


Handbook of the
Shapley Value



http://www.crcpress.com
http://www.crcpress.com


Handbook of the
Shapley Value

Edited by
Encarnación Algaba

University of Seville

Vito Fragnelli
University of Eastern Piedmont

Joaquín Sánchez-Soriano
University Miguel Hernandez of Elche (UMH)



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-8153-7468-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Rea-
sonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the conse-
quences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and record-
ing, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Cen-
ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-
for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system
of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation without intent to infringe.

Library of Congress Control Number: 2019954409

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com


To an extraordinary person
that shines by himself

To all our loved ones around us



http://taylorandfrancis.com


Contents

Foreword xvii

Preface xxiii

Editors xxv

Contributors xxvii

1 The Shapley Value, a Crown Jewel of Cooperative Game
Theory 1
William Thomson
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Coalitional Games and their Values . . . . . . . . . . . . . . 2
1.3 A Short Guide to the Chapters . . . . . . . . . . . . . . . . 7
1.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 14
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Shapley Value, a Paradigm of Fairness 17
Encarnación Algaba, Vito Fragnelli, and Joaquín Sánchez-Soriano
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 The Mathematical Expression . . . . . . . . . . . . . . . . . 19
2.3 Some Characterizations . . . . . . . . . . . . . . . . . . . . 21
2.4 Some Extensions and Applications . . . . . . . . . . . . . . 25
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 27
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 An Index of Unfairness 31
Victor H. Aguiar, Roland Pongou, Roberto Serrano, and
Jean-Baptiste Tondji
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Organization and Data Set . . . . . . . . . . . . . . . 33
3.1.2 The Shapley Value as an Ideal for Fairness . . . . . . 34

3.2 The Shapley Distance as a Measure of Unfairness . . . . . . 35
3.2.1 An Axiomatic Characterization of the

Shapley Distance . . . . . . . . . . . . . . . . . . . . 35

vii



viii Contents

3.2.2 A Decomposition of the Shapley Distance with
Limited Data Sets . . . . . . . . . . . . . . . . . . . . 38

3.3 Some Applications . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Favoritism . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Egalitarianism versus Fairness . . . . . . . . . . . . . 41
3.3.3 Taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 45
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 The Shapley Value and Games with Hierarchies 49
Encarnación Algaba and René van den Brink
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Games with Hierarchies . . . . . . . . . . . . . . . . . . . . 52

4.2.1 TU-Games . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Games with a Permission Structure . . . . . . . . . . 53
4.2.4 Games under Precedence Constraints . . . . . . . . . 54

4.3 Solutions for Games with Hierarchies . . . . . . . . . . . . . 54
4.3.1 The Conjunctive Permission Value for Games with a

Permission Structure . . . . . . . . . . . . . . . . . . 54
4.3.2 The Precedence Shapley Value and the Hierarchical

Solution for Games under Precedence Constraints . . 56
4.3.2.1 The Precedence Shapley Value . . . . . . . 56
4.3.2.2 The Hierarchical Solution . . . . . . . . . . 59

4.4 Power Measures for Digraphs and Solutions for Games with
Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Precedence Power Solutions for Games under

Precedence Constraints . . . . . . . . . . . . . . . . . 62
4.4.2 Power Measures, Solutions for Games with a

Permission Structure and Permission Values . . . . . 65
4.5 Logical Independence . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Logical Independence of the Axioms in Theorem 4.5 68
4.5.2 Logical Independence of the Axioms in Theorem 4.7 69

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 72
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Values, Nullifiers and Dummifiers 75
José María Alonso-Meijide, Julián Costa, and Ignacio García-Jurado
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Axiomatic Characterizations and Nullifying Players . . . . . 77
5.3 The e-Banzhaf Value for TU-Games . . . . . . . . . . . . . 80
5.4 Dummifying Players . . . . . . . . . . . . . . . . . . . . . . 85
5.5 The ie-Banzhaf Value for TU-Games . . . . . . . . . . . . . 88



Contents ix

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 91
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Games with Identical Shapley Values 93
Sylvain Béal, Mihai Manea, Eric Rémila, and Philippe Solal
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 The Kernel of the Shapley Value . . . . . . . . . . . . . . . 96
6.4 Axiomatizations of the Shapley Value Based on its Kernel . 99
6.5 Bases for the Space of Games . . . . . . . . . . . . . . . . . 100
6.6 Other Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Other Games in the Kernel of the Shapley Value . . . . . . 105
6.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 108
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Several Bases of a Game Space and an Application to the
Shapley Value 111
Yukihiko Funaki and Koji Yokote
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Notations and Definitions . . . . . . . . . . . . . . . . . . . 113
7.3 Commander Games . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Properties of Commander Games Basis . . . . . . . . . . . 116
7.5 New Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.6 Basis and Coincidence Condition . . . . . . . . . . . . . . . 123
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 128
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Extensions of the Shapley Value for Environments with
Externalities 131
Inés Macho-Stadler, David Pérez-Castrillo, and David Wettstein
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 The Environment . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Axiomatic Extensions of the Shapley Value for Games with

Externalities . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Marginal Contributions . . . . . . . . . . . . . . . . . . . . 142
8.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . 144

8.5.1 The Potential Approach . . . . . . . . . . . . . . . . 144
8.5.2 The Harsanyi Dividends Approach . . . . . . . . . . 146
8.5.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 146

8.6 Non-Cooperative Approaches to Value Extensions . . . . . 147
8.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . 147
8.6.2 A Bargaining Approach . . . . . . . . . . . . . . . . 148



x Contents

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 151
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 The Shapley Value and other Values 157
Giulia Bernardi and Roberto Lucchetti
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2 Preliminaries and Notation . . . . . . . . . . . . . . . . . . 159
9.3 Semivalues and Unanimity Games . . . . . . . . . . . . . . 162
9.4 Semivalues and Genetics . . . . . . . . . . . . . . . . . . . . 167
9.5 Semivalues and Social Choice . . . . . . . . . . . . . . . . . 170
9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10 Power and the Shapley Value 181
Hans Peters
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.3 Effectivity and Power . . . . . . . . . . . . . . . . . . . . . 183

10.3.1 Finitely Many Alternatives . . . . . . . . . . . . . . . 185
10.3.2 Infinitely Many Alternatives . . . . . . . . . . . . . . 186

10.3.2.1 An Application: The Owen-Shapley Spatial
Power Index . . . . . . . . . . . . . . . . . . 187

10.4 Control and Power . . . . . . . . . . . . . . . . . . . . . . . 189
10.5 Power on Digraphs . . . . . . . . . . . . . . . . . . . . . . . 193
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 197
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11 Cost Allocation with Variable Production and the
Shapley Value 199
Miren Josune Albizuri, Juan Carlos Santos, and
José Manuel Zarzuelo
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.2 Three Motivating Examples . . . . . . . . . . . . . . . . . . 201

11.2.1 The Tennessee Valley Authority . . . . . . . . . . . . 201
11.2.2 Internal Telephone Billing Rates . . . . . . . . . . . . 202
11.2.3 Aircraft Landing Fees . . . . . . . . . . . . . . . . . . 203

11.3 Notation and Preliminaries . . . . . . . . . . . . . . . . . . 205
11.4 The Classical Case and the Shapley-Shubik Method . . . . 206

11.4.1 Axiomatic Characterizations of the Shapley-Shubik
Method . . . . . . . . . . . . . . . . . . . . . . . . . . 207

11.5 The Continuum Case and the Aumann-Shapley Method . . 208
11.5.1 Axiomatic Characterizations of the Aumann-Shapley

Method . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Contents xi

11.6 The Discrete Case and the Aumann-Shapley Method . . . . 210
11.6.1 Axiomatic Characterizations of the Discrete

Aumann-Shapley Method . . . . . . . . . . . . . . . 211
11.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
11.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 215
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

12 Pure Bargaining Problems and the Shapley Rule:
A Survey 219
Francesc Carreras and Guillermo Owen
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
12.2 Pure Bargaining Problems and Sharing Rules . . . . . . . . 221
12.3 Closures and Quasi-Additive Games . . . . . . . . . . . . . 223
12.4 Core and the Shapley Rule . . . . . . . . . . . . . . . . . . 224
12.5 Axiomatic Characterizations of the Shapley Rule . . . . . . 227

12.5.1 Main Theorem . . . . . . . . . . . . . . . . . . . . . . 228
12.5.2 Other Domains . . . . . . . . . . . . . . . . . . . . . 228
12.5.3 Discussing Monotonicity . . . . . . . . . . . . . . . . 229

12.6 Criticism on the Proportional Rule . . . . . . . . . . . . . . 231
12.6.1 Restricted Domain . . . . . . . . . . . . . . . . . . . 231
12.6.2 Doubly Discriminatory Level . . . . . . . . . . . . . . 231
12.6.3 The Axiomatic Framework . . . . . . . . . . . . . . . 232
12.6.4 Inconsistency: Cost-Saving Problems . . . . . . . . . 232
12.6.5 Inconsistency: Added Costs Problems . . . . . . . . . 234

12.7 Pure Bargaining Problems with a Coalition Structure . . . 235
12.8 A Numerical Example . . . . . . . . . . . . . . . . . . . . . 237
12.9 A General Result on Preferences . . . . . . . . . . . . . . . 240
12.10 The Modified Shapley Rule and its Natural Domain . . . . 241
12.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.12 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.13 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 252
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

13 The Shapley Value as a Tool for Evaluating Groups:
Axiomatization and Applications 255
Ramón Flores, Elisenda Molina, and Juan Tejada
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
13.2 The Generalized Shapley Value: A Tool for Evaluating

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
13.2.1 Profitability of a Group . . . . . . . . . . . . . . . . . 263

13.3 Assessment of Groups in a Social Network . . . . . . . . . . 268
13.3.1 Myerson Group Value Decomposition: Communication

and Betweenness . . . . . . . . . . . . . . . . . . . . 272
13.3.2 Communication and Betweenness Redundancy . . . . 274

13.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 276



xii Contents

13.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 277
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

14 A Value for j-Cooperative Games: Some Theoretical
Aspects and Applications 281
Josep Freixas
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
14.2 Some Motivating Examples . . . . . . . . . . . . . . . . . . 284
14.3 Preliminaries: j-Cooperative Games . . . . . . . . . . . . . 286
14.4 A Value for j-Cooperative Games . . . . . . . . . . . . . . . 288
14.5 Probabilistic Justification of the F-Value . . . . . . . . . . 290
14.6 The F-Value Restricted to Cooperative Games Is the Shapley

Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.7 Another Formulation for the F-Value . . . . . . . . . . . . 294
14.8 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . 296

14.8.1 Classical Axioms for j-Cooperative Games . . . . . . 297
14.8.2 An Axiom on Unanimity Games . . . . . . . . . . . . 298
14.8.3 An Axiomatization for the F-Value . . . . . . . . . . 301

14.9 The F-Value on Constant-Sum j-Cooperative Games . . . . 301
14.10 Generating Functions for Computing the F-Value for

Weighted j-Simple Games . . . . . . . . . . . . . . . . . . . 303
14.11 Examples Revisited . . . . . . . . . . . . . . . . . . . . . . 305
14.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.13 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 307
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

15 The Shapley Value of Corporation Tax Games with Dual
Benefactors 313
Ana Meca, José Antonio García-Martínez, and
Antonio J. Mayor-Serra
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.2 Cost-Coalitional Problems with Multiple Dual and

Irreplaceable Benefactors . . . . . . . . . . . . . . . . . . . 316
15.3 Multiple Corporation Tax Games . . . . . . . . . . . . . . . 319
15.4 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . 323
15.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
15.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 329
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

16 The Shapley Value in Telecommunication Problems 331
Joaquín Sánchez-Soriano
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
16.2 Some Uses of the Shapley Value in Mobile Communication

Management . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Contents xiii

16.2.1 Resource Management in Wireless Networks . . . . . 334
16.2.2 Channel Allocation in Mobile Communication

Networks . . . . . . . . . . . . . . . . . . . . . . . . . 338
16.2.3 Bandwidth Allocation in Heterogeneous Mobile

Networks . . . . . . . . . . . . . . . . . . . . . . . . . 343
16.2.4 Other Applications to Wireless Networks . . . . . . . 345

16.3 The Shapley Value in Internet Problems . . . . . . . . . . . 347
16.3.1 Keyword Auctions in Search Engines on Internet . . 347
16.3.2 Collaboration among ISPs . . . . . . . . . . . . . . . 352
16.3.3 Some Additional Applications to Internet Problems . 356

16.4 The Shapley Value in Communication Routing Problems . . 357
16.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
16.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 358
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

17 The Shapley Rule for Loss Allocation in Energy
Transmission Networks 369
Gustavo Bergantiños, Julio González-Díaz, and
Ángel M. González-Rueda
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
17.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

17.2.1 The Mathematical Model . . . . . . . . . . . . . . . . 374
17.3 The Shapley Rule . . . . . . . . . . . . . . . . . . . . . . . . 377
17.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

17.4.1 Cost-Reflective Properties . . . . . . . . . . . . . . . 380
17.4.2 Non-Discriminatory Properties . . . . . . . . . . . . . 381
17.4.3 Properties to Foster Competition . . . . . . . . . . . 382

17.5 Axiomatic Behavior of the Shapley Rule . . . . . . . . . . . 382
17.6 Application to the Spanish Gas Transmission Network . . . 386

17.6.1 Case Study with Real Data . . . . . . . . . . . . . . 386
17.6.2 Simulation Study Building upon the Real Data . . . 388

17.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
17.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 391
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

18 On Some Applications of the Shapley-Shubik Index for
Finance and Politics 393
Cesarino Bertini, Gianfranco Gambarelli, Izabella Stach, and
Maurizio Zola
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.2 Some Preliminary Definitions . . . . . . . . . . . . . . . . . 394
18.3 Short History . . . . . . . . . . . . . . . . . . . . . . . . . . 396

18.3.1 Power Indices Derived from Values . . . . . . . . . . 396
18.3.2 Autonomously Generated Power Indices . . . . . . . 396
18.3.3 Some Other Indices with Different Derivations . . . . 396



xiv Contents

18.4 Power Index Applications . . . . . . . . . . . . . . . . . . . 397
18.5 Some Applications of Shapley-Shubik Power Index . . . . . 398

18.5.1 Example of Financial Applications . . . . . . . . . . 399
18.5.2 Shares Shift between Two Shareholders . . . . . . . . 399
18.5.3 Trade of Shares between One Player and Ocean of

Players . . . . . . . . . . . . . . . . . . . . . . . . . . 401
18.5.4 Remarks on Prices . . . . . . . . . . . . . . . . . . . 402
18.5.5 Steadiness of Control . . . . . . . . . . . . . . . . . . 403
18.5.6 Indirect Control . . . . . . . . . . . . . . . . . . . . . 404
18.5.7 Global Index of De-Stability . . . . . . . . . . . . . . 405
18.5.8 Portfolio Theory . . . . . . . . . . . . . . . . . . . . . 406

18.6 Political Applications . . . . . . . . . . . . . . . . . . . . . 407
18.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 407
18.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . 408
18.6.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . 408

18.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
18.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 411
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

19 The Shapley Value in the Queueing Problem 419
Youngsub Chun
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
19.2 The Queueing Problem . . . . . . . . . . . . . . . . . . . . 421
19.3 The Shapley Value in the Optimistic Queueing Game . . . 424
19.4 The Shapley Value in the Pessimistic Queueing Game . . . 428
19.5 The Shapley Value in the Queueing Game with an Initial

Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
19.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
19.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 437
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

20 Sometimes the Computation of the Shapley
Value Is Simple 441
Marco Dall’Aglio, Vito Fragnelli, and Stefano Moretti
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
20.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 443
20.3 Games on a Linear Resource . . . . . . . . . . . . . . . . . 444

20.3.1 Managing Airport Runways . . . . . . . . . . . . . . 444
20.3.2 Cleaning Rivers . . . . . . . . . . . . . . . . . . . . . 445
20.3.3 Auctions and Markets . . . . . . . . . . . . . . . . . 446

20.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 448
20.4.1 Sequencing Games . . . . . . . . . . . . . . . . . . . 449
20.4.2 Maintenance Cost Games . . . . . . . . . . . . . . . 450
20.4.3 Microarray Games and Network Centrality . . . . . . 452
20.4.4 Coverage Games . . . . . . . . . . . . . . . . . . . . . 456



Contents xv

20.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
20.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 459
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

21 Analysing ISIS Zerkani Network Using the Shapley Value 463
Herbert Hamers, Bart Husslage, and Roy Lindelauf
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
21.2 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . 465
21.3 A New Game Theoretic Centrality Measure . . . . . . . . . 468
21.4 Zerkani Network Analysis . . . . . . . . . . . . . . . . . . . 471
21.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
21.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
21.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 479
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

22 A Fuzzy Approach to Some Shapley Value Problems in
Group Decision Making 483
Barbara Gladysz, Jacek Mercik, and David Ramsey
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
22.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 486

22.2.1 Some Elements of the Theory of Fuzzy Sets . . . . . 486
22.3 The Shapley Value for Majority Voting Games . . . . . . . 488
22.4 Variability in the Quota q . . . . . . . . . . . . . . . . . . . 493
22.5 Multi-Dimensional Descriptions of the Value of a Coalition 495
22.6 Discrepancy between the Weight and Shapley Value of a

Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
22.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

23 Shapley Values for Two-Sided Assignment Markets 515
Marina Núñez and Carles Rafels
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
23.2 The Shapley and Shubik Assignment Game . . . . . . . . . 517
23.3 The Shapley Value of the Assignment Game . . . . . . . . . 519

23.3.1 Balancedness Conditions . . . . . . . . . . . . . . . . 521
23.3.2 Axiomatic Characterization . . . . . . . . . . . . . . 524

23.4 The Shapley Value of a Related Market . . . . . . . . . . . 527
23.4.1 Assignment Markets with Reservation Values . . . . 528
23.4.2 The Shapley Value of the Exact Assignment Game

with the same Core . . . . . . . . . . . . . . . . . . . 529
23.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
23.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 532
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533



xvi Contents

24 The Shapley Value in Minimum Cost Spanning Tree
Problems 537
Christian Trudeau and Juan Vidal-Puga
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
24.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

24.2.1 Cooperative Cost Games . . . . . . . . . . . . . . . . 539
24.2.2 Minimum Cost Spanning Tree Problems . . . . . . . 539

24.3 Associated Cooperative Cost Games . . . . . . . . . . . . . 540
24.3.1 The Private mcst Game . . . . . . . . . . . . . . . . 540
24.3.2 The Public mcst Game . . . . . . . . . . . . . . . . . 540
24.3.3 The Optimistic mcst Game . . . . . . . . . . . . . . 541
24.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . 541

24.4 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . 542
24.4.1 The Kar Solution . . . . . . . . . . . . . . . . . . . . 542
24.4.2 The Folk Solution . . . . . . . . . . . . . . . . . . . . 543
24.4.3 The Cycle-Complete Solution . . . . . . . . . . . . . 544

24.5 Axiomatic Analysis . . . . . . . . . . . . . . . . . . . . . . . 546
24.6 Correspondences with Other Concepts . . . . . . . . . . . . 553

24.6.1 Weighted Shapley Values . . . . . . . . . . . . . . . . 553
24.6.2 The Core and the Nucleolus . . . . . . . . . . . . . . 553

24.7 The Shapley Value in Other Related Problems . . . . . . . 554
24.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
24.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 555
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Index 561



Foreword

The Shapley Value, a Giant Legacy, and Ongoing Research Agenda
Alvin E. Roth

Game theory, as formulated by von Neumann and Morgenstern (1944),
was divided into two parts, which they proposed were appropriate for two
different kinds of games. Noncooperative game theory was focused on games
in which players made independent individual decisions. Games were mod-
eled and analyzed in terms of the strategies available to the players, and the
primary focus of the theory was what sets of decisions would be in equilibrium.

Cooperative game theory was focused on games in which the players could
reach binding agreements, and the primary focus of the theory was to discern
what kinds of agreements rational players might reach. Games were modeled
in terms of the outcomes that could be attained by coalitions of players. A
convenient simple model is of games with transferable utility (TU) in charac-
teristic function form. For a given set of players N , a TU game is a real valued
function on the subsets of N (the possible coalitions of players), v : 2N → R
such that v(∅) = 0, and for each nonempty subset S of N , v(S) represents
the total amount that the coalition S could effectively distribute among its
members regardless of what any players outside of the coalition did. Often an
additional assumption is that the function v is super-additive, i.e., that for
any disjoint coalitions S and T , v(S∪T ) ≥ v(S)+v(T ), so that the maximum
sum that could be distributed equals v(N). A simple interpretation of the
function v is that all the players in the game are risk neutral expected utility
maximizers and, for each coalition S, v(S) is the amount of money that the
coalition S can distribute among its members in any way that it wishes. An
outcome of the game would be a payoff vector x ∈ Rn with xi representing
a payoff for each player i ∈ N and

∑
i∈N xi = v(N). The goal of the coop-

erative theory envisioned by von Neumann and Morgenstern was to predict
likely outcomes or sets of outcomes of the game.

Shapley (1953) proposed a different approach, or rather a solution to a
different problem. Here are the opening sentences of the paper in which he
introduced what has become known as the Shapley value:

At the foundation of the theory of games is the assumption that the players
of a game can evaluate, in their utility scales, every ‘prospect’ that might
arise as a result of a play. In attempting to apply the theory to any field, one

xvii
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would normally expect to be permitted to include in the class of ’prospects’
the prospect of having to play a game. The possibility of evaluating games is
therefore of critical importance.

That is, Shapley proposed not to predict the outcome of the game, but
instead to formulate a function that could be interpreted along the lines of
the expected utility of playing a game, from each of its positions. However,
the formal approach he considered did not involve the kinds of preferences
over risky outcomes that von Neumann and Morgenstern had modeled with
expected utility. Instead, Shapley considered a set of axioms on the functional
form such a value might take.

Shapley considered a value ϕ for games v among a universe of N players to
be a function such that for any game v, ϕ(v) ∈ Rn satisfies

∑
i∈N ϕi(v) = v(N)

(efficiency), ϕi(v) = 0 for any i that contributes 0 to every coalition (i.e.,
such that v(S ∪ {i}) − v(S) = 0, for all subsets S of N) (the null player
axiom), ϕ(v + w) = ϕ(v) + ϕ(w) for any two games v and w (additivity), and
ϕi(v) = ϕj(v) for any i, j which play symmetric roles in the game (i.e., for
any permutation π of N , with πv being the permuted game, ϕi(v) = ϕπ(i)(πv)
symmetry).

A critical observation is that for any nonempty subset R of N , the unanim-
ity or pure bargaining games vR defined by vR(S) = 1 if R ⊆ S and vR(S) = 0,
otherwise form a basis of the space of games v, so that every game v can be
written as a weighted sum of the games vR. But since the axioms other than
additivity determine that ϕi(vR) = 1/r for i ∈ R and 0, otherwise, this implies
that, together with additivity, the axioms determine a unique (Shapley) value
for all games,

ϕi(v) =
∑
S⊆N

(s− 1)!(n− s)!
n!

[v(S)− v(S \ {i})],

where s = |S| and n = |N | are the number of players in the coalition S and
N , respectively.

Shapley and Shubik (1954) studied this value for the class of political
models called simple games, in which every coalition is either winning or
losing, which can be interpreted as TU games such that for each coalition
S, v(S) equals either zero or one. Dubey (1975) shows how the value can be
characterized within this class of games. Aumann and Shapley (1974) extended
the Shapley value to study games with a nonatomic continuum of players, and
used it to study its relationship to competitive equilibria of markets modeled
in this way.

A useful mnemonic for remembering the formula for the Shapley value is
that it is the expected marginal contribution of each player i to the coalition
it joins if the method of coalition formation is that the players enter one at a
time in some possible ordering of the players, with each ordering being equally
likely. Thus, there are n! possible orderings, and in (s − 1)!(n − s)! of those
orderings the coalition S is exactly the coalition that is present after player i
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enters, since the other members of S can enter before player i in (s−1)! of the
permutations and the remaining players can enter in (n− s)! permutations.

Of course, this is not a game-theoretic model of coalition formation. One
of the directions in which the Shapley value has been explored is to spec-
ify a coalition formation game from which the Shapley value could arise.
A pioneering paper in this regard is Aumann and Myerson (1988), who con-
sider what links players would mutually choose to form with other players, if
the opportunity to form links occurs in some specified order and if the final
payoffs will be the Shapley value for networked coalition structures explored
by Myerson 1977 (in which the network where everyone is linked to everyone
else yields the Shapley value).

My own work on values of games focused on Shapley’s original goal of
defining something like an expected utility of playing a game, which should
depend on the preferences of the observer whose preferences are being modeled
(see Roth 1977a,b; 1988a). An expected utility function of such an individual
would model preferences over lotteries whose possible outcomes were that
he would play a given position in a particular game. Consider an individual
faced with a lottery of the form [pvi; (1−p)wi], which with probability p would
have him play position i in game v and with probability (1− p) position i in
game w. If that individual was indifferent between that lottery, and playing
position i in the weighted sum of the two games, i.e., indifferent between
participating in the lottery or instead playing (pw + (1− p)v)i, then I would
call him neutral to probabilistic risk, and so his utility function u would have
u([pvi; (1− p)wi]) = pu(vi) + (1− p)u(wi) = u(pw + (1− p)v)i with the first
equality following from expected utility and the second from neutrality to
probabilistic risk. Hence, the utility function of such an individual would have
the Shapley value’s additivity property.

But ordinary risk is not the only kind of risk faced by a player in a game,
and I used the pure bargaining games vR to assess a player’s attitude towards
strategic risk. In particular, I called an individual neutral to strategic risk if
he was indifferent between playing the game vR as one of the players i ∈ R or
receiving a payment of 1/r for certain. For example, a player who worried that
the game vR had a positive probability of ending in disagreement (with all
players receiving zero) would likely prefer to receive 1/r instead of playing the
game in one of the r symmetric positions. But a player whose utility function
equals the Shapley value must be neutral to strategic risk, and indeed the
Shapley value is the utility function of an individual who is neutral to both
probabilistic and strategic risk (and is indifferent between symmetric positions
in a game).

Utility functions of individuals who are neutral to probabilistic risk but
not to strategic risk are also weighted sums of marginal contributions, with the
weights depending on the strategic risk posture, as captured in the numbers
f(r) for r ∈ {2, ..., n} such that the individual is indifferent between receiving
f(r) for certain or playing the pure bargaining game vR among r players.
If the individuals are neutral to probabilistic risk, these indices are additive
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but not efficient. Inefficient indices are studied as semi-values, see, e.g., the
important early contribution of Dubey, Neyman and Weber (1981).1

As the present volume will make clear, the Shapley value has inspired a
continued stream of both theoretical and applied work, not only in economics
and mathematics, but also in political science and related fields of application.
However, two developments served to divert the attention of much of the game
theoretic literature away from the Shapley value.

The first was a general shift in interest from cooperative game theory
towards noncooperative theory, which came about in part from the view that
the more detailed models of noncooperative games could serve equally well
to model cooperative games: If players could reach binding agreements, how
they did so could be modeled strategically. The second development was that
TU games in characteristic function form came to be viewed as too simple to
model many of the things economists were interested in, in which utility could
hardly be transferred without restriction.

Although there were a number of attempts to generalize the results for
the Shapley value to models with nontransferable utility, called NTU games
(see particularly Harsanyi 1963, and Shapley 1969), these attempts came to
be regarded as less successful than the original Shapley value for TU games
(see, e.g., the discussions by Roth 1980 and Shafer 1980, and the subsequent
exchange by Aumann 1985, 1986 and Roth 1986).

Today, particularly in areas of applied economics such as market design,
cooperative and noncooperative game theory are viewed more as models at
different levels of detail than as models of different kinds of games (Roth
and Wilson, 2019). The question that Shapley posed, of how to evaluate the
prospect of playing a game, is as important as ever, particularly because mar-
ket designers have to take into account that participants in a market have
the opportunity to choose which marketplaces to participate in, and hence
must make comparisons of the kind that the Shapley value is intended to help
answer. So one important area of future research will involve how to extend
the insights gained, and the tools developed primarily from TU games to the
wide class of other kinds of models that economists and game theorists now
explore, as well as those explored by other social scientists.

Lloyd Stowell Shapley was one of the founding giants of game theory who
helped lay the foundations of both cooperative and noncooperative game the-
ory, and who influenced everything and everyone in the field. He was born in
1923. His paper defining the Shapley value was published in 1953, when he
was 30 years old. A previous volume on the Shapley value, Roth (1988b), was
published in honor of his 65th birthday. The present volume brings up to date
the important stream of research on the Shapley value that has continued,
unabated, ever since Shapley first proposed it, and that I expect will continue
for the foreseeable future.

1One well-studied value that encodes quite a bit of strategic risk aversion for large pure
bargaining games (f(r) = 1/2r−1) is the Banzhaf index, for which see Banzhaf (1965) and
Dubey and Shapley (1979).
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Preface

The book, The Shapley Value: Essays in Honor of Lloyd S. Shapley, edited by
Alvin Roth and published in 1988, began by saying, “This volume is in honor
of the 1000001st (binary) birthday of Lloyd Shapley”; in the case of this book,
we could start by saying that it is to commemorate the 65th anniversary of
the publication in 1953 of the article, “A Value for n-Person Games” by Lloyd
Shapley, in which the one known today as the Shapley value was introduced
for the first time.

This book contains 24 contributed chapters within which different aspects
of the Shapley value are revised. The book is divided into four parts. The first
part consists of two chapters which introduce the framework of the book and
the Shapley value. The second part consists of eight chapters and is devoted
mainly to theoretical aspects of the Shapley value (from Chapter 3 through
Chapter 10). The third part consists of five chapters related to theoretical and
applied issues of the Shapley value (from Chapter 11 through Chapter 15) and,
finally, the fourth part has nine chapters which are devoted to applications of
the Shapley value to different problems coming from very distinct fields (from
Chapter 16 through Chapter 24).

We hope that this book will help highlight the importance of the Shapley
value and its validity and interest more than 65 years after its introduction
by Lloyd Stowell Shapley.

Finally, we would like to thank all those who have made this volume ded-
icated to the value of Shapley possible. Firstly, to all the authors who have
contributed to this book, second to all the reviewers of the works included
here, as well as Sarfraz Khan for inviting and encouraging us to write or edit
a book in July 2016, Callum Fraser for his support during the process, Shashi
Kumar for his technical support, Mansi Kabra for her editorial assistance at
the last steps of this book and Arun Kumar for managing and overseeing the
production phase of this project. Thanks to all of them for being part of this.
We hope that this book venture, initiated with caring and enthusiasm more
than three years ago, serves to bring gratification and inspiration to those who
read it.

Encarnación Algaba
Vito Fragnelli

Joaquín Sánchez-Soriano
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1.1 Introduction
Game theory is a towering intellectual achievement of the post-World-War-II
era and the Shapley value (Shapley, 1953b) a centerpiece of the branch of
game theory known as “cooperative game theory”. Introduced in the early
days of the subject when mathematicians were its main contributors, it was
quickly adopted by economists, political scientists, and operations researchers.
Its popularity is reflected in the multiple theoretical analyses of which it has
been the object over the years and in the ever expanding scope of its appli-
cations. Although the fortunes of some other concepts of game theory have
waxed and waned, the Shapley value is as fascinating today as it was when
first defined.

Shapley’s 1953b paper is his most cited paper. Together with the Nash
bargaining solution (Nash, 1950), it is an obligatory reference in general game
theory texts and, of course, it is given detailed attention in all comprehensive
treatments of cooperative game theory. It even has an important place in the
leading graduate microeconomics textbook (Mas-Colell et al., 1995).

The rich palette of essays gathered in this volume testifies to its remarkable
resilience and versatility.

This Introduction first describes how the Shapley value fits in the concep-
tual apparatus of game theory. It reviews basic definitions of the key axioms
that have been invoked in its classic characterizations. The second part briefly

1
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2 Handbook of the Shapley Value

comments on how each of the chapters contributes to honoring Shapley and
his value.

1.2 Coalitional Games and their Values
A painter on his own can secure a certain income and the same is true of
a plumber. When a painter and a plumber get together, they can save on
advertising, billing and insurance costs; they can recommend each other to
their respective customers; as a result, they can get more in total than the
sum of what they would get on their own. By joining forces with a carpenter, an
electrician and an architect, they can set up a construction company and build
houses. The company can achieve more than the sum of what the components
of any partition of its employees could attain. The question it faces then is
to distribute among them the revenue it generates, taking into account what
each group would attain on its own.

More generally, consider a group of people, or “players”, who can get to-
gether in “coalitions”. Each coalition can engage in activities that create value.
By pooling together the resources its members control, exploiting the technol-
ogy at their disposal, putting to the best use their skills and their knowledge,
it can achieve “something”, called its “worth”. The simplest case is when the
“something” is given as a single number, referred to as “utility”. The assump-
tion is made that utility can be transferred at a one-to-one rate among any two
players. The vector collecting the worths of all the coalitions is a “transferable
utility coalitional game”, for short a “TU game”. Here, the term “game” will
simply be used. Utility is an abstract concept, however, and it will be easier
to think of what coalitions can achieve and of what is assigned to players as
money. This will be the most natural interpretation of the data of a game in
almost all of the applications considered in this volume. Sometimes, players
get in each other’s way—for instance, if they have to use the same facility to
produce worth—and together, they achieve less that the sum of what the sub-
groups into which they could arrange themselves could achieve. In calculating
the worth of a coalition, all of the opportunities and organizational constraints
the coalition faces should be identified and properly taken into account. The
amount that has to be divided between the players is the worth of the grand
coalition.

A “dual” interpretation of the model is possible, in which worths are re-
placed by costs. To each group is associated the cost that the group would
incur in order to satisfy some demand it has for a service for example, or to
undertake some project. Most of what follows covers this kind of applications,
but we use language that is best suited to situations in which what is to be
divided is a desirable entity.



The Shapley Value, a Crown Jewel of Cooperative Game Theory 3

A “solution concept” is a mapping that provides, for each game, a payoff
vector, or a set of payoff vectors. When the data of a game are interpreted
in monetary terms, a player’s payoff is an amount of money, a salary, or a
share of profits. A vector chosen by a solution concept for a game can also be
thought of as a recommendation that an impartial arbitrator could make as
to what the various players should get, or as a prediction of the compromise
that they would agree on through negotiations. The negotiation process is left
unspecified but one can imagine a conversation they would have, arguments
they would make, in favor of this or that payoff vector, or to support general
principles that could be invoked to select a payoff vector, not only for the
game they face at this point, but also for each game they could have faced or
could face in the future.

Single-valued solution concepts are often called “values” because the payoff
specified for a player involved in some game is interpreted as the value to the
player of participating in the game; alternatively, when the variables of the
model are thought of in monetary terms, it is the amount that she would be
willing to pay to get involved in it (or would have to pay if the cost-sharing
interpretation of the model is taken).

The goal of the theory of coalitional games is to identify the most desirable
solution concepts. Before going into the reasons why the Shapley value is
widely regarded as one of them, it will be useful to show where it belongs in
an organized inventory of solution concepts.

Two main categories can be distinguished (Hokari and Thomson, 2015).
On the one hand, a “coalition-centric” solution concept attempts to satisfy
coalitions. Each coalition has a claim on the worth of the grand coalition
based on its own worth. Payoffs are not assigned to coalitions, however, but
to players, so a coalition has to assess how well it is treated in terms of the sum
of the payoffs assigned to its members. If this sum is too small, the coalition
will object. To placate a coalition, the only instrument at one’s disposal is
the payoffs to its members, a blunt instrument because as a function of the
number of players, the number of possible coalitions increases very quickly.
Also, raising a player’s payoff in an attempt to satisfy a coalition will imply
lowering some other player’s payoff, and this will impact negatively other
coalition(s). Hence, the balancing act that one faces in selecting payoff vectors.

On the other hand, a “player-centric” solution concept rewards each player
directly based on an assessment of what she can achieve on her own and how
valuable she is to others, that is, based on the worths of the various coalitions
to which she belongs. The challenge here is the opposite of what it is for
coalition-centric solution concepts; it is to aggregate or summarize this rich
information in some fashion, to distill it into a payoff for each player.

Examples of coalition-centric solution concepts are the “core” (Shapley,
1953a)1 and the “nucleolus” (Schmeidler, 1969). For a payoff vector to be
in the core of a game, each coalition should get in total at least its worth.

1Zhao (2018) provides compelling support for attributing to Shapley instead of to Gillies
(1959), as is common, the formal definition of the core.
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Otherwise, the coalition would refuse to participate. Depending upon the con-
text, whether to participate may or may not be an option, but even if not,
the scenario according to which a group of players would leave to collect its
worth is a meaningful counterfactual on which to anchor the choice of a payoff
vector. For the nucleolus, not only the sign, for each coalition, of the difference
between what its members have been assigned in total and its worth, but also
the magnitude of this difference, are taken into account. A large difference
means that the coalition is “treated well” and a small difference the opposite.
Expecting the loudest complaints from coalitions that are treated the worse
leads to a lexicographic search for payoff vectors at which, dealing with coali-
tions in the reverse order of how well they are treated, each is treated as well
as possible.

A first example of a player-centric solution concept is the “plain egalitar-
ian value”, which divides the worth of the grand coalition equally among all
players. This solution concept has the disadvantage of disregarding the worths
of all other coalitions.2 The “equal-division-over-individual-worths value” first
assigns to each player its own worth, then splits what remains equally among
all players. This value is a little more responsive to the data of the game.
Next, say that a player’s “contribution” to a coalition to which she belongs is
the change in the worth of the coalition if she leaves; if she does not belong to
a coalition, her “contribution” to it is the change in the worth of the coalition
if she joins. (It is with a slight abuse of language that the term is applied to a
quantity that may be negative.) Calling a player’s contribution to the grand
coalition her “principal contribution”—it is this contribution that is most
meaningful to an economist—the “equal-division-over-principal-contributions
value” first assigns to each player her principal contribution, and then splits
what remains equally among all players. This value too ignores most of the co-
ordinates of a game, but instead of using as reference the worths of individual
players, it uses their principal contributions.

The Shapley value is also a player-centric solution concept. However, by
contrast to the three solution concepts just defined, it has the merit of taking
all coordinates of a game into account: It assigns to each player a weighted
average of her contributions to all coalitions, the weights being combinatorial
expressions that are most easily derived from the following scenario. Imagine
players arriving one at a time in some order and assign to each player what
she contributes to the coalition consisting of all the players who were there
when she arrived; then take the simple average of her contributions over all
orders of arrival.

The Shapley value satisfies a number of appealing properties and various
axiomatizations that have been given of it are brought up in several of the
chapters of this volume. Shapley’s (1953b) own characterization is based on

2This solution concept is often referred to in the literature as the “equal division value”.
The equal-division-over-individual-worths value, mentioned below, is known as the “equal
surplus division value” and the equal-division-over-principal-contributions value as the
“equal allocation of non-separable costs value”.
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four axioms: “efficiency” says that the sum of everyone’s payoffs should be
equal to the worth of the grand coalition; “the null player axiom” says that
if all of a player’s contributions are equal to 0, that is what she should get;
“symmetry” says that two players who play symmetric roles in a game should
be assigned equal payoffs; “additivity” says that the payoff vector selected for
the sum of two games should be the sum of the payoff vectors selected for
each of the games.

The first three axioms are punctual requirements that are quite acceptable
in most applications. As noted in Algaba et al.’s introduction, additivity has
often been criticized, however, as being merely a “technical” requirement. We
would like to offer a defense of it, as a legitimate member, in the taxonomy
developed in Thomson (2018, 2019a), of the category of “robustness axioms”,
a category with economic significance. Such an axiom expresses the idea that
when a situation can be viewed from two different perspectives, neither of
which having more legitimacy than the other, a solution concept should deliver
the same payoff vector. Otherwise, whoever gets less if one perspective is
taken could justifiably challenge the choice. Robustness of the compromise
to choices of perspectives underlies many of the invariance axioms that have
been considered in game theory and resource allocation theory. Here, when
a society faces two separate problems, it could solve them separately or it
could consolidate them into one. Additivity says that these two equally valid
viewpoints should result in the same payoff vector.

Other characterizations of the Shapley value have been derived (again, see
Algaba et al.). Each involves a strong relational invariance axiom. One says
that a player’s payoff should only depend on the profile of her contributions
to the various coalitions (Young, 1985). The next two are variable-population
axioms. First, if a player leaves a game, the impact that her departure has
on any other player’s payoff should be equal to the impact that the departure
of that other player would have on her payoff (Myerson, 1977). Second is a
“consistency” requirement. It asserts that a player’s payoff in a game should
be equal to her payoff in the related game obtained by imagining that some
players leave. In this game, the worth of any coalition of remaining players
is set equal to what would be left after these departing players are assigned
what the solution would prescribe for them in the subgame involving them and
the coalition under consideration (Hart and Mas-Colell, 1989). This type of
reduction is an alternative to one proposed by Davis and Maschler (1965) and
the consistency notion (called “self-consistency” in Thomson’s 2019b survey,
as the definition refers to the solution concept that is being operated) is a
more demanding one, not in the logical sense, but because by itself, it is close
to ruling out most other solution concepts. Another characterization stands
out: It identifies the Shapley value as the only efficient mapping to have a
“potential” (Hart and Mas-Colell, 1989).

The Shapley value has been generalized in multiple directions, to begin
with, by Shapley (1969) himself, to games in which utility (or payoff) may
still be transferable between players but at a rate that depends on the point
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of departure. (These are usually called non-transferable utility games, but
it is more natural to think of them as games with variable rates of utility
transfers.)

The robustness of the classic characterization of the Shapley value has
been successfully tested on a variety of subdomains of the full domain of
games (Dubey, 1975; Neyman, 1989).

By contrast to the core, whose non-emptiness requires that restrictions
be placed on the game, to the nucleolus and its variants, for which explicit
formulas can rarely be obtained, and to various “bargaining sets” as well as the
“von Neumann-Morgenstern solution” (the definitions are omitted), which are
notoriously difficult to compute, not to mention the existence issues that they
raise, the Shapley value is always well defined and it is given by an explicit
formula.

Concerning the various monotonicity properties that have been formulated
in the literature, the Shapley value is one of the most satisfactory solution
concepts. Without any restriction being imposed on games, it is such that an
increase in the worth of a coalition brings about an increase in the payoff of
each of its members (Young, 1985); also, on the class of convex games, the
arrival of new players makes each of the players initially present at least as
well off as he was initially (Sprumont, 1990).

The Shapley value is sometimes equivalent to other solution concepts. In
spite of the fact that their definitions seem to have nothing to do with each
other, for special classes of games, the Shapley value and the nucleolus coincide
(Chun and Hokari, 2007). Most notably, when applied in exchange economies
with a large number of consumers modeled as a continuum, it coincides with
the Walrasian solution (Aumann and Shapley, 1974).

Applications of the Shapley value have been numerous and as already
noted, the scope of these applications keeps expanding. First was Shapley’s
own calculation of how much each of the universities where he had given talks
should contribute to the expenses he had incurred on his tour. The present
volume presents ample additional evidence of the usefulness of the Shapley
value in providing compelling recommendations for a variety of games; games
obtained by requiring that the worths of coalitions be related in some fashion,
games enriched with additional information, and games derived from some
concretely specified allocation problems.

All of this is not to say that the Shapley value is the ideal solution con-
cept, and it would do a disservice to it and to the field not to recognize its
limitations and the merits of the competing solution concepts. As usual, there
are tradeoffs, and for us, these tradeoffs are between properties.

First, an important drawback of the Shapley value is that it does not
always select from the core. Of course doing so may not be an option since
the core of a game is not guaranteed to be non-empty, but given the intuitive
appeal of the core, one would hope that when it is not empty, a well-behaved
solution concept would select from it. The Shapley value does not necessarily
do that. Classes of games for which it does have been identified (the class
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of convex games is the most prominent one), but admittedly, they are quite
narrow.

It is also important to note that other values, in particular the various
player-centric solution concepts enumerated above, have gained some promi-
nence recently. However, new structural results pertaining to the space of
solution concepts have revealed interesting and unexpected ways of linking
the Shapley value to these solution concepts (Casajus and Huettner, 2013,
2014; Béal et al., 2015; Yokote et al., 2019a, 2019b).

As for consistency-type properties, the Shapley value satisfies only one of
the central ones, self-consistency, mentioned above.

Next is the complexity of calculating the Shapley value of a game: It is
known to be NP-complete (Deng and Papadimitriou, 1994; Castro et al.,
2009), but here one should note that sampling techniques sometimes help.
Also, simple formulas for the Shapley value, when the number of players is
large, may be available. Several chapters deliver such formulas.

1.3 A Short Guide to the Chapters
Most of the chapters in this volume are surveys. They range from the very
theoretical to the very applied. A fair number of them start with theory and
close with one or several applications and some with real-world data. The
theoretical chapters state formal results and a few develop complete proofs.
References to primary sources are given for any reader eager to get a complete
treatment of an issue.

The chapters contribute to the subject in several dimensions. (The enu-
meration below is not meant to be a partition.)

Mathematical foundations. Shapley’s and several subsequent charac-
terizations of the Shapley value rely on the “unanimity games” being a vector
basis of the linear space of all games. New bases have recently been described
whose identifications have allowed new characterizations of the Shapley value.
They are central to two chapters.

Axiomatic foundations. New axiomatic perspectives have played an
important role in recent literature and they are discussed in several chapters.

Computations. We already mentioned that calculating Shapley values is
out of reach even for relatively small numbers of players. However, in some
situations identified in several chapters, simple formulas can be derived.

Applications to special classes of games; power indices. A “voting
game” is one in which the worth of a coalition can take only two values, 0
and 1, interpreted as losing or winning an election. A “power index” is not
meant to distribute some aggregate payoff, the worth of the grand coalition,
but to assess the power of each player in allowing a win. The “Shapley-Shubik
index”, which is simply the Shapley value applied to such games, and the
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“Banzhaf index” are primary examples. Several chapters derive power indices
from novel considerations.

Applications to enriched classes of games. The abstract model of the
theory of coalitional games can be enriched in a variety of ways. A coalition
structure may be added that has to be respected, or a graph structure on the
player set may be included from which the feasibility of coalitions is derived;
a hierarchical structure on the player set may also be listed; externalities may
be present; there may be uncertainty about the coalitional form. Multiple
chapters deal with such enriched models.

Applications to concretely specified allocation problems: An ever
widening range. Applications of the Shapley value to problems of cost allo-
cation started with the Tennessee Valley Authority pricing problem, the pric-
ing of telephone services, the sharing of the cost of a runway, and taxation.
Recent applications to queueing, two-sided matching problems with money,
and minimum cost spanning tree problems are the object of several chapters,
and other chapters cover new applications to telecommunications, loss alloca-
tion in energy transmission networks, terrorism, biology, finance, politics, and
molecular genetics.

Mapping allocation problems into games: How? To use a solution
concept for coalitional form games so as to obtain recommendations for a class
of concretely specified allocation problems, one has to map these problems
into games. There is rarely a unique way of assessing the worth of a coali-
tion, however, and depending upon the mapping that is adopted, applying
the same solution concept will deliver one or the other of several alternative
allocation rules. This is illustrated in this volume by applications to queueing
problems and minimum cost spanning tree problems. For each of these two
classes of problems, “positive” and “negative” views of the situation faced by
each coalition can be taken and used to bracket the elusive “true” worth of
the coalition.

Implementation. A non-cooperative mechanism is said to “implement”
a solution concept on some domain of economies if for each economy in the do-
main, the mechanism has equilibria and the associated equilibrium outcomes
are outcomes that are selected by the solution concept for the economy. One
chapter exhibits a mechanism that implements the Shapley value.

We proceed with highlights of each of the chapters, indicating in each case
in which of the directions just enumerated the chapter principally contributes.

After this Introduction, the editors made an essay about the central ax-
iomatizations that have been given of the Shapley value.

In “An Index of Unfairness” (Chapter 3), Aguiar et al. develop a measure
of how far a payoff vector for a game is to the payoff vector selected by
the Shapley value. They propose an additive decomposition of this measure
into three terms, each of which corresponds to a violation of one of the three
axioms that enter Young’s (1985) characterization of the Shapley value. These
axioms are efficiency, symmetry, and the invariance requirement that each
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player’s payoff in a game depend only on the vector of her contributions.
[Mathematical foundations]

In “The Shapley Value and Games with Hierarchies” (Chapter 4), Algaba
and van den Brink consider a formulation of the model of coalitional games
enriched by the addition of a hierarchy among players. For such a model, two
approaches have been developed: The “permission structure approach” and
the “precedence constraint approach”. The authors present a number of char-
acterizations for games with permission structures and games with precedence
constraints. [Mathematical foundations; enriching the model]

In “Values, Nullifiers and Dummifiers” (Chapter 5), Alonso-Meijide et al.
formulate variants of the “nullifier axiom”. A “nullifier” is a player such that
the worth of any coalition containing her is 0. It is only recently that the
significance of the concept, due to Deegan and Packel (1978) has been fully
brought out (van den Brink, 2007; Casajus and Huettner, 2013, 2014; Béal et
al., 2016). The “nullifier axiom” requires that a nullifying player’s payoff be 0.
The authors formulate variants of the axiom and establish characterizations
of the Shapley value and of an efficient version of the Banzhaf power index
that involve them. They also define a “dummifier” as a player such that the
worth of any coalition containing her is equal to the sum of the individual
worths of its members. They propose the requirement that a dummifier gets
her own worth. Here too, they define variants of this axiom and establish
parallel characterizations of the Shapley value and the Banzhaf power index
by substituting dummifier for nullifiers. This chapter contains extensive proofs.
[Mathematical and axiomatic foundations]

In “Games with Identical Shapley Values” (Chapter 6), Béal et al. ask how
to partition the space of all games into classes of games whose Shapley values
are equal, a question first raised by Kleinberg and Weiss (1985). The resolution
they propose involves identifying several new bases for the domain of all games.
Armed with this knowledge, they develop additional characterizations of the
Shapley value. [Mathematical and axiomatic foundations]

In “Several Bases of a Game Space and an Application of the Shapley
Value” (Chapter 7), Funaki and Yokote address similar issues. They too iden-
tify a family of new bases for the space of games and explore their proper-
ties. This allows them to identify the null space of the Shapley value. They
also derive conditions on games under which the nucleolus and the Shap-
ley value make the same recommendations. This chapter contains extensive
proofs. [Mathematical and axiomatic foundations]

In “Extensions of the Shapley Value for Environments with Externalities”
(Chapter 8), Macho-Stadler et al. revisit cooperative games with externali-
ties (Thrall and Lucas, 1963). Theirs is a detailed survey of the approaches
that have been taken to solve this class of games. They also design a non-
cooperative game that implements a variant of the Shapley value that they
define. [Extensions; axiomatic foundation; implementation]
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In “The Shapley Value and Other Values” (Chapter 9), Bernardi and Luc-
chetti discuss the concept of a “semi-value”, namely a mapping that does not
necessarily satisfy the efficiency axiom. They define the concept of a proba-
bilistic semi-value, of which the Shapley value and the Banzhaf power index
are two special cases. A novel feature of their paper is an application to molec-
ular genetics. [Mathematical foundations; power indices; applications]

In “Power and the Shapley Value” (Chapter 10), Peters also discusses
power indices. His objective is to extend the theory of power indices to situa-
tions in which the structure of decision power is described by means of “effec-
tivity functions” or by means of “control structures”. How can one derive from
such information a measure of the power of each player? He characterizes a
family of indices that can be seen as weighted versions of the Shapley value.
[Enriching the model; power indices]

In “Cost Allocation with Variable Production and the Shapley Value”
(Chapter 11), Albizuri et al. review the earliest applications of the Shap-
ley value. When there are many players, they can be modeled as points in a
non-atomic continuum, a model whose analysis was the object of a landmark
book by Aumann and Shapley (1974). Various characterizations of the cost
allocation method they proposed are presented next. When demands are nat-
ural numbers, a Shapley value can also be calculated by numbering the units
each player demands, providing units in a random order, with each player be-
ing held responsible for the sum of the added costs that satisfying each of the
units she demanded caused over what was needed until she was served. This is
the discrete “Aumann-Shapley cost allocation rule”. Several characterizations
of this rule have also been proposed, one based on the balanced contributions
axiom, another involving an axiom of invariance with respect to merging and
splitting of demands, the final one being based on an adaptation of Young’s
invariance axiom. [Mathematical and axiomatic foundations; applications]

In “Pure Bargaining Problems and the Shapley Rule: A Survey” (Chapter
12) Carreras and Owen explore a connection between bargaining games à la
Nash and games with a coalition structure. They first compare what they
call a “proportional rule” and the Shapley value when applied to a class of
problems with a simple structure (problems that are essentially bargaining
problems). They argue that the Shapley value is better behaved than the pro-
portional value. They then enrich the model by adding a coalition structure.
They extend the Shapley value to the resulting class of games and character-
ize their extension by adapting Shapley’s own characterization. [Enriching the
model; axiomatic foundations]

In “The Shapley Value as a Tool for Evaluating Groups: Axiomatizations
and Applications” (Chapter 13), Flores et al. associate to each game and each
group of players (as opposed to each player) a measure of the group’s power.
They call such a mapping a “generalized value”. Given a standard coalitional
game, they define for each coalition a new game by amalgamating its players,
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as in Lehrer (1988), and applying the Shapley value to it, thereby obtaining
the “Shapley group value”. They base a characterization of this value on a
version of the balanced contributions axiom. They identify desirable properties
that this mapping satisfies. They develop two applications, one to measure
the power of the political parties in contemporary Spain and the other to
“inventory cost games”. They conclude by revisiting their definitions in the
context of a model enriched with a graph structure. [Axiomatic foundations;
power indices; enriching the model]

In “A Value for j-Cooperative Games: Some Theoretical Aspects and Ap-
plications” (Chapter 14), Freixas considers a class of games in which agents
can participate at several levels. These games generalize the standard model
of coalitional games. He proposes a value to solve the games and shows that
when restricted to standard games, it reduces to the Shapley value. He derives
alternative formulas for this new value and offers several axiomatic charac-
terizations of it. He also defines a value inspired by the Banzhaf power index
and gives characterizations of it. All characterizations include an axiom of
additivity. [Mathematical and axiomatic foundations; applications; enriching
the model]

In “The Shapley Value of Corporation Tax Games with Dual Benefactors”
(Chapter 15), Meca et al. formulate a model of tax collection when evasion is
possible and associate with it a coalitional game. They establish the concavity
of the game. They propose to solve it by applying the Shapley value and
show that the Shapley value can be given an explicit and simple expression.
This chapter includes the proofs for most results. [Applications; enriching the
model; mapping allocation problems into games; computation]

In “The Shapley Value in Telecommunication Problems” (Chapter 16),
Sanchez-Soriano considers various applications of the Shapley value to
telecommunications, in particular to wireless networks, Internet pricing, and
routing in communication networks. He raises the issue of computational cost
of the Shapley value and identifies special cases in which it can be given an
explicit and simple expression. [Applications; computation]

In “The Shapley Rule for Loss Allocation in Energy Transmission Net-
works” (Chapter 17), Bergantiños et al. address the issue of distributing among
the owners of the components of an energy network the inevitable losses that
occur along the network. They propose to associate a game with each situation
of this kind and to apply the Shapley value to it. They note that this solution
is actually outperformed by other rules they had studied in an earlier paper of
theirs. They consider a wide variety of properties having to do with punctual
fairness, independence, and incentives. However, when applied to the Span-
ish electrical network, they note that the Shapley value allocation is actually
quite similar to the allocation recommended by another rule, which they call
the “proportional tracing rule”. They then perform simulations, changing the
parameters of the problem, and find that this correlation persists, leaving it
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as an open question why that might be the case. [Applications; computation
and simulation]

In “On Some Applications of the Shapley-Shubik Index for Finance and
Politics” (Chapter 18), Bertini et al. consider an application of the Shapley
value to the construction of power indices. The paper enumerates alternatives
to the Shapley-Shubik power index, as well as the properties of this index. Its
focus is on financial applications, and it discusses how power is redistributed
when a transfer of shares between two shareholders occurs, when some large
shareholders face an “ocean” of small shareholders, and when control is indi-
rect (an investor holds shares in a company that holds shares in some second
company). [Applications; power indices; enriching the model]

In “The Shapley Value in the Queueing Problem” (Chapter 19), Chun
considers the problem of assigning users of a service to a queue where they
will receive it. All users require service for the same length of time but each
user has her own cost of waiting. The question is to decide the order in which
they should be served and how much each of them should pay for the service.
To apply the Shapley value to solve an allocation problem, the problem has
to be mapped into a coalitional game. A favorable position can be taken
in evaluating the worth of a coalition, which consists in assuming that the
members of the coalition are given priority over the complementary coalition
in the assignment of slots; the unfavorable position consists of course in given
priority to the complementary coalition. Whether the Shapley value is applied
to the first game or to the second game delivers two distinct rules, each with
its own properties. [Applications; mapping allocation problems into games]

In “Sometimes the Computation of the Shapley Value is Simple” (Chapter
20), Dall’Aglio et al. address the practical issue of calculating Shapley values.
We have already noted that, for certain classes of games, explicit formulas
can be obtained. They are reviewed here. They include games associated to
the problem of sharing the cost of partially overlapping public goods (“airport
games”); the problem of cleaning pollutants from a river when the pollutants
are carried downstream; as well as a certain kind of auctions, and four classes of
games for which a decomposability property holds. They are queueing games
in which players differ in both their unit cost of waiting and the length of the
service they need, “maintenance games”, which have to do with providing a
service to a set of users who are organized in a hierarchy, “microarray games”,
encountered in biology, and “coverage games”, which concern the choice of the
best location for an ambulance, taking into account the coverage provided by
each location. [Computations; applications]

In “Analysing ISIS Zerkani Network Using the Shapley Value” (Chapter
21), Hamers et al. undertake a provocative application of the Shapley value
to the ranking of the members of the terrorist networks that carried out the
attacks on 2015 and 2016 in France and Belgium, respectively. Weights are
assigned to members of the networks based on the resources they control.
Also, weights are assigned to the links between any two members, based on
the frequency of their information exchanges. Two games are constructed from
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these data. Because of the complexity of calculations of Shapley values as the
number of players increases, they apply a sampling technique to approximate
them. They derive from it a ranking of individual members of the terrorist
groups and compare the result based on the analysis of the structure of the
graph connecting them. Thanks to this work, surveillance resources can be
targeted more precisely to the individuals posing the greatest threat. [Appli-
cations; computation]

In “A Fuzzy Approach to Some Shapley Value Problems in Group Decision
Making” (Chapter 22), Gladysz et al. use the tools of fuzzy numbers to model
situations in which the parameters of a game are not known with certainty.
They apply their approach to several voting situations, the Polish Parliament,
the unification of Germany, and Brexit. [Mathematical foundations; enriching
the model; computation]

In “Shapley Values for Two-Sided Assignment Markets” (Chapter 23),
Núñez and Rafels consider the well-studied class of games in which the player
set is partitioned into two “sides” and when a pair is formed, one player on
each side, “worth” is generated. What is to be distributed is the sum of the
worths of the pairs that are formed. By contrast to other types of pairing
problems that have been the object of much literature, a player here does not
care about whom she is paired with, only about her share. It is natural to
expect a player’s payoff to depend not just on the worth of the pair consisting
of herself and her assigned partner but also on the worths of the other pairs
that she could be part of. The authors provide a number of theorems identify-
ing conditions under which the Shapley value, when applied to the coalitional
game associated with a problem of this type in a natural way belongs to its
core, and establish an axiomatic characterization of it. [Mathematical and ax-
iomatic foundations; applications; mapping allocation problems into games;
computation]

In “The Shapley Value in Minimum Cost Spanning Tree Problems” (Chap-
ter 24), Trudeau and Vidal-Puga consider the problem of connecting a group
of players to a “source” where they get supplies, say. Given are the costs of
connecting each player to the source and to each other player. If a link be-
tween two players is established, it can be used by any number of players at
no extra cost. Once a network whose total cost is minimal is identified (sev-
eral algorithms have been defined that achieve this objective), the question
to be addressed is how much each player should contribute to its cost. This
chapter offers a detailed survey of the literature on the subject, in which the
Shapley value has played a central role. Here too, several perspectives can
be taken in associating a coalition game to a spanning tree problem. Indeed,
in calculating the worth of a coalition, different assumptions can be made
about its access to the links involving the other players. As a result, more
than one rule can be obtained by applying the Shapley value. These various
Shapley value-based rules have been characterized, on the basis of a variety of
relational independence and monotonicity properties. [Applications; mapping
allocation problems into games]
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2.1 Introduction
Game theory deals with the analysis of conflict of interest situations in which
two or more individuals are involved. Roughly speaking, we may distinguish
among two main classes of games depending on the possibility for the agents
of subscribing binding agreements or not. In the latter case, we have a non-
cooperative game, while in the former case we have a cooperative game. When
a non-cooperative game is analyzed, the main aim is to identify a “good”
strategy for each agent, as is intended when using the Nash equilibrium [15].
Perhaps the Nash equilibrium is the most important solution concept for this
class of games. On the other hand, when a cooperative game is analyzed, the
main aim is to determine whether there are reasonable ways to divide among
the agents involved in a coalition, particularly the grand coalition, the total
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utility they would obtain by signing a binding agreement of collaboration.
Therefore, in this case, agents’ main interest is not on a strategy choice for
each of them, but on the share that they will obtain of the utility of the
coalition.

When the utility can be transferred among the agents in whatever way
losslessly, the reasoning above leads to the representation of a transferable
utility game (TU game, or simply game, in the sequel) using the characteristic
function form. A TU game in characteristic function form is a pair (N, v)
where N = {1, 2, ..., n} is the set of agents, called players, and v : 2N → R
is the characteristic function that assigns to each coalition of players S ⊆ N
a real number v(S) with the condition that v(∅) = 0. The worth v(S) may
be interpreted as the utility that the players in S may obtain by themselves,
independently of the behavior of the other players not in S. Then, a solution
for a TU game is a possible way for dividing the utility of a coalition, in
general the grand coalition N , among its members.

In their pivotal book of 1944, Theory of Games and Economic Behav-
ior, John von Neumann and Oskar Morgenstern [25] proposed an important
solution concept, the imputation set I(v), whose definition leads to a set of
possible ways for sharing the total utility of the grand coalition. Given a game
(N, v), the imputation set includes all the n-dimensional vectors which are
efficient, i.e., share the whole utility, and individually rational, i.e., assign to
each player at least her standing alone worth. Formally:

I(v) =

{
x ∈ Rn s.t.

∑
i∈N

xi = v(N) and xi ≥ v({i}),∀i ∈ N

}
. (2.1)

In the same line, Donald Gillies proposed in 1953 [5] another set solution,
the core C(v), that can be viewed as a refinement of the imputation set, con-
sidering only the coalitionally rational imputations, i.e., those that assign to
the members of each coalition at least the worth they can obtain all together.
Recently, also the next formal definition of the core is attributed to Shapley
(see [27]).

C(v) =

{
x ∈ I(v) s.t.

∑
i∈S

xi ≥ v(S),∀S ⊆ N

}
. (2.2)

All these solutions are very important for describing the features that a
reasonable allocation should have, but they also have two negative aspects.
First, being set solutions, they are not able to provide a definite answer to the
question of how to distribute the utility. Second, they may be empty.

In 1953, Lloyd Stowell Shapley [21]1, awarded with the Nobel Memorial
Prize in Economic Sciences in 2012 together with Alvin Roth, proposed a

1It was first published as a Research Memorandum of the Rand Corporation on the 21st

of August, 1951 [20].
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point solution that overpasses the two above-mentioned negative aspects. In
fact, it is given by a formula that provides the exact amount of utility that
each player receives after the division and it can be applied to any cooperative
game with transferable utility. Formally, a point solution or value is a function
ψ : GN → RN that associates to each TU game (N, v) in the set GN of TU
games with player set N a n-dimensional vector ψ(v) ∈ RN , where ψi(v),
i ∈ N , is the amount of utility assigned to player i.

In the rest of this chapter, we do not intend to make an exhaustive review
of everything that the Shapley value has meant in the scientific literature, but
simply to show some brushstrokes that serve as the initial and introductory
chapter for this book dedicated to the Shapley value. We will first present some
of the best-known mathematical expressions, starting with those introduced
by Lloyd Shapley in 1953. Secondly, we present some of the most important
characterizations that show the large number of nice and interesting proper-
ties that this value satisfies. Finally, we select a sample of the Shapley value
extensions to a large number of contexts and their applications to very differ-
ent fields and problems. All of this in order to show that the Shapley value
is highly regarded by many researchers as a reference to analyze allocation
problems in the most general sense.

2.2 The Mathematical Expression
Shapley introduced his value referring to a superadditive game (N, v), i.e.,
whose characteristic function satisfies the condition v(S ∪ T ) ≥ v(S) + v(T ),
with S ∩ T = ∅, S, T ⊆ N . This is because von Neumann and Morgenstern
considered this assumption to define cooperative games. In addition, superad-
ditivity captures the idea that cooperation can be beneficial for all the play-
ers involved. Anyhow, the formula by Shapley holds for every game. When
the game (N, v) is superadditive, then the Shapley value is an imputation.
Moreover, Shapley introduced his value by using three axioms that can be
considered fair and crucial for accepting a solution concept. The axiomatic
approach of the Shapley value will be discussed below.

From those three axioms, Shapley demonstrated that the idea behind his
value, which it will be denoted here by ϕ, is the marginal contribution of a
player i ∈ N to a coalition S ⊆ N \ {i} that is defined as the variation of the
worth of the coalition after player i joins it, i.e., v(S∪{i})−v(S). He obtained
that the value for a player i is her weighted average marginal contribution over
all the possible coalitions which player i could be joined to, where the weight
associated with each coalition depends on its size, and can be interpreted
as the probability that a coalition of that size will be formed. Therefore, the
probability that a coalition is formed does not depend on the players that form
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it but only on its size. The well-known mathematical formula he obtained for
his value was:

ϕi(v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
[v(S ∪ {i})− v(S)],∀i ∈ N, (2.3)

where s = |S| and n = |N |. Hereinafter, we use the same notation.
John Charles Harsanyi, awarded with the Nobel Memorial Prize in Eco-

nomic Sciences in 1994 together with John Forbes Nash and Reinhard Selten,
proposed in 1959 [6] the following alternative formula:

ϕi(v) =
∑

S⊆N\{i}

∆v(S ∪ {i})
s+ 1

,∀i ∈ N, (2.4)

where ∆v(T ) are the so-called Harsanyi dividends, which are defined as follows:

∆v(T ) =
∑
R⊆T

(−1)|T |−|R|v(R),∀T ⊆ N. (2.5)

Harsanyi dividends can be obtained by means of a recursive procedure.
Hence, they can be interpreted as a measure of the net surpluses of coalitions
by discounting the surpluses already created by their subcoalitions. In this
sense, the Shapley value is the solution that divides equally these surpluses
among the players involved in each coalition.

Shapley also derived his value by a “bargaining model” in which the grand
coalition would be formed in such a way that the players would be admitted
one by one until everyone had been added to the grand coalition. Each player
on her admission would demand her marginal contribution to the already
added players. The order of entrance in the grand coalition would be randomly
selected with all orderings being equally probable. Thus, the expected payoff
to each player is precisely the Shapley value. In this sense, as Shapley [21] said,
“the value is best regarded as an a priori assessment of the situation, based
on either ignorance or disregard of the social organization of the players.”
Formally, every ordering of the players π in which the grand coalition may
form is considered, i.e., π ∈ Π where Π is the set of all the permutations of
the agents in the set N . When considering a permutation π, it is important to
account the worth of the coalition P (π, i) of the agents that precede player i
in the permutation π and the worth of the same coalition after player i joins.
Thus, following the bargaining procedure described by Shapley, his value is
given by

ϕi(v) =
1

n!

∑
π∈Π

[v(P (π, i) ∪ {i})− v(P (π, i))], ∀i ∈ N. (2.6)

There are other nice mathematical expressions for the Shapley value in
the literature, but this chapter does not pretend to be exhaustive in each of
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the aspects of the Shapley value, but rather to illustrate some of them in a
concise way.

Perhaps, the biggest drawback of the formula presented before for the
computation of the Shapley value can be observed in its own mathematical
expression, since it is necessary to know the worth of each coalition and this
may be an intractable problem when the number of players is large. However,
in many papers from the literature, there exist classes of games where the
characteristic function is not essential to be computed and it is easy to calcu-
late the Shapley value. In this handbook, we can find several examples of this
special situation. For the general case, an alternative is to resort to compute
it approximately by sampling techniques (see [3, 4] and [10]). Therefore, this
drawback can be avoided in different ways.

2.3 Some Characterizations
As previously mentioned, Shapley characterized his value using three axioms.
This approach is very interesting and has been followed in many articles in the
literature because it allows choosing between different solutions considering a
set of properties that can be considered fair and relevant so that a solution
is accepted, instead of the simple evaluation of the amount assigned to each
agent. The used axioms for a solution concept ψ were:

Axiom 2.1 (Anonymity2) Given a TU game (N, v) and a permutation π of
the players in N , let πv be the game defined by πv(S) = v(π−1(S)),∀S ⊆ N.
Then ψ satisfies the axiom of anonymity if ψπ(i)(πv) = ψi(v), for each i ∈ N .

Axiom 2.2 (Carrier) Given a TU game (N, v), a coalition T ⊆ N is a car-
rier if v(S) = v(S ∩ T ),∀S ⊆ N . Then ψ satisfies the axiom of carrier if∑
i∈T ψi(v) = v(T ) = v(N), for any carrier T .

Axiom 2.3 (Additivity) Given two TU games (N, v) and (N, u) with the
same set of players N , let (N, (v + u)) be the sum game where (v + u)(S) =
v(S) + u(S),∀S ⊆ N . Then ψ satisfies additivity if ψ(v + u) = ψ(v) + ψ(u).

In the literature, the axiom of anonimity is often changed for the axiom of
symmetry, which refers to the following property:

Axiom 2.4 (Symmetry) Given a TU game (N, v) and two players i, j ∈ N ,
then i, j are called symmetric players in game v, if v(S∪{i}) = v(S∪{j}),∀S ⊆
N \ {i, j}. Then ψ satisfies the axiom of symmetry if ψi(v) = ψj(v) when i
and j are symmetric players in game v.

2Shapley [21] called this property symmetry.
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The axiom of carrier is usually divided in the literature into two different
axioms, efficiency and null player. The axioms of efficiency and null player
are stated as follows:

Axiom 2.5 (Efficiency) Given a TU game (N, v), then ψ satisfies the axiom
of efficiency if

∑
i∈N ψi(v) = v(N).

Axiom 2.6 (Null player) Given a TU game (N, v) and a player i ∈ N , then
i is called null player in game v, if v(S ∪ {i}) = v(S),∀S ⊆ N \ {i}. Then
ψ satisfies the axiom of null player if ψi(v) = 0, when i is a null player in
game v.

Instead of the null player axiom, some authors prefer the dummy player
axiom, which is written as follows:

Axiom 2.7 (Dummy player) Given a TU game (N, v) and a player i ∈ N ,
then i is called dummy player in game v, if v(S ∪ {i}) = v(S) + v({i}),∀S ⊆
N \ {i}. Then ψ satisfies the axiom of dummy player if ψi(v) = v({i}), when
i is a dummy player in game v.

The additivity axiom 1.2 has been the most controversial because it is too
technical, there is no interaction between the two games and the structure of
the sum game may induce a behavior that may be unrelated to the behavior
induced by the two games separately. Thus, there are many characterizations
of the Shapley value in the literature that change this axiom for other axioms
which have a “better” interpretation or which are at least less controversial.
We shall only mention three of these characterizations. One by Peyton Young
based on monotonicity properties and another two by Sergiu Hart and Andreu
Mas-Colell based on balanced contributions and consistency.

In [26] monotonic solutions for cooperative games were studied. For this,
Young [26] introduced several monotonicity properties and studied which so-
lutions satisfied those properties. One of these properties was the strong mono-
tonicity. This property says that if all marginal contributions of a player in-
crease, this player cannot be worse off when we apply the same allocation
procedure to both situations. This is a principle of justice because it seems
reasonable that if a player contributes more to all coalitions in a new situa-
tion, she receives at least the same as she received previously. This axiom is
written as follows for an arbitrary solution ψ.

Axiom 2.8 (Strong monotonicity) Given TU games (N, v) and (N,w) and a
player i such that v(S ∪ {i})− v(S) ≥ w(S ∪ {i})−w(S),∀S ⊆ N \ {i}, then
ψ satisfies the axiom of strong monotonicity if ψi(v) ≥ ψi(w).

By using the strong monotonicity axiom together with the axioms of effi-
ciency and anonymity, Young [26] characterized the Shapley value. Note that
strong monotonicity and additivity are not equivalent, but they are related to
each other by using also the other axioms in both characterizations.
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In [7] the Shapley value is characterized by using two different concepts.
First, the concept of preservation of differences that is closely related to the
principle of balanced contributions introduced by Myerson [14]. Paraphrasing
Myerson, this principle of fairness in cooperation says that when players coop-
erate with each other, any two players should gain or lose the same from their
cooperation together, relative to what they would obtain without cooperation.
This fairness principle reads as follows for an arbitrary solution ψ.

Axiom 2.9 (Balanced contributions) Given a TU game (N, v), and a player
k, let (N \{k}, v−k) be the TU game obtained by restricting v to the subsets of
N \ {k} only. Then ψ satisfies the axiom of balanced contributions if ψi(v)−
ψi(v−j) = ψj(v)− ψj(v−i),∀i, j ∈ N .

By using the balanced contributions axiom together with the efficiency
axiom, Hart and Mas-Colell [7] characterized the Shapley value. In this case,
the balanced contributions axiom has a nice interpretation as a fairness con-
dition because it can be regarded as a generalization of the equal division
of the surplus idea for two person problems [7]. Likewise, it seems intuitive
and common sense that the gains or losses of two agents that cooperate with
each other are the same with respect to the situation of non-cooperation, as
previously stated. Hence, the Shapley value can be considered as the unique
efficient allocation which satisfies the so-called equal-gains principle. Thus,
the Shapley value can be regarded as a benchmark for fairness.

The last characterization we will present in this chapter is related to a sec-
ond concept, that of consistency. This establishes what happens to a solution
when a subset of players leaves the grand coalition. In this sense, a solution
would be consistent if, when a subset of players leave the grand coalition,
those players would still obtain the same payoffs. The first step is to define
the so-called reduced game, i.e., the game associated with the leaving players
when the remaining players retain their payoffs. There are several ways to
define a reduced game but we consider the following introduced in [7].

Given a TU game (N, v), a solution ψ and a subset T ⊂ N , the reduced
game (T, vψT ) is defined as follows for an arbitrary solution ψ

vψT (S) = v(S ∪ (N \ T ))−
∑

i∈N\T

ψi(S ∪ (N \ T ), v), ∀S ⊆ T,

where (S∪ (N \T ), v) is the TU game obtained by restricting v to the subsets
of S∪ (N \T ) only. Obviously, when S = T , we precisely obtain that vψT (T ) =
v(N)−

∑
i∈N\T ψi(N, v).

By considering this definition of reduced game, Hart and Mas-Colell [7]
introduced the following axiom of consistency for an arbitrary solution ψ.

Axiom 2.10 (Consistency) Given a TU game (N, v) and a subset T ⊂ N ,
then ψ satisfies the axiom of consistency if ψj(T, vψT ) = ψj(N, v),∀j ∈ T .
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Consistency almost characterizes the Shapley value but not completely,
because knowing firstly what happens with two-player games is necessary.

Axiom 2.11 (Standard for two players) Given a TU game ({i, j}, v) such
that i ̸= j, then ψ satisfies the axiom of standard for two-person games, if

ψk(v) = v({k}) + 1

2
(v({i, j})− v({i})− v({j})) , k = i, j.

By using the axioms of consistency and standard for two-person games,
Hart and Mas-Colell [7] characterized the Shapley value. Note that in this
characterization the axiom of efficiency is not used, but it is implied by the
two used axioms. The standard for two person games property reflects the
idea of the equal division of the surplus when two players cooperate, which
is a simple and intuitive idea that can be easily justified as fair. Consistency
property says that it is neither beneficial nor detrimental for any group of
players to leave the grand coalition, when they have to compensate those who
remain by giving them what they would have obtained from the cooperation
of all the players. Thus, the consistency property implicitly hides that the
binding agreement of cooperation includes two clauses. The first one refers to
the solution that will be applied to distribute the profit or utility generated
by the cooperation, and the second clause is that it is possible to abandon
the agreement as long as the rest of the players who remain collaborating
are conveniently compensated. Therefore, a solution satisfying consistency
reinforces the cooperation agreement, in the sense that no group of players will
have incentives to leave the grand coalition. Of course, the way to compensate
to the remainers is defined by the reduced game, so there will be as many ways
of compensation as reduced games can be defined. As Hart and Mas-Colell [7]
said “...which definition is more appropriate will depend on the context being
modeled (and the way the characteristic function is defined).”

Therefore, we observe that the Shapley value satisfies numerous properties
that can make it suitable to be applied to many different situations. Some
properties are related to equity or fairness concepts such as the axioms of
symmetry, null player, dummy player or balanced contributions, others with
concepts such as monotonicity or consistency, and many others which have
not been included in this chapter for the sake of brevity.

Thus, taking into account the different arguments and reasonings that lead
to the Shapley value, some of which have been presented in Section 2.2, from
the fact that it always exists and it gives a unique allocation, together with the
numerous reasonable properties that it satisfies, it follows that the Shapley
value can be considered, without a doubt, an exceptional and remarkable
solution for many cooperative games.
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2.4 Some Extensions and Applications
The importance of the Shapley value in game theoretical applications is wit-
nessed by the volume edited in 1988 by Alvin Eliot Roth [19], awarded with
the Nobel Memorial Prize in Economic Sciences in 2012 jointly with Shapley,
and by many other outstanding contributions that improve and extend the
relevance of the Shapley value. In fact, it is impossible even to simply men-
tion the high number of papers that refer to the Shapley value and/or to its
extensions, we just remember that the paper by Shapley in 1953 [21] has been
cited more than 7.5 thousand times in Google Scholar until now. In the next
lines, we will try to show some of the extensions of the Shapley value and its
applications to many different fields. Of course, this book also reflects to what
extent the Shapley value is important in game theory and its applications.

In 1954, Lloyd Shapley and Martin Shubik [23] proposed the extension of
the Shapley value to simple games, with the so-called Shapley-Shubik power
index, in order to evaluate the power of voters in voting systems. This value
has attracted great attention in political science and it is possible to find
a large amount of literature on it, both in the field of game theory and in
political science or group decision making.

In 1969, Shapley [22] generalized his value for TU games to the case of non
transferable utility games (NTU games), i.e., when it is not possible to transfer
the utility in any way between players. In this case, the characteristic function
defining the game is set-valued. Later, in 1985, Robert John Aumann, awarded
with the Nobel Memorial Prize in Economic Sciences in 2005, axiomatically
characterized the Shapley value for NTU games [1].

As mentioned above, one of the most important problems of the Shapley
value is its calculation, and, for that reason, in 1972, Guillermo Owen [17]
proposed a more efficient method for computing the Shapley value, via the
multilinear extension of a game. Likewise, this multilinear extension of a game
is useful to define new values with a probabilistic interpretation of players to
join the coalitions.

In 1974, Aumann and Shapley [2] studied non-atomic games in which the
set of players is modeled by a non-atomic continuum. For these games, they
introduced the so-called Aumann-Shapley value that can be seen as an ex-
tension of the Shapley value to the non-atomic context. In fact, they utilized
three approaches to value theory: The axiomatic, the random order and the
asymptotic approaches, which is analogous to that used by Shapley when he
introduced his well-known value in 1953 [21].

In 1977, three new extensions of the Shapley value are introduced. First,
Roger Bruce Myerson, awarded with the Nobel Memorial Prize in Economic
Sciences in 2007, studied games when players may cooperate only if they are
connected by links in a graph and proposed a solution, known as Myerson
value, that is the application of the Shapley value to a modified game that
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takes into account the restrictions to cooperation defined by a graph [12].
Moreover, Myerson [13] also extended the Shapley value to the case of games in
partition function form which were introduced in [24]. Finally, again Guillermo
Owen considered the extension of the Shapley value to the situation in which
the players are partitioned in different groups, called a priori unions, defining
the so-called Owen value [18].

Barry O’Neill, in 1982, introduced the bankruptcy games derived from a
problem of right arbitration from the Talmud. In order to give a solution to
that problem, he introduced the so-called recursive completion rule, which is
the Shapley value of the game [16].

In 1987, Ehud Kalai and Dov Samet [9] extended the possibility of rep-
resenting other real-world situations in which the assumption of symmetry
is not realistic due to existing structural asymmetries among the players or
different bargaining abilities, adding to each agent a weight that collects these
asymmetries, defining the weighted Shapley value.

When in 1993 Chih-Ru Hsiao and T.E.S. Raghavan [8] introduced the
multichoice cooperative games, they also extended the Shapley value to this
new context. Therefore, we can observe in all cases that, in a certain sense,
there is always a need to extend the Shapley value to all the new models that
come up in the theory of cooperative games, which shows the great relevance
of this solution concept.

Regarding the applications of the Shapley value, we can say that it has
been applied to almost as many fields as cooperative game theory itself has
been. Thus, Stefano Moretti and Fioravante Patrone [11] reported, without
being exhaustive, applications of the Shapley value to the following fields:

• cost allocation,

• social networks,

• water-focused issues,

• biology,

• reliability theory,

• belief formation.

But to these applications, we can add many others, some of which appear
in this book and the comments on Moretti and Patrone’s article, such as
statistics, algorithmics, telecommunications, political science, right arbitration
or allocation of scarce resources, among others. This shows, as Moretti and
Patrone say, the great transversality of the Shapley value. Moreover, they also
say that, “It is worth mentioning also that the Shapley value is used both as
a normative tool and as a descriptive tool, quite similarly to what happens
for the Nash bargaining solution.” Therefore, the Shapley value has a great
importance both from a theoretical and an applied point of view.
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2.5 Conclusions
Along the lines of this chapter, we have only wanted to highlight some of the
basic and most relevant aspects of the Shapley value. Based on the appeal-
ing interpretations and properties that the Shapley value satisfies, it can be
concluded that this solution has many elements to be considered attractive
from the point of view of fairness. In addition, this is supported by the large
number of applications of the Shapley value that we can find in the literature,
which means that it is an excellent reference in many situations for many re-
searchers and practitioners. Therefore, we can conclude without a doubt that
the Shapley value can be considered a paradigm of fairness as the title of
this chapter indicated.
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3.1 Introduction
Assume that an organization1 compensates its agents using a pay scheme that
possibly violates one or more of the following ideals of justice:

1- Symmetry: Equally productive agents receive the same pay.
2- Efficiency: The entire output of the organization is shared among the

agents.
3- Marginality: If the adoption of a new technology increases the marginal

productivity of an agent, that agent’s pay should not decrease relative to the
old technology.

How can we measure violations of these ideals of justice for the compensa-
tion rule utilized by the organization? As an answer to this question, Aguiar,
Pongou and Tondji ([1]) propose the Shapley distance, which, for a given pro-
duction technology f , measures the distance between an arbitrary pay profile
and the Shapley pay profile at f given by the Shapley value ([15]). The Shap-
ley value is the only pay scheme that satisfies all of the three aforementioned
ideals ([18]). In fact, the axioms characterizing the Shapley value make it a
desirable concept of fairness (or distributive justice), as is generally acknowl-
edged in the literature ([11], [14], [17]). Moreover, [1] provides an orthogonal
decomposition of the Shapley distance into terms that indicate violations of
each of the Shapley axioms. This chapter continues this line of research by
analyzing the properties characterizing the Shapley distance.

Our main contribution is to axiomatize the Shapley distance as a measure
of injustice. We also show that the Shapley distance can be used to deter-
mine the outcome of a bargaining procedure. We imagine a situation in which
agents have to implement a fairness prescription F , defined as the set of pay-
offs induced, under a fixed technology f , by a set of compensation rules F
satisfying certain ideals of justice. There is an initial pay profile ϕ that works
as a reference point. Agents may want to depart from ϕ, but they should im-
plement an outcome that belongs to the fairness prescription F . This defines
a bargaining function that maps any pair (F, ϕ) to an element of F . We show
that the Shapley distance is the unique (up to monotone transformations) in-
dex defining a bargaining function that satisfies Anonymity and Independence
of Irrelevant Alternatives (IIA), for the set of compensation rules that obey
symmetry, efficiency, and marginality.2

Using several illustrations that include favoritism, egalitarianism, and tax
distortions, we show how the Shapley distance can be applied to determine
the extent to which a given income distribution departs from the fair ideal,
and how unfairness can be further unbundled to determine its origins.

1An organization is defined as a body of agents (including the owner, if any) that operates
a production technology by assigning each agent to a specific task.

2Some of our ideas are reminiscent of Nash’s (1950) pioneering axiomatic characterization
of a bargaining solution; see [4], [16], or [13] for surveys of the bargaining literature.
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Together with [1], we contribute to the literature that studies economic
inequality using game theory (e.g., [5] and [8]). In particular, we provide an
axiomatic foundation to a notion of unfairness, namely the Shapley distance.
A similar axiomatic approach can be used to characterize the decomposition
of this distance as provided in [1].

The rest of this chapter is organized as follows. After dealing with pre-
liminaries in Section 3.1, Section 3.2 introduces the Shapley distance and
our notion of unfairness and contains our main results. Section 3.3 presents
several applications showing the different ways in which favoritism, egalitari-
anism, and taxation distort fairness in revenue sharing. Section 3.4 concludes
the chapter.

3.1.1 Organization and Data Set
In this section, we introduce preliminary definitions. We follow [1]. Let N be
a nonempty and finite set of agents, with |N | = n. A coalition is a nonempty
subset C of agents: C ⊆ N , C ̸= ∅.

An organization is a pair (N, f) where f : 2N 7→ R is a technology such
that f(∅) = 0. In what remains, we fix N , so that an organization is completely
defined by a technology f . We denote by Γ the set of all organizations.

A pay scheme is a way to share the output produced by the grand coalition
N of agents.3

Definition 3.1 (Pay scheme) A pay scheme is a function Φ : Γ 7→ Rn that
maps any technology f to a vector Φ(f) = (Φ1(f),Φ2(f), . . . ,Φn(f)) = ϕ ∈ Rn
such that

∑
i∈N Φi(f) ≤ f(N). ϕ is called a pay profile, and for each agent

i ∈ N , ϕi ∈ R is interpreted as the payoff of i out of the output f(N). The set
of all pay schemes is denoted Θ.

Notice that we allow for negative payoffs, interpreted as taxation. We also
recall the notions of observation and data generating pay scheme introduced
by [1].

An observation is a pair (f, ϕ) where f is a technology and ϕ ∈ Rn
is a pay profile, defined as a distribution of the output generated by the
grand coalition:

∑
i∈N

ϕi ≤ f(N). In the sequel, any vector ϕ ∈ Rn such that∑
i∈N ϕi ≤ f(N) is called a pay profile, even if it is not the result of applying

a pay scheme.

Definition 3.2 (Data generating pay scheme) We say that Φ : Γ→ Rn is
a data generating pay scheme if it is the unique pay scheme such that Φ(f) = ϕ
for any observation (f, ϕ).

In the context of a limited data set, given by a single observation, we do
not have the details about how the data generating pay scheme Φ distributes

3Our framework also works if the organization is sharing total cost or total profit. The
interpretation of the axioms will have to be done in terms of the context in those cases.
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the total output for a technology that is not the observed technology f . We
only know the realized pay profile ϕ for f . However, we have full information
on f , (i.e., we know the exact magnitudes of f(C) for all C ⊆ N).

3.1.2 The Shapley Value as an Ideal for Fairness
In this subsection, we recall the definition of the Shapley value as well as
its fundamental characterization as a fair pay scheme. This characterization
provides an axiomatic basis for analyzing the different ways in which an arbi-
trary pay scheme might violate basic principles of fairness, as departures from
the Shapley value prescription. The following definition will be needed for the
statement of these characterizations.

Definition 3.3 Let i, j ∈ N be two agents, and f be a technology.

1. The marginal contribution at f of agent i ∈ N to a set C ⊆ N such that
i /∈ C is f(C ∪ {i})− f(C), and it is denoted by mc(i, f, C).

2. Agent i is a null-agent at f if for any set C ⊆ N such that i /∈ C, we
have mc(i, f, C) = 0.

3. Agents i and j are said to be substitutes at f if for any coalition C ⊆ N
such that i, j /∈ C, mc(i, f, C) = mc(j, f, C).

We now define the axioms that characterize the Shapley value.

Axiom 3.1 (Symmetry)
A pay scheme Φ satisfies symmetry if for any technology f , and any agents i
and j that are substitutes at f , Φi(f) = Φj(f).

Axiom 3.2 (Efficiency)
A pay scheme Φ is efficient if for any technology f ,

∑
i∈N

Φi(f) = f(N).

Axiom 3.3 (Marginality)
A pay scheme Φ satisfies marginality if for any technologies f and g, any
agent i ∈ N , [mc(i, f, C) ≥ mc(i, g, C);∀C ⊆ N \ {i}]⇒ [Φi(f) ≥ Φi(g)].

The symmetry axiom is a no-discrimination condition (horizontal equity),
requiring that agents who have identical marginal contributions under a tech-
nology f receive the same pay. Efficiency requires that the output of the
grand coalition be fully shared among the various contributors, and it can
also be justified in terms of Pareto optimality. Marginality means that, if a
new technology increases the marginal productivity (or the vector of marginal
contributions) of an agent, that agent’s pay should not decrease relative to
the old technology. This is an old property in neoclassical economic theory,
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requiring that the payoff of an agent depend only on his marginal productivity
given other agents’ inputs.

The result set out below establishes necessity and sufficiency to character-
ize the Shapley payoff function (defined by Equation (3.1) below). The axioms
just presented also establish the Shapley value as a fairness ideal.

Theorem 3.1 ([18]) There exists a unique pay scheme, denoted Sh, that
satisfies the efficiency, symmetry, and marginality axioms, and, for any tech-
nology f , it is given by:

Shi(f) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
[f(C∪{i})−f(C)], for all i ∈ N. (3.1)

3.2 The Shapley Distance as a Measure of Unfairness
In this subsection, we provide an axiomatic characterization of the notion
of the Shapley distance introduced in [1]. It measures the level of unfairness
associated with any pay profile ϕ by the distance between that pay profile
and the Shapley value. [1] shows that it can be decomposed into terms that
indicate violations of the axioms that characterize the Shapley value. We recall
this decomposition and illustrate it through several examples.

3.2.1 An Axiomatic Characterization of the
Shapley Distance

In this section, we provide an axiomatic characterization of the Shapley dis-
tance. Let d : Rn×Rn → R+ be a distance in Rn. Denote the Euclidean norm
defined in Rn by || · ||. Also, denote the inner product associated with the
Euclidean norm by < ·, · >. We have the following definition of the Shapley
distance:

Definition 3.4 (Shapley distance) For any technology f , the Shapley dis-
tance of a pay profile ϕ ∈ Rn for f , denoted d(ϕ,Sh(f)), is the distance
between ϕ and the Shapley pay profile Sh(f) ∈ Rn at f .

We axiomatize below the Shapley distance. First, we need some definitions.
We consider the set of fairness prescriptions of an arbitrary set of pay

schemes.

Definition 3.5 (Fairness prescription) Given a technology f and a set of
pay schemes F ⊆ Θ, a set of profiles F ⊆ Rn is a fairness prescription at f
with respect to F if, for each ϕ ∈ F , there exists Φ ∈ F such that ϕ = Φ(f).



36 Handbook of the Shapley Value

Our fairness index will be the result of a bargaining procedure, where
an original pay profile ϕ works as a reference point. The intuition is that
an arbitrator requires all agents to implement a fairness prescription, but the
agents are free to choose a new pay profile. They may want to depart from the
status-quo ϕ altogether. The result of this procedure is a fairness bargaining
function.

Definition 3.6 (Fairness bargaining function) A fairness bargaining
function is a mapping C : {F} × {ϕ} → F for any fairness prescription
F and pay profile ϕ.

We propose an axiomatic approach to studying the properties that the
fairness bargaining function ought to have.

Let σ : N → N be a permutation of agents. We define σ(F ) as the
set of fairness prescriptions such that φ ∈ σ(F ) is a permutation of an el-
ement η ∈ F . The first axiom requires that the fairness bargaining function is
invariant with respect to permutations of the prescriptions and the reference
pay profile ϕ.

Axiom 3.4 (Anonymity)
For all F ⊆ Rn, all ϕ ∈ Rn, and any permutation σ on N , (Cσ(i)(F, ϕ))i∈N =
C(σ(F ), (ϕσ(i))i∈N ).

The second condition requires that the solution to the fairness bargaining
problem be optimal.

Axiom 3.5 (Independence of Irrelevant Alternatives (IIA))
For any set S ⊆ F ⊆ Rn and any ϕ ∈ Rn, C(F, ϕ) ∈ S implies C(F, ϕ) =
C(S, ϕ).

Without loss of generality, we also assume that any F ⊆ Θ is convex and
closed.

Lemma 3.1 The only fairness bargaining function that satisfies Anonymity
and IIA is the minimal distance bargaining function

C(F, ϕ) = argminv∈F d(v, ϕ).

Proof. To check that the minimal distance bargaining function satisfies
Anonymity and IIA is trivial. To prove uniqueness, we observe that Anonymity
implies the following two axioms: Invariance to Permutations (IP) and Nash
Symmetry (NS). The latter axioms are defined below.

(i) A fairness prescription is closed to permutations if, for any ϕ ∈ F ,
(ϕσ(i))i∈N ∈ F for any permutation of the set of agents σ : N → N .

Invariance to Permutations (IP): If F is closed to permutations, then
Ci(F, ϕ) = Cj(F, ϕ) for all i, j ∈ N .

(ii) A fairness prescription F is said to be symmetric if the set F is sym-
metric relative to the 45-degree line.
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Nash Symmetry (NS): If F is symmetric and ϕi = ϕj for all i, j ∈ N , then
Ci(F, ϕ) = Cj(F, ϕ) for all i, j ∈ N .

To complete the proof, we define below the axiom of symmetry relative to
a line introduced by Rubinstein and Zhou ([12]).

A line < ϕ,α >, where ϕ ∈ Rn is a reference and α ∈ Rn is a direction, is
the set of all points of the form ϕ + tα for some real number t. We say that
F is symmetric relative to a line < ϕ,α > if for every orthogonal direction β
(β′α = 0), ϕ+ tα+ β ∈ F implies that ϕ+ tα− β ∈ F .

Rubinstein and Zhou Symmetry (RZS): If F is symmetric relative to a line
< ϕ,α >, then (Ci(F, ϕ))i∈N ∈< ϕ,α >.

If axioms (IP) and (NS) hold, then axiom (RZS) holds. In fact, axiom (IP)
implies that if F is symmetric relative to the line (t, · · · , t)′ for any real number
t, then (Ci(F, ϕ))i∈N ∈ (t, · · · , t)′. Moreover, axiom (NS) implies that, if F
is symmetric relative to the 45-degree line and ϕi = ϕj for all i, j ∈ N , then
(Ci(F, ϕ))i∈N ∈ (t, · · · , t)′ (i.e., Ci(F, ϕ) = Cj(F, ϕ) for all i, j ∈ N). It follows
that axioms (IP) and (NS) imply that if F is symmetric relative to any line
going through ϕ, then the solution will be on that line. In other words, axioms
(IP) and (NS) imply axiom (RZS). We conclude that Anonymity implies axiom
(RZS), which together with (IIA), implies, thanks to Proposition 2.1 in [12],
that

C(F, ϕ) = argminv∈F d(v, ϕ).

Next, we define our fairness index.

Definition 3.7 (Fairness index) A fairness index is a mapping (ρ : Rn ×
{ϕ} 7→ R+) such that there exists a fairness bargaining function C defined as
follows:

C(F, ϕ) = argminv∈F ρ(v, ϕ).

We are ready to present our main result.

Theorem 3.2 (Shapley distance). Let C be a bargaining function that sat-
isfies Anonymity and IIA. Then the Shapley distance is the unique (up to
monotone transformations) value of the fairness index defining C at any point
(F, ϕ) where F is induced by the set F of pay schemes that satisfy symmetry,
efficiency, and marginality.

Proof. By Lemma 3.1, the bargaining function C is defined by the minimal
distance function: C(F, ϕ) = argminv∈F d(v, ϕ) for any convex and closed
set F . By Theorem 3.1 (see also [18]), we know that, for any technology f ,
the fairness prescription F induced by the set of pay schemes that satisfy
symmetry, efficiency, and marginality is the singleton {Sh(f)}, which is a
convex and closed set. It follows that C(F, ϕ) = argminv∈{Sh(f)}d(v, ϕ). But
minv∈{Sh(f)}d(v, ϕ) = d(Sh(f), ϕ), which completes the proof.

Different choices of the distance function provide different fairness indices.
We focus now on a particular choice, the Euclidean distance, which is shown
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by [1] to have an additive (and orthogonal) comparability property in terms of
the different axioms of fairness, hence justifying its use. As recalled below, the
square of the Shapley distance has a unique decomposition into terms that
measure violations of the classical axioms of the Shapley value. This approach
is analogous to that of [2] who study departures of a demand function from
rationality. Despite the similarities in the two approaches, in this paper we
address a different question in a different environment.

Moreover, in finite data sets, these terms can be used to make partial
inferences about the violations of the axioms defined for complete data sets,
and to make complete inference about the violations of the axioms defined for
a fixed technology, for the subset of monotone technologies (see also [3]). This
is of interest because the observer usually does not have information about a
pay scheme under different technologies, making it practically impossible to
check the validity of the axioms that require comparisons between different
technologies.

3.2.2 A Decomposition of the Shapley Distance with
Limited Data Sets

We now present a decomposition of the Euclidean Shapley distance, or Shapley
Distance for short. In this section, we follow the set-up in [1]. Let f be a
technology and ϕ ∈ Rn an observed pay profile generated by a pay scheme
that may not be known (to the observer). We can always decompose it into
a sum of the Shapley value at the observed technology f and an error term
ϕ = Sh(f) + esh, by defining esh = ϕ−Sh(f) ∈ Rn. Moreover, we show that
the error term esh can be further decomposed uniquely into three vectors that
are orthogonal to each other, with these vectors being respectively connected
to the violation of symmetry (sym), efficiency (eff), and marginality (mrg).
Formally, this means that we can write esh = esym + eeff + emrg such that
the inner product of these axioms errors (roughly their correlation) is zero.

[1] finds this orthogonal decomposition to be the result of the following
procedure. First they find the closest pay scheme to ϕ that satisfies sym;
then they find the closest pay scheme to ϕ that satisfies eff in addition to
sym; and finally they find the closest pay scheme to ϕ that satisfies mrg
in addition to sym and eff , which is simply the Shapley value itself. The
described order, in which these constraints are imposed, is the only one that
produces the orthogonality of the different error vectors. This decomposition
is also meaningful as each component measures a quantity of economic interest
that completely and effectively “isolates” one of the three conditions sym, eff
and mrg.

Begin by fixing a pair consisting of an observed pay profile and a technology
(f, ϕ) and consider the Shapley distance of ϕ at this point, which is:

||esh|| = ||ϕ− Sh(f)||.

Let vsym be the closest pay scheme to ϕ that satisfies symmetry (pointwise
under the chosen norm) (i.e., vsym ∈ argminv∈Θ||ϕ − v(f)|| s.t. v satisfies
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sym).4 [1] proves that each entry evaluated at f is given by vsymi that corre-
sponds to the average pay according to ϕ among the agents who are substitutes
of i under f . They then establish that ϕ can be written uniquely as the sum
of its symmetric part vsym = vsym(f) and a residual esym that is orthogonal
to vsym under the Euclidean inner product:

ϕ = vsym + esym.

In a similar way, let vsym,eff be the pay scheme that is pointwise clos-
est to the symmetric pay scheme vsym and that satisfies efficiency (i.e.,
vsym,eff ∈ argminv∈Θ||vsym−v(f)|| s.t. v satisfies sym and eff). [1] proves
that vsym,effi = vsym,effi (f) is given by the summation of vsymi and the out-
put wasted by ϕ divided by the number of agents in N . It follows that vsym
can be uniquely written as:

vsym = vsym,eff + eeff ,

where eeff is the negative of the wasted output by ϕ divided by the number
of agents in N .

Finally, remark that the pay scheme satisfying the axiom of marginality
that is pointwise closest to the symmetric and efficient pay scheme vsym,eff ,
which we denote by vsym,eff,mrg, must be the Shapley value because of the
uniqueness established in Theorem 3.1. Thus, vsym,eff,mrg = Sh(f). Thus,
we let emrg = vsym,eff − Sh(f). Notice that we can always decompose ϕ
(pointwise) as:

ϕ = Sh(f) + esh,

because ϕ and Sh(f) belong to the same vector space. With all this in hand,
[1] establishes the following main result.

Theorem 3.3 ([1]) For any given observation (f, ϕ), we have the unique
pointwise decomposition:

ϕ = Sh(f) + esym + eeff + emrg.

Moreover, the distance to the Shapley pay scheme can be uniquely decomposed
as:

||esh||2 = ||esym||2 + ||eeff ||2 + ||emrg||2,

into its symmetry, efficiency, and marginality departures, such that for any
i, j ∈ {sym, eff,mrg}, i ̸= j, < ei, ej >= 0.

The proposed decomposition of the Shapley distance that we just stated
has economic meaning described hereunder:

a) ||esym||2 =
∑
i∈N

[ϕi − vsymi ]2, where for any agent i, vsymi is the average

payoff within the class [i]f of agents who are substitutes of i at f . This

4Existence is easy to verify noticing that the space of symmetric pay schemes is convex
and closed.
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means that ||esym||2 is a dispersion measure within equivalence classes
of agents. In other words, this quantity measures horizontal inequity,
which is the inequality among agents who are identical.

b) ||eeff ||2 = E2/n, where E = [f(N) −
∑
i∈N

ϕi] is the total waste produced

by the pay profile. This means that ||eeff ||2 increases solely due to the
lack of efficiency.

c) ||emrg||2 =
∑
i∈N

[vsym,eff − Sh(f)]2, where vsym,eff is the symmetrized

and efficient pay profile that is closest to the original pay profile ϕ. This
means that ||emrg||2 is a measure of departures from the marginality
principle conditional on fulfilling horizontal equity and efficiency.

To the best of our knowledge, ||esh||2, introduced in ([1]), is the first mea-
sure of departures from the Shapley axioms. It has the advantage of providing
a unified treatment of the three axioms in the form of a numerical and additive
decomposition. Furthermore, in the decomposition analysis, each component
of ||esh||2 measures a violation of a Shapley axiom, with the main result pro-
viding a formal and unified theoretical foundation for using the three compo-
nents.

3.3 Some Applications
In this section, we feature several applications of our analysis. They are at-
tempts to enhance our understanding of inequality, and answer the question
of when income inequality can be considered unfair. The different applications
show how favoritism, egalitarianism, and taxation distort fairness in revenue
distribution.

3.3.1 Favoritism
Consider the following simple example:

Example 3.1 The nephew’s problem. Let an organization consist of a set
of agents N = {1, 2, 3} and a technology f defined as follows: f(N) = 10,
f({1, 2}) = 4, f({1, 3}) = f({2, 3}) = 9, f({i}) = 0 for i = 1, 2, 3. The
environment describes a firm owned by agent 3, who employs a nephew (agent
1). Agent 2 is also employed in the firm, with no family connections to the
other two people. Although from the point of view of productivities, agents 1
and 2 are substitutes, agent 3, exhibiting favoritism toward agent 1, allows him
to show up to work only half of the time, leading to output waste. In addition,
the uncle has set the pay scheme Φ(f) = (2, 1, 4). Note that the Shapley value
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yields the pay profile Sh(f) = (2.5, 2.5, 5). Thus, the overall (squared) Shapley
distance is 3.5, decomposed as 0.5 (attributed to the violation of symmetry)
and 3 (attributed to the violation of efficiency). No violation of marginality is
observed, after one corrects for the other two failures: The moves in R3 describe
a first transition from (2, 1, 4) to (1.5, 1.5, 4) -correcting for symmetry-, and
then to (2.5, 2.5, 5) -correcting for efficiency-, which is the Shapley value.
In this example, favoritism causes an efficiency flaw that, according to our
measure, is 6 times as important as the lack of symmetry.

3.3.2 Egalitarianism versus Fairness
Our second illustration relates to the egalitarian pay scheme. Before show-
ing it, we need to present a generalization, due to [6], [9], and [10], of the
framework of an organization, to an environment where agents have more
than two options (i.e., active or inactive). A production environment is
modeled as a list G = (N,L,G) where N = {1, 2, . . . , n} is a nonempty finite
set of agents of cardinality n; L = {0, 1, 2, . . . , l} is a nonempty finite set of
hours of labor or effort levels that an agent can supply, with 0 denoting a
situation of inaction; and G is a production function that maps each action
profile x = (x1, . . . , xn) ∈ Ln to a real number –output– G(x). The function
G can also be interpreted as the aggregate profit or cost function. Interpreting
it as the profit function might be useful in certain settings, in that it could
be incorporating both production and cost functions. Regardless of the inter-
pretation, we assume that G(0, 0, . . . , 0) = 0, which means that no output is
produced when all the agents are inactive.

We denote by ei the ith unit vector (0, 0, . . . , 0, 1, 0, . . . , 0), where all the
entries are zero except the ith component which is one. We will also use the
symbols ⊴ and ◁, which we define as explained hereunder. Let x, x ∈ Ln be
two effort profiles. We write x ⊴ x to mean that xi ̸= xi ⇒ xi = 0, and we
write x ◁ x to mean that x ⊴ x and x ̸= x. For example, (1, 7, 5, 0, . . . , 0) ◁
(1, 7, 5, 1, 5, 0, . . . , 0). We denote by |x| = | {i ∈ N : xi > 0} | the number of
agents who are not inactive at x. We maintain the assumption of monotonicity
in the production function environment. The analogous monotonicity property
for the production function says that G(x) ≤ G(y) whenever x⊴ y.

For any production environment G = (N,L,G), a pay scheme for the
production maps any effort profile x ∈ Ln to a nonnull payoff profile ΦG(x) =
(ΦG1 (x),Φ

G
2 (x), . . . ,Φ

G
n (x)), where for all i ∈ N , ΦGi (x) ∈ R is interpreted as

the payoff earned by i out of the output G(x). In the production environment,
an observation is a triple (x,G,ΦG(x)) where ϕ = ΦG(x) is an observed pay
profile for any production function G and for any effort profile x.

The corresponding Shapley value for the environment G, denoted by ShG,
is given by:

ShGi (x) =
∑

x◁ x, xi=0

(|x|)!(|x| − |x| − 1)!

(|x|)!
[G(x+ xiei)−G(x)], for all i ∈ N.

(3.2)
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[1] shows that, for a fixed level of efforts x, all the information given by
the production environment can be equivalently expressed using a technology.

We now show how the egalitarian pay scheme distorts fairness in revenue
distribution. This pay scheme is the benchmark that implements perfect equal-
ity. It divides the output in equal parts to each agent. So, this pay scheme is
clearly efficient. Evidently, given different levels of efforts and productivities,
the egalitarian pay scheme may not be fair, failing marginality. Our aim is
to measure the divergence of the egalitarian pay scheme from the Shapley
value and to identify the sources of this divergence. We do this through the
following example in which, for simplicity, we assume two agents, with each
choosing his effort level from a set that contains two levels.

Example 3.2 Consider a production environment G = (N,L,G) where N =
{1, 2} is the set of agents, L = {0, 1} is the set of effort levels, and G is the
(monotone) production function defined as follows:

G(x) =

{
1 if x ̸= (0, 0)
0 if x = (0, 0)

(3.3)

Consider the egalitarian pay scheme Eq defined as follows:

Eq1(x) =
1

2
G(x) and Eq2(x) =

1

2
G(x), for each x ∈ L2.

For each x ∈ L2, we have Eq1(x) +Eq2(x) = G(x), which means that Eq is
efficient.

In order to quantify the violations of the properties that characterize the
Shapley value, let us first derive the Shapley payoff of each agent at each vector
x. The Shapley payoff profile at each x is given by the following matrices:
ShG(X) =

(
(0, 0) (0, 1)
(1, 0) ( 12 ,

1
2 )

)
, where X =

(
(0, 0) (0, 1)
(1, 0) (1, 1)

)
is the matrix that

contains all of the possible vectors of effort levels, with the first component
of each cell denoting the effort level of agent 1, and the second component
denoting the effort level of agent 2.

The egalitarian payoff profile is given by: Eq(X) =

(
(0, 0) ( 12 ,

1
2 )

( 12 ,
1
2 ) ( 12 ,

1
2 )

)
.

Using the difference between the two matrices, ShG(X) − Eq(X) =(
(0, 0) (−1

2 ,
1
2 )

( 12 ,
−1
2 ) (0, 0)

)
, we can compute the Shapley distance ∥ShG − Eq∥2 =(

0 1
2

1
2 0

)
.

Note that Theorem 3.3 applies for each fixed effort level, equivalently for
each entry of the matrix X.

We now determine how the amount by which the violation of each property
characterizing the Shapley value contributes to the total violation of fairness
by an egalitarian payoff for any production function and any number of agents.
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We know that:

Eq(x) = ShG(x) + esym + eeff + emrg.

1. Let esym = Eq − vsym = 0. For all effort levels x, because Eq satisfies
symmetry trivially.

2. Let eeff = vsym − vsym,eff = 0. For all effort levels x, because Eq
satisfies efficiency trivially.

3. Let emrg = vsym,eff − ShG = Eq − ShG. This means that the Shapley
distance in general for this case is equal to ||ShG − Eq||2 = ||emrg||2.
This implies that a perfectly egalitarian pay profile may still be unfair
given certain productivity and effort levels.

3.3.3 Taxes
In our third example, we illustrate how a tax levied over a fair wage can alter
the fairness in an economy.

Example 3.3 Consider a small economy of two agents 1 and 2 who have to
work to produce goods and services. Each agent has two options, either go to
work (option W ), or stay at home (option H). The production function is
given by: f(H,H) = 0, f(H,W ) = 2, f(W,H) = 1, and f(W,W ) = 5. We
observe that both agents work (i.e., we observe the effort profile (W,W )). This
implies that the Shapley wage function allocates a payoff of 2 dollars to agent
1, and a payoff of 3 dollars to agent 2.

We assume that both agents have to contribute for a public good. For
simplicity, we assume that the benefits from the public good are not received
immediately and we can ignore them in the payoff profile. The vector Φ =
(2(1 − α), 3(1 − α)) represents the revenues of agents net of contributions,
given that each agent contributes a positive proportion α of his/her revenue.
How far is Φ from the Shapley allocation Shf = (2, 3)?

The Shapley distance is given by ||esh||2 = ||Shf − Φ||2 = 13α2. We now
determine how the amount by which the violation of each fairness property
characterizing the Shapley value contributes to the total violation of 13α2.

1. esym = Φ−vsym. Since agents are not identical, it follows that Φi = vsymi

and esym = (0, 0).

2. eeff = Φ− vsym,eff . For each i ∈ {1, 2}, vsym,effi = Φi+
5−

∑
Φi

2 . After
calculations, vsym,eff = ( 4+α2 , 6−α2 ), and ||eeff ||2 = 25α2

2 .

3. emrg = Shf − vsym,eff = (−α2 ,
α
2 ). Then, ||emrg||2 = α2

2 . A quick veri-
fication confirms that ||emrg||2+ ||eeff ||2 = 13α2. In general, we observe
that the tax has an increasing and nonlinear distortion of fairness. When
α → 0 there is no unfairness in the economy, and when α → 1 the un-
fairness level reaches its maximum.
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Assuming that each agent contributes half of his/her revenue (i.e., α = 1
2),

the departure from the Shapley allocation is ||esh|| = 1.8 dollars. In addition,
96.15 percent of this value is explained by the violation of efficiency, and 3.85
percent by lack of marginality.

The previous example provides an upper bound to the cost of fairness.
However, we made the strong assumption that there is no enjoyment of the
public good by the agents. Here we relax that assumption and provide a lower
bound of the cost of fairness.

Example 3.4 We consider the same economy defined in Example 3.3, but we
assume that there is monetary (equivalent) benefit of the public good that can
be enjoyed by both agents immediately. The total tax revenue is given by 5α
dollars. We assume that each agent enjoyment of the public good is 5

2α dollars.
This implies that the adjusted payoff after taxes and considering the public good
utility is Φ = (1 − α)(2, 3) + α( 52 ,

5
2 ). In other words, the government is able

to implement a convex combination of the Shapley wage and the egalitarian
wage using a fully efficient tax to provide a public good that produces the same
enjoyment to both agents.

The Shapley distance is given by ||esh||2 = ||Shf − Φ||2 = α2

2 . We notice
that the new pay scheme is both efficient and symmetric, hence ||esh||2 =
||emrg||2, which coincides with the marginality error in the previous example.
In this example, the government is able to eliminate the efficiency loss and
only the marginality loss remains. Note that when α → 1 there is a loss
of ||esh|| = 1√

2
≈ 0.707 dollars in terms of unfairness to produce a fully

egalitarian income. This is 14.14% of the total output. This is of course a
lower bound to the cost of fairness (while the previous example represented an
upper bound).

For our final example, we consider a different tax scheme and explore its
implications for fairness.

Example 3.5 We consider the same economy defined in Example 3.3, but we
assume that the investment in the public good is done by using a lump-sum
tax scheme, as opposed to the proportional tax scheme. Specifically, each agent
contributes the amount ti, i ∈ {1, 2}, such that t1+t2 = X, where X represents
the worth of the public good. The vector Φ = (2 − t1, 3 − t2) represents the
revenues net of taxes. What could be the values of ti, such that the vector Φ is
close to the Shapley payoff vector Shf = (2, 3)? The distance between the two
vectors Φ and Shf is given by the numerical expression d(t1, t2) = t21 + t22.
To answer the question posed, we should solve the following minimization
problem:

minimize
x

t21 + t22

subject to 0 ≤ t1 ≤ 2 ; 0 ≤ t2 ≤ 3 ; t1 + t2 = X ; 0 < X ≤ 5.
(3.4)
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Solving problem 3.4 yields t∗1 = min(2, X2 ) and t∗2 = min(3, X − t∗1). Assume
that the amount of the public good X equals 4.5 dollars, then agent 1 con-
tributes t∗1 = 2 dollars, agent 2 contributes t∗2 = 2.5 dollars. The payoff vector
is Φ = (0, 0.5) net of taxes. The distance between both allocations Φ and Shf

is ||esh|| = 3.20 dollars. The vector Φ does not violate the symmetry prop-
erty, since agents are not identical. The violation of efficiency, measured by
||esh|| = 3.18 dollars, represents 98.78 percent of the total measure of un-
fairness ( ||eeff ||2

||esh||2 = 98.78), whereas only ( ||e
mrg||2

||esh||2 = 1.22) of unfairness is
explained by the lack of marginality. Again, this is an upper bound of the cost
of fairness. Due to the decomposition, it is easy to see that the way to reduce
the important cost of fairness is to reduce the efficiency error. This can be
done by taking into account the benefits of the public good. If the benefits of
the public good are fully internalized, only the marginality error will matter,
and that is smaller than in the tax schemes of previous examples.

3.4 Conclusions
We have provided an axiomatic characterization of the Shapley distance, which
is a measure of unfairness in revenue distribution introduced by [1]. It is
defined as the distance between an arbitrary pay profile and the Shapley
pay profile under a given technology. [1] provides a decomposition of this
distance into terms that measure violations of each of the Shapley axioms. In
this chapter, we have shown that the Shapley distance is the unique (up to
monotone transformations) index defining a bargaining function that satisfies
Anonymity and IIA for the set of pay schemes that obey symmetry, efficiency,
and marginality. The analyses are illustrated through examples showing the
different ways in which favoritism, egalitarianism, and taxation distort fairness
in revenue sharing. We have also identified a tax scheme that minimizes this
distortion.
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4.1 Introduction
A situation in which a finite set of players can generate certain payoffs by
cooperation can be described by a cooperative game with transferable utility
(or simply a TU-game). A TU-game consists of a player set, and for every
subset of the player set, called a coalition, a real number which is the worth
that the coalition of players can earn when they agree to cooperate.

In a TU-game there are no restrictions on the cooperation possibilities of
the players, i.e., every coalition is feasible and can generate a worth. Various
models with restrictions on coalition formation are discussed in the literature.
In this chapter, we focus on restrictions arising from the players belonging
to some hierarchical structure that is represented by a digraph. Two of these
models are the games with a permission structure introduced by Gilles et al.
(1992) and games under precedence constraints introduced by Faigle and Kern
(1992). In both cases, the hierarchy can be represented by a directed graph
which restricts the possibilities of coalition formation. Whereas solutions for
games with a permission structure are based on a restricted game that is
defined from a set of feasible coalitions that typically is a proper subset of
the power set of the full player set (i.e. it focuses on feasible combinations),
in games under precedence constraints the coalition formation process is re-
stricted in the sense that not all orders by which players enter a coalition can
form (i.e. it focuses on feasible permutations). These two approaches led to
two different type of solutions in the literature. In this chapter, we focus on
acyclic digraphs.

In a game with a permission structure, the hierarchy or digraph is referred
to as a permission structure, and this models the idea that there are players
that need permission from other players before they are allowed to cooperate.
Various assumptions can be made about how a permission structure affects the
cooperation possibilities. In this chapter, we focus on the conjunctive approach,
as developed in Gilles et al. (1992) and van den Brink and Gilles (1996), where
it is assumed that every player needs permission from all its predecessors
before it is allowed to cooperate.1

To take account of the limited cooperation possibilities, for every game
with a permission structure a modified game is defined which assigns to every
coalition the worth of its largest feasible subcoalition in the original game.
A solution for games with a permission structure is a function that assigns
to every such game a payoff distribution over the individual players. Apply-
ing solutions for TU-games to the modified game yields solutions for games
with a permission structure. In this chapter, we consider the Shapley value

1Alternatively, for games with an acyclic quasi-strongly connected permission structure
in the disjunctive approach, as considered in Gilles and Owen (1994) and van den Brink
(1997), it is assumed that every player needs permission from at least one of its predecessors
(if it has any) before it is allowed to cooperate with other players.
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(Shapley (1953)) yielding a solution that is called the conjunctive (Shapley)
permission value.

On the other hand, in a game under precedence constraints, the order in
which players enter to form the ‘grand coalition’ is restricted by the digraph, in
the sense that players can only enter when their ‘subordinates’ in the hierarchy
have already entered. Instead of taking the average of all marginal contribution
vectors, as done by the classical Shapley value, the precedence (Shapley) value
of Faigle and Kern (1992), takes the average of the marginal vectors over
these admissible permutations. Alternatively, this precedence Shapley value
can be written as an allocation of the Harsanyi dividends, where the dividend
of every feasible coalition is allocated proportional to the so-called hierarchical
strength being a power measure for digraphs that assigns to every player the
number of admissible permutations where it is the last to enter. Algaba et al.
(2017) showed that in this solution the payoff allocation is influenced by the
presence of irrelevant players. These are players who do not generate worth
in the game and, moreover, also all the players who depend on their presence
do not generate worth in the game. Requiring that the payoff allocation does
not depend on the presence of these irrelevant players, they modified the
precedence Shapley value by requiring the allocation of Harsanyi dividends
proportional to the hierarchical strength only in case all players are necessary
to generate worth, (this means that the game is a multiple of the unanimity
game of the ‘grand coalition’). Moreover, they showed that instead of the
hierarchical strength, any (positive) power measure can be used yielding the
so-called precedence power solutions. In this way, the game theoretic problem
of payoff allocation is linked with the social network literature on power and
centrality measures.

After reviewing some known axiomatizations of the conjunctive permis-
sion value, the precedence Shapley value and precedence power solutions, we
will show that also the conjunctive permission value can be axiomatized with
an axiom that applies a network power measure to the permission structure.
Moreover, similar to the precedence power solutions, we can apply any (posi-
tive) power measure and obtain a class of permission power solutions. In this
way, we have two classes of solutions for games with a hierarchy, one based
on permission structures and another based on precedence constraints, that
are characterized by similar axioms. Moreover, the solutions are linked with
network power measures.

This chapter is organized as follows. After some preliminaries on cooperative
transferable utility games and digraphs, in Section 4.2, we introduce the two
models of games with a hierarchy. In Section 4.3, we discuss the conjunctive
permission value, the precedence Shapley value and the hierarchical solution
for these two models. In Section 4.4, we generalize these solutions by applying
network power measures. In Section 4.5, we show logical independence of
the axioms in the main theorems. Finally, Section 4.6 contains concluding
remarks.
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4.2 Games with Hierarchies
This section contains preliminaries on TU-games, digraphs, games with a per-
mission structure and games under precedence constraints.

4.2.1 TU-Games
A situation in which a finite set of players N ⊂ IN can generate certain pay-
offs by cooperation can be described by a cooperative game with transferable
utility (or simply a TU-game), being a pair (N, v) where v : 2N → IR is a
characteristic function on N satisfying v(∅) = 0. For any coalition S ⊆ N ,
v(S) ∈ IR is the worth of coalition S, i.e., the members of coalition S can ob-
tain a total payoff of v(S) by agreeing to cooperate. We denote the collection
of all TU-games (N, v) by G. We denote the collection of all characteristic
functions v on player set N by GN .

A payoff vector for game (N, v) is an |N |-dimensional vector x ∈ IRN

assigning a payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for
TU-games is a function that assigns a payoff vector to every TU-game. One
of the most widely used solutions for TU-games is the Shapley value (Shapley
(1953)), given by

Shi(N, v) =
1

|N |!
∑

π∈Π(N)

mπ
i (N, v), for all i ∈ N,

where Π(N) is the collection of all permutations π : N → N on N , and for
every permutation π ∈ Π(N),

mπ
i (N, v) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}), (4.1)

is the marginal contribution of player i to the players that are ranked before
him in the order π.

For each T ⊆ N , T ̸= ∅, the unanimity game (N, uT ) is given by
uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. It is well known that the
unanimity games form a basis for GN . For every v ∈ GN , it holds that
v =

∑
T⊆N

T ̸=∅
∆v(T )uT , where ∆v(T ) =

∑
S⊆T (−1)|T |−|S|v(S) are the Harsanyi

dividends; see Harsanyi (1959).
For (N, v), (N,w) ∈ G, the sum game (N, v+w) is defined by (v+w)(S) =

v(S) + w(S), and for c ∈ IR, the game (N, cv) ∈ G by (cv)(S) = cv(S)
for S ⊆ N . For (N, v) ∈ G and S ⊆ N , the subgame (S, vS) is given by
vS(T ) = v(T ) for all T ⊆ S.

4.2.2 Digraphs
An irreflexive directed graph or irreflexive digraph is a pair (N,D) where N
is the set of nodes and D ⊆ {(i, j) | i, j ∈ N, i ̸= j} is an (irreflexive) binary
relation on N consisting of ordered pairs called directed links or arcs. Since
we assume irreflexivity throughout the full chapter, we refer to these just as



The Shapley Value and Games with Hierarchies 53

digraphs. Since the nodes will represent players, we often refer to the nodes as
players. For i ∈ N , the nodes in FD(i) := {j ∈ N | (i, j) ∈ D} are called the
followers or successors of i inD, and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D}
are called the predecessors of i in D. Further, by F̂D(i) we denote the set of
successors of i in the transitive closure of D, i.e., j ∈ F̂D(i) if and only if there
exists a sequence of players (h1, . . . , ht) such that h1 = i, hk+1 ∈ FD(hk)

for all 1 ≤ k ≤ t − 1, and ht = j. We refer to the players in F̂D(i) as the
subordinates of i in D, and to the players in the set P̂D(i) = {j ∈ N | i ∈
F̂D(j)} consisting of all predecessors of i in the transitive closure of D, as
i’s superiors. We denote by P̂D(T ) =

∪
i∈T P̂D(i) the set of all superiors of

players in T . The digraph (N,D) is called acyclic if i ̸∈ F̂D(i) for all i ∈ N .
We denote the collection of all acyclic digraphs by D, and the collection of
all acyclic binary relations (which we will also often refer to as digraphs) on
N by DN . For S ⊆ N and (N,D) ∈ D, the digraph (S,D(S)) is given by
D(S) = {(i, j) ∈ D | {i, j} ⊆ S}. By TOP (N,D) = {i ∈ N | PD(i) = ∅}
we denote the set of ‘top players’ in (N,D), i.e., the set of players without
predecessors. Note that TOP (N,D) ̸= ∅ if (N,D) is acyclic.

4.2.3 Games with a Permission Structure
A game with a permission structure describes a situation where some players
in a TU-game need permission from other players before they are allowed to
cooperate with other players. Formally, a permission structure is a directed
graph on N . In this context, a triple (N, v,D) with N a finite set of players,
v ∈ GN a TU-game and D ∈ DN a digraph on N is called a game with a
permission structure. In the conjunctive approach as introduced in Gilles et
al. (1992) and van den Brink and Gilles (1996), it is assumed that a player
needs permission from all its predecessors in order to cooperate with other
players. In this sense, a coalition is feasible if and only if for every player in
the coalition all its predecessors are also in the coalition. So, for permission
structure D, the set of conjunctive feasible coalitions is given by

Φc(N,D) = {S ⊆ N |PD(i) ⊆ S for all i ∈ S } .

For every S ⊆ N , let σcD(S) =
∪

{F∈Φc(N,D)|F⊆S} F = S\F̂D(N \S) be the
largest conjunctive feasible subset2 of S in the collection Φc(N,D). Then, the
induced conjunctive restricted game of (v,D) is the game rcv,D : 2N → IR that
assigns to every coalition S ⊆ N the worth of its largest conjunctive feasible
subset3, i.e.,

rcv,D(S) = v(σcD(S)) for all S ⊆ N. (4.2)
We denote the class of all games with a permission structure by GPS .

2Every coalition having a unique conjunctive largest feasible subset follows from the fact
that Φc(N,D) is union closed.

3Alternatively, for acyclic and quasi-strongly connected permission structures, in the
disjunctive approach as introduced in Gilles and Owen (1994) and van den Brink (1997) (see
also Gilles (2010)), it is assumed that a non-top player needs permission from at least one
of its predecessors. By a similar approach as described here, one can define the disjunctive
restricted game.
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4.2.4 Games under Precedence Constraints
Faigle and Kern (1992) consider situations where a partial order or acyclic
directed graph represents a precedence relation meaning that the order in
which players enter the grand coalition is restricted. Assuming that a player
can only enter after all its subordinates have entered, a coalition is feasible
if for every player in the coalition all of its successors in the digraph are also
present in the coalition. The set Φp(N,D) of feasible coalitions according to
digraph (N,D) ∈ D is thus given by

Φp(N,D) = {S ⊆ N | FD(i) ⊆ S for all i ∈ S}.
Instead of considering a restricted game on the collection of all coalitions

(i.e., subsets of N), Faigle and Kern (1992) consider cooperative games, where
for acyclic digraph (N,D) ∈ D the domain of the characteristic function is
given by the set Φp(N,D). In this context, we call a triple (N, v,D), where
N ⊆ N is a finite set of players, (N,D) ∈ D is an acyclic digraph, and
v : Φp(N,D) → IR, with v(∅) = 0, is a characteristic function that is defined
only on Φp(N,D), a game under precedence constraints.

We denote the class of all games under precedence constraints by GPC , and
we denote the class of games under precedence constraints on graph (N,D) ∈
D by G(N,D)

PC . For (N, v,D), (N,w,D) ∈ GPC , the sum game (N, v + w) is
defined by (v+w)(S) = v(S)+w(S), and for c ∈ IR, the game (N, cv) ∈ G by
(cv)(S) = cv(S) for S ∈ Φp(N,D). The game under precedence constraints
obtained from (N, v,D) ∈ GPC by considering only feasible coalition S and
its subsets is denoted by (S, vS , D(S)), where vS(T ) = v(T ) for all feasible
coalitions T ⊆ S. We refer to (S, vS , D(S)) as the subgame on S of (N, v,D).

Because of the difference in interpretation, we refer to a triple (N, v,D)
with v a characteristic function on 2N as a game with a permission structure,
and to a triple (N, v,D) with v a characteristic function on Φp(N,D) as a
game under precedence constraints. Sometimes, we refer to these situations in
general as a game with a hierarchy.

4.3 Solutions for Games with Hierarchies
In this section, we discuss several solutions for games with a permission struc-
ture and games under precedence constraints.

4.3.1 The Conjunctive Permission Value for Games with a
Permission Structure

A solution for games with a permission structure is a function f that assigns a
payoff distribution f(N, v,D) ∈ IRN to every game with permission structure
(N, v,D). The conjunctive (Shapley) permission value φc is the solution that
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assigns to every game with a permission structure the Shapley value of the
conjunctive restricted game4, i.e.,

φc(N, v,D) = Sh(N, rcv,D).

Next, we discuss one of the axiomatizations of the conjunctive permission
value. Player i ∈ N is inessential in game with permission structure (N, v,D)
if i and all its subordinates are null players in game v, i.e., if v(S) = v(S \{j})
for all S ⊆ N and j ∈ {i} ∪ F̂D(i). Player i ∈ N is necessary in game v if
v(S) = 0 for all S ⊆ N \ {i}.

Next, we mention some axioms of solutions for games with a permission
structure. Efficiency and linearity are straightforward generalizations of TU-
game solution axioms. The inessential player property requires that inessential
players earn a zero payoff. The necessary player property requires that neces-
sary players earn at least as much as any other player if the game is monotone.
A game (N, v) is monotone if v(S) ≤ v(T ), for all S ⊆ T ⊆ N . Notice that
a necessary player is a ‘strong’ player in a monotone game. Structural mono-
tonicity requires that in monotone games, players earn at least as much as
their successors. From now on, the class of monotone TU-games on N will be
denoted by GNM .

Efficiency For every v ∈ GN and D ∈ DN , it holds that
∑
i∈N fi(N, v,D) =

v(N).

Linearity For every v, w ∈ GN and D ∈ DN , it holds that f(N, v + w,D) =
f(N, v,D) + f(N,w,D), and for c ∈ IR it holds that f(N, cv,D) =
cf(N, v,D).

Inessential player property For every v ∈ GN and D ∈ DN , if i ∈ N is an
inessential player in (N, v,D), then fi(N, v,D) = 0.

Necessary player property For every v ∈ GNM and D ∈ DN , if i ∈ N is a
necessary player in (N, v), then fi(N, v,D) ≥ fj(N, v,D) for all j ∈ N .

Structural monotonicity For every v ∈ GNM and D ∈ DN , if j ∈ FD(i),
then fi(N, v,D) ≥ fj(N, v,D).

The above five axioms characterize the conjunctive permission value.5

Theorem 4.1 (van den Brink and Gilles (1996)) A solution for games
with a permission structure is equal to the conjunctive permission value φc if
and only if it satisfies efficiency, linearity, the inessential player property, the
necessary player property and structural monotonicity.

4Alternatively, for acyclic and quasi-strongly connected permission structures, the dis-
junctive permission value is obtained as the Shapley value of the disjunctive restricted game,
see Footnote 3.

5We remark that, instead of linearity, van den Brink and Gilles (1996) use the weaker
additivity axiom.
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If D = ∅, then there are no restrictions in coalition formation (i.e.,
Φc(N,D) = 2N ), and then φc(N, v,D) = Sh(N, v). In this sense, the con-
junctive permission value generalizes the Shapley value for TU-games. Notice
that the axiomatization in Theorem 4.1 gives an axiomatization of the Shap-
ley value for TU-games by taking D = ∅. In that case, efficiency and linearity
just boil down to the corresponding axioms for TU-game solutions. Since no
player has subordinates, a player is inessential if and only if it is a null player
in the game, and thus the inessential player property boils down to the null
player property for TU-game solutions. The necessary player property does
not depend on the permission structure anyway, and can be stated as well
for TU-game solutions by requiring that a necessary player in a monotone
game earns at least as much as any other player.6 Efficiency, linearity, the
inessential (null) player property and the necessary player property then give
uniqueness as in Shapley (1953). Note that structural monotonicity has no
meaning when D = ∅.

In Gilles at al. (1992) it is shown that the conjunctive permission value
can also be obtained by allocating the Harsanyi dividends in the conjunctive
restricted game, equally over all players in the corresponding coalition and
their superiors, i.e.,

φci (N, v,D) =
∑
S⊆N

i∈S∪P̂D(S)

∆rcv,D
(S)

|S ∪ P̂D(S)|
for all i ∈ N.

4.3.2 The Precedence Shapley Value and the Hierarchical
Solution for Games under Precedence Constraints

4.3.2.1 The Precedence Shapley Value

Faigle and Kern (1992) introduce the precedence Shapley value as solution
for games under precedence constraints. First, a permutation π ∈ Π(N) is
called admissible in acyclic digraph (N,D) if π(i) > π(j) whenever (i, j) ∈ D,
i.e., successors enter before their predecessors in the digraph.7 The set of
admissible permutations ΠD(N) in D is denoted by

ΠD(N) = {π ∈ Π(N) | π(i) > π(j) if (i, j) ∈ D}. (4.3)

Note that the set of admissible permutations in D is the same as that of its
transitive closure tr(D): ΠD(N) = Πtr(D)(N).

6Since all players in T ⊆ N are necessary players in the unanimity game uT on T , they
should earn the same in that unanimity game, which in the axiomatization of the Shapley
value is guaranteed by symmetry.

7The terminology looks somewhat counterintuitive, but this is because of the different
interpretations of the hierarchy in games with a permission structure and games under
precedence constraints, see also the last paragraph of Section 4.6.
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The precedence marginal vector mπ(N, v,D) ∈ IRN , associated with the
game under precedence constraints (N, v,D), permutation π ∈ ΠD(N), and
player i ∈ N , is given by

mπ
i (N, v,D) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}). (4.4)

Recall from Section 4.2 that the Shapley value assigns to the players the
average over all marginal vectors associated with all permutations of the player
set N . The precedence Shapley value H is the solution on GPC given by

Hi(N, v,D) =
1

|ΠD(N)|
∑

π∈ΠD(N)

mπ
i (N, v,D), for all i ∈ N,

and assigns to the players in N the average over all precedence marginal
vectors of game under precedence constraints (N, v,D). For (N, v,D) ∈ GPC ,
all permutations in Π(N) are admissible when D = ∅. In that case, the domain
of characteristic function v is given by 2N , and thus is a classical characteristic
function of a TU-game. So, also the precedence Shapley value H generalizes
the Shapley value for TU-games.

Faigle and Kern (1992) give an axiomatization of the precedence Shapley
value using the following axioms. Efficiency and linearity are the same as for
the conjunctive permission value, but defined on the domain GPC .

Efficiency For each game (N, v,D) ∈ GPC it holds that
∑
i∈N fi(N, v,D) =

v(N).

Linearity For every pair of games (N, v,D) and (N,w,D) ∈ G(N,D)
PC it holds

that f(N, v + w,D) = f(N, v,D) + f(N,w,D), and for (N, v,D) ∈
G(N,D)
PC and c ∈ IR it holds that f(N, cv,D) = cf(N, v,D).

A player i ∈ N is a null player in game under precedence constraints (N, v,D),
if for every π ∈ ΠD(N) it holds that mπ

i (N, v,D) = 0.

Null player property For each (N, v,D) ∈ GPC , if i ∈ N is a null player in
(N, v,D), then fi(N, v,D) = 0.

Besides these three axioms8, Faigle and Kern (1992) introduce an axiom that is
based on the hierarchical strength of players. First, for all i ∈ S, S ∈ Φp(N,D),
the set of permutations ΠiD(N,S) is defined by

ΠiD(N,S) = {π ∈ ΠD(N) | π(i) > π(j) for all j ∈ S \ {i}}, (4.5)

8We remark that, similar to Shapley (1953), Faigle and Kern (1992) combine efficiency
and the null player property into a carrier axiom.
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being the collection of those admissible permutations in ΠD(N) where i en-
ters after the players in S \ {i}. Note that the collection {ΠiD(N,S)}i∈S is a
partition of ΠD(N).

The absolute hierarchical strength is the function h that assigns to every
(N,D) ∈ D and coalition S ∈ Φp(N,D), the vector h(N,D, S) ∈ IRS , where
hi(N,D, S) = |ΠiD(N,S)| is the number of permutations in ΠD(N) where
i ∈ S enters after the players in S \ {i}.

The normalized hierarchical strength is the function h that assigns to every
(N,D) ∈ D and coalition S ∈ Φp(N,D), the vector h(N,D, S) ∈ IRS , where
hi(N,D, S) =

|Πi
D(N,S)|

|ΠD(N)| is the fraction of permutations in ΠD(N) where i ∈ S
enters after the players in S \ {i}. Note that

∑
i∈S

hi(N,D, S) = 1 for all S ∈

Φp(N,D).

Unanimity games under precedence constraints are defined similar to clas-
sical unanimity TU-games. For each T ∈ Φp(N,D), T ̸= ∅, the unanimity
game under precedence constraints (N, uT , D) ∈ GPC is given by uT (S) = 1
if T ⊆ S, and uT (S) = 0 otherwise, S ∈ Φp(N,D). Note that, different from
classical TU-games, the unanimity game (called simple game by Faigle and
Kern) uT is only defined on the set Φp(N,D). Faigle and Kern (1992) also
consider the dividend of a coalition S ∈ Φp(N,D) in game under precedence
constraints (N, v,D), given by ∆D

v (S) = v(S)−
∑
T⊂S,T∈Φp(N,D),T ̸=∅ ∆

D
v (T ).

For every (N, v,D) ∈ GPC , Faigle and Kern (1992) show that the char-
acteristic function in (N, v,D) can be written as a linear combination of
the characteristic functions of unanimity games under precedence constraints
(N, uT , D):

v =
∑

T∈Φp(N,D)

T ̸=∅

∆D
v (T )uT . (4.6)

The axiom of hierarchical strength of a solution for games under precedence
constraints states that, in unanimity games under precedence constraints, the
earnings are distributed among the players in the unanimity coalition propor-
tional to their normalized hierarchical strength in that coalition. Obviously,
this is equivalent to distributing the dividends proportional to the absolute
hierarchical strength of the players.

Hierarchical strength For every (N,D) ∈ D, every S ∈ Φp(N,D)
and every i, j ∈ S, it holds that hi(N,D, S)fj(N, uS , D) =
hj(N,D, S)fi(N, uS , D).

Theorem 4.2 (Faigle and Kern, 1992) A solution on GPC is equal to the
precedence Shapley value H if and only if it satisfies efficiency, linearity, the
null player property and hierarchical strength.

Alternatively, the precedence Shapley value can be defined as the solution
that allocates the dividend of a coalition S ∈ Φp(N,D) proportional to the
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hierarchical strength h(N,D, S) of the players in S:

Hi(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(N,D, S)∑
j∈S hj(N,D, S)

∆D
v (S) for all i ∈ N. (4.7)

4.3.2.2 The Hierarchical Solution

Algaba et al. (2017) introduce the solution for games under precedence con-
straints that is obtained by weakening hierarchical strength in Theorem 4.2
to weak hierarchical strength and adding irrelevant player independence.

Weak hierarchical strength is a weaker version of the hierarchical strength
axiom in the sense that it only requires the equality for unanimity games of
the grand coalition.

Weak hierarchical strength For every (N,D) ∈ D and every i, j ∈ N , it
holds that hi(N,D,N)fj(N, uN , D) = hj(N,D,N)fi(N, uN , D).

This is a considerable weakening, also in interpretation. If unanimity
among all players must be reached before any non-zero worth can be gen-
erated, we might consider the players equals with respect to the game. There-
fore, worth allocation should depend only on the strength of the players in
the digraph. The strength of each player in the digraph is measured by the
hierarchical strength.

Player i ∈ N is called an irrelevant player in game under precedence
constraints (N, v,D) if i is a null player, and any j ∈ P̂D(i) is also a null
player (this implies that any j ∈ P̂D(i) is also irrelevant). So, an irrelevant
player is a null player such that all players who depend on its presence are
also null players in the game. We call a player i ∈ N relevant if it is not an
irrelevant player.

Let Irr(N, v,D) be the set of irrelevant players in game under prece-
dence constraints (N, v,D). Irrelevant player independence states that removal
of irrelevant players from the game does not affect the payoff to relevant
players.

Irrelevant player independence For every (N, v,D) ∈ GPC , it holds that
fi(N, v,D) = fi(N

′, vN ′ , D(N ′)) for i ∈ N ′, with N ′ = N \Irr(N, v,D).

For a collection of sets F ⊆ 2N , let FS = {T ∈ F | T ⊆ S} be the collection
of subsets of S in F . It can be seen that, for N ′ = N \ Irr(N, v,D), it holds
that ΦpN ′(N,D) = Φp(N ′, D(N ′)), i.e., the collection of feasible subsets of
coalition N ′ obtained from graph (N,D) is equal to the collection of feasible
sets obtained from subgraph (N ′, D(N ′)). (Note that this does not have to
be the case for all subsets of N .) This means that removing irrelevant players
from the game does not have an effect on the ability of relevant players to
cooperate with each other.
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We consider irrelevant player independence a desirable property for a solu-
tion for games under precedence constraints to satisfy. Since irrelevant players
are null players, they do not make any contribution to their subordinates in
the digraph. Moreover, their superiors are also null players, and thus irrele-
vant players do not make any contribution through players that need them to
be present in any admissible permutation. Therefore, they should not be able
to affect the payoffs of those players who do make a contribution in the game.
The precedence Shapley value does not satisfy irrelevant player independence,
as illustrated by the following example.

Example 4.1 Consider the following acyclic digraph used by Faigle and Kern
(1992). Let N = {1, 2, 3, 4} , and D = {(3, 1) , (3, 2) , (4, 2)}, see Figure 4.1.

The set of admissible permutations is

ΠD (N) = {(1, 2, 3, 4) , (1, 2, 4, 3) , (2, 1, 3, 4) , (2, 1, 4, 3) , (2, 4, 1, 3)} .

In this case, for S = {1, 2, 4} ∈ Φp(N,D), we have

h1 (N,D, S) = 1, h2 (N,D, S) = 0, h4 (N,D, S) = 4.

Consider the game v = u{1,2,4}. Then, the precedence Shapley value is given
by H (N, v,D) =

(
1
5 , 0, 0,

4
5

)
.

Notice that player 3 is an irrelevant player. Deleting player 3 gives the game
under precedence constraints (N ′, v′, D′) with N ′ = {1, 2, 4}, v′ = u{1,2,4} (but
on a different domain), and D′ = {(4, 2)}.

The set of admissible permutations on subgraph (S,D (S)) is given by

ΠD(S) (S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} .

Therefore, h1 (S,D(S), S) = 1, h2 (S,D(S), S) = 0, h4 (S,D(S), S) = 2, yield-
ing the precedence Shapley value H (N, v,D) =

(
1
3 , 0,

2
3

)
.

The presence of irrelevant player 3 changes the payoffs of players 1 and 4
according to the precedence Shapley value.

FIGURE 4.1: Digraphs (N,D) and (S,D(S)) of Example 4.1.

It can be shown that for games (Nm, u{1,2}, Dm), where Nm is given
by {1, . . . ,m} and Dm by {(3, 1), (4, 3), . . . , (m,m − 1)}, the precedence
Shapley value is given by H1(Nm, u{1,2}, Dm) = 1

m ,H2(Nm, u{1,2}, Dm) =
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m−1
m and Hi(Nm, u{1,2}, Dm) = 0 for i ∈ Nm \ {1, 2} and so

limm→∞H1(Nm, u{1,2}, Dm) = 0 and limm→∞H2(Nm, u{1,2}, Dm) = 1. We
find that the fact that player 1 has many irrelevant players as superiors in
the digraph is detrimental to its payoff, even though, for different values of
m, player 1 is present in exactly the same feasible coalitions that contain only
relevant players.

Algaba et al. (2017) provide a characterization where the null player prop-
erty is replaced by the following weaker property on irrelevant players.9

Irrelevant player property For each (N, v,D) ∈ GPC , if i ∈ N is an irrel-
evant player in (N, v,D), then fi(N, v,D) = 0.

The unique solution for games under precedence constraints that satisfies
efficiency, linearity, the irrelevant player property, irrelevant player indepen-
dence, and weak hierarchical strength is the hierarchical solution which allo-
cates the dividend of every feasible coalition over the players in that coalition
proportional to the hierarchical strength in the subgraph on that coalition.

The hierarchical solution H̃ is the solution on GPC given by

H̃i(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(S,D(S), S)∑
j∈S hj(S,D(S), S)

∆D
v (S), i ∈ N.

A main difference with the precedence Shapley value is that in that value,
the dividends are allocated proportional to the hierarchical strength in the
full digraph (see (4.7)), while in the hierarchical solution, when allocating the
dividend of a feasible coalition, we consider the hierarchical strength of the
subgraph on the corresponding coalition.

Theorem 4.3 (Algaba et al., 2017) A solution for games under precedence
constraints is equal to the hierarchical solution H̃ if and only if it satisfies
efficiency, linearity, the irrelevant player property, irrelevant player indepen-
dence, and weak hierarchical strength.

Next, we provide an example which calculates the hierarchical solution and
the precedence Shapley value highlighting that in general both solutions are
different, and are also different from the conjunctive permission value.

Example 4.2 Consider the game under precedence constraint given in Ex-
ample 4.1. By taking the appropriate domain for the characteristic function,
this can also be seen as a game with a permission structure. In Example 4.1,
we already computed the precedence Shapley value H (N, v,D) =

(
1
5 , 0, 0,

4
5

)
.

For S = {1, 2, 4} ∈ Φp(N,D), in Example 4.1, we also found that the set
of admissible permutations on subgraph (S,D (S)) is given by

ΠD(S) (S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} ,

9It is straightforward to show that the null player property can also be replaced by the
irrelevant player property in the axiomatization of the precedence Shapley value.
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and thus h1 (S,D(S), S) = 1, h2 (S,D(S), S) = 0, h4 (S,D(S), S) = 2. This
yields the hierarchical solution H̃ (N, v,D) =

(
1
3 , 0, 0,

2
3

)
.

The conjunctive restricted game is given by rcv,D = uN , and thus the con-
junctive permission value gives an equal allocation of the payoff, φc(N, v,D) =
( 14 ,

1
4 ,

1
4 ,

1
4 ).

4.4 Power Measures for Digraphs and Solutions for
Games with Hierarchies

Power or centrality measures for digraphs are applied to define solutions for
games under precedence constraints by Algaba et al. (2017). In this section,
we first review their result, and then apply this approach to games with a
permission structure.

4.4.1 Precedence Power Solutions for Games under
Precedence Constraints

Algaba et al. (2017) considered a class of solutions for games under prece-
dence constraints that contain the hierarchical solution. Similar as van den
Brink et al. (2011a) generalize the communication ability property of Borm
et al. (1992) for communication graph games (see Myerson (1977)), this class
is obtained by applying a power measure for digraphs to allocate the divi-
dends, and apply this power measure in a corresponding version of the weak
hierarchical strength axiom.

A power measure for acyclic digraphs is a function p, that to every acyclic
digraph (N,D) ∈ D assigns a vector p(N,D) ∈ IRN . For a player i ∈ N ,
pi(N,D) is a measure of its relational ‘power’ or ‘influence’ in (N,D). We call
a power measure p positive if

∑
j∈N pj(N,D) > 0 for all (N,D) ∈ D with

D ̸= ∅. Notice that a power measure is defined for any set of nodes N ⊂ IN,
and thus also for any S ⊆ N ⊂ IN, p(S,D(S)) is defined. In this chapter, we
only consider positive power measures.

For positive power measure p, we define the p-hierarchical solution as the
solution that allocates the dividend of a coalition S ∈ Φp(N,D) among the
players in S proportional to p(S,D(S)).

Definition 4.1 For positive power measure p, the p-hierarchical solution is
the solution on GPC given by

Hp
i (N, v,D) =

∑
S∈Φp(N,D)

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆D
v (S) for all i ∈ N.
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We refer to the class consisting of all p-hierarchical solutions as the class of
precedence power solutions.

In order to axiomatize the p-hierarchical solution, the p-strength axiom
is introduced. This axiom has an interpretation similar to that of weak hier-
archical strength from Theorem 4.3. If unanimity among all players must be
reached to generate any non-zero worth, we might consider the players equals
with respect to the game. Therefore, worth allocation should only depend on
the strength of the players in the digraph. The p-hierarchical solution uses
the power measure p to measure the strength of each player in the digraph.
The p-strength axiom requires that in a game where all players are neces-
sary to generate worth, the payoffs are allocated proportional to the power
measure p.

p-strength Let p be a positive power measure. For every (N,D) ∈ D and
every i, j ∈ N , it holds that
pi(N,D)fj(N, uN , D) = pj(N,D)fi(N, uN , D).

The p-hierarchical solution is axiomatized by replacing in Theorem 4.3
weak hierarchical strength by p-strength.

Theorem 4.4 (Algaba et al., 2017) A solution for games under prece-
dence constraints is equal to the p-hierarchical solution Hp if and only if it
satisfies efficiency, linearity, the irrelevant player property, irrelevant player
independence and p-strength.

Note that this gives Theorem 4.3 as a corollary by taking the hierarchical
strength as power measure. The axioms of Theorem 4.4 are not logically inde-
pendent. It can be shown that efficiency and irrelevant player independence
together imply the irrelevant player property.

Proposition 4.1 Consider a solution f on GPC . If f satisfies efficiency and
irrelevant player independence, then f satisfies the irrelevant player property.

Proof. Suppose that solution f satisfies efficiency and irrelevant player inde-
pendence. We show that f must satisfy the irrelevant player property by in-
duction on the number of irrelevant players. Suppose that |Irr(N, v,D)| = 1,
and let j ∈ N be the irrelevant player in (N, v,D) ∈ GPC . By irrelevant player
independence, we have that fi(N, v,D) = fi(N \ {j}, vN\{j}, D(N \ {j})) for
all i ∈ N \ {j}. By efficiency, it then follows that

∑
i∈N fi(N, v,D) = v(N) =

v(N \{j}) =
∑
i∈N\{j} fi(N \{j}, vN\{j}, D(N \{j})) =

∑
i∈N\{j} fi(N, v,D),

and thus fj(N, v,D) = 0.
By induction, we assume that irrelevant players get a zero payoff for

all (N ′, v′, D′) ∈ GPC with |Irr(N ′, v′, D′)| < |Irr(N, v,D)|. Take a j ∈
Irr(N, v,D) such that all successors of j are relevant players. (Existence of
such players can be shown as follows. Consider an irrelevant player who has an
irrelevant successor. If this successor has at least one irrelevant successor, then
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consider this successor. Continuing in this way, by acyclicity and finiteness of
D, eventually we reach an irrelevant player whose successors are all relevant
players, possibly being an irrelevant player who has no successors.) Consider
the game w = u(N\Irr(N,v,D))∪{j}, i.e., the unanimity game on the set of
all relevant players in v with player j. Then |Irr(N,w,D)| < |Irr(N, v,D)|,
specifically Irr(N,w,D) = Irr(N, v,D) \ {j}, and thus by the induction hy-
pothesis ∑

h∈Irr(N,v,D)\{j}

fh(N,w,D) = 0. (4.8)

Since also |Irr(N, v + w,D)| = |Irr(N,w,D)| = |Irr(N, v,D)| − 1, we have
similar that ∑

h∈Irr(N,v,D)\{j}

fh(N, v + w,D) = 0. (4.9)

Since linearity implies that f(N, v,D) = f(N, v + w,D) − f(N,w,D), with
(4.8) and (4.9), it follows that

∑
h∈Irr(N,v,D)\{j}

fh(N, v,D) =
∑

h∈Irr(N,v,D)\{j}

fh(N, v + w,D)

(4.10)
−

∑
h∈Irr(N,v,D)\{j}

fh(N,w,D) = 0.

By efficiency and irrelevant player independence it follows, similar as in
the initial step, that

∑
i∈N fi(N, v,D) = v(N) = v(N \ Irr(N, v,D)) =∑

i∈N\Irr(N,v,D) fi(N \ Irr(N, v,D), vN\Irr(N,v,D), D(N \ Irr(N, v,D))) =∑
i∈N\Irr(N,v,D) fi(N, v,D), and thus

∑
h∈Irr(N,v,D) fh(N, v,D) = 0. With

(4.10) it then follows that fj(N, v,D) = 0. This shows that the irrelevant
player property is satisfied.

Proposition 4.1 and Theorem 4.4 immediately give the following result as
a corollary.10

Theorem 4.5 A solution for games under precedence constraints is equal to
the p-hierarchical solution Hp if and only if it satisfies efficiency, linearity,
irrelevant player independence and p-strength.

Logical independence of the axioms is shown in Section 4.5.

10Similarly, the irrelevant player property is superfluous in Theorem 4.3.
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4.4.2 Power Measures, Solutions for Games with a
Permission Structure and Permission Values

The conjunctive permission value satisfies efficiency and linearity11. Although
the conjunctive permission value does not satisfy the weak hierarchical
strength axiom, it satisfies a version of the p-strength axiom, where in the
unanimity game of the ‘grand coalition’, the payoffs are allocated equally over
the players, i.e., proportional to the equal power measure where all players
have equal power in any digraph.12

Equal-strength For every (N,D) ∈ D and every i, j ∈ N , it holds that
fi(N, uN , D) = fj(N, uN , D).

The conjunctive permission value does not satisfy the null player property,
irrelevant player independence and the irrelevant player property13. However,
it satisfies similar properties. Instead of irrelevant player independence, the
conjunctive permission value satisfies inessential player independence, requir-
ing that payoffs of essential players do not depend on the presence of inessen-
tial players (instead of requiring that payoffs of relevant players do not depend
on the presence of irrelevant players). Let Iness(N, v,D) be the set of inessen-
tial players in (N, v,D).

Inessential player independence For every (N, v,D) ∈ GPS , it holds
that fi(N, v,D) = fi(N

′, vN ′ , D(N ′)) for i ∈ N ′, with N ′ = N \
Iness(N, v,D).

In a similar way, the irrelevant player property can be modified. This
gives the inessential player property that requires that a null player whose
subordinates are all null players, earns a zero payoff. Similar as in Proposition
4.1, efficiency and inessential player independence imply the inessential player
property.

Note that, similar to the irrelevant player property, the inessential player
property is weaker than the null player property. The null player property
deals with all players who are null players in the game, while the inessential
player property only takes care of the null players whose subordinates are
also null players. For permission tree games, van den Brink et al. (2015) deal
with this by the axiom which requires that the payoff distribution does not
change if a predecessor i becomes necessary for its successor j in the sense
that the marginal contribution of player j to every coalition that does not

11For games with a permission structure, these axioms are defined the same as for games
under precedence constraints, by simply replacing the domain GPC by the domain GPS in
the definitions in the previous sections.

12This is a weaker version of necessary player symmetry used by van den Brink et al.
(2015) for the more specific permission tree games, requiring that all necessary players in
the game earn the same payoff irrespective of their position in the digraph.

13Also stating these axioms for games with a permission structure, we can simply replace
the domain GPC by the domain GPS , but we also need to redefine what is a null player as
a player whose marginal contribution is zero to any coalition in 2N .
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contain player i becomes zero. For game (N, v) and players i, j ∈ N , the game
(N, vij) is defined by vij(S) = v(S \ {j}) for all S ⊆ N \ {i}, and vij(S) = v(S)
otherwise.

Predecessor necessity For every (N, v,D) ∈ GPS and i, j ∈ N such that
(i, j) ∈ D, it holds that f(N, v,D) = f(N, vij , D).

Although predecessor necessity is used for axiomatization on permission
tree games, it is also satisfied for all games with an acyclic permission struc-
ture.

Next, we give a new characterization of the conjunctive permission value
that uses similar axioms as used to characterize the precedence Shapley value
and the hierarchical solution for games under precedence constraints.

Theorem 4.6 A solution for games with acyclic permission structure is equal
to the conjunctive permission value φc if and only if it satisfies efficiency,
linearity, inessential player independence, predecessor necessity and equal-
strength.

Proof. It is straightforward to verify that the conjunctive permission value
satisfies the five axioms.

To prove uniqueness, suppose that solution f for games with an acyclic
permission structure satisfies the five axioms. Consider any (N,D) ∈ D and
∅ ̸= T ⊆ N .

Efficiency and inessential player independence imply the inessential player
property, and thus

fi(N, uT , D) = 0 for all i ∈ N \ (T ∪ P̂D(T )). (4.11)

Repeated application of predecessor necessity implies that f(N, uT , D) =
f(N, uT∪P̂D(T ), D).

Inessential player independence implies that for all i ∈ T ∪ P̂D(T )

fi(N, uT∪P̂D(T ), D) = fi(T ∪ P̂D(T ), uT∪P̂D(T ), D(T ∪ P̂D(T ))). (4.12)

Equal strength implies that there is an α ∈ IR such that

fi(T ∪ P̂D(T ), uT∪P̂D(T ), D(T ∪ P̂D(T ))) = α for all i ∈ T ∪ P̂D(T ). (4.13)

Efficiency then implies that α = 1

|T∪P̂D(T )|
.

With (4.12) it then follows for all i ∈ T ∪ P̂D(T ),

fi(N, uT∪P̂D(T ), D) = fi(T∪P̂D(T ), uT∪P̂D(T ), D(T∪P̂D(T ))) =
1

|T ∪ P̂D(T )|
.

(4.14)
With (4.11) then f(N, uT , D) is determined.
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Since efficiency and inessential player independence imply the inessential
player property, for a null game v0(S) = 0 for all S ⊆ N , and thus we have
that fi(N, v0, D) = 0 for all i ∈ N and (N,D) ∈ D.

Since f satisfies linearity, the solution f(N, v,D) is uniquely determined
and coincides with the conjunctive permission value, for any (N, v,D) ∈ GPS .

Now, an obvious next question is if we can generalize the equal strength to
p-strength also in this context. This can be done, and it yields the following
class of solutions where the Harsanyi dividends in the conjunctive restricted
game are allocated proportional to a network power measure.

Definition 4.2 For positive power measure p, the p-permission value is the
solution for games with a permission structure given by

Ĥp
i (N, v,D) =

∑
S⊆N

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆rcv,D
(S)

(4.15)

=
∑

S∈Φc(N,D)

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆rcv,D
(S) for all i ∈ N.

A main difference with the precedence power solutions is that now we con-
sider the Harsanyi dividends in the conjunctive restricted game rcv,D instead
of the original game v on the domain.

Theorem 4.7 A solution for games with an acyclic permission structure is
equal to the p-permission value Ĥp if and only if it satisfies efficiency, linearity,
inessential player independence, predecessor necessity and p-strength.

The proof of uniqueness follows straightforward from the proof of The-
orem 4.6 by replacing (4.13), which followed from equal strength, applying
p-strength:

pi(N,D)fj(N, uN , D) = pj(N,D)fi(N, uN , D),

when (N,D) = (T ∪ P̂D(T ), D(T ∪ P̂D(T ))). Together with efficiency, this
determines the payoffs in f(T∪P̂D(T ), uT∪P̂D(T ), D(T∪P̂D(T ))). We will refer
to the solutions characterized in Theorem 4.7 as permission power solutions.
Logical independence of the axioms is again shown in Section 4.5.

An interesting question is now also to see which precedence power solution
on GPC satisfies equal strength, i.e., the p-strength axiom with the equal power
measure that is used to characterize the conjunctive permission value on GPS
in Theorem 4.6. It turns out that this gives essentially the Shapley value,
i.e., the solution S̃h on GPC that to every game under precedence constraints
assigns the Shapley value of the unrestricted game (extended to the power set
of N), i.e.,

S̃hi(N, v,D) = Sh(N, v) for all (N, v,D) ∈ GPC ,
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where v ∈ GN is given by ∆v(S) = ∆D
v (S) if S ∈ Φp(N,D), and ∆v(S) = 0 if

S ̸∈ Φp(N,D).

4.5 Logical Independence
In this section, we present alternative solutions for games with a hierarchy
that show logical independence of the axioms in the main theorems in Section
4.4.

4.5.1 Logical Independence of the Axioms in Theorem 4.5
The following alternative solutions each satisfy all but one of the axioms in
Theorem 4.5.

1. Consider the solution fzero on GPC that always assigns zero payoff to
every player in every game under precedence constraint, i.e.,

fzeroi (N, v,D) = 0 for all i ∈ N and (N, v,D) ∈ GPC .

This solution satisfies all axioms of Theorem 4.5 except efficiency.

2. For positive power measure p, consider the solution f on GPC that allo-
cates the dividend of every coalition proportional to the power measure
p among all relevant players, i.e., for all i ∈ N and (N, v,D) ∈ GPC

fi(N, v,D) = Hp
i (N, v(N)u∪

{T∈Φp(N,D),∆D
v (T )̸=0} T

, D).

This solution satisfies all axioms of Theorem 4.5 except linearity.

3. For positive power measure p, consider the solution f on GPC that al-
locates the dividends of every coalition in every game under precedence
constraints proportional to the power values p(N,D), i.e., for positive
power measure p,

fpi (N, v,D) =
∑

S∈Φp(N,D)

i∈S

pi(N,D)∑
j∈S pj(N,D)

∆D
v (S) for all i ∈ N.

Compared to the precedence power solutions, these solutions allocate
the dividend of coalition S proportional to the power values p(N,D)
in the original digraph instead of the power values p(S,D(S)) in the
subgraphs on S. This solution satisfies all axioms of Theorem 4.5 except
irrelevant player independence.
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4. Let the equal network power measure γ be given by γi(N,D) = 1
|N | for

all i ∈ N and (N,D) ∈ D. For p ̸= γ, consider the solution S̃h = Hγ on
GPC . This solution satisfies all axioms of Theorem 4.5 except p-strength.
For p = γ, the hierarchical solution satisfies all axioms of Theorem 4.5
except γ-strength.

4.5.2 Logical Independence of the Axioms in Theorem 4.7
The following alternative solutions each satisfy all but one of the axioms in
Theorem 4.7.

1. Solution fzero assigning zero payoff to every player in every game with a
permission structure satisfies all axioms of Theorem 4.7 except efficiency.

2. For positive power measure p, consider the solution f for games with a
permission structure that allocates the dividend of every coalition in the
conjunctive restricted game proportional to the power measure p among
all essential players, i.e., for all i ∈ N and (N, v,D) ∈ GPS ,

fi(N, v,D) = Ĥp
i (N, v(N)u∪

{T⊆N,∆rc
v,D

(T )̸=0} T
, D).

This solution satisfies all axioms of Theorem 4.7 except linearity.

3. For positive power measure p, consider the solution f for games with a
permission structure that allocates the dividends of every coalition in the
conjunctive restricted game proportional to the power values p(N,D),
i.e., for positive power measure p,

fpi (N, v,D) =
∑
S⊆N

i∈S

pi(N,D)∑
j∈S pj(N,D)

∆rcv,D
(S) for all i ∈ N.

This solution satisfies all axioms of Theorem 4.7 except inessential player
independence.

4. For positive power measure p, consider the solution that allocates the
dividend of every coalition S in the original game proportional to the
power measure p(S,D(S)) in the subgraph on S, i.e.,

H̃p
i (N, v,D) =

∑
S⊆N

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆v(S) for all i ∈ N.

This solution satisfies all axioms of Theorem 4.7 except predecessor ne-
cessity.
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5. For p ̸= γ, the conjunctive permission value satisfies all axioms of Theo-
rem 4.7 except p-strength. For p = γ, the p-permission power value with
p = h being the hierarchical strength satisfies all axioms of Theorem 4.7
except γ-strength.

4.6 Conclusions
The goal of this chapter is to review and compare two well-known approaches
to games with a hierarchy in the literature: The permission structure approach
and the precedence constraint approach. Moreover, by a new axiomatization
of the conjunctive permission value, we could extend this solution and its
axiomatization to define the new class of permission power solutions which is
characterized by axioms that make it comparable with the class of precedence
power solutions.

There are several extensions of the model that can be considered. For
example, instead of digraphs, other combinatorial structures might repre-
sent some relational structure among the players. A ‘natural’ extension of
games with a permission structure are games on antimatroids, see Algaba et
al. (2003, 2004b). Antimatroids are combinatorial structures introduced by
Dilworth (1940), see also Edelman and Jamison (1985) which, besides permis-
sion structures, also generalize other models such as ordered partition voting
where players are partitioned into levels, and a coalition in a certain level can
be active only if a majority of players in higher levels approve. Since antima-
troids are union closed (i.e., the union of any two feasible coalitions is also
feasible), a similar approach for games with a permission structure can be fol-
lowed by defining a restricted game that assigns to every coalition the worth of
its largest feasible subset in the original game, and applying the Shapley value
(or any other TU-game solution) to this restricted game. Different extensions
of the Shapley value for games on union closed systems are considered in van
den Brink et al. (2011b). An even more general model is games on union stable
systems, see Algaba et al. (2000, 2001a), and Algaba et al. (2001b, 2004a),
where feasibility of the union of two feasible coalitions is only required if the
two coalitions have a non-empty intersection, which reflects the communica-
tion feature. In this framework, Algaba et al. (2015) applied power measures to
distribute dividends in games on union stable systems extending some results
given in Algaba et al. (2012) about the Myerson and position values. Network
structures taking into account both hierarchical and communication features
have been introduced in Algaba et al. (2018). A ‘natural’ structure to extend
games under precedence constraints is augmenting systems (see Bilbao (2003)
and Algaba et al. (2010)) and regular set systems (see Honda and Grabisch
(2006) and Lange and Grabisch (2009)).
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In this chapter, (i) we recall one axiomatization of the conjunctive per-
mission value, and one from the precedence Shapley value from the literature,
(ii) we applied network power measures to define two classes of solutions from
them, and (iii) developed these axiomatizations further into two comparable
axiomatizations of these two classes. Further work can be done to see if other
types of axioms can be part of comparable axiomatizations, such as axiomati-
zations using some type of fairness axiom (see van den Brink (1997) for games
with a permission structure, Algaba et al. (2003) for games on antimatroids,
and Algaba et al. (2001a) for games on union stable systems). Further re-
search will include the introduction and analysis of the disjunctive permission
approach in the context of games under precedence constraints.

The connection between game theoretic payoff allocation and social net-
work power measures gives insight in different solutions which might be helpful
in applications. In this chapter, on one hand, within each of these two classes
of solutions, different network power measures yield different solutions from
the class. But on the other hand, taking one specific power measure we obtain
two solutions, one from each class.

In this chapter, we applied power measures to define solutions for coop-
erative games with a hierarchical network structure. The other way around,
solutions for games on (directed or undirected) networks can be used to mea-
sure power or centrality in networks. Taking a (symmetric) game and applying
a solution for graph games yield such a power measure. For example, Gómez et
al. (2003) apply the Myerson value for communication graph games to certain
symmetric games restricted on an undirected graph in the sense of Myerson
(1977), measuring different types of centrality in undirected graphs. Similarly,
we can apply the precedence power or permission power solutions to games
with a hierarchical structure to obtain power measures for acyclic digraphs.
Obviously, when we use the unanimity game of the grand coalition, we get
the same power measure that we use for the solution. But, as done in Gómez
et al. (2003) for undirected graphs, other games can be used.

Without going into power measurement, notice that network centrality
has a very different effect in the precedence approach than in the permission
approach. Consider a strict hierarchical network that is represented by a linear
order {(ik, ik+1) | k = 1, . . . n − 1}. Both in the permission as well as the
precedence approach, the top player i1 is ‘powerful’ in obtaining a share in
the worth of the game. However, there is a difference considering the networks
Φc(N,D) and Φp(N,D). Since Φc(N,D) = {{i1, . . . , il} | l = 1, . . . , n}, the
top player i1 can be considered to be the most central since it belongs to every
feasible coalition. However, since Φp(N,D) = {{il, . . . , in} | l = 1, . . . , n}, in
the precedence approach the top player i1 seems to be the least central since
the only feasible coalition it belongs to is the grand coalition. On the other
hand, the bottom player in seems to be the most central and belongs to every
feasible coalition. Notice that in the precedence approach, being a bottom
player means that you are feasible as a singleton, but then you can be the first
player to enter in an admissible permutation, and if you have a predecessor in
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the hierarchy, you will never be the last to enter which is disadvantageous in,
for example, convex games. On the other hand, being in few feasible coalitions
means that you more often enter as the last player, which in many games (in
particular in convex games) gives you a benefit.
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5.1 Introduction
In game theory, the axiomatic approach to a solution S for a particular prob-
lem consists of identifying a collection of properties that a sensible solution
for the problem should satisfy and, then, proving that S is the unique solu-
tion that satisfies those properties. The axiomatic approach is a useful tool to
understand better the available solutions to address a particular problem; the
game theorist can use this approach to identify the most appropriate solution,
simply identifying that one whose supporting properties are more adequate
for the situation at hand.
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In general, there can be several axiomatic characterizations of a particular
solution. For instance, a number of axiomatic characterizations of the Shapley
value of TU-games have been proposed in the literature: The seminal one in
[8], one without the additivity property in [10], one based on the potential ap-
proach in [6], etc. Probably the most common way to introduce axiomatically
the Shapley value is to use the properties of efficiency, symmetry, additivity
and null player (see for example [7]).

In [4] the nullifying players are defined; a nullifying player is one such
that all the coalitions containing him have zero worth (i.e., the characteristic
function of the TU-game maps every coalition containing a nullifying player to
zero). Recently, some properties in relation with nullifying players have been
proposed and their relations with well-known values of TU-games have been
explored. In [9] the nullifying players get nothing property was introduced:
A value satisfies this property if it allocates zero to any nullifying player
of any TU-game. Moreover, [9] proves that the equal division value is the
unique value for TU-games that satisfies efficiency, symmetry, additivity and
nullifying players gets nothing. In [1] two other properties concerning nullifying
players are studied. First, the nullifying players pay for the mean property
states that a value must allocate to any nullifying player of any TU-game
minus the average worth nullified by him. Second, the nullifying players pay for
the weighted mean property states that a value must allocate to any nullifying
player of any TU-game minus the weighted average worth nullified by him,
the weights being related to the coalition sizes (this property had already
been introduced in [2] for the so-called games with optimistic aspirations, a
kind of generalization of TU-games). Besides, [1] characterizes the Shapley
value using the nullifying player pays for the weighted mean property, and the
Banzhaf value using the nullifying player pays for the mean property.

Later on, the concept of dummifying players is introduced in [3] to illus-
trate the difference between the Shapley value, the equal division value and
the equal surplus division value. A dummifying player is one such that each
coalition containing him has a worth equal to the sum of the individual pay-
offs of its members. The authors also introduce the dummifying players get
their individual payoffs property; a value satisfies this property if it allocates
his individual payoff to any dummifying player of any TU-game. Moreover,
[3] proves that the equal surplus division value is the unique value for TU-
games that satisfies efficiency, symmetry, additivity and dummifying players
get their individual payoffs.

In this chapter we first provide new axiomatic characterizations of the
Shapley and Banzhaf values using properties concerning nullifying players (in
Section 5.2). Then, in Section 5.3 we introduce a novel value for TU-games
using an axiomatic approach: The e-Banzhaf value. Specifically, we take the
properties of efficiency, symmetry, additivity, and combine them with the
property for nullifying players that we consider most natural: The nullifying
players pay for the mean property. We prove that these four properties char-
acterize the e-Banzhaf value. This novel value possesses some properties of
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the Shapley value and some of the Banzhaf value, and can be seen as a kind
of efficient variation of the Banzhaf value. However, it is not invariant to S-
equivalence. In Section 5.4 we first provide new axiomatic characterizations of
the Shapley and Banzhaf values using properties concerning dummifying play-
ers. We also show that the e-Banzhaf value does not satisfy the property for
dummifying players that we consider most natural: The dummifying players
pay for the mean property. Finally, in Section 5.5 we introduce an alternative
novel value for TU-games: The ie-Banzhaf value. It is the unique value for
TU-games that satisfies efficiency, symmetry, additivity and the dummifying
players pay for the mean property. We prove that the ie-Banzhaf value is
a kind of efficient variation of the Banzhaf value and that it is invariant to
S-equivalence. To finish this chapter, we include a section of conclusions.

5.2 Axiomatic Characterizations and Nullifying Players
A cooperative game with transferable utility (in short, a TU-game) is given
by a finite set of players N , with cardinality n, and a map v : 2N → R that
satisfies v(∅) = 0; v is called the characteristic function of the game. Let (N, v)
be a TU-game; we say that

• i, j ∈ N are symmetric players in (N, v) if v(S ∪ i) = v(S ∪ j) for every
S ⊆ N \ {i, j} (notice that we denote singletons {i} and {j} simply as
i and j),

• i ∈ N is a null player in (N, v) if v(S ∪ i) = v(S) for every S ⊆ N \ i,

• i ∈ N is a nullifying player in (N, v) if v(S) = 0 when i ∈ S.

A value for TU-games is a map f that assigns to each TU-game (N, v) a vector
(fi(N, v))i∈N ∈ RN . Two important values for TU-games are the Shapley
value φ and the Banzhaf value β defined below:

φi (N, v) =
∑

S⊆N\i

s!(n− s− 1)!

n!
(v (S ∪ i)− v (S)),

for every TU-game (N, v) and every i ∈ N , where s denotes the cardinality of
S, and

βi (N, v) =
1

2n−1

∑
S⊆N\i

(v (S ∪ i)− v (S)),

for every TU-game (N, v) and every i ∈ N .
We list now a collection of properties that have been used to provide

characterizations of the Shapley and Banzhaf values. Let f be a value for
TU-games.
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Efficiency (EFF). f satisfies efficiency if for any TU-game (N, v) , it holds
that ∑

i∈N
fi (N, v) = v (N) .

Total power (TP). f satisfies total power if for any TU-game (N, v) , it
holds that ∑

i∈N
fi (N, v) =

1

2n−1

∑
i∈N

∑
S⊆N\i

(v (S ∪ i)− v (S)).

Symmetry (SYM). f satisfies symmetry if for any TU-game (N, v) and for
all pair of symmetric players i, j ∈ N in (N, v) it holds that

fi (N, v) = fj (N, v) .

Null player (NP). f satisfies null player if for any TU-game (N, v) and for
any null player i ∈ N in (N, v) it holds that

fi (N, v) = 0.

Additivity (ADD). f satisfies additivity if for any pair of TU-games
(N, v) , (N,w) and for any player i, it holds that

fi (N, v + w) = fi (N, v) + fi (N,w) .

The Shapley value is the unique value for TU-games satisfying efficiency,
symmetry, null player and additivity (see for example [7]). A similar charac-
terization of the Banzhaf value is obtained changing efficiency by total power;
i.e., the Banzhaf value is the unique value for TU-games satisfying total power,
symmetry, null player and additivity (see [5]).

Recently, some properties in relation with nullifying players have been
proposed and their relations with well-known values of TU-games have been
explored. In [9] the following property was introduced.
Nullifying players get nothing (NPN). f satisfies nullifying players get
nothing if for any TU-game (N, v) and for any nullifying player i ∈ N in (N, v)
it holds that

fi (N, v) = 0.

In words, a value satisfies nullifying players get nothing if it allocates zero to
any nullifying player of any TU-game. To show the relevancy of this property,
we define below the equal division value δ:

δi (N, v) =
v(N)

n
,

for every TU-game (N, v) and every i ∈ N . [9] proves that commuting the
properties null player and nullifying players get nothing, two similar axiomatic
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characterizations of the Shapley and equal division values are obtained. More
specifically, [9] shows that the equal division value is the unique value for
TU-games satisfying efficiency, symmetry, nullifying players get nothing and
additivity.

In [1] two other properties concerning nullifying players are studied. First,
the nullifying players pay for the mean property states that a value must allo-
cate to any nullifying player of any TU-game minus the average worth nullified
by him. This property adapts to TU-games a similar property introduced in
[2] for the so-called games with optimistic aspirations, a kind of generalization
of TU-games. Second, the nullifying players pay for the weighted mean prop-
erty states that a value must allocate to any nullifying player of any TU-game
minus the weighted average worth nullified by him, the weights being related
to the coalition sizes.
Nullifying players pay for the mean (NPM). f satisfies nullifying players
pay for the mean if for any TU-game (N, v) and for any nullifying player i ∈ N
in (N, v) it holds that

fi (N, v) = −
1

2n−1

∑
S⊆N

v (S) .

Nullifying players pay for the weighted mean (NPWM). f satisfies
nullifying players pay for the weighted mean if for any TU-game (N, v) and
for any nullifying player i ∈ N in (N, v) it holds that

fi (N, v) = −
1

n

∑
S⊆N

1(
n−1
s

)v (S) .
The two properties above are used in [1] to provide characterizations of

the Shapley and Banzhaf values (jointly with additivity and other properties
concerning the so-called necessary players). Now we present novel characteri-
zations of the Shapley and Banzhaf values that follow easily from the results
in [2] and [1]. For the proofs we use that the set of characteristic functions
of TU-games with player set N is a vector space whose canonical basis is
{eS}S∈2N\∅, where eS(S) = 1 and eS(T ) = 0 for all T ⊆ N with T ̸= S.

Theorem 5.1 The Shapley value is the unique value for TU-games that sat-
isfies efficiency, symmetry, nullifying players pay for the weighted mean and
additivity.

Proof. It is well known that the Shapley value satisfies efficiency, symmetry
and additivity. According to [1], it also satisfies nullifying players pay for the
weighted mean. It is easy to check that efficiency, symmetry and nullifying
players pay for the weighted mean characterize the Shapley value within the
class of TU-games corresponding to the elements of the canonical basis of the
set of characteristic functions of TU-games with player set N . Then, additivity
implies the uniqueness.
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Theorem 5.2 The Banzhaf value is the unique value for TU-games that sat-
isfies total power, symmetry, nullifying players pay for the mean and additivity.

Proof. It is well known that the Banzhaf value satisfies total power, symmetry
and additivity. According to [1], it also satisfies nullifying players pay for the
mean. It is easy to check that total power, symmetry and nullifying players
pay for the mean characterize the Banzhaf value within the class of TU-games
corresponding to the elements of the canonical basis of the set of character-
istic functions of TU-games with player set N . Then, additivity implies the
uniqueness.

From the point of view of fairness, which of the three properties for nullify-
ing players discussed above is the most natural? It is true that only nullifying
players get nothing is respectful with individual rationality for the nullifying
players, because if i ∈ N is a nullifying player in a TU-game (N, v), then
v(i) = 0 and nullifying players pay for the weighted mean and nullifying
players pay for the mean imply that all nullifying players receive negative al-
locations. However, individual rationality has more to do with stability than
with fairness. It is also true that a nullifying player will somehow be forced
to leave the game if a value satisfying nullifying players pay for the weighted
mean or nullifying players pay for the mean is used. Nevertheless our ques-
tion is about fair allocations of v(N) among the fixed players of a game, and
not about allocations of v(N) that will encourage the players to stay or not
in the game. From this point of view of fairness, we believe that nullifying
players pay for the weighted mean and nullifying players pay for the mean are
preferable to nullifying players get nothing. But once we have decided that
nullifying players have to return the value they nullify, it seems most natural
to treat all the coalitions equally, i.e., we prefer nullifying players pay for the
mean to nullifying players pay for the weighted mean. In the next section, we
introduce a novel value for TU-games that satisfies nullifying players pay for
the mean and, moreover, is efficient.

5.3 The e-Banzhaf Value for TU-Games
We start this section proving that efficiency, symmetry, nullifying players pay
for the mean and additivity characterize a unique value for TU-games.

Theorem 5.3 There exists a unique value σ for TU-games that satisfies ef-
ficiency, symmetry, nullifying players pay for the mean and additivity. It is
given by:

σi(N, v) =
1

2n−1

 ∑
S⊂N,i∈S

n− s
s

v(S)−
∑

S⊂N,i̸∈S

v(S)

+
v(N)

n
(5.1)

for every TU-game (N, v) and every i ∈ N .
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Proof. (Existence). It is clear that σ satisfies nullifying players pay for the
mean and additivity. To check that it satisfies efficiency notice that, for every
TU-game (N, v),

∑
i∈N

σi(N, v) =
1

2n−1

∑
i∈N

 ∑
S⊂N,i∈S

n− s
s

v(S)−
∑

S⊂N,i̸∈S

v(S)

+ v(N)

=
1

2n−1

(∑
S⊂N

s
n− s
s

v(S)−
∑
S⊂N

(n− s)v(S)

)
+ v(N)

= v(N).

To check that σ satisfies symmetry, take a TU-game (N, v) and a pair of
symmetric players in (N, v) i, j ∈ N . Notice that:∑

S⊂N,i∈S

n− s
s

v(S)−
∑

S⊂N,i̸∈S

v(S) =

∑
S⊆N\i

n− s− 1

s+ 1
v(S ∪ i)−

∑
S⊆N\i

v(S) =

∑
S⊆N\{i,j}

(
n− s− 1

s+ 1
v(S ∪ i) +

n− s− 2

s+ 2
v(S ∪ i ∪ j)

)
−

∑
S⊆N\{i,j}

(v(S) + v(S ∪ j)) .

Now, since i, j are symmetric in (N, v), the last expression is equal to:

∑
S⊆N\{i,j}

(
n− s− 1

s+ 1
v(S ∪ j) +

n− s− 2

s+ 2
v(S ∪ i ∪ j)

)
−

∑
S⊆N\{i,j}

(v(S) + v(S ∪ i)) ,

and then it is clear that σi(N, v) = σj(N, v).
(Uniqueness). Take f , a value for TU-games that satisfies efficiency, symmetry,
nullifying players pay for the mean and additivity and take a TU-game (N, v).
We will prove that f(N, v) = σ(N, v). Consider the canonical basis of the
vector space of characteristic functions of TU-games with set of players N :
{eS}S∈2N\∅. v can be written in a unique way as a linear combination of
the elements of the canonical basis: v =

∑
S∈2N\∅ v(S)eS . Since f satisfies

additivity,
f(N, v) =

∑
S∈2N\∅

f(N, v(S)eS).

Notice that efficiency, symmetry and nullifying players pay for the mean char-
acterize a unique value in the class of games {(N, v(S)eS) | S ⊆ N,S ̸= ∅}.
Hence, f(N, v) = σ(N, v).
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Example 5.1 Consider the TU-game (N, v) with

• N = {1, 2, 3},

• v(1) = v(2) = v(3) = v(23) = 0, v(12) = v(13) = v(N) = 1.

(N, v) is the glove game. It is easy to check that σ(N, v) = ( 7
12 ,

5
24 ,

5
24 ). Notice

that the Shapley value for this game is ( 8
12 ,

1
6 ,

1
6 ), which means that the Shapley

value and our novel value behave in a similar way in the glove game, although
the Shapley value is slightly more beneficial for the player possessing the scarce
glove.

Comparing Theorem 5.2 and Theorem 5.3, it is clear that σ is a kind
of efficient version of the Banzhaf value; from now on, we refer to σ as the
e-Banzhaf value. In view of the similarities between the Banzhaf and the
e-Banzhaf values, we provide an expression that relates them. Take a TU-
game (N, v) and a player i ∈ N . Then,

σi(N, v) =
1

2n−1

 ∑
S⊂N,i∈S

n− s
s

v(S)−
∑

S⊂N,i̸∈S

v(S)

+
v(N)

n

=
1

2n−1

 ∑
S⊆N\i

n− s− 1

s+ 1
v(S ∪ i)−

∑
S⊆N\i

v(S)

+
v(N)

n

=
1

2n−1

 ∑
S⊆N\i

(v(S ∪ i)− v(S))−
∑

S⊆N\i

(2− n

s+ 1
)v(S ∪ i)


+
v(N)

n

= βi(N, v)−
1

2n−1

∑
S⊆N\i

(2− n

s+ 1
)v(S ∪ i) + v(N)

n
.

It is interesting to note that the e-Banzhaf value is an ideal value in the
sense of [11]. In fact, it is proved in [11] that a value belongs to the family of
ideal values if and only if it is linear and it satisfies efficiency, symmetry and
the property coalitional monotonicity given below.
Coalitional monotonicity (CMON). f satisfies coalitional monotonicity if
for any pair of TU-games (N, v) and (N,w) fulfilling that there exists T ⊆ N
with v(T ) > w(T ) and v(S) = w(S) for all S ⊆ N , S ̸= T , it holds that

fi(N, v) ≥ fi(N,w).

for all i ∈ T .
In view of (5.1), it is clear that the e-Banzhaf value satisfies coalitional

monotonicity. Since the e-Banzhaf value is linear and satisfies efficiency and
symmetry, it is an ideal value.



Values, Nullifiers and Dummifiers 83

Let us see now a new example concerning the e-Banzhaf value. It is some-
how puzzling, although it eventually shows a property of the e-Banzhaf value
that might be desirable in some circumstances.

Example 5.2 Consider the TU-game (N, v) with

• N = {1, 2, 3},

• v(1) = v(2) = 1, v(3) = 10, v(12) = 2, v(13) = v(23) = 11, v(N) = 12.

Notice that (N, v) is an additive game and then

I(N, v) = C(N, v) = {(1, 1, 10)},

where I(N, v) and C(N, v) denote the set of imputations and the core of (N, v),
respectively. It is easy to check that

σ(N, v) = (0.625, 0.625, 10.75) ̸∈ I(N, v) = C(N, v).

In principle, one might expect that a fair value proposes for this game the
allocation (1, 1, 10). However, notice that the e-Banzhaf value is rather severe
with the nullifying players and this severity is somehow transferred to the
players who contribute little. That is the reason why (0.625, 0.625, 10.75) is
proposed for the game in this example; it is as if the e-Banzhaf value is based
on the principle, “those who contribute little can even lose part of what they
contribute”.

Let us formulate now a property for the e-Banzhaf value that partially
collects the intuition we obtained from Example 5.2. First, we remember the
definition of dummy player and the dummy player property. We say that i ∈ N
is a dummy player in a TU-game (N, v) if v(S ∪ i) = v(S) + v(i) for every
S ⊆ N \ i.
Dummy player (DP). A value for TU-games f satisfies dummy player if for
any TU-game (N, v) and for any dummy player i ∈ N in (N, v) it holds that

fi (N, v) = v(i).

Consider now a TU-game (N, v) and assume that i, j ∈ N are two dummy
players in (N, v) with v(i) > v(j). If f is a value satisfying the dummy player
property, then fi(N, v)− fj(N, v) = v(i)− v(j). Differently, the next theorem
shows that if n ≥ 3, then σi(N, v)− σj(N, v) > v(i)− v(j).

Theorem 5.4 Consider a TU-game (N, v) and assume that n ≥ 3 and that
i, j ∈ N are two dummies in (N, v) with v(i) > v(j). Then,

σi(N, v)− σj(N, v) > v(i)− v(j).
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Proof. In the proof of Theorem 5.3 we showed that for every pair of different
players i, j in (N, v) it holds that

σi(N, v) =
1

2n−1

∑
S⊆N\{i,j}

(
n− s− 1

s+ 1
v(S ∪ i) + n− s− 2

s+ 2
v(S ∪ i ∪ j)

)

− 1

2n−1

∑
S⊆N\{i,j}

(v(S) + v(S ∪ j)) + v(N)

n
.

Since i and j are dummies in (N, v), then

σi(N, v) =
1

2n−1

∑
S⊆N\{i,j}

n− s− 1

s+ 1
(v(S) + v(i))

+
1

2n−1

∑
S⊆N\{i,j}

n− s− 2

s+ 2
(v(S) + v(i) + v(j))

− 1

2n−1

∑
S⊆N\{i,j}

(v(S) + v(S) + v(j)) +
v(N)

n
.

Consequently,

σi(N, v)− σj(N, v) =
1

2n−1

∑
S⊆N\{i,j}

n− s− 1

s+ 1
(v(i)− v(j))

+
1

2n−1

∑
S⊆N\{i,j}

(v(i)− v(j))

= (v(i)− v(j))
2n−2 +

n−2∑
s=0

(
n− 2
s

)
n− s− 1

s+ 1

2n−1
.

Notice that
n−2∑
s=0

(
n− 2
s

)
n− s− 1

s+ 1
=

n−2∑
s=0

(
n− 2
s

)
n

s+ 1
− 2n−2 =

n
n−2∑
s=0

(n− 1)!

(s+ 1)!(n− s− 2)!

1

n− 1
− 2n−2 =

n

n− 1

n−2∑
s=0

(
n− 1
s+ 1

)
− 2n−2 =

n

n− 1
(2n−1 −

(
n− 1
0

)
)− 2n−2.

Finally,

2n−2 +
n−2∑
s=0

(
n− 2
s

)
n− s− 1

s+ 1

2n−1
=

n
n−1 (2

n−1 − 1)

2n−1
=

n

n− 1
(1− 1

2n−1
),
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and the last expression is greater than one if n ≥ 3; therefore, the proof is
concluded.

We finish this section indicating a negative property of the e-Banzhaf value
that is implied by Example 5.2. Remember that two TU-games with the same
set of players (N, v) and (N,w) are said to be S-equivalent if there exist a ∈ R
with a > 0 and b ∈ RN such that, for every T ⊆ N , it holds that

w(T ) = av(T ) +
∑
j∈T

bj .

Next we remember an important property of a value for TU-games.
Invariance to S-equivalence (INV). A value for TU-games f satisfies
invariance to S-equivalence if for any pair of S-equivalent TU-games (N, v)
and (N,w) such that w(T ) = av(T ) +

∑
j∈T bj for all T ⊆ N (with a ∈ R,

a > 0 and b ∈ RN ) it holds that, for every i ∈ N ,

fi(N,w) = afi(N, v) + bi.

It is easy to check that if a value f for TU-games satisfies invariance to S-
equivalence, efficiency and symmetry and (N, v) is an additive TU-game, then
f(N, v) = (v(j))j∈N . Hence, in view of Example 5.2 and taking into account
that the e-Banzhaf value satisfies efficiency and symmetry, it is clear that it
does not satisfy invariance to S-equivalence. In Section 5.5 we introduce a
variant of the e-Banzhaf value that satisfies invariance to S-equivalence.

5.4 Dummifying Players
In [3] the concept of dummifying players is introduced to illustrate the differ-
ence between the Shapley value, the equal division value and the equal surplus
division value. We start this section by reminding you of this definition. Let
(N, v) be a TU-game. We say that i ∈ N is a dummifying player in (N, v)
if v(S) =

∑
j∈S v(j) for all S ⊆ N with i ∈ S. We give now a property of a

value f for TU-games introduced in [3] concerning the dummifying players.
Dummifying players get their individual payoffs (DPIP). f satisfies
dummifying players get their individual payoffs if for any game (N, v) and for
any dummifying player i ∈ N in (N, v) it holds that

fi (N, v) = v(i).

The property dummifying players get their individual payoffs is used in [3]
to characterize the equal surplus division value. Before introducing this value,
we give a preliminary definition. Take a TU-game (N, v); its corresponding
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zero normalized TU-game is (N, v0), where v0(S) = v(S)−
∑
j∈S v(j) for all

S ⊆ N . Now, the equal surplus division value ES for TU-games is given by:

ESi(N, v) = v(i) +
v0(N)

n

for every TU-game (N, v) and every i ∈ N . In [3] it is proven that the equal
surplus division value is the unique value for TU-games satisfying efficiency,
symmetry, dummifying players get their individual payoffs and additivity;
remember that [9] shows that the equal division value is the unique value for
TU-games satisfying efficiency, symmetry, nullifying players get nothing and
additivity.

In the remainder of this section, we present some results relating the dum-
mifying players with the Shapley, Banzhaf and e-Banzhaf values. To start
with, we introduce two new properties concerning a value for TU-games that
somehow adapt nullifying players pay for the mean and nullifying players pay
for the weighted mean to dummifying players.
Dummifying players pay for the mean (DPM). f satisfies dummifying
players pay for the mean if for any game (N, v) and for any dummifying player
i ∈ N in (N, v) it holds that

fi (N, v) = v(i)− 1

2n−1

∑
S⊆N\i

v(S)−∑
j∈S

v(j)

 .

Dummifying players pay for the weighted mean (DPWM). f satisfies
dummifying players pay for the weighted mean if for any game (N, v) and for
any dummifying player i ∈ N in (N, v) it holds that

fi (N, v) = v(i)− 1

n

∑
S⊆N\i

1(
n−1
s

)
v(S)−∑

j∈S
v(j)

 .

Next we give two new characterizations of the Shapley and Banzhaf values
using the properties above.

Theorem 5.5 The Shapley value is the unique value for TU-games that sat-
isfies efficiency, symmetry, dummifying players pay for the weighted mean and
additivity.

Proof. It is well known that the Shapley value satisfies efficiency, symmetry
and additivity. Let us check that it satisfies dummifying players pay for the
weighted mean. Take a TU-game (N, v) and a dummifying player i ∈ N in
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(N, v). Then,

φi (N, v) =
∑

S⊆N\i

s!(n− s− 1)!

n!
(v (S ∪ i)− v (S))

=
∑

S⊆N\i

s!(n− s− 1)!

n!

 ∑
j∈S∪i

v(j)− v(S)


= v(i)− 1

n

∑
S⊆N\i

1(
n−1
s

)
v(S)−∑

j∈S
v(j)

 .

To prove the uniqueness, assume that f is a value for TU-games satisfying
efficiency, symmetry, dummifying players pay for the weighted mean and ad-
ditivity. Take now a TU-game (N, v). Notice that v = v0+av, where av is the
additive game given by av(S) =

∑
j∈S v(j) for all S ⊆ N . It is clear that v0

can be written in a unique way as a linear combination of the canonical basis
of the vector space of characteristic functions of TU-games with player set N
as:

v0 =
∑

S⊆N,|S|>1

v(S)e(S).

Notice that efficiency, symmetry and dummifying players pay for the weighted
mean characterize a unique value in the class of games {(N, v(S)eS) | S ⊆
N, |S| > 1} and that dummifying players pay for the weighted mean implies
that f(av) = φ(av) = (v(i))i∈N . Hence, f(N, v) = φ(N, v).

Theorem 5.6 The Banzhaf value is the unique value for TU-games that sat-
isfies total power, symmetry, dummifying players pay for the mean and addi-
tivity.

Proof. It is well known that the Banzhaf value satisfies total power, symmetry
and additivity. Let us check that it satisfies dummifying players pay for the
mean. Take a TU-game (N, v) and a dummifying player i ∈ N in (N, v). Then,

βi (N, v) =
1

2n−1

∑
S⊆N\i

(v (S ∪ i)− v (S))

=
1

2n−1

∑
S⊆N\i

 ∑
j∈S∪i

v(j)− v(S)


= v(i)− 1

2n−1

∑
S⊆N\i

v(S)−∑
j∈S

v(j)

 .

The uniqueness is proven analogously to the uniqueness in Theorem 5.5 using
total power and dummifying players pay for the mean instead of efficiency
and dummifying players pay for the weighted mean.
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Remember that the e-Banzhaf value is the unique value for TU-games that
satisfies efficiency, symmetry, nullifying players pay for the mean and addi-
tivity. Nevertheless, the e-Banzhaf value does not satisfy dummifying players
pay for the mean. To check it, just consider the game (N, v) in Example 5.2.
In (N, v) all the players are dummifying and, thus, a value satisfying dum-
mifying players pay for the mean associates to each player i the amount v(i).
However,

σ(N, v) = (0.625, 0.625, 10.75) ̸= (v(1), v(2), v(3)) = (1, 1, 10).

This feature suggests that a new value for TU-games can be defined using
the properties efficiency, symmetry, dummifying players pay for the mean and
additivity. We do it in the next section.

5.5 The ie-Banzhaf Value for TU-Games
We start this section proving that efficiency, symmetry, dummifying players
pay for the mean and additivity characterize a unique value for the class of
TU-games with set of players N .

Theorem 5.7 There exists a unique value ρ for TU-games that satisfies effi-
ciency, symmetry, dummifying players pay for the mean and additivity. It is
given by:

ρi(N, v) = σi(N, v
0) + v(i) (5.2)

for every TU-game (N, v) and every i ∈ N .

Proof. It is clear that ρ satisfies additivity. Since σ satisfies efficiency and
symmetry, it is immediate to check that ρ also satisfies efficiency and sym-
metry. To check that ρ satisfies dummifying players pay for the mean, take
a TU-game (N, v) and a dummifying player i ∈ N in (N, v). Since i is dum-
mifying in (N, v), then it is nullifying in (N, v0). Hence, taking into account
that σ satisfies nullifying players pay for the mean, it holds that:

ρi(N, v) = σi(N, v
0) + v(i) = − 1

2n−1

∑
S⊆N

v0 (S) + v(i)

= v(i)− 1

2n−1

∑
S⊆N\i

v(S)−∑
j∈S

v(j)

 .

The uniqueness is proven analogously to the uniqueness in Theorem 5.5 using
dummifying players pay for the mean instead of dummifying players pay for
the weighted mean.
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Comparing Theorems 5.6 and 5.7 it is clear that, like σ, ρ is a kind of
efficient version of the Banzhaf value. However, it is easy to check that, unlike
σ, ρ is invariant to S-equivalence. In fact, take a couple of S-equivalent TU-
games (N, v) and (N,w) such that, for every T ⊆ N , w(T ) = av(T )+

∑
j∈T bj

(a ∈ R with a > 0 and b ∈ RN ). Notice that, for all i ∈ N , taking into account
that av0 = w0 it holds that

aρi(N, v) + bi = a
(
σi(N, v

0) + v(i)
)
+ bi

= σi(N, av
0) + av(i) + bi

= σi(N,w
0) + w(i) = ρi(N,w),

and thus ρ is invariant to S-equivalence. From now on, we refer to ρ as the
ie-Banzhaf value.

It is a well-known feature that the Shapley value is the unique value for
TU-games satisfying efficiency, symmetry, dummy player and additivity (see
for instance [7]). Then, since the ie-Banzhaf value is efficient, symmetric and
additive, it is clear that it cannot satisfy dummy player. The following example
illustrates this feature; it also shows a supperadditive TU-game for which the
ie-Banzhaf value does not provide an imputation (i.e., it is not individually
rational).

Example 5.3 Consider the TU-game (N, v) with N = {1, 2, 3, 4} Wm =
{{2, 3}, {2, 4}, {3, 4}}, and

v(S) =

{
1 if there exists T ∈Wm such that T ⊆ S,
0 otherwise.

It is easy to check that ρ(N, v) = (− 1
8 ,

3
8 ,

3
8 ,

3
8 ) and, thus, ρ1(N, v) < v(1)

(notice that 1 is a dummy player in this game).

One may wonder if the ie-Banzhaf value is an ideal value in the sense of
[11]. The answer is negative because the ie-Banzhaf value does not satisfy
coalitional monotonicity, as we check below. Notice that for every TU-game
(N, u) and for every i ∈ N , in view of (5.1) and (5.2), ρi(N, u) can be written
as:

ρi(N, u) =
1

2n−1

∑
S⊂N,i∈S

n− s
s

u(S)−∑
j∈S

u(j)


− 1

2n−1

∑
S⊂N,i̸∈S

u(S)−∑
j∈S

u(j)

 (5.3)

+
1

n

u(N)−
∑
j∈N

u(j)

+ u(i).
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Take now (N, v), (N,w) and T ⊆ N as in the statement of coalitional mono-
tonicity. Using (5.3), it can be checked that

1. If T has two or more elements, then ρi(N, v) ≥ ρi(N,w) for all i ∈ T .

2. For every i ∈ N , if T = {i} then

ρi(N, v) ≥ ρi(N,w)⇐⇒ n ≤ 6.

Observe that item 2 implies that the ie-Banzhaf value does not satisfy coali-
tional monotonicity. Item 1 is clearly true. In order to check that item 2 is true,
notice that, according to (5.3), the coefficients of v(i) and w(i) are identical
and given by:

− 1

2n−1

∑
S⊂N,i∈S,S ̸=i

n− s
s
− 1

n
+ 1

= − 1

2n−1

n−1∑
s=2

n− s
s

(
n− 1
s− 1

)
− 1

n
+ 1

= − 1

2n−1

n−1∑
s=2

(
n− 1
s

)
− 1

n
+ 1

= − 1

2n−1
(2n−1 − 1− (n− 1))− 1

n
+ 1 =

n

2n−1
− 1

n
.

It is clear that n
2n−1 − 1

n ≥ 0 if and only if n ≤ 6, which implies that item 2 is
true.

5.6 Conclusions
In this chapter, we have provided new axiomatic characterizations for the
Shapley and Banzhaf values using properties involving nullifying players (in-
troduced in [4] and recently studied in [9] for the equal division value) or
involving dummifying players (introduced and studied in [3] for the equal sur-
plus division value). These new characterizations have prompted the introduc-
tion of two new values for TU-games: The e-Banzhaf value and the ie-Banzhaf
value. Both are efficient variations of the Banzhaf value; the ie-Banzhaf value
is also invariant to S-equivalence.

To conclude this chapter, we show in Table 5.1 a matrix summarizing
its main results. The matrix rows display the main properties we have dealt
with, and the matrix columns display the main values we have dealt with.
A blank cell indicates that the corresponding property is not satisfied by the
corresponding value. An asterisk in a cell indicates that the corresponding
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Properties Shapley Banzhaf e-Banzhaf ie-Banzhaf
EFF 1,2 1 1
TP 1,2

SYM 1,2 1,2 1 1
ADD 1,2 1,2 1 1
NPM 1 1

NPWM 1
DPM 2 1

DPWM 2
INV ∗ ∗ ∗

CMON ∗ ∗ ∗

TABLE 5.1: Properties and Values

property is satisfied by the corresponding value. A number i in a cell indicates
that the corresponding property is satisfied by the corresponding value and
that is one of the properties used in the i-th new axiomatic characterization
of the value. In this chapter, we have provided two new axiomatic charac-
terizations of the Shapley and Banzhaf values and one of the e-Banzhaf and
ie-Banzhaf values.
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6.1 Introduction
In this chapter, we survey the research studying cooperative games with trans-
ferable utility that induce the same Shapley values. The problem of identifying
all games that generate a given vector of Shapley values has been first con-
sidered by Kleinberg and Weiss (1985) and became known as the “inverse
problem” in the literature. Since the Shapley value is a linear operator on
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the space of games, the inverse problem is equivalent to characterizing its
kernel—the space of games in which the Shapley value assigns zero payoffs
to all players. We discuss several sets of games that reflect a clear balance
of power among players and coalitions and constitute bases for the kernel of
the Shapley value. We show how these games can be used to develop new
axiomatizations of the Shapley value.

Chapter 7 written by Yukihiko Funaki and Koji Yokote also derives bases
for the space of games by considering the inverse problem. That chapter fo-
cuses on a special class of the factious oligarchic games we define in this chap-
ter. We prove that the special power structure Yokote and Funaki impose on
factious oligarchic games is not necessary for the conclusion that each family
of such games forms a basis for the kernel of the Shapley value.

The chapter is organized as follows. Section 6.2 provides basic definitions
related to the Shapley value. In Section 6.3, we investigate the kernel of the
Shapley value. We present three bases for this kernel as well as an intuitive
characterization of games in the kernel. These classes of games lead to natural
axiomatizations of the Shapley value, which we present in Section 6.4. In
Section 6.5, we discuss how the bases for the kernel of the Shapley value can
be completed to construct bases for the space of all games. Section 6.6 surveys
alternative bases for the kernel of the Shapley value from the literature. Section
6.7 explores other interesting games that belong to the kernel of the Shapley
value. Finally, Section 6.8 provides proofs of the new results, and Section 6.9
concludes.

6.2 The Shapley Value
Fix a set N of n ≥ 2 players. A coalition is any subset of players S ⊆ N . A
game v with transferable payoffs, simply called a game henceforth, associates
a real number v(S) to any coalition S, which represents the value coalition
S can create and share among its members (v(∅) = 0). A solution ψ assigns
a payoff ψi(v) to each player i ∈ N for every game v. The kernel K(ψ) of a
solution ψ is the space of games in which ψ assigns 0 payoffs to all players:
K(ψ) = {v|ψi(v) = 0, ∀i ∈ N}.

Shapley (1953) proposed the following solution ϕ:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)),∀i ∈ N. (6.1)

This solution, now known as the Shapley value, has the following interpre-
tation. If players are ordered randomly (all orderings being equally likely),
then ϕi(v) represents the expected marginal contribution of player i to the
coalition formed by his predecessors. The Shapley value has many elegant
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properties. For a comprehensive treatment, the reader may consult the mono-
graph edited by Roth (1988) and the textbooks of Moulin (1988) and Osborne
and Rubinstein (1994). Here we discuss only some of its properties—most of
which Shapley introduced in his original paper—necessary for our analysis.
Since these properties have been used in the context of axiomatic characteri-
zations of the Shapley value, we refer to them as axioms.

Some preliminary definitions are necessary for stating the classic axioms.
Player i is null in game v if v(S ∪ {i}) = v(S) for all coalitions S. Players
i and j are interchangeable in v if v(S ∪ {i}) = v(S ∪ {j}) for all coalitions
S disjoint from {i, j}. A game v is inessential if v(S) =

∑
i∈S v({i}) for all

coalitions S.
Given the assumption that the empty coalition has value 0, we view games

as column vectors in the linear (vector) space R2N\{∅}, which has dimension
2n − 1. Likewise, we represent solutions (ψi(v))i∈N for specific games v as
column vectors in RN . Hence, for any pair of games v and w and real number
α, v+αw is the game in which the value of coalition S is given by v(S)+αw(S);
similarly, ψ(v) + αψ(w) denotes the vector (ψi(v) + αψi(w))i∈N . We use the
notation 0 for the zero vector in either R2N\{∅} or RN (the dimension will be
clear from the context).

It is well known that the Shapley value ϕ satisfies the following axioms:

Axiom (Null). Solution ψ satisfies the null axiom if ψi(v) = 0 whenever player
i is null in game v.

Axiom (Linearity). Solution ψ satisfies the linearity axiom (or is linear) if
ψ(v+αw) = ψ(v)+αψ(w) for every pair of games v and w and real number α.

Axiom (Symmetry). Solution ψ satisfies the symmetry axiom if ψi(v) = ψj(v)
whenever players i and j are interchangeable in game v.

Axiom (Inessential). Solution ψ satisfies the inessential axiom if ψi(v) =
v({i}) for all i ∈ N in every inessential game v.

In his original paper, Shapley identified a salient basis for the linear space
of all games—unanimity games—which also plays an important role in our
analysis. For every non-empty coalition T , the unanimity game uT with ruling
coalition T is specified as follows:

uT (S) =

{
1 if S ⊇ T
0 otherwise.

Shapley proved that the 2n − 1 games (uT )T∈2N\{∅} are linearly independent
and thus (uT )T∈2N\{∅} constitutes a basis for the (2n − 1)-dimensional space
of games R2N\{∅}.
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6.3 The Kernel of the Shapley Value
Given the natural embedding of games and solutions in the corresponding
linear spaces, the Shapley value can be expressed as ϕ(v) = Av, where A is
an n × (2n − 1) matrix that reflects the coefficients from formula (6.1). For
inessential games v, we have Av = ϕ(v) = (v({i}))i∈N because the Shapley
value satisfies the inessential axiom. Since the space of vectors (v({i}))i∈N
derived from inessential games v has dimension n, the matrix A must have
full row rank equal to n. It follows that, as Kleinberg and Weiss (1985) noted,
the set of games in which all players have Shapley value 0—the kernel K(ϕ) =
{v|Av = 0}—is a linear subspace of R2N\{∅} of dimension 2n − n− 1.

In what follows, we construct several sets of games, each spanning a space
of dimension 2n−n− 1, in which all players have Shapley value 0. Since K(ϕ)
has dimension 2n − n − 1 and contains each set of games, we conclude that
every set spans the full space K(ϕ).

An oligarchy is any coalition that consists of at least two players. The mem-
bers of an oligarchy are called oligarchs. Let O denote the set of oligarchies,
O = {O ⊆ N ||O| ≥ 2}. We define multiple games for every oligarchy O.

The dog eat dog game wO for oligarchy O is specified by

wO(S) =

{
1 if |S ∩O| = 1

0 otherwise.

This game has been introduced by Yokote (2015) and is called the commander
game in the follow-up paper of Yokote et al. (2016).

The scapegoat game w̄O for oligarchy O is specified by

w̄O(S) =

{
1 if |S ∩O| = |O| − 1

0 otherwise.

This game first appears in the study of Béal et al. (2016).
In the games constructed above, oligarchs have some power and are instru-

mental for value creation but the oligarchy is factious and cannot cooperate
effectively to realize any value. In dog eat dog games, a coalition creates value
only if it includes a single oligarch—the fierce “dog.” In scapegoat games, a
coalition generates value only if it contains all but one oligarch—the “scape-
goat.”

Funaki and Yokote (2019) construct a more general set of games with
disharmonious oligarchies as follows. The factious oligarchic game for oligarchy
O with parameter k (1 ≤ k ≤ |O| − 1) is given by

wOk (S) =

{
1 if |S ∩O| = k

0 otherwise.
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In order to generate a basis for the kernel of the Shapley value, we allow
for any variation in the parameter k as a function of the oligarchy O. Let
f : O → {1, 2, . . . , n − 1} be a function such that 1 ≤ f(O) ≤ |O| − 1 for all
O ∈ O. The family of factious oligarchic games (wOf )O∈O with power structure
f is specified by wOf := wOf(O) (with a slight abuse of notation). Note that dog
eat dog games and scapegoat games are families of factious oligarchic games
with special power functions f—the former specified by f(O) = 1 for all
O ∈ O, and the latter by f(O) = |O| − 1 for all O ∈ O.

As Yokote (2015), Funaki and Yokote (2019), Yokote et al. (2016), and
Béal et al. (2016) show, every player has Shapley value 0 in all types of oli-
garchic games defined above. To see this, consider the factious oligarchic game
wOk for oligarchy O with parameter k ≤ |O| − 1. In wOk , all players in N \O
are null and must obtain Shapley value 0 since ϕ satisfies the null axiom.
All oligarchs are interchangeable in wOk and should obtain the same Shapley
value because ϕ satisfies the symmetry axiom. The common Shapley value of
the oligarchs must be 0 because wOk (N)= 0. Since ϕ is linear and ϕ(w)=0
for all games w defined above, the Shapley value satisfies the following axioms.

Axiom (Dog Eat Dog).1 Solution ψ satisfies the dog eat dog axiom if
ψ(v) = ψ(v + αw) for every game v, any dog eat dog game w, and all real
numbers α.

Axiom (Scapegoat). Solution ψ satisfies the scapegoat axiom if ψ(v) =
ψ(v + αw) for every game v, any scapegoat game w, and all real numbers α.

Axiom (Factious Oligarchy). Solution ψ satisfies the factious oligarchy axiom
if there exists a power structure f such that ψ(v) = ψ(v + αw) for every
game v, any factious oligarchic game w with power structure f , and all real
numbers α.

The intuition for each of the three axioms is that changing the cooperation
structure by adding disharmonious oligarchies should not affect the division of
payoffs. Note that a solution ψ satisfies the dog eat dog, scapegoat, or factious
oligarchy axiom if and only if ψ(v) = ψ(v+w) for every game v and all games
w that are linear combinations of dog eat dog, scapegoat, or factious oligarchic
games, respectively.

We next introduce a set of games inspired by Hamiache (2001) and Béal et
al. (2016). A synergy function is a game π with the property that π({i}) = 0
for all i ∈ N . The paper tiger game with synergy π is defined by

wπ(S) =
∑
i∈N

(π(S ∪ {i})− π(S)) (=
∑
i∈N\S

(π(S ∪ {i})− π(S))).

1This axiom is a special case of the axiom of ω-weak addition invariance introduced in
Yokote (2015) when ω is a vector of 1.
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The interpretation of this game is that every player i is by nature a solitary
“tiger”, which can add synergies to any group S that excludes him. However,
the synergy of the expanded group S ∪ {i} supersedes the original synergy of
S, rendering i a “paper tiger.” Since only outsiders add value to coalitions, all
synergies “wash out” for the grand coalition, wπ(N) = 0.

The set of paper tiger games constitutes a linear subspace of R2N\{∅} that
has dimension at most 2n − n − 1 because each component of any element
(wπ(S))S∈2N\{∅} is a linear function of the 2n − n − 1 variables (π(S))S∈O.
Béal et al. (2016) remark that for any oligarchy O, the paper tiger game wπ
derived from the synergy function

π(S) =

{
1 if O ⊆ S
0 otherwise

is identical to the scapegoat game w̄O. Thus, the space of paper tiger games
contains the linear space spanned by scapegoat games. Béal et al. argue that
the space of scapegoat games has dimension 2n − n − 1, which implies that
the space of paper tiger games has dimension 2n − n − 1 and coincides with
the space spanned by scapegoat games. Hence, every paper tiger game is a
linear combination of scapegoat games. The linearity of the Shapley value,
along with the fact that ϕ(w̄O) = 0 for all scapegoat games w̄O, implies that
ϕ(wπ) = 0 for every paper tiger game wπ. Therefore, the Shapley value satis-
fies the following axiom, which captures the “paper tiger” metaphor.

Axiom (Paper Tiger). Solution ψ satisfies the paper tiger axiom if ψ(v) =
ψ(v + w) for every game v and any paper tiger game w.

Yokote (2015) established that the set of dog eat dog games forms a basis
for the kernel of the Shapley value, and Béal et al. (2016) proved that the
set of scapegoat games has the same property. Funaki and Yokote (2019)
generalized these two results to families of factious oligarchic games (wOf )O∈O
with special power structures f . In the analysis of Funaki and Yokote (2019),
f(O) depends only on the size of O, i.e., f(O) = g(|O|) where g is a function
from {2, . . . , n} to {1, . . . , n − 1}. Moreover, their main result imposes the
following “continuity” restriction on g:

g(k − 1)− 1 ≤ g(k) ≤ g(k − 1) + 1 for k ∈ {3, . . . , n}.

We show that neither of these restrictions is necessary for the result: The
family of factious oligarchic games (wOf )O∈O is linearly independent and spans
the kernel of the Shapley value for every power structure f . The proof of this
result relies on a new basis of the set of all games consisting of games with
oligarchic structures we develop in Section 6.5 (see Theorem 6.3).

Theorem 6.1 The set of dog eat dog games constitutes a basis for the linear
space K(ϕ), and the same is true about the set of scapegoat games. More
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generally, the family of factious oligarchic games with any power structure
forms a basis for K(ϕ). Furthermore, K(ϕ) is given by the set of paper tiger
games.

Section 6.8 provides the proof of Theorem 6.1. We next present two corol-
laries that invoke paper tiger games. In light of Theorem 6.1, we can restate
either corollary using a linear combination of each type of oligarchic game in
lieu of the paper tiger game. The first corollary follows from the linearity of
the Shapley value.

Corollary 6.1 Games v and w yield identical Shapley values if and only if
their difference v − w is a paper tiger game.

Fix a game v. The Shapley inessential game w of v is defined by w(S) =∑
i∈S ϕi(v) for all coalitions S. Since the Shapley value satisfies the inessential

axiom, we have that ϕi(w) = w({i}) = ϕi(v) for all i ∈ N . Then the linearity
of the Shapley value implies that ϕ(v−w) = 0. Thus, as Kleinberg and Weiss
(1985) observed, the game v can be decomposed into its Shapley inessential
game w and the game v − w, which is an element of K(ϕ). This conclusion
leads to another corollary of Theorem 6.1.

Corollary 6.2 Every game is the sum of its Shapley inessential game and a
paper tiger game.

6.4 Axiomatizations of the Shapley Value Based on its
Kernel

If a solution ψ is pinned down for inessential games by the inessential axiom,
and the addition of games in K(ϕ) does not affect the solution as implied by
any of the dog eat dog, scapegoat, factious oligarchy, or paper tiger axioms,
then ψ must coincide with the Shapley value ϕ. This observation, along with
Theorem 6.1 and Corollary 6.2, leads to four axiomatizations of the Shapley
value.

Theorem 6.2 A solution is the Shapley value if and only if it satisfies the
inessential axiom and any one of the dog eat dog, scapegoat, factious oligarchy,
and paper tiger axioms.

We finally comment on a connection between our paper tiger axiom and
an axiom due to Hamiache (2001). Derive a synergy function πv from a game
v as follows:

πv(S) = v(S)−
∑
i∈S

v({i}). (6.2)
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Let wπv denote the paper tiger game with synergy π, and define the game
vλ = v + λwπv , where λ is a positive real number. Algebra leads to

vλ(S) = v(S) + λ
∑
i∈N\S

(v(S ∪ {i})− v(S)− v({i})) ,∀S ⊆ N.

Since wπv is a paper tiger game, Theorem 6.2 implies that the games v and vλ
have the same Shapley value for every λ. Hamiache (2001) uses this property,
coined associated consistency, to develop a characterization of the Shapley
value. In addition to the inessential axiom, his characterization requires a
continuity axiom because associated consistency is a weaker version of our
paper tiger axiom that applies only to pairs of games (v, λwπv ) for which the
synergy function πv has the special relation to v described by formula (6.2).

To obtain an alternative proof of Hamiache’s result, Béal et al. (2016)
remark that the matrix associated with the linear transformation v → wπv is
upper triangular when expressed in the basis of unanimity games. Its kernel
is formed by the set of inessential games, and all its non-zero eigenvalues are
negative. This ensures that, for sufficiently small λ, the sequence generated
by the iteration of the transformation v → vλ converges to an inessential
game v∞ for every first term v. The associated consistency and continuity
of the solution ψ are used to conclude that ψ(v) = ψ(v∞). If ψ satisfies the
inessential axiom, then ψi(v) = ψi(v

∞) = v∞({i}) for all players i, which
proves that ψ(v) is uniquely determined.

Kleinberg (2018) extends the work of Hamiache (2001) by exploring lin-
ear and anonymous solutions (called membership solutions) other than the
Shapley value that satisfy associated consistency. A solution is anonymous if
a change in the label of the players has no effect on the solution. Note that the
equal division solution, which divides the value of the grand coalition evenly
among all players, is linear and anonymous and satisfies associated consis-
tency. Kleinberg proves that a solution is linear and anonymous and satisfies
associated consistency if and only if it is a linear combination of the Shapley
value and the equal division solution. An equivalent statement of this result
is that a linear and anonymous solution satisfies associated consistency if and
only if its kernel contains the kernel of the Shapley value.

6.5 Bases for the Space of Games
Recall that Shapley (1953) showed that the set of unanimity games
(uT )T∈2N\{∅} constitutes a basis for the space of all games. We construct
a rich class of new bases for the space of games by expanding the set of
oligarchic games from Section 6.3. Specifically, we allow for “singleton oli-
garchies” O = {i} and consider the possibility that oligarchies are functional,
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so parameter k in the specification of the corresponding game wOk can take
the value |O| (which is necessary for singleton oligarchies to generate a game
different from 0). Therefore, we redefine an oligarchy to be any nonempty
coalition O ⊆ N and specify the oligarchic game for oligarchy O with param-
eter k as in Section 6.3,

wOk (S) =

{
1 if |S ∩O| = k

0 otherwise

for 1 ≤ k ≤ |O|, with the novelty that k = |O| is an admissible parameter.
Power functions need to be adjusted accordingly—f : 2N \{∅} → {1, 2, . . . , n}
is a power function if 1 ≤ f(O) ≤ |O| for all O ∈ 2N \ {∅}. The family of
oligarchic games (wOf )O∈2N\{∅} with power structure f is specified as before,
wOf := wOf(O).

By definition, for singleton coalitions O = {i}, every power function f

satisfies f({i}) = 1 and w
{i}
f = u{i}. In general, wO|O| := uO for all oligarchies

O. Thus, the new oligarchic games added to the set of factious ones are exactly
the unanimity games. Note that the Shapley value for the unanimity game uO
is given by

ϕi(u
O) =

{
1/|O| if i ∈ O
0 if i ∈ N \O.

Hence, the newly added games do not belong to the kernel of the Shapley value.
We establish that the family of oligarchic games with any power structure
constitutes a basis of the space of games, which generalizes the main result of
Funaki and Yokote (2019) as discussed in Section 6.3.

Theorem 6.3 For any power structure f , the set of oligarchic games
(wOf )O∈2N\{∅} forms a basis for the space of all games.

The proof of the theorem can be found in Section 6.8. The key ingredient
of the proof is a representation of the oligarchic game for oligarchy O with
parameter k in the basis of unanimity games,

wOk =
∑

S⊆O,|S|≥k

(−1)|S|−k
(
|S|
k

)
uS .

The coefficient of the game uS in the unique linear decomposition of any
game v in the basis (uT )T∈2N\{∅} is known as the Harsanyi (1959) dividend
of coalition S in game v. Hence, the identity above shows that the Harsanyi
dividend of coalition S in the oligarchic game wOk is (−1)|S|−k

(|S|
k

)
for S ⊆

O, |S| ≥ k and 0 otherwise. We then reach the desired conclusion by noting
that the linear transformation (uT )T∈2N\{∅} → (wOf )O∈2N\{∅} derived from
the identity above is captured by a lower-triangular matrix with non-zero
diagonal elements.
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We can build an alternative basis for the space of games by augmenting any
basis of the (2n−n−1)-dimensional kernel K(ϕ) of the Shapley value identified
in Theorem 6.1 with any collection of n linearly independent games that span
a space whose only intersection with K(ϕ) is game 0. One obvious selection for
the n games is the set of degenerate unanimity games with singleton ruling
coalitions, (u{i})i∈N , which we call trivial games. By Theorem 6.3, trivial
games are linearly independent and span the space of inessential games. Since
ϕ(v) = (v({i}))i∈N for every inessential game v, the intersection of the set of
inessential games and the kernel of the Shapley value is {0}. It follows that
any basis of K(ϕ) described in Theorem 6.1 along with the collection of trivial
games forms a basis for the set of all games. In a result related to Corollary
6.2, Yokote et al. (2016) show that the coefficient of the trivial game u{i}

in the decomposition of any game in each of these bases coincides with the
Shapley value of player i. To see this, note that the discussion above implies
that every game v can be uniquely decomposed as a linear combination of
games in any basis of K(ϕ) and trivial games u{j} for j ∈ N . Let αj denote
the coordinate of u{j} in the decomposition of v. Then, the linearity of the
Shapley value ϕ leads to

ϕi(v) =
∑
j∈N

αjϕi(u
{j}),∀i ∈ N.

For any j ∈ N , since u{j} is an inessential game, we have ϕj(u
{j}) =

u{j}({j}) = 1 and ϕi(u
{j}) = u{j}({i}) = 0 for i ∈ N \ {j}. Therefore,

ϕi(v) = αi for all i ∈ N , as asserted. The following theorem collects results
from Yokote et al. (2016) and Funaki and Yokote (2019).

Theorem 6.4 The collection of trivial games and each family of factious oli-
garchic games with any power structure constitutes a basis for the space of all
games. In every such basis, the coefficient of each trivial game in the decompo-
sition of any given game coincides with the Shapley value of the corresponding
player in that game.

6.6 Other Bases
Kleinberg and Weiss (1985) provided the first characterization of the kernel of
the Shapley value as a direct sum decomposition of linear spaces. Each game
in their decomposition assigns non-zero values only to singletons or coalitions
of a fixed size. Their decomposition consists of three types of games:
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{v|v(S) = v(S′) if |S| = |S′| = k; v(S) = 0 if |S| ̸= k} for 1 ≤ k ≤ n− 1,{
v|
∑
i∈N

v({i}) = 0; v(S) = −
∑
i∈S

v({i}) if |S| = k; v(S) = 0 if |S| ̸= 1, k
}

for 2 ≤ k ≤ n− 1,{
v|v(S) = 0 if |S| ̸= k;

∑
i∈S

v(S) = 0, ∀i ∈ N
}

for 2 ≤ k ≤ n− 1.

Dragan et al. (1989) develop a different basis for the space of games build-
ing on the potential value of Hart and Mas-Colell (1989). Recall that the
potential P (S, v)S⊆N of a game v is defined recursively by

P (S, v) =
1

|S|
(v(S) + P (S \ {i}, v))

with the initial condition P (∅, v) = 0. Hart and Mas-Colell showed that the
Shapley value can be computed as

ϕi(v) = P (N, v)− P (N \ {i}, v),∀i ∈ N.

Dragan et al. pointed out that the potential function P can be interpreted
as a linear endomorphism on the space of games, and hence one can derive a
basis for this space by identifying a game wT for every nonempty coalition T
with the property that P (T,wT ) = 1 and P (S,wT ) = 0 if S ̸= T . They found
that

wT (S) =


|S| if S = T

−1 if S = T ∪ {j} with j /∈ T
0 otherwise.

It can then be checked that the set of games (wT )1≤|T |≤n−2 together with the
game wN +

∑
i∈N w

N\{i} forms a basis for the kernel of the Shapley value.
Another basis for the kernel of the Shapley value can be obtained by consid-

ering a generalization of the Shapley value. Recall that a solution ψ is efficient
if the total payoffs it allocates equal to the value of the grand coalition, i.e.,∑
i∈N ψi(v) = v(N) for all games v. The Shapley value is a prominent solu-

tion which is linear, anonymous, and efficient. Ruiz et al. (1998) show that
any linear, anonymous, and efficient solution takes the form ϕb, where

ϕbi (v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(b|S|+1v(S ∪ {i})− b|S|v(S)),∀i ∈ N

for a collection of constants b = (bk)0≤k≤n with bn = 1.
Rojas and Sanchez (2016) analyze the subset of linear, anonymous, and

efficient solutions ϕb with bk ̸= 0 for all k, which they call regular solutions.
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They provide a basis for the kernel of each regular solution ϕb consisting of
the games (vbT )T⊆N,|T |̸=1 defined as follows:

vbN (S) =

{
1 if |S| = 1
0 otherwise

and for T such that 2 ≤ |T | ≤ |N | − 1,

vbT (S) =


1 if |S| = 1 and S ∩ T = ∅
b1
b|T |

(
|N | − 2

|T | − 1

)
if S = T

0 otherwise.

Since the Shapley value is obtained by setting bk = 1 for all k, the collection
of games (v(1,...,1)T )T⊆N,|T |̸=1 is a new basis for the kernel of the Shapley value.
As in Section 6.5, the authors further provide a basis of the space of all games
by augmenting their basis of the kernel of any regular solution ψb. Rojas and
Sanchez (2016) first prove that the kernel K(ψb) of any such solution ψb has
dimension 2n − n − 1. Then they need to add the following collection of n
games (vb{i})i∈N such that:

vb{i}(S) =


1

b|S|
if i ∈ S and S ̸= N

|N | if S = N
0 otherwise.

In another recent study, Faigle and Grabisch (2016) employed the change
of basis underlying isomorphic linear operators to construct new bases for
the space of games and for the kernel of linear values from existing linear
representations of games. Starting from the Shapley interaction transform of
Grabisch (1997), Faigle and Grabisch obtain the basis (bT )T⊆N,|T |̸=1 for the
kernel of the Shapley value specified by

bT (S) =

|S∩T |∑
j=0

(
|S ∩ T |
j

)
B|T |−j ,

where B0, B1, . . . are the cumbersome Bernoulli numbers.
While conceptually interesting, the approaches discussed in this section

provide less immediate game theoretic intuitions for the kernel of the Shapley
value.
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6.7 Other Games in the Kernel of the Shapley Value
For any oligarchy O ∈ O and every nonempty set K ⊆ {1, 2, . . . , |O| − 1}, the
game wOK defined by

wOK(S) =

{
1 if |S ∩O| ∈ K
0 otherwise

(6.3)

delivers Shapley value 0 to all players. This follows from the linearity of the
Shapley value and the observation that each such game can be decomposed
into factious oligarchic games with parameters in K,

wOK =
∑
k∈K

wOk .

In particular, note that dog eat dog, scapegoat, and fictitious oligarchic games
are all special instances of this set of games in which K is a singleton.

One interesting subset of the games wOK is obtained by setting K =
{1, 2, . . . , |O| − 1} for every O ∈ O. Specifically, define the (dysfunctional)
wolf pack game w̃O for oligarchy O as follows:

w̃O(S) =

{
1 if 1 ≤ |S ∩O| ≤ |O| − 1

0 otherwise.

In dysfunctional wolf pack games, a coalition is productive only if it involves
some but not all oligarchs—the “wolf pack” cannot coordinate as a whole. In
light of the rich set of bases identified by Theorem 6.1, it is worth pointing
out that the 2n−n− 1 wolf pack games obtained by varying the composition
of the oligarchy are not always linearly independent and hence do not span
the kernel of the Shapley value. For instance, for n = 4, one can check that
the sum of all wolf pack games with oligarchies of size two is identical to the
sum evaluated for oligarchies of size three.

Wolf pack games lie at the opposite end on the spectrum of dissent among
oligarchs from dog eat dog games: Every subset of oligarchs except for the
entire oligarchy operates effectively in wolf pack games, while no two oligarchs
can cooperate successfully in dog eat dog games. Funaki and Yokote (2019)
consider an intermediate level of power struggle among oligarchs whereby
only coalitions formed by half of the oligarchs are effective. This corresponds
to setting K = {|O|/2} for |O| even and K = {(|O| + 1)/2} for |O| odd in
(6.3). Theorem 6.4 implies that this set of games augmented with the set of
trivial games constitutes a basis for the kernel of the Shapley value. Funaki
and Yokote (2019) employ the decomposition of games in this basis to identify
games for which the Shapley value coincides with the prenucleolus.
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6.8 Proofs
Proof of Theorem 6.1 Since dog eat dog games and scapegoat games are
families of factious oligarchic games with two special power functions f—the
former specified by f(O) = 1 for all O ∈ O, and the latter by f(O) = |O| − 1
for all O ∈ O—the statements about dog eat dog games and scapegoat games
are implied by the one about general factious oligarchic games.

To prove the statement regarding factious oligarchic games, fix a power
structure f and consider the family of factious oligarchic games (wOf )O∈O it
generates. By Theorem 6.3, the elements of the family (wOf )O∈O are linearly
independent. Since this family contains exactly 2n − n − 1 games, it spans
a linear space of dimension 2n − n − 1. In Section 6.3, we have argued that
K(ϕ) = {v|ϕ(v) = 0} is a linear subspace of R2N\{∅} of dimension 2n − n− 1
that contains all factious oligarchic games, including the ones in (wOf )O∈O.
Since the space spanned by (wOf )O∈O has dimension 2n − n − 1, it must
coincide with K(ϕ). Therefore, (wOf )O∈O constitutes a basis for K(ϕ).

Finally, the conclusion that the space of paper tiger games is identical to
K(ϕ) follows from the finding that K(ϕ) spans the set of scapegoat games and
the arguments provided after the definition of paper tiger games.

Proof of Theorem 6.3 Fix a power structure f and consider the family of
2n−1 oligarchic games (wOf )O∈2N\{∅} it generates. To establish that the family
(wOf )O∈2N\{∅} forms a basis for the (2n − 1)-dimension space of all games, it
is sufficient to show that the games in the family are linearly independent.

We first argue that the oligarchic game for oligarchy O with parameter k
can be decomposed in the basis of unanimity games as follows:

wOk =
∑

S⊆O,|S|≥k

(−1)|S|−k
(
|S|
k

)
uS .

We need to show that for every coalition T ⊆ N ,

wOk (T ) =
∑

S⊆O,|S|≥k

(−1)|S|−k
(
|S|
k

)
uS(T ). (6.4)

Fix a coalition T , and let T ′ = T ∩O and t = |T ′|.
Clearly, if t < k, then wOk (T ) = wOk (T

′) = 0 and uS(T ) = uS(T ′) = 0 for
S ⊆ O such that |S| ≥ k. Hence, for t < k, both sides of Equation (6.4) equal
zero.
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Suppose now that t ≥ k. We can rewrite the right-hand side term in
Equation (6.4) as follows:∑

S⊆O,|S|≥k

(−1)|S|−k
(
|S|
k

)
uS(T ) =

∑
S⊆O,|S|≥k

(−1)|S|−k
(
|S|
k

)
uS(T ′)

=
∑

S⊆T ′,|S|≥k

(−1)|S|−k
(
|S|
k

)

=
t∑

s=k

(−1)s−k
(
s

k

)(
t

s

)

=
t∑

s=k

(−1)s−k
(
t

k

)(
t− k
s− k

)

=

(
t

k

) t−k∑
s=0

(−1)s
(
t− k
s

)
=

(
t

k

)
(1− 1)t−k.

The first equality follows from uS(T ) = uS(T ∩ S) = uS(T ∩O) = uS(T ′) for
S ⊆ O, the second relies on the fact that uS(T ′) = 1 if S ⊆ T ′ and uS(T ′) = 0
otherwise (along with T ′ ⊆ O), and the third accounts for the number

(
t
s

)
of

sets S ⊆ T ′ with |S| = s ≥ k given that |T ′| = t. The fourth equality uses the
formulae(

s

k

)(
t

s

)
=

s!

k!(s− k)!
t!

s!(t− s)!
=

t!

k!(s− k)!(t− s)!

=
t!

k!(t− k)!
(t− k)!

(s− k)!(t− s)!
=

(
t

k

)(
t− k
s− k

)
,

while the fifth one simply changes the variable s − k to s. The final equality
follows from the binomial formula.

For t ≥ k, claim (6.4) then follows from noting that
• if t = k, then

(
t
k

)
(1− 1)t−k = 1 = wOk (T );

• if t > k, then
(
t
k

)
(1− 1)t−k = 0 = wOk (T ).

We are now prepared to show that the games (wOf )O∈2N\{∅} are linearly
independent. Consider any linear order ⪰ on 2N \ {∅} extending the partial
order (2N \{∅},⊇) and construct the (2n−1)× (2n−1) matrix of coordinates
of the games of (wOf )O∈2N\{∅} in the basis of unanimity games (uT )T∈2N\{∅}.
This matrix is lower-triangular since the coordinates of wOf associated with
uT are zero whenever T ≻ O. Moreover, each diagonal element in the matrix
takes the form

(−1)|O|−f(O)

(
|O|
f(O)

)
̸= 0.

Consequently, the matrix has full rank, which delivers the result.
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6.9 Conclusions
We introduced several classes of cooperative games in which the Shapley value
yields zero payoffs to all players. These games deliver a rich set of bases for the
kernel of the Shapley value and lead to multiple characterizations of games
with identical Shapley values. Building on these games, we were able to provide
new intuitive axiomatizations of the Shapley value. We explained how each
basis of the kernel of the Shapley value can be enlarged to create a basis for
the space of all games. Many of the games we presented admit straightforward
game theoretic interpretations. However, some of the games require a deeper
understanding of the power structure they induce among coalitions. It would
be useful to develop more connections between the various bases of the kernel
of the Shapley value.
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7.1 Introduction
The basis for the linear space of TU games consisting of the unanimity games
(Shapley (1953)) has been recognized as a very useful tool to analyze TU
cooperative games. The basis is often used in the proof of axiomatic charac-
terization of the (weighted) Shapley value; see Young (1985), Chun (1989),
Kalai and Samet (1987) or van den Brink (2002). Since the set of TU games
is Euclidean space, to consider a basis is very important. The purpose of this
chapter is to introduce new bases and explore their properties.

First, we recall that in the unanimity game, cooperation of all players in a
given coalition T included the grand coalition N yields the total payoff. That
is, for each coalition T ⊆ N , the unanimity game for T assigns 1 to a coalition
including all players in T and 0 otherwise. In the commander game introduced
by Yokote et al. (2016), only one player in a given coalition T yields the total
payoff. That is, for each coalition T ⊆ N , the commander game for T assigns 1
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to coalitions including only one member in T , and assigns 0 otherwise. The set
of the commander games forms a basis and has the following properties. When
we express a game by a linear combination of this basis, the coefficients related
to singletons coincide with the Shapley value. Second, the basis induces the null
space of the Shapley value: The set of games such that the Shapley value of the
games assigns the 0 vector. In Yokote et al. (2016), it is shown that the pay-
off vector of each commander game can be uniquely determined by using three
axioms: Efficiency, equal treatment property and null player property. Thus, we
can use the basis in the proof of axiomatization of the Shapley value. In addi-
tion, by using the two properties of the basis, we can solve the inverse problem,
that is, characterizing the class of games such that the Shapley value of the
games is equal to any given efficient payoff vector. The basis enables us to give
a new axiomatization of the weighted Shapley value; see Yokote (2014). More-
over, the basis can be used to investigate the relationship between the Shapley
value and other solutions; see Yokote et al. (2017).

Moreover linear algebraic method has made significant contributions to the
development of solution theory in TU cooperative games. In recent studies,
Xu et al. (2015) characterized the CIS and ENSC values by using infinite
multiplications of matrices.

This chapter is located at the intersection of linear algebra and TU co-
operative games. We extend the basis consisting of the commander games
and provide new mathematical tools for analyzing the Shapley value. The
unanimity games and commander games describe two extreme requirements
for obtaining payoff: All players in T or only one player in T . We consider
the intermediates between them. Our new game, which we call the (T, k)-
intermediate game, assigns 1 to a coalition including k players in T and 0
otherwise, where 1 ≤ k ≤ |T |. We show that, if some relationship between the
size of coalition T and k holds, then we can construct a basis.

All the new bases obtained in this paper preserve two desirable properties of
the commander games. Namely, (i) when we express a game by a linear combi-
nation of the basis, the coefficients related to singletons coincide with the Shap-
ley value, and (ii) the basis induces the null space of the Shapley value.

We apply our basis to the analysis of coincidence conditions between the
Shapley value and the prenucleolus (Schmeidler (1969)). Our basis enables us
to take a linear algebraic approach to a coincidence condition known as the
PS property (Kar et al. (2009)) and clarify the mathematical structure behind
the coincidence region.

The reminder of this chapter is organized as follows. Section 7.2 provides
notations and definitions. Section 7.3 reviews the commander games basis
and shows that the set of the games is a basis. Section 7.4 introduces some
interesting properties of the commander games basis. Both Sections 7.3 and
7.4 are based on Yokote et al. (2016). Section 7.5 gives definitions of our new
bases. Section 7.6 applies one of our new bases to the PS property, a sufficient
condition that the Shapley value coincides with the nucleolus. Section 7.7 gives
concluding remarks.
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7.2 Notations and Definitions
For two sets A and B, A ⊆ B means that A is a subset of B. A ⊂ B means
that A ⊆ B and A ̸= B. Let |A| denote the cardinality of A.

Let N ⊂ N denote a finite set of players, here N is the set of natural
numbers. We call S ⊆ N a coalition of N . We define |N | = n. A characteristic
function v : 2N → R assigns a real number to each coalition of N . We assume
v(∅) = 0. We call v(S) the worth of coalition S. A pair (N, v) is called a TU
cooperative game, or simply a game. In the remaining part, we fix player set
N and write v instead of (N, v). Let ΓN denote the set of all games with
player set N . We say that v ∈ ΓN is a simple game if v(S) = 0 or 1 for all
S ⊆ N . We regard ΓN as a linear space R2n−1 by defining addition and scalar
multiplication as follows: For any v, w ∈ ΓN and α ∈ R, we define v + w and
αv by (v + w)(S) = v(S) + w(S) and (αv)(S) = αv(S) for all S ⊆ N .

A value function is a function from ΓN to Rn. We define the Shapley value,
introduced by Shapley (1953), as follows: For any v ∈ ΓN ,

Shi(v) =
∑

T⊆N :i∈T

(n− |T |)!(|T | − 1)!

n!

(
v(T )− v(T\i)

)
for all i ∈ N.1

We can also calculate the Shapley value by using the dividend introduced by
Harsanyi (1959). For any v ∈ ΓN and T ⊆ N , T ̸= ∅, we define the dividend
as follows:

D(T, v) =
∑
S⊆T

(−1)|T\S|v(S).

The following equation holds: For any v ∈ ΓN ,

Shi(v) =
∑

T⊆N :i∈T

1

|T |
D(T, v) for all i ∈ N.

For any T ⊆ N , T ̸= ∅, we define the unanimity game uT for T , introduced
by Shapley (1953), as follows:

uT (S) =

{
1 if T ⊆ S,
0 otherwise.

When we express a game v ∈ ΓN by a linear combination of the set of una-
nimity games {uT : ∅ ̸= T ⊆ N}, the coefficient of uT is equal to the dividend
D(T, v).

Mathematically, the Shapley value Sh is a surjective2 linear mapping
from R2n−1 to Rn. Here for the value function Sh, the null space of Sh

1For simplicity, we write i for {i}.
2Surjective is due to the following inessential game property: Let x ∈ Rn and consider

the game v such that v(S) =
∑

i∈S xi for all S ⊆ N , S ̸= ∅. Then, Sh(v) = x.
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is defined by
{v ∈ ΓN : Sh(v) = 0}.

The null space is the set of all games to which the Shapley value assigns the
0 vector. The dimension of the space is equal to 2n − 1− n.

We say that a finite set of games {vk}ℓk=1 ⊆ ΓN spans X ⊆ ΓN if

X =
{ ℓ∑
k=1

αkvk : αk ∈ R for all k = 1, . . . , ℓ
}
.

Let Sp({vk}ℓk=1) denote the set of games spanned by {vk}ℓk=1.
Let v ∈ ΓN , i ∈ N and S ⊆ N\i. We define the marginal contribution of

player i to coalition S as follows:

∆iv(S) = v(S ∪ i)− v(S).

Let v ∈ ΓN and i ∈ N . We say that i is a null player in v if v(S∪ i)−v(S) = 0
for all S ⊆ N\i. The Shapley value satisfies the following axioms:

Efficiency For any v ∈ ΓN ,
∑
i∈N Shi(v) = v(N).

Null Player Property Let v ∈ ΓN . If i ∈ N is a null player in v, then
Shi(v) = 0.

Symmetry Let v ∈ ΓN and i, j ∈ N . If v(S ∪ i) = v(S ∪ j) for all S ⊆
N\{i, j}, then Shi(v) = Shj(v).

Linearity Let v, w ∈ ΓN and α, β ∈ R. Then, Sh(αv + βw) = αSh(v) +
βSh(w).

7.3 Commander Games
We recall a game, which is studied in Yokote et al. (2016). Let T ⊆ N , T ̸= ∅.
We define the game ūT as follows:

ūT (S) =

{
1 if |S ∩ T | = 1,

0 otherwise.

From the definition, ūT is a simple game. We call ūT the commander game for
T . Note that ū{i} = u{i} for any i ∈ N . We consider the following situation
behind the game. Each member in T is a commander and has authority to
control other players. If there is no member of T in a coalition, the coalition
does not have power. If a coalition that includes only one member in T forms,
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then the member behaves as a commander. The coalition obtains power, which
results in the payoff of 1. On the other hand, if a coalition that includes two
or more members in T forms, then they compete with each other and the
coalition obtains nothing.

Example 7.1 For 3 person games (N, v) with N = {1, 2, 3}, the set of the
commander games {ūT : ∅ ̸= T ⊆ N} is given as follows:

ū{1} = (ū{1}({1}), ū{1}({2}), ū{1}({3}), ū{1}({1,2}), ū{1}({1,3}), ū{1}({2,3}),
ū{1}(N))

= (1, 0, 0, 1, 1, 0, 1)

ū{2} = (0, 1, 0, 1, 0, 1, 1)

ū{3} = (0, 0, 1, 0, 1, 1, 1)

ū{1,2} = (1, 1, 0, 0, 1, 1, 0)

ū{1,3} = (1, 0, 1, 1, 0, 1, 0)

ū{2,3} = (0, 1, 1, 1, 1, 0, 0)

ūN = (1, 1, 1, 0, 0, 0, 0).

We prove that the set of the commander games is a basis in the following
theorem.

Theorem 7.1 The set of games {ūT : ∅ ̸= T ⊆ N} is a basis of ΓN .

Proof. Let v ∈ ΓN . From the fact that the dividend is the coefficient in the
linear combination of the unanimity games, we have

v =
∑

R⊆N :R ̸=∅

D(R, v)

|R|
· |R|uR

=
∑

R⊆N :R ̸=∅

D(R, v)

|R|
·

∑
T⊆R:T ̸=∅

(−1)|T |−1ūT

=
∑

T⊆N :T ̸=∅

(−1)|T |−1
∑

R⊆N :T⊆R

D(R, v)

|R|
ūT , (7.1)

where the second equality holds because

∑
T⊆R:T ̸=∅

(−1)|T |−1ūT (S) = |R ∩ S| ·
|R\S|∑
k=0

(
|R\S|
k

)
(−1)k = |R|uR(S)

for R ⊆ N , R ̸= ∅, and any S ⊆ N .
As a result, any game v ∈ ΓN can be expressed by a linear combination

of the games {ūT : ∅ ̸= T ⊆ N}. In other words, the set {ūT : ∅ ̸= T ⊆ N}
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spans ΓN . If the set {ūT : ∅ ̸= T ⊆ N} is linearly dependent, then there exist
a coalition T ⊆ N , T ̸= ∅, and a vector (αS)∅̸=S⊆N,S ̸=T such that

ūT =
∑

S⊆N :S ̸=∅,S ̸=T

αS ūS .

Together with Equation (7.1), the set ΓN can be spanned by vectors with less
than 2n − 1 vectors, which is a contradiction.3

For any v ∈ ΓN , let d(T, v) denote the coefficient in the linear combination of
{ūT : ∅ ̸= T ⊆ N}, namely, v =

∑
T⊆N :T ̸=∅ d(T, v)ūT . From Equation (7.1),

we obtain the following proposition:

Proposition 7.1 For any v ∈ ΓN ,

d({i}, v) =
∑

R⊆N :i∈R

D(R, v)

|R|
= Shi(v) for all i ∈ N.

Proposition 7.1 states that the coefficients related to singletons coincide with
the Shapley value. The proof is given in Yokote et al. (2016). This is a very
unique property of the commander games basis.

7.4 Properties of Commander Games Basis
We refer to the properties of commander games basis stated in Yokote et al.
(2016). Since the set {ūT : T ⊆ N, |T | ≥ 2} consists of 2n − 1 − n linearly
independent vectors, we obtain the following proposition:

Proposition 7.2 The set {ūT : T ⊆ N, |T | ≥ 2} spans the null space of Sh.

Proposition 7.2 states that the Shapley value does not depend on the coeffi-
cient d(T, v), T ⊆ N , |T | ≥ 2. Recall that from Proposition 7.1, the coefficients
d({i}, v), i ∈ N , coincide with the Shapley value. As a consequence, we obtain
the following interesting corollary:

Corollary 7.1 Let x ∈ Rn. Then, Sh(v) = x if and only if there exists a
vector (αT )T⊆N :|T |≥2 ∈ R2n−1−n such that

v =
∑
i∈N

xiū{i} +
∑

T⊆N :|T |≥2

αT ūT .

3Recall the following result in linear algebra: If the vectors x1, · · · , xn span a linear space
X and the vectors y1, · · · , yj in X are linearly independent, then j ≤ n.
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In Corollary 7.1, we characterize the set of all games to which the Shapley
value assigns a fixed vector. This approach is known as the inverse problem.
By solving the problem, we can characterize the equivalence relation that
relates two different games with the same Shapley value. If two games are
equivalent by the relation, we can know that the Shapley value is silent about
the difference between the two situations described by the games.

Example 7.2 By using Corollary 7.1, we obtain the following result for 3-
person games: Let v ∈ ΓN , N = {1, 2, 3}, x = (x1, x2, x3) ∈ R3. Then,
Sh(v) = x if and only if there exists (y12, y13, y23, yN ) ∈ R4 such that v(N) =
x1 + x2 + x3 and

v({1, 2}) = x1 + x2 + y13 + y23, v({3}) = x3 + y13 + y23 + yN ,

v({1, 3}) = x1 + x3 + y12 + y23, v({2}) = x2 + y12 + y23 + yN ,

v({2, 3}) = x2 + x3 + y12 + y13, v({1}) = x1 + y12 + y13 + yN .

The above equations imply
v({1, 2}) = x1 + x2 + v({3})− x3 − yN ,
v({1, 3}) = x1 + x3 + v({2})− x2 − yN ,
v({2, 3}) = x2 + x3 + v({1})− x1 − yN .

As a result, we obtain the following: Let N = {1, 2, 3} and v ∈ ΓN be a game
such that v({k}) = 0 for all k ∈ N . Then, Sh(v) = x if and only if there exists
y ∈ R such that v(N) = x1 + x2 + x3 and

v({1, 2}) = x1 + x2 − x3 + y,

v({1, 3}) = x1 + x3 − x2 + y,

v({2, 3}) = x2 + x3 − x1 + y.

The “only if” part says that, given an arbitrary vector x, we can always find
an identical amount y for all coalitions with 2 players.

The null space or the inverse problem have been investigated in previous
works. As for the null space, Kleinberg and Weiss (1985) gave a direct sum
decomposition of the space. Dragan et al. (1989) characterized the space by
using a basis for TU games related to the potential function by Hart and
Mas-Colell (1989). As for the inverse problem, see Dragan (2005) or Dragan
(2012). The merit of using the commander games basis is that we can solve
the above problems by using only simple games with clear meanings.

7.5 New Bases
Both collections of the unanimity games {uT : ∅ ̸= T ⊆ N} and the comman-
der games {ūT : ∅ ̸= T ⊆ N} form a basis for the linear space ΓN . Note that
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the two games uT and ūT capture two extreme cases: The cooperation of all
players in T yields payoff, or only one player in T yields payoff. We consider
the intermediate between the two extreme cases.

Let T ⊆ N and k ∈ N, 1 ≤ k ≤ |T |. We define the (T, k)-intermediate
game ūkT by

ūkT (S) =

{
1 if |S ∩ T | = k,

0 otherwise.

Note that ū|T |
T = uT : The unanimity game, and ū1T = ūT : The commander

game.
We prove that if there is some relationship between the size of coali-

tion T and k, then we can construct a basis. Consider an index function
l : {1, · · · , n} → {1, · · · , n} satisfying the following conditions:

C1: l(1) = 1.

C2: l(t) = l(t− 1) or l(t− 1) + 1 or l(t− 1)− 1 for all t = 2, · · · , n.

Example 7.3 For 3 person games (N, v) with N = {1, 2, 3}, which satisfy
C1 and C2, we only have three sets of games, {ū(1)T : ∅ ̸= T ⊆ N} with l(2) =
1, l(3) = 2, {ū(2)T : ∅ ̸= T ⊆ N} with l(2) = 2, l(3) = 2, {ū(3)T : ∅ ̸= T ⊆ N}
with l(2) = 2, l(3) = 1, except for the set of the unanimity games and the set
of the commander games. These three sets are given as follows:

ū
(1)
{1} = (1, 0, 0, 1, 1, 0, 1)

ū
(1)
{2} = (0, 1, 0, 1, 0, 1, 1)

ū
(1)
{3} = (0, 0, 1, 0, 1, 1, 1)

ū
(1)
{1,2} = (1, 1, 0, 0, 1, 1, 0)

ū
(1)
{1,3} = (1, 0, 1, 1, 0, 1, 0)

ū
(1)
{2,3} = (0, 1, 1, 1, 1, 0, 0)

ū
(1)
N = (0, 0, 0, 1, 1, 1, 0).
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ū
(2)
{1} = (1, 0, 0, 1, 1, 0, 1)

ū
(2)
{2} = (0, 1, 0, 1, 0, 1, 1)

ū
(2)
{3} = (0, 0, 1, 0, 1, 1, 1)

ū
(2)
{1,2} = (0, 0, 0, 1, 0, 0, 1)

ū
(2)
{1,3} = (0, 0, 0, 0, 1, 0, 1)

ū
(2)
{2,3} = (0, 0, 0, 0, 0, 1, 1)

ū
(2)
N = (0, 0, 0, 1, 1, 1, 0).

ū
(3)
{1} = (1, 0, 0, 1, 1, 0, 1)

ū
(3)
{2} = (0, 1, 0, 1, 0, 1, 1)

ū
(3)
{3} = (0, 0, 1, 0, 1, 1, 1)

ū
(3)
{1,2} = (0, 0, 0, 1, 0, 0, 1)

ū
(3)
{1,3} = (0, 0, 0, 0, 1, 0, 1)

ū
(3)
{2,3} = (0, 0, 0, 0, 0, 1, 1)

ū
(3)
N = (1, 1, 1, 0, 0, 0, 0).

Theorem 7.2 Let l be a function satisfying C1 and C2. Then, the set of
games {ūl(|T |)

T : ∅ ̸= T ⊆ N} is a basis for ΓN .

Special cases of interest are when l(k) = k for all k = 1, · · · , n and l(k) = 1
for all k = 1, · · · , n. The former coincides with the basis consisting of the una-
nimity games, while the latter coincides with the basis consisting of the com-
mander games. Thus, Theorem 7.2 generalizes the results by Shapley (1953)
and Yokote et al. (2016).

Chapter 6: Games with Identical Shapley Values, in this book by S. Béal,
M. Manea, E. Rémila, and P. Solal considers a class of bases for the space of
all games, which contains our new basis (See Beál et, al. (2019)). Indeed they
consider a set of games called oligarchic games and proved that the set of the
games forms a basis for the space of all games in Theorem 6.3. Our results
in this chapter are also restated in Theorem 6.4. However, since our proof is
independent, we still give the proof of the theorem,

Before providing a formal proof of Theorem 7.2, we prove a lemma.

Lemma 7.1 Let T ⊆ N , |T | ≥ 2, k ∈ N, 2 ≤ k ≤ |T |. Then, we have

ūkT =
1

k

(∑
i∈T ū

(k−1)
T\i − (|T | − k + 1)ū

(k−1)
T

)
.
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Proof. Let S ⊆ N , S ̸= ∅. We calculate the worth of S in both sides.

Case 1 0 ≤ |T ∩ S| ≤ k − 2.

By definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider the game

ū
(k−1)
T\i , i ∈ T .

If i ∈ S, |(T\i) ∩ S| ≤ k − 3.
If i /∈ S, |(T\i) ∩ S| ≤ k − 2.

It follows that ū(k−1)
T\i (S) = 0 for all i ∈ T .

Case 2 k + 1 ≤ |T ∩ S| ≤ |T |.

By definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider the game

ū
(k−1)
T\i , i ∈ T .

If i ∈ S, |(T\i) ∩ S| ≥ k.
If i /∈ S, |(T\i) ∩ S| ≥ k + 1.

It follows that ū(k−1)
T\i (S) = 0 for all i ∈ T .

Case 3 |T ∩ S| = k − 1.
By definition of ūkT , we have ūkT (S) = 0. Let i ∈ T .

If i ∈ S, |(T\i) ∩ S| = k − 2.
If i /∈ S, |(T\i) ∩ S| = k − 1.

That is, if i ∈ S ∩ T , then ū
(k−1)
T\i (S) = 0. As a result,∑

i∈T
ū
(k−1)
T\i (S) =

∑
i∈T\S

ū
(k−1)
T\i (S)

=
∑
i∈T\S

ū
(k−1)
T (S)

= |T | − (k − 1),

where the second equality follows from (T\i) ∩ S = T ∩ S for i ∈ T\S.
Together with −(|T | − k+1)ū

(k−1)
T (S) = −(|T | − k+1), the right-hand

side is equal to 0, which is equal to the left-hand side.

Case 4 |T ∩ S| = k.

By definition of ūkT , we have ū(k−1)
T (S) = 0. Let i ∈ T .

If i ∈ S, |(T\i) ∩ S| = k − 1,
If i /∈ S, |(T\i) ∩ S| = k.
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Hence,
∑
i∈T ū

(k−1)
T\i (S) = k, which implies that the right-hand side is

equal to 1. Since the left-hand side is also equal to 1, the proof completes.

The proof of Theorem 7.2 proceeds by induction. First, it is already proved
that the set {ū1T : ∅ ̸= T ⊆ N} is a basis. Given this induction base, we increase
the sum of the numbers of superscripts. The induction step is completed by
using Lemma 7.1.

Proof. (Proof of Theorem 7.2) Throughout the proof, we refer to functions l
satisfying C1 and C2. For a function l, we define

K(l) =
n∑
k=1

l(k),

M(l) = max{l(k) : k = 1, · · · , n},
Q(l) = {k : l(k) =M(l)}.

Induction base: Suppose K(l) = n, namely, l(k) = 1 for all k = 1, · · · , n. In
this case, by Theorem 7.1, the proof completes.

Induction step: Suppose the result holds for all l with n ≤ K(l) ≤ p, and
we prove the result for l with K(l) = p+ 1, where n ≤ p ≤ n(n+1)

2 − 1.

Assume, by way of contradiction, that the set of games ūl(|T |)
T is not a

basis. Then, there exists (λT )∅̸=T⊆N ̸= 0 such that∑
T⊆N :T ̸=∅

λT ū
l(|T |)
T = 0. (7.2)

Let q ≥ 2 denote the natural number such that l(q) =M(l) and q ≤ k for all
k ∈ Q(l). Then, the following equation holds:

l(q − 1) = l(q)− 1 ≥ 1.

By (6.2), ∑
T⊆N :T ̸=∅,|T |̸=q

λT ū
l(|T |)
T +

∑
S⊆N :|S|=q

λS ū
l(q)
S = 0.

By Lemma 7.1,∑
T⊆N :T ̸=∅,|T |̸=q

λT ū
l(|T |)
T

+
∑

S⊆N :|S|=q

λS
l(q)

(∑
i∈S ū

(l(q)−1)
S\i − (q − l(q) + 1)ū

(l(q)−1)
S

)
= 0. (7.3)
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We define l′ by

l′(|T |) =

{
l(|T |) if |T | ̸= q,

l(q)− 1 if |T | = q.

We show that l′ satisfies C1 and C2. Since q ≥ 2, l′(1) = l(1) = 1, which
proves C1. Since l(q) =M(l), we have

l(q + 1) = l(q) or l(q)− 1.

If l(q+1) = l(q), then l′(q+1) = l(q+1) = l′(q)+1. If l(q+1) = l(q)−1, then
l′(q + 1) = l(q + 1) = l′(q). Namely, l′(q + 1) = l′(q) + 1 or l′(q). In addition,
l′(q) =M(l)− 1 = l(q − 1) = l′(q − 1), which proves C2.

Using the function l′, (7.3) can be written as follows:∑
T⊆N :T ̸=∅,|T |̸=q

λT ū
l′(|T |)
T +

∑
T⊆N :|T |=q

λT
l(q)

(∑
i∈T ū

l′(|T\i|)
T\i − (q − l′(q))ūl

′(q)
T

)
=

∑
T⊆N :T ̸=∅,|T |≤q−2,|T |≥q+1

λT ū
l′(|T |)
T

+
∑

T⊆N :|T |=q−1

(
λT +

∑
j∈N\T

λT∪j

l(q)

)
ū
l′(|T |)
T (7.4)

−
∑

T⊆N :|T |=q

λT (q − l′(q))
l(q)

ū
l′(q)
T

=0.

Since K(l′) ≤ p, by the induction hypothesis, all the coefficients in the above
equation are 0. We obtain

λT = 0 for all T ⊆ N,T ̸= ∅, |T | ≤ q − 2, |T | ≥ q + 1,

and, together with l′(q) = l(q)− 1 ≤ q − 1,

λT = 0 for all T ⊆ N, |T | = q.

Substituting this equation into the coefficients in (7.4),

λT = 0 for all T ⊆ N, |T | = q − 1.

We obtain a contradiction to (λT )∅̸=T⊆N ̸= 0.

We prove that, by making an additional assumption on l, the basis consist-
ing of the intermediate games preserves the desirable properties as commander
games.

Theorem 7.3 Let l be a function satisfying C1, C2 and l(2) = 1. Then,
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(1): The set of games {ūl(|T |)
T : ∅ ̸= T ⊆ N} is a basis of ΓN .

(2): When we express a game v ∈ ΓN by a linear combination of this basis,
the coefficient of ū1i is equal to Shi(v) for all i ∈ N .

(3): The set {ūl(|T |)
T : T ⊆ N, |T | ≥ 2} spans the null space of the Shapley

value.

Proof. The first statement (1) follows from Theorem 7.2. Let T ⊆ N , |T | ≥ 2,
and j ∈ N\T . Then, for any S ⊆ N\j, we have |S∩T | = |(S∪j)∩T |. It follows
that j is a null player. By the null player property, we obtain Shj(ūl(|T |)

T ) = 0.
By symmetry and the fact that ūl(|T |)

T (N) = 0, we have Shi(ūl(|T |)
T ) = 0 for all

i ∈ N . As a result, (3) holds. It remains to prove (2). Let v ∈ ΓN be given. Let
(αT )T∈2N\∅ denote the coefficients in the linear combination of v by ū

l(|T |)
T .

Then, for any i ∈ N ,

Shi(v) = Shi

( ∑
T∈2N\∅

αT ū
l(|T |)
T

)
=

∑
T∈2N\∅

αTShi(ū
f(|T |)
T )

=
∑
j∈N

αjShi(ū
1
j )

= αi,

where the fourth equality follows from Shi(ū
1
i ) = 1 and Shi(ū

1
j ) = 0 for all

j ∈ N\i.4

7.6 Basis and Coincidence Condition
We apply our new basis to the analysis of sufficient conditions for the Shapley
value to coincide with the prenucleolus (Schmeidler (1969)).

Consider the following function f : 2N → N:

f(T ) =


1 if |T | = 1,
|T |+1

2 if |T | is an odd number, |T | ≥ 2,
|T |
2 if |T | is an even number, |T | ≥ 2.

For a coalition T with even number of players, the game ūf(T )
T captures the

situation in which half of the players in T yields payoff. By Theorem 7.2, the

4These equations immediately follow from the null player property and efficiency.
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set of games {ūf(T )
T : ∅ ̸= T ⊆ N} is linearly independent since l(|T |) = f(T )

satisfies conditions C1 and C2.
We define the set of games Γ̂ by

Γ̂ = Sp
(
{ūf(T )

T : T ∈ 2N , |T | ≥ 2, |T | is an even number} ∪ {u{i} : i ∈ N}
)
.

We prove that Γ̂ coincides with the set of games satisfying the PS property
due to Kar et al. (2009). A game v ∈ ΓN satisfies the PS property if the
following condition holds: For any i ∈ N , there exists ci ∈ R such that

∆iv(S) + ∆iv
(
N\(S ∪ i)

)
= ci for all S ⊆ N\i. (7.5)

This means that, for any player i, the sum of marginal contributions to a
coalition and its complement is always constant. Under the PS property, the
Shapley value coincides with the prenucleolus. Let ΓPS denote the set of games
satisfying the PS property.

Theorem 7.4 Γ̂ = ΓPS.

Before providing a formal proof of Theorem 7.14, we prove a lemma. For any
v ∈ ΓN , we define vSh by

vSh = v −
∑
i∈N

Shi(v)u{i}.

Lemma 7.2 v ∈ ΓPS if and only if vSh(T ) = vSh(N\T ) for all T ⊆ N .

Proof. If v satisfies the PS property, there exist ci ∈ R for all i ∈ N such that
(7.5) holds. As proven by Kar et al. (2009), we have

Sh(v) =
(c1
2
, · · · , cn

2

)
.

By efficiency of the Shapley value, vSh(N) = vSh(∅) = 0. We proceed by
induction. Suppose that vSh(R) = vSh(N\R) for all R ⊆ N with |R| = r, and
we prove the result for T ⊆ N with |T | = r + 1, where r ≥ 0.

Let i ∈ T . Then,
v(T )− v(T\i) + v

(
(N\T ) ∪ i

)
− v(N\T ) = ci,

vSh(T )− vSh(T\i) + vSh
(
(N\T ) ∪ i

)
− vSh(N\T ) = ci −

ci
2
− ci

2
= 0.

By the induction hypothesis, vSh(T\i) = vSh
(
(N\T ) ∪ i

)
. It follows that

vSh(T ) = vSh(N\T ).

Conversely, suppose that vSh(T ) = vSh(N\T ) for all T ∈ 2N . Then, for any
i ∈ N and T ∈ 2N with T ∋ i,

vSh(T )− vSh(T\i) + vSh
(
(N\T ) ∪ i

)
− vSh(N\T ) = 0,

v(T )− v(T\i) + v
(
(N\T ) ∪ i

)
− v(N\T ) = 2Shi(v),

which means that the PS property holds.
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Proof. (Proof of Theorem 7.4) We first introduce additional notations. For a
coalition T ∈ 2N\∅, we define eT,N\T ∈ ΓN by

eT,N\T (S) =

{
1 if S = T or N\T,
0 otherwise.

One easily verifies that the following equation holds: For any T ∈ 2N\∅,

Sh(eT,N\T ) = 0. (7.6)

By Lemma 7.2,

ΓPS =
{
v ∈ ΓN : vSh(T ) = vSh(N\T ) for all T ∈ 2N

}
.

Let k ∈ N be fixed. We define

Γ∗ = Sp
(
{eT,N\T : T ∈ 2N\∅, k /∈ T} ∪ {u{i} : i ∈ N}

)
.

We prove two claims.

Claim 7.1 The set of games {eT,N\T : T ∈ 2N\∅, k /∈ T} ∪ {u{i} : i ∈ N} is
linearly independent.

Proof. Let (βT )T∈2N\∅,k/∈T and (α{i})i∈N be such that∑
T∈2N\∅,k/∈T

βT eT,N\T +
∑
i∈N

α{i}u{i} = 0. (7.7)

By linearity of the Shapley value,∑
T∈2N\∅,k/∈T

βTSh(eT,N\T ) = −
∑
i∈N

α{i}Sh(u{i}),

0 = −α. (7.8)

By substituting (7.8) to (7.7), we have∑
T∈2N\∅,k/∈T

βT eT,N\T = 0,

which implies that (βT )T∈2N\∅,k/∈T = 0.

Claim 7.2 ΓPS = Γ∗.

Proof. Proof of ΓPS ⊆ Γ∗: Let v ∈ ΓPS . Then, vSh(T ) = vSh(N\T ), which
implies vSh ∈ Sp({eT,N\T : T ∈ 2N\∅, k /∈ T}). Since

v =
∑
i∈N

Shi(v)u{i} + vSh,

we obtain v ∈ Γ∗.
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Proof of Γ∗ ⊆ ΓPS: Let v ∈ Γ∗. Then, by Claim 7.1, there exists a unique
vector (βT )T∈2N\∅,k/∈T , (α{i})i∈N , such that

v =
∑

T∈2N\∅,k/∈T

βT eT,N\T +
∑
i∈N

α{i}u{i}. (7.9)

By linearity of the Shapley value and (7.6), we have

Sh
( ∑
T∈2N\∅,k/∈T

βT eT,N\T

)
=

∑
T∈2N\∅,k/∈T

βTSh(eT,N\T ) = 0.

By Theorem 7.3, the set of games {ūf(T )
T : T ⊆ N, |T | ≥ 2} spans the null

space of the Shapley value. Hence, there exists a unique vector (γT )T∈2N ,|T |≥2

such that ∑
T∈2N\∅,k/∈T

βT eT,N\T =
∑

T∈2N :|T |≥2

γT ū
f(T )
T . (7.10)

By substituting (7.10) to (7.9), we obtain

v =
∑

T∈2N :|T |≥2

γT ū
f(T )
T +

∑
i∈N

α{i}u{i}.

By Theorem 7.3,
α{i} = Shi(v). (7.11)

By substituting (7.11) to (7.9), we have

v =
∑

T∈2N\∅,i/∈T

βT eT,N\T +
∑
i∈N

Shi(v)u{i},

vSh =
∑

T∈2N\∅,i/∈T

βT eT,N\T .

Hence, vSh(T ) = vSh(N\T ) for all T ∈ 2N . By Lemma 7.2, v ∈ ΓPS .

By Claim 7.2, our final goal is to prove that Γ∗ = Γ̂. By Theorem 7.3, Γ̂ ⊆ Γ∗

holds. To prove the converse set-inclusion, we prove that dimΓ∗ = dim Γ̂,
where dimX represents the dimension of X.

dimΓPS = |{T ∈ 2N\∅ : k /∈ T}|+ n

= |{T ∈ 2N\k\∅}|+ n

= |{T ∈ 2N\k\∅ : |T | is an even number}|
+ |{T ∈ 2N\k\∅ : |T | is an odd number}|+ n

= |{T ∈ 2N\∅ : |T | is an even number, k /∈ T}|
+ |{T ∈ 2N\∅ : |T ∪ k| is an even number, k /∈ T}|+ n

= dim Γ̂.
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7.7 Conclusions
The key advantage of linear algebraic approach is to clarify the mathematical
structure behind solutions in cooperative games. Theorem 7.3 fully describes
the game situations to which the Shapley value assigns the 0 vector. Theorem
7.4 tells us the dimension of the linear space ΓPS , thereby clarifying how
“large” the coincidence region is.

As bases are an essential mathematical tool in TU games, new bases might
open up new analyses of solutions. For example, Yokote and Funaki (2017)
provided a new axiomatization of solutions by using the basis

{¯̄uT : ∅ ̸= T ⊆ N} = {u{i} : i ∈ N} ∪ {ū2T : |T | ≥ 2},

or equivalently,

¯̄uT (S) =


1 if |T | = 1 and T ⊆ S,
1 if |T | ≥ 2 and |S ∩ T | = 2,

0 otherwise.

We give several candidates of interesting bases which satisfy conditions C1
and C2.

{ûT : ∅ ̸= T ⊆ N} = {u{i} : i ∈ N} ∪ {ū|T |−1
T : |T | ≥ 2},

or equivalently,

ûT (S) =


1 if |T | = 1 and T ⊆ S,
1 if |T | ≥ 2 and |S ∩ T | = |T | − 1,

0 otherwise.

{ˆ̂uT : ∅ ̸= T ⊆ N} = {uT : ∅ ̸= T ⊂ N} ∪ {ūn−1
N },

or equivalently,

ˆ̂uT (S) =


1 if 1 ≤ |T | ≤ n− 1 and T ⊆ S,
1 if |T | = n and |S| = n− 1,

0 otherwise.

{ˆ̂ûT : ∅ ̸= T ⊆ N} = {ūT : 1 ≤ |T | ≤ n− 1, |S ∩ T | = 1} ∪ {ū2N},
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or equivalently,

ˆ̂
ûT (S) =


1 if 1 ≤ |T | ≤ n− 1 and |S ∩ T | = 1,

1 if |T | = n and |S| = 2,

0 otherwise.
For these bases, Theorem 7.3 induces that the following two sets of games

span the null space of the Shapley value since l(2) = 1.

{ûT : T ⊆ N, |T | ≥ 2} = {ū|T |−1
T : T ⊆ N, |T | ≥ 2}.

{ˆ̂ûT : T ⊆ N, |T | ≥ 2} = {ūT : 2 ≤ |T | ≤ n− 1, |S ∩ T | = 1} ∪ {ū2N}.
It remains as a topic for future study to apply other bases including these

bases to the analysis of the Shapley value and other linear values in TU games.
It is known that if {wT : ∅ ̸= T ⊆ N} is a basis of a game space, the set

of the dual games {w∗
T : ∅ ̸= T ⊆ N} is also a basis of the game space, where

the dual game w∗
T of a game wT is given by w∗

T (S) = wT (N)−wT (N \S) for
all S ⊆ N . It might be interesting and important to find properties of bases
given by dual games of (T, k)-intermediate games.

In this chapter we have restricted attention to the class of games satisfying
the PS property, but there are other classes of games where the coincidence
holds. A notable example is the class of clique games (Trudeau and Vidal-
Puga, 2017), which is neither a superset nor a subset of the class of games
satisfying the PS property. It remains as a topic for future work to discuss the
relationship between clique games and our new bases.
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8.1 Introduction
As is emphasized in the other chapters of this book, the Shapley value, a
central concept in cooperative game theory, addresses the question of how
players should share the gains from cooperation. Shapley (1953a) formulates
his proposal for cooperative games with transferable utility in characteristic
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function form, that is, for games where the worth of the resources every group
of players has available to distribute among its members depends exclusively
on the actions of the group members. His proposal has important applications
in economics, such as the study of markets with given sets of potential buyers
and potential sellers.1

However, describing environments through characteristic function form
games may imply an important shortcoming, since the worth of a coalition
of players often depends on the actions of players outside the group. In fact,
the existence of such external effects is one of the key ingredients in most
economic, social, or political environments. To mention just a few examples,
in treaty agreements the gain of the participant countries depends on the
way the non-member countries act, that is, on whether they form a union or
they partition into singletons. In economic or political mergers, the gain of
the participants in the integration depends on the arrangements reached by
the non-included firms or political parties. For cartels and research joint ven-
tures, there are important cross effects, since what a group of players obtains
depends on the groups formed by the other players.

The abundance of situations where externalities among coalitions are
present calls for extending the class of cooperative games to allow for the pres-
ence of such cross effects. The first formal description of settings with exter-
nalities is provided by Thrall and Lucas (1963), who introduce games in parti-
tion function form. Since then, several cooperative solution concepts, and most
notably the Shapley value, have been extended to games with externalities.

In this chapter, we present the extensions of the Shapley value to games in
partition function form. One possible avenue to address the task of extending
the value is to take the Shapley value axioms for games in characteristic func-
tion form and adapt them to that larger class of games. The extension of the
Shapley value axioms has to take a stand on the treatment (importance) of
the various externalities. Different approaches to these issues lead to distinct
systems of axioms, in particular distinct dummy player axioms, all of which
reduce to the original Shapley axioms in the absence of externalities. As a
consequence, several plausible extensions of the Shapley value are obtained.

Myerson (1977) is the first attempt to extend the Shapley value for games
in partition function form. As we will see later, his set of axioms identifies
a unique value. However, in environments where externalities are present,
natural extensions of the Shapley axioms do not necessarily imply a unique
value. That is why most authors have imposed additional and/or different
axioms to identify a unique solution (Bolger, 1989; Albizuri, Arin, Rubio,
2005; Macho-Stadler, Pérez-Castrillo, Wettstein, 2007; Pham Do and Norde,
2007; McQuillin, 2009; Hu and Yang, 2010; Grabisch and Funaki, 2012).

Other possible avenues to extend the Shapley value to games in parti-
tion function form are based on alternative ways to characterize the Shapley
value, such as the marginalistic approach (De Clippel and Serrano, 2008a), the
potential avenue (Dutta, Ehlers and Kar, 2010) and the algorithmic route.

1In addition, as several authors have underlined, the fact that the Shapley value can
be interpreted in terms of “marginal contributions” makes it perhaps the game theoretic
concept most closely related to traditional economic ideas (see, e.g., Aumann, 1994).
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The chapter is organized as follows. In Section 8.2 we present the envi-
ronment, and in Section 8.3 the proposals for extending the Shapley value for
games with externalities using the axiomatic approach. Section 8.4 presents
the extensions of the value based on the agents’ marginal contributions. Sec-
tion 8.5 describes extensions that follow the approaches of the potential,
the Harsanyi dividends, and the algorithmic view. Section 8.6 provides non-
cooperative foundations to several values for partition function form games.
A concluding section offers some examples of applications and avenues for
future research.

8.2 The Environment
Cooperative games with externalities were first introduced by Thrall and Lu-
cas (1963) as transferable utility (TU) n-person games in partition function
form (PFF) as follows. Given a set of players, N = {1, ..., n}, a coalition S is
a group of s players, that is, a non-empty subset of N, S ⊆ N . An embedded
coalition specifies the coalition, S, as well as the structure of coalitions formed
by the other players, that is, an embedded coalition is a pair (S, P ), where S
is a coalition and P ∋ S is a partition of N . We adopt the convention that
the empty set ∅ is in P for every partition P although we refrain from explic-
itly inserting it in the partitions. A particular partition is [N ] =

{
{i}i∈N

}
,

where all the coalitions are singleton coalitions. More generally, we denote
by [S] the partition of S consisting of all the singleton players in S, that is,
[S] =

{
{i}i∈S

}
.

Let P(N) denote the set of all partitions of N and PS =
{P ∈ P(N) | S ∈ P} the set of partitions including S. The set of embedded
coalitions of N is denoted by ECL:

ECL = {(S, P ) | P ∈ PS and S ⊆ N} .

A PFF game is given by a set of players, N , and a function, v : ECL→ R,
that associates a real number with each embedded coalition. Thus, v(S, P )
is the worth of coalition S when the players are organized according to the
partition P . We assume that v(∅, P ) = 0. Let GN be the set of games in
PFF with players in N . We will sometimes refer to some particularly simple
games which we will denote by (N,w(S,P )). The function w(S,P ) is defined as
w(S,P )(S, P ) = w(S,P )(N, {N}) = 1 and w(S,P )(S

′, P ′) = 0 for any (S′, P ′)
different from (S, P ) and (N, {N}).2

Some games in GN do not have externalities. A game has no externalities
if the worth of any coalition S is independent of the way the other players are
organized. A game with no externalities satisfies v(S, P ) = v(S, P ′) for any

2The set of games
{
w(S,P )

}
(S,P )∈ECL

constitutes a basis for GN .
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P, P ′ ∈ PS and any coalition S ⊆ N . We denote a game with no externalities
by v̂. Since in this case the worth of a coalition S can be written without
reference to the organization of the remaining players, we can write v̂(S) ≡
v̂(S, P ) for all P ∈ PS and all S ⊆ N for such games. We denote by GN the set
of games without externalities with players in N , which corresponds to the set
of TU games in characteristic function form (CFF). For convenience, we will
denote a value for games in characteristic form by ψ, that is, ψ : GN → Rn.
We denote the Shapley value for a CFF game v̂ by ψSh(v̂).

After the introduction of PFF games by Thrall and Lucas (1963), the
subsequent literature dealt with both the structure of multi-valued solutions
and the construction of single-valued solutions for PFF games. A single-valued
solution is given by a function φ : GN → Rn, where φi(v) is the payoff assigned
by the solution φ to player i ∈ N in the PFF game v. As mentioned in the
Introduction, in this chapter we are interested in the extensions of the Shapley
value ψSh(v̂) for PFF games.

8.3 Axiomatic Extensions of the Shapley Value for
Games with Externalities

One branch of the literature takes as a starting point the axioms underlying
the Shapley value for CFF games. These axioms can be extended to PFF
games in several ways and give rise to several distinct “Shapley-like” values.
New axioms can also be proposed to deal with the externalities.

First of all, let us note that all the values we present in this section assume
that the grand coalition will form and thus the value will share the worth of
the grand coalition, that is, the value is efficient.3

Efficiency axiom. A value φ is efficient if
∑
i∈N φi(N, v) = v(N, {N}) for

any v ∈ GN .

Myerson (1977) was the first to extend the Shapley axioms to PFF games
and obtain a value for this class of games. The symmetry and additivity axioms
were extended in the following, natural way. Let us define the σ− permutation
of the game v ∈ GN , denoted by σv, as (σv)(S, P ) ≡ v(σS, σP ) for all (S, P ) ∈
ECL.

Symmetry axiom. A value φ is symmetric if φ(σv) = σφ(v) for any v ∈ GN
and for any permutation σ of v.

3This may be the most adequate assumption for games where the grand coalition max-
imizes joint surplus. Hafalir (2007) shows that a natural extension of superadditivity for
PFF games is not sufficient to imply that the grand coalition is efficient, and provides a
condition, analogous to convexity, that is sufficient for a game to have this feature.
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This symmetry axiom is interpreted as an anonymity axiom.
If we define the addition of two games v and v′ in GN as the game v + v′,

where (v + v′)(S, P ) ≡ v(S, P ) + v′(S, P ) for all (S, P ) ∈ ECL, then the
additivity axiom can be written as follows:

Additivity axiom. A value φ is additive if φ(v+ v′) = φ(v) +φ(v′) for any
v, v′ ∈ GN .

In Myerson (1977), the dummy and efficiency axioms are extended by
providing a carrier definition for PFF games. We say that S ⊆ N is a carrier
for v if and only if

v(S̃, Q̃) = v(S̃ ∩ S, Q̃ ∧ {S,N\S}) for every (S̃, Q̃) ∈ ECL.

That is, S is a carrier for v if the payoff of any embedded coalition (S̃, Q̃) is
determined by the set of players in S̃ that are in S and the meet Q̃∧{S,N\S}
of the partitions Q̃ and {S,N\S} (the largest partition that refines both). The
carrier axiom for CFF games is then extended as follows:

Carrier axiom. A value φ satisfies the carrier axiom if
∑
i∈S φi(N, v) =

v(N, {N}) for any v ∈ GN for which S is a carrier.

The three axioms of symmetry, additivity, and carrier yield a unique value,
allowing Myerson (1977) to propose the extension φM (v) given by

φM
i (v) =

∑
(S,P )∈ECL

(−1)|P |−1 (|P | − 1)!

 1

n
−

∑
T∈P\{S}

i/∈T

1

(|P | − 1) (n− |T |)

 v(S, P )

for any i ∈ N , where |T | is the number of agents in T and |P | is the number
of non-empty coalitions in P.4

While the extension of the efficiency axiom through the carrier axiom
is natural, the extension of the dummy player axiom may be more prob-
lematic. A player i ∈ N is a dummy player, in the sense of Myerson
(1977), if there exists a carrier S with i /∈ S. The carrier axiom im-
plies that such a dummy player will receive zero according to φM . This
is problematic since a dummy player, thus defined, might have an effect
on the worth of coalitions. Take, for example, the game with three players
({1, 2, 3}, w({1},{{1},{2,3}})). In this game, player 1 is a carrier and hence play-
ers 2 and 3 are dummy players. Therefore, φM1 (w({1},{{1},{2,3}})) = 1 and
φM2 (w({1},{{1},{2,3}})) = φM3 (w({1},{{1},{2,3}})) = 0. On the other hand, in the
possibly similar game ({1, 2, 3}, w({1},{{1},{2},{3}})), player 1 is not a carrier
and, in fact, φM1 (w({1},{{1},{2},{3}})) = 0.

4Albizuri (2010) adapts the axioms in Myerson (1977) to extend φM to a new class of
games, where players can take part in more than one coalition, named “games in coalition
configuration function form.”
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Bolger (1989) is the second author to obtain a value for PFF games by
suggesting a different extension of the Shapley axioms. The efficiency and
symmetry axioms are extended as above and the additivity axiom is strength-
ened to a natural linearity axiom, regarding both addition and multiplication
by a scalar.5

Formally, given the game v ∈ GN and the scalar λ ∈ R, the game λv is
defined by (λv)(S, P ) ≡ λv(S, P ) for all (S, P ) ∈ ECL.

Linearity axiom. A value φ is linear if it is additive and φ(λv) = λφ(v) for
any v ∈ GN and for any scalar λ ∈ R.

Bolger (1989) also introduces a dummy player axiom, which is a natural
generalization of the dummy player axiom for CFF games. We will say that
player i is a dummy player in v ∈ GN if he alone receives zero for any partition
of the other players and, furthermore, he has no effect on the worth of any
coalition S (i.e., the worth of S in partition P is constant for all possible
assignments of player i to some coalition in P ). That is, player i is a dummy
player in v ∈ GN if for every (S, P ) ∈ ECL with i ∈ S and each R ∈ P\{S},
v(S, P ) = v(S\{i}, P\ {S,R} ∪ {S\{i}, R ∪ {i}}).6

Dummy player axiom. A value φ satisfies the dummy player axiom if
φi(v) = 0 for any game v ∈ GN and any dummy player i in the game v.

The final axiom considered by Bolger (1989) is inspired by the desired
behavior of the value over simple games, where v(S, P ) equals either zero or
one. It states that if the sum of marginal contributions of player i to any
coalition in v ∈ GN is the same as in v′ ∈ GN , then player i should receive the
same payoff in both games. This axiom is well suited to simple games but it
may be less intuitive for general games in PFF.

While Bolger (1989) shows that efficiency, symmetry, linearity, dummy
player,7 plus the additional axiom related to the sum of marginal contributions
imply that there is a unique value φB , there is no closed-form expression
for φB .

Macho-Stadler, Pérez-Castrillo, and Wettstein (2007 and 2017) introduce
a new axiom, strong symmetry, in addition to the efficiency and symmetry
axioms (appearing in both Myerson, 1977, and Bolger, 1989). The strong
symmetry axiom strengthens the symmetry axiom by requiring that a player’s
payoff should not change after permutations in the set of players in N\S, for
any embedded coalition structure (S, P ). To illustrate its meaning, consider

5In Myerson’s (1977) extension, there is no need to introduce the linearity axiom. As is
the case for CFF games, additivity together with the carrier axiom imply linearity. However,
this is not true for the definitions of dummy player used in most papers (see Macho-Stadler,
Pérez-Castrillo, and Wettstein, 2007, for a formal proof).

6For R = ∅, we slightly abuse notation by assuming that the partition P\ {S,∅} ∪
{S\{i},∅ ∪ {i}} also includes the empty set.

7Sánchez-Pérez (2015) provides a representation of all the values that satisfy efficiency,
symmetry, linearity, and dummy player.
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the following two games with four players: ({1, 2, 3, 4}, w({1},{{1},{2},{3,4}}))
and ({1, 2, 3, 4}, w({1},{{1},{3},{2,4}})). Strong symmetry requires that player
2 should receive the same payoff in both games. Another way to view it is
that 2 should receive the same payoff as 3 and 4 in w({1},{{1},{2},{3,4}}). Since
the roles of players 2 and 3 (or 4) are similar (because they only generate
the externality if they are organized in a particular way), this axiom can be
viewed as a symmetric treatment of the externalities generated by players.
Put differently, exchanging the names of the players inducing externalities
does not affect the payoff of any player.

Formally, given an embedded coalition (S, P ), denote by σ(S,P )P a new
partition such that S ∈ σ(S,P )P, and the other coalitions result from a
permutation of the set N\S applied to P\{S}. That is, in the partition
σ(S,P )P, the players in N\S are reorganized in sets whose size distribu-
tion is the same as in P\{S}. Given the permutation σ(S,P ), the permu-
tation of the game v denoted by σ(S,P )v is defined by (σ(S,P )v)(S, P ) =
v(S, σ(S,P )P ), (σ(S,P )v)(S, σ(S,P )P ) = v(S, P ), and (σ(S,P )v)(R,Q) = v(R,Q)

for all (R,Q) ∈ ECL\
{
(S, P ), (S, σ(S,P )P )

}
.

Strong symmetry axiom. A value φ satisfies the strong symmetry axiom
if for any game v ∈ GN it is the case that
1. φ(σv) = σφ(v) for any permutation σ of N , and
2. φ(σ(S,P )v) = φ(v) for any (S, P ) ∈ ECL and for any permutation
σ(S,P ).

Note that strong symmetry is implied by symmetry when there are just three
players, but it is a more demanding property for games with more players.

The symmetry axioms above are associated with the idea of anonymity.
One could instead require a different axiom, often considered in CFF games,
usually called equal treatment of equals. This property requires that inter-
changeable players (that is, players that can be interchanged without affect-
ing the value of any coalition) should receive the same payoff. For games in
CFF, the symmetry and equal treatment axioms are equivalent for efficient
and additive values.

Macho-Stadler, Pérez-Castrillo, and Wettstein (2017) introduce a strong
equal treatment axiom for PFF games by defining a weak version of
interchangeability: Players i and j are weakly interchangeable in v ∈
GN if for all (S, P ) with i ∈ S and j ∈ R ∈ P\{S}, v(S, P ) =
v ((S\{i}) ∪ {j}, P\ {S,R} ∪ {(S\{i}) ∪ {j}, (R\{j}) ∪ {i}}). That is, players
i and j are weakly interchangeable in the game v if for any coalition S includ-
ing one of them, switching them does not affect the value of any embedded
coalition (S, P ). For example, in the game ({1, 2, 3, 4}, w({1},{{1},{2},{3,4}})),
players 2, 3, and 4 are weakly interchangeable.

Strong Equal Treatment axiom. A value φ satisfies the strong equal
treatment axiom if φi(N, v) = φj(N, v) for any pair of weakly inter-
changeable players i and j in v.
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Strong equal treatment and strong symmetry axioms are equivalent for lin-
ear and efficient values (Macho-Stadler, Pérez-Castrillo, and Wettstein, 2017).

An additional motivation for the strong symmetry axiom is that combined
with efficiency and linearity, it provides an axiomatic foundation for the use of
an intuitive approach to construct values for PFF games, namely the average
approach, introduced in Macho-Stadler, Pérez-Castrillo, and Wettstein (2007
and 2017).8 This approach assigns to each coalition an average of the surpluses
it obtains in all the partitions it might belong to. In this way, it first transforms
a PFF game to a CFF game. It then uses a value for CFF games to determine
the payoffs of the players in the PFF game.

Formally, the average approach constructs a value φ for PFF games using
a value for CFF games ψ as follows. First, for any v ∈ GN , it constructs an
average game ṽ ∈ GN by assigning to each S ⊆ N the average worth ṽ(S) ≡∑
P∈PS

α(S, P )v(S, P ), with
∑
P∈PS

α(S, P ) = 1. We refer to α(S, P ) as the
“weight” of partition P in the computation of the value of coalition S ∈ P .
Second, the value is defined as φ(v) = ψ (ṽ) .9

Macho-Stadler, Pérez-Castrillo, and Wettstein (2017) show that a value
φ can be constructed through the average approach using a value for CFF
games ψ that satisfies efficiency, linearity, and symmetry if and only if φ
satisfies efficiency, linearity, and strong symmetry.10 Adding the dummy player
axiom to the desirable requirements for a value implies a constraint on the
weights α(S, P ), but still, many weighting systems are compatible with the
four axioms. If we define the average game ṽ using any of these weights, then
φ(v) = ψSh (ṽ) is an extension of the Shapley value.

To select a single value, Macho-Stadler, Pérez-Castrillo, and Wettstein
(2007) propose a similar influence axiom. This axiom guarantees that simi-
lar environments lead to similar payoffs for the players. Consider, for exam-
ple, the following two games with three players: ({1, 2, 3}, w({1},{{1},{2,3}}))
and ({1, 2, 3}, w({1},{{1},{2},{3}})). These two games are very similar: In both,
only player 1 can produce some benefits alone. The only difference is that
in w({1},{{1},{2,3}}), players 2 and 3 need to be together for the benefits to
player 1 to be realized, while in w({1},{{1},{2},{3}}), players 2 and 3 should be
separated. The similar influence axiom requires players 2 and 3 to receive the
same payoff in both games.

Formally, we say that a pair of players {i, j} ⊆ N, i ̸= j, has similar influence
in games v and v′ if v(T,Q) = v′(T,Q) for all (T,Q) ∈ ECL\{(S, P ), (S, P ′)},

8In the previous paper, the average approach was restricted to values satisfying the
efficiency, linearity, and dummy player axioms whereas in the latter it was applied to all
efficient and linear values.

9As will be clear, all the axiomatically based values described in the remainder of this
section satisfy this approach.

10Hence, the average approach can be used to extend both the Shapley value and several
other values, such as the equal division value (van den Brink, 2007), the equal surplus value
(Driessen and Funaki, 1991), the λ−egalitarian Shapley value (Joosten, 1996), the consensus
value (Ju, Borm, and Ruys, 2007), and the family of least-square values (Ruiz, Valenciano,
and Zarzuelo, 1998).
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v(S, P ) = v′(S, P ′), and v(S, P ′) = v′(S, P ), where the only difference between
partitions P and P ′ is that {i}, {j} ∈ P\{S} while {i, j} ∈ P ′\{S}.

Similar influence axiom. A value φ satisfies the similar influence axiom
if for any two games v, v′ ∈ GN and for any pair of players {i, j} ⊆ N
that has similar influence in those games, we have φi(v) = φi(v

′) and
φj(v) = φj(v

′).

The axioms of efficiency, linearity, dummy player, strong symmetry, and
similar influence characterize a unique solution which can be constructed
through the average approach by using the following weights:

αMPW (S, P ) =

∏
T∈P\{S}

(|T | − 1)!

(n− |S|)!
.

Note that αMPW (S, P ) can be interpreted as the probability that partition
P is formed, given that coalition S forms.11 For any v ∈ GN , once we have
computed the average game ṽMDW using these weights, we obtain:

φMPW (v) = ψSh(ṽMDW ).

This same value was proposed, but not axiomatized, by Feldman (1996). Let
us finally note that φMPW satisfies the strong dummy axiom:

Strong dummy player axiom. A value φ satisfies the strong dummy
player axiom if for any dummy player i in the game v, φj(N, v) =
φj(N\{i}, v) for all j in N\{i}.

The strong dummy property requires that adding or subtracting a dummy
player from a game leaves the outcomes of the remaining players unchanged.12

Albizuri, Arin, and Rubio (2005) provide another extension of the Shapley
value for PFF games, using the efficiency, symmetry, and additivity axioms, to
which they add two additional properties. First, they introduce the oligarchy
axiom (which can be viewed as a type of carrier axiom) for PFF games.

Oligarchy axiom. A value φ satisfies the oligarchy axiom if for any v ∈ GN
for which there exists R ⊆ N such that v(S, P ) = v(N, {N}) if R ⊆ S
and v(S, P ) = 0 if R ⫅̸ S, then

∑
i∈R φi(v) = v(N, {N}).

This axiom states that if there is a (oligarchic) coalition R in a game
v such that any coalition that contains R generates the worth of the grand

11According to this interpretation, the denominator in the expression that defines
αMPW (S, P ) is the number of permutations of the players in N\S. The numerator counts
the number of those permutations of N\S that “generate” the partition P , when we write
a permutation as a cycle.

12This property is satisfied by the Shapley value in CFF games. Note also that for any
efficient value, the strong dummy player axiom implies the dummy player axiom.
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coalition, whereas any other embedded coalition has zero worth, then all the
worth must be shared among the members of the oligarchic coalition. Thus,
in some sense, this axiom implies a form of null player axiom, different from
the dummy player axiom as defined above.

Finally, to introduce the last axiom, Albizuri, Arin, and Rubio (2005)
consider a coalition S ⊆ N and a bijection ξS on {(S, P ) | P ∈ PS}. For each
v ∈ GN , denote by ξSv the game in GN such that (ξSv)(S, P ) = v(ξS(S, P ))
for any P ∈ PS and (ξSv)(T, P ) = v(T, P ) for any T ∈ N\S and any P ∈ PT .

Embedded coalition anonymity axiom. A value φ satisfies the em-
bedded coalition anonymity axiom if for any bijection ξS on
{(S, P ) | P ∈ PS}, and for any v ∈ GN , it is the case that φ(ξSv) =
φ(v).

The embedded coalition anonymity axiom states that the determinant of
the players’ payoffs is the worth of the embedded coalitions, irrespective of
the partitions that generate the worth.

Albizuri, Arin, and Rubio (2005) show that the axioms of efficiency, sym-
metry, additivity, oligarchy, and embedded coalition anonymity characterize
a unique solution. It is given by the Shapley value of the CFF game derived
from the PFF game by assigning to each coalition the arithmetic average of
its worth for all the possible partitions it may belong to. That is, defining the
game ṽAAR ∈ GN as ṽAAR(S) =

∑
Q∈PS

1
|PS |v(S,Q), the value is:

φAAR(v) = ψSh(ṽAAR).

In another axiomatic proposal, Pham Do and Norde (2007) use the effi-
ciency, additivity, and strong equal treatment axioms. In addition, they intro-
duce an extension of the dummy player axiom that is stronger than the one
we previously defined, as they propose a weaker definition of a null player.
They call player i ∈ N a null player if player i’s worth as a singleton is zero
for any partition in P{i} and his marginal contribution to any other coalition
is zero when he joins the coalition from being a singleton. Formally, player
i ∈ N is a null player in v ∈ GN if v ({i}, P ) = 0 for every ({i}, P ) ∈ ECL and
v(S ∪{i}, P\ {S, {i}}∪ {S ∪ {i}}) = v(S, P ) for each (S, P ) with S ̸= {i} and
{i} ∈ P . Note that a so-defined null player can affect the worth of coalition S
when he moves among coalitions other than S. Therefore, a player can be a
null player and not dummy.

Null player axiom. A value φ satisfies the null player axiom if φi(v) = 0
for any v ∈ GN and any null player i in v.

Pham Do and Norde (2007) show that there is a unique solution satisfying
efficiency, additivity, symmetry, and null player. It is given by the Shapley
value of the CFF game defined by v̂PN (S) ≡ v(S, [P\{S}] ∪ {S}):

φPN (v) = ψSh(v̂PN ).
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Note that the value φPN ignores most of the information provided by the
whole PFF game.

A simultaneous extension of both the Shapley value and the Owen value
(Owen, 1977) for CFF games with an a priori coalition structure is provided
by McQuillin (2009). He introduces the idea of an extended generalized value
(EGV), which is a mapping χ : GN → GN . For v ∈ GN , χ(v)(S, P ) is the value
of coalition S in game v with an initial coalition structure given by P . When
P = [N ], the corresponding function χ(v)({i}, [N ]) constitutes a standard
value extension to PFF games. For partitions different from [N ], the values
obtained extend values for CFF games with an initial coalition structure.

To obtain an EGV, McQuillin (2009) uses efficiency, symmetry, linearity,
and dummy player (which he constructs via an appropriate extension of the
carrier axiom). In addition, he introduces a weak monotonicity condition. Let
wo(S,P ) denote the function given by wo(S,P )(S, P ) = 1 and wo(S,P )(R,Q) = 0

when (R,Q) ̸= (S, P ); then:

Weak monotonicity axiom. A value χ satisfies weak monotonicity if
χ(wo(S,P ))({i}, [N ]) ≥ 0 for any i ∈ S and any game wo(S,P ).

Three further axioms are related to the behavior of the value in the pres-
ence of an a priori coalition structure. The first is the rule of generalization,
implying that given an a priori coalition structure, each member of the par-
tition is viewed as a single player. The second is the cohesion axiom, which
requires that the payoff to any embedded coalition (S, P ) depends only on
the payoffs to those embedded coalitions with partitions that are coarser than
(S, P ). The third strengthens the dummy axiom, through a generalized null
player axiom, by requiring that a dummy player in v is also a dummy player
in χ(v). The final axiom is the recursion axiom stating that χ(χ(v)) = χ(v);
that is, the solution is the right way to assign payoffs: Once payoffs are as-
signed according to the solution, the solution will “agree” that these are the
appropriate payoffs.

This set of axioms leads to a unique value called the extended Shapley
value. It is given by the Shapley value of each player in the CFF game derived
from the PFF game by v̂MQ(S) ≡ v(S, {N\S, S}):

φMQ
i (v) = χ(v)({i}, [N ]) = ψShi (v̂MQ) for all i ∈ N.

The value φMQ again abstracts from most of the information provided by
the whole PFF game; it only takes into account the worth of a coalition S
when other players form the complementary coalition N\S. McQuillin (2009)
interprets it in two ways. From a normative point of view, most information
should indeed be ignored based on the properties the extension should satisfy.
From a positive point of view, it implies an impossibility result: If all the
information in the PFF game is taken into account, it is impossible to satisfy
the axioms and the recursion property.

Finally, Hu and Yang (2010) extend the Shapley value using efficiency,
symmetry, additivity, and introducing a demanding extension of the dummy
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player axiom. In their proposal, a player i ∈ N is an “average dummy player”
if his average contribution to every coalition is zero, where the average is
taken over all the possible partitions including the coalition. Then, Hu and
Yang (2010) require the value to satisfy the axiom that the average dummy
players must obtain zero. They show that this set of axioms characterizes a
unique extension of the Shapley value for PFF games, which can be written
as follows:

φHYi (v) =
∑

P∈P(N)
S⊆N,S∋i

(|S| − 1)! (n− |S|)!
n! |P(N)|

(
v (S, P−S)− v

(
S\{i}, P−(S\{i})

))
,

where, for P ∈ P(N), we denote P−S = {T\S | T ∈ P} ∪ {S} , and similarly
for P−(S\{i}).

8.4 Marginal Contributions
The marginal contribution of a player to a coalition in a CFF game is the
difference between the value of this coalition with and without the player.
It can also be understood as a loss incurred by the remaining agents when
the player leaves the coalition. For CFF games, the concept of marginal con-
tribution of players plays an important role in the analysis of values both
axiomatically and operationally (when calculating the values). In particular,
Young (1985) proposes to replace the additivity and dummy player axioms
in the characterization of the Shapley value for CFF games with a marginal-
ity axiom requiring a player’s payoff to depend only on his own productivity
measured by marginal contributions. He proves that the Shapley value can be
formulated as the average of players’ marginal contributions to all coalitions.
In other words, the axioms of marginality, efficiency, and symmetry provide
a characterization of the Shapley value.

The concept of marginal contribution is easily defined and computed for
CFF games. However, defining marginal contributions is not straightforward
for games with externalities because the change of worth of a coalition caused
by an agent leaving this coalition depends on the partition in which it is
embedded and on the identity of the coalition the agent joins.

De Clippel and Serrano (2008a) thoroughly analyze the use of marginal
contributions to determine possible sharings of the surplus generated in PFF
games. Once they adopt the efficiency and symmetry axioms as above, they
focus on properties related to marginal contributions. First, they consider the
case where a player may join any other coalition after leaving a coalition S.
When player i leaves coalition S in partition P to join another coalition T in
P , the total effect on coalition S is:

v(S, P )− v(S\{i}, P\{S, T} ∪ {S\{i}, T ∪ {i}}).
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Therefore, a natural extension of Young’s (1985) axiom is:

Weak marginality axiom. A value φ satisfies the weak marginality axiom
if for any two games v, v′ ∈ GN for which

v(S, P )− v(S\{i}, P\{S, T} ∪ {S\{i}, T ∪ {i}}) =
v′(S, P )− v′(S\{i}, P\{S, T} ∪ {S\{i}, T ∪ {i}}),

for any (S, P ) ∈ ECL with i ∈ S, T ̸= S and T ∈ P , then it is the case
that φi(v) = φi(v

′).

The three axioms of efficiency, symmetry, and weak marginality impose
very few restrictions on values satisfying them. It is possible to strengthen
the weak marginality axiom to a “monotonicity axiom” which states that if a
player’s marginal contributions in game v are greater than or equal to (with at
least one strict inequality) the corresponding marginal contributions in game
v′, then the player’s payoff in v must be greater than the payoff in v′. This
new axiom, together with efficiency and symmetry, imposes upper and lower
bounds on the payoffs prescribed by values satisfying them. Still, there is a
large family of values satisfying the three axioms.

One way to single out a unique value is by strengthening the weak
marginality axiom. To do this, De Clippel and Serrano (2008a) decom-
pose the total effect on coalition S when player i leaves S in P to
join another T ∈ P in the “intrinsic marginal contribution,” given by
v(S, P )−v(S\{i}, P\{S}∪{S\{i}, {i}}), and the “externality effect,” given by
v(S\{i}, P\{S}∪{S\{i}, {i}})−v(S\{i}, P\{S, T}∪{S\{i}, T ∪ {i}}). That
is, the intrinsic marginal contribution is the loss incurred due to the player
leaving S and becoming a singleton. The externality effect is the additional
loss incurred when the player joins coalition T .

Then, De Clippel and Serrano (2008a) introduce a “marginality axiom”
stating that the value assigned to player i depends only on the intrinsic
marginal contributions of the player. The value characterized by the marginal-
ity axiom together with efficiency and symmetry coincides with the one pro-
posed by Pham Do and Norde (2007) (we have denoted it φPN ) and is called,
in De Clippel and Serrano (2008a), the externality-free value. It is viewed as a
reference point from which transfers can be made compatible with the identi-
fied bounds rather than as an actual final recommendation of the payoffs for
the players.

Skibski, Michalak, and Wooldridge (2013)13 take a more direct approach
and provide a direct link between marginal contributions and values for PFF
games. The marginal contribution of a player i to coalition S in a partition P
in a game v, denoted by mcαi (v)(S, P ), is taken to be a weighted average of

13Skibski, Michalak, and Wooldridge (2017) provide a more condensed presentation of
this value in Section 4.2.
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i’s total effects on coalition S over PS . More formally,

mcαi (v)(S, P ) =∑
T∈P\{S}

αi(S\{i}, T, P )(v(S, P )− v(S\{i}, P\{S, T} ∪ {S\{i}, T ∪ {i}})

αi(S\{i}, T, P ) is the weight attached to the effect on the value of S, of having
player i leave S and join another partition T ∈ P .

A player i is an α-null player in a game v if mcαi (v)(S, P ) = 0 for all
(S, P ) ∈ ECL with i ∈ S. Then Skibski, Michalak, and Wooldridge (2013)
show there is a unique value φSMW on GN that satisfies the standard axioms
of efficiency, symmetry, additivity, together with the following axiom:

Null player axiom. α. A value φ satisfies the null player axiomα if φi(v) = 0
for any game v ∈ GN and any α-null player i ∈ N .

The closed-form expression for the value φSMW , similar to the Shapley
value for CFF games, is

φSMW
i (v) =

1

n!

∑
σ∈Ω(N)

∑
P∈P(N)

prασ (P )
(
v
(
Cσ

i ∪ {i}, P−(Cσ
i ∪{i})

)
− v

(
Cσ

i , P−Cσ
i

))
,

where Ω(N) denotes the set of permutations of N , Cσi denotes the set of
players before player i in the permutation σ, prασ (P ) is Πi∈Nαi(C

σ
i , P−Cσ

i
)

and P−S is defined as in the expression for φHY .
It is worth noting that, in the same way as φSMW , several values derived

axiomatically (φB , φAAR, φMPW , φPN , φMQ, φHY ) also have an interpreta-
tion as an average of suitably defined marginal contributions.

8.5 Other Approaches
The Shapley value lent itself to several characterizations besides the classical
axiomatic and marginalistic ones. In what follows, we describe extensions of
the Shapley value via three of these approaches.

8.5.1 The Potential Approach
Hart and Mas-Colell (1989) introduce the concept of a potential function, p.
This function associates with each CFF game (N, v̂) a single number, p(N, v̂),
the potential of the game. The marginal contribution of player i ∈ N to the
game (N, v̂), denoted by Di(N, v̂), is then defined as p(N, v̂) − p(N\{i}, v̂),
where the game (N\{i}, v̂) is the CFF game given by the restriction of v̂
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to N\{i}. Furthermore, for any CFF game (N, v̂) the sum of the marginal
contributions of the players equals v̂(N). That is,

∑
i∈N D

i(N, v̂) = v̂(N) for
any CFF game (N, v). Hart and Mas-Colell (1989) show that such a function
exists and the marginal contribution of each player is precisely its Shapley
value.

In addition to providing a new and exciting way to look at the Shapley
value as a marginal contribution, the potential concept leads to a consistency
property characterization of the Shapley value. Given a game (N, v̂) and a
value for CFF games ψ, let us define the “reduced” CFF game (T, v̂ψT ) by:

v̂ψT (S) = v̂(S ∪ (N\T ))−
∑

i∈N\T

ψi(S ∪ (N\T ) , v̂) for all S ⊂ T

(S ∪ (N\T ) , v̂) is the game (N, v̂) restricted to S ∪ (N\T ). A value ψ is
consistent if ψj(T, v̂ψT ) = ψj(N, v̂) for any CFF game (N, v̂), any T ⊂ N ,
and any j ∈ T . Hart and Mas-Colell (1989) show that a value ψ is consistent
and “equally splits the surplus” for two-person games if and only if it is the
Shapley value.

Dutta, Ehlers, and Kar (2010) extend the potential notion to PFF games
by defining restriction operators that quantify the marginal contribution of
a player i ∈ N to a game v ∈ GN . A restriction operator r associates with
each game (N, v) and each player i ∈ N a subgame (N\{i}, v−i,r). The worth
v−i,r(S, P ) of an embedded coalition (S, P ) ∈ ECL(N\{i}) is a function,
implicit in the definition of the mapping r, of the values v(S, P ′), where P ′ is
any partition that can arise from partition P by adding player i (player i may
enter as a singleton or join one of the existing coalitions in P ). This definition
imposes very little structure on the subgames. Dutta, Ehlers, and Kar (2010)
start by requiring that the restriction operators satisfy path independence. To
introduce the assumption, let v−ij,r = v−i,r(v−j,r).

Path independence axiom. A restriction operator satisfies the path inde-
pendence axiom if v−ij,r = v−ji,r.

That is, the order by which players are removed does not affect the game
taking place after their departure.

Given a restriction operator r satisfying path independence, an r-potential
function, pr : GN→R , is similarly defined to the potential definition in
CFF games. Marginal contributions of players are given by Dipr(N, v) =
pr
(
N, v)− pr(N\{i}, v−i,r

)
for all i ∈ N and they sum up to v(N, {N}).

Each potential function pr gives rise to what Dutta, Ehlers, and Kar (2010)
call an r-Shapley value.

Still, there are several r-Shapley values. For example, φPN (the externality-
free value of De Clippel and Serrano, 2008a) is obtained by letting
v−i,r(S, P ) = v(S, (P ∪ {i})).14 The value φAAR is obtained when v−i,r(S, P )

14Dutta, Ehlers, and Kar (2010) call it the sing restriction operator.
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is a weighted average of the v(S, P ′)’s (P ′ is again any partition that can arise
from partition P by adding player i).15

Imposing further axioms on the restriction operators singles out particular
families of values for PFF games. Furthermore, Dutta, Ehlers, and Kar (2010)
study the relationship between the axioms on the restriction operators and
the extension of the standard Shapley axioms to PFF games. The restriction
operators also enable the authors, similar to Hart and Mas-Colell (1989), to
define a consistency property for PFF games. They show under some further
assumptions that the unique value satisfying consistency for a given restriction
operator r is the r-Shapley value.

8.5.2 The Harsanyi Dividends Approach
Another approach that leads to the Shapley value involves the use of “div-
idends.” For any CFF game (N, v̂) ∈ GN , the dividends that a coalition S
generates are recursively defined as follows:

∆v̂(S) =

{
0 if S = ∅
v̂(S)−

∑
T⊂S,T ̸=S ∆v̂(T ) if S ̸= ∅ .

Harsanyi (1959) proves that the Shapley value evenly distributes the div-
idends of each coalition to the players comprising it. That is, ψShi (N, v̂) =∑
S⊂N,i∈S

1
|S|∆v̂(S).

Macho-Stadler, Pérez-Castrillo, and Wettstein (2010) show that a similar
construction leads to any value φ for PFF games that is constructed through
the average approach with weights α(S, P ). The dividends for any embedded
coalition (S, P ) are defined recursively as follows:

∆α
v (S, P ) =

{
0 if S = ∅
v(S, P )−

∑
(T,Q)∈ECL,T⊂S,T ̸=S α(T,Q)∆α

v (T,Q) if S ̸= ∅.
That is, dividends received by subsets of S are all taken into account scaled

down in accordance to the weights associated with each partition. As in the
CFF case, the value for player i, φαi (N, v) can be expressed as:

φαi (N, v) =
∑

(S,P )∈ECL
S∋i

1

|S|
α(S, P )∆α

v (S, P ).

That is, dividends, taking into account the embedded coalition generating
them, are equally shared among the players comprising the embedded coali-
tion.16

8.5.3 Algorithms
One of the most popular interpretations of the Shapley value in CFF games,
already present in Shapley’s thesis (Shapley, 1953b), is that the value of a

15See Dutta, Ehlers, and Kar (2010) for the full description of the weighting system used.
16Modifying the summation of dividends by introducing a vector of player weights, Macho-

Stadler, Pérez-Castrillo, and Wettstein (2010) obtain a weighted Shapley value for games
with externalities.
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player can be computed using the n! orders in which the players can arrive
to the game: The Shapley value of the player is his average marginal contri-
bution in a sequential process where each order has the same probability of
happening.

Skibski, Michalak, and Wooldridge (2017) extend this interpretation to
PFF games. They envision a situation where the partition that a player en-
counters and the coalition that he joins when he leaves a coalition is the result
of the “Chinese restaurant process,” where players are sequentially assigned
to coalitions; the k-th player (except for the first one) is assigned to a coalition
in proportion to the size of that coalition, and he remains single with prob-
ability 1/k. Thus, the marginal contribution of a player to a coalition (or,
equivalently, the contribution that the coalition loses when the player leaves)
is computed as the average of the contributions for all the possible coalitions
and partitions that can emerge from the Chinese restaurant process. Skibski,
Michalak, and Wooldridge (2017) define the stochastic Shapley value φSMW

as the average of the average (according to the previous process) marginal
contributions of each player when each permutation has the same probability
of happening.

The stochastic Shapley value can be characterized as the unique value that
satisfies efficiency, symmetry, additivity, and the CRP-null player axiom. A
player is a CRP-null player if his marginal average contribution (where the
average is again computed using the Chinese restaurant process) is zero. The
CRP-null player axiom requires that his payoff is zero. The stochastic Shap-
ley value coincides with the value proposed by Feldman (1996) and Macho-
Stadler, Pérez-Castrillo, and Wettstein (2007), that is, φSMW = φMPW .

8.6 Non-Cooperative Approaches to Value Extensions
The Shapley Value, while a cooperative solution concept, has been extensively
analyzed from a non-cooperative point of view as well. In what follows we
provide several findings related to the two main noncooperative approaches:
implementation and bargaining.

8.6.1 Implementation
Values for cooperative games are often viewed as a recommendation of how to
share jointly earned profits. A natural question regarding cooperative solutions
is whether they can be implemented. In other words: Can a designer, who does
not know the CFF or PFF game the agents are facing, design a game-form
(a mechanism) leading in equilibrium to the payoffs recommended by the
solution?
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This question was answered in the affirmative for the Shapley value for
CFF games. Winter (1994) and Dasgupta and Chiu (1998) propose demand
commitment games in which, for some uniformly chosen random order of the
players, each player can either make a demand to the following player or
form a coalition satisfying the demands of some of the preceding players. For
strictly convex CFF games, these mechanisms implement the Shapley value
in expectation, that is, the expected payoff of every player (over all possible
orderings) coincides with his Shapley value. Pérez-Castrillo and Wettstein
(2001 and 2002) construct bidding mechanisms, where players compete for
the right to make a proposal to other players, that implement the Shapley
value directly, and not just in expectation, for zero-monotonic CFF games. A
CFF game (N, v̂) is zero-monotonic if v(S) + v(i) ≤ v(S ∪ {i}) for any subset
S ⊆ N and any i /∈ S.

Macho-Stadler, Pérez-Castrillo, and Wettstein (2006) generalize these
mechanisms to games with externalities by adding a coalition(partition)-
forming stage. They construct two mechanisms implementing solution con-
cepts derived through the average approach. One mechanism is designed
for environments with positive externalities and the other for environments
with negative externalities. A PFF game (N, v) has negative externalities if
v(S, P ) ≥ v(S, P ′) for every P, P ′, when each element in P ′ is given by a
union of elements in P , that is, P is a refinement of P ′. A PFF game (N, v)
has positive externalities if v(S, P ) ≤ v(S, P ′) for every P, P ′, where P is a
refinement of P ′.

Similarly, Ju and Wettstein (2008) construct a mechanism implementing
φPN through a different generalization of the bidding mechanisms introduced
in Pérez-Castrillo and Wettstein (2001) (see also Ju and Wettstein, 2009).

8.6.2 A Bargaining Approach
Another common support for values is given by providing reasonable or at-
tractive bargaining procedures realizing them. Note that unlike the implemen-
tation approach, it is assumed that promises in utility terms can be enforced
or, alternatively, are truthfully carried out. Gul (1989 and 1999) and Hart
and Levy (1999) provide bargaining protocols with pairwise meetings that
under some conditions on the underlying CFF game (strict convexity or strict
super-additivity) lead to expected payoffs coinciding with Shapley value pay-
offs. Hart and Mas-Colell (1996) construct a bargaining protocol with multi-
lateral meetings leading in expectation to the Shapley value payoffs for CFF
games and the Nash bargaining solution for pure bargaining problems. We
note that just like Hart and Levy (1999) reveals that efficiency in the Gul
procedure does not lead to immediate agreement, nonstationary equilibria in
the Hart and Mas-Colell procedure do not lead to the Shapley value payoffs if
the probability of breakdown is high enough (see Krishna and Serrano, 1995;
for a full characterization of equilibrium payoffs).
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McQuillin (2009) shows that a simple adaptation of Gul’s (1989) pro-
tocol leads to φMQ. Also, McQuillin and Sugden (2016) construct another
finite bargaining process, the deadline bargaining game, which for PFF games
with negative externalities leads again to φMQ. The deadline bargaining game
assumes the same form as Gul’s (1989) bargaining in each period, except for
the final period where each active player receives the value of the coalition he
represents.

Grabisch and Funaki (2012) propose three values for PFF games, each
corresponding to a distinct procedure of coalition formation. The values are
different from the values suggested thus far in this chapter, as they do not
match the Shapley value for PFF games that are CFF games. Grabisch and
Funaki (2012) do suggest modified values that reduce to the Shapley value.
However, they argue that “pure” coalition formation values should not reduce
to the Shapley value, since in the coalition formation scenarios all players
are always “present in the game”, whereas in the Shapley value there is a
distinction based on the order in which players arrive.

Maskin (2003), in his Presidential Address to the Econometric Society,
studies cooperation in the presence of externalities using a set of bargaining
procedures, where all orderings of the players are possible at the offset. He
draws a clear distinction between environments with negative and positive
externalities. He then stresses that in the presence of positive externalities the
assumption that the grand coalition forms, even if it is efficient, is problematic
and may not be supported by any reasonable bargaining procedure. Several
axioms are formulated regarding the bargaining procedures and the payoffs
they generate at the various stages. These axioms are satisfied by several
sharing schemes, which form a family of generalized Shapley values. These
values determine both which coalitions form and how the surplus is shared
among their members. As pointed out in De Clippel and Serrano (2008b), the
main results are limited to 3-player games.

Borm, Ju, and Wettstein (2015) also take a bargaining perspective to ana-
lyze PFF games. They use a sequential approach to calculate the “reasonable”
worth of any coalition (when in reality the worth depends on the whole par-
tition) so that the Shapley value can be used to identify the value of each
player in the game. To calculate the worth of a coalition S ⊆ N , Borm, Ju,
and Wettstein (2015) envision a process where coalition S “moves first” by
forming a coalition structure within itself, taking into account that the mem-
bers of N\S would choose a partition that maximizes the value of N\S (and if
there is more than one such partition, the one chosen is the most detrimental
to S). Bearing that in mind, the members of S choose the coalition structure
that maximizes their terminal payoff. Once the worth v̂(S) of a coalition is
constructed in this way, they define the rational belief Shapley value as the
Shapley value of the game (N, v̂), that is, φBJW (N, v) = ψSh(N, v̂). Borm,
Ju, and Wettstein (2015) also propose variations of the sequential approach,
leading to two further values, and provide mechanisms that share a common
bargaining structure and implement the three values.
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8.7 Conclusions
In this chapter, we have reviewed several extensions of the Shapley value
for environments where externalities among coalitions are present. The vari-
ous approaches that lead to the Shapley value in characteristic function form
games (axiomatic, marginalistic, potential, dividends, algorithmic, and non-
cooperative) have provided alternative routes to address the question of the
most suitable extension of this value for the larger class of games in partition
function form. It is worth noting that some of the proposed values emerge
from, and can thus be supported through, all or most of the previous ap-
proaches.

The main reason to study cooperative solution concepts for games with
externalities is that the existence of externalities is the rule rather than the
exception in most interesting environments. Therefore, the extensions that we
have reviewed should be of interest to researchers looking for solution concepts
in such environments.

Interestingly, some of these values have already been applied for studying
competitive markets and environmental agreements, both natural fields for
applying extensions of the Shapley value for games with externalities. For ex-
ample, Jelnov and Tauman (2009) consider a game in coalitional form played
by the firms in a Cournot industry and an outside innovator who owns a cost-
reducing innovation. The firms can form at most two coalitions: The coalition
including the innovator and some firms (that will use the new technology in
their production processes), and the complementary coalition of firms. Us-
ing the Feldman’s (1996) and Macho-Stadler, Pérez-Castrillo, and Wettstein’s
(2007) extension of the Shapley value, Jelnov and Tauman (2009) show that
when the industry size goes to infinity, the Shapley value of the innovator ap-
proximates the payoff he obtains in a standard non-cooperative setup where
he has the entire bargaining power. Another example is provided by Liu,
Lindroos, and Sandal (2016) who study both cooperative and competitive so-
lutions for managing a fish stock. In a three-country environment, taking the
Norwegian spring-spawning herring as a case study, they analyze the stabil-
ity of the grand coalition in a rich harvest model where the catch function is
density-dependent. In their model, players (Norway, Russia, and the remain-
ing countries fishing there) are asymmetric and, when they cooperate, share
the benefits according to the “externality-free” Shapley value introduced by
Pham Do and Norde (2007). Their conclusion is that the likelihood of a sta-
ble grand coalition increases with the degree of asymmetry in the players’
efficiency levels.

The values analyzed in this chapter aim at providing a solution concept
that can be applied in any environment where externalities among coalitions
exist, independently of the type of externality. Still, we know that the exter-
nalities present in some environments are positive (think of the environmental
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coalitions) whereas they are negative in other situations (as is the case for trad-
ing agreements). Some of the solution concepts studied in this chapter may be
better suited to some types of externalities than to others. Moreover, it might
be advisable to consider extensions of the Shapley value that are suitable just
for a subset (for example, the subset of games with positive externalities, or
yet a smaller subset where all positive externalities have the same worth)
of PFF games. Depending on the features of the subset, it may be possible
to propose new axioms, reflecting properties that are desirable for the type
of externalities considered, that characterize extensions of the Shapley value
well-suited to these environments.

From the opposite point of view, it may be worthwhile extending some of
the ideas developed in this chapter to sets larger than the set of partition func-
tion form games. Indeed, some environments are characterized by the presence
of externalities not only across coalitions, but also across issues that are linked
in the sense that the worth of a coalition in one issue depends on the orga-
nization of the players on all the issues. Consider countries negotiating both
a trade agreement and an environmental agreement. On this occasion, these
two issues, trade and environment, are linked. In particular, the accelerated
growth triggered by a trade liberalization if countries form a large coalition
is likely to raise CO2 emissions, making it more difficult for the participants
in an environmental agreement to comply with their obligations. Therefore,
the worth of a coalition on trade depends on the partition of the countries
following an environmental negotiation. A first attempt in this direction is
Diamantoudi, Macho-Stadler, Pérez-Castrillo, and Xue (2015) who extend
values for partition function form games (that also satisfy the strong dummy
property) to environments where externalities across issues are present.
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9.1 Introduction
As this book testifies, the Shapley value is probably the most versatile, known
and used solution concept for Transferable Utility (TU) games. One of its
crucial properties is that of being efficient, since it distributes the value of
the grand coalition among all players. This is a mandatory requirement for a
general solution concept in cooperative setting. However, there is a class of TU
games for which the value of the coalition does not usually represent utility
of loss, but rather power. It is the case of simple games, where coalitions are
partitioned into two subsets, the winning coalitions and the losing coalitions.
In this restricted setting, efficiency of a solution is not mandatory, since it
represents the power of players, and in this case what really matters is the
relative power among them, rather than the total sum of their powers. For
this reason, other values, also called power indices, have been considered in
the TU games literature. Actually, another very important and widely used
value was defined some years after the Shapley value by Banzhaf [4]. With the
further development of the applications of game theory to other disciplines,
also outside the setting of the social sciences, the two values became more and
more important. Thus, it is natural that the idea behind the definitions of the
Shapley and Banzhaf values was further extended to provide more indices.
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Among them, the class of the probabilistic values [13, 40] plays an important
role. The Banzhaf and Shapley values are probabilistic values: Actually, they
belong to the special subclass of the probabilistic indices, constituted by the
so-called semivalues, which can be characterized by interesting properties. In
this chapter we shall revise the family of semivalues; in particular, we want to
see how they can be defined via unanimity games, and we want to describe
in detail two rather unusual applications of them: The first one is connected
to molecular genetics, while the second one deals with a classical social choice
problem. We now briefly describe the setting of this chapter in some more
detail.

Semivalues were introduced and discussed as a subfamily of probabilistic
values in [13, 14, 40] and are considered also in the papers [11, 12, 24, 26, 30].
The first application to molecular genetics can be found in [25, 31], where
the Shapley and Banzhaf values are considered. It is within this model that
in [27] new specific values were defined, with the aim to have other different
and comparable tools to rank genes. The leading idea in the paper was to find
some values with an intermediate behavior between the Shapley value and the
Banzhaf value, in the restricted class under consideration, called the class of
the microarray games. Given the finite set N of players, values can be defined
on the class of unanimity games, and extended to all games by linearity. On
the unanimity game uS , where the unique minimal winning coalition is the
coalition S, the Shapley value assigns the same power (symmetry property) to
the members of the winning coalition, which is 1

s , where s represents the size
of the coalition S; moreover, it assigns zero to all other players (null player
property). On the other hand, the Banzhaf value fulfills the same symmetry
and null player properties, but it assigns a positive power to the players in
S, which is 1

2s−1 . Thus, the difference of the two indices is in this case of
the unanimity games a linear vs. an exponential rate (with respect to the
size of the minimal winning coalition). In the paper [27] new indices were
considered, considering powers of the size of the winning coalition, and it was
proved that these values are actually regular semivalues. Beyond the specific
application of the paper, this approach raises the following natural question:
define a value by assigning the positive value as to the players in S in the
unanimity game uS , where s = |S|, zero to all other players, and extending it
by linearity on the whole space of games; then, under which conditions does
the assignment of the positive number as actually define a (regular) semivalue?
Though the answer can be found by inspecting the results in [13], we report
here briefly the characterization we gave in [7], which is more transparent. This
will be developed in the first part of the chapter. In the second one, we shall
briefly describe the use of the semivalues in two different contexts: The first
one is relative to the already mentioned problem in molecular genetics, the
other one instead is within the Social Sciences, and it addresses the following
question: Given an ordering between the objects of a set N , how is it possible
to construct an order on the subsets of N “respecting” in some sense the
initial one on the objects? Apparently, game theory does not directly relate to
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this issue, but we used it and, in particular, we exploited semivalues, exactly
with the idea of allowing some “interaction” between the objects not so strong
however to destroy the initial ranking.

To conclude, we only mention that another field in which semivalues are
extensively used is in the theory of centrality of nodes (or edges) in a network.
The problem has been extensively studied in biology, social network analysis,
and computer science, where it has led to different applications: To quote
some of them, we mention the identification of proteins that are critical for
the survival of cells (see [18]), the maximisation of influence in social networks
[21], and ranking websites in order to improve web search result accuracy [34].
The most famous centrality indices (degree centrality, closeness centrality,
betweenness centrality, and eigenvector centrality) focus on individual nodes,
without taking into account the various synergies that may occur when nodes
are considered in groups. But recently it has been argued that the centrality of
a single node should not only depend on individual traits like degree, closeness,
or betweenness, but also on the centrality of the groups of nodes it belongs
to. This naturally leads to a game theoretical approach, since the evaluation
of all synergies between nodes leads to a TU game. On the other hand, a
(one point) solution concept in cooperative theory gives back an evaluation of
the single elements of the game (i.e., the nodes or the edges of the network),
thus providing new and more sophisticated centrality measures. This has been
proposed, e.g. in [3, 17, 28, 37]. Moreover, since usually networks have a great
number of nodes (i.e., players in the associated game), it is quite important to
have conditions under which these measures can be calculated in polynomial
time, this has been proposed for regular semivalues in [38].

9.2 Preliminaries and Notation
Let N = {1, 2, . . . , n} be the finite set of n players. A TU-game on N is a
function v : 2N → R such that v(∅) = 0. We denote with GN the set of games
on the finite set N , and by G =

∪
n∈N GN the universal set of all finite TU

games.

Definition 9.1 (Probabilistic values) [14, 39] Given a player a, let
{paS , S ⊆ N \ {a}} be a probability distribution over the set of coalitions
not containing a, that is a family of real numbers such that S ⊆ N \ {a},
paS ≥ 0 and

∑
S⊆N\{a} p

a
S = 1. Then a probabilistic value ψ on v ∈ GN is

defined as

ψa(v) =
∑

S⊆N\{a}

paS [v(S ∪ {a})− v(S)]. (9.1)
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Probabilistic values can be seen as the expected payoff of player a if we
see his participation to a game as consisting of joining a coalition S with
probability paS and then receiving his marginal contribution v(S ∪{a})− v(S)
as a reward.

These solutions can be characterized by simple properties. Let us see how.

Null player Define a player a a null player in the game v if v(S∪{a}) = v(S)
for every S ⊆ N ∖ {a}. A value φ satisfies the null player property if
given a null player a for the game v, then

φa(v) = 0.

Positivity Given a monotonic game v, i.e., a game such that v(S) ≤ v(T )
for any coalitions S, T such that S ⊆ T , a value φ satisfies positivity if

φa(v) ≥ 0

for any a ∈ N .

Linearity A value φ satisfies linearity if it is a linear operator on GN , i.e.,
∀v, w ∈ GN , λ ∈ R it holds

φ(v + w) = φ(v) + φ(w) and φ(λv) = λφ(v).

Then the following theorem holds [14].

Theorem 9.1 Let φ : GN → Rn be a value on GN that satisfies linear-
ity, positivity and the null player properties. Then φ is a probabilistic value.
Moreover, every probabilistic value ψ as in the formula (9.1) above satisfies
these properties.

Let us now consider a subfamily of the probabilistic values: The semivalues.
Suppose a family ps, s = 0, . . . , n − 1 of non-negative real numbers fulfilling
the relation

n−1∑
s=0

(
n− 1

s

)
ps = 1

is given.

Definition 9.2 (Semivalue) A semivalue on GN is a value πN defined as

πNa (v) =
∑

S⊂N\{a}

ps[v(S ∪ {a})− v(S)]

for any a ∈ N, v ∈ GN , where s = |S|. A semivalue with weighting coefficients
ps is regular if ps > 0∀k = 0, . . . , n− 1.
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Thus, a semivalue is a probabilistic value with the property that ps = paS for
every player a and every coalition S of cardinality s.
A semivalue πN can be identified by an element of the simplex

Σ := {x ∈ Rn−1 : xi ≥ 0 ∧
n−1∑
s=0

(
n− 1

s

)
xs = 1}.

In the sequel, we shall identify the semivalue πN by means of the n-dimensional
vector (p0, . . . , pn−1).

It is clear that a semivalue is a particular probabilistic value with the
additional feature of fulfilling a form of anonymity as specified in the following
property:

Anonymity A value φ satisfies anonymity if for every permutation ϑ on N ,
every game v and every player a, it holds

φa(ϑv) = φϑ(a)(v)

where (ϑv)(S) = v(ϑS) for any S ∈ 2N .

Not surprisingly, the following theorem holds [14].

Theorem 9.2 A semivalue is a probabilistic index that satisfies anonymity
and, vice versa, any probabilistic index that satisfies anonymity is a semivalue.

Let us now see some examples of semivalues, taken from the literature.
First of all, both the Shapley value and the Banzhaf value are regular semi-
values. In particular, they have the following features: The Banzhaf value is
the only one for which ps = pt for all s, t ∈ {0, 1, . . . , n − 1}, or, in other
words, the unique semivalue attaching equal probability to all coalitions;
the Shapley value, on the other hand, is the only one fulfilling efficiency.
Other regular semivalues on GN are introduced in [11]; they define the fam-
ily of the q-binomial semivalues, for which the coefficient ps is defined as
ps = qs(1 − q)n−s−1, for some q such that 0 < q < 1. Furthermore, in [27]
the family of c-values σN,c has been defined, in the following way: Let c be a
positive real number, and define σN,c on unanimity games as

σN,ca (uS) =

{
1
sc if a ∈ S
0 otherwise

where s = |S|. Then extend σN,c by linearity. In [27], it is proved that σN,c
is a regular semivalue for every c > 0. To conclude, observe that the Banzhaf
value is the q-binomial semivalue corresponding to q = 1

2 , while the Shapley
value is the c-value corresponding to c = 1.
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9.3 Semivalues and Unanimity Games
The approach used in [27] to define new semivalues raises the following ques-
tion: Under which condition it is possible to find a new family of values, defin-
ing a value on the family of the unanimity games, and extending it by linearity?
Let us be more specific, given an n-dimensional vector α = (α1, . . . , αn) ∈ Rn,
define the value πN,α on GN , acting in the following way on the class of the
unanimity games:

πN,αa (uS) =

{
αs if a ∈ S
0 otherwise.

(9.2)

and extending it to the whole space by linearity. Then the question is: Under
which conditions on the coefficients αs is the value πN,α a semivalue?

This is what we discuss in this section. The content of this part is taken
from [7] (see also [12] and [13]). As we shall see, it is possible to provide a
sufficient condition that allows creating new specific families of semivalues.
Moreover, it is possible to extend to G =

∪
n∈N GN the concept of semivalue,

by requiring that an operator π on G is a semivalue provided πN = π|GN is a
semivalue for all n. In this more general case, it is possible to characterize the
conditions under which the sequence {αs}s∈N generates a regular semivalue.

Let us start with the following preliminary result, proved in [12, 27].

Proposition 9.3 Suppose that, for each t = 1, . . . , n, positive numbers αt are
given and let πN,α : GN → Rn be a value that satisfies linearity and that is
defined as

πN,αa (uT ) =

{
αt if a ∈ T
0 otherwise

for all unanimity games uT , generated by the minimal winning coalition T of
size t.

Then πN,α verifies the following formula:

πN,αa (v) =
∑

S⊆N\{a}

(
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1

)
[v(S ∪ {a})− v(S)]

for every v ∈ GN .

Thus, πN,α is characterized by the fact that it is of the form

πN,αa (v) =
∑

S⊆N\{a}

pns [v(S ∪ {a})− v(S)],

where

pns =
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1.
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It follows that πN,α is a semivalue provided the coefficients αs fulfill, for any
s = 0, . . . , n− 1:

n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 ≥ 0 (9.3)

and
n−1∑
s=0

(
n− 1

s

) n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = 1. (9.4)

Condition in Equation (9.4) is easily checked, since the following result holds
(see [27]).

Proposition 9.4 Take, for every n ∈ N, real numbers α1, α2, . . . , αn. Then

n−1∑
s=0

(
n− 1

s

) n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = α1.

Thus, Equation (9.4) is fulfilled by requiring α1 = 1; now the problem
becomes to provide sufficient conditions under which Equation (9.3) is verified.
To analyze this, we need some more preliminaries. We start with the following
definition that can be found in [41], (p. 108).

Definition 9.3 Given a sequence µn of real numbers, the backward difference
operator ∆k is defined as

∆0µn = µn ∆kµn = ∆k−1µn+1 −∆k−1µn

for n = 0, 1, 2, . . . , and k = 1, 2, . . .

Definition 9.4 The sequence {µn}∞n=0 is called completely monotonic if its
elements are non-negative and

(−1)k∆kµn ≥ 0

for every k, n = 0, 1, 2, . . .

The backward difference operator can be written also as

∆kµn =
k∑
j=0

(−1)j
(
k

j

)
µn+k−j .

The following result, whose proof can be found for instance in [23], (p. 171),
will be used in detecting the regularity of semivalues.
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Proposition 9.5 Let {µk}+∞
k=0 be a completely monotonic sequence. Then

(−1)k∆kµn > 0

for every n, k = 0, 1, . . . unless µ1 = µ2 = · · · = µn = . . . , that is the sequence
is constant except at most for the first term.

The following lemma, see [7], is the key ingredient for the main result.

Lemma 9.1 Given the value πN,α, with associated vector (pn0 , . . . , p
n
n−1) the

following formula holds, for all s = 0, . . . , n− 1:

(−1)n−s−1∆n−s−1αs+1 = pns .

From all the above results, we finally have the theorem that shows how to
generate new semivalues on GN using completely monotonic sequences.

Theorem 9.6 Let {αs}s∈N be a completely monotonic sequence such that
α1 = 1 and let πN,α be the value defined on unanimity games as in Equation
(9.2) and extended by linearity on GN . Then πN,α is a semivalue.

Let us now consider the space G of all finite games. An element of G is
given by the pair (N, v) where N is the set of players and v is a cooperative
game on the set N .

Definition 9.5 A semivalue on G is an operator π on G such that its restric-
tion to GN is a semivalue for every set N of n players, n ∈ N.

Let moreover S be the space of the real valued sequences:

S = {α := (α1, α2, . . . , αs, . . . ) : αs ∈ R ∀s ≥ 1, α1 = 1, αs ≥ 0 ∀s}.

Finally, given a sequence α ∈ S define πα on G in the following way:

πα(v) = πN,α(v)

for every v such that v ∈ GN .
Putting together the above results, we get the following.

Theorem 9.7 πα is a semivalue on G if and only if α ∈ S is completely
monotonic.

We explicitly notice that if πα is a semivalue on G, then it is defined for
every n ∈ N pn = {pnk}

n−1
k=0 such that pn is the vector of weighting coefficients

associated to π|GN . The coefficients verifiy the formula

pns =

n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1.
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In particular, with the choice of s = n − 1, the formula above shows that
αn = pnn−1 for all n = 1, 2, . . .

The next result we want to illustrate deals with semivalues which are not
regular. To prove it, we need a preliminary result.

Proposition 9.8 For all s, n such that s ≤ n−1, the following formula holds:

pns = pn+1
s + pn+1

s+1 . (9.5)

We now provide the formal definition of regular and irregular semivalues
on the space G. Remember that on GN regularity of πα means that pns > 0
for all s.

Definition 9.6 A semivalue on G is called regular if its restriction to GN
is a regular semivalue for all n. A semivalue which is not regular is called
irregular.

In the next definition, we introduce two irregular semivalues, extending
the definitions of marginal and dictatorial values given in [12].

Definition 9.7 The marginal value µ on G is the value such that its restriction
to GN is described by the vector (0, 0, . . . , 1). The dictatorial value δ on G is the
semivalue such that its restriction to GN is described by the vector (1, 0, . . . , 0).

Theorem 9.9 The values µ and δ are semivalues on G. Moreover, let πα be
an irregular semivalue on G. Then, there exists q ∈ [0, 1] such that pn is of
the form (1− q, 0, . . . , 0, q), for every n.

Thus, an irregular semivalue assigns, for all n a fixed probability to the
fact that the players act alone and the complement to the fact that they act
all together.

The following is a natural question to address: Since a semivalue on G
automatically (by definition) generates a semivalue on GN for all N , does
something in the opposite direction hold, in the sense that, given a semivalue
on some fixed set N of players, can it be extended to a semivalue on G? First
of all, as it is easy to see, irregular semivalues cannot be extended, with the
exception of those described in Theorem 9.9. Instead given a regular semivalue
onN , it is possible to extend it on all T such that |T | < |N |; but it is not always
possible to extend it on bigger sets. For instance it is not possible to extend
the semivalue given by the vector p3 = (ε, 12 − ε, ε) if ε < 1

6 . Moreover when
a semivalue associated to the vector pn can be extended, the extension is not
unique and there is a family of candidates for pn+1, depending on a parameter.
For instance, consider the Shapley value for n = 4, that is p4 = ( 14 ,

1
12 ,

1
12 ,

1
4 ).

Then we can choose p51 = p52 = p53 = 1
24 and get p50 = p54 = 5

24 . In general we
can choose pnj = 1

3·2n−2 if j ̸= 0, n − 1 and obtain a regular semivalue, with
weighting coefficients different from the ones of the Shapley value.
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We conclude this section briefly by illustrating how it is possible to gener-
ate other family of semivalues using the properties of completely monotonic
sequences. First of all, we have the following definition

Definition 9.8 A function f : [0,∞[→ [0,∞[ is said to be completely mono-
tonic if it is infinitely times differentiable and (−1)nf (n)(x) ≥ 0 for all x ≥ 0.

The next theorem is Theorem 11d in [41].

Theorem 9.10 If f(x) is completely monotonic in a ≤ x <∞ and if δ is any
positive number, then the sequence {f(a+ nδ)}∞n=0 is completely monotonic.

It follows that in order to have completely monotonic sequences, it is
enough to consider completely monotonic functions. In particular, it is im-
mediately seen from Theorems 9.7 and 9.10 that the indices σa defined in [27]
and the binomial indices, generated by the sequence αs = qs−1, are regular
semivalues. But a lot of other semivalues can be generated, for instance by
using the following simple fact.

Proposition 9.11 If f, g are completely monotonic functions, then
• for any integer m, also f (2m) and −f (2m+1) are completely monotonic;

• if a, b ≥ 0, then af + bg is completely monotonic;

• f · g is completely monotonic;

• if h(x) ≥ 0 for every x, and h′(x) is completely monotonic, then f [h(x)]
is completely monotonic.

We can use Theorem 9.10, with a = 0 and δ = 1, to obtain a completely
monotonic sequence from a completely monotonic function. Thus, the follow-
ing are some examples of completely monotonic sequences that can be used
to generate semivalues:

e1−n 1
2 (1 + n)1/n e1/n−1

1
log 2

log(1+n)
n

log 2
log(1+n)

log (1+ 1
n )

log 2

log (1+n)
log 2 n2 − 2

n(1+n) ( 12 + 1
2n )

k, k ≥ 0.

After this overview about how to generate new family of semivalues, we
change scenario and we propose, as mentioned in the introduction, a pair of
examples where general semivalues, not only the Shapley and Banzhaf values,
have been used. The leading idea for these applications is to use semivalues
to measure the power (strength, cruciality …) of specific objects. In the first
example, developed in the next section, the aim is to single out genes poten-
tially crucial for the development of some specific polygenetic disease. In the
second example, developed in the next section, we use semivalues in a problem
of Social Choice.
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9.4 Semivalues and Genetics
Let us now concentrate on the use of semivalues in genetics. The recent avail-
ability of the genome sequence information has promoted the development of
a number of new technologies, including microarrays. Very briefly, a microar-
ray provides the gene expression of an individual. Thus, a genetic analysis
to study a genetic disease is performed in the following way: There are two
reference groups, and for each element of both groups the gene expression is
considered. The data of each patient are translated in digits, forming matri-
ces, say A, a n × l matrix, and B, a n × m matrix, with real entries. Each
row corresponds to a gene, each column to an individual, and the individu-
als are partitioned in two sets: Call the reference set the group of individual
whose data are collected in the matrix A. The entries aij , bij represent the
expression of gene i in the individual j (note that individual j relative to the
coefficient aij is different from the individual j relative to the coefficient bij).
These matrices usually have a huge number of rows and a relatively small
number of columns. The data of the row ai are used to construct an inter-
val, say [mi,Mi], called the normality interval for the gene i. For instance, a
possible choice could be taking mi as the smallest entry of the row i in the
matrix A, as Mi as the greatest entry of the row in the matrix A. Usually,
the data from the matrix A are relative to sane individuals, while those from
the matrix B are taken from people affected by a specific disease. But this is
not the only possible application: For instance we could take two groups of
people affected by a similar but not identical form of tumor, and the mutual
comparison of the data (taking one time one group as a reference group, and
the other one under experiment and repeating the experiment the other way
around) can provide another example of microarray game. Finally, a matrix
M is built up in the following way: mij = 1 if and only if mij /∈ [mi,Mi]. By
means of the matrix M , we built the so-called microarray game.

Definition 9.9 A microarray game is (M, v), where
• M = (mij) is an (n ×m) matrix, such that mij is either zero or one,

and such that for every j there is at least an i with mij ̸= 0;

• The TU game v is built in the following way: given the column m·j,
j = 1, . . . ,m, define its support as the set supp m·j = {i : mij = 1} and
consider the associated unanimity game vj generated by supp m·j, i.e.,

vj(T ) = usuppm·j (T ) =

{
1 if T ⊃ suppm·j

0 otherwise
. (9.6)

Then
v =

1

m

m∑
j=1

vj . (9.7)
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Let us remark that the choice of considering average of unanimity games
is, at least to a first step, strongly motivated by computational needs. As we
have already noticed, here the players are genes, and often in the microarrays
the detected genes are thousands. This means that calculating a solution is
practically impossible because of the intractable number of players, unless one
considers very particular games. This explains the use of unanimity games,
where the Shapley value assigns, as every semivalue, 0 to players not in the
minimal winning coalition, and the reciprocal of the number of the elements in
the minimal winning coalition, as it is obvious from the fact that the Shapley
value is efficient. By using linearity, the Shapley value can be calculated in a
microarray game with the following very simple formula:

σi(v) =
1

m

m∑
j=1

mij∑n
l=1mlj

. (9.8)

with mij ∈ {0, 1}. The formula is easily understood since if player (gene) i is
not abnormally expressed in patient j (i.e., mij = 0), its value in null, as it
must be, while if mij = 1 the formula provides exactly the reciprocal of the
number of the genes abnormally expressed.

With this definition in mind, the Shapley value, and subsequently the
Banzhaf values, were axiomatized, within the class of the microarray games,
in the papers [25, 31].

Microarray games were used to analyze real data in [1, 25, 27]. However, it
turned out that often the Shapley and Banzhaf indices (especially the second
one) propose a great number of ties among genes, making it difficult to distin-
guish them. This happens for the following two reasons. On one side, having
few patients versus thousands of genes means that several of them could be
grouped in families of symmetric players (for a single column j the genes
are divided in just two groups). On the other hand, it is quite possible that
roundoff errors do not allow evaluating very small differences. By elaborating
some real data it turned out that some patients presented around 200 genes
that are abnormally expressed. In such a case, the Banzhaf assign zero power
to all players-genes (due to practically negligible roundoff errors made by the
computer)1 thus not distinguishing the abnormally expressed genes from the
other ones. This means that actually the unanimity game associated to that
patient does not provide useful data, since it considers all genes as null play-
ers. This in principle cannot be considered totally useless: In some sense, it
indicates that the patient could be considered not meaningful for the analysis,
since its abnormally expressed genes are too many. But on the other hand,
especially when treating data with few patients, it is of interest to avoid the
risk of having a partition of the set of genes made by few elements (i.e., few
subsets with a large number of genes).

1If the minimal winning coalition has s elements, the Banzhaf value assigns value 1
2s−1

to the non-null player, which is practically zero already for rather small s.
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For this reason, in the paper [26] we propose a method to better differen-
tiate the contribution that each gene could give to the disease. In order to do
this, we used the idea of weighted indices (see [19]). This is done by attach-
ing a weight to any gene for each patient, according to how far the gene is
from the normality interval, as explained below. This actually allowed us to
better differentiate the genes, since already for a single patient the genes are
divided in several (and not only two) classes. We proceed further by using this
first ranking to build a new game. The above procedure provides a ranking
of thousand of genes, with not so many ties. Then we take the first ones (say
e.g. one hundred) genes and to each patient we attach a weighted majority
game (weights to attach to the genes are explained later). Finally, we rank
the genes by making an average of their ranking over all patients.

Again, the choice of using (average of) weighted majority games is origi-
nated by the fact that for this class of games it is possible to evaluate power
indices even when the game has a great number of players. In fact, by ex-
ploiting the tool of the formal series, algorithms were developed which easily
compute the indices for games with many players (see e.g. [2], [8], [29]).

The idea underlying the new version of the microarray game is to allow
the matrix M defining the classical microarray game to contain not only ze-
roes and ones, since we want to take into account how much the genes are
abnormally expressed, by giving them a weight gradually increasing depend-
ing on how much the gene expression is far from the reference interval. We
consider, for each gene i, a reference interval, let us call it N0

i = [mi,Mi],
to evaluate the standard deviation si relative to the data of the gene, to set
Nk
i = [mi − ksi,Mi + ksi], k = 1, . . . , j, and to assign the value k to the gene

falling in the set Nk
i \ N

k−1
i (j if it falls outside all these sets). In this way,

we can rank the genes according to the weighted index. Now we use the same
formula as in Equation (9.8). This is, for every fixed game j, nothing else than
the expression of the weighted Shapley index, with associated weight mij for
player i = 1, . . . , n (see [19]).

The subsequent weighted majority game is built by assigning to player i in
the game j the coefficient mij . Extending to semivalues, in a straightforward
way, the algorithms provided in [8], this idea was applied in the paper [26] to
different data sets, i.e., Stroma Rich and Stroma Poor Neuroblastic tumors,
Ductal and Lobular breast tumor, two different types of Colon tumor. It must
be observed that in one case (Stroma Rich and Stroma Poor Neuroblastic
tumors), we did a different experiment: We compared tissues from two groups
of cells affected by two different, though similar, forms of tumor. We analyzed
both situations arising from taking one of the groups as reference group. In
this case, the ranking of the genes assumes the idea of singling out those
characterizing one form of tumor with respect to the other one. We refer the
interested reader to the paper for the specific results and related comments.
Here we add some general comment. It is clear that this is a kind of model for
which it is not easy to find data confirming its validity. However, some facts
seem to be interesting. The first is that, as it is easy to see, even if in a single
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weighted majority game, different semivalues do provide the same ranking
between players, this is no longer true when considering a game which is the
average of several weighted majority games. Thus, in principle one can expect
different rankings when using different semivalues. However, our applications
to real data gave a stable ranking, in the sense that the differences of positions
of the genes were not relevant with respect to the large number of genes.
This was a form of stability that shows, in our opinion, that the results are
confirmed by the use of different indices. Furthermore, in one case we tried
to make a blind research in the medical literature, and the genes that were
quoted as potentially relevant for the onset of the disease were ranked in the
first places according to our method.

9.5 Semivalues and Social Choice
In this section we want to describe how the semivalues have been used in a
Social Choice context. The results are taken from [24] to which we refer for
further details and for the proofs of the theorems.

In real-life situations, many problems deal with preferences over collec-
tions of objects (e.g., alternatives, opportunities, candidates, etc.). Consider,
for instance, the selection of the candidate members for the formation of eval-
uation committees, the assessments of equity of sets of rights inside a society,
the comparison of assets in portfolio analysis, the comparison of the stability
of groups in coalition formation theory, and so on. As a toy example to bet-
ter explain the idea, let us consider a woman preparing her luggage before a
long trip. We can guess she has a preference relation over the objects she will
need, but not over the groups. For instance, her first choice could be to take
a specific pair of shoes, then some dresses for the social dinners, and so on.
But then the combination of these objects matters, since she should select the
group of them that should be taken away, and this explains why it could take
a lot of time to prepare a luggage.

The important question in a social choice context, behind these exam-
ples, is: given a ranking over the single elements of a set N , how to derive
a compatible ranking over the set of all subsets of N? Of course, one of the
first points is to clarify what compatible means in this context. Mathemat-
ically, the question is how to extend a ranking over a set N to a ranking
over its power set (denoted by 2N ). This was mainly done by axiomatically
characterizing families of ordinal preferences over subsets (see, for instance,
[5, 6, 9, 10, 15, 16, 20, 22]). In this context, an order ≽ on the power set 2N is
required to be an extension of a primitive order R on N . This means that the
relative ranking of any two singleton sets according to ≽ must be the same
as the relative ranking of the corresponding alternatives according to R (i.e.,
for each a, b ∈ N , {a} ≽ {b} ⇔ aRb). We shall refer to a total preorder ≽ on
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2N as an extension on 2N , with the implicit assumption that such a relation
≽ ranks singletons in 2N in the same way of some equivalent primitive total
preorder R on N .

The different axiomatic approaches in literature are, very naturally, related
to the interpretation of the properties used to characterize extensions, which
is connected to the meaning attributed to sets. According to the survey of [6],
the main contributions from the literature on ranking sets of objects may be
grouped in three main classes of problems: (1) complete uncertainty, where
a decision maker is asked to rank sets which are considered as formed by
mutually exclusive objects, taking into account that he cannot influence the
selection of an object from a set (see, for instance, [5, 20, 33]); (2) opportunity
sets, where sets contain again mutually exclusive objects but, in this case, the
decision maker compares sets taking into account that he will be able to select
a single element from a set (see, for example, [10, 22, 35]); (3) sets as final
outcomes, where each set contains objects that are assumed to materialize
simultaneously (if that set is selected; for instance, see [9, 15, 36]).

In [24] we focused on the problem of the third class, where sets of elements
materialize simultaneously. In this framework, most of the approaches present
in literature do not take into account possible interactions between objects.
For instance, a usual assumption is the property of responsiveness (RESP)
([36]): An extension ≽ on 2N satisfies RESP if for all i, j ∈ N and all S ∈ 2N ,
i, j /∈ S

{i} ≽ {j} ⇔ S ∪ {i} ≽ S ∪ {j}. (9.9)
Thus, the RESP property does not take into account the fact that some objects
together can present some form of incompatibility or, on the contrary, of
mutual enforcement. In our toy example, it is reasonable to think that the
woman, having the possibility to add only one object to the set S of the
objects already put in the luggage, prefers to buy a purse, needed for the
main social dinner, even if without constraint she would prefer to buy a pair
of shoes. In other words, some form of mutual interaction between objects
should be allowed.

The first paper to propose this idea is [32]. The model introduced there
relies on the simple idea that any utility function attached to a total preorder
on 2N represents a coalitional game in characteristic function form (normalized
by setting the utility of the empty set to be equal to zero). Thus, a first simple
idea can be the following. Given a ranking ≽ over the set 2N of the set N of
the objects, it is possible to associate to it a utility function (normalized in
such a way that the utility of the empty set be zero). But this utility function
is nothing else than a TU game. Thus, one can apply the Shapley value to
this game, and this provides a natural ranking between the objects. Then
one could consider ≽ as an acceptable extension of the primitive order over
N if the Shapley value provides the same ranking over the singletons. This
approach, however, is too naive for a very precise reason: It is well known and
easy to see that different utility functions arising from the same preorder on
2N can produce different ranking, according to the Shapley value. This is a
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serious objection to the procedure, since the object we want to be built is a
ranking ≽, and there is no natural utility function associated to it. However,
a further step in this direction is possible. There are some rankings on 2N

with the property that, no matter which utility function is attached to it,
the Shapley value provides always the same ranking between the singletons.
This allows, as it is proved, some form of interaction, in the sense that there
are preorders which fulfill this property but do not fulfill the RESP property.
And of course we can do the same using semivalues different from Shapley’s.
Actually, in [24] we prove necessary and sufficient conditions for every fixed
semivalue, and also characterize those rankings keeping invariant the ranking
of the singletons, no matter which utility function is used on the preorder on
the subsets, and no matter which semivalue is used to find the ranking.
We now describe the main results.

We start with a bit of necessary notation. In the sequel we deal with some
finite set N of cardinality n, and the set 2N of its subsets.
A total preorder on a finite set X is a reflexive, transitive and total binary
relation ≽ ⊆ X × X. We shall consider total preorders on both sets N and
2N . Now, suppose we have a total preorder ≽ on 2N . This relation naturally
induces a TU game for each utility function v representing ≽ (such that v(∅) =
0), i.e., v(S) ≥ v(T ) ⇔ S ≽ T for each S, T ∈ 2N . We shall denote by V (≽)
the set of all v representing the total preorder ≽.
Given N and i, j ∈ N , we use the following notation:

• Σi (Σij) for the set of all subsets of N which do not contain i (neither
i nor j).

• Σsij for the set of the subsets of Σij of cardinality s.
We now see an important definition.

Definition 9.10 (πp-alignment) Given a set N , a total preorder ≽ on 2N

and a probabilistic value πp ∈ P, we shall say that ≽ is πp-aligned if

{i} ≽ {j} ⇔ πp
i (v) ≥ π

p
j (v)

for each v ∈ V (≽).

The main point of the paper is to use the notion of πp-alignment as a
compatibility test of an extension to 2N of a total order on N . Using different
semivalues and/or classes of semivalues provide different types of compatibil-
ity, all extending the notion of RESP.

Given the definition of π-alignment, and fixed a semivalue πp, we have to
constantly consider the difference πp

i (v)−π
p
j (v), so that the following formula

plays an important role in our analysis:

πp
i (v)− π

p
j (v) =

n−2∑
s=0

(ps + ps+1)

 ∑
S∈Σs

ij

dSij(v)

 . (9.10)
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where dSij(v) = v(S ∪ {i}) − v(S ∪ {j}). For easy notation, we shall de-
fine xs+1 = ps + ps+1. Thus, in order to study the sign of the difference
πp
i (v) − π

p
j (v), it is clear that it is possible to substitute the quantity xs+1,

for s = 0, . . . , n − 2, with axs+1, for any a > 0. We are interested in the
case when for some a > 0 the quantity axs+1 is a natural number for every
s = 0, . . . , n − 2, and thus we shall consider, form now on, only semivalues
such that the associated vector (p0, . . . , pn−1) has rational components, and
we consider associated quantities xs+1 to be natural numbers.

Let us then fix a preference relation ≽ on 2N , suppose πp is a given semi-
value and fix the associated natural numbers x1, . . . , xn−1. For a given i ∈ N
and a subfamily F of 2N , we write θp(F , i) for the vector constructed in the
following way. Order in decreasing order of preference the sets S ∪ {i}, where
S ∈ F :

S1 ∪ {i} ≽ S2 ∪ {i} ≽ · · · ≽ Sl ∪ {i} ≽ . . . ,

then replicate each coalition Sk precisely xsk+1 times, if |Sk| = sk, and form
the vector

θp(F , i) = (S1 ∪ {i}, . . . , S1 ∪ {i}︸ ︷︷ ︸
xs1+1times

, S2 ∪ {i}, . . . , S2 ∪ {i}︸ ︷︷ ︸
xs2+1times

, . . . ).

We provide just a simple example to familiarize with this notation.

Example 9.1 Let N = {1, 2, 3}, consider the preference relation

N ≻ {1} ≻ {2, 3} ≻ {1, 3} ≻ {2} ≻ {1, 2} ≻ {3} ≻ ∅.

Let F = Σ12 = {∅, {3}}. Let p = ( 15 ,
1
5 ,

2
5 ) and consider the corresponding

vector of natural numbers (1, 1, 2); so, x1 = 2 and x2 = 3. Then

θp(Σ12, 1) = ({1}, {1}, {1, 3}, {1, 3}, {1, 3})

and
θp(Σ12, 2) = ({2, 3}, {2, 3}, {2, 3}, {2}, {2}).

Now, we write
θp(Σij , i) ≽ θp(Σij , j)

if

(θp(Σij , i))k ≽ (θp(Σij , j))k, ∀k ∈ {1, . . . ,
n−2∑
s=0

(
n− 2

s

)
xs+1}

and we define a relation ⊵p over N such that {i} ⊵p {j} ⇔ θp(Σij , i) ≽
θp(Σij , j). ⊵p induces a partial order on the set of singletons in N .

The next definition can be seen as our first definition of compatible exten-
sion. Let p be a semivalue.
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Definition 9.11 (p-WPR) We say that the total preorder ≽ on 2N satisfies
the p-weighted permutational responsiveness (p-WPR) property if for each
i, j ∈ N we have that

{i} ≽ {j} ⇔ i ⊵p j. (9.11)

Here is the first theorem, showing when a preorder is aligned with respect
to a fixed semivalue.

Theorem 9.12 Let ≽ be a total preorder on 2N and let πp be a semivalue
with rational probabilities. The following two statements are equivalent:

1) ≽ is πp-aligned;

2) ≽ satisfies the p-WPR property.

Let us see an example.

Example 9.2 Let N = {1, 2, 3, 4} and let ≽ be a total preorder such that
{1, 2, 3, 4} ≻ {2, 3, 4} ≻ {3, 4} ≻ {4} ≻ {3} ≻ {2} ≻ {2, 4} ≻ {1, 4} ≻
{1, 3} ≻ {2, 3} ≻ {1, 3, 4} ≻ {1, 2, 4} ≻ {1, 2, 3} ≻ {1, 2} ≻ {1} ≻ ∅. It can be
seen that this is aligned for the Banzhaf value. All verifications are lengthy,
so we just want to see that the condition is verified when considering objects 1
and 2. Since {2} ≻ {1}, we need to prove that 2 ⊵p 1. The following displays
the vectors θ.

θ(Σ21, {2} θ(Σ21, {1}
{2, 3, 4} {1, 4}
{2} {1, 3}
{2, 4} {1, 3, 4}
{2, 3} {1, 4}

It is easy to check that in every line the coalition written on the left is
ranked before the corresponding coalition in the right. A similar analysis can
be done by comparing 3 with 4 and 4 with 2 and this allows to conclude that
the given ranking is aligned for the Banzhaf value.

Consider now the set N = {1, 2, 3} and the ranking

N ≻ {1} ≻ {2, 3} ≻ {1, 3} ≻ {2} ≻ {1, 2} ≻ {3} ≻ ∅.

Let p = ( 15 ,
1
5 ,

2
5 ) and consider the corresponding vector of natural numbers

(1, 1, 2); so, x1 = 2 and x2 = 3. By comparing objects 1 and 2, we get the
following table:

Looking at the third line, since {2, 3} ≻ {1, 3}, we can conclude that the
given ranking is not aligned with respect to the semivalue p = ( 15 ,

1
5 ,

2
5 ).

The final result instead characterizes the preorders aligned with every reg-
ular semivalue. For every i, j ∈ N , call Dsij the set Dsij = Σsij ∪ Σs+1

ij for
s = 0, . . . , n− 3. Set also Dn−2

ij = Σn−1
ij .
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θ(Σ12, {1} θ(Σ12, {2}
{1} {2, 3}
{1} {2, 3}
{1, 3} {2, 3}
{1, 3} {2}
{1, 3} {2}

Definition 9.12 (DPR) We say that a total preorder on 2N satisfies the
double permutational responsiveness (DPR) property if for each i, j ∈ N we
have that

{i} ≽ {j} ⇔ θ(Dsij , i)k ≽ θ(Dsij , j)k (9.12)

for every k = 1, . . . , |Dsij | and every s = 0, . . . , n− 2.

Theorem 9.13 Let ≽ be a total preorder on 2N . The following statements
are equivalent:

1) ≽ fulfills the DPR property;

2) ≽ is πp-aligned for all semivalues.

To conclude, we revisit one of the previous examples.

Example 9.3 Let N = {1, 2, 3, 4} and let ≽ be a total preorder such that
{1, 2, 3, 4} ≻ {2, 3, 4} ≻ {3, 4} ≻ {4} ≻ {3} ≻ {2} ≻ {2, 4} ≻ {1, 4} ≻
{1, 3} ≻ {2, 3} ≻ {1, 3, 4} ≻ {1, 2, 4} ≻ {1, 2, 3} ≻ {1, 2} ≻ {1} ≻ ∅.

We have seen that this ranking is aligned with the Banzhaf value.
Actually, it can be shown that it fulfills DPR, and thus it is aligned with every
(rational) regular semivalue. Observe also that the ranking ≽ does not satisfy
RESP because {2} ≻ {1}, {2, 4} is strictly preferred to {1, 4} and {1, 3} is
strictly preferred to {2, 3}.

9.6 Conclusions
In this chapter we have considered symmetric values defined on the space of
all TU coalitional games with a fixed set of players. A natural way to gener-
ate these values is to define them on the class of unanimity games and extend
them on the whole space by linearity. So the question we addressed here was:
When does such a definition generate a regular semivalue, i.e., a particularly
interesting subclass of the family of the probabilistic values? We were able to
provide a characterization in this sense, involving completely monotonic se-
quences. Since creating completely monotonic sequences is a simple task, this
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allows to create large families of semivalues. Finally, we have also considered
and characterized the case of irregular semivalues. Next, we presented two
examples, in different fields, where the extensive use of semivalues, and not
only the classical Shapley and Banzhaf values, was proposed. The first one is
in molecular genetics, and it is aimed at providing ranking of genes respon-
sible for genetic diseases, starting from microarray data analysis. The second
instead is in Social Choice, and it deals with the problem of finding extensions
of a ranking between objects to a ranking between the subsets of the objects,
respecting in a precise sense the ranking between the singletons. This problem
presents many contributions in the related literature, but usually extensions
do not take into account possible interactions between objects, in the sense
that usually extensions fulfill the property that one object x is better than
another object y if and only if S∪{x} is better than S∪{y} for every possible
subset S containing neither x nor y. In our approach instead, this is allowed
under certain conditions.
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10.1 Introduction
The Shapley value [19] can be used not only as a rule to divide the gains from
cooperation in a game with transferable utility, but also as a measure of power
in simple games, that is, games in which the worth of a coalition is zero if it is
losing and one if it is winning. Think, for instance, of a parliament where the
winning coalitions are those that have a majority. In this case, the Shapley
value is also called the Shapley-Shubik power index [20], and it measures, in a
specific way, the number of times that a player, for instance a political party,
is pivotal – turns a losing into a winning coalition by joining it. A closely
related power index is the Banzhaf index or Banzhaf-Coleman index [1], but
there are many other indices as well (see [2] for a recent overview).

A drawback of this use of the Shapley value and, for that matter, also of
other power indices, is that it takes into account neither the issues at hand
nor special relations and structures that may exist among the players. For
instance, the political position of a political party – left, right – nor the content
of issues on which parliamentary voting takes place, are taken into account
when computing the power of a party according to the Shapley-Shubik index.
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As a remedy, the political science literature considers spatial models, where
political parties are positioned with respect to a number, say k, of criteria,
and a power index, besides the simple game, takes this constellation in Rk
into account. An example of this is the Owen-Shapley spatial power index
[15] which has been axiomatically characterized in [18]. See also [21] for a
partial overview of this literature.

The first objective of this chapter is to present a model that generalizes
both simple games and spatial models by specifying exactly which issues (al-
ternatives) can be controlled by which players and coalitions. See Section 10.3,
which is based on [12]. In particular, we develop a class of power indices that
extend the Shapley value.

The second objective is to review and link together a few models in which
relations that may exist between the players and that influence their power
are taken into account. In Section 10.4 we consider the case where players
and coalitions may be controlled by other coalitions, a typical example being
provided by firms and investors in a network determined by share holdings.
This work was preceded by [5] and [9, 10]; the power indices that will be
discussed were developed in [11]. A refinement of this model to directed graphs,
based on [17], is discussed in Section 10.5. Section 10.6 concludes.

10.2 Preliminaries
We start with some notations. For a set D we denote by P (D) the set of all
subsets of D, and by P0(D) the set of all nonempty subsets of D. By |D| we
denote the number of elements of D.

Throughout, N = {1, . . . , n} (n ∈ N) is the set of players. Subsets of N are
also called coalitions. A game with transferable utility or TU-game is a pair
(N, v), where v : P (N)→ R with v(∅) = 0. The number v(S) is the worth of
coalition S. The TU-game (N, v) is simple if v(S) ∈ {0, 1} for all S ∈ P (N),
v(N) = 1, and S ⊆ T ⇒ v(S) ≤ v(T ) for all S, T ∈ P (N). If v(S) = 1
coalition S is winning, otherwise it is losing. For T ⊆ N the unanimity game
(N, uT ) is defined by uT (S) = 1 whenever T ⊆ S, and uT (S) = 0 otherwise.
Instead of (N, v) we also often write v.

The Shapley value of a game (N, v) for player i is given by the expression

Shi(N, v) =
∑

S⊆N :i/∈S

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)].

An alternative expression using so-called dividends will be introduced later in
the chapter.
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10.3 Effectivity and Power
In order to illustrate the aim of this section, which is based on [12], we start
with a few examples.

Example 10.1 Two men m1 and m2 and a woman f have the following
options (alternatives): Each of them stays single, denoted by s; f marries m1,
denoted by w1; or f marries m2, denoted by w2. Each person has the right to
stay single, and for a marriage the consent of both involved persons is required.
In this situation, can we say anything about the power of each person? (The
example is adapted from [7]; it appears as Example 2.2.3 in [16].)

Example 10.2 Consider the following ‘game form’:

(L M R

T a d c
B c b d

)
Here, N = {1, 2}, player 1 chooses rows, player 2 chooses columns, and
{a, b, c, d} is a set of alternatives. (We obtain a bimatrix game if we add
utilities of the players over the set of alternatives.) Again the question is:
What can we say about the power of the players?

We will answer the questions raised in these examples by developing a
class of power measures for ‘effectivity functions’. Let A denote the set of
alternatives. We fix a set T ⊆ P0(A), where T = P0(A) if A is a finite set; if A
is infinite, endowed with a topology, then T will be the collection of nonempty
closed subsets of A.

Definition 10.1 An effectivity function (for T ) is a map E : P (N)→ P (T )
such that (i) P (∅) = ∅, (ii) A ∈ E(S) for every S ∈ P0(N), (iii) E(N) = T ,
and (iv) B ∈ E(S) implies B′ ∈ E(T ) for all B,B′ ∈ T and S, T ∈ P0(N)
such that B ⊆ B′ and S ⊆ T . The set of all effectivity functions is denoted
by E .1

If B ∈ E(S), then we say that S is effective for B, and this is interpreted
as coalition S being able to guarantee that the ‘final’ alternative is in B,
or is entitled to this alternative being in B. Condition (i) in Definition 10.1
means that the empty coalition is not effective for anything. Condition (ii)
means that every coalition is effective for the set of all alternatives, which
is a trivial condition reflecting the assumption that there has to be some
‘final’ outcome. Condition (iii) means that the grand coalition of all players
is almighty: it is effective for every nonempty set of alternatives. Condition

1The term ‘effectivity function’ was coined by [14]. For an earlier use of the concept, see
for instance [6].
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(iv) means that if S is effective for B, then every (weakly) larger coalition
is effective for every (weakly) larger set of alternatives. The last condition is
usually called ‘monotonicity’. An additional condition that is usually satisfied
by an effectivity function is superadditivity, which means that if a coalition S
is effective for a set B and T is effective for C and if S and T are disjoint, then
S ∪ T is effective for B ∩ C. Here, however, we do not impose this condition
on an effectivity function.

Example 10.3 (i) In Example 10.1 the set of alternatives is A = {s, w1, w2}
and for the associated effectivity function E we have E({m1}) = E({m2}) =
{A}, E({f}) = {B ∈ P0(A) | s ∈ B}, E({mi, f}) = {B ∈ P0(A) | s ∈
B or wi ∈ B} for i = 1, 2, and E(N) = P0(A).

(ii) For Example 10.2 we have E({1}) = {B ∈ P0(A) | {a, d, c} ⊆
B or {c, b, d} ⊆ B}, E({2}) = {B ∈ P0(A) | {a, c} ⊆ B or {b, d} ⊆
B or {c, d} ⊆ B}, and E(N) = P0(A).

(iii) As a third example, let (N, v) be a simple game, and let A be some
set of alternatives. Then with (N, v) we can associate an effectivity function
E by letting E(S) = T if S is winning and E(S) = {A} if S ̸= ∅ is losing.

Our aim is to find reasonable measures of power for effectivity functions:

Definition 10.2 A power index on E is a map φ : E → RN with∑
i∈N φi(E) = 1.

We will impose three basic axioms on a power index for effectivity func-
tions. First a few pieces of notation: For E,F ∈ E , E∪F and E∩F are defined
by E ∪ F (S) = E(S) ∪ F (S) and E ∩ F (S) = E(S) ∩ F (S) for all S ∈ P (N).
It is straightforward to verify that E ∪ F,E ∩ F ∈ E .

The main axiom that we will impose on a power index φ is the Transfer
Property, which was first formulated for a value on simple games by [4].

Transfer Property For all E,F ∈ E ,

φ (E ∪ F ) + φ (E ∩ F ) = φ(E) + φ(F ).

Throughout, we will also impose anonymity. For a permutation π of N and
an effectivity function E ∈ E , let πE ∈ E be defined by (πE)(π(S)) = E(S)
for all S ∈ P (N).

Anonymity φi(E) = φπ(i)(πE) for every E ∈ E , every permutation π of N ,
and every i ∈ N .

The third axiom is a monotonicity condition.

Monotonicity φi(E) ≤ φi(F ) for all E,F ∈ E and every i ∈ N such that
E(S) \ E(S \ {i}) ⊆ F (S) \ F (S \ {i}) for all S ∈ P (N).
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The Transfer Property replaces the usual additivity or linearity condition
for values of TU-games. Anonymity is clear, and Monotonicity requires that
a player whose contributions in an effectivity function F are larger than in
E, should also be assigned more power in F than in E. Monotonicity is some-
what similar to the monotonicity condition of [25] used to characterize the
Shapley value and replacing the additivity condition. In our present richer
context, both conditions – that is, the Transfer Property and Monotonicity –
are complementary and will be used in one and the same characterization.

In order to formulate the results below, for an effectivity function E and
a set of alternatives B ∈ T we define the simple game vEB by vEB(S) = 1 if
B ∈ E(S) and vEB(S) = 0 otherwise. In other words, the winning coalitions in
vEB are exactly those that are effective for B.

10.3.1 Finitely Many Alternatives
The first result is for a finite set of alternatives. A weight system is a collection
ω =

(
ωB
)
B∈P0(A)

of nonnegative real numbers such that
∑
B∈P0(A) ω

B = 1.
For a weight system ω we define the power index Φω by

Φω(E) =
∑

B∈P0(A)

ωBSh
(
vEB
)

for every E ∈ E .
The following theorem is Theorem 4.10 in [12], to which we refer the reader

for a proof.2

Theorem 10.1 A power index φ satisfies the Transfer Property, Anonymity,
and Monotonicity if and only if there is a weight system ω such that φ = Φω.

Example 10.4 We consider the effectivity functions in Example 10.3.
(i) In this case, we have, for (m1,m2, f):

Sh(N, vEB) =


( 12 , 0,

1
2 ) if B = {w1}

(0, 12 ,
1
2 ) if B = {w2}

( 13 ,
1
3 ,

1
3 ) if B = {w1, w2, s}

( 16 ,
1
6 ,

2
3 ) in all other cases.

Hence,

Φω(E) = ω{w1}(
1

2
, 0,

1

2
) + ω{w2}(0,

1

2
,
1

2
) + ωA(

1

3
,
1

3
,
1

3
)

+(1− ω{w1} − ω{w2} − ωA)(1
6
,
1

6
,
2

3
).

2The proof in [12] holds for superadditive effectivity functions, but it can be checked that
it still holds and even simplifies without the superadditivity condition.
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For instance, a plausible choice of weights could be ω{w1} = ω{w2} = ω{s} = 1
3

and ωB = 0 otherwise, and then Φω(E) = ( 29 ,
2
9 ,

5
9 ).

(ii) In this case,

Sh(N, vEB) =

{
(0, 1) if B ∈ {{a, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}}
( 12 ,

1
2 ) in all other cases.

Hence, Φω(E) = α(0, 1) + (1− α)( 12 ,
1
2 ), where α = ω{a,c} + ω{b,d} + ω{c,d} +

ω{a,b,c} + ω{a,b,d}.
(iii) We assume that A is finite. Now (N, vEB) = (N, v) for every B ∈
P0(A) \ {A}, and vEA(S) = 1 for all S ∈ P0(N). Consequently, Φω(E) =
(1 − ωA)Sh(N, v) + ωA( 1n , . . . ,

1
n ). For the (plausible) case where ωA = 0 we

therefore have that Φω(E) = Sh(N, v), i.e., Φω is just the Shapley value.

In [12] further axioms are added, which refine the (large) class of power
indices characterized in Theorem 10.1. For instance, in most applications one
would expect the weight of a subset of alternatives to decrease with the size
of the subset, since being effective for a set implies being effective for every
superset.

In the next subsection, we consider the case of an infinite set of alternatives,
and at the same time impose further axiomatic restrictions.

10.3.2 Infinitely Many Alternatives
We now assume that A is a possibly infinite set, endowed with a topology.
More precisely, we assume that for every a ∈ A the set {a} is closed.3

Call a player i ∈ N a null player in E ∈ E if E(S) \E(S \ {i}) = ∅ for all
S ∈ P (N).

We consider the following further axioms for a power index φ.

Strong Monotonicity φi(E) ≤ φi(F ) for all E,F ∈ E and every i ∈ N
such that {a} ∈ E(S) \ E(S \ {i}) implies {a} ∈ F (S) \ F (S \ {i}) for
all S ∈ P (N) and all a ∈ A.

Null Player φi(E) = 0 for every E ∈ E and every null player i in E.

Continuity For every sequence (Ek)k∈N of effectivity functions with E1 ⊆
E2 ⊆ . . . it holds that

φ

( ∞∪
k=1

Ek

)
= lim
k→∞

φ (Ek) .

Clearly the premiss in the definition of Strong Monotonicity is weaker than
the one in the definition of Monotonicity. Jointly with other conditions, Strong

3That is, A is a T1-space.
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Monotonicity will imply that only single alternatives matter for a power index.
In the definition of Continuity, the union at the left-hand side of the equality
is a well-defined effectivity function: See Lemma 5.1 in [12].

For a probability measure µ on the σ-field of Borel sets generated by the
topology on A we define the map Φµ : E → RN by

Φµi (E) =

∫
A

Shi(v
E
{a})dµ(a)

for every E ∈ E and i ∈ N . Clearly,
∑
i∈N Φµi (E) = 1 for every E ∈ E , so that

Φµ is a power index. See [12] for a proof of the following result.

Theorem 10.2 Let φ be a power index. Then φ satisfies the Transfer Prop-
erty, Anonymity, Strong Monotonicity, Continuity, and the Null Player Prop-
erty if and only if there is a probability measure µ such that φ = Φµ.

Due to in particular the strong monotonicity requirement, compared to
Theorem 10.1 now only Shapley values of simple games associated with sin-
gle alternatives occur, and the weight system is replaced by the probability
measure µ.

10.3.2.1 An Application: The Owen-Shapley Spatial Power Index

A simple game (N, v) is proper if v(S) = 1 implies that v(N \ S) = 0 for each
S ∈ P (N). Let k ∈ N, k ≥ 2. A spatial game is a pair g = (v, p) where v is a
proper simple game and p = (p1, . . . , pn) ∈ (Rk)N with pi ̸= pj for all i, j ∈ N
with i ̸= j. Here, pi ∈ Rk is the position of player i. For instance, k = 2,
i is a political party, pi1 reflects i’s position with respect to public spending
on defense, and pi2 reflects i’s position with respect to public spending on
education.

Following [15] we let the set of issues A be represented by the unit sphere
in Rk, i.e.,

A = {a ∈ Rk : ||a|| = 1} ,

where || · || is the Euclidean distance, and we interpret the inner product pi · a
as a measure of the attractiveness of issue a ∈ A for a player with position
pi. More precisely, we interpret the inequality pi · a ≤ pj · a as player i being
more in favor of issue a ∈ A than player j.4 For a spatial game g = (v, p) and
an issue a ∈ A, we say that player i is pivotal for a if {j ∈ N | pj · a ≤ pi · a}
is a winning coalition but {j ∈ N | pj · a ≤ pi · a} \ {i} is losing. Here, one
should think of a coalition being formed in favor of an issue a: The players
join the coalition in order of their enthusiasm for a, and the pivotal player
is the player who upon joining the coalition turns this from a losing into a
winning coalition.

4Of course, this is just a matter of choice: Without loss of generality one could also take
the reverse inequality. Further, one can interpret pi · a as representing the ‘utility’ of an
issue a for player i with position pi – thus, implicitly linear ‘utility’ is assumed.



188 Handbook of the Shapley Value

We assume that A is endowed with the relative topology induced by the
Euclidean topology on Rk. It is not difficult to see that for almost all a ∈ A
there is a unique pivotal player. Let λ be the Lebesgue measure on A, and
define the probability measure ν on A by ν(B) = λ(B)/λ(A) for every Borel
set B ⊆ A. Then the Owen-Shapley spatial power index OS assigns to each
player i the number OSi(v, p) = ν(B) if B is the set of issues for which player
i is pivotal.

Figure 10.1 illustrates the Owen-Shapley spatial power index for a spatial
game in which the simple game is a three-person unanimity game, that is, a
spatial game ({1, 2, 3}, u{1,2,3}, (p1, p2, p3)): In the simple game u{1,2,3} only
the grand coalition {1, 2, 3} is winning. The issues on the arc of the circle
containing the point pi are those for which player i is pivotal, for each i =
1, 2, 3.

p1
p2

p3

OS1 OS2

OS3

Figure 10.1 The Owen-Shapley spatial power index in a three-person spa-
tial unanimity game. The dashed lines are perpendicular to the edges of the
triangle, and the powers of the players are proportional to the three pieces of
the disk.

Now for a spatial game (v, p) we construct an effectivity function F by
letting player i ∈ N be effective for the singleton {a} if i is pivotal for a.
Formally, for every S ∈ P0(N),

F (S) = {B ⊆ A | B = A or i is pivotal for b for some i ∈ S and b ∈ B}.

If i alone is pivotal for a, then Shi(v
F
{a}) = 1 and Shj(v

F
{a}) = 0 for all

j ∈ N \ {i}. Therefore, for every player i we have

OSi(v, p) = Φνi (F ) =

∫
A

Shi(v
F
{a})dν(a).

Thus, the Owen-Shapley spatial power index is a special case of the power
indices characterized in Theorem 10.2. See [18] for another axiomatic charac-
terization of OS, and [13] for a generalization.
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10.4 Control and Power
The results in this section are based on [11]. The leading example in [11] is
depicted in Figure 10.2. The diagram describes the Porsche and VW voting
rights by the end of 2012, based on the annual reports 2012 of Volkswagen AG
and Porsche Automobil Holding SE GmbH. The players are Porsche Families
(1), Qatar (2), Lower Saxony (3), Porsche SE (4), Volkswagen AG (5), Porsche
AG (6), and other (small) stockholders (7).

90%

10%
17%

20%

50.7%

9.9%

100%

Lower Sax. (3)

Qatar (2)

Po. Fam. (1)

Others (7)

VW AG (5)

Po. SE (4)

Po. AG (6)

Figure 10.2 The Porsche-VW case.

Based on this diagram and some further restrictions and laws, for which
we refer to [11], one can describe the ‘control structure’: For each coalition
of players, which players are controlled by this coalition? One way5 in which
this can be done is by simple games or the zero game: For each player i, the
winning coalitions in a simple game wi are those that control player i, which
means they have the required percentage of votes over that player. If a player
is not controlled by any coalition, then we take for wi the zero game (N, z),
i.e., z(S) = 0 for every S ∈ P (N). For the example in Figure 10.2, we arrive
at the following games: For S ∈ P (N),

w1 = w2 = w3 = w7 = z,

w4(S) = 1 ⇔ {1} ⊆ S,
w5(S) = 1 ⇔ {2, 3, 4} ⊆ S,
w6(S) = 1 ⇔ {5} ⊆ S.

These simple games express direct control. For instance, any coalition con-
taining players 2, 3, and 4, controls player 5. Note, however, that player 4
is controlled by any coalition containing player 1, and therefore player 5 is
also indirectly controlled by any coalition containing players 1, 2, and 3. By
incorporating all such indirect control relations as well we obtain the simple

5See [11] for a different but equivalent way.
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games w∗
i given by, for each S ∈ P (N):

w∗
1 = w∗

2 = w∗
3 = w∗

7 = z,

w∗
4(S) = 1 ⇔ {1} ⊆ S,

w∗
5(S) = 1 ⇔ {2, 3, 4} ⊆ S or {1, 2, 3} ⊆ S,

w∗
6(S) = 1 ⇔ {5} ⊆ S or {1, 2, 3} ⊆ S or {2, 3, 4} ⊆ S.

We will develop a class of power indices for situations like this. Formally,
a control structure is an n-tuple w̄ = (w1, . . . , wn) where, for each i ∈ N , wi
is either the zero game z or a simple game satisfying: For all j ∈ N and all
S, T ⊆ N , if wi(S) = wj(T ) = 1, then wi((S \{j})∪T ) = 1. The last condition
means that w̄ also captures indirect control: Coalition S controls i, and if j is a
member of S but at the same time controlled by T , then j’s position in S can
be replaced by the coalition T . LetW denote the set of all control structures.6

Definition 10.3 A power index on W is a map φ :W → RN .

Call player i a null player in w̄ ∈ W if (i) wi = z, and (ii) for all j ∈ N \{i}
and S ∈ P (N), wj(S) = wj(S \ {i}). Hence, a null player is a player who is
neither controlled nor adds anything to controlling other players. An example
is player 7 in the Porsche-VW case. The first axiom we impose on a power
index φ is as follows.

Null Player φi(w̄) = 0 for every w̄ ∈ W and every null player i in w̄.

A player who does not add anything to control but is controlled by some
coalition of players, has in some sense even less power than a null player. For
this reason it is natural to assume that a power index can assign negative
numbers in this framework. Actually, we impose the following axiom.

Zerosum
∑
i∈N φi(w̄) = 0 for every w̄ ∈ W.

This axiom implies that, in general, there will be players with positive
power as well as players with negative power.

For a permutation π of N and a control structure w̄ we denote by πw̄ the
control structure with (πw̄)π(i)(πS) = wi(S) for every i ∈ N and S ∈ P (N).

Anonymity φi(w̄) = φπ(i)(πw̄) for every w̄ ∈ W, every permutation π of N ,
and every i ∈ N .

Finally, the transfer property takes the following form.

Transfer Property φi(w̄)−φi(w̄′) = φi(v̄)−φi(v̄′) for every i ∈ N and all
w̄, w̄′, v̄, v̄′ ∈ W such that, for all S ∈ P (N), (i) w′

i(S) = 1⇒ wi(S) = 1
and v′i(S) = 1 ⇒ vi(S) = 1, (ii) [w′

i(S) = 0 and wi(S) = 1 ⇔ v′i(S) =
0 and vi(S) = 1].

6Control structures are equivalent to so-called command games in [9, 10]. For an earlier
approach, see [5].
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In words, if w̄ arises from w̄′ and v̄ arises from v̄′ by adding the same
winning coalitions, then for each player the change in power when going from
w̄′ to w̄ should be equal to the change in power when going from v̄′ to v̄.

In fact, it can be shown that the Transfer Property is equivalent to the
following: For all w̄, v̄ ∈ W,

φ(w̄) + φ(v̄) = φ(w̄ ∨ v̄) + φ(w̄ ∧ v̄)

where w̄ ∨ v̄ = (max(w1, v1), . . . ,max(wn, vn)) and w̄ ∧ v̄ = (min(w1, v1), . . . ,
min(wn, vn)), with the maxima and minima defined coalition-wise. This is
similar to the original formula in [4], but the formulation of the Transfer
Property above has a more intuitive interpretation.

These four conditions determine a family of power indices. In order to
formulate this result, recall that the dividends d(S) [8] of a TU-game v with
player set N are defined, recursively, by

d(S) =

{
0 if S = ∅
v(S)−

∑
T⊊S d(T ) otherwise

for all S ⊆ N . For a control structure w̄ = (w1, . . . , wn) and i ∈ N , we write
dw̄i for the dividends of wi. Also recall that the Shapley value of a TU-game
v is alternatively given by

Shi(v) =
∑
S:i∈S

d(S)

|S|

for every i ∈ N .
For every weight vector ω = (α1, . . . , αn−1, β2, . . . , βn) ∈ R2n−2, we now

define the power index Φω by

Φωi (w̄) =
∑

k∈N\{i}

 ∑
S:i∈S,k/∈S

dw̄k (S)

|S|
α|S| +

∑
S:i∈S,k∈S

dw̄k (S)

|S|
β|S|


−

∑
k∈N\{i}

 ∑
S:i/∈S,k∈S

dw̄i (S)

|S|
α|S| +

∑
S:i∈S,k∈S

dw̄i (S)

|S|
β|S|

 (10.1)

for all w̄ ∈ W and i ∈ N . This formula looks quite complicated, but it
nevertheless has a clear interpretation, as follows. The expression in brackets in
the first line of (10.1) says that player i receives a weighted sum of dividends
in the game wk; this expresses the power player i derives from his role in
controlling player k. The weights depend both on the size of the coalition of
whose dividend player i receives a share, and on whether or not the controlled
player k is a member of that coalition. Thus, the first line in (10.1) represents
the total power player i acquires from his role in controlling the other players.
In the second line, the total (similarly weighted) power that all other players
acquire from controlling player i, is subtracted.

See [11] for a proof of the following theorem.
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Theorem 10.3 Let φ : W → RN be a power index. Then φ satisfies Null
Player, Zerosum, Anonymity, and the Transfer Property if and only if there
is a weight vector ω = (α1, . . . , αn−1, β2, . . . , βn) ∈ R2n−2 such that φ = Φω.

In Theorem 10.3 the weights ω are completely free and can be any real
numbers. In [11], several conditions are considered that result in a refinement
of this class of power indices. Here, we restrict our attention to the following
‘scaling’ condition.

Controlled Player For all w̄ ∈ W, j ∈ N with wj ̸= z, and i ∈ N with
wi = z,

φj(w̄) =

 −1 if wk(S) = wk(S \ {j}) for all S ⊆ N and k ∈ N
φi(w̄)− 1 if wk(S \ {i}) = wk(S \ {j}) for all S ⊆ N

such that i, j ∈ S and all k ∈ N.

The first line in the Controlled Player condition says that if j is a ‘controlled
player’, i.e., controlled by at least one coalition and, thus, by N , but does not
exercise any control himself, then the power of j is fixed at −1. Hence, the
power of a least powerful player is fixed at −1. Further, if i is an uncontrolled
player, i.e., controlled by no coalition at all, but i and j exercise the same
marginal control with respect to any coalition and player, then their difference
in power is fixed at 1, that is, i gets assigned 1 more than j. We now have the
following corollary (see [11]).

Corollary 10.1 There is a unique power index satisfying Null Player, Zero-
sum, Anonymity, the Transfer Property, and Controlled Player, namely the
power index Φω with ω = (1, . . . , 1) ∈ R2n−2.

We apply this unique power index to the Porsche-Volkswagen case.

Example 10.5 For the Porsche-VW case and ω = (1, . . . , 1) ∈ R2n−2 we
obtain Φω1 (w̄) = 67

60 , Φω2 (w̄) = Φω3 (w̄) = 32
60 , Φω4 (w̄) = − 53

60 , Φω5 (w̄) = − 18
60 ,

Φω6 (w̄) = −1, and Φω7 (w̄) = 0. It is interesting to compare the power of
Porsche Families with its power at the end of 2007. Figure 10.3 depicts the
control structure between the same companies at the end of 2007. At that
time, Volkswagen was not controlled by any group of main investors. Although
Porsche SE has veto power in the game on Volkswagen AG, we ignore this
fact, as it is not clear how this power can be exercised. This situation results
in a control structure v̄ with coalition S winning in v4 if and only if 1 ∈ S,
and coalition S winning in v6 if and only if 1 ∈ S. Thus, even while ignoring
the power of Porsche Families on Volkswagen, we still have Φω1 (v̄) = 2 > 67

60 =
Φω1 (w̄). Hence, according to this power index it had more power in 2007 than
it had in the situation described by Figure 10.2 (end 2012).



Power and the Shapley Value 193
100%

20%

30.93%

40.07%

100%

Lower Saxony (3)

Qatar (2)

Porsche Fam. (1)

Others (7)

Volkswagen AG (5)

Porsche SE (4)

Porsche AG (6)

Figure 10.3 Porsche and VW voting rights by the end of 2007, based on the 2007
annual report of Volkswagen AG and the 2007/2008 annual report of Porsche Au-
tomobil Holding SE GmbH.

10.5 Power on Digraphs
In this section we closely follow [17]. The model in [17] is a special case of
a control structure as defined in the previous section. More precisely, [17]
considers control structures w̄ = (w1, . . . , wn) such that each wi is uniquely
determined by the winning singleton coalitions, i.e., for each coalition S we
have wi(S) = 1 if and only if there is a k ∈ S with wi({k}) = 1. Such a control
structure can be identified with a directed graph or digraph with N as the set
of nodes and a link (edge) from i to j if and only if wj({i}) = 1, i.e., player j is
controlled by player i. Let D ⊆ W denote the set of all such control structures
or digraphs.

On a power index φ : D → RN we impose the same axioms as in the
preceding section. Since the definitions of a null player and of the axioms of
Null Player, Zerosum, Anonymity, and the Transfer Property do not change
for power indices on D, we do not repeat these definitions here.

For M ∈ P0(N) and j ∈ N , let the control structure ūM,j ∈ D be defined
by uM,j

i = z for all i ̸= j, and uM,j
j ({i}) = 1 if and only i ∈ M for all i ∈ N .

Hence, ūM,j can be identified with the digraph that has (only) links from every
player i ∈ M to player j. The following lemma (Lemma 4.3 in [17]) follows
directly from the definitions.

Lemma 10.1 Let the power index φ on D satisfy Null Player, Zerosum, and
Anonymity. Then there are α1, . . . , αn−1, β2, . . . , βn ∈ R such that for every
M ∈ P0(N) and j ∈ N , with m = |M |:

(a) if j /∈M , then for every i ∈ N

φi(ū
M,j) =

 0 if i /∈M ∪ j
αm/m if i ∈M
−αm if i = j
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(b) if j ∈M , then for every i ∈ N

φi(ū
M,j) =

 0 if i /∈M
βm/m if i ∈M \ j

βm/m− βm if i = j

where α0 = β1 = 0.

The digraph ūM,j plays a role similar to that of a unanimity TU-game. By
adding the Transfer Property we obtain the following result (Theorem 4.4 in
[17]). Here, for w̄ ∈ D and j ∈ N , M w̄

j = {i ∈ N | wj({i}) = 1} is the set of
players who have a link to player j, i.e., who control player j.

Theorem 10.4 A power index φ on D satisfies Null Player, Zero-
sum, Anonymity, and the Transfer Property if and only if there are
α1, . . . , αn−1, β2, . . . , βn ∈ R such that for each w̄ ∈ D we have φ(w̄) =∑
j∈N φ(u

Mw̄
j ,j), with φ(uMw̄

j ,j) as defined in (a) and (b) of Lemma 10.1.

Denote a power index φ as in Theorem 10.4 with parameters α =
(α1, . . . , αn−1) and β = (β2, . . . , βn) by φα,β . It can be checked that the
weights in Theorem 10.4 coincide with those in Theorem 10.3: More precisely,
on D, for ω = (α1, . . . , αn−1, β2, . . . , βn), Φω coincides with the power index
φα,β .

Theorem 10.4 does not put any restrictions on the parameters α, β. We
next present three possibly plausible further conditions which have to do with
adding additional links.

The first condition says that if we add a link to a player j from some player
i, then this should not change the power of the players who already have a
link to j. In the control parlance: if player j gets additionally controlled by
some player i, then this should not change the power of the players who were
already controlling j.

Link Addition 1 Let i, j ∈ N and let w̄, w̄′ ∈ D differ only in that wj(i) = 0
whereas w′

j(i) = 1. Then φh(w̄) = φh(w̄
′) for all h ∈ N \ {j} such that

wj(h) = 1.

Corollary 10.2 Let φ = φα,β. Then φ satisfies LA1 if and only if there is
a c ∈ R such that αk = kc for all k = 1, . . . , n − 1 and βk = kc for all
k = 2, . . . , n.

Thus, under LA1 we obtain a one-parameter family of power indices of the
form

φci (w̄) = c (|{j ∈ N | wj(i) = 1}| − |{j ∈ N | wi(j) = 1}|) ,

where c ∈ R. For instance, for c = 1 and in the control terminology, the power
of player i is equal to the number of players controlled by player i minus the
number of players controlling player i. This is similar to the Copeland score in
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social choice theory [3], under the interpretation that a link from i to j means
that i is preferred to j.

The second condition requires that it is player j whose power does not
change if a link is added from some player i to j, provided that there was
already a link from some other player to j. In terms of control: If a player j
becomes additionally controlled by some player i, then this should not change
the power of player j.

Link Addition 2 Let i, j ∈ N and let w̄, w̄′ ∈ D differ only in that wj(i) = 0
whereas w′

j(i) = 1. Also, let wj({k}) = 1 for some k ∈ N \ {j}. Then
φj(w̄) = φj(w̄

′).

Corollary 10.3 Let φ = φα,β. Then φ satisfies LA2 if and only if there is
a c ∈ R such that αk = c for all k = 1, . . . , n − 1 and βk = k

k−1 c for all
k = 2, . . . , n.

The power indices characterized in Corollary 10.3 take the form

φ̄ci (w̄) =
∑

j∈N\{i} :wj({i})=1

c

|{k ∈ N \ {j} | wj(k) = 1}|
− c 1{Mw̄

i \{i}̸=∅}

where 1{P} = 1 if statement P is true and 1{P} = 0 otherwise. According
to a power index φ̄c, if a player i has a link to some other player j, then he
equally shares the amount of power c with the other players having a link to
j, except possibly j. If player i is controlled by someone other than himself,
then he loses an amount c of power. This power index is similar to the idea of
the β-measure as in [24] or its reflexive variant in [23].

The final condition we consider says that if we add a link from a player i to
a player j, but player j was already controlled by some other player (possibly
by himself) then both have the same gain (or loss) in power. This condition
may make sense, perhaps not so much in the control setting, but rather in a
setting where players i and j have some common interests – for instance, they
work in the same department of a university.

Link Addition 3 Let i, j ∈ N and let w̄, w̄′ ∈ D differ only in that wj(i) =
0 whereas w′

j(i) = 1. Also, let wj({k}) = 1 for some k ∈ N . Then
φi(w̄)− φi(w̄′) = φj(w̄)− φj(w̄′).

Corollary 10.4 Let φ = φα,β. Then φ satisfies LA3 if and only if there is
a c ∈ R such that αk = 2

k+1 c for all k = 1, . . . , n − 1, and βk = 0 for all
k = 2, . . . , n.

The power indices characterized in Corollary 10.4 take the form:

φ̃ci (w̄) =
∑

j∈N :wj({i})=1,wj({j})=0

α|Mw̄
j |

|M w̄
j |
− α|Mw̄

i | 1{Mw̄
i ̸=∅, i/∈Mw̄

i } ,
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with αk as in Corollary 10.4. In control terms, according to a power index φ̃c,
if player j controls himself, then no player, including player j, derives (positive
or negative) power from controlling j. Further, the power (negative, if c > 0)
from being controlled decreases as the number of controlling players increases.
We note that φ̃c is related to the apex power index in [22]).

10.6 Conclusions
In this chapter we have reviewed some of our works on power indices for
situations that go beyond simple games, namely power indices for effectivity
functions and power indices for control structures. We have also shown that
a spatial power index like that of Owen and Shapley [15] is a special case of
the former, while some power indices for digraphs, like the Copeland score [3],
are special cases of the latter. Our power indices for effectivity functions are
clearly based on the Shapley value: See Theorems 10.1 and 10.2. The general
formula for power indices for control structures in Theorem 10.3 is based on
dividends and therefore indirectly related to the Shapley value. For instance,
if we take α1 = . . . = αn−1 = β2 = . . . = βn = γ ∈ R, then the resulting
power index Φω is given by

Φωi (w̄) = γ

(∑
k∈N

Shi(wk)− 1

)

for every w̄ ∈ W and i ∈ N . Also, for φ(uMw̄
j ,j) in Theorem 10.4 we can write

φ(uM
w̄
j ,j) =

 α|Mw̄
j | Sh

(
uMw̄

j
− u{j}

)
if j /∈M w̄

j

β|Mw̄
j | Sh

(
uMw̄

j
− u{j}

)
if j ∈M w̄

j

where uT for T ⊆ N is the unanimity TU-game.
The two approaches, i.e., to effectivity functions and control structures,

cannot be directly linked. Total power according to a power index for control
structures (Theorem 10.3) is equal to zero: In this case, it is natural to assign
both negative and positive power and to have the sum equal to zero. Total
power according to a power index for effectivity functions (Theorems 10.1 and
10.2) is equal to one, and the power of every player is nonnegative; which is as
in the standard case. Moreover, in the control case, if player i controls player j,
then in some sense player i is ‘effective’ for {j}, but this is not quite consistent
with the usual conditions on an effectivity function: For instance, if player i
controls player j, then this does not imply that i controls every set of players
containing j, but if i is effective for {j} in the formal meaning of this expression
as defined above, then i is effective for every set of players containing j. Hence,
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it is not obvious how to construct a general model encompassing the two
approaches reviewed in this chapter.
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11.1 Introduction
Different advantages may arise from collaboration, so that in many cases it is
appropriate to determine the contribution of each one of the interested parties.
A public corporation builds a dam to provide several services in a territory
(power generation, navigation irrigation, municipal supply, etc.), and the cost
must be allocated among the beneficiaries. In a university, the common ex-
penses have to be distributed among distinct departments. An airport is built
and the cost of its construction and maintenance must be distributed among
the users. A multidimensional firm has to allocate costs among its different
units. When the members of the European Union cooperate, they have to
agree how to share the budget.

In these instances, cost shares are settled either internally by agreement
among the parties or externally by an administrative authority, under the
condition of covering exactly the costs. The final settlement is usually reached
according with some reasonable criteria of “fairness” (although it is true that
there are still no such simple or obvious criteria). This makes cost allocation
an area specially suitable for the application of the cooperative game the-
ory. Actually both realms influence each other, to the point that some cost
allocations methods foreshadowed key solution concepts of the game theory.1

A fruitful way to find solutions in cooperative game theory has been the
axiomatic approach. Initiated by Nash (1950), this approach consists in for-
mulating some reasonable principles or properties, also called axioms, that are
only satisfied by one specific solution concept. Then it is said that the solution
is characterized by these axioms, and its plausibility may be examined in the
light of the sensibility of these properties, together with the experience for
particular applications. The Shapley value (1953) is arguably one of the most
prominent cooperative solutions concepts proposed in this way. Since then, in
addition to Shapley’s one, other characterizations of this value have been pro-
posed; to name a few of them, Myerson (1980), Young (1985a), and Hart and
Mas-Colell (1989). On the other hand, Aumann and Shapley (1974) developed
a theory for non-atomic games using an axiomatic approach to define a value
for these games.2 The resulting value is called the Aumann-Shapley value and
can be considered as a generalization of the Shapley value from finite games
to the class of non-atomic games.

These and other characterizations have been translated from the cooper-
ative games to cost allocation problems. The purpose of the translation is
precisely to make easier to judge the reasonableness of the application of the
Shapley value also from an economic point of view. The aim in this chapter

1 The Tennessee Valley Authority problem is an example of this (Section 2 below).
2 Actually these authors employed in addition two other approaches for the value: The

random order and the asymptotic approaches. Both can be considered complementary of
the axiomatic one, since the three lead to the same value for a wide collection of non-atomic
games.
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is featuring a brief survey of the characterizations of the Shapley value found
in the cost allocation literature.

In this survey, we will consider a basic model consisting of three elements:
A set of agents involved in a problem (beneficiaries, users, departments, etc.); a
specification of the quantity of the good demanded by each agent; and finally a
joint cost function. Then we will distinguish three different cases depending on
the nature of the demands. First we consider the case in which the demand
of each agent may take only the values 0 or 1, that is they can decide to
participate or not in the joint project. This case corresponds to the classical
model studied first by Shubik (1962). The Shapley-Shubik method will be the
cost allocation rule examined for this case. In the other two cases, the agents’
demands can take any value. We differentiate the continuum case and the
discrete case, depending on wether the goods demanded by the agents are
divisible or not. In both cases our attention will be focused on the Aumann-
Shapley method, the cost allocation method inspired by the value of non-
atomic games.

The chapter is organized as follows. Section 11.2 is devoted to three clas-
sical examples of the cost allocation literature. These examples serve as an
illustration of the theoretical model presented in Section 11.3 together with
the notation. Sections 11.4, 11.5 and 11.6 are dedicated respectively to the
three cases mentioned in the above paragraph. Some conclusions close the
chapter.

11.2 Three Motivating Examples
In this section three classical examples of the literature on the cost allocation
problem are presented. They serve respectively as illustration for the formal
models considered later on.

11.2.1 The Tennessee Valley Authority
The Tennessee Valley Authority (TVA) is a Federal corporation founded when
President Roosevelt signed the TVA Act on 1933. This corporation was cre-
ated to address some major problems facing the valley, such as control flood-
ing, power generation, navigation improvements along the Tennessee River, as
well as other subsidiary responsibilities for national defense and assist in the
economic development of the region. Thus, the TVA carried out large-scale
projects and constructed dams and reservoirs along the Tennessee River basin,
and today TVA is the largest public energy company in the United States.

In some of the sections of the TVA Act, it is decreed that the cost of TVA
projects should be specifically allocated among the issues involved. This re-
sulted in a considerable work to analyze different cost allocation methods. A
survey of this task is offered in Ransmeier (1942). The concepts and criteria
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devised in this work can be considered as game theory “avant la lettre”. For
instance a “preliminary criterion of a satisfactory allocation” (Ransmeier,
1942, p. 220) is:

The method should have a reasonable logical basis. It should not
result in charging any objective with a greater investment than the
fair capitalized value of the annual benefit of this objective to the
consumer. It should not result in charging any objective with a
greater investment than would suffice for its development at an
alternate single purpose site. Finally, it should not charge any two
or more objectives with a greater investment than would suffice for
alternate dual or multiple purpose improvement.

Subset S of Purposes: Cost: c(S)

∅ 0
{n} 163 520
{f} 140 826
{p} 250 096
{n, f} 301 607
{n, p} 378 821
{f, p} 367 370
{n, f, p} 412 584

TABLE 11.1: Cost function for the TVA cost allocation problem.

In most of the TVA projects, there were basically three purposes: Navi-
gation (n), flood control (f) and power generation (p). The cost figures (in
thousands of dollars) for the different sets (or coalitions) of projects are given
in Table 11.1, which is an adaptation from Ransmeier (1942). The figures can
be used to formalize the TVA problem as a transferable utility game (N, c) as
indicated. This allows us to make use of the solution concepts of the cooper-
ative game theory to find a “fair” agreement to share the costs. For instance
the Shapley value in the TVA problem is (117 829, 100 756.5, 193 998.5) that
satisfies the criteria stated in the above quotation. It is worth mentioning that
the last sequences of this quotation just say that the allocation should be in
the core of the corresponding transferable utility game.

11.2.2 Internal Telephone Billing Rates
The next example is a compact summary of a work due to Billera, Heath and
Raanan (1978), when they developed a procedure to determine the rates of
the telephone calls at Cornell University. Telephone service can be purchased
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in bulk, and it is used by a large number of small (“infinitesimal”) users, so
that the total demand may be high enough to make acquiring the service
profitable. The question is how to charge each user a “fair” share of the cost,
assuming that the total costs have to be fully covered.

The problem turns out to be quite involved because there are several ways
of offering the service: First the Direct Distance Dialing (DDD) that depends
on the length of the call and the distance to the destination only; second
the Foreign Exchange (FX), if the user has to be connected to an exchange in
another area; and, finally, five Wide Area Telecommunication Service (WATS)
covering the continental U.S. excluded the user’s state and divided in five
concentric zones, whose service can be obtained from the company under two
different plans that consist of an initial fee plus an incremental charge per
hour. The telephone system at the university includes a computerized device
that routes each call onto the best sequence of WATS or FX lines, and if they
fail, the call is sent DDD. The costs cannot be distributed among the calls
in a straightforward way due to several reasons: Some costs are not directly
associated with the calls (maintenance, operator’s salary, etc.), the timing of
the calls accumulates on a monthly basis, the first few calls have not any
incremental charges, etc.

To solve the problem Billera, Heath and Raanan (1978) construct a non-
atomic game as follows. Each calling instant is a “player”, so that the under-
lying space of players, denoted by I, is the monthly collection of calls. These
calls can be classified according to three criteria: (a) the time of the day when
they are made (midnight to 1 A.M., 1–2 A.M.,…); (b) their destination (num-
ber of WATS bands and FX lines, etc., in the system); and (c) the type of
day when they are made (business day or weekend). If there are k destina-
tions, then we have n = 24 × k × 2 types of calls. Now define n measures
on I, denoted µj (j = 1, . . . , n), where for any subset of calls S ⊆ I the real
number µj(S) represents the total duration of telephone calls of type j in S.
On the other hand, an optimization routine calculates the least cost of serv-
ing a given load X = (x1, . . . , xn) on the system. This least cost is denoted
f(X) = f(x1, . . . , xn). Now it can be defined a non-atomic game v on I by
v(S) = f

(
µ1(S), . . . , µn(S)

)
, that is the minimal cost of servicing the demands

given by S. To solve the rates problem, the authors applied the Aumann and
Shapley (1974) method to this game.

11.2.3 Aircraft Landing Fees
Littlechild and Thompson (1977) applied a game theoretical model to analyze
the problem of sharing the common costs of the construction and maintenance
of a runway at Birmingham Airport (U.K.) among its users in the period 1968–
1969. As they noticed the costs of an airport have a simple but interesting
structure: “The cost of building a runway depends essentially upon the largest
aircraft for which the runway is designed, while the cost of subsequently using
the runway is proportional to the number of movements of each type of air-



204 Handbook of the Shapley Value

craft”. After determining the optimal size of the runway, and assuming that
the total costs have to be recovered, the question is how to introduce some
basic notions of fairness in the final distribution.

For solving this question Littlechild and Thompson (1977) modeled this
situation with a transferable utility game. A player is a potential aircraft
movement (take off or landing). Let N = {1, . . . , n} be the set of players
or movements. Suppose there are m different types of aircrafts that use the
runway. Let Ni be the set of movements by planes of type i, i = 1, . . . ,m. For
every type i denote

bi = benefit of movement of type i,
ci = cost of movement of type i,
gi = cost of building a runway to accommodate movement of type i.

Take any subset S ⊂ N of movements. The incurred cost to accommodate
all movements in S is equal to the cost of accommodating the largest type of
aircraft in this subset; that is,

G(S) = max {gi : S ∩Ni ̸= ∅} (11.1)

is the capital cost of a runway for subset S of movements.
Thus, the profits obtained by coalition S are given by

v(S) = max
R⊆S

{(∑
j∈R

(bj − cj)−G(R)
)
+

}
,

that is, the members of S ⊆ N will carry out the most profitable runway that
is feasible for it, whenever this runway generates a non-negative surplus.3 This
is the characteristic function of a cooperative game and gives us access to the
cooperative game theory solution concepts.

Yet it may be also interesting to determine prices based on the more ob-
jective elements of cost and number of movements, and not in the less as-
certainable element as the benefits. Consequently, Littlechild and Thompson
(1977) also consider the “airport cost game” G. These authors paid specially
attention to the Shapley value and the nucleolus of the games v and G. Some
of their data are collected in Table 11.2.

Airport games have led to an extensive literature. To name a few, we
cite the seminal papers by Littlechild and Owen (1973, 1976) and Littlechild
(1974). Later on Kuipers, Mosquera and Zarzuelo (2013) extended the model
for studying the problem of sharing costs in more general situations such as
highway toll pricing.

3 a+ denotes max{a, 0}.
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Fokker Friendship 27 42 65 899 91.18 5.23 6.12 4.86
Viscount 800 9555 76 725 100.77 6.09 6.74 5.66
Hawker Siddeley Trident 288 95 200 110.95 7.55 7.36 10.30
Britannia 303 97 200 172.11 7.71 11.71 10.85
Caravelle VIR 151 97 436 139.15 7.73 9.36 10.92
BAC 111 (500) 1315 98 142 160.61 7.79 10.88 11.13
Vanguard 953 505 102 496 314.88 8.13 21.84 13.40
Comet 413 1128 104 849 105.44 8.32 6.91 15.07
Britannia 300 151 113 322 205.47 8.99 40.34 44.80
Corvair Corronado 112 115 440 204.84 9.16 40.17 60.61
Boeing 707 22 117 676 251.70 9.34 101.64 162.24

TABLE 11.2: Birmingham airport data, 1968–1969: Movements, benefits,
costs and the Shapley value.

11.3 Notation and Preliminaries
Denote R the set of real numbers, N the set of non-negative integers, and N
the set of non-empty finite subsets of N.

If N ∈ N , denote by |N | the cardinality of N , and let RN be the |N |-
dimensional Euclidean space with coordinates indexed by the elements of N .
If x = (xi)i∈N ∈ RN and M ⊆ N we write xM = (xi)i∈M . If x,y ∈ RN

write x ≤ y if xi ≤ yi for all i ∈ N . If a, b ∈ RN , write [a, b] for the set
{x ∈ RN : a ≤ x ≤ b}. Some distinguished vectors in RN are: The origin
0 = (0, . . . , 0); and for every M ⊆ N its indicator 1M , defined by 1Mi = 1 if
i ∈M and 1Mi = 0, otherwise.

A cost sharing problem is a triple (N, q̄ , C), where N ∈ N represents a
set of agents, q̄ = (q̄i)i∈N ∈ RN is the list of their consumptions or demands,
and C(q) is a cost function that represents the cost of jointly producing q =
(qi)i∈N ∈ [0, q̄ ]. We will assume throughout C(0) = 0.

Depending on the nature of the total demand and the cost function we
have classified these problems in three different kinds:

1. The classical case: When q̄ = 1N and C : [0, q̄ ] ∩ {0, 1}N → R.
2. The continuum case: When q̄ ∈ RN and C : [0, q̄ ]→ R.
3. The discrete case: When q̄ ∈ NN and C : [0, q̄ ] ∩NN → R.
In the following sections, we will consider these three types of problems.
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11.4 The Classical Case and the Shapley-Shubik
Method

Since the pioneering work of Shubik (1962) most of the applications of game
theory to cost allocation have been based upon the characteristic function
form of the games.

A cost allocation situation can be modeled with a transferable utility (TU)
game, called cost game, by assigning to a group of agents, or coalition, the
cost that would incur by satisfying exactly the demands of its members. In our
setting every cost allocation problem (N,1N , C) can be univocally associated
with the TU game whose characteristic function c is defined by

c(S) = C(1S ,0N\S).

This is the approach that was followed to solve the Tennessee Valley Au-
thority example of Subsection 11.2.1 (see Table 11.1).

Along this section we will fix the set N of agents, and therefore we will
speak of the cost allocation problem c instead of (N,1N , C). We will denote
by PB the class of classical problems.

A cost allocation rule is a mapping ϕ : PB → RN prescribing the cost
share of every agent in such a way the costs are precisely satisfied, that is∑

i∈N
ϕi(c) = c(N).

With the cost game at hand we are enabled to access cooperative game
theory solution concepts in order to address the cost allocation problem. In
particular, the Shapley value of the problem c allocates the total cost c(N)
for every i ∈ N according to the well-known expression

Shi(c) =
∑

S⊆N\i

|S|!
(
|N | − |S| − 1

)
!

|N |!
(
c(S ∪ i)− c(S)

)
.

This expression admits a probabilistic interpretation. Imagine that in a
random way, an agent is chosen, and until the coalition N is completed, agents
are randomly joined one-by-one. Assume that when an agent is chosen, it pays
its marginal cost contribution, i.e., c(S ∪ i) − c(S). Then |S|!

(
|N | − |S| − 1

)
!

is the number of possible ways in which this process can occur, that is S is
the coalition formed immediately before agent i is incorporated. As |N |! is the
total number of possible ways to perform this process, Shi(c) is the expected
cost of agent i if the payments take place in this manner.

In view of the interpretation above, the Shapley value can be formulated
in an alternative way. Let R(N) be the set of all orderings of N , and for
each R ∈ R(N) and each i ∈ N , denote by R[i] to the set of agents prior to
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i according to R. The marginal cost contribution of agent i relative to R is
defined by

MCi(c,R) = c
(
R[i] ∪ i

)
− c
(
R[i]

)
.

Thus, the Shapley value for i is just the average of MCi(c,R) over the |N |!
orderings of N .

11.4.1 Axiomatic Characterizations of the Shapley-Shubik
Method

Similarly to the Nash (1950) approach to define the cooperative bargaining
solution, Shapley (1953) formulated a group of axioms that unambiguously
characterizes the Shapley value. Next we describe these axioms that are the
formalization of some reasonable principles of fairness.

Let ϕ be a cost allocation rule.

The first axiom is that we can add the cost shares of different problems.
So, if a given problem can be decomposed into two different problems, the
result of the original problem should be equal to the sum of the results of the
other two problems.

Additivity: Let c, c′ ∈ PB , then ϕ(c+ c′) = ϕ(c) + ϕ(c′).

The second one says that the method should be independent of the names
of the agents.

Let π : N → N be a bijection. If N ∈ N , write πN = {π(i) : i ∈ N}.
If x ∈ RN , define πx ∈ RπN by (πx)π(i) = xi for all i ∈ πN . Moreover, if
c ∈ PB , define πc

(
π(S)

)
= c(S).

Symmetry: Let c ∈ PB , i ∈ N , and π : N → N a bijection, then
ϕπ(i)π(πc) = ϕi(c).

The last one requires that if the marginal cost contribution of an agent is
always zero, then its cost share must be zero as well.

Dummy Agent: Let c ∈ PB and i ∈ N . If c(S ∪ i) = c(S) for all S ⊆ N ,
then ϕi(c) = 0.

Theorem 11.1 (Shapley, 1953) There exists a unique cost allocation rule
that satisfies Additivity, Symmetry and Dummy Agent, and it is the Shapley
value.

The Additivity axiom, though mathematically attractive, is less innocent
than what it seems at first sight. For we cannot expect that in general c and c′
are always separate problems, whilst c+ c′ appears in this axiom as composed
by two problems.

Young (1985a) proposed an alternative characterization of the Shapley
value using neither Additivity nor Dummy Agent. Instead, this author sug-
gested the Strong Monotonicity axiom below. The rationale for this property
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is that a method should charge a lower cost to an agent when its marginal
cost decreases.

Strong Monotonicity: Let c, c′ ∈ PB and i ∈ N . If c(S ∪ i) − c(S) ≤
c′(S ∪ i)− c′(S) for all S ⊆ N , then ϕi(c) ≤ ϕi(c′).

Theorem 11.2 (Young, 1985b) There exists a unique cost allocation rule
that satisfies Symmetry and Strong Monotonicity, and it is the Shapley value.

11.5 The Continuum Case and the Aumann-Shapley
Method

Aumann and Shapley (1974) in their celebrated book Values of Non-atomic
Games, extended the Shapley value to games with a continuum of agents.
Their ideas are particularly suitable for cost allocation problems in which the
output demanded by the agents can vary in a continuous way. They were
firstly applied by Billera, Heath and Raanan (1978) to compute equitable
telephone billing rates among users at Cornell University (see the Internal
Telephone Billing Rates example above). Later on, Billera and Heath (1982)
and Mirman and Tauman (1982) redefined the axioms of Aumann and Shapley
(1974) for values of non-atomic games to cost allocation problems.

In this section, we consider cost allocation problems (N, q̄ , C), where the
demands are real numbers, i.e., q̄ ∈ RN

+ , and the cost function is defined on
[0, q̄ ] ⊂ RN

+ , i.e., the cost C(q) depends on the different levels of the demanded
goods q = (qi)i∈N . In addition, we shall assume that the joint cost function
C(q) has continuous first partial derivatives on its domain (one sided on the
boundary). We will denote by P the class of these problems.

A cost allocation method is a mapping Φ : P → RN that specifies the price
per unit that every agent has to pay in order to satisfy exactly the total cost,
that is ∑

i∈N
q̄iΦi(N, q̄ , C) = C(q̄ ).

In a similar way to the classical case, every problem (N, q̄ , C) can be
associated with a non-atomic game. For this, we consider the collection or set
I containing together the various types of output demanded by the agents,
so that I includes exactly a quantity q̄i of output i. For each subset S ⊆ I,
denote c(S) the cost of producing S. Then (I, c) is a non-atomic game, and
the Aumann-Shapley value of a unity of the output of agent i is the Aumann-
Shapley price of i in the cost allocation problem. That is, using the diagonal
formula for the value on pNAD, we have that the Aumann-Shapley method
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assigns to each i ∈ N

ASi(N, q̄ , C) =
∫ 1

0

∂C(tq̄ )

∂qi
dt.

In view of this formula, the Aumann-Shapley price of an agent can be
interpreted as its average marginal cost along the diagonal tq̄ ∈ [0, q̄ ], 0 ≤
t ≤ 1.

The Internal Telephone Billing Rates example of Subsection 1.2.2 serves
to illustrate the model considered in this section.

11.5.1 Axiomatic Characterizations of the Aumann-Shapley
Method

Denote by Φ a cost allocation method on P.
As in the classical case, the first axiom says that the cost shares of different

problems can be added together.
C-Additivity: Let (N, q̄ , C), (N, q̄ , C ′) ∈ P, then Φ(N, q̄ , C + C ′) =

Φ(N, q̄ , C) + Φ(N, q̄ , C).
The next axiom resembles the Symmetry axiom of the classical case. It was

introduced by Young (1985b), who used the following example to illustrate it.
Suppose that C(y1, . . . , ym) is the joint cost of producing m types of gasoline,
and the quantity yi ≥ 0 of each type is a blend of n refinery grades x1, . . . , xn.
Say yi =

∑n
j=1 aijxj , all aij ≥ 0. By writing A = (aij), the costs could be

written as well in terms of x = (x1, . . . , xn), as follows: C ′(x) = C(Ax). The
procedure Φ is said to be aggregation invariant if prices are aggregated in the
same manner as product quantities. Formally
C-Aggregation Invariance: Let (N, q̄ , C), (M, q̄ ′, C ′) ∈ P, and A an m× n

nonnegative matrix such that q̄ = Aq̄ ′ and C ′(q′) = C(Aq′) for every q′ ∈
[0, q̄ ′]. Then Φ(M, q̄ ′, C ′) = Φ(N, q̄ , C)A.

Another quite compelling condition is that if the costs are nondecreasing,
then the prices cannot be negative.
C-Positivity: Let (N, q̄ , C) ∈ P, such that C is non-decreasing on [0, q̄ ].

Then Φ(N, q̄ , C)A ≥ 0.

Theorem 11.3 (Billera and Heath, 1982; Mirman and Tauman, 1982)
There exists a unique cost allocation method that satisfies C-Additivity,
C-Aggregation Invariance and C-Positivity, and it is the Aumann-Shapley
method.4

4 In fact Billera and Heath (1982) employed a weaker version of aggregation invariance
in which the matrix A consists of one row only. On the other hand, Mirman and Tauman
(1982) substituted Aggregation Invariance by another two weaker versions of this axiom:
The first one, called Rescaling, requiring this property only for the case in which the matrix
A is diagonal; and the second one, Weaker Consistency, asking this condition only when A
consists of one row formed by ones.
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In addition, Young (1985b) also characterized the Aumann-Shapley
method with a a property that is the counterpart of the Strong Monotonicity
axiom of the classical case.
C-Strong Monotonicity: Let (N, q̄ , C), (N, q̄ , C ′) ∈ P, and i ∈ N .

If ∂C(q)/∂qi ≤ ∂C ′(q)/∂qi for every q ∈ [0, q̄ ]. Then Φi(N, q̄ , C) ≤
Φi(N, q̄ , C).5

Theorem 11.4 (Young, 1985b) There exists a unique cost allocation
method that satisfies C-Aggregation Invariance and C-Strong Monotonicity,
and it is the Aumann-Shapley method.

Furthermore, Young (1985b) proposed another property of monotonicity
even stronger, by letting one compare the marginal contributions of two dif-
ferent agents, in contrast with the property above that refers to the cost share
of one agent only.
C-Symmetric Monotonicity: Let (N, q̄ , C), (N, q̄ , C ′) ∈ P, and i, j ∈ N .

If ∂C(q)/∂qi ≤ ∂C ′(q)/∂qj for every q ∈ [0, q̄ ]. Then Φi(N, q̄ , C) ≤
Φj(N, q̄ , C).

Theorem 11.5 (Young, 1985b) There exists a unique cost sharing method
that satisfies C-Symmetric Monotonicity, and it is the Aumann-Shapley
method.

11.6 The Discrete Case and the Aumann-Shapley
Method

In the discrete case, agents can demand several units of the good, and these
units are indivisible. Now, we turn to describe the Aumann-Shapley method
for this case.

In a discrete cost allocation problems (N, q̄ , C) the demands are nonneg-
ative integer numbers, i.e., q̄ ∈ NN

+ , and the cost function is defined on
[0, q̄ ] ∩ NN

+ , i.e., the cost C(q) depends on the different levels of the de-
manded goods q = (qi)i∈N that can take only nonnegative integer values. We
will denote by PD the class of these problems.

Similar to the continuum case, we have the following definition. A discrete
cost allocation method ψ : PD → RN specifies the price per unit of every
agent to balance the total cost, that is∑

i∈N
q̄iψi(N, q̄ , C) = C(q̄ ).

5 The partial derivatives are considered one-sided in the boundary throughout this
section.
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As in the classical and continuum cases, a cooperative game is also built
starting from a discrete cost allocation problem (N, q̄ , C). To do this, the
demand of each agent i is regarded as formed by q̄i elements, one by each unit.
Thus, with each agent i, there is associated a set or coalition Ni with |Ni| = q̄i
players. The grand coalition turns to be N q̄ =

∪
i∈N Ni. Then each coalition

S ⊆ N q̄ of players has associated a vector of demands q (S) =
(
|S ∩Ni|

)
i∈N ,

and then the cost of producing S is

vq̄ ,C (S) = C
(
q (S)

)
.

The discrete Aumann-Shapley method, denoted AS, assigns to every agent
i ∈ N in the problem (N, q̄ , C), precisely the Shapley value of any one of its
representatives in the TU game

(
N q̄ , vq̄ ,C). That is, for each i ∈ N

ASi (N, q̄ , C) = Shj
(
N q̄ , vq̄ ,C) for every j ∈ Ni.

Thus, the discrete Aumann-Shapley method takes into account more infor-
mation about cost in different consumption profiles than the Shapley-Shubik
method. Indeed, while the Shapley-Shubik method takes the whole demand for
every agent, the discrete Aumann-Shapley method deems all the intermediate
consumptions between 0 and q̄ .

Remark 11.1 A remark is in order about modeling the cost allocation problem
to determine the aircraft landing fees of Subsection 1.2.3. In expression (11.1),
where the airport cost game G is defined, each movement is considered to be a
player, and then the set of players is N .6 Alternatively, we can consider that
every set Ni of movements of a certain type i is represented by the same agent,
w.l.o.g. denoted also by i (i = 1, . . . ,m). Then we have a discrete allocation
problem (M, q̄ , C). Indeed, the set M = {1, . . . ,m} is the set of agents, that
is every type corresponds to an agent. The demands are q̄i = |Ni|, that is the
number of movements of each type. And the cost function defined on [0, q̄ ] is

C(q) = max {gi : q̄i ̸= 0} if q ̸= 0, and C(0) = 0.

Notice that ASi(M, q̄ , C) = Shj(G) for every j ∈ Ni, and every i ∈M .

11.6.1 Axiomatic Characterizations of the Discrete
Aumann-Shapley Method

The discrete Aumann-Shapley method has not received too much attention
yet. Here, four characterizations are presented.

In the sequel, let ψ be a discrete cost allocation method.

6 So all the players (movements) of the same type are symmetric in this game G.
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The first axiomatization of the discrete Aumann-Shapley method is due
to Calvo and Santos (2000). Actually these authors characterize the Aumann-
Shapley value for multichoice games (firstly studied in Hsiao and Raghavan,
1992 and 1993), but every discrete cost allocation problem can be obviously
identified with a multichoice game. The characterization is based on a trans-
lation of the “balanced contributions” property of Myerson (1980).
D-Balanced Contributions: Let (N, q̄ , C) ∈ PD, and i, j ∈ N such that

q̄i, q̄j > 0. Then,

ψi (N, q̄ , C)− ψi
(
N, q̄ − 1j , C

)
= ψj (N, q̄ , C)− ψj

(
N, q̄ − 1i, C

)
.

Theorem 11.6 (Calvo and Santos, 2000) There exists a unique discrete
cost allocation method that satisfies D-Balanced Contributions, and it is the
discrete Aumann Shapley method.

Next characterization is due to Sprumont (2005) with three axioms. The
first two are the well-known Additivity and Dummy Agent axioms translated
to the new model. But first let us introduce some additional notation. Let
(N, q̄ , f) ∈ PD, and i ∈ N :

a) If q ∈ [0, q̄ ] and qi < q̄i, write: ∂+i C(q) = C(q + 1i)− C(q).
b) If q ∈ [0, q̄ ] and qi > 0, write: ∂−i C(q) = C(q)− C(q− 1i).

D-Additivity: Let (N, q̄ , C), (N, q̄ , C ′) ∈ PD, then ψ(N, q̄ , C + C ′) =
ψ(N, q̄ , C) + ψ(N, q̄ , C).
D-Dummy Agent: Let (N, q̄ , C) ∈ PD and i ∈ N . If ∂−i C (q) = 0 for all

q ∈ [0, q̄ ], then ϕi (N, q̄ , C) = 0.

The third one, called no merging or splitting was proposed by Sprumont
(2005) and resembles the D-Aggregation Invariance axiom of the former sec-
tion. It requires an agent to obtain the same if it splits into several agents.
This axiom avoids splitting manipulations.
D-No Merging or Splitting: Let (N, q, C) ∈ PD, i ∈ N , and I ⊆ N finite

such that N∩I = {i}. Let (N ′, q̄ ′, C ′) ∈ PD, such that: (1) N ′ = (N\i)∪I; (2)
q̄′j = q̄j for all j ∈ N\i; (3)

∑
k∈I q̄

′
k = q̄i; and (4) C ′(q) = C

(
qN\i,

∑
k∈I qk

)
.

Then: ψk (N ′, q̄ ′, C ′) = ψi (N, q̄ , C) for every k ∈ I.

Notice that when agent i splits into several agents k ∈ I, then its demand q̄i
also splits into several demands q̄′k. Moreover, when agent i splits into several
agents, one of those split agents is i, and hence it is supposed that agent i is
present and there are new agents, all of them with the split demands. Observe
also that this axiom does not impose any requirement on the cost shares of
agents different from i.

Theorem 11.7 (Sprumont, 2005) There exists a unique discrete cost allo-
cation method that satisfies D-Additivity, D-Dummy Agent and D-No Merging
or Splitting, and it is the discrete Aumann Shapley method.
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Next characterization parallels the one in Theorem 11.4 of the contin-
uum case. Now Additivity and Dummy Agent axioms are replaced by D-
Monotonicity axiom below. This new axiom requires that when moving from
cost function C ′ to C, if the marginal contribution of agent i does not increase,
then the rule cannot assign a higher price to i either.

D-Monotonicity: Let (N, q̄ , C) , (N, q̄ , C ′) ∈ PD, and i ∈ N . If for all
q ∈ [0, q̄ ] such that qi > 0 it holds ∂−i C(q) ≤ ∂−i C

′(q), then ψi (N, q̄ , C) ≤
ψi (N, q̄ , C ′).

Theorem 11.8 (Albizuri, Díez and Sarachu, 2014) There exists a unique
discrete cost allocation method that satisfies D-No Merging or Splitting and
D-Monotonicity, and it is the discrete Aumann Shapley method.

There is still a further characterization that parallels Theorem 11.5 by
Young (1985b). In order to do that, we have to translate C-Symmetric Mono-
tonicity axiom to the discrete setup.

D-Symmetric Monotonicity: Let (N, q̄ , C) , (N, q̄ , C ′) ∈ PD, and i, j ∈ N .
If for all q ∈ [0, q̄ ] it holds ∂+i C(q̄ ) ≤ ∂+j C ′(q̄ ) and ∂−i C(q̄ ) ≤ ∂−j C ′(q̄ ), then
ψi (N, q̄ , C) ≤ ψj (N, q̄ , C ′) .

Theorem 11.9 (Albizuri and Zarzuelo, 2017) There exists a unique dis-
crete cost allocation method that satisfies D-Symmetric Monotonicity, and it
is the discrete Aumann Shapley method.

11.7 Conclusions
Several characterizations of the counterparts of the Shapley value and the
Aumann-Shapley value for cost allocation problems have been reviewed.
Mainly two kinds of characterizations have been examined, whose main dif-
ference is that they are based upon two different principles (see Table 11.3).
The first one is based on the property of additivity, saying that the payments
of different cost allocation problems can be aggregated. And the second one
on the principle of monotonicity requiring that a lower cost share must be
attributed when the marginal cost decreases. These characterizations endorse
the Shapley value and the Aumann-Shapley value as plausible rules to be
taken into consideration in many applications.

Despite the good properties of these values, some cautions are in order.
The first one is that cost allocation refers to practical problems and not to
abstract ones. So when facing a concrete cost allocation problem, a major
obstacle to be saved is modeling, which requires to take special care. For
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Case With Additivity With Monotonicity

Classical Th. 1.1
Add, Sym, Dum

Th. 1.2
Sym, StMon

Continuous Th. 1.3
C-Add, C-AInv,

C-Pos

Th. 1.4
C-AInv,
C-StMon

Th. 1.5
C-SymMon

Discrete Th. 1.7
D-Add, D-NoMS,

D-Dum

Th. 1.8
D-NoMS,
D-Mon

Th. 1.9
D-SymMon

TABLE 11.3: Summary of the axiomatic characterizations.

instance when invoking a “fairness” principle, the shares of the involved agents
are automatically being compared, so it is crucial to determine the identity of
these agents. They may be municipalities, aircraft movements, telephone calls,
products of a firm, countries, etc. Other significant factors when building a
model are the amount of available information—especially when defining the
joint cost function—and the difficulties of computation when the number of
agents is very large.

A different kind of caveat refers to the specific model deemed in this survey.
When agents collaborate in a joint project, they not only incur costs but
also obtain benefits. However, in the model used here only costs have been
considered and the possible benefits of the agents were ignored, despite the
fact that benefits are decisive to determine an efficient joint collaboration,
and should be taken into account to fix the final assignment. In this respect,
it is worth mentioning that Littlechild and Thompson (1977) in the Airport
Landing Fees example of Section 11.2 consider the benefits of the movements
in their model. This is reflected in Table 11.2 of the Aircraft Landing Fees
example, where the fifth column contains the Shapley value for the case in
which benefits are included, and the last one in which they are not taken in
consideration. In the fifth column only an approximation of the Shapley value
is given due to the computational difficulties when benefits are included in the
model. Perhaps this is the reason for which there are very few models that
include costs and benefits simultaneously.7

7 Brânzei et al. (2006) propose an algorithm for computing the nucleolus of airport prob-
lems with benefits. Finding an effective algorithm for the Shapley value in these problems
is still an open problem.
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Although attention has been paid in this chapter exclusively to the Shap-
ley value and its properties, there are many other methods of allocating joint
costs. To cite some of them: The separable cost remaining benefits (SCRB)
method,8 the (pre)nucleolus (Schmeidler, 1969), Ramsey prices (1927), and
Gately (1974), among others. All these methods are backed by some ratio-
nale and their applicability depends on the specific context. Some readers
may feel uncomfortable because of this abundance of methods. Nevertheless,
agreements or arbitrators may be based on different principles that sometimes
overlap but yield different results. Needless to say, no method can claim to
be uniquely the “best”. As Straffin and Heaney (1981) state: “ …rationality
seems to demand a multiplicity of viewpoints, and narrow insistence on the
virtues of one method is a vice rather than a virtue”.

To conclude the chapter, it is worth mentioning other interesting surveys
that can be found in the literature on cost allocation and similar or overlap-
ping disciplines. A remarkable survey of the Aumann-Shapley method in the
continuum case can be found in Tauman (1988), where in addition to the ax-
iomatic aspects, one can find other developments less related to game theory.
Another excellent overview on cost allocation is Young (1994), which high-
lights the tight relationship between game theory and cost allocation. Finally
Moulin (2002) is an outstanding and extensive overview on the cost allocation
methods that pay attention to most of the models treated in the literature on
cost allocation.
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12.1 Introduction
In this chapter we review two seminal articles of a new research line closely
related to the Shapley value [25] (also in [24] and [23]). They are included
as items [8] and [10] in the Bibliography.1 So as not to enlarge the con-
tents too much, all proofs—most of which are stimulating and by no means
straightforward—will be omitted here, so the reader interested in them is
invited to look at the aforementioned articles.

Initially, a great motivation for [8] was that of establishing, once and for
ever, a detailed criticism against the proportional rule as a sharing method
in collective affairs, while at the same time giving evidence of the great ad-
vantages of the Shapley value. In cooperative games, the contrast between
both methods is quite obvious, since the proportional rule2 disregards most
coalitional utilities: Precisely, all those corresponding to intermediate coali-
tions (i.e., coalitions with cardinality s such that 1 < s < n, where n is the
number of players). This becomes more and more critical as the number of
players increases, and it implies an absolute lack of sensitivity with regard to
the data defining any given problem (game). On the contrary, the Shapley
value is always concerned with all marginal contributions without exception
and enjoys therefore a nice sensitivity.

Thus, we decided to consider a framework “as advantageous as possible” to
the proportional rule, so as not to be accused of any a priori tendency in favor
of the Shapley value. Therefore, we introduced the notion of pure bargain-
ing problem (PBP, for short), where only the total utility and the individual
utilities of the agents are given: The temptation to use the proportional rule
in such a situation is clear. We also had in mind that, often, the simpler the
framework, the easier it is to check the relevance of a concept.

By identifying in a one-to-one linear way each PBP with a quasi-additive
cooperative game, we translated the notion of Shapley value and obtained the
Shapley rule for PBPs. This rule coincides with the well-known equal sur-
plus sharing rule, but our procedure emphasizes its close relationship to the
Shapley value. The Shapley rule represents a consistent alternative to the pro-
portional rule as a much more satisfactory solution concept for PBPs (we do
not use here the term “consistency” in the specific sense introduced in [13]
with regard to a “reduced game” notion). Utilities are assumed to be com-
pletely transferable, so that the class of problems considered here differs from
the class of “bargaining problems” more commonly analyzed in the literature.

The second part of the survey refers to [10]. In this second paper, we con-
sidered a more complicated setup, that of pure bargaining problems endowed
with a coalition structure (PBPCS, for short). This notion is not completely

1Item [8] was selected by editors Manfred J. Holler and Hannu Nurmi to be reproduced
in a commemorative volume [9]. We feel honored by this distinction.

2Or, more formally, the proportional value introduced in [21].
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equivalent to that of (quasi-additive) cooperative game with a coalition struc-
ture since we assume that a quotient PBP, also exogenously given, is attached
to the coalition structure. Thus, the theory for this new framework needs to
be built in a somewhat different form. We were led to consider four behav-
ioral options for the involved agents, to discuss individual preferences, and to
introduce and study a modified Shapley rule and its natural domain.

The organization of the survey is as follows. In Section 12.2, the notion of
pure bargaining problem (PBP) is provided and the concept of sharing rule
is stated and exemplified with the classical proportional rule and the equal
surplus sharing rule. In Section 12.3, we attach to each PBP a quasi-additive
game (closure), thus reducing any PBP to a cooperative game. By using this
idea, in Section 12.4 we analyze the core notion, introduce the Shapley rule
for PBPs, compare it with the proportional rule, and characterize those PBPs
for which the Shapley rule and the proportional rule coincide. Section 12.5
is devoted to giving two axiomatic characterizations of the Shapley rule on
the space of all PBPs, and also on several subsets of interest: Among them,
the domain of the proportional rule, the open positive and negative orthants,
and the cone of (strict) superadditive PBPs. In Section 12.6, we present a
criticism on the proportional rule, mainly highlighting its inconsistency in
related cost-saving problems and added cost problems.

In Section 12.7 we introduce the model of pure bargaining problem with
a coalition structure (PBPCS) and discuss the main options available to the
agents: Individual behavior (I), cooperative behavior (C), isolated unions be-
havior (U), and bargaining unions behavior (B). Essentially, the former two
are the options in a pure bargaining problem, whereas the latter two respec-
tively recall the treatment given by Aumann-Drèze [5] and Owen [22] (also
in [23]) to cooperative games with a coalition structure. A numerical exam-
ple is presented and discussed in Section 12.8. In Section 12.9, a main result
characterizes all agents’ and unions’ preferences on the four options to act.
In Section 12.10 we introduce the modified Shapley rule for pure bargaining
problems with a coalition structure, provide an axiomatic characterization of
this rule, and determine its natural domain, that is, the set of pure bargaining
problems with a coalition structure where the bargaining unions behavior is
the best option for all agents. Section 12.11 collects the conclusions of the
survey. Section 12.12 suggests future work in this research line.

12.2 Pure Bargaining Problems and Sharing Rules
Let N = {1, 2, . . . , n} (with n ≥ 1) be a set of agents and assume that they are
given: (a) a set of utilities u1, u2, . . . , un available to the agents individually
and (b) a total utility uN that, alternatively, the agents can jointly get if all of



222 Handbook of the Shapley Value

them agree—utilities denoting costs will be represented by negative numbers.3
Of course, if n = 1 then we impose uN = u1. A vector u = (u1, u2, . . . , un|uN )
collects all this information and we will say that it represents a pure bargaining
problem (PBP, or simply problem, in the sequel) on N . The surplus of u is
defined as

∆(u) = uN −
∑
j∈N

uj .

We will say that u is additive if ∆(u) = 0 and superadditive if ∆(u) > 0. The
latter is the most interesting case since the problem consists in sharing uN
among the agents in a rational way, i.e., in such a manner that all of them
should agree and feel (more or less) satisfied with the outcome. Of course,
the individual utilities u1, u2, . . . , un should be taken into account, so when
∆(u) > 0 there is something to gain by cooperating. The transferable utility
assumption means that, in principle, any vector x = (x1, x2, . . . , xn) with
x1 + x2 + · · ·+ xn = uN is feasible if the n agents agree.

Example 12.1 (A cost allocation problem) Assume that three consumers,
A, B and C, wish to get some kind of supply (electricity, water, gas) from a
distributor D. The locations are A(2, 2), B(−2, 2), C(−2,−2) and D(2, 0), the
distances given in kilometers (see Fig. 12.1). The connection cost amounts to
100 monetary units per km.

AB

C

D
O 1

1

x

y

1

FIGURE 12.1: Consumer and distributor positions.

For individual connections, the distributor offers lines DA, DB, and DC.
For A, B, and C together, the offer consists in using DA, DO, OB, and
OC. The question is how to share the joint connection cost. Then we have
a (rounded) superadditive cost problem uc = (−200,−448,−448| − 966) that

3This avoids introducing subadditivity as a desirable property for cost problems.
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describes the individual and joint costs and is defined in N = {1, 2, 3}, where
1 is A, 2 is B, and 3 is C. Assume that the three consumers sign a joint
contract with the distributor. How should they share the total cost of 966?

An equivalent approach is obtained when considering the saving PBP us =
(0, 0, 0|130), which gives the savings derived from agreeing or not the joint
contract. Now the question is: How should the three consumers share the net
savings of 130 for a whole contract? Of course, there should exist a consistent
solution for both cost and saving (related) problems.

Let En+1 = Rn × R denote the (n + 1)-dimensional vector space formed
by all PBPs on N . In order to deal with, and solve, all possible PBPs on N ,
one should look for a sharing rule, i.e., a function f : En+1 −→ Rn. Given
u ∈ En+1, for each i ∈ N the i-coordinate fi[u] will provide the share of
uN that corresponds to agent i according to f . Of course, there are infinitely
many such functions: For example, f1[u] = uN and fi[u] = 0 for i ̸= 1 would
define one of them. More interesting ideas are given by the proportional rule,
often used in practice and denoted here by π, and the equal surplus sharing
rule, denoted by ε.

Definition 12.1 (a) The proportional rule π is defined by

πi[u] =
ui

u1 + u2 + · · ·+ un
uN for each i ∈ N .

For further purposes, we notice that this expression is equivalent to

πi[u] = ui +
ui∑

j∈N
uj

∆(u). (12.1)

However, a main problem is that the domain of the proportional rule is not
En+1 but the subset

Eπn+1 = {u ∈ En+1 : u1 + u2 + · · ·+ un ̸= 0}, (12.2)

that is, the complement of a hyperplane.
(b) Instead of this, the equal surplus sharing rule ε is defined by

εi[u] = ui +
∆(u)

n
for each i ∈ N,

its domain being the entire space En+1 without restriction.

12.3 Closures and Quasi-Additive Games
The Shapley value [25], denoted here by φ, cannot be directly applied to PBPs
as a sharing rule. We will therefore associate a TU cooperative game with each
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PBP in a natural way. Let GN be the vector space of all TU cooperative games
with N as set of players and let us define a map σ : En+1 −→ GN as follows.
If u = (u1, u2, . . . , un|uN ), then u = σ(u) is given by

u(S) =


∑
i∈S

ui if S ̸= N ,

uN if S = N .
The idea behind this definition is simple. Since, given a PBP u, nothing is
known about the utility available to each intermediate coalition S ⊂ N with
|S| > 1, a reasonable assumption is that such a coalition can get the sum of the
individual utilities of its members. Game u will be called the closure of u. It
is easy to check that σ is a linear map and it is one-to-one, i.e., ker{σ} = {0}.

Let us recall that a cooperative game v is additive iff v(S) =
∑
i∈S

v({i})

for all S ⊆ N . If we drop this condition just for S = N and give the name
quasi-additive to the games that fulfill it for all S ⊂ N , it follows that these
games precisely form the image set Im(σ), and hence a game is quasi-additive
iff it is the closure of a PBP, which is unique. The dimension of the subspace
of quasi-additive games is n + 1. (If n = 2, then σ is onto and therefore any
cooperative 2-person game is the closure of a PBP.)

As σ is an embedding of En+1 into GN , reasonable restrictions for games
can be adapted to PBPs after identifying each PBP with the corresponding
closure. Then, we call a PBP u ∈ En+1

• additive iff u1 + u2 + · · ·+ un = uN , i.e., iff ∆(u) = 0

• superadditive (strictly) iff u1 + u2 + · · ·+ un < uN , i.e., iff ∆(u) > 0

• symmetric iff ui = uj for all i, j ∈ N

• positive iff u1, u2, . . . , un, uN > 0

• negative iff u1, u2, . . . , un, uN < 0

12.4 Core and the Shapley Rule
Now, let us first apply the Shapley value to any quasi-additive game, i.e., to
u for any u ∈ En+1, and obtain an explicit formula. For each i ∈ N we have

φi[u] =
∑
S∋i

(s− 1)!(n− s)!
n!

[u(S)− u(S\{i})] =

=
∑
S∋i
S ̸=N

(s− 1)!(n− s)!
n!

ui +
1

n

uN −∑
j ̸=i

uj

 = ui +
∆(u)

n
,
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since, for all i ∈ N , ∑
S∋i

(s− 1)!(n− s)!
n!

= 1.

A quasi-additive game u = σ(u) is convex [26], that is, it satisfies

u(S) + u(T ) ≤ u(S ∩ T ) + u(S ∪ T ) for all S, T ⊆ N ,

iff ∆(u) ≥ 0. The core [11], given for a general cooperative game v by

C(v) = {x = (x1, . . . , xn) :
∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ⊂ N},

takes here the much simpler form

C(u) = {x = (x1, . . . , xn) :
∑
i∈N

xi = uN and xi ≥ ui for all i = 1, . . . , n}.

C(u) is nonempty iff ∆(u) ≥ 0, and then φ[u] ∈ C(u) according to [26]. In
fact, for a quasi-additive game the nonnegativity of the surplus is equivalent
to, and not only sufficient for, the nonemptiness of the core.

Fig. 12.2 describes the core geometrically for n = 2. In the interesting case,
when ∆(u) > 0, the core is the closed segment AB on the line x1 + x2 = uN .
The Shapley value φ[u] is the intersection of this line with x1 − u1 = x2 − u2,
the orthogonal line from the disagreement point D. In other words, the Shapley
value is the orthogonal projection of the disagreement point onto the core. As
a limiting case, if ∆(u) = 0, then the line x1 + x2 = uN reduces to the line
x1 + x2 = u1 + u2, A and B coincide with D, and hence the core reduces to
this disagreement point, which coincides with the Shapley value of the game.
Finally, if ∆(u) < 0 the core of u is empty.

The generalization of these ideas to arbitrary n is straightforward. The
disagreement point D is given by x1 = u1, x2 = u2, . . . , xn = un. The core
is the simplex defined by x1 ≥ u1, x2 ≥ u2, . . . , xn ≥ un in the hyperplane
x1 + x2 + · · · + xn = uN . It becomes empty if ∆(u) < 0 and reduces to the
disagreement point if ∆(u) = 0. Otherwise, that is, whenever ∆(u) > 0, the
Shapley value φ[u] is the orthogonal projection of the disagreement point onto
the core or, in other words, the intersection of the core with the orthogonal
line x1 − u1 = x2 − u2 = · · · = xn − un.

We find here, thus, a particular case of Nash’s classical bargaining problem
[18]. The feasible set S is defined by

∑
i∈N

xi ≤ uN , the Pareto frontier is given

by
∑
i∈N

xi = uN , and the disagreement point is D = (u1, u2, . . . , un), which

may lie above the Pareto frontier (just in case that ∆(u) < 0). Moreover, φ[u]
coincides with the Nash solution.

We are now ready to introduce the Shapley rule for PBPs.
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FIGURE 12.2: Core and Shapley value of a quasi-additive game u for n = 2.

Definition 12.2 By setting
φ[u] = φ[u] for all u ∈ En+1 (12.3)

we obtain a function φ : En+1 −→ Rn. Function φ will be called the Shapley
rule (for PBPs). It is given by

φi[u] = ui +
∆(u)

n
for each i ∈ N and each u ∈ En+1. (12.4)

Thus, the Shapley rule solves each problem in the following way: (a) first,
each agent is allocated his individual utility; (b) once this has been done,
the remaining utility—the surplus—is equally shared among all agents. The
Shapley rule shows therefore an “egalitarian flavor” in the sense of [6]. Indeed,
this rule is a mixture consisting of a “competitive” component, which rewards
each agent according to the individual utility, and a “solidarity” component
that treats all agents equally. It satisfies standardness for two-agent problems
in the sense of [12].

Notice that φ is linear, coincides with ε, the equal surplus sharing rule
introduced in Definition 12.1(b), and it has the property that, for congruent
PBPs (in the sense of [20] for games), it is covariant with respect to utility
transformations: If there are α, β1, β2, . . . , βn ∈ R such that

ui = αvi + βi for each i ∈ N and uN = αvN +
∑
i∈N

βi,

then φi[u] = αφi[v] + βi.
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Example 12.2 In Example 12.1, ∆(uc) = 130 = ∆(us) so the Shapley rule
saves one third of this to each consumer and yields

φ[uc] = (−156.67,−404.67,−404.67)

for the cost PBP uc, and

φ[us] = (43.33, 43.33, 43.33)

for the saving PBP us. This reflects the fairness of the Shapley rule: Equal
sharing of savings or, in other words, φi[uc] = ui + φi[u

s] for all i ∈ N .

To close this section we determine the set of PBPs where the Shapley rule
and the proportional rule coincide and discuss individual rationality.

Proposition 12.1 The Shapley rule and the proportional rule coincide on a
PBP u ∈ Eπn+1 iff u is additive or symmetric.

Remark 12.1 For any sharing rule f , the property of individual rationality
states that

fi[u] ≥ ui for all i ∈ N and all u ∈ En+1.

It is easy to verify that the Shapley rule satisfies this property just in the
domain of all additive or superadditive PBPs. Indeed, using Eq. (12.4) it
follows that, for all i ∈ N ,

φi[u] ≥ ui iff ∆(u) ≥ 0.

In u = (−2, 1|1), a troubling example where ∆(u) = 2 and hence superadditiv-
ity holds, we get φ[u] = (−1, 2), an individually rational and quite reasonable
result. Instead, the proportional rule gives π[u] = (2,−1), a completely coun-
terintuitive output. The domain where the proportional rule satisfies individual
rationality, not difficult but cumbersome to describe, covers only a fraction of
the set of superadditive PBPs.

12.5 Axiomatic Characterizations of the Shapley Rule
When looking for a function f : En+1 −→ Rn, some reasonable properties
should be imposed. To state a set of them, we previously define dummy agent,
null agent, and symmetric agents in a PBP. Agent i ∈ N is a dummy in a
PBP u iff uN = ui +

∑
j ̸=i

uj , and null if, moreover, ui = 0. Agents i, j ∈ N

are symmetric in a PBP u iff ui = uj . A PBP with a dummy agent must
be additive and therefore all agents are dummies. Conversely, if a PBP is
additive, then all agents are dummies.
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12.5.1 Main Theorem
Let us consider the following properties, stated (for a function f defined) on
En+1:

(i) Efficiency:
∑
i∈N

fi[u] = uN for every u.

(ii) Dummy agent property: If i is a dummy in u, then fi[u] = ui.

(iii) Symmetry: If i and j are symmetric in u, then fi[u] = fj [u].

(iv) Additivity: f [u+ v] = f [u] + f [v] for all u, v.

These properties deserve to be called “axioms” because of their elegant
simplicity. It is hard to claim that they are not compelling. Efficiency, also
called group rationality, means that the agents are going to share the total
amount available to them. The dummy agent property essentially says that
if a PBP is additive, then each agent should receive his individual utility.
Symmetry establishes that two agents that are equally powerful individually
should receive the same payoff. Finally, additivity implies that the allocation
in a sum of PBPs must coincide with the sum of allocations in each PBP.

As to the logical independence of this axiomatic system, it suffices to find
four rules that satisfy all axioms but one. Only a problem that shows the
failure is needed in each case (a counterexample). This is not difficult to find.

The question is the following: Is there some function satisfying properties
(i)–(iv)? If so, is it unique? The positive answers are given in the next result.

Theorem 12.1 (First main axiomatic characterization of the Shapley rule)
There is one and only one function f : En+1 −→ Rn that satisfies properties
(i)–(iv). It is the Shapley rule φ.

Readers aware of Shapley’s seminal work for cooperative games [25] will not
be greatly surprised by Theorem 12.1. It may be noticed that it is equivalent to
an axiomatic characterization of (the restriction of) the Shapley value on the
subspace of quasi-additive games. In fact, in the existence proof of Theorem
12.1, all properties would follow from Eq. (12.3), the additivity of σ, and the
corresponding properties of the classical Shapley value on games. A similar
remark would apply to Theorem 12.3 below with regard to Young’s work [28].

12.5.2 Other Domains
Several subsets of En+1 deserve special attention, and it would be therefore of
interest to have axiomatic characterizations for (the restriction of) the Shapley
rule on each one of these domains. So as not to enlarge the analysis too much,
we will restrict it to the following ones:
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• Eπn+1, the domain of the proportional rule. We wish to contrast below
(Subsection 12.6.3) the Shapley rule and the proportional rule strictly
in this domain, in order to give “all advantages” to π (if any) in our
discussion.

• E++
n+1, the open orthant of positive PBPs. It is mapped by σ into the

subset of positive games considered in [21]. A similar reason applies to
E−−
n+1, the open orthant of negative PBPs.

• E
(s)a

n+1 , the closed cone of problems u such that ∆(u) ≥ 0.

• Esan+1, the open cone of superadditive PBPs. These PBPs, where the
surplus is ∆(u) > 0, are the most interesting ones since in each one of
them there is something to gain by cooperation.

• The intersection of E +

n+1, the closed orthant of nonnegative PBPs, with
Esan+1. And also the intersection with this cone of E −

n+1, the closed or-
thant of nonpositive PBPs. The former includes all profit PBPs, while
the latter includes all cost PBPs. By combining with the positivity of
the surplus in both cases, we obtain the two most appealing types of
PBPs in practice.

If E denotes any of the subsets of En+1 mentioned just above, properties
(i)–(iv) make sense for f : E −→ Rn if we state them only for u, v ∈ E.
The sole exception is property (iv) for Eπn+1 since it is the only one of these
domains not closed under addition of PBPs. Therefore, in this case we will
assume that the property is:

(iv) Additivity: if u, v, u+ v ∈ Eπn+1, then f [u+ v] = f [u] + f [v].

Theorem 12.2 (Additional axiomatic characterizations of the Shapley rule)
If E is any of the domains

Eπn+1, E++
n+1, E−−

n+1, E
(s)a

n+1 , Esan+1, Esan+1∩ E+
n+1 or Esan+1∩ E−

n+1,

there is one and only one function f : E −→ Rn that satisfies properties
(i)–(iv). In all cases it is (the restriction of) the Shapley rule φ.

12.5.3 Discussing Monotonicity
In the literature on cooperative games, several monotonicity conditions have
been suggested for solution concepts. Here we will recall some of the most
relevant ones and will adapt them to the PBP setup, i.e., for sharing rules.

Let u, v ∈ GN and g : GN −→ Rn be a solution concept. Coalitional
monotonicity [27] states that if u(T ) ≥ v(T ) for some T ⊆ N and u(S) = v(S)
for all S ̸= T , then gi[u] ≥ gi[v] for all i ∈ T . In the particular case where
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T = N , we obtain aggregate monotonicity [15]. Strong monotonicity [28] refers
to marginal contributions and states that if u(S)−u(S\{i}) ≥ v(S)−v(S\{i})
for all S ⊆ N , then gi[u] ≥ gi[v] for that i. The Shapley value satisfies all these
conditions [28]. However, on quasi-additive games, coalitional monotonicity
makes sense only for T = N , thus reducing to aggregate monotonicity which,
in turn, becomes a consequence of strong monotonicity. Then we will translate
to PBPs only this last property.

From a different approach, new interesting monotonicity conditions, among
which we find again strong monotonicity, have been proposed in [7]. They are
based on: (a) the desirability relation D, introduced in [14] for the players of
any game u and given by

iDj in u iff u(S ∪ {i})− u(S) ≥ u(S ∪ {j})− u(S) for all S ⊆ N\{i, j},

which compares the positions of two players in a common game; and (b) a
similar relation B, introduced in [7] and given by

u B v for i iff u(S ∪ {i})− u(S) ≥ v(S ∪ {i})− v(S) for all S ⊆ N\{i},

which compares the positions of a common player in two games. We recall
only:

• monotonicity: If iDj in u, then gi[u] ≥ gj [u]

• strong monotonicity: If u B v for i, then gi[u] ≥ gi[v].

The Shapley value satisfies these conditions [7]. Moreover, for any quasi-
additive game u = σ(u), where u = (u1, u2, . . . , un|uN ) ∈ En+1, the marginal
contribution to S ⊆ N of a player i ∈ S in u is given by

u(S)− u(S\{i}) =

ui if S ̸= N ,
uN −

∑
j ̸=i

uj if S = N ,

and it follows that

• iDj in u iff ui ≥ uj

• u B v for i iff ui ≥ vi and ∆(u) + ui ≥ ∆(v) + vi.

Thus, relationsD and B, as well as both monotonicity conditions stated above,
make sense in PBPs (just replacing each quasi-additive game u with the cor-
responding PBP u given by σ−1), and the Shapley rule φ satisfies these con-
ditions.

Once within the PBP framework, we obtain a new main axiomatic char-
acterization of the Shapley rule on En+1 that is quite different from Theorem
12.1 and is reminiscent of Young’s [28] characterization of the Shapley value
without using additivity. Its proof is not at all trivial.
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Theorem 12.3 (Second main axiomatic characterization of the Shapley rule)
There is one and only one function f : En+1 −→ Rn that satisfies efficiency,
symmetry and strong monotonicity. It is the Shapley rule φ.

An interesting suggestion made by the reviewer is addressed to consider
alternative characterizations of the Shapley value or the Equal Surplus solu-
tion for games, try to adapt them to PBPs, and reach new axiomatizations
of the Shapley rule. For example, during the revision we have checked that
the well-known axiomatic characterization of the Shapley value by means of
efficiency and the balanced contributions property can be translated to the
Shapley rule.

12.6 Criticism on the Proportional Rule
We shall discuss here several aspects of the proportional rule, most of which
are far from being satisfactory, and will contrast them with the behavior of
the Shapley rule.

12.6.1 Restricted Domain
As was already mentioned in Definition 12.1, the domain of the proportional
rule π is not the entire space En+1 but the subset defined by Eq. (12.2):

Eπn+1 = {u ∈ En+1 : u1 + u2 + · · ·+ un ̸= 0}.

Thus, in Example 12.1 π applies to uc but it cannot be applied to us. Instead,
the Shapley rule φ applies to all PBPs without restriction (cf. Example 12.2).

12.6.2 Doubly Discriminatory Level
Within its domain, the proportional rule coincides with the Shapley rule just
on additive or symmetric PBPs. However, these are very particular cases and,
in general, the two rules differ. As a matter of comparison, note that the
expression of πi[u] given in Eq. (12.1),

πi[u] = ui +
ui∑

j∈N
uj

∆(u),

shows that the proportional rule (a) allocates to each agent his individual
utility (as the Shapley rule does) but (b) it shares the remaining utility pro-
portionally to the individual utilities. In other words, no solidarity component
exists in the proportional rule, as both components are of a competitive na-
ture. Instead, in this second step, the Shapley rule acts equitably.
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Then the proportional rule is, conceptually, more complicated than the
Shapley rule (incidentally, note that the calculus for the Shapley rule is easier
than for the proportional rule) and it may include a doubly discriminatory
level since, when comparing any two agents, it rewards twice the agent that
individually can get the highest utility on his own. This discriminatory level
arises, for example, in the case of nonnegative superadditive PBPs in Eπn+1.

12.6.3 The Axiomatic Framework
In its restricted domain Eπn+1, where the Shapley rule has been axiomatically
characterized by Theorem 12.2, the proportional rule satisfies the properties of
efficiency, dummy agent and symmetry. It fails to satisfy additivity (otherwise,
it would coincide with the Shapley rule by Theorem 12.2) and also strong
monotonicity.

Now, in spite of its simplicity and mathematical tradition, it may be that
additivity is, in principle, the least appealing property and might seem to
practitioners only a “mathematical delicatessen”: The reason is that one does
not easily capture the meaning of the sum of PBPs in practice. This will be
illustrated in the next subsections.

12.6.4 Inconsistency: Cost-Saving Problems
In Example 12.1, where related costs and savings arise, the proportional rule
cannot be applied to the saving PBP and no kind of consistency can then be
discussed. Instead, the consistency of the Shapley rule is clear since

φi[u
c] = uci + φi[u

s] for each i ∈ N.

The conclusion is that, using the Shapley rule, all consumers are indifferent
between sharing costs and sharing savings (as it should be).

Example 12.3 (A purchasing pool) Here the proportional rule will apply to
all PBPs, but it will show inconsistency. Let N = {1, 2, 3} be a purchasing pool
of three firms and assume that, periodically, its members make to a common
supplier orders of 1500, 2400 and 3000 units, respectively, of a product with
unit cost 1. The supplier offers the following discounts:

• nothing for units from 1 to 1000

• 9% off for units from 1001 to 2000

• 15% off for units from 2001 to 3000

• 24% off for units from 3001 upwards

Table 12.1 provides the full data for this purchasing pool. The members
of the pool do not form a joint venture. They join just to get discounts for
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accumulated orders. Two alternatives are offered: (a) sharing the actual joint
cost of −5724; (b) sharing the joint saving of 1176 after assuming that, pre-
viously, all members have individually deposited in a joint bank account the
cost of their respective orders without discounts and the supplier’s bill has been
already paid from this account (a usual procedure in practice).

firms/ order cost discounts applied actual cost saving

pool u0 uc us

{1} −1500 9% −1455 45

{2} −2400 9% and 15% −2250 150

{3} −3000 9% and 15% −2760 240

{1, 2, 3} −6900 9%, 15% and 24% −5724 1176

TABLE 12.1: Purchasing pool data.

i πi[u
0] πi[u

c] πi[u
s] φi[u

0] φi[u
c] φi[u

s]

1 −1500 −1288.23 121.66 −1500 −1208 292

2 −2400 −1992.11 405.52 −2400 −2003 397

3 −3000 −2443.66 648.83 −3000 −2513 487

sums −6900 −5724.00 1176.00 −6900 −5724 1176

TABLE 12.2: Purchasing pool allocations.

Table 12.2 yields the result of applying the proportional and Shapley rules
to each alternative. Notice that we have three PBPs: An additive PBP u0 of
costs without discount, a PBP uc of actual costs (i.e., with discount), and
a PBP us of savings. They are obviously related by u0 + us = uc. While the
Shapley rule is consistent in the sense that φ[u0]+φ[us] = φ[uc], which follows
from additivity, this is not the case for the proportional rule, which does not
satisfy this property as can be checked in Table 12.2. Notice, moreover, that
π[u0] = φ[u0] because u0 is an additive PBP.

Therefore, when using the Shapley value all members of the pool are indif-
ferent between sharing costs with discount and sharing savings. Instead, this
is not the case if the proportional rule is applied: Firms 1 and 2 prefer sharing
costs, whereas firm 3 prefers sharing savings; the inconsistency (or lack of
fairness) of the procedure is obvious.
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12.6.5 Inconsistency: Added Costs Problems
Let us consider a second example where additivity is crucial.

Example 12.4 (Added costs) We slightly modify Example 12.1 and assume
that the consumers are interested in two goods (say, water and gas) carried by
the same supplier. The costs are given in Table 12.3.

Again, we consider three PBPs: uw, which describes the water costs; ug,
which gives the gas costs; and the sum uw + ug which yields the added costs.
Table 12.4 provides the result of applying the proportional and Shapley rules
to each one of these PBPs. While the Shapley rule is consistent in the sense
that φ[uw + ug] = φ[uw] + φ[ug], as follows from additivity, this is not the
case for the proportional rule, which does not satisfy this property and fails
therefore to be consistent in added costs problems.

group water costs gas costs water + gas added costs

uw ug uw + ug

{1} −300 −150 −450

{2} −200 −500 −700

{3} −100 −250 −350

{1, 2, 3} −540 −720 −1260

{1}+ {2}+ {3} −600 −900 −1500

TABLE 12.3: Water and gas supply.

i πi[u
w] πi[u

g] πi[u
w + ug] φi[u

w] φi[u
g] φi[u

w + ug]

1 −270 −120 −378 −280 −90 −370

2 −180 −400 −588 −180 −440 −620

3 −90 −200 −294 −80 −190 −270

sums −540 −720 −1260 −540 −720 −1260

TABLE 12.4: Water and gas allocations.

In this case, if the proportional rule is applied, consumer 1 prefers to share
the payment of a water + gas joint bill, whereas consumers 2 and 3 prefer
to share the payment of separate bills. Once more, the inconsistency (or lack
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of fairness) of the procedure is evident. Instead, using the Shapley rule, all
consumers are indifferent between sharing separate bills or a joint bill.

12.7 Pure Bargaining Problems with a Coalition
Structure

We consider here a more complicated framework, that of pure bargaining
problems endowed with a coalition structure, and discuss the application of
the Shapley rule φ to this new setup.

The general model is as follows. Let N = {1, 2, . . . , n} (with n ≥ 1) be a set
of agents and u = (u1, u2, . . . , un|uN ) be a PBP in N . Now let us also assume
that a coalition structure B = {B1, B2, . . . , Bm} (with m ≥ 1) and utilities
u∗1, u

∗
2, . . . , u

∗
m and u∗M are given, where M = {1, 2, . . . ,m} represents the set

of unions understood as supra-agents. Each u∗k is the utility that the agents of
union Bk can jointly obtain if all of them cooperate to this end, independently
of the remaining agents—those of N\Bk. If Bk = {i} we assume that u∗k = ui.
Finally, u∗M is the total utility that the unions can jointly obtain by acting as
supra-agents. Thus, we do not necessarily assume that u∗k =

∑
i∈Bk

ui for each

k nor that u∗M = uN .
Vector u∗ = (u∗1, u

∗
2, . . . , u

∗
m|u∗M ) will be called the quotient PBP (in M),

and [u,B, u∗] will be called a pure bargaining problem with a coalition structure
or, for short, a PBPCS. In the particular case where u∗M = uN , the model
might be viewed as an intermediate step between a PBP, where only the
individual utilities and the total one are given, and a cooperative game, where
a utility u(S) for each S ⊆ N is given.

In order to be consistent with the PBP model considered in the previous
sections, for trivial coalition structures we assume that no new information is
provided. Hence, if B = Bn = {{1}, {2}, . . . , {n}} then M = N and Bi = {i}
for each i ∈ N ; so, in addition to u∗i = ui for all i, we impose u∗M = uN .
And if B = BN = {N} then M = {1} and B1 = N , and we impose that
u∗1 = u∗M = uN . Therefore, in both cases [u,B, u∗] essentially reduces to u.

In a PBP u, the agents have only two options: Agreeing all together in
cooperating to obtain the total utility uN and share it or, otherwise, and
even if just one of them disagrees, acting individually and merely getting the
individual utilities. Instead, given a PBPCS [u,B, u∗], four main options are
available to the agents:

• Individual behavior (I). The agents decide to act individually and obtain
u1, u2, . . . , un, respectively. This is a sort of “disagreement point” to
which they can always go back if the next options are not successful.
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• Cooperative behavior (C). All agents agree to cooperate in order to ob-
tain uN and share it using the Shapley rule, disregarding the coalition
structure and hence the next possibilities to act within or via unions.

• Isolated unions behavior (U). All agents of each union Bk agree to
cooperate in order to obtain u∗k and share it using the Shapley rule.
(Maybe this will be the behavior only in some unions, in which case
the agents of the remaining ones will be forced to act individually.) If
Bk = {i1, i2, . . . , ibk}, the local PBP in Bk is

uk = (ui1 , ui2 , . . . , uibk |u
∗
k).

Notice that if Bk = {i}, then u∗k = ui.
This behavior recalls Aumann and Drèze’s approach [5] when discussing
the extension of the classical Shapley value to cooperative games with a
coalition structure, which leads to a solution that consists in applying the
Shapley value to the subgame played in each union. Here, the Shapley
rule is applied to each local problem.

• Bargaining unions behavior (B). This is a two-step procedure that re-
quires the agreement of all agents at two levels: Forming the union they
belong to, and then allowing it to agree with the other unions. Then all
unions bargain first among themselves in the quotient problem

u∗ = (u∗1, u
∗
2, . . . , u

∗
m|u∗M )

and share u∗M by using the Shapley rule. Thus, each union Bk gets
φk[u

∗]. Next, within each Bk its agents agree to cooperate for sharing
φk[u

∗] using again the Shapley rule. If Bk = {i1, i2, . . . , ibk} and bk > 1,
these agents act in the alternative local PBP given by

u k = (ui1 , ui2 , . . . , uibk | φk[u
∗])

and apply the Shapley rule to this problem. If bk = 1 the unique agent
in Bk directly gets φk[u∗].4 This behavior recalls Owen’s approach [22]
when introducing the coalition value for cooperative games with a coali-
tion structure: This value consists in applying, first, the Shapley value to
the quotient game played by the unions and applying, then, the Shapley
value again to an internal game within each union to share among its
members the payoff obtained by that union in the quotient game. Here,
the procedure is very similar, but using at both levels the Shapley rule.

As expected, for trivial structures these four options reduce to the standard
ones in a PBP. Indeed, we have that (for all agents): (a) if B = Bn, then U
reduces to I and B to C; (b) if B = BN , then U and B reduce to C.

4In fact, if Bk = {i}, then (ui|φk[u
∗]) might not be a PBP, but it is clear that, acting

as “supra-agent” k representing himself, agent i can obtain φk[u
∗] if all unions choose the

behavioral option B.
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12.8 A Numerical Example
To see how this model works, we will consider a 9-person PBPCS. (It is difficult
to see how a smaller problem would allow us to illustrate this, since we should,
as a practical matter, have at least three unions, each with approximately three
agents.) We are grateful to Fabrice Valognes, of the Université of Caen-Basse
Normandie, for a suggestion he made to us.

Example 12.5 (A cost allocation problem with a coalition structure) Suppose
that 9 manufacturers, located at points A, B, C, D, E, F , G, H, and J , need to
get some particular supply from a distributor located at point S. Note that the 9
manufacturers are not competitors, as they produce different consumer goods.5
They are located in three different cities, and those in each city have generally
good relations, working (perhaps) through the local chambers of commerce,
each one of which has legal ability to represent its members jointly and also
to negotiate with the other chambers in dealing with the distributor.

The locations of the agents (manufacturers) and the distributor are shown
in Fig. 12.3. We will be interested only in transportation costs (i.e., connection
costs) and will assume, in order to make calculations easier, that the cost of
connecting any two points is proportional to the square of the distance between
them.6

If some set of manufacturers sign a joint contract with the distributor
to obtain a common connection, the procedure chosen by the distributor will
consist in all cases in establishing a connection from S to the barycenter
of the locations of these manufacturers and connecting then this barycenter
to each manufacturer. Thus, for the cooperative behavior C we will use the
“total” barycenter N (for the nine manufacturers), the location of which is
given in Fig. 12.3. The dashed lines represent the total connection with all
manufacturers via N.

However, the manufacturers are associated in the local chambers of com-
merce of each city. These are

B1 = {A,B,C}, B2 = {D,E, F,G} and B3 = {H, J},
and this is the coalition structure B = {B1, B2, B3} that will be considered
here. Then, whenever the unions effectively matter, i.e., for the isolated unions
behavior U and the bargaining unions behavior B, we will also use the “local”
(city) barycenters P, Q and R, referred to (the agents of) unions B1, B2

and B3, respectively. The locations of these three points are also indicated
in Fig. 12.3, and the thick lines represent the local connections using the

5For example, we might assume that the manufacturers produce machines and vehicles
of various types and constitute an oligopoly, while the distributor is a monopolist of a raw
material such as steel.

6Since the Shapley rule is linear and hence homogeneous, and since we are only interested
in comparing costs, we may take the factor of proportionality equal to 1.
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corresponding barycenters. Besides, we will consider the “unions barycenter”
M, the barycenter of P, Q and R also described in Fig. 12.3, to compute u∗M ,
which will be used for the bargaining unions behavior B.

A (3,16)

B (5,19)

C (10,16)

D (15,6)
E (10,7)

F (15,10)

G (20,9)

H (22,18)

J (26,16)

P (6,17)

Q (15,8)

R (24,17)

N (14,13)

M (15,14)

S x

y

10

10

20 25

20

1

FIGURE 12.3: Manufacturers, distributor, barycenters, and connections.

Then we will analyze the cost PBPCS [u,B, u∗] given by

u = (−265,−386,−356,−261,−149,−325,−481,−808,−932| − 1043),
B = {B1, B2, B3}, and u∗ = (−357,−349,−875| − 739),

where

u∗M = d(S,M)2 +
[
d(M,P)2 +

∑
X∈B1

d(P, X)2
]
+[

d(M,Q)2 +
∑
Y ∈B2

d(Q, Y )2
]
+
[
d(M,R)2 +

∑
Z∈B3

d(R, Z)2
]
.

We will consider the four options available to the agents. Table 12.5 will show
the sharing in each case as well as agents’ and unions’ preferences over the
behavior options.

Individual behavior (I). If the manufacturers act all individually, then
each one of them signs an individual contract with the distributor and pays
the amount indicated by the corresponding component of u: Thus, A pays 265,
B pays 386, and so on until J , who pays 932.
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Cooperative behavior (C). If all manufacturers agree to sign a joint con-
tract with the distributor, and collectively pay therefore 1043, the Shapley rule
applies to u, where ∆(u) = 2920, and yields the (rounded) sharing of the joint
cost among them:

φ[u] =
= (59.44, −61.56, −31.56, 63.44, 175.44, −0.56, −156.56, −483.56, −607.56).

Isolated unions behavior (U). If in each city all manufacturers decide to
act together through their chamber of commerce, sign a contract concerning
themselves, and disregard therefore the cooperation with the remaining man-
ufacturers, then there are three local problems, to which we will apply the
Shapley rule:

B1 : u1 = (−265,−386,−356| − 357), ∆(u1) = 650
B2 : u2 = (−261,−149,−325,−481| − 349), ∆(u2) = 867
B3 : u3 = (−808,−932| − 875), ∆(u3) = 865

I C U B preference

A −265.00 59.44 −48.33 45.22 I < U < B < C

B −386.00 −61.56 −169.33 −75.78 I < U < B < C

C −356.00 −31.56 −139.33 −45.78 I < U < B < C

B1 −1007.00 −33.67 −357.00 −76.33 I < U < B < C

D −261.00 63.44 −44.25 25.92 I < U < B < C

E −149.00 175.44 67.75 137.92 I < U < B < C

F −325.00 −0.56 −108.25 −38.08 I < U < B < C

G −481.00 −156.56 −264.25 −194.08 I < U < B < C

B2 −1216.00 81.78 −349.00 −68.33 I < U < B < C

H −808.00 −483.56 −375.50 −235.17 I < C < U < B

J −932.00 −607.56 −499.50 −359.17 I < C < U < B

B3 −1740.00 −1091.11 −875.00 −594.33 I < C < U < B

N −3963.00 −1043.00 −1581.00 −739.00 I < U < C < B

TABLE 12.5: Sharing and behavioral preferences.
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Bargaining unions behavior (B). The first step is defined by the quotient
problem concerning the unions:

u∗ = (−357,−349,−875| − 739)

with ∆(u∗) = 842. The Shapley rule yields φ[u∗] = (−76.33,−68.33,−594.33).
This gives rise to the alternative local problems, where the Shapley rule will
be applied again:

B1 : u 1 = (−265,−386,−356| − 76.33), ∆(u 1) = 930.67
B2 : u 2 = (−261,−149,−325,−481| − 68.33), ∆(u 2) = 1147.67
B3 : u 3 = (−808,−932| − 594.33), ∆(u 3) = 1145.67

Summing up, the manufacturers’ preferences as to the four options are

• I < U < B < C for A, B and C

• I < U < B < C for D, E, F and G

• I < C < U < B for H and J

The conclusion is that, since options C and B require the agreement of all
agents, they will not be chosen and all unions will follow what we have called
the isolated unions behavior (U).

12.9 A General Result on Preferences
Some properties of the general model will be established in this section. Most
of them are illustrated by Example 12.5. Given a pair of distinct behavioral
options (X,Y), any agent will have one and only one preference of the form X
< Y, X = Y, or X > Y, in accordance with the payoffs that the agent obtains
under each one of these options. In Theorem 12.4, each possibility will be
characterized in terms of surpluses, or surpluses per capita, of the different
problems involved in the considered PBPCS.

Since all conditions follow from solving a numerical inequality, the reader
should be warned that, to avoid making the statement too cumbersome, we
will use ⪌. This implies that an equivalence like, e.g., C ⪌ I iff ∆(u) ⪌ 0 will
mean that the following conditions hold:

(a) C > I iff ∆(u) > 0.

(b) C = I iff ∆(u) = 0.

(c) C < I iff ∆(u) < 0.
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Given a PBPCS [u,B, u∗], let us recall that n = |N |, m = |M | and bk =
|Bk| denote cardinalities, the original and quotient PBP are, respectively,
u = (u1, u2, . . . , un|uN ) and u∗ = (u∗1, u

∗
2, . . . , u

∗
m|u∗M ), and, for each k ∈ M ,

uk = (ui1 , ui2 , . . . , uibk |u
∗
k) is the local PBP in union Bk for option U.

Theorem 12.4 Let [u,B, u∗] be a PBPCS in N . Then:
(a) C ⪌ I for all i ∈ N iff ∆(u) ⪌ 0.

(b) U ⪌ I for all i ∈ Bk iff ∆(uk) ⪌ 0.

(c) B ⪌ I for all i ∈ Bk iff ∆(uk) +
∆(u∗)

m
⪌ 0.

(d) U ⪌ C for all i ∈ Bk iff ∆(uk)

bk
⪌ ∆(u)

n
.

(e) B ⪌ C for all i ∈ Bk iff ∆(uk)

bk
+

∆(u∗)

mbk
⪌ ∆(u)

n
.

(f) B ⪌ U for all i ∈ N iff ∆(u∗) ⪌ 0.
Remark 12.2 We collect here some consequences of Theorem 12.4.

• Any preference on (I,C) is common for all agents i ∈ N and depends
only on u.

• The same happens for (U,B), and the preference depends only on the
quotient problem u∗.

• The remaining four preferences, i.e., on (I,U), (I,B), (C,U) and (C,B),
are common for at least all agents of each union Bk. By combining this
with the previous items it follows that all agents of each union Bk order
the four options equally, so we can speak of “unions’ preferences”.

12.10 The Modified Shapley Rule and its Natural
Domain

Let N = {1, 2, . . . , n} be the set of agents, with n ≥ 1. A PBPCS [u,B, u∗] in
N is defined by three objects:

• u = (u1, u2, . . . , un|uN ), which is a PBP in N

• B = {B1, B2, . . . , Bm}, which is a coalition structure in N , with M =
{1, 2, . . . ,m} and m ≥ 1

• u∗ = (u∗1, u
∗
2, . . . , u

∗
m|u∗M ), which is a PBP in M
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with the following restrictions:

(r1) If B = Bn or B = BN then u∗M = uN

(r2) if n = 1, then uN = u1

(r3) if m = 1, then u∗M = u∗1

(r4) if bk = 1 for some k ∈M , i.e., if Bk = {i} is a singleton, then u∗k = ui

EN will denote the set of all PBPCS defined in N , and we put E =
∞∪
n=1

EN .

These two sets do not have any structure. Instead, the set EB
N , formed by all

PBPCS defined in N with a fixed coalition structure B, becomes a vector space
under the natural linear operations given by

• [u,B, u∗] + [v,B, v∗] = [u+ v,B, u∗ + v∗]

• λ[u,B, u∗] = [λu,B, λu∗] for all λ ∈ R

A coalitional sharing rule on EN means a map g : EN −→ Rn. Given a
PBPCS [u,B, u∗] in N , for each i ∈ N the i-coordinate gi[u,B, u∗] of vector
g[u,B, u∗] gives the utility that is allocated to agent i according to g.

Definition 12.3 The modified Shapley rule, denoted by ψ, is the coalitional
sharing rule on EN that allocates utilities, to all agents of a PBPCS [u,B, u∗]
in N , according to the bargaining unions behavior B. An explicit expression
for ψ is as follows: Given [u,B, u∗] in N , if i ∈ Bk then

ψi[u,B, u∗] = ui +
∆(uk)

bk
+

∆(u∗)

mbk
. (12.5)

Some first properties of ψ are stated in the following result.

Proposition 12.2 The modified Shapley rule satisfies the following elemen-
tary properties:

(a) Trivial coalition structures: If B = Bn or B = BN , then ψ[u,B, u∗] =
φ[u].

(b) General coalition structure: For any B,
∑
i∈Bk

ψi[u,B, u∗] = φk[u
∗] for

all k ∈M .

(c) Coalitional symmetry: If u∗k = u∗h, then∑
i∈Bk

ψi[u,B, u∗] =
∑
j∈Bh

ψj [u,B, u∗].

In order to characterize axiomatically the modified Shapley rule, let us
consider the following properties for a coalitional sharing rule g : EN −→ Rn.
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(i) Group rationality:
∑
i∈N

gi[u,B, u∗] = u∗M for every [u,B, u∗] in N .

(ii) Individual rationality: If ∆(u∗) ≥ 0 and ∆(uk) ≥ 0 for all k ∈ M , then
gi[u,B, u∗] ≥ ui for all i ∈ N .

(iii) Coalitional rationality: If ∆(u∗) ≥ 0, then
∑
i∈Bk

gi[u,B, u∗] ≥ u∗k for all

k ∈M .

(iv) Symmetry: If ui = uj and i, j ∈ Bk for some k ∈ M , then gi[u,B, u∗] =
gj [u,B, u∗].

(v) Additivity: For all B and all [u,B, u∗] and [v,B, v∗] in EN ,
g[u+ v,B, u∗ + v∗] = g[u,B, u∗] + g[v,B, v∗].

(vi) Singletons: If Bk = {i}, then gi[u,B, u∗] = φk[u
∗].7

We have checked the logical independence of this axiomatic system. It char-
acterizes the modified Shapley rule ψ, defined by Eq. (12.5). The statement
is as follows.

Theorem 12.5 There is one and only one coalitional sharing rule on EN
that satisfies properties (i)–(vi). It is the modified Shapley rule ψ.

Now we are mainly interested in those PBPCS where the bargaining unions
behavior B is the best option for all agents. These problems constitute the
natural domain of the modified Shapley rule ψ. The basic question is: Under
which conditions will all agents prefer B to I, C and U, in a given PBPCS
[u,B, u∗] in N? If B = Bn, then B = C > U = I iff ∆(u) > 0. If B = BN , then
B = U = C > I iff ∆(u) > 0. For any other coalition structure B, since B
requires more agreements than the other three options, we will consider strict
preferences only.8

Theorem 12.6 Let [u,B, u∗] be any PBPCS in N with a nontrivial B. There-
fore B > I, B > C and B > U for all agents in [u,B, u∗] iff the following
conditions simultaneously hold:

(i) ∆(uk) +
∆(u∗)

m
> 0 for all k

(ii) ∆(uk)

bk
+

∆(u∗)

mbk
>

∆(u)

n
for all k

(iii) ∆(u∗) > 0

7In Remark 12.3 we will write this equation in an alternative form that avoids mentioning
the Shapley rule.

8For example, it is clear that, in any PBP u, all agents prefer C to I (C > I) iff u is
superadditive, i.e., ∆(u) > 0. We might include the case where u is additive, i.e., ∆(u) = 0,
but then C = I for all agents and very probably they would choose I since this behavior
does not require any agreement. This follows directly or from Theorem 12.4(a).
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Example 12.6 In particular, any PBPCS [u,B, u∗] such that

(1) u∗ satisfy ∆(u∗) > 0

(2) all uk satisfy ∆(uk) ≥ 0, and

(3) ∆(u∗) is “large enough” in the sense that ∆(u∗) >
mbk
n

∆(u) for all k

satisfies conditions (i)–(iii) of Theorem 12.6. Conditions (1)–(3) are only
sufficient but quite reasonable restrictions to obtain that behavior B is the best
option for all agents. Under (1) and (2), condition (3) can be dropped if u
is not superadditive, or otherwise it needs only to be checked for the largest
union (maximum bk).

Thus, for any PBPCS [u,B, u∗] such that B is the best option for all
agents, the modified Shapley rule ψ is the natural way to share u∗M among all
agents. There are two possibilities: Following the two-step procedure detailed
in Section 12.7 or applying Eq. (12.5) directly.

Example 12.7 Let N = {1, 2, 3, 4, 5, 6} (so n = 6) and

u = (5, 4, 4, 2, 1, 3|25).

Let B = {B1, B2, B3}, with B1 = {1, 2, 3}, B2 = {4, 5} and B3 = {6}. Thus,
b1 = 3, b2 = 2 and b3 = 1. Finally, let

u∗ = (19, 5, 3|45)

be the quotient problem in M = {1, 2, 3}, that represents the set of unions as
entities (so m = 3). Then [u,B, u∗] is a PBPCS in N . The local problems are

u1 = (5, 4, 4|19), u2 = (2, 1|5) and u3 = (3|3).

Then, the sufficient conditions of Example 12.6 are satisfied and we conclude
that option B is the best behavior in this PBPCS for all agents i ∈ N .9 The
application of the modified Shapley rule, using for example Eq. (12.5) and

∆(u1) = 6, ∆(u2) = 2, ∆(u3) = 0, and ∆(u∗) = 18,

yields
ψ[u,B, u∗] = (9, 8, 8, 6, 5, 9),

a sharing that satisfies all agents, and more than any other behavioral option.
9However, notice that the preferences on the remaining three options are not common.

Indeed, we find B > U > C > I for B1, B > U = C > I for B2, and B > C > U = I for B3.



Pure Bargaining Problems and the Shapley Rule 245

Remark 12.3 The characterization of the modified Shapley rule ψ given by
Theorem 12.5 refers, in principle, to EN . But, if we define coalitional sharing
rule as any map

g : E =
∞∪
n=1

EN −→
∞∪
n=1

Rn

such that if [u,B, u∗] ∈ EN , then g[u,B, u∗] ∈ Rn, where n = |N |, then the
axiomatic system makes sense and Theorem 12.5 also holds for E. We will
use the same symbols g and ψ for all domains on which they are considered.

Then, having in mind this extension, we see that, for any [u,B, u∗] in a given
N , we can write in M , by Proposition 12.2(a),

ψ[u∗,Bm, u∗∗] = φ[u∗].

The singletons property (vi) may then be written as follows:

(vi) Singletons: If Bk = {i}, then gi[u,B, u∗] = gk[u
∗,Bm, u∗∗],

which avoids mentioning the Shapley rule.

Remark 12.4 Let E∗, E∗
N and (EB

N )∗ be the respective subsets of E, EN
and EB

N formed by the PBPCS where B is a better behavioral option than U,
C and I for all agents, i.e., PBPCS that satisfy the conditions of Theorem
12.6. (EB

N )∗ is an open cone, and Theorem 12.5 gives rise to an axiomatic
characterization of the modified Shapley rule on this cone and hence on E∗

N

and E∗.

Indeed, we have:

Theorem 12.7 There is one and only one coalitional sharing rule defined on
(EB

N )∗ that satisfies properties (i)–(vi) in this cone. It is (the restriction of)
the modified Shapley rule ψ.

12.11 Conclusions
Pure bargaining problems, introduced in [8], constitute a natural framework
and, at the same time, a simple case of both Nash’s bargaining model [18] and
the cooperative game model (as they can be identified with quasi-additive
games). Their simplicity allows us to better capture the meaning of certain
notions, most of which are translated from the cooperative game theory.

The Shapley rule, also introduced in [8], is a well-founded solution no-
tion for any PBP, which enjoys satisfactory properties similar to those of the
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Shapley value. It can be clearly distinguished from other previous notions like,
e.g., some proportionality rules including the classical proportional rule.

The axiomatic viewpoints established by Shapley when defining the value
notion for cooperative games, and by Young when replacing the dummy/null
player and additivity properties with strong monotonicity, which have been
adapted to PBPs, allow us to evaluate any sharing rule and, in particular, to
compare the proportional rule and the Shapley rule. The relevant points are:

1. A first essential failure of the proportional rule is its restricted domain,
defined by Eq. (12.2). Instead, the Shapley rule applies without any
restriction to all PBPs.

2. When putting together Eqs. (12.1) and (12.4), the procedures look some-
what similar: First, each agent i is allocated his individual utility ui;
next, the surplus is shared among all agents. However, the proportional
rule includes a (hidden) doubly discriminatory level hard to justify.

3. In which cases do these two allocation rules coincide? As has been shown,
the Shapley rule and the proportional rule coincide on a PBP u satisfying
Eq. (12.2) iff this PBP is additive or symmetric—the most trivial cases.

4. As to the Shapley axioms, the proportional rule satisfies in its restricted
domain the properties of efficiency, dummy and null agent, and symme-
try, but not the strong monotonicity property in Young’s sense.

5. This leaves us with the lack of additivity: The proportional rule is ho-
mogeneous but not additive. Let us raise the question: Is this failure
important or, on the contrary, is additivity simply a standard mathe-
matical property, just of a technical nature, without special relevance
in practice? The answer is quite surprising. From the lack of additivity,
serious inconsistencies of the proportional rule follow when dealing with
e.g., related cost-savings problems and added cost problems.

In summary, we have analyzed the proportional rule, from an axiomatic
viewpoint but also from a practical viewpoint. Several properties and failures
of the proportional rule have been remarked. We therefore contend that the
Shapley rule should replace in practice the proportional rule in PBPs, that is,
in cooperative affairs where the coalitions of intermediate size (1 < |S| < n)
do not matter.

The introduction of a coalition structure in a PBP by means of the general
model presented in [10] constitutes a novelty in the literature. Four behavioral
options for the agents of any PBPCS are suggested: Two of them (I and C)
are equivalent to agents’ options in a PBP, while the other two (U and B)
respectively recall the treatment given by Aumann-Drèze and Owen to cooper-
ative games with a coalition structure.10 The Shapley rule is intensively used

10Both approaches are interesting topics currently: See e.g. recent references [1] and [2],
where the proportional rule and the Shapley value are combined for monotonic games with
a coalition structure following, respectively, Owen’s and Aumann-Drèze’s viewpoints.
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for evaluating the results of each option and gives rise to agents’ individual
preferences on the issues. A numerical example illustrates all these ideas.

A main result gives complete and easy conditions (eighteen in all) to de-
termine all agents’ preferences on I, C, U and B. They are stated in terms
of surpluses and surpluses per capita. Finally, a modified Shapley rule for all
PBPCS has been defined and axiomatically characterized, and even on its
natural domain: The cone of PBPCS where the bargaining unions’ behavior
B is the best option for all agents, which has been described previously.

12.12 Suggestions
Future work on this research line might consider several aspects. We propose
the following: (a) a first refinement of the analysis of a PBPCS when there is
no unanimous behavioral preference (as in Example 12.5) and a subsequent
bargaining, only among some unions, is feasible; (b) a second refinement of this
analysis, based on a cost assessment when accepting a not preferred option
and the use of side payments to compensate (partially, at least) this cost;
(c) the introduction of a coalition structure in a PBP trying to improve the
final payoff; (d) more generally, the possibility of speaking, within this model,
of endogenous coalition formation and discussing the stability of coalition
structures in the sense of the strong Nash equilibrium (cf. [4] and [19]); (e)
additional theoretical work on the behavioral options in a PBPCS; and (f)
procedures for introducing restrictions to cooperation in a PBP.

Suggestions (a), (c) and (d) will make sense when there exists a general
mechanism to define the quotient PBP, as it happens in Example 12.1 (based
on distributor’s offers) and in Example 12.5 (using the barycenter method).
Next we provide more or less detailed hints for each one of our proposals.

(a) Complementary analysis of a PBPCS: Alternative 1

The conclusion obtained in Example 12.5 strictly follows from the general
model established in Section 12.7. Using Remark 12.2, we are allowed to con-
sider each union’s preferences. In that model, once one or more unions have
chosen the isolated unions behavior (U), each remaining union is forced to
adopt this same option or allow its members to act individually (I). Thus,
in Example 12.5, B1 and B2 cannot impose the cooperative behavior (C) to
B3, which in turn cannot impose the bargaining unions behavior (B) to them.
Therefore, in principle, each union prefers to deal on its own with the distrib-
utor (U) according to Table 12.5.

However, it may be interesting to pay attention to several differences aris-
ing from Table 12.5. These are: (a) the loss to each union when adopting
option U instead of its preferred option; (b) the loss to B1 and B2 under
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option B with regard to their preferred option (C) and the loss to B3 under
option C with regard to B but also to U. If Πk(X) denotes the joint allocation
to union Bk under option X, Table 12.6 yields these differences.

Π1(U)−Π1(C) = −323.33 Π1(B)−Π1(C) = −42.67

Π2(U)−Π2(C) = −430.78 Π2(B)−Π2(C) = −150.11

Π3(U)−Π3(B) = −280.67 Π3(C)−Π3(B) = −496.78

Π3(C)−Π3(U) = −216.11

TABLE 12.6: Comparing joint allocations under different behavioral options.

The first column of Table 12.6 shows that each union suffers a great damage
when it follows option U. The second column suggests that, maybe, option B
for B1 and B2, or even option C for B3, would not be so bad as they seem.
So let us go further in our analysis and study a first alternative.

This alternative is feasible in Example 12.5 because there exists a general
rule for cost formation, based on connecting via barycenters. Then it makes
sense to imagine B1 and B2 starting a second negotiation step to discuss a
new, “restricted” PBPCS, trying to find a common best option that gives
them a result better than option U. Let us consider this possibility.

The total barycenter for N ′ = B1 ∪ B2 = {A,B,C,D,E, F,G} and the
barycenter of P and Q are, respectively, N′ = (11.14, 11.86) (rounded) and
M′ = (10.50, 12.50). Using now these barycenters when necessary, the re-
stricted PBPCS [u′,B′, (u′)∗] is defined in N ′ by

u′ = (−265,−386,−356,−261,−149,−325,−481| − 369.72),
B′ = {B1, B2}, (u′)∗1 = −357, (u′)∗2 = −349 and (u′)∗M ′ = −439.50.

By applying Theorem 12.4 we find a common preference I < U < B′ < C′

for all agents of N ′. The allocation vector under option C′ is

(−0.25,−121.25,−91.25, 3.75, 115.75,−60.25,−216.25),

so Π1(C′) = −212.75 and Π2(C′) = −157.00. Then, Π1(C′)−Π1(U) = 144.25
(with a common individual saving of 48.08) and Π2(C′)−Π2(U) = 192.00 (with
a common individual saving of 48.00). Hence, the possibility of discussing a
restricted PBPCS, concerning B1 and B2 only, gives rise to a new issue: These
unions agree in choosing the cooperative behavior for themselves (C′) once B3

has been left aside. Thus, we modify our primitive conclusion (all unions would
follow option U) and contend that unions B1 and B2 would follow option C′

whereas B3 would (necessarily) follow option U. Notice, however, that

Π1(C′)−Π1(C) = −179.08 and Π2(C′)−Π2(C) = −238.78.
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In words, C′ is an intermediate option for B1 and B2 since U < C′ < C for
all their members.

(b) Complementary analysis of a PBPCS: Alternative 2

The basic discrepancy in Example 12.5 is that B1 and B2 prefer option C,
or otherwise option B, whereas B3 prefers option B, or otherwise option U.
Then we discuss this question mainly as a problem among unions. Table 12.7
recalls the allocations to unions described in Table 12.5.

B1 B2 B3 N

Π1(B) = −76.33 Π2(B) = −68.33 Π3(B) = −594.33 −739.00

Π1(C) = −33.67 Π2(C) = 81.78 Π3(C) = −1091.11 −1043.00

Π1(U) = −357.00 Π2(U) = −349.00 Π3(U) = −875.00 −1581.00

TABLE 12.7: Allocations to unions under different behavioral options.

According to the last column of Table 12.7, the most logical attempt to
achieve a full agreement on one option seems to be that B3 tries to convince
B1 and B2 to choose option B. To this end, B3 should offer a compensatory
side payment to the other unions. Clearly, the reference must be the alloca-
tions Π1(C) and Π2(C). The result of such an agreement would be given by
“compromise” allocations of the form

(−76.33 + ε1,−68.33 + ε2,−594.33− ε1 − ε2).

Which conditions should satisfy ε1, ε2 > 0? Essentially, ε1+ε2 < 280.67, since
this precisely equals Π3(B)−Π3(U) and, otherwise, B3 would prefer option U
instead of B. In principle, ε1 and ε2 might depend on the bargaining ability
of each union, but we wish to mention two particular possibilities.

(1) ε1 = 43 and ε2 = 151 are satisfactory for B1 and B2 because they get
allocations slightly better than under C; but not so much for B3, which
would be allocated −594.33 − 194.00 = −788.33 that is twice closer to
Π3(U) than to Π3(B).

(2) A reasonable possibility is given by side payments ε1 = 21.33 and ε2 =
75.05, which take B1 and B2 to the middle point of their respective
allocations under C and B, while B3 is allocated in all −594.33−96.38 =
−690.71, that is twice closer to Π3(B) than to Π3(U).11

11Instead, if B1 and B2 were successful when trying to convince B3 to choose option C, we
would have “compromise” allocations of the form (−33.67−ε1, 81.78−ε2,−1091.11+ε1+ε2)
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Finally, all side payments (positive for B1 and B2 and negative for B3)
would be equally shared among the owners of each union, giving rise to indi-
vidual “compromise” allocations derived from the agreement to choose B. In
case of possibility (2) above these allocations are

(52.33,−68.67,−38.67, 44.68, 156.68,−19.32,−175.32,−283.36,−407.35).

(c) Coalition structure as a bargaining tool in a PBP

Let us revisit Example 12.1. Maybe some readers do not feel satisfied with
the costs allocated to consumers B and C under cooperation in Example 12.2.
They are aware that consumer A does not contribute to any saving in the joint
contract. Therefore, perhaps some agreement between B and C, in order to
form a legal association able to deal with the distributor as a single consumer
and to sign a joint contract (with or without A), could improve the savings
obtained by these two consumers if a special connection were designed for
them. How to introduce this argument in the model?

Let us consider the structure B = {B1, B2} = {{A}, {B,C}}. Then two
basic possibilities exist for defining the quotient PBP u∗ = (u∗1, u

∗
2|u∗M ).
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FIGURE 12.4: Consumers, distributor, and a new connection for B2.

1. If D takes into account the existence of B2 and offers to its members
the “Y” joint connection defined by DO, OB and OC (thick line in
Fig. 12.4), then we have u∗ = (−200,−766|−966). Using Theorem 12.4,

with ε1, ε2 > 0. However, in this case, satisfying completely B3 without being B1 and B2

worse than under option B requires

ε1 < 42.67, ε2 < 150.11 and ε1 + ε2 > 216.11,

a set of incompatible conditions.
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it follows that I = U = B < C for consumer A, but I < C < U = B
for consumers B and C. Union B2 (and hence, forcedly, also B1) will
then adopt option U, and the allocations will be (−200,−383,−383), a
good result for B and C (but not for A) since, according to Example
12.2, the allocations in the original PBP, that is, under option C, were
(−156.67,−404.67,−404.67).

2. If, instead, D does not offer to B and C the “Y” connection but only the
individual ones, then we have u∗ = (−200,−894|−966). Using Theorem
12.4, we find that I = U < C < B for consumer A but I = U < B < C
for consumers B and C. Then all consumers will adopt option U as in
case 1, but the allocations will be here (−200,−447,−447), a bad result
for B and C (and also for A) in comparison with Example 12.2.

In this example, the exogenous information given by the alternative quo-
tient PBPs is a consequence of the distributor’s decision as to the connections
that he offers to the consumers.

(d) Endogenous coalition formation and stability in a PBP

We wish to consider here, by means of a simple example, the possibility of
endogenous coalition formation in a PBP. The essential point is the existence
of a procedure to construct the quotient PBP for every coalition structure.

Let N = {1, 2, 3} and u = (1, 2, 3|12) be a PBP in N . We will use in this
example a rather loose notation, not so formal as in the general model. There
are five possible coalition structures in N :

Bn, B1 = {{1}, {2, 3}}, B2 = {{2}, {1, 3}}, B3 = {{3}, {1, 2}} and BN .

Let us consider Bk = {{k}, {i, j}} for k = 1, 2, 3 and assume that the proce-
dure to construct the quotient PBP u∗ in case k is as follows:

u∗k = uk, u∗ij = k(ui + uj) and u∗M = uN + k2 − 1.

π(X,B) will denote here the payoff vector under behavioral option X and
coalition structure B. For Bn we find that I = U < C = B for all agents, so
C = B is the preferred option and π(C,Bn) = (3, 4, 5). Analogously, for BN
we find I < C = U = B for all agents, so C = U = B is the preferred option
and π(C,BN ) = (3, 4, 5). Now, let us consider, e.g., B1. The quotient PBP is
u∗ = (1, 5|12), and φ[u∗] = (4, 8). The local PBPs in {2, 3} are u23 = (2, 3|5)
for option U and u 23 = (2, 3|8) for option B. Here I = U < C < B for agent
1 but I = U < B < C for agents 2 and 3, with π(C,B1) = (3, 4, 5) and
π(B,B1) = (4.0, 3.5, 4.5). After proceeding in a similar way for B2 and B3, we
collect the relevant results in Table 12.8.

It is clear that the only stable coalition structure (in the sense of a Nash
strong equilibrium) arises when the agents organize themselves in the coalition
structure B3 = {{3}, {1, 2}}, adopt the bargaining unions behavior (option
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coalition structure B: Bn B1 B1 B2 B3 BN

↓ payoff / optimal option X: C=B C B B B C=U=B

π1(X,B) 3 3 4.0 4.25 6 3

π2(X,B) 4 4 3.5 4.50 7 4

π3(X,B) 5 5 4.5 6.25 7 5

TABLE 12.8: Payoffs under different CS and optimal behavioral options.

B), and share therefore u∗M = 20 among them according to the payoff vector
π(B,B3) = (6, 7, 7).

(e) Additional theoretical work for PBPCS

The characterization of the PBPCS where option U (resp., I or C) is the
behavior strictly preferred for all agents, and the definition of the correspond-
ing modified Shapley rules, would be interesting and probably easier than the
work for option B described in Section 12.10.

(f) Restrictions to cooperation in a PBP

Finally, the introduction of different affinity degrees between agents (even
incompatibilities and partnership formation), due to ideological, strategic or
other reasons, would allow us to determine the effects of this new exogenous
information on the issues at stake, that is, on the behavior of the agents
and hence on the expected payoffs to each one of them. Standard models of
restricted cooperation in game theory, which consist in modifying the Shapley
value and might therefore be translated to PBPs, can be found in, e.g., [16],
[17] and [3].
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13.1 Introduction
We review in this chapter an extension of the Shapley value as a priori eval-
uation of the prospects of a group of players in a multi-person game. Our
approach is inspired by the question originally addressed by Shapley in his
seminal paper (Shapley, 1953): “How would one evaluate the prospects of
a player in a multiperson interaction, that is, in a game?” (see Hart 1987).
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Following this interpretation, we propose to use the Generalized Shapley value,
introduced by Marichal et al. (2007), as a priori evaluation of the prospects of a
group of players when acting as a group without imposing on the other agents
any concrete coalition structure. Mathematically, the Generalized Shapley
value is related with the Shapley value of certain quotient games (Owen,
1977) (also called merging games by Derks and Tijs (2000)) which capture
the situation when all the members of a group are committed in some way
to bargain with the others as a unit. It is remarkable, however, that in their
approach they do not deal with the problem of assigning values to groups, but
individual ones.

The evaluation of the joint importance, performance or relevance of a
group of active agents is an interesting issue that deserves special attention,
due to the new behavior that can appear when some subset of agents decide to
act together in a coordinated way. The characteristics and attributes of each
agent do not explain, in general, the emergent behavior of the group; instead,
it is necessary to take into account their redundancy, complementarity and
possible interactions. Because of the same reason that makes v(i) different
from ϕi(N, v) in the individual case, the value of a group C given by the
characteristic function v(C) does not capture the emergent behavior. Thus, a
direct use of v(C) to measure the a priori value of group C is not in general the
best approach to solve this problem. Note that following the Von Neumann
original approach, that value corresponds to the worth of the coalition in
the most unfavorable setting by considering the maximum benefit that the
coalition can guarantee for their members. Anyway, it evaluates a unique
scenario.

In many cases this problem arises in the context of a social network that re-
flects the affinities between the agents involved. In this framework, as Wasser-
man and Faust (2004) point out, one of the primary issues is the identification
of the “most important” or “prominent” actors in a social network. Definitions
of individual importance have been proposed by many authors. For example,
classical measures of centrality –degree, betweenness or closeness– that rely
only upon the information given by the structure of the social network, were
defined and widely studied (see the review of Freeman, 1979). Other individ-
ual measures, such as the individual game theoretic centrality index of Gomez
et al. (2003), which also takes into account the achievements that agents can
reach through their interactions in the network, have been described. How-
ever, despite the relevance of defining an appropriate group centrality measure
which has been pointed out by different authors in a variety of contexts –
mainly in the framework of information diffusion models (see Kempe et al.,
2005), but also in the social networks context (Everett and Borgatti (1999);
Borgatti (2006); Latora and Marchiori (2007); Kolaczyk et al. (2009)) – this is-
sue has not received too much attention so far. Following Gomez et al. (2003),
in which a TU game (N, v) is considered in order to incorporate to the prob-
lem information about the functionality of the network, i.e., the interests that
motivate the interactions among the actors of the social network, we proposed
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in Flores et al. (2016) to adapt the classical approach of Myerson (1977) and
we applied the Generalized Shapley value as a group centrality measure.

To summarize, we first consider a framework in which all the agents in a
certain group C join a game as an alliance by a common decision, or perhaps
following a common external signal. This is the case addressed in Examples
13.1 and 13.3, where the agreement of investiture between the two parties
PSOE and Ciudadanos in the Spanish 11th Cortes Generales is evaluated
in two scenarios, depending on whether the political affinities at that time
are considered or not. However, this does not necessarily happen; in some
situations there is an external decision agent whose job is the selection of the
most appropriate group of agents that will undertake a previously selected
goal. This is the case of Example 13.2, in which a commercial agent wants
to select the best group of firms to make a proposal for coordinating their
orders. Anyway, in both situations the group valuation is intended to evaluate
the prospects of a group if their members act jointly.

The second situation in which it is assumed the existence of an external
agent, the decision maker, that is able to coordinate the actions of the members
of the group, and whose objective is the selection of the best evaluated group
accomplishing some specifications, is treated in detail in Flores et al. 2016
and 2018; in those papers, some relevant and realistic examples exploring
the potential application of the Generalized Shapley value as a tool for the
assessment of groups are analyzed in detail. To be specific, we considered two
examples in which we illustrate the application of the Shapley value as a group
valuation in the following scenarios:

• The analysis of criminal or terrorist organizations, where the police want
to identify a small group of criminals or terrorists to neutralize in order
to break up the criminal organization. To illustrate this case, we analyzed
in Flores et al. (2018) the use of the Generalized Shapley value as an
evaluation tool to two terrorist networks which have been considered in
Lindelauf et al. (2013), where the authors introduce a game-theoretic
approach to identify the key players in a terrorist network. The two
cases were the operational network of Jemaah Islamiyah’s Bali bombing
and the network of hijackers of Al Qaeda’s 9/11 attack.

• The analysis of formal and informal social networks in an organization,
as well as the employee’s participation in virtual communities of practice
for seeking knowledge. Here, organizations are interested in using these
social networks for their own interests: To promote collaborative working
groups, to diffuse innovations and ideas, to force the approval of a pro-
posal, to foster the sharing of information and knowledge to meet their
business needs, etc. (see for instance Cross and Parker (2004) and Chiu
et al. (2006)). To illustrate this case, we analyzed in Flores et al. (2016)
the use of the Generalized Shapley value à la Myerson in a network
within a consulting company as that analyzed in Borgatti (2006), which
consists of advice-seeking ties among members of a global company.
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It should be noted that in general these two problems involve the solution
of a combinatorial selection problem that merits a more careful study and
needs the development of heuristics in order to apply effectively the Shapley
value to the group selection problem.

The present chapter is devoted to review some approaches to the evaluation
of groups in a cooperative game theory setting. In Section 13.2 we introduce
the main tool, the Shapley group value, providing a specific axiomatic charac-
terization for it. We apply the Shapley group value in a real and hot context,
by evaluating the prospects of the Spanish political parties in a voting game
that models the 2015 Spanish elections. The question of the profitability of a
group is also addressed, and we end up by describing an inventory cost game
which shows how the Shapley group value can be used to determine the prof-
itability of a group. In Section 13.3 we analyze the issue in the context of a
cooperative situation limited by a graph of relations. In this case, the potential
power of a group must take into account the position of its members in the
network and the way in which they can interact, be redundant or contribute
to intermediation. We also go back to the voting game of the first section, and
in particular introduce a graph that models the political affinities between
parties and allows a more precise analysis.

13.2 The Generalized Shapley Value: A Tool for
Evaluating Groups

In this section we will recover the definition of the generalized Shapley value
(Marichal et al., 2007), whose application as a measure to evaluate the
prospects of a group of players in a TU game is analyzed afterwards. First of
all, let us recall the general concept of generalized value.

Definition 13.1 (Marichal et al., 2007) A generalized value is regarded
as a valuation mapping ξg that assigns for every game v ∈ GN and every
C ⊂ N a real number ξg(C;N, v) ∈ R that reflects the power of the coalition
C in the game v, and such that ξg(∅;N, v) = 0.

Now, in order to introduce the definition of the main generalized value
that we are going to discuss, the generalized Shapley value, also defined by
Marichal et al. in 2007, we need to remember the definition of a merging game
of Derks and Tijs (2000). These authors analyze the profitability of group
formation in a more general setting1 by means of considering Lehrer’s (1988)
type of merging. The merging game models the situation in which the agents
of a given selected group are substituted by a “proxy player” that acts on
their behalf. So, let us consider a game v ∈ GN and a non-empty coalition

1But not, as said above, the problem of assigning values to groups.
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C ⊂ N ∈ N . We denote by PC the C-partition given by C and the single-
person coalitions of players not in C. In these conditions, the merging game
with respect to PC is defined as the (n − c + 1)-person cooperative game
(NC , vC), being the agent set NC = (N \ C) ∪ {c}, c a single proxy player
c ≡ C, and vC given by:

vC(S) =

{
v(S), if c /∈ S,
v(S ∪ C) if c ∈ S,

∀ S ⊂ NC . (13.1)

Note that, in order to consider an accurate valuation, we must describe what
group integration means for the applications we have in mind. In this frame-
work, group integration does not necessarily imply that agents in C make an
agreement to act jointly. For instance, in our first previous example, there
exists an external agent, the police, who selects a group of terrorists to turn
back into double agents, or to misinform in order to spread their misinfor-
mation through the criminal organization network. The selected terrorists are
not in general aware about the other selected terrorists’ identities. The same
occurs in the second example, in which the organization can select a group of
employees to be used as seeds to diffuse innovations and ideas through the em-
ployees’ network. Therefore, when measuring group C’s expectations, we will
evaluate them like a unit anyway, adopting the merging of players approach
of Derks and Tijs (2000).

Formally, the generalized Shapley value is defined as follows:

Definition 13.2 (Marichal et al., 2007) The Shapley group value is the
group value that assigns for every v ∈ GN , N ∈ N , the valuation mapping
ϕg(·;N, v) given by:

ϕg(C;N, v) = ϕc(NC , vC), for each group ∅ ̸= C ⊂ N,

where (NC , vC) is the merging game with respect to C.

From now on, we will refer to the generalized Shapley value as “Shapley
group value”, which is more appropriate in this context.

We remark that for each group with at least two players the corresponding
merging game is different, and therefore each ϕg(C;N, v) is obtained by ap-
plying the Shapley value to a different game. Note that only for the trivial case
in which C1 and C2 are both singletons the two merging games, (NC1 , vC1)
and (NC2

, vC2
), are the same for different C1 and C2 (and in fact the same as

the original game (N, v)).
Our goal is to describe properties of the Shapley group value which are

important from the point of view of group valuation and its applications,
and to use them to obtain an axiomatic characterization. Unlike the previous
axiomatic proposed by Marichal et al., we have proposed an alternative set
of axioms for it which does not include a direct formulation of the classical
efficiency axiom (see Flores et al., 2018). As a matter of fact, the efficiency
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axiom makes sense when the goal is to distribute a fixed amount; however, as
we remarked in the introduction, we are not allocating goods, nor distributing
benefits. Moreover, for each group evaluation we are using a different game.
Consequently, we think that an axiomatization without a direct formulation
of the efficiency axiom is relevant for the application we have in mind.

We will recall some definitions first. It is said that a game (N, v) is a
unanimity game if there is a coalition S ⊂ N such that for every T ⊂ N ,
v(T ) = 1 if S ⊂ T , and v(T ) = 0 otherwise. The usual notation for this
game is (N, uS). Unanimity games are a basis of the vector space GN of all
games with player set N . Also, given v ∈ GN , i ∈ N is a dummy player if
v(S ∪ i) = v(S) + v(i) for all S ⊂ N . In particular, a dummy player with
v(i) = 0 is said to be null in v. A game v ∈ GN is monotonic if v(T ) ≥ v(S)
for all S ⊂ T ⊂ N .

The properties that will appear in our axiomatic will be the following:

Properties
Let ξg be a real mapping defined over the set of all games G. Then, ξg

verifies:

1. G-null player, if ξg(C ∪ i;N, v) = ξg(C;N, v) for all C ⊊ N ∈ N ,
i ∈ N \ C and v ∈ GN , when i is a null player;

2. G-linearity, if ξg(C;N,α1v + α2w) = α1ξ
g(C;N, v) + α2ξ

g(C;N,w) for
all C ⊂ N ∈ N , α1, α2 ∈ R, and games v, w ∈ GN , where α1v+α2w ∈ GN
is given by (α1v + α2w)(S) = α1v(S) + α2w(S) for all S ⊂ N ;

3. G-coalitional balanced contributions (or G-CBC for short), if for all C ⊊
N ∈ N , i, j ∈ N \ C and v ∈ GN , we have[

ξg(C ∪ i;N, v)−ξg(C;N, v)
]
−
[
ξg(C ∪ i;N\j, v−j)−ξg(C;N\j, v−j)

]
=

[
ξg(C ∪ j;N, v)−ξg(C;N, v)

]
−
[
ξg(C ∪ j;N\i, v−i)−ξg(C;N\i, v−i)

]
,

(13.2)

where v−i ∈ GN\i stands for the restriction of the characteristic function
v to the set of players N\i;

4. G-symmetry over pure bargaining games (or G-SPB for short), if
ξg(C;N, uN ) = 1

n−c+1 for each non-empty C ⊂ N ∈ N , where (N, uN )
is the unanimity game with respect to the grand coalition.

Let us comment on the properties. The G-linearity was already used by
Marichal et al. (2007) in their axiomatizations and its meaning is clear, as
well as the necessity of a null player property. G-coalitional balanced con-
tributions is a generalization of the balanced contribution property that was
used by Myerson (1977) in his characterization of the Shapley value, and it is
a symmetry property.
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The property G-SPB deserves a better explanation. It leads to regard each
group as one representative, independent of the number of original agents that
compose it, when he/she and all the remaining players are strictly necessary.
For example, in a voting game in which all the votes are needed to pass a bill,
and all of them are equally powerful regardless of the number of seats they
originally have. This is precisely the property which better reflects the fact
that the group is replaced by a unique new player, its representative, that acts
on behalf of the whole group.

The following result, whose proof can be found in Flores et al. (2018),
establishes an alternative axiomatic for the Shapley group value that does not
rely on efficiency.

Theorem 13.1 The unique group value over the set of all games G verifying
G-null player, G-linearity, G-CBC, and G-SPB is the Shapley group value ϕg.
Moreover, the axioms are logically independent.

Next, we show a real application of the Shapley group value for evaluat-
ing the prospects of a group in case their members sign an agreement to act
together. To be specific, in the following example, we evaluate the agreement
of investiture between the two parties PSOE and Ciudadanos in the Spanish
11th Cortes Generales without taking into consideration any political affin-
ity between the involved parties. For the case in which those affinities are
considered the reader is referred to Example 13.3 (page 272).

Example 13.1 Let us consider the distribution of seats in the Congress of
Deputies obtained as a result of 2015 Spanish general elections held on Sun-
day, 20 December 2015, to elect the 11th Cortes Generales, that is shown in
Table 13.1.

Party Seats
PP 123
PSOE 90
Podemos 69
Ciudadanos 40
ERC 9
DyL 8
PNV 6
Unidad Popular (UP) 2
Bildu 2
Coalición Canaria 1

TABLE 13.1: Congress of Deputies in the 11th Spanish Cortes Generales.

Those results produced a fragmented Parliament and Mariano Rajoy, the
most voted party’s leader, declined the King’s proposal to form government. In
that situation, Pedro Sánchez, as the leader of PSOE, assumed the formation
of government, and signed an agreement of investiture with Ciudadanos, one



262 Handbook of the Shapley Value

of the emergent parties on the right field. Did the PSOE’s leader make the
correct decision in terms of voting power? If we use the Shapley value as
a measure of voting power, we obtain the figures in Table 13.2 in the prior
scenario, before any agreement was signed. Note that in this case, the voting
game that models the Congress of Deputies is the weighted voting game with
quota q = 176 and vector of weights w = (123, 90, 69, 40, 9, 8, 6, 2, 2, 1).

Party Shapley value
PP 0.4024
PSOE 0.2198
Podemos 0.2198
Ciudadanos 0.0690
ERC 0.0302
DyL 0.0254
PNV 0.0198
Unidad Popular (UP) 0.0056
Bildu 0.0056
Coalición Canaria 0.0024

TABLE 13.2: Congress of Deputies in the 11th Spanish Cortes Generales.

Note that no party in the Congress of Deputies has a dummy role in the
voting game that models the prior scenario, and therefore all of them en-
ter in at least one minimal winning coalition. On the contrary, if the two
parties PSOE and Ciudadanos act as a group, the situation changes dra-
matically and this fact is reflected in its group value. The merging game cor-
responding to the alliance {PSOE − Ciudadanos} is the weighted majority
game with the same quota q = 176 and weight vector wPSOE−Ciudadanos =
(123,130, 69, 9, 8, 6, 2, 2, 1), being 130 the weight of the proxy player. In this
case the number of minimal winning coalitions reduces to three: {PP, PSOE−
Ciudadanos}, {PP, Podemos} and {PSOE−Ciudadanos, Podemos}. Thus,
this alliance turns all parties but PP, Podemos and the allied ones in dummies,
whereas the three blocks – PP , PSOE − Ciudadanos and Podemos – turn
equally powerful. The group value of the two allied parties PSOE and Ciu-
dadanos is 1

3 , which exceeds the sum of their individual values in the original
situation 0.2888 = 0.2198 + 0.0690.

If we analyze the potential alliance that was proposed at that moment
by Pablo Iglesias, leader of Podemos, i.e., PSOE-Podemos-Unidad Popular,
we observe that its valuation as a group is greater. Now, the merging game
corresponding to the alliance {PSOE − Podemos−UP} is the weighted ma-
jority game with quota q = 176 and weight vector wPSOE−Podemos−UP =
(123,161, 40, 9, 8, 6, 2, 1), and the following holds:

ϕg({PSOE − Podemos− UP};N,w, 176) = 0.4607 >

1

3
= ϕg({PSOE − Ciudadanos};N,w, 176).
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However, as we will see in Example 13.3, the situation is different if we take
into consideration political affinities.

The remaining of this review will be devoted to study some features of the
value which are relevant for its use as a tool to assess groups.

13.2.1 Profitability of a Group
This section is devoted to discuss the profitability of a group in a game. After
some definitions, we first undertake a review of the literature concerning this
property, and then we introduce an interesting decomposition of the marginal
contribution of a player to the Shapley group value (Theorem 13.2). We con-
clude with an example in which the profitability of groups in an inventory
cost game (Meca et al., 2003) is analyzed according to their sizes and the
characteristics of the agents’ individual optimal number of orders per unit of
time.

We will start by showing that superadditivity guarantees that the expected
value of a group C at least equals the maximum value that the members can
get acting individually. This in particular implies that big groups are desirable
in monotonic games.

Proposition 13.1 If N ∈ N is a finite set of players and v is a game in GN ,
the following properties hold for the Shapley group value ϕg:

1. Group Rationality: ϕg(C;N, v) ≥ v(C) for every C ⊂ N ∈ N if the
game v ∈ GN is superadditive, and

2. Monotonicity: if the game v ∈ GN is monotonic, ϕg(C;N, v) ≤
ϕg(D;N, v) for every pair of coalitions C ⊂ D ⊂ N ∈ N .

Following this approach, the profitability of the integration of a group C
can be described as the difference

Prof(C;N, v) := ϕg(C;N, v)−
∑
i∈C

ϕi(N, v),

between the Shapley value of a coalition C and the sum of the classical in-
dividual Shapley values of the corresponding players. A related point of view
was developed by Derks and Tijs (2000) and Segal (2003). They obtained the
following:

Proposition 13.2 (Derks and Tijs, 2000) For any finite set of players
N ∈ N and every game v in GN , the group C ⊂ N ∈ N is profitable
(or mergeable, in their terminology) if all coalitions whose Harsanyi dividend
is positive are either contained in C or have at most one player in common
with C.
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The approach of Segal (2003) is different and is based on the difference
operators, which we now recall.

Given a pair of players i, j ∈ N , the second-order difference operator is
the following composition of marginal contribution operators (i.e., first-order
difference operators):

∆2
ij(S;N, v) = v(S ∪ {i, j})− v(S ∪ j)− v(S ∪ i) + v(S), ∀ S ⊂ N \ {i, j}.

Here ∆2
ij(S;N, v) stands for the player i’s effect over the marginal con-

tribution of player j (or vice versa). Note that v(S ∪ {i, j}) − v(S) =
∆2
ij(S;N, v) + ∆i(S;N, v) + ∆j(S;N, v), and thus ∆2

ij(S;N, v) > 0 implies
that the marginal contribution of players i, j as a group exceeds the sum of
the individual marginal contributions of each player.

The players i and j are usually called strategic complements whenever
∆2
ij(S;N, v) ≥ 0, for all S ⊂ N \ {i, j}. In turn, they are said to be strategic

substitutes whenever ∆2
ij(S;N, v) ≤ 0, for all S ⊂ N \ {i, j}. Hence, the

operator ∆2
ij(S;N, v) admits an interpretation as a measure of the interaction

of the players i and j with respect to the players in S.
In a similar way, the third-order difference operator for players i, j, k ∈ N

is defined as ∆3
ijk(·;N, v) = ∆i(∆

2
jk(·;N, v)), for all S ⊂ N \ {i, j, k}. Observe

that ∆3
ijk(S;N, v) codifies the effect of player k over the complementarity

between players i and j with respect to the players in S. The operator is
again independent of the order of the differences. See also Fujimoto et al.
(2006).

Based on these definitions, Segal (2003) showed that the merging of two
players i, j ∈ N is profitable (respectively unprofitable) whenever the presence
of the outside players reduces (respectively increases) the complementarity
between the players that are colluding. If a new member j ∈ N \C is incorpo-
rated to an integrated group C, profitability is measured with respect to the
situation in which the players of group C are colluding. That is, profitability
can be interpreted as

ϕg(C ∪ j;N, v) ≥ ϕg(C;N, v) + ϕj(NC , vC). (13.3)

Proposition 13.3 (Segal, 2003) Let N ∈ N be any finite set of players,
and v be any game in GN . Then:

1. A group C = {i, j} ⊂ N of two players is profitable (unprofitable) if
∆3
ijk(S;N, v) ≤ (≥) 0, for every coalition S ⊂ N \ {i, j, k}, and for all

k ∈ N \C. If the reverse inequalities hold, then group C is unprofitable.

2. The union of the integrated group C ⊂ N and the player j /∈ C is
profitable (unprofitable) if ∆3

ijk(S;N, v) ≤ (≥) 0, for every coalition
S ⊂ N \ {i, j, k}, and for all i ∈ C, k ∈ N \ (C ∪ i).

It is a direct consequence of these results that complementarity and sub-
stitutability are not related in principle to profitability. However, the Shapley
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group value takes account of these kinds of relations among the players when
evaluating the value of a group (Theorem 13.2), making use of the average
complementarity:

Definition 13.3 For any finite set N ∈ N of players and for every game
v in GN , the average complementarity of players i, j ∈ N is defined as the
following average of second-order differences:

ψij(N, v) :=
∑

S⊂N\{i,j}

s!(n− s− 1)!

n!
∆2
ij(S;N, v), for all i ̸= j ∈ N .

(13.4)

Here ψij(N, v) is taken over all possible orders of N = {1, . . . , n}, consid-
ered equiprobable. The operator ∆2

ij(S;N, v) is taken over all orders in which
coalition S contains all players arriving between i and j, and i comes before
j. In fact, it can be seen as an interaction index (see Grabisch and Roubens,
1999).

Theorem 13.2 For any finite set N ∈ N of players, for every game v in
GN , for every group C in N , and for i /∈ C, the marginal contribution of the
player i ∈ N \ C to the Shapley group value of C equals:

MCgi (C;N, v) := ϕg(C ∪ i;N, v)− ϕg(C;N, v) =
= ϕi(N \ C, v|N\C) + ψci(NC , vC). (13.5)

We conclude from the previous results that the value of a group will be
given by a very subtle and involved combination of complementary and inde-
pendence between the agents of the groups, and that the group with the most
valuable agents and the most valuable group can be very different. In Flores
et al. (2018) we describe an easy example that shows clearly this fact.

Now, we will illustrate by means of an example how the ideas above can
be used to get a deep understanding on the features that determine the prof-
itability of a group.

Example 13.2 Let us consider an inventory cost game (introduced in Meca
et al., 2003) in which there is a fixed cost per order and the agents cooperate
by ordering simultaneously (as a cooperative) their orders. In this case, if N is
the set of firms, a > 0 the fixed cost per order, and mi is the individual optimal
number of orders per unit of time of firm i for each i ∈ N , the corresponding
inventory cost game (N, c) is given by:

c(S) := 2a

√∑
i∈S

m2
i , for all ∅ ̸= S ⊆ N , (13.6)
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and c(∅) = 0. Since (N, c) is a cost game, the profitability of group T should
be obtained as

Prof(T ;N, c) :=
∑
i∈T

ϕi(N, c)− ϕg(T ;N, c), for all ∅ ̸= T ⊆ N . (13.7)

In this setting, a commercial agent could be interested in selecting the best
group of k clients to manage their orders. In that sense, the commercial agent
should select the group of size k more profitable, i.e., with the highest profit
margin, in order to maximize its own benefit assuring also a benefit to each
of his clients.

Note that applying Proposition 13.3, and taking into account that the in-
ventory cost game 13.6 is a particular case of a production game (Shapley
and Shubik, 1967)

c(S) = g(b(S)), where b(S) =
∑
i∈S bi, and being bi = m2

i , for all i ∈ N ,

with g(·) = 2a
√
·, and whose third derivative is non-negative, it follows straight-

forward that every possible group T ⊆ N is profitable as a cost game (i.e., is
unprofitable in terms of Proposition 13.3). Beyond the fact that every possible
group of k potential clients is profitable, the question that remains is which
one of them is the most profitable. It is easy to check that for a given group
of size k, the group with the highest group value is that of the k firms with
greatest values of mi. However, this is not always the case for the profitability.
The most profitable group of size k = 2 is always T2 = {m(n−1),m(n)}, where
(m(1), . . . ,m(n)) is the vector of optimal orders arranged in non-decreasing
order, but as the group size k increases this is not always the case. It could
be the case in which the most profitable group is Tk = {m(n−k+1), . . . ,m(n)}
or T−max

k = {m(n−k), . . . ,m(n−1)} depending on the differences among the
optimal number of orders {mi}i∈N and also on the number n = |N | of firms
involved in the inventory situation.

We will illustrate this effect by means of an example. Let us consider for
instance two kinds of inventory situations, which we respectively refer to as
linear and quadratic, with n firms, the same a > 0 fixed cost per order, and
vectors of optimal orders mℓ = (mℓ

1, . . . ,m
ℓ
n) = (1, 2, . . . , n) and mquad =

(12, 22, . . . , n2), respectively.
We observe that for each size k ≥ 3, and for each inventory situation, there

exists a threshold ñℓk and ñquadk such that the most profitable group of size k is
Tk for every inventory situation with n ≥ ñℓk in the linear case, or n ≥ ñquadk

in the quadratic one, and the most profitable group is T−max
k otherwise. In

Table 13.3 these thresholds are obtained for k up to 10.2

2The required Shapley group values of all the groups that were necessary to determine
the figures of the previous table have been obtained by means of exact calculations for
all |N | ≤ 8. For greater cardinals, the group values have been estimated via Monte Carlo
simulation following Castro, Gomez and Tejada (2009) approach.
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k 3 4 5 6 7 8 9 10
ñℓk 7 10 13 16 19 22 25 28
ñquadk 10 15 20 24 28 32 37 41

TABLE 13.3: Inventories.

Note that the minimum number of agents ñℓk and ñquadk that is needed in
order to be Tk the most profitable group is always greater for the quadratic case
and increases in both cases with the size of the group. It seems that a certain
critical mass of the remaining agents is needed in order to be more profitable.

To end the example, and in order to get an insight of the observed behaviour,
we will compare the marginal contribution of the two firms m(n−k) and m(n) to
the profitability of each intermediate group {m(n−k+1), . . . ,m(n−1)} decompos-
ing those marginal contributions in the two components considered in Theorem
13.2. It follows from (13.5) that the marginal contribution of firm i ∈ N \ T
to the profitability of group T is given by:

MPi(T ;N, c) := Prof(T ∪ i;N, c)− Prof(T ;N, c) =
= ϕi(N, c)− ϕi(N \ T, c|N\T )− ψti(NT , cT ), (13.8)

where the merging game (NT , cT ) is given by:

cT (S) =

2a
√∑

i∈Sm
2
i if t /∈ S,

2a
√∑

i∈S\{t}m
2
i +

∑
i∈T m

2
i if t ∈ S,

∀ S ⊂ NT . (13.9)

Thus, the marginal contribution of firm i to the profitability of the already
formed group T is a combination of the price increase for firm i (due to the
abandonment of group T from the cooperative (ϕi(N \ T, v|N\T )− ϕi(N, c))),
and the extent of the substitutability between group T and firm i in the cor-
responding merging game (−ψti(NT , cT )). The price increase has a negative
impact, whereas the increment of the substitutability has a positive effect. Thus,
since both terms increase with the value of mi, a relevant critical mass in the
amount of orders of the remaining firms in N \ (T ∪ i) is needed in order to
keep the cost increasing for the firm i with the highest optimal order under its
increment in substitutability.

For instance, in the linear case, with a = 1, in Table 13.4 we observe
the profitability and substitutability, where the value of the increment in the
profitability of group T due to the presence of firm i in the last column is
obtained as the substitutability degree (in the 3rd column) minus the rise in
price (in the 2nd column).
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n = 6, k = 3, T = {4, 5}
Firm Rise in price Substitutability deg. Profitability increm.
i ϕi(N \ T, c|N\T )− ϕi(N, c) −ψti(NT , cT ) MPi(T ;N, c)
3 0,8092 1,2989 0,4897
6 2,0600 2,4985 0,4385
n = 7, k = 3, T = {5, 6}

Firm Rise in price Substitutability deg. Profitability increm.
i ϕi(N \ T, c|N\T )− ϕi(N, c) −ψti(NT , cT ) MPi(T ;N, c)
4 0,9257 1,5754 0,6497
7 2,0419 2,7078 0,6659

TABLE 13.4: Profitability and substitutability.

13.3 Assessment of Groups in a Social Network
In this section we are still interested in evaluating groups, but adapting the
classical approach of Myerson (1977), we apply the Shapley group value to
a situation in which the communication and coalition formation between the
players is restricted by a graph.

So far, our efforts have been focused in evaluating groups, without assum-
ing any restrictions in the communications between the players of the game.
However, there are many situations in which the relations between agents
are modeled by means of a graph. This is for instance the case of many or-
ganizations where the use of formal and informal social networks is a new
reality, which fosters the use of methods to evaluate the ability of each group
to achieve the organization goals inside the social network. This issue, i.e.,
the assessment of groups in a network organization, is approached in Flores et
al. (2016) by means of what we have called Myerson group value. The reader
is referred to that paper and all the references therein for information about
many other interesting applications.

In this context, there are several choices of the game. As we do not want to
alter the communication structure by a contraction of the graph, and taking
into account that the agents of the group are not necessarily connected by
the graph (and even they do not act by agreement, although they can follow
an external sign), we propose to select groups by means of their value in the
graph-restricted game (N, vΓ); in this way, is introduced the Myerson group
value as the Shapley group value of this game. Remark that the formation
of coalitions is restricted by the graph, but not the formation of the groups
we are interested in evaluating. We also show some interesting properties of
the proposed group measures and go back to Example 13.1, but taking into
account the restrictions in cooperation due to political affinities.
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We start by rigorously defining the restriction of the game when the group
C has been formed. Previously, we introduced some notation.

A undirected graph or simply a graph (N,Γ) consists of a finite set N =
{1, . . . , n} of nodes and a set Γ of edges whose elements are unordered pairs
of distinct nodes. A graph (N ′,Γ′) is a subgraph of (N,Γ) if N ′ ⊆ N and
Γ′ ⊆ Γ, where the edge {i, j} can be in Γ′ only if i and j are in N ′. A path
between two nodes i and j in a graph (N,Γ) is a subgraph of (N,Γ) consisting
of a sequence of nodes and edges P (i, j) = {i = i1, i2, . . . , ik−1, ik = j}, with
k ≥ 2 satisfying the property that for all 1 ≤ r ≤ k − 1, {ir, ir+1} ∈ Γ.
A cycle is a path P = {i = i1, i2, . . . , ik−1, i = ik}. A graph is connected
if every pair i, j ∈ N of its nodes is connected, i.e., if there is a path in
the graph from node i to node j; otherwise, the graph is disconnected. The
maximal connected subgraphs of a disconnected graph are called its connected
components, or components for short. Let S ⊆ N be a subset of nodes, then
conΓ(S) will denote the set of connected components of the subgraph (S,ΓS)
induced by S. We will refer to conΓ(S) as the set of connected components of
S in Γ.

Now, we can define the restriction of the game when the group C has been
formed.

Definition 13.4 Denote by (N,Γ) be a social network, and by (N, v) a TU
game. Then for every group C ⊆ N the graph-restricted game (NC , vΓ,C) is
defined as:

vΓ,C(S) = vΓ(S) =
∑

Tk∈conΓ(S)

v(Tk),

vΓ,C(S ∪ c) = vΓ(S ∪ C) =
∑

Tk∈conΓ(S∪C)

v(Tk),

for every coalition S ⊆ N \ C = NC \ {c}.

In this context, we propose the following value:

Definition 13.5 With the previous notation, the Myerson value of the group
C ⊆ N is defined to be ϕgC(N, v,Γ) := ϕg(C;N, vΓ) = ϕc(NC , vΓ,C), for every
group C ⊆ N .

Following our previous interpretation of the Shapley group value, the My-
erson value of C can be seen as a priori valuation of the expectation of group
C in the game (N, v) when communications between the players are restricted
by Γ.

It is interesting to account for the variations in the value of a group due
to the position of the players in the graph. In this context, we follow the
point of view of Gomez et al. (2003) to approach the idea of centrality in
Social Networks. Not only the topology of the network should determine the
centrality of an agent, but also the purpose of the organization does, which is
problem-specific and can be modeled by a TU game (N, v).
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Definition 13.6 In the previous notation, the integrated centrality of the
group C ⊆ N is defined to be:

γgC(N, v,Γ) := ϕg(C;N, vΓ)−
∑
i∈C

ϕi(N, v), ∀ C ⊆ N. (13.10)

We have defined in this way several differences which represent the change
in the valuation of group C due to two factors: The positional effect that
codifies the importance of the position of the agents in the graph, and the
integration effect that depends on the worth of each group of agents for the
purpose of the organization, and models the relations and synergies between
them. In fact, the integrated centrality of group C can also be expressed as

γgC(N, v,Γ) =
(
ϕg(C;N, vΓ)− ϕg(C;N, v)︸ ︷︷ ︸

positional effect

)
+
(
ϕg(C;N, v)−

∑
i∈C

ϕi(N, v)︸ ︷︷ ︸
integration effect

)
.

Here ϕg(C;N, vΓ) − ϕg(C;N, v) is a measure of the change in the value of
group C due to their position in the network, and the second difference mea-
sures the benefits derived from their agreement to act both jointly and taking
into account the purpose of the organization. Concrete examples where these
differences are computed can be found in Flores et al. (2016).

Next, we recover the analysis of the agreement of investiture signed by
PSOE and Ciudadanos in the 11th Spanish Cortes Generales, but now taking
into account the natural restrictions that arise from the political affinities
among the involved parties.

Example 13.3 Let us consider the following communication graph which cap-
tures the aforementioned affinities among the parties at the beginning of the
11th term.

FIGURE 13.1: Graph of political affinities among the parties after the 2015
election.
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Party Myerson value
PP 0.2165
PSOE 0.2999
Podemos 0.0833
Ciudadanos 0.2167
ERC 0.0000
DyL 0.0501
PNV 0.0500
Unidad Popular (UP) 0.0000
Bildu 0.0000
Coalición Canaria 0.0833

TABLE 13.5: Congress of Deputies in the 11th Spanish Cortes Generales.

Now, if we reevaluate the situation analyzed in Example 13.1, we obtain
the following figures:

It is remarkable that, according to the new distribution of power, the most
powerful party is PSOE, which was in fact responsible for trying to form the
government, and the second one is Ciudadanos.

Now, if we consider the graph-restricted merging game that models the sce-
nario in which PSOE and Ciudadanos act as a group
(NPSOE−Ciudadanos, (wPSOE−Ciudadanos, 176)Γ) all the remaining parties
stand being dummies, since they were dummies in the corresponding merg-
ing game (NPSOE−Ciudadanos, (wPSOE−Ciudadanos, 176)) (see Example 13.1)
and they do not have any betweenness power in the graph of Figure 13.1.
Thus, the original graph can be reduced to the next one (Figure 13.2), which
is useful for the analysis of the graph-restricted merging game that models
the agreement of investiture PSOE − Ciudadanos, taking into account the
political affinities:

FIGURE 13.2: Reduced graph of political affinities when PSOE-
Ciudadanos act as a group.

In this new situation, the value of the group PSOE-Ciudadanos is 2
3 ,

whereas the power of other two non-dummy parties, PP and Podemos, falls
to a half when compared with the same situation when no political affinities
are considered: From 1

3 to 1
6 . In that case, the group occupies a central position

in the reduced graph depicted in Figure 13.2 that allows them to arrange with
the party at its right, PP, as well as with the party at its left, Podemos, at
their convenience.
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On the contrary, the position of the alternative alliance PSOE-Podemos-
IU is not so central. In fact, in the corresponding graph-restricted merging
game that models the scenario in which PSOE, Podemos and UP act as
a group (NPSOE−Podemos−UP , (wPSOE−Podemos−UP , 176)Γ), only ERC and
Bildu become dummies when political affinities are considered. In that case,
the value of the group is 0.3833, and

ϕg({PSOE − Podemos− UP}; (N,w, 176)Γ) = 0.3833 <

2

3
= ϕg({PSOE − Ciudadanos}; (N,w, 176)Γ).

The integrated centrality of each group is:

γgPSOE−Ciudadanos(N, (w, 176),Γ) =
2

3
− 0.2198− 0.0690 = 0.3779.

γgPSOE−Podemos−UP (N, (w, 176),Γ) = 0.3833− 0.2198− 0.2198− 0.0056 =

= −0.0619.

The outcome of the above calculations is that the agreement of investiture led
by PSOE was the best possible option for them, although PP and Podemos
blocked Pedro Sánchez’s investiture. In this way, new elections were forced,
results for PP improved, and this party was then able to form government.

In the next section, we give a general decomposition of the Myerson group
value in two kinds of value: communication value and betweenness value. As a
result, we obtain that the Myerson value of a group evaluates its contribution
in order to enable the formation of coalitions, either through mediation or
connection. We also use this decomposition to elaborate on the concept of
redundancy between groups of agents.

13.3.1 Myerson Group Value Decomposition:
Communication and Betweenness

In this section we recover two results that appear in Flores et al. (2016) and
establish, in the spirit of Gomez et al. (2003), a general decomposition of the
Myerson group value into two different values: communication and between-
ness.

Let us first formalize the notion of being an intermediary. For a general
connected graph (N,Γ), let MΓ(S) = {S1, . . . , Sr} ̸= ∅ be the set of minimal
connection sets of S in Γ, and AMΓ(S) =

∪r
ℓ=1 Sℓ be the set of agents in

MΓ(S). That is, every subgraph (Sℓ,ΓSℓ
), ℓ = 1, . . . , r, is connected and

contains the subgraph (S,ΓS) and, for every other connected subgraph (T,ΓT )
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containing (S,ΓS), there exists ℓ ∈ {1, . . . , r} such that Sℓ ⊆ T . Note that
when (N,Γ) is a tree (i.e., a connected graph that contains no cycle), then
for every S ⊆ N there exists a unique smallest connected subgraph in Γ
which contains the subgraph (S,ΓS); we will call this subgraph the connected
hull (S,ΓS), and denote it by HΓ(S).3 The same occurs when (N,Γ) is a
cycle-complete connected graph; recall that the term cycle-complete graph was
introduced by van den Nouweland and Borm (1971) to refer to those graphs in
which for every cycle of distinct elements N ′ = {i1, i2, . . . , ik−1, ik} holds that
the subgraph induced by N ′ is a complete graph (i.e., all nodes are adjacent
to the remaining ones).

Given a social network (N,Γ) and a coalition S ⊆ N , the set of interme-
diaries of S in Γ is determined by

BetΓ(S) = AMΓ(S) \ S = {j /∈ S / ∃Sℓ ∈MΓ(S) with j ∈ Sℓ}.

Depending on the group C, two kinds of coalitions S ⊆ N with C∩AMΓ(S) ̸=
∅ can be distinguished: The coalitions S ⊆ N that incorporate agents of C,
and the ones that do not do it, but in which some members of C may be
needed to be connected.

Now it follows from (13.11) below that the Myerson value of group C can
be decomposed in the communication value, given by the portion of value
corresponding to those payoffs received as agents of different coalitions S with
S ∩ C ̸= ∅; and betweenness value, which corresponds to the payoffs received
as intermediaries between agents of coalitions S that do not intersect C.

Proposition 13.4 Again with the previous notation, if (N,Γ) is a connected
graph, then ϕg(C;N, vΓ) is given by

ϕCom(C;N, vΓ) + ϕBet(C;N, vΓ) =

=

communication value︷ ︸︸ ︷∑
S⊆N

S∩C ̸=∅

∆N (v, S)ϕc(NC , u
S
Γ,C)+

betweenness value︷ ︸︸ ︷∑
S⊆N\C

BetΓ(S)∩C ̸=∅

∆N (v, S)ϕc(NC , u
S
Γ,C) .

(13.11)

An explicit expression for ϕc(NC , uSΓ,C) can be found in Gomez et al. (2003)
(formula (11) on page 36). Moreover, if (N,Γ) is a cycle-complete connected
graph, (13.11) simplifies to (13.12):

3Formally, the subgraph which contains (S,ΓS) is the subgraph induced by HΓ(S).
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Proposition 13.5 In the previous notation, if (N,Γ) is a cycle-complete con-
nected graph, then ϕg(C;N, vΓ) is given by

ϕCom(C;N, vΓ) + ϕBet(C;N, vΓ) =

=

communication value︷ ︸︸ ︷∑
S⊆N

S∩C ̸=∅

∆N (v, S)

|HΓ(S) \ C|+ 1
+

betweenness value︷ ︸︸ ︷∑
S⊆N\C

HΓ(S)∩C ̸=∅

∆N (v, S)

|HΓ(S) \ C|+ 1
(13.12)

13.3.2 Communication and Betweenness Redundancy
In this last section, we will discuss the concept of redundancy between groups
of agents. We will use the crucial decomposition of Proposition 13.4 to de-
scribe, by means of an example, how the proposed group measure accounts
for the two kinds of redundancy considered by Borgatti (2006): Redundancy
with respect to adjacency and distance, and redundancy with respect to bridg-
ing. Observe that this notion of redundancy is very close to the profitability of
groups defined in Section 13.2.1; however, it receives a different name in the
context of networks, as the presence of a graph makes more pertinent to ask
if the players are redundant than to understand if they win or lose by staying
in the same group (or not). Let us state the main definition:

Definition 13.7 Denote by (N,Γ) be a social network, and by (N, v) a TU
game. Then, the redundancy between two players i and j is defined as:

Red(i, j,N, v,Γ) := γgi (N, v,Γ) + γgj (N, v,Γ)− γ
g
i∪j(N, v,Γ),

for every pair of groups i, j ⊆ N .

In particular, we remark that negative redundancy can be interpreted as
profitability between groups, and then can be seen as a positive feature. Let
us explain now the aforementioned two kinds of redundancy with the aid of
an example which can be found in Flores et al. (2016).

Example 13.4 Let (N, v) be a symmetric TU game, and consider the follow-
ing social network depicted in Figure 13.3.

Consider now the group C = {5, 6}; the redundancy of its agents (see
Definition 13.7) is given by Red({5}, {6}, N, v,Γ) = ϕ5(N, v,Γ)+ϕ6(N, v,Γ)−
ϕg{5,6}(N, v,Γ).

Applying (13.11) to the computation of ϕ5(N, v,Γ), ϕ6(N, v,Γ) and
ϕ{5,6}(N, v,Γ), the difference between the two kinds of redundancy of 5 and
6 are apparent. The change of the communication value when agents 5 and
6 form a group implies a redundancy with respect to adjacency and distance
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FIGURE 13.3: Social Network. Example 1 in Flores et al. (2016).

(communication-redundancy), whereas the change of betweenness implies re-
dundancy with respect to bridging (betweenness-redundancy), i.e.:

Red({5}, {6}, N, v,Γ) = ComRed({5}, {6}, N, v,Γ)+BetRed({5}, {6}, N, v,Γ).

With this nomenclature, using the first summand of (13.11) and after some
calculations, the communication-redundancy of agents 5 and 6 is denoted by
ComRed({5}, {6}, N, v,Γ) and given by:

1

6
∆N (v, {5, 6}) +

∑
S⊆N

{5,6}⊂S

( |HΓ(S)| − 2

|HΓ(S)|(|HΓ(S)| − 1)

)
︸ ︷︷ ︸

≥0

∆N (v, S). (13.13)

In the same way, the second summand of formula (13.11) gives the
betweenness-redundancy of these players, denoted by BetRed({5}, {6}, N, v,Γ)
and given by:∑

∅̸=S1⊆{1,2,3,4}
∅̸=S2⊆{7,8,9,10}

( 1

k1 + k2 + 1
− 2

k1 + k2 + 2

)
︸ ︷︷ ︸

≤0

∆N (v, S1 ∪ S2), (13.14)

where k1 = |HΓ(S1 ∪ {1})| and k2 = |HΓ(S2 ∪ {7})|. Observe that the co-
efficients in (13.13) are positive and the coefficients in (13.14) are negative.
Hence, it can be established that in this case the agents are redundant for
spreading purposes, although both are necessary if the goal is to break the com-
munications. It should be pointed out that the above coefficients deal with the
structure of the network, but not with the interest in forming coalitions. The
latter is measured through the Harsanyi dividends of coalition S in (13.13),
while those of S1 ∪ S2 in (13.14) also determine the amount of positive and
negative redundancy.

In Flores et al. (2016), it is considered a particular game that models
the case in which the organization is interested in transmitting information
through bilateral channels, and it is shown how agents 5 and 6 are redundant
for spreading purposes, but they are complementary with respect to bridging.
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It should be remarked that our previous decomposition results only deal
with connected social networks. Nevertheless, this is not an important hand-
icap, since the Myerson value of a group in a disconnected graph is the sum
of the Myerson value of the maximal subgroups in the connected components
of the graph.

Proposition 13.6 Denote again by (N,Γ) a social network, and let (N, v) be
a TU game. If (N,Γ) is a disconnected graph, call (Nk,Γk), k = 1, . . . , r, its
connected components. Then ϕgC(N, v,Γ) =

∑r
k=1 ϕ

g
Ck(N

k, vk,Γk), where vk
stands for the restriction of v to Nk and Ck = C ∩Nk.

13.4 Conclusions
In this review we have shown the potential of the Generalized Shapley value
introduced by Marichal et al. (2007) as a tool for evaluating the prospects of
a group of agents that act in a coordinated way in a multi-person interaction
situation. Some relevant examples of situations illustrating the importance of
this kind of evaluation have been described. Considering that in many cases
this necessity arises in the context of social networks, its generalization à la
Myerson is also reviewed as a key concept for the assessment of groups when
the affinities between the agents involved in the problem are considered.

In order to show the validity and the interest of this extension of the Shap-
ley value as a tool for evaluating groups, we have focused on those properties
and features of the value which are important from the point of view of group
valuation and we have shown their applicability by means of two simple and
interesting examples. In this sense, for the Shapley group value we have recov-
ered an axiomatic characterization that does not include a direct formulation
of the classical efficiency axiom. We have also shown how the ideas of com-
plementarity and substitutability relate to profitability of acting as a group,
and the two components that determine the marginal contribution of a new
player to a group that is already formed, which combine interaction and in-
dependence. With respect to the Myerson group value, we have focused on its
usefulness to distinguish between two kinds of value, for connecting and for
intermediating, as well as between two kinds of redundancy of agents, with
respect to adjacency and to distance.

This review is based mainly on the work of Marichal et al. (2007) about
generalized values and the works of Flores et al. of 2016 and 2018, in which
the application of the generalized Shapley value and the Myerson group value
as a tool to evaluate groups is analyzed in detail and motivated with the aid
of some relevant applications.
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14.1 Introduction
Shapley, in his seminal article [50], introduced a value for cooperative games
which is uniquely characterized by some natural axioms; since then, the value
has had a great impact both theoretically and practicaly. As conspicuous
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examples of theoretical works we mention [25, 28, 43], and [27, 45] which con-
tain compilations of practical results in the cooperative and voting contexts.

The restriction of the Shapley value to simple games is known as the
Shapley-Shubik power index [51]. As pointed out by Felsenthal and Ma-
chover [31], the index can be interpreted as measure of power as a payoff
(e.g., when dividing a cake or a unit of a divisible object among players). The
index as a measure of influence is more questionable because the axiom of
efficiency has no interest, a remarkable characterization of the index without
using efficiency can be found in [26]. In addition, the valuable probabilistic
model considered for the Shapley value in cooperative games loses its interest
for simple games in which the players do not necessarily wish to vote in favor
of the proposal in their turn of vote. As observed in [29] and in [9], an al-
ternative model based on roll-calls also extends to the cooperative framework
and it is the key for finding, as done in this paper, an explicit formula for a
value on the class of multichoice games (here denoted as j-cooperative games
for coherence) that respects the original model by Shapley. We do not call it
“Shapley value” because as explained below there are already many different
values with such denomination, which can cause confusion. The idea of this
value is based on the player gain capacity and on the blocking capacity in her
turn to vote.

In the context of cooperative games, players decide whether or not to coop-
erate and this is their only possible action. Several more general models have
been considered with more than two actions for players. Just to recall some
of them, Bolger [14, 15, 16, 17] considered games with n players and r alter-
natives, not necessarily ordered or comparable among them, Amer et al. [5, 6]
considered games with multiple alternatives and called them r-games, closely
related with Bolger’s model. Bolger defines and axiomatically characterizes an
extension of the Shapley value to games with alternatives, whereas the index
due to Penrose [47], Banzhaf [7], Coleman [22] is extended by Amer et al. [5].
Nevertheless, all these values refer to the value of a player for a particular
alternative.

Bicooperative games are introduced in [10]. In these games ordered pairs of
disjoint coalitions of players are considered. Each such pair yields a partition
of the set of all players in three groups. Players in the first coalition are in
favor of the proposal, and players in the second coalition object to it. The
remaining players are not convinced of its benefits, but they have no intention
of objecting to it. The characteristic function can be interpreted as a positive
maximal gain or as a negative minimal loss. A value of zero is assigned to
the tripartition in which everybody is indifferent. Thus, the value zero plays
a central position in the characteristic function of a bicooperative game and
the game can be regarded as a balance between two opposite forces. A notion
of the Shapley value in this context is provided in [12, 13].

Multi-choice games are considered by Hsiao and Raghavan [40, 41]. These
authors consider games in which the actions of the players are ordered in the
sense that, for every pair of different actions one action carries more weight
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than the other action. In their model, they reserve an action for those who are
not active at any level. Hsiao and Raghavan also define a (matricial) notion
of the Shapley value in multi-choice games that depends on actions. Some
variants of their value are proposed in [39, 49].

Extensions of simple games are mainly proposed in [30], for voting games
including abstention as an intermediate input level, and in [34] where (j, k)-
simple games are considered a class of games in which voters may choose
any of j ordered levels of approval and k stands for the number of aggregated
ordered results. The last work provides a notion of weighted game endorsed by
characterizations of the property of trade-robustness. Other important notions
as those of the desirability relation, transitivity, acyclicity, and hierarchies, are
extended in this broader context in [36, 37, 46, 48, 53].

In this paper we propose a value that has nothing to do with those cited
above, with all the ingredients for both j-cooperative games (a trivial more
convenient adaptation of multi-choice games) and j-simple games (i.e., (j, 2)-
simple games as defined in [34]). As shown below, the proposed value is con-
sistent in both frameworks and it gives a numerical evaluation for each player
independently of the input alternatives for players. The probabilistic model
used to create this value is that of roll-calls, which shows to be the correct
one for both j-cooperative games and j-simple games. This feature is opposed
to the original probabilistic model used by Shapley [50, 52] and Shapley-
Shubik [51] and which has been rightly criticized by several authors as highly
artificial (see, for instance, [42] or [18]) when referring to simple games.

The rest of the chapter is organized as follows. In Section 14.2 some mo-
tivating examples are presented. Section 14.3 introduces some preliminaries
and the contexts of j-cooperative games and j-simple games. A value with
its explicit formula is proposed for the class of j-cooperative games in Sec-
tion 14.4. Section 14.5 provides a probabilistic model as a justification of the
value. Section 14.6 proves that the value for two input alternatives coincides,
as expected, with the Shapley value. An alternative formula to compute the
proposed value is given in Section 14.7. Section 14.8 proposes an axiomatic
characterization following the seminal ideas of Shapley’s axiomatization for
his value; the main contribution lies on the introduction of a fifth axiom for
unanimity games. After defining the meaning of constant sum game for j-
cooperative games, we compute their proposed value in Section 14.9. The
method of generating functions for computing the value for weighted 3-simple
games is shown in Section 14.10 and used to compute the value for the vot-
ing system of the United Nations Security Council and for a variant of it that
avoids the veto-right of permanent nations. The examples are revisited in Sec-
tion 14.11 and the value is computed for them. A brief Conclusion ends the
paper in Section 14.12.
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14.2 Some Motivating Examples
In this section, we present some examples to illustrate the versatility of the
kind of games we consider. We start with a very simple example of a ternary
voting game already considered by Felsenthal and Machover [31]. Then we
continue with an example of economic nature, another of academic activities,
the description of the United Nations Security Council voting system and
also a new modified version for it that avoids the veto-right of the permanent
members without harming these five nations too much. In describing these
examples, we use some intuitive terminology which is concisely defined in the
next section. A value that captures the idea of Shapley’s value for cooperative
games is proposed in Section 14.4 for a more general context. Such value will
be computed in Section 14.11 for all the examples described in the rest of this
section.

Example 14.1 (A ternary voting game) Consider Example 8.3.7, page
288 in [31]. The set of voters is N = {a, b, c} and the bill is passed if voter a
votes for it and at least one of the other two does not oppose it. From the 27
possible ways to vote for members in N , there are only 8 that pass the bill.

Example 14.2 (A team of workers) A team of three workers have to per-
form a task. All three can carry out their task at three different levels: Full
involvement, medium involvement and lack of involvement. Only one of them,
called a, is qualified to operate a machine that is essential to achieve a satis-
factory execution of the work to be done. The other two workers, called b and
c, play a symmetrical role and also turn out to be indispensable together and
a lack of involvement on the part of the two would be fatal for the execution
of the task. Other combinations for these two workers with at least a medium
involvement by worker a lead to more or less satisfactory results depending
on the degree of involvement for these two workers. Full involvement by the
three suppose a win of 4 thousand euros. The following characteristic function
specifies the gain for all combinations

v(S) =


4− |S2| − 2|S3| if a ∈ S1

max {0, |S1| − |S3|} if a ∈ S2

0 if a ∈ S3

where S = (S1, S2, S3) and S1 contains the workers with full involvement, S2

contains the workers with an intermediate involvement, and S3 contains the
rest of the workers with the lowest level of involvement.

If we do not have any information about workers’ attitude and the workers,
how should the total gain be distributed among them? The value we propose
in this paper assigns to them: (2, 1, 1) where the payment 2 is for the qualified
worker a.
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Example 14.3 (A two-part test) A test has two parts, a and b, which con-
sist of ten questions each. Each question is binary scored by: 1 if it is correct
and 0 otherwise. Thus, the result for each part is the number of corrected
answers which is a number from 0 to 10. The aggregated result for the test is
a weighted mean of the well-answered questions. Part a is weighted as a 60%
and part b is weighted as a 40%.

Let N = {a, b} be the set of parts of the test. Let S = (S1, S2, . . . , S10, S11)
be a 11-partition of N in which Si contains the parts of the test with a score
of 11 − i for i = 1, 2, . . . , 10, 11. If a ∈ Sh and b ∈ Si, then the aggregated
score is given by V (S) = 6(11− h) + 4(11− i) = 110− 6h− 4i, which scales
the student’s test mark between 0 and 100.

If we do not have any information about possible differences, if they would
exist, between both tests, which is the importance of each test for the exam?
The value we propose in this paper assigns the intuitive answer: (60, 40) which
preserves the relative importance between the two parts.

Example 14.4 (The UNSC voting system) As noted by [31], the United
Nations Security Council (UNSC) can be modeled as a 3-simple game: A res-
olution is approved if there are at least nine members in favor and permanent
members are not against it. This means that also if some of the permanent
members abstain, without explicitly imposing the veto, a resolution can be
carried on. The resulting game v has 15 players, with the subset P of the
five permanent members, and a tripartition S = (S1, S2, S3) is winning (i.e.,
v(S) = 1) if and only if

|S1| ≥ 9 and S3 ∩ P = ∅.

where S1 contains the members in favor of the resolution, S3 the members
against it, and S2 the abstainers. For further discussion on this significant
system, see for example [23].

Example 14.5 (A modified voting system for the UNSC) The UNSC
is critical to global peace and security, yet more than twenty years of nego-
tiations over its reform have proved fruitless; see in [38] a survey on several
proposed reforms that have not been implemented.

A simple modified version of the UNSC voting game is proposed here that
does not involve changes in the world countries forming it, would consist in just
modifying the possibility of approval of a resolution if one permanent member
is against it but all the other members are in favor of it. This means that for
any permanent member p ∈ P , the five losing tripartitions (N ∖ {p}, ∅, {p})
of the current system convert into winning tripartitions, and this is the only
difference between the current and the proposed UNSC voting system. The
inclusion of these five tripartitions in the set of winning tripartitions prevents
the permanent members to have veto-right, but this situation only occurs when
the other fourteen countries agree to vote in favor of the resolution at hand.
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The next section is devoted to formally introduce the class of games we
deal with in this chapter.

14.3 Preliminaries: j-Cooperative Games
Let N be a finite set of players. A j-partition of N is a collection of j mutually
disjoint subsets of N , S1, . . . , Sj such that

∪j
k=1 Sk = N . Note that any Si

may be empty. Any subset S of N is called a coalition and we denote its
cardinality by s.

A j-partition describes a division of players among j alternatives or j
levels of voting approval or j possible actions or choices players can realize or
choose. We assume that these j different alternatives are ordered and convey
that level 1 corresponds to the highest level of performance, while the last,
level j, corresponds to the lowest level. Thus, players in S1 are those who
work at the highest level, while those in Sj work at the lowest level of activity.
In a voting context, voters in S1 are those who vote for the highest level
of approval, whereas those in Sj are those who vote for the lowest level of
approval. Thus, the convention chosen is ordinal rather than numerical.

From now on we denote with JN the set of all j-partitions on N endowed
with an (strict) order from the first (highest) order of performance or activity
to the last (lowest) one. Although we assume an order of the levels of activity,
we do not do any assumption over the quantification of these levels. Thus,
acting at the second level just means that such level of activity is lower than
in level 1 but greater than in level 3.

A partial order ⊆j on the set JN is considered. If S, T ∈ JN , then S ⊆j T
means Sk ⊆j

∪k
i=1 Ti for any k = 1, . . . , j − 1. In words, S is contained in T

if players in T are working or voting in the same or in a higher level than in
S. We use S ⊂j T if S ⊆j T and S ̸= T . The j-partitions N = (∅, . . . , ∅, N)
and M = (N, ∅, . . . , ∅) are respectively the minimum and maximum for the
order ⊆j .

A binary voting situation in which voters (we use the term voters instead
of the term players in the voting context) can vote among several ordered
alternatives can be formalized by a (j, 2)-simple game, i.e., voters can vote in
j different ordered ways to approve or reject a resolution and the aggregate
output is binary. As previously said, we refer to (j, 2)-simple game as j-simple
games throughout this article.

Definition 14.1 [[34]] Let N be a finite set and JN be the set of all totally
ordered j-partitions on N . A j-simple game is a function v : JN → {0, 1}
such that: (i) it is monotonic: If S ⊂j T , then v(S) ≤ v(T ); (ii) v(N ) = 0 and
v(M) = 1.
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We denote with SJN the space of all j-simple games on the finite set
N . Note that (2, 2)-simple games are simple games since for any bipartition
S = (S1, S2) the first component S1 is identified with the set of ‘yes’-voters
and S2 = N \ S1 with the set of ‘no’-voters. Thus, any bipartition is in one-
to-one correspondence with coalition S1. Note also that (3, 2)-simple games
can be interpreted as ternary voting games, as considered by [30], if the first
level of approval corresponds to voting ‘yes’, the second level to abstain and
the third level to voting ‘no’.

In any j-simple game, the aggregated output set is binary and represented
by {0, 1}, where these two numbers have the respective meaning that the
submitted proposal is either defeated or passed.

Definition 14.2 Let N be a finite set and JN be the set of all totally ordered
j-partitions on N . A j-cooperative game is a function v : JN → R such that
v(N ) = 0.

We denote by JN the space of j-cooperative games on the finite set N .
Note that a 2-cooperative game corresponds to a cooperative game in which
the bipartition S = (S1, N \ S1) is identified with the coalition S1 formed by
players who decide to cooperate.

The previous definition is almost equivalent to that of a multi-choice game
as defined in [40, 41]. A distinction is that in the multi-choice setting an
input level is distinguished from the others and reserved for lack of activity.
In our context the last input level does not necessarily mean a total lack of
activity and this becomes clear in the voting context, for j-simple games. For
instance, for ternary voting games (j = 3 with three input choices: Voting
‘yes’, ‘abstain’ or voting ‘no’) the last input level means voting against the
submitted proposal, which would not be coherent with the multi-choice model
and the same happens for other choices of j. Moreover, the restriction from
j-cooperative games to j-simple games becomes natural.

There are many interesting subclasses of cooperative games that can easily
be extended to j-cooperative games for j > 2. Here we just refer to mono-
tonicity.

A j-cooperative game is monotonic, if for any pair of j-partitions S and
T , such that S ⊂j T then v(S) ≤ v(T ).

Clearly, JN is a vectorial space of dimension jn− 1 and a basis formed by
monotonic j-cooperative games is the one of unanimity games defined as:

uS(T ) =

{
1, if S ⊆j T
0, otherwise,

for all j-partition S ̸= N .
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14.4 A Value for j-Cooperative Games
Let us introduce the following notation. From a given j-partition S, we define
the j-partition Sa↑k

in which player a has moved from the lowest level j to
the superior level k (k < j), and the j-partition Sa↓k

in which player a has
moved from the highest level of activity 1 to the inferior level k (k > 1). If
a ∈ Sj :

Sa↑k
= (S1, . . . , Sk ∪ {a}, . . . , Sj ∖ {a})

for any k = 1, · · · , j − 1; and if a ∈ S1:
Sa↓k

= (S1 ∖ {a}, . . . , Sk ∪ {a}, . . . , Sj)
for any k = 2, · · · , j.

The idea we pursue with these two definitions is to consider two special
types of marginal contributions for j-partitions in a given game v:

mk(v, S, a) = v(Sa↑k
)− v(S) if a ∈ Sj

mk(v, S, a) = v(S)− v(Sa↓k
) if a ∈ S1

In the next definition, we propose a value for j-cooperative games inspired with
the ideas of the Shapley value, [50], for cooperative games. The explicit formula
for the proposed value depends on the marginal contributions mk(v, S, a) and
mk(v, S, a). Before showing its explicit formulation, we give an intuitive idea
that later will be justified.

In her turn, player a can achieve in choosing the input k an additional gain
of mk(v, S, a) with respect to the gain obtained from her predecessors with
the choice of the input each made. But, with the choice of input k, player a
also prevents her predecessors from obtaining the extra gain of mk(v, S, a).
Thus, in some sense, player a has a double capacity: That of direct gain and
that of blocking extra gain.

Definition 14.3 (A value for j-cooperative games) For any v ∈ JN
and any player a ∈ N , the F-value is defined as

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

j−1∑
k=1

γn
j (sj − 1)mk(v, S, a) +

∑
S∈JN :
a∈S1

j∑
k=2

γn
j (s1 − 1)mk(v, S, a)


(14.1)

where

γnj (t) = t!jt
t∑
i=0

(n− t− 1 + i)!

jii!
, (14.2)

for t = 0, 1, . . . , n− 1.

We show the coefficients in (14.2) in the next three tables for small values
of n, n ≤ 6 and for: j = 2 (Table 14.1), j = 3 (Table 14.2), and j = 4
(Table 14.3).
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n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 3
3 2 4 14
4 6 10 22 90
5 24 36 64 156 744
6 120 168 264 504 1368 7560

TABLE 14.1: Numerical coefficients γn2 (t) for 2-cooperative games up to 6
players.

n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 4
3 2 5 26
4 6 12 36 240
5 24 42 96 348 2904
6 120 192 372 984 4296 43680

TABLE 14.2: Numerical coefficients γn3 (t) for 3-cooperative games up to 6
players.

n ↓ | t→ 0 1 2 3 4 5
1 1
2 1 5
3 2 6 42
4 6 14 54 510
5 24 48 136 672 8184
6 120 216 504 1752 10872 163800

TABLE 14.3: Numerical coefficients γn4 (t) for 2-cooperative games up to 6
players.
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14.5 Probabilistic Justification of the F-Value
In the following we mainly use the notation from [32] and also refer to [29,
30, 31] for precise definitions when the number of input alternatives is 3. We
consider a probabilistic model in which two relevant data for each player a ∈ N
are taken: The ordering in the queue for a and the input alternative chosen for
a in her turn. A roll-call specifies these two data for each player, so that the
number of roll-calls is n!jn. Let RNj be the set of all roll-calls and R ∈ Rnj .

When we are restricted to j-simple games the notion of pivotal voter is
crucial and extendable to j-cooperative games.

Voter a is pivotal in the j-simple game if she is the only one who decides
the (binary) outcome after her election of the input, no matter how the others
following her in the queue will vote. The idea of a value that has all the
ingredients of the Shapley-Shubik power index for j-simple games is based on
the definition given in [32].

For any v ∈ JN and any player a ∈ N , the f -power index

fa(v) =
|{R ∈ Rnj : a = piv(R, v)}|

jnn!
.

This formula measures the probability of being a pivotal voter in the space
of all roll-calls with the uniform distribution. It has the disadvantage that does
not depend on the characteristic function v.

Although there is a single pivotal player in a roll-call, we can distinguish
between two types of being a pivotal player in a j-simple game. A player a is
positively pivotal if after voting for the k-input the j-partition of those who
voted before her with the rest of the players voting for the lowest level j is
winning. Instead, a player a is negatively pivotal if after voting for the k-input
the j-partition of those who voted before her with the rest of players voting
for the first level of approval is losing, i.e., although all voters following a in
the queue were to vote for the first level of approval, the result of the vote
would still be ‘losing’.

This idea of pivotal player and its two versions for a roll-call is easily
extendible to j-cooperative games. Apart of doing such extension, we also
wish to express the proposed value for a j-cooperative game in terms of the
marginal contributions mk(v, S, a) and mk(v, S, a) that involve j-partitions
rather than roll-calls. Thus, the idea is to associate a set of roll-calls with
each j-partition with the idea described above when adapting from a positively
pivotal player (for j-simple games) to the marginal contribution mk(v, S, a)
(for j-cooperative games). Similarly, a set of roll-calls is associated with each j-
partition when adapting from a negatively pivotal player (for j-simple games)
to the marginal contribution mk(v, S, a) (for j-cooperative games). This is
collected by the coefficient γnj (t) given in Equation (14.2).
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Given a subset T of N with cardinality t and a player a /∈ T , the coefficient
γnj (t) counts the number of roll-calls such that:

• all players in N \(T ∪ {a}) precede a in the queue and thus have already
chosen the input level;

• players in T either precede or follow a in the queue:

– if they precede a in the queue, they have already chosen the input
level, while

– if they follow a in the queue, they have not yet chosen the input
level and thus all j input alternatives are counted.

Let us call this set the T -free set of roll-calls for a, since no matter if players
in T precede or not a in the queue. Players preceding a are the only ones who
have already chosen their input alternative.

Lemma 14.1 The cardinality of the T -free set of roll-calls for a given player
a /∈ T is γnj (t).

Proof. Consider the T -free set of roll-calls for a given player a /∈ T . Let i be
the number of players in T preceding a, thus i can be any number between 0
and t.

The number of players preceding a in the queue are n − t − 1 + i since
a ∈ N \ T . As all orderings for these players are allowed, we have for them
(n − t − 1 + i)! possible orderings. Any subset of i players in T may precede
a, thus

(
t
i

)
is the number of elections for them.

The number of players following a in the queue are then t − i, again as
all orderings for these players are allowed we have for them (t − i)! possible
orderings. Moreover, these players can choose any input alternative, so that
we have for them jt−i choices.

By applying the multiplication principle, it follows that the T -free set of
roll-calls for a given player not belonging to T is:

t∑
i=0

(n− t− 1 + i)!

(
t

i

)
(t− i)!jt−i

and after taking out common factors

γnj (t) = t!jt
t∑
i=0

(n− t− 1 + i)!

jii!

as stated.

Theorem 14.1 The value based on marginal contributions under the uniform
probability scheme for roll-calls is the F-value.
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Proof. The marginal contribution mk(v, S, a) for player a ∈ Sj is the gain
that player a can assure to j-partition S when the player in her turn chooses
the k-level of activity instead of the lowest level j, i.e., it is the gain capacity
for a in her turn. Such gain capacity after choosing the k-level is quantified
as v(Sa↑k)− v(S) with a ∈ Sj .

The multiplication factor of mk(v, S, a) only depends on the number of
players in Sj \ {a}, sj − 1, and counts all (Sj −{a})-free roll-calls that can be
formed according to Lemma 14.1, i.e., the number of roll-calls for which a adds
the value mk(v, S, a). As k is any number in between 1 and j − 1 and a ∈ Sj
is the only requirement for S, we consider the two former addends in the first
part of Equation (14.1). After dividing by the total number of roll-calls jnn!
we obtain the total gain capacity for a.

Similarly, the marginal contribution mk(v, S, a) for player a ∈ S1 is the lost
gain that player a causes to j-partition S when the player in her turn chooses
the k-level of activity instead of the highest level of activity 1, i.e., it is the
blocking capacity for a in her turn. Such blocking capacity after choosing the
k-level is quantified as v(S)− v(Sa↓k) with a ∈ S1.

The multiplication factor of mk(v, S, a) only depends on the number of
players in S1 \ {a}, s1 − 1, and counts all (S1 − {a})-free roll-calls that can
be formed according to Lemma 14.1, i.e., the number of roll-calls for which
player a causes a loss of mk(v, S, a). As k is any number in between 2 and j
and a ∈ S1 is the only requirement for S, we consider the two last addends
in the second part of Equation (14.1). After dividing by the total number of
roll-calls jnn! we obtain the total blocking capacity for a.

14.6 The F-Value Restricted to Cooperative Games Is
the Shapley Value

The purpose of this section is to prove that the F-value for 2-cooperative
games is the Shapley value for cooperative games. Cooperative games are 2-
cooperative games in our context and therefore the value of coalition S ⊆ N
in a cooperative game is the value of the bipartition (S,N \ S). Thus, we can
indistinctly write v(S) or v(S,N \ S).

Thus, to prove our claim, we need to demonstrate the coincidence of the
value in (14.1) with the Shapley value.

The well-known formula of the Shapley value in terms of the marginal
contributions of the characteristic function is given by:

ϕa(v) =
∑

S⊆N∖{a}

ρn(s)[v(S ∪ {a})− v(S)], (14.3)
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where s = |S| and

ρn(s) =
s!(n− s− 1)!

n!
.

Less known is the equivalent expression for the Shapley value [9]. For any
a ∈ N :

ϕa(v) =
∑

S⊆N∖{a}

Γn(s)[v(S ∪ {a})− v(S)], (14.4)

where s = |S| and for any s = 0, . . . , n− 1:

Γn(s) =
1

2nn!

[
s!

s∑
k=0

(n− k − 1)!

(s− k)!
2k + (n− s− 1)!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k

]
(14.5)

By using the coefficients: λn(s) = s!
∑s
k=0

(n−k−1)!
(s−k)! 2k for s = 0, 1, . . . , n − 1

then equation (14.5) can be expressed as:

Γn(s) =
1

2nn!
[λn(s) + λn(n− s− 1)]

Theorem 14.2 The F-value for 2-cooperative games coincides with the Shap-
ley value.

Proof. We need to prove the equivalence of formulas (14.1) and (14.3). For-
mula (14.1) for j = 2 becomes

Φa(v) =
1

2nn!

 ∑
S∈2N :
a∈S2

γn2 (s2 − 1)m1(v, S, a) +
∑
S∈2N :
a∈S1

γn2 (s1 − 1)m2(v, S, a)


which is equivalent to

Φa(v) =
1

2nn!

 ∑
S1⊆N\{a}

(γn2 (n− s1 − 1) + γn2 (s1 − 1))(v(S1 ∪ {a})− v(S1))


where in the last expression the characteristic function v is applied to coalition
S1 instead of the 2-partition (S1, N \ S1).

By rearranging properly the subscripts, we obtain the two next equalities:

λn(n− s1 − 1) = γn2 (n− s1 − 1) and λn(s1) = γn2 (s1)

This shows the equivalence of the F-value with the value in (14.4). The proof
of Corollary 3 in [9] shows the equality of the coefficients ρn(s) and Γn(s)
for every 0 ≤ s ≤ n − 1 and therefore the equivalence of the F-value for
2-cooperative games with the Shapley value for cooperative games.
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14.7 Another Formulation for the F-Value
The value F for j-cooperative games proposed in the previous section is given
in terms of some marginal contributions as shown in (14.1), but it also can be
expressed as a linear combination of the different values of the characteristic
function on each j-partition.

Indeed, the next proposition is directly obtained from (14.1) by conve-
niently grouping the coefficients of v(S) for each j-partition S ̸= N . Therefore,
we omit its simple proof.

Proposition 14.1 For any v ∈ JN and any player a ∈ N , the F-value admits
the expression

Fa(v) =
∑
S∈JN

bnj (s1, sj)v(S) (14.6)

where

b(s1, sj) =



γnj (sj) + (j − 1)γnj (s1 − 1)

jnn!
, if a ∈ S1

γnj (sj)− γnj (s1)
jnn!

, if a ∈ Si, 1 < i < j

−
γnj (s1) + (j − 1)γnj (sj − 1)

jnn!
, if a ∈ Sj

(14.7)

and s1 ≥ 0, n > sj ≥ 0 and s1 + sj ≤ n.

Note that b(s1, sj) = 0 for every S with s1 = sj (with a ∈ Si for some
1 < i < j).

The next equation shows Formula (14.6) for j = 3 and player set N =
{a, b}.

Fa(v) =
1

2
v({a, b}, ∅, ∅) + 1

6
v({a}, {b}, ∅) + 1

3
v({a}, ∅, {b})− 1

6
v({b}, {a}, ∅)

+
1

6
v(∅, {a}, {b})− 1

3
v({b}, ∅, {a})− 1

6
v(∅, {b}, {a}).

As a simple illustration on the different types of computing the value pro-
posed, we revisit the first example described in Section 14.2.

The voting system in Example 14.1 is a 3-simple game and it can be de-
scribed by the set of minimal winning tripartitions (i.e., minimal winning
tripartitions with respect to the inclusion ⊆3) trivially defined from the char-
acteristic function v:

Wm(v) = {({a}, {b}, {c}) , ({a}, {c}, {b})}
by monotonicity it is easy to generate the six remaining winning tripartitions.
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We start with this example by showing three ways to compute the f-power
index. We will see that these three successive methods are becoming simpler
since the first involves all roll-calls, the second all tripartitions, whereas the
third only winning tripartitions. Thus, the gain in each step is significant.

The first procedure described in [31] involves all roll-calls and is based on
the definition of pivotal player

fa(v) =
|{R ∈ Rnj : a = piv(R, v)}|

jnn!
, (14.8)

for j = 3. Following [31] to compute (14.8), it follows that:

1. a votes first and does not vote ‘yes’. This probability is 2
9 .

2. a votes second, the first voter voted ‘no’ and a does not vote ‘yes’. This
has probability 2

27 .

3. a votes second and the first voter did not vote ‘no’. The probability is
6
27 .

4. a votes last, and the other two did not vote ‘no’. This has probability
8
27 .

Thus, fa(v) = 22
27 ; and by anonymity and efficiency fb(v) = fc(v) =

5
54 .

The second procedure uses (14.1) directly for n = j = 3 so that the coeffi-
cients are: γ33(0) = 2, γ33(1) = 5, γ33(2) = 26 (see the third row in Table 14.2)
which need to be accounted only for the marginal contributions being equal
to 1 and for tripartitions S with either a ∈ S1 or a ∈ S3:

1. 2 of these marginal contributions for a have coefficient 26,

2. 12 of these marginal contributions for a have coefficient 5, and

3. 12 of these marginal contributions for a have coefficient 2.

Thus, we obtain, as expected, the same result. As shown in this example, in
general it becomes simpler to deal with j-partitions, with a total number of
jn elements, than roll-calls that count n!jn elements.

The third procedure involves only winning tripartitions since we apply
Equation (14.6) and its coefficients in (14.7). As the number of winning tri-
partitions in this example is 8, the expression in (14.6) is just the sum of the
coefficients in (14.7) corresponding to winning tripartitions. All these coeffi-
cients have as a denominator the number of roll-calls: 3!33 = 162. Thus, we
just need to compute the numerators in (14.7) for the winning tripartitions
(we ignore the superscript and subscript since for this game n = j = 3). These
numerators, b′(s1, sj) = 162 · b(s1, sj), are shown in Table 14.4. The sum of
these coefficients is, as expected, 132 so that fa(v) =

22
27 .

It is important to note that some existing values that are called ‘Shapley
value’ for some extensions of cooperative games do not coincide with the F-
value. For instance, we have checked for this simple example the values given
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winning tripartitions b′(s1, sj)

({a, b, c}, ∅, ∅) b′(3, 0) = 54

({a, b}, {c}, ∅) b′(2, 0) = 12

({a, c}, {b}, ∅) b′(2, 0) = 12

({a, b}, ∅, {c}) b′(2, 1) = 15

({a, c}, ∅, {b}) b′(2, 1) = 15

({a}, {b, c}, ∅) b′(1, 0) = 6

({a}, {b}, {c}) b′(1, 1) = 9

({a}, {c}, {b}) b′(1, 1) = 9

TABLE 14.4: Numerators of the coefficients b(s1, sj) in (14.7) for this game.

by Hsiao and Raghavan for multi-choice games [41], by Bolger [14, 15, 17] for
games with r-alternatives or by Bilbao et al. [12] for bicooperative games. We
have obtained different results. Note that the F-value coincides with the power
index f when we are restricted to the ternary case (j = 3 with abstention as
intermediate input).

14.8 Axiomatization
The first idea that comes to mind is whether Shapley’s classic axioms or their
adaptation to j-cooperative games serves to characterize the considered value.

It is considerably simple to verify that these axioms are met for the con-
sidered value (see the list in next subsection) and it is also quite simple to
verify that these are not enough to uniquely characterize it. In cooperative
games the axioms of efficiency, anonymity and that of null player determine
the Shapley value of the unanimity games, which by induction and the axiom
of additivity (or transfer for simple games) uniquely extend the value to the
rest of the games.
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Thus, if we search for an axiomatic set including these axioms, it seems rea-
sonable to add a conclusive property for determining the value on unanimity
games.

14.8.1 Classical Axioms for j-Cooperative Games
In the following, ψ : JN → Rn is a value for j-cooperative games.

Anonymity (briefly denoted by An) The value ψ satisfies anonymity if for
all game v ∈ JN , any permutation π of N and any a ∈ N

ψa(v) = ψπ(a)(πv)

where (πv)(S) = v(π(S)).

Null Player (N) The value ψ satisfies the null player axiom if given a null
player1 a in the game v, then

ψa(v) = 0.

Efficiency (E) The index ψ satisfies efficiency if for any v ∈ JN∑
a∈N

ψa(v) = v(N).

Additivity (Ad) The value ψ satisfies additivity if for any v, w ∈ JN

ψ(v + w) = ψ(v) + ψ(w).

Transfer (T) The index ψ satisfies transfer if for any v, w ∈ SJN

ψ(v) + ψ(w) = ψ(v ∧ w) + ψ(v ∨ w),

where (v∧w)(S) = min{v(S), w(S)} and (v∨w)(S) = max{v(S), w(S)}
for all S ∈ JN .

We remark that in the characterization we provide in Theorem 14.3, the
weaker condition that can replace anonymity is symmetry. Two players a and
b are equivalent if for every S such that {a, b} ⊆ Sj it holds mk(v, S, a) =
mk(v, S, b) for all k = 1, . . . , j − 1. The value ψ satisfies symmetry if for any
a, b ∈ N and game v ∈ JN it holds: ψa(v) = ψb(v) if a and b are equivalent.

A particular case, for 3-simple games, has been proven in detail in [8] and
its extension to arbitrary j-cooperative games does not represent any difficulty
so that the tedious but simple proof is omitted. The following trivial result is
left for the reader.

1Player a is null in the j-cooperative game v ∈ JN if m1(v, S, a) = 0 for all a ∈ Sj .
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Lemma 14.2 (i) The f-power index for j-simple games satisfies the axioms
of: Anonymity, transfer, efficiency and null player.

(ii) The F-value for j-cooperative games satisfies the axioms of: Anonymity,
additivity, efficiency and null player.

The basic idea of the classical proof for the Shapley value for cooperative
games or the Shapley-Shubik power index for simple games is that the axioms
of anonymity, null player and efficiency uniquely characterize the value or
index on unanimity games, and as these games form a basis or a lattice of the
set of games the value or index uniquely extends to the rest of the games by
additivity for cooperative games and transfer for both types of games.

If we intend to follow the same thread as in the original respective proofs by
Shapley [50] and Dubey [24], we must ascertain how the F-value works on una-
nimity games. The following lemma establishes the case for which anonymity,
null-player and efficiency axioms are sufficient to determine a value on una-
nimity games.

Lemma 14.3 Let uS be the unanimity j-simple game. A value on uS is
uniquely determined by the axioms of anonymity, efficiency and null player if
and only if there is a unique i < j such that Si ̸= ∅.

Proof. (⇐) It is clear that all players in Sj are nulls in uS , while all players
in Si are anonymous in uS and as Si ∪ Sj = N by efficiency follows that all
players in Si receive 1/si, while the players in Sj receive 0 for the value.

(⇒) We proceed by the way of contradiction. Assume that for at least two
indices i < i′ < j we have Si ̸= ∅ and Si′ ̸= ∅ in the unanimity game uS .
Consider the value ψ which assigns 1/si to all players in Si and zero to the
others. Consider the value ψ′ which assigns 1/si′ to all players in Si′ and zero
to the others. These two different values satisfy anonymity, efficiency and null
player axioms, a contradiction with the uniqueness assumption.

The need of a new axiom to uniquely characterize the value on unanimity
games is now clear. Indeed, according to Lemma 14.3 only if j = 2 (i.e.,
for cooperative games) the three axioms uniquely determine the value on
unanimity games.

We propose a new axiom on unanimity games that together with the other
four uniquely characterize the F-value and the f-power index for j-cooperative
games and j-simple games, respectively.

14.8.2 An Axiom on Unanimity Games
Assume now j ≥ 3. Let S be any j-partition with a ∈ S1. When player a shifts
her vote to the lower input level i (i = 2, . . . , j − 1), we have the following
expression:
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Fa(uS)− ga(uS) =
j − 1

j − i
(Fa(uS)− ga(uS)) (14.9)

where ga(us) is the value derived by F in uS when a ∈ S1 is the last non-null
player in the queue of the roll-calls. Thus, it just lacks to find the value of
ga(uS) which is the proportion of roll-calls in which a is pivotal for uS and
occupies the last position among the non-null players in uS . Thus, ga(uS) is
the product of the following three numbers:

1. The proportion of roll-calls for which a is the last non-null player in the
queue. This number is

(s1 + s2 + · · ·+ sj−1 − 1)!

(s1 + s2 + · · ·+ sj−1)!
=

1

(s1 + s2 + · · ·+ sj−1)
=

1

n− sj
.

2. The proportion of roll-calls in which a is pivotal in the last non-null
player position in the queue. To be pivotal in the last position, it is
necessary that the rest of non-null players, who all precede her in the
queue, have chosen the same or a better input level than in S. Thus, in
her turn, player a can decide either to make a partition T winning by
choosing level 1 or losing by choosing levels 2, . . . , j. Thus, in order for
a to be pivotal, any j-partition T in which the non-null players in uS
different from a have already chosen the input level, with S ⊆j T must
be pivotal. In fact, T is winning in uS but it could be losing if a changes
her mind to vote for an inferior input level. Consider

|W (uS)|
jn

= δ(uS).

in which δ(v) is the structural decisiveness index of the game v which
gives the proportion of winning j-partitions in the game, this extension
to j-simple games leads to the structural decisiveness index. The struc-
tural decisiveness index for simple games was introduced by Coleman
[22] and studied in depth in Carreras [20, 21].

3. The number of input levels for which player a is pivotal when she is the
last non-null player in the queue is

j.

The product of these three numbers defines the unknown ga(uS) which is

ga(uS) = jδ(uS)
1

n− sj
=
jδ(uS)

n− sj
(14.10)

Thus, we can formulate the last axiom for an arbitrary value from (14.9)
and the last expression. Note that from (14.10) the expression ga(uS) can be
interpreted as the decisiveness per capita with respect to non-null players of
game uS multiplied by the number of available inputs for each player.
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Axiom of level change effect on unanimity games for j ≥ 3 (U) Let uS
be a unanimity game and a ∈ S1. Then

ψa(uSa↓i) =
1

j − 1
[(j − i)ψa(uS) + (i− 1)ga(uS)] (14.11)

The next result gives sense what we intend to.

Lemma 14.4 A value ψ for j-cooperative games that satisfies anonymity,
null-player, efficiency and level change effect on unanimity games is uniquely
determined on the set of unanimity games.

Proof. By the Axioms of (An) and (N), the value of ψ in any uS , where S
is a j-partition, depends only on the numbers si for all i = 1, . . . , j − 1 since
ψa(uS) = 0 if a ∈ Sj and ψa(uS) = ψb(uS) if a, b ∈ Si for some i. Thus,
form now on the vector s := (s1, s2, . . . , sj−1, sj) represents all j-partitions
S with these respective cardinalities. In particular, the vector (n, 0, . . . , 0)
represents the j-partition M which assigns a value of 1/n to each player
according to Lemma 14.3 which only assumes (An), (N) and (E). Now we
consider all vectors lexicographically ordered so that (n, 0, . . . , 0) is the first
in the ranking. The value ψ is then uniquely determined by (An), (N), (E)
and (U) on the unanimity games corresponding to the subsequent vectors in
the ordering: (n− 1, 1, 0, . . . , 0),...,(n− 1, 0, . . . , 0, 1). From the value of ψ on
all these unanimity games we can obtain the value of ψ for all the unanimity
games whose vectors verify that s1 = n−2 by applying by (An), (N), (E) and
(U). If m is the number of non-null components of s in between 2 and j − 1,
both included, then the Axiom (U) is applied m times so that m unanimity
games with known ψ with n−1 as a vectorial first component intervene. By the
finiteness of the number of vectors, the process stops with the determination
of ψ for all the unanimity games.

To clarify the preceding proof note that the value of ψ on uS with
s := (s1, s2, . . . , sj−1, sj) (s1 < n) is determined from the values of ψ on
unanimity games preceding s in lexicographic ordering and with a vecto-
rial first component of s1 + 1. Assume for example that j = 6, n = 8 and
s := (3, 0, 1, 2, 1, 0). By Axiom (U), which is given by the recurrence relation
in (14.11), ψ is determined in uS for the player in the third level from the value
of ψ in uT of a player in the first level of t := (4, 0, 0, 2, 1, 0). Analogously,
by Axiom (U) ψ is determined in uS for a player in the fourth level from the
value of ψ in uR of a player in the first level of r := (4, 0, 1, 1, 1, 0); and by
Axiom (U) ψ is determined in uS for the player in the fifth level from the
value of ψ in uX of a player in the first level of x := (4, 0, 1, 2, 0, 0). Finally,
the value of ψ for the three players in the first level of s are determined by
(E) and (An). Thus, ψ is determined on uS .
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14.8.3 An Axiomatization for the F-Value
The last step for uniquely characterizing the value F-value and the f-power
index on j-cooperative and j-simple games respectively is the extension to
all games, but this follows the same guidelines as in the seminal papers by
Shapley [50] and Dubey [24], respectively. In our framework the unanimity
games also form a basis of the set of j-cooperative games and by additivity
(and transfer for j-simple games) the value ψ uniquely extends to the rest
of games. We also refer to [8] for the proof for 3-simple games and whose
extension to the broader case of multiple input alternatives becomes tedious
but simple. The following just states the result.

Theorem 14.3 (i) A value ψ on j-cooperative games satisfies anonymity,
null player, efficiency, level change effect on unanimity games and ad-
ditivity if and only if ψ = F .

(ii) A value ψ on j-simple games satisfies anonymity, null player, efficiency,
level change effect on unanimity games and transfer if and only if ψ = f.

We conclude by pointing out that these five axioms are independent as
shown in [8] for 3-simple games. The examples used there easily extend to
greater values for j.

14.9 The F-Value on Constant-Sum j-Cooperative
Games

Given a j-cooperative game (N, v), we consider

a(k) := v(∅, . . . , ∅, {a}︸︷︷︸
k

, ∅, . . . , ∅, N \ {a})

which is the value that player a can obtain by choosing input level k and
without any degree of collaboration by the others. As v is requested to be
monotonic, it holds a(1) ≥ a(2) ≥ · · · ≥ a(j − 1) ≥ a(j) = 0. Thus, the maxi-
mum achievement player a can obtain by herself without the collaboration of
the others is a(1).

A j-cooperative game (N, v) is of constant-sum if

v(S) :=

j∑
i=1

∑
a∈Si

a(i)

for all S ∈ JN .
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The players do not take advantage of cooperation in this type of games,
cooperation does not provide any surplus to them. The following result is
quite intuitive and any reasonable value for j-cooperative games should give
the same assignment.

Theorem 14.4 Let (N, v) be a constant-sum j-cooperative game. Then,
Fa(v) = a(1) for all a ∈ N .

Proof. Observe that in a constant-sum game mk(v, S) = a(k), while
mk(v, S) = a(1)− a(k). Then Equation (14.1) becomes

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

j−1∑
k=1

γnj (sj − 1)a(k) +
∑
S∈JN :
a∈S1

j∑
k=2

γnj (s1 − 1)(a(1)− a(k))


As in the first addend there is one term with a(1) and a(j) = 0 it follows:

Fa(v) =
1

jnn!

 ∑
S∈JN :
a∈Sj

γnj (sj − 1)a(1) +
∑

S∈JN :
a∈S1

j∑
k=2

γnj (s1 − 1)a(1)

+

 ∑
S∈JN :
a∈Sj

j−1∑
k=2

γnj (sj − 1)−
∑

S∈JN :
a∈S1

j−1∑
k=2

γnj (s1 − 1)

 a(k)


(14.12)

As there is a bijection between the j-partitions in which a ∈ S1 and those
in which a ∈ Sj we can group the terms in the first row of (14.12) and
also deduce that the addends in the second row of (14.12) cancel. Thus, the
previous expression is simplified to

Fa(v) =
a(1)

jnn!

 ∑
S∈JN :
a∈S1

j∑
k=1

γnj (s1 − 1)

 =
a(1)

jnn!

 j∑
k=1

∑
S∈JN :
a∈S1

γnj (s1 − 1)


=
a(1)

jnn!

j
 ∑
S∈JN :
a∈S1

γnj (s1 − 1)




(14.13)
As the last addend in (14.13) counts the total number of roll-calls such that
a ∈ S1 which is jn−1n!, we have: Fa(v) = a(1).
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14.10 Generating Functions for Computing the F-Value
for Weighted j-Simple Games

In this section we show the method of generating functions to compute the
value proposed in this paper. Although everything we do is extendible to
j-simple games, for any j ≥ 2, we just consider, for avoiding more notation
complications, the case j = 3 which includes ternary voting systems. We focus
on this case because we are interested in computing the value for the UNSC
voting system and a natural variation of it.

Formula (14.1) for ternary cooperative game reduces to

Fa(v) = 1
3nn!

[ ∑
S:a∈S1

(γn3 (s3) + γn3 (s1 − 1)) [v(S)− v(Sa↓3
)]

]

+ 1
3nn!

[ ∑
S:a∈S1

γn3 (s1 − 1) [v(S)− v(Sa↓2)]

]

+ 1
3nn!

[ ∑
S:a∈S2

γn3 (s3) [v(S)− v(Sa↓3
)]

]
.

(14.14)

As in j-simple games, all marginal contributions are either 1 or 0, it is conve-
nient to use the two sets:

CY Aa (v) = {S ∈ 3N : a ∈ S1, S ∈W,Sa↓2 /∈W}
CANa (v) = {S ∈ 3N : a ∈ S1, Sa↓2

∈W,Sa↓3
/∈W }

and then compute the power index as

Fa(v) = 1
3nn!

[ ∑
S∈CY A

a (v)

(γn3 (s3) + 2γn3 (s1 − 1))

+ 1
3nn!

∑
S∈CAN

a (v)

(2γn3 (s3) + γn3 (s1 − 1))

]
.

(14.15)

The delay in the development of a convincing theory for simple games
with ordered alternatives is possibly due to the lack of a consistent notion
of weighted game in this context. This important issue was solved with the
concept of weighted j-simple game provided in [34]. A characterization for it
in terms of trade robustness was provided there, since then several alternative
works deal with the notion of weighted j-simple game, among others [35, 36,
37].

Such definition for binary voting systems reduces to the existence of j
ordered weights, that respect monotonicity, for each voter and a quota such
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that a j-partition S is winning if the sum of the weights of voters at the
level of approval they choose is greater or equal than the quota. As observed
in [34], one of these j weights can be normalized at zero. In the context of
ternary voting games where the options for voters are: Voting ‘yes’, ‘abstain-
ing’ or voting ‘no’, it seems natural normalizing at the level of abstention and
thus, every voter has a non-negative weight for voting yes and a non-positive
weight for voting no. Thus, we can associate to each voter a ∈ N the triple
(wyesa , wabsa , wnoa ) with wyesa ≥ wabsa ≥ wnoa , and after normalization at the
intermediate level, we have: wyesa ≥ 0, wabsa = 0 and wnoa ≤ 0.

Let us consider that a representation for the weighted game is:
v ≡ [q; (wyes1 , wno1 ), · · · , (wyesn , wnon )]

where q is the quota. Thus,

v(S) = 1 if and only if w(S) :=
∑
i∈S1

wyesi +
∑
i∈S3

wnoi ≥ q

Since we have the explicit formula (14.15), in case of a weighted game
we can compute the power index by using generating functions. Generating
functions for computing power indices have been used in many works among
others [1], [2], [3], [4], [11], [19], [44]. Generating functions for 3-simple games
have been used in [33] for computing the Banzhaf power index and some
other power indices. We now introduce generating functions for computing
the power index f for the UNSC voting system with abstention.

Definition 14.4 Let v ≡ [q; (wyes1 , wno1 ), · · · , (wyesn , wnon )] be a representation
of a weighted game with abstention. For any a ∈ N , the generating function
is defined as

Fa(x) =
∏

p∈N,p̸=a

(
yxw

yes
p + 1 + txw

no
p
)

(14.16)

Observe that the role of the variables y and t are the counting of the number
of ‘yes’-voters and ‘no’-voters, respectively. Then, there is no need to count
the number of abstainers since it can be deduced since the number of voters
is known. Note also that the power of the variable x is the weight, which in
the case of an abstainer is zero, which explains the 1 in the middle position.

The function Fa(x) can also be written as

Fa(x) =
w∑
k=w

n−1∑
i=0

n−i−1∑
j=0

bk,i,jy
itjxk

where w =
∑
i∈N w

no
i and w =

∑
i∈N w

yes
i .

In the previous formula, the coefficient bk,i,j counts the number of tripar-
titions S of total weight k such that there are i players in S1 and h players in
S3. Using these coefficients, Equation (14.15) becomes

Fa(v)=
1

3nn!

 q−1∑
k=q−w

yes
a

bk,i,h(2γ
n
j (i) + γn

j (h))+

q−wno
a −1∑

k=q

bk,i,h(γ
n
j (i) + 2γn

j (h))

 (14.17)
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for any player a such that CY Aa (v) ̸= ∅ and CANa (v) ̸= ∅. If voter a is null,
then the F-value is zero. If voter a is null in the Y A-level (which implies
CY Aa (v) = ∅) but not in the AN -level (which implies CANa (v) ̸= ∅), then the
first addend in (14.17) must be replaced by 0; and conversely, if voter a is
not null in the Y A-level (which implies CY Aa (v) ̸= ∅) but it is in the AN -
level (which implies CANa (v) = ∅), then the second addend in (14.17) must be
replaced by 0.

14.11 Examples Revisited
Example 14.6 (Example 14.2 revisited) As n = j = 3, the coefficients
in (14.2) are: γ33(0) = 2, γ33(1) = 5 and γ33(2) = 26; we then obtain F(v) =
(2, 1, 1) after the substitution in (14.1) where the payment 2 is for the qualified
worker a and 1 is the payment for each of the other two.

Example 14.7 (Example 14.3 revisited) Each test plays the role of a
player. As we did in the previous example, we could use (14.1) with its co-
efficients γ211(0) = 1 and γ211(1) = 12 to obtain F(v) = (60, 40). However,
the result directly follows from Theorem 14.4 since v is a constant-sum game.
Thus, the importance of each test for the exam is given by the intuitive assign-
ment (60, 40) that preserves the relative importance between the two parts.

Example 14.8 (Example 14.4 revisited) Recall that for the UNSC voting
system, the winning tripartitions S satisfy

|S1| ≥ 9 and S3 ∩ P = ∅.

We compute the value by using the method of generating functions. A weighted
representation for this voting system, see [34], is given by a threshold of 9 a
weight of (1, 0,−6) for each permanent member and a weight of (1, 0, 0) for a
non-permanent member.

We now compute the power index by using its expression in Equa-
tion (14.15). It is then clear that for a permanent member p it holds:

CY Ap (v) = {S : p ∈ S1, |S1| = 9, and |S3 ∩ P | = ∅}

and
CANp (v) = {S : p ∈ S1, |S1| > 9 and |S3 ∩ P | = ∅}.

So,

fp(v) =
6∑

s3=0

[2γ
15
3 (8) + γ

15
3 (s3)]

4∑
j=max{0,s3−2}

(4
j

)( 10

8 − j

)(j + 2

s3

)+

15∑
s1=10

15−s1∑
s3=0

[γ
15
3 (s1 − 1) + 2γ

15
3 (s3)]

4∑
j=max{0,s1+s3−11}

(4
j

)( 10

s1 − 1 − j

)(11 − s1 + j

s3

) .
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On the other hand, for a non-permanent r we have

CY Ar (v) = {S : r ∈ S1, |S1| = 9, and |S3 ∩ P | = ∅}

and CANr (v) = ∅. Thus,

fr(v) =
6∑

s3=0

[2γ153 (8) + γ153 (s3)]
5∑

j=max{0,s3−1}

(
5

j

)(
9

8− j

)(
j + 1

s3

) .

Using these formulas we obtain

fp(v) = 0.16338987329859317, fr(v) = 0.01830506335070341.

fp(v) ≈ 0.16339, fr(v) ≈ 0.018305.

It is a close result to the one computed in [31] by using (14.8), although it
differs a bit from it. Likely the difference lies in a rounding problem. Observe
that the relative importance according to this index for the two types of voters
is given by

fp(v)

fr(v)
≈ 8.93,

which is still too big in favor of the permanent nations.

Example 14.9 (Example 14.5 revisited) Recall that the modification of
the UNSC we have proposed converts the five losing tripartitions (N \
{p}, ∅, {p}) for all p ∈ P into winning. The remaining tripartitions do not
change its status.

This new 3-simple game can still be represented as a weighted game with
quota q = 9 and vector of weights for the permanent members (1, 0,−5) and
(1, 0, 0) for non-permanent members.

Using again the generating function method, the values we obtain for a
permanent member p and for a non-permanent member r are:

fp(v) = 0.013958034451108942, fq(v) = 0.030209827744455294.

fp(v) ≈ 0.013958, fq(v) ≈ 0.03021.

Observe that the relative importance according to this index for the two types
of voters is in this slightly modified example:

fp(v)

fr(v)
≈ 4.62.

i.e., the relative importance has been reduced to almost half with respect to the
standard model.

The United Nations Security Council is critical to global peace and secu-
rity, yet more than twenty years of negotiations over its reform have proved
fruitless. The change proposal we do for the UNSC voting system only alters
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five tripartitions over more than 14.3 million. As shown, this has two effects.
On the one hand, it reduces the relative power to the half between the two types
of voters and, on the other hand, it avoids veto power by permanent members
in an acceptable way:

‘if everyone thinks differently, it is that I must be wrong’.

14.12 Conclusions
The value proposed in this paper for j-cooperative games or multi-choice
games has ingredients to be a generalization of the Shapley value and it can
make stake out which is the most reasonable extension for the well-known
value to the broader context considered. Among the arguments supporting
the value proposed here, we can find the following: It is totally consistent in
its particularization from j-cooperative games to j-simple games; it admits
an explicit formula in terms of the characteristic function; it is supported
by a probabilistic model; it is supported by an axiomatic characterization; it
assigns to each player a single numerical value that does not depend on input
alternatives.

The capacity of theoretical studies and applications of the value on the
contexts described are enormous and future research is encouraged.
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15.1 Introduction
In recent years, as a result of an eminently globalized environment, the debate
on the necessary cooperation among states and firms has been intensified.
The absence of this cooperation among countries can cause both a race to
the bottom tax competition in fiscal policies and opacity or financial secrecy.
On the part of firms or individuals, it can cause underground economy, tax
evasion or fiscal fraud. All of them are inefficient behaviors.

In particular, the underground economy is a significant problem and diffi-
cult to deal with. The causes and negative effects of the underground economy
have been debated by authors as [2], [3], [9], and [10], among other authors.
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The solutions to be adopted to detect and reduce the underground economy
have been studied, for example, by [1], [5], [14], [15], and [16]. Three solutions
of particular relevance are the design of optimal tax systems, the increase
in transparency and information, and a greater severity of the punishments.
These elements allow to increase the capability to detect and discourage the
infringing behaviors. These efforts not only benefit the states themselves by
allowing an increase in tax collection, but also benefit all the firms that act
in accordance with the law, since it eliminates the competitors that acted in
a submerged manner.

However, carrying out effective policies focused at combating the under-
ground economy requires a high economic cost in human and material re-
sources that must be faced by the countries governments. Cooperation among
countries and firms could reduce these costs. For example, cooperation among
countries could be based on the desire for transparency and the transfer of in-
formation in order to facilitate the detection of fraudulent behavior, allowing
a reduction of costs. In addition, beyond the mandatory legal requirement, a
firm can make an effort to improve the transparency of its financial practice.
The firm can also just share any kind of relevant information with the tax
authorities. This cooperation could be rewarded by a tax reduction.

Inspired by the Spanish tax system, [7] introduce a cooperative model,
where the Government is considered the only benefactor, as it keeps costs
at the same level, zero cost, while reducing the costs of those investors who
act legally (beneficiaries). Investors may decide to cooperate or not cooperate
with the Government. If they decide to cooperate, the Government will pro-
vide a framework of legal certainty, which is in their benefit. On the contrary,
if investors decide not cooperate with the Government and try to defraud the
system by tax evasion, they can be detected and charged with unlawful be-
havior. Once this irregular behavior is demonstrated, they will be punished
and required to return all amount defrauded plus a penalty. This means that
the costs of not cooperating with the Government would be higher than co-
operating, and so all investors are willing to pay the lowest taxes under legal
protection of the Government. The authors present the class of corporation
tax games as an application of linear cost games to the corporate tax reduction
system.

Linear cost games were introduced by [6] as a particular case of k-norm cost
games with benefactor and beneficiaries, when k = 1. The authors introduce
a class of cost-coalitional problems, which are based on a priori information
about the cost faced by each agent in each set that it could belong to. Then,
they focus on problems with decreasingly monotonic coalitional costs. Their
paper studies the effects of giving and receiving, on cost-coalitional problems,
when there exist players whose participation in an alliance always contributes
to the savings of all alliance members (benefactors), and there also exist play-
ers whose cost decreases in such an alliance (beneficiaries).

[6] show that when there are multiple benefactors, an agent sees the same
individual costs in any coalition that contains at least one benefactor and is not
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all-inclusive. Thus, with a single benefactor all the members of a coalition may
see their cost increase if he leaves the group; they say that he is irreplaceable.
On the other hand, when there are several benefactors, the cost of a member
of the coalition remains the same as long as there is another benefactor in
the coalition; they say then that each benefactor in this case is replaceable.
They study separately the two cases, and use linear and quadratic norm cost
games to analyze the role played by benefactors and beneficiaries in achieving
stability of different cooperating alliances. Different notions of stability, the
core and the bargaining set, are considered there and provided conditions for
stability of the grand coalition which leads to minimum value of total cost
incurred by all agents.

In this chapter, we present a new model of corporate tax system with sev-
eral firms and countries (multiple dual benefactors). Countries are dual in the
sense they are benefactors (they reduce the cost of both firms and other coun-
tries) and beneficiaries (the information provided by other countries reduces
its cost). They are also irreplaceable benefactors because all the members of a
coalition may see their cost increase if one of them leaves the group. It differs
from the corporate tax system given by [7] in the following three points. First,
there is a single benefactor there. Moreover, the definition of benefactor given
by [7] is a particular case of the definition of dual and irreplaceable benefac-
tor given here. We can say that dual benefactors here generalize benefactors
there. Second, the concept of beneficiary in [7] is less restrictive than the one
considered here. We can say that a beneficiary here is a beneficiary in the cor-
porate tax system given there (see Section 15.2 for more details). And third,
we propose here the Shapley value [11] as a stable allocation rule for sharing
the reduced total costs. [6] and [7] proved that the grand coalition is stable in
the sense of the core, but they didn’t study the Shapley value. Here we present
a simple expression for the Shapley value of multiple corporation tax games
that benefits all agents and, in particular, compensates the benefactors for
their dual role and irreplaceable character. A recent survey on this allocation
rule is [8].

The outline of the paper is as follow. First, in Section 15.2, the cost-
coalitional problems with multiple dual and irreplaceable benefactors and
some of their properties are described. After that, in Section 15.3, we introduce
the class of cooperative cost games associated to cost-coalitional problems with
multiple dual and irreplaceable benefactors, the so-called multiple corporation
tax games. Section 15.4 presents a simple and easily computable expression for
the Shapley value of multiple corporation tax games. An example illustrating
the model and the role played by dual and irreplaceable benefactors is given
in Section 15.5. Finally, some concluding remarks and highlights for further
research are collected in Section 15.6.
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15.2 Cost-Coalitional Problems with Multiple Dual and
Irreplaceable Benefactors

Let E = {1, 2, .., e} be a set of firms, and P = {1, 2, .., p} be a set of countries,
with Sij ≥ 0 and S̄ij ≥ 0 be respectively a tax and a reduced tax that firm j pays
in country i, with Sij > S̄ij . Let N = E ∪ P denote the set of all agents (firms
and countries), with |N | = n = e+p, where e ≥ 1 and p ≥ 2. We define T ⊆ N
as an arbitrary set of agents in N . If two given countries are in a coalition
T , then they cooperate and share information, which implies that they can
reduce their levels of tax evasion and underground economy. The size of the
reduction depends on how much information a country has and how relevant
it is for the other country. Note that, for a country i, the more countries are
in a coalition with it, the more relevant information this country gathers, and
consequently, the smaller the degree of tax evasion and underground economy
it has. Formally, let wTi be a measure of the underground economy and tax
evasion of country i when it is in a coalition T , thus, given two sets T ⊆
T ′ ⊆ N , we assume that always wTi > wT

′

i if (T ′\T ) ∩ P ̸= ∅, and wTi = wT
′

i

otherwise. Therefore, always wTi ≥ wT
′

i . We denote by wi the countrys’ stand-
alone measure of tax evasion, i.e., wi = w

{i}
i .

Any agent k ∈ T incurs certain non-negative cost, which depends on the
subset T . We denote this cost by cTk , and by ck an agents’ stand-alone cost,
i.e., ck = c

{k}
k . For any coalition T ⊆ N , the costs of agents are:

1. cTj =
∑

i∈P∩T
S̄ij +

∑
i∈P\(P∩T )

Sij for all j ∈ T ∩ E.

2. cTi = gi
(
wTi
)

for all i ∈ T ∩ P .

Where firm j ∈ T must pay a tax S̄ij to country i if i ∈ T , and Sij if i /∈ T . In
addition, gi is a strictly increasing function such that for all i, i′ ∈ P and for all
T ⊆ N , where i, i′ ∈ P ∩T , always it holds that gi

(
w
T\{i′}
i

)
−gi

(
wTi
)
= zii′ ,

with zii′ > 0 being how much the country i′ reduces the cost of i with the
information i′ shares with i.1

Next, we identify two special roles that all the agents can play in the model,
being benefactors and beneficiaries.

Definition 15.1 A benefactor is an agent k̄ ∈ N such that for any set
T ⊂ N\k̄ and for all k ∈ T , cTk ≥ c

T∪{k̄}
k , in addition, for at least one agent

k ∈ T , cTk > c
T∪{k̄}
k . The agents whose cost decreases in an alliance with a

benefactor are denoted by beneficiaries.
1We assume zii′ > 0, thus, countries are always benefactors. However, zii′ could be as

close to zero as we want, i.e., the information that a country shares with an other country
can be negligible. Therefore, in the limit case in which zii′ = 0, the results should hold. In
any case, a wider generalization of this model will be considered in future research.
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The following lemma characterizes the agents of the game as benefactors
and beneficiaries.

Lemma 15.1 An agent k is a benefactor if and only if it is a country. How-
ever, both firms and countries can be beneficiaries.

Proof. Consider agent k′ ∈ N and any set T ⊂ N\{k′}. To prove Lemma 15.1,
we first consider that agent k′ is a country and compare the cost of agents in
T and in T ∪ {k̄}, and second we consider that agent k′ is a firm, and we do
the same analysis. Note that agents in T could be either countries or firms:

1. Consider that agent k′ is a country i′, then

(a) For all i ∈ T ∩ P , cTi = gi
(
wTi
)

and c
T∪{i′}
i = gi

(
w
T∪{i′}
i

)
, where

wTi > w
T∪{i′}
i because T ⊆ T ∪ {i′} and i′ ∈ P . Consequently, as

gi is increasing, cTi > c
T∪{i′}
i .

(b) For all j ∈ T ∩ E,
cTj =

∑
i∈P∩T

S̄ij+
∑

i∈P\(P∩T )

Sij =
∑

i∈P∩T
S̄ij+S

i′

j +
∑

i∈P\(P∩(T∪{i′}))
Sij ,

and
c
T∪{i′}
j =

∑
i∈P∩(T∪{i′})

S̄ij +
∑

i∈P\(P∩(T∪{i′}))
Sij =

∑
i∈P∩T

S̄ij + S̄i
′

j +∑
i∈P\(P∩(T∪{i′}))

Sij . Consequently, cTj > c
T∪{i′}
j because Si′j > S̄i

′

j .

2. Consider that agent k′ is a firm j′, then,

(a) For all i ∈ T ∩P , cTi = gi
(
wTi
)

and cT∪{j′}
i = gi

(
w
T∪{j′}
i

)
, where,

wTi = w
T∪{j′}
i because T ⊆ T ∪ {j′} and j′ ∈ E. Consequently,

cTi = c
T∪{j′}
i .

(b) For all j ∈ T ∩ E,
cTj =

∑
i∈P∩T

S̄ij +
∑

i∈P\(P∩T )

Sij , and

c
T∪{j′}
j =

∑
i∈P∩(T∪{j′})

S̄ij +
∑

i∈P\(P∩(T∪{j′}))
Sij =

∑
i∈P∩T

S̄ij +∑
i∈P\(P∩T )

Sij . Therefore, cTj = c
T∪{i′}
j .

Point 1 implies that countries are benefactors, and point 2 implies that firms
are not benefactors. Point 1 and 2 imply that countries and firms can be ben-
eficiaries and an agent k ∈ N is a benefactor if and only if it is a country.

There are agents that are dual in the sense that they are benefactors
and beneficiaries, these are the countries. However, the firms are exclusively
beneficiaries.

The following definition is a relevant property of a benefactor.



318 Handbook of the Shapley Value

Definition 15.2 A benefactor k̄ ∈ T ⊆ N is irreplaceable if cTk ̸= c
T\k̄
k for at

least an agent k ∈ T\k̄.

The following lemma states that our benefactors are irreplaceable.

Lemma 15.2 Countries are irreplaceable benefactors.

Proof. Note that by Lemma 15.1 only countries can be benefactors, then con-
sider any T ⊂ N such that T ∩ P ̸= ∅ where i′ ∈ T ∩ P . To prove Lemma
15.2, we compare the costs in set T and in set T\{i′}. Agents in T\{i′} can
be either countries or firms. First, if the agent is a country, i ∈ (T\{i′}) ∩ P ,
then cTi = gi

(
wTi
)
< c

T\{i′}
i = gi

(
w
T\{i′}
i

)
because gi is increasing, and

wTi < w
T\{i′}
i because T\{i′} ⊂ T .

Second, if the agent in T\{i′} is a firm, j ∈ (T\{i′}) ∩ E, then cTj =∑
i∈P∩T

S̄ij +
∑

i∈P\(P∩T )

Sij =
∑

i∈P∩T\{i′}
S̄ij + S̄i

′

j +
∑

i∈P\(P∩T )

Sij , and c
T\{i′}
j =∑

i∈P∩(T\{i′})
S̄ij +

∑
i∈P\P∩(T\{i′})

Sij =
∑

i∈P∩(T\{i′})
S̄ij +Si

′

j +
∑

i∈P\(P∩T )

Sij . Con-

sequently, cTj < c
T\{i′}
j because S̄i′j < Si

′

j .

We denote the vector of individual agents’ costs in all possible subsets by
cN =

(
cTk
)
k∈T,∅̸=T⊆N . Thus, the set of agents N and the cost coalitional vec-

tor cN define a cost-coalitional problem with multiple dual and irreplaceable
benefactors

(
N, cN

)
.

A desirable property is that cooperation is beneficial. This can be guaran-
teed if the costs in large subsets do not exceed their cost in smaller ones. The
following definition formalizes this idea.

Definition 15.3 A cost-coalitional vector cN satisfies cost monotonicity if
cTk ≥ cT

′

k for all k ∈ T , with T ⊂ T ′ ⊆ N .

The following lemma shows that the cost-coalitional problem with multiple
dual benefactors has this property.

Lemma 15.3 The cost coalitional problem
(
N, cN

)
has the property of cost

monotonicity.

Proof. Consider two sets such that S ⊂ T ⊆ N . Any agent in S has to be
either a country or a firm.

First, if the agent is a country i ∈ S ∩ P , then always cSi = gi
(
wSi
)

and
cTi = gi

(
wTi
)
, which implies that cSi ≥ cTi . Note that, gi is an increasing

function, and wSi ≥ wTi because S ⊂ T .
Second, if the agent in S is a firm j ∈ S ∩ E , then
cSj =

∑
i∈P∩S

S̄ij +
∑

i∈P\(P∩S)
Sij =

∑
i∈P∩S

S̄ij +
∑

i∈P∩(T\S)
Sij +

∑
i∈P\(P∩T )

Sij ,

and
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cTj =
∑

i∈P∩T
S̄ij +

∑
i∈P\(P∩T )

Sij =
∑

i∈P∩S
S̄ij +

∑
i∈P∩(T\S)

S̄ij +
∑

i∈P\(P∩T )

Sij .

Note that, if in T\S there is at least a country, then cSj > cTj because Sij > S̄ij ,
otherwise cSj = cTj .

We now define cost games related to our cost-coalitional problem with
multiple dual benefactors and prove the cooperation is beneficial for all the
agents in the model, benefactors and beneficiaries.

15.3 Multiple Corporation Tax Games
For a given cost-coalitional problem with multiple dual and irreplaceable bene-
factors

(
N, cN

)
we define the multiple corporation tax game (N, c), where

c(T ) =
∑
k∈T

cTk for all T ⊆ N , and c(∅) = 0.

We consider now the following issue. Is it profitable for the agents in N to
form the grand coalition to pay lower taxes and to reduce the degree of tax
evasion? Here, we prove that the answer to this question is positive because
(N, c) is a subadditive game, in the sense that c (T ∪ T ′) ≤ c (T ) + c (T ′), for
any T , T ′ ⊂ N , and T ∩ T ′ = ∅. Notice that the superadditivity condition
implies that if N is partitioned into disjoint coalitions (whose integrants reduce
the degree of tax evasion), the corresponding cost will not decrease.

In fact we prove that (N, c) is not only subadditive but also concave, in
the sense that for all k ∈ N and all T, T ′ ⊂ N such that T ⊂ T ′ ⊂ N with
k ∈ T , then c(T )−c(T \{k}) ≥ c(T ′)−c(T ′ \{k}). It is a well-known result in
cooperative game theory that every concave game is subadditive. Moreover,
the concavity property provides us with additional information about the
game: The marginal contribution of an agent diminishes as a coalition grows.
It is well known as the snowball effect. For more details on cooperative game
theory see, for example, [4].

First, in Lemma 15.4, we found out which are the cost marginal contribu-
tions of the agents (firms and countries).

Lemma 15.4 Let
(
N, cN

)
be a cost-coalitional problem with multiple dual

and irreplaceable benefactors and (N, c) the associated multiple corporation
tax game. Then,

1. For all T ⊆ N , for all j ∈ E ∩ T ,
c(T )− c(T \ {j}) = cTj .
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2. For all T ⊆ N , for all i ∈ P ∩ T ,

c(T )− c(T \ {i}) =cTi −
∑

j∈E∩T
(Sij − S̄ij)

−
∑

i′∈P∩(T\{i})

(
gi′(w

T\{i}
i′ )− gi′(wTi′ )

)
.

Proof. First, we prove (1). Take a coalition T ⊆ N, and a firm j ∈ E ∩ T .
Then,

c(T )− c(T \ {j}) =
∑
k∈T

cTk −
∑

k∈T\{j}
c
T\{j}
k = cTj +

∑
k∈T\{j}

(cTk − c
T\{j}
k ).

Now, we prove that
∑

k∈T\{j}
(cTk −c

T\{j}
k ) = 0, and so c(T )−c(T \{j}) = cTj .

Indeed,∑
k∈T\{j}

(cTk −c
T\{j}
k ) =

∑
i∈P∩(T\{j})

(cTi −c
T\{j}
i )+

∑
j′∈E∩(T\{j})

(cTj′−c
T\{j}
j′ ).

We know that cTi − c
T\{j}
i = gi(w

T
i )− gi(w

T\{j}
i ) = 0, since wT\{j}

i = wTi .

Moreover, cTj′ − c
T\{j}
j′ =

∑
i∈P∩T

S̄ij′ +
∑

i∈P\(P∩T )

Sij′ −
∑

i∈P∩(T\{j})
S̄ij′ −∑

i∈P\(P∩T\{j})
Sij′ = 0.

Then,∑
i∈P∩(T\{j})

(cTi − c
T\{j}
i ) = 0, and

∑
j′∈E∩(T\{j})

(cTj′ − c
T\{j}
j′ ) = 0.

Hence, we conclude that
∑

k∈T\{j}
(cTk − c

T\{j}
k ) = 0.

Second, we prove (2). Take a coalition T ⊆ N, and a country i ∈ P ∩ T .
Then,

c(T )− c(T \ {i}) =
∑
k∈T

cTk −
∑

k∈T\{i}
c
T\{i}
k = cTi −

∑
k∈T\{i}

(c
T\{j}
k − cTk ).

We know that,∑
k∈T\{i}

(c
T\{i}
k − cTk ) =

∑
i′∈P∩(T\{i})

(c
T\{i}
i′ − cTi′ )+

∑
j∈E∩(T\{i})

(c
T\{i}
j − cTj ).

We prove now that

c
T\{i}
j − cTj =

Sij + ∑
i′∈P∩(T\{i})

S̄i
′

j +
∑

i′∈P\P∩(T\{i})

Si
′

j


−

S̄ij + ∑
i′∈P∩(T\{i})

S̄i
′

j +
∑

i′∈P\P∩(T\{i})

Si
′

j

 = Sij − S̄ij .
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We know, by definition, that

c
T\{i}
i′ − cTi′ = gi′(w

T\{i}
i′ )− gi′(wTi′ )

Hence, we can conclude that

c(T )−c(T\{i}) = cTi −
∑

j∈E∩T
(Sij−S̄ij)−

∑
i′∈P∩(T\{i})

(
gi′(w

T\{i}
i′ )− gi′(wTi′ )

)
.

In point 1, this proposition states that a firm j always contributes to a coalition
T \ {j} exactly with its cost in coalition T , which is cTj . As a firm is always
and exclusively a beneficiary in this model, it has no effect on the cost of
other agents: Either countries or firms. However, a country is a benefactor to
both firms and others countries; therefore, its marginal contribution is smaller
than its cost in coalition T . If country i is withdrawn from a coalition T , the
individual cost of firms and other countries in coalition T increases.

The following theorem states that our class of games is concave.

Theorem 15.1 The multiple corporation tax games (N, c) are concave.

Proof. Here we have to prove that the marginal contribution of an agent k
diminishes as a coalition grows. Any agent k can only be either a firm or a
country, and Lemma 15.4 provided its marginal contribution.

If the agent is a firm j, then for all T ⊆ T ′, j ∈ T , by Lemma 15.3, cTj ≥ cT ′
j ,

and so cTj = c(T )− c(T \ {j}) ≥ c(T ′)− c(T ′ \ {j}) = cT ′
j .

On the other hand, if the agent is a country i, again for all T ⊂ T ′, by
Lemma 15.3, cTi ≥ cT ′

i .

In addition,
∑

j∈E∩T
(Sij − S̄ij) ≤

∑
j∈E∩T ′

(Sij − S̄ij) because all the countries

in T are also in T ′, and if T ′ there is at least one more than in T , then the
inequality is strict.

Finally, for the same reason
∑

i′∈P∩T\{i}
zi′i ≤

∑
i′∈P∩T ′\{i}

zi′i.

Hence, we can conclude that for all T ⊂ T ′ and for all i ∈ P ∩ T ,

c(T )−c(T \{i}) = cTi −
∑

j∈E∩T
(Sij−S̄ij)−

∑
i′∈P∩T\{i}

zi′i ≥ cT
′

i −
∑

j∈E∩T ′
(Sij−

S̄ij)−
∑

i′∈P∩T ′\{i}
zi′i = c(T )− c(T ′ \ {i}).

So we proved that in a cost-coalitional problem with multiple dual and
irreplaceable benefactors

(
N, cN

)
it is efficient that all firms pay lower taxes

and all countries manage to jointly reduce their degrees of tax evasion. In that
case, the reduced total cost is given by c(N) =

∑
i∈P

cNi +
∑
j∈E

cNj .

An allocation rule for multiple corporation tax games is a map ψ which
assigns a vector ψ (N, c) ∈ RN to every (N, c), satisfying that

∑
k∈N

ψk (N, c) =
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c(N). Each component ψk (N, c) indicates the cost allocated to k ∈ N , so an
allocation rule for multiple corporation tax games is a procedure to allocate the
reduced total cost among the agents in N when they cooperate. An allocation
rule should have good properties from the following points of view:

1. Computability. For a particular game, the rule should be computable in
a reasonable CPU time, even when the number of agents is large.

2. Coalitional Stability. It is very convenient that the rule proposes an al-
location which belongs to the core of the cost game. This means that,
for every multiple corporation tax game (N, c) , ψ should satisfy the fol-
lowing:∑
k∈T

ψk (N, c) ≤ c(T ), for every T ⊆ N.

This condition assures that no group of agents T is disappointed with
the proposal of the rule, because the cost allocated to it is less than or
equal to the cost it would support if its members formed a coalition to
pay lower taxes, and reduce the levels of tax evasion, independently of
the agents in N \ T .

3. Acceptability. The rule must be understandable and acceptable by the
agents.

A very natural allocation rule for multiple corporation tax games is ψk (N, c) =
cNk , for all k ∈ N . It has good properties at least with respect to computabil-
ity and coalitional stability. Notice that, for every T ⊆ N,

∑
k∈T

ψk (N, c) =∑
k∈T

cNk ≤
∑
k∈T

cTk = c(T ).

Nevertheless, the benefactors will have serious difficulties accepting the
above allocation rule that rewards the beneficiaries excessively while they do
not receive enough compensation for their dual role of giving and receiving.

Since the multiple corporation tax games are concave, cooperative game
theory provides allocation rules for them with good properties at least with
respect to coalitional stability and acceptability. We highlight the Shapley
value and the nucleolus, which always provide core allocations in this context
(see [4] for details on them). Both allocations are, in general, hard to compute
when the number of agents increases.

Next, we present a simple and easily calculated expression for the Shapley
value of multiple corporation tax games that compensates the benefactors for
their dual role and irreplaceable character.
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15.4 The Shapley Value
One of the most important allocation rules for cost games is the Shapley value
(see [11]). As we already mentioned, the Shapley value is specially convenient
for concave games: It is the barycenter of its core (see [13]).

We denote by ϕ (N, c) the shapley value of multiple corporation tax
games (N, c) , where for each agent k ∈ N, ϕk (N, c) =

∑
T⊆N ;k∈T

γ(T ) [c(T )

− c(T \ {k})] , with γ(t) = (n−t)!(t−1)!
n! , |T | = t.

The following theorem states that the Shapley value can be easily com-
puted in the class of multiple corporation tax games. Moreover, it shows that
the Shapley value provides an acceptable allocation for multiple corporation
tax games: It increases the cost of a beneficiary in half of the benefits it ob-
tains from benefactors, and it decreases the cost of a benefactor in half of the
benefits it provided to the beneficiaries.

Theorem 15.2 For any multiple corporation tax game (N, c), the Shapley
value is

1. For all j ∈ E, ϕj (N, c) = cNj + 1
2

∑
i∈P

(Sij − S̄ij)

2. For all i ∈ P , ϕi (N, c) = cNi − 1
2

∑
j∈E

(Sij − S̄ij) + 1
2

∑
i′∈P\{i}

(zii′ − zi′i)

Proof. (1) We prove that for all j ∈ E, ϕj (N, c) = cNj + 1
2

∑
i∈P

(Sij − S̄ij).

Take j ∈ E. By Lemma 15.4, we know that

ϕj (N, c) =
∑

T⊆N ;j∈T
γ(t)cTj .

We can separate coalitions j ∈ T ⊆ N into mixed coalitions (j ∈ T ⊆
N,T ∩ P ̸= ∅, T ∩E ̸= ∅) and coalitions with only firms (j ∈ T ⊆ N,T ∩ P =
∅, T ∩ E ̸= ∅).

Then,

ϕj (N, c) =
∑

j∈T⊆N,T∩P=∅,T∩E ̸=∅

γ(t)(
∑
i∈P

Sij)

+
∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t)(
∑

i∈P\P∩T ′

Sij +
∑

i∈P∩T ′

S̄ij).

Taking into account that
∑

T⊆N ;j∈T
γ(t) = 1, we have that∑

j∈T⊆N,T∩P=∅,T∩E ̸=∅
γ(t) = 1−

∑
j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t),
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and then,

ϕj (N, c) =(1−
∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t))(
∑
i∈P

Sij)

+
∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t)(
∑

i∈P\P∩T

Sij +
∑

i∈P∩T
S̄ij)

=
∑
i∈P

Sij +
∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t)(
∑

i∈P\P∩T

Sij +
∑

i∈P∩T
S̄ij −

∑
i∈P

Sij)

=
∑
i∈P

Sij −
∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t)
∑

i∈P∩T
(Sij − S̄ij).

Now, we prove that for all coalitions that contain j ∈ T∩E and a particular
country i ∈ T ∩ P,∑

j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅
γ(t) = 1/2,

and then,
ϕj (N, c) =

∑
i∈P

Sij − 1
2

∑
i∈P∩T

(Sij − S̄ij) = 1
2

∑
i∈P

(Sij + S̄ij).

Indeed, ∑
j∈T⊆N,T∩P ̸=∅,T∩E ̸=∅

γ(t) =
n∑
t=2

(
n− 2
t− 2

)
γ(t) =

n∑
t=2

(t−1)
n(n−1) =

n∑
k=1

k−n

n(n−1) = 1/2,

where
(
n− 2
t− 2

)
is the number of coalitions in which there is j and a partic-

ular country i′.
Finally, doing some algebra, we have that
1
2

∑
i∈P

(Sij + S̄ij) = cNj + 1
2

∑
i∈P

(Sij − S̄ij),

and so, we conclude that
ϕj (N, c) = cNj + 1

2

∑
i∈P

(Sij − S̄ij).

(2) We demostrate that for all i ∈ P ,
ϕi (N, c) = cNi − 1

2

∑
j∈E

(Sij − S̄ij) + 1
2

∑
i′∈P\{i}

(zii′ − zi′i) .

Take i ∈ P. By Lemma 15.4, we know that

ϕi (N, c) =
∑

i∈T⊆N

γ(t)

×

cTi − ∑
j∈E∩T

(Sij − S̄ij)−
∑

i′∈P∩T\{i}

(
gi′(w

T\{i}
i′ )− gi′(wTi′ )

) .
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Let’s calculate each of the addends separately.
(2.1) First, taking into account that cTi = ci−

∑
i′∈P∩T\{i}

zii′ , for all T ∈ N,

and
n∑
t=2

(
n− 2
t− 2

)
γ(t) = 1

2 ,

we obtain that∑
i∈T⊆N

γ(t)cTi = ci−
n∑
t=2

(
n− 2
t− 2

)
γ(t)

∑
i′∈P∩T\{i}

zii′ = cNi + 1
2

∑
i′∈P∩T\{i}

zii′ ,

where
(
n− 2
t− 2

)
is now the number of coalitions that contain i and a par-

ticular country i′.
(2.2) Second, by a similar argument,∑
i∈T⊆N

γ(t)
∑

j∈E∩T
(Sij − S̄ij) =

n∑
t=2

(
n− 2
t− 2

)
γ(t)

∑
j∈E

(Sij − S̄ij) =
1
2

∑
j∈E

(Sij − S̄ij).

(2.3) Third, by the same argument,∑
i∈T⊆N

γ(t)
∑

i′∈P∩T\{i}

(
gi′(w

T\{i}
i′ )− gi′(wTi′ )

)
=

n∑
t=2

(
n− 2
t− 2

)
γ(t)

∑
i′∈P\{i}

zi′i = − 1
2

∑
i′∈P\{i}

zi′i .

Finally, adding the above three expressions, we obtain that
ϕi (N, c) = cNi + 1

2

∑
i′∈P∩T\{i}

zii′ − 1
2

∑
j∈E

(Sij − S̄ij)− 1
2

∑
i′∈P\{i}

zi′i =

cNi − 1
2

∑
j∈E

(Sij − S̄ij) + 1
2

∑
i′∈P\{i}

(zii′ − zi′i) .

From Theorem 15.2 can be derived that Shapley value compensates bene-
factors. Note first that, the cost of a firm j in the grand coalition is cNj . This
firm j is benefited from a country i in an amount which is Sij−S

i

j . The Shapley
value reduces this benefit exactly in half, and consequently this is the amount
in which the cost of firm j is increased, see point 1 of Theorem 15.2. In addi-
tion, the country i is compensated exactly in this amount, and consequently
its cost is reduced, see point 2 of Theorem 15.2. However, a country in its
relation with others countries is simultaneously benefactor and beneficiary.
Let’s first look at the role as beneficiary of i, in any coalition, the country i
is benefited from country i′ in a cost reduction of zii′ , in this case, country
i plays the role of beneficiary and i′ of benefactor. Thus, the Shapley value
reduces the benefit zii′ of country i in half; in others words, it increases its
cost by this amount. Nevertheless, at the same time, the country i benefits
country i′ in an amount equal to zi′i. Now, country i is the benefactor and
i′ the beneficiary. In this case, the Shapley value works in the same way, it
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compensates the benefactor increasing the cost of the beneficiary in half of
zi′i. Therefore, in the relation between two countries, both are simultaneously
benefactors and beneficiaries; however, if zii′ − zi′i > 0, then country i could
be seen as a “net”-beneficiary and i′ as a “net”-benefactor, on the contrary if
zii′ − zi′i < 0. Thus, country i can be a “net”-benefactor with some countries
and a “net”-beneficiary with others.

In conclusion, regarding the individual cost in the grand coalition, the
Shapley value increases the cost of a beneficiary in half of the benefits it
obtains from benefactors, and it decreases the cost of a benefactor in half of
the benefits it provided to the beneficiaries. As in our model, there are dual
agents (benefactors and beneficiaries); the final effect on these agents depends
on which role is stronger.

15.5 An Example
In this example, we propose a simple situation with two countries A and B,
and two firms 1 and 2 with activity in both countries. These countries are
very concerned about their own levels of underground economy, tax evasion,
and fraud. To fight against this illegal behavior, these countries must face a
high economic cost in human and material resources. However, this cost can
be reduced if both countries decide to cooperate and, for example, they share
resources and/or information in their fight.

On the other hand, firms have to pay in each country a certain amount
of taxes. Nevertheless, these firms can choose to cooperate with a particular
country. For example, beyond the mandatory legal requirement, a firm can
make an effort to improve the transparency of its financial practice. The firm
can also just share any kind of relevant information with the tax authorities.
This cooperation is rewarded by a tax reduction. In particular, country A will
fix a reduction of 10%, and B will do it of 15%. Thus, each firm must pay
either a tax (Sij) or a reduced tax (S̄ij) as it is given in Table 15.1.

SA1 = 2 SB1 = 4 SA2 = 5 SB2 = 8

S
A

1 = 1.80 S
B

1 = 3.40 S
A

2 = 4.50 S
B

2 = 6.80

TABLE 15.1: Tax and reduced tax of each firm (in millions of euros).

We consider that the cost function of any country cTi = gi
(
wTi
)

has two
terms. The first term does not depend on the type of coalition the coun-
try belongs to. In other words, it does not depend on the information other
countries could provide. This is a kind of fixed cost. The second term does
depend on which coalition the country is. In particular, gA (wA) = 4 + wTA
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and gB (wB) = 8 + 2wTB . In addition, the levels of underground economy or
tax evasion are normalized to 1 in any coalition with only one country, i.e.,
without the help of other countries. Thus, wTi = 1 for any i ∈ P , T ⊂ N such
that P ∩ T\{i} = ∅. However, in any coalition T ′ ⊂ N such that A,B ∈ T ′,
wT

′

A = 0.50 and wT
′

B = 0.60.
Table 15.2 shows the cost-coalitional vector (columns 2-5) and correspond-

ing cost game (last column); i.e., for any coalition T ⊆ N , the cost of each
agent cTk , and the cost of this coalition c(T )

Coalition\Agent
A B 1 2 c(T )

{A} 5 5
{B} 10 10
{1} 6 6

{2} 13 13
{A,B} 4.5 9.2 13.70
{A, 1} 5 5.80 10.80
{A, 2} 5 12.50 17.50
{B, 1} 10 5.40 15.40
{B, 2} 10 11.80 21.80
{1, 2} 6 13 19

{A,B, 1} 4.50 9.20 5.20 18.90
{A,B, 2} 4.5 9.20 11.30 25
{A, 1, 2} 5 5.80 12.50 23.30

{B, 1, 2} 10 5.40 11.80 27.20
{A,B, 1, 2} 4.50 9.20 5.20 11.30 30.20

TABLE 15.2: Cost-coalitional vector and cost game.

From the previous table, it is straightforward to obtain zii′ , where zii′ =
c
T\{i′}
i − cTi for all T ⊆ N such that i, i′ ∈ P ∩ T . Therefore, zAB = 0.50

and zBA = 0.80, i.e., country B reduces the cost of country A in 0.50 and
country A reduces the cost of country B in 0.80. Consequently, country A
is a net-benefactor with country B, and country B a net-beneficiary with
country A.

We can calculate now the Shapley value by using the expressions from
Theorem 15.2. Note that, in this case, we only need the values of Table 15.1,
the last row of Table 15.2 (cNA , cNB , cN1 and cN2 ), and both values zAB and
zBA. Therefore, Theorem 15.2 allows to reduce significantly the amount of
information and time to compute Shapley value.

In Table 15.3, it is shown for any agent its individual cost, the cost in the
grand coalition, the Shapley value, and the difference between the last two
values.

Notice that costs in the grand coalition reduce the costs of each player.
Regarding the cost in the grand coalition, Shapley value decreases the cost
of benefactors in half of the benefits that it provided to the beneficiaries.
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Agent\Value
c({k}) ψk (N, c) ϕk (N, c) ψk (N, c)− ϕk (N, c)

A 5 4.50 4 0.50
B 10 9.20 8.45 0.75
1 6 5.20 5.60 −0.40
2 13 11.30 12.15 −0.85

TABLE 15.3: Comparsison among individual costs, cost in the grand coali-
tion and the Shapley value.

Additionally, it increases the cost of beneficiaries in half of the benefits
that they obtain from benefactors. For example, for country A, ϕA (N, c) =
cNA − 1

2

(
(SA1 − S̄A1 ) + (SA2 − S̄A2 )

)
+ 1

2 (zAB − zBA). As zAB − zBA = −0.30,
country A is a net-benefactor. Thus, Shapley value decreases its cost in half
of this difference. However, for country B, the cost is increased in the same
amount because it is a net-beneficiary. In this example, there are only two
countries; however, if there were more countries, a given country could be
a net-benefactor with some countries and a net-beneficiary with others; this
depends on the sign of zii′ − zi′i.

15.6 Conclusions
Corporation tax games were introduced by [7] as an application of linear cost
games (see [6]) to a corporate tax reduction system. Motivated by the Span-
ish tax system, the authors considered that the Government, as benefactor,
provided different group investment options which reduced the costs of those
investors who acted legally (beneficiaries).

In this chapter, we have presented a new model of cooperation in corporate
tax systems with several firms and countries (multiple dual and irreplaceable
benefactors). Countries are dual in the sense that they are benefactors (they
reduce the costs of both firms and other countries), and beneficiaries (cost
is reduced by the information provided by other countries). They are also
irreplaceable benefactors because all the members of a coalition may see their
cost increase if one of them leaves the group.

The class of TU cooperative games corresponding to this model is called
multiple corporation tax games. We have proved that these games are concave,
i.e., the marginal contribution of a firm and a country diminishes as a coalition
grows (snowball effect). Hence, the grand coalition is stable in the sense of
the core. This means that firms have strong incentives to cooperate with the
countries instead of being fraudsters. Then, we propose the Shapley value as
an easily computable core-allocation that benefits all agents and, in particular,
compensates the benefactors for their dual and irreplaceable role.
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Our model here distinguishes two groups of agents: Dual benefactors (coun-
tries) and beneficiaries (firms), while the original model presented by [6], con-
sidered two disjoint groups of agents, benefactors and beneficiaries. A natural
extension would be to consider that all agents can be dual (benefactors and
beneficiaries). We believe that similar results to those obtained here could be
achieved.
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16.1 Introduction
Game Theory has been applied to a multitude of problems of very diverse
fields of knowledge. Aumann and Hart [6] provide a list of knowledge fields in
which game theory has been successfully applied. Apart from the applications
to Economics, for which several game theorists have been awarded with the
Nobel Prize in Economics, the list includes fields such as Evolutionary Biol-
ogy and Computer Science. However, since then, Game Theory has also been
applied to other fields such as Genetics, Telecommunications or Multi-agent
Systems in Engineering. In [83], some applications of Game Theory to engi-
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neering problems are reviewed. This review includes various applications of
cooperative game theory to telecommunications problems.

In general, Game Theory can be applied to almost any situation in which
there is more than one individual, in the broadest sense of the term, and that
there is some kind of interaction between them that leads to a conflict of in-
terest. Nowadays, since most systems from very different scientific disciplines
usually consist of more than one element, researchers are considering the game
theoretical approach to analyze them in order to obtain new information and
answers about them. Therefore, every day, Game Theory becomes a more
transversal discipline useful to analyze problems from very diverse and far
fields [82]. One of these fields is Telecommunications. However, in order to
apply Game Theory to a real-life problem, the essential elements that define
the problem must be taken into account, simplifying where necessary, but not
in excess to avoid that the game does not describe the problem. Some sug-
gestions on how to apply Game Theory to real problems are found in [60].
Depending on the type of interaction among the individuals, we will find,
roughly speaking, either with non-cooperative problems, if individuals com-
pete for something and must take actions that involve strategic behavior, or
with cooperative problems, if individuals collaborate to improve their results
and subsequently the benefits of this cooperation should be shared among
them. The first problems give rise to non-cooperative games, while the second
ones give rise to cooperative games, and the individuals are called players.

In particular, the Shapley value [86] has been sucessfullly applied to many
different fields. Moretti and Patrone [63] provide a survey about several appli-
cations of the Shapley value to very diverse fields, showing the transversality
of the Shapley value to address real-life problems. Therefore, the Shapley value
has proven to be a good tool for the so-called Game Practice [12, 73]. The
Shapley value is a concept of solution for cooperative games, so it provides
a distribution of the gain obtained by collaboration between the individuals
involved in the problem. As Moretti and Patrone [63] pointed out, the Shapley
value tries to answer the following question: How to convert information about
the worth that subsets of the player set can achieve, into a personal attribution
(of payoff) to each of the players? The Shapley value is one of the concepts of
Game Theory that has attracted the most attention among researchers, so we
can find numerous works in the literature about it (see, for example, [81, 96]).

Despite its great interest, the Shapley value also has a couple of drawbacks
to be applied. The first objection is that the Shapley value is not always sta-
ble, in the sense that there may be a subset of players who are not satisfied
with the solution proposed by the Shapley value because they themselves can
obtain more. The second flaw is that its calculation can be almost impossible
from the point of view of its computation in a reasonable time. Therefore,
when the structure of the problem does not allow an easy computation of
the Shapley value, an alternative is to resort to compute it approximately by
sampling techniques [13, 14, 58]. In the case of applications in the field of
Telecommunications, perhaps, the second drawback is much more important
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than the first, since in many problems in this field it is necessary to obtain a
result in a very short time. Nevertheless, we can find many possible applica-
tions of the Shapley value in telecommunications problems as will be shown
throughout this chapter.

The growth of the telecommunications industry, particularly wireless com-
munications, has exceeded all expectations. Today, there are very few people
who do not have at least one smart device, which means an important volume
of business and income for the companies that offer these services. However,
the communication infrastructures have a finite capacity. On the one hand,
this implies that the owner of the communication infrastructure must opti-
mize (scarce) resources, and carefully manage the available resources in order
to guarantee an adequate level of quality of service (QoS) to the users. On the
other hand, the users of the communication infrastructure “compete” for the
resources in order to guarantee themselves the best possible service. But it
must also be taken into account that a communication infrastructure consists
of several entities that can operate in a centralized or decentralized manner,
and therefore, there may be coordination or competition between the entities
when using the (possibly scarce) resources that serve to provide the commu-
nication service to users. Game Theory deals with situations of conflict of
interest, and in this kind of systems such conflicting situations can arise. Han
et al. [31] present a well-structured collection of game theoretical concepts
with their respective applications in the literature to wireless and communi-
cations networks. The Shapley value is one of the game theoretical concepts
they include in their book, for which they point out suitable fairness criteria
for allocating resources or data rates in communication networks.

Therefore, in light of the above, it makes perfect sense to include a chapter
on telecommunications in a book dedicated to the Shapley value.

16.2 Some Uses of the Shapley Value in Mobile
Communication Management

Mobile communications make remote communication possible without the
need for a physical link, which contributes to a reduction in installation and
maintenance costs. The above are advantages of this communication system,
but the absence of a physical link entails some disadvantages. This technology
faces non-controllable factors, such as weather conditions or user movements
and, more importantly, the radio spectrum, on which these communications
are based, is finite. The latter means that the range of the spectrum is a
limited resource in the system. Consequently, a careful management of the
available resources is absolutely necessary to guarantee an adequate level of
quality of service (QoS) to the users. Roughly speaking, there are three ele-
ments that must be taken into account to provide optimal performance of a
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wireless communications system: Power control, link adaptation and channel
assignment.

The objectives of the wireless communication system and its users go in
the same direction but, at the same time, are opposite. On the one hand,
users want to obtain the highest possible performance with a high QoS, while,
on the other hand, the communication system has limited resources to meet
the demands of users and its goal is to serve as many users as possible with
an acceptable QoS. According to the above, users would compete for scarce
resources of the system while the system tries to optimize its performance by
managing the resources at its disposal at any time. Game Theory deals with
conflict of interest situations, and in this type of system, as we can easily
deduce from the above, conflicting situations may arise. Therefore, it seems
reasonable to think that using game theory can improve the management
of system resources given that the radio spectrum is a limited resource. In
this regard, seeking solutions from game theory to obtain a reasonable overall
performance while maintaining QoS good enough seems an interesting idea.
The common approach is from non-cooperative game theory, but one can also
find approaches from cooperative game theory in the literature, in particular
using the Shapley value. [31, 36].

What is meant by the allocation of resources in a wireless communication
system? When a user requests service, a base station (BTS) responds essen-
tially with the following parameters: Channel, transmission mode and power.
In the next two subsections, we will present a cooperative game to allocate
power and transmission mode and two cooperatives games to allocate channel.

16.2.1 Resource Management in Wireless Networks
Roughly, the physical elements involved in wireless communications are the
power transmission (P ), the signal-to-interference-plus-noise ratio (SINR)
and the throughput (T ). The throughput depends on the SINR and the trans-
mission mode, and the SINR depends on the power transmission, the path-
losses between the user and BTSs, the interference and the (thermal) noise.
The received SINR at user i is usually given by

SINRi =
PiLii∑

j∈Qi

PjLji + ni
, (16.1)

where Pk is the transmission power assigned to user k, Lji is the path loss
between the BTS serving user j and user i, Qi is the set of all users using
the same channel as user i and ni is the thermal noise. [43] showed that the
effective throughput can be written as a sigmoidal function of the SINR,

T (x) =
A

1 + e−λ(x−δ)
, (16.2)
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where the SINR, x, is in dB and the throughput T (x) is in Kbps. The param-
eters A, λ and δ depend on the transmission mode.

Now we have to answer the question of how to assign power, transmission
mode and channel to users. In [43, 79] network-assisted resource manage-
ment (NARM) to enhance the resource management in wireless networks is
proposed. In NARM, interbase signaling is used to increase the information
about the system for enhancing the power, transmission mode and channel
assignment to users in order to increase the performance of the communica-
tion system. [44] provides some game theoretic formulations for NARM in
GSM/GPRS/EGPRS-based networks, and in [76] the same technical frame-
work is considered but they use bankruptcy problems [68] to address the
problem.

Consider that when a number of users request service to a BTS, this has
a limited service capacity in terms of throughput. Each user will request a
throughput according to their needs and the station will have to give them
the best possible service. If the available throughput is not enough to meet the
total requested throughput, then we have a situation which can be described
as a bankruptcy problem (see [93, 94] for a survey).

A bankruptcy problem is defined by a triple (N,E, c), where N is the set
of claimants, E is the available estate, and c is the vector of claims, such that
E ≤

∑
i∈N ci, i.e., the estate is not sufficient to fully meet the demands of the

claimants. In the context of a BTS in a wireless network, we consider as in [76]
that the estate is given by the available throughput (T ), which may not be
all available but a reasonable amount considering that the system is dynamic
and new service requests can reach the BTS, the set of claimants N is the set
of users requesting for service within a time window, and the vector of claims
t is given by the throughput requested by the users. Therefore, we describe a
resource management wireless problem as (N,T, t). Now the problem is how to
allocate the available throughput among the users requesting for service. An
alternative is to apply the recursive completion rule, also known as run-to-the-
bank rule, which coincides with the Shapley value of the associated bankruptcy
game [68]. This cooperative game, which we will denote by

(
N, v(T,t)

)
, is given

by

v(T,t)(S) = max{0, T −
∑
j /∈S

tj}, ∀S ⊆ N. (16.3)

Therefore, v(T,t)(S) measures the throughput available after serving users
out of S. This game describes a pessimistic viewpoint of the users regarding
the throughput allocation problem.

The Shapley value of the game can be computed by considering all possi-
ble orders in which users may have requested service to the system. Assuming
a First-In-First-Out (FIFO) service system, the first user to request service
would obtain everything requested up to a maximum of the total throughput
available, the second user requesting service would obtain the maximum be-
tween her request and the available throughput after serving the first user, so
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FIGURE 16.1: Resource management mechanism based on the Shapley
value.

on and so forth. If we now consider that the service request order is not rel-
evant within the same time window, then it seems reasonable to consider the
average throughput of all possible orders. Precisely, these average throughputs
coincide with the Shapley value of the bankruptcy game

(
N, v(T,t)

)
associated

to the resource management wireless problem (N,T, t).
How would the resource management algorithm work using the Shapley

value? The BTS assigns to the users requesting service in a time window
throughputs by using the Shapley value, with these throughputs and link
adaptation, the BTS assigns to the users transmission modes, then by using
the relationship between throughput and SINR, and the information obtained
by interbase signaling, i.e., the NARM system, the BTS assigns to the users
powers and channels. This resource management mechanism based on the
Shapley value (RMMS) is depicted in Figure 16.1.

In order to illustrate how the RMMS works, we consider the following
simple example.

Example 16.1 In a time window, four users request services to a BTS of 40,
30, 20 and 15 Kbps, respectively, and the BTS fixes an available throughput
of 80 Kbps. First, the BTS computes the Shapley value. This computation
involves twelve possible orders. The allocation of throughput for every order
is shown in Table 16.1. The Shapley value is calculated as the average of all
those allocations, that is

Φ1 = 32.5Kbps; Φ2 = 22.5Kbps; Φ3 = 14.2Kbps; Φ4 = 10.8Kbps.

After determining the throughput allocated to each user, a transmission
mode must be assigned to each user. For doing this, we use the sigmoidal
relationship between throughputs and transmission modes. To assign a trans-
mission mode to user i, we take its allocated throughput Φi and look for the
first sigmoidal curve intersecting with y = Φi. Thus, in our example, when an
EGPRS system is considered, user 1 would be assigned transmission mode 7,
user 2 mode 6, user 3 mode 5, and user 4 also mode 5 (for the transitioning
between two modes, see [44]).
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ti 40 30 20 15 ti 40 30 20 15
order 1 2 3 4 order 1 2 3 4
1234 40 30 10 0 3124 40 20 20 0
1243 40 30 0 10 3142 40 5 20 15
1324 40 20 20 0 3214 30 30 20 0
1342 40 5 20 15 3241 15 30 20 15
1423 40 25 0 15 3412 40 5 20 15
1432 40 5 20 15 3421 15 30 20 15
2134 40 30 10 0 4123 40 25 0 15
2143 40 30 0 10 4132 40 5 20 15
2314 30 30 20 0 4213 35 30 0 15
2341 15 30 20 15 4231 15 30 20 15
2413 35 30 0 15 4312 40 5 20 15
2431 15 30 20 15 4321 15 30 20 15

TABLE 16.1: Allocation of throughput for every possible order of the users.

Then, knowing the throughput and mode assigned to each user, we can
determine the SINR for each of them by using the relationship between the
throughput and the SINR given by Eq. (16.2) as follows:

T (x) =
A

1 + e−λ(x−δ)
⇒ x = −

ln
(
A−T (x)
T (x)

)
− λδ

λ
(in dB). (16.4)

Now, substituting the throughput assigned to each user in Eq. (16.4) with
the parameters A, λ and δ for the corresponding transmission mode, the SINRs
are obtained. In this example, the SINRs would be given by

SINR1 = −
ln
(
44.8−32.5

32.5

)
− 0.446× 15

0.446
= 17.18 dB;

SINR2 = −
ln
(
29.6−22.5

22.5

)
− 0.451× 10

0.451
= 12.56 dB;

SINR3 = −
ln
(
22.4−14.2

14.2

)
− 0.505× 8

0.505
= 9.07 dB;

SINR4 = −
ln
(
22.4−10.8

10.8

)
− 0.505× 8

0.505
= 7.87 dB;

where the parameters are taken from [43]. Finally, the power and channel
assignment to the users is determined by using the relationship given in Eq.
(16.1). To carry out this last step of the RMMS, it is necessary the interbase
signaling be provided by the NARM in wireless networks.

Some final comments about resource management in wireless networks
are: First, note that if the total requested throughput is below the available
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throughput, then there is no problem, every user is assigned his requested
throughput. When below a certain threshold of SINR, the QoS is not ad-
missible or acceptable, then the user’s request should be rejected or queued.
In view of this, bankruptcy rules or other allocation rules which satisfy the
property of drop-out could be interesting in this context. For example, in [76]
the constrained equal awards rule is used. Other definitions of the estate and
the claims can be used. For example, the estate could be measured in terms
of the total SINR admissible for the system. The main technical shortcoming
of this approach could be the intensity of uplink and downlink signaling be-
tween BTSs and users, because this reduces the available resources, but [79]
justify that network-assisted management is an attractive option from both
spectrum efficiency and implementation point of view. As mentioned in the
Introduction, one of the biggest problems with the Shapley value is its com-
putational complexity. However, the number of types of requested services is
usually small; therefore, by using its random order property, together with
its symmetry and efficiency properties, the computation of the Shapley value
can be obtained in a very reasonable time ([81], page 7). Finally, bankruptcy
games are convex games and then the Shapley value belongs to the core of
these games, which means that the Shapley value is a stable allocation in the
sense that no coalition can obtain a better aggregate result by itself [87]. This
property is noticeably relevant when defining a fair and stable allocation of
resources.

16.2.2 Channel Allocation in Mobile Communication
Networks

The high expectations and demands of users in terms of QoS provision are
characteristics associated with the evolution of mobile communication sys-
tems. These demands require the design and implementation of the necessary
means to achieve an efficient use of the scarce resources available. One way
to do this is through the development of radio resource management (RRM)
techniques. RRM techniques include channel allocation mechanisms which are
responsible for allocating, managing and distributing the available channels
between users and services according to some system or QoS restrictions. Thus,
channel allocation is an example in which game theory can be applied since
its main purpose is to manage scarce radio resources in an environment where
a group of users compete for them and their actions might affect others. In
channel allocation, several issues must be taken into account, such as there
are a limited number of channels or the types of services (www, video, e-mail,
call) among others.

The channel allocation problem we are going to approach is the following.
A Base Station (BTS) has a number of channels available and several users
of the system request service to it. How should the BTS distribute the avail-
able channels among them? Some possible alternatives to answer this ques-
tion are to apply a rule considering priorities of service, maximize the total
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throughput, maximize the minimal throughput obtained by a user or apply
rationing rules. In [25, 52] the application of bankruptcy-based mechanisms
for channel allocation is studied. They consider the GERAN (GSM/EDGE
Radio Access Network) radio interface as a TDMA representative technology
over which to test those allocation mechanisms and compare them with others.

In order to apply bankruptcy or rationing rules, certain characteristics of
the problem must be taken into account. First, the estate is not perfectly
divisible (discrete problem), and the BTS has a finite number of channels
available. Second, the users are not identical and their happiness levels will
depend on the type of requested service (www, mail, video, etc.) and the
assigned resources (number of channels). Third, there are services that are
more resource demanding than others. And finally, the problem is dynamic.
Therefore, in the context of a mobile radio network, the estate, R, is the
finite number of radio resources available and the set of claimants N is the
set of users requesting service. Regarding the claims, not only the number of
radio resources requested must be taken into account but also other relevant
characteristics in the problem must be considered. Thus, the claim of a user
is given by the type of service s requested, the minimum number of radio
resources m(s) to receive that service, the number of resources M(s) to receive
an optimal QoS, the time waiting for service t and whether it is already
being served, α ∈ {0, 1}. The first and the two last characteristics define a
system of priorities in the service. Hence, the claim of user i, is given by
5-tuple Ui = (si,m(si),M(si), ti, αi). Now the priority system is defined as
follows. Given two users i and j, with claims Ui = (si,m(si),M(si), ti, αi) and
Uj = (sj ,m(sj),M(sj), ti, αj), user i has higher prority than user j, i >P j,
if one of the following conditions happens

First : αi < αj ;
Second : αi = αj and si > sj ;
Third : αi = αj and si = sj and ti > tj .

(16.5)

We describe a radio resource management problem by the triple (N,R,U).
Now the problem is how to allocate the available channels (radio resources)
among the users requesting for service. As in Subsection 16.2.1, an alternative
is to apply a run-to-the-bank rule adapted to this situation, which will be close
related to the random order idea behind the Shapley value. But, additionally,
the channel allocation is a dynamical procedure. Channel allocation is carried
out every certain short period of time, even when the users in the system are
the same. With this in mind, on the one hand, every time channel allocation
is run, the users served in the previous round must continue being served in
the new round, unless they have already completed their transmission. On the
other hand, the users queued in previous rounds must be prioritized in the
following rounds.

To simplify the description of the procedure, we define the cooperative
game

(
N, v(R,M)

)
whose characteristic function is given by
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v(R,M)(S) = min

∑
i∈S

M(si), max

0, R−
∑
j /∈S

M(sj)


 , ∀S ⊆ N,

(16.6)
and the Shapley value of this game is Φ(v(R,M)).

The idea of the channel allocation mechanism is to calculate the Shapley
value of the games v(R,M) associated to the successive radio resource manage-
ment problems (N,R,U) that appear in each round. The proposed channel
assignment procedure works as follows. At the beginning of a round, the BTS
observes the users who are requesting service and the parameters that deter-
mine their claims are updated. The time in the system is measured as the
number of rounds in which a user has participated. With this information,
the number of available resources is calculated, taking into account that the
users served in the previous round must continue to be served, and reserving
the resources that the unattended users were not able to use because they
were queued. And the users’ claims of resources are also calculated as the dif-
ference between their optimal numbers of resources to receive the requested
services and the resources that the system reserves for them. With the amount
of available resources and the previous demands, the Shapley value of the as-
sociated game (16.6) is computed. Therefore, to calculate a first allocation
of resources, two types of demands have been taken into account: Reference
demands which the BTS tries to guarantee and other optimal demands, so we
have used bankruptcy problems with references [77, 78]. Since the allocation
of resources must be in integer numbers, the whole part of the Shapley value
is calculated and the remaining resources are distributed among the users ac-
cording to the system of priorities >P . If the resources assigned to a user are
not sufficient to provide service, those resources are redistributed among the
rest of the users who can receive the service. The users not finally served are
queued and others are rejected if a certain timeout threshold has been ex-
ceeded. This process is repeated every round, while there are users requesting
service to the BTS. The technical details of this procedure are shown in the
following algorithm.

ALGORITHM (Channel allocation mechanism based on the Shapley value).
Round k:
Update users N (k) //set of users requesting service in round k
Update parameters
for i ∈ N (k) do

if i ∈ N (k−1) then
M

(k)
i ←M (si)−m(si)α

(k−1)
i − Φ̂

(k−1)
i

(
1− α(k−1)

i

)
else
M

(k)
i ←M (si); α(k−1)

i ← 0; Φ̂(k−1)
i ← 0

end if
end for
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do
1. R(k) ← R−

∑
i∈N(k)

m(si)α
(k−1)
i −

∑
i∈N(k)

Φ̂
(k−1)
i

(
1− α(k−1)

i

)
2. Calculate Φ

(
v(R

(k),M(k))
)

3. D(k) ← R(k) −
∑

i∈N(k)

int
(
Φi

(
v(R

(k),M(k))
))

4. Distribute D(k) among the users in N (k) according to >P→
(
d
(k)
i

)
i∈N(k)

for i ∈ N (k) do
Φ̂

(k)
i ← m(si)α

(k−1)
i +Φ̂

(k−1)
i

(
1− α(k−1)

i

)
+ int

(
Φi

(
v(R

(k),M(k))
))

+ d
(k)
i

if Φ̂
(k)
i < m(si) then

r
(k)
i ← 0; α(k)

i ← 0; t(k)i ← t
(k−1)
i + 1

Q(k) ← Q(k) + Φ̂
(k)
i

else
r
(k)
i ← Φ̂

(k)
i ; α(k)

i ← 1; t(k)i ← t
(k−1)
i + 1

end if
end for
do

1. Distribute Q(k) among the users in N (k) such that α(k)
i = 1 according

to >P→
(
q
(k)
i

)
2. r(k)i ← r

(k)
i + q

(k)
i

return r
(k)
i , i ∈ N (k) //final allocation of radio resources in round k.

Note that in the algorithm there are two subroutines not described. One of
them is the calculation of the Shapley value, and the other is the distribution of
the radio resource among users according to the system of priorities. Regarding
the computation of the Shapley value, different procedures can be used, for
example, the random order procedure or an estimate of the Shapley value
by using sampling [13, 14, 58]. With regards to the distribution of the radio
resource among users according to the system of priorities, there are also
several alternatives. A possible procedure is to assign resources to the most
priority user until it reaches its optimal number of resources, if there are still
resources to distribute, select the second highest priority user and allocate
resources until it reaches its optimal number, and so on. We call this procedure
the most priority user allocation method. A second alternative consists of
uniformly assigning the radio resources from the most priority user to the least
priority one. If there are still resources to start again for the most priority and
so on. We call this procedure the priority uniform allocation method.

In the following example, we illustrate how the method of channel alloca-
tion based on the Shapley value works.

Example 16.2 Consider a BTS with a single frequency carrier with 8 time
slots (channels). Now four users are requesting different types of services.
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Two users request e-mail (users 1 and 2), one user (user 3) requests www
and another user (user 4) requests a 64 Kbps video. In [52] the minimum
and optimal number of radio resources for different services are determined.
For e-mail, the minimum number of time slot is 1 and the optimal number is
6, for www the minimum number is 2 and the optimal number of time slots
is 8, and for 64 Kbps video the minimum number of time slots is 4 and the
optimal number is 8. Likewise, the following priorities on the type of service
are considered 64 Kbps video>www>e-mail. An application of the algorithm
based on the Shapley value is the following:

• Round 1:

– s(1)=e−mail, s(2)=e−mail, s(3)=www, s(4)=64 Kbps−video
– m(1) = 1, m(2) = 1, m(3) = 2, m(4) = 4

– t(0)(1) = t(0)(2) = t(0)(3) = t(0)(4) = 0

– α(0)(1) = α(0)(2) = α(0)(3) = α(0)(4) = 0

– M (1)(1) = 6, M (1)(2) = 6, M (1)(3) = 8, M (1)(4) = 8

– R(1) = 8

– Φ = (1.67, 1.67, 2.33, 2.33)

– D(1) = 8− 6 = 2

– Using the priority uniform allocation method, Φ̂(1) = (1, 1, 3, 3)

– The user requesting 64 Kbps video must be queued
– Using the priority uniform allocation method, the final time slot

allocation in Round 1 is given by r = (2, 2, 4, 0).

• Round 2:

– s(1)=e−mail, s(2)=e−mail, s(3)=www, s(4)=64 Kbps−video
– m(1) = 1, m(2) = 1, m(3) = 2, m(4) = 4

– t(1)(1) = t(1)(2) = t(1)(3) = t(1)(4) = 1

– α(1)(1) = α(1)(2) = α(1)(3) = 1, α(1)(4) = 0

– M (2)(1) = 6 − 1 × 1 − 1 × 0 = 5, M (2)(2) = 6 − 1 × 1 − 1 × 0 =
5, M (2)(3) = 8− 2× 1− 3× 0 = 6, M (2)(4) = 8− 4× 0− 3× 1 = 5

– R(2) = 8− (1 + 1 + 2 + 0)− (0 + 0 + 0 + 3) = 1

– Φ = (0.25, 0.25, 0.25, 0.25)

– D(2) = 1− 0 = 1

– Using the priority uniform allocation method, d(2) = (0, 0, 0, 1)

– Therefore, Φ̂(2) = (1, 1, 2, 4)

– The final time slot allocation in Round 2 is given by r = (1, 1, 2, 4).
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If no user ends their session, then we would always get the same allocation of
time slots in each round, and new users would be queued until there were time
slots available.

Some remarks are the following. The same argument that was mentioned
in Subsection 16.2.1 regarding the computational complexity of the Shapley
value, can be extended to this case, adding the fact that the number of radio
resources is usually very limited and this further improves computing times.
Some related literature to the radio resource allocation is the following. In [59]
a radio resource allocation protocol is defined seeking to fairly distribute the
available resources. For that, they do not use a game theoretical approach and
the resource to be allocated is perfectly divisible. In [20] the radio resource
assignment problem is addressed by defining Vickrey auctions derived to sat-
isfy user QoS requirements. [75] propose a radio resource management that
bases its decisions on aspects related to network resources and user prefer-
ences. In [2] an auction framework for radio resource allocation is proposed,
where the Shapley value is used to evaluate the worth of some radio resources
to be assigned to the users. In [34, 35, 57], a two-level resource allocation in
LTE (Long Term Evolution) networks is proposed. In the upper level, the
available bandwidth (considered perfectly divisible) is distributed among all
types of real time and non-real time traffic by means of the Shapley value of a
bankruptcy game associated to the resource allocation problem. In the lower
level, the physical resource blocks are allocated to each particular traffic, but
respecting the total bandwidth assigned to each type of traffic in the upper
level. The allocation methods in the lower level are based on delays, priorities
or optimization problems.

16.2.3 Bandwidth Allocation in Heterogeneous Mobile
Networks

Heterogeneous mobile networks are another field in which cooperative games
could be useful to provide solutions to some of their radio resource manage-
ment problems. The main characteristic of these wireless systems is the phys-
ical coexistence of several radio access technologies (RATs). These RATs have
different technical characteristics and performance, but they are also comple-
mentary. Therefore, these different radio resources could be managed more
efficiently if they could be used in coordination. Thus, a key point for these
communication systems is the design of efficient joint radio resource man-
agement (JRRM) mechanisms in order to allocate the heterogeneous radio
resources to users. For these kinds of systems, [26, 27, 51, 53] proposed a
JRRM using a bankruptcy game approach but adapted to the complexity of
such networks in order to manage situations of channel allocation with het-
erogeneous wireless networks with the ability of combining several technolo-
gies. This approach is also user-oriented as in Subsections 16.2.1 and 16.2.2.
Therefore, the players are the users, the problem is once again dynamic and
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the estate comes from the total capacity of the network technologies, but
taking into account different resources from different technologies cannot be
combined in order to satisfy the demand of a particular user and the minimal
needs for an acceptable quality of service in each technology. However, [67]
propose a simpler and network-oriented scheme for heterogeneous wireless net-
works based on bankruptcy techniques. In this network-oriented scheme, the
different RATs are the players, and the estate is determined by the requests of
the system users. Therefore, the problem is static, in the sense that the players
do not change over time, and every time a user requests service, a bankruptcy
problem is solved. Consequently, a user receives a certain amount of resources
from each of the different technologies. Since this approach is different from
those presented in the previous sections, the Niyato and Hossain model [67]
is briefly described below.

Consider a mobile communication system with several RATs which can
be combined in order to provide a better performance to users. When a user
requests a service to the system, then a combination of resources from different
RATs is assigned to that user. The user can request different types of service,
such as video, email, www, etc. Each of these types of service has different
needs to obtain good QoS. These needs can be measured in terms of band-
width. Therefore, when a user requests a certain service, a central controller
determines how much bandwidth of each RAT is offered to that user. These
amounts of bandwidth will depend on the type of service requested, the band-
width available in each RAT and the level of congestion in the system. Hence,
on the one hand, we have the bandwidth requested by the user (brequested)
and, on the other hand, the bandwidth offered by each RAT (bRATi ). Now, if∑
bRATi ≥ brequest, then the connection is accepted, otherwise the connection

is rejected. Therefore, when a user is accepted in the system, we can define
a bankruptcy problem (N, brequested, bRAT ), where N is the set of available
RATs, the bandwidth requested brequested is the estate and the vector of of-
fered bandwidth bRAT is the vector of claims, in order to determine what part
of the requested bandwidth is served by each RAT. To do this, once again, the
associated bankruptcy game can be defined and its Shapley value calculated.
Moreover, since bankruptcy games are convex, the Shapley value will always
be in the core of the games and, therefore, it will be a stable allocation [87].

Now, we consider the following simple example to show how Niyato and
Hossain’s model is applied.

Example 16.3 Consider a heterogeneous wireless system with three RATs,
N = {1, 2, 3}. There are three types of service, S = a, b, c, with bandwidth
needs of 100 Kbps, 200 Kbps and 300 Kbps, respectively. In normal traffic
load situations, the bandwidth offered (in Kbps) to each type of service by each
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RAT is shown in the following matrix:

S/N 1 2 3
a 50 75 100
b 100 125 150
c 100 150 200

.

Therefore, we will have a different bankruptcy problem for each type of service.
For example, for the service of type a, we have that the bankruptcy problem
is (N, 100, (50, 75, 100)), and the characteristic function of the associated co-
operative game

(
N, v(100,(50,75,100))

)
is given as in (16.3), after some simple

calculations, we have that (for the sake of simplicity, we use v instead of
v(100,(50,75,100)))

v(∅)=0; v(1) = v(2) = v(3)=0; v(12) = 0; v(13) = 25; v(23) = 50; v(N)=100.

And its Shapley value is Φa = (20.83, 33.33, 45.83). In the following matrix,
we show how much bandwidth of each type of service is served by each RAT.

Φi 1 2 2
a 20.83 33.33 45.83
b 54.17 66.67 79.17
c 66.67 91.67 141.67

.

Hence, each time a user requests a service, the Shapley value of a bankruptcy
game is computed when she is accepted in the system.

Some remarks are the following. On the one hand, Niyato and Hossain’s
model is network-oriented, i.e., the players are the different networks, while
the models showed in Subsections 16.2.1 and 16.2.2 are user-oriented, i.e.,
the players of the game are the users of the communication system. On the
other hand, Niyato and Hossain’s model assumes the resource to be allocated
is perfectly divisible, while [26, 27, 51, 53] consider that the resource to be
allocated among the users is non-divisible, i.e., discrete, and they also use a
user-oriented approach. From a computational complexity point of view, the
application of the Shapley value is not a problem, because the number of RATs
in a heterogeneous wireless system is very small.

16.2.4 Other Applications to Wireless Networks
The literature already mentioned in the previous subsections are just some
examples of the applications of cooperative games, and in particular of the
Shapley value, to wireless communications networks. However, we can find
other interesting applications in the related literature. Below we present a brief
review of these other applications, without the intention of being exhaustive,
but trying to offer a picture of the applicability, potential and interest of the
Shapley value in this field of telecommunications.



346 Handbook of the Shapley Value

For wireless ad hoc networks, [11] design a routing protocol based on the
Shapley value of a suitable cooperative game to avoid selfish behavior of nodes
in this type of wireless networks. [95] also use the Shapley value for a better
allocation of the radio resources and avoiding selfish attack. Moreover, the
Shapley value is used in [70] to detect intrusions and reduce the number of
false positives in this type of networks.

For wireless mesh networks (WMN), in [37] a mechanism based on the
Shapley value is developed to ensure the fair allocation of throughput among
the BSs in order to guarantee minimum throughput requirements of clients in
congested WMNs. The cooperative game behind is defined taking into account
throughput contributions and path congestion. In [38] a similar idea to the
previous one is used to design a resource management mechanism in WMN.
[50] study the problem of the collaboration between service providers by shar-
ing radio resources in order to increase revenues or decrease costs, at the
same time that a better service is provided to customers. They define a linear
programming game and use its Shapley value for a fair allocation of the aggre-
gate revenue. [33] study the distribution of subchannels in an OFDMA frame,
and propose to use the Shapley value or the nucleolus [84] of a bankruptcy
game as allocation mechanism of subchannels between the mesh routers. A
game theoretical mechanism based on the Shapley value is designed in [5] to
economically compensate mesh nodes when they collaborate with the mobile
network operator in data offloading in WMN.

For Long Term Evolution (LTE) systems, the collaboration among LTE,
DVB-NGH (Digital Video Broadcasting-Next Generation Handheld) systems
and TV channels to offer mobile TV services is studied in [80]. Then they use
the Shapley value to share the generated profit from cooperation. In [22] a
power allocation mechanism in LTE systems to assign power to virtual opera-
tors (VOs) is proposed. This mechanism has two stages, the first stage is based
on VCG (Vickrey-Clark-Groves) auctions, while the second stage is based on
the Shapley value of a suitable cooperative game in order to guarantee a fair
allocation among users of different VOs. In the same context as in the previ-
ous case, [23] consider bandwidth-power allocation to optimize system energy
efficiency. The optimization problem they need to solve is extremely difficult
but they use the Shapley value of a suitable bankruptcy game to obtain an
easier way to solve the optimization problem. In [69] a market game is defined
and its Shapley value is used as radio resource allocation mechanism in LTE
networks. The problem of LTEs and WiFi systems using unlicensed spectrum
bands is studied in [32]. They propose a NTU cooperative game and use its
Shapley value to share the airtime in order to mitigate interferences.

In order not to make the revision of the literature too extensive and long,
we conclude this subsection listing some of the literature related to the Shap-
ley value applications to spectrum management, and energy efficiency and
power control in wireless networks. Regarding spectrum management, some
references in which the Shapley value is used to manage the radio spectrum are
[28, 29, 41, 46, 71, 72, 74, 85]. Finally, some references in which the Shapley
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value has been used to approach energy efficiency and power control problems
are [30, 40, 45, 48, 61, 97, 100].

16.3 The Shapley Value in Internet Problems
Internet has experienced a spectacular growth since its appearance at the
early seventies. The development of wireless technologies has been added to
the foregoing, and both together have led to a paradigm shift in many contexts.
This situation yields new and exciting problems in many different contexts.
Some examples are new markets and business based on Internet, the relation-
ship between Internet Service Providers (ISPs) and those managing different
services (social networks, search engines...) offered by means of Internet, the
management of Internet infrastructures to offer a better service and at the
same time make the business more profitable, and also technical problems
such as routing, multicast transmissions, network design, etc. Many of these
problems involve more than one individual, so conflicts of interest can arise in
different ways. Therefore, the use of Game Theory to analyze these problems
may be more than adequate [18, 36, 66]. In particular, there will be problems
in which the collaboration of the parties concerned will be important for their
interests, and the benefits of this collaboration must be shared fairly so that
the collaboration is effective. It is at this point, where the cooperative game
theory and the Shapley value can play an essential role.

The following sections will present several examples of application of co-
operative games, in particular of the Shapley value, to different problems that
arise in the context of Internet.

16.3.1 Keyword Auctions in Search Engines on Internet
The Internet is increasingly the place where consumers search companies that
offer a specific service in which they are interested. However, searches can
produce irrelevant results for the users or unstructured company listings. For
this reason the keyword market in search engines has experienced great growth
in the last two decades. The market for keyword searches on Internet is usually
based on auctions, in which companies bid to achieve a better position in the
search list of certain keywords. In general, a ranking auction market (RAM) is
made up of the Internet search service provider that offers prominent positions
in the search listings for a keyword and a set of firms that want to occupy those
positions for that keyword. Therefore, for each keyword we would have one
of these markets. These prominent positions in the search listing are valuable
for firms because more potential clients can click on their links, and thus to
likely increase their sales. Each firm is interested in reaching a position as
high as possible in the search listing, because the number of potential clicks
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depends on its position. There is not a limited number of positions to be shown
in a search listing. Thus, all the firms will be included in the search listing.
Therefore, we consider a market situation with one seller (the provider) who
owns as many different objects (the positions in the search listing) as the
number of buyers (the firms) who are interested in them.

Keywords auctions in search engines on Internet has attracted the atten-
tion of many researchers in recent years and there is a lot of literature on
the subject. Two possible approaches from Game Theory can be considered
to tackle these situations. The most often approach in the related literature
involves analyzing the problem from a competitive point of view (see, for ex-
ample, [1, 3, 21, 47, 99]). The second approach is to study these situations
from a cooperative perspective, in which it is interesting to examine the
cooperative and collusive behavior of the agents concerned [4].

Following [4], in a ranking auction market (RAM) the set of players can
be divided into two disjoint sets {0} and B = {1, 2, . . . , n}, where 0 is the
search service provider (SSP) on Internet and B are the firms interested in
being ranked for a particular keyword. The SSP offers the service of listing the
firms according to a ranking when searching for a keyword on the Internet. To
determine the position in the listing, each firm i ∈ B bids to obtain the highest
position. The number of clicks obtained depends on the position in the ranking.
We assume that f1 ≥ f2 ≥ . . . ≥ fn ≥ 0, where fj is the number of clicks
obtained in position j. The unitary revenue per click of firm i is denoted by ri
and we assume, without loss of generality, r1 ≥ r2 ≥ . . . ≥ rn > 0. When firm
i bids bi, his revenue will be (ri−bi)fσ(i), where σ(i) denotes its position in the
ranked search listing. The revenue for the SSP will be given by

∑
i∈B bifσ(i),

i.e. the SSP receives the corresponding bid for each click received by the firms.
Therefore, a RAM situation is described by < 0, B, r, f >. If the SSP and the
firms collaborate to increase revenues, a fair distribution of income should
be implemented to enable that collaboration. One way to obtain that fair
allocation is to resort to cooperative games and calculate the Shapley value.

Let < 0, B, r, f > be a RAM situation. The associated RAM game
(N, v(r,f)) is a cooperative game with set of players N = 0 ∪ B and char-
acteristic function given by

v(r,f)(0) = 0; v(r,f)(S) = 0, ∀S ⊆ B; v(r,f)(S ∪ 0) =
∑
i∈S

rifτ(i), ∀S ⊆ B,

(16.7)
where τ : S → {1, 2, ..., |S|} is defined such that τ(i) ≤ τ(j) if i < j. This
means that only the |S| first positions are considered.

Example 16.4 Consider a RAM situation with the SSP and 3 firms. The
revenue per click is, respectively, 7, 4 and 2. The number of clicks received
on each position in the ranked search listing are 9, 6 and 3, respectively. The
corresponding RAM game (N, v(r,f)) is given by

v(r,f)(01) = 63; v(r,f)(02) = 36; v(r,f)(03) = 18;
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v(r,f)(012) = 87; v(r,f)(013) = 75; v(r,f)(023) = 48;

v(r,f)(N) = 93; v(r,f)(S) = 0, otherwise.

The Shapley value of this game is Φ(N, v(r,f)) = (50.5, 25.5, 12, 5). It is easy
to check that Φ(N, v(r,f)) belongs to the core of the game.

As we can see in the definition of RAM games, these games have a nice
structure. The following theorem shows that RAM games are (total) big boss
games [64]. This is an interesting property because big boss games always
have a non-empty core and, furthermore, the core structure of these games is
a simple parallelotope.

Theorem 16.1 [4] Let < 0, B, r, f > be a RAM situation. The associated
RAM game (N, v(r,f)) is a (total) big boss game.

Since a RAM game (N, v(r,f)) is a big boss game, its core is the parallelo-
tope given by

Core(N, v(r,f)) =

{
x ∈ Rn+1 :

0 ≤ xi ≤ rifi −
∑n

j=i+1
rj (fj−1 − fj) , ∀i ∈ B;

x0 =
∑

i∈B rifi −
∑

i∈B xi

}
.

(16.8)

The Shapley value does not belong to the core of the RAM game, in
general. For example, if we consider the RAM situation with two firms, such
that r1 = 2 and r2 = 1, and f1 = 5 and f2 = 1, the Shapley value is
Φ(N, v(r,f)) = (6.17, 3.67, 1.17) which is easy to check that does not belong to
the core of the game (v(r,f)(01) = 10 > 6.17 + 3.67 = 9.83).

Although the structure of a RAM situation is relatively simple, the ex-
pression of the Shapley value for RAM games is the following:

Φ0(N, v
(r,f)) =

∑
S⊆B

γ(S)


∑
j > 0
j ∈ S

rjfτ(j)

 ;

Φi(N, v(r,f)) =
∑

S ∪ {0} ⊆ N
i ∈ S ⊆ B

γ(S)

rifτ(i) −
∑
j > i
j ∈ S

rj
(
fτ(j)−1 − fτ(j)

)
 , ∀i ∈ B,

where γ(S) = (|S|)!(n−|S|+1)!
(n+1)! .

However, since the RAM game is a total big boss games, we know that the
Shapley value guarantees each firm at least half of her marginal contribution
to the grand coalition. Furthermore, there are two simple cases in which the
Shapley value can easily be calculated and is in the core of the RAM game.
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Proposition 16.1 [4] Let < 0, B, r, f > be a RAM situation and (N, v(r,f))
the associated RAM game.

a) If ri = γ > 0, ∀i ∈ B, then Φ0(N, v
(r,f)) = γ

n+1

∑n
j=1(n − j + 1)fj,

Φi(N, v
(r,f)) = γ

(n+1)n

∑n
j=1 jfj , ∀i ∈ B.

b) If fj = φ > 0, ∀j = 1, 2, ..., n, then Φ0(N, v
(r,f)) = 1

2φ
∑
i∈B

ri,

Φi(N, v
(r,f)) = 1

2φri, ∀i ∈ B.

Proposition 16.1 describes two simple situations but realistic. The first
corresponds to situations in which the differences in the earnings per click are
negligible, and therefore it can be assumed that all the firms have the same
profit per click. The second situation occurs when there is no significant effect
on the position that is occupied in the list with respect to the number of clicks
that are received, therefore, the non-existence of differences between positions
can be accepted as reasonable. In both cases a great symmetry is observed in
the allocation of profits among the players concerned when the Shapley value
is used.

There are other two interesting issues in these situations where there are
two different types of players. The first is how relevant is the position in
the ranked search listing to obtain a higher payment in the allocation of the
total profit generated from the cooperation. The concept associated with this
question is rank-sensitiveness. This refers to how sensitive an allocation of the
profit is to the distribution of clicks between the positions of a ranked search
listing. As will be seen below, the used concept of rank-sensitiveness is close
related to the concept of Lorenz domination. The second question is related to
the possibility that firms collaborate with each other, leaving the SSP aside,
to obtain a greater profit. This is related to the collusion concept, i.e. how to
avoid competing between agents belonging to the same level in a competitive
market.

Given two decreasing distributions of K clicks among n ordered positions,
f and g, it is said that f is more rank-sensitive than g, if the following holds

h∑
i=1

fi ≥
h∑
i=1

gi, ∀h = 1, 2, ..., n. (16.9)

The specific question is: Which distributions of the clicks are more bene-
ficial for the SSP and which ones for the firms? In the following proposition,
this question is answered for the same cases as Proposition 16.1, when the
Shapley value is used as the distribution rule.

Proposition 16.2 [4] Let < 0, B, r, f > and < 0, B, r, g > be RAM situations
such that f is more rank-sensitive than g, and (N, v(r,f)) and (N, v(r,g)) the
associated RAM games. If ri = γ, ∀i ∈ B, then Φ0(N, v

(r,f)) ≥ Φ0(N, v
(r,g)),

Φi(N, v
(r,f)) ≤ Φi(N, v

(r,g)), ∀i ∈ B.
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Therefore, from a cooperative point of view, when the differences between
the gains per click of the firms are negligible, the distribution of the clicks
among of the positions in the ranked search listing is very relevant when
the Shapley value is used as allocation rule. In the more general case, strong
assumptions must be imposed on the revenues per click in order to achieve
some result.

Finally, we analyze how the firms in a RAM situation can collude to en-
hance their position in the problem. After collaborating the firms have to
distribute among them the gains obtained from cooperation and the Shapley
value is then a good alternative to do it.

Let < 0, B, r, f > be a RAM situation and let (N, v(r,f)) be the associated
RAM game. The dual game restricted to all players except the SSP, the firms
(collusion) game, (B, v∗) is given, for each S ⊆ B, by

v∗(S) = v(r,f)(N)−v(r,f)(N \S) =
n−|S|∑
k=1

(rk−rik)fk+
n∑

k=n−|S|+1

rkfk, (16.10)

where N \ S = i1, i2, . . . , in−|S| such that i1 < i2 < . . . < in−|S|.
The firms collusion game represents a pessimistic idea regarding the profits

the colluders can obtain when they collaborate. Thus, the firms in S assume
that the firms outside S will bid as much as possible, so they have to bid in
order to compensate this.

In this case, the Shapley value also does not have a simple mathematical
expression for its calculation. Nevertheless, if we consider the symmetric case,
i.e. ri = γ for all i ∈ B, then the firms game is given, for each S ⊆ B, by

v∗(S) = γ

n∑
k=n−|S|+1

fk. (16.11)

Moreover, if the position in the ranking is not relevant, i.e., fj = φ, for all
j = 1, 2, . . . , n, then the characteristic function form of the firms game is

v∗(S) = φ
∑
i∈S

ri. (16.12)

In these two situations, the Shapley value of the game or other solutions are
easy to compute. In the first case, by symmetry, each firm obtains the same,
i.e. v∗(N)

n . In the second case, each firm obtains her marginal contribution to
the grand coalition, i.e. φri.

Some comments are as follows. Although in this case the calculation of
the Shapley value is not simple, in general, in realistic situations there will be
only a few firms, so its computation is not an obstacle to its use. Keyword
auctions in search engines on Internet has usually been studied from a non-
cooperative point of view, hence there are very few works in the literature
from a cooperative perspective. In addition to the aforementioned [4], other
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related papers in the literature are the following. [98] propose a cooperation
bid strategy for firms when a VCG mechanism is used by the SSP, then use
an approximate Shapley value to distribute the obtained profit among firms
involved. [89] proposes a tool for improving the profits of the firms without
decreasing the profits of the SSP when a GSP (Generalized Second Price)
auction is used. This tool is based on the nucleolus of a suitable cooperative
game.

16.3.2 Collaboration among ISPs
An Internet Service Provider (ISP) is a company or organization that provides
different Internet services to its customers. These services include, among
many others, Internet access and Internet transit. Therefore, roughly speak-
ing, Internet consists of many ISPs which may have connected their systems
depending on bilateral agreements. A non-complete collaboration of all ISPs
negatively affects the routing efficiency and the cost of providing the service,
and consequently, to the provision of Internet services to users. Therefore,
collaboration between ISPs should come quite naturally because all parties
concerned benefit, the ISPs because they can improve their income, reduce
costs and enhance their service, and the different types of users of Internet
because they can receive a better service. It is clear that in order for this
collaboration to take place, an appropriate and fair mechanism must be de-
signed to distribute the revenues among the ISPs. One way to do this is
through cooperative games and use the Shapley value as a distribution mech-
anism. [39, 54, 55, 56] study different problems of collaboration among ISPs
by means of cooperative games and they then apply the Shapley value as
allocation mechanism of the profits generated from cooperation.

Following the ideas in [55], we introduce the following simpler model of
ISP collaboration. Let us consider that there are a finite set N = {1, 2, .., n}
of ISPs which provide Internet services. Each ISP i has a set of users given
by ISP (i). The users of each ISP generate a traffic in the network that is
attended by the ISPs. This traffic will provide an income to the ISPs for the
provision of the service, but also some costs due to traffic routing. We consider
that the revenue for each unit of traffic is a positive fixed amount α, because
of the competence between the ISPs [55]. The cost of routing will depend on
the path followed by the traffic, so we distinguish three types of traffic for each
ISP. Internal traffic in the ISP i, i.e. between users of that ISP. In this case
the cost is given by β(i) which corresponds to the average cost of the optimal
routing within the ISP i. Traffic from the ISP i to other ISPs, i.e. from users
of the ISP i to users in other ISPs. In this case the cost is given by γ(i) that
corresponds to the average cost of the routing between ISPs which depends
on bilateral agreements between ISPs and the quality of the route. Finally,
traffic through the ISP i from other ISPs. In this case the ISP i receives a
fixed compensation δ for using its infrastructure and the associated cost is
given by β(i). Therefore the profit for each ISP i, i ∈ N , is given by
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(α− β(i))
∑

j,k∈ISP (i)

rjk + (α− γ(i))
∑

j∈ISP (i),k/∈ISP (i)

rjk+

(δ − β(i))
∑

j /∈ISP (i)

∑
k∈∪h∈NISP (h)

η(i, jk)rjk, (16.13)

where rij is the traffic between users i and j, and η(i, jk) = 1 if the ISP i
belongs to the route from user j to user k, and 0 otherwise. For simplicity, we
can consider the aggregate traffic between ISPs, so that Eq. (16.13) becomes:

(α− β(i)) rii + (α− γ(i))
∑
j∈N\i

rij + (δ − β(i))
∑
j∈N\i

∑
k∈N

η(i, jk)rjk, (16.14)

where rij is the traffic between ISPs i and j, and η(i, jk) = 1 if the ISP i
belongs to the route from ISP j to ISP k, and 0 otherwise.

Now, if a subset S ⊆ N of ISPs cooperate, the (average) optimal routing
cost within the subnetwork defined by the ISPs in S will be β(S) and the
(average) routing cost from users in S to users outside S will be γ(S). Then
the profit of coalition S is given by

(α− β(S))
∑
i,j∈S

rij+(α− γ(S))
∑

j∈S,k∈N\S

rjk+(δ − β(S))
∑

j∈N\S

∑
k∈N

η(S, jk)rjk,

(16.15)
where rij is the traffic between ISPs i and j, and η(S, jk) = 1 if some ISP
in S belongs to the route from ISP j to ISP k, and 0 otherwise. Hence, an
ISP collaboration situation is defined by the 7-tuple (N, r, α, β, γ, δ, η), where
N is the set of ISPs, α is the revenue per unit of traffic, β : 2N → R+ is an
average optimal routing cost function, γ : 2N → R+ is an average routing cost
function, δ is a kind of toll to use network infrastructures and η is a function
defining the interconnection routing between ISPs. Therefore, we can define
a cooperative game (N, vISP ) associated with the ISP collaboration situation
as follows

vISP (S) = (α− β(S))
∑
i,j∈S

rij + (α− γ(S))
∑

j∈S,k∈N\S

rjk+

(δ − β(S))
∑

j∈N\S

∑
k∈N

η(S, jk)rjk, ∀S ⊆ N. (16.16)

Once we have defined the game we can divide the total profit among ISPs
using the Shapley value. Nevertheless, collaboration among all the ISPs will
not be possible if the distribution of the profit is not fair, in the sense that there
is a group of ISPs that can obtain a greater profit by themselves by leaving
the grand coalition. Therefore, the allocation must be stable in the sense that
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it belongs to the core of the game. In order to analyze the nonemptiness
of the core of the ISP game, we need to establish the relationship between
the different parameters defining the problem. The following theorem shows
that, under very reasonable conditions, the ISP game is convex, and hence the
Shapley value belongs to the core of the game [87].

Theorem 16.2 Let (N, r, α, β, γ, δ, η) be an ISP situation such that the fol-
lowing conditions hold

1. α > δ and the routing costs are negligible.
2. The network of ISPs is a fully connected graph.

Then, the associated ISP game (N, vISP ) is convex.

Proof. Condition 1 implies that β(S) = 0, ∀S ⊆ N and Condition 2 implies
that all routes between ISPs are direct, therefore γ(S) = δ, ∀S ⊆ N . Consider
now S ⊆ T ⊆ N \ i, then the marginal contribution of ISP i to coalitions T
and S are given by

vISP (T∪i)−vISP (T ) = α

rii +∑
j∈T

rij +
∑
j∈T

rji

+(α− δ)
∑

j∈N\(T∪i)

rij+

δ
∑

j∈N\(T∪i)

rji − (α− δ)
∑
j∈T

rji − δ
∑
j∈T

rij ; (16.17)

vISP (S∪i)−vISP (S) = α

rii +∑
j∈S

rij +
∑
j∈S

rji

+(α− δ)
∑

j∈N\(S∪i)

rij+

δ
∑

j∈N\(S∪i)

rji − (α− δ)
∑
j∈S

rji − δ
∑
j∈S

rij . (16.18)

If we rewrite Eq. (16.17) and Eq. (16.18), we have that

α

rii + ∑
j∈T\S

rij +
∑
j∈T\S

rji +
∑
j∈S

rij +
∑
j∈S

rji

+ (α− δ)
∑

j∈N\(T∪i)

rij+

δ
∑

j∈N\(T∪i)

rji − (α− δ)

 ∑
j∈T\S

rji +
∑
j∈S

rji

− δ
 ∑
j∈T\S

rij +
∑
j∈S

rij

 ;

(16.19)
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α

rii +∑
j∈S

rij +
∑
j∈S

rji

+ (α− δ)

 ∑
j∈N\(T∪i)

rij +
∑
j∈T\S

rij

+

δ

 ∑
j∈N\(T∪i)

rji +
∑
j∈T\S

rji

− (α− δ)
∑
j∈S

rji − δ
∑
j∈S

rij . (16.20)

Now it is straightforward to observe that vISP (T ∪ i)− vISP (T ) ≥ vISP (S ∪
i)− vISP (S), therefore the game (N, vISP ) is convex.

Under the conditions of Theorem 16.2, the Shapley value has a nice and
simple expression as the following theorem shows.

Theorem 16.3 Let (N, r, α, β, γ, δ, η) be an ISP situation such that the fol-
lowing conditions hold

1. α > δ and the routing costs are negligible.
2. The network of ISPs is a fully connected graph.
Then the Shapley value of the associated ISP game (N, vISP ) is given by

Φi(N, v
ISP ) = α

∑
k∈N

rik + δ
∑
k∈N\i

(rki − rik) , ∀i ∈ N. (16.21)

Proof. Condition 1 and Condition 2 imply that for all S ⊆ N

vISP (S) = α
∑
i,j∈S

rij + (α− δ)
∑
i∈S

∑
j∈N\S

rij + δ
∑

j∈N\S

∑
i∈S

rji, ∀S ⊆ N.

(16.22)
Now, we can decompose the game vISP into the sum of three games as

follows
vISP,B(S) = α

∑
i,j∈S

rij ;

vISP,F (S) = (α− δ)
∑
i∈S

∑
j∈N\S

rij ;

vISP,T (S) = δ
∑

j∈N\S

∑
i∈S

rji;

vISP (S) = vISP,B(S) + vISP,F (S) + vISP,T (S), ∀S ⊆ N. (16.23)

Since the Shapley value satisfies the additivity property, then the Shap-
ley value of (N, vISP ) is exactly the sum of the Shapley values of the three
games. By using the random order property, together with the symmetry and
efficiency properties of the Shapley value, we have that

Φi(N, v
ISP,B) =

1

2
α
∑
k∈N

(rik + rki) , ∀i ∈ N ; (16.24)
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Φi(N, v
ISP,F ) =

1

2
(α− δ)

∑
k∈N\i

(rik − rki) , ∀i ∈ N ; (16.25)

Φi(N, v
ISP,T ) =

1

2
δ
∑
k∈N\i

(rki − rik) , ∀i ∈ N. (16.26)

Finally, by adding Eq. (16.24), Eq. (16.25) and Eq. (16.26), after some
calculations we obtain the result.

Under the conditions of Theorems 16.2 and 16.3, the Shapley value allo-
cates to each ISP all the profit generated by the traffic from its users to all
other users in the system, including themselves, but this profit allocation is
compensated with more or less profit depending on the balance between the
in-out traffic. The games defined in Eq. (16.22) have the following interpreta-
tion. The game (N, vISP,B) provides the profit obtained by each coalition by
means of the traffic generated “between” users belonging to the ISPs in the
coalition. The game (N, vISP,F ) gives the profit obtained by each coalition
through the traffic generated “from” the users of the ISPs in the coalition to
the users of other ISPs. Finally, the game (N, vISP,T ) provides the profit ob-
tained by each coalition through the traffic generated from the users of other
ISPs “to” the users of ISPs in the coalition.

Some related literature is the following. The model introduced in this sub-
section is simpler than the model introduced in [55] although both study
the benefit of collaboration between ISPs regarding traffic between end-users.
[54, 56] study the problem of collaboration between ISPs but differentiating
between types of ISPs, content, transit and eyeball ISPs. [39] analyze the
problem of collaboration among ISPs that provide video-on-demand services.
[9, 49] study how to allocate profits between content creators and Internet TV
Service Providers. [65] study the income distribution in multi-domain/multi-
provider networks. In all these papers, cooperative games are defined and their
Shapley values are used as profit allocation mechanism.

16.3.3 Some Additional Applications to Internet Problems
Many of the problems included in this subsection are related to computer
networks in general, but we consider Internet as the best well-known example
of computer network. [7] study the problem of which subset of a network nodes
may be switched off, without affecting too much data traffic, in order to save
energy. They define a cooperative game to describe the problem and propose
the Shapley value as a criticality index for deciding which nodes to be switched
off. We can also find applications of the Shapley value to peer-to-peer (P2P)
networks. Two examples of these applications are [16, 62].
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16.4 The Shapley Value in Communication Routing
Problems

Some of the problems studied in the literature mentioned above include rout-
ing, but there it is not the main purpose of the application of Game Theory.
Next we consider communication problems in which Game Theory has been
applied to design or control routing mechanisms in communication networks.

Multicasting is a form of routing which consists of creating a directed
tree that connects the source to all the receivers, thus avoiding the sending
of duplicate packets from the source to the receivers. [24] study cost-sharing
mechanisms for multicast transmission. They consider two elements to analyze
the problem, the utility obtained by the receivers and the cost of sending the
packets through the directed tree. They propose the Shapley value as one
of the most suitable solutions in this context. [15] also study the multicast
routing by using cost sharing of a suitable multicast game which is related to
the Steiner Tree problem. They analyze the egalitarian distribution of each
edge cost among its users, this distribution coincides with the Shapley value of
the game. [8] analyze the performances of a family of cost sharing methods for
multicast routing games, propose some reasonable properties to be satisfied by
a solution and prove that the only method satisfying all the properties is the
Shapley value. However, the Shapley value does not have a good performance,
for this reason other cost sharing mechanisms are evaluated.

[90] design a routing algorithm based on the Shapley value, which is used
to determine the probability of each node in the next hop of the path be-
tween two nodes. For that, they define cooperative games based on the delay
of edges and the business level of nodes, these games are updated every time
new information is available. Then the Shapley values of these games provide
the routing table for each node. [42] designs a routing algorithm for wireless
networks based on the Shapley value. This routing algorithm provides a high
performance for wireless networks regarding energy efficiency and load balanc-
ing. Furthermore, it is flexible enough to be adaptative to dynamic network
conditions. Finally, [88] propose a routing forwarding mechanism for Informa-
tion Centric Networking (ICN) based on the Shapley value of the so-called
alliance game, which is defined taking into account the business degree of the
nodes and the delay on the links.

We briefly conclude this section by mentioning some applications of the
Shapley value to other problems that also appear within the field of Telecom-
munications. [17, 91] apply the Shapley value for solving power allocation
problems in radar networks. [10, 92] use the Shapley value for analyzing mea-
surements and routing protocols in wireless sensor networks. To finish with
the applications, the Shapley value has also been applied to cloud computing
problems in [19, 101].
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16.5 Conclusions
In this chapter we have shown several applications of Game Theory to differ-
ent problems that arise in the field of Telecommunications, in particular in
wireless networks, on the Internet and in routing problems in communications
networks. The non-exhaustive extension of the literature reviewed gives us an
idea of the interest that the cooperative approach has to solve many telecom-
munications problems and, in particular, the Shapley value as a paradigm
of distributive justice or fairness principle. All this despite the difficulties of
computational complexity that approaches from the perspective of coopera-
tive games have, but that in many situations those can be overcome because
of the structure of the problem under analysis, as seen in the previous pages.
In any case, the relevance and interest of the Shapley value is demonstrated
and its utility to solve different problems in the field of Telecommunications
has been highlighted.

To conclude, paraphrasing the words of Michael Maschler [60], we have
tried to answer the question “How can Game Theory help telecommunication
engineers and managers in pursuing their goals?” Or more precisely “How can
the Shapley value help telecommunication engineers and managers in solving
their technical and management problems?”
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17.1 Introduction
The analysis and modeling of different aspects of energy transmission networks
is a prevalent topic in papers across a wide variety of disciplines. In particular,
one important aspect is the study of energy losses in these networks. This issue
was recently tackled in [1], where the authors say:

A common problem is that, in virtually any network, there
are losses whose sources are normally difficult to identify.
Thus, one must anticipate them so that they do not lead to
deficit in the system. In many cases the transmission network
is owned by different agents and, typically, the authorities
that manage the network decide how much energy each agent
is allowed to lose. This decision should follow some general
principles, which would then appear in the relevant regula-
tions. For instance, one would like that the loss allocated to
each agent takes into account characteristics of the agents,
such as the size of its subnetwork or the amount of energy
managed.

Although the analysis of this paper could be applied to any energy trans-
mission network, we develop it using a gas transmission network because our
leading example is the Spanish gas transmission network. It is worth noting
that the use of natural gas as a source of energy has been rapidly increas-
ing over the past few years. According to a review by British Petroleum in
2013 ([6]), the consumption of natural gas worldwide was around the 23.9%
of global primary energy consumption. A more recent report published by
Enerdata in 2017 (see [8]) also reports a share over 20% of natural gas.

Going back to the issue of energy losses and, more specifically, energy losses
in gas networks, [1] go on to say:

Different networks have different estimates on the percent-
age of gas/electricity that is lost during transportation. In
Spain, for instance, this estimate is 0.2% for the gas trans-
ported in the high pressure gas network and similar figures
have been reported in other countries. In order to prevent
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the ensuing monetary losses, a standard approach in energy
networks is to withhold at the entry points a pre-set per-
centage of the gas/electricity entering the network; by doing
this, the energy companies that use the network for trans-
portation are the ones effectively assuming the associated
cost in the first instance. In particular, in the Spanish high
pressure gas network the pre-set percentage withhold to an-
ticipate the estimated losses is precisely 0.2%. In monetary
terms, the annual cost of the gas entering the Spanish gas
network is around 12000 millions of Euro, which results in
approximately 25 millions of Euro in losses in the transmis-
sion network.
It is precisely at this point where the main question we try to
address in this paper arises. Since a gas network is typically
owned by different agents, called haulers, it must be decided
how to share the withhold gas among them. More precisely,
it must be decided, for each agent, the percentage of the
gas entering his subnetwork that he can lose. Note that it
is not possible to let each agent lose the same percentage
that has been withhold for the entire network. Since most
gas entering the network crosses several subnetworks, this
naive approach would result in allowing the agents to lose,
in aggregate, more gas than the withhold amount.

The Spanish regulation presents an incentive mechanism to induce haulers
to reduce the losses (see [5, page 106656]). On a yearly basis the following
values are computed: Ah is the ‘allowed’ loss assigned to each hauler h; Lh is
the real loss of each hauler h (it is computed as the balance between entries
and exits of gas in his subnetwork); given a price p per unit of gas, the haulers
pay p (Lh −Ah) when Lh−Ah > 0 and receive p

2 (Ah − Lh) when Lh−Ah ≤ 0.
Therefore, the definition of the rule to assign the ‘allowed’ losses is a relevant
issue for the management of gas transmission networks.
Regulation (EC)(no. 55/2003, [13]), from the European Union mentions some
principles that should be followed by the national and international regula-
tions regarding the natural gas market. The analysis in [1] starts with the
definition of four different allocation rules for energy losses, which are then
compared conducting a thorough axiomatic analysis that builds upon the
above principles. Besides, an application using data from the Spanish gas
transmission network is presented, comparing the allocation proposed by the
different rules. The main conclusion of that paper is that the rule that behaves
worst (in terms of the EU principles) is the so-called aggregate edge’s rule.
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This rule was replaced in Spain by the flow’s rule because of the strong op-
position of the small haulers (on the grounds that it favored big haulers).
The proportional tracing rule and the edge’s rule behave better than the
flow’s rule (in terms of the EU principles), with the former seeming slightly
preferable.

In this paper we present a new rule, the Shapley rule, obtained as the
Shapley value of a cooperative game with transferable utility that can be as-
sociated to each gas loss problem. Then, we closely follow the analysis in [1].
We first study the axiomatic behavior of the Shapley rule with respect to
the same set of axioms, finding that this new rule is not as good as those
performing best in the original paper: The proportional tracing rule and the
edge’s rule. Second, we find that, in the application from the Spanish net-
work, the allocation proposed by the Shapley rule is very similar to that
proposed by the proportional tracing rule. Motivated by this similarity, we
build upon the real data from the Spanish network to conduct a simulation
analysis over 10000 randomly generated modifications of it. The analysis of
the resulting loss allocations shows that the average correlation between the
allocation proposed by the Shapley rule the one proposed by the proportional
tracing rule is over 0.99, while the minimum correlation between these two
rules found in those 10000 simulations is still over 0.9. This reinforces the idea
that there must be some common mechanism underlying both rules, which
should definitely be explored more deeply. This is especially so if we take into
account that the second highest average correlation, although still very high,
is at 0.97, whereas the second highest minimum correlation for any other pair
of tariffs across the 100000 simulations is just over 0.6.

The use of the Shapley value in this kind of settings is not new. It has
already been used in many allocation problems. The basic idea is always the
same. One starts associating to each problem a cooperative game with trans-
ferable utility. Then, the Shapley rule for the given problem is defined as the
Shapley value of the associated cooperative game. This approach has been
followed, for instance, in airport problems (see [11]), queueing problems (see
[12] and [7]), and minimum cost spanning tree problems (see [10] and [2]).
The current paper contributes to this strand of literature by defining, and
studying, the Shapley rule for energy transmission networks.

In the associated cooperative game with an energy transmission network,
the agents are the haulers. The value of a coalition T of haulers should
be defined as the loss that haulers in T can have by “themselves”. Several
definitions are possible. We give a definition inspired in the approach taken in
[9] for flow games. In their model, there are also a set of agents who own the
different edges of the network and the value of a group of agents T is defined
as the maximum amount of flow that can be transported (from the source
to the sink) using only edges belonging to agents in T . We apply the same
principle to our model. We define the value of coalition T as loss associated
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with the maximum demand that can be satisfied using only edges of haulers
in T , i.e., the loss associated with the maximum amount of gas that can be
transported from suppliers to consumers without exceeding the capacities and
demands of suppliers and consumers, respectively.

The paper is structured as follows. In Section 17.2 we summarize the rel-
evant characteristics of the management and operation of a gas transmission
network and the formal mathematical model. In Section 17.3 we introduce
the Shapley rule. In Section 17.4 we present different properties, motivated
by some principles stated in EU regulations. In Section 17.5 we discuss the
behavior of the Shapley rule with respect to these properties and principles.
In Section 17.6 we present the application to the Spanish gas transmission
network.

17.2 The Model
In this section we introduce the mathematical model associated with a loss
energy problem. In order to make this paper self-contained, we formally in-
troduce all the elements of the model, but we do so in a very concise way.
Also, to facilitate the comparison with the analysis in [1], we closely follow
the notations and formal definitions in that paper. We refer the reader to sec-
tions 2 and 3 of [1] for a more detailed explanation of all concepts introduced
below.

Since our motivating example comes from the Spanish gas transmission
network, the exposition is carried out for gas networks. Yet, our analysis and
results may be applied to other energy transmission networks. As far as this
paper is concerned, a gas network may be seen as a graph, composed of nodes
and edges. There are three types of nodes: Demand nodes, in which some gas
leaves the network; supply nodes, in which some gas enters the network; and
the rest of the nodes, in which the gas that enters and leaves coincide. Edges
represent pipes. Each pipe belongs to a hauler and a hauler may own several
pipes.

In order to develop our analysis, we assume that, for each pipe, its volume
and the amount of gas flowing through it are known. The flow represents the
total amount of energy each pipe carries during a given period of time (which
we measure in GWh/d). The Technical System Manager decides how the gas
flows through the network. The first step is to obtain the demands at the
different nodes. Then, following some criteria, the Technical System Manager
decides the gas that should be introduced at each supply node and how the
gas should be routed so that the total demand is fulfilled. The volume of a
pipe just depends on its length and its diameter. It is worth noting that the
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total amount of gas that can flow through a pipe is not just a function of
its volume. Since natural gas is a compressible fluid, the capacity of a pipe
crucially depends on the construction materials and the maximum pressure
they can support.

A flow configuration, based on some realistic scenario of demands, is an
important part of the input to a loss allocation rule. In energy networks, it
is usual to work with reference scenarios with high/peak demand. This is the
case of the data of the Spanish gas network analyzed in Section 17.6. The way
to choose the reference scenario, although crucial to obtain cost-reflective loss
allocations, is not important for the theoretical analysis of this paper. Once a
methodology is chosen to allocate the losses, it can be applied to individual
scenarios and also to compute averages over sets of reference scenarios to get
more representative allocations.

Given a gas network configuration, we can estimate the total loss of the
system, say L, during a given year. This total loss L has to be assigned to
the haulers. Let Ah be the loss assigned to hauler h. Let Lh be the real
loss measured in the subnetwork of hauler h during this year. In the Spanish
network, given a price p per unit of gas, the haulers pay p(Lh − Ah) when
Lh −Ah > 0 and receive p

2 (Ah − Lh) when Lh −Ah ≤ 0.

17.2.1 The Mathematical Model
Let U = {1, 2, 3, . . .} be the (infinite) set of possible nodes. A graph is a pair
g = (N,E) where N ⊂ U is the (finite) set of nodes and E is a set of edges,
defined as ordered pairs in N , i.e., E ⊂ {(i, j) : (i, j) ∈ N × N and i ̸= j}.
More generally, a multigraph is also a pair g = (N,E), but where the set of
edges is a multiset E ⊂ N × N × N. In particular, we say that two edges
(i, j, n) and (i′, j′, n′) are part of a multiedge if i = i′, j = j′, and n ̸= n′.
We say that E does not have multiedges if the projection of E on N × N is
injective.

A path in g between i and j is a sequence of l > 1 nodes {k1, . . . , kl} such
that i = k1, j = kl, and (kq−1, kq) ∈ E for all q ∈ {2, . . . , l}. A simple path
in g between i and j is a path where all nodes are different. For the sake of
notation, we often identify a path with the set of edges {(kq−1, kq)}q∈{2,...,l}.
A graph g is connected if for each pair of nodes i and j there is a path between
i and j in the undirected version of g. We omit the trivial extension of these
definitions for multigraphs.

A gas loss problem G is a 5-tuple (g, v, f,H, α) consisting in the following
elements:

1. The multigraph g = (N,E) represents the gas network.
We assume that g is a directed and connected graph without cycles,
where the directions of the edges are determined by the gas flows in the
given scenario. If e = (i, j, l) ∈ E, then there may be gas flowing from i
to j.
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2. v = (ve)e∈E where, for each e ∈ E, ve > 0 denotes the volume of e.

3. f = (fe)e∈E is the flow configuration where, for each e ∈ E, fe ≥ 0
denotes the flow of gas through e. We assume that

∑
e∈E fe > 0.

4. H = (H, {Eh}h∈H) is the hauler structure, where H denotes the set of
haulers and, for each h ∈ H, Eh denotes the (possibly empty) set of
edges of hauler h. In particular, E =

⊔
h∈H Eh.

5. α ∈ [0, 1] denotes the proportion of gas allowed to be lost by the set of
haulers.

For the sake of notation, graphs are used for most of the exposition, with
multigraphs being used only when they make a difference. Further, we assume
that the set H is infinite, although in each given problem only a finite number
of them will own edges. This is convenient in the study of some properties of
allocation rules. Yet, in the examples we just mention those haulers who own
some edge in the given problem.

The example below is borrowed from [1]:

Example 17.1 Let G be the gas problem where

1. g = (N,E), where the set of nodes is N = {s1, s2, 1, c1, c2} and the set
of edges is E = {(s1, 1), (1, c1), (s2, 1), (1, c2)}.

2. v(s1,1) = v(s2,1) = v(1,c1) = v(1,c2) = 100.

3. f(s1,1) = 20, f(s2,1) = 80, f(1,c1) = 60, and f(1,c2) = 40.

4. H = (H, {Eh}h∈H), where H = {h1, h2, h3} and Eh1 = {(s1, 1), (1, c1)},
Eh2

= {(s2, 1)}, and Eh3
= {(1, c2)}.

5. α = 0.1.

s1

s2

1

c1

c2

v = 100
f = 20

v = 100
f = 80

v = 100
f = 60

v = 100
f = 40

h1

h2

h3

FIGURE 17.1: Representation of the gas problem in Example 17.1.
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This gas problem is represented in Figure 17.1 and will be used as a running
example to illustrate some concepts and definitions. ♢

We now introduce some terminology. For each i ∈ N , we denote by Qi the
gas balance at node i, i.e., the amount of gas leaving node i minus the amount
of gas arriving at node i. Formally,

Qi =
∑

(i,j)∈E

f(i,j) −
∑

(j,i)∈E

f(j,i).

The set of suppliers S ⊂ N of the gas problem G is defined as the set
of nodes s ∈ N such that Qs > 0. On the other hand, the set of consumers
C ⊂ N is defined as the set of nodes c ∈ N such that Qc < 0. For the rest of
nodes i ∈ N \ (S ∪C), we have that Qi = 0. We make the natural assumption
that total supply and total demand are balanced, namely,∑

s∈S
Qs = −

∑
c∈C

Qc or, equivalently,
∑
i∈N

Qi = 0.

The total loss allowed to the haulers is L = α
∑
s∈S Qs. The flow carried by

each hauler h ∈ H, denoted by fh, is defined as the gas that reaches one of
the edges of hauler h from outside, that is, from some provider s ∈ S or from
an edge of another hauler. Formally, we first define, for each node i ∈ N and
each hauler h ∈ H, Qhi = max{

∑
(i,j)∈Eh

f(i,j)−
∑

(j,i)∈Eh
f(j,i), 0}; if no edge

of hauler h contains node i we define Qhi = 0. Then, for each h ∈ H,

fh =
∑
i∈N

Qhi .

In particular, fh = 0 whenever Eh = ∅.1
Given a gas problem G and a pair (s, c) ∈ S × C, we define P (s, c) as the

set of simple paths in g from s to c. We denote by P (S,C) the set of all simple
paths from suppliers to consumers. Namely,

P (S,C) =
∪

(s,c)∈S×C

P (s, c).

We now want to define an important notion for our analysis that we call
hauler’s influence network, which, given a hauler h, would contain all edges
whose gas might either reach some edge in Eh or come from some edge in Eh.
Formally, for each h ∈ H, we define N h = (gh, vh, fh), as the subnetwork of

1There are alternative ways to define the notion of “flow carried by a hauler”, but, as far
as our analysis is concerned, they would lead to similar results. Our formulation is the one
implicit in the Spanish Regulations ([3, 5]).
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(g, v, f) where gh = (Nh, Eh) and

Eh = {e ∈ E : there is p ∈ P (S,C) with e ∈ p and p ∩ Eh ̸= ∅},
Nh = {i ∈ N : i ∈ e for some e ∈ Eh},
vh = (ve)e∈Eh ,

fh = (fe)e∈Eh .

Sometimes we slightly abuse language and refer to an edge’s influence network,
to mean the influence network that would have a hauler who owned only that
edge.

Example 17.1 (cont.) Going back to the gas problem in Figure 17.1, we
have that Qs1 = 20, Qs2 = 80, Q1 = 0, Qc1 = −60, and Qc2 = −40. Thus,
S = {s1, s2} and C = {c1, c2}. Table 17.1 contains the different Qhi flow
balances and Figure 17.2 represents the influence networks corresponding to
this example.

Qhi s1 s2 1 c1 c2 fh
h1 20 0 40 0 0 60
h2 0 80 0 0 0 80
h3 0 0 40 0 0 40

TABLE 17.1: Flow balances of the haulers of Example 17.1. ♢

Nh1

s1

s2

1

c1

c2

v = 100

f = 20

v = 100

f = 80

v = 100

f = 60

v = 100

f = 40

Nh2

s1

s2

1

c1

c2

v = 100

f = 80

v = 100

f = 60

v = 100

f = 40

Nh3

s1

s2

1

c1

c2

f = 20

v = 100

f = 80

v = 100

f = 40

v = 100

FIGURE 17.2: Illustration of the hauler’s influence networks of Exam-
ple 17.1.

17.3 The Shapley Rule
In [1] the authors study four rules that provide, for each gas loss problem, an
allocation of the allowed loss among the different haulers. These rules, whose



378 Handbook of the Shapley Value

definitions can be seen in [1], are the following: The flow’s rule, Rflow, the
aggregate edge’s rule, RAedge, the edge’s rule, Redge, and the proportional
tracing rule, RΓpt .

In this section, we introduce a new allocation rule: The Shapley rule. In
order to do it, we first associate, to each gas loss problem a cooperative game
with transferable utility, and then study the Shapley value of the associated
game.

We start with some preliminaries on cooperative games. A cooperative
game with transferable utility, briefly a TU game, is a pair (H, l) where H is
the set of agents and, for each T ⊂ H, l(T ) denotes the amount that agents
in T can obtain by themselves. We assume that l(∅) = 0.

The Shapley value introduced in [14] is, by far, the most studied allocation
rule in cooperative game theory. It associates to each TU game (H, l) a vector
Sh(H, l) ∈ RH such that, for each h ∈ H,

Shh(H, l) =
∑

T⊂H\{h}

|T |! (|H| − |T | − 1)!

|H|!
(l(T ∪ {h})− l(T )) .

In our context, H represents the set of haulers and, for each T ⊂ H, l(T ),
is the loss that haulers in T can have by “themselves”. Although there are
several ways in which the l(T ) values can be defined, we present a natural
one inspired in the approach taken in [9] for flow games. In their model, there
is also a set of agents who own the different edges of the network and the
value of a group of agents T is defined as the maximum amount of flow that
can be transported (from the source to the sink) using only edges belonging
to agents in T . We apply the same principle to our model. Let fG(T ) denote
the maximum demand that can be satisfied using only edges of haulers in
T , i.e., the maximum amount of gas that can be transported from suppli-
ers to consumers without exceeding the capacities and demands of suppliers
and consumers, respectively. We also assume that the capacity of an edge
is bounded by fe, the total amount of gas flowing through that edge in the
gas problem under study. Then, we define lG(T ) = αfG(T ); in particular,
lG(H) = αfG(H) = α

∑
s∈S Qs = L. When no confusion arises, we write l

instead of lG.
The Shapley rule, RSh. For each gas problem G we define the Shapley

rule as RSh(G) = Sh(H, lG).
Note that RSh(G) = αSh(H, fG).
Consider our running example. We first compute the associated cooper-

ative game l. Hauler 1 can transport by himself 20 units. Since α = 0.1,
lG (1) = 0.1 · 20 = 2. Haulers 1 and 2 can transport by themselves no more
than 60 units. They can do in several ways. For instance, 20 units through the
path {(s1, 1) , (1, c1)} and 40 units through the path {(s2, 1) , (1, c1)}. Since
α = 0.1, lG (1, 2) = 0.1 · 60 = 6. Analogously, we can obtain that

T {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
lG (T ) 2 0 0 6 2 4 10
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Thus, the Shapley rule is RSh(G) = (4, 4, 2). In Table 17.2 we show, for this
example, the Shapley rule and the four rules defined in [1]: Although in this

h fh Rflow RAedge Redge RΓpt

RSh

1 60 3.33 5 4 4 4
2 80 4.44 3.33 4 4 4
3 40 2.22 1.66 2 2 2

TABLE 17.2: Allocation rules of Example 17.1.

example several rules lead to the same allocation, in general the five rules are
all different from one another.

17.4 Properties
The main objective of this chapter is to study the axiomatic behavior of the
Shapley rule, and compare this behavior with that of the other rules stud-
ied in [1]. In order to do so, we focus our analysis in precisely the proper-
ties introduced in that paper, and refer the reader to the discussions therein
for additional insights. Since these properties are inspired in the principles
mentioned in different regulations and directives of the European Union reg-
ulation, the authors in [1] present the following discussion to provide some
additional motivation to the properties and their underlying principles:

In Directive 2003/55/EC of the European parliament and
the council of 26 June 2003 ([13]), concerning common rules
for the internal market in natural gas, establishes some gen-
eral principles that must be pursued. Some of them are the
following:

1. “tariffs are published prior to their entry into force”.

2. “the provision of adequate economic incentives, using, where
appropriate, all existing national and Community tools. These tools
may include liability mechanisms to guarantee the necessary invest-
ment”.

3. “national regulatory authorities should ensure that transmission and
distribution tariffs are non-discriminatory and cost-reflective”.
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4. “Progressive opening of markets towards full competition should
as soon as possible remove differences between Member States.”

The Spanish regulation ensures that tariffs are published
prior to their entry into force. Moreover, since the amount
received or paid by each hauler depends monotonically on
their loss (the larger is the loss, the larger is the amount
the hauler pays), we can argue that it provides the adequate
economic incentives.
Regarding the principles of being non-discriminatory, cost-
reflective, and foster competition, we introduce some prop-
erties related to these principles.”

17.4.1 Cost-Reflective Properties
The first property requires that haulers that do not transport gas do not have
any assigned loss and the second one says that if two gas problems only differ
on edges without flow, then the losses assigned to each hauler should coincide.

Null hauler (NH). Let G = (g, v, f,H, α) and h ∈ H be such that, for
each e ∈ Eh, fe = 0. Then, Rh(G) = 0.

Independence of unused edges (IUE). Let the gas problems G =
(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and, for each h ∈ H,
Ēh = Eh \ Ê, where Ê ⊂ E satisfies that, for each e ∈ E \ Ê, f̄e = fe and
v̄e = ve, and, for each e ∈ Ê, fe = 0. Then, R(G) = R(Ḡ).

A cost-reflective rule should not be sensitive to “equivalent” representa-
tions of the same network. The next two properties try to capture this idea.

Independence of edge sectioning (IES). Let the gas problems G =

(g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H
and (i, j) ∈ Eĥ satisfying

• ḡ = (N̄ , Ē), where N̄ = N ∪ {l} and l /∈ N , Ēĥ = (Eĥ\{(i, j)}) ∪
{(i, l), (l, j)} and, for each h ∈ H\{ĥ}, Ēh = Eh, and

• f̄(i,l) = f̄(l,j) = f(i,j), v̄(i,l) + v̄(l,j) = v(i,j), and, for each e ∈ E\{(i, j)},
f̄e = fe and v̄e = ve.2

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
Independence of edge multiplication (IEM). Let G = (g, v, f,H, α)

and Ḡ = (ḡ, v̄, f̄ , H̄, α) be such that H = H̄ and there are ĥ ∈ H, e =
(i, j,m) ∈ E, ē1 = (i, j, l1) ∈ Ē, and ē2 = (i, j, l2) ∈ Ē satisfying

2The condition v̄(i,l) + v̄(l,j) = v(i,j) just reflects that, when a pipe is transversely cut
(orthogonally to the direction of the flow), the volume of the resulting two pipes adds up
to the volume of the original pipe (and the same flow that was crossing the original pipe is
crossing the two pipes in which it has been divided f̄(i,l) = f̄(l,j) = f(i,j)).
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• ḡ = (N, Ē), where Ēĥ = (Eĥ \ {e}) ∪ {ē1, ē2} and, for each h ∈ H\{ĥ},
Ēh = Eh, and

• fe = f̄e1 + f̄e2 , ve = v̄e1 = v̄e2 , and, for each e ∈ E\{e}, f̄e = fe and
v̄e = ve.3

Then, for each h ∈ H, Rh(G) = Rh(Ḡ).
To prevent haulers from artificially distorting the final allocation of losses,

if two haulers engage in some trades affecting their own edges, then the rest
of the haulers should not be affected. This implies, in particular, that the loss
allocated to a hauler does not depend on who owns the edges different from
his own.

Independence by sales (IS). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α),
h1 and h2 in H, and e ∈ E be such that Ēh1

= Eh1
\{e}, Ēh2

= Eh2
∪ {e},

and, for each h ∈ H\{h1, h2}, Ēh = Eh. Then, for each h ∈ H\{h1, h2},
Rh(G) = Rh(Ḡ).4

Independence of irrelevant changes (IIC). Consider the gas problems
G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) and let h ∈ H ∩ H̄ be such that
N h = N̄ h. Then, Rh(G) = Rh(Ḡ).

17.4.2 Non-Discriminatory Properties
The most standard non-discriminatory principle says that we should offer an
equal treatment to equal agents. Some of the following properties deal with
formalizations of this general notion.

Symmetry on edges (SE). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such
that Eh = {e}, Eh̄ = {ē}, fe = fē, and ve = vē. Then, Rh(G) = Rh̄(G).

Symmetry on paths (SP). Let G = (g, v, f,H, α) and h, h̄ ∈ H be such
that Eh = {e}, Eh̄ = {ē}, ve = vē, and N h = N h̄. Then, Rh(G) = Rh̄(G).

The following properties build upon the idea that there should be some
kind of proportionality on flow and volume.

Flow proportionality on edges (FPE). Let G = (g, v, f,H, α) and
h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and ve = vē. Then, if fē > 0, we
have

Rh(G) =
fe
fē
Rh̄(G).

Volume proportionality on edges (VPE). Let G = (g, v, f,H, α) and

3In this case, the condition ve = v̄e1 = v̄e2 just reflects that the original pipe e is being
replaced by two pipes identical to it: Same volume and same endpoints. The total flow in
the network remains unchanged, so these two new pipes, together, carry the same flow as e
(fe = f̄e1 + f̄e2 ).

4The rules satisfying IS have an interesting property, which in [1] is referred to as edge
decomposability. Namely, these rules can be computed in a two-stage procedure. We first
decide the allowed loss on each edge and later compute the allowed loss to each hauler
adding the amount assigned to each of his edges.
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h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and fe = fē. Then,

Rh(G) =
ve
vē
Rh̄(G).

Volume proportionality on paths (VPP). Let G = (g, v, f,H, α) and
h, h̄ ∈ H be such that Eh = {e}, Eh̄ = {ē}, and N h = N h̄. Then,

Rh(G) =
ve
vē
Rh̄(G).

17.4.3 Properties to Foster Competition
The way in which losses are allocated among haulers should not harm com-
petition among agents. In particular, two haulers should not be better off by
merging together.

Merging proofness (MP). Let G = (g, v, f,H, α), Ḡ = (g, v, f, H̄, α),
h1, h2 ∈ H, and h ∈ H̄ be such that Ēh = Eh1

∪ Eh2
and, for each ĥ ∈

H \ {h1, h2}, Ēĥ = Eĥ . Then Rh(Ḡ) ≤ Rh1
(G) +Rh2

(G).

17.5 Axiomatic Behavior of the Shapley Rule
We present now the main result of this paper, which shows what properties
are satisfied by the Shapley rule.

Proposition 17.1 1. The Shapley rule satisfies NH, IUE, IES, IEM, and
SP.

2. The Shapley rule does not satisfy IS, SE, FPE, VPE, VPP, IIF, IIC,
and MP.

Proof. We start by proving statement 1.
• NH. Let G = (g, v, f,H, α) and h ∈ H be such that, for each e ∈ Eh

fe = 0. Since the edges of hauler h do not carry flow, they never help to
increase the total flow that can be carried between a supplier and a consumer.
Thus, for each T ⊂ H\{h}, we have that lG(T ) = lG(T ∪ {h}) and the
definition of the Shapley value implies that RSh

h = 0.
• IUE. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be as in the definition

of IUE, that is, there is Ê ⊂ E such that, for each h ∈ H, Ēh = Eh \ Ê and,
for each e ∈ Ê, fe = 0.

Let T ⊂ H be a set of players. Again, the edges that do not carry flow
never help to increase the total flow that can be carried between a supplier
and a consumer. Thus, they can be removed for the computation of the TU



The Shapley Rule for Loss Allocation in Energy Transmission Networks 383

game associated with Ḡ and, therefore, for each T ⊂ H, lG(T ) = lḠ(T ). Thus,
RSh(G) = RSh(Ḡ).
• IES. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ , H̄, α) be two problems that

only differ because there are ĥ ∈ H and (i, j) ∈ Eĥ satisfying that (i, j) is
sectioned in two consecutive edges (i, l), (l, j) ∈ Ēĥ.

Since f(i,j) = f̄(i,l) = f̄(l,j), edge sectioning does not change the maximum
flow that can be carried from consumers to suppliers. Then, for each T ⊂ H,
lG(T ) = lḠ(T ) and, therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• IEM. Let G = (g, v, f,H, α) and Ḡ = (ḡ, v̄, f̄ ,H, α) be two problems that
only differ because there are ĥ ∈ H and e ∈ Eĥ satisfying that e is duplicated
in two multiedges e1, e2 ∈ Ēĥ, with ve = v̄e1 = v̄e2 .

Since fe = f̄e1 + f̄e2 , edge multiplication does not change the maximum
flow that can be carried from consumers to suppliers because we only have to
split among f̄e1 and f̄e2 the maximum flow that went through fe. Then, for
each T ⊂ H, lG(T ) = lḠ(T ) and, therefore, for each h ∈ H, RSh

h (G) = RSh
h (Ḡ).

• SP. Let G = (g, v, f,H, α) and h, h̄ ∈ H be such that Eh = {e}, Eh̄ =
{ē}, ve = vē and N h = N h̄.

Since N h = N h̄ we have that fe = fē and, for each p ∈ P (S,C), e ∈ p if
and only if ē ∈ p. Then, for each T ⊂ H\{h, h̄} we have lG(T ∪h) = lG(T ∪ h̄).
Thus, the definition of the Shapley value implies that RSh

h (G) = RSh
h̄
(G).

Next, we present some counterexamples to prove statement 2.
• IS. Since IS is stronger than MP (Proposition 1 in [1]) and RSh does not

satisfy MP (see below), RSh does not satisfy IS.
• SE. Let G = (g, v, f,H, α) be as in the picture below.

G
2

1

1

2

h1

h2

h3

Problem G is as in the definition of SE, since h1 = {e1} and h3 = {e2} with
fe1 = fe2 = 2 and ve1 = ve2 . However, h3 can satisfy some demand on his
own, while h1 needs h2. In particular, we get RSh

h1
(G) = α ̸= 2α = RSh

h3
(G).

• FPE and VPE. Since FPE and VPE are stronger than SE (Proposition 1
in [1]) and RSh does not satisfy SE, RSh satisfies neither FPE nor VPE.
• VPP. Let G = (g, v, f,H, α), h1 and h2 as in the picture below.

G
f = 1
v = 1

f = 1
v = 2

h1

h2

Clearly, RSh
h2
(G) = RSh

h1
(G) ̸= 2RSh

h1
(G) =

vh2

vh1
RSh
h1
(G).

• IIF. Let G = (g, v, f,H, α) and Ḡ = (g, v, f̄ ,H, α) be as in the picture
below.
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G

1

3 7 1

5 1

7

Ḡ

1

3 7 11

5 11

7

h1

h2

h3

Problems G and Ḡ are as in the definition of IIF. Note that there are two
edges where the flow increases and N h1 = N̄ h1 . In this case, we get the games

– lG({h1}) = 0, lG({h2}) = α, lG({h3}) = α, lG({h1, h2}) = 2α,
lG({h1, h3}) = 2α, lG({h2, h3}) = 8α, lG({h1, h2, h3}) = 9α and

– lḠ({h1}) = 0, lḠ({h2}) = 3α, lḠ({h3}) = 7, lḠ({h1, h2}) = 3α,
lḠ({h1, h3}) = 8α, lḠ({h2, h3}) = 18α, lḠ({h1, h2, h3}) = 19α.

The corresponding Shapley values are so that

RSh
h1
(G) = α

4

6
̸= α

3

6
= RSh

h1
(Ḡ).

The key is that the marginal contribution of hauler h1 to hauler h2 changes
from G to Ḡ.
• IIC. Since IIC is stronger than IIF (Proposition 1 in [1]) and RSh does

not satisfy IIF, RSh does not satisfy IIC.
• MP. Let G = (g, v, f,H, α) and Ḡ = (g, v, f, H̄, α) be as in the picture

below.

G

22
3

41

3

3

Ḡ

22
3

41

3

3

h1

h2, h

h3

Note that H = {h1, h2, h3} and H̄ = {h, h3} where h is the union of h1 and
h2. Problems G and Ḡ are as in the definition of MP. In this case, we get the
games

– lG({h1}) = 0, lG({h2}) = 3α, lG({h3}) = 0, lG({h1, h2}) = 5α,
lG({h1, h3}) = 2α, lG({h2, h3}) = 7α, lG({h1, h2, h3}) = 9α and

– lḠ({h}) = 5α, lḠ({h3}) = 0, lḠ({h, h3}) = 9α.

The corresponding Shapley values are so that

RSh
h (Ḡ) = α

42

6
> α

40

6
= α

8

6
+ α

32

6
= RSh

h1
(G) +RSh

h2
(G).

In Table 17.3 we compare the properties satisfied by the Shapley rule
with the properties satisfied by the four rules considered in [1]. The authors
then continue discussing, for each of the four rules they study, the “degree of
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EU Principles
XXXXXXXXXProperty

Rule Flow Aedge Edge Prop.
Tracing Shapley

Null hauler ✓ ✓ ✓ ✓ ✓
Ind. Unused Edges ✓ ✓ ✓ ✓

Cost- Ind. Edge Sectioning ✓ ✓ ✓ ✓ ✓
Reflective Ind. Edge Mult. ✓ ✓ ✓ ✓

Ind. Sales ✓ ✓
Ind. Irr. Changes ✓
Symmetry on Edges ✓ ✓ ✓
Symmetry on Paths ✓ ✓ ✓ ✓ ✓

Non- Flow Prop. Edges ✓ ✓ ✓
Discriminat. Volume Prop. Edges ✓ ✓

Volume Prop. Paths ✓ ✓ ✓
Merging Proofness ✓ ✓ ✓

Competition Merging Proofness ✓ ✓ ✓

TABLE 17.3: Behavior of the rules with respect to the different properties.

Principle\Rule Flow Aedge Edge Prop. tracing Shapley
Cost reflective Normal Low High Very high Normal
Non-discriminatory High High Very high High Normal
Foster competition Very high Low Very high Very high Low

TABLE 17.4: Degree of fulfillment of the EU principles by each rule.

fulfillment” of the three principles. Four degrees were considered: Low, normal,
high, and very high. We borrow from them Table 17.4, with the addition of
one last column for the Shapley rule.

Since the discussion associated to the four rules different from the Shap-
ley value is already included in the analysis in [1], we briefly discuss now
the column associated to the Shapley rule. It satisfies the same cost reflec-
tive properties as the flow’s rule, thus we assign to the Shapley value the
same degree in that category. Usually non-discriminatory properties are re-
lated with the principle of equal treatment of equals. Then, when comparing
symmetry on edges with symmetry on paths, the later takes into account the
whole structure of the network, and not just each edge on isolation. Thus,
we think that focusing on paths is more reasonable and therefore we assign
a normal grade to Shapley rule even though it does not satisfy most of the
non-discriminatory properties. Finally, since foster competition has a unique
property, the assignment is obvious.

From the table and the above discussion, it is clear that the Shapley rule
does not exhibit a very good behavior with respect to the different properties
and principles, being clearly outperformed by both the proportional tracing
rule and the edge’s rule.
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There are many problems where the Shapley value of an associated coop-
erative game has many interesting properties compared with other rules in
the same setting. We can mention, for instance, airport problems (see [11]),
queueing problems (see [12] and [7]), and minimum cost spanning tree prob-
lems (see [10] and [2]). Nevertheless, in our case the Shapley value satisfies less
properties than other rules. Of course it could be possible that, if we define the
associated cooperative game lG in a different way, we could obtain a Shapley
value with more properties.

In the next section, we take a different approach to assess the performance
of the Shapley rule, which can be seen as complementary to the one developed
in this section. More precisely, we study the allocations the Shapley rule pro-
poses in different problems, a case study with real data and a set of variations
of it, and comparing these allocations with the ones proposed by the other
four rules.

17.6 Application to the Spanish Gas Transmission
Network

17.6.1 Case Study with Real Data
In this section we apply the Shapley rule to the Spanish gas transmission
network. We compare the allocation proposed by the Shapley rule with the
allocations proposed by the four rules considered in [1]. We build upon the
analysis there, and take as benchmark scenario one in which demands fol-
low from reported figures for a hypothetical day of very high demand in the
Spanish gas network.5

In Figure 17.3 we represent the Spanish gas transmission network. We have
boxed the pipes belonging to each hauler, except for hauler h1, who owns all
the remaining ones. Hauler h1 is Enagás, a former public body who initially
owned the whole network and still owns more that 90% of the network.

In Tables 17.5, 17.6 and 17.7, we can see the allocations proposed by the
Shapley rule and the other rules. We take α = 0.002 because is the parameter
used in Spain (see [4]).

The three tables contain similar information, but measured in different
ways. Moreover, the numbers they contain are the same as in [1], but where
an additional column for the Shapley value has been included. Table 17.5
represents the allocated losses measured in gas units, corresponding to the
direct application of the different rules to the data of the Spanish scenario
under consideration. Table 17.6 represents the percentage allocated to each

5The computations are derived for the optimal network operation as obtained by the soft-
ware GANESOTM (developed by researchers at the University of Santiago de Compostela
and the Technological Institute for Industrial Mathematics for Reganosa Company). For
further details refer to the analysis in [1].
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FIGURE 17.3: Haulers of the Spanish gas transmission network.

Gas losses Network Flow Aedge Edge Prop. Shapleyin GWh/d Owned (%) Tracing
Enagás (h1) 91.44 4.55 5.32 5.27 4.72 4.69
Reganosa (h2) 1.76 0.21 0.0024 0.031 0.21 0.22
Gas Extremadura (h3) 0.61 0.0071 0.000010 0.00020 0.000073 0.0038
Enagás Transporte del Norte (h4) 3.54 0.31 0.0086 0.027 0.24 0.27
Transportista Regional Gas (h5) 1.46 0.016 0.000051 0.0005 0.00052 0.0090
Endesa Gas Transportista (h6) 0.36 0.0045 0.0000019 0.000029 0.000035 0.0024
Gas Natural (h7) 0.82 0.24 0.00095 0.0062 0.17 0.14

TABLE 17.5: Gas loss allocated to the haulers (GWh/d) with α = 0.002.

Percentage Network Flow Aedge Edge Prop. Shapleyof gas losses (%) Owned (%) Tracing
Enagás (h1) 91.44 85.19 99.77 98.77 88.37 87.88
Reganosa (h2) 1.76 3.97 0.046 0.59 3.95 4.03
Gas Extremadura (h3) 0.61 0.13 0.00019 0.0037 0.0014 0.072
Enagás Transporte del Norte (h4) 3.54 5.74 0.16 0.51 4.44 5.11
Transportista Regional Gas (h5) 1.46 0.31 0.00096 0.0094 0.0098 0.17
Endesa Gas Transportista (h6) 0.36 0.083 0.000035 0.00055 0.00066 0.046
Gas Natural (h7) 0.82 4.58 0.018 0.12 3.23 2.69

TABLE 17.6: Percentage of gas loss allocated to the haulers.
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Monetary equivalent Network Flow Aedge Edge Prop. Shapleyin millions of e Owned (%) Tracing

Enagás (h1) 91.44 49.77 58.30 57.71 51.64 51.35
Reganosa (h2) 1.76 2.32 0.027 0.34 2.31 2.36
Gas Extremadura (h3) 0.61 0.077 0.00011 0.0022 0.00080 0.042
Enagás Transporte del Norte (h4) 3.54 3.35 0.095 0.30 2.60 2.99
Transportista Regional Gas (h5) 1.46 0.18 0.00056 0.0055 0.0057 0.098
Endesa Gas Transportista (h6) 0.36 0.049 0.000020 0.00032 0.00039 0.027
Gas Natural (h7) 0.82 2.68 0.010 0.068 1.89 1.57

TABLE 17.7: Annual monetary equivalent, assuming 1 GWh/d = 30000 e.

hauler. Finally, Table 17.7 represents the estimation of the annual monetary
equivalent, provided that the same demands repeat each and every day. Since
the scenario under consideration comes from a peak day, whose demand is
around twice the demand of an average day, one would get more realistic
estimations after dividing by two the amounts in Table 17.7. In practice,
one might apply the chosen rule on a daily basis and then add up the daily
allocations to get the annual loss allocation.

The aggregate edge’s rule assign 99.77% of the allocated losses to Enagás,
which we believe is unfair. As it was argued in [1] the aggregate edge’s rule
size discriminates, penalizing small haulers and favoring mergers, which hurts
competition. This probably explains why most Spanish haulers strongly op-
posed to the aggregate edges rule until it was finally replaced by the flow’s
rule.

In this case, we can see that the allocation proposed by the Shapley rule
is quite similar to the one proposed by the proportional tracing rule. In the
next section we further explore this connection.

17.6.2 Simulation Study Building upon the Real Data
Given the results in the analysis above, it is natural to wonder whether or not
the similarity between the allocations proposed by the Shapley rule and the
proportional tracing rule is just a coincidence for the given data. In order to
get additional evidence, we have run a simulation study based on the original
scenario, but where relevant data of the problem are randomly modified. More
precisely, we have generated 10000 scenarios from the benchmark using the
following procedure:

• The only information that is modified from scenario to scenario is the
ownership relation between edges and haulers, with pipes being ran-
domly assigned to haulers.

• In order to get reasonably connected networks, the random assignment
is not performed on individual pipes, but on some predetermined groups
of pipes. More precisely, the pipes are divided in 16 groups, correspond-
ing to the 16 Spanish autonomous communities (setting aside Canary
Islands, which contain no pipes of the high-pressure network).
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• Then, each of the 16 groups is randomly assigned to one of the 7 available
haulers. We keep the same number of haulers of the Spanish network
which should provide enough richness to the random generating pro-
cess (note that a hauler might end up with no assigned pipes in some
realizations).

• This random process is repeated 10000 times, with the goal of obtain-
ing very diverse realizations: Homogeneous haulers, a single dominant
hauler, split between medium haulers and small ones, etc.

• For each realization, we obtain the resulting loss allocation for the five
rules discussed in this paper. Finally, we compute the matrix of correla-
tions between the allocations proposed by these five rules and also with
the vector of the length of pipes owned by each hauler.6

In Tables 17.8, 17.9 and 17.10, we summarize the information contained
in those correlation matrices. Table 17.8 contains the average of the 10000
correlation matrices obtained with the above procedure. As one might expect,
all correlations are relatively high, with average numbers over 0.8 between all
pairs of rules. The lowest number is found between the edge’s rule and Shap-
ley’s rule but, more importantly, the highest average correlation is between
Shapley’s rule and the proportional tracing rule, reinforcing the observation
in the analysis for the benchmark scenario. Indeed, this average correlation
is almost perfect, being as high as 0.9933. The next highest correlations are
found when comparing the flow rule with either the proportional tracing rule
or Shapley’s rule, with values round 0.97. Although these correlations are
also very high, they are significantly smaller than the previous one (0.9933 is
just 0.007% away from perfect correlation, whereas 0.97 is more than 4 times
further away).

Correlations Flow Aedge Edge Prop.
Tracing Shapley Pipe

Length
Flow 1.0000 0.9166 0.8717 0.9700 0.9707 0.6910
Aedge 0.9166 1.0000 0.8972 0.8988 0.8751 0.8154
Edge 0.8717 0.8972 1.0000 0.8776 0.8336 0.6200
Prop. Tracing 0.9700 0.8988 0.8776 1.0000 0.9933 0.6526
Shapley 0.9707 0.8751 0.8336 0.9933 1.0000 0.6446
Pipe Length 0.6910 0.8154 0.6200 0.6526 0.6446 1.0000

TABLE 17.8: Average of correlation matrices.

If we look now at Table 17.9, which contains, for each pair of rules, the
minimum correlation between them across the 10000 realizations, we again
see the strong connection between Shapley’s rule and the proportional tracing
rule. In the scenario where the correlation between them was smaller, it was

6We have also used other approaches to compare the different rules, all of them leading
to the same qualitative results.
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Correlations Flow Aedge Edge Prop.
Tracing Shapley Pipe

Length
Flow 1.0000 −0.1037 −0.2191 0.6020 0.5756 −0.8766
Aedge −0.1037 1.0000 −0.3963 0.0743 −0.1729 −0.4711
Edge −0.2191 −0.3963 1.0000 0.2929 0.0777 −0.6746
Prop. Tracing 0.6020 0.0743 0.2929 1.0000 0.9181 −0.8856
Shapley 0.5756 −0.1729 0.0777 0.9181 1.0000 −0.9824
Pipe Length −0.8766 −0.4711 −0.6746 −0.8856 −0.9824 1.0000

TABLE 17.9: Minimum across correlation matrices.

Correlations Flow Aedge Edge Prop.
Tracing Shapley Pipe

Length
Flow 1.0000 1.0000 0.9998 0.9999 0.9999 0.9987
Aedge 1.0000 1.0000 0.9999 0.9998 0.9994 0.9997
Edge 0.9998 0.9999 1.0000 0.9996 0.9992 0.9995
Prop. Tracing 0.9999 0.9998 0.9996 1.0000 1.0000 0.9994
Shapley 0.9999 0.9994 0.9992 1.0000 1.0000 0.9998
Pipe Length 0.9987 0.9997 0.9995 0.9994 0.9998 1.0000

TABLE 17.10: Maximum across correlation matrices.

still over 0.9. For any other pair of rules, this number is at most 0.6 and in many
cases it can even be negative. Finally, Table 17.10 contains the information
about the maximum correlation between any pair of rules. Not surprisingly,
this number is very close to one for every pair of rules.

Given the poor behavior observed by the Shapley value in the axiomatic
analysis developed in Section 17.4, it is interesting to see that it exhibits such
a high correlation with the proportional tracing rule which, arguably, may
be considered the one performing better from the axiomatic point of view.
We do not claim that the analysis we have just presented, based on numeric
simulations, represents any kind of proof, but it suggests that there must be
some mathematical connection between these two rules which might be the
subject of future research.

17.7 Conclusions
In this chapter we have studied the Shapley value in the context of loss al-
location in energy networks and developed an axiomatic analysis to study
its behavior with respect to different axioms. The main result in the paper,
Proposition 17.1 shows that the behavior of the Shapley rule is far from being
as good as that of other rules studied in the literature, such as the edge’s rule
and the proportional tracing rule. This leaves as an open problem the issue of
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finding new desirable properties that the Shapley rule might satisfy and which
might ultimately lead to an axiomatic characterization.

Interestingly, we then develop a comparative analysis of the different allo-
cation rules on a set of problems originated from real data and observe that
the Shapley rule has a very high correlation (over 0.99) with the proportional
tracing rule. This may seem a bit contradictory with the fact that these two
rules exhibit a very different behavior with respect to the set of axioms dis-
cussed in Section 17.4. Then, an open question for future research would be
to understand the mechanism driving this unusually high correlation.

17.8 Acknowledgments
The authors acknowledge support from Ministerio de Economía y Com-
petitividad and FEDER through projects MTM2014-60191-JIN, ECO2014-
52616-R, and ECO2015-70119-REDT and from Xunta de Galicia through
projects INCITE09-207-064-PR, GRC 2015/014 and ED431C 2017/38. Gus-
tavo Bergantiños acknowledges support from Fundación Séneca de la Región
de Murcia through project 19320/PI/14. Ángel M. González-Rueda acknowl-
edges support from Ministerio de Educación through Grant FPU13/01130.

Bibliography
[1] Bergantiños, G., González Díaz, J., González-Rueda, A.M., Fernández de

Córdoba, M.P. (2017) Loss allocation in energy transmission networks.
Games and Economic Behavior 102, 69-97.

[2] Bergantiños, G., Vidal-Puga, J. (2007) A fair rule in minimum cost span-
ning tree problems. Journal of Economic Theory 137, 326-352.

[3] Boletıín Oficial del Estado (2011) Incentivo a la reduccioón de mermas
en la red de transporte. In Orden ITC/3128/2011, volume 278. Spanish
Government.

[4] Boletıín Oficial del Estado (2013a) Coeficientes de mermas en las instala-
ciones gasistas. In Orden IET/2446/2013, volume 312. Spanish Govern-
ment.

[5] Boletıín Oficial del Estado (2013b) Incentivo a la reducción de mermas
en la red de transporte (amendment). In Orden IET/2446/2013, volume
312. Spanish Government.



392 Handbook of the Shapley Value

[6] British Petroleum (2013) BP statistical review of world energy. Annual
report.

[7] Chun, Y. (2006) A pessimistic approach to the queueing problem. Math-
ematical Social Sciences 51, 171-181.

[8] Enerdata (2017) Global energy statistical yearkbook. Annual report.

[9] Kalai, E., Zemel, E. (1982) Totally balanced games and games of flow.
Mathematics of Operations Research 7, 476-478.

[10] Kar, A. (2002) Axiomatization of the Shapley value on minimum cost
spanning tree games. Games and Economic Behavior 38, 265-277.

[11] Littlechild, S.C., Owen, G. (1973) A simple expression for the Shapley
value in a special case. Management Science 20, 370-372.

[12] Maniquet, F. (2003) A characterization of the Shapley value in queueing
problems. Journal of Economic Theory 109, 90-103.

[13] Regulation (EC) (2003) Common rules for the internal market in natural
gas and repealing directive 98/30/ec. Official Journal of the European
Union (Legislation Series), 176, 57–77, no. 55/2003.

[14] Shapley, L.S. (1953) A value for n-person games. In Kuhn, H., Tucker,
A., editors, Contributions to the theory of games II, volume 28 of Annals
of Mathematics Studies. Princeton University Press, Princeton.



Chapter 18
On Some Applications of the
Shapley-Shubik Index for Finance
and Politics

Cesarino Bertini
Department of Management, Economics and Quantitative Methods, University
of Bergamo, Bergamo, Italy. E-mail: cesarino.bertini@unibg.it

Gianfranco Gambarelli
Department of Management, Economics and Quantitative Methods, University
of Bergamo, Bergamo, Italy. E-mail: gambarex@unibg.it
http://dinamico2.unibg.it/dmsia/staff/gambar.html

Izabella Stach
AGH University of Science and Technology, Faculty of Management, Krakow,
Poland. E-mail: istach@zarz.agh.edu.pl

Maurizio Zola
Department of Management, Economics and Quantitative Methods, University
of Bergamo, Bergamo, Italy. E-mail: maurizio.zola@gmail.com

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.2 Some Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.3 Short History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

18.3.1 Power Indices Derived from Values . . . . . . . . . . . . . . . . . . . . . 396
18.3.2 Autonomously Generated Power Indices . . . . . . . . . . . . . . . . 396
18.3.3 Some Other Indices with Different Derivations . . . . . . . . . 396

18.4 Power Index Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
18.5 Some Applications of Shapley-Shubik Power Index . . . . . . . . . . . . . 398

18.5.1 Example of Financial Applications . . . . . . . . . . . . . . . . . . . . . . 399
18.5.2 Shares Shift between Two Shareholders . . . . . . . . . . . . . . . . . 399
18.5.3 Trade of Shares between One Player and Ocean of

Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
18.5.4 Remarks on Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
18.5.5 Steadiness of Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
18.5.6 Indirect Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
18.5.7 Global Index of De-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
18.5.8 Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

393

http://dinamico2.unibg.it/
mailto:cesarino.bertini@unibg.it
mailto:gambarex@unibg.it
mailto:istach@zarz.agh.edu.pl
mailto:maurizio.zola@gmail.com


394 Handbook of the Shapley Value

18.6 Political Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
18.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
18.6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
18.6.3 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

18.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
18.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

18.1 Introduction
Certain properties of the Shapley-Shubik index are presented in this chapter
([72]), together with indications as to how such characteristics may be espe-
cially useful in predicting the outcome of bargaining in simple games. In light
of this, we provide certain applications of this index to Politics and Finance
undertaken at the Universities of Bergamo, Krakow, Manresa, and Monterey.

In the next section, we shall give a very short presentation of power indices.
In Section 18.3 we shall present a historical overview, and then, in Section
18.4, the various indices will be compared. At this point we shall provide
some applications to finance in Section 18.5, to be followed, in Section 18.6,
by applications to politics.

18.2 Some Preliminary Definitions
Since, in this chapter, we take as granted that readers are familiar with power
indices, we shall limit ourselves here to a review of basic notions without
giving illustrations. Anyone wishing to know more should refer to the books
by Felsenthal and Machover ([28]) and Laruelle and Valenciano ([54]), and
to the papers by Turnovec, Mercik, and Mazurkiewicz ([79]), Laruelle and
Valenciano ([53]), and Bertini et al. [8].

Let N = {1, 2, . . . , n} be a nonempty finite set. By a game on N we shall
mean real-valued function v whose domain is the set of all subsets of N such
that v(Ø) = 0. We refer to any member of N as a player, and to any subset
of N as a coalition. Game v is said to be simple if function v takes values only
in the set {0, 1}: v(S) = 0 or v(S) = 1 for all coalitions S ⊆ N . In the first
case the coalition is said to be losing; in the second case, winning. By SN we
denote the set of simple games on N .



Shapley-Shubik Index for Finance and Politics 395

The i-th player is called crucial or pivotal for coalition S, if S is a win-
ning coalition, but becomes a losing coalition without the contribution of this
player, i.e., v(S) = 1 and v(S\{i}) = 0. Cruciality Ci(S) of a player i is the
total number of coalitions S ⊆ N for which the player i is crucial. Any player
who is not crucial for any coalition S ⊆ N is called a dummy player.

A value for a game is function v suitable with respect to sharing the total
payoff v(N) among the n players. Suitable in terms of representing the fore-
casted share-out, in a predicted environment, of the total winnings of various
players, or a fair division of such winnings in a normative environment.

Any function f : SN → Rn with |N | = n is a power index. The components
fi(v) of f(v) are interpreted as a measure of the power that the simple game
v confers to player i or as i’s payoff expectation from playing the game v.

Among the several power indices that have been introduced, which we shall
speak of in the following section, we find the normalized index of Banzhaf [4]
and the index of Shapley-Shubik ([72]). The former assigns each player with
a share of the global coalition’s winnings, proportional to the number of the
player’s cruciality. That is:

βi =
1

k

∑
S⊆N

Ci(S)

where the sum is extended to the entire coalition S ⊆ N for which the i-th
player is crucial and k is a normalization coefficient.

However, the Shapley-Shubik index Φ assigns winnings to each player ac-
cording to the following formula:

Φi =
∑
S⊆N

(s− 1)!(n− s)!
n!

where the summation is extended to the coalitions for the i-th player is crucial
and s is the relative cardinality with respect to the coalitions under consider-
ation.

A weighted majority game is a simple game defined by a vector of weights
w = (w1, . . . , wn) and a majority quota q that is greater than the total half-
sum of weights. That is:

q ≥ 1

2

n∑
i=1

wi

The rule that associates each weighted majority game with a corresponding
simple game is the following:

v(S) =

{
1 if

∑
i∈S wi ≥ q

0 otherwise
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18.3 Short History
We shall give a brief historical overview of the main power indices identified up
to the present. For further information on the history of power indices, please
refer to the papers by Bertini et al. [8] and Gambarelli and Owen ([39]).

18.3.1 Power Indices Derived from Values
The Shapley-Shubik index was introduced by Shapley and Shubik [72] as a
restriction to simple games of the Shapley value [71]. For further explanations
see, for example, the paper by Stach [73].

The Tijs index was introduced in Tijs [78] for quasi-balanced simple games
as a particularization of the Tijs value. For further information, see the paper
by Stach [74].

The nucleolus [69] represents a particular approach to solutions for games
in characteristic form in which existence and uniqueness are guaranteed. On
the basis of such properties, it may also be considered a value and therefore
a power index in the case of simple games.

18.3.2 Autonomously Generated Power Indices
The first autonomous power index is said to be that of Luther Martin in 1787
(see [67]); although its formulation is not especially mathematical, certain
authors consider it as a precursor to the later indices by Penrose [65] and the
normalized index of Banzhaf [4] and Coleman [19]. It should be noted that
the normalized Banzhaf index is often quoted jointly with the names of the
above-mentioned authors.

Later autonomous indices include the Johnston index [49], the Deegan-
Packel index [22], the Public Good index [46], Holler-Packel index [48], the
Public Help index [10], and the Shift index [1].

18.3.3 Some Other Indices with Different Derivations
There have also been indices with probabilistic derivations: For example, the
Rae index [66] and König and Bräuninger’s inclusiveness index [52]. For some
characteristics of these indices, see the papers by Bertini and Stach [15] and
Stach [75], for example. Then, there is the significant class of probabilistic
indices of Gehrlein and Fishburn [44], Gehrlein, Ord, and Fishburn [45], and
Mercik [58] where minority winners are considered (especially important for
minority cabinets existing in politics).

A second category of indices originates with the semi-values introduced by
Weber [81]. The best-known among these indices are those of Dubey, Neyman,
and Weber [27] and Carreras, Freixas, and Puente [18].
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18.4 Power Index Applications
The Banzhaf index is especially employed for normative purposes in the ambit
of applications, because of its direct proportionality with regard to cruciality.
On the other hand, in the context of social applications the Public Good
index, the Public Help index and the nucleolus are particularly suitable. For
most other applications the Shapley-Shubik index is best-suited, inasmuch as
it possesses a collection of properties that no other index mentioned here may
boast jointly.

There follows an outline of the main characteristics of the Shapley-Shubik
index. A more formal description is to be found in Bertini et al. [8] and [9],
and Dubey [25].

The first axiomatization of the Shapley-Shubik index was provided by
Dubey ([25]), who uses the axioms of the Shapley value ([71]), with the ex-
ception of additivity, which needs to take a special form due to the non-linear
structure of the set of simple games. The following four properties (efficiency,
dummy-player, symmetry, and transfer) are the critical properties (axioms)
of the Shapley-Shubik index used by Dubey ([25]).

− Efficiency: the players’ power values add up to 1 for all non-null simple
games.

− Dummy-player (or null-player): the payment for each dummy player
is null.

− Symmetry (anonymity): a player’s power value should not depend
on her or his name. Thus, “symmetric” players should have equal power.

− Transfer: this axiom, while mathematically convenient, has no natural
interpretation (see [55]). One of the interpretations given by Dubey, Einy
and Haimanko [26] is as follows: Transfer requires that, when winning
coalitions are enhanced in a game, the change in voting power depends
only on the change in the game, i.e., on the set of new winning coalitions.

− Gain-loss property: if the power of some player increases as a result
of changes in the game, the power cannot concomitantly increase for all
players.

Besides the properties noted above, other properties are as follows:

− Null player removable property: after removing the null players
from a game, non-null players’ measures of power remain unchanged.

− Non-negativity: the players’ power value should not be negative.
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− Block: the players should have an advantage from a merger. Thus, a
merger between two players should result in a greater power value than
the power of a singular player.

Furthermore, the following properties are linked to majority games:

− Dominance: a player with a greater weight should not have a lower
power index.

− Donation: a player who donates votes to other players should not in-
crease her or his measure of power.

On the basis of considerations regarding the geometrical properties of the
Shapley value, an algorithm was used for calculating this value in super-
additive games (see [30]). The algorithm was generalized by Gambarelli [34]
for subadditive games. The algorithm is linear in the number of significant
coalitions and uses a theorem of early stop, based on reaching the desired
degree of precision.

Other algorithms for specific applications follow: See, for instance, [60].
In majority games having a low total sum of weights, the Shapley value

(which assumes in these cases the role of the Shapley-Shubik index) can be
better calculated using the algorithm proposed by Mann and Shapley [56].
This algorithm was suggested to Shapley by an idea from Cantor, following
which the index may be expressed in such games in a manner independent of
coalitions, but directly by the weight of players; time-saving becomes expo-
nential, because the possible coalition among n player are 2n.

The generation of the “power” function relative to share exchanges between
parties necessitates the repeated usage of Mann and Shapley’s algorithm in
each of the constant power regions. A subsequent algorithm by Arcaini and
Gambarelli [3] enables further savings in calculation, as it directly generates
the increase in the index starting from each point of discontinuity, taking into
account the information that was used to calculate the preceding value.

An algorithm is now available to generate power functions in the case of the
Shapley-Shubik index for the exchange of shares between two shareholders, or
between a shareholder and the ocean (see [36]).

18.5 Some Applications of Shapley-Shubik Power Index
Many of the properties mentioned here, in both political and financial envi-
ronments, belong not only to the Shapley-Shubik index, but are also common
to other indices. We shall focus here on their application in the case of the
Shapley-Shubik index.



Shapley-Shubik Index for Finance and Politics 399

18.5.1 Example of Financial Applications
It is worth noting that in some cases a shareholder could own a lot more shares
than another shareholder with the same decision power. He could decide then
to yield some of his shares which are useless in controlling the company so
as to buy other shares of other companies, thereby achieving a better power
position in those companies. In general the question is whether there is a
mathematical model for buying and selling shares such as to give him the
maximum expectation of success in controlling various companies. The prob-
lem is very important due to the large amount of the money involved and it
was solved in the 1980s by the Shapley-Shubik index.

In the following sections these issues will be examined, beginning with the
easiest case of two shareholders.

18.5.2 Shares Shift between Two Shareholders
A further model was studied so as to predict changes in power relationships
that follow a shift by a subset of the shares from one shareholder to another
(see [32]).

Let us assume that the initial distribution of 100 shares among sharehold-
ers A, B and C in a 3-person weighted majority game is (51, 40, 9) (see Ta-
ble 18.1). Given simply majority voting (q ≥ 51) a transfer of shares between
B and C will not change the situation, as A will remain the majority share-
holder. However, let us now analyze what happens if shares are exchanged
between A and C. If C receives one share from A, the distribution becomes
(50, 40, 10) and the power distribution (according to the Shapley-Shubik in-
dex) becomes (2/3, 1/6, 1/6). If C receives 2 shares from A, the distribution of
shares becomes (49, 40, 11) and the power distribution is (1/3, 1/3, 1/3). The
division of power remains the same even if C obtains 40 shares from A, as in
this case the shares distribution becomes (11, 40, 49) and each player is in the
same position as the others. The situation changes only if C receives 41 shares
from A: In this case the distribution becomes (10, 40, 50) and the power of C
increases to 2/3. With one more share, C acquires the majority and its power
increases to 100%.

Table 18.1 shows that the power of C is a monotonic step function of the
number of shares acquired by A. The critical stocks which allow C to pass
from one position of power to another are 9, 10, 11, 50 and 51. It has been
proved that by using the Shapley-Shubik index the sequence of critical stocks
corresponding to shares transferred between two players i and j is always the
same (see [32]).

The formulae generating these critical stocks ds in a company with n
shareholders are:

dS = q −
n∑
h=1

bhwh and dS = t− q + 1−
n∑
h=1

bhwh
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Company Number of
shares C
receives
from A

Resulting
distribution
of shares

Resulting
Shapley-
Shubik index

Power in-
crease of C

A 51 1
B 40 0
C 0 9 0 0
A 50 2/3
B 40 1/6
C 1 10 1/6 1/6
A 49 1/3
B 40 1/3
C 2 11 1/3 1/3
A 10 1/6
B 40 1/6
C 41 50 2/3 2/3
A 9 0
B 40 0
C 42 51 1 1
Synthesis
Number of shares (C receives from A) Resulting increment of power

1 + 16.7 %
from 2 to 40 + 33.3 %

41 + 66.7 %
from 42 to 51 +100.0 %

TABLE 18.1: Exchange of shares between two players (according to Shapley-
Shubik index).

varying the n-dimensional vectors b whose components take only 0 and 1
values, with condition bi = bj = 0 and t is the total sum of weights. Both
summations are moreover subjected to the requirement:

0 ≤
n∑
h=1

bhwh < H

where H is the minimum between q and (t− q).
It is worth noting that the formula dS = t− q+1−

∑n
h=1 bhwh is suitable

for computing the position of the buying player when he is crucial for all the
winning coalitions (with integer exchanges of shares).

In the previous example, t = 100, q = 51, t − q = 49, i = 1 and j = 3.
The only binary vectors to be considered are (0, 0, 0) and (0, 1, 0). From those
formulas the following values are obtained: 10, 11, 50 and 51, which generate
the sequences (51, 50, 49, 10, 9) for A and (9, 10, 11, 50, 51) for C.
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18.5.3 Trade of Shares between One Player and Ocean of
Players

Suppose a company has three major shareholders A, B and C and an “ocean”
of minor shareholders who are not able to form a coalition to control the
company. Let the initial breakdown of shares between the major shareholders
be (20, 15, 4); see Table 18.2. What would happen if the third shareholder
starts to buy shares on the market from minor shareholders (the ocean) to
increase his power index in the company?

If C purchased one share from the ocean, the share distribution would
become (20, 15, 5) and the power factors (according to Shapley-Shubik) would
be (2/3, 1/6, 1/6), as the majority shareholding would go from 19.5 to 20.
If C purchased two shares from the ocean, the share distribution would be-
come (20, 15, 6) and the power indices would be (1/3, 1/3, 1/3). This power
distribution would remain the same even if C were to purchase 30 shares; the
situation would only change if C bought 31 shares. In this case, the share
distribution would become (20, 15, 35) and the power factors (1/6, 1/6, 2/3).
With the purchase of one more share, C would acquire the absolute majority
and his power factor would be 100 percent.

It was proved that the Shapley-Shubik index of the raider (i-th player) to
form coalitions is a monotonic step function of the number of shares purchased
from minor shareholders (see [32]). The critical stocks dS are generated using
the following formula (where q, t, and wh have the conditions indicated in the
previous section):

dS = − M

tbi − q
+ bi,

where
M =

n∑
h=1

n̸=i

(tbh − q)wh

with condition M ≥ 0 for bi = 0; M ≤ 0 for bi = 1.
In this example, the third player is involved (i = 3). Initially t = 39,

q = 19.5, w = (20, 15, 4) and these change as w3 increases. The formula, with
the necessary roundings, generates the critical points 5, 6, 35, and 36.

Note that the model proposed here differs from classical oceanic games
(see, for example, [70], [59] and [56]) as it supposes that all the power is
held by major shareholders. It is, therefore, more suitable for incomplete in-
formation in imperfect markets, where the minor shareholders are obviously
excluded from the board of directors and where the means and the infor-
mation the raider has renders the power of the ocean, which is not able to
form a coalition, completely ineffective. (This model describes also this type
of situation, because the i-th player could be a syndicate of shareholders.)
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Player No. of
shares
bought by
C

Resulting distri-
bution of shares

Resulting ma-
jority (A+B+
C)/2

Resulting
power distri-
bution

A 20 1
B 15 0
C 0 4 19.5 0
A 20 2/3
B 15 1/6
C 1 5 20 1/6
A 20 1/3
B 15 1/3
C 2 6 20.5 1/3
A 20 1/3
B 15 1/3
C 30 34 34.5 1/3
A 20 1/6
B 15 1/6
C 31 35 35 2/3
A 9 0
B 40 0
C 32 36 35.5 1

Synthesis
1 share bought: +16.7 %

from 2 to 30 shares bought: +33.3 %
with 31 shares bought: +66.7 %
with More than 31

shares
bought: +100.0 %

TABLE 18.2: Trade of shares between one player and ocean.

18.5.4 Remarks on Prices
The takeover can be carried out with the agreement of the current control
group, which is interested in gaining a new shareholder as a result of company
politics, the development outlook, etc. or against the control group. In the
latter instance, the raider should expect an increase in the share offer price
by increasing of the requested quantity. Such increase is artificial with respect
to the real share value, shares being only part of the company in question,
since it is only an added value that the raider wishes to pay so as to gain
control, with the deriving benefits. An increase in the value of the company
might ensue (for example, by an improved handling of politics), or there might
be damage, for example, through choosing inferior suppliers, managers and
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political policies, although linked in other ways to the raider, or by using
confidential information to pursue different goals. The new controller will then
indirectly affect the share values, albeit such an influence remains more or
less distanced from a temporary increase in the quotation connected to the
takeover.

Another advantage for the raider is to sell the entire share package to
the current control group, naturally at an increased price: This fact will de-
crease the share quotation, for which the small shareholders will pay the con-
sequences. For further remarks, see Buzzacchi and Mosconi [17] and Corielli,
Nicodano and Rindi [20].

During the acquisition phase, the first shares are normally bought on the
market of small shareholders through silent operations, so as to avoid alarm-
ing the control group. Following possible agreements with some of the large
shareholders, a takeover bid is presented with a fixed price and a pledge to
buy only if a predetermined quantity is achieved.

An a priori evaluation of the price payable for the operation is very im-
portant for the raider. It is based on objective information (available share
quantities on the market, closeness to the majority quote, the economic power
of the current control group, eventual undercutting of the share, and so on)
and subjective considerations (the power and cohesion of the current control
group, possible collateral benefits that favor destabilizing agreements, and so
on).

It has to be noted that the trend of price versus demand in the perfect mar-
ket should coincide with the trend of the power position defined by a suitable
index. On the other hand, in most standard cases, where small shareholders
have no possibility of control, the two curves do not coincide: The raider is
playing on a precise evaluation of this difference. The model presented in the
previous clause can also be used to describe the effects of the formation of a
syndicate of small shareholders who wish to defend their position.

18.5.5 Steadiness of Control
Another particular problem concerns the steadiness of the control position
reached. It is not sufficient to acquire the minimum number of shares to achieve
a position of power in which such power may be exercised. The current con-
trollers may buy in turn, at an increased price, sufficient additional shares to
drive the new shareholder from a position of power. It is thus necessary to
buy a further “security amount”, ∆s in relation to each discontinuity point
s. How is such a quantity determined? It is clear that a purchase so as to
reach the absolute majority quote could be enough to defend against counter-
actions, but it is also clear that the cost of such an operation might nullify
the advantages.

A method is shown based on the considerations that follow [35]. When
the current controllers try to buy shares on the market to regain their lost
position, they could have difficulty finding them and be obliged to pay an
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ever-increasing price for such shares. The raider himself could offer to sell
them the necessary shares at a price covering the surcharge he paid to buy
the shares. With a reliable forecasting model of the quotation p(s) versus the
number of exchanged shares starting from the initial price po, the investor
could calculate the unknown quantity ∆s by equating the sum of the inflated
price paid for each share (from 0 to s+∆s) to the sum of the following inflated
prices requested for each share (from s + ∆s to s + 2∆s). In a model in the
continuum space, the unknown ∆s is obtained from the equation:∫ s+∆s

0

p (s) ds− po [s+∆s] =

∫ s+2∆s

s+∆s

p (s) ds− po∆s

Being P (s) the integral function of p(s) in the considered interval, the
problem is to find the minimum ∆s which is solution of the equation

P (s+ 2∆s)− 2P (s+∆s) = −pos− P (0).

18.5.6 Indirect Control
A particularly interesting problem involves those cases where an investor has
a shareholding in a certain company, which, in turn, holds shares in another
company, and so on. In situations of this kind, it may be useful to calculate
power in the whole system.

Let a shareholder hold 20% of the shares of a company whose remaining
shares are divided equally (40% and 40%) between two other shareholders. Let
this company own 51% of the shares of another company which owns a quarter
of the shares of a third company, whose remaining shares are divided equally
among three other shareholders. What is the power of the first shareholder
with regard to this latter company?

It could be said that the shareholder has a third of the power in the first
company, which has total control in the second one; thus he has a third of
the power in the second one. This latter company has a quarter of the power
in the last one, so thus the shareholder has (1/3) · (1) · (1/4) = 1/12 of the
power in this final company. It seems logical to assign, to each shareholder,
an indirect control power equal to the product of the Shapley-Shubik indices.
However, there are counter-examples that show how this method of proceeding
in calculations can arrive at a total of company shares different to 100%.
Therefore, another method must be found.

This problem has been tackled in the paper by Gambarelli and Owen [38],
by transforming the set of inter-connected games into just one game, using
multi-linear extensions introduced by Owen ([61] and [63]). The advantage of
this method is that the power index considered to be the most suitable in
describing the situation in question can then be applied to the unified game.

An algorithm for the automatic computation of such situations was elab-
orated by Denti and Prati [23] and then extended [24]. Denti and Prati’s
algorithm was implemented in a computer program presented in papers by
Kolodziej and Stach [51] and Stach [76].



Shapley-Shubik Index for Finance and Politics 405

For further studies on the subject, see [16], [68], [21], [14] and [76].
Karos and Peters [50] developed a theory for computing power indices

for indirect control in general cases giving a unique solution when dealing
with invariant mutual control structures. In a mutual control structure agents
exercise control over each other and a mutual control structure is invariant if
it incorporates all indirect control relations.

Mercik and Lobos [57] introduced a power index of implicit power as a
measurement of power in reciprocal ownership structures. This index, which
they called the Implicit Power Index, is a modification of the Johnston index
[49].

For work of a more directly applicational nature, we also recommend [7]
and [21].

18.5.7 Global Index of De-Stability
Let’s consider a set of companies which could be subjected to takeover. Is it
possible to state which one is more vulnerable or to give a numerical index
indicating the stability of each company? The answer was given in [35]. Let’s
see how to proceed. Let n be the number of big investors having shares of at
least one of such companies, whereas all the other shares belong to the ocean
of small shareholders.

Let A be the matrix of which the generic element ahk represents the share
quantity of the h-th shareholder (1 ≤ h ≤ n) or of the h-th company (n+1 ≤
h ≤ n +m) in the k-th company. Let B be the matrix of which the generic
element bhk represents the Shapley-Shubik index of the h-th shareholder (1 ≤
h ≤ n) in the k-th company (being the power distributed only among the big
shareholders, excluding the other companies).

Let C be the matrix of which the generic element chk represents the ef-
fective power (Shapley-Shubik index) of the representatives of the h-th share-
holder in the board of directors of the k-th company. The generic element dhk
of the matrix D = C −B represents the difference between the theoretic and
effective power; the higher values of D represent a greater dissatisfaction of
the h-th shareholder for the situation of the k-th company. To calculate the
above defined indices, the presence of special friendship among big sharehold-
ers should be taken into account (the generalization given by Owen should then
be used [62]). Let dk represent the maximum value of the k-th column of ma-
trix D. Such value represents the maximum dissatisfaction in the considered
company (the k-th one) and contributes to the formation of the de-stability
index proposed by Gambarelli [35]. Other data necessary to define such index
are as follows, with reference to each company (for the sake of simplicity, the
index k is omitted):

wr number of shares owned by the “raider”
wc number of shares owned by the control group (0 ≤ wr < wc)
q the majority quote
pz a former reference quotation
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po a current quotation
s the power (political and economic power) of the current control

group; this parameter gives indications of the relevant reaction
capacity (0 ≤ s ≤ 1).

The above cited values contribute to the formation of the following prelimi-
nary indices, each taking values from 0 (=maximum stability) to 1 (=minimum
stability) of the company:

c = wr/wc ratio between the number of shares for the raider
and the control group

m = (t− wr − wc)/t availability of residual shares on the market
v = (q − wc)/q the vicinity to the absolute majority quota by the

controlling shareholders
f = max(0, (pz − po)/pz) the drop in the current quotation po with respect

to the reference quotation pz

Thus, the global index i is given by:

i = da1 · sa2 · ca3 ·ma4 · va5 · fa6 ,

where a1, . . . , a6 are positive exogenous parameters, which can be estimated
using statistical methods on historical series of past takeovers.

It has to be noted that the resulting index is still limited from 0 to 1 and
it is worth 0 for minimal and 1 for maximum de-stability.

18.5.8 Portfolio Theory
Certain developments of the above results also involve the Theory of Portfolio
Selection. It is known that traditional portfolio models imply a diversification
of investments to minimize risk: The classical models of Portfolio Selection
advise the saver to diversify his share portfolio in such a way as to efficiently
reduce risk (the problem is solved by a multi-tasking optimization by maximiz-
ing the expected return and by minimizing the risk (see [77]). This, however,
is in conflict with the relevant amount of a single stock that needs to be ac-
quired to carry out hostile take-over bids. The connection between takeover
and portfolio theories was initially dealt with by Amihud and Barnea [2] and
by Batteau [6], who found a hindrance in determining the control function:
This function was determined at the beginning of the 1980s by Gambarelli
([31] and [32]). A method of linking these two theories has been proposed by
means of a control propensity index that can be linked to the risk aversion
index (see [31] and [41]).

To summarize the optimal composition of a portfolio is determined by
taking not only the expected return and variance of the classical investments
into account, but also the investments with ordinary shares to be used for
control.
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One of the difficulties in this generalization is that, while in classical models
a fixed price for buying the shares was assumed, in the new model the price
is aleatory.

The method is the following:

− Identify an “index of inclination to the control” for the investor that can
be connected to his risk aversion as it is used in the classical models;

− Share the capital into two classes of investment by using the new index
(one for classical and one for control);

− Identify the company (or, if small, the companies with respect to the
available capital) in the takeover and to identify more suitable power
quotes for each company;

− Eliminate, from the companies used for classical investments, those al-
ready chosen for the takeover and those with a strong correlation with
these last ones;

− Undertake the purchase of shares for the takeover silently;

− Finalize the operation.

To apply the model, the algorithms described below are used. For further
application of game theory to portfolio, see [5] and [41].

To conclude this section, attention should be paid to recent work by Crama
and Leruth [21], in which they show how techniques such as power indices
are more suitable than cut-off methods in describing power-sharing among
shareholders.

18.6 Political Applications
In this section, instead, we shall look at simulations and predictions.

18.6.1 Introduction
We shall not go into the question of electoral systems, since we believe that the
Shapley-Shubik index is best suited to both predictive and normative systems.
For electoral systems, we would refer the reader to other works, such as those
by Holler and Nurmi [47], Gambarelli [37], Gambarelli and Palestini [40], and
Gambarelli and Stach [42].

We should start by saying that, in many cases, the application of power
indices to political environments necessitates correction, inasmuch as not all
coalitions theoretically possible occur in practice: For example, a coalition
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between the extreme Right and the extreme Left. Such corrections usually
involve recourse to Owen’s results [62] for the Shapley-Shubik index and suc-
cessive developments (see, for instance, [64]).

18.6.2 Simulations
The formulas given in Section 18.5.2 may also be used to predict the changes
in power relationships that follow from a shift by a subset of the electorate
from one party to another.

We note that the formulas in Section 18.5.3 may be applied to political-
electorate problems, since they are able to describe variations in the index
subsequent to the introduction of electoral laws that permit an extension of
the vote to new categories of electors (for example, immigrants, the disabled,
prison inmates, young people, etc.) who are presumed to be oriented towards
a particular party.

Further political applications use the results given in Section 18.5.6 rela-
tive to indirect control, inasmuch as parties are made up of various tenden-
cies, within which there may be further diversification. Thus, Gambarelli and
Owen’s results [38], and successive results, may be applied to the quantifica-
tion of power for each of these sub-categories within the party as a whole.

Another type of application concerns the limits imposed on small parties
in electoral systems (see [33]) Here, too, we can go back to the considerations,
advanced at the beginning of the sixth section, regarding affinity; it is, in any
case, possible to undertake simulations of variations in the power indices for
large parties when such limits are altered. For example, Table 18.3 shows how,
for the Lega Lombarda following a change in the limit from 1 to 2%, there
was a decrease, rather than increase, in its power (here measured using the
Banzhaf-Coleman index).

Further studies concern the number of seats to be assigned to nations mak-
ing up the European Parliament; a simulation based on a linear combination of
population and GDP was undertaken by Bertini, Gambarelli, and Stach ([11]
and [12]), based on the Banzhaf-Coleman index. However, analogous studies
could be undertaken using the Shapley-Shubik index.

18.6.3 Predictions
Bearing in mind the considerations made at the start of Section 18.6, pre-
dictions of power relationships in a political environment cannot be made
without reference to affinity and ideological distance between the various par-
ties. Furthermore, many parliaments have two chambers, and the fact that
a particular party might have two different power indices in the two cham-
bers may create confusion concerning the overall power of that party (see, for
instance, [80]). A global approach to the problem was taken by Gambarelli
and Uristani [43], in which a model was elaborated (using relevant software)
based on the Banzhaf index, which formulates predictions on the power of
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Party Power in the case of a limit of
92% 0% 1% 2% 3% 4-5% 6-8% 9%

DC 33.1 42.2 43.2 43.6 46.2 46.2 50.0 100
PDS 18.1 14.1 14.6 14.5 15.4 15.4 16.7 0
PSI 14.9 13.9 14.3 14.5 15.4 15.4 16.7 0
Lega L. 8.5 8.6 9.4 8.2 11.5 7.7 16.7 -
Rif.
Com.

5.8 4.9 4.8 5.5 3.8 7.7 - -

MSI 5.3 4.5 4.4 5.5 3.8 7.7 - -
PRI 3.9 3.1 3.0 2.7 3.8 - - -
PLI 2.2 1.9 1.7 1.8 - - - -
Verdi 2.1 1.8 1.7 1.8 - - - -
PSDI 2.0 1.7 1.7 1.8 - - - -
Rete 1.6 1.3 1.2 - - - - -
Pannella 0.7 0.6 - - - - - -
SVP 0.6 0.5 - - - - - -
Autonom. 0.3 0.3 - - - - - -
Altri 0.7 0.7 - - - - - -
TOTALS 100 100 100 100 100 100 100 100

TABLE 18.3: Power in Italy in case of limits on small parties (Camera +
Senato, 1992).

the various parties in multi-chamber parliaments, taking affinity and hostility
into account. This model was applied to all European nations with a multi-
chamber parliament and, more generally, to the European Union. This model
could also be developed with reference to the Shapley-Shubik index, which we
consider to be more suited to problems concerning prediction.

18.7 Conclusions
Throughout the discussion we have undertaken thus far, we have indicated cer-
tain open problems that would be worth pursuing further. With this work, we
have supplied an overview of studies regarding the application of the Shapley-
Shubik index to finance and politics.

Possible further developments could concern what follows.
Regarding financial applications:
− As far as indirect control, some work is still needed in order to improve

the algorithms from a computational point of view in order to reduce
the calculation time.

− As far as the share shift between shareholders, some financial institutions
have begun using the techniques shown in the quoted papers (though
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obviously without divulging the related results). Therefore, a comparison
between the theoretical models and their applications (where possible)
remains an open problem.

− Furthermore, the above-mentioned formulae concern the exchange of
shares between two shareholders or among one shareholder and an ocean
of small shareholders who cannot control the firm. Some more work
regarding small shareholders who can control a firm should be developed
to compare these models.

− Other open problems of the results discussed above concern the theory
of Portfolio Selection. It is known that traditional portfolio models im-
ply a diversification of investments to minimize risk. This diversification
contrasts with the concentration of shares necessary for takeovers. A
method of linking these two theories has been proposed by means of a
control propensity index that can be linked to the risk aversion index.
However, possible developments of such a theory for practical applica-
tions remain open.

− As far as the simulations, further studies could be done with respect
to the composition of the European Parliament after Brexit, with seat
apportionment that not only takes population size into consideration but
also gross domestic products. A simulation based on a linear combination
of population and GDP was undertaken by Bertini, Gambarelli, and
Stach based on the Banzhaf-Coleman index. However, analogous studies
could be undertaken using the Shapley-Shubik index.

Regarding political applications:

− Another problem concerns the calculation of power indices in cases of
indirect control. The same models regarding finance can be applied to
politics when a political party has various currents and sub-currents.
Also in this case, a more efficient algorithm should be studied in order
to reduce the computation time.

− A more specifically prediction-related issue concerns bicameral parlia-
ments, where different affinities among the parties hold. The global
model introduced by Gambarelli and Uristani could be improved us-
ing other methods of computation for cases of likes and dislikes (such as
probabilistic indices, for instance).

− As far as the apportionment, a theorem of solution existence has been
found and an algorithm has been created. Methods to reduce the related
computation time should be welcomed.

For a more general discussion of the open problems, we refer to the papers by
Fragnelli and Gambarelli [29] and Bertini, Gambarelli, and Stach [13].
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19.1 Introduction
We consider a situation when a group of agents must be served in a facility
which can serve only one agent at a time.1 Agents incur waiting costs. We
assume that each agent’s unit waiting cost is constant over time, but agents
differ in their unit waiting costs. The queueing problem is concerned with find-
ing the order in which to serve agents and the (positive or negative) monetary
transfers they should receive. Furthermore, we assume that each agent’s util-
ity is equal to the amount of her monetary transfer minus her waiting cost.
This queueing problem has been analyzed extensively from various perspec-
tives: Incentive viewpoint (Dolan 1978; Suijs 1996; Mitra 2001, 2002; Mitra
and Mutuswami 2011), normative viewpoint (Maniquet 2003; Chun 2006a,
b; Klijn and Sánchez 2006), and strategic viewpoint (Ju, Chun and van den
Brink 2014). Recently, there have been many studies to combine the incentive

1It is not difficult to find queueing situations in real life: Long queues at the supermar-
ket; a waiting list in the hospital; landing slots at some U.S. airports. For other example
of queueing situations, see Maniquet (2003), Kayi and Ramaekers (2010), and Mukherjee
(2013).
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and the normative viewpoints (Chun, Mitra and Mutuswami 2014a, b, 2015;
Chun and Yengin 2017; Kayi and Raemaekers 2010).2

In this chapter, we give a survey on the literature which tries to solve
the queueing problem by applying the Shapley value, the best-known solution
developed in the cooperative game theory. To do so, we need to transform
the queueing problem into transferable utility coalitional form games, or TU
games, by defining the worth of a coalition. We note that the queueing problem
can be divided into two subproblems depending on the existence of an initial
queue.

For queueing problems without an initial queue, Maniquet (2003) takes an
optimistic approach and defines the worth of a coalition to be the minimum
waiting cost incurred by its members under the optimistic assumption that
they are served before the non-coalitional members. By applying the Shapley
value to the optimistic queueing game, he obtains the minimal transfer rule
which selects an efficient queue and transfers to each agent half of her unit
waiting cost multiplied by the number of her predecessors minus half of the
sum of the unit waiting costs of her followers.

On the other hand, Chun (2006a) takes a pessimistic approach and defines
the worth of each coalition to be the minimum waiting cost incurred by its
members under the pessimistic assumption that they are served after the
non-coalitional members. By applying the Shapley value to the pessimistic
queueing game, he obtains the maximal transfer rule which selects an efficient
queue and transfers to each agent half of the sum of the unit waiting costs of
her predecessors minus half of her unit waiting cost multiplied by the number
of her followers.

For some queueing situations, an initial queue may play an important
role. In such cases, it is most likely that agents are served on the first-come,
first-served basis. Although this rule is easy to implement, it may not be
efficient when the waiting is costly for agents. Curiel et al. (1989) proposes
to solve the queueing problem with an initial queue by transforming into TU
games in which the worth of a coalition is defined to be the minimum waiting
cost of the coalition after efficiently reordering their positions in the queue by
themselves.3 By applying the Shapley value to the initial queueing game, they
obtain the connected equal splitting rule, which selects an efficient queue and
allocates the cost savings obtained after reordering the positions between any
two agents equally among themselves and all agents initially located between
them.

Taken together, in the queueing problem, it is important how to define the
worth of a coalition. Depending on the definition, the resulting allocation rule
becomes very different even though the same Shapley value is applied.

This chapter is organized as follows. Section 19.2 contains some preliminar-
ies on the queueing problem and the queueing game. Section 19.3 introduces

2See Chun (2016) for a survey of the literature.
3Strictly speaking, Curiel et al. (1989) studies how to allocate the maximal cost savings

to agents.
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the optimistic queueing game and investigates the properties of the minimal
transfer rule (the Shapley value of the optimistic queueing game). Section
19.4 introduces the pessimistic queueing game and investigates the properties
of the maximal transfer rule (the Shapley value of the pessimistic queueing
game). Section 19.5 introduces the queueing problem with an initial queue and
investigates the properties of the connected equal splitting rule (the Shapley
value of the initial queueing game). Conclusions follow in Section 19.6.

19.2 The Queueing Problem
Let N = {1, . . . n}, n ≥ 2, be a set of agents. Each agent must be served in
a facility which can handle only one agent at a time. Each agent needs the
same amount of service time which is normalized to 1. Each agent i ∈ N is
characterized by her unit waiting cost θi ∈ R+. Let θ = (θi)i∈N be the vector
of unit waiting costs.4

A queueing problem (without an initial queue) is defined as a list q = (N, θ).
LetQN be the class of all queueing problems for N . For each queueing problem
q = (N, θ) ∈ QN , we assign to each agent i ∈ N a position σi ∈ N++ in a
queue and a (positive or negative) monetary transfer ti ∈ R. An allocation
for q ∈ QN is a pair (σ, t) where σ = (σi)i∈N denotes the vector of queue
positions and t = (ti)i∈N the vector of transfers. An allocation is feasible if all
agents are assigned different positions and the sum of transfers is not positive.
Thus, the set of feasible allocations Z(q) consists of all pairs (σ, t) such that
for all i, j ∈ N, i ̸= j implies σi ̸= σj and

∑
i∈N ti ≤ 0. The agent who is

served first incurs no waiting cost. If agent i ∈ N is served in the σthi position,
her waiting cost is (σi − 1)θi. Each agent i ∈ N has a quasi-linear utility
function: Her utility from the bundle (σi, ti) is given by u(σi, ti; θi) = −(σi −
1)θi + ti.

For each q = (N, θ) ∈ QN , an allocation (σ, t) ∈ Z(q) is queue-efficient
if it minimizes the aggregate waiting cost, that is, for each (σ′, t′) ∈ Z(q),∑
i∈N (σi− 1)θi ≤

∑
i∈N (σ′

i− 1)θi. The efficient queue is unique if each agent
has a different unit waiting cost. If there are agents with the same unit wait-
ing costs, then the efficient queue is not necessarily unique. The agents with
the same unit waiting costs have to be served consecutively but in any order.
For each q ∈ QN , let E(q) be the set of all efficient queues. An allocation
(σ, t) ∈ Z(q) is budget balanced if

∑
i∈N ti = 0. An allocation rule, or simply a

rule, is a mapping φ which associates with each queueing problem q = (N, θ) ∈
QN a non-empty subset φ(q) of feasible allocations. The pair φi(q) = (σi, ti)
represents the position of agent i in the queue and her monetary transfer in q.

4For any set A, |A| denotes the cardinality of A.
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For each q = (N, θ) ∈ QN , each (σ, t) ∈ Z(q), and each i ∈ N, let Pi(σ) be
the set of predecessors of agent i and Fi(σ) the set of followers of agent i.

Now we introduce two rules for the queueing problem. First, suppose that
there are two agents, agent 1 and agent 2, such that σ1 < σ2. If agent 1
changes her position with agent 2, then her waiting cost increases by θ1. She
is indifferent whether she pays θ1

2 at σ1 or receives θ1
2 at σ2. On the other

hand, if agent 2 changes her position with agent 1, then her waiting cost
decreases by θ2. She is indifferent whether she pays θ2

2 at σ1 or receives θ2
2

at σ2. Therefore, we can expect that the actual transfer will be determined
between θ1

2 and θ2
2 . Our two rules select an efficient queue and transfer either

the minimum or the maximum of the two bounds in the 2-agent problem.
The minimal transfer rule (Maniquet 2003) selects an efficient queue and

transfers to each agent half of her unit waiting cost multiplied by the number
of her predecessors minus half of the sum of the unit waiting costs of her
followers.

Minimal transfer rule, φM : For each q ∈ QN ,

φM (q) = {(σM , tM ) ∈ Z(q)| σM ∈ E(q) and

∀i ∈ N, tMi = (σMi − 1)
θi
2
−

∑
j∈Fi(σM )

θj
2
}.

On the other hand, the maximal transfer rule (Chun 2006a) selects an
efficient queue and transfers to each agent half of the sum of the unit waiting
costs of her predecessors minus half of her unit waiting cost multiplied by the
number of her followers.

Maximal transfer rule, φC : For each q ∈ QN ,

φC(q) = {(σC , tC) ∈ Z(q)| σC ∈ E(q) and

∀i ∈ N, tCi =
∑

j∈Pi(σC)

θj
2
− (|N | − σCi )

θi
2
}.

The minimal and the maximal transfer rules are essentially single-valued in
the sense that each agent ends up with the same utility at any allocation the
rule selects.

Next, we formally describe cooperative games with transferable utility, or
simply TU games. Let N = {1, . . . n} be the set of players. A subset S ⊆ N
is a coalition. A TU game is a real-valued function v defined on all coalitions
S ⊆ N satisfying v(∅) = 0. The number v(S) is the worth of coalition S. Let
ΓN be the class of TU games with player set N . A solution is a function ϕ
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which associates with each v ∈ ΓN a vector ϕ(v) = (ϕi(v))i∈N . The number
ϕi(v) represents the utility of player i in v.

The Shapley value (Shapley 1953) is the best-known solution for TU games.
It assigns to each player a payoff equal to a weighted average of her marginal
contributions to all possible coalitions with weights being determined by the
size of each coalition.

Shapley value, SV : For each v ∈ ΓN and each i ∈ N,

SVi(v) =
∑

S⊆N, i∈S

(|S| − 1)!|N\S|!
|N |!

{v(S)− v(S\{i})}.

For each v ∈ ΓN and each S ⊆ N, let ∆v(S) the dividend defined as follows:
If |S| = 1, ∆v(S) = v(S), and if |S| > 1, ∆v(S) = v(S) −

∑
T⊂S,T ̸=S ∆v(T ).

For each coalition T ⊆ N, let uT be the unanimity game defined by uT (S) = 1
if T ⊆ S, and uT (S) = 0 otherwise. Then, each TU game can be expressed as a
linear combination of unanimity games with coefficients being determined by
the dividend of each coalition, that is, for each v ∈ ΓN , v =

∑
T⊆N ∆v(T )uT .

Also, the Shapley value is alternatively calculated by using the dividend for-
mula: For each v ∈ ΓN and each i ∈ N,

SVi(v) =
∑

S⊆N, i∈S

∆v(S)

|S|
. (19.1)

For each v ∈ ΓN , let X(v) = {x ∈ RN |
∑
i∈N xi = v(N)} be the set of

efficient allocations for v and I(v) = {x ∈ RN |
∑
i∈N xi = v(N) and for each

i ∈ N, xi ≥ v({i})} be the set of imputations for v. For each x ∈ X(v) and each
S ⊆ N, let eS(v, x) = v(S) −

∑
i∈S xi and e(v, x) = (eS(v, x))S⊆N ∈ R2N be

the excess vector. The S-coordinate of e(v, x), eS(v, x), measures the amount
that the worth of coalition S exceeds its payoff at x. For each y ∈ R2N , let
ỹ ∈ R2N be the vector obtained by rearranging the coordinates of y in the
non-increasing order. For each y, z ∈ R2N , y is lexicographically smaller than
z if either (i) ỹ1 < z̃1 or (ii) there exists ℓ > 1 such that ỹℓ < z̃ℓ and for each
k < ℓ, ỹk = z̃k.

Now we introduce two well-known solutions of TU games. The nucleolus
(Schmeidler 1969) minimizes the excesses of all coalitions in the lexicographic
order on the set of imputations. On the other hand, the prenucleolus minimizes
the excesses of all coalitions in the lexicographic order on the set of efficient
allocations.

Nucleolus, NU : For each v ∈ ΓN such that I(v) ̸= ∅,

NU(v) ≡
{
x ∈ I(v)

∣∣∣∣ for each x′ ∈ I(v)\{x}, e(v, x) is
lexicographically smaller than e(v, x′)

}
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Prenucleolus, PN : For each v ∈ ΓN ,

PN(v) ≡
{
x ∈ X(v)

∣∣∣∣ for each x′ ∈ X(v)\{x}, e(v, x) is
lexicographically smaller than e(v, x′)

}

For each v ∈ ΓN , the core is the set of imputations at which no excess is
greater than zero, that is, Core(v) = {x ∈ I(v)| for each S ⊂ N,

∑
i∈S xi ≥

v(S)}. A TU game is convex if for each S, T ⊆ N, v(S) + v(T ) ≤ v(S ∪ T ) +
v(S∩T ). It is well known that a convex game has a non-empty core. Moreover,
each of the Shapley value and the nucleolus selects an allocation in the core.

19.3 The Shapley Value in the Optimistic Queueing
Game

Maniquet (2003) proposes to solve the queueing problem by applying the
Shapley value. To do so, queueing problems should be transformed into TU
games by appropriately defining the worth of a coalition. Maniquet (2003)
introduces the optimistic queueing game vO obtained under the optimistic
assumption that the coalitional members are served before the non-coalitional
members. The worth of each coalition is defined as the minimum waiting
cost incurred by its members when they are served before the non-coalitional
members.5 Formally, for each S ⊆ N,

vO(S) = −
∑
i∈S

(σ∗
i − 1)θi

where σ∗ ∈ E(S, (θi)i∈S). By applying the Shapley value to this game, Mani-
quet (2003) shows that the resulting rule coincides with the minimal transfer
rule.

Theorem 19.1 (Maniquet 2003). The Shapley value applied to the optimistic
queueing game yields the minimal transfer rule.

Proof. For each q = (N, θ) ∈ QN , we calculate the dividend ∆vO of the
optimistic queueing game. In fact,

1. |S| = 1: We assume without loss of generality that S = {i}. Then,
∆vO (S) = vO(S) = 0.

2. |S| = 2: We assume without loss of generality that S = {i, j} and θi ≥ θj .
Then, ∆vO (S) = vO(S)−∆vO ({i})−∆vO ({j}) = −θj .

5Note that the cost is measured in the negative amount and the cost savings in the
positive amount.
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3. |S| = 3: We assume without loss of generality that S = {i, j, k} and
θi ≥ θj ≥ θk. Then, ∆vO (S) = vO(S) − ∆vO ({i, j}) − ∆vO ({j, k}) −
∆vO ({i, k})−∆vO ({i})−∆vO ({j})−∆vO ({k}) = −θj−2θk+θj+θk+θk =
0.

4. S ⊆ N such that |S| > 3: We assume without loss of generality that S =
{1, 2, . . . , s} and θi ≥ θj for each i ≤ j. Now, as induction hypothesis,
suppose that ∆vO (S

′) = 0 for each 3 ≤ |S′| < |S|. Then,

∆vO (S) = vO(S)−
∑

T⊂S,|T |=1,2

∆vO (T )

= −
s∑

h=1

(σh − 1)θh −
s∑

h=1

(−(σh − 1))θh

= 0.

Altogether, for each q ∈ QN ,

∆vO (S) =

 0 if |S| = 1,
−mini∈S θi if |S| = 2,
0 if |S| ≥ 3.

(19.2)

For each v ∈ ΓN and each i ∈ N, we calculate the Shapley value alloca-
tion by using the dividend formula. By substituting (19.2) into the dividend
formula (19.1), we obtain

SVi(vO) = −(σi − 1)
θi
2
−

∑
j∈Fi(σ)

θj
2
,

where σ ∈ E(q). By using ti = u(σi, ti; θi) + (σi − 1)θi,

ti = −(σi − 1)
θi
2
−

∑
j∈Fi(σ)

θj
2

+ (σi − 1)θi

= (σi − 1)
θi
2
−

∑
j∈Fi(σ)

θj
2
,

the desired conclusion.

Remark 19.1 We apply the prenucleolus to the optimistic queueing game
and identify the resulting rule. First, note that the optimistic queueing game
satisfies the following two conditions:

(i) for each i ∈ N, vO({i}) = 0,

(ii) for each S ⊆ N such that |S| ≥ 2, vO(S) =
∑
T⊆S,|T |=2 vO(T ).
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As shown in Kar, Mitra, and Mutuswami (2009), these two conditions are
sufficient to guarantee the coincidence of the Shapley value and the prenu-
cleolus. Therefore, these two solutions make the same recommendation in the
optimistic queueing game. On the other hand, it is not difficult to show that
the core of the optimistic queueing game is empty.

Remark 19.2 Also, as shown in Chun and Hokari (2007), the serial cost
sharing rule (Moulin and Shenker 1992) coincides with the minimal transfer
rule. To simplify the argument, let N = {1, . . . , n} and θ ∈ QN be such that
θ1 ≥ θ2 ≥ · · · ≥ θn. Then, Shn(vO) = −n−1

2 θn, Shn−1(vO) = −n−2
2 θn−1 −

1
2θn, and so on. Now we calculate the payoff assigned by the serial cost sharing
rule. First, suppose that all agents have the same unit waiting cost of θn.
Then, the total waiting cost −{1 + · · ·+ (n− 1)}θn is divided equally among
all agents, and each agent receives −n−1

2 θn. Now suppose that agent n leaves
and the remaining agents have the same unit waiting cost of θn−1. The total
waiting cost decreases by the amount of −{1 + · · · + (n − 2)}(θn−1 − θn),
which should be shared equally among the remaining (n−1) agents, and each
remaining agent receives −n−2

2 (θn−1 − θn). Since the original assignment to
each agent is equal to −n−1

2 θn, her final assignment is −n−2
2 θn−1− 1

2θn. And
so on. Therefore, the serial cost sharing and the minimal transfer rules make
the same recommendation in the queueing problem.6

Remark 19.3 Maniquet (2003) presents two axiomatic characterizations of
the minimal transfer rule by imposing either (1) efficiency (a rule should
choose allocations that are queue-efficient and budget balanced), Pareto in-
difference (if an allocation is chosen by a rule, then all other allocations which
assign the same utilities to each agent should be chosen by the rule), equal
treatment of equals (two agents with the same waiting cost should end up
with the same utilities), and independence of preceding costs (an increase in
an agent’s waiting cost should not affect her followers) or (2) Pareto indif-
ference, the identical preferences lower bound (each agent should be at least
as well off as she would be, under efficiency and equal treatment of equals, if
all other agents had the same preferences as her), negative cost monotonic-
ity (an increase in an agent’s waiting cost should cause all other agents to
weakly lose), and last-agent equal responsibility (upon the departure of the
agent served last, the queue should not be affected and the transfers to all
other agents should be affected by the same amount).

Now we describe that the coincidence between the minimal transfer rule
and the Shapley value in the optimistic queueing game still holds for two
generalizations of the queueing problem.

6Moulin (2007) makes a similar observation for the scheduling problem in which agents
have the same unit waiting cost, but differ in the amount of service time.



The Shapley Value in the Queueing Problem 427

Remark 19.4 Sequencing problem. A sequencing problem generalizes a
queueing problem by allowing each agent to have a different amount of service
time. Thus, each agent in the sequencing problem is characterized by two
parameters, the unit waiting cost and the amount of service time. Let α =
(αi)i∈N ∈ RN+ be the vector of service times. Then, a sequencing problem is
defined as a list qS = (N, θ, α) where N is the set of agents, θ the vector of
unit waiting costs, and α the vector of service times. An allocation (σ, t) is
feasible if all agents are assigned different positions and the sum of transfers
is not positive. Let Z(qS) be the set of all feasible allocations. An efficient
queue is obtained if agents are served in the non-increasing order with respect
to θi

αi
(Smith 1956). For each qS = (N, θ, α), let E(qS) be the set of efficient

queues. The minimal transfer rule φM is generalized as: For each sequencing
problem qS = (N, θ, α),

φM (qS) = {(σM , tM ) ∈ Z(qS)| σM ∈ E(qS) and

∀i ∈ N, tMi =
∑

j∈Pi(σM )

αjθi
2
−

∑
j∈Fi(σM )

αiθj
2
}.

As discussed in Chun (2011), this rule is obtained by applying the Shap-
ley value to the optimistic sequencing game where the worth of each coali-
tion is defined in the optimistic way, that is, for each S ⊆ N, vO(S) =
−
∑
i∈S
∑
j∈Pi(σS) αjθi where σS ∈ E(S, (θk)k∈S , (αk)k∈S).

Remark 19.5 Two-server queueing problem. In the queueing problem
(with one server), we assume that there is only one server so that only one
agent can be served at one time. Here we generalize the queueing problem
(with one server) by assuming the facility has two servers so that at most two
agents can be served at the same time. The queueing problem with two servers
(or two-server queueing problem) is defined as a list q̃ = (N, θ, 2) where N is
the set of agents, θ ∈ RN+ is the vector of unit waiting costs, and 2 denotes
the number of servers. An allocation for q̃ is a pair z = (g, t), where for each
i ∈ N, gi is the position assigned to agent i and ti is her monetary transfer. An
allocation is feasible if at most two agents are assigned to each position and
the sum of monetary transfers is not positive. Let Z(q̃) be the set of all feasible
allocations for q̃. For each q̃ = (N, θ, 2), a feasible allocation z = (g, t) ∈ Z(q̃)
is queue-efficient if it minimizes the total waiting costs. Let E(q̃) be the set
of all queue-efficient allocations for q̃. A rule associates with each problem
q̃ a non-empty subset φ(q̃) of feasible allocations. The pair φi(q̃) = (gi, ti)
represents the position of agent i in the queue and her monetary transfer.

To simplify our analysis, we assume that agents are indexed in the non-
increasing order of their unit waiting costs; the agent indexed 1 has the largest
unit waiting cost, the agent indexed 2 has the second largest unit waiting cost,
and so on. This indexing is uniquely defined except for agents with the same
unit waiting cost. Those agents have to be indexed consecutively. For each
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q̃ = (N, θ, 2), let D(q̃) be the set of all possible indices. For each d ∈ D(q̃) and
each i ∈ N, the efficient queue g is defined as

gi = ⌈di2 ⌉ =
{

di
2 if di is even,

di+1
2 if di is odd.

For each q̃ = (N, θ, 2), each d ∈ D(q̃), and each i ∈ N, let Pi(d) be the set
of agents with smaller indices than agent i and Fi(d) the set of agents with
larger indices than agent i.

Now the minimal transfer rule is defined as: For each q̃ = (N, θ, 2),

φM (q̃) = {(gM , tM ) ∈ Z(q̃) | ∀d ∈ D(q̃) and ∀i ∈ N, gMi = ⌈di2 ⌉ and

tMi =

∑
gM
j

<gM
i
gMj ·2

di
· θi −

∑
k∈Fi(d)

( 1
dk−1 ·

∑
gM
j

<gM
k
gMj ·2

dk
· θk)}.

As shown in Chun and Heo (2008), this rule is obtained by applying the
Shapley value to the optimistic two-server queueing game where the worth
of each coalition is defined in the optimistic way. For each S ⊆ N, its worth
vO(S) = −

∑
i∈S(g

S
i − 1)θi where gS ∈ E(q̃S) and q̃S = (S, (θi)i∈S , 2).

19.4 The Shapley Value in the Pessimistic Queueing
Game

On the other hand, Chun (2006a) shows that an alternative definition of the
worth of a coalition results in a very different rule even if the same Shapley
value is applied. He introduces the pessimistic queueing game vP obtained
under the pessimistic assumption that the coalitional members are served
after the non-coalitional members. The worth of each coalition is defined as
the minimum waiting cost incurred by its members when they are served after
the non-coalitional members. Formally, for each S ⊆ N,

vP (S) = −
∑
i∈S

(|N | − |S|+ σ∗
i − 1)θi

where σ∗ ∈ E(S, (θi)i∈S). By applying the Shapley value to this game, Chun
(2006a) shows that the resulting rule coincides with the maximal transfer rule.

Theorem 19.2 (Chun 2006a). The Shapley value applied to the pessimistic
queueing game yields the maximal transfer rule.

Proof. For each q = (N, θ) ∈ QN , we calculate the dividend ∆vP of the
pessimistic queueing game. In fact,
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1. |S| = 1: We assume without loss of generality that S = {i}. Then,
∆vP (S) = vP (S) = −(|N | − 1)θi.

2. |S| = 2: We assume without loss of generality that S = {i, j} and θi ≥ θj .
Then, ∆vP (S) = vP (S)−∆vP ({i})−∆vP ({j}) = −(|N | − 2)θi− (|N | −
1)θj + (|N | − 1)θi + (|N | − 1)θj = θi.

3. |S| = 3: We assume without loss of generality that S = {i, j, k} and
θi ≥ θj ≥ θk. Then, ∆vP (S) = vP (S) − ∆vP ({i, j}) − ∆vP ({j, k}) −
∆vP ({i, k})−∆vP ({i})−∆vP ({j})−∆vP ({k}) = −(|N |− 3)θi− (|N |−
2)θj−(|N |−1)θk−θi−θj−θi+(|N |−1)θi+(|N |−1)θj+(|N |−1)θk = 0.

4. S ⊆ N be such that |S| > 3: We assume without loss of generality
that S = {1, 2, . . . , s} and θi ≥ θj for each i ≤ j. Now, as induction
hypothesis, suppose that ∆vP (S

′) = 0 for all 3 ≤ |S′| < |S|. Then,

∆vP (S)

= vP (S)−
∑

T⊂S,|T |=1,2

∆vP (T )

= −
s∑

h=1

(|N | − |S|+ σh − 1)θh −
s∑

h=1

(|S| − σh)θh +
s∑

h=1

(|N | − 1)θh

= 0.

Altogether, for each q ∈ QN ,

∆vP (S) =

 −(|N | − 1)θi if |S| = 1,
maxi∈S θi if |S| = 2,
0 if |S| ≥ 3.

(19.3)

For each v ∈ ΓN and each i ∈ N, we calculate the Shapley value alloca-
tion by using the dividend formula. By substituting (19.3) into the dividend
formula (19.1), we obtain

SVi(vP ) = −(|N | − 1)θi +

 ∑
j∈Pi(σ)

θj
2

+ (|N | − σi)
θi
2

 ,

where σ ∈ E(q). By using ti = u(σi, ti; θi) + (σi − 1)θi for each i ∈ N,
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ti = −(|N | − 1)θi +

 ∑
j∈Pi(σ)

θj
2

+ (|N | − σi)
θi
2

+ (σi − 1)θi

= −(|N | − σi)θi +

 ∑
j∈Pi(σ)

θj
2

+ (|N | − σi)
θi
2


=

∑
j∈Pi(σ)

θj
2
− (|N | − σi)

θi
2
,

the desired conclusion.

Remark 19.6 Now we apply the nucleolus to the pessimistic queueing game
and identify the resulting rule. Surprisingly, we end up with the same rule: The
Shapley value and the nucleolus coincide for the pessimistic queueing game
(Chun and Hokari 2007). To show this, we introduce an auxiliary pessimistic
queueing game ṽP , in which the worth of coalition S is obtained by adding∑
i∈S(n−1)θi to vP (S), that is, for all S ⊆ N, ṽP (S) = vP (S)+

∑
i∈S(n−1)θi.

Note that ṽP satisfies the following conditions:

(i) for each i ∈ N, ṽP ({i}) = 0,

(ii) for each S ⊆ N such that |S| ≥ 2, ṽP (S) =
∑
T⊆S,|T |=2 ṽP (T ) and

ṽP (S) ≥ 0.

As shown in Deng and Papadimitriou (1994) and van den Nouweland et al.
(1996), these two conditions are sufficient to guarantee the coincidence of the
Shapley value and the nucleolus. Finally, the coincidence for the pessimistic
queueing game follows from the fact that both the Shapley value and the
nucleolus satisfy zero-independence, which requires that adding a constant to
the worth of coalitions containing player i should affect her payoff by the
constant.7

Remark 19.7 Also, as shown in Chun and Hokari (2007), the decreasing
serial cost sharing rule (de Frutos 1998) coincides with the maximal transfer
rule. To simplify the argument, let N = {1, . . . , n} and θ ∈ QN be such that
θ1 ≥ θ2 ≥ · · · ≥ θn. Then, Sh1(vP ) = −n−1

2 θ1, Sh2(vP ) = − 1
2θ1 −

n−2
2 θ2,

and so on. Now we calculate the payoff assigned by the decreasing serial cost
sharing rule. First, suppose that all agents have the same unit waiting cost
of θ1. Then, the total waiting cost −{1 + · · · + (n − 1)}θ1 is divided equally
among all agents and each agent receives −n−1

2 θ1. Now suppose that agent 1
leaves and the remaining agents have the same unit waiting cost of θ2. The
total waiting cost increases by {1 + · · · + (n − 2)}(θ1 − θ2), which should be

7Chun and Hokari (2007) show that the τ -value (Tijs 1987) also coincides with the
Shapley value in the pessimistic queueing game.
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shared equally among the remaining (n−1) agents, and each remaining agent
receives n−2

2 (θ1 − θ2). Since the original assignment to each agent is equal
to −n−1

2 θ1, her final assignment is − 1
2θ1 −

n−2
2 θ2. And so on. Therefore, the

decreasing serial cost sharing and the maximal transfer rules make the same
recommendation in the queueing problem.

Remark 19.8 Chun (2006a) presents two axiomatic characterizations of the
maximal transfer rule by imposing either (1) efficiency, Pareto indifference,
equal treatment of equals, and independence of following costs (a decrease
in an agent’s waiting cost should not affect her predecessors) or (2) Pareto
indifference, the identical preferences lower bound, positive cost monotonicity
(an increase in an agent’s waiting cost should cause all other agents to weakly
gain), and first-agent equal responsibility (upon the departure of the agent
served first, the queue should not be affected and the transfers to all other
agents should be affected by the same amount).

Remark 19.9 A bankruptcy problem is concerned with finding a reason-
able compromise when the amount to divide is not sufficient to cover all
claims. Let N be the set of agents, c = (ci)i∈N ∈ RN+ a claims vector, and
E ∈ R+ an amount to divide. The bankruptcy problem is defined as a pair
(c, E) ∈ RN+×R+ such that

∑
i∈N ci ≥ E. Once again, we can take two parallel

perspectives on the worth of a coalition. For each coalition S ⊆ N, if the coali-
tional members have priority over the non-coalitional members, then its worth
vO is defined by setting, for each coalition S ⊆ N, vO(S) = min{

∑
i∈S ci, E}.

On the other hand, if the non-coalitional members have priority over the
coalitional members, then its worth vP is defined by setting, for each coalition
S ⊆ N, vP (S) = max{E −

∑
i∈N\S ci, 0}. Since these two formulations are

dual to each other, they give the same allocation when the Shapley value is
applied.8 However, this is not the case for the queueing problem.

Now we describe that the coincidence between the maximal transfer rule
and the Shapley value in the pessimistic queueing game still holds for two
generalizations of the queueing problem.

Remark 19.10 Sequencing problem. As in the minimal transfer rule, the
maximal transfer rule φC is generalized to sequencing problems as follows:
For each sequencing problem qS = (N, θ, α),

φC(qS) = {(σC , tC) ∈ Z(qS)| σC ∈ E(qS) and

∀i ∈ N, tCi =
∑

j∈Pi(σC)

αiθj
2
−

∑
j∈Fi(σC)

αjθi
2
}.

8See Aumann and Maschler (1985), Driessen (1998), and Thomson (2003) for details.
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As discussed in Chun (2011), this rule is also obtained by applying the Shapley
value to the pessimistic sequencing game where the worth of each coalition is
defined in the pessimistic way, that is, for each S ⊆ N,

vP (S) = −
∑
i∈S

(
∑

j∈N\S

αj +
∑

j∈Pi(σS)

αj)θi

where σS ∈ E(S, (θk)k∈S , (αk)k∈S).

Remark 19.11 Two-server queueing problem. Now we generalize the
maximal transfer rule to two-server queueing problems. For each q̃, each d ∈
D(q̃), and each i ∈ N, let mi be the contribution from agent i, defined as

mi =


∑

gj>gi
(gj−gi)·2

|N |−di+1 θi if |N | is even,∑
gj>gi,gj<⌈ |N|

2
⌉
(gj−gi)·2

|N |−di+1 θi +
⌈ |N|

2 ⌉−gi
|N |−di+1θi if |N | is odd.

The maximal transfer rule is extended as: For each q̃ = (N, θ, 2),

φC(q̃) = {(gC , tC) ∈ Z(q̃) | ∀d ∈ D(q̃) and ∀i ∈ N, gCi = ⌈di2 ⌉ and
tCi =

∑
j∈Pi(d)

mj

|N |−dj −mi}.

As shown in Chun and Heo (2008), this rule is also obtained by applying the
Shapley value to the pessimistic two-server queueing game where the worth
of each coalition is defined in the pessimistic way. Let S ⊆ N . To define the
worth of a coalition, we need to consider the cardinality of N\S. If |N\S| is
even, then agents in S are served from the ( |N |−|S|

2 + 1)th position. If |N\S|
is odd, the last position for N\S is composed of one agent from N\S and
one agent from S. Therefore, the waiting cost of i ∈ S, Ci(S), is calculated as
follows. For each i ∈ S,

Ci(S) =


{ |N |−|S|

2 + (gSi − 1)}θi if |N | − |S| is even,
{ |N |−|S|−1

2 + (gSi − 1)}θi if |N | − |S| is odd and dSi is odd,
( |N |−|S|−1

2 + gSi )θi if |N | − |S| is odd and dSi is even,

where gS ∈ E(q̃S) and dS ∈ D(q̃S). The worth of coalition S, vP (S), is defined
as

vP (S) = −
∑
i∈S

Ci(S).
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19.5 The Shapley Value in the Queueing Game with an
Initial Order

Up to now, we assume that there is no initial queue of the agents. However, an
initial queue is given in many queueing situations. In this section, we discuss
how the Shapley value is applied to the queueing problem with an initial
queue.9

Let N = {1, . . . , n}, n ≥ 2, be a set of agents and θ = (θi)i∈N ∈ RN be the
vector of unit waiting costs. Furthermore, we assume that there is an initial
queue σ0 which determines the order of agents when there is no reordering.
A queueing problem with an initial queue, or an initial queueing problem, is
defined as a list q0 = (N, θ, σ0). Let QN0 be the class of all initial queueing
problems for N .

For each q0 = (N, θ, σ0) ∈ QN0 , we assign to each agent i ∈ N a reordered
position σi ∈ N++ in a queue and a monetary transfer ti ∈ R. An allocation
for q0 ∈ QN0 is a pair (σ, t) where σ = (σi)i∈N denotes the vector of reordered
queue positions and t = (ti)i∈N the vector of transfers. An allocation is feasible
if all agents are assigned different positions and the sum of transfers is not
positive. Let Z(q0) be the set of all feasible allocations for q0. The agent who
is served first incurs no waiting cost. If agent i ∈ N is served in the σthi
position, her waiting cost is (σi − 1)θi. Each agent i ∈ N has a quasi-linear
utility function: Her utility from the bundle (σi, ti) is given by u(σi, ti; θi) =
−(σi − 1)θi + ti.

Efficiency requires to reorder agents in the non-increasing order of their
unit waiting costs. To reorder agents in an efficient queue, we change the
positions of two agents one by one. For each q0 = (N, θ, σ0) ∈ QN0 , let agents
i and j be two neighbors such that σ0

j = σ0
i+1. If θj > θi, the total waiting cost

decreases by (θj−θi) by reordering their positions. On the other hand, if θi >
θj , they cannot gain by reordering their positions. Let gij = max{θj − θi, 0}
be the cost savings for two agents i and j. We assume that two agents with
the same unit waiting cost does not change their positions.

Now we introduce a rule for the initial queueing problem which selects
an efficient queue and allocates the cost savings obtained after reordering the
positions between any two agents equally among themselves and all agents
initially located between them.

Connected equal splitting rule, φCE: For each q0 ∈ QN0 ,

φCE(q0) = {(σCE , tCE) ∈ Z(q0)| σCE ∈ E(q0) and
∀i ∈ N, tCEi = (σCEi − σ0

i )θi +
∑

σ0
k≤σ

0
i≤σ0

j

gkj
σ0
j − σ0

k + 1
}.

9The strategic aspect of this queueing problem has been studied by Gershkov and
Schweinzer (2010) and Chun, Mitra and Mutuswami (2017).
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To transform initial queueing problems into TU games, Curiel et al. (1989)
defines the worth of a coalition to be the maximal cost savings that the coali-
tional members can ensure among themselves by reordering their positions
in the queue. However, in our queueing game with an initial queue (or the
initial queueing game), the worth of each coalition, denoted by vI , is defined
to be the minimum waiting cost of the coalition after efficiently reordering
their positions in the queue by themselves. Equivalently, it can be calculated
as the waiting cost of the coalition in the initial queue plus the maximal cost
savings of the coalition that can be ensured by reordering the positions in the
queue.10 Note that in the reordering process, the coalitional members may
not jump ahead of non-coalitional members, that is, two agents in the coali-
tion may not reorder their positions in the queue if a non-coalitional member
occupies a position between them. A coalition S ⊆ N is connected if for each
i, j ∈ S and each k ∈ N, σ0

i < σ0
k < σ0

j implies k ∈ S. If coalition T is
connected, then efficiency requires that agents should be served in the non-
increasing order of their unit waiting costs and the maximal cost savings of the
coalition T, vCS(T ) is calculated as: vCS(T ) =

∑
i∈T

∑
k∈Pi(σ0)∩T gki where

gki = max{(θi − θk), 0}. Let S ⊂ N be a non-connected coalition. A coalition
T ⊂ S is a component of S if T is connected and for each i ∈ S\T, T ∪ {i} is
not connected. The components of S form a partition of S denoted by S/σ0.
Coalition S can achieve its maximal cost savings when the members of each
component are rearranged in the non-increasing order with respect to their
unit waiting costs. The cost savings of S is the sum of the cost savings of all
components, that is, vCS(S) =

∑
T∈S/σ0 vCS(T ). The worth of coalition S is

the waiting cost in the initial queue plus its maximal cost savings, that is,
vI(S) = −

∑
i∈S(σ

0
i − 1)θi +

∑
T∈S/σ0 vCS(T ).

By applying the Shapley value to the initial queueing game, Curiel et al.
(1989) shows that the Shapley value allocates the cost savings obtained by
reordering the positions between any two agents equally among themselves
and the agents initially located between them. In the proof, we use the well-
known fact established by Shapley (1953) that the Shapley value is the unique
solution satisfying efficiency, symmetry, dummy, and additivity. Efficiency
requires that the sum of utilities assigned to agents should be equal to the
the worth of the grand coalition. Symmetry requires that if two players are
symmetric in game v, then they should end up with the same utility. Dummy
requires that if a player contributes nothing to all coalitions, then she should
end up with 0 utility. Finally, additivity requires that a solution should be an
additive function of games.

Theorem 19.3 (Curiel et al. 1989). The Shapley value applied to the initial
queueing game yields the connected equal splitting rule.

10Once again, we note that the cost is measured in the negative amount and the cost
savings in the positive amount.
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Proof. For each q0 ∈ QN0 and each i, j ∈ N such that σ0
j > σ0

i , let

vCSij (S) =

{
gij if {k ∈ N |σ0

i ≤ σ0
k ≤ σ0

j } ⊆ S,
0 otherwise.

For connected coalition S, vCSij (S) = gij if and only if {i, j} ⊆ S. For non-
connected coalition S, vCSij (S) =

∑
T∈S/σ0 vCSij (T ).

Therefore, for connected coalition S, vCS(S) =
∑
j∈S

∑
i∈Pj(σ0)∩S gij =∑

σ0
i<σ

0
j
vCSij (S), and for non-connected coalition S, vCS(S) =

∑
T∈S/σ0 vCS

(T ) =
∑
σ0
i<σ

0
j

∑
T∈S/σ0 vCSij (T ) =

∑
σ0
i<σ

0
j
vCSij (S). Altogether,

vCS(S) =
∑
σ0
i<σ

0
j

vCSij (S).

Since the Shapley value satisfies efficiency, symmetry, and dummy, for
each i ∈ N,

SVi(v
CS
kj ) =

{
gkj

σ0
j−σ0

k+1
if i ∈ {ℓ ∈ N |σ0

k ≤ σ0
ℓ ≤ σ0

j } ⊆ S,
0 otherwise.

Since the Shapley value satisfies additivity, for each i ∈ N,

SVi(v
CS) =

∑
σ0
k<σ

0
j

SVi(v
CS
kj ) =

∑
σ0
k≤σ

0
i≤σ0

j

gkj
σ0
j − σ0

k + 1
.

Since the Shapley value satisfies zero-independence,

SVi(vI) = −(σ0
i − 1)θi + SVi(v

CS) = −(σ0
i − 1)θi +

∑
σ0
k≤σ

0
i≤σ0

j

gkj
σ0
j − σ0

k + 1
.

For each i ∈ N, by using ti = u(σi, ti; θi) + (σi − 1)θi,

tCEi = SVi(vI) + (σCEi − 1)θi

= −(σ0
i − 1)θi +

∑
σ0
k≤σ

0
i≤σ0

j

gkj
σ0
j − σ0

k + 1
+ (σCEi − 1)θi

= (σCEi − σ0
i )θi +

∑
σ0
k≤σ

0
i≤σ0

j

gkj
σ0
j − σ0

k + 1
,

the desired conclusion.
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Remark 19.12 The queueing problem with an initial queue can be general-
ized to the sequencing problem with an initial queue by allowing each agent
to have a different amount of service time. For each i ∈ N, let αi be the
service time needed by agent i. As studied in Curiel et al. (1989), the initial
queueing game can be extended to the sequencing game with an initial queue
by assuming that any two agents in a coalition can reorder their positions as
long as all agents between them are included in the coalition. Now, the cost
savings for any two neighboring agents i and j such that σj = σi + 1 are
defined to be gij = max{αiθj − αjθi, 0}.

Remark 19.13 There is another rule widely discussed in the initial queueing
problem. This rule selects an efficient queue and allocates the cost savings
obtained by reordering the positions of any two agents equally between them.

Pairwise equal splitting rule, φPE: For each q0 ∈ QN0 ,

φPE(q0) = {(σPE , tPE) ∈ Z(q0)| σPE ∈ E(q0) and

∀i ∈ N, tPEi = (σPEi − σ0
i )θi +

1

2

∑
j∈Pi(σ0)

gji +
1

2

∑
j∈Fi(σ0)

gij}.

It is an interesting open question to investigate whether this rule can be
obtained by applying a solution of TU games after appropriately defining
the worth of a coalition.

19.6 Conclusions
In this chapter, we give a survey on the literature which tries to solve the
queueing problem by applying the Shapley value. Depending on the definition
of the worth of a coalition, we end up with very different rules. Therefore,
in the queueing problem, it is very important how to define the worth of a
coalition. Also, similar results can be established for two generalizations of the
queueing problem, the sequencing problem and the queueing problems with
two servers.

In fact, the Shapley value has been successfully applied to other allocation
problems such as minimum cost spanning tree problems (Bergantiños and
Vidal-Puga 2007), traveling salesman problem (Yengin 2012), etc. However,
there are still many interesting allocation problems in which the implications
of applying the Shapley value have not been studied. It would be an interesting
open question to investigate what recommendation the Shapley value makes
for these allocation problems.
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A slot allocation problem can be such an example. In this problem, agents
differ in their unit waiting cost and the most preferred slot position (or the
peak). Each agent’s utility from her assignment is equal to the amount of
monetary transfer minus her unit waiting cost multiplied by the distance from
the peak to her assigned slot. It generalizes the queueing problem by allowing
each agent to have a different peak. Note that for the queueing problem, each
agent has the same peak at the first slot. See for details Chun and Park (2017).
An ordinal version of this problem has been studied by Hougaard, Moreno-
Ternero and Østerdal (2014) and a related problem of assigning landing slots
to airlines by Schummer and Vohra (2013) and Schummer and Abizada (2017).
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20.1 Introduction
One of the essential foundation requirements of game theory is the assumption
that players are able to evaluate the utility they expect to obtain as the result
of an interaction situation. As Lloyd S. Shapley wrote in the introduction of
his seminal paper:
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“So long as the theory is unable to assign values to the games typically
found in application, only relatively simple situations -where games do not
depend on other games- will be susceptible to analysis and solution.” [31, p.1]

The impressive amount of papers concerning the Shapley value seems to
well reflect the success of the method to convert the information contained
in a cooperative game into a personal attribution that players may use as
a “prospect” in the game. A relevant part of this success is due to several
important contributions from the literature providing alternative axiomatic
characterizations of the Shapley value [29, 36], some reformulations and gener-
alizations [19, 20, 26], and its application over quite different domains [23, 37].

On the other hand, in order to guarantee the effective evaluation of a co-
operative game in practice, players are also faced with a concrete challenge
related to the difficulty of the calculation of a “sensible” value [10]. Luckily,
for many classes of games studied in the literature of cooperative games, the
computation of the Shapley value becomes surprisingly easy. The objective of
this survey is to present some examples of this type, where the exact Shap-
ley value of a game can be obtained avoiding the complex calculation of a
weighted average of all the players’ marginal contributions, as suggested by
the original formula introduced in [31]. Looking at these examples, we argue
that the linearity of the Shapley value plays an important role to establish a
clever computational procedure for its calculus. The majority of the algorithms
considered in this chapter rely on the decomposition of a given characteristic
function as a sum of games where the marginal contribution of each player
over all possible coalitions is driven by properties tailored to specific applica-
tions. In many cases, these properties restore axioms used in the literature for
the alternative axiomatic characterizations of the Shapley value.

The chapter is organized as follows. In Section 20.3 we introduce some
cooperative interaction situations where the worth of coalitions depends on the
position of its members along a line. In particular, we focus on cost allocation
problems where the cost of a coalition of airplanes depends on the construction
and the use of an airport landing strip (Section 20.3.1); then we consider
situations where countries release pollutants into a river and face the problem
of how to allocate the cost of cleaning it (Section 20.3.2); in Section 20.3.3,
we deal with methods for the attribution of an indivisible good and keeping
into account the possibility of collusion among the players.

In Section 20.4, we discuss classes of games where the computation of the
Shapley value is based on a clever decomposition of the characteristic function.
To be more specific, we present some results for sequencing games, where
the players, aimed at performing jobs on a machine, may cooperate and save
costs rearranging their ordering in a queue (Section 20.4.1); then, we illustrate
two quite different applications of the Shapley value: The first one, addresses
the problem of allocating the cost of maintenance of a shared infrastructure
(e.g., a railway network; see Section 20.4.2), whereas the objective of the
second application is to evaluate the importance of genes for the onset of a
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disease based on the information provided by an experimental dataset (Section
20.4.3); finally, in Section 20.4.4, we discuss some results from the use of the
Shapley value for a facility location problem over an area controlled by a
centralized authority. Section 20.5 concludes.

20.2 Preliminaries
A Transferable Utility (TU-)game (or, simply, a game) is a pair (N, v), where
N = {1, · · · , n} is a finite set of n players and v : 2N → R is the characteristic
function, with v(∅) = 0. If the set N of players is fixed, in the following we
identify a game (N, v) with its characteristic function v and for each subset
(coalition) S ⊆ N , we shall denote by s its cardinality |S|. It is well known
that a game (N, v) may be expressed as a linear combination of its unanimity
games defined for each coalition:

v =
∑

S⊆N,S ̸=∅

λS(v)uS ,

where the coefficients (λS(v))S∈2N\{∅} are called unanimity coefficients or div-
idends of the game (N, v) and the unanimity game (N, uS) for coalition S ⊆ N
is the game described by

uS(T ) =

{
1 if S ⊆ T
0 otherwise.

It is easy to see that for the unanimity game (N, uS) the players in S are
symmetric, while the players in N \ S are null players, so the Shapley value1

ϕi(uS) of the unanimity game uS is:

ϕi(uS) =

{
1

s
if i ∈ S

0 otherwise,

for each i ∈ N . Exploiting the additivity of the Shapley value, we can write
the Shapley value ϕi(v) of game v as follows:

ϕi(v) =
∑

S⊆N :i∈S

λS(v)

s
, (20.1)

for each i ∈ N . For further details, we address to [15].

1See the definition of the Shapley value and the discussion of its main properties in the
introductory chapter of the book.
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20.3 Games on a Linear Resource
In this section, we review situations where players utilize a resource that can
be modelled as a line. The utility of each player depends on his/her position
on the line and on who else is using the same resource.

20.3.1 Managing Airport Runways
The airport problem is one of the first instances where “a simple and exact
expression for the Shapley value” was made available by Littlechild and Owen
[17] twenty years after Shapley’s proposal for a value. The authors addressed
the problem of determining airport landing fees, with particular focus on the
capital costs caused by the construction and the use of the airport’s runway.
The main assumption is that the use of such runway depends on the features
of each plane, the “largest” planes needing “longest” runway. Referring to
Littlechild and Thompson (see [18]), they consider a set N formed by n planes
of m different types. The cost of a runway suitable for type i, i = 1, . . . ,m, is
ci, where they assume, without loss of generality, that

0 = c0 < c1 < c2 < · · · < cm−1 < cm. (20.2)

Let Ni denote the set of ni type i planes, for i = 1, . . . , n. For any nonempty
subset S of planes, the cost of a runway that is adequate to receive all the
landings of the planes in S is given by

vA(S) = max{ci : Ni ∩ S ̸= ∅}.

This, together with the usual assumption on the empty coalition, namely
vA(∅) = 0, defines the characteristic function of the airport game (see [18]).

To compute the Shapley value, the following quantities are needed

Rk =
m∪
i=k

Ni and rk =
m∑
i=k

ni.

Littlechild and Owen show that, for any j ∈ Ni, i = 1, . . . ,m,

ϕj(v
A) =

i∑
k=1

ck − ck−1

rk
. (20.3)

Suppose that in an existing airport, new planes that require a larger runway
are introduced. It seems reasonable to fairly divide the costs for the expansions
exclusively among the new airplanes that will actually use the new stretch of
runway. The Shapley value for the airport game, defined by (20.3), guarantees
this property. Actually, due to its common sense appeal, the rule had been
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proposed earlier by the economists Baker and Thompson (see [3, 33]). For this
reason, the allocation rule is also known as the Baker-Thompson (BT) rule.

The game and its Shapley value can be formulated without a prior division
of the planes into types. If there are n planes, each with runway cost ci,
i = 1, . . . , n, and

0 = c0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ cn, (20.4)

then, for any S ⊂ N , we have

vA(S) = max{cj |j ∈ S} = cj̄(S),

where j̄(S) = max{j|j ∈ S}. Moreover, for each airplane j, j = 1, . . . , n

ϕj(v
A) =

j∑
k=1

ck − ck−1

n− k + 1
. (20.5)

The same game can also be defined in terms of the increments αk = ck−ck−1 ≥
0, k = 1, . . . , n. In this setting, for any S ⊂ N ,

vA(S) =

j̄(S)∑
i=1

αi and ϕj(v
A) =

j∑
k=1

αk
n− k + 1

j = 1, . . . , n.

Airport games are known to be concave2. Therefore, the Shapley value lies
in the game core. Fragnelli et al. [12], Norde et al. [28] and Fragnelli and
Meca [13] dropped the monotonicity assumption (20.2), only to require their
nonnegativity, and obtained the generalized and the extended airport games;
these new games are not concave anymore, but the formulas for the Shapley
value (20.3) and (20.5) remain valid.

20.3.2 Cleaning Rivers
The settings of the airport game can be adapted to other situations where
players are arranged along a line. Consider, for instance, rivers that carry
goods and “bads” across regions and countries. Ni and Wang [27] consider a
model in which countries release pollutants into the river via their factories.

More in detail, suppose that a river flows through a set N = {1, 2, . . . , n}
of countries. Such countries are labelled according to the flow, country 1 being
the region where the river has its source and country n receiving the river’s
mouth. Assume also that each country i releases pollutants into the river, that
require cost αi ≥ 0 to be cleaned. A problem then arises on how to share the
total costs

∑
i∈N αi for cleaning the whole river.

When the pollutants released by a certain country remain in that area
and do not flow downstream, then the cost for cleaning the area in charge

2 A game (N, v) is concave if v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ), S, T ⊆ N .
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of a coalition S ⊂ N of countries is vLR(S) =
∑
i∈S αi. This is the Local

Responsibility (LR) game. Clearly, ϕj(vLR) = αj , and each country bears the
costs for its own pollution.

In a more realistic setting, the pollutants flow, and each country should
cover the cleaning costs for its own area, as well as the downstream areas. In
such a scenario, it is reasonable to assume that a coalition S ⊂ N of countries
should be responsible for the cleaning of the pollution released between the
most upstream country of the coalition and the river’s mouth. Therefore

vDR(S) =
n∑

i=j(S)

αi, (20.6)

where j(S) = min{j|j ∈ S}. This is the Downstream Responsibility (DR)
game in [27]. An even more realistic model is given by Alcalde-Unzu et al. [2].
In that model a transfer rate for the flow of pollutants from a country to its
downstream neighbor is assumed, though no mention of the Shapley value is
to be found.

Van den Brink and van der Laan [35] point out that the DR game bears a
very close similarity with the airport game. In fact, if we consider the down-
stream costs from country j, j = 1, . . . , n, cj =

∑n
k=j αk, we have

c1 ≥ c2 ≥ · · · ≥ cn and (20.7)
vDR(S) = max{cj |j ∈ S} = cj(S) for S ⊂ N. (20.8)

The resemblance with the airport game is striking, since the only difference
lies in the monotonicity order of the costs, which are decreasing instead of
increasing. For this reason, van den Brink and van der Laan [35] call this a
Dual Airport game. Simply rearranging the players in the reverse order, or the
recursion to generalized airport games, yields

ϕj(v
DR) =

n∑
k=j

ck − ck−1

k
=

n∑
k=j

αk
k

(20.9)

with the usual proviso c0 = 0.

20.3.3 Auctions and Markets
The mathematical framework employed to describe the use of a linear resource
by a finite set of agents works surprisingly well in economics to model players’
competition over the attribution of an indivisible good.

Van den Brink and van der Laan [35] point out that the DR game shares
the same Shapley value with a game defined earlier by Graham et al. [14]
to describe collusion in an auction setting. We refer also to van den Brink
[34] for a concise description of this situation. Consider a set of bidders N =
{1, 2, . . . , n} participating to a second-price sealed-bid auction (though the
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conclusions straightforwardly apply to an English open auction as well) for
the attribution of a single indivisible item. Suppose that bidders are labelled
according to their valuation Vi, i ∈ N , of the good, so that

V1 ≥ V2 ≥ · · · ≥ Vn. (20.10)

These values are private information, but if bidders collude, or, in the auction
jargon, form a ring, they will exchange information about their own valua-
tions with the other colluders, in order to take advantage of those outside the
colluding group. If bidders split into two colluding groups: S and Sc = N \S,
respectively, and if the exchange of information is complete within each col-
luding group, the dominant strategy for each bidder in this group is to bid
v∗(S) = maxi∈S Vi, v∗(Sc) = maxj∈Sc Vj , respectively. In this context, the
worth of coalition S is given by the auction (AU) game, defined as:

vAU (S) = max {v∗(S)− v∗(Sc), 0} = V1 −max
j∈Sc

Vj = V1 − Vj(Sc), (20.11)

where the middle equation follows from the fact that coalition S obtains a
positive value only when it includes player 1. The value will therefore be
given by the difference between the evaluation of player 1 and the highest
evaluation within the complementary coalition.

Though not immediately apparent, it can be shown, using the definition
of the Shapley Value, that this game has the same Shapley value of the DR
game with cj = Vj for every j ∈ N , and therefore,

ϕj(v
AU ) =

n∑
k=j

Vk − Vk−1

k

with the usual proviso V0 = 0.
A somewhat similar analysis of collusive behavior in a bidding context

was provided by Briata et al. [4]. Here, the agents in N have equal rights over
the indivisible good. The good is then “sold” to the highest bidder, and this
amount is distributed among all players according to a procedure defined by
Knaster [16]. More in detail, suppose (again w.l.o.g.) that players have non-
increasing valuations (20.10). If each agent bids an amount bi, i ∈ N , the item
is sold to the highest bidder (in case of ties, it can be given to any of them
according to some rule specified in advance). Each agent i ∈ N receives the fair
share bi/n plus an equal share of the surplus, i.e.,

(
maxi∈N bi −

∑
i∈N bi
n

)/
n .

In case an agent does not know the valuations of the others, and the agent
is risk averse, a safe strategy, i.e., a strategy that maximizes the payoff of
the agent, avoiding the risk of a negative payoff, is to equalize the bid to the
valuation, i.e., bi = Vi, i ∈ N . Conversely, if a subset S ⊂ N of agents engage
in a collusive behavior, they may reveal their valuations within the group and
may sign a binding agreement on how to share their gain at the expense of
those agents outside the group. The highest gain that the coalition S obtains
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with certainty is obtained when all agents in S bid bS = maxj∈S Vj and their
joint safe gain is given by

vG(S) =
n− |S|
n2

∑
i∈S

(bS − Vi). (20.12)

This is the gain game defined in [4]. It turns out that the Shapley value for
this game is given by

ϕi(v
G) =

n−1∑
j=1

ψij(Vj − Vj+1) , (20.13)

where, for each j ∈ N \ {n}

ψij =

{
(n− j) c(n, j) if i ≤ j
−j c(n, j) if i > j

(20.14)

and c(n, j) =
2n− 3j − j2

2n(j + 1)(j + 2)
.

Another economic application is given by Fragnelli and Meca [13] who
consider a von Neumann-Morgenstern market game. Here, a seller, denoted
by n + 1, values wn+1 the item to be sold to a set of n potential buyers,
each with reserve value wi, i = 1, . . . , n. Assuming weak monotonicity, i.e.,
w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn+1, this situation can be associated to a cooperative
game with player set N ′ = {1, 2, . . . , n+ 1} and characteristic function

vm(S) =

{
0 if n+ 1 /∈ S
max{wi|i ∈ S} if n+ 1 ∈ S.

This game can be decomposed as the difference of an airport game with
cost vector (wn+1, wn, . . . , w1) and an extended airport game with cost vector
(wn, wn−1, . . . , w1, wn+1). Consequently, the Shapley value is

ϕ(vm) =

{∑n
j=1

wj−wj+1

j(j+1) if i = 1, . . . , n

w1 −
∑n
j=1

wj−wj+1

j+1 if i = n+ 1.

20.4 Decomposition
In the following, we present some classes of games for which the Shapley
value can be easily computed after a suitable decomposition of the game. In
particular, we consider the sequencing games [9], the maintenance cost games
[12], the microarray games [24], and the coverage games [11].
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20.4.1 Sequencing Games
This class of games was introduced by Curiel, Pederzoli and Tijs in 1989 [9].
They consider a queue in front of a window delivering a service and associate
to each agent in the queue a job that requires a given time to be performed; the
agents suffer different cost for each unit of time spent in the queue, including
the time for performing their own jobs, so that it may be profitable for the
agents rearranging their ordering in the queue in such a way to reduce the total
cost. The situation may be represented by a 4-tuple (N, σ0, t, α) where N =
{1, 2, ..., n} is the set of agents, σ0 is the initial ordering, t = (t1, t2, ..., tn) is the
vector of the time required by the jobs of the agents and α = (α1, α2, ..., αn)
is the vector of the cost per unit of time suffered by the agents.

Given an ordering σ, the time spent in the system by agent i ∈ N is the
sum of the execution times of the jobs preceding her/his one according to σ,
i.e.,

∑
j∈P (σ,i)∪{i}

tj where P (σ, i) denotes the set of agents preceding i in the

ordering σ; consequently, the cost for agent i ∈ N is αi
∑

j∈P (σ,i)∪{i}
tj and the

total cost of the ordering σ is Cσ =
∑
i∈N

αi
∑

j∈P (σ,i)∪{i}
tj .

In 1956, Smith [30] proved that the optimal order σ∗ may be obtained
simply reordering the agents by weakly decreasing urgency indices, where the
urgency of agent i ∈ N is ui =

αi
ti

, i.e., the ratio among the unitary cost and
the execution time.

Curiel, Pederzoli and Tijs [9] used a TU-game for allocating among the
agents the total saving Cσ0 − Cσ∗ in such a way that all agents are satisfied
with the optimal order σ∗. They suppose that the set of players coincides with
the set of agents N and that two agents in a coalition S ⊆ N may switch their
positions in the current order only if all the agents in between them are in the
coalition.

The gain of the switch among two adjacent agents j and i, j ∈ P (σ0, i) is
gji = max{αitj − αjti, 0}, so the worth of a connected coalition T is the sum
of all the gains of the possible switches, i.e.:

v(T ) =
∑
i∈T

∑
j∈P (σ0,i)

gji.

For a coalition S ⊆ N , the worth is the sum of the worths of the connected
subcoalitions:

v(S) =
∑

T∈S\σ0

v(T ),

where S \ σ0 denotes the set of connected subcoalition of S induced by the
ordering σ0.

A sequencing game (N, v) may be decomposed according to the unanimity
games defined on the connected coalitions [j, i] = P (σ0, i)∪{i}\P (σ0, j) with
j ∈ P (σ0, i); in other words, [j, i] is the set of all the players in between j
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and i, included j and i. In this case, the dividend associated to the unanimity
game (N, u[j,i]) is gji.

In view of this, the Shapley value of a sequencing game (N, v) is:

ϕi(v) =
∑

[h,k]⊆N :i∈[h,k]

ghk
|[h, k]|

, i ∈ N.

Note that it is possible to compute the Shapley value without computing
the characteristic function, but only the gain of the switch for each pair of
agents.

20.4.2 Maintenance Cost Games
This class of games was introduced by Fragnelli, Garcia-Jurado, Norde, Pa-
trone and Tijs in 2000 [12]. The problem they consider is related to an in-
frastructure used by several agents with different needs that correspond to
a more expensive infrastructure. The users may be grouped according to the
level of requirements and each coalition requires an infrastructure suitable for
satisfying the needs of the most demanding agent, in a situation similar to
the already mentioned airport games. The difference is that in this case both
fixed and variable costs are involved. More precisely, the fixed costs are in-
dependent from the number of users of the infrastructure in a given period
of time, while the variable costs depend on the number of users in the same
period of time. The two kinds of costs lead to the definition of two classes of
games. The first class, related to the fixed costs, called building cost games,
is equivalent to the class of the airport games, and the Shapley value may be
computed according to the formula in [17]. The second class of games, that
considers the variable costs, is called maintenance cost games and the Shapley
value may be computed with a formula that requires a suitable decomposition
of the game. In the following, we devote our attention to this second class of
games.

Suppose that there are k disjoint groups of players g1, . . . , gk with
n1, . . . , nk players, respectively; clearly, the infrastructure is at level k, in
order to allow the usage of all the players. Suppose that an agent in the group
j ≤ k uses the infrastructure, then the cost of restoring the infrastructure may
be decomposed as the cost αjj of renovating the infrastructure at level j, plus
the cost αjh, h = j + 1, ..., k of renovating the infrastructure from the level
h− 1 to level h. Consequently, the total cost of restoring the infrastructure at
level k after the usage of an agent of level j is Ajk = αjj + αj,j+1 + ...+ αjk.

In view of the previous reasoning, we can give the formal definition of the
maintenance cost game as in [12].

Definition 20.1 Suppose we are given k groups of players g1, . . . , gk
with n1, . . . , nk players respectively and k(k + 1)/2 non-negative numbers
{αij}i,j∈{1,...,k},j≥i. The maintenance cost game corresponding to g1, . . . , gk
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and {αij}i,j∈{1,...,k},j≥i is the cooperative (cost) game (N, c) with N = ∪ki=1gi
and cost function c defined by

c(S) =

j(S)∑
i=1

|S ∩ gi|Aij(S), S ⊆ N,

where j(S) = max{j : S ∩ gj ̸= ∅} and Aij = αii + ... + αij for all i, j ∈
{1, ..., k} with j ≥ i.

A maintenance cost game (N, c) may be decomposed as follows.

c(S) =

j(S)∑
i=1

|S ∩ gi|Aij(S) =

=

j(S)∑
i=1

|S ∩ gi|(αii + ...+ αij(S)) =
k∑
i=1

k∑
j=i

αijc
ij(S), S ⊆ N,

where
cij(S) =

{
|S ∩ gi| if j ≤ j(S)

0 if j > j(S)

for all i, j ∈ {1, ..., k} with j ≥ i.

Referring to Theorem 3.1 in [12], the Shapley value for a maintenance cost
game for player i ∈ gj(i) may be computed as:

ϕi(c) = αj(i)j(i) +
k∑

m=j(i)+1

αj(i)m
nm + ...+ nk

nm + ...+ nk + 1

+

j(i)∑
m=2

m−1∑
l=1

αlm
nl

(nm + ...+ nk)(nm + ...+ nk + 1)
.

In order to check this, notice that for every l ∈ {1, ..., k}:

ϕi(c
ll) =

{
1 if i ∈ gl
0 otherwise. (20.15)

Suppose now that l < m. In this case, only players in gl ∪ (∪kr=mgr) are not
null players. By symmetry, ϕi(clm) = a for every i ∈ gl and ϕi(c

lm) = b for
every i ∈ ∪kr=mgr. In order to compute a take i ∈ gl and note that for every
S ⊆ N\{i}:

clm(S ∪ {i})− clm(S) =

{
0 if j(S) < m
1 otherwise.

So, if the players of N are ordered at random, a is the probability that player
i has at least one predecessor in ∪kr=mgr. Equivalently, if the players of N are
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ordered at random, a is the probability that player i is not the first player of
the players in {i} ∪ (∪kr=mgr). Consequently,

a =
nm + ...+ nk

nm + ...+ nk + 1
. (20.16)

Thus, by symmetry and efficiency,

b =
nl − nla

nm + ...+ nk
=

nl
(nm + ...+ nk)(nm + ...+ nk + 1)

. (20.17)

Now, in view of (20.15), (20.16) and (20.17), the computation of the Shapley
value is completed.

20.4.3 Microarray Games and Network Centrality
The possibility to decompose a game can be very helpful when the number
of players is extremely large. This is the case, for instance, of microarray
games [24], a class of games aimed at evaluating the importance of genes
in regulating or provoking a biological condition of interest, and taking into
account the observed relationships in all subgroups of genes.

To be more specific, let N = {1, . . . , n} be a set of genes whose level
of expression (i.e., the process by which genetic instructions are used in the
synthesis of a gene product) is evaluated over a set M = {1, . . . ,m} of m
samples or experiments (e.g., cells of patients with a genetic disease). From
this information one can generate a Boolean matrix B ∈ {0, 1}N×M (see
[24] for more details) where the Boolean values 0 or 1 represent two mutually
exclusive expression status, for example the status of normal expression (coded
by 0) and the status of “abnormal” expression (coded by 1) over all n genes
and m samples (alternative expression status for genes can be considered, for
instance, the property of up- or down-regulation, etc.; see [24]).

Let j ∈M and let B·j be the j-th column of matrix B. The support of B·j ,
denoted by sp(B·j), is defined as the set of genes sp(B·j) = {i ∈ N | Bij =
1}. On a single sample j ∈ M , in a coalition of genes S ⊆ N , a sufficient
requirement to realize the association between a biological condition of j and
an expression status of genes is that the set of genes showing that expression
status is contained in S, i.e., sp(B·j) ⊆ S.

The microarray game corresponding to B is defined as the TU-game (N, v),
where v : 2N → R+ is such that v(T ) is the rate of occurrences of the coalition
T as a superset of supports in B. More precisely, we define v(T ), for each
T ∈ 2N \ {∅} as follows:

v(T ) =
|Θ(T )|
m

, (20.18)

where Θ(T ) = {j ∈ M | sp(B·j) ⊆ T, sp(B·j) ̸= ∅}, and |Θ(T )| is the
cardinality of Θ(T ) (by convention, v(∅) = 0). In other words, v(T ) represents
the frequency of associations realized in T ⊆ N between the expression status
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of its genes and the biological condition of samples in M . A microarray game
v can be easily reformulated as follows [24]:

v =
∑

S⊆N :S ̸=∅

λ̄S
m
uS , (20.19)

where λ̄S =
∣∣{j ∈ M |sp(B·j) = S}

∣∣ is the number of occurrences of the
coalition S as support in the Boolean expression matrix B.

Using a property-driven approach, in [24], the authors suggest the use of
the Shapley value as a measure of the relevance of genes in inducing the bio-
logical condition of interest, and keeping into account their “coalitional” inter-
action in the biological system. Note that if a Boolean matrix B ∈ {0, 1}N×M

is given, the computation of the Shapley value ϕ(v) of the corresponding mi-
croarray game v ∈MN , in virtue of Equation (20.19), is very easy, regardless
of the number of genes involved (in typical experiments, in the order of tens
of thousands). To be more specific, we have that

ϕi(v) =
1

m

∑
S⊆N :i∈S

λ̄S
|S|

(20.20)

for each i ∈ N (see [24] for more details).
Another interesting field related to the analysis of genetic data deals with

co-expression networks, which are increasingly used to explore the system-level
functionality of proteins and genes3. In [22] the authors introduce a method
based on TU-games to evaluate the centrality of genes in co-expression net-
works. Following the approach introduced in [22], an association game (N, a)
is first defined, where N is the set of genes under study (for instance, anal-
ysed by means of a gene expression dataset) and the characteristic function
a assigns a worth a(S) to each coalition of genes S ⊆ N representing the
overall magnitude of the “interaction” between the genes in S and a given set
of key-genes.

Precisely, suppose we have a finite set K (with N ∩K = ∅) of key-genes
and let I ⊆ {{i, k}|i ∈ N, k ∈ K} be the set of interactions (reported by
previous studies) between genes in N and the key-genes in K. Given a set
of genes S ⊆ N , the number of key-genes which interact with genes in S
can be considered as a measure of the likelihood that genes in S are also
involved in the regulation of the biological condition of interest. The map
a : 2N → N assigning to each coalition S ∈ 2N \ {∅} the number a(S) of key-
genes in K which only interact (in I) with genes in S (again, by convention,
a(∅) = 0) is the association game corresponding to (N,K, I). In [22], the
authors also introduce a second game, where gene interaction is restricted to
the connections specified by an associated undirected graph ⟨N,E⟩. The set

3Roughly speaking, a co-expression network is a network where the nodes correspond to
the genes, and a link between two genes is established if they are simultaneously expressed
in a dataset (see, for instance, [32] for a detailed discussion on co-expression networks).
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of edges E indicates interaction ties between pairs of genes in N , i.e., a set
{i, j} ⊆ N is an element of E if and only if i and j interact (for instance,
they are significantly co-expressed). Following the approach in [25], in [22]
the structure of network ⟨N,E⟩ is used to define the graph-restricted game
(N,waE) such that

waE(S) =
∑

T∈CES

a(T ) (20.21)

for each S ∈ 2N \ {∅}, where CES
is the set of all the connected components

in ⟨S,ES⟩. The difference of the Shapley values computed on the two games
(N, a) and (N,waE) is considered in [22] as a centrality measure of genes in the
network ⟨N,E⟩. Specifically, the γ-centrality γ(a,E) is defined by

γi(a,E) = ϕi(w
a
E)− ϕi(a) (20.22)

for each i ∈ N , where ϕ(a) is the Shapley value of the association game a
and ϕ(wa) is the Shapley value of the corresponding graph-restricted game
waE (i.e., the Myerson value [25]). So, genes with strictly positive γ-centrality
represent those genes with a positive differential power between the graph-
restricted game waE and the association game a.

It is easy to show that the characteristic function a of an association game
can be written as a sum of unanimity games according to the following relation,

a =
∑

k∈K,Nk ̸=∅

uNk
, (20.23)

where Nk = {i ∈ N |{i, k} ∈ I} denotes the set of genes in N which have
a strong interaction with a key-gene k ∈ K. A natural decomposition of a
graph-restricted game based on the reformulation of the association game can
be also provided (see [22] for further details), but it requires to consider all
minimal components containing Nk, for each key-gene k ∈ K, and all of their
combinations (see equation (6) in [22]). However, as the number of minimal
components in a graph can be very large (especially for graphs generated
from realistic datasets with thousands of genes) this option is computationally
unaffordable. Therefore, in [22], the authors limit the decomposition of the
graph-restricted game waE to the “smallest” minimal components connecting
the “most associated genes” (i.e., genes that directly interact with key-genes),
which are those minimal components where the most associated genes are
connected to each other by a shortest path. Alternatively, in order to estimate
the Shapley value of a graph-restricted game with many genes, one could
adopt the strategy of sampling orderings of players and calculate an unbiased
estimator of each gene’s contribution as an average marginal contribution
over all sampled orderings (see, for instance, the recent papers [5, 6] for the
discussion of a sampling procedure to estimate the Shapley value of games
with a large number of players).
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Another approach to assess the centrality of genes in a co-expression net-
work ⟨N,E⟩ has been presented in [7] and further studied in [8]. Given a
parameter vector k ∈ RN , which specifies the a priori importance or weight
of each gene in N , a game (N, vkE) is defined in [7] associating to each coalition
of genes S ⊆ N a value vkE(S) representing the overall magnitude of the inter-
action between the genes in S. More precisely, in [7], the set of neighbors of
a node i in a graph ⟨N,E⟩ is defined as the set Ni(E) = {j ∈ N : {i, j} ∈ E}
and the degree of i as the number di(E) = |Ni(E)| of neighbors of i in graph
⟨N,E⟩. With a slight abuse of notation, we denote by NS(E) the set of neigh-
bors of nodes in S ∈ 2N \ {∅} in the graph ⟨N,E⟩, i.e., NS(E) = {j ∈ N :
∃i ∈ S s.t. j ∈ Ni(E)}. The characteristic function vkE : 2N → N assigns to
each coalition S ∈ 2N \ {∅} the value

vkE(S) =
∑

j∈S∪NS(E)

kj , (20.24)

that is the sum of the weights associated to the genes in S and to the ones that
are directly connected in ⟨N,E⟩ to some genes in S (again, by convention,
vkE(∅) = 0). Now, for any non-empty coalition S ⊆ N , consider the dual
unanimity game (N, u∗S) such that

u∗S(T ) =

{
1 if S ∩ T ̸= ∅
0 otherwise

for all T ∈ 2N \ {∅}. In [7], the authors have shown that an equivalent
way to formulate game vkE is as a weighted sum of dual unanimity games as
follows:

vkE =
∑
i∈N

kiu
∗
Ni(E)∪{i}. (20.25)

Exploiting the properties of the Shapley value, it is easy to show that

ϕi(kju
∗
Nj(E)∪{j}) =


ki

dj(E) + 1
if i ∈ Nj(E) ∪ {j}

0 otherwise

and, consequently, the Shapley value of a game (N, vkE) can be computed
according to the following simple relation:

ϕi(v
k
E) =

∑
j∈(Ni(E)∪{i})

kj
dj(E) + 1

(20.26)

for each i ∈ N . According to relation (20.26), the Shapley value of a node
increases when it is connected to many nodes with a low degree. So, according
to the Shapley value, a relevant gene i ∈ N is directly connected to many
other genes having few or no possibilities to “interact” with genes different
from i. We refer to [1] for some related game theoretical notions of centrality
and to the survey [21] for other applications of the Shapley value to biology.
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20.4.4 Coverage Games
This class of games was introduced by Fragnelli, Gagliardo and Gastaldi in
2017 [11]. They faced the problem of locating units in the area controlled by an
emergency service, the so-called Emergency Units Location Problem (EULP)
and introduced a new class of games to deal with it.

The different candidate locations for hosting an emergency unit may be
considered as interacting agents. In fact, the choice of deploying an emergency
unit cannot take into account only the characteristics of a candidate location,
i.e., the extension of the area that can be covered within the maximum time
allowed (or with the maximum utility), the probability of a call in that area,
etc., but should also consider where the other emergency units are located.
In other words, an important role is played by the marginal contribution of
an ambulance to each possible set of units located in the other candidate
zones of the area, i.e., what a further candidate location may add to the
service when an ambulance is located there. The average marginal contribution
may be considered as a measure of the relevance of the candidate locations.
The problem under analysis is a centralized decision situation in which the
emergency management decides where to locate vehicles. Cooperative games
have been widely used to deal with situations in which interacting agents
realize that they may improve their payoffs by cooperating; in the EULP
case, cooperation leads to supplying the best possible service to a set of users.

An EULP may be represented by a 4-tuple (M,N,C,w) where M =
{1, . . . ,m} is the set of zones of the area, N = {1, . . . , n} ⊆M is the subset of
zones which are candidate locations for an emergency unit, C = (cij) ∈ Rn×m
is the coverage matrix, s.t. cij = 1 if an emergency unit located in i covers
zone j and cij = 0 otherwise and w ∈ Rm the vector of the demands of the
zones of the area.

The aim is ranking the n candidate locations in the area described by the
previous parameters in order to satisfy the demand in the best possible way;
the utility of the service may assume only two values depending on whether
the intervention is carried out in the maximal time allowed or not. In this
case, the utility is zero.

Given an EULP, a new class of TU-games, the coverage games, is intro-
duced.

Definition 20.2 (Coverage games) The coverage game is the TU-game
(N, v) defined by

v(S) =
∑
j∈AS

wj ∀S ⊆ N ,

where AS = {j ∈ M | ∃ i ∈ S s.t. cij = 1}, i.e., the set of zones which are
covered by at least one emergency unit located in S, when each zone in S hosts
one emergency unit.

The value of a coalition S in the coverage game is the sum of the demands of
the zones that are covered locating one emergency unit in each location of S.
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The definition of the coverage game related to an EULP does not consider
the number of available units; ranking by relevance the possible locations
makes the approach adaptable to a variable number of units to activate. Fi-
nally, the authors do not consider that the ambulances may not satisfy the
whole demand, for instance due to the high number of calls or to their time
distribution (in an efficiency-oriented case).

A good solution to the EULP is the Shapley value of the coverage games, as
it is rooted in the concept of marginality: It is important to take into account
not only the demand of a zone or the aggregated demand that a candidate
location can cover, but mainly the contribution that an ambulance located
there can add to the other locations. As it was already said, the aim is ranking
by relevance the candidate locations accounting their marginal contributions;
in view of this, the Shapley value represents a very good solution. Then, the
available ambulances are deployed according to the ordering of relevance of
the candidate locations.

The Shapley value has good fairness properties with respect to the prob-
lem. Two suitable fairness criteria are the coverage indifference and the de-
mand indifference; these properties are related more to the problem than to
the game, allowing to improve the fairness of the solution of the location
problem.

Before introducing the two properties of coverage indifference and demand
indifference, it is necessary to define a sub-class of coverage games, the j-th
zone sub-games, in which uniquely zone j has a positive demand, i.e., the
demands of all the zones but j are put down to zero.

Definition 20.3 (j-th zone sub-game) Let v be a coverage game. Given
j ∈M , the j-th zone sub-game of v is the coverage game vj defined, for each
S ⊆ N , by

vj(S) =

{
wj if j ∈ AS
0 otherwise.

The coverage game v is the sum of all its zone sub-games:

v(S) =
∑
j∈M

vj(S), S ⊆ N.

Definition 20.4 Given a coverage game v and its j-th zone sub-games vj , j ∈
M , a solution ψ satisfies coverage indifference (CI) if

ψi(v
j) = ψl(v

j)

for j ∈ A{i} ∩A{l}, i, l ∈ N and satisfies demand indifference (DI) if

ψi(v) =
∑
j∈M

ψi(v
j).

It is easy to observe that, for each i ∈ N, j ∈M ,

ψi(v
j) =


wj∑n
l=1 clj

if j ∈ A{i}

0 otherwise.
. (20.27)
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The coverage indifference looks at the situation from the point of view of
the users and requires to give the same importance to the units that cover a
zone allowing for equally sharing the demand of the zone among them; in a
sense, each of those units has the same probability to satisfy a call coming
from the considered zone. The demand indifference looks at the situation
from the point of view of the emergency service provider and gives the same
importance to each demand, wherever it comes from and whatever the required
intervention is.

According to Proposition 2 in [11], the Shapley value of a coverage game
is given by

ϕi(v) =
∑

j∈A{i}

wj∑
l∈N clj

. (20.28)

The Shapley value of a coverage game may be computed via a n×m matrix
D, called the division matrix, where, for each i ∈ N, j ∈M ,

dij =


wj∑
l∈N clj

if cij = 1

0 otherwise.

By (20.28), the Shapley value of the coverage game for player i ∈ N can be ob-
tained simply summing up the values in the i-th row of D. The computational
complexity of this algorithm is then polynomial in n and m; moreover, it is
not necessary to compute the characteristic function of the coverage game.

20.5 Conclusions
In this survey, we presented some classes of games for which the calculation of
the Shapley value has a very low computational complexity. As shown by the
richness of the models and the diversity of the applications discussed in this
chapter, the specification of an easy formula for the Shapley value seems to be
not only an essential ingredient for its successful utilization in practice, but
also an important source of inspiration for researchers aimed at understanding
the intrinsic nature of the most famous solution for TU-games. Our goal was to
foster the dissemination of the different methodologies employed in literature
to achieve easy algorithms and procedures for the computation of the Shapley
value, and to provide incentives to the scholars for extending these results to
other classes of games.
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21.1 Introduction
We are witnessing a movement from large-scale mass casualty attacks (WTC
9/11 style) to multiple coordinated swarming attacks (Mumbai 2008), to lone
wolf attacks on the far end of this spectrum (Berlin 2016, Nice 2016, London
2017). It appears that a mix of such attacks, empowered by a society that is
digitalizing at a fast pace, is becoming more and more likely in the future.
It is of the utmost importance that key members of networked organisations
that conduct aforementioned attacks are identified in time by intelligence and
law enforcement agencies. However, since the resources to such agencies are
limited, they have to be allocated optimally. For instance there are only so
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many observation teams that can be deployed at any given time for a certain
number of targets or there is only a certain amount of agents that can be
infiltrated into a specific organisation to track a certain individual. The use
of quantitative methodology during the intelligence cycle yields a more finely
attuned preference ranking of targets in the social network which in turn helps
to better piece together a complete picture of whom to follow, investigate
and surveil and henceforth optimally allocate limited intelligence and law
enforcement resources.

One approach taken in literature to identify key members in a network is
using social network analysis (cf. [23]). Actually, such a quantitative approach
in analysing terrorist networks is applied in [14] by using standard network
measures such as degree centrality, betweenness centrality and closeness cen-
trality. The drawback of these measures is that they only take the structure
of the network into account. Other researchers have also used the standard
social network centrality approach in analysing criminal and terror networks
see [4], [8], [13], [16], [19] and [21]. However, in all these contributions, valu-
able information concerning the type and character of (communication) links
between two members and also characteristics of the individuals are rarely
taken into account. More recent developments, however, conceptualise not
only the structure of a social network, but also take the heterogeneity of links
and nodes into account [17] introduce the use of cooperative game theory to
explicitly incorporate the additional information that is available to the in-
telligence analyst. Indeed, an appropriate cooperative game takes properties
of the individuals in the network as well as properties of the relationships
between individuals into account. As such, it provides tailor-made solutions
since it aids in better modelling the context under consideration. Among oth-
ers, they applied their model to Al Qaeda’s 9/11 attack and established a
ranking of the hijackers of the four planes in the attack by calculating the
Shapley value (cf. [20]) of the defined cooperative game. In [12] a sensitivity
analysis is applied to Al Qaeda’s 9/11 attack concerning the robustness of the
ranking obtained using the Shapley value. Moreover, they modified the coop-
erative game introduced in [17] that takes better into account the operational
strength of disconnected subnetworks. A drawback of modelling social network
centrality by use of cooperative game theory is found in the computational
complexity of the Shapley value which in general increases exponentially with
the number of players. It can be shown that computing the Shapley value
is an NP-complete problem (cf. [6], [7]). Real-life situations often concern a
large number of players, think for instance of large social networks. Because
of computational complexity, finding the exact solution of the Shapley value
is not possible, hence approximations are needed. For example, the extended
WTC 9/11 network consists of 69 members (cf. [15]) which is too large to
analyze using the Shapley value in order to obtain a ranking of the players in
a reasonable amount of time. Heuristics to approximate the Shapley value can
be found in (cf. [9], [1]). However, they only focus on simple games, i.e., games
in which the coalitional values either are 0 or 1. The heuristic presented by
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[5], which uses the average of a random subset of marginal vectors, can handle
any cooperative game. This latter heuristic is improved in [3] and applied to
the complete network of Al Qaeda’s 9/11 attack consisting of 69 players.

In this chapter we combine the approach taken in [17], [3] and [12] to analyse
the Zerkani network involved in the final phase of the radicalisation process
leading to the November 2015 mass shootings and suicide attack in Paris and
the March 2016 coordinated suicide bombings in Brussels. More precisely, we
use from these chapters the centrality measure, the sensitivity analysis and
the approximation of the Shapley value. However, a difference is in the def-
inition of the cooperative games in this chapter that takes into account the
individual power of a terrorist in a network, in contrary to the games consid-
ered in the other three chapters. The rankings induced by the combination of
these methodologies identify Abaaoud, Abdeslam and Zerkani as key mem-
bers of the network. This result is consistent with the vast qualitative research
concerning this network (cf. [22], [2]). Further, we compare our results to the
rankings established in [11], who used graph theoretic centrality measures de-
gree and centrality to establish a ranking of the individuals in the Zerkani
network. Finally, we note that the game theoretical analysis of the Zerkani
network in this chapter contains two games that are different from the games
used in the analysis of the Al Qaeda 9/11 network and the Jemaah Islamiyah
network in [17], [3] and [12], respectively.

This chapter is organised as follows. Section 21.2 discusses the Shapley
value and the structured random sampling method to approximate the Shap-
ley value. The network analysis using cooperative game theory is explained
in Section 21.3. The analyses of the Zerkani network are presented in Section
21.4 and Section 21.5 concludes the chapter.

21.2 The Shapley Value
This section recalls the definition of the Shapley value to describe the heuristic
that is used in this chapter to approximate the Shapley value. This section is
strongly based on Section 2 and 3 of [3].

Let (N, v) be a cooperative game where N = {1, 2, . . . , n} denotes the set
of players and v a map that assigns a value v(S) to each possible coalition
S ⊆ N . By definition v(∅) = 0. The Shapley value is defined as

φi(v) =
1

n!

∑
σ∈Π

mσ
v (i). (21.1)

where mσ
v (i) is defined as mσ

v (i) = v ({σ1, . . . , σk})− v ({σ1, . . . , σk−1}). with
Π all possible orderings of the players in the grand coalition N .
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Although the concept of marginal contributions is intuitively clear, com-
puting the Shapley value via marginal contributions is time-expensive since
all n! possible orderings of the players need to be considered. Although for
several special classes (e.g., airport games (cf. [18])) a time-efficient closed
formula to compute the Shapley value exists, in many (real-world) situations
the computation in reasonable time is not feasible if the number of players
increases substantially. Therefore, there is a need for heuristics that provide
a good approximation of the Shapley value.

Now we recall the heuristic called structured random sampling method
introduced in [3]. The idea of this heuristic is to ensure that each player attains
each position in the ordering the same number of times. As a consequence, the
marginal contribution of a player to a coalition of the same size is calculated
the same number of times. The intuition is that this leads to a better estimate
because the calculation of the marginals with respect to coalitions of a certain
size is equally distributed. To realize this, the randomly selected orderings are
tweaked by swapping players to their preferred positions in the orderings. The
marginal contributions of the players in these new orderings are then used to
approximate the Shapley value.

The swapping method is illustrated for a 4-person game in Table 21.1. To
ensure that each player attains each position in the ordering the same number
of times the sample size r must be a multiple of the number of players of the
game. In this case, r = 8 orderings are randomly selected and divided into
n = 4 groups of size t = 2. Observe that the number of groups is always
equal to the number of players in the game. The size of a group indicates the
number of times a player attains the same position in the ordering. In the
two orderings in the first group, player 1 is swapped with the player at the
first position. In the two orderings in the second group, player 1 is swapped
with the player at the second position, etc. These new orderings are used to
compute the marginal contributions of player 1 and they in turn are averaged
to approximate the Shapley value of player 1. This procedure is then repeated
for players 2 to n, each time using the original randomly selected r orderings
as a starting point for the swapping method. In Table 21.1, player 1 attains
each position in the ordering exactly t = 2 times. The remaining positions in
the orderings however remain random. The same holds for players 2 to n when
the swapping method is applied to construct the orderings for these players.

The procedure to approximate the Shapley value of an arbitrary game us-
ing the structured random sampling method is as follows.

Procedure structured random sampling ([3])
Input: n-person cooperative game (N, v). (Hence, n is fixed and determines
the number of groups.)

1. Select a subset Πr of r orderings from all n! possible orderings, i.e.,
Πr ⊂ Π, with r = t ·n and t ∈ N. (Hence, the subset must be a multiple
of n.)



Analysing ISIS Zerkani Network Using the Shapley Value 467

Group σ1 σ2 σ3 σ4 Group σ1 σ2 σ3 σ4
1 . . . 1 → 1 1 . . σ1
1 . 1 . . → 1 1 σ1 . .
2 1 . . . → 2 σ2 1 . .
2 . 1 . . → 2 . 1 . .
3 . . . 1 → 3 . . 1 σ3
3 . 1 . . → 3 . σ3 1 .
4 1 . . . → 4 σ4 . . 1
4 . 1 . . → 4 . σ4 . 1

TABLE 21.1: Swapping player 1 to his preferred positions in the orderings.

2. Divide the subset Πr in n groups of size t. (This ensures that each player
can attain each position in the ordering the same number of times.)

3. For each player i:

(a) Swap player i with the player at position j for each of the t orderings
in group j, where j ∈ {1, . . . , n}, resulting in a set Π′

r of r new
orderings. (This ensures that each player will attain each position
in the ordering the same number of times.)

(b) Compute the marginal contributions mσ
v (i) of player i for all new

orderings σ ∈ Π′
r.

(c) Approximate the Shapley value of player i by averaging the
marginal contributions obtained at step 3b, i.e., φ̂i(v) =
1
r

∑
σ∈Π′

r
mσ
v (i).

The following example illustrates how the structured random sampling pro-
cedure could be applied.

Example 21.1 (Structured random sampling) Consider the 3-person
game (N, v) with v as in Table 21.2.

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 6 18 0 30 42 24 60

TABLE 21.2: An example of a 3-person game.

Assume that we sample r = 3 from all 3! = 6 orderings in Π, see the
second column of Table 21.3. Since we have a three-player game, i.e., n = 3,
we divide this subset into 3 groups. Since the size of the subset is chosen to
be 3, i.e., r = 3, we have that the size of each group equals one, i.e., t = 1.
Now consider player 1. Swapping this player with the player at the first, second
and third position results in the new orderings depicted in the third column of
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Table 21.3. The fourth column in this table depicts the corresponding marginal
contributions mσ

v (1) of player 1 in the new orderings. More precisely, if σ =
(1, 2, 3) then mσ

v (1) = v({1})− v(∅) = 6− 0 = 6, if σ = (3, 1, 2) then mσ
v (1) =

v({1, 3})−v({3}) = 42−0 = 42, and if σ = (3, 2, 1) then mσ
v (1) = v({1, 2, 3})−

v({2, 3}) = 60 − 24 = 36. Averaging these marginal contributions yields an
approximation of the Shapley value for player 1, i.e., φ̂1(v) = (6+42+36)/3 =
28.

Group Ordering Swap 1 mσ
v (1) Swap 2 mσ

v (2) Swap 3 mσ
v (3)

1 (1, 2, 3) (1, 2, 3) 6 (2, 1, 3) 18 (3, 2, 1) 0
2 (1, 3, 2) (3, 1, 2) 42 (1, 2, 3) 24 (1, 3, 2) 36
3 (3, 1, 2) (3, 2, 1) 36 (3, 1, 2) 18 (2, 1, 3) 30

TABLE 21.3: The marginal contributions of randomly selected orderings of
the 3-person game in Table 21.2.

Starting again from the original subset Πr in the second column and swap-
ping player 2 with the player at the first, second and third position results
in a new subset of orderings for player 2, see the fifth column of Table 21.3.
The sixth column depicts the corresponding marginal contributions, result-
ing in φ̂2(v) = 20. Repeating this swapping method for the third player re-
sults in the orderings and marginal contributions depicted in the seventh
and eighth column of Table 21.3, which in turn lead to φ̂3(v) = 22. Hence,
φ̂(v) = (28, 20, 22).

Remark that structured random sampling does not result in an efficient alloca-
tion. This lack of efficiency is due to the fact that structured random sampling
only considers marginal contributions of a single player for each sampled or-
dering. In spite of this drawback, the structured random sampling method
outperforms the random sampling method introduced in [5] as shown in [3].

21.3 A New Game Theoretic Centrality Measure
In this section, we follow the idea of [17] to create two classes of games that
take into account both the structure of the network and the relational and the
individual strength of the members of the network. The first game is a slight
modification of the game introduced in [12], the second game is a new type of
game.

A network can mathematically be represented by a graph G = (N,E),
where the node set N represents the set of members of the network and the
set of links E consists of all relationships that exist between these members.
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The existence of a relationship between member i and j is denoted by ij ∈ E.
For a coalition S ⊆ N , the subnetwork GS consists of the members of S and
its links in E, i.e., GS = (S,ES) where ES = {ij ∈ E|i, j ∈ S}. The strength
of individuals in a network G = (N,E) is represented by a set of weights on
players set N , i.e., I = {wi}i∈N with wi ≥ 0, and the relational strength
between members of the network is represented by a set of weights on the
the edges E, i.e., R = {kij}ij∈E with kij ≥ 0. A coalition S ⊆ N is called
a connected coalition if the network GS is connected, otherwise S is called
disconnected.

In [12] was introduced monotonic weighted connectivity game (mwconn)
(N, vmwconn) with respect to network G = (N,E) based on I and R in the
following way. For a connected coalition S we define

vmwconn(S) = f(S, I,R) (21.2)
where f is a context specific and tailor-made non-negative function depending
on S, I and R which measures the effectiveness of coalitions in the network.
It can be chosen to best reflect the situation and information at hand. For a
coalition S that is disconnected we define

vmwconn(S) = max
T∈ΣS

vmwconn(T ), (21.3)

where ΣS is the set of maximal connected components inGS . Observe, that the
value of each disconnected coalition is based on the most effective connected
component of this coalition. Moreover, in contrary to [17] and [12] individuals
can have a positive value.

An additive weighted connectivity game (awconn) (N, vawconn) with respect
to network G = (N,E) based on I andR is for a connected coalition S defined
by (21.2), identically to the corresponding monotonic weighted connectivity
game (N, vmwconn). The difference between these two games is the definition
of the disconnected coalitions. For a coalition S that is disconnected in an
additive weighted connectivity game we define

vawconn(S) =
∑
T∈ΣS

vmwconn(T ). (21.4)

Hence, here all maximal connected subsets of S are effective.

Example 21.2 (an mwconn and awconn game on a network) In this
example we define f(S, I,R) by

f(S, I,R) =
{ (∑

i∈S wi
)
·maxij∈ES

kij if |S| > 1,
wS if |S| = 1.

(21.5)

which takes both the individual and the relational strength into account.
Now, we will illustrate the mwconn and awconn game corresponding to the
network displayed in Figure 21.1. Subsequently, we present the rankings based
on the Shapley value applied to the mwconn and awconn game.
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A CB D

1 1 1 10

3 1 1

FIGURE 21.1: A network with information on individual and relational
strengths.

We assume that individual information is available only for member D.
He was involved in a previous attack and has financial means to support a
potential new attack. Counterterrorism analysts will take this observation into
account when assigning weights to the members. Here we assume that member
D is assigned a weight of 10 and all other members are assigned a weight of
1. This defines I. Additionally, suppose it is observed that members A and B
communicate more frequently than the other members of the network. Here we
assume that link AB is assigned a weight of 3 and all other links are assigned
a weight of 1. This defines R.

Using (21.5) the values vmwconn(S) as defined in (21.2) and (21.3) can be
computed for each coalition S. Table 21.4 provides these values for each of
the 16 coalitions in N = {A,B,C,D}. Simultaneously, we present the values
of vawconn(S) in Table 21.4 using (21.2) and (21.4).

Coalition S {A} {B} {C} {D} {A,B}

vmwconn(S) 1 1 1 10 6
vawconn(S) 1 1 1 10 6

Coalition S {A,C} {A,D} {B,C} {B,D} {C,D}

vmwconn(S) 1 10 2 10 11
vawconn(S) 2 11 2 11 11

Coalition S {A,B,C} {A,B,D} {A,C,D} {B,C,D} {A,B,C,D}

vmwconn(S) 9 10 11 12 39
vawconn(S) 9 16 12 12 39

TABLE 21.4: The values for vmwconn(S) and vawconn(S) in the example in
Figure 21.1.

The outcome of the Shapley value computed for the monotonic weighted
connectivity game and the additive weighted connectivity game is presented
in Table 21.5.
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Member ϕ(vmwconn) ϕ(vawconn)

A 8 8 2
3

B 8 1
2 8 2

3
C 8 1

6 6 2
3

D 14 1
3 15

TABLE 21.5: The Shapley value of vmwconn(S) and vawconn(S) for the ex-
ample in Figure 21.1.

The corresponding ranking using the Shapley value with respect to the
mwconn game is Rmwconn = (D,B,C,A) and the ranking using the Shapley
value with respect to the awconn game is Rawconn = (D,B,A,C). Both rank-
ings seem almost identical, but member A was ranked last in Rmwconn and is
in Rawconn ex aequo with B and ranked higher than C. On the other hand,
member B was in both rankings the second most important member.

21.4 Zerkani Network Analysis
It is known that the Islamic State (IS) built a vast network in Europe to pre-
pare for the attacks in Paris, which also partly mobilised a network to attack
in Brussels a few months later. Strategically ISIS security apparatus is said
to be divided into four agencies, of which the one responsible for conducting
terror attacks outside of Syria is subdivided into regions, called theaters. The
theater commander responsible for Europe is believed to be Salim Benghalem
who worked together with Abdelhamid Abaaoud in selecting fighters to send
to war zones or fight in Europe. The main figures responsible for the tactical
operations of the Paris and Brussels attacks were Abaaoud and jihadist re-
cruiter Zerkani. The Zerkani network facilitated IS for operations in Europe,
providing personnel, training, planning, attack and escape and evasion. In
that sense, the Zerkani network can be seen as the main operational network
responsible for the November 2015 mass shootings and suicide attack in Paris
and the March 2016 coordinated suicide bombing in Brussels. Khalid Zerkani
is currently imprisoned on terrorism related charges ([2]) and Abaaoud was
killed during a police raid in the aftermath of the Paris attacks. The network
considered in this chapter consists of 47 members obtained from [10]1.

In this section we analyse rankings of the individuals in the Zerkani net-
work, displayed in Figure 21.2, by approximating the Shapley value for the
mwconn and the awconn game. Observe that we have to approximate the
Shapley value in this setting since the Zerkani network contains 47 members.

1We acknowledge Valens Global for providing the dataset.
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We compare these rankings with the rankings obtained in [11] and perform a
sensitivity analysis on the rankings using the ρ measure as introduced in [12].

AQI

AQIM

Abdelhamid Abaaoud

Abderrahmane Ameroud
Abid Aberkan

Adrien Guihal

Ahmed Dahmani

Ali Oulkadi

Anis Bari

Ayoub el Khazzani

Chakib Akrouh

Djamal Eddine Ouali

Fabien Clain

Fatima Aberkan

Gelel Attar

Hamza Attou

Hasna Ait Boulahcen

Ibrahim Abdeslam

Ibrahim El Bakraoui

Identity Unknown

Ilias Mohammadi

Khaled Ledjeradi

Khalid El Bakraoui

Khalid Zerkani

Macreme Abrougui

Mehdi Nemmouche

Miloud F.

Mohamed Abrini

Mohamed Bakkali

Mohamed Belkaid

Mohammed Amri

Najim Laachraoui

Osama Krayem

Paris Attacker A

Paris Attacker B

Rabah M.

Reda Hame

Reda Kriket

Salah Abdeslam

Salzburg Refugee A

Salzburg Refugee B

Sid Ahmed Ghlam

Soufiane Alilou

Souleymane Abrini

Tawfik A.

Thomas Mayet

Y. A.

FIGURE 21.2: Zerkani network. Based on data of ‘Valens Global’.

In our analysis we rank all 47 individuals but will focus on the top 10 of the
ranking only per example. This is because scarce resources limit intelligence
and law enforcement agencies in their operations, i.e., not everybody can be
kept under surveillance all the time.

Table 21.6 provides the top-10 rankings of the Zerkani network using
the game theoretical approach discussed in Section 21.4 and the graph
theoretical measures degree and betweenness, respectively. The rankings
obtained from the two game theoretical measures are displayed in the
columns RankingRmwconn and RankingRawconn, respectively. The columns
RankingRdegree and RankingRbetweenness correspond to the rankings ob-
tained by the graph theoretical measures degree and betweenness, respectively.
Recall that the degree of a member in a network is equal to its direct neighbors
in the network and the betweenness indicates the importance of a member to
connect different members in a network. Formal definitions of these two mea-
sures can be found in [23]. We include these two graphs theoretical measures
because they are used in [11]. 2 This results in a ranking Rmwconn, obtained
from the approximated Shapley value corresponding to the mwconn game, a
ranking Rawconn, obtained from the approximated Shapley value correspond-
ing to the awconn game, Rdegree and Rbetweenness, respectively.

2[11] analysed the Islamic State network in Europe, which contains 119 members. The
Zerkani network is contained in this network and consists of 47 members.
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Note we use the function f(S, I,R) defined by (21.5) as shown in Example
21.2 to define the mwconn and awconn game. The specific weights assigned to
the individuals and links can be found in the appendix.

Ranking Rmwconn Ranking Rawconn
1 Mohamed Belkaid Mohamed Belkaid
2 Abdelhamid Abaaoud Abdelhamid Abaaoud
3 Khalid Zerkani Khalid Zerkani
4 Salah Abdeslam Salah Abdeslam
5 Fabien Clain Fabien Clain
6 Najim Laachraoui Najim Laachraoui
7 Reda Kriket Reda Kriket
8 Ahmed Dahmani Ahmed Dahmani
9 Mohamed Abrini Miloud F.
10 Khaled Ledjeradi Khaled Ledjeradi

RankingRdegree RankingRbetweenness
1 Abdelhamid Abaaoud Abdelhamid Abaaoud
2 Salah Abdeslam Salah Abdeslam
3 Khalid El Bakraoui Reda Kriket
4 Najim Laachraoui Khalid El Bakraoui
5 Mohamed Abrini Khalid Zerkani
6 Osama Krayem Najim Laachraoui
7 Ibrahim El Bakraoui Osama Krayem
8 Mohamed Bakkali Hasna Ait Boulahcen
9 Mohamed Belkaid Souleymane Abrini
10 Khalid Zerkani Mohamed Belkaid

TABLE 21.6: The top 10 rankings of the Zerkani network of Figure 21.2
according to the approximated Shapley value of mwconn and awconn game,
degree and betweenness.

The two game theoretical rankings differ only in one member in the top
10, whereas the difference between the game theoretical ranking Rmwconn (or
Rawconn) and the graph theoretical ranking Rdegree (or Rbetweenness) is on
four positions. The terrorist Mohamed Belkaid is ranked top in the game the-
oretical rankings. This a little bit surprising. Indeed, he was close to Salah
Abdeslam and had a history in fighting in Syria, but his involvement in the
Paris and Brussels attacks is not proven. On the other hand, we see that he is
also ranked in the top 10 of the two graph theoretical measures which indicates
that in some way due to the information at hand, he seems to be important.
Number two, three and four ranked in the game theoretical measures, and also
ranked in the top 10 of the graph theoretical measures, are important mem-
bers. Abdelhamid Abaaoud, ranked first in the graph theoretical measures, is
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considered as the mastermind of the Paris attack, but there are some doubts
about his role (cf. [22]). At least, he was strongly involved in the coordination
of the Paris attack during the execution of the attack. Naming the network to
Zerkani reflects already his influence. His most prominent role was recruiting
new members for his network and soldiers for the war in Syria. He was not
actually present or coordinating the attacks of Paris and Brussels, but his
earlier radicalisation process influenced strongly the people involved in the
attacks. Salah Abdeslam was an important liaison in the attack of Paris. Af-
ter the attack, he was the most wanted person in Europe. The first member
that is in the top 10 of the game theoretical measure but not present in the
graph theoretical top 10 is Fabien Clain. He is one of the planners of the Paris
attack. He explored and pointed the locations of the different hits in Paris,
but according to [22] there are also indications that he was the mastermind
of this attack instead of Abdelhamid Abaaoud. Note that Fabien Clain is not
in the top 10 of the graph theoretical measures. Najim Laachraoui and Reda
Kriket, number 6 and 7 in the game theoretic ranking and also present in the
graph theoretical top 10 ranking, are both important. The first is involved
in the Brussels attack, but more important, he had the skills to construct
bombs. The latter is an important recruiter and money man in the network.
The persons ranked 8, 9 and 10 are different from the graph theoretical mea-
sures. Mohamed Dahmani is considered an explorer for the locations of the
Paris attack. Mohamed Abrini is known as “the man with the hat” in the
Brussels attack that was present at the airport. It turns out that he is also an
important liaison in the network and that he was also involved in the Paris
attack. Khaled Ledjeradi was the leader of an organisation that made false
documents for the members of the Zerkani network, which enabled them to
travel Europe using aliases. The members that are in the top 10 of the graph
theoretical measures are almost all known as suicide bombers. So, we can con-
clude that 6 important members are present in all rankings. Other important
people that seem to be leaders or have important skills are present in the
game theoretical rankings, whereas the suicide bombers are more visible in
the graph theoretical rankings. On one hand, the game theoretical rankings
provide the members that are more difficult to replace due to their position or
skills, on the other hand the graph theoretical rankings provide the members
that cause high casualties. But the latter group is easier to replace. We want
to emphasize that these observations should not lead to a discussion which
ranking is the best. In fact, any ranking and the differences between different
types of rankings can help intelligence to focus more on some members. It
also depends on the moment. If the attack will not be operational in the near
future, the leader and skill type of people are more interesting to monitor. If
there is a great threat that an attack will be executed in the very near future,
the suicide bombers have higher priority.

Since the difference between Rmwconn and Rawconn with respect to the
Zerkani network is marginal, the final part of this section is devoted to the
sensitivity of the Rmwconn ranking with respect to the Zerkani network. The
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sensitivity analysis is done by several simulations in which the weights on
nodes (i.e., members of network), weights on links (i.e., strength of communi-
cation), adding/removing links (non-presence of communication) are varied.
Before we will do these simulations, we need to be able to compare different
rankings. This difference will be measured using the ρ measure as introduced
in [12]. The following Example 21.3 illustrates this measure.

Example 21.3 (the ρ measure to compare rankings) Consider the sit-
uation where not all lines of communication in the operational network have
been discovered, resulting in the network in Figure 21.3 in which 4 (random)
links have been removed. Note that the network in Figure 21.3 is disconnected.

AQI

AQIM

Abdelhamid Abaaoud

Abderrahmane Ameroud
Abid Aberkan

Adrien Guihal

Ahmed Dahmani

Ali Oulkadi

Anis Bari

Ayoub el Khazzani

Chakib Akrouh

Djamal Eddine Ouali

Fabien Clain

Fatima Aberkan

Gelel Attar

Hamza Attou

Hasna Ait Boulahcen

Ibrahim Abdeslam

Ibrahim El Bakraoui

Identity Unknown

Ilias Mohammadi

Khaled Ledjeradi

Khalid El Bakraoui

Khalid Zerkani

Macreme Abrougui

Mehdi Nemmouche

Miloud F.

Mohamed Abrini

Mohamed Bakkali

Mohamed Belkaid

Mohammed Amri

Najim Laachraoui

Osama Krayem

Paris Attacker A

Paris Attacker B

Rabah M.

Reda Hame

Reda Kriket

Salah Abdeslam

Salzburg Refugee A

Salzburg Refugee B

Sid Ahmed Ghlam

Soufiane Alilou

Souleymane Abrini

Tawfik A.

Thomas Mayet

Y. A.

FIGURE 21.3: Zerkani network of Figure 21.2 with 4 (random) links re-
moved.

Ranking R1 in Table 21.7 presents the top-10 ranking of the terrorists
corresponding to the network in Figure 21.3, obtained by calculating the ap-
proximated Shapley value of the mwconn game. The computation of ρ, which
encapsulates the amount of difference between rankings, is based on values
assigned to the ranking positions. These depend on the total number of mem-
bers in the network, in this example there are 47 members, and the number
of top ranked players that are of interest. In this chapter we focus on the
10 highest ranked players. Each position in the top 10, i.e., position i, with
i = 1, ...10, is assigned the value 10−i+1

10 and each member outside the top
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Ranking R1

1 Mohamed Belkaid
2 Abdelhamid Abaaoud
3 Khalid Zerkani
4 Salah Abdeslam
5 Fabien Clain
6 Najim Laachraoui
7 Reda Kriket
8 Mohamed Abrini
9 Khaled Ledjeradi
10 Hasna Ait Boulahcen

TABLE 21.7: The rankings of the Zerkani network of 21.3 according to the
Shapley value applied to the mwconn and awconn game.

10, i.e., position i, with i = 11, ...47, is assigned the value i−10
37 . To calculate

ρ for this setting, the aforementioned value of each player in the top 10 of
Rmwconn that is no longer present in the top 10 of the new ranking Rm1

is
summed and added to the aforementioned value of each player in Rmwconn
not present in its top 10 that enters the top 10 in Rm1

, totalling ρ. Observe
that the values assigned to the positions are chosen in such a way that highly
ranked members that leave the top 10 in Rmwconn and lowly ranked members
that enter the top 10 in R1 result in a large value of ρ.

The maximal value of ρ in this case is obtained when the top-10 in Rmwconn
is replaced by the terrorists in the bottom-10 of R1, resulting in the maximal
value (1+ 9

10 + ...+
1
10 )+ ( 2837 +

29
37 + ...+

36
37 +1) ≈ 14.28. In general, the value

of ρ will be relatively low when two rankings do not differ too much. In fact,
if the top-10 only shifts their position internally, then the value of ρ = 0. Note
that ρ(Rmwconn, R1) =

3
10 +

5
37 ≈ 0.4351 since Ahmed Dahmani at position 8

in the original ranking leaves the top-10 in R1 and Hasna Ait Boulahcen at
position 15 in the original ranking enters the top-10 in R1.

In our sensitivity analysis, we will first focus on network structure and vary
the number of links present in the network. We will not only investigate sce-
narios in which a percentage of the links is removed from the network, but also
scenarios in which a percentage of the links is added to the network. Hence, we
consider the situation when an intelligence agency has gathered information
about the structure of some network but does not know for sure whether all
lines of communication are discovered or play a role in the network. Second,
we will focus on individual and relational strength and investigate scenarios in
which different weights on individuals and links are used. In practice, field ex-
perts have to decide on the exact heights of the weights assigned to individuals
and links. The magnitude of such weights should reflect individual character-
istics (e.g., financial means, skills to create an explosive) or the importance
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of a specific type of communication (e.g., email communication, exchanging
explosive materials). Obviously, it is difficult to quantify these numbers ac-
curately. Therefore, we also want to check what impact minor changes in the
assigned weights have on the ranking of the members of the network.

With respect to network structure, we ran 500 simulations in which up to
4 links were randomly added or deleted. We computed the resulting values of
ρ. With respect to individual strength, we ran 500 simulations in which each
of 4 randomly selected individuals received an additional random weight equal
to 1, 2, 3 or 4. To investigate the effect of relational strength, we selected four
random links and each selected link received an additional weight of 1, 2, 3 or
4, running 500 simulations. The results of this sensitivity analysis are depicted
in Figure 21.4. Note that (another) simulation shows that the expected value
of ρ is approximately 8.37 when randomly ranking the 47 members and not
using network structure, individual strength and relational strength.

0 1 2 3 4 5 6 7 8

(R
mwconn

,R
1
)

add link weights

  add node weights

add/remove links

FIGURE 21.4: Boxplots of ρ-values for the sensitivity analysis of Zerkani
network on network structure, individual strength and relational strength.

From Figure 21.4 it follows that the ranking resulting from the monotonic
weighted connectivity game is robust to small changes in the network struc-
ture and the weighing of links and individuals. In all cases, the value of ρ is
significantly less than the value ρ = 8.37 obtained by a random ranking.
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Note that ρ ≥ 1
10 + 1

37 ≈ 0.13 in case one individual is replaced in the
original top-10 by an individual not yet present in the top-10. Two individuals
leaving the original top-10 will yield a value of ρ of at least 1

10 +
2
10 +

1
37 +

2
37 ≈

0.38. For three individuals, this value is at least 0.76.
When varying the number of links present in the network, the top-10 of

the original ranking is seen to remain virtually unchanged. In 50% of the
cases the ranking remains unchanged and in another 30% of the cases only
one individual leaves the top-10. Even at the (relatively few) outliers, at most
four individuals leave the top-10. When adding extra weights to nodes in the
network, the top-10 differs slightly from the original ranking. In 35% of the
cases, at most three individuals in the top-10 are replaced. In most other cases,
at most four individuals are replaced. Even the (relatively few) outliers are
seen to differ significantly from the value of ρ when using a random ranking.
The original ranking is seen to be more sensitive to adding extra weights to
links. Although at most one individual in the top-10 is replaced in 50% of the
cases, and at most two individuals are replaced in another 30% of the cases,
the remaining 20% of the cases show more variability in the value of ρ. Still,
all significantly outperform a random ranking.

We can conclude that Rmwconn provides a ranking for the Zerkani network
that is globally robust against link changes as well as weight changes.

21.5 Conclusions
In this chapter we analysed the Zerkani network that was complicit in the ter-
ror attacks in Paris and Brussels. Two types of cooperative games are used that
take both network structure and individual characteristics of the members of
the network into account. Subsequently, the Shapley value as a measure of
social centrality is approximated to provide rankings of the members of the
network. We compared these rankings to traditional network theoretic mea-
sures. Finally a robustness analysis representing the incomplete information
available to intelligence agencies is conducted by simulations.

We conclude that the ranking obtained by use of the game theoretic Shap-
ley value ranked those individuals high which seemed of great importance to
the preparation of the attack. This in contrast to standard network theoretic
measures that ranked field attackers (such as shooters and suicide bombers)
higher. It turned out that the rankings of both different cooperative games
were almost equal, from which we conclude that the ranking obtained by the
Shapley value is quite robust.

It will be clear that the methodology behind Rmwconn can be applied to
other datasets as well, actually to each dataset representing a social network.
These datasets need thus not be restricted to terrorist networks but could
also be applied to, e.g., criminal networks. Moreover, other variations in our
choices of f(S, I,R) should be studied to better fit specific settings.
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21.6 Appendix
Here we provide the weights we have assigned to the links and members
(=node) of the network. Initially each link and member receives a weights
equal to one. This weight is increased using the tables below.

Relationship Weight on link Extra weight start node
‘Associate of’ 2 0
‘Brother of’ 1 0
‘Commander of’ 2 2
‘Family relationship’ 1 0
‘Funded’ 1 2
‘Lived with’ 2 0
‘Nephew of’ 1 0
‘Recruiter of’ 1 1
‘Supporter of’ 1 1
‘Traveled to Syria with’ 2 0
‘Traveled with’ 2 0

TABLE 21.8: The weights assigned to links and starting nodes.

Applying Table 21.8 results in the following members having a weight larger
than one as shown in Table 21.9.

Node Weight
Abdelhamid Abaaoud 4
Fabien Clain 4
Khalid Zerkani 5
Miloud F. 2
Mohamed Belkaid 3

TABLE 21.9: The members with a weight larger than one.
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22.1 Introduction
The Shapley value is one of the classical methods for deriving appropriate
payoffs in cooperative games, in particular for simple games. It has very good
properties for defining a priori values in cases where the payoffs for each pos-
sible coalition are precisely defined. Due to the nature of this collection of
papers, the authors treat the concepts of cooperative games and the Shap-
ley value as known to the reader. However, the following works should be
mentioned: Felsenthal and Machover (1997) and Taylor and Zwicker (1999).
When decisions are made on the basis of a vote to obtain a group decision,
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often the assumption of determinism is inappropriate. This article considers
an adaptation of the Shapley value to situations in which the weights of the
individual players in voting games are not deterministic. This means that the
number of votes required to pass a decision (the quota) and the set of winning
coalitions are not precisely defined. Also, the number of votes cast might be
affected by a quorum. The concept of fuzzy sets and a modified version of the
characteristic form of a game are utilised to appropriately modify the concept
of the Shapley value to such situations. The theory is illustrated by exam-
ples including decision making in parliament and the Council of the European
Union.

If we assume that parties are more concerned about getting into office
than about implementing a specific policy, any coalition consisting of two or
more parties can form, regardless of the parties’ policy positions. The clas-
sical Shapley value (or Shapley-Shubik value, which is a particular case of
the Shapley value for simple games) is appropriate when all of the possible
coalitions are equally probable, the weight of each player (e.g., the number
of votes available to a party) and the quota (the number of votes required to
pass a motion) are deterministic numbers and power is split evenly between
the players in a winning coalition.

The assumption that all of the possible coalitions are equally probable
has been hotly debated from the very beginning. Owen (1977) proposed an
approach based on so-called pre-coalitions, which leads to some coalitions
being by definition impossible. Moreover, an individual probability can be
assigned to the formation of any possible coalition. Obviously, the question
arises in this situation as to what method should be used to define the Shapley
value for each player (i.e., how should the payoff obtained by a coalition be split
between its individual members). Many articles assume that the payoff of a
winning coalition is split equally between the members. In some applications,
e.g., in determining the division of profits among a set of firms which are
interdependent, possibly in a complex manner, a more complicated approach
is used to adapt this division to the ownership structure: See Gambarelli and
Owen (1994), or more recently Bertini et al. (2016) and Stach (2017).

The main goal of this chapter is to apply fuzzy theory to cases of voting
games in which the weight of each player and the quota are not deterministic
numbers in order to assess the voting power of the players. In standard voting
games, both the weights of players and the rules of voting are fixed. On the
other hand, in parliamentary decision making, individual players may have
differing levels of freedom to choose how to vote on a particular motion (not
to mention the possibility of strategic behaviour). Hence, in the opinion of the
authors, there is a need for a more flexible approach to defining the number
of players in a voting game, their weights and the conditions for winning a
vote. Another goal is to consider a form of inverse problem, where a set of
desirable voting powers of the players are given (e.g., in EU council votes, it
may be deemed desirable that the power of a member state is proportional
to its population size). If such a set of power indexes is attainable, it might
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result from a large range of voting weights which, e.g., minimize the distance
between the power indexes and the desired set of indexes. Hence, such voting
weights may be interpreted as fuzzy, in its intuitive sense. Such an inverse
problem refers to finding a set of appropriate weights given the desired voting
powers to satisfy a given optimality criterion.

In particular, the authors state that the definition of the Shapley values
should be adapted to the following situations:

a) When there exists a single dominant player who possesses the power to
pass any decision. In the standard majority game, such a player has a
Shapley value of 1, independently of whether this player possesses 51%
or 91% of the votes.

b) There exist more than one criterion deciding the desirability of a coalition.
It is clear that the Shapley value will generally depend on the criteria
employed. Hence, there exists a question as to which of a number of cri-
teria should be employed to calculate the Shapley value1 or how should
these criteria be aggregated.

c) There exists a clear difference between the relative powers of players (ac-
cording to the Shapley value) and their relative weights. Such discrep-
ancies occur quite regularly and are related to the lack of linearity of
the Shapley value in simple games.

d) There can be minority winning coalitions2, e.g., in practice, members of a
parliamentary party may abstain or be absent. In this case, a coalition
which does not have a majority of the members of parliament may be
able to win a vote. The application of the classical Shapley value in such
games is by definition impossible.

The aim of this article is to analyse the above cases and propose possi-
ble modifications of the Shapley value. These examples are mostly based on
simple voting games, although the concepts presented here can be applied to

1One example of a situation in which the result of a vote is based on two criteria is the
dilemma associated with voting in the Council of the European Union: Each country has
one vote as a state, but since the states have widely differing populations, an additional
requirement is added related to the percentage of the total EU population represented by
the countries voting for a motion (this will be defined more precisely later). However, since
countries have different values of GDP according to which they pay into EU funds, it would
also be possible to introduce another criterion based on GDP. It should be noted that
recently there have been discussions regarding the introduction of a 0-1 criterion regarding
a condition for democratic legal governance. A slightly different problem occurs when the
value of a coalition depends not only on the number of votes it possesses, but also on, for
example, its internal stability. Such examples can be described by cooperative games in
which the characteristic function is multi-valued. The authors consider the second type of
game.

2A good example of this situation is the existence of minority governments, which despite
not having a majority can last for a relatively long time in many countries including the
Netherlands, Finland and Italy).
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cooperative games of a more general form. This chapter is organized as follows:
Section 22.2 presents some preliminary definitions and notation. Section 22.3
considers the problem of defining the Shapley value for majority games. Sec-
tion 22.4 considers cases where the quota is not fixed, under the assumption
that a motion is passed if and only if the number of votes for is greater than
the number of votes against. In Section 22.5, we present an analysis of situa-
tions in which the value of a coalition is multi-dimensional and we propose a
solution based on a synthetic value. In Section 22.6 we consider the problem of
significant discrepancies between the relative powers and the relative weights
of the players and propose a solution to this problem based on a measure of
consistency between the relative weights and the relative powers. The final
section gives a summary.

22.2 Preliminaries
Indeterminancy is normally modelled using either probability theory or fuzzy
theory. Probability theory is normally appropriate when the distribution of
variables can be estimated on the basis of historical data. On the other hand,
when government coalitions are being formed immediately after an election
or one is considering votes in atypical situations (e.g., when party discipline is
not applied), the authors would argue that a fuzzy approach is more appropri-
ate3. In this case, the behaviour of the decision makers should be assessed by
experts. The goal of this paper is to present a framework for carrying out such
an analysis and leaves the problem of how precisely such problems should be
defined (e.g., the appropriate definition of fuzzy numbers defining the voting
weights of the players) for future research.

This section presents fundamental concepts related to fuzzy sets. These
concepts will be adapted to solving some of the problems described above.
Concepts and notation related to the Shapley value will not be presented here,
since we use standard notation, which should be well known to the readers of
this book. Various concepts of fuzziness have been applied to the analysis of
cooperative games (see, e.g., Branzei et al., 2008 and Mares, 2013).

22.2.1 Some Elements of the Theory of Fuzzy Sets
Here we present some fundamental concepts from the theory of fuzzy sets.
Zadeh (1965) introduced the idea of a fuzzy set. A fuzzy set Ã in a space X

3However, it should be noted that probabilistic approaches can be adopted even when
we do not possess any data, either with a non-informative Bayesian prior or using a prior
generated by experts, see, e.g., Driver and Alemi (1995). For a discussion of the relationship
between fuzzy sets and probability measures see, e.g., Dubois and Prade (1989) and (1993).
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is a set of ordered pairs: {(x, µA(x) : x ∈ X)}, where µA : X → [0, 1] is the
membership function of the fuzzy set.

Given two fuzzy sets Ã and B̃, the degree of membership of the element x
in the set Ã ∩ B̃ is given by:

µA∩B(x) = min{µA(x), µB(x)}. (22.1)

An interval fuzzy number X̃ is family of real, closed intervals [X̃]λ, where
λ ∈ [0, 1], such that: λ1 < λ2 ⇒ [X̃]λ1 ⊂ [X̃]λ2 and I ⊆ [0, 1] ⇒ [X̃]sup I =

∩λ∈I [X̃]λ. For a given λ ∈ [0, 1], the interval [X̃]λ is called the λ-level of the
fuzzy number X̃. This level will be denoted by [X̃]λ = [x(λ), x(λ)].

The function µX(x) = sup{λ : x ∈ [X̃]λ} is called the membership function
of the fuzzy number X̃. The value µX(x) can be interpreted as a measure of
the possibility that the fuzzy number X̃ takes the (crisp) value x.

An interval fuzzy number X̃ is called L-R type, if its membership function
is of the following form (Dubois and Prade, 1978):

µX(x) =


L
(m−x

α

)
for x < m

1 for m ≤ x ≤ m
R
(
x−m
β

)
for x > m,

(22.2)

where: L(x) and R(x) are continuous non-increasing functions x;α, β > 0.
The functions L(x), R(x) are called the shape functions of the fuzzy

number. The most commonly used shape functions are: max{0, 1 − xp} and
exp(−xp), x ∈ [0,∞), p ≥ 1. An interval fuzzy number for which L(x), R(x) =
max{0, 1 − x} and m = m = m is called a triangular fuzzy number and will
be denoted by (m,α, β). The authors will also use truncated triangular fuzzy
numbers, whose membership function is of the form L(x) = max{0, 1−x} for
x ≥ 0 and L(x) = 0 for x < 0, R(x) = max{0, 1 − x} and m = m = m. A
truncated triangular fuzzy number will be denoted by (m,α, β)T .

Let X̃, Ỹ be fuzzy numbers with membership functions µX(x) and µY (y),
respectively, and let z = f(x, y) be a real function. According to Zadeh’s ex-
tension principle, the membership function of the fuzzy number Z̃ = f(X̃, Ỹ )
is of the form:

µZ(z) = sup
z=f(x,y)

(min[µX(x), µY (y)]). (22.3)

If we wish to compare two fuzzy numbers, i.e., define the measure of possibility
that a realization of the fuzzy number X̃ is not less (or greater, respectively)
than a realization of Ỹ , then we can use the formulas proposed by Dubois and
Prade (1988):

Pos(X̃ ≥ Ỹ ) = sup
x≥y

(min[µX(x), µY (y)]) (22.4)

Pos(X̃ > Ỹ ) = sup
x

inf
y≥x

(min[µX(x), 1− µY (y)]). (22.5)
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The possibilistic expected value, E(X̃), and possibilistic variance, V ar(X̃), of
the fuzzy number X̃ are given by (see Carlsson and Fullér, 2001)

E(X̃) =

∫ 1

0

1

2
(x(λ) + x(λ)) dλ (22.6)

V ar(X̃) =

∫ 1

0

(
x(λ)− x(λ)

2

)2

dλ. (22.7)

22.3 The Shapley Value for Majority Voting Games
One of the most common applications of the Shapley value to analysing phe-
nomena of social life is modelling group decisions using the theory of coop-
erative games. The classical approach assumes that there are relatively few
players (parties), who are treated as voters who have differing weights. For ex-
ample, Mercik and Ramsey (2015) analysed the use of the power of veto in the
United Nations Security Council. Sosnowska (2014) analysed the Governing
Council of the European Central Bank. Nurmi and Meskanen (1999) analysed
EU institutions. It seems that one of the sources of discrepancy between the
results obtained and empirical observation lies in the unrealistic assumptions
regarding the number of players and their weights.

The different approaches considered here take into account various aspects
of decision making bodies. These aspects can be split into three types:

a) Decision bodies where the “players” vote en bloc based on party affiliation
and/or according to whether a player is a member of the government or
of the oppostion, but there is uncertainty about the number of players
from a party taking part in a vote, due to unforeseen circumstances.

b) Decision bodies where the members of a party can vote differently from
the leader of the party.

c) Decision bodies in which the outcome of the formation of a coalition can
be described by a multi-dimensional value, e.g., the value of a coalition
of parties might be measured by both the total number of members and
the coherence of the political views of the members of the coalition.
This leads to the consideration of more general cooperative games than
simple games.

The following example, which analyses the structure and number of seats
possessed by each party in the Polish parliament, is used as a tool to introduce
more realistic assumptions which take these aspects into consideration.
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Party or Immediately after At the end
parliamentary club the election of 2017

PiS 235 237
PO 138 136

Kukiz 15 42 30
N 28 26

PSL 16 15
MN 1 1
WiS - 6
ED - 4

Non-affiliated - 5
Total 460 460

Rae’s F index 0.6358 0.6383
Coleman’s index of 0.5 0.5

collective action

Source: http://www.sejm.gov.pl

TABLE 22.1: The Polish parliament in the 2015-2019 term of office. (PiS -
Law and Justice, PO - Citizens’ Platform, Kukiz 15, N - Modern, PSL - Polish
Peasants’ Party, MN - German Minority, WiS - Freedom and Solidarity, ED -
European Democrats).

Example 22.1 Politicians moving between parties and changes in the number
of parties.

In the everyday life of various decision bodies, not only do the weights
(number of seats) of parties change, but the number of players (parties) can
change. We wish to see how this affects the Shapley value. We start by analysing
the present situation in the Polish Sejm (parliament), which is described in
Table 22.1.

The value of Coleman’s index of collective action4, given by Cc = ω
2n ,

where ω denotes the total number of winning coalitions and n denotes the
number of voters, is 0.5 immediately after the election and at the end of 2017.

Rae’s index of fractionalisation5 (at the beginning of the present Sejm and
end of 2017 equal to 0.6358 and 0.6383, respectively), which summarises infor-

4Calculated using POWERSLAVE Mark I, available from http://powerslave.utu.fi/
index.html

5Rae’s fractionalisation index is nothing else than the complement of the Herfindahl-
Hirschman concentration index (HH) (https://www.justice.gov/atr/herfindahl-hirschman-
index) known in economics as a measure of the size of firms in relation to their indus-
trial sector as a whole and an indicator of the amount of competition among them. This
concentration index is calculated as follows: HH =

∑n
i=1 s

2
i or the normalised HH index

HH∗ =
HH−1/n
1−1/n

for n > 1. The Effective Number of Parties, ENP = 1∑n
i=1 s2i

= 1/(1−F ),
(Laakso and Taagepera, 1979) is also used, but in our opinion it is less intuitive than Rae’s
F-index.

http://www.sejm.gov.pl
https://www.justice.gov/
https://www.justice.gov/
http://powerslave.utu.fi/
http://powerslave.utu.fi/
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mation about the number of parties and their relative size, can be computed
using the formula:

F = 1−
n∑
i=1

s2i , (22.8)

where si is the proportion of parliamentary seats held by party i. The closer
the value of the Rae index to one (its maximum value), the more fractionalized
the system is. It can be seen that according to the F index, fractionalisation
has only marginally increased since the beginning of this parliament’s term,
despite the number of parties increasing from 6 to 9. From the point of view of
the Shapley value, one party (PiS) holds a majority of the seats in parliament6.
Since passing a motion requires a standard majority of the votes given, PiS
can form the government on its own. In such a case, the Shapley value for
this party is equal to 1 and the measure of the ability of the parliament
to implement a motion (index of collective action) does not depend on how
fragmented the rest of the parliament is (see Example 22.1). In practice, this
would mean that it does not matter whether the opposition parties unite their
forces or act independently. The a priori Shapley value does not differentiate
between any such division of seats in parliament.

Reality is somewhat different when we consider the dynamics of a specific
decision body:

a) Since the last general election, 12 new members from various parties have
entered parliament due to seats becoming vacant. The degree to which
these members follow party lines is an important question.

b) The rate of attendance during votes is rather low. Consequently, the quota
q has varied.

c) A dozen or so members of parliament have changed their party affiliation.

d) The strength of party discipline (“following the leader”) varies across par-
ties.

It seems that the level of party discipline could be particularly important in
the case of a party that has more 50% of the seats in parliament. It seems
reasonable to assume that it is rational for such a party to try and increase the
size of its majority (especially taking into account the possibility of losing an
absolute majority due to splits or a loss of seats), which is a form of insurance
against “disloyalty” amongst party members. This will be modelled using the
concept of fuzzy numbers.

6As Taagepera (1999: 502) noted, “once a party has more than 50%, how much does
it matter whether it has 53% or 57%?” Intuitively, in such a situation the fragmentation
index should probably be defined as F=0. Obviously, one should also consider that there
also exists a “constitutional” majority (i.e., any changes to the Polish constitution require
at least 2/3 of the votes). However, Shapley values need to be completely recalculated when
the majority required changes (this holds for any quota).
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For simplicity, we assume that the number of seats held by each party
participating in the current parliament (2015-2019) are fixed values and the
parties are split into two groups: PiS and “the opposition”7. Since PiS has
more than 50% of the seats, its a priori Shapley value is equal to 1. This
is always the situation when one of the players has a greater weight than
the rest of the players taken together. When the weights of the players are
fixed, then there is no sense in analysing the Shapley-Shubik power index.
The situation is different when the weights of the players can be described by
fuzzy variables, e.g., it is not assumed that all the members of a particular
party behave in the same way. Assume (using the data regarding the current
Polish parliament) that the weights (number of seats) of PiS at the beginning
of its term of office and at the end of 2017 are given by the triangular fuzzy
numbers Ã(PiS) = (235, 4, 0) and Ã(PiS) = (237, 6, 0), respectively8. This
means that the number of voters from PiS:

a) immediately after the election is between 231 and 235, such that the most
likely value is 235,

b) at the end of 2017 is between 231 and 237, such that the most likely value
is 237.

A fuzzy number whose membership function has such a shape (a right-angle
triangle) corresponds to a party which is still strongly unified, but allows
some departures from party discipline. In intuitive terms, such a number can
be said to exhibit left-sided fuzziness, i.e., the realization of such a fuzzy
number cannot be greater than (be to the right of) the most likely value. In
mathematical terms, this corresponds to a membership function of the form
given by Equation (22.2) which satisfies R(x) ≡ 0 and L(x) is not identically
equal to zero. Right-sided fuzziness can be defined in an analogous manner.

It is much more difficult to define a fuzzy number that might describe
the weight of the opposition, since the level of cohesion within the opposition
(initially 5 parties, now 8) is much lower than within a single party. For conve-
nience, assume that the weights of the opposition immediately after the elec-
tion and at the end of 2017 are described by the numbers Ã(rest) = (225, 8, 0)
and Ã(rest) = (223, 12, 0), respectively. We define the value of the character-
istic function for this simple game as follows (see Gladysz and Mercik 2018):

v(T ) = Pos(Ã(T ) ≥ qÃ0 + ϵ), (22.9)
where Ã0 is the number of valid votes cast, q defines what proportion of
the votes describes a winning majority. Assume that a standard majority is
required to form a winning coalition, i.e., q = 1/2 and ϵ = 1. Hence, the quota
may be estimated using the fuzzy number qÃ0+ϵ = (460, 12, 0)+1 = (231, 6, 0)

7This is a particular case of a two-party system, which, in practice, does not exist any-
where in Europe.

8This is a very conservative assumption that the ruling party never loses its majority.
The Polish parliament has 460 seats.
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Immediately after the election At the end of 2017
Coalition T Ã(T ) v(T ) Coalition T Ã(T ) v(T )
{PiS} (235, 4, 0) 1 {PiS} (237, 6, 0) 1
{rest} (225, 8, 0) 0 {rest} (223, 12, 0) 0

{PiS, rest} (460, 12, 0) 1 {PiS, rest} (460, 18, 0) 1

Source: authors’ own calculations.

TABLE 22.2: Values of the characteristic function for the game (Ñ , ṽ): PiS
vs. rest (left-sided fuzziness).

Immediately after the election At the end of 2017
Coalition T Ã(T ) v(T ) Coalition T Ã(T ) v(T )
{PiS} (231, 0, 4) 1 {PiS} (219, 0, 18) 1
{rest} (217, 0, 8) 0 {rest} (211, 0, 12) 0.59

{PiS, rest} (448, 0, 12) 1 {PiS, rest} (430, 0, 30) 1

Source: Authors’ own calculations. The characteristic functions were derived
on the basis of Equations (22.5) and (22.9). These are real-valued functions.
The Shapley value was calculated according to the classical formula (see Shap-
ley, 1953).

TABLE 22.3: Values of the characteristic function for the game (Ñ , ṽ): PiS
vs. rest (right-sided fuzziness).

immediately after the election and qÃ0 + ϵ = 1/2(460, 18, 0) + 1 = (231, 9, 0)
at the end of 2017, respectively9. Tables 22.2 and 22.3 present the appropriate
values of the characteristic function for these two coalitions immediately after
the election and at the end of 2017, on the basis of the above assumptions.
Table 22.2 illustrates a case where it is assumed that the largest party (which
has more than 50% of the seats in parliament) can ensure the loyalty of at
least 231 members in any particular vote and thus allow up to 4 (initially)
or 6 (at the end of 2017) members not to follow party discipline (based on
left-sided fuzziness). Note that in such a case, even if there were no fuzziness
in the weight of the opposition, the power index of PiS would still be equal
to one. In Table 22.3, it is assumed that the cohesion of the ruling party is
decreasing in time. The right-sided fuzziness at the end of 2017 in this case
corresponds to the government ensuring an absolute majority with possibility
measure 1/3, i.e., 18 members do not necessarily follow party discipline. In
this case, it is possible for the opposition to win a vote.

Based on the values of the characteristic functions presented in Tables 22.2
and 22.3, we obtain the following Shapley values:

9Empirical data from the Polish parliament indicate that there are always a number of
the 460 members of parliament who do not participate in a particular vote. This means
that the left-sided fuzziness of the quota should be stronger than we have assumed.
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For left-sided fuzziness: Both immediately after the elections and at the end
of 2017, PIS has a power index equal to 1. Hence, the opposition has
power index 0 at both times.

For right-sided fuzziness: Immediately after the elections, PiS and the oppo-
sition have power indexes equal to 1 and 0, respectively. At the end of
2017, these indexes are 0.705 and 0.295, respectively.

Obviously, these results show that the government is clearly stronger than
the opposition. However, it enables a quantitative assessment (not considered
by Taagepera) of the effect of party discipline. When the government has
a small majority, the opposition can make use of the absence or disloyalty
of members of the ruling party. In everyday terms, members of the ruling
party should always be present at votes and vote in line with their party
leader. Other members of parliament can behave as they want, but be aware
of situations where the government is weakened by absence or indiscipline,
which gives them the opportunity to win a vote.

22.4 Variability in the Quota q

In this section we consider the problem of variability in the quota q. Again we
note that, according to the classical approach to defining the Shapley value
for simple games, the quota q determining whether a coalition is winning
or not is defined to be a constant. This allows us to classify each of the
possible coalitions T ⊆ N as winning or losing. Transforming this quota into
a fuzzy number radically changes the situation: Some coalitions may be both
winning and losing to some degree. For example, in the vote described below
by Example 22.2 (see Table 22.4) - which corresponds to a project submitted
to a vote in the Polish parliament - the actual quota (the first to exceed 50% of
the valid votes cast) was equal to 202. Such a value cannot be applied to an a
priori approach to defining the Shapley value, since it could lead to situations
in which there are two winning coalitions (the Polish parliament consists of
460 members, so 231 votes guarantee a majority). In this section we consider a
model that takes into account that the quota q may vary and as a consequence
leads to an a priori analysis of winning coalitions that do not form a majority
of the decision body as a whole. Since, in practice, minority governments exist,
the authors feel that such an approach makes sense. In order to model such
votes, expert opinion is required on the tendency for members of a party to
vote in line with the leader of the party (often termed “party discipline”) or
not to take part in a vote.

Example 22.2 A fuzzy quota. Let us consider a vote that took place in the
Polish parliament on 10/01/2018 regarding the first reading of the citizens’
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Government Opposition
Nominal number of seats 237 223

Present at vote 226 177
Votes to reject 166 36
Votes to accept 58 136

Abstentions 2 5
Absent 11 46

TABLE 22.4: Vote in the Polish parliament on 10/01/2018 regarding the
rejection of a citizens’ project for an Act on the Rights of Women and Birth
Control.

Date 2017
Number of votes for the government (231,173,6)

Number of votes against the government (211,175,12)
Pos(X̃Y ES > X̃NO) 0.57

TABLE 22.5: Number of votes for parliamentary government-opposition
game.

project for an Act on the Rights of Women and Birth Control. Table 22.4
presents how the members of the government and opposition (which consisted
of seven parties) voted on the project at its first reading.

The vote itself was rather paradoxical. The project was submitted by the
opposition. However, a significant proportion of the opposition voted to reject
the project (36 - 16%) and a larger number of members of the opposition were
absent. On the other hand, 58 (24%) of the members of the governing party
voted not to reject the motion (including the leader of the government party).
We will give a general analysis of the problem. Let a given legislative body N
be composed of K disjoint subsets Nk (groups, parties, parliamentary clubs,
etc.), where k = 1, 2, . . . ,K, the k-th group has weight nk and

∑K
k=1 nk = n.

Let k0, 1 ≤ k0 ≤ K, describe the number of groups forming the cabinet (for
the sake of convenience, assume that it is the first k0 groups in lexicographic
order).

We denote by X̃k, Ỹk the triangular fuzzy numbers describing the num-
ber of members of group k that conform to the leader’s vote (including the
leader) and go against the leader’s vote, respectively (other members of the
group are assumed to be absent or abstain). Let X̃Y ES and X̃NO denote the
fuzzy numbers describing the total number of votes “for” the government, and
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“against” the government, respectively. It follows that

X̃Y ES =

k0∑
k=1

X̃k +
K∑

k=k0+1

Ỹk

X̃NO =
K∑

k=k0+1

X̃k +

k0∑
k=1

Ỹk

A motion is passed if the number of “Yes” votes is greater that the number
of “No” votes. Hence, the power index of a cabinet is defined as the following
measure:

Pos(X̃Y ES > X̃NO).

By definition, this index lies in the interval [0, 1] and the larger the index, the
greater the power of the government.

Table 22.5 presents the fuzzy number of votes for the government and
the fuzzy number of votes against the government, together with the power
index of the government at the end of the year 2017 according to the current
structure of the Polish parliament. The most likely value and the right spreads
are the same as in Example 22.1. Moreover, it is assumed that the minimum
possible number of votes for the government is 58, and for the opposition 36.

It can be observed that the power index of the government at the end of
2017 was equal to 0.89 and was slightly smaller than immediately after the
election, when this power index was equal to 0.92. In other words, as time
has passed, the power of the government has decreased. Moreover, such an
approach enables us to derive the power of a minority government. In this
case, it is necessary to derive the value of the possibility that the government
obtains a larger number of votes than the opposition. One may assume that
when this power index is decreasing over time, it becomes likely that the
government will fall in the near future.

22.5 Multi-Dimensional Descriptions of the Value of a
Coalition

The situation described by Shapley (1953) is pretty unambiguous: The Shap-
ley value was designed to define the division of the profits gained on the basis
of the level of a player’s participation and the characteristic function was given
by monetary values. However, the ease of use and universality of this approach
soon led to applications in many different fields10. It was also assumed that

10For example, some of the most recent applications, out of a large group, can be found
in Lobos and Mercik (2017) and Pilling et al. (2017).
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various Shapley values could be obtained by changing the assumptions regard-
ing the weights of players. For example, the Shapley-Shubik power indexes of
the 16 regions of Poland (see Mercik et al., 2004) vary according to the way
in which the weights of the regions are defined. For example, based on popu-
lation size, the Mazowieckie region (which includes Warsaw) should have 13
out of 100 seats in the Polish senate, whereas based on GDP it should have
19 seats. This corresponds to a Shapley-Shubik power index equal to 0.1378
based on population size and 0.2144 based on GDP. Obviously, it would be
favourable to the Mazowieckie region to define the number of seats according
to GDP (particularly since the power index indicates that the power of the
region would be large in comparison to the percentage of seats held - assum-
ing that the standard majority voting rule is used). On the other hand, the
Lubelskie region in the east would have 2 fewer seats if they were allocated
on the basis of GDP rather than population size.

The decision making process of the EU council of ministers is another
subject of such analysis. Many attempts have been made to assess the power
of individual states based on their populations and their ability to form a
winning coalition. This approach can involve a number (k, where k ≥ 2) of
criteria that can be based on various types of variable (categorical, ordinal
or continuous), which can interact with each other in different ways. When
weights and quotas are deterministic, such a voting game can be reduced to
a simple voting game. This is due to the fact that the criteria for a winning
coalition can be aggregated and thus the game can be defined as a standard
simple voting game.

When the weights of the players are fuzzy, the aggregation of such criteria
is more complex. Making an appropriate balance between the criteria in some
way seems to be an appropriate approach in this case. This leads to a set of
criteria being replaced by a single synthetic criterion. In the authors’ opinion
this should be a fuzzy criterion that takes into account the non-linearity of
the Shapley-Shubik index11.

A similar, although slightly different, problem is encountered if the value
of a coalition in a general cooperative game is multi-dimensional. For example,
one component of such a value might be the financial profit that a coalition can
bring and the second the mutual pleasure obtained by forming such a coalition
(i.e., there are two criteria for valuing a coalition). In this case, it is unclear
how these criteria should be combined, e.g., what weights should the criteria
be given? Example 22.3 indicates possible approaches to such problems and
describes one such approach, that of defining a fuzzy criterion.

Example 22.3 We begin with an example describing a situation in which the
value of a coalition is based on two criteria. Consider a 3-player game with

11Note that in the European Union Council, decisions are undertaken on the basis of two
criteria. For a given decision to be passed (after Brexit), it is necessary that 15 countries
representing at least 65% of the population of the EU support it. An analysis of this voting
procedure can be found in Gladysz et al. (2018).
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Coalition Criterion 1 Criterion 2
v1({.}) v2({.})

{a} 1 12.3
{b} 1 12.3
{c} 1 12.5
{a, b} 3 25
{a, c} 5 29.7
{b, c} 2 30
{a, b, c} 10 40

TABLE 22.6: The characteristic function for a cooperative game based on
two criteria.

Criterion 1 Criterion 2
Permutation a b c a b c
{a, b, c} 1 2 7 12.3 12.7 15
{a, c, b} 1 5 4 12.3 10.3 17.4
{b, a, c} 2 1 7 12.7 12.3 15
{b, c, a} 8 1 1 10 12.3 17.7
{c, a, b} 4 5 1 17.2 10.3 12.5
{c, b, a} 8 1 1 10 17.5 12.5

Shapley Value 4 2.5 3.5 12.417 12.567 15.017
Normalised Shapley Value 0.40 0.25 0.35 0.310 0.314 0.375

TABLE 22.7: Marginal inputs of the players to the grand coalition according
to two criteria.

players {a, b, c}, in which the characteristic function is defined on the basis
of two criteria (see Table 22.6). We can calculate the Shapley value based on
each of the criteria individually (see Table 22.7).

The Shapley values presented in Table 22.7 indicate that, depending on
the criterion used, we obtain different relative values of the Shapley value for
the players {a, b, c}. By using normalised values, we can compare different
criteria. It can be seen that the power of player {c} is little affected by the
choice of criterion to be used, while player {b} has more power under criterion
2. It is clear that the use of different criteria (weights) can lead to different
normalised Shapley values. For this reason, the authors feel that there exists a
need to either aggregate a set of criteria into a single synthetic criterion or to
define another method for adapting a set of criteria to a particular decision-
making scenario. The authors propose that this may be achieved by using a
fuzzy criterion.
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Coalition Standardised Standardised Mean value Standard
value based value based of coalition deviation

on criterion 1 on criterion 2 (synthetic for
v1({.}) v2({.}) value) coalition

{a} 0.043478 0.07602 0.059749 0.000529
{b} 0.043478 0.07602 0.059749 0.000529
{c} 0.043478 0.077256 0.060367 0.000571
{a, b} 0.130435 0.154512 0.142473 0.013976
{a, c} 0.217391 0.18356 0.200476 0.04018
{b, c} 0.086957 0.185414 0.136185 0.016532
{a, b, c} 0.434783 0.247219 0.341001 0.175795

TABLE 22.8: Standardised values of the characteristic function for Example
22.3.

In order to compare Shapley values based on a set of k criteria, where
k ≥ 2, we propose that the corresponding characteristic functions (weights)
be normalised according to the formula xij =

xij∑
i xij

, where xij denotes the
value of the characteristic function for coalition i based on the j-th criterion
and taking the overall value of such a coalition to be the mean normalised
value of that coalition over all the criteria12, xi. = 1

k

∑k
j=1 xij . This defines

the synthetic value of the i-th coalition based on a set of criteria. Table 22.8
presents the appropriate calculations for Example 22.3.

These operations

1) enable the comparison of coalitions according to various criteria,

2) free the calculations from “the curse of high dimensions”.

Since the evaluations of coalitions may be made according to completely
different units, unless some form of normalisation is applied, then it is im-
possible to compare the value of coalitions according to these two evaluation
criteria. Based on such a standardisation, apart from the expected value of
the standardised weights of coalitions, we can also calculate the variance of
the value of a coalition, V ari. = 1

k

∑k
j=1(xij − xi.)

2 . Table 22.8 gives the
expected values and standard deviations (the square root of the variance) for
each coalition.

On the basis of these two parameters and Equations 22.6 and 22.7, we
derive the characteristic function for each coalition under the assumption that
each of these values is a symmetric triangular fuzzy number13. Table 22.9 gives
the values of the characteristic function for Example 22.3.

12Here we use the arithmetic mean. However, it is clear that other definitions of the mean
can be used depending on the context of the problem.

13In our analysis here we consider triangular fuzzy numbers. However, it is possible to use
fuzzy numbers of any form.
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Coalition T ṽ(T )

{a} (0.06, 0.001, 0.001)
{b} (0.06, 0.001, 0.001)
{c} (0.06, 0.001, 0.001)
{a, b} (0.14, 0.024, 0.024)
{a, c} (0.20, 0.069, 0.069)
{b, c} (0.14, 0.029, 0.029)
{a, b, c} (0.34, 0.304, 0.304)

TABLE 22.9: Synthetic values of the characteristic function of the game
considered in Example 22.3.
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FIGURE 22.1: Shapley value for player a - continuous line, player b - dotted
line, player c - broken line (from Example 22.3).

Next, we can derive the marginal value of each player entering into the
grand coalition {a, b, c}. It is assumed that these values are non-negative fuzzy
numbers. The appropriate calculations are given in Table 22.10.

In the following step, using the Shapley value, together with Zadeh’s ex-
tension principle, we determine the fuzzy Shapley values for each player in this
game. Figure 22.1 illustrates the fuzzy Shapley values for the three players:
{a}, {b}, {c}.

In order to compare the power indexes of the players {a}, {b}, {c}, we
use the measure Pos(X̃ > Ỹ ) defined by Equation 22.5. We also consider the
definition of the membership function for the intersection of two fuzzy sets
defined by Equation 22.1.
Pos(Shapley value of Player {a} is the maximum Shapley value) = 0.55,

Pos(Shapley value of Player {b} is the maximum Shapley value) = 0.43,

Pos(Shapley value of Player {c} is the maximum Shapley value) = 0.45,
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Synthetic marginal value
Permu- a b c
tation

(0.14,0.024,0.024 )- (0.34,0.304,0.304 )-
{a, b, c} (0.06,0.001,0.001) (0.06,0.001,0.001)= (0.14,0.024,0.024)=

(0.08, 0.202, 0.202)T (0.20, 0.329, 0.329)T
(0.34,0.304,0.304)- (0.20,0.069,0.069)-

{a, c, b} (0.06,0.001,0.001) (0.20,0.069,0.069)= (0.06,0.001,0.001)=
(0.20, 0.329, 0.329)T (0.14, 0.071, 0.071)T

(0.14,0.024,0.024)- (0.34,0.304,0.304)-
{b, a, c} (0.06,0.001,0.001)= (0.06,0.001,0.001) (0.14,0.024,0.024)=

(0.08, 0.030, 0.030)T (0.20, 0.329, 0.329)T
(0.34,0.304,0.304)- (0.14,0.029,0.029)-

{b, c, a} (0.14,0.029,0.029)= (0.06,0.001,0.001) (0.06,0.001,0.001)=
(0.20, 0.477, 0.477)T (0.08, 0.030, 0.030)T
(0.20,0.069,0.069)- (0.34,0.304,0.304 -

{c, a, b} (0.06,0.001,0.001)= (0.20,0.069,0.069)= (0.06,0.001,0.001)
(0.14, 0.071, 0.071)T (014, 0.374, 0.374)T
(0.34,0.304,0.304)- (0.14,0.029,0.029)-

{c, b, a} (0.14,0.029,0.029)= (0.06,0.001,0.001)= (0.06,0.001,0.001)
(0.20, 0.477, 0.477)T (0.08, 0.030, 0.030)T

TABLE 22.10: Marginal values of the players entering into the grand coali-
tion according to the synthetic criterion.
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It can be seen that this measure is greatest for player {a}. The measure of the
possibility that the Shapley value of player {a} is greater than the Shapley
value of the remaining players is 0.55.

22.6 Discrepancy between the Weight and Shapley
Value of a Player

The concept of the a priori Shapley value is intuitive when it is applied to
problems that can be precisely defined. However, in the social sciences, par-
ticularly the theory of group decision making, we often observe a huge dis-
crepancy between the relative weights of the decision makers (players) and
their Shapley values. This is particularly true in simple games that model
decision making via the process of voting (see Example 22.4). In this section
we consider inverse problems where desired indexes of the players are given
(e.g., in the case of EU votes, it might be deemed desirable that the power of
a member state is proportional to its population size) and the weights of the
players in a voting procedure are to be chosen using some form of optimality
criterion. Generally, the set of voting weights which minimize the distance
between the desired set of power indexes and the Shapley values will not be
unique. Hence, these voting weights can be thought of as fuzzy, in an intuitive
sense.

Example 22.4 Consider the following two voting games (d;w) : (51; 49, 49, 2)
and (d;w) : (51; 33, 33, 34), where d denotes the number of votes required for
a motion to be passed and w denotes the vector of the weights of the players.
In both games, a standard majority of the house is required in order to pass a
motion, i.e., in this case d = 51. Both games involve three players (parties),
but the distributions of the weights of these three players are very different.
However, the Shapley value for both of these games is equal to (1/3, 1/3, 1/3).
It is relatively simple to show that in such a majority voting game whenever
the weights are integers that sum to 100 and the largest weight is less than 50,
then the Shapley-Shubik power index of each of the players is equal to 1/3.

Brückner and Peters (1996) and Mercik (1999) consider the concept of
the appropriate distribution of power. It is assumed that power should be
proportional to voting weight. In this context, the balance of power in the
game (51; 33, 33, 34) is more appropriate than the balance of power in the
game (51; 49, 49, 2). Asymptotic results indicate that these discrepancies
tend to be very small when there are a large number of players (see Alon and
Edelman, 2010). However, in many cases the number of players (or parties)
tends to be small.
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To analyse the discrepancies between voting weights and voting powers,
the voting weights are standardised so that they sum to one by dividing each
weight by the sum of the initial weights. We state that the balance of power is
correct to degree (ϵL, ϵR) in terms of a decision body, if for each player i ∈ N ,
the relative weight of player i, wi, satisfies

ϵL ≤ |wi − ϕi(d;w)| ≤ ϵR,

where ϕi(d;w) denotes the Shapley value (power index) in the voting game
(d;w).

In an ideal situation, i.e., one where the relative values of the voting weights
coincide with the Shapley values, ϵL = ϵR = 0. In all other situations, we have

ϵL = min
i∈N
|wi − ϕi(d;w)| and ϵR = max

i∈N
|wi − ϕi(d;w)|.

Such a fuzzy approach to the discrepancy between the voting weights and
powers of various players also enables us to assess whether the assigned weights
are appropriate to the power of a player. With this as a goal, we define the
discrepancy between a standardised vector of voting weights w and a vector
of power indices p according to the Lk norm, as

ck(w, p) =

[
n∑
i=1

|wi − pi|k
]1/k

.

Such measures of discrepancy can be applied to, e.g., voting in the EU Council.
The weights of the individual states can be based on their population; GDP
of each country can be given an equal weight. The power of each state results
from a given voting procedure (see Example 22.5).

On the basis of Example 22.4, we can see that based on a given Shapley-
Shubik value it is possible to define a set of fuzzy weights, i.e., there is a large
set of triples of weights that give the same Shapley-Shubik value. Moreover, in
practice, since there is no ideal correspondence between the relative weights
of the players and the Shapley-Shubik value, we aim for a balance of power
that is approximately correct.

One might consider an inverse problem, which for a given Shapley-Shubik
value derives the weights that achieve a given discrepancy from a given vec-
tor of power indexes, while maximising the distance from a vector of voting
weights.

Table 22.11 gives vectors that maximise the Euclidean distance from (49,
49, 2) while constraining the discrepancy, c2(w, p), to be less than or equal
to some required value and ensuring a given vector of power indexes. In the
first two cases, the constraint on the discrepancy becomes binding before the
Shapley-Shubik value changes. In the third case, the constraint on the Shapley-
Shubik value becomes binding, since increasing the weight of Party 3 means
that it has the power to block any motion. When the weight of Party 3 is
strictly between 49 and 51, then it has the power to block any motion, but
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ϵ2 w1 w2 w3 p1 p2 p3
0.005 33.129 33.129 33.742 0.33333 0.33333 0.33333
0.05 31.293 31.292 37.416 0.33333 0.33333 0.33333
0.2 25.494 25.506 49.000 0.33333 0.33333 0.33333
0.2 24.500 24.500 50.99999 0.16667 0.16667 0.66667

TABLE 22.11: Numerical results for maximising the Euclidean distance of
a weight vector from (49, 49, 2) while constraining the discrepancy between
the voting weights and the given voting powers (measured according to the
L2 norm) to be ≤ ϵ2 (see Example 22.4).

cannot form a majority on its own. In this case, the Shapley-Shubik vector is
(1/6, 1/6, 2/3), since Party 3 turns a coalition into a winning coalition if and
only if it is not the first to join. Increasing the voting weight of Party 3 to
almost 51, while evenly decreasing the weights of the other parties will ensure
such a Shapley-Shubik vector and satisfy the constraint on the discrepancy.
Since a wide range of weight vectors correspond to the same Shapley-Shubik
value, in this sense we can interpret the weights of parties to be fuzzy variables.

It should be noted that this index of discrepancy is to some degree depen-
dent on the number of players in a game. For example, when the L1 norm is
used to calculate the discrepancy, i.e., c1(w, p) =

∑n
i=1 |wi − pi|, it is possible

to standardise this index by calculating the mean discrepancy c(w, p) = c1(w,p)
n

or calculate the mean relative discrepancy

cr(w, p) =

n∑
i=1

|wi − pi|
nwi

.

Such standardised indexes enable us to compare various decision bodies and
voting rules independently of the number of players and the methods of as-
cribing weights to the players. It should be noted that such measures of dis-
crepancy are equal to zero if and only if the standardised vector of weights
corresponds exactly to the Shapley-Shubik value (e.g., if the weights of the
member states of the EU council are proportional to their population size,
then for the discrepancy to be equal to zero, the power index of each state
must be proportional to its population). The greater the deviances between
the weights and power indexes of the players, the larger such a discrepancy
measure is. Hence, we can say that larger standardised measures of discrepancy
correspond to situations in which there is a greater degree of disequilibrium
between the weights of the players and their influence in a decision making
procedure.

Example 22.5 Discrepancy between the weights (according to chosen param-
eters) and the power of EU members in the European Union Council before
and after Brexit.
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In recent times, there have been a number of articles (e.g., Mercik and
Ramsey, 2017) on the effect on the Shapley-Shubik power indexes of the EU
countries. Here, we consider this problem from the point of view of the fuzzi-
ness of weights, in particular analysing the discrepancy between the voting
weights of individual countries and their power indexes.

This analysis is based on the rules introduced by the Lisbon treaty,
in order to reflect possible changes in the membership of the EU and the
populations of individual states. This is described by Koczy (2012) and
http://www.consilium.europa.eu/en/council-eu/voting-system/. In order for
a vote to be passed, the following two conditions must be satisfied:
1. 55% of the member states must be in favour (i.e., before Brexit 16 of 28

states, after Brexit 15 of 27 states). It should be noted that in spe-
cial cases 72% of the states must be in favour, but this variant is not
considered here.

2. The states voting for a proposition should represent at least 65% of the EU
population, with the additional condition that to block a proposition,
any coalition representing at least 35% of the population must contain
at least four states.

Table 22.12 presents the values of the power indexes of the EU countries
both before and after Brexit, together with their populations and GDP mea-
sured in both Euros and in terms of purchasing power. Table 22.13 presents
the same data after normalisation, so that the observations of each variable
sum to 100, which enables comparison.

Table 22.14 presents the standardised values of the discrepancy between
the weights of countries according to various parameters and their Shapley-
Shubik index according to the EU council voting procedure. It can be seen
that:
1. The discrepancy based on the assumption that each has equal weight shows

a slight increase after Brexit.

2. According to the other three definitions of weights (one based on population
size and the others on the size of the economy), Brexit leads to a fall
in the standardised discrepancy between the weights of the players and
their power indexes. This analysis suggests that Brexit should improve
the cohesion of the EU council and the fuzziness of the weights ascribed
to the players is reduced. However, this might be a premature conclusion
due to the dynamics between the member states.

Example 22.6 The case of the unification of Germany - a forgotten EU
enlargement.

Let us analyse now the consequences of Germany’s reunification. In 1990
the population of Germany increased by 17 million. Standard regression anal-
ysis (Mercik et al., 2004) shows that taking as a starting point the distribution

http://www.consilium.europa.eu/
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GDP Before Brexit After Brexit
Country Country mill. mill. % S-S % S-S

per se Euro PPS pop. pop.
Germany 1 3025900 2932714 15.96 14.43 18.29 17.32
France 1 2183631 2020155 13.06 11.25 14.97 13.28

UK 1 2568941 2051389 12.74 10.93 - -
Italy 1 1636372 1663314 11.96 10.17 13.71 12.03
Spain 1 1081190 1221366 9.14 7.53 10.47 9.00

Poland 1 427737 756850 7.48 6.32 8.57 6.99
Romania 1 160353 323486 3.91 3.75 4.48 4.00

Neth. 1 678572 625463 3.33 3.28 2.82 3.52
Belgium 1 409407 378359 2.22 2.42 2.54 2.60
Greece 1 176023 220074 2.13 2.36 2.44 2.53

Czech Rep. 1 163948 258653 2.07 2.31 2.37 2.47
Portugal 1 179379 230404 2.04 2.29 2.34 2.45
Hungary 1 108748 191925 1.94 2.21 2.22 2.37
Sweden 1 444617 346946 1.92 2.20 2.20 2.35
Austria 1 337286 313841 1.69 2.03 1.94 2.17
Bulgaria 1 44162 95794 1.42 1.83 1.63 1.94
Denmark 1 266240 201726 1.11 1.60 1.27 1.68
Finland 1 207220 169621 1.08 1.58 1.24 1.66
Slovakia 1 78071 119367 1.07 1.58 1.23 1.65
Ireland 1 214623 193292 0.91 1.46 1.04 1.52
Croatia 1 43897 70441 0.83 1.40 0.95 1.45

Lithuania 1 37124 61390 0.57 1.21 0.65 1.24
Slovenia 1 38543 48948 0.41 1.10 0.47 1.11
Latvia 1 24378 36617 0.39 1.09 0.45 1.09
Estonia 1 20461 28091 0.26 1.00 0.30 0.98
Cyprus 1 17421 19711 0.17 0.93 0.19 0.91

Lux. 1 52113 44351 0.11 0.89 0.13 0.86
Malta 1 8797 10969 0.08 0.87 0.09 0.83

Percentages of the entire EU population are calculated based on data from
1st Jan., 2015 according to Eurostat

(http://ec.europa.eu/eurostat/data/database). PPS - purchasing power
standard.

TABLE 22.12: Chosen parameters describing EU members before and after
Brexit (the countries are ordered according to decreasing population, SS -
Shapley-Shubik index scaled to sum to 100).

http://ec.europa.eu/
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GDP Before Brexit After Brexit
Country Euro PPS % S-S % S-S

pop. pop.
Germany 20.68 20.04 15.96 14.43 18.29 17.32
France 14.92 13.80 13.06 11.25 14.97 13.28

UK 17.55 14.02 12.74 10.93 - -
Italy 11.18 11.37 11.96 10.17 13.71 12.03
Spain 7.39 8.35 9.14 7.53 10.47 9.00

Poland 2.92 5.17 7.48 6.32 8.57 6.99
Romania 1.10 2.21 3.91 3.75 4.48 4.00

Neth. 4.64 4.27 3.33 3.28 2.82 3.52
Belgium 2.80 2.59 2.22 2.42 2.54 2.60
Greece 1.20 1.50 2.13 2.36 2.44 2.53

Czech Rep. 1.12 1.77 2.07 2.31 2.37 2.47
Portugal 1.23 1.57 2.04 2.29 2.34 2.45
Hungary 0.74 1.31 1.94 2.21 2.22 2.37
Sweden 3.04 2.37 1.92 2.20 2.20 2.35
Austria 2.30 2.14 1.69 2.03 1.94 2.17
Bulgaria 0.30 0.65 1.42 1.83 1.63 1.94
Denmark 1.82 1.38 1.11 1.60 1.27 1.68
Finland 1.42 1.16 1.08 1.58 1.24 1.66
Slovakia 0.53 0.82 1.07 1.58 1.23 1.65
Ireland 1.47 1.32 0.91 1.46 1.04 1.52
Croatia 0.30 0.48 0.83 1.40 0.95 1.45

Lithuania 0.25 0.42 0.57 1.21 0.65 1.24
Slovenia 0.26 0.33 0.41 1.10 0.47 1.11
Latvia 0.17 0.25 0.39 1.09 0.45 1.09
Estonia 0.14 0.19 0.26 1.00 0.30 0.98
Cyprus 0.12 0.13 0.17 0.93 0.19 0.91

Lux. 0.36 0.30 0.11 0.89 0.13 0.86
Malta 0.06 0.07 0.08 0.87 0.09 0.83

TABLE 22.13: Chosen normalised parameters (scaled to sum to 100) de-
scribing EU members before and after Brexit (S-S: Shapley-Shubik index).
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c(w, p) before Brexit c(w, p) after Brexit
GDP (Euros) 0.014739 0.011900
GDP (PPS) 0.010512 0.008177
Equal weight 0.028119 0.029906

% pop. 0.007095 0.006071

TABLE 22.14: Standardised values of the index of discrepancy (mean dif-
ference) between voting weights and power indexes for Example 1.5 (before
and after Brexit).

of weights from 1986, one can estimate the number of seats a state possesses
in the EU Council of Ministers as:

seats = 1.17026 + 1.00513
√
population,

where population is measured in millions. Prior to unification, the EU council
had 76 seats (the distribution is presented in Table 22.15 and 54 votes were
required for a motion to be passed (at least 70% of the votes). This formula
gives East Germany (the DDR) 5 votes. The result of reunification could be
interpreted as a pre-coalition of West Germany and the DDR where the DDR
is the entering country. Table 22.15 presents three different scenarios14:

1. German unification without any correction of the number of seats in the
EU Council of Ministers.

2. Treating the DDR as a single state that is entering the EU and thus giving
it five seats in the EU Council according to its population.

3. Treating the unified Germany as a single country, which has the seats given
to both West Germany and the DDR.

The values of the power index for each of the three scenarios above lead to
the following conclusions regarding the measure of mean discrepancy between
weights based on population and voting power:

1. Keeping the status quo (scenario 1) corresponds to a standardised measure
of discrepancy equal to 0.0038.

2. Treating the DDR entering the EU as a country in itself (scenario 2) cor-
responds to a standardised measure of discrepancy equal to 0.0037.

14Probably Germany paid a price for acceptance of its reunification by not asking for a
new distribution of weights. An earlier agreement between De Gaulle and Adenauer at the
beginning of the 1950s guaranteed that even incorporation of DDR should not change the
number of seats held by Germany. This new distribution of weights evidently changes the
power of individual countries. This was the origin of the problems with the distribution of
weights in each successive enlargement: Underestimation of the weight of Germany.



508 Handbook of the Shapley Value

Country Seats S-S Seats S-S Seats S-S
1986 (×100) 1990 (×100) 1990 (×100)

DDR Unified
separate Germany

(West) Germany 10 13.42 10 12.92 15 21.03
Italy 10 13.42 10 12.92 10 12.78

France 10 13.42 10 12.92 10 12.78
the Netherlands 5 6.37 5 6.05 5 5.75

Belgium 5 6.37 5 6.05 5 5.75
Luxembourg 2 1.18 2 2.61 2 2.51

UK 10 13.42 10 12.92 10 12.78
Denmark 3 4.26 3 3.07 3 3.00
Ireland 3 4.26 3 3.07 3 3.00
Greece 5 6.37 5 6.05 5 5.75
Spain 8 11.13 8 9.34 8 9.13

Portugal 5 6.37 5 6.05 5 5.75
DDR - - 5 6.05 - -

Total no. 76 81 81
of seats

Source: Authors’ calculations.

TABLE 22.15: Hypothetical corrected distribution of weights for the en-
largement of the EU in 1990 resulting from the unification of Germany (these
weights were only applied in practice in 1986).

3. Giving the reunified Germany the same number of seats as the sum of
the number of seats of the two component states (scenario 3) gives a
measure of mean discrepancy equal to 0.0064.

It is clear that giving Germany the sum of the number of seats correspond-
ing to its component parts would radically increase the discrepancy between
population sizes and power indexes. The regression analysis indicates that the
number of seats is approximately proportional to the square root of popula-
tion size. Hence, a more reasonable approach in this case would have been to
redefine the number of seats held by Germany according to this analysis (this
would lead to an increase in the number of seats held by Germany to 11).
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22.7 Conclusions
The Shapley value is undoubtedly one of the most effective tools for analysing
group decisions. It enables us to define the expected payoff, position and power
of a player according to a given procedure for group decision making. In par-
ticular, analysis of the Shapley value is the basic tool to use when the analysis
is carried out a priori, i.e., when we may assume that the players involved
can form any possible coalition and each coalition is as likely as any other. In
this sense, analysis based on the classical Shapley value answers the question
“What can happen?”, but does not answer the question “What will happen?”.
This leads to many situations where our intuition and observations of the
results of real decision procedures are in stark conflict with such an analysis.
For example, when we treat parliamentary decisions as a game played between
the government and the opposition, then the Shapley-Shubik power index of
a minority government is by definition equal to zero. In practice, such govern-
ments have held power for significant periods of time. It is thus clear that in
practice the power index of such a government should be greater than zero.

This article has illustrated various applications of a fuzzy approach to
adapting the use of the Shapley value for group decision making. The most
commonly used approach to such problems in practice is to use a voting pro-
cedure. Three distinct elements need to be defined: The weights of the players
(or votes), the quota (or quotas) and the way in which votes are aggregated. In
some cases, multiple criteria must be satisfied before a decision is accepted, or
in a similar problem, coalitions may be valued according to different criteria.
In the second case, the value of a coalition may be treated as a vector.

According to the classical approach to simple voting, the weights of player
(interpreted here as parties) are deterministic. However, the model describes
human behaviour and such behaviour cannot in many scenarios be foreseen. In
votes, the classical quota most commonly is related to nominal values (absolute
majority of votes) corresponding to a given decision body. However, we know
that in practice it suffices that the number of votes for a motion simply needs to
exceed the number of votes against. Hence, due to absence and abstaining, the
empirically observed quota is less than the nominal quota (this is practically
always the case in the Polish parliament). The empirical quota (a majority of
the valid votes) is applied to decide the result of the vote. This fact should
be taken into account when assessing the power of individual decision makers,
which can be done using a fuzzy approach. This article has shown how this
can be achieved, for example by defining the weights of the players as fuzzy
numbers.

According to the classical approach, any party that holds a majority of the
seats is assumed to have all the power, independently of how large the majority
is. It is thus clear that the a priori approach to deriving the Shapley-Shubik
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power indexes of parties often leads to clear dissonance between one’s intuition
and the results of such an analysis.

Similarly, by using the a priori approach to calculating the Shapley-
Shubik power index, we are applying a method of solving a simplified (one-
dimensional) decision problem. Often the dissonance between intuition and
the results obtained by using such an analysis can be explained by factors
that have not been taken into account in the model. This is not related to the
fact that sometimes multiple criteria need to be satisfied in order to accept a
motion (e.g., in the EU council a minimum number of countries representing a
minimum percentage of the EU population are required to pass a motion), but
that there exist other criteria for approving a decision which are not explicit.
In such cases, we need to find a healthy compromise between empirical deci-
sion processes and the rigour inherent in the definition of the Shapley value,
including the method of aggregating votes (the method of voting). Again, the
authors feel that such a fuzzy approach is an appropriate compromise.

At the end, it is necessary to say a couple of words about the range of ap-
plications of such an approach. This article has presented several examples to
which the Shapley value has been applied and how to utilise a fuzzy approach
in these situations. Obviously, these examples do not give a comprehensive
range of problems in which a fuzzy approach seems appropriate. The goal
of this article was to show that such an approach is appropriate in a range
of situations, particularly those in which the behaviour of decision makers is
unpredictable. The authors have argued that in such cases a fuzzy approach
is more appropriate than the classical a priori approach and could serve to
analyse a wide range of practical examples. The authors intend to formalise
the approaches presented here in future work.
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23.1 Introduction
The aim of this chapter is to bring together two of the main contributions
of Lloyd Shapley to the theory of games. One of them is the Shapley value,
which is the objective of the entire book, and as the reader already knows
is a single-valued solution for coalitional games. The second one is the study
of cooperative two-sided markets. In these markets there are two finite and
disjoint sets of agents (men and women, students and colleges, resident doc-
tors and hospitals, buyers and sellers) and each agent wants to be matched
with one, and only one, agent on the opposite side. These markets can be of
two types, depending on whether money is involved in the transaction. Gale
and Shapley [6] introduce the marriage problem and the college admission
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problem, where each agent has a preference list on the agents on the opposite
side, and defines the notion of stable matching. Then, the deferred acceptance
algorithm is proposed to obtain the stable matching between men and women
(or students and colleges) that is optimal for one side of the market.

Some years later, Shapley and Shubik [27] introduced the assignment game,
as a model for a two-sided market with buyers on one side and sellers on the
other side (take for instance a real state market) where, different from the
marriage model, utility can be fully transferred by means of money. Each
seller has one object on sale and each buyer wants to buy one object. The
transaction of buyer i with seller j is valued at aij ≥ 0 and this value is
shared between the two agents by means of the price p paid. Hence, the buyer’s
payoff is aij − p and the seller’s payoff is p. From this market situation [27]
defines a coalitional game and proves the core is non-empty and, similar to
the marriage model, it has a lattice structure with an optimal core allocation
for each sector.

After Shapley and Shubik [27], most of the work done on the assignment
game has focused on the core and other solution concepts that are a core
selection. An expression of the two-optimal core allocations, each one optimal
for one side of the market, is given in [5] and [12]; the extreme core allocations
are analyzed in [1], [10], [18] and [22]; the fair division point, which is the
midpoint of the segment determined by the two optimal core allocations is
studied in [30] and [16]; algorithms for the computation of the nucleolus and
an axiomatic characterization of this solution are given in [28], [13] and [11];
the stability of the core and the existence of von Neumann-Morgenstern stable
sets for the assignment game are studied in [29] and [21].

However, little is known about the Shapley value for assignment games.
The reason is twofold. On one side, the Shapley value of an assignment game
may not lie in the core, meaning that it may be blocked by some coalition of
agents that, by acting on its own, can make each of its members better off. In
addition to that, the computation of the Shapley value of an assignment game
requires the worth of all coalitions and this implies solving a combinatorial
optimization problem for each coalition. Compared to that, the core and most
of the aforementioned solutions that are a core selection can be obtained just
from the valuation matrix that gathers the worth of each buyer-seller pair.

Nevertheless, the Shapley value has the advantage that each agent is re-
warded according to his/her importance or influence in the market situation.
Take for instance an assignment market with two buyers and one seller. As-
sume that the first buyer values the object of the seller higher than the second
buyer does. Then an optimal matching will match the first buyer with the
seller and leave the second buyer unmatched. In any core allocation, the first
buyer will pay for the object a price in between his own valuation and the
valuation of the second buyer, while this second buyer will get a zero payoff.
As a consequence, in any solution that is a core selection, the second buyer
receives nothing although his/her presence in the market has an influence on
what the other two agents get. If this second buyer were not present, the
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price paid by the first buyer could go down to zero and remain in the core.
Instead, the Shapley value will give this second buyer a positive payoff, since
this buyer has a positive marginal contribution in the order in which he/she
enters immediatley after the seller.

In this chapter we will first survey what is known about the Shapley value
of the assignment game: Conditions on the valuation matrix that guarantee
that the Shapley value remains in the core and an axiomatic characterization
of this solution in this class of market games. In the second part of the chapter,
we assign to each assignment game a single-valued solution that always selects
a core element. This solution is the Shapley value of a related assignment game:
The only assignment game with reservation values that is exact and has the
same core as the initial market.

23.2 The Shapley and Shubik Assignment Game
Let M be a finite set of m buyers and M ′ a finite set of m′ sellers, these sets
being disjoint. Each buyer i ∈M is willing to buy at most one house and each
seller j ∈M ′ has exactly one house on sale. Assume hij ≥ 0 is how much buyer
i ∈M values the house of seller j ∈M ′ and cj ≥ 0 is how much seller j ∈M ′

values his own house, meaning he will not sell his house for a lower price.
Then, whenever hij ≥ cj , there is room to agree on some price hij ≥ p ≥ cj
and the joint profit of this trade is (hij − p) + (p − cj). As a consequence,
we consider the matrix A = (aij)(i,j)∈M×M ′ where aij = max{hij − cj , 0} for
all i ∈ M, j ∈ M ′. We will refer to matrix A as the valuation matrix. The
assignment market is defined by the triple (M,M ′, A).

A matching µ between buyers in M and sellers in M ′ is a bijection be-
tween a subset of M and a subset of M ′ such that the cardinality of µ(M)
is min{m,m′}. We write (i, j) ∈ µ, or equivalently µ(i) = j or µ−1(j) = i.
We say i ∈ M is unmatched if i ̸∈ µ−1(M ′) and j ∈ M ′ is unmatched if
j ̸∈ µ(M). Moreover, we denote by M(M,M ′) the set of matchings between
M and M ′, and by MA(M,M ′) those which are optimal with respect to a
given valuation matrix A: µ ∈ MA(M,M ′) if

∑
(i,j)∈µ aij ≥

∑
(i,j)∈µ′ aij for

all µ′ ∈M(M,M ′).
The first rigorous presentation of this two-sided market as a coalitional

game, the assignment game, is in Shapley and Shubik [27]. The worth of each
coalition S ⊆M ∪M ′ is defined by

wA(S) = max
µ∈M(S∩M,S∩M ′)

∑
(i,j)∈µ

aij .

An important property of this coalitional function is that players on the same
side of the market appear as substitutes in coalitional terms, while agents on
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opposite sides appear as complements (see [25]): Given two agents i, j not
contained in S ⊆M ∪M ′,

wA(S ∪ {i, j})− wA(S ∪ {i}) ≤ wA(S ∪ {j})− wA(S) if i, j ∈M or i, j ∈M ′,

wA(S ∪ {i, j})− wA(S ∪ {i}) ≥ wA(S ∪ {j})− wA(S) if i ∈M and j ∈M ′.

The paper of Shapley and Shubik focuses on the core of the game. They show
that the core of the assignment game is non-empty and moreover (u, v) ∈
RM ×RM ′ is in the core C(wA) of the assignment game (M ∪M ′, wA) if and
only if there exists a matching µ ∈M(M,M ′) such that

ui + vj = aij for (i, j) ∈ µ,
ui = 0 if i unmatched by µ, vj = 0 if j unmatched by µ
ui + vj ≥ aij for (i, j) ∈M ×M ′, ui ≥ 0 for all i ∈M, vj ≥ 0 for all j ∈M ′.

(23.1)
Notice that (a) any matching µ supporting a core allocation must be opti-
mal, and moreover any optimal matching can play this role; (b) the core is
determined by the valuation matrix, with no need to compute the complete
characteristic function, since only individual rationality and pairwise stability,
that is those core constraints related to individual coalitions and mixed-pair
coalitions (the ones formed by a buyer and a seller) are relevant to describe
the core of the assignment game; and (c) there are no side payments in the
core other than the price a buyer pays a seller to acquire his object on sale.

The second main contribution in the paper of Shapley and Shubik [27] is
the study of the structure of the core of the assignment game. If we consider,
on the core elements, the partial order defined by one side of the market,
for instance (u, v) ≤M (u′, v′) if and only if ui ≤ u′i for all i ∈ M , it turns
out that the core has the structure of a complete lattice with respect to this
order. A consequence of this lattice structure of the core is the existence of two
special extreme core points. In one of them, (uA, vA), each buyer maximizes
her payoff in the core and each seller minimizes his, while in (uA, vA) each seller
maximizes his core payoff and buyers minimize theirs. What is remarkable is
that all agents on the same side of the market, despite competing for the best
deal, obtain their maximum core payoff in the same core element.

The maximum core payoff of an agent, be it a buyer or a seller, is her/his
marginal contribution to the grand coalition (see [5] and [12]). That is, given
an assignment game (M ∪M ′, wA),

uAi = wA(M ∪M ′)− wA((M \ {i}) ∪M ′), for all i ∈M, (23.2)
vAj = wA(M ∪M ′)− wA(M ∪ (M ′ \ {j})), for all j ∈M ′. (23.3)

Given an optimal matching µ, and from the core constraints and the lattice
structure of the core, we immediately obtain the minimum core payoffs of
those assigned agents (i, j) ∈ µ:

uAi = aij − vAj and vAj = aij − uAi . (23.4)
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As for the remaining extreme core allocations, it is shown in [7] that every
extreme core allocation of an assignment game is a marginal worth vector.
Since assignment games use to be non-convex games, not all marginal worth
vectors of an assignment game are extreme core points, only those that satisfy
the core constraints. This provides a way to obtain the extreme core alloca-
tions: Compute all marginal worth vectors and select those that belong to the
core. However, this procedure is very costly since you need the worth of all
coalitions.

Most studies on the assignment market focus on the core and in particular
on the two extreme core elements that are optimal for one side of the market.
However, in several instances, it seems unfair to solve the situation by allocat-
ing the utility of an optimal matching by means of one of these two extreme
points that favours one sector and damages the opposite. A first attempt to
propose a not so extreme solution can be found in [30]. There, G.L. Thomp-
son defines the fair division point of an assignment market (M,M ′, A), as the
midpoint between the buyers-optimal core allocation and the sellers-optimal
core allocation:

τ(wA) =
1

2
(uA, vA) +

1

2
(uA, vA). (23.5)

Since the core is a convex set, the above allocation always lies in the core.
Some monotonicity properties of this solution are studied in [16].

23.3 The Shapley Value of the Assignment Game
We will denote by ϕ(wA) the Shapley value of an assignment game (M ∪
M ′, wA). Recall that value allocates to each agent the weigthed average of
his/her marginal contributions to all possible coalitions.

When the Shapley value of an assignment game lies in the core, then
it is also not an extreme point, as long as the core does not reduce to a
singleton. But the problem is that the Shapley value is often outside the core
in these games. To see that, notice that whenever the valuation matrix is not
square, that is, there are not as many buyers as sellers, then unassigned agents
receive a null payoff in any core element of the game. However, as long as an
unassigned agent can make a positive profit with some agent of the opposite
side, the Shapley value will give these agents a positive payoff.

Before revising the work of M. Hoffman and P. Sudölter that provides
sufficient conditions that guarantee that the Shapley value of an assignment
game is a core allocation, we need to recall some additional facts.

An assignment game is exact if for each coalition S ⊆M ∪M ′ there exists
a core allocation x ∈ C(wA) such that

∑
k∈S xk = wA(S).

The following two examples that are gathered in Table 23.1 show that
assignment games may not be exact. The first market contains three buyers
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M = {1, 2, 3} and three sellers M ′ = {1′, 2′, 3′}, while the second market has
only two agents on each side.

1’ 2’ 3’ 1’ 2’
1 1 1 0 1 3 3
2 0 1 1 2 2 2
3 1 0 1

TABLE 23.1: Two examples of non-exact assignment games.

The reader will easily check that the core of the first assignment game in
Table 23.1 is the segment [(1, 1, 1; 0, 0, 0), (0, 0, 0; 1, 1, 1)]. Then, in any core
allocation (u, v), u1 + v3 = 1 > 0 = a13, which shows that coalition {1, 3′}
never attains its worth in a core allocation. The core of the second assignment
game in Table 23.1 is also a segment and the minimum core payoff of buyer
1 is uA1 = a11 − vA1 = 3 − 2 = 1 > 0. Hence, coalition {1} never attains its
worth, wA({1}) = 0, in a core allocation.

Solymosi and Raghavan [29] characterizes, in terms of the valuation ma-
trix, the exactness of an assignment game. To this end, they introduce two
properties for a non-negative square matrix A.

An m×m non-negative matrix A has:

• a dominant diagonal if and only if
aii ≥ aij and aii ≥ aji, for all i, j ∈ {1, 2, . . . ,m}, and

• a doubly dominant diagonal if and only if
aij + akk ≥ aik + akj , for all i, j, k ∈ {1, 2, . . . ,m}.

We say an assignment market (or game) is square when it has as many
buyers as sellers. This can always be achieved by adding dummy agents on the
short side of the market. Also, given an assignment market (M,M ′, A) and
an optimal matching µ, agents in M and M ′ can always be ordered in such a
way that the entries of the pairs in µ are on the main diagonal of matrix A.

Theorem 23.1 (Solymosi and Raghavan, 2001) Let (M,M ′, A) be a
square assignment market with an optimal matching on the main diagonal.
Then, the assignment game (M ∪ M ′, wA) is exact if and only if A has a
dominant diagonal and a doubly dominant diagonal.

When the optimal matching µ of a square assignment market is on the main
diagonal, the dominant diagonal condition states that each agent is matched
with a partner with whom the highest value is generated. It is straightforward
to check that an assignment market has a dominant diagonal if and only if the
minimum core payoff of each agent is zero. The doubly dominant condition
states that whenever an optimally matched pair joins another mixed pair, the
group has no incentives to interchange partners. The two definitions above do
not depend on which optimal matching µ is placed on the main diagonal.
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Notice that the first matrix in the previous table has a dominant diagonal
but not a doubly dominant diagonal, since for instance a13 + a22 < a12 + a23.
Conversely, the second matrix in the table has not a dominant diagonal since
a22 < a12.

Given an arbitrary coalitional game, one can always define another game
that is exact and has the same core as the first one. However, if we restrict
to the class of assignment games, this exact game with the same core may
not remain in the class. Notice that if for an assignment game there exists an
agent, let us say a buyer i ∈M , with a positive minimum core payoff, uAi > 0,
then no element x in the core of an assignment game with the same core will
satisfy xi = wA({i}) = 0.

We may only require exactness for mixed-pair coalitions and then, for
any assignment game we can guarantee existence of another assignment game
with the same core and this weaker exactness property. An assignment game
(M ∪ M ′, wA) is buyer-seller exact if for any (i, j) ∈ M × M ′ there exists
a core allocation x = (u, v) ∈ C(wA) such that ui + vj = aij . It is shown
in [17] that given any square assignment game (M ∪M ′, wA) there exists a
unique matrix A that is buyer-seller exact and gives rise to the same core,
C(wA) = C(wA). By its definition, this buyer-seller exact representative A is
the maximum matrix among those leading to the same core as C(wA).

Under the assumption that A is square and µ is an optimal matching, for
all (i, j) ∈M ×M ′, the entry in this matrix A is given by

aij = aiµ(i) + aµ−1(j)j +wA(M ∪M ′ \ {µ−1(j), µ(i)})−wA(M ∪M ′). (23.6)

Moreover, an assignment game (M ∪M ′, wA) is buyer-seller exact if and only
if A has a doubly dominant diagonal, once an optimal matching has been
placed on the main diagonal.

Given any assignment game (M ∪M ′, wA), the entries of the buyer-seller
exact representative A can be obtained by solving a combinatorial optimiza-
tion problem for each (i, j) ∈ M × M ′, but also by means of an iterative
procedure that will be revised in the next section.

23.3.1 Balancedness Conditions
M. Hoffmann and P. Sudhölter [9] prove that, for assignment games, exact-
ness is a sufficient condition for the Shapley value to belong to the core. As
a consequence, if we check that a square valuation matrix, with an optimal
matching on the main diagonal, has a dominant diagonal and a doubly dom-
inant diagonal, then the Shapley value will satisfy all core constraints.

Theorem 23.2 (Hoffmann and Sudhölter, 2007) Let (M ∪M ′, wA) be a
square assignment game. If (M ∪M ′, wA) is exact, then ϕ(wA) ∈ C(wA).

The exactness condition in Theorem 23.2 is not necessary for the Shapley
value to be in the core of the assignment game. Take for instance the first
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assignment game in Table 23.1. The game is not exact, but the Shapley value
is ϕ(wA) = (0.5, 0.5, 0.5; 0.5, 0.5, 0.5) and belongs to the core of the game.

A remarkable subclass of assignment markets, known as assortative assign-
ment markets, was introduced by G. S. Becker [2]. These markets model special
bilateral assignment problems where agents on each side can be ordered by
some trait, with the consequence that the mating of the likes will take place.
Formally, an assignment market (M,M ′, A) where M = {b1, b2, . . . , bm},
M ′ = {s1, s2, . . . , sm′} and aij stands for the valuation of buyer bi of the
object of seller sj , is assortative if it satisfies:
(a) supermodularity, that is, any 2×2 submarket has an optimal matching on
its main diagonal,

ail + akj ≤ aij + akl for all 1 ≤ k ≤ i ≤ m and 1 ≤ l ≤ j ≤ m′; and

(b) monotonicity (non-decreasing row and column entries),

akl ≤ aij for all 1 ≤ k ≤ i ≤ m and 1 ≤ l ≤ j ≤ m′.

With no loss of generality, we may assume the valuation matrix to be
square, m = m′, simply adding null entries as first rows or columns of matrix
A. Then, there is always an optimal matching on the main diagonal. Recently,
F.J. Martínez de Albéniz et al. [14] have introduced a single-valued solution
for these markets that can be computed easily from the valuation matrix and
coincides with several well-known solutions for coalitional games. Moreover,
they characterize when the Shapley value belongs to the core of a square
assortative assignment market.

Theorem 23.3 (Martínez de Albéniz, Rafels and Ybern, 2019) Let
(M,M ′, A) be a square assortative assignment market and ϕ(wA) the Shapley
value of the assignment game (M ∪M ′, wA). Then, ϕ(wA) belongs to the core
if and only if the valuation matrix is of the form

A =


α1 α1 α1 · · · α1

α1 α2 α2 · · · α2

α1 α2 α3 · · · α3

· · · · · · · · · · · · · · ·
α1 α2 α3 · · · αm

 for some 0 ≤ α1 ≤ α2 ≤ α3 ≤ · · · ≤ αm.

(23.7)

Moreover, the aforementioned authors show that for valuation matrices
like those in (23.7) the Shapley value is ϕi(wA) = aii

2 for all bi ∈ M and
si ∈ M ′, that is, each agent is paid one half of the profit this agent obtains
with his/her optimal partner.

Notice that, because of the monotonicity requirement, the matrices that
satisfy (23.7) are the only assortative valuation matrices with a dominant
diagonal. Hence, when the Shapley value of an assortative assignment game
is in the core, it coincides with the fair division point. Moreover, the matrices
(23.7) trivially satisfy the doubly dominant diagonal property.
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Theorem 23.4 In the class of square assortative assignment markets, the
Shapley value belongs to the core if and only if the game is exact.

Another well-known subclass of assignment markets was introduced by E.
von Böhm-Bawerk and also studied in [27]. These markets are characterized by
the fact that each buyer values all the same objects on sale, that is, for all i ∈
M , hij = hi for each j ∈M ′. Then, for all (i, j) ∈M ×M ′, aij = max{0, hi−
cj}. These two-sided markets with homogeneous goods were introduced as a
model for a horse market and are known as Böhm-Bawerk horse markets. It
is well known, see for instance [27], that the core of these assignment games
reduces to a segment.

The second example in Table 23.1 corresponds to a Böhm-Bawerk horse
market and it can be checked that the Shapley value of this four-player game
is ϕ(wA) = (1.6, 1; 1.16, 1.16) and does not belong to the core since u1 + v1 =
2.83 < 3 = a11.

The reader will easily check, that every Böhm-Bawerk horse market is an
assortative assignment market. To this end, simply order the buyers in such
a way that 0 ≤ h1 ≤ h2 ≤ · · · ≤ hm and the sellers such that c1 ≥ c2 ≥ · · · ≥
cm′ ≥ 0, and check that the valuation matrix satisfies supermodularity and
monotonicity.

Whenever all buyers in a Böhm-Bawerk market have the same valuation of
the objects, that is, hi = hi′ for all i, i′ ∈M , and all sellers value their objects
the same, cj = cj′ for all j, j′ ∈M ′, then the valuation matrix is constant and
we say the market is a glove market or a symmetric market.

We now introduce another subclass of Böhm-Bawerk horse markets that we
name extended square glove markets. A square assignment market (M,M ′, A)
where m = m′ is an extended square glove market if there exists r ∈
{1, 2, . . . ,m} and c ≥ 0 such that aij = c for all r ≤ i ≤ m and r ≤ j ≤ m
and aij = 0 otherwise.

Then, as an immediate consequence of Theorem 23.3, we complete a result
in [19] and characterize those Böhm-Bawerk horse markets such that their
Shapley value belongs to the core.

Theorem 23.5 Let (M ∪M ′, wA) be a square Böhm-Bawerk horse market
where valuations of buyers are in increasing order and valuations of sellers
are in decreasing order, and ϕ(wA) its Shapley value:

ϕ(wA) ∈ C(wA)⇔ wA is an extended square glove market.

Proof. Let (M ∪M ′, wA) be a square Böhm-Bawerk horse market, with m =
m′, and assume agents have been ordered such that 0 ≤ h1 ≤ h2 ≤ · · · ≤ hm
and c1 ≥ c2 ≥ · · · ≥ cm′ ≥ 0. Then define r = min{k ∈ {1, 2, . . . ,m} |
hk − ck > 0} and notice that aij = 0 for all 1 ≤ i < r and 1 ≤ j < r. Now,
from Theorem 23.3, ϕ(wA) is in the core if and only if the valuation matrix
A is of the type (23.7). This implies that all entries aij with r ≤ i ≤ m and
r ≤ j ≤ m coincide and that aij = 0 otherwise.
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To summarize, for square Böhm-Bawerk horse markets and square assorta-
tive assignment markets, the dominant diagonal property (that in these cases
is equivalent to exactness) characterizes the core membership of the Shapley
value. As far as we know, no characterization of the core membership of the
Shapley value is known.

Neither are known formulas for the Shapley value of an arbitrary assign-
ment game in terms of its valuation matrix. However, Shapley and Shubik
[26] give a formula for the particular case of a glove market. Let us assume
(M,M ′, A) is a glove market with m ≥ m′ and aij = 1 for all (i, j) ∈M ×M ′.
Then, the Shapley value is

ϕi(wA) =
1

2
− m−m′

2m

m′∑
k=0

m!m′!

(m+ k)! (m′ − k)!
for all i ∈M,

ϕj(wA) =
1

2
+
m−m′

2m′

m′∑
k=1

m!m′!

(m− k)! (m′ + k)!
for all j ∈M ′.

Notice that when m = m′, then ϕk(wA) = 1
2 for all k ∈ M ∪M ′ and the

Shapley value of the square glove market coincides with the fair division point.

23.3.2 Axiomatic Characterization
Another approach to the study of the Shapley value in assignment games
is the axiomatic approach. It is clear by now that the Shapley value is not
pairwise-stable but, which properties does it satisfy? R. van den Brink and M.
Pintér [4] take this approach and they first investigate whether the well-known
axiomatizations of the Shapley value for coalitional games still individualize
the Shapley value in the class of assignment games. Recall for instance the
original axiomatization due to Shapley [24] by means of efficiency, symme-
try, null player property and additivity; Young’s axiomatization [31] replacing
additivity and null player property by strong monotonicity; van den Brink’s
axiomatization [3] replacing additivity and symmetry by fairness; and Hart
and Mas-Colell [8] using the potential function and a reduced game consis-
tency.

van den Brink and Pintér find out that none of these characterizations work
on the class of assignment games in the sense that there exist other solutions
that satisfy these axioms. As an example of an alternative solution satisfying
these axioms, they introduce the solution that is obtained as the average of
the buyers come first (BCF) and the sellers come first (SCF) solutions. The
BCF solution for assignment games is obtained by allocating to every seller
her average marginal contribution over all permutations where all the buyers
enter before any seller. Obviously, every buyer earns zero in any such marginal
vector, since there are no sellers available when buyers enter the market. Re-
versely, the SCF solution for assignment games is obtained by allocating to
every buyer his average marginal contribution over all permutations where all
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the sellers enter before any buyer (and thus every seller earns zero). Taking
the average over these two solutions, they obtain a solution on the class of
assignment games that, on this class, satisfies efficiency, additivity, symmetry,
the null player property, strong monotonicity and fairness.

Given a buyer-seller market (M,M ′, A) let the buyers come first situation
define the TU game (M ′, wMA ) in which the worth of coalitions of sellers is
defined by

wMA (S) = wA(M ∪ S) for all S ⊆M ′. (23.8)

Similarly, for the sellers come first situation, consider the TU-game (M,wM
′

A )
in which

wM
′

A (S) = wA(M
′ ∪ S) for all S ⊆M. (23.9)

The solution proposed in [4] is(
1

2
Sh(wM

′

A ),
1

2
Sh(wMA )

)
∈ RM × RM

′
.

It basically captures the idea of the Shapley value but for markets in which one
sector is fully available to form coalitions with agents from the other market
sector. It is easy to see that ( 12Sh(w

M ′

A ), 12Sh(w
M
A )), in general, is not a core

allocation of the game (M ∪M ′, wA).
Once seen that the known axiomatizations do not characterize the Shapley

value in the class of assignment games, van den Brink and Pintér look for other
properties that characterize this solution. Since assignment games can be seen
as a particular case of games with cooperation restricted by a communication
graph, as introduced in Myerson [15], the above authors base their study on
Myerson’s characterization of the Shapley value on that class of games.

To this end, let us denote by ΓM×M ′

0 the class of assignment markets
with set of buyers M and set of sellers M ′, that is (M,M ′, A) for some m ×
m′ valuation matrix A. We use this notation to remark that in this model
coalitions formed by only one individual have null worth, in comparison with
a related model we will introduce in the next section. Since the set of agents
M ∪M ′ is fixed, whenever it is convenient, we can identify each such market
(M,M ′, A) with its valuation matrix A.

A (single-valued) solution φ on the domain ΓM×M ′

0 is a function φ :

ΓM×M ′

0 −→ RM × RM ′ .
Following van den Brink and Pintér [4], a submarket of an assignment

market (M,M ′, A) is defined by a set of buyers and sellers such that all buyers
in the set have zero valuation for the goods offered by the sellers outside the
set, and all buyers outside the set have zero valuation for the goods offered
by sellers inside the set.

Definition 23.1 Given ∅ ̸= S ⊆ M and ∅ ̸= T ⊆ M ′, (S, T ) is a submarket
of (M,M ′, A) ∈ ΓM×M ′

0 if aij = 0 for all (i, j) ∈ (S×(M ′\T ))∪((M \S)×T ).



526 Handbook of the Shapley Value

Now, submarket efficiency requires that the sum of the payoffs of all agents
in a submarket equal the worth of the submarket.

Definition 23.2 A solution φ on the domain ΓM×M ′

0 satisfies submarket
efficiency if for all markets (M,M ′, A) and all of its submarkets (S, T ), it
holds ∑

k∈S∪T

φk(A) = wA(S ∪ T ).

The second axiom will be valuation fairness. Valuation fairness of a solu-
tion applied to assignment markets implies that decreasing the valuation of
one particular buyer for the good offered by a particular seller to zero changes
the payoffs of this buyer and seller by the same amount.

Definition 23.3 A solution φ on the domain ΓM×M ′

0 satisfies valuation fair-
ness if for all (i∗, j∗) ∈ M ×M ′, and all (M,M ′, A) and (M,M ′, A′) such
that a′ij = aij for all (i, j) ∈ (M ×M ′) \ {(i∗, j∗)} and a′i∗j∗ = 0, it holds

φi∗(A)− φi∗(A′) = φj∗(A)− φj∗(A′).

Theorem 23.6 (van den Brink and Pintér, 2015) The Shapley value is
the unique solution on ΓM×M ′

0 that satisfies submarket efficiency and valuation
fairness.

The Shapley value satisfies an even stronger valuation fairness property
which states that changing the valuation of one particular buyer for the good
offered by a particular seller in any way, changes the payoffs of this buyer and
seller by the same amount.

Let us mention to conclude this section that the Shapley value also satisfies
pairwise monotonicity. This property requires that the payoffs of buyer i ∈M
and seller j ∈M ′ do not decrease if we only increase the valuation of buyer i
for the good offered by seller j. The proof is straightforward from the definition
of the Shapley value payoff of an agent as the weighted average of all his/her
marginal contributions: Increasing only valuation aij does not affect the worth
of coalitions not containing i or j and does not decrease the worth of coalitions
containing both i and j. This monotonicity property is also satisfied by other
single-valued solutions of the assignment game, such as the ones that select
the buyers-optimal core allocation, the sellers-optimal core allocation or the
fair division point (see [16]).
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23.4 The Shapley Value of a Related Market
In order to reconcile the notion of Shapley value with core stability in assign-
ment markets, we may associate with each such market some related exact
assignment market.

The first attempt is done in Núñez and Rafels [20]. There, to any square
assignment market (M,M ′, A), a unique exact assignment market (M,M ′, Ac)
can be associated that is defined on the same set of agents and with a core that
is a translation of the core of the initial market. The new valuation matrix Ac
is defined by

acij = aij − uAi − vAj , for all (i, j) ∈M ×M ′, (23.10)

where aij are the values in the buyer-seller exact representative as defined in
(23.6) and (uA, vA) is the vector of minimum core payoffs of (M,M ′, A) as
defined in (23.4).

From the above definition, it is easy to check that (M ∪M ′, wAc) is an
exact assignment game and

C(wA) = {(uA, vA)}+ C(wAc).

Hence, it is natural to consider the translation of the Shapley value of the
exact game (M ∪ M ′, wAc) as a single-valued core selection for the initial
assignment game (M ∪M ′, wA).

Definition 23.4 (Núñez and Rafels, 2009) Given a square assignment
market (M,M ′, A) in ΓM×M ′

0 , the translated Shapley value ϕt(wA) is

ϕt(wA) = (uA, vA) + ϕ(wAc).

By its definition, it is straightforward to see that, for any square assignment
market (M,M ′, A), ϕt(wA) belongs to the core of the original assignment
market, that is, ϕt(wA) ∈ C(wA), and also to find examples that show that
it differs from other well-known core solutions like the nucleolus and the fair
division point.

However, to compute the translated Shapley value, we need to obtain the
buyer-seller exact representative A which, according to (23.6), means solving
(m×m′) + 1 combinatorial optimization problems.

Núñez and Solymosi [22] propose an algorithm that obtains the matrix A
in polynomial time. To do so, we need to enlarge the domain of assignment
markets and allow for individual reservation values. Assignment games with
reservation values are introduced by Owen ([23]).
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23.4.1 Assignment Markets with Reservation Values
Let M and M ′ be the sets of buyers and sellers, respectively. Each buyer
i ∈ M has a non-negative valuation aij ∈ R+ for the object of seller j ∈ M ′,
and also a reservation value ai0 ≥ 0. Each seller j ∈M ′ has also a reservation
value a0j ≥ 0.

By introducing a fictitious agent on each side of the market, we summarize
these valuations in a matrix A = (aij)(i,j)∈M0×M ′

0
, where M0 and M ′

0 are the
sets of buyers and sellers, respectively, enlarged with the fictitious agents, and
by convention a00 = 0. Then, an assignment market with reservation values is
defined by (M,M ′, A), where A is an (m+1)× (m′ +1) non-negative matrix
with a00 = 0, and the set of all such markets will be denoted by ΓM×M ′ .

Given a non-empty subset of buyers S ⊆ M and a non-empty subset of
sellers T ⊆ M ′, a matching is a partition of S ∪ T in mixed-pair coalitions
and singletons. We denote by M(S, T ) the set of matchings between S and
T . Given a market (M,M ′, A), a matching µ is optimal if the addition of the
values of the elements of partition µ is not less than the addition of values
for any other partition µ′ ∈ M(M,M ′). Then, the corresponding assignment
game with reservation values is (M∪M ′, wA) where, for all i ∈M and j ∈M ′,
wA({i, j}) = aij , wA({i}) = ai0, wA({j}) = a0j , and for all coalition R ⊆
M ∪M ′, wA(R) is the maximum worth obtained over all possible partitions of
R in mixed-pair coalitions and singletons. Notice that, although its valuation
matrix is (m+ 1)× (m′ + 1), the player set of the corresponding assignment
game with reservation values is M ∪M ′ and has cardinality m+m′.

It is straightforward to check that the core of an assignment game with
reservation values (M ∪M ′, wA) is determined by the valuation matrix, with
no need to compute the worth of all coalitions. Given any optimal matching
µ of the market (M,M ′, A) with reservation values, the core is

C(wA) =

(u, v) ∈ RM × RM
′

∣∣∣∣∣∣∣∣∣∣
for all i ∈M and j ∈M ′

ui + vj ≥ aij and ui + vj = aij if {i, j} ∈ µ,
ui ≥ ai0, vj ≥ a0j ,
ui = ai0 for all {i} ∈ µ,
vj = a0j for all {j} ∈ µ.


Each assignment game with reservation values (M ∪M ′, wA) is strategically
equivalent1 to a Shapley and Shubik assignment game (that is, an assignment
game with null reservation values). More precisely, it is strategically equivalent
to the game (M ∪M ′, wÃ) where Ã is the m ×m′ matrix defined by ãij =

max{0, aij − ai0 − a0j} for all (i, j) ∈ M ×M ′. In fact, ΓM×M ′ is the set of
all games that are strategically equivalent to some assignment game with set
of buyers M and set of sellers M ′.

1A game (N, v′) is strategically equivalent to a game (N, v) if there exists a vector d ∈ RN

such that v′(S) =
∑

i∈S di + v(S) for all S ⊆ N .
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As a consequence, the core of an assignment game with reservation values
inherits the properties of the core of the Shapley and Shubik assignment game:
It is always non-empty and it has a lattice structure with one optimal core
allocation for each side of the market.

23.4.2 The Shapley Value of the Exact Assignment Game
with the same Core

We will now consider a Shapley and Shubik assignment game (M ∪M ′, wA)
and obtain the unique exact game with the same core. This exact game, may
not be in the class ΓM×M ′

0 but will belong to the class ΓM×M ′ of assignment
games with reservation values. To this end, we will assume without loss of
generality that there are the same number of players of both types (i.e., the
dimension of the underlying valuation matrix A is m×m).

Notice that any Shapley and Shubik assignment game (M∪M ′, wA) can be
represented as an assignment game with null reservation values just defining
the (m + 1) × (m + 1) matrix A0 obtained from A by adding the row and
column of individual values ai0 = a0j = 0 for all i ∈ M and j ∈ M ′, and
a00 = 0. Notice that (M ∪M ′, wA0) ∈ ΓM×M ′ and C(wA) = C(wA0).

In order to obtain a unified notation, once we have introduced a fictitious
row player and a fictitious column player, we identify the ‘real’ mixed-pair
coalition {i, j}, i ∈ M , j ∈ M ′ with the ordered pair (i, j); we write (i, 0)
for single-player coalition {i}, i ∈M , and (0, j) for {j}, j ∈M ′; finally, (0, 0)
denotes the coalition of the two fictitious players. Since the type of the players
is determined by their positions in the ordered pairs, it will be convenient to
use a common set N0 = {0, 1, 2, . . . ,m} of indices, where m is the number of
agents on each side of the market.

We assume that the rows and columns of the augmented (square) valua-
tion matrix A0 are arranged such that the diagonal assignment {(i, i) : i ∈
{1, 2, . . . ,m}} is optimal, i.e., wA(M ∪M ′) =

∑m
i=1 aii.

With all the above conventions, the core of the assignment game (M ∪
M ′, wA0) induced by matrix A0 is

C(wA0)=
{
(u, v) ∈ RM× RM

′
|ui + vi = aii ∀i ∈ N0, ui + vj ≥ aij∀i, j ∈ N0

}
,

(23.11)
where u0 = v0 = 0 is set by convention.

Given the assignment game (M ∪M ′, wA), let us consider the following
algorithm.

Algorithm Cover [Núñez and Solymosi, 2017]
Initially, let A0 = AM0×M0 be a square (m + 1) × (m + 1) matrix with
ai0 = a0j = a00 = 0 for all i ∈ M and j ∈ M ′ and an optimal matching on
the main diagonal. Set r = 1.
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Iteration r: Compute the (m+1)× (m+1) matrix Ar from matrix Ar−1 as
follows:

arij := max
{
ar−1
ij ,max{ar−1

ik + ar−1
kj − a

r−1
kk : k ∈ N0\{i, j}}

}
for all i, j ∈ N0.

(23.12)
If Ar = Ar−1, then STOP, else set r := r + 1 and start a new iteration.

Output: Matrix Ae where e is the first e ≥ 1 for which Ae = Ae−1.

It is proved in [22] that the Cover algorithm ends in at most m iterations,
where m is the number of agents on each side of the market, and its number
of elementary operations is O(m4). Also, in each step of the algorithm, an
optimal matching is on the main diagonal and the core of the related market
with reservation values coincides with the core of the initial game: C(wAr ) =
C(wA0) = C(wA) for all 1 ≤ r ≤ e. Moreover, the output Ae of the algorithm
satisfies the doubly dominant diagonal property.

We now show that the output of the algorithm Cover is the only valuation
matrix that defines an exact assignment game with reservation values with the
same core than the initial Shapley and Shubik assignment game.

Theorem 23.7 Let (M,M ′, A) ∈ ΓM×M ′

0 be an assignment market and
(M,M ′, Ae) ∈ ΓM×M ′ the assignment market with reservation values where
Ae is the output of the algorithm Cover. Then, the game (M ∪M ′, wAe) is
exact and C(wAe) = C(wA).

Proof. From the properties of the algorithm Cover in [22], we know
C(wAe) = C(wA). We only need to prove exactness. Let us define the val-
uation matrix C̃ with reservation values that results from Ae by substracting
aei0 from each row i ∈M and ae0j from each column j ∈M ′. Then, the entries
of C̃ are

cij = aeij − aei0 − ae0j , for all (i, j) ∈M ×M ′,
ci0 = aei0 − aei0 = 0, for all i ∈M,
c0j = ae0j − ae0j = 0, for all j ∈M ′.

(23.13)

Notice first that, since Ae satisfies the doubly dominant diagonal property,
then C̃ ≥ 0. Since its individual reservation values are null, the assignment
game with reservation values (M ∪M ′, wC̃) can be identified with the Shapley
and Shubik assignment game (M ∪M ′, wC) with C = (cij)(i,j)∈M×M ′ . It can
be checked from (23.13) that for any S ⊆M and T ⊆M ′, it holds

wAe(S ∪ T ) =
∑
i∈S

aei0 +
∑
j∈T

ae0j + wC(S ∪ T ). (23.14)

The above equation means that the games (M ∪M ′, wAe) and (M ∪M ′, wC)
are strategically equivalent and, as a consequence, if we define the payoff vector
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(aeM , a
e
M ′) by (aeM )i = aei0 for all i ∈ M and (aeM ′)j = ae0j for all j ∈ M ′, the

cores of the two games are related just by a translation:

C(wAe) = {(aeM , aeM ′)}+ C(wC). (23.15)

Moreover, matrix C has a dominant diagonal and a doubly dominant di-
agonal. Indeed, this follows from the doubly dominant diagonal property of
matrix Ae: For all i, j ∈ {1, 2, . . . ,m}, we have ae0j + aeii ≥ ae0i + aeij which
implies

ae0j + (cii + aei0 + ae0i) ≥ ae0i + (cij + aei0 + ae0j) and hence cii ≥ cij ;

and cij ≥ cji is obtained in a similar way. Also, for all i, j, k ∈ {1, 2, . . . ,m},

aeij + aekk ≥ aeik + aekj =⇒ cij + ckk ≥ cik + ckj .

As a consequence, by Theorem 23.1, (M ∪M ′, wC) is an exact assignment
game, which implies (M∪M ′, wAe) is also exact. To prove this, for any S ⊆M
and T ⊆ M ′, let (u, v) ∈ C(wC) be such that u(S) + v(T ) = wC(S ∪ T ) and
define the payoff vector (u′, v′) ∈ RM × RM ′ by u′i = aei0 + ui for all i ∈ M
and v′j = ae0j + vj for all j ∈M ′. It then follows from (23.15) and (23.14) that
(u′, v′) ∈ C(wAe) and u′(S) + v′(T ) = wAe(S ∪ T ).

A first immediate consequence of the above theorem is that (aeM , a
e
M ′) is

simply the vector (uA, vA) of minimum core payoffs of the market (M,M ′, A)
and also that for all (i, j) ∈ M × M ′, aeij is the worth of the mixed-pair
(i, j) in the buyer-seller exact representative, aeij = aij . As a consequence, the
m×m matrix C defined in (23.13) is simply the matrix Ac defined in (23.10).
Hence, taking into account that the Shapley value is covariant with respect
to strategic equivalence, we get

ϕ(wAe) = (aeM , a
e
M ′) + ϕ(wC) = (uA, vA) + ϕ(wAc) = ϕt(wA)

which shows that the Shapley value of the exact assignment game with reser-
vation values coincides with the translated Shapley value of Definition 23.4,
as stated below.

Theorem 23.8 Let (M,M ′, A) be a square assignment market and
(M,M ′, Ae) the only exact assignment market with reservation values such
that C(wAe) = C(wA). Then,

ϕ(wAe) = ϕt(wA).

The first matrix in Table 23.2 is the valuation matrix A of an assignment
market (M,M ′, A) where M = {1, 2} and M ′ = {1′, 2′}. The second matrix
is the valuation matrix Ae of the associated exact assignment market with
reservation values that can be computed by means of the algorithm Cover.

Next we have computed three single-valued solutions for the above ex-
ample: The Shapley value, the fair division point and the translated Shapley
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A 0’ 1’ 2’ Ae 0’ 1’ 2’
0 0 0 0 0 0 1 0
1 0 4 1 1 0 4 1
2 0 3 2 2 0 3 2

TABLE 23.2: A market (M,M,A) and its related exact assignment market.

value. This example illustrates that the Shapley value of the related exact
assignment market (or translated Shapley value) may differ from the fair di-
vision point.
Shapley value ϕ(wA) = (1.58, 1.25; 2.25, 0.92) ̸∈ C(wA)
Fair division point τ(wA) = (1.5, 1; 2.5, 1) ∈ C(wA)
Shapley value of the exact market ϕt(wA) = (1.42, 1.08; 2.58, 0.92) ∈ C(wA)

23.5 Conclusions
We have proposed in this chapter to consider, for any assignment game, the
single valued solution that assigns the Shapley value of the only exact assign-
ment game with reservation values that has the same core. From Theorem
23.8, we know that this solution will always lie in the core of the initial as-
signment game. Of course, when the initial assignment game is already exact,
ϕ(wAe) coincides with the Shapley value ϕ(wA).

As far as we know, there is no axiomatic characterization of the Shapley
value of the related exact market. Since this solution selects a core allocation,
we easily deduce that it satisfies the submarket efficiency property of van
den Brink and Pintér axiomatization of the Shapley value. Hence, it will not
satisfy valuation fairness since we know this solution may differ from the
Shapley value.

23.6 Acknowledgments
The authors acknowledge support from research grant ECO2017-86481-P
(Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Re-
gional (FEDER)) and 2017SGR778 (Generalitat de Catalunya).



Shapley Values for Two-Sided Assignment Markets 533

Bibliography
[1] Balinski, M.L., Gale, C. (1990) On the core of the assignment game. In:

Leifman, L.J. (ed.): Functional Analysis, Optimization and Mathematical
Economics, pp. 274-289, Oxford University Press.

[2] Becker, G.S. (1973) A theory of marriage: Part I. Journal of Political
Economy 81, 813-846.

[3] Brink van den, R. (2001) An axiomatization of the Shapley value using
a fairness property. International Journal of Game Theory 30, 309-319.

[4] Brink van den, R., Pintér, M. (2015) On axiomatizations of the Shapley
value for assignment games. Journal of Mathematical Economics 60, 110-
114.

[5] Demange, G. (1982) Strategyproofness in the assignment market game,
Laboratorie d’Économétrie de l’École Polytechnique, Paris, Mimeo.

[6] Gale, D., Shapley, L.S. (1962) College admission and the stability of mar-
riage. American Mathematical Monthly 69, 9-15.

[7] Hamers, H., Klijn, F., Solymosi, T., Tijs, S., Villar, J.P. (2002) Assign-
ment games satisfy the CoMa property. Games and Economic Behavior
38, 231-239.

[8] Hart, S., Mas-Colell, A. (1989) Potential, value and consistency. Econo-
metrica 57, 589-614.

[9] Hoffman, M., Sudhölter, P. (2007) The Shapley value of exact assignment
games. International Journal of Game Theory 35, 557-568.

[10] Izquierdo, J.M., Núñez, M., Rafels, C. (2007) A simple procedure to ob-
tain the extreme core allocations of the assignment market. International
Journal of Game Theory 36, 17-26.

[11] Llerena, F., Núñez, M., Rafels, C. (2015) An axiomatization of the nu-
cleolus of the assignment game. International Journal of Game Theory
44, 1-15.

[12] Leonard, H.B. (1983) Elicitation of honest preferences for the assignment
of individuals to positions. Journal of Political Economy 91, 461-479.

[13] Martínez de Albéniz, F.J., Rafels, C., Ybern, N. (2013) A procedure
to compute the nucleolus of the assignment game. Operations Research
Letters 41, 675-678.



534 Handbook of the Shapley Value

[14] Martínez de Albéniz, F.J., Rafels, C., Ybern, N. (2019) Solving Becker’s
assortative assignments and extensions. Games and Economic Behavior
113, 248-261.

[15] Myerson, R.B. (1977) Graphs and cooperation in games. Mathematics of
Operations Research 2, 225-229.

[16] Núñez, M., Rafels, C. (2002a) The assignment game: The τ -value. Inter-
national Journal of Game Theory 31, 411-422.

[17] Núñez, M., Rafels, C. (2002b) Buyer-seller exactness in the assignment
game. International Journal of Game Theory 31, 423-436.

[18] Núñez, M., Rafels, C. (2003) Characterization of the extreme core al-
locations of the assignment game. Games and Economic Behavior 44,
311-331.

[19] Núñez, M., Rafels, C. (2005) The Böhm-Bawerk horse market: A coop-
erative analysis. International Journal of Game Theory 33, 421-430.

[20] Núñez, M., Rafels, C. (2009) A glove market partitioned matrix related
to the assignment game. Games and Economic Behavior 67, 598-610.

[21] Núñez, M., Rafels, C. (2013) Von Neumann-Morgenstern solutions in the
assignment market. Journal of Economic Theory 148, 1282-1291.

[22] Núñez, M., Solymosi, T. (2017) Lexicographic allocations and extreme
core payoffs: The case of the assignment game. Annals of Operations
Research 254, 211-234.

[23] Owen, G. (1992) The assignment game: The reduced game. Annales
d’Économie et de Statistique 25/26, 71-79.

[24] Shapley, L.S. (1953) A Value for n-Person Games. In: Kuhn, H.W.,
Tucker, A.W. (eds.), Contributions to the Theory of Games Vol. 2, pp.
307-317, Princeton UP, Princeton.

[25] Shapley, L.S. (1962) Complements and substitutes in the optimal assign-
ment problem. Naval Research Logistics Quarterly 9, 45-48.

[26] Shapley, L.S., Shubik, M. (1969) Pure competition, coalitional power and
fair division. International Economic Review 10, 337-362.

[27] Shapley, L.S., Shubik, M. (1972) The assignment game: The core. Inter-
national Journal of Game Theory 1, 111-130.

[28] Solymosi, T., Raghavan, T.E.S. (1994) An algorithm for finding the nu-
cleolus of assignment games. International Journal of Game Theory 23,
119-143.



Shapley Values for Two-Sided Assignment Markets 535

[29] Solymosi, T., Raghavan, T.E.S. (2001) Assignment games with stable
core. International Journal of Game Theory 30, 177-185.

[30] Thompson, G.L. (1980) Auctions and market games. In: Aumann, R.
(ed.) Game Theory and Mathematical Economics in honour of Oskar
Morgenstern, pp. 181-196.

[31] Young, H.P. (1985) Monotonic solutions of cooperative games. Interna-
tional Journal of Game Theory 14, 65-72.



http://taylorandfrancis.com


Chapter 24
The Shapley Value in Minimum Cost
Spanning Tree Problems

Christian Trudeau
Department of Economics, University of Windsor, Windsor, Canada.
E-mail: trudeauc@uwindsor.ca

Juan Vidal-Puga
Economics, Society and Territory (ECOSOT) and Departamento de Estatís-
tica e IO, Universidade de Vigo, Vigo, Spain. E-mail: vidalpuga@uvigo.es

24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
24.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

24.2.1 Cooperative Cost Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
24.2.2 Minimum Cost Spanning Tree Problems . . . . . . . . . . . . . . . . 539

24.3 Associated Cooperative Cost Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
24.3.1 The Private mcst Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
24.3.2 The Public mcst Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
24.3.3 The Optimistic mcst Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
24.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

24.4 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
24.4.1 The Kar Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
24.4.2 The Folk Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
24.4.3 The Cycle-Complete Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

24.5 Axiomatic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
24.6 Correspondences with Other Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 553

24.6.1 Weighted Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
24.6.2 The Core and the Nucleolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

24.7 The Shapley Value in Other Related Problems . . . . . . . . . . . . . . . . . . 554
24.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

537

mailto:trudeauc@uwindsor.ca
mailto:vidalpuga@uvigo.es


538 Handbook of the Shapley Value

24.1 Introduction
The Shapley value is a very appealing solution concept that is characterized by
its reliance on contributions [51] and satisfies many interesting properties in
the general set of cooperative games, such as “additivity” [38] and “balanced
contributions”. A drawback is that the Shapley value payoff vector might not
be stable in the sense of core selection: Even for games for which the core is
nonempty, the Shapley value might propose allocations giving some coalitions
incentives to secede.

An interesting family of balanced games in which the Shapley value has
nonetheless received considerable attention is the class of minimum cost span-
ning tree (mcst) problems, which model situations where a group of agents,
located at different nodes of a network, require a service provided by a source
and do not care if they connect directly to the source or through other agents
already connected. The cost of an edge between two nodes has to be paid when
used, but cost remains invariant if more than one agent uses it to connect to
the source.

As the cost of the efficient network connecting all agents to the source is
easily found, we consider the problem of sharing the cost of that network among
its users. There are many ways to define a TU-game from the mcst problem,
depending on our assumptions on property rights and on the behavior of non-
cooperating agents. The most commonly used game is the private mcst game,
which limits the nodes that a coalition can use to those of its members.

Regardless of how the game is defined, a mcst problem typically induces a
game with a large nonempty core and, moreover, it allows population mono-
tonic allocations schemes [35]. However, for the private mcst game, the Shapley
value does not always belong to its core. This fact has led some authors to
claim that the Shapley value is not a good solution concept in mcst prob-
lems [40].

Yet, even if we are interested in the private mcst game, we can use the
Shapley values of some reasonable alternative cost games that belong to the
core of the private mcst game. Moreover, those solutions rely on contributions
and maintain the nice properties of “additivity”, “balanced contributions”,
among others, in the context of minimum cost spanning tree problems.

This chapter surveys the growing literature on mcst games and it is orga-
nized as follows: In Section 24.2 we present the model and some basic defi-
nitions. In Section 24.3 we define three different cooperative cost games that
can be associated to a minimum cost spanning tree problem. In Section 24.4
we describe the respective Shapley values associated to the previous coopera-
tive cost games. In Section 24.5 we review their axiomatic characterizations.
In Section 24.6 we study the weighted versions of the Shapley value and also
compare it with other solution concepts such as the nucleolus. In Section 24.7
we comment on some studies of the Shapley value in other problems related
to mcst. Finally, in Section 24.8 we conclude.
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24.2 Definitions
We first define general cost games, before introducing minimum cost spanning
tree problems.

24.2.1 Cooperative Cost Games
Let N = {1, 2, . . . } be a (countably infinite) set of potential agents, and let
N = {1, . . . , n} be a generic nonempty, finite set of N .

A (cost sharing) game is a pair (N,C) where C is a cost function that
assigns to each nonempty coalition S ⊆ N the cost C(S) ∈ R+ that agents in
S should pay in order to receive the service.

For any S ⊆ N, let x(S) =
∑
i∈S xi. A preimputation is an allocation

x ∈ RN such that x(N) = C(N). Given S ⊆ N and x ∈ RN , we denote as
xS ∈ RS the restriction of x to RS .

We define the set of stable allocations as Core(C). Formally, an allocation
x belongs to Core(C) if it is a preimputation such that x(S) ≤ C(S) for all
S ⊂ N .

24.2.2 Minimum Cost Spanning Tree Problems
We assume that the agents in N need to be connected to a source, denoted
by 0. Let N0 = N ∪{0}. For any set Z, define Zp as the set of all non-ordered
pairs (i, j) of distinct elements of Z. In our context, any element (i, j) in Zp

represents the (undirected) edge between nodes i and j. Let c = (ce)e∈Np
0

be a
vector in RN

p
0

+ with Np
0 = (N0)

p and ce representing the cost of edge e. Given
E ⊂ Np

0 , its associated cost is c(E) =
∑
e∈E ce. For simplicity, we write cij

instead of c(i,j) for all i, j ∈ N0.
Since c assigns a cost to all edges e, we often abuse language and call c a

cost matrix. Let Γ be the set of all cost matrices. A mcst problem is a pair
(N0, c). When there is no ambiguity, we identify a mcst problem (N0, c) by its
cost matrix c.

Given l ∈ N0, a cycle pll is a set of K ≥ 3 edges (ik−1, ik), with k ∈
{1, . . . ,K} and such that i0 = iK = l and i1, . . . , iK−1 distinct and different
than l. Given l,m ∈ N0, a path ψlm between l and m is a set of K edges
(ik−1, ik), with k ∈ {1, . . . ,K}, containing no cycle and such that i0 = l and
iK = m. Let Ψlm(N0) be the set of all paths between nodes l and m.

A spanning tree is a non-oriented graph without cycles that connects all
elements of N0. A spanning tree t is identified by the set of its edges.

We call mcst a spanning tree that has a minimal cost. It can be obtained
using a greedy algorithm, for example Prim [36], Kruskal [29], or Borůvka’s
[19] algorithms.
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24.3 Associated Cooperative Cost Games
Having established how to connect efficiently all agents to the source, we now
examine how to share the cost of such connections. To derive from a mcst
problem a cooperative game that represents the cost for each coalition to act
alone, we need to determine the rules of the game, i.e., what exactly a coalition
is allowed to do when it is alone. In the context of mcst problems, we consider
three possibilities:
The private mcst game The cost assigned to coalition S ⊂ N is computed

by assuming that nodes in S should connect without using nodes N \S,
i.e., nodes outside S are unavailable.

The public mcst game The cost assigned to coalition S ⊂ N is computed
by assuming that agents in S may use edges in N \ S, paying the costs
of the edges they use.

The optimistic mcst game The cost assigned to coalition S ⊂ N is com-
puted by assuming that nodes in N \ S are already connected to the
source, and hence agents in S just need to connect either to a node in
N \ S or to the source.

We analyze each of these possibilities one by one.

24.3.1 The Private mcst Game
The most common assumption in the literature is that a coalition only has
access to the nodes of its members to connect to the source. In this approach,
we assume that agents have property rights over their respective nodes, forcing
a coalition to only use the nodes of its members. We thus call the resulting
game the private mcst game.

Formally, let cS be the restriction of the cost vector c to the coalition
S0 ⊆ N0. Let C(S, c) be the cost of the mcst of the problem (S0, cS). We say
that C is the stand-alone cost for the private mcst game associated with c.

24.3.2 The Public mcst Game
An alternative approach is to suppose that there are no property rights on
nodes: A coalition S can use the nodes of its neighbours in N \S to connect to
the source if they desire so. We call the resulting game the public mcst game.
It was first explicitly considered in [18], and also examined and contrasted
with the private game in [44, 49].

We thus obtain the following characteristic cost function. For all S ⊆ N ,
we have

CPub(S, c) = min
T⊆N\S

C(S ∪ T, c).
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It is thus obvious that for all S ⊂ N , CPub(S, c) ≤ C(S, c) and CPub(N, c) =
C(N, c).

24.3.3 The Optimistic mcst Game
We finally consider the case where agents are the last to move: Others have
connected to the source, and they only need to add themselves to the tree.1 A
coalition S can either connect to the source or to any node in N \ S. We call
the resulting game the optimistic mcst game. It was first used in the context
of mcst problems2 by Bergantiños and Vidal-Puga [12].

Formally, let c+S be the cost matrix on S0 defined as c+S0i = minj∈N0\S cij
and c+Sij = cij otherwise, for all i, j ∈ S.

We thus obtain the following cost function. For all S ⊆ N, we have

C+(S, c) = C
(
S, c+S

)
.

By contrast, the two other approaches are pessimistic, as the stand-alone
cost of a coalition is computed under the assumption that the other agents
are not connected.

It is obvious that for all S ⊂ N , C+(S, c) ≤ CPub(S, c) ≤ C(S, c) and
C+(N, c) = CPub(N, c) = C(N, c).

24.3.4 Example
Consider the mcst problem described in Figure 24.1, for which N = {1, 2, 3}
and the cost of each edge is indicated on it.

0

1 2

3
42 90

48

42

36 36

FIGURE 24.1: Minimum cost spanning tree problem.

1See [6] for a real-life example of this situation.
2Maniquet [32] considered the same idea in the context of queueing problems.
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S C(S, c) CPub(S, c) C+(S, c)

{1} 42 42 36
{2} 90 84 36
{3} 48 48 36
{1, 2} 84 84 72
{1, 3} 78 78 72
{2, 3} 84 84 72
{1, 2, 3} 114 114 114

There is a single mcst in this game: t∗ = {(0, 1), (1, 3), (2, 3)}. The func-
tions C and CPub differ only for agent 2: In the private game she can only
connect to the source by using edge (0, 2), at a cost of 90. In the public
game, she can connect at a lower cost of 84 by using trees {(0, 1), (1, 2)} or
{(0, 3), (2, 3)}. The optimistic game is quite different, and only the grand coali-
tion has the same cost as in other approaches. For example, agent 2 can now
free-ride on the edges established by other agents and can connect by adding
edge (2, 3) at a cost of 36.

24.4 The Shapley Value
In what follows, a solution is a function that assigns to each mcst problem
(N0, c) a preimputation y ∈ RN . As in most cost sharing problems, the Shapley
value is a natural candidate to share the cost in a mcst problem. We study
three ways to do so, depending on the cooperative game associated to the
mcst problem.

24.4.1 The Kar Solution
The Shapley value of the private mcst game is known in the literature as the
Kar solution, following the axiomatic analysis of the method in [28]. Formally,
we define the Kar solution as yK(c) = Sh(C(N, c)). Ando [1] shows that
computing the Kar solution is #P-hard even if the edges are restricted to
costs of 0 or 1.

The Shapley value of the public mcst game has not received much more
attention. We define it here as yKPub

(c) = Sh(CPub(N, c)).
Whether we are applying it to the private or public version of the game,

there is one major problem: Even though the cores of the private and public
mcst problems are always non empty, the Shapley values might not be in
them, a fact observed as early as in [17].



The Shapley Value in Minimum Cost Spanning Tree Problems 543

In our running example, we obtain yK(c) = (28, 55, 31) and yK
Pub

(c) =
(29, 53, 32). Notice that whether we are in the private or public game, the
stand-alone cost for coalition {2, 3} is 84. The (private) Kar solution assigns
them a joint cost of 86, while the public version assigns them 85. Therefore,
both are unstable.

Following this observation, researchers have proposed solutions that are in
the core. We focus in this paper on the two solutions that are based on the
Shapley value, the folk and the cycle-complete solutions. Other stable solutions
are based on the network-building algorithms, and include the Bird solution
[17], the Dutta-Kar solution [22] and the obligation rules [5, 7, 8, 31, 42].

24.4.2 The Folk Solution
The folk solution can be obtained by applying the Shapley value to two dif-
ferent situations.

The first one is by transforming the cost matrix into an irreducible cost
matrix, which is such that no edge cost can be reduced without reducing the
cost of the grand coalition to connect to the source [17]. From any cost matrix
c, we can define the irreducible cost matrix c∗ as follows:

c∗ij = min
ψij∈Ψij(N0)

max
e∈ψij

ce for all i, j ∈ N0.

Interestingly, it is not difficult to verify that for any irreducible matrix c,
C(·, c) = CPub(·, c). That is, once we have transformed the cost matrix into
its irreducible cost matrix, the property rights on the nodes are irrelevant.
One can thus argue that using the irreducible matrix will yield solutions that
are closer in spirit to the public approach than the private one [45]. Following
[11], the folk solution is defined as yf (c) = Sh(C∗(N, c)), where C∗(N, c) is
the stand-alone game induced by the irreducible cost matrix c∗.

In our running example, we obtain the following irreducible matrix: Agent
3 is linked to the source with path {(0, 1), (1, 3)} for which the most expen-
sive edge costs 42, so c∗03 = 42. Agent 2 is linked to the source with path
{(0, 1), (1, 3), (2, 3)} for which the most expensive edge costs 42, so c∗02 = 42.
Agents 1 and 2 are linked to each other with the path {(1, 3), (2, 3)} for which
the most expensive edge costs 36, so c∗12 = 36. The costs of other edges stay
unchanged. This results in C∗(S, c) = 42 if |S| = 1, C∗(S, c) = 78 if |S| = 2
and C∗(N, c) = 114. Thus, yf (c) = (38, 38, 38) due to the symmetry of the
agents. See Figure 24.2.

Bird [17] first studied Core(C∗(N, c)), and called it the irreducible core.
Since C∗ is a concave cost game (Proposition 3.3c in [11]), its Shap-
ley value belongs to the irreducible core. Finally, since Core(C∗(N, c)) ⊆
Core(CPub(N, c)) ⊆ Core(C(N, c)), we have the following result.

Theorem 24.1 (Bergantiños and Vidal-Puga [11]) For all c ∈ Γ, yf (c)
is in Core(C(N, c)).
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0

1 2

3
42 42

42

36

36 36

FIGURE 24.2: Irreducible matrix associated to Example 24.1.

The folk solution is thus remarkably stable: It is always in the core, re-
gardless of how we define the core.

The second definition of the folk rule using the Shapley value is through
the optimistic version of the cost game. Bergantiños and Vidal-Puga [11]
show that the folk rule is the Shapley value of the optimistic game, i.e.,
yf = Sh(C+(N, c)). This is due to the fact that the private mcst game associ-
ated with the irreducible cost vector is dual to the optimistic cost game, i.e.,
C∗(S, c) + C+(N \ S, c) is independent of S (Theorem 1 in [12]).

Other definitions of the folk solution are possible. Bergantiños and Vidal-
Puga [11] show that yf can also be defined using Prim’s algorithm [36] on
the irreducible matrix. Feltkamp et al. [24], using another network-building
algorithm due to Kruskal [29], were the first ones to define the folk rule with
the name Equal Remaining Obligations (ERO) rule, renamed as P -value in
[20]. Equivalence between ERO and folk rules was first pointed out in [10, 13].
Bergantiños and Vidal-Puga [16] use yet another network-building algorithm,
due to Borůvka [19].

Given the different definitions and names, yf has been dubbed the folk
solution by Bogomolnaia and Moulin [18]. We also use their term throughout
the chapter.

24.4.3 The Cycle-Complete Solution
As seen in the previous subsection, the folk solution proposes a stable alloca-
tion, but one in which we have introduced a lot of symmetry. While in the
running example all agents pay the same amount, this is not a general result.
It does, however, introduce a lot of symmetry by keeping only the information
contained in the mcst. The idea of the cycle-complete solution, proposed in
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[43], is to try to keep more information from the original matrix while still
proposing a stable allocation.

The method used is conceptually close to the one used to generate the folk
solution, with changes made to the cost matrix, before taking the Shapley
value of the corresponding (private) mcst game. Instead of looking at paths
between pairs of edges, we look at cycles: For edge (i, j), we look at cycles
that go through node i and node j. If there is one such cycle such that its
most expensive edge is cheaper than a direct connection through edge (i, j),
we assign this cost to edge (i, j).

From any cost matrix c, we formally define the cycle-complete cost matrix
c∗∗ as follows:

c∗∗ij = max
k∈N\{i,j}

(
cN\{k}

)∗
ij

for all i, j ∈ N

c∗∗0i = max
k∈N\{i}

(
cN\{k}

)∗
0i

for all i ∈ N

where
(
cN\{k})∗ indicates the matrix that we first restricted to agents in

N \ {k} before transforming into an irreducible matrix.
The cycle-complete solution is defined as ycc(c) = Sh(C∗∗(N, c)), where

C∗∗(N, c) is the stand-alone game induced by c∗∗.
In our running example, the only change we make to the original cost

matrix to obtain the cycle-complete matrix is to edge (0, 2). We can build
cycle {(0, 1), (1, 2), (2, 3), (0, 3)} that contains both 0 and 2 and for which the
most expensive edge costs 48. Thus, c∗∗02 = 48.

In the private mcst game, the only change is to the stand-alone cost of
agent 2, which goes from 90 to 48. Thus, ycc(c) = (35, 41, 38).

Trudeau [43] shows that C∗∗(N, c) is a concave game, and thus its Shap-
ley value is in Core(C∗∗(N, c)). Since Core(C∗∗(N, c)) ⊆ Core(C(N, c)), the
cycle-complete solution is in the core.3

Theorem 24.2 (Trudeau [43]) For all c ∈ Γ, ycc(c) is in Core(C(N, c)).

In general, ycc is not in Core(CPub(N, c)). Notice that the two approaches
are incompatible, as the cycle-complete approach is about bargaining for the
use of an outside edge, which the public game supposes is available for free.

3Trudeau and Vidal-Puga [49] show that if c is such that all edge costs are 0 or 1, then
Core(C∗(N, c)) = Core(CPub(N, c)) and Core(C∗∗(N, c)) = Core(C(N, c)).
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24.5 Axiomatic Analysis
In this section we focus on the axiomatic characterization of the three methods
defined in the previous section.4 This means that we find properties, or axioms,
that are satisfied by the solution and such that no other can satisfy them
simultaneously. Throughout this section, y(c) is a generic solution.

The first property requires that a solution propose a core allocation.

Core selection Let c ∈ Γ. Then, y(c) ∈ Core(C(N, c)).

We now define three new properties. One of them is stronger and the other
two are weaker than core selection.

The stronger version of core selection requires that no agent be worse off
when new agents join the society. Formally,

Population mononicity Let c ∈ Γ and S ⊂ N . Then, for all i ∈ S, yi(c) ≥
yi(cS).5

A weaker version of core selection is due to Branzei et al. [20]. It requires
undominance in only some coalitions:

Upper bounded contribution Let c ∈ Γ and P ⊂ N0 such that, for all
i, j ∈ P , there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ.
Then, y(P ∩N) ≤ mini∈P∩N c0i.

Obviously, we are interested in axioms that are related with mcst problems.
Among the numerous characterizations of the Shapley value in the general
transferable utility game case, the balanced contributions property proposed
by Myerson [34] is particularly interesting, since it is inspired by a property
of edge deletion previously defined in [33].

In the mcst problem context, we say that a solution satisfies equal treat-
ment if variation in the cost of an edge affects equally both adjacent nodes.
Formally,

Equal treatment Let c, c′ ∈ Γ be such that ckl = c′kl for all k, l ∈ N0 \{i, j}.
Then, yi(c)− yi(c′) = yj(c)− yj(c′).

Equal treatment is, clearly, a fairness axiom. A weaker version that applies
only when the change in the cost of the edge does not affect the total cost of
the mcst problem is proposed by Trudeau [46]:

Weak equal treatment Let c, c′ ∈ Γ be such that ckl = c′kl for all k, l ∈
N0 \ {i, j} and C(N, c) = C(N, c′). Then, yi(c)− yi(c′) = yj(c)− yj(c′).

4A similar exercise was done in [44].
5We use y(cS) to designate the cost allocation to the mcst game involving only agents

in S.
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For the next axiom, we need some additional notation. An edge (i, j) be-
tween agents i, j ∈ N is relevant if cij ≤ max{c0i, c0j}. An edge is strictly
relevant if cij < max{c0i, c0j}, irrelevant if it is not relevant, and weakly ir-
relevant if it is not strictly relevant.

Let Γ be the set of elementary cost matrices with no irrelevant edges.
Notice that an irrelevant edge will never belong to an optimal tree. A path

ψij is an irrelevant path if it contains a weakly irrelevant edge. If all paths
between i and j are irrelevant, then (one of) the efficient way(s) of connecting
{i, j} to the source is to connect them both directly to it. In other words,
agent i does not help agent j connect to the source in a cheaper manner, and
vice versa.

We say that an allocation satisfies group independence if we can partition
agents in groups such that members of different groups only have irrelevant
paths between them. Then, they never have any gain to cooperate with each
other, even when considering the connection problem of subgroups of N . For-
mally,
Group independence Let c ∈ Γ be such that there exists a partition P of

N such that for all i ∈ S and j ∈ T , and all S, T distinct in P, we have
that all ψij ∈ Ψij(N0) are irrelevant paths. Then, for all i ∈ S ∈ P,
yi(c) = yi(cS).

The next axiom is a stronger version of group independence, since it only
requires the partition of N (which does not need to be unique) to be able to
connect to the source independently.
Separability Let c ∈ Γ be such that there exists a partition P of N such

that C(N, c) =
∑
S∈P C(S, c). Then, for all i ∈ S ∈ P, yi(c) = yi(cS).

Another version of group independence is when we build a partition of
the set of followers of some node. Take, for example, the mcst depicted in
Figure 24.3. Both nodes 2 and 3 always connect to the source through node
1. They form two different branches. When these branches obtain no benefits
by connecting with other agents and the costs inside them are not lower than
the costs on the path from the source to the linking node, then we should be
able to remove one of the branches in order to compute the allocation of the
others.
Branch cutting Let c ∈ Γ, S ⊂ N and k ∈ N0 \ S. If:

• all the nodes in S are followers of node k,
• for all i ∈ S, j ∈ N \ S, j ̸= k, cij is a weakly irrelevant edge, and
• for all i, j ∈ S ∪ {k}, cij ≥ ce for all e in a path from node k to the

source in any optimal tree,

then
yi(c) =

{
yi(c

′
S) if i ∈ S

yi(cN\S) if i ∈ N \ S, i ̸= k.

where c′0i = cki and c′ij = cij for all i, j ∈ S.



548 Handbook of the Shapley Value

0

1 2

3
10 20

30

6

4 30

FIGURE 24.3: Nodes 2 and 3 constitute two branches of node 1.

Notice that branch cutting does not say anything about the cost share of
node k (in case k ̸= 0). But, in this case, yk(c) can be deduced from budget
balance once the other cost shares are known.

Theorem 24.3 (Kar [28]) The Kar rule is the unique solution which satis-
fies equal treatment, and group independence.

Another relevant property of the Shapley value, in the context of coop-
erative game theory, is additivity. A natural definition of additivity in the
context of mcst problems is to assume that y(c + c′) = y(c) + y(c′), where
c+ c′ is defined in the natural way, i.e., (c+ c′)ij = cij + c′ij for all i, j ∈ N0.

However, no solution can satisfy this version of additivity in general. To
see why, consider N = {1, 2}, c12 = c′12 = 0, c01 = c′02 = 0, and c02 = c′01 = 1.
Then, y1(c) + y2(c) = y1(c

′) + y2(c
′) = 0, whereas y1(c+ c′) + y2(c+ c′) = 1.

The difficulty with this example is that there exists no tree that is optimal
in all three problems c, c′, and c+ c′. We can define a weaker version of this
property by requiring additivity only between mcst problems that share at
least an optimal tree t such that, if we order the edges of t in non-decreasing
cost, then we can obtain the same order in both problems.

Restricted additivity Let c, c′ ∈ Γ be such that there exists a common
optimal tree t∗ ∈ T ∗(c) ∩ T ∗(c′) and an order π of the edges in t∗

such that cπ1 ≤ cπ2 ≤ · · · ≤ cπn and c′π1
≤ c′π2

≤ · · · ≤ c′πn
. Then,

y(c+ c′) = y(c) + y(c′).

A sufficient condition for such an optimal tree to exist is that both problems
share a common ordering of the edges according to their cost.

Piece-wise linearity Let c, c′ ∈ Γ be such that there exists an ordering
e1, e2, . . . of the edges such that ce1 ≤ ce2 ≤ . . . and c′e1 ≤ c′e2 ≤ . . . .
Then, for all α, β > 0, y(αc+ βc′) = αy(c) + βy(c′).
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The next property is due to Trudeau [46] and uses the fact that if we do not
have irrelevant edges, then there always exists a mcst in which a single agent
is connected to the source. We can then divide the problem, first sharing the
cost of the unique connection to the source, before sharing the cost to connect
the remaining agents to that source-connected agent.

Problem separation Let c̄ ∈ Γ be such that ĉij = 0 for all i, j ∈ N . Let
c̃, ċ ∈ Γ be such that c̃0i = ċ0i = maxi∈N ĉi0 and ċij = 0 for all i, j ∈ N .
Then, if ĉ+ c̃− ċ ∈ Γ, y(ĉ+ c̃− ċ) = y(ĉ) + y(c̃)− y(ċ).

In the preceding property, the problem of connecting a single agent to the
source is represented by ĉ, while the problem of connecting the remaining
agents to the source-connected agent is in c̃. Since we added a large source-
connection cost in that second problem, it is removed by subtracting ċ.

Trudeau [46] also proposes a weaker version of problem separation that
applies only to problems for which there is no edge used in a mcst that is
more expensive than the cheapest edge connecting an agent to the source.

Weak problem separation Let ĉ ∈ Γ be such that ĉij = 0 for all i, j ∈ N .
Let c̃, ċ ∈ Γ be such that c̃0i = ċ0i = maxi∈N ĉ0i and ċij = 0 for all
i, j ∈ N . Then, if ĉ+ c̃− ċ ∈ Γ and ce ≤ mini∈N c0i for all edge e in an
optimal tree, y(ĉ+ c̃− ċ) = y(ĉ) + y(c̃)− y(ċ).

The remaining properties are self-explanatory.
We require that agents that play the same role pay the same amount.

Formally6,

Symmetry Let c ∈ Γ and i, j ∈ N such that cik = cjk for all k ∈ N0 \ {i, j}.
Then, yi(c) = yj(c).

The next property says the allocation does not depend on irrelevant edges.

Independence of irrelevant edges Let c ∈ Γ and let c ∈ Γ be defined
as cij = min{cij ,max{ci0, cj0}} and ci0 = ci0 for all i, j ∈ N . Then,
y(c) = y(c).

Theorem 24.4 (Trudeau [46]) The Kar rule is the only solution that sat-
isfies weak equal treatment, group independence, piece-wise linearity, problem
separation, symmetry, and independence of irrelevant edges.

The Kar rule also satisfies other nice properties, such as cost monotonicity
[22], which states that an increase of the cost of an edge cannot benefit any
adjacent agent. Formally,

6Some theorems below use, in the original article, the stronger property of anonymity,
which requires that the allocation not depend on the name of the agents. All of them hold
with symmetry.
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Cost monotonicity Let c, c′ ∈ Γ be such that, for some i ∈ N and j ∈ N0,
ckl = c′kl for all k, l ∈ N0 \ {i, j}, and cij < c′ij . Then, yi(c) ≤ yi(c′).

The property incentives efficiency, as it prevents nodes from benefitting by
increasing their connection costs. In case sabotage of non-adjacent connection
costs is possible, a stronger version of cost monotonicity is desirable. Solidarity
states that an increase of the cost of an edge does not benefit any agent (and
not only its adjacent ones). Formally,

Solidarity Let c, c′ ∈ Γ be such that cij ≤ c′ij for all i, j ∈ N0. Then, for all
i ∈ N , yi(c) ≤ yi(c′).

Despite the other nice properties, the Kar rule does satisfy neither solidar-
ity nor, as shown in [22] and in Subsection 24.4.1, stability.

The next theorem links the Kar rule and the folk rule:

Theorem 24.5 (Trudeau [46]) A solution satisfies weak equal treatment,
group independence, piece-wise linearity, weak problem separation, symmetry,
and independence of irrelevant edges if and only if it is a convex combination
of the Kar rule and the folk rule, i.e., there exists α ∈ R such that y =
αyK + (1− α)yf .

There exist several characterizations of the folk rule using the restricted
additivity or piece-wise linearity:

Theorem 24.6 (Branzei et al. [20]) The folk rule is the only solution that
satisfies upper bounded contribution, piece-wise linearity, and symmetry.

Clearly, we can replace upper bounded contribution by core selection in
this characterization.

Theorem 24.7 (Bergantiños and Vidal-Puga [14]) The folk rule is the
only solution that satisfies separability, restricted additivity, and symmetry.

Theorem 24.8 (Bergantiños et al. [8]) The folk rule is the only solution
that satisfies core selection, restricted additivity, symmetry, and solidarity.

The next axiom states that if all the nodes are close to each other and
are at the same distance to the source, then any increase in the cost to the
source should be shared equally among the agents. An example is depicted in
Figure 24.4. All agents are equally far away from the source. So, an optimal
tree should connect any of them to the source and then the others connect to
the source through this one. The property of equal share of extra costs states
that the cost allocation should be the same as before, and the extra cost (6
in our example) is shared equally among the agents, i.e., yi(c′) = yi(c)+ 2 for
all i, where c is the cost matrix on the left and c′ is the one on the right.
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FIGURE 24.4: Example of equal share of extra costs.

Equal share of extra costs Let c, c′ ∈ Γ and x0, x′0 ∈ R be such that c0i =
x0 > x′0 = c′0i ≥ cij = c′ij for all i, j ∈ N . Then, for all i ∈ N , yi(c) =
yi(c

′) +
x0−x′

0

n .

The next property is a weaker version of equal share of extra costs:

Equal share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i] such
that c0i ≤ c0j , c′0i = c0i−x and c′e = ce otherwise and, for all j ∈ N \{i},
there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ. Then,
for all j ∈ N , yj(c′) = yj(c)− x

n .

An opposite viewpoint is that the cost reduction should be assigned solely
to the agent that is closer to the source and can connect freely to all others.

Full share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i] such that
c0i ≤ c0j , c′0i = c0i − x and c′e = ce otherwise and, for all j ∈ N \ {i},
there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ. Then,
yi(c

′) = yi(c)− x and yj(c
′) = yj(c) for all j ∈ N \ {i}.

A compromise viewpoint from both previous properties is to make sure
the fraction of the savings going to the cheapest source connector is the same
in all such situations:

Constant share of cost reduction Let c, c′ ∈ Γ, i ∈ N and x ∈ [0, c0i]
such that c0i ≤ c0j , c′0i = c0i − x and c′e = ce otherwise and, for all
j ∈ N\{i}, there exists a path ψ ∈ Ψij(N0) such that ce = 0 for all e ∈ ψ.
Then, there exists α ∈ R such that yi(c′) = yi(c)− x

n (1 + (n− 1)α) and
yj(c

′) = yj(c)− x
n (1− α) for all j ∈ N \ {i}.
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The following property, as equal share of extra costs, applies to problems
where all the agents are equally far away from the source. It states that the
cost sharing should be done in the same order as we find an optimal tree, i.e.,
by picking up one agent randomly, and connecting her to the source.

Decomposition Let c ∈ Γ and x0 ∈ R be such that c0i = x0 ≥ cij for all
i, j ∈ N . Then, for all i ∈ N ,

yi(c) =
∑

j∈N\{i}

yi(c
j)

n
+ yi(ĉ)

where cj0k = cjk and cjkl = ckl for all k, l ∈ N \ {j}, and ĉ0j = x0 and
cjkl = 0 for all k, l ∈ N .

The following property also applies to problems where all the agents are
far away from the source, but without requiring them to be equally far away
nor any other similarity. It says that, in this case, agents should share the
extra cost in the same way in both problems.

Constant share of extra costs Let c, c′ ∈ Γ such that c0i = maxj,k∈N0
cjk

and c′0i = maxj,k∈N0
c′jk for all i ∈ N and x1 be the cost matrix defined

as x10i = x and x1ij = 0 for all i, j ∈ N , for some positive real number
x.
Then, y(c+ x1)− y(c) = y(c′ + x1)− y(c′).

Theorem 24.9 (Bergantiños and Vidal-Puga [11]) The folk rule is the
only solution that satisfies population monotonicity, solidarity, and equal share
of extra costs.

Theorem 24.10 (Bergantiños and Kar [5]) The folk rule is the only solu-
tion that satisfies population monotonicity, symmetry, solidarity, and constant
share of extra costs.

Theorem 24.11 (Trudeau [45]) The folk rule is the only solution that sat-
isfies core selection, piece-wise linearity, branch cutting, decomposition, and
equal share of cost reduction.

The next theorem links the folk rule and the cycle-complete rule:

Theorem 24.12 (Trudeau [45]) A solution satisfies core selection, piece-
wise linearity, branch cutting, decomposition, and constant share of cost re-
duction if and only if it is a linear combination of the folk rule and the
cycle-complete rule, i.e., there exists α ∈ [0, 1] such that y = αyf +(1−α)ycc.

A strengthening of constant share of cost reduction to give the savings to
the agent with the cheap cost to the source yields a characterization of the
cycle-complete solution.
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Theorem 24.13 (Trudeau [45]) The cycle-complete rule is the only solu-
tion that satisfies core selection, piece-wise linearity, branch cutting, decom-
position, and full share of cost reduction.

24.6 Correspondences with Other Concepts
We discuss how other solution concepts have been used in the mcst literature,
and the links that have been found with the Shapley value.

24.6.1 Weighted Shapley Values
The weighted versions of the Shapley value [27, 37] have also played a relevant
role in mcst problems. Moreover, [17, 21] also use the term weighted Shapley
value to refer to restricted orders in the contribution vectors so that an optimal
tree is constructed via Prim’s algorithm following that order. Bird [17] proves
that this solution belongs to the irreducible core.

In what follows, we use the definition of weighted Shapley values first
suggested by Shapley [37] and studied by Kalai and Samet [27].

Bergantiños and Lorenzo-Freire [9, 10] study the weighted Shapley values
of the optimistic game introduced in [12] and prove that they are obligation
rules. Moreover, they characterize these rules using population monotonicity,
solidarity, and weighted version of equal share of extra cost where the extra
cost is divided proportionally to the weights of the agents.

Trudeau [47] obtains a family of weighted Shapley values when studying an
extension of mcst problems in which some agents do not need to be connected
to the source.

Gómez-Rúa and Vidal-Puga [25] study mcst situations in which agents can
merge in advance, paying their internal costs. They show that this situation
can lead to inefficiencies and prove that the weighted Shapley value of the
irreducible cost vector, with weights given by the size of the nodes, is immune
to this manipulation. It also inherits most of the nice properties of the folk
rule, such as population monotonicity, core selection, solidarity, and piece-wise
linearity.

24.6.2 The Core and the Nucleolus
The excess of a coalition S in a TU game (N, v) with respect to a preim-
putation x is defined as e(S, x, C) = C(S) −

∑
i∈N xi. The vector θ(x) is

constructed by rearranging the 2n excesses in (weakly) increasing order. If
x, y ∈ RN are two allocations, then θ(x) >L θ(y) means that θ(x) is lexico-
graphically larger than θ(y). As usual, we write θ(x) ≥L θ(y) to indicate that
either θ(x) >L θ(y) or x = y.
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The nucleolus of the game C is the set

Nu(C) = {x ∈ X : θ(x) ≥L θ(y)∀y ∈ X}

where X =
{
x ∈ RN :

∑
i∈N xi = C(N), xi ≥ v({i})∀i ∈ N

}
is the set of im-

putations (individually rational preimputations). When X ̸= ∅, as it is the
case for the TU games we study here, it is well known that Nu(C) is a sin-
gleton, whose unique element we denote, with some abuse of notation, also as
Nu(C).

Let Π be the set of permutations of N . For all π ∈ Π, let yπ ∈ Core(C)
be the allocation that lexicographically maximizes the allocations with re-
spect to the order given by the permutation. The permutation-weighted
average of extreme points of the core is the average of these allocations:
γ(C) =

∑
π∈Π(N)

1
n!y

π(C). If the game is concave, γ is the Shapley value.
It is also closely related to the selective value [50] and the Alexia value [41],
the permutation-weighted average of leximals.

Consider the subset of mcst problems known as elementary7 mcst prob-
lems: For any i, j ∈ N0, cij ∈ {0, 1}. Let Γe be the set of elementary cost
matrices.

Theorem 24.14 (Trudeau and Vidal-Puga [48, 49]) For all c ∈ Γe, we
have ycc(c) = Nu(C(N, c)) = γ(C(N, c)).

Theorem 24.15 (Trudeau and Vidal-Puga [48, 49]) For all c ∈ Γe, we
have yf (c) = Nu(CPub(N, c)) = γ(CPub(N, c)).

24.7 The Shapley Value in Other Related Problems
Some of the different versions of the Shapley value have also been studied
in different subclasses and extensions of mcst problems, but it is still a very
unexplored field of research. In particular, the following literature focuses on
the extensions of the folk solution in the private game case.

Dutta and Mishra [23] and Bahel and Trudeau [2] extend the folk rule to
minimal cost arborescence problems, where the cost vector describing the cost
of connecting each pair of nodes is not necessarily symmetric. An extension
of the cycle-complete solution is offered in the latter.

Bergantiños and Gómez-Rúa [3, 4] extend the folk rule to mcst problems
with groups, where agents are grouped by a partition, such that the nodes
inside each member of the partition (a group) are more related to each other
than to any node in another group.

7These cost games are named information graph games by Kuipers [30].
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Subiza et al. [39] study the folk rule in simple mcst problems, where only
two different costs are possible.

Finally, from a non-cooperative point of view, the folk rule appears as sub-
game perfect Nash equilibrium cost allocation in several mechanisms applied
to mcst problems [15, 26].

24.8 Conclusions
In this chapter we have reviewed the literature on the minimum cost spanning
tree problems. This literature is unique in that most of the allocation methods
considered are Shapley values. There are (at least) five different ways to define
a game based on a mcst problem, before taking the Shapley value. The games
vary depending on how we set the ground rules: Who has access to which
nodes, what cost we consider for each edge, etc. The solutions vary depending
on whether we care about core stability, if we allow coalitions to use the
nodes of their neighbours, and if we take an optimistic or pessimistic view of
the game. The corresponding axiomatic analysis reflects the choices made in
how we define the game.
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A
“Abnormal” expression, 452
Absolute hierarchical strength, 58
Acyclic digraph, 53
ADD, see Additivity
Additive weighted connectivity game

(awconn), 469–471, 473
Additivity (ADD), 21, 78, 524, 538

axiom, 135
Admissible permutations, 51, 56
Aggregate edge’s rule, 371
Aggregate monotonicity, 230
Aircraft landing fees, 203–205
Airport cost game, 204
Airport runways, 444–445
Algorithms, 146–147
Alliance game, 357
Allocation problems, 8
Alternatives, 183
Anonymity, 21, 32, 36, 161,

184–185, 190
Anonymous solutions, 100
A priori Shapley value, 501
A priori values, 483
Assignment game, 516–517

Shapley and Shubik, 517–519
Shapley value for, 516, 519–526

Assignment market, 517
with reservation values, 528–529

Associated consistency, 100
Associated cooperative cost

games, 540
Association game, 453
Assortative assignment markets, 522
Asymptotic approach, 200n2
Auctions (AU), 446–448
Aumann-Shapley method, 201

axiomatic characterizations of,
209–210

continuum case and, 208
discrete case and, 210–213
Internal Telephone Billing

Rates, 208–209
Aumann-Shapley value, 25, 200
Aumann and Drèze’s approach, 236
Autonomously generated power

indices, 396
Average approach, 138
awconn, see Additive weighted

connectivity game
Axiomatic analysis, 546–556
Axiomatic approach, 33, 75
Axiomatic behavior of Shapley rule,

382–386
Axiomatic characterizations, 76–80,

524–526
of Aumann-Shapley method,

209–210
of discrete Aumann-Shapley

method, 211–213
of Shapley-Shubik Method,

207–208
of Shapley distance, 35–38
of Shapley rule, 227–231

Axiomatic extensions of Shapley
value, 134–142

Axiomatic foundations, 7
Axiomatization, 296

axiom on unanimity games,
298–300

classical axioms for
j-cooperative games,
297–298

for F-value, 301

561
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Axiomatization (Continued)
of Shapley value based on

kernel, 99–100
Axioms, 95, 200

additivity, 135
carrier, 135–136
dummy player, 136–137
efficiency, 134
embedded coalition

anonymity, 140
linearity, 95, 136
marginality, 143
monotonicity, 143
null, 95
null player, 140–141, 144
oligarchy, 139–140
on unanimity games, 298–300

B
Backward difference operator, 163
Baker-Thompson rule (BT rule), 445
Balanced contributions, 23, 538

property, 546
Balanced games, 538
Balancedness conditions, 521–524
Bandwidth-power allocation, 346
Bandwidth allocation in

heterogeneous mobile
networks, 343–345

Bankruptcy problem, 335
Banzhaf-Coleman index, 181
Banzhaf index, 8, 181, 397
Banzhaf value, 77–80, 158, 161; see

also Shapley value
e-Banzhaf value for TU-games,

80–85
ie-Banzhaf value for TU-games,

88–90
Bargaining

approach, 148–149
function, 37
model, 20
procedure, 32
unions behavior, 236

Base station (BTS), 334–335, 338

Basis condition of game space,
123–126

BCF situation, see Buyers come first
situation

Benefactors, 316–318
Beneficiaries, 316
Betweenness, 272–274

centrality, 159
redundancy, 274–276

Bicooperative games, 282
Böhm-Bawerk horse markets,

523–524
Boolean matrix, 452–453
Branch cutting, 547–548
BT rule, see Baker-Thompson rule
BTS, see Base station
Building cost games, 450
Buyer-seller exact, 521
Buyers come first situation (BCF

situation), 524–525

C
Carrier, 21

axiom, 135–136
Centrality, 256

degree, 159
indices, 159
measure, 454

Centralized decision situation, 456
CFF, see Characteristic function

form
Channel allocation in mobile

communication networks,
338–343

Characteristic function, 443
Characteristic function form

(CFF), 134
Classical axioms for j-cooperative

games, 297–298
Classical case of cost function, 205

axiomatic characterizations of
Shapley-Shubik Method,
207–208

and Shapley-Shubik
method, 206
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Classical Shapley value, 484
Cleaning rivers, 445–446
Closeness centrality, 159
Closures of game, 223–224
CMON, see Coalitional monotonicity
Co-expression networks, 453
“Coalition-centric” solution

concept, 3
Coalition, 33, 50, 94, 132, 147, 149,

157, 182, 443
Coalitional games, 2–7
Coalitionally rational

imputations, 18
Coalitional monotonicity (CMON),

82–83, 229
Cohesion axiom, 141
Coincidence condition of game space,

123–126
Commander games, 96, 111–112,

114–116; see also
Unanimity games

properties, 116–117
Command games, 190n6
Communication, 272–274

infrastructure, 333
redundancy, 274–276

Communication routing problems,
Shapley value in, 357

Complements, 518
Complete lattice, 518
Completely monotonic sequence,

163–164, 166
Complete uncertainty, 171
Computations, 7
Congruent PBPs, 226
Conjunctive approach, 50, 53
Conjunctive feasible coalitions, 53
Conjunctive permission value, 51, 65

for games with permission
structure, 54–56

Connected equal splitting
rule, 433

Consistency, 23–24, 220
Constant share

of cost, 551–552

of extra costs, 552
Continuity, 186
Continuum case of cost function, 205

and Aumann-Shapley method,
208–210

Control, 189
and power, 189–192
structure, 189–190

Controlled player, 192
Cooperation, 313–314
Cooperative behavior, 236
Cooperative cost games, 539
Cooperative game, 17, 281, 464

with externalities, 133
Cooperative game theory, 1, 26,

131–132, 200, 319
coalitional games and values, 2–7
Shapley value, 1–2

Cooperative model, 314
Cooperative solutions concepts, 200
Cooperative two-sided markets, 515
Core, 553–554

selection, 546
and Shapley rule, 224–227

Corporate tax system, 315
Corporation tax games, 314; see also

j-cooperative games
cost-coalitional problems with

multiple dual and
irreplaceable benefactors,
316–319

example, 326–328
multiple, 319–322
Shapley value of, 315, 323–326
underground economy, 313–314

Cost
cost-coalitional problems,

316–319
cost-reflective properties,

380–381
game, 206
monotonicity, 550
shares, 200
sharing game, 539
sharing problem, 205
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Cost allocation, 200–201
aircraft landing fees, 203–205
classical case and

Shapley-Shubik method,
206–208

continuum case and
Aumann-Shapley method,
208–210

discrete case and
Aumann-Shapley method,
210–213

internal telephone billing rates,
202–203

method, 208
notation and preliminaries,

205
rule, 206–208
TVA, 201–202

Cost function, 539
classical case of, 205–208
continuum case of, 205, 208–210
discrete case of, 205, 210

Counterterrorism analysts, 470
Coverage

games, 456–458
indifference, 457
matrix, 456

Cover algorithm, 529–532
Cruciality, 394
Cycle-complete

connected graph, 273
rule, 553
solution, 544–553

Cycle, 269

D
Data generating pay scheme, 33–34
DDD, see Direct Distance Dialing
Deadline bargaining game, 149
Decomposition, 38, 448, 552

coverage games, 456–458
maintenance cost games,

450–452
microarray games and network

centrality, 452–455

Myerson group value, 272–274
sequencing games, 449–450
of Shapley distance with limited

data sets, 38–40
Deferred acceptance algorithm, 516
Degree centrality, 159
Demand indifference, 457
Demand nodes, 373
Denti and Prati’s algorithm, 404
Digital Video Broadcasting-Next

Generation Handheld
systems (DVB-NGH
systems), 346

Digraphs, 52–53
power on, 193–196

Direct control, 189
Direct Distance Dialing (DDD), 203
Discrepancy between weight and

Shapley Value of player,
501–508

Discrete Aumann-Shapley
method, 211

axiomatic characterizations of,
211–213

axiomatic characterizations of
discrete Aumann-Shapley
method, 211–213

discrete cost allocation method,
210–211

Discrete case of cost function, 205
and Aumann-Shapley

method, 210
Discrete cost allocation, 210
Distance function, 37
Dividends, 58, 146, 182, 191, 443
Division matrix, 458
Dog eat dog game for oligarchy,

96–97
Dominant diagonal, 520
Double permutational responsiveness

(DPR), 175
Doubly discriminatory level, 231–232
Doubly dominant diagonal, 520
Downstream Responsibility game

(DR game), 446
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DP, see Dummy player
DPIP, see Dummifying players get

individual payoffs
DPM, see Dummifying players pay

for mean
DPR, see Double permutational

responsiveness
DPWM, see Dummifying players pay

for weighted mean
DR game, see Downstream

Responsibility game
Dual benefactors, 315
Dual unanimity game, 455
Dummifying players, 76, 85–88
Dummifying players get individual

payoffs (DPIP), 85–86
Dummifying players pay for mean

(DPM), 86
Dummifying players pay for weighted

mean (DPWM), 86–87
Dummy player (DP), 22, 83–85

axiom, 136–137
DVB-NGH systems, see Digital

Video Broadcasting-Next
Generation Handheld
systems

E
e-Banzhaf value for TU-games, 80–85
Edge

decomposability, 381n4
influence network, 377
rule, 372
strictly relevant, 547
weakly irrelevant, 547

Effectivity
finitely many alternatives,

185–186
function, 183–185
infinitely many alternatives,

186–188
and power, 183

Efficiency (eff), 22, 32, 34, 38–39, 55,
57, 78, 114, 452, 524

axiom, 134

Egalitarianism, 32, 41–43
Egalitarian pay scheme, 42
EGV, see Extended generalized value
Eigenvector centrality, 159
Embedded coalitions, 133

anonymity axiom, 140
Emergency Units Location Problem

(EULP), 456–457
Energy transmission networks, 370
Environments, 132–134

algorithms, 146–147
axiomatic extensions of Shapley

value for games with
externalities, 134–142

Harsanyi dividends
approach, 146

marginal contributions, 142–144
non-cooperative approaches to

value extensions, 147–149
potential approach, 144–146

Equal-division-over-individual-
worths value, 4

Equal-division-over-principal-
contributions value, 4

Equal-gains principle, 23
Equal Remaining Obligations rule

(ERO rule), 544
Equal share

of cost reduction, 551
of extra costs, 551

Equal surplus sharing rule, 221
Equal treatment, 546

of equals, 137
ERO rule, see Equal Remaining

Obligations rule
Euclidean distance, 37–38, 502
EULP, see Emergency Units

Location Problem
Exact assignment game, Shapley

value of, 529–532
Expression status, 452
Extended airport games, 445
Extended generalized value

(EGV), 141
Extended Shapley value, 141
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Extended square glove markets, 523
Externality-free value, 143

F
Factious oligarchic game, 96–97, 105
Fair division point, 516, 519
Fairness, 17, 41–43

bargaining function, 36
characterizations, 21–24
criteria, 200
extensions and applications,

25–26
mathematical expression, 19–21
prescription, 32, 35–36

Favoritism, 32, 40–41
FIFO service system, see

First-In-First-Out service
system

Finitely many alternatives, 185–186
First-In-First-Out service system

(FIFO service system), 335
Folk rule, 550, 552
Folk solution, 543–544
Followers, 53
Foreign Exchange (FX), 203
Full share of cost reduction, 551
Fuzzy approach, 486, 502
Fuzzy number, 491
Fuzzy sets, 484

discrepancy between weight and
Shapley value of player,
501–508

elements of theory, 486–488
multi-dimensional descriptions

of value of coalition,
495–501

Shapley value for majority
voting games, 488–493

variability in quota, 493–495
Fuzzy theory, 484
F-value, 288

axiomatization for, 301
on constant-sum j-cooperative

games, 301–302
formulation for, 294–296

generating functions for
computing, 303–305

probabilistic justification of,
290–292

restricted to cooperative games,
292–293

FX, see Foreign Exchange

G
Games, 7–8

with permission structure, 50, 53
practice, 332
under precedence constraints,

50, 54
theoretical model, 203

Game space
basis and coincidence condition,

123–126
commander games, 114–116
new bases, 117–123
notations and definitions,

113–114
properties of commander games

basis, 116–117
Games with hierarchies, 52

digraphs, 52–53
games under precedence

constraints, 54
games with permission

structure, 53
logical independence, 68–70
power measures for digraphs

and solutions for, 62–68
solutions for, 54–62
TU-games, 52

Game theory, 1, 17, 331–333, 348,
441–442; see also
Cooperative game theory

γ-centrality, 454
GANESO™ software, 386n5
Gas loss problem, 374
Gas transmission network, 370
Generalization rule, 141
Generalized games, 445
Generalized null player axiom, 141
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Generalized Second Price (GSP), 352
Generalized Shapley value, 256–258

example, 261–263
group valuation, 259–260
merging game models, 258–259
profitability of group, 263–268
properties, 260–261

Genetics, semivalues and, 167–170
Global index of de-stability, 405–406
Graph, 269

graph-restricted game, 454
Group assessment

communication and betweenness
redundancy, 274–276

graph of political affinities, 270
Myerson group value

decomposition, 272–274
reduced graph of political

affinities, 271
restriction of game, 269–270
in social network, 268

Group centrality, 256
Group independence, 547
GSP, see Generalized Second Price

H
Harsanyi dividends, 20, 51

approach, 146
of coalition, 101

Hauler’s influence network, 376
Heterogeneous mobile networks,

343–345
Heuristics, 464–465
Hierarchical solution, 59–62
Hierarchical strength, 51, 58–59
Horizontal inequity, 40

I
ICN, see Information Centric

Networking
ie-Banzhaf value for TU-games,

88–90
IIA, see Independence of Irrelevant

Alternatives
Implicit power index, 405

Imputation set, 18
Incentive viewpoint of queueing

problem, 419
Independence of Irrelevant

Alternatives (IIA), 32, 36
Independence of irrelevant

edges, 549
Indeterminancy, 486
Index of unfairness

applications, 40–45
organization and data set, 33–34
Shapley distance as measure of

unfairness, 35–40
Shapley value as ideal for

fairness, 34–35
Individual behavior, 235
Individual game theoretic

centrality, 256
Individually rational imputation, 18
Induced conjunctive restricted

game, 53
Induction hypothesis, 124
Inessential axiom, 95
Inessential player

independence, 65–66
property, 55

Infinitely many alternatives, 186–188
Information Centric Networking

(ICN), 357
Internal telephone billing rates,

202–203, 208–209
Internet problems

additional applications to, 356
collaboration among ISPs,

352–356
keyword auctions in search

engines on internet, 347–352
Shapley value in, 347

Internet Service Providers (ISPs),
347, 352

collaboration among, 352–356
Interval fuzzy number, 487
Intrinsic marginal contribution, 143
INV, see Invariance to S-equivalence
Invariance to permutations (IP), 36
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Invariance to S-equivalence
(INV), 85

Inventory cost game, 258, 263
Inverse problem, 93–94
IP, see Invariance to permutations
Irreducible cost matrix, 543
Irreducible matrix, 544
Irreflexive digraph, see Irreflexive

directed graph
Irreflexive directed graph, 52–53
Irregular semivalues, 165
Irrelevant path, 547
Irrelevant player

independence, 59–61
property, 61–62

Irreplaceable benefactor, 315
cost-coalitional problems with,

316–319
IS, see Islamic State
Islamic State (IS), 471
Isolated unions behavior, 236
ISPs, see Internet Service Providers

J
j-cooperative games, 282, 286–287;

see also Corporation tax
games

axiomatization, 296–301
examples, 284–286
examples revisited, 305–307
F-value on constant-sum

j-cooperative games,
301–302

F-value restricted to
cooperative games, 292–293

formulation for F-value,
294–296

generating functions for
computing F-value for
weighted j-simple games,
303–305

multi-choice games, 282–283
probabilistic justification of
F-value, 290–292

value for, 281–282, 288–289

Joint radio resource management
(JRRM), 343

JRRM, see Joint radio resource
management

J-th zone sub-games, 457

K
Kar rule, 548–549
Kar solution, 542–543
Kernel of Shapley value, 96–99; see

also Shapley value
axiomatizations, 99–100
other games in, 105

Kernel of solution, 94
Keyword auctions in search engines,

347–352

L
Left-sided fuzziness, 491, 493
Linear algebraic method, 112
Linear cost games, 314
Linearity, 55, 57, 114, 160

axiom, 95, 136
Linear resource, games on, 444

auctions and markets, 446–448
cleaning rivers, 445–446
managing airport runways,

444–445
Linear solutions, 100
Logical independence, 68–70
Long Term Evolution (LTE),

343, 346
Loss allocation problem

application to Spanish gas
transmission network,
386–390

axiomatic behavior of Shapley
rule, 382–386

cooperative game with energy
transmission network,
372–373

cost-reflective properties,
380–381

energy transmission
networks, 370
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incentive mechanism, 371
mathematical model, 373–377
model, 373
non-discriminatory properties,

381–382
properties, 379–380
properties to foster

competition, 382
Shapley rule, 377–379
Technical System Manager,

373–374
LTE, see Long Term Evolution

M
Maintenance cost games, 450–452
Majority voting games, Shapley

value for, 488–493
Marginal contributions, 19, 142–144
Marginal cost contribution, 206–207
Marginality (mrg), 32, 34, 38–39

axiom, 143
Marginal worth vector, 519
Markets, 446–448
Mathematical foundations, 7
Maximal transfer rule, 421
mcst problems, see Minimum cost

spanning tree problems
Membership

function, 487
solutions, 100

Merging games, 256
Microarray games, 158, 167–169,

452–455
Minimal transfer rule, 422
Minimum cost spanning tree

problems (mcst problems),
538, 541–542

axiomatic analysis, 546–556
optimistic mcst game, 540–541
private mcst game, 540
public mcst game, 540–541

Mobile communication management
bandwidth allocation in

heterogeneous mobile
networks, 343–345

channel allocation in mobile
communication networks,
338–343

resource management in wireless
networks, 334–338

Shapley value in, 333
Modified Shapley rule, 221

and natural domain, 241–245
of PBPs, 221

Monotonicity, 184–185, 229–231, 522
axiom, 143
pairwise, 526
property, 41, 526

Monotonic j-cooperative games, 287
Monotonic weighted connectivity

game (mwconn),
469–471, 473

Multi-choice games, 282–283
Multi-dimensional descriptions of

value of coalition, 495–501
Multi-linear extension of game,

25, 404
Multicasting, 357
Multichoice cooperative games, 26
Multidimensional firm, 200
Multiple corporation tax games,

315, 319–322
mwconn, see Monotonic weighted

connectivity game
Myerson group value, 268

decomposition, 272–274
Myerson value, 25–26

N
NARM, see Network-assisted

resource management
Nash equilibrium, 17
Nash symmetry (NS), 36–37
Natural gas, 374
Natural numbers, 173
Necessary player property, 55
Negotiation process, 3
Network-assisted management, 338
Network-assisted resource

management (NARM), 335
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Network centrality, 452–455
New Game Theoretic Centrality

Measure, 468–471
9/11 attack, 464–465
Niyato and Hossain model, 344–345
Non-atomic games, 200, 203
Non-cooperative approaches to value

extensions, 147
bargaining approach, 148–149
implementation, 147–148

Non-cooperative game, 17
theory, 334

Non-cooperative mechanism, 8
Non-discriminatory properties,

381–382
Non-emptiness, 6
Non transferable utility games (NTU

games), 6, 25
cooperative game, 346

Normality interval for gene, 167
Normalized hierarchical strength, 58
Normative viewpoint of queueing

problem, 419
NP, see Null player
NPM, see Nullifying players pay for

mean
NPN, see Nullifying players get

nothing
NPWM, see Nullifying players pay

for weighted mean
NS, see Nash symmetry
NTU games, see Non transferable

utility games
Nucleolus (NU), 423, 553–554
Null axiom, 95
Nullifying players, 76–80
Nullifying players get nothing

(NPN), 78–79
Nullifying players pay for mean

(NPM), 79
Nullifying players pay for weighted

mean (NPWM), 79
Null player (NP), 22, 78, 160,

186, 190
axiom, 140–141, 144

property, 57, 114, 524
Null space, 113–114

O
Observation, 33, 41
Oligarchic game, 101, 106
Oligarchs, 96
Oligarchy, 96, 101

axiom, 139–140
Opportunity sets, 171
Optimistic mcst game, 540–541
Optimistic queueing game, 420

Shapley value in, 424–428
Organization, 32–33
Owen-Shapley spatial power index,

182, 187–188
Owen value, 26

P
Pairwise equal splitting rule, 436
Pairwise monotonicity, 526
Paper tiger game with synergy,

97–98, 100
Pareto optimality, 34
Paris attack, 474
Partition function form (PFF),

133–134
games in, 26
Shapley value for games in, 132

Path independence axiom, 145–146
Payoff vector, 52
Pay profile, 33
Pay scheme, 32–33
PBP, see Pure bargaining problem
PBPCS, see Pure bargaining

problems endowed with
coalition structure

Peer-to-peer networks (P2P
networks), 356

Permission power solutions, 51
Permission structure, 50, 53
Pessimistic approach, 420

Shapley value in pessimistic
queueing game, 428–432

PFF, see Partition function form
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p-hierarchical solution, 62–63
Piece-wise linearity, 548–549
πp-alignment, 172–172
“Player-centric” solution concept,

3–4, 7
Players, 18–19, 182
Player’s payoff, 3
PN, see Prenucleolus
Point solution or value, 19
Political applications

application of power indices,
407–408

predictions, 408–409
of Shapley-Shubik Index, 407
simulations, 408

Population mononicity, 546
Porsche-VW case, 189, 193
Positivity, 160
Potential approach, 144–146
Potential function, 144–145
Potential of game, 103
Power, 181

control and, 189–192
on digraphs, 193–196
effectivity and, 183–188
functions, 101
index, 184–185, 190–191, 195
preliminaries, 182

Power indices, 7–8, 157
autonomously generated, 396
derived from values, 396
of implicit power, 405

Power measures for digraphs and
solutions, 62

with permission structure and
values, 65–68

precedence power solutions for
games under precedence
constraints, 62–64

p-permission value, 67
P2P networks, see Peer-to-peer

networks
Pre-coalitions, 484
Precedence

marginal vector, 57

relation, 54
Shapley value, 56–59
value, 51

Precedence power solutions, 51, 63
for games under precedence

constraints, 62–64
Predecessors, 53

necessity, 66–68
Preimputation, 539
Prenucleolus (PN), 423
Preservation of differences, 23
Private mcst game, 540
Probabilistic model, 283
Probabilistic values, 158, 159–160
Problem separation, 549
Procedure structured random

sampling, 466–468
Production environment, 41
Profitability of group, 263–268
Property-driven approach, 453
Proportional rule, 221, 223

axiomatic framework, 232–233
criticism on, 231
doubly discriminatory level,

231–232
inconsistency, 234–235
PBPCS, 235–236
restricted domain, 231
tracing rule, 372

PS property, 112, 124
p-strength, 63
Public Good index, 397
Public Help index, 397
Public mcst game, 540–541
Pure bargaining problem (PBP),

220–221
axiomatic characterizations of

Shapley rule, 227–231
closures and quasi-additive

games, 223–224
core and Shapley rule, 224–227
criticism on proportional rule,

231–235
general result on preferences,

240–241



572 Index

Pure bargaining problem
(Continued)

modified Shapley rule and
natural domain, 241–245

numerical example, 237–240
and sharing rules, 221–223

Pure bargaining problems endowed
with coalition structure
(PBPCS), 220–221, 235–236

P -value, see Equal Remaining
Obligations rule (ERO rule)

p-weighted permutational
responsiveness
(p-WPR), 174

p-WPR, see p-weighted
permutational
responsiveness

Q
q-binomial semivalues, 161
Quality of service (QoS),

333–334, 338
Quasi-additive games, 223–224
Quasi-balanced simple games, 396
Queueing problem, 419–420, 421–424

Shapley value, 420–421
Shapley value in pessimistic

queueing game, 428–432
Shapley value in queueing game

with initial order, 433–436
SV in optimistic queueing game,

424–428
Quotient

games, 256
PBP, 221

R
Radio access technologies (RATs),

343–344
Radio resource management

techniques (RRM
techniques), 338, 343

Rae’s index of fractionalisation,
489–490
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