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Preface

This book presents a practical introduction and guide to the use of Operations Research techniques
in scientific decision-making, design, analysis, and management. The aim has been to create a
readable and useful text that provides not only an introduction to standard mathematical models
and algorithms, but also an up-to-date examination of practical issues pertinent to the development
and use of computer implementations of the solution methods. We offer a sound and yet practical
introduction to the mathematical models and the traditional as well as innovative solution methods
underlying the modern software tools that are used for quantitative analysis and decision-making.

The book is designed as a text for an introductory course in Operations Research. We
specifically target the needs of students who are taking only one course on the subject of Operations
Research and, accordingly, we have chosen to include just those topics that provide the best possible
one-semester exposure to the broad discipline of Operations Research. An introductory course in
Operations Research may be a required course, an elective course, or an auxiliary course for a
variety of degree programs. In various institutions, the course may be taught in Industrial or
Mechanical Engineering, Computer Science, Engineering, Management, Applied Mathematics, or
Operations Research departments, at either the intermediate or advanced undergraduate level or
the graduate level.

This book also serves as a professional reference book for corporate managers and technical
consultants. We welcome readers from a variety of subject disciplines who recognize the potential
value of incorporating the tools of Operations Research into their primary body of knowledge.
Because the mathematical models and processes of Operations Research are used so pervasively
in all areas of engineering, science, management, economics and finance, and computer science,
we are confident that students and professionals from many different fields of study will be at a
substantial advantage by having these analytical tools at hand. We hope that, in the course of
studying the material in this book, readers will be struck not only by fascination with the mathe-
matical principles presented, but also by the many and varied applications of the methods and
techniques. With the preparation provided by material in this book, readers should be in a position
to identify problems in their own special areas of expertise which can be solved with the methods
of Operations Research. In addition, this book will hopefully encourage some readers to pursue
more advanced studies in Operations Research; our presentation provides an adequate foundation
for continued study at higher levels.

Many engineering and management professionals received their formal academic training
before the recent popularity of personal computers and workstations and the subsequent burst of
new software products. Such experienced practitioners, educated in traditional mathematics, oper-
ations research, or quantitative management, will find that many parts of this book will provide an
opportunity to sharpen and refresh their skills with an up-to-date perspective on current meth-
odologies in the field of Operations Research.

Important mathematical principles are included in this book where necessary, in order to
facilitate and promote a firm grasp of underlying principles. At the same time, we have tried to
minimize abstract material in favor of an applied presentation. Because our readers may have quite
diverse backgrounds and interests, we anticipate a considerable mixture of motivations, expecta-
tions, and mathematical preparation within our audience. This book addresses optimization and
quantitative analysis techniques; therefore, users of the book should have some knowledge of
calculus and a familiarity with certain topics in linear algebra, probability, and statistics. More
advanced calculus is useful in the chapters on integer programming and nonlinear optimization.



Many students will take only one course in the techniques of Operations Research, and we believe
that the greatest benefit for those individuals is obtained through a very broad survey of the many
techniques and tools available for quantitative decision-making. Such breadth of coverage, together
with the mixture of mathematical backgrounds in our audience of readers, necessitates that we
temper the level of mathematical rigor and sophistication in our presentation of the material.

SPECIAL FEATURES

The field of Operations Research has in recent years experienced a dramatic shift in the availability
of software: from software support primarily for mainframe computing systems to the current
explosion of software for a variety of desktop PCs and workstations. With such an abundance of
software products, practitioners of Operations Research techniques need to know how to evaluate
the capabilities and limitations of the wide variety of software available to support today's style of
analysis and decision-making. Associated with each chapter in this book is a Guide to Software
Tools, in which we offer a brief description of some of the most popular software currently available
for solving the various types of problems presented in the chapters. (The Guide contained in Chapter
1 elaborates more fully on the purpose and use of the Guides to Software Tools.) Because software
packages generally focus on a particular type of problem rather than on a specific application area,
it is convenient to organize our discussions of software implementations according to the chapter
topics that are indicative of the problem type. Most of the cited software packages and products
are applicable to a wide array of application areas.

The information contained in these Guides is not intended to represent an endorsement of any
particular software product, nor to instruct readers in the detailed use of any specific software
package. We merely mention a representative few of the broad range of available software packages
and libraries, in order to create an awareness of the issues and questions that might arise during
the development or selection of software for solving real problems.

In years past, when computer hardware and software resources were scarce, software was not
particularly friendly to the user, and analysts generally did not have convenient access to computing
facilities. Any software that might have been provided to Operations Research students was designed
primarily for pedagogical purposes, and was typically capable of solving only small problems.
Nowadays, computing capabilities are almost ubiquitous, and the software available for student
use is often the same "industrial-strength" software that practitioners use for solving large practical
problems. Educational discounts in pricing may reflect minor limitations in the sizes of problems
that can be solved with the software, but the software used in an educational environment is likely
to be very typical of software designed and distributed for commercial application.

Instructors who wish to supplement the introductory course in Operations Research with a
computing laboratory component should have no difficulty in finding reasonably priced software
with appropriate university laboratory site licenses, or even in finding suitable software with remote
execution capabilities via the Internet. Although computer usage has become a popular aspect of
many introductory courses in Operations Research, our intention in developing this book has been
to provide support for learning the foundations necessary for building appropriate models, and to
encourage an adequate understanding of methods so that students can become self-reliant and
judicious users of the many software products that have been and will be developed for practical use.

Each of the chapters in this book is enriched by Illustrative Applications, drawn from the
industrial, computing, engineering, and business disciplines. These miniature case studies are
intended to give the reader some insight into how the problem-solving tools of Operations Research
have been used successfully to help solve real problems in public and private scientific, economic,
and industrial settings. Details are omitted, but references are provided for all of the illustrative
applications, which may serve as the inspiration for term projects or further studies that expand on
the brief sketches given in this book. Our Illustrative Applications include examples from the
petroleum industry, wildlife habitat and forestry management, manufacturing, agricultural produc-



tion, waste management, military operations, transportation planning, computer operating systems,
and finance.

Near the end of each chapter, there is a brief Summary of the important topics presented in
the chapter. To further assist students in their review and assimilation of chapter material, each
chapter in the book contains a list of Key Terms. Definitions or explanations of these key terms
are found in the chapter discussion, and typically the key term appears in bold type. Mastery of
the content of the chapter material requires a recognition and understanding of these important
terms, and the key terms should be used as a checklist during review of the subject matter contained
in each chapter.

A selection of Exercises appears in each chapter. Many of these problems and questions provide
a straightforward review of chapter material, and allow the student to practice and apply what has
been learned from the text. In addition, some of the exercises prompt the discovery of mathematical
and computational realities that are not explicitly mentioned in the chapter material, but which
comprise important practical insights. Exercises are an essential and integral part of learning, and
the exercises included in this book have been chosen to give students a thorough appreciation for
and understanding of the text material.

References are included at the end of each chapter. These reference lists contain titles of general
and specialized books, scholarly papers, and other articles, which can be used to follow up on
interesting or difficult topics presented in the chapter. In case the reader would like to consult still
other authorities, or perhaps see alternative explanations from a different source, there is an excellent
glossary of mathematical programming terms available on the Web at http://www.cuden-
ver.edu/-hgreenbe/glossary/glossary.html, with hyperlinks to related terms mentioned in the defi-
nitions. The explanations provided at that site are not encyclopedic in nature, but do comprise a
handy resource for students and newcomers to the field of Operations Research. Another good
overview of Operations Research, including activities and current events, is posted at
http://mat.gsia.cmu.edu/index.html. The INFORMS site at http://www.informs.org provides a vari-
ety of technical information, news about the organization, and online publications. And the site at
http://www.OpsResearch.com offers a collection of books on Operations Research at OR-Book-
store, and a collection of links to even more Operations Research Web resources at OR-Links.

An Appendix at the end of the book contains a review of mathematical notation and definitions,
and a brief overview of matrix algebra. Readers having marginal mathematical preparation for the
material in this book may find that the Appendix provides an adequate review of the mathematics
essential for comprehension of introductory Operations Research. Additional references are listed
in the Appendix for those who need a more complete review or study of mathematics.

CHAPTER TOPICS

This book contains material that can be covered in a single semester. A course based on this book
would cover a range of topics that collectively provide the basis for a scientific approach to decision-
making and systems analysis. Over half of the book is directed toward the various subclasses of
mathematical programming models and methods, while the remainder is devoted to probabilistic
areas such as Markov processes, queuing systems, simulation, and decision analysis.

We recommend that, if time permits, the topics be studied in the order in which they appear
in the book. In particular, Chapter 2 on Linear Programming, Chapter 4 on Integer Programming,
and Chapter 5 on Nonlinear Optimization might reasonably be treated as a sequence. Similarly,
Chapter 6 on Markov Processes, Chapter 7 on Queueing Models, and Chapter 8 on Simulation
form a natural sequence, since the discussions on simulation build on the two preceding chapters.
However, readers with more specific interests will find that, after reading the first chapter, it is
possible to read almost any of the chapters without having thoroughly studied all the preceding ones.

Chapter 1 describes the nature of Operations Research, the history of the field, and how the
techniques of Operations Research have been used. Because the analysis and optimization of

http://www.cuden-ver.edu/-hgreenbe/glossary/glossary.html
http://www.cuden-ver.edu/-hgreenbe/glossary/glossary.html
http://mat.gsia.cmu.edu/index.html
http://www.informs.org
http://www.OpsResearch.com


systems require that mathematical models of real systems be built, we discuss some of the principles
of system modeling, a topic that will be revisited frequently in the book. Solving problems involves
the use of computational processes, and we take this opportunity to introduce algorithms and their
efficiency, and the inherent complexity of some of the problems that are solvable with the tools of
Operations Research.

In Chapter 2, we study what is undoubtedly the most popular topic in Operations Research,
the creation and solution of linear programming problems. Many practical problems can indeed be
modeled as linear systems: optimizing a linear function subject to linear constraints on the variables.
Fortunately, a great deal of work has resulted in practical and effective methods for solving these
types of problems. We first look at the formulation of problems in the linear programming form,
and then study the simplex solution method and identify several computational phenomena that
can take place as the method is applied to problems.

Network analysis is the subject of Chapter 3. A wide variety of problems can be modeled as
graph or network problems, and many algorithms have been developed for finding paths, routes,
and flow patterns through networks of all sorts. Some network problems have obvious tangible
applications in the areas of transportation and distribution. Other views of networks inspire solutions
to more abstract problems, such as the matching or assignment of the entities in a system, or the
planning, scheduling, and management of the phases of projects.

In the next two chapters of the book, we study problems that are in some respects just more
difficult to solve than the problems seen earlier. Some of the problems are conceptually more
difficult, while some require more sophisticated mathematical solution techniques. On the other
hand, some types of problems are quite simple to describe but the solution methods that are known
are prohibitively time-consuming to carry out. Chapter 4 introduces the subject of integer pro-
gramming, in which the problem formulations may look remarkably similar to the linear and
network formulations seen in Chapters 2 and 3, with the exception that the decision variables are
now constrained to have integer values. This additional requirement almost always implies that
these problems require solution methods that are in a different league, computationally, from the
methods previously considered in this book. Many interesting and practical problems are modeled
as integer programming problems, and this chapter introduces the best-known ways to find exact
solutions to such problems.

In Chapter 5, we will study an even larger and more unwieldy class of problems. Nonlinear
optimization actually includes all mathematical programming problems whose objective or con-
straints cannot be expressed as linear functions of the decision variables. Because there are so many
forms of these problems, no one optimization method works for all problems, but several repre-
sentative and useful solution methods are presented.

Stochastic processes are studied in the next several chapters. In Chapter 6, we study processes
having probabilistic characteristics, known as Markov processes. Many practical dynamic systems
can be described by simple probabilities of moving from one state to another. For example, in a
clinical setting, probabilities can be used to define how patients respond to various treatments. Or
in nature, certain weather phenomena may occur with known probabilities during certain times of
the year or under certain conditions. Systems exhibiting Markov properties can be analysed to
determine what their most likely state is and how long it takes for a dynamic system to resolve
into that state. Some stochastic processes, however, never settle into any predictable set of states.
The analytical tools presented in Chapter 6 are not tools that are directly used to optimize a system,
but rather to analyze a system and identify a system's most likely properties. A knowledge of the
most probable behavior of a system can then be used to modify and improve the system's perfor-
mance.

Many systems can be described in terms of customers waiting to be served in some way: human
customers waiting to be served by a cashier, computational processes waiting to be executed by a
processor in a computer, or manufactured products waiting to be worked on by a machine in an
assembly-line process. Chapter 7 deals with the performance of systems that involve waiting lines,



or queues. In this chapter, we study queuing models and the properties of queuing systems that
can be computed on the basis of parameters that describe the arrival rates of customers into the
system and the service rates of the servers.

For some special cases, these computations are easily made; but for more complicated systems,
analysts often resort to the use of simulation techniques. Chapter 8 presents simulation as a
modeling process in which we use the computer to simulate the activities in a real system, in order
to discover the behavioral properties of the system.

Although practically all of the techniques of Operations Research can become involved in
decision-making processes, Chapter 9 takes a closer look at some of the theories and psychological
issues related to decision-making. Game theory, decision trees, and utility theory are among the
more formal topics in this chapter. We then discuss some of the human factors influencing decision-
making, the effects of human misconceptions of probabilities, the irrational behaviors of human
decision-makers, and how these difficulties can be dealt with to improve the decision-making
process in practice.

In the last chapter, Chapter 10, we give an overview of some of the recently developed
approaches to problem-solving that practitioners have resorted to because of the inadequacy of the
more formal traditional methods (such as those based on mathematical certainties or established
probabilities). Inasmuch as perfect methodologies for some "known-to-be-difficult" problems have
thus far eluded analysts (and in fact may never be forthcoming!), the heuristic methods presented
here are often used to obtain solutions that are suboptimal but often acceptable in practice.

This book contains a comprehensive collection of topics that we believe provide an accurate
and useful introductory perspective on the discipline and practice of Operations Research. We,
the authors, have prepared this book on the basis of a variety of experiences in teaching, research,
technical consulting, and systems analysis. Significant credit goes to our own professors, whose
excellent instruction once introduced us to the field of Operations Research and whose knowl-
edgeable enthusiasm initially sparked our interest in the subject. Research and consulting oppor-
tunities have sustained and broadened our awareness and appreciation of the importance of these
topics. Perhaps the immediate motivation for developing this book arose from our many years of
teaching courses in various areas of mathematics, computer science, operations research, and
business analysis.

Many of our students have been introduced to Operations Research through courses in which
early drafts of this book were used as text material. We appreciate these students' interest in the
subject and their careful reading of the chapters. Their constructive and insightful responses and
suggestions have contributed substantially to improvements in the presentation of the material in
this book. We continue to welcome feedback from our readers, and invite comments that will assist
us in keeping this book correct, up-to-date, educational, and of practical value.
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1.1 THE ORIGINS AND APPLICATIONS OF OPERATIONS
RESEARCH

Operations Research can be defined as the use of quantitative methods to assist analysts and
decision-makers in designing, analyzing, and improving the performance or operation of systems.
The systems being studied may be any kind of financial systems, scientific or engineering systems,
or industrial systems; but regardless of the context, practically all such systems lend themselves to
scrutiny within the systematic framework of the scientific method.

The field of Operations Research incorporates analytical tools from many different disciplines,
so that they can be applied in a rational way to help decision-makers solve problems and control
the operations of systems and organizations in the most practical or advantageous way. The tools
of Operations Research can be used to optimize the performance of systems that are already well-
understood or to investigate the performance of systems that are ill-defined or poorly understood,
perhaps to identify which aspects of the system are controllable (and to what extent) and which
are not. In any case, mathematical, computational, and analytical tools and devices are employed
merely to provide information and insight; and ultimately, it is the human decision-makers who
will utilize and implement what has been learned through the analysis process to achieve the most
favorable performance of the system.

The ideas and methodologies of Operations Research have been taking shape throughout the
history of science and mathematics, but most notably since the industrial revolution. In various
ways, all of human knowledge seems to play a role in determining the goals and limitations
underlying the decisions people make. Physical laws (such as gravity and the properties of material
substances), human motivations (such as greed, compassion, and philanthropy), economic concepts
(supply and demand, resource scarcity, division of labor, skill levels, and wage differentials), the
apparent fragility of the environment (erosion, species decline), and political issues (territorial
aggression, democratic ideals) all eventually are evident, at least indirectly, in the many types of
systems that are studied with the techniques of Operations Research. Some of these are the natural,
physical, and mathematical laws that are inherent and that have been discovered through observa-
tion, while others have emerged as a result of the development of our society and civilization.

1
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2 Operations Research: A Practical Introduction

Within the context of these grand themes, decision-makers are called upon to make specific
decisions — whether to launch a missile, introduce a new commercial product, build a factory,
drill a well, or plant a crop.

Operations Research (also called Management Science) became an identifiable discipline during
the days leading up to World War II. In the 1930s, the British military buildup centered around the
development of weapons, devices, and other support equipment. The buildup was, however, of an
unprecedented magnitude, and it became clear that there was also an urgent need to devise systems
to ensure the most advantageous deployment and management of material and manpower.

Some of the earliest investigations led to the development and use of radar for detecting
and tracking aircraft. This project required the cooperative efforts of the British military and
scientific communities. In 1938, the scientific experts named their component of this project
"operational research." The term "operations analysis" was soon used in the U.S. military to
refer to the work done by teams of analysts from various traditional disciplines who cooperated
during the war.

Wartime military operations and supporting activities included contributions from many scien-
tific fields. Chemists were at work developing processes for producing high-octane fuels; physicists
were developing systems for detection of submarines and aircraft; and statisticians were making
contributions in the area of utility theory, game theory, and models for various strategic and tactical
problems. To coordinate the effectiveness of these diverse scientific endeavors, mathematicians and
planners developed quantitative management techniques for allocating scarce resources (raw mate-
rials, parts, time, and manpower) among all the critical activities in order to achieve military and
industrial goals. Informative overviews of the history of Operations Research in military operations
are to be found in [White, 1985] and [McArthur, 1990].

The new analytical research on how best to conduct military operations had been remarkably
successful, and after the conclusion of World War II, the skill and talent of the scientists that had
been focused on military applications were immediately available for redirection to industrial,
financial, and government applications. At nearly the same time, the advent of high-speed electronic
computers made feasible the complex and time-consuming calculations required for many opera-
tions research techniques. Thus, the methodologies developed earlier for other purposes now became
practical and profitable in business and industry.

In the early 1950s, interest in the subject was so widespread, both in academia and in industry,
that professional societies sprang up to foster and promote the development and exchange of new
ideas. The first was the Operational Research Society in Britain. In the U.S., the Operations
Research Society of America (ORSA) and The Institute of Management Science (TIMS) were
formed, and operated more or less as separate societies until the 1990s. These two organizations,
however, had a large and overlapping membership and served somewhat similar purposes, and
recently merged into a single organization known as INFORMS (Institute for Operations Research
and the Management Sciences). National societies in many other countries are active and are
related through IFORS (the International Federation of Operational Research Societies). Within
INFORMS, there are numerous special-interest groups, and some specialized groups of research-
ers and practitioners have created separate societies to promote professional and scholarly endeav-
ors in such areas as simulation, the decision sciences, and artificial intelligence. Furthermore,
many mathematicians and computer scientists have interests that overlap those of operations
researchers. Thus, the field of Operations Research is large and diverse. Some of the many
activities and areas -of research sponsored by INFORMS can be found at the Web site
http://www.informs.org or in the journals associated with that organization. As will be apparent
from the many illustrative applications presented throughout this book, the quantitative analysis
techniques that found their first application over 60 years ago, are now used in many ways to

- influence our quality of life today.

http://www.informs.org
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1.2 SYSTEM MODELING PRINCIPLES

Central to the practice of Operations Research is the process of building mathematical models. A
model is a simplified, idealized representation of a real object, a real process, or a rea1 system.
The models used here are called mathematical models because the building blocks of the models
are mathematical structures such as equations, inequalities, matrices, functions, and operators. In
developing a model, these mathematical structures are used to capture and describe the most salient
features of the.entity that is being modeled. For example, a financial balance sheet may model the
financial position of a corporation; mathematical formulae may serve as models of market activity
or trends; and a probability distribution can be used to describe the frequency with which certain
asynchronous events occur in a multiprocessor computer. Mathematical models may look very
different, depending on the structure of the system or problem being modeled and the application
area. In studying the various topics in this book, we will see that models do indeed take on various
forms. Each chapter provides the opportunity to build different kinds of models. This chapter merely
makes a few general observations pertinent to all modeling.

The first step in building a model often lies in discovering an area that is in need of study or
improvement. Having established a need and a target for investigation, the analyst must determine
which aspects of the system are controllable and which are not, and identify the goals or purpose
of the system, and the constraints or limitations that govern the operation of the system. These
limitations may result from physical, financial, political, or human factors. The next step is to create
a model that implicitly or explicitly embodies alternative courses of action, and to collect data that
characterize the particular system being modeled.

The process of "solving" the model or the problem depends entirely on the type of problem.
It may involve applying a mathematical process to obtain a "best" answer, or it may necessitate
the use of some other quantitative tools to determine, estimate, or project the behavior of the system
being modeled. Realizing that the data may have been only approximate, and that the model may
have been an imperfect representation of the real system, a successful analyst ultimately has the
obligation to assess the practical applicability and flexibility of the solution suggested by the
foregoing analysis. Merely finding an "optimal" solution to a model may be just the beginning of
a manager's job; a good manager must constantly reevaluate current practices, seek better ways to
operate a system or organization, and notice trends in problem data that may not explicitly appear
as part of a mathematical solution, such as excess production capacity, under-utilized labor, or a
decreasing product demand over time. The entire modeling process is likely to require the skill and
knowledge of a variety of individuals who are able to work effectively in teams and communicate
clearly and convincingly among themselves, and then to explain and "sell" their recommendations
to management.

Considerable skill is required in determining just how much detail to incorporate into a
mathematical model. A very accurate representation of a system can be obtained with a large and
sophisticated mathematical model. But if too many details are included, the model may be so
complex and unwieldy that it becomes impossible to analyze or solve the system being modeled.
Therefore, we do not even try to make a model as realistic as possible. On the other hand, a very
simplistic model may not carry enough detail to provide an accurate representation of the real
object or system; and in that case, any analysis that is performed on the model may not apply to
the reality.

It is tempting to confuse detail (or precision) with accuracy. They are not the same, although
many people are under the impression that the more detailed or complex a model, the more
accurately it reflects reality. Not all details are correct, and not all details are relevant. The
availability of powerful computing hardware and user-friendly software for building computer
models almost seem to encourage runaway complexity and detail, as there seems to be no limit to
what can be included almost effortlessly in a model. Nevertheless, it is possible to build models
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that are both realistic and simple, and doing so may spare an analyst from losing sight of the
purpose of building the model in the first place.

The best model is one that strikes a practical compromise in representing a system as realistically
as possible, while still being understandable and computationally tractable. It is, therefore, not
surprising that developing a mathematical model is itself an iterative process, and a model can
assume numerous forms during its development before an acceptable model emerges. An analyst
might in fact need to see some numerical results of a solution to a problem in order to begin to
recognize that the underlying model is incomplete or inaccurate.

The purpose of building models of systems is to develop an understanding of the real system;
to predict its behavior; to learn the limiting capabilities of a system; and eventually to make decisions
about the design, development, fabrication, modification, or operation of the real system being
modeled. A thorough understanding of a model may make it unnecessary to build and experiment
with the real system, and thus may avoid expense or alleviate exposure to dangerous situations.

Operations Research deals with decision-making. Decision-making is a human process that is
often aided by intuition as well as facts. Intuition may serve well in personal decisions, but decisions
made in political, government, commercial, and institutional settings that will affect large numbers
of people require something more than intuition. A more systematic methodology is needed.
Mathematical models that can be analyzed by well-understood methods and algorithms inspire
more confidence and are easier to justify to the people affected by the decisions that are made.

Experience in modeling reveals that, although quantitative models are based on mathematical
truths and logically valid processes and such models may command the respect of management,
solutions to mathematical problems are typically interpreted and implemented under a variety of
compromising influences. Management is guided by political, legal, and ethical concerns, human
intuition, common sense, and numerous personality traits. Problems and systems can be represented
by mathematical models, and these formulations can be solved by various means; but final decisions
and actions are taken by humans who have the obligation to consider the well-being of an organi-
zation and the people in it. Ideally, if these factors are going to influence the decisions that are
made, then these human concerns, as well as technological and financial goals and constraints,
should be incorporated in an honest way into the models that are created and analyzed. In this way,
we can gain the greatest value from our efforts in applying quantitative methods.

As a final word of advice and caution, it is suggested that before expending any substantial
effort in solving or analyzing a problem or system, analysts and managers should try to confront
and answer a few preliminary questions:

Does the problem need to be solved?
Will it be possible to determine what the real problem is?
If a model were developed and a solution proposed, would anybody care?
Would anybody try to implement the solution?
How much of the analyst's time and expense is it worth to try to solve this problem?
Is there enough time and adequate resources available to make any significant progress toward

solving this problem?
Will the solution create other serious problems for which there is no apparent remedy?

These are difficult questions, often overlooked by an eager and well-paid analyst, but they are
issues that an analyst should try to confront frankly and candidly before becoming irreversibly
involved in a large problem-solving project.

1.3 ALGORITHM EFFICIENCY AND PROBLEM COMPLEXITY

An algorithm is a sequence of operations that can be carried out in a finite amount of time. An
algorithm prescribes a process that may be repetitive in some sense (perhaps iterative or recursive)
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but that will' eventually terminate. Practical examples of algorithms include recipes for cooking,
the instructions in an owner's manual for connecting a new sound system component, and computer
programs that do not contain infinite loops. Algorithms are the processes that software developers
put into action when they create computer programs for solving all kinds of problems.

In the 1930s, a mathematician by the name of Alan Turing developed a general computational
model (which now bears his name) that is powerful enough to represent all possible numeric and
symbolic computational procedures. Turing also demonstrated the existence of problems for which
no algorithms exist that successfully handle all possible instances of the problem. Such problems
a^ called unsolvable or undecidable problems. (It had been previously assumed that an algorithm
could be developed for any problem if the problem-solver was merely clever enough.) Some of the
earliest problems to be classified as unsolvable were of only theoretical interest; but more recently,
other more practical unsolvable problems have been identified.

When such problems do arise in actual practice, we might just try to deal with special or limited
cases, rather than with the general problem. Special cases of unsolvable problems, perhaps involving
highly restricted inputs, may not be unsolvable, and therefore it may be entirely possible to design
algorithms for these cases. Alternatively, we might find it fairly simple to use human "ingenuity"
(a very poorly defined talent that cannot be easily automated) to deal with individual problem
instances on a case-by-case basis.

While unsolvable (or undecidable) problems do exist, most analysts would prefer to concentrate
on the many important solvable problems that face us; that is, problems for which algorithms can
be developed. With this in mind, the next question to arise might be: are all solvable problems of
similar difficulty, or are there some that are truly more difficult than others? What is meant by a
"difficult" problem? And just what is known about algorithms, and the complexity (or computational
behavior) of algorithms? This is a topic of study that has undergone enormous progress during the
past 3 decades, and the advances that have been made in this field have provided valuable concepts,
notations, and tools that allow for discussion and analysis of an algorithm's performance.

Several factors influence the amount of time it takes for a computer program to execute to
solve a problem: the programming language used, the programmer's skill, the hardware used in
executing the program, and the task load on the computer system during execution. But none of
these factors is a direct consequence of the underlying algorithm that has been implemented in
software. Given a particular algorithm, its performance is strongly dependent on the "size" of the
problem being solved. For example, we would expect a sorting algorithm to take longer to sort a
list of 10,000 names than to sort a list of 100 names. Similarly, we recognize that solving a system
of equations takes longer when there are more equations and more variables. For this reason, the
performance of an algorithm is often described as a function of a variable denoting the problem
size, which denotes the size of the data set that is input to the algorithm.

During the early years of the discipline of Operations Research, relatively little was understood
about the formal properties of algorithms and the inherent complexity of problems. However, the
1970s and 1980s witnessed remarkable developments in this arena. Two interesting classes of
problems have been defined. One class (called class P) of problems contains those problems that
can be solved by an algorithm within an amount of computation time proportional to some
polynomial function of problem size; that is, the problems are solvable by polynomial-time
algorithms. The other class (called class NP) contains problems that may require computation time
proportional to some exponential (or larger) function of problem size; these algorithms are called
exponential-time algorithms. For a more precise description of these problem classes, based on
the notions'of deterministic and nondeterministic Turing machines, refer to any elementary textbook
on algorithms or theory of computation, such as [Baase and Gelder, 2000], [Manber, 1989], and
[Hein, 1995].

Within the class NP, there is another special class of problems called NP-complete or NP-
hard problems; these problems are characterized as being the most difficult problems in NP. This
class includes many very practical problems and so has received considerable attention from



6 Operations Research: A Practical Introduction

analysts. Some of these problems, and their practical applications, are described in Chapters 3, 4,
and 10.

The problems in class P are generally considered to be "easy" problems — not necessarily in
the conceptual sense but in the sense that efficient algorithms for these problems exist that execute
in reasonably small amounts of computation time. NP-complete problems, in contrast, require
computation time that grows as an exponential function of problem size. This implies that unac-
ceptably large amounts of computation time could be required for solving problems of any practical
size, and therefore such problems have been termed "intractable" problems. Solutions for such
problems are not necessarily difficult to conceptualize or even to implement in computer code, but
the execution time may be completely unaffordable — both physically and financially.

It is known that P c NP, but it is an open question whether P = NP. In other words, are the
NP-complete problems truly more costly to solve than the problems in P, or have analysts just not
yet been clever enough to discover efficient algorithms for these apparently difficult problems?
Discovery of an efficient (polynomial-time) algorithm for any NP-complete problem would be
sufficient to establish that P = NP and, therefore, that all the NP-complete problems can be solved
efficiently. In the absence of any such discovery, analysts are faced daily with the need to solve
practical problems that are computationally intractable. Chapter 10 reveals how some of these
problems are dealt with in effective and affordable ways. An informative overview of this subject
is available in [Garey and Johnson, 1979].

Most of the problem models presented in this book are not intractable, and the solution methods
for these problems are based on polynomial-time algorithms. These methods find optimal solutions
in an amount of time proportional to a polynomial function of the problem size. Depending on the
nature of the data (e.g., the distribution of data values or the arrangement of the data values in the
data set), the execution time for a given algorithm may vary. Sorting a list of 10,000 names that
are already in order may take less time than to sort 10,000 names that are scrambled — if the
algorithm is sensitive to the initial ordering and can take advantage of it. Similarly, finding the
"best" solution to a system of equations may be rather easy if a "reasonably good" solution is
already known.

Thus, we will see that, under different circumstances, the same algorithm may require execution
time that is a different function of problem size. If so, which of these different functions should
analysts use to characterize the performance of the algorithm? There are several possibilities: the
most favorable (fastest) case, the average case, or the most unfavorable (slowest) case.

To help phrase an answer to this question, special notations have been developed that facilitate
describing the computation time required to execute an algorithm to completion. For this particular
purpose, we do not want to try to capture specific information about how an algorithm is imple-
mented (programmed) or on what type of computer it is to be executed; rather, we should focus
on the algorithm itself and, in particular, the step count, or the number of steps inherent in carrying
out the algorithm. For some purposes, one might want to characterize the best case performance
of an algorithm (the fewest number of steps that it could ever need under any circumstances). Best
case might be the choice of an optimist, but using this as an indicator of algorithm performance
could be misleading; and in any case, this is rarely indicative elf what analysts need to know in
order to assess the dependable performance of the algorithm. For example, multiplying two n x n
matrices generally takes time proportional to n3; but of course, if one of the matrices is the identity
matrix, this could be discovered in only n2 steps (inspecting each element of the matrix) and the
rest of the process could be omitted. Using the function n2 to describe the step count, or run-time,
of a matrix multiplication routine does give an accurate measure of this best case, but it is not
generally indicative of the time required for matrix multiplication.

An algorithm's average case performance may seem to be the most practical characterization
because it indicates the typical, or expected, step count. It would certainly be useful to know the
"most likely" amount of time required to execute an algorithm. But because such an analysis must
be based on statistical assumptions about the nature, order, or distribution of the data on which the
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algorithm operates, the validity of such assumptions may be on shaky ground for any particular
set of data. Indeed, the expected performance may never actually be observed on any given set of
input data. In addition, the statistical analysis that must be carried out in order to characterize an
algorithm's average behavior is often quite a mathematically difficult analysis.

The characterization of an algorithm that is both straightforward and often of greatest practical
value is the worst case performance, that is, the greatest number of steps that may be necessary for
guaranteed completion of the execution of the algorithm. For this purpose, we introduce a notation
called big-Oh notation, which is written as O(f(n)) and pronounced "big Oh of f of n," where n
denotes problem size and f(n) is some function of problem size. The meaning of the notation is as
follows. An algorithm is said to be O(f(n)) if there exist constants c and ̂  such that for all n > n0,
the execution time of the algorithm is ̂  c • f(n). The function f(n) is the algorithm's worst case step
count, measured as a function of the problem size. The constant c is called a constant of propor-
tionality, and is intended to account for the various extraneous factors that influence execution time,
such as hardware speed, programming style, and computer system load during execution of the
algorithm. The problem size threshold n0 accounts for the fact that for very small problem sizes, the
algorithm may not reveal its characteristic worst case performance. Paraphrased, the definition given
above may be stated as follows: To say that an algorithm is O(f(n)), or "of order f(n)," means that
for large enough problem sizes, the execution time is proportional to at most f(n).

Thus, a matrix multiplication algorithm is O(n3) because the process may take n3 steps, although
the algorithm could be programmed to look for special input forms that may in certain cases permit
completion of the task in fewer than n3 steps. Some algorithms may operate in such a way that
their worst case performance is also the best case; the performance of such algorithms does not
vary depending on the nature of the data, but, of course, does vary with problem size.

There are even some algorithms whose performance is independent of problem size, and
therefore not really dependent on any function of problem size n. (For example, retrieving the first
item in a list takes the same amount of time regardless of the length of the list.) If we need to
describe the worst-case performance of such an algorithm, we could use the notation O(l), where
f(n) is just the constant function 1. Where appropriate throughout this book, the big-Oh notation
is used to describe the worst case performance of the algorithms that are presented.

Many of the methods studied in this book are based on algorithms whose complexity functions
range from n, n2, n3, up to 2n , n!, and nn. To give an idea of the relative growth rates of these
functions as n increases, Table 1.1 shows indications of function values. Instead of raw numeric
values, we can impose a more practical interpretation and assume that the function values f(n)
denote the step count of some algorithm, and that each "step" can be executed in 1 second on a
computer. The entries in the table can then be viewed as estimates of actual amounts of computation
times that would be required to apply algorithms of different complexities to increasingly larger
problems of size n. The great differences that are evident between the polynomial functions and
the exponential functions are quite dramatic, and the execution times for the exponential algorithms
are indeed staggering.

In practical applications, problem sizes may well range into the thousands or even tens of
thousands, and we will encounter a number of important practical problems for which the only
known algorithms have worst case complexity that is exponential. It is obvious from the table that
such exponential-time algorithms are completely useless for solving problems of any reasonably
large size. Given this dilemma, what are the options? It is pretty clear that, for these types of
problems, faster hardware does not offer an immediate solution; CPU chips whose processing
speeds are doubled, or even increased by several orders of magnitude, will not make a dent in these
formidable execution times. Until some theoretical breakthroughs come to the rescue that suggest
new algorithms for solving such problems, we may have to settle for using methods that do not
solve the problems perfectly but which yield acceptable solutions in an affordable amount of
computation time. This may seem to be a disappointing direction to follow, but the discussion in
Section 1.4 might provide convincing arguments in defense of suboptimal solutions.
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TABLE 1.1
Computation Times

f(n)
n
n2

n3

2"

n!

nn

n = 10
10s
100s
1000 s « 17 min
1024 s« 17 min

3,628,800 s«l
month

1010s«300yr

n = 20
20s
400 s «7 min
8000 s «2 h
1, 048,576 s« 12 d

2.433 xlO I8s«109

centuries
1.049xlO*s«1017

centuries

n = 50
50s
2500 s ~42 min
125,000 s «35 h
1.126x 1015s«
350,000 centuries

3.041 x lO^s ~l&5

centuries
8.882 x 1084 s « 1075

centuries

n = 100
100s
10,000 s «2.8 h
1,000,000 s« 12 d
1.268x lOPs-
centuries

1021

1A OPTIMALITY AND PRACTICALITY

Everyone with a mathematical education has been trained to search for exact solutions to problems.
If we are solving a quadratic equation, there is a formula which, if applied correctly, yields exact
results, namely values that "satisfy" the equation. If a list of names needs to be sorted, we employ
an algorithm that gets the list perfectly ordered. And if we need to find the maximum point in a
continuous, differentiable function, we may be able to use the methods of calculus to find that
optimal point. And certainly in the case of giving proofs of mathematical theorems, a respect for
truth and perfection has been developed, and a nearly correct but incomplete or slightly flawed
proof is of little or no value at all. Against this backdrop, the idea of solving a problem and not
getting the "right" answer is indeed disappointing and disturbing. Yet there are justifiable reasons
for accepting computational results that are imperfect or suboptimal.

First of all, it has already been pointed out that the models created by an analyst are not perfect
representations of a system being analyzed. So, even if we could obtain exact solutions to the
model, that would not necessarily constitute exact solutions or perfect managerial advice to be
applied within the real system. Hence, costly efforts to achieve perfect solutions to a mathematical
model may not be warranted.

Contributing to the imperfection in our problem-solving endeavors is the use of automatic
computing devices to assist in the calculations. The exact representation of real numbers requires
the use of arbitrarily many binary digits. But the finite number of bits, sometimes known as word
length, typically used for storing numerical values in computer memories implies that real numeric
data values cannot always be represented exactly in computers. As an example, a correct represen-
tation of the value pi requires infinitely many digits, but we often settle for a truncated approximation
using seven or eight significant digits (such as 3.141592), and tolerate the resulting inaccuracy in
the results. This is known as round-off error, and after repeated calculations involving many
inexact values, the accumulated round-off error can so distort the final results that they bear little
resemblance to the pure theoretically correct answers that were anticipated. Hardware standards,
such as the IEEE Floating-Point Standard, and results from the well-developed field of numerical
analysis have provided analysts with tools to define, measure, and place bounds on the effects of
accumulated computational errors, but being able to predict these errors does not necessarily suggest
any method for avoiding or correcting erroneous results.

It is known that the data values associated with some types of problems, such as matrix problems
and solving systems of equations, are inherently "ill-conditioned," and certain computational pro-
cedures, such as matrix operations or iterative searches designed to converge to a solution, are
inherently "unstable." In some cases, although the algorithm underlying a solution process might
be proven to yield optimal results, ill-conditioned problem data and numerical instability can
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practically preclude obtaining solutions of any reasonable quality. For further discussions on the
successful use of numerical techniques with computers, refer to any reputable book on numerical
analysis, such as the ones by [Cheney and Kincaid, 1980] and [Wilkinson, 1963],

Tlie shorter word lengths in early microcomputers had such profound negative effects on the
quality of computational results that the use of PCs for realistic problems in Operations Research
was not at all practical. Nowadays, 32-bit word lengths, with options for double and quadruple
words for extra accuracy, seem to be the standard, whether in a desktop computer, a workstation,
or a mainframe.

Although the type of computer being used may no longer be an issue due to word length, the
total amount of memory in the system and the sophistication of the memory management techniques
used in the computer may have a profound effect on how intermediate results can be organized
and stored internally. Computers with larger and more powerful memories are likely to be able to
produce solutions more quickly and may also yield solutions of greater accuracy. Analysts must
be prepared to evaluate the results obtained from Operations Research software in light of these
technological complications.

Finally, the innate difficulty of some problems might suggest that accepting suboptimal solutions
is the only practical approach. Problems whose algorithms take an exponential amount of compu-
tation time to guarantee a perfect, or optimal, solution leave us little alternative but to look for
faster ways of obtaining solutions, even at the price of getting solutions of lesser quality. Suppose
we are faced with the choice of expending an exponential amount of time (perhaps translating into
centuries of computation time) to obtain an optimal result, or expending polynomial-time compu-
tational effort to obtain a solution that is adequate. In some cases, there may be a guarantee that
the polynomial-time solution will be within some specified percentage of the optimal solution. In
other cases, there may be no such guarantee, but perhaps experience has shown that in common
practice the results are considered to be good enough for the context in which the solution is to be
applied. Realizing also that the "optimal" result may be the solution to the wrong model, that the
"optimal" result may be infused with round-off error, and that the data used as parameters might
have been flawed and could have changed over time, a realistic analyst would probably feel
completely justified in applying the polynomial-time algorithm to get a practical solution quickly,
and feel no remorse whatsoever over having foregone the chance to obtain a slightly better solution.
Given our very imperfect grasp on the concept and reality of "perfection," the price of optimality
— in this case and in many others — is entirely impractical.

Settling for solutions of merely "good enough" quality may at first seem to be an inexcusable
lowering of one's standards and expectations. Yet in a complex and in some ways subjective world,
compromise should not necessarily be seen as evidence of mediocrity. In the real world of imperfect
models, precarious data, unavoidable numerical inaccuracies, and time constraints, insistence upon
so-called optimal solutions may border on the compulsive. A rational analyst with a comprehensive
view of the problem-solving process would prefer to spend a reasonable amount of time in search
of good, practical solutions, and then proceed to put the results into practice to achieve the original
goal of improving the performance or operation of the system being studied. Chapter 10 introduces
some of the inspiration and influences behind solution methods that incorporate pragmatic
approaches to solving difficult problems.

1.5 GUIDE TO SOFTWARE TOOLS

Each chapter in this book contains a Guide to Software Tools, in which there is a brief description
of some of the most popular software currently available for solving the types of problems studied
in the chapter. The principles and methods presented in each chapter are intended to provide the
foundations necessary for building and understanding appropriate models. The authors' aim is to
encourage an adequate understanding of the mathematical principles and methods for solving
problems so that students can become informed users of the software mentioned in the Guides.
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Because there is no single software system that is capable of solving all optimization and
system analysis problems, the user must be knowledgeable enough about the various classes of
problems to make a selection of appropriate software packages. Thus, being able to build a
mathematical model of a problem and being able to identify that model as a linear program, integer
program, or network problem, for example, not only helps to clarify the model, but also puts the
analyst well on the way to selecting the right software for solving the problem.

The most visible "users" of commercial software may be the people who actually "run"
application systems that contain optimization modules. But playing even more essential roles in
the process are the analysts who formulate the mathematical models and who adapt and refine the
standard algorithms, and the developers of the software packages who incorporate optimization
modules (sometimes called "solvers"), together with application systems and user interfaces.

Depending on the nature of the problems at hand, the Guides in this book address such practical
issues as:

• Should commercial software be used, or would it be reasonable to develop one's own
software for some problems?

• What implementations are available and appropriate for solving real problems, and where
does one find such software?

• Is the commercial software executable on mainframe computers, workstations, desktop,
or personal computers?

• What input and output formats or user interfaces are available? Does the software allow
access via electronic spreadsheets, and display results graphically?

• How much memory is required for certain implementations, and what special memory
management techniques or compressed storage methods are used?

• What sizes of problems can be solved on what kind and size of machines with available
software? What size problems are considered "desktop" problems, and which should be
thought of as problems for a serious number-crunching computer?

The references to software products are by no means exhaustive and are not intended to comprise
a comprehensive catalog of available software. Instead, we hope to give readers a feel for the types
of products that are on the market and that may deserve their consideration when selecting
implementations for practical applications.

The Guides to Software Tools are not intended to represent endorsement of any specific software
products. Rather, we merely mention examples from the broad range of software available for the
various application areas, and offer short descriptions of selected software packages and libraries,
in order to create an awareness of the general capabilities of typical software, as well as some of
the questions, difficulties, or limitations that might arise during the development or use of software
for solving real problems.

New products are being introduced rapidly, and it would be impossible to maintain a perfectly
up-to-date list of software tools. Advertisements and published product reviews are helpful and, in
particular, the software reviews that appear frequently in issues of OR/MS Today are an extremely
valuable source of information.

We have avoided making any comparisons of products on the basis of performance or cost.
Performance depends on the underlying hardware as well as on the frequent updates and modifi-
cations that occur during the evolutionary development of the software. Software prices vary rapidly,
depending on competition in the market, whether the purchaser or user is in academia or industry,
and whether copies are sold for installations in individual workstations or client/server network
versions intended for multiple users. More expensive commercial versions of some software may
handle larger problem models and solutions, while the less expensive personal versions or student
versions may be very limited in the size of problems that can be solved.
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Furthermore, there is an increasing abundance of software available on the Internet where the
convenience and low cost may be offset by the lack of pedigree and absence of any vendor support.
Conventional wisdom has held that "public domain" software is not of high quality and is not
reliably supported by any vendor (for the simple reason that serious software developers have
enormous effort invested in their products and would like to be compensated for or at least retain
copyright on the products). On the other hand, more current views of "free software" argue against
this position and instead support free use of software, under the optimistic assumption that a
competent community of users will contribute substantially to the development and maintenance
of software. There is good reason to anticipate success with this new "open source" software
distribution paradigm; nevertheless, despite a few notable exceptions, good quality optimization
software is seldom free.

In light of the above considerations, a few of the pertinent characteristics and features that will
likely play a role in the reader's consideration of software products are highlighted. Each chapter's
Guide cites software related to the topics covered in that chapter. In this first chapter, no specific
solution methods are introduced; however, there is discussion of some of the general principles of
building mathematical models. Thus, some software systems that facilitate the construction of models
and the preparation of model parameters and characteristics are identified. These representations of
models can then be introduced as input to various other software solution generators, or solvers.

One way to create a problem model to be solved with a specialized solver is to use a general-
purpose programming language (such as C, C++, or Fortran) and write a program to format input
parameters appropriately and to generate output reports in the desired form. The advantages of this
approach are that such languages are typically available and usable on any hardware, and there is
no need to purchase and learn a new language or "package."

An analyst who creates models in this way can then choose to solve the problem using available
software such as is found in the IMSL C Numerical Libraries. A comprehensive collection of
approximately 300 mathematical and statistical functions and user-callable subroutines are available
for solving most of the types of problems and are studied later in this book. The IMSL libraries
are for use on PCs, Windows and Unix systems, and a variety of mainframe computers. The IMSL
C Mathematics and Statistics Library costs approximately $700 for the commercial version, and
$300 for the educational version [Demirci, 1996].

The initial simplicity and low-cost investment associated with this approach, however, may be
paid for long-term, as code written and customized for one modeling project may not be directly
transferable and reusable on subsequent projects. Nevertheless, there is some value in maintaining
direct in-house control over the development and construction of models.

For some types of problems, the row and column (tabular) orientation of problem parameters
offered by many spreadsheet programs is easy to create and read; and although the analyst loses
some flexibility, many problems lend themselves nicely to the spreadsheet framework. Moreover,
many solvers can read and write directly to spreadsheet files.

A much more powerful means for creating models is through the use of algebraic modeling
languages. These languages permit the user to define the structure of a model and declare the data
to be incorporated into the structure. An algebraic modeling language accepts as input the analyst's
algebraic view of the model, and creates a representation of the model in a form that the solver
algorithm can use. It also allows the analyst to design the desired output reports to be produced
after the solver has completed its work. Modeling languages can be bundled with a solver or
optimization module, or can allow the user to customize an application system by selecting the
best optimization'component for the job.

AMPL, a modeling language for mathematical programming, is an integrated software package
for describing and solving a variety of types of problems. Developed by AT&T Bell Labs, it is a
complex and powerful language that requires a substantial effort by model developers in order to
effectively utilize its sophisticated capabilities. AMPL is a command and model interpreter that
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interfaces with various solvers such as MINOS, CPLEX, and OSL, which are described in later
chapters. As a modeling language, AMPL allows problem formulations to be described through
data structure definitions, model definitions, and data declarations. (The data declarations are stored
in a separate file so that a general model can be used on many different problem instances. Likewise,
different solution generators can be applied to a problem.) The model created in the above form
is compiled into an internal representation that is passed to a solver. The AMPL command interpreter
allows input of a model description that has been created using a text editor, setting parameters
and choosing options, activation of a chosen solver, and display of output. A review of AMPL and
its use can be found in [Burd, 1993]. AMPL versions are available for DOS, Windows, and Unix
systems, with open database connectivity (ODBC) capabilities. Commercial versions are priced in
the $3000 to $5000 range, while educational versions are under $1000.

MPL is an integrated model development system that supports input and output with databases
and spreadsheets. MPL for Windows interfaces with CPLX and supports almost all commercial
solvers. Other graphical windowing systems for MPL include Macintosh and OSF Motif for Unix.
Prices range from around $1000 to $10,000, and special student licenses (which permit solving
problems of limited size) can be arranged for teaching and student lab usage.

XPRESS-MP is a constraint-oriented modeling system with input and output interfaces to
spreadsheets, xBASE, and SQL files. As a matrix generator, it provides flexibility through a
complete separation of model and data. The system can interface with any solver that conforms to
the standard MPS format. (See Section 2.10.3 for a discussion of this format.) The system runs on
DOS, Unix, VMS, and MVS platforms, and on some parallel processors. Various versions are priced
in the $1000 to $5000 range.

LINGO is a thoroughly integrated modeling language that interfaces with the entire LINDO
system family of linear and nonlinear problem-solvers. (LINDO products are mentioned in several
subsequent chapter Guides, as this line of software offers application tools for a wide variety of
types of problems.) Special features allow data to be isolated from the model attributes, giving the
user considerable control and flexibility. Output can be directed to test files, spreadsheets, and
databases, as well as graphically displayed during and upon completion of the solution process.
LINGO runs on PCs, Macintosh systems, Sun, HP, and DEC Alpha and VAX platforms. LINGO
prices vary from $500 (for modeling problems with 2000 variables and 1000 constraints) up to
$5000 for the extended version for models of unlimited size.

AIM MS is a modeling language for PC platforms that is packaged with CPLEX and LAMPS
solvers, at prices ranging between $1000 and $9000. It has a built-in editor and facilities for creating
graphical display of solutions.

GAMS was one of the earliest developed modeling systems, and is among the most widely
known and widely used modeling languages. It is available for almost all major computing plat-
forms, and prices for different versions range from $1000 to $3000. It does not have a built-in
editor and its report generating capabilities offer little flexibility, but it provides a command-line
user interface, and it is linkable to practically all major solver software.

Software for operations research is also available on the Internet. As any knowledgeable
computer user must know, any products (be they information, software, or more tangible items)
offered on the Internet are not yet subject to the same standards of quality and 'control that are
imposed on other avenues of commerce. The source and authenticity of information cannot be
confirmed. Reliability and stability of software or any other information posted on the Internet
cannot be assured. Responsibility for maintaining the correctness, completeness, and integrity of
Internet site content is often not taken seriously. In the case of software, there are also copyright
issues and unresolved questions of information ownership and liability. Much of the software
accessible on the Internet is without adequate documentation, and user-support is often unavailable.
In light of this, users are encouraged to exercise caution when using free software that carries no
reputable name.



I introduction to Operations Research 13

Despite these concerns, the Internet has nevertheless become one of the most exciting sources
of information available today. The Internet is used to obtain all kinds of information (useful and
otherwise). With so many kinds of services available online, it makes sense that computational and
analytical services and tools should be found there, too. Indeed, in 1994, a group of researchers at
Argonne National Laboratory and Northwestern University launched a project known as the Net-
work-Enabled Optimization System (NEOS). Its associated Optimization Technology Center
maintains a Web site at http://www.mcs.anl.gov/otc/, which includes a library of freely available
optimization software, a guide to educational material, and a server that allows remote execution
of optimization software over the Internet. The NEOS project has been effective in providing
information, communication, and high-quality software as a valuable service to the operations
research community [Czyzyk et al., 1997].

Also available on the Internet, and likely intended for a different audience of users, is OR-
Objects, a library of over 450 operations research objects available as Java classes that can be used
(and reused) for developing operations research applications. The site http://OpsResearch.com/OR-
Objects/ includes data structures and algorithms for matrix computations and various mathematical
programming problems. OR-Objects strives to offer a rich selection of platform-independent com-
putational tools suitable for object-oriented application systems.

1.6 SUMMARY

Operations Research consists of the use of quantitative methods for analysis, optimization, and
decision-making. The ideas and methods of Operations Research began to take shape during World
War II, and thereafter have been put to good use in a wide variety of industrial, financial, and
scientific endeavors.

Central to the theory and practice of Operations Research is the use of mathematical models
to represent real systems or processes. A skillfully constructed model embodies enough of the
details of the real entity being modeled so that it captures the essential characteristics of the entity,
but yet is simple enough so that the model can be studied using standard analytical techniques. In
addition, successful modeling depends on a human analyst's knowledge, experience, intuition, and
good judgment.

Algorithms are computational processes that can be applied to the structures within mathemat-
ical models. The performance of algorithms is often measured by the amount of computer time
required to apply the algorithm. Depending on the type of problem being solved, algorithms may
execute very rapidly (efficiently), or their execution may take so long that the algorithm is essentially
worthless for actual problems. This book makes a special point of indicating, where possible, just
what level of performance can be expected of each of the computational methods presented.

Many algorithms are designed to solve their targeted problems perfectly; but with imperfect
or incomplete models and uncertain data, and the limited numerical accuracy of computer hardware,
it should be recognized that it may be more sensible and easily justifiable to develop problem
solutions that are less than optimal, but adequate for a given application. It may be necessary to
compromise the quality of solutions in order to obtain solutions within a reasonable amount of
computation time.

KEY TERMS
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best case performance
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2.1 THE LINEAR PROGRAMMING MODEL

Linear programming is a special class of mathematical programming models in which the
objective function and the constraints can be expressed as linear functions of the decision
variables. As with the more general mathematical programming models, the decision variables
represent quantities that are, in some sense, controllable inputs to the system being modeled.
An objective function represents some principal objective criterion or goal that measures the
effectiveness of the system (such as maximizing profits or productivity, or minimizing cost or
consumption). There is always some practical limitation on the availability of resources (time,
materials, machines, or manpower) for the system, and such constraints are expressed as linear
inequalities or equations involving the decision variables. Solving a linear programming problem
means determining actual values of the decision variables that optimize the objective function,
subject to the limitations imposed by the constraints.

The use of linear programming models for system optimization arises quite naturally in a wide
variety of applications. Some models may not be strictly linear, but can be made linear by applying
appropriate mathematical transformations. Still other applications are admittedly not at all linear,
but can be effectively approximated by linear models. The ease with which linear programming
problems can usually be solved makes this an attractive means of dealing with otherwise intractable
nonlinear problems.

In the following section, we will see examples of the wide variety of applications that can be
modeled with linear programming. In each case, the first task will be to identify the controllable
decision variables Xj, where i = 1, ..., n. Then the objective criterion will be established: to either
maximize or minimize some function of the form

z = ^x, + c2x2 + ... + cnxn = L CjXj

where the Cj are problem-dependent constants. Finally, resource limitations and bounds on decision
variables will be written as equations or inequalities relating a linear function of the decision
variables to some problem-dependent constant; for example,

a v i o v i O. 0 Y ^ H
1 ** 1 " 2 2 * * * î n

Although the primary purpose of this chapter will be to present methods of solving linear
programming problems, the first critical step in successful problem-solving lies in the correct
formulation of an application problem into the linear programming framework.

2.2 THE ART OF PROBLEM FORMULATION

A combination of practical insight and technical skill is required in order to recognize which
problems can be appropriately modeled in a linear programming format, and then to formulate
those problems accurately. Because of the wide variety of problems that can be made to fall into
the linear programming mold, it is difficult to give guidelines that are universally applicable to the
process of problem formulation. Rather, problem formulation is an art that must be cultivated
through practice and experience. Several examples are given to point the way. The exercises at the
end of the chapter should then provide some of the practice necessary to develop the art of
formulating linear programming models.
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Example 2.2.1

A manufacturer of computer system components assembles two types of graphics terminals, model
A and model B. The amounts of materials and labor required for each assembly, and the total
amounts available, are shown in the table below. The profits that can be realized from the sale of
each terminal are $22 and $28 for the model A and B, respectively, and we assume there is a market
for as many terminals as can be manufactured.

Materials
Labor

Resources Required
per Unit

A B

8
2

10
3

Resources
Available

3400

960

The manufacturer would like to determine how many of each model to assemble in order to
maximize profits.

Formulation 2.2.1

Because the solution to this problem involves establishing the number of terminals to be manufac-
tured, we define the decision variables as follows.

Let XA = number of model A terminals to be assembled

and

XB = number of model B terminals to be assembled

In order to maximize profits, we establish the objective criterion as

maximize z = 22xA + 28xB.

Two types of resource limitations are in effect. The materials constraint is expressed by the
inequality

8xA + 10xB < 3400,

and the labor constraint by

2xA + 3xB < 960.

Finally, as it would be meaningless to have a negative number of terminals manufactured, we also
include the constraints XA ^ 0 and XB ^ 0.

Example 2.2.2

A space agency planning team wishes to set up a schedule for launching satellites over a period
of 3 years. Experimental payloads are of two types (say, Tl and T2), and each launch carries
only one experiment. Externally negotiated agency policies dictate that at most 88 of payload
type Tl and 126 of type T2 can be supported. For each launch, type Tl payloads will operate
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successfully with probability 0.85 and type T2 payloads with probability 0.75. In order for the
program to be viable, there must be a total of at least 60 successful deployments. The agency
is paid $1.5 million for each successful Tl payload, and $1.2 million for each successful T2
payload. The costs to the agency to prepare and launch the two types of payloads are $1.05
million for each Tl and $0.7 million for each T2. One week of time must be devoted to the
preparation of each T2 launch payload and 2 weeks are required for Tl launch payloads. The
agency, while providing a public service, wishes to maximize its expected net income from the
satellite program.

Formulation 2.2.2

Let X) = number of satellites launched carrying a type Tl payload, and x2 = number of satellites
launched carrying a type T2 payload. Income is realized only when launches are successful, but
costs are incurred for ill launches. Therefore, the expected net income is

(1.5)(0.85)x, + (1.2)(0.75)x2 - (1.05)x, - (0.7)x2 million dollars.

The objective is then to maximize z = 0.225x, + 0.2x2. Problem constraints in this case are of
various types. Agency policies impose the two simple constraints:

x, < 88 and x2 < 126

The successful deployment quota yields the constraint

0.85x, + 0.75x2 > 60.

If we assume that 52 weeks per year (for 3 years) can be applied to the satellite program, then the
launch preparation time constraint is

2x, + Ix2 < 156.

As in the previous example, we include the non-negativity constraints x, ^ 0 and x2 ̂  0.

Example 2*2.3

A company wishes to minimize its combined costs of production and inventory over a 4-week time
period. An item produced in a given week is available for consumption during that week, or it may
be kept in inventory for use in later weeks. Initial inventory at the beginning of week 1 is 250 units.
The minimum allowed inventory carried from one week to the next is 50 units. Unit production
cost is $15, and the cost of storing a unit from one week to the next is $3. The following table
shows production capacities and the demands that must be met during each week.

Production Period
1
2
3
4

Production Capacity
800
700
600
800

Demand

900
600
800
600

A minimum production of 500 items per week must be maintained. Inventory costs are not applied
to items remaining at the end of the 4th production period, nor is the minimum inventory restriction
applied after this final period.
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Formulation 2.2.3

Let Xj be the number of units produced during the i-th week, for i = 1, ..., 4. The formulation is
somewhat more manageable if we let A} denote the number of items remaining at the end of each
week (accounting for those held over from previous weeks, those produced during the current week,
and those consumed during the current week). Note that the At are not decision variables, but will
merely serve to simplify our written formulation. Thus,

A, = 250 + x, - 900

A 2 = A , + x2-600

A3 = A2 + x3 - 800

A4=A3 + x4-600

The objective is to minimize

z = $15 • (x, -f x2 + x3 + x4) + $3 • (A, + A2 + A3).

Minimum inventory constraints are expressed as A-t ̂  50 for i = 1,2, and 3, and A4 ̂  0. Production
capacities and minima during each period are enforced with the constraints

500 ̂  x, < 800

500 < x2 < 700

500 < x3 < 600

500<x4<800

Finally, Xj > 0 for i = 1, ..., 4.

Example 2.2.4

A mixture of freeze-dried vegetables is to be composed of beans, corn, broccoli, cabbage, and
potatoes. The mixture is to contain (by weight) at most 40% beans and at most 32% potatoes. The
mixture should contain at least 5 grams iron, 36 grams phosphorus, and 28 grams calcium. The
nutrients in each vegetable and the costs are shown in the table.

Vegetable

Beans

Corn

Broccoli

Cabbage

Potatoes

Milligrams Nutrient per Pound of Vegetable

Iron Phosphorus Calcium .

0.5 10 200
0.5 20 280
1.2 40 800
0.3 30 420
0.4 50 360

Cost per Pound

(cents)

20
18
32
28
16

Determine the amount of each vegetable to include so that the cost of the mixture is minimized.

Formulation 2.2.4

Let x,, x2, x3, x4, and x5 be the number of pounds of beans, corn, broccoli, cabbage, and potatoes.
To minimize the cost of the mixture, we wish to minimize z = 20x, + 18x2 + 32x3 + 28x4 + 16x5.
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The percentage of beans in the mixture is x,/(x, + x2 + x3 + x4 + x5), and must be less than 40%.
Therefore,

x, ^ 0.4(x, + x2 + x3 + x4 + x5)

and similarly the potato restriction can be written as

x5 ^ 0.32(x, + x2 + x3 + x4 + x5)

To achieve the required level of nutrients, we have three constraints (for iron, phosphorus, and
calcium, respectively):

0.5x, + 0.5x2 + 1.2x3 + 0.3x4 + 0.4x5 > 5000

10x, + 20x2 + 40x3 + 30x4 + 50x5 > 36000

200x, + 280x2 + 800x3 + 420x4 + 360x5 > 28000

Negative amounts are not possible, so \t ̂  0 for i = 1, ..., 5.

Example 2.2.5

A saw mill makes two products for log-home kits: fir logs and spruce logs which can be sold at
profits of $4 and $5, respectively. Spruce logs require 2 units of processing time on the bark
peeler and 6 units of time on a slab saw. Fir logs require 3 units of time on the peeler and 5
units on the slab saw. Each then requires 2 units of time on the planer. Because of maintenance
requirements and labor restrictions, the bark peeler is available 10 hours per day, the slab saw
12 hours per day, and the planer 14 hours per day. Bark and sawdust are by-products of these
operations. All the bark can be put through a chipper and sold in unlimited quantities to a nearby
horticulture supplier. Dried fir sawdust can be directed to a similar market, at a net profit of
$0.38 per processed log. Limited amounts of the spruce sawdust can be made into marketable
pressed-wood products, but the rest must be destroyed. For each spruce log produced, enough
sawdust (5 pounds) is generated to make 3 pressed-wood products, which after manufacturing
can be sold at a unit profit of $0.22. However, the market can absorb only 60 of the pressed-
wood products per day and the remaining spruce sawdust must be destroyed at a cost of $0.15
per pound. The saw mill wishes to make the largest possible profit, considering the cost of
destroying the unusable sawdust.

Formulation 2.2.5

The formulation of this problem cannot follow exactly the pattern established in previous examples
because the profits to be maximized are not a linear function of the number of logs of each type
produced. Spruce log production creates a by-product that is profitable only up to a point and that
thereafter erodes total profits. Thus, profits are not a strictly increasing function of production
levels. We can still let

x, = number of fir logs produced

x2 = number of spruce logs produced

Because sawdust contributes nonlinearly to profits, we treat it in two parts and let
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x3 = number of pounds of spruce sawdust used

x4 = number of pounds of spruce sawdust destroyed

Direct profit from the sale of logs is 4x, + 5x2. All the bark can be sold at a profit in unlimited
quantities, therefore, although this affects the amount of profit, it does not affect our decision on
how many logs of each type to produce. Fir sawdust brings in $0.38 for each processed log, or
0.38x,. For each x3/5 spruce logs produced, there is enough sawdust to make three products at a
profit of $0.22 each, if there is a market. Unmarketable spruce sawdust costs 0.15x4 to destroy.
The objective is, therefore, to maximize

z = 4x! + 5x2 + 0.38x, + (3/5)(0.22)x3 - 0.15x4

Relating the number of logs produced to pounds of sawdust by-product, we obtain the constraint

5x2 = (x3 + x4)

Limitations on demand for the pressed-wood product are expressed by

3/5x3 < 60

Constraints on availability of machinery are straightforward. For the bark peeler,

3x, + 2x2 < 10

On the slab saw,

5x, + 6x2 < 12

And on the planer,

2x, + 2x2 < 14

Because all production levels are non-negative, we also require x, > 0, x2 ̂  0, x3 ̂  0, and x4 ̂  0.

Example 2.2.6

A dual-processor computing facility is to be dedicated to administrative and academic application
jobs for at least 10 hours each day. Administrative jobs require 2 seconds of CPU time on processor
1 and 6 seconds on processor 2, while academic jobs require 5 seconds on processor 1 and 3
seconds on processor 2. A scheduler must choose how many of each type of job (administrative
and academic) to execute, in such a way as to minimize the amount of time that the system is
occupied with these jobs. The system is considered to be occupied even if one processor is idle.
(Assume that the sequencing of the jobs on each processor is not an issue here, just the selection
of how many of each type of job.)

Formulation 2.2.6

Let x, and x2 denote respectively the number of administrative and academic jobs selected for
execution on the dual-processor system. Because policies require that each processor be available
for a least 10 hours, we must write the two constraints
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2x, + 5x2 > 10 - (3600) (Processor 1)

6x, + 3x2 > 10 • (3600) (Processor 2)

and x, ^ 0 and x2 ^ 0. The system is considered occupied as long as either processor is busy.
Therefore, to minimize the completion time for the set of jobs, we must

minimize (maximum (2x, + 5x2, 6\{ + 3x2)}.

This nonlinear objective can be made linear if we introduce a new variable x3, where

x3 = max {2x, + 5x2, 6x! + 3x2) ^ 0

Now if we require

x3 ̂  2x, + 5x2 and x3 ̂  6x, + 3x2

and make our objective to minimize x3, we have the desired linear formulation.

NONLINEAR MODELS

There are many problems that appear to fall into the framework of linear programming problem
formulations. In some problems, the decision variable values are meaningful only if they are
integer values. (For example, it is not possible to launch a fractional number of satellites or
to transport a fractional number of people.) However, general approaches to the solution of
linear programming problems in no way guarantee integer solutions. The analyst must therefore
be familiar enough with the actual application to determine whether it will be acceptable to
round-off a continuous (non-integer) optimal solution to an integer solution that may be
suboptimal. In many applications, such practices yield solutions that are quite adequate. When
rounding is not acceptable, it may be necessary to resort to methods that are computationally
more difficult than general linear programming solution methods, but which always yield
integer solutions. Specialized methods for these cases will be introduced in Chapter 4 on
Integer Programming.

More subtle nonlinearities exist inherently in almost all real applications. It is again left to the
discretion of the analyst to determine whether the linear model can provide a sufficiently accurate
approximation to the real situation. Because of the relative ease with which linear models can be
solved, it may well be worth making certain simplifying (albeit compromising) assumptions in
order to formulate a real problem into a linear programming model.

2.3 GRAPHICAL SOLUTION OF LINEAR PROGRAMMING PROBLEMS

2.3.1 GENERAL DEFINITIONS

Finding an optimal solution to a linear programming problem means assigning values to the decision
variables in such a way as to achieve a specified goal and conform to certain constraints. For a
problem with n decision variables, any solution can be specified by a point (x,, x2, ..., xn). The
feasible space (or feasible region) for the problem is the set of all such points that satisfy the
problem constraints. The feasible space is therefore the set of all feasible solutions. An optimal
feasible solution is a point in the feasible space that is as effective as any other point in achieving
the specified goal.
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The solution of linear programming problems with only two decision variables can be illustrated
graphically. In the following examples, we will see cases involving the maximization and minimi-
zation of functions. We will also see situations in which no feasible solution exists, some which
have multiple optimal solutions, and others with no optimal solution.

Linear programming problems with more than two decision variables require more sophisticated
methods of solution, and cannot be easily illustrated graphically. However, our graphical study of
small problems will be helpful in providing insight into the more general solution method that will
be presented later.

2.3.2 GRAPHICAL SOLUTIONS

Let us first consider a maximization problem:

maximize z = 3xj + x2

subject to (1) x2 ^ 5

(2) x, + x2 < 10

(3) -x, + x2 > -2

x,, x2 ^ 0

Each inequality constraint defines a half-plane in two dimensions, and the intersection of these
half-planes comprises the feasible space for this case, as shown by the shaded area in Figure 2.1.

FIGURE 2.1 Graphical solution.

The points labeled A, B, C, D, and E are called extreme points of the feasible region. It is a
property of linear programming problems that, if a unique optimal solution exists, it-occurs at one
of the extreme points of the feasible space.
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For this small problem, it is not impractical simply to evaluate the objective function at each
of these points, and select the maximum.

ZA = z(0,0) = 3*0 + 0 = 0

ZB = z(0,5) = 3*0 + 5 = 5

zc = Z(5,5) = 3*5 + 5 = 20

ZD = z(6,4) = 3*6 + 4 = 22

ZE = z(2,0) = 3*2 + 0 = 6

The optimal solution lies at extreme point D where x, = 6 and x2 = 4, and the optimal value of the
objective function is denoted by z* = 22.

Without evaluating z at every extreme point, we may more simply observe that the line specified
by the objective function 3x, + x2 has a slope of-3. At optimality, this line is tangent to the feasible
space at one of the extreme points. In Figure 2.1, the dashed line represents the objective function
at the optimal point D.

Next we use the same graphical technique to solve a minimization problem:

minimize z = x, + x2

subject to (1) 3x, + x2 > 6

(2) x2 > 3

(3) x, < 4

x,, x2 > 0

The shaded area in Figure 2.2 denotes the feasible region, which in this case is unbounded.

FIGURE 2.2 Unbounded feasible region.
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The minimal solution must occur at one of the extreme points A, B, or C. The objective function
x, + x2, with a slope of -1, is tangent to the feasible region at extreme point B. Therefore, the
optimal solution occurs at Xj = 1 and x2 = 3, and the optimal objective function value at that point
is z* =i 4.

2.3.3 MULTIPLE OPTIMAL SOLUTIONS

Each of the problems that we have solved graphically had a unique optimal solution. The following
example shows that it is possible for a linear programming problem to have multiple solutions that
are all equally effective in achieving an objective. Consider the problem

maximize z = x, + 2x2

subject to (1) -x, + x2 ̂  2

(2) x, + 2x2 <8

(3) x, < 6

xlf x2 > 0

The feasible region is shown in Figure 2.3.
The line representing the objective function x, + 2x2 can be made tangent to the feasible region

at the origin, but clearly, z is maximized by placing the line where the values of Xj and x2 are
larger. Notice that the objective function line in this case is tangent to the feasible region not at a
single extreme point, but rather along one of the boundaries of the feasible region.
The values

ZA = z(4/3, 10/3) = 4/3 -I- 2(10/3) = 8

and

FIGURE 2.3 Multiple optimal solutions.
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correspond to optimal solutions at points A and B; moreover, alt points on the line between extreme
points A and B are also optimal. Therefore z* = 8, and the optimal solutions can be expressed as a set

{(x,, x2) 14/3 < Xj < 6 and 1 < x2 < 10/3 and x, + 2x2 = 8}.

Such a situation may occur whenever the slope of the objective function line is the same as that
of one of the constraints.

2.3.4 No OPTIMAL SOLUTION

When the feasible region is unbounded, a maximization problem may have no optimal solution,
since the values of the decision variables may be increased arbitrarily. This can be illustrated by
the problem:

maximize z = 3x, + x2

subject to (1) x, + x2 ̂  4

(2) -x, + x2 < 4

(3) -x, + 2x2 > -4

Xj, x2 ̂  0

Figure 2.4 shows the unbounded feasible region and demonstrates that the objective function can
be made arbitrarily large by allowing the values of x1 and x2 to grow within the unbounded feasible
region. In this case, there is no point (x,, x2) that is optimal because there are always other feasible
points for which z is larger.

Notice that it is not the unbounded feasible region alone that precludes an optimal solution.
The minimization of the function subject to the constraints shown in Figure 2.4 would be solved
at one of the extreme points A or B.

In practice, unbounded solutions typically arise because some real constraint, representing a
practical resource limitation, has been omitted from the linear programming formulation. Because
we do not realistically expect to be able to achieve unlimited profits or productivity, an indication
of apparently unbounded solutions as seen in the example above should be interpreted as evidence
that the problem needs to be reformulated and re-solved.

2.3.5 No FEASIBLE SOLUTION

A linear programming problem has no feasible solution if the set of points corresponding to the
feasible region is empty. For example, the constraints

-x, + x2 ̂  4 and - x, + 2x2 ^ -4

where x,, x2 ̂  0, represent conditions that cannot simultaneously be satisfied by any point. Figure
2.5 shows the four half-planes whose intersection is empty.

In small problems, infeasibilities such as this may be discovered visually during an attempted
graphical solution. In larger problems, it may not be at all obvious by inspecting a particular set
of constraints, that no solution is possible. Fortunately, the general solution method to be described
in the following sections is not only capable of solving typical maximization or minimization
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FIGURE 2.4 No optimal solution.

problems, but it also provides mechanisms for recognizing problems that have multiple optimal
solutions, no optimal solution, or no feasible solution.

FIGURE 2.5 No feasible solution.
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2.3.6 GENERAL SOLUTION METHOD

We have seen in our graphical solutions that, if an optimal solution exists, it occurs at an extreme
point of the feasible region. This fundamental property of linear programming problems is the
foundation for a general solution method called the Simplex method. Because only the finitely-
many extreme points need be examined (rather than all the points in the feasible region), an optimal
solution may be found systematically by considering the objective function values at the extreme
points. In fact, in actual practice, it is not even necessary to examine but a small subset of the
extreme points. The following sections will demonstrate how the Simplex method is able to locate
optimal solutions with such efficiency.

2.4 PREPARATION FOR THE SIMPLEX METHOD

2.4.1 STANDARD FORM OF A LINEAR PROGRAMMING PROBLEM

In preparation for the use of the Simplex method, it is necessary to express the linear programming
problem in standard form. For a linear program with n variables and m constraints, we will use
the following standard form:

maximize z = qxj + C2x2 + ... + cnxn

subject to anx! + a,2x2 + ... + alnxn = b{

a2nxn =

where the variables x,,..., xn are non-negative, and the constants bj,..., bm on the right-hand sides
of the constraints are also non-negative. We can use matrix notation to represent the cost (or profit)
vector c = (c,, c2,..., cn) and the decision variable vector

x =

The coefficient matrix is

A =
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and the requirement vector is

b =

Then the optimization problem can be expressed succinctly as

maximize z = ex

subject to Ax = b

b > 0

Although this standard form will be required by the Simplex method, it is not necessarily the form
that arises naturally when we first formulate linear programming models. Several modifications
may be necessary in order to transform an original linear programming formulation (as in Section
2.2) into the standard form.

To convert a minimization problem to a maximization problem, we can simply multiply the
objective function by -1, and then maximize this function. (Recall that there are no sign restrictions
on the Cj). For example, the problem of minimizing z = 3x! - 5x2 is equivalent to maximizing z =
-3xt + 5x2. Negative right-hand sides of the constraints can be made positive by multiplying the
constraint by -1 (reversing the sense of the inequality).

Equality constraints require no modification. Inequality constraints can be converted to equal-
ities through the introduction of additional variables that make up the difference in the left and
right sides of the inequalities. Less-than-or-equal-to (^) inequalities require the introduction of
variables that we will call slack variables. For example, a constraint such as 3xj + 4x2 ̂  7 becomes
the equality 3x, + 4x2 + $i = 7 when we introduce the slack variable s^ where s, ^ 0. Greater-
than-or-equal-to (>) constraints are modified by introducing surplus variables. For example, the
constraint 14x, + 3x2 ̂  12 becomes the equality 14x, + 3x2 - s2 = 12, where s2 is the non-negative
surplus variable. Although our notation (s, and s2) may suggest otherwise, the slack and surplus
variables are going to be treated exactly like any other decision variable throughout the solution
process. In fact, their final values in the solution of the linear programming problem may be just
as interesting to a systems manager or analyst as are the values of the original decision variables.

Finally, all variables are required to be non-negative in the standard form. In the event that the
actual meaning associated with a decision variable is such that the variable should be unrestricted
in sign, then that variable may be replaced by the difference of two new non-negative variables.
For example, if x, is to be an unrestricted variable, then every occurrence of x, in the objective
function or in any constraint will be replaced by x' - x", where x', x" ^ 0. Then in any solution,
the sign of the value of x, is dependent on the relative values of x' and x".

The reason for placing problems in standard form is that our general solution method will be
seen to operate by finding and examining solutions to the system of linear equations Ax = b
(i.e., by finding values of the decision variables that are consistent with the problem "constraints),
with the aim of selecting a solution that is optimal with respect to the objective function.
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2.4.2 SOLUTIONS OF LINEAR SYSTEMS

We now have a system of linear equations, Ax = b, consisting of m equations and n unknowns.
The n unknowns include the original decision variables and any other variables that may have been
introduced in order to achieve standard form.

It may be useful at this point to review the material in the Appendix on solving systems of
linear equations. If a system of independent equations has any solution, then m ̂  n. If m = n (and
if rank (A) = m and A is nonsingular), then there is the unique solution x = A-*b. In this case, there
is only one set of values for the Xj that is not in violation of problem constraints. Optimization of
an objective function is not an issue here because there is only one feasible solution.

When m < n, there are infinitely many solutions to the system of equations. In this case, we
have (n - m) degrees of freedom in solving the system. This means that we can arbitrarily assign
any values to any (n - m) of the n variables, and then solve the m equations in terms of the
remaining m unknowns.

A basic solution to the system of m equations and n unknowns is obtained by setting (n - m)
of the variables to zero, and solving for the remaining m variables. The m variables that are not
set equal to zero are called basic variables, and the (n - m) variables set to zero are non-basic
variables. The number of basic solutions is just the number of ways we can choose n - m variables
(or m variables) from the set of n variables, and this number is given by

n!

m!(n-m)!

Not all of the basic solutions satisfy all problem constraints and non-negativity constraints.
Those that do not meet these requirements are infeasible solutions. The ones that do meet the
restrictions are called basic feasible solutions. An optimal basic feasible solution is a basic feasible
solution that optimizes the objective function. The basic feasible solutions correspond precisely to
the extreme points of the feasible region (as defined in our earlier discussion of graphical solutions).
Because any optimal feasible solution is guaranteed to occur at an extreme point (and consequently
is a basic feasible solution), the search for an optimal basic feasible solution could be carried out

by an examination of the at most [ n I basic feasible solutions and a determination of which one

yields the best objective function value.
The Simplex method performs such a search, but in a very efficient way. We define two extreme

points of the feasible region (or two basic feasible solutions) as being adjacent if all but one of
their basic variables are the same. Thus, a transition from one basic feasible solution to an adjacent
basic feasible solution can be thought of as exchanging the roles of one basic variable and one
non-basic variable. The Simplex method performs a sequence of such transitions and thereby
examines a succession of adjacent extreme points. A transition to an adjacent extreme point will
be made only if by doing so the objective function is improved (or stays the same). It is a property
of linear programming problems that this type of search will lead us to the discovery of an optimal
solution (if one exists). The Simplex method is not only successful in this sense, but it is remarkably
efficient because it succeeds after examining only a fraction of the basic feasible solutions.

2.5 THE SIMPLEX METHOD

The Simplex method is-a general solution method for solving linear programming problems. It was
developed in 1947 by George B. Dantzig and, with some modifications for efficiency, has become
the standard method for solving very large linear programming problems on computers. Most real

f " 1-f'VU-mJ ImJ
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problems are so large that a manual solution via the Simplex method is impractical, and these
problems must be solved with Simplex programs implemented on a computer. Small problems,
however, are quite useful in demonstrating how the Simplex method operates; therefore, we will
use such problems to illustrate the various features of the method.

The Simplex method is an iterative algorithm that begins with an initial feasible solution,
repeatedly moves to a better solution, and stops when an optimal solution has been found and,
therefore, no improvement can be made.

To describe the mechanics of the algorithm, we must specify how an initial feasible solution
is obtained, how a transition is made to a better basic feasible solution, and how to recognize an
optimal solution. From any basic feasible solution, we have the assurance that, if a better solution
exists at all, then there is an adjacent solution that is better than the current one. This is the principle
on which the Simplex method is based; thus, an optimal solution is accessible from any starting
basic feasible solution.

We will use the following simple problem as an illustration as we describe the Simplex method.

maximize z = 8x, + 5x2

subject to x, ^ 150

x2 < 250

2x, + x2 < 500

Xj, x2 ̂  0

The standard form for this problem is

maximize z = 8x, + 5x2 + Os, + Os2 + Os3

subject to x, + s, =150

x2 +s2 =250

2x, + x2 + s3 = 500

(Zero coefficients are given to the slack variables in the objective function because slack variables
do not contribute to z.) The constraints constitute a system of m = 3 equations in n = 5 unknowns.
To obtain an initial basic feasible solution, we need to select n - m = 5-3 = 2 variables as non-
basic variables. We can readily see in this case that by choosing the two variables x, and x2 as the.
non-basic variables, and setting their values to zero, then no significant computation is required in
order to solve for the three basic variables: s, = 150, s2 = 250, and s3 = 500. The value of the
objective function at this solution is 0.

In fact, a starting solution is just this easy to obtain whenever we have m variables, each of
which has a coefficient of one in one equation and zero coefficients in all other equations (a unit
vector of coefficients), and each equation has such a variable with a coefficient of one in it. Thus,,
whenever a slack variable has been added to each constraint, we may choose all the slack variables
as the m basic variables, set the remaining (n - m) variables to zero, and the starting values of the
basic variables are simply given by the constants b on the right-hand sides of the constraints. (For
cases in which slack variables are not present and, therefore, do not provide a starting basic feasible
solution, further techniques will be discussed in Section 2.6.)
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Once we have a solution, a transition to an adjacent solution is made by a pivot operation. A
pivot operation is a sequence of elementary row operations (see the Appendix) applied to the
current system of equations, with the effect of creating an equivalent system in which one new
(previously non-basic) variable now has a coefficient of one in one equation and zeros in all other
equations.

During the process of applying pivot operations to a linear programming problem, it is conve-
nient to use a tabular representation of the system of equations. This representation is referred to
as a Simplex tableau.

In order to conveniently keep track of the value of the objective function as it is affected by
the pivot operations, we treat the objective function as one of the equations in the system of
equations, and we include it in the tableau. In our example, the objective function equation is
written as

Iz - 8x, - 5x2 - Os, - Os2 - Os3 = 0

The tableau for the initial solution is as follows:

Basis
z
s,
S2

s3

z
1
0
0
0

X, X2 S, 82 S3

-8
1
0
2

-5
0
1
1

0
1
0
0

0
0
1
0

0
0
0
1

Solution
0

150
250
500

The first column lists the current basic variables. The second column shows that z is (and will
always be) a basic variable; and because these elements will never change, they really do not need
to be explicitly maintained in the tableau. The next five columns are the constraint coefficients of
each variable. And the last column is the solution vector; that is, the values of the basic variables.
Using this representation of a current solution, we can now describe the purpose and function of
each iteration of the Simplex method for a maximization problem.

Observe that the objective function row represents an equation that must be satisfied for any
feasible solution. Since we want to maximize z, some other (non-basic) term must decrease in
order to offset the increase in z. But all of the non-basic variables are already at their lowest value,
zero. Therefore, we want to increase some non-basic variable that has a negative coefficient. As a
simple rule, we will choose the variable with the most negative coefficient, because making this
variable basic will give the largest (per unit) increase in z. (Refer to Steps 1 and 2 below.)

The chosen variable is called the entering variable, that is, the one that will enter the basis.
If this variable increases, we must adjust all of the equations. Specifically, increasing the non-basic
variable must be compensated for by using only the one basic variable in each row (having a
coefficient of one). If the non-basic coefficient is negative, the corresponding basic variable
increases. There is no limit to how much we can increase this. Clearly, if all coefficients are negative
(or zero), then we can increase the non-basic variable, and hence the value of z, indefinitely. In
this case, we say that the problem is unbounded, and there is no maximum.

If one or more of the coefficients are positive, then increasing the entering variable must be
offset by a corresponding decrease in the basic variable. Specifically, if a^ > 0, for basic variable
Xj the non-basic column of xk, then the new value of xh after xk is increased, will be

But Xj ̂  0, therefore, we can increase xk only to that point where

xi = *>i - aikxk-

XR = bAk-
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Define 0j = b/ajk for all equations i for which ajk > 0. Because we want to maximize the increase
in xk, we increase precisely to the point at which some basic variable first becomes zero (the
minimum value of 0j). That variable now leaves the basis, and is called the leaving variable.
(Refer to Steps 3 and 4 below.)

The Simplex method can be summarized succinctly as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Examine the elements in the top row (the objective function row). If all elements are
^0,.then the current solution is optimal; stop. Otherwise go to Step 2.
Select as the non-basic variable to enter the basis that variable corresponding to the
most negative coefficient in the top row. This identifies the pivot column.
Examine the coefficients in the pivot column. If all elements are ̂ 0, then this problem
has an unbounded solution (no optimal solution); stop. Otherwise go to Step 4.
Calculate the ratios

Step 5.

6j = b/aft for all i = 1, ..., m for which a^ > 0,

where aik is the i-th element in the pivot column k. Then select

9 = min {65}.

This identifies the pivot row and defines the variable that will leave the basis. The
pivot element is the element in the pivot row and pivot column.
To obtain the next tableau (which will represent the new basic feasible solution),
divide each element in the pivot row by the pivot element. Use this row now to perform
row operations on the other rows in order to obtain zeros in the rest of the pivot
column, including the z row. This constitutes a pivot operation, performed on the
pivot element, for the purpose of creating a unit vector in the pivot column, with a
coefficient of one for the variable chosen to enter the basis.

When we apply these steps to the initial tableau in our example problem, we select x, (with
the most negative coefficient on the z row) as the entering variable.

Basis
z
st

s2

S3

z
1
0
0
0

X, X2 S, S2 S3

-8
1

0
2

-5
0
1
1

0
1
0
0

0
0
1
0

0
0
0
1

Solution
0

150

250
500

We compute

6, = 150/1 = 150

03 = 500/2 = 250

and select the minimum 6 = 61. Therefore, the leaving variable is the one corresponding to the
first basic variable s,. A pivot operation on the pivot element then produces the next tableau.

Basis
z
xi
*2

*3

Z

1

0
0
0

Xi

0
1
0
0

X2

-5
0
1

I 1 |

s,
8
1
0
-2

$2

0
0
1
0

S3
0
0
0
1

Solution
1200
150
250
200



36 Operations Research: A Practical Introduction

which shows the new basic feasible solution

x, = 150

s2 = 250

s3=200

s, = 0

z=1200

In the next iteration, x2 is chosen as the entering variable. Based on the ratios 62 = 250/1 and
03 = 200/1, we select 0 = 63, and, therefore, the third basic variable s3 leaves the basis. The pivot
element is shown in the above tableau. A pivot operation produces the new tableau.

Basis
z

2
Z

1

0
0
0

x,
0
1
0
0

Xl

0
0
0
1

s,
-2

1
2
-2

Si

0
0
1
0

S3

5
0
-1
1

Solution
2200
150
50
200

The solution represented by this tableau is

x, = 150

s2 = 50

x2 = 200

s ,=0

s3 = 0

and z is now 2200.

From this tableau, we can now select s, as the entering variable. We compute 6, = 150/1 and
O2 = 50/2, choose 6 = 62, and, therefore, designate s2 as the leaving variable. The resulting
tableau after a pivot operation is

Basis
z

Sl

z
1
0
0
0

X, X2 S, 82 S3

0
1
0
0

0
0
0
1

0
0
1
0

1
-1/2
1/2

1

4
1/2

-1/2
0

Solution
2250
125
25 ;

250

Because all of the objective function row coefficients are non-negative, the current solution is
optimal. The decision variables are:

x2 = 0
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x, = 125

x2 = 250

and the optimal objective function value, denoted as z*, is

z* = 8x, + 5x2 = 8(125) + 5(250) = 2250

The values of the slack variables at optimality also provide useful information. The slack
variable s, for the first constraint has a value of 25, indicating that there is a difference of 25 in
the right and left sides of the constraint; thus, x, = 125 is 25 less than 150. (This can typically be
interpreted to mean that some resource corresponding to constraint 1 is not fully consumed at
optimality; such a constraint is sometimes referred to as a non-binding constraint.) Since s2 and
s3 are non-basic and, therefore, have a value of zero, we can see that the second and third constraints
are met as equalities. (These resources are used to capacity at optimality, and these constraints are
sometimes called binding constraints.)

If we examine a graphical representation of the feasible region of this linear programming
problem in Figure 2.6, we can observe the progression from extreme point A (initial solution) to
extreme point B, then C, and finally the optimal solution at point D. Extreme points F and G are
infeasible, and point E is a basic feasible solution but is not examined by the Simplex method.

500

400

300

100 150 200

FIGURE 2.6 Simplex steps.
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In summary, let us briefly review the steps of the Simplex algorithm and the rationale behind
each step. Negative coefficients, corresponding to non-basic variables, in the objective function
row indicate that the objective function can be increased by making those associated variables basic
(non-zero). If in Step 1 we find no negative element, then no change of basis can improve the
current solution. Optimality has been achieved and the algorithm terminates.

Otherwise, in Step 2, we select the non-basic variable to enter the basis that has the greatest
potential to improve the objective function. The elements in the objective function row indicate the
per unit improvement in the objective function that can be achieved by increasing the non-basic
variables. Because these values are merely indicators of potential and do not reveal the actual total
improvement in z, ties are broken arbitrarily. In actual practice, choosing the most negative coef-
ficient has been found to use about 20% more iterations than some more sophisticated criteria,
such as are suggested by [Bixby, 1994].

The basic variable to be replaced in the basis is chosen, in Step 4, to be the basic variable that
reaches zero first as the entering variable is increased from zero. We restrict our examination of
pivot column elements to positive values only (Step 3) because a pivot operation on a negative
element would result in an unlimited increase in the basic variable. If the pivot column elements
are all negative or zero, then the solution is unbounded and the algorithm terminates here. Otherwise,
a pivot operation is performed as described in Step 5.

The Simplex tableau not only provides a convenient means of maintaining the system of
equations during the iterations of the algorithm, but also contains a wealth of information about
the linear programming problem that is being solved. In the following section, we will see various
computational phenomena (indicating special problem cases) that may arise during application of
the Simplex method, as well as information that may be obtained from an optimal tableau.

2.6 INITIAL SOLUTIONS FOR GENERAL CONSTRAINTS

2.6.1 ARTIFICIAL VARIABLES

In the original presentation of the Simplex algorithm in Section 2.5, our sample problem was one
in which all constraints were of the less-than-or-equal (^) type. In that case, we observed that by
adding slack variables (in order to achieve equality constraints), we fortuitously also obtained an
initial feasible set of basic variables. The coefficients of the slack variables provided the required
unit vectors, embedded in the matrix of coefficients of the linear system of equations. In this section,
we will see how to obtain an initial basic feasible solution for problems with more general forms
of constraints, and to then use the Simplex method to solve such problems.

First of all, recall that all right-hand sides b} of constraints must be non-negative. Any constraint
with a negative constant on the right-hand side can be multiplied by -1 in order to satisfy this
requirement. For example, an equality constraint such as

-3xj + 4x2 = -6

can be replaced by the constraint

3x, - 4x2 = 6

An inequality such as

5x, - 8x2 < -10

can be replaced by

-5x, + 8x2 > 10
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At this point, it should be clear that typical linear programming problems in standard form
contain equality constraints involving only the original decision variables as well as constraints
that include slack variables and surplus variables. Slack variables can conveniently be used as basic
variables; however, basic variables corresponding to equality constraints and greater-than-or-equal
(^) constraints are not always immediately available. Although it may be possible, by trial-and-
error, to obtain a feasible starting basis for some problems, we prefer to use an approach that is
straightforward and simple, and that can be used predictably in all cases.

We will deal with this situation by introducing additional variables, called artificial
variables, solely for the purpose of obtaining an initial basis. These variables have no real
meaning in the problem being solved, and will not be a part of the final solution. They merely
provide a mechanism that will allow us to create a starting basic solution configuration, and
then to apply the Simplex algorithm to the problem. (Note that it may not be necessary to add
an artificial variable to every constraint; a constraint with a slack variable does not need an
artificial variable.)

As an illustration, consider the following linear programming problem:

maximize z = x, + 3x2

subject to (1) 2x, - x2 < -1

(2) x, + x2 = 3

x,, x2 > 0

We multiply the first constraint by -1, to obtain -2x, + x2 ̂  1, and then create an equality constraint
by adding a (non-negative) surplus variable s, with a coefficient of-1. Now, the set of constraints

-2x, + x2 - s, = 1

x, + x2 = 3

is in standard form, but since there is no obvious starting solution (as there would have been if we
had added slack variables in each constraint), we will introduce two artificial variables, R, and R2,
for this purpose. The constraint set becomes

-2x, + x2 - s, + R, =1

x, -i- x2 + R2 = 3

where x,, x2, s,, R,, R2 ̂  0. We now have initial basic variables R, and R2 for this enlarged problem;
however, we must realize that the original equality constraint set is satisfied only if both R, and
R2 have values of zero. Therefore, the artificial variables must play only a temporary role in the
solution.

There are two primary approaches that we can use to ensure that the artificial variables are not
in the final solution. One method, commonly called the Big-M method, achieves this end by
creating a modified objective function with huge negative coefficients -M on the artificial variables.
In our example, the modified objective function would be

ZM = x, +3x2 + Os, - MR, - MR2
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When the Simplex method is applied to maximize this function, the heavy negative weights on the
artificial variables will tend to drive R, and R2 out of the basis, and the final solution will typically
involve only the decision variables x, and the slack or surplus variables.

For two reasons, the Big-M method is not considered to be a practical approach.

1. If the Simplex method terminates with an optimal solution (or with an indication that
the linear program is unbounded), and at least one of the artificial variables is basic
(positive) in the solution, then the original problem has no feasible solution. Moreover,
in order to discover that no solution exists, we have had to solve an entire large (enlarged
because of the additional artificial variables) linear programming problem.

2. A more serious difficulty with this method arises from a computational standpoint. The
value of M must be chosen to be overwhelmingly large relative to all other problem
parameters, in order to be sure that artificial variables do not remain in the basis of a
feasible problem. However, as was pointed out in Chapter 1, computer arithmetic involv-
ing quantities of vastly different magnitudes leads to round-off error in which the smaller
quantities (the original objective coefficients) are dwarfed by the artificial coefficients
and are completely lost.

Thus, despite its intuitive appeal, the Big-M method is very poorly suited for computer implemen-
tation, and nowadays is rarely seen in commercial software.

The more practical alternative to solving linear programming problems having artificial vari-
ables is found in the two-phase Simplex method.

2.6.2 THE TWO-PHASE METHOD

Suppose we have a linear programming problem in standard form with artificial variables in the
initial basic solution. Before expending the computational effort to solve the whole enlarged
problem, it would be useful to know whether a feasible solution to the original problem exists.
That is, we would like to know whether there is a solution, within the enlarged feasible region, in
which the artificial variables are zero.

In order to make this determination, we first use the Simplex method to solve the problem of
minimizing the sum of the artificial variables. If this sum can be minimized to zero, then there
exists a solution not involving the artificial variables, and thus the original problem is feasible.
Furthermore, in this case, we can use the final solution obtained from this computation as a starting
solution for the original problem, and dispense with the artificial variables. On the other hand, if
the optimized sum of the artificial variables is greater than zero, then at least one of the artificial
variables remains basic, and we, therefore, know that the original problem constraint set cannot be
satisfied. The two phases of this method can be summarized as follows.

Phase 1: Create a new objective function consisting of the sum of the artificial variables.
Use the Simplex method to minimize this function, subject to the problem constraints.
If this artificial objective function can be reduced to zero, then each of the (non-negative)
artificial variables must be zero. In this case, all the original problem constraints are
satisfied and we proceed to Phase 2. Otherwise, we know without further computation
that the original problem is infeasible.

Phase 2: Use the basic feasible solution resulting from Phase 1 (ignoring the artificial
variables which are no longer a part of any solution) as a starting solution for the original
problem with the original objective function. Apply the ordinary Simplex method to
obtain an optimal solution.
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We will use the sample problem from Section 2.6.1 to illustrate the two-phase method. In Phase
1, we seek to

minimize ZR = R, + R2

which is equivalent to maximizing ZR = -R, - R2. (Note that we minimize this sum regardless of
whether the original problem is a minimization or a maximization problem.) Therefore, the top
row of the tableau represents the equation

ZR + R, + R2 = 0.

With artificial variables in the constraints, the initial tableau for this phase is

ZR

R,
R2

Xi

0

-2
1

X2

0
1
1

st

0
-1
0

RI
I
1
0

R2
i
0
i

Solution

0
1

3

Perform row operations to obtain a starting basis (i.e., with zero coefficient for Rt and R2 in the
top row), and the tableau becomes

ZR

R,
R2

Xi
1

-2
1

X2

-2
1
1

Si

1
-1
0

RI
0
1
0

R2

0
0
1

Solution
-A
1
3

We then apply two iterations of the Simplex method to obtain the following two tableaus.

ZR

*2

R2

Xi
-3
-2
3

x2

0
1
0

Si

-1
-1

1

RI
2
1

-1

R2
0
0
1

Solution
-2
1
2

ZR

*2

*|

Xi

0
0
1

X2

0
1
0

*i
0

-1/3
1/3

RI
i
1/3
-1/3

R2
l
2/3
1/3

Solution
0
7/3
2/3

This is the optimal solution for the Phase 1 problem, and since R, and R2 are zero and non-basic,
this solution gives us a basic feasible starting solution for the original problem.

In Phase 2, artificial variables need not be considered and can be removed from the tableau.
The top row of the starting tableau is replaced with the coefficients for the original (maximization)
objective function.

z
X2

Xl

xf

-1
0
1

X2

-3
1
0

Si

0
-1/3
1/3

Solution
0

7/3
2/3

Perform row operations to obtain an appropriate objective function row for a starting basis, and
the Phase 2 tableau, becomes
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z

*2

*i

Xl
0
0
1

X2

0
1
0

Si
-2/3
-1/3
1/3

Solution
23/3
7/3
2/3

Now we apply the ordinary Simplex method, and in one iteration obtain the optimal solution shown
in the final tableau:

z

*2

S|

Xl

2

1
3

X2

0
1
0

Si

0

0

Solution

9
3
2

It may be useful to look at a graphical solution of the problem we have just solved. Notice in
Figure 2.7 that the feasible region consists only of points on the line x, + x2 = 3, between the extreme
points (0, 3) and (2/3,7/3). The origin is not a feasible starting point, as was the case in several of our
previous examples. Instead, we initially use an augmented feasible region (not visible in the graphical
sketch) and a solution in which Rt and R2 are positive. During Phase 1, R! and R2 become zero while
the real variables x, and x2 become positive. Phase 1 yielded the initial feasible solution (2/3, 7/3)
which can be shown in the two-dimensional drawing; and Phase 2 found the optimal solution at (0,3).

2.7 INFORMATION IN THE TABLEAU

Several of the special cases introduced in Section 2.3 may reveal themselves in the Simplex tableau
during the iteration phases of the Simplex algorithm. In particular, based on information that appears
within the tableau, we can deduce certain characteristics of the linear programming problem being
solved. These include linear programming problems with multiple optimal solutions, those with
unbounded solutions, and problems having a property known as degeneracy. We will also find
information in the tableau that provides insights concerning the roles played by the various resources
in the system being modeled as a linear program.

2.7.1 MULTIPLE OPTIMAL SOLUTIONS

Recall from our example in Section 2.3.3 that when the line corresponding to the objective function
is parallel to one of the straight lines bounding the feasible region, then the objective function can
be optimized at all points on that edge of the feasible region. Thus, instead of a unique optimal
solution, we have infinitely many optimal solutions from which to choose, thereby permitting
management to select on the basis of secondary factors that do not appear in the model.

This situation can be recognized in the Simplex tableau during Step 2 of the Simplex algorithm.
If a zero appears in the objective function row corresponding to a non-basic variable, then that
non-basic variable can enter the basis without changing the value of the objective function. In other
words, there are two distinct adjacent extreme points that yield .the same value of z.

When we apply the Simplex algorithm to the problem illustrated in Figure 2.3, the initial
solution is x, = x2 = 0. In the first iteration, x2 enters the basis and s{ leaves, and this solution x,
= 0, x2 = 2 yields z = 4. Next, x, enters the basis and s2 leaves, and we obtain the solution designated
as point A in the figure where \{ = 4/3, x2 = 10/3, and z = 8. (Observe that s3 is a basic variable
and, therefore, constraint 3 is not binding at this point.) Now, the third Simplex tableau is as follows.

z

*2

x,
S3

z
1
0
0
0

*1

0
0
1
0

X2

0
1
0
0

Si

0
1/3
-2/3
2/3

S2

1
1/3
1/3
-1/3

S3
0
0
0
1

Solution
8

10/3
4/3
14/3
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FIGURE 2.7 Infeasible origin.

This solution is optimal since all elements on the top row are non-negative. The zero in the
top row corresponding to the non-basic variable s, signals that this problem has multiple optimal
solutions. And, in fact, if we apply another pivot operation (by bringing sl into the basis and
selecting s3 to leave the basis), we obtain the fourth tableau

z

*2

*i
s,

z
1
0
0
0

*i
0
0
1
0

X2

0
1
0
0

s,
0
0
0
1

S2

1
1/2
0

-1/2

S3

0
-1/2

1
3/2

Solution
8
1
6
7

This solution corresponds to point B in Figure 2.3 where x, = 6, x2 = 1, and z = 8; and where s}

is basic and consequently constraint 1 is not binding at this point.

2.7.2 UNBOUNDED SOLUTION (No OPTIMAL SOLUTION)

When the feasible region of a linear programming problem is unbounded, then it is also possible
that the objective function value can be increased without bound. Evidence of both of these situations
can be found in the Simplex tableau during Step 3 of the Simplex algorithm.

If in any tableau the constraint coefficients corresponding to a non-basic variable are all either
negative or zero, then that non-basic variable can be increased arbitrarily without violating any
constraint. Thus, the feasible region is unbounded in the direction of that variable.

Furthermore, if that variable is eligible to enter the basis (i.e., if it has a negative element in
the objective function row), then we know that increasing this variable's value will increase the
objective function. And because this variable can be increased indefinitely, so can the objective

X2

3

2

1 -

1 2 3 xi
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function value. Thus, the Simplex algorithm terminates and we can recognize that the problem has
an unbounded solution.

The following problem illustrates an unbounded feasible region and unbounded solutions:

maximize z = 5x, + 6x2

subject to -x, + x2 ̂  2

x2< 10

Figure 2.8 shows the feasible region. The initial tableau is given by

z

s,

z
1
0
0

Xi X2 S, S,

-5

0

-6
1
1

0
1
0

0
0
1

Solution
0
2
10

The unboundedness of the feasible region is indicated by the absence of positive elements in
the column corresponding to the non-basic variable x,. The negative coefficient in the top row
of this column indicates that X! is eligible to increase (from zero) and that, therefore, z can
increase indefinitely.

Our Simplex algorithm, as it is stated, would, in fact, choose x2 (with the most negative
coefficient) as the entering variable, and we would move from point A to point B in Figure 2.8,
and then subsequently to point C. At that point, we would be faced again with the inevitable: x,
can be feasibly increased arbitrarily, producing an arbitrarily large value of z.

FIGURE 2.8 Unbounded solution.

10

X2

B

A
Xt

C
X =10
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As noted earlier, a linear programming formulation with an unbounded objective function value
undoubtedly represents an invalid model of a real system, inasmuch as we have no real expectation
of achieving unlimited productivity or profitability. Recognizing such a situation, we must refor-
mulate the problem with more careful attention to realistic constraints on the decision variables.

2.7.3 DEGENERATE SOLUTIONS

A solution to a linear programming problem is said to be degenerate if one or more of the basic
variables has a value of zero. Evidence of the existence of a degenerate solution is found during
Step 4 of the Simplex algorithm when there is a tie for the minimum ratio 6, that is, a tie for the
leaving variable. In this case, the tie may be broken arbitrarily and one variable is chosen to leave
the basis. However, both variables participating in the tie will, in fact, become zero, although one
of them remains basic.

The presence of a degenerate solution indicates that the linear programming formulation
contains at least one redundant constraint. This situation arises in the following problem whose
graphical solution is shown in Figure 2.9.

maximize

subject to

z = 3x, + 2x2

x , < 3

2x, + x2 < 6

x2 ̂  2

x, + x2 ̂  3

FIGURE 2.9 Degenerate solution.
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1 2 3



46 Operations Research: A Practical Introduction

Note that x, ^ 3 is redundant, since the constraint x, + x2 ̂  3 ensures that x, ^ 3. Similarly, the
constraint 2x, + x2 < 6 is redundant as shown in Figure 2.8. In the initial tableau, x, is chosen as
the entering variable, and we discover a tie between Sj and s2 to leave the basis since 0, = 02 = 3.

s,

S2

S3

S4

z
1
0

0

0

0

X, X2 S, Sj S3 S4

-3
1

2

0
1

-2

0

1

1

1

0

1
0

0
0

0

0
1
0

0

0

0

0
1
0

0
0

0

0
1

Solution
0
3

6
2

3

Let us arbitrarily select sl to leave the basis, and create the next tableau.

*l

»2

S3

S4

Xl

0
1

0
0

0

*2

-2

0

1
1

1

Si

3
1

-2

0
-1

$2

0

0
1
0

0

S3

0

0
0
1
0

S4

0
0

0
0

1

Solution
9

3
0
2

0

Notice that the basic variables s2 and s4 now have a value of zero. The present solution corresponds
to a point where three redundant constraints are binding; that is, the slack variables in the first,
second, and fourth constraints are zero at this point.

When we now select x2 to enter the basis, we have a choice between s2 and s4 to leave. If we
pick s2, we will discover that the new tableau has a negative cost for s2, and basic variables x2 and
s4 are both zero. Since we can now choose x2 to leave, we could get right back to the tableau where
we started. This cycling can continue indefinitely.

Note that, for a two-variable problem, degeneracy can occur only when there are redundant
constraints. However, in three-variable problems, we could construct four or five constraints such
that they all intersect at a common point, and none of them are redundant. (For example, imagine
a roof with many sides that all meet at a common peak.) If the problem contains extreme points
of this form, and if the Simplex algorithm happens to land on that corner (both rather unlikely in
practice), then the algorithm could cycle indefinitely.

Problem degeneracy exposes the only theoretical weakness of the Simplex method: it is possible
that the algorithm will cycle indefinitely and fail to converge to an optimal solution. Once a
degenerate solution to a problem arises, it is possible that successive iterations of the Simplex
method will yield no improvement in the objective function. This phenomenon may be a temporary
one, occurring for only one or a few iterations, or it may continue indefinitely, generating the same
sequence of non-improving solutions. If it is temporary, then we have merely lost valuable com-
putation time, but we will eventually obtain the desired optimal solution. The more serious possi-
bility, infinite cycling and, therefore, failure of the algorithm, is fortunately not a serious practical
problem. Although problems have been constructed that demonstrate this hazard, such cycling in
actual problems is so rare that computational modifications to defend against Simplex cycling are
not worthwhile. Therefore, although many practical problems have degenerate solutions, the Sim-
plex algorithm typically cycles only temporarily and reaches the optimal solution without significant
degradation in computational efficiency.

2.7.4 ANALYZING THE OPTIMAL TABLEAU: SHADOW PRICES

Once the Simplex method has terminated successfully, we find that the optimal tableau contains
not only the solutions for the decision variables, but also auxiliary information that can be of
considerable use to the analyst. In the top row of the final tableau, the coefficient of the i-th slack
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variable is the amount by which the final objective function could be increased for each additional
available unit of the resource associated with that slack variable. These values are called shadow
prices, and represent the marginal worth (or incremental value) of making additional units of the
various resources available.

By examining the optimal tableau at the end of Section 2.5, we find a coefficient of 4 for slack
variable s3. This means that the final value of z* could be increased by 4 for each additional unit
of the resource associated with the third constraint. Likewise, the coefficient of 1 for slack variable
s2 indicates that z* could be increased at a rate of 1 for each added unit of the resource associated
with the second constraint.

We are not too surprised to find, in this tableau, a zero marginal worth for the first resource
(denoted by a zero coefficient for s, in the top row). Since s, = 25 in the final solution, the first
inequality constraint is satisfied with a slack of 25; that is, this resource is not being completely
consumed in this solution. Therefore, we would not expect any increase in the objective function
to result from adding any more units of a resource that is presently already under-utilized.

Decision-makers and analysts are usually in a position to know whether the resource limitations
(that appear on the right-hand sides of the linear system of constraints) are truly fixed or whether
resource allocations could be modified by acquiring additional resources. Management can deter-
mine the economic advisability of increasing the allotment of the i-th resource by examining the
shadow price: the shadow price is the maximum per unit price that should be paid to increase the
allotment of that resource by one unit, in order to achieve a net gain in the objective.

Having made the above observations about the unit worth of resources, it is important to point
out that the increases in resource allocations must be relatively small increases. The economic
measure of the value of increasing the availability of any given resource is valid only as long as
such an increase does not change the optimal basic solution. When the right-hand sides of constraints
are changed, we do in fact have a different linear programming problem. Analyzing the extent to
which resource capacities (or availabilities) can be changed without altering the optimal set of basic
variables is one of the topics covered in the following section of this chapter.

2.8 DUALITY AND SENSITIVITY ANALYSIS

When making an economic interpretation of the objective function of a linear programming
problem, an alternative and useful point of view is obtained by computing the collective contribu-
tions of all the resources. If we multiply the original availability of each resource (shown in the
original tableau) by its marginal worth (taken from the final tableau), and form the sum, we obtain
precisely the optimal objective function value. In our example at the beginning of Section 2.5, we
have marginal worth values of 0,1, and 4, and resource availabilities of 150,250, and 500; therefore,
the optimal objective function value can be expressed as

z* = 2250 = 0(150) + 1(250) + 4(500)

This apparently equivalent way of viewing the original (or primal) linear programming problem
is a manifestation of what is called the dual problem. The study of duality provides the theoretical
foundation for practical analysis of optimal solutions obtained with the Simplex method. This topic
is especially important because the full and effective use of many linear programming software
implementations requires a familiarity with the concepts of duality.

Sensitivity analysis is the study of how a solution to a problem changes when there are slight
changes in the problem parameters, without solving the whole problem again from scratch. It is,
therefore, an analysis of how sensitive a solution is to small perturbations in the problem data.
Objective function coefficients, constraint coefficients, and resource capacities are problem data
that may be difficult or costly to obtain. These values may be introduced into the linear programming
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model as rough estimates or imperfect observations, and they might be values that change over
time, as costs fluctuate or resources availabilities vary.

If all problem data were certain and constant over time, there would be no need for sensitivity
: analysis. Each new problem would be based on exact data, and the solution would be a perfect
one. In practice, such is rarely the case. Thus, the problem formulation that is solved initially may
not be exactly the "right" problem, that is, the one that is valid at the time resources are actually
procured, costs are incurred, or profits are made.

If it could be determined, through the process of sensitivity analysis, which of the problem
parameters are the most critical to the optimality of the original problem solution, then analysts
could take greatest care in supplying and refining specifically those parameters to which the solution
is most sensitive. Sensitivity analysis tools are of great value to management because they can
help to provide a thorough understanding of a problem solution, the range of problem parameters
over which a solution is valid, and how the solution can be changed by making changes in costs,
profits, or resource availability. Duality theory provides the foundation underlying these tools.

2.8.1 THE DUAL PROBLEM

A linear programming problem and its dual are related in the sense that both problems are based
on the same problem data, and an optimal solution to either one of the problems prescribes the
optimal solution to the other. These "companion" problems might even be thought of as two different
views of the same problem, but with different economic or engineering interpretations, and possibly
with different computational implications.

Consider any linear programming formulation that is in the form of a maximization problem
with constraints of the less-than-or-equal type or equality constraints. (A constraint in which the
inequality is a ^ type can be multiplied by -1 to reverse the direction of the inequality sign,
resulting possibly in a negative right-hand-side value.) We will call this the primal problem. If all
constraints are inequalities and the decision variables are non-negative, the primal problem can be
written as:

maximize c,x, + C2x2 + ... + cnxn

subject to anx! + a,2x2 + ...+ alnxn ̂  b.

amiXi + ^2*2 + — + amnxn < bm

where the variables xb ..., xn are non-negative.
In general, the corresponding dual problem is constructed as follows:

• The dual problem is a minimization problem.
• For every variable Xj in the primal problem, there is a constraint in the dual problem.

If Xj ̂  0 in the primal, the constraint is a ̂  inequality in the dual.
If Xj is unrestricted in sign, the i-th constraint is an equality in the dual.

• For every constraint in the primal problem, there is a variable ys in the dual.
If the constraint is ̂ , then y-t ̂  0 in the dual problem.
If the constraint is an equality, then yj is unrestricted in sign in the dual.

• The right-hand sides in the primal are the objective function coefficients in the dual.

a21xt + a22x2+...+ a2nxn<b2
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• The objective function coefficients in the primal are the right-hand sides in the dual.
• The coefficient matrix in the primal is "transposed" to form the coefficient matrix for the dual.

The dual problem corresponding to the primal problem above is a problem with m variables
and n constraints and can be written as:

minimize b,y, + b2y2 + ... + bmym

subject to a,,y, + a21y2 + ... + amlym > c,

ai2yi + a22y2 + ...+ am2ym> C2

and the variables y,, ..., ym are non-negative.
Clearly, the dual of the dual problem is the original primal problem, and in many contexts, it

is not necessary to stipulate which one of the companion problems is "the primal one" and which
is "the dual one"; each is the dual of the other.

Example 2.8.1

Consider the primal problem:

maximize 3x, + 2x2 - 6x3

Subject to 4Xj + 8x2 - x3 ^ 5

7x, - 2x2 + 2x3 > 4

and x,, x2, x3 ̂  0:

The second constraint can be rewritten as -7x, + 2x2 - 2x3 < -4. The dual problem is then

minimize 5y, - 4y2

subject to 4yj - 7y2 ̂  3

8y, + 2y 2 >2

-y. - 2y2 ^ -6
andy,, y2>0.

Example 2.8.2

The following primal problem has constraints that include both types of inequalities and an equality
constraint.

maximize 4xt - 3x2

subject to 2xj -4x2 ^ 5

5x, - 6x2 > 9

3xt + 8x2 = 2

ainyi + a 2 n y 2 +. . .+a m n y m >c n



50 Operations Research: A Practical Introduction

x, + 2x2 ̂  1

and x, > 0

and x2 unrestricted in sign

The dual of this problem is formed by rewriting the second constraint as -5x! + 6x2 ^ -9, and
then following the guidelines presented above to obtain

minimize 5y, - 9y2 + 2y3 + y4

subject to 2y, - 5y2 +3y3 + y4 > 4

and y|f y2, y4 > 0

and y3 unrestricted in sign

(Recall that the Simplex method requires that all variables be non-negative. When an unrestricted
variable arises in a formulation, that variable can be replaced by the difference of two new non-
negative variables, as suggested and illustrated in Section 2.4.1.)

There is a very apparent structural similarity between a primal and dual pair of problems, but
how are their solutions related? In the course of solving a (primal) maximization problem, the
Simplex method generates a series of feasible solutions with successively larger objective function
values (ex). Solving the corresponding (dual) minimization problem may be thought of as a process
of generating a series of feasible solutions with successively smaller objective function values (yb).
Assuming that an optimal solution does exist, the primal problem will converge to its maximum
objective function value from below, and the dual problem will converge to its minimum objective
function value from above. The primal objective function evaluated at x never exceeds the dual
objective function evaluated at y; and at optimality, the two problems actually have the same
objective function value. This can be summarized in the following duality property:

Duality Property: If x and y are feasible solutions to the primal and dual problems, respectively, then
ex ̂  yb throughout the optimization process; and finally at optimality ex* = y*b.

It follows from this property that, if feasible objective function values are found for a primal
and dual pair of problems, and if these values are equal to each other, then both of the solutions
are optimal solutions.

The phenomenon of primal and dual problems sharing the same objective function values is
not mere coincidence. In fact, the shadow prices, which appear in the top row of the optimal
tableau of the primal problem, are precisely the optimal values of the dual variables. Similarly,
if the dual problem were solved using the Simplex method, the shadow prices in that optimal
tableau would be the optimal values of the primal variables.

In the illustrative problem from Section 2.5, the dual objective of minimizing 150y! + 250y2

+ 500y3 is met when the dual variables (shadow prices) have the values y, = 0, y2 = 1, y3 = 4.
Thus, from the dual point of view,

z* = 150 (0) + 250 (1) + 500 (4) = 2250

which is equal to the primal objective value

-4y, + 6y2 + 8y3 + 2y4 = -3
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z* = 8x, + 5x2 = 8 (125) + 5 (250) = 2250

for optimal x values of x, = 125 and x2 = 250.
One further characterization relating primal and dual linear programming problems is known

as complementary slackness. Because each decision variable in a primal problem is associated
with a constraint in the dual problem, each such variable is also associated with a slack or surplus
variable in the dual. In any solution, if the primal variable is basic (with value > 0, hence having
slack), then the associated dual variable is non-basic (with value = 0, hence having no slack). And
if the primal variable is non-basic (with value = 0, hence no slack), then the associated dual variable
is basic (with value > 0, hence having slack).

This can be observed even in a problem as simple as the one illustrating the Simplex method in
Section 2.5. In the final tableau, the primal basic variables x,, Sj, and x2 have positive values, while in
the top row we see zero values for their three associated dual variables. The non-basic primal variables
s2 and s3 have zero values, while their associated dual variables are basic and have non-zero values.

This property is described as follows.

Complementary Slackness Property: If in an optimal solution to a linear programming problem an
inequality constraint is not binding, then the dual variable corresponding to that constraint has a value
of zero in any optimal solution to the dual problem.

This is merely a formalization of the intuitive notion that the shadow price of a resource associated
with a non-binding constraint is zero. That is, there is a zero marginal worth for a resource that is
not being fully utilized.

The properties described above were based on an assumption that optimal solutions to both
primal and dual problems exist, but, of course, not all linear programming problems have optimal
feasible solutions; infeasible problems and problems with unbounded solutions were discussed
earlier in this chapter. For corresponding primal and dual problems, exactly one of the following
mutually exclusive cases always occurs:

1. Both primal and dual problems are feasible, and both have optimal (and equal) solutions.
2. Both primal and dual problems are infeasible (have no feasible solution).
3. The primal problem is feasible but unbounded, and the dual problem is infeasible.
4. The dual problem is feasible but unbounded, and the primal problem is infeasible.

Because the pertinent parameters and goals of any linear programming problem can be
expressed in either a primal or dual form, and because solving either the primal or dual problem
yields enough information to easily construct a solution to the other, we might reasonably wonder
which problem, primal or dual, should we solve when using the Simplex method.

From the standpoint of computational efficiency, we might wish to choose to solve the problem
with the fewer number of constraints. As is further discussed in Section 2.10.4, the computation
time required for the Simplex method is strongly dependent on the number of constraints, and
almost independent of the number of variables. Therefore, in the absence of other identifiable
structural characteristics of a problem that might make it amenable to the use of specialized solution
methods, we could expect to be able to solve most quickly the problem having the smaller number
of constraints. This choice becomes more compelling when the linear programming problem has
thousands of constraints, and is of much less importance for more moderate-sized problems of a
few hundred or less constraints.

An understanding of duality properties and the relation between primal and dual problems gives
an analyst some flexibility in formulating, solving, and interpreting a solution to a linear program-
ming problem. Moreover, duality provides the mathematical basis for analyzing an optimal solu-
tion's sensitivity to small changes in problem data. We now turn our attention to the types of
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analysis that can be made once an optimal solution to a linear programming problem has been
obtained.

2.8.2 POSTOPTIMALITY AND SENSITIVITY ANALYSIS

After an optimal solution to a linear programming problem has been found, the analyst's next step
is to review the problem parameters and the solution, in preparation for putting the solution into
practice. This process of postoptimality analysis includes confirming or updating problem param-
eters (costs and availability of activities and resources), and if there are any changes to the original
problem parameters, assessing the effect of these changes on the optimality of the solution. If the
changes are small, it may not be necessary to re-optimize the new problem; instead, some small
calculation may suffice to identify simple consequences in the previous optimal scenario. Sensitivity
analysis is the study of the types, ranges, and magnitude of changes in problem parameters whose
effects can be determined relatively easily, without the need for solving a new linear programming
problem.

In a linear programming model that is relatively insensitive to changes in problem parameters,
the original optimal solution may not change even when several parameters vary widely. Other
models may be highly sensitive, and the optimality of the original solution may be seriously
undermined by the smallest change in even one parameter. When working with less sensitive models,
the expense and effort of acquiring extremely accurate data (through extensive sampling, costly
tracking, careful observations, etc.) may not be justified. On the other hand, a successful analyst
knows the necessity of making a special effort to obtain the most accurate possible problem data
when working with very sensitive models.

Sensitivity analysis addresses several different kinds of changes to a linear programming
formulation, including:

• changes in objective function coefficients
• increases or decreases in the right-hand side of a constraint
• adding a new variable
• adding a constraint
• changes in constraint coefficients

Objective function coefficient range analysis identifies the maximum allowable increase and
decrease that can occur for each coefficient without changing the current solution. Under the assump-
tion that all other parameters remain unchanged, a change within the allowable range ensures that the
current solution will remain optimal and that the values of the decision variables remain unchanged.
The objective function value would, of course, change as the coefficient varies over its range.

Example 2.8.3

Consider a simple two-variable example.

maximize z = 4x{ + 3x2

subject to x, + x2 ̂  4

2x, + x2 ̂  6

x, + 3x2 < 9

x,, x2 > 0
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FIGURE 2.10 Illustration of sensitivity analysis.

Using the illustration in Figure 2.10, we can observe that the optimal solution occurs at the
point (2, 2) with a function value of z = 14. If we change the cost coefficients slightly, the optimal
solution will stay at the current point. However, if we add more than 1 to the coefficient of x2, then
the current solution will no longer be optimal. Similarly, if we subtract more than 1 from c2, the
solution will change. See Exercise 2.45.

Right-hand-side ranging is performed to determine how much the right-hand side of a
constraint can vary (increase or decrease) without causing the original optimal solution to become
infeasible. Changing a constraint alters the feasible region and may affect the shape of the feasible
region in the vicinity of the optimal point. (If the original optimal point is no longer a feasible
extreme point, a different optimal solution would have to be found.) If a resource is not being
completely used (i.e., there is positive slack) in the optimal solution, then clearly the right-hand
side of the constraint corresponding to that resource can be increased indefinitely. In general,
however, possible increases and decreases in right-hand sides are measured by analyzing the optimal
solution to determine how much slack can be created in the constraint without changing the optimal
solution.

In the problem depicted in Figure 2.10, consider what happens when we add 1 to the right-
hand side of the second constraint, so that the constraint becomes 2x, + x2 ^ 7. Now, the active
constraints at the optimal solution have changed, but the same set of constraints will be active.
(The same variables are basic.) As discussed above, the objective function will increase by precisely
the value of the dual variable corresponding to that constraint. In this example, the objective function
will increase by 1.

It is easy to see in the illustration that the right-hand side can be increased by 2 without changing
the variables in the basis. Beyond that point, the constraint becomes inactive (outside the feasible
region). Similarly, the right-hand side of constraint 2 can be decreased by 0.5 without changing1

the basis. At that point, the optimal solution would occur at the intersection of the other two
constraints, at (1.5, 2.5), and decreasing beyond that would change the basic variables.

Adding a new variable to a model would require introducing the resource requirements of
that new activity or product into a current optimal solution. By analyzing information already in
the optimal tableau, it can be determined whether the new variable would be a basic variable in

b
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the optimal solution and what would be the value of its coefficient in the objective function. The
shadow prices in the optimal solution provide information about the marginal worth of resources,
and knowing the resource needs corresponding to the new variable, the value of bringing in the
new variable can be computed.

Adding a constraint or changing constraint coefficients amounts to rather complicated
changes to the original problem. These types of changes to the linear programming model fall
logically into the postoptimality analysis framework, but technically these are not changes that can
be analyzed or effected by merely using information in the optimal tableau. Such changes are
generally best dealt with by solving the modified problem anew.

Almost all commercial software for linear programming, such as the products mentioned
in Section 2.10.4, include postoptimality analysis as part of the standard output. Most packages
present right-hand-side ranging and objective coefficient ranging information; some also
include adding a new variable; rarely are constraint changes included as part of ordinary
postoptimality analysis.

The information and insights obtained through sensitivity analysis are especially valuable to
management because they provide an indication of the degree of flexibility that is inherent in an
operating environment. Such knowledge is helpful in planning, making decisions, and formulating
policies for handling fluctuations and imprecision in prices, activities, and resource availabilities
used in linear programming models.

2.9 REVISED SIMPLEX AND COMPUTATIONAL EFFICIENCY

The amount of computation required to solve linear programming problems with the Simplex
method is indeed arduous; in fact, all but the most trivial problems must be solved with the aid of
a computer. Several decades of experience with computer implementations of the Simplex method
have led researchers and practitioners to develop various improvements and enhancements to the
original Simplex method. The result is a refined version of the standard Simplex, called the Revised
Simplex method. This method makes much more efficient use of a computer's most valuable
resources: CPU computation time and memory space.

Recall that the standard Simplex method performs calculations, at each iteration, to update the
entire tableau. Actually, the only data needed at each iteration are the objective function row (to
determine the entering variable), the pivot column corresponding to the non-basic entering variable,
and the right-hand-side values of the current basic variables (to determine the variable to leave the
current basis). Thus, the standard Simplex computes and stores many values that are not needed
during the present iteration and that may never be needed. The Revised Simplex method performs
the same iterations as the standard Simplex, but the details of its computations have specific
advantages for computer implementations.

The standard Simplex method generates each new tableau iteratively, based on the previous
tableau. However, the Revised Simplex method takes advantage of the fact that all of the information
in any tableau can in fact be obtained directly from the original problem equations, if the inverse
of the matrix of basic columns for that tableau is known. And that inverse can be obtained directly
from the original equations if the current basic variables for that tableau are known. Note that the
Revised Simplex performs the usual selection of an entering and leaving variable at each iteration,
but it carries out only those computations necessary to register that selection and to record the
current solution configuration.

Readers acquainted with numerical computation will be aware that matrix inversion is itself a
nontrivial task, in terms of both computation time and numerical accuracy. Therefore, instead of
recomputing a basis inverse at each iteration, a product form of inverse can be used that allows
a new inverse to be computed simply from the previous one. This procedure calls for premultiplying
the previous inverse by a matrix that is an identity matrix except in one column. (Only that one
column and an indicator of its position in the matrix need be stored explicitly.) Some of the more
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advanced references listed at the end of this chapter provide a more complete description of product
form inverse computation, and of how reinversion can help to maintain accuracy and save
storage space.

Although the Revised Simplex method requires some additional bookkeeping that would not
be needed if the full tableau were maintained, the method typically requires less computation, uses
less storage space, and obtains greater numerical accuracy than the standard Simplex method.

Because only the essential data are computed, Revised Simplex has an advantage, with respect
to computation time, over the standard Simplex. This advantage is particularly pronounced when
the number of constraints is much less than the number of variables because the size of all the
essential data (basic columns and right-hand-side constants) is determined by the number of
constraints. (Refer to [Simmons, 1972] for a detailed operation-count for the Revised and standard
Simplex methods.)

Revised Simplex storage requirements are minimal because it is necessary to store only the
basic variables, the basis inverse or its product form, and the constants. The original constraint
matrix and objective coefficients can be stored on peripheral devices, along with the premultipliers
for the product form inverse, if desired.

Perhaps the most attractive advantage offered by the Revised Simplex method is increased
numerical accuracy. As discussed in Chapter 1, an algorithm is called numerically unstable if small
errors (through round-off in intermediate computations, for example) can lead to very large errors
in the final solution. Both the standard and Revised Simplex methods are numerically unstable, but
Revised Simplex avoids some of the potential for instability. There is less accumulated round-off
error because calculations are performed on a column only when it is to enter the basis, not at
every iteration. Furthermore, computations are applied to original problem data, not to data that
have already undergone (unnecessary) computation.

Typical large linear programming problems have constraint matrices that are very sparse, with
a large proportion (often in the range of 95%) of zero values. Revised Simplex performs fewer
multiplications involving non-zero elements, since Revised Simplex operates on original (sparse)
data whereas standard Simplex operates repeatedly on the entire tableau and quickly creates a dense
matrix out of a sparse one. Thus, by taking advantage of sparsity, the Revised Simplex can reduce
the amount of computation and therefore maintain numerical accuracy.

The advantages described above have been observed so consistently that almost all commercial
software for linear programming is based on the Revised Simplex method (with product form
inverse) for both phases of the two-phase method.

2.10 GUIDE TO SOFTWARE TOOLS

Now that we are familiar with linear programming models and a fundamental method for solving
these problems, we will turn our attention to some practical considerations necessary for solving
large linear programming problems on a computer. Because there is quite a selection of commer-
cially available software for linear programming, anyone in a position to choose a software system
for personal use (and certainly anyone contemplating developing his own software) should be aware
of the various features to be mentioned in this section. In particular, we will briefly describe some
important extensions often found appended to the usual Simplex techniques, typical approaches to
handling input and output data, and some actual commercial systems that are available. We also
include a discussion of interior methods that now play an increasingly important role in the
practical solution of linear programming problems.

2.10.1 EXTENSIONS TO GENERAL SIMPLEX METHODS

The majority of commercial software for linear programming is based on the Revised Simplex
method, and most implementations employ the product form inverse. For efficiency and accuracy
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on a computer, a variety of additional features may also be incorporated. We merely mention a few
of them here, and the interested reader can obtain a more thorough understanding using the
references cited at the end of the chapter.

The method used for computing and maintaining tableau information has a strong bearing on
the size of problem that can be successfully attempted. More complicated implementations require
greater skill and effort but operate with greater speed so that larger problems can be solved.

The explicit inverse method is straightforward and can be efficient and useful for problems
involving a few hundred rows. The product form inverse allows for problems in the range of 1000
or so rows. For problems with tens of thousands of rows, LU decomposition techniques have been
developed, for use both in the iteration phases and during re-inversion of the basis.

In a linear program with many variables, it is very time-consuming to examine every non-basic
variable at each iteration to determine the one to enter the basis. Many linear programming
implementations do not go to the effort to select the non-basic variable corresponding to the most
negative top row coefficient, but rather one corresponding to any negative coefficient (i.e., any
variable that will improve the objective function). Although this strategy may increase the total
number of iterations, it is actually a time-saving and very rational approach because the negative
top row coefficients only specify a per-unit improvement in z, and not an absolute overall improve-
ment. Thus any "good" entering variable can be quickly selected for the next basis.

In many linear programming models, there are upper bound constraints (Xj ̂  Uj) for some or
all of the variables. Constraints such as these, as well as generalized upper bounds (Sxj < Uj), can
be dealt with using a method, introduced by Dantzig and Van Slyke, that handles these constraints
implicitly without enlarging the basis. (Recall that for each explicit constraint, there must be a
basic variable; therefore, any additional constraints generally contribute to the amount of work and
storage required by the Revised Simplex method.) Handling upper bound constraints implicitly
does take time, but practice has shown that this is an advantageous trade-off that serves to keep
the problem size from increasing.

Very large linear programming models often result in a constraint matrix A in which the non-
zero elements appear in patterns or blocks. When a problem exhibits such a high degree of structure,
it may be possible to apply a decomposition technique [Dantzig and Wolfe, I960]. The original
model is partitioned, and the subproblems are then solved individually.

Not only do non-zero elements of A often appear in patterns, but more generally, we find the
matrix A to be very sparse. A sparse matrix is one with a very large proportion of zero elements.
A rule of thumb is that large linear programming models typically have only about 10% non-zero
elements; some practitioners claim that 1% to 5% is a more realistic range. This sparsity is not a
surprising phenomenon when we consider that in any large organization, certain sets of products,
people, or processes tend to operate in groups, and are therefore subject to "local" constraints.
When such a problem is formulated, a sparse matrix results because each variable is involved in a
relatively small number of the constraints.

To make better use of available memory, sparse matrices should be stored in some type of a
compressed format, using methods such as those described by [Murtagh, 1981]. For example, each~
non-zero element could be stored along with an encoded form of. its row and column indices. The
term "super sparse" has been used to describe matrices that are not only sparse but in which many
of the non-zero elements are the same. (For example, in many applications, the vast majority of
non-zero coefficients have a value of one.) In that case, each distinct value need be stored only
once, and elements are found via a table of addresses into a table of distinct element values. Sparse
matrix handling techniques have been shown to be worthwhile even if the coefficient matrix A is
stored on a peripheral memory device. Because transfer time is slow relative to computation time,
it is prudent to maintain such large data structures in as compact a form as possible.

Round-off error is a natural consequence of using finite-precision computing devices. As was
pointed out in Chapter 1, this inability to store computed results exactly is particularly pronounced
when we perform arithmetic operations on numeric values of very different magnitudes, where we
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are often unable to record that portion of a result contributed by the smaller value. In an attempt
to remove the source of some of these numerical inaccuracies, most commercial linear programming
systems apply some kind of scaling before beginning the Simplex method. Rows and columns of
the matrix A may be multiplied by constants in order to make the largest element of each row and
column the same [Murtagh, 1981]. To improve the condition of a matrix (and, therefore, obtain
greater accuracy of its inverse), all the elements of A should be kept within a reasonable range,
say within a factor of 106 or 108 of each other [Orchard-Hays, 1968]. More elaborate and specific
mechanisms for scaling have been devised. In general, a healthy awareness of the limitations of
computer arithmetic and numerical computation is essential in understanding and interpreting
computed results.

In a problem of any practical size, the elimination of artificial variables from an initial solution
can take a considerable amount of computation time. The term crashing refers generally to any
kind of technique that gives the Simplex method a head start and eliminates some of the early
iterations. Crashing sometimes consists of choosing a set of (non-artificial) non-basic variables to
enter the basis and replace the artificial variables, even at the expense of temporarily degrading the
objective function or making the solution infeasible [Cooper and Steinberg, 1974]. An even better
way to give a boost to the Simplex method is to obtain, from the user or analyst, problem-specific
information about which variables are likely to be basic variables in a final solution. Many com-
mercial systems (particularly those for larger powerful computers) provide a means for introducing
such information along with other problem data. It may also be possible to restart Simplex iterations
using solutions from previous (incomplete) attempts at optimization.

Many commercial systems contain algorithms for sensitivity analysis (also called ranging pro-
cedures or postoptimality analysis). These techniques are applied after the Simplex method has
already produced an optimal solution. Sensitivity analysis allows the user to determine the effect that
changes in various problem parameters would have on the optimal solution. Changes in the objective
(cost/profit) coefficients and in the resource levels (right-hand sides of constraints) are commonly
dealt with; some systems consider the addition of decision variables to the original model, but most
systems do not handle changes in the constraint coefficients or the addition of new constraints.

The relationship between sensitivity analysis and the dual to a linear programming model was
described in Section 2.8. It is not uncommon for commercial software to include subroutines
embodying a method known as the dual Simplex method. During sensitivity analysis, if problem
parameters are changed, the current (optimal) solution may become infeasible. However, the
problem is then dual feasible, and can be reoptimized using the dual Simplex algorithm.

2.10.2 INTERIOR METHODS

The complexity of linear programming problems was for many years one of the most important
open questions in theoretical computer science. Efforts were made to prove that Dantzig's Simplex

method would always stop sooner than I iterations, but instead, problems were devised which

drive the Simplex method through the combinatorial explosion of basic solutions. On the other
hand, the linear programming problem did not seem to be NP-hard either.

The question was first answered in 1979 when the Russian mathematician Leonid B. Khachiyan
published an algorithm for solving linear programming problems in polynomial time. Initial con-
fusion over the importance of Khachiyan's discovery arose for two reasons. First, his results
appeared in a very short article in a Russian journal and went unnoticed for months because of its
obscurity as well as the fact that the report was written in the Russian language. After some time,
Eugene Lawler at the University of California at Berkeley brought the article to the attention of
the computer science community. The explanation that Khachiyan himself presented was so abbre-
viated that mathematicians had little inkling of its content. Finally, through Lawler's efforts,
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Khachiyan's work was expanded upon (and the details of the proof reconstructed) by Gacs and
Lovasz, who not only filled in the gaps in the proof but improved on the efficiency of the algorithm
[Gacs and Lovasz, 1979]. Only then was the new idea available to the general mathematics
community for consideration and discussion. Almost nothing was known about Khachiyan himself,
and it was generally assumed, even by Gacs and Lovasz, that he had never published any previous
works. However, as it turns out [Aspvall and Stone, 1979], cite four publications by Khachiyan
prior to his famous one in 1979.

The second misunderstanding arose because Khachiyan's algorithm was designed for linear
programming problems in which c, A, and b are integers. Careless reporters publicized incorrectly
that Khachiyan had developed a polynomial-time algorithm for integer programming problems
(such as the traveling salesman problem). Because this part of the story was blatantly untrue, there
was skepticism concerning just what Khachiyan really had done. Major newspapers around the
world contributed to the notoriety (but sadly not to the clarification) of this remarkable discovery.

Because linear programming problems had been suspected of having "borderline" complexity
— neither being NP-hard nor having a polynomial algorithm — Khachiyan's demonstration of a
polynomial time algorithm was somewhat surprising and of immense importance. Even George
Dantzig, who developed the (worst-case exponential-time) Simplex algorithm, graciously offered
the comment that, "A lot of people, including myself, spent a lot of time looking for a polynomial-
time algorithm for linear programming. I feel stupid that I didn't see it." [Kolata, 1979].

Khachiyan's method operates by defining a sequence of ellipsoids (ellipses in a multi-dimen-
sional space), each smaller than the previous ellipsoid, and each containing the feasible region.
The method generates a sequence of points x0, x , , x2,..., which form the centers of the ellipsoids.
At each iteration, if the center xk of the ellipsoid is infeasible, a hyperplane parallel to a violated
constraint and passing through xk is used to cut the ellipsoid in half. One half is completely
infeasible, but the other half contains the feasible region (if it exists), so a smaller ellipsoid is
constructed that surrounds this half. Eventually, some xk will lie in the feasible region.

From a practical standpoint, Khachiyan's ellipsoid method lacked the many years of fine-tuning
that had been directed toward improving the efficiency of the Simplex method. Therefore, although
it was a polynomial-time algorithm, in practice the Simplex method was the preferred method
because typically it performed quite well, and software implementations were readily available. It
should be noted, however, that whereas the computation time for the Simplex method is most
strongly dependent on the number of constraints m, Khachiyan's method is relatively insensitive
to m and more strongly dependent on the number of decision variables n. Thus, it was supposed
at the time that Khachiyan's ellipsoid method might eventually be superior, in practice, to the
Simplex method for problems with numerous constraints. In any case, just 5 years later in 1984,
yet another new method appeared.

Narendra Karmarkar, a young mathematician at AT&T Bell Laboratories, announced an algo-
rithm for solving linear programming problems that was even more efficient than Khachiyan's
method. Karmarkar's method is called an interior point method since it operates from within the
polyhedron of feasible points of the linear programming problem. The algorithm uses a series of
"projective transformations" in which the polyhedron is first made smoother ("normalized"), then
an arbitrary point is selected which is re-mapped to the center, and a sphere is inscribed in the
polyhedron. Then a new point is selected, near the edge of the sphere and in the direction of the
optimal solution. The space is then transformed or "warped" again so that this new point is in the
center. The process is repeated until the selected point is the optimal solution to the linear pro-
gramming problem. Karmarkar's method of projective transformations demonstrates a polynomial-
time complexity bound for linear programming that was better than any previously known bound.

Karmarkar's original announcement claimed that his method was many times faster than the
Simplex method. But since AT&T Bell Laboratories' proprietary interests precluded disclosure of
the details of its implementation, it was not at first possible to test Karmarkar's claims. In fact, for
several years, the scientific community remained somewhat annoyed because no one outside Bell
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Laboratories was in a position to duplicate Karmarkar's computational experiments — and hence,
the traditional scientific peer review process could not take place.

Whereas Karmarkar had claimed computation times 50 times faster than Simplex-based
codes» outside researchers were implementing Karmarkar's method and observing computation
times 50 times worse. Eventually, however, over the next 10 years, it became evident that by
using special data structures, efficient methods for handling sparse matrices, and clever Cholesky
factorization techniques, the performance of Karmarkar's method could become quite competitive
with Simplex implementations.

An important side effect of-the controversy over the validity of Karmarkar's claims is that it
sparked a great deal of interest in examining and refining Simplex implementations. Consequently,
there are now many very efficient implementations of both approaches. A recent overview [Lustig,
Marsten, and Shanno, 1994] indicated that small problems, in which the sum of the number of
decision variables plus the number of constraints is less than 2000, can generally be solved faster
with the Simplex method. For medium-sized problems, in which that sum is less than 10,000,
Simplex and interior methods compete evenly. And there are several extremely large linear pro-
gramming problems that have now been solved by interior point methods which have never been
solved by any Simplex code. An increasing number of commercial software products contain both
interior point methods and Simplex methods that can be used together or separately in solving
large or difficult problems. Each of these approaches has its advantages, and hybrid software that
combines these complementary methods constitutes a powerful computational tool for solving
linear programming problems.

As the methods suggested originally by Karmarkar became more widely understood, numerous
researchers made their own various contributions to the practical implementation of interior point
algorithms. A very thorough summary of theoretical and implementational developments, as well
as computational experimentation, may be found in a feature article by [Lustig, Marsten, and
Shanno, 1994], [Bixby, 1994] presents an enlightening description of commercial interior point
methods, options, and performance on benchmark problem instances. [Saigal, 1995 ] is a com-
prehensive reference that includes a large section on interior point methods. [Mitra et al., 1988]
report experimental studies with hybrid interior/Simplex methods. Thus, the theoretical merits of
Karmarkar's new approach, which had never been doubted, have finally been balanced by con-
siderable practical computational experience. As an illustration of this, recall that interior point
methods must remain in the interior of the feasible region. Yet computational experience shows
that choosing a step length that gets very close to (and nearly outside of) the boundary of the
region is actually most efficient. So-called barrier parameters are used to control the interior
search in the feasible region.

The interior and barrier methods were inspired by (and incorporate) many of the more
general methods of nonlinear programming. It should be noted that interior point methods did
not originate with Karmarkar; in fact, the approach had been used since the 1950s for nonlinear
programming problems. However, Karmarkar can be credited with demonstrating that interior
point methods could also be practical for solving linear programming problems. Therefore, a
student who wishes to fully understand these methods might well begin by reading the intro-
ductory notions presented in Chapter 5 on Nonlinear Optimization, and then be prepared to
embark on a serious study of the mathematics and numerical analysis underlying general
optimization procedures.

2.10.3 INPUT/OUTPUT FORMATS

Because of the large amount of data required to specify a linear program, any comprehensive
system for solving these problems can be thought of as primarily a data handling process, with
special routines to perform the optimization and analysis phases. A fairly substantial amount of
effort can be expended in converting data from the original raw form into a format appropriate
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for an input routine, and then into the internal (matrix or vector) floating point representation
required for computation.

A widely accepted industry standard for specifying linear programming problems has for years
been the MPS (or MPSX) format, developed years ago for IBM systems, and originally for card-
oriented input. The input format permits the user to specify the type of constraint for each row.
Column input consists of objective function coefficients and the non-zero a^ elements. Slack or
surplus variables are added automatically. Right-hand-side constants are then introduced, and
optional upper and lower bounds may be specified for constraints, as well as bounds on variables.
Control commands allow the user to specify starting options (for example, a "crashing file" to
contain an initial solution), scaling factors, tolerances to allow for numerical inaccuracies, and
terminating options (such as a bound on the number of iterations, or an absolute bound on
computation time). Upon termination of the optimization phase, a user may choose to save, in a
designated file, the basis, which could be used later as a starting point for further computation.

The MPS output format is likewise commonly produced by commercial software. Items of
information included in the output are the objective function value, the problem status (whether
the solution is optimal and whether the problem is feasible), the number of Simplex iterations, the
objective function row of the tableau, the right-hand-sides, ranges, and bounds. An indication is
given as to which are the binding and slack constraints. Shadow prices (dual variables) are given,
and finally the values of the decision variables are reported.

Because the basic MPS format does not lend itself to creating well-documented models, some
efforts have been made to facilitate the process of setting up large models using so-called matrix
generators. Several matrix generator and report writer systems have been developed, and special
modeling languages (for computing systems of all sizes) have more recently provided an improve-
ment over early matrix generators [Fourer, 1997; 1999].

A more recent innovation, available on many PC systems, is the capability of reading a linear
programming problem specification from a spreadsheet file, and placing a problem solution back
into a similar file. While comprehensive systems integrating spreadsheet capabilities with optimi-
zation seem at first attractive, there are some associated disadvantages. These bundled systems tend
to limit the size of problems that can be solved (e.g., some spreadsheets allow only 256 columns),
the system overhead of the spreadsheet programs causes these packages to be slower than specific
LP packages, and spreadsheet layouts still do not provide good model documentation.

More comprehensive systems are likely to offer the convenience and power of advanced
modeling facilities such as AMPL, GAMS, and MPL, interaction with database model generators,
and even natural-language model development systems. Such convenience, however, may be pur-
chased at the expense of speed; and for very large models, the performance of such integrated
systems may suffer during the optimization phase.

2.10.4 SOLVING PROBLEMS WITH COMMERCIAL SOFTWARE

The Simplex method is theoretically not an efficient algorithm because its worst case performance
is exponential in the size of the problem being solved. However, empirical evidence, observed over
many years and many practical problem instances, shows it to be consistently very efficient in
practice.

The computational effort required for solving a linear program with the Simplex method is
.strongly dependent on the number of constraints m, and almost independent of the number of
variables n. In typical problems, we find that the number of constraints is much less than the number
of variables, and in just such cases, the Revised Simplex has great computational advantage over
the standard Simplex. In practical experience, the number of Simplex iterations required, on average,
to solve a problem with m constraints, is 2m. A practical, although not strict, upper bound on the
number of iterations is 2(m + n) [Ravindran et al., 1987]. Total computation time has been observed
to increase roughly in the order of m3. Thus, a 1000-constraint problem may require a million times
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as much computation time as a 10-constraint problem. In practice, we can generally expect to
obtain solutions to linear programming problems very efficiently, despite the lack of any attractive
performance guarantees.

To give some perspective to the notion of problem size (and to dispel any myths that may have
been created by the very small illustrative examples used earlier in this chapter), we should indicate
just what is considered a large linear programming problem. Problem size is usually expressed in
terms of the number of constraints, the number of decision variables (which may or may not include
the slack and surplus variables), and perhaps the number of non-zero coefficients in the matrix. In
the early 1950s when the first linear programming software was being developed, an inversion of
a matrix of order 100 was considered state-of-the-art in numerical computation. Nowadays, a linear
programming problem with several hundred constraints is considered to be of moderate size, while
a large problem may have upwards of tens of thousands of constraints.

Problems with tens of thousands of constraints (and no specified limit on the number of
variables) can be solved on large "number crunching" computer systems or on multiprocessor or
networked PCs or workstations. A 32-bit PC or workstation computer can usually execute software
developed for much larger and more powerful computers, but may take somewhat longer to execute.
Medium-sized computing systems may be appropriate for solving problems in the range of several
thousand constraints and variables.

The profusion of linear programming (LP) software for PCs that has developed in recent years
has made problem-solving tools conveniently available to many managers and analysts who here-
tofore had only remote access to such powerful computing capabilities. During the past couple of
decades of progress, there has been a remarkable change in the size of linear programming problems
that can be solved on a PC. It is now becoming practical to solve large optimization problems on
a desktop computer. The earliest software packages for PCs were typically limited to a few hundred
rows and columns, and subsequent limitations were imposed by the 640K memories found on early
IBM-compatible machines. Most current machines now have larger memories and more sophisti-
cated memory management capabilities, so that software on these machines is able to solve LP
problems whose size is limited only by the memory available on the particular system. Most
commercial software does not specify an upper limit on problem size that it can solve. Some
vendors claim, as a rule of thumb, that every additional megabyte of memory buys the ability to
solve an LP with an additional 50,000 non-zero coefficients.

During the 1980s, it was considered an achievement to be able to solve LPs with 30,000 non-
zeros on a PC. But now problems with hundreds of thousands of non-zeros can be solved, although
the time required to do so may vary, depending on the underlying hardware technology.

Because software for linear programming has been under development for over 50 years, and
now even the interior point implementations have evolved into standard forms, one might think
that there is little room for any significant changes in LP solver technology. But with steady advances
in processor speed and storage capabilities, and convenient modeling systems that encourage
analysts to attack ever larger problems, we are seeing even more dramatic developments in software.
The many subtle implementation details in today's sophisticated LP codes continue to receive
attention from analysts and software designers, with the result that solving problems with hundreds
of thousands of variables is an everyday occurrence.

Development of reliable software for solving LP problems requires a substantial investment of
skill, time, and effort. Therefore, it is not surprising that all the many advertised software packages
are not of equally high quality. Because LP codes do not have the broad market of spreadsheets
and word processors, LP solvers may always tend to be relatively expensive packages. (A little1

healthy skepticism might even be appropriate when using cheap or free LP software.)
Software vendors typically offer a variety of versions of their packages. The options may be

based on the choice of modeling language and the input/output interfaces, the hardware platform
and the underlying operating system (Windows, DOS, Unix-type, etc.), and price levels (which
may be indicative of the size of problems that can be solved). Some of these options and charac-



62 Operations Research: A Practical Introduction

teristics are presented clearly and succinctly in a very useful series of survey articles by [Sharda,
1992, 1995] and [Fourer, 1997; 1999] that describe many of the most popular software products
now available. We mention a few of them here, just to provide a glimpse of what is currently on
the market

C-WHIZ is based on a primal Simplex algorithm, with procedures to simplify the matrix
structure and crashing procedures to obtain a starting basis quickly. It can be used successfully on
problems whose computations are numerically unstable, and it is able to solve problems with up
to 32,000 constraints and any number of variables. The code takes advantage of sparsity to
economize on memory utilization. This package accepts input in MPS format, and has database
and spreadsheet interfaces and linkages with GAMS, AMPL, and MPL modeling languages. Written
in the ANSI C programming language, the software runs under DOS on PCs, and on IBM RISC
and Unix SUN workstations; assembly language versions are available for IBM mainframes. The
cost for this software is in the $1000 range, depending on licensing agreements.

CPLEX Linear Optimizer is designed to solve large, difficult linear programming problems
which other LP solvers cannot solve or for which others are unacceptably slow. It has been
developed to be fast, robust, and reliable, even for poorly scaled or numerically difficult problems.
This software uses a modified primal and dual Simplex algorithm, along with interior point
methods. CPLEX is currently used to solve some of the largest problems in the world — up to
millions of variables, constraints, and non-zeros. Options include a preprocessor for problem
reduction, as well as parallel implementations that have demonstrated record-breaking perfor-
mance. CPLEX software is available in two forms: one is designed for ease of use, with complete
online help service; another has callable routines that may be used by system developers for
integration into other products. Various formats including MPS and spreadsheet interfaces are
usable, as well as modeling languages such as GAMS, AMPL, and MPL. This product is designed
to be portable, and is available for most popular hardware and software environments: IBM-
compatible PCs (Windows, OS/2), Unix workstations (Sun, Apollo), IBM and DEC mainframes,
and Cray and Convex supercomputers. It is used throughout the world in academic and research
institutions, and although a CPLEX/MPL package might be priced around $6000, educational
discounts are often available.

FortLP offers an implementation of the Revised Simplex method, with special handling of
sparse matrices. Written in ANSI Fortran 77, it accepts input in MPSX format, but also allows
users to supply their own individual input methods. Interior point methods are under development
that switch to Simplex during the final phase of computation. This software runs under DOS and
Unix to solve problems with up to 32,000 rows and 32,000 columns. Prices are in the range of
$1000 to $4000.

IMSL has an established reputation in the field of numerical problem-solving software, known
for accuracy and dependability, and strong vendor support services. Literally thousands of mathe-
matical and statistical routines in ANSI standard Fortran and C libraries are implemented on a wide
variety of mainframes and workstations. The linear programming routines are based on the Revised
Simplex method. Licensing agreements can permit users to incorporate this software into their
products. The PROTRAN environment is an integrated system with capabilities for interdisciplinary
problem-solving. LP/PROTRAN facilitates convenient input of problem representation, and is
particularly efficient for handling large sparse matrices. Annual and paid-up license fees vary
according to customer class, and range from $1000 to $20,000.

LAMPS (Linear and Mathematical Programing System) employs primal and dual Simplex
methodology, and is designed for the solution of large problems (up to 32,000 rows and 100,000
columns), but will operate efficiently on mid-size and PC systems. LAMPS offers linkage through
MPS, GAMS, AMPL, and other standard input formats, and is available for use on a variety of
operating platforms, including DOS, Windows, most-Unix workstations, and VAX, Convex, and
Cray computing systems. Prices are in the $2000 to $6000 range.
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LINDO (Linear Interactive and Discrete Optimizer), originally developed by Linus
Schrage, is one of the oldest and now among the most popular commercial systems for solving
linear programming problems. The success of this product derives in part from the vendor's
timely offering of new capabilities in response to the expressed need of users. Based on the
Simplex method, LINDO supplies different versions for various platforms and memory capac-
ities. The standard version allows up to 32,000 constraints, 100,000 variables, and 1,000,000
non-zero coefficients, but versions are available for solving problems well beyond these limits.
LINDO runs oh various mainframes, most workstations, and operates in DOS, Windows, and
all types of Unix environments. It accepts MPS input, allows Fortran I/O interfaces, and
provides linkages with a spreadsheet solver (What's Best! allowing interfaces with most
spreadsheets) and MPL. Prices range from $100 to $5000, with substantial educational dis-
counts available

MINOS offers numerically stable implementations of primal Simplex, using sparse LU fac-
torization techniques. The system was developed originally in standard Fortran 77 by [Murtagh
and Saunders, 1987], and uses MPS format, and GAMS and AMPL interfaces. With versions for
DOS, Windows, Unix, and mainframe systems, list prices are $5000 and up, but lower educational
prices are available.

IBM OSL (Optimization Subroutine Library) comprises a collection of subroutines for
manipulating models and solving the resulting optimization problems. Primal and dual Simplex
versions and three interior-point solvers are available for use on platforms ranging from PCs
running DOS and Windows to Unix workstations and mainframes systems. Input and output can
be accomplished through a subroutine calling sequence, MPS and MPSX formats, spreadsheet
files, LINDO, AMPL, GAMS, and other modeling languages. OSL offers parallel implementa-
tions, and a graphical user interface (GUI) version is available for IBM RISC workstations.
Prices range from $300 to $20,000.

PC-PROG is designed for IBM-compatible PCs and can run in 512K bytes of RAM
memory in a DOS or Windows environment. PC-PROG is an interactive system with a full
screen editor for input, showing the progress of the optimization process, and displaying output.
Other interface capabilities include MPS, various spreadsheets, SAS, and LINDO. The Personal
version solves 50 x 50 problems with at most 1000 non-zero coefficients; the Midsize version
handles 250 x 250 problems with 1500 non-zeros; and the Professional version allows 1000
x 1000 problems with 8000 non-zeros. With prices in the $200 to $1000 range, and the user-
friendly display for tracking progress during computation, PC-PROG is popular for instruc-
tional use.

SAS provides an integrated package, with capabilities for solving a wide variety of Operations
Research problems. The SAS system has features to support data management in a variety of
formats, model building, interactive execution, and report writing and visual outputs (charts, plots,
diagrams). SAS/OR subroutines for solving linear programming problems use two-phase Revised
Simplex using Bartels-Golub update of the LU decomposed basis matrix to pivot between feasible
solutions. SAS software is available for a variety of large and small computing platforms, with
prices and fees varying, dependent on licensing agreements.

This list of commercial software products is by no means exhaustive; we have merely mentioned
several representative packages that are in popular use. With new products constantly under devel-
opment, our readers should have no trouble finding many additional sources of software for solving
linear programming problems.
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2.11 ILLUSTRATIVE APPLICATIONS

2.11.1 FOREST PEST AERIAL SPRAY PROGRAM
[RUMPF, MELACHRINOUDIS, AND RUMPF, 1985]

The Maine Forest Service operates a program of aerial pesticide spraying to mitigate the destruction
of spruce-fir forests by the spruce budworm. Yearly spraying of the 5 million-acre infestation takes
place in early summer during a specific stage of insect development, and must be done in dry
weather under moderate wind conditions. Spraying is done by aircraft teams consisting of a spray
aircraft, a guide plane with a pilot and navigator, and a monitor plane with a pilot and observer.
The entire program includes analysis of insect damage and danger assessment of treatment require-
ments, and cost of chemicals, but one third of the total cost of the program is for aircraft and crews.
The Forest Service has therefore wisely investigated the use of quantitative methods to maximize
the efficiency of aircraft assignments and to reduce aircraft needs.

The aircraft operate out of eight airfields, and preliminary models were developed to partition
the infested area into over 300 regions (spray blocks) about each airfield, and to then assign spray
blocks to airfields and aircraft to airfields.

This initially seemed like a natural problem to be formulated as a network problem or integer
programming model (see Chapters 3 and 4); but some of the realism of this problem could not be
incorporated into the network models, and the integer programming formulation turned out to be
prohibitively large. Finally, a linear programming formulation was developed that models the
problem realistically and that can be solved quite efficiently.

The decision variables are the times allocated to each aircraft team flying out of each airfield
to spray each block. The objective function includes only those variables associated with allowable
combinations of blocks, aircraft, and airfields; that is, blocks within operating range of the airfield,
aircraft capable of spraying the type of pesticide prescribed for a certain block, and the specified
type of aircraft team (planes and crew) stationed at the given airfield. The aim is to minimize total
spraying cost.

Constraints are imposed to guarantee sufficient time to completely spray each block (and this
depends on the geometrical shape of the block, the speed of the aircraft, the pesticide capacity of
the plane, and the availability of chemicals at the airfield). A second category of constraints accounts
for the time windows during which weather conditions and budworm development are appropriate
for effective aerial spray.

The use of this model has saved time and reduced the cost of the aerial spraying program. It
has also provided a framework from which to analyze major modifications to the program, such
as loss of an airfield or the availability of a new long-range aircraft, and, in response to environmental
concerns, to re-evaluate the actual need for spraying certain areas.

2.11.2 AIRCRAFT AND MUNITIONS PROCUREMENT [MIGHT, 1987]

The U.S. Air Force uses a linear programming model to decide annually how much of its procure-
ment budget should be spent on various different aircraft (such as the F-16, A-10, F-lll, and F-
15E) and on various conventional munitions. It has been argued that quantitative methods are
inapplicable for strategic decisions that are highly unstructured. However, senior-level decision
makers are rotated frequently and often lack long experience and judgment on which to base
procurement decisions. For this reason, quantitative analytical decision support has proved to be
of great benefit.

The decision involves analyzing the cost-effectiveness of each aircraft carrying each of several
possible munitions. The difficulty arises because the attrition of the aircraft is dependent on the
munitions being delivered, and an aircraft may be vulnerable to different types of attack, depending
on the weapon it is carrying. Likewise, an aircraft must fly at different altitudes with different
munitions and thus anti-aircraft weapons vary in effectiveness. And when the loss rate varies only
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a few percent, there is considerable variation in the number of attacks an aircraft can make during
a conflict; thus, the cost-effectiveness of an aircraft-munitions combination is difficult to measure
subjectively.

The data used by the linear program include:

• The effectiveness of each aircraft-munitions combination against each target type in each
of six different weather conditions

• The attrition (probability of loss) of each aircraft for each condition above
• The number of munitions delivered on each sortie for each condition
• The number of sorties per day for each aircraft-munitions combination
• Current inventory of aircraft and munitions
• Number and value of each type of target
• Cost of each new aircraft and munitions type

Thus, the decision variables are the total number of sorties flown by each aircraft-munitions
combination against each target type in each of six types of weather. The objective is the sum of
these variables, each multiplied by the probability of a successful sortie times the value of the
target type.

Five categories of constraints are defined for aircraft, munitions, targets, weather, and budget.
The current implementation has pre- and post-processors for data formatting, and can be run with
different databases. Output includes listings, tables, and graphical displays indicating, for example,
trade-offs of funds expended on aircraft vs. munitions, target value destroyed vs. expenditure on
individual munitions or a mixture of munitions. This linear programming approach to procurement
has received enthusiastic acceptance within the military procurement community.

2.11.3 GRAPE PROCESSING: MATERIALS PLANNING AND PRODUCTION
[SCHUSTER AND ALLEN, 1998]

Welch's grape-processing company has successfully employed linear programming models for
optimizing its management of raw materials in its production and distribution of grape juice
products. Welch's, Inc. is owned by a cooperative, the National Grape Cooperative Association,
involving 1400 growers of Concord and Niagara grapes in the northern United States. Membership
in the cooperative is attractive to grape growers because Welch's offers a reliable and consistent
market for grapes, despite fluctuations in agricultural productivity.

Welch's plants comprise a vertically integrated industry, handling the acquisition and pressing
of raw grapes, the storage of pasteurized grape juice and concentrates, production of jams, jellies,
and juice products, and the warehousing and distribution of finished products. The company wishes
to maintain consistent taste in its products, although weather and geography account for great
variations in grape characteristics (sweetness, color, etc.) from year to year.

Welch's had a comprehensive "materials requirement planning" system to estimate all the
resources needs, from juicing raw grapes to the completion of manufactured products. This, along
with a mini-computer-based cost-accounting system have proved useful, but do not provide optimal
cost solutions for the very important juice-blending operation; and each run of the system takes so
much computational time that interactive real-time use of the system is impractical. Furthermore,
whereas most industries try to schedule capacities first and then project their materials requirements,
the existing system at Welch's did not incorporate any consideration of capacities such as juice
concentrations or transportation between plants. Without use of operational constraints such as
these, it was not possible to choose effectively from among a large set of feasible product recipes
and to efficiently schedule inter-plant transfers. Optimal movement of raw materials among plants
and optimal blending of raw materials into products was not supported by any formal system, and
was dealt with by trial-and-error and with input from the simple cost-accounting system.
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An initial attempt at modeling this problem resulted in a linear programming formulation with
8000 decision variables. Preliminary testing of this "juice logistics" model indicated the workability
of the formulation. But management, lacking understanding of the model and fearing major software
management problems, did not fully support the use of the model.

In response to this, analysts dealt with the software maintenance difficulty by choosing eco-
nomical spreadsheet software (What's Best!), which provided convenient interfaces for the model,
the analysts, and management. Unfortunately, the 8000 variables overwhelmed this software pack-
age. Analysts revised the model by forming aggregate product groups rather than dealing with
individual products (e.g., all purple-juice products could be treated as a single aggregate, from a
materials standpoint). In this way, the model was streamlined into one having only 324 decision
variables. This aggregate view invoked suspicion of yielding misleading and overly simplified
inventory projections. Although such concern is probably justified in production planning and
disaggregation of end products, it turned out that for purposes of materials planning, this is a
perfectly acceptable simplification.

Once this very tractable model was put into regular use, it was realized that the model not only
offered a much better structured approach to planning and resulted in significant cost improvements,
but it also functioned effectively as a communication tool. Rather than being treated as a piece of
special offline data, the optimal solution produced by this linear programming model became a
central point of discussion in management meetings and an essential operational tool for the
planning committee. The complete acceptance of the model as a legitimate component in decision-
making placed Welch's in a position to make key decisions quickly. A profitable decision was made,
for example, on whether to purchase raw grapes on the open market (outside the cooperative) during
lean crop years; and the system permits rapid decisions on carrying over inventories of grape juice
during record-breaking production years (such as happened in 1991 through 1995), and successfully
meeting demand after the harsh winter of 1996 by adjusting product recipes.

The analysts at Welch's attribute the acceptance and successful use of the linear programming
model to their having reduced the original model to a size compatible with spreadsheet optimization.
This alleviated difficulties with software support. Furthermore, the resulting smaller model was
more understandable to people having various levels of mathematical interest, ability, and appre-
ciation. Thus, the simpler model proved to be the most workable one in actual practice. Future
plans call for development of a more comprehensive model, capable of incorporating changes in
material characteristics over time.

2.12 SUMMARY

Linear programming is a special type of mathematical programming, in which the objective function
and the constraints can be expressed as linear functions of the decision variables. Once a problem
is formulated as a linear program, it is possible to analyze the model and investigate the nature of
the solutions to the problem. Graphical solutions for small problems can be illustrative of some of
the characteristics of the solutions. In general, linear programming problems may have a unique
optimal solution, multiple optimal solutions, or no optimal feasible solution.

For linear programming problems of practical size, the most widely used technique for obtaining
solutions is the Simplex method. Applicable to essentially all linear programming models, the
Simplex method provides an efficient and effective means of either solving the problem, or dis-
covering that there is no solution.

Every linear programming problem has a dual problem, which often provides a useful alternative
interpretation of the solution to the original problem. The theory of duality also suggests ways in
which analysts can determine how sensitive a solution is to minor changes in problem parameters.

Relatively recent research has led to the development of new computational approaches, known
as barrier methods, or interior point methods. These techniques can in some cases be used effectively
to solve the isolated few problems that had never been successfully dealt with using the Simplex



Linear Programming 67

method alone. But more importantly, these newer ideas have been integrated skillfully together
with older Simplex algorithms to produce new hybrid software that performs better than any one
method used independently.

KEY TERMS

adjacent extreme points
artificial variables
basic solution
basic variables
big-M method
binding contraints
complementary slackness
crashing
degeneracy
degenerate solution
degrees of freedom
dual feasible
dual problem
dual Simplex
duality property
extreme point
feasible solution
feasible space
formulation
ellipsoid method
entering variable
graphical solution
infeasible solution
interior point methods
leaving variable
linear programming
marginal worth
multiple optimal solutions
non-basic variable
non-binding constraints
optimal feasible solution
optimal solution
pivot column
pivot element
pivot operations
pivot row
postoptimality analysis
primal problem
product form
range analysis
re-inversion
Revised Simplex method
right-hand side ranging
scaling
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shadow prices
Simplex method
Simplex tableau
sensitivity analysis
slack variable
solution
standard form
surplus variable
two-phase method
unbounded solution
upper bound constraints

EXERCISES

2.1 An academic computing center receives a large number of jobs from students and faculty
to be executed on the computing facilities. Each student job requires 6 units of space on
disk, and 3 units of time on a printer. Each faculty job requires 8 units of space on disk,
and 2 units of time on a printer. A mixture of jobs is to be selected and run as a batch,
and the total disk space and printer time available for a batch are 48 units and 60 units,
respectively. The computer center is paid three times as much for running a student job
as for running a faculty job. Formulate a linear programming problem to determine the
mixture of jobs to be run as a batch that will maximize computer center income.

2.2 A tree farm cultivates Virginia pine trees for sale as Christmas trees. Pine trees, being
what they are, require extensive pruning during the growing season to shape the trees
appropriately for the Christmas tree market. For this purpose, the farm manager can
purchase pruning hooks for $16.60 each. He also has a ready supply of spears (at $3
each) that can be bent into pruning hooks. This conversion process requires 1 hour of
labor, whereas final assembly of a purchased pruning hook takes only 15 minutes of
labor. Only 10 hours of labor are available to the manager. With labor rates at $8.40 per
hour, the farm manager intends to spend no more than $280 on buying or making pruning
hooks this year. In all, how many pruning hooks can he acquire (from outright purchase
and through conversion), given these limitations? Formulate this as a linear programming
problem.

2.3 A plant has five machines, each of which can manufacture the same two models of a
certain product. The maximum number of hours available on the five machines during
the next production period are, respectively, 60, 85, 65, 90, and 70. The demand for
products created during this next production period is expected to be 850 units of model
1 and 960 units of model 2. The profits (in dollars per hour) and production rates (per
hour) are given in tabular form:

Profit Production Rate

Machine
1
2
3
4

5

1

2

8
3

5
4

Model
2
5
3

6
3
7

Machine
1
2

3
4

5

1

7

5
6
4

5

Model
2
9
4

3
8
6
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Let Xjj be the number of hours machine i is scheduled to manufacture model j, for i =
1, ..., 5 and j = 1, 2. Formulate a linear programming model to maximize profits.

2.4 Metallic alloys A, B, and C are to be made to customer specifications from four different
metals (W, X, Y, and Z) that are extracted from two different ores. The cost, maximum
available quantity, and constituent parts of these ores are:

Ore

I
II

Cost
($/ton)

150
95

Maximum Tons
Available

2800
3100

Percentage
W X
40 10
30 20

Customer specifications and selling price for the three alloys

Alloy
A

B

C

Specifications
At least 30% of X
At least 50% of W
Almost 10%ofY
Between 30% and 40% of Z
At least 40%. of X
At most 70% of W
At least 40% of Y
At most 60% of W

of Constituents
Y
15
10

are:

Z
25
20

Selling Price
($/ton)

600

500

450

Formulate a linear programming model that meets the specified constraints and maxi-
mizes the profits from the sale of the alloys. (Hint: Let xijk be the amount of the 1th metal
extracted from the jth ore and used in the klh alloy.)

2.5 Show graphically the feasible region corresponding to the following set of constraints:
-2xj + x2 ̂  -4
Xj + x2 < 8
-Xj + x2 ̂  6
x,, x2 > 0

Give the coordinates of each of the extreme points of the feasible region.

2.6 What is the feasible region corresponding to the following set of constraints?
Xj + 3x2 < 24
X! <6

-x, + 2x2 < 10
x,, x2 > 0

Evaluate the objective function z = 2x1 + 5x2 at each of the extreme points of this feasible
region.

2.7 Solve the following linear programming problem graphically.
Maximize z = x, - x2

Subject to x, + x2 ̂  1
3x2<9



70 Operations Research: A Practical Introduction

2x, + x2 < 4
x, < 3/2
x,, x2 > 0

Give the optimal value of z and the optimal solution (x,, x2).

2.8 Solve the following linear programming problem graphically.
Maximize z = -2x, + x2

Subject to x, - x2 ̂  5
x, <7
x 2 <6
X j-x2^-4
Xj, x2 > 0

Outline the feasible region, and give the optimal values of z, x,, and x2.

2.9 Examine the formulation below, and comment on the nature of its solution.
Maximize z = 3x, - 2x2

Subject to x, < 2
x 2 <3
3xj - 2x2 > 8
x,, x2 > 0

2.10 Examine the formulation below, and comment on the nature of its solution.
Maximize z = 3x, + 4x2

Subject to 6x, + 8x2 < 10
X! + X2 ̂  1

x,, x2 > 0

2.1 1 Examine the formulation below, and comment on the nature of its solution.
Maximize z = 5x, + 4x2

Subject to x2 < 10
X! - 2x2 > 3
x, , x2 > 0

2.12 Place the following linear programming model in standard form.
Minimize z = 16x, + 2x2 - 3x3

Subject to (1) xt - 6x2 > 4
(2)3x2 + 7x3<-5
(3) x, + x2 + x3 = 10
(4) x,, x2, x3 > 0

2.13 Place the following linear programming model in standard form.
Maximize z = 5x, + 6x2 + 3x3

Subject to (1) Ix, - x3 1 < 10
(2) 10xt + 7x2 + 4x3 < 50
(3)2x,-llx3> 15
x,, x3 > 0
x2 unrestricted in sign
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2.14 Give all of the basic solutions and basic feasible solutions of the problem in Exercise 2.9.

2.15 Give the coordinates of all of the basic solutions and basic feasible solutions of the
problem in Exercise 2.10.

2.16 Use the Simplex algorithm to solve the linear programming formulation from Exercise
2.1. What is the percentage utilization of the disk and printer resources at optimality?
Comment on how the university community is likely to react to the optimal solution to
this problem.

2.17 Solve the following problem using the Simplex method.
Maximize Xj + 2x2

Subject to (1) x, + x2 ̂  6
(2)x2<6
(3)x,<8

2.18 Solve the following problem using the Simplex method.
Maximize z = 4x, + x2

Subject to (1) 3x, + x2 = 3
(2) 4x, + 3x2 > 6
(3) x, + 2x2 < 3
x,, x2 > 0

2.19 Apply the Simplex algorithm to each of the following problems. Observe the behavior
of the Simplex method and indicate which problems display degeneracy, multiple optima,
infeasibility, or an unbounded solution.
(a) Maximize 3x, + x2

Subject to ( l ) x , < 8
(2) 2Xl- 3x2 < 5
(3) x,, x2 > 0

(b) Maximize 3x, + 4x2

Subject to ( I ) x , + x 2 > 5
(2)2x,+x 2<4
(3)x,,x2>0

(c) Maximize x, + 2x2

Subject to (1) x, + 2x2 < 10
(2)x,,x2>0

(d) Maximize 3x, + 9x2

Subject to (1) x, + 4x2 < 8
(2) x, + 2x2 < 4
(3)x, ,x2>0

2.20 Create a linear programming problem formulation that has unbounded solutions but in
which no evidence of unboundedness appears in the initial Simplex tableau.

2.21 Perform as many Simplex iterations as possible on the example problem in Section 2.7.2.
Observe that the algorithm terminates when there are no ratios Qt from which to choose
a variable to leave the basis.
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2.22 Solve the following linear programming problem using the Two-Phase Simplex method.
Maximize z = 4X] + x2

Subject to 3xj + x2 = 3
4x, + 3x2 > 6
x, + 2x2 < 3
x,, x2 > 0

2.23 Examine this linear programming formulation:
Maximize x, + 2x2

Subject to Xj + 2x2 < 10
x,, x2 > 0

Comment on the nature of its solution(s). How does this change if the first constraint is
removed from the problem?

2.24 Solve the following linear programming problem graphically.
Maximize Xj - x2

Subject to x, + x2 > 1
3x2>9
2xj + x2 < 4
x, < 1.5

X , , X 2 > 0

2.25 What determines the number of basic variables in a linear programming problem solu-
tion?

2.26 What is the value of a non-basic variable in a feasible solution of a linear programming
problem?

2.27 In an optimal Simplex tableau, what is the economic interpretation of the objective
function row entry corresponding to the i-th slack variable?

2.28 In a Simplex tableau, what is the interpretation of the entries in the right-hand-side
column?

2.29 What is the consequence of a tie for the entering basic variable?

2.30 What if there is a tie for the leaving basic variable?

2.31 What if, in the objective function row of a final tableau, there is a zero in a column
corresponding to a non-basic variable?

2.32 What happens in the Simplex algorithm if you choose, as the entering variable, a variable
• with a negative objective row coefficient but not the most negative coefficient?

2.33 Solve the following problem using the Simplex method.
Maximize z = x, + 9x2 + x3

Subject to x, + 2x2 + 3x3 < 9
3xt + 2x2 + 2x3 < 15
x,, x2, x3 > 0
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2.34 Use the Two-Phase Simplex method to solve the following problem.
Minimize z = 16x, + 2x2 - 3x3

Subject to x, - 6x2 ̂  4
3x2 + 7x3 < -5
Xj + x2 + x3 = 10
x,, x2, x3, > 0

2.35 A business executive has the option of investing money in two plans. Plan A guarantees
that each dollar invested will earn 70 cents a year hence, and plan B guarantees that each
dollar invested will earn $2.00 two years hence. Plan A allows yearly investments, while
in plan B, only investments for periods that are multiples of two years are allowed. How
should the executive invest $100,000 to maximize the earnings at the end of three years?
Formulate this problem as a linear programming problem.

2.36 An investment portfolio management firm wishes to develop a mathematical model to
help decide how to invest $1 million for 1 year. Municipal bonds are to be bought in
combinations that balance risk and profit. Three types of bonds are being considered:
• AAA rated bonds yielding 6% annually and which must be purchased in units of $5000
• A rated bonds yielding 8% annually and which must be purchased in units of $1000,

and
• J rated (junk) bonds yielding 10% annually and which must be purchased in units of

$10,000.

The Board of Directors has specified that no more than 25% of the portfolio should be
invested in (risky) junk bonds, and at least 40% should be invested in AAA rated bonds.
Bonds are to be purchased with the objective of maximizing earnings at the end of the
year. It may be assumed that the stated yield dividend is paid at the end of the year, and
that no other distributions are made during the year. Formulate this problem as a linear
programming problem.

2.37 A philanthropist wishes to develop a mathematical model to help him decide how to
donate his spare cash to several worthy causes. He has $10 million to distribute among
the recipients, and he would like to donate in units of thousands of dollars. Three
organizations would like to receive funds: Our Great State University, the Friends of the
Grand Opera, and the Save the Humuhumunukunukuapua'a Society. The philanthropist
wants to give at most 50% of his cash to any one organization. The desirability of the
philanthropist's giving to any particular recipient is to be measured in terms of the number
of tax credits he will receive. The value of giving to an educational institution is rated
at 10 credits for every $1000 donation, while the value of $1000 donation to the music
lovers is rated at 8 credits, and each $1000 donation to the wildlife conservation is rated
at 6 credits. Write a linear programming model to help this philanthropist maximize the
number of tax credits that can be achieved by contributing among these three groups.

2.38 Solve the following problem graphically.
Maximize z = -2x{ + x2

Subject to x, - x2 < 5
x, <7
x 2 <6
x, - x2 > -4
x,, x2 > 0
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2.39 Write the dual of the primal linear programming problem in Exercise 2.7.

2.40 Write the dual of the primal problem in Exercise 2.8. Solve the dual problem, and identify
the shadow prices.

2.41 Solve the dual problem corresponding to the primal problem in Exercise 2.12. Determine
whether optimal solutions exist. If so, describe the relation between the primal shadow
prices and dual variables at optimality.

2.42 Describe the nature of the solutions of the primal problem in Exercise 2.10 and its dual
problem.

2.43 Each of the following statements refers to the Simplex algorithm. Fill in the blanks with
an appropriate letter from the choices below.
1. If all slack and surplus variables are zero in an optimal solution, then .
2. If a basic variable has the value zero in an optimal solution, then .
3. If an artificial variable is non-zero in an optimal solution, then .
4. If a non-basic variable has zero coefficient in the top row of an optimal tableau, then

Completion alternatives:
A: there are multiple optimal solutions.
B: the current solution is degenerate.
C: all constraints are equalities at optimality.
D: the shadow prices are inverses of the dual variables.
E: no feasible solution exists.
F: the solution is unbounded.

2.44 The following statements are intended to describe the relationship between primal and
dual linear programming problems. For each statement, fill in the blank to indicate the
most appropriate choice from the alternatives shown in the list below.
1. The optimal objective function value in the primal problem corresponds to

2. The shadow prices in the optimal primal tableau correspond to.
3. Basic variables in the optimal primal tableau correspond to

The variables in the primal problem correspond to.
5. Shadow prices in the optimal dual tableau correspond to .

Completion alternatives:
A: the primal non-basic variables.
B: the dual non-basic variables.
C: the primal constraints.
D: optimal basic variables in the dual problem.
E: the optimal objective function value in the dual.
F: the shadow prices in the dual.
G: basic variables in the optimal primal problem.
H: the constraints in the dual problem.

2.45 Recall Example 2.8.3 and verify the range within which changes in objective function
coefficient c2 can vary without affecting the optimal solution.
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2.46 What was the theoretical significance of the algorithm developed by Khachiyan for
solving linear programming problems?

2.47 What is the practical significance of the "interior point" methods, as originated by
Karmarkar, for solving linear programming problems? How do these methods compare
in practice with the traditional Simplex-based methods?
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Network analysis provides a framework for the study of a special class of linear programming
problems that can be modeled as network programs. Because such a vast array of problems can
be viewed as networks, this is one of the most significant classes of applications in the field of
Operations Research. Some of these problems correspond to a physical or geographical network
of elements within a system, while others correspond more abstractly to a graphical approach to
planning or grouping or arranging the elements of a system.

79
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The diversity of problems that fall quite naturally into the network model is striking. Networks
can be used to represent systems of highways, railroads, shipping lanes, or aviation patterns, where
some supply of a commodity is transported or distributed to satisfy a demand. Pipeline systems or
utility grids can be viewed as fluid flow or power flow networks, while computer communication
networks represent the flow of information, and an economic system may represent the flow of
wealth. In some cases, the problem may call for routing a vehicle or a commodity between certain
specified points in the network; other applications may require that some entity be circulated
throughout the network.

By using the network, model more abstractly, we can solve problems that require assigning jobs
to machines, or matching workers with jobs for maximum efficiency. Network methods can also
be applied to project planning and project management, where various activities must be scheduled
in order to minimize the duration of a project or to meet specified completion dates, subject to the
availability of resources.

All of these apparently different problems have underlying similarities: all consist of a set of
centers, junctions, or nodes that are interconnected (logically or physically) by links, channels, or
conveyances. Because of this, a study of general network models and techniques will provide us
with tools that can be applied to a variety of applications. As we study these models, we will see
that it is the mathematical structure or form of the problem that is important and not necessarily
the application. Furthermore, the successful use of network models is largely dependent on a skillful
analyst's ability to perceive the structure of a problem and to assess whether the network framework
is an appropriate approach to a solution. We will see examples in which there is more than one
way to represent the problem as a network model, and one formulation may be superior to others.

This chapter begins with some basic definitions and properties of graphs and networks. Algo-
rithms are then presented for finding the maximum flow in a network, optimally transporting a
commodity from supply points to demand points, matching or pairing appropriate elements in a
system, and efficiently designing a network such that every pair of points has some connecting
path. Methods are described for finding the shortest route between points in a network, and then
these methods are applied to multi-stage decision-making processes and project-planning problems.

3.1 GRAPHS AND NETWORKS: PRELIMINARY DEFINITIONS

A graph is a structure consisting of a set of nodes (vertices, points, or junctions) and a set of
connections called arcs (edges, links, or branches). Each connection is associated with a pair of
nodes and is usually drawn as a line joining two points. If there is an orientation or direction on
the arcs, then the graph is said to be directed, otherwise it is undirected. The degree of a node
is the number of arcs attached to it. An isolated node in a graph is one that has no arc attaching
it to any other node, and therefore such a node is of degree zero.

In a directed graph, if there is an arc from node A to node B, then node A is said to be a
predecessor of node B, and node B is a successor of node A. The arc is often designated by the
ordered pair (A,B).

For certain applications, it is useful to refer to a path from some given node to another. Let
Xj, x2,..., xn be a sequence of distinct nodes, such that nodes adjacent to each other in the sequence
are connected to each other by an arc in the graph. That is, if the sequence contains Xj, xi+,, then
either the arc (Xj, xi+l) or the arc (xi+1, Xj) exists in the graph. Then we say there is a path from X!
to xn, that consists of the nodes and their connecting links. In Figure 3.1, there is a path from node
A to node G that can be described by A, (A,B), B, (B,C), C, (E,C), E, (E,G), G. When the arc
connecting nodes Xj and xi+1 in a path is (xs, xi+I), it is called a forward arc; if the connecting arc
is (xi+1, Xj), it is a backward arc.

In the illustration, the path contains the three forward arcs (A,B), (B,C), and (E,G) and one
backward arc (E,C). If all the arcs in a path are forward arcs, then the path is called a directed
chain or simply a chain. If the graph is undirected, then the terms path and chain are synonymous.
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FIGURE 3.1 Paths in a graph.

If x, = xn in the path, then the path is called a cycle or a cyclic path. In the illustration, we see
the cyclic path

B, (B,C), C, (E,C), E, (E,G), G, (G,B), B

although this is not a cyclic chain because it includes the backward arc (E,C). A connected graph
is a graph that has at least one path connecting every pair of nodes.

A graph is a bipartite graph if the nodes can be partitioned into two subsets S and T, such
that each node is in exactly one of the subsets, and every arc in the graph connects a node in set
S with a node in set T. Such a graph is a complete bipartite graph if each node in S is connected
to every node in T. The graph in Figure 3.2 is a complete bipartite graph in which nodes A and B
are in one subset, and nodes C, D, and E are in the other.

A tree is a directed connected graph in which each node has at most one predecessor, and one
node (the root node) has no predecessor. In an undirected graph, we have a tree if the graph is
connected and contains no cycles. (If there are n nodes, there will be n - I arcs in the tree.)
Figure 3.3 contains illustrations.

A network is a directed connected graph that is used to represent or model a system or a
process. The arcs in a network are typically assigned weights that may represent a cost or value
or capacity corresponding to each link in the network.

FIGURE 3.2 A complete bipartite graph.
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FIGURE 3.3 Trees (n = 11): (a) directed tree; (b) undirected tree.

A node in a network may be designated as a source (or origin), and some other node may be
designated as a sink (or destination). A network may have multiple sources and sinks. A cut set
(or simply a cut) is any set of arcs which, if removed from the network, would disconnect the
source(s) from the sink(s). Because networks are commonly used to represent the transmission of
some entity from a source node to a sink node, we introduce the concept of flow through a network.
Flow can be thought of as the total amount of an entity that originates at the source, makes its way
along the various arcs and passes through intermediate nodes, and finally arrives at (or is consumed
by) the destination (sink) node. The study of network flow is the subject of the next section.

3.2 MAXIMUM FLOW IN NETWORKS

Maximum flow problems arise in networks where there is a source and a sink connected by a
system of directional links, each having a given capacity. The problem is to determine the greatest
possible flow that can be routed through the various network links, from source to sink, without
violating the capacity constraints. The commodity flowing in the network is generated only at the
source and is consumed only at the sink. The source node has only arcs directed out of it, and the
sink node has only arcs directed into it. Intermediate nodes neither contribute to nor diminish the
flow passing through them.

As an example, consider a data communication network in which processing nodes are con-
nected by data links. In Figure 3.4, data being collected or generated at site A must be transmitted
through the network as quickly as possible to a destination processor at site G where the data can
be archived or processed. Each data link has a capacity (probably some function of baud rate and
availability) that effectively limits the flow of data through that link. Alternatively, one can envision
a power generation and distribution system as a network flow model in which power is generated
at the source and conducted through transform stations to end users. Capacities are shown as labels
on the arcs.

The maximum flow problem can be stated precisely as a linear programming formulation.
Let n be the number of nodes, and let nodes 1 and n be designated as source and sink, respectively.
The decision variables Xy denote the amount of flow along the arc from node i to node j (i, j =1,
..., n). The capacity of the arc from node i to node j is the upper limit on the flow through this
arc, and is denoted u^. If we let f denote the total flow through the network, then to maximize the
total flow, we would want to
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FIGURE 3.4 Data communications network.

maximize z = f

n
subject to (1) I. X j j = f

( 2 ) x i n = f

(3) |xy=k |x jk forj = 2,3, . . . ,n-l

(4) Xy ̂  Uy for all i, j = 1, ... n.

Constraints (1) and (2) state that all the flow is generated at the source and consumed at the sink.
Constraint (1) ensures that a flow of f leaves the source, and because of conservation of flow, that
flow stops only at the sink. Constraints (3) are the "flow conservation equations" for all the
intermediate nodes; nothing is generated or consumed at these nodes. Constraints (4) enforce arc
capacity restrictions. All flow amounts Xy must be non-negative. Actually, constraint (2) is redundant.

As with all of the network models in this chapter, this problem could be solved using the
Simplex method. However, we can take advantage of the special network structure to solve this
problem much more efficiently. One of the most commonly used methods is an iterative-improve-
ment method known as the Ford-Fulkerson labeling algorithm. An initial feasible flow can always
be found by letting the flow through the network be zero (all Xy = 0). The algorithm then operates
through a sequence of iterations, each iteration consisting of two phases: (1) first we look for a
way to increase the current flow, by finding a path of arcs from source to sink whose current flow
is less than capacity (this is called a "flow augmenting path"); and then (2) we increase the current
flow, as much as possible, along that path. If in phase (1) it is not possible to find a flow augmenting
path, then the current flow is optimal. We will first outline the basic algorithm, and then fill in the
details.

3.2.1 MAXIMUM-FLOW ALGORITHM

Initialization: Establish an initial feasible flow.
Phase 1: Use a labeling procedure to look for a flow augmenting path. If none can be found, stop;

the current flow is optimal.
Phase 2: Increase the current flow as much as possible in the flow augmenting path (until some

arc reaches its capacity). Go to Phase 1.
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The search for a flow augmenting path in Phase 1 is facilitated by a labeling procedure that
begins by labeling the source node. We will use a check mark (/) on our figures to indicate that
a node has been labeled. From any labeled node i, we must examine outgoing arcs (i, j) and
[incoming arcs (j, i), for unlabeled nodes j. We label (/) node j if the current flow in outgoing arc
(i, j) is less than its capacity u^, or if the current flow in incoming arc (j> i) is greater than zero.
Labeling a node i means that we could increase the total flow in the network from the source as
far as node i. If the sink node eventually can be labeled, then a flow augmenting path has been
found. If more than one flow augmenting path exists, choose any one arbitrarily.

In Phase 2, the arcs in the flow augmenting path are first identified. Then by examining the
differences in current flow and capacity flow on all forward arcs in the path, and the current flow
in all backward arcs, we determine the greatest feasible amount by which the total flow through
this path can be increased. Increase the flow in all forward arcs by this amount, and decrease the
flow in all backward arcs by this amount.

We will now illustrate the maximum flow algorithm by applying it to the network pictured in
Figure 3.4. Let us assume initially that the flow in all arcs is zero, x^ = 0 and f = 0. In the first
iteration, we label nodes A, B, C, D, and G, and discover the flow augmenting path (A,D) and
(D,G), across which we can increase the flow by 4. So now, x^ = 4, XDG = 4, and f = 4.

In the second iteration, we label nodes A, B, C, then nodes E, D, and F, and finally node G.
A flow augmenting path consists of links (A,B), (B,D), (D,E), and (E,G) and flow on this path can
be increased by 4. Now XAB = 4, XBD = 4, XDE = 4, XEG = 4, and f = 8.

In the third iteration, we see that there remains some unused capacity on link (A,B), so we can
label nodes A, B, and E, but not G. It appears we cannot use the full capacity of link (A,B). However,
we can also label nodes C, D, F, and G, and augment the flow along the links (A,D), (D,F), and (F,G)
by 2, the amount of remaining capacity in (A,D). Now XAD = 6, XDF = 2, XFG = 2, and f = 10.

In the fourth iteration, we can label nodes A, B, C, D, F, and G. Along the path from A, C, D, F,
to G, we can add a flow of 4, the remaining capacity in (F,G). So XAC = 4, XCF = 4, XFG = 6, and f = 14.

In the fifth iteration, we can label all nodes except G. Therefore, there is no flow augmenting
path, and the current flow of 14 is optimal.

Notice that in any network, there is always a bottleneck that in some sense impedes the flow
through the network. The total capacity of the bottleneck is an upper bound on the total flow in
the network. Cut sets are, by definition, essential in order for there to be a flow from source to
sink, since removal of the cut set links would render the sink unreachable from the source. The
capacities on the links in any cut set potentially limit total flow. One of the fundamental theorems
of Ford and Fulkerson states that the minimum cut (i.e., the cut set with minimum total capacity)
is in fact the bottleneck that precisely determines the maximum possible flow in the network. This
"Max-Flow Min-Cut" Theorem provides the foundation for the maximum flow labeling algorithm
presented above. During Phase 1 of the algorithm, if a flow augmenting path cannot be found, then
we can be assured that the capacity of some cut is being fully used by the current flow. This
minimum cut is the set of links that separate the nodes that are labeled (/) from those that are not
labeled. Observe that, by definition of the labeling algorithm, every forward arc in the cut set
(from a labeled to an unlabeled node) must be at capacity. Similarly, every reverse arc in the cut
set (from an unlabeled to a labeled node) must have zero flow. Therefore, the capacity of the cut
is precisely equal to the current flow and this flow is optimal. In other words, a saturated cut defines
the maximum flow.

In the final iteration of the example above, the cut set that separates the labeled nodes from
the unlabeled nodes is the set of links (E,G), (D,G), and (F,G). The capacity of this cut set is 4 +
4 + 6 = 14, which is just exactly the value of the optimal flow through this network.

If all of the arcs in a network are forward arcs, it is easy to identify a flow augmenting path.
Each edge in the path is below capacity and we can increase the flow until some edge reaches
capacity. To appreciate the idea of reverse arc labeling, consider the situation shown in Figure
3.5(a). In the diagram, each arc from node i to node j is labeled with (x^, Uy).
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a) Source

|j) Source Sink

c) Source

FIGURE 3.5 Maximum flow.

Sink

Suppose our initial path is from node 1 to 2 to 4 to 6, with a flow of 4. At this point, shown
in Figure 3.5(b), there is no direct path from the .source node 1 to the sink node 6 that allows an
increase in flow. However, the algorithm will find the path

(0,4) (0,4) (4,4) (0,4) (0,4)

1 > 3 > 4 < 2 > 5 > 6

Increase the flow on each forward arc by 4, and decrease the flow on the reverse arc. The resulting
flow is shown in Figure 3.5(c) with a total flow of 8. Notice that the net effect, with respect to the
reverse arc, is that we decided to take the flow out of node 2 and send it somewhere else (namely
to nodes 5 and 6). Similarly, we decided to use the new flow at node 4, coming from node 3, instead
of the flow from node 2. Therefore, if we can label node 4, we can effectively divert the flow at
node 2 to create additional flow through the entire network.

3.2.2 EXTENSIONS TO THE MAXIMUM FLOW PROBLEM

There are several interesting extensions to the maximum flow problem. The existence of multiple
sources and multiple sinks requires only a minor change in our original network model. Suppose,
for example, nodes 1 A, IB, and 1C are sources, and nodes nA, nB, nC, and nD are sinks, as shown
in Figure 3.6(a). This network can be modified to include a "super-source" node (which we will
call IS) and a "super-sink" node (nS). The super source is connected to the multiple sources via
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(a) (b) (c)

FIGURE 3.6 Multiple sources and sinks: (a) original network; (b) super source; (c) super sink.

links unrestricted in capacity, as in Figure 3.6(b); and likewise, the multiple sinks are connected
to the super sink by uncapacitated links, as in Figure 3.6(c).

Because none of the new uncapacitated links could possibly contribute to any minimum cut,
the maximum flow from the super-source node IS to the super-sink node nS will also be the
maximum flow in the multiple-source multiple-sink problem.

We can use this same construction to handle the situation in which some or all of the sources
have a limited capacity by simply placing a capacity on the arc from the super-source to the
capacitated source node. Capacities on the sinks can be handled in the same way.

The basic maximum flow algorithm is normally used to solve a part of a more complex
problem. For example, in the next section, we will encounter almost the same problem, but
where there is a per-unit cost associated with each arc in the network, and we want to minimize
total cost. There are, however, some direct applications of the maximum flow algorithm. One
of these occurs in network capacity planning. For example, an electric utility company may use
network flow to determine the capacity of its present system. By identifying the cut sets, it can
easily determine where additional lines must be installed in order to increase the capacity of
the existing grid.

The complexity of maximum flow algorithms is dependent on the method used for selecting
the flow augmenting paths. Because network flow algorithms are used so often in practical appli-
cations, efforts have been made to develop faster versions. A shortest path augmentation method
developed by [Edmonds and Karp, 1972] is used in an algorithm having complexity O(ne2), where
n is the number of nodes and e is the number of edges. Dinic's method [Dinic, 1970] of using so-
called "blocking flows" requires O(n2e) computation time, while Karzanov's method [Karzanov,
1974] based on the idea of "preflows" is dependent solely on the number of nodes, and requires
O(n3) time.

Extensions to the maximal flow problem include multi-commodity problems, maximal dynamic
flow problems, and cost-effective increases in network capacity. These topics are discussed fully
in the references by [Battersby, 1970], [Hu, 1970], and [Price, 1971].

3.3 MINIMUM COST NETWORK FLOW PROBLEMS

When there are costs associated with shipping or transporting a flow through a network, the goal
might be to establish a minimum cost flow in the network, subject to capacity constraints on the
links. The minimum cost flow problem is interesting not only because the general model is so
comprehensive in its applicability, but also because special cases of the model can be interpreted
and applied to a variety of resource distribution and allocation problems.
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3.3.1 TRANSPORTATION PROBLEM

One of the simplest minimum cost network flow problems is one in which every node is either a
source (supply) or a sink (demand). For example, we could imagine a distributor with several
warehouses and a group of customers. There is a cost associated with serving each customer from
any given warehouse.

In this model, we have m supply nodes, each with an available supply Sj, and n demand nodes,
each with a demand of dj. And we assume that the total supply in the network is equal to the total
demand:

The objective is to satisfy all the demands, using the available supply, and to accomplish this
distribution using minimum cost routes. The formulation of the problem is as follows:

m n
minimize z = £ E c..x..i=ij=i 'J y

n

subject to (1) Z Xy = Sj for i = 1, ..., m

(2) Ex^dj forj = l, ...,n

(3) Xy > 0 for all i and j

Because the set of supply nodes is distinct from the set of demand nodes, and all nodes in the
network belong to one of these sets, this transportation model can be pictured as a bipartite graph, with
the addition of a super-source node S and a super-sink node D. In Figure 3.7, arcs connecting supply
nodes to demand nodes represent the actual distribution routes. Each arc in the drawing is labeled with
a triple, indicating a lower bound on the flow, an upper bound on the flow, and a per-unit cost for the
flow along the arc. Arcs from the super-source S impose the (upper bound) supply limits, and, of
course, carry no cost. Similarly, arcs to the super-sink D enforce the (lower bound) demand require-
ments. It should be clear that finding a minimum cost flow from node S to node D in this network
precisely solves the transportation problem that we have formulated, and the resulting minimum cost
is the cost of the optimal distribution of the commodity through the transportation network.

To illustrate the solution approach, we will use a simple example of a distributor with three
warehouses and five customers. Because of the simple structure of the transportation problem, it
is probably easier to visualize the problem in matrix form, as shown in Table 3.1.

In the table, Cy in row i and column j of the matrix represents the cost of sending one unit of
product from source i to sink j. Similarly, Xy represents the number of units sent from source i to
sink j, the current "flow" solution.

Consider the example problem in Table 3.2. Observe that the total demand of 65 units is equal
to the total supply. Because most of the Xy values will be zero, we will write them in only when
they are positive.

We will describe how to solve this problem using the Simplex method. After all, this is a linear
programming problem. However, the special structure of the transportation problem will allow us
to take a number of shortcuts. The Simplex method says that we should first find any basic feasible
solution, and then look for a simple "pivot" to improve the solution. If no such improvement can
be found, the current solution must be optimal.

m n

2s, = Zd,
i=l ' M >
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FIGURE 3.7 Transportation problem as minimum cost network flow problem.

TABLE 3.1
Transportation Problem

Sources
(Warehouses)

Sinks (Customers)
3 4 Supply

1 *// Lfc.
*25

X3I *32

Demand d, d,

TABLE 3.2
Transportation Problem Example

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers) |
1 2 3 4 5 Supply
| 28

| 18

| 10

12

l_2.
| 8_

| 12

14

| 16

| 14

| 13

12

UL
LJL
LJL

18

| 30

| 20

| 28

9

20

20

25
65

The first simplification to the basic Simplex method is that we do not need a complex two-
phase method to find a basic feasible solution. Instead, we present three fast and commonly used
techniques for obtaining an initial solution.
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3.3.1.1 Northwest Corner Rule

If we ignore the total cost, it is trivial to find an initial feasible solution. We simply assign the first
group of customers to the first warehouse until the capacity is exhausted, and then start assigning
customers to the second warehouse until it too is at its capacity, and so on.

We begin at the upper-left corner of the tableau, the "northwest" corner. Increase the flow in
this cell as much as possible until the flow is equal to the supply in this row or the demand in this
column. Reduce the demand and the supply in this row and column by the amount of the flow,
since the requirement has now been satisfied. Draw a line through the row or column that has zero
remaining required. (If both are zero, select either one arbitrarily.) Repeat the northwest corner
rule on the reduced matrix.

Consider the example in Table 3.2. Begin with row 1 and column 1. Since the demand is 12
and the supply is 20, the flow can be at most 12. Reduce the limit on row 1 and column 1 by 12,
and draw a line through column 1. The reduced problem is shown in Table 3.3. The reduced problem
(without column 1) has x,2 (row 1, column 2) in the northwest corner. We let x12 = 8 because the
remaining supply in row 1 is 8. This time, we delete row 1, and subtract 8 from supply s} and
demand d2.

The final solution is presented in Table 3.4. The reader should verify this result. The total cost
of this solution is given by (12 • 28) + (8 • 7) + (6 • 8) + (12 • 14) + (2 • 4) + (16•5) + (9 - 28) = 948.

There are several features of this solution that we should notice. First, it should be clear that
the procedure always produces a feasible solution. For a solution to be feasible, every customer
must be receiving all of the necessary demand from some warehouses, and no warehouse may
exceed its supply. In fact, all of the rows and columns will be satisfied at equality. Because this
method never transports more than the remaining supply or demand, we have only to verify that
no customer gets less than asked for.

TABLE 3.3
Northwest Corner Rule

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers)
1 2 3 4 5
| 28

12
| 18

| 10

450

I_L

| 8_

| 12

14

| 16

| 14

| 13

12

I_L

LJL

LJ_

18

| 30

| 20

| 28

9

Supply

208

20

25

TABLE 3.4
Initial Northwest Corner Solution

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers)
1 2 3 4 5
| 28

12
| 18

| 10

12

8

6
| 12

14

| 16

| 14
12

| 13

12

LJ_

2

16
18

| 30

| 20

| 28
9

9

Supply

20

20

25
65
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Suppose the last customer did not get all its required demand; then that row will not be deleted.
Moreover, there must be some excess supply at one of the warehouses, so that column has not
been deleted. Therefore, there is still one cell left for the northwest corner rule to work in. (The
technique stops only when every cell in the matrix has been deleted.)

The second thing to notice is that we must always start at xn and we must finish at x^ (for
m warehouses and n customers). Moreover, at each step, the algorithm will delete one row or one
column. In the last cell, the remaining demand in column n and the supply in row m must be
identical. Because there are m rows and n columns, the solution will use exactly (m + n - 1) cells
and therefore (m + n - 1) of the Xy will have a positive value. In our example, we have 3 + 5-1
= 7 cells that are selected for a positive flow.

In our Chapter 2 presentation of the Simplex method, it was stated that the number of basic
variables is precisely equal to the number of constraints. In the linear programming formulation
of the transportation problem, there are m equality constraints for the supply at the m warehouses,
and n constraints for the demands of the n customers. Therefore, one would expect (m + n) non-
zero (basic) variables. All other (non-basic) variables are zero. The apparent discrepancy can be
explained by observing that the linear programming constraints are not independent. If the last
constraint were deleted, and we solved that problem, we would find that the solution will have all
warehouse supply satisfied at equality, and the first (n - 1) customers will have their demand
satisfied at equality. All remaining demand must be assigned to customer n. Because total supply
equals total demand, the demand for customer n will automatically be satisfied exactly. In other
words, when the corresponding linear programming problem is solved with (m + n - 1) constraints,
there will be exactly (m + n - 1) basic variables, and introducing the additional constraint will not
change this.

3.3.1.2 Minimum Cost Method

The northwest corner rule is a quick way to find a feasible solution. However, the method ignores
any cost information; hence, it is unlikely that the initial solution will be a very good one.

The same approach can be extended in an obvious way to search for a basic feasible solution
while attempting to minimize the total cost.

Step 1: Select the cell in the matrix that has the smallest cost, breaking ties arbitrarily.
Step 2: Increase the flow in this cell as much as possible until the flow is equal to the supply in

the row or the demand in the column.
Step 3.'Reduce the supply and the demand in this row and column because the requirement has

now been satisfied.
Step 4: Draw a line through the row or column that has zero remaining supply or demand. If

both are zero, select either one arbitrarily. Repeat the procedure from Step 1 on the
reduced matrix.

This method is very similar to the northwest corner rule in that it selects one cell, saturates it,
and deletes a row or column. It is also guaranteed to find a basic feasible solution with precisely
(m + n - 1) selected flow cells. However, unlike the northwest corner rule, this method tries to
match customers and warehouses, with some consideration of costs.

The method is illustrated in Table 3.5, where we first find the minimum cost cell to be c,4 =
2. Therefore, we satisfy as much of the customer 4 demand as possible from warehouse 1. In this
case, all 18 units can be supplied. We reduce the remaining supply at warehouse 1 to 2 units, and
delete customer 4.

In the next iteration, the minimum (undeleted) entry is c,2 = 7, and we will satisfy as much
of the "demand of customer 2 as possible from warehouse 1. In this case, warehouse 1 has only 2
units left, so the flow x12 is set at 2, row 1 is deleted, and the demand of customer 2 is reduced to 12.
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TABLE 3.5
Iteration 1: Minimum Cost

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers)
1 2 3 4 5
| 28

[ 18

| 10

12

LJ_

| 8_

| 12

14

| 16

| 14

| 13

12

[ 2_
18

LJL
L-^

480

1 30

| 20

[ 28

9

Supply

39-2

20

25
65

TABLE 3.6
Minimum Cost Final Solution

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers)
1 2 3 4 5
| 28

| 18

| 10
12

12

2
| 8_

12
| 12

14

| 16

| 14

[ 13
12

12

18

LJL
L-^

18

| 30

| 20
8

| 28
1

9

Supply

20

20

25
65

The final solution is presented in Table 3.6. The total cost of this solution is given by

(2-7) + (18 - 2) + (12 • 8) + (8 • 20) + (12 • 10) + (12 • 13) + (1 • 28) = 610.

As before, this solution is a basic feasible solution with precisely seven basic variables.
However, the total cost is considerably lower than the cost of the solution obtained with the
northwest corner rule. It is important to realize that obtaining the improved initial feasible solution
did require more computation time. At the first step of the northwest corner rule, the single cell in
the top-left corner is selected. In the corresponding first step of the minimum cost algorithm, it is
necessary to search all of the m • n cells in the matrix to find the one having the least cost. (When
m is 100 and n is 10,000, this additional work takes a considerable amount of time.)

There are a wide variety of other algorithms available for finding an initial feasible solution.
Typically, they all exhibit the property that better initial solutions require more computation time.
The value of spending a lot of effort searching for better initial solutions is somewhat questionable;
the Simplex method will enable us to derive the optimal solution from any initial solution. The
only advantage of using good initial solutions is that it should reduce the number of pivot operations
required later.

3.3.1.3 Minimum "Row" Cost Method

The computational requirements of the minimum cost method can be reduced significantly without
completely sacrificing the spirit. In Step 1, instead of looking for the minimum cost element in the
whole matrix, we simply look for the minimum cost element in the first row. We continue to do
this until warehouse 1 is saturated. Step 1 will now require scanning n elements instead of m • n
elements. However, by assigning the best possible customer to warehouse 1, the method still tends
to find low cost solutions.
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TABLE 3.7
Minimum Row Cost Final Solution

Sources
(Warehouses)

1

2

3
Demand

Sinks (Customers)
1 2 3 4 5
| 28

| 18
' 8

| 10
4

12

2

12
| 12

14

[ 16

| 14

| 13
12

12

18

UL

L-5-
18

| 30

| 20

| 28
9

9

Supply

20

20

25
65

Table 3.7 illustrates the final solution using the minimum row cost method. It has a total cost of

(2 • 7) + (18 • 2) + (8 • 18) + (12 . 8) + (4 . 10) + (12 • 13) + (9 • 28) = 638

This solution has only a slightly higher cost than the cost of 610 that was obtained with the minimum
cost method, and it required less work. In general, this is representative of the performance one
would expect of the two methods, although, of course, it would be possible to construct simple
examples in which the minimum row cost method produced better solutions.

3.3.1.4 The Transportation Simplex Method

Before we explain the procedure for finding the optimal solution, it will be useful to describe a
simple modification that transforms the original problem into an equivalent new problem. Consider
our example from Table 3.7, which shows the initial basic feasible solution obtained using the
minimum row cost method. Observe what happens if we subtract $1 from every cost element in
the first row. Because warehouse 1 has a supply of 20 units, every feasible solution will have a
total of 20 units in row 1. Reducing the cost of each element by $1 will reduce the cost of every
feasible solution by exactly $20. In particular, the cost of the optimal solution will decrease by $20.

The optimal solution to the new "reduced" problem (in terms of the flow variables Xy) is exactly
the same as the optimal solution of the original problem. We simply solve the new problem and
then add $20 to the optimal objective function value. Furthermore, if we reduce all of the costs in
the first row by 2 or 3 or 4, we will not change the problem; we will simply reduce the total cost
of every solution by $40 or $60 or $80, respectively.

Similarly, consider the first column of the matrix corresponding to customer 1. Clearly, every
feasible solution will have a total of 12 units distributed somewhere in column 1. If every cost
element in column 1 were reduced by 1 or 2 or 3, then the total cost of every feasible solution
would decrease by $12 or $24 or $36, respectively. The new reduced problem is identical to the
original one with respect to the optimal flow values Xy.

Now consider our example problem. We will construct an equivalent problem by subtracting
constants from the costs in the rows and columns. The reduced problem will have the property that
the reduced cost corresponding to every basic variable cell will be precisely zero. This is illustrated,
for our example, in Table 3.8. We let u{ denote the amount subtracted from every cost element in
row i and Vj represent the amount subtracted from every element in column j.

The reader should verify that all the reduced costs c'y in this table obey the relationship:

c'« = c, -11,-Vj
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TABLE 3.8
Reduced Cost Solution

Sources
(Warehouses)

1

2

3
Demand

*i

Sinks (Customers)
1 2 3 4 5
| 11

| 0_
8
| 0_

4
12

17

| 0_
2
| 0_

12
| 12_

14
7

| -4

LzL
| 0_

12
12

20

18

L— L

| 0_

18
2

L^L
\ -16

9
9

35

Supply

20

20

25
65

CJj

0

1

-7

where c^ is the original cost. As discussed above, finding the optimal solution to this problem is
exactly the same as solving the original problem. Note that u3 = -7. This indicates that we added
1 to row 3 instead of subtracting 7. Clearly, we can add a constant to a row or column as well as
subtract a constant without changing the problem.

The reduced problem has several interesting features. In particular, the total cost of the current
solution, in terms of c'y, is precisely zero. The reader should verify that we have reduced the total
cost of the solution by 638. In addition, some of the reduced costs corresponding to the non-basic
cells are negative. Consider the cell x23, with c'23 = -7. If we could increase the number of units
of flow, from warehouse 2 to customer 3, by one unit, we could reduce the total cost by 7. That
is, the total cost now is zero, and it would become -7. If we increase the flow of units from
warehouse 2 to customer 3, it will also be necessary to decrease the flow to some other customer
from warehouse 2, and from some other warehouse to customer 3. At all times, the total supply
and demand constraints must be maintained. In the example, if we increase x23 by 1, decrease x21

by 1, increase x31 by 1, and decrease x33 by 1, we will maintain all supply and demand equalities,
and the total cost will be reduced by 7. Moreover, if we restrict ourselves to using only basic
variable cells, this solution is unique.

If we continue to increase the flow on x23, we will further decrease the cost of the solution by
7 per unit. However, we cannot continue to do this indefinitely. Specifically, for every unit that we
increase x23, it is necessary to decrease x21 and x33 by 1. Because Xy must be non-negative, we can
decrease x21 by 8 and x33 by 12. Therefore, the maximum increase for x23 is 8, giving a decrease
of $56 in the cost. When x23 = 8, x2, becomes zero and we remove x21 from the basis to let x23

enter. The new solution is illustrated in Table 3.9.

TABLE 3.9
Transportation Simplex

Sources
(Warehouses)

1

2

3
Demand

v,

Sinks (Customers)
1 2 3 4 5
| 11

0
| 0_

12
12

17

2

12
| 12_

14
7

| -A

8
| 0_

4
12

20

18

l—L

LO-

IS
2

L-iL
\ -16

9
9

35

Supply

20

20

25
65

"/

0

1

-7
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TABLE 3.10
New Reduction Cost Solution

Sources
(Warehouses)

1

2

3
Demand

v/

Sinks (Customers)
1 2 3 4 5
| 18

l_L

12
12

10

| 0^
2

12

L-1

14
7

!_!_

8

4
12

13

18

•— L

L_L

18
2

LJ.

L^L
| o_

9
9

28

Supply

20

20

25
65

",

0

1

0

The cost of this solution is -56. If we put these same flows in the original table, we would
discover that the total cost is $582, precisely 56 less than the cost of our initial solution.

In Table 3.9, the reduced cost is no longer zero for all basic variable cells. The new cell x23

has c'23 = -7. In order to make this zero again, we can either add 7 to row 2 or add 7 to column
3. (It does not matter which we select.) Suppose we add 7 to column 3 (decrease v3 by 7). Then,
we will also be forced to subtract 7 from row 3 (in order to keep c'33 at zero) and then add 7 to
columns 1 and 5 (in order to keep c'31 and c'35 at zero). The new reduced cost solution is shown in
Table 3.10.

Once again, this new problem is identical to the original. The current basic feasible solution
has a value of zero, and there is an opportunity to further reduce the cost if we can increase the
flow from warehouse 2 to customer 5.

Before doing this, it will be useful for us to depict the problem in a slightly different way. In
Figure 3.8, the problem has been drawn as a network with only the basic flow edges shown. Observe
that the basic edges form a tree. In other words, if we ignore the directions of the edges, there are
no circuits.

The network also has the property that there are exactly (m + n - 1) edges. If we had a basic
solution that had less than this number of edges, then we would arbitrarily add extra basic cells
with a zero flow to keep the total at (m + n - 1). Because the additional flow is zero, the extra
basic variables do not affect the total cost.

25

FIGURE 3.8 Basic flow tree.
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Customer

Demand

18
25

FIGURE 3.9 Transportation network with circuit.

However, because of these properties, introducing a new edge into the basis will always
create a single circuit. For example, when we try to introduce the variable x25 into the basis, we
get the network shown in Figure 3.9. This produces a unique circuit on the variables x25, x35,
x33, and x23.

If we want to increase the flow on x25 by an amount A, and still maintain equality at the supply
and demand nodes, we must decrease x35, increase x33, and decrease x23, all by the amount A. In
order to maintain feasibility, x35 and x23 must remain non-negative, and hence the maximum value
of A is 8. We set x^ = 8, x35 = 1, x33 =12, and x23 = 0, thus adding x25 to the basis and removing
x23. (If two variables become zero simultaneously, we can arbitrarily select one to leave the basis.)
The new solution, with the new reduced costs computed, is shown in Table 3.11. In order to remove
c'25 = -9, we increased row 2 by 9.

The resulting cost should have decreased by 8 (the new flow in x25) times -9 (the reduced cost)
= -$72. When we substitute the new flow into the original problem, we discover that the new total
cost is $510, a reduction of $72 from the previous basic feasible solution cost of $582. The following
steps summarize the Transportation Simplex method.

TABLE 3.11
Transportation Simplex Continued

Sources
(Warehouses)

1

2

3
Demand

v/

Sinks (Customers)
1 2 3 4 5
| 27

| 16_
0
| 0_

12
12

10

2

12
| -4

14
16

| 12_

0
| 0_

12
12

13

18

"— L

| -6

18
11

| n_

8
| 0_

1
9

28

Supply

20

20

25
65

"/

-9

-8

0

9

121
\

2
i

3

4
i

5

14

12

3

20

20

2

12

^9_^^

8
12

^s

Supply



96 Operations Research: A Practical Introduction

3.3.1.5 Transportation Simplex

I. Compute the reduced costs c'y such that every basic cell has a zero reduced cost. (Initially,
assume c'y = cy, and the u{ and YJ are all zero.)

1. Construct the basic variable network (tree) as in Figure 3.9. Select any u} and assign
to it any arbitrary fixed value.

2. For each unfixed Vj that is adjacent to a fixed Uj, adjust Vj such that c'y is zero, and
then call Vj fixed.

3. For each unfixed us that is adjacent to a fixed vjt adjust u4 such that c'y is zero, and
call Uj fixed.

4. Repeat steps 2 and 3 until all Uj and Vj are fixed.
5. Compute all non-basic costs as c'y = Cy - us - Vj.

II. If any non-basic c'y is negative, let Xy enter the basis. (As in the ordinary Simplex method,
we can choose any negative c'y.)

1. Identify the unique even cycle defined by the edge Xy and other basic variable edges.
2. Alternately increase and decrease the flow in the edges in this circuit until at least

one basic variable has a zero flow. Remove that variable from the basis.
3. Repeat the algorithm completely from the beginning (Part I) by recomputing the

reduced costs.

Continuing with our example, in Table 3.11, for Part II of the algorithm, we find c'34 = -6.
Therefore, x34 can enter the basis. The unique basic cycle is (x34, x35, x25, x22, x,2, x24). The increase
of the flow in this alternating circuit is limited by a decrease of 1 in the flow on x35. Therefore,
x34, x25, and x12 increase by 1, and x35, x22, and x24 decrease by 1. The variable x34 enters the basis
and x35 leaves the basis.

When we now return to Part I of the algorithm, we can select any basic cell. There are some
small computational savings to be obtained if we choose the basic variable that just entered.
Consider the new basic network tree in Figure 3.10. (In the figure, we have reordered the warehouse
and customer numbers to eliminate crossing lines.)

FIGURE 3.10 Basic network tree.
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TABLE 3.12
Optimal Solution

Sources
(Warehouses)

1

. 2

3
Demand

Vi

Sinks (Customers)
1 2 3 4 5
|21

| 10_

| 0^
12

12
10

3
| 0_

11

UL
14

10

L_^
L_L
| o_

12
12

13

17

L-1-
| 0_

1
18

5

| n_

9
| 6_

0
9

22

Supply

20

20

25
65

«*

-3

-2

0

Notice the edge corresponding to c'34 = -6. In order to get c'̂  = 0, we must decrease either
u3 or v4. Suppose we decrease v4 by 6. Then, in order to keep all other c'y = 0 for basic edges, we
must increase u, and u2 by 6, and decrease v2 and v5 by 6. The new reduced cost matrix is shown
in Table 3.12.

The total cost is $6 lower for a total of $604 in the original problem. Moreover, all of the
reduced costs are now non-negative. Just as in the Simplex method, when the reduced costs are all
non-negative, the current solution must be optimal.

3.3.2 ASSIGNMENT PROBLEM AND STABLE MATCHING

Our discussion of transportation models has dealt with the flow of some entity or material between
nodes of a network. By imposing a few simple assumptions on the transportation model, we find
that we have an apparently new kind of optimization problem.

Suppose, for example, that we wish to assign n people to n jobs; that is, we wish to associate
each person with exactly one job, and vice versa. Cost parameters Cy denote the cost of assigning
person i to job j. Decision variables now have a completely new meaning, representing an association
or bond between two entities rather than the flow of a commodity between two nodes. Specifically,
each variable Xy is to have a value of either zero or one:

( 1 if person i is assigned to job j

0 otherwise

If in the transportation model we require m = n, and assign all the supply and demand
parameters a value of 1, then we have the following formulation for the assignment problem.

minimize z =

subject to (1) Z x H = l for i = 1, ..., n

(2) Z x a = f o r j = 1, ...,n,

and Xy = 0 or 1 for all i and j

n n
ZZcgX,,
i»iw IJ «
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Re-examining Figure 3.7 under the current assumptions, we see that we are establishing a
"flow" of 1 unit out of each "person" node and a "flow" of 1 unit into each "job" node. The
constraints corresponding to supply and demand constraints in the transportation model enforce
the one-to-one association between persons and jobs. Constraints (1) above specify that each person
be assigned to exactly one job, while constraints (2) specify that each job have exactly one person
assigned to it.

Because network problems with integer parameters can be solved using the Simplex method
to obtain integer solutions, we might simply replace the zero-one constraint by the constraints
Xy ̂  0 and x^ ̂  1, and treat this problem as an ordinary linear programming problem. The difficulty
here lies in the inefficiency that may result from problem degeneracy. (Notice that we have 2n
constraints, and only n of the decision variables are allowed to have a value greater than zero.
Therefore, in any feasible solution, n - 1 basic variables are zero; that is, any feasible solution to
the assignment problem is degenerate.) Fortunately, the highly specialized structure of the assign-
ment model can be exploited in an efficient algorithm designed specifically for this problem. The
algorithm is known as the "Hungarian Method," named in honor of the Hungarian mathematicians
Konig and Egervary who established the fundamentals upon which the algorithm is based.

The simple structure of the assignment model leads to a solution that is intuitively easy to
follow. The key to this method lies in the fact that a constant may be added to or subtracted from
any row or column in the cost matrix without affecting the optimal solution. Suppose we add a
constant k to row p of the cost matrix. Then the new objective function

z-^+k^ + iic^
i*P

= = 2 Z c.-Xjj + k i x .i=ij=i «J y j=i PJ

= Original objective function plus a constant

Similarly, if we add a constant k to column q, then

= Original objective function plus a constant

We will use this property of the assignment model to modify (repeatedly, if necessary) thfe cost
matrix, and thereby create a new matrix in which the location of zero elements indicates an optimal
feasible solution.

In order to do this, we wish to create a cost matrix with a zero in every row and every column.
If we can do this, then our modified objective function value is zero; and since the cost cannot be
negative, we know a zero value is optimal.

As an example, consider the cost matrix

4 9 8

6 7 5

4 6 9

i -icc^+k^ + iic^
j*q

n n n
= = IZc ux n + k Z x .

i=lj=l U « i=l 1(1
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To obtain zero elements, we subtract the smallest element from each row. Subtracting 4, 5, and 4
from rows 1, 2, and 3, respectively, we obtain the modified cost matrix

0 5 4"

1 2 0

0 2 5

This does not yet identify for us a feasible solution, but if we subtract 2 (the smallest element)
from the second column, we obtain

0 3 4

1 0 0

0 0 5

From this we can make an optimal feasible assignment using the zero elements marked with squares.

CO] 3 4
1 0 [0]

0 GO 5

Assignment variables xn = x23 = x32 = 1, and all the others are zero. The actual objective function
cost, based on the original cost matrix, is 4 + 6 + 5 = 15.

Now look at a problem in which the solution is not revealed quite so readily. The cost matrix

2 11 2 6"

3 10 9 4

8 6 6 6

10 13 15 13

can be immediately reduced to the matrix

9 0 4

7 6 1

0 0

3 5

Now, every row and column contains a zero element, so we cannot subtract any more constants in
the obvious way. But we can make only three feasible assignments. At this point, the Hungarian
method prescribes that we draw the minimum possible number of horizontal and vertical lines so
that all zero elements are covered by a line. (The number of such lines that will be necessary is
just exactly the number of feasible job assignments that can be made using the current cost matrix.)

A simple procedure for obtaining the minimum number of lines can be summarized as follows.
Suppose you have made as many assignments as possible (to zero entries in the matrix), but there
are less than n assignments:

"0
0
2
0

0
3
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(1) "Mark" every row that has no assignment.
(2) "Mark" every column that has a zero in a marked row.
(3) "Mark" every row that has an assigned zero in a marked column.
(4) Repeat from Step (2) until no new columns can be marked.

In Step (2), if we ever "mark" a column that has not been assigned yet, we can construct a new
solution with one additional assignment. Column j was marked because row i was marked. Shift
the assignment in row i to column j. This frees up another marked column. Assign this new marked
column in a similar way until, eventually, we can assign a marked row that previously had no
assignment.

Otherwise, draw a line through every unmarked row and every marked column. It is easy to
verify that these lines cover every zero and that the number of lines equals the number of current
assignments. For example, in the modified cost matrix

0 9 0 4

0 7 6 1

2 0 0 0

0 3 5 3

mark row 4, mark column 1, and mark row 2. After drawing the three lines, select the minimum
uncovered element, subtract this value from all the uncovered elements, and add it to all elements
at the intersection of two lines. In this case, we select the value 1, subtract it from uncovered
elements on rows 2 and 4, and add it to the intersection elements in the first column. (Although
the Hungarian method is popularly described in terms of drawing lines and manipulating covered
and uncovered elements, observe that these operations are just equivalent to subtracting and adding
a constant to entire rows and columns. In our example, we are subtracting the constant value 1
from rows 2 and 4 and adding 1 to column 1.) The result is the further modified cost matrix

9 0 4

6 5 0

0 0 0

0 2

from which we can make four feasible assignments: x,3 = x24 = x32 = x41 = 1. The cost of this
assignment is obtained from the original cost matrix as c,3 + c24 + c32 + c41 = 2 + 4 + 6 + 20 = 22.

This process ensures that at least one new zero entry will be generated at each iteration, but
the number of assignments does not necessarily increase. However, the Hungarian method is
guaranteed to solve the problem; this iterative procedure will be repeated as many times as necessary
so that a complete feasible assignment is finally obtained.

The Hungarian method is relatively effective for solving large problems. However, there are
more efficient commercial codes available that can dramatically reduce computation time. This can
be very important when an application requires, for example, that several thousand assignment
problems be solved as subroutines in a larger problem.

In case there is a mismatch between the number of people and the number of jobs, the problem
is brought into balance by adding either "dummy" people or "dummy" jobs, as needed. For example,
if there are m people and n jobs, and m > n, then there are not enough jobs so we add m - n
dummy jobs, and a set of zero-valued cost coefficients for each. Once the balanced problem is
solved, any person assigned to a dummy job actually has no job. Similarly, if m < n, the problem

1
0

3

0
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is balanced with dummy people; and in the final solution, n - m jobs actually have no one assigned
to them.

3.3.2.1 STABLE MATCHING

While the classical assignment problem seeks to find an association of objects that is optimal from
a collective, or global, point of view, it does not necessarily consider individual preferences or
affinities. Suppose the entries in the cost matrix actually represent rankings, so that finding a
minimum cost assignment actually associates objects according to their preferences. Now if the
objects being associated with each other are people being assigned to machines, the people probably
have preferences, while the machines do not. But if we have employees (people) being assigned
to employers (also people), then most likely there are preferences on both sides. Similar situations
arise, for example, when medical residents are being assigned to hospitals, or when graduate
students become associated with certain doctoral programs, because in all these cases there are
mutual preferences involved, which certainly might be different on the side of the "employer" than
on the side of the "employee." The workers could probably rank their preferences for employers
and the employers could probably rank their preferences among the pool of potential employees.
In this case, there are two cost matrices, reflecting the preferences of both groups.

If we wish to treat this as an ordinary assignment model, a single cost matrix can be constructed
by simply adding corresponding elements of the rank matrices (see Exercise 3.9 at the end of this
chapter). Remember, however, that the (ij)-th element of the employee rankings does not get added
to the (ij)-th element of the employer rankings, but rather to the (j»0-th element. Information about
employee i and employer j is in the (ij)-th position in the first matrix but in the (j»0-th position in
the second matrix.

The Hungarian method, when applied to this problem, yields a solution that is in some sense
for the collective good of both employees and employers. But what about the individuals or
employers who do not get their first or even second choices? The behavioral reaction of these
people is dealt with using a model that is known as the "stable marriage problem" (so called because
this model can be used to represent the preferences of a group of men and a group of women who
are to be matched for marriage) [Knuth, 1976].

Consider the following preference matrices, and the corresponding cost matrix composed in
the way we described above.

Man A
B
C
D

W
2
1
4
1

Woman
X Y
1
2
1
3

3
3
2
2

Z
4
4
3
4

Woman W
X
Y
Z

A
1
3
1
4

B
3
2
3
2

Man
C
4
4
4
1

D
2
1
2
3

A
B
C
D

W
3
4
8
3

X
4
4
5
4

Y
4
6
6
4

Z
8
6
4
7

Cost =

The matching A-Y, B-X, C-Z, D-W has a cost of 4 + 4 + 4 + 3 = 15, and is optimal when
viewed as an ordinary assignment problem; but from an individual perspective, that matching leaves
something to be desired. Notice that man A and woman W both prefer each other over the one
they are matched to. A matching is called unstable if two people who are not married prefer each
other to their spouses. In our example, A and W acting according to their preferences would leave
Y and D, respectively, for each other. Then there would be little choice for Y and D but to get
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together with each other — a bit of a disappointment for each, since now each is paired with a
second-ranked choice whereas previously both had been matched with their first-ranked choices.
(Observe that this rearrangement A-W, B-X, C-Z, D-Y has the same cost, z* = 15, as the previous
matching when viewed as a simple assignment problem.)

Finding stable matchings is a difficult problem, both from a sociological and a computational
standpoint. Even the problem of determining whether a matching is stable is difficult; and the
process of removing instabilities one at a time is not only slow but can lead to circularities that
prevent the algorithm from terminating.

A better approach seems to be to construct stable matchings from the outset. In fact, algorithms
exist to construct a stable matching efficiently. However, the overall quality (cost) of the assignment
may be quite poor (everyone may be unhappy but stable), and all known algorithms for this tend
to be biased in favor of one group or the other (men over women, employers over employees, etc.).
A well-known "propose and reject" algorithm constructs a stable assignment in O(n2) time, but
unfortunately the matching is done from a "man-optimal" point of view, and in fact a consequence
of the method is that each woman obtains the worst partner that she can have in any stable matching.
The only remedy is to create a stable matching from a "woman-optimal" point of view, with the
corresponding consequence to each man. We can clearly see here that there are important economic
and sociological effects involving employment stability and worker satisfaction for which we
currently have no good solutions [Ahuya, Magnanti, and Orlin, 1993].

3.3.3 CAPACITATED TRANSSHIPMENT PROBLEM

The most general form of the minimum cost network flow problem arises when some commodity
is to be distributed from sources to destinations. Each node can create a certain supply or absorb
some demand of the commodity. It is not necessary for each unit of the commodity to be shipped
directly from a source to a destination; instead, it may be transshipped indirectly through inter-
mediate nodes on its way to its destination. In fact, the total supply could conceivably be routed
through any node in transit. Links can have upper and lower bounds on the flow that may be
assigned to them. The object then is to meet the demands without exceeding the available supply,
and to do so at minimum cost. This model is known as a "minimum cost flow problem" or as a
capacitated transshipment problem. We let Xy represent the number of units shipped along the
arc from node i to node j, and c^ denote the per unit cost of that shipment. Capacities are specified
by lower bounds £% and upper bounds u^ on each arc from node i to node. Flow balance equations
enforce the constraint for a net supply Sj at each node i. The net supply at a node is expressed as
total flow out minus total flow in. (If si is negative, it will be interpreted as a net demand constraint.)
The formulation is as follows:

n n
minimize z = £ Z c..x..

i=l=l IJ IJ

subject to (1) Ex.. - Z xki =s. for i = 1, ..., nj=i y k=i KI !

(2) £.. ^ Xjj ^ Ujj for all i and j

Summations are taken over all index values for which the corresponding arcs exist in the network.
To keep the notation simple, we assume that ^ = usj = 0 for all non-existent arcs.

Most introductory textbooks that describe the transshipment problem, explain how it can be
modeled as an expanded transportation problem with dummy demands and supplies for each
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intermediate node. The two models are, in fact, equivalent. And although that approach will work
for small problems, it is not recommended for any applications of practical size.

The minimum cost network flow problem could also be solved using the Simplex method
presented in Chapter 2. However, the special structure in the formulation makes the problem
amenable to more efficient solution techniques. The structure is apparent in the flow balance
equations (constraints (1) in our formulation above). The variables x^ appear with coefficients of
only 0, +1, and -1 in each equation. And because each arc flows into exactly one node and out of
exactly one node, each variable appears in exactly two of the flow balance equations. This matrix
of coefficients is known as a node-arc incidence matrix, and is fundamental to the methods that
have been tailored for use on this problem.

One efficient technique for solving the minimum cost flow problem is a specialization of
Dantzig's Simplex algorithm, and has been called the "Simplex on a graph" algorithm [Kennington
and Helgason, 1980]. One implementation of this method is reported to be over 100 times faster
than a general linear programming code applied to the minimum cost flow problem.

Another method, developed by Fulkerson specifically for the minimum cost flow problem, is
called the "out-of-kilter" algorithm. Each arc is either "in kilter" or "out of kilter," indicating
whether that arc could be in a minimum cost solution. "Kilter numbers" specify how far an arc is
from being "in kilter." Beginning with any maximum feasible flow, the algorithm repeatedly selects
an out-of-kilter arc, and adjusts the flow in the network so as to reduce the kilter number of the
chosen arc, while not increasing the kilter number of any other arc, and maintaining feasible flow.
When all arcs are in kilter, the current solution is the minimum cost flow. Clear and complete
descriptions of this method may be found in several of the references cited at the end of this chapter,
including [Kennington and Helgason, 1980], [Price, 1971], [Battersby, 1964; 1970], [Hu, 1970],
and [Tarjan, 1983].

The following example, from Glover and Klingman, illustrates the creative use of the trans-
shipment model for production planning and distribution decisions. A major U.S. car manufacturer
must determine the number of cars of each of three models Ml, M2, and M3 to produce at the
Atlanta and Los Angeles plants, and how many of each model to ship from each plant to distribution
centers in Pittsburgh and Chicago. Subject to bounds on production capacities, demands, and
shipment capacities, the objective is to identify a minimum cost production-distribution plan. A
network model for this problem is given in which arcs from plant locations to plant/model nodes
are labeled with upper and lower bounds on production levels, and with production costs for each
model at each plant. Similarly, arcs from distribution/model nodes to distribution point nodes are
labeled to indicate bounds on demands. Links from plant/model nodes to distribution/model nodes
are labeled with the appropriate transportation costs, and with capacity restriction limits, if any.

A solution to this problem determines the production and distribution decision for the car
manufacturer; but, moreover, it solves a multi-commodity problem with a straightforward trans-
shipment model. By having distinct nodes for each model type, the production and distribution
plan for each model is established.

3.4 NETWORK CONNECTIVITY

3.4.1 MINIMUM SPANNING TREES

Now consider a network problem in which we wish to select the fewest possible arcs in the network
that will keep the graph connected. Recall that a graph is connected if there is at least one path
between every pair of nodes. We furthermore want to select just those arcs with the smallest weights
or costs. This is called the minimum spanning tree problem.

A typical application for a minimum spanning tree may arise in the design of a data commu-
nications network that includes processor nodes and numerous (possibly redundant) data links
connecting the nodes in various ways. We would like to determine the set of data links, with the
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lowest total cost, that will maintain connectivity, so that there is some way to route data between
any pair of nodes. Similarly, in any type of utility distribution network or transportation network,
it may be desirable to identify the minimum set of connections to span the nodes.

Such a minimal set of arcs always forms a tree. Clearly, the inclusion of any arc resulting in
a cycle would be a redundant arc, and this could not be a minimum spanning tree. To see this,
suppose that the optimal solution contains a cycle. Select any arc (i, j) in the cycle, and delete it.
Notice that any two nodes that were connected using arc (i, j) are still connected because nodes i
and j are still connected by moving the other way around the cycle. Therefore, the solution could
not have been optimal because we easily constructed a better (less costly) one.

We present two algorithms for solving this problem. The choice of which one to use for a
particular application depends on the density or sparsity of the network in question. The two
algorithms are quite simple, and are sometimes called greedy algorithms because at each stage we
make the decision that appears locally to be the best; and in so doing, we finally arrive at an overall
solution that is optimal. (As has already been suggested, it is a rare and wonderful thing when we
are able to solve combinatorial problems using simple greedy algorithms.)

Our first solution to the minimum spanning tree problem is Prim's algorithm, which operates
by iteratively building a set of connected nodes as follows:

1. Arbitrarily select any node initially. Identify the node that is connected to the first node
by the lowest cost arc. These two nodes now comprise the connected set, and the arc
connecting them is a part of the minimum spanning tree.

2. Determine an isolated node that is "closest" (connected by the lowest cost arc) to some
node in the connected set. (Break ties arbitrarily.) Add this node to the connected set of
nodes and include the arc in the spanning tree. Repeat this step until no nodes remain
isolated.

Prim's algorithm is illustrated by the example shown in Figure 3.11(a), where the sequence of
pictures (b) through (e) shows the iterative construction of the minimum spanning tree. Node B is
arbitrarily chosen as the initial node. Node C is its "closest" neighbor. Then node E is attached,
followed by node D and finally node A. In the figure, nodes are outlined boldly as they become
connected.

The arcs in the spanning tree have weights 1, 2,4, and 5, yielding a cost of 12 for the minimal
spanning tree. Note that the choice of initial node B is arbitrary, and any choice for the initial node
would have yielded a tree whose cost is 12.

The complexity of Prim's algorithm is O(n2) for an n-node network. If the network is sparse
(with much less than n2 arcs), the performance of this algorithm on large networks is unnecessarily
slow. For such cases, we have an alternative algorithm, known as Kruskal's algorithm, whose
performance is O(e log e) where e is the number of arcs. Thus, in a sparse network where e is
much less than n2, Kruskal's algorithm is superior; whereas in dense networks, Prim's algorithm
is preferred.

(a) (b)

FIGURE 3.11 Prim's algorithm.

(c) <<o fat



Network Analysis 105

(a) (b) (c) (d) (e)

FIGURE 3.12 Kruskal's algorithm.

KriiskaFs algorithm operates by iteratively building up a set of arcs. We examine all the arcs,
in increasing order of arc cost. For each arc, if the arc connects two nodes that are currently not
connected (directly or indirectly) to each other, then the arc is included in the spanning tree.
Otherwise, inclusion of the arc would cause a cycle and therefore could not be a part of a minimum
spanning tree. This algorithm is another example'of a greedy method. With Kruskal's algorithm,
we ensure a minimum cost tree by examining and choosing the lowest cost spanning arcs first.
Figure 3.12 shows the sequence of arcs chosen for a minimum spanning tree for the network in
Figure 3.12(a).

Tarjan provides a historical perspective on solutions to spanning tree problems, and describes
several efficient variations to Prim's and Kruskal's algorithms. In such implementations, the
improved complexity hinges on the use of specialized data structures (such as heaps and priority
queues). Tarjan also discusses mechanisms for sensitivity analysis [Tarjan, 1982]: an algorithm is
available for testing whether a given spanning tree is minimal, and it is also possible to determine
how much the cost on each arc can be changed without affecting the minimality of the current
spanning tree.

It is interesting to note how difficult the minimum spanning tree problem becomes when certain
constraints are added. If we place limits on the degree of all the nodes in the spanning tree, then
the minimum spanning tree problem becomes NP-complete. Such restrictions might reasonably
apply in an actual application, for example, where we could have a limited number of I/O ports
on each microprocessor in a multiprocessor network.

3.4.2 SHORTEST NETWORK PROBLEM: A VARIATION ON MINIMUM SPANNING TREES

In the minimum spanning tree problem, we choose a minimum cost subset of arcs that connect the
vertices. But suppose that, instead of choosing a set of arcs from among those already in the
network, we allow ourselves to introduce new connections in addition to the original arcs. Consider
the following common problem. An electrician has decided where to place the outlets in a home,
and now wants to connect the outlets back to the circuit box using the minimum amount of wire.
Note that any circuit is a spanning tree. But, as any electrician will tell you, to minimize the total
length of cable, you should in fact introduce new nodes (junction boxes) in the network, and then
find the minimum spanning tree.

Consider the simple network in Figure 3.13 in which the nodes are the vertices of an equilateral
triangle and the arcs connect each pair of nodes. The length (or weight) of each of the arcs is 4
units. A minimum spanning tree has a length of 8, and is obtained by choosing any two of the
three arcs as shown in Figure 3.13(a), (b), and (c). But if instead of choosing a subset of the given
arcs, we judiciously introduce a new node or junction point, we find that we are able to span the
three nodes with line segments whose total length is only about 6.928. This is the shortest network
that spans the three original vertices, and is illustrated in Figure 3.13(d).

Clearly, this could represent a substantial saving in the cost of links if we were designing the
connections in communication networks, circuit board layouts, or highway or utility distribution
networks. This example is an instance of what is called the Steiner tree problem: where should
we introduce new nodes in the network to minimize the corresponding spanning tree?
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AX
(a) (b) (c) (d) (e)

FIGURE 3.13 Shortest network problem.

FIGURE 3.14 Steiner tree problem.

The difficulty of the Steiner problem lies in selecting the location of the extra "junction" points.
Your geometric intuition probably tells you that the solution in Figure 3.13(d) is better than the
one in Figure 3.13(e). But consider a slightly larger problem, such as the graph with six nodes
arranged in a grid in Figure 3.14. Is this an optimal Steiner tree? In fact, there is a slightly better
set of junction points and connections than the ones shown in the figure, but how would we know
this? And what about solving much larger problems?

The best-known algorithms for solving the Steiner tree problem are based on an algorithm of
Melzak; and although numerous modifications to that algorithm have improved its efficiency, the
algorithms still require exponential computation time. (Problem instances with 30 nodes can be
solved in a few minutes of computer time, but 100-node problems cannot be solved in any reasonable
amount of time).

Although the Steiner problem is NP-hard, we still have practical algorithms that yield approx-
imations to the solutions that we want. In fact, we even have the guarantee that a Steiner tree is at
most 17.6% shorter than a minimum spanning tree. Thus, we can use an efficient greedy algorithm
(such as Prim's or Kruskal's) and obtain a spanning tree whose length is at most only about 21%
greater than that of a Steiner tree whose calculation may require exponential effort. Here again,
the analyst is faced with the choice of accepting a possibly suboptimal solution that can be obtained
easily, versus a provably optimal solution that is obtainable only at enormous computational
expense. Of course, the household electrician is probably inserting a few extra junctions at obvious
locations and very likely feels that his solution is convenient and satisfactory from a practical
standpoint. See [Bern and Graham, 1989] for an interesting historical perspective on Steiner
problems and algorithms.

3.5 SHORTEST PATH PROBLEMS

We will now consider a class of network problems in which we try to determine the shortest (or
least costly) route between two nodes. The chosen route need not necessarily pass through all other
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nodes. An obvious application of this type of problem is represented by a distributed computer
network that must route data along the shortest path between designated pairs of processing nodes.
We will also see other, less obvious applications that can be solved with shortest path algorithms
(see exercises) or with methods reminiscent of shortest path algorithms (see Sections 3.6 and 3.7).

The shortest path problem can be viewed as a transshipment problem having a single source
and a single destination. The supply at the source and the demand at the destination are each
considered to be one unit, and the cost of sending this unit between any two adjacent nodes is
indicated by the cost (weight or distance) on the arc connecting the two nodes. By finding a
minimum cost transshipment, We are in fact determining the shortest route by which the unit can
travel from the source to the destination. Although the shortest path problem could be dealt with
by using the more general transshipment model, the structure of the shortest path problem makes
it amenable to much more specialized and efficient algorithms.

3.5.1 SHORTEST PATH THROUGH AN ACYCLIC NETWORK

There are several well-known algorithms for finding the shortest path between certain pairs of
nodes in a network. We will concentrate first on a particularly simple algorithm that is based on
the use of recursive computations. This approach to shortest path problems will also provide us
with a foundation for the study of dynamic programming and project management in the next two
sections of this chapter.

As an illustration, consider the acyclic network in Figure 3.15, where arc labels djj denote
distance from node i to node j. Notice that in an acyclic graph, it is always possible to name the
nodes in such a way that an arc is oriented from a lower-numbered node to a higher numbered
node. (A consequence of this property is that such a network can be represented by an adjacency
matrix that is upper triangular, requiring only (n2 + n)/2 storage locations in computer memory
instead of n2.) We wish to determine the shortest path from the lowest-numbered node to the highest-
numbered node.

The algorithm operates by assigning a label to each node, indicating the shortest distance from
that node to the destination. A node is "eligible" for labeling if all its successors have been labeled.

1. Initially, the destination node is given a label of zero, indicating that there is no cost or
distance associated with going from that node to itself.

2. Choose any "eligible" node k, and assign it a label pk as follows:

pk = min {dkj + pj}, the minimum taken over all successors j of node k

3. Repeat Step 2 until the source node is labeled. The label on the source is the shortest
distance from the source to the destination.

FIGURE 3.15 Acyclic network with node labels.
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In the illustration in Figure 3.15, initially p6 = 0. Next, node 5 is eligible and p5 = 6 + 0 = 6.
The label for node 4 is computed as p4 = min {5 + 0,4 + 6} = 5. Node 3 is now eligible, and p3 =
min {1 + 5, 2 + 6, 8 + 0} =6. The label on node 2 is p2 = min {3 + 5, 3 + 6} = 8, and finally pt

= min {3 + 8,4 + 6} = 10. Thus, the length of the shortest path is 10, and the path itself is obtained
by tracing back through the computations to find the path containing the arcs (1,3), (3,4), (4,6).

This backward labeling procedure has an intuitive appeal when the problem is small enough
that the labels can be shown in a diagram. For larger problems, we may obtain better insight by
examining the recursive structure of the computations. For this, we will again use the illustrative
network from Figure 3.15. We wish to determine a label for node 1; but in order to compute pl9

we require the labels for nodes 2 and 3. Obtaining these labels involves the recursive labeling
procedure (twice). Each of these recursive computations in turn requires further recursion. The
pattern of recursive "calls" to obtain the label on the first node is illustrated as follows, where L(i)
denotes ps:

L(l) = 4 + L(3)

= 4 + (I + L(4)]

= 4 + [1 + [5 + L(6)]]

= 4 + [1 + [5 + 0]]

= 10

Observe that the label on each node summarizes information on higher-numbered nodes. In
fact, the value of the label on any node is actually the length of the shortest path from that node
to the destination.

3.5.2 SHORTEST PATHS FROM SOURCE TO ALL OTHER NODES

A more general algorithm that can be applied to any network having all arc labels non-negative is
known as Dijkstra's algorithm. This algorithm begins with the source node and determines the
shortest paths from the source to every other node. During the operation of Dijkstra's algorithm,
the nodes are partitioned into two sets: a set, which we shall call S, to contain nodes for which the
shortest distance from the source is known, and another set T to contain nodes for which this
shortest distance is not yet known. A label p{ is associated with every node i and specifies the length
of the shortest path known so far from the source (node 1) to node i. Again, we let dy denote the
direct distance from node i to node j.

1. Initially, only the source node is placed in set S, and this node is labeled zero, indicating
that there is zero distance from the source to itself.

2. Initialize all other labels as follows:

Pi = d,j for i * source node 1

and ^ = oo if node i is not connected to the source

3. Choose a node w, not in set S, whose label pw is minimum over all nodes not in S, add
node w to S, and adjust the labels for all nodes v, not in set S, as follows:

pv = min (Pv,pw + dwv}

4. Repeat Step 3 until all nodes belong to set S.
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FIGURE 3.16 Shortest path with Dijkstra's algorithm.

In step 3, we assume that pv is the shortest distance from the source to node v directly through
nodes in S. When we add node w to S, we check whether or not the new distance through w is
shorter, and update if necessary. We will use the network shown in Figure 3.16 to illustrate Dijkstra's
algorithm.

Initially S = {1}, and p, = 0, p2 = 5, p3 = 3, p4 = 8, p5 = <», and p6 =00. We then choose the
minimum label 3 on node 3, and S = {1, 3}. Labels are now

p2 = min {5, 3 + <»} = 5

p4 = min {8, 3 + 00} = 8

p5 = min {°o, 3+4} = 7

p6 = min {oo, 3 + 8} = 11

In the next iteration, we select the label 5 on node 2, so that S = {1, 3, 2} and new labels are

p4 = min {8, 5 + 2} = 7

p5 = min {7, 5 + «>} = 7

p6 = min {11, 5 + 00} = H

From these labels, we break a tie arbitrarily and select the minimum label 7 on node 5. Now
S = {1,3,2,5} and

p4 = min { 7, 7 + 4} = 7

p6 = min {11,7 + 3} = 10

Now we choose node 4 and S = {1,3,2,5,4}, and

p6 = min {10,7 + 2} = 9

Finally, node 6 is added to set S. The final labels are p, = 0, p2 = 5, p3 = 3, p4 = 7, p5 = 7, and
p6 = 9, and the values of these labels indicate the lengths of the shortest paths from node 1 to each
of the other nodes.
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On a dense graph of n nodes and e arcs, represented by an adjacency matrix, Dijkstra's algorithm
executes in time O(n2). In a sparse network where e is much less than n2, it is worthwhile to
represent the graph as an adjacency list, and to manage the node partitions using a priority queue
implemented as a partially ordered tree [Aho, Hopcroft, and Ullman, 1976]. In that case, the running
time is O(e log n).

The proof of optimality of Dijkstra's algorithm requires that all the arcs have positive labels.
But consider a network in which arcs represent stages of a journey. Along certain arcs a cost is
incurred (positive cost), while on other arcs it is possible to turn a profit (negative costs). Our
objective would be to find a minimum cost path from source to destination and, if possible, a path
with negative cost (i.e., a profitable path). An algorithm developed by Ford will solve this problem
as long as there is no cycle in which the sum of the arc lengths is negative. (Observe that, if there
were a cycle with a negative total length, then we could simply travel around the cycle indefinitely
reducing our cost with no lower bound.)

Suppose we have a network for which we would like to know the shortest distance between
any two nodes. This is called the "all-pairs" shortest path problem. For this problem, Dijkstra's
algorithm could be applied n times (using a different node each time as the source) to obtain the
desired result in time O(n3). Another algorithm known as Floyd's algorithm provides the solution
in a more direct way, also in time O(n3) but with a much lower constant factor than Dijkstra's
algorithm. However, for large sparse graphs, clever use of data structures will allow Dijkstra's
algorithm to operate in O(n e log n) time. Algorithms for the second shortest path through a network,
the n-th shortest path, and for all possible paths between two specified nodes, are described and
illustrated in [Price, 1971].

3.5.3. PROBLEMS SOLVABLE WITH SHORTEST PATH METHODS

We have shown how shortest path methods can be used to determine the shortest (fastest, or least
costly) route between two locations in a network. A couple of additional illustrations should indicate
the great variety of problems that can be modeled and solved in this way.

A frequently cited example is one in which we wish to determine the most cost-effective
schedule for the replacement of equipment over a period of time. Let us suppose circuit boards for
A/D conversion in a navigation computer are to be replaced at intervals over a period of 6 months.
Ideally, replacement should occur before an actual breakdown in order to maintain an operational
system. Frequent replacement incurs capital expenses and costs of labor for installation. But
infrequent replacement may lead to increased maintenance costs and unacceptably high rates of
system downtime. If we collect data on the costs of purchase, installation, and maintenance, cost
of expected downtime, and salvage value of replaced boards, we can arrive at a tabularized summary
of these expenses, such as shown in Table 3.13.

TABLE 3.13
Equipment Replacement Costs

Circuit
Board

Installed

Jan
Feb
Mar
Apr
May

Circuit Board Replaced
Feb Mar Apr May
5.00 6.75

5.25
8.25 12.50
6.25 9.50
5.25 7.25

5.50

June
16.80
11.50
9.00
8.20
5.80



Network Analysis 111

^5.80

rjurT
u

V. 9.50

I

j

11.50

8.20 1

9.00

j

FIGURE 3.17 Equipment replacement schedule.

Any circuit board becomes a candidate for replacement after 1 month. This problem can be
represented as a network (see Figure 3.17) with nodes representing the months, and arcs labeled
with the costs shown in the table. By finding the shortest path between node Jan and node Jun, we
obtain the optimal (least costly) replacement policy. The route Jan -» Mar -» Jun, with minimal
cost 6.75 + 9.00 = 15.75, indicates that circuit boards installed in January should be replaced in
March and again in June.

This approach is often used for practical situations. However, observe that if we add a node
for July, or August, the optimal solution will change. We can overcome this problem by using a
"rolling horizon." For example, in January, we might use a 24-month formulation to decide when
to perform the first replacement. That is, we use just the first shortest path. When we get to that
month chosen for replacement, we formulate a new shortest path problem for the next 24 months.
Many other practical problems have a similar structure.

An apparently unrelated set of problems is often illustrated in the form of riddles or puzzles.
The context may involve ferrying missionaries and cannibals, foxes and chickens, monkeys and
bananas; or separating a volume of some liquid by using an apparently inappropriate set of
containers or measuring devices; or rearranging the elements of a plastic puzzle. In each of these
problems, there is some initial configuration, and a sequence of simple one-step moves or operations,
concluding eventually in some desired goal configuration. Each of these problems can be solved
in the following way. Create a set of nodes in which each node represents a possible configuration
of the system. Place a directed arc to indicate where a transition can be made from one configuration
node to another through one simple move. Assign a cost of 1 to each arc in the network. If there
are multiple goal configurations, join those nodes to a common sink node and label these new arcs
zero. The shortest path from the initial configuration node to the sink or goal configuration node
represents a solution to the problem, and moreover, this path describes the solution obtainable in
the smallest number of steps.

3.6 DYNAMIC PROGRAMMING

Dynamic Programming is an approach to solving mathematical programming problems by decom-
posing a problem into simpler, interdependent, subproblems, and then finding solutions to the
subproblems in stages, in such a way that eventually an optimal solution to the original problem
emerges. Because this approach has been used particularly for applications that require decisions
to be made dynamically over time, the descriptive name "dynamic programming" has come into
common use. However, this procedure is applicable to any problem that can be dealt with as a
staged decision-making process.

In most of the optimization problems that we have seen thus far, all of the decision variables
have been dealt with simultaneously. Arbitrarily complex interactions among decision variables are

15.75
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precisely what make general mathematical programming problems difficult. However, many prob-
lems have a structure that allows us to break the problem into smaller problems that can be dealt
with somewhat independently. As long as we are able to preserve the original relationship among
the subproblems, we may find that the total computational effort required to solve the problem as
a sequence of subproblems is much less than the effort that would be required to attack all
components of the problem simultaneously.

Unlike linear programming and other specialized mathematical programming formulations,
dynamic programming does not represent any certain class of problems, but rather an approach to
solving optimization problems of various types. Because the procedure must be tailored to the
problem, the successful application of dynamic programming principles depends strongly on the
intuition and talent of the analyst. Insight and experience are required in order for a problem-solver
to perceive just how (or whether) a problem can be decomposed into subproblems, and to state
mathematically how each stage is to be solved and how the stages are related to one another.
Exposure to a large number of illustrative dynamic programming applications, including discrete
and continuous variables, probabilistic systems, and a variety of objective function forms, would
be required in order to provide truly useful and comprehensive insights into the craft of dynamic
programming. Even then, it must be admitted that many problems simply do not lend themselves
efficiently to the dynamic programming framework.

We will examine a couple of examples, and in the process we will also describe some of the
unifying themes and notations of the dynamic programming approach. For further exposure to this
problem-solving tool, refer to the discussions by [Bellman, 1957], [Nemhauser, 1966], [Beightler
et al., 1976], and [White, 1969].

3.6.1 LABELING METHOD FOR MULTI-STAGE DECISION MAKING

Our first example of the use of the dynamic programming approach involves a choice of transpor-
tation routes. Figure 3.18 shows a system of roads connecting three sources Hj that generate
hazardous by-products with two sites Dj designated for the disposal of hazardous waste materials.
Three political borders (shown by dashed-lines) must be crossed in transit. Each straight-line section
of road requires 1 day's travel time, so it is a 4-day drive from any Hj to any Dj. However, at each
border crossing, regulations require container inspection and possible recontainerization, and this
can cause delays at each checkpoint. The number of days delay that can be anticipated is shown
in the circle drawn at each checkpoint. The problem is to determine the route from generation sites
to disposal sites that involves the minimum delays.

The stages in this multi-stage decision process correspond to the three borders that must be
crossed. In the terminology of dynamic programming, the various checkpoints at each stage are
called states. Thus, there are 4 states in the first stage, and 3 states in each of the second and third
stages.

FIGURE 3.18 Hazardous waste disposal routes.
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FIGURE 3.19 Minimum delay path.

To solve this problem, we take an approach that is similar to the backward labeling method
for shortest path through an acyclic graph. Our decisions will be made, beginning with the final
stage, Stage 3, and moving backward (to the left) through the earlier stages. At each stage, we
phrase our decision in the following way: for each possible state in the current stage, if this state
is ever reached, what would be the minimum delay from here to the dump sites? If this question
can be answered at every stage, then eventually at the first stage, we will have established our
minimum delay route, as desired.

The mechanism that we will use is a backward node-labeling scheme. When we arrive at Stage
3, the delay to the dump site is just the delay at the third border crossing. We label each checkpoint
node accordingly, as shown in Figure 3.19(a).

At stage 2, the delay at the top node is 5 plus either 4 or 3 additional days. We choose the
minimum 3 and label that node with 5 + 3 = 8. The other two nodes are labeled in the same way,
as shown in Figure 3.19(b).

Backing up to Stage 1, we similarly compute four labels, as shown in Figure 3.19(c). Since all
four checkpoints at Stage 1 are uniformly accessible from each of the generation sites, we can
conclude that the minimum-delay path goes through the node labeled 9 at the first border crossing
(with a delay of 3). The optimal path is highlighted in Figure 3.19(d), where the total delay of 9
is obtained by crossing the second border at the bottom node (where delay is 4), and from there
crossing the third border at its bottom node (with a delay of 2).

3.6.2 TABULAR METHOD

Dynamic programming problems can usually be represented more succinctly in tabular form rather
than as a graph. Consider the following problem. A Director of Computing Facilities must decide
how to allocate five microcomputer systems among three locations: the Library, the University
Computer Center, and the Computer Science Lab. The number of users who can be accommodated
through various allocations is shown in Table 3.14.

By viewing this problem as a staged decision process, we can determine the optimal allocation
that will provide microcomputer access to the greatest number of users. Let Stage 1 denote the
decision of how many microcomputers to place in the Library, Stage 2 denote the decision, for the
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TABLE 3.14
Microcomputer Allocation Problem

Number of users served at each location

Number of
Microcomputers Allocated

0
1

2

3
4

5

Library
0

3
6

7

15

20

University Computer
Center

0

5
10
11

12

24

CSLab
0

8
12

13

13

18

TABLE 3.15
Allocation to Computer Science Lab

Computer Science Lab

Number Available
0
1

2

3
4

5

Number to Allocate
0
1
2

3
4

5

Optimal Number of
Users Served

0

8
12
13
13
18

Computer Center, and Stage 3 for the Computer Science Lab. As before, we will begin with the
last stage, and work backward.

At the third stage, we do not know how allocations may be made at earlier stages, but regardless
of what earlier allocations may have been decided, we wish to determine the optimal allocation
for the remaining available microcomputers. Since this is the last stage, we clearly should allocate
all remaining microcomputers (i.e., the ones that were not allocated in Stage 1 and Stage 2) to the
Lab, as shown in Table 3.15.

At the second stage, the alternatives are somewhat more interesting. Again, we do not know
what allocations may be made at earlier stages (Stage 1); but since this is not the last stage, we
must consider the possibility of allocating only a portion of what is available, leaving some
microcomputers for allocation in Stage 3. The various possible allocations in Stage 2 are shown
in Table 3.16. Each entry represented by a sum includes the number of users that can be served
by placing some microcomputers here at this stage, plus the optimal number that could be served
by saving the remaining available microcomputers for later stages.

We can conclude the solution to this problem now by solving Stage 1. In this case, we do not
have to consider different numbers of available microcomputers: we know that all five are available
because there are no preceding stages (during which any could be allocated). We do, however, have
the option to allocate any number of them, as shown in Table 3.17.

The problem is now solved. The optimal number of users, 25, that can be served is obtained
by allocating one microcomputer to the Library. That leaves 4 available for Stage 2, and from the
table for Stage 2, we know that the optimal decision is to allocate 2 to the Computer Center, leaving
2 for Stage 3, the Computer Science Lab. At Stage 3, we allocate both available microcomputers.
Thus, by placing 1, 2, and 2 microcomputers, respectively, in the Library, Computer Center, and
Lab, we can serve 3 + 10 + 12 = 25 computer users.
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TABLE 3.16
Allocation to University Computer Center

Number
Available

0
1

2
3
4

5

Payoff for the Number Allocated
to the University Computing Center

0

0
0 + 8
0+12
0+13
0+13
0+18

1 2 3 4 5

5 + 0
5 + 8 10 + 0

5 + 12 10 + 8 11+0
5 + 13 10+12 11+8 12 + 0
5 + 13 10+13 11 + 12 12 + 8 24 + 0

Optimal
Number of

Users Served
0

8
13
18
22
24

By
Allocating

0
0
1

2
2
5

TABLE 3.17
Allocation to the Library

Number
Available

5

Payoff for the Number Allocated to the Library

0 1 2 3 4 5
0 + 24 3 + 22 6 + 18 7 + 13 15 + 8 20 + 0

Optimal
Number of

Users Served
25

By
Allocating

1

Notice that we could have used a graphical representation of this problem as shown in Figure
3.20, and the backward labeling technique, to find the optimal allocation. However, even in a
problem of this size, the number of arcs becomes large and awkward to display. We accomplish
exactly the same thing conceptually using the more convenient tabular representation.

Stage 21
Library

Stage 12
University Computer Center

Stage 03
Computer Science Lab

FIGURE 3.20 Graphical representation of microcomputer allocation problem.
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3.6.3 GENERAL RECURSIVE METHOD

Using dynamic programming, we have now solved two problems — waste-disposal routing and
microcomputer allocation — as staged-decision problems. Each point where a decision is made is
referred to as a stage of the decision process. In some problems, these stages correspond to stages
in time; in other cases, they refer to geographical stages; and in others, the stages may reflect a
more abstract logical decomposition of the larger problem. The structuring of a complex problem
into simpler stages of decision-making is the fundamental characteristic of the dynamic program-
ming approach.

Within each stage, states are defined in such a way as to embody all the information needed in
order to make the current decision and to fully define the ramifications of any current decision on
future decisions. The specification of states is a critical performance factor in any dynamic program-
ming solution. In practical problems, the number of possible states can quickly become unmanageable.
Successful applications usually require considerable skill in the definition of the states.

In our illustrative examples, each stage has only one state variable (to specify which check-
point on a border crossing, or how many microcomputers are available for allocation to the current
location). Some problems require more than one state variable, and each "state" of the system is
represented by each possible combination of state variable values. Clearly, the number of possible
states increases exponentially as the number of state variables grows, and the computational effort
involved in solving the problem may become prohibitively expensive.

Decision variables in a dynamic programming model define the decisions made at each stage.
Each decision yields some payoff (or return) that contributes to the objective function. Because
of the staged structure of this method of problem-solving, determining the optimal value of a
decision variable is a process that cannot be based on the entire problem but rather on only those
stages of the problem that have already been dealt with. After identifying a final stage, and
associating a payoff with each state in that stage, we then repeatedly move backward to preceding
stages using a backward recursive relation, until we have finally arrived at an initial stage, and have
thus sequentially arrived at a solution to the entire problem. Decisions at each stage must be made
in accordance with the dynamic programming principle of optimality, which is stated as follows:
regardless of the decisions made to arrive at a particular state, the remaining decisions must
constitute an optimal policy for all successive stages, with respect to the current decision.

Suppose that our problem has N stages, and we are currently trying to compute stage n. Let sn

denote the state and dn denote the decision made when there are n stages remaining in the solution
process. Let fn (sn, dn) denote the total payoff or return for the last N - n stages, given current state
sn and current decision dn. The optimal return for these N - n stages is then written as fn*(sn) =
fn(sn, dn*), meaning that dn* is the optimal decision for this state, regardless of how we arrive at
this state. Clearly, if we can work backward to an initial stage, then f^s,) is the optimal objective
function value for an N-stage problem.

The return function for any state is written in terms of the return obtained from succeeding
stages:

fn*(sn) = max {r(sn, dn) + fn+1*(sn+I)}

where r(sn, dn) is the return resulting from making decision dn while in state sn at the current stage,
and sn+1 is the new state that we will be in at stage n -f 1 if we are in sn now, and make decision
dn. Observe that we have previously computed the optimal cost for completing the solution process
from all possible states sn+1. This recursive relation identifies the optimal policy for each state
with N - n stages remaining, based on the optimal policy for each state with (N - n) - 1 stages
remaining.
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In the microcomputer allocation example above, the Computer Science Lab location represents
Stage 3, the University Computer Center is Stage 2, and the Library is Stage 1. States represent
the number of microcomputers available in a stage, and the decision variable specifies how many
to allocate in this stage. Therefore, to find the optimal allocation, we must compute

f,*(Library) = max {r(s,, d,) + f2*(s2)}

d.

where.s2 = s, - d,. For this we heed to have computed

f2* (s2) = max {r(s2, d2) + f3*(s3)}
d,

where s3 = s2 - d2. Finally, f3* is trivial to compute for all states in Stage 3 because all remaining
available microcomputers should be used. The recursive computations for this example are shown
for Stage 3 in Table 3.18, for Stage 2 in Table 3.19, and for Stage 1 in Table 3.20.

TABLE 3.18
Stage Three

S3

0
1
2

3
4
5

f3<S3, d3)

d3 = 0 1 2 3 4 5

0
8

12
13

13
18

d3*
0
1

2

3
4

5

f3*(s3, d3)

0
8
12

13
13
18

TABLE 3.19
Stage Two

S2

0
1
2
3
4
5

f2(s2, d2)

d2 = 0
0

0-1-8
0+12
0+13
0+13
0+ 18

1

5 + 0
5 + 8
5 + 1 2
5 + 1 3
5+13

2 3 4 5

10 + 0
10 + 8 11+0
10+12 11+8 12 + 0
10+13 11 + 12 12 + 8 24 + 0

d2*
0
0
1
2
2
5

f2*(s2, d2)
0
8
13
18
22
24

TABLE 3.20
Stage One

Si

5

MS,, d,)

dt = 0 1 2 3 4 5 d,* f,*(s1/ dt)
0 + 24 3 + 22 6+18 7+13 15 + 8 20 + 0 1 25
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After the backward recursion is applied, the optimal objective function value is known, but the
sequence of decisions leading to that optimum must be retrieved by tracing forward to identify, at
each stage, the decision that was chosen during the backward recursion. In the example, s, = 5
and d,* = 1. Therefore, s2 = 4. When s2 = 4, d2* = 2, and hence s3 = 2. When s3 = 2, d3* = 2.

Our discussion of dynamic programming has addressed only the most essential features of the
method, and we should now mention some variations to this problem-solving approach. In our two
examples, there were a finite number of states at each stage, representing discrete roads to choose
or whole items to allocate. Applications involving arbitrary allocations of money or weight, for
example, may be modeled with a continuous state-space. In this case, the graphical and tabular
methods are useless, but the recursive relations readily apply.

In each of our sample problems, the return at any stage was added to cumulative returns from
succeeding stages. This was appropriate because the time delays and the number of users served
were additive in nature. Different applications may involve costs that are compounded together in
arbitrary mathematical ways. For example, in the hazardous waste disposal problem, if the check-
points introduced probabilities of contamination or spillage, then the probabilities (of no contam-
ination) at successive stages should be multiplied, rather than added, to find the "safest" route. In
that case,

fn(sn, dn) = r(sn, dn) • fn+,*(sn+l)

where fn+i*(sn+1) is the minimum probability of contamination from stage n + 1 in state sn+1, and
sn+, is the state that we would be in if we were in state sn at stage n and made decision dn.

Our recursive relations have been expressed in the form of backward recursion, based on the
stages remaining in the decision process. For most problems, it would be equally valid to define
forward recursive relations, based on completed decision stages. The final result will be the same.
For example, in the microcomputer allocation problem, our state variables could represent "the
number of machines left" in backward recursion, or we could define a forward recursive model
based on "the number of machines allocated so far." However, the definition of the state variables
is often more intuitively appealing in one direction for a particular application.

3.7 PROJECT MANAGEMENT

The planning and coordination of large complex projects, consisting of many tasks or activities, is
often viewed as less of an optimization problem and more of a management procedure aimed at
completing a project under certain resource constraints and with attention to various cost-time
trade-offs. Certain aspects of project management can, however, be dealt with conveniently using
network optimization methods that were discussed earlier in this chapter.

During the 1950s, two methodologies were developed — independently and simultaneously
— for project management, and both approaches were based on network models. One method,
called the Critical Path Method (CPM), was developed for the management of construction and
production activities; while the other, called the Program Evaluation and Review Technique
(PERT), was developed for the U.S. Navy in scheduling research and development activities for
the Polaris missile program. CPM is based on deterministic specifications of task durations, and is
therefore appropriate for production projects in which previous experience with the subtasks allows
management to make reliable time estimates. PERT, on the other hand, is based on probabilistic
estimates of task durations, and thus is most useful in a research and development environment
where task completion times cannot be known in advance. Because both PERT and CPM approach
project scheduling using similar network models and methods, the terms PERT and CPM are
sometimes used interchangeably or collectively as "PERT-CPM methods."
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Large-scale projects generally consist of a set of tasks or activities whose completion times are
known or can be estimated (using a range of values, for example), and for which precedence
constraints are specified, indicating that certain activities must be completed before others can
begin. Simply identifying the distinct activities, and determining their durations and interdepen-
dencies, is an important part of the planning of any large project. PERT-CPM methods then provide
for the construction of a network diagram, from which we can determine the minimum overall
project duration and identify those tasks whose timely completion is critical or essential to the
minimum project completion time. The purpose of this phase is to construct a schedule or time
chart with start and finish times for each activity. Information may also be available that will allow
us to evaluate the effect of putting extra money, people, or machines into a particular task in order
to shorten the project duration. Thus, we can use the network to evaluate cost-time trade-offs.
Finally, once the project is underway, the network diagram can be used in monitoring or controlling
the project, to follow the progress of the various activities, and to make adjustments where
appropriate. These three phases — planning, scheduling, and controlling — are essential to the
effective management of any large project. In the following sections, we will see how the network
methods underlying PERT and CPM help to support these phases of management.

3.7.1 PROJECT NETWORKS AND CRITICAL PATHS

A project network provides a graphical representation of the precedence relations among all the
activities in a project. Each activity is represented by an arc in the network. The nodes in the
network denote events corresponding to points in time when one or more activities are completed.
Directions on the arcs indicate the sequence in which events must occur. Additionally, a node is
added at the beginning of the network to represent the "start" event for the entire project. Similarly,
a final node is introduced to denote the "finish" event for the project.

As an illustration, we will build a project network for a set of six activities with the following
precedence constraints:

(1) A precedes D
(2) A and B precede C
(3) C and D precede F
(4) E precedes F

The project network diagram is shown in Figure 3.21. Solid arcs denote activities A through
E. Activities C, D, and E must all precede activity F. Therefore, we use event 4 to represent the
time at which activities C, D, and E are all finished, and activity F can begin. We cannot combine
events 2 and 3. We want event 2 to represent that A has finished and D can begin. Event 3 represents
that A and B are finished and C can begin. To do this, we introduce a dummy activity from event
2 to event 3 with zero duration. The sole purpose of this is to ensure that event C does not start
until event A has finished.

We let the variable tj represent the time at which event i occurs, and d^ denote the duration
of the activity represented by the arc between nodes i and j. In this example, suppose d12 = 4,
di3 = 3, d,4 = 4, d23 = 0, d24 = 5, d34 = 3, and d45 = 2. These individual activity lengths are
shown in Figure 3.21 along the appropriate arcs. Since tt and t5 are the "start" and "finish" times,
total project length is (t5 - t,).

Now that the activities have been identified and described in the diagram, our next objective
is to determine a minimum length project schedule; that is, to determine when each activity should
begin so that precedence constraints are met and so that the entire project completes as quickly as
possible. We can write the formulation as a linear programming problem, with constraints to assure
that successive events i and j are separated from one another by at least the required duration of
the event on the arc (i, j):
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FIGURE 3.21 Project network.

minimize

subject to

t 4 - t 2 >5

t4 - 13 > 3

t5 - t4 > 2

and t j > 0 for alii = 1,2, ..., 5

Note that this formulation could be solved with the ordinary Simplex method, but clearly there is
a special network structure to the problem.

In order to minimize the project duration, we have to realize that actually we must find the
longest sequence of linearly ordered activities; that is, we must find the longest path through the
network. This insight gives us a slightly different perspective on the problem.

Consider the following linear programming problem. Let Xy = 1 if activity (i,j) is in the longest
path, and Xy = 0 otherwise. This problem can be written as

maximize

subject to

4x12 + 3x13 -»• 4x14 + 5x24 + 3x34 + 2x45

-x,2 - x13 - x,4

X12

X13

X14

= -1
7*23-*M = 0

T X25 "*X34 = **

24 "" 34X™ — Xd< —45

x45 = 1

all X = 0 or 1

Z = t5-t,

ta-t, S4

t3 - t, s 3

t 4 - t ,>4

t 3 - t 2 > 0
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The objective function adds up the total length of the longest path, while the constraints ensure
that the solution represents a path from event 1 to event 5. The first constraint states that only one
edge can leave node 1. The last constraint states that only one edge can enter node 5. The other
constraints specify that the number of incoming arcs equals the number of outgoing arcs in each
of the interior nodes. The only feasible solution to this problem is a path, and the optimal solution
is the longest path.

These two problems are in fact equivalent. The second one is called the dual problem of the
first. (Recall from the discussion in Section 2.8 that every linear programming problem has a dual
problem, and typically the two.versions represent a different view or interpretation of the same
problem parameters.) Notice that the first problem has one constraint for each activity and one
variable for each event, while the second formulation has a constraint for each event and a variable
for each activity.

If we inspect the above dual formulation, we can see that the constraints require that one "unit
of flow" is to be routed from node 1 to node 5. We now recognize that this is the specialized form
of the transshipment model that we dealt with in Section 3.5 to find the shortest path through a
network. In our project management application, however, we minimize project duration by max-
imizing the path length. We can therefore treat our project scheduling problem as a "longest path"
problem.

By finding the longest path through the project network, we are also finding what is known as
the "critical path." A critical path is a path from the start node to the finish node, with the property
that any delay in completing activities along this path will cause a delay in overall project com-
pletion. The activities along the critical path are called critical activities.

To describe the PERT-CPM method for identifying critical activities in a project, we need two
definitions. The earliest time for a node j, denoted Ej, is the time at which event j will occur if all
previous activities are started as early as possible. The "start" node 1 has E, = 0 since there are
no predecessors. Then any other node's earliest time can be determined as long as all its predeces-
sors' earliest times have been calculated. We can make a forward pass through the network,
calculating Ej for each event j as

Ej = max {Ei + dy}
i

where (i, j) are all the arcs entering node j, and dy is the duration of the activity represented by arc
(i, j). Once we have the earliest time for the "finish" event, we know the earliest possible completion
time for the entire project.

The latest time for a node i, denoted Lj, is the latest time that event i can occur without causing
delay in the completion of the project beyond its earliest possible time. Once we have made the
forward pass to determine the earliest project completion time, we make a backward pass through
the network. For a network of n nodes, Ln = En, then Lt can be determined for any node i as long
as all of that node's successors' latest times have been calculated. The general formula is

Lj = min {Lj-dy}

j

where (i, j) are all the arcs leaving node i.
The slack time for an event is the difference between the latest time and the earliest time for

that event. Events having a slack time of zero are called critical events. The slack time of an
activity (i, j) is Lj - Et - dy. Activities with slack time zero are the critical activities, which must
be completed without delay if the minimum feasible project duration is to be achieved.

Now re-examine the project network in Figure 3.21 to determine a critical path and construct
a time chart. During the forward pass, we obtain the following earliest times:
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E, = 0

£2 = max {0 + 4} = 4
1

E3 = max {0 + 3, 4 + 0} = 4
1,2

E4 = max {4 + 5, 4 + 3, 0 + 4} = 9
1,2,3

E5 = max {9 + 2} = 11
4

Therefore, the minimum completion time for the project is 11 time units. In a backward pass, we
obtain latest times for each event as follows:

L5 = E5 = 11

L4 = min {11-2} = 9
5

L3 = min{9-3} = 6
4

Lj = min {6-0, 9-5} = 4
3,4

L, = min {4-4, 6-3, 9-4} =0
2,3,4

From these results, we can determine the critical path. Since E, = L,, E2 = L2, E4 = L4, and
E5 = L5, the critical events are at nodes 1, 2, 4, and 5; and therefore the critical activities are
activities A, D, and F (the activities along the critical path). We also notice that the slack times for
the activities are

A: I^-E, -4 = 4 -0-4 = 0

B: L3 - E, -3 = 6-0-3 = 3

C: L4 - E3 - 3 = 9 - 4 - 3 = 2

D : L 4 - E 2 -5 = 9 -4 -5 = 0

E: L4 - E, - 4 = 9 - 0 - 4 = 5

F: L5-E4-2 = 11-9-2 = 0

and the activities with zero slack time are the critical activities. The noncritical activities B, C, and
E could be delayed as much as 3, 2, and 5 time units, respectively, without extending the duration
of the project.

All of this information can be summarized in the time chart shown in Table 3.21. This layout
provides a clear and convenient tool for management to use in scheduling noncritical activities,
considering possible improvements in the project schedule, or in evaluating the effects of delays
along the critical path.
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TABLE 3.21
Project Time Chart

Activity
A
B
C
D
E

F

Duration
4

3
3
5
4

2

Earliest
Start

0
0
4
4

0

9

Latest
Start

0
1
6
4

5

9

Earlilest
Finish

4

3
7

9
4

11

Latest
Finish

4
4

9
9
9
11

Slack
Time

0

3
2
0

5
0

3.7.2 COST vs. TIME TRADE-OFFS

The methods presented thus far have dealt solely with scheduling activities in order to achieve a
minimum project duration, and no consideration has been given to the cost of the project. In addition
to direct costs associated with each individual activity, there are typically indirect costs that may
be viewed as overhead costs and that are proportional to the duration of the entire project. These
costs may include such expenses as administrative or supervisory costs, equipment and facilities
rental, and interest on capital. A financially realistic project manager may be willing to add
resources, involving some direct expense, to certain activities in order to reduce the duration of
those activities, and thereby to reduce the project duration and the attendant indirect costs. CPM
provides a mechanism for minimizing the total (direct plus indirect) costs of a project.

Suppose that for every activity, we know the normal duration and the budgeted cost associated
with completing the activity under normal circumstances. Suppose also that, through additional
expenditures, the duration of each activity can be reduced. This is known as crashing. For each
activity then, we know the crash completion time and the crash cost. By crashing critical jobs,
total project length can be reduced. If the cost of crashing is less than the indirect costs that can
be saved, then we not only reduce total costs but we can also enjoy various subjective benefits
associated with completing a project ahead of schedule.

Figure 3.22 shows a straight-line relationship that is typically assumed, describing crash costs
and durations and normal costs and durations. Each activity has its own cost vs. time trade-off,
represented by the slope of the straight line, and its own crash point (or crash limit) beyond which
no amount of added resources can reduce the activity's duration.

C -|- • Crash point

8o

c 4-n
Normal point

Duration

FIGURE 3.22 Cost vs. time trade-off.

Dc Dn
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We take advantage of cost vs. time trade-offs in the following way. Using normal costs and
durations for all activities, we first determine a critical path, as before. Then we consider reducing
the duration of critical activities.

If we crash all the critical activities simultaneously, then almost certainly the network's critical
path will have changed, and we suddenly find that we are working on the wrong problem. Instead,
we should choose one of the critical activities to crash; in particular, we should choose the one
that will yield the greatest reduction in schedule length per unit of added costs. This choice is easily
made by simply selecting the activity having the smallest cost vs. time slope.

Having now chosen which critical activity to crash, we must still proceed with caution. As the
duration of a critical activity is reduced, the activity may cease to be critical (there is now a new
critical path in the network). At this point, it is useless to further reduce this activity, and instead
we should be investing in the reduction of some currently critical activity. It has been suggested
that the least-slope critical activity be crashed by only one time unit, then a possibly new critical
path found. This process is repeated until all critical activities are at their crash limits.

Another consideration in deciding how far to crash an activity is the reduction in indirect costs
that can be achieved. Since the aim is presumably to minimize the sum of activity costs and indirect
costs, every crash operation should be undertaken only if it can be justified with respect to total
project costs.

As an example, consider again the project network of Figure 3.21. The normal and crash points
for each activity are given in Table 3.22, where Dn denotes the normal duration of the activity, Cn

denotes the normal cost, Dc denotes the crash limit, and Cc denotes the crash cost. The cost vs.
time slopes for each activity are computed as (Cc - Cn)/(Dn - Dc), and are shown in the far right
column.

Suppose that indirect costs amount to $220/day; therefore, the total project cost under a normal
schedule is (400 + 500 + 350 + 300 + 100 + 200) plus ($220/day • 11 days) = 1850 + 2420 =
$4270. If all activities were at their crash point, then the project duration would be 7 days, and the
total project cost would be (820 + 500 + 500 + 700 + 125 + 300) + ($220/day • 7 days) = 2945
+ 1540 = $4485. Clearly in this case, we are paying crash costs for activities that do not contribute
to the reduction in project length. So, we would expect the optimal schedule to fall somewhere
between these two extremes.

Beginning with the normal schedule, where the critical activities are A, D, and F, we find that
we can crash activity F at a cost of only $100/day; and by crashing activity F to its limit, we can
reduce total overhead by $220, for a net savings of $120. The total project cost would then be
$4150, and the project duration is 10 days.

The critical path has not changed, so we now consider critical activities A and D. The daily
reduction at the least cost is obtained by crashing activity D. Crashing D by one day costs $200,
but saves $220; therefore, the total cost is now $4130, and project duration is 9 days. Since the
critical path still includes activity D, we can crash it by one additional day, to obtain an 8-day
project at a total cost of $4110.

Activity A is now the only critical activity that is not at its crash limit, and we can save $220
- $210 = $10 by crashing A to 3 days for a total project cost of $4100. At this point, activities A
and B are on parallel critical paths; therefore, any crashing must be applied simultaneously to both
projects. In our case, project B cannot be crashed, and therefore the project duration cannot be
reduced to less than 7 days. (Notice that if project B could have been reduced but if the combined
cost of crashing activities A and B exceeded $220, then crashing them would not have been
economical.)

Since critical activities A, B, D, and F are all crashed as far as possible to reduce the project
duration, the current schedule is optimal. The durations of activities A, B, C, D, E, and F, respec-
tively, are 3, 3, 3, 3, 4, and 1. The project cost is (610 + 500 + 350 + 700 + 100 + 300) + 7(220)
= 2560 + 1540 = $4100.
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TABLE 3.22
Crash Costs

Normal

Activity

A
B
C
D
E
F

D-

4
3
3
5
4
2

cn

400
500
350
300
100
200

Crash

DC

2
3
2
3
3
1

cd

820
500
500
700
125
300

Crashing Cost
per Day

210

—
150
200
25
100

3.7.3 PROBABILISTIC PROJECT SCHEDULING

For certain types of projects, there may be no previous experience from which to determine the
duration of the individual activities. PERT provides a means of handling such uncertainties through
the use of probabilities for the completion times of the activities.

The project manager is required to provide three time estimates for each activity: an optimistic
duration, denoted as a, specifying the minimum reasonable completion time if all goes well; a
pessimistic duration, denoted as b, specifying the maximum duration if things go badly; and a most
probable duration, denoted as m.

To apply critical path methods to a project layout based on probabilistic completion time
estimates, we need to know two statistics for each activity. The expected time to complete each
activity can be used as the actual time in order to find a critical path (as in the deterministic case),
and the variance will give an indication of the amount by which the project might deviate from
its expected project duration. These statistics are obtained, in PERT, by assuming that activity
durations follow a Beta distribution.

Based on this assumption, the expected time jm for an activity is approximated as

jx = (a + b + 4m)/6

because the midpoint (a + b)/2 is given about half the weight of the mode m. Illustrative distributions
are shown in Figure 3.23. In many probability distributions, the tails (a and b in our case) are
considered to lie about three standard deviations from the mean jx; therefore, the standard deviation
a = (b - a)/6, and the variance a2 = [(b - a)/6]2.

These statistics are now used in the following straightforward way. The activity means JJL are
used as activity durations, and the critical path method is used to determine the critical activities.
The expected project duration D is the sum of all the means of the activities on the critical path.
Likewise, the variance V of the project duration is the sum of the variances of the activities on the
critical path.

Under PERT assumptions, the Central Limit Theorem implies that the project duration (being
the sum of independent random variables) is normally distributed with mean D and variance V.
Using tables for a normal distribution, we can, for example, determine the probability that the
actual project duration will fall in a certain range, or the probability of meeting certain specified
deadlines. For a more detailed discussion of probabilistic project scheduling, refer to the textbook
by [Ravindran et al., 1987].
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FIGURE 3.23 Expected time for activity.

3.8 GUIDE TO SOFTWARE TOOLS

Many network problems can be solved with software developed for ordinary linear programming
problems. But specialized software for network problems has been developed that takes advantage
of the distinctive structure of network formulations, and can be used to solve network problems
very efficiently. Real network problems may involve tens of thousands of nodes and hundreds of
thousands of arcs, and fortunately there is software available for solving such large problems on a
variety of hardware platforms. Some of the more noteworthy ones are described briefly in this
section.

GENOS (Generalized Network Optimization System) solves network problems with gener-
alized network constraints. The algorithms in this system include a network Simplex method and
a primal truncated Newton method. The software is written in ANSI Fortran, and is largely machine
independent. Versions are available that are optimized for vector and parallel architectures.

LNOS (Linear Network Optimization Software) offers a collection of solvers for maximum
flow, shortest path, assignment, and minimum cost flow problems. The routines are written in
Fortran, are fairly simple, and primarily use integer arithmetic. Although designed for IBM PC and
Macintosh computers, minor modifications to input/output segments allow the code to be adapted
to other computational environments.

LSNNO (Large-Scale Nonlinear Network Optimizer) provides advanced techniques for
effectively solving large-scale nonlinear network problems utilizing a line-search method directed
by a truncated conjugate gradient process, featuring both Newton and quasi-Newton algorithms.
The code is implemented as an ANSI Fortran double-precision subroutine, which is documented
in [Toint and Tuyttens, 1992].

NETFLO is a collection of public-domain software, available via anonymous ftp from
DIMACS [center@dimacs.rutgers.edu], for solving problems in minimum cost flow [Kenning-
ton and Helgason, 1980], maximum flow, and matching problems. The code, which is not
maintained or guaranteed, is in Fortran, C, and Pascal, and uses the DIMACS standard
input/output format.

NETSOLVE is an interactive package for linear network optimization problems, with capa-
bilities for solving assignment, maximum flow, minimum cost flow, shortest path, spanning tree,
transportation, matching, and traveling salesman problems. The software is available for IBM and
IBM-compatible PCs running DOS. The standard version handles up to 50 nodes and 200 edges,
while the extended version allows up to 350 nodes and 1000 edges.

NETWK translates network diagrams into mixed-integer linear programming formulations,
and solves them using standard techniques based on the Simplex algorithm, taking advantage of
the special structures inherent in the formulation. NETWK solves assignment, shortest path, max-
imum flow, minimum spanning tree, transportation, critical path, multi-commodity flow, and facility
location problems. It operates in the Windows environment, where a command line menu bar
extends to include graphical and spreadsheet network model building features.

IBM OSL includes modules for network programming, applicable to transportation problems
such as crew scheduling and vehicle routing. The pure network solver is a variant of the Simplex
method, modified to take advantage of the simple structure of the constraint matrices. Additional
features of the OSL software are described in the software guide in Chapter 2.

mailto:center@dimacs.rutgers.edu
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SAS/OR software handles general assignment problems, performs critical path analysis, deter-
mines network flows, finds assignments and shortest paths, and solves transportation problems.
The CPM module schedules multiple projects, with project activities subject to precedence, time,
and resource constraints. The GANTT routine uses high-resolution color graphics to display the
project schedules produced by CPM. Additional information on the SAS package is contained in
the software guide in Chapter 2.

TVansCAD is a Geographic Information System (GIS) designed to help transportation profes-
sionals organize, manage, and analyze transportation data. It offers a complete toolbox of analytical
methods for mapping, assignment, site location, minimum cost distribution, transportation, vehicle
routing and scheduling, planning, logistics, and marketing. The Windows-based system with high-
resolution graphics provides client server processing that allows the GIS resources to be distributed
over multiple network servers. It supports dBASE files and interfaces to other relational databases,
facilitates the manipulation of extremely large matrices and flow tables, and supplies state-of-the-
art data collection tools for accessing data from the Global Positioning System (GPS).

In addition to the software mentioned above, several of the packages (such as CPLEX) described
in Chapter 2 also have capabilities for solving network-structured problems. Still more information
can be found in a directory and survey of scheduling software that appears in [Melynk, 1995].

3.9 ILLUSTRATIVE APPLICATIONS

3.9.1 DNA SEQUENCE COMPARISON: AN APPLICATION OF THE SHORTEST PATH ALGORITHM
[WATERMAN, 1988], [WAGNER AND FISCHER, 1974]

A problem that arises frequently in the field of cell biology is the comparison of DNA sequences
and the analysis of how one sequence is transformed into another. A sequence is a finite succession
of symbols from a finite alphabet. In the case of deoxyribonucleic acid (DNA), sequences are
composed from the set of nucleotide bases, denoted {A (adenine), C (cytosine), G (guanine), T
(thymine)}. Although biologists are not in complete agreement over the mechanisms by which one
DNA sequence "evolves" into another, it is generally assumed that the transformation consists of
a series of the following types of changes:

1. Insertion of a character (nucleotide)
2. Deletion of a character
3. Substitution of one character for another

The similarity between two DNA sequences S and T can then be measured by assessing a cost for
each of these three types of changes, and then finding the least expensive transformation of S into
T. The cost corresponding to this transformation is called the "evolutionary distance" from DNA
sequence S to DNA sequence T.

Transitions can be modeled by defining a node to represent a DNA sequence, and creating
other neighboring nodes to represent all DNA sequences obtainable from the original one by making
one of the three types of changes. Arcs are labeled with the cost of the change. Then a shortest
path algorithm applied from the original node to any other desired node will yield the evolutionary
distance between the two DNA sequences.

DNA sequences are quite long (millions of nucleotide bases), so for practical implementations,
parallel computer hardware known as "systolic architectures" have been developed for research
purposes. This approach involves a specialized spatial arrangement of processors and an appropriate
flow or "pulsing" of data among the processors, in order to obtain the desired computational results
much more quickly than could be achieved using general-purpose computing hardware. For further
discussion of systolic architectures incorporating shortest path and other network-based algorithms,
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refer to the work of [Lopresti, 1987]. A completely different but effective approach to this problem
is based on dynamic programming methods; see [Wagner and Fischer, 1974] for a description of
this concise solution to the DNA sequencing problem.

3.9.2 MULTIPROCESSOR NETWORK TRAFFIC SCHEDULING
[BlANCHINI AND SHEN, 1987]

In the design of real-time signal processing computer systems, one of the most important issues is
the efficient scheduling of data communication traffic among special-purpose processing elements.
For example, certain types of digital filters can be implemented on a small set of specialized
functional modules, and the determination of filter functionality lies in the specification of inter-
module communication.

The process of mapping consists of first placing functional data operators onto processing
elements. This is easily accomplished using well-known placement algorithms. The second and
more difficult phase of the problem is the design of the network data traffic. This requires routing
each unit of traffic onto a path of network links between the source and destination processing
elements, with the objective of maximizing the aggregate flow of network traffic that can be
maintained in a system.

Traffic management is viewed as a multi-commodity fluid flow problem. The multi-commodity
aspect arises because of the need to maintain the identity of data traffic between different
source/destination pairs, although the traffic may simultaneously occupy the same data link. An
optimal traffic pattern is obtained when a cutset of saturated links is formed.

The network formulation results in an extremely large linear program because of the exponential
number of network paths that contribute explicitly to the size of the problem. An alternative is a
"policy iteration" method that successively improves current traffic patterns by re-routing certain
data units. To improve a traffic pattern, under-utilized paths are determined between each source/des-
tination pair, and then it must be decided whether re-routing along the proposed new path is cost-
effective. To do this, a minimum spanning tree for the network is found. It can be shown that the
least cost path connecting any two nodes in a network lies on the minimum spanning tree. Therefore,
if a minimum spanning tree is known, the traffic scheduler can examine each processing element
adjacent to a saturated link, and if traffic can be re-routed away from the saturated link and onto
a minimum spanning tree link, then the cost of the traffic pattern can be reduced, while at the same
time smoothing congestion and perhaps creating capacity for flow of additional data.

3.9.3 SHIPPING COTTON FROM FARMS TO GINS
[CLOVER AND KLINGMAN, 1977], [KLINGMAN ET AL., 1976]

At a time when cotton production had decreased by 50% in the Upper Rio Grande River Valley of
Texas and New Mexico, it was necessary to determine how best to utilize the processing capacity
available in the area's 20 cotton gins. Analysts began by mapping the 150 farms producing cotton,
and charting the distances to the gins that were scattered throughout the Valley.

The efficiency of the industry had been brought into question because of the.excess ginning
capacity that resulted from the decrease in cotton crop production. Local farmers and gin operators
had resorted to individual, fragmented decisions and actions that did not contribute to overall
prosperity or profitability in the region. A mathematical model was constructed that represented
the entire system, with the hope that a comprehensive approach would encourage joint cooperation
among all farmers and gin operators.

Because of the excess gin capacity, there were fears that some gins may have to close down
and, indeed, such reductions were found to contribute favorably to profitability. Gin operation
involves annual fixed charges to activate the gin, such as electrical connections, cleaning, and
salaried personnel. Variable costs of operation then include regular time and overtime labor costs.
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If the regular shift capacity of a gin is consumed, any additional cotton must be processed at the
overtime rate; but this use of the more expensive overtime capacity can be justified if it avoids the
fixed activation costs of starting up an additional gin.

The problem was first viewed as a shipping cost problem, to identify the particulai gin that
should service each farmer's needs. But it was quickly discovered that the real issue was the need
to quantify the utilization of the cotton gins. This information could provide justification for some
tough decisions related to the closing of certain gins which simply could not operate economically.
The model gre.w into a fixed-charge transshipment formulation that included:

Production levels at each farm
Shipping costs from each farm to each gin
Holding costs for storing cotton at each farm
Seasonal gin activation costs
Two levels of operating capacity at each gin

The network model initially involved around 5000 nodes and over 2 million arcs, but refinements
reduced this to around 100,000 arcs. The solution indicated that substantial cost savings (a 20%
reduction in ginning costs) could be achieved by closing some gins and working as a cooperative.
Implementation was allowed to evolve over several seasons in order to obtain the full cooperation
of all the farmers and gin operators in the region.

3.10 SUMMARY

Network analysis is applicable to an enormous variety of problems that can be modeled as networks
and optimized using network algorithms. Some of the systems represent physical networks for
transportation or flow of commodities, while others are more abstract and can be used to model
processes or plan and manage projects.

A maximum flow algorithm optimizes the total flow of an entity through a network in which
links have capacities that limit the flow. This algorithm not only determines the greatest possible
flow, but in so doing also locates and identifies the bottlenecks in the network.

Transportation models find the minimum cost flow from an origin, through a network, to a
destination, subject to supply and demand requirements. The transportation Simplex algorithm is
often used for this optimization problem. A slight refinement in the interpretation of the transpor-
tation model results in an assignment problem, which is used to model the matching or assignment
of two sets of entities in the most advantageous way.

Maintaining network connectivity has important practical implications. Minimum cost spanning
trees provide a simple and useful means of addressing the connectivity issue. When appropriate con-
nections between nodes do exist in a network, it is often useful to find the shortest route between two
specified nodes. Simple labeling algorithms provide solutions to this problem, and also inspire a broader
approach known as dynamic programming. Dynamic programming has far-ranging applications, but
generally can be viewed as a way to model decisions that take place in stages over a period of time.

Project activity networks are used to plan and coordinate large complex projects consisting of
many tasks. Critical paths in networks determine the minimum project complete time, and identify
those tasks or activities whose timely completion is critical to achieving this minimum project duration.

KEY TERMS

activity
acyclic graph
arcs
assignment problem
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backward pass
bipartite graph
capacitated transshipment
chain
connected graph
critical activity
critical event
critical path
critical path method (CPM)
crash completion time
crash cost
crash limit
crashing
critical event
cut
cut set
cycle
cyclic path
decision variable
degree of a node
demand
directed chain
directed graph
dynamic programming
dynamic programming principle of optimality
earliest time
events
expected project duration
expected time
flow
Ford-Fulkerson algorithm
forward pass
graph
Hungarian method
isolated node
latest time
longest path
maximum flow
minimum cost method
minimum row cost method
minimum spanning tree
multiple sinks
multiple sources
network
node-arc incidence matrix
nodes
northwest corner rule
path
PERT
predecessor
project management
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shortest network problem
shortest path
sink
sl^ck time
source
spanning tree
stable matching
stages
states
Steiner tree
successor
supply
transportation problem
transportation Simplex
tree
undirected graph
unstable matching
variance

EXERCISES

3.1 Find the maximum flow through the networks shown in Figure 3.24. Identify the edges
in the minimum cut set. In each case, assume node 0 is the source, and the highest-
numbered node is the sink. Arc capacities are shown in boxes.

(a)

FIGURE 3.24 Maximum flow in networks.
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3.2 A data communications network can be described by the diagram in Figure 3.25. Every
data link from node i to node j has a capacity which is denoted as a label on the data link
in the diagram. Non-existent links have zero capacity. Data is being generated at node 1
and is to be routed through the network (not necessarily passing through all other nodes)
to node 6 where the data will be used. The amount of data generated at node 1 is exactly
the amount of data consumed at node 6. No data is generated or used at intermediate
nodes, so all data that enters an intermediate node must leave it, and vice versa.

4

FIGURE 3.25 Communications network.

(a) What is the maximum feasible amount of data that can flow through this network?
(b) What is the flow on each of the data links in order to achieve this maximum?
(c) Which links comprise the bottleneck in this network?
(d) What is the complexity of the Ford-Fulkerson algorithm for maximum network flow?

3.3 Formulate and solve the following distribution problem to minimize transportation costs,
subject to supply and demand constraints. Two electronic component fabrication plants,
A and B, build radon-cloud memory shuttles that are to be distributed and used by three
computer system development companies. Given below are the various costs of shipping
a memory shuttle from fabrication plants to the system development sites, the supply
available from each fabrication plant, and the demand at each system development site.

Fabrication plant A is capable of creating a supply of 160 shuttles; and the cost to
ship to site 1, 2, and 3 is $1000, $4000, and $2500, respectively. Fabrication plant B can
produce 200 shuttles, and the shipping costs are $3500, $2000, and $4500 to the three
sites. The demand at site 1 is 150, at site 2 is 120, and at site 3 is 90 memory shuttles.
(a) Identify the decision variables, write the objective function, and give the constraints

associated with this problem.
(b) Solve this distribution problem.

3.4 Suppose that the countries of Agland, Bugland, and Chemland produce all the wheat,
barley, and oats in the world. The world demand for wheat requires 125 million acres
of land devoted to wheat production. Similarly, 60 million acres of land are required for
barley, and 75 million acres of land are needed for oats. The total amount of land available
for these purposes in Agland, Bugland, and Chemland is 70 million, 110 million, and
80 million acres of land, respectively. The number of hours of labor needed in the three
countries to produce an acre of wheat is 18 hours, 13 hours, and 16 hours, respectively.
The number of hours of labor needed to produce an acre of barley is 19 hours, 15 hours,
and 10 hours in the three countries, respectively. And the labor requirements for an acre
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of oats are 12 hours, 10 hours, and 16 hours in the three countries, respectively. The
hourly labor cost to produce wheat is $6.75 in each of the countries. The labor cost per
hour in producing barley is $4.10, $6.25, and $8.50 in the three countries. To produce
oats, the labor cost per hour is $8.25 in each country. The problem is to allocate land
use in each country so as to meet the world food requirements and minimize the total
labor cost. Formulate this problem as a transportation model, letting decision variable
Xy denote the number of acres of land allocated in country i for crop j.

3.5 Four workers are to be assigned to machines on the basis of the worker's relative skill
levels on the various machines. Five machines are available, so one machine will have

, no worker assigned to it. In order to maximize profitability, we wish to minimize the
total cost of the assignment. Use the cost matrix given below, and the Hungarian assign-
ment algorithm, to determine the optimal assignment of workers to machines, and give
the cost of the optimal assignment.

Workers
1
2
3
4

1

10
3
2
4

2

9
4
1
3

Machines

3

8
5
1
5

4

12
14
10
12

5

7
6
2
6

3.6 Four federally funded research projects are to be assigned to four existing research labs,
with one project being allotted to each lab. The costs of each possible placement are
given in the table below. Use the Hungarian method to determine the most economical
allocation of projects.

Sandy Lab Furrmy Lab Xenonne Lab Liverly Lab
Project
Cryogenic cache

memory

Spotted owl

habitat

Pentium oxide

depletion

Galactic genome

mapping

12

8

20

10

15

10

22

12

10

6

18

8

14

9

12

16

3.7 To solve a maximization assignment problem, first convert it to a minimization problem
by multiplying each element in the cost matrix by -1, then adding sufficiently large
constants to rows and column so that no element is negative. Then apply the Hungarian
method to the new problem. Suppose the following matrix elements represent the value
or productivity of associating certain workers with machines. Solve this assignment
problem to maximize the productivity.

Workers
1
2
3
4

1

6
4
5
9

2

7
3
8
5

Machines
3

6
8
9
4

4

7
8
8
3
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3.8 The matrix below contains the hazard insurance premiums that a company must pay in
order for employee i to operate machine j. It is assumed that a low insurance premium
implies that a worker can safely and proficiently operate a machine. Determine an
assignment of workers to machines that will be the safest (least hazardous).

36 24 16 12

14 28 40 26

12 22 28 38

28 22 38 38

What is the total insurance premium corresponding to the optimal assignment?

3.9 Prospective employees are to be assigned to jobs by the following mechanism: Each
employee ranks his job preferences (rank 1 means highest preferences) and this infor-
mation is contained in an array P where psj denotes employee i's ranking of job j.
Similarly, each prospective employer ranks his preferences of employees, and matrix R
is such that r^ denotes employer i's ranking of employee j. Formulate this problem to
determine an assignment of n jobs to n employees that optimizes the mutual satisfaction
of employers and employees. (Assume that each employer corresponds to a different job.)

3.10 A group of m people, where m ̂  40, is to be organized into teams of at most four people.
Each team is associated with a workstation, of which ten are available. People may not
express preferences for teammates; however, each ranks his workstation preference, and
these preferences appear in a 40 x 10 matrix P where p^ denotes the preference of person
i for workstation j (low numbers in P indicate high preference). This is a variation of
the classical assignment model. Formulate this problem to optimize the association of
people to workstations.

3.11 Use Kruskal's algorithm to find the minimum cost spanning tree for the undirected graph
in Figure 3.26. Identify the arcs in the tree, and state the cost of the minimum spanning tree.

3.12 Use Prim's algorithm to find the minimum cost spanning tree for the graph in Figure
3.26. Identify the arcs that comprise the minimum spanning tree, and state the cost of
the minimum spanning tree for this graph.

FIGURE 3.26 Minimum spanning tree.



Network Analysis 135

3.13 Consider a graph in which the four nodes are located at the corners of a unit square, and
the shortest possible arcs connect all pairs of nodes.
(a) Find the minimal spanning tree of this graph.
(b) Construct the Steiner tree obtained by placing a junction point in the center of the

square. Is this an optimal Steiner tree?
(c) Determine the total length of the connections in this Steiner tree, and compare it

with the length of the connections in the minimum spanning tree.

3.14 How many different spanning trees are there in a fully connected undirected graph of
five nodes?

3.15 How many arcs are there in a spanning tree of a fully connected undirected graph with
1000 nodes?

3.16 Use the backward labeling algorithm to find the shortest path from node 1 to node 9 in the
graph in Figure 3.27. The labels shown on the arcs denote costs or distances between nodes.
(a) What are the arcs in the shortest path through this network?
(b) What is the length (cost) of the shortest path?

FIGURE 3.27 Shortest path.

3.17 Given below is the connectivity matrix of a graph. Use the shortest path labeling algorithm
to find the shortest route from node 1 to node 6. The symbol «> denotes the absence of
a path.

"0
OO

OO

00

OO

OO

5

0
OO

00

OO

OO

OO

3
0
OO

OO

OO

6

1
OO

0
OO

OO

OO

OO

2

3

0
OO

OO

8
OO

6
2
0

3.18 Formulate the general problem of finding the minimum cost (shortest) path from node
1 to node n in a directed acyclic network of n nodes, where the distance from node i to
node j is denoted d^. Hint: Let the decision variables be restricted to have only the values
zero or one, with the following interpretation:

Xy = 1 means the arc from node i to node j is in the shortest path,
= 0 otherwise

Give the objective function and the constraints, in terms of these decision variables.
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3.19 Six thousand dollars is to be applied to a student's educational expenses in the
following way:
Between $1000 and $3000 for books
Between $2000 and $4000 for tuition
Between $1000 and $2000 for tutors

The allocation is to be made in whole thousands of dollars. An analyst has quantified
the anticipated payoffs (perhaps in terms of increased future earnings) as:

Books Tuition Tutors

Invested $1K
$2K
$3K

Return
$5K
$8K
$10K

$2K
$3K
$4K

Return
$6K
$8K
$9K

$1K
$2K

Return
$2K
$3K

Use dynamic programming to determine the optimal allocation of the $6000. Show the
tables you build as you solve this problem.

3.20 A student must select ten elective courses out of four different departments. From each
department, at least one and no more than three courses must be chosen. The selection
is to be made in such a way as to maximize the combined general "knowledge" from
the four fields. The chart below indicates the knowledge acquired as a function of the
number of courses taken from each field. Solve this as a dynamic programming problem.
Show each of your tables in this staged decision-making process.

Number of Courses Taken

Anthropology
Art
Economics
Physics

1
25
20
20
50

2
50
30
40
60

3
60
40
50
60

3.21 A space telescope being launched aboard a space shuttle is to be deployed and imme-
diately will be transmitting data to earth-bound data processors at a prodigious rate.
Suppose you have four teams of programmers that can be allocated among two projects:
one aimed at collecting and compressing data, and another whose responsibility is to
catalog and store data. Because this data is extremely valuable and virtually irreplaceable,
it is essential that you allocate programming teams optimally to the two projects. Each
of the two projects must have at least one team assigned to it. Use a dynamic programming
table-oriented method to allocate the four teams. The following information is available
to you.

Payoff for Assigning Teams to Projects

Number of Teams Allocated
1
2
3

Collecting and
Compression Project

5
9
12

Cataloging and Storage
Project

4
10
15
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FIGURE 3.28 Activity diagram.

3.22 A small project consists of ten jobs whose durations in days are shown on the arcs in
the activity diagram in Figure 3.28.
(a) Calculate early and late occurrence times for each event.
(b) What is the minimal project duration?
(c) Which activities are critical?

3.23 Suppose that for the above project, we have the following crash times and costs:

Task (i, j)
(1.2)
(2,3)
(2,4)
(3,5)
(3,6)
(4,6)
(4,7)
(5,8)
(6,8)
(7,8)

Minimum (Crash) Duration
2

3

5
2
1

3
2
5
5

3

Crash Cost
($/day)

$20

15
25

20
—

20
—

15
15
20

(a)
(b)

(c)

What is the minimum (crashed) project duration?
Determine the minimum crashing costs of schedules ranging from normal length
down to the minimal length.
If overhead costs amount to $75 per day, what is the optimal schedule length with
respect to both crashing and overhead costs? Indicate the scheduled duration of
each activity in this optimal schedule.
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4.1 FUNDAMENTAL CONCEPTS

Mathematical programming problems in which the variables are constrained to have integer
values are called integer programming problems. Many engineering, industrial, and financial
applications involve integer constraints. For example, in a manufacturing scenario, it would be
difficult to implement a solution that specifies producing 10.4 cars or 7.2 tables. Fractional values
are infeasible. For integer programming problems, the feasible region is neither continuous nor
convex, as illustrated in Figure 4.1 for a simple two-dimensional integer problem. Observe that
the feasible points for this problem do not lie at the extreme points of the region, or even on the
boundaries; and in fact, the elegant solution techniques that have been developed for solving
linear programming problems generally do not find solutions to integer problems. The Simplex
method for linear programming converges to a solution at an extreme point which is typically a
point, with fractional variables.

Although the formulations of integer programming problems often look remarkably similar to
those of continuous mathematical programming problems, the resemblance is in some ways decep-
tive. The algebraic expression of the objective function and the constraints in the two types of
models may appear to have a similar form, but the additional constraint requiring that some or all
of the variables have integer values generally makes solving the integer problem vastly more
difficult, from a computational standpoint. Most integer programming problems are classified as
hard optimization problems, and many integer programming problems belong to the class of NP-
hard problems (described in Chapter 1). So, while a general linear programming problem may be
solvable in polynomial time, finding an optimal integer solution to the same formulation usually
requires an exponential amount of computation time.

Most integer programming problems are notoriously difficult, yet some integer problems are
easy to solve. In particular, many linear network problem solutions, such as assignment and
matching problems, transportation and transshipment problems, and network flow problems,
always produce integer results, provided that the problem bounds are integers. In these problems,
all of the extreme points of the feasible region represent integer solutions; therefore, if these
problems are formulated and solved as linear programming problems, we find that the Simplex
method yields integer solutions. Unfortunately, this occurs only for problems that have a network
structure, and for the majority of integer problems, the linear programming formulation does not
suggest an easy solution.

For integer programming problems with linear objective and constraints, one may wonder why
we cannot simply solve the linear program (LP) and then round the answer to the nearest integer.
The rounding approach turns out to be more difficult than it may seem. For example, if we have
equality constraints, and we round down some variables, we will probably have to round up some
others, and selecting which ones go up and which ones go down is itself an integer decision problem.
Even when there are no equality constraints, it is easy to construct examples in which rounding
up or down or to the nearest integer does not result in a feasible solution. Thus, in general, rounding
does not yield satisfactory solutions.

That being said, there are some problems for which rounding can be effective. For example,
in solving a problem for manufacturing tires, if the LP solution specifies making 1296A tires of a
particular style, it is probably safe to round the answer down to 1296 without drastically affecting
feasibility or the objective function. In contrast, if the product being manufactured is a multi-million
dollar aircraft, rounding is probably a poor solution. Rounding down a half a plane here or there
could put a company right out of business. In some cases, a simple guideline for deciding whether
rounding is an appropriate option might be to assess the damage (expressed as a percentage) to the
objective function that results from rounding. In our examples, rounding down 1296.4 tires will
almost certainly have a negligible impact on total profit, whereas rounding a small number of would
probably have a significant effect.
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x =(1.789,3.158)

FIGURE 4.1 Graphical representation.

An even more dramatic difficulty arises when using rounding for integer problems in which
the variables are further constrained to have values of either zero or one. Consider a production
planning problem for a large auto manufacturer such as General Motors, where it must be decided
at which plants each car model should be built. A formulation for this problem might involve
variables Xy, each having a value of one or zero, depending on whether model i is produced at plant
y, or not. Suppose there are ten plants, and each model can be assigned to only one location. An
LP solution could easily recommend a small fraction of each model at each plant, yet rounding
could produce a solution in which no models are produced anywhere. This situation is frequently
encountered in integer programming; and in such cases, the LP solution gives virtually no insight
into how to solve the integer problem.

4.2 TYPICAL INTEGER PROGRAMMING PROBLEMS

Mathematical programming problems in which all decision variables must have positive integer
values are called general integer programming problems. If all the decision variables are restricted
to have only the value zero or one, the problem is then called a zero-one programming problem.
In that case, the constraints on the variables are sometimes called "binary" or "boolean" constraints,
and the model is often referred to in abbreviated form as a 0-1 problem. Variations on the above
problems arise if some of the variables must be integer, others must be zero or one, while still
others may have real values. Any problem involving such combinations is described as a mixed
integer programming problem. This section illustrates each of these types of integer problems
with typical practical examples.

4.2.1 GENERAL INTEGER PROBLEMS

An illustration of general integer programming can be found in a simple version of the portfolio
selection problem. An investor wishes to purchase a portfolio of financial instruments that will
provide a maximum expected return. Many investment products, such as on the futures market for
example, must be purchased in large lot sizes. We can define variables xi to denote the number of
units of security i in the portfolio. The objective function measures the expected return, and the
problem will often have constraints limiting the amount of risk that the investor is willing to accept.
In the simplest form of the problem, we could assume that the only constraint on the portfolio is
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a limit on the number of dollars that can be invested. Problems that have this basic underlying
structure involve selecting as many investments as possible and figuratively "packing" them into a
portfolio of limited size.

A three-dimensional view of this same idea is seen in a problem known as the cargo loading
problem. Consider trying to pack boxes into trucks or shipping containers. The variables xtj

represent the number of boxes of type i to be loaded into container./. The constraints for this type
of problem are complicated because they must define a spatially feasible packing.

The employee scheduling problem can also be formulated as a general integer problem, in
which we define a number of shift patterns for workers. For example, a pattern could be to have
a person work the day shift on Monday, Tuesday, and Wednesday, have 2 days off, and then work
Saturday and Sunday evening. We then define variables xt to specify the number of employees who
are assigned to work using pattern i. The objective is to minimize total salary costs while ensuring
that there are sufficient employees available in each shift.

4.2.2 ZERO-ONE PROBLEMS

Zero-one problems are among the most common integer problems. All of the variables in the
problem are required to take on a value of zero or one. Often, the variables have an abstract
interpretation; they simply indicate whether or not some activity occurs, or whether or not some
particular matching or assignment takes place.

One of the simplest zero-one examples is the capital budgeting problem. Suppose we have a
number of possible projects from which we must choose. Each project has a known value, and
requires some level of resources such as funding, space, time, or services. We define the variables
xf to have a value 1 if project i is selected. The objective is to maximize total value subject to a
constraint on total budget. (This problem at first appears to be another form of packing problem;
but in this case, each project is to be chosen just once or not at all.)

Many scheduling problems can be formulated using zero-one variables. For example, in a
production scheduling environment, we could define variables xik to have a value 1 if job i is
assigned to machine £, and zero otherwise. Or we might define variables y^ = 1 if job i immediately
precedes job j on an assembly line. We can then use these variables to develop constraints on the
time available for resources, on due dates for individual jobs, and on total schedule costs.

A simple example of a scheduling problem is examination timetabling. Variable x^ is given
a value of 1 if examination i is assigned to period j. Conflicts are not allowed, so constraints are
included to prevent two examinations from being assigned to the same period if any students need
to be present at both exams. Additional constraints may reflect limits on the number of exams per
period, or the total number of seats in an exam location. The objective function must in some way
measure the quality of a given timetable.

Another popular variation is the vehicle routing problem. Suppose that a fleet of trucks on a
given day must deliver goods from a central warehouse to a set of customers. The..objective is to
minimize the total cost of making all deliveries. The cost is normally approximated based on
minimizing the number of trucks used and the total mileage and/or total hours of delivery time.
One common formulation of this problem defines variables xijk to have a value 1 .if customer i is
assigned to truck j and is delivered immediately before customer k. Constraints are included to
ensure that the assignment is feasible (perhaps based on the drivers' expertise, or on contractual
agreements or regulations).

One of the most successful practical applications of integer programming has been in the airline
crew scheduling problem. The airlines first design a flight schedule composed of a large number
of flight legs. A flight leg is a specific flight on a specific piece of equipment, such as a 747 from
New York to Chicago departing at 6:27 a.m. A flight crew is a complete set of people, including
pilots, navigator, and flight attendants who are trained for a specific "airplane. A work schedule or
rotation is a collection of flight legs that are feasible for a flight crew, and that normally terminate
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at the point of origin. Variables xi} have value 1 if flight leg i is assigned to crew 7. The objective
is to ensure that all flight legs are covered at minimum total cost. Most of the major world airlines
now use integer programming to assign crews to flight legs, and many claim to be saving millions
of dollars annually in operating costs.

A distributed computing problem arises in a multiprocessor computing environment where the
programs and data files must be allocated to various machines in different locations. Variables x{j

have a value 1 if module i is assigned to processor/ The objective is to minimize the total execution
costs (which may depend on the choice of processor) and communication costs (that are incurred
when one processor needs to communicate with another).

4.2.3 MIXED INTEGER PROBLEMS

Section 4.1 introduced the problem of production planning at General Motors. In that problem,
there are two sets of variables: it is necessary to decide which products are assigned to each plant,
and then to determine production levels at each plant. We could define zero-one variables xtj = I
if product i is assigned to plant j. We might then define variables y^ to represent the number of
units of product i to produce at plant/ If production levels are fairly high, we might treat the yfj

variables as real valued, and round them to integers in the end. Additional constraints must prevent
a product from being produced if it is not assigned to the plant. The problem can be modeled as
a large mixed integer problem with both zero-one and real-valued variables.

A related problem involves warehouse location: given a set of potential locations for
warehouses for a distributor, select the locations that will minimize total delivery costs. We can
define zero-one variables xj to have a value 1 if location j is selected. Once it is decided which
locations are going to be used, then we must solve some kind of a transportation problem to
get the products from the producers to the warehouses, and from the warehouses to the
customers. Real-valued variables ytj are defined to represent the amount of product transported
from supplier i to warehouse y, and real-valued variables zjk denote the amount of product
distributed from warehouse j to customer k. The total cost is a function of the distances that
the products must travel.

A further variation, which can be considered as a general version of warehouse location, is
called the fixed charge problem. Suppose there is a fixed cost (with a zero-one variable) for
opening a warehouse. Once the warehouse is open, the remaining costs are essentially continuous.
There are a number of practical problems that lend themselves to this type of formulation. For
example, when a telecommunications company installs fiber-optic cable, there is a fixed cost for
actually laying the cable, but then there is a real-valued cost corresponding to the capacity of the
cable. This leads to a related problem called capacity planning.

4.3 ZERO-ONE MODEL FORMULATIONS

This section presents a few examples of mathematical formulations of some classical zero-one
programming problems. These basic formulations frequently occur in actual practice, often in the
form of subproblems within larger practical applications. We emphasize these models because many
of the practical advances in integer programming in the past 30 years have been in the area of zero-
one models.

4.3.1 TRAVELING SALESMAN MODEL

Suppose you want to visit a number of cities and then come back to your point of origin. This is
one of the most challenging and most extensively studied problems in the field of combinatorics.
The formulation is deceptively simple, and yet it has proven to be notoriously difficult to solve.
Define zero-one variables xfj = 1 if city i is visited immediately prior to city/ Let dfj represent the
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distance between cities i and j. Suppose that there are n cities that must be visited. Then the
traveling salesman problem (TSP) can be expressed as:

n n
minimize £ Z d..x..

i = l = V V

subject to Z xfj = 1 for all cities j

E x.j = 1 for all cities i

E Z xtt < 151 - 1 for all 151 < n
IJ

The first constraint says that you must go in to city j exactly once, and the second constraint
says that you must leave every city i exactly once. These constraints ensure that there are two edges
adjacent to each city, one in and one out, as we would expect. However, this does not prevent so-
called sub-tours. A sub-tour occurs when there is a loop containing a subset of the cities. Instead
of having one tour of all of the cities, the solution can be composed of two or more sub-tours. The
third constraint eliminates sub-tours; it states that no proper subset of cities, 5, can have a total of
151 edges.

The TSP has a number of practical industrial applications. Consider the problem of placing
components on a circuit board. To minimize the time required to produce a board, one of the
primary considerations is often the distance that a placement head has to travel between components.
Another example occurs in routing trucks or ships delivering products to customers. (When we
allow multiple trucks, this problem becomes the vehicle routing problem described above.) Another
application occurs in a production environment when it is desired to minimize sequence-dependent
setup times. When multiple jobs are to be processed on a machine, the total setup time for each
job frequently depends on which job preceded it. This situation can be modeled as a TSP, where
we sequence jobs rather than sequencing the order in which cities are visited.

4.3.2 KNAPSACK MODEL

We discussed two versions of the knapsack problem in Section 4.2 when we described portfolio
selection and the capital budgeting problem. Assume that we have a number of items, and we must
choose some subset of the items to fill our "knapsack," which has limited space. Each item, i, has
a value vi and takes up wt units of space in the knapsack. Let the zero-one variables xt = 1 if item
i is selected, and let b represent the total space in the knapsack. Then we can formulate the knapsack
problem as follows:

maximize I, vtx.

n
subject to Z w.jt. ̂  b

The zero-one version of the knapsack problem states that every item is unique, and each can either
be selected or not (as in the capital budgeting problem). A slight generalization of the knapsack
problem states that you can choose more than one copy of each item, so that the variables can take
on general integer values (probably with upper bounds on each variable), as with the portfolio
selection problem.



Integer Programming 147

4.3.3 BIN PACKING MODEL

Bin packing is a generalization of the knapsack problem. Suppose that we are given a set of m
bins of equal size, b\ and a set of n items that must be placed in the bins. Let w, be the size of
item i.: We define the zero-one variable xi} = I if item i is placed in bin j. Bin packing is usually
expressed as a problem of minimizing the number of bins required to pack all of the items. We
can let yj = 1 if we need to use bin j. (Note that if yy = 0, then the corresponding bin has no
capacity.) The objective function minimizes the number of bins required

minimize Z v.
y=i J

n
subject to £ w. Jtp ̂  yf>, for all j

i xu = 1 for all i
7=1 v

Bin packing has applications in industry where, for example, there is a limited amount of work
that can be assigned to each person working at stations on an assembly line. This model may also
be applicable when deciding which products should be produced at each of several possible
manufacturing plants, or which customer should be assigned to each delivery truck. Of course,
each of these problems involves additional criteria and constraints.

4.3.4 SET PARTITIONING/COVERING/PACKING MODELS

Many problems in combinatorial optimization include (as subproblems) partitioning a group of
items into "optimal" subsets. For example, vehicle routing requires that we allocate customers to
vehicles. Airline crew scheduling requires that we allocate flight legs to a crew. Municipal garbage
pickup requires that we allocate specific street blocks to trucks. Each of these subproblems can be
modeled in the following form as a set partitioning problem:

minimize Zy c} x}

subject to: £. afj Xj = 1 for all i = 1, ..., m

Xj = 0 or 1 for all j

where afj = 1 if item i is included in (potential) subset j. Each column of the m x n constraint
matrix A represents a feasible combination of items. For example, each column might represent
the items that could feasibly be loaded into a truck for delivery to customers; or the items could
be road segments that require garbage collection, and a column would represent a feasible route
for a truck to pick up garbage. The cost c, represents the cost of delivering (or traveling, or producing)
that subset of items. A variable x} = 1 if we decide to include that particular subset in our solution.

In the set partitioning problem, all of the items must be included exactly once. In vehicle
routing, for example, we might typically require that exactly one truck travel to each customer. In
a slightly different problem, the set covering problem, we require that each item be selected at
least once. For example, in the garbage collection problem, and in the crew scheduling problem,
every street (every flight leg) must be covered at least once; but it is also feasible to cover the same
street (flight leg) twice, if this turned out to be the most efficient solution. (The second truck would
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not pick up any garbage, and the second flight crew would ride as passengers.) Set covering differs
from set partitioning in that the constraints are "s:" inequalities instead of equalities.

The set packing problem describes another similar situation. In some production scheduling
problems, we are given a list of orders, and we have possible subsets of orders that can be combined
on different machines. In some cases, there may not be sufficient resources to satisfy all of the
demand. The problem is to select the optimal subset of orders to maximize some profit function,

•Pj. This problem can be formulated as:

maximize 1L. PJ Xj

subject to E; (iffi ^ 1 for all i = 1, ..., m

Xfj = 0 or 1 for ally

We select as many items as possible, but we are not allowed to process any items more than once.
We will revisit this type of problem in greater detail in Section 4.8, where we discuss column
generation.

4.3.5 GENERALIZED ASSIGNMENT MODEL

Section 3.3 described the assignment problem, which is considered to be one of the easiest
combinatorial problems to solve. The assignment problem can be formulated as follows:

minimize X^.c-Jt-

subject to ZjjCg = 1 for all i = 1, ..., n

Ztx9 = 1 for ally = 1, ...,n

x^ = 0 or 1 for all i, j

This classical representation can be illustrated by a set of jobs that must be allocated to a group
of workers. The term ctj represents the cost of assigning job i to employee j. The first constraint
requires every job to be assigned to exactly one employee; and the second constraint states that
every employee must do exactly one job.

The generalized assignment problem is a fairly simple extension in which every job must be
assigned to one employee, but each employee has the capacity to perform more than one job. In
particular, suppose that each employee, y, has a limited amount of time, (fy hours) available, and
that job i will take employee j a total of atj hours. Then, the generalized assignment problem can
be formulated as:

minimize Z.Z^.C-JC-

subject to lijX- = 1 for all i = 1, ..., m

ZpgXg ^bjl for ally = 1, ...,n

jc,y = 0 or 1 for all i, j
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As discussed earlier, the generalized assignment problem has applications in the vehicle routing
problem, where every customer order must be assigned to one truck, but a single truck can hold
more than one customer order, subject to capacity constraints.

4.4 BRANCH-AND-BOUND

4.4.1 A SIMPLE EXAMPLE

Branch-and-bound algorithms are widely considered to be the most effective methods for solving
medium-sized general integer programming problems. These algorithms make no assumptions
about the structure of a problem except that the objective function and the constraints must be
linear. Even these restrictions can be relaxed without changing the basic framework of the technique.

In its simplest form, branch-and-bound is just an organized way of taking a hard problem
and splitting it into two or more smaller (and hence easier) subproblems. If these subproblems are
still too hard, we "branch" again and further subdivide the problems. The process is repeated until
each of the subproblems can be easily solved. Branching is done in such a way that solving each
of the subproblems (and selecting the best answer found) is equivalent to solving the original
problem.

Consider the following simple example in two variables. A manufacturer has 300 person-hours
available this week and 1800 units of raw material. These resources can be used to build two
products, A and B. The requirements and the profit for each item are given as follows:

Product Person-hours Raw Material Profit ($)
A 150 300 $600
B 10 400 $100

Let x{ and x2 represent the integer number of units of products A and B, respectively. We can
formulate this problem as an integer linear programming problem:

Maximize z = 600jCj + 100jc2

Subject to 150.x, + 10*2 < 300

300*, + 400*2 < 1800

*, jto ^ 0 and integer

This problem is illustrated in Figure 4.1. The feasible region is given by the discrete set of
integer points within the constraint region. The optimal LP solution occurs at jc, = 1.789 and x2

= 3.158 with a profit of z = 1,389.47. Unfortunately, we cannot sell a fractional number of items.
One obvious alternative is to round down both values to jc, = 1 and x2. = 3, for a profit of $900.
We will call the feasible integer solution x! = (1,3) the current incumbent solution, which is the
best answer found thus far. When we find a better integer solution, we will update the current
incumbent. Before reading any further, try to locate the optimal integer solution to the problem in
Figure 4.1, and consider how integer solutions might be found in general.

The basic branch-and-bound algorithm results from the following observations: ;

• The feasible integer solution x = (1,3) with z = 900 was fairly easy to find. The optimal
integer solution cannot have a lower value of z than $900. Thus, we write z1 = 900 and call
this a "lower bound" on the optimal solution. Each time we find a higher valued integer
solution, we replace the lower bound z1. This is the "bound" part of branch-and-bound methods.
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• Over the whole feasible region, the largest possible value of z = 1389.47, which is the
real valued solution obtained from the LP. We call this an upper bound on the optimal
integer function value.

• The graphical solution shows that x2 = 3.158. This is infeasible because it is a fractional
solution. Since x2 must be an integer, then apparently either x2 ^ 3 or x2 ^ 4. This is
equivalent to saying that x2 cannot lie part way between 3 and 4.

Consider the following two subproblems:
[A] Maximize z = 600.x, + 100*2

Subject to ISO*, + 10x2 < 300

300*! + 40Qx2 < 1800

x{ ^ 0 and integer

x2 ^ 4 and integer

[B] Maximize z = 600*, + 100*2

Subject to 150^ + 10*2 < 300

300x, + 400*2 < 1800

x}, x2 ^ 0 and integer

x2 < 3

Observe that if we find the best integer solution of both of these subproblems, then one of them
must be the optimal solution to the original problem. These subproblems are represented graphically
in Figure 4.2, where the diagram is identical to Figure 4.1 except that the range of values for x2

between 3 and 4 is now infeasible. We say that we have separated on variable x2.
Consider problem [A] first. The LP solution occurs at x = (0.667,4) with an objective function

value of z = $800. Notice that x2 is now integer valued. We will see that each time we separate,
the chosen variable will always be integer, although it does not necessarily stay integer on subse-
quent iterations.

By definition, the linear programming solution is the largest value possible for the problem.
Therefore, the value z = 800 is an upper bound on all possible solutions in the feasible region for
problem [A]. Any integer solution to [A] must be ^800. However, we already have a feasible
integer solution with z1 = 900. Therefore, problem [A] can be ignored. It cannot contain any answer
better than 900. In branch-and-bound terminology, we say that problem [A] has been "fathomed."

In general, a subproblem is called fathomed whenever it is no longer necessary to branch any
further. A subproblem is fathomed when the LP solution is less than the current lower bound for
a maximization problem, when the LP solution is infeasible, or when the LP produces an integer
solution.

Problem [B] has its optimal LP solution at x = (1.8, 3) with a function value of z = 1380.
This value gives us a new upper bound on the optimal integer solution. At each iteration of the
branch-and-bound process, the upper and lower bounds can be revised until they eventually converge
to the optimal solution. We now know that the optimal value lies between 900 and 1380. Variable
x2 is integer valued, but *, is still fractional. We can now further divide problem [B] into two
subproblems based on the fact that jc, ^ 1 or xl ^ 2 as follows:
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2--

FIGURE 4.2 Separate into two subproblems.

[Bl] maximize z = 600*, + 100*2

subject to ISO*, + 10jt2 < 300

SOOjc, + 400*2 < 1800

xl9 *2 ̂  0 and integer

*,<!

*2< 3

[B2] maximize z = 600*! + 100*2

subject to 150*! + 10*2 ̂  300

300*, + 400*2 < 1800

*2 ̂  0 and integer

*! ̂  2 and integer

*2 ̂  3

For problem [Bl], it is easy to see that the optimal LP solution occurs at point * = (1,3) with
a function value z = 900. Since * is now integer valued, it must be optimal for this subproblem.
This subproblem is considered to be fathomed because it gives us an integer solution: there is no
need for further branching. It is also considered fathomed because the solution of 900 is no better
than the one we already obtained earlier. In either case, problem [Bl] is finished.

Problem [B2] consists of the single point * = (2,0) with a function value of z = 1200. This
solution is both integer, and better than die previous lower bound. Since * is integer, subproblem
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[B2] is fathomed and no further branching is required. Our new lower bound increases to zl =
1200 and xl = (2,0) becomes the new current incumbent.

At this point, we observe that all of our subproblems have been fathomed. Therefore, xl = (2,0)
is the optimal integer solution, and zl = $1200 is the optimal function value.

It is often convenient to display this procedure in the form of a branch-and-bound tree. The
tree corresponding to the previous example is illustrated in Figure 4.3. Each subproblem is repre-
sented by a node in the tree. Each node must either be fathomed or split into subproblems, which
are shown by lower level nodes.

In Figure 4.3(a), node 0 represents the original problem. We construct nodes 1 and 2 (for
subprobiems [A] and [B], respectively) by constraining jc2 in Figure 4.3(b). Node 1 is fathomed
and node 2 is further subdivided into nodes 3 and 4 in Figure 4.3(c), corresponding to problems
[Bl] and [B2].

z =1390

*x= (1.789, 3.158)

z' = 900

(a)

= 800 =
(fathomed)

z*< 900

< 3

x =(1.8, 3)

z*=1380

(b)

z =1390

z =800

z =900
(fathomed)

(c)

z1 =1200

= x1 =(2.0)

New incumbent (fathomed)

FIGURE 4.3 Branch-and-bound tree.

x' = <1,3)

x*-|

z*=<
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v < :

\z =1380

x,>

v >A

1.4)

\2
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4.4.2 A BASIC BRANCH-AND-BOUND ALGORITHM

We will now give a more precise description of the above procedure. The problem should be
expressed with a maximization objective. A node in the tree is called an active node if it has not
been fathomed and we have not separated on it yet.

Step 0: Initialize
Let the set A denote the list of currently active nodes. A node in the tree is active if we
have not either solved it or subdivided it yet. Initially, the set A = {the original problem},
node 0, and zl = -°°.

Step 1: Done?
If the set A is empty, then stop. The current incumbent, xl is optimal.

Step 2: Branching
Select a node, y, from the active list A (and remove it from A) according to some
"Branching Rule."

Step 3: Solve
Solve the LP relaxation of node/ (That is, relax or ignore the integer restrictions.)
Let z* denote the optimal LP solution at point x*.

Step 4: Fathoming Criterion 1
If the LP has no feasible solution, then nodey is fathomed; go to Step 1.

Step 5: Fathoming Criterion 2
If z* < zl, then this subproblem cannot contain any integer solution better than the current
incumbent: node j is fathomed; go to Step 1.

Step 6: Fathoming Criterion 3
If ** is integer, then it becomes the new incumbent. Set jc1 = ** and zl = z*. Node j is
fathomed; go to Step 1.

Step 7: Separation
Otherwise, we must separate node j into two or more subproblems (according to some
"Separation Rule." Select some fractional variable in x* and construct two new subprob-
lems. Add these new nodes to the set A and go to Step 1.

4.4.3 KNAPSACK EXAMPLE

The manager of an Operations Research department in a large company has a list of projects that
she would like to initiate. Each project has an expected payback expressed (in thousands of dollars)
as the net present value over a 10-year period. Although all of the projects would be beneficial,
there are simply not enough resources (in person days) available this month to do all of them. The
estimates of resources and return are:

Project 1 2 3 4 5 6 7 8
Estimated Value 15 20 5 25 22 17 30 4

Days 51 60 40 62 63 50 70 10

There are 250 person-days available this month. Which projects should be selected? At the end of
this month, the manager must write a report summarizing the results from completed projects; any
projects that are not completed cannot be included among the successful projects in the report.

Define Jt, = 1 if project./ is selected, and 0 otherwise. The "node 0" problem can be modeled as:

Maximize 15*, + 20x2 + 5x3 + 25x4 + 22x5 + 11 x6 + 30x7 + 4xB

Subject to 5 l*i + 60;c2 + 40*3 + 62*4 + 63;c5 + 50x6 + 70x7 + 10*8 < 250

X = 0 or 1
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When the 0-1 constraints are relaxed to solve the LP, we replace them with the linear
constraints:

0 < Xj< 1

Step 0: A = {0}, and zl = -<*>.
Step 1: A is not empty.
Step 2: Select node 0 from A. (A is now empty.)
Step 3: z* = 96.3 at the optimal LP solution at point x* = {0, 0, 0, 1, 1, 0.9, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > z1.
Step 6: jc* is not integer.
Step 7: Separate node 0 on a fractional variable (x6 is the only fractional value). Construct node

1, the same problem as node 0 with the additional constraint that x6 = 0. Similarly,
construct node 2, the same problem as node 0 with the constraint that *6 = 1. Let A =
{1,2}.

Step 1: A is not empty.
Step 2: Select a node from A. Suppose we choose node 2; A = {1}. Add constraint x6 = 1.
Step 3: z* = 96.25 at the optimal LP solution at point ** = {0, 0, 0, 1, 0.92, 1, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > z1.
Step 6: x* is not integer.
Step 7: Separate node 2 on a fractional variable. (xs is the only fractional value). Construct

node 3, the same problem as node 2 with the additional constraint that x5 = 0. Similarly,
construct node 4, the same problem as node 2 with the constraint that xs = 1. Let A =
{1,3,4}.

Step 1: A is not empty.
Step 2: Select a node from A. If we choose hode 4, then A = {1,3}. Add constraint x5 = 1.
Step 3: z* = 96 at the optimal LP solution at point Jt* = {0, 0, 0, 1, 1, 1, 1, 0.5).
Step 4: The solution is feasible.
Step 5: z* > z1.
Step 6: x* is not integer.
Step 7: Separate node 4 on a fractional variable. (jt8 is the only fractional value). Construct

node 5, the same problem as node 4 with the additional constraint that *8 = 0. Similarly,
construct node 6, the same problem as node 4 with the constraint that jc8 = 1. Let A =
{1,3,5,6}.

The algorithm continues until the set A is empty. The complete branch-and-bound tree for this
problem is illustrated in Figure 4.4.

4.4.4 FROM BASIC METHOD TO COMMERCIAL CODE

It is possible to construct examples in which the basic algorithm explicitly enumerates all possible
integer solutions. If we assume, for simplicity, that there are n variables, and that each variable has
m possible integer values, then our branch-and-bound tree could have as many as mn nodes at the
lowest level of the tree. The amount of computation required increases exponentially and the
problem would become computationally intractable for even moderate values of m and n. For
example, when m = 3 and n = 20, the number of potential integer solutions is over 3 billion. Of
course, we hope that the vast majority of potential nodes will be implicitly eliminated using the
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FIGURE 4.4 Branch-and-bound tree for knapsack example.

various fathoming criteria. A good branch-and-bound algorithm will try to find the optimal solution
as quickly as possible; but if we hope to solve problems of any practical size, the algorithms must
be designed very carefully. In particular, the three components of the algorithm that are most critical
to the performance of various branch-and-bound implementations are:

1. Branching strategy: Selection of the next node (in the active list) to branch on in Step 2.
2. Bounding strategy: Many techniques have been suggested for improving the LP bounds

(in Step 5) on the solution of each subproblem.
3. Separation rule: The selection of which variable to separate on in Step 7.

4.4.4.1 Branching Strategies

To control the selection of the next node for branching, it is typical to restrict the choice of nodes
from the list of currently active nodes in one of the following ways.

The Backtracking or LIFO Strategy
Always select a node that was most recently added to the tree. Evaluate all nodes in one branch

of the tree completely to the bottom, and then work back up to the top following all indicated side
branches. A typical order of evaluating nodes is illustrated in Figure 4.5(a). The numbers inside
each node represent the order in which they are selected.

The Jumptracking (unrestricted) Strategy
As the name implies, each time the algorithm selects a node, it can choose any active node

anywhere in the tree. For example, it might always choose the active node corresponding to the
highest LP solution, z*. A possible order of solving subproblems under Jumptracking is illustrated
in Figure 4.5(b).

At first glance, the backtracking procedure appears to be unnecessarily restrictive. The major
advantages are conservation of storage required and a reduction in the amount of computation
required to solve the corresponding LP at each node. Observe that the number of active subproblems
in the list at any time is equal to the number of levels in the current branch of the tree. Using
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(a)

(b)

FIGURE 4.5 Branching strategies: (a) Back tracking; (b) jump tracking.

jumptracking, the size of the active list can grow exponentially. Each node in the active list
corresponds to a linear programming problem with its own set of constraints. Consequently, storage
space for subproblems is an important consideration.

Computation time is an even more serious issue with jumptracking. Observe that each time we
solve a subproblem, we solve an LP complete with a full Simplex tableau. When we move down
the tree, we add one new constraint to the LP. This can be. done relatively efficiently if the old
tableau is still available.

To do this using the jumptracking strategy, we would have to save the Simplex tableau for each
node (or at least enough information to generate the tableau easily). Hence, backtracking can save
a large amount of LP computation time at each node. The efficiency of solving subproblems is
crucial to the success of a branch-and-bound method because practical problems will typically
generate trees with literally thousands of nodes.

The major advantage of jumptracking is that, by judicious selection of the next active node,
we can usually solve the problem by examining far fewer nodes. Observe that when we find the
optimal integer solution, many of the nodes can be eliminated by the bounding test. Jumptracking
will normally find the optimal solution sooner than backtracking. To illustrate this, suppose that
the integer solution is represented by a node at the bottom of the branching tree. With backtracking,
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each time we choose a branch, one is "correct" and the other is "wrong." If we choose the wrong
branch, we must evaluate all nodes in that branch before we can get back on the correct branch.
Using jumptracking, we can return to the correct branch as soon as we realize that we may have
made a mistake. When we find the optimal solution, many of the nodes in the "wrong" branch will
be fathomed at a higher level of the tree by the bounding test.

In short, there is a trade-off between backtracking and jumptracking, and many commercial
algorithms use a mixed strategy. Backtracking is used until there is a strong indication of being in
the wrong branch; then there is a jump to a more promising node in the tree and a resumption of
a backtracking strategy from that point. The amount of jumptracking is determined by the definition
of "wrong."

4.4.4.2 Bounding Strategies

In the branch-and-bound algorithm, suppose we have selected a node (subproblem) to branch on.
We must now choose a fractional basic variable to separate on. Whether we round the variable up
or down, the objective function value will normally decrease. The up and down penalties for each
basic variable give us an estimate (lower bound) on the reduction in the value of z that would occur
if we were to add the integer constraint. We can then use this information to pick the most promising
basic variable.

Consider the example in Section 4.4.1. The optimal LP tableau is:

Basis x, x2 x3 x4 Solution
z 0 0 3% %> 1389%,

*. 1 ° %85 -̂ 700 1%

*2 o i -ym j^go 3X9

Define £ to be the fractional part of each basic variable. In the example, /i = % and /2 =
%9 , are the fractional parts of xl and x2, respectively. Define a., to be the element of the optimal

LP tableau; and define cy to be they-th reduced cost from the tableau. We define the down penalty
D, to be the decrease in the objective function that would result from decreasing the variable to
the next lower integer value. The down penalty for branching down on the basic variable in the i-
th row is:

Dt = mim-zr*-, where afj > o

Similarly, we can derive a formula for the up penalty for variable *,, which will indicate the
amount by which the objective function would decrease if we increased the basic variable in the
i-th row to the next highest integer. The up penalty, Uh is given by:

••»

-l—± , where ait.< 0 [
au }

In the example, the down penalty corresponding to branching down on basic variable x{ is
given by:
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= 414—
19

Consider the row of the tableau corresponding to jc^ We can show that decreasing x{ by f{ = %
implies we must increase x3 by [( % I %85)] to maintain the equation. This, in turn, would produce
the given decrease in the objective function row. (See [Salkin and Mathur, 1989] for a detailed
proof.) Similarly, D2 = 9 %9, U{ = 189 %,, and U2= 589 %,. The potential effect on the new branch-
and-bound tree is shown in Figure 4.6.

4.4.4.3 Separation Rules

We can think of up and down penalties as a kind of "look-ahead*' feature, in that they give us an
estimate of the LP objective function value for separating on each basic variable without actually
solving all of the possible LP problems. We could, of course, improve these estimates by actually
solving the corresponding LP tableaus, but this would be far more expensive. With branch-and-
bound algorithms, we will always be faced with the trade-off between better (more accurate) bounds
and computational cost.

Consider the two potential branch-and-bound trees in Figure 4.6. Which tree allows a more
efficient solution? One simple general rule is to construct, at each node, a good branch and a bad
one. Hopefully, we can follow the good branch, find the optimal integer solution, and then fathom
the bad branch without having to separate further.

Thus, an effective separation rule is to separate on the variable that has the largest up or down
penalty; then branch to the active node with the highest lower bound on the new function value;
that is, the one most likely to lead to an optimal integer solution.

In the example, we would separate on variable x2 and then branch to subproblem [B] with x2

^ 3. When we solve [B], we will find the optimal integer with a function value of 1200. Because
problem [A] has an upper bound of z ̂  800, it will be fathomed without solving the corresponding
LP.

4.4.4.4 The Impact of Model Formulation

For linear programming models, it does not make very much difference how the original problem
is formulated, provided that the objective function and the constraints are correct. In integer
programming, however, the formulation itself can have a dramatic affect on algorithm performance.
As an example, consider the original problem formulation:

maximize z = 600*! + 100x2

subject to: 150*, + 10*2 + ;c3 = 300

300*, + 400*2 + x4 = 1800

xl9x2 — 0 and integer

fc-Y-T_ V 19A19J
" (—}

\2%5)

D. = mini-^-,wherea.. >0>
*»}*,, " J
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Either: Separate on X1 or: Separate on X 2

z < 975 z <1200
z < 1380

FIGURE 4.6 Up and down penalties for fractional basic variables and corresponding potential branches.

Observe that, for any feasible integer solution to this problem, x3 must be a multiple of 10, and x4

must be a multiple of 100. Suppose we first reduced the original problem to lowest common terms
(before adding the slack variables):

maximize z = 6x} + x2

subject to: I5x} + x2 + x3 = 30

3xi +4x2 + x4 = 18

x}yx2 ^ 0 and integer

This new problem is identical to the original as far as the LP is concerned, but it is not the
same integer problem! The new optimal Simplex tableau is:

x2

0
0
1

*3

%
4/51 -Ya

fa

t Solution
\9 13%

1%

The most obvious immediate consequence of this new formulation is simply that z must be an
integer multiple of 100. The upper bound on z denoted i, is now 1300. The reduction has no effect
on the up and down penalties except that we get the decrease in the reduced units of z. Because
the optimal value of z must be integer, the up and down penalties can be strengthened. For example,
£>, in the old version reduced z to 975. Using the new tableau, z will become 9.75, which can be
replaced by 9 as an upper bound on the down problem. Since the initial rounded solution is z =
9, the corresponding branch is fathomed, that is, we can branch up on x{ for free. The complete
revised branch-and-bound tree with up and down penalties is illustrated in Figure 4.7.

Notice also that the slack variables, x3 and *4 are integer valued in both problems and they will
be candidates for branching. The slack and surplus variables (and the objective function variable
z) will always be integer valued (in a pure integer problem) if all of the problem coefficients are
integer. Thus, for example, if one of the constraint coefficients is 0.5, it would be advantageous to
multiply the corresponding constraint by 2 to produce all integer coefficients. In general, any rational
fractions can be removed by multiplying by the denominator.

*1
0
1
0

Basis
z
X,

*2
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z S9

FIGURE 4.7 A complete branch-and-bound tree for the example problem using all penalty information.

4.4.4.5 Representation of Real Numbers

In Chapter 2 on linear programming, we mentioned some of the problems associated with round-
off error and numerical stability. The Simplex tableau will normally contain decimal numbers that
have a limited number of significant figures. (Single-precision arithmetic typically provides 6- or
7-digit accuracy.) As the algorithm proceeds, this rounding error will be magnified in each iteration
so that the results can become very inaccurate. This problem becomes much more critical in the
context of integer programming because we often solve the LP several thousand times. Most
commercial LP codes include a "re-inversion" feature that computes a new basis inverse matrix
after a specified number of iterations.

We have the additional problem that it is difficult even to recognize when we have found an
integer solution. The values of xt will not yield exact integer answers. We must assume that they
are actually integers when they get close enough to an integer value within some prespecified
tolerance.

In the example above, we expressed all of our calculations in the form of precise rational
fractions to avoid any rounding error. Unfortunately, this is not a very practical approach in large-
scale problems. There have been some attempts to develop software codes that keep all data in
rational form, but these efforts have not been commercially practical.

4.5 CUTTING PLANES AND FACETS

There is an extensive literature concerning the use of cutting planes to solve integer programming
problems. The majority of algorithms are theoretically intriguing, but not very effective in practice.
However, some recent developments in the application of special cutting planes for problems with
specific structure have produced some rather surprising results. One example is presented in Section
4.6 for the pure 0-1 problem. This section briefly discusses the general concepts and provides some
background.

Given any integer programming problem, consider the set of feasible integer points. If the
extreme points of the LP are all integers, then the problem is easy: the LP solution will be an
integer solution. If the extreme points are not integer, then we can always "tighten up" the constraints
(and possibly add new ones) in such a way that the new reduced LP does have integer extreme points.

For an intuitive motivation of this statement, suppose that the LP has an optimal extreme point
solution that is not an integer. Then, it should be possible to add a new constraint that makes that
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B: -2Xj+ 2x2 < 3

C: 4x,+ 6X2 < 20

FIGURE 4.8 The convex hull of the set of integer solutions.

extreme point infeasible (by at least a small amount) without excluding any feasible integer
solutions. (We will illustrate shortly that this is always possible.) We can repeat this process until
all of the extreme points are integers.

The general idea is illustrated in Figure 4.8. Given a feasible region defined by the constraints
of a linear programming formulation, we are interested in only the integer points inside the region.
In the figure, the outside polygon defines the LP feasible region: the inside polygon defines a unique
tightened region that does not exclude any integer solutions. We call the reduced region the convex
hull of the set of feasible integers. It is also referred to as the integer polytope of the problem.
(A polytope is an ^-dimensional polygon.)

A constraint is called a face or facet of the integer polytope if it defines an (n - l)-dimensional
set of points on the surface of the convex hull. In the two-dimensional example, a facet is a line
of feasible points between two integer extreme solutions. In a three-dimensional cube, for example,
the facets are simply the two-dimensional faces of the cube. A constraint that meets the cube along
only an edge (one dimension) is not a facet. Clearly (at least in three dimensions), there must be
one facet constraint for each face, and no others are needed to define the integer polytope.

If we could find all the facets of an integer problem, then all of the extreme points would be
integers and the LP solution method would easily find the optimal integer solution. Unfortunately,
for general problems, it is extremely difficult to find the facets of the convex hull. Much of the
current research in integer programming is devoted to finding some facet-defining constraints for
very specific problems.

The preceding observations have led many researchers to try to develop algorithms that would
try to approximate the convex hull of the integer polytope. In particular, it is not necessary to find
all of the facets — only the ones that define the integer optimum. Consider the following general
algorithm:

1. Solve the LP.
2. If the solution is integer, then it must be optimal.
3. Otherwise, generate a cutting plane that excludes the current LP solution, but does not

exclude any integer points, and then return to Step 1.

By our definition, a cutting plane is not necessarily a facet. A cutting plane is only guaranteed to
take a slice of non-integer solutions out of the feasible region. In general, facets are hard to find,
while cutting planes are easy; but, of course, the best cutting plane would be a facet.
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Consider the example problem from Section 4.4.4.4, the branch-and-bound example after the
coefficients have been reduced. The optimal Simplex tableau is:

Basis x, x2 x3 x4 Solution
o o yl9 yl9 13%

x, i o %7 -y51 1%
x2 o i -yl9 yl9 3%9

As a simple example of a cutting plane, observe that one row of the tableau can be written as:

Every feasible solution to this problem must satisfy this constraint, which is derived by elementary
row operations on the original constraints. To obtain an integer solution for *„ at least one of the
non-basic variables will have to increase, and these must also be integer. This leads to the simple
cutting plane:

X3 + X4 > 1

At the current LP optimum, x3 and x4 are both equal to zero. Therefore, this constraint must make
the current point infeasible. Furthermore, every feasible integer solution must satisfy this constraint,
so no integers have been excluded. That is, this constraint satisfies the criteria for a cutting plane.

Notice that there is no branching involved here; at each iteration, we define a smaller feasible
region, solve the new LP, and repeat the process, continuing until all of the basic variables are
integers.

This procedure looks intuitively appealing because the cuts are easy to find and there are none
of the complicated storage and bound problems associated with branch-and-bound methods. How-
ever, it is not a very efficient or effective technique. As an exercise, the reader should try a few
iterations on the example problem. Convergence is generally very slow, which means that we have
to generate a large number of new constraints. In fact, for this particular cut, we cannot even prove
that the procedure is always finite.

A wide variety of better cutting planes have been proposed, of which the best known is called
a Gomory fractional cut. This method is based on the premise that, in any integer solution, all of
the fractional parts (in the tableau) must cancel one another. Consider the previous example for*,.
From the tableau:

We first separate each coefficient into two parts:, an integer component and a positive fractional part:

*l+Q*3+%7*3-*4+ %X4= 1+'%

Grouping all of the integer parts together on the right-hand side, we obtain

y51x3 + %x4 = [-*, +x4 + l] + %

Observe that, for any integer solution, the part in square brackets must also be integer. Moreover,
because the variables must be non-negative, the left-hand side has to be positive. In fact, the left-
hand side must be equal to: % or (1 % ) or 2% or 3% , etc. In other words:

*1+ %7*3- &*» = 1%

*i+ ^57*3- Y*x*= 1%
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This is the Gomory fractional cut. Because the non-basic variables, x3 and x4 are equal to zero at
the current LP solution, the Gomory cut always cuts off the corner of the feasible region containing
the optimal solution. If any variable has a fractional solution, it is always possible to construct a
Gomory cut. This method has the property that it will converge in a finite number of iterations.

The main disadvantages associated with the Gomory fractional cut method are: (1) that the
method can converge slowly; and (2) unlike branch-and-bound methods, integer solutions are not
obtained until the very end. Pure cutting plane methods are therefore not considered to be very
practical for large problems.

4.6 COVER INEQUALITIES

One of the most successful approaches to 0-1 problems has been the introduction of cover inequal-
ities. A cover inequality is a specialized type of cutting plane. It defines a constraint that is added
to the original problem in the hope that the extreme point solutions will occur at 0-1 points. After
generating as many cover inequality constraints as possible, the reduced problem is solved using
a standard branch-and-bound algorithm. This technique can decrease computation time dramatically
on large, sparse zero-one programming problems, and practical problems with over 10,000 zero-
one variables have been solved to optimality. (Prior to the introduction of this method, problems
with 500 zero-one variables were considered very difficult.)

As before, the problem is formulated as a standard linear program with the additional restriction
that all variables must be either 0 or 1. The constraints are partitioned into two types. Type I
constraints are called Special Ordered Set (SOS) constraints. Type II constraints are simply all of
the non-SOS inequalities. The simplest form of SOS constraint is as follows:

Ey.€LJCj ^ 1 for some subset L of the variables

In practical problems, we will often find that the vast majority of constraints are SOS. For
example, if the variables xfj are equal to 1 if resource i is assigned to location y, then we will have
a number of SOS constraints which state that each resource can be assigned to at most one location.
We may also get SOS equality constraints if resource i must be assigned to exactly one location.

SOS constraints have a very useful property with respect to zero-one integer programming.
Observe that, when we consider only one constraint (plus the non-negativity constraints on the
variables), every extreme point solution occurs at a 0-1 point. For example, consider a simple
system: xl + x2 + x3 = 1; xltx29x3 > 0. The extreme points occur at (1,0,0), (0,1,0), (0,0,1), and
(0,0,0). Unfortunately, when several SOS constraints intersect, fractional LP solutions are intro-
duced, but the property of having many 0-1 extreme points is still very attractive.

In a sense, SOS constraints produce "easy" problems, while the remaining inequalities are
"difficult." In general, the vast majority of extreme points using non-SOS constraints will lead to
fractional solutions. Cover inequalities can be considered a simple technique for converting an
individual non-SOS constraint into a set of equivalent SOS inequalities.

Before we present a precise definition, consider the following simple constraints as an example:

3*! + 4*2 + 5jc3 < 6

Observe that if we consider only 0-1 solutions, no two of these jc/s are allowed to have a value
equal to 1. In particular, we can express this as:

%7*3+ %*4^%
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*! + *2 ̂  1

*, + *3 < 1

*2 + *3 < 1

All of these constraints are cover inequalities; if any two variables are equal to 1, then the left-
hand side will be greater than (or cover) the right-hand side. As an example, if X! and *2 = 1, then
3*, + 4*2 = 7 > 6. In fact, we can represent all three of these constraints in one by observing that
only one of these *j's can equal 1 in any feasible 0-1 solution:

*, + *2 + *3 ̂  1

Here, we can replace the original non-SOS inequality with its cover. As far as any 0-1 solutions
are concerned, the two constraints are equivalent. With respect to the LP solution, however, the
cover inequality is much more restrictive. For example, the point (1, 0.75, 0) is feasible for the LP
but infeasible under the cover.

As a more general illustration, consider the inequality:

3*, + 4*2 + 5*3 + 6*4 + 7*5 + 9*6 ^ 12

Any subset of */s that results in a sum greater than 12 can be eliminated by a cover inequality
such as *2 + *3 -f *4 ̂  2 because we cannot have all three of these variables equal to one. (The
sum would be at least 15.)

A cover for a single inequality is a subset of variables, the sum of whose (positive) coefficients
is greater than (or covers) the right-hand side value, b. A cover assumes that the inequality is in
less than or equal (^) form, and that all of the coefficients are positive (or zero). We can convert
a greater than or equal to constraint into less than or equal to form by multiplying through by -1.
We can also represent an equality constraint by two inequalities (one ̂  and a ̂ ) and then multiply
the > by -1. Each of these would be considered separately. If the constraint has a negative coefficient
for variable *,, we can perform a temporary variable substitution of *, = 1 -*/ to make all coefficients
positive.

Suppose, for example, that a problem contains the constraint:

4*, - 5*2 + 3*3 - 4*4 — 7*5 + 5*6 = 1

We can "replace" this constraint with two inequalities:

4*j — 5*2 + 3*3 — 4*4 ~ 7*5 + 5*6 ^ 1

4*, - 5*2 + 3*3 - 4*4 - 7*5 + 5*6 ̂  1

(We do not really replace the constraint. We simply transform it for the purpose of finding cover
inequalities.) The second (>) constraint can be written as:

-4*, + 5*2 - 3*3 + 4*4 + 7*5 - 5*6 ^ -1

Substitute x{ = 1 - */, *3 = 1 - *3', and *6 = 1 - *6' to get

4*,' + 5*2 + 3*3' + 4*4 + 7*5 + 5*6' < 11"
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Similarly, for the first inequality, we get:

4X, + 5x2' + 3;t3 + 4*4' + 7*5' + 5x6 ^ 17

We can then use each of these independently to construct cover inequalities. The preceding
constraint implies (among others) that:

*,.+ x3 + *4' + x$ ^ 3 (that is, the variables cannot all have the value 1)

Converting back to original variables, we get:

*, + x3 - x4 - X5 ^ 1

and we could add this new SOS constraint to the original LP, and resolve it.
In general, any non-SOS constraint can be written in the form:

where K refers to the subset of non-zero coefficients and we can assume that 0, > 0. We have
deleted the subscript i for the row to simplify the notation.

Let S be any subset of K such that:

The set S defines a cover. S is called a minimal cover if:

I,j€S dj - ak< b for all kzS

that is, every element of S must cover b. In our example, for

4x, + 5x2' + 3jc3 + 4*4' + 7jc5
f + 5*6 ^ 17

we could say that the set S = { 1, 2, 3, 4, 5, 6} is a cover. The sum of the coefficients is greater
than 17. However, there are a number of smaller covers. If we remove x2\ the set is still a cover.
If we also remove *3, the result, S = { 1, 4, 5, 6} is still a cover. However, if we remove any other
element, 5 is no longer a cover; the sum will not be greater than 17. This set is called a minimal
cover, and the cover inequality is:

jq + Jt4
f + jc5' + x6 ^ 3

or, equivalently,

xl - x4 - xs + x6 ^ 1

If the set S is a cover, then every 0-1 solution must satisfy the cover inequality:

Z * 5=151-1

*>* aft - b

s,-es aj > b
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There is a simple procedure for finding a minimal cover. Begin with S = K. Pick any index to
delete from S such that the remaining indices still form a cover. Repeat until no index can be
deleted without making the coefficient sum less than or equal to b. By repeating this process several
times in a systematic way, we could generate all possible minimal cover inequalities. However, for
large practical problems, the number of cover inequalities can be exponential. Therefore, we need
a method for efficiently finding a good cover.

Unfortunately, the approach described above is not very practical for large problems. Suppose
that one of the non-SOS constraints contains 50 variables, and each cover inequality has approxi-
mately 25 variables; then the constraint allows only half of the variables to be used in any 0-1
solution. The number of potential minimal cover inequalities is (2?) * 1.26 x 1014 . Generating all
possible covers is not a very practical strategy, for even if we could generate all covers, we would
discover that most of them were unnecessary in the following sense. The original purpose behind
constructing these constraints was to force the LP into a 0-1 extreme point. Most of the covers,
although perfectly valid, will have no effect on the current optimal solution to the LP. The preferred
approach would be to solve the LP, and then, if the solution contains fractional values, to look for
a single cover inequality that makes the current LP solution infeasible.

To illustrate this process, consider the following simple problem:

maximize z = I2x{ + I3x2 + Ibc3 + 10x4

subject to: 12jc, + 13*2 + 12*3 + 11*4 < 27

Xj = 0 or 1

Solving this problem as an LP (with constraints 0 < ;c, < 1), we find that x* = (1, 1, .333, 0),
with z* = 28.667. We want to find a set S such that:

1. The set S forms a cover of the constraint:

therefore,

Z^xj* 151-1

2. The current LP solution violates the cover inequality:

Zj*xj*> 151-1

It is fairly easy to show that, if*/" = 0, then j will never occur in the set S. Because every */"
^ 1, if any of them are zero, the constraint will never violate the. cover inequality. It is also easy
to prove that, if x* = 1, then we can always include it in the set S. If the corresponding j is not
in a set S that satisfies the above criteria, then adding; to 5 will still be a cover. Therefore, in our
example, we will include xl and jc2 and ignore *4. The only question is whether to include *3.
Observe that when we do not include it, we do not get a cover; but, when we do add it to 5, we
get a cover and the current solution violates the cover inequality, as required:

We now add this constraint to the original problem and solve the LP again. If the new solution
is fractional, we look for another cover inequality.

2*s «/>*;

x, + x2 + *3 ̂  2
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We now present a simple algorithm for finding effective cover inequalities. Let** be the optimal
solution to the linear programming problem with 0 ^ Xj f ^ 1, and suppose that we want to find a
valid cover inequality for one of the non-SOS constraints that will cut off the current LP solution.
Consider any non-SOS constraint of the form:

(We will repeat this procedure for each of the non-SOS constraints separately.)
Define the elements of S using the 0-1 variables sj9 where:

We claim that this problem is equivalent to solving the following 0-1 knapsack problem:

minimize z = I,jeK (1 -*,*)•?,

subject to E .€K aft > b

The constraint ensures that the solution will be a cover. If the optimal value of z in this
problem is less than 1, then the corresponding cover inequality will make the current LP
solution infeasible. For a proof of this claim, refer to the work of [Crowder, Johnson, and
Padberg 1983].

In this subproblem, we do not actually require the optimal value of z. It is only necessary to
find a z value less than 1, so we can use a variation of the "biggest bang for your buck" heuristic,
which will be described below, to find an approximate solution efficiently. This method may miss
a valid cover; but if it does find one, it will be acceptable.

We present a method for finding an approximate solution to the following zero-one knapsack
problem:

maximize z = 5 .̂€5 tft

subject to Zj€S ajXj ^ b

The LP version of the knapsack problem is very easy to solve optimally. The algorithm sorts
all of the variables in decreasing order of bang for buck. The cost coefficient (, represents the value
(bang) that we get from each xj9 while 0, represents the cost (buck) or weight associated with the
limited resource b. Process the variables in decreasing order of {f/o,-}, and set ;c; = 1 as long as
the constraint is still satisfied. Let k be the index of the first variable that will not fit in the knapsack.
Define the amount of space left in the knapsack (the residual) as:

r = b — £ a,
j<k J

and set xk equal to the fraction just large enough to use all remaining capacity:

2/rf aft - b

f l i f y e S
sA

[0 otherwise
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The rest of the xfs for j > k are set to 0.
This simple one-pass assignment gives the optimal objective function for the LP and has only

one possible fractional variable. Let z* be the objective function value. The optimal value z for the
0-1 knapsack problem will be less than or equal to z*. If z* is not integer valued, we can round it
down, and use it to approximate the 0-1 knapsack solution. Thus, we do not actually solve the 0-
1 knapsack problem.

The bang for buck heuristic also gives us a lower bound on the 0-1 knapsack problem. If we
ignore the fractional variable xk, we have a feasible 0-1 solution and, therefore, the optimal 0-1 is
bounded below by z* - t&k and above by [z *J. In particular, if the LP has no fractional variable,
the solution zl must be optimal. •

Our situation presents a type of reverse knapsack problem: minimize a cost function and have
at least (b + 1) selected for inclusion in the knapsack. We can apply the same "bang for buck"
heuristic; only we select the variable with the smallest ratio first, and keep selecting until the
solution is feasible.

Consider the previous example: 12^ + 13x2 + 12x3 + lLc4 < 27 and x* = (1, 1,0.333, 0). The
knapsack problem becomes:

minimize z = Qs} + 0^2 + 0.667^3 + Is4

subject to 12s, + I3s2 + 12,s3 + 1 Is 4 > 28

The heuristic solution is: s} = s2 = s3 = 1 or S = {1, 2, 3} with the value of z = 0.667, which
is less than 1. Therefore, the corresponding cover inequality, jc, + x2 + x3 ^ 2 cuts off the current
LP solution, as required.

Cover inequalities are included, as an option, in most of the higher quality commercial packages
(such as CPLEX and OSL). These implementations usually develop as many cover inequalities as
possible in a preprocessor, and then solve the reduced problem using branch-and-bound or other
techniques. Some implementations may use the technique repeatedly, after each iteration of branch-
and-bound.

In large practical test problems, Crowder, Johnson, and Padberg [1983] have discovered that
the main advantage of cover inequalities does not rely on getting 0-1 extreme points. However, the
objective function value for the resulting LP is much closer to the final integer optimum. In other
words, the cover inequalities appear to be defining very strong cuts into the feasible region. This
has a dramatic effect on the branch-and-bound routine because tree nodes will now be fathomed
much earlier, and the bounds will tend to be considerably stronger. As mentioned at the outset, it
has been possible to solve pure zero-one problems with up to 10,000 zero-one variables to optimality
in a reasonable amount of computer time.

4.7 LAGRANGIAN RELAXATION

4.7.1 RELAXING INTEGER PROGRAMMING CONSTRAINTS

At each node of the branch-and-bound algorithm, we solved a relaxation of the corresponding
integer programming problem, relaxing the hard constraints to produce an easy subproblem.
Namely, we relaxed the integer constraints, and solved the resulting LP. The solution to the easier
problem is an upper bound on the original (maximization) problem because we have ignored some
of the original restrictions.

r
** = —

ak
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With Lagrangian relaxation, we find that it is not always necessary to relax the integer
constraints. In some special problem instances, we could relax other constraints and leave the
integer restrictions in the problem, and still produce an easy integer problem. Recall from Chapter
3 that some integer problems, such as network problems, can be easy to solve.

Consider the following general definition of an integer programming problem:

Maximize z = CTX

Subject to Ax ̂  b

Dx < e

x integer

This formulation is the same as before except that we have divided the set of constraints into
two groups. Assume that the constraints of the form Ax ̂  b are relatively easy, while the constraints
Dx < e are hard. If we could ignore the second set of constraints, then the integer problem would
be easy to solve.

Unlike the LP relaxation, we will not ignore the hard constraints completely. Instead, we will
add a penalty term to the objective function that adds a cost for violating these restrictions. This
penalized function is called the Lagrangian and is written in the form:

maximize L(x,u) = CTX - uT(Dx - e)

subject to Ax < b

x integer

u ^ 0

The vector u contains one entry for each of the constraints in the set Dx ^ e. The variable
M; represents the penalty associated with violating constraint i in this group. Observe that, if
we choose any fixed values for these penalties, then the resulting function becomes a linear
function of x, and because the remaining constraints are easy, we can maximize this function
with respect to x.

To simplify the discussion, suppose that there is only one hard constraint:

E d.x. -e<0
y=i J J

and therefore the penalty u is a single scalar term. Initially, set u = 0 and solve the easy integer
problem ignoring the hard constraint. Having done this, we are likely to discover that the solution
violates the hard constraint, which means that:

I, d.x. -e>0
y»i J J

If we now keep x fixed and increase u, we will decrease or penalize the Lagrangian function.
Suppose we now choose some fixed positive penalty value for M, and rewrite the Lagrangian

as a function of x:



170 Operations Research: A Practical Introduction

maximize L(x,u) = Z (c, - udfa + ue

subject to Ax ̂  b

x integer

This problem is, once again, an easy integer problem for any fixed value of u. The penalty on
the hard constraint will eventually force the LP to move to an integer solution that is feasible when
u is large enough.

If we make u too large, the term (dx - e) becomes negative. That is, if we put too much emphasis
on satisfying the constraint, it will be over-satisfied, and we will have gone too far. The value of
u is no longer penalizing the objective function. Larger values of u will now increase L(x9u). At
this point, we can penalize the objective function by using a smaller value of u.

The optimal value of the Lagrangian function is expressed as a "min-max" problem:

minimize maximum L(JC,M)
w>0 x integer

which means that we want to find the value of u that has the greatest penalty affect on L(x,u). This
problem in itself is rather difficult; however, we can take advantage of the fact that, when we fix
u and maximize over x, the problem is easy. Similarly, when we fix x, and minimize over M, the
problem becomes an unconstrained linear function of M, and is also easy to solve. More accurately,
it is easy to decide whether u should increase or decrease (if possible) to minimize L(x,u).

4.7.2 A SIMPLE EXAMPLE

Consider the following example problem, which is illustrated in Figure 4.9:

maximize z = x} + 2x2

subject to 2x + x2 ^ 2

jc,, x2 = 0 or 1

Observe that, if a 0-1 problem does not have any constraints, it is trivial to maximize. That is, if
the objective function coefficient cj is positive, then set jcy = 1; otherwise, set xj = 0. We can express
the problem in Lagrangian form as:

minimum maximum xl + 2x2 - u(2x{ + x2 - 2)
«S> 0 Jt€(0,l)

We begin with u — 0, and note the maximum of the problem is L(x,0) = 3 with x}, x2 = 1. However,
this point violates the constraint, so we substitute these values of x into the Lagrangian, and consider
the result as a function only of u.

minimum 3 - u
«5>o

This function can be minimized by choosing u as large as possible. We could try u = 5, for example;
and when we substitute this value into the original Lagrangian, we get:
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max z = x1 + 2x2

FIGURE 4.9 Simple Lagrangian problem.

maximum *j + 2x2 - 5(2*, + x2 - 2)
x = (0,1)

= maximum -9*, - 3x2 + 10
x - (0,1)

The optimal solution to this problem is to set both decision variables to zero. The corresponding
function value is L(x,5) =10. This time, when we substitute x into the Langrangian in terms of u,
we find:

minimum 0 - u(0 - 2) = 2u
u ^ O

This subproblem tells us to decrease u as far as possible. We already know however that when
u =0, it will tell us to increase u. So, the correct value of u must lie somewhere between these
two extremes.

Observe that, for any value of w, we can solve for x and find the value of L(x,w). Figure 4.10
illustrates what we have learned so far about L(JC,M) as a function of u.

Recall that we want to minimize L(x,u) as a function of u. When u = 0, we found x = (1,1) and
the function was defined by the decreasing line as u increases. This expression is valid as long as x
= (1,1); but then at some point, the optimal solution for x changes, and we get a new linear function
describing L(JC,M). We now know what that linear function is when u = 0 and u = 5, yet we do not
know how it behaves in between these two points. The two line segments in Figure 4.10 represent
our best guess at the moment. In particular, it looks as if the minimum value of the Lagrangian will
be found when u = 1, so we try that next.

Substituting u = I into the Lagrangian gives:

maxmum jq
x = (0,1)

2x2 - l(2x, + x2 - 2)

= maximum - x} + x2 + 2
x = (0,1)

2x^ X2 < 2

1 x.

x0< 1

2

X2
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L (x*. u)

1 2 3 4 5 6

FIGURE 4.10 L(JC*, u) as a function of u.

The maximum of this function is L(x,l) = 3 when x = (0,1). If we substitute x = (0,1) into the
original function, we get:

L(x,u) = 2 - w(-l) = 2 + u

This new section of the Lagrangian is added to the previous approximation to get the function
illustrated in Figure 4.11.

From this function, we obtain a new estimate of the minimum value of u = 0.5. Once again,
we substitute this value into the Lagrangian and solve for x.

maximum jc, + 2x2 - 0.5(2*, + x2 - 2)
* = (0,1)

The maximum of L(x,0.5) = 2.5 occurs at x = (0,1) or x = (1,1). It is easy to verify that this
is the true minimum of the Lagrangian. That is, we will not find any new solutions that we have
not already described in Figure 4.11.

Let us summarize a number of very useful properties of the Lagrangian, and indicate how we
can make use of these properties.

• The Lagrangian method always finds an integer solution, although the solution found is
not necessarily feasible.

• If the solution, x1 is feasible, and if the original function, z1 at x1 is equal to the value of
the Lagrangian, then x} is optimal for the original integer problem

• Most important, if z* is the solution of the relaxed LP, L(JC, u) is the optimal solution to
the Lagrangian, and z1 is the (unknown) optimal integer function value, then

z1 < L(JC, u) < z*

A proof of these relationships can be found in [Fisher, 1985].

= maximum I.5x2 + 1
-t = (0,1)
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4 -
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1 -

FIGURE 4.11 L(**, u) as a function of 11.

In other words, the value of the Lagrangian always gives a bound on the optimal integer solution
that is at least as good as the LR Therefore, if we use the Lagrangian instead of the LP in any
branch-and-bound algorithm, we may get better results. The LP bound is never better than the
bound from the Lagrangian. In our simple example problem, the optimal integer function value zl

= 2 when z1 = (0,1). The LP solution occurs at x = (0.5, 1) with z* = 2.5. The LP and the
Lagrangian both give the same upper bound.

4.7.3 THE INTEGRALITY CAP

Let L1 be the optimal solution to the Lagrangian when the integer variables are forced to take integer
values, and let L* be the optimal solution to the Lagrangian when the integer variables are allowed
to take on real values (that is, when we drop the integer constraint on the Lagrangian). It can be
proved that the optimal solution for L* is precisely equal to the optimal solution z* to the LP. (In
fact, the penalty terms u in the Lagrangian will be identical to the corresponding dual variables in
the constraints.) Therefore, we can expand the preceding inequality to be:

zl < L1 < L* = z*

We use the term integrality gap to describe the difference between L1 and L* which is the amount
by which the Lagrangian decreases when we add the integer constraints. In the example problem,
when we solved the Lagrangian without integer restrictions, we obtained integer solutions anyway.
Adding the integer constraints does not change the function value. There is no integrality gap.
Because the optimal solution to the Lagrangian is equal to the LP solution in this example, the
Lagrangian will never give a better bound. Indeed, we saw that z* = 2.5, and L1 = 2.5. When we
construct the Lagrangian to get an "easy" integer problem, we actually do not want it to be too
easy; we want an integrality gap so that the Lagrangian bound is better than the LP bound. We
provide an example of this type of Lagrangian function in the next section.

4.7.4 THE GENERALIZED ASSIGNMENT PROBLEM

Consider the generalized assignment problem which was introduced and formulated in Section
4.3.5. This problem is similar to the standard assignment problem, where we want to assign jobs

1 2 3
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to machines for example, except that, in this case, we can assign more than one job to the same
machine subject to some capacity limitations.

The generalized assignment problem has a wide variety of practical applications. We could,
for example, be assigning computer programs to a set of processors, or customer orders to a set of
delivery vehicles, or university students to sections of a course. The capacity might represent a
space restriction (in the truck) or a limit on total available time. The problem formulation can be
written as follows:

subject to x» = 1 for i = 1, 2, ..., n
7=1

E afrj < 6 for j = 1, 2, ..., m
i=l

xtj = 0 or 1 for all i, j

where there are n jobs and m machines. The variables xfj = 1 if job i is assigned to machine/ The
payoff for assigning job i to machine j is ciy. Each machine has a capacity bp and each job requires
a, units of machine capacity. The first set of constraints forces each job to be assigned to exactly
one machine, while the second set of constraints ensures that no machine has its capacity exceeded.

In the standard assignment problem, the size of each job and the capacity of each machine is
equal to one. We have already seen in Chapter 3 that the basic assignment problem is relatively
easy to solve. Surprisingly, when we generalize the machine capacity constraint, we create an
integer programming problem that is difficult to solve. The LP solution is not necessarily an integer
solution.

A straightforward formulation of the Lagrangian is to move the capacity constraints into the
objective function:

n m m / n \
Li(x, u) = min max L I, ci/*//- ? uj ^aixu ~^,

uZO Jt=(0,l) l=1 J=l j=} V=1 /
m

subject to I, XH = 1 for i = 1, 2, ..., n
7=1

When Uj = 0, this problem is trivial to solve. We can consider each job independently, and
simply put it on the best machine (with the highest ciy). This solution will generally violate some
of the capacity constraints, so we can increase the corresponding penalty terms, uj9 and construct
a new simple problem with:

Cfj = Cjj - Uflt

This penalizes placing all jobs on the machines whose capacities are exceeded. Now, we solve this
new problem where we again place each job on the best possible machine using the values cfj.
Unfortunately, this formulation is a little too easy. The solution of the Lagrangian (in terms of x)
would give 0-1 answers even if we solved it as an LP. Therefore, there is no integrality gap and
the optimal Lagrangian function value will be the same as the LP function value for the original
problem. The corresponding Lagrangian will not produce better bounds than the LP.

The same problem could also be formulated in the following way as a Lagrangian:

n m
maximize z = £ Z c^
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n m n f m \
L,(JC, w) = min max E Z c^- £ w, Z ̂  -11

u x=(0,l) '=l '=1 '=1 V-1 '
n

Subject to Z a^ ̂  fy forj = 1,2, ..., m

This formulation can be interpreted as considering each machine separately. Initially, we
start with u = 0 and assign the best possible jobs to each machine without violating the
capacity restrictions. Each machine can be thought of as defining an independent knapsack
problem. Although the knapsack problem is not as easy as the simple assignment solution that
we used in the previous formulation, it is still a relatively easy problem in many practical
situations.

The solution obtained will generally assign some jobs to more than one machine and other
jobs will be unassigned, which are both infeasible because every job must be assigned to exactly
one machine in any feasible solution. When a job i is assigned to more than one machine, the
corresponding penalty term will be positive and we can use a positive value of ut to penalize
the Lagrangian. However, when a job / is unassigned, the term will be equal to -1, and we use
a negative value of M, to penalize the infeasibility. Thus, we do not restrict u>t to have a non-
negative value.

In this formulation, if we solve the Lagrangian as an LP, we will get a fractional solution. In
particular, each knapsack (machine) may have one fractional part of a job assigned to it. By solving
the Lagrangian as a sequence of knapsack problems, we get an integer solution, and therefore, the
problem will, in general, have an integrality gap. The integer restriction on the Lagrangian will
decrease the objective function value. Hence, the Lagrangian will give a better upper bound than
the standard LP bound.

This approach has been used successfully by [Fisher, Jaikumar, and Van Wassenhove, 1986]
to obtain practical solutions to the vehicle routing problem, in which a given set of customer orders
must be assigned to delivery trucks. Each order takes a fixed amount of space in the truck, and
there is a capacity restriction on the size of each vehicle.

4.7.5 A BASIC LAGRANGIAN RELAXATION ALGORITHM

A succinct general description of a Lagrangian relaxation algorithm is given below. We omit
implementation details because specific implementations vary considerably, depending on the
application.

1. Select an initial value for u° (say M° = 0), and find the maximum of the Lagrangian with
respect to x with u fixed. Suppose the solution is L° at ;c°. Define k = 0 to be the current
iteration.

2. Substitute the current solution xk into the Lagrangian objective function to get a linear
function of M. If the i-th coefficient of u is negative, then the Lagrangian can be reduced
by increasing the i component of M*. If it is positive, then we can decrease the Lagrangian
by decreasing the i component of uk provided it is feasible to do so.

3. Determine a value of UM such that the Lagrangian Lk+l < Lk. (There are many methods
for doing this, some of which rely on trial and error.)

4. If no decrease can be found, stop. Otherwise, set k = k + 1, and go back to step 2.

4.7.6 A CUSTOMER ALLOCATION PROBLEM

We will illustrate the basic method of Lagrangian relaxation by solving a distribution problem.
Many companies operate a number of distribution warehouses to supply products to their customers.
One of the common problems facing such companies is to determine which set of customers should
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be assigned to each warehouse. Because of the additional delivery costs, it usually does not make
economic sense to have a customer's demand satisfied by more than one warehouse. This is referred
to as a single sourcing constraint.

Consider a delivery problem in which four customers must be served from three warehouses.
The cost of satisfying each customer from each warehouse is illustrated in the following table.
Each customer has a demand that must be met, and each warehouse has a maximum capacity.

Warehouses
Customers . 1 2 3 Demand dt

1 475 95 665 19
2 375 150 375 15
3 360 180 180 12
4 360 180 360 18

Capacity 6y 18 27 20

The problem can be formulated as a generalized assignment problem where x$ = 1 if customer
i is served by warehouse / Every customer must be served by exactly one warehouse, and every
warehouse has a capacity constraint on the set of customers it can service.

minimize Zf. Z

subject to: Z;. xtj = 1 for all customers i

Z. dpy ^ bj for all warehouses j

Xfj = 0 or 1

If we solve the problem as an LP with (0 ̂  x{ ^ 1), we get a total cost of 890, but two of the
customers are served from two warehouses. This violates the 0-1 constraint on the variables.

We construct a Lagrangian function by penalizing the customer constraints:

L (JC,M) = maximum,, minimum, = {01} Z/ Z^. c^+ Zf. ut[ Zy. J fy-1]

subject to: Z/ d^(j ^ bj for all warehouses j

or, equivalently:

L (x,u) = maximumM minimum, = {01, Z. Z;. [c,y + M,] x^ - Z. M,

subject to: Zf dp(j < bj for all warehouses j

Observe that because this problem is a minimization in jc, we construct the Lagrangian as a
maximization in u. When we substitute any fixed value of u into the Lagrangian, this problem
becomes a simple multiple knapsack problem. We can treat each warehouse as an independent
knapsack problem, and find the least expensive customers for that warehouse. However, because
we have dropped the customer constraint, there is no reason why a customer cannot be assigned
to more than one warehouse, or in fact, to no warehouse. In particular, if we set u = 0 initially,
we discover that the optimal solution is x = 0. (No customers are assigned to any warehouse!) To
make customers attractive to the warehouses, at least some of the costs must be negative; that is,
we must choose initial values for the u vector to be negative enough to make some of the Lagrangian
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costs negative. We will choose u = (-475, -375, -360, -360), a somewhat arbitrary choice, but
one in which the new Lagrangian costs have at least one negative cost for every customer. We can
subtract the second smallest cost in each row to ensure that the smallest cost will be negative. (In
the first row, we can subtract 475 from each element.) Now, every customer is "desired" by at least
one warehouse. The new Lagrangian costs are:

Warehouses
Customers 1 2 3 Demand d,

1 0 -380 190 19
2 0 -225 0 15
3 0 -180 -180 12
4 0 -180 0 18

Capacity 6, 18 27 20

When we solve the knapsack problem~for each warehouse we find:

Warehouse 1: does not take any customers (all costs are zero).
Warehouse 2: would like to take all of them, but can take only customers 2 and 3 due to

capacity constraints for a "cost" of -405.
Warehouse 3: takes customer 3 for a cost of -180.

The value of the Lagrangian function is the sum of these costs minus the sum of the penalties,
us. 0 - 405 - 180 - (-1570) = 985. This first approximation is already a better bound on the
solution than the LP solution, which has a value of 890.

When we now examine the customer constraints, we see that no warehouse took customer 1
or 4, and two warehouses took customer 3. To encourage at least one warehouse to take customers
1 and 4, we want to decrease the cost for those customers (that is, decrease u{ and «4).

In order to decrease the number of warehouses that want customer 3, we increase the cost slightly.
There are many popular methods for doing this, but they all essentially involve trial and error. We
can change all three w, values at once, or we can change them one at a time. We can take small steps,
and keep increasing them until the Lagrangian stops increasing, or we can take large steps (too far)
and then back up. Without elaborating on details, we will briefly illustrate the first couple of steps.

Suppose we decide to change the three M, values by 200. (A small change by 1 or 2 does in
fact increase the Lagrangian.) Then, the new u values are (-675, -375, -160, -560) and the costs
will be:

Warehouses
Customers 1 2 3 Demand d,

1 -200 -580 -10 19
2 0 -225 0 15

3 200 20 20 12
4 -200 -380 -200 • 18

Capacity 6, 18 27 20

The three knapsack problem solutions are:

Warehouse 1: takes customer 4 (customer 1 will not fit) for a cost of -200.
Warehouse 2: takes customer 1 for a cost of -580.
Warehouse 3: takes customer 4 for a cost of -200.

The value of the Lagrangian is: -200 -580 -200 -(-1770) = 790. We thought that we were
moving in a direction that increased the Lagrangian; but in fact, the Lagrangian will increase for
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the fixed previous value of x. Unfortunately, as we continue to increase the change in w, we
eventually get a new minimum solution x, and the Lagrangian starts to decrease. Apparently, we
have gone too far; so let us try again, using a smaller change for the values of u by 10. The new
u vector is: (-485, -375, -350, -370), and the resulting cost matrix is:

Warehouses
2

-390
-225
-170
-190

27

3
180
0

-170
-10
20

Demand d,
19
15
12
18

Customers 1
1 -10
2 0
3 10
4 -10

Capacity b, 18

The knapsack solutions are:

Warehouse 1: takes customer 4 for a cost of-10.
Warehouse 2: takes customers 2 and 3 for a cost of -395.
Warehouse 3: takes customer 3 for a cost of -170.

The Lagrangian function is: -10 -395 -170 -(-1580) = 1005. At this stage, customer 1 is still
unserved, and customer 3 is still served by two warehouses. Decreasing M, further and increasing
«3 should lead to a further increase in the Lagrangian.

In fact, the value of the optimal solution to the Lagrangian for this problem is 1355, which
also happens to be the optimal integer function value (with customer 4 assigned to warehouse 1;
customers 2 and 3 to warehouse 2, and customer 1 to warehouse 3). Thus, for this particular example
problem, the Lagrangian bound is tight.

4.8 COLUMN GENERATION

Many integer programming problems can be stated as a problem of determining what patterns or
combinations of items should be assigned to each of a set of "orders." Problems of this type arise
frequently in some of the most important industrial and organizational applications, and are typified
by the following examples.

In problems involving vehicle routing, customer orders are to be assigned to trucks and routes.
A pattern might be a set of customers that could feasibly fit on one truck load (and be delivered
by a driver without violating any workday or time-delivery constraints).

In airline crew scheduling, work pieces (flight legs) must be assigned to airline crews (teams
including pilots, navigators, flight attendants, etc.). A pattern might be one (or several) day(s) of
work for one crew consisting of several feasible flight legs (with constraints for required rest time
between flights, layovers, constraints on legal flying hours per day, etc.).

Various cutting stock problems involve choosing which orders should be cut from each piece
of stock material. In this context, a pattern would include a set of "orders" that could be cut from
one piece of material. The orders might be pieces of fabric cut out for dresses, or large rectangular
sheets of paper cut from a large roll.

An example of a shift scheduling problem is determining how to assign hospital work shifts
to nurses or doctors. In shift scheduling, a pattern might consist of a feasible set of shifts that a
nurse could work over a 2-week rotation.

Each of these problems could be solved in the following way:

1. Construct all possible feasible assignment patterns.
2. Define x{ = 1 if we decide to use pattern i.
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3. Define c, to be the total cost of using pattern i.
4. Define afj = I if customer/order/leg/shift y is included in pattern/route/workstretch i.

To-simplify the discussion, we will use the example of vehicle routing. Given a set of customer
orders that will be assigned to one truck, we can calculate the (minimum) cost of paying a driver
to visit all of the locations and return to the warehouse. We could then solve the following zero-
one integer programming problem:

n

minimize 2. cixi
1=1

n

subject to 2\ aijXi = ^ (f°r eac^ customer j )
/»!

Customer,/ may be included in many different possible routes. We want to find a minimum cost set
of routes such that every customer is covered exactly once. This type of problem, called a set parti-
tioning problem, has very special structure; and there are a number of specialized software codes for
this problem that can solve extremely large problem instances (with thousands of variables) optimally.

For small enough problem instances, the exhaustive enumeration or construction procedure sug-
gested above might be a reasonable way to find optimal solutions. Unfortunately, the number of possible
routes is an exponential function of the number of customers. Count the number of ways you can
feasibly select a subset of customers, and you will discover that this approach is not at all practical.

Instead, we are going to begin by constructing a small subset of potential routes. It is important here
that the number of routes be greater than the number of customers, but not exponential. These routes
should include each customer at least a couple of times; but the routes do not have to be particularly
good ones. The usual procedure is to use a fairly simple heuristic to construct reasonable routes.

We now solve this problem as a linear programming problem (with 0 ̂  xi • ̂  1), and then use
the dual values to help us find a new route (column). We add this new column to the problem and
solve the linear program again. We continue this process until no new column can be added, and
we then solve the 0-1 integer problem optimally. This final problem does not give the optimal
solution to the original problem because it typically accounts for only a small fraction of the possible
feasible routes. However, the solution to the linear program is optimal in the sense that there is no
new column that can be added that could reduce the cost of the linear programming problem.
Because the LP is a lower bound on the IP, the true integer solution is bounded by the optimal LP
and the IP solution that we obtain.

Consider the following simple vehicle routing example. Suppose that a fleet of trucks must
travel on a square grid road network, and each edge in the road network takes 1 hour of travel
time. Each driver can travel at most 10 hours. Each truck must hpgin at the depot (marked with
the letter "D"), visit one or more customers (marked with numbers from "1" through "6"), and
then return to the depot. The network is illustrated in Figure 4.12. In this network, for example,
the route from "D" to "1" to "D" will take 6 hours; the route from "D" to "4" to "5" to "D" will
take 8 hours; and the route from "D" to "1" to "2" to "D" will take 10 hours.

To initiate the procedure, select at least six feasible routes, and compute the cost of each route.
These routes form the initial set of columns. We have chosen the following set of columns, where
each customer is in two routes. (We intentionally chose poor routes to illustrate that the quality of
these routes does not matter at this point, although normally, reasonable routes should be selected.)

Solving this as a linear program gives: z = 28; x2, *4, x6 = 1. The solution is integral by
coincidence (with 0 < x, < 1). The dual variables are (-2, -10, 0, -8, -10, 0). First, we will
illustrate how we solve this problem. Later, we will illustrate why it works.
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FIGURE 4.12 Vehicle routing example.

Cost

10 8 10 10 10 10
Customer x, x2 x3 x4 x5 x6 Rl

1 1 1
2 1 1

3 1 1
4 1 1

5 1 1
6 1 1

IS

The duals (one for each row implies one for each customer) represent the sensitivity of the
objective function to changes in the RHS. (Increasing the RHS by 1 would result in an increase in
the objective function of the corresponding dual variable. In our case, it would decrease the objective
function because the duals are negative.

Consider the following special problem of finding a single route that starts at the depot, visits
some customers, and returns to the depot in at most 10 hours. The cost of the route is the total
time; however, for every customer that is visited, increase the cost by the corresponding dual
variable. For example, a route that goes from "D" to "4" to "5" to "D" will cost 8 - 8 - 10 = -10.
We claim that if we had initially added a column with customers 4 and 5, and then computed the
Simplex tableau for the current basic feasible solution, the new reduced cost would be precisely
-10. Since it is negative, it can immediately enter the basis.

Cost
10 8 10 10 10 10 8

Customer xt x2 x3 x4 xs x6 x7 Rl
1 1 1
2 1 1

3 1 1
4 1 1 1

5 1 1 1
6 1 1

IS

Solving this as a linear program again gives: z = 28; ;c2, *4, x6 = 1. However, the dual variables
are now (-10, 0, -10, 0, 0, -8). Again, by inspection, we find a route with a negative reduced cost.
The new column corresponds to "D" to "1" to "3" to "D" for a cost of 8 - 10 - 10 = -12.

Solving this as a linear program again gives: z = 27; *2, *3, *5, *6, *7, x% = 0.5. The new dual
variables are now (-4, -6, -4, -3, -5, -5). By inspection again, we find a route with a negative
reduced cost. The best new column corresponds to "D" to "5" to "4" to "6" to "D" for a cost of
10 - 5 - 3 - 5 = -3.

o
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After a few more iterations, we find a solution with z = 20 and *9, xlo = 1 corresponding to
two routes: customers {1, 2, 3} and {4, 5, 6}. The final dual variables are: (0, -2, -8, 0, -2, -8).
The reader should verify that there are no feasible routes with a negative reduced cost, and therefore,
this is the optimal solution to the LP. In fact, because this is by chance an integer solution, it is
also the optimal integer solution.

Cost

10 8 10 10 10 10 8 8 10 10
Customer x, x2 x3 x4 x5 x6 x7 x8 x9 x10 Rl

1 1 1 1 1
2 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1

IS

Normally, column generation produces a fractional LP solution, and no new column can be
created with a negative reduced cost. This means that no such column exists. Column generation
is an optimal procedure for the linear programming problem. Moreover, the optimal solution to the
LP is a lower bound on the optimal solution to the corresponding integer programming problem.

Current software packages with column generation use specialized software to solve the result-
ing partitioning problem optimally. Methods have been designed that use the special structure of
the problem to solve very large problems to optimality. The solution is optimal for the given set
of columns. There is no guarantee that there is no new column that could be added to produce a
lower integer answer. However, the integer function value is often quite close to the linear function
value. In general practice, column generation tends to produce very good solutions.

4.9 GUIDE TO SOFTWARE TOOLS

An essential component in any solver for integer programs or mixed integer programs is the
underlying linear programming solver used for generating lower bounds, separating and selecting
subproblems. Dramatic improvements in LP solvers, coupled with faster, more powerful hardware,
have led to a wide range of software for integer programs, incorporating a variety of the techniques
discussed earlier in this chapter. Performance enhancements have been remarkable, but the capa-
bilities of software packages are typically still limited by the amount of memory available, and
computation time requirements may test the user's patience.

No one strategy works for all integer programming models. The cutting plane methods that
successfully exploit the special structure of the traveling salesman problem are not the same
techniques that would be effective on an integer problem having a different structure. Commercial
codes have the advantage of ease of use, but for many practical (large-scale) integer problems,
successful solution may require a skillful analyst to develop a customized solver, based on just the
right branching strategy, bounding strategy, or tailored cutting plane mechanism. This customization
is facilitated if packages offer the source code to the user.

AIMMS software offers an integrated modeling system for solving pure integer, mixed integer;
and zero-one programming problems. Input and output are supported by the algebraic modeling
language and graphical user interface for which AIMMS is well-known. The package includes the
LP solver, and runs on PCS, RS/6000, and Sun SPARC platforms. Package prices range from $4000
to $12,000 and substantial educational discounts are available.

LINDO software systems are able to solve mathematical programming problems with linear
or quadratic objective functions, and this software product includes commands that allow the user
to further specify that certain variables are to have general integer values or to have zero-one values.
Search time can be reduced if the user supplies a good (suboptimal) solution to the integer
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programming problem. A time-consuming branch-and-bound search can also be truncated when
the user specifies that a solution within a given percentage of the optimum is acceptable. MPS
formats are used for input and output. LINDO is popular for its speed and ease of use; source code
is available and LP solver code is included. Commercial copies range as high as $5000, but
educational versions can be obtained for as little as $50.

CPLEX Mixed Integer Optimizer runs on Windows systems, workstations, and mainframes,
and offers MPS and spreadsheet interfaces. Source code is available, and many specially structured
problems (such as knapsack and set covering) can be solved easily and quickly. This high-perfor-
mance, sophisticated package has advanced features that allow it to solve difficult integer program-
ming problems for which other software may be inadequate.

IBM Optimization Subroutine Library runs with a powerful graphical user interface on IBM
RISC System/6000 machines, but the OSL functions are also embedded in software offered by a
number of independent vendors, including even some parallel computing environments. Pure,
mixed, and zero-one models are solved. MPS and spreadsheet input/output formats are supported.
The LP solver is included, but source code is not available. Prices range from $2000 up to $150,000;
educational discounts are negotiated on an individual customer basis.

SAS/OR systems, described in previous chapters, also have capabilities for solving pure, mixed,
and zero-one integer programming problems. SAS includes an integrated modeling environment,
with special features for solving problems exhibiting a network structure. This software runs on
all major platforms, and uses MPS and proprietary input and output formats. The LP solver is
included but source code is not available to the user.

MIPIII Mixed-Integer Optimizer from Ketron Management Science allows the user to match
the problem structure to an appropriate solver, and exploits the user's knowledge of the model
through the use of pre-solvers, special approaches for knapsack problems, the use of branching
priority lists, and a choice of stopping criteria. Several "model managers" are available, to support
MPS format and proprietary input and output formats. With prices starting at $2000, MIPIII executes
on a range of platforms from PCs to Sun, HP, and DEC workstations, and IBM mainframes. Object
code is available to the user, and an LP solver is included in the package.

Software for specialized applications often provides unique and convenient user interfaces as
well as efficient solution techniques directed specifically to the type of application. For example,
software for scheduling systems may yield a competitive edge in manufacturing and production
environments. The underlying scheduling methodology forming the backbone of such software
systems may be based on a classical zero-one programming model (matching activities to time
slots subject to constraints) or may perform priority or rule-based scheduling with release dates,
deadlines, or due dates. Other considerations include ease of modeling the processes and operations
in a production scheduling system, and the ability to incorporate materials handling, quality
assurance, shop floor data, and production activity control subsystems [Seyed, 1995].

Many integer programing problems can be viewed as routing problems, and numerous software
packages are available to solve problems cast into this framework [Hall and Partyka, 1997]. Routing
software such as TransCAD, SHIPCONS, RoutePro, and GeoRoute typically run on Windows
and workstation platforms, often incorporate GIS data and tracking systems, interface to network
models as well as integer programming models, and usually offer a variety of optimization methods.
Additional features may support assigning drivers to vehicles, or even generating load manifests,
using variations on bin packing methods.

4.10 ILLUSTRATIVE APPLICATIONS

4.10.1 SOLID WASTE MANAGEMENT [ANTUNES, 1999]

Along with extensive political, social, and economic changes in Portugal during the past several
decades, urban population growth has increased dramatically. Authorities are faced with the
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resulting problem of disposing of significant amounts of municipal solid waste generated in
population centers such as Lisbon, Coimbra, and Oporto. By the 1990s, the Centro Region
Coordination Agency was looking at growth rate projections that indicated that the waste man-
agement problem would rapidly extend beyond the major urban centers to affect smaller munic-
ipalities and rural areas as well.

The collection of waste was already being handled effectively; in fact, by 1991, approximately
90% of households were served by modern fleets of vehicles collecting garbage. But disposal of
the collected waste was being dealt with using the worst possible techniques: huge open-air dumps
that periodically burned the waste. And whereas hazardous, dangerous, and toxic waste was being
managed and monitored by the national government under a separate initiative, the massive amounts
of ordinary solid waste were the responsibility of regional authorities. The Centro Region needed
to develop a clear view of how solid waste would be managed, from the time it is generated, through
the phases of collection and reduction, until it is finally disposed of in a sanitary landfill that is
built and operated according to strict and appropriate regulations.

Storage space for solid waste is a major consideration. Volume reduction based on composting
is effective only on the organic portion of the waste, which is a small and decreasing proportion
of total waste in the Centro Region. Subsequent separation from glass, metal, and plastics represents
an added expense in the composting regimen. Incineration is the most effective way of reducing
waste volume, but set-up costs are extremely high, and the environmental concerns over fly-ash
and hazardous bottom-ash combine to argue against the use of incineration on a large scale.

Compaction is less effective than incineration, but it is cheaper and has the additional advantage
that it can be applied early in the process, during either the generation or the collection phases.
Thus, compaction can substantially decrease transportation costs between collection points, transfer
stations, and landfills.

With these issues in mind, an analyst developed a mixed integer programming model having
nearly 10,000 variables, about 100 of which were zero-one variables, and about 10,000 constraints.
The model combines elements of a p-median problem with a capacitated facilty location problem.
The model included 18 possible sites for sanitary landfill locations, and 86 possible sites for transfer
station locations. Problem parameters were based on projections for the year 2014 in order to
accommodate anticipated population growth rates.

Multiple objectives were considered during the development of this solid waste management
model. On the one hand, it is aesthetically desirable to locate sanitary landfills as far as possible
from urban centers (subject to the very legitimate "not-in-my-backyard" reaction of rural residents).
But it is also expeditious to keep the landfills as close as possible to waste producers, to minimize
costs of transportation.

The minimum cost objective was ultimately given greater weight. In achieving this objective,
a number of constraints were imposed. Landfills and transfer stations have a minimum capacity
(in tons per day) to take advantage of economies of scale. There is a maximum distance to be
traveled by the trucks during their daily collection and transfer trips. Landfills are placed in the
municipalities with the largest populations. Finally, collection and transfer trucks are routed to
avoid mountainous regions with narrow winding roads, both for economic reasons and out of respect
for the fragility of natural resources in the national parks.

Because of the complexity of the model, the analyst initially assumed that it would not be
possible to solve the mixed integer problem using a general exact method on the PC equipment
available for this study. A greedy heuristic based on capacitated transshipment methods was
developed, arid the results obtained in this way were included in the initial reports presented to the
Centro Region Coordination Agency for consideration. However, a new version of XPRESS-MP
software running on slightly faster Pentium processors allowed the model to be solved exactly with
reasonable computational effort.

The final solution developed in conjunction with the Agency called for eight landfills, each
with a specified capacity, and eight transfer stations, also each having a specified capacity. It was
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possible to delay the capital investment needed for three of the transfer stations (without violating
the maximum truck trip distance constraints) so that initial expenditures could be concentrated on
the more urgently needed sanitary landfills.

The results of this study brought some credible and rational order to a previously chaotic
situation. The solution developed during this study led the representatives from throughout the
Centro Region to adopt a Strategic Municipal Solid Waste Plan that serves as a guide during the
present process of implementing the proposed waste management system.

4.10.2 TIMBER HARVEST PLANNING [EPSTEIN ET AU, 1999]

The Chilean forestry industry consists primarily of large private firms that own pine and eucalyptus
plantations and are vertically integrated, comprising pulp plants, sawmills, and paper market
operations. Short-term harvest scheduling (over a 3-month period) amounts to matching stands of
timber, of a given age and quality, to market demands that are typically defined by the length and
diameter of each piece of timber. The process of cutting harvested trees into products having
required lengths and diameters is called "bucking." Bucking sequences are expressed in terms of
lengths to be cut from timbers of decreasing diameters.

Different types of harvesting equipment are used in different terrains. Steep slopes require
towers or cables, while flat areas can be harvested using tractors or skidders. In either case, bucking
can be done on the ground and the resulting pieces transported to their respective destinations, or
entire logs can be delivered to a central location for bucking. Transportation costs (which can
include road-building costs) play a significant role in the decisions that select timber from a certain
origin and assign it to a destination.

Determining an optimal harvest plan is a difficult combinatorial problem that involves selecting
mature timber stands available at specified locations, and assigning them according to product
demand; obtaining optimal bucking patterns to utilize the timber itself in the most valuable way;
and minimizing transportation costs, subject to the firm's harvesting equipment limitations and
trucking capacities.

A principal component of the harvest plan is the specification of optimal bucking patterns,
from among exponentially-many possible patterns. The solution is based on an LP model, and
incorporates a branch-and-bound approach using column-generation to create the bucking
sequences. In the branch-and-bound tree for generating bucking patterns, a path from the root node
to the bottom of the tree represents a bucking sequence; the terminal node in the tree represents
the product (a piece of timber having a certain diameter cut to required length); and the terminal
node's level in the tree denotes the product's position in the bucking process.

The column-generation technique improved the harvest value by 3% to 6% over the fixed
bucking patterns that had been in use previously when harvest planning was done manually by
experienced (human) planners. Furthermore, transportation costs were cut substantially when the
model solution revealed the savings that could be obtained by bucking and shipping directly to
market destinations rather than transshipping through intermediate central bucking locations.

Other applications of operations research in the Chilean forestry industry include systems for:

• scheduling trucks among timber stands, mills, and destination ports
• selecting stands for harvest, and partitioning the timber for logs, sawtimber, and pulp-

wood, using mixed integer LP models
• determining the optimal placement of harvesting equipment and the optimal locations

of access roads within the forest
• long-term planning over a 50-year horizon to maintain steady and consistent supplies of

timber, which involves the purchase, sale, and rental of timber lands; choosing appropriate
silviculture regimes for different plantations; and planning for mills and other industrial
processing plants.
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4.10.3 PROPANE BOTTLING PLANTS [SANKARAN & RAGHAVAN, 1997]

During recent years, the importation, bottling, and distribution of liquefied petroleum gas (LPG)
in India has transitioned from a government-controlled operation into a private-sector enterprise.
Two major import and storage facilities (ports), already in place, provide supplies of LPG. Industrial
customers acquire LPG in bulk directly from these locations, but the needs of other domestic
(residential) and commercial establishments are supplied through a network of dealer agencies.
Customers use LPG contained in cylinders, and when empty, these cylinders are picked up by
dealers and replaced by filled cylinders. Each dealer town must have a bottling plant where empty
cylinders can be replenished for future distribution to customers.

Because the sources of LPG and the customer market are already established, the problem was
to determine the pattern and mechanisms for distributing LPG from the two storage facilities to
the customers. Tanker trucks can transport LPG from the source to dealer locations for bottling,
but it is also feasible to operate mobile bottling plants. Considerations for mobile operations include
not only capital investment and operating and distribution costs, but also public safety and fire-
fighting capabilities at all intermediate storage points.

Strategic decisions for dealer and bottling facility location are complicated by the fact that any
necessary future increases in capacity at a given location can be undertaken only if such increases
are provided for in the original layout. Thus, a significant portion of expansion costs are incurred
during original construction, although the payoff from such expansion will not be realized until
the projected market growth actually takes place.

The problem facing the Shri Shakti company is optimally locating the bottling plants, deter-
mining the long-run size of each facility, and projecting the target date at which each facility will
commence operating at full (expanded) capacity. The integer programming model used for this
problem involves about 400 dealer towns and 2500 constraints, and seeks to minimize total cost
of operations in the target year. Costs include:

• fixed annual costs that are independent of volume throughput at the plants
• costs of transporting LPG from the two ports to the plants
• cost of bottling
• costs of transporting bulk and cylinder LPG and empty cylinders among bottlers, dealers,

and customers.

Determining the amounts of LPG to be distributed through the network dictates the location and
size (capacity) of each proposed facility. Complicating the problem were uncertainties about
competition, corporate takeovers, market growth, and initially some inaccuracies in data defining
the distances between sites.

A solution to this problem was developed using a linear programming-based branch-and-bound
method. Subsets of the problem were originally solved in which the subproblems were defined by
geographical or political boundaries. Combining these separate solutions, however, often resulted
in certain customers being served by distant in-area suppliers instead of by closer plants just across
a boundary. In order to remedy this inefficiency, a novel and indirect method was designed for
solving the full-scale problem. Specially tailored software routines in Fortran were linked to
extended versions of LINDO software for mathematical programming.

Analysts working on this application created a well-formulated model, developed a compre-
hensive and accurate database, and engaged in illuminating discussions with Shri Shakti's board
of directors, government advisors, and financial experts during development of these solutions. The
credibility of the resulting model and the proposed solutions provided a much-needed foundation
for successful planning, negotiating, and funding for this newly privatized industry in India.
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4.11 SUMMARY

Many important engineering, industrial, organizational, and financial systems can be modeled as
.mathematical programming problems in which the variables are restricted to integer values, zero-
one values, or a mixture of integer and real values. Solving integer problems usually requires
significantly more computational effort than is needed for solving continuous (real) linear program-
ming problems.

Certain zero-one models have become rather famous because their structures seem to arise in
so many different kinds of practical applications. Specialized methods for solving such problems
have been devised that take advantage of the mathematical structure inherent in the problems. These
classical models include the traveling salesman problem, knapsack and bin packing problems, set
partitioning, and generalized assignment problem. Many complex problems can be solved by
identifying subproblems that have the characteristics of these well-known models, and creating a
solution to the large and difficult problem by solving some simple subproblems.

Among the most effective methods for solving general integer programming problems are
branch-and-bound algorithms. These methods repeatedly break large problems, which are not yet
solved, into easier subproblems, imposing integer constraints along the way, until a solution to the
original problem is finally found. Solutions to real-valued LP problems are used to guide the process,
so that the computation does not escalate into an enumeration of exponentially many possible
solutions.

A number of other approaches have been developed and refined over the years. Cutting plane
and cover inequality methods repeatedly introduce new constraints into integer problems in order
to exclude non-integer extreme points from the feasible region, and then use simple LP solutions
to locate the optimum, which then occurs at an integer point. Lagrangian relaxation incorporates
constraints into the objective function by placing a penalty on any violated constraint. Any solution
that violates a constraint has a lower value than a solution with no constraint violation. The penalties
must be chosen appropriately for the given problem. The technique of column-generation is
applicable to problems such as vehicle routing and workforce scheduling, in which customers or
workers must be assigned to trucks or work patterns. Incomplete initial solutions are iteratively
built up into complete optimal solutions.

Most methods for solving integer programming problems rely on solving linear subproblems
using a standard technique such as the Simplex method. Thus, the performance of many integer
solution methods depends greatly on the efficiency of the underlying LP methods. Recent improve-
ments in LP solvers have contributed substantially to our present capabilities for solving large
practical integer problems efficiently.

KEY TERMS

active node
airline crew scheduling
assignment problem
backtracking
bin packing problem
branch-and-bound
branch-and-bound tree
branching strategy
bounding strategy
capacity planning
capital budgeting problem
cargo loading problem
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column-generation
convex hull
cover
cover inequality
current incumbent
cutting plane
cutting stock problem
employee scheduling problem
examination timetabling
facet
fathomed
fixed charge problem
flight crew
flight legs
general integer programming
generalized assignment problem
Gomory fractional cut
integer polytope
integer programming
integrality gap
jumptracking
knapsack problem
Lagrangian
Lagrangian relaxation
minimal cover
mixed integer programming
portfolio selection problem
production planning
production scheduling
relaxation
rotation
separate
separation rule
set covering
set packing
set partitioning
shift scheduling
single sourcing
sub-tour
traveling salesman problem
vehicle routing
warehouse location
work schedule
zero-one programming

EXERCISES

4.1 A certain single-processor computer is to be used to execute five user programs. These
programs may be run in any order; however, each requires a specific set of files to be
resident in main memory during its execution. Furthermore, a certain amount of time is
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required for each file to be brought into main memory prior to use by a user program.
The facts are summarized as follows:

User Program Files Needed for Its Execution

1 B, C, E
2 A, B, C
3 A, B, D
4 A, D, E
5 B,C

File Name Amount of Time Required to Bring It into Memory
A 30
B 20
C 25
D 35
E 50

Initially, no files are in memory. The five user programs are to run in sequence, but any
order is feasible. At most, three files will fit in memory at one time. Clearly, because some
of the files are used by multiple programs, it would be wise to try to schedule the programs
to take advantage of files already in memory, so as to minimize the "change-over" (setup)
times between programs. Define decision variables and formulate this problem to sequence
the five user programs to minimize total change-over times. Note the similarity of this
problem to one of the classical integer programming models discussed in this chapter.

4.2 Suppose you have a directed acyclic graph having n nodes, in which node 1 is designated
as an origin and node n is designated as a destination. In Chapter 3, we described the
problem of finding the shortest path from the origin to the destination. Formulate this
problem as a zero-one integer programing problem. (Hint: Let decision variable Xg = 1
if the arc from node I to nodey is in the shortest path.)

4.3 A small university computer laboratory has a budget of $10,000 that can be used to
purchase any or all of the four items described below. Each item's value has been assessed
by the lab director, and is based on the projected utilization of the item. Use a branch-
and-bound technique to determine the optimal selection of items to purchase to enhance
the computing laboratory facilities. Show your branch-and-bound tree, and give the total
cost and total value of the items chosen for purchase.

Item Cost Value
NanoRobot $4000 8
WinDoze simulator $2500 5
Network pods $3000 12
BioPrinter $4500 9

4.4 Bruno the Beach Bum wishes to maximize his enjoyment of the seashore by taking along
an assortment of items chosen from the list below. Help Bruno pack his beach bag with
the most valuable set of items by using a branch-and-bound technique. Bruno's beach
bag is rated for a 20-pound load.

Item Weight Value
Coconut oil 4 16
Sun shades 2 10
Snorkel and fins 8 16
Folding chair 10 30
Bummer magazine 5 30
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Enumerate the number of packings (sets of items) for this problem, and draw a complete
tree of possibilities. How many of these sets are feasible packings? How many subprob-
lems are actually solved by your branch-and-bound procedure? What is the optimal
feasible set of items?

4.5 If a problem formulation has n variables and each variable has m possible integer values,
then a branch-and-bound tree could have as many as mn terminal nodes. Verify this for
the case m = 4 and n = 3.

4.6, Consider the following zero-one integer programming problem:

maximize 5*, - 7x2 - 10*3 + 3x4 - 4x5

subject to xl + 3*2 - 5*3 + *4 + x5 ^ 3

2*, - 3x2 + 3x3 - 2*4 - 2*5 < -3

2x2 - 2*3 + 2*4 + x5 ^ 3

*,. = 0 or 1 for all i

Solve this problem completely, using a branch-and-bound algorithm.

4.7 Suppose you wish to solve the following general integer programming problem using
branch-and-bound techniques.

maximize 3*, + 5x2 + 2*3

subject to *, + 5*2 + 3*3 < 8

2*, + jc2 + 5*3 ̂  7

4jc, + 2*2 + 3*3 < 8

*, + 3*2 + 3*3 ^ 6

Use up and down penalties to determine which variable would be branched on first.
(Note: There is no "correct" answer, but you should be able to justify your choice.)

4.8 Consider the following integer programing problem:

maximize -4xl - 5*2

subject to *! + 4*2 > 5

3*, + 2*2 > 7

*!, *2 ̂  0 and integer

Calculate the penalties for branching up and down on variables x{ and *2.

4.9 Solve the problem given in Exercise 4.8 using Gomory fractional cuts.

4.10 Consider the following integer programming problem:

maximize -3*, - 4*2

subject to 2*i + *2 ̂  1
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xl + 3*2 > 4

*„ *2 > 0 and integer

(a) Compute the up and down penalties for branching on variable *2. Which way would
you branch first? Explain why.

(b) What can you say about variable *3, the surplus variable on constraint 1, with respect
to up and down penalties? Explain.

4.11 Suppose that you are solving a large zero-one linear programming problem, and the LP
solution has

x* = (0.3, 0.9, 0.1, 0.9, 0.9, 0.8, 0.9, 0.9, 0.7, 0)

One of the constraints in the problem is

10*, - 2*2 - 4*3 + 7*4 + -6*5 - 1 Ix6 + 9*7 - 3*8 + *9 + 12*,0 < -1

In Section 4.6, we used a knapsack model to find a cover inequality that cuts off the
current LP solution. Describe the knapsack for this particular problem.

4.12 Suppose we are given a zero-one linear programming problem in which one of the
constraints is

3*, + 4*2 - 7*3 -3*4 + 5*5 -6*6 + 3*7 > 0

Find a cover inequality that cuts off the current LP solution ** = (0, y2, 0, 1, 1, 2/3, 0).

4.13 A certain zero-one linear programming problem involves the constraint

*, + 3*2 + 4*3 + 5*4 < 6

and the current LP optimum occurs at**= (0.3, 0.3, 0.2, 0.8).
Find a minimal cover inequality that cuts off the point **.

4.14 Solve the problem in Exercise 4.6 again by first constructing cover inequalities, and then
using branch-and-bound if necessary.

4.15 We wish to assign three customers to two warehouses having limited capacity. Each
customer must be assigned to precisely one warehouse. The assignment costs and' the
capacities are given in the following table. Solve this problem using Lagrangian
relaxation.

Warehouse 1 Warehouse 2 Demand

Customer 1 2 8 18
2 5 3 1 5 ;
3 7 3 1 4

Capacity 30 18
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4.16 Suppose that you are the manager of a small store that is open 7 days per week. You
require the following minimum number of staff to work each day:

Sunday 5
Monday 3
Tuesday 4
Wednesday 4
Thursday 5
Friday 7
Saturday 7

Each employee can work only 5 days per week, and must have the weekend off (Saturday
and Sunday) once every 2 weeks. The objective is to meet the demand using the minimum
number of employees. Describe a formulation of this problem using column-generation.
(Hint: Try to construct a work pattern for a 2-week period.) Describe the meaning of
the rows and columns in the master problem. Provide an initial formulation of the LP;
that is, pick a starting set of columns, and write out the LP. Perform a few iterations of
column generation. Describe how you would formulate the subproblem.

4.17 In Section 4.8, it was suggested that column-generation can be used to solve the cutting
stock problem. The simplest (one-dimensional) cutting stock problem can be illustrated
by the following example. Suppose we have a large supply of steel reinforcing bars to
be used in the construction of concrete pillars. The bars are all 50 feet long. We have a
set of orders for re-bars of the following lengths:

Length
15 feet
10 feet
13 feet
18 feet
19 feet
23 feet

Quantity
3
2
5
4
5
1

These orders are to be cut from some of the 50-foot-long pieces. It is not economical to
keep an inventory of the leftover pieces, so we sell them as scrap. We want to minimize
the total cost of scrap for cutting this set of orders. Suppose that it costs (net) 0.50 per
inch to throw away a scrap piece of re-bar. Formulate this as a column-generation
problem. Generate the initial solution, and perform one iteration of column generation.
Explain your algorithm for solving the subproblem.

4.18 Big City Wheel Trans (for disabled public transit users) has a large list of clients who
must be picked up and delivered to locations around the city. Each client has a specific
required pick-up time, and we assume that each customer travels alone. Describe how
to formulate this problem using column-generation. Suppose that the primary objective
is to minimize the number of vehicles required to satisfy all demand. Describe what the
subproblem would look like and what algorithm you could use to solve it. Recall that
the subproblem we solved in Section 4.8 was solved "by inspection," but in this exercise,
you should define an algorithm to solve the subproblem.

4.19 Formulate the examination timetabling problem as a zero-one programming problem.
Let cik be the number of students who must take both exams i and k. Define a penalty
of (100 x cik) for having examinations i and k in the same time period, and a penalty of
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(5 x cik) for having examinations i and k in adjacent time periods. The objective is to
minimize the total penalty costs. Let n denote the number of examinations to be sched-
uled, and m denote the number of time periods available for exams.
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Nonlinear optimization involves finding the best solution to a mathematical programming prob-
lem in which the objective function and constraints are not necessarily linear. Because nonlinear
models include literally all kinds of models except linear ones, it is not surprising that this
category is a very broad one, and nonlinear optimization must incorporate a wide variety of
approaches to solving problems.

The world is full of systems that do not behave linearly. For example, allowing a tree to
grow twice as long does not necessarily double the resulting timber harvest; and tripling the
amount of fertilizer applied to a wheat field does not necessarily triple the yield (and might even
kill the crop!). In a distributed computing system networked for inter-processor communication,
doubling the speed of the processors does not mean that all distributed computations will be
completed in half the time, because interactions among processors now could foil the anticipated
speedup in throughput.

This chapter examines optimization from a very general point of view. We will consider both
unconstrained and constrained models. Unconstrained optimization is often dealt with through the
use of differential calculus to determine maximum or minimum points of an objective function.
Constrained models may present us with systems of equations to be solved. In either case, the classical
underlying theories that describe the characteristics of an optimum do not necessarily provide the
practical methods that are suitable for efficient numerical computation of the desired solutions.
Nevertheless, a thorough grasp of the subject of nonlinear optimization requires an understanding of

195
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both the mathematical foundations of optimization as well as the algorithms that have been developed
for obtaining solutions. This chapter is intended to provide insights from both of these perspectives.
We will first look at an example of a nonlinear programming problem formulation.

Example 5.1

Suppose we want to determine a production schedule over several time periods, where the demand
in each period can be met with either products in inventory at the end of the previous period or
production during the current period. Let the T time periods be indexed by i = 1, 2, ..., T, and
let Dj be the known demand at time period i. Equipment capacities and material limitations restrict
production to at most Ej units during period i. The labor force LJ during period i can be adjusted
according to demand, but hiring and firing is costly so a cost CL is applied to the square of the net
change in labor force size from one period to the next. The productivity (number of units produced)
of each worker during any period i is given as Pj. The number of units of inventory at the end of
period i is Ij, and the cost of carrying a unit of inventory into the next period is Q. The production
scheduling problem is then to determine feasible labor force and inventory levels in order to meet
demand at minimum total cost. The decision variables are the Lt and I4 for i = 1, ..., T. Initial
labor force and inventory levels are given as L0 and I0, respectively. Therefore, we wish to

T

minimize J> CL(Lj - Lj.,)2 + C, Ij
i=l

subject to LJ • Pj ̂  Ej equipment capacities for i = 1, ..., T

Ij_, + LJ • Pj > DJ demand for i = 1, ..., T

Ij = Ij., + LJ • Pj - Dj inventory for i = 1, ..., T

LJ, Ij >0 fori = 1, ...,T

This nonlinear model has a quadratic objective function, but linear constraints, and it happens to
involve discrete decision variables. Other nonlinear models may involve continuous processes that
are represented by time-integrated functions or flow problems described by differential equations.

5.1 PRELIMINARY NOTATION AND CONCEPTS

A nonlinear function is one whose terms involve transcendental functions of the decision variables
or in which there are multiplicative interactions among the variables, or in which there are other
operations such as differentiation, integration, vector operations, or more general transformations
applied to the decision variables. Examples include sin (x), tan (y), ex, ln(x + z), x2, xy, xey, and
x*. When an objective function or problem constraint involves such nonlinearities, we lose the
guarantee that permitted us so conveniently to solve linear programming problems: namely that
we could operate on a system of linear equations and if a solution existed, it could be found at one
of the (finite number of) extreme points or vertices of the feasible region. In dealing with nonlinear
programming models, we will see that points of optimality can occur anywhere interior to the
feasible region or on the boundary.

We will also see that there are no general methods suitable for application to all the different
types of nonlinear programming problems. Indeed, many of the diverse types of problems already
presented in this book can be cast as nonlinear optimization problems: integer programming
problems can be expressed as nonlinear models; systems of differential equations (as might be
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needed in continuous simulation models) can be viewed as nonlinear programming problems; and
interior point methods for solving linear programming problems have a nonlinear aspect. So, it
comes as no surprise that no single algorithm can be expected to cover the entire class of nonlinear
optimization. Instead, special forms of nonlinear models have been identified, and algorithms have
been developed that can be used on certain ones of these special cases. We will begin by describing
and discussing the most significant properties of nonlinear models that will lead us to an under-
standing of some of these methods.

A nonlinear function may have a single maximum point, as seen at the point x = a in Figure
5.1, or multiple maximum or minimum points, as seen in Figure 5.2. If we suppose the region of
interest to be the interval [a, f], then there is a global maximum at the point x = f, but also local
maxima at the points x = a and x = c. A local minimum occurs at x = b and a global minimum
occurs at x = d. Notice in the figure that local optima may occur where the slope of the function
is zero or at a boundary of the region.

More formally, a local maximum of the function f(x) occurs at a point x* in a feasible region
R if there is a small positive number € such that

f(x*)>f(x) f o r a l l x e R for which l x - x * l < €

A global maximum of the function f(x) occurs at a point x* if

f(x*) > f(x) for all x € R

Corresponding definitions for local and global minima can be given.

f(x) i{

FIGURE 5.1 Single maximum point.
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FIGURE 5.3 Convex function.

Clearly, the shape or curve of the function will play an important role in optimization. Two
useful characteristics of the shape are convexity and concavity. For a convex function, given any
two points x, and x2 in a region of interest, it will always be true that

f(ax1 + (1 - a)x2) < af(Xi) + (1 - a) f(x2) for 0 < a < 1

In Figure 5.3, let x = b be a linear combination of points x, and x2, corresponding to ax, + (1 -
a)x2 in the definition above. Notice that any function value f(b) is always less than (or below) any
point on the straight line connecting f(Xj) with f(x2). This is precisely the characteristic of a convex
function that will be useful in mathematical optimization. An alternate description of convexity is
that the first derivative is non-decreasing at all points. As x increases, the slope of the function is
increasing or curving upward.

For a concave function, the inequality is reversed, and any point on the function is always
greater than (or above) the point on the straight line connecting f(x,) and f(x2). In Figure 5.4, the
derivative of the function is always non-increasing or curving downward. Notice that a straight-
line function is both convex and concave. Definitions of convexity and concavity can be extended
mathematically to include functions of multiple variables, but the concepts of curving upward and
curving downward, respectively, are still preserved.

If a convex nonlinear function is to be optimized and there are no constraints, then a global
minimum (if one exists) is guaranteed to occur at the point x* where the first derivative f (x) of
f(x) is zero. Figure 5.3 illustrates an unconstrained convex function with a minimum at x*. Figure
5.5 presents an example of a convex function (e~x) with no minimum. Similarly, for a concave
function, a global maximum is guaranteed to occur where f (x*) = 0.

f(x)>

FIGURE 5.4 Concave function.

b *! *
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f(x)
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FIGURE 5.5 Convex function with no minimum.

If there are constraints, then the shape of the feasible region is also important. Recall that a
convex region or convex set is one in which the line segment joining any two points in the set is
contained completely within the set. If the feasible region forms a convex set, then the guarantees
for global maxima and minima remain in effect, as described above.

More generally, the feasible region for a nonlinear programming problem is convex whenever
each of the constraint functions is convex, and the constraints are of the form gj(x) < bj. For
example, the reader should verify that the function f(x) = x2 is convex; but the regions defined by
x2 = 4, or by x2 ̂  9, are not convex. A local minimum is guaranteed to be a global minimum for
a convex objective function in a convex feasible region, and a local maximum is guaranteed to be
a global maximum for a concave objective function in a convex feasible region.

Many functions that arise in nonlinear programming models are neither convex nor concave.
The function pictured in Figure 5.2 is a good example of a function that is convex in one region
and concave in another region, but neither convex nor concave over the entire region of interest.
Local optima are not necessarily global optima. Furthermore, a point x for which f (x) = 0 may
be neither a maximum nor a minimum. In Figure 5.2, the function f(x) at the point x = e has a
zero slope. When viewed from the direction of x = d, it appears that x = e may be a maximum;
whereas when viewed from the direction of x = f, the function appears to be decreasing to a
minimum. In fact, x = e is an inflection point.

For unconstrained problems with just one variable x, necessary and sufficient conditions for
local optima of a twice differentiable function f(x) at x = x* can be summarized as follows:

Necessary conditions:

df/dx = 0 at x = x*

d2f/dx2 ^ 0 for a local minimum at x = x*

d2f/dx2 < 0 for a local maximum at x = x*

Sufficient conditions:

df/dx = 0 at x = x*

d2f/dx2 > 0 for a local minimum at x = x*

d2f/dx2 < 0 for a local maximum at x = x*

When the second derivative is equal to zero, the existence of a local optimum is not certain.

w

X
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For unconstrained problems involving multiple variables x = (x,, x2, ..., xn), the necessary
condition for a point x = x* to be optimal is for the partial derivative of the objective function
f(x), with respect to each variable Xj, to be zero at x = x*; that is,

8f/8x, = 0 fori = 1,2, ..., n

We define the gradient of a function f(xp x2, . . ., xn) to be the vector of first partial derivatives, and
denote it as

Vf(xb x2, ..., xn) = [Sf/Sxj, 8f/8x2, ..., 8f/8xn]

Then the necessary conditions can be stated more succinctly as

Vf(x) = 0 at x = x*

This condition is also sufficient for a minimization problem if f(x) is convex (and for a maximization
problem if f(x) is concave). In fact, for a convex (concave) function, x* is also a global optimum.

To determine whether a function f(x,, x2, ..., xn) is convex or concave, it is useful to examine
the Hessian matrix Hf corresponding to f . The Hessian matrix Hf is an n x n symmetric matrix in
which the (i, j)-th element is the second partial derivative of f with respect to x{ and Xj. That is,

Hfo.x* ...,xn) = [82f/8xi8xj]

The function f is a convex function if Hf is positive definite or positive semidefinite for all x; and
f is concave if Hf is negative definite or negative semidefinite for all x.

If the convexity (or concavity) criterion is met, then optimization may be as simple as setting
the n partial derivatives equal to zero and solving the resulting system of n equations in n
unknowns. However, since these are generally nonlinear equations, this system may not be at
all simple to solve. And if the objective function is not convex (or concave), we lose the sufficiency
condition, and x = x* could be a local minimum, a local maximum, or a stationary point instead
of an optimum.

The search for an optimal solution to a general nonlinear programming problem must find and
examine many candidate solutions to rule out local optima and inflection points. And it is not
sufficient to examine just those points at which first derivatives are zero, for an optimum could occur
at a point where there is a discontinuity and the derivatives do not exist. For example, in Figure 5.6,
the function Ixl has a minimum at 0, a non-differentiable point. Or the optimum could occur anywhere
on the boundary of the feasible region. For constrained problems, the shape of the feasible region
(which certainly may be non-convex) merely contributes further to the difficulty of the search.

Clearly, a single algorithm capable of making all of these considerations could not operate
efficiently. Therefore, the remaining sections of this chapter present a number of different algorithms
that have been developed for solving special classes of nonlinear programming problems.

5.2 UNCONSTRAINED OPTIMIZATION

The simplest unconstrained optimization problem occurs when the objective function f involves
just a single variable, is differentiable, and is concave for a maximization problem or convex for
a minimization problem. In that case, the equation df/dx = 0 can be solved analytically to obtain
the optimum value x* because the necessary and sufficient conditions for optimality are met. If,
however, this equation cannot be solved easily, it may be reasonable to resort to an iterative search
procedure. Because there is only one variable, a one-dimensional search suffices.
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FIGURE 5.6 f(x) = Ixl.

5.2.1 ONE-DIMENSIONAL SEARCH

The process begins by establishing an upper limit xu and a lower limit x/, within which an optimum
is known to exist, and choosing an initial trial solution x to be halfway between the bounds:

x = (xu + x,)/2

Suppose a function f(x) is to be maximized and that f(x) is concave between xu and x,. Then
the general idea is to examine the slope of f(x) at the current trial solution x. If the slope is positive,
then f(x) is increasing and the optimum x* is greater than x, so x is a new lower bound on the set
of trial solutions to be examined. If the slope is negative, then f(x) is decreasing and the optimum
x* is less than x, so x is a new upper bound. Each time a new bound is established, a new trial
solution is computed (and choosing the midpoint is but one of several sensible rules). The sequence
of trial solutions thus generated converges to the maximum at x*. In practice, the process terminates
when the bounds xu and x/ enclose an interval of some predetermined size e, denoting an error
tolerance. The algorithm can be stated succinctly as follows.

One-Dimensional Search Algorithm

1. Establish an error tolerance e. Determine an xu such that df(xu)/dx ^ 0 and an x, such
that df(x,)/dx > 0.

2. Compute a new trial solution x = (xu + x,)/2.
3. If xu - x, ̂  €, then terminate. The current approximation is within the established error

tolerance of x*.
4. If df(x)/dx > 0, set x, = x.
5. If df(x)/dx < 0, set xu = x.
6. Go to Step 2.

Example 5.2

The algorithm can be illustrated by the problem of maximizing

f(x) = x4 - 16x3 + 91x2 - 216x + 180

over the range 3.2 ̂  x ̂  5.0, which is shown in Figure 5.7. The function is certainly concave in
the range 3.2 ̂  x ̂  5.0, so we will apply the search to that range.

The derivative df(x)/dx = 4x3 - 48x2 + 182x - 216 will be used during the procedure.
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FIGURE 5.7 f(x) = x4 - 16x3 + 91x2 - 216x + 180.

1. xu = 5.0, x, = 3.2, and let € = 0.15
2. x = (5.0 + 3.2)72 = 4.1
3. 5.0-3.2 = 1.8 >e
4. df(x)/dx at x = 4.1 is equal to -0.996 < 0, so set xu = 4.1 and leave x/ = 3.2
2. x = 3.65
3. 4.1-3.2 = 0.9 > e
4. df(x)/dx at x = 3.65 is equal to 3.328 > 0, so set x/ = 3.65 and leave xu = 4.1
2. x = 3.875
3. 4.1-3.65 = 0.45>€
4. df(x)/dx at x = 3.875 is equal to 1.242 > 0, so set x/ = 3.875 and leave xu = 4.1
2. x = 3.988
3. 4.1 -3.875 = 0.225 >€
4. df(x)/dx at x = 3.988 is equal to 0.12 > 0, so set x, = 3.988 and leave xu = 4.1
2. x = 4.044
3. 4.1 - 3.988 = 0.112 <€, so the process terminates with the current trial solution x =

4.044 and a function value of 3.99.

Notice that at the point x = 4.044, the derivative of f(x) is -0.44 (close to zero); and at the true
optimum of x = 4, where f(x) = 4, the derivative is exactly zero, a necessary condition for
optimality. •

Other methods for a one-dimensional search include the Fibonacci method and a related
technique called the golden section method. These methods are discussed and compared in [Wilde,
1964]. The golden section search is based strictly on the use of function evaluations,, and is
particularly useful when first derivatives are not available. (See Exercise 5.6.)

While a single-variable search method may seem too simplistic for practical nonlinear optimi-
zation problems, such methods are often incorporated into more elaborate multi-variate search
procedures, and therefore warrant our awareness and understanding.

5.2.2 MULTI-VARIABLE SEARCH: GRADIENT METHOD

If our objective is to maximize a function f(x) where x = (xh x2, ..., xn), then the previous single-
variable search is not applicable. Recalling the necessary and sufficient conditions for the optimality
of a solution x*, the necessary condition is that

8f/8Xj = 0 at x = x* for all i = 1, ..., n
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and this is sufficient if f(x) is also concave. So, it is tempting simply to approach the problem as
being that of solving a system of n equations, setting all the partial derivatives equal to zero. This
would allow us to find the stationary points by solving the equations Vf(x) = 0. However, f(x) and
its partial derivatives are general nonlinear functions, and unless this system of equations has some
special structure, this system cannot be solved analytically. So again, we turn to the use of iterative
methods. And while the one-dimensional search technique does not apply directly, it does provide
a framework for how to proceed.

In a one-dimensional search, at each iteration we examined the derivative of the function in
order to decide whether to increase or decrease the current approximation to x*. There were only
the two choices along one dimension. Now, in an n-dimensional search space, at each iteration
there are infinitely many directions to change the current (x,, x2, ..., xn), and we can examine the
partial derivatives to choose to move in that direction that yields the fastest possible improvement
in f(x). Whereas in a one-dimensional search, we tried to reach a point x at which df(x)/dx = 0,
now our aim is ultimately to reach a point x = (x,, x2, ..., xn) at which all the partial derivatives
of f(x) are equal to zero.

The method described here is known as the gradient search procedure. Recall that the gradient
of a function f(x) at a point x = x1 is

Vf(x') = [8f/8x,, Sf/8x2, ..., 8f/8xn] at x = x1

and the gradient will be used here as an indication of the direction of the fastest rate of increase
of the function f(x), viewed from the point x = x'. The gradient method will generate successive
points by repeatedly moving in the direction of the gradient at each point.

The next question is how far to move in the direction of the gradient. A move from an initial
point x° all the way to a solution x* for which Vf(x*) = 0 would involve a circuitous route that
would require constant re-evaluation of the gradient along the way. Because this would be com-
putationally unreasonable, our method will instead move in a straight line in the direction of the
gradient, and the distance to the next point will be: as long as f(x) keeps increasing. At that new
point where f(x) is no longer increasing, the gradient is re-evaluated to determine the next direction
to move, a distance for the next move is determined, and the next point is computed. This process
repeats until two successive points are essentially the same, or Vf(x) is within numerical tolerance
of zero at one of the points.

This approach bears a resemblance to the method one might follow when climbing a mountain.
At a given point, look around and select the direction of steepest ascent in the terrain, and follow
that direction until the path is no longer ascending. At this point, look around again and select the
direction of steepest ascent, and continue to repeat this process until arriving at a point at which
none of the surrounding terrain is ascending. Assuming the mountain is concave, the peak has been
reached.

This analogy is only a two-variable case in which the two variables represent the horizontal
plane and the function value represents the vertical height of the surface of the mountain. Let us
now describe this steepest ascent process for maximizing an n-variable function.

An initial approximation x° is chosen, then successively a point XJ+1 is found from the current
point xJ as follows:

XJ-M = xj + # . Vf(xJ)

where d* specifies the distance to be moved in this iteration.
The value of dj must be found so as to maximize the function f at the new point; therefore, we

wish to

maximize f(tf + d* • Vf(xJ))
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with respect to d>. Because all the other variables are now playing the role of constants in this
context, we actually are merely faced with the problem of maximizing a function of a single
variable. For this, we can take the derivative with respect to d>, set it equal to zero, and solve for
tf; or use a one-dimensional search method such as described in Section 5.2.1. The multi-variable
steepest ascent algorithm can now be stated succinctly as follows.

Multi-variable Gradient Search

1. Establish an error tolerance e. Determine an initial approximation or trial solution x° =
X1°,x2°, ...,xn°). Setj = 0

2. Determine the value of d* that maximizes

f(xJ + d> • Vf(xJ))

and use that value of d> to evaluate xJ+I.
3. Compute the next trial solution

xj+i = XJ + dJ • Vf(xJ)

4. If I xJ+I - xJ| < e, then terminate.
Vf(x*+1) must be very close to zero.

5. Set j = j + 1 and go to Step 2. •

The gradient search always eventually converges to a stationary point as long as f(xJ+1) > f(xJ)
at every iteration. Note that a line search algorithm finds a local optimum. Therefore, it is possible
for a naive line search algorithm to find a solution f(xJ+!) < f(xj), in which case convergence is not
guaranteed. Consider the example in Figure 5.8. If the initial distance is long enough, then a search
such as a bisection search could easily converge to a worse solution than the initial solution, and
the process could conceivably even cycle back to xj.

It has been observed that the gradient method often "overshoots." By going as far as possible
while f(x) is increasing, excessive zig-zagging toward the optimum typically occurs. Several
modifications improve performance [Simmons, 1975], but the simplest is to use 0.9d> instead of d*
as the distance. This practice has been observed to double the convergence rate.

f(x)

Search Direction

FIGURE 5.8 Potential problem for line searches.
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It might be pertinent to mention here that not all methods for multi-variable optimization rely
on the use of derivatives. There are a number of methods that do not require explicit first derivative
information. For example, the gradient vector is composed of n elements that each measure the
slope or the rate of change of the function if we take a small step in each of the co-ordinate
directions. Therefore, one simple method of approximating the gradient at xJ is to perform n
additional function evaluations at each of the points f(xJ + 8j) for each i, simply perturbing the i-
th component of xJ by some small constant. The terms of the gradient measure the per-unit difference
in the function value. This same concept can be extended to approximating the second derivatives
of a function. Normally, it is preferable to provide an explicit function for the derivatives. However,
if that is not practical, and if function evaluations are not too expensive, the approximation methods
may be valuable.

5.2.3 NEWTON'S METHOD

A criticism that could be made of the gradient search method is that, although the gradient direction
is the best direction to move, viewed from the current trial solution, as soon as we begin moving
away from the current point, that direction is immediately not the best direction any longer. And
the farther we move, the worse the chosen direction becomes. The gradient direction is an especially
poor choice in the neighborhood of the optimum. Therefore, convergence is not easily predictable.

This behavior is explained by the fact that the gradient search method follows the gradient
direction dictated by a linear approximation to f(x) near the current trial solution xj. Whereas a
straight line is generally a poor approximation to a nonlinear function, most general nonlinear
functions can be reasonably well approximated by a quadratic function, in the vicinity of the
maximum.

Newton's method is an iterative technique that makes use of this fact by choosing as its next
trial solution that point that maximizes the quadratic approximation to f(x). Specifically, given a
current trial solution xJ, the next point xJ+1 is computed as

xj+i = XJ + dJ (-H-'(xJ) • Vf(xJ))

where H(x) is the Hessian matrix of f(x) evaluated at the point x, and H-1(x) is its inverse. The
optimizing distance d* can be chosen just as it was in the gradient search. Convergence occurs
when the direction vector becomes close to zero.

Newton's method generally requires fewer iterations for convergence than the gradient search
method because it uses a better direction of movement from one point to the next. However, there
is little else to recommend this method from a practical standpoint. First, of course, the function
f must be twice continuously differentiable, and the Hessian matrix must be nonsingular. The
computational effort associated with inverting the Hessian matrix is excessive. (For economy of
computation, it is reasonable to use the same inverse for several consecutive iterations. This slows
convergence, but simplifies each iteration so much that overall performance is actually improved.)

Even so, the calculations are more extensive than for the gradient search methodj and the
efficiency diminishes rapidly as the number of variables increases because the matrix H becomes
quite large. Moreover, Newton's method may fail to converge in general. The formula for computing
a new point xJ+1 from xJ does not necessarily imply an increase in the function value, for it could
be that f(xJ+1) < f(xj). In particular, if the Hessian is positive definite, Newton's method will
approximate a quadratic minimum. If it is negative definite, it approximates a quadratic maximum.
When the Hessian is indefinite, Newton's method takes us to a saddle point solution of the
approximation. Certainly, if f(x) were quadratic and H(x) were negative definite, then the method
would converge in one iteration. In general, convergence to a local maximum is guaranteed, and
occurs quite rapidly for any smooth, continuous nonlinear function once we get close enough to
the maximum. However, "close enough" can be a very small region.
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5.2.4 QUASI-NEWTON METHODS

The computational demands of repeatedly inverting the n x n Hessian matrix H motivated the
development of a large number of modifications to the original Newton's method. These modifi-
cations differ from one another primarily in the way that the second derivatives are approximated
from one iteration to the next.

These Quasi-Newton methods begin with an arbitrary negative definite approximation to
H, or its inverse, and through a succession of improvements, eventually converge to the true
matrix H. For example, the methods could begin with H = -I, a negative identity matrix at some
initial point, x°. The Newton direction corresponds to a simple gradient direction. We first perform
a line search to get a new point, x1. Then, based on the new point and the function value, we
perform a rank 1 update to the matrix H (and H'1) which fits the current points with a quadratic.
In so doing, we "correct" the estimate of H in one dimension, but we also maintain a negative
definite approximation. This process is repeated using the new estimate of H to perform a line
search and get a new maximum at x2. After n iterations on a negative definite quadratic function,
the approximation is exact.

The first such method was introduced by [Davidon, 1959], and shortly thereafter was improved
upon by [Fletcher and Powell, 1963 ]. The combined technique was known as the DFP method.
A few years later, minor variations were proposed independently by [Broyden, 1970], [Fletcher,
1970], [Goldfarb,1969], and [Shanno, 1970] and these became known collectively as the BFGS
update formula. This is the method upon which almost all commercial software for nonlinear
unconstrained optimization is based. The mathematical foundations and the precise formula typi-
cally used for updating the Hessian matrix is given in [Beale, 1959; 1988] and [Avriel, 1976].

5.3 CONSTRAINED OPTIMIZATION

General nonlinear objective functions with general nonlinear constraints are the subject of this
section. The methods to be applied will differ, depending on the nature of the constraints. Equality
constraints can be dealt with using the method of Lagrange multipliers. Inequality constraints require
the more comprehensive Kuhn-Tbcker theory, which is central to the entire subject of mathematical
programming. We will conclude with a short discussion of some popularly used techniques.

5.3.1 LAGRANGE MULTIPLIERS (EQUALITY CONSTRAINTS)

The method of Lagrange multipliers is named after the 18th century French mathematician Joseph-
Louis Lagrange, and applies to nonlinear optimization problems with equality constraints, which
can be expressed in the form

maximize f(x)

subject to gj(x) = bj for i = 1, ..., m

where x = (x,, x2, ..., xn).
We wish to find a solution such that each gj(x) = bj, so we are going to re-write the original

problem as

m
maximize F(x,\) = f(x) - £ Ki (gj(x) -

1=1

The quantities Xj are called Lagrange multipliers, and it is clear that if all the equality constraints
are met precisely, then F(x,X) = f(x) for any values of \l9 X2, • • • » \n- We wish to find values of
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X,, X2, ..., Xm and x,, x2, ..., xn that maximize F(x,X) and also satisfy &(x) = bt for i = 1, ..., m.
Such a solution would solve our original equality constrained problem.

We already know that a necessary condition for an optimum of F(x,X) is that 8F/8Xj = 0 for j =
1, ..., n and 8F/8Xj = 0 for i = 1, ..., m. Taking (m + n) partial derivatives of F, with respect to the
components of Xj and the Xi? and setting each equal to zero, we can write the necessary conditions as

8f(x)/8Xj - lXjSg/SXj] = 0 for j = 1, ..., n

gi(x) - bj = 0 for i = 1, ..., m

We now have a set of (m + n) equations in (m + n) variables, which may be solvable by some
iterative technique such as Newton-Raphson. There may be more than one critical point, but if so,
the global optimum will be among them.

As a final observation, it is interesting to apply the method of Lagrange multipliers to the
standard linear programming problem with constraints expressed as Ax = b, and to see that the
Lagrange multipliers are precisely equivalent to the dual variables. This is merely a special case
of a further generalization which will be examined next.

5.3.2 KUHN-TUCKER CONDITIONS (INEQUALITY CONSTRAINTS)

The most general nonlinear programming problem can be defined as

maximize f(x)

subject to gj(x) < 0 f or i = 1, ..., m

where x = (xj, x2, ..., xn). Clearly, any mathematical programming problem can be expressed in this
form. It is tempting to introduce slack variables and convert all the inequality constraints into equalities,
then apply the method of Lagrange multipliers. However, the m extra variables introduce an unwelcome
computational expense, and we have more attractive alternatives that we will now consider.

Actually, we do try to extend the idea of Lagrange multipliers by recognizing that if the
unconstrained optimum of f(x) does not satisfy all the inequality constraints indicated above, then
when the constraints are imposed, at least one of the constraints will be satisfied as an equality.
That is, the constrained optimum will occur on a boundary of the feasible region.

This observation suggests an algorithm for solving the problem. We begin by solving the
unconstrained problem of maximizing f(x). If this solution satisfies the constraints, stop. Otherwise,
we repeatedly impose increasingly larger subsets of constraints (converted to equalities) until either
a feasible solution is found via the method of Lagrange multipliers, or until it is determined that
no feasible solution exists.

Unfortunately, this method is very computationally demanding (and consequently essentially
useless on most problems of practical size), as well as not guaranteeing that a solution found is
globally optimal. Still, the Lagrange multiplier idea leads to what are known as the Kuhn-Tticker
conditions that are necessary at a stationary point, corresponding to x and X, of a maximization
problem. The Kuhn-Tucker conditions can be stated as:

8f/8Xj - XTlj gi/8Xj = 0 for j = 1, ..., n
1=1

gj(x) < Ofor i = 1, ..., m

\i >0 fori = 1, ..., m

Xigi(x) = 0 for i = 1, ..., m
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The Kuhn-Tucker conditions correspond to the optimality conditions for linear programming where
the X's represent the dual variables. The gradient of the objective function at the optimal solution,
x, can be written as a non-negative linear combination of the gradients (normal vectors) of the
active constraints. The second condition states that x must be feasible. The third condition is non-
negativity, and the fourth condition corresponds to complementary slackness: X can be positive
only if the corresponding constraint is active (gj(x) = 0). If the i-th constraint is satisfied as a strict
inequality, then the i-th resource is not scarce and there is no marginal value associated with having
more of that resource. This is indicated by Xj = 0.

The Kuhn-Tucker necessary conditions are also sufficient for a maximization problem if the
objective function f(x) is concave and the feasible region is convex. Establishing the convexity and
concavity and applying the Kuhn-Tucker necessary conditions do not yield procedures that are
reasonable for direct practical numerical application. However, the Kuhn-Tucker conditions do
form the very foundation of the theory of general mathematical programming, and will be seen
again in the next section where we will — at last — see some efficient computational methods.

5.3.3 QUADRATIC PROGRAMMING

Quadratic programming comprises an area of mathematical programming that is second only to
linear programming in its broad applicability within the field of Operations Research. While
quadratic objective functions are not as simple to work with as linear objectives, we can see that
the gradient of a quadratic function is a linear function. Consequently, the Kuhn-Tucker conditions
for a quadratic programming problem have a simple form that can make solutions to these problems
considerably easier to obtain than for general nonlinear programming problems.

The quadratic programming problem can be expressed in the following form:

maximize z = £ CjXj + £ X djkxjx

k=l
k

subject to £ ayXj = bj for i = 1, ..., m
j=i

Xj ^ 0 for j = 1, ..., n

The problem can be expressed more succinctly, using matrix notation, as:

maximize z = CT x + xTDx

subject to Ax = b

x > 0

where x and c are n-component vectors, A is an m x n matrix, b is m x 1, and D is an n x n
symmetric matrix.

Several algorithms have been developed to solve certain forms of quadratic functions, and we will
describe some of the best known and most widely used ones. Because of the complexity of these
procedures, we will give only brief overviews. The curious reader is urged to consult a more advanced
reference such as [Simmons, 1975] or [Nash and Sofer, 1996] for a deeper appreciation of these methods.

One of the earliest and simplest methods for solving quadratic programs is Wolfe's algorithm
[Wolfe, 1959], which is still widely used today. In this method, a sequence of feasible points is
generated via a modified Simplex pivoting procedure that terminates at a point x* where the Kuhn-
Tucker conditions are satisfied. Because the Kuhn-Tucker conditions represent a system of linear
equations when the objective function is quadratic, the problem reduces to finding a feasible solution
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to a system of equations. Wolfe's algorithm uses Phase 1 of the Simplex algorithm to find a feasible
solution. The complementary slackness conditions are not linear, but the algorithm simply maintains
a set of active constraints, and allows only the corresponding X{ dual variables to be greater than
zero. Wolfe's method, like most of the later procedures, moves along an active constraint set.

When D is negative definite, Wolfe's algorithm converges to an optimal solution, or demonstrates
infeasibility within a finite number of iterations, assuming that the possibility of infinite cycling
due to degeneracy is excluded.

Beale's method [Beale, 1959], introduced by E. M. L. Beale as early as 1955, is based on
classical calculus rather than on the Kuhn-Tucker conditions. This method is applicable to any
quadratic program of the form described above except that Beale does not require D to be negative
definite or negative semidefinite (i.e., the objective function need not be concave). Thus, this
algorithm will generally yield local optima and the first solution generated will be the global
optimum when the objective is convcave.

Beale's method partitions matrices and uses partial derivatives to choose pivots until it is no
longer possible to improve the objective value by any permitted change in a non-basic variable.
Initially, all redundant constraints are eliminated and an initial basic feasible solution is determined
via a Phase 1 Simplex process. The matrices are partitioned in such a way that a new system of
equations is developed in which the basic variables, along with the associated constraints, are
separated from the non-basic variables and their associated constraints. Partial derivatives determine
which non-basic variable to increase or decrease.

When an apparent solution is achieved, an examination of the second partial derivative will
determine whether the solution is a false optimum or not. If the second partial derivative is positive
for some x, then the current solution is a minimum (rather than a maximum). In this case, the
objective function can be improved by bringing x into the basis.

A slightly less popular, but more recent and more sophisticated method was originally presented
by [Lemke, 1962]. It is applicable to any quadratic problem, but is typically described in terms of
solving problems expressed in the form

maximize z = CTX - y2 x
TDx

subject to Ax < b

where D is not only symmetric but also positive definite. This new restriction on D is critical and
is used throughout the procedure. Lemke's formulation of the constraints in terms of inequalities
rather than equations causes the Kuhn-Tucker conditions to assume a particularly simple form
which is exploited by the algorithm. These constraints also include any non-negativity restrictions.

Lemke's algorithm first formulates the Kuhn-Tucker conditions for the original problem, then
defines a new set of variables, from which a second quadratic program is constructed. This new
problem is solved and from its solution is obtained a solution to the original problem. The basic
strategy is to generate a sequence of feasible points until a point is reached at which a certain
gradient satisfies two specific restrictions. Three situations may arise, each of which is handled
differently but results in a matrix being updated via the usual Simplex transformation technique.
When the algorithm terminates with an optimal solution to the second quadratic program, the
optimal solution to the original quadratic program is constructed based on the definitions of the
new set of variables.

Historically, we find that Beale's method is used less extensively in practice than the other two
algorithms mentioned here. Computational experiments [Ravindran and Lee, 1981] have shown
that Lemke's algorithm outperforms Wolfe's and four other lesser-known algorithms. Although
Lemke's algorithm can fail to converge, when convergence does occur, it occurs more quickly than
in the other methods.
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Quadratic programming models are important for a number of reasons. General nonlinear
problems with linear constraints are sometimes solved as a sequence of quadratic program approx-
imations. Many nonlinear relations occurring in nature are not quadratic, but can be approximated
by quadratic functions and then solved with the methods just described. However, a wide variety
of problems fall naturally into the form of quadratic programs. The kinetic energy of a projectile
is a quadratic function of its velocity. The least-squares problem in regression analysis has been
modeled as a quadratic program. Certain problems in production planning, econometrics, activation
analysis in chemical mixture problems, and in financial portfolio management are often treated as
quadratic problems. We will elaborate on this last problem in the following example.

Example 5.3

A classical problem that is often used to illustrate the use of the quadratic programming model is
called portfolio selection. A portfolio is a collection of assets, all of which have positive present
values (called prices) and which also have positive future values that are currently unknown.
Analysts often use the term "rate of return on investment" to describe future value as follows:

Future value = Price x (1 + Rate of return on investment)

Future values are positive but certainly may be less than present values (prices).
Rates of return are not known nor are they guaranteed. A very high expected return on an asset

is usually accompanied by great variability. The future values can be estimated, but because such
estimates are subject to error, there is a risk associated with any portfolio. The risk of a portfolio
can be reduced by diversification, the extent of which is determined by the number of assets in the
portfolio and the proportion of the total investment that is in each asset. It is generally easier to
predict the future value of the portfolio than to predict the future values of the individual assets.

The portfolio manager is responsible for assigning a weight to each asset held in the portfolio.
The weight of the i-th asset is the ratio of the dollar amount invested in that asset, divided by the
total dollar value of the portfolio. The sum of the weights must be one, and all weights are non-
negative. A portfolio p is defined by this set of weights. We will see that these weights determine
the portfolio's expected future value as well as the portfolio's risk.

The portfolio manager generally begins his decision-making process with

• A fixed amount of money to be invested
• A list of n assets to invest in
• The expected return of each asset
• The variance of each asset return
• All covariances

If risk were of no concern, the manager would undoubtedly just invest all the money in the one asset
offering the greatest expected return, that is, assigning a weight of 1 to that asset and 0 to .'all the
others, regardless of risk. But risk almost always is a consideration, and most investors are risk-averse.

It is desirable to maximize return and minimize risk, but in a competitive market, prices fluctuate
so that the "safer" investments are more expensive than the "riskier" ones. So, in general, it is not
possible to simultaneously achieve both goals of maximizing return and minimizing risk. Instead,
we define a class of efficient portfolios. A portfolio is said to be efficient if either

• There is no other less risky portfolio having as high a return
or

• There is no other more profitable portfolio having as little risk.
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Thus, the problem of efficient portfolio selection can be viewed as having primal and dual expres-
sions: to minimize variance subject to a specified expected return, or to maximize expected return
subject to a specified variance.

Let n be the number of assets being considered, and let i- be the expected return on the i-th asset.
We will let W denote a column vector of n asset weights, indicating what fraction of the portfolio
should be allocated to each asset. We use a variance-covariance matrix V in which diagonal element
vtt is the variance of the i-th asset, and the off-diagonal elements vtj = vj4 denote the covariance
between the i-th and j-th assets. Then, risk is defined as the variance a2 of the portfolio p as

risk (p) = a2(p) = WWW

The expected return of the portfolio p is given by

E(p) = WTl

where R is a column vector of expected asset returns. So the portfolio selection problem can be
expressed as

minimize z =

subject to

Wj ^ 0 for i = 1, ..., n

where P is a desired minimum return on investment.
Equivalently, we could

maximize z = WTl

subject to WWW < Q

Wj > Ofor i = 1, ..., n

where Q is a desired maximum risk. The first of these formulations is clearly in the form of a quadratic
programming problem with linear constraints. The noted economist Harry Markowitz [Markowitz, 1959]
is credited with formulating the portfolio selection problem as a quadratic programming model.

5.3.4 MORE ADVANCED METHODS

Quadratic programming models represent one special case of nonlinear programming problems,
but there are many additional methods that have been developed for solving various other special
types of nonlinear problems. Gradient methods are based on the ideas presented above in Section
5.2.2, but must include special provisions to restrict the search within the feasible region. One of
the best-known of these is the reduced gradient method [Wolfe, 1967], [Lasdon and Waren,
1978], [Murtagh & Saunders, 1978]. In particular, the Lasdon and Waren algorithm, GRG2
(Generalized Reduced Gradient) is available in standard spreadsheet packages using the "Solver"
tool. It is based on a Simplex scheme, but instead of improving a current solution by a change of

I w,= l
i=l

i Wi = ii=i

t Wfi S P
i=l

W-P/W
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one non-basic variable at a time, the reduced gradient method simultaneously changes as many
non-basic variables as can change and yield an improvement, but at different rates, proportional to
their respective partial derivatives.

Unconstrained optimization techniques have also been adapted for constrained optimization by
the imposition of penalty functions or barrier functions [Bazaraa, Sherali, and Shetty, 1993].

5.4 GUIDE TO SOFTWARE TOOLS

Linear programming models require only the coefficients for objective and constraint functions,
and it is easy to enter this input to software by using well-established input formats that have been
in use for many years. By contrast, nonlinear models come in many different forms. In some
cases, the model itself may actually be very complicated. In others, the model may be fairly simple,
but just does not conform to any particular standard model, and therefore finding and using the
"right" software is difficult. This lack of any standard form (resulting from the fact that "nonlinear"
programming includes every imaginable form of mathematical programming except linear!) has
always made the selection and use of appropriate software cumbersome.

As modeling languages such as AIMMS, AMPL, and GAMS become more sophisticated,
software use becomes accessible to a larger community of analysts. Software for nonlinear pro-
gramming often requires that the derivatives of functions be explicitly entered along with other
components of the problem. But even this obstacle has been alleviated by software such as ADIFOR,
which analyzes nonlinear formulas and generates software that can evaluate derivatives (a process
much more sophisticated than the symbolic differentiation that is available in some mathematical
packages). In light of these advances, why are nonlinear programming problems still considered
difficult to solve?

1. In many problems, it is computationally difficult to determine whether or not the objective
function is concave (convex) in the feasible region; hence, it is difficult to guarantee
convergence to a global optimum.

2. If a method finds a "solution," it is often difficult to know whether it is local or global.
3. Existence of feasible solutions for a problem having nonlinear constraints is difficult to

determine, which means there is no guarantee of finding an initial feasible point (starting
solution) even when one exists.

4. Special-purpose software may need to be used in conjunction with more general nonlinear
programming optimization packages.

5. Most software employs some variation on Newton or quasi-Newton methods. This works
well if the current point is close to the optimal, but the results are unpredictable when
the initial point is far away from the optimal solution.

6. Some algorithms require more global knowledge about their nonlinear functions to give
satisfactory performance.

For these reasons, although modeling languages and convenient software interfaces seem to invite
a wide audience of users, it must be recognized that for nonlinear programming, friendly software
is no substitute for a savvy and mathematically astute analyst. Yet nonlinear programming is a
valuable tool for many applications in science, engineering, and finance, and there is a wide selection
of powerful and ingenious software available.

Choosing software for nonlinear optimization problems is difficult because no one algorithm
is efficient and effective for finding a global optimum for general nonlinear problems. Because no
method is invariably superior to others, many software products include a number of methods, with
the hope that one of the methods will suffice for a given problem. All methods will typically require
repeated computation of the objective function, the gradient vector, and an approximation to the
Hessian matrix. For many problems, evaluating the gradient requires more time than evaluating the
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objective function, and approximating the Hessian matrix can take an enormous amount of CPU
time as well as memory. It is tempting to seek a technique that does not rely on the Hessian, but
such techniques (because they are poorly guided) may require many more iterations and in the end
are therefore slower.

Software for nonlinear optimization in general has always been characterized by its variety.
Some algorithms seem to perform exceptionally well on problems having constraints that are nearly
or mostly linear, while a very different approach may be effective on problems that are highly
nonlinear but that have relatively few variables or constraints. And some recent progress has been
made by extending interior point methods for linear programming problems to quadratic and even
general nonlinear problems.

MINOS is one of the main linear and nonlinear optimizers offered within the GAMS and
AMPL modeling systems, but it also can be used as a stand-alone package using data in MPS
format. It is implemented in Fortran 77 and distributed as source code for mainframes, workstations,
and PCs. It is comprised of subroutines that can be called from drivers written in Fortran or other
languages such as C or MATLAB. The MINOS system is a general-purpose optimizer, designed
to find locally optimal solutions involving smooth nonlinear objective and constraint functions. It
takes advantage of sparsity in the constraint set, is economical in its use of storage for the reduced
Hessian approximation, and is capable of solving large-scale linear and nonlinear programs of
several thousand constraints and variables. Licenses for academic use are in the range of $500,
while commercial versions are around $5000.

NPSOL is offered as a companion to MINOS, and shares a number of features (platforms,
languages, size, and price). NPSOL is especially designed for dense linear and nonlinear programs,
and for small models involving nonlinear constraints or whose functions are highly nonlinear and
expensive to evaluate. It does not exploit sparsity (its Hessian is always stored in full form); it
requires fewer evaluations of the nonlinear functions than does MINOS; it is more robust than
MINOS if constraints are highly nonlinear; and convergence is assured for a large class of problems
(particularly some for which MINOS fails to converge). This reliable code can handle up to several
hundred constraints or variables. For both NPSOL and MINOS, users should ideally provide
gradients for their nonlinear functions, but both systems will estimate them if necessary. Prices
range from a few hundred dollars up to $25,000 for the largest commercial versions.

MATLAB Optimization Toolbox includes a wide variety of methods for linear and nonlinear
optimization on Unix platforms, PC Windows, Mac, and VMS systems. Available for around $1000,
problem size is limited only by available memory. The MATLAB language facilitates problem
input. Constraints and objective functions must be differentiable.

SAS Institute, Inc. provides a general nonlinear optimization package that runs in all major
PC, workstation, and mainframe operating environments. SAS offers several techniques including
Newton-Raphson, quasi-Newton, conjugate gradient, Nelder-Mead simplex, hybrid quasi-Newton,
and Gauss-Newton methods, which comprise special routines for quadratic optimization problems.
The quasi-Newton methods use the gradient to update an approximation to the inverse of the Hessian
and is applicable where the objective function has continuous first and second derivatives in the
feasible region. This implementation uses both DFP updates and BFGS updates. Nelder-Mead does
not make use of derivatives; however, it requires many function calls, does not efficiently solve
problems with large numbers of variables, and is incapable of solving certain types of problems at
all [Nelder and Mead, 1965]. The Gauss-Newton method uses a special line-search technique. It
is limited in its applicability, is numerically unstable, and SAS customers have actually been advised
against using it at all [Hartmann].

Methods requiring derivatives give the user the option of computing the derivatives analytically,
using finite difference approximations, or specifying analytical formulas for evaluation by the SAS
system. All of the techniques in the SAS package use O(n2) memory except the conjugate gradient
methods, which require O(n) memory. The conjugate gradient procedures give the user a choice
of four different update mechanisms.
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IMSL (mentioned in previous chapters of this book and available through Visual Numerics)
comprises an extensive set of subroutines and procedures for a variety of mathematical and statistical
purposes, running on Unix platforms, Windows, and Open VMS systems. It includes routines to
solve nonlinear problems whose size is limited only by the available memory, and is generally
successful on problems involving smooth functions.

NAG (Numerical Algorithms Group) libraries contain mathematical and statistical routines
written in the C and Fortran languages. The Fortran library is a collection of over 1200 user-callable
routines that can operate in DOS, Windows, and various Unix (Linux) environments. The C library
is recommended for optimization and numerical solutions of differential equations. The smallest
versions are available for under $1000, while the largest version sells in the $35,000 range.

GINO (General Interactive Optimizer) is a robust package that allows building nonlinear
models and optimizing general nonlinear programming problems, on PCs, Macs, and a variety of
popular workstations and mainframes. Input is facilitated by the GINO modeling language. Its
routines are based on the generalized reduced gradient algorithm developed by [Abadie, 1978] and
[Lasdon and Waren, 1978]. A quasi-Newton method uses BFGS updates. An alternative option
allows the user to choose conjugate gradient methods that are not as efficient as BFGS but that
require less memory. A smaller version of the GINO system runs problems with 50 variables and
30 constraints in 640K memory and sells for around $200. The larger version requires 16 Mbytes
of memory and costs around $2000, but is capable of solving problems of up to 1600 variables
and 800 constraints.

LINGO combines large-scale linear, nonlinear, and integer optimizers. LINGO has an inter-
active modeling environment, and runs on PC Windows systems and most workstations and
mainframes (Linux, AIX, etc.). Small problems involving a couple of hundred variables and
constraints are solvable with a version of the system that sells for around $100, while a larger
version, costing around $5000, solves problems of unlimited size.

LINDO can be used to solve quadratic programming problems by writing the Kuhn-Tucker
conditions, introducing a Lagrange multiplier for each constraint. But several practical questions
and problems can arise, as is seen if we revisit Markowitz1 approach for portfolio selection:

1. How does an analyst know exactly what relative return vs. variance is desirable?
2. The covariance matrix is large (so 1000 assets implies 1,000,000 entries, or half that due

to symmetry).
3. As prices and other data change, if the model is re-optimized, it may turn out that a

completely different portfolio is recommended. But all those "buys and sells" cost money.
Thus, transaction costs really should be considered so that the cost of portfolio changes
never exceed the benefits of the change.

Item (1) is dealt with through sensitivity analysis, varying the right-hand sides. Item (2) may be
handled using a recommendation from [Sharpe, 1963], who suggests a method for reducing the
covariance matrix down to just a diagonal covariance matrix by adding one constraint and one
variable. Item (3) is addressed by [Schrage, 1986], wherein transaction costs are dealt with
approximately (but satisfactorily) by treating them as reductions in the portfolio return.

MProbe is a tool for analyzing mathematical programming models, especially to discern the
nature of nonlinear functions in a given region of interest, and can be used to determine the shape
of a nonlinearly constrained region or the shape of an objective function. It has a windowed user
interface with menus, direct links to AMPL, and function plotting capabilities that can be; useful
as an adjunct method to detect why a solver is stuck at some point although a better feasible point
is known to exist.

The Solver series is available bundled with various spreadsheet software packages for PC
Windows systems. Premium Solver allows large-scale nonlinear optimization in a spreadsheet
input/output context. Premium Solver can handle 1000 constraints and variables, and sells for about
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$1000, with educational versions and licenses also available. Solver DLL packages offer a nonlinear
optimizer, with high-level support for Visual Basic (also allowing inputs from C/C++ and Fortran),
and includes options for linear, integer linear, and quadratic programming. Solver DLL solves
systems with 200 rows and 400 columns, and the largest version sells for $750.

Valuable reference material for the serious and able practitioner or analyst can be found in
[Gill, Murray, and Wright, 1981]. This volume offers often difficult reading, and does not necessarily
stress the intuitive appeal of any of the methods discussed. Rather, it realistically treats the
implementation details pertinent to the practical performance of some of the most powerful and
most advanced methods and implementations. Additional recommended sources of information
include [Fourer, 1996], [More and Wright, 1993], and [Nash, 1998]. Finally, technical information
on algorithms, and guides and access to software, are contained at the Internet site maintained by
NEOS, the Network-Enabled Optimization Systems, supported by the Argonne National Laboratory
and the Optimization Technology Center of Northwestern University.

5.5 ILLUSTRATIVE APPLICATIONS

5.5.1 GASOLINE BLENDING SYSTEMS [Ricev ET AL., 1995]

Texaco's most important refinery product is gasoline. Crude oil entering a refinery is distilled and
split into various components, which can then be reformed or cracked into lighter compounds that
may be of greater commercial value. The resulting stocks (having varied and unanticipated
properties) must then be blended to achieve certain quality specifications. The greatest profitability
will result if the refinery can maximize its production of higher octane gasoline blends from the
available stocks.

Gasoline blend qualities include familiar properties such as octane (measured as research,
motor, and road octanes) and lead content, but also other characteristics such as Reid vapor pressure
(RVP), sulfur and aromatic contents, and volatilities (the temperatures at which certain percentages
of the blend boil away). Other qualities are important because of federal and state agency emission
standards. While some properties of gasoline blending can be (and have been for decades) modeled
as linear optimization problems, octane, RVP, and volatilities are highly nonlinear functions of
volume and weight.

Prior to the late 1970s, gasoline blending was a simple mixture of various stocks, and octane
requirements were met by injecting tetraethyl lead into the blend. Blending recipes were based on
hand-calculations that did not significantly affect the overall economies of the plant. Tetraethyl
lead was inexpensive and available in ample supplies, so the octane requirement was not a binding
constraint in the model.

But during the 1970s, governments mandated that lead be phased out of the blending recipe;
and by the early 1980s, the federal government also clamped down on volatility specifications for
gasoline. These two changes had a drastic effect on the economics of refining, and Texaco responded
by developing a nonlinear gasoline blending optimization system. The first version of the system
resulted in an estimated annual savings of $30 million, improved quality control, and increased the
ability to plan refining operations and market the products, and perform sensitivity analysis on
current operations schedules.

The blending model was coded in the GAMS modeling language, and uses MINOS solvers.
Subsequent versions of the system allowed additional flexibility in handling blending stocks,
increased the number of contraints that could be modeled, and permitted computations to be placed
on more sophisticated client server network hardware.

The system is used for both immediate, short-range, and long-range planning. Refinery planners
make use of the system to generate the recipe for the next blending operation. For short-term
planning purposes, it is important to be able to examine the multi-period model covering the next
few days, to ensure that components consumed in today's blends do not render tomorrow's schedule
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infeasible. And finally, refinery operations planners must anticipate all the activities associated with
gearing up plants for gasoline reformulation. Estimates produced by older linear programming
planning models must be checked for consistency with larger nonlinear models, and the system
allows planners to identify errors and restructure problem formulations where necessary.

5.5.2 PORTFOLIO CONSTRUCTION [BERTSIMAS, DARNELL, AND SOUCY, 1999]

A large investment firm in Boston manages assets in excess of $26 billion, for clients that include
pension funds, foundations, educational endowments, and several leading investment institutions.
This firm employed the widely used classical theory of portfolio optimization [Markowitz, 1959],
in which managers determine the proportion of total assets to invest in each available investment
to minimize risk (variability of return) subject to constraints that require the expected total return
to meet a certain target. This famous model includes an objective that is a quadratic function of
the decision variables and constraints that are linear.

For a variety of reasons, large clients typically subdivide their asset classes and allow each
portion to be managed by different analysts who have distinct investment styles. This strategy
ensures that the composite return will be a linear combination of the returns resulting from the
different investment styles. Because this linear diversification approach is generally accepted by
clients, the investment firm applies the technique within its individual funds. Portfolios are parti-
tioned into subportfolios, each characterized by a different investment style. Quadratic optimization
can still be used for the multiple subportfolio problem, but the number of decision variables
increases dramatically because each subportfolio can conceivably invest in any of the securities
available to the composite portfolio. (One of the firm's funds is partitioned into 50 subportfolios.)

A notable advantage of this partitioned portfolio framework is the ability to reduce trading
costs by swapping shares internally among subportfolios, thereby often avoiding the costs of trading
on the open market. Globally optimizing multiple subportfolios thus makes it possible to sharply
increase the turnover within each subportfolio without necessarily increasing turnover for the
composite portfolio. This portfolio construction methodology produces funds with good perfor-
mance, high liquidity, relatively low turnover, use of multiple investment styles, and diversification
overtime.

The desired diversification that is achieved through multiple subportfolios unfortunately gives
rise to certain complications that are not handled within the standard quadratic programming model.
With risk management through diversification, the number of different stocks (or other investments)
in the portfolio becomes very large, and as the portfolio is rebalanced over time, the number of
transactions also grows, resulting in increased custodial fees and transaction costs. These phenom-
ena can sometimes be dealt with by adding a post-processing step to the quadratic optimization
phase, simply to prohibit positions and trades smaller than a given threshold. But this firm's strategy
specifically included investing in small-market-capitalization stocks, so merely eliminating small
positions would be inconsistent with established investment goals. Additionally, post-processing
that eliminates many small but key positions can interfere with optimization objectives anjd can
violate constraints.

On the basis of these considerations, the investment firm decided to modify its quadratic
optimization approach so that it could simultaneously optimize its multiple subportfolios and
maintain control over the number of positions and transactions in the composite portfolio. These
stock position levels and transaction counts are inherently integerrvalued quantities, and the qua-
dratic model therefore had to be expanded to include integer components, resulting in a mixed-
integer programming model. The solution was implemented in Fortran using ILOG CPLEX 4.0 as
the underlying mixed-integer solver. The mixed-integer solution allowed the firm to reduce its
average number of different holdings by approximately 50%, and its average number of transactions
by about 80%, significantly decreasing its operational costs and trading costs while maintaining
essentially the same originally targeted expected returns on investment.
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5.5.3 BALANCING ROTOR SYSTEMS [CHEN ET AL., 1991]

Large steam turbine generators, high-speed gas turbine engines, and other machinery with
flexible rotating shafts must be balanced to reduce vibration. Minimizing vibration is important
in extending the life of the machine, improving operating efficiency, and maintaining a safe
operating environment. The design and fabrication of rotating machinery has undergone
evolutionary changes over time, in particular being influenced by increased energy costs and
safety and maintenance concerns. The use of lighter weight materials in rotors and faster
rotating speeds necessitates more accurate manufacturing processes, which result in improved
balancing characteristics in the rotors.

One of the most popular techniques for flexible rotor balancing treats the rotordynamic system
as a linear system in calculating balance correction weights. The primary disadvantage of this
approach is that it typically requires a large number of actual trial runs to collect enough data to
estimate accurately the required balance corrections. The linear programming approach seems
attractive from a computational standpoint, but in many applications, such as utility companies,
the costs of shutdown, installation of trial weights, startup, and data collection are prohibitive.

Using a recently developed nonlinear programming model, it is now possible to determine an
optimal system balance without the necessity of trial runs. In place of actual trial runs, this new
technique requires developing a mathematical model of the system dynamics that can be used to
simulate rotor response to balance corrections.

The unbalance of a rotor is continuously distributed along the axis of the rotor. However, in
the nonlinear model, this continuous distribution is discretized into a finite number of balance
planes to which corrections can be applied. Similarly, measurements are taken at only a limited
number of points (in some cases, as few as two points is sufficient). The nonlinear optimization
process then seeks to find the "unbalance vector" that minimizes a least-squares difference between
the adjusted analytical model and the measured experimental model. In the nonlinear solver for
this constrained least-squares problem, a search direction is found using a steepest-descent method,
and a constrained line search is used to determine the step size. Gradients of the objective function,
with respect to all the design variables, determine the search direction; and at each gradient
evaluation, the rotor model must be solved to obtain the system response. The computations are
frequently complicated by ill-conditioned gradients, but normalization procedures are employed
effectively against this difficulty. Because the rotor systems being balanced often have multiple
possible operating speeds, the optimization objective function includes weights (coefficients) asso-
ciated with each different operating speed of the rotor, with the largest weights applied to the most
critical operating speeds.

In test rigs, significant improvements in vibration levels were observed through the use of this
model. And in the numerical computations, convergence to an optimum solution took place in less
than a minute of mainframe CPU time.

5.6 SUMMARY

Nonlinear optimization models are used for mathematical programming problems in which the
objective function and constraints are not necessarily linear. This class of problems is very broad,
encompassing a wide variety of applications and approaches to solving the problems. No single
algorithm applies equally to all nonlinear problems; instead, special algorithms have been developed
that are effective on certain types of problems.

Unconstrained optimization can often be dealt with through the use of calculus to find maximum
and minimum points of a function. Constrained optimization typically requires solving systems of
equations. As helpful as the mathematical theories are that can be used to describe the characteristics
of optimal solutions to nonlinear problems, such insights nevertheless often fail to suggest com-
putationally practical methods for actually finding the desired solutions.
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Iterative search techniques are frequently used for nonlinear optimization. A one-dimensional
search suffices for finding the optimum value of a function of one variable; at each step, the slope,
or derivative, of the function is used to guide and restrict the search. Although such a technique
seems much too elementary for a realistic nonlinear optimization problem, single-variable search
methods are often incorporated into more sophisticated multi-variable search procedures.

For finding the optima of functions of many variables, gradient search methods are guided by
the slope of the function with respect to each of the variables. At each step, the method follows
the direction indicated by the sharpest improvement from the current point. For this reason,
techniques that operate in this way are often referred to as steepest ascent methods. Straight-line
searches can be improved upon by using Newton's method, which is based on quadratic approxi-
mations to nonlinear functions.

Constrained optimization methods differ depending on the nature of the constraints. The method
of Lagrange multipliers is applicable to problems with equality constraints. For problems with
inequality constraints, Kuhn-TYicker theory describes necessary and sufficient conditions for opti-
mality and forms the foundation of general mathematical programming.

KEY TERMS

BFGS updates
concave function
constrained optimization
convex function
convex region
convex set
DFP method
efficient portfolio
Fibonacci method
global maximum
global minimum
golden section method
gradient search
Hessian matrix
inflection point
Kuhn-Tucker conditions
Lagrange multipliers
local maximum
local minimum
multi-variable search
necessary conditions
Newton's method
one-dimensional search
portfolio selection
quadratic programming
quasi-Newton methods
reduced gradient method
risk
steepest ascent
sufficient conditions
unconstrained optimization
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EXERCISES

5.1 Consider the function f(x, y) = 3x2 - 2xy + y2 +3e~x. Is this function convex, concave,
or neither? Explain your answer.

5.2 Consider the function f(x) = x4 - 8x3 + 24x2 - 32x +16. Is this function convex,
concave, or neither? Explain your answer.

5.3 Consider the following nonlinear problem. Is the feasible region convex?

minimize f(x, y) = x - 2xy + 2y

subject to x2 + 3y2 < 10

3x + 2y > 1

x , y > 0

5.4 Consider the following nonlinear problem. Is the feasible region convex?

minimize f(x, y) = 3x2 - 2xy + y2

subject to x3 - 12x - y > 0

x > 1

5.5 Use the one-dimensional search described in Section 5.2.1 (also known as a bisection
search) to find a minimum of the function

f(x) = x4 - 3x3 + 2x2 - 2x + 7

over the range 1 < x < 10. Use € = 0.1.

5.6 The golden section search is similar to the bisection search for one-dimensional prob-
lems, except that it uses only function values and it does not require calculating
derivatives. This is particularly useful when the function does not have first derivatives
defined, or when computing the first derivatives is very expensive computationally.
Suppose you are given two initial end-points, a ̂  x ̂  d, and the minimum of f(x) is
known to lie in this range. Evaluate the function at two points c = a + 0.618 • [d - a],
and b = d - 0.618 • [d - a]. Note that a < b < c < d, but they are not evenly spaced. If
f(b) < f(c), then let [a, c] be the new interval, and repeat the calculation. Otherwise, let
[b, d] be the new interval. The magic aspect of the golden section is that when you have
to compute the new interior points between [a, c], you discover that b is precisely 0.618
of the distance between a and c. In other words, you only need to make one additional
function evaluation. Similarly, if the new interval is [b, d], then point c is already lined
up with one of the new required points.
Use the method of golden section to find the minimum of the function in the previous
problem with € = 0.1.

5.7 Consider the unconstrained problem:

Minimize f(x, y) = 3x2 - 2xy + y2 + 3e'x
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Starting from the solution (x, y) = (0, 0), and an initial step length of 2, perform two
iterations of the gradient search algorithm to find a minimum. That is, compute the
gradient at the point (0,0), and perform a one-dimensional line search to find a minimum
along the line. From this new point, perform a second line search.

5.8 Repeat Exercise 5.7, but use Newton's method to find the solution.

5.9 Rosenbrock's function is a particularly difficult problem that looks deceptively simple.
Consider the unconstrained function:

Minimize f(x, y) = 100 (y - x2)2 + (1 - x)2

The function has a unique minimum at the point (1,1) (where f(l, 1) = 0). This
pathological example has also been called the banana function. If you plot the function,
it follows a narrow banana-shaped valley from the point (-1, 1) to the minimum (1, 1).
Because the valley has quite steep sides, anytime an algorithm tries to follow the
downward slope in a straight line, the line almost immediately starts going up, resulting
in very short steps. It is very difficult for any algorithm to find the way around the banana.
Try using both a gradient search and Newton's method beginning at the point (-1,1). Perform
several iterations. You should observe rather poor progress with a narrow zig-zag path.

5.10 Consider the problem:

Minimize f(x, y) = x2y

Subject to x2 + y2 < 1

Use the method of Lagrange multipliers to express this problem as an unconstrained
minimization problem, and solve the problem using both the gradient method and New-
ton's method.

5.11 Consider the following nonlinear problem with linear constraints:

Maximize f(x, y) = x2y + 2y2

Subject to x + 3y < 9

x + 2y < 8

3x + 2y < 18

0 ^ x < 5 -. . - . . .

0 < y < 2

Solve this problem graphically. Begin at the point (0, 0), and check the gradient. If the
Kuhn-Tucker conditions are not satisfied, you should be able to find an improving
direction in the feasible region.
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Certain complex systems exhibit characteristics that evolve randomly over time. A Markov process
is a mathematical model, based on principles developed by the Russian probability theorist A. A.
Markov, that allows systems engineers and analysts to describe and predict the behavior of such
systems. Probabilities and uncertainties arise in the most diverse applications, and in many cases,
Markov analysis provides a framework in which to study the behavior of these systems.

For example, a Markov model was developed for aircraft landing decisions and was used to
study data collected from the Pittsburgh Airport. Aircraft arriving at an airport are supplied with
information describing the congestion, and based on that information, must decide whether to join
the queue of planes waiting to land or to instead fly on to a different airport [Rue and Rosenshine,
1985]. In a very different context, a Markov decision process framework has been applied in the
fishing industry to determine what proportion of a salmon population to catch in a given season,
and what proportion to leave and allow to spawn and thus build up the population for the next
season [White, 1985; 1988].

In the passenger airline industry, decisions must be made continuously by airline bookings
managers about how many reservations to accept for a specific flight up until the day of departure.
The objective is to maximize passenger revenues while minimizing passenger rejections. A Markov
model to assist with this decision process was applied to data from Scandinavian Airlines [Alstrup
et al., 1986]. And when a fire alarm is received at a fire station, a dispatcher must make decisions
about how many fire engines to send out in response to the alarm, to minimize long-run average
fire losses. A Markov model helps with such decisions, based on the type of alarm and the number
of fire engines currently out on calls [Swersey, 1982].

223
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Markov analysis has been found to be useful in areas as disparate as population dynamics,
inventory management, equipment maintenance and replacement problems, market share analysis,
and economic trend analysis. Our study of Markov processes will begin with some preliminary
definitions, then we will investigate the types of analysis that can be performed.

Suppose we let xt denote some observable system characteristic at time t. The characteristic is
seen to change probabilistically as time progresses; therefore, xt is not known with certainty until
time t, and can be thought of as a random variable. The sequence of random variables x0, xb x2,
..., xt, ... represents a stochastic process in which the value of xt typically depends on the values
of the previous random variables in the sequence. If primarily interested in studying the changes
in the system, then we may merely index the points in time when significant events occur. (We
may even wish to assume that the time between changes is a constant, and label the points in time
as 0, 1,2, ...). Such a process is called a discrete-time stochastic process. If, on the other hand,
we wish to measure the actual progress of absolute clock time and study the time between
transitions, then we have a continuous-time stochastic process in which the system is viewed at
arbitrary times rather than at discrete instants in time. We will restrict our discussion to discrete-
time stochastic processes, and in particular to a special type of process known as a Markov process.

6.1 STATE TRANSITIONS

In the systems we will study, the observed characteristic or condition of the system at any given
time is referred to as the state of the system. We will assume that there is a finite number of states,
numbered 1,..., N, and that at any time the system occupies (or is completely described by) exactly
one of these states. When a change occurs in the system, we say that the system makes a transition.

A discrete-time stochastic process is called a Markov process if a transition from one state to
another depends only on the current state of the system and not on previous states that the system
may have occupied. More formally, this property can be expressed in terms of conditional probabilities:

*v^t+i ^t+i ' ^t ^t> ^t-i î-i> • • • > ^i $i» XQ S0j

= P(xt+1 = st+1 I xt = st)

The state at time t + 1 depends only on the state the system was in at time t and not on the
values of any of the random variables x^,,..., x0. This is called the Markov property. And because
each xt depends only on xt-1 and has an effect only on xt+1, the process is sometimes called a
Markov chain. Since we assume there are finitely many states, the process is called a finite state
Markov chain.

An additional assumption fundamental to the analysis of Markov processes is that the proba-
bility of a transition from any state i to any state j is the same for any time t. That is,

P(*t+i = J j xt = 0 = Pij

is independent of the time index t. The property that a Markov process1 transitional behavior does
not change over time is called the stationarity property.

The probability p^ described above is called the transition probability of a system changing
from state i at some time t to state j at time t + 1. Transition probabilities are defined for all
states i, j = 1, 2, ..., N that the system may occupy, and are usually written as a transition
probability matrix
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P =

Pi i

P21

Pl2

P22

PNI PN2

PIN

P2N

PNN

The elements py are sometimes called one-step transition probabilities because they refer to
system changes that can occur directly in one time period. And because the system must be in
some state after each transition, each row of probabilities must sum to one; that is,

N

5*-'
The values of these transition probabilities define the probability distributions of the Markov chain
{xt} and therefore describe the evolutionary behavior of the system.

A Markov process begins at some initial time t = 0. If the state x0 is not known with certainty,
then we must specify the probabilities with which the system is initially in each of the N states.
We denote this as P(x0 = i) = pj(0) for each state i, and we use the vector

p(0) = (Pl(0)p2(0)...pN(0))

to describe the initial probability distribution for the system.
In summary, a system can be modeled as a Markov process if it has the following four properties:

Property 1. A finite number of states can be used to describe the dynamic behavior of
the system.
Property 2. Initial probabilities are specified for the system.
Property 3. Markov property: we assume that a transition to a new state depends only
on the current state and not on past conditions.
Property 4. Stationarity property: the probability of a transition between any two states
does not vary in time.

It should be noted that the validity of any study using the tools of Markov analysis hinges on the
extent to which the Markov and Stationarity assumptions are met by the actual system under
investigation. We certainly realize that processes involving human choice are often affected, if only
subtly, by past experiences and are not based just on a current scenario. Strictly speaking, this
violates the Markov property. Furthermore, seasonal variations and political cycles may interfere
with the stability or constancy with which probabilistic transitions occur, and therefore the Station-
arity of the transition probabilities may be questionable. In light of this, we must emphasize the
importance of the analyst's understanding of the system being modeled and of the assumptions
upon which Markov analysis is predicated. Almost as important as the mathematical model itself
is the role that keen judgment plays in applying these procedures and in interpreting the results.

If an analyst determines that a Markov analysis is appropriate for the system being studied,
then the techniques for analyzing Markov processes may provide answers to such questions as
the following:
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• How many transitions (steps) will it likely take for the system to move from some
specified state to another specified state?

• What is the probability that it will take some given number of steps to go from one
specified state to another?

• In the long run, which state is occupied by the system most frequently?
• Over a long period of time, what fraction of the time does the system occupy each of

the possible states?
• Will the system continue indefinitely to move among all N states, or will it eventually

settle into a certain few states?

We will look briefly at an example of a very simple Markov chain. Then in the following
sections, we will show how questions such as the above can be answered for systems that can be
modeled as Markov processes.

Example 6.1

Consider using Markov chains to model changes in weather at a ski resort, and try to use the model
to help describe the operation and maintenance of the ski mountain equipment and the ways in
which the skiers respond to the weather. Suppose that winter days can be described as either sunny,
cloudy, or snowing. We can arbitrarily denote that state 1 corresponds to a sunny day, state 2
corresponds to a cloudy day, and state 3 corresponds to a day with snowfall. Suppose that after
studying historical weather patterns in this particular ski location, we believe that if we know the
weather condition on any given day, the weather on the next day can be described according to the
following transition probabilities:

P =

.7 .1 .2

.2 .7 .1

.5 .2 .3

So, for example, the probability that a clear day is followed by a snowy day is p13 = .2, and the
probability that if today is cloudy then tomorrow will also be cloudy is p22 = .7. (Note that pH is
the probability of no change from one day to the next.) We realize that the ski season probably
lasts only a few months and that these weather patterns certainly do not endure into the summer.
Nevertheless, within the winter season, these probabilities are stationary.

These one-step transition probabilities can be illustrated in a state transition diagram in which
the nodes of a graph represent system states, and arcs represent possible transitions and are labeled
with transition probabilities. Figure 6.1 shows the transition diagram for our example, indicating the
one-step transitions that can be made. If we are interested in the probability that a certain weather
condition will prevail after 2 days, we can use a two-step transition tree as shown in Figure X6.2.

Suppose that on a given day, the ski area is experiencing sunny weather, and we wish to know
the probability that in 2 days there will again be sunny weather. There are three ways in which a
sunny ski resort can, 2 days later, be sunny again (that is, be in state 1 again): the weather may
never change, and this happens with probability (.7)(.7) = .49; it may change to cloudy then change
back to sunny, with probability (.1)(.2) = .02; or it could snow the next day then return to sunny
conditions on the second day with probability (.2)(.5) = .10. The probability of the second day
being sunny is then the sum of these probabilities .49 + .02 + .10 = .61. Similarly, the probability
of a cloudy day 2 days after a sunny day is (.7)(.l) + (.1)(.7) + (.2)(.2) = .18, and the probability
of a snowy day 2 days after a sunny day is (.7)(.2) + (.!)(.!) + (.2)(.3) = .21. Notice that we are
assuming that the weather at the ski resort must be in some state after 2 days, and indeed the three
probabilities sum tol:.61+.18 + .21 = l. Similar trees could be drawn for projecting weather 2
days beyond a cloudy day or a snowy day.



Markov Processes 227

FIGURE 6.1 Transition diagram.

FIGURE 6.2 Transition tree.

The transition tree is a handy way of illustrating the pattern of paths through the states, as long
as the number of transition periods is small. But this technique becomes quite cumbersome if we
want to examine weather behavior over many days. Fortunately, there is a much simpler and more
direct way to obtain this information.

Let us denote by p(n)jj the probability of a transition from state i to state j in n steps. Above,
we calculated p(2)

n = .61, p(2)
12 = .18, and p(2)

13 = .21. Our calculation of p (2)
n is

= (PiiXPn) + (PiiKPzi) + (PisXPsi)

(.7)(.7) + (.1)(.2) + (.2)(.5)
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which simply accounts for the three possible ways of making the transition from state 1 and back
again. This is just precisely the inner product of the first row of P with the first column of P; the
first row defining probabilities for leaving state 1 together with the first column giving probabilities
for re-entering state 1. From this observation, we can generalize that for any i and j, p(2)y is the
inner product of the i-th row of P with the j-th column of P.

Because this is exactly matrix multiplication, we find that we can compute P(2) = P2 = P • P, and
that each element of P(2) is just the two-step transition probability p^. In our example,

P2 =

.61 .18 .21"

.33 .53 .14

.54 .25 .21

We can further generalize that n-step transition probabilities can be obtained from

p(n) = pn = p . pn-1

and

Then,

).. = Y n n^-1*
U k-1 kj

.568 .229 .203'

.407 ;432 .161

.533 .271 .196

and from this, for example, we can see that the probability that, if any given day is cloudy, then
snowy weather will occur 3 days later, is .161, because p(3)

23 = .161.
Table 6.1 shows the matrices Pn for n values of from 1 to 50. We will have occasion to refer

again to these computational results when we discuss related topics in Section 6.5.

6.2 STATE PROBABILITIES

We have already seen notation to describe the initial probability of the system being in each,of the
possible states. We used the vector

p(0) = (p1(0)p2(0)...pN(0))

where each pj(0) = P(x0 = i) is the probability that the system is initially in state i. We can extend
this notation and define a state probability vector ;

D(0 = (Pl(t)p2(t)...pN(t))

where pj(t) is the probability that the system will occupy state i at any time t if the state probabilities
at time 0 are known.

P(2)u = £P*P«

p3 =

p(n:
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TABLE 6.1
n-Step Transition Probability Matrices for 1 <

p.=

p*=

p».

p=

ps=

p6=

F=

P»=

P»=

P.o =

pn =

p.2 =

P" =

PM*

P'i =

pl6_

PI7 =

P'« =

P'» =

P2° =

pj| =

P".

P» =

P24 =

P« =

.7000000

.2000000

.5000000

.6100000

.3300000

.5400000
* .5680000
.4070000
.5330000
.5449000
.4518000
.523000
.5316700
.4777700
.5204000
.5240260
.4928130
.5175090
.5196013
.5015252
.5158283
.5170390
.5065707
.5148541
.5155552
.5094927
.5142899
.5146959
.5111849
.5139631
.5141982
.5121649
.5137738
.5139100
.5127325
.5136642
.5137431
.5130611
.5136008
.5136464
.5132515
.5135640
.5135904
.5133617
.5135427
.5135580
.5134256
.5135304
.5135392
.5134625
.5135235
.5135283
.5134839
.5135191
.5135220
.5134963
.5135167
.5135184
.5135035
.5135153
.5135163
.5135076
.5135145
.5135150
.5135100
.5135143
.5135143
.5135114
.5135137
.5135139
.5135122
.5135135
.5135136
.5135127
.5135135

.1000000

.7000000

.2000000

.1800000

.5300000

.2500000

.2290000

.4320000

.2710000

.2577000

.3753000

.2822000

.2743600

.3424700

.2885700

.2840130

.3234580

.2922450

.2896039

.3124477

.2943716

.2928418

.3060713

.2956029

.2947169

.3023785

.2963160

.2958029

.3002400

.2967290

.2964318

.2990014

.2969681

.2967960

.2982842

.2971066

.2970070

.2978688

.2971868

.2971291

.2976282

.2972333

.2971998

.2974889

.2972602

.2972408

.2974082

.2972757

.2972645

.2973615

.2972848

.2972783

.2973344

.2972900

.2972862

.2973187

.2972930

.2972908

.2973097

.2972948

.2972935

.2973044

.2972958

.2972950

.2973013

.2972960

.2972959

.29729%

.2972967

.2972964

.2972985

.2972969

.2972967

.2972979

.2972970

.2000000

.1000000

.3000000

.2100000

.1400000

.2100000

.2030000

.1610000

.1960000

.1974000

.1729000

.1925000

.1939700

.1797600

.1910300

.1919610

.1837290

.1902460

.1907948

.1860271

.1898000

.1901190

.1873579

.1895428

.1897277

.1881286

.1893939

.1895010

.1885749

.1893077

.1893697

.1888334

.1892578

.1892937

.1889831

.1892289

.1892497

.1890698

.1892121

.1892242

.1891200

.1892024

.1892094

.1891491

.1891968

.1892008

.1891659

.1891935

.1891959

.1891757

.1891917

.1891930

.1891813

.1891906

.1891913

.1891846

.1891899

.1891904

.1891864

.1891895

.1891898

.1891875

.1891893

.1891895

.1891882

.1891892

.1891893

.1891885

.1891891

.1891892

.1891887

.1891891

.1891891

.1891888

.1891890

~ n < 50

P»« .5135135
.5135130
.5135134

P27= .5135134
.5135131
.5135133

P»= .5135134
.5135132
.5135133

P»= .5135133
.5135132
.5135133

P*= .5135133
.5135133
.5135133

P3I= .5135133
.5135133
.5135133

P»M .5135133
.5135133
.5135133

PH= .5135133
.5135133
.5135133

PM= .5135133
.5135133
.5135133

PJS= .5135133
.5135133
.5135133

P»= .5135133
.5135133
.5135132

P"= .5135132
.5135132
.5135132

PJ8= .5135132
.5135132
.5135132

P"= .5135132
.5135132
.5135132

P°= .5135132
.5135132
.5.135132

P«' = .5135132
.5135132
.5135132

P" = .5135132
.5135132
.5135132

P*3= .5135132
.5135132
.5135132

P"= .5135132
.5135132
.5135132

P»= .5135132
.5135132
.5135132

P* = .5135132
.5135132
.5135132

P*7= .5135132
.5135132
.5135132

P"= .5135132
.5135132
.5135132

P» = .5135132
.5135132
.5135132

P*>= .5135132
.5135132
.5135132

.2972969

.2972976

.2972970

.2972970

.2972974

.2972970

.2972970

.2972973

.2972971

.2972970

.2972972

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972971

.2972970

.2972971

.2972970

.2972970

.2972971

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972970

.2972%9

.2972970

.2972970

.2972969

.2972970

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.2972969

.1891890

.1891889

.1891890

.1891890

.1891889

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.1891890

.189)889

.1891890

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891889

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888

.1891888
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State probabilities can be defined recursively as follows:

p(l) = p(0). P

p(2) = p(l) • P = p(0) - P2

p(3) = p(2). P = p(l). P2 = p(0). P3

and, in general,

p(n) = p(0) • P" for n = 0, 1, 2, ...

Returning to our example of weather patterns, suppose that on a certain day at the beginning
of a series of weather observations, the weather is sunny. The initial state probability vector is

p(0) = (1.0 0 0)

Then, the state probabilities after 1 day are

= p(0).P = (1.000) =

.7 .1 .2

.2 .7 .1

.5 .2 .3

= (.7 .1 .2)

After 2 days, the probabilities are

p(2) = p(l). P = (.7 .1 .2). P

but because we have already computed P2 we can more directly obtain p(2) as

= p(0).P2 = (1.000)

.61 .18 .21'

.33 .53 .14

.54 .25 .21

= (.61 .18 .21)

Likewise,

= p(0).P3 = (1.000)

.568 .229 .203'

.407 .432 .161

.533 .271 .196
= (.568 .229 .203)

= p(0)-P4 = (1.000)

= p(0).P5 = (1.000)

.5449 .2577 .1974"

.4518 .3753 .1729

.5253 .2822 .1925

".5317 .2744 .1940"

.4778 .3425 .1798

.5204 .2886 .1910

= (.5449 .2577 .1974)

= (.5317 .2744 .1940)

p(l)
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= p(0).P6 = (1.000)
.5240 .2840 .19201
.4929 .3235 .1837
.5175 .2922 .1902

= (.5240 .2840 .1920)

If we performed the same calculations under the assumption that on day 1 the weather is cloudy
and therefore p(0) = (0 1.0 0), we would find

p(l) = (01.00)P = (.2.7.1)

p(2) = (.33 .53 .14)

p(3) = (.407 .432 .161)

p(4) = (.4518 .3753 .1729)

p(5) = (.4778 .3435 .1798)

p(6) = (.4928 .3235 .1837)

Now suppose that, instead of actually observing the weather on the first day, we assume that
on that day it is equally likely to be sunny, cloudy, or snowing; that is, p(0) = (1/3 1/3 1/3). Then,

p(l) = (1/3 1/3 1/3) • P = (.467 .333 .200)

p(2) = (1/3 1/3 1/3) • P2 = (.493 .320 .187)

p(3) = (1/3 1/3 1/3) • P3 = (.503 .310 .187)

p(4) = (1/3 1/3 1/3) • P4 = (.507 .305 .188)

p(5) = (1/3 1/3 1/3) • P5 = (.510 .302 .188)

p(6) = (1/3 1/3 1/3) • P6 = (.511 .300 .189)

What we are observing in this particular example is that after several transitions, the probabilities
of the system being in given states tend to converge, or become constant, independent of the initial
state. (We will see in later sections that not all Markov systems behave in this way.) In our example,
however, it appears that after 6 days, the probability of a sunny day occurring at the ski area is
roughly 0.51, the probability of a cloudy day is roughly 0.30, and the probability of a snowy day
is roughly 0.19. And these state probabilities hold, regardless of the actual or expected initial
weather conditions.

We have no precise way of knowing how long it will take a Markov chain to "stabilize," as
we have seen above; but, if there are not many P entries very near to zero or one, this stabilization
will be achieved fairly quickly. For our example, the rows of the matrix Pn become almost
indistinguishable from one another for n > 10. (Refer back to Table 6.1.) Thus, after about 10
days, the effects of the initial distribution of weather probabilities will have disappeared. We can
assume that since this stabilization appears to occur within 10 days (transition steps), then surely
this technique will be of some use in modeling weather patterns during a ski season of, say, 120
days. (Exercise 6.4 provides some further insight into the contrast in rates of convergence.)

P(6)



232 Operations Research: A Practical Introduction

When we say that the state probabilities become constant, this does not mean that after a long
period of time, the system does not change states any longer. Rather, as transitions continue to
occur, the system's occupancy of each state is in some sense predictable.

Based on information such as this, we could, in our example, answer such questions as

• Should we plan more (or less) mid-slope barbecues to entertain skiers on sunny days?
• Do we need better canopies on the chairlifts to shield the skiers from falling snow?
• Should we sell special ski goggles to improve skiers' visibility during cloudy conditions?

In Section 6.5, we discuss just what characteristics a Markov chain must have that will permit us
to make this kind of analysis of long-range behavior of the system. We will see that long-term
trends can be studied directly without our having to compute state probabilities for huge values of n.

6.3 FIRST PASSAGE PROBABILITIES

In a typical Markov chain, we frequently observe that states are left and re-entered again and
again. We have developed a means of computing the probability p(n)y that a system will leave
state i and be in state j after n transitions. But this does not give us any information about whether
the system entered state j at any time before the n-th transition. Suppose we are specifically
interested in the probability that a system leaves state i and enters state j for the first time after
n steps. This is called the first passage probability, and it is clearly related to the n-step
probability. However, we must exclude all the ways in which the system may have entered state
j before the n-th transition. For example, if we know the probability of a cloudy day on the
slopes being followed 3 days later by a sunny day, we realize that this three-step transition can
occur in several ways:

cloudy —> cloudy —> cloudy —> sunny

cloudy -» cloudy -4 sunny —> sunny

cloudy -» sunny —> sunny —» sunny

cloudy —» cloudy —» snowy —> sunny

cloudy —» snowy —> snowy -» sunny

cloudy —> snowy —» sunny —> sunny

cloudy —» sunny —» snowy —» sunny

cloudy —» sunny —» cloudy -» sunny

cloudy -» snowy -» cloudy -» sunny

The probability p(3)
2I accounts for all of these possible paths. By contrast, the first passage

probability will account for only those paths in which a sunny day does not occur until the third
step. Thus, we want to measure the probability that one of the following paths will occur:

cloudy —» cloudy —» cloudy —» sunny

cloudy —> cloudy -> snowy -» sunny
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cloudy —> snowy -> snowy —» sunny

cloudy —» snowy —> cloudy —> sunny

The first passage probability f "̂  is computed as p(n)
y minus the probabilities of the n-step paths

in which state j occurs before the n-th step. In one transition, p(1)y = f l\^ Then for larger n,

or, more succinctly,

n-l
f(n).. ~ D(n).. _ V flk).. nCn-k)..1 ij r ij ;̂ A ij F jj

Returning to our example, we will illustrate f"^ for n = 1,2, and 3.

pi) = p =
.7 .1 .2

.2 .7 .1

.5 .2 .3

.12 .11 .15

.19 .04 .11

.19 .11 .12

And, just to check our intuition, let us re-examine f^|. This should be

- Probability (cloudy — > cloudy — » sunny — > sunny)

- Probability (cloudy -» sunny — > sunny — > sunny)

f2,ij = p<2).._fl)..p(,)..

n^v^vv^v0*

fn).. = p(n).. _ ft.X.pCn-,).. _ f2,..p(n-2).. _ ... _ f^O^

".61-(.7)(.7) .18-(.1)(.7) .21-(.2)(.3)~
P»= .33-(.2)(.7) .53-(.7)(.7) .14-(.1)(.3)

,54-(.5)(.7) .25-(.2)(.7) .21-(.3)(.3)_

.568-(.7)(.61)-(.12)(.7) .229-(.l)(.53)-(.ll)(.7) .203-(.2)(.21)-(.15)(.3)

.407-(.2)(.61)-(.19)(.7) .432-(.7)(.53)-(.04)(.7) .161-(.1)(.21)-(.11)(.3)

.533 - (.5)(.61) - (.19)(.7) 1.271 - (.2)(.53) - (. 11)(.7) 1.196 - (.3)(.21) - (. 12)(.3)

p3) =

.057 .099 .116

.152 .033 .107

.095 .088 .097

n\ = P®
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- Probability (cloudy —> snowy —» sunny —» sunny)

- Probability (cloudy -» sunny -» snowy -» sunny)

- Probability (cloudy -> sunny -» cloudy -» sunny)

= .407 - .098 - .098 - .035 - .020 - .004

= .152

which is exactly the value we computed above as the element f*3)
2l in the matrix F(3).

6.4 PROPERTIES OF THE STATES IN A MARKOV PROCESS

Before continuing with our analysis of the long-term behavior of Markov processes, we must define
some of the properties of the states that can be occupied by a Markov process. As we will see, the
particular patterns with which transitions occur into and out of a state have a great deal to do with
the role which that state plays in the eventual behavioral trends of a system.

A state j is reachable from state i if there is a sequence of transitions that begins in state i and
ends in state j. This is, p(n)y > 0 for some n.

An irreducible Markov chain is one in which every state is reachable from every other state.
That is, in an irreducible chain, it is not possible for the process to become "trapped" and thereafter
to make transitions only within some subset of the states.

A set of states is said to be closed if no state outside of the set is reachable from any state
inside the set. This means that once the system enters any state in the set, it will never leave the
set. In an irreducible chain, all the states constitute a closed set and no subset of the states is closed.

A particularly interesting case arises if a closed set contains only one state. This state i is called
an absorbing state, and pH = 1. The system never leaves an absorbing state.

A state i is a transient state if there is a transition out of state i to some other state j from which
state i can never be reached again. Thus, whenever a transient state is left, there is a positive probability
it will never be occupied again. And therefore, the long-term probability of a system being in a
transient state is essentially zero because eventually, the state will be left and never entered again.

A recurrent state is any state that is not transient. In an irreducible finite-state Markov chain,
all states are recurrent. A special case of a recurrent state is an absorbing state, from which no
other state can be reached.

The various state characteristics just defined can be illustrated by the Markov process whose
one-step transition probability matrix is given by:

P =

and which is illustrated by the transition diagram in Figure 6.3. In this example, state <6 is an
absorbing (and therefore recurrent) state because there is only one arc out of state 6, and p^ = 1.
States 1 and 2 are transient because after each state is left,, it is never re-entered. In the case of
state 2, there is no possible way to return. On the other hand, it is possible for state 1 to recur as
the system changes from state 1 directly again to state 1; but once a transition is made out of state
1, that state is never entered again. States 3, 4, and 5 are recurrent states.
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FIGURE 6.3 Transition diagram with transient and recurrent states.

(b)

FIGURE 6.4 Periodic states.

A state is said to be periodic if it is occupied only at times which differ from one another by
multiples of some constant greater than 1. In Figure 6.4(a), all three states are periodic with period
2; and in Figure 6.4(b), all states are periodic with period 4. In general, the period t of a periodic
state i is the smallest integer such that all transition sequences from state i back to itself take some
multiple of t steps, and t > 1.

If a state can be occupied at any time, then it is said to have period 1, or to be aperiodic. In
an irreducible chain, all states are either aperiodic, or are periodic and all have the same period.
An irreducible finite-state Markov chain in which all states are aperiodic is called an ergodic
Markov chain.

In the limit, as time goes to infinity, the occupancy of periodic states never stabilizes because
these states are likely to be occupied at certain times and yet cannot be occupied at other times.
Similarly, in the long run, transient states are not of interest because they are eventually left and
not re-entered. If we eliminate periodic and transient states from our consideration, and focus on
ergodic processes, we find that we can further characterize the limiting behavior of a Markov
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process. In the following sections, we will describe the calculations for two such behavioral
characteristics observed in Markov processes.

6.5 STEADY-STATE ANALYSIS

In Section 6.2, we noticed, while computing successively higher powers of the transition probability
matrix, that state probabilities tended to stabilize regardless of the initial state of the system. This
behavior is typical of ergodic Markov chains and is found in most practical applications. When we
say that state probabilities become "stable," what we really mean is that as the time parameter n
becomes large, P*"*0 is essentially the same as P(n). Furthermore, the rows of P(n) begin to look
identical as n grows large, which means that, independent of the initial state of the system, the
probabilities of having evolved into each state after any large number of steps do not change.
Mathematically, if P is the one-step transition probability matrix, then the powers of P approach a
matrix [ff] where

5>=limPn

n— *»

in which

1. Each row of 9 is an identical probability vector called II, and

Ilj = lim p(n)y independent of i.
n-*»

2. All elements of II are positive.
3. II has the property that II P = II; that is,

n j = lniPij for all j = 1,2, ...,N

4. The elements of II represent a probability distribution and therefore

in. = i.
j=i J

The vector II is called the steady-state probability vector, and each Ilj denotes the steady-
state probability that the process is in state j after a large number of steps (long after the effects
of the initial state have eroded away).

As we cautioned at the end of Section 6.2, when we establish the steady-state (or "long-term"
or "equilibrium") behavior of a system, we are not determining that the dynamic system has finally
come to rest in some particular state. On the contrary, transitions continue to occur with Exactly
the probabilities that governed the transitions early in the chain (this is the stationarity assumption).
What the steady-state probabilities do tell us can be interpreted in several ways:

• Ilj is the probability that, if we inspect the system at any instant (long after the process
has begun), we will find the system in state j. ;

• Ilj is the percentage of time the system spends in state j in the long run.
• If the Markov chain models the behavior of a large number of entities that all obey the

same transition probabilities, then Ilj is the fraction (or proportion) of entities that occupy
state j at any given time.
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Solving the system of equations II • P = II is much more satisfactory computationally than
raising P to higher and higher powers (see Exercise 6.2). However, to obtain the solutions needed,
we must note that the rank of the matrix P is N - 1, where N is the number of states in the
process. (That is, if we add together any N - 1 rows, we get the remaining row.) Therefore, we
have a system of N dependent equations in N unknowns, and consequently infinitely many
solutions. We want to obtain that unique solution for which the unknowns are a probability
distribution; therefore, we discard any one of the first N equations in II • P = II and introduce
the equation

in. = i
= J

We now have a system of N independent equations in which we can uniquely solve the N unknowns
Iljforj = 1, 2, ...,N.

To illustrate this, we can re-examine the daily changes in the weather system at the ski resort.
This process is ergodic, so we can apply a steady-state analysis:

[11,112 nj
.7 .1 .2
.2 .7 .1
.5 .2 .3

=(Uln2n3]

The three dependent equations are:

n, = .7n, + .2n2 + .5n3

n2 = .in, + jn2 + .2n3

n3 = .2n, + .m2 + .3n3

We can arbitrarily choose to discard any one of the three (how about the first one?), and use instead
the normalizing equation 2 IIj = 1 to obtain the system:

.in, - .3n2 + .2n3 = o

.2n, +.m2 -.7n3 = o

n, + n2 + n3 = i

The solution to this system of simultaneous linear equations is

n, = .5135135

n2 = .2972973

n3 = .1891892

If we compare these results with the elements in the higher powers of P that we computed in
Section 6.2 (as shown in Table 6.1), we find that indeed the value n, = .5135135 appears in all
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rows of column 1, the value II2 = .2972973 appears in all rows of column 2, and the value II3 =
.1891892 appears in all rows of column 3. However, this pattern does not stabilize until we compute
Pn for n values around 26 or 27. (The pattern becomes apparent at about P10, but small changes
continue to be evident as we compute successively higher powers, up to about P27, after which no
significant changes in Pn occur.)

The computational effort required to raise P to the 27-th power is considerably greater than
the effort required to solve the system of three equations. Furthermore, we have no way of knowing
in advance just exactly what power of P needs to be computed. Exercise 6.2 will allow you to
observe this contrast for yourself. Solving the steady-state equations is clearly the preferred method
for determining the steady-state probabilities.

6.6 EXPECTED FIRST PASSAGE TIMES

We have defined the first passage time of changing from state i to state j to be the number of
transitions made by a Markov process as it goes from state i to state j for the first time. If i =
j, then first passage time is the number of steps before the process returns to the same state, and
this is called the first recurrence time. We will denote the first passage time from state i to state
j as Ty.

If the Markov process is certain to go from state i to state j eventually (given that the process
ever enters state i), then Ty- is a random variable. In Section 6.3, we discussed the first passage
probability f n)y, which is the probability that Ty = n.

If a process in state i is not certain to ever reach state j, then

I f n ) y < l
n=l J

Otherwise, the fn)jj are a probability distribution for the first passage times Ty, and

I *•>„=!
n=l

We can then write the expected first passage times my from state i to state j as

E(Tij) = m i j= I nf«)a
n=l

(If i = j, this is called expected recurrence time.) Using these results, we could answer such
questions as:

• How many days might we expect to wait for snowy weather to become sunny?
• After how many days on the average will snowy weather conditions again be snowy,

after possibly changing to sunny or cloudy in the meantime?

From a computational standpoint, obtaining expected first passage times using the above
formula is difficult because we have to compute fn)jj for all n. However, in the case of expected
recurrence time from state i back to itself, we can simply take the reciprocal of the steady-state
probability to obtain

mii = I/ IIj
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(For example, if a process is in state i 1/4 of the time during steady-state, then JIj = 1/4 and mu

= 4. That is, we would expect that an average of four (4) steps are required to return to state i.)
For general i and j, we need a practical way of computing m^. Suppose a Markov process is

currently in state i. Then with probability p^, the process will make a transition to state j for the
first time in one step. Otherwise, the first move will be to some state k other than j; and for each
k = 1, ..., N, k * j, this will happen with probability pik. In each of these cases, the first passage
time will be 1 (the transition from state i to state k) plus the expected first passage time from the
state k to state j. Therefore,

n^ = (Pij)(l) = I (pik) (1 + mkj)

which can be expressed as

N N

j = (pij+ I p ik)+ I pikmkj
k=l k=l

to obtain

N

m} = 1+ I pikmkj
k=l

Thus, my is defined in terms of other expected first passage times mkj. Since the pik are known
constants, we simply have a linear equation involving N - 1 expected first passage times. However,
this formula can be used to obtain an equation describing each of the mkj involved in the first
equation. The resulting system of N - 1 simultaneous linear equations in N - 1 unknowns can be
solved to obtain unique values for all N - 1 expected first passage times into state j.

To answer the question: how many days might we expect to wait before snowy ski conditions
change to sunny conditions, we need to compute the expected first passage time

m31 = 1 + P32m21 + P33m31

Since m31 is defined in terms of m2I, we also need the equation

m21 = 1 + P22m21 + P23m31

These two equations can be solved simultaneously to obtain m31 = 2.6316 and m2, = 4.2105.
Therefore, on the average, it is 2.6316 days before snowy weather first becomes sunny. In the
process of finding this result, we also observe that it is an average of 4.2105 days before cloudy
conditions become sunny.

If we wish to know the first recurrence time m22 to answer the question: after how many days
on the average will cloudy weather again become cloudy?, then we solve

m22 = 1 + p21m,2 + p23m32

To do this, we also need

m!2 = 1 + Pllm l2 + Pl3m32
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and

m32 = 1 + P3lml2 + P33m32

We solve this system to find that m,2 = 8.1818, m32 = 7.2727, and m22 = 3.3636. Recall that we
can also find m22 more quickly as 1/II2 = 1/.2972973 = 3.3636, if we have already computed the
steady-state probabilities. Thus, cloudy conditions that change to sunny or snowy can be expected
to return to cloudy after 3.3636 days.

6.7 ABSORBING CHAINS

The ergodic Markov chains that we have been studying represent processes which continue indef-
initely and whose behavior at arbitrary future times is characterized through the steady-state analysis
presented in Section 6.5. Yet another interesting class of Markov chain applications arises when
the process arrives, after a finite number of transitions, at some state from which it never leaves.
Such a process evolves initially through (or within) a set of transient states (according to one-step
transition probabilities), but eventually is certain to leave these states and enter one of the absorbing
states. A Markov chain with at least one absorbing state is called an absorbing chain. By analyzing
the behavior of absorbing chains, we can model processes whose stochastic behavior eventually
terminates rather than continuing indefinitely.

Consider the non-ergodic Markov chain depicted in Figure 6.5. In this simple example, it is
clear that if the process begins in state 1 or state 2, it may alternate between those two transient
states for some time, but eventually a transition will occur — either from state 1 or 2 — into state
3 (an absorbing state). Then, since p33 = 1, this system will never again enter state 1 or state 2. It
might be imagined that this Markov model represents the conditions of patients in a hospital ward
for trauma victims, in which states 1 and 2 denote critical and serious conditions and state 3 denotes
terminal conditions. Whereas critical patients may be upgraded to serious, and serious patients may
turn critical, no improvements are made by those classified as terminal.

Steady-state conditions for such systems are not determined in the same way as for ergodic
chains. If we wish to define steady-state probabilities to describe the situation shown in Figure 6.5,
we should recognize that in the long run, the transient states will not be occupied at all, and Ylt =
0 for all transient states i. In this example, II, = II2 = 0. The absorbing state, on the other hand,
will always be occupied in the long run, and thus its steady-state probability is 1. In this example,
n3 = 1. In a process that has more than one absorbing state (only one of which will ever eventually
be occupied), steady-state probabilities do not exist.

There is an interesting distinction between ergodic chains and absorbing chains. While initial
conditions do not affect steady-state probabilities in an ergodic chain, the initial state of an absorbing

FIGURE 6.5 Absorbing chain.
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FIGURE 6.6 Absorbing chain with two absorbing states.

chain has a strong effect on which absorbing state is eventually entered. For example, in the transition
diagram in Figure 6.6, we can examine the transition probabilities and see that, if the process begins
in state 2, it is most likely to be absorbed into state 4; whereas if the process is initially in state 1,
then the most likely absorbing state to be entered is state 3. The probability that an absorbing state
will be entered is called its absorption probability. Absorption probabilities are conditional
probabilities, dependent on the initial state of the process. In this section, we will learn how to
analyze the ways in which transient states are occupied before an absorbing chain enters an
absorbing state, and we will see how to compute the probabilities with which each absorbing state
will be entered.

We first rearrange the one-step transition probability matrix, if necessary, so that both rows and
columns are indexed by transient states first, and then absorbing states. Then, if we have r transient
states and N - r absorbing states, the matrix P has the following structure.

r columns N - r columns

P =
rrows

N - r rows

In this form, the submatrix Q contains the one-step transition probabilities from transient states to
transient states, and R contains transition probabilities from transient states to absorbing states.
The lower-left submatrix of zeros indicates the impossible transitions from absorbing states to
transient states, and the identity matrix I indicates the certain transitions from each absorbing state
to itself.

The Markov chain in Figure 6.6 has the one-step transition probability matrix

P =

0 1/4 1/2 1/4
1/8 1/4 1/8 1/2
0 0 1 0
0 0 0 1

with

Q =
0 1/4

1/8 1/4
and R =

1/2 1/41
1/8 1/2J
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Now, the matrix (I - Q) is always non-singular, so we can obtain its inverse F = (I - Q)-1. The
matrix F is called the fundamental matrix of the Markov chain, and its elements specify the
expected number of times the system will be in its various transient states before absorption occurs.
More precisely, the element fy tells us, for a system initially (or currently) in state i, the expected
number of times the system will occupy state j before absorption into some state. (The fundamental
matrix F does not directly provide any information about which absorbing state will eventually be
the one that is entered.)

In our example,

-1/4"!
3 / 4 j

and

[24/23 8/23]
F = ( I-Q )- '=[4/23 32/23J

From this we can determine that if the process begins in state 1, we can expect it to enter state 1
24/23 times and state 2 8/23 times. Therefore, the total expected number of transitions before
absorption is 24/23 + 8/23 « 1.39. Similarly from initial state 2, we would expect to occupy state
1 4/23 times and state 2 32/23 times, and to undergo 4/23 + 32/23 « 1.565 transitions before
absorption into state 3 or 4. In general, from initial state i, the total number of transitions through
transient states before absorption is

T = 7 f1 pr»

that is, the sum of the elements in the i-th row of the fundamental matrix F. This essentially
characterizes the duration of the finite stochastic process.

While the matrix F alone does not indicate which absorbing state will be entered, we can easily
obtain absorption probabilities by multiplying the fundamental matrix F by the matrix R to obtain
the matrix A:

A = Frxr • Rrx(N-r)

The element a^ tells us, for a system initially (or currently) in state i, the probability of the system
being absorbed into state j. In our example,

absorbing states
3 4

Fl.043 .3478] [I/2 1/4] ' lf.5653
A = = transient states

[.1739 1.39lJ|_l/8 1/2J 2|_.2608
.4347
.7390

which tells us that from initial state 1, the absorption probability into state 3 is .5653 and into state
4 is .4347. And from initial state 2, the absorption probability into state 3 is .2608 and into state
4 is .7392. (Notice that each row in A sums to 1 because, from any initial state, one of those
absorbing states will eventually be entered.)

Recall our intuitive observation of Figure 6.6 concerning the effect of initial states on
absorption: that from state 2, absorption into state 4 seemed more likely; while from state 1
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absorption into state 3 seemed more likely. And indeed, in our calculations above, a24 > a23 while
ais > ai4-

The matrix method for obtaining absorption probabilities can be explained by examining the
equations for the individual elements a^. Given a system in state i, absorption into state j can happen
in two ways. There could be a one-step transition into state j that could happen with probability
Py. Otherwise, there could be a one-step transition to some transient state k (where k = 1, ..., r)
for which the probability is pik, followed by eventual absorption into state j, for which we have the
absorption probability akj. Because one of these will certainly occur, we can compute the absorption
probability a^ as

ay = py + I pikakj

This gives us one equation in many unknowns; and if we apply the same formula for all k, we will
obtain a uniquely solvable system of equations that will give us all of the absorption probabilities
for a system initially in state i.

If we are interested in only one or a few initial states i, solving these systems of equations
would probably be simpler computationally than performing the matrix inversion required to obtain
the fundamental matrix F and then the matrix multiplication by R. However, if all the absorption
probabilities are desired, it is more succinct to note that the formula for all the a^ is just the matrix
equation

A = R + Q - A

This can be rewritten as

A = (I - Q)-1 R = F • R

as given earlier.

6.8 GUIDE TO SOFTWARE TOOLS

The calculations required for finding steady-state probabilities and expected first passage times are
just the standard procedures for solving systems of linear equations. Software for solving linear
systems has already been mentioned in previous chapters, and these routines are included in many
software products such as the IMSL and SAS libraries.

Calculating the n-step transition probabilities requires matrix multiplication, which is trivial to
implement in any general-purpose programming language, but standard subroutine libraries typi-
cally supply this function. There are also several mathematical software packages in which a matrix
is the fundamental data object, which may be of particular use in manipulating transition probability
matrices.

MATLAB is an integrated software package in which the procedural language is built around
the concept of a matrix. The language includes a rich set of matrix functions that allow a user
to express algorithms involving matrix operations much more succinctly than would be possible
using a general-purpose language such as C or Fortran. Data files and computational procedures
are created through a text editor. The MATLAB language is an interpreted language; but for
cases when computational speed is an important factor, there is a facility for incorporating
dynamically linkable compiled code into MATLAB. MATLAB versions run on PCs and Mac-
intosh systems, with larger versions for VAX, Sun, DEC,^nd Silicon Graphics workstations, and
even Convex, Alliant, and Cray systems. The data file formats are compatible across all these
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platforms. Problem sizes are limited only by the amount of memory available on the system.
MATLAB packages for PCs are priced around $500, while workstation versions start at about
$3000. Educational discounts can cut these prices roughly in half. Further details are described
in [Harrison, 1991] and [Santalesa, 1990].

O-MATRIX is an object-oriented analysis and visualization tool for Windows computing
environments. Data and procedures are built with a text editor, and computations are expressed via
a powerful, but small and easy-to-learn, language in which all operations are performed on matrix
objects. O-MATRIX includes an adequate library of functions for solving matrix-based problems,
and also contains visualization functions for graphical output that can be saved in postscript files
for incorporation into a variety of general reporting formats. Priced at about $100, the O-MATRIX
system can be a useful tool for teaching and academic research, but its primary aim is high
performance. The developers claim a significant performance advantage for their product over more
general symbolic systems, and even a substantial speed advantage over MATLAB. Libraries for
linking C and Fortran code to O-MATRIX are available for an additional $200. User support and
academic licenses are available from the developers at Harmonic Software, Inc., and custom licenses
can be arranged for commercial sites. See [Sodhi, 1994] for a more detailed analysis and description
of O-MATRIX.

QTK is a software product that includes models and solvers for computing the steady-state
probabilities of finite stationary and continuous Markov chains, and is also comprehensive enough
to be used for general system simulation.

6.9 ILLUSTRATIVE APPLICATIONS

6.9.1 WATER RESERVOIR OPERATIONS [WANG AND ADAMS, 1986]

The operation of a water reservoir is determined by a sequence of decisions concerning the volume
of water to be released during a time period. Optimizing the operations involves finding a set of
optimal release decisions over successive time periods to maximize the expected total reward
associated with long-term operation of the reservoir. This process can be viewed as a Markov
system by discretizing reservoir storage volumes into a finite number of states, and treating the
release events as transitions among the storage states from one time period to the next.

An optimization method developed for general water reservoir management was applied to the
Dan-River-Issue Reservoir on a tributary of the Yangtze River. A two-stage analysis framework
involved a real-time model followed by a steady-state model. Each time period was analyzed using
information about the current reservoir storage state and historical information (gathered over a
period of 30 years) of inflow into the reservoir. Thus, the Markov process is derived from transition
probabilities based on stochastic inflow data, coupled with operational decisions for releasing water
from the reservoir.

The objectives in this Yangtze River case were flood control, production of hydroelectric power,
and the ability to augment the flow of water during low seasons. Analysts developed operational
standards for each activity. The rewards obtained through operation of the reservoir were measured
as revenues resulting from electric power production minus penalties to account for failures to meet
targeted standards of operation. Average annual rewards computed in this way are the primary
performance criterion for this system, but additional indicators of performance include average
annual energy production and probabilities of the occurrence of various undesirable scenarios
associated with floods and low flow.

The optimal operating strategies derived from the Markov analysis represented significant
performance improvements of 14% for average annual reward, and 3.6% for average annual
power production, when compared with conventional strategies or the results of deterministic
optimization. Steady-state optimization yielded increases in both power production and the
effectiveness of flood control.
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Because of the magnitude of the annual revenues from the operation of such a major reservoir,
the modest percentage improvements represent substantial actual increases in economic returns.
Furthermore, the analysis undertaken for the Yangtze River project was intended to be used for
real-time operational decisions, so it was especially valuable that this optimization method turned
out to execute in a reasonable amount of time when implemented on an IBM-PC microcomputer.
This computational efficiency, together with the profitability obtained through the optimization
process, indicate that the steady-state Markov analysis is an effective component in this decision
system for real-time operation of a multi-purpose, large-scale water reservoir.

6.9.2 MARKOV ANALYSIS OF DYNAMIC MEMORY ALLOCATION [PFLUG, 1984]

Computer operating systems are responsible for the management of computer storage facilities
(memories) during execution of programs. Dynamic memory allocation techniques are widely used
to promote economical and adaptive use of memory in computing environments where exact storage
requirements are not specified in advance. Memory managers respond to requests for memory from
executing programs by selecting a free block of memory, allocating it to the requesting program,
and eventually taking a released block back and returning it to the pool of available space.

Allocation methods, such as "first-fit," "best-fit," "worst-fit," and the "buddy method," have
been used and are well-known to computer scientists; however, little mathematical analysis of the
performance of these methods has been done. Instead, simulation results have provided most of
the reliable insights into the behavior of systems using these various allocation strategies.

A unique application of a Markov model has been used to describe the essential characteristics
of a dynamic memory allocation system, and to provide a means of comparing different allocation
algorithms. The states in this model correspond to storage configurations, and the Markov analysis
describes how these configurations vary over time.

More specifically, the state of the process is completely described by two vectors that indicate
the ordered sequences of the lengths of allocated and free blocks:

x = (x,, ..., XB) and y = (y,, ..., yB)

where x{ is the length of the i-th allocated block and y{ is the length of the free block following
the i-th allocated block, and B is the number of allocated blocks. Thus, the configuration shown
in Figure 6.7 can be described by the vectors

x = (3, 4, 2, 4) and y = (2, 0, 6, 2)

Various assumptions are made in order to permit an analysis using Markov models. In particular,
every request for memory is assumed to be followed by a release, so that the number of allocated
blocks B remains a constant, and therefore the Markov states are simple to describe.

Furthermore, the probability that a given request is for a block of size i is independent of the
current configuration. A one-step transition probability matrix is developed for a "random fit"
allocation strategy, which results in a Markov chain that is ergodic. (The set of states for this model
is enormous and, for practical reasons, the size of the state space is reduced, at the expense of
some loss of "resolution.")

FIGURE 6.7 Memory configuration (B = 4).
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Steady-state probabilities are computed and, for a large memory size, the expected number of
free memory locations is close to constant. To study the efficiency and performance of general
dynamic memory allocation systems, the methods outlined in this study can be extended to apply
to other algorithms and to allow for memory requests of arbitrary size.

6.9.3 MARKOV MODELS FOR MANUFACTURING PRODUCTION CAPABILITY
[FOSTER AND GARCIA-DIAZ, 1983]

A Markov analysis has been used to identify the steady-state production capability of manufacturing
systems. For specified reliability and maintainability characteristics, the model tracks failures in a
multi-unit manufacturing system. Certain assumptions are necessary. First, although the manufac-
turing system is a continuous-time process, in this case, it is assumed that it can be accurately
modeled as a discrete-time Markov chain if the time increments are small enough. Second, the
issue of stationarity must be addressed. It is assumed that the probability that a functioning element
in the system becomes non-operational in a given interval is independent of the length of time it
has been functioning.

In this analysis, the term "failure" refers to any activity, event, or condition causing a decrease
in production rate (breakdown, policy change, supply shortage, etc.), while the term "repair" refers
to any condition causing an increase in production rate. Each element in the multi-unit system can
be classified as either catastrophic (one whose failure causes the entire system to shut down
immediately), dependent (one that cannot be repaired while other elements are in operation), or
independent (one that can be repaired while other elements are operating).

Three models are developed. For the model consisting of only catastrophic elements, each
element has a constant probability of failure and a constant probability of repair. In the model
consisting of only dependent elements, all elements have the same probability of failure. The system
fails when a specified number of elements have failed, and the probability of system repair is
constant over time. Once the system is repaired, all units are functioning again. In the third model,
all elements are independent, with the same probability of failure. A specified number of elements
can be considered for repair at any given time, and the probability that an element is repaired is
constant.

For each of these cases, a transition probability matrix specifies how an initially, fully opera-
tional system evolves through stages of element failure, system failure, and repair phases. A steady-
state analysis is used to determine such characteristics as the expected steady-state production rate
for each specified number of element failures, and the probability of the entire system being down
for repairs. As applied to a bottling machine, this analysis led to an optimal repair policy; in
particular, it was determined that 2 of the 24 elements should be allowed to fail before the system
is shut down for repairs. Under this policy, a system with a peak production capability of 1200
bottles per minute can achieve an expected production rate of 879 bottles per minute.

6.9.4 THE INDEPENDENT REFERENCE MODEL OF VIRTUAL MEMORY SYSTEMS
[COFFMAN AND DENNING, 1976]

General-purpose computing systems represent excellent candidates for analysis as stochastic
processes. In virtual memory systems implemented by demand paging, a reference to a page of
user memory space that is not resident in main memory generates an interrupt called a "page
fault." The operating system deals with the interrupt by fetching the required page from disk,
but must also select a page in memory to remove so that its space can be used by the currently
needed page.

The process of selecting the "victim" page is called "page replacement," and several algorithms
such as first-in-first-out (FIFO) and least-recently-used (LRU) have been implemented successfully.
Obviously, the optimal page replacement policy would be the one that removes the page that will
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not be used again for the longest time in the future. But because memory references cannot be
predicted with certainty, this algorithm cannot be implemented. An unwise choice of a replaced
page may lead to another page fault, and an abundance of page faults simply means that the system
will be spending most of its time servicing page faults instead of making useful progress executing
users' programs.

An analysis of the expected page fault rate for specific page replacement algorithms has been
done by viewing the memory configurations resulting from various page replacement schemes as
the states in a Markov chain. In particular, for a FIFO page replacement policy, each state reflects
the resident pages ordered according to their initial entry time into main memory; and for the LRU
policy, each state is represented by a pushdown stack to indicate the relative order of recent
references to each page. The fundamental assumption underlying the independent reference model
is that the probability of a reference to the i-th page is stationary over time and not dependent on
the preceding references.

Transitions among states occur upon any reference that results in a new configuration of
memory. Just what the new configuration is depends on the page replacement policy being used,
the current configuration, and the current reference. A steady-state analysis of the Markov chains
associated with each page replacement policy has been used to obtain the expected page fault rate
for each policy. These results permit us to compare the performance of these demand paging
systems. The LRU algorithm turns out to have a lower expected page fault rate than FIFO, but it
is more difficult to implement. The analyst and systems designer must therefore weigh the value
of the improved page fault rate against the high cost of designing and running the memory
management software to support an LRU page replacement policy.

6.10 SUMMARY

Markov processes are used to represent systems in which events take place according to specified
probabilities. The characteristics of such systems evolve over time, but in many cases, the proba-
bilities themselves can be used to predict some of these system characteristics. Markov analysis
provides a framework in which to study the behavior and the emergent properties of these systems.

As events take place in a Markov process, the system makes transitions from one state to
another, and these transitions occur according to transition probabilities. If it is known that a system
initially is in a given state, then by using these transition probabilities, it is possible to predict the
patterns with which the system passes among states and perhaps re-enters states previously occupied
by the system.

Some processes involving uncertain or probabilistic transitions exhibit restricted patterns of
behavior that tend to dictate the ultimate disposition of the system. However, other systems range
more freely among their states indefinitely, and under certain circumstances it is possible to
characterize the long-term behavior or status of these systems. Knowing this -steady-state behavior
of systems is very valuable to analysts in planning or budgeting resources or projecting costs or
profits in systems whose events take place in an environment of uncertainty.

KEY TERMS

absorbing chain
* absorbing state

absorption probability
aperiodic state
closed set of states
continuous-time stochastic process
discrete-time stochastic process
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ergodic Markov chain
expected first passage time
expected recurrence time
finite state Markov chain
first passage probability
first passage time
first recurrence time
fundamental matrix
initial probability distribution
irreducible Markov chain
Markov chain
Markov process
Markov property
one-step transition probability
periodic state
reachable state
recurrence time
recurrent state
state
state probabilities
state probability vector
state transition diagram
stationarity property
steady-state
steady-state probability
steady-state probability vector
stochastic process
transient state
transition
transition probability
transition probability matrix
transition tree

EXERCISES

6.1 Suppose

P =

.080 .184 .368 .368"

.632 .368 0 0

.264 .368 .368 0

.080 .184 .368 .368

Obtain the steady-state probabilities for the Markov chain whose one-step probabilities
are given by P.

6.2 Write a computer program to compute the state probabilities p(50) for a 5-state system
whose initial probabilities are (.2 .2 .2 .2 .2) and whose one-step transition probabilities
are
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.1 .1 .1 .1 .6

.2 .2 .3 .1 .2

P = .2 .2 .2 .2 .2

.5 .1 .1 .1 .2

.3 .3 .1 .2 .1

by raising P to the 50-th power.
(a) Do the elements in your result vector II sum to 1?
(b) After how many steps do the state probabilities cease to change observably?
(c) If your state probabilities stabilize, but then exhibit small changes as you continue to

compute higher powers of P, how would you explain this?
(d) Compare your result with the steady-state probabilities you obtain by solving the

system IIP = II and S II = 1. Do these steady-state probabilities sum to 1?
(e) Which method of establishing state probabilities takes greater computation time? (Use

a timing function on your computer to determine this.)
(f) Which method appears to yield more accurate results? (How can you make this

determination?)

6.3 Why is the Markov process described by the following transition probability matrix not
an ergodic process?

P =

0 1 0 0 "

0 0 1 0

0 0 0 1

1 0 0 0

What do you discover if you try to establish steady-state probabilities by solving the
steady-state equations for this process?

6.4 Raise the following transition probability matrices to successively higher powers, and
note the difference in the number of steps required to reach steady-state in each case.

.3 .3 .4

.4 .3 .3

.5 .2 .3

.90 .05 .05"

.05 .95 0

0 .10 .90

6.5 Try to establish steady-state probabilities by solving the steady-state equations corre-
sponding to the Markov system shown in Figure 6.3. Is there any computational difficulty
caused by the transient and recurrent states?

6.6 A doubly stochastic matrix is one whose row elements sum to 1 and whose column
elements also sum to 1. Find the steady-state probabilities for the chain whose.one-step
transition probabilities are given by the doubly stochastic matrix

PA = PB =



250 Operations Research: A Practical Introduction

P =

1/3 2/3 0

1/6 1/3 1/2

1/2 0 l / 2 _

In general, for any doubly stochastic matrix, it is true that

IIj = 1/n for j = 1, ..., n

where n is the number of states.

6.7 In a hospital for seriously ill patients, each patient is classified as being either in critical,
serious, or stable condition. These classifications are updated each morning as a physician
makes rounds and assesses the patients' current conditions. The probabilities with which
patients have been observed to move from one classification to another are shown in the
table below, where the (i, j)-th entry represents the probability of a transition from
condition i to condition j.

Critical Serious Stable

Critical
Serious
Stable

.6

.4

.1

.3

.4

.4

.1

.2

.5

(a) What is the probability that a patient who is in critical condition on Tuesday will be
in stable condition on the following Friday?

(b) How many days on the average will pass before a patient in serious condition will be
classified as being in stable condition?

(c) What is the probability that a patient in stable condition on Monday will experience
some sort of reversal and will not become stable again for 3 days?

(d) What proportion of the patient rooms should be designed and equipped for patients
in critical condition? In serious condition? In stable condition?

Discuss the validity of the Markov assumption and the stationarity assumption, in the
context of this problem.

6.8 Construct a transition probability matrix to model the promotion of high school students
through the grades 10, 11, and 12. Ninety-two percent of tenth graders are passed on to
the next grade, 4% fail and repeat the tenth grade, and 4% fail and drop out of school.
At the end of the eleventh grade, 88% pass to the next grade, 7% fail and repeat, and
5% fail and drop out. Of the twelfth graders, 96% graduate from high school successfully,
3% fail and repeat the twelfth grade, and 1% fail and do not ever complete high school.
Students may repeat a grade any number of times, but no student ever returns to a lower
grade. Comment on the structure of the transition probability matrix. Of 1000 students
entering the tenth grade, how many are expected to graduate after 3 years in high school?
What other information about the high school students can be obtained from the data
given above? ;

6.9 What is the name given to a Markov state that is reachable from the initial state and
whose steady-state probability is zero? What is the name given to a Markov state whose
steady-state probability is 1?
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6.10 What is the interpretation of the element a^ in the matrix A, where A is the product of
the matrices F and R? What is the interpretation of the element f% in the fundamental
matrix F of a Markov process?

6.11 Suppose the following one-step transition probability matrix describes a Markov process:

States
1
2
3

1
.2
0
0

2
.7
.3
.1

3
.1
.7
.9

(a) Determine the steady-state probabilities for this process.
(b) What is the probability that a first passage from state 2 to state 3 will occur after

exactly two transition steps?
(c) What is the expected number of transitions that will occur for the system in state

2 to return again to state 2?

6.12 A machine maintenance problem can be modeled as a Markov process. Each day, the
machine can be described as either excellent, satisfactory, marginal, or inoperative. For
each day the machine is in excellent condition, a net gain of $18,000 can be expected.
A machine in satisfactory condition yields an expected $12,000 per day. A marginal
machine can be expected to bring a daily net gain of $4000, and an inoperative machine
causes a net loss of $16,000 a day. An excellent machine will be excellent the next day
with probability 90%, satisfactory the next day with probability 4%, and marginal with
probability 2%, and inoperative with probability 4%. A satisfactory machine will the
next day be satisfactory with probability 80%, marginal with probability 12%, and
inoperative with probability 8%. A marginal machine will be marginal again the next
day with probability 70%, and inoperative with probability 30%. Repairs are made
without delay, but only on inoperative machines, and the repairs take exactly 1 day. (The
day-long repair process costs $ 16,000, which accounts for the daily net loss stated above.)
A machine having undergone repair is 90% likely to be in excellent condition the next
day, but in 10% of cases the repairs are ineffective and the inoperative machine will
remain out of commission, necessitating a repeat of the repair process on the following
day (at an additional cost of $16,000). Find the steady-state probabilities for the four
states of this machine. Then, assuming that this machine is active (in one of its four
states) 365 days per year, find the long-term annual profitability of this machine?

6.13 Given the one-step transition probability matrix below, compute the expected first passage
times from state i to state j, for all i and j.

0 0 .5 .5

1 0 0 0

0 1 0 0

0 .5 .5 0

6.14 A computer network is observed hourly to determine whether the network is operational
("up") or not ("down"). If the network is up, there is a 98% probability that it will be
up at the next observation. If it is down, there is a 30% probability that effective repairs
will have been completed by the next hourly observation, but a 70% chance that repairs
are still in progress and the network is still down the next hour. Analyze the expected
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first passage times for this computer network. Comment on the performance of the
network in general, and in particular interpret and comment on the first passage proba-
bilities. In what type of network environment would the performance of this network be
acceptable?

6.15 Customers are often faced with the option of purchasing an extended warranty for a new
appliance. Suppose that GalleyMaid dishwashers offer a warranty plan that covers the
first 3 years of ownership of a dishwasher. During the first year of operation, 5% of
dishwashers fail. During the second year of operation, 8% fail. And 11% of dishwashers
in their third year of service fail. The basic warranty from GalleyMaid covers replacement
only when failures occur during the first year. If a failure occurs, a repair during the
second year is expected to cost the owner (customer) $150, and during the third year is
expected to cost $200. For $80, the customer can purchase an extended warranty that
provides free repairs or replacement in case of failures any time within the first 3 years.
Use a Markov model to track the progression of dishwashers through their first 3 years
of service.
(a) Is the extended warranty a good buy for the customer?
(b) By what amount should GalleyMaid increase the sales price of the dishwasher so

that the basic (no charge) warranty could be extended to cover 2 years?
(c) If the basic warranty did cover 2 years, what is a fair price for the customer to

purchase a one-year extension, providing a total of 3 year's warranty coverage?

6.16 Two companies, one selling Ol1 Boy Biscuits and the other selling Yuppy Puppy Pleasers,
have cornered the market for dog treats. Each product is packaged to contain a 4-week
supply of treats, and customers always purchase treats as soon as necessary so as to
never run out of treats. For a customer whose last purchase was OF Boy, there is a 75%
chance of a brand change on the next purchase; and for a customer who most recently
bought Yuppy Puppy, there is an 85% chance of a brand change on the next purchase.
OF Boys are sold at a per unit profit of 600, and Yuppy Puppys yield a per unit profit of
700.
(a) What proportion of the market is held by each of these two products?
(b) If 30 million customers regularly purchase these products, what are the annual

expected profits for each company?

6.17 Consider the assumptions that were made in analyzing the memory allocation processes
described in Section 6.9.2. Can you provide arguments that these assumptions are justified
in practice?

6.18 Recall the principal assumption underlying the Independent Reference Model described
in Section 6.9.4. Consider whether this assumption is consistent with the current views
held by software engineers and analysts concerning program behavior and the concept
of "locality of reference."
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We have already been introduced to several modeling tools, such as linear programming, network
models, and integer programming techniques, which allow us to optimize systems. Other tech-
niques, such as Markov analysis, allow us to observe and analyze the probable behavior of systems
over time; and the information gained from these observations may be used indirectly to modify
or improve system performance. In this chapter, we will study further mechanisms by which we
may observe and characterize the performance of systems. In particular, we will concentrate on
the wide variety of systems whose elements include waiting lines (queues), and will study how
such waiting lines interact with other activities or entities in the system toward achieving a certain
system throughput.

The study of systems involving waiting lines traces its origin to work done many decades ago
by A. K. Erlang. Working for the Danish telephone company, this mathematician developed tech-
niques to analyze the waiting times of callers in automatic telephone exchanges. In such systems,
waiting is caused by a lack of resources (not enough servers), and system designers must develop
ways to balance the value of customer convenience against the cost of providing servers.

Waiting lines inherently create inconvenience, inefficiency, delay, or other problems. Waiting lines
represent people waiting for service, machines waiting for a repairman, parts waiting to be assembled,
etc.; and these situations cost time and money. Of course, waiting lines can be virtually eliminated
by simply adding lots of servers, repairmen, and assembly stations, but this can be very expensive.
To make intelligent decisions about how many servers to hire, or how many workstations to build,
we must first understand the relationship between the number of servers and the amount of time spent
in the queue, so that we can evaluate the trade-off between the various costs of servers and queues.

In this chapter, we will study systems that are simple enough to be modeled analytically and
precisely using queuing models. These methods have been found to be surprisingly successful in
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estimating the performance of many systems. Unfortunately, despite the popularity of analytical
techniques, they may be too cumbersome to use (or technically inapplicable) for modeling some
very complex systems. These more difficult systems can often be analyzed using simulation;
therefore, in Chapter 8 we will study the techniques of using computers to simulate the operation
of complex systems.

7.1 BASIC ELEMENTS OF QUEUING SYSTEMS

A queuing system consists of a flow of customers into and through a system, who are to be
processed or dealt with by one or more servers. If there are fewer customers than servers, customers
are dealt with immediately and some servers may be idle. If there is an excess of customers, then
they must wait in a line or queue until a server becomes available. After being served, the customer
leaves the system.

Waiting lines and systems involving waiting lines are so pervasive in real life that it is not at
all surprising that the analysis of the operation of such systems forms a major subfield of Operations
Research. We expect to see waiting lines at, for example, the bookstore, grocery store, cafeteria,
bank, gas station, and hospital emergency room. You may even have to "queue up" to visit your
professor or to check out a library book. Queues also form for telephone calls, which must wait
for an available circuit in order to complete a connection. Messages or data packets may have to
be queued at a processing node of a computer network before they can be forwarded on toward
their destinations. Airplanes must wait to take off or land on a particular runway. Manufactured
items on an assembly line may have to wait to be worked on by a line worker, a programmed robot,
or other machine. And computer programs typically wait in a queue to be executed by a central
processing unit. All of these represent systems whose inefficient or improper operation could cause
inconvenience, economic loss, or even safety problems. Therefore, engineers and decision analysts
are keenly interested in understanding and improving the operation of queuing systems.

The principal elements in a queuing system are the customer and the server. Queues arise
only as a result of the servers' inability to keep pace with the needs of the customers. From the
customers1 point of view, there should be as many servers as there are customers at any given
time, but this of course is not economically feasible. It would not make sense to hire enough bank
tellers or build enough drive-through teller stations to handle the peak load of customers because,
obviously, most of those tellers would be idle during most of the business day. Customers therefore
expect to wait some reasonable amount of time for service. The meaning of a "reasonable wait"
varies with the context.

If a customer arrives and sees that all the queues look very long, the customer may decide not
to wait (known as "balking"), and the system loses a customer. A customer in one queue may
perceive that a different queue is moving more quickly, so he may abandon his position in the first
queue and join the apparently more advantageous one (known as "jockeying"). Or a customer may
wait in a line, become discouraged at the slow progress, and leave the queue (known as "reneging").

Human behaviors such as these certainly complicate, the analytical study of queuing systems.
Furthermore, customers differ in their perception of queuing patterns. What seems to be a hopelessly
long wait to one customer may not seem so to another. A family with several small children in tow
might find a 20-minute wait for a seat in their favorite restaurant intolerable, whereas a group of
adults might be willing to enjoy conversation during a lengthy wait. An airplane with a nearly
empty fuel tank may gladly endure a short wait for a local runway rather than fly to an alternate
airport some distance away, whereas an anxious bank customer may change lines several times in
the possibly vain hope of receiving more prompt service. Circumstances and personalities strongly
influence systems involving human customers.

For our purposes, customers are characterized primarily by the time intervals that separate
successive arrivals. (Arrival rates will be discussed in the next sections.) In more complex systems,
customers may arrive in groups, such as a group of people wishing to be served together in a
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restaurant, or a busload of tourists arriving at a museum. Often, the group is treated as a single
customer, and these are called "bulk queues."

Another key characteristic of a queuing system is the type and length of service required by
each customer. We will confine our studies to cases in which each customer requires the same type
of service, but the server may take a different amount of time for each customer. Human behavior
again becomes a factor here. If the server is a machine, it may take exactly the same amount of time
for each customer service. More generally, however, the time required for service may be random
and will vary from one customer to the next. Moreover, it is easy to envision a human server (a
bank teller or an air traffic controller, for example) who sees the queue becoming long, becomes
nervotis, and makes mistakes, causing the service to take longer. On the other hand, a more adroit
server may observe the crowded condition and work more quickly and efficiently. Or an immigration
officer at a border crossing may ask fewer questions when the lines get long. Our discussion of
service rates, in the next section, will attempt to account for these various considerations.

The following characteristics summarize the main elements of queuing systems.

1. The pattern of customer arrivals is typically described by a statistical distribution
involving uncertainty.

2. The lengths of service times (and therefore the departure times for each customer)
likewise are described by a statistical distribution.

3. The number of identical servers (sometimes called channels because in some of the
earliest systems studied, the servers were information paths) operating in parallel is an
important characteristic. If there is more than one server, each may have its own queue
or all servers may select customers from a single queue. In more general systems, such
as assembly lines, the "customer" (the item being manufactured) may pass through a
series of queues and service facilities. The most general systems include both series and
parallel queues and are termed network queues.

4. The method by which the next customer is selected from the queue to receive service is
called the queue discipline. The most common queue discipline is "first-in, first-out"
(FIFO), in which the customer selected for service is the one that has been in the queue
for the longest time. Customers could also be selected at random, or according to certain
priority schemes such as highest-paying customer, the most urgent customer, or the
customer requiring the shortest service time.

5. In some systems, there is a maximum number of customers allowed in the queue at one
time; this is called the system capacity. If a system is at capacity, new arrivals are not
permitted to join the system. This could occur in a drive-in bank where the queue of
cars is not allowed to extend into the street, or in a computer network where the buffer
space can contain only a certain number of queued data packets. In a bottling plant, there
is a certain amount of space between the filling station and the packing lines. When the
space fills up, the filling station must be shut down.

6. A final factor in characterizing a queuing system is the population or source from which
potential customers are generated. This calling source may be finite or infinite in size.
In a bank, for example, the calling source would be assumed infinite for all practical
purposes because it is unlikely that all possible customers would ever be in the bank and
that no others could conceivably arrive. On the other hand, in a computer system with
a relatively few number of authorized users, it is certainly possible that all users might
be logged on at some time and that there could be no new arrivals. A finite calling source
thus can have an effect on the rate of new arrivals.

Once a queuing system has been modeled by specifying all of these characteristics, it may be
possible for an analyst to learn a great deal about the behavior of the system by answering questions
such as the following.
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• How much of the time are the servers idle? Servers usually cost money, and under-
utilized servers might need to be removed.

• How much time does a customer expect to spend waiting in line? And is this a reasonable
amount of time, considering the context? Is it likely that customers are being lost due
to long queues?

• What is the average number of customers in the queue? Should servers be added in order
to try to reduce the average queue length?

• What is the probability that the queue is longer than some given length at any point in
time?

These are questions facing system designers who must try to get optimal utilization from their
service facilities while providing an acceptable level of convenience or safety for customers. Keep
in mind that queue analysis normally occurs before a system is built. A primary purpose of queuing
theory may be to determine how many service facilities (such as operating rooms or checkout
counters) to build before it is too late or too costly for modifications to be undertaken. The remainder
of this chapter presents some tools for answering just such questions as these.

7.2 ARRIVAL AND SERVICE PATTERNS

7.2.1 THE EXPONENTIAL DISTRIBUTION

In queuing systems, we generally assume that customers arrive in the system at random and that
service times likewise vary randomly. Our intuitive notion of "random" is closely associated with
the exponential distribution of lengths of time intervals between events; that is, intervals between
arrivals or durations of services. Suppose we generate a random number n of arrival times over
some fixed time period T by selecting n numbers from a uniform distribution from 0 to T. This
process coincides with our intuitive idea of independent random events. It can be shown that the
distances between these points are exponentially distributed.

The assumption underlying the exponential distribution is that the probability of an arrival
occurring in any small interval of time depends only on the length of the interval and not on the
starting point (time of day, week, etc.) of the interval or on the history of arrivals prior to that
starting point. The probability of an arrival in a given time interval is unaffected by arrivals that
have or have not occurred in any of the preceding intervals.

Restating these properties of the exponential distribution in terms of service times, the duration
of a given service does not depend on the time of day (e.g., it does not depend on how long the
service facility has been in operation), nor on the duration of preceding services, nor on the queue
length or any other external factors.

Note that the "stationary" and "memoryless" properties that we observe here are precisely the
assumptions that we made in order to model processes using Markov analysis, as discussed in the
preceding chapter. In fact, we will return to these same ideas in developing our analytical queuing
models in the next section.

The exponential density function (sometimes called the negative exponential density function)
is of the form

f(t) = Xe-x<

where 1/X is the mean length of intervals between events, and therefore X is the rate at which events
occur (the expected number of occurrences per unit time). That is, f(t) represents the probability
of an event occurring within the next t time units. The curves shown in Figure 7.1 illustrate the
shape of the exponential distribution for different values of the parameter X, shown as X1? X2, and
X3 on the vertical axis. Because the area under each of these curves must be one (as for any
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FIGURE 7.1 Exponential distribution.

probability density function), a larger value of X implies a more rapid decrease and asymptotic
convergence to zero. As indicated by the exponential distribution curves in the figure, the most
likely times are the small values close to zero, and longer times are increasingly unlikely. The
exponential distribution times are more likely to be "small" than above the mean. However, there
will occasionally be very large times.

We should mention here that there are clearly some cases that are not represented by the
exponential distribution function. A machine (or even a human) service facility that performs each
service with the identical constant service time yields a service distribution in which all service
times are essentially equal to the mean service time, which is inconsistent with the exponential
distribution. The exponential distribution also precludes cases where a customer arrives but does not
join the queue because he sees another customer arrive just ahead of him, or when the server tries
to speed up as the queue length increases. It is easy to imagine other scenarios that cannot be correctly
or realistically described by the exponential distribution; however, experience in system modeling
has shown that many systems exhibit a typical pattern of random, independent arrivals of customers,
most of whom can be served in a short length of time while relatively few require longer service.
For example, most bank customers arrive to conduct simple transactions that can be handled quickly,
while the few irregular cases require more time. In a hospital emergency room, a large number of
the arriving cases require relatively simple first-aid, while serious trauma cases requiring longer
attention are less frequent. Thus, the assumption of exponentially distributed interarrival times and
service times has been found in many practical situations to be a reasonable one.

An exponential interarrival distribution implies that the arrival process is Poisson distributed.
If the interarrival times are exponential, then the number of arrivals per unit time is a Poisson
process. A Poisson distribution describes the probability of having precisely n arrivals in the next
t time units as:

Probability (X(t) = n} = (\t)n e~xt / n!

Notice that when n = 0, the probability

Probability (X(t) = 0} = e~xt

is precisely the exponential distribution that the next arrival will not occur until after t time units.
However, in describing queuing systems, people often refer to Poisson arrivals and exponential
service times because it seems more natural to describe customer arrivals by stating how many
arrivals per unit time, whereas service times are more conveniently described by stating the duration
of the service.
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7.2.2 BIRTH-AND-DEATH PROCESSES

Because of our assumption that interarrival and service times are exponentially distributed, this
class of queuing models can be viewed as special cases of continuous time Markov processes.
When such a system initially begins operation, performance measures are strongly affected by the
system's initial conditions (its initial state) and by how long the system has been in operation.
Eventually, however, the state of the system becomes independent of initial conditions, and we say
the system has reached steady-state. Our queuing models will deal primarily with a steady-state
analysis of the queuing system.

To facilitate our development of formulae for performance analysis of queuing systems in
steady-state, we will illustrate the system using a particular type of transition diagram known as a
birth-and-death process model. The states in this system are characterized by the number of
customers in the system, and thus correspond to the set of non-negative integers. This number
includes the number in queue plus the number in service. The term "birth" refers to a customer
arrival, and the term "death" refers to a departure.

Only one birth or death may occur at a time; therefore, transitions always occur to the "next
higher" or "next lower" state. The rates at which births and deaths occur are prescribed precisely
by the parameters of the exponential distributions that describe the arrival and service patterns. In
queuing theory, the mean customer arrival rate is almost universally denoted by X and the mean
service rate (departure rate) is denoted by jx, where X and fx are the exponential distribution
parameters.

We can illustrate all the possible transitions using the rate diagram shown in Figure 7.2. An
arrival causes a transition from a state i into state i + 1, and the completion of a service changes
the system's state from i to i - 1, for a given i. No other transitions are considered possible. Using
this diagram, we can now begin to derive the formulae that describe the performance of simple
queuing systems.

7.3 ANALYSIS OF SIMPLE QUEUING SYSTEMS

7.3.1 NOTATION AND DEFINITIONS

Although we will concentrate on only the simplest of queuing models, we will make use of a
notational scheme that was developed by Kendall and Lee and that is commonly used to describe
a variety of types of queuing systems [Lee, 1966]. The system characteristics are specified by the
symbols

A/B/C/D/E/F

where A and B are letters that denote the interarrival time distribution and the service time
distribution, respectively; C is a number that denotes the number of parallel servers or channels;
D and E denote the system capacity and size of the calling source, respectively; and F is an
abbreviation identifying the queue discipline.

FIGURE 7.2 Rate diagram for a birth-and-death process.
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The codes used to denote arrival and service patterns are as follows:

M for exponential (Markovian) interarrivals and service times
D for constant (deterministic) times
Ek for Erlang distributions with parameter k
GI for general independent distribution of interarrival times
G for general service times

The code for queue discipline inay be FCFS (first-come, first-served), SIRO (service in random
order), or any other designated priority scheme.

So, for example, a queuing system described as

M / M / 1 / oo / oo / FCFS

is a single server system with exponential arrivals and departure patterns, infinite queue capacity
and calling source, and a first-come, first-served queue discipline. This is the type of system we
will study most thoroughly. Of course, a variety of combinations of characteristics can be defined,
but only a relatively small number of systems have been solved analytically.

Beyond this seemingly cryptic notation describing the essential characteristics of a queuing
system, we need some additional definitions and notation to describe various performance measures.
Determining these performance measures is, after all, our primary reason for creating analytical
models of queuing systems. The following abbreviations are used almost universally and can be
found in any textbook on queuing analysis.

X = Arrival rate (expected number of arrivals per unit time).
|x = Departure rate for customers of each server in the system (expected number of

customers completing service and departing the system per unit time).
s = Number of parallel servers.
p = X/SJJL = Utilization factor of the service facility (the expected fraction of time the

servers are busy); sometimes called "traffic intensity." Note that p < 1 in order for the
system to reach steady-state; otherwise, the customer load on the system grows increas-
ingly large without bound.

pn = Steady-state probability of the system being in state n, that is, of there being exactly n
customers in the system (Recall from our study of steady-state Markov processes that
this may be interpreted as the fraction of the time the system has exactly n customers.)

L = Expected number of customers in system.
Lq = Expected number of customers in queue; mean length of gueue.
W = Expected waiting time for each customer in the system (includes time spent in queue

as well as service time).
Wq = Expected waiting time spent in queue.

Certain relationships have been established between L, Lq, W, and Wq. Little's formula [Little,
1961] states that L = X W and also that Lq = X Wq. Also, because expected waiting time in the
system equals expected time in queue plus expected service time, we have the formula
W = Wq + l/|x. Therefore, if we can compute any one of these four performance measures, we can
use these relationships to compute the other three. But to do this, we need a way to compute the
probabilities pn. For this, we return to our birth-and-death process diagrams.
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7.3.2 STEADY-STATE PERFORMANCE MEASURES

If we consider any state in the rate diagram shown in Figure 7.2, and assume the system to have
reached steady-state, then it must be true that the mean rate at which transitions are made into the
state must equal the mean rate at which transitions are made out 0/the state. In fact, we can write
an equation for each state that expresses this fact and that accounts for all possible ways in which
transitions into and out of the state can occur. The set of equations that results from doing this are
called flow balancing equations, and we can write them in the following way.

First consider state 0, the simplest case, because there is only one path leading in and one path
leading out. The mean rate out of state 0 is the probability of being in state 0 times the rate of
departures from state 0, p0X. The mean rate in is the probability of being in state 1 times the rate
of transitions from state 1 to state 0, pjjx. Therefore, the equation for state 0 is

p0X = p^

For all other states, there are two arcs leading in and two arcs leading out. Still, the "rate-in =
rate-out" principle holds and we can write for state 1:

Rate in: p0X + p2|x

Rate out: p,X + pjjx

therefore, p0X + p2|x = piX + piji

And similarly for state 2,

p,X + p3fi = p2X + p2jx

and for state n

Pn-A + Pn+lJ* = P> + PnM-

By first solving the state 0 equation for p, in terms of p0, we can proceed to the state 1 equation
and solve for p2 in terms of p0, and successively solve for all pn as follows:

p, = (X/p,)po

p2 = (X/fX)pi = (X/fJL)2p0

p3 = (X/fJi)p2 = (X/ix)2Pi = (X/M,)3p0

So, for the birth-and-death process model in which all arrivals are characterized by the parameter
X and all departures by the parameter \L, any of the pj can be computed in terms of the parameters
X and fju and the probability p0. To obtain the value of p0, we just observe that the sum of all the
Pi must equal to one:

P» = (^)Pn-l =(X/M-)nPo
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Then,

1 = po + (X/jx) po + (X/jx)2 po + ... + (X/|x)n po + ...

= Po[l + (X/jx) + (X/|x)2 + ... + (X/M,)nn

The series in square brackets converges, if (X/nO < 1, to the quantity

1

1-(X/H)

Therefore,

1
'-PoTToT^

and

Po = 1 - (X/jji)

More intuitively, you may also recall that p = X/SJJL is the probability of the service facility
being in use at any given time. For a single service facility in which the same parameter JJL
characterizes service times (as in Figure 7.2), regardless of the number of customers requiring
service, we let s = 1. Therefore, p = X/JJL is the probability of a busy service facility, and thus 1
- (X/jx) = 1 - p is the probability of an idle service facility. This is exactly what is meant by the
probability of there being zero customers in the system, so it is reasonable that p0 = 1 - (X/jji).

We can now express all of the system state probabilities in terms of X and JJL as follows:

Pn = n Po

Pn = (XAX)"[1 -

or Pn = pn (1 - P)

Our original interest in developing these formulae was so that we could compute system perfor-
mance measures such as the expected number of customers in the system L, and the expected amount
of time each customer spends in the system. By definition of expected number of customers, we know

L = Z (n-P n)
n=0

= i [n.p"(l-p)]
n=0

= (1 - p) [Ip1 + 2p2 + ... + npn + ...]

= (1 - p) [1 + p + p2 + p3 + p4 + ...] [p + p2 + p3 + p4 + ...]

<l-p)

(1 - p) (i/(i - p)) (i/(i - p) - 1)

PO + Pi + P 2 + . . - + P n + . . . = 1

(&' ZP'-O
n=0 I
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since

£ x" = 1/(1 - x) for Ixl < 1
n=0

Therefore,

L= p

1-p

From this we can use Little's formula L = XW to obtain the expected time in the system W.
Because W = Wq + I/JJL, we can then compute the expected time a customer spends in queue, Wq.
And from this we can obtain the expected queue length Lq using Lq = XWq.

EXAMPLE 7.3

Suppose computer programs are submitted for execution on the university's mainframe computer,
and that these programs arrive at a rate of 10 per minute. Assume average run-time for a program
is 5 seconds, and that both interarrival times and run-times are exponentially distributed. During
what fraction of the time is the CPU idle? What is the expected turnaround time of a job in this
system? What is the average number of jobs in the job queue?

This system is assumed to be an M/M/1 queuing system with X = 10 jobs per minute and p,
= 12 jobs per minute. We will also assume that job queues may become arbitrarily long and that
there is an infinitely large user population. Since p = 10/12 < 1, the system will reach steady-state
and we can use the formulae developed above to answer these questions. Since the utilization factor
p = 5/6, the CPU will be idle V6 of the time, or for 10 seconds out of every minute. (Since 10 jobs
each take an average of 5 seconds, the CPU is busy for 50 seconds each minute.)

Turnaround time is defined to be waiting time plus execution time, which we call W. We know
L = p/(l - p) = (5/6)/(l/6) = 5, and from this we can calculate, using Little's formula, W = L/X
= 5/10 = 1/2 minute. The average queue length is Lq = XWq. Since we have just computed W to
be V2 minute, we can use the formula Wq = W - l/|x = 1/2 - 1/12 = 5/12 minutes (or 25 seconds)
for expected waiting time spent in the queue. Then the average number of jobs in the queue is Lq

= 10 • 5/12 = 4V6 jobs. (Because the job queue itself occupies some computer memory, this tells
how much space is typically devoted to this system function, and it also indicates how many jobs
are experiencing delay.)

Now suppose we want to know the probability that the number of jobs in the system becomes
4 or more. This can be calculated as 1 minus the probability that there are fewer than 4 (i.e., 0, 1,
2, or 3) customers in the system:

Probability [^ 4 jobs] = 1 - [p0 + PI + p2 + p3].

We know

p0= 1-X/fji = 1 -5/6 = .1667

Pi = PPo = (5/6)(l/6) = 5/36 = .1389

Ps = P3Po = (5/6)3(l/6) = .0965

p2 = P2Po = (5/6)2(l/6) = .1158
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Therefore,

Probability [> 4 jobs] = 1 - [.1667 + .1389 + .1158 + .0965] = .48225

In general, the probability that there are at least k jobs in the system is given by:

In our example, p = 5/6, and k = 4, so the probability of at least four jobs in the system is (5/6)4

= .48225. •
The formulas developed above are valid only in queuing systems that eventually reach steady-

state. Our underlying assumption that the arrival rate X be less than the service rate |x is sufficient
to guarantee that the system will stabilize. Notice that as p approaches 1, both W and Wq become
large. Clearly, for p > 1, arrivals are occurring faster than a constantly busy service facility can
keep up with the demand. When p = 1, the sequence is undefined. However, if we look back at
the original state equations, we discover that (X/jx) = 1 implies that p0 = pj = p2 = p3 = ... There
are infinitely many states, all equally likely, which means that the actual probability of being in
any given state is zero in the limit.

We have also assumed that the system has an infinite capacity. If this were not the case, then
arriving customers would occasionally encounter a full system, and although they would arrive at
the system according to the arrival parameter X, they would not be permitted to join the system at
rate X. Thus, the effective arrival rate would not be constant and would vary in time, according to
whether the system is at capacity. For this case, the pn formulae remain valid as before. However,
if we let N denote the system capacity, the steady-state equation for state N is simply

and

pN = (X/fJL)pN-i = (̂ /M«)NPo

just as before. However, there is no state N + 1. We now have a finite set of states whose probabilities
must sum to 1:

Po + Pi + P2 + - + PN = 1

Then,

Po [1 + (X/M.) + (X/jji)2 + (X/jx)3 + ... + (X/fjL)N] = 1

The series in the brackets is a geometric progression that sums to

l-£Pk=l-j!iP'0-P>

= l-(l-p)(l-pk)/(l-p)
Pk

PN-A = PN^

i-(x/nr
i-a/u)
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when X & jx; therefore,

or

When X = (t, we get X/JJL = 1 and p0 = 1/(1 + N).
Other system measures can be computed as before. It can be shown that, when p * 1:

When p = 1, L = N/2. Moreover, if a customer arrives when the system is full (with probability
pN),the customer will not enter the system. Therefore, the effective arrival rate Xe is

W = L/Xe

Wq = L^

W = Wq + 1/u,

These formulae are still valid when \ > JJL. As the arrival rate increases relative to the service rate,
the system just loses more customers. It is interesting to note that, even in a saturated system in
which the arrival rate is greater than the service rate, there is always still some probability p0 that
the system will be empty and the server will experience some idle time.

We have derived performance measures for single-server (M/M/1) systems. For multiple-server
systems (where s > 1), the actual service rate depends on the number of customers in the system.
Obviously, if there is only one customer present, then service is being rendered at rate JJL. But
if there are two customers present, and s ^ 2, then the system service rate is 2jx. Likewise, if
s = 3, then the system service rate is 3|x. However, if there are s service facilities, the maximum
system service rate is SJJL, even if there are more than s customers. This is illustrated by the rate
diagram in Figure 7.3.

FIGURE 7.3 Rate diagram for multiple servers (s = n).

MH^D
(l-(X/|i))

n - *-Pp°-rv^

p[l-(N + l)pN+NpN+1]
L (i-PXi-PN+I)

Xe = X(l-pN)
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The results obtained from a birth-and-death process model for an M/M/s system, for s > 1,
differ from our previous results because service rates are sensitive to the current customer load.
Under the assumption that p < 1, that is X < SJJL, it can be shown that

1
Po"^M^+(^^_JL_

n=o n! s! l-(A,/su)

anH

Mfe fc011il
n!

""~ k/i£a f O T n > s
sis"-*

The expected number in queue can be shown to be

Po(>./n)sp

" s!(l-p)2

where p = X/SLL and, as before,

Lq = XWq

W = Wq + I/IJL

L = XW = Lq + X/JJL

7.3.3 PRACTICAL LIMITS OF QUEUING MODELS

In the previous sections, we attempted to give a very brief introduction to the simplest queuing
models and to the mathematical foundations underlying these models. When the systems being
studied are more complex, we find that the analytical approach to modeling their behavior quickly
grows in complexity. And for some systems, no analytical models have been developed that are
applicable at all.

In selected applications, decomposing or partitioning the system may be a reasonable approach.
For example, in a very complex multiple-server system, we might simplify the analysis by just
considering the servers that create the bottlenecks in the system, and in that way decompose the
system into more manageable parts.

The problem of scheduling operating rooms in a hospital provides another good example. We
may be able to learn a quite a lot about the system by treating the operating rooms as a set of
parallel identical servers. But in reality, the operating rooms are not identical; each one could be
characterized by the unique equipment installed in the room. Therefore, it might be useful to
partition the patients into several parallel streams of customers, each requiring a different group of
identical operating theaters.

There are many examples of systems that involve certain characteristics of queuing models,
but whose components do not fit into the standard roles of "customers" and "servers" as we have
defined them, or whose customers and servers do not behave according to the simple paradigms
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to which the equations of analytical queuing models are applicable. In such systems, although we
cannot directly and easily compute system characteristics such as average queue length, average
time spent in a queue, server utilization, etc., we might instead be able to write a computer program
to play out the behavior of the entities in the system. By enacting these behaviors under the control
of a computer program, we can then also "observe" the performance of the "simulated" system,
and, within the computer program, accumulate enough information about the system to then quantify
the observed system characteristics. When this is done properly and skillfully, the results may be
just as valuable and reliable as the analytical results that can be directly derived for simpler systems.

Although queuing analysis and simulation are often used to accomplish similar goals, the two
approaches are quite different. Chapter 8 describes how to develop a simulation of a system, how
to cause "events" to happen in the simulated system, how to make observations and gather data
about the effects of these events in the simulated system, and thereby infer how the real system
being modeled would behave and what some of its essential characteristics are.

7.4 GUIDE TO SOFTWARE TOOLS

Application tools for queuing and simulation studies are abundant. While there are a number of
software products specifically designed for analytical modeling of queuing systems, many queuing
systems are studied through simulation, and in that case analysts can choose from a variety of
software packages and languages for general simulation, as will be described in Chapter 8.

QTK (Queueing Analysis with TK Solver) consists of theoretical queuing models implemented
in the equation-solving language TK Solver. It permits all the capabilities of the full TK Solver,
although prior knowledge of TK Solver is not necessary in order to use QTK. The system allows
the user to evaluate specific measures of performance and perform "what if analysis for varying
model parameters. By observing the performance differences between different system configura-
tions, the user can directly apply queuing theory to the modern decision-making environment.

With a menu-driven user interface, QTK models single or multiple servers, priority and open
queues, a variety of interarrival and service time distributions, and can compute steady-state
probabilities for Markov chains and birth-and-death processes. User input and output is managed
through a "variable sheet" containing the model input/output values and a "rule sheet" containing
the formulae for the model. The high-quality graphics display package includes tutorials allowing
the user to modify any model in the package. QTK is advertised as a flexible system through which
practitioners can focus on applications, de-emphasizing the equations (treating them as black boxes),
or alternatively uncover the equations for exploration and model-editing [Palocsay, 1994]. QTK is
available for Windows and Macintosh platforms. List price of the full QTK version is around $1000,
but student/faculty editions are available in the $100 range.

M/G/l/N+1 and GI/M/N+1 are designed for numerical solution of finite capacity queues, with
either general service or general interarrival time distributions (but not both). In M/G/l/N+1, the
N+l denotes the maximum number of customers in the system, with Poisson arrivals and general
service times. In GI/M/N+1, arrivals are generally distributed and independent, and service; times
are exponentially distributed. The system provides reliable computation of steady-state performance
measures for the theoretically and practically important queuing systems implied by the name of
this product. The package is intended for users experienced with queuing models who require
computational support for difficult queuing models. (Numerical calculation of probabilities from
their integral transforms is often such a difficult and unstable process, that simulation remains the
tool of choice for some major areas of application, such as computer and telecommunication systems
performance evaluations.) With this product, the user must decide, from a selection of sophisticated
models, which is most appropriate for a given application. The software is menu-driven, input/output
is either interactive or through files, and results are displayed graphically or numerically. The DOS-
based system runs on PCs, and is contained in a larger system called QPACK. Cost is approximately
$100, with volume discounts available [Rosa-Hatko, 1994].
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QueGAUSS is a software product that can be used to analyze queuing systems that occur in
manufacturing, healthcare, and engineering design applications. The cost is only $275, but this
package requires a (more complex) QGAUSS installation for successful implementation.

7.5 ILLUSTRATIVE APPLICATIONS

7.5.1 QUEUING ANALYSIS FOR INTERACTIVE COMPUTER SYSTEMS
[ALLEN, 1980; KOBAYASHI, 1978; AND REISER, 1976]

Queuing models developed at the IBM Research Division have been used to analyze the perfor-
mance of an interactive computer system. In the system being studied, there are no actual arrivals
or departures of customers into or out of the system. Instead, there is a finite customer population
("users") already within the system. The central processor system consists of a CPU, a queue for
the CPU, I/O devices, and device queues.

Customers (users) interact with the central processor system through 20 terminals. Each of the
users is assumed to be in one of three possible states at any given time: waiting, during which the
user is presumably thinking about what to do next (sometimes called "think time"); queuing for
some type of requested service; or receiving service. The "think time" is the elapsed time between
completion of some service (interaction) at the central processor system and the next request issued
for another interaction.

The CPU employs a processor-sharing queue discipline in which the processing power of the
CPU is divided equally among all service requests (a round-robin timesharing system). So, if there
are n requests pending, each can be served at the rate of jx/n customers per unit time, where |x is
the service rate of the CPU.

In the system being modeled, each of the 20 terminals has a mean waiting time ("think time")
of 3 seconds, a CPU average service rate of 500,000 instructions per second, and an average
interaction (service) request of 100,000 instructions. The analysts wish to determine the mean
response time W, the average throughput, CPU utilization, and the average number of interactions
pending for the CPU. The purpose of the study is to assess how these performance factors would
change if 10 additional terminals were added to the system.

Each interaction requires, on average, 100,000 / 500,000 = 0.2 seconds. Using equations fully
explained in [Reiser, 1976], the remaining necessary calculations are made. The probability of an
idle CPU is p0 = 0.0456, and CPU utilization p = 0.9544. Mean response time W is computed to
be 1.191 seconds. Average throughput X is 4.722 interactions per second. Then by Little's formula,
the average number of interactions pending in the CPU queue is L = XW = 1.191 x 4.722 = 5.68
user interactions. Repeating these calculations for the case of 30 terminals, we find

Po = 0.00022

p = 0.99978

W = 3.00 seconds response time

X = 5 interactions per second

L = 15 interactions waiting in the CPU queue

These results reveal that the proposed change of a 50% increase in the number of terminals
would be devastating. Throughput is increased by only 4.78% while response time goes up by
151.9%. In fact, this case provides a clear illustration of the concept of system saturation, as
described in [Kleinrock, 1976]. For small numbers of terminals, customers interfere with each other
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very little. If one terminal makes a CPU request, the others are likely in "thinking mode," so there
is little queuing. As the number of terminals gets large, the likelihood of an idle CPU approaches
zero. Kleinrock explains the phenomenon in terms of a system saturation point N*.

If each customer required exactly the average number of units of CPU service time, and the
average "think time" was equal to exactly the interarrival time, then N* would be the maximum
number of terminals that could be managed causing no mutual interference. In a system with
substantially more than N* terminals, the interaction requests interfere with each other profoundly.
The addition of just one terminal would raise every user's average response time by the average
service time of 0.2 seconds.

For our example, the saturation point N* is computed as

N* = (average service time + average interarrival time)/average service time

= (0.2 + 3.0) / 0.2 = 16 terminals

And the additional 10 terminals (from the current 20 to the proposed 30) caused an increase in
response time W of nearly 10 x 0.2 = 2 seconds (precisely, 1.809 seconds). Previously, the
existing 20-terminal system already slightly exceeded the system saturation point, and any further
increase in the number of terminals would yield disastrous results. The queuing analysis that
was applied to this system gave a clear indication that the desired improved performance could
not be achieved through the addition of more terminals, but rather through the addition of greater
CPU processing power.

7.5.2 QUEUING MODELS IN MANUFACTURING [Sum ET AU, 1995]

The application of queuing models to the analysis of manufacturing processes began as early as
the 1950s, but the extent of use of analytical queuing tools was at some times limited, and it varied
with trends in the manufacturing industry itself. Queuing models are used to study discrete man-
ufacturing systems, in which products "flow" through a sequence of machines or workstations,
where they are worked on either individually or in batches of individual pieces (as contrasted with
a continuous flow process such as oil refining). Products must wait to be worked on at each station,
so the entire process can be viewed as a network of queues. In the 1960s, it was shown that, under
appropriate assumptions, the performance of general networks of queues can be predicted just by
using the simple formulae that apply to individual queues.

Automated manufacturing systems were traditionally designed and tooled to produce a single
product, an approach appropriate only for high-volume production. During the 1970s, the advent
of programmable machines made it possible to tailor any machine to make any product within its
range of capabilities, instead of being physically limited to a single product. These so-called flexible
manufacturing systems allowed profitability with lower-volume productions. Flexible manufac-
turing systems usually consisted of numerically controlled automated machines that operated with
the support of a materials handling system to move the products between machines.

Interactions among the entities in complex flexible manufacturing systems made it very difficult
to predict the performance of these systems. One approach was the very expensive and time-
consuming process of building a simulation model to predict performance, identify bottlenecks,
and analyze the complicated dynamics of such systems. A much more efficient approach was the
use of queuing models for analyzing flexible manufacturing systems, and it was during this time
that the first queuing software packages were developed for manufacturing systems. These packages
were comparatively easy to learn and to use, and the models could be developed and analyzed in
a fraction of the time that would have been needed to do a simulation-based study.

As manufacturing strategies matured during the era of flexible manufacturing systems, research-
ers discovered new and more effective ways to use queuing analysis to predict, manage, and improve
performance, giving attention to such issues as resource utilization, queuing bottlenecks, lead times,
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and productivity. Numerous software packages were available to support such analyses. Companies,
including Alcoa, IBM, Pratt and Whitney, DEC, and Siemens, all reported using queuing packages
to achieve improvements in their manufacturing processes. Pratt and Whitney was prepared to
spend :up to 6 weeks developing a simulation model to study a preliminary design of a proposed
new manufacturing division, but instead turned to the use of queuing software to get the answers
it needed much more quickly. Similarly, IBM initiated a progressive project for manufacturing
printed circuit boards. An experienced analyst realized that a simulation model of the 200 machines
and 50 products would be prohibitively time-consuming. A convenient and sufficiently powerful
queuing package provided the means of developing the factory model easily within the time
available for the analysis.

Throughout the 1980s, manufacturing companies used performance measures based on effi-
ciency of equipment utilization and on cost reduction. Factories had always been sensitive to set-
up costs, and attempted to manage such costs by running large lot sizes. However, queuing studies
revealed that large lot sizes contribute to long lead-times. By the mid-1980s, there was a shift away
from traditional cost reduction and quality improvement objectives toward a strategy of lead-time
reduction. Simple techniques collectively known as "just-in-time" scheduling Strategies became the
vogue, and offered vastly improved productivity over more complex automated systems.

The 1990s saw a new emphasis on speed and bringing new products into a time-competitive
market (which coincidentally also contributed to increased quality and improvements in costs), but
this new emphasis presented new challenges to managers and analysts. Queuing models turned out
to be just the right analytical tool: as manufacturers worked on ways to reduce lead-time, they
discovered how much time their products spent waiting in queues. In some cases, it was not unusual
for parts to spend up to 99% of their time, not being processed, but rather waiting to be processed.
Thus, reducing the time spent waiting in queues was the most effective approach to managing lead-
times. Once again, queuing theory provided the ideal analytical tools.

Ingersoll Cutting Tool Company began in 1992 to analyze its manufacturing systems with the
goal of reducing set-ups, and quickly discovered that their complex manufacturing processes offered
thousands of opportunities for such reductions. Unable to study each possibility, management
decided to try to identify just those critical set-ups that could contribute to reducing lead-times by
50% or more. For this analysis, they selected a software package to develop a manufacturing model
based on queuing network theory. In just 2 months, they created a model of a large factory process
and were able to make specific recommendations not only to reduce specific set-ups but also to
manufacture smaller lot sizes and thereby reduce lead-times. This experience demonstrates the
applicability and effectiveness of queuing-based decision software in manufacturing.

7.6 SUMMARY

Queuing models provide a set of tools by which we can analyze the behavior of systems involving
waiting lines, or queues. Queuing systems are characterized by the distribution of customers entering
the system and the distribution of times required to service the customers.

In the simplest models, these arrival and service patterns are most often assumed to be Poisson
arrivals and exponential service times. By viewing queuing systems as Markov birth-and-death
processes, and solving flow balancing equations that describe the flow of customers into and out
of the system, it is then straightforward to measure the performance characteristics of the system
at steady-state. These performance criteria include the expected amount of time the customer must
wait to be served, the average number of customers waiting in a queue, and the proportion of time
that the service facility is being utilized.

For more complicated queuing systems involving different statistical distributions of arrivals
and departures, or complex interactions among multiple queues, or multiple servers, the applicability
of analytical queuing models may be limited. In such cases, analysts often find that simulation is
a more practical approach to studying system behavior.
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EXERCISES

7.1. Cars arrive at a toll gate on a highway according to a Poisson distribution with mean
rate of 90 per hour. The times for passing through the gate are exponentially distributed
with mean 38 seconds, and drivers complain of the long waiting time. Transportation
authorities are willing to decrease the passing time through the gate to 30 seconds by
introducing new automatic devices, but this can be justified only if under the old system
the average number of waiting cars exceeds five. In addition, the percentage of gate's
idle time under the new system should not exceed 10%. Can the new device be justified?

7.2. A computer center has one multi-user computer. The number of users in the center at
any time is ten. For each user, the time for writing and entering a program is exponential
with mean rate 0.5 per hour. Once a program is entered, it is sent directly to the ready
queue for execution. The execution time per program is exponential with mean rate 6
per hour. Assuming the mainframe computer is operational on a full-time basis, and
neglecting the possibility of down-time, find
(a) the probability that a program is not executed immediately upon arrival in the ready

queue
(b) average time until a submitted program completes execution
(c) average number of programs in the ready queue

7.3. The mean time between failures of a computer disk drive is 3000 hours, and failures are
exponentially distributed. Repair times for the disk drive are exponentially distributed
with mean 5.5 hours, and a repairman is paid 15.50 per hour. Assuming that a computing
lab attempts to keep all drives operational and in service constantly, how much money
is spent on repairman wages in 1 year?

7.4. Printer jobs are created in a computing system according to a Poisson distribution with
mean 40 jobs per hour. Average print times are 65 seconds. Users complain of long
delays in receiving their printouts, but the computing lab director will be willing to
purchase a faster printer (twice as fast as the present one) only if it can be demonstrated
that the current average queue length is 4 (or more) jobs, and only if the new printer
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would be idle for at most 20% of the time. Will the lab director be able to justify the
acquisition of the new printer?

7.5. Computer programs are submitted for execution according to a Poisson distribution with
mean arrival rate of 90 per hour. Execution times are exponentially distributed, with jobs
requiring an average of 38 seconds. Users complain of long waiting times. Management
is considering the purchase of a faster CPU that would decrease the average execution
time to 30 seconds per job. This expense can be justified only if, under the current system,
the average number of jobs waiting exceeds 5. Also, if a new CPU is to be purchased,
its percentage of idle time should not exceed 30%. Can the new CPU be justified? Explain
all considerations fully. Make the necessary calculations, and then make an appropriate
recommendation to management.

7.6. Customers arrive at a one-window drive-in bank according to a Poisson distribution with
mean 10 per hour. Service time per customer is exponential with mean 5 minutes. The
space in front of the window, including that for the car in service, can accommodate a
maximum of three cars. Other cars can wait outside this space.
(a) What is the probability that an arriving customer can drive directly to the space in

front of the window?
(b) What is the probability that an arriving customer will have to wait outside the

designated waiting space?
(c) How long is an arriving customer expected to wait before starting service?
(d) How many spaces should be provided in front of the window so that at least 20%

of arriving customers can go directly to the area in front of the window?

7.7. Suppose two (independent) queuing systems have arrivals that are Poisson distributed
with X = 100, but one system has an exponential service rate with u, = 120 while the
other system has jx = 130. By what percentage amount does the average waiting time
in the first system exceed that in the second system?

7.8. Jobs are to be performed by a machine that is taken out of service for routine maintenance
for 30 minutes each evening. Normal job arrivals, averaging one per hour, are unaffected
by this lapse in the service facility. What is the probability that no jobs will arrive during
the maintenance interval?
Suppose the average service time is 45 minutes. How long do you think the system will
take to recover from this interruption and return to a steady-state? Will it recover before
the next evening? Does the recovery take a substantial part of the 24-hour day, so that
the system essentially never really operates in a steady-state mode?

7.9. Fleet vehicles arrive at a refueling station according to a Poisson process at 20-minute
intervals. Average refueling time per vehicle is 15 minutes. If the refueling station is
occupied and there are two additional vehicles waiting, the arriving vehicle leaves and
does not enter the queue at this facility. What percentage of arriving vehicles do enter
this facility? What is the probability that an arriving vehicle finds exactly one vehicle
being refueled and none waiting in the queue?

7.10. Customers arrive according to a Poisson distribution with mean 6 per hour to consult
with a guru who maintains a facility that operates around the clock and never closes.
The guru normally dispenses wisdom at a rate that serves ten customers per hour.
(a) What is the expected number of customers in the queue?
(b) If there are three chairs, what is the probability that arriving customers must stand

and wait?
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(c) What is the probability that the guru will actually spend more than 10 minutes
with a customer?

(d) An idle guru naps. How long in a typical day does this guru nap?
Infrequently, but at unpredictable times, the guru himself takes off and climbs a nearby
mountain to recharge his own mental and spiritual resources. The excursion always takes
exactly 5 hours.
(e) How many chairs should be placed in the waiting room to accommodate the crowd

that accumulates during such an excursion?
(f) Customers seeking wisdom from a guru do not want their waiting time to be wasted

time, so they always want to bring an appropriate amount of reading material, in
case of a wait. What is the normally anticipated amount of waiting time?

7.11. A bank, open for 6 hours a day, 5 days a week, gives away a free toaster to any customer
who has to wait more than ten minutes before being served 1>y one of four tellers.
Customer arrivals are characterized by a Poisson distribution with mean 40 per hour;
service times are exponential with mean 4 minutes. How many toasters does the bank
expect to have to give away in 1 year of 52 weeks?

7.12. Select a system in your university, business, or community that involves queues of some sort,
and develop a queuing model that describes the system. Identify the customers and servers.
Observe the system and collect data to describe the arrival and service patterns. Apply the
appropriate queuing formulae presented in this chapter to quantify the performance charac-
teristics of this system. Are your computed results consistent with your observations?
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Simulation is the process of studying the behavior of an existing or proposed system by observing
the behavior of a model representing the system. Simulation is the imitation of a real system or
process operating over a period of time. By simulating a system, we may be able to make
observations of the performance of an existing system, hypothesize modifications to an existing
system, or even determine the operating characteristics of a nonexistent system. Through simulation
it is possible to experiment with the operation of a system in ways that would be too costly or
dangerous or otherwise infeasible to perform on the actual system itself. This chapter introduces
simulation models and describes how they can be used in analyzing and predicting the performance
of systems under varying circumstances.

8.1 SIMULATION: PURPOSES AND APPLICATIONS

Simulation has traditionally been viewed as a method to be employed when all other analytical
approaches fail. Computer simulations have been used profitably for over 4 decades now, and
simulation seems to have outlived its early reputation as a "method of last resort." Some systems
are simple enough to be represented by mathematical models and "solved" with well-defined
mathematical techniques such as the calculus, analytical formulae, or mathematical programming
methods. The simple queuing systems discussed in Chapter 7 fall into this category. Analytical
methods are clearly the most straightforward way to deal with such problems. However, many
systems are so complex that mathematical methods are inadequate to model the intricate (and
possibly stochastic) interaction among system elements. In these cases, simulation techniques may
provide a framework for observing, predicting, modifying, and even optimizing a system.

The use of a computer makes simulation techniques feasible. Information obtained through
observing system behavior via simulation can suggest ways to modify a system. And while

275
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simulation models remain very costly and time-consuming to develop and to run on a computer,
these drawbacks have been mitigated significantly in recent times by faster computers and special-
purpose simulation languages and software products. Indeed, simulation packages have become so
widely available and easy to use, and simulation itself has such an intuitive appeal and seems so
simple to understand, that a word of caution is in order.

Simulation languages and packages are as easy to misuse as to use correctly. Computer
outputs produced by simulation packages can be very impressive. Particularly when other ana-
lytical approaches to a problem have been unsatisfactory, it is tempting to embrace whatever
"output" is obtained through simulation. Nevertheless, there is a great deal to be gained through
successful simulation. Proper use of simulation methodology requires good judgment and insight
and a clear understanding of the limitations of the simulation model in use, so that correct
conclusions can be drawn by the analyst. Good judgment probably comes only through experi-
ence; this chapter presents some guidelines that should be helpful in developing the ability to
understand and build simulation models. The advantages that may be derived from the use of
simulation include:

1. Through simulation it is possible to experiment with new designs, policies, and processes
in industrial, economic, military, and biological settings, to name a few. In the controlled
environment of a simulation, observations can be made and preparations can be made
to deal appropriately with the outcomes predicted in the experiment.

2. Simulation permits the analyst to compress or expand time. For example, collisions in
a particle accelerator may occur too rapidly for instruments to record, while erosion in
a riverbed may take place too slowly to permit any effective intervention in the process.
By simulating such processes, a time control mechanism can be used to slow down or
speed up events and place them on a time scale that is useful to human analysts.

3. While a simulation may be expensive to develop, the model can be applied repeatedly
for various kinds of experimentation.

4. Simulation can be used to analyze a proposed system or experiment on a real system
without "disturbing" the actual system. Experimentation on real systems, particularly
systems involving human subjects, often cause the behavior of the system to be modified
in response to the experimentation. Thus, the system being observed is then not the
original system under investigation; that is, we are measuring the wrong system.

5. It is often less costly to obtain data from a simulation than from a real system.
6. Simulations can be used to verify or illustrate analytical solutions to a problem.
7. Simulation models do not necessarily require the simplifying assumptions that may be

required to make analytical models tractable. Consequently, a simulation model may
well be the most realistic model possible.

Application areas that have been studied successfully using simulation models are numerous
and varied. Problems that are appropriate for simulation studies include: • ,

• activities of large production, inventory, warehousing, and distribution centers: to deter-
mine the flow of manufactured goods

• operations at a large airport: to examine the effects of changes in policies, procedures,
or facilities on maintenance schedules and hangar utilization

• automobile traffic patterns: to determine how to build an interchange or how to sequence
traffic lights at an existing intersection

• computer interconnection networks: to determine the optimum capacity of data links
under time-varying data traffic conditions

• meteorological studies: to determine future weather patterns
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The process of building a simulation of a system is not entirely unlike the process of creating
other types of models that have been discussed in this book. The problem formulation phase of
a simulation study involves defining a set of objectives and designing the overall layout of the
project. Building a model of the actual system being studied involves abstracting the essential
features of the system and making basic assumptions in order to obtain first a simple model, then
enriching the model with enough detail to obtain a satisfactory approximation of the real system.
Albert Einstein's advice that things should be made "as simple as possible, but not simpler" might
be augmented by the complementary advice that a model need be only complex enough to support
the objectives of the simulation study. Real objects and systems have a variety of attributes (physical,
technical, economic, biological, social, etc.). In the process of modeling, it is not necessary to
identify all system attributes, but rather to select just those that efficiently and specifically contribute
to the objectives of the model and serve the needs of the modeler or analyst. (For example, if we
were studying the structural properties of certain materials to be used in an aircraft, we would
include such attributes as tensile strength and weight. And although we might also know the cost
or reflectivity of the materials, these latter attributes do not contribute directly to the structural
model at hand.) If unnecessary detail and realism are incorporated into the model, the model
becomes expensive and unwieldy (although perhaps correct) and the advantages of simulation may
be lost. Various types of models are discussed in Section 8.2.

The analyst must then collect data that can be used to describe the environment in which a
system operates. These data may describe observable production rates, aircraft landings, automobile
traffic patterns, computer usage, or air flow patterns, and may be used later in experimentation.
Extensive statistical analysis may be required to determine the distribution that describes the input
data and whether the data are homogeneous over a period of time.

Coding the simulation often involves developing a program through the use of simulation
languages or packages, as described in Section 8.4. Verification of the simulation is done to
ensure that the program is performing correctly and that it is consistent with the model that has
been developed.

Validation tests whether the model that has been successfully developed is in fact a sufficiently
accurate representation of the real system. This can be done by comparing simulation results with
historical data taken from the real system, or by using the simulation to make predictions that can
be compared to future behavior of the real system.

Experimental design is closely related to the original objectives of the study and is based
on the nature of the available data. Once the nature and extent of the experimentation is fully
defined, the production phase begins. Simulation "runs" are made, and system analysis is
performed. Upon completion of this phase, final reports are made of observations and recom-
mendations can be formulated.

Although we will not fully discuss all of these phases, we will look more carefully now at
some specific techniques for creating discrete simulation models. We will also discuss the design
of simulation experiments, the use of the results, and some of the languages that are commonly
used as tools in developing simulations.

8.2 DISCRETE SIMULATION MODELS

A computer simulation carries out "actions" within a computer program that represent activities in
some real system being modeled..The purpose of the simulation is to make observations and collect
statistics to better understand the activity in the simulated system and possibly to make recommen-
dations for its improvement.

Simulations can be categorized as either discrete or continuous. This distinction refers to the
variables that describe the "state" of the system. In particular, the variable that describes the passage
of time can be viewed as changing continuously or only at discrete points in time. In models of
physical or chemical processes, for example, we might be interested in monitoring continuous
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changes in temperature or pressure over time, and in that case a continuous simulation model would
be appropriate. These models generally consist of sets of differential equations; the rate of change
in each variable is dependent on the current values of several other variables. Examples include
process control systems, the flight of an airplane, or a spacecraft in orbit continuously balancing
the forces of gravity, velocity, and booster rockets.

On the other hand, in queuing systems, events such as customer arrivals and service completions
occur at distinct points in time, and a discrete event simulation model should be chosen. Continuous
simulation will be mentioned again in Section 8.4, and the topic is thoroughly discussed in many
of the references cited at the end of this chapter, particularly [Roberts et al., 1983]. We concentrate
on discrete simulation models throughout the remainder of this chapter.

8.2.1 EVENT-DRIVEN MODELS

In any simulation model, the objects in the system are called entities. In a queuing system, for
example, the entities may be the customers, the servers, and the queues. Each entity possesses
characteristics called attributes. The attributes of a customer include his arrival time and the type
of service he requires. The servers would be characterized by the type of service they render, the
rate at which they work, and the amount of time during which they are busy. Queue attributes
would include the queue length and the type of service for which the queue is designated. Some
attributes such as type of service required or work rate are set at the beginning of the simulation,
while other attributes are assigned and updated as the simulation proceeds.

The system state is defined by the set of entities and attributes, and the state of the system
typically changes as time progresses. Processes that affect the system state are called activities.
An activity in a queuing system may be a customer waiting in line, or a server serving a customer.

Any activity in a simulation will eventually culminate in an event, and it is the occurrence of
an event that actually triggers a change in the system state in a discrete simulation model. For this
reason, certain discrete simulation models are referred to as event-driven models. Although other
views such as "process-oriented" simulation and "object-oriented" simulation are found in some
of the languages that will be described in Section 8.4, the "event-driven" view is probably the most
widely used discrete simulation approach.

To track the passage of time in a simulation model, a simulation clock variable is initially set
to zero and is then increased to reflect the advance of simulated time. The increment may be fixed
or variable. One such time-advance mechanism calls for repeatedly increasing the clock by a fixed
unit of time, and at each increment, checking the system to determine whether any event has
occurred since the last increment. The disadvantage of this mechanism is the difficulty in selecting
an appropriate interval for the clock increment. If the interval is too small, a great deal of uninter-
esting and inefficient computation occurs as the clock is advanced repeatedly and no events have
taken place. If the interval is too large, several events may have occurred during the interval and
the precise ordering of events within the interval is not registered, since all these events are assumed
to have taken place at the end of the interval. In this way, key information may be lost. Because
systems are not necessarily uniformly "eventful" throughout the duration of the simulation (i.e.,
there will be busy times and quiet times), it is virtually impossible to choose the "correct" or "best"
interval for incrementing the simulation clock throughout the entire simulation.

An alternative, and more popular, time-advance mechanism is to allow the simulation clock
to be advanced only when an event actually occurs. The bookkeeping required to maintain a list
of events that will be occurring, and when they will occur, is straightforward. The mechanism
checks the list to determine the "next" event, and advances the clock to the time of that' event.
The event is then registered in the simulation. This variable-increment mechanism is efficient and
easy to implement.
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An effective way to learn just exactly what a computer simulation does is to work through a
simulation manually. In the following example, we will perform an event-driven simulation of a
queuing system.

Example 8.2.1

The system we will simulate is one in which the customers are computer programs that are entered
into a system to be executed by a single central processing unit (CPU), which is the service facility.
As a computer'program enters the system, it is either acted upon immediately by the CPU or, if
the CPU is busy, the program is placed in a "job queue" or "ready queue" maintained in FIFO
order by the computer's operating system.

The service facility (the CPU in this case) is always either busy or idle. Once in the system,
the customer (computer program in this case) is either in a queue or is being served. The queue is
characterized by the number of customers it contains. The status of the server, the customers, and
the queue collectively comprise the "state" of the queuing system, and the state changes only in
the event of an arrival or departure of a customer. The input data for this simulation example are
given in Table 8.1.

The first program arrives for execution at time 0. This event starts the simulation clock at 0.
The second program arrives 4 time units later. The third customer arrives 1 time unit later at clock
time 5, and so forth. Program execution times are 2, 3, 5, etc. time units. A quick glance at the
arrival and service times shows that in some cases a program is executed completely before its
successor arrives, leaving the CPU temporarily idle, whereas at other times a program arrives while
its predecessors are still in execution, and this program will wait in a queue.

Table 8.2 shows the clock times at which each program enters the system, begins execution,
and departs from the system upon completion of execution. Notice that the CPU is idle for two
time units between Programs 1 and 2, for three time units between Programs 5 and 6, and for five
time units between Programs 6 and 7. Program 9 arrives just exactly as its predecessor is completing,
so there is no CPU idle time nor does Program 9 have to join the queue and wait. Programs 3, 4,
5, 8, and 10 must wait in the queue before beginning execution. Table 8.3 shows the chronological
sequence of events in this simulation. •

The primary aim of a simulation is to make observations and gather statistics. In this particular
example, we will be interested in determining the average time programs spend in the system ("job
turnaround time"), the average time spent waiting, the average number of programs in the queue,
and the amount or percent of time the CPU is idle. We return to this example in Section 8.3.1 to
illustrate making these observations.

TABLE 8.1
Arrival and Service Times

Customer Number
1
2
3
4
5
6
7
8
9
10

Arrival Time
0
4
5
9
10
18
25
26
32
33

Length of Service
2
3
5
1
2
2
3
4
5
1
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TABLE 8.2
Simulation Event Clock Times

Customer Number
1
2
3
4
5
6
7
8
9
10

Arrival Time

0
4
5
9
10
18
25
26
32
33

Time Execution
Begins

0
4
7
12
13
18
25
28
32
37

Time Execution
Completes

2
7
12
13
15
20
28
32
37
38

TABLE 8.3
Chronological Sequence of Events

Clock Time Customer Number Events
0
2
4
5
7

9
10
12

13

15
18
20
25
26
28

32

33
37

38

1
1
2
3
2
3
4
5
3
4
4
5
5
6
6
7
8
7
8
8
9
10
9
10
10

Arrival and begin service
Departure

Arrival and begin service

Arrival and wait
Departure

Begin service

Arrival and wait

Arrival and wait

Departure

Begin service

Departure

Begin service

Departure

Arrival and begin service

Departure

Arrival and begin service

Arrival and wait
Departure

Begin service

Departure

Arrival and begin service

Arrival and wait

Departure

Begin service

Departure

Before continuing, however, we should note that the single server queuing system we have
just observed fails in several respects to match the M/M/1 model developed in Section 7.3; First
of all, arrivals and service times were given deterministically in table form rather than being
drawn from the more typical Poisson and exponential distributions. Second, the system was
tracked through only ten customers and over a period of only 38 time units (probably a short
time relative to the life of the system). Thus, because of the deterministic customer and service
behavior and the short duration of the simulation, it would be unjustifiable to claim that these
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results are in any way "typical" of the normal operation of the system. The most common way
to overcome these deficiencies is to generate numerical values representing a large number of
customers with random arrival patterns and service times. We require that these random values
be representative of events and activities that occur in the real system. One mechanism for doing
this is described below.

8.2.2 GENERATING RANDOM EVENTS

In a discrete-event simulation, ojice an event of any type has been simulated, the most important
piece of information we need to know, in order to advance the simulation is: how long until the
next event? Once a customer has arrived, we need to know when the next arrival will occur so that
we can "schedule" that event within the simulation. Similarly, upon completion of a service or
upon arrival of a customer to an idle server, we need to know the length of time this next service
will take so that we can "schedule" this customer's departure from the system.

If we are assuming that interarrival times and service times come from some particular prob-
ability distributions, then we must have a mechanism within the simulation program to generate
the lengths of these intervals of time and therefore to generate the "next events" in the simulated
system. The general procedure will be first to generate a random number from the uniform
distribution, to apply a mathematical transformation to the uniform deviate to obtain a random
number from the desired distribution, and then to use this random number in the simulation (perhaps
as the interval of time until the next event).

A great deal of effort has been put into the study and development of computer programs to
generate "random" numbers. Truly random numbers are typically obtained from some physical
process, but sequences of numbers generated in this way are unfortunately not reproducible.
Pseudorandom numbers are numbers that satisfy certain statistical tests for "randomness" but are
generated by a systematic algorithmic procedure that can be repeated if desired. The purpose of
generating pseudorandom numbers is to simulate sampling from a continuous uniform distribution
over the interval [0,1].

The most frequently implemented algorithms belong to the class of "congruential generator
methods." These generators are fully described in books by [Knuth, 1981], [Graybeal and Pooch,
1980], and [Banks and Carson, 1984] and most introductory texts on simulation; and they are
almost always available in any computer installation through simple subroutine calls. Because of
the easy accessibility of these pseudorandom number generators, it is doubtful that a simulation
analyst would need to develop software from scratch for this purpose. Yet, from a practical
standpoint, analysts are encouraged to heed the following warning. Because almost every computer
system offers at least one means of generating uniform random variates, most computer users
employ these capabilities with faith, assume their correctness, and feel happy with the results.
Nevertheless, blatantly bad random number generators are prevalent and seem to be especially
abundant on microcomputer systems. Even the generators widely used on larger, more-sophisticated
systems may fail some of the standard theoretical or empirical statistical tests for randomness, or
may generate strings of numbers exhibiting detectable regular patterns [L'Ecuyer, 1990], [Marsaglia,
1985], [Ripley, 1988], and [Park and Miller, 1988].

Although many simulation models appear to work well despite these defects in the stream of
random numbers, there have been simulation studies that yield totally misleading results because
they are more sensitive to the quality of the generators. And although such failures are rare, they
can be disastrous; therefore, researchers are still actively investigating better ways to generate
random numbers.

In any case, it is quite unlikely that a simulation analyst would need to develop his own software
for this purpose. Instead we will discuss how to use a uniform deviate from the interval [0,1] to
produce a random number from an exponential distribution, thus simulating a sampling from an
exponential distribution.
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A commonly used method for doing this, called the inverse transform method, can be applied
whenever the inverse of the cumulative distribution function of the desired distribution can be
computed analytically.

Recall that the probability density function for the exponential distribution is given by

f(x) =
for x > 0

for x < 0

The corresponding cumulative distribution function is given by

F(x) = ff(t)dt =
L o

l-e'** for x > 0

for x < 0

Figure 8.1 illustrates that the range of F(x) is the interval (0,1), and suggests that uniform random
numbers from (0,1) can be transformed into exponentially distributed numbers as follows. Let R
denote the uniform random number from (0,1), and set F(x) = R. Then, x = p-'(R) and x can be
solved in terms of R by evaluating

F(x) = 1 - e-Xx = R

e-xx = i _ R

-Xx = In (1-R)

x = _(i/\) in (i . R)

This formula is called a random variate generator for the exponential distribution. It is often
simplified by replacing (1 - R) by R, since both R and (1 - R) are uniformly distributed on (0,1),
to obtain the generating formula

x = R

Therefore, whenever a simulation program requires a sample from an exponential distribution, R
is obtained from a standard pseudorandom number generator, and x is computed by this formula
and used in the simulation.

1-e- x*

1-e- x *=R

FIGURE 8.1 Inverse transform method.

[Jle-**

[o

o y_
o

X = - -In (1 -R) A
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The inverse transform method is not necessarily the most efficient method, but it is straight-
forward and can be used to generate deviates from a variety of statistical distributions other than
the exponential. Unfortunately, for most distributions (including the normal), the cumulative prob-
ability function does not have a closed form inverse. In particular, the distribution may be derived
from an empirical study of the actual system. In practice, the distributions may not fit any of the
theoretical functions. For example, consider a server who can perform several different types of
service depending on the customer's need (doctor, bank teller, mechanic). Each type of service has
a non-zero minimum required time plus a random variable time. However, when all types of service
are aggregated, the resulting distribution is likely to be multi-modal, and very non-standard.

In these situations, it is common to approximate the cumulative distribution by a piecewise
linear function, and then to apply the inverse transform method using linear interpolation on each
segment. Consider the example in Figure 8.2. We can construct a piecewise linear approximation
for this cumulative distribution, as shown in Figure 8.3.

Internally, this distribution can be stored in table form, as in Table 8.4. Then, when we want
to generate a random variate from this distribution, we select a uniform random number r, then
search for the entry TJ in the table such that ̂  < r < ri+1. The corresponding service time is obtained
using standard linear interpolation:

where

x = (r - rj)/slopej + x{

slope; = (ri+1 - rj)/(xi+I - Xj)

FIGURE 8.2 Example of non-standard cumulative service time distribution.

FIGURE 8.3 Piecewise linear approximation of non-standard cumulative service time distribution.

R

1

R
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TABLE 8.4
Piecewise Linear Approximation of Cumulative Service Time Distribution

x F(x)
Inflection point Service Time Cumulative Probability

1 x, r, = 0
2 x2 r2

3 x3 r3

4 x4 r4

5 x5 r5

6 x6 r6

7 x7 r7 = 1.0

Clearly, by using a large number of piecewise linear segments, it is possible to achieve any desired
level of accuracy. However, there is a trade-off between accuracy and the time required to search
repeatedly through large tables.

For further and more general discussions of this method, see the books by [Ravindran et
al., 1987] and [Schmeiser, 1980]. These references also contain descriptions of other methods,
such as the rejection method, the composition method, a derivation technique, and approxi-
mation techniques.

8.3 OBSERVATIONS OF SIMULATIONS

Now that we have discussed some of the techniques for generating the events that push a simulated
system through time, consider what observations can be made during the simulation that would
help to characterize or understand the system being studied.

8.3.1 GATHERING STATISTICS

Because we are concerned primarily with the simulation of queuing systems, it is reasonable
that the information we would like to obtain from the simulation is just exactly the same type
of information that we would calculate with analytical queuing formulae, if we could (i.e., if we
had a queuing system in steady-state with known distributions describing arrival and departure
patterns). In particular, we might like to determine the average time a customer spends in the
system and waiting, the average number of customers in the queue, and the utilization factor of
the service facility.

We can return to Example 8.2.1 and show how such information can be gathered. It is important
to realize, however, that as we determine these measures of system behavior, we are doing so only
for the specific system with the particular arrivals and departures given in the table, and only for
the particular time interval covered by these events. No generalization can be drawn about "typical"
behavior of the system over the long term. (If it is desirable to make inferences about the steady-
state characteristics of a simulated system, then a number of issues need to be considered. We
return to this subject after we work through our Example.)

8.3.1.1 Average Time in System

For every customer i, compute

TJ = Time spent in the system

= Time of service completion - Time of arrival



Simulation 285

Then accumulate the sum of these Ts and divide by the number of customers N:

(N \
Average time in system = £ Tj / N

In the simulation, initialize the sum to zero; then at every service completion event, compute the
Tj for this customer and add it to the sum. At the end of the simulation, perform the division. In
the Example 8.2.1, we can obtain the Tj from Table 8.2 and compute the sum

2 + 3 + 7 + 4 + 5 + 2 + 3 + 6 + 5 + 5 = 42

Then the average time in the system for these ten programs is 42/10 = 4.2 time units.

8.3.1 .2 Average Waiting Time

For every customer i in the system, compute

Wj = Waiting time = Time service begins - Arrival time

= Time in system - Service time

Then accumulate the sum of these Wj and divide by the number of customers N:

(u \
Average waiting time = I Z W, I / N

In the simulation, initialize the sum to zero; then at every event corresponding to service beginning
(or a departure event), compute the Wj for this customer and add it to the sum. At the end of the
simulation, perform the division. In our example, from Table 8.2 again, we obtain the waiting time sum

0 + 0 + 2 + 3 + 3 + 0 + 0 + 2 + 0 + 4= 14

Then the average waiting time for these ten programs is 14 / 10 = 1.4 time units.

8.3.1 .3 Average Number in Queue

If we let Lj denote the number in the queue during the i-th time interval, then over U time units,

/ u \
Average queue length = £ Li I / U

Rather than making an observation of Lj at every time unit, it is more practical to observe the queue
length at every event, and to multiply that queue length by the number of time units that have
elapsed since the most recent event that affected the queue length. This bookkeeping requires that
we maintain a time duration only for every queue length that occurs during the simulation. In our
example, Figure 8.4 charts the queue length during each of the 38 intervals of time. Note that the
queue length in this case is always either 0, 1, or 2:

queue length = 0 for 26 time units
= 1 for 10 time units
= 2 for 2 times units
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FIGURE 8.4 Queue length.

Then, over U = 38 time units,

Average queue length = [0 • 26 + 1 • 10 + 2 • 2]/38

= 14/38

= .368

8.3.1.4 Server Utilization

Upon every event, determine the service facility status (busy or idle) and record it. Then,

server utilization factor = number time units busy -r total number time units

As illustrated in Figure 8.5, our CPU is busy executing programs during 28 time intervals and is
idle during 10 time intervals. Therefore, the

and the

Server utilization factor = 28/38 = .74

Percentage idle time = 10/38 = .26

Observations such as these allow us to make judgments concerning, for example, the advisability
of acquiring an additional CPU to reduce waiting time. In this example, with an average waiting
time of 1.4 time units (a fairly small fraction of average execution time), a queue that is empty
more often than not, and a CPU that is idle 26% of the time, it seems unlikely that an additional
CPU would be warranted in a general-purpose computing environment.

busy

idle -

I I I I I I I I I I I' I I I I I I I I I I I I I I I I I I I I I I I I I I I
5 10 15 20 25 30 35 38

FIGURE 8.5 CPU (server) utilization.
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8.3.2 DESIGN OF SIMULATION EXPERIMENTS

In designing a system simulation in which events are to be generated randomly (rather than
introduced into the system deterministically), several questions arise:

• how to start the simulation
• what to measure
• what data to gather
• how long to run the simulation
• how to recognize whether the system has reached equilibrium
• how many simulation runs to make
• what recommendations to make concerning modification of the system being simulated

We do not necessarily intend to offer answers to these questions, but rather merely to raise the
issues that must be considered by the analyst or system designer.

Once a simulation program is developed, and is ready to run, the initial system status must be
determined. It may be reasonable to initialize a system as having idle servers and no customers,
and let customers begin to arrive randomly. Eventually there will emerge a certain pattern of queue
utilization and service utilization, but when exactly does the "real" pattern emerge? For example,
when a bank opens its doors at 9:00 a.m., it makes sense to assume that the system is empty when
it starts. However, if we are simulating a hospital, we probably should run the simulation in "start-
up" mode for several days before enough patients have been accumulated so that the simulated
demand on the system becomes realistic.

When is it then appropriate to begin observing the system and collecting data about queue
length, waiting time, and server utilization? It is not valid to start collecting statistics until the
system has reached its "steady state," but this point is difficult to identify precisely. How long
should the simulation run after initialization? It would be useful to somehow acquire information
in advance (perhaps from previous similar simulations) that describes the system after the initial
irregular system behavior patterns have disappeared. It is, however, often difficult to know this
in advance.

The questions of what to measure and what data to gather depend of course on the original
purpose of performing the simulation. In simulating waiting line systems, there are several obvious
performance criteria of common interest. In simulating more general systems, a great deal of data
is potentially available; yet gathering all this data is costly and may complicate the simulation
program. The efficiency of a simulation may depend on the clear-headed analyst's decision to
measure only the behaviors that are relevant to the study.

Perhaps the most important, and most expensive, question is how long to run a simulation, and
how to know when additional computation is not going to yield additional information. Recall from
our study of Markov and queuing systems that not all systems ever reach a steady state. Some
display periodic behavior or other unstable patterns. It may be difficult to know in advance whether
the system being simulated is guaranteed to reach a steady state. If it does eventually stabilize, we
know that the length of time it takes for this to occur depends on the initial conditions. The only
way to make the decision of how long to run a simulation is to gather data, accumulate performance
measures (such as average queue length), and compare these measures with those measured earlier
in the simulation. When they cease to change significantly, it might be reasonable to surmise that
a steady state has been reached. (It could of course be a temporary phenomenon. How can we
know for sure?)

Once a simulation program is developed and all the design parameters for a single run have
been established, the next question is how many runs to make. Presumably there will be some
statistical variations in the system performance measures obtained during each run. So how many
samples do we need in order to be confident that we have captured the reality of the system being
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modeled? Do we make a fixed number of runs? Or enough runs that the variance in outcomes is
acceptably low? And if we make numerous runs, should they all cover the identical span of simulated
time, or should the simulated time intervals be varied or shifted? Should the various runs involve
different system parameters? (For example, we might wish to compare the performance of a
computer system with one CPU with that of a system having two CPUs, each with 60% of the
speed of the single CPU.) To make such comparisons, it is likely that a battery of experiments
would have to be performed for each case. Based on such observations, recommendations could
be made for alternative systems having different strengths, advantages, or costs.

8.4 GUIDE TO SOFTWARE TOOLS

Simulation studies can be facilitated by a wide variety of software packages and languages.
Specialized computer programming languages have been introduced over the past several decades
to assist simulation analysts in the development and use of simulations of real systems. Simulation
models can also be implemented in any traditional imperative language such as Fortran, C, or
Pascal, a functional language such as Lisp, or in any of several newer languages based on the object
paradigm. Simulations developed directly in general-purpose high-level languages often execute
more efficiently than those implemented in specialized simulation languages. However, most ana-
lysts find that it is much more efficient and beneficial to use a special simulation language rather
than to try to develop a simulation program from scratch. A competent analyst may lack extensive
programming skill, and may prefer to concentrate instead on the system being modeled, using the
most convenient tools possible.

Various criteria will determine an analyst's choice of a simulation language or package. A first
consideration is likely to be the analyst's own programming capabilities and whether a given
language is easy to learn and complements the analyst's skills and experience. A non-programmer
may choose a language that is easier to learn, has greater built-in support, and provides less
flexibility, whereas a highly skilled programmer may be more adept at learning a language that
gives him more power and flexibility, and this additional control permits the ability to model unusual
systems in specialized applications. The nature of the system being modeled can also influence the
choice of software; some systems allow the user to add customized subroutines to model non-
standard types of activities.

Most simulation languages provide automatic mechanisms for collecting statistics, generating
reports, and even debugging the simulation. These features are, of course, more convenient in some
languages than in others.

Additional considerations may include the cost of the simulation software, the quality and ease
of use of accompanying documentation and manuals, and the standardization or portability of the
language among machines. It is prudent to assess the value of the outcome of the simulation project
relative to the purchase cost of the software that will be used in the project. This sectioh examines
some of the features of several widely used simulation languages.

GASP (General Activity Simulation Program) is a collection of Fortran subroutines developed
by Pritsker. Because the GASP system is entirely Fortran-based, it can run on essentially any
computer that has a Fortran compiler. The GASP subroutines support the development of event-
driven and continuous simulations.

A Fortran-based simulation must include subroutines for system initialization, time-advance
mechanisms, scheduling future events, random variate generators, routines to collect statistics, and
report generators. Most of these are supplied as a part of the GASP package; however, the
programmer must create a main (driver) routine and fill in the details of initialization and event
management.

GASP is considered a low-cost, reasonably efficient simulation "language" that is easy to learn
and that substantially reduces the effort that would be required to develop a complete Fortran
simulation from scratch.
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SIMSCRIPT was developed at RAND Corporation during the 1960s and was originally
Fortran-based. It has undergone considerable revision, and now has evolved into a unique,
high-level language (SIMSCRIPT II.5), available for most large computing systems, and
capable of supporting event-driven and process-oriented simulations, with extensions for
continuous simulations.

SIMSCRIPT is based on the concepts of entities, attributes, and sets. Entities may be tem-
porary (such as customers in a queuing system) and come and go, or permanent (such as servers)
and remain in the system throughout the simulation. Entities have attributes and those with similar
attributes may belong to a set.

The SIMSCRIPT language provides automatic routines for time-advance (which automatically
call event routines), maintenance of sets (adding and deleting entities from sets), and random variate
generation. Statistics are not collected automatically but are easily defined and reported. The
simulation developer must provide a preamble (describing an initial definition of all entities,
attributes, and sets), a main (driver) routine, and event routines.

SIMSCRIPT is a general, structured programming language as well as a simulation language;
pointer variables and recursion provide the tools for a programmer to create essentially any data
structure or procedure. The system includes SIMGRAPHICS animation and graphics support,
allows the display of histograms, charts, graphs, and plots, and contains interactive graphical
front-end interfaces. SIMSCRIPT is one of the most powerful (and most expensive) simulation
languages for discrete-event simulations. Because of the complexity of SIMSCRIPT, the analyst
must be quite familiar with the language in order to develop a simulation efficiently; and must
be a highly skilled programmer in order to take full advantage of the flexibility offered by the
language. SIMSCRIPT II.5 costs in the neighborhood of $30,000, has graphics and animation,
and runs on a full range of platforms. Lower cost versions are available for educational use
[Russell, 1993].

GPSS (General Purpose Simulation System) was originally developed at IBM around 1960,
and because of its early origin and ease of learning, has probably been the most widely used
simulation language. The shortcomings evident in the early versions have largely been eliminated
in more recent releases. Good descriptions of GPSS may be found in the books by [Gordon, 1978],
[Schriber, 1974], and [Solomon, 1983].

GPSS is a highly specialized language specifically designed for the simulation of queuing
systems. It is based entirely on a process-oriented view, and systems are described by means of
block diagrams through which entities flow. "Blocks" represent actions or events that may be
encountered by entities. Entities (called "transactions" in GPSS) typically represent "customers."
The block diagram depicts the "customer process" through which transactions can flow. The block
diagram comprises the GPSS program, and is the input to GPSS that carries out the simulation of
the process described by that block diagram.

The language does provide automatic event-scheduling, time-advance, and gathering of statis-
tics; however, these mechanisms are hidden from the user. Thus, while GPSS is considered an
especially agreeable language for non-programmers, its highly-structured organization gives little
flexibility to a programmer who may wish to introduce specialized features into a simulation.

Its successor GPSS/H includes file and screen input/output, built-in clocks and other support
functions, and random variate generators. This remarkably fast product presents animation via the
Proof Animation software, and is typically applied to general queuing analysis, manufacturing, and
scheduling. Available for IBM PCs, Sun SPARC, and VAX mainframes, the cost is around $5000.
GPSS/PC and GPSS World with windows supports the transaction-flow world-view and queues,
and is appropriate for general manufacturing and transportation applications. Its price is in the
$2000 to $4000 range. SLX, the successor to GPSS/H, implements GPSS/H capabilities with
simpler and more general concepts. The layered structure of the C language-based system kernel
and run-time support library provides a highly interactive, graphical user front end, application-
specific packages, fundamental data structures, and basic simulation management routines and
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statistical support routines. See [Schriber, 1993] for GPSS and [Hendriksen, 1993] for SLX. A
product known as GPSS/PC is a similar but more limited package selling for around $2000.

SLAM is a Fortran-based simulation language developed by Pritsker and Pegden. SLAM allows
either event-scheduling or process-oriented views or combinations of the two, as well as continuous
simulations. The event-scheduling approach is similar to that in GASP, while the process-oriented
approach is somewhat similar to the GPSS process approach.

The process-oriented approach is built around the visual concept of a network consisting of
branches and nodes. This network represents a comprehensive picture of all the possible paths that
entities may take as they flow dynamically through a process. A SLAM simulation then carries out
a specific enactment from among these possibilities.

Branches represent activities and therefore the passage of time. SLAM automatically handles
time-advance mechanisms, event-scheduling, the creation and termination of entities, the collection
of statistics, and generation of reports.

SLAM is generally considered to be a language that is reasonably efficient to run, is fairly
easy to learn to use, allows flexibility for the programmer, and provides good support for
gathering statistics and obtaining summary reports. SLAMSYSTEM is an integrated simulation
system for PCs, and runs with DOS Windows interfaces or OS/2 Presentation Manager. The
menu-driven system provides full support for networks, color graphics and animation, input/out-
put, and file and spreadsheet interfaces. SLAMSYSTEM requires no programming per se, but
rather allows analysts to build models by describing the system components and the logic of
its operation using special graphical SLAM symbols. The cost of SLAMSYSTEM is in the
$10,000 range.

SIMULA, a programming language first introduced in 1966 and associated with the Algol 60
language, has emerged as an object-oriented simulation language. The SIMULA language has a
block structure and syntax that allows procedural code to be written in a very readable Pascal style.
The language's object-oriented attributes allow the definition of classes of objects, procedures to
manipulate objects, protection mechanisms to provide encapsulation, and support for the notion of
inheritance and subclasses. (SIMULA is in fact a very versatile language for a variety of problem
settings; see [Kirkerud, 1989] for a thorough overview.) SIMULA may be somewhat less attractive,
as a simulation tool, than other special-purpose simulation languages. In particular, gathering
statistics such as average queue length, server utilization, etc. is not automatic and requires explicit
coding. However, the general nature of SIMULA gives the analyst/developer a great deal of power
and flexibility. And the solid support that exists for the creation of object-oriented simulations may
make SIMULA an attractive choice in many situations. (See [Kreutzer, 1986] for more on the use
of SIMULA for simulation studies.)

SIMULA is available for a variety of mainframe systems, and PC-SIMULA is designed for
MS-DOS, OS/2, and Unix-based systems. The PC version is enhanced by SIMOB, a symbolic
debugger, that is useful not only for program testing and error analysis but also for discrete event
observation.

MODSIM is an object-oriented language that inherits much of its syntax from Modula-2 and
its simulation concepts from SIMSCRIPT, as well as some features from Ada [Belanger, 1993].
As such, MODSIM provides inherent support for modern software engineering practices, has well-
developed support libraries, and windowed graphics interfaces, and is portable. (See the description
of MODSIM III below.)

There have been regularly published surveys of simulation software [Swain 1993; 1995; 1997;
1999] which review and chart the capabilities of over 50 software packages for simulation.
Numerous products are available for all the usual computing platforms, including DOS, Windows,
OS/2, Macintosh, Unix, and DEC. We will mention just a few of the more diverse and interesting
ones here, but our brief discussion represents only a small slice of the many available languages
and packages.



Simulation 291

• ARENA is used for general simulation, and has been applied to manufacturing, fast food
restaurants, and airlines analysis.

• AutoSched is a general simulation system but is most frequently used for manufacturing
studies. The cost is $50,000, but student versions may be available for under $1000.

• COMNET III is used primarily as a voice and data network performance prediction
tool. Using this state-of-the-art object-oriented package with graphical user interface, the
analyst inputs the network topology, traffic operation, and routing strategies, and rather
easily obtains animated pictures of the network, reports on response times, packet delays,
and changing levels of utilization. Available for PCs, RS/6000, Sun, DEC, and VAX
VMS platforms, the price of COMNET III is in the $35,000 range.

• SIMUL8 is a discrete-event simulation software tool that can be interfaced with various
Windows-based applications. The simulation models are composed of objects and struc-
tures that represent work-centers and queues. Work items travel through a structure under
the control of predefined objects. The entire process is displayed visually as the work
items undergo prescribed processes. An analyst builds a SIMUL8 model by drawing it
on the screen with a mouse, selecting icons to represent the pertinent entities in the
system. Standard probability distributions are available to define arrival and departure
patterns. SIMUL8 requires 25 MB of hard disk space, running under various high-end
Windows operating systems. A sophisticated simulation tool, it provides a capable analyst
flexibility, power, and control. The full edition is priced at about $500, and student
editions and university site licenses are also available.

In addition to these general-purpose simulation languages and systems, there are numerous
special-purpose packages that are notable because they are designed specifically for applications
in engineering, manufacturing, production, and healthcare. A few exemplary packages are men-
tioned here.

• SIMFACTORY II.5 offers an automatic capability for defining systems by positioning
icons and describing the characteristics of the various entities. Specific application
support is provided for facility layout (processing stations and transportation flow paths),
tracking resources and products, process duration and characteristics, and defining trans-
portation mechanisms, trucks, and conveyor belts.

• ProModel allows the user to construct models by defining routes for parts and resources,
defining transporters, and scheduling parts arrivals.

• AutoMod has more general programming features, with direct access to data structures,
queues, and processes. Designed for "materials handling" applications, the user can move
objects by describing vehicles, layouts, and paths.

• AIM (Analyzer for Improving Manufacturing) is a graphical model development
system from Pritsker Corporation. Designed to model machines, operators, and con-
veyors, AIM dynamically displays performance data via Gantt charts, bar charts, and
animated graphics.

• MaintSim provides a capability for special-purpose applications needed in the operation
of maintenance and repair shops. It runs on small (640K) MS-DOS PCs and compatibles,
and costs around $300.

• MODSIM III is a state-of-the-art object-oriented language with built-in graphics and
animation, and symbolic debugger, layered onto C++. Applications include military,
aerospace, telecommunications, and transportation systems. Implementations are avail-
able for PCs, RS/6000, HP, Silicon Graphics, SUN, DEC, and VAX platforms. The cost
is in the $20,000 to $35,000 range.

• NETWORK II.5 is designed to be used to analyze any software or hardware architecture.
Industry-standard protocols are built in; others can be added by the modeler or analyst.
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Typical applications include studying the performance of embedded and distributed
computer systems, telecommunications systems, and financial, transportation, and man-
ufacturing systems. At a cost of approximately $30,000, it runs on PCs, RS/6000, HP,
Silicon Graphics, SUN, DEC, and VAX systems.

• SIMPLE++ is used for modeling applications in the automotive, aviation, chemical,
pharmaceutical, and metal industries. For around $6000, it analyzes throughput times,
transportation, bottleneck analysis, and cost strategies, and runs on Unix and Win-
dows systems.

• SIMAN V is a widely used, commercially successful system for simulation of both
discrete and continuous systems. Although we have not dealt with models for simulation
of continuous processes, SIMAN's broad applicability and powerful capabilities justify
its being mentioned in this listing. See [Banks et al., 1994] for a thorough description
of SIMAN.

Because simulation studies have traditionally had the reputation of consuming a great deal of
computer time for execution of large simulations, decades of research have been devoted to the
development of technologies to use parallel computers to increase the execution speed of simulation
programs. Application areas that can benefit from parallel simulation capabilities include the data-
and process-intensive task of modeling oceans using reconfigurable, scalable multiprocessor net-
works, and the design and analysis of complex VLSI circuits. The success of these efforts can have
a profound effect on how effectively and efficiently simulation can be used as a tool for studying
large-scale systems. Unfortunately, advances in multiprocessor hardware capabilities have not been
balanced by developments in convenient software methodologies that would reduce the enormous
human effort required to create efficient parallel simulation models. Some of the many issues related
to parallel discrete event simulation are discussed in [Fujimoto, 1990], [Bagrodia, 1993], and
[Abrams, 1993]. The extensive bibliographies in [Fujimoto, 1990; 1993] provide references on
technical matters confronting analysts and designers in applying distributed computing technology
to simulation.

8.5 ILLUSTRATIVE APPLICATIONS

8.5.1 SIMULATION OF A SEMICONDUCTOR MANUFACTURING LINE
[MILLER, 1990]

Turnaround time is often defined to be the elapsed time from start to completion of a manufacturing
process. Turnaround time may be more important in semiconductor fabrication than in any other
industry because the longer a device is in the fabrication process, the greater the opportunity for
contamination. And even in strict clean-room environments, particulate contamination onto wafer
surfaces over time has a negative effect on product yields.

Variation in the time between steps in the fabrication process is also a source of lower product
yields, because certain sequential processes performed minutes apart produce very different results
from the same processes performed hours apart, just simply because the physical properties of the
materials change over time.

Slow turnaround also means delays in recognizing problems on the assembly line because the
functional characteristics of the manufactured devices cannot be tested until the fabrication of the
circuits is complete. The correctness of large numbers of items in progress therefore may be
unknown, pending completion of initial manufacturing lots.

Just as important as turnaround time is throughput, defined to be the number of manufactured
items completed per unit time. Semiconductor manufacturing facilities cost hundreds of millions
of dollars to build, equip, and operate, and it is essential to obtain maximum utilization of these
resources to attain a competitive cost per wafer.
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Assembly-line loading, the amount of work in progress, affects both turnaround time and
throughput. Standard throughput analysis techniques suggest that heavy line loading (to maximize
throughput) ensures that the expensive tools and other manufacturing resources never starve for
work. On the other hand, queuing theory analysis demonstrates that turnaround time is minimized
by having minimal line loading, as this will eliminate the time spent in queues waiting for
manufacturing resources.

These conflicting indications make it difficult to determine the most advantageous level of work
in progress. Wafer fabrication involves hundreds of different tools and the manufacturing process
associated with each tool depends on many variables. Because of the complexity of the semicon-
ductor manufacturing process, IBM's Essex Junction, Vermont, facility found that analytical meth-
ods of analysis were inadequate. Analysts there turned instead to the development and use of a
simulation model to analyze their stochastic, discrete-event system.

Wafer products manufactured in this assembly line required more than 300 processing steps
on 100 different tools. The average turnaround time in the original system was not adequate to
support the requirements of new product development. It was therefore desirable to cut this time
in half, but using only the fabricator's existing tools, human resources, and control capabilities.
Thus, the only allowable modifications were to center around assembly-line-scheduling policies to
achieve the desired turnaround time and throughput.

Early in the study, it was discovered that critical data about the system were either not
available or outdated. This then necessitated a systematic analysis and review of current processes
and tools, flow times, equipment capabilities, and reliabilities, that resulted in an extensive
database which would prove to be of immense value both during and after the simulation study.
(The importance of having accurate and up-to-date information about any system being studied
cannot be over-emphasized.)

The simulation model had to accurately represent such key characteristics as process flows,
tool capabilities and options, tool failures, rework levels, process yields, operators, priority rules,
lot sizes, and storage areas for work-in-progress. An initial attempt to use a generic, pre-developed
simulation package proved unsatisfactory in representing all of these details, and did not allow
customized logic needed for this study. The requirements of this project were met when the analysts
chose the Systems Modeling Corporations's SIM AN simulation language. (Refer to [Pegden, 1991]
for a very readable introduction to SIMAN.)

The SIMAN language requires that a simulation model be composed of an experimental frame
and a model frame. The experimental frame contains the various input data used to generate the
various experimental cases to be studied, while the model frame contains the constant logic that
drives the simulation process for each input case.

In this study, the SIMAN experimental frame defined key parameters describing processes,
resources (tools), routings and layouts, scheduling policies, and stochastic events. Most of the
information required for the experimental frame structures was obtained from the database
developed for this simulation. Not only are input parameters specified in the experimental frame,
but also output statistics such as queue time, queue length, tool and operator utilization,
throughput, and yield. Depending on the process being described and the desired output,
experimental frames in this simulation study contained from several hundred to tens of thousands
of entries.

The model frame, built of approximately 250 lines of source code in the SIMAN simulation
programming language, contained all the control logic necessary to describe the manufacturing
process, including the movement of wafers through the hundreds of operations and their associated
tools, as well as subsidiary activities such as the transporting of wafer lots between operations and
the storage and queuing of lots waiting for resources. The model can run on either personal
computers or mainframes, but extremely large experimental frames were not well-supported on
PCs due to memory limitations.
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Simulation experiments were performed to analyze line-scheduling policies, line-loading
levels, and lot priorities. The most significant finding was that a 30% reduction in line loading
(from current levels) would produce a 17% reduction in turnaround time, with no deterioration
to line-throughput performance. This improvement was achievable with no additional tooling,
staffing or change in product mix — a surprise to many analysts who did not believe that line-
scheduling policies alone could lead to major performance enhancements without additional
investments in resources.

Further scrutiny of simulation results revealed a number of other (minor) inefficiencies such
as bottleneck points and lot-sizing levels, which could be remedied to obtain certain secondary
improvements to the system.

Almost all of the recommendations made by the analysts on the basis of the simulation
results were implemented, and over a 6-month period, line turnaround times improved 25%,
while throughput rates increased slightly and the number of operators assigned to the line
decreased. The study also fostered several advantageous side-effects, including improved man-
ufacturing process descriptions, better information for planning, and more thorough measure-
ments and reporting capabilities, as well as identifying improvements that could be made in
the future in case it became desirable to acquire additional resources or make further line-
scheduling policy changes.

This successful simulation project provided insights into general semiconductor manufacturing
performance in addition to the specific information about the actual semiconductor line modeled.
It serves as an illustration of the ability of simulation techniques to profitably analyze complex
real-world applications.

8.5.2 OBJECT-ORIENTED SIMULATION OF EUROTUNNEL TERMINALS [SALT, 1991]

In December 1990, Britain and France were linked by a tunnel that was built by a consortium of
companies working cooperatively to construct this underground/undersea link. Eurotunnel is the
company responsible for operating the tunnel.

Two separate tunnels actually carry two distinct types of rail traffic. High-speed passenger
service provides connections between London, Paris, and other major European cities. Shuttle trains
carry cars and other vehicles whose drivers and passengers accompany their vehicles between
Folkestone in the United Kingdom and Coquelles (near Calais) in France. These vehicles pass
through immigration, customs, and security checks upon entering a terminal, and drive away
immediately upon arrival at their destination.

To optimize procedures at the terminals, it was first necessary to fully understand the pattern
of day-to-day activities in each terminal. It was decided that a simulation model of a terminal would
provide the most valuable basis for studying how a terminal handles the predicted demand. This
study began with an interesting process of selecting the appropriate simulation tools. The final
product was to be placed directly in the hands of management, and needed to be developed quickly
and within existing guidelines and standards.

Several languages were considered on the basis of their various strengths. SIMULA was favored
because of its object-oriented approach, but the SIMGRAPHICS package in SIMSCRIPT II.5 was
attractive because of the graphics presentation capabilities that would appeal to the managers who
would ultimately be using the system.

The winning contender was MODSIM II, an object-oriented language that also fully supports
process-based simulations. The analysts noted that MODSIM II supports multiple active me.thods
and multiple inheritance, both of these being popular language features among proponents of object-
oriented programming. The language was easy to modularize, and also had a completely integrated
graphics package. In short, MODSIM II was deemed to offer a practical combination of object-
oriented power and a good user interface.
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A simulation of the Folkestone terminal was developed to model the flow of vehicle traffic
through queues and service facilities to pay tolls, pass British and French customs and immigration,
undergo security checks, and eventually be placed on a shuttle train. The goal of this phase of
simulation was to establish expected queue lengths and throughput times, and estimate the
adequacy of overflow parking lots and waiting areas. Vehicles are classified as "tourist vehicles"
or "heavy goods vehicles" and these two categories are tracked through the system via separate
service facilities.

Vehicles are the objects that are acted upon by various methods for paying tolls and passing
through checkpoints. Some methods deliver constant-time service, while others (such as security)
have service times modeled with exponential distributions (because most security checks are brief,
but a few are much more extensive and require a longer time). Each service facility has the capability
to reject a vehicle, so that the vehicle is removed from the system and not passed on to the next
service facility. The simulation provides information on average queue lengths and average waiting
times for vehicles.

Animated output and presentation graphics were used successfully in giving comprehensible
output to managers, but were also helpful during the program debugging stages. The original
simulation was developed on a DEC station, but networked so that managers can easily access the
simulation from their own desktops with output delivered to their laser printers.

8.6 SUMMARY

Simulation techniques permit analysts to study the behavior or performance of systems by creating
a computer-based model or imitation of a real system or process operating over a period of time.
Simulation further allows for experimental studies and analyses in a hypothetical context that would
be too expensive or too dangerous to carry out in an actual system.

Building a simulation is itself a complex process. After a problem is formulated and a
mathematical model built, data must be collected that typifies the actual environment in which
the simulated system operates. Modeling the activities of the real system and generating random
events that could occur in the real system are among the most critical aspects of simulation
development.

Simulation would be an arduous and impractical analysis to perform manually; therefore, the
process is automated by developing computer programs to perform the simulation. Steps must be
taken to ensure that these programs are correct and appropriate for the study at hand. After
simulation experiments are designed, the simulation study enters its production phase, during which
the scenarios of interest are carried out via execution of the computer program. Analysts observe
the computer simulation and gather statistics to compose a comprehensive picture of various aspects
of the simulated system's performance.

By simulating a system, it is possible to make observations of the performance of an existing
system, to determine the operating characteristics of a nonexistent system, or to project modifica-
tions to an existing system.

KEY TERMS

activities
attributes
collecting data
coding
discrete simulation
entities
event
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experimental design
inverse transform method
model building

: problem formulation
production
pseudorandom numbers
simulation

, system state
validation
verification

EXERCISES

8.1 Select three appropriate applications of simulation analysis — one each from a business,
engineering, or environmental setting. In each case, explain why analytical models might
be inappropriate or infeasible; justify how simulation could successfully allow a useful
and valid analysis of your chosen systems; and speculate on what might be learned from
such a simulation study.

8.2 Consider simulating the operation of an emergency health clinic. Identify what issues
should be studied, the questions to be investigated, uncontrollable characteristics and
constraints within the clinic, controllable aspects of the operation of the clinic, and
measures of performance of the clinic.

8.3 Suggest an appropriate method of gathering data for use in simulating the operation of
the clinic described in the previous question.

8.4 Write a computer program that generates a sequence of random numbers that are Poisson
distributed with X = 10.

8.5 Select a favorite bookstore or grocery store, and observe the pattern of customer arrivals
at the checkout facility. Develop a simulation of the customer arrivals by writing a
computer program that starts a software "clock" at time zero, then prints the times at
which customers arrive over a 4-hour period of time. Analyze the times, and determine
the longest, shortest, and average interarrival times.

8.6 Select a traffic intersection that is convenient for you to observe. Identify the physical
entities that characterize this intersection (such as lanes, directions of traffic flow, stop-
lights, pedestrian walks, and any obstructions). Observe the operation of the intersection
and notice its operating characteristics (such as number of vehicles, patterns of arrival
of vehicles at the intersection, speed of traffic, pedestrian or other types of arrivals).
Design a model that could be used to simulate the activities of this intersection.

8.7 Simulation can be used to study and predict weather patterns. Using the transition
probabilities given in Example 6.1, simulate the most likely daily weather conditions at
a ski resort during a winter holiday season beginning December 20 and continuing
through January 10, assuming that it was snowy on December 19.

8.8 Develop a computer simulation of a system in which cars arrive at a toll gate on a
highway according to a Poisson distribution with mean rate of 90 per hour. The times
for passing through the gate are exponentially distributed with average 38 seconds.
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(a) Make a chart that displays enough information so that you can analyze the waiting
times experienced by the cars going through this facility.

(b) How long must you run this simulation program to get reliable information about the
queuing characteristics of your system?

(c) Modify your simulation program so that it automatically gathers statistics, and reports
the average number of cars waiting and the average waiting time of each car.

8.9 A computer center has one multi-user computer. The number of users in the center at
any time is ten. For each user, the time for writing and entering a program is exponential
with mean rate 0.5 per hour. Once a program is entered, it is sent directly to the ready
queue for execution. The execution time per program is exponential with mean rate 6
per hour. Assuming the mainframe computer is operational on a full-time basis, and
neglecting the possibility of down-time, develop a computer simulation that allows you
to find:

(a) the probability that a program is not executed immediately upon arrival in the ready
queue

(b) average time until a submitted program completes execution
(c) average number of programs in the ready queue

State any assumptions that you made about the computer center or the multi-user com-
puter in the system you have analyzed.

8.10 The mean time between failures of a computer disk drive is 3000 hours, and failures are
exponentially distributed. Write a computer program that generates these failure events
until 25 disk drive failures have occurred. Print out the number of hours separating
successive failures that occur in your experiment.

8.11 Printer jobs are created in a computing system according to a Poisson distribution with
mean 40 jobs per hour. Average print times are 65 seconds. Users complain of long delays
in receiving their printouts, but the computing lab director will be willing to purchase a
faster printer (twice as fast as the present one) only if it can be demonstrated that the current
average queue length is 4 (or more) jobs, and only if the new printer would be idle for at
most 20% of the time. Will the lab director be able to justify the acquisition of the new
printer? You have already answered this question (in Exercise 7.4) using queuing formulae;
now develop and run a simulation model to "test" your answer.

8.12 Computer programs are submitted for execution according to a Poisson distribution with
mean arrival rate of 90 per hour. Execution times are exponentially distributed, with jobs
requiring an average of 38 seconds. Users complain of long waiting times. Management
is considering the purchase of a faster CPU that would decrease the average execution
time to 30 seconds per job. This expense can be justified only if, under the current system,
the average number of jobs waiting exceeds 5. Also, if a new CPU is to be purchased,
its percentage of idle time should not exceed 30%. Can the new CPU be justified? You
made the necessary calculations to make a recommendation (in Exercise 7.5). Now
develop a simulation of the above scenario that might provide an even more convincing
explanation to users or to management.

8.13 Develop a simulation of the vehicle refueling system described in Exercise 7.9. Deter-
mine how long you must run your simulation to obtain performance measures that are
reasonably consistent with the ones you computed when you worked the problem using
queuing analysis.
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8.14 In Exercise 7.12, you were asked to select a system in your university, business, or
community that involves queues, to develop a queuing model that describes that system,
and to describe the performance characteristics of this system. Write a computer program
to simulate the system you studied, and compare the statistics gathered by your simulation
program to the analytical performance results that you computed with the formulae.
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9.1 THE DECISION-MAKING PROCESS

Decision analysis is more of an art than a science. ^Mathematical decision analysis must be
considered in the context of an individual decision-maker. The techniques that have been developed
in this area can be described as tools that encourage and assist people in making rational decisions.
They are not intended as substitutes for the individual. Most of the techniques incorporate some
interactive dialogue with the decision-maker to try to determine personal preferences and attitudes.

To truly appreciate this interaction, it is useful to try to imagine actually being faced with a
particular problem. To illustrate this idea, consider the decision to buy a new car. We can easily '
develop a set of criteria that define a good car (price, mileage, maintenance, horsepower, etc.), and
then we can devise a system of weights that measures the relative importance of each criterion.

301



302 Operations Research: A Practical Introduction

The car with the highest score is clearly the one to buy. Most people would agree that this sounds
like a reasonable model. They might even be willing to recommend this selection to someone else.
But imagine for a moment that you are making a decision concerning your own car. Would you
be willing to accept the advice of this model without question? In fact, the majority of intelligent
decision-makers tend to have reservations about accepting a strict mathematical interpretation and
recommendation for their problem.

Decision analysis differs from the mathematical structure of many other areas of operations research
in that it contains a high degree of uncertainty. The uncertainty is, in part, a by-product of any long-
range planning function. Traditional operations research problems in production planning and inventory
analysis, for example, are concerned with a monthly sales forecast that may vary according to some
probability distribution. In decision analysis, we may be deciding whether to develop and market a
new product, or build a new plant, or diversify our business interests. For example, the demand for an
existing product next month is relatively predictable in most industries, but the demand for a new and
unfamiliar product in 5 years' time is virtually impossible to estimate. Such issues as these can have
a major impact, and an analysis of the effect of any current decision will not be fully appreciated for
5 or 10 years into the future. The factors that must be considered in the decision process often involve
a dramatic degree of uncertainty simply by virtue of the extended time frame.

Decision analysis can usually be expressed as a problem of selecting among a set of possible
alternatives or courses of action. After making a choice, and at some future time, there will be a
number of external, uncontrollable variables that will influence the final outcome. These external
variables are often referred to as states of nature or state variables. An underlying assumption in
decision analysis is that, if it were possible to predict accurately the result of these external variables,
then the final outcome would also be predictable and the correct alternative would become obvious.

This section discusses a simple decision-making problem. Despite its simplicity, it illustrates
many of the difficulties inherent in the decision-making process. Imagine yourself in the following
situation. It is midnight on a Sunday night and you have just remembered that you were supposed
to prepare a report for your boss for next week. Unfortunately, you cannot remember whether you
were supposed to meet with him first thing on Monday morning, or if it was required for next
Thursday. You are faced with a decision: should you stay up and work on the report for 2 or 3
hours, or should you take your chances and go to bed? This statement defines the alternative
"courses of action" for the problem, which we will refer to as the decision variables.

The unknown external factor or state of nature is whether or not the report is due on Monday.
If you knew that the report was not due until Thursday, you could go to bed and sleep peacefully.
We will assume that, if it were known that the report was due tomorrow, the decision-maker would
feel obliged to stay up and work on it. Otherwise, there is no decision problem because the preferred
action would be to go to bed independent of whether it is due on Monday or Thursday.

Having defined the alternatives (decision variables) and the external factors (state variables),
the next aspect of decision analysis is to consider the possible outcomes or payoffs that would
result from each possible combination of decision and state variables. In this example, as with
many large practical problems, the outcome is not clearly defined. There may be a monetary
component in the outcome (because the decision may affect future promotion potential and merit
pay increases), but there are also a number of other less-tangible consequences. .

One method of concisely describing this type of problem is called a payoff matrix. The rows
correspond to the possible states, the columns represent alternatives, and the entries in the matrix
describe the outcomes associated with each possible combination of the problem variables. In
traditional decision problems, an outcome is described by a single numerical value representing an
associated profit, loss, or "value" of the result. For the moment, we address such problems using
informal, verbal descriptions of the outcomes.

This simple example illustrates some of the most difficult and frustrating aspects of decision-
making. Several observations can be made concerning the difficulties in quantifying the elements
of decision-making.
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Alternatives

a,: Stay up, do it a,: Go to bed

States
, G,: Report due Tired but happy Miserable

-Lost some sleep -Guessed wrong
-Guessed correctly -The boss will be annoyed

02: Report not due Depressed Relieved
-Lost sleep for nothing -Guessed right

-Did you worry?
-Sleep well?

• Outcomes are often verbal descriptions
The problem of comparing outcomes is often complicated by the fact that the entries
can be descriptive rather than numeric. In our example, is Depressed worse than Miser-
able! How much worse? Twice as bad? Is Tired but happy better than Relieved! Is the
negative feeling of Depressed greater than the positive result of Relieved! The answers
to these questions depend on the individual. For some people, the prospect of having to
face the boss in the morning and admitting failure is unthinkable. Other people may do
it regularly, presumably armed with a battery of excuses.

• The outcomes often involve several conflicting criteria
The above example illustrates the effect of multiple objectives that are commonly asso-
ciated with practical decisions. The objectives of getting a good night's sleep and of
maximizing one's credibility at the office are, in this case, conflicting goals. The same
is true of corporate decision-making. Companies must distinguish between immediate
profits and long-term advantages. For example, an investment today for upgrading present
facilities will decrease this year's net profit, but may lead to increased future revenue.
In addition, intangible costs and benefits such as worker attitudes, safety, environmental
issues, legal liability, and customer satisfaction are difficult to quantify.

• Even numeric outcomes are difficult to compare
Consider a decision problem in which all of the payoff matrix entries are described in
simple terms of dollars of profit or loss. Most people do not consider a profit of $20,000
to be twice as good as a profit of $10,000. In economic theory, this principle is known
as the Law of Diminishing Marginal Returns. The classic illustration of this concept says
that three loaves of bread are not three times as valuable as one loaf of bread. If you
had one loaf, you would eat it and satisfy your hunger. If you had three loaves, the third
one would likely go stale.

The same logic applies to profits. People (perhaps unconsciously) normally employ
some implicit ordering of the alternative ways of spending their money. The first dollar
will be used for the most important item, while the last dollar may just go in the bank.
The true value of the first dollar in terms of benefit or enjoyment is considerably greater
than that of the last one.

This line of reasoning seems even more valid when comparing profits against potential
losses. For most people, the "negative" feeling associated with losing $10,000 is much
greater than the corresponding "positive" benefit of winning an equal amount. The profit
would be very pleasant, but the loss would be terrible. Losses are generally viewed as
being more dramatic consequences than gains. An important aspect of decision analysis
concerns the determination of an individual's "attitude toward risk." We introduce some
approaches for dealing with these questions in Section 9.4 on Utility Theory.

• The relative likelihood of the uncertain state variables must be considered
In the above example, suppose that you believed that the report is most likely due on
Monday. In that case, you would be inclined to stay up and write it. However, the situation
changes dramatically if you felt that the report was probably not expected until Thursday.
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If you trusted your judgment, you would go to bed. To make a choice, the decision-
maker must try to associate a "subjective probability" value with each of the possible
states. What is your best approximation of the likelihood of each uncertain event? We
distinguish between three different approaches to defining probability.

Risk describes a situation for which an objective probability can be calculated. This
includes most events that are repeated frequently so that historical data is available. Based
on past information, it is possible to compute a reasonably accurate probability assess-
ment of the state variable. For example, there is a certain amount of risk associated with
drilling oil wells, but using land form data and other inputs, the probability of success
can be predicted and this information can then be used in drilling decisions.

Uncertainty normally applies to events for which there is limited historical or repet-
itive information. When attempting to estimate the probability of success of a new
product, it is difficult to predict how the public will react. This is especially true when
there have been no similar products introduced in the market. Although there is no data
that allows precise computation of "objective" probabilities of success, an analyst may
have some feeling or intuition or experience or limited history that allows at least a
"subjective" assessment of the probability. In the decision example above, you might
say that you are 60% to 80% sure that the report is due on Monday. Note that the real
distinction between "risk" and "uncertainty" is that "risk" is generally more precise.
Under "uncertainty," it may be possible to specify a range for the probability.

Complete ignorance describes a decision-maker who has no prior information of any
kind with regard to the likelihood of a state variable. Such a person refuses to specify a
subjective, intuitive probability range. Anything could happen and he would not be
surprised. Many people feel uncomfortable about specifying subjective probabilities for
state variables. Section 9.2 introduces the topic of Game Theory, and describes several
methods that can be applied in the face of complete ignorance. It will become clear that
the use of subjective probability assessments is often preferable.

• Decision-makers are irrational
There is a rapidly growing literature describing the rather curious phenomenon of the
irrational decision-maker in all of us. For the present, consider one simple example of
this behavior: decision-makers will often lie about their true objectives. When middle
managers are asked about their objectives in decisions, they will stress the importance
of corporate profit and the overall benefit of the company. Their true objectives are often
more selfish and reflect the desire that their own work centers look good. University
students might claim that they are primarily interested in the quality of their education
when, in fact, their main objective may be to get a diploma with the least amount of
effort possible. A new car buyer will often rank safety as a high priority and then select
the fastest and raciest sports model. We all have a tendency toward specifying objectives
that we believe we should be using or that we think our boss would like to hear rather
than being honest about them. We consider these and related issues when we discuss the
psychology of decision-making in Section 9.5.

In summary, the foregoing example contains many of the underlying features that complicate
decision analysis. In the remainder of this chapter, these features are presented in further detail. It
should be mentioned from the outset that the amount of time and money invested in *a decision
should be a small fraction of the value of the potential outcome. As a general rule of thumb, one
should spend about 1% of the potential value of a decision on the decision process itself. In the
given example, the decision process should not take more than a few minutes. A detailed study of
the options is unwarranted. However, in making the decision to buy a $150,000 house, it might be
worth spending $1500 in time and money on analyzing the alternatives and making a good selection.
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9.2 AN INTRODUCTION TO CAME THEORY

Game theory addresses possible approaches to decision-making under the assumption of complete
ignorance. It is described in terms of players, payoffs, and strategies. Consider a two-person game:
the decision-maker (player one) selects an alternative and then nature (player two) selects a state.
The payoff is given by the corresponding entry in a payoff matrix. Player two is assumed to be
indifferent to the choices of player one (except when the decision-maker is slightly paranoid).
Player one will make a selection based on some strategy intended to make the most of the
opportunity. Throughout the discussion, we refer to the following payoff matrix:

Alternatives
States a, a2 a3 a4 as a6

9, 5 3 0 3 2 3
02 5 3 8 6 7 3
03 0 3 0 1 2 2
94 4 3 0 2 2 1

Most decision-makers employ a process of elimination to reduce the number of alternatives.
The simplest form of elimination is called dominance. An alternative ak is said to dominate an
alternative a-} if, for every possible state, 0h alternative #k is at least as good as alternative ay

Alternative a} can be eliminated from consideration.
In the example matrix, consider alternatives a2 and a6. Observe that, no matter which state

eventually occurs, alternative a2 is always at least as good as a6. Therefore, alternative a6 is
dominated and can be eliminated from further consideration. By inspection, we can verify that no
other alternatives are dominated.

A variety of strategies can be employed in making the selection of alternatives. We describe a
few of the more common ones and, as they are introduced, we identify each one with a corresponding
personality trait. The selection depends on the decision-maker's attitude toward risk. Because each
choice has a different degree of risk associated with it, different people will make different
selections. It is important to realize that there is no absolutely correct answer to this problem.

9.2.1 MAXIMIN STRATEGY

For each alternative, ay pick the worst possible outcome (the minimum). Choose the alternative that
has the maximum value of this minimum.

The Maximin strategy is associated with the "eternal pessimist"; the person who believes that,
whatever he does will always turn out badly, and that nature is working directly against him. In
the example, the worst outcomes for each of the first five alternatives are 0, 3, 0, 1, and 2,
respectively. By choosing alternative a2, the worst possible outcome is 3. The maximin player
chooses this alternative to guarantee a payoff of at least 3 no matter what state occurs.

This strategy is characteristic of the conservative decision-maker. The given decision has the
lowest risk. However, it also usually has the lowest variance. Not only will the decision-maker
never make less than 3, he will never make more then 3 either. This strategy is commonly observed
in people who invest all of their money into savings bonds with a guaranteed interest rate rather
participating in riskier forms of investment. They don't really believe that nature is out to get them;
they just don't want to take any chances.

9.2.2 MAXIMAX STRATEGY

For each alternative, a-f pick the best possible outcome (the maximum). Choose the alternative which
has the maximum value of this maximum.
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The Maximax player represents the "eternal optimist." Such people believe that anything they do
will turn out right. They are gamblers by nature and are willing to take risks for a chance at the
greatest possible prize. In the example, the maximum payoff of the first five strategies is given by
5, 3, 8, 6, and 7, respectively. The maximum possible outcome is 8, and the maximax player will
therefore select option a3 and hope for state 02.

This strategy is commonly identified with incurable gamblers who have an unrealistic or even
unhealthy level of optimism. However, there is also a group of successful business people who
regularly employ this strategy, but they do not rely on blind luck. These decision-makers will look
for the best possible outcome, and determine the state(s) that must occur in order for the maximum
profit to be realized. These people have great confidence in their ability to "make things happen";
they believe that they can influence and even control the state variables. There is often some truth
in this when the decision involves the success of a new product, the potential market, and the ability
of competition to react. Presumably, these people are using a modified form of Maximax in which
they first eliminate any states that are unlikely or uncontrollable. They choose the maximum
outcome corresponding to any state over which they believe they can exercise some influence.

9.2.3 LAPLACE PRINCIPLE (PRINCIPLE OF INSUFFICIENT REASON)

Assume that every state is equally likely and calculate the "expected payoff' for each alternative. The
alternative with the highest expected payoff is selected.

Because we have assumed "Complete Ignorance" with respect to the likelihood of each possible
state, it is reasonable to assume that each state is equally likely. We have no reason to assume that
any one state is more likely than any other. In our example, each state would be assigned a
probability of .25 because there are four possible states.

The "expected payoff for a given alternative is computed by taking each element in the
corresponding column of the payoff matrix, and multiplying each payoff by the corresponding state
probability. The expected payoff is the sum of these values. The expected payoff for each of the
five alternatives in the example is given by 3.5,3,2,3, and 3.25, respectively. Therefore, alternative
ax has the highest expected payoff.

Observe that if each state really has equal probability, and we repeat the game a large number
of times, the average payoff from selecting alternative a} will be 3.5. Unfortunately, in a real
decision-making environment, we will be allowed to "play the game" only once. We will discuss
expected value decision-making at greater length in subsequent sections.

9.2.4 HURWICZ PRINCIPLE

Define 0 ̂  a ^ 1 to be the Decision-maker's "Degree of Optimism" between the two extremes of
Maximin (a = 0) and Maximax (a = 1). For each alternative, ay define the Hurwicz measure:

hj = a {maXi p^} + (1 - (^{min, p^}

where p^ represents the payoff associated with alternative a^ and state 0j. Select the alternative with
the highest value of hj.

The Hurwicz principle is based on the assumption that the decision-maker is neither totally
pessimistic (as with the Maximin strategy), nor totally optimistic (as with Maximax). Each indi-
vidual decision-maker can select his own degree of optimism somewhere between these two
extremes. Observe that when a = 1, then hj will simply be the maximum payoff for alternative, aj9

and Hurwicz will be equivalent to the optimistic Maximax rule. Similarly, when a = 0, hj will be
the minimum payoff for alternative ay In this case, by selecting the largest hj, the decision-maker
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is choosing the pessimistic, conservative Maximin alternative. However, when some intermediate
value of a is chosen, we get an alternative that balances the risk against the potential gains. In the
example, suppose we choose a = 0.6. For alternative as, the maximum payoff is 7, the minimum
payoff is 2, and the corresponding Hurwicz value is h5 = 0.6 * {7} + 0.4 * {2} =5. The values of
the Hurwicz measure for the first five alternatives are 3, 3, 4.8, 4, and 5, respectively. By picking
the maximum of these, we determine that the best strategy is to choose alternative a5.

9.2.5 SAVAGE MINIMAX REGRET

Define the regret matrix by r^ = p-* -p^ where p* denotes the best outcome which could occur under
state GJ. For each alternative, find the maximum regret. Select the alternative that minimizes this
maximum regret.

This strategy is associated with insecure decision-makers. Such people are not primarily
interested in making the highest profit; they are more concerned with how disappointed they are
going to feel after the fact. To illustrate this, suppose that alternative a3 is selected, and then state
G, occurs. In hindsight, the decision-maker will wish he had chosen alternative a} for a payoff of
5 instead of the actual profit of 0. He will regret making the wrong choice, and the amount of this
regret can measured by the difference between what he actually received and what he could have
earned if he had known that state Q} would result. He will experience a regret of 5 - 0 = 5. The
complete regret matrix for the example is

Alternatives
States a, a2 a3 a4 a5

6, 0 2 5 2 3
62 3 5 0 2 1
63 3 3 3 2 1
64 0 1 4 2 2

The maximum possible regret for each of the five alternatives is given by 3,5,5,2, and 3, respectively.
The best strategy to minimize the possible regret is to select alternative a4 with a maximum regret of 2.
No matter which state occurs, the decision-maker will not regret his choice by more than 2. The decision-
maker is protecting himself against the future prospect of someone coming along after the fact and
telling him that he should have anticipated that the final state would result. Observe that, although this
behavior does minimize regret, it also guarantees, at least for this example, that there will be some regret.

The strategies that have been described above are all based on logical and rational assumptions.
Each of them proposed a different alternative as the "optimal" solution to the problem. Each of
the alternatives is the correct choice for some decision-makers.

In practical problems, people have used all of these approaches in an attempt to reduce the
number of original alternatives down to a small set of distinct options. The U.S.S.R. Siberian Power
Institute was asked to make recommendations on the location of a new hydro electric generation
facility during the early 1970s [Bunn, 1984]. Three possible locations were being considered. The
project would take many years to complete, and the potential impact on the economy and environ-
ment in the chosen area would be considerable, with a high degree of uncertainty. The committee
developed 23 different possible scenarios concerning future energy supply and demand, potential
investment, and operating costs. Under each scenario, and for each of the three possible sites, they
calculated a net economic impact. The Institute identified the optimal actions using several criteria,
including the Maximax, Maximin, and Regret techniques. Their report recommended, under each
assumption of attitude toward risk, a different location. These results were then passed on to a
higher political committee for final selection.

Although the methods have a natural and simple appeal, there are some definite problems
having to do with their underlying assumptions. The Laplace principle provides an intuitively
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appealing method of dealing with complete ignorance. It seems logical to assume that each state
is equally likely. Consider the example that we introduced in the previous section. Recall that the
two states of nature were: O,: Report due and G2: Report not due. The Laplace principle asks us
to assume that each has a 50% chance of occurring.

Suppose that we were to reformulate the problem, subdividing state O, into three different states:

Report due — You are fired
Report due — But boss forgets to ask
Report due — But you get an extension

This new decision problem now has four states instead of two. If we again apply the Laplace
principle, we discover that the state Report not due has a probability of 25% and the aggregate
states Report due have a probability of 75%. By changing the descriptions of the states, we can
cause a change in the recommendations reported by the impartial method of Laplace.

The Maximin strategy also presents a problem in that it does not possess the property of
row linearity. This property asserts that if we add a constant to each outcome in a row of the
payoff matrix, this should not affect the chosen alternative. Consider the problem of deciding
whether or not to take your umbrella with you in the morning. We assume that carrying an
umbrella around all day is a nuisance; but if it rains, getting wet is a bigger nuisance. The
following "payoff matrix might represent the total amount of discomfort that you would expe-
rience under each condition.

Bring umbrella Do not bring umbrell
Rain -4 -8
Sun -6 0

The Maximin player will bring an umbrella to avoid the potential discomfort of getting wet
(-8). Just before he is about to leave the house, the boss calls and says that if it rains today, he
will be closing the office in the afternoon. Our decision-maker now has a more favorable attitude
toward the prospect of rain and therefore increases all outcomes corresponding to the state "rain"
by 4. The revised payoff matrix reflects this new attitude to inclement weather.

Bring umbrella Do not bring umbrell
Rain 0 -4
Sun -6 0

The same player will now decide not to bring an umbrella because he will not mind getting wet
quite as much. This is not really rational. The Laplace rule is the only strategy introduced here that
maintains row linearity.

All of the rules, except Laplace, are concerned exclusively with the extreme outcomes (the best
or the worst values), and ignore intermediate results. Consider the following payoff matrix'

a, a2

e, o i
02 1 0
03 1 0

04 1 0 ;
05 1 0

0n
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Under all of rules, the two alternatives are equivalent: the maximum outcome is 1, the minimum
outcome is 0, and the maximum regret is 1. It would be reasonable to assume that unless it were
fairly certain that 6, would occur, alternative a, is a much better option than alternative a2.

The Savage MINIMAX Regret strategy displays an additional, rather surprising logical anom-
aly. It is possible to construct an example such that, if the decision-maker must choose between
two alternatives, a} and a2, he will choose a2. But, upon adding a third, useless alternative a3, he
will now prefer alternative a,. Suppose that this person, when choosing between a Ford or a
Chevrolet, picks the Chevrolet. However, by offering him the additional option of a Volvo, he will
now take the Ford.

This behavior is clearly irrational. The decision-maker who persistently applies the Savage
Regret method can be turned into a "Perpetual Money-Making Machine." Consider the following
example.

3j a2 a3

0, 1 8 5
02 9 5 1
63 5 1 9

If this decision-maker were offered only alternatives a} and a2, he would choose a2. Moreover, if
he currently has al9 he would be willing to pay us $1 to exchange a} for a2. Similarly, when
considering options a2 and <23, if he has #2, he would be willing to pay $1 to exchange it for a3.
Finally, now that he has a3, he will pay $1 to exchange it for a,, and the cycle can continue
indefinitely, or at least until our victim adopts a new strategy. (It is left as an exercise to construct
and verify these pairwise regret matrices.)

In summary, game theory provides an interesting framework for classifying and analyzing
general types of human behavior in the presence of uncertainty. It does not provide a very practical
set of rules for solving decision-making problems. In particular, recall that our discussion of game
theory has been based on the assumption of complete ignorance. The decision-maker was unwilling
or unable to make any subjective probability assumptions. However, in reality, each of the
approaches described in this section is equivalent to making very specific probability statements.

Maximin: The worst outcome for each alternative has probability one.
Maximax: The best outcome for each alternative has probability one.
Laplace: All states have equal probability.
Hurwicz: The best outcome has probability a and the worst outcome has probability (1 - a)
Savage: The highest regret outcome for each alternative has probability one.

In every case, by claiming complete ignorance and then selecting a particular strategy, the decision-
maker has implicitly assigned probabilities to the outcomes. Realizing this, the decision-maker
would likely prefer to trust his own judgment about probabilities.

9.3 DECISION TREES

Practical decision-making usually involves a sequence of simple decisions. For example, when
corporate decision-makers consider developing a new product, they will normally first do a market
survey and a feasibility study. If both of these are encouraging, they may decide to invest more
time and money in the design and development of a prototype. If the model is successful, they will
try limited production and possibly introduce the product in a test market. If the response in the
test market is favorable, they might decide to proceed to full-scale production and a national sales
campaign. They will generally allow for a review of their progress after 6 months or a year to
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decide whether or not to continue. The simple payoff matrix methods introduced in the previous
sections are inadequate for sequential decision-making.

Observe that even a simple personal decision such as buying a new car is really a sequential
type of problem. The true cost of a new car depends on how long the owner decides to keep it,
which in turn depends on the car's performance. The present decision is a function of future state
variables and a sequence of future possible decisions.

Decision trees provide a method for representing sequential decisions and evaluating the
alternatives. A decision tree is composed of the following basic building blocks:

1. Decision fork: A point in the tree where a decision-maker must choose one of several
paths, or alternatives: represented by a square box in our diagrams.

2. Chance fork: A point in the tree where nature will choose a path according to some
probability: represented by a circle.

3. Gate or Toll: A branch of the tree where a cost will have to be paid if that path is
selected: represented by a bar across a path.

Throughout our discussion on decision trees, we assume that the reader is familiar with basic
probability theory.

Consider an example of the vice-president of sales for a medium-sized manufacturer who must
decide whether or not to market a potential new product. After consultation with people from the
accounting and the marketing departments, she decides to consider three possible scenarios: high
demand (1000 sales per year), medium demand (500 sales per year), and low demand (100 sales
per year). For each of these states, she calculates the expected annual net profit.

The corresponding decision tree for this problem, shown in Figure 9.1, is organized chrono-
logically from left to right. We begin at the extreme left and move along the path until a fork is
encountered. At a decision fork, we must pick the best possible alternative according to some
decision strategy; at a chance fork, a path is randomly selected for us, according to some probability
function. Eventually, we arrive at some unique outcome at the extreme right-hand side of the
decision tree.

Suppose that the decision-maker has determined subjective probabilities for each of the three
possible states: high demand (.2), medium demand (.4), and low demand (.4). Based on this
assumption, we can calculate the "expected monetary value (EMV)" of the chance fork in the tree:

EMV= .2 x ($1,000,000) + .4 x ($200,000) + .4 x (-$500,000) = $80,000.

The decision fork now becomes a choice between a chance fork with an expected value of $80,000
or a certain outcome of $0. We assume that the decision-maker will choose to market the product
with an expected profit of $80,000.

This process is known as folding-back the decision tree. Beginning at the extreme right-hand
side, for each chance fork, we calculate the expected monetary value. For each decision fork, we
select the branch with the highest EMV. The value of the decision fork is this maximum expected
profit. Eventually, we arrive at the left-hand side of the tree. Each decision fork in the tree has a
preferred branch. The set of preferred branches is called a decision strategy. In the example, the
preferred strategy is to market the product with an expected profit of $80,000.

This approach, although intuitively appealing, is based on some implicit underlying assumptions
that must be considered. A particular concern of most decision-makers is the issue of relying on
expected monetary values. In the example, the suggested strategy involves a 40% chance of losing
half a million dollars. This could have serious consequences on the future of the company, and
many people would consider the risk too high when weighed against the potential gain. In the next
section on utility theory, we illustrate how decision trees can be modified to incorporate attitudes
toward risk.
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FIGURE 9.1 Decision tree.

Another issue involves the use of a discrete set of state variables. At the chance fork, we have
assumed that the demand will either be high, medium, or low. In fact, the demand for the product
is a continuous variable in our problem. The eventual outcome is drawn from a distribution anywhere
between $1,000,000 and $-500,000. By limiting this range to three possible values, we have
simplified the real problem. We have developed a model of the decision process that has lost some
of the detailed structure of the original. At the same time, however, we can now ask the decision-
maker to determine subjective probabilities and potential outcomes for a limited number of distinct
possibilities. By adding more options, we could make the model more realistic, but the decision-
maker would find it increasingly difficult to distinguish between the various scenarios. The model
builder must be conscious of the delicate balance between model realism and the practical impli-
cations of too many subjective evaluations.

Now suppose that the decision-maker has the option of performing a market survey before
making her final decision. The survey will cost $20,000 and will provide an estimate of the potential
success of the product. We assume, for simplicity, that the survey results will be either "favorable"
or "unfavorable." This new problem can be represented by the decision tree shown in Figure 9.2.
This example contains several additional interesting features. Observe that the decision to survey
immediately costs $20,000 represented by a gate. When we fold-back the tree, we must subtract
$20,000 from the expected value of the survey chance fork to evaluate the decision fork.

The intended purpose of doing a survey is to improve our estimates of the probabilities of
product demand. We would expect that a favorable survey result should increase the probability
of high demand. To determine how these probabilities change, we must first know how much
confidence we should have in the survey results. The company that does the surveys claims the
following levels of accuracy based on its past experience:

If high demand (HI)

If medium demand (MED)

If low demand (LOW)

Favorable (F)

70%
60%
30%

Unfavorable (UNF)

30%

40%
70%

Unfortunately, the marketing company has given us the probabilities in the reverse direction
for our decision tree, saying that "The probability of 'favorable' response given 'high demand' is
0.70." This can be abbreviated as Pr{FIHI} - 0.70. In our decision tree, we need to know the
probability of 'high demand' given a 'favorable' survey response. Recall that we have already
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FIGURE 9.2 Decision tree with market survey.

assumed that Pr{HI} = 0.20. We can calculate the probability of getting a favorable survey response
by adding up all of the favorable conditional probabilities'.

Pr{F) = Pr{FIHI} x Pr{HI) + Pr{FIMED} * Pr{MED) + Pr{FILOW} x Pr{LOW) •

= (0.70) x (0.20) + (0.60) x (0.40) + (0.30) x (6.40)

= 0.14 + 0.24 + 0.12

= 0.50

Similarly, the probability of an unfavorable result is given by: Pr{UNF} = 0.50
We can use this information to derive the required conditional probability using Bayes Rule:

Pr{AIB} = [Pr{BIAJ x Pr{A}] ^ Pr{B}

Survey

Unfavorable
(UNF)

Market

Don't
Market

Low (Low)

Demand
$-500,000

SO

Hi

/led

L(

$1,000.000

$200,000

_ $-500,000

. <tn

$80.000

$80.000
Market

Hi (.2)

M«ri / A\

Low ( 41

$1,000,000

• $200,000

$-500,000
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This version of the formula is derived from a standard result in probability theory which states that

Pr{A&B}=Pr{AIB}xPr{B)

and similarly,

Pr{A&B}=Pr{BIA}xPr{A}

Equating the right-hand side of both expressions and dividing by Pr{B} produces the desired result.
By applying Bayes rule, we can now derive the required conditional probabilities. For example:

Pr{HIIF}= [Pr{FIHI) x Pr{HI}] -r Pr{F}

= [0.70 x 0.20] -r 0.50

= 0.28

The complete table of conditional probabilities can be calculated in an analogous way:

High demand (HI) Medium demand (MED) Low demand (LOW)
If favorable (F) 28% 48% 24%
If unfavorable (UNF) 12% . 32% 56%

The corresponding decision tree is shown in Figure 9.3.
With a favorable survey result, the expected value of the "Market" decision increases from

$80,000 to $256,000. An unfavorable result decreases the value of the "Market" decision to a loss
of $96,000. In the latter case, the decision-maker would not market the product, and the $20,000
spent on the survey is written off as an inexpensive way to avoid the potential loss of $96,000.

The optimal strategy for this decision can be summarized as follows:
Do the survey;

If favorable,
Market the product (expected value: $256,000)

If unfavorable,
Do not Market (expected value $0)

This strategy is highlighted on the decision tree at each decision fork.
In a sense, the survey information is not very reliable. Even when the demand is low, we still

have a fair chance of getting a favorable survey response. However, the adjusted probabilities are
still sufficient to dramatically affect the expected profit. This leads us to consider the question of
the value of survey or sample information. In the example, the survey increases the expected value
of the market decision from $80,000 to $ 128,000. Therefore, we could say that the "Expected Value
of the Sample Information" is $48,000. The decision-maker might be willing to pay up to $48,000
for the survey.

At any stage of a decision-making process, the decision-maker usually has the option of
requesting more information. She could ask for a more detailed survey, or she could try distributing
the product in a small test market before making the final decision. One of the most important and
difficult decisions is deciding when to stop collecting data.

A useful measure of the potential value of additional information assumes the existence of a
source of perfect information. The expected value of perfect information (EVPI) is obtained from
the decision tree by adding a chance fork at the beginning of the tree that tells us whether demand
will be high, medium, or low. We then decide to market the product or not. This process is illustrated
in Figure 9.4.
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FIGURE 9.3 Completed decision tree with survey information.

If there were a perfect survey that could accurately predict the true product demand, the expected
value of our decision would change from $80,000 (with no information) to $280,000. The expected
value of perfect information (EVPI) is $200,000. Sources of perfect information are rare, and they
certainly are not free. However, the EVPI gives an indication of the potential value of looking for
better surveys and tests.

Consider the position of the decision-maker in our example. Recall that the conditional prob-
abilities for the survey results are presented as objective information. They are based on historical
data from previous surveys and we have a reasonable degree of confidence in their accuracy.
However, the estimates for the probabilities of the three levels of market demand are highly
subjective. These are based on intuition, some past experience, and an educated guess. The decision-
maker can have only as much confidence in the final strategy as she does in these estimates.

For this reason, it is important to perform some sensitivity analyses on the final decision. For
example, the decision-maker in our example might be interested in knowing what the best strategy
would be if the probability of high demand was only 10% and the chance of low demand increased
to 50%. The revised decision tree is given in Figure 9.5. We discover that the expected value of

$-96.OOO

Market
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Med (.32)

I nwi t dfi\

$1.000.000

$200,000

$-500,000
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FIGURE 9.4 The expected value of perfect information.

the decision without the survey is now $-70,000. However, the value of the survey is $43,000.
After subtracting the $20,000 cost of the survey, the expected profit is $23,000, and the optimal
strategy still suggests marketing the product if the survey results are favorable. Because these new
demand estimates are presumably pessimistic, our decision-maker's confidence in going ahead with
the survey increases significantly.

The example given was of course deliberately simplified. Practical problems would have several
decision forks and a large number of state variables with which to contend. The calculations required
to evaluate even a moderate-sized decision tree can be very tedious. Fortunately, there are many
software packages available that can handle large practical problems and relieve the decision-maker
of considerable computational burden.

One of the most valuable uses of decision trees is simply for organizing and modeling decision
problems. As a first stage, the decision tree can be drawn with only the decision forks and a few
of the main chance forks. This preliminary tree is useful in determining the possible decision
options in the decision process.

The decision-maker can then consider which of the possible environmental state variables could
have a significant impact on the final outcome. In a practical setting, there will be a large number
of state variables that can influence the final outcome. The art of decision analysis is deciding
which of these variables are likely to change the optimal strategy. For example, in a production
problem, the likelihood of a union strike would have a significant impact on expected profit.
However, it may have no impact on the best decision selection if the strike reduces all outcomes
proportionally.

An excellent example of the art of using decision trees is presented by [Byrnes, 1973]. He
describes an actual case study of a decision by a major soap manufacturer in England of whether
to market a new deodorant bath soap in the 1960s, at a time when many companies were experi-
menting with the idea. The case is interesting because decision trees were used as a vehicle for
understanding the problem. Although the final tree was used to predict expected profit, there was
a sequence of decision trees that reflected the changes in the attitudes of management as they
learned more about the decision at each stage. The case study describes each step, and, in particular,
the mistakes and guesses that actually happened along the way.



316 Operations Research: A Practical Introduction

JU25SL__$i.ooo..,000,000

$93,478 A Med (24/46)

$93,478

$43,000

$20,000

(F) (.46)

Market

Don't

Low (15/46)

$200,000

.$-500,000

Market
-$0

•O
Hi (3/54) .$1,000,000

$-209,259 J. Med (16/54)

_$0r

(UNF) (.54)

Market

Don't

Low (35/54)

Market

$200,000

-$-500,000

•$0

$23,000 -n

Hi (.1)

$-70.000 Med (.4)

$0r

Don't Survey

Market

Don't

Low (.5)

.$1,000,000

$200,000

-$-500,000

Market
.$0

FIGURE 9.5 Decision tree with pessimistic estimation of demand.

9.4 UTILITY THEORY

In Section 9.3, we made the assumption that people will choose the alternative that exhibits the
highest expected value. Such people will be called EMVers for their use of expected monetary
value. If a particular decision is to be repeated many times, then the EMV approach is perfectly
sound. In the long run, the actual profit will be very close to the EMV sum of the individual
decisions. Unfortunately, most practical decision processes apply to a single decision-making event.

For this reason, the vast majority of decision-makers do not rely solely on EMV, and will also
make a subjective evaluation of the amount of risk involved in a decision. They will attempt to
incorporate their attitude toward risk in a trade-off against the potential benefits of taking a chance.

As an experiment illustrating attitudes toward risk, we have tried the following game in our
classes. We place $100 on the table at the front of the room. We tell the class that we are going to
flip a coin with one student. If a head comes up, the student wins the $100; but if a tail occurs, we
keep the money. We then ask the students what is the maximum amount that they would be willing
to pay to play this game. (We will keep the money that they pay regardless of the flip.)

The EMV of this game is $50, and from a strictly mathematical point of view, people should
be willing to play for any amount up to $50. However, students are generally not wealthy people.
They begin to think of the consequences of the gamble. If they lose, they might not eat tonight, or
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they might not have enough money to pay the rent. If they win, they could take their friends out
to dinner, but the value of winning does not compensate them for the risk of losing $50. Over the
years, we have observed that the average amount that students are willing to risk for this gamble
is around $20. (We had one student who was willing to play for $75, but he was probably
independently wealthy.)

People's willingness to use an EMV decision rule depends on their ability to absorb the potential
loss. For relatively small values, they can afford to rely on EMV; but as the stakes increase, most
people exhibit an aversion to risk. For example, few corporate decision-makers (in medium-sized
companies) would be willing to risk $400,000 for a 50-50 chance of earning $1,000,000. The
prospect of such a substantial loss would be considered too risky.

It is important to distinguish between gambling and decision-making. The previous example
with the students was clearly a gambling situation. It was a game, and the students had a choice
of whether or not they wanted to play the game. However, in the real world of decision-making,
the decision-maker is forced pick one of several uncertain alternatives. Another distinction between
gambling and decision-making is illustrated by the student who was willing to pay $75 to play the
game. This student was a gambler, whereas the others were making a rational decision about their
ability to pay versus the potential gains. In the quest for success, we cannot avoid taking some
chances, but we can certainly avoid being foolish. In casino gambling, for example, the odds, in
the long run, always favor the house.

Utility theory gives us a tool for characterizing an individual's attitude toward risk. It is based
on the idea that people will associate an implicit value or utility with any given outcome that is
not necessarily proportional to the associated dollar (monetary) value. For example, a particular
individual may feel that the negative value associated with a loss of $100 is compensated by the
positive value of a gain of $500. He would consider the utility or value of the two outcomes to be
equal and opposite. A 50-50 chance of losing $100 or gaining $500 would be fair within his personal
value system. Utility theory allows us to assign values to these outcomes which reflect this attitude.

9.4.1 THE AXIOMS OF UTILITY THEORY

Utility theory depends on four basic assumptions or axioms. If we accept the validity of these
axioms, then the subsequent material follows as a logical consequence. In the axioms, we use the
term lottery to mean a single chance fork in a decision tree where one outcome is randomly chosen
from several possible outcomes, each having a given probability. We first state the axioms, and
then we discuss some of their more controversial aspects.

Axiom 1: "Every pair of outcomes can be compared"
There is a preference ordering (possibly indifferent) associated with all outcomes.
Moreover, this ordering is transitive: if outcome A is preferred to B, and B is preferred
to C, then A is preferred to C. Similarly, if A is indifferent to B, and B is indifferent
to C, then A is indifferent to C.

Axiom 2: "We can assign preferences to lotteries involving prizes in the same way that we assign
preferences to outcomes"
Consider a lottery L with probability p of an outcome A and probability (1 - p) of
outcome B. This lottery itself has a value in our preference ordering, and we can
decide whether or not we prefer lottery L to a third outcome C.

Axiom 3: "There is no intrinsic reward in lotteries."
There is no fun in (or fear of) gambling.

Axiom 4: "Continuity Assumption!9

Given any three outcomes where A is preferred to B is preferred to C, then there
exists some probability p such that we would be indifferent to getting outcome B for
certain, or getting a lottery L with probability p of outcome A and probability (1 -
p) of outcome C.
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FIGURE 9.6 Examples of the value of lotteries.

These assumptions are the subject of considerable controversy among decision theory authors.
The first assumption implies that all outcomes can be measured by a single scalar value in order of
preference. In decisions involving only dollar values, this appears reasonable. However, for decisions
with multiple objectives, these axioms become less obvious. Consider the simple problem of choosing
a new car. There are several conflicting attributes that define the best car. Utility theory assumes that
we have some underlying value system that allows us to rank all possible car models in order of
preference. The decision problem is reduced to one of explicitly determining this value structure.

Figure 9.6 illustrates the concept of assigning values to lotteries. In Figure 9.6(a), a particular
decision-maker might be indifferent to the decision fork alternatives when X = $230. In this case,
the Certain Monetary Equivalent (CME) of the lottery (the chance fork) is $230. If X is greater
than $230, he will take the certain cash. If X is less than $230, he will prefer the lottery. The lottery
itself has a value equivalent to the utility of $230.

In Figure 9.6(b), suppose that the same decision-maker is indifferent to the decision fork when
Y = $220. Now, the lottery at the chance fork has a CME of $220. If this person were asked to
choose between the two lotteries, he would select the first one, because it has a higher perceived
value for him. Note that the EMVs of the two lotteries are $300 and $275, respectively. But, in
both cases, the decision-maker puts a lower monetary value on the lotteries, because the cash values
are certain, while the lotteries have an element of risk.

It is not always true that the CME values are in the same order as the corresponding EMVs.
For example, our decision-maker could attach a very high value to having at least $150 when he
is finished. The lottery in Figure 9.6(a) has some risk because he could finish with only $100.
Figure 9.6(b) has very little risk because he can always be certain of earning $150. He might
therefore be more inclined to use the EMV for the second lottery, and choose Y = $260. For this
decision-maker, the CME of the second lottery is higher than that of the first, although the EMV
is lower.

The third assumption — that there is "no fun in gambling" — refers to the attraction that some
people have to the thrill of taking a chance. When people buy a lottery ticket, they get the chance
of winning; but they also get the fun of just playing the game. They can watch the numbers being
selected and cheer for their sequence. These people get an added positive value simply by being
at a decision fork in a decision tree.

Consider the two simple lotteries depicted in Figure 9.7. Both of these lotteries are mathemat-
ically equivalent. However, the problem in Figure 9.7(a) has two chance forks, while the tree in
Figure 9.7(b) has only one. A person who enjoys gambling might actually prefer the former because
he would have the opportunity to gamble twice. The reverse is true for people who fear gambling.
Utility theory assumes that people have neither an attraction nor an aversion to the opportunity of
taking a chance.

Consider the following extreme example of the continuity assumption:
A $1

B $0

C Death
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FIGURE 9.7 Example of the effect of "fun in gambling".

The continuity axiom, when applied to these outcomes, states that we can find a value of p such
that outcome B ($0) is equivalent to a lottery with a probability p of A ($1) and probability (1 - p)
of C (Death). In other words, there exists some probability p such that you would be willing to
risk death for a dollar. For example, suppose that you are walking along the street and you notice
a 1-dollar bill on the opposite sidewalk. Many people would cross the street to pick up the bill
although there is a remote chance of being killed on the way. The difficulty with the continuity
axiom is not in the existence of a probability p, but rather in determining a value for it.

9.4.2 UTILITY FUNCTIONS

If we accept the validity of these axioms, then it is possible to define a preference function or a
utility function, u(A), with the properties that:

1. For any two outcomes, A and B, u(A) > u(B) if and only if outcome A is preferred to
outcome B.

2. If an outcome C is indifferent to a lottery L with probability p of outcome A and
probability (1 - p) of outcome B, then,

u(C) = p x u(A) + (1 - p) x u(B)

that is, we can define a utility function such that the utility of the lottery is equal to the mathematical
expectation of the utilities of the prizes.

A utility function that satisfies these properties is invariant under linear scaling. If we add a
constant to all utility values, or if we multiply all utilities by a constant, the new function will still
satisfy both of the above properties. Therefore, we can assume any convenient scale for our function.
In particular, we will assume that the best possible outcome has a utility, u(Best) = 1, and the worst
possible outcome has a utility, u(Worst) = 0. Note that we could use any convenient scale (e.g.,
from 1 to 100, or from 0 to 10).

Consider the decision problem from the previous section which is displayed in Figure 9.8. We
wish to repeat the analysis, but this time, we will incorporate the decision-maker's attitude toward
risk using utility theory. Note that the gate associated with paying for the survey has been removed.
Instead, the $20,000 cost of the survey has been subtracted from the final outcomes for all
corresponding tree branches. This does not affect the EMV of the decision, but, in order to evaluate
utilities, all outcomes must be expressed as a net effect of that complete branch.

In this decision problem, the best possible outcome is $1,000,000 and the worsf possible
outcome is $-520,000. Therefore, we can arbitrarily assign utilities:

u($ 1,000,000) = 1

tffi B

'•25> C .5)
• C

(.5)

(.5)

/ e\

A

-B
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FIGURE 9.8 Marketing decision problem with survey information.

and

u($ - 520,000) = 0

There are two commonly used methods for determining the utilities of the intermediate values.
As seen in Figure 9.9, each will give us one new point for the utility function. In Figure 9.9(a),
the decision-maker is asked, "For what value of X are you indifferent to the alternatives at the
decision fork?" Observe that the expected utility of the lottery is:

[(0.5) x u($l,000,000) + (0.5) x u($ - 520,000)] = 0.5

By the definition of a utility function, the utility of X must be u(X) = 0.5. Thus, the decision-maker
is essentially saying that the utility of the lottery is equal to the utility of X.

In the approach illustrated in Figure 9.9(b), the decision-maker is asked, "For what value of p
are you indifferent to the options at the decision fork?" The expected utility of the lottery, in this
case, is given by

(p) x u($l,000,000) + (1 - p) x u($ - 520,000) = p

Market

Med (.4)

Low (.4)
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FIGURE 9.9 Utility value assessment techniques.

We conclude that u($200,000) = p, again relying on the definition. There are a variety of other
assessment techniques, but the two approaches described here are the simplest, and the most
common.

Suppose that we decide to use the first method, and our decision-maker selects a value of
X = $-100,000. For this person, u($-100,000) = 0.5. This decision-maker is very risk averse. Given
a 50-50 chance of earning $1,000,000 or losing $520,000, she would prefer not to play. The chance
of a loss of $520,000 is simply too great. In fact, she would prefer a certain loss of up to $100,000
to the lottery. Presumably, she feels that the smaller loss could be absorbed, while the potential
large loss would be nearly intolerable. This rather dramatic behavior is not uncommon among
actual decision-makers, and we will consider other examples later.

Let us now repeat the utility assessment procedure using the two lotteries shown in Figure
9.10. Observe in Figure 9.10(a) that, when the decision-maker specifies a value for X at which he
is indifferent, the utility of X is equal to the expected utility of the lottery:

u(X)= (.5) x u($-100,000) + (.5) x u($-520,000)

= (.5) x (.5) + (.5) x (0) = 0.25

Similarly, in Figure 9.10(b), when a value of Y is selected, we find that the u(Y) = 0.75.
Suppose that values of X = $-350,000 and Y = $250,000 are selected. We therefore have five

sample points for the utility function. By plotting these points, the remaining values can be estimated
by drawing a smooth curve through them, as shown in Figure 9.11.

Using this admittedly approximate utility function, we can now answer several lottery questions.
For example, suppose she were faced with a lottery having a 50-50 chance of $500,000 or
$-200,000. From the curve, u($500,000) « 0.86 and u($-200,000) * 0.41. The expected utility of
this lottery is (0.5) x (0.86) + (0.5) x (0.41) = 0.635. Again using the utility curve, we find that
the u($80,000) « 0.635. Therefore, the lottery is approximately equivalent to a certain outcome of
$80,000. Hence, our decision-maker should be indifferent to a certain outcome of $80,000 or a SO-
SO lottery of either $500,000 or $-200,000.

$-100,000 ,— $1,000,000

D L_!5> $-520.000 T|

I *v L_
£ $-100,000

$X I $Y

(a) (b)

FIGURE 9.10 Utility assessment.
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FIGURE 9.11 Utility function for marketing example.
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Beginning with this simple function, we would then ask a variety of somewhat redundant lottery
questions to validate the utility curve and adjust the shape at each iteration to best reflect the
answers. We would then present the decision-maker with several examples of how the utility
function would interpret her preferences for simple lotteries. In practice, this process is frequently
implemented using an interactive dialogue between the decision-maker and a computer.

Finally, when the decision-maker is satisfied that the current estimate represents a reasonable
approximation of her utility function, the function can be applied to the original decision problem.
Each outcome is translated into its corresponding utility value. The expected utility of each chance
fork in the decision tree represents the relative value of the lottery for the decision-maker. Averaging
out and folding-back the decision tree in the usual manner produces a decision strategy that
maximizes the expected utility. The marketing example is illustrated in Figure 9.12.

Observe that the use of a utility function did not change the optimal strategy. The decision-
maker should still do the survey, and then market the product if the results are favorable. However,
the expected utility of this decision is 0.597, while the expected utility of doing nothing is 0.585.
This difference is very small, especially when we consider that the numbers are approximate. The
decision-maker should probably consider these two options as being of equal value. Perhaps other
criteria could be used to resolve the tie.

When we based our decision on expected monetary value in the previous section, the survey strategy
produced an expected profit of $128,000. If we decided to market the product without a survey, the
expected profit was $80,000. Both alternatives were clearly preferred to Do Not Market. When we
consider the decision-maker's attitude toward risk, the survey strategy is only marginally preferred, while
the alternative of marketing without a survey is definitely dominated by all other options.

9.4.3 THE SHAPE OF THE UTILITY CURVE

The primary types of utility curves are illustrated in Figure 9.13. For the EMVer, each additional
dollar has the same utility value. The utility curve is a straight line indicating that the marginal
value of each dollar is constant. The Risk Averse (RA) decision-maker has a curve with a decreasing
slope, indicating a decreasing value of each additional dollar. Observe that this person derives 60%
of the total utility from simply breaking even. Conversely, the Risk Seeking (RS) gambler has a
curve with an increasing rate of change. The marginal value of each additional dollar is increasing.
This individual is happy only when he is very close to the top of the scale. Breaking even has a
very low utility. It is important to recognize that a person's attitude toward risk is reflected by the
rate of change of the slope of the curve — not by the absolute value of the slope.

The gambler in a business environment is not the same personality that one would expect to
find gambling in a casino. Such people are typically found at the head of a new venture. There is
considerable risk associated with starting a new company, but these people have enough confidence
in their own abilities that they believe that they can succeed. They are willing to take chances for
the large potential profits that they visualize in the near future. They are not depending on pure
luck because they honestly believe that they can control and influence the final outcome.

The risk averse decision-maker is commonly associated with more established, conservative
companies. These individuals have already developed a successful enterprise and they have no
desire to jeopardize this position in a risky adventure.

There have been a number of psychological studies that suggest that a person's degree of risk
aversion is directly related to his personal feelings concerning luck and fate. People who approach
life, friendship, business, etc. with their fingers crossed, hoping that they will be lucky, are often
risk averse. They believe that external forces are controlling events and that the consequences are
unpredictable. Risk seekers tend to believe that they have considerable control over their lives, and
that their destinies are not completely controlled by external forces. Most people lie somewhere
between these two extremes.



324 Operations Research: A Practical Introduction

-20 -10 $0 10 3 30 40

Thousand Dollars

FIGURE 9.13 Basic utility curves.
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FIGURE 9.14 Utility curve with a $25,000 target level.

In reality, people are risk averse at certain levels and risk seeking at others. Consider the utility
curve illustrated in Figure 9.14, which describes an attitude which is risk averse for values below
$4000 and above $25,000, but risk seeking for values between $4000 and $25,000. This type of
behavior is seen in people who have established a financial goal for themselves. For example, this
person may have decided that, if he had $25,000, then he could open his own business, or buy
some new equipment. The $25,000 figure has a very high utility, relative to say $10,000. As such
individuals get close to their target, they are willing to take an extra risk to attain it. Outside of
this perceived range, they are generally risk averse. A person with several financial goals could
have a number of risk-seeking segments in his utility curve.

Earlier in this chapter, it was stated that decision-makers are generally irrational. A prime
example of this behavior can be found in the way that people assess their utility curve. A set of
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FIGURE 9.15 The "zero-illusion" utility curve.

experiments was performed by [Kahneman and Tversky, 1979] in which subjects were asked to
develop a utility function in the standard way. It was discovered that the typical curve of the majority
of cases resembled the form shown in Figure 9.15. Most respondents exhibited RA behavior above
zero, but they became gamblers when the values were negative. Apparently, people have a financial
target of breaking even and are willing to take considerable risks to avoid a loss.

In decision analysis, this behavior is called "The Zero Illusion." The problem is that the zero
point is relative to the scale that has been defined in the choice of units. For example, if we use
net profit as the outcome measure, zero represents the point at which the company makes or loses
money on the product. If we use net assets to measure the effect of a marketing decision, we have
not changed the problem, but zero now represents the point at which the company is in the black
or in the red. Profit could be described in terms of this year's profit-and-loss statement. In each
case, the method used to calculate outcome values has no effect on the real decision problem, but
the scale has simply been shifted.

When a decision-maker produces a curve with this structure, he can usually be convinced to
abandon the zero target by reformulating the questions in terms of a few different scales. He will
soon adjust his answers to a more consistent behavior. Zero is indeed an imaginary target. We will
come back to this notion when we discuss the "framing effect" in Section 9.5.5.

A classical example of apparently irrational behavior with respect to utility theory is known
as the Allais Paradox. Consider the two decision problems shown in Figure 9.16. For the problem
in Figure 9.16(a), most people prefer to choose the certain outcome of $500,000 because the lottery
branch looks too risky. Although there is a 10% chance of getting $1,000,000, there is also a 1%
chance of getting nothing, so why take the risk?

In Figure 9.16(b), the two lotteries look very similar, except that the second one has a payoff of
$1,000,000 while the first gives only $500,000. In this case, the majority of people will choose the
second lottery with a chance at $1,000,000. In both lotteries, the probability of zero is about the same.

Consider an individual who plays the two lotteries above as described for the majority. Not
everyone will agree with this person, but the selections certainly appear to be logical. The paradox
arises when we attempt to develop a utility function for this person: it cannot be done.

Without loss of generality, we can assume a utility value of u($0) = 0, u($ 1,000,000) = 1, and
u($500,000) = p for some value of p. We wish to find a value of p such that the utilities of the two
decision problems correspond with the choices of our decision-maker.
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$500,000

(a)

FIGURE 9.16 The Allais Paradox.

In the first problem, the utility of $500,000 certain is simply p. The utility of the lottery is

.89 x p + 0.10.

Because our subject chose the certain branch, we conclude that

p > .89xp + 0.10

or

0.11 xp>0.10

Similarly, for the second problem, the utility of the first branch is given by 0.11 x p, while the
utility of the second branch is 0.10. Because the second branch is preferred, we conclude that

O.llxp<0.10

In other words, no matter how the utility function is defined, the decision-maker must either select
the first branch in both problems, or the second branch in both problems.

There is no rational way to explain this dilemma. In the first problem, the decision-maker is
frightened away from the lottery because there is a .01 chance of obtaining a zero. However, in
the second problem, there is an extra .01 chance of getting zero in the second lottery. This additional
risk apparently is not recognized. The decision-maker is effectively saying that a probability of .01
is significant enough to avoid the risk, but, at the same time, probabilities of .89 or .90 are essentially
equivalent. A difference in probability of .01 should either deter a person in both cases or not at
all. Even when we point this out, many people will stick with their original, irrational selections.
We will discuss this and other aspects of irrational behavior in the following section.

Many practitioners believe that utility theory is the only solution to decision-making problems.
Others argue that, although it is reasonable to assume that people have an implicit personal.utility
function, it is not a practical tool for decision analysis. The main objection, in addition to the
problems already mentioned, is that the assessment procedures for determining a person's utility
function are basically artificial. When people are asked to play lottery games, the prizes are not
representative of real decision problems. Therefore, it is difficult for people to treat the answers
seriously, especially as the number of questions increases. Despite these criticisms, utility theory
has been used in a wide variety of practical decision situations, some of which are described in
[Raiffa, 1968] and [Keeney and Raiffa, 1976].
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9.5 THE PSYCHOLOGY OF DECISION-MAKING

By now, it should be clear that decision analysis is an artful combination of mathematical logic
and human intuition. Unfortunately, human decision-makers are prone to a number of misconcep-
tions and idiosyncrasies that can severely limit their ability to make rational choices. We have
already alluded to a few of the problems, and we will now expand on this theme in this section.
Many of the examples are based on the research of [Tversky and Kahneman, 1982],

9.5.1 MISCONCEPTIONS OF PROBABILITY

Suppose that you are in Reno and that you have been casually watching people play roulette. You
notice that red has come up 40 times in a row. Would you now bet everything you own on black?
We know that getting red 41 times in a row is highly unlikely (a probability of approximately 4.5
x 10-14), and therefore, for many people, black seems highly probable. But in fact, assuming that the
wheel is fair, the probability of red on the forty-first spin, given that we already have 40 reds, is .50.

This assumption is known as the Gambler's Fallacy. The same behavior can be observed in
more practical decision-making situations. When people observe a sequence of events with a high
proportion of failures, they assume that the probability of success must be increasing, and they
adjust their decisions and their attitude toward risk accordingly. As in the game of roulette, this is
not rational when the individual observations are independent.

There is a popular lottery in which people pick six numbers between 1 and 49. Every 2 weeks,
six numbers are drawn at random, and anyone who matches all six wins the grand prize (usually
in the millions of dollars). There is considerable speculation about "Which numbers are more
likely?" Many people apparently believe that some combinations must surely be more likely than
others. "You will never see the sequence 1,2,3,4,5,6, for example." If we try to explain that
1,2,3,4,5,6 is just as likely as any other, many people respond by telling us that we do not understand
the basic laws of probability and true randomness. One can even purchase software to help us select
six numbers that are truly random (and hopefully lucky).

Consider the following experiment: suppose that we ask people to select colored marbles from
a large opaque jar, one at a time with replacement. The subjects are told that the jar contains two
colors, red and white, and that two thirds of the marbles are one color, while one third are the other
color. The first individual draws six marbles and finds four red and two white. He concludes that
the jar is two-thirds red. The second individual (drawing from a different jar) selects 20 marbles,
of which 11 are red and 9 are white. She concludes that her jar is also two-thirds red. After making
their draws, we ask the subjects how much confidence they have in their assessment.

Most people agree that the first person has a higher probability of guessing correctly. His draw
corresponds precisely to the expected distribution if two thirds of the marbles are red. The second
subject found the colors to be almost equally divided and feels that the probability of guessing
correctly is only slightly better than 50%. In fact, in both cases, the probability of two thirds red
is exactly .80. The larger number of draws in the second experiment greatly increases the accuracy
of the conclusions. Generally, people do not appreciate the significance of sample size information.
The same principle is true for market surveys and opinion polls. Assuming that the selection
procedure is unbiased, even small samples can be very accurate predictors.

As already discussed with reference to the Allais Paradox in the previous section, people are
inconsistent in their application of small probabilities. Probabilities with an obvious physical
interpretation, such as a 50% chance of getting a head when tossing a coin, are easy to understand.
However, probabilities of .48 and .52 are both considered close to .50, and we perform this
substitution in our minds when we analyze a problem. The 4% difference is often essentially ignored.

At the same time, a probability of .01 is too small to visualize. Consequently, people have a
tendency to either exaggerate the probability, or to decide that it is essentially zero. Down to a
certain level, people will treat probabilities of .01 or .02 as if they were closer to .05 or .10. At
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some point, the associated probability is taken as being effectively zero. The same behavior is true
for probabilities close to 1.0. The perceived probability is less than the actual probability up to
some point at which people assume that the event is certain. This behavior, although understandable,
is mathematically irrational.

Another common error in the appreciation of probability concerns the net effect of a series of
conjunctive (or disjunctive) events. Consider a decision-maker who is responsible for a large project
composed of a series of small components. The project could be the design and installation of a
computer system, an office tower, or a nuclear reactor. We assume that each part must be successful
in order for the project to succeed. This is a conjunctive event in that the probability of success of
the project is the product of the probabilities of success of the components.

Let us suppose that the decision-maker and his staff investigate each component, and they
determine that each has a 99% chance of success. They conclude that the success of the project is
highly likely. In actual fact, if there are 1000 components, the probability of a successful project
is less than .00005. This problem is compounded by the fact that the people responsible for the
individual components are not likely to estimate a 99% chance of success. At that level of certainty,
they will usually say that they are sure that their part will work properly.

As a final example, consider the following problem based on the format of a popular television
game show. Contestants are shown three doors and told that behind one door is a 2-week, all-
expense-paid vacation to Hawaii, or something equally valuable. The other two doors conceal a
consolation prize. Suppose the contestant selects door number 2, and then the host opens door 3
and shows the contestant that it contains one of the consolation prizes. (Doors 1 and 2 are not
opened.) The host then asks the contestant if he wants to change his initial choice (from door 2 to
door 1 in this case). Based on the probabilities, and on this new information, should he change
doors? We will leave this question for the reader to ponder, and come back to it later in this chapter.

9.5.2 AVAILABILITY

When decision-makers are asked to make subjective probability assessments of uncertain future
events, their judgement depends on their personal available store of information. Unfortunately,
the availability of information is often influenced by subjective external events. People make
decisions based on the experiences related to them by a trusted friend, events they read about in
the newspaper this morning, or what they saw on the way to work.

To illustrate, suppose that we ask people to estimate the probability of an airline accident. Some
people may actually go to the trouble of collecting statistics on flight accident rates over the past
few years, but most would simply use their intuition. Their probability estimates would be strongly
influenced by recently reading about an accident or by knowing someone who was involved in a
crash. People who actually witness this kind of disaster often conclude that the risk is so high that
they will decide never to fly again. Observe that none of these events reflects the true probability of
an accident. People often make probability assessments based on very limited personal experiences.

The same logic applies in business decision-making. An executive who has previously been
involved in a risky venture that failed will be very reluctant to try anything like it in the future.
His own estimation of the probability of success has been greatly reduced. The availability and use
of such highly subjective input can produce very irrational behavior.

9.5.3 ANCHORING AND ADJUSTMENT

When people make subjective assessments, they often begin with an initial estimate based oh their
previous experiences, or perhaps even based on ideas suggested by the wording of the question at
hand. When they try to make a prediction, they can become anchored to their original estimate,
even when they know it should not affect their decision. This produces insufficient or conservative
adjustment in the direction of the new assessment.
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Consider a rather dramatic example, described by [Tversky and Kahneman, 1982], of an
experiment in which people were asked to estimate the percentage of African countries that are
members of the United Nations. The experimenter would first spin a wheel of fortune in the presence
of the: subject. The wheel would randomly pick a number between 1 and 100. If the number was
10, the experimenter would ask, "Is it 10%?" The average response of subjects was, "No, it is
closer to 25%." When the random number was 65, the experimenter would ask, "Is it 65%?" The
average response was, "No, it is more like 45%." When people were given a garbage number that
they knew was- irrelevant, they used it anyway. They were anchored to the initial wording of the
question and then performed insufficient adjustment. Moreover, their performance did not improve
when they were offered money for guessing correctly. Apparently, if people are given no informa-
tion, they will use common sense, intuition, and/or statistical estimates. When people are given
useless information, they will use it and ignore logic.

In one experiment, 32 "judges" were shown the case background for a patient. Eight of the
judges were clinicians. The patient's file was divided into four sections and the judges were asked
to give their opinion on the diagnosis after reading each section. The study showed that the accuracy
of the diagnoses did not increase significantly with the amount of information. However, the judges'
confidence in their diagnoses increased dramatically. Presumably, people became anchored to their
initial impressions.

The same is true in management decision-making. When a manager has access to a great deal
of data and reports, he will have a correspondingly high confidence in his ability to make decisions.
This attitude does not necessarily depend on the quality of his information. People have a tendency
to be influenced by the sheer volume of data available to them.

Expertise itself can be a source of the anchoring bias. Professionals, such as doctors, lawyers,
managers, or stockbrokers, may develop a system of standard operating procedures based on years
of training and experience. Expertise produces efficient responses to environmental signals and
symptoms. When you describe your ailments to your family practitioner, he does not usually need
to spend hours consulting his medical reference books. He will quickly identify a few possible
diseases that match your symptoms and prescribe further tests or medication. The value of expertise
is that we can get quality advice quickly.

Unfortunately, experts can become anchored to their own standard procedures. If some of the
symptoms and signals are incompatible with their standard procedures, they tend to be ignored or
re-interpreted by the expert to fit their existing models. Experts will put greater emphasis on
information that is consistent with their own previous experience, and thus become anchored to
their own expertise.

People can also be anchored to the mean of a distribution. Suppose that we asked a decision-
maker to estimate the expected value of sales for a product next year, or to forecast the inflation
rate. We then ask him to specify an upper and lower limit for the distribution, with a probability
of 99%. In experiments with experts, people tend to specify a range that is accurate 70% of the
time. They are conservative in their estimates of high and low values and are anchored to their
initial estimate of the expected value.

9.5.4 DISSONANCE REDUCTION

Consider the decision to buy a new car. Most people will begin this exercise with total objectivity.
They will develop a list of desireable features and decide on a budget limitation. After visiting
several dealers, test driving the cars, talking to people and collecting brochures, they will compile
a mental catalog of the possibilities, and start objectively removing certain alternatives that are too
expensive, too slow, or too small.

As this process continues, the decision-maker reduces the set of options to some small group
of items that are all, in some sense, equally acceptable. It becomes difficult to choose between
them, and the decision-maker enters a phase called dissonance. A choice must be made; and at
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this point, the decision-maker will become very subjective, and simply pick one alternative. This
is perfectly rational because all of the options have been judged to be of equal utility to him.

Having now made a choice, the majority of psychologically stable decision-makers then enter
a completely irrational phase called dissonance reduction, in which they try to convince themselves
that the alternative they selected was, in fact, the very best one by far. They will exaggerate favorable
qualities and down-play the less attractive ones.

This type of justification after the fact is irrational, but it is also necessary to dispel the feeling
of dissonance. People who do not enter this phase may spend the rest of their lives doubting
themselves and worrying about whether they made the right decision, and they might never really
be satisfied with their decision.

This behavior is important in decision analysis in a practical environment because business
decision-makers will also subconsciously employ dissonance reduction. Once they have made their
decision, they become increasingly stubborn about it. They will tend to discredit any new infor-
mation that does not confirm the wisdom of their original choice. It may be very difficult to return
to the initial objective context of decision-making after having mentally justified the choice that
was made.

9.5.5 THE FRAMING EFFECT

It has been observed that people sometimes change their answers when we simply alter the wording
of the question. This framing effect is closely related to the idea of the "zero illusion" discussed
earlier.

In one study, two groups of physicians were given the following decision problem. Suppose
that a rare Asian flu is expected to hit the country next winter. If nothing is done, we expect that
600 people will die. The first group of physicians was told that there are two possible inoculation
programs that could be used. Program A has been used in other countries and the results are highly
predictable. Program B is a new, experimental treatment.

Program Expected Result Probability
A 200 people saved 1.00
B 600 people saved .333

0 people saved .667

Observe that the two programs are equivalent in terms of the expected number of people who will
be saved. The majority of the physicians preferred program A. They were being risk averse and
preferred to save 200 lives for certain, rather than take a chance of saving all or none.

The second group of doctors was given the same problem, except that they were told that there
are two possible inoculation programs, C and D as follows:

Program Expected Result Probability
C 400 people die 1.00
D 600 people die • .667

0 people die .333

The majority of the subjects in this group preferred program D. Presumably, the thought of having
400 deaths on their conscience was too much, and they preferred to gamble.

In this experiment, both groups answered the same question, but changing the wording of the
question changed the way they responded. The first group looked at the problem in terms of positive
results (lives saved) and were risk averse, while the second group became more risk seeking for
negative results (death). This is precisely the effect of the zero illusion.

In another experiment, subjects were asked to imagine that one of their friends had contracted
a fatal, contagious disease. The disease has no symptoms that can be detected; people who have it
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will simply die in 2 weeks. There is a remote probability of .0001 that you have contracted the
disease from your friend. Fortunately, there is an antidote that you can take now as a precautionary
measure. What is the maximum amount that you would you be willing to pay for this antidote? The
average response was $200. If the drug cost more than $200, they would prefer to take their chances.

A second group of subjects were asked if they would be willing to volunteer for a medical
research experiment. They were told that there was a remote chance (probability .0001) that they
might contract a fatal disease. There is no antidote and, if they got the disease, they would suddenly
and painlessly die in 2 weeks. What is the minimum amount that we would have to pay you to
volunteer for this program? The average response was $10,000.

This is a dramatic example of the zero illusion. People are unwilling to pay more than $200
to avoid the risk of death. But these same people will not take less than $10,000 to face the same
risk. Notice that the $200 is a loss, while the $10,000 is a gain. We can interpret this to mean that
the positive utility of $10,000 is the same as the negative value of $-200. We can also assert that
people are gamblers for losses and highly risk averse for profits. This attitude appears perfectly
rational until people realize how easily we can move their zero.

Consider yourself in this simple situation. Someone sends you a card on your birthday with a
$100 bill inside. A few days later, they come up to you, terribly embarrassed, and tell you that it
was a mistake. They put the money in the wrong envelope, and could you please give it back —
which you do reluctantly. Observe that, not counting the insult, the net effect of this pair of
transactions is very negative. Receiving the $100 had a certain positive utility. However, once you
had it in your pocket, and had already decided how to spend it, giving it back is a loss with a much
higher negative utility. After you receive the $100, you move your zero.

Companies will often use the framing effect to their advantage in marketing strategies. Some
years ago, credit card companies banned their affiliated stores from charging higher prices to credit
card users. In 1975, a bill was presented to the U.S. Congress to outlaw this practice. Lobbyists
for the credit card block realized that some bill would be passed, and they preferred that the new
legislation call for a discount for cash rather than a credit card surcharge. The two options are
identical because merchants simply add the surcharge to the cost of the merchandise. However,
customers see the discount for cash as a positive gain (low utility), whereas the added cost of a
surcharge would have much higher value, and many more people would pay cash.

A common marketing ploy is the "2-week trial with a money-back guarantee." People must
make two decisions: one at the beginning and a second decision at the end of the 2 weeks. In the
first decision, people will compare the value of a 2-week trial against the transaction costs (pick-
up, delivery, etc.). The cost of the item is not included because they can get it back. In the second
decision, they compare the value of keeping the item to the utility of the positive refund. But, as
we have seen, the utility of a refund is much smaller than the utility of a payment if we had bought
the item outright in the first place. People are more likely to keep things that they would never
have purchased otherwise. The mail order purchasing industry thrives on this principle.

There are examples of the framing effect that do not rely on the zero illusion. Consider the
following two scenarios. Sam is waiting in line at a theater. When he gets to the window, the
manager comes out and says, "Congratulations. You are our 100,000-th customer, and you win two
free tickets to the show!"

Sally is at a different theater. When the man in front of her gets to the window, the manager
comes out and tells him, "Congratulations sir! You are our 1,000,000th customer, and you win
$1000." The manager then turns to Sally and gives her $100 as a consolation prize for being number
1,000,001.

Which of these two people had a better experience? Although Sam's net gain has a much
smaller value (around $20), many people feel that Sally experienced a great loss at almost (but
not) getting $1000. By framing the question in terms of what could have happened, we can change
the perceived value of Sally's $100 profit.
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9.5.6 THE SUNK-COST FALLACY

The sunk-cost fallacy is really a specific variation of the framing effect. The relevant aspects are
illustrated in Figure 9.17. Let us assume that, at some past time f0, a decision was made to initiate
a project. We are now at time /,, and we must decide whether to continue the partially completed
project or to quit now and cut our losses. We further assume that we have already invested some
amount $5 in the development. The question is: should the value of S, the sunk cost, be considered
when the decision is made at time /,?

An example of this issue occurs in a so-called "Continue/Discontinue" decision, where x
represents the potential profit of successful completion with probability p, y represents the potential
cost of failure with probability (1 -/?), and z denotes the expected cost of discontinuing the project.
We will assume that x > z > y. The same decision tree structure occurs in an "Asset Disposal"
problem. At time r0, we purchased an asset for $5, and at time t}9 we must decide to either keep it
with a risky future cost or dispose of it and take the current salvage value.

The question is: how does the value of 5, the consequence of previous decisions, affect the
current decision at time ^? Authors in mathematical and economic theory refer to this question as
the sunk-cost fallacy. They argue that nothing can be done about S, and the decision at time r,
should depend on the real options currently available.

Consider a man who joins a tennis club and pays a $300 annual membership fee. After 2 weeks,
he develops tennis elbow, but continues to play (in pain) because he does not want to waste the
$300. If the same man had been given a free annual membership, valued at $300, he would likely
quit. The sunk cost directly affects future decisions.

Empirical studies have shown that the rate of betting on longshots increases during the course
of a racing day. Presumably, people have not adapted to earlier losses and they are trying somewhat
desperately to compensate for them.

This type of behavior is common in the business world. A manager initiates a project at time
/0 with an expected cost of $100,000, to be completed in 1 year, and a 50% probability of revenues
of $500,000. At the end of the year, time t[9 he has already spent $150,000, and he estimates another
6 months and $50,000 to finish with a 10% chance of $200,000 revenue. There were unexpected
delays and the market conditions have experienced an unfortunate decline. The project is no longer
profitable. The decision tree is illustrated in Figure 9.18.

Figure 9.18(b) is the same as 9.18(a) except that the costs of both gates have been moved to the
end nodes of the tree. In the first diagram, paying $50,000 for a 10% chance of making $200,000
is clearly a very risky proposition. However, when we consider Figure 9.18(b), the prospects of
losing either $200,000 or $150,000 are both considered almost equally bad outcomes by the risk
seeking decision-maker. By defining zero in terms of time /0 in Figure 9.18(b) instead of time /, as
in Figure 9.18(a), we can change the decision-maker's utility function from risk averse to risk seeking.

This behavior is a form of entrapment in which a manager stays committed to his original
course of action long after it ceases to be justified by any rational analysis. There is a strong
psychological motivation to appear consistent in decisions made over time. People often feel that
they cannot abandon a course of action without admitting that their previous decisions were wrong.
In 1968, Lockheed started development of the L-1011 Tri-star jumbo jet. At that .time, they were
predicting 10% annual increases in airline traffic. By 1971, actual increases were closer to 5%, and
their expected sales were now well below the projected break-even point. Lockheed needed federal
guarantees for $250 million of additional bank credit. (The banks did not consider Lockheed to be
a good risk.) At the subsequent congressional hearings, Lockheed and the Treasury Secretary
proposed that federal guarantees were in the national interest because it would be the height of folly
to abandon a project on which close to $1 billion had already been spent. The continuation of the
project was being justified on the basis of the sunk cost alone. In fact, the real question was whether
the expected future income would be worth the additional expenditure of $250 million. The sunk-
cost argument is often used to explain many political decisions to support an apparent lost cause.
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FIGURE 9.17 Decisions involving a sunk-cost 5.
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FIGURE 9.18 Two views of the same "sunk-cost" decision.

9.5.7 IRRATIONAL HUMAN BEHAVIOR

Reconsider the game show problem described earlier. The contestant was asked to pick one of three
doors and he chose door number 2. The host now opens door 3 to reveal a consolation prize and
asks the contestant if he would like to switch his selection from door 2 to door 1. What is the
probability that the grand prize is behind door number 1 ? Many people (and many actual contestants)
believe that the probability has been reduced to a 50-50 proposition between the two remaining
doors, and they will agonize over this new decision, often sticking to their original choice.

In actual fact, they should always switch. The probability that the door initially selected, door
number 2, was the one that concealed the grand prize, was one third and it still is one third. Whether
or not the initial choice was correct, it is certain that at least one of the other two doors contains
a consolation prize. The host, who knows where the grand prize is, simply verified the fact that
one of the two doors was wrong, and he has not really given any new probability information. The
probability that the door initially selected was the right door is still only one third, and therefore,
the probability that door number 1 is correct must be two thirds. Consequently, the contestant
should always switch. The reader who is still skeptical should try the experiment outlined in Exercise
9.1. As has been stated already, people often feel that additional information must improve the
validity of their probability estimates. But, in fact, more information is not always helpful to an
irrational human decision-maker.

What Can We Do About Irrational Behavior?

1. One of the most important tools for combating irrational behavior and biases is through
proper training. Simply making people aware of the biases described above can improve
their understanding of the decision process, and they can avoid making some of the
common mistakes.

2. A decision simulator works on the same principle as the jet aircraft simulator for training
pilots. The decision-maker is presented with a large number of different situations (one
at a time), and asked to choose a course of action. The simulator immediately gives him
the consequences of his decisions and, if possible, the results of the "optimal" decision.
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The cases used in the simulator can be actual historical problems with known outcomes.
(For example, [Lembersky and Chi, 1986] describe a computer simulator that helps
decision-makers at Weyerhauser learn how to decide how trees should be cut in order
to maximize profit.)

3. A less-expensive form of training is feedback. Decision-makers will estimate probabil-
ities of various market parameters in predicting the success of a product, but they seldom
get any direct feedback on the quality of their intuition. If the product is successful, they
must be doing something right. By comparing their original estimates with the actual
results, it is possible to improve their future prediction skills.

4. Another method of reducing bias is by automatic correction procedures. For example,
when we must forecast future sales, we could use an expert and a simple linear regression
model, and then split the difference between the two. The assumption here is that the
expert will have more information than the regression model, but that the human has a
tendency to overreact.

5. A common approach to eliminating bias is to ask a number of redundant questions. In
particular, we can reduce the effect of the zero illusion by rephrasing the same question
in several different ways with the zero shifted to make people aware of the effect.

6. We must recognize the limitations of the human decision-maker as well as the strengths.
[Dawes, 1982] compares human judgment with linear regression in a variety of selection
processes, and concludes that the linear models are generally superior to expert decision-
makers. Human experts were often found to be much better at gathering and encoding
information than they were at integrating it and using it effectively in decision-making.

9.6 GUIDE TO SOFTWARE TOOLS

A variety of software tools are available to support decision-making. A few representative packages
are mentioned here.

Crystal Ball allows spreadsheet users to perform probabilistic sensitivity analysis on their
spreadsheet models. A large selection of probability distributions allows straight-forward creation
of simulations which, among other things, permits users to judge the influence of individual
statistical assumptions upon a forecast. All data generated during the analysis can be exported to
other spreadsheets. Windows and Macintosh versions are available for interface with popular
spreadsheets, and are priced around $3000, with educational discounts available.

OptQuest is a comprehensive decision optimization package that is a component in the Crystal
Ball Pro Software offered by Decisioneering. It includes mechanisms for tracking a user's solutions
that have worked well in the past, then recombining the best ones into global solutions to current
problems that involve significant amounts of uncertainty. Built upon a spreadsheet approach,
capabilities extend into optimization and simulation.

DecisionPro from Vanguard Software combines a variety of computational analytical tools,
using the hierarchical tree as the underlying data structure. The tree framework provides a natural
and intuitive format for breaking complex problems into simpler components. Once the input of
data is complete, DecisionPro displays a tree, which can then be modified via a flexible user
interface. Results are also displayable in the form of tables and graphs. Menus and prompts facilitate
installation and use of this package. Decision tree calculations allow the analyst to select the level
of risk aversion to be used in the utility function. Decision Pro runs on PCs in a Windows
environment; student versions begin at $100; professional versions range from $400 to $700; and
Web editions are priced under $2000.

DecisionTool Suite from Palisade Corporation is a suite of integrated risk and decision analysis
software that runs in Windows on PCs. The package includes @RISK for risk analysis, components
for distribution fitting and previewing, TopRank for sensitivity analysis, and PrecisionTree,
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described below. Educational packages are priced around $800; commercial versions run approx-
imately $1200.

Expert Choice Pro is a decision support software tool for examining and resolving problems
involving multiple criteria. This Windows application package requires a minimum of 8 MB of
RAM and 10 MB of disk memory, and is based on a methodology known as the "analytic hierarchy
process" (AHP). The application software comprises three modules: an on-line tutorial, a structuring
module to lead users through the process of creating a hierarchical model (or importing a model
via standard library formats), and a module that evaluates alternatives, solves the model (makes
the choices), does sensitivity analysis, and generates reports.

PrecisionTVee permits users to create decision trees and influence diagrams in existing spread-
sheets. This package belongs to a set of integrated software products, all running from a common
toolbar in a spreadsheet program. PrecisionTree automatically formats decision trees and other
diagrams, performs sensitivity analysis, and incorporates the decision-maker's attitude toward risk.
The standard version is priced at around $500, while the professional version, at $800, also adds
policy suggestions and advanced strategy analysis.

Tree Plan is a low-cost decision tree add-in for spreadsheet users, with commercial versions
priced under $30.

Logical Decisions for Windows is a powerful PC decision tool for evaluating decisions requiring
many evaluation criteria and critical value judgments. Special features include a questionnaire for
the user, capabilities for exporting utility functions to spreadsheets, and sophisticated graphics
displays. Prices range from $300 to $500.

Mesa/Vista is an integrated decision tool that supports collaborative decision-making in a
project management framework. It is designed for geographically dispersed teams who need to
track and comply with strict process regulations, with network technology for communication. This
package is priced at $13,000 for Windows and Unix system environments.

ArcForest is a practical decision support system for natural resource and forest management
decision-making and analysis, that provides tools for handling forest land record, strategic planning,
and harvest and silviculture planning and preparation. The software initially is of a generic form
and can be modified to meet regional needs with tailored descriptions of vegetation, terrain, timber
supply, and wildlife habitat.

9.7 ILLUSTRATIVE APPLICATIONS

9.7.1 REFINERY PRICING UNDER UNCERTAINTY [KEEPER, 1995]

During the 1980s when crude oil prices were fluctuating dramatically and refining overcapacity
made the profitability of operating refineries unpredictable, an oil company shut down a large
overseas refinery. Management's opinion of how best to dispose of this non-performing investment
varied considerably: some thought it would not even be possible to give away a shut-down refinery,
while others hoped to sell the defunct facility for a substantial sum.

For purposes of price negotiations, management needed to develop some idea of what the
refinery would be worth to a variety of types of potential buyers. Because the current owner had
been unable to operate this refinery profitably (nor did it foresee being able to do so in the near
future), presumably a likely buyer would not be a company just like the current owner. Instead of
a major international oil company, it was expected that the buyer would be a small, well-capitalized
company, perhaps a newcomer to the industry, in the business of trading, refining, or marketing
oil, and which would take a short-term, entrepreneurial approach to using this refinery.

In the process of determining how to price the refinery for sale, the decision analyst drafted
four operating scenarios: one describing how each of four categories of potential buyers could use
(he refinery profitably.
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1. In the first scenario, the new owner would not actually operate as a refinery, but would
instead use the facilities as a terminal, berthing ships, storing and transshipping crude
oil, storing and blending certain products, and selling to local customers.

2. The second scenario consists of all the activities above plus operating the refinery itself
opportunistically during periods of advantageous refining margins. (This posed some
problems because positive refining margins in the near term were possible but very
unpredictable.)

3. In a third scenario, the operation of the facilities as in the first scenario would be
supplemented by refining under a so-called "netback" agreement with a crude oil pro-
ducer. Under such an arrangement, the refinery agrees to buy and refine crude oil, at an
agreed-upon steady supply rate for a prespecified refining margin. The predictability of
throughput arising from this scenario is of considerable value, but this advantage is offset
by the uncertainty of what netback margin could be negotiated with a crude oil producing
country.

4. The fourth scenario is a combination of the first three: use of facilities for storing,
transshipping, blending, a netback agreement to support a steady refining operation, and
stepped-up refining activity during periods of positive refining margins.

The current owner of the refinery had traditionally analyzed and evaluated uncertainties using
deterministic methods to calculate net present value, then applying sensitivity analysis. This simple
approach turned out to be inadequate for pricing the refinery. Net present value (NPV) calculations
were based on large and uncertain ranges for parameters such as margins and throughputs. These
estimates led to discrepancies in NPVs that fluctuated too widely (over hundreds of millions of
dollars) to give management much insight into how to price the refinery for purposes of negotiating
a sale.

Rather than a deterministic model that allowed small changes in parameters, the analyst chose
to utilize decision analysis techniques, treating the heretofore unwieldy parameters as random
variables and basing much of the uncertain data on judgmental probability assessments.

The expected NPV was calculated using a decision structure known as a "probability tree."
This differs from a conventional decision tree in that the branches in the tree do not represent a
timeline of sequentially made decisions in response to specific uncertainties. There are no decision
nodes per se; rather, the branches associated with uncertainties denote the possible outcomes of
the uncertainties. Working from the extremities of the tree back to the root of the tree, the probability-
weighted average NPV was simple to calculate, and the entire model and computational process
were easily understood by management.

Calculations for the fourth scenario showed the highest expected value of $53 million, while
lower expectations were associated with all the other scenarios (as low as $23 million for the first
scenario). The analyst's recommendation to management that it would be reasonable for certain
prospective buyers to pay in the range of $23 million to $53 million for the shut-down refinery
constituted a hopeful alternative to the sad prospect of having trouble giving it away. As a result,
a decision was made to wait for a reasonable offer, and indeed,.a sale was eventually made for a
price in excess of $50 million.

9.7.2 DECISIONS FOR RADIOACTIVE WASTE MANAGEMENT
[PERDUE AND KUMAR, 1999]

High-level radioactive waste resulting from spent nuclear fuel is sometimes dealt with by encap-
sulating the waste in glass, using a process known as "vitrification." But just how much nuclear
waste cleanup is necessary, desirable, and cost-effective. Determining the appropriate extent of this
technologically difficult undertaking has proven to be quite a complex decision process. In a joint
effort of the U.S. Department of Energy, the New York State Energy Research and Development
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Authority, and Westinghouse Electric Company, decision analysis techniques have been used to
help analyze how this cleanup process should be properly accomplished.

The contaminated waste is contained in underground tanks. Waste is removed from the tanks,
sealed in glass containers, and the tanks cleaned and rinsed. This process is repeated until the tanks
are no longer classified as "high-level radioactive waste," but the de-classification criterion is not
perfectly defined and includes safety issues, and technical capabilities, as well as social and
economic considerations. Decision analysis tools were used to study alternative clean up processes
based on expected monetary benefits and societal costs.

The different cleanup regimens studied range from one extreme in which only currently used
technologies are employed, to the other extreme which assumes availability of all technologies
under development. For each scenario, numerous levels of waste removal are considered, ranging
up to 99.9% cleanup of the known initial radioactivity measured.

For each combination of technology and radiation removal level, the analysts develop projec-
tions of benefits and costs. Societal benefits are quantified by estimating the monetary value of an
avoided radiation dose plus the value of not having to undertake construction of additional con-
tainers. Costs include operating expenses for the vitrification process, tank cleanup, and technology
deployment. The decision model includes a time factor that addresses the time it takes to clean a
tank, which would be important in case key equipment failures caused interruptions or delays at
critical times during the cleaning process.

Sensitivity analysis was applied to determine the robustness of the projections and to reveal
just which of several uncertainties are the ones that most critically affect the estimated outcomes.
Results of this study are being examined by the U.S. Nuclear Regulatory Commission as it works
toward establishing standards and requirements for nuclear waste management.

9.7.3 INVESTMENT DECISIONS AND RISK IN PETROLEUM EXPLORATION
[WALLS, MORAHAN, AND DYER, 1995]

The exploration division of Phillips Petroleum Company must routinely evaluate a broad range of
exploration investments, determine an appropriate level of participation in each project available
to the firm, and select the most advantageous mix of investments consistent with the division's
budget. Petroleum exploration is an industry characterized by financial risk and uncertainty. There
are often investment opportunities with high probabilities of small losses, and others with small
probabilities of ruinous losses, not reflected in expected values. The expected value concept that
had guided Phillips investment decisions in the past did not adequately address how sensitive
managers are to exposure to the chance of substantial capital losses. There is a general perception
in the petroleum industry that this exposure can be dealt with by entering into smaller capital
allocations in more different projects, thereby "spreading the risk." Yet Phillips Exploration had no
formal way to quantify the value of such diversification. Their methods for controlling risk were
often informal, and based strongly on the intuition of individual managers.

Attitudes toward risk interfered with traditional decision-making processes because managers
at Phillips needed to look beyond expected values and consider downside risks as an integral up-
front part of the investment picture. Management had evidently never realized how strongly risk
averse they were (and in fact needed to be), and how poorly their decision-making framework had
supported this position on risk.

A software package was developed to assist management in the process of deciding how to
allocate investment capital across a set of possible exploration projects. Using some of the standard
tools of decision analysis, this software not only provided a means of organizing the data associated
with each investment opportunity, but it also offered a way of incorporating the company's attitudes
toward risk and allowing decisions to reflect these attitudes.

The new decision software package met several of the company's needs. One requirement was
to have a relatively consistent measure of risk to be used over the entire range of investment
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alternatives. Management needed to be able to compare the risk and upside potential of two projects;
for example, one with an unlikely but large payoff versus one with a highly probable lower payoff,
both of which may have equal expected values. The methodology incorporated into the software
package facilitated this comparison between alternatives.

The package also allowed Phillips Exploration division to determine the optimal level of
participation in each of many diverse projects having a desirable mix of risk characteristics. There
are typically more investment opportunities than can be afforded with the scarce investment capital
available; so rather than merely choosing projects to invest in, the company must also allocate and
balance its investment capital.

In the exploration business, a "prospect" is a geological structure thought (or known) to contain
petroleum potential, and a "play" is a collection of geologically similar prospects located in the
same geographic locale. The decision software package assumes probabilistic independence among
individual projects. But because prospects within the same play have, by definition, similar physical
characteristics, they may not be independent at all. To deal with thislnterdependence, the package
allows users to specify whether they wish to evaluate investment projects on a prospect basis or
on a play basis.

Each new investment opportunity presents new alternatives to consider. And over time, there
emerge decision patterns of which no one is really consciously aware. The decision support package
measures the firm's risk tolerance by reviewing past decisions and encoding this information as a
utility function. In so doing, the package thus captures the user's subjective (and perhaps unrecog-
nized) perceptions about probabilities and risks associated with specific exploration outcomes. By
creating a historical "risk personality" for the decision-maker, the system provides an integrated
capability for ensuring a consistent risk attitude in evaluating and ranking projects for capital
investment and determining participation levels in different prospects or plays that are consistent
with attitudes toward risk.

This software package does not require the user to have any specialized technical knowledge of
decision analysis, risk profiles, or utility theory. Instead, the user selects from several input formats
and enters available data; then the software interprets the input and constructs a decision tree.

User reaction to this decision support system has been mixed. Management has displayed some
initial reluctance to accept the utility functions generated by the software. And although the users
acknowledge that they are not risk-neutral, there remains some hesitation on their part to quantify
their risk aversion. Nevertheless, the use of this tool has raised awareness of the issues of risk
tolerance and the importance of its role in capital investment allocation. Phillips has used this
package to support companywide analysis of all exploration projects. This same software is also
used by several other petroleum exploration firms, both to assist with small-scale individual
decision-making and for comprehensive organizational decisions.

9.8 SUMMARY

Decision analysis involves aspects of both mathematics and psychology. Because of the uncertainty
that often surrounds decision-making, it is important to analyze the decision process as objectively
as possible, and yet to realize the important role played by the human psyche.

Human attitudes toward risk and uncertainty often interfere with rational decision-making.
Strategies in game theory help to identify and explain these attitudes, and several principles have
been proposed that attempt to characterize human perspectives on risk. Utility theory gives us a
mechanism for quantifying human attitudes toward risk.

Decision trees provide a framework for representing sequential decisions in which there is a
response or some type of feedback at every stage in the decision process. Through the use of
probabilistic information, optimal strategies can be identified and evaluated, using such measures
as expected monetary value.
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Human decision-makers are prone to a variety of misconceptions and idiosyncratic behaviors
that can severely limit their ability to make rational choices. The availability of information can
influence people in surprising ways. People are often unwilling to modify their decisions even
when additional relevant information or evidence becomes available to them; or they may feel
trapped by earlier decisions. Proper training and education can often help analysts develop an
awareness of the psychological difficulties associated with decisions. This, together with an under-
standing of the quantitative methods that are available to facilitate decision-making, can encourage
and foster more rational approaches toward dealing with decisions.

KEY TERMS

Allais Paradox
adjustment
anchoring
automatic correction
availability
Bayes rule
certain monetary equivalent (CME)
chance fork
decision fork
decision simulator
decision strategy
decision tree
decision variables
dissonance
dissonance reduction
dominance
dominate
entrapment
expected monetary value (EMV)
expected value of perfect information (EVPI)
feedback
folding-back
framing effect
gambler's fallacy
gate
Hurwicz measure
Hurwicz principle
Laplace principle
lottery
maximax strategy
maximin strategy
outcomes
payoff matrix
payoffs
preference function
principle of insufficient reason
redundant questions
risk averse
risk seeking
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row linearity
Savage Minimax Regret
state variables
states of nature
sunk-cost fallacy
toll
utility curve
utility function
utility theory

EXERCISES

9.1. Imagine that you are the contestant in the game show described in Section 9.5.1, choosing
a door in hopes of getting the grand prize. If you were allowed to repeat the game 30
times, you would expect to pick the right door 10 times. And if you always switch when
given the option, you should be right 20 times. Write a computer program to simulate
this process.

9.2. An enterprising computer science student plans to provide computing services for clients,
and is considering several alternatives. He can work all the problems given him by hand,
which will cost him nothing; but he estimates his income in this case will only be $20,000
annually. He can buy an unknown brand desktop computer for $2500. There is a 90%
probability that this machine will be software compatible as advertised, but there is a
10% chance that our entrepreneur will have to spend $6000 on software modifications
to achieve a working system. In any case, he figures his income with this machine will
be $100,000. His third alternative is to purchase a famous brand workstation computer
that is certain to run the necessary software, and this system will cost $3600 to purchase.
With this system, he gets a maintenance contract but there is a 70% probability that
hardware modifications and repairs will still cost him $1000. His projected income from
this system is $120,000. Draw a decision tree, and determine the course of action that
yields the greatest expected net income for the entrepreneur.

9.3. A marketing strategist at the Complete Feet Shoe Company must decide whether to
introduce a new product. At most, one type of new product will be introduced, either:
Product A (shearling-lined vinyl thongs)
Product B (velcro-closure ankle mufflers)
Product C (truck-tread knee-highs)

If no new product is introduced, the company's public relations officer figures that the
damage to the company's image as a dependable supplier of trendy footwear can be
estimated at a value of $100,000. The cost of advertising any new product will be
$150,000. Analysts predict the following probabilities of sales:

Product Probability Sales
A .80 $180,000

.10 40,000

.10 20,000
B .50 $100,000

.50 200,000
C .60 $120.000

.40 100,000
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If product A is introduced, there is a 50-50 chance that the "Save-the-Sheep" Society
will launch a smear campaign that will cause damages of $60,000 to the shoe company.
If product B is introduced, there is a 50-50 chance that the inventor of velcro will sue
the shoe company for "misapplication of technology" and such a lawsuit would cost the
company $50,000. If product C is introduced, nobody will likely object. Draw the
decision tree to display all of these options and the expected effects. Indicate what course
of action should be recommended by the marketing strategist on the basis of the infor-
mation given here, and state the expected loss or gain for your recommendation.

9.4. A long-range planning committee is considering proposing that a new building be built
on the campus of a university. The construction cost for the new building will be
$30,000,000. If the new building is built, there is a 25% probability that publicity
associated with the new facility will cause increased enrollment, which will result in
$2,500,000 in revenues for the university. If the new building is not built, there is a 75%
probability that some students will choose to attend another university, resulting in
$10,000,000 in lost revenues. Even if there is no loss in enrollment, the overcrowded
conditions will be such that there is a 50% chance of faculty rebellion, which can be
quieted only by increased employee benefits, costing the university $2,000,000. Draw
the decision tree to display all these options and the expected effects. Indicate what
course of action should be taken, and state the expected loss or gain from this decision.

9.5 Recall from Section 9.5.1 the experiment involving selecting colored marbles from a
large opaque jar. Both subjects conclude, based on different experiences drawing marbles
from their jar, that two thirds of the marbles in their jar are red. Prove, in both cases,
just what is the probability that two thirds of the marbles are red.

9.6 Suppose that your Operations Research mid-term exam will consist of one question worth
10 points, and you have only 3 hours to study for it. You are told that the instructor will
pick the question from one of three possible topics: decision trees (D), utility theory (U),
or game theory (G). If you spend your 3 hours studying one topic, and that question
occurs on the exam, you will probably get 10 out of 10 points. For 2 hours studying,
you expect to get 8; for 1 hour, you would get 5; and if you do not study the correct
topic at all, you will get 2 points. By taking a quick look at past exams, you discover
the following frequency of each topic:

Topic Number of Times
Decision trees (D) 8

Utility theory (U) 7

Game Theory (G) 5

(a) Use decision tree analysis to determine your best study strategy. How many hours
should you spend on each topic, and what is your expected grade on the exam?

(b) Your friend Steve says he has inside information that he will sell to you for $5.
Steve's hot tips have not been very accurate in the past and you estimate the
conditional probability of his information being correct as follows:

Given: Actual Question
D U G

Steve D .8 .2 .3
saysU .1 .7 .2

G .1 .1 .5
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You decide that you need the points, so you pay him and he tells you that the exam
question will be a game theory question. How does this influence your study strategy
and what is your new expected grade on the exam?
(c) Suppose that you find the idea of failing your exam particularly unattractive, so you

decide to do an analysis of your utility for points.
(i) You would consider a grade of 5 to be the same as a 50-50 chance between get-

ting 2 or 10.
(ii) You are indifferent between a grade of 4 for certain and a 50-50 chance of either

2or5.
(iii) You are indifferent between a grade of 7 for sure and a 50-50 chance of either 5

or 10.

Based on this information, how would you reevaluate your decision in part (a)? Forgetting
about Steve for now; what is your optimal strategy and what is your expected utility?

9.7 Suppose that you are in the position of having to buy a used car, and you have narrowed
down your choices to two possible models: one car is a private sale and the other is from
a dealer. You must now choose between them. The cars are similar, and the only criterion
is to minimize expected cost. The dealer car is more expensive but it comes with a 1-
year warranty. You decide that, if the car will last for 1 year, you can sell it again and
recover a large part of your investment. If it falls apart, it will not be worth fixing. After
test driving both cars and checking for obvious flaws, you make the following evaluation
of probable resale value:

Car Purchase Price Probability of Lasting 1 Year Estimated Resale Price
A: Private $800 .3 $600
B: Dealer $1500 .9 $1000

Which car would you buy? What is the value of perfect information?
Suppose you have the opportunity to take car A to an independent mechanic, who

will charge you $50 to do a complete inspection and offer you an opinion as to whether
the car will last 1 year. For various subjective reasons, you assign the following
probabilities to the accuracy of the mechanic's opinion:

The Mechanic Will Say:
Given: Yes No
A car that will last 1 year 70% 30%
A car that will not last 1 year 10% 90%

Assuming that you must buy one of these two cars, formulate this problem as a
decision tree problem. What is the true value of the mechanic's advice? Is it worth
asking for the mechanic's opinion? What is your optimal decision strategy? (Note: It
is not necessary to ask for advice on car B because its problems could be repaired
under the warranty.)

9.8 Give two examples of the "framing effect."



Decision Analysis 343

9.9 Consider the following payoff matrix:

Actions

: States a, a2 a3 a4 a5 a6

0, 2 6 4 4 5 7
62 8 2 5 2 4 2
83 0 5 2 4 3 3
04 3 5 2 5 3 2

(a) Suppose that the decision-maker claims "complete ignorance" of the probabilities
of occurrence of the four states. Can any alternatives be eliminated? What is the
optimal action under each of the strategies: Laplace, Maximin, Maximax, Savage
Minimax Regret? What types of decision-makers should use each of these strategies?

(b) Under the Hurwicz principle, the decision-maker is assumed to have some level of
optimism a between 0 and 1. Characterize the optimal decision for the range of all
possible values of a. At what values of a does the optimal solution change?

9.10 The product manager of a large firm is faced with the decision of whether to proceed
with a national marketing campaign for a new product. The monetary return from sales
generated by the campaign will depend on prevailing market conditions. The manager
believes there is a 40% chance of "good" market conditions and a 60% chance of "bad"
conditions. The monetary returns (in thousands of dollars) for each condition are sum-
marized below:

"Good Conditions" "Bad Conditions"

Market $800 -$400
Do nothing $0 $0

The manager may decide to purchase the services of a marketing firm that will do a survey
for $75,000. The firm claims that their results are 75% reliable. (That is, when conditions
are "good," they correctly identify it 75% of the time, and similarly for "bad" conditions.)
(a) The manager must decide whether to accept the survey and whether to proceed with

national marketing. Construct the corresponding decision tree and compute the
optimal strategy and expected payoff.

(b) What is the "expected value of perfect information" for this problem? How do you
interpret this value?

9.11 Consider the following apparent paradox.
(i) The average person is risk averse at all levels of money.

(ii) The average person will insure his house for $5 per week, which is risk averse be-
cause the insurance company is making a profit,

(iii) The average person may buy a lottery ticket for $5 per week, which is a gamble.

If we let X be the insured value of the house and Y be the prize in the lottery, then the
two situations can be described as shown in Figure 9.19. Let p and q denote the small
probabilities of losing the house and winning the lottery, respectively. The outcomes
depicted are expressed in terms of net change to assets in a given week. Is this "normal"
or "average" person irrational? Can this behavior be described by a reasonable utility
function? Discuss the possible motivations or perspectives of this person.
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-$5.00

FIGURE 9.19 Apparent paradox.
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Combinatorial optimization involves determining how best to arrange (or group, sequence, or
assign) the controllable elements in large complex systems to achieve a specified objective or goal.
Combinatorial optimization models have been used to describe problems as diverse as vehicle
routing, workforce scheduling, manufacturing plant layout, portfolio selection, production sched-
uling, and computer CPU job scheduling. Combinatorial problems are ubiquitous, arising commonly
in engineering, financial, industrial, computing, and social and human services applications.

Many combinatorial optimization problems are remarkably simple to state and intuitively easy
to understand, requiring little mathematical sophistication. As an example, there is a famous problem
popularly known as the knapsack problem in which a hiker considers which of n objects to pack
into a knapsack. Each object has a weight and a value. The goal is to select a subset of the objects
that have the greatest combined value and whose total weight does not exceed the capacity of the
knapsack.

The knapsack model could be applied to as obvious a problem as packing suitcases for a trip
without exceeding the baggage weight limitations imposed by airline regulations. Or the model
could be used to select experiments and instrumentation packages to include in a deep space probe.
Each candidate package has a potential value (technical payoff or social merit), but each package
also requires certain resources such as electricity, cooling, oxygen for the mice, carbon dioxide for
the soybean sprouts, space (volume) needs, weight, or waste disposal. For these requirements, one
might imagine a multi-dimensional knapsack capacity which can supply only a limited amount of
each of the resources (electricity, air, heat dissipation, space, and weight).

The simple knapsack problem can be formulated using n decision variables, xh where Xj = 1
if object i is to be included in the knapsack and x{ = 0 if not. Knapsack capacity is denoted as c.

347
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For each object, there is an associated weight w{ and a value Vj. Then, to select the most valuable
feasible subset of objects, it is necessary to find the values of the variables to

maximize

subject to

Xj = 1 or 0

Another famous combinatorial optimization problem, known as the traveling salesman prob-
Jem, seeks to find the least costly route for a salesman who must visit n cities each exactly once,
returning finally to his city of origin. Assume that the distances between cities are recorded in an
n x n matrix D, where dy is the distance (or cost) to travel from city i to city j. Let decision variables
Xjj = 1 if the route contains the road from i to j, and xsj = 0 if not. If the salesman enters and
leaves every city exactly once, it appears that his tour would be a feasible one, and the optimal
tour can be determined by finding values of the variables to

m n m z e

subject to E Xjj = 1 for every j, salesman enters city j exactly once

E Xy = 1 for every i, salesman leaves city i exactly once

X = 1 or 0

At first glance, this familiar formulation (which is precisely that of the assignment problem
discussed in Section 3.3.2) might tempt us to try to solve the traveling salesman problem using the
Hungarian method for the assignment problem. Indeed, if the solution found by the Hungarian
method really were a feasible tour, then it would be an optimal tour for the salesman. However,
the solution obtained in this way may fail to represent the kind of tour needed by the salesman,
although he enters and leaves each city exactly once. For example, suppose the salesman begins
at city 1, and must visit cities 2, 3, and 4 in any order, and finally return to city 1. Then, all of the
following tours are feasible:

1 - 2 - 3 - 4 - 1

1 . 2 - 4 - 3 - 1

1 - 3 - 2 - 4 - 1

1 - 3 - 4 - 2 - 1

1 - 4 - 2 - 3 - 1 :

1 - 4 - 3 - 2 - 1

But notice that the constraints written in the formulation above would permit decision variable
values that describe not only those six feasible tours but also sub-tours (round-trips that do not
visit every city) such as:

n n

.Z, S,dux«1=1 J=l

E WjXj < c

i?iViX|
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1 - 2 - 1 and 3 - 4 - 3

1 - 3 - 1 and 4 - 2 - 4

1 - 4 - 1 and 2 - 3 - 2

These latter solutions do not meet the salesman's requirements. Thus, the Hungarian Method cannot
be relied upon to yield feasible traveling salesman problem solutions; additional constraints must
be imposed in. our formulation so that sub-tours are excluded.

As simple and easy to understand as these two famous combinatorial problems are, it is
surprising that no efficient algorithms have been developed that are guaranteed to find optimal
feasible solutions. In fact, both the knapsack problem and the traveling salesman problem belong
to the set of NP-complete (NP-hard) problems, and in that set, they are in good company with
hundreds of other important practical problems.

For many practical problems in science, engineering, and management, the only way to be sure
of finding an optimal solution is to search completely through the whole set of possible solutions.
If there are infinitely many possible solutions, we know right away that this approach is unsatis-
factory. But if there is a very large but finite number of possible solutions, the idea of a complete
search is tempting, and often is quite easy to express as an algorithm and to implement in software.
The difficulty is of course that the time required to carry out such an exhaustive search is, although
finite, far greater than most mortals can afford. (Look again at Table 1.1 in Chapter 1 to be reminded
just how many centuries such a computation might take. Clearly, technological advances, such as
increasing CPU chip speed by several orders of magnitude, do not provide adequate computational
tools against these formidable computational demands.)

The question then is to try to find short-cuts that will allow us to organize the search process
so that it is no longer a complete search over all possible solutions, but rather it becomes an
affordable search that is likely to discover a good, or near-optimal, solution. Such methods are
called heuristic methods. They are most often applied to the computationally intractable NP-hard
problems, simply because otherwise the best (most efficient) methods we know of for solving these
problems exactly (or optimally) can take an exponential amount of computation time. Heuristic
methods are usually rather problem specific, and often are based on common-sense ideas inspired
by, or tailored to, the type of problem being solved. This chapter examines some methods that are
currently popular, effective, and practical.

10.1 LOCAL IMPROVEMENT HEURISTICS

Local iterative-improvement techniques begin by placing the system being optimized in a known
configuration; usually, any simple-to-obtain arbitrary configuration will do. Then some simple
rearrangement or reorganization of the problem elements is performed repeatedly to various local
parts of the system until a configuration is discovered whose objective function value is better than
that of the previous configuration. When this occurs, the better configuration becomes the "current"
configuration, and the process is repeated until no better configuration can be found by means of
simple local rearrangements.

Because at each iteration, only simple changes involving neighboring elements are considered,
the method is often referred to as a local search procedure. From any given configuration, only
"nearby" configurations are considered, that is, configurations that differ from the current one by
minor modification to the problem elements (variables). As might be guessed from this, local search
heuristics can easily, and typically do, get stuck in (or converge to) a local but not global optimum.
Therefore it is customary, and not terribly time-consuming, to carry out the entire procedure several
times, beginning each time with a different arbitrarily chosen initial configuration. Having repeated
the process many times and therefore likely having found many "different solutions," the problem-
solver would use the best result that was ever discovered during any of the searches.
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To illustrate the kinds of rearrangements of problem elements that have been found to be
effective, we look at a few classical combinatorial optimization problems. In the traveling salesman
problem, a solution is any sequence of cities that includes each city exactly once, in the order
visited. A very effective local improvement mechanism for generating a new configuration, known
as sub-tour reversal, is to select a sub-sequence of the cities and just reverse the order in which
that sub-sequence of cities is visited. For example, the tour shown on the left in Figure 10.1 is
represented by the sequence 1 - 2 - 3 - 4 - 5 - 6 - 1 . If we select the sub-sequence 2 - 3 - 4 and
reverse it, the resulting sequence 1 - 4 - 3 - 2 - 5 - 6 - 1 represents the tour shown on the right in
the figure. The quality of these two tours could be compared, and the better one selected by the
heuristic. This simple method was introduced by [Lin and Kernighan, 1973], and although more
complicated rearrangement schemes have been created and studied, this one seems often to produce
adequate results. It is easy to implement, and usually executes in a very reasonable and affordable
amount of computation time.

Many combinatorial problems can be described as "placement" problems. -For example, the
placement of electrical components on a circuit board can be designed with the goal of minimizing
the length of wiring required. The placement of equipment in a manufacturing plant would likely
be done to facilitate the flow of manufactured products through the various pieces of equipment.
Or the placement of data files in a computer network might be based on the amount of memory
space available at the various workstations as well as the cost of transmitting files from one
workstation to another. In any of these applications, a local improvement heuristic would begin
with any arbitrary feasible placement of the elements, then repeatedly consider the effects of
exchanging any two elements: any two electrical components, any two manufacturing machines,
or any two files. These are often called local exchange heuristics.

A minor modification to the exchange or "swap" idea is to arbitrarily select three objects
and consider various ways to move, shift, or rotate the three objects around to different places
in the system, continuing until no advantageous local rearrangement can be found. This approach
belongs to a class of methods that have been termed "k-opt" heuristics (in this case, k = 3).
These methods have been shown to give somewhat better results than just moving two objects
at a time [Carter and Price, 1988], and they do not take appreciably more computation time than
simple swaps or exchanges.

Local iterative-improvement heuristics are generally conceptually simple, easy to program,
efficient to execute, and give reasonably good results. If better, more nearly optimal, solutions are
demanded by an application, then more elaborate and sophisticated methods are available. One
example is a class of methods in which certain swaps or exchanges are forbidden ("tabu"), and
intricate rules govern the length of time ("memory") during which the moves may be forbidden.
In a sense, this approach is a contrast to both simulated annealing and genetic algorithms (discussed
below) which have no memory per se, and methods such as branch-and-bound which have a rigid
memory (i.e., the bounds calculated on nodes in certain areas of the search space). Tabu search
methods and concepts are summarized by the originator in [Glover, 1989]. Other heuristic methods
are inspired by search strategies from the field of artificial intelligence. The reader interested in a
serious overview of local search techniques will find a very useful discussion of current theoretical
and practical knowledge compiled by [Aarts and Lenstra, 1997], which contains contributions by
leading authorities on the various aspects of heuristic search methods. We will now take a look at
a few of the most interesting and widely used approaches to heuristic optimization that depend on
probabilistic strategies, and often give better results than local improvement heuristics.

10.2 OPTIMIZATION BY SIMULATED ANNEALING

Simple local improvement heuristic techniques for optimization typically suffer from a tendency
to converge to a local optimum that may not be a global optimum. This phenomenon is a natural
consequence of a computational process that moves monotonically in an improving direction, from
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FIGURE 10.1 Sub-sequence reversal.

an arbitrary starting point, as was discussed in Chapter 5 on nonlinear optimization. Simulated
annealing is a local improvement mechanism with a probabilistic twist, in which non-improving
moves are occasionally made, and which therefore offers chances for escape from local optima, in
the hope of arriving at a global optimum. This heuristic is based loosely on concepts from
thermodynamics, which deal with how a liquid substance is slowly cooled into a solid to produce
a stronger, more stable (less brittle) final product. The use of simulated annealing as an optimization
tool is due to the work of several researchers who were actually working in different disciplines
and at different times.

In the field of statistical mechanics, methods were developed in the 1950s to model the evolution
of a physical system through a series of slowly decreasing temperatures (an "annealing" process)
into a state of high order and low energy. During the annealing process, the temperature is reduced
slowly to maintain system equilibrium with respect to temperature. Both positive and negative
energy fluctuations are allowed, in contrast to a rapid quenching that would result in a disordered
or unstable system.

About 30 years later, researchers interested in mathematical optimization had the breadth of
scope and keen insight to perceive an analogy between the behavior of a physical substance in low
energy states and the nature of the iterative improvement that can be made in a large and complex
mathematical system that is in a nearly optimal configuration. States of low energy in the physical
system are viewed as being analogous to the nearly optimum configuration (as measured by a very
low objective function value) in a minimization process.

The analogy with combinatorial optimization is really just a variation on conventional iterative
improvement methods that begin with an initial feasible solution, repeatedly generate and consider
changes in the current configuration, and accept only those that improve the objective function. To
avoid the characteristic convergence to a local optimum that typifies deterministic local heuristic
methods, simulated annealing methods probabilistically accept configurations that temporarily
deteriorate the quality of the system being optimized. An acceptance probability is computed, based
on the change in the objective function and a "temperature" parameter. As the temperature is
appropriately reduced (this is called an "annealing schedule" or a "cooling schedule"), fewer non-
improving moves are accepted; thus, a coarse global search evolves into a fine local search for
optimality, and the probabilistic "jumps" provide avenues to avoid sinking into non-global optima.

Let us now look more carefully at simulated annealing as it applies to statistical mechanics,
and then we will investigate more precisely how to make use of the analogy to combinatorial
optimization. All physical systems are composed of large numbers of atoms, and only the most
probable behavior of the system is observed when the system is in thermal equilibrium at a constant
temperature. This behavior is characterized by the average small fluctuations of the atoms or
molecules about their mean positions within the substance. To observe different behaviors of a
substance (or system), atoms are allowed to change their atomic positions by altering the temper-
ature and then letting the system attain thermal equilibrium again. The most stable state of a system
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is the state associated with the lowest energy level. Under the assumption that atoms with config-
urations close to ground states dominate the properties of the system at low temperature, the
temperature of the system is lowered in search of the ground state.

The process of lowering temperature slowly so that thermal equilibrium is always maintained
is called an annealing process. A mathematical model has been developed to describe a system
in a stable state, that is, the most probable state with respect to temperature. Each possible
configuration of the system is defined by the Boltzmann probability factor

P(ri) = exp{-E(ri)/kT}

where each configuration rt belongs to the set of all possible atomic configurations, and

P(ri) = probability of a configuration r{

E(rt) = energy (in joules) of the system in configuration rf

k = Boltzmann constant (in joules per degree Kelvin)

T = temperature in degrees Kelvin

As is shown by the nature of the curve in Figure 10.2, when the temperature approaches a very
low value, the probability of the occurrence of a new configuration approaches zero because the
system is already in a nearly stable state. At low temperatures (i.e., when the system is in either
liquid or solid state), the exponent becomes very large and negative, and hence Pfo) approaches
zero. On the other hand, at higher temperatures, there is more atomic movement within the
substance, hence more different configurations occur, and therefore the probability of occurrence
of any given r4 becomes greater as temperature increases.

In the 1950s, [Metropolis et al., 1953] developed an algorithm known as simulated annealing,
which is used as a computational tool for efficiently simulating a collection of atoms in equilibrium
at a given temperature. In each step of the algorithm, an atom is hypothetically given a small
displacement. Before a displacement is admitted, initial energy E{ of the system is noted, and final
energy Ef is measured after the displacement. The difference between these two energy states is
calculated as

Probability

-30 -20 -10 0 10 20 30

Temperature (C°)

FIGURE 10.2 Boltzmann probability.

AE = E f-Ei
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If Ef is less than Es, then the system has moved from a high energy level (state) to one at a
lower energy level that is more stable than the previous one, and hence this displacement is
"accepted." (The system now assumes this new configuration.) In short, the new configuration is
unconditionally accepted when AE < 0.

But if AE is positive, the new configuration may be rejected and the current (more stable)
configuration maintained. The acceptance criterion is based on the Boltzmann distribution, thus,
the probability that the new configuration is accepted is

P(AE) = exp(-AE / kT)

At any given temperature, the simulation must continue long enough for the system to reach a
steady state. In other words, at a given temperature, the system at equilibrium is characterized by
a certain distribution of configurations, and the precise distribution emerges as the simulation
takes place.

In case it seems that we have wandered afar from the business of combinatorial optimization,
let's now restate the simulated annealing procedure, using terminology that is applicable to opti-
mization, as [Kirkpatrick et al., 1983] so ingeniously did in the early 1980s. In this context, a
"configuration" means some assignment of values to the decision variables. The temperature is
indicated by a simpler parameter which we will call 8 (theta), because physical temperature has
no absolute meaning in the optimization scenario. We will generate a sequence of classes of
configurations. Within each class, a parameter 6 determines the magnitude of objective function
value fluctuations that occur within that class. Each class is asymptotically distributed as a Boltz-
mann distribution, and the process of determining this distribution for any given value of 0 is called
equilibration. The optimization process actually is comprised of a series of equilibrations; each
equilibration is associated with a temperature parameter 6, and equilibrations are done at succes-
sively lower temperatures.

Each equilibration begins with the system in some initial configuration, and carries out the
following process until a stable distribution of configurations has been generated:

Generate a new configuration arbitrarily.
Calculate AF = new objective function value - current objective function value.
If AF ̂  0, then accept new configuration unconditionally.
If AF > 0, then accept new configuration only with probability exp(-AF/0)

When it is reasonably obvious that further iterations of this process will have no significant effect
on the distribution of configurations, the equilibration at the current temperature is complete. The
most frequently occurring configuration is chosen as the initial configuration for the next equili-
bration process that will take place using a lower temperature parameter 6.

Equilibrations are carried out until it is observed that practically no configurations are being
generated (and accepted) that have a better (lower) objective function value than the current
configuration (i.e., until the "acceptance ratio" is essentially zero). At this point, the heuristic
optimization process is complete, and the best configuration seen so far is taken as the result. The
entire process is illustrated in Figure 10.3.

Thus, in the same way that physical substances are cooled in a controlled manner (perhaps to
attain a crystalline structure instead of an amorphous glass structure), so can combinatorial systems
be first "stirred up" and then slowly sloshed around until they congeal into an orderly (perhaps
nearly optimal) configuration having a low objective function value. The analogy has a certain
appeal, but what about implementing the idea?

Simulated annealing is a technique that can be quite easy to implement. Specific details of an
implementation often depend on the type of problem being solved.
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FIGURE 10.3 Simulated annealing.
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The annealing schedule (or cooling schedule) is usually determined by trial and error,
or dynamically through real-time observation during the process itself. The practitioner
must choose the initial value of the temperature parameter O and the amount by which
0 is to be decreased at each equilibration.
It must be decided how to generate new random configurations, what decision variables
to change, and whether to check feasibility of each new configuration. And if infeasible
configurations are allowed, a means must be invented to measure the objective function
(quality) of an infeasible configuration.
How many new configurations should be generated and considered during each equili-
bration? It may be some fixed number of new configurations, or until the configurations
that occur have appeared some specified number of times. Perhaps every entity (decision
variable) should be changed, or at least have had a chance to be changed at least once.
This issue has a strong impact on the computation time required for the simulated
annealing process to execute.
Implementation of the probabilistic decision of whether to accept a "bad" move is simple,
and usually done in the following way. Generate a random number r in the interval (0, 1);
if r is less than exp(-AF/0), then make the change; otherwise maintain the current
configuration.
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• At the end of each equilibration, some implementations choose the best configuration
seen, rather than the most frequently occurring one, to use as the initial configuration in
the next equilibration. Although this practice may seem to accelerate the convergence
process, it can also be argued that it tends to drive the process more rapidly toward a
non-global optimum.

Although there are some theoretical results that describe the performance and convergence
properties of optimization by simulated annealing [Anily and Federgruen, 1985], [Lundy and Mees,
1986], and [Kirkpatrick, 1984]), the most valuable guidelines for the analyst are gained through
experience and observations of empirical results on specific application problems. Simulated anneal-
ing generally takes somewhat longer (more computation time) than simple local-improvement
heuristics, but there is typically some performance advantage that results from the structured
randomness of simulated annealing.

10.3 PARALLEL ANNEALING

The good-quality solutions obtained by simulated annealing heuristic methods are often paid for
with substantial computational effort. Although the staged cooling regimen seems to be an inherently
sequential process, recent research has been aimed at the development of models to reduce com-
putation time through parallel processing.

In conventional simulated annealing, each new random configuration is typically generated by
changing the value of one (or a very few) decision variables at a time. But imagine instead a
multiple-processor computer in which there is a processing unit associated with every decision
variable in the problem being solved. (Incidentally, it is entirely reasonable to expect that such
hardware will be available in the near future for use on optimization problems [Aarts and Korst,
1991].) Then the processing units could independently and asynchronously consider changing the
values of their individual associated decision variables, each applying a simulated annealing process
to evaluate the merit of such a change.

As long as processing elements consider their changes only one at a time, asymptotic conver-
gence to a global optimum is guaranteed [Aarts and Korst, 1989]. Unfortunately, processing units
operating in parallel are basing their simulated annealing decisions on information that is unstable,
because other variables may be simultaneously undergoing changes that are not currently recorded
in any centrally accessible location.

If some element of centralized control were introduced into this asynchronous system, then
statistical convergence guarantees could be preserved. Examine Figure 10.4, in which it is assumed
that there are N processing units, one for every decision variable, each individually carrying out a
simulated annealing process, but unaware of decisions being made by any other processing unit.
In the figure, the portion of the computation that could be performed by parallel processors is
outlined in dashed lines. After all processing units have either accepted or rejected their proposed
changes (based on a first-level temperature parameter 0,), a centralized control component then
assimilates the individual changes and constructs a new global configuration. This new configuration
now must pass through a global filter, which is another simulated annealing acceptance test based
on a global temperature parameter 02. In this way, the computational power of many free-wheeling
asynchronous processors is checked at intervals by the centralized control, which ensures eventual
convergence [Lucas and Price, 1992].

Parallel annealing systems such as just described have been given the name Boltzmann
machines. Over the past few years, Boltzmann machines have taken many forms, depending on
the problem at hand and the analyst's viewpoint, goals, and experience. In most cases, although
there is parallelism, an element of sequentiality has been maintained because of the inherent
requirement for monotonic cooling, and hence monotonic reduction of temperature parameters."
More recent research has revealed that collapsing the timeline to a point, and randomly activating
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processing units at different temperatures (acceptance parameters) also works remarkably well,
while alleviating any need for centralized control over the synchrony of the processing units.
Cascading Boltzmann machines together in this way, with data-sharing among corresponding
processing units at different temperatures, has proven to be an effective means of overcoming the
time dimension through the use of multiple processors [Coughlin and Baran, 1995], [Price and
Wahsheh, 1999]. Through this mechanism, spatial complexity is employed to compensate for
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temporal complexity — a common trade-off in the world of parallel computing that may serve us
well in the realm of combinatorial optimization. Experimentation with heuristics based on parallel
annealing is likely to continue to be an area of active research as parallel processing hardware and
software designs mature.

10.4 GENETIC ALGORITHMS

Analogies between computational processes and natural phenomena seem to be quite appealing to
problem-solvers, and simulated annealing is but one such analogy that has been effective and
therefore popular. Biological analogies are particularly fascinating, and over the past 50 years have
sparked many debates over whether machines can think or reason, and what techniques could and
should be used to make machines compute in "clever" ways. Genetic algorithms are a type of
search algorithm for finding optimal solutions to computationally difficult problems, and are based
on analogies to biological reproductive processes. Computers and biological genes are similar to
each other in the sense that both are able to record, copy, and disperse information. Genetic
algorithms operate iteratively, over many "generations," in such a way that only the "fittest"
solutions survive, and thus these algorithms function as mechanisms for optimization.

The basic ideas for these methods were developed by [Holland, 1975] during his investigations
on how to build computing machines that are capable of learning. Inspired by the flexibility and
adaptability that he observed in biological systems, he contended that rather than using and refining
a single learning strategy, it was more advantageous for a machine to use a "breeding" of multiple
strategies. The term "genetic algorithm" was popularized in a 1975 publication of Holland's work.
Immediately thereafter, genetic algorithms began to be used successfully in scores of applications,
which now include job-shop scheduling, pipeline systems, vehicle routing, keyboard design, and
variations of the traveling salesman problem, to mention just a few. More important, these
successes have prompted active research into the study of how various biological analogies can
influence computing, as well as how computational models can give insight into the workings of
biological systems.

Genetic algorithms operate by maintaining a "population" of feasible solutions to a problem.
Each solution is evaluated (e.g., using its associated objective function value). The best solutions
are selected for reproduction and are grouped into pairs. Solutions that are less fit tend to not be
selected and therefore die off and get replaced by other solutions. Then, within each pair of solutions,
genetic modifications take place, which are described in terms of mutations and crossovers, resulting
in a new breeding population that can repeat the process. The goal of optimization is served by
selecting the best solutions for breeding, and introducing possible improvements through genetic
crossovers, while mutations are introduced occasionally to prevent rapid convergence to a local
non-global optimum.

Biological terminology abounds, although the adaptation of terminology is not always com-
pletely consistent with the corresponding biological meaning. Within the breeding population,
individual solutions (encoded as strings) are referred to as chromosomes; the individual features
in each chromosome are called genes; and the value of a feature in a given chromosome is called
an allele. Using this terminology, we can now describe the entire process in greater detail.

First, a method is devised for mapping each feasible problem solution into a string (usually a
binary string). The encoding mechanism depends entirely on the type of problem being solved, but
usually it involves the values of the decision variables. Then it must be decided how many of these
"chromosomes" to include in the breeding pool; a large pool increases diversity, but will have the
effect of slowing the operation of the algorithm. An initial population is chosen arbitrarily.

Next, the fitness of each string is evaluated, based on the objective function value corresponding
to the encoded solution, and possibly also on problem constraints. For uniformity, the fitness values
are typically normalized into the range of 0 to 1.
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The selection of chromosomes (solutions) that will participate in reproduction is inspired by
Darwin's [Darwin, 1859] "survival-of-the-fittest" theme. A proportional selection scheme favors a
larger number of fit solutions, and allows fitter solutions to be chosen more than once, and weaker
solutions to be possibly excluded entirely. A "roulette wheel" model provides a simple mechanism
for this. Each string is associated with a sector on the wheel whose angle is proportional to the
string's fitness. A random number is generated and assigned a point on the wheel. If the point falls
within a particular string's sector, then that string is selected.

After selection, pairs of chromosomes are formed at random and are subjected to certain genetic
manipulations; that is, modifications to the genes in the parent chromosomes. A process called
crossover swaps a part of the genetic information contained in two chromosomes. Typically, a
substring position in the chromosome (solution) is randomly chosen and the genes (string elements)
within that substring are exchanged, forming two new offspring to replace the parents. The exact
nature of crossovers is application specific, and must be done in such a way that resulting strings
correspond to meaningful and feasible problem solutions. The recombination process can introduce
improved genetic building blocks but will, on occasion, inadvertently disrupt favorable genetic
structures. This (together with the selection of the fittest) may have the effect of driving the
evolutionary process toward a local optimum. To overcome this, mutations are allowed to occur.

A mutation is simply a random reversal of one or more bits in a chromosome. Mutations are
infrequent, but have the effect of reintroducing bits into the string that may be essential for an
optimal solution and that may be currently absent in the breeding population. A higher probability
of mutation tends to make the genetic search more broadly random, which can slow the convergence
of the algorithmic process.

The offspring strings produced through these genetic manipulations may either replace the
entire previous population or just the less fit members of the population. In any case, the cycle of
creation, evaluation, selection, and manipulation is repeated until a specified number of generations
have passed or until acceptable problem results are achieved.

Example 10.4 Suppose an optimization problem involves six zero-one variables, and that
solutions can therefore be encoded as binary strings in the range 000000 through 111111. Let the
initial population contain four chromosomes, as shown in Figure 10.5(a), with the fitness ratings
indicated in the figure. A selection process might select the chromosome with fitness .40 twice,
the one with fitness .30 and .25 once each, and the one with fitness .05 not at all. After a pairing,
we could have the breeding pool shown in Figure 10.5(b). A crossover mechanism might generate
swaps in string position 6 for the first pair and in string positions 3 and 4 for the second pair,
resulting in the four new offspring strings shown in the figure. Random changes could then be
introduced as mutations, then the offspring reintroduced into the population where evaluation and
selection would be repeated.

Note that although this example implied a trivial encoding of the six binary decision variable
values into a chromosome string, other more elaborate problem solution encodings may be necessary
for different problems. For example, a mathematical programming problem with continuous deci-
sion variables may require many bits to encode a binary representation of each of many decision
variables, resulting in long strings of thousands of bits for each solution (chromosome).

Genetic algorithms often seem to work quite well, no matter how they are designed. Yet, during
the 1980s, genetic algorithms were recognized as having certain shortcomings that rendered them
suspect as optimization tools. Practitioners introduced a number of modifications that improved the
performance of genetic algorithms while preserving the attractive image of the concept of evolution
by combination. Variations such as combining more than two parents simultaneously, using multiple-
point crossovers, and generating local improvements (rather than merely random mutations) in the
breeding population, all seem to challenge the integrity of the biological model but do contribute to
the quality of optimization results. One easily gets the impression that our experience with genetic
algorithms is entirely empirical and unfounded in theory. However, error bounds have been devel-
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FIGURE 10.5 Genetic algorithms.
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oped, indicating some recent theoretical progress [Goldberg et al., 1992; Goldberg, 1989; 1994]. A
good overview of recent work on genetic algorithms is found in [Reeves, 1997].

Genetic algorithms lend themselves readily to computational parallelism at several levels.
Because optimization is typically being performed within a large search space, different processors
could be used to search different neighborhoods simultaneously. Alternatively, different processors
could operate on different breeding populations over the entire search space at the same time. At
a lower level, once pairs are selected, genetic manipulations are independent of each other, so
multiple processors could perform crossovers and mutations simultaneously. Then, offspring would
migrate across the network into either centralized or distributed selection processes in the next
generation. Research continues to investigate the potential for parallelism within genetic algorithms.

10.5 NEURAL NETWORKS

Traditionally, mathematicians and computer scientists have concentrated on developing and using
computational processes whose mechanisms are well-understood and which are known to yield
exact or nearly exact results. But for many tasks we simply do not know what the algorithm or
mechanism is. For example, recognizing a face, classifying patterns of various sorts, reading
handwriting, operating or driving machinery, interpreting a picture, or making various practical
decisions are tasks that humans seem to do readily although we are not aware of the underlying
algorithms involved in the processes. When analyzing such tasks, in the hope of having a computer
perform them, it is natural to try to understand how the human brain is involved in these tasks and
then to model our computational process on the successful human process. This is exactly the goal
of neural networks and neural computing.

Attempts to develop computational models based on brain-like systems have been made by
researchers from diverse disciplines. Psychologists are interested in describing how learning takes
place within living beings. Engineers wish to build computing devices with specialized capabilities.
Those working in artificial intelligence want to understand reasoning and decision processes.
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Mathematicians are developing a more formal and precise description of the capabilities and
limitations of neural processes. With so many areas of expertise represented, it is not surprising
that a very wide range of ideas is feeding the development of neural network techniques.

Although recent interest in neural models has indeed been enormous, the analogy between neural
systems and computing systems has been apparent over several decades and was noticed in the early
1950s by visionaries such as John von Neumann and Alan Turing. In 1943, an article published by
[McCulloch and Pitts, 1943] described the functionality of the human brain in terms of many
interacting parts whose operation depended on the interconnections between these parts. This view
naturally sparked the imagination of many people who had any knowledge of and appreciation for
electrical circuits. A neuron-like device called "Perceptron" that exhibited "intelligent" behavior was
developed by [Rosenblatt, 1957]. His work along with that of several others including Selfridge,
Widrow, and Hoff, generated enormous enthusiasm that led to claims that could not at the time be
substantiated. The excitement, speculation, and even hype surrounding these claims were answered
by [Minsky and Papert, 1969], who took a sane and careful look at the provable capabilities of the
perceptron model. So convincingly did Minsky and Papert argue the limitations of neural models
that research was almost entirely abandoned in this area. At that point, neural networks began to be
viewed with great skepticism, and the entire subject was considered by some to be an unfashionable
and unworthy topic for serious and talented researchers to engage in. A period of nearly 15 years
during which this perception persisted has been referred to as the "neural winter."

The situation was reversed rather dramatically in 1982 when John Hopfield correctly demon-
strated that important problems could indeed be solved by computational processes based on neural
models. In particular, he showed that neural networks were effective in solving combinatorial
optimization problems such as the traveling salesman problem. Shortly thereafter, [Rumelhart,
Hinton, and Williams, 1986] derived a learning algorithm, called "back propagation," for a percep-
tron-like network. These events set the stage for a resurgence of interest in the neural network
arena, and had the effect of restoring respectability to this area of endeavor. During the past decade,
remarkable contributions have been made by both researchers and practitioners, so that neural
networks are now considered among the most useful standard tools in decision-making and oper-
ations research.

Common to almost all neural computational models are the notions of "connectionist" com-
puting, in which performance is achieved through the suitability and sophistication of the connec-
tions among processing units (neurons) rather than through the computational power (speed or
sophistication) of the individual processing units. Biological neural systems consist of a large
number of neurons richly interconnected in patterns that are still not well-understood. It appears
that the communication and feedback among neurons is responsible for the effective functionality
of neural networks. One appealing aspect of connectionist computing models, and consequently
neural models, is that it is technically feasible to implement these models with actual electronic
computing devices.

The processing that takes place in a neural network mimics'that which occurs in a biological
neural system. Each neuron receives signals through all its inputs, and if the combined "information"
exceeds a specified threshold, then the neuron is said to be "activated" and this response is then
visible to (and is received as an input to) all neighboring neurons.

There may be different weights on the connections that serve to reinforce or reduce the values
of the inputs coming in on the connections. At any given time, the consensus of the neural network
is defined to be the sum of all the weights on connections that link activated neurons. All the
neurons repeatedly and simultaneously react to the states of all neighboring neurons, and ultimately
the entire neural network stabilizes (or converges) to a "maximal consensus." At that point, the
activation values of the neurons can be interpreted as elements of the solution to the problem.

The weights on the connections between neurons effectively represent "knowledge" inherent
in the network. Thus, by assigning specific problem parameters as weights on the connections, the
network can be made to comprise a distributed representation of the problem being solved. The
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matter of determining appropriate weights for the connections is dealt with through a process of
learning (or training). A technique known as "supervised learning," often used in pattern classi-
fication applications, presents to the network several sample problems along with known correct
solutibns, and determines how the weights should be modified to correct for differences in the
actual and desired outputs. With "unsupervised learning," there are no known correct answers;
rather, the network learns a class of similar patterns through repetition. A back-propagation training
algorithm modifies weights so as to minimize some standard measure of error (such as the sum of
squares of errors).

As might be already apparent, establishing connection weights, and then appropriately modi-
fying the weights through training, is an art that depends on the nature of the application. In an
application such as pattern matching (e.g., identifying handwritten letters of the alphabet), it is
straightforward to submit handwritten samples and then repeatedly adjust weights so that the neural
network responds reliably with the known "right" answer. In contrast, combinatorial optimization
deals not with guessing a known solution but rather with creating a good solution when there is
no known solution to "match."

The structural pattern and strengths of the connections within a neural model determine the
overall behavior of the system. The weights on the connections are fixed to reflect the problem
being solved, although determining just what these weights should be, for many different types of
problems, remains an area deserving of further study. Some mechanisms for defining the weights
have been derived for certain classical combinatorial optimization problems such as the traveling
salesman problem and resource allocation problems. The Boltzmann machine described in Section
10.3 is actually a generalization of a neural network known as a "Hopfield network," wherein an
optimization problem is mapped into a neural model in such a way that maximizing the consensus
in the neural network is equivalent to minimizing the objective function in the optimization
(minimization) problem. In the Boltzmann machine model, simple neuron-like processing units
operate in parallel, adjusting their states to the states of neighboring processing units until the
network converges into some "globally stable" (or "optimized") configuration.

The application areas listed in Table 10.1 are intended to provide a feel for the wide variety of
problems that have been successfully addressed with neural network techniques [Widrow, Rumelhart,
and Lehr, 1994]. Although there is commercial software for solving problems with neural networks
(often combined with or confused with expert system software), it is still necessary to rely on an
analyst's skill and experience to successfully tailor the operation of a neural computing model to a
specific class of applications. And finally, part of the appeal of neural computing models is the
prospect of eventually implementing the models with actual electronic computing components. Thus,
implementation tools may soon incorporate both hardware as well as software innovations.

10.6 GUIDE TO SOFTWARE TOOLS

Software implementations of local improvement heuristics and simulated annealing methods are
simple to develop in any general-purpose programming language. Appropriate data structures can
easily be chosen that represent not only a current problem configuration, but also proposed mod-
ifications to the current configuration. Standard library functions for generating random numbers
are convenient for effecting the probabilistic acceptance of such modifications, as required in
annealing models. Because of the ease of developing such programs, and because the details of
the implementation are often very application specific, commercial software is not typically needed
for these heuristic techniques.

Commercial software based on genetic algorithms is available in various packages, and a good
survey may be found in [Filho et al., 1994]. Many of these application-oriented systems tend to be
designed for the business or scientific professional who is happy to have the implementation details
hidden from the user. Software products such as Omega and Xpert Rule Gen A Sys are menu-
based rule systems that have spreadsheet interfaces. Evolver, a product of Palisade Corporation,
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TABLE 10.1
Neural Network Application Areas

Pattern Classification
Credit card fraud detection
Bank character recognition
Hand-printed character recognition
Manufacturing quality control
Locating underground oil and gas deposits
Medical applications
Speech recognition

Financial Analysis
Financial forecasting
Portfolio management
Loan approval
Marketing analysis
Bankruptcy predictions

Control and Optimization
Chemical and petroleum process control
Vibration damping
Line equalizers and echo cancellers in telecommunications systems

provides for creating the application model in a spreadsheet, and then solving constrained optimi-
zation problems using genetic algorithms [Bergey and Ragsdale, 1999].

Algorithm-oriented systems implement a single specific genetic algorithm or may include a
library of several algorithms. They are targeted toward system developers and researchers who
need to incorporate reliable general-purpose genetic algorithms into their own applications. They
are modularly constructed for efficient system integration. Examples of such systems include
GAGA (Genetic Algorithms for General Applications), Genesis (primarily for the scientific
research environment), Genitor (Genetic Implementor), OOGA (an object-oriented system),
and GAUCSD (developed at University of California San Diego, to run in DOS, Cray, VMS and
Unix environments).

General-purpose systems such as MicroGA provide totally flexible environments in which
users develop their own production applications and algorithms. They provide sophisticated
graphical user interfaces, a high-level language for programming genetic algorithms, a rich library
of algorithm components, and an open architecture (including even translators to distributed or
parallel machines). In this category, NASA's software distribution service COSMIC offers a
Windows-based package called Splicer, developed jointly by Mitre Corporation through Johnson
Space Center.

A valuable tool for software development and computational experimentation is available in a
C++ class library that provides a vehicle for using, testing, and combining heuristic procedures for
optimization. This library includes genetic algorithms, simulated annealing, and tabu search meth-
ods [Woodruff, 1997].

There is an abundance of software available that incorporates a variety of neural modeling
techniques. The reader should be aware that the majority of such packages are not aimed at
optimization, but rather at the many other different types of problems for which neural networks
have been used, such as pattern analysis and various decision processes. In section 10.5, we
approached neural networks for optimization as being essentially parallel annealing processes.
Software for such purposes is typically developed by an analyst as a simulated or actual parallel
implementation of a standard annealing algorithm.
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10.7 ILLUSTRATIVE APPLICATIONS

10.7.1 FeoEx FLIGHT MANAGEMENT USING SIMULATED ANNEALING
[CAMPBELL, DURFEE, AND MINES, 1997]

Federal Express (FedEx) is the world's largest express transportation company. Delivering 2.5
million packages in over 200 countries every working day, with 500 aircraft and 3000 pilots, it is
not surprising that the company must rely on a variety of analytical tools for scheduling and
coordinating its activities.

In 1993, during negotiations involving pay rates and work rules with the Air Line Pilots
Association, the 20-year-old company recognized the need to be able to evaluate alternatives to its
traditional methods for scheduling work for its pilots. In particular, they needed a way to automat-
ically build individual trips (flight legs) into lines of work (called "bid lines"). The method needed
to be sufficiently fast and efficient that many alternatives could be generated, compared, and
considered during, as well as after, negotiations with the pilots' association.

The scheduling questions demanded the use of a so-called "bid-line generator," software that
could compose units of work for pilots to bid on. The goal is to maximize the amount of flying
assigned to bid lines and minimize the number of bid lines. Pilots submit bids by listing their
preferred sequences of flights, and work assignments are made according to the pilot's seniority.

The number of inputs and constraints for generating the bid lines make the problem almost
overwhelming. Considerations include

• aircraft type
• crew size and requirements
• origin and destination cities
• layover cities
• number of trips in a line
• scheduled times and days
• FAA regulations governing flight periods and rest periods
• FAA day off and maximum duty length regulations
• crew turnarounds
• international/domestic mixtures (generally undesirable)
• week on/week off mixtures (generally desirable)

The bid line generator should generate bid lines that not only meet the hard constraints but that
maximize line value (desirability to the pilots and productivity for FedEx) and minimize cost over
all bid lines.

Details were kept to a minimum, but so many factors contribute to. the composition of bid lines
that the zero-one integer programming model, with all its constraints, quickly became unwieldy
— even to formulate, and much more so to actually solve. Simulated annealing proved to be the
solution method of choice for this problem. Implementation was in C++ on a Unix workstation.
The random changes to a current configuration involved arbitrarily selecting two bid lines, then in
each, selecting a trip (flight leg) and exchanging them. The exchanges were accepted according to
the usual probabilistic threshold until, as temperature parameters were lowered, there were no new
changes accepted.

It is not especially surprising that FedEx analysts chose simulated annealing as their optimi-
zation heuristic, nor that simulated annealing eventually served their needs successfully. The real
lessons to be learned here are first to notice how very awkward the analysts found this real-world
problem to be. The sheer number of constraints from federal agencies, labor organizations, company
resources, and normal crew preferences, were a serious challenge that had not been adequately
faced throughout the previous 20-year history of FedEx. Second, although simulated annealing
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appears on the surface to be a relatively straightforward heuristic, the practical implementation
presented several hitches.

Some of the drawbacks of simulated annealing were anticipated. Performance is very sensitive
to the control parameters and the annealing (cooling) schedule. Extensive experimentation was
done to fine-tune the system, and the maximum number of equilibrations was finally set to 300.
Also, the heuristic can be fairly time-consuming to execute and there is no guarantee of optimal
solutions. And because it generates potential changes randomly, it does not easily incorporate
strategies for directed search. Nevertheless, despite these obstacles, some of the analysts had prior
experience in using simulated annealing to solve problems in aircraft container loading and per-
sonnel and task scheduling, and they had great confidence in this heuristic method. Yet unanticipated
difficulties followed.

The heuristic tended to produce too few valid lines and too much unassigned open time. This
was remedied by tacking on a greedy algorithm (as a second pass after simulated annealing) to
distribute open time into new lines (without modifying the high-quality lines built during the
annealing phase).

It was discovered that the initial heuristic did not give proper consideration to coordination of
morning and afternoon trips, an important element in the minds of the pilots. The introduction of
weighting factors addressed this problem satisfactorily.

One surprising observation was the critical importance of the initial solution in the behavior
of the simulated annealing algorithm, which had previously been thought to be irrelevant and
arbitrary. It became necessary to jumpstart the process by concocting initial lines by putting trips
to the same first layover city on the same line, and making fewer lines.

There were other problems as well. The bid line generator was first built for the FedEx Boeing
727 fleet of aircraft. When initial implementations seemed stable, additional fleets were introduced,
but the process then immediately yielded poor results. The problem was studied, and analysts found
that the difficulty lay in the fact that different types of aircraft flew different length trips. When the
process was tuned in favor of shorter trip aircraft such as Boeing 727 and DC 10, the longer Boeing
747 flight legs became problematic. The solution to this issue involved some fundamental changes
to the simulated annealing process based on categorizing the fleet according to average trip lengths.

It was also recognized along the way that the system needed additional data about its trips and
lines that simply were not readily available. And some data files were found to be erroneous. A
time-consuming effort to upgrade the underlying databases proved necessary and beneficial, and
taught the analysts to be extremely cautious about blindly assuming that input data files are complete
and free of errors.

Finally, in this implementation, the simulated annealing process did not always converge at all.
The "churning" behavior resulted when proposed changes having a net cost of zero were accepted,
and the phenomenon was worst when a large proportion of the proposed changes had no impact
on the objective function value but nevertheless involved complicated changes to the bid lines being
constructed. No direct solution to this difficulty ever materialized, and the analysts viewed this as
evidence of the limitations of any heuristic method in solving very complex real-world combina-
torial problems.

Run-times for the simulated annealing heuristic vary with fleet size, requiring* 30 minutes for
the smaller fleets and up to 10 hours of SPARCstation time for the largest (Memphis-based) fleet.
Churning can affect all of these run-times.

Federal Express generally considers this system to be a valuable and practical analytical tool,
which can automatically produce bid lines of a quality comparable to those produced laboriously
by other methods. As is typical of many heuristic methods, simulated annealing clearly cannot
build a tidy solution out of a messy problem, but it does appear to be a practical tool for effectively
handling problems that heretofore could not be dealt with at all.
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10.7.2 ECOSYSTEM MANAGEMENT USING GENETIC ALGORITHM HEURISTICS

[HUGHELL AND ROISE, 1995]

Managing a forest with the aim of profitable timber production and wildlife preservation is a good
example of a multi-objective problem, in an environment of uncertainty, for which no single
conventional optimization technique is adequate. A decision support system developed for ecosys-
tem management in a North Carolina pine forest couples a wildlife behavior simulation model with
an integer programming model that is solved using a genetic algorithm

Foresters in the Croatan National Forest needed to address the question of how best to manage
a 3000rhectare region to sustain a dependable flow of timber while not destroying the foraging
territories and nesting sites of the red-cockaded woodpecker. Conventional management schemes
are typically based on "optimal" activity schedules; but in this case, the planning horizon covered
20-year harvesting cycles over a period of up to 200 years, during which there would be considerable
environmental uncertainty as well as normal periodic re-evaluation. A strictly optimal harvesting
schedule could easily become infeasible over time. What was needed was a decision support system
that permits flexibility and presents a selection of "good" harvest schedules that could still be
implemented in the face of environmental changes.

Stochastic wildlife group behavior simulation models have become valuable tools in the study
of wildlife species viability. The red-cockaded woodpecker (RCW) model involves groups of
individual birds having given attributes and foraging and breeding characteristics in 5-year cycles.
The complex behavioral activities of RCW groups are abstracted down to fit into a lattice of 4-
hectare forest landscape stands. Nesting and foraging suitabilities are calculated at the beginning
of the cycle, and then simulations are carried out to determine the probabilities of various eventu-
alities, including:

• migration or mortality of RCW groups with inadequate or unsuitable foraging and nesting
resources

• sharing of landscape by multiple groups of RCW
• RCW group splits
• successful breeding and nesting
• RCW extinction

Simulation results are stored for subsequent incorporation into the larger decision process.
The timber stand model covers successive 20-year cycles of harvesting and regeneration. Details

of the model include appropriate intermediate cuts, understory management through controlled
burns, and primary stand harvests (which leave around 15 trees per hectare, 6 trees per acre). The
overall management decision is the selection of a harvest schedule that maximizes the minimum
timber volume harvested in any one management period and that supports the RCW proximity
constraints. It is known that the optimal stand age for timber production is around 60 years, while
the optimal stand age for woodpecker foraging is over 100 years. To represent this apparent
mismatch, buffers are defined around each RCW nesting group, and parameters are introduced into
the model to specify the minimum harvest age inside the buffer and outside the buffer. Through
these constraints, the harvest schedule can respond to changes in the location of RCW groups; and
herein lies the multi-objectivity of the optimization problem and the need for a feedback manage-
ment policy.

The most obvious way to solve a two-objective problem is to perform a series of single-objective
optimizations with one objective fixed and the other optimized. Because neither timber nor endan-
gered wildlife are to be treated as fixed constraints in this ecosystem, this traditional approach is
not appropriate. Instead, varying the parameters in the RCW proximity constraints permits the
development of management policies that balance the benefits for both timber production and
woodpecker viability.
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The resulting optimization model takes the form of an integer linear programming problem.
The problem was solved with a conventional branch-and-bound algorithm but it was recognized
that in the natural world of uncertainty and changing assumptions, the concept of optimality may
itself be problematic. The harvesting schedule deemed to be optimal at one time may turn out to
be infeasible in the long run.

To achieve the flexibility needed to make the decision support system workable, the forest
managers turned to the use of a genetic algorithm. The genetic algorithm heuristic starts with a
random set of feasible harvest schedules (a population of solutions) that, based on their quality,
are copied into the next generation. Genetic operations of crossover and mutation take place, and
then the process repeats. (Here, the quality of a solution is the minimum one-period wood volume
harvested, which is to be maximized.)

In this evolutionary algorithm, each feasible harvest schedule (i.e., each configuration of
decision variable values) is a chromosome, which is comprised of genes (decision variables asso-
ciated with individual stands), each of which is assigned an allele (a set of decision variable values
prescribing a harvest schedule for the stand). After initially random schedules are created, chro-
mosomes are copied into the next generation in such a way that those of superior quality contribute
multiple copies at the expense of under-representation by those chromosomes with inferior quality.
Randomly chosen chromosomes are paired for crossover; and for each pair, a certain percentage
of the genes are selected and their alleles switched. Mutations occur as a certain percentage of
chromosomes are chosen and in each a randomly selected gene (stand) is assigned an arbitrary
feasible set of decision variable values (stand harvest schedule).

By allowing this genetic process to repeat over many generations, a population of "good"
harvest schedules is generated in a small fraction of the time that it takes a branch-and-bound
algorithm to generate a single optimal solution. Croatan National Forest managers are convinced
that a set of good choices, for a system fraught with uncertainty, is much more valuable than one
"optimal" solution whose feasibility may become suspect in a changing ecological environment.
In this context, the set of stands chosen for harvesting in the current management period is that set
of stands represented in the largest number of "good" harvest schedules in the evolved solution
population.

The decision support system that incorporates the wildlife behavior model, the stand charac-
teristics, and the RCW proximity constraints together with the genetic heuristic search process,
identifies the best solutions and displays the "critical" solutions for which an improvement in one
objective (timber or woodpeckers) is gained only at the expense of the other. As had been expected,
those schedules specifying longer rotations support larger populations of woodpeckers, while shorter
rotations increase timber production. Feedback at 20-year cycles allows for the selection of a harvest
plan, followed by adjustments to the RCW simulation model, followed by another timber harvesting
decision, repeated throughout the 200-year horizon.

The set of options produced by this system allows forest managers to dynamically achieve a
sustainable flow of timber production throughout the long planning horizon, which can be modified
in response to the requirements for successful co-existence with wildlife. The system was developed
in C++ with object-oriented programming techniques, and run on a PC prior to being ported to a
workstation platform. The ORSYS Operations Research System was used to obtain the branch-
and-bound solutions.

10.7.3 SCHEDULING OIL FIELD DRILLING RIGS USING SIMULATED ANNEALING
[EAGLE, 1996]

Oil companies typically operate in many oil fields and may have hundreds of potential well sites
ready for drilling, but only a relatively few drilling rigs. Rigs are expensive and can drill only one
well at a time; therefore, drilling rigs represent a scarce resource that must be carefully scheduled.
It is necessary to sequence or rank the drilling opportunities over a period of years when scheduling
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the development of a large field or in planning a portfolio of such development investments in
multiple fields, under constraints of limited capital, equipment, and personnel. BP Exploration
devised a planning tool for optimizing its portfolio of projects in the Prudhoe Bay field, and was
able tp increase the net present value of the portfolio by $30 million during the first year of using
the new system.

A standard approach for ranking potential projects is simply to sort them by some well-known
economic measure (such as net present value) and give highest priority to the most valuable projects,
subject to resource availability. This approach implicitly assumes that any projects not undertaken
immediately will still be available and will retain their current attractiveness for future consideration.
It also assumes a stable market and little (or at least very predictable) competition.

In the oil drilling industry, net present values are not stable over time. The attractiveness of an
oil well is perishable over time, and different components of the net present value perish at different
rates. Reservoir pressure may fall over time as the field produces, so a new well drilled at a later
date will likely flow at a lower rate than the same well drilled immediately. Also, the field containing
the potential drilling site may be shut down for any of several reasons that would mark the end of
the life of the well even though it may still be a good producer; so a well drilled early may have
a longer productive life overall. And in a simplistic but realistic sense, a well having a given life
of productivity is of greater value if that productivity occurs earlier rather than later, because of
the greater value of money in the present. All of the above interpretations are complicated by
fluctuating oil prices or changes in the availability or costs of rigs.

General project ranking techniques were not applicable to this problem involving unstable
markets and projects of perishable value. The problem can be formulated as an integer programming
scheduling problem, but the size of the problem (700 wells) leads to a combinatorial explosion of
drilling sequences that would overwhelm even a well-designed branch-and-bound strategy.

Realizing that transporting the drilling rig itself from one well site to the next constitutes an
expense that must be figured, the analyst chose to model this sequencing problem as a vehicle
routing problem in which the rigs are the vehicles and the well sites are the cities to be visited.
The objective in the vehicle routing model is to minimize the total path length, so all the well
drilling costs and diminishing production values were incorporated as parameters in the routing
model. Once the problem had been cast into this format, the analyst considered simulated annealing
as an obvious choice for a solution method.

The reconfigurations used in the simulated annealing procedure were simple random moves of
individual wells and random swaps of two wells. (The more elaborate improvement mechanisms
employed by [Lin and Kernighan, 1973], upon which many simulated annealing systems are based,
were not used because too many infeasibilities would have been introduced.) The program is written
in Fortran and runs on an RS/6000 computer. Further enhancements to the system include secondary
3-year funding objectives and possibilities for variable portfolio size. The solution was so effective
that it completely replaced traditional planning methods, and has become the principal planning
tool in the Alaskan field.

10.8 SUMMARY

Heuristic techniques are efficient and practical methods that can be used to find good (but not
necessarily optimal) solutions to a wide variety of difficult combinatorial problems. Such techniques
are employed to find acceptable solutions to problems, when otherwise the best-known algorithms
for finding optimal solutions take far too much computation time to be usable in practice.

The simplest of these heuristic methods operates by making local improvements to a feasible
solution, merely by rearranging randomly a few elements in the solution, to achieve a slightly better
feasible solution. While there are seldom any guarantees of reaching an optimal solution in this
way, remarkably good results can be obtained quickly with minimal computational effort.
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Heuristic techniques guided entirely by opportunities for improvement often converge rapidly
to a local optimal solution. To broaden the search in hopes of finding a global optimum, a technique
known as simulated annealing rearranges the entities in the solution so that not only better solutions
but occasionally also worse ones are admitted. The algorithm for doing this bears a resemblance
to the process of annealing in physical substances; and as we have seen, physical and biological
processes have provided the inspiration for numerous search techniques used in combinatorial
optimization.

Some combinatorial problems can be encoded in such a way that increasingly better solutions
evolve through techniques based on analogies to biological reproductive processes. These genetic
algorithms include several mechanisms that randomly but systematically find and improve upon
good solutions to problems.

Parallel annealing algorithms suggest ways to use multiple computer processors cooperatively
and advantageously in solving combinatorial problems, by imitating mechanisms found in biolog-
ical neural network systems. The increasing power of multi-processor computer hardware, together
with fascinating new ideas for algorithms, offers analysts a rich set of tools that can be tailored for
solving specific combinatorial problems.

KEY TERMS

annealing process
Boltzmann machine
chromosome
consensus
crossover
equilibration
genetic algorithm
heuristic methods
knapsack problem
local exchange heuristic
local improvement heuristic
local search
mutation
neural network
parallel annealing
simulated annealing
sub-tour reversal
traveling salesman problem

EXERCISES

10.1 One of the recurring themes in Operations Research is how best to explore a range of
possible actions in pursuit of well-defined goals. The use of heuristic search methods
has been suggested. Define the term "heuristic search," and indicate why such methods
are attractive.

10.2 Develop a local improvement technique for the knapsack problem described at the
beginning of this chapter.
(a) Design several possible methods for creating initial feasible solutions.
(b) Develop a method for computing the objective function value for a current solution.
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(c) Design an exchange or swap technique, using a random number generator to select
the items to be swapped. For each proposed exchange, compute the new objective
function to determine whether to accept the change. Decide how many iterations of
this exchange step you think would be necessary for a knapsack problem with n
objects.

10.3 Implement your design in Exercise 10.2 by developing a computer program.
(a) Demonstrate the results by running your program on a problem instance with n =

17 objects to be considered for a knapsack having a capacity of 3876. The weights
and values of the objects are shown in Table 10.2.

(b) Try different numbers of iterations of the exchange process, such as 100, 1000, and
10,000. Chart the improvements in the objective functions that take place throughout
the execution of your algorithm, and determine how many iterations is a reasonable
number. Would 1,000,000 iterations improve the quality of solution obtained by your
algorithm?

10.4 Reconsider Exercise 10.2(b). Is it necessary to recompute the objective function at each
local improvement step? Refine your program so that objective function re-evaluations
are as simple as possible.

10.5 Design and implement an algorithm that exhaustively enumerates all feasible packings
of n objects in a knapsack having a given capacity. Use the results obtained from this
algorithm as a benchmark to gauge the quality of the solutions generated by your
exchange heuristic.

10.6 Design a simulated annealing heuristic algorithm for the knapsack problem. Use your
local improvement exchange heuristic, and modify it so that it probabilistically accepts
bad exchanges.
(a) Design a cooling schedule for your algorithm. What should be the initial temperature

parameter? By what amount should this parameter be reduced after each equilibra-
tion? At what temperature should the annealing process cease?

(b) Apply your algorithm to the knapsack problem data shown in Table 10.2.
(c) How many exchanges actually take place at each temperature? How many exchanges

take place at the coolest temperature?

10.7 Compare the local improvement heuristic and the simulated annealing heuristic on the
basis of the computation time required for each method to execute and the quality of the
solutions obtained by each method.

10.8 Design a local improvement heuristic technique for solving the traveling salesman problem
described at the beginning of this chapter. For purposes of this exercise, assume that we
wish to find the least costly tour from city 1 through all the other cities and back to city 1.
(a) Design a method for establishing an initial tour.
(b) Develop a method for computing the objective function for a given tour.
(c) Design a swap or exchange mechanism for local improvements, involving just two

cities. After each proposed exchange, compute the change in the objective function
value.



370 Operations Research: A Practical Introduction

TABLE 10.2
Knapsack Data

Object Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Object Description
Life raft
Shark knife
Sun shades
Reef runners
Canteen
Iodine pills
OR book
Gnat spray
Nylon cord
Carrot cake
Firewood
Solar blanket
Dried apricots
Parachute
Space suit
Alien bane
Dry matches

Weight
800
050
010
240
080
350
738
548
310
200
300
850
490
500
300
480
150

Value
900
550
475
850
600
350
900
290
500
010
800
215
285
630
320
850
400

10.9 Implement your traveling salesman problem heuristic, and apply it to the problem
instance with n = 10 cities, in which the cost of traveling from city i to city j is shown
as the entry in the i-th row and j-th column of the cost (or distance) matrix below.

99 45 55 10 15 86 90 33 41
97
88
75
32
24
55
30
35
40

0
22
64
53
35
79
50
57
50

10
0
53
64
46
26
80
26
60

15
35
0
86
57
10
50
11
23

18
46
14
0
68
96
86
14
41

93
57
63
97
0
65
53
76
11

56
68
74
94
98
0
81
25
18

23
79
77
91
96
35
0
89
90

84
99
54
90
95
49
28
0
47

75
90
20
10
99
22
65
30
0

10.10 Modify your traveling salesman heuristic, replacing the exchange mechanism by a sub-
tour reversal mechanism. Use a random number generator to select the end-points of a
sub-tour of cities, and then create a new tour with that sub-tour reversed. Compute the
objective function value associated with this new tour, and accept the new tour if it is
an improvement over the previous one.

10.11 Extend your algorithms from Exercises 10.9 and 10.10 to include possible acceptance
of a new tour having a worse objective function value than that of the previous tour.
(a) Design a cooling schedule for this simulated annealing method.
(b) Determine the other operational parameters necessary to complete an implementa-

tion of simulated annealing for the traveling salesman problem.

10.12 Write a computer program that exhaustively enumerates all feasible traveling salesman
tours.
(a) Apply this algorithm to the 10-city problem data given in Exercise 10.9. Compare

the quality of solutions and the computation time performance characteristics of
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your exchange heuristic, your implementation of simulated annealing, and the com-
plete enumeration algorithm.

(b) Estimate the amount of time your exhaustive enumeration method would require to
find the optimal tour among 100 cities.

10.13 Collect or create data for a large routing problem that involves approximately 100
locations. For example, consider routing delivery trucks, ordering the pickups and deliv-
eries in a campus mail or courier service, or sequencing the safety inspection sites in a
large complex of buildings. Construct the 100 x 100 matrix of distances. This problem
is significantly larger than the 10-city problem addressed in previous exercises. Experi-
ment with your local improvement and simulated annealing programs to determine how
effectively and efficiently they solve this larger problem.
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A.1 VECTORS

A vector is generally considered to be a quantity having both magnitude and direction. In some
cases, it is convenient to think of a vector as a line segment beginning at the origin of an n-
dimensional rectangular coordinate system and terminating at a point in the n-space. The compo-
nents, or elements, of the vector are the projections of the vector onto each of the coordinate axes.
These projections form an n-tuple and completely described the vector.

More typically, a vector is described simply as a point X in n-space and

X = (x,,x2 ..., xn).

The set of all possible points, or n-tuples of real numbers, forms the real n-space, which is denoted
by Rn.

If X = (x,, x2, ..., xn) and Y = (y,, y2, ..., yn) are vectors in Rn, then the sum X + Y is an n-
dimensional vector defined as

X + Y = (x, + y,, x2 + y2, ..., xn + yn)

A vector X can be multiplied by a real number scalar a to obtain

aX = (ax,, ax2, ..., axn).

375
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A vector space over the set of real numbers is a set of vectors for which addition and scalar
multiplication are defined. Additionally, the operations in the vector space must satisfy a certain
set of axioms, including commutative, associative, and distributive laws. The set of vectors must
include an identity element, that is, the zero vector (0,0,..., 0); and for every vector X, there must
be an inverse -X, for which X + (-X) is the zero vector.

A vector Y is a linear combination of vectors Xl9 X2, ..., Xn if it can be expressed as

Y = a1X1+a2X2 + ... + anXn

where the a{ are real numbers.
An n-dimensional vector space is said to be spanned by the set of vectors {Xj, X2, ..., Xn) if

every vector in the space is some linear combination of Xl9 X2, ..., Xn. The set {X,, X2, ..., Xn}
is then called a spanning set for the vector space.

A set of vectors {X,, X2, ..., Xn} is linearly independent if no one vector can be expressed
as a linear combination of the other vectors in the set; that is, if the equation

o^X, + a2X2 + ... + anXn = 0

can be satisfied only by setting all the as equal to zero. A set of vectors that is not linearly
independent is linearly dependent. For example, two non-zero vectors Xl and X2 are linearly
dependent if one of them is a non-zero scalar multiple of the other one; that is, if cqX, + a2X2 =
0 for some scalars a, and a2 not both zero.

A set of vectors {X,, X2, ..., Xn} is a basis for an n-dimensional vector space if the set spans
the space and is linearly independent. The standard basis of an n-dimensional space consists of
a set of unit vectors that comprise a basis; that is, a set of vectors in which the i-th vector u} has
a 1 as the i-th element and zeros in all other positions. This standard basis is useful because of
its simplicity and because of its obvious role as a basis for an n-dimensional vector space.

A.2 MATRICES AND MATRIX OPERATIONS

A real matrix is a rectangular array of real numbers. Subscripts, such as i and j, can be used to
index the rows and columns, respectively. A matrix A of m rows and n columns is called an m
x n ("m by n") matrix and is written as

A = (ay) =

where ay denotes the element in the i-th row and the j-th column. Any matrix A can be multiplied
by a scalar a with the result that every element ay in A becomes the value aay in the scalar product
matrix.

Two matrices Amxn and Bpxq can be added if m = p and n = q. The sum C = A + B is a matrix
Cmxn in which the element Cy is computed as (ay + by). Two matrices Amxn and Bpxq may be multiplied
if n = p. The product C = AB is defined to be a matrix Cmxq in which the element Cy is computed as

cu = |,aAj

"a.i
32.

3n,l

3.2

a22

am2

ain

32n

amn
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For the special case in which m = q = 1, we actually have just the product of two vectors. This
product is called the dot product, and the dot product of two vectors X = (x,, x2, ..., xn) and Y =
(yi»y 2 > ...,yn) is given by

X.Y = xnyn)

which is consistent with the definition of general matrix multiplication.
Matrix addition and multiplication exhibit some of the properties of real arithmetic operations.

For example, for matrices A, B, and C, the following properties hold:

A + B = B + A

(A + B) + C = A + (B + C)

A(B + C ) = A B + A C

(AB)C = A(BC)

But note that, in general, matrix multiplication is not commutative, so AB * BA in general, and in
fact these products may not even exist.

The transpose of an m x n matrix A is the n x m matrix AT obtained by interchanging the
roles of the rows and columns in A. Thus, if A is the matrix shown above, then AT is the matrix
whose elements have the same values as those in A, but arranged in the form

mn_

Reversing the roles twice simply yields the original matrix, so for any matrix A, (AT)T = A.
For example, the two matrices below are the transpose of each other.

4i5

3 7
2 1
4 5

A property of matrix multiplication and transposition is that (AB)T = BT AT.
A square matrix is one for which m = n. The main diagonal of a square matrix A is the set

of elements a^ for which i = j, that is, an, a22, .. •> a^. An n x n matrix A is symmetric about the
main diagonal if every element a^ is equal to the element a^. A square matrix A is triangular (or
"upper" triangular) if all the elements below the main diagonal have value zero; that is, a^ = 0 for
all i > j. For example, the matrix below is upper triangular:

4 6 2 5

0 7 1 2

0 0 4 3

0 0 0 8

A matrix is "lower" triangular if all the elements above the main diagonal have value zero.

(x ,y ,+ x 2 y 2 + ... +

"all
a!2

.ain

32.

a22

a2n

am."

an,2

amn_

•3
7

2
1
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The identify matrix I is an n x n matrix whose columns are the standard basis, and in which
the i-th column contains the i-th unit vector. The identity matrix contains ones along the main
diagonal (a^ = 1 for all i) and zeros elsewhere (a^ = 0 for all i * j). This matrix has the property
that AI = IA = A for any n x n real matrix A.

The rank of a matrix A is the number of linearly independent rows (or columns) in A, and is
denoted as rank (A). A square matrix A,̂  having rank n ("full rank") is called a non-singular
matrix.

A square matrix A may have an inverse matrix A"1 such that AA"1 = A'1 A = I. Such an inverse
exists if and only if rank (A) = n (or equivalently, if and only if A is non-singular), and in that
case, the inverse A'1 is unique. The inverse of the inverse of a matrix A is the original matrix A;
thus, (A"1)"1 = A. And if two matrices A and B have inverses A"1 and B"1, respectively, then

(AB)-1 = B"1 A-1

A3 LINEAR EQUATIONS

A set of m linear equations in n variables is expressed as

The coefficients of the variables can be written as a matrix A, where

The variables and right-hand sides of the equations can be written as column vectors, thus, X =
(x,, x2, ..., xn) and b = (b,, b2, ..., bm). In this context, the matrix A can be viewed as an operation
or transformation on the vector X, yielding the resulting vector b. This can be written as AX =
b, and has the same meaning as the set of linear equations depicted above.

A solution to this set of linear equations is any vector X that satisfies the equations AX = b.
A unique solution to a set of m independent linear equations in n variables exists if m = n and if
the inverse of A exists. If m > n, there may be no solution. And if m < n, there are infinitely many
solutions.

Techniques for solving a system of linear equations may involve the use of so-called elementary
row operations on the equations. The application of any of the following row operations yields
an equivalent system of equations and may simplify the solution process:

• Any two rows (equations) may be interchanged.
• Any row (equation) may be multiplied by a non-zero constant.
• Any row (equation) may be added to any other row (equation).

anx, + a12x2 + ... +a,nxn = bl

a21x, + a2 2x2+ ... + a2nxn = b2

aml x. + am, x, + ... + a^x,, = bm

A =
"an

am!

3I2

a -

3ln

amn.
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When m = n, if it is possible to transform the matrix of coefficients A into a triangular matrix by
performing elementary row operations, then the system can be solved easily. For example if the
system of equations appears as

•M2

*22

0 0 0

a in"

a2

a3n

amn.

V

x2

x3

.x».

=

V
b2

b.3

.b™.

then we know that a^ • xn = bm, so we can easily find a value for xn. Using this, we can then
solve for xn_! in the next to the last equation, and so on until finally we have a value for Xj.

An alternative approach to the solution process is to create an augmented matrix B consisting
of the coefficient matrix A with one additional column containing the elements bj. Then this new
matrix B is an m row by (n + 1) column matrix, and each row of B represents one equation of the
system of equations. Next apply the necessary elementary row operations to B that transform the
original A portion of B into the identity matrix I. This will have the effect of causing the b portion
of B to be transformed into a vector representing the solution to the system of equations.

A.4 QUADRATIC FORMS

Let Anxn be a symmetric matrix, and X be an n-element vector. The function f(X) defined as

f(X) = X^AX

is called a quadratic form. Since X1 is of order 1 x n and A is n x n and X is n x 1, the product

[x | fx2,... fxD]

mn_

exists and can be computed. Clearly, f(X) is a scalar value, and can be written as

f(x)=l,! w»
Thus, f(X) is a sum of quadratic terms, and hence the name "quadratic form."
In this context, the matrix A has one of the following characteristics:

Positive definite If f(X) > 0 for all X * 0
Positive semidefinite If f(X) > 0 for all X and there exists an X * 0 for which f(X) = 0
Negative definite I f f (X)<0 foral lX*0
Negative semidefinite If f(X) < 0 for all X and there exists an X * 0 for which f(X) = 0
Indefinite If none of the above

REFERENCES
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Allais paradox, 325-326
Allele, 357
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Analytic hierarchy process (AHP), 335
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Annealing process, 351-352
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Applications of OR

decision analysis, 335-338
heuristic techniques, 363-367
integer programming, 182-185
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Markov processes, 244-246
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nonlinear optimization, 215-217
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simulation, 292-295

Arc, 80
backward, 80, 84
capacity, 82
forward, 80, 84

ArcForest, 335
ARENA, 291
Arrivals, in queue, 257
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big-M method, 39
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minimization, 40
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two-phase method, 40-48

Assembly line loading, 293
Assignment problem, 97

formulation, 97, 148
Hungarian method, 98-100
minimum cost flow problem and, 86-87, 97, 102

Attributes, in a simulation, 278
Augmented matrix, 379
Automatic correction, 334
AutoMod, 291
AutoSched, 291
Availability, of information, 328
Average case performance, 6

B
Backtracking, in integer programming, 155-157
Backward

labeling, 108, 113
pass, 121
recursion, 108, 113

Balance equations, 102
Balking, 256
Barrier

function, 212
methods, 59
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feasible solution, 32-35
variables, 32

entering, 34
leaving, 35

Basis
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Bayes rule, 312
Beale's method, 209
Best case performance, 6
BFGS update formula, 206
Big-M method, 39
Big-Oh notation, 7
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Bipartite graph, 81
Birth-and-death model, 260

rate in = rate out, principle, 261-262
Bisection search, 219
Boltzmann

constant, 352
machine, 355-356
probability, 352-353

Bottleneck, 84, 270
Bounding strategies, 155, 157-158
Branch, 149
Branch-and-bound method, 149-153

model formulation, 158-160
round-off errors in, 160
tree, 152, 155, 160

Branching, 150-153, 155
strategies, 155-157

Bulk queues, 257

Calling source, 257
Capacitated transshipment, 102-103
Certain monetary equivalent (CME), 318
Chain

in a graph, 80
Markov, 224

Chance fork, 310
Channels, 257
Chromosomes, 357
Classical optimization methods, 195

constrained optimization, 206-212
unconstrained optimization, 200-206

Clock, simulation, 278
Closed set, in a Markov chain, 234
CME (Certain monetary equivalent), 318
Coefficient matrix, 30, 378
Column generation, 178-181
Combinatorial optimization, 347-349
COMNET III, 291
Complementary slackness property, 51
Complexity of problems, 4-8
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complexity, of algorithms, 4-8, 54-56
considerations, 7-11, 32, 54-57, 59-61, 156, 209, 268,

281
Concave function, 198
Congruential methods, for random number generation, 281
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Connectionist computing, 360
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Conservation of flow, 83
Constrained optimization, 195, 206-212

barrier functions, 212
Kuhn-Tucker conditions, 207-208
Lagrange multipliers, 206-207
penalty function, 212
quadratic programming, 208-212
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binding, 37
equality, 31
inequality, 31
non-binding, 37

Continuity assumption, 317
Continuous simulation, 277
Continuous-time process, 224
Convex

function, 198
hull, 161
region (set), 199

Cover
inequalities, 163-167
minimal, 165

CPLEX
Linear Optimizer, 62, 127
Mixed Integer Optimizer, 182

CPM (Critical Path Method), 118
Crash
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cost, 123
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Crashing
a project, 123
in linear programming, 57, 60
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event, 121
path, 121

Critical Path Method (CPM), 118
Crossover, in genetic search, 358
Crystal Ball, 334
Current incumbent solution, 149
Customer, 256

arrivals, 257
departures, 257, 260-262

Cut, 82
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Cutting plane, 160-163
C-WHIZ, 62
Cycle, 81
Cyclic path, 81
Cycling in Simplex method, 46

Dantzig, George B., 32
Data gathering, 277
Decision analysis, 301

adjustment, 328
anchoring, 328
applications

petroleum exploration and risk, 337-338
radioactive waste, 336-337
refinery pricing, 335-336

decision trees, 309-3.16
dissonance, 329-330
dominance, 305
framing effect, 325, 330-331
game theory, 304-309
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Hurwicz principle, 306
irrational human behavior in, 333-334
Laplace principle, 306
lottery, 317
maximax, 305-306
maximin, 305
outcomes, 302
payoff, 302, 305
risk, 304, 316, 323-324
Savage minimax regret, 307
software, 334-335
states of nature, 302
sunk-cost fallacy, 332-333
uncertainty, 304
utility

function, 319
theory, 316-326

variables in, 302
Decision

fork, 310
simulator, 333
strategies, 310
trees, 309-316
variables

in decision analysis, 302
in dynamic programming, 116
in linear programming, 18

Decision-making, 4, 317
Decision Tool Suite, 334
DecisionPro, 334
Decomposition technique, for LP, 56
Degeneracy, 42, 45-46
Degree, of a node, 80
Degrees of freedom, 32
Demand, 80

constraint, 87
node, 102

Departures, from queue, 257, 260-262
Destination node, 82
DFP method, 206
Dijkstra's algorithm, 108-109
Directed

arc, 80
chain, 80
network, 80-81

Discrete-event simulation, 277
Discrete-time process, 224
Dissonance, 329

reduction, 329-330
Distribution network, 87
Dominance, 305
Dot product, 377
Doubly stochastic matrix, 249-250
Down penalty, 157
Dual

problem, 47-49, 121
Simplex method, 57
variables, 48, 51

Duality
property, 50
theory, 47

complementary slackness, 51
economic interpretation, 51
primal-dual problems, 48-49
sensitivity analysis and, 52
shadow prices and, 50

Dummy activities, 119
Dynamic programming, 111-118

characteristics, 111-112
general recursive method, 116

backward recursion, 118
forward recursion, 118

principle of optimality, 116
staged decision making, 112-113
tabular method, 113-115

Earliest time, for an event, 121
Economic interpretation

of dual variables, 51
of Lagrange multipliers, 207

Efficient portfolios, 210
Elementary row operations, 34, 378
Ellipsoid method, 58
EMV (Expected monetary value), 316
Entering basic variable, 34-35

tie breaking for, 38
Entities, in a simulation, 278
Entrapment, 332
Equality constraints, 30-31

artificial variables for, 39
Equilibration, 353-356
Equilibrium

thermal, 351
steady-state, 236

Equipment replacement problem, 110-111
Ergodic chain, 235
Erlang, A. K., 255
Event

in a project network, 119
in a simulation, 278

Event-driven models, 278-279
Event-generation mechanism, 281-284
Evolver, 361
EVPI (Expected value of perfect information), 313
Exhaustive enumeration, 349
Expected

first passage time, 238-240
monetary value (EMV), 316
number of customers, 261
number of servers, 261
payoff, 306
project duration, 125
recurrence time, 238
value of perfect information (EVPI), 313
waiting time, 261

Experimental design, 277, 287-288
Expert Choice Pro, 335
Exponential

density function, 258
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distribution, 258
growth, 8
service times, 258-259
time algorithm, 5-9

Extreme point, 25, 32

Facet (face), 161
Fathomed, 150, 153
Feasible

dual, 57
region, 24, 200
solution, 24, 149

Feedback, 334, 360
Fibonacci method, 202
Finite state Markov chain, 224
First

passage
probability, 232-233
time, expected, 238

recurrence times, 238
First-come first-served, queuing discipline, 257
Flexible manufacturing systems, 270
Flow

balancing equations, 102, 262
conservation equations, 83
in a network, 82

Flow-augmenting path, 83
Folding-back, a decision tree, 310
Ford-Fulkerson algorithm, 83
Formulations

of linear problems, 18-24
of nonlinear problems, 24, 158-159

FortLP, 62
Forward

arc, 84
pass, 121
recursion, 118

Framing effect, 325, 330-331
Fundamental matrix, 242

Gacs, P., 57
GAGA, 362
Gambler's fallacy, 327
Gambling, 317
Game theory, 304-309

strategies, 305-309
GAMS, 12, 212
GASP, 288
Gate, 310-311
GAUCSD, 362
Generalized assignment problem, 148, 173-175
Genes, 357
Genesis, 362
Genetic algorithms, 357-359
GENOS, 126

GeoRoute, 182
GI/M/N+1, 268
GINO, 214
Global

maximum, 197
minimum, 197

Golden section search method, 202, 219
Gomory fractional cut, 162
GPSS, 289
Gradient, 200, 203

search, 202-204, 211
Graph, 80-81
Graphical solution, in linear programming, 24-30
Greedy algorithm, 104-105

H

Hessian matrix, 200, 205-206
Heuristic search techniques, 347

applications
ecosystem management, 365-366
flight route management, 363-364
scheduling oil field drilling, 366-367

for combinatorial optimization, 349
for knapsack problem, 350
genetic algorithms, 357-359
local improvement, 349-350
neural networks, 359-361
parallel annealing, 355-357
simulated annealing, 350-355
software, 361-362

Hungarian method, 98, 349
'Hurwicz

measure, 306
principle, 306

I

Identity matrix, 378
Idle server, 263
IFORS, 2
Implicit enumeration, 154
IMSL, 11, 62, 214, 243
Incumbent solution, 149
Indefinite matrix, 379
Independent reference model, 246-247
Inequality constraints, 18, 31, 38-39
Infeasible solution. 32
Inflection point, 199
INFORMS, 2
Initial

configuration, 349, 351
feasible LP solution, 33, 38-42
probability distribution, 225
Simplex tableau, 34

Input/output formats, 59-60
Institute for Operations Research and the Management

Sciences (INFORMS), 2
Insufficient reason, principle of, 306
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Integer poly tope, 161
Integer programming (IP), 141

applications
propane plant location, 185
timber harvest planning, 184
waste management, 182-184

assignment problem, 148
branch-and-bound method, 149-153
column generation, 178-181
cover inequalities, 163-167
cutting planes, 160-163
formulations

bin packing, 147
knapsack, 146, 153-154
traveling salesman, 145-146

general integer programming, 143-144
generalized assignment problem, 148, 173-175
knapsack problem heuristic, 167-168
Lagrangian relaxation, 168-170
mixed integer programming (MIP), 143, 145
model formulation, 158-159
set

covering, 147
packing, 148
partitioning, 147, 179

software, 181-182
zero-one programming, 143-145

capital budgeting, 144
crew scheduling, 144
distributed computing, 145
examination timetabling, 144
knapsack heuristic, 167-168
vehicle routing, 144

Integrality gap, 173-175
Interarrival time, 259
Interior point methods, 55, 57-59
International Federation of Operational Research Societies

(IFORS), 2
Inverse

of a matrix, 54-55, 378
transform method, 282

IP (see Integer programming)
Irrational human behavior, in decision-making, 333-334
Irreducible Markov chain, 234
Isolated node, 80

J
Jockeying, 256
Jumptracking, in integer programming, 155-157

Karmarkar's method, 58-59
Kendall and Lee notation, 260
Khachiyan, Leonid B., 57-58
Kleinrock, L., 270
Knapsack problem, 146, 153-154, 347

branch-and-bound heuristic for, 167-168
Kuhn-Tucker conditions

for constrained optimization, 207-208
for quadratic programming, 208-209

Lagrange multipliers, 206-207
Lagrangian

function, 169
relaxation, 169-170

algorithm, 175
LAMPS, 62
Laplace principle, 306
Latest time, for an event, 121
Lawler, Eugene, 57
Leaving basic variable, 35

tie breaking for, 45-46
Lemke's algorithm, 209
LINDO, 63, 181-182, 214
Linear equations, 30, 378-379

matrix form, 31, 378
Linear programming (LP), 18

applications, 18
food production, 65
forestry management, 64
military aircraft, 64

decomposition technique, 56
dual problem, 47-49
ellipsoid method, 58
formulations, 18-24
graphical solutions, 24-29
interior point method, 57-59
model, 18
post-optimality analysis, 52-54, 57
Revised Simplex, 54-55
Simplex method, 30, 32-38
software, 60-63
solution, 24

methods, 32-38, 54-55, 57-59
standard form, 30-32
upper-bound constraints, 56

Linearly
dependent vectors, 376
independent vectors, 376

LINGO, 12, 214
Little's formula, 261, 264
LNOS, 126
Local

exchange heuristic, 350
improvement search, 349-350
maximum, 197
minimum, 197

Logical Decisions for Windows, 335
Lottery, 317
Lovasz, L., 58
LP (see Linear programming)
LP-relaxation, 168
LSNNO, 126
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M

MaintSim, 291
Management science, 2
Marginal worth, 47
Markov, A. A., 223
Markov processes, 223

absorption probability, 241-243
applications, 244-246
chain, 224

absorbing, 240-243
closed set of states, 234
doubly stochastic matrix, 249-250
ergodic chain, 235
expected first passage time, 238-240
expected recurrence time, 238
finite state, 224
first passage probability, 232-234
first passage time, 238
first recurrence time, 238
fundamental matrix, 242
initial probability distribution, 225, 228
irreducible chain, 234
Markov property, 224
software, 243-244
state probability vector, 228
state transition diagram, 226
states, 234-236
stationarity property, 224
steady-state, 236-238
transition probabilities, 224-225

one-step, 225
n-step, 226-229

transition probability matrix, 224-225, 229
transition tree, 226-227

Markov property, 224
Matching, stable, 101-102
Mathematical models, 3, 276-277
MATLAB, 244

Optimization Toolbox, 213
Matrix

augmented, 379
condition of, 57
doubly stochastic, 250
Hessian, 200, 205-206
identity, 378
inverse, 54, 378
main diagonal of, 377
non-singular, 378
operations, 376-378
rank of, 378
sparse, 55-56
square, 377
symmetric, 377
system of equations represented by, 30-31, 378
transition probability, 224-225, 229
transpose, 377
triangular, 377

Max-flow min-cut theorem, 84
Maximax strategy, 305-306
Maximin strategy, 305

Maximum flow in a network, 82-86
Mesa/Vista, 335
M/G/l/N+1, 268
MicroGA, 362
Minimal cover, 165
Minimax regret strategy, 307
Minimum

cost flow problem, 86-87, 97, 102
cost method, 90
ratio, 35
row cost method, 91
spanning tree problem, 103-105

MINOS, 62, 213
MIP (Mixed integer programming), 143, 145
MIPI1I, 182
Mixed integer programming (MIP), 143, 145
Model, 3

for simulation, 276-277
validation, 277

Modeling, 3
languages, 11-12

MODSIM, 290
MODSIM III, 291
MPL, 12, 62
MProbe, 214
MPS(X) format, 60
Multiple optimal solutions, 27-28, 42-43
Multi-stage decision making, 112
Multi-variable search, 202-205
Mutation, in genetic search, 358

N

NAG, 214
Nearly optimal solutions, 8-9, 349, 359
Necessary conditions, 199-200
Negative

definite matrix, 379
semideftnite matrix, 379

NEOS (Network-Enabled Optimization System), 13, 215
NETFLO, 126
NETSOLVE, 126
Network analysis, 79

applications, 80
agricultural products shipping, 128-129
DNA sequencing, 127
network traffic scheduling, 128

assignment problem, 97-101
dynamic programming, 111-118
maximum flow, 82-86
minimum cost flow, 86
project planning, 118-125
shortest path, 106-110
software, 126-127
spanning tree, minimum, 103-105
Steiner tree, 105-106
terminology for, 80-82
transportation, 87-97
transshipment, 102-103

Network-Enabled Optimization System (NEOS), 13, 215
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Network queues, 257
NETWK, 126
NETWORK II.5, 291
Neural networks, 359-361
Newton's method, 205
No feasible solutions in LP, 28-29

artificial variables, 38-39
No optimal solution in LP, 28, 43-45
Node-arc incidence matrix, 103
Nodes, 80
Non-basic variables, 32
Non-binding constraint, 37
Nonlinear function, 24, 196
Nonlinear optimization, 195

applications
balancing rotor systems, 217
gasoline blending, 215-216
portfolio construction, 216

constrained, 206-212
global optimum, 197
Kuhn-Tucker conditions, 207-208
Lagrange multipliers, 206-207
local optimum, 197
necessary and sufficient conditions, 199-200
Newton's method, 205
portfolio selection, 210-211
quadratic programming, 208-211
quasi-Newton method, 206
software, 212-215
unconstrained, 200-206

gradient search, 202-204
multiple-variable gradient search, 204-205
one-dimensional search, 201-202

Non-negativity constraints, 19-20
Non-singular matrix, 32, 378
Normal distribution, 283
Northwest comer rule, 89
NP-complete, 5, 349
NP-hard, 5, 349
NPSOL, 213
Number

of customers, 261
of servers, 261

Numerical
accuracy, 54-55
stability, 8

o
Objective function, 18, 30

coefficient range analysis, in LP, 52
coefficients, 30
in dynamic programming, 116

Objectives, 18
Observations, of a simulation, 284-287
O-MATRIX, 244
Omega, 361
One-dimensional search, 201-202
One-step transition probabilities, 225
OOGA, 362

Operations research
applications, 1-2, 64-65, 127-129, 182-185, 215-217,

244-246, 269-270, 292-295, 335-338,
363-367

definition, 1
modeling, 3-4
origins, 1-2
societies, 2
software for, 9-13, 60-63, 126-127, 181-182,

212-215, 243-244, 268-269, 288-292,
334-335, 361-362

Optimal
feasible LP solution, 24, 32
policy, 116
Simplex tableau, 38, 42
solutions, 24

multiple, 27
no, 28

Optimally, 8-9
Optimization methods, 18, 79, 141, 195
Optimization Subroutine Library (OSL), 63, 126, 182
OptQuest, 334
Origin node, 82
OR-Objects, 13
OSL (Optimization Subroutine Library), 63, 126, 182
Outcomes, 302

Parallel algorithms
annealing, 355-357
Boltzmann machine, 355
genetic, 357-359
neural networks, 359-361
simulation, 292

Parameters, in queuing, 261
Partial derivatives, 200
Path

cyclic, 81
flow augmenting, 83
shortest, 106-111

Payoff, 302
matrix, 302, 305

Penalty, 169
function, 212

Perfect information, expected value of, 313
Period, 235
Periodic state, 235
PERT (see Program evaluation and review technique)
Pivot

column, 35
element, 35
operation, 34

Poisson
arrivals, 259
distribution, 259

Polynomial-time algorithm, 5
Poly tope, integer, 161
Portfolio selection, 143, 210-211
Positive
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definite matrix, 379
semidefinite matrix, 379

Post-optimality analysis
Simplex method and, 52-54
sensitivity analysis, 47
shadow prices, 50

Precision Tree, 335
Predecessor of a node, 80
Preference function, 319
Premium Solver, 214
Primal problem, 47-48
Primal-dual relationship, 48-49

complementary, 48, 51
duality, 47-50

Principle of optimality, 116
Probability of absorption, 241-243
Problem

complexity, 5
size, 5, 61

Product form of inverse, 54
Program evaluation and review technique (PERT), 118-125
Programming

dynamic, 111-118
integer (IP) (see Integer programming)
linear (LP) (see Linear programming)
mathematical, 18
quadratic, 208-212

Project
duration, 125
management, 118-125
network, 119-122

ProModel, 291
Pseudo-random numbers, 281
Psychology of decision-making, 327-334

QTK, 244
Quadratic

forms of matrices, 379
programming, 208-212

Quasi-Newton methods, 206
QueGAUSS, 269
Queue, 256
Queuing systems, 255

applications, 256
interactive computer systems, 269-270
manufacturing, 270

arrivals, 257
birth-and-death process, 260-262
calling source, 257
characteristics, 257
customer, 256
departures, 257, 260-262
exponential service times, 258-259
interarrival times, 259
Little's formula, 261, 264
models, 255
networks, 270
Poisson arrivals, 259

queue discipline, 257
server, 256
service times, 257
simulation of, 256, 279-281, 284-288
software, 268-269
steady-state, 261-264
system capacity, 257

R
Random

events, 281
numbers, 281

generation of, 281-284
inverse transform method, 282

Range analysis, 52-53
Rank of a matrix, 378
Rate diagram, 260
Reachable state, 234
Recurrent state, 234
Recursive

algorithm, 107
method for dynamic programming, 116-118

Reduced
cost matrix, 92
gradient, 211

Redundant questions, 334
Reinversion of a matrix, 55
Relaxation

Lagrangian, 169
LP-, 168

Reverse arc, 84
Revised Simplex method, 54

advantages, 55
Right-hand-side ranging, 53
Risk, 211, 304, 316, 323-324

averse, 323
seeking, 323

Rosenbrock's function, 220
Round-off error, 8, 40, 55-56, 160, 249
RoutePro, 182
Row

linearity, 308
of a Simplex tableau, 34
operations, elementary, 34, 378

SAS, 213, 243
SAS/OR, 127, 182
Saturation, of queuing systems, 266, 270
Savage minimax regret, 307
Scaling, 57
Search methods

gradient, 202-204, 211
heuristic, 347-361

Sensitivity analysis, 47, 52
changes in coefficients, 52
changes in right-hand-sides, 53
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new constraints, 54
new variables, 53

Separated, 150
Separation rules, 153, 155, 158
Server, 256

idle, 263
utilization, 261, 286

Service
rate, 258, 261
times, 257

Set
covering problem, 147
packing problem, 148
partitioning problem, 147, 179

Shadow prices, 46-47
SHIPCONS, 182
Shortest

network problem, 105-106
path problem, 106-111

applications, 110-111
backward labeling, 107-108
Dijkstra's algorithm, 108-109

SIMAN V, 292
SIMFACTORY II.5, 291
SIMPLE++, 292
Simplex method, 30

artificial variables, 39
Big-M method, 39
computational complexity of, 60
computer implementation, 55-57, 59-60
crashing, 57
duality and, 47-49
economic interpretations, 47, 50
initial feasible solution, 33, 38-42
optimal

solution, 32, 35
tableau, 38, 42

Revised Simplex, 54
sensitivity analysis, 52-54
slack variables, 31
surplus variables, 31
tableau, 34
two-phase, 40-42

SIMSCRIPT, 289
SIMUL8, 291
SIMULA, 290
Simulated annealing, 352
Simulation, 275

activities, 278
advantages, 276
applications, 276

Eurotunnel, 294-295
semiconductor manufacturing, 292-294

attributes, 278
clock, 278
discrete event, 277-278
entities, 278
event, 278
experimental design, 277, 287-288
gathering statistics, 284-286
generating events, 281-284

languages, 288-291
modeling, 277
observations, 284-288
parallel, 292
software, 288-292
states, 278

Single sourcing constraint, 176
Sink, 82

multiple, 85
Slack

time, 121
variables, 31

SLAM, 290
SLX, 289
Software for OR applications, 9-13

decision analysis, 334-335
heuristic techniques, 361-362
input/output formats, 59-60
integer programming, 181-182
linear programming, 60-63
Markov processes, 243-244
network analysis, 126-127
nonlinear optimization, 212-215
queuing systems, 268-269
simulation, 288-292

Solvable problem, 5
Solver, 214
Solver DLL, 215
Solvers, 11, 181
SOS (Special ordered set) constraints, 163
Source, 82

multiple, 85
Spanning

set of vectors, 376
tree, minimum, 103-105

Special ordered set (SOS) constraints, 163
Splicer, 362
Square matrix, 377
Stable

matching, 101-102
Stages in dynamic programming, 112
Standard form of LP, 30-32
Starting solution of LP, 33, 38-42
State

transitions, 224
variables, 116, 302

•States
in decision analysis, 302
in dynamic programming, 112
in Markov chains, 224
in simulation, 278
of nature, 302

Stationarity property, 224
Stationary point, 200
Statistics, gathering, 284-286
Steady-state, 236-238

in queuing systems, 261-267
Steepest ascent method, 203
Steiner tree, 106
Step count, 6

of branch-and-bound, 154
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of maximum flow, 86
of shortest path, 110
of Simplex method, 60

Stochastic process, 224
Strategies, decision, 305-310
Suboptimal solution, 8-9, 349, 359
Sub-tour reversal, 350
Successor, of a node, 80
Sufficient conditions, 199-200
Sunk-cost fallacy. 332-333
Supply, 80

constraint, 87
node, 102

Surplus variables, 31
Symmetric matrix, 377
System capacity, in queuing, 257

Tabular method, for dynamic programming, 113-115
Time in queue, 261, 285
Time-advance mechanisms, 278
Throughput, 293
Toll, 310
TransCAD, 127, 182
Transient state, 234
Transition

probabilities, 224-225
probability matrix, 224-225, 229
tree, 226-227

Transportation problem, 87-97
algorithm, 92
model, 87

Transportation Simplex, 87, 92-97
initialization, 88

minimum cost method, 90
minimum row cost method, 91
northwest corner rule, 89

tableau, 93
Transpose of a matrix, 377
Transshipment problem, 102-103

application, 103
Traveling salesman problem, 348, 350, 369-370
Tree

decision, 309-316
spanning, 103-105
transition, 226-227

TreePlan, 335
Triangular matrix, 377
Turing, Alan, 5
Turnaround time, 292
Two-phase method, 40-42

gradient search, 202-204
multiple variable gradient search, 204-205
multi-variable search, 202-205
Newton's method, 205
one-dimensional search, 201-202
quasi-Newton methods, 206

Undecidable problem, 5
Uniform random number, 282-283
Unit vectors, 376
Unsolvable problem, 5
Unstable

matching, 101
numerically, 8, 55

Up penalty, 157
Upper-bound constraints, 56
Utility

curve, 323
. function, 319

theory, 316-326
Utilization of server, 261, 286

Validation of a model, 277
Variables

artificial, 39
basic, 32
decision, 18, 302
slack, 31
surplus, 31
zero-one, 143-145

Vector space, 376
Vectors, 375-376
Verification of a simulation, 277

w
Waiting

Imes, 255
time, 261, 285

Wolfe's algorithm, 208-209
Worst case performance, 7

Xpert Rule Gen A Sys, 361
XPRESS-MP, 12

U

Unbounded solution, 28, 43-44
Uncertainty, 304
Unconstrained optimization, 200-206

Zero illusion, 325
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formulations, 145-149
programming, 143-145
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