engineers

Example 7.6

Reduce the following third order equation to three first order equations in
standard form

d3y

dx3
+ 2

dy

dx
= 2ex with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y(x0) = A

dy

dx
(x0) = B

d2y

dx2
(x0) = C

Solution 7.6

Make the substitutions

y = y1,
dy

dx
= y2,

d2y

dx2
= y3

then
dy1
dx

= y2, y1(x0) = A

dy2
dx

= y3, y2(x0) = B

dy3
dx

= 2ex − 2y2, y3(x0) = C

7.3.3 Solution of simultaneous first order equations

Reduction of higher order equations as discussed in the previous section
leads to a rather simple system of first order equations where the right-hand
side functions in all but one of them consists of a single variable.

In general, a system of n simultaneous first order equations may have fully
populated right-hand sides as follows

dyi

dx
= fi(x, y1, y2, . . . , yn), with yi(x0) = Ai, i = 1, 2, . . . , n (7.47)

Consider the system of two equations and initial conditions given below

dy

dx
= f(x, y, z), with y(x0) = y0

dz

dx
= g(x, y, z), with z(x0) = z0 (7.48)

Numerical Solution of Ordinary Differential Equations 333

In the interests of clarity in this section, we have called the dependent
variables y and z and the right-hand side functions f and g. In programming
terminology however, we will be required to use a subscript notation where
dependent variables will be y(1), y(2), etc. and functions f(1), f(2), etc.

We may advance the solution of y and z to new values at x1 = x0 +h using
any of the one-step or Runge-Kutta methods described previously.

In general our solutions will be advanced using expressions of the form

y(x1) = y(x0) +K

z(x1) = z(x0) + L (7.49)

where the values of K and L depend on the method being applied.

The Euler method leads to

K = K0

L = L0 (7.50)

where

K0 = hf(x0, y0, z0)
L0 = hg(x0, y0, z0) (7.51)

The Modified Euler method leads to

K =
1
2
(K0 +K1)

L =
1
2
(L0 + L1) (7.52)

where

K0 = hf(x0, y0, z0)
L0 = hg(x0, y0, z0)
K1 = hf(x0 + h, y0 +K0, z0 + L0) (7.53)
L1 = hg(x0 + h, y0 +K0, z0 + L0)

The Mid-Point method leads to

K = K1

L = L1 (7.54)

where

K0 = hf(x0, y0, z0)
L0 = hg(x0, y0, z0)

K1 = hf(x0 +
1
2
h, y0 +

1
2
K0, z0 +

1
2
L0) (7.55)

L1 = hg(x0 +
1
2
h, y0 +

1
2
K0, z0 +

1
2
L0)

334 Numerical Methods for Engineers

and the fourth order Runge-Kutta method leads to

K =
1
6
(K0 + 2K1 + 2K2 +K3)

L =
1
6
(L0 + 2L1 + 2L2 + L3) (7.56)

where

K0 = hf(x0, y0, z0)
L0 = hg(x0, y0, z0)

K1 = hf(x0 +
1
2
h, y0 +

1
2
K0, z0 +

1
2
L0)

L1 = hg(x0 +
1
2
h, y0 +

1
2
K0, z0 +

1
2
L0) (7.57)

K2 = hf(x0 +
1
2
h, y0 +

1
2
K1, z0 +

1
2
L1)

L2 = hg(x0 +
1
2
h, y0 +

1
2
K1, z0 +

1
2
L1)

K3 = hf(x0 + h, y0 +K2, z0 + L2)
L3 = hg(x0 + h, y0 +K2, z0 + L2)

Example 7.7

A damped oscillator is governed by the differential equation:

y′′ + 10y′ + 500y = 0

with initial conditions y(0) = −0.025 and y′(0) = −1. Estimate y(0.05)
using (a) the Modified Euler method with h = 0.025 and (b) the fourth order
Runge-Kutta method with h = 0.05.

Solution 7.7

Firstly reduce the problem to two first order equations in standard form

y′ = z with y(0) = −0.025
z′ = −10z − 500y with z(0) = −1

(a) Modified Euler method (h = 0.025)

Step 1: t = 0, y = −0.025, z = −1

K0 = 0.025(−1) = −0.025
L0 = 0.025(−10(−1)− 500(−0.025)) = 0.5625

t = 0.025, y = −0.05, z = −0.4375

K1 = 0.025(−0.4375) = −0.01094
L1 = 0.025(−10(−0.4375)− 500(−0.05)) = 0.73438

Numerical Solution of Ordinary Differential Equations 335

y(0.025) = −0.025 +
1
2
(−0.025− 0.01094) = −0.04297

z(0.025) = −1 +
1
2
(0.5625 + 0.73438) = −0.35156

Step 2: t = 0.025, y = −0.04297, z = −0.35156

K0 = 0.025(−0.35156) = −0.00879
L0 = 0.025(−10(−0.35156)− 500(−0.04297)) = 0.62502

t = 0.05, y = −0.05176, z = 0.27346

K1 = 0.025(0.27346) = 0.00684
L1 = 0.025(−10(0.27346)− 500(−0.05176)) = 0.57864

y(0.05) = −0.04297 +
1
2
(−0.00879 + 0.00684) = −0.04395

z(0.05) = −0.35156 +
1
2
(0.62502 + 0.57864) = 0.25027

(a) Fourth order Runge-Kutta (h = 0.05)

Step 1: t = 0, y = −0.025, z = −1

K0 = 0.05(−1) = −0.05
L0 = 0.05(−10(−1)− 500(−0.025)) = 1.125

t = 0.025, y = −0.05, z = −0.4375

K1 = 0.05(−0.4375) = −0.02188
L1 = 0.05(−10(−0.4375)− 500(−0.05)) = 1.46875

t = 0.025, y = −0.03594, z = −0.26563

K2 = 0.05(−0.26563) = −0.01328
L2 = 0.05(−10(−0.26563)− 500(−0.03594) = 1.03132

t = 0.05, y = −0.03828, z = 0.03132

K3 = 0.05(0.03132) = 0.00157
L3 = 0.05(−10(0.03132)− 500(−0.03828) = 0.94134

336 Numerical Methods for Engineers

y(0.05) = −0.025 +
1
6
(−0.05 + 2(−0.02188− 0.01328) + 0.00157) = −0.04479

z(0.05) = −1 +
1
6
(1.125 + 2(1.46875 + 1.03132) + 0.94134) = 0.17775

These results may be compared with the exact solutions of y(0.05) =
−0.04465 and y′(0.05) = z(0.05) = 0.19399.

The results of a more detailed analysis of this problem using Program 7.1
(see later) are shown in Figure 7.4, which contrasts the exact solution given
by

y = − 9
760

√
19e−5x sin(5

√
19x) − 1

40
e−5x cos(5

√
19x)

with fourth order Runge-Kutta solutions using step lengths of h = 0.05 and
h = 0.1.

Figure 7.4: Influence of h on accuracy of fourth order Runge-Kutta
solution of Example 7.7 using Program 7.1.

The smaller step length clearly leads to a very significant improvement in
the numerical solution. While not shown in the figure, further reductions in
the step length (with a commensurate increase in the number of computation
steps) rapidly converge on the exact solution. For example, an analysis using
h = 0.005 leads to a numerical solution that is indistinguishable from the
exact solution at the resolution shown in Figure 7.4.

Numerical Solution of Ordinary Differential Equations 337

Program 7.1: One-step methods for systems of ODEs

PROGRAM nm71
!---One-Step Methods for Systems of ODEs---
! itype= 1 (Euler Method) itype= 2 (Modified Euler Method)
! itype= 3 (Mid-Point Method) itype= 4 (4th order R-K Method)
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,itype,j,n,nsteps; REAL(iwp)::d6=6.0_iwp,h, &
two=2.0_iwp,x

REAL(iwp),ALLOCATABLE::k0(:),k1(:),k2(:),k3(:),y(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)itype,n,nsteps,h
ALLOCATE(k0(n),k1(n),k2(n),k3(n),y(n))
READ(10,*)x,y
WRITE(11,’(A)’)"---One-Step Methods for Systems of ODEs---"
SELECT CASE(itype)
CASE(1)
WRITE(11,’(/,A)’)"************ EULER METHOD ************"
WRITE(11,’(/,A,I2)’)" x y(i) , i = 1,",n
DO j=0,nsteps
WRITE(11,’(10E13.5)’)x,y; k0=h*f71(x,y); y=y+k0; x=x+h

END DO
CASE(2)
WRITE(11,’(/,A)’)"******* MODIFIED EULER METHOD ********"
WRITE(11,’(/,A,I2)’)" x y(i) , i = 1,",n
DO j=0,nsteps
WRITE(11,’(10E13.5)’)x,y
k0=h*f71(x,y); k1=h*f71(x+h,y+k0); y=y+(k0+k1)/two; x=x+h

END DO
CASE(3)
WRITE(11,’(/,A)’)"********** MID-POINT METHOD ***********"
WRITE(11,’(/,A,I2)’)" x y(i) , i = 1,",n
DO j=0,nsteps
WRITE(11,’(10E13.5)’)x,y
k0=h*f71(x,y); k1=h*f71(x+h/two,y+k0/two); y=y+k1; x=x+h

END DO
CASE(4)
WRITE(11,’(/,A)’)"***** 4TH ORDER RUNGE-KUTTA METHOD ****"
WRITE(11,’(/,A,I2)’)" x y(i) , i = 1,",n
DO j=0,nsteps
WRITE(11,’(10E13.5)’)x,y
k0=h*f71(x,y); k1=h*f71(x+h/two,y+k0/two)
k2=h*f71(x+h/two,y+k1/two); k3=h*f71(x+h,y+k2)

338 Numerical Methods for Engineers

y=y+(k0+two*k1+two*k2+k3)/d6; x=x+h
END DO

END SELECT
CONTAINS

FUNCTION f71(x,y)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x,y(:)
REAL(iwp)::f71(SIZE(y,1))
f71(1)=(x+y(1))**2.

! f71(1)=3._iwp*x*y(2)+4._iwp
! f71(2)=x*y(1)-y(2)-EXP(x)
! f71(1)=y(2)
! f71(2)=2._iwp*y(1)-3._iwp*y(2)+3._iwp*x**2.
RETURN
END FUNCTION f71

END PROGRAM nm71

List 7.1:

Scalar integers:
i simple counter
itype method type to be used
j simple counter
n number of equations
nsteps number of calculations steps

Scalar reals:
d6 set to 6.0
h calculation step length
two set to 2.0
x independent variable

Dynamic real arrays:
k0 estimate of Δy
k1 estimate of Δy
k2 estimate of Δy
k3 estimate of Δy
y dependent variables

This program allows us to obtain numerical solutions to initial value prob-
lems involving systems of n first order ODEs of the form

dyi

dx
= fi(x, y1, y2, . . . , yn), with yi(x0) = Ai, i = 1, 2, . . . , n

Numerical Solution of Ordinary Differential Equations 339

The user selects the method to be used in the data through the input
variable itype, where itype=1 gives the Euler method, itype=2 gives the
Modified Euler method, itype=3 gives the Mid-Point method and itype=4
gives the fourth order Runge-Kutta method. The number of equations to be
solved is read in as n, followed by the number of calculation steps nsteps and
the step length h. The data are completed by the initial value of x and the
initial value(s) of y which is a vector of length n. A single first order equation
can be solved by simply setting n = 1 (see, e.g., Examples 7.5 and 7.7).

The right-hand side functions fi(x, y1, y2, . . . , yn) for i = 1, 2, . . . , n is eval-
uated by FUNCTION f71 which must be created by the user and changed from
one problem to the next.

A first example to illustrate use of Program 7.1 is the following single (n=1)
nonlinear equation

y′ = (x+ y)2 with y(0) = 1

With just one equation, the single dependent variable y is programmed as
y(1), so the right-hand side has been entered into FUNCTION f71 as

f71(1)=(x+y(1))**2

In this example, y(0.5) is to be estimated with 5 steps of h = 0.1 using the
fourth order Runge-Kutta method (itype=4). The input and output for this
example are given in Data 7.1a and Results 7.1a respectively.

One-step method itype
4

Number of equations n
1

Number and size of steps nsteps h
5 0.1

Initial value of x and y x y(i),i=1,n
0.0 1.0

Data 7.1a: One-Step Methods (first example)

340 Numerical Methods for Engineers

---One-Step Methods for Systems of ODEs---

***** 4TH ORDER RUNGE-KUTTA METHOD ****

x y(i) , i = 1, 1
0.00000E+00 0.10000E+01
0.10000E+00 0.11230E+01
0.20000E+00 0.13085E+01
0.30000E+00 0.15958E+01
0.40000E+00 0.20649E+01
0.50000E+00 0.29078E+01

Results 7.1a: One-Step Methods (first example)

As shown in Results 7.1a, the method gives the approximate solution y(0.5) =
2.9078 to four decimal places. For comparison, the analytical solution to this
problem is given by

y = tan
(
x+

π

4

)
− x

leading to an exact solution of y(0.5) = 2.9081.

A second example to illustrate use of Program 7.1 is the pair (n=2) of first
order equations

dy

dx
= 3xz + 4 with y(0) = 4

dz

dx
= xy − z − ex with z(0) = 1

With two equations, y is programmed as y(1) and z as y(2), and in order
to preserve the required precision of calculations, constants such as 3 and
4 in the first function are programmed as 3._iwp and 4._iwp respectively
(see Chapter 1). The two right-hand side functions have been entered into
FUNCTION f71 as

f71(1)=3._iwp*x*y(2)+4._iwp
f71(2)=x*y(1)-y(2)-EXP(x)

In this example, y(0.5) and z(0.5) are to be estimated with 5 steps of h = 0.1
using the Mid-Point method (itype=3).

The input and output for this example are given in Data 7.1b and Results
7.1b respectively.

Numerical Solution of Ordinary Differential Equations 341

One-step method itype
3

Number of equations n
2

Number and size of steps nsteps h
5 0.1

Initial value of x and y x y(i),i=1,n
0.0 4.0 1.0

Data 7.1b: One-Step Methods (second example)

---One-Step Methods for Systems of ODEs---

********** MID-POINT METHOD ***********

x y(i) , i = 1, 2
0.00000E+00 0.40000E+01 0.10000E+01
0.10000E+00 0.44135E+01 0.82587E+00
0.20000E+00 0.48473E+01 0.70394E+00
0.30000E+00 0.52965E+01 0.63663E+00
0.40000E+00 0.57613E+01 0.62643E+00
0.50000E+00 0.62471E+01 0.67597E+00

Results 7.1b: One-Step Methods (second example)

As shown in Results 7.1b, the method gives the approximate solution-
s y(0.5) = 6.2471 and z(0.5) = 0.6760. The user is invited to experiment
with different methods and step lengths.

For example the fourth order Runge-Kutta method (itype=4) with step
lengths of h = 0.1 and h = 0.05 both give the same result of y(0.5) = 6.2494
and z(0.5) = 0.6739, implying solutions accurate to four decimal places.

A third and final example to illustrate use of Program 7.1 involves the
second order ODE

d2y

dx2
+ 3

dy

dx
− 2y = 3x2 with y(0) = 1 and

dy

dx
(0) = 0

where y(0.2) and z(0.2) are to be estimated with 4 steps of h = 0.05 using
the Modified Euler method (itype=2).

342 Numerical Methods for Engineers

By making the substitution

y = y1 and
dy

dx
= y2

the equation can be broken down into the following two first order equations

dy1
dx

= y2 y1(0) = 1

dy2
dx

= 2y1 − 3y2 + 3x2 y2(0) = 0

The input and output for this example are given in Data 7.1c and Results
7.1c respectively, where the right-hand side functions have been entered into
FUNCTION f71 as

f71(1)=y(2)
f71(2)=2._iwp*y(1)-3._iwp*y(2)+3._iwp*x**2.

One-step method itype
2

Number of equations n
2

Number and size of steps nsteps h
4 0.05

Initial value of x and y x y(i),i=1,n
0.0 1.0 0.0

Data 7.1c: One-Step Methods (third example)

---One-Step Methods for Systems of ODEs---

******* MODIFIED EULERS METHOD ********

x y(i) , i = 1, 2
0.00000E+00 0.10000E+01 0.00000E+00
0.50000E-01 0.10025E+01 0.92688E-01
0.10000E+00 0.10093E+01 0.17370E+00
0.15000E+00 0.10199E+01 0.24572E+00
0.20000E+00 0.10339E+01 0.31101E+00

Results 7.1c: One-Step Methods (third example)

Numerical Solution of Ordinary Differential Equations 343

As shown in Results 7.1c, the method gives the approximate solution y(0.2)
= 1.0339 and z(0.2) = 0.31101. The user is invited to experiment with dif-
ferent methods and step lengths to converge on the exact solution, which in
this case is given to five significant figures of accuracy as y(0.2) = 1.0336 and
z(0.2) = 0.31175.

7.3.4 θ-methods for linear equations

All of the methods described so far for numerical solution of initial value
problems have been suitable for both linear or nonlinear equations provided
they were first degree and could be arranged in standard form.

If the differential equation is linear, a different one-step approach is possible
involving linear interpolation of derivatives between the beginning and end of
each step.

7.3.4.1 First order equations

Consider the first order linear equation

y′ = f(x, y) = k(x) + l(x)y with y(x0) = y0 (7.58)

where k(x) and l(x) are functions of x.
Writing the differential equation at x0 and x1, distance h apart, and using

an abbreviated notation whereby k(xi) = ki and l(xi) = li etc., we get

y′0 = k0 + l0y0 (7.59)
y′1 = k1 + l1y1 (7.60)

We now introduce the dimensionless scaling parameter θ which can be varied
in the range

0 ≤ θ ≤ 1 (7.61)

and write our one-step method as follows

y1 = y0 + h[(1 − θ)y′0 + θy′1] (7.62)

The parameter θ acts as a weighting coefficient on the gradients at the
beginning and end of the step. When θ = 0, the simple Euler method is
obtained, where only the gradient at x0 is included.

The most popular choice is θ = 0.5, which gives equal weight to the gra-
dients at x0 and x1, and is equivalent to the Trapezoid rule of integration.
In the solution of time-dependent systems of differential equations, the use
of θ = 0.5 is sometimes referred to as the “Crank-Nicolson” method. These
θ-methods are popular because they can be used even when extra coupling
of the derivative terms means that the equations cannot easily be reduced to
the “standard form” of equations (7.47).

344 Numerical Methods for Engineers

The derivative terms y′0 and y′1 can be eliminated from equations (7.59),
(7.60) and (7.62), and since the equation is linear it is easy to make y1 the
subject of the equation as follows

y1 =
y0 + h[(1 − θ)(k0 + l0y0) + θk1]

1 − hθl1
(7.63)

which is an explicit formula for y1 in terms of h, θ, y0 and the functions l0,
k0, l1 and k1 evaluated at the beginning and end of the step. For systems of
equations the denominator can become a matrix in which case the system is
“implicit”.

Example 7.8

Given the linear equation

dy

dx
= 3y − 2x2 with y(0) = 0.5

estimate y(0.2) using the “θ-method” with two steps of h = 0.1. Let θ = 0.5.

Solution 7.8

By comparison with equation (7.58) it is seen that k(x) = −2x2 and
l(x) = 3.

Step 1: y0 = 0.5, k0 = 0, k1 = −2 × 0.12 = −0.02, l0 = 3, l1 = 3

From equation (7.63)

y(0.1) =
0.5 + 0.1[(1 − 0.5)(0 + 3 × 0.5) + 0.5 × (−0.02)]

1 − 0.1 × 0.5 × 3
= 0.675

Step 2: y0 = 0.675, k0 = −0.02, k1 = −2 × 0.22 = −0.08, l0 = 3, l1 = 3

From equation (7.63)

y(0.2) =
0.675 + 0.1[(1 − 0.5)(−0.02 + 3 × 0.675) + 0.5 × (−0.08)]

1 − 0.1 × 0.5 × 3
= 0.908

which can be compared with the exact solution, which gives y(0.2) = 0.905
to three decimal places.

7.3.4.2 Second order equations

Second order linear equations can also be solved by linear interpolation
using the parameter θ.

Numerical Solution of Ordinary Differential Equations 345

Consider the second order linear equation

y′′ = k(x) + l(x)y +m(x)y′ with y(x0) = y0 and y′(x0) = y′0 (7.64)

Writing the differential equation at x0 and x1, distance h apart, and using
an abbreviated notation whereby k(xi) = ki, l(xi) = li and m(xi) = mi etc.,
we get

y′′0 = k0 + l0y +m0y
′
0 (7.65)

y′′1 = k1 + l1y +m1y
′
1 (7.66)

We now obtain the following expressions for y1 and y′1 using θ to weight the
derivatives at x0 and x1, hence

y1 = y0 + h[(1 − θ)y′0 + θy′1] (7.67)
y′1 = y′0 + h[(1 − θ)y′′0 + θy′′1] (7.68)

The derivative terms y′′0 , y′1 and y′′1 can be eliminated from equations (7.65)-
(7.68), and since the equation is linear after some rearrangement y1 and y′1
can be made the subjects of the following two equations

y1 =
y0(1 − hθm1) + hy′

0[1 − hθm1(1 − θ)] + h2θ[(1 − θ)(k0 + l0y0 + m0y
′
0) + θk1]

1 − hθm1 − h2θ2l1

y′
1 =

y1 − y0

hθ
− 1 − θ

θ
y′
0 (7.69)

It may also be noted from the second of equations (7.69) that the method
would fail for θ = 0.

For a single second order equation, the fourth order Runge-Kutta method
is considerably more accurate than the “θ-method” described in this sec-
tion. However for large engineering systems involving equations with coupled
derivatives, the linear interpolation methods involving θ are still frequently
used because of their simplicity.

Program 7.2: Theta-method for linear ODEs

PROGRAM nm72
!---Theta-Method for Linear ODEs---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::j,n,nsteps
REAL(iwp)::h,k0,k1,l0,l1,m0,m1,one=1.0_iwp,theta,x,y1
REAL(iwp),ALLOCATABLE::y(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)

346 Numerical Methods for Engineers

READ(10,*)n,nsteps,h,theta; ALLOCATE(y(n)); READ(10,*)x,y
SELECT CASE(n)
CASE(1)
WRITE(11,’(A)’)"--Theta-Method for First Order Linear ODEs--"
WRITE(11,’(/,A,I2)’)" x y"
DO j=0,nsteps; WRITE(11,’(10E13.5)’)x,y
CALL f72(x,k0,l0); CALL f72(x+h,k1,l1)
y=(y+h*((one-theta)*(k0+l0*y)+theta*k1))/(one-h*theta*l1)
x=x+h

END DO
CASE(2)
WRITE(11,’(A)’)"---Theta-Method for Second Order Linear ODEs---"
WRITE(11,’(/,A,I2)’)" x y y’"
DO j=0,nsteps
WRITE(11,’(10E13.5)’)x,y
CALL f72(x,k0,l0,m0); CALL f72(x+h,k1,l1,m1)
y1=y(1)*(one-h*theta*m1)+h*y(2)*(one-h*theta*m1*(1-theta))
y1=y1+h**2.*theta*((1-theta)*(k0+l0*y(1)+m0*y(2))+theta*k1)
y1=y1/(one-h*theta*m1-h**2.*theta**2.*l1)
y(2)=(y1-y(1))/(h*theta)-(one-theta)/theta*y(2)
y(1)=y1; x=x+h

END DO
END SELECT
CONTAINS

SUBROUTINE f72(x,k,l,m)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x
REAL(iwp),INTENT(OUT)::k,l
REAL(iwp),INTENT(OUT),OPTIONAL::m
k= x**3.
l= -2._iwp*x

! k = 0._iwp
! l = -(3._iwp+x**2)
! m = 2._iwp*x
RETURN
END SUBROUTINE f72

END PROGRAM nm72

This program uses the “θ-method” to obtain numerical solutions to initial
value problems governed by first order linear ODEs of the form

y′ = k(x) + l(x)y with y(x0) = y0

Numerical Solution of Ordinary Differential Equations 347

List 7.2:

Scalar integers:
j simple counter
n order of linear equation (1 or 2)
nsteps number of calculations steps

Scalar reals:
h calculation step length
k0 k(x) at beginning of step
k1 k(x) at end of step
l0 l(x) at beginning of step
l1 l(x) at end of step
m0 m(x) at beginning of step
m1 m(x) at end of step
one set to 1.0
theta weighting parameter
x independent variable
y1 used to compute y at end of step

Dynamic real arrays:
y dependent variables y [and y′]

or second order linear ODEs of the form

y′′ = k(x) + l(x)y +m(x)y′ with y(x0) = y0 and y′(x0) = y′0

Input consists of the order of the equation where n=1 indicates a first order
and n=2 indicates a second order equation. This is followed by the number
of calculation steps nsteps, the step length h and the weighting parameter
theta. The data are completed by the initial value of x and the initial value(s)
of y which is a vector of length n.

The problem-specific functions k(x), l(x) and, if solving a second order
equation, m(x), are evaluated by SUBROUTINE f as k, l and m respectively.

The first example to illustrate use of Program 7.2 is the single (n=1) linear
equation

y′ = −2xy + x3 with y(0) = 1

where y(1.5) is to be estimated using 5 steps of h = 0.1 with θ = 0.5.
By comparison with the standard form from equation (7.58), we see that

in this case k(x) = x3 and l(x) = −2x.
The input and output for this example are given in Data 7.2a and Results

7.2a respectively, and the functions of x have been entered into SUBROUTINE
f72 as

k= x**3.
l= -2._iwp*x

348 Numerical Methods for Engineers

Order of equation n
1

Number and size of steps nsteps h theta
and weighting parameter 5 0.1 0.5

Initial value of x and y x y(i),i=1,n
0.0 1.0

Data 7.2a: Theta-Method for Linear ODEs (first example)

--Theta-Method for First Order Linear ODEs--

x y
0.00000E+00 0.10000E+01
0.10000E+00 0.99015E+00
0.20000E+00 0.96147E+00
0.30000E+00 0.91649E+00
0.40000E+00 0.85918E+00
0.50000E+00 0.79454E+00

Results 7.2a: Theta-Method for Linear ODEs (first example)

As shown in Results 7.2a, the method gives the approximate solution y(0.5) =
0.7945 to four decimal places. For comparison, the exact solution to this prob-
lem is given by

y =
2
3
x2 +

4
9
x+

19
54
e3x +

4
27

leading to y(0.5) = 0.7932.

A second example to illustrate use of Program 7.2 is the second order n=2
linear equation

y′′ = 2xy′ − (3 + x2)y with y(0) = 2 and y′(0) = 0

where y(1) and y′(1) are to be estimated using 5 steps of h = 0.2 with θ = 0.5.
By comparison with the standard form from equation (7.64) we see that in

this case k(x) = 0, l(x) = −(3 + x2) and m(x) = 2x.
The input and output for this example are given in Data 7.2b and Results

7.2b respectively, and the functions of x have been entered into SUBROUTINE
f72 as,

k = 0._iwp
l = -(3._iwp+x**2)
m = 2._iwp*x

Numerical Solution of Ordinary Differential Equations 349

Order of equation n
2

Number and size of steps nsteps h theta
and weighting parameter 5 0.2 0.5

Initial value(s) of x and y x y(i),i=1,n
0.0 2.0 0.0

Data 7.2b: Theta-Method for Linear ODEs (second example)

---Theta-Method for Second Order Linear ODEs---

x y y’
0.00000E+00 0.20000E+01 0.00000E+00
0.20000E+00 0.18780E+01 -0.12197E+01
0.40000E+00 0.15044E+01 -0.25161E+01
0.60000E+00 0.85728E+00 -0.39555E+01
0.80000E+00 -0.95809E-01 -0.55754E+01
0.10000E+01 -0.13880E+01 -0.73467E+01

Results 7.2b: Theta-Method for Linear ODEs (second example)

As shown in Results 7.2b, the method gives the approximate solution y(1) =
−1.388 and y′(1) = −7.347 respectively to three decimal places. For compar-
ison, the exact solution to this problem is given by

y = 2e
1
2x2

cos(2x) and y′ = 2xe
1
2x2

cos(2x) − 4xe
1
2x2

sin(2x)

leading to exact solutions of y(1) = −1.372 and y′(1) = −7.369.

7.3.5 Predictor-corrector methods

Predictor-Corrector methods use information from several previous known
points to compute the next as indicated in Figure 7.5.

A disadvantage of the methods is that they are not self-starting and may
need a one-step method to generate a few points in order to get started.
The attraction of the methods is that more efficient use is made of existing
information in order to advance to the next step. This is in contrast to
the fourth order Runge-Kutta method for example, where at each step, four
function evaluations are required which are never used again.

Predictor-Corrector methods make use of two formulas; a predictor formula
that extrapolates existing data to estimate the next point, and a corrector
formula that improves on this estimate.

350 Numerical Methods for Engineers

Figure 7.5: Predictor-Corrector Methods.

It is possible to apply the corrector formula repeatedly until some conver-
gence criterion is satisfied; however this option is not implemented in any of
the methods described in this section.

Predictor formulas estimate the new value of yi+1 by integrating under the
curve of y′ vs. x using sampling points at xi, xi−1, xi−2 etc. Any numerical
integration formula which does not require a prior estimate of y′i+1 is suitable
for use as a predictor. Formulas of this type have already been discussed in
Section 6.4.6, where the sampling points were outside the range of integration.

Corrector formulas improve on the predicted value yi+1 by again integrating
under the curve of y′ vs. x, but this time using sampling points xi+1, xi, xi−1

etc. The corrector formula is able to sample at xi+1 because a value of y′i+1

is now available from the predictor stage. Any numerical integration formula
which requires a prior estimate of y′i+1 is suitable for use as a corrector.

The Modified Euler method described earlier in this chapter is a type of
Predictor-Corrector. Given a first order differential equation in standard form,
y′ = f(x, y) with y(x0) = y0, the method starts with the Euler method, which
is a predictor using the Rectangle rule

yp
i+1 = yi + hf(xi, yi) (7.70)

This is followed by a corrector that uses the Trapezoid rule

yc
i+1 = yi +

1
2
h[f(xi, yi) + f(xi+1, y

p
i+1)] (7.71)

Note that the predictor does not require a prior estimate of y′i+1 while the
corrector does.

The best known Predictor-Corrector methods however use formulas that
have the same order of accuracy in both parts of the algorithm. As will be

Numerical Solution of Ordinary Differential Equations 351

shown, this facilitates a convenient way of estimating the error of the corrected
term based on the difference between the predicted and corrected terms.

7.3.5.1 The Milne-Simpson method

This method uses a formula due to Milne as a predictor, and the familiar
Simpson’s rule as a corrector. The method is fourth order, i.e., the dominant
error term in both the predictor and corrector includes h5, and requires four
initial values of y to get started. Note the smaller error term associated with
the corrector formula as compared with the predictor, which is to be expected
since a predictor involves the less precise process of extrapolation.

Given a first order differential equation, y′ = f(x, y) with four initial con-
ditions y(xi−3) = yi−3, y(xi−2) = yi−2, y(xi−1) = yi−1 and y(xi) = yi, the
method starts with Milne’s Predictor

yp
i+1 = yi−3 +

4h
3

[2f(xi−2, yi−2) − f(xi−1, yi−1) + 2f(xi, yi)] +
28
90
h5y(iv)(ξ)

(7.72)
followed by Simpson’s Corrector

yc
i+1 = yi−1 +

h

3
[f(xi−1, yi−1) + 4f(xi, yi) + f(xi+1, y

p
i+1)] −

1
90
h5y(iv)(ξ)

(7.73)
Milne’s Predictor integrates under the curve of y′ vs. x between limits of

xi−3 and xi+1 using three centrally placed sampling points as shown in Figure
7.6.

Figure 7.6: Milnes Predictor.

352 Numerical Methods for Engineers

Example 7.9

Given y′ = 2x2 + 2y with initial conditions

y(−0.6) = 0.1918
y(−0.4) = 0.4140
y(−0.2) = 0.6655
y(0) = 1.0000

use the Milne-Simpson Predictor-Corrector method to estimate y(0.2).

Solution 7.9

Four initial conditions are provided with a step length of h = 0.2. To facil-
itate hand calculation, make a table of the initial conditions with a counter,
and compute the value of the right-hand side derivative function f(x, y) at
each point.

x y f(x, y)
i− 3 −0.6 0.1918
i− 2 −0.4 0.4140 1.1480
i− 1 −0.2 0.6655 1.4110
i 0.0 1.0000 2.0000

First apply the predictor from equation (7.72).

yp(0.2) = 0.1918 +
4(0.2)

3
[2(1.1480)− (1.4110) + 2(2.0000)] = 1.4945

This enables the derivative at xi+1 = 0.2 to be predicted as fi+1(0.2, 1.4945) =
3.0689 and the corrector from equation (7.73) to be applied.

yc(0.2) = 0.6655 +
0.2
3

[(1.4110) + 4(2.0000) + (3.0689)] = 1.4975

The exact solution in this case is given by y(0.2) = 1.4977 to four decimal
places.

A danger in using Milne’s method, or indeed any method which uses Simp-
son’s rule as a corrector, is that errors generated at one stage of the calculation
may subsequently grow in magnitude (see Section 7.3.4). For this reason other
fourth order methods, such as the next method to be described, have tended
to be more popular.

7.3.5.2 The Adams-Bashforth-Moulton method

A more stable fourth order method, in which errors do not tend to grow
so fast, is based on the Adams-Bashforth predictor, together with Adams-
Moulton Corrector.

Numerical Solution of Ordinary Differential Equations 353

Given a first order differential equation, y′ = f(x, y) with four initial con-
ditions y(xi−3) = yi−3, y(xi−2) = yi−2, y(xi−1) = yi−1 and y(xi) = yi the
method starts with Adams-Bashforth’s Predictor

yp
i+1 = yi +

h

24
[−9f(xi−3, yi−3) + 37f(xi−2, yi−2)

−59f(xi−1, yi−1) + 55f(xi, yi)] +
251
720

h5y(iv)(ξ) (7.74)

followed by Adams-Moulton’s Corrector

yc
i+1 = yi +

h

24
[f(xi−2, yi−2) − 5f(xi−1, yi−1)

+19f(xi, yi) + 9f(xi+1, y
p
i+1)] −

19
720

h5y(iv)(ξ) (7.75)

The Adams-Bashforth-Moulton method has larger error terms than Milne-
Simpson, although the dominant error terms still indicate that the corrector
is considerably more accurate than the predictor.

The improved stability is also obtained at a cost of some additional work,
since both formulas require four sampling points, as opposed to three in the
Milne-Simpson method. As shown in Figure 7.7, the Adams-Bashforth Pre-
dictor uses four sampling points to integrate under the curve of y′ vs. x
between limits of xi and xi+1. The Adams-Moulton corrector is similar, but
with the sampling points shifted one step to the right.

Figure 7.7: Adams-Bashforth Predictor.

354 Numerical Methods for Engineers

Example 7.10

Given y′ = 2x2 + 2y with initial conditions

y(−0.6) = 0.1918
y(−0.4) = 0.4140
y(−0.2) = 0.6655
y(0) = 1.0000

use the Adams-Bashforth-Moulton Predictor-Corrector method to estimate
y(0.2).

Solution 7.10

Four initial conditions are provided with a step length of h = 0.2. To facil-
itate hand calculation, make a table of the initial conditions with a counter,
and compute the value of the right-hand side derivative function f(x, y) at
each point.

x y f(x, y)
i− 3 −0.6 0.1918 1.1036
i− 2 −0.4 0.4140 1.1480
i− 1 −0.2 0.6655 1.4110
i 0.0 1.0000 2.0000

First apply the predictor from equation (7.74).

yp(0.2) = 1.0000 +
0.2
24

[−9(1.1036)

+37(1.1480)− 59(1.4110) + 55(2.0000)] = 1.4941

This enables the derivative at xi+1 = 0.2 to be predicted as fi+1(0.2, 1.4941) =
3.0682 and the corrector from equation (7.75) to be applied.

yc(0.2) = 1.0000+
0.2
24

[(1.1480)−5(1.4110)+19(2.0000)+9(3.0682)] = 1.4976

The exact solution in this case is given by y(0.2) = 1.4977 to four decimal
places.

7.3.5.3 Accuracy of predictor-corrector methods

An attractive feature of Predictor-Corrector methods in which both for-
mulas have the same order of accuracy is that they can make use of their
dominant error terms to give a simple error estimate of the corrected value.

Numerical Solution of Ordinary Differential Equations 355

At a typical step, let yp
i+1 and yc

i+1 represent the approximate values com-
puted by the predictor and the corrector formulas respectively, and let y(xi+1)
represent the (unknown) exact solution.

The errors in the Milne Predictor and Simpson Corrector formulas can be
written respectively as

y(xi+1) − yp
i+1 =

28
90
h5y(iv)(ξ) (7.76)

y(xi+1) − yc
i+1 = − 1

90
h5y(iv)(ξ) (7.77)

After subtracting one equation from the other and eliminating y(xi+1) we can
write

yc
i+1 − yp

i+1 =
29
90
h5y(iv)(ξ) (7.78)

hence
h5y(iv)(ξ) =

90
29

(yc
i+1 − yp

i+1) (7.79)

Substituting this back into equation (7.77) gives

y(xi+1) − yc
i+1 = − 1

29
(yc

i+1 − yp
i+1) (7.80)

Similar operations on the Adams-Bashforth-Moulton Predictor-Corrector
formulas leads to

y(xi+1) − yc
i+1 = − 1

14
(yc

i+1 − yp
i+1) (7.81)

Equations (7.80) and (7.81) indicate that the error in the corrected value
yc

i+1 is approximately proportional to the difference between the predicted
and corrected values.

Program 7.3 to be described next allows solution of a first order ODE by
either of the two fourth order Predictor-Corrector methods discussed in this
section. The program uses a constant step length h; however the ability to
estimate the error at each step of the solution process means that a computer
program could take account of the error, and adjust the step size accordingly.
If the error was too big, one strategy would be to keep halving the step size
until the accuracy criterion was met. At a subsequent stage of the calculation,
the previously obtained step length might become excessively small, in which
case it could be increased systematically.

It should be noted however, that if the step length is changed during the
calculation, it will be necessary to recall some one-step starting procedure
in order to generate enough points at the new step length for the predictor-
corrector algorithm to proceed. An “adaptive” approach such as this was
described in Chapter 6 in relation to repeated numerical integration rules and
implemented in Program 6.3.

356 Numerical Methods for Engineers

Program 7.3: Fourth order predictor-corrector methods

PROGRAM nm73
!---Fourth Order Predictor-Corrector Methods---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,itype,j,nsteps
REAL(iwp)::d3=3.0_iwp,d4=4.0_iwp,d5=5.0_iwp,d9=9.0_iwp, &
d14=14.0_iwp,d19=19.0_iwp,d24=24.0_iwp,d29=29.0_iwp, &
d37=37.0_iwp,d55=55.0_iwp,d59=59.0_iwp,e,h,two=2.0_iwp, &
x(-3:1),y(-3:1),y1

OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)itype,nsteps,h; READ(10,*)(x(i),y(i),i=-3,0)
SELECT CASE(itype)
CASE(1)
WRITE(11,’(A)’)"---Milne-Simpson 4th Order P-C Methods---"
WRITE(11,’(/,A)’)" x y Error"
WRITE(11,’(2E13.5)’)(x(i),y(i),i=-3,0)
DO j=1,nsteps
x(1)=x(0)+h
y1=y(-3)+d4*h/d3*(two*f73(x(-2),y(-2))-f73(x(-1),y(-1))+ &
two*f73(x(0),y(0)))

y(1)=y(-1)+h/d3*(f73(x(-1),y(-1))+d4*f73(x(0),y(0))+ &
f73(x(1),y1))

e=-(y(1)-y1)/d29; WRITE(11,’(3E13.5)’)x(1),y(1),e
y(-3:0)=y(-2:1); x(-3:0)=x(-2:1)

END DO
CASE(2)
WRITE(11,’(A)’)"---Adams-Bashforth-Moulton 4th Order P-C &
&Methods---"

WRITE(11,’(/,A)’)" x y Error"
WRITE(11,’(2E13.5)’)(x(i),y(i),i=-3,0)
DO j=1,nsteps
x(1)=x(0)+h
y1=y(0)+h/d24*(-d9*f73(x(-3),y(-3))+d37*f73(x(-2),y(-2))- &
d59*f73(x(-1),y(-1))+d55*f73(x(0),y(0)))

y(1)=y(0)+h/d24*(f73(x(-2),y(-2))-d5*f73(x(-1),y(-1))+ &
d19*f73(x(0),y(0))+d9*f73(x(1),y1))

e=-(y(1)-y1)/d14; WRITE(11,’(3E13.5)’)x(1),y(1),e
y(-3:0)=y(-2:1); x(-3:0)=x(-2:1)

END DO
END SELECT
CONTAINS

Numerical Solution of Ordinary Differential Equations 357

FUNCTION f73(x,y)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x,y; REAL(iwp)::f73
f73=x*y**2+2._iwp*x**2
RETURN
END FUNCTION f73

END PROGRAM nm73

List 7.3:

Scalar integers:
i simple counter
itype method type to be used
j simple counter
nsteps number of calculations steps

Scalar reals:
d3 set to 3.0
d4 set to 4.0
d5 set to 5.0
d9 set to 9.0
d14 set to 14.0
d19 set to 19.0
d24 set to 24.0
d29 set to 29.0
d37 set to 37.0
d55 set to 55.0
d59 set to 59.0
e error estimate
h calculation step length
two set to 2.0
y1 used to compute y at end of step

Real arrays:
x holds four previous values of x
y holds four previous values of y

This program allows us to obtain numerical solutions to an initial value
problem involving a first order ODE of the form

dy

dx
= f(x, y)

358 Numerical Methods for Engineers

with initial values provided from four previous steps as

y(xi) = yi, i = −3,−2,−1, 0

The user selects the method to be used in the data through the input
variable itype, where itype=1 gives the Milne-Simpson method and itype=2
gives the Adams-Bashforth-Moulton method.

The example to illustrate use of Program 7.3 is the nonlinear equation

y′ = xy2 + 2x2

with the four initial values

y(1.00) = 3.61623
y(0.95) = 2.99272
y(0.90) = 2.55325
y(0.85) = 2.22755

The function has been entered into FUNCTION f73 as

f73=x*y**2.+2._iwp*x**2.

The program is to be used to continue the sequence of solutions to y(0.6)
using 5 steps of h = −0.05 using the Adams-Bashforth-Moulton method
(itype=2). This example demonstrates that h can be positive or negative,
depending on the direction along the x-axis for which new solutions are re-
quired. The input and output for this example are given in Data 7.3 and
Results 7.3 respectively.

Predictor-Corrector method itype
2

Number and size of steps nsteps h
5 -0.05

Initial values of x and y x y
1.00 3.61623
0.95 2.99272
0.90 2.55325
0.85 2.22755

Data 7.3: Fourth Order Predictor-Corrector Methods

Numerical Solution of Ordinary Differential Equations 359

---Adams-Bashforth-Moulton 4th Order P-C Methods---

x y Error
0.10000E+01 0.36162E+01
0.95000E+00 0.29927E+01
0.90000E+00 0.25532E+01
0.85000E+00 0.22275E+01
0.80000E+00 0.19767E+01 0.71356E-03
0.75000E+00 0.17798E+01 0.30774E-03
0.70000E+00 0.16224E+01 0.12696E-03
0.65000E+00 0.14948E+01 0.72215E-04
0.60000E+00 0.13907E+01 0.38560E-04

Results 7.3: Fourth Order Predictor-Corrector Methods

As shown in Data 7.3, the four initial values are provided in the order
dictated by the direction in which additional solutions are required. Thus
with a negative h in this case, the initial conditions are given in descending
values of x.

Results 7.3 give the approximate solution y(0.6) = 1.3907 to four decimal
places. The user is invited to show that the Milne-Simpson method for the
same problem (itype=1) gives y(0.6) = 1.3912. For comparison, the exact
solution to this problem is given as 1.3917.

The error term provided in the output file is approximate, and is best
used as a qualitative guide for comparing the different methods. The most
convincing way of assessing accuracy is for the user to run the problem several
times with decreasing values of the step length h. In this way the user can
assess the sensitivity of results to the step size used. A disadvantage of multi-
step methods as mentioned previously is that if the step length is changed,
the initial values must also be adjusted to the new step length.

7.3.6 Stiff equations

Certain types of differential equations do not lend themselves to numerical
solution by the techniques described so far in this chapter. Problems can
occur if the solution to the system of equations contains components with
widely different “time scales”.

For example, the solution to a second order differential equation might be
of the form

y(x) = C1e
−x + C2e

−100x (7.82)

where the second term decays very much more rapidly than the first. Such
a system of equation is said to be “stiff” and solutions are unreliable when
treated by traditional methods. Any stepping method used to tackle such
a problem numerically must have a step length small enough to account for
the “fastest-changing” component of the solution, and this step size must

360 Numerical Methods for Engineers

be maintained even after the “fast” component has died out. As has been
discussed previously, very small step lengths can have disadvantages from
efficiency and accuracy consideration.

7.3.7 Error propagation and numerical stability

All numerical methods are approximate in nature, and some of the sources
of these errors were discussed in Chapter 1.

When solving differential equations by repetitive algorithms, where errors
introduced at one stage are carried on into subsequent calculations, the ques-
tions arises as to whether these errors will propagate with increased magnitude
or remain within acceptable limits.

An “unstable” process in the context of numerical methods is one in which
a small perturbation introduced into the calculation will grow spontaneously.
Several sources of “instability” can occur.

One source of “instability” can be in the differential equation itself rather
than the numerical method being used to solve it. For example, the second
order equation,

y′′ − 3y′ − 10y = 0 with y(0) = 1 and y′(0) = −2 (7.83)

has the exact solution y = e−2x which decays as x increases.
If a small perturbation, ε, is introduced into one of the initial conditions,

i.e.,
y(0) = 1 + ε (7.84)

then the new solution is given by

y = e−2x +
ε

7
(2e5x + 5e−2x) (7.85)

which tends to infinity as x becomes very large.
The small perturbation has caused a huge change in the solution for large

x, hence this differential equation is said to be unstable. When tackling
“unstable” problems such as this by numerical methods, any of the sources
of error described in Chapter 1 could contribute to an initial perturbation of
this type and lead to completely erroneous solutions.

Another source of instability in the solution of differential equations can
come from the difference formula itself. As mentioned earlier in this chapter,
Simpson’s corrector formula from equation (7.73) can lead to instability. It
can be shown that this formula does not cope well with differential equations
of the form

y′ = cy where c is negative (7.86)

In these cases, a spurious solution causes the errors to grow exponentially.
Spurious solutions can occur whenever the order of the difference formula is
higher than that of the differential equation being solved.

Numerical Solution of Ordinary Differential Equations 361

In some methods the spurious solutions can cause problems, whereas in
others their effects die away. For example, the Adams-Bashforth-Moulton
family of predictor-corrector formulas do not suffer from instability problems.

7.3.8 Concluding remarks on initial value problems

No single method for obtaining numerical solutions to initial value problems
can be recommended for all occasions. Fourth order methods are to be recom-
mended on the grounds of accuracy without undue complexity. The question
still remains as to whether to use one-step or predictor-corrector methods.

The following points should be considered before deciding on a particular
method.

(a) Predictor-corrector methods are not self-starting, and must actually rely
on a one-step method in order to generate enough points to get started. If a
change in step size is made during the solution process, a temporary reversion
to the one-step method is usually required. Changes in the step size are very
easy to implement in a one-step method.

(b) One-step methods are of comparable accuracy to predictor-corrector
methods of the same order. However, the predictor-corrector methods pro-
vide a simple error estimate at each step, enabling the step size to be adjusted
for maximum accuracy and efficiency. No such estimate is usually available
with a one-step method, hence the step size h is often made smaller than
necessary to be conservative.

(c) To advance one step using the fourth order Runge-Kutta method re-
quires four evaluations of the function f(x, y) which are used just once and
then discarded. To advance one step using a fourth order predictor-corrector
method usually requires just one new function evaluation. In addition, func-
tion evaluations in a predictor-corrector method can be stored and used again,
as only whole intervals of x are required.

The fourth order methods of Runge-Kutta and Adams-Bashforth-Moulton
are the preferred one-step and predictor-corrector approaches. The fourth or-
der Runge-Kutta method has the advantages of being simple and self-starting,
and is probably to be recommended for most engineering applications.

Many methods exist for numerical solution of differential equations, includ-
ing newer hybrid methods which take advantage of both the simplicity of the
one-step methods and the error-estimates of the predictor-corrector methods.
These refinements are only obtained at the cost of greater complexity and
more function evaluations per step. The reader is referred to more advanced
texts on numerical analysis to learn of such developments.

362 Numerical Methods for Engineers

7.4 Boundary value problems

When we attempt to solve ordinary differential equations of second order
or higher with information provided at different values of the independent
variable, we must use different numerical methods from those described in
the previous section.

The initial value problems covered previously often involved “time” as the
independent variable, and solution techniques required us to “march” along
in steps until the required solution was reached. The domain of the solution
in such cases is not finite, because in principle we can step along indefinitely
in either the positive or negative direction.

Boundary value problems involve a finite solution domain, and solutions
are required within that domain. The independent variable in such problems
is usually a coordinate measuring distance in space. A typical second order
boundary value problem might be of the form

y′′ = f(x, y, y′) with y(A) = yA and y(B) = yB (7.87)

The domain of the solution (assuming B > A) is given by values of x in the
range A ≤ x ≤ B. We are interested in finding the values of y corresponding
to this range of x.

Numerical solution methods that will be considered in this chapter fall into
three categories

(a) Techniques that replace the original differential equation by its finite
difference equivalent.

(b) “Shooting methods”, which attempt to replace the boundary value prob-
lem by an equivalent initial value problem.

(c) Methods of “weighted residuals”, where a trial solution satisfying the
boundary conditions is guessed, and certain parameters within that solution
adjusted in order to minimise errors.

7.4.1 Finite difference methods

In this method, derivative terms in the differential equation are replaced
by finite difference approximations (see Chapter 5). As will be shown, if the
differential equation is linear this process leads to a system of linear simulta-
neous equations, which can be solved using the methods described in Chapter
2.

Initially, we need to define some finite difference approximations to regularly
encountered derivatives. Consider the solution curve in Figure 7.8 in which
the x-axis is subdivided into regular grid points, distance h apart.

Numerical Solution of Ordinary Differential Equations 363

Figure 7.8: Finite difference grid points.

We may express the first derivative of y with respect to x evaluated at xi,
in any of the following ways

y′i ≈
yi+1 − yi

h
“forward” difference (7.88)

y′i ≈
yi − yi−1

h
“backward” difference (7.89)

y′i ≈
yi+1 − yi−1

2h
“central” difference (7.90)

These finite difference formulas are approximating the first derivative by
computing the slope of a straight line joining points in the vicinity of the
function at xi. The forward and backward formulas have bias, in that they
include points only to the right or left of xi. The central difference form takes
equal account of points to the left and right of xi.

Higher derivatives can also be approximated in this way. For example, the
second derivative at xi could be estimated by taking the backward difference
of first derivatives as follows

y′′i ≈ y′i − y′i−1

h
(7.91)

If we then substitute forward difference formulas for the first derivatives as

y′i ≈
yi+1 − yi

h
and y′i−1 ≈ yi − yi−1

h
(7.92)

into equation (7.91), we can write a central difference formula for y′′i as

y′′i ≈ yi−1 − 2yi + yi+1

h2
(7.93)

364 Numerical Methods for Engineers

Similarly a central difference formula for the third derivative at xi can be
given by

y′′′i ≈ y′′i − y′′i−1

h

=
−yi−2 + 2yi−1 − 2yi+1 + yi+2

2h3
(7.94)

and for a fourth derivative at xi by

yiv
i ≈ y′′i−1 − 2y′′i + y′′i+1

h2

=
yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2

h4
(7.95)

Forward and backward difference versions of these higher derivatives are
also readily obtained, and by including more points in the difference formulas,
greater accuracy can be achieved. A summary of the coefficients for forward,
central and backward difference formulas was presented in Section 5.3.

Backward difference formulae are simply mirror images of the forward dif-
ference formulas, except for odd numbered derivatives (i.e., y′,y′′′, etc.) where
the signs must be reversed.

For example, a four-point forward difference formula for a first derivative
at x0 including the dominant error term from Table 5.2 is

y′0 =
1
6h

(−11y0 + 18y1 − 9y2 + 2y3) − 1
4
h3yiv(ξ) (7.96)

while the corresponding backward difference formula from Table 5.4 is

y′0 =
1
6h

(−2y−3 + 9y−2 − 18y−1 + 11y0) +
1
4
h3yiv(ξ) (7.97)

The solution to a “two-point” boundary value problem such as that given
by equation (7.87), involves splitting the range of x for which a solution is
required into n equal parts, each of width h. As shown in Figure 7.9 with
n = 4, if the boundary conditions are given at, x = A and x = B, we let
xi = x0 + ih, i = 1, 2, . . . , n, where x0 = A and xn = B.

The differential equation is then written in finite difference form at each
of the internal points i = 1, 2, . . . , n − 1. If the differential equation is lin-
ear, this leads to n− 1 simultaneous linear equations in the unknown values
yi, i = 1, 2, . . . , n− 1, where yi represents the solution at xi. The more sub-
divisions made, the greater the detail and accuracy of the solution but the
more simultaneous equations that must be solved.

Example 7.11

Given y′′ = 3x+ 4y with boundary conditions y(0) = 0 and y(1) = 1, solve
the equation in the range 0 ≤ x ≤ 1 by finite differences using h = 0.2.

Numerical Solution of Ordinary Differential Equations 365

Figure 7.9: Two-point boundary value problem (n = 4).

Solution 7.11

Firstly we write the differential equation in finite difference form. From
Tables 5.2-5.4 we have a choice of formulas for the required second derivative.
It is usual to use the lowest order central difference form, unless there is
a particular reason to use the less accurate forward or backward difference
forms, hence from equation (7.93)

y′′i ≈ yi−1 − 2yi + yi+1

h2

and the differential equation can be written as

1
h2

(yi−1 − 2yi + yi+1) = 3xi + 4yi

The solution domain is split into five equal strips, each of width h = 0.2 as
shown in Figure 7.10.

The finite difference equation is then written at each of the grid points
for which a solution is required. Known boundary conditions are introduced
where needed leading to the four equations given in Table 7.1.

These (nonsymmetric) equations can be solved using any suitable program
from Chapter 2. Table 7.2 compares the numerical solutions with the exact
solutions given by

y =
7(e2x − e−2x)
4(e2 − e−2)

− 3
4
x

366 Numerical Methods for Engineers

Figure 7.10: Finite difference subdivisions (Example 7.11).

TABLE 7.1: Difference equations from Example 7.11
i xi Finite difference equation

1 0.2 (y2 − 2y1 + 0)/0.04 = 0.6 + 4y1
2 0.4 (y3 − 2y2 + y1)/0.04 = 1.2 + 4y2
3 0.6 (y4 − 2y3 + y2)/0.04 = 1.8 + 4y3
4 0.8 (1 − 2y4 + y3)/0.04 = 2.4 + 4y4

TABLE 7.2: Exact and finite
difference solutions from Example 7.11

x yexact yFD

0.0 0.0 0.0
0.2 0.0482 0.0495
0.4 0.1285 0.1310
0.6 0.2783 0.2814
0.8 0.5472 0.5488
1.0 1.0 1.0

Clearly the accuracy of the finite difference solution could have been further
improved by taking more subdivisions in the range 0 ≤ x ≤ 1, at the expense
of solving more equations. It should be noted that the equation coefficients

Numerical Solution of Ordinary Differential Equations 367

in this class of problem have a narrow bandwidth (see Section 2.4).
Example 7.11 highlights a problem that would be encountered if one of

the higher order finite difference representations of y′′ had been used. For
example, if we had used the five-point central different formula for y′′ (see
Table 5.3), values of y outside the solution domain would have been required
in order to express y′′1 and y′′4 . Further information would then be required
in order to solve the system, because there would be more unknowns than
equations.

The need to introduce points outside the solution domain, at least tem-
porarily, is encountered quite frequently and can be resolved by incorporating
the appropriate boundary conditions as shown in the next example.

Consider a boundary value problem where

y′′ = f(x, y, y′) with y(A) = yA and y′(B) = y′B (7.98)

In this case, y(B) remains unknown, so the finite difference version of the
differential equation will need to be written at x = B. Even when using
the simplest central difference formula for y′′ given by equation (7.93), the
unknown y5, corresponding to the “solution” at x5, will be introduced as
shown in Figure 7.11. In this case, we have 5 unknowns but only 4 equations.

Figure 7.11: Derivative boundary condition.

The fifth equation comes from the derivative boundary condition which can
also be written in finite difference form, i.e., using central differences

y′B =
y5 − y3

2h
(7.99)

368 Numerical Methods for Engineers

Example 7.12

Given x2y′′ + 2xy′ − 2y = x2 with boundary conditions y(1) = 1 and
y′(1.5) = −1. Solve the equation in the range 1 ≤ x ≤ 1.5 by finite difference
using h = 0.1.

Solution 7.12

The differential equation is written in finite difference form using central
differences for both the derivative terms as follows

x2
i

h2
(yi+1 − 2yi + yi−1) +

xi

h
(yi+1 − yi−1) − 2yi = x2

i

and applied at the five x-values for which solutions are required as shown in
Figure 7.12.

The resulting equations are given in Table 7.3 and it can be noted from
Figure 7.12 that a sixth unknown y6 = y(1.6) outside the solution domain has
been introduced by the fifth equation. The derivative boundary condition in
central difference form

y6 − y4
0.2

= −1

is used to provide the sixth equation.
The solution to these six linear equations, together with the exact

y =
135
86

1
x2

− 141
172

x+
1
4
x2

is given in Table 7.4.

The finite difference solutions given in this section have performed quite well
with relatively few grid points. This will not always be the case, especially if
quite sudden changes in the derivatives occur within the solution domain. In
cases where no exact solution is available for comparison, it is recommended
that the problem should be solved using two or three different gradations of
the solution domain. The sensitivity of the solutions to the grid size parameter
h will often indicate the accuracy of the solution.

From the user’s point of view, h should be made small enough to enable the
desired accuracy to be achieved, but no smaller than necessary, as this would
lead to excessively large systems of banded equations.

7.4.2 Shooting methods

Shooting methods attempt to solve boundary value problems as if they were
initial value problems. Consider the following second order equation

y′′ = f(x, y, y′) with y(A) = yA and y(B) = yB (7.100)

Numerical Solution of Ordinary Differential Equations 369

Figure 7.12: Finite difference subdivisions (Example 7.12).

TABLE 7.3: Difference equations from Example 7.12
i xi Finite difference equation

1 1.1
1.12

0.12 (y2 − 2y1 + 1) +
1.1
0.1

(y2 − 1) − 2y1 = 1.12

2 1.2
1.22

0.12 (y3 − 2y2 + y1) +
1.2
0.1

(y3 − y1) − 2y2 = 1.22

3 1.3
1.32

0.12 (y4 − 2y3 + y2) +
1.3
0.1

(y4 − y2) − 2y3 = 1.32

4 1.4
1.42

0.12 (y5 − 2y4 + y3) +
1.4
0.1

(y5 − y3) − 2y4 = 1.42

5 1.5
1.52

0.12 (y6 − 2y5 + y4) +
1.5
0.1

(y6 − y4) − 2y5 = 1.52

In a shooting method we will solve a sequence of initial value problems of
the form

y′′ = f(x, y, y′) with y(A) = yA and y′i(A) = ai (7.101)

By varying the initial gradient ai in a methodical way, we can eventually
reach a solution at x = B that is sufficiently close to the required boundary
value yB. There are several different strategies for converging on the required

370 Numerical Methods for Engineers

TABLE 7.4: Exact and finite difference
solutions from Example 7.12

x yexact yFD

1.0 1.0000 1.0000
1.1 0.7981 0.7000
1.2 0.4774 0.4797
1.3 0.2857 0.2902
1.4 0.1432 0.1487
1.5 0.0305 0.0379
1.6 -0.0584 -0.0513

solution, and these are similar to methods for finding roots of nonlinear alge-
braic equations (see Chapter 3).

The approach described here as shown in Figure 7.13 is to choose two initial
gradients y′0(A) = a0 and y′1(A) = a1 which, following application of a one-
step method for each, give values of y0(B) = y0 and y1(B) = y1 respectively
that straddle the required boundary condition of yB, i.e., y0 < yB < y1 (or
y1 < yB < y0).

Figure 7.13: Shooting method for a nonlinear equation.

By linear interpolation, an improved estimate of the initial gradient is then

Numerical Solution of Ordinary Differential Equations 371

given by

a∗ = a0 +
(yB − y0)(a1 − a0)

y1 − y0
(7.102)

which leads to y(B) = y∗.
One of the initial gradients is then replaced by a∗ according to the following

test
If (y∗ − yB)(y0 − yB) > 0

then overwrite y0 by y∗ and a0 by a∗ else

overwrite y1 by y∗ and a1 by a∗

The goal throughout the iterative process is to retain one initial gradient
that overestimates the target boundary condition, and one that underesti-
mates it. As the iterations proceed, y∗ tends to the target value and calcula-
tions are stopped when a convergence tolerance is satisfied according to the
criterion ∣∣∣∣y∗ − yB

yB

∣∣∣∣ < tolerance (7.103)

The iterative process is essentially the “False Position Method” described
in Chapter 3.

Program 7.4: Shooting method for second order ODEs

PROGRAM nm74
!---Shooting Method for Second Order ODEs---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,iters,j,limit,nsteps
REAL(iwp)::astar,a0(2),d6=6.0_iwp,h,k0(2),k1(2),k2(2),k3(2), &
tol,two=2.0_iwp,x,xa,xb,y(2),ya,yb,zero=0.0_iwp

REAL(iwp),ALLOCATABLE::y0(:,:),ystar(:)
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
READ(10,*)nsteps,xa,ya,xb,yb,a0,tol,limit
ALLOCATE(y0(0:nsteps,2),ystar(0:nsteps))
WRITE(11,’(A)’)"---Shooting Method for Second Order ODEs---"
h=(xb-xa)/nsteps
DO j=1,2
x=xa; y(1)=ya; y(2)=a0(j)
DO i=0,nsteps
y0(i,j)=y(1); k0=h*f74(x,y); k1=h*f74(x+h/two,y+k0/two)
k2=h*f74(x+h/two,y+k1/two); k3=h*f74(x+h,y+k2)
y=y+(k0+two*k1+two*k2+k3)/d6; x=x+h

END DO

372 Numerical Methods for Engineers

END DO
IF((y0(nsteps,1)-yb)*(y0(nsteps,2)-yb)>zero) &
WRITE(11,’(A)’)"Try new gradients....?"

iters=0
DO
iters=iters+1
astar=a0(1)+(yb-y0(nsteps,1))*(a0(2)-a0(1))/ &
(y0(nsteps,2)-y0(nsteps,1))

x=xa; y(1)=ya; y(2)=astar
DO i=0,nsteps
ystar(i)=y(1)
k0=h*f74(x,y); k1=h*f74(x+h/two,y+k0/two)
k2=h*f74(x+h/two,y+k1/two); k3=h*f74(x+h,y+k2)
y=y+(k0+two*k1+two*k2+k3)/d6; x=x+h

END DO
IF(ABS((ystar(nsteps)-yb)/yb)<tol)THEN
WRITE(11,’(/,A,I2)’)" x y"
WRITE(11,’(2E13.5)’)(xa+i*h,ystar(i),i=0,nsteps)
WRITE(11,’(/,A,/,I5)’)"Iterations to Convergence",iters
EXIT

END IF
IF((ystar(nsteps)-yb)*(y0(nsteps,1)-yb)>zero)THEN
y0(:,1)=ystar; a0(1)=astar; ELSE; y0(:,2)=ystar; a0(2)=astar

END IF
END DO
CONTAINS

FUNCTION f74(x,y)
IMPLICIT NONE
REAL(iwp),INTENT(IN)::x,y(2)
REAL(iwp)::f74(2)
f74(1)=y(2)
f74(2)=3._iwp*x**2+4._iwp*y(1)

! f74(1)=y(2)
! f74(2)=-2._iwp*y(2)**2/y(1)
RETURN
END FUNCTION f74

END PROGRAM nm74

This program obtains numerical solutions to second order ODEs with two
point boundary conditions of the form

y′′ = f(x, y, y′) with y(A) = yA and y(B) = yB

The second order equation must first be reduced to two first order equations

Numerical Solution of Ordinary Differential Equations 373

List 7.4:

Scalar integers:
i simple counter
iters iteration counter
j simple counter
limit iteration ceiling
nsteps number of calculations steps

Scalar reals:
astar interpolated initial gradient
d6 set to 6.0
h calculation step length
tol convergence tolerance
two set to 2.0
x independent variable
xa x-coordinate of first boundary condition
xb x-coordinate of second boundary condition
ya y-coordinate of first boundary condition
yb y-coordinate of second boundary condition
zero set to 0.0

Real arrays:
a0 holds initial gradients a0 and a1

k0 estimate of Δy
k1 estimate of Δy
k2 estimate of Δy
k3 estimate of Δy
y holds y and y′ during one-step process

Dynamic real arrays:
y0 holds values of y0 and y1 on either side of target
ystar holds interpolated values of y

as
y′ = z with y(A) = yA

z′ = f(x, y, z) with z(A) = ai

where two values of the initial gradient a0 and a(1) must be provided by
the user. The program then iteratively adjusts the initial gradient until the
boundary condition at y(B) = yB is satisfied within a specified tolerance.

The first item to be read in is nsteps, the number of steps within the
solution domain A ≤ x ≤ B. Since the boundaries are known in this problem,
the step length is calculated internally as h=(B-A)/nsteps. The next data
are the boundary conditions read as xa, ya at the beginning of the range,
and xb, yb at the end. The two initial values of the gradient are then read

374 Numerical Methods for Engineers

into the vector a0. For the algorithm to proceed, these must result in values
of y at x = B that lie either side of the required boundary condition yB. A
warning is printed if this is not the case. Data are completed by a convergence
tolerance tol and an iteration ceiling limit.

The first example to illustrate use of Program 7.4 is the linear equation

y′′ = 3x2 + 4y with y(0) = 0 and y(1) = 1

for which a solution is required in the range 0 ≤ x ≤ 1.
The equation is decomposed into two first order equations (see Section 7.3.2)

as follows
y′ = z with y(0) = 0

z′ = 3x2 + 4y with z(0) = ai

and the right-hand-side functions entered into FUNCTION f74 as

f74(1)=y(2)
f74(2)=3._iwp*x**2+4._iwp*y(1)

Number of steps nsteps
5

Boundary conditions (xa, ya) (xb, yb)
0.0 0.0 1.0 1.0

Initial gradients a0(1) a0(2)
0.0 1.0

Convergence data tol limit
0.0001 25

Data 7.4a: Shooting Method (first example)

---Shooting Method for Second Order ODEs---

x y
0.00000E+00 0.00000E+00
0.20000E+00 0.81315E-01
0.40000E+00 0.18147E+00
0.60000E+00 0.33130E+00
0.80000E+00 0.57939E+00
0.10000E+01 0.10000E+01

Numerical Solution of Ordinary Differential Equations 375

Iterations to Convergence
1

Results 7.4a: Shooting Method (first example)

The input and output for this example are given in Data 7.4a and Results
7.4a. As shown in Data 7.4a, five steps (h = 0.2) are to be computed within
the range and this is followed by the boundary conditions at the beginning
and end of the range. The two initial gradients are read in as 0.0 and 1.0.
For linear equations such as in this case, any two initial guesses will lead
to a converged solution in a single iteration. If the equation is nonlinear
however, convergence is slower and may fail entirely if the initial guesses lead
to solutions on the same side of the target boundary condition. In this case
the program prints a warning to the output file suggesting that a different pair
of initial conditions should be tried. The data in this case are completed by
a convergence tolerance of tol=0.0001 and an iteration ceiling of limit=25.
The iteration ceiling is there to avoid an “infinite loop” in the event of a data
error or a poorly posed problem.

The output given in Results 7.4a is in good agreement with the exact solu-
tion. For example, the numerical solution at x = 0.6 is given as y = 0.33130
compared with the exact solution, which can be shown to be y = 0.33123 to
five decimal places.

The second example to illustrate use of Program 7.4 is the nonlinear equa-
tion

y′′ +
2(y′)2

y
= 0 with y(0) = 1 and y(1) = 2

for which a solution is required in the range 0 ≤ x ≤ 1.
The equation is decomposed into two first order equations (see Section 7.3.2)

as follows
y′ = z with y(0) = 1

z′ =
−2z2

y
with z(0) = ai

and the right-hand side functions entered into FUNCTION f74 as,

f74(1)=y(2)
f74(2)=-2._iwp*y(2)**2/y(1)

Number of steps nsteps
10

Boundary conditions (xa, ya) (xb, yb)
0.0 1.0 1.0 2.0

376 Numerical Methods for Engineers

Initial gradients a0(1) a0(2)
1.0 3.0

Convergence data tol limit
0.000001 25

Data 7.4b: Shooting Method (second example)

---Shooting Method for Second Order ODEs---

x y
0.00000E+00 0.10000E+01
0.10000E+00 0.11932E+01
0.20000E+00 0.13386E+01
0.30000E+00 0.14579E+01
0.40000E+00 0.15604E+01
0.50000E+00 0.16509E+01
0.60000E+00 0.17324E+01
0.70000E+00 0.18069E+01
0.80000E+00 0.18757E+01
0.90000E+00 0.19399E+01
0.10000E+01 0.20000E+01

Iterations to Convergence
7

Results 7.4b: Shooting Method (second example)

The input and output for this example are given in Data 7.4b and Results
7.4b. As shown in Data 7.4a, ten steps (h = 0.1) are to be computed within
the range. The two initial gradients are read in as 1.0 and 3.0 which were
shown by trial and error to give solutions on either side of the target boundary
condition. A tighter convergence tolerance of tol=0.000001 is used in this
example.

As shown in Results 7.4b, the shooting method took 7 iterations to con-
verge to the required tolerance. The user is invited to demonstrate the good
agreement between the numerical solution and the exact solution, which in
this case is given by y = 3

√
7x+ 1.

7.4.3 Weighted residual methods

These methods have been the subject of a great deal of research in recent
years. The methods can form the basis of the finite element method (see
Chapter 8) which is now the most widely used numerical method for the
solution of large boundary value problems.

Numerical Solution of Ordinary Differential Equations 377

The starting point for weighted residual methods is to guess a solution to
the differential equation which satisfies the boundary conditions. This “trial
solution” will contain certain parameters which can be adjusted to minimize
the errors. Several different methods are available for minimizing the error
or “residual”, such that the trial solution is as close to the exact solution as
possible.

Consider the second order boundary value problem

y′′ = f(x, y, y′) with y(A) = yA and y(B) = yB (7.104)

The differential equation can be rearranged as

R = y′′ − f(x, y, y′) (7.105)

where R is the “residual” of the equation. Only the exact solution y(x) will
satisfy the boundary conditions and cause R to equal zero for all x.

Consider a trial solution of the form

ỹ = F (x) +
n∑

i=1

Ciψi(x) with ỹ(A) = yA and ỹ(B) = yB (7.106)

where F (x) can equal zero if appropriate.
The trial solution must satisfy the boundary conditions of the differential

equation, and is made up of trial functions ψ1(x), ψ2(x), etc., each of which
is multiplied by an “undetermined parameter” C1, C2, etc. The trial solution
from equation (7.106) is differentiated twice, and substituted into (7.105) to
give

R = ỹ′′ − f(x, ỹ, ỹ′) (7.107)

The goal is now to minimize the residual R in some sense over the solu-
tion domain A ≤ x ≤ B by selecting the “best” values of the undetermined
parameters C1, C2, etc. Various methods for minimizing R will be described.

Clearly the choice of a suitable trial solution is crucial to the whole pro-
cess. Ideally, the trial functions ψ1(x), ψ2(x), etc. will be simple polynomials
such as 1, x, x2, etc., although transcendental functions such as sinx, lnx,
etc., can also be used. Sometimes the engineering application underlying the
differential equations points to a “sensible” choice of trial functions.

From equation (7.106), there is no upper limit on n, the number of terms
in the trial solution. In related methods, such as the finite element method
(see Chapter 8), it is usual to split the solution domain into smaller pieces or
elements, and use rather simple trial solutions over each. The general ethos of
the finite element method is that the more terms included in the trial solution,
the more accurate each element will be, and hence fewer will be needed over
the solution domain to achieve a desired level of accuracy. A compromise is
usually reached between complexity and repetition.

In this chapter, we will only consider the weighted residual method applied
to a single trial solution over the whole solution domain.

378 Numerical Methods for Engineers

Example 7.13

Given the boundary value problem

y′′ = 3x+ 4y with y(0) = 0 and y(1) = 1

obtain an expression for the Residual using a trial solution with one undeter-
mined parameter.

Solution 7.13

In order to find a trial solution which satisfies the boundary condition, we
could derive a Lagrangian polynomial (see Section 5.2.1) which passes through
the points

x y

0 0
1/2 a

1 1

We have introduced a variable a at the midpoint of the range that will
be related to our single undetermined parameter. The resulting Lagrangian
polynomial is second order and of the form

ỹ = x2(2 − 4a) − x(1 − 4a)

which can be arranged in the form given by equation (7.106) as

ỹ = F (x) + C1ψ1(x)

where F (x) = 2x2 − x

C1 = −4a
ψ1(x) = x2 − x

The residual of the original differential equation is given by

R = ỹ′′ − 3x− 4ỹ

Differentiation of the trial solution twice gives

ỹ′ = 2x(2 − 4a) − (1 − 4a)
ỹ′′ = 2(2 − 4a)

which can be substituted into the expression for the residual. In this example
there is no first derivative, but after rearrangement and substitution for C1

we get
R = −4x2(2 + C1) + x(1 + 4C1) + 2(2 + C1)

Numerical Solution of Ordinary Differential Equations 379

Example 7.14

Obtain a trial solution to the problem of Example 7.13 involving two un-
determined parameters.

Solution 7.14

Derive a Lagrangian polynomial which passes through the following points

x y

0 0
1/3 a
2/3 b
1 1

We have introduced two variables a and b at the one-third points of the
range that will be related to our two undetermined parameters. The resulting
Lagrangian polynomial is cubic and of the form

ỹ =
1
2
[x3(27a− 27b+ 9) − x2(45a− 36b+ 9) + x(18a− 9b+ 2)]

which can be arranged in the form given by equation (7.106) as

ỹ = F (x) + C1ψ1(x) + C2ψ2(x)

where F (x) =
1
2
(9x3 − 9x2 + 2x)

C1 =
27
2

(a− b)

ψ1(x) = x3 − x2

C2 = −9
2
(2a− b)

ψ2(x) = x2 − x

Four of the best-known methods for minimizing the residual R are now
covered briefly. In each case, the trial solution and residual from Example
7.13, i.e.,

ỹ = (2x2 − x) + C1(x2 − x) (7.108)

and
R = −4x2(2 + C1) + x(1 + 4C1) + 2(2 + C1) (7.109)

are operated on.

380 Numerical Methods for Engineers

7.4.3.1 Collocation

In this method, the residual is made equal to zero at as many points in the
solution domain as there are unknown Ci. Hence, if we have n undetermined
parameters, we write

R(xi) = 0 for i = 1, 2, . . . , n (7.110)

where x1, x2, . . . , xn are n “collocation points” within the solution domain.
This leads to n simultaneous equations in the unknown Ci.

Example 7.15

Use collocation to find a solution to the differential equation of Example
7.13.

Solution 7.15

Using the trial solution and residual from Solution 7.13 we have one unde-
termined parameter C1. It seems logical to collocate at the midpoint of the
solution domain, x = 0.5, hence from equation (7.109)

R(0.5) = −4(0.5)2(2 + C1) + 0.5(1 + 4C1) + 2(2 + C1) = 0

which can be solved to give C1 = −5
6
.

The trial solution is therefore given by

ỹ = (2x2 − x) − 5
6
(x2 − x)

which can be simplified as

ỹ =
x

6
(7x− 1)

Note: If our trial solution had two undetermined parameters such as that
given in Example 7.14, we would have needed to collocate at two locations
such as x = 1

3 and x = 2
3 to give two equations in the unknown C1 and C2.

7.4.3.2 Subdomain

In this method, the solution domain is split into as many “subdomains” or
parts of the domain as there are unknown Ci. We then integrate the residual
over each subdomain and set the result to zero. Hence, for n undetermined
parameters we will integrate over n subdomains as follows∫ x1

x0

Rdx = 0,
∫ x2

x1

Rdx = 0, . . . ,
∫ xn

xn−1

Rdx = 0 (7.111)

where the solution domain is in the range x0 ≤ x ≤ xn and x1, x2, . . . , xn−1

are points within that range. This leads to n simultaneous equations in the
unknown Ci.

Numerical Solution of Ordinary Differential Equations 381

Example 7.16

Use the subdomain method to find a solution to the differential equation of
Example 7.13.

Solution 7.16

Using the trial solution and residual from Solution 7.13 we have one unde-
termined parameter C1. In this case we require only one “subdomain” which
is the solution domain itself, hence integrating R from equation (7.109) we
get

∫ x1

x0

Rdx =
∫ 1

0

[−4x2(2 + C1) + x(1 + 4C1) + 2(2 + C1)] dx

=
[
−4

3
x3(2 + C1) +

1
2
x2(1 + 4C1) + 2x(2 + C1)

]1

0

= 0

which can be solved to give C1 = −11
16

.

The trial solution is therefore given by

ỹ = (2x2 − x) − 11
16

(x2 − x)

which can be simplified as

ỹ =
x

16
(21x− 5)

Note: If our trial solution had two undetermined parameters such as that given
in Example 7.14, we would have needed to integrate over two subdomains such
as ∫ 0.5

0

Rdx = 0 and

∫ 1

0.5

Rdx = 0

to give two equations in the unknown C1 and C2.

7.4.3.3 Least Squares

In this method we integrate the square of the residual over the full solution
domain. We then differentiate with respect to each of the undetermined pa-
rameters in turn, and set the result to zero. This has the effect of minimizing
the integral of the square of the residual.

Noting that in general

∂

∂Ci

∫ B

A

R2 dx = 2
∫ B

A

R
∂R

∂Ci
dx (7.112)

where the solution domain is A ≤ x ≤ B.

382 Numerical Methods for Engineers

For n undetermined parameters, we can therefore write
∫ B

A

R
∂R

∂C1
dx = 0,

∫ B

A

R
∂R

∂C2
dx = 0, . . .

∫ B

A

R
∂R

∂Cn
dx = 0 (7.113)

leading to n simultaneous equations in the unknown Ci.

Example 7.17

Use the Least Squares method to find a solution to the differential equation
of Example 7.13.

Solution 7.17

Using the trial solution and residual from Solution 7.13 we have one unde-
termined parameter C1, hence from equation (7.113) write

∫ 1

0

R
∂R

∂C1
dx =

∫ 1

0

[−4x2(2 + C1) + x(1 + 4C1) + 2(2 + C1)][−4x2 + 4x+ 2] dx

=
[
16
5

(2 + C1)x5 − (9 + 8C1)x4 − 28
3
x3

+(9 + 8C1)x2 + 4(2 + C1)x
]1

0

= 0

which can be solved to give C1 = −19
27

.

The trial solution is therefore given by

ỹ = (2x2 − x) − 19
27

(x2 − x)

which can be simplified as

ỹ =
x

27
(35x− 8)

Note: If our trial solution had two undetermined parameters such as that
given in Example 7.14, we would have written∫ 1

0

R
∂R

∂C1
dx = 0 and

∫ 1

0

R
∂R

∂C2
dx = 0

to give two equations in the unknown C1 and C2.

7.4.3.4 Galerkin’s method

In this method, which is the most popular in finite element applications,
we “weight” the residual by the trial functions and set the integrals to zero.

Numerical Solution of Ordinary Differential Equations 383

Hence for n undetermined parameters, we have in general∫ B

A

Rψ1(x) dx = 0,
∫ B

A

Rψ2(x) dx = 0, . . . ,
∫ B

A

Rψn(x) dx = 0 (7.114)

where the solution domain is A ≤ x ≤ B.
This leads to n simultaneous equations in the unknown Ci.

Example 7.18

Use Galerkin’s method to find a solution to the differential equation of
Example 7.13.

Solution 7.18

Using the trial solution and residual from Solution 7.13 we have one unde-
termined parameter C1, hence from equation (7.114) write∫ 1

0

Rψ1(x) dx =
∫ 1

0

[−4x2(2 + C1) + x(1 + 4C1) + 2(2 + C1)][x2 − x] dx

=
[
− 4

5
(2 + C1)x5 +

1
4
(9 + 8C1)x4

+
1
3
(3 − 2C1)x3 − (2 + C1)x2

]1

0

= 0

which can be solved to give C1 = −3
4
.

The trial solution is therefore given by

ỹ = (2x2 − x) − 3
4
(x2 − x)

which can be simplified as

ỹ =
x

4
(5x− 1)

Note: If our trial solution had two undetermined parameters such as that
given in Example 7.14, we would have written∫ 1

0

Rψ1(x) dx = 0 and

∫ 1

0

Rψ2(x) dx = 0

to give two equations in the unknown C1 and C2.

7.4.3.5 Concluding remarks on weighted residual examples

The differential equation with boundary conditions

y′′ = 3x+ 4y with y(0) = 0 and y(1) = 1

384 Numerical Methods for Engineers

has been solved using a trial solution with just one undetermined parameter.
Four different weighted residual methods were demonstrated, and a summary
of those results, together with the exact solution are given below

Collocation ỹ =
x

6
(7x− 1)

Subdomain ỹ =
x

16
(21x− 5)

Least Squares ỹ =
x

27
(35x− 8) (7.115)

Galerkin ỹ =
x

4
(5x− 1)

Exact y =
7(e2x − e−2x)
4(e2 − e−2)

− 3
4
x

The error associated with each of the trial solutions is shown in Figure 7.14.
It is clear that, for this example, no single method emerges as the “best.”
Indeed each of the methods is the “most accurate” at some point within the
solution domain 0 ≤ x ≤ 1.

Figure 7.14: Error due to various weighted residual methods.

For simple problems such as the one demonstrated here, the Collocation
method is the easiest to apply, because it does not require any integration.
For finite element methods however, the Galerkin method is most often em-
ployed, because it can be shown that use of the trial functions to weight
the residual leads to desirable properties such as symmetry of simultaneous
equation coefficient matrices.

Numerical Solution of Ordinary Differential Equations 385

For comparison, the trial solution with two undetermined parameters de-
veloped in Example 7.14 has been derived using two-point collocation. It is
left to the reader to show that the resulting trial solution becomes

ỹ =
1
2
(9x3 − 9x2 + 2x) − 108

31
(x3 − x2) +

576
806

(x2 − x) (7.116)

leading to considerably reduced errors, also shown in Figure 7.14.
All the four methods described in this section for optimizing the accuracy of

a trial solution employ the philosophy that weighted averages of the residual
should vanish. The difference between methods, therefore, lies only in the way
the residual is weighted. In general, if we have n undetermined parameters,
we set ∫ B

A

Wi(x)R dx = 0 for i = 1, 2, . . . , n (7.117)

where the solution domain is A ≤ x ≤ B.
In the previous examples with one undetermined parameter, the weighting

function W1 took the following form over the solution domain of 0 ≤ x ≤ 1
for each of the methods

Collocation

{
W1(x) = 0 for x �= 1

2

W1(x) = 1 for x = 1
2

Subdomain W1(x) = 1 (7.118)
Least Squares W1(x) = −4x2 + 4x+ 2

Galerkin W1(x) = x2 − x

These weighting functions are summarized graphically in Figure 7.15.

Figure 7.15: Weighting functions from different methods.

386 Numerical Methods for Engineers

7.5 Exercises

1. Given y′ = xy sin y with y(1) = 1, estimate y(1.5) using the Euler
method with (a) h = 0.25, (b) h = 0.1.
Answer: (a) 1.5643, (b) 1.6963

2. Given y′ = (x2+y2)/y with y(1) = 1, estimate y(0.5) using the Modified
Euler method with (a) h = −0.1, (b) h = −0.05.
Answer: (a) 0.1869, (b) 0.1923 (Exact: 0.1939)

3. Rework exercise 2 using the Mid-Point rule.
Answer: (a) 0.1952, (b) 0.1943

4. Rework exercise 2 using the fourth order Runge-Kutta method with two
steps of h = −0.25.
Answer: 0.1941

5. Use the Euler method in the following cases

(a) y′ = y with y(0) = 1 find y(0.2) using h = 0.05
(b) y′ = x+ y with y(0) = 0 find y(0.5) using h = 0.1
(c) y′ = 3x− y with y(1) = 0 find y(0.5) using h = −0.1

Answer: (a) 1.2155 (Exact: 1.2214), (b) 0.1105 (Exact: 0.1487), (c)
−1.5 (Exact: −1.5)

6. Since the equations in exercise 5 are linear, rework them using the “θ-
method” with h = 0.5.
Answer: (a) 1.2215, (b) 0.1494, (c) −1.5

7. Given y′ = (x + y)2 with y(0) = 1, estimate y(0.2) using the fourth
order Runge-Kutta method with h = 0.2
Answer: 1.3085 (Exact: 1.3085)

8. Given y′ = x + y + xy + 1 with y(0) = 2, estimate y(0.4) using the
Modified Euler method with (a) h = 0.1, (b) h = 0.2, and use these to
make a further improved estimate.
Answer: (a) 3.8428, (b) 3.8277, 3.8478 (Exact: 3.8482)

9. Given
y′′

[1 + (y′)2]3/2
= 1−x with y(0) = y′(0) = 0, estimate y(0.5) using

the Mid-Point method with (a) h = 0.25, (b) h = 0.05.
Answer: (a) 0.1124, (b) 0.1087 (Exact: 0.1085)

10. Given y′′ + y + (y′)2 = 0 with y(0) = −1 and y′(0) = 1, estimate y(0.5)
and y′(0.5) using the fourth order Runge-Kutta method with h = 0.25.
Answer: −0.5164, 0.9090

Numerical Solution of Ordinary Differential Equations 387

11. Given y′′ − 2y′ + y = 2x with y(1) = 0 and y′(1) = 0, estimate y(0.4)
using the fourth order Runge-Kutta method with h = −0.15.
Answer: 0.1900 (Exact: 0.2020)

12. The angular acceleration of a pendulum is governed by the equation,
θ̈ = − g

L
sin θ with θ(0) = π/4 and θ̇(0) = 0. If g = 9.91m/s2 and

L = 10m use the fourth order Runge-Kutta method with h = 0.25 to
estimate the angular position of the pendulum after 0.5 seconds.
Answer: 0.7000

13. Given y′′ + y = x with y(0) = 1 and y′(0) = 0, estimate y(0.5) using the
fourth order Runge-Kutta method with h = 0.25.
Answer: 0.8982 (Exact: 0.8982)

14. Given y′′ = − x

y′
with y(0) = y′(0) = 1, estimate y′(0.2) using the

Modified Euler method with h = 0.05.
Answer: 0.9798 (Exact: 0.9798)

15. Given y′′ − 2xy′ + (3 + x2)y = 0 with y(0) = 2 and y′(0) = 0, estimate
y(0.1) using a single step of the fourth order Runge-Kutta method.
Answer: 1.9700 (Exact: 1.9700)

16. The differential equation y′ = secx+ y tanx has the following solutions
in the range 0 ≤ x ≤ 0.5.

x y

0.0 0.0
0.1 0.1005
0.2 0.2041
0.3 0.3140
0.4 0.4343
0.5 0.5697

Continue the solution to estimate y(0.7) using the Adams-Bashforth-
Moulton predictor-corrector method.
Answer: 0.9153 (Exact: 0.9152)

17. Rework exercise 16 using the Milne-Simpson predictor-corrector method.
Answer: 0.9152

18. Use polynomial substitution to derive the weighting coefficients of the
predictor formula

yi+1 = yi−3 + h

i∑
j=i−2

wjy
′
j

where the sampling points are equally spaced at h apart, and use the
formula to estimate y(0.4) given the differential equation y′ = tan(xy),

388 Numerical Methods for Engineers

with initial values
x y

0.0 0.0000
0.1 0.1005
0.2 0.1020
0.3 0.1046

Answer: wi−2 =
8
3
, wi−1 = −4

3
, wi =

8
3
, 0.1083

19. Given the boundary value problem y′′ =
2
x
y′+

2
x2
y−sinx with y(1) = 1

and y(2) = 2, use a shooting method with h = 0.1 to estimate y(1.5).
Answer: 1.3092 (Exact: 1.3092)

20. Given the nonlinear boundary value problem 2yy′′−(y′)2+4y2 = 0 with

y(
π

6
) = 0.75 and y(

5π
12

) = 0.0670, try initial gradients y′(
π

6
) = −0.5 and

−0.9 to estimate y(
π

3
) using a step length of h =

π

12
.

Answer: 0.2514 (Exact: 0.25)

21. Solve the following problems using a shooting method

(a) Given y′′ = 6y2 with y(1) = 1 and y(2) = 0.25, estimate y(1.5) using
h = 0.1. Try initial gradients y′(1) = −1.8 and −2.1.

(b) Given y′′ = −e−2y with y(1) = 0 and y(1.5) = 0.4055, estimate
y(1.25) using h = 0.05. Try initial gradients y′(1) = 0.8 and 1.2.
Answer: (a) 0.4445 (Exact: 0.4444), (b) 0.2232 (Exact: 0.2232)

22. A cantilever of unit length and flexural rigidity supports a unit load at
its free end. Use a finite difference scheme with a step length of (a)
0.25 and (b) 0.125 to estimate the free end deflection. The governing
equation is w′′ = M(x) = 1− x where x is the distance along the beam
from the supported end, M(x) is the bending moment at that section
and w is the beam deflection. Note: Use a program from Chapter 2 to
solve the equations.
Answer: (a) 0.344, (b) 0.336 (Exact: 0.3333)

23. A simply supported beam of length L (0 ≤ x ≤ L) and flexural rigidity
EI rests on an elastic foundation of modulus k. The beam supports
a uniform load of q. If w is the deflection of the beam, the governing
equation in dimensionless form is given by

d4φ

dz4
+Kφ = 1 with φ(0) = φ(1) = 0 and φ′′(0) = φ′′(1) = 0

where φ =
wEI

qL4
, z =

x

L
and K =

kL4

EI

Numerical Solution of Ordinary Differential Equations 389

Using a finite difference scheme with a dimensionless step length of
h = 0.5 show that the dimensionless midpoint deflection is given as

φ(0.5) =
1

64 +K
. If the elastic foundation is removed by putting K = 0,

what is the percentage error of the finite difference solution if the exact

displacement in this case is given as φ(0.5) =
5

384
?

Answer: 20%

24. Rework exercise 23 to obtain the percentage error using a smaller step
length of h = 0.25.

Answer: 5%

25. Given y′′ + y = 2 with y(0) = 1 and y′(1) + y(1) = 3.682941, estimate
y at intervals of 0.2 in the range 0 ≤ x ≤ 1 using a finite difference
scheme. Note: Use a program from Chapter 2 to solve the equations.
Answer: y(0.2) = 1.220, y(0.4) = 1.471, y(0.6) = 1.743, y(0.8) =
2.2025, y(1.0) = 2.307 (Exact: y(0.2) = 1.219, y(0.4) = 1.468, y(0.6) =
1.739, y(0.8) = 2.021, y(1.0) = 2.301)

26. Estimate the value of the cantilever tip deflection from Exercise 22 using
a method of weighted residuals with the trial solution, w̃ = C1x

2+C2x
3.

Answer: All methods give the exact solution of 0.3333

27. Given y′′ + π2y = x with y(0) = 1 and y(1) = −0.8987, estimate y(0.5)
using the trial solution

y = 1 − 1.8987x+
2∑

i=1

Cix
i(1 − x)

with (a) Collocation and (b) Galerkin.
Answer: (a) 0.0508, (b) 0.0495

28. Apply the Galerkin method to

y′′ + λy = 0 with y(0) = y(1) = 0

using the trial solution

y = C1x(1 − x) + C2x
2(1 − x)2

and hence estimate the smallest eigenvalue λ.
Answer: 9.86975

29. Rework Exercise 28 using finite differences with a step length of (a)
0.3333 and (b) 0.25. It may be assumed that y will be symmetrical
about the point x = 0.5.
Answer: (a) 9, (b) 9.37

390 Numerical Methods for Engineers

30. The Lorenz equations originating from models of atmospheric physics
are given as follows:

dx

dt
= −10x+ 10y

dy

dt
= 28x− y − xz

dz

dt
= −2.666667z+ xy

with initial conditions x(0) = y(0) = z(0) = 5.

Use one step of the Modified Euler Method to estimate the values of x,
y and z when t = 0.1.
Answer: x(0.1) = 10.5, y(0.1) = 15.1583, z(0.1) = 8.7611

31. Given the differential equations and initial conditions

ẋ = x− y + 2t− t2 − t3 x(0) = 1
ẏ = x+ y − 4t2 + t3 y(0) = 0

use the 4th order Runge-Kutta method (h = 0.5) to estimate x(0.5) and
y(0.5).
Answer: x(0.5) = 1.700, y(0.5) = 0.665

32. A damped oscillator is governed by the differential equation:

2y′′ + 5y′ + 1600y = 0

with initial conditions y(0) = −0.025 and y′(0) = 0. Use the Mid-Point
method with a time step of Δt = 0.02 to estimate the time taken for the
oscillator to first pass through its equilibrium position corresponding to
y = 0.
Answer: t = 0.054 by linear interpolation

33. A typical “predator-prey” model is based on the pair of differential e-
quations

dx

dt
= ax− bxy

dy

dt
= −cy + dxy

Using the parameters, a = 1.2, b = 0.6, c = 0.8, and d = 0.3, with initial
conditions x(0) = 2 and y(0) = 1, use one step of the Runge-Kutta 4th
order method to estimate x(0.5) and y(0.5).
Answer: x(0.5) = 2.7263, y(0.5) = 0.9525

Numerical Solution of Ordinary Differential Equations 391

34. A predictor/corrector method has been proposed of the form

yi+1 = yi +
h

12
(
5y′i−2 − 16y′i−1 + 23y′i

)
yi+1 = yi + wi−1y

′
i−1 + wiy

′
i + wi+1y

′
i+1

Use polynomial substitution to show that the weights in the corrector
formula are given by wi−1 = − h

12 , wi = 8h
12 and wi+1 = 5h

12 , and then
use the formulas to estimate y(0.7), given the differential equation y′ =
secx+ y tanx with initial values:

x y
0.1 0.1005
0.3 0.3140
0.5 0.5697

Answer: 0.9166

35. Given the differential equation

dx

dt
− 2t2x2 − x = 0

with initial conditions:

t x

0.00 0.5000
0.25 0.6461
0.50 0.8779
0.75 1.4100

use the Milne/Simpson predictor-corrector method to estimate x(1).
Answer: 3.9222 (Exact: 4.8239)

Chapter 8

Introduction to Partial Differential
Equations

8.1 Introduction

A partial differential equation (PDE) contains derivatives involving two or
more independent variables. This is in contrast to ordinary differential equa-
tions (ODE) as described in Chapter 7, which involve only one independent
variable.

Many phenomena in engineering and science are described by PDEs. For
example, a dependent variable, such as a pressure or a temperature, may vary
as a function of time (t) and space (x, y, z).

Two of the best known numerical methods for solving PDEs are the Finite
Difference and Finite Element methods, both of which will be covered in this
chapter. Nothing more than an introductory treatment is attempted here,
since many more advanced texts are devoted to this topic, including one by the
authors themselves on the Finite Element Method (Smith and Griffiths 2004).
This and other references on the subject are included in the Bibliography at
the end of the text.

The aim of this chapter is to familiarize the student with some important
classes of PDE, and to give insight into the types of physical phenomena
they describe. Techniques for solving these problems will then be described
through simple examples.

8.2 Definitions and types of PDE

Consider the following second order PDE in two independent variables

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu+ g = 0 (8.1)

Note the presence of “mixed” derivatives such as that associated with the
coefficient b.

393

394 Numerical Methods for Engineers

If a, b, c, . . . , g are functions of x and y only, the equation is “linear”, but if
these coefficients contain u or its derivatives, the equation is “nonlinear”.

The degree of a PDE is the power to which the highest derivative is raised,
thus equation (8.1) is first degree. Only first degree equations will be consid-
ered in this chapter.

A regularly encountered shorthand notation in the study of second order
PDEs is the “Laplace operator” ∇2 where

∇2u =
∂2u

∂x2
+
∂2u

∂y2
in 2-dimensions, and (8.2)

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
in 3-dimensions (8.3)

Another is the “Biharmonic operator” ∇4 where

∇4u =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
in 2-dimensions (8.4)

Table 8.1 summarizes some commonly encountered PDEs and the types of
engineering applications they represent.

TABLE 8.1: Common types of PDEs in engineering analysis
Name Equation Application

Laplace’s Eq. ∇2u = 0 Steady heat/fluid flow

Poisson’s Eq. ∇2u = f(x, y) Steady heat/fluid flow
with sources or sinks, torsion

Diffusion Eq. ∇2u = c
∂u

∂t
Transient heat/fluid flow

Wave Eq. ∇2u =
1
c2
∂u

∂t
Vibration, wave propagation

Biharmonic Eq. ∇4u = f(x, y) Deformation of thin plates

8.3 First order equations

Although the majority of engineering applications involve second order
PDEs, we start with a consideration of first order equations, as this will lead

Introduction to Partial Differential Equations 395

to a convenient introduction to the “method of characteristics”.
Consider the first order equation

a
∂u

∂x
+ b

∂u

∂y
= c (8.5)

where a, b and c may be functions of x, y and u, but not derivatives of u.
The following substitutions can be made to simplify the algebra

p =
∂u

∂x

q =
∂u

∂y

(8.6)

hence ap+ bq = c (8.7)

A “solution” to equation (8.5) will be an estimate of the value of u at
any point within the x, y-plane. In order to find values of u in this solution
domain, some “initial conditions” will be required.

As shown in Figure 8.1, let initial values of u be known along the line I
in the solution domain. We now consider an arbitrary line C which intersects
the initial line I.

Figure 8.1: Solution domain and “initial conditions” line I.

Consider a small change in u along the line C between points D and E.

396 Numerical Methods for Engineers

This leads to the equation

δu =
∂u

∂x
δx+

∂u

∂y
δy (8.8)

which in the limit as δx→ 0 and δy → 0 becomes

du =
∂u

∂x
dx+

∂u

∂y
dy (8.9)

or, from equations (8.6)
du = p dx+ q dy (8.10)

Elimination of p between equations (8.7) and (8.10) and rearrangement
leads to

q(a dy − b dx) + (c dx− a du) = 0 (8.11)

This statement would be true for any line C, but if we choose C so that at
all points along its length, the following condition is satisfied

a dy − b dx = 0 (8.12)

then q can also be eliminated from equation (8.7) which becomes

c dx− a du = 0 (8.13)

Combining equations (8.12) and (8.13) leads to

dx

a
=
dy

b
=
du

c
(8.14)

thus the original PDE from equation (8.5) has been reduced to an ODE along
the chosen line C which is called a “characteristic”. It can be shown that within
the solution domain, a family of characteristic lines exists along which the
PDE reduces to an ODE. Along these “characteristics” ordinary differential
equation solution techniques may be employed such as those described in
Chapter 7.

Rearrangement of equation (8.14) gives the pair of first order ordinary dif-
ferential equations

dy

dx
=
b

a
with y(x0) = y0

(8.15)
du

dx
=
c

a
with u(x0) = u0

where the initial conditions (x0, y0) and (x0, u0) correspond to values of x, y
and u at the point of intersection of the characteristic line C with the initial
conditions line I as shown in Figure 8.1.

Introduction to Partial Differential Equations 397

Thus, if we know the value of u0 at any initial point (x0, y0), solution of
the ordinary differential equations given by equation (8.15), using Program
7.1 for example, leads to values of u along the characteristic line C passing
through (x0, y0).

Example 8.1

Given the first order linear PDE

∂u

∂x
+ 3x2 ∂u

∂y
= x+ y

estimate u(3, 19) given the initial condition u(x, 0) = x2

Solution 8.1

The equation is linear so an analytical solution is possible in this case.
Along the characteristics

dx

1
=

dy

3x2
=

du

x+ y

hence

dy

dx
= 3x2

du

dx
= x+ y

Integration of the first equation leads to y = x3 + k, which represents the
family of characteristic lines. We are interested in the characteristic passing
through the point (3, 19), thus

19 = 27 + k

k = −8
y = x3 − 8

which is the equation of line C.

Substituting for y in the second equation gives

du

dx
= x+ x3 − 8

hence

u =
1
2
x2 +

1
4
x4 − 8x+K

398 Numerical Methods for Engineers

The initial value line I coincides with the x-axis as shown in Figure 8.2 and
intersects C at (2, 0) where u = 4, thus

4 = 2 + 4 − 16 +K

K = 14

u =
1
2
x2 +

1
4
x4 − 8x+ 14

Figure 8.2: Lines C and I in Example 8.1.

Hence, when x = 3, u = 14.75.

Example 8.2

Given the first order nonlinear PDE

√
x
∂u

∂x
+ u

∂u

∂y
= −u2

find the value of u when x = 1.1 on the characteristic passing through the
point (1, 0) given the initial condition u(x, 0) = 1.

Solution 8.2

Along the characteristics

dx√
x

=
dy

u
= −du

u2

Introduction to Partial Differential Equations 399

hence

dy

dx
=

u√
x

with y(1) = 0

du

dx
= − u2

√
x

with u(1) = 1

For nonlinear equations such as this, a numerical solution may be more
convenient. We require u(1.1) along this characteristic so any of the meth-
ods described in Chapter 7 for initial value problems could be used. Using
Program 7.1 and the fourth order Runge-Kutta method with a step length of
h = 0.1 we get u(1.1) = 0.9111 and y(1.1) = 0.0931.

8.4 Second order equations

The majority of partial differential equations that are likely to be encoun-
tered in engineering analysis are second order. The concept of characteristic
lines introduced in the preceding section is a useful starting point, because it
leads to an important means of classifying second order equations.

Consider the general equation (8.1), but without first derivative terms, or
terms including u, thus

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ g = 0 (8.16)

We assume for now that the equation is linear, that is the terms a, b, c and
g are functions of x and y only and not of u or its derivatives.

The following substitutions can be made to simplify the algebra

p =
∂u

∂x
, q =

∂u

∂y
, r =

∂2u

∂x2
, s =

∂2u

∂x∂y
, t =

∂2u

∂y2

hence
ar + bs+ ct+ g = 0 (8.17)

Considering small changes in p and q with respect to x and y, we can write

dp =
∂p

∂x
dx+

∂p

∂y
dy = r dx+ s dy

(8.18)

dq =
∂q

∂x
dx+

∂q

∂y
dy = s dx+ t dy

400 Numerical Methods for Engineers

Eliminating r and t from equations (8.17) and (8.18) gives

a

dx
(dp− s dy) + bs+

c

dy
(dq − s dx) + g = 0 (8.19)

which after multiplication by
dy

dx
leads to

s

[
a

(
dy

dx

)2

− b

(
dy

dx

)
+ c

]
−
[
a
dp

dx

dy

dx
+ c

dq

dx
+ g

dy

dx

]
= 0 (8.20)

The only remaining partial derivative s can be eliminated by choosing curves
or characteristic lines in the solution domain satisfying

a

(
dy

dx

)2

− b

(
dy

dx

)
+ c = 0 (8.21)

Depending on the roots of equation (8.21) we can classify three different
types of PDEs as follows:

(a) b2 − 4ac < 0 Equation is ELLIPTIC
No real characteristic lines exist.

e.g., Laplace’s equation
∂2u

∂x2
+
∂2u

∂y2
= 0

Poisson’s equation
∂2u

∂x2
+
∂2u

∂y2
= f(x, y)

In both cases b = 0 and a = c = 1 hence b2 − 4ac = −4

(b) b2 − 4ac = 0 Equation is PARABOLIC
Characteristic lines are coincident.

e.g., Heat diffusion or soil consolidation equation cy
∂2u

∂y2
− ∂u

∂t
= 0

In this case a = cy and b = c = 0 hence b2 − 4ac = 0

(c) b2 − 4ac > 0 Equation is HYPERBOLIC
Two families of characteristic lines exist.

e.g., Wave equation
∂2u

∂y2
− 1
k2

∂2u

∂t2
= 0

In this case a = 1, b = 0 and c = − 1
k2

hence b2 − 4ac =
4
k2

Introduction to Partial Differential Equations 401

The characteristics method can be used for hyperbolic partial differential
equations, where essentially the same techniques of “integration along the
characteristics” as used for first order equations can be employed again.

The most widely used methods for numerical solution of PDEs, irrespective
of their classification, are the finite difference and finite element methods.

The finite difference method has already been discussed in Chapter 7 in
relation to the solution of ordinary differential equations, and will be extended
in the next Section to partial differential equations.

The finite element method is a more powerful method, but it is also more
complicated. Section 8.6 of this text therefore gives only a brief introduction
to the method, but the interested reader is encouraged to consult some of the
numerous texts dedicated to the method (e.g. Smith and Griffiths 2004).

8.5 Finite difference method

In the finite difference method, derivatives that occur in the governing PDE
are replaced by “finite difference” approximations (see Section 7.4.1). Since
PDEs involve at least two independent variables, the finite difference expres-
sions now involve various combinations of the unknown variable occurring at
“grid points” surrounding the location at which a derivative is required.

Consider in Figure 8.3 a two-dimensional Cartesian solution domain, split
into a regular rectangular grid with a spacing of h in the x-direction and k
in the y-direction. The single dependent variable u in this case is a function
of the two independent variables x and y. The point at which a derivative
is required is given the subscript i, j, where i counts in the x-direction and j
counts in the y-direction.

Any partial derivative may be approximated using finite difference expres-
sions such as those given in Tables 5.2, 5.3 and 5.4. For example,

(
∂u

∂x

)
i,j

≈ 1
2h

(ui+1,j − ui−1,j)

(8.22)(
∂u

∂y

)
i,j

≈ 1
2k

(ui,j+1 − ui,j−1)

would be central difference formulas for first derivatives. These formulas are
sometimes conveniently expressed as computational “molecules,” where, for

402 Numerical Methods for Engineers

Figure 8.3: Two-dimensional finite difference grid.

example, (
∂u

∂x

)
i,j

≈ 1
2h

[
-1© 0© 1©]

(8.23)

(
∂u

∂y

)
i,j

≈ 1
2k

⎡
⎢⎢⎢⎣

1©
|
0©
|
-1©

⎤
⎥⎥⎥⎦

Combining these two first derivatives, and letting h = k, we get

(
∂u

∂x
+
∂u

∂y

)
i,j

≈ 1
2h

⎡
⎢⎢⎢⎣

1©
|

-1© 0© 1©
|
-1©

⎤
⎥⎥⎥⎦ (8.24)

Similarly, for second derivatives(
∂2u

∂x2

)
i,j

≈ 1
h2

[
1© -2© 1©]

(8.25)

(
∂u2

∂y2

)
i,j

≈ 1
k2

⎡
⎢⎢⎢⎣

1©
|
-2©
|
1©

⎤
⎥⎥⎥⎦

Introduction to Partial Differential Equations 403

which for the special case of h = k leads to the Laplacian “molecule”

∇2ui,j ≈ 1
h2

⎡
⎢⎢⎢⎣

1©
|

1© -4© 1©
|
1©

⎤
⎥⎥⎥⎦ (8.26)

Central difference “molecules” for third and fourth derivatives (see Table
5.3) can be written in the form(

∂3u

∂x3

)
i,j

≈ 1
2h3

[
-1© 2© 0© -2© 1©]

(8.27)

(
∂4u

∂x4

)
i,j

≈ 1
h4

[
1© -4© 6© -4© 1©]

(8.28)

and “mixed” derivatives (h = k) as

∂

∂x

(
∂u

∂y

)
i,j

=
(
∂2u

∂x∂y

)
i,j

≈ 1
4h2

⎡
⎢⎢⎢⎣

-1© 0© 1©
| | |
0© 0© 0©
| | |
1© 0© -1©

⎤
⎥⎥⎥⎦ (8.29)

and the biharmonic operator (h = k) as

∇4ui,j ≈ 1
h4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1©
|

2© -8© 2©
| | |

1© -8© 20© -8© 1©
| | |
2© -8© 2©

|
1©

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.30)

All these examples used the lowest order central difference form from Ta-
ble 5.3. Clearly higher order versions could be devised including forward and
backward differences if required. It is advisable to use central difference for-
mulas when possible, as they give the greatest accuracy in relation to the
number of terms included.

When using these central difference formulas, the (i, j)th grid point always
lies at the middle of “molecule”. This is the point at which a derivative is to
be approximated, and the “molecule” can be visualized as an overlay to the
grid drawn on the two-dimensional solution domain.

In summary, the finite difference approach to the solution of linear partial
differential equations can be considered in four steps:

404 Numerical Methods for Engineers

1. Divide the solution domain into a grid. The shape of the grid should
reflect the nature of the problem and the boundary conditions.

2. Obtain the finite difference formula that approximately represents the
governing PDE. This may be conveniently written as a computational
“molecule”.

3. Overlay the “molecule” over each grid point at which a solution is re-
quired taking account of boundary conditions.

4. Elliptic systems, such as those governed by Laplace’s equation, lead to
linear, symmetric, banded systems of simultaneous equations which can
be solved using the techniques described in Chapter 2. As will be seen,
in the case of parabolic and hyperbolic systems, spatial discretization
by finite differences reduces the problem to a system of ODEs in time
which can be solved using the techniques from Chapter 7. Temporal dis-
cretization by finite differences can be performed using either implicit
or explicit approaches. Implicit approaches will also lead to the solution
of simultaneous equations at each time step, whereas explicit approach-
es lead to simpler time stepping algorithms without the need to solve
simultaneous equations, but at the expense of being only conditionally
stable (i.e., not subject to unbounded errors, see Section 7.3.7).

8.5.1 Elliptic systems

Problems governed by elliptic systems of PDEs are characterized by closed
solution domains as shown in Figure 8.4. For example, Laplace’s equation (in
two-dimensions) is given by

kx
∂2u

∂x2
+ ky

∂2u

∂y2
= 0 (8.31)

For a general anisotropic (kx �= ky) material with a rectangular (h �= k)
grid, the finite difference equation that would be applied at a typical internal
grid point within the solution domain from equations (8.25) is given by

kx

h2
(ui−1,j − 2ui,j + ui+1,j) +

ky

k2
(ui,j−1 − 2ui,j + ui,j+1) = 0 (8.32)

For isotropic materials with square grids, the formula is greatly simplified
as

4ui,j − ui−1,j − ui,j+1 − ui+1,j − ui,j−1 = 0 (8.33)

which leads to the molecule shown in equation (8.26).
Solution of an elliptic problem proceeds by applying the finite difference

equations (or molecules) at each unknown grid point within the solution do-
main. The majority of grid points will typically be internal and surrounded
by other grid points, thus the formula given by equation (8.33) (or 8.34) will

Introduction to Partial Differential Equations 405

Figure 8.4: Closed solution domain for elliptic problems.

be used in the majority of cases. When boundary grid points have known
values, they should be included directly into the finite difference equations.

The problem is eventually reduced to a system of linear, symmetric, banded
equations that can be solved using the techniques described in Chapter 2.

8.5.1.1 Boundary conditions

It may be noted that the rectangular layout of the “molecules” described
so far implies that the solution domains must also be rectangular. Problems
with irregular boundaries can be tackled using finite differences; however the
finite difference formulas and molecules must be modified to account for the
actual location of the boundary between the regular grid points. Consider
the case of a Laplacian molecule applied to the irregular boundary shown in
Figure 8.5a. The factors a < 1 and b < 1 refer to the proportion of the regular
grid spacing h required to reach the boundary from the center of the molecule
in the x- and y-directions respectively.

Taking an average of the distance between grid points, we can write the
second derivatives as

406 Numerical Methods for Engineers

(
∂u2

∂x2

)
i,j

≈
ua − ui,j

ah
− ui,j − ui−1,j

h
1
2 (ah+ h)

(8.34)

(
∂u2

∂y2

)
i,j

≈
ub − ui,j

bh
− ui,j − ui,j−1

h
1
2 (bh+ h)

which may be combined after some rearrangement to give the Laplacian for-
mula as

∇2ui,j ≈ 2
h2

[
ui−1,j

1 + a
+

ub

b(1 + b)
+

ua

a(1 + a)
+
ui,j−1

1 + b
− a+ b

ab
ui,j

]
(8.35)

with the corresponding molecule in Figure 8.5b. The molecule is easily shown
to reduce to the regular Lapacian molecule from equation (8.27) if a = b = 1.
Note also from Figures 8.5b that the coefficients always sum to zero.

Figure 8.5: Treatment of irregular boundaries.

Although irregular boundaries can be included using the interpolation method
described above, it is not conveniently generalized since each boundary molecule
may have different a and b values in different locations.

Even when dealing with rectangular grids, other types of conditions may be
encountered involving impermeable (or insulated) boundaries. The derivation
of these molecules involves the assumption of steady state flow and the concept
of “half flow channels” parallel to impermeable surfaces. Consider for example

Introduction to Partial Differential Equations 407

steady flow around an external corner of an impermeable material as shown
in Figure 8.6.

Figure 8.6: Derivation of FD formulas for impermeable boundaries.

The total head values are indicated on the grid points and the x- and
y-components of flow indicated in the positive directions. For now we will as-
sume a rectangular grid (h �= k) and an anisotropic material (kx �= ky). From
Darcy’s law for 1-d flow (i.e., q = kia, where k=permeability, i=hydraulic
gradient and a=area), and using forward difference approximations to the
hydraulic gradient between grid points, we get

qxin = −kx
hi,j − hi−1,j

h

k

2

qyin = −ky
hi,j − hi,j−1

k

h

2
(8.36)

qxout = −kx
hi+1,j − hi,j

h
k

qyout = −ky
hi,j+1 − hi,j

k
h

Since this is a steady-state condition

qxin + qyin = qxout + qyout (8.37)

and if we let h = k and kx = ky we get

3hi,j − 1
2
hi−1,j − hi,j+1 − hi+1,j − 1

2
hi−1,j = 0 (8.38)

which leads to the “molecule” given in Figure 8.7b. Molecules for two other
types of boundary conditions derived using this approach are also given in
Figures 8.7a and c.

408 Numerical Methods for Engineers

Figure 8.7: Summary of molecules for impermeable boundary condition
(isotropic material with square FD grid).

It should be noted that different orientations of the boundary types shown
in Figures 8.7 are easily derived by a simple rotation of the terms in the
molecules.

In Examples 8.3 and 8.4 to follow, the value of φ will be known around the
entire boundary. Derivative boundary conditions may also apply and can be
tackled by the introduction of hypothetical grid points outside the solution
domain as will be demonstrated in Example 8.5. A quite commonly encoun-
tered derivative boundary condition corresponds to impermeable or “no-flow”
boundary conditions. In this case, the derivative normal to the impermeable

boundary is set to zero as in
∂φ

∂n
= 0 where n represents the normal direction.

As in the Example 8.5, this boundary condition can be introduced through
the use of hypothetical grid points; however the “molecules” described in Fig-
ure 8.7 offer a more convenient approach.

Introduction to Partial Differential Equations 409

Example 8.3

The isotropic square plate shown in Figure 8.8 is subjected to constant
boundary temperatures such that the top and left sides are fixed at 50o and
the bottom and right side are fixed at 0o. Use a finite difference scheme to
estimate the steady state temperatures at the internal grid points.

Figure 8.8: Finite difference grid from Example 8.3.

Solution 8.3

Using the symbol φ to signify temperature, the system is governed by
Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0

410 Numerical Methods for Engineers

and since the finite difference grid is square, the molecule is given by⎡
⎢⎢⎢⎣

-1©
|

-1© 4© -1©
|
-1©

⎤
⎥⎥⎥⎦ = 0

Note that since the Laplacian molecule is set equal to zero, we have changed
the signs of the coefficients from those shown in equation 8.26, so that the
central term is positive. While this change will not affect the solution, it
leads to positive numbers on the diagonal of the coefficient matrix which can
be computationally preferable.

A line of symmetry passing from the top left corner of the plate to the
bottom right is indicated on Figure 8.8. This reduces the number of unknowns
in the problem from 9 to 6, as indicated by the subscripts of the unknown φ
values written next to each grid point. If symmetries are not exploited in the
solution of a problem such as this, the same results will be achieved, but at
the expense of greater computational effort.

The center of the molecule is now placed at each unknown grid point, taking
account of known boundary conditions, to give the following equations

Point
1 − 50 − 50 − φ2 − φ2 + 4φ1 = 0
2 − 50 − φ1 − φ4 − φ3 + 4φ2 = 0
3 − 50 − φ2 − φ5 − 0 + 4φ3 = 0
4 − φ2 − φ2 − φ5 − φ5 + 4φ4 = 0
5 − φ3 − φ4 − φ6 − 0 + 4φ5 = 0
6 − φ5 − φ5 − 0 − 0 + 4φ6 = 0

which, after collecting terms and simplification, can be written in the standard
matrix form of [A] {x} = {b} as⎡

⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0
−1 4 −1 −1 0 0

0 −1 4 0 −1 0
0 −1 0 2 −1 0
0 0 −1 −1 4 −1
0 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1

φ2

φ3

φ4

φ5

φ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

50
50
50
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

It should be noted that Laplacian problems such as this with the sign change
noted above always lead to a positive definite, symmetric coefficient matrix
([A] = [A]T). It can also be noted that a feature of finite difference methods,
and indeed all “grid” methods including the finite element method, is that
the discretization leads to a banded structure for [A].

An appropriate solution technique from Chapter 2 might therefore be Pro-
gram 2.4 for symmetric, banded, positive definite systems. The input matrix
[A] in vector “skyline” form would be

Introduction to Partial Differential Equations 411

[
2 −1 4 −1 4 −1 0 2 −1 −1 4 −1 2

]T
with diagonal location vector

[
1 3 5 8 11 13

]T
The {b} vector would be

[
50 50 50 0 0 0

]T
leading to the solution ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ1

φ2

φ3

φ4

φ5

φ6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

42.86
35.71
25.00
25.00
14.29
7.14

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Example 8.4

Repeat the previous example assuming an anisotropic material in which the
horizontal conductivity is two times bigger than the vertical conductivity.

Solution 8.4

With an anisotropic material where kx = 2ky, the finite difference formula
from equation (8.32) can be written as

2(ui−1,j − 2ui,j + ui+1,j) + (ui,j−1 − 2ui,j + ui,j+1) = 0

and since the finite difference grid is square, the molecule is given by

⎡
⎢⎢⎢⎣

-1©
|

-2© 6© -2©
|
-1©

⎤
⎥⎥⎥⎦ = 0

The geometry is no longer symmetric, so the finite difference grid has 9
unknowns as shown in Figure 8.9.

412 Numerical Methods for Engineers

Figure 8.9: Finite difference grid from Example 8.4.

The center of the molecule is now placed at each unknown grid point, taking
account of known boundary conditions, to give the following equations

Point
1 − 100 − 50 − 2φ4 − φ2 + 6φ1 = 0
2 − 100 − φ1 − 2φ5 − φ3 + 6φ2 = 0
3 − 100 − φ2 − 2φ6 − 0 + 6φ3 = 0
4 − 2φ1 − 50 − 2φ7 − φ5 + 6φ4 = 0
5 − 2φ2 − φ4 − 2φ8 − φ6 + 6φ5 = 0
6 − 2φ3 − φ5 − 2φ9 − 0 + 6φ6 = 0
7 − 2φ4 − 50 − 0 − φ8 + 6φ7 = 0
8 − 2φ5 − φ7 − 0 − φ9 + 6φ8 = 0
9 − 2φ6 − φ8 − 0 − 0 + 6φ9 = 0

which, after collecting terms and simplification, can be written in the standard

Introduction to Partial Differential Equations 413

matrix form of [A] {x} = {b} as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −1 0 −2 0 0 0 0 0
−1 6 −1 0 −2 0 0 0 0

0 −1 6 0 0 −2 0 0 0
−2 0 0 6 −1 0 −2 0 0

0 −2 0 −1 6 −1 0 −2 0
0 0 −2 0 −1 6 0 0 −2
0 0 0 −2 0 0 6 −1 0
0 0 0 0 −2 0 −1 6 −1
0 0 0 0 0 −2 0 −1 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

150
100
100
50
0
0

50
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

leading to the solution ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

42.44
36.76
28.15
33.93
25.00
16.07
21.85
13.24
7.56

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Example 8.5

The isotropic plate shown in Figure 8.10 has temperatures prescribed on
three sides as indicated and a derivative boundary condition on the fourth
side. Find the steady state temperature distribution using finite differences.

Solution 8.5

By symmetry only the top half of the plate will be analyzed. There are
four internal grid points with temperatures labeled φ1 thru φ4. To incorpo-
rate derivative boundary condition, two hypothetical grid points have been
included outside the plate, with temperatures given by φ5 and φ6.

The distribution is governed by Laplace’s equation, but in this case the
grid is not square since h = 10cm and k = 5cm. Equation (8.32) leads to the
following Laplacian finite difference equation

1
100

(φi−1,j − 2φi,j + φi+1,j) +
1
25

(φi,j−1 − 2φi,j + φi,j+1) = 0

giving the molecule ⎡
⎢⎢⎢⎣

-4©
|

-1© 10© -1©
|
-4©

⎤
⎥⎥⎥⎦ = 0

414 Numerical Methods for Engineers

Figure 8.10: Finite difference grid from Example 8.5.

The center of the molecule is now placed at each unknown grid point, taking
account of known boundary conditions, to give the following equations

Point
1 − 150 − 200 − φ3 − 4φ2 + 10φ1 = 0
2 − 200 − 4φ1 − φ4 − 4φ1 + 10φ2 = 0
3 − φ1 − 40 − φ5 − 4φ4 + 10φ3 = 0
4 − φ2 − 4φ3 − φ6 − 4φ3 + 10φ4 = 0

Two final equations are provided by the derivative boundary condition ex-
pressed in central finite difference form as

φ5 − φ1

20
= −15

φ6 − φ2

20
= −15

After substituting for φ5 and φ6 in the four Laplacian equations above and
some rearrangement, we get the standard matrix form of [A] {x} = {b} as⎡

⎢⎢⎣
20 −8 −2 0
−8 10 0 −1
−2 0 10 −4

0 −1 −4 5

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
φ1

φ2

φ3

φ4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

700
200

−260
−150

⎫⎪⎪⎬
⎪⎪⎭

It may be noted that the symmetrical form given above was obtained by
multiplying the first equation by 2 and dividing the last equation by 2.

Introduction to Partial Differential Equations 415

The input matrix [A] in vector “skyline” form for Program 2.4 would be

[
20 −8 10 −2 0 10 −1 −4 5

]T
with diagonal location vector

[
1 3 6 9

]T
The {b} vector would be

[
700 200 −260 −150

]T
leading to the solution ⎧⎪⎪⎨

⎪⎪⎩
φ1

φ2

φ3

φ4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

55.90
60.34

−32.34
−43.80

⎫⎪⎪⎬
⎪⎪⎭

Example 8.6

Steady flow is taking place through the system shown in Figure 8.11 where
hatched lines represent impermeable boundaries. The up- and down-stream
boundaries are fixed to 100 and 0 respectively. Compute the total head at all
the internal grid points. The porous material through which flow is occurring
is isotropic.

Solution 8.6

The problem includes several different types of impermeable boundary.
Since the problem is isotropic and has a square finite difference grid, the
molecules from Figure 8.7 can be used directly to give the following equations

Point
1 − 100 − 50 − 2h4 − h2 + 6h1 = 0
2 − 100 − h1 − 2h5 − h3 + 6h2 = 0
3 − 100 − h2 − 2h6 − 0 + 6h3 = 0
4 − 2h1 − 50 − 2h7 − h5 + 6h4 = 0
5 − 2h2 − h4 − 2h8 − h6 + 6h5 = 0
6 − 2h3 − h5 − 2h9 − 0 + 6h6 = 0
7 − 2h4 − 50 − 0 − h8 + 6h7 = 0
8 − 2h5 − h7 − 0 − h9 + 6h8 = 0
9 − 2h6 − h8 − 0 − 0 + 6h9 = 0
10 − 2h6 − h8 − 0 − 0 + 6h9 = 0
11 − 2h6 − h8 − 0 − 0 + 6h9 = 0
12 − 2h6 − h8 − 0 − 0 + 6h9 = 0
13 − 2h6 − h8 − 0 − 0 + 6h9 = 0

416 Numerical Methods for Engineers

Figure 8.11: Finite difference grid from Example 8.6.

which, after collecting terms and simplification, can be written in standard
matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −0.5
−1 4 −1 0 −1

−1 2 0 0 −0.5
1 −0.5 0 0 0 −0.5

−0.5 5 −0.5 0 0 0 1
−0.5 0 0 0 −0.5 3 −1 0 0 0 −1

−1 0 0 0 −1 4 −1 0 0 0 −1
−0.5 0 0 0 −1 2 0 0 0 0 −0.5

−0.5 0 0 0 0 2 −1 0 0 0
−1 0 0 0 −1 4 −1 0 0

−1 0 0 0 −1 4 −1 0
−1 0 0 0 −1 4 −1

−0.5 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

50
100
50
0
0
0
0
0
0
0
0
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Only terms within the skyline have been included for clarity. All blank entries
equal zero. Solution of these equations using, for example, Program 2.5 leads

Introduction to Partial Differential Equations 417

to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

67.08
69.32
70.28
4.08
4.45

29.67
39.93
42.47
3.70
5.37

13.32
18.25
19.74

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

8.5.2 Parabolic systems

For typical parabolic equations, for example the “conduction” or “consoli-
dation” equation, we require boundary conditions together with initial condi-
tions in time. The solution then marches along in time for as long as required.
Unlike elliptic problems, the solution domain is “open” as shown in Figure
8.12 in the sense that the time variable can continue indefinitely.

A parabolic problem which often arises in civil engineering analysis is the
consolidation equation in one dimension

cv
∂2u

∂z2
=
∂u

∂t
(8.39)

where

cv = coefficient of consolidation
z = spatial coordinate
t = time

In the context of heat flow problems, cv would be replaced by the thermal
diffusivity property, α.

It is sometimes convenient to nondimensionalize equation (8.39) so that a
solution can be obtained which is more generally applicable.

In order to do this, let

Z =
z

D
, U =

u

U0
, and T =

cvt

D2
(8.40)

where D is a reference length (e.g., a drainage path length); U0 is a reference
pressure (e.g., the initial pressure at t = 0); and T is a dimensionless time
known as the “time factor”.

418 Numerical Methods for Engineers

Figure 8.12: Open solution domain for parabolic systems.

The derivatives can be written as

∂u

∂z
=
∂Z

∂z

∂u

∂Z
=

1
D

∂u

∂Z
(8.41)

∂2u

∂z2
=

∂

∂z

(
∂u

∂z

)
=

∂

∂Z

(
∂Z

∂z

)(
∂u

∂z

)
=

1
D2

∂2u

∂Z2

also
∂u

∂t
=
∂T

∂t

∂u

∂T
=

cv
D2

∂u

∂T
(8.42)

and
u = UU0 (8.43)

Substitution into equation (8.39) leads to the dimensionless form of the
diffusion equation as follows

cv
D2

∂2(UU0)
∂Z2

=
cv
D2

∂(UU0)
∂T

(8.44)

hence
∂2U

∂Z2
=
∂U

∂T
(8.45)

Introduction to Partial Differential Equations 419

8.5.2.1 Explicit finite differences

Equation (8.39) is readily expressed in finite difference form. Assuming
a grid spacing of Δz in the z-direction and Δt in time, and using central
differences for the second derivative in space we get

∂2u

∂z2
≈ 1

Δz2
(ui−1,j − 2ui,j + ui+1,j) (8.46)

where subscripts i and j refer to the z and t variables respectively.
This “semi-discretization” of the space variable, applied over the whole s-

pace grid, leads to a set of ordinary differential equations in the time variable.
Any of the methods described in Chapter 7 could be used to integrate these
sets of equations but in this introductory treatment we shall apply finite differ-
ences to the time dimension as well. Thus returning to equation (8.39), using
a simple forward difference scheme for the first derivative in time (equivalent
to θ = 0 in section 7.3.4.1) we get

∂u

∂t
≈ 1

Δt
(ui,j+1 − ui,j) (8.47)

Equations (8.46) and (8.47) can be substituted into equation (8.39) and
rearranged to give

ui,j+1 = ui,j +
cvΔt
Δz2

(ui−1,j − 2ui,j + ui+1,j) (8.48)

The “molecule” concept described in the previous section is not so useful in
parabolic problems such as this; however there is a simple pattern that can be
visualized in the way new values are computed from equation (8.48). A new
value of u at any given depth is a function only of u-values from the previous
time step, immediately above, at the same level and immediately below the
given depth.

This type of relationship is termed “explicit” because the value of u at the
new time level is expressed solely in terms of values of u at the immediately
preceding time level. However, as with all “explicit” approaches, numerical
stability is conditional on a satisfactory combination of spatial and temporal
step lengths being employed. Numerical instability occurs when a perturba-
tion (or error) introduced at a certain stage in the stepping procedure grows
uncontrollably at subsequent steps.

It can be shown that numerical stability is only guaranteed in this explicit
method if

cvΔt
Δz2

≤ 1
2

(8.49)

Example 8.7

The insulated rod shown in Figure 8.13 is initially at 0◦ at all points along
its length when a boundary condition of 100◦ is applied to the left end of the

420 Numerical Methods for Engineers

rod and maintained at that value. Use an explicit finite difference approach
to compute the temperature variation as a function of position and time along
the rod.

Figure 8.13: Heat diffusion problem from Example 8.7.

Solution 8.7

The governing equation for 1-d heat diffusion is given by

α
∂2φ

∂x2
=
∂φ

∂t

where

α = thermal diffusivity

φ = temperature

x = spatial coordinate

t = time

with boundary conditions: φ(0, t) = 100◦ = φ0 for t > 0
∂φ

∂x
(L, t) = 0 at insulated end

and initial conditions: φ(x, 0) = 0◦ for 0 ≤ x ≤ L

By making the substitutions X =
x

L
, Φ =

φ

φ0
and T =

αt

L2
, we can write

this equation in nondimensional form as

∂2Φ
∂X2

=
∂Φ
∂T

Introduction to Partial Differential Equations 421

with boundary conditions: Φ(0, T) = 1 for T > 0
∂Φ
∂X

(1, T) = 0 at insulated end

and initial conditions: Φ(X, 0) = 0 for 0 ≤ X ≤ 1

Expressing the dimensionless equation in finite difference form, we get from
equation (8.49)

Φi,j+1 = Φi,j +
ΔT
ΔX2

(Φi−1,j − 2Φi,j + Φi+1,j)

The stability requirement for this explicit formula is that
ΔT
ΔX2

≤ 1
2
. It

may be noted that in the special case that
ΔT
ΔX2

=
1
2

the formula simplifies

to

Φi,j+1 =
1
2
(Φi−1,j + Φi+1,j)

In this example, let ΔX = 0.2 and ΔT = 0.015 in which case

ΔT
ΔX2

= 0.375

and the stability criterion is satisfied.
When modeling the differential equation with relatively large time steps,

some compromise is recommended to model temperature changes at the left
end of the rod, since initial conditions require that at T = 0, Φ = 0 whereas
an instant later at T > 0 boundary conditions at that location require Φ = 1.

One option is to apply the full temperature change at T = 0; however in
this example we have applied half at T = 0.0 and the remainder at T = ΔT .

The condition that
∂Φ
∂X

= 0 at X = 1 is maintained using central differences,

by including a hypothetical grid point at X = 1.2. The value of Φ at X = 1.2
is then set equal to the value of Φ at X = 0.8.

Consider, for example, the calculation required to find Φ at time T = 0.015
and depth X = 0.2. From the finite difference equation (8.48), the required
value of Φ will depend on the values of Φ from the previous time step at
depths of X = 0, 0.2 and 0.4, thus

Φ = 0.000 + 0.0375(0.500− 2(0.000) + 0.000) = 0.188

Another example later on would be the calculation of Φ at time T = 0.120
and depth X = 0.6, which would be given by

Φ = 0.188 + 0.0375(0.384− 2(0.188) + 0.079) = 0.221

A summary of the finite difference results is given in Table 8.2.

422 Numerical Methods for Engineers

TABLE 8.2: Tabulated values of Φ = f(X,T) from
Example 8.7

X 0.0 0.2 0.4 0.6 0.8 1.0 1.2
T
0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.015 1.000 0.188 0.000 0.000 0.000 0.000 0.000
0.030 1.000 0.422 0.070 0.000 0.000 0.000 0.000
0.045 1.000 0.507 0.176 0.026 0.000 0.000 0.000
0.060 1.000 0.568 0.244 0.073 0.010 0.000 0.010
0.075 1.000 0.608 0.301 0.113 0.030 0.007 0.030
0.090 1.000 0.640 0.346 0.152 0.053 0.024 0.053
0.105 1.000 0.665 0.384 0.188 0.079 0.046 0.079
0.120 1.000 0.685 0.416 0.221 0.107 0.071 0.107
0.135 1.000 0.702 0.443 0.251 0.136 0.098 0.136
0.150 1.000 0.717 0.468 0.280 0.165 0.127 0.165

Example 8.8

A specimen of uniform saturated clay 240mm thick is placed in a conven-
tional consolidation cell with drains at top and bottom. A sudden increment
of vertical stress of 200 kN/m2 is applied. If the coefficient of consolidation is
cv = 10m2/yr estimate the excess pore pressure distribution after 1 hour.

Solution 8.8

In this case we have elected to solve the consolidation equation in dimen-
sional form in units of millimeters and hours, thus

cv
∂2u

∂z2
=
∂u

∂t

where

cv = coefficient of consolidation=1142 mm2/hr

z = spatial coordinate (mm)

t = time (hr)

Since the consolidation test is symmetrical with double drainage we will
solve half the problem assuming undrained conditions at the mid-plane (z =
120 mm)

with boundary conditions: u(0, t) = 0 for t > 0
∂u

∂z
(120, t) = 0 at the mid-plane

and initial conditions: u(x, 0) = 200 kN/m
2

for 0 ≤ z ≤ 120 mm

Introduction to Partial Differential Equations 423

For the finite difference solution, let Δz = 24 mm and Δt = 0.2 hr.

A check of the stability criterion gives
1142(0.2)

242
= 0.397 which is less than

0.5, indicating that the increment sizes are acceptable.

The finite difference equation from equation (8.48) becomes

ui,j+1 = ui,j + 0.397(ui−1,j − 2ui,j + ui+1,j)

The condition that
∂u

∂z
= 0 at z = 120 mm is maintained by including a grid

point at z = 144 mm. From the central difference formula for a first derivative
at z = 120 mm, values at z = 144 mm are maintained at the same values as
at z = 96 mm for all time steps. In this example, the drainage boundary
condition at z = 0 is not introduced into the calculations until the end of the
first time step at t = 0.2 hr.

A summary of the finite difference results is given in Table 8.3, and both
halves of the distribution of excess pore pressure with depth corresponding to
t = 1 hr plotted in Figure 8.14.

Figure 8.14: Excess pressure distribution after 1 hour from Example 8.8.

As a check, the Average Degree of Consolidation corresponding to the finite
difference result after 1 hour is given as

U =
initial rectangular area− hatched area

initial rectangular area

424 Numerical Methods for Engineers

TABLE 8.3: Tabulated values of u = f(z, t) (kN/m2)
from Example 8.8

z (mm) 0.0 24 48 72 96 120 144
t (hr)
0.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
0.2 0.0 200.0 200.0 200.0 200.0 200.0 200.0
0.4 0.0 120.7 200.0 200.0 200.0 200.0 200.0
0.6 0.0 104.3 168.6 200.0 200.0 200.0 200.0
0.8 0.0 88.4 155.5 187.5 200.0 200.0 200.0
1.0 0.0 80.0 141.6 179.8 195.1 200.0 195.1

where

initial rectangular area = 240(200) = 48000
hatched area = 0.5(24)(0.0 + 2(80.0 + 141.6 + 179.8 + 195.1 +

200.0 + 195.1 + 179.8 + 141.6 + 80.0 + 0.0) = 33431

hence

U =
48000− 33431

48000
= 0.30

The dimensionless time factor corresponding to t = 1 hr is given as

T =
1142(1)

1202
= 0.079

An accurate approximation to the exact relationship between T and U (for
U ≤ 0.5) is given by the formula

U =
2√
π

√
T

thus

U =
2√
π

√
0.079 = 0.32

indicating that the numerical solution is reasonable in spite of the rather
coarse grid.

Program 8.1: Explicit finite differences in 1D

PROGRAM nm81
!---Explicit Finite Differences in 1D---
IMPLICIT NONE; INTEGER,PARAMETER::iwp=SELECTED_REAL_KIND(15,300)
INTEGER::i,j,nres,nt,ntime,nz
REAL(iwp)::area0,areat,beta,cv,dt,dz,layer,pt5=0.5_iwp,tmax, &
two=2.0_iwp,zero=0.0_iwp

Introduction to Partial Differential Equations 425

REAL(iwp),ALLOCATABLE::a(:),b(:),c(:); CHARACTER(LEN=2)::bc
OPEN(10,FILE=’nm95.dat’); OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A)’)"---Explicit Finite Differences in 1D---"
READ(10,*)layer,tmax,dz,dt,cv; beta=cv*dt/dz**2
IF(beta>pt5)THEN; WRITE(11,’("beta too big")’); STOP; ENDIF
nz=nint(layer/dz); nt=nint(tmax/dt)
ALLOCATE(a(nz+1),b(nz+1),c(nz+1)); READ(10,*)b,bc,nres,ntime
area0=pt5*dz*(b(1)+b(nz+1))+dz*SUM(b(2:nz))
WRITE(11,’(/,A,I3,A)’) &
" Time Deg of Con Pressure(grid pt",nres,")"

WRITE(11,’(3E12.4)’)zero,zero,b(nres); a=zero
DO j=1,nt
IF(bc==’uu’.OR.bc==’ud’)a(1)=b(1)+two*beta*(b(2)-b(1))
a(2:nz)=b(2:nz)+beta*(b(1:nz-1)-two*b(2:nz)+b(3:nz+1))
IF(bc==’uu’.OR.bc==’du’) &
a(nz+1)=b(nz+1)+two*beta*(b(nz)-b(nz+1)); b=a

IF(j==ntime)c=b
areat=pt5*dz*(b(1)+b(nz+1))+dz*SUM(b(2:nz))
WRITE(11,’(3E12.4)’)j*dt,(area0-areat)/area0,b(nres)

END DO
WRITE(11,’(/,A,E10.4,A)’) &
" Depth Pressure(time=",ntime*dt,")"

WRITE(11,’(2E12.4)’)(dz*(i-1),c(i),i=1,nz+1)
END PROGRAM nm81

To illustrate use of the program, consider a doubly drained 10m thick layer
of clay subjected to an initial (t = 0) excess pore pressure distribution as
follows

Depth (m) 0 2 4 6 8 10
u (kN/m2) 60 54 41 29 19 15

If cv = 7.9 m2/yr, estimate the average degree of consolidation of the layer
after 1 year.

The input and output for this example are given in Data 8.1 and Results
8.1 respectively. The data indicate a layer thickness (layer) of 10m and a
time duration for the calculation (tmax) of 1yr. Selected grid sizes in space
and time are chosen to be dz=2m and t=0.1yr respectively. The coefficient
of consolidation cv is read as 7.9 m2/yr followed by the initial pore pressure
distribution read into vector b. The layer is doubly drained so the boundary
condition variable bc is read as ’dd’. Other possible values that can be as-
signed to this variable are ’du’, ’ud’ and ’uu’ where ’u’ refers to undrained
and ’d’ refers to drained boundary conditions. The first letter refers to the
boundary condition at the top of the layer and the second letter to the bot-
tom. The output control asks for the time history to be printed for grid point
number nres=5, which corresponds to a depth of 8m. The snapshot of the
spatial distribution is requested at time step ntime=10 which is after 1 yr.

426 Numerical Methods for Engineers

List 8.1:

Scalar integers:
i simple counter
j simple counter
nres grid point number at which time history is to be printed
nt number of calculation time step
ntime time step at which spatial distribution is to be printed
nz number of spatial grid points

Scalar reals:
area0 initial area of pressure profile
areat hatched area at time t (see Figure 8.14)
beta stability number
cv coefficient of consolidation
dt calculation time step
dz spatial grid size
layer total layer thickness
tmax time to which calculation is to be taken
two set to 2.0
zero set to 0.0

Dynamic real arrays:
a holds pressures at new time step
b holds pressures at old time step
c holds pressures after ntime time steps for printing

Scalar character:
bc boundary condition variable

Depth and time duration layer tmax
10.0 1.0

Spatial and temporal grid sizes dz dt
2.0 0.1

Coefficient of Consolidation cv
7.9

Initial condition b(i),i=1,nz+1
60.0 54.0 41.0 29.0 19.0 15.0

Boundary conditions bc
’dd’

Introduction to Partial Differential Equations 427

Output control nres ntime
5 10

Data 8.1: Explicit Finite Differences in 1d

Results 8.1 indicate that the Average Degree of Consolidation after 1 year
is 0.63 or 63%. The maximum excess pore pressure remaining in the ground
after 1 year is about 21 kN/m2 at a depth of 4m.

---Explicit Finite Differences in 1D---

Time Deg of Con Pressure(grid pt 5)
0.0000E+00 0.0000E+00 0.1900E+02
0.1000E+00 0.2056E+00 0.2018E+02
0.2000E+00 0.2852E+00 0.1802E+02
0.3000E+00 0.3487E+00 0.1681E+02
0.4000E+00 0.4024E+00 0.1605E+02
0.5000E+00 0.4497E+00 0.1543E+02
0.6000E+00 0.4923E+00 0.1481E+02
0.7000E+00 0.5311E+00 0.1415E+02
0.8000E+00 0.5667E+00 0.1345E+02
0.9000E+00 0.5995E+00 0.1271E+02
0.1000E+01 0.6298E+00 0.1196E+02

Depth Pressure(time=0.1000E+01)
0.0000E+00 0.0000E+00
0.2000E+01 0.1359E+02
0.4000E+01 0.2114E+02
0.6000E+01 0.2013E+02
0.8000E+01 0.1196E+02
0.1000E+02 0.0000E+00

Results 8.1: Explicit Finite Differences in 1d

8.5.3 Hyperbolic systems

Hyperbolic systems involve propagation phenomena, for example as de-
scribed by the wave equation. Consider the displacement v of a vibrating
string which is given by

c2
∂2v

∂x2
=
∂2v

∂t2
(8.50)

428 Numerical Methods for Engineers

where

c2 =
T

ρ

T = tension in the string
ρ = mass density
x = spatial coordinate
t = time

Clearly these one-dimensional examples can be extended to two- or three-
dimensions, in which case the Laplacian operator can be used, i.e.,

c2Δ2v =
∂2v

∂t2
(8.51)

As with parabolic systems, it is sometimes convenient to nondimensionalize
the one-dimensional wave equation. With reference to equation (8.50), by

making the substitutions, V =
v

v0
, X =

x

L
and T =

ct

L
, where v0 is an initial

displacement and L is a reference length, we can write

∂2v

∂x2
=
(
∂X

∂x

)2
∂2v

∂X2
=

1
L2

∂2v

∂X2

(8.52)

∂2v

∂t2
=
(
∂T

∂t

)2
∂2v

∂T 2
=
c2

L2

∂2v

∂T 2

hence

∂2V

∂X2
=
∂2V

∂T 2
(8.53)

The finite difference form of this equation can be written as

1
ΔX2

(Vi−1,j − 2Vi,j + Vi+1,j) =
1

ΔT 2
(Vi,j−1 − 2Vi,j + Vi,j+1) (8.54)

where the subscripts i and j refer to changes in X and T respectively.
Rearrangement of equation (8.54) gives

Vi,j+1 =
ΔT 2

ΔX2
(Vi−1,j − 2Vi,j + Vi+1,j) − Vi,j−1 + 2Vi,j (8.55)

If we allow ΔX = ΔT , then equation (8.55) simplifies considerably to
become

Vi,j+1 = Vi−1,j − Vi,j−1 + Vi+1,j (8.56)

which fortuitously turns out to be the exact solution. Other values of the ratio
ΔT
ΔX

could be used, but stability is only guaranteed if the ratio is less than one.

Introduction to Partial Differential Equations 429

Example 8.9

Solve the wave equation

∂2V

∂X2
=
∂2V

∂T 2

in the range 0 ≤ X ≤ 1, T ≥ 0 subject to the following initial and boundary
conditions

At X = 0 and X = 1, U = 2 sin
(
πT

5

)
for T > 0

When T = 0, U =
∂U

∂T
= 0 for 0 < X < 1

Solution 8.9

Choose ΔX = ΔT = 0.1 and take account of symmetry. The finite differ-
ence equation (8.56) requires information from two preceding steps in order
to proceed. In order to compute the result corresponding to T = 0.1, the
assumption is made that no initial change in the value of U has occurred for
X > 0. This is equivalent to a simple Euler step based on the initial condition

that
∂U

∂T
= 0. Only half the problem is considered due to the symmetry of the

boundary conditions at X = 0 and X = 1 implying that
∂U

∂X
= 0 at X = 0.5.

In order to enforce this derivative boundary condition, a solution has been
included at X = 0.6 that is always held equal to that at X = 0.4. Application
of equation (8.56) leads to the results shown in Table 8.4.

TABLE 8.4: Tabulated values of U = f(Z, T) from Example
8.9

Z 0.0 0.1 0.2 0.3 0.4 0.5 0.6
T
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1256 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.2507 0.1256 0.0 0.0 0.0 0.0 0.0
0.3 0.3748 0.2507 0.1256 0.0 0.0 0.0 0.0
0.4 0.4974 0.3748 0.2507 0.1256 0.0 0.0 0.0
0.5 0.6180 0.4974 0.3748 0.2507 0.1256 0.0 0.1256
0.6 0.7362 0.6180 0.4974 0.3748 0.2507 0.2512 0.2507
0.7 0.8516 0.7362 0.6180 0.4974 0.5003 0.5013 0.5003

430 Numerical Methods for Engineers

8.6 Finite element method

The Finite Element Method uses a quite different solution philosophy to
finite differences, in that the governing differential equation is solved ap-
proximately over subregions of the solution domain. These subregions are
called “finite elements” and are usually confined to simple shapes - triangles
or quadrilaterals for plane areas and tetrahedra or hexahedra (“bricks”) for
volumes. The elements may have curved sides (faces) but are more usually
limited to linear sides and plane faces.

Taking Figure 8.8 as an example, a finite element equivalent is shown in
Figure 8.15.

Figure 8.15: Finite element mesh from Example 8.3.

The area is divided into 16 equal-sized quadrilateral elements (all square in
this case) and has 25 “nodes”, equivalent to the finite difference “grid points”.
In this case it is simpler to treat all the nodal temperatures as “unknowns”,
even at the boundaries. A typical quadrilateral element is shown in Figure
8.16.

It has 4 nodes at the corners, and the variation of the unknown φ across the
element is described in local coordinates by “shape functions” which we met

Introduction to Partial Differential Equations 431

Figure 8.16: General 4-node quadrilateral element.

previously in Chapter 6, Section 6.6.2. Using these functions, the properties
of the element are described by a matrix equation relating input {q} at the
nodes (fluxes etc. in this case) to the output {φ} (temperature) values in the
general form

[kc] {φ} = {q} (8.57)

where [kc] is the “conductivity matrix”.
If the elements are rectangular as shown in Figure 8.17, the conductivity

matrix is easily written down in closed form as

[kc] =
kx

6
b

a

⎡
⎢⎢⎣

2 1 −1 −2
1 2 −2 −1

−1 −2 2 1
−2 −1 1 2

⎤
⎥⎥⎦+

ky

6
a

b

⎡
⎢⎢⎣

2 −2 −1 1
−2 2 1 −1
−1 1 2 −2

1 −1 −2 2

⎤
⎥⎥⎦ (8.58)

where kx and ky are thermal conductivities in the x- and y-directions.

Figure 8.17: Rectangular 4-node element.

Further simplification for the current example with square elements (a = b)
and isotropic properties (kx = ky) leads to the matrix equation

432 Numerical Methods for Engineers

1
6

⎡
⎢⎢⎣

4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
φ1

φ2

φ3

φ4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
q1
q2
q3
q4

⎫⎪⎪⎬
⎪⎪⎭ (8.59)

To solve the complete boundary value problem, the 16 [kc] matrices must
be assembled (involving summation at the nodes) to yield a global set of
equations in matrix form

[Kc] {Φ} = {Q} (8.60)

relating the 25 nodal temperatures {Φ} to the 25 nodal net fluxes {Q}. The
net flux vector {Q} is quite sparse, containing nonzero terms only at the
boundary nodes where temperatures are fixed.

Although this example has no insulated (no-flow) boundaries, these are
satisfied automatically in the finite element treatment should they be required.
The condition φ =constant is enforced by the “penalty” approach we met in
Chapter 2, Section 2.8.

Program 8.2: Simple FE analysis of Example 8.3

PROGRAM nm82
!---Simple FE analysis of Example 8.3---
USE nm_lib; USE precision; IMPLICIT NONE
INTEGER::g_num(4,16),i,iel,kdiag(25),num(4)
REAL(iwp)::kc(4,4),loads(25); REAL(iwp),ALLOCATABLE::kv(:)
OPEN(11,FILE=’nm95.res’)
WRITE(11,’(A/)’)"---Simple FE analysis of Example 8.3---"
kc(1,:)=(/4.0_iwp,-1.0_iwp,-2.0_iwp,-1.0_iwp/)
kc(2,:)=(/-1.0_iwp,4.0_iwp,-1.0_iwp,-2.0_iwp/)
kc(3,:)=(/-2.0_iwp,-1.0_iwp,4.0_iwp,-1.0_iwp/)
kc(4,:)=(/-1.0_iwp,-2.0_iwp,-1.0_iwp,4.0_iwp/)
kc=kc/6.0_iwp; kdiag=0
DO iel=1,25
num=geometry(iel); g_num(:,iel)=num; CALL fkdiag(kdiag,num)

END DO
DO i=2,25; kdiag(i)=kdiag(i)+kdiag(i-1); END DO
ALLOCATE(kv(kdiag(25))); kv=0.0_iwp; loads=0.0_iwp
DO iel=1,25
num=g_num(:,iel); CALL fsparv(kv,kc,num,kdiag)

END DO
kv(kdiag(:5))=kv(kdiag(:5))+1.E20_iwp

Introduction to Partial Differential Equations 433

loads(:4)=kv(kdiag(:4))*50.0_iwp
kv(kdiag(6:21:5))=kv(kdiag(6:21:5))+1.E20_iwp
loads(6:16:5)=kv(kdiag(6:16:5))*50.0_iwp
kv(kdiag(10:25:5))=kv(kdiag(10:25:5))+1.E20_iwp
kv(kdiag(22:24))=kv(kdiag(22:24))+1.E20_iwp
CALL sparin(kv,kdiag); CALL spabac(kv,loads,kdiag)
WRITE(11,’(A)’) " Node Temperature"
DO i=1,25; WRITE(11,’(I5,F12.2)’)i,loads(i); END DO
CONTAINS

FUNCTION geometry(iel)
!--Element Node Numbers for Example 8.3, 4-Node only 4x4 mesh--
IMPLICIT NONE
INTEGER,INTENT(IN)::iel; REAL(iwp)::geometry(4)
INTEGER::ip,iq; iq=(iel-1)/4+1; ip=iel-(iq-1)*4
geometry =(/iq*5+ip,(iq-1)*5+ip,(iq-1)*5+ip+1,iq*5+ip+1/)
END FUNCTION geometry

END PROGRAM nm82

There is no user input since the program deals only with the specific case
of Example 8.3. The program begins with a specification of the typical [kc]
matrix (called kc). The linear equations leading to the solution are solved by
the method described in Chapter 2, Program 2.5 so it is necessary to create
the integer vector (kdiag) which defines the structure of the coefficient matrix
(kv). This is done automatically using the library SUBROUTINE fkdiag. The
specific geometry is attached as FUNCTION geometry. The assembly process
is automated using SUBROUTINE fsparv.

It remains to enforce the boundary condition of φ = 50.0 and φ = 0.0 as
indicated in Figure 8.15 along the sides. The resulting equations are solved
using SUBROUTINEs sparin and spabac.

Output is listed as Results 8.2 and can be seen to be similar to those
listed in Solution 8.3 from a finite difference analysis. The differences would
become even smaller as the grids are refined. It may be noted that in the finite
difference solution of this problem described in Example 8.3, the temperatures
at the corners of the problems were unspecified.

---Simple FE analysis of Example 8.3---

Node Temperature Node Temperature
1 50.00 14 12.41
2 50.00 15 0.00
3 50.00 16 50.00
4 50.00 17 21.47
5 0.00 18 12.41

434 Numerical Methods for Engineers

6 50.00 19 6.05
7 43.15 20 0.00
8 35.80 21 0.00
9 21.47 22 0.00

10 0.00 23 0.00
11 50.00 24 0.00
12 35.80 25 0.00
13 23.57

Results 8.2: Simple FE analysis of Example 8.3

List 8.2:

Scalar integers:
i simple counter
iel simple counter
kdiag diagonal term locations
num element node numbers

Integer arrays:
g_num global element node numbers matrix

Real arrays:
kc element conductivity matrix
loads global rhs and solution vector

Dynamic real arrays:
kv global conductivity matrix

8.7 Exercises

1. Given the equation
√
x
∂z

∂x
+ z

∂z

∂y
= −z2

use a numerical method to estimate z(3.5, y) on the characteristic through
(3, 0) given that z = 1 at all points on the x-axis.
Answer: 0.783

Introduction to Partial Differential Equations 435

2. Given that z(1, 1) = 1 satisfies the equation

z(xp− yzq) = y2 − x2

where

p =
∂z

∂x
and q =

∂z

∂y

find the values of y and z when x = 1.5 on the characteristic passing
through (1, 1).
Answer: y = 0.702, z = 0.562

3. Use finite differences to estimate the steady state temperature distribu-
tion in the isotropic square plate shown in Figure 8.18.

Figure 8.18

Answer: T1 = 85.71, T2 = T4 = 71.43, T5 = 50.00, T3 = T7 = 50.00,
T9 = 14.29, T6 = T8 = 28.57

4. Repeat question 3 assuming anisotropic conductivity properties in which
ky = 3kx.
Answer: T1 = 42.44, T2 = 36.76, T3 = 28.15, T4 = 33.93, T5 = 25.00,
T6 = 16.07, T7 = 21.85, T8 = 13.24, T9 = 7.56

5. Figure 8.19 represents the cross-section of a long square bar of side length
8 cm subjected to pure torsion. The stress function φ is distributed
across the section according to Poisson’s equation

∂2φ

∂x2
+
∂2φ

∂y2
+ 2 = 0

436 Numerical Methods for Engineers

Given that φ = 0 on all the boundaries, use finite differences to estimate
the value of φ at the internal grid points.
Answer: φ1 = φ3 = φ7 = φ9 = 5.5, φ2 = φ4 = φ6 = φ8 = 7, φ5 = 9

Figure 8.19

6. The variation of quantity T , with respect to Cartesian coordinates x
and y, is defined by the fourth order differential equation

∂4T

∂x4
+
∂4T

∂y4
= 0

Derive the finite difference form of this equation centered at E in Figure

Figure 8.20

Introduction to Partial Differential Equations 437

8.20 using a square grid of side length unity.

Given the boundary conditions

AB: T = 0,
∂2T

∂y2
= −10; CD: T = 0,

∂2T

∂y2
= −20

BC: T = 0,
∂T

∂x
= −50; DA: T = 0,

∂T

∂x
= 30

estimate the value of T at point E.

Answer: T = 15.83

7. The steady two-dimensional distribution in an isotropic heat conducting
material is given by Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0

where φ is temperature and x, y represent the Cartesian coordinate sys-
tem. Using a finite difference form of this equation, find temperatures
T1, T2, T3 and T4 for the metal plate shown in Figure 8.21. The thermal

Figure 8.21

energy, Q, stored in the plate is calculated from

Q = ρc

∫
T dV

where Q is in Joules (J), ρ is density (=8000 kg/m3), c is the specific
heat capacity of the material (=1000 J/kg/o C) and dV is an increment
of volume (m3). If the thickness of the plate is 50 mm, use the Repeated
Trapezoid Rule to estimate Q.

Answer: T1 = T3 = 77.33o, T2 = T4 = 34.00o, Q = 1.55GJ

438 Numerical Methods for Engineers

8. A square 2-d anisotropic domain is subjected to steady seepage with the
boundary conditions indicated in Figure 8.22. Using the square finite
difference grid indicated, set up four symmetric simultaneous equations
in matrix form and solve for the unknown heads H1 through H4.

Answer: T1 = 77.06, T2 = 60.98, T3 = 87.84, T4 = 72.94

Figure 8.22

9. The steady three-dimensional temperature distribution in an isotropic
heat conducting material may be described by Laplace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

where φ is temperature and x, y, z represent the Cartesian coordinate
system. Derive a finite difference formula to represent this equation,
and use it with a grid size of 0.5 in all three directions to estimate the
steady state temperature at the centroid of a unit cube given that

φ(0, y, z) = 100
∂φ

∂x
(1, y, z) = −20 0 ≤ y, z ≤ 1

φ(x, 0, z) = 40 φ(x, 1, z) = 70 0 ≤ x, z ≤ 1
φ(x, y, 0) = 40 φ(x, y, 1) = 70 0 ≤ x, y ≤ 1

If the final boundary conditions were replaced by

∂φ

∂z
(x, y, 0) =

∂φ

∂z
(x, y, 1) = 0 0 ≤ x, y ≤ 1

Introduction to Partial Differential Equations 439

how could the analysis be simplified?
Answer: T = 60.29. Change in bc leads to a 2-d analysis where T =
66.43

10. A horizontal clay stratum of thickness 5 m is subjected to a loading
which produces a pressure distribution which varies from p kN/m2 at
the top to 0.5p kN/m2 at the bottom.

By subdividing the soil into five layers and using steps of one month, use
a finite difference approximation to estimate the excess pore pressures
distribution and hence the Average Degree of Consolidation after five
months. Let cv = 3 m2/yr and assume double-drainage.
Answer: 54%

11. The average coefficient of consolidation of a saturated clay layer 5m
is 1.93 m2/yr. The layer is drained at the top only and is subjected
to an initial vertical stress distribution that decreases linearly from 100
kN/m2 at the top to zero at the base. Select a reasonable finite difference
scheme to estimate the average degree of consolidation after 3 months.
Answer: Assuming drainage takes effect after one time step, U = 0.28

12. Show that the computational “molecules” for the square grids and condi-
tions shown in Figures 8.23a and b applied to a steady seepage problem

Figure 8.23

are given, respectively, by the algebraic equation

(2k1+4k2) Hi,j−(k1+k2) Hi−1,j−k1 Hi,j+1−k2 Hi+1,j−2k2 Hi,j−1 = 0

440 Numerical Methods for Engineers

and

(2k1 + 2k2) Hi,j − k1 Hi,j+1 − (k1 + k2) Hi+1,j − k2 Hi,j−1 = 0

Use these expressions and any others you may need to set up and solve
the four symmetric simultaneous equations for the unknown total head
values in Figure 8.23c.

Answer: T1 = 4.19, T2 = 3.09, T3 = 3.28, T4 = 2.36

13. Derive finite difference “molecules” for the two cases shown in Figure
8.24 assuming a square grid and isotropic properties.

Hint: One way of dealing with a sloping impermeable boundary in a
finite difference analysis is to replace it by a step function.
Answer: Case 1: 3hi,j − 2hi,j+1 − hi+1,j = 0, Case 2: 5hi,j − 2hi,j+1 −
2hi+1,j − hi,j−1 = 0

Figure 8.24

14. Use finite differences to solve for the total head at all the internal grid
points of the isotropic steady flow problem shown in Figure 8.25.
Answer: T1 = 49.58, T2 = 48.65, T3 = 41.65, T4 = 37.76, T5 = 37.14,
T6 = 25.29, T7 = 24.07, T8 = 23.72

Introduction to Partial Differential Equations 441

Figure 8.25

15. Use finite differences to solve for the total head at all the internal grid
points of the isotropic steady flow problem shown in Figure 8.26.
Answer: T1 = 18.67, T2 = 18.40, T3 = 17.50, T4 = 17.18, T5 = 11.18,
T6 = 11.16

Figure 8.26

16. The average coefficient of consolidation of a saturated clay layer 5m is
3.21 m2/yr.

The layer is drained at the top only, and is subjected to an initial ver-
tical stress distribution that increases linearly from zero at the top to

442 Numerical Methods for Engineers

100 kN/m2 at the base. Select a reasonable finite difference scheme to
estimate the average degree of consolidation after 3 months.
Answer: U = 0.06

17. A saturated clay layer 8m thick is drained at the top only, and is sub-
jected to an initial vertical stress distribution that increases linearly
from zero at depth 0m, to 150 kN/m2 at depth 4m, and then decreas-
es linearly back to zero at depth 8m. The coefficient of consolidation
is 0.193 m2/month. Use a finite difference grid size of Δz = 2m and
Δt = 4 months, to estimate the average degree of consolidation after
one year.
Answer: U = 0.14

18. The average coefficient of consolidation of a saturated clay layer 5m
thick is 0.161 m2/month. The layer is double-drained and subjected to
an initial vertical stress distribution that decreases linearly from 200
kN/m2 at the top to 100 kN/m2 at the base. Use a finite difference grid
with Δz = 1m and Δt = 1 month, to estimate the average degree of
consolidation after 4 months.
Answer: U = 0.365

19. A four meter thick double-drained saturated clay layer is subjected to
the ramp loading indicated in Figure 8.27. Use finite differences to
estimate the mid-plane pore pressure after 6 months.

Figure 8.27

Answer: 66.5 kN/m2 with Δt = 1 month, Δz = 1m
71.1 kN/m2 with Δt = 2 month, Δz = 1m

20. A layer of clay 8m thick (cv = 2.4m2/yr), drained at the top only, is
subjected to a triangular initial pore pressure distribution that varies
from zero at the ground surface to 100 kN/m2 at the bottom. Use a
finite difference grid with Δz = 2m and Δt = 4 month to estimate the

Introduction to Partial Differential Equations 443

average degree of consolidation of the layer after 2 years.
Answer: U = 0.15

21. Classify each of the following equations as elliptic, hyperbolic or parabol-
ic.

a)
∂2u

∂x2
− ∂2u

∂y2
= 0, b)

∂u

∂x
+

∂2u

∂x∂y
= 8,

c)
∂2u

∂x2
− 2

∂2u

∂x∂y
+ 2

∂2u

∂y2
= x+ 3y,

d)
∂2u

∂x2
+ 3

∂2u

∂x∂y
+ 4

∂2u

∂x2
+ 5

∂u

∂x
− 2

∂u

∂y
+ 4u = 2x− 6y,

e)
∂2u

∂x2
− 7

∂2u

∂x∂y
+
∂2u

∂y2
= 0, f)

∂2u

∂x2
+

∂2u

∂x∂y
− 6

∂2u

∂y2
= 0,

g)
∂2u

∂x2
+ 6

∂2u

∂x∂y
+ 9

∂2u

∂y2
= 0

Answer: a) H, b) H, c) E, d) E, e) H, f) H, g) P

22. A function u(x, t) is to satisfy the differential equation

∂2u

∂x2
=
∂2u

∂t2

in the solution domain 0 ≤ x ≤ 10 and 0 ≤ t ≤ ∞.

The following boundary/initial conditions apply

u(0, t) =
∂u

∂x
(10, t) = 0 for all t

u(x, 0) = x(20 − x) for 0 ≤ x ≤ 10

∂u

∂t
(x, 0) = 0 for 0 ≤ x ≤ 10

Let Δx = Δt = 2 and hence estimate u(x, 20) for x = 2, 4, 6 and 8.
Answer: u(2, 20) = −36, u(4, 20) = −64, u(6, 20) = −84, u(8, 20) =
−96

Appendix A

Descriptions of Library Subprograms

This Appendix describes the library SUBROUTINEs and FUNCTIONs attached
to the majority of programs described in this book through the command
USE nm_lib. The subprograms are listed in alphabetic order and include
brief descriptions of their arguments. Arguments in bold are those returned
by the subprograms with the attribute INTENT(OUT).

Source code for all these subprograms can be downloaded from the web site:

http://www.mines.edu/~vgriffit/NM

Name Arguments Description

check x1,x0,tol LOGICAL FUNCTION returns .TRUE.
if scalar variables x1 and x0
have an absolute relative difference less than
tol. Returns .FALSE. otherwise.

checkit loads,oldlds, LOGICAL FUNCTION returns .TRUE.
tol if all components of vectors loads and oldlds

have an absolute relative difference less than
tol. Returns .FALSE. otherwise.

chobac kb,loads Performs forward and back-substitution
on matrix kb factorized by cholin.
loads holds rhs on entry and solution on exit.

cholin kb Performs Choleski factorization on a symmetric
banded matrix kb stored as a lower rectangle by
rows. kb overwritten by factorized
coefficients on exit.

determinant jac FUNCTION returns the determinant of a 2 × 2
or 3 × 3 square matrix jac.

eliminate a,b FUNCTION returns the solution vector of linear
equations where a is the coefficient matrix and
b the right hand side.

fkdiag kdiag,g Returns maximum bandwidth kdiag for each row
of a skyline storage system from g.

fsparv kv,km, Returns lower triangular global matrix kv stored
g,kdiag as a vector in skyline form, from symmetric

element matrix km and steering vector g.
kdiag holds the locations of the diagonal terms.

445

446 Numerical Methods for Engineers

Name Arguments Description

fun_der fun,der, Returns the derivatives der of the shape functions
points,i fun with respect to local coordinates

at the Gauss-Legendre point held in points(i,:).
gauss_laguerre samp,wt Returns the sampling points samp

and weighting coefficients wt
for Gauss-Laguerre numerical integration.

gauss_legendre samp,wt Returns the sampling points samp
and weighting coefficients wt
for Gauss-Legendre numerical integration.

inverse matrix FUNCTION returns the inverse of array matrix.

ldlfor a,b Performs forward substitution on factors in LDLT

factorization. a holds upper triangular factors stored
as a lower triangle on which factorization is to be
performed. b holds the rhs values overwritten by
factored values.

ldlt a,d Factorizes a symmetric matrix using LDLT.
a holds symmetric matrix coefficients on entry
overwritten by L and LT on exit.
d is a vector holding the diagonal elements of D.

lufac a, Factorizes a matrix using LU.
lower,upper a holds matrix coefficients.

lower and upper hold U and L, the
lower and upper triangle factors respectively.
kdiag holds the locations of the diagonal terms.

lupfac a,row Factorizes a matrix using LU with pivoting.
a holds matrix coefficients on entry and
LU factors after pivoting on exit.
row holds reordered row numbers on exit.

lupsol a,b, Performs forward and back-substitution on factors in
sol,row LU method with pivoting. a holds LU factors.

b holds the rhs vector. sol holds the solution vector and
row holds reordered row numbers.

newton_cotes samp,wt Returns the sampling points samp
and weighting coefficients wt
for Newton-Cotes numerical integration.

norm x FUNCTION returns the “L2 norm” of vector x.
spabac kv,loads, Returns solution loads which overwrites rhs

kdiag by forward and back-substitution on (Choleski)
factorised vector kv stored as a skyline.
kdiag holds the locations of the diagonal terms.

sparin kv,kdiag Returns the (Choleski) factorised vector kv
stored as a skyline. kdiag holds the locations
of the diagonal terms.

subbac a,b Performs back-substitution on factors following forward
substitution from LDLT or LU methods.
a holds upper triangular factors for back-substitution.
b holds the rhs values following subfor on entry
and solution vector on exit.

subfor a,b Performs forward-substitution on factors from LU method.
a holds lower triangular factors for forward-substitution.
b holds the rhs vector on entry and factored vector on exit.

Appendix B

Fortran 95 Listings of Library
Subprograms

LOGICAL FUNCTION check(x1,x0,tol)
!---Checks Convergence of Two Scalars---
USE precision; IMPLICIT NONE

!---.TRUE. if converged; no update of x0---
REAL(iwp)::x0,x1,tol
check=.NOT.ABS(x1-x0)/ABS(x0)>tol

RETURN
END FUNCTION check

LOGICAL FUNCTION checkit(loads,oldlds,tol)
!---Checks Convergence of Two Vectors---
USE precision; IMPLICIT NONE

!---.TRUE. if converged; no update of oldlds---
REAL(iwp),INTENT(IN)::loads(:),oldlds(:),tol
REAL(iwp)::big; INTEGER::i,neq; LOGICAL::converged
neq=UBOUND(loads,1); big=.0_iwp; converged=.TRUE.
DO i=1,neq; IF(ABS(loads(i))>big)big=ABS(loads(i)); END DO
DO i=1,neq; IF(ABS(loads(i)-oldlds(i))/big>tol)converged=.FALSE.
END DO
checkit=converged

RETURN
END FUNCTION checkit

SUBROUTINE chobac(kb,loads)
!---Choleski Forward and Back-substitution---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::kb(:,:)
REAL(iwp),INTENT(in out)::loads(:)
INTEGER::iw,n,i,j,k,l,m; REAL(iwp)::x
n=SIZE(kb,1); iw=SIZE(kb,2)-1
loads(1)=loads(1)/kb(1,iw+1)
DO i=2,n
x=.0_iwp;k=1

447

448 Numerical Methods for Engineers

IF(i<=iw+1)k=iw-i+2
DO j=k,iw; x=x+kb(i,j)*loads(i+j-iw-1); END DO
loads(i)=(loads(i)-x)/kb(i,iw+1)

END DO
loads(n)=loads(n)/kb(n,iw+1)
DO i=n-1,1,-1
x=0.0_iwp; l=i+iw
IF(i>n-iw)l=n; m=i+1
DO j=m,l; x=x+kb(j,iw+i-j+1)*loads(j); END DO
loads(i)=(loads(i)-x)/kb(i,iw+1)

END DO
RETURN
END SUBROUTINE chobac

SUBROUTINE cholin(kb)
!---Choleski Factorization on a Lower Triangle Stored as a Band--
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(in out)::kb(:,:); INTEGER::i,j,k,l,ia,ib,n,iw
REAL(iwp)::x
n=UBOUND(kb,1); iw=UBOUND(kb,2)-1
DO i=1,n
x=.0_iwp
DO j=1,iw; x=x+kb(i,j)**2; END DO
kb(i,iw+1)=SQRT(kb(i,iw+1)-x)
DO k=1,iw
x=.0_iwp
IF(i+k<=n)THEN
IF(k/=iw)THEN

DO l=iw-k,1,-1
x=x+kb(i+k,l)*kb(i,l+k)

END DO
END IF
ia=i+k; ib=iw-k+1
kb(ia,ib)=(kb(ia,ib)-x)/kb(i,iw+1)

END IF
END DO

END DO
RETURN
END SUBROUTINE cholin

REAL FUNCTION determinant(jac)
!---Returns Determinant of a 1x1, 2x2 or 3x3 Jacobian Matrix---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::jac(:,:); REAL(iwp)::det; INTEGER::it
it=UBOUND(jac,1)

Fortran 95 Listings of Library Subprograms 449

SELECT CASE(it)
CASE(1)
det=1.0_iwp

CASE(2)
det=jac(1,1)*jac(2,2)-jac(1,2)*jac(2,1)

CASE(3)
det=jac(1,1)*(jac(2,2)*jac(3,3)-jac(3,2)*jac(2,3))
det=det-jac(1,2)*(jac(2,1)*jac(3,3)-jac(3,1)*jac(2,3))
det=det+jac(1,3)*(jac(2,1)*jac(3,2)-jac(3,1)*jac(2,2))

CASE DEFAULT
WRITE(*,*)"Wrong dimension for Jacobian matrix"

END SELECT
determinant=det

RETURN
END FUNCTION determinant

FUNCTION eliminate(a,b)
!---Gaussian elimination with partial pivoting on n*n
! matrix a and rhs b---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN OUT)::a(:,:),b(:)
REAL(iwp)::eliminate(UBOUND(b,1))
REAL(iwp)::big,hold,fac
INTEGER::i,j,l,n,ihold; n=UBOUND(a,1)

!--------------------------- Pivoting stage ---------------------
DO i=1,n-1
big=ABS(a(i,i)); ihold=i
DO j=i+1,n
IF(ABS(a(j,i))>big)THEN
big=ABS(a(j,i)); ihold=j

END IF
END DO
IF(ihold/=i)THEN
DO j=i,n
hold=a(i,j); a(i,j)=a(ihold,j); a(ihold,j)=hold

END DO
hold=b(i); b(i)=b(ihold); b(ihold)=hold

END IF
!-------------------------- Elimination stage -------------------

DO j=i+1,n
fac=a(j,i)/a(i,i)
DO l=i,n
a(j,l)=a(j,l)-a(i,l)*fac

END DO
b(j)=b(j)-b(i)*fac

450 Numerical Methods for Engineers

END DO
END DO

!--------------------------- Backsubstitution -------------------
DO i=n,1,-1
hold=.0_iwp
DO l=i+1,n; hold=hold+a(i,l)*b(l); END DO
b(i)=(b(i)-hold)/a(i,i)

END DO
eliminate = b

RETURN
END FUNCTION eliminate

SUBROUTINE fkdiag(kdiag,g)
!---Computes the Skyline Profile---
IMPLICIT NONE
INTEGER,INTENT(IN)::g(:); INTEGER,INTENT(OUT)::kdiag(:)
INTEGER::idof,i,iwp1,j,im,k; idof=SIZE(g)
DO i=1,idof
iwp1=1
IF(g(i)/=0)THEN
DO j=1,idof
IF(g(j)/=0)THEN

im=g(i)-g(j)+1; IF(im>iwp1)iwp1=im
END IF

END DO
k=g(i); IF(iwp1>kdiag(k))kdiag(k)=iwp1

END IF
END DO

RETURN
END SUBROUTINE fkdiag

SUBROUTINE fsparv(kv,km,g,kdiag)
!---Assembles Element Matrices into a
! Symmetric Skyline Global Matrix---
USE precision; IMPLICIT NONE
INTEGER,INTENT(IN)::g(:),kdiag(:)
REAL(iwp),INTENT(IN)::km(:,:); REAL(iwp),INTENT(OUT)::kv(:)
INTEGER::i,idof,k,j,iw,ival; idof=UBOUND(g,1)
DO i=1,idof
k=g(i)
IF(k/=0)THEN
DO j=1,idof
IF(g(j)/=0)THEN

iw=k-g(j)

Fortran 95 Listings of Library Subprograms 451

IF(iw>=0)THEN
ival=kdiag(k)-iw; kv(ival)=kv(ival)+km(i,j)

END IF
END IF

END DO
END IF

END DO
RETURN
END SUBROUTINE fsparv

SUBROUTINE fun_der(fun,der,points,i)
!---Computes Derivatives of Shape Functions w.r.t.
! Local Coordinates---
USE precision; IMPLICIT NONE
INTEGER,INTENT(IN)::i; REAL(iwp),INTENT(IN)::points(:,:)
REAL(iwp),INTENT(OUT)::der(:,:),fun(:); REAL(iwp)::eta,xi,zeta,&
xi0,eta0,zeta0,etam,etap,xim,xip,c1,c2,c3

REAL(iwp)::t1,t2,t3,t4,t5,t6,t7,t8,t9,x2p1,x2m1,e2p1,e2m1, &
zetam,zetap

REAL(iwp),PARAMETER::zero=0.0_iwp,pt125=0.125_iwp, &
pt25=0.25_iwp,pt5=0.5_iwp,pt75=0.75_iwp,one=1.0_iwp, &
two=2.0_iwp,d3=3.0_iwp,d4=4.0_iwp,d5=5.0_iwp,d6=6.0_iwp, &
d8=8.0_iwp,d9=9.0_iwp,d10=10.0_iwp,d11=11.0_iwp,d12=12.0_iwp,&
d16=16.0_iwp,d18=18.0_iwp,d27=27.0_iwp,d32=32.0_iwp, &
d36=36.0_iwp,d54=54.0_iwp,d64=64.0_iwp,d128=128.0_iwp

INTEGER::xii(20),etai(20),zetai(20),l,ndim,nod
ndim=UBOUND(der,1)
SELECT CASE(ndim)
CASE(1) ! one dimension
xi= points(i,1)
der(1,1)=-pt5; der(1,2)= pt5
fun=(/pt5*(one-xi),pt5*(one+xi)/)

CASE(2) ! two dimensions
xi= points(i,1); eta=points(i,2)
etam=pt25*(one-eta); etap=pt25*(one+eta)
xim= pt25*(one-xi); xip= pt25*(one+xi)
der(1,1)=-etam; der(1,2)=-etap; der(1,3)=etap; der(1,4)=etam
der(2,1)=-xim; der(2,2)=xim; der(2,3)=xip; der(2,4)=-xip
fun=(/d4*xim*etam,d4*xim*etap,d4*xip*etap,d4*xip*etam/)

CASE(3) ! three dimensions
xi =points(i,1); eta =points(i,2); zeta=points(i,3)
etam=one-eta; xim=one-xi; zetam=one-zeta
etap=eta+one; xip=xi+one; zetap=zeta+one
der(1,1)=-pt125*etam*zetam; der(1,2)=-pt125*etam*zetap
der(1,3)= pt125*etam*zetap; der(1,4)= pt125*etam*zetam

452 Numerical Methods for Engineers

der(1,5)=-pt125*etap*zetam; der(1,6)=-pt125*etap*zetap
der(1,7)= pt125*etap*zetap; der(1,8)= pt125*etap*zetam
der(2,1)=-pt125*xim*zetam; der(2,2)=-pt125*xim*zetap
der(2,3)=-pt125*xip*zetap; der(2,4)=-pt125*xip*zetam
der(2,5)= pt125*xim*zetam; der(2,6)= pt125*xim*zetap
der(2,7)= pt125*xip*zetap; der(2,8)= pt125*xip*zetam
der(3,1)=-pt125*xim*etam; der(3,2)= pt125*xim*etam
der(3,3)= pt125*xip*etam; der(3,4)=-pt125*xip*etam
der(3,5)=-pt125*xim*etap; der(3,6)= pt125*xim*etap
der(3,7)= pt125*xip*etap; der(3,8)=-pt125*xip*etap
fun=(/pt125*xim*etam*zetam,pt125*xim*etam*zetap, &

pt125*xip*etam*zetap,pt125*xip*etam*zetam, &
pt125*xim*etap*zetam,pt125*xim*etap*zetap, &
pt125*xip*etap*zetap,pt125*xip*etap*zetam/)

CASE DEFAULT
WRITE(*,*)"Wrong number of dimensions"

END SELECT
RETURN
END SUBROUTINE fun_der

SUBROUTINE gauss_laguerre(samp,wt)
!---Provides Weights and Sampling Points for Gauss-Laguerre---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(OUT)::samp(:,:),wt(:); INTEGER::nsp
nsp=UBOUND(samp,1)
SELECT CASE(nsp)
CASE(1)
samp(1,1)= 1.0_iwp
wt(1)= 1.0_iwp

CASE(2)
samp(1,1)= 0.58578643762690495119_iwp
samp(2,1)= 3.41421356237309504880_iwp
wt(1)= 0.85355339059327376220_iwp
wt(2)= 0.14644660940672623779_iwp

CASE(3)
samp(1,1)= 0.41577455678347908331_iwp
samp(2,1)= 2.29428036027904171982_iwp
samp(3,1)= 6.28994508293747919686_iwp
wt(1)= 0.71109300992917301544_iwp
wt(2)= 0.27851773356924084880_iwp
wt(3)= 0.01038925650158613574_iwp

CASE(4)
samp(1,1)= 0.32254768961939231180_iwp
samp(2,1)= 1.74576110115834657568_iwp
samp(3,1)= 4.53662029692112798327_iwp

Fortran 95 Listings of Library Subprograms 453

samp(4,1)= 9.39507091230113312923_iwp
wt(1)= 0.60315410434163360163_iwp
wt(2)= 0.35741869243779968664_iwp
wt(3)= 0.03888790851500538427_iwp
wt(4)= 0.00053929470556132745_iwp

CASE(5)
samp(1,1)= 0.26356031971814091020_iwp
samp(2,1)= 1.41340305910651679221_iwp
samp(3,1)= 3.59642577104072208122_iwp
samp(4,1)= 7.08581000585883755692_iwp
samp(5,1)= 12.6408008442757826594_iwp
wt(1)= 0.52175561058280865247_iwp
wt(2)= 0.39866681108317592745_iwp
wt(3)= 0.07594244968170759538_iwp
wt(4)= 0.00361175867992204845_iwp
wt(5)= 0.00002336997238577622_iwp

CASE DEFAULT
WRITE(*,*)"Wrong number of integrating points"

END SELECT
RETURN
END SUBROUTINE gauss_laguerre

SUBROUTINE gauss_legendre(samp,wt)
!---Provides Weights and Sampling Points for Gauss-Legendre---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(OUT)::samp(:,:),wt(:); INTEGER::nsp,ndim
nsp=UBOUND(samp,1); ndim=UBOUND(samp,2)
SELECT CASE(ndim)
CASE(1)
SELECT CASE(nsp)
CASE(1)
samp(1,1)= 0.0_iwp
wt(1) = 2.0_iwp

CASE(2)
samp(1,1)= -0.57735026918962576449_iwp
samp(2,1)= 0.57735026918962576449_iwp
wt(1)= 1.0_iwp
wt(2)= 1.0_iwp

CASE(3)
samp(1,1)= -0.77459666924148337704_iwp
samp(2,1)= 0.0_iwp
samp(3,1)= 0.77459666924148337704_iwp
wt(1)= 0.55555555555555555556_iwp
wt(2)= 0.88888888888888888889_iwp
wt(3)= 0.55555555555555555556_iwp

454 Numerical Methods for Engineers

CASE(4)
samp(1,1)= -0.86113631159405257524_iwp
samp(2,1)= -0.33998104358485626481_iwp
samp(3,1)= 0.33998104358485626481_iwp
samp(4,1)= 0.86113631159405257524_iwp
wt(1)= 0.34785484513745385737_iwp
wt(2)= 0.65214515486254614271_iwp
wt(3)= 0.65214515486254614271_iwp
wt(4)= 0.34785484513745385737_iwp

CASE(5)
samp(1,1)= -0.90617984593866399282_iwp
samp(2,1)= -0.53846931010568309105_iwp
samp(3,1)= 0.0_iwp
samp(4,1)= 0.53846931010568309105_iwp
samp(5,1)= 0.90617984593866399282_iwp
wt(1)= 0.23692688505618908751_iwp
wt(2)= 0.47862867049936646804_iwp
wt(3)= 0.56888888888888888889_iwp
wt(4)= 0.47862867049936646804_iwp
wt(5)= 0.23692688505618908751_iwp

CASE DEFAULT
WRITE(*,*)"Wrong number of integrating points"

END SELECT
CASE(2)
SELECT CASE(nsp)
CASE(1)
samp(1,1)= 0.0_iwp
samp(1,2)= 0.0_iwp
wt(1)= 4.0_iwp

CASE(4)
samp(1,1)= -0.57735026918962576449_iwp
samp(2,1)= 0.57735026918962576449_iwp
samp(3,1)= -0.57735026918962576449_iwp
samp(4,1)= 0.57735026918962576449_iwp
samp(1,2)= -0.57735026918962576449_iwp
samp(2,2)= -0.57735026918962576449_iwp
samp(3,2)= 0.57735026918962576449_iwp
samp(4,2)= 0.57735026918962576449_iwp
wt(1)= 1.0_iwp
wt(2)= 1.0_iwp
wt(3)= 1.0_iwp
wt(4)= 1.0_iwp

CASE(9)
samp(1,1)= -0.77459666924148337704_iwp
samp(2,1)= 0.0_iwp

Fortran 95 Listings of Library Subprograms 455

samp(3,1)= 0.77459666924148337704_iwp
samp(4,1)= -0.77459666924148337704_iwp
samp(5,1)= 0.0_iwp
samp(6,1)= 0.77459666924148337704_iwp
samp(7,1)= -0.77459666924148337704_iwp
samp(8,1)= 0.0_iwp
samp(9,1)= 0.77459666924148337704_iwp
samp(1,2)= -0.77459666924148337704_iwp
samp(2,2)= -0.77459666924148337704_iwp
samp(3,2)= -0.77459666924148337704_iwp
samp(4,2)= 0.0_iwp
samp(5,2)= 0.0_iwp
samp(6,2)= 0.0_iwp
samp(7,2)= 0.77459666924148337704_iwp
samp(8,2)= 0.77459666924148337704_iwp
samp(9,2)= 0.77459666924148337704_iwp
wt(1) = 0.30864197530864197531_iwp
wt(2) = 0.49382716049382716049_iwp
wt(3) = 0.30864197530864197531_iwp
wt(4) = 0.49382716049382716049_iwp
wt(5) = 0.79012345679012345679_iwp
wt(6) = 0.49382716049382716049_iwp
wt(7) = 0.30864197530864197531_iwp
wt(8) = 0.49382716049382716049_iwp
wt(9) = 0.30864197530864197531_iwp

CASE(16)
samp(1,1) =-0.86113631159405257524_iwp
samp(2,1) =-0.33998104358485626481_iwp
samp(3,1) = 0.33998104358485626481_iwp
samp(4,1) = 0.86113631159405257524_iwp
samp(5,1) =-0.86113631159405257524_iwp
samp(6,1) =-0.33998104358485626481_iwp
samp(7,1) = 0.33998104358485626481_iwp
samp(8,1) = 0.86113631159405257524_iwp
samp(9,1) =-0.86113631159405257524_iwp
samp(10,1)=-0.33998104358485626481_iwp
samp(11,1)= 0.33998104358485626481_iwp
samp(12,1)= 0.86113631159405257524_iwp
samp(13,1)=-0.86113631159405257524_iwp
samp(14,1)=-0.33998104358485626481_iwp
samp(15,1)= 0.33998104358485626481_iwp
samp(16,1)= 0.86113631159405257524_iwp
samp(1,2) =-0.86113631159405257524_iwp
samp(2,2) =-0.86113631159405257524_iwp
samp(3,2) =-0.86113631159405257524_iwp

456 Numerical Methods for Engineers

samp(4,2) =-0.86113631159405257524_iwp
samp(5,2) =-0.33998104358485626481_iwp
samp(6,2) =-0.33998104358485626481_iwp
samp(7,2) =-0.33998104358485626481_iwp
samp(8,2) =-0.33998104358485626481_iwp
samp(9,2) = 0.33998104358485626481_iwp
samp(10,2)= 0.33998104358485626481_iwp
samp(11,2)= 0.33998104358485626481_iwp
samp(12,2)= 0.33998104358485626481_iwp
samp(13,2)= 0.86113631159405257524_iwp
samp(14,2)= 0.86113631159405257524_iwp
samp(15,2)= 0.86113631159405257524_iwp
samp(16,2)= 0.86113631159405257524_iwp
wt(1)= 0.12100299328560200551_iwp
wt(2)= 0.22685185185185185185_iwp
wt(3)= 0.22685185185185185185_iwp
wt(4)= 0.12100299328560200551_iwp
wt(5)= 0.22685185185185185185_iwp
wt(6)= 0.42529330301069429082_iwp
wt(7)= 0.42529330301069429082_iwp
wt(8)= 0.22685185185185185185_iwp
wt(9)= 0.22685185185185185185_iwp
wt(10)= 0.42529330301069429082_iwp
wt(11)= 0.42529330301069429082_iwp
wt(12)= 0.22685185185185185185_iwp
wt(13)= 0.12100299328560200551_iwp
wt(14)= 0.22685185185185185185_iwp
wt(15)= 0.22685185185185185185_iwp
wt(16)= 0.12100299328560200551_iwp

CASE(25)
samp(1,1) =-0.90617984593866399282_iwp
samp(2,1) =-0.53846931010568309105_iwp
samp(3,1) = 0.0_iwp
samp(4,1) = 0.53846931010568309105_iwp
samp(5,1) = 0.90617984593866399282_iwp
samp(6,1) =-0.90617984593866399282_iwp
samp(7,1) =-0.53846931010568309105_iwp
samp(8,1) = 0.0_iwp
samp(9,1) = 0.53846931010568309105_iwp
samp(10,1)= 0.90617984593866399282_iwp
samp(11,1)=-0.90617984593866399282_iwp
samp(12,1)=-0.53846931010568309105_iwp
samp(13,1)= 0.0_iwp
samp(14,1)= 0.53846931010568309105_iwp
samp(15,1)= 0.90617984593866399282_iwp

Fortran 95 Listings of Library Subprograms 457

samp(16,1)=-0.90617984593866399282_iwp
samp(17,1)=-0.53846931010568309105_iwp
samp(18,1)= 0.0_iwp
samp(19,1)= 0.53846931010568309105_iwp
samp(20,1)= 0.90617984593866399282_iwp
samp(21,1)=-0.90617984593866399282_iwp
samp(22,1)=-0.53846931010568309105_iwp
samp(23,1)= 0.0_iwp
samp(24,1)= 0.53846931010568309105_iwp
samp(25,1)= 0.90617984593866399282_iwp
samp(1,2) =-0.90617984593866399282_iwp
samp(2,2) =-0.90617984593866399282_iwp
samp(3,2) =-0.90617984593866399282_iwp
samp(4,2) =-0.90617984593866399282_iwp
samp(5,2) =-0.90617984593866399282_iwp
samp(6,2) =-0.53846931010568309105_iwp
samp(7,2) =-0.53846931010568309105_iwp
samp(8,2) =-0.53846931010568309105_iwp
samp(9,2) =-0.53846931010568309105_iwp
samp(10,2)=-0.53846931010568309105_iwp
samp(11,2)= 0.0_iwp
samp(12,2)= 0.0_iwp
samp(13,2)= 0.0_iwp
samp(14,2)= 0.0_iwp
samp(15,2)= 0.0_iwp
samp(16,2)= 0.53846931010568309105_iwp
samp(17,2)= 0.53846931010568309105_iwp
samp(18,2)= 0.53846931010568309105_iwp
samp(19,2)= 0.53846931010568309105_iwp
samp(20,2)= 0.53846931010568309105_iwp
samp(21,2)= 0.90617984593866399282_iwp
samp(22,2)= 0.90617984593866399282_iwp
samp(23,2)= 0.90617984593866399282_iwp
samp(24,2)= 0.90617984593866399282_iwp
samp(25,2)= 0.90617984593866399282_iwp
wt(1) = 0.05613434886242863595_iwp
wt(2) = 0.1134_iwp
wt(3) = 0.13478507238752090312_iwp
wt(4) = 0.1134_iwp
wt(5) = 0.05613434886242863595_iwp
wt(6) = 0.1134_iwp
wt(7) = 0.22908540422399111713_iwp
wt(8) = 0.27228653255075070182_iwp
wt(9) = 0.22908540422399111713_iwp
wt(10)= 0.1134_iwp

458 Numerical Methods for Engineers

wt(11)= 0.13478507238752090305_iwp
wt(12)= 0.27228653255075070171_iwp
wt(13)= 0.32363456790123456757_iwp
wt(14)= 0.27228653255075070171_iwp
wt(15)= 0.13478507238752090305_iwp
wt(16)= 0.1134_iwp
wt(17)= 0.22908540422399111713_iwp
wt(18)= 0.27228653255075070182_iwp
wt(19)= 0.22908540422399111713_iwp
wt(20)= 0.1134_iwp
wt(21)= 0.05613434886242863595_iwp
wt(22)= 0.1134_iwp
wt(23)= 0.13478507238752090312_iwp
wt(24)= 0.1134_iwp
wt(25)= 0.05613434886242863595_iwp

CASE DEFAULT
WRITE(*,*)"Wrong number of integrating points"

END SELECT
CASE(3)
SELECT CASE(nsp)
CASE(1)
samp(1,1)= 0.0_iwp
samp(1,2)= 0.0_iwp
samp(1,3)= 0.0_iwp
wt(1)= 8.0_iwp

CASE(8)
samp(1,1)=-0.57735026918962576449_iwp
samp(2,1)= 0.57735026918962576449_iwp
samp(3,1)=-0.57735026918962576449_iwp
samp(4,1)= 0.57735026918962576449_iwp
samp(5,1)=-0.57735026918962576449_iwp
samp(6,1)= 0.57735026918962576449_iwp
samp(7,1)=-0.57735026918962576449_iwp
samp(8,1)= 0.57735026918962576449_iwp
samp(1,2)=-0.57735026918962576449_iwp
samp(2,2)=-0.57735026918962576449_iwp
samp(3,2)=-0.57735026918962576449_iwp
samp(4,2)=-0.57735026918962576449_iwp
samp(5,2)= 0.57735026918962576449_iwp
samp(6,2)= 0.57735026918962576449_iwp
samp(7,2)= 0.57735026918962576449_iwp
samp(8,2)= 0.57735026918962576449_iwp
samp(1,3)=-0.57735026918962576449_iwp
samp(2,3)=-0.57735026918962576449_iwp
samp(3,3)= 0.57735026918962576449_iwp

Fortran 95 Listings of Library Subprograms 459

samp(4,3)= 0.57735026918962576449_iwp
samp(5,3)=-0.57735026918962576449_iwp
samp(6,3)=-0.57735026918962576449_iwp
samp(7,3)= 0.57735026918962576449_iwp
samp(8,3)= 0.57735026918962576449_iwp
wt(1)= 1.0_iwp
wt(2)= 1.0_iwp
wt(3)= 1.0_iwp
wt(4)= 1.0_iwp
wt(5)= 1.0_iwp
wt(6)= 1.0_iwp
wt(7)= 1.0_iwp
wt(8)= 1.0_iwp

CASE(27)
samp(1,1)= -0.77459666924148337704_iwp
samp(2,1)= 0.0_iwp
samp(3,1)= 0.77459666924148337704_iwp
samp(4,1)= -0.77459666924148337704_iwp
samp(5,1)= 0.0_iwp
samp(6,1)= 0.77459666924148337704_iwp
samp(7,1)= -0.77459666924148337704_iwp
samp(8,1)= 0.0_iwp
samp(9,1)= 0.77459666924148337704_iwp
samp(10,1)=-0.77459666924148337704_iwp
samp(11,1)= 0.0_iwp
samp(12,1)= 0.77459666924148337704_iwp
samp(13,1)=-0.77459666924148337704_iwp
samp(14,1)= 0.0_iwp
samp(15,1)= 0.77459666924148337704_iwp
samp(16,1)=-0.77459666924148337704_iwp
samp(17,1)= 0.0_iwp
samp(18,1)= 0.77459666924148337704_iwp
samp(19,1)=-0.77459666924148337704_iwp
samp(20,1)= 0.0_iwp
samp(21,1)= 0.77459666924148337704_iwp
samp(22,1)=-0.77459666924148337704_iwp
samp(23,1)= 0.0_iwp
samp(24,1)= 0.77459666924148337704_iwp
samp(25,1)=-0.77459666924148337704_iwp
samp(26,1)= 0.0_iwp
samp(27,1)= 0.77459666924148337704_iwp
samp(1,2)= -0.77459666924148337704_iwp
samp(2,2)= -0.77459666924148337704_iwp
samp(3,2)= -0.77459666924148337704_iwp
samp(4,2)= -0.77459666924148337704_iwp

460 Numerical Methods for Engineers

samp(5,2)= -0.77459666924148337704_iwp
samp(6,2)= -0.77459666924148337704_iwp
samp(7,2)= -0.77459666924148337704_iwp
samp(8,2)= -0.77459666924148337704_iwp
samp(9,2)= -0.77459666924148337704_iwp
samp(10,2)= 0.0_iwp
samp(11,2)= 0.0_iwp
samp(12,2)= 0.0_iwp
samp(13,2)= 0.0_iwp
samp(14,2)= 0.0_iwp
samp(15,2)= 0.0_iwp
samp(16,2)= 0.0_iwp
samp(17,2)= 0.0_iwp
samp(18,2)= 0.0_iwp
samp(19,2)= 0.77459666924148337704_iwp
samp(20,2)= 0.77459666924148337704_iwp
samp(21,2)= 0.77459666924148337704_iwp
samp(22,2)= 0.77459666924148337704_iwp
samp(23,2)= 0.77459666924148337704_iwp
samp(24,2)= 0.77459666924148337704_iwp
samp(25,2)= 0.77459666924148337704_iwp
samp(26,2)= 0.77459666924148337704_iwp
samp(27,2)= 0.77459666924148337704_iwp
samp(1,3)= -0.77459666924148337704_iwp
samp(2,3)= -0.77459666924148337704_iwp
samp(3,3)= -0.77459666924148337704_iwp
samp(4,3)= 0.0_iwp
samp(5,3)= 0.0_iwp
samp(6,3)= 0.0_iwp
samp(7,3)= 0.77459666924148337704_iwp
samp(8,3)= 0.77459666924148337704_iwp
samp(9,3)= 0.77459666924148337704_iwp
samp(10,3)=-0.77459666924148337704_iwp
samp(11,3)=-0.77459666924148337704_iwp
samp(12,3)=-0.77459666924148337704_iwp
samp(13,3)= 0.0_iwp
samp(14,3)= 0.0_iwp
samp(15,3)= 0.0_iwp
samp(16,3)= 0.77459666924148337704_iwp
samp(17,3)= 0.77459666924148337704_iwp
samp(18,3)= 0.77459666924148337704_iwp
samp(19,3)=-0.77459666924148337704_iwp
samp(20,3)=-0.77459666924148337704_iwp
samp(21,3)=-0.77459666924148337704_iwp
samp(22,3)= 0.0_iwp

Fortran 95 Listings of Library Subprograms 461

samp(23,3)= 0.0_iwp
samp(24,3)= 0.0_iwp
samp(25,3)= 0.77459666924148337704_iwp
samp(26,3)= 0.77459666924148337704_iwp
samp(27,3)= 0.77459666924148337704_iwp
wt(1) = 0.17146776406035665295_iwp
wt(2) = 0.27434842249657064472_iwp
wt(3) = 0.17146776406035665295_iwp
wt(4) = 0.27434842249657064472_iwp
wt(5) = 0.43895747599451303155_iwp
wt(6) = 0.27434842249657064472_iwp
wt(7) = 0.17146776406035665295_iwp
wt(8) = 0.27434842249657064472_iwp
wt(9) = 0.17146776406035665295_iwp
wt(10) = 0.27434842249657064472_iwp
wt(11) = 0.43895747599451303155_iwp
wt(12) = 0.27434842249657064472_iwp
wt(13) = 0.43895747599451303155_iwp
wt(14) = 0.70233196159122085048_iwp
wt(15) = 0.43895747599451303155_iwp
wt(16) = 0.27434842249657064472_iwp
wt(17) = 0.43895747599451303155_iwp
wt(18) = 0.27434842249657064472_iwp
wt(19) = 0.17146776406035665295_iwp
wt(20) = 0.27434842249657064472_iwp
wt(21) = 0.17146776406035665295_iwp
wt(22) = 0.27434842249657064472_iwp
wt(23) = 0.43895747599451303155_iwp
wt(24) = 0.27434842249657064472_iwp
wt(25) = 0.17146776406035665295_iwp
wt(26) = 0.27434842249657064472_iwp
wt(27) = 0.17146776406035665295_iwp

CASE DEFAULT
WRITE(*,*)"Wrong number of integrating points"

END SELECT
CASE DEFAULT
WRITE(*,*)"Not a valid dimension"

END SELECT
RETURN
END SUBROUTINE gauss_legendre

FUNCTION inverse(matrix)
!---Returns Inverse of Small Matrix by Gauss-Jordan---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::matrix(:,:)

462 Numerical Methods for Engineers

REAL(iwp)::inverse(UBOUND(matrix,1),UBOUND(matrix,2))
REAL(iwp)::temp(UBOUND(matrix,1),UBOUND(matrix,2))
INTEGER::i,k,n; REAL(iwp)::con; n=UBOUND(matrix,1)
temp=matrix
DO k=1,n
con=temp(k,k); temp(k,k)=1.0_iwp
temp(k,:)=temp(k,:)/con
DO i=1,n
IF(i/=k) THEN
con=temp(i,k);temp(i,k)=0.0_iwp
temp(i,:)=temp(i,:)-temp(k,:)*con

END IF
END DO

END DO
inverse=temp

END FUNCTION inverse

SUBROUTINE ldlfor(a,b)
!---Forward Substitution on Upper Triangle Stored as a Lower
! Triangle---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:,:); REAL(iwp),INTENT(IN OUT)::b(:)
INTEGER::i,j,n; REAL(iwp)::total; n= UBOUND(a,1)
DO i=1,n
total=b(i)
IF(i>1)THEN
DO j=1,i-1; total=total-a(j,i)*b(j); END DO

END IF
b(i)=total/a(i,i)

END DO
RETURN
END SUBROUTINE ldlfor

SUBROUTINE ldlt(a,d)
!---LDLT Factorization of a Square Matrix---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN OUT)::a(:,:); real(iwp),INTENT(OUT)::d(:)
INTEGER::i,j,k,n; REAL(iwp)::x,small=1.E-10_iwp; n=UBOUND(a,1)
DO k=1,n-1
d(1)=a(1,1)
IF(ABS(a(k,k))>small)THEN
DO i=k+1,n
x=a(i,k)/a(k,k)
DO j=k+1,n; a(i,j)=a(i,j)-a(k,j)*x; END DO
d(i)=a(i,i)

Fortran 95 Listings of Library Subprograms 463

END DO
ELSE; WRITE(11,*)"Zero pivot found in row ",k
END IF

END DO
RETURN
END SUBROUTINE ldlt

SUBROUTINE lufac(a,lower,upper)
!-----LU Factorisation of a Square Matrix-----
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:,:)
REAL(iwp),INTENT(OUT)::lower(:,:),upper(:,:)
INTEGER::i,j,k,l,n; REAL(iwp)::total,zero=.0_iwp; n=UBOUND(a,1)
upper=zero; lower=zero; upper(1,:)=a(1,:)
DO i=1,n; lower(i,i)=1.0_iwp; end do
DO k=1,n-1
IF(ABS(upper(k,k))>1.e-10_iwp)THEN
DO i=k+1,n

!---Lower Triangular Components---
DO j=1,i-1

total=zero
DO l=1,j-1
total= total-lower(i,l)*upper(l,j)

END DO
lower(i,j)=(a(i,j)+total)/upper(j,j)

END DO
!---Upper Triangular Components---

DO j=1,n
total=zero
DO l=1,i-1
total=total-lower(i,l)*upper(l,j)

END DO
upper(i,j)=a(i,j)+total

END DO
END DO

ELSE
WRITE(11,*)"Zero pivot found in row", k; EXIT

END IF
END DO

RETURN
END SUBROUTINE lufac

SUBROUTINE lupfac(a,row)
!---LU Factorization of a Square Matrix with Pivoting---
USE precision; IMPLICIT NONE

464 Numerical Methods for Engineers

REAL(iwp),INTENT(IN OUT)::a(:,:); INTEGER,INTENT(OUT)::row(:)
INTEGER::i,j,k,ip,ie,ih,irow,n
REAL(iwp)::pval,pivot,small=1.E-10_iwp
n=UBOUND(a,1); DO i=1,n; row(i)=i; END DO
DO i=1,n-1
ip=i; pval=a(row(ip),ip)
DO j=i+1,n
IF(ABS(a(row(j),i))>ABS(pval))THEN
ip=j; pval=a(row(j),i)

END IF
END DO
IF(ABS(pval)<small)THEN
WRITE(11,*)"Singular equations detected"; STOP

END IF
ih=row(ip); row(ip)=row(i); row(i)=ih
DO j=i+1,n
ie= row(j); pivot=a(ie,i)/pval; a(ie,i)=pivot; irow=row(i)
DO k=i+1,n
a(ie,k)=a(ie,k)-a(irow,k)*pivot

END DO
END DO

END DO
IF(ABS(a(row(n),n))< small)THEN
WRITE(11,*)"Singular equations detected"; STOP

END IF
RETURN
END SUBROUTINE lupfac

SUBROUTINE lupsol(a,b,sol,row)
!---Forward and Back-substitution with Pivots---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:,:); REAL(iwp),INTENT(IN)::b(:)
REAL(iwp),INTENT(OUT)::sol(:); INTEGER,INTENT(IN)::row(:)
INTEGER::i,j,n,irow
REAL(iwp)::total,temp(UBOUND(a,1)); n=UBOUND(a,1)
temp=b
DO i=1,n
irow=row(i); total=b(irow)
IF(i>1)THEN
DO j=1,i-1
total=total-a(irow,j)*temp(row(j))

END DO
temp(irow)=total

END IF
END DO

Fortran 95 Listings of Library Subprograms 465

DO i=n,1,-1
irow=row(i); total=temp(irow)
IF(i<n)THEN
DO j=i+1,n
total=total-a(irow,j)*temp(row(j))

END DO
END IF
temp(irow)=total/a(irow,i)

END DO
sol=temp(row(:))

RETURN
END SUBROUTINE lupsol

SUBROUTINE newton_cotes(samp,wt)
!---Provides Weights and Sampling Points for Newton-Cotes---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(OUT)::samp(:,:),wt(:); INTEGER::nsp
nsp=UBOUND(samp,1)
SELECT CASE(nsp)
CASE(1)
samp(1,1)=-1.0_iwp
wt(1)= 2.0_iwp

CASE(2)
samp(1,1)=-1.0_iwp
samp(2,1)= 1.0_iwp
wt(1)= 1.0_iwp
wt(2)= 1.0_iwp

CASE(3)
samp(1,1)=-1.0_iwp
samp(2,1)= 0.0_iwp
samp(3,1)= 1.0_iwp
wt(1)= 0.33333333333333333333_iwp
wt(2)= 1.33333333333333333333_iwp
wt(3)= 0.33333333333333333333_iwp

CASE(4)
samp(1,1)=-1.0_iwp
samp(2,1)=-0.33333333333333333333_iwp
samp(3,1)= 0.33333333333333333333_iwp
samp(4,1)= 1.0_iwp
wt(1)= 0.25_iwp
wt(2)= 0.75_iwp
wt(3)= 0.75_iwp
wt(4)= 0.25_iwp

CASE(5)
samp(1,1)=-1.0_iwp

466 Numerical Methods for Engineers

samp(2,1)=-0.5_iwp
samp(3,1)= 0.0_iwp
samp(4,1)= 0.5_iwp
samp(5,1)= 1.0_iwp
wt(1)= 0.15555555555555555556_iwp
wt(2)= 0.71111111111111111111_iwp
wt(3)= 0.26666666666666666667_iwp
wt(4)= 0.71111111111111111111_iwp
wt(5)= 0.15555555555555555556_iwp

CASE DEFAULT
WRITE(*,*)"Wrong number of integrating points"

END SELECT
RETURN
END SUBROUTINE newton_cotes

REAL FUNCTION norm(x)
!---Returns L2 Norm of Vector x---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::x(:)
norm=SQRT(SUM(x**2))

END FUNCTION norm

SUBROUTINE spabac(a,b,kdiag)
!---Choleski Forward and Back-substitution on a Skyline Matrix---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:); REAL(iwp),INTENT(in out)::b(:)
INTEGER,INTENT(IN)::kdiag(:); INTEGER::n,i,ki,l,m,j,it,k
REAL(iwp)::x
n=UBOUND(kdiag,1); b(1)=b(1)/a(1)
DO i=2,n
ki=kdiag(i)-i; l=kdiag(i-1)-ki+1; x=b(i)
IF(l/=i)THEN
m=i-1
DO j=l,m; x=x-a(ki+j)*b(j); END DO

END IF
b(i)=x/a(ki+i)

END DO
DO it=2,n
i=n+2-it; ki=kdiag(i)-i; x=b(i)/a(ki+i)
b(i)=x; l=kdiag(i-1)-ki+1
IF(l/=i)THEN
m=i-1
DO k=l,m; b(k)=b(k)-x*a(ki+k); END DO

END IF

Fortran 95 Listings of Library Subprograms 467

END DO
b(1)=b(1)/a(1)

RETURN
END SUBROUTINE spabac

SUBROUTINE sparin(a,kdiag)
!---Choleski Factorization of Symmetric Skyline Matrix---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN OUT)::a(:); INTEGER,INTENT(IN)::kdiag(:)
INTEGER::n,i,ki,l,kj,j,ll,m,k; REAL(iwp)::x
n=UBOUND(kdiag,1); a(1)=SQRT(a(1))
DO i=2,n
ki=kdiag(i)-i; l=kdiag(i-1)-ki+1
DO j=l,i
x=a(ki+j); kj=kdiag(j)-j
IF(j/=1)THEN
ll=kdiag(j-1)-kj+1; ll=MAX(l,ll)
IF(ll/=j)THEN

m=j-1
DO k=ll,m; x=x-a(ki+k)*a(kj+k); END DO

END IF
END IF
a(ki+j)=x/a(kj+j)

END DO
a(ki+i)=SQRT(x)

END DO
RETURN
END SUBROUTINE sparin

SUBROUTINE subbac(a,b)
!---Back-substitution on an Upper Triangle---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:,:); REAL(iwp),INTENT(IN OUT)::b(:)
INTEGER::i,j,n; REAL(iwp)::total; n=UBOUND(a,1)
DO i=n,1,-1
total=b(i)
IF(i<n)THEN
DO j=i+1,n; total=total-a(i,j)*b(j); END DO

END IF
b(i)=total/a(i,i)

END DO
RETURN
END SUBROUTINE subbac

468 Numerical Methods for Engineers

SUBROUTINE subfor(a,b)
!---Forward-substitution on a Lower Triangle---
USE precision; IMPLICIT NONE
REAL(iwp),INTENT(IN)::a(:,:); REAL(iwp),INTENT(IN OUT)::b(:)
INTEGER::i,j,n; REAL(iwp)::total; n=UBOUND(a,1)
DO i=1,n
total=b(i)
IF(i>1)THEN
DO j=1,i-1; total=total-a(i,j)*b(j); END DO

END IF
b(i)=total/a(i,i)

END DO
RETURN
END SUBROUTINE subfor

Appendix C

References and Additional Reading

1. Abramowitz, M. and Stegun, I.A., Handbook of mathematical functions.
U.S. Government Printing Office, Washington, D.C. (1964)

2. Ames, W.F, Mathematics for mechanical engineers. CRC Press, Boca
Raton (2000)

3. Ayyub, B.M. and McCuen, R.H., Numerical methods for engineers.
Prentice-Hall, Upper Saddle River, NJ (1996)

4. Baker, T.H. and Phillips, C. (eds), The numerical solution of nonlinear
problems. Clarendon Press, Oxford (1981)

5. Bathe, K.J. and Wilson, E.L., Numerical methods in finite element anal-
ysis. Prentice-Hall, Englewood Cliffs, NJ (1976)

6. Burden, R.L. and Faires, J.D., Numerical analysis, 8th ed. Thomson
Brooks/Cole, Belmont, CA (2005)

7. Byrne, G. and Hall, C. (eds), Numerical solution of systems of nonlinear
algebraic equations. Academic Press, New York (1973)

8. Chaitin-Chatelin, F. and Ahués, M., Eigenvalues of matrices. Wiley,
New York (1993)

9. Chapra, S.C. and Canale, R.P., Numerical methods for engineers. 5th
ed., McGraw-Hill, Boston (2006)

10. Cheney, E.W. and Kincaid, D., Numerical mathematics and computing,
5th ed. Thomson-Brooks/Cole, Belmont, CA (2004)

11. Collatz, L., The Numerical treatment of differential equations, 3rd ed.
Springer-Verlag, New York (1966)

12. Conte, S.D. and De Boor, C., Elementary numerical analysis, 3rd ed.
McGraw-Hill, London (1980)

13. Crandall, S.H., Engineering analysis. McGraw-Hill, New York (1956)

14. Dahlquist, G. and Björck, A., Numerical methods. Prentice-Hall, En-
glewood Cliffs, NJ (1974)

469

470 Numerical Methods for Engineers

15. Davis, P.J. and Rabinowitz, P., Methods of numerical integration, 2nd
ed. Academic Press, New York (1984)

16. Dijkstra, E. W., A discipline of programming. Prentice-Hall, Englewood
Cliffs, NJ (1976)

17. Dongarra, J., Bunch, J., Moler, G. and Stewart, G., LINPACK User’s
Guide. SIAM (1979)

18. Dongarra, J.J. and Walker, D., Software libraries for linear algebra com-
putations on high performance computers. Siam Rev, 37(2), pp.151-180
(1995)

19. EISPACK, Fortran subroutines for computing the eigenvalues and eigen-
vectors (1973)
www.netlib.org/eispack

20. Evans, D.J. (ed), Sparsity and its applications. Cambridge University
Press, Cambridge (1985)

21. Fairweather, G., Finite element Galerkin methods for differential equa-
tions. M. Dekker, New York (1978)

22. Forsythe, G.E. and Wasow, W.R., Finite difference methods for partial
differential equations. Wiley, New York (1960)

23. Fox, L., An introduction to numerical linear algebra. Clarendon Press,
Oxford (1964)

24. Frazer, R.A., Duncan, W.J. and Collar, A.R., Elementary matrices and
some applications to dynamics and differential equations. The Univer-
sity Press, Cambridge (1938)

25. Froberg, C.E., Introduction to numerical linear algebra, 2nd ed. Addison-
Wesley, Reading, MA (1970)

26. Froberg, C.E., Numerical mathematics. Addison-Wesley, Redwood City,
CA (1985)

27. Garbow, B., Boyle, J., Dongarra, J. and Molar, C., Matrix Eigensystem
Routines - EISPACK Guide Extension. Lecture Notes on Computer
Science, 51, Springer-Verlag, New York (1977)

28. Gear, C.W., Numerical initial value problems in ordinary differential
equations. Prentice-Hall, Englewood Cliffs, NJ (1971)

29. Gill, P.E., Murray, W. and Wright, M.H., Practical optimization. Aca-
demic Press, San Diego (1986)

References and Additional Reading 471

30. Givens, W., Numerical computation of the characteristic values of a real
symmetric matrix. Oak Ridge National Laboratory Report ORNL-1574
(1954)

31. Gladwell, I. and Wait, R. (eds), A survey of numerical methods for
partial differential equations. Oxford University Press, Oxford (1979)

32. Gladwell, I. and Sayers, D.K. (eds), Computational techniques for ordi-
nary differential equations. Academic Press, New York (1980)

33. Golub, G.H. and Van Loan, C.F., Matrix computations, 3rd ed. Johns
Hopkins University Press, Baltimore (1996)

34. Gourlay, A.R. and Watson, G.A., Computation methods for matrix
eigenproblems. Wiley, London (1973)

35. Greenbaum, A., Iterative methods for solving linear systems. SIAM,
Philadelphia (1997)

36. Griffiths, D.V., Generalized numerical integration of moments. Int. J.
Numer. Methods Eng., vol.32, no.1, pp.129-147 (1991)

37. Higham, N.J., Accuracy and stability of numerical algorithms, 2nd ed.
SIAM, Philadelphia (2002)

38. Householder, A.S. The numerical treatment of a single nonlinear equa-
tion. McGraw-Hill, New York (1970)

39. Householder, A.S., The theory of matrices in numerical analysis. Dover
Publications, New York (1975)

40. HSL, Aspen HSL (2004)
www.aspentech.com/hsl/

41. IMSL, Absoft (2004)
www.absoft.com/Products/Libraries/imsl.html#description

42. Jennings, A., Matrix computation for engineers and scientists, 2nd ed.
Wiley, New York (1992)

43. Johnson L.W. and Riess, R.D., Numerical analysis, 2nd ed. Addison-
Wesley, Reading, MA (1982)

44. Kelley, C.T., Iterative methods for linear and nonlinear equations. SIAM,
Philadelphia (1995)

45. Lanczos, C., An iteration method for the solution of the eigenvalue
problems of linear differential and integral operators. J. Res. Nat. Bur.
Stand., 45, 255-282 (1950)

472 Numerical Methods for Engineers

46. LAPACK, Library of Fortran 77 routines for solving common problems
in numerical linear algebra (1990)
www.cisl.ucar.edu/softlib/LAPACK.html

47. Lapidus, L. and Pinder, G.F., Numerical solution of partial differential
equations in science and engineering. Wiley, New York (1982)

48. Lapidus, L. and Seinfeld, J.H., Numerical solution of ordinary differen-
tial equations. Academic Press, New York (1971)

49. LINPACK, Fortran 77 routines for solving common problems in numer-
ical linear algebra (1979)
www.cisl.ucar.edu/softlib/LINPACK.html

50. Mitchell, A.R., Computational methods in partial differential equations.
Wiley, New York (1969)

51. NAG, Numerical Algorithms Group (2005)
www.nag.co.uk

52. Ortega, J.M. and Rheinboldt, W.C., Iterative solution of nonlinear e-
quations in several variables. SIAM, Philadelphia (1970)

53. Parlett, B.N., The symmetric eigenvalue problem. Prentice-Hall, Engle-
wood Cliffs, NJ (1980)

54. Peters, G. and Wilkinson, J., Practical problems arising in the solution
of polynomial equations. J. Inst. Math. and its Appl. 8, 16-35 (1971)

55. Ralston, A. and Rabinowitz, P., A first course in numerical analysis,
2nd ed. McGraw-Hill, New York (1965)

56. Rheinboldt, W.C., Methods for solving systems of nonlinear equations,
2nd ed. SIAM, Philadelphia (1998)

57. Rutishauser, H., Solution of eigenvalues problems with the LR transfor-
mation. Nat. Bur. Standards Appl. Math. Ser., 49, 47-81 (1985)

58. Schumaker, L.L., Spline functions: Basic theory. Wiley, New York
(1981)

59. Shampine, L.F., Allen, R.C. and Pruess, S., Fundamentals of numerical
computing. Wiley, New York (1997)

60. Shoup, T.E., A practical guide to computer methods for engineers.
Prentice-Hall, Englewood Cliffs, NJ (1979)

61. Smith, G.D., Numerical solution of partial differential equations, 3rd ed.
Oxford University Press, Oxford (1985)

References and Additional Reading 473

62. Smith, I.M., Programming in Fortran 90. Wiley, Chichester (1995)

63. Smith, I.M. and Griffiths, D.V., Programming the finite element method,
4th ed. Wiley, Chichester (2004)

64. Smith, I.M. and Kidger, D.J., Properties of the 20-node brick, Int. J.
Numer. Anal. Methods Geomech., vol.15, no.12, pp.871-891 (1991)

65. Smith, I.M. and Margetts, L., The convergence variability of parallel
iterative solvers, Engineering Computations, vol.23, no.2, pp.154-165
(2006)

66. Stewart, G.W., Introduction to matrix computations. Academic Press,
New York (1973)

67. Stroud, A.H. and Secrest, D., Gaussian quadrature formulas. Prentice-
Hall, Englewood Cliffs, NJ (1966)

68. Traub, J.F., Iterative methods for the solution of equations. Prentice-
Hall, Englewood Cliffs, NJ (1964)

69. Wilkinson, J.H., Rounding errors in algebraic processes. Prentice-Hall,
Englewood Cliffs, NJ (1963)

70. Wilkinson, J.H., The algebraic eigenvalue problem. Clarendon Press,
Oxford (1965)

71. Wilkinson, J.H., Reinsch, C. and Bauer, F.L. Linear algebra. Springer-
Verlag, New York (1971)

72. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z., The finite element method,
6th ed. Elsevier Butterworth-Heinemann, Oxford (2005)

	Front cover
	Dedication
	List of Programs
	Contents
	Chapter 1. Introduction and Programming Preliminaries
	Chapter 2. Linear Algebraic Equations
	Chapter 3. Nonlinear Equations
	Chapter 4. Eigenvalue Equations
	Chapter 5. Interpolation and Curve Fitting
	Chapter 6. Numerical Integration
	Chapter 7. Numerical Solution of Ordinary Differential Equations
	Chapter 8. Introduction to Partial Differential Equations
	Appendix A. Descriptions of Library Subprograms
	Appendix B. Fortran 95 Listings of Library Subprograms
	Appendix C. References and Additional Reading
	Back cover

